REVERSIBLE SEISMIC DATA COMPRESSION

.

~

By

MEEMONG LEE

Bachelor of Science in Electronic Engineering Sogang University Seoul, Korea 1975

> Master of Science Oklahoma State University Stillwater, Oklahoma 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in Partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1981

REVERSIBLE SEISMIC DATA COMPRESSION

Thesis Approved:

Thesis ser is R. Rowlow Barry C.M. Baron

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my deep appreciation to my thesis adviser, Dr. Rao Yarlaggada, who has encouraged, guided, and advised me throughout this research. I would also like to thank the committee members, Dr. B. L. Basore, Dr. J. P. Chandler, Dr. D. R. Gimlin, and Dr. J. R. Rowland, for their review and valuable criticism of my manuscript.

Financial support was received from AMOCO. Dr. J. L. Schanks and the geophysics research group of AMOCO have helped with this research. They are gratefully acknowledged for their interest in this work.

Finally, I would like to express my sincere thanks to the people who have been indispensable in my graduate study abroad: first, to my parents for their understanding and love, and second, to Dr. and Mrs. Walker for their kindness and friendship.

TABLE OF CONTENTS

Chapter	Page
I. OVERVIEW OF DATA COMPRESSION	1
Introduction	1 1 5 6
II. GENERAL CONSIDERATIONS ON SEISMIC DATA COMPRESSION	9
Introduction	9 9 13 17 17 29
II. EVALUATION OF DATA COMPRESSION TECHNIQUES	30
Introduction	30 32 40 60
VI. SEISMIC DATA COMPRESSION	62
Introduction	62 63 78 98
V. SEISMIC DATA TRANSMISSION VIA SATELLITE	112
Introduction	112 114 124 127 135
VI. CONCLUSIONS	137
BIBLIOGRAPHY	140

Chapter	P	age
APPENDIX A -	SEISMIC DATA PLOTS	143
APPENDIX B -	CROSS CORRELATION TABLES	147
APPENDIX C -	COMPILED LISTING OF COMPUTER PROGRAMS	152
APPENDIX D -	SATELLITE COMMUNICATION TERMINOLOGIES	197

LIST OF TABLES

Table		P	age
۱.	CPR of Orthogonal Transforms on Vibroseis Data	•	42
11.	SNR(dB) of 6-Bit Digital Coding Methods on Vibroseis Data .	•	59
111.	SNR(dB) of 6-Bit Digital Coding Methods on the Selected DCT Coefficients		69
١٧.	μ -Values and $ X_{max} /\sigma_{x}$		71
۷.	Results of μ -Law Quantization \ldots \ldots \ldots \ldots \ldots	•	73
۷۱.	Results of Vibroseis Data Compression	•	77
VII.	Prediction Parameters		93
VIII.	Results of Impulsive Seismic Data Compression		94
IX.	Compiled Listing of Subroutine CONMEU		116
х.	Frequency List of 6-Type Instructions Inside "DO" Loops	•	121
XI.	Memory Size Requirement		123
XII.	Transmission Time List		131

LIST OF FIGURES

Figu	re							Page
1.	Simulation of Seismic Data Compression Techniques							8
2.	Seismic Data Acquision	•	•	•	•	•	•	10
3.	Data Compression Procedures	•	•	•	•	•	•	15
4.	Non-Uniform Quantization	•	•	•	•	•	•	16
5.	Seismic Data Transmission via Satellite	•	•	•			•	18
6.	Amplititude Distributions of Vibroseismic Data .	•	•	•	•	•	•	20
7.	Illustrations of X Characteristics of Vibroseis Data			•		•		21
8.	Illustrations of $ X_{max} /\sigma_{x}$ Characteristics of Vibroseis Data	•	•					22
9.	Illustrations of Time Varying Characteristics of Vibroseis Data							23
10.	Probability Density Function of Seismic Data in Comparison of Laplace and Speech Signal		•	•	•	•		26
11.	Auto-correlation Function of Vibroseismic Data .	•	•		•		•	27
12.	Partial Trace of Vibroseis Data	•	•	•	•	•	•	35
13.	Walsh-Hadamard Transformed Vector Coefficients .	•	•	•	•	•	•	36
14.	Discrete Fourier Transformed Vector Coefficients	•	•	•	•	•	•	38
15.	Discrete Cosine Transformed Vector Coefficients	•			•	•		41
16.	Digital Coding Techniques	•	•	•	•	•		43
17.	3-bit Optimum Quantization for Laplace Density .	•	•	•	•	•	•	46
18.	3-bit Uniform Quantization for Gaussian Density	•	•	•	•		•	48
19.	μ -curves and Distribution of Quantization Levels							52

•

Figure					Page
20. Adaptive Quantization Procedures	•	•		•	55
21. Distributions of SNR and CPR as a Function of Threshold	•				67
22. Compression ratio of partial vibroseis trace		•		•	70
23. SNR(dB) of μ -law Quantization as a Function of $ X_{max} /\sigma_x$			•		. 71
24. "Hybrid Technique" Procedures	•	•	•	•	74
25. One Trace of Impulsive Seismic Data	•		•	•	79
26. Illustrations of Vertically Segmented Groups of Impulsive Seismic Data	•	•			80
27. "Predictive Coding" Procedures	•	•	•	•	87
28. Block Diagram of Implementation of the Lattice Method	•	•			91
29. Impulsive Seismic Data Compression/Decompression Procedures Using "Predictive Coding" and "Hybrid Technique"		•			95
30. Illustrations of Prediction Residual Signal	•				96
31. Illustrations of Vibroseismic Data Compression	•				99
32. Illustrations of Impulsive Seismic Data Compression	•	•			104
33. Digital Communication System	•		•		113
34. Real-Time System Design	•	•	•	•	126
35. Stop and Wait ARQ	•	•			130
36. Continuous ARQ				•	130
37. Transmission Efficiency of Satellite Data Link Control					133
38. The Minimum Frame Size for Efficient Transmission .	•			•	133
39. The Optimum Frame Size for Full Duplex Line Control			•		134
40. Frequency Division Multiple Access Method Example .	•				200
41. Time Division Multiple Access Method Example	•			•	200

.

.

CHAPTER I

OVERVIEW OF DATA COMPRESSION

Introduction

At the present time, analysis of seismic data is based upon a bulk of data collected from the field, recorded onto tapes, and transported to the research center where it is analyzed for possible use. This procedure introduces a delay in the analysis and usually will not allow for on-line decision. With recent developments in telecommunications, it has been found to be desirable to transmit the data via satellite in order to reduce delay time. However, the bit rate for telecommunications is limited and the cost for transmitting a large amount of seismic data may be prohibitive. For these reasons, the seismic data need to be compressed before transmission over communication channels. This thesis is devoted to the development of a seismic data compression method for satellite transmission.

Data Compression

Data compression can be viewed as any method of representing source data in an efficient manner while maintaining the required information content. An efficient representation of the source data can be obtained first, by reducing the redundant information; second, by reducing the bandwidth; and third, by efficient coding techniques [1]. The usage of the term "data" in this thesis is to indicate any digitized signal to be

transmitted or stored. In order to avoid confusion, "information" is defined as a measure of the full range of important features contained in a set of data. This definition differs from the information theoretic definition, where it is used as a quantitative measure of information content. Both definitions are used in this work and the difference will be apparent from context. Such data compression is required due to storage constraints, digital computer memory size, limited bandwidth in communication links, limited capacity in channels, or by the desire of extracting important attributes from the source data.

Data compression can be defined in mathematical terms using the concept of entropy which, in simple terms, is referred to as the average information content measured as a number of information units (bits). The mathematical derivation of data compression, alternatively entropy compression, is given below.

The entropy can be written as [2]

$$H = -\sum_{i=1}^{D} p_i \log_2 p_i \text{ (bits/configuration)} \quad D = N^K \quad (1.1)$$

where K is the number of data, N is the number of quantization levels of data, and p_i is the probability of the ith configuration. Also, the information content of the ith configuration is given by

$$I_{i} = -\log_{2} p_{i}$$
 (bits). (1.2)

When there is no redundancy in the data or every configuration has the same probability, the entropy is maximum and it is expressed as

$$H_{max} = K \log_2 N \text{ (bits/configuration)}. \tag{1.3}$$

The redundancy ratio (R) is defined by

$$R = \frac{\frac{H_{max} - H}{H_{max}}}{H_{max}}.$$
 (1.4)

The entropy compression ratio (C) can be defined by

$$C = \frac{H_{\text{max}}}{H} = \frac{K \log_2 N}{\sum_{i=1}^{D} p_i \log_2 p_i} = \frac{1}{1 - R}.$$
 (1.5)

Equation (1.5) shows that the maximum entropy of transformed data can approach their own entropy by reducing the redundancy of the data (K), and/or by reducing the redundancy from the quantization levels (N), both of which result in reducing the number of possible configurations (D).

Most of the present data compression methods are combinations of the following methods; these include: entropy reducing transform [2], prediction [3], interpolation [4], orthogonal transforms [5], and digital code representations [6]. The five general data compression techniques mentioned above are examined in relation to entropy compression below.

Some entropy reducing transforms achieve data compression by deleting a portion of information in source data. For example, filtering (low-pass, high-pass, or band-pass) is one form of an entropy reducing transformation. Usually this method is applied when intelligibility is the main objective, and a portion of the data in terms of either time or frequency is used in extracting the desired information.

The prediction method can be used to compress data when a system model is available. Assuming that the system model is incorporated in a prediction algorithm at the receiver and the transmitter has a way of acknowledging the predicted value with no channel errors, it is acceptable to omit data which can be predicted at the receiver [3]. It is clear that the number of data to be transmitted can be reduced, and thus maximum entropy is compressed. Another advantage of this method, for entropy compression, can be realized by transmitting the difference between the source data and the predicted value (prediction error). This advantage can be seen because the prediction error variance is less than the variance of the source data. The minimization of the prediction error variance can be achieved by various techniques. These will be discussed in detail later.

The interpolation method [4] estimates the values between a given transmitted value and the most distant possible point, such that the maximum interpolation error is below the preset threshold. One simple example of interpolation techniques in data compression would be approximation of the source data by polynomial segments.

Orthogonal transforms are used in data compression because of their properties in representing data with linearly independent eigenvectors, thus reducing the redundancies. Data compression can be achieved if fewer numbers of transformed vector coefficients can represent the source data. This depends on the statistical characteristics of the source data.

Finally, the digital code representation achieves data compression by reducing the number of quantization levels while maintaining tolerable quantization error. When sampling an analog signal, the original bit rate is determined by the number of quantization levels employing the maximum entropy (Equation (1.3)). Assuming that there is a high rate of redundancy, the original bit rate can be reduced with an efficient code representation, thus achieving entropy compression.

Common application of data compression are found in systems for communications, speech and image processing, and pattern recognition [1].

A Thesis Review

Chapter II examines seismic data acquisition and reviews previous efforts in seismic data compression. In this thesis vibroseis data and impulsive seismic data are used for the proposed data compression. In order to visualize the characteristics of seismic data, statistics are measured and displayed. The proposed approach for "reversible seismic data compression" is discussed in relation to the statistical characteristics of seismic data.

In Chapter III, the proposed techniques are compared with other candidates and their performances are evaluated. First, orthogonal transforms, such as the Karhunen-Loéve transform, the Walsh-Hadamard transform, the discrete Fourier transform, and the discrete cosine transform are briefly examined and their compression ratios on seismic data are compared. Second, digital coding techniques are discussed in two steps, quantization methods and cosine representations. Brief derivations of signal-to-noise ratios are discussed for each technique, and their performance on seismic data compression is compared.

Chapter IV discusses compression methods for vibroseis data and impulsive seismic data. The vibroseis data compression is examined in the following order. First, the hybrid technique is introduced with respect to its compression ratio and signal-to-noise ratio relations. Second, the selection method is examined in terms of threshold. Third, μ -law quantization is studied in detail. Fourth, the implementation considerations are discussed. The impulsive seismic data compression is examined in three stages: data slicing, predictive coding using an optimum linear predictor, and its implementation. Finally, the results are evaluated for both types of seismic data.

In Chapter V, the general applications of satellite communications are examined. Compressed seismic data transmission via satellite is studied with respect to its time and space configurations.

Finally, Chapter VI suggests possible future research areas for the "reversible seismic data compression."

Summary

The main interests in data compression techniques are the compression ratio (CPR) and the distortion rate, often called the "signal-tonoise ratio" (SNR) [1]. This study defines the CPR as the ratio between the bit rate of the original signal and the compressed signal. The SNR is defined as the ratio between energy of the original signal and the noise, where the noise indicates the difference between the original signal and the reconstructed signal.

Data compression techniques can be divided into two categories, irreversible and reversible compression. In order to distinguish one from the other, reversibility should be defined. In general, techniques which can reconstruct the original data with an adequate error fidelity criterion are defined as reversible data compression techniques. When the original data cannot be reconstructed due to compression techniques, they are called irreversible techniques [2].

The entropy reducing transforms are irreversible data compression techniques, since some parts of the original signal have been discarded. For irreversible techniques, SNR cannot be considered. Rather, subjective

measurements, such as human intelligibility, are considered as a measure of their performances.

The prediction, interpolation, orthogonal transforms, and digital coding representation methods are all reversible. However, the reconstructed data include the process error. The process error is defined as all the errors involved in techniques of compression and decompression. They include prediction error, interpolation error, transformation error, and quantization error. For reversible techniques, SNR is the measure of their performance. However, it is hard to determine the threshold of error fidelity when the original data have involved large noise. For this reason, the original data are assumed to be ideal in this thesis.

The development of a "reversible seismic data compression" technique is pursued, where "reversible" indicates that the original seismic data can be reconstructed with approximately a 30 dB signal-to-noise ratio. Figure 1 gives the block diagram identifying the noise (E_i) introduced at various locations. In this study the processed noise, denoted by E_2 , is of interest.

The next chapter deals with seismic data acquisition methods, previous work, the proposed approach for seismic data compression, and statistical characteristics of seismic data.

Figure 1. Simulation of Seismic Data Compression Techniques

CHAPTER II

GENERAL CONSIDERATIONS ON SEISMIC

Introduction

In Chapter I, a brief overview of data compression was introduced, with respect to general compression techniques in relation to entropy reduction.

This chapter focuses on several seismic data compression considerations. First, the basic concepts of seismic data acquisition are examined, with example cases of acquisition corresponding to vibroseis and impulsive inputs. Second, previous work on seismic data compression is reviewed and its performance is evaluated with respect to reversible considerations. Third, a reversible seismic data compression scheme is viewed and directions for this proposed approach are discussed. Finally, various statistical characteristics of seismic data are examined and some important results are displayed.

Seismic Data Acquisition

As mentioned earlier, seismic data are collected from the field and recorded onto digital tapes. The essence of such a data collection system is illustrated in Figure 2 [7]. Robinson and Treitel describe the seismic data acquisition procedures as follows:

Disturbances created by seismic energy sources propagate through the earth, where interfaces between geophysical strata reflect spreading wave fronts. The receivers shown in Figure 1-2 [Figure 2 in this thesis] actually represent a composite group of transducers (seismometers). These groups may consist of up to 100 individual geophones laid out in various linear and spatial patterns, with group intervals (between group distance) ranging from 50 to 900 ft. Each time a source is activated it is common practice to record either 24, 48, or 96 group traces on digital tape simultaneously as a single recording (p. 74).

Figure 2. Seismic Data Acquisition (After Robinson and Treitel [7])

Robinson and Treitel state that many different types of energy sources are used to generate seismic waves. Dynamite and other highenergy explosive sources provide the simplest and most efficient means of releasing energy, but environmental considerations have led to the development of many alternative sources, such as explosive air guns, electrical sparks, vibrating chirp systems, and so on. The different types of energy sources require different compression techniques.

Seismic data compression will be investigated with vibroseis data and impulsive seismic data in this thesis, where vibroseis data refer to seismic data that are collected from the reflected wave generated by a vibrating chirp disturbance propagating through the earth, and impulsive seismic data refer to sesimic data that are collected from the reflected wave generated by a high-energy explosive source disturbance propagated through the earth. Examples of both types of seismic data acquisition environments are illustrated below.

In Appendix A, a set of vibroseis data is given. The data were sampled at 250 Hz for 19 seconds. Each time a vibrating chirp system was initiated, a group of 48 traces was simultaneously recorded onto a digital tape as a single recording, and is defined as a record. A 20 bit code consisting of 16 bits of mantissa and 4 bits of gain was used in this representation. The vibrating chirp system propagated a chirp signal ranging from 10 to 55 Hz for 14 seconds over the test interval.

Also, in Appendix A, a set of impulsive seismic data is given. The data were sampled at 1000 Hz for 1 second. Each time an explosion was initiated, a group of 198 traces was simultaneously recorded onto digital tape in a single recording. The same digital coding representation technique was used as in the vibroseis data case.

Due to the constraints in the bandwidth of communication links, and in storage, the bit rate (bits/second) and the block size (bits/block) are two important parameters for data compression considerations. A block is a number of seismic source initiations. In the following, the values of these parameters for the seismic data shown in Appendix A are given. The bit rate (B) is

$$B = N_{s} \cdot F_{s} \cdot b \text{ (bits/second)}$$
(2.1)

where N_s is the number of traces in a record, F_s is the sampling rate, and b is the number of bits per sample. The block size (K) of the seismic data is

$$K = B \cdot N_{+} : T (bits/block)$$
(2.2)

where ${\rm N}_{\rm t}$ is the number of tests performed and T is the sampling duration.

Using Equation (2.1), the bit rate of the vibroseis data (B_v) in Appendix A is

where $N_s = 48$, $F_s = 250$ H_z and b = 20 bits/sample. The bit rate of the impulsive seismic data (B_i) in Appendix A is

where N_s = 198, F_s = 1000 H_z and b = 20 bits/sample. Thus, the block size of the vibroseis data (K_y) is

$$K_{...} = 192k \cdot 16 \cdot 19 = 73 M (bits/block)$$

where $B_v = 192k$, $N_t = 16$, and T = 19 seconds. The block size of the impulsive seismic data (K.) is

K. =
$$3960k \cdot 9 \cdot 1 = 1.8 \text{ M} \text{ (bits/block)}$$

where $B_1 = 3960k$, $N_t = 9$, and T = 1 second.

In general, 2400, 4800, 9600, and/or 56k baud rate (bits/second) are available for most communication links. Also most small computers have less than 256 k byte (2048 k bits) of memory size. Considering the above figures, the values of bit rate and block size for seismic data indicate that data compression is necessary in order to utilize a modern telecommunication system for transmission and for processing with minior microcomputers.

Data compression techniques have been investigated in many areas, such as speech and image processing. However, seismic data compression has not been investigated as thoroughly as the others. A review of one previous effort on seismic data compression is discussed in the next section.

Previous Work

A survey of previous seismic data compression yields one notable work by Wood [8], in which he used bandwidth limiting and efficient digital coding techniques. The results were obtained using two methods on a set of vibroseis data sampled at 500 Hz. These are data resampling and interpolation in the time domain and the Walsh transform, and sequency limiting and the Walsh inverse transform in the Walsh domain. These techniques are examined and evaluated below. In his paper, the resampling technique is a time domain compression technique described as follows.

From sampling theory [9], if a signal is bandlimited and sampled with anti-aliasing considerations, no information is lost through proper resampling and interpolation. Based on this statement, resampling (with averaging) is applied at 1/2, 1/4, and 1/8 of the original sampling rate at the transmitter. Then interpolation is performed at the receiver.

In the second method, the seismic data are transformed using the Walsh transform. Then sequency limiting is performed, by windowing the first major sequency range that contains 80 to 85 percent of the total

energy. At the receiver, the data are buffered to their original size and then the inverse Walsh transform is applied. It has been found that resampling in the time domain amounts to sequency limiting in the Walsh domain and interpolation in the time domain amounts to the inverse Walsh transform. Flow charts corresponding to the above two methods are shown in Figure 3.

In the second stage, nonuniform quantization was applied with variable code word lengths for both methods. As illustrated in Figure 4, the step sizes are computed according to the probability densities of the data. The code word lengths are determined by the information rate of the quantization levels. For example, the first step size was illustrated to be 25.1, where 50 percent of the data could be represented. As shown in Equation (1.2), the information rate was computed as 1 bit; thus the code length was determined to be 1 bit.

In Wood's work [8], visible degradation in the final plotted seismic data was the measure of performance. Reversibility was not considered, since teleprocessing of the plot data was the major interest in his compression. In order to evaluate the applicability on reversible seismic data compression, the signal-to-noise ratios of the compression method given by Wood was estimated according to the percentage of the total energy he claimed to maintain in the Walsh domain. It was found to be approximately 7 dB without considering the processing error.

Wood pursued further compression by applying nonuniform quantization using an average of 3 bits per sample. This quantization introduces significant error. Though he claimed to achieve a 16:1 compression ratio, the signal-to-noise ratio (<7 dB) is too small to be of use for reversible seismic data compression. Also, it should be pointed out that the

Figure 3. Data Compression Procedures (After Wood [8])

. .

Figure 4. Non-Uniform Quantization (After Wood [8])

compression ratio is directly related to the sampling rate. This indicated that an 8:1 compression ratio is expected for the vibroseis data, because the sampling rate Wood used was 500 Hz instead of 250 Hz for the sample given in Appendix A. The proposed study examines alternative approaches for achieving seismic data compression with significant improvement in signal-to-noise ratio.

Proposed Approach

The proposed method of compression and decompression and satellite transmission is shown in Figure 5. The seismic data collected from the field are compressed and coded at the transmitter, and transmitted via satellite. The receiver performs decoding and decompression for reconstructing the original seismic data. The entire procedure involves data acquisition, data compression, satellite communication, and data reconstruction. This work will concentrate on the data compression and reconstruction for two types of seismic data, namely the vibroseis data and the impulsive seismic data. In Chapter V, the mechanics associated with satellite transmission and real-time implementation, such as time and space configurations and throughput considerations, will be discussed.

Before the compression methods are discussed, the statistical aspects of vibroseis data and impulsive seismic data need to be investigated. These are presented in the next section. The compression methods will be discussed in Chapters III and IV.

Statistical Analysis of the Seismic Data

It can be observed that signal processing techniques have been often developed based on a statistical model of signals [6]. For example, some

Available Baud Rate - 2400, 4800, 9600 and/or 56k bps Reversible Data Compression - above 30 dB of SNR

.

Figure 5. Seismic Data Transmission via Satellite

digital coding methods for speech signals have been developed and evaluated under the assumption that the probability density function of speech signals can be modeled statistically as Laplace or Gamma probability densities. Similarly, it is necessary to obtain statistical models of seismic signals or to describe their statistical behaviors, so that an efficient compression technique can be chosen accordingly [10].

Statistical characteristics of seismic signals are examined with respect to several aspects. Such aspects would be statistical parameters, time-varying characteristics, the probability density functions, and correlation considerations in adjacent samples as well as in traces and tests. The term test indicates a source initiation in this thesis.

The statistical parameters include mean, variance, and peak-to-peak range. The examination of such parameters shows that the mean values are approximately zero for all traces and that the seismic data have nonuniform energy distribution among sensors. Amplitude distributions of several traces shown in Figure 6 illustrate symmetricity of seismic data. Figures 7a and 7b give a comparison of the peak values among traces and among tests. Figures 8a and 8b similarly compare the ratios between the peak value and the standard deviation.

For testing the stationarity of the seismic data, the time-varying characteristics are analyzed. This analysis has been performed on the seismic data trace by trace by dividing the sampling duration into time unit segments. For vibroseis data, one second is used as a time unit while 100 milliseconds are used for impulsive seismic data. The results are obtained by examining the statistical parameters mentioned above for each time unit interval. Figures 9a and 9b illustrate the time-varying characteristics for the peak values and the ratios between the peak value

(a) Time Varying Characteristics of $|X_{max}|$ of Vibroseis Data

Seismic Data

(c) Time Varying Characteristics of $\mid \mathbf{X}_{\max} \mid$ of Impulsive Seismic Data

(d) Time Varying Characteristics of $\mid {\rm X}_{\rm max} \mid {\rm I}\sigma_{\rm X}$ of Impulsive Seismic Data

Figure 9. (Continued)

and the standard deviation of vibroseis data and of impulsive seismic data, respectively. It should be pointed out that three traces are displayed individually for vibroseis data and the ranges of 100 traces are displayed for impulsive seismic data. This is based on the fact that vibroseis data vary nonuniformly among traces, while impulsive seismic data vary uniformly among traces.

The probability density functions are obtained using the frequency histogram method. The frequency indicates the number of occurrences of data in a referenced range. The comparison of seismic data with wellknown probability density functions, Laplace, Gamma, and speech signals, was performed in order to obtain a statistical model for seismic data. The results are shown in Figure 10. It can be observed that vibroseis data have a similar probability density function as speech signals. This indicates that it may be possible to use the results from speech processing. These results may include some performance measures of various digital speech coding methods. It can also be observed that the Laplace or Gamma density functions generally define the seismic data in a statistical sense.

The correlation between adjacent samples can be examined from the value of the autocorrelation function at the first lag. For example, the autocorrelation function of a partial trace of vibroseis data is shown in Figure 11. It can be seen that there is a relatively high correlation among sample points.

Also, correlation characteristics among traces and among tests are examined via computing the correlation coefficients. These examinations are used for selecting traces or tests to be implemented for data compression techniques, so that statistically similar traces and tests can be

Figure 10. Probability Density Function of Seismic Data in Comparison of Laplace, Gamma and Speech (After Max and Paez [10])

grouped together. The correlation coefficients are ranged between +1 and -1, where +1 implies a complete linear relation and -1 implies a complete inversely linear relation [10]. Appendix B illustrates these coefficients of 16 traces of one sensor.

Further statistical analysis has been performed by applying the preemphasis method with low frequency and high frequency. The low-frequency pre-emphasized signal (D_n) can be computed from

$$D_n = X_n - a D_{n-1}$$
 (2.3)

where $D_0 = X_0$ for $n = 1, 2, ..., N - 1, X_n$ is the original signal, and a is a gain factor. The high-frequency pre-emphasized signal (H_n) can be computed from

$$H_{n} = X_{n} - b X_{n-1}$$
 (2.4)

where $H_0 = X_0$ for n = 1, 2, ..., N - 1, and b is a gain factor.

The above pre-emphasis methods will be referred to as the first-order pre-emphasis. Also, the second-order pre-emphasis methods are investigated by applying the pre-emphasis on previously emphasized signals. For these first- and second-order pre-emphasized signals, the statistical characteristics mentioned above were examined. The important results obtained from these investigations are that the correlation coefficients increase (decrease) for low-frequency (high-frequency) pre-emphasized signals. In particular, for the second-order low-frequency pre-emphasized signals, the correlation coefficients are almost 1.0, as shown in Appendix B. The correlation considerations are not discussed for impulsive seismic data, since it is clearly seen from the plot in Appendix A that all of the traces are highly correlated.
The seismic data have been statistically analyzed in this section. The analysis results will be utilized for evaluating the utility of various data compression techniques for seismic data in Chapter III.

Summary

In this chapter, general considerations involved in seismic data compression, such as seismic data rate and size, reversibility of compression techniques, and statistical characteristics of seismic data, have been discussed. Data rate and size of vibroseis data were found to be 192k bps and 9M byte per block. Impulsive seismic data were shown to have 3960k bps of data rate and 230k byte of data size per block.

Due to bandwidth constraints of telecommunication channels and computer storage limits, data compression techniques are found to be necessary for seismic data transmission. One previous work by Wood [8], which is basically sequency limiting in the Walsh domain, was examined and it was determined to be improper since its signal-to-noise ratio is too small (less than 7 dB). For maintaining the desired quality of signal after reconstruction at the receiver, a SNR of 30 dB was considered essential for a compression method to be useful.

Analysis of statistical characteristics of vibroseis data showed that vibroseis data have a similar probability distributional characteristic as speech signals. Also, it was observed that vibroseis data traces are slightly correlated among each other, while impulsive seismic data traces are highly correlated. These characteristics will be used for evaluating performances of various compression techniques in the next chapter.

CHAPTER III

EVALUATION OF DATA COMPRESSION TECHNIQUES

Introduction

The statistical characteristics of vibroseis and impulsive seismic data were examined in Chapter II. Based on these characteristics, this chapter is devoted to evaluating techniques for reversible seismic data compression. The reversibility constraint is defined as 30 dB of SNR in this thesis, assuming that this constraint may provide the required quality for the signal to be reconstructed at the receiver.

In this chapter, five basic data compression techniques mentioned in Chapter I are discussed with respect to their use for reversible seismic data compression. First, it can be argued that the entropy reducing transforms can be neglected, since these methods extract the desired information from a portion of the data in terms of time and frequency, and thus lose the reversibility.

Second, prediction techniques are considered with respect to identifying an optimal predictor where the "linear prediction" algorithm is used for obtaining parameters for the predictor. For vibroseis data, these methods are ignored due to the computational complexities involved in obtaining the predictor parameters. However, these methods are implementable for impulsive seismic data since the predictor parameters can be obtained in a simple manner; these parameters can be used for designing a predictor for other traces. This is based on the characteristics of

waveforms of the impulsive seismic data, which will be discussed later.

Third, interpolation techniques are discussed in relation to resampling techniques where some sample values can be reconstructed using a polynomial interpolator. The parameters associated with a polynomial interpolator should be generated at the transmitter and transmitted in place of the original data. This technique involves basically similar computational complexities as prediction techniques. For a seismic signal, the number of parameters associated with a polynomial interpolator is excessive and for these reasons, interpolation techniques are ignored.

Orthogonal transforms can be chosen for vibroseis data and for a nonimpulsive section of impulsive seismic data. These transforms remove redundancies and also they are simple implementation-wise. Energy conservation and the inversibility property of the orthogonal transforms allow for using other compression techniques in the transformed domain. Similarly, other compression techniques can be used prior to orthogonal transforms. These aspects will be examined in more detail in the next section.

Digital coding methods can be proposed for two reasons. First, digital coding is required for transmission over a digital communication channel. Second, data compression can be achieved by applying an efficient digital coding technique. Data compression consideration via digital coding is based on reducing the average number of bits (or bit rate) per symbol rather than reducing the number of messages. An efficient digital coding technique can be approached by various quantization techniques and encoding techniques. These various techniques will be discussed in a later part of this chapter.

Orthogonal Transforms in Data Compression

Orthogonal transforms can be used for redundancy removal. This property is one of the key elements of data compression. The redundancy removal property is discussed below [5].

Let a sequence of N data points be represented by an N-dimensional vector \underline{X} . A transformed vector \underline{Y} can be formed from \underline{X} by

$$Y = AX , \qquad (3.1)$$

where A is a unitary matrix. That is,

$$A^{*}A = 1$$
 . (3.2)

where * indicates a complex conjugate transpose. The objective is to select a subset of M components of Y, where M is substantially less than N. The remaining (N - M) components can then be discarded without introducing objectionable error, where the error is, of course, the difference between the signal and the reconstructed signal using the retained M components of Y. The error criterion often used for orthogonal transforms is the mean-square error criterion, and is discussed below.

From Equations (3.1) and (3.2),

$$\underline{X} = A^* \underline{Y} = \sum_{i=1}^{N} Y_i \phi_i .$$
(3.3)

whe re

$$A^* = [\phi_1, \phi_2, \ldots, \phi_N] .$$

The reconstructed vector \underline{X}' from the retained M components of \underline{Y} can be given by

$$\underline{X}^{\dagger} = A^{\dagger} \underline{Y}^{\dagger} , \qquad (3.4)$$

where \underline{Y}' contains M components of \underline{Y} and a contant replaced for the discarded N-M components. It should be noted that M largest eigenvalues should be selected for the subset of Y'. The mean square error is usually defined as [5]

$$e = E[(X - X')^{*} (X - X')] = \sum_{i=M+1}^{N} \phi_{i}^{*} \sum_{x} \phi_{i}$$
(3.5)

where

$$\Sigma_{\mathbf{X}} = \mathbf{E}[(\mathbf{X} - \mathbf{\bar{X}})(\mathbf{X} - \mathbf{\bar{X}})^*]$$

with \overline{X} being the mean value of \underline{X} . From the above relations, the minimum error is given by

$$e_{\min} = \sum_{i=M+1}^{N} \lambda_i$$

with ϕ_i and λ_i being the eigenvector and the corresponding eigenvalue of the covariance matrix Σ_{\downarrow} .

The unitary transform A, composed of the eigenvectors of the covariance matrix of the given data, is called the Karhunen-Loéve transform. Also, it can be seen that the covariance matrix of the transformed vector \underline{Y} is uncorrelated and it is expressed as [5]

$$\Sigma_{y} = \text{diag} (\lambda_{1}, \lambda_{2}, \dots, \lambda_{N}) . \qquad (3.7)$$

Equation (3.7) indicates that \underline{Y} has no redundancy; thus \underline{Y} is the most efficient representation of \underline{X} . However, there exists no general fast algorithm to compute the KLT, since the KLT depends upon the data

covariance matrix. The computation involves 2N² multiplications, and as N increases, the task of computing the transformed vector becomes a formidable one [11]. For this reason, several suboptimal orthogonal transforms are investigated, which include the Walsh-Hadamard, the discrete Fourier transform, and the discrete cosine transform. For illustrative purposes, vibroseis data shown in Figure 12 are used to compare these transforms.

Walsh-Hadamard Transform (WHT)

The matrix A in Equation (3.1), in terms of the Hadamard matrices, is defined by [11]

$$A = A_{WHT} = H(v)$$
(3.8a)

$$H(v) = \begin{bmatrix} H(v-1) & H(v-1) \\ H(v-1) & -H(v-1) \end{bmatrix}$$
(3.8b)

where

$$H(0) = 1$$
, $N = 2^{\circ}$

and

$$A_{\rm WHT}^{-1} = \frac{1}{N} H_{\rm v}$$

Noting that H(v) has only <u>+</u>l's, the WHT algorithm requires only $N \log_2 N$ summations [11]. This computational simplicity is the main reason for its wide usage.

Figure 13 illustrates the Walse-Hadamard transformed vector of the vibroseis data shown in Figure 12. As will be shown later, the WHT compression ratio is not as good as some of the other suboptimal transforms and, therefore, WHT is not used in the proposed compression methods.

Figure 13. Walsh-Hadamard Transformed Vector Coefficients

Discrete Fourier Transform (DFT)

The matrix A in Equation (3.1), corresponding to the DFT, is defined by [5]

$$A = A_{DFT} = (a_{kj})$$
(3.9)

where

$$a_{kj} = \exp[-i2\pi \frac{kj}{N}], \qquad 0 \le k, j \le N - 1$$

and

$$A_{DFT}^{-1} = \frac{1}{N} A^{*},$$

where A^{\star} is the complex conjugate transpose of A. Note that $(1/\sqrt{N})$ can be incorporated into A to make it unitary and, of course, it has no important effect on the nature of the representation.

The DFT is of interest primarily because it approximates the continuous Fourier transform and fast algorithms are available. The basic FFT algorithm requires 2N \log_2 N multiplications for N = 2^v to compute the transformed vector, and it is significantly simpler than the KLT computation [5].

Figure 14 shows the DFT transformed vector of the vibroseis data shown in Figure 12. The first half of the plot is the real part of the transformed vector components and the second half is the imaginary part of the transformed vector components. The DFT requires a complex components array and two threshold values are necessary for selecting the significant coefficients. Compared to the discrete cosine transform below, the DFT is not attractive.

Discrete Cosine Transform (DCT)

The DCT is similar to the DFT in that it uses sinusoidal waveforms as the basis of its orthogonal transform matrix. The matrix A in Equation (3.1) corresponding to the DCT is defined by [5]

$$A = A_{DCT} = (a_{kj})$$
(3.10)

where

$$a_{kj} = \frac{2}{N} \cos \frac{2j+1}{2N} k\pi$$
 $0 \le j \le N - 1; \ 1 \le k \le N - 1$

and

$$a_{0j} = \frac{1}{N} \qquad 0 \le j \le N - 1$$

The inverse of ${\rm A}_{\rm DCT}$ is given by

where

$$b_{jk} = \frac{2}{N} \cos \left(\frac{2j+1}{2N} k\pi\right) + \frac{1}{N} \qquad 1 \le k \le N - 1; \ 0 \le j \le N - 1$$

and

$$b_{k0} = \frac{1}{N} \qquad 0 \le k \le N - 1$$

The DCT can be computed using the FFT as follows [13]:

$$a_{kj} = \frac{2}{N} \operatorname{Re} \left[\exp \frac{2j+1}{2N} k\pi \right]$$

Similarly, it can be shown that the algorithm can be used to compute the inverse DCT coefficients. Also, it has been shown that the basis vectors

of the DCT closely approximate the eigenvectors of a class of Toeplitz matrices and that the DCT approaches the KLT as far as optimality is concerned [11]. For these reasons, the DCT has been chosen as the orthogonal transformation technique for the vibroseis data compression.

Figure 15 shows the DCT transformed vector of the vibroseis data shown in Figure 13. For the three suboptimal transforms discussed above, the compression ratios (CPR) are tabulated in Table I corresponding to the vibriseis data in Figure 12. From these results it can be seen that the DCT gives the best compression among the three suboptimal transforms.

