By
CHUEN-BOR LEE
11
Bachelor of Science Chung Cheng Institute of Technology Taiwan, Republic of China 1969
Master of Science National Taiwan University Taiwan, Republic of China 1972

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1981

MICROPROCESSOR CONTROL OF AN ENGINEHYDROSTATIC TRANSMISSION SYSTEM

Thesis Approved:

ACKNOWLEDGMENTS

The author wishes to express his deep appreciation to Dr. K. N. Reid, the author's research adviser, for his invaluable advice, encouragement, patience, and friendship throughout the completion of this thesis. Special thanks are due to Dr. R. L. Lowery, Dr. L. R. Ebbesen, Dr. D. D. Fisher, and Dr. P. R. McNeill for their helpful suggestions as members of the author's doctoral advisory committee.

The author wishes to express his appreciation to his government for the fellowship support which allowed him to pursue his doctoral degree.

The author also wishes to thank Ms. Sharlene Fries and others for their assistance in typing this thesis.

Finally, the author wishes to acknowledge the constant support and encouragement of his family.

table of contents

Chapter Page
I. INTRODUCTION 1
1.1 General 1
1.2 Literature Survey 2.
1.3 Objectives of Study 5
II. FUEL ECONOMY STRATEGY 8
2.1 Engine Loading 8
2.2 Determination of Optimum Engine Operation Schedule 14
1II. ENGINE-HYDROSTATIC TRANSMISSION POWER TRAIN CONTROL STUDY 17
3.1 Power Circuit ionfiguration 17
3.2 Control System Concept 19
IV. SYSTEM MODELING 24
4.1 Engine 24
4.2 Gears 26
4.3 Pump and Motor 28
4.4 Load 30
4.5 Engine Throttle Control 31
4.6 Displacements Control 32
4.7 Crossover Controller 33
4.8 Servoactuators 37
4.9 Fuel Consumption 38
V. SYSTEM SIZING 40
5.1 Engine 40
5.2 System Components 41
VI. MICROPROCESSOR-BASED CONTROLLER ORGANIZATION 49
6.1 System Description 49
6.2 Data Acquisition 51
6.3 Data Uistribution 53
6.4 Selection of Microprocessor 55
5. 5 Software Development 59
6.6 Sampling Rate 70
Chapter Page
6.7 Memory Requirements 72
6.8 Environmental Effects 74
VII. SAMPLING REQUIREMENT 76
VIII. CONTROLLER PARAMETERS ADJUSTMENT 80
8.1 Optimum Synthesis 80
8.2 Optimum Parameters Search 81
IX. SYSTEM PERFORMANCE EVALUATION AND DISCUSSION 34
9.1 Example System Performance 84
9.2 Discussion 87
X. CONCLUSIONS AND RECOMMENDATIONS 104
10.1 Conclusions 104
10.2 Recommendations for Future Study 107
BIBLIOGRAPHY 108
APPENDIX A - STATIC SYSTEM MODEL 111
APPENDIX B - TABLE LOOK-UP AND BI-LINEAR INTERPOLATION 114
APPENDIX C - DETERMINATION OF ENGINE CONSTANTS AND THE LIMITS OF PI CONTROLLERS' INTEGRATOR OUTPUT 116
APPENDIX D - LINEARIZED MODEL AND TRANSFER FUNCTION OF THE ENGINE-HST SYSTEM 121
APPENDIX E - SIMPLEX METHOD FOR FUNCTION MINIMIZATION 128
APPENDIX F - COMPUTATION PROCEDURE FOR DYNAMIC SYSTEM MODEL. 133
APPENDIX G - COMPUTER PROGRAM LISTINGS 135

LIST OF TABLES
Table Page

1. Comparison of Various Control Concepts Used for HST Control ó
2. Optimum Engine Loading Torque Versus Throttle Position and Load Torque 16
3. Performance Data of AO42 Military Engine (Experimental) 27
IV. Acceptable Sizes of System Components 45
V. LSI-11 Instruction Timing 58
VI. Total Computational Summary (Estimated) 73
VIl. Memory Requirements for Control Algorithms 74
VIll. Highest Frequency for Engine-HST System Model 78
IX. Effects of Controller Parameters or Fuel Economy and System Dynamic Performance 82
X. Effects of Step Input Amplitude on Fuel Economy and System Dynamic Performance 92
XI. Effects of Crossover Controller Settings on Fuel Economy and System Dynamic Performance 97
Xll. Effects of Sampling Time Interval on Fuel Economy and System Dynamic Performance 102
XIll. Derived Coefficients 126
XIV. Definitions of Parameters and Variables 166

LIST OF FIGURES

Figure Page

1. Load Characteristics for a Typical Vehicle 10
2. Typical IC Engine Performance Map Showing Optimum Operation 11
3. Typical IC Engine Performance Map Showing Optimum Operation With a HST 12
4. Comparison of Optimum Engine and System Operation for a Typical IC Engine 13
5. Power Circuit Diagram 18
6. Control System Concept 20
7. Pump/Motor Crossover Control Circuit 22
8. Block Diagram of the Engine Model 25
9. Comparison of Different Crossover Controller Settings 35
10. μ P-Based Control System Configuration 49
11. Data Acquisition Unit 52
12. Data Distribution Unit 54
13. Formating and Scaling 60
14. Simplified Flow Chart of the Main Program for the Digital Control Algorithm 61
15. Flow Chart for Data Acquisition 65
16. Flow Chart for Subroutine PIC 66
17. Flow Chart for Subroutine YSHIFT 69
18. Flow Chart for Subroutine FG 71
19. System Response to an Accelerator Full Stroke Step Input $\left(V_{c}=45 \mathrm{mph}\right)$ on a Level Road With 4 ms Sampling Interval 85
20. System Response to an Accelerator Full Stroke Step Input
$\left(V_{c}=45 \mathrm{mph}\right)$ on an Uphill Road $(G(\%)=12)$ With 4 ms
Sampling Interval 88
21. System Response to an Accelerator Partial Stroke Step Input ($V_{C}=15 \mathrm{mph}$) on an Uphill Road $(G(\%)=12)$ With 4 ms Sampling Interval 90
22. System Response to an Accelerator Limited Ramp Input ($V_{C}=45 \mathrm{mph}$ Ramped in 50 sec) on a Level Road With 4 ms Sampling Interval93
23. System Response to an Accelerator Full Stroke Step Input ($V_{C}=45 \mathrm{mph}$) on a Level Road With 6 ms Sampling Interval. 98
24. System Response to an Accelerator Full Stroke Step
Input $\left(V_{c}=45 \mathrm{mph}\right)$ on a Level Road With 8 ms
Sampling Interval. 100
25. Typical FG Table . 114
26. Torque-Speed Characteristics of an AO42 Military Engine 117
27. Flow Chart for Simplex Minimization Algorithm 131

NOMENCLATURE

a	rolling resistance coefficient
A	front area of vehicie, in. ${ }^{2}$
b	velocity correction coefficient, in./sec
8	bulk modulus of hydraulic oil, psi
$c_{\text {a }}$	air resistance coefficient
$c_{\text {dm }}$	motor viscous drag coefficient
$C_{\text {dp }}$	pump viscous drag coefficient
$c_{\text {fm }}$	motor dry friction coefficient
$c_{f p}$	pump dry friction coefficient
$c_{\text {sm }}$	motor slip coefficient
$c_{\text {sp }}$	pump slip coefficient
c_{1}	proportional gain for throttle PI controller
c_{1}^{*}	optimum proportional gain for throttle Pl controller
c_{2}	proportional gain for displacement Pl controller
c_{2}^{*}	optimum proportional gain for displacement Pl controller
D_{c}	crossover point of crossover controller, amp
D_{m}	motor displacement, in. ${ }^{3} / \mathrm{rad}$
$\tilde{D}_{\text {m }}$	dummy motor displacement, in. ${ }^{3} \mathrm{rad}$
D_{mm}	maximum motor displacement, in. $3 / \mathrm{rad}$
D_{p}	pump displacement, in. ${ }^{3} / \mathrm{rad}$
D_{pm}	maximum pump displacement, in. ${ }^{3} / \mathrm{rad}$
0_{r}	displacement control signal (output of amplifier), amp

$D_{\text {rh }}$	displacement control signal (output of zero order hold), volt
D_{ra}	displacement control signal (output of D/A converter), volt
${ }^{\text {d }}$ rd	displacement control signal (output of Pi controller)
$\mathrm{D}_{\text {rmax }}$	maximum value of D_{r}, amp
$D^{\text {rm }}$	motor displacement control signal (output of crossover controller), amp
${ }^{\text {rp }}$	pump displacement control signal (output of crossover controller), amp
DI	integrator output of the displacement Pl controller
$D I_{\text {max }}$	upper limit of DI
$D 1_{\text {min }}$	lower limit of DI
f	total fuel consumption, 1 bm
\dot{f}	fuel consumption rate, $1 \mathrm{bm} / \mathrm{sec}$
-	fuel consumption per unit of distance, $1 \mathrm{bm} / \mathrm{in}$.
Fa	air resistance, lbf
F_{g}	road grade resistance, lbf
F_{p}	vehicle propulsive force, lbf
F_{r}	rolling resistance, lbf
G	road grade
G_{m}	motor gear ratio
G_{p}	pump gear ratio
$H^{\text {HPE }}$ max	maximum engine horsepower, hp
J	performance criterion
J_{c}	moment of inertia of the engine-gear-pump unit, lb-in.-sec ${ }^{2}$
${ }^{\text {J }}$	engine moment of inertia, lbf-in.-sec ${ }^{2}$
J_{m}	motor moment of inertia, lbf-in.-sec ${ }^{2}$
J_{mg}	motor gear moment of inertia, lbf-in.-sec ${ }^{2}$

J_{p}	pump moment of inertia, lbf-in.-sec ${ }^{2}$
$J_{p g}$	pump gear moment of inertia, lbf-in.-sec ${ }^{2}$
K,	engine throttle gain, in.-lbf/rad
K_{2}	engine damping coefficient, in.-lbf-sec/rad
K_{3}	engine transport delay constant, rad
${ }^{2} 1$	slope for function LIMIT
2_{2}	slope for function DEADSP
L	traveled distance, in.
M	vehicle inertia mass, 1 bm
M_{C}	inertia mass of the motor-gear-vehicle unit, lbf-sec ${ }^{2} / \mathrm{in}$.
p	hydraulic pressure, psi
P_{e}	engine power, in.-lbf/sec
$P_{\text {e }}{ }^{*}$	engine power at a particular load point, in.-lbf/sec
P_{ℓ}	load power, in.-lbf/sec
P_{2}^{*}	load power at a particular load point, in.-lbf/sec
P_{m}	motor pressure drop, psi
P_{p}	pump pressure drop, psi
$P_{\text {max }}$	maximum working pressure, psi
Q_{m}	motor flowrate, in. ${ }^{\text {/ sec }}$
Q_{p}	pump flowrate, in. ${ }^{3} / \mathrm{sec}$
$\mathrm{Q}_{\text {st }}$	total leakage flow, in. ${ }^{3} / \mathrm{sec}$
R	wheel radius, in.
s_{c}	command vehicle speed, rad/sec
${ }^{c}{ }_{c d}$	digitized command vehicle speed
S_{e}	engine speed, rad/sec
\dot{S}_{e}	rate of change of engine speed, rad/sec ${ }^{2}$
S_{e}^{*}	optimum engine speed at a particular load point, rad/sec

$S_{\text {ed }}$	digitized engine speed
$S_{\text {emax }}$	maximum engine speed, rad/sec
$S_{\text {idle }}$	engine idling speed, rad/sec
S_{2}	load speed, rad/sec
S_{ℓ}^{*}	load speed at a particular load point, rad/sec
$S_{2 d}$	digitized load speed
$S_{2 \text { max }}$	maximum load speed, rad/sec
S_{m}	motor speed, rad/sec
S_{p}	pump speed, rad/sec
t	time, sec
${ }^{1} 1$	engine transport delay, sec
T_{a}	engine accelerating torque, in.-lbf
$T_{\text {d }}$	engine damping torque, in.-lbf
T_{e}	engine loading torque, in.-lbf
T_{e}^{*}	optimum engine loading torque at a particular load point,
	in.-lbf
$T_{\text {ed }}$	digitized engine loading torque
$T_{\text {emax }}$	maximum engine loading torque, in.-lbf
$T_{\text {full }}$	engine full throttle torque, in.-lbf
$T_{\text {idle }}$	engine idling torque, in.-lbf
T_{2}	load torque, in.-lbf
T_{2}^{*}	load torque at a particular load point, in.-lbf
$T_{2 \mathrm{~d}}$	digitized load torque
$T_{\text {lmax }}$	maximum load torque, in.-lbf
T_{m}	motor torque, in.-lbf
$T_{\text {op }}$	optimum engine loading torque, in.-lbf
Tout	delayed engine output torque, in.-ibf

T_{p}	pump torque, in.-lbf
T_{5}	sampling time interval, ms
T_{y}	engine input torque, in. -1 bf
v	total volume under compression, in. ${ }^{3}$
v	vehicle velocity, in./sec
i	vehicle acceleration, in./sec
V_{150}	vehicle velocity after 150 seconds, in. $/ \mathrm{sec}$
$V_{\text {max }}$	maximum vehicle velocity, in./sec
v_{w}	head wind velocity, in./sec
W	vehicle weight, lbf
y	engine throttle position, rad
Y_{d}	digitized engine throttle position
${ }^{\text {Y idle }}$	idling throttle position, rad
$Y_{\text {max }}$	maximum throttle position, rad
Y_{r}	throttle control signal (output of amplifier), amp
$Y_{\text {rh }}$	throttle control signal (output of zero order hold), volt
${ }^{Y}{ }_{\text {ra }}$	throttle control signal (output of D/A converter), volt
$Y_{\text {rd }}$	throttle control signal (output of PI controller)
Y_{s}	delayed engine throttle position (output of function YSHIFT)
YI	integrator output of the throttle PI controller
${ }^{Y} 1_{\text {max }}$	upper limit of Yl
$Y_{1}{ }_{\text {min }}$	lower limit of YI

Greek Symbols

\square
η e
r_{5}
hydraulic oil viscosity, lbf-sec/in. ${ }^{2}$
engine efficiency
overall system efficiency

η_{t}	transmission efficiency
λ	upper limit for implicit constraint
中	slope of terrain, rad
ρ	air density, lbf-sec ${ }^{2} / i n .4$
${ }^{\tau} d$	displacement servo time constant, sec
τ^{\prime}	throttle servo time constant, sec
${ }^{\tau}$	integral time constant for throttle Pl controller, sec
${ }^{*}{ }_{1}^{*}$	optimum integral time constant for throttle Pl controller,
	sec
${ }^{\tau} 2$	integral time constant for displacement Pl controller, sec
τ_{2}^{*}	optimum integral time constant for displacement Pl control-
	ler, sec
$\triangle D$	total change of pump and motor displacements, in.3/rad
ΔD_{m}	total change of motor displacement, in. ${ }^{3} / \mathrm{rad}$
ΔD_{p}	total change of pump displacement, in. ${ }^{3} / \mathrm{rad}$
ΔS	vehicle speed error
ΔT	engine loading torque error
	Acronyms
A/D	analog to digital
CPU	central processing unit
D/A	digital to analog
FG	function generator
HST	hydrostatic transmission
10	internal combustion
ItAE	integral of the time weighted absolute value of the error
1/0	input/output

ms	minisecond
PI	proportional-integral
PROM	programmable read-only memory
RAM	random access memory
SI	spark ignition
μC	microcomputer
μP	microprocessor
μS	microsecond

CHAPTER 1

INTRODUCTION

1.1 General

Generally, vehicle prime movers have torque-speed characteristics which are not well matched to the vehicle load as reflected through the wheels. A transmission is used to convert the engine output to the desired combination of torque and speed.

The hydrostatic transmission (HST) has the attactive advantage of providing a continuously variable, stepless gear ratio between the engine and the driving wheels. With a continuous variance, an HST can be controlled to maximize any reasonable performance criterion for the enginetransmission power train, e.g., maximum engine efficiency, maximum overall system efficiency, maximum venicle acceleration, etc. However, in order to accomplish the control function, it is necessary to devise a good controller which can relate the engine throttle, pump and motor displacements in an appropriate manner.

During the past years, a lot of such control systems have been designed based on different control schemes, e.g., mechanical, hydraulic, electronic, fluidic controls and a combination of these. Today, the microprocessor provides a new approach to the engine-transmission control due to its considerable potential of low cost, flexibility, and computational power.

The microprocessor (μP) has already found many applications. In the automotive area, the $u p$ has been used in ignition control and fuel injection control. However, in engine-HST control, so far there is no literature published. The objective of this study was to conduct a conceptual design of a high performance μ P-based controller for a vehicle propulsion system comprising an internal combustion engine and an hydrostatic transmission.

1.2 Literature Survey

A literature survey was done in the areas of HST control technology and μ P implementation. In the area of HST control technology, the literature was reviewed according to performance criteria used and control schemes used.

1.2.1 Performance Criteria

The performance criteria that have been established in the past are maximum engine efficiency, maximum overall system efficiency, and maximum vehicle acceleration. Wilson et al. [1], Reid et al. [2], Svoboda [3], and Cunningham et al. [4] have developed controllers which can be used to vary the load on the engine to maximize engine efficiency and, therefore, minimize fuel consumption. Taking into account the transmission efficiency, Reidet al. [5] and Bowns et al. [6] have presented controllers, by which the system overallefficiency was optimized by varying the engine speed, and the pump and motor displacements for the power required. Wilson [7] proposed to govern engine speed to produce maximum oower output while
controlling the pump displacement to give maximum vehicle acceleration (motor displacement varied by operator). A controller proposed by Howard et al. [δ] adjusts the speed ratio to give maximum load at maximum engine throttle. This type of controller would find its best application in a situation like a farm tractor where maximum load and maximum throttle are simultaneously and continuously required.

1.2.2 Control Schemes

Mechanical controls for HST's fulfilled the industry needs satisfactorily for a long time. For the simple mechanical control, the control lever is connected to the internal mechanism which makes the pump and motor variable through a hydraulic boost [9]. Reid et al. [2] discussed a General Electric Company mechanical controller, which schedules the engine speed and the pump and motor displacements according to the power requirements. The variable to be controlled by the operator is the load speed via the accelerator pedal. Cams are arranged to schedule engine speed as a function of throttle angle and sensed engine speed. Any deviation from the engine speed schedule is accompanied by an appropriate change in pump and motor displacements. In the last few years, electrohydraulic devices have become available for stroking pump and motor displacements with small electrical signals. This capability creates possibilities for improved control of mobile vehicles, ranging from simple remote control to sophisticated automatic control [10, 11]. Numerous papers deal with electronic-based control systems. The works of Svoboda [3] and Cunninghamet al. [4] are representative. For the control system generated by Cunningham et al., the driver adjusts the
setting of the engine speed governor via an accelerator pedal. Engine speed is sensed and converted into an engine torque reference signal, which is combined with a signal proportional to transmission pressure difference to generate the correcting pump displacement signal. For the control system developed by Svoboda [3], the driver controls the vehicie velocity by operating the motor swashplate. The engine throttle and pump displacement are governed by a multiloop electronic controller via electrohydraulic servoactuators. The feasibility of fluidic-based controllers have been studied by Reid et al. [5] and Howard et al. [8]. Reid et al. chose to implement the controller with fluidic circuits for the various sensing, logic and control functions required in military vehicle propulsion systems. Several different control concepts were developed.

1.2.3 Microprocessor Implementation

Since their introduction in 1971, μ Ps have spurred interest in process control, automotive, aerospace, biomedical, instrumentation, data acquisition and consumer electronics applications as well as other industrial, commercial and military applications. In automotive applications, the use of a microprocessor to control an automotive engine has become a reality. Binder et al. [12], Toelle [13], Marley [14], and many others investigated the $\mu \mathrm{P}$ control on such existing functions as air/fuel-ratio, ignition-timing and exhaust-gas-recirculation control to obtain fuel economy, low emissions and driveability. Hosey et al. [15] have designed a P -based spark timing controller based on measurements of cylinder pressure to extract maximum energy from the fuel while
minimizing pollutants. Generally, all the μP-based controllers respond with suitable engine adjustments on the basis of the stored information together with concurrent operating conditions sensed from the engine. All the applications for $\mu P s$ in the automobile focused on the fuel-flow, spark-advance and emission control. There appears to be no direct transfer of implementation strategies used to the engine-HST drive system control problem in this study, except in techniques for function generation.

The various control concepts used for HST control are compared in Table 1.

1.3 Objectives of Study

The primary objectives of this study include:

1. Design a power transmission circuit and size its components. Develop a generalized steady-state mathematical model for the HST power train and code a program which can be used to search the optimum system operating conditions based on different performance criterion, e.g., optimum fuel economy. Some of these optimum system variable relationships will be selected for the generation of the function generator.
2. Eesign a microprocessor-based controller for the engine-HST system. Entails the design of the control circuit, the $\mu \mathrm{F}$ configuration and the derivation of the digital control algorithms. The preliminary system design is followed by optimum adjustment of the controller parameters. A simplex optimization method is used.
3. Derive the linearized model and transfer function for the engine-HST system, and calculate the highest system frequency, which will be used to check whether the sampling requirement is met.

TABLE 1
COMPARISON OF VARIOUS CONTROL CONCEPTS USED FOR HST CONTROL

	*	Mechanical Control	Electronic Control	Fluidic Control	Microprocessor Control
*		Houk [9]	Cornell [10]		
Maximum Engine Efficiency	Wilson [1]	Reld [2]	Svoboda [3] Cunningham [4]		
Maximum System Efficiency		Bowns [6]		Reid [5]	\dagger
Maximum Vehicle Acceleration	Wilson [7]				
Maximum Load				Howard [8]	

iIndicates that no performance criterlon was used or no control scheme was mentioned in the control technology.
tIndicates the control technology studied in this thesis.
4. Derive a closed-loop dynamic model for the engine-HST vehicle drive system, and code a computer program. By utilizing manufacturers' data for individual components whenever possible as an example, a discrete system simulation is carried out to evaluate the dynamic performance and the fuel economy of the vehicle propulsion system, and to demonstrate the feasibility of the μ^{P}-based control system.

CHAPTER 11

FUEL ECONOMY STRATEGY

In view of the apparent decreasing availability and increasing cost of liquid petroleum, fuel economy is one of the most important considerations in modern engineering design. For an engine-HST system, substantially reduced fuel consumption may be achieved by scheduling the engine loading torque and the pump and motor displacements according to the power requirements.

2.1 Engine Loading

Proper engine loading can improve system fuel economy. Before illustrating this idea, it is useful to define a performance criteron as:

$$
\begin{align*}
J & =\frac{\text { Load speed } \times \text { load torque }}{\text { Rate of fuel consumption }} \\
& =\frac{S_{\ell} T_{\ell}}{\dot{f}} \tag{2.1}
\end{align*}
$$

The engine efficiency is defined as

$$
\begin{equation*}
n_{e}=\frac{S_{e} T_{e}}{\dot{f}} \tag{2.2}
\end{equation*}
$$

Inserting this expression yields

$$
\begin{equation*}
J=\frac{S_{\ell} T_{\ell}}{S_{e} T_{e}} \eta_{e} \tag{2.3}
\end{equation*}
$$

Furthermore, the transmission efficiency may be defined as

$$
\begin{equation*}
n_{t}=\frac{S_{\ell} T_{\ell}}{S_{e} T_{e}} \tag{2.4}
\end{equation*}
$$

so that the performance criterion becomes

$$
\begin{equation*}
J=\eta_{e} n_{t} \tag{2.5}
\end{equation*}
$$

Therefore, minimum fuel consumption (i.e. maximum performance criterion) can be accomplished by maximizing the product of the engine and transmission efficiencies, i.e. the system efficiency η_{s}.

