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CHAPTER I

INTRODUCTION

Field crops are of great importance to the agricultural economy of
the State of Oklahoma. In 1979, the percents of total cash receipts
contributed by wheat, cotton lint and seed, and feed grains were 15.6,
4.3, and 1.2, respectively (Oklahoma Crop and Livestock Reporting
Service, 1979). In the same year, winter wheat ranked second, all hay
third, cotton lint fourth, grain sorghum seventh, peanuts eighth,
soybean tenth, and corn eleventh in terms of cash receipts from agricul-
tural commodities. Among the states, and for the same crops, Oklahoma
ranked second, fifteenth, seventh, fifth, fifth, twenty-sixth, and
seventh in production, respectively (Oklahoma Crop and Livestock
Reporting Service, 1979).

The importance of field crops varies across the state. This is
partly attributed to climatic and soil variability across the state.

The western two-thirds of the state is cooler and drier than the eastern
third, and the average length of the growing season varies from 180 days
in the Panhandle to 240 days in the extreme east (Gray and Galloway,
1959). Mean annual temperature ranges from the mid-fifties in the
Panhandle to the mid-sixties in the southeast. Soil and topography

are likewise variable across the state. Table I shows the percent
contribution by crop reporting districts to total acreage planted to

wheat, grain sorghum, corn, soybeans, cotton, and peanuts for the years



TABLE I

PERCENT CONTRIBUTION TO TOTAL ACREAGE PLANTED OF EACH CROP

BY THE CROP REPORTING DISTRICTS

Crop Reporting Wheat Sorghum Corn Soybeans Peanuts Cotton
District 1977 1978 1979 1977 1978 1979 1977 1978 1979 1977 1978 1979 1977 1978 1979 1977 1978 1979
Panhandle 18.5 16.1 15.3 51.4  50.7 51.4 62.2 53.3  54.0 .2 .3 .3 0 0 0 .1 <.1 <.1
West Central 14.3  15.7 16.1 9.4 7.9 8.6 3.2 5.0 5.6 .6 .6 .6 3.4 1.4 1.5 29.2  28.5 27.9
Southwest 19.6 19.4 19.6 9.3 8.9 7.0 3.5 7.1 6.6 .5 1.8 1.9 41,0  26.9 29.3 65.7 65.7 66.4
North Central 29.2 30.6  30.4 9.5 8.9 8.6 2.5 3.3 2.8 2.2 1.3 1.3 0 0 0 <.1 <1 <.1
Central 12.2 12.9  12.9 7.6 8.1 7.7 6.4 9.6 8.0 9.5 7.6 7.4 8.1 14.6  14.0 4.7 4.1 3.9
South Cencral 2.6 2.6 2.5 2.6 2.9 3.1 5.7 7.5 6.4 6.5 6.0 6.3 33.4  35.3  37.0 2.5 1.5 1.7
Norctheast 2.5 2.0 2.4 6.4 7.0 8.6 10.7 8.3 8.0 49.7 42,3, 43,1 .2 .1 .1 .3 <1 <1
East Central 4 5 6 3.1 3.6 3.6 4.3 3.8 5.6 21,4 26.5 26.6 13.5 20,3  16.9 .3 .1 <.1
Southeast 2 2 2 .6 1.2 1.1 1.4 2.1 2.0 9.3 _13.5 12.3 .4 1.3 1.2 0 0 Q
Total in % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100




1977, 1978, and 1979. Table I indicates that the western two-thirds
account for most of the acreage planted to wheat, corn, and grain
sorghum, while the more moist northeast accounts for most of the soy-
beans. The west central and southwest crop reporting districts account
for most of the acreage planted to cotton.

Noting that field crops contribute a significant share of farm
income, and that their relative importance varies across the state,
there is need to study their supply response relationships in order to:

i, Identify those factors which can be effectively manipulated in

order to control surpluses and raise farm income.

ii. Evaluate the influence of alternative farm programs on agricul-
tural supply. The importance of farm programs in Oklahoma is
reflected by their 4.1 percent contribution to farmers' cash
receipts in 1979 (Oklahoma Crop and Livestock Reporting
Service, 1979). Actual cash payments by program for wheat,
feed grains, and cotton are presented in Table II.

iii. Provide a better understanding of supply response relationships

which will allow for more accurate crop forecasts in the State.
This will prove useful to farmers in planning both short- and
long~run investments.

It should be understood that the above needs may not necessarily be

satisfied from a single study. As a part of studying supply response

mechanism, modelling of the important relationships within the framework

of economic theory is important. This has proved troublesome for

previous researchers especially when it comes to empirical specification

of the relationships.



TABLE II

FARM PROGRAM PAYMENTS TO PRODUCERS IN OKLAHOMA

Feed Grains Wheat Cotton
Program 1978 1979 1978 1979 1978 1979
Diversion Payments 2,036,966 1,472,040 - - 517,625 -
Disaster Payments 2,439,525 667,982 5,811,836 1,843,132 3,522,367 551,579
Deficiency Payments 432,435 2,727,946 50,413,783 - - -
Wheat Haying and Grazing - - 6,717,040 — - —

Source: USDA. Feed Grains, Wheat, Upland Cotton, and Rice Programs. Agricultural Stabilization and
Conservation Service (1977, 1978, 1979 issues).




The Problem

This study investigates acreage supply response relationships for
wheat, grain sorghum, cotton, corn, peanuts, and soybeans in the State
of Oklahoma. The need for this study is justified on two grounds which
will be discussed under the headings Methodological Flaws in Supply

Response Analyses and Policy Evaluation Needs.

Methodological Flaws in Supply

Response Analyses

The relevant prices for produetion decisions are the prices
expected to prevail at the end of the production period. Since expected
prices are unobservable, some models have been proposed to provide a
relationship between the expectations and variables which can be
observed. In agricultural supply response studies, price expectations
have been modelled by various weighted schemes of past realized prices
(Nerlove, 1958; Just, 1974; Ryan, 1977; Lin, 1977). While these
schemes have, in general, provided good statistical fit, they are not
founded on economic theory, and on average they imply that producers
can be continuously fooled which is contrary to the assumed optimization
behavior of economic agents. An alternative approach to model producer's
price expectations, which is consistent with optimization behavior of
economic agents, will be used in this study. Specifically, it will be
shown how the rational expectations hypothesis can be implemented
empirically in modelling expected agricultural product prices (Muth,
1961). It is anticipated that these methods will prove to be better
alternatives for empirical specification of expectations by agricultural

economists.



The specification of supply response models is based on the theory
of the firm, and then the same implications are carried to the aggregate
level for empirical specification. Although rarely mentioned, such an
approach implies that the structures of the micro and "the macro. functions
are of the same form. Theil (1954, 1971) in his work on linear aggrega-
tion shows that, in general, the macro parameters are complex functions
of the micro parameters and, except in some restrictive conditions,
aggregate models specified as above will suffer aggregation bias. In
this study the aggregation problem is addressed by specifying the
restrictions imposed on the interpretation and application of the

results for aggregate models.

Policy Evaluation Needs

The influence of price and yield variability on production deci-
sions is a well-recognized phenomenon. Just (1975) shows that failure
to account for risk on supply decisions will tend to underestimate the
stabilization effectiveness of commodity programs. Quantitative
knowledge of how producers react to changing risk is needed in evaluat-
ing alternative commodity programs and policies. The impact of changing
risk on acreage supply response for Oklahoma field crops has not been
studied.

The interaction between data and a postulated multiproduct supply
response model is an issue which needs to be considered in supply
analysis. A high level of aggregation, for example at regional or
state level, tends to diffuse the appearance of a competitive relation
between crops since relevant competing crops are likely to differ

between areas. The data in Table I show this to be the case for



Oklahoma. For a given crop, there is need to investigate whether
different parts of the state show variation in adjusting to a change of
a-given causative variable. For policy purposes, if such differences
do exist, a policy goal can be achieved at a lower cost if the differ-

entials are taken into account when implementing the policy.

Objectives of the Study

The primary objective of this study is to analyze the acreage
supply response relationships for wheat, grain sorghum, corn, soybeans,
cotton, and peanuts in Oklahoma. In order to be able to investigate if
differences exist between different parts of the state in supply
adjustments, the state will be divided into zones corresponding to the
crop reporting districts, and supply response functions will be
estimated on this basis. In order to achieve the primary objective
the following will be accomplished.

i. Static theory of a multiproduct firm facing product price
uncertainty will be used to derive a general supply function.
Restrictions to be imposed on a reduced form supply response
model will be determined on the basis of comparative static
results.

ii. Empirical implementation of the rational expectations hypothesis
in modelling expected product prices will be demonstrated.

iii. An explicit measure of price or returns risk will be defined
and used to construct the desired risk variables.

iv. The Houck et al. method for modelling policy variables



will be adapted and used to model policy variables.l

v. Using (i), (ii), (iii), and (iv), a reduced form econometric
model will be specified and used to estimate the desired
acreage supply response functions.

vi. Restrictions in the interpretation of the results will be

specified on the basis of the known aggregation literature.
Hypotheses to be Tested

The following hypotheses will be tested in this study.

i. For a given crop, all crop reporting districts show identical
supply response relationships. (There is no difference in
structure among the crop reporting districts.)

ii. For a given crop, acreage supply changes for a given change in
expected price or returns are identical among the crop
reporting districts,

iii. ©For a given crop, acreage supply changes for a given change in

risk are identical among the crop reporting districts.
Organization of the Remainder of the Thesis

The remainder of the thesis is organized in four chapters. Chap£er
II presents a review of literature, while methodology and theoretical
considerations are presented in Chapter III. Data needs, sources,
analysis, and discussion of results are presented in Chapter IV.
Chapter V concludes the thesis by presenting a summary and direction for

future research.

lERS, USDA. Analyzing the Impact of Government Programs on Crop

Acreage. Technical Bulletin No. 1548. Washington: U.S. Government
Printing Office, 1976.




CHAPTER II
LITERATURE REVIEW

Aggregate supply analyses are important for predictive purposes as
well as for policy decisions. They are also important in the evaluation
of programs designed to alleviate agriculturai adjustment problems.
While significant advances have been made in improving the performance
of aggregate supply response models, important theoretical and metho-
dological problems still remain (Nerlove and Bachman, 1960). Rather
than presenting an exhaustive review of previous work, the focus for
this study will be on the major theoretical and methodological contribu-
tions useful for supply response analysis. In order to achieve this
objective, this chapter is organized under the following headings:
Product Price Expectation, Risk in Aggregate Supply Response Analysis,
Multiple Product Modelling, Government Programs, and Technological

Changes and Structural Shifts.
Product Price Expectations

It is a well recognized fact that agricultural production decisiomns
are made and most inputs are committed to production before product
prices are realized. In addition to production lags, the production
process in general involves investment in fixed assets--machinery,
implements, and structures, whose use extends beyond one producticn

period. These two effects create complex problems in determining the
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relevant observable variable to use as a proxy for the unobservable
expected prices. The production lags and fixed assets imply that the
supply of agricultural products does not adjust instantaneously. An
important aspect of supply response modelling is the explanation of
this adjustment process. The following models have been proposed and

used to address the above problems.

Cobweb Type Models

The cobweb theory was developed to explain dynamic relationships in
economics, although it is now argued that the model is just an adapta-
tion of the static theory (Nerlove, 1979). Ezekiel (1938) presents a
detailed account of the cobweb theory. He points out three conditions
which need to be satisfied for the theory to be applicable:

i. Production is determined by producers' response to price under
conditions of pure competition. Producers base future produc-
tion plans on the current price, on the assumption that the
same price will continue.

ii. The time needed for production requires at least one full
period before production can be changed, once production plans
are made.

iii. Price is set by the available supply.
On the basis of the three conditions above, and depending on the relative
slopes of the supply and demand curves, the three well known types of
oscillations can result. Defining Pt as the expected product price for
period t, at period t-1, in the cobweb theory this is defined as
Pt = Pt—l’ where Pt—l is the product price realized in period t-1.
The early empirical application of the cobweb theory to model

product price expectation is provided by the work of Bean (1929). He
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found that the price of the preceeding season is a dominant factor in
the change in production in any given year. Cochrane (1947) attempted
to adapt the cobweb theory in a way more compatible with price and
quantity fluctuations by using the idea of a "planning supply function."
But even then the theory suffers serious flaws. It is inconsistent
with optimization behavior of producers by its implication that
producers can be continually fooled. The complete adjustment of supply
in one period seems to suggest that supply functions are reversible
which is inconsistent with what is known about the influence of fixed

assets on supply adjustments (Clark, 1959; Johnson, 1960).

Extrapolative Expectations

As an alternative to the cobweb theory, Metzler (1941) proposed the
extrapolative model which Goodwin (1947) used to explain price expecta-
tions in markets with commodity cycles. Under the extrapolative
expectation theory, the expected price ié defined as Pt = Pt—l +

a(P ), o > 0, where P? is the expected price for period t at

t-1 " P2

period t-1, P and Pt—Z are the prices observed in periods t-1 and

t-1
t-2, respectively, and o is the coefficient of expectation.

The extrapolative model is actually a modification of the cobweb
theory to take into account the most recent trend in price. It is
obvious that when o is zero, the extrapolative expectation is reduced
to the cobweb expectation. Ryan (1977) uses the extrapolative
expectation to model the expectéd price for pinto beans in a study of
the production response under risk of U.S. pinto beans. The model has
not received wide applications in supply analyses probably because of

its recognized limitation. It lacks economic theory justification,

and assumes away other information sources in expectation formationm.



12

Adaptive Expectations

The major contribution‘in aggregate supply analysis is based on
Cagan's adaptive expectations model (1956). Nerlove (1956), using the
adaptive expectations model, advanced the idea of an expected normal
price. That is, production decisions are based on the long run average
price. The popularity of the adaptive expectation model is demonstrated
by its wide application in agricultural supply response studies for
explaining expectation formation. Askari (1976) presents an extensive
review of supply response studies using the adaptive expectation to
model expected prices.

According to the adaptive expectations model, each year producers
revise the price they expected to prevail in the following year in
proportion to the error they made in predicting price for this year.
That is, producers revise their expectations according to their most

recent experiences. The model is presented as

K - * = - *
PE - PR T B~ PR 0<B=x1

where Pg is the expected price for period t at period t-1, P:—l is the

expected price for period t-1 at period t-2, Pt is the price realized

-1
at period t-1, and B is the coefficient of expectation. It is easily
shown that the expected price for period t at period t-1 can be
represented by an infinite sum of past prices with geometric weights.
That is

o
Px =872 (1-8)J P
t t-j-1
3=0 ’
Just (1974), using a decision theoretic approach, shows that the
subjective mean of the expectation variable is identical to Cagan's

adaptive expectations model.
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The popularity of the adaptive expectations model is attributed to

the following reasons (Nerlove, 1979):

i.

ii.

iii.

Models including normal price perform better when applied to
empirical data than those without such distributed lags.
Adaptive expectations are compatible with dynamic stability
under non-restrictive assumptions.

There is some empirical evidence to support the adaptive

expectations model.

However, the model suffers significant flaws which have led to question-

ing of its validity in modelling producers' price expectations (Nerlove,

1979; Grossman, 1975). The criticisms are directed toward the

following:

i.

ii.

iii.

iv.

There is no economic explanation for the lag structure.

