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ABSTRACT

In this dissertation, inventory control models are developed 

assuming demand is time-dependent. The models describe situations 

where all demands are met and no shortages are allowed, all demands are 

met and shortages are allowed, all demands are met but lead time is 

probabilistic. Solutions of the mathematical models derived are devel

oped by dynamic programming. A general model is developed that will 

take into account discount rates and time-dependent order and holding 

costs.

Time-dependent demand curves are analyzed by calculus of varia

tions in order to determine the best way to build up continuous produc

tion to meet demand. Using this formulation the idea of market entry 

is developed mathematically.

The concept of "time horizon" is related to inventory control 

prediction processes. This concept and the idea of market entry is used 

as an application of the inventory control models developed. A model 

relating these ideas is derived which would enable a company to determine 

when it is best to begin production of an item for which demand is be

ginning to increase from a low level.
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AN ANALYSIS OF INVENTORY CONTROL USING TIME-DEPENDENT DEMAND CURVES

CHAPTER I 

INTRODUCTION

Since the early 1900's, the field of inventory management has 

been the focus of serious study by a large number of researchers, engi

neers and managers . It is rare to see an issue of an operations research 

journal or a management journal that does not have at least one article 

on some aspect of inventory control.

There are three general reasons why such attention has been 

devoted to this area.

First, effective inventoiry management is essential in order to 

provide the highest level of service to customers. If back orders or 

stockouts occur frequently, customers will turn to competitors to obtain 

the services they need.

Second, without effective inventory management, a company is 

not able to produce at maximum efficiency. If raw materials or parts 

are not available at the proper time, costs due to delays, failures to 

meet schedules, idle time, and rescheduling will far exceed the costs 

of the items involved.

Third, the cost of carrying inventories is directly affected 

by the skill with which inventory levels are managed. Carrying costs
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have been estimated to range from 15 per cent to 25 per cent of the 

value of inventories (5). These costs include such items as interest 

on invested capital, personal property taxes, storage facilities, ware

house space, insurance, etc. In some companies, losses due to obsoles

cence are a major factor. The deterioration of items in storage is a 

major cost in some specialized types of businesses. If a company could 

reduce an inventory of $20,000,000 by 10 per cent, or $2,000,000, the 

potential savings at a carrying cost of only 15 per cent is $300,000 (5).

The importance of inventory planning can be seen by the formula 

chart in Figure 1 (5). One of the most widely applied criteria used to 

measure the success of a company is the rate of return on investment.

The diagram in Figure 1 shows how to compute the effective rate of re

turn for a company. It can be seen that there are four ways to increase 

the company's rate of return on its investment.

First, cost of sales can be reduced. This will increase opera

tive earnings and thus return-on-investment.

Second, selling prices can be increased. If the price increase 

does not result in a drop in sales volume, this will also increase oper

ative earnings.

Third, the volume of sales can be increased. This will have 

the same effect as raising sales prices if the market will absorb the 

increased volume and the manufacturing costs are not increased dispro

portionately.

Fourth, both working capital and permanent investment can be 

reduced. This will give a smaller investment base and therefore a higher 

operative return.
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The fourth way appears to be the easiest way to increase the 

rate of return. Actions to reduce total investment do not depend on 

market capacity, reaction of competitors, extensive studies of compli

cated production or marketing procedures as the first three methods do.

In most companies, inventories are the most significent part 

of total investment and appear from practice to be the most amenable to 

scientific method. Hence, the theory of inventory control offers a fer

tile field for investigation and ample rewards for the development of 

successful techniques.

The inventory problem has been reduced by researchers for the 

purposes of investigation to be the determination of an operating in

ventory policy. By this, it is meant that a solution to a specific in

ventory problem shall consist of rules; either heuristic or mathematical, 

that will determine when an order for an item is to be placed and what 

quantity of the item is to be ordered.

The criterion for deciding on an inventory policy is in all 

cases that policy which yields the minimum annual cost. This minimum 

annual cost will be the sum of separate costs that are considered con

trollable in the sense that changes in inventory policy will cause an 

immediate and direct change in these costs.

Hadley and Whitin (9) enumerate five costs that are generally 

used as a basis for determining the controllable cost of inventory.

These costs are:

1) The costs associated with procuring the units stocked.

2) The costs of carrying the items in inventory.

3) The costs of filling customer's orders.
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4) The costs associated with demands occurring when the system 

is out of stock.

5) The cost of operating the data gathering and control proce

dures for the inventory system.

Procurement costs are considered to be the sum of two costs: 

cost of delivery of an item plus the clerical cost of the order.

Inventory carrying costs are considered to be proportional to 

the size of the inventory held and the length of time the inventory is 

held. As has been noted previously, holding costs result from the com

bination of many items into one constant which represents the holding 

cost for one item per unit time.

The cost of filling an order is a handling problem as well as 

an inventory problem and is usually treated as a separate problem in 

design.

The cost of a shortage is a very real and significant cost 

although its numerical representation is an elusive figure. It is a 

matter of practical experience that failure to meet a demand may result 

in lost sales, hence lost profits. If the customer will wait, the extra 

work involved in filling the order creates additional costs. Sometimes 

penalties are assessed by contract. These latter costs can be enumer

ated precisely but the shortage cost assigned in actual practice still 

remains a combination of subjective and objective considerations.

The cost of the control system itself is not included in the 

inventory study, but is important in determining how complex an analysis 

should be made.



CHAPTER II

A SHORT HISTORY OF INVENTORY CONTROL

The man who is credited with being the first manager to apply 

scientific techniques to inventory problems is Ford Harris of the West- 

inghouse Corporation in 1915. Until that time it was believed that in

ventory problems were too complicated for mathematical analysis (10).

Inventory transactions are inherently discrete and are directly 

related to other activities of the company. Usually a company has no 

control over the direct demand for the goods and services it supplies 

and hence no control over the depletion rate.

Harris, however, saw that there were obsexrvable patterns in 

demand in many cases that could be treated if certain assumptions could 

be made. The assumption that was necessary was that the inventory de

pletion rate be approximated by a continuous function. This approxima

tion turned out to be realistic in practice and Harris' basic model is 

still the basis of most inventory systems today.

Harris' other basic assumptions were:

1) Demand is known with certainty

2) The depletion rate is constant

3) Production rate is infinite compared to depletion time.

The third assumption was later modified to include a finite

6
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production rate by Benjamin Cooper in 1926. Formulas developed by using 

these assumptions were applied with widespread success. It was apparent, 

however, at the time that there were many situations where these simple 

models would not apply.

Inventory control methods won very slow acceptance and were not 

disseminated widely until after World War II. The strains of war created 

the field of Operations Research in England in 1940 (4). After the war 

inventory control became a part of the body of knowledge of Operations 

Research.

In 1928 the concept of probability was introduced into engineer

ing practice by T. C. Fry (4). By 1946 many probabilistic models of 

inventory control had been developed and applied. These models have bas

ically the same assumptions as the original Harris model with the excep

tion that demand was known with a given probability density function.

By 1954 the problem of demand variability from order period to 

order period was successfully attacked by dynamic programming. The best 

of these models was developed by Wagner and Whitin (19).

The problem of variable lead time produced many new versions of 

old models. Methods used to reduce this problem were probability theory 

and dynamic programming.

By 1957 the basic models now in use for single items with con

stant demand over a period, either known deterministically or probabi

listically, had been developed.