Digital Coding Techniques

It was pointed out earlier that efficient step-size to reduce the number of quantization levels and efficient bit allocation techniques to minimize the number of bits play an important role in digital coding for data compression. These ideas are implemented in various forms of quantization and encoding; some of these ideas are discussed below.

At the transmitter, the source signal is coded using the digital coding method, and the source signal is reconstructed at the receiver from the coded signal, subject to some error fidelity criteria. This is shown in Figure 16, where the input signal is denoted by X(n), the quantized signal is denoted by $\hat{X}(n)$, and C(n) is the code word for $\hat{X}(n)$. The received code C'(n) is decoded and the decoded signal is denoted by X'(n). Transmission error (or channel error) is not considered in this thesis for evaluating the compressed results of various techniques. Therefore, it is assumed that C(n) = C'(n) and thus $\hat{X} = \hat{X}'(n)$. This implies the error (X - X') is mainly quantization error.

Figure 15. Discrete Cosine Transformed Vector Coefficients

TABI	LE I
------	------

CPR	0F	ORTHOGONAL	TRANSFORMS
	ON	VIBROSEIS	DATA

TEST	WHT	DFT	DCT
1	1.19	1.44	2.41
2	1.17	1.24	1.70
3	1.21	2.74	3.02
4	1.21	1.17	1.40
5	1.21	2.59	2.96
6	1.19	1.37	2.17
7	1.19	2.99	3.32
8	1.15	2.68	2.88
9	1.10	1.82	2.73
10	1.16	1.20	1.35
11	1.16	1.30	1.66
12	1.15	1.22	1.62
13	1.14	2.24	2.50
14	1.12	2.73	2.88
15	1.13	1.27	1.60
16	1.21	2.31	2.52
AVG	1.17	1.89	2.29

^{*}Threshold = 0.05σ_× SNR > 35 dB

(a) TRANSMITTER

(b) RECEIVER

Figure 16. Digital Coding Techniques

For a given source and a given error fidelity criterion, the minimum transmission rate can be computed from the rate distortion function of Shannon [14], which will be discussed later. This optimum rate cannot readily be achieved because the coding technique is usually extremely complex or theoretically intractable. Most data compression techniques are suboptimal in the sense that they exceed the minimum possible transmission rate. It is not possible to choose the "best" way of coding for a given application, as the computational complexities and hardware design play important roles. The decision must be based on some vague factors, such as generality of the method relative to the source information and relative equipment complexities.

The following five sections are devoted to examining various coding techniques, which involve quantization and encoding for seismic data compression. Also, comparative merits and demerits are discussed in terms of quantization noise and compression ratio. The quantization noise or signal-to-noise ratio considerations are examined with four basic stepsize algorithms: optimum, uniform, logarithmic, and adaptive algorithms. The compression ratio considerations are examined with two algorithms, fixed code word length and optimum code word length. The differential coding techniques are discussed with respect to their contributions on signal-to-noise ratio. First, the optimum quantizer is examined in the next section.

Optimum Step-Size Quantization

The optimum quantization technique is discussed to indicate the computational complexities and to obtain a standard result for comparing other quantization techniques.

The variance of the quantization error is given by

$$\sigma_e^2 = \int e^2 p_e(e) de \qquad (3.11)$$

where e is the quantization error $(x - \hat{x})$, and $P_e(e)$ is the probability density function of the error signal and can be expressed in terms of the probability density function of X(n), $P_x(x)$ [10]. Equation (3.11) can thus be expressed as

$$\sigma_{e}^{2} = 2 \sum_{i=1}^{M/2} \int_{x_{i-1}}^{x_{i}} (\hat{x}_{i} - x)^{2} P_{x}(x) dx \qquad (3.12)$$

where M is the number of quantization levels, and $P_x(x)$ is assumed to be equal to $P_x(-x)$. Equation (3.12) indicates that it is possible to choose the quantization levels so as to minimize the quantization error variance, and thus maximize the SNR, when $P_x(x)$ is known. A brief discussion of selecting $\{x_i\}$ and $\{\hat{x}_i\}$ which minimize σ_e^2 is given below.

By using the minimization process, the optimum location of the quantization level \hat{x}_i can be shown to be the centroid of the probability density interval x_{i-1} to x_i . Also, it has been found that the optimum boundary points lie halfway between the M/2 quantizer levels, \hat{x}_i . These nonlinearly related conditions must be met simultaneously, and iterative procedures are generally used to solve this problem. The parameter here is the step size.

As mentioned in Chapter II, the vibroseis data have a probability density function close to Laplace and Gamma density functions. For this reason, the optimal quantizer for signals with Laplace density and Gamma density developed by Max, Paez and Glisson [10] are examined and the optimum quantization step size for Laplace density is shown in Figure 17.

.

Figure 17. 3-bit Optimum Quantization for Laplace Density (After Max and Paez [10]) It can be easily seen from this figure that the quantization levels get farther apart as the probability density decreases. This indicates that large quantization errors should be reserved for the least frequently occurring samples.

This technique will not be used due to the computational complexity and the lack of exact information on the $P_{\chi}(x)$ for the vibroseis data. For these reasons, several suboptimum quantization techniques are discussed, including the uniform step-size quantization, non-uniform step-size, and adaptive step-size quantization.

Uniform Step-Size Quantization

The uniform step-size quantizer is the simplest kind of all the quantizers. This quantizer involves only two parameters, the number of levels and the quantization step-size, denoted as Δ . For a b-bit uniform quantizer, there are 2^b levels. This is illustrated in Figure 13 for a 3-bit quantizer. It has been found that the quantization error of this technique approaches the optimum quantizer when the signal is described by Gaussian distribution [15].

For future use, the parameter Δ and the SNR for this method is given below. The step-size is

$$\Delta = \frac{\text{Peak-to-peak range}}{\text{Number of levels}}.$$

If a symmetrical probability density function can be assumed for X(n), the Δ can be expressed as

$$\Delta = \frac{2 | x_{max}|}{2^{b}}$$

where $|X_{max}|$ is the absolute maximum of X(n).

for Gauss Density

The quantization error of the uniform step-size quantizer [16]

$$SNR(dB) = 6b + 4.77 - 20 \log (|X_{max}|/\sigma_x)$$
 (3.13)

which points out that each additional bit contributes a 6 dB to the signal-to-noise ratio. This derivation was based on the following assumptions. First, the quantization error is a stationary white noise process; second, the quantization error is uncorrelated with the input signal; and third, the distribution of quantization error is uniform over each quantization interval [17].

The first assumption is true when the input signal fluctuates in a complicated manner. The second assumption can be met if there are enough quantization levels available so that the step-size is properly small. The step-size can be determined empirically by applying various step sizes and examining the correlation between the quantization error and the input signal. The third assumption can be true if the range of the quantizer is set so as to match the peak-to-peak range of the signal, which is difficult to meet due to time varying characteristics of seismic signals. The time varying characteristics of seismic data are shown in Figure 9a and 9b indicating that the peak-to-peak range varies significantly from one time frame to another. Thus the number of quantization levels are not fully used in each frame, and the SNR in Equation (3.13) may not be achieved. Also, the uniform step-size quantization suffers from the dependence upon the signal variance. For example, the $(|X_{max}|/\sigma_x)$ for the vibrose data may vary from four to twelve, which can be seen in Figures 8a and 8b. This indicates a significant reduction in SNR. For this reason, quantization techniques which are less sensitive to the signal variance are investigated in the following.

Logarithmic Step-Size Quantization

The logarithmic quantizer, often called the instantaneous compressor/ expander or simply compander, resolves the dependence of the SNR upon the signal variance by logarithmically spaced quantization levels. This can be alternatively achieved by quantizing the logarithm of the input rather than the input itself. Also, the companding may be used to improve the signal-to-noise ratio by producing effectively non-uniform quantization so that the largest quantization errors should be reserved for the least probable samples.

The signal-to-noise of the logarithmic quantizer is [6]

$$SNR = \frac{1}{\sigma_e^{\sigma}}$$
(3.14)

This equation shows that the SNR depends upon only the step-size. Since the logarithm of very small numbers can be very large, this type of quantizer in general needs infinite number of quantization levels and therefore is impractical.

For this reason, Smith [18] has developed the alternative compression characteristics called μ -law. The μ -law is expressed as

$$Y(n) = F[X(n)]$$

$$= X_{max} \frac{\log 1 + \mu \frac{|X_n|}{X_{max}}}{\log(1 + \mu)} \operatorname{sign} (X(n))$$
(3.15)

The parameter μ controls the degree of compression and may be chosen that large changes in the input produce relatively small changes in the output. When μ is zero, it corresponds to uniform step-size quantization. The μ -law step-size with μ -value of 500 and several μ -curves with associated μ -values are illustrated in Figure 19. The signal-tonoise ratio of this quantizer for $\mu > 0$ is [18]

$$SNR(dB) = 6b + 4.77 - 20 \log (\ln(1 + \mu))$$

- 10 log
$$(1 + \frac{\chi^2}{\mu\sigma_x} + 2 \frac{\chi_{max}}{\mu\sigma_x})$$
. (3.16)

From this equation, it can be seen that the dependence of SNR upon the signal variance can be reduced by controlling the μ -value. This will be discussed in more detail later.

Both uniform and non-uniform step-size quantization has limitations when a signal has time-varying properties. For this reason, an adaptive step-size quantization technique is investigated in the next section.

Adaptive Step-Size Quantization

The basic idea of adaptive quantization is to let step-size vary so as to match the variance of the input signal. This implies that it is necessary to obtain an estimate of the time varying amplitude properties of the input signal. Sample-to-sample changes (or rapid changes within a few samples) and syllabic changes (or slowly varying) [6] need to be considered. For simplicity, the amplitude changes of sample-to-sample are used as the basis of the step-size adaptation for seismic data.

In general, there are two schemes in adaptive quantization, feed forward and feed backward quantization. When the step-size is adjusted according to the input itself, it is referred to as a feed-forward adaptive quantizer. When the step-size is adapted on the basis of the previous output of the quantizer, it is referred to as feed-backward quantizer. The feed-backward adaptation is based on the assumption that adjacent

samples do not vary much, that is, sample-to-sample correlation is high. The feed forward and feed backward quantization schemes are shown in Figures 20a and 20b, respectively.

The feed-forward adaptation needs to transmit the step-size information for decoding, as the decoder cannot generate the step-size without current input data, while the feed-backward adaptation allows for the computation of step-size at the decoder in the absence of channel errors. This is a distinct advantage of feed-backward adaptation, especially when data compression is a critical issue. For this reason, feed-backward adaptation is used in this research and is discussed in detail in a later part of this section. It should be pointed out that the feed-backward adaptation has increased sensitivity to errors in the codewords, since such errors imply not only an error in the quantization level but also in the step-size [19].

The step-size computation associated with the feed-backward quantizer is given by

$$\Delta(\mathbf{n}) = M(|C(\mathbf{n}-1)|) \cdot \Delta(\mathbf{n}-1)$$
(3.17)

where C(n-1) is the previous output code, $\Delta(n-1)$ is the previous step-size, and M is the multiplier array. It can be seen from Equation (3.17) that the current step-size is obtained by multiplying a selected multiplier and the previous step-size. The multiplier is selected from the multiplier array indexed by the absolute value of the previous output code. The multiplier is designed so that the entries in the first half of the array are less than one and the entries in the second half of the array are greater than one. Thus, the step-size will be reduced (increased) if the value of the previous code is less than (greater than) half of the code range. It

is easy to see that the initial step-size is very critical as the succeeding step-sizes are proportional to the initial step-size. The optimum initial step-size is obtained by the following formula [20].

$$\Delta_{\text{opt}} = E[(X(n) - X(n-1)^2]^{\frac{1}{2}} \ln (2F_0)$$
(3.18)
$$F_0 = F_s/2 F_n$$

where F_s is the sampling frequency and F_n is the Nyquist sampling rate.

The SNR of this technique is derived in a similar manner as the uniform step-size quantization technique, as the step-size is uniform for each quantization instance. Basically, this technique pursues to meet the third assumption of the uniform quantization so that every bit is used efficiently.

Differential Input Quantization

In the last few sections, various quantization techniques have been examined with respect to their step-size decision process. It has been found that the signal variance influences SNR for uniform quantizers. Non-uniform quantizers were considered to reduce the dependency in signal variance to improve SNR. Another method of improving SNR is by coding the difference signal, which is the difference between the input and the predicted value. This method is called the differential input quantization technique.

When a predictor is designed based on a system model or based on mathematical derivation of an optimal filter, it is referred to as a predictive coding technique. It is differentiated from a simple differential input quantization technique, delta modulation, where the difference between adjacent samples is quantized and coded. Delta modulation is a suboptimal technique; it has a significant advantage over a predictive coding technique in computational simplicity; it uses one delay instead of an optimal filter [21].

This section focuses on general considerations in measuring the SNR and the details of predictive coding techniques will be discussed in Chapter IV. The SNR of the differential input quantization is [22]

$$SNR = \frac{\sigma_x^2}{\sigma_e^2} = \frac{\sigma_x^2}{\sigma_d^2} \cdot \frac{\sigma_d^2}{\sigma_e^2} = G_p \cdot SNR_q \qquad (3.19)$$
$$G_p = \frac{\sigma_x^2}{\sigma_d^2}, SNR_q = \frac{\sigma_d^2}{\sigma_e^2}$$

where σ_d^2 is the variance of the difference signal. Equation (3.19) shows that signal-to-noise ratio consists of prediction gain and the signal-tonoise ratio due to quantization. Assuming the prediction gain is greater than one, it can be expected to improve the overall signal-to-noise ratio. In cases of predictive coding, higher order of filter contributes to better prediction. The prediction gain is dependent on the performance of the predictor and it can be maximized by minimizing the prediction error. For applying delta modulation, high correlation of adjacent samples is necessary in order to achieve a good prediction gain. When delta modulation employs more than two quantization levels, it is called a differential pulse code modulation (DPCM). When adaptation quantization is used, it is referred to as an adaptive differential pulse code modulation (ADPCM). Usually, nonuniform quantization techniques are not applied since the variance of difference signal is assumed to be small.

The performance of various digital coding techniques--ADPCM, DPCM,

APCM, and LPCM--are illustrated in Table II for 16 traces of vibroseis data. The ADPCM shows the best signal-to-noise ratio.

Optimum Encoding Techniques

In general, there are two types of encoding, source encoding and channel encoding [23]. The main subject of this section is source encoding, defined as the process of converting an information source signal into a binary sequence. An optimum encoder for N symbols corresponds to an average bit rate (\hat{H}_N) , which approaches the source entropy (H) as N approaches infinity [23]. This can be expressed as

$$\hat{H}_{N} = 1/N \sum_{i=1}^{q} n_{i}p_{i} \rightarrow 1/N \sum_{i=1}^{q} p_{i} \log_{2}(1/p_{i}),$$
 (3.20)

$$H = \lim_{N \to \infty} \hat{H}_{N} \text{ (bits/symbol)}, \quad (3.21)$$

where q is the number of messages encoded into the sequence of N symbols, p_i is the probability of the ith message m_i , and n_i is the optimum code word length for the ith code word, c.

Any solution of Equation (3.20) is an optimum encoding technique. One example given by Shannon and Fano [14] is discussed below. This algorithm has the property of assigning short (long) code word lengths for high (low) probability messages. Specifically, if q messages $m_1, m_2, m_3, \ldots, m_q$ are ordered in decreasing probability, the code length of the ith message is computed from

$$\log_2(1/p_i) < n_i < 1 + \log_2(1/p_i)$$
(3.22)

where $p_1 \ge p_2 \ge \dots \ge p_q$, and n_i is an integer.

After the optimum code word length is computed for the ith message,

	TA	BL	E	1	I
--	----	----	---	---	---

TEST	ADPCM	DPCM	APCM	LPCM
1	37.1	32.5	26.7	31.8
2	38.3	34.1	27.6	32.2
3	36.6	33.6	28.6	32.0
4	37.2	31.5	26.1	31.6
5	36.6	30.7	25.0	31.8
6	36.7	30.9	24.9	30.8
7	35.9	31.2	26.2	31.5
8	36.0	30.6	27.5	31.7
9	33.7	31.2	27.8	31.2
10	35.5	33.1	29.6	30.2
11	39.0	28.7	20.5	31.7
12	34.4	30.4	23.2	31.3
13	39.9	38.1	29.1	32.3
14	39.3	36.0	29.9	32.2
15	37.5	35.4	30.6	31.8
16	44.7	43.7	31.0	32.6
AVG	36.8	31.0	25.0	30.8

SNR(dB) OF 6-BIT DIGITAL CODING METHODS ON VIBROSEIS DATA

.

a unique code word c_i is obtained by truncating the binary expansion of the probability function F_i after a maximum of n_i bits. Let

$$F_{i} = \sum_{\substack{k \in I \\ k_{i} = 1}}^{i-1} P_{k}$$

then

$$c_i = (F_i)_{binary n_i} bits.$$

Another example of an optimum encoding technique is the minimum redundancy coding method developed by Huffman [24]. The length of code words is inversely related to the probability of messages as in Shannon's algorithm.

These algorithms require code word tables, and therefore may also require large amounts of memory storage. Second, the message probability computation may not be feasible for some cases. However, these techniques still provide the ideal encoding, and thus can be used as a measure of the performance of other encoding methods. For example, the efficiency of an encoding technique (e) can be obtained by the ratio between the average bit ratio of the given encoding technique, H'_N , and \hat{H}'_N . That is,

$$e = \hat{H}_{N} / H_{N}'$$
 (3.23)

Summary

This chapter has evaluated general data compression techniques with respect to their utilities for seismic data compression. The results showed that entropy reducing transforms and interpolation techniques are not adequate for seismic data compression due to the reversibility considerations and the low sampling rate. The prediction techniques which allow for transmitting the prediction error signal instead of the original input signal were considered. They were found to be impractical for large size seismic data since computational complexities involved in obtaining a predictor increase as the square of the number of data. These techniques were suggested for impulsive seismic data for a restricted region. The restricted region is obtained by a data slicing technique where all impulsive waveforms are separated from random waveforms as will be discussed later in the next chapter.

Alternative approaches for seismic data compression were discussed with orthogonal transforms and digital coding methods. For both approaches various techniques were examined and their performances on seismic data compression were evaluated.

The performances including compression ratio and signal-to-noise ratio of the WHT, the DFT, and the DCT were illustrated in Table 1. Also, the performances of various digital coding techniques--DPCM, ADPCM, LPCM, and APCM--were shown in Table 11.

From these evaluations, it was concluded that a technique which combines an orthogonal transform and a digital coding method may be a proper approach for vibroseis data compression. In particular, the discrete cosine transform was shown to be the best choice for the orthogonal transformation with respect to computational complexity, compression ratio, and signal-to-noise ratio.

In the next chapter, data compression techniques for vibroseis data and impulsive seismic data will be investigated based on these observations of orthogonal transforms, digital coding methods, and prediction techniques.

CHAPTER IV

SEISMIC DATA COMPRESSION

Introduction

In the previous chapter, prediction, orthogonal transforms, and digital coding methods were suggested for seismic data compression. This chapter discusses combinations of these techniques for vibroseis data and impulsive seismic data.

As pointed out earlier, vibroseis data differ from impulsive seismic data in their statistical characteristics. For this reason, the data compression technique is developed separately for each type of seismic data. For vibroseis data compression, a "hybrid technique," which combines an orthogonal transform and a digital coding method is considered. For impulsive seismic data compression, the trace is divided into two sections, an impulsive section and a nonimpulsive section. For the first section, a "predictive coding" technique is investigated; and for the second section, the hybrid technique is considered.

The hybrid technique for seismic data compression can be evaluated in the following manner. First, the signal-to-noise ratio and the compression ratio of the hybrid technique are derived. These derivations are discussed with two aspects, orthogonal transforms and digital coding methods. Second, the selection method for the significant transformed vector coefficients is examined in relation to a threshold value decision scheme. For the retained coefficients, the choice of a digital coding

method is discussed based on empirical results of various coding methods. Third, the μ -law quantization is considered as a digital coding method for the retained coefficients with respect to the relation between the μ -value and the compression results. Finally, the implementation of the hybrid technique for a given set of vibroseismic data is illustrated, and the compression results are evaluated.

The predictive coding method for the first segment of the impulsive seismic trace can be analyzed as follows. First, the data segmentation consideration is studied with respect to the waveform characteristics of each segment. Also, the signal-to-noise ratio and the compression ratio of the trace are discussed in relation to the SNR and CPR of each segment. Second, the "linear prediction" algorithm is studied with respect to optimum predictor parameters based on the autocorrelation method and the Lattice method. Finally, the implementation of the predictive coding technique for a given set of impulsive seismic data is illustrated, and the compression results are evaluated.

Vibroseis Data Compression

The signal-to-noise ratio of the hybrid technique can be derived in terms of SNR for the orthogonal transform and the digital coding method. Explicitly,

SNR =
$$\frac{\sigma_x^2}{\sigma_e^2} = \frac{\sigma_x^2}{\sigma_y^2} \frac{\sigma_y^2}{\sigma_e^2}$$
 (4.1)

where σ_x^2 is the variance of the original signal, σ_y^2 is the variance of the orthogonally transformed vector coefficients, and σ_e^2 is the variance of noise. Using Parseval's theorem, it follows that $\sigma_x^2 = \sigma_y^2$ [25].

However, in the hybrid technique the insignificant coefficients are suppressed, and the error due to this suppression needs to be included in Equation (4.1). For simplicity, this error is included with the digital coding error, and expressed in the approximate form.

$$SNR^{V} = \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} = \frac{\sigma_{y}^{2}}{\sigma_{y'}^{2} + \sigma_{q}^{2}}$$
$$= \frac{1}{\frac{\sigma_{y'}^{2}}{\sigma_{y}^{2}} + \frac{\sigma_{q}^{2}}{\sigma_{y}^{2}}}$$
$$= \frac{SNR_{1}^{V} \cdot SNR_{2}^{V}}{SNR_{1}^{V} + SNR_{2}^{V}}$$
(4.2)

where $\sigma_{y'}^2$ is the variance of the suppressed coefficients, and σ_q^2 is the variance of the quantization noise. The term SNR_1^V refers to the signal-to-noise ratio obtained from the orthogonal transform technique, and the terms SNR_2^V refers to the signal-to-noise ratio obtained from a digital coding method.

In order to maintain reversibility, most of the energy of the transformed vector should be preserved, and thus SNR_1^V should be far greater than SNR_2^V . From this relation, the SNR^V can be simply expressed as

$$\operatorname{SNR}^{V} = \frac{\operatorname{SNR}_{1}^{V} \cdot \operatorname{SNR}_{2}^{V}}{\operatorname{SNR}_{1}^{V} + \operatorname{SNR}_{2}^{V}} = \operatorname{SNR}_{2}^{V}$$
(4.3)

where it is assumed that

$$SNR_1^V >> SNR_2^V$$

The compression ratio can be expressed in general as
$$CPR = \frac{Bit rate of the original signal}{Bit rate of the compressed signal}$$
(4.4)

Using Equation (4.4) the compression ratio of the hybrid technique is given by

$$CPR^{V} = \frac{N \cdot b_{O}}{M \cdot b_{1} + N}$$
(4.5)

where N is the number of data points in the original signal, b_0 is the number of bits used per sample, M is the number of retained coefficients, and b_1 is the number of bits used per coefficient. The last term in the denominator of CPR, N, corresponds to the number of bits necessary for the bookkeeping array. The bookkeeping array preserves the information for selection and suppression of the coefficients.

In general, $M \cdot b_1 >> N$, and Equation (4.5) can be approximated by

$$CPR^{V} = \frac{N}{M} \cdot \frac{b_{o}}{b_{1}} = CPR_{1}^{V} \cdot CPR_{2}^{V}$$
(4.6)

where CPR_1^V is the compression achieved by the orthogonal transform and CPR_2^V is the compression achieved by a digital coding method.

In the next section, CPR_1^V and SNR_1^V are examined in relation to the threshold value for the insignificant coefficient decision; also, the characteristics of the retained coefficients are discussed with respect to the digital coding techniques.

Selection of the Transformed Vector Coefficients

In Chapter II, it was shown that the discrete cosine transform (DCT) is the appropriate transform for the hybrid technique. For the selection of the significant coefficients, a threshold value computed from either the absolute maximum or the standard deviation of the coefficients needs to be determined. From an empirical observation (see Figure 21), it was determined that the threshold value from the standard deviation gives more uniform results for compression and signal-to-noise ratio. Figure 21a and 21b show the distribution characteristics of the signal-to-noise ratio and the compression ratio as functions of the threshold value for 16 traces of a given set of vibroseis data. From Figure 21, it can be seen that the threshold value varies from 1/80 to 1.10 of the standard deviation, and varies from 1/800 to 1/100 of the absolute peak value. Also, the compression ratio is more sensitive to the threshold value than the signal-to-noise ratio.

For selection of the significant coefficients, $(1/20) \sigma_x$ is used as the threshold value for the insignificant coefficients. With this threshold, the CPR ranges from 2.0 to 2.5, and the SNR is approximately 42 dB. These values indicate that by discarding $1/10^4$ of the total energy, at least two to one compression can be achieved from the DCT method. These can be denoted as $SNR_1^V = 10^4$ and $CPR_1^V > 2$.

The selection method has been applied to various lengths of partial vibroseis trace and their compression ratios are illustrated in Figure 22. It can be observed that whole trace shows the best compression result and less than 512 points of partial vibroseis trace shows almost no compression.

In order to obtain SNR_2^V and CPR_2^V , a proper digital coding method needs to be chosen to represent the retained coefficients. The compression results of various digital coding techniques, ADPCM, LPCM, APCM, and μ -law, are compared in Table III. This table shows that the μ -law quantization gives a better compression result than others. This result is due

(a) SNR Distribution of Suppressed DCT Coefficients

.

TABLE III	
-----------	--

TEST	APCM	ADPCM	LPCM	μ-LAW
1	25.92	18.82	24.26	27.38
2	23.96	13.36	23.96	26.30
3	14.69	13.08	24.24	26.53
4	16.27	18.94	24.83	30.46
5	19.50	12.56	25.65	30.78
6	13.68	11.20	24.07	26.56
7	18.20	22.06	25.66	28.34
8	23.84	19.80	24.92	26.87
9	21.43	20.35	26.11	27.86
10	17.27	14.60	26.54	27.72
11	18.94	16.83	26.93	27.88
12	19.51	19.09	26.38	26.67
13	26.38	28.19	28.80	29.41
14	20.12	23.62	28.27	30.11
15	19.70	18.71	27.97	30.22
16	14.86	10.45	23.86	30.43
AVG	19.64	17.60	25.84	28.34

SNR(dB) OF 6-BIT DIGITAL CODING METHODS ON SELECTED DCT COEFFICIENTS to the distributional characteristics of the retained coefficients and low correlation between adjacent coefficients.

Figure 22. Compression Ratio of Partial Vibroseis Trace

µ-Law Quantization

The μ -law quantization method is applied for quantizing the retained discrete cosine transform coefficients. In Chapter III, it was pointed out that the μ -value controls the dependence of the signal-to-noise ratio on the signal variance. Figure 23 illustrates the signal-to-noise ratio on the signal variance. Figure 23 illustrates the signal-to-noise ratio of μ -law quantization as a function of the signal variance and μ -value [18]. It can be seen that the dependence of the signal-to-noise ratio decreases as the μ -value increases. For example, with μ = 500, the signal-

Figure 23. SNR(dB) of μ -law Quantizer as a Function of $|X_{max}|/\sigma_{\chi}$ (After Rabiner and Schafer [6])

to-noise ratio remains stable over $\sigma_x < X_{max} < 100 \sigma_x$. For higher values of μ , the expected signal-to-noise ratio is lower. For this reason, a value for μ is adapted for each trace of the seismic data based on the value $(|X_{max}|/\sigma_x)$. It is shown in Table IV and the table is obtained empirically.

For encoding the quantized levels, PCM is used. The number of bits per code word is determined based on the required signal-to-noise ratio referred to as SNR_2^V in the previous section. The results corresponding to 6- and 7-bit encoding with PCM are illustrated in Table V. It was pointed our earlier that SNR^V approaches SNR_2^V when SNR_1^V is much higher than SNR_2^V (see Equation (4.3)). Noting that SNR^V is required to be greater than 30 dB in order to maintain reversibility, SNR_2^V is desired to be at least 30 dB. Table V indicates that a 7-bit PCM is required for encoding the μ -law quantized levels when the μ -value is computed to be greater 10. It can also be seen that a 6-bit PCM can be applied for the traces whose μ -value is ≤ 10 .

From Figure 23 and Table V, it can be observed that adaptation of the μ -value prior to applying the μ -law quantization influences the compression significantly. The adaptation of the μ -value requires overhead computation of the value ($|X_{max}|/\sigma_x$).

Implementation of the "Hybrid Technique"

In the last two sections, the hybrid technique was investigated using the discrete cosine transform followed by a μ -law quantizer with a 7-bit PCM encoder. The encoding and decoding procedures of the hybrid technique are illustrated in Figure 24a, b, c, and d.

In the transmitter, the seismic data are transformed via the DCT, and

TABLE V	
---------	--

		6-	віт	7-B	IT
TEST	μ-VALUE	SNR(dB)	CPR	SNR(dB)	CPR
1	30.0	28.02	8.50	33.68	6.38
2	100.0	25.85	7.62	31.63	5.71
3	100.0	26.43	8.80	31.55	6.60
4	10.0	30.45	9.13	36.48	6.84
5	10.0	30.78	10.55	36.70	7.91
6	10.0	25.69	8.09	31.60	6.07
7	30.0	27.93	10.02	33,78	7.51
8	30.0	27.61	11.71	34.32	8.78
9	50.0	27.60	9.03	34.14	6.78
10	30.0	27.16	9.73	33.59	7.30
11	100.0	27.47	9.48	33.41	7.11
12	30.0	28.42	8.87	34.64	6.65
13	50.0	27.81	7.96	34.00	5.97
14	30.0	26.69	8.69	33.17	6.52
15	30.0	28.37	8.96	34.52	6.72
16	50.0	27.76	9.18	33.74	6.89
AVG		27.74	9.15	33.81	6.86

,

RESULTS OF p-LAW QUANTIZATION

Figure 24. "Hybrid Technique" Procedures

(c):
$$\mu$$
 - LAW QUANTIZER

(d) INVERSE μ -LAW QUANTIZER

Figure 24. (Continued)

the transformed vector coefficients above the threshold value are selected by the selector shown in Figure 24a. The information of selection is transmitted to the receiver through the bookkeeping array. The retained coefficients are quantized with a μ -law quantizer and encoded for transmission. Details are shown in Figure 24c and d.

In the receiver, the coefficients are decoded and then dequantized with an inverse µ-law quantizer. Then, using the bookkeeping information, the mapper reconstructs the transformed coefficients by inserting zeros corresponding to the insignificant coefficients. These coefficients are inversely transformed via the IDCT. The output is the reconstructed seismic data; though it includes a slight distortion, it maintains the reversibility property.

Compression results are evaluated with respect to the signal-to-noise ratio and the compression ratio. The signal-to-noise ratio is computed from

$$SNR^{V}(dB) = 10 \log \frac{E[(x - x')^{2}]}{E[x^{2}]}$$
(4.7)

where x is the raw data and x' is the reconstructed data. The compression ratio is computed from Equation (4.5), simply replacing N with 4750,

$$CPR^{V} = \frac{4750 \times 20}{7M + 4750}$$
(4.8)

where M is the average number of retained coefficients and 4750 in the denominator indicates the size of the bookkeeping array.

Table VI presents the results of 16 traces of the vibroseis data. It should be pointed out that the SNR is approximately 2 dB lower than SNR_2^V due to the noise introduced by suppressing the insignificant DCT

TABLE VI

TEST	SELECT (DCT)	μ-LAW (7-BIT)	μ-LAW OVER-ALL (7-BIT) SNR		
1	43.8	33.7	32.6	4.91	
2	42.9	31.6	30.9	4.53	
3	43.7	31.7	29.3	5.03	
4	43.6	36.5	34.3	5.15	
5	44.2	36.7	34.4	5.72	
6	43.9	31.6	30.7	4.73	
7	44.5	33.8	32.3	5.52	
8	43.5	34.3	31.4	6.15	
9	45.2	34.1	31.7	5.03	
10	43.4	33.6	31.7	5.31	
11	42.0	33.4	31.5	5.27	
12	44.1	34.6	33.1	5.04	
13	43.2	34.0	32.9	4.68	
14	42.7	33.2	32.3	4.99	
15	43.2	34.5	33.4	5.00	
16	41.5	33.7	32.8	5.19	
AVG	43.5	33.8	32.2	5.16	

RESULTS OF VIBROSEIS DATA COMPRESSION

coefficients. The bookkeeping array may not be necessary since the transformed vector of each trace shows that most energy is concentrated in two major lobes, and the location of the lobes is common for all traces. These lobes are located at the beginning and ending of the trace. Also, for some traces, 6-bit μ -law quantization can provide over 30 dB of SNR corresponding to a small μ -value. For these cases, i.e., 6 b/sample and no bookkeeping array, the CPR^V can be computed as

$$CPR^{V} = \frac{4750 \times 20}{6M}$$
(4.9)

which gives a significant enhancement in compression ratio. From the statistical observation of the CPR, it can be concluded that compression ratios can be achieved in the range of five-to-one to eight-to-one via the hybrid technique.

Impulsive Seismic Data Compression

The impulsive seismic data have a good deal of similarity from trace to trace, which is different when compared to vibroseis data. It was pointed out in Chapter II that an impulsive trace has two distinct parts. Most of the energy is contained in the beginning of a trace and the rest of the trace is relatively insignificant. Figure 25 illustrates this aspect of an impulsive trace.

In order to examine the energy distribution characteristics, 25 traces of 1000 data points each are divided into five parts with equal duration. These 25 corresponding parts are concatenated to form a segment. For example, the first segment contains 25 first parts from the respective traces. Figure 26a through e illustrates the five segments taken from a 25-trace impulsive data. Considering the similarities, the five

Figure 26. Illustrations of Five Segments of Impulsive Seismic Data

Figure 26. (Continued)

Figure 26. (Continued)

segments are grouped into two sections; since the first part in each trace contains most of the energy, the first segment is identified by impulsive section. The remaining four segments contain insignificant amounts of energy and are referred by nonimpulsive section.

It was found that the impulsive section contains more than 99 percent of the total energy. However, the amount of energy does not necessarily correspond to the amount of information in seismic data analysis. For this reason, signal-to-noise ratio of the both sections, SNR_1^1 and SNR_2^1 , need to be maintained uniformly for preserving information contained in each section. That is, $SNR_1^1 \cong SNR_2^1$.

For simplicity, it will be assumed that the two sections are independent of each other. That is, it will be assumed that $\sigma_x^2 = \sigma_{x_1}^2 + \sigma_{x_2}^2$, where x_1 and x_2 correspond to the two sections. Noting $\sigma_{x_1}^2 >> \sigma_{x_2}^2$, $\sigma_{x_1}^2 >> \sigma_{e_2}^2$, it follows that overall SNR¹ can be expressed as

$$SNR^{I} = \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}} = \frac{\sigma_{x_{1}}^{2} + \sigma_{x_{2}}^{2}}{\sigma_{e_{1}}^{2} + \sigma_{e_{2}}^{2}} = \frac{1 + \frac{\sigma_{x_{2}}^{2}}{\sigma_{x_{1}}^{2}}}{\frac{\sigma_{e_{1}}^{2} + \sigma_{e_{2}}^{2}}{\sigma_{x_{1}}^{2} + \frac{\sigma_{e_{2}}^{2}}{\sigma_{x_{1}}^{2}}} = SNR_{1}^{I}$$
(4.10)

where $\sigma_{e_1}^2$ is the noise variance due to the first section compression technique and $\sigma_{e_2}^2$ is the noise variance due to the second section compression technique.

Next, the compression ratio can be expressed as using Equation (4.4),

$$CPR^{I} = \frac{B}{\frac{B_{1}}{CPR_{1}^{I}} + \frac{B_{2}}{CPR_{2}^{I}}}$$

$$= \frac{B CPR_1 \cdot CPR_2}{B_1 \cdot CPR_2 + B_2 \cdot CPR_1}$$

where $B = B_1 + B_2$. Variables B_1 and B_2 are the bit rates of the first and second sections, and CPR_1^1 and CPR_2^1 are expected compression ratios for the corresponding two sections.

These two sections will be compressed separately. The first section will be compressed using the predictive coding method based on linear prediction analysis, and the second section will be compressed using the hybrid technique discussed earlier. In the next section, predictive coding is discussed with respect to the algorithms for an optimum linear predictor.

Linear Prediction Analysis

Predictive coding simply corresponds to the differential coding with an optimum predictor, which is based upon Wiener's work [26]. Let P_i be the predicted value of the ith message m_i . Then, the prediction error is given by

$$e_1 = m_1 - P_1.$$
 (4.12)

Since P_i is a deterministic value, it has no information according to Shannon's definition. Thus by transmitting the error term, e_i, no information is lost.