The model assumes that expectations are formed in a particular
way. The lack of flexibility of the geometric lag structure
has lead to the adoption of other lag structure, also ad hoc
but more flexible, such as the polynomial lag (Lin, 1977).

The introduction into a supply function of the expected normal
price as a distributed lag of past prices with geometric
weights leads to a reduced form supply function which is
identical to a result obtained by a Koyck reduction. This
leads to a problem of separating changes attributable to lagged
adjustment from those resulting from expectation formation.
The assumption that producers base their price expectations
only on past realized prices is questionable.

The estimated coefficient of adjustment and the coefficient

attached to the price variable have been found to be
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particularly sensitive to the omission of relevant explanatory

variables in the model (Nerlove, 1979).

Rational Expectations Hypothesis

The rational expectations hypothesis proposed by Muth (1961)
eliminates the theoretical weakness common to the other theories of
expectations reviewed above. Muth asserts that since expectations are
informed predictions of future events they are essentially the same as
predictions of a relevant economic theory. The rational expectations
hypothesis is based on three assumptions about individual behavior:

i. Information is scarce and the economic system generally does

not waste it.
ii. The way expectations are formed depends specifically on the
structure of the relevant system describing the economy.
iii. Public prediction will have no substantial effect on the
operation of the economic system.
The implication of the rational expectations hypothesis is that if a
producer operating under a free market has some idea of market condi-
tions, he will use the information available on supply and demand in
generating his expectations about future product prices. That is,
expectation formation incorporates the structure of the relevant system
describing the economy.

In order to make the hypothesis operational, Muth makes the
following simplifying assumptions:

i. Random disturbances are normal.

ii. The equations of the system, including the expectations
formula, are linear.

iii. Certainty equivalents exist for the uncertain future variables.
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On the basis of the three assumptions, rational expectations are
equivalent to conditional expectations of the variable based on all
information available up to the time the forecast is being made, and
they are minimum-mean-square error forecasts.

Despite being consistent with the underlying structure of economic
behavior, the rational expectations hypothesis has not been widely used
in the agricultural economics field. The only empirical study of supply
found, which uses rational expectation to explain product price
expectation is the study by Petzel (1978). The slow adoption of the
rational expectation hypothesis is supply analysis can be attributed to
the following reasons:

i. Rational expectations are difficult to estimate. Although the
unobservable variable is a linear combination of observable
variables, the involved coefficients in general are nonlinear
combinations of structural parameters which are difficult
to estimate.

ii. The hypothesis seems to assume more information than is
generally available to producers. The assumption that
economic agents are capable of translating all the available
information into expectations is too restrictive.

iii. The hypothesis assumes economic agents respond only to
conditional expectations rather than to higher moments. The
assumption that economic agents are aware of the nature of
the stochastic process generating the realized values of the
expected variables is also questionable.

Since Muth proposed the hypothesis in 1961, some improvements have been

made to make rational expectations models more operational. The ideas
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of weak rationality (Nelson, 1975; Shlomo and Bryan, 1981), and quasi
rationality (Nerlove, 1979) permit the construction of proxies for
rational expectations variables using less than full information.
Advances made in univariate and multiple time series modelling of
stochastic processes (Box and Jenkins, 1976; Nerlove, 1979) provide a
manageable procedure for identifying and estimating models based on
rational expectations. Wallis (1980) provides a general econometric
approach for systems and single equation models incorporating rational
expectations.

Most of the work done to test the rational expectations hypothesis
is in the field of macroeconomics. Shiller (1972) presents an extensive
review of the work done with macroeconomics models incorporating
rational expectations. The works by Turnovsky and Wachter (1971), Alex
(1977), and Bryan and Shlomo (1981) lend support to the ratiomal
expectations hypothesis. Only limited work has been done to evaluate
agricultural producers' price expectations on the basis of the rational
expectations. Bessler (1977), using simple univariate time series
models, found the cumulative probability distribution of the one step
ahead price forecasts to be consistent with the elicited subjective
probability distribution over the same period. Fisher and Tanner (1978)
conducted a study in Eastern Australia to test the performance of
alternative theories of expectation formation. The study was conducted
in the form of a survey in which farmers were asked about their produc-
tion decisions and price expectations for the following season. Their
results indicated that the adaptive expectations as a basis for price
forecast performed better than the rational expectations hypothesis.

The use of the futures price as a proxy for the unobserved

expected price has been advocated by Gardner (1976). His justification
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relies on the rational expectations hypothesis. Gardner argues that
prices of a futures contract for next year's crop reflect the market's
estimate of next year's cash price. Two studies have used futures
prices as proxies for expected prices--the study of supply response for
soybeans and cotton by Gardner (1976), and that of wheat acreage supply
response under changing farm programs by Morzuch, Weaver, and Helmberg
(1980). ©Lin (1977) proposes that a combination of historical price
information and the futures price using Bayes' formula be used in
constructing proxies for expected prices. To our knowledge, this

approach has not yet been implemented empirically.

Risk in Supply Response

It is generally acknowledged that variability in price and yield
plays a significant role in farmers' production decisions. Just (1975)
points out the importance of having a quantitative knowledge of how
farmers react to changing risk in evaluating alternative commodity
programs. He indicates that while a good statistical fit is obtained
with the standard Nerlovian model, its predictive power will generally
be poor when compared with a model including risk variables explicitly.
The good statistical fit of the reduced form Nerlovian model is
attributed to the fact that the effects of changing risk enter the
model through the lagged dependent variable.

The first attempt to incorporate risk in a positive supply response
model is in a study by Behrman (1968) of four major annual-erops in
small agricultural regions of Thailand. In this study, risk is
specified as the standard deviation of the crop price over the three
preceeding production periods, relative to the standard deviation of

the index of the alternative crops over the same period. Behrman
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finds risk to be an important variable in explaining crop acreage
response in Thailand. The limitation of Behrman's approach of modelling
risk relates to the fact that it does not incorporate producers' price
expectations.

A rigorous approach to introducing risk in supply response models
was first developed and used by Just (1974) in a study of crop acreage
response in California., Making use of statistical decision theory,
Just first shows that the subjective mean of the expected price can be
expressed as an infinite sum of past realized prices with geometric
weights. Subjective risk is then expressed as an infinite sum of the
squared deviation of realized price fromvthe subjective mean of
expected price, weighted geometrically. The results of his study
indicate that, with the exception of crops strongly regulated by
government programs, risk is an important variable in explaining
acreage supply response.

Ryan (1977) uses a model of producer behavior under uncertainty
to derive risk variables which he incorporates in a risk model for
U.S. pinto beans. On the basis of his theoretical analysis he
identifies the following risk variables:

i. Weighted standard deviation of the preceeding three years of

pinto bean price around the preceeding three year average.
ii. A weighted coefficient of variation of pinto bean price.
iii. The absolute value of the covariance of pinto bean price and
sugar beet price divided by the preceeding three year average
of pinto bean price and divided again by the standard

deviation of sugar beet price.



19

The empirical results of his analysis indicate that the risk variables
improve the statistical fit of the supply response equation. Ryan's
approach suffers the same drawbacks as Behrman's by failing to incor-
porate price expectation in the risk variable.

Trail (1978) presents an approach simpler than that of Just for
introducing risk in supply response models and yet retains the relation-
ship between risk and expected crop price. The risk variable is
formulated as the weighted absolute deviation of realized price from

the expected price. That is

§, |px . -p |
1 J t=] t-]

Mg

h|
where Pg is the expected price for period t at period t-1, Pt is the
realized price at period t, Gj are ad hoc weights which sum to one.

A limitation of this approach concerns the choice of appropriate weights
to use.

An alternative approach also.proposed by Trail (1978) fits the
safety first criterion of defining risk. He refers to this method as
the moving probability distribution method. In this approach, the
riskiness of a crop is defined as the probability of its price falling
below some specified level. Risk is then measured as the area in the
left tail of an appropriate probability distribution fitted over an
appropriate moving period. In his study of onion supply response in
the U.S., the log-normal distribution is used, and the following steps
are followed to compute the risk variable:

i. A runs test is used to test for randommess, and then a log-

normal distribution is fitted to the whole price series. A
goodness of fit test using the xz test is applied to determine

whether the data fits the log-normal distribution.
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ii. Given that the data is random, and that it is adequately
described by the log-normal distribution, the parameters of
the distribution are calculated over a moving period which
are then used to obtain the area in the lower tail of the
distribution. The estimated probability is then used as an
observation on risk.

While this approach of modelling risk seems to be more consistent with
the way producers think about risk, its application is hindered by
problems of determining that critical price value below which producers
consider a disaster to occur.

Trail estimates supply response equations for onions using risk
variables as defined by Behrman (1968), in addition to his two proposed
approaches. He finds that the three methods for modelling risk yield

similar results and none is found to be clearly superior.
Multiple Products Modelling

Farmers in general are engaged in the production of more than one
crop, but there has been very limited empirical work on supply
relationships of multiple products. Most empirical work on supply
response includes one or two competing crops even when it is known
that additional competing crops are involved. Data limitations and
multicollinearity have been blamed for this limitation (Just, 1974).

The work by Powell and Gruen (1968) on the constant elasticity of
transformation is regarded as a major contribution toward solving the
problem of handling multiproducts in supply response analysis. By
imposing a constant elasticity of transformation (CET) constraint on

the production surface, the number of parameters to be estimated in a
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linear supply model is reduced by more than half from a fully specified
and unconstrained model (An-Ning, 1978). The behavioral assumption
inherent in the CET model is that producers seek to maximize profit.

Powell and Gruen (1968) use the CET model to estimate short run
direct and cross price elasticities for wool, wheat, and feed grains
in Australia. The CET model has been adapted and applied in three
major supply response studies in the U.S. Whittaker (1977) uses the
model in the study of regional field crops acreage response. His
results indicate only 61 perceht of the elasticities of transformation
have anticipated signs. However, when Whittaker compares the results
with those of ordinary least squares supply model (OLS) and the
restricted least squares supply model (RLS) (the imposed restriction
is homogeneity of degree zero in expected prices), the CET model
performs best, followed by RLS and OLS, respectively. The criteria
of comparison are accuracy of forecasts and conformity of estimated
parameters to theoretical expectations.

Green (1978) uses the CET model to study the supply response of
13 major U.S. crops. His results indicate only 35 percent of the
estimated mbdel parameters have unexpected signs. In evaluating the
elasticities of supply response, only 56 percent of them are found to
be stable. The predictive performance of his model is also found to
be generally poor. An-Ning (1978), using a similar model and esti-
mation procedure as Green to study supply response of Texas agricultural
commodities, encounters similar problems.

The results of these studies indicate that while the CET model
offers a way of handling a large number of competing crops its
performance has not been very satisfactory. Some theoretical problems

regarding its construction still remain to be solved.



Commodity Programs Modelling

The need to minimize instability in the agricultural sector has
led to a growing number of public programs in agriculture. Tweeten
(1979), Cochrane and Ryan (1976) present comprehensive accounts of
farm policies and programs from the early thirties to the late
seventies. Program changes over time by crop and animal product
categories are given. The recognition that government intervention in
agriculture has an influence on supply response has led to studies to
evaluate its effects on supply decisions. Due to data limitations, it
is important that the main features of program changes be summarized
in as few variables as feasible. Notable contributions in modelling
government programs for supply analysis are studies by Just (1974),
Houck et al. (1976), and Morzuch, Weaver, and Helmberger (1980). The
decision as to which program features are to be included is determined

by the researcher according to the objective of each particular study.

Technological Changes and Structural Shifts

Technological changes over time have been partly responsible for
supply shifts. In supply analysis, technical progress is represented
by a smooth time trend (Nerlove, 1956; Lin, 1957). This approach
assumes that technology can be approximated by a linear trend.
Another problem also related to technology involves structural change
(Cochrane and Elmer, 1960). The standard regression model is not
likely to capture structural changes since it is implied in these
models that parameters are fixed. The use of dummy variables to

account for structural shifts in supply analyses is suggested (Willis

22
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and Hayami, 1977). The major problem with this approach is identifica-

tion of those periods exhibiting differences in structure.

Chapter Summary

A review of the major contributions in aggregate supply response
analysis was presented. Modelling of expectations has evolved from the
more ad hoc cobweb, extrapolative, and adaptive expectations models
to the theoretically appealing rational expectations hypothesis.
Empirical specification of expectations has, in general, followed the
ad hoc models, the adaptive expectations model being the most widely
used. The rational expectations model, despite its theoretical appeal,
has not found much application in supply response analysis due to the
difficulties of its empirical implementation.

The importance of risk in production decisions has seen a number
of methods proposed to model yield, price, and returns risk for
aggregate supply response analyses. The simplest approach uses a
weighted moving squared deviation of realized prices or returns from
the mean price or returns, respectively. This approach fails to
incorporate producers' price or returns expectations in addition to
employing an ad hoc weighting scheme. The more appealing approaches
employ the expected prices or returns instead of the mean of realized
price or returns. Empirical work by Trail (1978) shows that neither
approach produces superior results. The work by Just (1974) shows
that with the exception of crops heavily influenced by government
programs risk is important in-explaining acreage supply decisions.
Even in those cases with strong government intervention, the inclusion

of risk improves statistical fit of the models.
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Multiple product modelling has proved troublesome in positive
supply reczponse studies due to data limitations and multicollinearity.
By imposing a constant elasticity of transformation comnstraint on the
production surface, the number of parameters to be estimated is
reduced by more than half when compared to an unconstrained model.
Although this is regarded as a major contribution in multiple product
modelling, empirical results employing this approach have not been
very satisfactory.

Technological changes over time are known to have had an influence
on supply response and structural shifts. Modelling technological
changes have employed a smooth time trend, and when a structural shift
is suspected to have occurred a dummy variable is included to capture
this change. The assumption that technological change can be
represented by a smooth time trend is questionable, but a better

modelling approach is yet to be developed.



CHAPTER III

METHODOLOGY

Introduction

In this chapter, a reduced form acreage supply response model is
specified. In the course of developing the model, some of the
methodological problems raised in Chapter I are addressed.

The chapter is organized as follows. First, a general product
supply function is derived from the static theory of a multi-product
firm facing product price uncertainty. Comparative static results,
relevant for determining restrictions to impose on the supply response
model, are derived. A method for constructing unobservable expected
variables which conform to the optimization behavior of firms is
presented. The Houck et al. (1976) method for constructing policy vari-
ables is briefly outlined, and the relevant policy variables to be
included in the model are identified. A general econometric model of
crop acreage supply response for a firm is then specified. Since in
the estimation process highly aggregated data are used, naturally the
aggregation problem exists. The problem is given a limited theoretical
treatment here, specifically the necessary restrictions required to
ensure at least partial consistency between the micro and macro
functions are identified. This chapter closes with a statistical
specification of the aggregate supply response model and identification

of possible estimation procedures.
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A Static Model of a Multi-Product Firm

Facing Product Prices Uncertainty

There has been a growing interest in the study of the behavior of
a competitive firm exhibiting non-linear risk preferences under alter-
native assumptions pertaining to sources of uncertainty. Just and Pope
(1977) assume production uncertainty, Just (1975) considers both
production and product price uncertainty, and Epstein (1977), Pope
(1978), Sandmo (1971), and Blair (1978) consider only product price
uncertainty. These studies show how non-linear risk preferences modify
the Hicksian maximization conditions and the comparative static results.