Since 1960 much research has centered on the multi-item inven

tory situation and on companies with many inventory echelons (7). Spe

cifically, multi-echelon systems are systems where certain places serve



8

as stockage points (upper echelon) for resupplying other points acting 

as demand points (lower echelon).

A pioneering paper by Arrow, Harris, and Marschak in 1951 on 

mathematical approaches to inventory have led to many applications of 

powerful mathematical techniques to inventory problems. Renewal theory, 

Markov chains, linear and non-linear programming, programming under un

certainty, and dynamic programming have been applied to multi-item and 

multi-echelon inventory systems (18).

The widespread use of the computer has led to the application 

of Monte Carlo techniques to situations where statistical methods cannot 

be justified or are too cumbersome to be effective. Here different poli

cies are tested by simulation to determine the one most effective. This 

approach has been utilized mainly since 1959.

The problem of inventory obsolescence has been the subject of

several recent papers. Formerly, this problem had been typed as a spe

cial holding cost problem. A preliminary treatment using dynamic pro

gramming was given by Brown, Lu, and Wolfson in 1963 (1).

The case of time-varying demand has received very little atten

tion in the literature. An equivalent problem is a time-varying deple

tion rate of inventory. One of the few papers treating this problem is

a study of inventory decay by Chare and Scharder in 1963. In this paper 

the depletion rate is considered to be exponential in form and is limited 

by this assumption (8).

One author, Roy Mennell, has directly approached the problem 

of time-varying demand (12). As a basis for further work in this dis

sertation, Mennell's basic model will be presented. To develop the
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model, the following assumptions and approximations are stated explicitly:

1) Demand is increasing.

2) Demand as a function of time can be represented by a + bt =

d(t).

3) Delivery time is zero.

4) Order cost is not dependent on order size.

5) Depletion of inventory can be represented by a continuous 

function.

6) Holding cost will be in terms of dollars per item per time 

unit.

7) All demands must be met.

8) Demand is known for certain.

Mennell uses the following notation:

A = order cost per order 

i = holding cost in $/(item)(time)

T = length of planning period 

d(t) = demand at any time t 

I(t) = inventory at any time t.

Since demand is known, it is desirable for inventory to run out 

when a new order arrives. Therefore the n-th order arriving at time t^ 

is of size
bn+1

D(t^_^^ - tn) = J (a + bt)dt (2.1)
tn

The first order is defined to arrive at t^ = 0 .  The last order 

arrives at t^ and fills demand until time T. For convenience an artifi

cial order t ^ ^  = 0 arrives at T. The total demand will be equal to the
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amount ordered:

T N tn+1
D(T) = J  (a + bt)dt = S  J  (a + bt)dt

t, ’̂“1 t_
(2.2)

The inventory at any point in time is equal to the last order 

minus the demand since that order arrived. Hence

^n+1 t
I(t) = J (a + bt)dt - J (a + bt)dt t% g t ^ t̂ ^̂  ̂ (2.3)

*-n *-n

The expression for the total cost over the planning horizon T 

is the sum of order costs and holding costs. The integral of I(t) over 

[t^, t^^^] gives the total inventory holding in [(item)(time)] units. 

The inventory carrying cost for the period is obtained by summing the 

inventory carried for each order. Therefore:

N
Total Cost = NA + i S

n=l

in+1J (a + bt)dt - J (a + bt)dt
Ltn ‘■n

(2.4)

By performing the integration (2.4) becomes;

N t ., tji
TC = NA + i L  [ a ( - p  - t^+i t^ + — ) 

n=l

.3 J- ^3
+ b(^s±l _ + is)]

3 2 6 (2.5)

Using the change of variable:

N « N n 2 N g N o  g
E  = L  <  + T m d  s  < + i  = S  t„ + 1"

n=l n=2 n=l n=2

and since t^ = 0 equation (2.5) becomes :
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TC = NA + i z; [a(t^ - t„) + b A  -
n=2 ^ ^

+ llfa + ll2k (2.6)
2 3

It is now clear that minimization could be obtained in theory 

by differentiating (2.6) with respect to N, setting the result equal to 

zero and solving for the optimal number of orders. Unfortunately, the 

tjj are a function of N and the functional relationship cannot be obtained 

explicitly since the orders intervals are not restricted to be equal.

If N is predetermined by some method (2.6) is minimized by

choosing tg, t^, ... t^, .. t^ so as to minimize:

i S  Laitl - t ^ i  t„) + b ( i  - - ^ 2 ^ ) ]  + ^  (2.7)
n=2 ^ ^

By differentiating (2.7) with respect to t2 > tg —  tjj N-1 equa

tions are obtained:

- V l  ■ 'n-l) + I  - C l  - “ a V l )  = 0 (2.8)

with N fixed.

The solutions of (2.8) optimize (2.7) when N is fixed.

An immediate iterative procedure is then to let N = 1, 2, 3,

and solve the set of equations (2.8) and compute (2.7). These calcula

tions would be continued until (2.7) was less than or equal to the pre

vious case and the computation was greater than or equal to the last 

previous cost. It should be noted that this method encounters computa

tional difficulties in solving the corresponding set of equations (2.8)



12

when d(t) is of degree 2 or more or is transcendental.

A graphical solution is also developed by Mennell. This method 

is cumbersome and involves varying the last order time and constructing 

the other order times from the slope of the TC function found from equa

tion (2.7). This method will obviously develop problems in trying to 

refine the solutions, because it is difficult to plot with any consis

tent accuracy.

It should be mentioned at this time that there is one assump

tion hidden in this problem. Either method of solution implicitly as

sumes that the total cost function is concave down and unimodal. This 

is not iimnediately apparent and it can be shown that this may not be the 

case.

The total cost function consists of two parts: procurement and 

holding. Both depend on N and in theory can be optimally determined for 

a fixed N. Let the holding costs be represented by f(N). It is clear 

that as N increases f(N) decreases monotonically for this will give more 

freedom in the minimization of (2.7). The procurement cost = AN = g(N) 

which is clearly monotonically increasing with increasing N. Then g(N)

+ f(N) = total cost = T(N).

Now consider A t (1) = j&g(l) + Af(l). ^ ( 1 )  = A = iAg(N) V N. 

Af(l) = - where is some positive constant. If < A then A - 

> 0 and AC(1) > 0 .  If Af(N) < A V  N then Æ ( N )  is always positive, T(N) 

will always increase and the minimum point is T(l). This is possible 

if procurement costs are very high as could be the case when shipment 

distance is large. On the other hand, if Af(N) > A for all feasible N, 

then N should be as large as possible, meaning that every item should
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be ordered individually, as would be the case for very expensive items. 

For T(N) to be concave down, a reduction in inventory size must cause a 

reduction in holding cost independent of the size of inventory and pro

portional to the size of the reduction. This is the usual case when 

holding cost depends on many factors, but it must be noted that these 

conditions must be checked on.

A discussion of one other new avenue of research will be de

ferred until the last chapter.



CHAPTER III 

THE BASIC MODEL

In this chapter the problem of obtaining an inventory policy 

when demand is time dependent is examined. Three basic situations will 

be explored and then a more general model will be developed.

The basic assumptions are the following. Demand is known with 

certainty either by a contract or by a pattern that has repeated long 

enough to be used for stable forecasts. The known demand function can 

be represented by a continuous Riemann integrable function of t. A de

mand function is characterized by T7(t) = demand at any point in time, 

and the total demand in the time period [t^, is:

*-n+lJ  77(t)dt = D[tn,tn+i]
^n

An inventory policy is desired only for a finite time interval T. T is 

otherwise arbitrary in length and represents the planning period. The 

total demand is:
to+T
j" %(c)dc
to

where t^ is now. For convenience tg is taken to be 0. This chapter is 

devoted to answering the question: what inventory policy should be used

14
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over the planning horizon T?