The predictive coding and decoding procedures are illustrated in Figure 27, where an identical predictor appears in the transmitter and the receiver. Since the predictor operates on the past values of the message, storage of the past values is necessary. The size of this storage, or simply the order of the prediction, is an important parameter and is discussed later.

(b) RECEIVER

Figure 27. "Predictive Coding" Procedures (After Alias [26])

The predicted value P_i is a linear combination of the previous message values. That is,

$$P_{i} = \sum_{j=1}^{\infty} a_{j} m_{i-j}$$
(4.13)

where the a_j 's are some constants to be determined by minimizing the root mean square value of e_i . Wiener has shown that this predictor is determined not by the message ensemble, but by the autocorrelation function of the ensemble [26]. In general, there will be many ensembles with the same autocorrelation function, and all of these will have the same linear predictor.

For obvious reasons, Equation (4.13) cannot be implemented with infinite sum, and P_i is given below with finite sum

$$P_{i} = \sum_{j=1}^{P} a_{j} m_{i-j}$$
(4.14)

where P corresponds to the order of the filter.

For this case, there are various formulations, such as the covariance method [27], the autocorrelation method [28], the lattice method [29], the inverse filter formulation [28], the spectral estimation formulation [30], the maximum-likelihood formulation [31], and the inner product formulation [28]. The most simple method is the autocorrelation method, which uses Durbin's recursive solution [28].

Consider the autocorrelation equations [23]

$$\sum_{k=1}^{P} \alpha_k R(i-k) = R(i) \qquad 1 \le i \le p \qquad (4.15)$$

$$R(i) = \sum_{m=0}^{N-i-1} X(m) X(m+i)$$
(4.16)

where R(i) is the ith autocorrelation lag, and N is the number of data points. The solution of Equation (4.15), by Durbin's method, is given by

$$E^{(0)} = R(0)$$
 (4.17)

$$k_{i} = (R(i) - \sum_{j=1}^{i-1} \alpha_{j}^{(i-1)} R(i-j)) / E(i-j)$$
(4.18)

$$\alpha_{j}^{(i)} = k_{i} \qquad (4.19)$$

$$\alpha_{j}^{(i)} = \alpha_{j}^{(i-1)} - k_{i} \alpha_{i-j}^{(i-1)}$$
(4.20)

$$E^{(i)} = (1 - k_i^2) E^{(i-1)}$$
(4.21)

where E is the variance of the prediction error, $\alpha_j^{(i)}$ is the jth parameter of the ith order predictor, and i is contained in the closed interval [1, P] while j is contained in the closed interval [1, i-1]. It should be noted that

$$\alpha_j = \alpha_j^{(p)}$$

which implies that α , of the pth order predictor is equal to α , of an ith j order predictor where i \leq p.

The most popular method of implementation of a linear predictor is by the Lattice method, which uses k_i in Equation (4.19). The variable k_i is often referred to as partial correlation coefficients or PARCOR coefficients [29], and k_i 's can be computed recursively. It is guaranteed to yield a stable filter without requiring the use of a window [6]. The Lattice method computes the prediction error as follows [32]. The prediction error sequence, $e^{(i)}(n)$, can be expressed as

$$e^{(i)}(m) = e^{(i-1)}(m) - k_i b^{(i-1)}(m-1).$$
 (4.22)

Recursively, the ith stage backward prediction error is computed from

$$b^{(i)}(m) = b^{(i-1)}(m-1) - k_i e^{(i-1)}(m)$$
 (4.23)

where

$$e^{(0)}(m) = b^{(0)}(n) = s(m).$$

This procedure is illustrated in Figure 28.

Implementation of "Predictive Coding"

It was discussed earlier that impulsive seismic data are divided into two sections due to the energy distribution characteristics. The predictive coding technique is used for the impulsive section in order to achieve better signal-to-noise ratio by taking advantage of the prediction gain discussed in Chapter III (see Equation (3.8)). For the second section, referred to as non-impulsive section, the hybrid technique with a 6-bit μ -law quantizer is used for the DCT coefficients. The details of the hybrid technique were discussed earlier.

In the following implementation, considerations of predictive coding are discussed. The predictor coefficients are derived from the linear prediction analysis using Durbin's autocorrelation method. The residual signal is computed from the Lattice method [29]. It should be noted that the prediction parameters and the PARCOR coefficients are computed only

Figure 28. Block Diagram of Implementation of the lattice Method (After Rabiner and Schafer [6])

once and shared by all traces. Also, the PARCOR coefficients are transmitted to the receiver for synthesizing the original seismic data.

Table VII gives ten parameters corresponding to a tenth-order linear predictor for eight impulsive seismic traces. It can be seen that the first five parameters for each trace are approximately same. It was found from empirical result that a fifth-order predictor is sufficient. Using the Lattice method residual signal, or simply prediction error, is computed where the PARCOR coefficients are obtained from the fifth-order linear predictor. For the residual signal coding, a 6bit μ -law quantizer is used. These two coded sections are edited into one array for transmission. Table VIII illustrates the quantization signal-to-noise ratios of prediction method comparing with LPCM and 6-bit μ -law coding. It is shown that μ -law coding method approaches the result of prediction method by 1 dB.

At the receiver, the coded residual signal and the coded transformed coefficients are separately decoded. The decoded residual signal is synthesized and the impulsive section is reconstructed. For reconstructing the nonimpulsive section, the hybrid technique is used. Then, both reconstructed sections are concatenated for obtaining the full trace of the impulsive seismic data. These procedures are illustrated in Figure 29. The impulsive sections and their residual signals are shown in Figure 30, where the prediction gain can be easily noted.

The compression results are evaluated with respect to the signal-tonoise ratio and the compression ratio. The SNR of two sections are computed from

$$SNR_{1}^{I} = E[(X_{1} - X_{1}^{i})^{2}]/E[(X_{1}^{2})]$$

	TA	۱B	LE	Ξ	V		l
--	----	----	----	---	---	--	---

PREDI	СТ	ION	PAR	AME	TERS
-------	----	-----	-----	-----	------

trace	1	2	3	4	5	6	7	8	9	10
1	-0.594	0.781	-0.697	0.764	-0.583	0.629	-0.267	0.061	0.199	-0.050
2	-0.572	0.768	-0.714	0.731	-0.551	0.540	-0.193	0.166	0.165	-0.077
3	-0.680	0.770	-0.728	0.738	-0.555	0.619	-0.268	0.210	0.043	-0.127
4	-0.719	0.726	-0.741	0.730	-0.560	0.698	-0.202	0.182	0.116	-0.029
5	-0.627	0.836	-0.736	0.752	-0.637	0.653	-0.342	0.179	0.028	-0.090
6	-0.656	0.769	-0.755	0.686	-0.600	0.624	-0.344	0.453	-0.216	-0.191
7	-0.673	0.773	-0.742	0.674	-0.493	0.367	-0.101	-0.101	0.024	0.058
8	-0.755	0.751	-0.712	0.763	-0.567	0.574	-0.329	0.291	-0.146	0.118

TABLE VIII

RESULTS OF IMPULSIVE SEISMIC DATA COMPRESSION/DECOMPRESSION

	IMPULSIVE SECTION			NON-IMPULSIVE SECTION	OVER-ALL CPR
TRACE	LPCM	μ -LAW	PREDICTION	HYBRID	
1	27.16	28.56	30.09	34.62	6.48
2	27.40	28.62	28.57	30.76	5.47
3	27.17	29.43	30.44	30.17	5.99
4	27.08	29.02	30.30	31.04	6.13
5	27.43	29.58	30.44	32.53	6.83
6	25.49	28.32	29.92	32.21	6.82
7	27.95	30.01	30.37	32.37	6.63
8	28.11	29.83	30.40	31.83	5.61
AVG	27.22	29.18	30.06	31.94	6.25

IMPULSIVE SEISMIC DATA COMPRESSION

Figure 29. Impulsive Seismic Data Compressive/Decompressive Procedures Using "Predictive Coding" and "Hybrid Technique"

Figure 30. Illustration of Prediction residual signal of Impulsive Section

$$SNR_2^{I} = E[(X_2 - X_2^{I})^2]/E[(X_2^2)]$$

where X_1 is the original impulsive section, X_2 is the original nonimpulsive section, and X_1' and X_2' are their reconstructed data.

The compression ratio is computed from

$$CPR = (N_1 \times 6 + M \times 6 + N_2) / (1000 \times 20)$$

where N_1 is the number of data in the impulsive section, N_2 is the number of data in the non-impulsive section, and M is the number of the retained coefficients of the non-impulsive section. N_2 is included as a bookkeeping information array. SNR_1^1 , SNR_2^1 , SNR_1^1 , and CPR are illustrated in Table VIII, and the average compression ratio is approximately 6.25 to 1.00 for the impulsive seismic data at hand.

Examples

Compression techniques for vibroseis data and impulsive seismic data have been developed and their performances were evaluated earlier. In order to visualize these compression procedures on seismic data, Figures 31 and 32 illustrate outputs of each functional block of the hybrid technique and predictive coding shown in Figures 24a, 24b and 27. Figure 31a is the plot of one vibroseis trace with 4750 data points, Figure 31b is the DCT coefficients of the vibroseis trace, Figure 31c is the selected DCT coefficients reduced to 2216 points, and Figure 31d is the μ -law quantized and a 7-bit PCM coded result of the selected DCT coefficients. Exact inverse procedures are performed (see Figure 24b) at the receiver and Figure 31e illustrates the reconstructed vibroseis trace.

The impulsive seismic data case is illustrated in Figure 32. Figure 32a is the plot of one impulsive seismic trace with 1000 data points.

Figure 31. Illustration of Vibroseis Data Compression/Decompression

Figure 31. (Continued)

Figure 31. (Continued)

⁻ 103

Figure 32. Illustrations of Impulsive Seismic Data Compression/Decompression

Figure 32. (Continued)

This trace is segmented into two sections, impulsive and nonimpulsive, as illustrated in Figures 32b and 32c. Figure 32d shows the residual signal of the impulsive section, and 32e is the DCT coefficients of nonimpulsive section. Selection of the significant DCT coefficients and coding of the selected coefficients are performed in a similar manner as the vibroseis data case. The reconstructed data of the both sections at the receiver are shown in Figures 32f and 32g, respectively.

From Figures 31 and 32, it can be seen that the reconstructed waveforms have no noticeable distortion. Furthermore, the objective data given in terms of SNR's in Table VI and VIII indicate that 30 dB SNR requirement is, in general, satisfied for the data in hand.

In the next chapter, simulation program steps will be evaluated with respect to their execution time and core size requirement for realtime implementation considerations.

CHAPTER V

SEISMIC DATA TRANSMISSION VIA SATELLITE

Introduction

Most satellite systems provide a variety of bandwidths so that the interface equipment for the terrestrial links can also be used for satellite circuits. In Chapter II, the basic idea of seismic data transmission via satellite was proposed due to the bandwidth constraints of channels, storage limits, and transmission costs, data compression has been considered. Specific compression methods have been developed for vibroseis data and impulsive seismic data in Chapter IV.

This chapter considers some important aspects of the compressed seismic data transmission over a satellite channel. Figure 33 illustrates a digital communication system [23]. This includes several functional blocks, such as source encoder/decoder, channel encoder/decoder, modulator/demodulator, and the communication channel. Satellite systems provide a variety of services so that the user can interface with this system properly. This chapter discusses only the portion of the overall system that needs to be interfaced.

First, the source encoder and decoder, the seismic data compressor and decompressor in this thesis, are examined with respect to their execution time and core size requirement. These are evaluated from the simulation program of the hybrid technique and predictiving coding discussed in

Figure 33. Digital Communication System (After Shanmougam [23]) Chapter IV. Also, some important factors of real-time system design considerations are discussed.

Second, access methods such as frequency division multiple access and time division multiple access of the satellite channel are explored. Finally, network protocols for satellite channels are examined with two types of link control procedures, half-duplex and full-duplex, and their transmission efficiencies are evaluated.

Time and Space Configuration

In Chapter IV, the hybrid technique and predictive coding have been developed for compressing vibroseis data and impulsive seismic data. These techniques have been simulated in FORTRAN language with the IBM 370. All FORTRAN subroutines that are used in this thesis are included in Appendix C. The hybrid technique involves seven subroutines: FDCT (fast discrete cosine transform), SELECT (significant DCT coefficients selector), CONMEU (μ-law quantization), ENCODE (PCM coder), DECODE (mapping and decoding), INVMEU (inverse μ -law quantization), and FIDCT (fast inverse DCT). The first four subroutines are used for compression at the transmitter, and the remaining three subroutines are used for compression at the receiver for vibroseis data and/or nonimpulsive section of impulsive seismic data. The predictive coding involves three subroutines: AUTO (autocorrelation method for LPA), INVERS (lattice method for inverse LPA), and SYNTHZ (synthesizer), in addition to four coding and decoding subroutines: CONMEU, ENCODE, DECODE, and INVMEU. AUTO is used only for the first trace in order to obtain prediction parameters. INVERS, CONMEU, and ENCODE are used for compression at the transmitter, and DECODE, INVMEU, and SYNTHZ are used for decompression of the impulsive section of the

impulsive seismic data. In the following, these subroutines are evaluated with their execution time and core size requirements.

First, all the routines mentioned above are compiled with the FOR-TRAN H compiler and cross-referenced with IBM 370 assembler language (see Appendix C). Since execution time of each instruction may vary among computer systems, the execution time is expressed as a combination of instruction types rather than absolute numbers for the IBM 370 case.

Second, the instructions are divided into six different types, such as load/store, multiply/divide, add/subtract, branch, compare, and external subroutine calls. These divisions are based on characteristics of instructions, and it should be pointed out that the differences of execution time within one type of instruction, such as load, load address, and load resistor, are ignored for simplicity. The execution time of the above six types are denoted as t_1 , t_m , t_a , t_b , t_c , and t_x , respectively.

Third, instructions inside "DO" loops are evaluated rather than entire program steps, since the execution time is mostly occupied by "DO" loops. This assumption will not introduce a great deal of error in time estimation if the number of iterations of a "DO" loop is high.

For illustrative purposes, these procedures are implemented for a subroutine CONMEU. The source listing and cross-referenced assembler listing of CONMEU are shown in Table *IX*. It can be seen that there are five-load, three-store, three-multiply, two-divide, one-add, and three-branch instructions inside "DO" loop 10. The "DO" loop is iterated as many times as the value of the variable NUM. The variable NUM indicates the number of selected DCT coefficients in this case. Thus, the execution time can be estimated as

TABLE IX

COMPILED LISTING OF SUBROUTINE "CONMEU"

							/ STRUCTLRED SCURCE LISTING /	
(002	LSN	0002		SUBF	CUTINE CCN	NEU (F	CATA, NUM, EP SLCN, XMAX, FREL)	00000510
				С	MEU-LA	W CCN	VERTER	00000550
				С				00000530
				с	RDATA	:	INPUT ARRAY DCT COEFFICIENTS OF SEISMIC DATA TRACE	00000540
				с	RMEL	:	NEL-VALUE	C00CC95C
				с	XMAX	:	ABSCLUTE NAXIMUM VALLE OF FOATA AFRAY	00000960
				с	NUM	:	NC. CF DATA FCINTS PER SWEEPS	00000570
				с	EFSLON	:	THRESHOLD VALUE OF INSIGNIFICANT DOT COEFFICIENTS	00000560
				с				00000990
	ISN	0 C 03		DINE	NSIGN REAT	A(1)		00001 000
				с	APFLY	NEU-L	AN	00001010
	1 SN	0004		R MEU	1=F#EU+1.0			00001020
	I SN	0005		0E1=	ALCG(FREUL)		C000103C
	ISN	0100		EPSL	CN=EPSLUN/	* AM *	, ,	00001040
	ISN	0007		EPSL	CN=1.0+FME	U#EPS	LCN	00001050
	ISN	0008		EPSL	CN = X # A X * AL	CG(EF	SLCNI	COOC1CEC
	ISN	0009		EP SL.	CN=[EPSLCN	ZDENI		00001070
	I SN	0010		001	C I=1,NUM			C 0 0 0 1 0 8 C
(001	ISN	0011		RDAT	A(1)=0.0			0000109C
	I SN	0012		SIGN	=1.0			00001100
	I SN	601J		ABSR	ABSIRCATA	(1))		00001110
	1 5N	0014		1F (FDATA(1).L	1.0.0) SIGN=+1.0	C000112C
	I SN	0016		ABSR	= AB SR / XMA X			00001130
	I SN	0017		AESF	=1.0+FMEL*	AESR		00001140
	I SN	0018		ABSR	***AX*ALCG	(AB SF	i)	00001150
	ISN	0019		ABSF	= (ABSR /DEN	1+516	in la	00001100
	I SN	0020		RCAT	/(I)=AESE			C000117C
	ISN	0021	10	CONT	INLE			00001180
001)				с				
	ISN	0022	20	RETU	FN			00001150
002)				C				,
	ISN	0023		END				00001200

TABLE IX (Continued)

*LEVEL 2.3.0 (JUNE	78)		C\$/360 FCR	TRAN H	EXTENDED	DATE 81.153/21.05.18
	000000	47 FO F 00C	CENMEU	ЕC	15,12(0,15)	
	000004	07		C C	×L1'07'	
	000005	C3CED5D4CEE440		DC	CL7ºCCNNEU •	
	00000C	\$0 EC D 00C		STM	14,12,12(13)	
	000010	18 4D		LR	4,13	
	000012	58 CD F 020		LM	12,13,32(15)	
	000016	EO 40 D CO4		ST	4,4(0,13)	
	000014	50 DO 4 008		51	13,8(0,4)	
	00001E	07 FC		ECR	15,12	
CUNSTANTS						
	000080	000000		DC	XL4.CCCGCOCO.	
	000024	0000001		C (XL4 • 00000001 •	
	880000	41100000		DC	XL4 • 4110C000 •	
	00009C	0000000		DC	XL4 º 00000000 º	
	000050	00(0000		DC	XL4 • 00000000 •	
AUCONS FOR VARIABLE	LEEDER					
ADECING FOR EXTERNAL				nc	X1 A1 CCCC00001	
	0000000	0000000		00		
	0000000	55 80 D (AA	100001			RUATA
	0000020	58 40 0 084	100001			
	000064	58 70 0 074			2 + 116(-0.13)	4
	000068			16	0. 56(0.13)	
	JUDDOFC			AE		41100000
	000100	70 00 0 688		STE	0 + 136(0 + 13)	Prec
	000104			1	15. 160(0.13)	Rifeor
	000108					ALUE
	000100	05 FF		EALD	14.15	
	00010F	47 00 0 005		BC		
	000112	70 00 D 08C		STE	(, 186(0, 13))	. 100
	000116	70 00 0 670		STE	(112(0.13))	CEN
	000114	78 20 0 090		IF	2. 144(0.13)	FESICA
	00011E	70 20 D CE4		DE	2. 132(0.13)	
	000122	70 20 D (50		STE	2 144 (0 13)	EDSLON
	000126	7C 20 D 07C		ME	2. 124(0.13)	ENEL
	00012A	7A 20 D 060		AE	2. 56(0.13)	41100000
	00012E	70 20 D 090		SIE	2. 144(0.13)	FESICA
	SE 1000	53 FO D 040		L	15. 160(0.13)	
	000136	41 10 D C50		LA	1. 80(0.13)	

.

117

·

,

TABLE IX (Continued)

ALIGOO	05 EF		HALR	14,15	
000130	47 00 0 CCE		EC	Ο, Ε(Ο.Ο)	·
000140	78 20 D CE4		LE	2, 132(0,13)	XMAX
000144	3C 20		MER	ź. (
000146	70 20 D 090		STE	2. 144(0.13)	EPSLEN
000144	7D 20 D 08C		DE	2. IEE(0.13)	o 10 0
0001 4E	70 20 N 090		STE	2, 144(0,13)	EPSLEN
000152	78 00 D (EQ		16	0, 96(0,13)	41100000
000156	33 00		LCER	(. 0	
000158	70 00 D 080		STE	0, 176(0,13)	
00015C	18 87		LR	11. 7	
00015E	89 EO O 002		SLL	11, ź	
000162	18 SA		L F	5,10	
000164	78 CO D C58	10000	LE	C. 8E(0,13)	0
000168	70 09 B 000		STE	c, c(9,e)	F C A T A
00016C	78 00 D C60		LE	0, 96(0,13)	A1100000
000170	70 00 D 080		STE	(, 12E(0,13)	5161
000174	78 29 8 000		LE	2. 0(5.8)	FCATA
000178	30 02		LPER	0. 2	
00017A	70 00 D C7E		STE	C. 120(0.13)	ABSF
00017E	32 22		L 1ER	i. i	
000180	47 A0 D 164		EC	10, 356(0,13)	100004
000184	78 00 D 080	100003	LE	0, 17((0,13)	. C 0 2
0001 88	70 00 D 080		STE	0, 128(0,13)	SIGN
000180	78 20 D C78	100004	LE	2, 120(0,13)	AUSF
000190	7D 20 D 064		DE	2. 132(0,13)	XWAX
000194	7C 20 D 47C		►E	2. 124(0.13)	RNEL
000198	7A 20 D 660		AE	2. 96(0.13)	41100000
000190	70 20 D 078		STE	2, 120(0,13)	AESF
000140	SE FO D OAO		L	15, 160(0,13)	ALOG
000144	41 10 D 054		LA	1, 84(0,13)	
0001 AB	05 EF		EALR	14.15	
000144	47 00 0 012		EC	C, 18(0, 0)	
OOULAE	78 20 D C84		LE	2. 132(0.13)	XMAX
000182	3C 20		MER	2.0	
000184	7D 20 D (70		DE	2, 112(0,13)	DEN
000188	7C 20 D 080		ME	2, 128(0,13)	SIGN
ODOIRC	70 29 8 000		STE	2. 0(5,8)	FDATA
000100	87 9A D 13C	10	EXLE	9,10, 316(13)	100002
0001C4	10 FF	20	SR	15,15	
000166	58 EO D 000		L	14. C(0.13)	
0001CA	07 FE		ECR	15.14	

.

TABLE IX (Continued)

AUDRESS OF EPILOG			
	0001CC 58	AQ D 004	L 10. 4(0.13)
	000100 58	E0 A 00C	L 14, 12(0,1C)
	000104 58	80 A 018	L 11, 24(0,10)
	0001D8 56	10 B CO8	L 1, 8(0,11)
	0001UC 78	20 D 090	LE 2, 144(0,13) EFSLCM
	0001E0 70	20 1 000	STE 2, 0(0,1)
	0001E4 18	DA	LR 13.10
	0001E6 92	FF A DOC	MV1 12(10),255
	OUDIEA SE	2C A 01C	LM 2,12, 28(10)
	UU01EE 07	FE	BCR 15.14
ADDRESS OF PROLOGO	JE		
	0001F0 \$8	7A 1 CO4	LN 7.10. 4(1)
	0001F4 58	20 7 000	L 2. 010.7)
	0001FB 50	20 D C74	ST 2, 116(0,13) NUM
	0001FC 78	2C 8 000	LE 2. 0(0.8)
	000200 70	20 D 090	STE 2, 144(0,13) EFSLCN
	000204 76	20 9 000	LE 2, 0(0,5)
	000208 70	20 0 084	STE 2. 132(0.13) XNAX
	00020C 78	20 A 000	LE 2, 0(0,10)
	000210 70	20 D C7C	STE 2. 124(0.13) / PMEL
	000214 58	20 1 000	L 2, 0(0, 1)
	000218 41	30 2 000	LA 3, 0(0,2)
	00021C 41	E0 0 C04	LA E, 4
	000220 IE	25	SR 2, 5
	000222 50	20 D (A4	ST 2, 164 (0,13)
	000226 50	30 D 048	ST 3, 166(0,13) BLATA
	000224 47	FO D 0CA	66 15 1061 0 131

`

•

•

$$E_t(CONMEU) = NUM \cdot (8t_1 + 5t_m + t_a + 3t_b).$$
 (5.1)

In a similar manner, execution time for the remaining routines can be evaluated. The number of occurrences of each type of instruction set inside the "DO" loops for the remaining subroutines are given in Table X. The subroutines FDCT and FIDCT call FFT subroutines of IMSL (International Mathematical Subroutine Library), FFTRC, and FFTCC. Since the FFT function can be performed by a dedicated processor and there are numerous software packages of FFT, the execution time of these particular FFT routines are not evaluated here. For FDCT, the execution time can be expressed as

$$E_{t}$$
 (FDCT) = NUM · (37t₁ + 2t_m + 5t_a + 7t_b) + t_x, (5.2)

where the time t is solely dependent on a chosen FFT algorithm processor, and NUM is the number of data points to be transformed.

From these analyses, total execution time of the hybrid technique at the transmitter, that is, a compression only, can be computed from

$$TE_{t}^{H}(Tr) = E_{t}(FDCT) + E_{t}(SELECT) + E_{t}(CONMEU) + E_{t}(ENCODE).$$
(5.3)

Similarly, at the receiver, corresponding to the decompression, the execution time is given by

$$TE_{t}^{H} (Re) = E_{t}(DECODE) + E_{t}(INVMEU) + E_{t}(FIDCT)$$
(5.4)

Also, the execution time for the predictive coding at the transmitter is given by

$$TE_{t}^{P}(Tr) = E_{t}(AUTO) + E_{t}(INVERS) + E_{t}(CONMEU) + E_{t}(ENCODE).$$
(5.5)

TΑ	В	LE	ΞХ	

FREQUENCY	LIST OF 6-TYPE INSTR	UCTIONS
	INSIDE "DO" LOOP	

-

SUBROUTINE	LOAD/ STORE	MULT/ DIV.	ADD/ SUB.	BRANCH	COMP.	EXT. CALL
FDCT	37	2	5	7		FFTRC
SELECT	18	1	8	6	2	
CONMEU	15	5	1	3		
ENCODE	20	2	7	5	1	
DECODE	8	1	1	2	1	
INVMEU	22	3	2	6		
FIDCT	26	1	3	6		FFTCC
AUTO	114	6	36	12	6	
INVERS	89	10	10	11		
SYNTHZ	94	10	20	11		

At the receiver, the execution time for reconstructing the impulsive section from the coded residual signal is given by

$$TE_{t}^{P}(Re) = E_{t}(DECODE) + E_{t}(INVMEU) + E_{t}(SYNTHZ).$$
(5.6)

It should be pointed out that CONMEU, ENCODE, DECODE, and INVMEU, which are used in both the predictive coding and the hybrid technique, are functions of the iteration value. Also, note that predictive coding is applied only for the impulsive section of an impulsive seismic trace. The subroutine AUTO will be used only for the first trace of impulsive seismic data, and therefore Equation (5.5) can be rewritten as

$$TE_{t}^{P}(Tr) = E_{t}(INVERS) + E_{t}(CONMEU) + E_{t}(ENCODE).$$
(5.7)

Finally, the core size requirement can be obtained by examining the address range of the assembler listing of each routine. For example, the address range of CONMEU, in terms of base 16, is from 0_{16} to $22E_{16}$, or, in terms of base 10, from 0_{10} to 558_{10} . The unit of memory is, in general, a byte (8-bit) and the address range shows that the subroutine CONMEU needs 558 bytes of memory size. Table XI illustrates the core size requirement and the number of program statements for all routines involved in the hybrid technique and predictive coding.

For estimating the required memory size of the computer system for implementing these techniques, the following need to be considered. If all routines are loaded simultaneously in the memory, the memory size needs to be a sum of all required core sizes of subroutines and a main routine which handles subroutines, that is,

$$C = \sum_{i=a}^{x} C_{i} + C(Main), \qquad (5.8)$$

тав	LE	XI	

SUBROUTINE	CORE SIZE (BYTES)	PROGRAM STATEMENT
FDCT	59582	16
SELECT	914	56
CONMEU	558	22
ENCODE	558	22
DECODE	418	11
INVMEU	560	23
FIDCT	59460	13
AUTO	1026	44
INVERS	662	19
SYNTHZ	694	19

MEMORY SIZE REQUIREMENT

where C_i is the core size for the subroutine i. However, in the proposed method, one routine is used at one time and the remaining routines are stored in the secondary storage. With this assumption, the memory size can be computed from

$$C = MAX (C_a, C_b, ..., C_x) + C(MAIN).$$
 (5.9)

For example, the required core size of the hybrid technique for compressing the vibroseis data trace (4750 data points) is given by

$$C^{H}(Tr) = MAX (914, 558, 59582, 558) + 38260$$

= 97842 (bytes). (5.10)

The large core size requirement for the FDCT and FIDCT can be explained by the working area that FFT routines use. This working area can be significantly reduced by using chirp z-transform (CZT) algorithm [9]. The size of the MAIN routine is a function of the data points and it includes all global variable storages, such as input array, code array, and bookkeeping array. It can be concluded that the total core size requirement may be down to 64k-byte for implementing the compression technique for vibroseis trace if CZT is used for FDCT and FIDCT.

Real-Time Design Considerations

The definition of real time is obviously application dependent and can vary anywhere from milliseconds to hours [32]. For the proposed seismic data transmission via satellite, general relationships among processing time, transmission time, and depth of queue are investigated to some extent. The term "queue" indicates in general the place where a job waits to be serviced by the system. There may be several queues in one system, such as input queue waiting for CPU or output queue waiting for printer or display terminal. In this section, the queue is mainly used for the data to be transmitted, as shown in Figure 34.

The processing time is a flexible factor and very much dependent on the structure of the system, such as multiprocessor structure, dedicated processor, or hardware multiplier system, and so forth. The response time, in general, dictates the type of processing. The processing time of the hybrid technique using a multiprocessor system can be obtained from Equation (5.3), and is expressed as

$$T_{p} = TE_{t}^{H} (Tr)/N$$
, (5.11)

where N is the number of processors in the system.

The depth of queue can be computed from [33]

$$Q_d$$
 = Input rate - Output rate (bits/second) (5.12)

where the input rate is the incoming data rate (bits/second) into the queue and is given by

and the output rate is the data rate which is taken out of the queue. It is given by

Output rate = MIN (Input rate [Speed of circuit \cdot e]), (5.14)

where e is the transmission efficiency and is defined by [34]

$$e = \frac{\text{Data transmission time}}{\text{Total transmission time}}$$
 (5.15)

The speed of circuit indicates the bandwidth of the channel. Satellite circuits include network protocols which control satellite channels. It

Figure 34. Data Compression and Transmission System

is clear that the speed of the circuit multiplied by the transmission efficiency should be less than the input rate in order that the channel bandwidth is used efficiently. From Equations (5.13), (5.15), and (5.15) the depth of queue in Equation (5.12) can be rewritten as

$$Q_{d} = \frac{Compressed seismic data rate}{T_{p}}$$
- (Channel bandwidth • e). (5.16)

The transmission time (T_t) of the compressed seismic data is computed from

$$T_{t} = \frac{\text{Compressed seismic data}}{(\text{Channel bandwidth} \cdot e)} .$$
(5.17)

The response time of the system can be obtained from

$$R = MAX (T_{p}, T_{t}),$$
 (5.18)

provided there is enough space in the queue so that processing time can be independent from the transmission time. It indicates that the processing time may be as long as the transmission time without degrading the response time.

The above considerations have not taken into account the effects of transmission delay and/or the overhead control bits to be transmitted. In the next section, detail of the satellite links and constraints of block size in relation to the bandwidth will be discussed. Also, the transmission efficiency will be examined with two types of line control procedures.

Satellite Communication

Satellite links have the following general properties [34]. There

is approximately 270 msec of propagation delay and transmission cost is independent of distance within the range of a satellite. A signal sent to a satellite is transmitted to all receivers within the range of the satellite antenna, simply referred to as broadcast property. Also, a satellite provides large bandwidths and uses digital transmission. The broadcast property of satellites may cause a serious security problem. However, it can be economic for transmitting data to geographically dispersed places.

Access methods of satellite links are different from terrestrial links due to their propagation delay and large bandwidth. Some of the basic terms associated with satellite communications are defined in Appendix D.

Network Protocols

Network protocols are sets of rules that govern the flow of data in a network. This involves automatic error detection and correction as well as recovery procedures [35]. In general, protocols are divided into three levels. The lowest-level protocol is the hardware level, such as hardware interfaces, where "handshaking" sequences can be achieved. The high-level protocol, referred to as a link control procedure, is a set of rules that ensures a block of data gets from one end of a data link to the other without errors. The highest-level protocol is another set of rules related to message flow. This level interacts with the line control procedure for complete message reception. This protocol is often referred to as a network handler.

A system which detects an error in data and has those data automatically retransmitted is called ARQ (automatic repeat request). ARQ systems

are of two types: stop and wait ARQ with half-duplex line and continuous ARQ with full-duplex line. These two types of line control procedures are discussed in this section in relation to their message exchange sequence and transmission efficiencies. Also, the optimum frame size (1/0 buffer size) for continuous ARQ is examined with respect to the speed of the circuit and error rate.

<u>Half-Duplex Transmission</u>. This is the most common line control procedure in use today, and stop and wait ARQ uses this transmission. In stop and wait ARQ, the source waits for an acknowledgment from the receiver before transmitting the next block of data. If the source receives ACK (no error acknowledgment), it continues transmitting the next block; but if NAK (error acknowledgment) is received, the source retransmits the last block of data. Figure 35 illustrates this procedure.

The total transmission time of this type of line control procedure can be computed, as illustrated in Table XII. In this table, 4800 bps (600 bytes/sec) channel is used to transmit 240 bytes of data and it gives a transmission efficiency of 400/934 = 43 percent. Improvement on transmission efficiency of such a system can be achieved by increasing the size of message blocks. However, this may create other problems, as long messages are more error-prone than short messages.

<u>Full-Duplex Transmission</u>. Another method of improving the throughput is to use full-duplex circuit and to transmit messages without acknowledgments. This method is examined with continuous ARQ, shown in Figure 36. In continuous ARQ, while the blocks are being transmitted the stream of acknowledgments is examined by the transmitting terminal. When the transmitting terminal receives a negative acknowledgment or fails to receive a

Figure 35. Stop and Wait ARQ (After Martin [35])

Figure 36. Continuous ARQ (After Martin [35])

TAD	1 5	V I	
IND	ᄕ	~ 1	

Message transmission time240/600 = 400Propagation delay250Modem delay10Receiver reaction time2Transmission time for acknowledgement10Propagation delay250Modem delay10Computer reaction time2Total : 934 msection			
Propagation delay250Modem delay10Receiver reaction time2Transmission time for acknowledgement10Propagation delay250Modem delay10Computer reaction time2Total : 934 msec	Message transmission time	240/600 =	400
Modem delay10Receiver reaction time2Transmission time for acknowledgement10Propagation delay250Modem delay10Computer reaction time2Total : 934 msec	Propagation delay		250
Receiver reaction time 2 Transmission time for acknowledgement 10 Propagation delay 250 Modem delay 10 Computer reaction time 2 Total : 934 msec 234 msec	Modem delay		10
Transmission time for acknowledgement 10 Propagation delay 250 Modem delay 10 Computer reaction time 2 Total : 934 msec	Receiver reaction time		2
Propagation delay 250 Modem delay 10 Computer reaction time 2 Total : 934 msec	Transmission time for acknowledgement		10
Modem delay 10 Computer reaction time 2 Total : 934 msec	Propagation delay		250
Computer reaction time 2 Total : 934 msec	Modem delay		10
Total : 934 msec	Computer reaction time		2
	-	Total :	934 msec

TRANSMISSION TIME LIST

After Housley [34].

positive acknowledgment, it must determine which block was incorrect. The blocks are therefore numbered.

Considering the transmission time delay of the satellite, the acknowledgment may be received more than several blocks after it was transmitted. For this reason, usually a 7-bit counter is used for the satellite channels while a 3-bit counter is used for the terrestrial links. With a 7-bit counter, 128 blocks can be numbered before it reinitializes the counter.

The transmission efficiency of the continuous ARQ is computed from

$$e = N_d / (N_d + N_h),$$
 (5.19)

where N_d is the number of data bits in a frame, and N_h is the number of overhead bits. The transmission efficiencies of various speeds are shown in Figure 37 as a function of a frame size.

The minimum frame size of an efficient transmission is shown in Figure 38 as a function of the speed of the circuit and the block counter. Figure 39 illustrates the optimum frame sizes for various error rates and circuit speed. For example, compressed seismic data transmission time with a channel bandwidth of 9600 bps can be computed from Figure 37. It can be seen that frame size should be greater than 5000 bits in order to approach 100 percent efficiency. From this constraint, the compressed seismic data need to be segmented into frames with a size of 5000 bits. Then transmission time can be estimated by

$$T_{t} = \frac{N \cdot 5000 \text{ bits}}{9600 \text{ bps}}$$
(5.20)

where

$$N = \frac{\text{Compressed seismic data}}{5000}$$

Figure 37. Transmission Efficiency of Satellite Circuits with Common Data Link Controls (M=127) (After Martin [35])

Figure 38. The Minimum Frame Size for Efficient Transmission via Satellite at Different Speeds (After Martin [35])

.