In these studies, it is asserted that the objective of the firm is
to maximize the expected utility of profit, and in the case of product
price uncertainty, it is assumed that production decisions are made
prior to the knowledge of the market price. Blair (1978) and Sandmo
(1971) show that under risk aversion, the optimal input demand and
output supply are lower under product price uncertainty than when the
price is known with certainty. It should be pointed out that their
results may not be true if the expected price is higher than the
knwon true price. They also show that decreasing absolute risk
aversion is a sufficient condition for an upward sloping product
supply curve.

The analyses by Pope (1978) and Batra and Ullah (1974) show that
in general, the usual comparative statics, symmetry conditions, and
linear homogeneity of supply functions are ambiguous under non-linear
risk preference conditions. These observations suggest that no useful
restrictions can be imposed on a risk supply response model without

making restrictive assumptions about the nature of the firm's underlying
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utility function. Pope (1978) shows that, for the general class of

decision functions which he specifies as E[U(T)] = T + Z(0), ©
(62, ey OT) where E[U(m)] is the expected utility of profit, T is the

first moment of profit, ¢, is the t—-th central moment of profit and Z

t
is a linear or non-linear function of the central moments of profit,
the result obtained under certainty remain unchanged. In additiom,
comparative static results based on risk parameters can be obtained
explicity. Since the objective here is to determine a priori the
restriction to impose on the supply response model, the choice of the
utility function will be from this general class. It should be pointed
out that the failure to reject the restrictions imposed on the risk
model is not a proof that the specified utility function is a true

one since the same restrictions can hold under an alternative utility

function. On the other hand, the rejection of the imposed restrictions

is a basis for rejecting the specified utility function.

Basic Assumptions and Model Development

1. The firm operates in a perfectly competitive industry. The
fact that price is uncertain implies that the firm is a price taker
in a probabilistic sense. Input prices, on the other hand, are assumed
to be known with certainty.

2. Production decisions are made and inputs are committed to
production before the realization of product price. This is a valid
assumption in the case of agricultural products, due to the long time
lag between the beginning of the production process and the realization

of output.
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3. The firm seeks to maximize the expected utility of profit and
it exhibits non-increasing risk aversion behavior. Polynomial utility
functions such as the quadratic can show increasing risk aversion if
additional restrictions are not imposed on the function. To avoid
these kinds of problems, it is assumed that the firm's behavior can
be satisfactorily modelled by an exponential function, which exhibits
constant absolute risk aversion behavior.

The firm produces m products using n inputs. The production

function in implicit form is represented in equation (1).

W(Qps Qs es Qs Xps Xpy wey X)) =0 (1

where Qi is the output of product i (i =1, 2, ..., m), and

Xj is the production input (j = 1, 2, ..., n).
The price for product i is denoted by Py and its subjective probability
density function, which is assumed to be normal, is gp(P) with U and 02
as its first two central moments. The price for input j is denoted by
Wj. It is shown in Appendix A that under the assumption that the firm's
utility function for profit is exponential, the relevant decision
function 1is

m n m
E[U(m(*))] = .Z u.Q, - I WX, -

ro|o

m
z I Q.Q,.0. b>0 2)
i=1 t1 4oy 33 =1 k=1 © K ik

where E[U(T(*))] is the expected utility of profit and b is the risk
aversion coefficient.

In order to simplify the analysis, a rather strong assumption is made,
that product prices are independent. This simplifies equation (2) to

m n
E[U(m(*))] = _E u.Q. - I wjx

m
- s % b (3)

- iti . 2 i“i

i=1 j=1 =

] i=1
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The firm's objective is to maximize expected utility of profit (3)
subject to a technological constraint specified by its production
function (equation 1). Rather than maximizing (3) subject to (1),
the primal-dual lagrangean approach of Silberberg (1978), which provides
an easier way for deriving the comparative static results is used.

In order to specify the primal-dual lagrangean, the following
functions are defined:

(a) the indirect expected utility of profit function

2 m 2 o 2
E[U*(T*(, 0, W, B))] = I W.Q% (4, 0, W - I WXt (4,0, W, b)
~? o ~ i=1 iti ‘N 2 ~ j=l i3 ~? 2 ~
b B 2 9 2
- -2_ li:l O—IQ; (]J: 9: H W, b)

where U, 02, and W are vectors.
This function represents the maximum level of expected utility of
profit for any set of parameter values subject to Y(Q, X) = 0. It

should be noted that the indirect function depends only on the parameters
L., 0%, b and W

i) i’ j'

(b) function K = F(Q, X, M, 02, W, b) defined as the difference

between E[U*(T*(+))] and any other level of expected utility of profit.

That is

m n m
K = F(Q, X, U, 02, W, b) -—-[ 5ou.Q. - I W.X, -2 s O%Q%J
> 2 D L ~ ) i~i . 2 . i
i=1 j=1 =

- [E[U*(m*(+))]]
It is obvious that K is either zero or negative, and has a maximum of
zero at Qi = Q{(') and Xj = X§(°) fori=1, 2, ..., mand j =1, 2,
.-, n, subject to P(Q, X) = 0. That is F(+) is negative semidefinite

subject to the constraint.
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Now the original constrained expected utility of profit maximization

problem can be redefined as:

Maximize F(g, X, 1, gz, W, b) = E[U(m(*))] = E[U*(m)*(*))]

Subject to Y(Q, X) = 0.

The primal-dual lagrangean becomes

L*(Q, X, W, 0°W, A, b) = E[U(T(-))] - E[U*(n(+))] + Ap(Q, X  (4)

Differentiating L* with respect to Q , X, My, ci, W (1=1,2, ..,
mand j =1, 2, ..., n), b and A the following necessary first order

conditions for maximum are obtained:

L% 2 i}

5-(—2;'“1—]’01 Qi+}\in—0 (5)

oL* _ -

T wj + wa' =0 (6)
b 3

BL* _ - JE[UX(m*(-))] _

aui Qi Bui 0 ®

gL_; _ % Qi _ aE[U*(n;(-m -0 9

aoi aci

AL* _ ., _ JE[UR(T*(+))] _

W, . % W, 0 (102)
3 b

BL* _ 1 % 22 2 QE[U*(m*(-))] _

3 - "2 L 9% @ g, WD) - 2 -0 (100)

a0,
1
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Equations (5), (6), and (7) are the usual first order conditions for
constrained maximization of the primal problem——equation (3) with (1)
as the constraint. Equations (8), (9), and (10) are the envelope

theorem results. By applying the envelope theorem, it is easily shown

that:
QE[U*(T*(-))] _ 2
o, 4 @ o) o
BE[U*(m*(+))] _ _ 2
W, = -XF (1, W, ) o
J
BE[U*;ﬂ;(‘))l = _.% sz (u, W, gz) (13a)
a,
1
BE[U*(m*(-))] _ _ 1 T 2.2 2
ab ) iiloiQ’{ W, g W, B (e

where equation (11) is the output supply function for product i and it
is a function of own expected price, expected prices of competing crops,
input prices, risk aversion coefficient and variance. Equation (12) is
the demand function for input i and it is a function of the same
parameters as the output supply function. Since the primary interest

is in determining refutable restrictions to impose on a supply function,
the usual qualitative marginal conditions for maximum obtainable from
the first order conditions are not emphasized here. Instead, attention

is focused on the comparative static results.

Comparative Static Results

Define Z as a (mn) x 1 vector whose elements are the Qis 1i=1,
..., m) and st (j =1, ..., n) and o as a (2mn+l) x 1 vector whose
elements are HyS i=1,2, ..., m, Ois i=1, ..., m), b and st

G=1, ..., n). The matrix of second partials of L* with respect to
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Z, G, and A can be written in partitioned form as

~

o * * *_ -
LZZ LZa LZA
= * * *
H Lozz Laoc Loo\
| sz Lia' 0 _

It should be noted that L#* and L; are null vectors since the para-

AQ.

~ ~

A

meters do not enter the constraint and A does not enter the primal-dual
objective function. Using Young's theorem, it can be shown that H is

symmetric and so are sz and Léa'

The sufficient second order conditions for maximum require that
all border preserving principle minors of H of order k have sign (—l)k.
Since the focus is on how the supply of product Qi changes as the

parameters (a) change, only Laa is evaluated.
Silberberg (1978) shows that Léu is negative semi-definite

~

subject to the constraint, and since parameters enter the objective
function linearly, and none enters the constraint, refutable hypotheses

can be obtained from the comparative static results of Lgu. The fact
that Lga is negative semi-definite implies that all its diagonal
elements are non-positive. The determinant of Léa is presented in

~~

(14).
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From (14), the following comparative statics and reciprocity conditions

are obtained:

301 20
<0 or —= >0 i=1, ..., m (15)
Bui - Sui
8X§
—BW_,_S-O j=1l, «vo, n (16)
]
BQi
aoi

aQ,
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Condition (15) implies that an increase in own expected price, holding
other parameters constant, will increase output of product Qi' That is,
the supply function for Qi is upward sloping. The supply of product Qi
is a non-increasing function of price variance as shown in equation (17b).
That is, a unit increase in price variance, holding other parameters
constant, either will leave output unchanged or will lead to a decline
in output. Condition (17c) shows that output supply is a non-increasing
function of the risk aversion coefficient. As the coefficient of risk
aversion increases, holding other parameters constant, output will
either remain unchanged or will decline. Condition (16) shows that
input demand functions are downward sloping. Conditions (18), (19),

and (20) are the usual reciprocity or symmetry results. The above
results imply the following restrictions on an econométrically

estimated supply function:

1. The coefficient on own expected price is positive.

2. Given estimated supply functions for products Qi and Qj’ the
change in Qi for a unit change in the expected price of Qj
should be equal to the change in Qj for a unit change in the
expected price of Qi’ holding other parameters constant. Note
that nothing is implied about the sign of these changes from
the comparative static results, without additional information

on the relationship in production of the involved products.
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3. The coefficient on the risk variable (price variance) is

negative or statistically not different from zero.

4. The change in Qi for a unit change in the price of input Xj

is equal to the negative of the change in input xj per unit
change in the price of product Qi’ holding other parameters
constant.

In general, due to data limitations and multicollinearity problems,
all the restrictions as specified above may not be tested. This also
applies to testing for homogeneity of degree zero in output and input
prices. At this point, on the basis of the assumed firm's behavior,

the supply function for product Qi is

Qi = Qi(U]_: UZ, ey ui’ ceey Um’ wl, WZ, ey wns
(21)
o? o2 02)
17t Ogs eees Op

The supply function derived from the theory of the firm is an over-
simplification of what actually influences supply response. It is a
known fact that government programs, technological changes over time,
and weather also influence supply response. Weather influences supply
through its influence on yield. Therefore, the influence of weather

on supply response can adequately be handled through the yield variable.
The supply function in (21) is modified to take into account these
additional factors. Defining PLki as the policy variable k affecting

crop i and Y; as the expected yield equation (21) is modified to
2
=Q;(u, W, o, PL, ¥¥) (22)

where U is a m x 1 vector of expected product prices,

~

W is a n x 1 vector of input prices,

~
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where gz is a m x 1 vector of product price variances,
g} is a L x 1 vector of policy variables, and
Y; is the expected yield of crop Qi'
Before an econometric model is specified, the problem of

constructing risk variables, expected yield, expected product prices,

and policy variables is addressed in the next three sections.
Construction of Risk Variables

There are at least two schools of thought concerning how risk is
perceived by decision makers (Young et al., 1979). The safety first
approach looks at risk as the probability of either net returns or
price falling below a predetermined disaster level. The problem in
applying this criterion to construct risk variables for aggregate
analysis concerns the determination of a representative disaster level.
In Chapter II, a method based on safety first criterion was reviewed
(Trail, 1978), but since it will not be used in this study, no further
reference to this approach will be made. The second approach looks at
risk as the deviation of expected price or net returns from the
realized price or met returns. In more general terms, this conforms
to using variance and covariance terms to measure risk. A version of
this second approach for thinking about risk is used to construct risk
variables for the acreage supply response analysis.

Defining Rii as the price risk for crop i and Ril as the price
risk for crops i1 and 1, the following formulas for constructing risk

variables are proposed:

N
2

= % -

Ry E 6n (Pt—n,j Pt—n,j) . (23)
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N
= * - EA -

Ril Z Sn (P t_n,i Pt—n’i) (P t_n’l Pt"n,l> (24)

n=1
N
where I &§_ = 1 and

n

n=1

1, 2, ..., T.

Formula (23) expresses price risk for crop i as a weighted moving
average of the squared deviation of the expected price from the realized
price, while formula (24) provides a way to measure the covariation of
the prices for crops i and 1. The weighting is justified by the fact
that current events are likely to have more weight on decision making

then those in the remote past.
Crop Yield Expectation

At the beginning of the production period, crop yield to be
realized is unknown. A number of methods have been suggested in the
literature to explain how prodﬁcers formulate yield expectations.

The simplest model assumes that producers formulate their yield

expectation on the basis of past yield (Chern and Just, 1978). That is,

Y% = E[YtIY Y eool] (25)

t-1° "t=2?

which reduces to Y: = Yt—l if it is assumed that only last year's
yield is taken as a prediction of this year's yield (the same result
is obtained if yield is assumed to follow a random walk process).

A more complex yield expectations model is based on the adaptive

expectations model

- * = - *
Yé Yt—l y(Yt_l Yt—l) 0<y<1 (26)

1 is the yield

is the yield realized in

where Yt is yield expected in period t at period t-1, Yi_

expected in period t-1 at period t-2, Yt 1
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period t-1, and Y is the coefficient of expectation. It can be shown
that using equation (26) expected yield can be represented by an

infinite sum of past yields with geometric weights. That is

w .
vE= yI Aty . (27)

3=0 -1
Behrman (1968) proposes a time trend to approximate future yield, this

being obtained by regressing Yt on time.

% = i
¥ by + bl Time (28)
where b0 and bl are regression coefficients estimates. Since none of

the above methods can be rejected or accepted a priori, for the purpose
of simplifying the econometric model, expected yield is represented by

last year's yield. That is

Agricultural Policy Variables

Among the field crops involved in this study, wheat, cotton, corn,
grain sorghum, and peanuts are heavily influenced by government
programs. Over the years, these programs have assumed many features,
but the main objective has remained that of stabilizing prices and farm
incomes. Houck et al. (1976) have developed a procedure summarizing
the various features of the programs in two major variables: (1) effec-
tive or weighted support price which is defined such that both acreage
restrictions and price support are incorporated; and (2) weighted
diversion payment which is defined such that payments for withholding
land from production and any acreage restrictions that accompany such

payments are incorporated.
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Houck et al. (1976) developed the following conceptual framework
relating government programs to acreage planted and diverted, as the
basis for developing formulas for constructing the variables. Figure 1
shows the relationship between acreage planted of a given crop and
price. In the absence of acreage restrictions, when the government
announces a support price, it will be viewed as a price guarantee.

This implies that at a higher announced support price more acreage will
be planted, and at a lower support price, less acreage will be planted.
This is represented as a movement along the curve Slsl’ assuming that
other supply shifters remain constant.