Specific Assumptions of the Model 

Model I

It will be assumed that the relevant costs are holding costs

and order costs or set-up costs. This will imply that shortages are not

allowed. It is further assumed that delivery time is either negligible

or is a constant. The total demand is:
T
J T?(t)dt 
0

and must be met.

The order times and order quantities are to be determined. This 

implies that the number of orders must also be determined.

The following notation will be used in this chapter:

N = number of orders in the planning period 

A = order cost or set-up cost 

Q(t) = inventory at time t

C = holding cost in $/(item)(time)

P = unit cost or manufacturing cost per item including 

delivery cost 

Qj = i^^ order quantity

t^ = interval of time between the i*"̂  order and the (i + l)th 

order; Xj is a point in time 

h(t^) = the holding cost over interval t^.

The first order will occur at X^ = 0, the second at X̂ _]^, the 

third at Xjj_2 > and the last order at X^. Inventory will be 0 at
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Xq = T.

From the above definitions it is clear that t^ = “ Xjj,

^2 = & _ 2  ■ \-l> *=3 = %N-3 ■ %-2> •••’ = %0 " %l' Figure 2 shows
a graphical model of the inventory situation.

Fig. 2. Graphical Representation of Model I

The proposed method of solution is to apply dynamic program

ming. To apply the principle of optimality this problem must be refor

mulated as an allocation problem and a multi-stage decision problem.

The time period T is then redefined to be the available resource. Each 

order time will be a decision point. A period of time will be allocated 

as a holding period. The return will be the sum of order and holding 

costs. It is desired to minimize the total return.

Let there be N decisions. Then from the above definitions,
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there will be N holding periods t^, tg, t^, t^ where

S t. = T 
i

The total return is to be minimized by choosing N, the order times, and 

the order quantities.

The above definitions now allow the formulation of a recurrence

relation.
D

f^(t,T) = the minimum cost of inventory if there are N orders 

in the time interval [t,T].

Then:

f (0,T) = min {a + h(tn) + ,,T)3 (3.1)
0 < & . 1  < % - 2

The value of h(t^) must now be determined. The inventory at 

any time t will be the amount ordered at the beginning of the period 

less the amount used. Since no shortage is allowed the amount ordered 

is the total demand over interval t^ which is:

% - l
J Î7(t)dt 
^ = 0

The amount used by time t is:
t
J 7?(t)dt 0 ^ t s Xu_i
%N=0

Hence, the inventory at any time t is Q(t) where:

% - l  t
Q(t) = J T)(t)dt - J Î7(t)dt (3.2)

% = 0  ^N=0
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The cost of inventory in a time interval Aĵ t is equal to 

G Q(t) ^ t  approximately. The total holding cost over t^ is

h(t.) ~ L  C Q(t)A t = C S  Q(.t)Ait 
i t

If we take a limit in the usual manner:

%-l %-l r X,
h(t^) = C J* Q(t)dt = C J*

^ = 0  ^N=0

■N-1
f n(t)dt - J %(t)dt 

_ & = 0  & = 0

dt (3.3)

Now the recurrence relation is

fN(O.T) = min { A +  C J
^N-1r X

0 < X^_i < Xjj_2 0

N-1 t
J Î7(t)dt - J %(C)dt 
0 0

dt

(3.4)

If N is known, the Xj are determinable from the above relation,

and the order quantities are

ij-1
J* %(t)dt.

Because of the slightly unusual restrictions on the Xj, the 

form of the computational table will be developed. The minimization is 

actually on the t^, but is more efficiently carried out by using the Xj 

as the decision variable. It will be noted that the inequalities on the 

Xj are strict. This is because equation (3.4) is developed assuming 

exactly N order intervals. If one order time equals its successor this 

eliminates one order interval and there would be N-1 order intervals.



19

Computation is started by computing

T
f^(XpT) = A + C j  

X,

T
J î?(t)dt - J  î?(t)dt
Xi Xj_

dt (3.5)

There is no minimization here since the assumptions of the prob

lem require all demands be met.

Now the table can be formed. Choose m such that m  > N and let
TA = ~  • Now each interval must have an allocation of at least A. This m

means that any allocation to t^ must be A ^ t^ ^ (m - N + 1)A. The upper 

limit is derived from the fact that if tĵ  receives a maximum allocation, 

then the other N-1 intervals are allocated A each leaving mA - (N-1)A 

for t^.

Table 1 shows the table set-up for computer computation and 

table look up. As can be seen from the table the order times are calcu

lated automatically as each allocation tĵ  is made. Finally it is noted 

that the table is not square, thus Increasing the efficiency of compu

tation .

This table depends^ of course, on a choice of N. Since the tĵ 

are dependent on N we must calculate N. Since no functional relation 

can be derived, it is necessary to further utilize the dynamic program

ming approach.

In the second chapter, it was pointed out that inventory costs 

are ultimately a function of N. The assumption of convexity was dis

cussed. It was found that under ordinary circumstances it can be assumed 

that the inventory function is concave down in N. This will allow a com

putational method to find N.



TABLE 1 

DYNAMIC PROGRAMMING TABLE

fl(t,T) % f2 <t,T) ^N-l f3 (t,T) %N-2 • • • jT)

mA = T

(m-l)A fl((m-l)AyI) A

(m-2 )A f^((m-2)A,T) (2A) f2 ((m-2 )A,T) A

(m-3)A fl((m-a)A,T) (3A) f2 ((m-3 )A,T) A , ^ f3((m-r3)A,T) A

(m-k)A f]^((m-k)A,T.) (m-k)A f2 ((m-.k)A,T) A) 2A> ■■•» 
(m-k-l)A

■ Is}o

(m-N+l)A %((m-Nfl)A,T) (m-N+l)A • •

(m-N)A f2 ((m-N)A,T) A> 2A, • • • > 
(m-Nfl)A

• J

(m-N-l)A f3 [m-N-l)A,T] A) 2A) •• • > 
(m-Nfl)A

0 ... f„(0,T) A ,2A ,. . . ,  
(m-Nfl)A
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First, observe that N à 1 and N is less than the order size.
T

So N £ J d(t)dt. Further, it is not feasible to order more than once a 
0

day. Then N number of days in T. Other considerations may cut N fur

ther. So let Nĵ  be maximum number of orders that management will allow. 

Figure 3 shows the assumed situation.

Fig. 3. General Form of Inventory Function

To find the optimum inventory policy, it is theoretically and 

even practically possible to compute all N such that 1 s N ^ ^max 

select the N that gives a minimum total cost with the corresponding order 

times. Fortunately, if fjj(0,T) is a concave down, unimodal function of 

N, not all feasible N need be considered. If N is chosen initially by 

use of the Fibonacci search technique, the number of N's needed for com

parison is greatly reduced.

An explanation of this search technique is outlined next to 

demonstrate the application of the technique.
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Let Q(d) be a concave down unimodal function. Let d be discrete
*

and D be the domain of d. Define n(D) = k^. It is desired to find d 

such that Q(d*) à Q(d)V d€D.

Nemhauser (15) gives a proof of the following search mèthod. 