Figure 39. The Optimum Frame Size for Full Duplex Line Control (After Martin [35])

Also, the error rate can be found in Figure 39 such that the chosen frame size can maintain approximately 10^{-6} error rate.

Summary

This chapter has considered general aspects of implementing seismic data compression techniques with respect to execution time, memory size, depth of queue, and transmission time. The execution time and memory size requirements were evaluated in the assembler listing of all subroutines used in the compression techniques. It was shown that time and space requirements are functions of data points, and response time dictates the system structure depth of queue and speed of transmission circuit.

Transmission time is determined by transmission efficiency and speed of circuit when the data rate is fixed. Transmission efficiency was examined with two types of line control procedures: stop and wait ARQ and continuous ARQ. From these examinations, the following aspects were found: stop and wait ARQ cannot achieve high transmission efficiency since it has to wait for the ACK signal response and the response is delayed by the propagation delay of the satellite circuit. High transmission efficiency (above 95%) can be achieved by continuous ARQ, provided that the size of frame is chosen properly. The optimum frame size can be obtained according to the speed of circuit and a block counter. A 7-bit block counter is necessary for a satellite link due to a long propagation delay.

In general, the transmission time of continuous ARQ line control procedure can be obtained from

$$T_{t} = \frac{N \cdot F}{B \cdot e} , \qquad (5.21)$$
CHAPTER VI

CONCLUSIONS

New avenues into seismic data compression techniques have been developed. Compression techniques have been considered based on orthogonal transforms, digital coding methods, and prediction methods. A hybrid technique, which is a combination of DCT and a µ-law quantization has been developed for vibroseis data and nonimpulsive section of impulsive seismic data. Prediction coding has been developed for the impulsive section of impulsive seismic data, where a predictor is designed by the linear prediction analysis.

A range between five-to-one and eight-to-one compression has been achieved with at least a 30 dB signal-to-noise ratio. This result is obtained empirically, and it is dependent upon sampling rate and signal distribution.

This study differs from previous work [8] in the following aspects. First, earlier work focused on vibroseis data sampled at 500 Hz. This study investigates vibroseis data sampled at 250 Hz and impulsive seismic data sampled at 1000 Hz. Second, in the earlier work, the reconstructed signal at the receiver was measured objectively. In this study, the error in the compression-decompression process is maintained within a 30 dB SNR for every trace. This is defined as reversible in this study. Third, the seismic signal was treated as a two-dimensional image in earlier work. In this study, the seismic signal is treated as a one-dimensional vector.

Finally, earlier work was based on sequency limiting of the Walsh domain. Compression techniques of this study are based on redundancy and entropy reduction. Compression ratios of these two studies need not be compared, since compression is a function of the signal-to-noise ratio.

In this thesis, all sensors are weighted equally and a 30 dB SNR is maintained for each trace. A two-dimensional analysis was not performed due to energy differences among traces. An energy normalization method may be required to pursue two-dimensional data compression for further research.

All compression techniques are simulated in FORTRAN with the IBM 370. For implementing these techniques in mini- or microcomputers, execution time and core size requirements of all subroutines are evaluated with a cross-referenced list in assembler language. The evaluation is based on types and frequency of occurrences of instructions inside "DO" loops, where the iteration of "DO" loops is determined by the number of seismic data points. In order to minimize the core size requirement, a "load and swap" method is recommended, which allows for loading only the executing subroutine into the core memory. Also, general relationships among processing time, depth of queue, transmission time, and response time are discussed. Further research is required for completing a real-time system with respect to system structure and response time.

Data compression techniques have been investigated due to constraints in channel bandwidth, channel capacity, limited storage, and/or transmission cost. However, compression techniques do require computer systems, and thus compression cost needs to be analyzed in order to evaluate the trade-offs between compression cost and transmission cost. Further research in the areas, two-dimensional seismic data compression, real-time

system design, cost analysis, and evaluation of computational optimality of algorithm versus optimality of hardware design should be fruitful. Optimality in terms of computation along with hardware implementation should be considered in parallel.

BIBLIOGRAPHY

- [1] Davisson, L. D., and R. M. Gray. <u>Data Compression</u>. Stroudsburg, Penn.: Dowden, Hutchinson & Ross, Inc., 1976.
- [2] Blasbalg, H., and R. Van Blerkom. "Message Compression." IRE <u>Trans., Space Electron. Telemetry</u>, Vol. 8 (Sept., 1962), pp. 228-238.
- [3] Markel, J. D., and A. H. Gray, Jr. Linear Prediction of Speech. New York: Springer-Verlag, 1976.
- [4] Davisson, L. D. "Data Compression Using Straight Line Interpolation." IEEE Trans., Inform. Theory, Vol. IT-14, No. 3 (1968), pp. 390-394.
- [5] Ahmed, N., and K. R. Rao. Orthogonal Transforms for Digital Signal Processing. New York: Springer-Verlag, 1975.
- [6] Rabiner, L. R., and R. W. Schafer. <u>Digital Processing of Speech</u> Signals. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1978.
- [7] Robinson, E. A., and S. Treitel. <u>Geophysical Signal Analysis</u>. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1980.
- [8] Wood, L. C. "Seismic Data Compression Methods." <u>Geophysics</u>, Vol. 39, No. 4 (Aug., 1974), pp. 499-525.
- [9] Oppenheim, A. V., and R. W. Schafer. <u>Digital Signal Processing</u>. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1965.
- [10] Paez, M. D., and T. H. Glisson. "Minimum Mean Square Error Quantization in Speech." <u>IEEE Trans., Comm.</u>, Vol. COM-20 (April, 1972), pp. 225-230.
- [11] Pratt, W. K. "Generalized Wiener Filtering Computation Techniques." IEEE Trans., Computers, Vol. C-21 (1972), pp. 630-641.
- [12] Manz, J. W. "A Sequency-Ordered Fast Walsh Transform." IEEE Trans., Audio and Electroacoustics, Vol. AU-20 (1972), pp. 204-205.
- [13] Chen, W., C. H. Smith, and S. C. Fralik. "A Fast Computational Algorithm for the Discrete Cosine Transform." <u>IEEE Trans.</u>, <u>Comm.</u>, Vol. COM-25 (Sept., 1977), pp. 1004-1008.

- [14] Shannon, C. E. 'Mathematical Theory of Communication.'' <u>Bell System Tech. Journal</u>, Vol. 27 (1948), pp. 379-423, 623-656.
- [15] Wood, R. C. 'On Optimum Quantization.'' IEEE Trans., Inform. Theory, Vol. IT-15, No. 2 (1969), pp. 248-252.
- [16] Jayant, N. S. "Digital Coding of Speech Wave Forms: PCM, DPCM, and DM Quantizers." <u>Proc., IEEE</u>, Vol. 62 (May, 1974), pp. 611-632.
- [17] Widrow, B. ''A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory.'' IRE Trans., Circuit Theory, Vol. CT-3, No. 4 (1956), pp. 266-276.
- [18] Smith, B. ''Instantaneous Compounding of Quantized Signals.'' <u>Bell</u> System Tech. Journal, Vol. 36, No. 3 (May, 1957), pp. 653-709.
- [19] Jayant, N. S. "Adaptive Quantization With a One Word Memory." <u>Bell System Tech. Journal</u>, Vol. 52, No. 7 (Sept., 1973), pp. 1119-1144.
- [20] Abate, J. E. ''Linear and Adaptive Delta Modulation.'' Proc., IEEE, Vol. 55 (March, 1967), pp. 298-308.
- [21] McDonald, R. A. ''Signal to Noise and Idle Channel Performance of DPCM Systems.'' <u>Bell System Tech. Journal</u>, Vol. 45, No. 7 (Sept., 1966), pp. 1123-1151.
- [22] Schouten, J. S., F. E. DeJager, and J. A. Greafkes. "Delta Modulation, a New Modulation System for Telecommunications." <u>Philips</u> Tech. Rept. (March, 1952), pp. 237-245.
- [23] Shannugam, K. S. <u>Digital and Analog Communication Systems</u>. New York: John Wiley and Sons, 1979.
- [24] Huffman, D. A. 'A Method for the Construction of Minimum Redundancy Codes.'' Proc., IRE, Vol. 40, No. 9 (1952), pp. 1098-1101.
- [25] Dym, H., H. P. McKean. Fourier Series and Integrals. New York: Academic Press, Inc., 1972.
- [26] Elias, P. "Predictive Coding I." IRE Trans., Inform. Theory, Vol. IT-1, No. 1 (1955), pp. 16-23.
- [27] Atal, B. S., and S. L. Hanauer. "Speech Analysis and Synthesis by Linear Prediction of the Speech Wave." Journal, Acoust. Soc. Am., Vol. 50 (1971), pp. 637-655.
- [28] Markel, J. D., and A. H. Gray. <u>Linear Prediction of Speech</u>. New York: Springer-Verlag, 1976.
- [29] Makhoul, J. M. "Stable and Efficient Lattice Methods for Linear Prediction." IEEE Trans., Acoustics, Speech, and Signal Proc., Vol. ASSP-25, No. 5 (Oct., 1977), pp. 423-428.

- [30] Burg, J. "A New Analysis Technique for Time Series Data." Proc., NATO Advanced Study Institute on Signal Proc. Enscheda, Netherlands, 1968.
- [31] Coker, C. H. "A Model of Articulatory Dynamics and Control." <u>Proc.</u>, IEEE, Vol. 54, No. 4 (April, 1976), pp. 452-459.
- [32] Martin, J. <u>Design of Real-Time Computer System</u>. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1967.
- [33] Kleinrock, L. Queueing Systems. New York: John Wiley & Sons, Inc., 1976.
- [34] Housley, T. Data Communication and Teleprocessing Systems. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1979.
- [35] Martin, J. Communications Satellite Systems. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1978.
- [36] Spilker, J. J., Jr. <u>Digital Communications by Satellite</u>. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1977.

APPENDIX A

SEISMIC DATA PLOTS

ÁPPENDIX B

CROSS CORRELATION TABLES

COFRELATION COEFFICIENTS / PROB > |F| UNCER HOLF

	TESTI	TEST2	TEST 3	TEST4	TESTE	TEST6	TE ST 7	TESTO
TESTI	1 - 000 00	0.01290	0.00928	0.00915	-0.01023	0.01073	-0.00146	-0.00865
	J •9999	0.3740	0.5228	0,5284	0, 481 0	0,4599	0.9198	0.5514
IEST2	0 = 01 2 90	1.00000	0 • 2236 3	0.13457	0, 32770	-0-13741	0-07056	-0-18383
	0.3740	0.000	C.0001	0.0001	C,0001	0.0001	0.0001	0.0001
TESIS	05 00923	0.22363	1.00000	-0.04224	0.35505	0,07982	0.24053	-0.01549
	0,5228	0.0001	C. 0000	0,0036	0,0001	0.0001	0.0001	0,2857
TEST:	0,00915	0.13457	-0,04224	1.00000	-0.09241	0.21682	-0.09634	0.29413
	0.5234	0.0001	0,0036	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001	0.0001	0.0001	0.0001
IE STo	-0,01023	-0.32770	0.35505	-0.03241	1,00000	0.3^325	0,01698	0.16591
	3,4810	0.0001	0.0001	0 0 0 0 0 1	0,0000	0.0001	C+2415	0.0001
resto	~0,01073	-0.13741	0,07882	0.21682	0.34325	1.00000	0 . 13005	0.15432
	0,4599	0.0001	C.0001	0,0001	0,0001	0,0000	0.0001	0.0001
TEST7	-0,00140	0.07056	-C.24053	-0.05634	0.01698	0.13009	1.00000	-0.33200
	0,9198	0.0001	0.0001	0.0001	0-2419	0.0001	C. 0 0 0 0	C. 0001
TE S I o	-0.00805	~0.18383	-0.01549	0.29413	0.16591	0.15432	-0,33200	1.00000
	Va5514	0.0001	C+2857	0-0001	0,0001	0,0001	0.0001	0.0000
TESTS	-0.00233	0.13273	-0.05342	-0.30177	-0.08934	0,04416	0.30696	-0.54240
	0.3722	0.0001	C. 0001	0,0001	C-0001	0,0023	C. 0 C 0 1	C. 0001
TESTIJ	0,007 52	-0.09432	0.01484	0.02165	0.19623	-0-25016	0.02629	0.35329
	Jo 6 0 4 5	0.0001	(•3065	0.1357	0,0001	0,0001	C.0700	C. 0001
TESTIL	-0,00130	0.03054	-0.04344	0.05689	-0 • 1882 2	0.15242	0.02753	-0.03028
	0,9280	0.0353	C.0027	0.0001	C.0001	0.0001	0.0578	0.0369
TEST12	0.01212	-0.11076	0-01950	-0.21376	0.17588	0,25699	0.35239	-0.45109
	0.4033	0.0001	0.1790	0.0001	0.0001	0.0001	0.0001	0.0001
TESTIJ	-0.01043	-0.09080	0,03564	0.20481	0.05570	0,25937	-0-28625	0.23167
	0= 47 03	0.0001	0.0140	0,0001	0.0001	0,0001	C.0001	C. 0001
TE S I 1 4	-0.01768	-0.02133	-0,04155	-0.03029	-0.05867	0.00295	0.0\$704	0.23509
	0,2232	0.0309	0.0042	0.0369	0.00)1	0.6383	0,0012	0.0001
TESTIS	-0.00201	-0.05645	-0.11508	-0.01857	0.11404	0-05608	-0-04545	0.05516
	0,0900	0.0001	C+0001	0.2006	C.0001	0.0001	0.0017	0-0001
IE ST10	-0-01351	-0.03234	-0.02396	-0.00450	-0.00886	0 - 0 1 1 4 1	~0.0460	-0.00180
	0.3377	0.0236	C. 0072	0,7565	0-5417	0,4319	0.7513	0,9013

.

TEST9 TEST10 TEST11 TEST12 TEST13 TEST14 TEST15 1EST16 -0.00233 0.00752 -0.00130 0.01212 -0.01048 -0.01768 -0.00201 -0.01391 0.8722 0.6045 0.9286 0.4033 0.4703 0.2232 0.9900 0.3377 0,13273 -0,09432 0,03054 -0,11096 -0,09080 -0,03133 -0,05645 -0,03284 0,0001 0,0001 0,0353 0,0001 0,0308 0,0001 C+0236 -0-05842 0-01484 -0-04244 0-01950 C+03564 -0-04155 -0-11508 -0-03896 0.0001 0.3065 0.0027 0.1790 0.0140 0.0042 0.0001 0.0072 -0.30177 0.02165 0.05685 -0.21376 0.20481 -0.03029 -0.01857 -C.00450 0.0001 0.1357 0,0001 C. 0001 0.0001 0.0369 0.2006 0.7565 -0+08934 0+19622 -0+18622 0+17588 0+05570 -0+05867 0+11404 -0+00886 0+0001 0+0001 0+0001 0+0001 0+0001 0+0001 0+0001 0+5317 0+ 044 16 -0+ 26016 0+ 15242 -0+ 25859 0+ 25937 0+ 002 90 0+ 05608 0+ 01141 0.0023 0.0001 0.0001 0.0001 0.0001 0.8383 0.0001 G.4319 0-30596 0.02629 -0-02783 0.32239 -0.28625 0.04704 -0.04545 -0.00460 0.0578 0.0001 0.0700 0.0001 0.0001 0.0012 0.0017 C.7513 -0.54240 0.35225 -2.0302E -0.4E109 C.23167 0.23503 0.09516 -0.00180 0.0001 0.0001 0.0001 0.0001 0.0365 0.0001 0.0001 0.9013 1.00000 -0.59711 0.35055 0.16366 -0.02231 -0.17160 -0.27690 0.00476 0.0000 0.0001 0.0001 0.0001 0.1241 C.0001 0.0001 0.7432 C. 0001 -0. 59711 1. 00000 -0. 54762 0.16913 -0.12580 0.12381 0.28819 -0.01216 0.001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.4022 0.35055 -0.54762 1.00000 -0.17766 0.30768 -0.21733 -0.36187 0.C1512 0.0001 0.0001 0.00000 C . CO 01 0.0001 0+0001 0.0001 C.2974 0.16366 0.16513 -0.17766 1.0000 -0.46665 -0.19823 0.29209 0.00695 0.0001 0.0001 0.0001 0.000 0.0001 0.0001 0.0001 C. €322 -0,02231 -0,012580 0,03076E -0.46665 1.00000 -0.17891 -0.19543 0.00926 0.1241 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.5236 -0.17160 0.12351 -0.21733 -0.19628 -C. 17891 1.00000 -0.08172 0.00998 0.0001 0.0001 0.0001 0 - 00 01 0.0001 0,0000 0.0001 0.4718 -0-27590 0-28615 -0-38187 0-25269 -C+19543 -0-08172 1-00000 -0-01446 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 C.3192 0+00476 -0+01216 0+01512 0+00655 0+00926 0+00958 -0+01446 1+00000 0+7432 0+4022 0+2574 0+6322 0+5236 0+4918 0+3192 0+0000

FHU=0 / N = 4750

IEST2 TESTI TEST3 TEST6 1ES 14 TESTE 1FST7 TESTA 1.00000 -0.58057 -0.58202 -0.58114 0.57568 0.58829 -0.57720 -0.58227 TE ST 1 0.0001 0.0001 0.0001 0.0000 0.0001 C.0001 C.0001 0,0001 -0.98097 1.00000 0.99998 1.00000 -0.59595 -0.59571 0.59582 0.55556 IEST2 C.0001 0.0001 0.0001 0.0001 0.0001 C.0001 6.0001 0.0000 -0.98202 0.59998 1.00000 0.59959 -0.55551 -0.55892 0.555570 1.00000 TESIJ 0.0001 0.0001 C. 0000 0.0001 0.0001 0.0001 0.0001 0.0001 16517 -0.98114 1.00000 C.99995 1.C0000 -0.55554 -0.59874 0.59981 0.55557 0.0001 0.0001 C.0001 0.0000 0.0001 0.0001 C-0001 C. CO 01 IESIS 0. y7968 - 0. 99595 - 0. 99991 - 0. 55954 1. 00000 0. 55834 - 0. 55990 - 0. 55585 0.0001 0.0001 C.0001 0.0001 0.0000 0.0001 C.0G01 0.0001 TESIL 0.93829 -0.55871 -0.55852 -0.55874 0.55834 1.00000 -0.59775 -0.55851 100001 0.0001 0.0001 0.0001 0.0001 0.0000 C.OCO1 C. COC1 1E 517 -C.57720 0.55582 0.55570 C.599E1 -0.55990 -0.55775 1.00000 0.95966 0.0001 0.0001 0.0001 0.0001 0.0001 C. 0000 0.0001 0.0001 ILST8 -0.98227 0.95556 1.00000 0.95957 -0.55585 -0.59891 0.59566 1.00000 C.0001 0.0001 C.0001 0.0001 0.0001 0.0000 0.0001 0.0001 16519 -0.98278 0.995994 0.55599 C.55955 -0.55584 -0.59901 0.5955E 1.00000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 TEST10 0.97892 -0.99988 -0.99978 -C.99977 0.99984 0.99827 -0.999972 C.0001 0.0001 0.0001 0.0001 0.0001 0.0001 C.0001 0.0001 IL ST11 0.59688 - 0.99151 - (.59227 - 0.99162 0.59081 0.59540 - 0.988899 - 0.99251 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 C.0001 0.0001 TEST12 C.98084 -1.00C00 -C.99997 -1.00000 0.99994 0.99870 -0.99984 -0.99995 (.0001 0.0001 C.0001 0.0001 0.0001 0.0001 0.0001 0.0001 IE ST13 0.93230 -0.95557 -0.99999 -0.99998 0.55587 0.99903 -0.555567 -0.55558 0.0001 C. 0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 -0.57554 0.59593 0.95584 0.55552 -0.55551 -0.55527 0.55555 0.555579 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 TEST14 -0.97909 0.99993 0.99955 0.99952 -0.59952 -0.599823 0.99993 0.9958E1 IF ST15 0.0001 6.0001 0.0001 0.0001 0.0001 C.OCO1 C. COC1 0.0001 0.57872 -0.99593 -0.55586 -0.59952 0.55995 0.59811 -0.59555 -0.55583 IE SILO 0.0001 C.0001 C.00C1 0.0001 0-0001 C.OCO1 C. CO 0 1 1000.0

COFRELATION COEFFICIENTS / PROB > |R| UNDER HO:F

TEST9	TEST10	TEST11	TEST 12	TEST13	TEST14	TEST15	1E 5 T 1 6
-0. 58278	0.57852	0.55688	0.58084	0,98230	-0.97894	-0.97909	C.\$7872
0.0001	0.0001	0.0001	0.0001	0.0001	C.0001	0.0001	C.0001
0.55954	-0-59588	-0-99151	-1.0000	-0.99997	0.59993	0.95553	-0.99993
0.0001	0.0001	0.0001	C.COO1	0.0001	0.0001	0.0001	C.0001
0.99999	-0,999978	-0.59227	-0.55597	-0.99999	0.99984	0.99585	-0.95986
0.0001	0.0001	0.0001	C . COOI	0.0001	0.0001	0.0001	(.0001
0.99995	-0.59587	-0-99162	-1.0000	-0.99958	0.59992	0.55552	-0.99992
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	C+0001
-0.55984	0.99981	0.55081	0.55554	0.99987	-0.99991	-0.99552	0.99995
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	C.0001
-0.99901	0.99827	0.59540	0.5850	0.999903	- C. 59827	-0.55623	0.55811
0.0001	0.0001	0.0001	0.001	0.0001	0.0001	0.0001	G. 0001
0.99958	-0.99985	- C . SEESS	-0.55584	-0.99967	0.99995	0.55593	-0.99995
0.0001	0.0001	0.0001	0.0001	0.0001	6.0001	0.0001	0.0001
1.00000	-0. 59572	-0.9251	-0.5555	-0,99998	0. 59979	0.99981	-0.55583
0.0001	0.0001	0.0001	0.0001	0.001	0.0001	0.0001	C.0001
1.00000	-0. 99966	-0.55284	-0.55552	-0.99997	0.99974	0.99976	-0.99977
0.0000	0.0001	0.0001	C • C 0 C 1	0,0001	0.0001	0.0001	C.00C1
-0.99966	1.00000	0.58575	0.55550	0.99980	-0.99998	-0.59995	0.55989
0.0001	0.0000	C . 0 C 0 1	0.0001	0.0001	0.0001	0.0001	(.0001
-0.55284	0.98975	1	0.55138	0.99230	-0,+98996	-0.59007	(.99013
0.0001	0.0001	0.00000	0.0001	0.0001	0.0001	0.0001	(.0001
-0.99992	0. 59550	0.55138	1.0000	0.99997	-0.59554	-0.55554	0.59993
0.0001	0.0001	0.0001	0.000	0,0001	0.0001	0.0001	C. 000 1
-0.59957	0. 99980	0.99230	0.55957	1.00000	- C. 59984	-0. 99985	0.95982
0.0001	0.0001	0.0001	C.COO1	0.0000	0.0001	0.0001	(.0001
0.95974	-0.999998	0.58556	-0.55554	-0.99984	1.00000	0.55599	-0.99996
0.0001	0.0001	0.0001	0.0001	0.0001	C.0000	0.0001	C. 0001
0,99976	-0,999955	C., 55(07	-0.55554	-0,99985	0.999999	1.00000	-0.55555
0.0001	0,0001	0.0001	0.0001	0.0001	C. 00 C1	0.000	C • 0 0 0 1
-0.59977	0.59585	0,99013	0.55553	0, 19982	- (. 59950	-0.99595	1.0000
0.0001	0.0001	0.0001	0,0001	0.0001	0.0001	0.0001	C.0000

. ;F0=0 / N = 475C

.

•

APPENDIX C

COMPILED LISTING OF COMPUTER PROGRAMS

*****FORTRAN CROSS PEFERENCE LISTENG*****

SY MULL	INTER	NAL ST	ATEMN	T NUMB	ERS	
A	0002	0003	0000	0014	0015	0015
L L	0005	0010	0010	0011	0012	0 C 1 3
J	0007					
×	0004	0000	0010	0010	001 J	0013
WK	0003	0000				
ARG	0012	0013	0013			
LUS	0013					
EWK	0003	0008				
NUM	0002	0005	0000	0000	0010	0011
51 N	0013					
FUC1	0002					
NUM2	0005	0009	0014			
HE AL	0014					
wR wP	0006	0012				
CMPL X	0013					
CUNJG	0010					
FFTRC	0008					
FLUAT	0006	0012				

REFERENCES

0005

0011

LADEL

10

٤U

DEFINED

0010

0014

REFERENCE LISTING+++++ *****F C R T R A N CFCSS

1514	0002		SUBROU 11	INE FOCT(A,NUM)	00000690
		c	DC1 IF/	ANSFEEP USING FFTCIRM VERSIEN : FFTFC)	00000700
		c	NUM :	I NUMBER OF CATA FOINTS TO BE TRANSFORMED	00000710
		c	A :	INPUT ARRAY OF FET AND CLIPUT AFFAY OF ECT	00000720
		c	IWK :	1 NERK AREA OF FFT	00000730
		C	WK :	: WORK APEA OF FFT	00000740
		C	× 1	CLIPUT ARRAY CF FET	00000750
1.5.4	0003		DIMENSIO	UN IWK(26GC), WK(2600), A(1)	00000760
151	0004		LCMFLEX	X (4750)	00000770
50	0005		NUM2=NLA	¥/2	0 0 0 0 0 7 8 0
5.4	0000		W9 WP = 3 • 1	141592/FLGAT(24NUN)	00000790
51	0007		1=0		00000800
ISN	0008		CALL FFT	TREEA.NUP.X.INK.WFP	00000010
ISN	0009		DO 10 I=	2.NU#2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1514	0010	10	XENUM+2-	-1)=((N_G(X(1))	00000830
ISN	0011		D0 29 1=	=1,10	00000640
ISN	0012		AFG = WR PP	P+FLCA1(1-1)	00000850
SN	0013		X(1)=C+P	PLX(COS(ARG),SIN(AFG))+(X(1))	00000860
ISN	0014	20	A(1)=REA	AL CX(T) J/NUM2	00000870
ISN	0015		A(1)=A(1	1)/2.0	0000880
Sit	0016		RETURN		00000890
1514	0017		END		00000900

0013 0014 0014

0014

SUURCE EBCDIC LIST NOVECK (DJECT PAP FCRPAT GOSTMT XREF NOALC NOANSE TERM IBM FLAG(1)

GS7360 FORTPAN E EXTENDED

UPTILING IN EFFECT: NAME(MAIN) EPTIMIZE(2) LINECCUNT(CO) STZE(0750K) AUTOCAL(NONE)

REQUESTED GELLONS: UPT=2.FORMAT, XPEF,LIST, MAF.SIZE(75CK)

+LEVEL 2+3+6 (JUNE 78)

DATE 81.153/21.05.15

EAGE 1

+1.2VIL 2.3.0 (JUNE	78)		057360 FOR	IRAN H	EXIENDED	DATE 81.153/21.05.15
	000004	07		E C	×L1'07'	
	000005	040403E3404040		DC	C17+FDC1 +	
	000000	90 EC D 00C		51M	14,12,12(13)	
	000010	1 E AD		LF	4.13	
	000012	58 CD F 020		LM	12,12,32(15)	
	000016	50 40 D 004		51	4,4(0,13)	
	OJUUIA	50 DO 4 CCE		51	13,8(0,4)	
	00001E	07 FC		BCR	16.12	
TEMPURARY FUR FEX.	FLUAT					
	000098	4E000000		DC	×14*4FCCC0C0*	
	000090	0000000		DC	XL4'0000000'	
CUNSTANTS						
	ONCOUD	4E00000		UC	XL 4 • 4E CC CO GO •	
	0000A4	8000000		CC	XL4'E0000000'	
	000048	CCCC0000		60	×L4'00000000	
	OOOOAC	0000001		DC	×L4.COCCCCCI.	
	0000000	00(00002		60	×L4.0000002.	
	000084	4140000		DC	×L4•41200000	
	000068	41324366		DC	XL4*412243F6*	
	0000HC	000000		CC	XL4.0000000.	
	000000	0000000		DC	XL4. CC00C000.	
ADCONS FUR VARIABL	ES AND C	CRETANIS				
	OUE 6A0	00(02980		DC	XL4'00002560'	
	OUEGAA	00005250		DC	XL4.COC04550.	
ADCONS FOR EXTERNA	LREFERE					
	OULOND			UC DC	X14. C0000000	•
	002080	60600000		00		
	001608	0000000				516
	OULCON	0000000		50		FFIFC
	0000000	FE 50 C 000	10000			CPPII
	001-6F4	58 90 ((04	100001	:		
	OUFAFP	58 89 6 000			11. 0(0.12)	
	NUEGEC	58 AG D CP4		i i	1(, 132(0,13)	
	00E 7 00	58 80 0 029		ĩ	E. 4C(0.12)	
	006 704	16 TO D C88		ĩ	7. 136 (0.13)	
	00E708	58 20 D 0A8		Ē	2. 166(0.13)	NUM
	00E 7 0C	8E 20 0 020		SFDA	2. 32	
	00E710	10 27		Co	2. 7	
	00E712	50 30 0 000		51	3. 176(0.13)	NUM 2
	00E716	26 40 D CA8		ι	4. 166(0.12)	AU A
	00E71A	ES 40 0 (C1		SLL	4. 1	
	00E71E	18 04		LF	C. 4	
	OUE 7 20	E7 00 D C7C		x	0, 124(0,13)	4E0000000000000000
	00E724	50 00 D 074		51	(, 11((0,13)	
	00E728	68 20 D 070		LC	2. 112(0.12)	
	UUE72C	68 20 D C78		SC	2. 120(0.13)	4600000000000000000
	00E730	78 00 0 090		LE	C, 144(C,13)	41324366
	00E734	20 02		CER	0, 2	
	OUE 736	70 CO D CA4		SIE	(, 180(0,13)	WEWE
	DUE73A	58 FO C 013		L	15. 24(0.12)	FT 160
	OUE 7 JE	41 10 0 646		LA	1, 76(0,12)	
	JUE742	05 EF		BALP.	14.15	
	OUE /44	47 00 0 008		FC	0, 8(0,0)	
	00E748	18 48		1.12	1. E	
	OUE 74A	58 60 C 0A9		L	t. 16E(0.13)	4U4
	OUL 74E	20 EO C (34		ι	6, 52(0,12)	17

154

F/G(2

•

2.3.0 (JUNE	781				05736) FOR	TRAN H	E > TE NOE	0	DATE 01.153/21.05.15	E10F
	OUE 752	18 0	3			1.6	11, 3			
	001754	78 2	8 9	000	10	1.6	i. (Ct n. 51	*	
	00E758	78 4	8 9	004		L.E	4. 4	1(9. 5)	,	
	001-750	33 4	9			LCER	4. 4			
	00175F	18 2	6			IR	5. 6			
	006 760	18 3	,			50	3.7			
	000700	80 2		(511		,		
	006762	10 4		014		etr.			×	
	002766	10 4	2 4	C1 0		510			<u> </u>	
	OUE / 6A	10 2	2 5	610		516			,	
	00E76E	14 6	4			A1-				
	00E770	677	A C	064		EXLE	1.10.	160(12)	10	
	00E 774	5e P	0 C	000	10002	L.	11. 0	0,12)		
	00E778	50 C	10 C	058		L	E. 40	0 0 . 1 2)	P	
	00E 7 7C	58 7	0 0	098		L	7. 136	(0,13)	2	
	OUE 780	59 0	0 D	0110		ι	0, 176	51 0 .131	NUM2	
	OUE784	57 0	0 0	070		×	0. 154	(0,13)	4E00000000000000	
	00E 7 8 9	50 0	0 D	C74		ST	0. 110	5(0.13)		
	00E78C	68 0	0 D	676		LD	6, 114	10,131		
	OUL 790	6E 0	0 0	078		50	6. 120	0,13)	4E00000080000000	
	00E 754	70 0	00 C	624		STE	0. 30	(0.12)	.002	
	00F798	18 2	A			1.0	2. 6			
	OOL ZCA	58 0	in c	026			0. 44	1 0.121	•	
	006754	50 0		070		61	C	1 0.121	- 607	
	0.01.743			0.00			1 1			
	USE TAZ	20 3	10 C	020					•	
	DOF 140	16 4				1.5	•••		60 P	
	00E 7 A9	58 6	50 C	0.30		L	C . 40	1 0,121	.0.3	
	OOF TAC	18 7	•			LR	1.10			
	00E 7AE	18 6	2			LA	£, 2			
	006780	58 B	10 D	640		L	11, 16	e(0,13)	NUM	
	00E784	18 2	7		100003	L R	2.7			
	OUE 786	18 2	A			5 R	2.10			
	006789	19 0	2			LR	C. 2			
	OUE 78A	57 (10 D	07C		×	0. 124	1(0.13)	4600000000000000	
	OUL 7BE	50 0	0 0	674		ST	(, 110	E(0.13)		
	001702	68 2	0 D	070		LD	2. 11	(0.13)		
	005766	68 2	0 0	(78		50	5. 120	0.13)	AF00000000000000	
	001764	70 3	a n	084		ME	2. 100	0(0.13)	WEWE	
	OOL TCE	20.2	0 0	0.44		STE	5. 16/	1 0.171	ADC	
	001 702		0 0	C 10		1	16. 14	61 0.121	(0)	
	002702	30 1							cue	
	002706	91.1	00	600				CC C .1 27		
	OUE TUA	65 6				HALK	14.15			
	OUE TUC	47 0	0 0	C 00		ec.	C, I.	3(0, 0)	• · · · ·	
	OOF 1E0	70 0	o c	0.3.9		STE	C. 50	(0,12)	o 100	
	00E7E4	5E F	0 C	CI 4		1	15, 20	01 0,12)	511	
	JUL7EA	41 1	10 D	060		L.A	1. 50	1 0 • 1 31		
	OUE TEC	05 F	r			EALR	14.15			
	00E 7EE	47 (0 0	000		DC .	0. 1	31 0, 01		
	00E7F2	70 0	00 C	030		STE	0. 60	C(0.12)		
	00L 7F6	78 0)0 C	C38		L E	0. 50	6 (0.12)	.100	
	00E7FA	70 0	00 C	(10		STE	6. 64	11 0.121	-105	
	DOE7FE	78 0	00 C	030		LE	c. e	0(0.12)	n 19 I	
	001 802	70 0	10 c	644		STE	0	3(0.12)	. 102	
	0.05406	20.0		000		1 F		C(N. S)	*	
	001:004	70 0		010		STE	0. 54	61 0.121	- 100	
				0.00						
	OUE BUE	78 0	10 9	0.14		c.e		(0.12)		
	006915	70 0	10 C	0.10		511				
	006916	e r	0 0	010		L.	15. 21	81 0,121	6 MF Y 4	
	00E81A	41 1	10 D	6.4		٤A	1. 10	0(0.13)		

ALEVEL 2

: •

r

. .