Engine loading affects fuel economy, and speed ratio affects the system efficiency. For illustration consider the case of an ideal transmission (i.e. $n t=1$). The problem is to find the speed ratio which maximizes the performance criterion n_{e}. Consider a particular load point ($S_{l} *, T_{l} *$) on the lowest grade curve (nominal load line) of Figure 1. This load requires a power $P_{\ell} *$ to be delivered by the engine. For an ideal transmission, the engine supplied power, $\mathrm{P}_{\mathrm{e}}{ }^{*}$ equals the load requirement, $P_{\ell} *$. Reference to Figure 2 reveals that the engine power $\mathrm{P}_{\mathrm{e}}{ }^{*}$ can be developed by various combinations of throttle positions and engine speeds (see horizontal line drawn at power level $P_{e}{ }^{*}$). However, there is only one combination that will deliver this power while maximizing the engine efficiency. Operation either to the left or right of the point ($S_{e}{ }^{*}, T_{e} *$) will be at lower efficiency. By considering different loading points the same procedure can be extended to develop the locus of points which maximizes engine efficiency. This locus is shown in Figure 2 by the dashed line labeled "optimum engine efficiency'. For a real transmission, the load power requires $P_{e} *=P_{\ell} * / n_{t}$ from the engine. Since the transmission efficiency n_{t} is variable with loading, the power requirement from the engine is not a
constant horizontal line as before, but is a function of speed as shown in Figure 3. However, there does exist an operating point ($S_{e} *, T_{e} *$) that maximizes the overall system efficiency. By considering other points along a nominal load line, the engine curve for optimum nominal operation is obtained (see the heavy solid line in Figure 4.) The consideration of all loading conditions experienced by the vehicle leads to the range of optimum operation indicated by the shaded region in Figure 4.

VEHicle speed, $\mathbf{S}_{\mathbf{I}}$

Figure 1. Load Characteristics for a
Typical Vehicle

From the above discussion, it can be seen that only through the use of a wide ratio range continuously variable transmission, such as an HST,

Figure 2. Typical IC Engine Performance Map Showing Optimum Operation [16, p. 93]

Figure 3. Typical IC Engine Performance Map Showing Optimum Operation With a HST [16, p. 95]

Figure 4. Comparison of Optimum Engine and System [16, p. 96]
it is possible to vary both engine torque and speed over a wide range and results in maximum fuel economy. With a mechanical transmission incorporating, say, a four-speed gearbox, a load torque and speed demand can only be met at four engine torque levels.

2.2 Determination of Optimum Engine

Operation Schedule

In order to obtain the best fuel efficiency, the engine must run at its best operating point. The optimum engine operation schedule was generated based on the concept of optimum fuel consumption just described in the last section. The optimization requires knowledge of the loading conditions of interest, the coefficients for the HST mathematical model, and engine performance data. With this information, a search for optimality was carried out as follows: Select a load point of interest. For this load point, try different transmission displacements to find the one giving the speed ratio for maximum system efficiency; that is, select trial values of displacements and observe the corresponding system operating point. Knowing the speed and torque of the load point and the transmission displacements, the engine speed and torque can be computed using the transmission equations (see Appendix A). Since an engine operating efficiency is associated with each engine operating point, and the transmission efficiency is computed from the ratio of the load power to the computed engine power, then, the system efficiency is computed from Equation (2.5) for these trial displacements. Searching for the values of the displacements which give maximum system efficiency finally yields the optimum operating point for all system variables; e.g., throttle position,

```
engine speed and torque, displacements, etc. By extending this search
procedure to every load point of interest, the scheduling of optimum
engine operation for the load map of interest can be determined.
    A computer program was developed to facilitate the search. A
listing of this program and results on the example system (see section
4.1) are given in Appendix G.2. From the obtained optimum operating
conditions some variable relationships can be selected to generate a
function generator. In this study, the engine loading torque versus
throttle position for different load torques was chosen to be a function
generator (Table II). It could be stored in a programmable read-only
memory chip (see section 6.1) and used along with sampled data to
determine the optimum engine loading torque.
```

TABLE II
OPTIMUM ENGINE LOADING TORQUE VERSUS THROTTLE POSITION AND LOAD TORQUE

rau	UPYE1	CPTE2	OPTE3	CFTE4	CPIES	CFTEO	OPTE 7
0.1	2.3	2． 3	$2 \cdot 3$	2.3	2． 3	2．3	2.3
3.4	51.4	c： 5	63．1	63.2	63.0	60.0	51.4
$7 \cdot 1$	111.4	111.9	106.7	107.1	107.6	107．9	111.4
10.0	$14 \% 04$	148.3	151．1	172.7	175.0	176.0	170.4
14.1	178.7	1e7．6	1es．1	156.2	205．2	205.4	207．8
17.0	200．4	211.1	20E．0	＜10．2	\％12．9	213.8	217．E
21．1	220.9	227.0	226.1	226.7	226．2	227．5	231．e
＜4．0	227.5	238.5	238.4	2コ7•0	238．0	237．3	235．5
28．1	234.5	239．4	239．6	239．0	239．7	2 3 8． 6	236．6
± 1.0	＜34．0	23 5．8	242．2	235.5	241.7	242.4	239．0
J5．1	242．8	24806	24E．0	2 3508	＜4E．S	247．E	244．3
30.5	240．0	245.4	24E．9	240．9	251.4	252．2	248．7
42.0	240.1	24E．0	247．0	242.7	255.7	255．0	252．8
45.3	240.9	250.4	248．6	240．6	257．3	255．6	256．7
49.0	247．5	252．0	2¢2．0	250.6	258．0	250.4	260．
52.5	247．5	24t．6	E50．3	2¢4．6	258．8	262．0	264．3
5000	240．2	24E．1	250．0	258.5	259．6	265．e	26n．3
59．5	く40．4	24£00	249．8	254.1	200．3	269．7	272．3
03.0	248．0	244．0	249．1	253．9	2E1．4	272．0	273.3
60． 5	240．3	24こ．3	246.4	248．3	2E1．6	272．6	273．e
70.0	246.7	24こ．0	243．0	242.7	261．9	272.9	274．0

CHAPTER III

ENGINE-HYDROSTATIC TRANSMISSION
 POWER TRA IN CONTROL STUDY

This chapter is presented to describe the power circuit and control concept of the engine-hydrostatic transmission power train.

3.1 Power Circuit Configuration

The power circuit diagram of the proposed engine-transmission system is shown in Figure 5. An internal combustion (IC) engine (i) drives an axial-piston variable-displacement pump (3) through a pump gear (2), thus generating hydraulic power. The power is converted into mechanical power in an axial-piston variable-displacement motor (4), which through a motor gear (5) drives the vehicle load (6).

The axial-piston units (3) and (4), selected for their high efficiency, require a pressurized intake line to prevent cavitation. A boost pump (8) serves this purpose.

A strainer (7) prevents contamination from entering the power circuit. An airblast cooler (6), placed in the drain line, maintains the oil temperature within the operating range.

Shock loads are, to a certain extent, taken up by bleeding some of the high pressure to the low pressure side via check valve (12 or 13), relief valve (10), and check valve (14 or 11). The main relief valve (15) gives overload protection for transmission and prime mover. So,

for more severe shocks, shock loads will dissipate through relief valves (10 and 15). Check valve (9) prevents dissipation of shock loads through the boost pump.

An electric analog signal Y_{r} controls the engine throttle by means of an electric servoactuator, and electric analog signals $D_{r p}$ and $D_{r m}$ control the pump displacement and motor displacement, respectively, through the use of electro-hydraulic servos. All of these signals are generated in a microprocessor-based controller, whose design concept is discussed in the next section.

3.2 Control System Concept

Figure 6 illustrates the essential features of a control system which might be used for an engine-HST propulsion system.

The control system includes two feedback loops. They are the vehicle speed control loop and the power train control loop. In the vehicle speed control loop, the command vehicle speed, $S_{c d}$, is compared with the actual vehicle speed, $S_{l d}$. The speed error, ΔS, which represents the discrepancy between the engine power supply and the vehicle power need is converted in a discrete proportional-plus-integral ($\mathrm{P} \mid$) controller into the reference throttle position signal, Y_{r}; this signal regulates the engine throttle setting Y via an electric servodrive. The PI controller is used to reduce the steady-state speed error. Ideally, the PI controller provides a zero steady-state error and the accuracy of the speed control depends only upon the accuracy of the speed transducer.

Proper engine loading can improve fuel economy. The optimum engine loading schedule is controlled by the power train control loop, which is incorporated within the speed control loop. In this loop, the measured

Figure 6. Control System Concept
engine loading torque $T_{\text {ed }}$ is compared with the optimum engine loading torque, $T_{o p}$, which is generated in the function generator ($F G$) as a function of the measured load torque $T_{\ell d}$ and the delayed throttle setting Y_{S}. The torque error, ΔT, is fed into a discrete PI controller, whose output D_{r} is scheduled by a crossover controller. Output signals from the crossover controller act through electrohydraulic servovalve controllers [21] on the pump and motor swashplates in a direction tending to eliminate the torque error. The selected engine loading torque then results in a near minimum fuel consumption.

A function YSHIFT is employed to eliminate the error signal results from the engine transport delay and to improve system stability (see paragraph 9.2.2). The optimum operation for arbitrary loading is scheduled through use of a two-dimensional function generator, FG, defined in section 2.2.

To expand the useful speed range of the HST, both pump and motor selected are variable-displacement type. This requires proper phasing of the pump and motor swashplates. The crossover controller mentioned before is used to fulfill this function. Figure 7 shows the circuit for the crossover control, together with the forward-backward direction control.

To illustrate the system operation, assume that the vehicle system is in the steady state with the command speed set at half its full value with the accelerator in the half stroke position. Further, assume that the driver causes a step input in the accelerator to its full value; this results a positive speed error ΔS. Consequently, the Pl controller opens the engine throttle, the engine speeds up, and more oil is pumped into the power line until the speed error vanishes. At the same time,

however, due to the change in the throttle setting and the load torque, the optimum engine loading torque signal Top changes its value, which in turn perturbs the torque error ΔT. Consequently, the output of the displacement $P I$ controller adjusts the pump or the motor displacement to a new value via the crossover controller, resulting in a zero torque error. The system then assumes a new steady state.

Besides the characteristics indicated in Table 1 , the proposed controller has two additional advantages: (1) Different control algorithms can be tied together. For example, a second function generator based on the maximum acceleration performance criterion can be added. The driver can select or change the control modes from one to another as he wishes. (2) Scheduled gains and time constants of the controller is allowable, which results in a more desirable system performance and drive economy. Both advantages would be difficult to implement with other types of controller.

CHAPTER IV

SYSTEM MODELING

Abstract

In this chapter the mathematical models for various system elements are derived for the purpose of system sizing, parameter adjustment, and performance evaluation. Figure 6 shows the whole drive system including both the power circuit and system control, and lists all important system variables. The following sections describing the development of individual component models should be read with reference to Figure 6 .

4.1 Engine

The engine is viewed as a dynamic system responding to the throttle position Y and the engine loading torque T_{e}, with the engine output speed S_{e}. A model suggested by Monk and Comfort [17] is shown in the block diagram in Figure 8. The throttle position is the input, the engine speed is defined as the output, and the engine loading torque is considered as a disturbance. The engine responds to the net accelerating torque, T_{a}, as a first order system with a moment of inertia J_{e}. The accelerating torque is the engine input torque, T_{y}, minus the damping torque, T_{d}, and the engine loading torque. The input torque is assumed to be proportional to the throttle position with a transport delay, t_{1}, which is inversely proportional to the engine speed. The delay can be explained as a time necessary for the new fuel mixture to reach the combustion chamber after a change of the throttle position. The engine speed relates to the throttle position and the engine loading torque as:

Figure 8. Block Diagram of the Engine Model

$$
\begin{align*}
J_{e} \dot{S}_{e} & =T_{y}-T_{d}-T_{e} \\
& =K_{1} Y\left(t-t_{p}\right)-K_{2} S_{e}-T_{e} \tag{4.1}
\end{align*}
$$

where the engine transport delay t_{1} is

$$
\begin{equation*}
t_{1}=k_{3} / S_{e}(t) \tag{4.2}
\end{equation*}
$$

and where

$$
\begin{aligned}
& K_{1}=\text { throttle gain; } \\
& K_{2}=\text { engine damping coefficient; and } \\
& K_{3}=\text { engine transport delay constant. }
\end{aligned}
$$

The throttle position Y is physically limited as:

$$
\begin{equation*}
Y_{\text {idle }} \leq Y \leq Y_{\text {max }} \tag{4.3}
\end{equation*}
$$

In the actual system, the engine moment of inertia is replaced by the moment of inertia of the engine-gear-pump unit.

$$
\begin{equation*}
J_{c}=J_{e}+J_{p g}+J_{p} / G_{p}^{2} \tag{4.4}
\end{equation*}
$$

The engine damping characteristic is present implicitly in the brake
horsepower versus throttle position and engine speed relationship. Thus when the brake horsepower is used to calculate the engine output torque, Equation (4.1) can be rewritten as:

$$
\begin{equation*}
J_{c} \dot{S}_{e}=T_{\text {out }}-T_{e} \tag{4.5}
\end{equation*}
$$

where $T_{\text {out }}$ is the delayed engine output torque calculated from the brake horsepower.

In this study, all the design procedures and the feasibility of the proposed μ P-based control strategy are demonstrated by means of an example system. In this example system, the military A042 IC four-cycle gasoline engine has been chosen as a prime mover. The performance data for this engine were obtained experimentally on a test bench [16] and are available in Table lll. Based on these data, the various engine constants, i.e., K_{1}, K_{2}, and K_{3}, and the idling throttle position $Y_{i d l e}$ are:

$$
\begin{aligned}
& \mathrm{K}_{1}=458.4 \mathrm{in} .-1 \mathrm{bf} / \mathrm{rad} \\
& \mathrm{~K}_{2}=0.94 \mathrm{in} .-1 \mathrm{bf}-\mathrm{sec} / \mathrm{rad} \\
& \mathrm{~K}_{3}=10.9 \mathrm{rad}
\end{aligned}
$$

and

$$
Y_{i d l e}=0.17 \mathrm{deg} .
$$

For idling speed, $S_{i d l e}=70 \mathrm{rad} / \mathrm{sec}$. The calculation procedures are given in Appendix C.

4.2 Gears

The pump gear and the motor gear are considered to be lossless. The pump gear ratio, G_{p}, relates the speeds and torques of the engine and the
table $\|\|$
Performance data of a042 military engine（experimental）

Engine Efficiency										
SE	0.	35.	70.	105	140	175	210	245．	280	315
TE										
$0 \cdot 1$	7．0	8.8	9．2	10.0	10.2	10.2	9.5	E． 8	$E \cdot C$	7． 5
30． 1	7.0	9.0	10．2	11.2	11．	11.4	10．9	10.2	S． 5	$E \cdot 8$
00． 1	7.0	$9 \cdot 2$	11.0	12.3	12．9	1こ．0	12．7	12.1	11．3	10．1
50． 1	7．0	$9 \cdot 3$	11.8	13.5	14.4	14.8	14．0	14.2	1こ．3	12．3
120．1	7．0	S．e	12.3	14.5	15.7	16． 5	16.9	16.5	15.7	14.3
150．1	700	9.8	12.8	15．5	17．1	1E．4	19．0	18．7	17．E	16.3
180．	7－0	10．0	13．3	16.3	18.4	20．5	22.0	22.0	20.0	17.3
210.1	7.0	10．2	13.8	17.0	20．C	23．4	26.0	24.8	21．1	17.3
240．1	7.0	10.4	14．1	17．5	E1．3	2E．3	31.3	24.5	EC．C	14．5
270.1	7.0	10．6	14.4	18．0	22．0	27.0	25.8	21.5	16．E	13.5
300．1	7.0	10．5	14.2	17．5	21．C	24．0	21．0	18．0	14．0	11．0

Throttle Position（deg）

SE	0.	35.	70.	105.	140 ．	175.	210.	245	280.	215 －
TE										
0． 1	10．0	0.0	0.0	0.7	2．1	4.9	9.1	11.9	15．4	15．6
30.1	70.0	5．6	$2 \cdot 1$	く． 1	4.2	E． 6	9.8	13.3	17.5	22.4
60．1	70.0	10.5	3.5	4． 2	4．5	7.0	11.2	15．4	19．6	24．5
90． 1	70.0	14．0	4． 9	5.6	5.6	e． 4	12.6	17.5	22．4	20．6
120．1	70.0	52.5	7.7	E． 4	7.7	1C． 5	15.4	20.3	25．2	30.8
150．1	70.0	70．0	10.5	9．8	9.8	13．3	17．5	23．1	2E．C	こ7．1
180.1	70.0	70．0	14．0	10.5	11．9	16.1	21.0	26.6	34．3	52.5
＜10． 1	7U00	70.0	16.8	12．6	14．0	15．t	24．5	こ๔．0	4C．2	70.0
<40.1	70.0	70．0	21.0	15.4	18．2	23．1	30．8	42．4	7 C •C	7 C 0
270．1	70.0	70.0	70.0	34．3	34．3	36．4	46.9	70.0	70.0	70.0
100． 1	70.0	70．0	70．0	70.0	69．2	CSo 3	70．0	70.0	7 C． 0	70．0

pump as follows:

$$
\begin{equation*}
G_{p}=\frac{S_{e}}{S_{p}}=\frac{T_{p}}{T_{e}} \tag{4.6}
\end{equation*}
$$

The motor gear ratio, G_{m}, relates the speeds and torques of the motor and the vehicle load as follows:

$$
\begin{equation*}
G_{m}=\frac{S_{m}}{S_{\ell}}=\frac{T_{l}}{T_{m}} \tag{4.7}
\end{equation*}
$$

The dynamics of the pump gear and the motor gear are expressed by the moments of inertia $J_{p g}$ and $J_{m g}$, respectively. $J_{p g}$ can be included in the engine moment of inertia and $J_{m g}$ can be added to the vehicie inertial mass.

From section 5.2, for the example system

$$
\begin{aligned}
& G_{p}=3.7 \\
& G_{m}=1.5 .
\end{aligned}
$$

4.3 Pump and Motor

The models of the axial-piston variable-displacement pump and motor are cbtained based on the constant loss coefficient models developed by Wilson [18], with modifications for compressibility and moments of inertia of the rotors as follows:

Pump flow rate:

$$
\begin{equation*}
Q_{p}=D_{p} S_{p}-\frac{C_{s p} D_{p m}}{\mu} \rho-\frac{v}{2 B} \dot{p} \tag{4.3}
\end{equation*}
$$

Pump torque:

$$
\begin{equation*}
T_{p}=\left(D_{p}+C_{f p} D_{p m}\right) P+C_{d p} \mu D_{p m} S_{p}+J_{p} \dot{S}_{p} \tag{4.9}
\end{equation*}
$$

Motor flow rate:

$$
\begin{equation*}
Q_{m}=D_{m} S_{m}+\frac{C_{s m} D_{m m}}{\mu} p+\frac{v}{2 B} \dot{p} \tag{4.10}
\end{equation*}
$$

Motor torque:

$$
\begin{equation*}
T_{m}=\left(D_{m}-C_{f m} D_{m m}\right) P-C_{d m} \mu D_{m m} S_{m}-J_{m} \dot{S}_{m} \tag{4.11}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{p}, D_{m} & =\text { displacements for pump and motor, respectively; } \\
D_{p m}, D_{m m} & =\text { maximum displacements for pump and motor; } \\
C_{s p}, C_{s m} & =\text { slip coefficients for pump and motor; } \\
C_{d p}, C_{d m} & =\text { viscous drag coefficients for pump and motor; } \\
C_{f p}, C_{f m} & =\text { dry friction coefficients for pump and motor; } \\
v & =\text { total volume under compression; } \\
B & =\text { bulk modulus of hydraulic oil; and } \\
H & =\text { oil viscosity. }
\end{aligned}
$$

The pump displacement and the motor displacement are physically limited as:

$$
\begin{align*}
& -D_{p m} \leq D_{p} \leq D_{p m} \tag{4.12}\\
& -D_{m m} \leq D_{m} \leq D_{m m} \tag{4.13}
\end{align*}
$$

Assume there is no leakage from connecting pipes, equating Equations (4.8) and (4.10) yields

$$
\begin{equation*}
\dot{P}=\frac{B}{v}\left[D_{p} S_{p}-D_{m} S_{m}-\left(\frac{C_{s p} D_{p m}+C_{s m} D_{m m}}{\mu}\right) p\right] \tag{4.14}
\end{equation*}
$$

This equation is used to calculate the hydraulic pressure.
Similarly, as for gears, the dynamics of the pump and motor are expressed by the moments of inertia J_{p} and J_{m} and can be lumped with the inertia of the engine and the vehicle, respectively.

4.4 Load

The load model, representing a vehicle of an inertia mass M, takes into account the propulsive force F_{p}, the rolling resistance F_{r}, the air resistance F_{a}, and the grade resistance F_{g}. The vehicle velocity, V, as a result of the net accelerating force is

$$
\begin{align*}
M \dot{V} & =F_{p}-F_{r}-F_{a}-F_{g} \\
& =\frac{T_{l}}{R}-W a\left(1+\frac{V}{b}\right)-C_{a} \rho \frac{\left(V+V_{W}\right)^{2}}{2} A-W \sin \phi \tag{4.15}
\end{align*}
$$

where

```
        R = wheel radius;
        W = vehicle weight;
        a = rolling resistance coefficient;
        b = velocity correction coefficient;
ca}=\mathrm{ air resistance coefficient;
    p = air density;
V
    A = front area of vehicle; and
    \phi = slope of terrain.
```

The values of the constants are given in section 5.1 .
For tracked vehicles, the vehicle is driven by the sprockets attached to the output of the HST through final drive gearing. For this kind
of vehicle, the load model discussed above should be modified by taking into account the track-vehicle damping resistance [2].

4.5 Engine Throttle Control

The digital throttle control signal, $Y_{r d}$, is the output of the throttle Pl-controller responding to the speed error ΔS described as:

$$
\begin{equation*}
Y_{r d}=C_{1} \Delta S+\frac{1}{\tau_{1}} \int_{0}^{t} \Delta S d t+Y_{r d o} \tag{4.16}
\end{equation*}
$$

where the speed error:

$$
\begin{equation*}
\Delta S=S_{c d}-S_{l d} \tag{4.17}
\end{equation*}
$$

and C_{1} is the proportional gain and τ_{1} is the integral time constant.
The equivalent discrete $P I$ controller can be derived using rectangular numerical integration [19]. This gives:

$$
\begin{equation*}
\left(Y_{r d}\right)_{n}=C_{1}(\Delta S)_{n}+\frac{T_{s}}{\tau_{1}} \sum_{k=0}^{n}(\Delta S)_{k} \tag{4.18}
\end{equation*}
$$

where the summation is the difference equivalent of integration, and $\left(Y_{r d}\right)_{n}$ and $(\Delta S)_{n}$ aresampled values of the control signal and the error signal at time $t=n T_{s} . \quad T_{S}$ is the sampling time interval.

The integrator output is limited as follows:

$$
\begin{equation*}
\left.Y\right|_{\min } \leq \frac{T_{s}}{\tau_{1}} \sum_{k=0}^{n}(\Delta S)_{k} \leq\left. Y\right|_{\max } \tag{4.19}
\end{equation*}
$$

which prevents a saturation of the throttle servoactuator and subsequently dangerous time delays in the throttle operation. As an example, assume a long uphill drive, which is associated with a positive steady-state
speed error. With no limits, the controller integrator would continue to integrate the speed error saturating the servoactuator input. Further assume that for some reason the speed error would change sign (e.g., destroke the accelerator). It would take a certain time for the integrator to decrease the controller output signal Y_{r} under the throttle limit $Y_{\text {max }}$ to desaturate the servo and to slow the engine.

The upper and lower limits of the integrator output are determined in Appendix C. They are

$$
\begin{aligned}
& Y I_{\max }=66 . \\
& Y I_{\text {min }}=0.16
\end{aligned}
$$

The gain C_{1} and the integral time constant τ_{1} are adjusted based on some optimization technique, which is the topic of Chapter VIll.

4.6 Displacements Control

The digital displacement control signal, $D_{r d}$, is an output of the displacement $P I$ controller and depends on the torque error ΔT. Similarly, the discrete form of the displacement PI controller is described as follows:

$$
\begin{equation*}
\left(D_{r d}\right)_{n}=C_{2}(\Delta T)_{n}+\frac{T_{s}}{\tau_{2}} \sum_{k=0}^{n}(\Delta T)_{k} \tag{4.20}
\end{equation*}
$$

where the torque error

$$
\begin{equation*}
\Delta T=T_{o p}-T_{e d} \tag{4.21}
\end{equation*}
$$

The optimum engine loading torque, $T_{O p}$, is generated from the function generator ($F G$) as

$$
\begin{equation*}
T_{o p}=f\left(Y_{s}, T_{l d}\right) \tag{4.22}
\end{equation*}
$$

where Y_{s}, the delayed throttle position, is the output of the subroutine YSHIFT (refer to section 6.5.2).