Theorem:
DLet fjj = maximum number of points that can be in the domain 

of Q so that the minimum value of Q can be found in n evaluations. Then

fj = 1, fg = 2, f^ = fn_i +  fn-2 +  1 n S 2.

Table 2 is a listing of n up to 20 and the numbers of the ele

ments to be evaluated in utilizing the Fibonacci method.

The following is a description of the search method.

Let the elements of the domain D be ordered and then named

df < d2 < d^ < . . < d^^. To begin find the f^ in Table 2 that is

equal to or just above k^ in value. If f^ > k„ add points k^+1, 

dk + 2 j •••> df^ so that n(D) = f^. Assign values to Q(d% Q(d% + 2)»

... Q(df ) that are arbitrarily large. Now from Table 2 read the n, a, 
n

b that correspond to f^. a and b are the numbers of the elements of D

at which Q will be evaluated. Hence, Q(d^) and Q(d^) will be computed

and compared with dg < d^.

There are two cases. Suppose Q(dg) < Q(d^). Then d^ ^ d* < d̂ j.

Now form the set = [d^, d^, d^, ..., d y T h e  n(D^) will be f^-i-

Mentally renumber the elements of Di so that D, = {d, , d_, ..., dr }. ̂ i J- z ^n-1
Now Table 2 will give a new a and b corresponding to n-1. One of ele

ments of either d^ or dy will be an element that has already been 

used to evaluate Q. Only one new evaluation must be made. Then a com

parison is made and the process repeats until it terminates.
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TABLE 2 

FIBONACCI SEARCH NUMBERS

n fn d^ = a dg = b

1 1 1 -

2 2 1 2

3 4 2 3

4 7 3 5

5 12 5 8

6 20 8 13

7 33 13 21

8 54 21 34

9 88 34 55

10 143 55 89

11 232 89 144

1 2 376 144 233

13 609 233 377

14 986 377 610

15 1596 610 987

16 2583 987 1597

17 4180 . 1597 2584

18 6764 2584 4181

19 10945 4181 6765

20 17710 6765 10946

Note: For example, if D contains 376 points 12 evaluations will 
be needed to find an optimum and the first two evaluations will be the 
1 4 4 th point and the 233^^ point (15).
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Now for the second case. Suppose Q(dg) > Q(dy). Then dg <

d* ^ df^. Then form the set = [dg+l» ‘̂arl-2’ The n(Dĵ )

will be Renumber the elements of so that = {d̂ ,̂ dg,

dg 3• Now go to Table 2 and find the a and b corresponding to n-1n -1
and proceed as before.

An example; Find d* such that Q(d*) is a minimum if Q is given 

by Table 3.

D = [a, 1, 2, ..., 19}. Then n(D) = 20 = fg from Table 3.

Thus, we can find the minimum with 6 evaluations. From Table 2 a = 8 ;

b = 13. The eighth element of D is 7 and the thirteenth element is 12.

Q(7) = - 10 and Q(12) = - 15 hence Q(7) > Q(12). Therefore d* > 7. Then 

Di = {8 , 9, 10, ..., 19}and n(D^) = 12 = fg. Again from the table a = 5; 

b = 8 . The fifth element of is 12 and the eighth element is 15.

Q(15) = - 18 so Q(15) < Q(12). d* > 12 and Dg = {13, 14, 15, ..., 19}. 

n^Dg) = 7 = f^ and a = 3; b = 5. The third element of Dg is 15 and the 

fifth element is 17. Q(17) = - 20. Q(20) < Q(T5). d* > 15 and D3 =

{16, 17, 18, 19} with nCDg) = 4 = fg and a = 2; b = 3. Q(18) = - 19

Q(18) > Q(17). = {16, 17} Q(16) = - 19 and Q(16) > Q(17) so d* = 17

and Q(17) = - 20 is minimal. The evaluations were Q(7), Q(12), Q(15), 

Q(17), Q(18), Q(16) making a total of 6 evaluations.

In the case of inventory model I D = {set of all feasible N}

= {1, 2, 3, ... Ng,}. Q(d) ~ fu(0,T). If it is felt that N^ = 365 then 

we would add 11 ficticious points to the set, namely N = 366, 367, ..., 

376 with f3 6 6 (0 ,T) = V ,  •••, f^ysCO.T) = where

"00" is a number larger than any inventory cost that will be calculated.

Then from Table 2 f^ = 376; n = 12; a = 144;_b = 233 so that the initial
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TABLE 3 

EXAMPLE FUNCTION

d Q(d)

0 -3

1 -4

2 -5

3 -6

4 -7

5 -8

6 -9

7 -10

8 -11

9 -12

10 -13

11 -14

12 -15

13 -16

14 -17

15 -18

16 -19

17 -20

18 -19

19 -18
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computation would be to determine f1 4 4 (0 ,?) and £2 3 3 (0 ,?).

Model II

In model II one more relevant cost is considered. ?he commit

ment to meet all demand over the planning period is retained but the re

striction that demand must be met as it arises is dropped. Shortages 

are allowed to occur. ?he cost of a shortage is considered to be pro

portional only to the number short. ?he model can be modified to con

sider the shortage cost as proportional to both time and quantity short. 

Notation:

Q(ti) = order quantity for period t̂ ^

Xj = order times j = 0 ,  1, 2, ..., N 

N = predetermined number or orders

^ ■ ^ - 1 ’ *̂i ^ - i + 1  " & - i
A = order or set up cost

C2 = holding cost in $/(item) time

C3 = shortage cost in $/(item)

y^ = time when inventory runs out in period i

fjj(t,?) = minimum cost of inventory if N orders are placed

in (t,?)

c(t^) = inventory cost over period t̂^

Figure 4 shows the inventory situation graphically.

?hen, it follows from the basic model that:

f^(0,?) = min {C(ti) + fN_i(Xi,.i,?)} (3.6)
® ^N-1 ^ % - 2

0 < yi ^ Xjj.i
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Q(t) A

N
‘N-1 ‘N-2

Fig. 4. Graphical Representation of Model II 

The order quantities are

?1
Q(ti) = J 7?(t)dt 

0
for period t^.

Y2 yi '

QCCg) = J %(t)dt, Q(ti) = J %(t)dt
'i-1

and a back order of

Now the Xj and are to be determined. The inventory at any 

time t will be:
yi t

J V(t)dt - J %(t)dt 0 3 t g y^
0 0 0 ?1 3 C 3 %N-1
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Therefore, by the same reasoning as in model I, the holding 

cost will be:

yi
s ;0

yi t
J îj(t)dt - J rj(t)dt
0 0

dt (3.7)

The number of items short will be

& - 1

/ T7(t)dt
^1

and the shortage cost will be

^ - 1  
Co J T7(t)dt

The recurrence relation is now

?1
% ( 0 ,T) = min {A + C2 J

0 < < %_2 0

0 < ?1 = S*-!

% - l
+ C3 ; T7(t)dt + %_l(XN_i,T)]

•yi t
J* Tj(.t)dt - J 77(t)dt 
0 0

dt

(3.8)

Now notice that for fixed fQ_i(%Q_i,T) is a constant and

in particular is independent of y^. The minimum may be found by finding 

y^ so that C(t^) is a minimum. By assumption Tj(t) is integrable so that 

we may apply calculus and find minimum C(tĵ ) by differentiating with re

spect to yĵ  and setting this derivative equal to zero, i.e.:

d
dyi

yi yi ^N-l
A - C2 J  J îî(t)dt - J fj(t)dt dt + C3 J 7}(t)dt

0 0 0 y].
= 0 (3.9)
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To complete the Information necessary the N's will be selected 

as before by the Fibonacci search technique. Once N is chosen Table 1 

may be formed and computation can begin.