1

. ,

155

ALEVEL 2.3.0 (JUNK A	761		C\$736) FCB	TEAN H	EXTENDED	CATE 01.153/21.05.15	FAGE
ι.	10E81E	05 EF		BALR	14.15		
	006950	47 00 0 000		e c	C. J3(0, 0)		
	0.01: 824	70 00 C CAE		51E	0, 72(0,12)	.104	
	JV E 828	70 28 9 004		SIF	2. 4(8.5)	х	
	00E82C	78 00 C C48		LE	0. 72(0.12)	.104	
(06930	70 08 9 000		S 16	C. O(8,9)	×	
c c	000834	78 08 9 004	20	LE	C. 4(8, 5)	х	
L. L	JAF 0 36	76 28 9 000		LF	2. 0(8.9)	*	
(0VE83C	76 20 C 024		DE	2, 3((0,12)	.02	
	00E840	70 26 5 000		STE	2. 0(6. 5)		
(DOF 844	14 ()		# F	6, 3		
	DOE846	14 64		AR	E. 4		
	DOE 8 49	87 7A C 114		6×LE	7.10. 276(12)	100003	
7	00E 84C	59 80 C 000	100004	1	11, 0(9,12)		
	006850	58 80 C 028		t.	E. 4C(0.12)	e	
	JQE854	58 70 D CE8		L.	7. 136(0.13)	í	
	06858	78 20 5 004		LE	2. 4(0. 2)		
	00E E 5C	70 20 0 CBC		OE	2. 140(0.13)	41200000	
	DVE860	70 20 5 CC4		51E	2. 4(0.5)	•	
	00E864	18 / F		SF	11,11		
(00E 866	56 EO D 000		ι	14. C(0,13)		
	DUEBGA	07 FE		BC R	15.14		
AUDRESS OF EPILOGUE							
(D0E 86C	58 AO D CO4		ι	10. 4(0.13)		
	DUE870	58 EO A 00C		L	14. 12(0.10)		
	DOL 874	58 80 A 018		ι	11, 24(0,10)		
	DOF818	58 10 N CC4		ι	1. 4(0.11)		
	00E U 7C	58 20 D 040		L.	2. 168(0.12)	NU#	
	DOF 990	50 20 1 600		51	2. 0(0.1)		
	JUE884	10 CA		LR	13.10		
	001: 886	S2 FF A COC		MV I	12(10),255		
L. L	DOEBOA	58 2C A 01C		LM	2.12. 20(10)		
	0VE.88E	07 FE		BCE	15.14		
ADDRESS OF PROLOGUE							
· · · · ·	006890	58 CO D 048		L.	12. 72(0.13)		
	DOE 894	58 70 1 004		L .	7. 4(0,1)		
	00E858	58 20 7 COO		L.	2. 0(0.7)		
	90E8AC	50 20 D GAB		51	£. 168(0,12)	NUM	
(DOEBAO	26 20 1 000		ι.	2. 0(0,1)		
	DUE 8A4	41 30 2 600		LA	2. 0(0, 2)		
	00Ł 8A0	41 50 0 004		LA	5, 4		
	DOF BAC	18 25		SR	2. 5		
	DOEUAE	50 20 C 008		51	2. e(0.12)		
	DOF 995	E0 30 C COC		ST	2, 12(0,12)	•	
	006886	E0 20 D 04C		51	2, 76(0,13)		
	00E884	47 FO C 050		nc.	15. 80(0.12)		
AUCUN FUR PROLUGUE							
	000020	0000E890		DC	×E4* COOOE850*		
AUCON FUR SAVE AREA							
(000024	CULGO02A		DC .	X14.00000544		
ADCON FER EFILOGUE							
	000028	00(06660		пс	×L4.0000EE€C.		
ADCON FOR REG 12							
(000070	00008680		DC .	XE 4 .00 CUE 6 A O 4		
AUCUNS FUR PARAMETER	K LISTS	40.000 M				•···	
· ·	000071			00	AL 4- LCCG00004	NUP	
i i	000070	00105228		UC .	XL 4 "00 00 57 79 "	*	
	000080	00002564		£ C	xL4+000025E4+	1 W K	

41 FVL1 2. J. 0 (JUL 78)	CS/360 FORTPAN H EXTENDED	DATE 01, 183/21+08+18 FAGE
	1.6 X1 41 00 00 0 5 0 1	WK.
UUUU84 E0C000E0	DC X14-80000000	ACC
00000B 800000CC	UC XL4+800000C+	FRC .
010000 00000650	DC XL4'0000E6E0'	.102
	DC XI 4" E000E608"	. 100
000090 80006600		
TEMPURARIES AND GENERATED CONSTANTS		
001 66.0 0((00000	CC XL4.000000.	
005674 0000000	DC XI.4 * C0000CCC *	
	CC XL4*00000000	
00E8C8 001000e	DC VIA100000041	
0066CC 00C0004		
UDE6DU 00C00000		
001.604 0000001 0	DC X14*0000010*	
	DC ×L4*C0606000*	
	DC XI 4*CC000000*	
006600 0000000	DC VI A1 000000001	
00E6E0 00CC0000		
UDE6E4 000000	DC XL4.0000000	
006668 000000	CC XL4.0000000.	
	DC XL4*00C40006*	
00E6EC 0CC40006		

+UPTIONS IN EFFECT+NAMELMAIN) CPTIMIZE(2) LINECOUNT(40) SIZE(0750K) AUTODBL(NCNE)

+UPTIUNS IN GEFECT+SUURCE EBCOIC LIST NODECK (BJECT MAP FORFAT GOSINT KEEF NOALD NOANSE TERM 10M FLAG(1)

+STATISTICS+ SUURCE STATEMENTS = 16, PROGPAN SIZE = 55502, SUBFROGRAM NAME = FDCT

+STATESTICS+ NU DIAGNESTICS GENER/TED

****** END OF COMPILATION *****

: •

316K EYTES OF CORE NOT USED

SURT 0011 FLEAT 0010 RATIU 0022 0023 0025 0025 0027 0027 0025 0031 0033 RATIU 0029 EPSLUN 0002 0012 0014 0017 0017 0019 CC15 0038 ICUUNE 0005 0010 0016 0017 0019 0036 SELECT 0002 #####FORTRAN CFCSS REFERENCE LISTING##### LAULL DEFINED REFERENCES 10 0((7 0005 15 0021 0013 0014

*****F 0 9 T 9 A N CROSE REFERENCE LISTING##### SYMULL INTERNAL STATEMENT NUPEERS . UOC2 0003 0006 00C4 00C7 0CC7 CC14 C017 CC17 0015 0015 2100 \$100 L000 2000 U UC(1 000 0006 0007 0007 . .1 0013 0014 0017 0017 0015 0019 AUS U007 Q007 0014 NUM 0002 0005 0010 0013 0036 510 0000 0000 0010 0010 0011 CC11 CC12 C022 HAX 0002 0004 0007 0007 0022 0025 0035 HMEU 0002 0023 0025 0027 0029 0031 0033

150	0003	U1MENSICN A(1),E(1)	00001400
l Sid	0004	FMA3=0.0	00001410
انتذا	0005		00001420
150	6066	STD = STC + A(1) + A(1)	00001430
1.211	0007	LO IF (FMAX .LT. ABS(A(I))) FMAX=/ES(A(I))	00001440
ISN	0009	ICCUNT = 0	00001450
150	0010	STD = STC/FLCAT(NUN)	00001460
154	0011	STD= SOFT(S1D)	00001470
150	0012	EFSLCN≖•05+STD	00001480
15N	0013	DO 15 SELAND	00001490
15 14	0014	IF(ABS(A(J)) +LE+EPELCN) GO TO 15	00001500
I SN	9100	ICGUNT+ICCUNT+I	00001510
1511	0017	IF (A(J) +LT+ →EFSL(+) E(1C(U+1)=/(J)+EFSL(+	00001520
ISN	0019	IF (A(_) +G1+ EPSLON) E(ICGUNT)=A(J)-EPSL(N	00001530
Sit	0021 15	CONTINE	00001540
15.4	0022	RATIC=FFAX/SID	00001550
1511	0023	IF(FATIC .LT. 4.0) FMEL=0.0	00001560
I SN	0025	IF(FATIC .L1. 15.0 .ANC. FATIC .CE. 4.0) FAEU=10.0	00001270
ISN	0027	IF(PATIO +L1+ 2C+0 +ANC+ 9A1IC +GE+ 15+0} FAEL=30+0	00001580
15N	0029	1F(FATIC .LT. 28.0 .ANC. FATIO .CE. 20.0) FHEL=10.0	00001590
15N	0031	IF (FATIC → L 1+ 35+0 → A+C+ FATIC → GE+ 25+0} FAEL= 100+0	00001600
15N	0033	IF (PATIO •GE• 32•0) F NEU= 200+0	00001610
I SN	0035	FHAX=FFAX-EFSI.CF	00001620
I ani	0036	NUM=ICCLN1	00001630
I SN	037	RETURN	00001640
1514	C038	END	00001650

SUURCE EECCIC LIST NCCECK (BJECT MAP FORMAT GUSIMI THEF NOALC NOANSE TERM IN FLAG(1)

05/360 FOR IRAN + E) TENDED

LPTIUNS IN EFFECT: NAME(HAIN) CPTIMIZE(2) LINECCUNI(CC) SIZE(0750F) ALICCEL(NCNE)

SUBFOLTINE SELECTIA, E, FRAD, NUN, EFSLCH, FREUT

REQUESTED OFILINS: UP1=2,FCFPAT,XREF,LIST, M/F,SIZE(750K)

*LEVEL 2.3.0 (JUNE 78)

15N 0002

.

DATE 81.166/14.56.34

0 0 0 0 1 39 0

÷

FAGE 1

+LEVEL 20300 (JUNE	78)		05/360 006	TRAN P	E > 1E NOED	DATE 01+166/14+56+34
			(5) 5 ()	96		
	000000		ELF ()	DC DC	10,12(0,12)	
	000000	F2(#D3C5C3F340			CL7'SELECT '	
	0000UC	50 EC D 00C		STM	14,12,12(13)	
	000010	10 40		LR	4.13	
	000012	58 CD F (20		LM	18,13,32(15)	
	000016	50 40 D 004		51	4,4(6,13)	
	00001A	EQ CO 4 (CB		ST	13,8(0,4)	
	00001E	67 FC		864	15,12	
TEMPLEARY FLR FIXA	FLUAT					
	000078	4E C 00000		DC	×L4 • 4E COCOGO •	
	000070	C0C00000		DC	×L*•CCCCOOCC•	
CUNSTANTS					************	
	000080	46 (00000		00	X14-46000000-	
	000084	80(00000		re	X1 A 1 00000000	
	0000000	00(60000		DC DC	XIA' COCCODOO'	
	0000000	0000000		DC	*14.00000001.	
	000094	3F CCCCCD		CC	XL4' 3F CCCCCD'	
	000098	41400000		DC	X1 4. 41 4C0000.	
	000090	41/00000		C C	XL4'41A000CO'	
	0000000	41FC0000		60	XL4'41F0C0C0'	
•	000044	42 140000		DC	XL 4 4 4 2 1 400 CC 1	
	0000A3	42150000		C C	XL4 421900C0 *	
	0000AC	42 JE 0000		DC	XL4' 421E0000'	
	000000	42230000		OC DC	XL 4 422300C0 4	
	000084	42320000		50	XL4.42320000	
	0000088	42(40000		50	X1 41 42 C 4 C 0 C 0 C	
	0000000	42(00000		DC .	X14'0000000'	
	030000	00000000		DC	*1 4' 60606000 '	
ADCUNS FUR VARIABL	ES AND C	CNSIANTS				
AULUNS FUR EXTERINA	L HEFERE	NCES				
	0000F8	000000		DC	XL 4º CCCCCCO'	•
	000100	000000		UC	XL4.C0000000.	E
	000109			DC	X14.6000C060.	SCAT
	000138	58 40 D 000	100001	L	4, 208(0.13)	
	00013C	te co D coe		L	e, 21((0,13)	
	000140	58 EO D 060		L.	11, 56(0.13)	8
	000144	SO AD E DEC		L		
	000148	50 30 D CCE		1.6		1
	000140			CT.6	(, 176(0.13)	6 6 6 7
	000154	58 20 D 048		1	5. 16#C 0.131	NUM
	000159	89 20 0 002		SLL	2. 2	
	000150	50 20 D 104		ST	2. 2001 0,121	~ G O E
	000160	18 EA		LR	6.10	
	000162	13 E2		LF	11. 2	
	000104	76 68 4 000	100002	LE	t. 0(8. 4)	٨
	000168	38 46		LER	4, 6	
	0001EA	3C 46		MER	4, E	
	000100	74 40 D CAC		AF	4. 172(0.13)	510
	000170	70 40 C OAC		516	•• 1/2(U•12)	SIL.
	000174	30 50 D 06 A	10	< 1F	5. 2281 0.131	- (0)
	000174	79 20 0 000		CF	2. 176(0.13)	FAA

:

FIGE 2

.

F/CE 3

.

+LEVEL 2+3+0 (JUNE 78) 05/360 FOR IDAN + EXTENDED DATE E1+166/14+56+34

0.00176	47	C 0	D	15F		FC	12. 350f 0.13)	100004
000182	70	20	Ď	CHO	100003	STE	2. 1761 0.121	T PA2
000186	87	BA	c	130	100004	DALE	E.1C. 216(12)	100002
000164		PO	n	C+0	10003	1	11. 561 0.131	
UDUINE	18	28	.,			L.R.	2.11	
000190	50	EO	D	004		ST	11. 1961 0.121	100001
0001-4		0.0	D	CAR		1	C. 1681 0.121	NUM
000198	57	00	Č	050		×	C. 521 C.12)	4600000080000000
000195	= 0	0.0	n	(54		51	C. 841 0.171	
000140	6.0	50	ň	650		10	5. 80(0.13)	
000144	6F	20	D	C58		SC	5. FF(0.13)	4F0000CCFC000000
000148	7.8	00	n	CAC		1 F	C. 1721 0.131	SID
000140	70	02	Č			DER	f. f	
DOULAE	20	00	n	045		STE	0. 1751 0.131	510
000142		FO	ň	CE O			16. 5241 0.171	SORT
000102			ř	0.4.0			1. 744 0.131	300
000100			U	040		E AL D	14.14	
000184			•	0.08		Dr.	· · · · · · · · · · · · · · · · · · ·	
000180		~~~				e16		100
000100		00	2	105		- 16		•100
000104		00	5			316		210
000108		20				10		SFUCUL
000100	10	20	0	100		PE		. 100
000100		20	v	ιισ		STE	2. 1921 0.131	EFSLUK
000104	33	22	~					
000106	/0	20	v	06.8		STR	21 2321 0,131	• • • • •
OCOTDA		22				1.0		
000110	10	18				1.0		
OUDIDE	10	10				LP		
OODIED	18	54	-			1.4	5.10	
000 IEZ		eo	D	104		1	11. 2001 0.131	
						-		
9001E6	78	69	٩	000	100006	LE	E. 01 9. 41	
QOOLE 6 UUU I E A	78	46	1	000	100006	LPER	e, ot 9, 4) 4, e	
0001E6 0001EA 0001EC	78 30 75	69 46 40	D	000 000	100006		E, 01 9, 4) 4. E 4. ISE(0.12)	EPSLCN
0001E6 0001EA 0001EC 0001F0	78 30 75 47	69 46 40 C0	n D D	000 000 1F6	100006	LE LPER CF BC	E, 01 9, 4) 4, 6 4, 1521 0,12) 12, 2021 0,13)	A EPSLCN IE
Q001E6 0001EA 0001EC 0001F0 0001F4	78 30 75 47 1 A	69 46 40 00 53	n D D	000 000 1F6	<u>100000</u>	LE LPER CF BC AR	6, 0(9,4) 4, 6 4, 152(0,12) 12, 202(0,13) 5, 3	EPSLCN
Q001E6 0001EA 0001EC 0001F0 0001F4 0001F6	78 30 75 47 1A 1A	69 46 40 00 53 7A	n D D	0C0 1F6	10000	LE LPER CF BC AR AF	c. 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2. 3 7.10 3	EPSLCN
0001E6 0001EC 0001F0 0001F0 0001F4 0001F6 0001F8	78 30 75 47 1A 1A	69 46 40 0 53 7A 8A	n D	000 000 1F 6	10000	LE LPER CF BC AR AF AR	c, 0(0,4) 4, c 4, 152(0,12) 12, 202(0,12) 2, 3 7,10 E,10	EPSLCN
Q001E6 0001EC 0001F0 0001F0 0001F4 0001F6 0001F8 0001F8	78 30 75 47 1A 1A 1A 79	69 46 40 00 53 7A 60	n D D	000 000 1F6 0E8	<u>100006</u>	LE LPER CF BC AR AR AR CE	e, 0(9,4) 4. e 4. 152(0.12) 12. 02(0.12) 5. 2 7.10 6. 232(0.12) 6. 232(0.12) 6. 12)	EPSLCN 18 a CO2
0001E6 0001EC 0001F0 0001F4 0001F6 0001F6 0001F8 0001FA 0001FE	78 30 75 47 1A 1A 1A 79 47	69 46 40 53 7A 60 A0		000 000 1F6 0E8 1E4	<u>100006</u>	LE LPER CF BC AR AR AR CE FC	C: O(9,4) 4. C 4. IS2(0.12) 12. EO2(0.13) 2. 3 7.10 C 6. IS2(0.12) 10. C.12)	EPSLCA 18 1000000
0001EE 0001EC 0001F0 0001F4 0001F6 0001F8 0001F8 0001FA 0001FE 000202	78 30 75 47 1A 1A 1A 79 47 30	69 46 40 53 7A 60 40 26		000 166 068 164	<u>100006</u> 100007 100004	LE LPER CF BC AR AR AR CE FC LER	e, 0(9,4) 4. e 4. 152(0.12) 12. 202(0.13) 2.3 7.10 6.10 6.532(0.12) 10.4744(0.13) 3.6	A EPSLCN 15 10(CCC
0001E5 0001EC 0001F0 0001F4 0001F6 0001F6 0001F8 0001F8 0001F8	78 30 75 47 1A 1A 1A 1A 79 47 30 7A	69 46 40 53 7A 60 80 20 20		000 000 1F6 0E8 1E4 000	10CC04	LE LPER CF BC AR AR AR CE FC LER AE	e, 0(9,4) 4. e 4. 152(0.12) 12. 02(0.13) 2. 3 7.10 8. 10 6. 232(0.12) 10. 404(0.13) 5. 6 8. 152(0.12)	EPSLCN 18 10((CC EFSLCN
0001E5 0001EC 0001F0 0001F4 0001F6 0001F8 0001F8 0001F8 0001F8 0001F8	78 30 75 47 1A 1A 1A 79 47 30 7A 70	69 46 40 53 7A 60 40 20 20 20 20		000 000 1F6 0E8 1E4 000	10CC04 10CC07 10CC04	LE LPER CF BC AR AR AR CE FC LER AE STE	e 0(9,4) 4. e 4. 152(0.12) 15. 202(0.13) 2. 3 7.10 10 6. 32(0.12) 10. 4.44(0.13) 5. 6 2. 152(0.13) 2. 152(0.13)	EPSLCA 18 1000000 EPSLCA 6
QOOLES UUUIEA 0001FC 0001F0 0001F4 0001F4 0001F6 000202 000202 000202 000202	78 30 75 47 1A 1A 1A 79 47 30 7A 70 79	69 46 40 53 7 8 60 20 80 20 80 20 80 20 80		000 000 1F6 0E8 1E4 000 000 000	<u>100006</u> 100007 100004 100005	LE LPER CF BC AR AR AR CE FC LER AE STE CE	e, 0(9,4) 4. 6 4. 152(0.12) 12. 602(0.13) 2.3 7.10 6.532(0.12) 10.404(0.13) 10.404(0.13) 1.6 2.52(0.13) 1.6 2.52(0.13) 1.6 2.52(0.13) 1.6 2.52(0.13) 1.6	€PSLCN 15 10(CCC €PSLCN € €FSLCN
QOOLES UUUIEA 0001EC 0001F0 0001F4 0001F6 0001F6 0001F6 0001F6 0001F6 0001F8 000202 000202 000208 000210	78 30 75 47 1A 1A 1A 79 47 30 70 79 47	69 46 40 53 7A 60 60 20 80 20 80 0		000 1F6 0E8 1E4 000 000 000 000	<u>JOCCO6</u> Incco7 Incco4 Incco4	LE LPER CF BC AR AR CE LER AE STE CE FC	e, 0(9,4) 4. e 4. 152(0.12) 12. 02(0.13) 2. 3 7.10 8. 10 e. 232(0.12) 10. 494(0.13) 5. e 8. 152(0.12) 2. 152(0.13) 2. (10.13) 5. e 9. 152(0.13) 2. 152(0.13) 2. (10.13) 5. 0 10. 13) 5. 152(0.13) 2. (10.13) 5. 0 10. 13) 5. 0 10. 13)	A EPSLCN 18 10((CC EPSLCN E EFSLCN E EFSLCN 11
QOOLEE UUUIEA 0001EC 0001F0 0001F4 0001F6 0001F6 0001F6 0001F6 0001F6 0001F8 0001F4 0001F6 000202 000202 000202 000202 000202 000210 000210 000214	78 30 75 47 1A 1A 1A 79 47 30 70 79 47 38	696400 53400 574600 208000 20800 2000 20800 20800 20800 200000000		000 1F6 0E8 1E4 000 000 000 1F6	100007 100007 100007 100007 100005	LE LPER CF BC AF AF CF CF CF CF CF CF LER	e 0(9,4) 4. e 4. fst(0,12) 12. 202(0,13) 2. 3 7.10 10 8.10 6.13) 2. 32(0,12) 10. 404(0,12) 2. 6 2. 152(0,13) 2. C(0,013) 2. C(0,013) 2. C(0,013) 2. C(0,013) 2. C(0,013) 3. C(0,013) 3. C(0,013) 4. C(0,13) 5. 6	
QOOLES UUUIEA 0001EC 0001F0 0001F4 0001F8 0001F8 0001F8 0001F8 0001F8 0001F8 000202 000202 000203 000203 000203 000210 000214 000216	78 30 75 47 1A 1A 1A 1A 79 47 30 70 79 47 30 79 79 70 79	69 46 40 53 7A 60 26 20 26 20 26 20		000 1F6 0E8 1E4 000 000 000 1F6 000	10000 100007 100004 100005 100010	LE LPER CF BCR AF AR CE FC CF STE SE	e, 0(9,4) 4. 6 4. 152(0.12) 14. 502(0.12) 2. 7.10 6. 532(0.12) 10. 404(0.12) 5. 6 5. 100. 6. 152(0.12) 5. 100. 6. 152(0.12) 5. 100. 6. 152(0.12) 5. 6 7. 152(0.12)	
QOOLE 6 JUU IEA DOOLEC DOOLEC DOOLFO DOOLOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO DOOLEONOFO	78 37 47 1 A 1 A 1 A 77 70 70 70 70 70 70 70 70 70 70 70 70	69 46 40 53 7A 60 26 20 26 20 26 20 27		000 000 1F6 0E8 1E4 000 000 000 000 1F6 000	100007 100007 100007 100007 10007	LE LPER CF BC AF AF AF CE FC FC FC FC STE STE	C: O(9,4) 4. C 4. ISE(0.12) 12. EO2(0.13) 2. Tol0 E: IO E: IO E: ISE(0.12) IO. APA(0.12) IO. APA(0.12) IO. ISE(0.12)	
QODIES JUDIEA QUDIEA QUDIFO QUDIFO QUDIFE QUDIFA	78 30 75 47 1A 1A 79 47 30 70 79 47 30 70 79 70 70 70 70 70 70 70 70 70 70 70 70 70	69 46 40 53 7A 60 20 20 20 27 9A		000 1F6 1E4 000 000 000 1F6 000 1F6 000 1HE	100006 100007 100007 100075 100010	LE LPER CF BARAR CF LER STE FC R STE BAR STE STE BAR STE BAR STE BAR STE BAR STE STE BAR STE STE STE BAR STE STE STE STE STE STE STE STE STE STE	e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2.3 7.10 8.10 6.13 5.6 2.2(0.12) 10.404(0.13) 3.6 2. 152(0.13) 2. C(8.6) 6. 152(0.12) 12. 202(0.12) 2. 0(7.6) 2. 0(7.6) 5.10.446(12) 2.10	CO2 15 16 10CCCC EPSLCN EPSLCN EFSLCN 17 17 10 100CGE 100CGE
Q001E6 0001EC 0001EC 0001F0 0001F0 0001F0 0001F6 0001F8 0001F8 0001F4 0001F8 0001F8 000202 000202 000203 000204 000216 000216 000216 000218 000218 000218 000218 0002218 000222	78 30 75 47 1 A 1 A 1 A 1 A 79 47 70 70 79 47 38 70 70 70 87 50 87 50	69 46 40 53 7A 60 20 20 20 20 20 27 9A 50		000 0C0 1F6 0E8 1E4 000 000 0C0 3F6 0C0 3F6 0C0 1BE 0C4	<u>100006</u> 100007 100004 100095 100010 15	LE LPER CF BC AR AF AF CFC LER STE FC LER STE HXLE S1	e, 0(9,4) 4. 6 4. 152(0.12) 12. 602(0.13) 2.3 7.10 6.532(0.12) 10.404(0.13) 2. 10.404(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13) 2. 152(0.13)	
Q001E6 0001EC 0001EC 0001F0 0001F0 0001F6 0001F6 0001F6 0002E2 0002E2 0002E2 0002E2 0002E2 0002E2 0002E2 0002E2	78 30 75 47 1 A 1 A 1 A 75 47 30 7 A 7 0 7 A 7 0 7 4 7 30 7 4 7 30 7 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	69 46 40 53 7A 60 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20		000 0C0 1F6 0E8 1E4 000 0C0 1F6 CC0 C00 1BE CC4 060	JOCCOE 100CO7 100CO9 100C09 100C09 100C09 100C010	LE LPER CF AR AF AF AF CF CF CF CF CF CF CF CF CF CF CF CF CF	C: O(9,4) 4. C 4. ISE(0.12) 12. 202(0.13) 2. 32(0.12) 7.10 E.10 E.10 C.12) IO. 474(0.12) S. IO. 474(0.13) S. IO. 474(0.13) S. E. 152(0.12) S. I COC(0.12) S. C(0.12) S. C(0.12) S. C(0.12) S. C(0.12) S. C(0.12) I S. I S. I S. I S.	CO2 EPSLCA IE 10CCCC EPSLCA EFSLCA EFSLCA FISLCA FISLCA IOTCOE ICTLA 0 0 0
Q001E6 0001E2 0001E2 0001F0 0001F0 0001F0 0001F6 0001F6 0001F6 0001F6 0001F8 0001F8 0001F8 000202 000201 000216 000216 000227 000222 000222 000222	78 30 75 47 1 A 1 A 1 A 79 47 70 79 47 70 79 47 70 79 9 47 70 70 70 50 67 79 50 67 79	699 466 537 460 537 460 200 200 200 200 200 200 200 200 200 2		000 0C0 1F6 0E8 1E4 0C0 000 0C0 1F6 CC0 C00 1F6 CC0 C00 1F6 CC0 C00	JOCCOF 100C07 100C04 100C05 100C10 15 10CC11	LE LPER CF CF CF CF CF CF CF CF CF CF CF CF CF	e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2.3 7.10 6.10 6.13) 2.32(0.12) 10.404(0.13) 3. 6 2. 152(0.12) 3. 6 4. 152(0.12) 3. 12.002(0.12) 3. 152(0.12) 3. 6 2. 152(0.12) 3. 152(0.12) 3. 152(0.12) 3. 152(0.12) 4. 152(0.12) 3. 152(0.12) 3. 152(0.12) 3. 152(0.12) 3. 172(0.12) 3. 172(0.12)	
Q001E6 0001E6 0001E6 0001E6 0001F0 0001F6 000210 000210 000210 000216 000216 000216 000227 000228 000228 000228 000228 000228 000228 000228 000228 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288 000288	78 30 75 47 1 A 1 A 1 A 1 A 79 47 70 70 70 70 70 70 70 70 70 70 70 70 70	699 460 533 784 600 200 200 200 200 200 200 200 200 200		000 0C0 1F6 1E4 000 000 1F6 000 1F6 000 1HE 000 0H0 0AC	JOCCOE INCCO7 INNCCO7 INNCCO7 INNCCO7 INNCCO7 INNCCO7 INNCCO7 INNCCO7	LE LPER CF CF CF CF CF CF CF CF CF CF CF CF CF	C: O(9,4) 4. C 4. ISE(0.12) 12. EO2(0.13) 2. ISE(0.12) 7.10 E. E. ISE(0.12) IO. 474(0.12) S. C(0.12) S. ISE(0.12)	
Q001E6 Q001E6 0001E2 0001E2 0001F0 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 000212 000212 000216 000216 000216 000216 000216 000226 000216 000226 0002216 000226 0002216 000226 0002226 000226 0002226 0002226 0002220 0002224 0002220 000224 0002224 000224 000224 000224	78 30 75 47 1 A 1 A 1 A 1 A 79 47 70 70 70 70 70 70 70 70 70 70 70 70 70	6994600 533744600 53744600 260260 200260 2002774 5000 20020 20020 20020 20020 20020		000 000 1F6 1E4 000 1F6 000 1F6 000 1F6 000 1HE 060 0AC 0D8	JOCCOF INCCO7 INDCO4 INDCO5 INDCO5 INDCO10 IS INCCO10	LE LPER CFC CFC AR AR CEC FCC AF AR CEC FCC FCC FCC FCC FCC FCC FCC FCC FCC	e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2. 3 7.10 6 6. 532(0.12) 10. 404(0.13) 5. 6 5. 152(0.12) 12. 002(0.12) 13. 6 5. 152(0.12) 14. 602(0.12) 15. 6 5. 152(0.12) 15. 6 5. 152(0.12) 15. 6 5. 152(0.12) 15. 152(0.12) 15. 152(0.12) 15. 152(0.12) 16. 152(0.12) 17. 10. 18. 172(0.12) 18. 184(0.12)	
Q001E6 0001E2 0001E2 0001F0 0001F0 0001F0 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 000222 000226	78 3075 477 1 A 47 1 A 1 A 1 A 1 A 797 477 38 707 797 707 707 707 707 707 707 707 707	69 46 40 53 7 A 60 26 20 26 20 26 20 26 20 27 3 4 50 20 20 20 20 20 20 20 20 20 20 20 20 20		000 0C0 1F6 0E8 1E4 0C0 0C0 1F6 0C0 1F6 0C0 1HE 0C0 0H0 0AC 0H0 0AC 0H0 0AC	<u>100006</u> 100007 100007 100075 100010 15 100011	LE LPER CBCRRFARECER ARECER SECCR SE	e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2.3 7.10 6.10 6.13) 2.32(0.12) 10.44 10.44 0.13) 2. 6 3. c(8.6) 6.152(0.13) 2. 2. 152(0.13) 2. c(7.6) 2. 152(0.12) 2. 152(0.12) 2. 152(0.12) 3. 176(0.12) 2. 176(0.12) 3. 176(0.12) 2. 184(0.12)	
Q001E6 0001E6 0001E0 0001F0 0001F0 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 000210 000210 000211 000221 000221 000222 000222 000222 000224 000224 000224 000224 000224 000224 000223 000234 000234	78 30 75 47 47 1 A A 1 A 79 47 70 70 70 70 70 70 70 70 70 70 70 70 70	600 4600 53AA 600 53AA 600 500 600 200 500 200 800 200 200 200 200 200 2		000 0C0 1F6 1F6 0E8 1E4 0C0 000 0C0 3F6 CC0 000 1HE CC4 000 0H0 C70 0AC 0H8 C70 021E	JOCCOE 100C07 100C07 100C05 100C15 100C11	LE LPER CBC RF AR CEC FLER STE LE STE LE STE LE STE LE STE LE STE LE CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF AR CBC RF CBC RF AR CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC RF CBC CBC RF CBC CBC RF CBC CBC CBC CBC CBC CBC CBC CBC CBC CB	C: O(9,4) 4. C 4. ISE(0.12) 12. EO2(0.13) 2. ISE(0.12) 7.10 E.10 E.10 C.12) IO. 4.412) IO. 4.412) IO. 4.412) IO. 4.410.12) IO. 4.410.12) IO. 4.410.12) IO. 4.410.12) IO. 4.410.12) IO. 4.411.2) IO. 4.410.12) IO. 4.410.12) IO. 4.410.12) IO. 5.410.12) IO. 5.410.12) IO. 5.410.12) IO. 1.410.12) IO. 1.410.12) IO. 1.420.12)	СО2
Q001E6 0001E2 0001E2 0001F0 0001F1 000200 000210 000211 000212 000212 000214 000226 000226 000226 000222 000222 000224 000225 000224 000225 000224 000224 000225 000224 000224 000225 000226 000226 000228 000228 000228 00028 00028 00028 00028 00028 00028 00028 00028 <td>78 30 75 47 47 47 47 47 47 47 47 47 47 47 70 70 70 70 70 70 70 70 70 70 70 70 70</td> <td>6000 4000 53AA000 53AA000 5000 2007 50000 2000</td> <td></td> <td>000 0C0 1F6 0E8 1E1 0C0 0C0 0C0 1F6 0C0 0C0 1F6 0C0 0C0 0C0 216 0C4</td> <td><u>JOCCO6</u> 100C07 100C04 100C95 100C10 <u>15</u> 100C11</td> <td>LE LPER CBCRAR ARECER EECRESSILE STLEE LTEECER EECRESSILE LTEECER</td> <td>e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2.3 7.10 E.10 6.13) 2.32(0.12) 10.404(0.13) 2.6 5.2(0.12) 10.404(0.13) 2.6 2.102(0.12) 12.602(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12)</td> <td></td>	78 30 75 47 47 47 47 47 47 47 47 47 47 47 70 70 70 70 70 70 70 70 70 70 70 70 70	6000 4000 53AA000 53AA000 5000 2007 50000 2000		000 0C0 1F6 0E8 1E1 0C0 0C0 0C0 1F6 0C0 0C0 1F6 0C0 0C0 0C0 216 0C4	<u>JOCCO6</u> 100C07 100C04 100C95 100C10 <u>15</u> 100C11	LE LPER CBCRAR ARECER EECRESSILE STLEE LTEECER EECRESSILE LTEECER	e 0(9,4) 4. 6 4. 152(0.12) 12. 202(0.13) 2.3 7.10 E.10 6.13) 2.32(0.12) 10.404(0.13) 2.6 5.2(0.12) 10.404(0.13) 2.6 2.102(0.12) 12.602(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 12.202(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12) 11.202(0.12) 2.302(0.12)	
Q001E6 0001EC 0001EC 0001F0 0001F0 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 0001F6 000176 000202 000210 000210 000211 000212 000212 000224 000224 000224 000224 000224 000224 000224 000224 000224 000224 000234 000234	78 30 75 47 47 1 8 47 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 9 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 7	60600000000000000000000000000000000000		000 0C0 1F6 1F6 000 0C0 1F6 CC0 0C0 1F6 CC0 0C0 1F6 CC0 0C0 21E 0C4 CC0 CC0 CC0 CC0 CC0 CC0 CC0 CC0 CC0	JOCCOE JOCCO7 JOCCO4 JOCCO4 JOCCO4 JOCCO4 JOCCO4 JOCCO4 JOCCO4 JOCCO4 JOCCO4	LE LPE B B B A R C C C C R C C C C R C C C C R C C C C R C C C C R C C C C C A R C C C C	e 0(9,4) 4. 6 4. 152(0,12) 12. 202(0,12) 2.3 7.10 6.10 6.12) 10.404(0,12) 2. 2. 152(0,12) 10.404(0,12) 2. 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 152(0,12) 2. 164(0,12) 2. 112(0,12) 2. 112(0,12) 3. 112(0,12) 3. 112(0,12) 3. 112(0,12)	

.

+LEVLL 2.3.6 IJUNL	781		C\$/360 FCR1FAN I	H EXTENDED	GATE 81.166/14.56,24	FAGE
	00024A	79 00 D 07e	CE	6. 120(0.13)	41F00000	
	00024E	47 AO C 23E	FC	10. 174(0.12)	10((15	
	000252	78 CO D CHS	206001 LE	0. 184(0.13)	FATIC	
	000256	79 00 D 670	CE	C. 112(0.13)	41400000	
	00025A	47 50 C 23E	EC	E. E74(0,13)	100015	
	00025E	78 00 D C74	10CC14 LE	(. 116(0.13)	41400000	
	000262	70 00 D 084	51E	C. 180(0.13)	FNEU	
	000266	78 00 D CB8	100013 LE	0. 154(0.13)	CALLC.	
	00026A	79 00 D 07C	CE	(. 124(0.13)	42140000	
	00026E	47 A0 D 25E	ÐC	10. 606(0.13)	100017	
	000272	78 CO D CB8	500C05 FE	0. 184(0.12)	EATIC	
	000276	79 00 D 078	CF.	0. 120(0.13)	41500000	
	00027A	47 50 D 25E	ec	t. (0((0.12)	19((17	•
	00027E	78 00 D CE4	100C16 LE	(. 132(0.13)	421E0000	
	000262	70 00 D 0E4	SIE	(. 186(0.12)	5 b F t	
	000266	78 00 D 088	10CC17 LE	G. 184(0.13)	BALLC	
	AP 2000	79 00 D 000	CE	(, 128(0,12)	42190000	
	00023E	47 A0 D 27E	EC	10. 636(0.13)	100015	
	000252	79 00 C 08C	20003 LE	0. 198(0.12)	RATIO	
	030296	79 00 D 07C	CE	C. 124(0.13)	42140000	
	00025A	47 50 D 27E	EC	5. 636(0.12)	100015	
	00029E	78 00 D C8C	100C16 LE	(. 140(0.13)	42320000	
	0002 A2	70 00 D 084	STE	C. 180(0.13)	FPEU	
	000246	78 00 D 088	100019 LE	0. 184(0.13)	PATEC	
	0002AA	79 00 D 08E	CE	C. 136(0.13)	42230000	
	0002AE	47 AQ D 29E	ec	10. 670(0.13)	100021	
	000282	78 00 D CR8	20000) LE	0, 184(0,13)	FATIC	
	000286	79 00 D 080	CF	C, 128(0,13)	42190000	
	A65000	47 50 D 25E	PC .	t, €70(0,13)	100C21	
	00028E	78 GO D 090	IOCC20 LE	6. 144(0.13)	42640000	
	0002C2	70 00 D 084	STE	C, 18((0,13)	FPEU	
	0002C6	78 00 D 088	100021 LE	C, 184(0,13)	FATIC	
	000204	75 00 D 088	CE	(, 136(0,13)	42230000	
	0002CE	47 50 D 282	EC	t. (SO(0,13)	100023	
	000202	78 00 D CS4	100022 LE	0, 148(0,13)	4208000	
	000206	70 00 C 084	STE	C. JEO(0.13)	FAEL	
	0002UA	78 00 D 080	100023 LE	0, 176(0,13)	F PA >	
	0002DE	78 60 D 0C 0	SE	6, 192(0,13)	EPSLGN	
	0002E2	70 00 C 080	STE	C, 17((0.13)	F NAX	
	000266	28 00 D CC4	L	0, 196(0,13)	ICCUNT	
	OUUZEA	50 00 D GA E	51	C. 166(C.13)	NU #	
	0002EE	18 FF	SF	16,15		
	000260	E8 EO D CCC	L	14. 0(0.13)		
	0002F4	07 FE	ncr	15.14		
ODELSS OF EPILOGO	E.					
	000266	58 AQ 0 CO4	4	10, 4(0.13)		
	00021-4	58 EU A GOC	L	14, 12(0,1()		
	000276		L.	11. 24(0.10)		
	000302		L			
	000300			5. 0/ 0. 15	L PAX	
	000304		516			
	000302	58 30 0 048		3. 166(0.17)		
	000316	50 30 2 (00	L 61		404	
	000214	58 40 P 010	51	4. 16(0.11)		
	000315	78 40 0 600		4. 1621 0.171	EDGLIA	
	000322	70 40 4 600	C I F	A. 0(0. A)	CUSLUP	
	000324	56 50 E 014		1. 201 0.111		
			•.			