The integrator output is limited as follows:

$$
\begin{equation*}
D I_{\min } \leq \frac{T_{s}}{T_{2}} \sum_{k=0}^{n}(\Delta T)_{k} \leq D I_{\max } \tag{4.23}
\end{equation*}
$$

which again prevents a saturation of the pump and the motor swashplate servoactuators for reasons similar to those discussed in the last section.

From Appendix C,

$$
0 I_{\max }=300
$$

$$
D I_{\min }=0 .
$$

4.7 Crossover Controller

A variable displacement pump driving a variable displacement motor can be used to give an extremely wide range speed ratio. Generally, it is desirable to interconnect the controls for the pump and the motor to give a preferred phasing or crossover point between speed control from the pump and that from the motor. The usual practice is to first stroke the pump while the motor is held at full displacement. When the pump has reached full displacement, additional speed can be obtained by stroking the motor. This phasing relationship has been proven to be the optimum phasing scheme. By using the computer program for optimum operation search listed in Appendix G.2, two runs were performed. One run was made with the phasing constraint discussed above; the other was made without it. A comparison of the results showed that nearly optimum operations can be achieved with or without the constraint. The maximum relative error is only 0.2 percent, which occurs at low vehicle speed $\left(S_{Q}=2\right.$ rad/
sec). In order to simplify the control algorithm, a crossover controller has been used in the control system (see section 3.2). From Figure 6, it can be seen that only one control signal D_{r} is needed to adjust the pump and motor swashplates through the use of the crossover controller.

Referring to Figure 9, the model for the crossover control circuitry can be simulated by using a limit function together with a dead space function as follows:

$$
\begin{equation*}
D_{r p}=\ell_{1} \cdot \operatorname{LIM|T}\left(D_{r}, D_{c}\right) \tag{4.24}
\end{equation*}
$$

where

$$
\begin{array}{ll}
D_{r p}=D_{r} & \text { for }-D_{c} \leq D_{r} \leq D_{c} \\
D_{r p}=D_{c} & \text { for } D_{r}>D_{c} \\
D_{r p}=-D_{c} & \text { for } D_{r}<-D_{c} \\
D_{r m}=o_{2} \cdot \operatorname{DEADSP}\left(D_{r}, D_{c}\right) & \tag{4.25}
\end{array}
$$

where

$$
\begin{array}{ll}
D_{r m}=0 & \text { for }-D_{c} \leq D_{r} \leq D_{C} \\
D_{r m}=D_{r}-D_{c} & \text { for } D_{r}>D_{c} \\
D_{r m}=D_{r}+D_{c} & \text { for } D_{r}<-D_{c}
\end{array}
$$

In Equations (4.24) and (4.25), ℓ_{1} and 2_{2} are slopes for LIMIT and DEADSP, respectively. D_{c} is the crossover point. Usually, 2_{1} and 2_{2} are set equal, and D_{C} is set to one-half of the full input $D_{\text {rmax }}$ (see Figure 9 a). But this strategy is only valid when the pump and motor are of equal size. For different sizes of pump and motor, ℓ_{1}, ℓ_{2}, and D_{c} can be determined based on the following criterion: the ratios of the displacement change to the current change (input to the crossover circuitry) for both pump

Figure 9. Comparison of Different Crossover Controller Settings
and motor are set equal for steady-state operation. The determining procedure is illustrated via the example system as follows: referring to Figure $9 b$, suppose that the full input current $D_{r_{\text {max }}}$ to the crossover controller is 0.2 amp. When the input current increases from 0 to 0.2 amp, the pump displacement increases from 0 to maximum and the motor displacement decreases from maximum to zero. So the total change of displacements is

$$
\begin{aligned}
\Delta D & =\Delta D_{p}+\Delta D_{m} \\
& =0.323+0.501 \\
& =0.824 \mathrm{in} .3 / \mathrm{rad} .
\end{aligned}
$$

Then, the crossover point D_{c} can be determined as

$$
\begin{aligned}
D_{C} & =\frac{\Delta D_{p}}{\Delta D}\left(D_{r \max }\right) \\
& =\frac{0.323}{0.324}(0.2) \\
& =0.078 \mathrm{amp}
\end{aligned}
$$

and slopes ℓ_{1} and ℓ_{2} are calculated from

$$
\begin{aligned}
& \imath_{1}=\frac{0.1}{D_{c}}=1.28 \\
& \ell_{2}=\frac{0.1}{D_{r \max }-D_{c}}=0.82
\end{aligned}
$$

where 0.1 amp in both equations is the maximum output current from the crossover controller. This value was chosen from the specifications for electrohydraulic servoactuators [21].

From the determined values of D_{c}, ℓ_{1}, and ℓ_{2}, the ratios of displacement change to input current change for the pump and the motor are the same; both are 4.12.

Computer runs on the example system have shown that the drive system with the crossover controller (Figure 9b) gives better fuel economy and dynamic response than that with the crossover controller (figure 9a).

4.8 Servoactuators

The servoactuators for throttle, pump displacement, and motor displacement operations are modeled as first order systems with time constants based on manufacturers' data.

For the engine throttle operation, an electric $D C$ servoactuator was selected. The throttle position is

$$
\begin{equation*}
y=\frac{1}{\tau_{y}} \int_{0}^{t}\left(y_{r}-y\right) d t+y_{0} \tag{4.26}
\end{equation*}
$$

where $\tau^{y} y$ is the throttle servo time constant. According to Reference [20], ${ }^{\tau} y$ was chosen as

$$
\tau_{y}=8 \times 10^{-3} \mathrm{sec}
$$

For the operation of the swashplates of the pump and the motor, two identical electrohydraulic servo units [21] are applied. The pump displacement is given by

$$
\begin{equation*}
D_{p}=\frac{1}{\tau_{d}} \int_{0}^{t}\left(D_{r p}-D_{p}\right) d t+D_{p o} \tag{4.27}
\end{equation*}
$$

and the motor displacement is given by

$$
\begin{equation*}
\tilde{D}_{m}=\frac{1}{\tau_{d}} \int_{0}^{t}\left(D_{r m}-\tilde{D}_{m}\right) d t+D_{p o} \tag{4.23}
\end{equation*}
$$

where τ_{d} is the displacement servo time constant. According to Reference [21], τ_{d} is

$$
\tau_{d}=79.6 \times 10^{-3} \mathrm{sec}
$$

\tilde{D}_{m} in Equation (4.28) is a "dummy" motor displacement. Since the motor is held at full displacement $D_{m m}$ at the beginning, and then destroked by the control of the crossover controller. Therefore, the actual motor displacement is

$$
\begin{equation*}
D_{m}=D_{m m}-\tilde{D}_{m} \tag{4.29}
\end{equation*}
$$

4.9 Fuel Consumption

The instantaneous fuel consumption rate of the drive can be calculated from Equation (2.2) as follows:

$$
\begin{equation*}
\dot{f}=\frac{s_{e}{ }^{\top} e}{\eta_{e}} \tag{4.30}
\end{equation*}
$$

where S_{e} is the engine speed, T_{e} is the engine loading torque, and n_{e} is the engine efficiency. For the engine used in the example system, the functional dependence of η_{e} on S_{e} and T_{e} is given in Tablellla. The engine efficiency for every engine speed and torque combination can be obtained from Table llla by interpolation.

From Equation (4.30), the total fuel consumption for the drive to operate continuously for time t is given by

$$
\begin{equation*}
f=\int_{0}^{t} \dot{f} d t+f_{0} \tag{4.31}
\end{equation*}
$$

The distance travelled for time t is

$$
\begin{equation*}
L=\int_{0}^{t} V d t+L_{0} \tag{4.32}
\end{equation*}
$$

where V is the vehicle velocity. The fuel consumption per unit of distance is:

$$
\begin{equation*}
\tilde{f}=f / L \tag{4.33}
\end{equation*}
$$

CHAPTER V

SYSTEM SIZING

The next step in the design is the sizing of system components for specified steady-state performance.

5.1 Engine

The engine must supply the steady-state road power demand. Hence, the engine sizing is based on the maximum vehicle velocity $V_{\text {max }}$. Equation (4.15) may be rearranged to give an expression for load power as follows:

$$
\begin{equation*}
P_{Z}=V\left[M \dot{V}+W a\left(1+\frac{V}{b}\right)+C_{a} 0 \frac{\left(V+V_{W}\right)^{2}}{2} A+W \sin \phi\right] \tag{5.1}
\end{equation*}
$$

where the variables and constants were defined previously.

Taking into account the overall transmission efficiency, η_{t}, the preliminary maximum erigine power based on the road power required for steady-state operation at maximum velocity on a flat road without wind is:

$$
\begin{equation*}
P_{\text {emax }}=\left(V_{\max } / \eta_{t}\right)\left[w_{a}\left(1+\frac{V_{\max }}{b}\right)+c_{a} \rho A \frac{V_{\text {max }}^{2}}{2}\right] \tag{5.2}
\end{equation*}
$$

The result establishes a nominal size for the engine. For the example system, the vehicle specification was assumed to be:

$$
\begin{aligned}
& W=1700 \mathrm{lbf} \\
& M=1750 \mathrm{lbm}
\end{aligned}
$$

$$
\begin{aligned}
A & =18 \mathrm{ft}^{2}=2592 \mathrm{in.}^{2} \\
R & =12 \mathrm{in.} \\
C_{a} & =0.35 \\
V_{\max } & =45 \mathrm{mph}=792 \mathrm{in} / \mathrm{sec} \text { (on level road) }
\end{aligned}
$$

and from Reference [22]:

$$
\begin{aligned}
& a=0.01 \\
& b=1760 \mathrm{in} . / \mathrm{sec} \\
& \rho=0.07435 \mathrm{ibm} / \mathrm{ft}^{3}=1.12 \times 10^{-7} \mathrm{lbf}-\mathrm{sec}^{2} / \mathrm{in} .{ }^{4}
\end{aligned}
$$

Using Equation (5.2), the preliminary maximum engine power is:

$$
P_{\mathrm{emax}}=9.7 \mathrm{hp} \quad\left(\text { for } n_{t}=0.7\right)
$$

The most suitable engine for this power range appears to be the military A042 four-cycle gasoline IC engine. This engine was selected for availability of its performance data [16] given in Table \|II. The technical data for this engine are:

Number of cylinders: 2
Bore and stroke: $\quad 3.00 \mathrm{in} . \times 3.00 \mathrm{in}$.
Displacement: $\quad 42.4 \mathrm{cu}$ in.
Maximum net hp: $\quad 12.5 \mathrm{hp}$ at 3000 rpm
Maximum engine speed: $315 \mathrm{rad} / \mathrm{sec}$
Maximum engine torque: $300 \mathrm{in} .-1 \mathrm{bf}$ at 2300 rpm .

5.2 System Components

The axial-piston pump and motor, and the gear ratios are sized based on the requirement that the units must transmit the maximum engine power. The sizing procedures are described below:

1. Define two operational conditions.
a. The maximum vehicle speed on maximum grade road (operational condition 1);
b. The maximum vehicle speed on level road (operational condition 2).

Based on the maximum values of vehicle speed and road grade, the load speed and torque at both operational conditions can be calculated from

$$
\begin{equation*}
S_{\ell}=V / R \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}=R\left[W a\left(1+\frac{V}{b}\right)+\frac{1}{2} c_{a} \rho A V^{2}+W \sin \phi\right] \tag{5.4}
\end{equation*}
$$

2. Specify the speed range of the engine selected in section 5.1, and note its full throttle torque, $T_{\text {full }}$, at maximum engine speed $\mathrm{S}_{\text {emax }}$.
3. Choose the appropriate coefficients for the transmission and a value for hydraulic oil viscosity.
4. Choose a maximum working pressure.
5. Calculate the maximum motor displacement based on the maximum load torque and load speed at operational condition 1 . Assume that at maximum load torque, $T_{\text {lmax }}$, the motor displacement is at a maximum. Use the value of pressure from step 4. The equation is:

$$
\begin{equation*}
D_{m m}=\frac{T_{m}}{\left(1-C_{f m}\right) P_{\max }-C_{d m} \mu S_{m}} \tag{5.5}
\end{equation*}
$$

Since the load speed is small, it is more economical to use a smaller motor with a mechanical gear reducer. Assume the gear ratio is G_{m}. Then, in Equation (5.5) T_{m} and S_{m} are obtained from

$$
\begin{equation*}
T_{m}=\frac{T_{\ell \max }}{G_{m}} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{m}=G_{m} S_{2} \tag{5.7}
\end{equation*}
$$

6. Choose a maximum pump displacement based on the maximum load speed and load torque at operational condition 2. For a variable-pump and variable-motor transmission, the pump displacement should aiways be at a maximum when the motor displacement is being decreased. Choose a minimum motor displacement for the maximum speed operation. Then calculate an approximate pump displacement from the ideal equation

$$
\begin{equation*}
D_{p}=D_{m} S_{m} / S_{p} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{p}=S_{\text {emax }} / G_{p} \tag{5.9}
\end{equation*}
$$

Calculate the pressure from the equation

$$
\begin{equation*}
P=\frac{T_{m}+C_{d m} \mu D_{m m} S_{m}}{D_{m}-C_{f m} D_{m m}} \tag{5.10}
\end{equation*}
$$

Then calculate the total leakage flow, $Q_{s t}$, from the equation

$$
\begin{equation*}
Q_{s t}=\frac{C_{s p} D_{p m}+C_{s m} D_{m m}}{\mu} p \tag{5.11}
\end{equation*}
$$

Use approximate pump displacement for $D_{p m}$ in this calculation.
Finally, the maximum pump displacement can be calculated from the equation ${ }^{1}$

$$
\begin{equation*}
D_{p m}=\left(D_{m} S_{m}+Q_{s t}\right) / S_{p} \tag{5.12}
\end{equation*}
$$

7. The maximum torque requirement of the pump must be calculated. This must be checked at both high speed, low torque, and low speed, high torque operational conditions. At the high speed end, pressure is obtained from the point of maximum speed as in step 6: then, using maximum S_{p} obtained from Equation (5.9), pump torque is calculated by

$$
\begin{equation*}
T_{p}=\left(1+C_{f p}\right) D_{p m} P+C_{d p} \mu D_{p m} S_{p} \tag{5.13}
\end{equation*}
$$

The pump displacement at low speed, high torque operation must be calculated. Maximum allowable pressure selected in step 4 is used. Total leakage flow is calculated from Equation (5.11). Then

$$
\begin{equation*}
D_{p}=\left(D_{m m} S_{m}+Q_{s t}\right) / S_{p} \tag{5.14}
\end{equation*}
$$

Using this value for D_{p}, T_{p} can be calculated from

$$
\begin{equation*}
T_{p}=\left(D_{p}+C_{f p} D_{p m}\right) p+C_{d p} \mu D_{p m} S_{p} \tag{5.15}
\end{equation*}
$$

again using the maximum S_{p}. The higher of the two torques calculated in this step should be used to compare with ($G_{p} \cdot T_{\text {full }}$) to see if

$$
\begin{equation*}
T_{p} \leq G_{p} T_{\text {full }} \quad \text { (if so, acceptable) } \tag{5.16}
\end{equation*}
$$

3. From Equations (5.7) and (5.11), the maximum flow rate can be calculated based on the operational condition 2.

$$
\begin{equation*}
Q=D_{m} S_{m}+Q_{s t} \tag{5.17}
\end{equation*}
$$

using minimum motor displacement as in step 6 for D_{m}. With this maximum value for flow rate, proper pipe size can be determined.

The sizing procedures illustrated above have been programmed for solution on an 1 BM 370 computer (see Appendix G.1). Table IV shows a part of the computer printouts obtained based on the following input data:

TABLE IV
ACCEPTABLE SIZES OF SYSTEM COMPONENTS

$6 P$	GM	OPM	DMM	OMAX	HPE
3.4	1.0	0.246	C. 710	22.8	10.0
3.4	100	0.270	0.710	25.0	S. 9
3.4	100	0.294	0.710	27.2	10.0
3.8	1.0	0.275	0.710	22.9	10.0
$3 \cdot 3$	1.0	0.302	0.710	25.1	S. 9
3.8	1.0	0.329	0.710	27.3	10.0
4.2	1.0	0.305	0.710	22.s	9.9
4.2	100	0.334	0.710	2¢•1	9.9
4.2	1.0	0.3 ¢́ 4	0.710	27.3	10.0
3.4	1.2	0.268	0.552	24.9	S. 9
3.4	1.2	0.292	0.552	27.1	9.3
3.4	1.2	0.317	0.552	25.4	10.0
3.8	1.2	0.300	0.592	24.9	S. 9
3. 8	1.2	0.327	0.592	27.2	9.3
3.8	1.2	$0 \cdot 355$	C. 592	29.4	10.0
4.2	1.2	0.333	0.592	25.0	9.3
4.2	1.2	c. 362	0. 552	27.2	9.8
4.2	1.2	0.393	0.552	25.	10.0
3.4	1.4	0.257	0.503	24.3	10.0
3.4	1.4	U. 292	$0.5 c 8$	27.0	9.9
3.4	104	0.316	0.508	29.3	S. 8
3.4	1.4	0.341	0.508	31.6	10.0
3.8	1.4	0.259	$0.5 c 8$	24.E	10.0
3.3	1.4	0.326	0.508	27.1	5.3
3. ε	1.4	0.354	c. Sce	29.4	9.3
3.8	1.4	0.381	0.508	こ1.6	10.0
4. 2	1.4	0.331	0.508	24.9	10.0
4.2	1.4	0.361	C.5C8	27.1	S. 8
4.2	1.4	0.392	0.508	29.4	9.8
4.2	1.4	0.422	0.508	31.7	10.0
3.4	1.0	0.291	c.44S	27.0	10.0
3.4	100	0.316	0.445	29.3	9.9
3.4	1.0	c. 340	0.445	31.6	9.9
3.8	1.0	0.326	0.445	27.0	10.0
3.8	$1 \cdot 0$	0.353	0.445	29.3	9.9
j.8	1.0	0.381	0.445	31.6	9.9
4.2	1.0	0.301	0.445	27.1	10.0
4.2	1.0	0.391	0.445	29.4	9.9
4.2	1.0	0.422	0.445	31.7	5.9
ذ. 4	1.8	0.340	0.356	31.5	10.0
3.4	1.5	U. 365	c. 3 ¢t	33.5	10.0
3.8	1.0	0.381	0.356	¢1.E	10.0
3.8	$1 \cdot 0$	0.405	0.396	33.9	10.0
4.2	1.0	0.391	0.356	29.4	10.0
4.2	1.0	U.422	0.356	31.7	S. 9
4. 2	100	c. 453	0.396	34.0	10.0

Vehicle specifications and constants: as defined in section 5.l.
Operational condition 1 :
Road grade $G(\%)=12 \quad\left(\right.$ or $\left.\phi=6.84^{\circ}\right)$
Maximum vehicle speed $\quad V_{\text {max }}=11 \mathrm{mph}$
Operational condition 2:
Road grade G (\%) = 0
Maximum vehicle speed $\quad V_{\text {max }}=45 \mathrm{mph}$
Engine maximum speed and corresponding full throttle torque:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{emax}}=315 \mathrm{rad} / \mathrm{sec} \\
& T_{\mathrm{full}}=210 \mathrm{in} .-1 \mathrm{bf}
\end{aligned}
$$

Transmission coefficients; chosen as reasonable values at about the limits of the state-of-the-art:

$$
\begin{aligned}
& c_{s p}=c_{s m}=4.0 \times 10^{-9} \\
& c_{d p}=c_{d m}=2.5 \times 10^{5} \\
& c_{f p}=c_{f m}=0.05
\end{aligned}
$$

$0 i l$ viscosity:

$$
\mu=5.75 \times 10^{-6} \mathrm{lbf}-\mathrm{sec} / \mathrm{in}^{2}
$$

Maximum working pressure:

$$
P_{\max }=4000 \mathrm{psi} .
$$

From Table IV, the proper set can be selected according to the transmission efficiency and commercial availability. The set marked * was chosen as the most suitable. This choice yields the lowest required engine power (i.e., the transmission efficiency is high) and pump and motor displacements which are matched to those of the available commercial units--the axial-piston variable-displacement Sundstrand [23] pump (Series 20) and motor (Series 21). The maximum displacements for the Sunstrand units are:

$$
\begin{aligned}
& D_{p m}=2.03 \mathrm{in.}^{3} / \mathrm{rev}=0.323 \mathrm{in} .^{3} / \mathrm{rad} \\
& D_{\mathrm{mm}}=3.15 \mathrm{in} .3 / \mathrm{rev}=0.501 \mathrm{in} .3 / \mathrm{rad}
\end{aligned}
$$

These units also allow for attachment of electrohydraulic servos for displacement control.

The gear ratios G_{p} and G_{m} were finally modified by using the new displacements $D_{p m}$ and $D_{m m}$. The refined values are:

$$
\begin{aligned}
& G_{p}=3.7 \\
& G_{m}=1.5
\end{aligned}
$$

The choice of the accompanying boost pump is best based on suggestions given by the manufacturers of the main pump.
'For steady state, Equation (4.14) yields

$$
D_{p} S_{p}=D_{m} S_{m}+\frac{C_{s p} D_{p m}+C_{s m} D_{m m}}{\mu} p
$$

define

$$
Q_{s t}=\frac{C_{s p} D_{p m}+C_{s m} D_{m m}}{\mu}
$$

then

$$
D_{p}=\left(D_{m} S_{m}+Q_{s t}\right) / s_{p}
$$

6.1 System Description

The functions represented within the dashed lines in Figure 6 are to be performed by the $\mu \mathrm{P}$. The $\mu \mathrm{P}$-based control system is built around the central processing unit (CPU) (see Figure 10). This is supported by a random-access memory (RAM), a programmable read-only memory (PROM), a MICROM, a time-base, and an analog input-output board.

Figure 10. μP-Based Control System Configuration

The CP! executes all computation and control functions. It determines how the engine and transmission combination will be set up to meet the demanded vehicle speed at the operating point. The PROM contains the control program and the optimal operating points for engine operation. A RAM is needed for temporary storage of data used in computations. The MICROM is a microinstruction ROM Chip, which contains microcode to implement the fixed and floating point arithmetic instructions [24]. The time-base is used to insure a constant sampling rate. The analog inputoutput board consists of a data acquisition unit (see section 6.2) and a data distribution unit (see section 6.3). Both units execute the CPU's manipulations of the engine and transmission.

There are six input signals to the control system. They are:

1. $S_{c}:$ command vehicle speed signal, which is controlled by a conventional accelerator pedal.
2. $\quad S_{2}$: load speed
3. Y : engine throttle position
4. S_{e} : engine speed
5. T_{ℓ} : load torque
6. T_{e} : engine loading torque

All signals are sensed and digitized through the data acquisition unit for use by the CPU. Computation results are converted back to ana\log signals via the data distribution unit, and then communicated to the servoactuators.

The control system works as follows (forward motion mode):

1. The direction selector is moved to the "forward" position (see Figure 7).
2. The command vehicle speed (accelerator pedal position) is set at a given value.
3. Under the control of the CPU, the data acquisition unit converts all sensor inputs into digital numbers and transfers them into the $\mu \mathrm{P}$.
4. The $\mu \mathrm{P}$ determines the state of the system from these inputs and computes optimum actuator values for all controlled functions.
5. Output all digital values and convert them into suitable physical control commands for the servoactuators.
6. Repeat steps 3 through 5 at a fixed time interval (of about 4 ms for the example system, see sections 6.6 and 9.2) to ensure good vehicle stability and driveability under all conditions.

6.2 Data Acquisition

The data acquisition unit is a subsystem of the controller mechanism. It has an 8-channel multiplexer followed by a sample-hold and a 12-bit A/D converter (see Figure 11).

The actions of the data acquisition unit are under the control of the CPU. This unit provides the initial signal processing of the various engine and load parameters. The CPU requests the processing of a particular physical parameter by sending an appropriate input address. The multiplexer selects a channel on the command of the address decoding logic. For each channel, the sample-hold acquires the input signal and switches into the hold mode. After allowing for the hold-mode settling time, a start-convert pulse initiates the A / D converter and the $C P U$ enters the wait state. When the conversion of this channel is finished, the CPU leaves the wait state and loads the converted signal. Then the multi-

Figure 11. Data Acquisition Unit
plexer switches to the next channel and the sampling and conversion process is repeated.