When the support price is PA, with no acreage restriction, Al
acreage will be planted. If for policy purposes the desired acreage
is A2’ the relevant support price would be ES in the absence of an
acreage restriction. If for social reasons it is desired to maintain
farm income at a certain level, a support price PA will be announced,
but in order for producers to obtain this price they will be required
to reduce acreage planted so that AlA2 acres are withdrawn from produc-
tion thus conforming to the policy goal. Houck et al. (1976) call ES

the effective support rate
ES = rPA

where r is some adjustment factor incorporating the acreage restriction.
With no acreage restriction, r = 1, and as acreage restrictions become
tighter, then r moves closer to zero. The actual computation of ES is

as follows:



Price
Support/
Unit
S2
51
PA
ES,ED
0 A2 Al Acres
Planted

Figure 1. Relationship Between Support Programs and
Acreage Planted

40
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where PAi = announced support price for crop i,
o = base acreage for crop i,
Ai = allowable acreage for crop i under the price program, and
ESi = effective support price for crop i.

If it is assumed that the government wishes to reduce acreage to
A2 solely through payment for idled land, an unrestricted support price
PA would be announced, and then payments attractive enough would be
offered, so that producers divert sufficient acreage to meet the policy
objective. This would lead to the shift of the supply curve from SlSl
to 5232 and A1A2 acres will be withdrawn from production. This approach

of meeting policy objective is represented by the following formula

(Houck et al., 1976):
ED = wPR

where PR is the payment rate for diversion, w is that part of base
acreage eligible for diversion, and ED is the effective diversion rate.
It is obvious that ED will be between zero and one. Actual construction

of the variable is based of the following formula:

ED, = wPR, = —— PR,
i i A | i
oi
where ED = effective diversion payment rate for crop i,
Di = acreage diversion requirement for crop i,
A.oi = base acreage for crop i, and
PRi = diversion payment rate for crop i.

It should be recognized that the two policy variables do not cover
all the policy options. Therefore, in the course of empirical
specification of an acreage supply response model additional policy

variables deemed important will be incorporated explicitly.
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Product Price Expectation Formation

It has been shown that expected product prices are among the
variables that explain product supply response. That is production
decisions are partly based on the anticipated or forecasted prices and
not on the currently observed prices. The influence of expected prices
on production decisions will likely depend on the degree of confidence
the producer attaches to his expectations.

Modelling expectations of unobservable variables need to reflect
the mechanism used by economic agents to gauge their expectations.
Some survey studies have been carried out to try to understand how
producers forecast future prices. Heady and Kaldor (1954) carried out
a three year study (1947 to 1949) of farmers' expectations in 10
southern counties of Iowa, and while they found that some farmers used
simple extrapolative rules to forecast future prices, the general
observation was that farmers tried to understand the mechanism deter-
mining prices. Similar observations were made in a study of midwestern
farmers by Partinheimer and Bell (1961) in which they found that most
of the farmers surveyed either based their forecasts on product supply
or on both supply and demand. These studies suggest that, in general,
producers use other information sources on market conditions in addi-
tion to past realized prices to gauge their expectations on future
prices. That is, producers try to optimize their forecast conditional
on information at their disposal. Heady and Kaldor (1954) indicate in
their study that the farmers surveyed had a "crude'" understanding of
probability distributions which will be generalized here to mean that
farmers have subjective probability distributions over the anticipated

price.
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In Chapter II a survey of the methods which have been used to model
expectations for econometric studies was presented. Among these methods,
the rational expectations hypothesis proposed by Muth (1961) is more
appealing since it has an economic theory justification and conforms to
the hypothesized optimization behavior of economic agents. Muth (1961,
p. 316) assumes that ". . . expectations, since-they are informed pre-
dictions of future events, are essentially the same as the prediction
of the relevant economic theory." Predictions are informed in the
sense that all the information relevant in forecasting the future value
of the uncertain event is utilized. This implies that the structure of
the relevant system is incorporated in the forecasting rule. Expecta-
tions are rational if the forecasted and realized prices have the same
probability distribution and can be expressed as the conditional
expectation (in the statistical sense) based on all observations on it
and of related variables up to the time of the forecast.

One of the major criticisms of the rational expectations hypothesis
is that it assumes more information than is generally available and used
by economic agents. It is more likely that farmers attribute various
degrees of strength to the factors which are relevant in forecasting
prices, disregarding those factors which are considered to be minor and
base their expectations only on a proper subset of all the relevant
factors. In addition, the limited ability to translate information
into forecasts suggests that only a subset of all the available

information is actually considered in forecasting prices.

Definition of Terms and Assumptions

Before showing how the rational expectations hypothesis can be

applied to model product price forecasts, the relationship between a
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forecast based on all the relevant information and that based only on

a subset
future pr

Defi

Applying
k% =

Pt E[P
rationali
expectati

a.

The

argument

of all the information available and relevant for forecasting
ice is demonstrated.

ne

]

a set of all available information at time t-1,

a proper subset of the available information at time t-1
(Vtél < Qt: l) ’

forecasted price for period t made at time t-1 and using
all available information (Qt_l),

= forecasted price for period t made at time t-1 and using
only a subset of all the available information (Vt-l)’ and

= the price realized at period t.

the rational expectations hypothesis, Pg = E[Ptlﬂt_l] and
t!Vt_l]. Bryan and Shlomo (1981) identify two types of

ty on the basis of the information set used in forming

ons.

Full rationality-~this is the case when a forecaster optimally
utilizes all the relevant information known at period t-1 to
forecast the future value of the variable. By the above
notation, this implies the use of Qt—l' The forecast is
optimal in the sense that within the class of unbiased
forecasts, no other forecast has a smaller wvariance.

Partial rationality--this refers to the case where only a
subset of the available information is used to forecast the
future value of the variable, and the forecast is optimal in
the sense of minimization of the mean square error of the
forecast.

relationship between Pt and Pi* is developed by following the

presented by Nelson (1975). Let nt be the error made when P?*
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is used to predict Pt. Then Pt and Pi* are related by

la~]
(a3
1]

E[(P¥* + n)|Q ;] (29)

k% *
Pt + nt

where n: represents that portion of Pt that cannot be predicted from
Vt—l but can be predicted if Qt—l is utilized. Since conditional
expectations are uncorrelated with the realized error, equation (29)
describes a decomposition of the full rational expectation into two
orthogonal components. Therefore, using P?* as a measure of P: will be
uncorrelated with n* and therefore the usual error in measurement
problem will not be introduced. This observation has great implications
when we construct proxies for the rational expectations using less than
the full information set.
For the rest of the analysis, the following assumptions are made:
1. Producers have an identical information set and they use an
identical forecasting rule.
2. Information is not lost. That is, Qt-l‘: Qt. The implication
of this assumption is that there is a learning process as

additional information becomes available which is used in

forming future expectatiomns.

Rational Expectations Model

In order to obtain rational product price forecasts, the structure
of the system of interest needs to be specified. A simple supply and

demand system is presented below:

d
= + +
Qt aO a Pt a

1 It + €, a, <0, a,>0 (30)

2
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= + * + + > >
Qt b0 blPt bZCt Et a, bO’ bl 0 (3D
d s
U = Q (32)
* =
P* = E[P |Q,_,] (33)
where Qi is the aggregate demand for product Q at time t,
Qi is the aggregate supply of product Q at time t,

I, is the aggregate disposable income at time t,

C, is the index of prices paid by farmers for production items--
non-farm origin,

P 1is the realized price for product Q at time t,

Pt is the expected price for product Q, the expectation being
formed at the beginning of the production period,

Q is the set of information available at time t-1. This includes
lagged values of the variables, and

E is the expectation operator.
Qi, Qi, Pt and Pg are endogenous variables while It and’Ct are exogenous
variables. The model as specified is identified. To complete the
specification of the model, it is assumed that the disturbance terms are
identically, independetly, and normally distributed with zero means and
variances Oi and Gg, respectively. Et and Et are independent.

The demand equation (30), shows that demand is based on observed
price Pt’ but in the case of supply (equation (31)) the relevant price
is the expected price (Pé) due to the time lag involved in the produc-
tion process. That is, while demand can adjust instantaneously in
response to price changes, agricultural production cannot, and hence
decisions are based on the price expected to prevail at the end of the
production period. Equation (33) shows that the anticipated price (Pt)

is given as the expectation of Pt implied by the market model,

conditional on information Qt 1 available at time t-1.
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The reduced form equation for Pt is obtained by making use of the

identity equation (32). The result is presented in equation (34).

0 0 1 2 2
P =——— 4 =Pk +-2(C -—=<1 +e (34)
t al a1 t al t al t t
where e = L (& _-€).
t al t t

By taking conditional expectation of (34) and rearranging terms, the
rational expectation of Pt is

b. - a b a

0 0 2 2
+ — E[c_[Q_,] - —=——E[I_|Q

aj - b, a; - b t -1 a; - b; t

P

o] (35)

*
t
Equation (35) shows that the rational expectation is a linear combina-
tion of the predictions of the exogenous variables. The structure of
the model is incorporated in the expectations through the structural
parameters.

To complete the spe;ification of the rational expectations equation,
a method for forecasting the exogenous variables is presented. On the
assumption that the exogenous variables are independent of the structure
of the market system presented, the relevant information for forecasting
them are their respective past realized values. It is assumed that

{It} and {Ct} processes can be modelled by the following autoregressive

integrated moving average (ARIMA) models.

1 1 1
C®I,_, = 6 (Ba,_, (36)

2 2 2
c*(®)c, | = 8" (B)a,_ (37)

1

Where ai_l and ai_l are the innovations of the processes, B is a back

shift operator, gl(B) (1 = 1, 2) is a non-stationary autoregressive

operator with d roots on the unit circle and the rest outside the unit
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circle. ci(B) can also be written as Ci(B) = ¢i(B)Vd, where ¢i(B) is a
stationary autoregressive operator of order p. Stationarity implies
that the roots of the polynomial ¢$(B) = O lie outside the unit circle.
Vd defines the number of differencings required to indﬁce stationarity
to the series. Therefore, the polynomial Ci(B) in B is of order p + d.
Gi(B) is the moving average operator, assumed to be of order q and
satisfies the invertibility condition. That is, the roots of the
polynomial ei(B) = 0 lie outside the unit circle.

It is assumed that the polynomials Ci(B) and Gi(B) in B can be

written as

i 1 _ A1 i 2 i _p+d
C (B) =1 ng - CZB - ees = Cp+dB
i=1, 2
ole) = 1 - ofp - ol8% - ... - oipd
1 2 q

Using the given model specification (Box and Jenkins, 1976), it can
be shown that the minimum mean square error forecasts for It and Ct

made at the time t-1 are

- = = l l
E[It!It-l? I, gs eve 1 =1 () 2T+ 55T o+ .un +
(38)
1 11 11
* Cotdlt-(pra) T 181 7 e T %9%t-q
E[C_|C C ]=6 (l)EZ;ZC +;2C + ...
t' -1’ Te-2’ t-1 17t-1 27¢-2
(39)
2 2.2 2 2
* CraCe-ra) T %1%-1 T T Bg%iq
By substituting I _ (1) and C__,(1) for E[I |@ ;] and E[C_|Q__,],

respectively, in equation (35), the rational expectation is simplified
to

~ b
0 0 2 2 >

- S5 Gt @ - 5 I
t a1 bl al bl t-1 al bl t-1

1) (40)
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If the structural parameters were known, then P: could be obtained
directly from equation (40). However, since in practice the structural
parameters are unknown, two methods are outlined below which can be
used to construct proxies for P: and still conform to the rational

expectations hypothesis.

] is linear in Q following

Regression Approach. Since E[Pt|Q

t-1 t-1°

Sargent's argument (1973), the rational expectation is formed as if it
were the prediction from a least squares regression of Pt on Qt—l

(E[Pt|9t_l] is treated as a regression function). Therefore, the

conditional expectation can be written as follows:

E[P [Q._;1 = BQ,_; (41)
and
Pt = BQt_l + st
= Pt + Et (42)

where Et is the residual term which is orthogonal to the information set.

Pt is then used as a proxy for P:. Empirically, Pt is obtained by

regressing Pt on elements of Q in this case the lagged values of

t-1°

P Ct’ and It.

t’

Extrapolative Predictor Approach. It was shown that, when only a

subset of the relevant information is used to form expectations, a
partial rational expectations (Pg*) is obtained. A situation where
this subset of information contains only past realized values of the
product price is considered here. Muth (1961) shows that when the

variable being forecasted follows the first order moving average process
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in its first difference, the adaptive expectations model and the
rational expectations are equivalent. This restrictive case seems to
suggest that if the stochastic process of the expectation variable is
identified as being the first order moving average process in the

first difference of the variable, then the adaptive expectations model
- is appropriate in the sense of partial rationality. Otherwise, error
in variables will be introduced. This suggests that any ad hoc extra-
polative predictor will not do unless the underlying stochastic process
generating the observed values of the variable is identified and used
appropriately in defining the lag structure.

Nelson (1975) suggests that the appropriate approach to follow is
to try to identify a suitable model for {Pt} from the general class of
ARIMA models by time series methods. Box and Jenkins (1976) methods
are particularly suited for model identification and estimation. As an
example, assume {Pt} is a series of average seasonal prices for wheat,
and that by Box-Jenkins methods it is found that {Pt} can be adequately
modelled by ARIMA (1,1,0). That is {Pt} follows the first order
autoregressive process in its first difference. Then the partial
rational expectation is Pg* = (l+$)Pt_l - $Pt—2’ where $ is the
estimate of the autoregressive parameter. Since P?* is orthogonal
to the forecast error, it satisfies the condition for partial

rationality and hence it can be used as a proxy for P:.

Relationship Between Expected Price

and Support Price

It was indicated previously that producers perceive a subjective
probability distribution over the expected price. Since support prices

are known at the time production decisions are being made, it is highly
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likely that producers take them into consideration in forecasting future
prices. If the expected price is lower than the support price, it is
likely that production decisions will be based on the support price.

In this sense, the relevant subjective probability distribution for
expected price is truncated from below. It is therefore proposed that
after the series of proxies for expected prices is constructed, the
support price be substituted for expected price in all those years in
which the expected price is less than the support price. The adjusted
series will correspond to the drawing of a sample from the relevant

truncated probability distribution.
A Method for Combining Variables

Data limitations and/or a high degreé of multicollinearity
precludes the consideration of more than one or two competing crops in
a supply response model. Exclusion of important competing crops can
be avoided if some variables can be combined. According to economic
theory, economic agents alter their decisions on the basis of relative
price changes rather than absolute price changes. This suggests that,
for a given crop, it is valid to use expected price or expected returns
per acre relative to expected prices or expected returns per acre of
competing crops, respectively. Relative expected price and relative
expected returns per acre variables are constructed using formulas

(43a) and- (43b), respectively.

P .
_ ti i=1, ..., m
REP ; = r7me1 ~— ) (43a)
5 q > 5 g £=1, ..., T
oy een [ R
g g=1
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Y5 X PEy
REP¢y = m-1 m-1 (43b)
I AC__, , x (Y% x P%) T AC__
2=1 t-1,1 tl tl 0=1 t-1,1
L#1 2#1
i=1, .e., m;y t=1, ..., T

where REPti relative expected price of crop i for period t,

P?i = expected price of crop i for period t at period t-1,
Ptl = expected price of competing crop £ for period t at
period t-1,
Qt-l 1= total output of competing crop £ lagged one period,
s
REPti = relative expected returns per acre of crop i for
period t,
Yéi = expected yield of crop i for period t at period t-1,
Yél = expected yield of competing crop % for period t at
period t-1, and
Act-l 1 = total acreage of competing crop £ lagged one period.
3

Lagged output or acreage is used in constructing the variables to
conform with the procedure used to construct proxies for expected
prices, in addition to avoiding the problem of simultaneity in the
estimation process. The decision as to which of the two formulas to
use, depends on how the supply response model is specified. It this
study relative expected returns per acre will be used.