Finally, for

dC(t^)
dy^ =  0

y^ > 0 is feasible only in the limits defined. So

?N
flCXpT) = min f A + Co f 

Xi < < T V

%J Tj(t)dt - J 7](t)dt dt

+ C3 J  %(t)dt} (3.10)

where C3 specifically is the back order cost and ŷ  ̂is determined by 

calculus.

Model III

In this model, model II is used with an additional assumption. 

It is now assumed that lead time is not constant. It is clear that not 

only must a determination of order time, order quantity, and number of 

orders be made, but also some policy concerning the order lead time must 

be formulated.

This lead time order policy is necessarily dependent on the 

lead time variability. So assume we have from past history a discrete 

probability density function of delivery times, where the lead time is 

measured from the time an order is decided on. We may have different 

probability density functions corresponding to different time periods.
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Let the probability density function be defined on the values 

r = 0, 1, 2j 3, ... r^. These are the possible delivery lags. Then the 

choice for order lead time S is 0, 1, 2, ..., r^.

With the same notation as in model II define also

= S(t^) = order lead time for period i

Then since the assumptions of model II are satisfied, we can 

determine order times, order quantities, and number of orders using model 

II. Now the S(t^) can be determined. They will not be constant because 

the variability of demand will vary the cost of a delivery being late.

Let fjj(0,T,Sjg) i fjj(0 ,T,S]^,S2 ,... ,Sjj) = minimum expected cost 

accruing from ordering time units early for the first period, Sg time 

units early in second period, etc., given that an inventory policy has 

been decided on.

There are two cases in formulating a cost equation for a given

S.

Case I r z S

Here the order Q(tĵ ) arrives early and is held (S^-r) time

units. The cost is a holding cost of C2Q(t]^)(Sj^-r) . The total cost is

for r fixed

?1
4^0»T,Sĵ _i)i = {C2Q(tp(Si-r) + A + Cg f

0

Yl t
J Tj(t)dt - J  %(t)dt 
0 0

dt

%N-1
+ Cg J t?(t)dt + fjj_j(Xjj,i,T,Sjj_j)}Q(ti),yi,Xj known 

?1
(3.11)
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Case II r > S

Here there is a delay in filling orders for (r-S^) days. When 

the order arrives demand in the period [Ojr-S] is filled. We have an 

additional shortage cost of

r-S^
C3 J t?(t)dt

0

There will not be a holding cost until time (r-S^), hence the 

holding cost will be

yi
=2 ;

r-S,

yiJ %(t)dt - J  %(C)dt
r-S, r-Si

dt (3.12)

The additional shortage cost will remain the same as

% - l  
C3 J T?(t)dt

yi

Hence the total cost for r fixed is

r-Si yi yi tJ 7)(t)dt - J Tj(t)dt
r-Si r-Si

dtf̂ ,(0 ,T,Sj^>2 = {A + C3 J 77(t)dt + C2 J
0 r-S

% - l
+ C3 J t^(t)dt + fj}_i(Xjg_2̂ jT,Sjj_ĵ )3y 2̂ ,Xj^_]^,Q(t^) known

(3.13)

The expected cost for is

S r " r
TC(Sj^) = S  fjg(0,T,Sjj[) j^Pj.+S îj(® 2 ̂ r

r=0 r=S-H
(3.14)
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will be chosen so as to minimize TC(Sj).

This type problem is solved in Sasieni by applying the condi

tion for a minimum given a discrete function (16).

If Af(S) i f(S+l) - f(S) then this condition is ATC(SQ-l) < 0 

< ATC(Sq) . The Sĵ Q satisfying this condition is the optimal lead time 

for period i.

Note that the optimal order quantity is

% - iJ d(t)dt + Q(t^)
?i-l

for period i, i a 2. It will also be noted that the are determined 

recursively, with determined first, second, ..., and deter

mined last. Notice that this is more general than necessary, but leaves 

room for extensions if the lead times are dependent. For simple compu

tation the term >T,Sjj) may be left off and TC(Sj) will just be

r r
S  ^M(®»^>^4)iPr fv(0 >T,S.)~Pj.
r=d “  ̂ r=Sj+l J

where

%-j+l Vi
fj,(0,T,S.>2 = {A + C3 J %(c)dt + C2 J

%-j+l %-j+l+(r-Sj)

■y1
I r?(t)dt 
L%-j+l+(r-Sj)

t
- J %(t)dt
%-j+l+(r-Sj)

*N-j
dt + C3 J T?(t)dt} (3.15)

"j
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yj
fjj(C,T,Sj)j^ - {C2Q(tj)(Sj-r) + A + J

*N-j+l

y

L Vj+1
t
J %(t)dt
*N-j+l

*N-j
dt + C3 J  %(C)dt] (3.16)

"j

and, of course Q(tj)» X^_j, yj are known.

Model IV

The previous three models can be readily extended to consider 

other aspects of a dynamic problem. Namely, order costs are likely to 

vary with time and also with quantity. This recursion method allows 

such a cost variability to be easily considered, since it causes no in

crease in computation. The order cost as a function of time can be 

handled as a discrete function easily in each of the three models. In 

model I the order cost can be handled as a function of order size with 

no modification regardless of the nature of the function A(Q). In 

model II some assumption about the function A(Q) must be made since the 

cost term is differentiated, which would weaken the value of considering 

such variability.

The holding cost might also vary with time. This too can be 

considered easily if C2 (t) is discrete or a power function of t.

If the company is always in a position to reinvest its funds 

then a discount rate a(t) can be considered. If we have the discount 

rate varying with time as a discrete function, this can be incorporated 

easily into the model with little extra computation.

Hence, the more general recursion relationship is:
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yi
fjj(0,T) = min [A(t) + / CgCO

° < ^ - 1  < % - 2  0

yi t
J %(t)dt - J* 7j(t)dt
0 0

dt

0 < Vi <yi < *N-1

1+  C3 J  ■ 77(t)dt + a(c)fN-i(XN-l'T))
yi

The final advantage gained is that an increase in the degree of 

T}(,t) or an addition of a transcendental function term does not hamper 

computation, where if simultaneous equations have to be solved, such 

changes in 7^(t) might render computation practically impossible.



CHAPTER IV

INVENTORY CONTROL FOR CONTINUOUS PRODUCTION SCHEDULES

In chapter II demand was met by discontinuous production. In 

this chapter this assumption will be changed so that demand will be met 

continuously. The objectives will be to obtain a production schedule 

X(t) to meet a time varying demand ̂ (t). Specifically, conditions will 

be investigated where it is possible to obtain an optimum production 

schedule. So X(t) is defined precisely to be;

X(t) * amount of goods that will be finished at time t.

Assume then that a company can control demand subject to cer

tain restrictions. These restrictions will be based on the assumption 

that entry is being made into a null demand market. Demand will then 

increase to a normal level and then be phased out of production. This 

build-up and phase-out will be planned over a finite time period T.

Mathematically the assumptions can be stated as:

(1) 0 s t s T

(2) X(0) = 0, X(T) = 0

(3) X(t) is both differentiable and integrable for 0 £ t ̂  T

(4) |x| £ M  where M  is a finite constant 
T T

(5) J X(t)dt = J* rj(.t)dt = C which states that total demand is 
0 0
known

35
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(6 ) X(t) S O  0 s t s T

(7) X(t) = fjit) 0 3 t ^ T which states demand is met continuously

by output.