The signal levels appearing at the multiplexer input must be compatible with A / D conversion requirements. This compatibility is achieved through signal conditioning with appropriate interface devices i.e. transducers and high impedance amplifiers.

In developing the control signals, the settling times of various components must be considered. This information is necessary for determining the sampling rate in section 6.6. The times to be considered are the multiplexer settling time, the sample and hold settling and acquisition times, and the A / D conversion time. The total delay between the decoding of the input address and the completion of conversion would be the sum of these component settling times. Using the data for ADVII-A [25], the time required to process the analog data to digital form would be $9 \mu s$ for each input. For the proposed control system, six analog signals are provided to the acquisition unit, so the total multiplexed A / D conversion time is approximately $54 \mu s$.

6.3 Data Distribution

The data distribution unit (Figure 12) uses a 12-bit D/A convertor and a storage register together with two sample-holds to distibute data to two analog channels Y_{r} and D_{r} for controlling the engine throttle position and the pump/motor displacements. As digital data are transferred into the D / A converter and its output changes, the appropriate sample-hold samples the new output voltage and then, once the converter's output has settled, switches into the hold mode. Each sample-hold circuit is updated in sequence as new data arrive, and holds its voltage until

Figure 12. Data Distribution Unit
the next turn. From Reference [25], the rise and settling times for the AAVII-A D/A converter are $4 \mu \mathrm{~S}$.

Since the μS has only limited drive capabilities, each sample-hold must be followed by a current amplifier.

6.4 Selection of Microprocessor

In selecting the most suitable μP, various μP capabilities must be considered: (1) instruction execution speed, (2) suitable instruction set, (3) convenient 1/0 operation scheme, e.g., DMA, and (4) provision of floating-point arithmetic versus fixed-point arithmetic. Of the attributes listed above, the provision for floating-point arithmetic is considered to be among the most crucial. It is easy to see that, for the float-ing-point arithmetic, scaling would be much more flexible than that for the fixed-point arithmetic.

For the engine-HST control proposed in this study, some simple uPs may be applied. The LSI-11 $\mu \mathrm{P}$ is used because: (1) it has available floating-point arithmetic as a firmware option; (2) it can utilize the extensive software developed for the PDP-11 series of mini-computers; and (3) it has the ability for expansion to handle additional control functions effectively.
6.4.1 Features

The important features of the LSI-11 are listed below:

1. 16-bit word (two 8-bit bytes). Direct addressing of 32 K 16-bit words.
2. 400 plus instruction set. The instruction set of more than 400 instruction permits the user to take advantage of standard PDP-11 soft-
ware. Inclusion of the optional floating instruction set (FIS).
3. The processor module is built around a set of four N-channel MOS chips, which include control and data elements as well as two microcoded ready-only memories (MICROMS).
4. Word or byte processing: very efficient handling of 8-bit characters.
5. Asynchronous operation: system components run at their highest possible speed.
6. Stack processing: hardware sequential memory manipulation makes it easy to handle structure data, subroutines, and interrupts.
7. Direct memory access (DMA).
8. Eight general-purpose registers.
9. Priority-structured $1 / 0$ system.
10. Vectored interrupt: fast interrupt response without device polling.
11. Power-fail/Auto restart: Whenever $D C$ power-sequencing signals indicate an impending $A C$ power loss, a microcoded power-fail sequence is initiated. When power is restored, the processor can automatically return to the run state.

6.4.2 System Organization

A complete and powerful $\mu \mathrm{C}$ system can be configured by utilizing the $\mu \mathrm{P}$, appropriate memory, $1 / 0$ devices, and interconnection hardware. The LSI-1l bus is the interface which enables a complete system to be configured. All LSI-ll modules connected to this common bus structure receive the same interface signals. The LSI-11 bus control and data lines are bidirectional, open-controller lines which are asserted when low. All trans-
actions on the bus are asynchronous. The bus is composed of 16 multiplexed data/address lines, 6 data transfer control lines, 6 system control lines, and 5 interrupt and direct memory access (DMA) control lines. The μP connected to the LSI-11 bus controls the time allocation of the LSI-11 bus for peripherals and performs arithmetic and logic operations and instruction decoding. The $\mu \mathrm{P}$ is implemented with four LSI 40-pin chips. They are the control chip, the data chip, and two microm chips. The functions of each chip are briefly explained below:

1. Control chip: The chip provides the micro-instruction address sequence for the microm and control for the data access part. It contains the features of programmable translation array, location counter, return register, data transfer control logic, and interrupt logic.
2. Data chip: This chip incorporates the paths, registers, and logic to execute microinstructions. It offers the features of register file, arithmetic and logic unit (ALU), condition flags logic, and data/ address port.
3. Microm chips: There are two chips which provide storage of the microcode for emulation of teh basic PDP-11/35, 40 instruction set, resident octal debugging technique (ODT) firmware, and resident ASCII/console routine.
4. Optional third microm chip: An optional third microm can be added to the LSI-11 processor, via a socket available on the $\mu \mathrm{P}$ module, to extend the instruction set to include fixed and floating point arithmetic instructions.
6.4.3 Instruction Timing

Table V shows the execution times of representative LSi instruc-

tions, including the floating-point instructions. Special attention should be given to the execution times of the following five instructions: (1) MOV, (2) FADD, (3) FSUB, (4) FMUL, and (5) FDIV. The instruction MOV will be necessary in obtaining data from and storing data in memory, while the other four instructions will constitute all the computations in float-ing-point arithmetic performed in the μ P.

6.5 Software Development

6.5.1 Formating and Scaling

The sensor input must be formated and scaled before the control algorithm can begin its calculation (Figure 13). First, the analog voltage signal for a particular input is converted to a 12 -bit fixed-point binary number, which is then converted to a 32 -bit floating-point representation. Next, the control algorithm must be calculated with the input scaled to the proper units. A scaling factor must be used to convert units of voltage to the proper units of input before actual calculation of the control algorithm. The output from the control algorithm is converted from its units to volts, converted to fixed-point notation, then converted to an analog voltage, and sent to actuators.

In order to save execution time, the scaling factors for the input and output should be incorporated in some physical constants (loke gains, time constants, etc.) if possible. For example, the scaling factor of the input signal S_{e} can be incorporated in the engine transport delay constant K_{3} (see description of subroutine YSHIFT in section 6.5.2).

Figure 13. Formating and Scaling

6.5.2 Program Structure

The calculations for the control algorithms are performed by a set of software programs that execute every sampling interval. The simplified flowchart of the main program of the control system is shown in Figure 14. The operating sequence is as follows:

1. When the power is applied, the system is initialized; registers are cleared or set up to be used as counters and flags; storage areas in RAM are cleared or set to initial values. For the example system, the variables YI, YRD, DI, and DRD are set to the following values (see Appendix C), which would be used by subroutine PIC.

$$
\begin{aligned}
Y I & =0.16 \\
\text { YRD } & =0.16 \\
D I & =0 \\
\text { DRD } & =0 .
\end{aligned}
$$

2. The sampling interval is based on the time-base input to insure that sampling is done at regular intervals.
3. Six analog signals $\left(S_{c}, S_{\ell}, Y, S_{e}, T_{\ell}, T_{e}\right)$ are input via the data acquisition unit, and then stored in proper memory locations $\left(S_{c d}, S_{l d}\right.$,

Figure 14. Simplified Flow Chart of the Main Program for the Digital Control Algorithm

Figure 14. (Continued)

Figure 14. (Continued)
$\left.Y_{d}, S_{e d}, T_{l d}, T_{e d}\right)$. The detailed software control process is shown in Figure 15. The processor selects the multiplexer channel address, triggers the A / D conversion for that channel and transfers the digitized data from the A / D converter into memory after the conversion process is complete.
4. When all signals have been converted, the control algorithm is executed. Then the two computed control signals, Y_{r} and D_{r}, are transmitted to the plant via the data distribution unit.
5. The program pointer returns to the starting point after completing one cycle and does this continuously according to the time-base input.
6. The system will be reset through an interrupt service routine when the decelerator (brake) is depressed to its full stroke in case of emergency.

Three subroutines are called during control algorithm execution; they are PIC, YSHIFT, and FG. The PIC routine is used to calculate the Pl controller's output based on the discrete algorithm, Equation (4.18) or (4.20). The flowchart shown in Figure 16 shows that the routine checks the integrator output constraints first (see Equation (4.19) or (4.23)), and then calculates the controller output. There are seven arguments in this routine, i.e.,

Figure 15. Flow Chart for Data Acquisition

Figure 16. Flow Chart for Subroutine PIC

For each PI controller, the initial values of integrator output and controller output are initialized in the MAIN program; the values for the four parameters are stored in memory into an array in the sequence of YMAX, YMIN, TCONST, GAIN. Before each calling, the MAIN program moves the values of the three variables into memory locations $X, X I, Y$, and places the parameter array starting address for $Y M A X$ into the register $R 1$; then the data can access the subroutine through direct and indirect (indexed) addressing. The register Rl functions as an address indicator. The addresses YMIN, TCONST, and GAIN can be indicated by means of the increment instruction.

The subroutine YSHIFT was designed to simulate the engine transport delay. It was employed in the feed-forward path to reduce the error signal between engine throttle input changes and output torque changes. The program logic of this routine is as follows: An array YS of length NYS is used to store the delayed throttle position values. At each sampling time, the $\mu \mathrm{P}$ determines where the delayed value is based on the engine transport delay, then it removes that value from the array and uses that value instead of the undelayed value.

The array length NYS can be determined from the following equation:

$$
\begin{equation*}
N Y S \geq \frac{\text { Max. transport delay }}{\text { Sampling interval }}+1.5 \tag{6.1}
\end{equation*}
$$

From Equation (4.2), it can be seen that the engine maximum transport delay occurs at idling condition. For the example system, $K_{3}=10.9$ and $S_{i d l e}=70 \mathrm{rad} / \mathrm{sec}($ see Appendix C). So, the maximum transport delay is $0.156 \mathrm{sec}\left(=\mathrm{K}_{3} / \mathrm{S}_{\mathrm{idle}}\right)$. The selected sampling interval is 4 ms (see section 6.6). Then, the array length is calculated as:

$$
\text { NYS } \geq \frac{0.156}{0.004}+1.5=40.5 ; \text { select } 40
$$

If the maximum trnasport delay in Equation (6.1) is replaced by the instant transport delay, the location of the value being removed is indicated as follows:

$$
\begin{align*}
\text { Location } & =\frac{\text { Transport delay }}{\text { Sampling interval }}+1.5 \\
& =\left(\frac{K_{3}}{T_{s}}\right) \frac{1}{S_{e d}}+1.5 ; \text { (select the integer part) } \tag{6.2}
\end{align*}
$$

Figure 17 shows the flowchart of YSHIFT. It should be noted that in order to speed up the computation, the scaling factor for engine speed should be incorporated into $\left(\mathrm{K}_{3} / \mathrm{T}_{5}\right)$ before storing the constant. So, the value of C used in the flowchart was precalculated as:

$$
\begin{aligned}
C & =\left(\frac{K_{3}}{T_{s}}\right) /\left(\text { Scaling factor of } s_{e}\right) \\
& =\frac{10.9}{0.004} /\left(\frac{315}{2047}\right) \\
& =17708.2
\end{aligned}
$$

The undelayed value (i.e., the current throttle position value Y_{d}) is directly stored in the memory location $Y S(1)$. After the delayed value has been removed to Y_{s}, all values in the array are renewed by serial shift.

The subroutine $F G$ calculates the optimum engine loading torque $T_{o p}$ corresponding to the delayed throttle position Y_{S}. This routine was developed based on the table look-up and linear interpolation technique given in Appendix B. In order to simplify the control algorithm, the two-dimensional function generator (optimum engine operation schedule determined in section 2.2) was replaced by seven one-dimensional function

Figure 17. Flow Chart for Subroutine YSHIFT
generators (arrays OPTE1 through OPTE7) as shown in Table 11. Before calling the subroutine, the $\mu \mathrm{P}$ determines the proper function generator based on the load torque $T_{2 d}$ (see MAIN program flowchart in Figure 14), and then places the array starting address of the selected function generator into register R4. Figure 18 shows that the μ P first calculates OUT according to Equation (B.1) or (B.2), and then separates the integer part and the fractional part of OUT by shifting operation. Two constants are read from memory: $Y O$ and RYDEL. $Y O$ is the minimum entry (i.e., the idling throttle position value); RYDEL is the inverse of the interval of table entries. N is the length of the function generator array.

In order to compensate the digitized error, the value of $Y O$ and the values in the function generators (i.e., in Table ll) were digitized based on the 12-bit A / D conversion level before being stored.

Another software requirement is the inclusion of error signal checking (see MAIN program flowchart in Figure 14).

6.6 Sampling Rate

The sampling rate affects simulation accuracy and system stability. If the sampling rate is too slow, the system is essentially operating open-loop between sampling times. In addition to the stability requirements, the digitization approach must meet the signal reconstruction requirements imposed by Shannon's sampling theorem [26]. This theorem basically states that in order to reconstruct a continuous signal, the sampling rate must be at least twice as fast as the highest frequency contained in the signal. In practice, sampling rates ten times the theoretical limit are common [27]. The higher limit on sampling rate is determined by the required computation time for the control algorithm.

Figure 18. Flow Chart for Subroutine f

So, the sampling rate must be selected appropriately based on the required computational time and the sampling requirement.

A computational summary of the control algorithm operations is shown in Table VI. In this table, the number of necessary arithmetic operations for each routine was counted approximately based on the flowcharts (Figures 14 through 18); the computational time was determined on the basis of the execution times for fixed-point and floating-point arithmetic operations on the LSI-ll μP (given in Table V). The time for other instructions execution was estimated based on the execution times for instructions CLR, MOV, CMP, INC, JSR, RTS, and Branches etc. Since multiplication and division take varying amounts of time for execution, the longest execution time is taken to make sure that the necessary computation is finished. The time required to convert the analog data to digital form is about 54 μs, and for data distribution the time is $8 \mu s$. Therefore, the total estimated computational time for executing the entire control algorithm is 2.82 ms .

From Chapter VII, the highest frequency of the open-loop engine-HST system model in the example system is about 20 Hz . In the computer simulation of the entire system, a sampling rate of 250 Hz (12.5 times the highest system frequency) was used. With this sampling rate, there is no problem in completing ail the required control operations and no information is lost during signal reconstruction.

The effects of the sampling rate on the system performance and fuel economy will be discussed in section 9.2 .

6.7 Memory Requirements

The memory requirements for the control algorithms of the engine-HST

TABLE VI
TOTAL COMPUTATIONAL SUMMARY (ESTIMATED)

	ADD	FADD	FSUB	FMUL	FDIV	Computation Time ($\mu \mathrm{S}$)	Other Instruction Execution Time ($\mu \mathrm{S}$)
Data Process							62.00
MAIN			2			84.80	184.00
PIC_{1}		2		2		326.40	54.95
PIC_{2}		2		2		326.40	54.95
YSHIFT	1	1			1	278.30	919.10
FG	3	1	2	2		381.70	144.90
Totals	4	6	4	6	1	1397.60	1419.90

Total estimated computational time required $=2.82 \mathrm{~ms}$
control system are shown in Table VIl. The memory requirement for the arithmetic instructions was estimated based on the flowcharts (Figures 14 through 18).

TABLE VII
MEMORY REQUIREMENTS FOR CONTROL ALGORITHMS

Memory Requirements	Memory Storage
Arithmetic Instructions	128
Table	294
Constants	24
Total (Estimated)	446 words

6.8 Environmental Effects

Many environmental factors must be considered in the design of a $\mu \mathrm{P}$ based controller. The primary considerations are noise, extremes of temperature, shock and vibration, and moisture. There are several sources of electrical noise in the vehicle system. The ignition system with its spark generation is a primary source. Static electricity is a problem in moving vehicles. Also, $C B$ radios may contribute a possible source of noise. Actually the consideration of these factors is very complex and could be the subject of additional research. Usually, analog filters are required to filter the noise. A screen box can be used to package the entire μC and to get rid of some electrical noise.

The ranges of ambient temperature could vary depending on the environment. Components should be selected to function over the required range; those that cannot operate over the required temperature range would require protection. In some cases, the $\mu \mathrm{C}$ components and memory would require supplementary heating elements prior to initial operation.

Mobile equipment often will be subjected to shock and vibration caused by the terrain. In addition, the engine and other components are often sources of vibration on the vehicle. In order to protect against shock and moisture, the μC should be packaged in an environmentally isolated container. This container should be mounted so that damping effects would minimize shock and vibration hazards. The entire package should be located in the driver's cab, where there is maximum protection from these hazards.

SAMPLING REQUIREMENT

As stated previously, in addition to the stability requirement, a digitization approach must meet the signal reconstruction requirements imposed by Shannon's sampling theorem. In this chapter, the highest frequency of the open-loop engine-HST system model is calculated to check if the sampling requirement is met.

Before calculating the highest system frequency, the mathematical model of the engine-HST system must be linearized and formed into a transfer function (see Appendix D).

There are four inputs in the linearized system; each is treated independently of the others. From Appendix D, the output to each input is described as:

$$
\begin{align*}
& \frac{\Delta V}{\Delta Y_{r}}=\frac{N A(1)}{D A(6) s^{5}+D A(5) s^{4}+D A(4) s^{3}+D A(3) s^{2}+D A(s) s+D A(1)} \tag{7.1}\\
& \frac{\Delta V}{\Delta D D_{r p}}=\frac{N B(2) s+N B(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \tag{7.2}\\
& \frac{\Delta V}{\Delta D_{r m}}=\frac{N C(3) s^{2}+N C(2) s+N C(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \tag{7.3}\\
& \frac{\Delta V}{\Delta \phi}=\frac{N D(3) s^{2}+N D(2) s+N D(1)}{D D(4) s^{3}+D D(3) s^{2}+D D(2) s+D D(1)} \tag{7.4}
\end{align*}
$$

where

```
    \DeltaV = change of vehicle velocity;
    \DeltaY = change of engine throttle control signal;
\DeltaD
\DeltaD
    \Delta\phi = change of the slope of terrain.
```

The coefficients in the numerators and the denominators were defined in Table XIII.

The highest system frequency can be found as follows: Determine the maximum root of each denominator of Equations (7.1), (7.2), and (7.4) independently for a particular operating point. The maximum value of the three maximum roots is the maximum frequency of the open-loop engine-HST system for this particular operating point. Repeat this process for the other operating points, and determine the highest frequency of the engineHST system model.

A computer program was developed for the maximum natural frequency determination (see Appendix G.3). In this program, a subroutine POLRT (from the IBM scientific subroutine package) is called to calculate the real and complex roots of the denominator polynomials. Table VIII shows the maximum frequencies of the example engine-HST system model at various operating points. From this table, it can be seen that the highest frequency of the example system is about 20 Hz ." Based on Shannon's theorem, if the sampling rate is taken at least two times this value, that is, 40 Hz , there is no loss of information. Because the highest frequency for a closed loop system is greater than that for an open loop system, and

[^0]
TABLE VIII

HIGHEST FREQUENCY FOR ENGINE－HST SYSTEM MODEL

ALPHAI	S上i	OP I	DMI	PI	$V 1$	FNA）
0.0	70.1	0.048	0.501	ç0．1	12．C	19.5
0.0	1U0．4	$0 \cdot 323$	0.401	4 i i． 1	$1 E O$ C	19．¢
0.0	142．b	0.323	0.263	1045.9	360 － 0	19．5
U．0	10y．0	0． 523	0．12E	く25E．2	S76．c	19．5
0.0	200．0	0.323	$0 \cdot 225$	2 ¢ ¢ 3 ・ヒ	780.0	19.5
1.14	71．2	O．CES	0.501	ESE． 8	12.0	19.5
1.14	1uy04	0.323	0.501	9くべ比	144.0	19．5
1.14	150．7	0.323	0.326	1641.6	300.0	19．5
$1 \cdot 14$	19002	$0 \cdot 259$	0.238	2726．9	480.0	19.5
1.14	27－4	$0 \cdot 323$	0.288	2544．7	C24．0	15.5
2． 28	71．4	0． 081	0.501	1427.4	12．0	19.5
2.28	106.4	0.251	$0 \cdot 501$	1477．	120.0	19.5
2.28	150.7	0.323	0.401	1571.6	＜40．0	19.5
2． $2 E$	19400	0．259	0.313	2742.9	360.0	19.5
2．28	258.2	$0 . \pm 23$	0．ミミ1	こも1ごG	$4 E C .0$	19.5
3．42	72.4	0.097	0.501	1555.4	12.0	19．5
3.42	115.7	0．283	0.501	2045．5	120.0	19．9
3.42	170.0	$0 \cdot 323$	0.451	2374．6	240．0	19．9
3.42	2300\％	0.323	0.420	2 64 ¢ 1	$\geq \in 0.0$	19.9
4.50	$7<.7$	$0 \cdot 112$	0.501	ことで，	12．0	19.5
4.56	129.1	0.258	0.501	こと1ぐs	$1=0.0$	19.5
4.50	10100	0.307	$0 \cdot 501$	2674．2	216.0	19．5
4.50	$2+1.9$	0.323	0.501	2751．3	こ12．0	19．9
5.70	$37 \cdot 2$	$0 \cdot C 57$	0.501	3129．3	12.0	19.5
5． 70	132.8	0． 218	0.501	$31 \in \epsilon \cdot 6$	96．0	19．9
5.70	20500	0.250	0.501	ことこご宁	152．0	$15 \cdot 5$
S． 70	241．0	0.233	0.501	こ277．3	2f4．0	19.5
－ 64	101．d	0.105	$0.5 C 1$	こ ES4．7	12．C	19.5
$0 \cdot 84$	122．0	0.178	0.501	3714．5	co．0	19.5
0.64	14009	0.210	0.501	375E．7	144.0	19.5
0.84	239．9	0.242	0.501	コectol	216.0	19．5

there is neither an infinite string of pulses nor an ideal reconstruction filter, sampling rates greater than this theoretical limit are typically used in practice. In the example system, a sampling rate of 250 Hz (about 12.5 times the highest system frequency) was used, which is fast enough to meet the signal reconstruction requirement.

CONTROLLER PARAMETERS ADJUSTMENT

The drive dynamic performance is affected by the adjustment of the Pl controller parameters. In addition, from Reference [28] it can be seen that the drive economy also depends on the controller adjustment. Hence, it is possible to apply an optimization technique to find optimum values for the controller gains C_{1}, C_{2} and integral time constants τ_{1}, τ_{2}.

8.1 Optimum Synthesis

The optimum design of the vehicle drive system requires the identification of the values of the controller parameters $C_{1}^{*}, C_{2}^{*}, \tau_{1}^{*}$, and τ which the fuel consumption is minimum. The optimum gains and time constants thus found should also provide satisfactory drive dynamic performance. The fuel consumption per unit of distance traveled, \tilde{f}, was defined in section 4.9. The dynamic performance of the drive system is measured by the performance index, which is defined as the integral of time multiplied by the absolute value of the vehicle velocity error over a given time interval, T_{m} i.e.,

$$
\text { ITAE }=\int_{0}^{t} m|\Delta V| d t
$$

The optimum procedure is outlined below. First, the controller parameters are adjusted to minimize the performance index to some satisfactory value λ. Then, the parameters are adjusted to minimize the fuel
consumption with the requirement on drive dynamic performance as an implicit constraint. The criterion for the optimum synthesis of the vehicle drive system can be expressed mathematically as follows:

Objective function: minimize [f]

$$
\begin{gathered}
C_{1}^{*}, C_{2}^{*} \\
\tau_{1}^{*}, \tau_{2}^{*}
\end{gathered}
$$

Subject to:

and

ITAE $\leq \lambda$ (implicit constraint)

In this study, a direct search optimization known as the simplex method $[29,30]$ was used. This method is simple and does not require the function derivatives. The optimization procedure is outlined in Appendix E. The coded program is given in Appendix G.4. In the program, the penalty function technique [31] was used to handle the implicit constraint.