It was shown that for a given crop the main features of government
programs can be summarized into two variables--effective support rate
(ES) and effective diversion rate (ED). Relative effective support
rate (RES) per acre and relative effective diversion rate (RED) per
acre can be constructed by using formula (43b). This method allows the

reduction of policy variables to be considered from 2m to two.



The supply response model for crop i to be specified in the next
section will have relative effective support rate.(RES), relative
effective diversion rate (RED), and relative expected returns per acre
(RER) as explanatory variables. By following this method for combinin
variables, all important competing crops can be considered, and at the
same time the degree of multicollinearity is minimized, and degrees of

freedom conserved.

Acreage Supply Response Model of a Firm

In the general supply function of a firm, output is the decision
variable. Empirical specification is based on the acreage planted as
a proxy for planned production for the following reasons (Behrman,
1968):

i. Data on planned output are generally unavailable.

ii. Realized output differs substantially from planned output
because of the influence of environmental factors on yield
and hence output. While some of these factors can be
controlled, the high opportunity cost involved makes the

control of some of them unprofitable.

53

g

Acreage planted, on the other hand, is to a large extent under the

control of producers, and thus only a minor difference is expected
between the planned and planted acreage. However, it should be noted
that using planted acreage as a proxy for planned production has its
drawbacks which are outlined below:
i. Land being a heterogenous factor, a producer can decide to
increase the planned output of a given crop by devoting less

but better land to the crop. This approach of increasing
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output can result from either government policies or other
production inputs constraining the number of acres which
can be planted.

ii. Land is just one of the many inputs used in agricultural
production, and thus a decision to allocate a certain area of
land to a given crop is consistent with a wide range of planned
outputs. This suggests that an index of all inputs used to
produce that particular crop would be a better proxy for
planned output. However, since such data is unavailable, this
approach is ruled out.

It should also be noted that planted acreage can deviate from
desired acreage either due to institutional or resource constraints.
Therefore, there is a need to relate planted acreage which is
observable to the desired acreage which is unobservable. This is done
by using the partial adjustment model (Nerlove, 1956).

The following firm level acreage supply response model is assumed:

W g +pd mmrd wad 1o 4 pest 4 ad mepd
ACE 3 = Bos T B1yRERY 4 F By TPy 4 ¥ B3 RS 5 4 + B RED ,
i 2,5 . ] “
* B85y IO (RER 5 5i T RReg,se) Tt Vi

i=1, ..., my j=1, «e., Ly t=1y ..., T

where ACti = desired acreage for crop i by producer j at period t,

RERJ. = relative expected returns per acre for crop i by
producer j at period t,

RR‘::i = realized relative returns per acre for crop i by
producer j at period t,
IPii = index of production costs for crop i as applied to

producer j at period t,
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N
2
Z & (RER . - )7 = a measure of relative returns risk as
n t-n,1i t-n,i . . .
n=1 applied to producer j at period t, and
Vgi = disturbance term.

Partial Adjustment Model

In order to relate the desired acreage which is unobservable to
planted acreage, the partial adjustment model is used as shown in

equation (45).

- = * -
ACt Act-l (ACt ACt_l) 0<w<1 (45)
where ACt = planted acreage at period t,
ACt—l = planted acreage at period t-~1,
Acg = desired acreage at period t, and
w = the coefficient of adjustment.

By combining equations (44) and (45), the acreage supply response
equation of crop i for producer j in terms of planted acreage is

obtained.

J = i 4 ,pd + el 1pJ + eI ]
Act,i wBoi wBliRER wBZi P w83iRES

tl,i t2,1i t3,1
i i X 2,
OB REDy gt 985 O (RERy ;55 T BRe g sy (46)
- 3 + oyd
- WAC ey T WUy

In order to simplify the notation and the theoretical developments to

follow, the variables and parameters are redefined as follows:

J - J
X = RER

e, 11 BER g
J J—
X2i = TP o4
x3 = RESY

t,31 t3,1



Xi,é»i = REDJ;z»,i
. N
x%’Si = I8 (RER
n=1
i,6i - Aci-l,6i
Agi = megi
Aii = weii
Agi = mBg.
Agi = wégi
Aii = wﬁii
Agi - wegi
Agi =1l-uw
V?i = “Vii

The acreage supply response model is simplified to:

J

i _ 3 I J
ACL g =8 ¥ Alixi,li + Ay X
J 3 J d
+ A5 ss T AR XL 61

It should be remembered that, with the exception of A

parameters are nonlinear due to the adjustment coefficient entering

the model nonlinearly.

The acreage supply response model specified refers to a single

t,21

.y y
+ A3iXi,3i + A4txi,4i
J
%
+ Vti

6 all other

Aggregation Problem

56

(47)
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producer or firm. In general, such models are rarely estimated

because of the following reasons:

1. Data is not available for individual producers.

2. Even if data were available at the level of the producer,

the large number of producers involved makes this approach

impractical.

The general approach has been to carry the implications of a model

specified for a single producer to the industry level. While the same

approach. is followed in this study, there is a need to point out the

problems resulting from such an approach, and the restrictions it

imposes on the interpretation and application of the results. First,

the aggregate acreage supply response model is presented in equation

(48).

where AC
t,1

t,1i

t,21

t,31

t,4i

+ A

i T A% 1 T A% 00 T A% 31 T AR ua
(48)

+ V%

X5 T 8% 61 T VELL
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the sum of individual producers' acreage allocated to
L
crop i; that is AC_. , = I AC
t,i =1
the average of individual producers' relative expected
L
X .. ==
1i
t, L =1
the average of individual producers' index of prices paid
for inputs used in the production of crop i; that is,

t,ij’

returns per acre; that is, X

t,1ij’

L
1

X . =7 X ...

t,2i L =1 t,1ij°
the average of individual producers' relative effective

L
‘. ; =1
support rate for crop i; that is, Xt,3i I j§1 Xt,3ij’
the average of individual producers' relative effective
L

. . .. . _ 1

diversion rate for crop i; that is, Xt,&i =1 z Xt,éij’

j=1
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Xt 51 = the average of individual producers' risk on relative
b
L
. ; -1
returns per acre for crop ij; that is, Xt,Si =1 jil Xt,Sij’
Xt 6i the sum of individual producers' acreage allocated to crop
b
L
i, lagged one period; that is, Xt,6i = El Xt,éij’ and

*
VE

the sum of the disturbances from individual producers'

\')

supply response equations; that is, Vti =
1

.
U e B ol

* .
t,ij
In order to explain the nature of the aggregation problem, and its

implication on the empirical results, the flow diagram used by Ijiri

(1971) and Chipman (1975) is utilized (Figure 2).

h* h g* g

f*

lxﬂ* o Y

Figure 2. Relationship Between Micro
and Macro Systems

From Figure 2, X and Y are proper sets of micro exogenous and endogenous
variables. In this study, the elements of set X are the explanatory
variables as specified in equation (46) while those of the set Y are the
acreages allocated to each crop by individual producers. The macro
system is represented by the proper sets X* and Y* with macro exogenous
and endogenous variables as their respective elements. The micro and
macro systems are related through the functions f, f*, g, g%, h, and h*.

The focus will be on functions f, f*, g and h.
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The function h maps set X onto set X*; that is, h: X>X*., 1In this
study, h represents the weighting schemes of the micro exogenous vari-
ables to obtain the macro exogenous variables as discussed previously.
The function g maps Y onto Y*; that is, g: Y+Y*,'which in this case is
the summation of individual producers' acreage for a given crop. The
function f* which maps X into Y (f: X>Y) represents the micro parameters.
Depending on the relationship between X and Y, f can be linear or non
linear. In this study, f is non linear as a result of the adjustment
coefficient w. The function f* which maps X* onto Y* (f*: ZX*»Y%)
represents the macro parameters.

As indicated before, the acreage supply response model was speci-
fied on the basis of micro theory and the same form of the model is
assumed at the macro level. This extension of the relationship assumed
at the micro level to the macro level is the same as saying that f and
f* have the same form. The work by Theil (1954, 1971) on linear
aggregation shows that a given macro parameter is dependent on both
the corresponding and non corresponding micro parameters. That is a
given macro parameter is a complex function of the micro parameters.
Similar findings were shown by Fikri and George (1975) and Akkina (1974).
Kelegian (1980) in his study of the disaggregation and aggregation of
non linear equations concludes that the complex structure of the macro
parameters derived from a relationship between micro and macro vari-
ables makes such a structure intractable empirically.

Referring to Figure 2, if Q; is the prediction of the aggregate
acreage planted for crop i, this prediction can be obtained in two
ways: (1) §* = g-f(fi), §iEX. This implies that, having estimated f,

A

Yi is obtained from the knowledge of xi(xiEX) which when summed, where
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summation is represented by function g, yields the predicted aggregate
acreage for crop i. (2) %* = f*'h(fi)’ §i€X° This implies that, by
applying relevant weighting schemes to fiEX’ the relevant aggregate of
the exogenous variables (§§€X*) is obtained. Then assuming f* has been
estimated, by knowledge of §i_and hence §;, Y* can be predicted.

Since the function f represents the micro relationships in which
the actual acreage decisions are being made, the focus should be on the
prediction at the macro level. How good is the prediction made directly
using the macro variables, relative to the indirect prediction via the
micro variables? It is obvious that the two predictions will be the
same only if gef = f**h. Since g and h are linear operations it is
reasonable to say that the necessary restrictions need to be imposed
on the form of the function f*. That is not any f* will do (not any
assumed macro structure will do). Theil (1971) and Chipman (1975) show
that under the assumption that the micro parameters are the same for
all individuals, the assumption that the micro structure is of the
same form as the macro structure will not introduce aggregation bias.
Since in practice this assumption is unrealistic, it is likely that
the relationship gef = f*<h will not hold, and aggregation bias is
likely to be introduced.

In a theoretical treatment, Chipman (1975, 1976) and Ijiri (1971)
show how f#* can be chosen to minimize bias. Unfortunately, their
methods are intractable empirically. While the discussion as presented
does not offer a solution to the problem, the following implications
can be drawn:

1. The aggregate acreage supply response as presented is just an

approximation of the true aggregate model. The parameters of
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the aggregate model are likely to be a complex function of
the micro parameters.

2, The form of the aggregate model is likely to introduce
aggregation bias unless we are willing to assume that the
micro parameters are the same for all individuals.

3. The predictive performance of the aggregate model is likely
to be poor outside the estimation period. No proper account
has been taken to relate the micro parameters to the macro
parameters other than extending the same functional form to
the aggregate level.

4. The use of the aggregate model to study structural relation-
ships rather than for prediction purposes seems to be more
appropriate. This is not to suggest that such models cannot
be used for forecasting, but large forecasting errors are to

be expected, especially as the lead time increases.
Stochastic Assumptions and Estimation Methods

Thus far, nothing has been said about the stochastic behavior of
the supply response model. The choice of an appropriate estimation
method is dependent on the stochastic assumption imposed on the model.
The aggregate acreage supply response model for crop i is presented

in equation (49) in the more general matrix notation.

AC; = XA, + V¥ i=1, ..., m (49)

where ACi is a T x 1 vector of aggregate acreage for crop i,

Xi is a T x Ki matrix of regressors—-as discussed previously,
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where éi is a T x 1 vector of parameters to be estimated, and
Y; is a T x 1 vector of disturbances.

It is assumed that Y? is normally distributed with mean E(Yi) equal to
zero and variance covariance matrix OZF where ' is a T x T symmetric
and positive definite matrix and 02 ig finite (0 < 02 < ™),

The following general assumptions will be maintained throughout
the discussion:

1. Xi matrix of regressors is partly stochastic--recall that one

of the regressions is the lagged acreage for crop i.

2. The regressors are linearly independent (full column rank).

X!X,
3. plim ; = = Q is finite and nonsingular.
'yk
4. plim 4% = O.
- =

5. T > Ki’ where T is the number of observations and Ki is the

number of regressors.
Two cases concerning the form of FT are considered. For each case, the
estimation procedure and the properties of the estimators of the

parameters will be given.

Spherical Disturbances

By spherical disturbances it is meant that the disturbances are

neither autocorrelated nor heteroschedastic. That is

EV#V*
tt

[]
Q

fort =1, ..., T

"
o

EV:V: for t # s.

Where E is the expectation operator. The condition for spherical

disturbances is satisfied when PT is an identity matrix in which case

the variance-covariance matrix for the disturbance vector is reduced
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to UZI . When the disturbances are spherical, the vector of parameters

T

can be estimated by ordinary least squares (OLS), and the vector of
parameter estimators becomes

A

= ' -1,
A = (X3X) 7 XjAC (50)

The OLS estimators have the following properties:
i. They are biased. Recall that the vector of regressors includes
a lagged dependent variable, implying that Xi and Vi are only

contemporaneously uncorrelated; that is,

~

= ! _l 'k
EA; = Ay + EL(XjX;) "XjVE] # 4.

~

ii. Ai is consistent. This can be shown by writing

~ -1
= | 1y% : e 1 2 PR
éi éi + (XiXi) Xiyi and taking probability limits.

XiXi -1 XiV;
plim é = éi + plim - T plim T

. X!V
A+ Q - + 0 (by assumption (4), plim —=

~

=O)

~1

iii. It can be shown that /T(éi - éi) coverges in distribution to
N(O, GZQ-l) and this implies that the usual tests of
hypotheses are asymptotically justified (Schmidt, 1976).

In order to carry out tests of hypotheses, there is a need to

obtain the asymptotic variance of the estimators.

A - l . A _ Vo _ .
Var (A;) = ¢ plim [T(4; - A)(A; - A)']
1 2.-1
= g0

~

. 2 . . . . .
Since ¢ 1is unknown, the estimate of the asymptotic wvariance of Ai is

~
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1.2 1o -1 = 2yt -1, 2 = A*'A* — A* i
T S (TXiXi) S (Xixi) ; where S Yi Yi/T K and Yi is a vector of
residuals.

Recall that the aggregate acreage supply response model as specified
has the adjustment coefficient entering nonlinearly except for the
coefficient on the lagged acreage variable where it enters linearly.
Therefore, the estimate of the adjustment coefficient is obtained from
the estimated coefficient on the lagged acreage variable which is then
used to obtain the estimates of the other parameters.

Explicit values of all parameters can be obtained directly by
using nonlinear least squares (NLS) or maximum likelihood estimation
methods (Judge, 1980; Just, 1973; Estes et al., 198l). Below, a
conditional maximum likelihood estimation procedure based on the above
mentioned references is presented.