Sasieni (16) has considered this type of situation in connection 

with discontinuous demands. In many situations costs of production can 

be assumed to take on a simple yet realistic functional form. The two 

assumptions considered by Sasieni are that production costs are:

Case I Cost = k^ X + k 2

Case II Cost = k^ X + kg |xj

In each of these two cases, the determination of a production 

schedule subject to the above seven conditions is desired. To rephrase 

the problem, if the above seven conditions must be met, but otherwise 

demand can be controlled, what would be the time-varying pattern of de

mand (production) that would minimize production costs?

In case I it is desired to minimize

I -2I(X(t)) = J (k^X + kgX )dt = total cost over period T
0

subject to the above seven conditions.

The minimizing function X(t) and hence the best production 

schedule can be determined by the calculus of variations.

Condition (5) poses a condition that must be handled by use of 

the Lagrange multiplier. Accordingly, a new total cost function at time 

t is formed:

cost = kj_X + kgX^ + XX = F(X,X,t)

Since condition (5) is an integral condition which is constant, i.e..
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TJ  X(t)dt = C,
0

X may be considered as independent of t (6 ). 

Formally:
T .2

min I(X) = J* (k^X + kX )dt
0

subject to
TJ X(t)dt = C 
0

is an isoparametric problem.

The Euler condition = 4r  ̂  gives:dX dt ax

kl + A = it (2^2%)

ki + X = ZkgX (4.1)

Integrating (3.1) gives:

+ (k^ + X)t = ZkgX 

Cg + C^t + (k^ + X)t^/2 = ZkgX,

where C^, Cg are constants of integration.

Now X(0) = 0 implies Cg = 0. X and are determined by X(T)
T

0 and J  Xdt = C.
° 2kgX(T) = 0 = C^T - + X)T^/2 (4.2)

j (C^t + (k^ + X)t /2) dt = C, hence 
0 2

3
C^T^/2 + (k^ + X) ^  = ZCkg (4.3)



38

The simultaneous solution of (4.2) and (4.3) is:

24Ckr
(ki + X )  ^

Then

12Ck,
Cl =

x(t) = “  C(k^ + X)t^/2 + C^t]

1
2kr

-24Ck2 ^ 1 2Ck2 t

-  I")

6C
m 2 [t - t^/Tj (4.4)

Equation (4.4) is the schedule that will give optimum cost. The suffi-
b hcient condition for X(t) to be a minimizing arc is for — r* > 0 V t, t c 

, 2,
[0,T]. Since = 2 this condition is satisfied and X(t) minimizes I(X) 

ÔX^
It is worthy of note that costs are minimized by a schedule 

that forces production to continually increase and then decrease. There 

is no time interval when production is constant. There is anticipation 

by the schedule that by time T production—is phased out.

Case II

In this case the minimization of

I(X) = j (kjX + k2|x|)dt 
0
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is required subject to (pg. 34) seven conditions. Since — r does not
dX

exist at X “ 0 and curves with X = 0 are admissible (see Figure 5) 

other techniques besides the calculus of variations must be applied. 

By application of condition (6 )

T T Tmin C J  (k^X +  kgjxjdt] = min [k^ J* Xdt + ^2 J |x|dt]
0 0 0

T .= min (k̂ C +  kg J  |x|dt)
0

Clearly to minimize I(X), it is sufficient to minimize

f |x|dt.
0

Let . D T

Since

I(X) = J  |xjdt (4 .5 )
0

1X1 = X X 2  0

X = - X X < 0

The integral in (4.5) must be rewritten as a sum of integrals 

over which X has the same sign.

Since this is to represent a physical situation X is restricted 

to a finite number of sign changes in the interval [0,T].

Let the integral change sign i times in the interval [0,T]. 

Define tg = 0, t̂ ^̂  ̂= T and let t^ represent a point where X changes

sign n = 1 , 2 , ..., i.

Since X(t) a 0, X(0) = 0, X > 0 0 z t a t^, and X(T) = 0,
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X(t) à G implies X < 0 < t < T. Hence:

T 2̂ *̂3 *=4
J |x|dt « J Xdt + J -Xdt + J Xdt + J* -Xdt + .
0 (=0 (=2 3̂ t

ti-1 _ *̂i
. + J -Xdt + J Xdt 

i-2 ti-1

"-i+ 1  
+ J -Xdt. 

t.

X(tp - X(tg) - X(t2) + X(tp + X(tg) - X(t%) 

X(t4 > + X(tg) +... + - X(t^_p + X(t^_2> + X(t^)

- X(t^+i) + X(tj)

Since X(t^^j^) = X(tg) = 0 I(X) is = 2X(tj^) - 2 (X(t2>

+ 2X(tg) - 2X(t4> + . . . + -  2X(t^_i> + 2X(tp

2 LX(t„)(-l) 
n=l

n+ 1 (4.6)

X(t), ,

0 T t

Fig. 5. A Feasible Production Schedule
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From (4.6) it can be concluded that the value of I(X) and hence 

I(X) does not depend on the curve, but only on the points where the 

curve changes sign and the ordinates of the curve at these points. 

Therefore, there may be infinitely many minimizing curves. By using the 

heuristic rule of choosing the simplest allowable possibility, output 

will be scheduled in straight line patterns.

Some feasible production plans can be analyzed at once. Suppose 

production is scheduled so that there is only one change of sign (see 

Figure 6 ).

X(t)

T t

Fig. 6 . À Production Schedule with only One Change in Rate

Now the minimization of

subject to

J |x|dt = 2X(tj) = 2h 
0

J  Xdt = C 
0



42

can proceed by determining t^.

Now
TJ X(t)dt = 1/2 tĵ h + 1/2 h(T-tj^) = C 
0

1/2 tjh + 1/2 hT - 1/2 ht^ = C 

1/2 hT = C

h = f

Then

f |i|dt = 2h = 2(|G) = |Ç 
0 ' '

independent of t^. Thus it makes no difference when maximum production 

is attained. In production terms minimum cost will be achieved if pro

duction is increased at the largest rate possible and then decreases 

at a constant rate to zero.

Another practical feasible production schedule that meets the 

requirements i& shown in Figure 7.

X(t) U

0 T t

Fig. 7. Schedule with Constant Production Time Variable
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It is desired to select t̂  ̂ and tg so as to minimize J |xjdt
T 0

subject to J Xdt = C. The analysis proceeds as in the previous example.
0

TJ  |x|dt = 2h = X(t^) + XCtp 
0

T
J Xdt = C = 1/2 ht^ + hCtg-t^) + 1/2 h(T-t2>
0

C = 1/2 ht^ + htg - ht^ + 1/2 hT - 1/2 htg

2C = ht^ + 2h±2 - 2hti + hi - ht2

2C = ht2 - ht^ + hT

2C “ h(T + t2 “ tj)

2Ch =

Hence:

T + t^-t^

T
r Ixldt = 2h = 2 ---^ ---  (4.7)
0 T + tg-ti

Therefore the integral will be a minimum if t^-t^ is allowed

I2C 4C 2C 
t Ï-T ~ ^  ~ T~ '

It can be observed that in this limiting case the minimum cost 

is smaller than in the first schedule example. This conclusion then 

would justify the usual insistence of a production department on main

taining a constant production rate in this case. Figure 8 shows the 

limiting case.