8.2 Optimum Parameters Search

Using the optimization algorithm, the optimum parameters $C_{1}^{*}, C_{2}^{*}, \tau_{1}^{*}$, and τ_{2}^{*} can be found for a given driving schedule. A full-stroke accelerator step input $\left(V_{c}=45 \mathrm{mph}\right)$ applied on the example system was taken to demonstrate the search for the optimum system adjustment. The computer output is contained in Appendix G.4. The selected values of the
parameters C_{1}, C_{2}, τ_{1}, and τ_{2}, and the fuel consumption \tilde{f}, performance index ITAE, etc. for each optimization run also are presented in Appendix G.4. The values for C_{1}, C_{2}, τ_{1}, and τ_{2} are automatically selected by the optimization algorithm. After 18 iteration runs, the improved adjustment of the controller settings improve the vehicle fuel economy by approximately 2.2 percent (see Table $\mid X$). This is achieved by slowing down the throttle controller (gain C_{1} is decreased and time constant τ_{1} is increased) and speeding up the displacement controller (gain C_{2} is increased and time constant τ_{2} is decreased). In other words, the drive is trying to smooth the engine throttle changes and to adhere more closely to the prescribed engine loading torque versus throttle position schedule.

TABLE IX
EFFECTS OF CONTROLLER PARAMETERS ON FUEL ECONOMY AND SYSTEM DYNAMIC PERFORMANCE

	Preliminary Adjustment	Improved Adjustment*
C_{1}	0.33	0.28
C_{2}	18.20	20.27
τ_{1}	1.00	1.69
τ_{2}	5.00	4.23
\tilde{f}	4.75	4.64
ITAE	2.88×10^{4}	3.20×10^{4}
	*For 18 iterations.	

The improvement in fuel consumption is not too impressive, because the iteration was limited to 18 steps. The reason for this limitation is that for a given driving schedule, the complete set of equations representing the drive dynamics has to be solved to calculate the fuel consumption \tilde{f} and the system performance index ITAE. It is necessary to solve the entire system of dynamic equations repeatedly for every set of C_{1}, C_{2}, τ_{1} and τ_{2}. Therefore, the optimization process is computer time consuming. One way to overcome this drawback is to employ the hybrid computer technique [32]. In this approach, the vehicle system is modeled on a high computing speed analog computer, whereas the control algorithm calculation, parameter optimization, implicit constraint checking, and the analog computer control are performed in the digital section. With this technique, more improvement in fuel consumption may be obtained by increasing the iteration steps. It would be worthwhile to investigate the feasibility of this idea in further detail. However, the results should be considered with caution. Some dynamic performance will be sacrificed as a result of this optimization process. Thus, there is a compromise between fuel saving and system dynamic performance.

Since the hybrid computing technique results in a substantial reduction in simulation time, the optimization process can be used to search the optimum parameter settings corresponding to different amplitude step input or different driving schedules. Then variable gains and time constants μ P-based controller design is feasible (which is more difficult to implement with analog components).

This chapter includes system performance evaluation and discussion. The first part consists of determining the velocity and acceleration response for different road conditions from the example vehicle response to the accelerator pedal step input. The second part discusses the effects of driver operation, engine transport delay, crossover controller settings, and sampling rate on fuel economy, and system dynamic performance.

9.1 Example System Performance

The vehicle response (e.g., velocity versus time) to an accelerator pedal step input was calculated using the simulation program given in Appendix G.5. The observation period was 150 sec , in which the system comes sufficiently close to the steady state.
9.1.1 Level Road, No Wind Conditions

Figures 19a,b show the vehicle response to a full-stroke accelerator step input $\left(V_{c}=45 \mathrm{mph}\right)$ on a level road without wind with 4 ms sampling interval. All important system variables are plotted. The following performance values were obtained from these results:

The velocity after 150 seconds is:

$$
V_{150}=790.3 \mathrm{in} . / \mathrm{sec}(44.9 \mathrm{mph})
$$

Figure 19. System Response to an Accelerator Full Stroke Step Input ($\mathrm{V}_{\mathrm{c}}=45 \mathrm{mph}$) on a Level Road With 4 ms Sampling Interval

The average acceleration from 79.2 to $712.8 \mathrm{in} . / \mathrm{sec}$ in 50.1 sec (rise time) is:

$$
\dot{V}=12.65 \mathrm{in} . / \mathrm{sec}^{2}(0.72 \mathrm{mph} / \mathrm{sec})
$$

9.1.2 Uphill Road, No Wind Conditions

The vehicle response to a full-stroke accelerator pedal step input $\left(V_{C}=45 \mathrm{mph}\right)$, when the vehicle was initially at rest on a 12 percent $\left(6.84^{\circ}\right)$ uphill road and no wind conditions, is shown in Figures $20 \mathrm{a}, \mathrm{b}$. The vehicle velocity after 150 seconds is:

$$
v_{150}=219.12 \mathrm{in} . / \mathrm{sec}(12.45 \mathrm{mph})
$$

The response to a partial stroke accelerator pedal step input $\left(V_{c}=\right.$ $15 \mathrm{mph})$ for a 12 percent $\left(6.84^{\circ}\right)$ uphill road is shown in Figures $21 \mathrm{a}, \mathrm{b}$. The vehicle velocity after 150 seconds is:

$$
v_{150}=211.2 \mathrm{in} . / \mathrm{sec}(12 \mathrm{mph})
$$

The differences between Figures 20 and 21 are discussed in the following section.

9.2 Discussion

This section presents the results of computer simulation investigations of the effects of driver operation, engine transport delay, crossover control circuit setting, controller parameter adjustment, and sampling time interval on the fuel consumption and system dynamic response.
9.2.1 Effects of Driver Operation

> The computer output for the vehicle responses to the full-stroke $\left(V_{c}=45 \mathrm{mph}\right)$ and the partial stroke $\left(V_{c}=15 \mathrm{mph}\right)$ accelerator pedal step

Figure 20. System Response to an Accelerator Full Stroke Step Input $\left(V_{c}=45 \mathrm{mph}\right)$ on an Uphill Road $(G(\%)=12)$ With 4 ms Sampling interval

Figure 20. (Continued)

Figure 21. System Response to an Accelerator Partial Stroke Step Input ($V_{C}=15 \mathrm{mph}$) on an Uphill Road $(G(\%)=12)$ With 4 ms Sampling Interval

Figure 21. (Continued)
input on a 12 percent uphill road without wind are compared in Table X. It reveals that the case with $V_{c}=45 \mathrm{mph}$ results in a faster dynamic response and a poorer fuel economy than that in the case with $V_{c}=15 \mathrm{mph}$. Therefore, in order to achieve the lowest fuel consumption, the engine throttle changes should be slow. Of course, the dynamic response will suffer in this case.

TABLE X

EFFECTS OF STEP INPUT AMPLITUDE ON FUEL ECONOMY AND SYSTEM DYNAMIC PERFORMANCE

V_{c}	\tilde{f}	V_{150}	Rise Time*
15 mph	13.13	12.00 mph	105.3 sec
45 mph	14.77	12.45 mph	17.5 sec

*The rise times were calculated based on the steady-state maximum vehicle velocity of 12.45 mph .

For the purpose of getting rid of the unfavorable effect of sudden engine throttle changes on the fuel economy, for example, a function LIMIT can be incorporated in the control algorithm to change the accelerator pedal step input into a limited ramp input. Figures $22 a, b$ show the resulting vehicle response to the full-stroke accelerator pedal step input $\left(V_{c}=45 \mathrm{mph}\right.$) on a level road. The step input was replaced by a ramp input (saturated at 50 sec) according to the following relationships:

$$
V_{c, \text { ramp }}=\frac{V_{c}}{50} \cdot \operatorname{LIM|T}(T, 50)
$$

SYMBOL	VARIABLE	SCALE FACTOR	UNIT
1	V	7.92 E 2	In/sec
2	Se	3.15 E 2	rad/sec
3	Te	3.00 E 2	in-lbf
4	HPE	1.43E1	hp
5	HPL	1.43 E 1	hp
6	f	5.00 E 5	16 m

(a)

Figure 22. System Response to an Accelerator Limited Ramp Input ($V_{C}=45 \mathrm{mph}$ Ramped in 50 sec) on a Level Road With 4 ms Sampling Interval

Figure 22. (Continued)

$$
=0.9 \operatorname{LIMIT}(T, 50)
$$

where the function LIMIT is the same as that defined in section 4.7. T is the time, and 50 sec was selected as the limit of the ramp input. In this example, the fuel economy is improved about 10 percent compared with the case shown in Figure 19.

9.2.2 Effects of Engine Transport

Delay and Function of YSHIFT

Due to engine transport delay, the first reaction of the control system to an input change is to move the transmission ratio in the wrong direction, which could lead to an engine stall problem. This problem can be best explained with reference to the control system diagram in Figure 6. Suppose there is no function YSHIFT in the feed forward path. When the throttle position is changed, the function generator (FG) will generate an optimum engine loading torque, $T_{\text {op }}$, corresponding to the current throttle position value. This $T_{o p}$ is compared with the actual engine loading torque, T_{e}; then a positive torque error ($\Delta T>0$) is generated, which tends to stroke the pump displacement and increase the engine loading torque. However, due to engine transport delay, no evidence of the change of the throttle position is observed in the engine output torque. Therefore, engine stall may occur.

To prevent this potential stall problem, a software function YSHIFT was employed in the control system. The function YSHIFT acts like a delay element. It is used to delay the sensed throttle position signal (and the optimum engine loading torque) by a period approximately equal to the engine transport delay. Then the error signal resulted from the
engine transport delay may be eliminated and system stability will be improved.

9.2.3 Effects of Crossover Control

Circuit Settings

In order to simplify the control algorithm, a crossover controller was used to phase the pump and motor displacements. The conventional crossover controller settings used for identical pump and motor sizes may not be suitable when the pump and motor are of different sizes. In the example system, the size of the pump is smaller than that of the motor. If D_{C} is set to $1 / 2 D_{r \max }$ (say 0.1 amp; see Figure 9), and the input signal D_{r} is increased from 0 to 0.1 amp, the pump displacement will increase from 0 to maximum ($0.323 \mathrm{in} .^{3} / \mathrm{rad}$). As D_{r} is further increased from 0.1 to 0.2 amp , then the motor displacement will decrease from maximum ($0.501 \mathrm{in}^{3} / \mathrm{rad}$) to 0 . Since the ratios (pump and motor) of the displacement changes to the input current changes are different, it can be seen that for small input signal range, the pump displacement increases very slowly. The result may be an unacceptable following of the optimum engine loading torque versus throttle position schedule.

The responses of two systems were compared by using computer simulation. System No. 1 contains a crossover controller with $D_{c}=1 / 2 D_{\text {rmax }}$ and $\ell_{1} / \ell_{2}=1$. System No. 2 contains a crossover control circuit with $D_{c}=D_{p m} D_{\text {rmax }} /\left(D_{p m}+D_{m m}\right)$ and $\partial_{1} / l_{2}=D_{\text {rmax }} / D_{c}-1$. The results (see Table X 1) reveal that system No. 2 has better fuel economy and dynamic performance than system No. 1. Thus, it can be concluded that the crossover controller settings determined by the scheme described in section 4.7 appear the most suitable.

TABLE XI

EFFECTS ON CROSSOVER CONTROLLER SETTINGS ON FUEL ECONOMY AND SYSTEM DYNAMIC PERFORMANCE

Sys tem	\tilde{f}	ITAE
No. 1	4.66	3.20×10^{4}
No. 2	4.64	3.19×10^{4}

9.2.4 Effects of Controller Parameters Adjustment

From section 8.2, it was found that the drive system with improved controller adjustment achieves better fuel economy than the system before optimization. But the system dynamic performance will suffer.

9.2.5 Effects of Sampling Rate

Figures 23 and 24 show the vehicle responses to a full-stroke accelerator step input with sampling time intervals of 6 ms and 8 ms , respectively. The $6 \mathrm{~ms}(166 \mathrm{~Hz})$ sampling interval gave an asymptotic steady response, but the $8 \mathrm{~ms}(125 \mathrm{~Hz})$ sampling interval caused the system to approach a limit cycle. When the sampling interval is increased, the torque error signal ΔT as well as other system variables become oscillatory. The reason for the osciallation is that the amplitude of the "step" control signal D_{r} is increased as the sampling interval is increased. For an 8 ms sampling interval, the amplitude of D_{r} increases so far that the pump/motor displacements are overstroked; this in turn overloads the engine and results in a sign change in torque error signal ($\Delta T<0$). The

SYMBOL	VARIABLE	SCALE FACTOR	UNIT
1	V	$7.92 E 2$	$\mathrm{in} / \mathrm{sec}$
2	Se	$3.15 E 2$	$\mathrm{rad} / \mathrm{sec}$
3	Te	$3.00 E 2$	$\mathrm{in}-\mathrm{Ibf}$
4	HPE	$1.43 E 1$	hp
5	HPL	$1.43 E 1$	hp
6	f	$5.00 E 5$	ibm

TIME
(a)

Figure 23. System Response to an Accelerator Full Stroke Step Input ($V_{c}=45 \mathrm{mph}$) on a Level Road With 6 ms Sampling Interval

Figure 23. (Continued)

Figure 24. System Response to an Accelerator Full Stroke Step Input ($V_{C}=45 \mathrm{mph}$) on a Level Road with 8 ms Sampling Interval

SYMBOL	variable	SGALE factor	UNIT
1	\boldsymbol{Y}	7.00 E 1	deg
2	Dp	3.23 E-1	cuin/rad
3	Om	$5.01 \mathrm{E}-1$	cuin/rad
4	P	5.00 E 3	psi
5	ΔS	$6.60 E^{1}$	rad/sac
6	ΔT	$3.00 \mathrm{E}^{2}$	in-lbi

(b)

Figure 24. (Continued)
negative ΔT then overreduces the amplitude of D_{r} and causes reverse effects on pump/motor displacements, engine loading torque, and torque error itself. The interaction proceeds continuously.

The variation of the fuel consumption and the dynamic performance index with the sampling interval for the example vehicle model is shown in Table XIl. Although the effects are not very large, the larger sampling interval (e.g., 8 ms) does result in the lowest fuel economy and forces the system to oscillate. So, in order to obtain good drive economy and system stability, the sampling rate should be the maximum possible based on the $\mu \mathrm{P}$ selected and the time required to execute the control algorithm.

TABLE XII

EFFECTS OF SAMPLING TIME INTERVAL ON FUEL ECONOMY AND SYSTEM DYNAMIC PERFORMANCE*
Ts
4 ms
6 ms
$8 \mathrm{~ms}^{\dagger}$

```
    It should be noted that in the discrete system computer simulation,
the integration step size should be chosen to be a submultiple of the sampling interval to insure that an integration is performed when the sampling switch closes. The results listed in Table XII were obtained based on a step size of 2 ms .
```


10.1 Conclusions

The purpose of this thesis was to develop a design procedure for microprocessor-based control of an engine-hydrostatic transmission system and to examine the feasibility of the concept on the basis of the system efficiency and dynamic performance through use of a practical example.

The design portion of the thesis entails the development of power and control circuits, sizing of the system components for a given specification, derivation of the digital control algorithms, $\mu \mathrm{P}$ selection, and sampling interval estimation. The preliminary system design is followed by optimum adjustment of the system controller parameters to produce maximum fuel economy. The design process was aided by the IBM 370 digital computer. Five computer programs were developed. They are:

Program 1: for system sizing

Program 2: for optimum operation search
Program 3: for the highest system frequency calculation
Program 4: for controller parameters adjustment
Program 5: for simulation.
The preliminary design procedure can be summarized as follows:

1. Calculate engine size from Equation (5.2) based on given system specification.
2. Provide engine data and vehicle specification as input to
computer program 1. Select a combination of pump, motor, and gear ratios from the computer output based on the commercial availability of components and transmission efficiency.
3. Determine the optimum system operating conditions by using program 2, and then develop the function generator which schedules the optimum operation.
4. Select $\mu \mathrm{P}$, interface elements, and electrohydraulic hardware (see sections 6.1 through 6.4).
5. Code the μC program based on the control algorithm structure given in section 6.5 .2 and calculate the total computational time.
6. Calculate the highest frequency of the engine-HST system model using program 3. Check the sampling requirement.
7. Adjust controller parameters using program 4.
8. Evaluate the system static and dynamic performance using program 5.

An example system was used to demonstrate the design procedure. The performance of the example system was determined for a step input in the accelerator position. The example system is very stable. The effects of driver operation, engine transport delay, crossover control circuit settings, controller parameter adjustment, and sampling time interval on the fuel consumption and system dynamic performance were studied. The following conclusions can be made:

1. Drive economy can be improved by proper engine loading. Economy also can be achieved by smooth operation of the throttle, but at the expense of dynamic performance.
2. Engine transport delay imposes an unfavorable effect on the drive system. But this problem can be effectively overcome by using the stored function YSHIFT.
3. For phasing a nonidentical pump and motor, the crossover control circuit settings can be adjusted such that the rate of pump displacement change equals the rate of motor displacement change. This strategy will lead to a better fuel economy and system performance than that with the conventional crossover controller settings.
4. The drive economy can be improved by optimizing the controller parameters. However, some dynamic performance will be sacrificed.
5. The drive economy and system dynamic performance are related to the sampling time interval. From the example system, it can be seen that there were no significant effects on the fuel economy and dynamic performance when the sampling interval was increased from 4 ms to 6 ms ; however, as the sampling interval was increased to 8 ms , the fuel economy became worse and the system response became unstable. Therefore, the sampling interval should be chosen as small as possible.
6. In addition to the fuel savings, the use of a $\mu \mathrm{f}$-based controller for an engine-HST system offers the unique advantage of small size, light weight, low power consumption, high reliability, and programming flexibility. Flexibility and computation capability are the major advantages gained by the $\mu \mathrm{P}$-based controller. The $\mu \mathrm{C}$ program can be extended to perform other tasks, such as display functions, safety warning functions, and some functions recommended in section 10.2 , etc. Meanwhile, there is redundant time to perform those functions (e.g., for the example system, a sampling interval of 6 ms is still acceptable because it gave an
asymptotic steady response). All of these benefits would seem to make the development of this control system viable.

10.2 Recommendations for Future Study

The following areas are recommended for future study:

1. The hardware of the crossover control circuit could be replaced by software, and thereby make more effective use of the capability of the μP.
2. The possibility of replacing the throttle PI controller with a sophisticated function generator should be investigated. The function generator would generate an optimum throttle position signal as a function of the speed error signal.
3. In cases where maximum acceleration is the important performance criterion, then fuel economy would play a secondary role. A second function generator could be developed based on the maximum acceleration performance criterion. The driver could select or change the control mode from one to another depending on which performance criterion is valued.
4. The promising results of this study suggest implementing the proposed control system in hardware.
[1] Wilson, W. E., and C. D. Lemme. 'Hydrostatic Transmissions, Part 5--Control." Hydraulics and Pneumatics (September, 1970), 113-118.
[2] Reid, K. N., E. M. Gostling, and G. Rajagopal. An In-Depth Technical Review of G. E. Hydromechanical Transmission State-of-theArt. Technical report under Contract No. DAAG 39-75-C-0028, to the General Electric Company (January, 1976).
[3] Svoboda, J. V. "Hydraulic Hybrid Vehicular Drive Employing Regenerative Braking." (Ph.D. thesis, Concordia University, Montreal, 1976.)
[4] Cunningham, S. U., D. Jackson, and D. C. McGillivray. "Hydrostatic Transmissions and City Vehicles." Automatic and Semi-Automatic Gear Boxes for Heavy Commercial Vehicles. London: The Institution of Mechanical Engineers, 1978, 97-108.
[5] Reid, K. N., and R. L. Woods. "Fluidic Control of a Hydrostatic Transmission in a Vehicle Fropulsion System." Journal of Dynamic Systems, Measurement, and Control, Transactions, ASME, Series G (June, 1973), 114-124.
[6] Bowns, D. E., D. McCandlish, and K. A. Edge. "Some Considerations in Optimization of Efficiency of a Hydrostatic Transmission and Engine Combination." First European Fluid Power Conference, Paper No. 37. National Enginearing Laboratory, East Kilbride, Glasgow, 1973.
[7] Wilson, W. E. "Control Systems for Hydrostatic Transmissions." Machine Design (March 28, 1968), 141-144.
[8] Howard, F. W., S. J. Clark, and R. O. Turnquist. "Fluidic Control of Hydrostatic Tractor Transmissions." ASME Paper No. 69-136. Presented at the 1969 Annual Meeting of the American Society of Mechanical Engineers, 1969.
[9] Houk, R. D. "Mechanical Controls for Vehicle With Hydrostatic Transmissions." SAE Paper No. 690571, 1969.
[10] Cornell, C. R. "Electronic Control Systems for Mobile Hydraulics." SAE Paper No. 770751, 1977.
[11] Gupta, R. L. "Electrohydraulic Control Applied to Hydrostatic Transmissions." Proceedings of the 34 th National Conference on Fluid Power, vol. 32 (1978), 207-212.
[12] Binder, K., U. Kienche, and M. Zechnall. "Car Control by a Central Electronic System." SAE Paper No. 770001, 1977.
[13] Toelle, A. D. "Microprocessor Control of the Automobile Engine." SAE Paper No. 770008, 1977.
[14] Morley, J. "Evolving Microprocessors Which Better Meet the Needs of Automotive Electronics." Proceedings of the Institute of Electrical and Electronics Engineers, Vol. 66, No. 2 (February, 1978), 142-150.
[15] Hosey, R. J., and J. D. Powell. "Closed Loop, Knock Adaptive Spark Timing Control Based on Cylinder Pressure." Transactions, Journal of Dynamic Systems, Measurement and Control, ASME, Series G, Vol. 101 (March, 1979), 64-70.
[16] Reid, K. N., R. L. Woods, and R. Gunda. Application of Fluidics in the Control of Military Vehicle Propulsion Systems. Technical Report under Contract No. DAAE 07-67-C-5639. U.S. Army Tank Automotive Command, 1971.
[17] Monk, J., and J. Comfort. 'Mathematical Model of an Internal Combustion Engine and Dynamometer Test Rig." Measurement and Control, Vol. 3 (June, 1970), 93-100.
[18] Wilson, W. E. "Performance Criteria for Positive Displacement Pumps and Motors." Transactions, American Society of Mechanical Engineers, Vol. 71 (February, 1949), 115-120.
[19] Bibbero, R. J. Microprocessors in Instruments and Control. New York: John Wiley and Sons, 1977.
[20] DC Motors, Speed Controls, Servo Systems. Hopkins, Minn.: ElectroCraft Corp., 1973.
[21] Moog, Inc. "Electric Controller for Sundstrand Hydrostatic Drives." Moog Catalog No. 625-1278, 1978.
[22] Taborek, J. J. "Mechanics of Vehicles-5, Motion-Resisting Forces." Machine Design (July 25, 1957), 98-102.
[23] Sundstrand Corp. "Sundstrand 20-28 Series." Sundstrand HydroTransmission Bulletin 9678. 1974.
[24] Microcomputers and Memories. Maynard, Mass.: Digital Equipment Corp., 1981.
[25] Microcomputer Interfaces Handbook. Maynard, Mass.: Digital Equipment Corp., 1980.
[26] Kuo, B. C. Discrete Data Control System. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1970.
[27] Everleigh, V. E. Introduction to Control Systems Design. New York: McGraw-Hill, 1972.
[28] Svoboda, J. V., S. Sankar, and W. Blach. "Optimization of a Novel Hydrostatic Drive Performance Using Hybrid Computing Technique." Proceedings of the 9 th Annual Conference on Modeling and Simulation, Vol. 9, Pts. 1-4 (April, 1978), 1543-1547.
[29] Nelder, J. A., and R. Mead. "A Simplex Method for Function Minimization." Journal of Computers, Vol. 7 (1965), 308-313.
[30] Kuester, J. L., and J. H. Mize. Optimization Techniques With FORTRAN. New York: McGraw-Hill, 1973.
[31] Fox, R. L. Optimization Methods for Engineering Design. New York: Addison-Wesley, 1971.
[32] Bekey, G. A., and W. J. Karplus. Hybrid Computation. New York: John Wiley and Sons, 1968.

APPENDIX A

STATIC SYSTEM MODEL

The static or steady-state model used for searching the optimal operating conditions can be derived from the dynamic system model (Chapter IV) as follows.