+LEVLL 2.

+UPTIUNS IN EFFECT+NAPE(PATH) OPTIMIZE(2) LINECCUNT(6C) SIZE(0750K) ALTCOBL(NENE) +UPTIUNS IN EFFECT+SUURCE ERCOIC LIST NORECK OBJECT FAF FORMAT GUSTMT XFEF NOALC FOANSE THRM THAT FLAG(1) +STATISTICS+ SUURCE STATEMENTS = 27, PROGRAM SIZE = 414, SUMFOGFAF NAPE =SELECT

.

+LEVEL 2.3.0 (JUNE	78)		CEV360 FCRIPAN H	E > 1E FDED	CATE E1+166/14+56+34	FACE	ŧ
	000124	28 60 D 084	1.F	C. 180(C.13)	FNEU		
	00032F	70 60 5 600	STE	é. C(0, 5)			
	000342	18 04	LB	12.10			
	0003.14	52 FF A 00C	MVI	12(10).255			
	000338	SE ZC A CIC	LM	2.12, 28(IC)			
	000330	07 FE	ACR	15.14			
ADDRESS OF FROLOGU	IE						
	00033E	SE 7A 1 COB	LP	7,10, 9(1)			
	000342	78 20 7 000	LE	2. C(C. 7)			
	000346	70 20 D 080	STE	2, 176(0,12)	F.NA.)		
	000 34A	EE 2C 8 COO	L	2. 0(0.8)			
	00034E	50 20 D 0A8	51	á, 16E(0,13)	404		
	000352	78 20 5 COO	LE	2. 0(0.5)			
	000356	70 20 D 0C0	STE	2, 192(0,13)	EFSLCM		
	A26000	78 20 A 000	LE	2, 0(0.10)			
	00035E	70 20 U CA4	STE	2. 180(0.12)	" NEL		
	030362	56 20 1 000	L	í. O(G. 1)			
	000366	41 30 2 000	LA	3, 0(0,2)			
	000364	41 20 0 664	LA	5, 4			
	306 000	18 25	5R	2. t			
	000370	50 20 D 0C0	ST	2, 208(0,13)			
	000371	EC 30 D CD4	51	3, 212(0.13)	,		
	000378	58 20 1 004	L	2. 4(0.1)			
	00037C	41 30 2 CCO	LA	3, 0(0,2)			
	000380	41 50 0 004	LA	£, 4			
	000384	18 25	SF.	2. t			
	000366	50 20 D CD8	51	2, 216(0,12)			
	00038A	50 30 D 0DC	51	3. 220(0.13)	E		
	00038E	47 FO D 110	FC	15, 272(0,13)			
ADELN FOR FROLUGUE							
	000020	00C0033E	EC	XL4'0000032E'			
AUCLN FUR SAVE AR	: A		96	*********			
	000024	0000028	DC DC	AL4. ((600028)			
ADCON FLR EFILOGO	-		06	*1.41000002541			
	000023	0000268	bc	x[4.00000216.			
ADCUNS FUR FARAMET	IER LIST			*******	516		
transmitter and co	1000074			X14-20030014-	512		
IEMPURAFIES AND G	COULT OF	CCF 214813		*********			
	000100	0000000	00				
	000110						
	000114	0000004					
	000118	66666666	50	XI A • 00000000			
	000110			x1 41000CCCCC			
	000120	00100000		X1 A1 0000C0001			
	000124	66466000		x14*000ccode*			
	000125	0000000	00				
	000120	00100000		X14* 000CC0C0*			
	000130	44460000		XI A* CCCCC000 *			
	000134		I/C				

162

.

+LEVEL 2.3.0 (JUNE 78)

CS7360 FORTRAN E EXTENDED

۰.

,

~

REQUESTED OPTIONS: OPT=2,FCRMAT, XREF, LIST, MAP, SIZE(75CK)

UPILUNS IN EFFECT: NAME(MAIN) CPTIMIZE(2) LINECCUNT(60) SIZE(0750K) AUTOCOL(NONE) SULRCE ERCEIC LIST NEDECK (BJECT PAP FEFPAT GOSTNT XREF NOALE NUANSF TEPN IBN FLAGELL

1 SN	0002		SUBFOUTINE COMPOUNDATE NUM.EPSLON.XWAX.FMELI	00000910
		C	MEU-LAW CONVERTER	00000920
		C		00000930
		C	RUATA : INPUT ARRAY CCT CCEFFICIENTS OF SEISMIC DATA IRACE	0000540
		с	RMEL : MEU-VALUE SET AS 500	00000950
		C	XMAX : ABSOLUTE MAXIMUM VALUE OF ROATA ARRAY	00000960
		C	NUM : NC. CF DATA FGINTS PER SWEEPS	00000570
		c	EPSLCN : THRESHELD VALUE OF INSTRATION FOR A CONFRICTION S	00000980
		C		00000990
154	0003		OIPENSICN FCATA(1)	00001000
		C	APPLY MEU-LAW	00001010
1 511	0004		FMEU1=FMEU+1+0	0001020
15.4	0005		DEN=AL(G(RMELL)	000010.10
1514	0006		EPSLON=EPSLUN/XMAX	00001040
150	0007		EPSLCN=1+0+FMEU+EPSLCN	00001050
1514	3000		EPSLCN=XMAX+AL(G(EPSLCN)	00001060
15N	0009		EPSLON=(EPSLON/DEN)	00001070
1 514	0010			00001080
ISN	0011		FDA1A(1)=0, 0	00001090
I SN	0015		51GN=10	00001100
15N	0013		AB SR = AE S (RD A IA (L I I	00001110
ISN	0014		IF (RDATA(1).LT.0.0) SIGN=-1.0	00001120
ISN	OULE		AB SR = AE SR/X MAX	00001130
1511	0017		ABSR=1+0+RMFL+ABSR	00001140
15N	0018		ABSR=X FAX FALCG (APSR)	00001150
I SN	0015		ANSR=(ADSR/DEN)+SIGN	00001160
15N	0020		RDATA(1)=A0SR	00001170
1 211	0021	10	CENTINE	00001190
154	0022	20	RETLEN	00001190
1511	62 OU		END	00001200

######FORTRAN CECSS FEFERENCE LISTING#####

SYNUL INTERNAL STATEMENT NUMBERS U010 0011 0013 CC14 0020 . AH 5 0013 UL N 0005 0009 0019 NUM 0002 0010 0012 0016 0016 0017 0017 0018 0018 0015 0019 0020 AU SH AL OG 0005 0008 0018 0002 0004 0007 0017 RMEU SIGN 0012 0014 0015 XMAX 0002 0000 0008 0016 0018 NDATA 0002 0003 0011 0013 0014 0020 FMEUI U004 J005 CUNHLU 0002 EPSLUN 0002 0000 0006 0007 0007 0008 0008 0009

*****FCRTRAN CROSS REFERENCE LISTENG***** LADEL DEFINED REFERENCES 10 0021 0010 20 0022

+LEVIL 2.3.0 (JUNL	781		C\$7360 FCR	TRAN P	EXTENDED	DATE 81+153/21+05+10
	000000	47 EO E DOC	CENMEN	P.C	15,12(0,15)	
	000004	07		ĩc	×11'07'	
	000005	CILEDSDACEE440		DC	CL7.CONMEN .	
	000000	50 EC 0 00C		STM	14.12, 12(13)	
	000010	18 40		LP	4,13	
	000012	59 CD F 020		LM	12,12,22(15)	
	000016	50 40 D CO4		51	4 .4(0,13)	
	000014	50 80 4 808		51	12.8(0.4)	
	00001E	07 FC		FCR	15,12	
CUNSTANTS						
	000000	000000		DC	XL4*CCCOCOCO*	
	000084	0000001		0.0	x14.0000001.	
	000088	41100000		DC	XL 4' 4110C000'	
	000096	0000000		DC	×L4.00000000.	
	000050	000000		DC	X14.000000000	
AUCUNS FUR VARIABL	LS AND C	CESTANTS				
ADCUNS FUR EXTERNA	LREFERE			DC.	*********	
	0000008	0000000		DC DC	*1 4 * 50 50 50 50 50	60A1A
	0000000	56 60 D CAA	100001	1	F. 164(0.13)	RU-TP
	0000000	58 AD D 004		ì	10. 180(0.13)	4
	0000F4	58 70 D 074		ĩ	7. 116(0.12)	NUM
	00001-8	78 00 D C60		LE	0. 561 0.13)	41100000
	JUJJFC	7 A 00 D 07C		AE.	C. 124(0.13)	FAEL
	000100	70 00 D 688		STE	0, 136(0,13)	RMEUL
	000104	E8 FO D CAO		L	15. 160(0.13)	ALOG
	000108	41 10 D 04C		LA	* 1. 76(0,12)	
	000100	05 EF		EALR	14.15	
	00010E	47 00 0 005		60	C. E(0. 0)	
	000115	70 00 0 08C		STE	C. 18E(0.13)	. 100
	000116	70 00 0 670		STE	C, 112(0.13)	CEN
	000114	78 20 0 090		LE	2. 144(0.13)	EF SLEN
	000112			UE 6 16		EDSLON
	000122	70 20 0 (30		NE		EAFT
	000128	74 20 0 060		AF	5. 561 0.13)	41100000
	00012A	70 20 0 020		SIE	5. 1441 0.13)	EFSLCK
	0001 12	53 E0 D 040		1	17. 16((0.13)	ALCG
	000136	41 10 0 (50		ĩ.	1. 80(0.13)	
	AE 1000	05 EF		PALR	14.15	
	000120	47 00 0 CGE		E.C.	0. E(0. 0)	
	000140	78 20 D (F4		LE	2, 132(0,13)	XMAX
	000144	3C 20		MER	2, (
	000146	70 20 D 090		STE	2, 144(0,13)	EPSLUN
	00014A	70 20 D 00C		ĐE	2. 186(0.13)	,100
	00014E	70 20 1) 090		STE	2, 144(0,12)	EPSLCN
	000152	78 00 D CEO		16	0, 96(0,13)	41100000
	000156	33 00		LCER		
	000158	70 00 D 000		STE	0. 1/6(0.12)	
	00015C	18 87		C H	11. /	
	000156			16	6.10	
	000162	10 SA 28 CO D (58	10((02	LE	C. 8EL 0.131	0
	000169	70 09 8 000		SIF	C. ((9, P)	14.14.14
	000160	78 00 0 (60		LE	0. 961 0.17)	£110000C
	000170	70 00 0 090		516	(. 1261 0.13)	SICK

FAGE 2

+LEVEL 2.3.0 (JUNE 70)		CS/300 FCRIFAN H EX	TENDED	DATE 01.153/21.05.1P	FAGE 2
000174	78 29 8 000	1.E 2	, at s. e)	FCATA	
000178	30 02	LPER 0	. 2		
000174	70 00 D C7E	STE C	. 120(0.13)	Alise	
000176	32 22			10550	
000100	47 AU 0 164		. 2500 0.121	Tuctes	
000184					
000166	70 00 0 010			2100	
000180		100004 12 4	. 135(0.13)	AUSF XNAV	
000190	10 20 D 024				
000194		AE 5		41100000	
000196	70 20 0 078	STE S	. 120(0.13)	AFSL	
000140	*# EQ D 040	572. 4	. 160(0.13)	AL OG	
000144	41 10 D 054	i. i	. 84(0.13)		
64 10 00	05 EF	EALR 14	.15		
000144	47 00 0 012	EC C	. 18(0. 0)		
000146	78 20 D CE4	16 8	. 122(0.12)	XMAX	
000182	3C 20	MER	. 0		
000184	70 20 D C70	DE a	. 112(0.13)	DEN	
000188	7C 20 D 080	ME	. 128(0.13)	SIGN	
000180	70 29 8 000	51E 2		FDATA	
000100	87 9A D 13C	10 EXLE 9	.10, 316(13)	100002	
000104	10 FF	20 59 15	.15		
000166	58 EO D 000	L 14	. ((0,12)		
000 I CA	07 FE	ECR IS	.14		
ADURLSS OF EPILUGUE					
000100	56 AQ 0 CO4	L 10	. 4(0,13)		
000100	58 EO A OOC	L 14	. 12(0,16)		
000104	20 A 010	L 11	. 24(0.10)		
000106	56 10 0 CO8	ι 1	. 8(0,11)		
000100	76 20 D 090	I.E 1	. 144(0,13)	EPSLEN	
0001E0	70 20 1 000	STE 2			
000164	18 DA	LR 13	.1 C		
0001 E6	92 FF A 00C	MVI	12(10).255		
0001EA	SE 2C A CIC		.12. 28(10)		
UUOIEE	07 FE	BCR 1			
ADDRESS OF PROLOGUE					
0001F0	58 7A 1 CG4				
0001F4					
000115				KOP	
0001FC	10 20 0 000				
000200	76 20 0 000	16 2			
000204	70 20 0 084	STE 5	. 1326 0.131	XMAX	
000205	7P 20 A 000	16			
000210	76 20 0 676	STE	. 1241 0.131	S MEL	
000214	28 20 1 000	L			
000218	41 30 2 000	LA 3	. 01 0. 2)		
000210	41 20 0 004	LA S	. 4		
000220	1E 25	SR a	• •		
000222	50 20 D CA4	51 2	, 164(0,12)		
000226	50 30 D 048	51 3	. ICEC 0.131	FLATA	
000224	47 FO D 0C4	FC 15	. 196(0.13)		
ADEEN FUR PROLUGUE					
000020	000001F0	DC XL	4 COODOIF 0 .		
AUCON FUR SAVE AREA					
000024	0000020	0C XI	4 · CCCCC028 ·		
AUCUN FOR EPILUGUE					

000028 Aucuns für Farameter List	00(0010C 5	60	X1.4*000001CC*	
000074 000078 000078 JUND7C TEMPURARIES AND GENERATED	80C0U0R0 80C000R0 80C000A0 CCN \$1AN 15	DC DC DC	×L4+80000000 + ×L4+800000000 + ×L4+800000000 +	FMEUI PSLCN ABSF
000004 000005 000005 000024 000024 000028		0C 0C 0C 0C 0C 0C	×L4,COCOCOO, ×L4,COCCCOCO, ×L4,COCCOCOA, ×L4,COCCOCOO, ×L4,COCCOCOO, ×L4,COCCOCOO,	

+OPTIONS IN EFFECT+NANELMAINT OPTIMIZE(2) LINECOLNT(CO) SIZE(0750K) AUTCORLINCKET

.

+UPITUNS IN EFFECT+SOURCE EBCCIC LIST NODECK (BJECT NAF FORMAT GOSTNET NEEF NOALC NOANSE TERM IBM FLAG(1)

+S 1411511C5+	SOURCE STATEMENTS =	22. PROGRAM SIZE =	ESE, SUBFREGRAM NAME =CENMEU
+51411511CS+ NO	J DIAGNESTICS GENERATED		

****** END OF COMPILATION ******

.

316K BYTES OF CORE NOT USED

0065 0017 0017 HDATA 0002 0003 0010 0012 0015 EPSLUN 0002 +++++FORTRAN CROSS REFIFENCE LISTING+++++ LAUEL DEFINED RELEARNCES 10 0021 0008 15 0015 0010 20 0017 0014

#####FORTRAN CRCSS REFERENCE LISTING##### SYNELL INTERNAL STATLMENT NUMBERS 1 0007 0009 0009 0012 0013 0015 C(IE 0017 0017 0015 0015 0006 0010 J 111 0013 0016 NUM 0002 0008 0012 0013 0015 0016 CUDE XM AX 0002 0004 CODEN 0002 ULLIA 0004 0012 0015 UOU2 UUUJ UUI3 ODIE OUI7 COI7 CC15 0015 ICUDE. ILL VL 00CE 0019 0019 IULVL

1.56	0002		SUBFCLIINE	CODERC	FDATA.EPSLCN.>PAX, ICODE.NLM)	00001210
		C				00001220
		c	RDATALLE	:	INPUT ARKAY	00001230
		c	EPSLEN	:	TEFESECLO LEVEL	00001240
		C	XMAX	:	HAXEMUM INFLI VALUE	00001250
		c	ICCOE	:	DUIPUT ARRAY	00001260
		c	NUN	:	NUPBER OF CATA IN THE INPUT ARRAY	00001270
		c	IUL VL	:	UPPER LEVEL LINIT	00001280
		C	ILLVL	:	LCWER LEVEL LIMIT	00001290
		c				00001300
15N	0003		DIMENSION R	DATACI), ICCDE(1)	00001310
150	0004		DEL TA=>PAX/	(4.0		0 2 5 1 0 0 0 0
150	0005		IUL VL = (3			00001330
150	0006		11176=-64			00001.34 0
		C				00001350
ISN	0007		1=0			00001360
I SN	0008		4.1=. 01 00	U۲		00001370
ISN	0005	FTE (1.010000000000000000000000000000000000	1=1+1		The second s	00001380
1 SN	0010		IF (PEATALJ)	.LI.0.	D) GE TE 15	00001390
I SN	0012		CODE =R(ATA(I)/DEL	TA	00001400
LUN	0013		ICODE(1)=1N	TICEDE)	00001410
ISN	0014		GO 1C 20			00001420
1 50	0015	15	CODE = FLATA(11/0EL	14-1.0	00001430
ISN	0010		ICODE(1)=IN	TICODE)	00001440
1 SN	0017	20	IF (I (CCE(I)	. GI.	IULVL) ICODE(1)=IULVL	00001450
1 51	0015		IF(ICODE(1)	.1.1.1	LL VL) ICCDE(I)=ILLVL	00001460
ISN	0021	10	CUNTINLE			00001470
TSN	0022		REILEN		and a war of the local second the second	00001480
ISN	0023		ENO			00001490

LPILLNS IN EFFECT: NAME(MAIN) CPTIMIZE(2) LINECCUNT(60) SIZE(0750K) AU1000L(NCNE) SUGREE ERCORC LIST NODECK CRIECT MAP FORMAT GESTMI XREE NOALD NOANSE TERM IBM FLAG(1)

REQUESTED OFTIONS: OPT=2,FORMAT, XPEF, LIST, MAP, SIZE(750K)

*LEVEL 2. J. 0 (JUNE 78)

GS/360 FCRIFAN E EXTENDED

UATE E1+153/21+05+20 FAGE 1

.

+LEVEL 2.J.O (JUNE	781		05/360 FCR	TPAN H	E > 1E FOFD	CATE 81.153/21.05.20
	000000	A1 60 6 606	COFF		15 15/0 151	
	000000	47 FO F CUC	CODEF	е с ос	11112101107	
	000000	C3F6CAC5F54040		nc nc	CL 1+ CODER +	
	000000			STM	14.12.12(13)	
	0000000	18 AD		1.8	4.13	
	000012	98 (0 1 020		LM	18.13.32(15)	
	000016	50 40 D C04		51	4 4 (0 . 13)	
	00001A	50 00 4 008		51	13,6(0,4)	
	10001E	C7 FC		ECR	12.12	
ILPELKARY FOR F1X70	FLGAT					
	000078	0000000		CC	×L4'COCO0000'	
	000070	CO(00000		DC	XL4+0000000+	
CUNETANTS						
	000080	4F C 0000		CC	XL4*4F080000*	
	000084	0000000		DC .	xt4.cococodo.	
	000088	0000000		00	XL4-00C0C0C0	
	000080			00	XL4* 0000000*	
	000090	0000001		DC DC		
	000054			00	XL4*000002F*	
	000056					
	000090	41100000		50		
	000040	42400000		DC DC	X14-42400000-	
	000044	00(00000		DC DC		
ANCONS FOR VARIANI	ES AND C	0. 514. 15		U.		
ADCONS FOR EXTERNAL	L J HAD C	NCES				
ADCONS FOR EATERING	000050	0000000		DC.	X1 41 COCCCCCC	LCCOF
	000068	0000000		nc	XIA:00000000	PLATA
	000020	58 60 D 0C0	100001	1	(. 192(0.13)	
	000100	58 50 D 088		1	5. 184(0.13)	
	000110	78 60 0 (54		1.F	f. 146(0.13)	***
	000114	58 EO D 060		i.	11. 9((0.13)	0
	000118	SE AG D OCC		ĩ	10. 2041 0.13)	4
	00011C	38 46		LER	4. 6	
	00011E	70 40 D 078		DE	4. 120(0.13)	42400000
	000122	56 00 D COC		L	0. 1081 0.13)	63
	000126	50 00 D 0A4		SI	C, 164(0,13)	THEVE
	00012A	58 00 D 070		t	C. 112(0.13)	61
	00012E	13 00		LCR	C. 0	
	000130	50 00 C 0A0		51	(, 16((0,13)	TLEVE
	461000	48 30 D CSC		t.	2, 140(0,13)	NUM
	8E1000	69 20 0 CO2		SLL	2 . 2	
	00013C	18 40		LR	4.11	
	00013E	16 50		LR	5,11	
	000140	18 7A		L n	7.10	
	000142	10 88		LF	E.11	
	000144	16 82		LF	11. 2	
	000146	14 84	100005	N R	E . I C	
	000149	1.4.44		AR	4.10	
	000144	14 54		AC	E.10	
	030140	18 07 6 000		LE	\mathbf{c} , \mathbf{c} , \mathbf{c} , \mathbf{c})	EDATA
	000150	32 00		LICH	0.0	
	000152	47 50 D 14C		NC .	1. 3321 0.13)	10.11
	000156	10 05 6 009	10003	1). 660		11.414
	UOUIEA	20 64		0.58	r. a	
	0001:0	28 00		50.9	ι, Ο	

FAGE 2

*LEVEL 2.3.0 (JUNE	781		CS/360 FCRIRAN	F EXTENDED	GALE 01.123/21.05.20
	00015E	38 06	LER	(, έ	
	006160	6A 00 0 058	AC.	0. 86(0.13)	4F090000000000000
	000164	60 CO D C50	510	0, 80(0,13)	
	000168	58 20 D 054		2. E4(0.13)	
	000100	E0 25 5 COO	ST	2. 0(5.5)	IC COE
	000170	47 FU D 10C	8C	15, 264(0,13)	20
	000174	78 24 C 000	15 LE	2. ((4. 6)	EDATA
	000178	30 24	CER	2. 4	
	000174	30 (5	LER	(, 2	
	000170	78 60 D 074	SE	e. 11e(0,13)	41100000
	000180	28 00	508	C. C	
	000182	38 06	LER	ι. ε	
	000184	6A 00 D 058	AC.	C, 88(0.13)	4F080000000000000
	000188	EO OO D GEO	510	0. 80(0.13)	
	000190	58 20 D 054	L	2, 84(0,13)	
	000190	5C 24 9 000	51	2. 0(4.5)	ICEDE
	000154	58 C8 9 CCO	20 L	C. C(8.S)	ICCDE
	000198	59 00 U 0A4	c	C. 164(0,13)	IULVL
	000190	47 CO D 180	ec.	12. 3841 0.131	100005
	0001A0	58 00 D 0A 4	10C004 L	0, 164(0,13)	IULVI.
	0001 A4	50 08 9 000	51	(, ((e, s)	10006
	OUGIAB	58 09 9 000	100005 L	C. 0(8, 9)	IC COF
	OUDIAC	59 00 0 040	c	C. 160(0.13)	11171
	000100	47 A0 D 154	FC	10. 404(0.12)	16
	000184	SE GO D CAO	100C06 L	C. 160(0.13)	ILLVL
	0001 68	50 08 9 000	51	(. C(A. S)	ICTOF
	000180	87 7A D 11E	10 FXLE	7.10. 286(13)	100002
	0001(0	78 60 0 094	100007 (F	C. 1461 0.135	XPAX
	000104	58 80 D 060		11. 5/(0.12)	c
	000168		56	15.15	•
	000100	58 FO D COO	51.	14. ((0.13)	
	ODDICE	07 FF	PCE	15.14	
ADIRESS DE EDU DOU	F	07.72			
	600100	58 00 0 004		13. 41.0.131	
	000104	58 E0 D COC		14. 121 0.131	
	000104			12(13).265	
	000100			5.15 50/131	
	0001100		1.0		
	L .	() ()		12114	
ADDRESS OF PROLOGO	000153	C 8 74 1 004		1.16 44 11	
	000162	38 26 3 600	1.5		
	000120				1.551.65
	UUUTEA	70 20 0 048	316	2, 1000 0,137	restur
	OUDTEE		LF	2. ((0, 2)	
	0001F2		SIL	2. 142(0.13)	\$ \$ \$ \$
	000116	EE 20 A 000	L	2. 00 0.10	
	000 IF A	EU 20 D (EC	st	2. 140(0.13)	NUP
	0001FE	5 20 1 000	L	2. 0(0.1)	
	000202	41 30 2 000	LA	2. 0(0. 2)	
	000206	41 50 0 004		5. 1	
	00020A	10 25	58		
	000200	50 20 0 000	ST	2. 152(0.12)	
	000210	50 30 0 004	51	2, 196(0,13)	5 L A LA
	000214	58 20 I 00C	L	2. 12(0, 1)	
	000218	41 30 2 000	U.A.	3. 0(0,2)	
	00021C	41 50 0 664	LA	٤. 4	
	000220	IE 25	58	i. (
	0002222	50 20 D CD8	51	2, 184(0,13)	
	000226	50 30 C CHC	51	2, 189(0,13)	LCODE

169

FAGE 3

*1	LEVEL 2.3.0 (JUNE 78)		C\$/360 F	CETEAN F	EXTENDED	CATE 81.153/21.05.20	FAGE	4
	00022A	47 FO C 0E0		ΡC	15, 224(0,12)			
	OUDDE SAVE AUCA	00C001F2		ÐC	x14'000001E2'			
	000024	00000928		E C	XL4.0CCCC02E.			
~	JUJJ28	00000100		t:c	×L4.00000100.			
11	MPURARIES AND GUNERATED OUGUFO	CCNSTANTS		ØC	×L4• 60006000 •			
	0000F4 0000F8	0C (00004 00 000000		DC DC	×L4•00000004• ×L4•06686000•			
	0000FC 000100	0000000 00((0000		DC DC	×L4*0000000*			
	000104	000000		DC	XL4.COCCCOCO.			

.

+UPILUNS IN EFFECT+NAME(MAIN) CPTIMIZE(2) LINECCUNT(60) SIZE(0750K) AUTCCBL(NCNF) AUPTIONS IN EFFECT*SOURCE FECTIC LIST NOFICK (HJECT MAP FORMAT GOSTMT XFEF NOALC NOANSE TERM THAT ILAGUIT 22. PRCCRAP SIZE = ESE. SLOFREGRAD NAME = CEDER +STATESILCS+ SOURCE STATEPENTS =

+STATISTICS+ NU DIAGNUSTICS GENERATED 316K BYTES OF CORE NOT USED

****** END OF COMPILATION ****** STATISTICS NU DIAGNOSTICS THIS STEP

MAPPER	0002 000.	0006					
			HAFORTRAN	<pre>c R 0 S 4</pre>	RFF	FEFFNCE	
LAUEL	DEFINED	REFEREN	CES				
10	0010	0004 0	1006				
		000000	47 F0 F 00C	CECODE	BC	15,12(0,15)	
		000004	07		C.C	×L1'07'	
		000005	C4(EC3D6C4CE40		DC .	CL7ºCCCCE '	
		000000	90 EC D 00C		STM	14,12,12(13)	
		000010	18 4D		Ľ	4,13	
		000012	\$8 CD F 020		LM	11,12,22(15)	
		000016	50 40 D 004		51	4,4(0,13)	;
		000014	50 00 4 008		51	13.0(0.4)	
		00001E	07 FC		E CR	11.12	
TEMPORA	AV FCA FIX	FLUAT					
		000078	4E(00000		CC	XL 4 ' 4E CC CO CO '	
		00007C	000000		t c	XL4.CC0C00C0.	
LUNSTAN	15						
		000080	4 E CO0000		CC	XL 4 • 4ECCCCCC	
		000084	6000000		СC	x14.600000000	
		010088	00000000		DC	×L4.CCCCC00.	
		000080	00000000		DC DC	xi 4'000000000	

CROSS REFERENCE LISTING***** *****ECETRAN SYMULL INTERNAL STATEMENT NUMBERS 0004 0003 0000 000E 0005 . NUM 0002 0004 6000 3000 CUDE DELTA 0002 0000 ICUDE. 0002 0003 0003 RDATA 0002 000J 00C5 00C5 DECODE 0002

154 0002 SUBRELINE DECEDE(ICEDE, MARFEF, DELIA, REATA, NUM) 00000280 VARIABLE DESCRIPTION 00000290 C ICODE : ENCOCED CCT TRANSFERM CUEF. OF SETSMIC CATA 00000300 с MAPPER : CONFRESSION FLAG 01500000 С c CELIA : STEP SIZE 00000320 HDATA : CECOLED LATA AFFAY 00000330 с С 00000 340 DIMENSION ICCDE(1), MAPPER(1), FCATA(1) 00000350 1511 0003 154 0004 00 10 1=1,NUM 00000360 -----154 0005 RDA 1A(1)=0.0 00000270 ISN 0006 IF (#AFFER(1) .EG. 0) (0 10 10 00000386 ISN OUCS CODE = ICCDE(1) 00000390 ISH 0009 ROATA(I)=DEL TA+CCDE 00000400 CENTINE 00000410 ISN 0010 10 ISN UUIT RETURN 00000420 15N 0012 END 00000430

UPILUNS IN EFFECT; NAME(MAIN) OPILNIZE(2) LIFECCUNT(60) SIZE(0750F) /UTCCEL(NCNE) Suurce Ebccic List Nodeck (bject map f(fmat gustmi) aref noalc nuansf term top flag(1)

REQUESTED CETTONS: OPT=2, FCR#J1, XREF, LIST, MAF, SIZE(750K)

*LEVEL 2.3.0 (JUN: 78)

-

 GS7360 FORTRAN H EXTENDED

DATE 01+153/21+05+44 FAGE 1

G*****

#LEVEL 2.3.0 (JUHE 78)		057360 FC919AN H	I EXTENDED	DALE 81.153/21.05-44	FAGF 2
0000000	0000001	DC	×1 4. CCCCCC001 .		
000054		£.C	×L4.00CC0000.		
000098	0000000	ĐC	×14. CCCC000.		
AULONS FUR VARIABLES AND	CCASIANIS				
ADCONS FUR EXTERNAL REFER	ENCES				
000089	0000000	DC	XL4. CCOCCCOO.	ICCDE	
000000	00(00000	DC	XL 4 * 00 000000 *	RCATA	
000000	00((0000	C (x14.00000000.	MAFFER	
000000	58 60 C 0A0	100C01 L	e. 160(0.13)		
000060	te 70 D C90	L	7. 144(0,13)		
0000E4	58 EQ D C98	L	8. 152(0.13)		
0000E3	78 40 0 080	LE	4, 126(0,13)	DELTA	
0000EC	EE AO D DAC	L	10. 1721 0.13)	4	
. 000060	58 50 D 078	L	5. 120(0.13)	NUM	
0000F4	18 85	1.8	11, 5		
0000F 6	ES 80 0 CC2	SLL	11. 2		
JJJJJFA	18 9A	LR	5.10		
UUDOFC	78 00 D 064	100002 LE	C. 100(0.13)	0	
000100	70 CS 8 COO	STE	C. 0(9.8)	TATA	
000104	58 09 6 000	L	c. o(s.e)	MAFFEF	
000108	12 00	LTR	G. C		
000104	47 EO D 102	ec.	E. 2566 0,131	10	
00010E	58 09 7 000	10CC03 L	C. O(S.7)	ICCDE	
000112	57 00 D C5C	×	0. 524 0.13)	4600000000000000000	
000116	50 00 D 054	51	C. 84(0.13)		
00011A	68 60 D 050	LG	e. ect 0,121		
00011E	68 60 D 058	SC	e, se(0,13)	48000000800000000	
000122	38 26	I.ER	2. t		
000124	20 24	MER	é. 4		
000126	70 25 8 COO	STE	2. ((9. 8)	FDATA	
000124	E7 SA D 004	10 EXLE	5.10, 212(13)	100002	
000126	10 11	100004 54	10,10		
000130	58 10 0 000	L			
000134	(7 6	FCR	15,14		
ADURESS OF EPILOGUE					
000136	58 00 0 004	L.			
		E. Mb. 1			
000142			5.15. 204131		
000142		000			
ADDIA:55 OF FRUIDQUE		BCK.			
000140	SE 75 1 COP		7. 9. 8/ 11		
000142	76 20 7 666	16	2. 01 0. 71		
000140	70 20 0 030	SIE	5. 1286 0.171	DELIA	
000154	*# 20 S C00	1	2. 010.91		
000158	50 20 0 078	51	2. 120(0.13)	NUE	
000150	56 20 1 000	5.	2. C(0. 1)	101	
000160	41 30 2 000		2. ((0.2)		
000164	41 50 0 004	LA	£. 4		
000168	18 25	SR	2. 1		
000164	50 20 D 650	51	2. 144(0.13)		
00016E	50 30 D 094	51	3. 14E(0.13)	I C C D F	
000172	5E 20 1 CO4	L	2. 4(0.1)		
000176	41 30 2 666	LA	3, 0(0, 2)		
000174	41 50 0 004	LA	t. 4		
00017E	10 25	56	2. 5		
000180	50 20 D 040	51	2. 160(C.13)		
000184	50 30 C 044	51	2. 164(G.12)	PARTER	

•

.

4
****** END EF CUMPILATION ******

31 CK BYTES OF CORE NOT USED

+STATISTICST NU DIAGNUSTICS GENERATED

.