Entry into a Predetermined Demand Market 

If we do not deal with an item that is subject to obsolescence, 

then part of condition (2) is changed. Instead of requiring that X(T)
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X(t)l

Fig. 8 . The Production Schedule in the Limiting Case

= 0, it may be required that X(t) = qj(t) for t ^ t^. In production 

terms this means we want to build up from zero production to meet a pre

determined demand pattern.

Two cases will be examined.

Case I (pit) = k 

The problem is to determine a production schedule which will 

allow a build up to a constant level of production with the least cost. 

Figure 9 illustrates the situation. By time t, it is desired to be at 

level k of production.
. 2First suppose that costs are given by aX + bX .

It is desired then to find tĵ and X(t) so that the cost of

entry
*=1 .2 

I(X) = J* (aX + bX )dt
0

is a minimum.

Again solution by calculus of variations is indicated. Since
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x(t) A

x(t)

Pig. 9. Entry into a Constant Demand Market with Quadratic Costs

the end-point is variable both the Euler condition, —  = 4- ~  > and
3x dt ax

the transversality condition,

F + (0 - X)F^ = 0,

t-tl
must be satisfied.

. 2Now in this case F = aX + bX and ̂  » k. Condition 5 is not 

applicable.

The Euler condition gives

a = —  (2bX)

From this is obtained as before X(t) 

is a constant of integration.

The transversality condition is

a/4bt + C^t where C^

aX + bX + (k - X) 2bX = 0

t=t.
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k is a constant, so at t = tĵ the transversality condition is: 

aX(tp + bX(tp^ - 2bX(tp^ “ 0

9(t^) = X(ti>

allows this simplification;

ak - bX(tj)^ = 0

X(t ^
b

X = ̂ ak/b a,b,k known 

Hence and t^ can be found by the solution of

k = #b tl + (4 8)

'^ak/b Cl + Cl (4-9)

From (4.8) and (4.9) the final form of the optimal schedule 

and the time t^ of entry into the regular market can be found.

Case II <p(t) = Ct + d

Here entry into a rising demand market is considered. The
• 2analysis will proceed as in Case I with cost function (aX + bX ). The 

only change will be in the transversality condition. Accordingly

F + (<p - X)F^ « 0
t=t.

gives rise to

aX(tj^) + bX(tj)^ + (C - X(ti))2b X(t%) = 0
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gives

bX(t^) - 2hC X(t^) - aX(t^) = 0 

X(tj^) = C + + a/b x(tj^) a,b,C,d

X(tj^) =<P(ti)

2
CtjL + d = a/4b

known (4.10)

(4.11)

The simultaneous solution of (4.10) and (4.11), though tedious, will im

mediately yield the optimal schedule and best time of entry t^.

If costs are of the form aX + b|x| an analysis of case I is suf

ficient. From previous results (equation 4.6) X(t) can be assumed to 

be a straight line. Figure 10 diagrams the situation.

X(t) » Ct

tt

Fig. 10. Entry into Constant Demand Market with Linear Costs

It is desired to find t^ and C so as to minimize the cost of

entry
j (aX + b|x|dt = I(X) 
0

tl
I(Ct) = J  (act + bC)dt 

0
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2aCti

I(Ct) = — ^  + bCt,

x(tp  = Cti = k

= k/C 

2
I(Ct) = + bk (4.12)

2C

I(X) is minimized by choosing the largest possible C and hence 

smallest possible t^. Theoretically then the time of entry tĵ  should 

be as early as possible. Again the result agrees with experience which 

has shown that in this type cost situation it is best to increase pro

duction as fast as possible.



CHAPTER V 

APPLICATIONS

In chapters III and IV some theoretical models were developed, 

and the idea of market entry was developed mathematically under some 

strict assumptions. In this chapter some applications of these models 

will be considered. In particular, problems will be discussed where 

the restrictions of the models can be modified so as to meet the practi

cal considerations of a mass market.

Ideally, a company wants its production and inventory policies 

to reflect future trends in demand. It is desired that inventory and 

schedules now anticipate future demands on the system. This means that 

somehow the future must be "predictable" in some sense by the company.

To put this idea of "predictable future" in concrete terms,

some basic principles of forecasting must be discussed. A company must 

first decide what its "time horizon" is. A "time horizon" is the length 

of time which a company feels that it can see into the future by some 

method of forecasting. Once the time horizon is decided upon, forecasts 

of the magnitude of the activity under examination will be made at each 

point of time over the time horizon.

To be specific let the activity under examination be demand

for an item. Let the length of the time horizon be T. Let tg be now.

49
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Then for 0 3 T ^ T, let X(tg + r) be the forecast of demand at time 

tg + T, The first problem is the nature of the function X and how to 

determine T.

Short-term forecasts are normally made by analysis of past 

history. In the absence of other information, demand versus time is 

plotted up to tg. This data is then curve fitted by selection of a 

function X(t, a^, &2> ••• nature of the function is determined

by inspection of the data. One or more functions may be selected and 

fitted to the data by some form of the least squares technique which 

gives more weight to the latest data. The function that gives the 

closest "fit" in the least squares sense is then selected as the fore

cast function. Once the arbitrary constants aĵ , ag, ..., a^ are deter

mined from the relevant data, the forecasts can be made. The predicted 

demand at time tg + 7 is X(tg + T, a^, ..., a^). These forecasts are

normally distributed with a mean u and variance for any T 0 ^ T ^ T.

This assumes that there is little "noise" in the past data. "Noise" is 

defined to be the occurrence of any unusual event that will affect de

mand but has no lasting effect (2).

The procedure for forecasting is now defined, but the deter

mination of the "time horizon" T is still nebulous. In practice, this 

is an extremely difficult problem. The length of the company's time 

horizon practically will determine its success or failure. Also the 

length of the "time horizon" depends on the function of the department.

Top executives will tend to plan further ahead than a production fore

man, who will in turn plan further ahead than a mechanic on the line (13).

One method of determining the "time horizon" for a particular
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function may consist of simply polling the people involved to find what 

they consider the length of the time horizon really is (11, 13). This 

could be done with the case of demand forecasting. Â poll could simply 

ask each person involved in the forecast how far the function X(t, a, 

..., a^) could be extrapolated and still give accurate forecasts. Some

function of their replies would be T.

There is a more quantitative way to approach this problem. The 

curve-fitting procedure itself could be examined and a determination of 

T made. The requirement that our forecasts be normal over T without 

putting a bound on <7̂  allows one possible simple way of computing T.

Suppose we have data corresponding to times t^, t2  t^.

It will be the company policy to use the last i of these to curve-fit

for forecasting purposes. The following procedure will find what would 

have been T in times past. Out of the set of points t^, t^, tg, ..., t^ 

pick any i points in succession, say t^, t2 > ...» for a start. Obtain

a curve-fit Xj(t). Then compare the values of , X^Kt^+g)»

with the actual values. If we require only that the forecasts are nor

mally distributed, then the probability of n points in succession being

on the same side of the curve is (l/2)"\ If t^^j is the first of n

points in succession on one side of the curve where n is such that (1 /2)^

< a, then a first guess at T is t̂ _̂ j - t^. 0! is a criterion number less

than one. A reasonable choice for a  would be .05. We may pick other

sets of i points in succession and repeat the same procedure. The aver

age of the T*s would be our final "guess" for T.

Now, T is determined and demand is forecasted by X(t). This 

is a situation that fits the conditions for model I.
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Figure 11 illustrates the inventory control approach in this

situation.