Forcing the derivative terms in Equations (4.6), (4.7), (4.9) through (4.11), (4.14), and (4.15) yields

$$
\begin{align*}
& G_{p}=\frac{S_{e}}{S_{p}}=\frac{T_{p}}{T_{e}} \tag{A.1}\\
& G_{m}=\frac{S_{m}}{S_{l}}=\frac{T_{\ell}}{T_{m}} \tag{A.2}\\
& T_{p}-\left(n_{r}+C_{f p} D_{p m}\right) P+C_{d p} \mu D_{p m} S_{p} \tag{A.3}\\
& T_{m}=\left(D_{r m}-C_{f m} D_{m m}\right) P-C_{d m} \mu D_{m m} S_{m} \tag{A.4}\\
& P=\mu \frac{D_{p} S_{p}-D_{m} S_{m}}{C_{p m}+C_{s m} D_{m m}} \tag{A.5}\\
& Q=D_{m} S_{m}+\frac{C_{s m} D_{m m}}{\mu}{ }_{P} \tag{A.6}\\
& S_{\ell}=\frac{V}{R} \tag{A.7}\\
& T_{l}=R\left[W a\left(1+\frac{V}{b}\right)+C_{a} \rho A \frac{V^{2}}{2}+W s i n \phi\right] \tag{A.8}
\end{align*}
$$

All variables and constants were defined previously.
Rearrange Equation (A.5) to get

$$
\begin{equation*}
P=\mu \frac{d_{p} S_{p}-d_{m} D_{r} S_{m}}{C_{1}} \tag{A.9}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{p}=\frac{D_{p}}{D_{p m}} \tag{A.10}\\
& d_{m}=\frac{D_{m}}{D_{m m}} \tag{A.11}\\
& D_{r}=\frac{D_{m m}}{D_{p m}} \tag{A.12}\\
& C_{1}=C_{s p}+C_{s m} D_{r} \tag{A.13}
\end{align*}
$$

Substituting Equation (A.9) into Equations (A.3) and (A.4), respectively, yields

$$
\begin{equation*}
T_{p}=\frac{\mu D_{p m}}{C_{1}}\left[\left(d_{p c} d_{p}+c_{1} c_{d p}\right) s_{p}-d_{p c} d_{m} D_{r} s_{m}\right] \tag{A.14}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{m}=\frac{\mu D_{m m}}{c_{1}}\left[d_{m c} d_{p} S_{p}-\left(d_{m c} d_{m} D_{r}+c_{1} c_{d m}\right) s_{m}\right] \tag{A.15}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{p c}=d_{p}+c_{f p} \tag{A.16}\\
& d_{m c}=d_{m}-c_{f m} \tag{A.17}
\end{align*}
$$

Rearrange Equation (A.15) to get

$$
\begin{equation*}
S_{p}=\frac{1}{d_{m c} d_{p}}\left[\frac{c_{1}}{\mu D_{m m}} T_{m}+\left(d_{m c} d_{m} D_{r}+c_{1} c_{d m}\right) S_{m}\right] \tag{A.18}
\end{equation*}
$$

With the defined variables, Equation (A.6) becomes

$$
\begin{equation*}
Q=D_{m m}\left(d_{m} s_{m}+\frac{c_{s m}}{\mu} P\right) \tag{A.19}
\end{equation*}
$$

Equations (A.1), (A.2), (A.7) through (A.14), (A.16) through (A.19) together with Equation (2.5) and engine performance data may be used to find the optimum operations for all interesting load conditions (given vehicle velocity V and road slope ϕ). The details of the searching program are given in Appendix G.2.

APPENDIX B

TABLE LOOK-UP AND BI-LINEAR INTERPOLATION

A table of numbers can be built from the optimum operating conditions (obtained in section 2.2) and directly store the table in a memory unit. Then the μP can determine the desired data by using the following table look-up and bi-linear interpolation technique which eliminates the need for table searching.

Figure 25. Typical FG Table

Suppose the value of A as a function of x and y is to be determined corresponding to the two values given x_{p} and y_{p} as shown in Figure 25 . First, the μP computes the address of the table entries A_{1}, A_{2}, A_{3} and A_{4}.

If the table entries are spaced at equal intervals $(\Delta x, \Delta y)$, then

$$
\begin{align*}
& \frac{x_{p}-x_{0}}{\Delta x}=1_{1} \text { (integer part) }+f_{1} \text { (fractional part) } \tag{B.1}\\
& \frac{y_{p}-y_{o}}{\Delta y}=1_{2} \text { (integer part) }+f_{2} \text { (fractional part) } \tag{B.2}
\end{align*}
$$

where I_{1} is the address for x_{i} and I_{2} is the address for y_{i}. The fractional parts f_{1} and f_{2} will be used for linear interpolation between table entries x_{i} and x_{i+1}, and between table entries y_{i} and y_{i+1}, respectively, as

$$
\begin{align*}
& a_{1}=A_{1}+f_{1} \cdot\left(A_{2}-A_{1}\right) \tag{B.3}\\
& a_{2}=A_{3}+f_{1} \cdot\left(A_{4}-A_{3}\right) \tag{B.4}
\end{align*}
$$

then

$$
\begin{equation*}
A=a_{1}+f_{2} \cdot\left(a_{2}-a_{1}\right) \tag{B.5}
\end{equation*}
$$

The division by $\Delta x, \Delta y$ in Equations (B.1) and (B.2) can be replaced with multiplication by $1 / \Delta x, \quad 1 / \Delta y$ in order to save computer time.

```
        APPENDIX C
DETERMINATION OF ENGINE CONSTANTS AND THE LIMITS
    OF PI-CONTROLLERS' INTEGRATOR OUTPUT
    C.l Engine Damping Coefficient
```

Figure 26 shows the torque-speed characteristics of the $A 042 \mathrm{mili}-$ tary engine. The approximate slope of the constant throttle position lines can be found from the tangent to the full throttle envelope in the vicinity of the maximum engine power, $H P E_{\max }[1 ?]$. The tangent is in fact the constant throttle position line for full throttle position $Y_{\max }$ of a linearized engine model. From Equation (4.1), the engine loading torque in the steady state is

$$
T_{e}=T_{y}-K_{2} S_{e}
$$

The intersection of the tangent and the T_{e}-axis gives the maximum input torque $\tilde{T}_{y \max }=560 \mathrm{in} .-1 b f$, and that with the S_{e}-axis gives $\tilde{\mathrm{S}}_{\text {emax }}=595$ rad/sec. It is seen that the damping coefficient K_{2} can be determined as:

$$
\begin{aligned}
K_{2} & =\tilde{T}_{y \max } / \tilde{S}_{\text {emax }} \\
& =0.94 \mathrm{in} .-1 b f-\mathrm{sec} / \mathrm{rad} .
\end{aligned}
$$

C. 2 Throttle Gain

Assuming a linear relationship between the throttle position and the input torque, the throttle gain is:

Figure 26. Torque-Speed Characteristics of an A042 Military Engine

$$
K_{1}=T_{y} / Y
$$

For the maximum values $Y_{\text {max }}=1.222 \mathrm{rad}\left(70^{\circ}\right)$ and $\tilde{T}_{\text {ymax }}=560 \mathrm{in} .-1 \mathrm{bf}$, then

$$
\mathrm{K}_{1}=458.37 \mathrm{in} .-1 \mathrm{bf} / \mathrm{rad} .
$$

C. 3 Transport Delay Constant

According to Reference [17], for a 1725 cc four-cylinder, four-stroke spark ignition engine, the transport delay constant is 10.9 rad. The selected A042 engine is a 695 cc , two-cylinder, four-stroke Sl engine. It fires half as frequently as a four-cylinder, four-stroke SI engine. Since the engine size is only 695 cc , so the transport delay constant for the selected engine is estimated as:

$$
\mathrm{K}_{3}=10.9 \mathrm{rad}
$$

C. 4 Idling Throttle Position

The idling engine loading torque results from the torque loss in the main pump. From Equations (4.6) and (4.9), the idling engine loading torque is:

$$
\begin{aligned}
T_{i d l e} & =C_{d p} \mu D_{p m} S_{p} / G_{p} \\
& =C_{d p} \mu D_{p m} S_{i d l e} / G_{p}^{2} \\
& =2.37 \mathrm{in}-16 f
\end{aligned}
$$

for idling speed $S_{i d l e}=70 \mathrm{rad} / \mathrm{sec}$. The idling throttle position is then obtained from Tablell| by linear interpolation.

$$
Y_{i d l e}=Y_{\min }=0.17 \mathrm{deg} .
$$

```
C. }5\mathrm{ Upper and Lower Limits of PI Controllers'
    Integrator Output
```

From Equation (4.26) the minimum input current to the electric servodrive which is needed to maintain the idling throttle position under steady state is:

$$
\begin{aligned}
Y_{r} & =\frac{0.1}{Y_{\max }}\left(Y_{i d l e}\right) \\
& =2.43 \times 10^{-4} \mathrm{amp}
\end{aligned}
$$

The equivalent voltage for 1002 resistance is:

$$
y_{r h}=2.43 \times 10^{-2} \mathrm{volt}
$$

This value is the output of the zero order hold and the 12-bit D/A converter. Based on the functions, ZHOLD and SIGOUT in Appendix G.5, the input to the D/A concerter can be computed as:

$$
\begin{aligned}
& X I=\frac{2047}{10}\left(2.43 \times 10^{-2}\right)=4.97 \\
& Y R D=\frac{66}{2047}(X 1)=0.16
\end{aligned}
$$

In practice, this value (voltage) comes from the throttle PI controller, so from Equation (4.18) or subroutine PIC (see Appendix G.5) it is easy to see that the lower limit of the integrator output of the throttle pl controller is:

$$
Y I_{\min }=0.16
$$

Following the same procedure, the upper limit of the integrator output is:

$$
Y I_{\max }=66 .
$$

Similarly, the lower and upper limits of the integrator output of the displacement PI controller are:
$D I_{\min }=0$.
$D I_{\text {max }}=300$.

APPENDIX D
 LINEARIZED MODEL AND TRANSFER FUNCTION OF THE ENGINE-HST SYSTEM

D. 1 Linearized Model

In order to linearize the equations for use in getting the transfer function for the engine-HST system, assume that all system variables undergo small changes from an initial steady-state operating condition. Let the subscript i denote the initial value of each variable before the change occurs. Then

$$
\begin{aligned}
S_{e} & =S_{e i}+\Delta S_{e} \\
T_{e} & =T_{e i}+\Delta T_{e} \\
Y & =Y_{i}+\Delta Y \\
P & =P_{i}+\Delta P
\end{aligned}
$$

and so on. The linearization is accomplished by expanding the expressions in each equation with a first-order Taylor series about the steady-state operating condition, restricting the disturbances to small perturbations. Thus the product of perturbed variables will be small and can be neglected. Then the linearized forms of Equations (4.1), (4.6), (4.7), (4.9), $(4.11),(4.14),(4.15),(4.26),(4.27)$, and (4.28) are:

$$
\begin{equation*}
\left(J_{c} s+K_{2}\right) \Delta S_{e}=K_{1} e^{-t} 1 i^{s} \Delta Y-\Delta T_{e} \tag{0.1}
\end{equation*}
$$

$$
\begin{align*}
& \Delta S_{e}=G_{p} \Delta S_{p} \tag{D.2}\\
& \Delta T_{e}=\Delta T_{p} / G_{p} \tag{D.3}\\
& \Delta S_{m}=G_{m} \Delta S_{\ell} \tag{D.4}\\
& \Delta T_{m}=\Delta T_{2} / G_{m} \tag{D.5}\\
& \Delta T_{p}=E_{1} \Delta P+P_{i} \Delta D_{p}+E_{3} \Delta S_{p} \tag{0.6}\\
& \Delta T_{m}=E_{2} \Delta P+P_{i} \Delta D_{m}-E_{4} \Delta S_{m} \tag{0.7}\\
& \left(E_{5} s+E_{6}\right) \Delta P=D_{p i} \Delta S_{p}+S_{p i} \Delta D_{p}-D_{m i} \Delta S_{m}-S_{m i} \Delta D_{m} \tag{D.3}\\
& \Delta V=R \Delta S_{\ell} \tag{D.9}\\
& \Delta T_{\ell} / R=\left(M M_{c} s+E_{7}\right) \Delta V+E_{8} \Delta \phi_{p} \tag{D.10}\\
& \left(\tau_{y} s+1\right) \Delta Y=K_{y} \Delta Y_{r} \tag{D.11}\\
& \left(\tau \tau_{d} s+1\right) \Delta D_{p}=K_{p} \Delta D_{r p} \tag{D.12}\\
& \left(\tau r_{d}+1\right) \Delta D_{m}=-K_{m} \Delta D_{r m} \tag{D.13}
\end{align*}
$$

where s is the Laplace operator, and $E_{1}, E_{2}, E_{3}, \ldots$, etc. are derived coefficients (see Table Xlll). The perturbed variables $\Delta S_{e}, \Delta Y, \Delta T_{e}$, etc. indicate the Laplace transforms of variables. Other variables and constants were defined previously.

D. 2 Transfer Function

During derivation of the transfer function, the derived coefficients should be read with reference to Table XIII. Combine Equations (D.l), (D.2), (0.3), and (0.6) to yield:

$$
\begin{equation*}
\left(J_{c} s+E_{g}\right) G_{p}^{2} \Delta S_{p}=G_{p} K_{1} e^{-t} 1 i^{s} \Delta Y-E_{1} \Delta P-P D_{i} \Delta D_{p} \tag{D.14}
\end{equation*}
$$

Combining Equations (0.4), (D.5), (D.7), (D.9), and (D.10) yields

$$
\begin{equation*}
E_{2} \Delta P=\frac{R}{G_{m}}\left(M_{c} s+E_{10}\right) \Delta V+E_{11} \Delta \phi-P_{i} \Delta D_{m} \tag{0.15}
\end{equation*}
$$

Combining Equations (0.4), (D.5), (D.8), and (D.9) yields

$$
\begin{equation*}
\Delta S_{p}=\frac{1}{D_{p i}}\left[\left(E_{5} s+E_{6}\right) \Delta P-S_{p i} \Delta D_{p}+\frac{D_{m i} G_{m}}{R} \Delta V+S_{m i} \Delta D_{m}\right] \tag{0.16}
\end{equation*}
$$

Substituting Equation (D.16) into Equation (D.14) to get

$$
\begin{align*}
{\left[\left(J_{c} s\right.\right.} & \left.\left.+E_{g}\right)\left(E_{5} s+E_{6}\right)+\frac{E_{1} D_{p i}}{G_{p}^{2}}\right] \Delta P \\
& =\left[\left(J_{c} s+E_{q}\right) s_{p i}-\frac{p_{i} D_{p i}}{G_{p}^{2}}\right] \Delta D_{p} \\
& -\left(J_{c} s+E_{g}\right)\left(\frac{D_{m i} G_{m}}{R} \Delta V+s_{m i} \Delta D_{m}\right) \\
& +\frac{D_{p i} K_{1}}{G_{p}} e^{-t} 1 i^{s} \Delta Y \tag{D.17}
\end{align*}
$$

Substituting Equation (D.15) into Equation (D.17) to get

$$
\begin{align*}
&\left(J_{c} E_{5} s^{2}+E_{12} s+E_{13}\right)\left[\frac{R}{G_{m}}\left(M_{c} s+E_{10}\right) \Delta V+E_{11} \Delta \phi-P_{i} \Delta D_{m}\right] \\
&=E_{2}\left[\left(J_{c} s+E_{g}\right) s_{p i}-\frac{P_{i} D_{p i}}{G_{p}^{2}}\right] \Delta D_{p} \\
&-E_{2}\left(J_{r} s+E_{g}\right)\left(\frac{D_{m i} G_{m}}{R} \Delta V+s_{m i} \Delta D_{m}\right) \\
&+\frac{E_{2} D_{p i} K_{1}}{G_{p}} e^{-t} 1 i^{s} \Delta Y \tag{D.18}
\end{align*}
$$

Rearranging Equation (D.18) to get

$$
\begin{align*}
& \left(E_{17} s^{3}+E_{18} s^{2}+E_{19} s+E_{20}\right) \Delta V=E_{16} e^{-t} 1 i^{s} \Delta Y \\
& \quad+\left(E_{21} s+E_{22}\right) \Delta D_{p}+\left(E_{23} s^{2}+E_{24} s+E_{25}\right) \Delta D_{m} \\
& \quad-\left(E_{26} s^{2}+E_{27} s+E_{28}\right) \Delta \phi \tag{0.19}
\end{align*}
$$

Substituting Equations (D.11), (D.12), (D.13) into Equation (D.19) yields

$$
\begin{align*}
\Delta V= & \frac{E_{29} e^{-t} 1 i^{s}}{\left(E_{30} s^{4}+E_{31} s^{3}+E_{32} s^{2}+E_{33} s+E_{20}\right)} \Delta Y_{r} \\
& +\frac{N B(2) s+N B(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \Delta D_{r p} \\
& -\frac{N C(3) s^{2}+N C(2) s+N C(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \Delta D_{r m} \\
& -\frac{N D(3) s^{2}+N D(2) s+N D(1)}{D D(4) s^{3}+D D(3) s^{2}+D D(2) s+D D(1)} \Delta \phi \tag{0.20}
\end{align*}
$$

Taking

$$
\begin{equation*}
e^{-t} \check{ }=\frac{1}{1+t_{1 i^{s}}^{s}} \tag{D.21}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\Delta V}{\Delta Y_{r}}= & E_{29} /\left[\left(E_{30} t_{1 i}\right) s^{5}+\left(E_{31} t_{1 i}+E_{30}\right) s^{4}+\left(E_{32} t_{1 i}+E_{31}\right) s^{3}\right. \\
& \left.+\left(E_{33} t_{1 i}+E_{32}\right) s^{2}+\left(E_{20} t_{1 i}+E_{33}\right) s+E_{20}\right] \\
& =\frac{N A(1)}{D A(6) s^{5}+D A(5) s^{4}+D A(4) s^{3}+D A(3) s^{2}+D A(2) s+D A(1)} \tag{D.22}
\end{align*}
$$

$$
\begin{equation*}
\frac{\Delta V}{\Delta D_{r p}}=\frac{N B(2) s+N B(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \tag{D.23}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\Delta V}{\Delta D}=-\frac{N C(3) s^{2}+N C(2) s+N C(1)}{D B(5) s^{4}+D B(4) s^{3}+D B(3) s^{2}+D B(2) s+D B(1)} \tag{D.24}\\
& \frac{\Delta V}{\Delta \phi}=-\frac{N D(3) s^{2}+N D(2) s+N D(1)}{D D(4) s^{3}+D D(3) s^{2}+D D(2) s+D D(1)} \tag{0.25}
\end{align*}
$$

DERIVED COEFFICIENTS

$$
\begin{aligned}
& K_{y}=Y_{m a x} / 0.1 \\
& K_{p}=D_{p m} / D .1 \\
& K_{m}=D_{m m} / 0.1 \\
& E_{1}=D_{p i}+C_{f p} D_{p m} \\
& E_{2}=D_{m i}-C_{f m} D_{m m} \\
& E_{3}=C_{d p}{ }^{\mu D_{p m}} \\
& E_{4}=C_{d m}{ }_{p m m} \\
& E_{5}=v_{m} / B \\
& E_{6}=\left(C_{s p} D_{p m}+C_{s m} D_{m m}\right) / \mu \\
& E_{7}=W_{a / b}+C_{a} P A V_{i} \\
& E_{8}=W C O S \phi_{i} \\
& E_{9}=K_{2}+E_{3} / G_{p}^{2} \\
& E_{10}=E_{7}+E_{4} G_{m}^{2} / R^{2} \\
& E_{11}=E_{8} R / G_{m} \\
& E_{12}=E_{5} E_{9}+E_{6}{ }_{c} \\
& E_{13}=E_{6} E_{9}+E_{1} D_{p i} / G_{p}^{2} \\
& E_{14}=E_{9} S_{p i}-P_{i} D_{p i} / G_{p}^{2} \\
& E_{15}=E_{2} G_{m} D_{m i} / R \\
& E_{16}=E_{2} K_{1} D_{p i} / G_{p} \\
& E_{17}=E_{5} J c_{c}^{M} R / G_{m} \\
& E_{18}=\left(R / G_{m}\right)\left(E_{12}^{M} c+E_{5} E_{10} J_{c}\right) \\
& E_{19}=\left(R / G_{m}\right)\left(E_{13}^{M} c+E_{10} E_{12}+E_{15} J c_{m} / R\right)
\end{aligned}
$$

TABLE XIII (Continued)

$$
\begin{aligned}
& E_{20}=\left(R / G_{m}\right)\left(E_{10} E_{13}+E_{9} E_{15} G_{m} / R\right) \\
& E_{21}=E_{2} J_{c} S_{p i} \\
& E_{22}=E_{2} E_{14} \\
& D B(2)=E_{20} \tau_{d}+E_{19} \\
& E_{23}=E_{5} J_{c} P_{i} \\
& D B(3)=E_{19}{ }^{\tau} d+E_{18} \\
& E_{24}=E_{12} P_{i}-E_{2}{ }^{J} c_{m i} \\
& D B(4)=E_{18} d_{d}+E_{17} \\
& E_{25}=E_{13} P_{i}-E_{2} E_{9} S_{m i} \\
& D B(5)-E_{17}^{\tau d} \\
& E_{26}=E_{5} E_{11}{ }^{j} c \\
& D D(1)=E_{20} \\
& E_{27}=E_{11} E_{12} \\
& D D(2)=E_{19} \\
& E_{28}=E_{11} E_{13} \\
& E_{29}=E_{16} K_{y} \\
& E_{30}=E_{17}{ }^{\tau} y \\
& E_{31}=E_{18} \tau_{y}+E_{17} \\
& D D(3)=E_{18} \\
& D D(4)=E_{17} \\
& N A(1)=E_{29} \\
& E_{32}=E_{19} \tau_{y}+E_{18} \\
& N B(1)=E_{22} K_{p} \\
& E_{33}=E_{20} \tau_{y}+E_{19} \\
& N B(2)=E_{21} K_{p} \\
& D A(1)=E_{20} \\
& \mathrm{NC}(1)=\mathrm{E}_{25} \mathrm{~K}_{\mathrm{m}} \\
& N C(2)=E_{24} K_{m} \\
& D A(2)=E_{20}{ }^{\top} 1 i+E_{33} \\
& N C(3)=E_{23} K_{m} \\
& D A(3)=E_{33}{ }^{t} 1 i+E_{32} \\
& N D(1)=E_{28} \\
& D A(4)=E_{32}{ }^{t} 1 i+E_{31} \\
& N D(2)=E_{27} \\
& D A(5)=E_{31} t_{1 i}+E_{30} \\
& N D(3)=E_{26} \\
& D A(6)=E_{30}{ }^{t} 1 i
\end{aligned}
$$

APPENDIX E

```
SIMPLEX METHOD FOR FUNCTION MINIMIZATION
```

The procedure of the simplex method is based on the work by Nelder and Mead [29]. This method adapts itself to the local landscape, using reflected, expanded, and contracted points to locate the minimum of a multivariable unconstrained nonlinear function. Derivatives are not required. The algorithm proceeds as follows:

1. A starting point, $X_{1, j}$, is selected.
2. A starting "simplex" is constructed consisting of the starting point and the following additional points:

$$
\begin{align*}
x_{i, j} & =x_{1, j}+\xi_{i, j} \cdot \Delta_{j} \tag{E.I}\\
i & =2 \cdot 3, \ldots, N+1 \\
j & =1,2, \ldots, N
\end{align*}
$$

where $\xi_{i, j}$ is determined from the following table:

j V^{2}	2	\ldots	$N-1$	N	
2	1	0	\cdots	0	0
3	0	1	\cdots	0	0
\vdots	\vdots	\vdots	\cdots	\vdots	\vdots
N	0	0	\cdots	1	0
$N+1$	0	0	\cdots	0	1

N is the total number of variables. The values used in Δ_{j} will depend on the required size of the simplex and the relative magnitudes of the units for each variable.
3. Once the simplex is formed, the objective function is evaluated at each point. The worst point (highest value of objective function) is replaced by a new point. Three operations are used--reflection, contraction, and expansion. A reflected point is located first as follows:

$$
\begin{align*}
x_{i, j}(\text { reflected }) & =x_{c, j}+\alpha\left[x_{c, j}-x_{i, j}(\text { worst })\right] \tag{E.2}\\
j & =1,2, \ldots, N
\end{align*}
$$

where α is a positive constant.
$X_{c, j}$ are the centroid coordinates of all points excluding the worst point and are calculated from the following:

$$
\begin{align*}
x_{c, j} & =\frac{1}{N}\left[\sum_{i=1}^{N+1} x_{i, j}-x_{i, j}(\text { worst })\right] \tag{E.3}\\
j & =1,2, \ldots, N
\end{align*}
$$

4. If the reflected point has the worst objective function value of the current points, a contracted point is located as follows:

$$
\begin{align*}
x_{i, j}(\text { contracted }) & =x_{c, j}-3\left[x_{c, j}-x_{i, j}(\text { worst })\right] \tag{E.4}\\
j & =1,2, \ldots, N
\end{align*}
$$

where β lies between 0 and 1.
If the reflected point is better than the worst point but is not the best point, a contracted point is calculated from the reflected point as follows:

$$
\begin{align*}
x_{i, j}(\text { contracted }) & =x_{c, j}-\beta\left[x_{c, j}-x_{i, j}(\text { reflected })\right] \tag{E.5}\\
j & =1,2, \ldots, N
\end{align*}
$$

The objective function is now evaluated at the contracted point. If an improvement over the current points is achieved, the process is restarted.