The equation for the tth observation of the aggregate supply

response equation can be written as

AC_ . = wA% + A*th

*x,
t,i 5+ AfwX, 1g T AJWXL

% *
5 i + A + A

)2 319%¢ 31 T ALK 4

(51)

- *
T AR UK, 5y (L= WAC 65 * VR

For a given value of w, equation (41) is linear in the other parameters,
and OLS can be applied to estimate them. By moving the lagged acreage
variable to the left side equation (51) can be written in the following

form:

= A% + A% + A%
ACti(w) A A Xt (w) A Xt

+ A%
x e 14 3 (w) + A* X (w)

,21 3i°t,31

(52)

+ (w) + A

*
(W) + V& 5

x *
A51%¢ ad 5:%¢,51
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Under the assumption of normality and spherical disturbance, using

equation (52) the likelihood function given w is presented in equation

(53).
2 _ —T/2 2 —T/2 _]_-_ 2 _ *)!
L(a%o}|w, AC,, X,) = 2m) 7@ 7" e 7 o [(AC; (w) - X, (w)AY)
(53)
- *
(AC; () = X, (WAD)]
K.
AR 15 o% > 0.
~i i
From equation (53), the conditional log likelihood function is
2 _ T T 2y _12 _
InL(Afo}|w, AC;X;) = - 5 In(2m) - 5 In(o]) - 307 [(AC, ()
(54)

X (wA%) ' (AC, (w) - X, (W)A¥)]
iV YL i

When equation (54) is partially differentiated with respect to A; and
2

Gi and equating the partial derivatives to zero the following
conditional maximum likelihood estimators, which are essentially least

squares estimators, are obtained:

]

z:&* W = [X W 'K (W) 7 X, (w) ' AC; (w) (55)

]

of(w) = [(AC, () - X, (@) AFW)'(AC; (W) - X, (@) AX@)]  (56)

By substituting (55) and (56) into (53), the concentrated likelihood
function is obtained which is only dependent on w. This is presented

in equation (57).

v = @m 7 @@ e (57)

It is obvious that (57) is equivalent to the original conditional

likelihood function, partially maximized with respect to A; and Oi'
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Since w lies in a short interval--(0,1], a search procedure can be
applied to locate the neighborhood of the maximum, and by using some

efficient iterative method within this neighborhood, the maximum can

A

be located. That value of w(w) maximizing the likelihood function is

the maximum likelihood estimator of w and g{(a) and 3?(@) are the
desired maximum likelihood estimators.

It should be noted that maximizing (57) is equivalent to minimizing
Gi(w)' This suggests that a search procedure based on least squares can
be used. That is, OLS estimates ;%(w) and ;i(w) are computed for values
of w in the interval (0,1]. That value of w(;) yielding the smallest
Ui(;) is also a maximum likelihood estimator of w. In general, one
begins the search over a coarse grid to locate the neighborhood of the

minimum, and then makes the intervals finer within the neighborhood to

locate the global minimum.

The Case of Autocorrelated Disturbances

The assumption of autocorrelated disturbances is equivalent to
assuming that the FT matrix has unit elements on the diagomnal, and the
off diagonal elements take any values on the real line, but still
retaining the symmetry and positive definiteness conditions. In this
study, the simplest form of autocorrelation is assumed. That is, the
disturbances follow the first order autoregressive process, as shown

in equation (58).

~ - . . 2
* = * + < ~
vk th_l,i CHY lo| < 1, €.y ~ 11dN(0,00) (58)
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where p is the first order autocorrelation coefficient and gti is a
random shock assumed to be identically and independently distributed

. . 2 . .
with mean zero and variance OEi' Estimating the model by OLS when the

disturbances are autocorrelated will lead to biased and inconsistent

estimators since
EX'V¥ # 0 and plim = X'V# # 0
i~1i T i~1i

In order to see how an alternative estimation method is developed,
th . .
the aggregate supply response model for the t observation only is

rewritten as in equation (59).

Ki—l
ACL; = A+ L ApX 15 v A AC gk itV (59)
i=1 i i
Defining L as the backshift operator so that Vg—l ; < LV:i, equation
bl

(58) can be written as follows:

€

- *
(1 -pL)VE ;= €y

-
t,i 1 - pL

On substituting gti/l - oL for Vgi in equation (59) and rearranging

terms, equation (60) is obtained.

K,-1
ACey —PAC 13 = (1 - PA,; 151 A& T Xepng)
(60)
*Ag (AC ;g T PAC , g ) FE
1 1 1
Equation (60) can be written in the following form:
K, -1
1
AC;(0) = A @) + 121 A%, 1@ F %, ACt—l,Ki(p) ey (8D
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Equation (61) shows that for a given value of p, the A 1=0,1, ...,

11
Ki) parameters enter the model linearly; and since gti is spherical,
OLS can be used to obtain consistent estimates of these parameters
conditional on p. Since p lies in a finite interval (-1,1), a search
procedure can be used to obtain conditional estimates of oéi and éi'
By choosing a sufficient number of points in the interval--say, =-.999
to .999--for every point chosen, ggi(p) and %i(p) are calculated. The
optimum parameter estimates are those corresponding to that value of
p(p) yielding the minimum residual sum of squares. In practice, one
begiﬁs with a coarse grid to locate the neighborhood of the minimum,
which is later made finer within this neighborhood, to locate the
minimum. Under the assumption of normality, that value of p(p) corre-
sponding to the minimum residual sum of squares, and the associated
conditional parameter estimates ;i(;) and ggi(;) are also maximum

likelihood estimators. This is shown below.

Given p, the likelihood function can be written as:

2 _ -T/2 2.-T/2 12 .
L(A;0z; P, AC;X)) = (2m) (oz;) e-50, [(AC, (p) - X, (p)A))
(62)
K.
Aer 1 0.2 > 0
~1 ei
and the logarithm of the likelihood function conditional on p is
2 =_I I 2y 1.2 -
LnL(4;0z5[ps AC;»X;) = - 5 1n (2M) - 5 1n (o)) - 7 0x; [(AC; ()
(63)

X, (PA,)'(AC, (p) - X, (P)A)]
1 ~1 ~ 1 1 ~1

For a given p, partially differentiating 1InL(*l+) with respect to Ai

2 . . . . .
and OEi and equating the partial derivatives to zero yields the
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following maximum likelihood estimators:
4,0 = (X, "% @17 X, (0)"ac, () (64)
0:2(0) = 3 [(AC; (0) = X, (P)A; ()" (AC (P) = X; (), (0))] (65)

Substitutinﬁ (64) and (65) into (62) yields the concentrated likelihood

function presented in equation (66).

/ -T/2 -T/2
e

(o) = @m % (@2 o)) (66)

It is observed that the concentrated likelihood function depends only
on P and that maximizing it is equivalent to minimizing Ogi(p). Thus,

using a search procedure over p as described previously, the maximum of
L*(p) can be located. That value of (p) maximizing the likelihood

~ ~

function and the corresponding Ai(p) and cgi(p) are the desired maximum

likelihood estimators.

It should be noted that éi is nonlinear in w except for the
coefficient on the lagged acreage. This implies that gi(;) are non-
linear in w. By obtaining the estimate of w from the coefficient on
the lagged acreage variable, this can be used to separate w from the
other parameter estimates. An alternative procedure would be to use a
two dimensional search over the ranges of p and w. That pair of values
of (;) and (;) minimizing the residual sum of squares are the maximum

A A A

likelihood estimators of p and w, respectively, and A;(p,w) and

"N A AN

Ggi(p,w) are the desired parameter estimates.

Joint Estimation Method

The estimation procedures presented thus far can only be used to

estimate the acreage supply response equations singly. Recall that,
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for each crop reporting district, acreage supply response equations for
six crops will be estimated. It is likely that the disturbances in the
different equations are contemporaneously correlated. If, indeed, the
disturbances in different equations are correlated, a gain in efficiency
can be achieved by using a joint estimation method which takes into
account this contemporaneous correlation. A seemingly unrelated
regression method proposed by Zellner (1962) seems appropriate. Only
the case of spherical disturbances in each equation is considered here,
although the method can easily be extended to the case where the
disturbances are both contemporaneously and serially correlated.

From equation (49), the acreage supply response equations for m

crops can be written as follows:

— = P — — —— — % —
ACy X R Vi
(0
%
AC, X ) Vs
- = (67)
o
AC X A v
L~ IEJ L m B n ~m-J | ~M

where AC, and V#* are of dimension T x 1, X, is T x K,, and A, is K, x 1.
~1 ~1 i i ~1 i

The above equations can be written as:
AC = ZA + V% (68)

where AC and V* are of dimension mT x 1, Z is mT x 1 and A is K x 1
~ o~

with K= I K,. It is assumed that E[V*] = 0 and E[V*V'] = o0, I .
j=1 * ~ ~1i~j ij T

The covariance matrix of the joint disturbance vector is E[V*V%'] =

Zm&I where B stands for Kronecker product.
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The covariance matrix is unknown, therefore it has to be estimated
before the generalized least sguares (GLS) estimator can be determined.

The first stage, then involves estimating each equation by ordinary
least squares (OLS) to obtain least squares residuals (V*). The

~

estimator I then has elements given by

>
>

]

) . .
~1
g =

ij i,j=1,2, ..., m

g0

and the GLS estimator is

1

A=z gyt z' (2 TED) AC (69)

Equation (69) provides the parameter estimates for each equation which
are more efficient than OLS estimates if the disturbances of different

equations are contemporaneously correlated.
Chapter Summary

A general acreage supply response model for field crops is
specified and possible estimation procedures are suggested, depending
on the stochastic assumptions about the disturbance term. A step-by-
step approach is followed to answer some of the methodological questions
raised in Chapter I.

First, a general firm's output supply function is derived from the
theory of a multiproduct firm facing product price uncertainty. It is
shown that the output of a given crop is a function of own expected
price, and expected prices of competing crops, input prices, and price
variances. On the basis of the derived comparative static results,
it is shown that the supply function is upward sloping and it is a

nonincreasing function of product price variance. Some modifications
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to this function are necessary to take into account the influence of
government policies and expected yield on supply response.

One of the methodological problems raised in Chapter I concerns
the modelling of expected prices in a manner conforming to the assumed
optimization behavior of economic agents. In this chapter, the justi-
fication for using the rational expectations to model expected product
prices is demonstrated. Two methods for constructing proxies for the
unobservable expected product prices are presented--the regression and
the extrapolative predictor methods.

A number of methods for modelling the unobservable expected yield
are presented. All the methods are ad hoc, and it is suggested that
the choice of a method be based on simplicity in empirical implimenta-
tion. For this study expected crop yield will be represented by past
period's yield.

In the general firm's supply function risk enters as price
variance. A modification to model price risk which conforms with how
decision makers this about risk is proposed. For this study price
risk is represented as a weighted moving average of the square of the
deviation of the expected price from the realized price.

In specifying a general firm's supply response model, the justi-
fication to use desired acreage as a prox& for desired output is
given. The partial adjustment model is used to relate the unobservable
desired acreage to the planted acreage.

The general implications of the firm's acreage supply response
model are carried to the aggregate level. The aggregation problems
réSulting from such an approach are illustrated. It is shown that such

an approach imposes restrictions in the interpretation and the use of
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empirical results obtained from such a model. Specifically, it is
argued that the aggregate model so specified is just aﬁ approximation
to the true model, and that it is likely that aggregation bias is
introduced. The predictive performance of such a model outside the
estimation period is likely to be poor, and it is suggested that such
a model will be more useful in studying aggregate structural relation-
ships.

The estimation method of the aggregate acreage supply response
model is shown to depend on the assumptions made about the stochastic
behavior of the disturbance term. It is shown that, under the
assumption of spherical disturbances, ordinary least square methods
can be used to obtain consistent parameter estimates. Since the
expectation parameter enters the model nonlinearly, a conditional
maximum likelihood estimation method which can be used to obtain
explicit values of all parameters is presented. Under the assumption
that the disturbances are autocorrelated, the use of OLS will result
in biased and inconsistent parameter estimates. Under such conditions,
a maximum likelihood estimation technique is proposed. Its implementa-
tion is described, and it is shown that it is equivalent to using a
conditional least squares method. It is shown that if the disturbance
terms in a set of acreage supply response equations are contemporaneously
correlated, a gain in efficiency is realized if the equations are
estimated jointly. Zellner's seemingly unrelated regression method is

proposed to estimate such equations.



CHAPTER IV

DATA NEEDS, ANALYSIS, AND

DISCUSSION OF RESULTS

A general acreage supply response model was developed in Chapter
III. The model is summarized in equation (46). The explanatory
variables being considered in the model are relative expected returns
per acre, risk on relative returns per acre, relative effective
diversion rate per acre, relative effective support rate per acre,
and planted acreage lagged one period. The presentation of variables
in this form allows the inclusion of all important competing crops,
and yet conserves degrees of freedom and minimizes the degree of
multicollinearity.

In this chapter, data needs and the construction of the explanatory
variables is discussed. Conditional maximum likelihood estimation
method is used to empirically specify the models. A discussion of the
results and their implications is presented. A procedure for testing
the hypotheses specified in Chapter I is presented and the test results
are evaluated. The chapter closes by presenting an overall evaluation
of the methodology and the empirical results in line with the problem

identified in Chapter I.

Data Needs and Variable Construction

The data needed for the explanatory variables are not directly

74
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available from published sources; instead, they have to be constructed.

The secondary (published) data required, and the construction of each

variable, are discussed in this section.

Secondary Data

The secondary data used in this study cover the period 1951

through 1979. The data and their sources are as follows:

i.

ii.

iii.

iv.

Acres planted and crop yield data at Crop Reporting District

level are obtained from the Oklahoma Department of Agriculture,

Oklahoma Agricultural Statistics, Oklahoma Crop and Livestock

Reporting Service. Yearly issues, from 1951 to 1979, are used.

Average seasonal prices received by Oklahoma farmers, and
index of prices paid for production items--non-farm origin
(1967=100) at national level are obtained from USDA, Agricul-

tural Prices, Economics, Statistics, and Cooperative Service,

Washington, D. C. Annual summaries are used.
Support price data at state level, and peanut acreage allot-
ment data at national level, are obtained from USDA, Agricul-

tural Statistics, Washington: U. S. Government Printing

Office, 1964-1979 issues.
Disposable income data are obtained from U. S. Department of

Commerce, Current Business, monthly issues.

Variable Construction

When supply response models are estimated by econometric methods,

data limitations, and/or a high degree of multicollinearity among the

variables, prevent the inclusion of a large number of variables in the

models.

Dropping variables from a model, when they are supposed to be
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there, introduces specification errors. The approach to be followed in
this analysis is to combine some of the explanatory variables. Thus,
for a given crop, the expected crop prices and yield are combined into
one variable--the expected returns per acre weighted by expected

returns per acre of the competing crops. The effective support rate and
effective diversion rates are also combined in the same manner. For
each crop, and in each crop reporting district, the choice of competing
crops is based on their distribution in the district and their relative
importance in terms of acreage planted. These are presented in Appendix
B. Therefore, due to differences in yield among crop reporting dis-
tricts and/or competing crops being considered, for a given crop the
variables are constructed for each crop reporting district. The proce-

dure for constructing each variable is now presented.