+UPTIONS IN EFFECT+NAPE(NATH) CFTTHIZE(2) LINECCUNT(CG) SIZE(0750K) AUTUOBL(NGNE) +UPTIONS IN EFFECT+SUURCE ERCEIC LIST NODECK (BJECT MAP FORMAT GOSTMIT XFOR NOANSF TERM TBM FLAC(1) +STATISTICS+ SOURCE STATEMENTS = 11, PROGRAM SIZE = 416, SUBFROGRAM NAME =DECODE

4LEVEL 2.3.0 (JUNE 78)		2360 FORTPAN H E	* IE NUED	DATE 81+153/21+05+44	FAGE 3
861000	58 20 1 COC	L L	2. 12(0. 1)		
000160	41 30 2 000	LA	2. 0(0.2)		
000130	41 20 0 004	LA	t. 4		
000194	16 25	SR	1. t		
000196	10 20 D CS8	ST	2. 1521 0.131		
U0019A	50 20 D 05C	51	3. 156(0.13)	FEATA	
0001 SE	47 FO D 084	EC I	5. 18C(0.13)		
ADELN FUR PROLUGUE					
000020	00000148	0C X	14.0000148.		
AUCUN FUR SAVE AREA					
000024	60(0028	DC X	L4.C0000028.		
AUCUN FOR EFILOGUE					
000028	0000136	СС х	14.000001361		
LEMPURABLES AND GENERATED	CONSTANTS				
000000	0000000	EC X	L4.CCCCC0C0.		
000004	00(0004	EC X	L4'0000004'		
000008	0000000	DC X			

+LLVLL 2. J.U (JUNL 76)

US/360 F CRIEAN H EXTENDED

DATE 81+153/21+05+46

F/GE 1

REQUESTED OPTIONS: OPT=2.FCRNAT.XRFF.LIST.MAT.S12E(750K)

UPILINS IN EFFECT: NAVE(MAIN) OPTIMIZE(2) LINECTUNT(CC) STZE(0750K] AUTCEEL(NENE) SUURCE EECCTC LIST NCCECK (BJECT VAP FERMAT GOSTMT XREF NCALC NOANSF TERM THP FLAG(1)

154 000	02		SURROL 11NE	1.1	vHEU(RCA14.NUM,XFA×,FHEU,EFSCN)	00000440
	ι		MEU-LAN IN	VEFI	IER	00000450
	C		RUAIA	:	INFUT AFRAY OF FEL-LAW CONVERTED TRACE DATA	00000460
	c		RMEU	:	MEL-VALLE SET AS SOC	00000470
	C		XPAX	:	AESOLUTE FAXINUE VALUE OF INPUT ARRAY	00000480
	c		NUM	:	NUMBER OF CATA FOINTS IS NE INVEFIED	00000490
	С		EP SL ON	:	TERESHOLD VALUE FOR THE INSIGNIFICANT COT COEF.	00000500
	C					0000010
114 000	03		DIPENSION	6 RD/	14(1)	00000 \$20
1514 000	04		COEF = ALCG	RMEL	J+ 1 0 / X MAX	00000530
154 000	05		COEF1=**A*		EU .	00000540
15H 000	06		DO 10 1=1	NUP		00000550
	C		IGACRE CO	MPFI	SSEC VALUE	00000560
15N 000	67		IF (FDA TAL I		G. 0.01 (C 1(10	00000570
1514 000	90		RVAL=RCATA	(.)	COEF	00000580
15N 001	10		SIG1=1.0			00000590
ISN 001	11		IF (RVAL .L	1. (0.01 SIGN =-1.0	00000600
ISN OUL	13		RVAL = AES(R	VAL		00000610
15N 001	14		RV AL = E >P(F	VAL		0000062 C
15N 001	15		FVAL = FVAL	- 14	.0	00000630
15N 001	16		RVALIFIAL	CCEF	1	00000640
15N 001	17		RDATA(I)=9	VAL	SIGN	00000650
1 SN 001	18		IF CREATACI	11	T. 0.0) FEATA(L)=REATA(L)-EPSLON	00000660
15N 002	20		IF CREATAL) .(E. O.C. FDATA(I)=RCATA(I)+EPELCN	00000670
1 SN 002	22	10	CENTINE			0 6 8 0 0 0 0 0 0
TSN CO2	23		RETURN		ан алын алтан алтан алтан жана жана жана алтан алтан алтан алтан алтан алтан жана такууларын канандары кыламда	00000690
15N 002	24		END			00000700

*****F C F T F A N CECSE REFERENCE LISTING***** SYMELL INTERNAL STATEMENT NURBERS 0006 0007 0005 0017 0018 0018 0018 0020 0020 . 0013 AU 5 EXF 0014 NUM 0002 0006 ALUG 0004 CUEF 0004 0009 RNEU 0002 0004 0005 RV AL. 0005 0011 0013 CO12 0014 0014 CC15 CO15 CC16 CO16 CO17 SIGN 0010 0011 0017 XMAX 0002 0004 0005 CUEFI 0003 0010 EPSGN 0002 RUATA 0000 0100 0007 0005 0017 0018 0018 0010 0020 0020 EPSLUN 0016 0020 INVMEN 0002

+++++FORTRAN CRGSS PEFEFENCE LISTING+++++ LABLL DEFINED HEFERENCES IU 0022 00G6 0007

ALEVEL 2. J. U (JUNE	78)		657360 FGR	IRAN H	E) TENDED	DATE 61+153/21+05+46	FØGE 2
	0000000	47 FO F 00C	INVMEU	ec	15,12(0,15)		
	000004	07		EC .	×L1+C7+		
	000005	C905E5D4C5E440		CC	CL7'INVMEU '		
	000000	90 EC D CCC		STM	14,12,12(13)		
	000010	18 40		I.B	4,12		
	000015	SE CD F C20		LÞ	12+13+35(16)		
	000016	50 40 D CC4		51	4,4(0,13)		
	00001A	50 00 4 003		51	12,0(0,4)		
	00 00 IE	() FC		ECR	15.12		
CUNSTANTS							
	000080	00(0000		C C	×L4.0000C000+		
	000064	CCCC0001		0C	×L4. COCCOOCI.		
	000085	41100000		DC	XL 4 • 41 10 COCO •		
	000060	80000		C C	X14'00000000'		
	000090	000000000000000000000000000000000000000		DC	XL4.CCCCC000.		
ADCONS FOR VARIABLE ADCONS FOR EXTERNAL	LS AND CO REFEREN	GNSTANTS NCE E					
	000068	0000000		DC	×L4.CCCCC0C0.	EXE	
	0000CC	00(0000		C (×L4.00000000	ALOG	
	000000	000000		DC	XL4.0000000.	REATA	
	0000FA	58 80 D 0A8	100001	L	£. 168(0.13)		
	0000FC	5E AO D 0C0		L	10, 192(0,13)	9	
	000100	58 70 D 070		L	7. 112(0.13)	NU N	
	000104	78 00 D 060		LE	C. SEC 0.131	41100000	
	000108	7A 00 D C78		AF	C, 120(0,13)	PMEU	
	000100	70 00 D 0C8		51E	(. 100(0.12)	. 100	
	000110	58 FO D CA4		L	15, 164(0,13)	ALCG	
	000114	41 10 D 64C		LA	1. 76(0.13)		
	000118	05 EF		BALR	14.15		
	00011A	47 00 0 604		ЕC	0, 4(0,0)		
	00011E	7D 00 D CE4		DE	(* 135(0*13)	XMAX	
	00 01 22	70 00 C 074		STE	C. 11((C.13)	CCEF	
	000126	78 00 D 064		LE	0. 132(0.13)	X M A 3	
	000124	70 00 D 078		DE	(+ 120(0+13)	FMEL	
	00012E	70 00 D C38		STE	0. 136(0.13)	C OFF 1	
	000132	78 00 D (60		LE	0. 96(0.13)	41100000	
	000136	33 00		LCER	C. 0		
	000138	70 00 D 08C		STE	0, 188(0,13)	• C O 4	
	000130	19 87		19	11. 7		
	0001JE	85 80 0 002		SLL	11, 2		
	000142	LE SA		LF	5.10		
	000143	76 29 8 000	100002	LE	2, 0(9, 8)	FLATA	
	000148	70 20 C 000		STE	£, 17((0,13)	- CO1	
	000140	22 22		LIER	ê . ê		
	00014E	47 60 D 19A		BC	E, 410(0.12)	10	
	000152	7C 20 D 074	100003	MĘ	2. 116(0.13)	C(()	
	000156	70 20 D C7C		51E	2. 124(0,13)	I VAL	
	000156	78 00 C 060		LE	C. S((0,12)	41100000	
	000156	10 00 D LEG		STE	L, 128(0,13)	STGN	
	000102			LIER	* • 2		
	000164	47 PO E 148		ťC	1C, 32F(G,13)	100005	
	931000		100001	LE	Q. 186(0.13)	0.004	
				STE	C. 12E(0.13)	5.1GF	
	000170	78 10 0 670	100005	LE	0. 124(0.13)	PVAL	
	000171	20 00		LEED	τ, τ		
	000176	70 00 C 07(516	C. 1240 (.13)	E VAL	
	000174	58 FO D 040		ι	15, 100(0,13)	E XE	

ILEVIL 2. J.O (JUNE	781		CS/360 FCR1	IRAN I	E> 1FNDED	DATE PI. 153/21.05.40
	000176	41 10 D 050		1.4	1. 80(0.13)	
	000182	05 EF		BALR	14.15	
	000184	47 00 0 00E		RC	0. 14(0. 0)	
	000138	28 20		LER	5. C	
	000184	78 20 0 060		SF	5. 561 6.12)	41100000
	DOOLBE	76 20 0 (99		FE	2. 1361 0.13)	COFFI
	000192	76 20 0 660		ME	5. 1281 0.13)	SIGN
	000196	70 23 8 000		STE	2. 01 5. 6)	RDATA
	000494	32 22		ITER	2. 2	
	000190	47 40 0 184		BC	16. 268(0.13)	100007
	000140	78 25 8 600	100006	1 F	2. 0(5. 6)	RDATA
	0001A4	78 20 0 50		SE	2. 144(0.13)	FESLCA
	000143	70 29 8 000		STE	2. 0(5. 6)	FCATA
	0001AC	78 25 8 600	100007	LE	2. 0(9.8)	PEATA
	000180	70 20 D 008		STE	2. 184(0.13)	. (0.3
	000104	32 22		LIFR	2. 2	
	000486	47 50 D 19A		PC	5. 410(0.13)	10
	ABLOOD	7A 20 D 050	100008	AE	2. 144(0.12)	EFSLCA
	00010E	70 29 8 COO		STE	2. O(S.E)	RDATA
	000102	87 9A D 11C	10	BALE	5.16. 284(13)	100002
	0001 65	IE FF	100009	SR	15:15	
	000108	58 EO O COO		ĩ.	14. 0(0.13)	
	000100	07 FE		RCR	12.14	
ADDRESS OF EPILCOU	E					
	0001CE	58 AO D CO4		L	16. 4(0.13)	
	000102	58 E0 A 00C		L	14. 12(0.10)	
	000106	58 80 A 018		L	11, 24(0,10)	
	0001UA	58 10 B COC		ι	1. 12(0.11)	
	OUUIDE	78 20 D C78		LE	2. 120(0.13)	FMEL
	0001E2	70 20 1 000		STE	2. 0(0,1)	
	JUDIES	18 DA		LP	12.16	
	000168	92 FF A COC		MV E	12(10),225	
	0001EC	\$8 2C A CIC		LM	2,12, 28(10)	
	0001F0	07 FE		DCR	11.14	
ADDRESS OF PROLUGU	E					
	0001F2	58 7A 1 CG4		LM	7.16. 4(1)	
	0001F6	58 20 7 000		ι	i. 0(0.7)	
	000 1F A	20 20 D C70		51	2. 112(0.13)	NUM
	0001FE	7E 20 8 000		LE	2. 0(0.8)	
	000202	70 20 D 084		STE	2, 132(C,13)	X #A >
	000206	7E 20 9 000		LE	2, 0(0,9)	
	00020A	70 20 D 078		51E	2. 120(0.13)	FMEU
	00 02 0E	78 20 A 000		1. E	2. C(0.10)	
	000212	70 20 D CAC		51E	2. 140(0.13)	EPSON
	000216	58 20 I 000		ι	é. O(O.I)	
	000214	41 30 2 000		LA	2. 0(0. 2)	
	00021E	41 EO O CC4		LA	E. 4	
	000222	IE 25		SR	a. e	
	000224	50 20 D GA8		sr	2. 166(0.13)	
	000228	50 30 D CAC		51	3, 172(0,13)	FUATA
	000550	47 FO D 000		EC	15, 2CE(0,13)	
ADCLN FUR FROLUGUE						
	000050	0000011-2		0C	×L4. C00001155.	
ADOUN FUR SAVE ANE	•					
	000024	60(60628		PC .	X14.0C000028.	
ADCON FER EFILDGUE						
	000028	000001CE		E.C	XL4.000001CE.	
ADULINS FUR FARANLE	LF L1515					

F/GF 3

+LEVEL 2.3.0 (JUNE 78)		C 5 / 160	ECRIFAN I	CRIENCED	CALE 81.183/21.05.46	FAGE	۵
000074	80000000		εc	XL4' E000COFO'	• I O C		
000678	8000004		C C	XL4'E0000044'	FVAL		
TEMPURARIES AND GENERATED	CCESTANTS						
000003	00000000		0C	×L4*0C00C0C0*			
000000	00000000		EC	×L4'00C00000			
UUU0E 0	00000000		0C	×1.4.000000000			
0000E4	000000		DC	×L4'CCCCC000'			
000064	60(00004		DC	xL4.0000004.			
0000EC	00000000		DC	×L4.CCCC000.			
0000F0	0000000		6.0	×L4.00000000.			
0000F4	00((00000		DC.	×L4.00C00000.			

+OFTILNS IN EFFECT+NAME(MAIN) OPTIMIZETRI LINECOUNTERO) SIZEE(0750K) AUTGODLENCNE) +Optiuns in effect+suurce ebodic list noveck edject map format (051mt xref noald noansf term 10m flaget)

+STALLSTICS+ SUURCE STATEMENTS = 23, PRCGRAF SIZE = 560, SUBFRCGRAF NAME =INVMEU

+STATISTICS+ NU DIAGNESTICS CENERATED

****** END OF COMPILATION ******

.

316K BYTES OF CORE NUT USED

*LEVEL 2.3.0 (JUNE 70)

CS/360 FERTRAN H EXTENDED

DA1E 01.153/21.01.40

FACE - 1

REQUESTED LPIIUNS: UPT=2.FORMAT.XREF.LIST.WAF.ST2E175CK1

CPTIONS IN EFFECT: NAPELMAINT OPTIMIZE(S) LINECOUNT(CO) SIZE(0750F) AUTOBLENCHET SUURCE EBCCLC LIST NOBECK FBJECT NAP FORMAT GOSTMY SEEF NOALC NOANSE TERN IBM FLAGELD

		Ĺ			0000710
1.214	0002		SUBRCULINE FID	(T(A, NUH)	00000720
		L	INVERSE DOT US	SING FFICCIIAN MATH FACKAGE)	00000730
		C	1U4 I MU4	VERK OF EATA FUINTS	0 C D O O 74 C
		с	A : EA	IA TO BE TRANSFORMED	00000750
		c	TWK I WOF	REING AREA OF FETCO	00000760
		C	WK 1 WO	SKING JEEN OF FEFCC	00000770
		c	X : IN	PLT AND CUTFUT JERJY OF FETCO	00000780
		c			00000790
I SN	000 3		DIMENSION IWK	26001.WK(2600).A(1)	00000000
I SN	0004		COMFLE> >(4750)		0 0 0 0 0 0 1 0
1514	0005		hRWP=3+141592/1	FLCAT (24NUM I	00000820
I SN	0006		DO 10 1=1.NUM		00000630
1214	0007		ARG= >R >F +FL CA1	(1-1)	00000840
1 214	0008		X{ I #=C#PLX{A (#	1.0.0 *(PPL X (COS (AFG) , S IN (ARG))	00000650
15N	0005	10	CONTINUE		00000660
TSN	0010		CALL FFICCIXIN	P, IWK, NK)	00000070
1514	0011		A(1)=REAL(X(1))	00000880
I SN	0012	20	CONTINUE		00000890
15N	0013		RETURN		00000900
120	0014		END		00000910

*****FORTRAN CROSS REFERENCE LISTING*****

SYMULL	INTER	NAL SI	ALEMENI	NUNE	ERS		
A	0002	0003	0006	0011			
4	0006	0007	0008	3) 0 O	0011	0011	
×	0004	0008	0010	0011			
hK.	0003	0010					
AHG	0007	0000	0000				
LUS	3000						
JWK	0003	0010					
NUM	0002	c000	0006	0010			
51 N	0008						
HE AL	0011						
wRwP	0005	0007					
CHPL X	ooce	0000					
FFICC	0010						
FLOCI	0002						
FLUAT	OCCE	0007					

000010 13 40

*** * * F E F T F A N CROSE REFERENCE LISTING*****

•

;

- LADEL DEFINED REFERENCES 0009 10 0006
 - 20 0012

000000	47 FO F COC	FIDCT	РC	15,12(0,15)
000004	07		DC	XL 1. C7.
000005	C6C9C4CJE34040		C.C	CL7+F18CT +
000000	50 EC D COC		5.1 4	14,12,12(13)

514 14,12,12(13) LE 4,13

+LEVEL 2.J.U (JUNE	161		QE/360 FCRIPAN	H EXTENDED	DATE 81.153/21.05.48	FAGI 2
	000012	98 CD F 020		12.12.22(15)		
	000016	5C 40 D C04	ST	4 .4(0.12)		
	000014	50 00 4 008	51	13.0(0.4)		
	00001E	07 FC	BCR	11.12		
TEMPURARY FOR FIX/F	LUAT					
	000090	4E000000	DC	XL 4 • 4E C00000 •		
	000054	00(00000	E.C.	XL4 00000000		
LUNSTANTS						
	000098	4 E COODOO	CC	XL4•4ECCCCO•		
	000090			X1.4* ECC00000*		
	000040	0000000				
	000044		IIC IIC	XL4-00000001-		
	000048	0000002		AL4.0000002.		
	OUDUAC	41224366		XL4*412243FC*		
	000080					
	0000134		be	X[4. 000000000		
ADELINS FUR VARIABLE	SANU C		57	******		
	OUEGBU	00002368				
ANA UNIT GOD GATLENAL	DISCO		PC .	X[4.00[02208.		
AUCONS FOR EXTERNAL	005688	66600000	06	X1 A I COODOOO I		
	001690	0000000	00		, crš	
	006640	0000000	50	XI A 100000001		
	005698	00(00000		X14'00000000'	FFIC	
	006090	0000000		XI A 100000001	CHEYA	
	0016090	58 50 6 608	100001	F. F(0.12)		
	001 60 8		100001 1	6. 4(0.12)		
	001600	58 80 C 000	i i	11. (1.0.12)		
	001660			10. 1241 0.131		
	ODECEO	58 A0 C 024	i	4. 3(1.0.12)	, ,	
	001668	58 30 C 02C		3. 44(0.12)	4	
	OULOEG	5F 20 D CSP	ĩ	2. 1521 0.131	NUM	
	DOFLEO	AG 20 0 001	SLI.	2. 1		
	DUEGEA	14 02	1.5	0. 2		
	00E6F6	57 00 D C74	x	C. 116(0.13)	4 60000 0080000000	
	OVE OF A	50 00 D 06C	51	C. 10E(0.13)		
	QOE 6FE	66 20 D (68	10	2. 104(0.13)		
	00E702	68 20 D 070	50	2. 112(0.13)	4E00000080000000	
	00E706	73 00 D 004	LE	C. 132(0.13)	41324366	
	00E 7 0A	30 02	CEA	C. 2		
	00E70C	70 00 D 09C	STE	C. JEEL 0.13)	WFWF	
	00E710	19 2A	LR	2.10		
	00E712	50 A0 D C90	51	16, 1446 0,131	1	
	J0E716	78 00 D 078	LE	(, 120(0,13)	0	
	00E71A	70 00 C 020	STE	0. 32(0.12)		
	UDE71E	50 40 C 028	51	4, 40(0.12)	- CO 2	
	00F155	50 30 C 030	51	3. 4E(0.12)	• C O 3	
	UUE 726	58 70 C 030	ι	7. 45(0.12)	- 00 3	
	JUE72A	58 80 C 028	L	£. 40(0.12)	• CO 2	
	00E 72E	18 92	LR	5. E		
	00E 7 J0	58 80 0 CS8	L.	11, 1521 0,13)	NUM	
	U0E734	18 29	100007 LR	2. 5	-	
	OUE736	18 2A	SF	2.10		
	OUE 7 38	18 02	1.9	(, 2		
	00E73A	57 00 D 074	×	(. 116(0.12)	4F00C0C08000000	
	00E73E	50 00 D C6C	51	C. 10E(0.13)		
	001.742	68 20 D 068	1.0	2. 104(0.12)		

ALEVEL 2.3.0 (JUNE	78)		GS/360 FCF1FAN	I EXTENDED	DATE 81.153/21.05.48	FAGE
	006746	68 20 D 070	50	5. 1156 (.13)	AF0000 (02000000	
	005744			5. 1561 0.171	NAME	
	006744		SIE	5. 148(0.13)	ARC	
	006746	19 27 5 000	1.6	5. 01 7. 41		
	002752		6 T E	5. 561 0.12)	- 101	
	002750		511			
	OUE / SA					
	UUE/SE			1. 76(0.137		
	OUE / 62	DE EF	EALH			
	UUE 764		60		100	
	001769	70 00 0 034	SIL		. 100	
	002760				216	
	00E770	41 10 0 040		1. 76(0.13)		
	002/14	63 EF	EALR	14.15		
	002776		80		10.3	
	ODE //A		SIE		. 102	
	00E / /E					
	001185	70 60 6 648	SIE		. 10:	
	00E7E6	78 00 C 010			.102	
	00E78A	70 00 0 040	SIE	(. / (0.12)	• 100	
	00E78E	78 00 0 020	Le	0. 32(0.12)		
	00E752	70 00 C 03C	516	C. EUL 0,121	. 102	
	001796	58 FO C OIC	L	12. 200 0.12)	(*****	
	OOE 7 SA	41 10 D C50	LA	1. 26(0,13)		
	OUE7SE	05 EF	BALR	14.15		
	OUE 7A0	47 00 0 008		0. et 0. 0)		
	00E 7A4	70 00 C 034	5 IE	(. 52(0.12)	• 100	
	JUETAS	70 28 6 004	SIE			
	ODE TAC	78 00 C C34	LE	0, 221 0,121	. 100	
	00E780	70 68 6 600	STE			
	006764	14 73	IO AR	· · ·		
	00E786				100003	
	001 700	67 9A C 014	FIAL C.		100002	
	006760	50 90 D 090	100003		•	
	000700		100005 1		FFIC	
	001704			1. 664 0.13)		
	006760		8410	14.15		
	006700	A7 00 0 00A	BC	0. 10(0. 0)		
	005702			5. 144(0.13)		
	006702			5. 7	•	
	001 704	3A 32 A (00	566	2. 61.2. 61		
	006 706	70 22 6 600		(, A(2, 6)	×	
	002702			5. 1446 0.131	ï	
	001762		511	5. 2	•	
	001 764	30 52 5 (00	SIE	5. 61 2. 51	,	
	006765		20 SP	15.14	ş	
	006766		20 BR	10. 0(0.13)		
	005764	07 FF	DCP	15.14		
ADDRESS OF FRIEDLAN	•	0. 12	tit it			
LEGIZOS OF EFICODO	UDE 7F6	58 AO D CC4	L	10, 4(0,13)		
	OOE /FA	58 EO A 00C	i	14, 12(0.10)		
	00E7EF	58 BO A CLA	1	11. 24(0.10)		
	001.802	58 10 8 604		1. 4(0.11)		
	JOLBOA	58 20 0 098	1	2. 15.21 0.131	N1 P	
	006804	50 20 1 000	ST	2. 0(0.1)		
	OOLOUR	18 DA	10	12.10		
	001 810	92 FF A 00C	MV I	12(10).255		
	001 814	SP 2C A 01C	1.0	2.12. 20(10)		

øL.

+STATISTICS+ NO DIAGNESTICS THIS STEP

****** END OF COMPILATION 1*****

STER BYTES OF CORE NOT USED

+STAILSTICS+ NU DIAGNESTICS GENERATED

+STATISTICS* SUURCE STATEAENIS = 13, PECGEAN SIZE # ESPEC. SUBFREGRAM NAME = FIDET

AUPTILNS IN EFFECTASUURCE EECLIC LIST NODECK COJECT VAP FORMAT GOSIDA DREF NOALD NOARSF TERM IBD FLAC(1)

+UPTIONS IN EFFECT+NAME(MAIN) CPTIMIZE(2) LINECCUNT(CO) SIZE(0750K) AUTOCEL(NCNE)

+LEVEL 2.3.0 (JUNE 78)		CE/369 FERTEAN H	E) TENDED	DATE E1.153/21.05.48	FACE 4
00£81	8 C7 FE	P.C.P.	15,14		
ADDRESS OF FRULGGUE					
00£81	A 28 COD 648	L	12. 72(0.13)		
00E 8 1	5 5 7 1 CO 4	L	7. 4(0.1)		
00E82	2 56 20 7 000	L	2. C(0. 7)		
00E82	5 20 20 0 058	51	2, 152(0,13)	NUM	
00682	SE 20 1 000	L	£, ((0, 1)		
00682	5 41 30 2 000	LA	3. ((0, 2)		
00683	2 41 50 0 004	LA	E. 4		
00683	6 18 25	56	2. 5		
00E83	9 20 20 C CCE	51	2. E(0.12)		
UDEBJOD	C 50 30 C 00C	51	3. 11(0.12)	^	
00184) 47 FO C C54	PC	15. 84(0.12)		
AUCUN FOR FRULDGUE					
00002	0 0000681 A	DC	XL4 COCOEE IA ·		
AUCCN FUR SAVE AREA					
00005	0000028	DC	XL4.C000C056.		
ADOUN FOR EPILOGUE					
00002	9 00COE 7F 6	DC	XL4º COOQE7F6º		
AUCLN FOR REG 12					
00007	00006680	E C	X1.4º 0000E6E0'		
AUCONS FOR FARAMETER LIS	is				
000074	80C000EC	DC	XL4'E0C000EC'	AFG	
00007	3 00C0E688	CC	X14.COD069F9.	.101	
00007	0000E6C8	DC	XL4 . E0C0E6C8.	.105	
00008	00005210	0C	XL4.00005510.	*	
00008		CC	XL4.00000000.	NUM	
00008	3 00002960	UC	×L 4' 000025 (C'	IWA	
00006	. eocooocc	C C	×L4*800000(C*	b #	
ILMPURARIES AND GENERATED	CENETANTS				
OUEGA	0000000	DC	XL4.CCCCCCC0.		
00664	1 COCOGOOE	εc	XL4.00000C8.		
OULGA	3 0000000	DC	×L 4. CGCCCG00.		
00664	0000004	60	XL 4 • 00 C0 C0 04 •		
00668		CC	XL4 C000000		
UDEOB		DC DC	XL 4 · CCCOUCCO ·		
006.680		FC .	XL 4 · 00000000 ·		
DOECH		BC	AL 4. COODOOD0.		
DUEBCO		DC			
DUECC		BC	AL 4 . 00680005		
DOEBC		BC			
OUEBCO		DC	AL4 "COUDOODO"		
00000		66	XL4-0000066*		

ALLVEL 2.3.0 (JUNL 78)

05/3CO FEFTRAN H EXTENDED

DATE E1+155/14+58+30

FAGE 1

REQUESTED OFFICINSE OP1=2.FCRMAT.XRFF.LIST.FAF.S12F(750K)

LPTILNS IN EFFLCT: NAME(MAIN) OPTIMIZE(2) LINECCUNI((C) SIZE(0750F) ALICODUCNCNE) Suurce erclic LIST NCCE(K CEJECT PAP FCRMAT GGSIMT XREE NCALC NOANSE TERM THM FLAG(1)

		L.		00001720
		C		00001730
		C		00001740
120	0002		SUBFCUTINE AUTCIN, >,MM,R,A,ALPHA,RC)	00001750
		Ĺ		00001760
		C	THIS PROGRAM CALCULATES THE FILTER CCEPFICIENTS FOR	00001770
		C	A LINEAP POPOICTOR OF GROER IMMIN, THE FEFLECTION COEFFIC	ENT 50 000 1 78 0
		c	ARE SAVED FOR A LATTICE IMPLEMENTATION OF THE INVERSE FIL	TER. 00001790
		C	THIS ROUTINE IS GIVEN BY MAFKEL AND GRAY (LINEAR PRECISTION)	0081000030 AG
		L	SPEEC+1+	0 18 100 30
		C		00001620
		C		00001830
		C	N - NO. CF POINTS	00001640
		C	X - VECTUR OF SAAFLED SPEECH PIS	00001650
		ί	M - LRDER OF INVERS FILTER	00001860
		C	A - VECTOF OF INVERSE FILTER COEFFICIONIS	00001070
		С	ALFFA - VECTOR OF CRUSS CORFELATION COFFEICIENTS	00001680
		C	RC - VECTOR OF PERLECTION COEFFICIENTS	00001890
		c	6 - AUTOCORRELATION CORFEICTENTS	0.001000
		c	ARRAY - VECTER TE FEUSE ALL CERFFICIENTS CALCULATED	00001510
		c		00001970
		č		00001920
1.544	6003	•	INTEGES WADDANE ALTOFIC	00001930
ISN	0004			00001140
1 '.N	0005		DINERSICK ET201-IV/261-V/2561-AL201-ALCUALSOL PC/201	00001550
	0005		AFFASTAN FILLE FIL	00001960
150	00.06	•		00001570
1.54	0.002			00001980
	0001			00001590
		L		0 000 200 0
1.515	0008			00002010
	00.	L		0 C 0 0 2 0 2 0
1 514	0009		$R(\mathbf{k}) = 0.0$	00002030
150	0010		L = K - K + 1	00002040
		C		00002050
1.214	0011		D0 10 NF = 1.L	00002060
1 Sid	0012		NFK =NF+K-1	0 0 0 0 2 0 7 0
15.4	6013		F(K) = F(K)+X(NP)+X(NFK)	00002080
124	0014	10	CONTINUE	00002090
		C		00005100
1 GN	0015	15	CCNTINUE	00002110
		L		00002120
158	0016		$A(1) = 1_{0}$	00005130
1514	0017		ALP+A(1) = 9(1)	00002140
1 SN	0018		1F(A+EC+0) CC 10 60	00002150
116 1	0020		FC(1) = -F(2)/F(1)	00002160
1 5N	1500		4(2) = F(())	0002170
15.4	0055		ALPEA(2) = 6(1) + 6(2)+8((1)	00007190
151	6500		IF(M+EQ+1) GD 10 EC	00002190
		ι		00002200
		C		00002210
154	0025		DO 40 MINC = 2.M	00002220
		¢		00002236
LS:4	0026		S = 0.0	00002246

OL F VEL	2. 3.0	(JUN. 78)	AUTC - G57360 FLATRAN + EXTEND	ED DATE E1+155/14+58+30	FAGE 2
		L		0 0 0 0 2 2 5 0	
151	0027		0C 20 1P = 1,MINC	00002260	
1.54	0028		ANCENTING-1842	00002270	
1514	0029		5 = 5 + REMNCI+A(10)	00002280	
15N	0030	20	CENTINUE	00002290	
		Ċ		00002300	
1514	16.00		PC(MINC) = -SJALFIALMINC)	00002310	
1 SN	0032		MH = M1NC/2 + 1	0002320	
		C		00002330	
151	10033		DO 3C IP = 2.000	00002340	
1 SN	0034		10 = N1NC - 10 + 2	00002350	
150	0035		A1 = A(1F) + FC(F1F(}+A(1A)	00002360	
4514	0036		A(10) = A(10) + F((M1)() + A(1P)	00002370	
LSN	0037		A(1F) = A1	00002380	
15N	00.38	06	CENTINUE	00002390	
		ι		00002400	
1.50	0039		A(N1NC+1) = FC(M1NC)	0000241 C	
1 SiN	0040		ALPHA(MINC+1) = ALPHA(FINC)-ALPHA(FINC)	*PC(FINCF*FC(MINC100002420	
		C		00002430	
1514	0041		1F(/LF//(MINC)) 60,60,40	00002440	
		Ċ		00002450	
1 2 4	0042	40	CCNTINUE	0002460	
		C		00002470	
		C		00002480	
1514	0043	60	CENTINUE	00002490	
		c		00002500	
1514	0044		RETURN	00002510	
150	0045		END	00005550	

44444FORTRAN CROSS REFERENCE LISTING44444 SYMUL INTEGUAL STATEMENT NUMPERS

31 MOUL	INICK	HAL SI	VICHCH	I FOFE	642													
A	0002	COO.	0016	CC2 I	0025	0625	C(36	003£	CC 36	00.36	0037	0039						
ĸ	0008	000,	0010	0012	0013	0013												
L	0010	0011																
м	3000	0007	0018	0023	6625													
•	0002	0010																
H.	0002	0005	0005	0013	0013	0017	0.000	0020	0055	0022	6025							
S	0026	0053	0029	0031														
A	0002	0000	0017	0013														
A I	0035	0037																
813	0034	0035	0036	0036														
112	0021	0023	0029	0033	00.34	0035	0036	0927										
1×	0005																	
LP	0003	0004																
P40 8	0032	0033																
мм	0002	0000																
M 14	0007	0000																
NP	0611	0012	6 10 U															
RC	00(2	ن 0 0 U	0020	0021	0025	6631	0035	00.36	CC35	0010	0040							
PNC.	0.058	0.029																
NPK	0012	6100																
AL FU	0002																	
MENC	0025	0027	0028	0031	0021	0.0.32	00.34	09.25	0 C 16	00.15	0039	C046	6 6 4 0	0040	0040	040	C041	
ALPHA	0002	0000	0617	6628	0031	6040	((1)	0040	GC 41									
ALEAY	0005																	
AUTOF	600U	0004																
#NDO#F	LOUD	3004																

41. L. VE. L.	2. 3. 0 (JUIN:	78)	AUTE	(\$1360	ECFIRAN F	EXTENDEC	CATE €1.155/14.56.30	FAGE 3
LABEL	DEFINED	+++ RLFEREN	♦ ØFEEFIFAN Ces	6 8 8 9	F E F	EFENCE	L I S 1 I + G+++++	
10	0014	0011						
11	0 6 0 7							
40	0015	0008						
30	0030	66.00						
40	0042	0025 0	C41					
UÜ	0043	0018 0	023 0041 0041					
		000000	47 FO F 00C	AU 10	₽C	15,12(0,15)		
		000004	C7		C C	XL 1' 07 '		
		000005	C1E4E.30(404040		ec	CLIVALIC '		
		000000	90 EC D 00C		STN	14,12,12(13)		
		000010	18 40			4.13		
		000012			57	A . A(0. 13)		
		000010	50 40 0 CO4		51	13.8 (0.4)		
		OUDULE	07 FC		HCR	11.12		
LUNSTAN	415							
		330078	0000000		00	x[4'COCGCOCO'		
		000070	0000000		00	XL 4. COCCCOOL		
		000084	0000002		00	xL4*CCC00CC2*		
		000088	41100000			XL4'4110C000'		
		000080	0000000		0C	×1 4' 0CC00000'		
		004090	0000000		50	xL4.00C00000.		
AUCUNS	FUR VARIAUL	ES AND C	CNE TAN 15					
AL CUNS	FUR EXTERNA	L REFEFE	NCES					
		OUVOEO	0000000		E C	XL4.00000000		^
		000069	000000		DC DC	XL4,00000000		F
		0000000	0000000					, ,
		0000000	00000000		00	X14'CCCCC000'	AL EH	1
		000120	58 70 D 0C8	1000	DI L	7. 216(0.13)		•
		000124	te ec o coo		ι.	E. 2081 0.131	•	
		000128	58 50 D 008		1	5. 1841 0.131		
		000120	28 E0 D 0C0		L	11. 192(0.13)		
		000110	SE AO D CEB		ι	IC. 86(0,13)		1
		000134	58 60 D 0E4		ι	(. szet 0.13)		4
		000138	50 20 D CSC		1	2. 144(0.12)	•	•
		000130	50 20 1 074			2. IICC 0.023		•
		000140	10 20 U 05 A		51	2. 14FL 0.131		r.
		000146	50 60 D 0F4		SI	6. 2441 0.131	000	4
		000144	18 34		LF	3.10		
		00014C	EE 70 D 678		1	7. 1201 0.131		N
		000150	10 62		£.R	f. 2		
		020155	18 56		L C	5. e		
		000154	78 60 0 054		U.E.	C. EAC C.121		0
		000156	18 58		LR	14 7444 0 11		
		ODDIEA	SE EO D CIA	1000	510	1. 2441 0,131	•10	-
		000156	18 27		15	2. 7		
		000164	10 21		50	2. 3		
					-			

·-- «

HLEVEL 2+3+0 EJUNE	78)	AU TE	C\$2360 FCF1	EAN H	EXTENDED	DATE 81.155/14+88+30	EAGE A
	000166	18 EA	I	L.R	11,10		
	000169	1A P2		/F	11. 2		
	00016A	58 40 D CFA		t, i	4. 2441 0.13)	• 6 0 4	
	00016E	18 89	1	LR	f. 5		
	000170	LE SA		LF	5.10		
	000172	58 70 D OC8		ι). 2001 0.13)		
	000176	18 29	106003 (LR	2. S		
	000178	IA 23		AF:	ē. 3		
	000174	18 C2		נה	(, 2		
	000170	18 6A		56	e.ic		
	00017E	78 28 7 CCC	1	1. E	2. O(P. 7)	*	
	000185	18 26		f B	2, E		
	000184	89 20 0 002		SUL	1. 2		
	000166	10 55 1 000		ME	ž. O(2.7)	•	
	000190	7A 24 5 000		AE	2. O(4. E)	E.	
	000150	70 24 5 000		51E	2. 0(4.5)	r.	
	000151	EA EO D CEA	10	A	E. 226(0,13)	4	
	000158	87 9A D 14E	1	EXF	5,10, 324(12)	100003	
	000150	EE SO D CEA	15	t.	2. 556(0.13)	4	
	000140	58 80 D CS4		t.	E, 14E(0,13)	M F	
	0001 44	50 70 D 078		ι	7. 1200 0.121	ĸ	
	000148	58 00 D CF4		L	C. 244(0.13)	• C 0 4	
	DODIAC	IA 09		AG .	(• 5		
	0001AE	20 00 D 0F4		51	C. 244(0,13)	• 6 0 4	
	000102	14 24		V.C.	3.10		
	000104	19 38		CR	2. E		
	000100	N7 C0 0 132	100000		12. 2001 0.131	100002	
	DODIEA	58 80 0 000	100008	1.	7. 2161 0.131		
	000166			ι			
	000102						
	000108	50 EU U UEU			6. 3266 0.11)	•	
	000105			. e		4	
	000100			с. ете		41100000	
	000106	75 20 11 504		3 IE 1 E	5. 41 0.111		
	OCOLEA	70 20 7 004		SIF	S. A(0, 7)	AL 7 1 4	
	00010F	59 00 0 774		1	6. 1161 0.171		
	0001E2	12 00		118	C • O	-	
	0001E4	47 80 0 226	1	nc	f. E06(0.17)	60	
	000169	78 20 0 008	100006	I F	2. F(0.11)	с. С	
	OUDIEC	78 40 11 604		LE.	4. 4(0.11)	r i	
	000110	30 62		LER	(,)		
	0001F2	30 64		CEP	e		
	0001FA	33 06		LCER	c. e		
	000186	70 CC 8 CC4	1	51E	0, 410, 2).	RC	
	UOULFA	78 6C 8 CC4		LF	<. 4t 0. Al	FC	
	JUULFE	70 60 9 000		ste	6. Et 0. 5)	,	
	000202	JC 26		ME FI	2. E		
	000204	3A 24		AER	2. 1		
	000205	70 20 7 038		STE	2. E(0. 7)	A 1, F 11A	
	000201	55 AO 17 (74		(10+ 116(0+13)	•	
	00020E	47 80 0 326	1	8C	E. EGG(0.13)	4 C	
	000515	59 00 D C3C	100007	ι	C+ 921 0+121	2	
	000216	50 60 Đ CAP		51	C+ 1668 0+131	MINC	
,	00021A	50 00 h 0ru	1	t.	C. 24C(C.13)	n	
	00021E	50 00 D 0FC	:	51	C+ 236(0+12)	• C O C	
	000222	68 20 C CEC	1	•	°2+ 52€ 0+13)	5	
	000225	19 96	1	1.0	<. /		

- -

•

#LEVIL 2+3+0 (JUNE 78)	AU 10	GSZ360 FCR1FAN H E>1END	D E D	DATE 21.155/14.58.20	FAGE 5
000220	10 87	1.11 11. 7			
UUU22A	58 80 0 018	L 6.10	84(0.13)		
00022E	58 70 0 000	1 1.20	0.131		
000232	78 20 D CE4	100000 LE 2. 6	84(0.13)	, ,	
000236	70 20 0 070	516 2.12	241 0.13)	c.	
A55000	18 29	10 2.5		-	
0002-20	18 49	LP 4.5			
0002JE	19 72	(R 7.2	,		
000240	16 EA	LF E.10			
000242	EE HO D CAU	L 11.10	66(0.13)	MINC	
000246	38 62	LFR 6.2			
000246	56 60 D CHB	L 6. 16	84(0,12)		
000240	58 50 0 CCO	1 6, 19	52(0.13)		
000250	10 28	100003 LR 2.11			
000252	10 26	SR 2. E			
000254	18 52	LR 5.2			
000529	14 93	AR 5.3			
00025€	16 29	L" ź, Ś			
0002EA	62 50 0 COS	SLL 2.	2		
0002 EE	7E 22 5 000	1E 2.	0(2,5)	F	
000262	7C 27 6 000	ME 2.	0(7, 6)	,	
000206	JA 62	AER 6, 2			
000268	1A 74	20 AF 7.4			
000264	87 8A D 229	EXLE E.IO.	. 552(13)	100005	
0002CE	76 60 D 676	STE ۥ 12	24(0.13)	٤	
000272	58 70 D 000	100010 L 7.20	06(0,13)		
000276	56 80 D 088	L E, 18	84(0.13)		
000274	58 80 D CUE	L 11.21	16(0,13)		
00027E	58 90 D 084	L 5.22	28(0,13)	4	
000282	SE EO D CEC	L 14, 23	361 0,131	~ C O 3	
000266	78 20 0 070	LE 1. 12	24(0.12)	5	
00028A	70 2E A COO	CE 2.	0(14.11)	ALFHA	
000281	33 02	LCEP 0, 2			
000250	70 DE 7 000	SIE C.	0(14, 7)	RC	
000254	5E 40 0 0A8		EE(0.13)	MINC	
000239	ee 40 0 C20	59DA 4. 3	32		
000290	10 93				
000296					
000240	50 30 D COO				
000246				11	
000246	70 00 0 060			HC CO.	
000244	18 49			2001	
000210			Fet 0.131	N INC	
000284	58 70 D 0F0			P INC	
400288	SE FO D CFA	1 6.13	361 0.131	i.	
000280	16 82	16 11.2		17	
0002 E E	58 90 0 000	L 5. 16	P4(0.12)		
000262	18 25	10CC11 LG 2.5		•	
000264	10 28	58 2.6			
000206	18 62	1.5 6.2			
0002CB	1A (J	A7 6.3			
0002CA	18 26	LR 7. 6			
000200	ES 20 0 CO2	5LI 2.	2		
000200	16 45 c 000	LE C.	CC 2. 5)	,	
000204	36 26	LER 2. C			
000206	7C 20 0 CCC	MC 2. 22	241 0.13)		
AU 2 2 0 4	78 47 5 000	1' 4.	0(7. 5)	,	

.