Otherwise, the points are moved one-half the distance toward the best point:

$$
\begin{align*}
x_{i, j}(\text { new }) & =\frac{1}{2}\left[x_{i, j}(\text { bes } t)+x_{i, j}(\text { old })\right] \tag{E.6}\\
j & =1,2, \ldots, N
\end{align*}
$$

The process is then restarted.
5. If the reflected point calculated in step 3 is the best point, an expansion point is calculated as follows:

$$
\begin{align*}
x_{i, j}(\text { expansion }) & =x_{c, j}+\gamma\left[x_{i, j}(\text { reflected })-x_{c, j}\right] \tag{E.7}\\
j & =1,2, \ldots, N
\end{align*}
$$

where γ is a positive constant. If the expansion point is an improvement over the reflected point, the reflected point is replaced by the expansion point and the process is restarted. If the expansion point is not an improvement over the reflected point, the reflected point is retained and the process is restarted.
6. The procedure is terminated when the convergence criterion is satisfied or a specified number of iterations has been exceeded. The convergence criterion is: if $\varepsilon<\varepsilon_{\text {min }}$ the process will terminate, where

$$
\begin{equation*}
\varepsilon=\sqrt{\frac{1}{N}\left[\sum_{i=1}^{N+1}\left(Z_{i}-Z_{c}\right)^{2}-\left(Z_{\text {worst }}-z_{c}\right)^{2}\right]} \tag{E.8}
\end{equation*}
$$

$\varepsilon_{\text {min }}$ is the convergence parameter, and Z is the objective function value. A flow diagram illustrating the procedure is given in Figure 27.

Figure 27. Flow Chart for Simplex Minimization Algorithm

Figure 27. (Continued)

COMPUTATION PROCEDURE FOR DYNAMIC SYSTEM MODEL

In order to adjust parameters and evaluate the dynamic performance of the vehicle drive system, a discrete system computer simulation would be performed. In this appendix the computation procedure for the dynamic system models is described. It is helpful to understand the program logic in Appendix G. 4 and G. 5.

The dynamic models developed in Chapter IV can be separated into two categories; they are algebraic equations and first-order differential equations described as:

$$
\begin{align*}
\bar{X} & =f(\bar{X}, \bar{Y}, \bar{p}, t) \tag{F.1}\\
\overline{D Y} & =f(\bar{X}, \bar{Y}, \bar{p}, t) \tag{F.2}
\end{align*}
$$

where
$X=$ algebraic variable;
$Y=$ state variable;
$P=$ parameter; and
$\mathrm{t}=\mathrm{time}$.
The solution would proceed in the following four major steps:

1. The value of the state variables are known from the initial conditions or as a result of previous numerical integration.
2. The algebraic equations (F.l) are solved since the values of the states and time are known and the only unknowns are the algebraic variables. After solution, all algebraic variables are now known.
3. The value of the state derivative is explicitly determined from the values of the state, algebraic, and time variables.
4. The values of the state and derivative of the state variables are known. Time is incremented and the values of the states of this new time are determined by numerical integration.

This procedure is repeated until the final time is reached.

APPENDIX G

COMPUTER PROGRAM LISTINGS

G. 1 Program for System Sizing

This program is developed based on the sizing algorithms presented in section 5.2. The comment statements are self-explanatory.

OC 1CC IGF=34,42,4
GF=C.1*1GP
SFN=SEM/GP
C ITERATE THE MINIMUM NOTCR DISPLACEMENT FCF
C CALCllAtiNG tre maximun fumf gisFlacement
C-----
DC 100 J=2.18
DNMIN=0.05*DNH*J
OPN=CNMIN*SN(2)/SFM
P{2}={TM{2)+C[N\#FNU*CMM*SM: ())/{CNMIN-CFN*UNM!
QST={CSF*DFN+(SN*CNM)/FNU*P:2)
DFM=(DMMIN*SM{2)+OST)/SDM
C-----
G calcllate the maximlmflo% fete
0\leqT=:(SP*C\&N+CSM*CNN)/FNU*P(2)
O(2)=OMMIN*SN(2)+GST
C CALClLATE tre fequirec pund tcfele far crecking
C If tre maximlN enging tchgue exceed

```

```

 P(1) =PMAX
 QST={CSF*DFM*CSM*CMM)/FNU*P(1)
 O{(1)=OMM*SN{1)+CST
 DH=C(1)/SFN
 TP(1)={DF+CFF*UFM)*F{1)+CL`*F:TU*GロN*SPM
 TFMAX=AMAX1:TF:1),TF{2)}
 TEMAX=TPMAX/GP
 C-----
 C WILL ENGINE STALL?
 C---
 IF:TEMAX ©GT TEFULLI GO TO 100
 こーー一ーー
 C Calcllate the required engine hcrsepodmer
 C--m-
 HPE=SEM*TENAX/E\inOG.
 IF{IACEX •GT. J) GO TO SO
 C----- PFINT THE RESLLTS
 c_-\infty- PRINT THE RESGLIS
 wEITE{E.3C)
 0004
ひルうう
Juso
70
00%8

* O
vou0
| (1 %u

```

2
3030 30ند
vos 5
ưjo
Uい3 7
8
（yدטט 0040

J04 1 コロ42

00 43
0044
UU4 0
0040
0047
0040
0049 00う

0051

コロゴく
0003

0004
コロうう
Juso
7 دט 7
9 دن
0000
1 ذט
```

 C-CALCILATE THE WAXIMLN NCTCR CISFLACENENT
    ```
```

 C-CALCILATE THE WAXIMLN NCTCR CISFLACENENT
    ```
```

 cーーーーー
    ```
    cーーーーー
    C Itefate plmp cear fatic fer
    C Itefate plmp cear fatic fer
    C CALCLLATING THE PLMP SPEED
    C CALCLLATING THE PLMP SPEED
    C--
    C--

OC 1CC 1GF \(=34.42 .4\) GF＝C•1＊1GP
\(S F N=S E M / G P\)


C CALCLLATING THE MAXIMUN FUMF DISFLACEMENT
C－ー－
DC \(100 \mathrm{~J}=2.18\)
DNHIN＝0．05＊DN＊＊J
P\｛2）＝\｛TM：2）＋CEN\＃FNU＊CMM\＃SM：z））／EENMIN－CFN＊UNMI
QST＝：CSF＊DFN＋（SN＊CNM）／FNU＊P（2）
DFM＝（DMMIN\＃SM： 2\()+O S T) / S D M\)
    C--
    C--
calcllate the maximlmflow fate
\(0 \leq T=\)（CSP＊CEN＋CSM＊LNN／ENU＊P（2）
\(0(2)=O M M I N * S N(2)+G S T\)
C－－ IF THE MAXIMLN EAGIAG TCHGUE EXCEED
c－－m

\(P(1)=P M A X\)
（T）＝（CSF＊DFM＋CSH＊CMN）／FMU＊P（1）
OR（1）＝OMM＊SN： 1 ）＋CST
TP（1）＝\｛DF＋CFF\＃UFM）＊F：1）＋CEつ＊F！tu＊gan＊SPM
TFMAX＝AMAX1：TF：1），TF\｛2）\}
TEMAX \(=\) TPMAX／GP
C WILL ENGINE STALL？
IF：TEMAX •CT• TEFULLI GO TO 100
C Calculate the required engine hersepodmer
HPE＝SEM＊TENAX／EECG．
IF\＆IACEX ©GT• J）GO TO SO
c pFint the resllis
wEITE（E．3C）


SU WRITE（E，EC）GF，GM．DFA．DN：．G（2），HFE
OU FCFNAT：3X，2：F8．：），2：F9．3）．2（FG．1）： 1＾CE入＝1
Lú ECNTINUE STCP
ENO

\section*{G. 2 Program for Optimum Operation Search}

The program logic was described in section 2.2. The comment statements are self-explanatory.
```

O\mp@code{OU}
\#\mp@code{\#J}
vuj2
0033
J034
0035
0030
0u37
v030
0039
0 0 4 0
00+1
0042
0043
00.4
0
N0%O
0047
OU48
0049
0000
v051
u052
0053
0054
0055
*056
00>7
0050
*)
0000
0001
0002
0003
4004
0005
0026
JUכ7
0006

```
```

 GF=3.7
    ```
    GF=3.7
    GA=1.5
    GA=1.5
    PMU=5.7SE-6
    PMU=5.7SE-6
    C-----
    C-----
    6 SfECify vericle sfecificaticn
    6 SfECify vericle sfecificaticn
    C----- A=2552.
    C----- A=2552.
        R=12.
        R=12.
        m=17CO.
        m=17CO.
        AS=0.01
        AS=0.01
        B = =1 7\inO.
        B = =1 7\inO.
        CA=C.35
        CA=C.35
        FHC=1-12E-7
        FHC=1-12E-7
        ALFHAN=6. &43
        ALFHAN=6. &43
    C-----
    C-----
        CR=CNH/DFM
        CR=CNH/DFM
        C1=C\F+OF#CSN
        C1=C\F+OF#CSN
        PF=R*W*AS
        PF=R*W*AS
        PA=0.5*F*CA*FHC*A
        PA=0.5*F*CA*FHC*A
    C Increase fcad gface and calcllate load tcfgle
    C Increase fcad gface and calcllate load tcfgle
    C----
    C----
        NGI=NG+1
        NGI=NG+1
        DO &C IG=1,NGI
        DO &C IG=1,NGI
        ALFHA=:IG-1)/FLO&T:N()#ALPHAM*Z.1416/190.
        ALFHA=:IG-1)/FLO&T:N()#ALPHAM*Z.1416/190.
        PG=R*|*SIN:ALFHA)
        PG=R*|*SIN:ALFHA)
        J=0
        J=0
    C-maflagase lcac sfeec
    C-maflagase lcac sfeec
        DC 70 IS=1,AS.2
        DC 70 IS=1,AS.2
        SL=IS*SLM/NS
        SL=IS*SLM/NS
        SM=GN*SL
        SM=GN*SL
        V=R*SL
        V=R*SL
        TL=PF*(1.+V/E\leq)+FA*V*V+FG
        TL=PF*(1.+V/E\leq)+FA*V*V+FG
        TM=TL/GM
        TM=TL/GM
        E S1=0.0
        E S1=0.0
    C-START SEARCHING THE CPIIMUM SYSIEM QPERATICN FCF KNCWA
    C-START SEARCHING THE CPIIMUM SYSIEM QPERATICN FCF KNCWA
    C TL ANO SL
    C TL ANO SL
        InCREASE FLMF CISFLACEMENT
        InCREASE FLMF CISFLACEMENT
        ON=1.O
        ON=1.O
        ONC=OM-CFM
        ONC=OM-CFM
        IM=NN
        IM=NN
        OC 3C 1F=T,NF
        OC 3C 1F=T,NF
        DP=IF/FLCAT(NF)
        DP=IF/FLCAT(NF)
        CFC= LF+CFP
        CFC= LF+CFP
        C-M-D STAFI DECREASING WCTCF CISPLACEBENT EHEN
        C-M-D STAFI DECREASING WCTCF CISPLACEBENT EHEN
        C STAFI DECREASING HETCF CISPLACEA
        C STAFI DECREASING HETCF CISPLACEA
        C-----
        C-----
        IF:IF ©NE. NF) GC TC 24
        IF:IF ©NE. NF) GC TC 24
        IM=0
        IM=0
        22 1N=1N+1
        22 1N=1N+1
        OM={NM-IM+1)/FLCA1(AN)
        OM={NM-IM+1)/FLCA1(AN)
        OMC=CM-CF:M
        OMC=CM-CF:M
        IF:CNC -LE. O.O) GO 10 30
```

 IF:CNC -LE. O.O) GO 10 30
    ```
```

0005
0u70
0071
0072
0073
0074
0075
0076
0077
0078
0.07>
0080
0081
0002
0003
0004
00こう
0000
4007
0.38
0009
00>0
00%1
00>2
00%3
JO`4
0゙ジ
OU>O
00%7
00>8
J079
0100
0101
0102
0133
v104
0100
0106
0107
0138
0109
0110
24SF=10/:CN(*CF)*::[N(\#CN*OF+(1*([\&)*SM+C, {{PML*OMM)\#1M)
TF=FNL*DPM/Cl*({CFC*CF+C1*CCF)*SF-CPC*CM*CF*SN)
P=FNL/C1*{OD*SF-DN*DG*SN}
IF:O.GT. FHAX) CC TC 2E
SE=GF*SP
TE=TF/GF
IFGSE -LT. SIDLEI GE TC 2O
IF{SE .GT. SEM) GC IC EE
IF{TE.LT. O.O) GCTC 2G
ISE=\E/35.+1
PERSE=:SE-(ISE-1)*2E.)/ミミ.
TF(LL=FTCFG:ISE)+FEFSE*(FTOFC:ISE+I)-FTOFG(ISE))
IF(TE •GT. TFLLL) GC TC 2E
C--m---
nonitce system efficiency anc stcee the valles cf all' the
SYSTEM VARIABLES CCFFESFCNDING TE TKE PFESENT NAXIMUM
SYSTEM EFFICIENCY
HPE=SE*TE/G\inCC.
EE=IMTEFF:TE,SE,EFE)
ET=SN/SP*TN/TF
ES=EE*ET
IF{ES -LT.ESI) GC TC 2E
ESI=ES
EEI=EE
ET1=ET*100.
TLI= IL
SL1=SL
TEL=TE
SEl=SE
HPE1=HPE
DF1=CF*DFM
DN1= [N*DMM
P1=?
QI=CNN*:DN*SM+CSM/FNU*P)
2c IF\&Im.NE•NM) GC TC 22
ju CLNT JNUE
IF!IS.GT. 1 .ANC.ESI \&LE.C.JED TO 70
J= J+1
XTA=INTEPP(TE1,SEI,TAU)
c-m-
C OFTIMLM CFEFATICA FCLNO
C PRINT THE VALUES OF ALL THE SYSTEN VARIAELES CEFRESFCNOING
G TC EfCH FAIR CF LCAC TGRQUE \& LGAO SPEEO
C-----
IFPIS.GT. IIGO TOEO
WFITE:O.40)

```


```

 C 'EE'.4X,'ET'.4X,'ES'?
 WRITE(E,4S)
 4S FCFN&T:3X,90(1F-1)
    ```

```

 * EEIDET1,ESI
 OU FCFN&T:IX,2I3,4F7.1,FE&1,2F7.3.FE.1,SFE.1)
    ```
c-ー-ー
CCNFLTE. THE SYETEM CFEFATING CCIMTS FCF KNCMA DF E CM

0111
0112
0113
0114
0115

\section*{7U CEATINUE}

EC CENTINLE WPITE(6.15) SICP EAD
```

c-SUEFCUTINE TABLE
SLBFCLTINE TAELE(TAECAT,X,Y,NX,AY,TITLE,XLAE,YLAB,NFCW)