Relative Expected Returns Per Acre. First, expected crop prices

are obtained by utilizing equation (41). Seasonal average prices
received by Oklahoma farmers are each regressed on lagged disposable
income and the index of prices paid for production items--non-farm
origin. A Markovian economic environmenf is assumed, so that only one
period lag of the exogenous variables is used. The obtained predicted
prices are adjusted to account for the influence of support prices in
expectation formation as discussed in Chapter III. The adjusted series
are the desired proxies for expected crop prices and these are
presented in Appendix C. Expected returns per acre for a given crop
are obtained by multiplying the expected price with expected yield per
acre, where the one period lag of realized yield is used as a proxy
for expected yield for period t at period t-1. Using equation (43b)

the expected returns per acre for crop i relative to expected returns
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per acre of competing crops are obtained. To avoid the problem of
simultaneity, one period lagged acreage is used as weights. The
constructed relative expected returns per acre data for the six crops

in each crop reporting district are presented in Appendix C.

Risk on Relative Returns Per Acre. The desired risk variables

are constructed according to equation (23). By substituting relative
expected returns and relative realized returns per acre for expected
and realized prices, respectively, risk is expressed as the squared
deviation of the relative expected returns per acre from realized
returns per acre over an appropriately chosen moving period and using
chosen weights. For this study, the moving period is three years, and

L s =% and<s3=1

the weights are 61 =355 %9 = 3 s The choice of weights and

the moving period are ad hoc.

Policy Variables. The initial effort to construct data for

effective support and diygegion rates at the state level using formulas
presented in Chapter III was hampered by lack of published data for the
entire period (1951-1979). It is assumed that data for these vari-
ables constructed at the national level will reflect reasonably well
the program effectiveness at the state level. The data at the national

level is obtained from USDA, Analyzing the Impact of Government

Programs on Crop Acreage, Technical Bulletin No. 1548, Washington:

U. S. Government Printing Office, 1967. The data presented therein
extends only up to 1974. The data series are extended up to 1979
using the formulas presented in Chapter III. For the purpose at hand,
the data are converted into effective support and diversion rates per

acre, using the state average yield of the corresponding crops.
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Relative effective support and diversion rates per acre are then
computed by the same method as relative expected returns per acre. Due
to differences between crop reporting districts regarding the competing
crops being considered, the combined policy variables are different for
each crop reporting district, except in those cases where competing

crops are identical.

Analysis and Discussion of Results

The aggregate acreage supply response model presented in Chapter
ITII is nonlinear in the adjustment coefficient. Three estimation
methods are proposed--ordinary least squares (OLS), seemingly unrelated
regression, and conditional maximum likelihood technique. The OLS
parameter estimates will be biased due to the presence of lagged
acreage as an explanatory variable, but they will be consistent. The
seemingly unrelated regression parameter estimates will be more
efficient than the OLS estimates if the disturbance terms in the
acreage equations are contemporaneously correlated.

In the initial estimation of the acreage supply response equations,
both OLS and seemingly unrelated regression estimation methods were
used. In using seemingly unrelated regression, the acreage equations
for wheat, sorghum, corn, cotton, and peanuts were estimated jointly
by crop reporting district. While the jointly 'estimated parameters
were more efficient than the OLS estimates, the high correlation
between the acreage variable and the other variables resulted in
unstable coefficients with many wrong signs in both cases. Therefore,
both methods are dropped and the conditional maximum likelihocd method

is used in the final analysis. This method allows moving the lagged
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acreage variable to the left-hand side and estimating the other
parameters conditional on the adjustment coefficient (w).

The results are presented in Tables III, IV, V, VI, VII, and VIII.
The figures in parentheses are the t statistics for testing the
hypothesis that the co-responding parameters are equal to zero. An
asterisk on the t value implies that the corresponding coefficient is

statistically different from zero at the .05 probability level.

Wheat Acreage Supply Response Equations

The estimated wheat acreage supply response equations by crop
reporting district are presented in Table III. DIl is a dummy variable
added to account for the large price increases experienced during the
Russian grain deal. It is assigned a value of one for the period 1973
to 1976 and zero otherwise. A time trend variable is added to account
for the general increase in acreage planted on wheat over time. This
general upward trend is observed in all crop reporting districts except
the Northeast which shows only a minor acreage variation over the
entire estimation period.

On the basis of the restrictions identified in Chapter III,
coefficients on the relative expected returns and relative effective
support rate per acre variables should be positive. Coefficients on
the risk and relative effective diversion rate variables should be
negative. The empirically specified wheat acreage supply response
equations show only 55 percent of coefficients on the relative expected
returns variable with the expected sign and none on the risk variable.
With regard to the policy variables, 55 percent of the coefficients on

the relative effective support rate variable have the expected sign



TABLE III

1
ACREAGE SUPPLY RESPONSE EQUATIONS FOR WHEAT

Risk on
Relative Relative Relative Relative
Crop Expected Expected Effective Effective

Reporting Returns Returns Support Diversion Time ~ 2

District Intercept Per Acre Per Acre Rate Rate D1 Trend w R bW

Panhandle -286563.1 505654.9 2489101.0 -118341.3 -55136.22 328886.7 28378.54 .23 .55 1.57
(1.5937) (1.4148) (1.3896) (.4204) (.7962) (1.2675) (1.0620)

West Central -207197.3 -227781.0 327430.7 31912.41 ~70059.58 218905.3 20068. 82 .54 .82 1.82
(1.6669) (2.3796) % (2.03004) % (.38706) (3.3027)* (3.0130)* (5.4457)*

Southwest ~567338.9 48936.13 261126.5 ~-80707.03 -102369.2 222775.6 43297.38 .51 .76 1.84
(1.7941) (.1842) (.2128) (.9331) (2.9939)* (1.4546) (4.1722)

North Central -440463.1 ~116450.8 609961.7 -140425.5 ~-91735.03 200429.0 45424.04 .48 .83 1.99
(1.0747) (1.7613) (2.6265)* (.7744) (2.2828)* (1.3771) (5.9367)*

Central =-255186.2 ~81135.99 142632.3 100900.5 -61399.92 154282.1 20530.67 .47 .86 1.6
(2.9564) % (1.7551) (3.2223)* (L.5812) (3.9643)* (2.8052)* (6.9581)*

Northeast 34911.18 14317.48 5401.034 5920.422 ~-925.1057 15995.40 1062.292 .56 .11 1.82
(.4788) (.4890) (.9662) (.1884) (. 3660) (.5086) (.5793)

South Central ~119580.2 16410.89 50137.16 32091.00 ~11200.85 53224.21 3688.752 .56 .87 2.28
(4.4520) * (1.1655) (2.9114)* (1.3790) (4.2386) % (3.8362)* (5.2802) %

East Central -13709.65 920.5524 45979.62 9263.919 -3572. 441 3971.541 690.6213 W44 .39 1.76
(1.2587) (.1307) (2.9649)* (.7325) (2.0661) (.7028) (2.1836) *

Southeast 5454.581 -362.6990 651.3975 -441.8704 -173.1597 5042.303 -72.9993 .55 .77 2,59
(2.1267) % (.6847) (1.7548) (.5002) (1.5042) (5.8098) * (1.2320)

1
The flgures in parentheses are the t values. An asterisk on the t value implies that the associated coefficient is statistically different from
zero at .05 probability level. R¢ is the coefficient of multiple correlation and DW is the Durbin-Watson statistic.
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and all the coefficients on the relative effective diversion rate
variable have the expected sign. All the coefficients on the dummy
variable (Dl1) are positive, implying that the aggregate acreage planted
on wheat in each district was positively responsive to the large price
increase in the period 1973 to 1976.

The percent of the total variation in aggregate acreage planted
which is accounted for by the variables in the models ranges from 11
percent in the Northeast to 87 percent in the South Central. The low
R2 (11 percent) for the Northeast was expected due to very minor
variation in acreage planted to wheat in this district over the entire

estimation period.

Corn Acreage Supply Response Equations

The estimated corn acreage supply response equations are presented
in Table IV. Two variables which were not specified in Chapter III
have been added. Dl is a dummy variable identical to that in the wheat
equations which is added to account for the influence of the large
price increase during the Russian grain deal on acreage planted to corn.
Preliminary evaluation of the acreage data by graphical methods showed
that, on average, all crop reporting districts had large increases in
acreage planted to corn between 1951 and 1959, which declined up to
1965, and then remained essentially constant over the rest of the
estimation period. Panhandle crop reporting district has shown an
opposite trend--large increases in acreage planted are observed in the
period 1965 to 1979 with minor variation, this being explained by
increased use of irrigation. It is recalled that during the Korean War

acreage restrictions on corn were removed, and this partly explains the



TABLE IV

1
ACREAGE SUPPLY RESPONSE EQUATIONS FOR CORN

Risk on
Relacive Relative Relacive Relative
Crop Expected Expected Effective Effectlive
Reporting Returns Returns Support Diversion ~ 2
Discrict Intercept Per Acre Per Acre Rate Rote D1 D2 w R DW

Panhondle -4743.96 -142063.4 1974083.0 358210.2 127815.8 371268.4 209988.4 .01 .67 1.95
(1.3917) (1.2927) (3.1939)* (.8432) (.9229) (1.1688) (.8764)

West Central 228.7056 3945.131 -1946.063 3687,842 937.4448 ~4966.008 ~-3491.356 .60 .69 1.95
(.2683) (3.5311) 4 (2.1214) (2.5870) * (1.2836) (5.6309)* (3.4623)*

Southwest 4570.838 4210.802 -2923.825 3628.771 1652.988 -10399.92 -2458.877 .22 .92 1.95
(4.0431)% (5.4589) (3.8743) % (3.7917)* (2.8010) * (14.8633)* (2.9053) %

North Central 3442.522 4279.917 427.2749 2436.286 356.7182 -9813.446 -5934.867 .54 .79 2.18
(2.7427)* (2.3768)* (.1921) (1.0375) (.3855) (5.9575)* (2.1254) %

Central 2722.235 23563.10 35688.01 37.5929 3170.057 -19792.28 -9538.97 .45 .95 2,17
(1.1947) (7.9402) % (7.0478)* (.0083) (1.4981) (5.4866) * (3.1473) %

South Central 19739.88 3910.212 124407.5 -27581.09 713.7805 -33848.61 ~3349.383 W41 .81 2.62
(4.8864)* (.2913) (1.4924) (1.4785) (.7869) (7.9651)* (.7397)

Northeast 31551.55 15012.40 -158233.5 ~2900.666 -1484.823 ~82396.25 -13554.56 .31 .32 2.71
(.9154) (.3043) (1.4177) (.0865) (.1485) (2.1363) * (.5693)

East Central 23994.19 45000.08 -35471.20 -27154.44 1170.250 -42191.72 -2386.299 .54 .79 2.03
(2.9441) % {1.5539) (.5064) (1.3695) (1.2049) (7.4087) (.4415)

Southeast 7128.726 1884.863 154809.6 -8562.043 85.9988 -11394.96 1-3578.158 .51 .65 2.58
(3.1769) % (.2660) (1.9753) (.9705) (.1630) (4.7708) * (1.2177)

LThe figures in parentheses are the t values. An asterisk on the t value implies that the assoclated coefficient is statistically different from
zero at .05 probability level. R? is the coefficient of mulciple correlation and DW is the Durbin-Watson statistic.

Z8



83

high corn acreages in the fifties. The dummy variable D2 is added to
account for this large increase in acreage planted to corn. It is
assigned a value of zero for the period 1951 to 1959 and a value of
one for the period of 1960 to 1979.

The results show that 89 percent of the coefficients on the
relative expected returns per acre variable have the expected sigﬁ,
while 44 percent of the coefficients §n the risk variable have the
anticipated sign. With regard to the policy variables, 55 percent of
the coefficients on the relative effective support rate variable carry
the expected sign, while only one coefficient on the relative effective
diversion rate variable carries the expected sign. The signs on the
dummy variables correctly reflect the pattern of acreage planted in the
respective periods. The percent of total variation in aggregate
acreage planted, which is explained by the included explanatory
variables, ranged from 32 percent in the Northeast to 95 percent in

the Central district.

Sorghum Acreage Supply Response Equations

The results of the estimated sorghum acreage supply response
equations are presented in Table V. Dl is the same variable as
specified for wheat and corn. D5 is a dummy variable added to account
for the observed decline in acreage planted in the period 1954 through
1969. It is assugned a value of one within this period, and zero
otherwise.

The results show that 78 percent of the coefficients on the
relative expected returns per acre variable carry the expected sign

while 33 percent of the risk coefficients carry the expected signs.



TABLE V

1

ACREAGE SUPPLY RESPONSE EQUATIONS FOR SORGHUM

Risk on
Relative Relative Relative Relative
Crop Expected Expected Effective Ef fective
Reporting Returns Returns Support Diversion N 2
District Intercept Per Acre Per Acre Rate Rate D5 Dl w R DW

Panhandle 287543.9 48147.17 166322.8 -113189.14 -6308.8790 29707.94 90290. 64 .87 .61 .95
(5.3806)* (1.1812) (3.4762)* (1.8176) (.7964) (1.0100) (1.8843)

West Central 32156.7 ~53822.98 16876.53 118363.3 -9071.7630 51061. 84 -32256.79 .50 .69 .42
(.5573) (.6235) (.2047) (1.6169) (.8850) (2.3828)* (.8123)

Southwest 56760. 38 10580.52 31872.657 729605.9 4831.524 -25259.71 914.5986 .99 .69 .30
(1.8006) (.4356) (.1308) (2.9050) * (2.0927) (2.3422) (.0573)

North Central -26405.96 96639.23 606393.1 26775.47 1549,331 -12326.41 15527.58 .40 .60 .67
(.8306) (1.3677) (1.8158) (1.5093) (2.1911) (1.4466) (.5455)

Central 4747.138 207215.4 -227955.0 23107.65 -1233.394 -68997.0 161785.0 .35 .45 .06
(.2198) (2.6984) * (1.4106) (.05004) (.2659) (2.4142) % (3.6886)*

South Central 64406. 82 -75251.42 126665.4 -14503.65 -8214.539 -6483.91 4616. 82 .63 .71 .19
(9.5174)* (4.7411)* (2.6687)% (.9105) (2.8431)* (1.1599) (.6788)

Northeast 69529.20 44774.15 ~26053.7 13967.31 1485.265 4011.656 -13623.0 .99 .45 .90
(1.8244) (.6173) (.6443) (.8697) (.8753) (.3825) (1.4985)

East Central 20397.68 35620.64 -17163.06 1326.256 979.9008 2881.264 1339.97 .99 .25 .05
(2.1046) (1.7364) (.1911) (.1889) (.6167) (.9673) (.3791)

Southeast 2766.373 198.9616 8943.212 -513.2622 -371.0374 3263.106 -231.5884 .76 .73 .14
(1.3119) (.0744) (2.7266) % (.3620) (1.4787) (3.3857)* (.1931)

1
The figures in parentheses are the t values.
zero at .05 probabiiiiv level.

r2

An asterisk on the t value {mplies that the associated coefficient is statistically different
is the coefficlent of multiple correlation and DW 1s the Durbin-Watson statistic.
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The percent of coefficients on the relative effective support and
relative diversion rate variables with expected signs are 66 percent
and 55 percent, respectively. The percent of the variation in
aggregate acreage planted, which is explained by the included variables,
ranges from 25 percent in the East Central to 73 percent in the

Southeast.