X

Fig. 11. Graphical Representation of the Forecast Model

Then X(t) tg s t z tQ + T is the demand function and model I 

will determine order times, order quantities and the number of orders.

At tQ + T, the entire process is repeated.

Since model I does not allow shortages, we know that in prac

tice, a buffer stock must be maintained. This will involve determining 

the overall standard deviation of our forecast. The "time horizon" is

computed so that at each point in time it can be expected that the fore-
2casts are normal with a mean and variance. An approximation of can

be computed as follows:

Let d^(t) be the average demand over time interval ^ t .

By assumption the d^(t) are normal with a mean the forecast X^(t) and 
2variance o^(t). The total demand over ^ t  will be d^(t)A^t. Since
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is a constant, dj^(t)^t will be a random variable with mean Xj^(t)^t 
2 2and variance (b) (A^t) . Hence the standard deviation is ai(t)(^t) . 

Since the forecast means are points on an extended curve fit, the de

mands are functionally related and hence dependent.

Now
I = Z  (Alt) (5.1)

Let

D = total demand over [tg, tg + T]

= S  di(t)Ait

E(D) = Z  (X,(t))(A,t) 
i ^

V(D) = E E  [a^(t)(6 ^t)][aj(t)(Ajt)]

where p is the coefficient of correlation between demands in interval i j
i and j.

Since the curve fit determines the mean at any point over the 

interval, A^t can be considered to be infinitely small.

Then: tg+T
E(D) = lim E  Xj^(t)(Aj_t) J X(t)dt

max ̂ t  -* 0 *"0

V(D) = lim E E o j ( t )  a,(t)CA,t)C&,t)p 
i - o o j - o o i j  *’ •'
max Aj^t -» 0 

3 lim E E a ^ ( t )  oTj(t)(Aj^t)(Ajt)

j —• 00
max Aj^t -* 0

ijj -* ® i j 
A^t -* 0
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and by 5.1

v(») ^ " L

and the standard deviation of D is T Now the buffer stock will be

m where m is an appropriately chosen constant.

Now for the computation of (11).

From the past history the actual demand must be compared with 

what would have been the forecast. This means fitting the curve up to 

but Including the point t^. Then the demand at t^ is compared with the 

forecast for t^ and the deviation computed. Then a curve fit through 

t^ is obtained and a comparison of demand at and the forecast for

*■1+1' process is continued through tg. The maximum of the compari-

(^max:

Entry into a Market with Discontinuous Production

In chapter III the idea of entry into a market was introduced. 

If demand is not met continuously but in batches, then the problem lies 

not in building to a given demand pattern. When the first set up is 

made production will be designed to meet the demand at that time.

This problem of entry arises when initial demand for an item 

is small but growing. If a company enters the market for the item early 

then the small profits may not pay the expensive setups and the long 

holding periods casued by small demand. But as demand rises these prob

lems diminish. The question is: at what point should production begin 

to meet the demand?

If the time dependence of the rising demand pattern is known 

in functional form the application of the models in chapter II may offer
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a way of making a rational decision.

In applying this model, the lost profits cannot be balanced 

against the holding and set-up costs. The shortage cost must Include 

a subjective estimate of the loss of customer goodwill that will result 

In failure to meet the Initial demand. This cost may be Included In 

the extra advertising that will be necessary to keep the level of demand 

to what It would have been If the demand had been met Initially.

Figure 12 shows the problem graphically. Note that formula

tion assumes that the market may be entered at any time. The pattern

X(t>>

t te

Fig. 12. Typical Demand Curve for New Item

of demand Is known and tg, the time of entry, must be determined.

Cg = cost of lost profits, goodwill and added advertising due 

to failure to meet one unit of demand.

The shortage cost Is then:

^e
Cj J X(t)dt 

0
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The decision criteria is that tg is to be chosen so as to 

minimize total shortage and inventory cost. If model I can be applied 

then:
*-e

TC = Cg J X(t)dt + fjj(tg,T)
0

where:

%-l rX,■N-1 t
J T?(t)dt - J %(t)dt 
*̂ e *-e

dtf„(tg,T) is min {a + C T
te < Xn.i < XN-2 t,

If TC(tg) is concave in tg or at least monotonie in tg as one 

would expect from the physical nature of the problem, then a feasible 

set of tg, {A, A, ..., niA}, where mA is the latest entry time manage

ment will permit, can be established. A Fibonacci search over the set 

of tg will find the Best time of entry and produce the corresponding 

inventory policy automatically.



CHAPTER VI 

CONCLUSIONS

The work of this dissertation demonstrates that the problem of 

time-dependent demand can be formulated simply. It is evident that a 

variety of distinct models can be formulated to fit various situations 

by small modifications of the assumptions of the basic model. The ques

tion of feasibility must be resolved in individual situations. Solu

tions can be refined to a high degree of accuracy by choosing a small 

grid. This then leaves the question of which model to a comparison of 

inventory savings by the time dependent models over those models which 

have constant demands over a fixed period to the cost of computer time, 

programming, the search for more accurate information, and the more com

plex forecasting system needed by the models formulated in chapter III.

Chapter IV illustrates the power of the calculus of variations 

approach. It is significant to notice the difference in production 

buildups corresponding to different cost functions. In one case a grad

ual buildup is indicated if cost = aX(t) + bX^(t). If cost is given 

by (kX + b|x|) it makes no difference at what point in the planning hor

izon peak production is attained, which is somewhat surprising. It is 

also surprising to notice in the latter case that the pattern of produc

tion in buildups and declines has no effect on costs. This result
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indicates that companies which must vary production of items would be 

rewarded if they could determine their cost function. The determination 

of this cost function is equivalent to the economic problem of finding 

the incremental cost of production at every point of production volume. 

Much has been said in theory about incremental costs of production, but 

no efficient way has been found to determine this function in practice.

The basic assumptions of the inventory models indicate the need 

for a knowledge of the exact way in which costs are reduced by decreases 

in inventory. The models in this dissertation, as do the models devel

oped by nearly every other researcher in this field assume that cost 

functions are concave down (14). If this assumption is violated, for 

example, the Fibonacci search methods do not work and much of the power 

of the models in chapter III are lost. What this assumption really 

states, for example, is that monies gained by the reduction of inven

tories can be immediately invested and immediately start earning a re

turn. Other contributions to the holding cost should satisfy similar 

conditions.

The applications of the models in chapter V demonstrate that 

it is possible to devise mathematical decision rules for the question 

of market entry, which up to now has been completely subjective. The 

assumptions of these applications show that much work can be done in 

this area.

A more powerful approach could be developed from the method 

of chapter II if a forecasting model could be devised that takes into 

account information in the past, such as price-breaks, that will affect 

future demands and future information, such as pre-orders, that fixes
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some part of future demand for certain and still express the forecast 

in terms of a time-dependent function. Forecasting models that take 

into account past information, for example, and predict for a point in 

future time cannot be simply extrapolated to predict further into the 

future, but must be recomputed entirely.

One aspect of current research in chapter II was deferred until 

this chapter. An article by Benjamin Schwartz in the August 1966 issue 

of Management Science introduces a new way of handling shortage costs 

(17). Instead of assigning a penalty cost to a shortage, he introduces 

a method to determine the loss in sales due to a shortage, i.e. a new 

demand rate is computed in terms of the fraction a  of demands that are 

not fulfilled. This paper is an excellent beginning on a very difficult 

problem. The model of chapter V would be a very powerful and realistic 

model if some method were developed to determine the functional change 

in the demand curve due to a failure to meet demand.
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