•

+LEVEL 2+J+0 (JUNE	781	AUTO	057360 ECP1FAN	H EXTENDED	DATE 81+155/14+58+30	FAGE E
	0002DE	3A 24	ALR	÷. 4		
	0002E0	7C 40 0 0E0	ME	4, 224(0,13)		
	0002E4	34 46	AFR	4.6		
	000266	70 42 9 000	STE	4. ((2.5)	•	
	UOU2EA	70 27 9 000	STE	2, 0(7,9)	A	
	000266	1A 74	20 AR	7. 4		
	0002F 0	87 8A 0 29A	EALE	E,10, ECE(13)	100011	
	0002F4	58 70 D CD0	100C15 F	7, 208(0,13)		
	0002F3	58 80 C 018	L	E, 184(0,13)		
	0005FC	58 80 D 008	1	11, 2166 0,131		
	000300	58 SO D CEA	L	5, 228(0,13)	4	
	000304	58 EO D OFC	ι	14. 236(0.13)	• (03	
	000306	78 00 D 0E0	1.6	0. 2241 0.13)	.001	
	000300	70 OE A 004	516	C, 4(14, E)	,	
	000310	78 2E A 000	LE	2. 0(14.11)	ALEHA	
	000314	38 42	LER	4. 2		
	000316	7C 40 0 0E0	ME	4. 224(0,13)	• (0 1	
	00031A	7C 40 0 GEO	ME	4, 224(0,13)	.001	
	00034E	30 24	SEP	2. 4		
	000320	70 2E B 004	51E	2. 4(14.11)	ALFHA	
	000324	78 CE 8 000	LE	C. 0(14.11)	ALFHA	
	000328	38 00	LIER	(. C	•	
	00032A	47 30 D 30A	ec	3, 776(0,13)	40	
	00032E	47 FO D 226	FC	15, 606(0,13)	60	
	21 E G G G	58 00 D 06C	40 L	6, 136(0,13)	• 60 3	
	000336	14 05	AR	C. S		
	000339	SO CO D CEC	ST	0, 236(0,13)	- CO 3	
	000330	58 20 D 0A8	L	1. 168(0.12)	MINC	
	000340	1A 2A	46	2,10		
	000342	50 20 D 0A8	51	2. 16e(0.12)	N I N C	
	000346	59 20 D 074	C	2, 11((0,13)	•	
	00034A	47 CO D 20A	F C	12, 222(0,13)	100008	
	00034E	58 70 D CD8	60 L	7, 216(0,12)		
	000352	58 80 () 000	ι	E, 208(0,13)		
	000356	58 50 D CUE	L	5. 184(0.13)		
	00035A	58 EO C OCO	L	11, 152(0.13)		
	000366	58 60 0 CE4	L	6, 226(0,13)	1	
	000165	18 FF	55	18.15		
	000364	58 EO D 000	L	14, ((0,13)		
	000368	07 FE	FCR	15,14		
ADERESS OF EPILOGU	L					
	00036A	58 DO D C04	L	12, 4(0,12)		
	300 J6E	20 EU U COC	L	14, 12(0,13)		
	000372	52 FF C 00C	PVI	12(12),255		
	000376	SE 20 0 010	L.P.	20120 20120		
	- A1 E U U U	C/ FC	HCF	12.14		
ADDRESS OF FROLLOU	000330	CF 78 1 000		2.11. 07.11		
	000370	58 20 7 000		5. 0/ 0. 31		
	000300	50 20 0 C78	ь. ст		•	
	000304	## 20 G COO			•	
	000380	50 20 0 090	с 1 С 1	5. 1446 (.13)		
	000360	58 50 1 004		5. A(0. 1)		
	000396	41 30 2 000	i A	3. (10.2)		
	000169	AL 50 0 001	1.4	F. A		
	000.395	10 25	50	5 . .		
	0000166	E0 20 C 0CP	51	2. 2006 0.131		
	000 142	50 30 6 666	51	3. 2041 0.131	,	
	000 340					

+OFTLONS IN EFFECT+NAMETMAINT CPTIMIZETST LINECCUNITECT SIZETOZSOKT ALTCGBLENCNET

AUPTIONS IN EFFECTOSOURCE ENCETCE LIST ACECCE FUE FEFMAT GESTME FEF NEALC ADANSE TERM HW FLACTED +STATISTICS+ SUURCE STATEAENIS = 44, PECGRAM SIZE = 1024, SUURCEAE NAME = AUTO +STAILSTICS+ JUIAGECSTICS GENERATE, MICEST SEVERTIY CON 15 4

3104 4637 TE COMPTENTION 44444

JOSH EXTES OF CORE VOL AST

-

+LEVEL 2.3.0 (JUNE 78)

CS/360 FCRIFAN E EXTENDED

DATE 01+155/14,56+33

FAGE 1

REQUESTED DETIONS: CPT=2,FORMAT,XPEF,LIST,MAP,SIZE(75CK)

UPTIONS IN EFFECT; NAME(MAIN) EFTIMIZE(2) LINECCUNT(60) SIZE(0750K) AUTEERL(NENE) Source Eecele List Nodeck (HJFC1 Map FCFMAT gestnt wref neale noansf term imm flag(1)

	C		00002530
	c		0000254C
	Ĺ		00002550
15N 0002		SLEFCUTINE INVERSIN +X + A +R + A +RC +FC)	00002560
	C		00002570
	c		00002580
	C	THIS FOUTINE IMPLEMENTS THE LATTICE FILTER. THE OLIFUT OF	00002590
	C	THE FILTER IS THE FFEDICTION FESTOVAL.	00002600
	C		0 1 3 5 0 0 0 0
	С		00005650
	C	X - INPUT OF SPEECE SAMPLES	00002630
	С	N - NC. OF POINTS	00002640
	C	V - OFDEF CF FILTEF	00002650
	C	RC - REFLECTION COEFFICIENTS	00002660
	C	FC - RESIDUAL OF SFEECH PTS OUTPUT	00002670
	C	8 - VECTOR OF BACKNIRD FREDICIED SAMPLES	00002686
	ί	C - TEMPORARY VECTOR FOR SAMPLES	00002690
	C		00002700
	с		00002710
154 0003		DIMENSION X12561.A1201.B(20).RC(20)	00002720
150 0004		DIFENSION FC(256),F(20)	0002730
	C		00002740
15N 0005		1 + 4 = 44	00002750
	L		00002760
15N 0006		DC 10 J=1.+MM	00002770
15N 0007		Ĥ(J)≖0.	00002780
150 6006	10		00002790
154 0009		DO 20 J=1.N	00002800
	¢		00002810
	C		00002820
120 0010		(L) X= 11) A	00005€30
1214 0011	1	M.I=1 05 00	0 0 0 2 5 5 5 5 6 6 6 6
154 6012		A(141)=A(1)+FC(1)+FC(1)	00002650
154 0013	30	CONTINE	00002860
15N 0014		CC 40 I=1.M	00002870
134 0015	40	b(1+1)=0(1)+#(1)+#C(1)	00002680
1514 0016			00002890
ISN GUIT		RC(J)=A(+M)	00002900
ISN GOLE	20	CCN 11 NUE	00002410
151 0015		RETURN	00002520
15N 0020		END	00002530

4# 0 0 0 F 0 R T 0 A N C F 0 S S F F F F F F F C E L 1 S T I N G 0 4 0 4 4 4 4

SYMBOL INTERNAL STATEPENT NUMBERS A 0002 0003 0010 0012 0012 0015 0016 0917 U 0003 0007 0012 0015 0015 0016 4 UOLL UOL2 UCL2 0012 0012 0014 0015 0015 0015 0015 0006 0007 0009 GC1C CC17 1002 0005 0011 0014 M 0002 3004 N h 0002 0004 0005 0003 0010 х

.

#L E VLL	2.3.0 (JUNE	78)	INVERS	OSZ360 FUG	IGAN H	E>1ENDED	CATE 01+155/14+50+33	FAGE 2	:
		***		(6 E F	ененсе			
STALLA.	INTERNAL S	DATEMENT	RUPPLIKS						
	0000 0000	0017	0.011						
HC	0002 0003	0012	0011						
INVELS	0002 0004								
	0001								
		***	++FGR1RAN	C 4 0 S 5	9 E F	EFEFCE	L I S T I N G+++++		
LABEL	DEFINED	FEFEFEN	CES						
10	0008	0006							
20	0013	0005							
30	0013	0011							
40	0015	0014							
		000000	47 FO F CCC	INVEES	nc	15,12(0,15)			
		000004	07		CC .	XL1.C7.			
		000005	C SE SE SE DSE 240			CL7 INVERS			
		000000			514	14,12,12(13)			
		000010			1.0	15.13.32/181			
		000012	50 40 5 004		51	4.4(0.17)			
		000014	50 00 4 000		st	13.6(0.4)			
		00001E	67 FC		PCR	11,12			
C 1: 6 5 1 6 6	a i s								
		000078	CO(CC000		DC	×L4'0000C0C0'			
		00007C	0000001		DC	×L 4. (CC000CC1.			
		0000080	6C(60000		DC	xL4.000000C0.			
		000064	CCCCC000		ÐC	XL4' GCC0C000'			
AUCLAS	FUE VARIABL	ES ANG C	CNSTANIS						
ADCUNS	FUR EXTERNA	L REFERE	NCE S						
		000070	00000000		rc rc				
		000045			r/	XIA!0000000			
		000108	0000000		00	XI 4' COODCOCO'	E.		
		000110	0010000		Г.C	XL4.00000000	FC		
		961000	56 70 D CEG	100091	i.	7. 2241 0.131			
		000130	58 80 C 0C8		L	E. 200(0.13)			
		000140	78 60 D C50		LF	(, 801 0,12)	с		
		000144	56 00 0 C68		ι	11, 104(0,13)	•		
		000140	SE AO O CFO		ι	16, 246(0,13)	4		
		000140	56 20 D C54		ι	2, 84(0,13)	1	•	
		000150	14 28		AR	2.11			
		000152	50 20 0 070		51	2. 112(0.12)	44		
		000150			SIL	5. SARC C 131	(0.5		
		000154			1.6	5.10	• (07		
		000160	16 82		LG	11. 2			
		000162	70 69 C 074	100002	STE	6. 116(5.12)	r		
		000116	67 5A D 13A	10	EXLE	5.10, 314(12)	10002		
		000164	58 80 D CEE	100003	L	11. 1041 0.13)			
		DOULLE	10 20	nalis i shek ah mina in Phatra Matt i si da k	C N	2.11			
		000170	85 20 0 662		flL.	2. 2			
		000174	50 20 0 194		51	1. 2001 C.12)	n 60 S		
		000178	50 20 0 CFC		ST	1. 252(0.13)	• C O 3		

		05/360 CCETOAN N EXTENDED	NATE EL 155714-58-33	FICE 1
OLLVEL 20300 (JUNE 70)	INVERS	USZJEU PURTKAN P EZTERDEU		
000170	50 00 0 0FA		.002	
000100	50 00 D 100		•	
000164	86 FO O LO2		P.	
000102	18 24	LR 3.10		
000166	18 44	LR 4,10		
000150	16 62	LR €.2		
000152	58 30 C 000	L 3, 216(0,13)		
000156	7E 26 3 COO	100004 LE 2. 0(6.3)	*	
000194	70 2C 8 CO4	STE 2. 4(0. 8)	,	
000156	18 54			
000140	10 A4 58 00 0 104		.(0*	
000142	7A 29 0 074	100005 LE 2. 116(S.13)	F	
000144	70 25 7 000	HE 2. 0(9.7)	PC	
UJUIAE	7A 29 8 000	AE 2. C(9. E)	4	
000182	70 25 8 CO4	STE 2+ 4(5+ 8)	*	
000186	e7 SA D 176	30 BXLE \$,10, 382(13)	100005	
OUOIEA	18 54	100006 LR \$.4		
000160	1 E A4		(0)	
000126	58 EO U OFC			
000102	78 29 8 000		P(
000100	74 29 0 074	AE 2+116(9+12)	E	
UQUICE	70 25 0 678	STE 2. 120(5.13)	e	
000102	E7 9A D 19A	BXLE 5,10, 410(13)	40	
000106	78 20 8 004	100007 LE 2, 41 0, E)		
000104	70 20 D C79	STE 2. 120(0,13)	E	
000108	SE EO D 108	L 14, 264(0,13)	• 606	
000162	78 2E A 000	LE 2, 0(14, E)	•	
000166	58 FO D CC.8		66	
000164	A7 64 D 166	20 EXE (4.3)	100004	
000162	FF 80 D (6P	100009 1 11. 1040 0.131		
0001F6	IE FF	SR 15,15		
0001FE	50 EO D 000	L 14, 0(0,12)		
000160	07 FE	BCP 15+14		
URLSS OF EPILOGUE				
0001FE	58 DO D C04	L 12, 4(0,12)		
000505	58 E0 D 00C	L 14, 12(0,13)		
00 02 06	92 FF G 00C	MVI 12(13),255		
000204	SE 2C D 010			
THE SS OF FED DOLE	W/ 1'C			
000210	SE 7A 1 000	LM 7.11, 0(1)		
000214	58 20 7 000	L 2. 0(0.7)	;	
000218	50 20 D COC	ST 2+ 108(0+13)	•	
000510	56 20 5 CCC	L 2, 0(0,5)		
000220	50 20 D CEA	51 2. 164(0.12)	*	
000224	EE 20 1 CO4			
000228	41 30 7 660			
000220	41 CU U UU4 18 SS	LM 19 4 SE 5.4		
001210	FO 20 D 009			
000232	50 30 D 0CC	51 3, 720(0,12)	,	
AE 2000	EE 20 1 COC	1 2, 12(0, 1)		
363536	41 20 2 000	LA 3, C(C, 2)		
000242	41 EO C COA	LA E+ 4		

ALEVEL 2.3.0 (JUNL	78)	INVEES	627360	FORTRAN P	E > IE NDED	DATE 81+155/14+58+33	FACE
	000246	18 25		50	2. t		
	000248	50 20 D 000		51	i, i0e(0,13)		
	000240	56 30 D CD4		ST	3. 212(0,13)	a	,
	000250	58 20 1 CIC		ι	2. 16(0, 1)		
	000254	41 30 2 000		LA	3. C(0. 2)		
	000256	41 50 0 604		LA	5. 4		
	000550	1e 25		55	2. E		
	00025E	50 20 C OCA		51	1. 2CC(0.13)		
	000505	50 30 D CCC		51	2. 204(0.12)	A	
	000266	58 20 1 014		1	2. 20(O. I)		
	00026A	41 30 2 000		LA.	3. 0(0. 2)		
	00026E	41 50 6 664		۲.۸	E. 4		
	030272	16 25		5R	i. t		
	000274	50 20 D CEO		sr	2. 224(0.13)		
	000276	50 30 D CE4		51	3, 228(0,13)	PC	
	000270	58 20 1 618		ι.	i, 24(C, I)		
	000260	41 30 2 600		LA	3. 0(0,2)		
	000264	41 50 0 004		LA	E. 4		
	000284	18 25		SR	2. E		
	000284	50 20 D CE8		51	2. 535(0.13)		
	00028E	50 30 D OFC		51	3, 2200 0.13)	FC FC	
	000292	47 FO 0 110		EC	15, 272(0,13)		
AUCIN FUR PROLUGUE							
	, , , , , , , , , , , , , , , , , , , ,	00000210		υc	XL 4. COCCO210.		
AUCUN FUR SAVE AREA							
ANTON FLD LELOUDE	000024	CULLUZE			X14. CCC0CC28.		
	000020	00100115			**********		
LENPERARIES AND GET	NEBATED	CENTANIS			XL4 COCOULTE		
	000118	0000000			X1 41 60 00 60 64 1		
	000110	66160000			X14* 0000000		
	000120	0000000		DC	×14.00000000		
	000124	0000000		10	XIA' 0000000		
	000129	0000000		DC	XI 4' 00 C0 C0 00 '		
	000120	0000000		60	*14********		
	000130	00000000		EC	×1 4 * C0 00 00 00 *		
	000134	000000		DC.	*14'		
•							

#UFTIENS IN EFFECT#NAME(MAIN) CPTIMIZE(2) LINECOUNTEED SIZE(0750K) ZETEOBLENCHE)

+OPTIONS IN EFFECT+SOURCE EPECTE LIST NEEDER ENJERT WAP FERMAL GUSTME WERE NUMBER NUMBER TO BE TRADETED ASTALLSTICS AND DIAGNOSTICS GENERATED

****** ENG LF CLFFILATION ******

.

2178 BYTES OF CORE NOT USED

.

SY MULL.	INTER	NAL JI	ALLPEN	T NUME	ERS		
A	0001	0000	0012	0012	0015	0100	C 0 I 7
e e	0003	0000	0012	C015	COLE	CC16	
1	0010	0011	0014	0015	0015	0015	(()5
J	0005	0000	OUCE	0005	0017		
м	0002	0004	0010	0011	0014		
•	0002	0000					
¥	0002	0001	0017				
PM	LUU4	00000	0005				
FC	0002	1000	0012	0015			
110	0002	0001	0005				
101	0011	5100	0012	CC 1 2	012		

*****FORTRAN CEOSE PEFEFENCE LISTENG*****

	500		
	Ĺ		0 0 0 0 2 5 4 0
	c		00002950
0002		SUEFOUTINE SYNTHZIN.M.AC.7C.YI	00002960
	Ĺ		00002570
	c	THIS RELITING INFLEMENTS THE SYNTHESIS LATTICE FILTER.	00002980
	c	115 OUTPUT IS THE ORIGINAL INPUT RECONSTRUCTED FROM THE	C C C C C C C C C C C C C C C C C C C
	č	PRECICTION FESICUAL.	00003000
	c		00003010
	c	RC - REFLECTION COEFFICIENIS	0 C 0 0 3 0 2 0
	c	AG - PRECICIICN FESIDUAL	0 C 0 0 3 0 3 0
	c	M - CRDER OF THE FILTER	0 C 0 0 3 0 4 0
	c	N - NUMPER OF SAMPLES LE THE PRED. FESTQUAL	00003050
	c	Y - FECCNSIFUCTED SIGNAL	00003666
	í.		0 0 0 0 3 0 7 0
	c		00001080
•	c		00003090
0003		D[MENSIGN_A(20),E(2C),FC(20),PC(256),Y(256)	00003100
	C		00003110
	Ĺ		00003120
0004		P # # # # 1	00003130
	c		00003140
0005		DC 100 J=1,+M	00003150
0006		• 3 = (L) H	00003160
0007	100	CCNTINUE	0003170
	С		00003180
0008		4.1=L 00\$ 03	00003190
0009		A (MP 1=FC (J)	00003200
0010		00 200 1=1.+	00003210
0011		191=8-1+1	00003220
0012		A{1F1}=A{1P1+{1-E{1P1}+R{(P1)}}	0(003230
0013	100	CONTINCE	00003240
0014		CO 4CO L=1,M	00003250
0015	400	£(1+1)=E(1)+/(1)+/C(1)	00003260
0016		E(1)=^(1)	00003270
0017		(1)A=(L)Y	00003280
001 E	200	CENTINUE	00003290
0015		FEILFN	00003300
0350		END	00003310
	0002 0003 0004 0005 0006 0005 0006 0005 0006 0005 0010 0011 0015 0015	L C C C C C C C C C C C C C	$ \begin{array}{c} c \\ c \\ c \\ uuu2 \\ c \\ $

LPTIUNS IN GELECT: NAME(MAIN) CPTIMIZE(2) LINECCUNI(6G) SIZE(0750K) ALNORDL(NONE) Suurce Erclic List Nodeck (Dject Naf Frimat Gustnt Aref Noald Noanse term IBM FLAG(1)

REQUESTED CETTONS: UPT=2.FCRMAT.XPEF.LIST.MAT.SIZE(75CK)

+LEVIL 2. J.O (JUNE 78)

G\$7360 FERTRAN H EXTENDED

DATE 61.155/14.56.26

E.26 FAGE 1

.

4LEVEL 2.3.0 (JUNE 78)		SYNIIIZ	SYNTHZ CEZOGO ECETRAN E EXTENDED			GATE 01+155/14+56+36		FAGE	ĩ	
		•								
		•••	HHF C F T R A N	C B O S S	F E F	EFEFCE	L I S I I N G+####			
34 MHUL	INTERNAL	STATEMENT	NUMBERS							
JYNTHZ	0002									
	DEE INF D	OF FEDEN		(+ L 5 2						
100	6667	0005								
200	0014	0068								
JOU	LIOU	0010								
4 00	0015	0014								
		000000	47 FO F COC	5 YN TH 2	e c	15,12(0,15)				
		000004	07		DC	×L1.07.				
		000005	E2180513(8E940			CL7'SYNTHZ '				
		0000000	90 EC 13 60C		SIM	14,12,12(13)				
		000010			1.6	9,12				
		000012	50 40 D CCA		51	4.4(0.13)				
		000014	50 00 4 008		51	13.810.41				
		00001E	(7 FC		FCR	15.12				
CLASIAN	15									
		000078	0000000		CC	XL4.00000000.				
		J0007C	CCC00001		DC	×14.0000001.				
		0000000	000000		0C	XL 4. CCCCCCCC.				
AIM DEC.		000024			C C	xr4.00000000.				
ADCUNS	FOR EXTERN	NAL GEFERF	NCES							
		000148	000000		66	×L4'000000co'		```		
		000150	0000000		DC	×L4.0000C0C0.				
		000158	C G C C G N G N		DC .	×L4.00000000.		FC		
		000170	58 70 D 128	100001	L	7. 2961 0.131				
		000180	78 EO D 050		LE	(. EC(0,13)	1	0		
		0001E4	58 80 D 068		ι	11. 104(0.13)		M		
		000188	58 40 D 128		t.	4, 312(0,13)		4		
		000160	58 30 0 054		ι	2, E4(0,13)		1		
		000150	18 23		LF	2 , 2				
		000192	50 20 U 020		A 6					
		000158	89 50 0 (02		51			**		
		000150	50 20 0 150		SI	5. 3766 0.131		. (0 (
		000140	18 54		LE	5. 4				
		UUUU1A2	1 E A4		1.9	16.4				
		0001 44	19 02		LR	11. 2	:			
		0001A6	70 65 D CC8	100002	STE	6. 200(9,13)		6		
		000100	87 9A G 17E	00	PXLE	5.10. 382(13)		100002		
		0001 AE	58 EO D CE8	100001	L	11, 104(0,13)		۴		
		000182	58 00 D 150		L	C. 2361 0.121		.006		
		000106	50 00 D 148		51	C. 38E(0.13)		. 604		
		000184	6C CD 0 C02		C 1-	() 11 () 2				
		000100	50 00 0 140		51	(, 1201 0.13)		. (0)		
		000104	56 50 D CCC		L	5. 108(0.13)				
		000108	85 50 0 602		511	5. 2		•		
		000100	18 24		LG	2. 4				

HLEVEL 2.3.0 (JUNE	76)	SYN112	C\$2360 FOR	IRAN P	E > 1E FDED	DATE 81.155/14.58.36	FAGE 2
	000100	18 62		LF	t. 2		
	000100	EE FO () 120	100004	L	15. 2046 0.131		
	000104	78 26 F 000		L E	2. ((6.15)	F C	
	000106	58 EO D 146		L	14, 228(0,13)	• C C 4	
	000100	70 2E D 07E		STE	2. 120(14.13)	,	
	000120			1.5	N. 2		
	000162	58 FO D 068		1	11. 104(0.13)		
	000 1E3	13 20	100005	1.0	2.11	•	
	UUDIEA	18 29		SP	2.5		
	0001EC	18 82		LR	E. 2		
	OUDIEE	LA EA		AR	£.10		
	0001F0	16 28		La	i. E		
	0001F2	89 20 0 002		SUL	. 2		
	0001F6	78 22 U CCE		LE	2. 2001 2.131	B	
	OUDEFA	7C 22 7 000		ME	2. C(2. 7)	F C	
	0001FE	JJ 22 14 22 D 416		LCER	2. 2 . 19.41 0 101		
	000200	17 22 U LIL 17 22 E A70		AC	4 1241 2113) 5. 1506 2 131	<u> </u>	
	000204	F7 CA D 100	100	e (r exte	C.10. AAA/174	100005	
	000200	18 94	100006	LF	5. 4		
	03020F	18 44		LR	16.4		
	000210	58 80 D 140		L.	11, 3201 0,13)	•002	
	000214	18 67		LR	E. 7		
	000216	78 29 0 078	400	LE	2. 120(5.13)	A	
	000214	7C 29 E COO		ME	2. O(S.E)	RC	
	00021E	7A 29 D OCE		AE	2, 200(5,13)	E	
	000222	10 29 D OCC		STE	2. 2041 9.12)	E	
	000226	E7 SA D IEE	100001-	BALE	5.10, 454(13)	400	
	000224		100007	LE	1. 124(0.13)		
	000220	58 EO D 150		516		e	
	000236	70 26 F 000		STE	2. 0(6.15)	Y	
	00023A	67 64 D 1A8	200	EXLE	6 . 4 . 424(13)	100004	
	00023E	58 EO D C68	100006	i.	11. 1046 0.12)	ł	
	000242	18 FF		SF	15.15		
	000244	58 EO D COO		L	14, 01 0,13)		
	000248	07 FE		BCR	15.14		
AUDRESS OF EPILOGU	E.						
	000244	58 DO D C04		L	12, 41 0,121		
	000248	50 EU U 00C		L.	14, 12(0,13)		
	000202	58 20 D 010			121121+200		
	000254	07 FF		BC6	19.14		
AUTRES OF PROLOGU	t.					•	
	000250	SE 78 1 000		LM	7.11. 0(1)	· ·	
	000260	5E 20 7 COO		L	2. 01 0. 7)		
	000264	50 20 D CCC		ST	£. 1081 0.13)	•	
	000268	58 20 8 000		L	2. (((, f)		
	000590	50 20 U CEE		51	2. 104(0.13)	м	
	000270	50 20 1 COR		L	2. 0(0.1)		
	000274	41 30 2 000		LA	2. 0(0.2)		
	000278	41 50 0 001		LA			
	000270	10 20 50 20 0 120		58	2. 2966 0.121		
	000271	50 20 0 120		51	3. 2004 0.131	1) <i>C</i>	
	110225	50 30 0 17C				· · · · ·	
	000204	41 30 2 600		1.4			

4LEVEL 20300 (JUNE 78)	SYNI+2	05/360 FORTRAN H EXTENDED	DATE 81+155/14+58+36	F/GE 4
000265	41 50 0 004	1.A E. 4		
000252	18 25	59 2.5		
000294	50 20 D 130	51 2. 3040 0.131		
000258	EO 30 0 124	51 3. 2061 0.131	PC	
000290	58 20 1 010	L 2, 16(0, 1)		
0002A0	41 30 2 000	LA 3, 0(0,2)		
UJUZAA	41 EO 0 CC4	LA E. 4		
0002A8	18 25	5R 2. 1		
0002AA	50 20 D 120	57 2, 2061 0,13)		
0002AE	50 30 D 124	51 3. 292(0.13)	Y	
000282	47 FO D 154	BC 15, 340(0,12)		
ADC UN FUR PROLUGUE				
000020	COCC025C	DC XL4+C0C002EC+		
AUCUN FOR SAVE AREA				
000024	00000028	CC XL4*COOOCO28*		
ADCON FOR EFILOGUE				
000028	CO CO024 A	DC #L4+C000C24A+		
TEMPLICARIES AND GENERATED	CONSTANTS			
000160	0000004	DC X14+C0C00004+		
000164	0000000	EC XL4*0000000*		
000168	00000	DC XL4'00C000C0'		
J JJ 166	0000000	DC XL4'GCCCCCCO'		
000170	0000000	DC XL4+0000000+		
000174	CO(CO 000	DC XL4 CCCCC000 ·		
00017B	0000000	DC ×L4+CCCOGGCO+		

+UFTIUNS IN EFFECT+NAME(MAIN) OPTIMIZE(2) LINECCUNIC(C) SIZE(0750N) AUTOPUL(NONE) +UPTIONS IN EFFECT+SUURCE EBCEIC LIST NUMERE (BJECT MAP FERMAT GUSIMT PREF NOALD NOANSE TERM LHM FLAG(1) +STATISTICS+ SUURCE STATEMENTS = 15, PREGRAM SIZE = 094, SUPFRECERAM NAME =SYNTHZ +STATISTICS+ NG DIAGNESTICS GENERATEE ++++++ EHD EF CUMPILATION +++++++ 316K PYTES OF CORE NOT USED

•

;

.

APPENDIX D

.

.

SATELLITE COMMUNICATION TERMINOLOGIES

- <u>Transponder</u>. The equipment which receives a signal, amplifies it, changes its frequency, and retransmits it. This process is necessary in order to avoid interfering the weak incoming signal with the powerful transmitted signal. Most satellites have more than one transponder, and the bandwidth of most transponders is 36 MHz, which can carry one televised signal.
- Earth Station. A large dish-shaped antenna pointed toward a satellite. The size of the dish usually varies with the size of the beam angle. Most earth stations simply transmit and receive the telecommunication signals with a fixed antenna. The most inexpensive channels operate with a UHF channel.
- <u>Channel Capacity (C)</u>. The maximum rate at which nearby errorless data transmission is theoretically possible. For certain types of communication channels it has been shown that [14]

 $C = B \log_2 (1 + S/N)$

where B is the bandwidth, S is the signal power, and N is the noise power. For example, for a 3000 Hz of bandwidth and $S/N = 10^3$, the capacity of channel needs to be approximately 30 k bits/second. At the present time, the actual data rate on such channels ranges from 150 to 9000 bits/second [23].

- <u>Multiplexing</u>. Any technique which permits more than one independent signal to share one physical facility. This may include space, frequency, and/or time division multiplexing. In a satellite, a high level of multiplexing is needed so that many signals can share the large bandwidth.
- Access Methods of Satellite Links [34, 35]. A satellite interconnects large numbers of earth stations scattered over thousands of miles.

An efficient solution to allocate subchannels to many users (multiple-access) is required. The simplest way to subdivide satellite capacity by frequency is to give different users different transponders, simply referred to as the multiple-transponder technique. This approach is less satisfactory for the users who need much smaller capacity and/or variable channel assignment. For this reason, techniques which allow for sharing the same transponder among many earth stations have been developed. They are frequency division multiple access (FDMA) and time division multiple access (TDMA).

- <u>FDMA</u>. With FDMA the transponder bandwidth is divided into smaller bandwidths. An earth station transmits on one or more of these divisions. The signal is used to modulate a carrier and multiple carriers are used so that signals can be spaced from each other. Figure 40 illustrates one example of FDMA, where 800 channel carriers are spaced 45 KHz apart. The first channel is used to control the allocation of voice carriers to earth stations. A carrier at the center of each slot is modulated with the voice channel. The more carriers a transponder shares with this scheme the lower the overall capacity. This is due to the effect of guard bands between the carrier's bands and intermodulation.
- <u>TDMA</u>. One of the objectives of TDMA is to employ a single carrier for the transmission via one transponder. With TDMA, each earth station is allowed to transmit a high-speed burst of bits for a brief period of time. The times of bursts are carefully controlled so that no two bursts overlap. For the period of its bursts the earth station has the entire transponder bandwidth available to it. The set of bursts is illustrated in Figure 41. The first burst in a frame contains no

Figure 40. Frequency Multiple Access Method Example (After Martin [35])

Figure 41. Time Division Multiple Access Method Example (After Martin [35])

traffic but serves to synchronize and identify a frame. This method is superior to FDMA in such aspects as flexibility in channel capacity, no intermodulation interference, and no transponder saturation. However, TDMA has other types of problems associated with the synchronization and control of the high-speed digital bit stream.

Meemong Lee

Candidate for the Degree of

Doctor of Philosophy

Thesis: REVERSIBLE SIESMIC DATA COMPRESSION

Major Field: Electrical Engineering

Biographical:

- Personal Data: Born in Junjoo, Korea, January 10, 1953, the daughter of Mr. and Mrs. Pooyung Lee.
- Education: Graduated from Sookmyung Girl's High School, Seoul, Korea, in February, 1971; received the Bachelor of Science degree in Electronic Engineering from Sogang University, Seoul, Korea, in February, 1975; received the Master of Science degree in Information and Computing Science from Oklahoma State University in July, 1979; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1981.
- Professional Experience: Assistant, Information and Computing Science Department, Oklahoma State University, from February, 1977, to May, 1978; Programmer, S.E.T.A.C., Stillwater, Oklahoma, from March, 1978, to May, 1979; Program Analyst, Applied Data Service Corp., Houston, Texas, from June, 1979, to December, 1979; Research Assistant, School of Electrical Engineering, Oklahoma State University, from January, 1980, to present.