Cotton Acreage Supply Response Equations

The estimated cotton acreage supply response equations are pre-
sented in Table VI. Two variables not previously discussed were
included to model specific program features. D3 is a dummy variable
which is assigned a value of one in periods when marketing quotas
applied and zero otherwise. Over the estimation period marketing
quotas have been in effect from 1954 to 1970. D4 is a dummy variable
included to reflect Soil Bank diversion program. It is assigned a
value of one for the period 1956 to 1958 and zero otherwise.

The results show that all coefficients on the relative expected
returns per acre and the risk variables carry the expected signs.
With regard to the policy variables the percent of the coefficients
on the relative effective support and relative effective diversion
rates variables with expected signs are 67 and 33, respectively.

A priori, the coefficients on the dummy variables are expected to

carry a negative sign, but this restriction is not met in all equations.
The percent of the total variation in acreage planted, which is
explained by the included variables, ranges from 30 percent in the

Southwest to 92 percent in the South Central.



TABLE VI

ACREAGE SUPPLY RESPONSE EQUATIONS FOR COTTONl

Risk on
Relative Relative Relatlive Relative
Crop Expected Expected Effective Effect’ve
Reporting Returns Returns Support Diversion ~ 2
District Intercept Per Acre Per Acre Rate Rate D3 D4 w R W

Panhandle 52.4684 192.2273 ~-45.1007 -49.3413 -57.7836 -1568. 401 -250.2927 .22 .33 2.46
(.51332) (1.9192) (.3938) (.2031) (1.3737) (.3773) (.4911)

West Central 590.7514 50397.0 -11294.55 40725.86 4236.996 1171.663 20783.97 .57 .60 2.13
(.0346) (3.7916)* (1.4989) (3.6597)* (1.6297) (.0903) (.39096)

Southwest 54081.06 73248.0 -73447.39 49376.37 855.7642 -4035.063 170929.4 .54 .30 2.00
(1.2594) (2.1206)* (2.4958)* (1.8433) (.06742) (.1169) (1.7712)

North Central -845.3025 85.8014 -534.0513 1060. 246 61.1730 1663.016 18631.0 .53 .78 1.80
(2.3637)* (.1688) (4.5221)* (3.6037) % (.8901) (4.3542) * (4.3291)

Central 4115.450 23611.70 -1695.0630 -115180.50 -6840. 485 5175.14 -22595.14 .50 .73 2.60
(1.0329) (4.5703)* (.2415) (2.6570) * (3.2667)* (.8285) (2.2134) *

South Central -14914.74 16903.46 -4496.968 11571.99 1224.435 8240.534 17835.14 .50 .92 2.28
(5.4732) (6.5752)* (1.1860) (2.4599) * (1.9564) (2.3640)* (3.6076) *

Northeast -2970.748 5201.712 -4121.467 17563.10 .02272 2171.982 -2299.658 .53 .81 2.15
(1.3067) (4.2491)* (3.4106) * (1.3785) (.0002) (.9028) (.7673)

East Central -3922. 842 4157.661 -9473.157 12111.37 -30.7957 1635.08 29995.26 .57 .63 2.11
(.6138) (.4217) (.3509) (1.4243) (.2247) (2.4384) * (1.9879)

Southeast 1250.045 2280.160 -5508.190 -350.0503 17.5237 3132.203 9263.132 .69 .78 2.54
(.8022) (3.3551) % (2.9879)* (.3643) (.1609) (1.8089) (4.7454) %

1
The figures in parentheses ire the t values. An asterisk on the t value implies that the associated coefficient is statistically different from
zero at .05 probability level. R" is the coefficient of multiple correlation and DW is the Durbin-Watson statistic.
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Peanuts Acreage Supply Response Equations

Table VII presents results for the éstimated acreage supply
response equations for peanuts. Due to insignificant acreage planted
in the Panhandle, North Central, and Northeast, these districts are
excluded. Peanuts have been heavily influenced by marketing quotas.
The acreage data for each crop reporting district show only minor
variation over the entire estimation period. It was decided to include
an acreage allotment variable in order to evaluate its direct influence
on peanut planted acreage. A priori, it is expected that acreage
allotment will be positively related to acreage planted.

The results show that all the coefficients on the relative
expected returns per acre variable carry the expected sign, while 67
percent of the risk coefficients carry the expected sign. The coeffi-
cients on the relative effective support rate and acreage allotment
variables each carry only one unexpected sign. In general, the percent
of the observed variation in planted acreage, which is explained by the
included variables, is low. It ranges from 38 percent in the Southwest
to 63 percent in the Central district. The low explanatory power is

consistent with the low acreage variation over the estimation period.

Soybean Acreage Supply Response Equations

The estimated equations for soybean acreage supply response are
presented in Table VIII. The data used for the analysis covers the
period 1963 through 1979. Data-on planted acreage for earlier years
was not available. The results show the percent of coefficients on
relative expected returns per acre, risk, and relative effective

support rate variables with expected signs are 78, 55, and 67 percent,



TABLE VII

ACREAGE SUPPLY RESPONSE EQUATIONS FOR PEANUTS1
Risk on
Relative Relative Relative
Crop Expected Expected Effective
Reporting Returns Returns Support Acreage ~ 9
District Intercept Per Acre Per Acre Rate - Allotment w R DW
West Central -2426.510 38.2831 23.8080 46,5764 2.6268 .77 .42 1.03
(1.4549) (1.3232) (1.2478) (3.4020)* (2.0628)
Southwest 39807. 86 240.13 -331.1836 11.7826 -4,5215 .99 .38 1.11
(2.5606) * (1.1224) (1.7716) (.1057) (.4816)
Central -77635.78 618.2484 35.5096 -127.2266 68.2475 .83 .63 1.75
(3.9487) % (1.2465) (.0624) (.6531) (4.7830)*
South Central -68894.63 365.3619 ~-586.2538 349.5417 68.8544 .98 .43 1.57
(2.5621) % (.4108) (.5559) (.8536) (4.1335)%*
East Central -38930.83 110.8029 -450.0772 220.7618 40.95532 .89 .39 1.62
(2.3818)%* (.2424) (1.4472) (.9515) (3.6921)%*
Southeast -30014.59 4040.833 -1381.525 924.3627 133.6062 .13 .62 1.93
(2.8595)% (2.0545) (.7852) (1.3871) (2.7081) %

1 . .
The figures in parentheses are the t values.

associated coefficient is statistically different from zero at .05 probability level.
coefficient of multiple correlation and DW is the Durbin-Watson statistic.

An asterisk on the t value implies that the
RZ is the
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TABLE VIII

1

ACREAGE SUPPLY RESPONSE EQUATIONS FOR SOYBEANS

Risk on
Relative Relative Relative
Crop Expected Expected Effective
Reporting Returns Returns Support 2
District Intercept Per Acre Per Acre Rate R DW

Panhandle 92.999 282.654 -962.2736 36.9530 .89 47 1.78
(1.4754) (2.1557) (1.9424) (.6326)

West Central -1142.035 362.3531 -1659.355 740.5422 .99 .87 1.12
(4.1571) % (1.6897) (2.1626) (8.4272)%

Southwest 1187.672 -331.5219 1229.130 52.3387 .99 .13 1.78
(3.2453) % (.9483) (.9293) (.3155)

North Central 1013.988 2201.029 -1564.187 562.5856 .86 .60 2.77
(1.3307) (3.8018)* (1.1679) (1.3864)

Central 17654.74 47884.67 87951. 46 3558.656 .38 .85 2.33
(3.6329) % (5.3112)%* (2.5722) % (1.1021)

South Central 7966.948 -1813.729 -26045.21 -103934.7 .41 .40 1.71
(3.8916) * (.5285) (1.7673) (2.0259)

Northeast 60624.13 30254.58 -225882.8 6671.223 .72 .31 1.02
(4.0106) * (1.7760) (2.2996)* (.8882)

East Central 19521.01 8237.540 54308. 35 38877.71 .65 .28 2.60
(2.1689) (.5038) (.5391) (1.8102)

Southeast 16135.36 6489.279 45134, 38 -35683.05 .60 .68 1.25
(3.8996) * (.8300) (1.1389) (1.6081)

1

The figures in parentheses are the t values.

associated coefficient is statistically different from zero at .05 probability level.
coefficient of multiple correlation and DW is the Durbin-Watson statistic.

An asterisk on the t value implies that the
R2 is the

68
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respectively. The percent of observed variation in planted acreage
which is explained by the included variables varies from 13 percent

in the Southwest to 87 percent in the West Central.

Short and Long Run Relative

Returns Elasticities

In order to evaluate the responsiveness of planted acreage to
changes in relative returns per acre, short and long run elasticities
are computed for the six crops by crop reporting district. These are
presented in Table IX. Recall from Chapter III that the estimated

acreage supply response equations are of the following form:

ACt(w) = Bo(w) + Blth(w) + ...+ V:

where ACt(w) = ACt - @1 - w)ACt_l and
th(w) = thl.

Therefore, if th(w) is assumed to be the relative expected returns

variable, the short run elasticity estimate at the mean is

and the long run elasticity estimate at the mean is

X (W)

ZE(;)

Bl
The results in Table XI show that, with the exception of the short run
elasticity for soybeans in the Panhandle and Central regions, all
other short run elasticities for all crops are less than one. That is,

a one percent change in relative returns per acre leads to less than

one percent change in acreage planted. This observation conforms to



LONG AND SHORT RUN RELATIVE RETURNS ELASTICITIES

TABLE IX

1

Crop
Reporting
District Wheat Corn Sorghum Peanuts Soybeans Cotton

Panhandle .0690 .0527 .1232 - 1.0649 .2511 S
.3000 .1463 .1416 - 1.1955 1.1412 L

West Central -.1345 .7100 .1733 .0290 .3533 .3363 S
.2491 .1959 . 3465 .0377 .3569 .5901 L

Southwest .0123 . 8850 .0772 .0388 -.1849 .1627 S
.0241 .9619 .0781 .0392 -.1868 .31912 L

North Central -.1088 . 4602 .4613 - .5058 . 0482 S
-.2266 .8522 1.1523 —_— .5581 .0909 L

Central -.0560 L4777 .6060 .0741 2.5822 .6611 S
-.1192 . 0615 1.9904 .0892 6.7952 1.3221 L

South Central .0099 .0514 -.0620 .0173 -.0760 .3715 S
.0175 .1254 -.0814 .0176 -.1853 . 7430 L

Northeast .0545 .4659 .1193 —_— .1932 .7576 S
.0912 .5029 .1205 -— .2683 1.4294 L

East Central .0113 .6233 . 4024 . 0082 .1000 .1497 S
.0257 .1542 . 4064 . 0092 .1100 .2627 L

Southeast -.0503 .0723 .0163 .2934 .1299 .5535 S
-.0914 .1418 .0214 2.2570 .2166 .8022 L

lS stands for short run and L for long run.

16
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what was expected a priori--asset fixity, long time lag required to
adjust production, and uncertainty are likely to limit the level of
acreage adjustment to a given change in relative returns. In the long
run, resources can fully be adjusted and hence acreage planted is
expected to be more responsive to changes in relative returns per acre.
While all the long run elasticities are consistently larger than
the short run elasticities, most of them are less than one. The
results seem to suggest that even when sufficient time for adjustment
is allowed, acreage planted remains returns inelastic. This observation
is contrary to observations made in other supply response studies
employing alternative methods to model expectations. For all crops,
differences exist between regions with regard to short and long run
acreage response to changes in relative returns per acre. Whether
significant differences exist among crop reporting districts cannot be
evaluated by looking at the elasticity figures. This subject will be

addressed in the section testing the hypotheses presented in Chapter I.

Acreage Response to Changing Risk

One of the objectives of this study was to provide quantitative
knowledge about the influence of changing risk on acreage supply
response for the six crops in Oklahoma. Under the assumption of
constant absolute risk aversion behavior, it is shown in Chapter III
that an increase in risk holding other factors constant should decrease
output. The empirical results are mixed with respect to satisfying
this restriction. In the case of wheat, the results indicate that
across all crop reporting districts acreage planted to wheat increases
as risk increases, holding other factors constant. In the case of

cotton, this restriction is satisfied across all crop reporting
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districts. For the other crops, the restriction is satisfied in some
crop reporting districts but not in others. It is suspected that the
chosen moving period and weights are not uniformly applicable to all
six crops and to all crop reporting districts. Further investigation
will be required before a definite conclusion can be reached.

A priori, it is expected that those crops strongly influenced by
government programs will not show significant response to changing
risk. Among the crops under study, soybeans are least influenced by
government programs, while peanuts and cotton are the most controlled
crops. If the signs are ignored, and the results evaluated only on
the basis of statistical significance, the percent of risk coefficients
which are statistically significant from zero at .05 probability level
are as follows: wheat, 55 percent; corn, 33 percent; sorghum, 33 per-
cent; cotton, 44 percent; peanuts, zero percent; and soybeans, 22 per-
cent. The results show that, while peanuts conform to a priori
expectation, results for the other crops are not conclusive. It should
be remembered that all crops are covered by some form of price guarantee
(price supports) which minimizes the influence of market price

instability on production decisions.

Hypotheses Tests

In Chapter I it was asserted that for a given crop different parts
of the state will show variation in adjusting to a change of a given
causative variable. On this basis three hypotheses were proposed to
evaluate the validity of the assertion. These hypotheses are restated

below.
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i. For a given crop, all crop reporting districts show identical
supply response relationships. That is, there is no difference
in structure among crop reporting districts. Failure to reject
the null hypothesis would imply that as far as policy prescrip-
tion is concerned all crop reporting districts will show
similar response. With regard to empirical specification of
acreage supply response models, the data for all crop reporting
can be combined and estimate only one equation.

ii. TFor a given crop, acreage supply changes for a given change in
relative expected price or returns are identical among crop
reporting districts.

iii. For a given crop, acreage supply changes, for a given change
in risk are identical among crop reporting districts.

In order to test the above hypotheses, a model which combines the
data for all crop reporting districts and which incorporates dummy
variables and interaction terms to allow for differences in intercepts
and slopes among crop reporting districts is estimated. This will be

referred to as the full model and it assumes the following form:

AC* = X _A . + DB

ACE = X gAop DBy + XyA + DIXIX8) + Y 70

where D is an 8T x 8 matrix of dummy variables,

D

1 1, 2, ..., 8) is assigned a value of 1 if it represents

district 1 and zero otherwise. The dummy
variable- for the:ninth district is dropped.

D{X]Xi is an 8T x 8k matrix of interaction terms. Xj is a T x K,
matrix of explanatory variables for crop i.

To test for structural stability is equivalent to testing the null

hypothesis that Bl = 82, ceey = 88(1 + Ki) = 0. That is, the
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coefficients on the intercept dummies and interaction terms are jointly
eqﬁal to zero.

Equation (60) is estimated by methods discussed in Chapter III and
the error sum of squares obtained. A variant of equation (60) with all
the dummy variables and interaction terms set to zero is similarly
estimated and the error sum of squares obtained. The desired test
statistic for structural stability test is:

(ESS ) /number of restrictions

reduced ~ E85gu11
ESS /8T - (L F K F 8L ¥ 1))
full

where ESS is the error sum of squares.

Reduced models for testing the other hypothesis are obtained by
successively setting to zero the coefficients on the interaction terms
found between the dummy variables and the returns and risk variables.
The desired test statistics are then obtained as above.

The test statistics for testing the three <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>