```

```

 MEITE(6,1O) 1ITLE
 10 FCHMAT(1HC.//,4EX,EA4//)
 WFITE{6,20) XLAE,(X(J),J=1,NX)
 20 FCRNAT(11X:A4,1CFTQC)
 WRITE(E.3C) YLAB
 30 F(FFNfT{EX,A4,1X,72{1H-})
 DC 4C I=1,N.Y
 4U WFITE(G,SO) Y({).:TAECAT:I,N),J=1,NX)
 50 FCFMAT{8X,F5.O.2F I,IOF7.1)
 RETUFA
 ENO
    ```
        C- FUNCTICN INTEFA
        REAL FUNCTION INTERP \((x, y, Z)\)
        DINEASICN 2:11.1)
        \(x C=x, 300+1\).
        \(Y 0=Y / 350+1\).
        \(I X=X C\)
        \(I y=Y C\)
        \(F X=X 0-I X\)
        \(F Y=I G-I Y\)
        \(Z 1=Z(I X, I Y)+F Y \#(Z\{1 x, I Y+1)-Z\{I X, I Y \mid)\)
        \(22=2(I X+1, I Y\}+F Y *\{Z:(X+1,[Y+1\}-2(I X+1, I Y)\}\)
        (NTEFP=21+FX\#(22-21)
        RETUFN
        ENO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(J\) & SL & IL & TE & SE & HP & UP & DN & P & c & Y AU & EE & E 1 & ES \\
\hline 1 & 1．0 & 20303 & 7.4 & 70.1 & 0.1 & \(0 . C 48\) & 0.501 & 290．1 & 0.9 & 0.5 & 9.5 & 39.4 & 3.7 \\
\hline 2 & J．u & ＜uy00 & 13.0 & 74.1 & 0.2 & 0.121 & \(0 . \leq C 1\) & C S5． 5 & ć4 & 1.0 & G． 8 & 02．1 & c． 1 \\
\hline J & bou & 21．1 & ＜0．7 & 72．1 & 0.2 & 0.202 & \(0.5 C 1\) & 309.9 & 3.9 & 1.5 & 9.9 & 71.4 & 7．1 \\
\hline 4 & 7.0 & Clusu & 28.4 & 71.3 & C． 3 & C．áe3 & 0.5 Cl & 321．3 & 5.4 & 2.0 & 10.2 & 75.5 & 7.7 \\
\hline 1 S & sou & くく」。ご & J3． 3 & 79.7 & 0.4 & 0．\(=23\) & \(0.5 C 1\) & 333.6 & C．9 & 2.3 & 10.6 & 75．5 & E． 0 \\
\hline 10 & 11.0 & 2＜\％0\％ & J5．1 & S7．0 & C． 5 & C． 323 & 0.501 & 347．0 & E．4 & 2.4 & 11.1 & 74.3 & E． 3 \\
\hline 7 & 13.0 & 230．9 & \(\geq 9.6\) & 106． 1 & C．\(\epsilon\) & C．E®3 & 0.46 & 392.3 & S． 2 & 2.8 & 11.5 & 73.4 & 8.5 \\
\hline 4 & 15．u & 204．0 & 47.3 & 106.4 & \(0 \cdot 8\) & \(0 \cdot 323\) & 0.401 & 477.1 & S． 2 & 3.4 & 11.9 & 72．E & \(E \cdot 6\) \\
\hline \(1>\) & 17.0 & －030 & －0． 2 & 10t． 2 & C． 5 & 0.323 & 0.351 & 574.4 & S． 1 & 4.0 & 12．？ & 72.0 & 8 －t \\
\hline 110 & 1 you & 20くっ1 & U5．8 & 106.7 & 1.1 & 0．きころ & 0．31こ & 677．8 & ¢． 2 & 4.5 & 12.6 & 71.0 & H．9 \\
\hline 111 & ＜1．0 & 2110． & 71.7 & 113.3 & 1.2 & 0.323 & 0.301 & 740.2 & 5.7 & 4.8 & 12.9 & 70.3 & S． 1 \\
\hline 112 & 230U & 2uc． 4 & 75.1 & 123．9 & 1.4 & C．EA3 & 0.361 & 773.5 & 1 C .6 & 5.1 & 13.3 & 69.8 & 4.3 \\
\hline 13 & 2300 & 2り」06 & 42．0 & 129．3 & 1.0 & \(0 . \pm\) こ3 & 0．2et & E4c．s & 11.1 & c． 4 & 13.8 & 6S． 2 & So 5 \\
\hline 114 & 27.0 & suJ．0 & 65.5 & 139.5 & 1．8 & 0.323 & \(0.28 E\) & ع85．3 & 1260 & 5.5 & 14．2 & 68.5 & 9.8 \\
\hline \(14 j\) & －\％ou & Ader & ¢8．4 & 137．e & \(2 \cdot 1\) & C．ミくて & 0.263 & 1 C22．9 & 11.8 & 6.2 & 14.7 & 68.0 & 10.0 \\
\hline 110 & 11．0 & 31103 & 148．2 & 140.8 & \(2 \cdot 3\) & \(0 \cdot 323\) & 0.250 & 1128.7 & 1200 & t． 5 & 15．2 & 67.4 & 10．2 \\
\hline 117 & 33.0 & 34 & 119.4 & 143.1 & 2.6 & 0.323 & 0.238 & 1249．2 & 12.2 & 7.9 & 15.7 & 66.7 & 10.5 \\
\hline 110 & 30．0 & Juv．z & 1 J2．0 & 144.7 & 2.9 & \(0 . こ ゙ 3\) & 0．2＜5 & 1こE7．0 & 12.3 & S． 0 & 16.4 & 60.0 & 10.8 \\
\hline 1 1y & －7．0 & Jアコロ0 & 140.6 & 145.5 & 3.2 & 0． 223 & 0.212 & 1545.7 & 12.4 & 10.1 & 17.1 & 65.1 & 11.2 \\
\hline 120 & JSoul & \(3 \times 108\) & 123.2 & 153.3 & 3.6 & \(0 . こ ゙ く 3\) & 0.213 & \(1 \in 14.4\) & 13.0 & 11.4 & 17.8 & 65.1 & 11.6 \\
\hline \(1<1\) & 41.0 & 40000 & 100.0 & 161．1 & こ．9 & \(0 \cdot \pm 23\) & \(0 \cdot 215\) & 1CEE．6 & \(1 \vdots .7\) & 12．7 & 1 1．\(^{\text {¢ }}\) & 65．0 & 12.0 \\
\hline 122 & 4J．U & 42 ctl & \(1 y_{10} 2\) & 152．1 & 4.4 & 0.323 & 0.188 & 2030.0 & 12.8 & 14.3 & 19.9 & 6.3 .0 & 12.5 \\
\hline 1 ＜3 & 42．0 & 444.4 & 149．E & 159．2 & 4．E & C． 323 & O．1EE & 2117.9 & 1 ミ．4 & 16.1 & 21.1 & 63.0 & 13.3 \\
\hline \(1<4\) & 47．U & 403.3 & 209．1 & 166.2 & 5.2 & 0.323 & 0.18 E & 2＜ce．7 & 14.0 & 18.0 & c2．4 & C2．s & 14.1 \\
\hline \(1<6\) & 4500 & 40ぐ如 & 210.5 & 173．3 & ¢．7 & 0.323 & 0.188 & 2302.4 & 14.6 & 20.1 & 23.9 & 62.9 & 1 E 0 \\
\hline 1 ＜ & 51.0 & 20ses & 22000 & 180.4 & 6.2 & \(0 \cdot こ\) く 3 & 0．1EE & 2358．9 & 15.2 & 22． 5 & 25.5 & 63.0 & 16.1 \\
\hline \(1{ }_{1} 17\) & bueu & 04403 & 2，504 & 187.6 & 6.7 & \(0 \cdot 383\) & 0.16 & 2458.3 & 12.8 & 85.2 & 27.5 & ©3．0 & 17.3 \\
\hline 140 & cual & 240．1 & 480．3 & 10t．2 & 7.1 & 0.123 & \(0.2 c c\) & 2414．4 & 17.4 & 27.4 & 28.7 & 04.1 & 16.4 \\
\hline 1 2y & 57.0 & 50000 & 237．6 & 212．8 & 7.7 & 0.363 & \(0.2 c c\) & c¢12．5 & \(1 E 0\) & 三1．3 & 30.4 & 64.1 & 15.5 \\
\hline 130 & tseu & \(0 \pm 107\) & 44700 & ：20．3 & \(E \cdot 2\) & 0.323 & 0.200 & 2612.9 & 18.6 & 39.0 & 28.2 & 64.2 & 18.1 \\
\hline 131 & 61.0 & 01500 & ＜40．5 & ¢ 39.8 & E． 7 & \(0 . さ\) こう & 0.213 & 2534．8 & 2C．4 & 41.5 & 25.5 & 65.1 & 16.0 \\
\hline 132 & 63.0 & \(0+0.1\) & 249.8 & 247．8 & S． 4 & 0.323 & 0.212 & 2t33．4 & 21.0 & ③．5 & 23.1 & 05.1 & 15.1 \\
\hline 131 & Cた。O & cujod & 244．1 & 268．6 & S．s & 0.323 & 0.225 & \(2 \leq 63.6\) & 22.9 & C2．5 & 21.0 & 65.9 & 13.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & \(J\) & SL & IL． & te & SE & HP & DF & DN & \(p\) & \(c\) & TAU & EE & E \({ }^{\text {d }}\) & ES \\
\hline 3 & 1 & 1.0 & 1017.4 & د9． 8 & 71.9 & 0.4 & 0.081 & 0.501 & 1427.4 & 1.2 & 2.6 & 10.5 & 35． 5 & 3.7 \\
\hline 1 & 2 & 3.0 & 1 U2U．9 & 71.4 & 70.5 & C． 8 & 0.161 & \(0.5 C 1\) & 1436.8 & 2.8 & 4.0 & 11.3 & 60．8 & c． 9 \\
\hline 3 & \({ }^{\circ}\) & －¢U & 10くう．1 & B8． 1 & 84.1 & 1.1 & \(0 .<02\) & 0.5 ct & 1447．2 & 4．3 & E．1 & 12.4 & 69．2 & \(E \cdot 6\) \\
\hline 3 & 4 & 7.0 & 1uJu．0 & \＄5．8 & 103.5 & 1.5 & 0.218 & 0.5 Cl & 1458.6 & ¢．8 & 6.1 & 13.6 & 72.7 & 9.9 \\
\hline \(\checkmark\) & 5 & \(y \cdot u\) & 1us．o & 115.9 & 105.6 & 1.5 & C． \(\mathcal{E C E}\) & \(0.5 C 1\) & 1470.9 & 7． 3 & e．0 & 14.4 & 70.1 & 10.9 \\
\hline 1 & \(\checkmark\) & 11.0 & 10＋1－8 & 13506 & 104.4 & 2.2 & 0.323 & 0.501 & 1434.3 & E． 8 & 9.3 & 15.1 & 78．6 & 11.9 \\
\hline 3 & 7 & 13．0 & 1040 eb & 141．E & 121.8 & 2．6 & 0.323 & 0.501 & 1498.6 & 10.3 & 9.3 & 15.9 & 79.1 & 12.0 \\
\hline 3 & 3 & 1000 &  & \(1+3.5\) & 139.1 & こ． 0 & 0．ごくる & \(0.5 C 1\) & 1513.9 & 11.8 & S． 3 & 16． 3 & 79.4 & 13．3 \\
\hline － & \(y\) & 17.0 & 1 1）4．9 & 1.301 & 149.6 & 3.5 & 0.323 & 0.476 & 1615.3 & 12.7 & 11.0 & 17.6 & 79.0 & 1．0．9 \\
\hline 3 & 10 & 15.0 & 1414．0 & 1c3．9 & 158.6 & 3.9 & 0.323 & C．4E1 & 1729.6 & 13.5 & 12.8 & 18.6 & 78.5 & 14.6 \\
\hline 3 & 11 & 21.0 & 1usues & \(1+3 \cdot 3\) & 153．6 & 4.5 & 0．ミご & 0.3 EE & 2C51．8 & 1 1．9 & 14.7 & ＜0．1 & 76.7 & 15.4 \\
\hline \(\lrcorner\) & 12 & 23．し & 1Jノ＋64 & 2U2．7 & 162．6 & 5.0 & 0.323 & 0.37 C & 2151.2 & 13.7 & 16.9 & 21.6 & 70.4 & 10.5 \\
\hline 3 & 13 & 2．0い & 110．00 & ＜12．9 & 170.9 & 5.5 & C． \(\begin{gathered}\text { ¢ } 3\end{gathered}\) & 0.3 ¢ 3 & 2259．3 & 14.4 & 15.3 & 23.3 & 76.0 & 17.7 \\
\hline 1 & 14 & 2\％．0 & 111／0s & 212.5 & 173.1 & 6.1 & 0.323 & \(0 \cdot 33 \mathrm{E}\) & 2472．3 & 14．t & ＜2．0 & 25.3 & 75．0 & 15.0 \\
\hline 3 & 1is & 2bou & 1130．1 & 21t．0 & 185.0 & 0.6 & 0.323 & 0.338 & 2506.1 & 15.6 & 24.7 & 27.2 & 75.1 & 20.5 \\
\hline 3 & 1. & 31.0 & 114．1．4 & 239.6 & 190.8 & \(7 \cdot 1\) & \(0 \cdot ミ\) ¢ 3 & \(0.33 E\) & ćs41．3 & 1 cet & 27．8 & 29.4 & 75.2 & 22．1 \\
\hline 3 & 11 & 3 J 0 & 110104 & 243.4 & 208.7 & 7.7 & 0.323 & 0.332 & 2578.1 & 17.6 & 32.3 & 30.5 & 75.2 & 22.9 \\
\hline 3 & 14 & \(3 \leq .0\) & 1172．ぐ & 247.3 & ＜20．6 & E． 3 & \(0 \cdot \geq<3\) & 0.33 E & 2616.3 & 1 E．7 & 29.3 & 28.1 & 75．2 & 21.1 \\
\hline 3 & 19 & 3700 & 113100 & 2.103 & ¢ 32.4 & 8．5 & 0．ごく3 & 0.33 E & 2tEt．1 & 15.7 & 47． 5 & 25．5 & 75.2 & 15．2 \\
\hline 」 & ＜0 & 3 SOC & 120」． 7 & 24603 & 252．0 & S． 4 & 0.323 & \(0.3 \leq 1\) & 2593.6 & 21.4 & 53.2 & \(<2.9\) & 75.6 & 17.4 \\
\hline 3 & \(<1\) & 41.0 & 12くu．s & 2ち0．E & 264．4 & 10.0 & 0．ごく3 & 0．3 31 & 2t 34.6 & \(2<.5\) & 62.3 & 20.9 & 75.6 & 15.8 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & \(\checkmark\) & SL & IL & re & SE & HP & DP & OM & \(p\) & c & tau & EE & Er & ES \\
\hline 7 & 1 & 1.0 & cojued & \(1<4.4\) & 101.1 & 1.5 & C． 105 & 0.5 Cl & 3654.7 & 2.0 & 8.5 & 14.4 & 21.0 & 3.0 \\
\hline 7 & \(\stackrel{1}{2}\) & د．0 & 203400 & 173．3 & 105.6 & 2.8 & 0.153 & \(0.5 C 1\) & 2704．1 & こ。E & 10.4 & 16．2 & 43.3 & 7.0 \\
\hline 7 & \(\rightarrow\) & －5．0 & 204508 & 1380.7 & 122．6 & 3．7 & C． 178 & 0.501 & 3714.5 & E． 1 & 12.5 & 18.1 & 54.3 & 5.8 \\
\hline 7 & ＊ & 7 ．0 & 2ctu． 7 & 208．3 & 147．3 & 4.7 & C－1E6 & c． \(5 C 1\) & 272さ．9 & c． 6 & 15．0 & 20.6 & 60.4 & 12.4 \\
\hline 7 & － & 9.0 & 2ustod & 22E．t & 163.2 & 5.6 & 0.2 c 2 & 0.5 Cl & 3738.3 & E． 1 & 15.7 & 23.9 & C4．e & 15.2 \\
\hline 7 & \(\omega\) & 11.0 & 200ve0 & 215．5 & 183．6 & c． 5 & 0.210 & 0.501 & 3751．6 & 5.6 & 24.4 & 27.0 & 67.7 & 18.3 \\
\hline 7 & 7 & 1300 & coul．0 & 2.17 .3 & \(=10.2\) & 7.6 & 0.510 & 0.501 & 37CE．O & 11.1 & \(=0.3\) & 30．8 & 69.5 & 21.4 \\
\hline 1 & \(\checkmark\) & 1－0u & 2ul & 20500 & 219.9 & 8.5 & 0.226 & 0.501 & 3781.3 & 12.6 & 43.9 & 27.0 & 71.5 & 15.3 \\
\hline 7 & \(y\) & 17.0 & cuos．l & 273.0 & ¢28．4 & S． 4 & C． 24.2 & C． 561 & 3757．6 & 14.1 & 60.1 & 23.1 & 73.2 & －．9 \\
\hline
\end{tabular}

\section*{G. 3 Program for Highest System \\ Frequency Calculation}

This program is coded for calculating the highest frequency of the engine-HST system model (refer to Chapter VII). The definitions of the derived coefficients used in the program were presented in Table XIII.
        KEAL \(\quad C, M C, K 1, K 2, K 3, K Y, K F, K y\)

    1 CA: (),CE:S), CC:4),CCFA:S), (CFE: 5 ), COFD: \& , FOCTRASEI,
    2 FCCIIA(5), FCCTEE(4),FCETIG(4),FCCTFD(3),FCCTIC(3).FFEQ(12)
C SPECIFY CFCEFS CF FCLYNCMIALS ANC
                NUNGER CF CFERAIIAG FCINTS
c-m
        \(N A=5\)
        \(M B=4\)
        \(M D=3\)
        \(A F=31\)
        \(M A O=M A+M B\)
        \(M A E C=M A B+M D\)
\(\mathrm{C}-\mathrm{m}\)
C
\(\mathrm{C}-\mathrm{m}\)
    SFECIFY SYSTEM CCASTANTS ANC fAFAMETEFS
\(G F=3.7\)
        \(G N=1 \cdot 5\)
        \(D F N=C .323\)
        DMF=C.501
        \(C \leq P=4 . E-S\)
        \(C S M=4 . E-9\)
        \(C F F=0.05\)
        CFN = C.C5
        \(C D F=2.5 E 5\)
        CDM = こ. 5E5
        PMU \(=\) §. \(75 E-\epsilon\)
        FHC=1.12E-7
        \(B=2\) - \(\mathrm{E} E 5\)
        \(V O L=\& 4.43\)
        \(J C=C .18\)
        K1=45E。37
        \(K \Sigma=C . S 4\)
        \(K 3=1 \mathrm{C} \cdot 9\)
        \(w=17 C \mathrm{C}\) 。
        MC=4.5ころ
        \(A=2552\) 。
        \(R=120\)
        AS \(=0.01\)
        \(B S=1760\).
        \(C A=C .35\)
        TY=8.E-3
        \(T D=75.0 E-3\)
        \(K Y=1 \Sigma .22\)
        \(K P=3.23\)
        \(K M=5.01\)

```

vojs
0040
0040
0040
0040
0040
0040
0040
0040
0040
0040
00こ0
UOつ1
0002
v0:3
OUま゙4
00コつ0
O

* }
% %00

```

```

uvou
0001
0002
0003
00c4
0uOs
0000
0vO}
0000
0009
0070
0071
0072
@u73
0\cup74
0075
0076
0077
0078
u\cup7y
0
uvふ\&
0)2
0003
0004
S
\0
UUOO
00s7
0003
uusy
*
K=(,NF)
c

```

0040

C
ALFHAI＝ALFHAO（K）
SEI＝SEO \((X)\)
UFI＝（FO：K）
DNI＝（NO：K）
\(P I=P(: K)\)
\(V I=V O\{K)\)
C－－－－－
C CALCllate defived anc ifansfer flacticn ceffficients．
C－－
TI＝KミノSEI
SFI＝SEI／GD
SHI＝CN／R＊VI
ALFHAI＝0． \(017453 * A L F F A I\)
E1＝OHi＋CFP＊OFM
\(E 2=0: I-C F N * O M M\)
E \(3=C\) CP＊PNL＊DFM
E4＝C［M末DMU\＃OMM
ES＝V：L／日
\(E \in=(C S P * D F N+C S M * C N M) / F M U\)
\(E 7=\| A S / B S+C A * R\) ro \(\# A * V I\)
\(E 8=n *\) COS：ALPトAI）
ES＝K
E10＝E7＋E4＊：GM／F）＊＊2
E11＝EE＊F／GN
E1こ＝E

El4＝ES＊SPI－FI＊OFI／GF／GP
E15＝E2＊GM＊OM1／R
E16＝E2＊K1＊OFI／GF
E17＝ES\＃JC＊MC＊RノGN
E18＝F／GM\＃：E12\＃N（＋E 18 E10＊JC）
E19＝F／GM＊\｛E13＊NC＋E1C＊E12＋E15＊JC＊CM／R\}
E20＝〒／GM＊（E1C＊E13＋ES＊E1S＊GM／F）
E21＝E2＊JC＊SFI
Eころ＝E2＊
E2コ＝E
E24＝E12＊～1－E2＊JC＊SNI
E25＝E13＊PI－E2＊EG\＃SMI
\(E 20=E E \neq E 11 * J C\)
E27＝E11＊E12
Eス8＝E11＊E13
E29＝E16＊KY
E30＝E17＊TY
Eミ1＝E18＊TY＋E17
Eさ2＝E19＊TY＋E13
Eココ＝E20＊TY＋E1S
OA：1）＝E20
CA： 2\()=E 20\)＊TItE33
OA（ O\()=E 33\)＊TI＋E32
```

60%0
00s1
Uu>2
OUッ3
ルロジ
N0yう
U0YO
0077
Ou`8
J0F%
0100
0101
0102
010J
0104
0105
0100
0107
0108
0839
0110
4112
0112
0113
0114
0125
0110
0117
0118
011%
01<0
01<1
0122
0123
0124
0125
0126
01<7

```
```

 OA:4)=E32*TI+E3\
    ```
    OA:4)=E32*TI+E3\
    CA! ¢J=Eこl#TItEJC
    CA! ¢J=Eこl#TItEJC
    OA:E)=E30*TI
    OA:E)=E30*TI
    DG(1)=E20
    DG(1)=E20
    CE{21=E2J*TOHE1S
    CE{21=E2J*TOHE1S
    DE{3)=E\&*IOtE!%
    DE{3)=E\&*IOtE!%
    DE(4)=E\ع#TD+E!7
    DE(4)=E\ع#TD+E!7
    CE:5)=E17*TC
    CE:5)=E17*TC
    OO:1)=E2O
    OO:1)=E2O
    OD{E!=E19
    OD{E!=E19
    DC:3J=E18
    DC:3J=E18
    JO(4)=E17
    JO(4)=E17
C---- CCMFLTE THE FCCTS CF CHARACTERISTIC EQUATIONS
C---- CCMFLTE THE FCCTS CF CHARACTERISTIC EQUATIONS
C----
C----
    CALL POLRT(CA,CCFA,NA.FCOTRA, TCCTIA,IERA)
    CALL POLRT(CA,CCFA,NA.FCOTRA, TCCTIA,IERA)
    CALL FCLGTICE,CCFE,NE,FCCTRE,FCLTIE,IERE)
    CALL FCLGTICE,CCFE,NE,FCCTRE,FCLTIE,IERE)
    CALL POLRT(DD,CCFD,MD,FCCTRC,FCETIC,IERC)
    CALL POLRT(DD,CCFD,MD,FCCTRC,FCETIC,IERC)
C----
C----
C IS THERE ANY EFFCF?
C IS THERE ANY EFFCF?
C----
C----
    IF:IERA.GT.OJ GCTO 90
    IF:IERA.GT.OJ GCTO 90
    IF:IERB -GT. OJ GC TC YC
    IF:IERB -GT. OJ GC TC YC
    IF&JEQD.GT. OI GC TC SC
    IF&JEQD.GT. OI GC TC SC
c-m---
c-m---
C calcllate ire crafactefistic ffeguencies
C calcllate ire crafactefistic ffeguencies
c----
c----
DC 3C I=1,NA
DC 3C I=1,NA
    3O FREQ(I)=SGFT(GCCTFA(I)*#2+F(CTIA(I)**2)
    3O FREQ(I)=SGFT(GCCTFA(I)*#2+F(CTIA(I)**2)
        DC 40 I=1,M8
        DC 40 I=1,M8
        N1=mA+1
        N1=mA+1
    40 FREG(N1)=SGRT(FCCTFE(I)**2+FCCTIE(I)**2)
    40 FREG(N1)=SGRT(FCCTFE(I)**2+FCCTIE(I)**2)
        DC 50 1=1,MD
        DC 50 1=1,MD
        N2=*AB+1
        N2=*AB+1
    5u FREG(N2)=SGRT:RCCTRC:I)**2+G(CTIDRI)**2)
    5u FREG(N2)=SGRT:RCCTRC:I)**2+G(CTIDRI)**2)
C-----
C-----
C SEAFCH THE MIGREST FFEGLENCY
C SEAFCH THE MIGREST FFEGLENCY
c--m
c--m
        FMAX=FEEQ(1)
        FMAX=FEEQ(1)
        DO ECI=2.NABD
        DO ECI=2.NABD
        OU IF{FFEQ{I\ GT. FMAXI FNAX=FFEG{I!
        OU IF{FFEQ{I\ GT. FMAXI FNAX=FFEG{I!
        FNAX=FMAX/Ó.283
        FNAX=FMAX/Ó.283
        C-MRINT INITIAL CENDITIONS AND THE HIGHEST FREQLENCY
        C-MRINT INITIAL CENDITIONS AND THE HIGHEST FREQLENCY
C----
C----
        WFITE(G.7C) ALPHAC(K),SEI,DFI,CEI,FI,VI,FNAX
        WFITE(G.7C) ALPHAC(K),SEI,DFI,CEI,FI,VI,FNAX
    7J FCFNAT:SX,F4.2.4X,FE.1.E:4X,FE.З).4X.FG.1.2(4X,FE.1))
    7J FCFNAT:SX,F4.2.4X,FE.1.E:4X,FE.З).4X.FG.1.2(4X,FE.1))
    80 CCNTINUE
    80 CCNTINUE
        GC IC 110
        GC IC 110
    C-MFINI EFFCF MESSAGES
    C-MFINI EFFCF MESSAGES
    C PFINI EFFCF NESSAGES
    C PFINI EFFCF NESSAGES
    OU WFITE{G.100) IEFA.IEFE, IERD
    OU WFITE{G.100) IEFA.IEFE, IERD
    100 FCRMAT(3X.'IERA='.13.'IERE='.13.'IERD=0.,13)
    100 FCRMAT(3X.'IERA='.13.'IERE='.13.'IERD=0.,13)
    110 STOP
    110 STOP
        EAO
```

 EAO
    ```

\section*{G. 4 Program for Controller Parameters Adjustment}

This program is used for \(P 1\) controller parameters adjustment. A brief description of the main program and key subroutines follows.

Main Program

This program is used to read engine performance data, information pertinent to HST, e.g. pump, motor displacements, coefficients and parameters, etc., and vehicle specification data. It is also used to read the number of independent variables which will be optimized, side length and initial estimate of the starting simplex, penalty parameter, implicit constraint and the maximum iteration times for minimization process use. The program specifies the numbers of algebraic and state variables, the lengths of arrays \(X S\) and \(Y S\), and the number of bit for \(A / D\) and \(D / A\) converters. Sampling time interval and integration control parameters, namely, step size, final time also read in this program. System parameters used in subroutine \(F\) are evaluated in this program before the subroutine NELMIN is called.

\section*{NELMIN}

This subroutine is used for the minimization of a function of \(N\) variables. which depends on the comparison of function values at the \((N+1)\) vertices of a general simplex, followed by a replacement of the vertex with the highest value by another point. The simplex adapts itself to the local landscape, and contracts on the final minimum. The program logic has been described in Appendix \(E\).

In the subroutine the reflection, contraction and expansion coefficients are set at \(1.0,0.5\) and 2.0 respectively. These are the values recommended by Neldel and Mead [29] as being best for a general situation.

Subroutine FUNC called by this routine, specifies the objective function. The procedure will be terminated if the number of iterations has exceeded the upper limit ITMAX.

The routine prints out values of parameters, intermediate results and the optimum values of the independent variables obtained on the last iteration.

FUNC

This subroutine is used to calculate the objective function at each acceptable vertex of the simplex. It sets up the initial conditions and adjusts the controller parameters before starting integration. The subroutine specifies a pertinent variable value returned from subroutine INTGRL for the objective function and returns it to routine NELMIN.

The implicit constraint is tested in this routine. If the constraint is violated, the objective function is modified to incorporate the influence of constraint by using the penalty function technique [31], which would deflect the trajectories toward the feasible domain.

Other subprograms, i.e., INTGRL, F, PIC, YSHIFT, FG, etc. are the same as those for program 5.


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{3}{|l|}{C－mens} \\
\hline & & \multicolumn{3}{|l|}{C SUOROUTINE NELMIN} \\
\hline & & C－mes & & \\
\hline ISN & 0002 & \multicolumn{3}{|c|}{SUGROUTINE NELMIN（N，OEL，START，ITMAX）} \\
\hline \multirow[t]{2}{*}{ISN} & 3003 & & REAL ITAE，MITAE & \\
\hline & & \multicolumn{3}{|l|}{C} \\
\hline \multirow[t]{4}{*}{ISN} & 0004 & \multicolumn{3}{|r|}{OIMENSION X（5，4），XCEN（5，4），XREF（5，4），XCON（5，4），XEXT（5，4），} \\
\hline & & \multicolumn{3}{|r|}{} \\
\hline & & \multicolumn{3}{|c|}{2 STARTI 1），UELY1HAITAEG3）} \\
\hline & & \multicolumn{3}{|l|}{\(c\)} \\
\hline \multirow[t]{4}{*}{ISN} & 0005 & \multicolumn{3}{|c|}{} \\
\hline & & \multicolumn{3}{|c|}{1P（4CI，XS（EO），YS（4 OH：TS，H，YUELAY，ITAE，MITAE，PP，} \\
\hline & & \multicolumn{3}{|c|}{2 KEEP ，IEND，NXS，NYS，NBLT：NX：NY} \\
\hline & & \multicolumn{3}{|l|}{\(c\)} \\
\hline ISV & 3000 & \multicolumn{3}{|c|}{DATA AbFA，BETA，GIMA／20．05．2．1} \\
\hline ISN & 0007 & \multicolumn{3}{|c|}{\(N P 1=N+1\)} \\
\hline ISN & 0008 & \multicolumn{3}{|c|}{ITR＝0} \\
\hline \multirow[t]{4}{*}{ISN} & 0009 & \multicolumn{3}{|c|}{IEVAL \(=0\)} \\
\hline & & \multicolumn{3}{|l|}{} \\
\hline & & \multicolumn{3}{|l|}{C CONSTRUCTION OF STARTING SIMPLEX} \\
\hline & & \multicolumn{3}{|l|}{C－ño－} \\
\hline ISN & 0010 & \multicolumn{3}{|c|}{DO \(20 \mathrm{~J}=1 \mathrm{~N}\)} \\
\hline ISN & 2011 & \multicolumn{3}{|c|}{TEMP＝STARTIJ）} \\
\hline 15＊ & 3012 & \multicolumn{3}{|l|}{－ \(20201=1, Y P_{1}\)} \\
\hline ISN & 0013 & \multirow[t]{2}{*}{20} & \multicolumn{2}{|l|}{X（1，J）\(=\) TEMP} \\
\hline ISN & 0014 & & \multicolumn{2}{|l|}{\(0030 \mathrm{I}=1, \mathrm{~N}\)} \\
\hline \multirow[t]{4}{*}{ISN} & 0015 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(C=00^{30-0} \times(I, I)=x(I, I)+D E L(I)\)}} \\
\hline & & & & \\
\hline & & \multicolumn{3}{|l|}{\(C\) PRINT PARAMETERS} \\
\hline & & \multicolumn{3}{|l|}{C－ローーが：} \\
\hline ISN & 0016 & \multicolumn{3}{|c|}{WRITEI6，701} \\
\hline ESN & 3017 & \multicolumn{3}{|c|}{70 FORMATI／，3X，＂PARA METERS＊} \\
\hline ISN & 3018 & \multicolumn{3}{|c|}{WRITEIS．301 NOI I，DELIII，I＝L，NI：A．FA，UETA GAMA} \\
\hline ISN & 0019 & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline ISN & 0020 & \multicolumn{3}{|c|}{WRITEイ6．901 PP，MITAE} \\
\hline \multirow[t]{6}{*}{ISN} & 3021 & \multicolumn{3}{|c|}{} \\
\hline & & \multicolumn{3}{|l|}{C－－0－a！} \\
\hline & & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{evaluate the objective function at each point}} \\
\hline & & & & \\
\hline & & \multicolumn{3}{|l|}{C OETERMINE THE GEST ANO THE WORST POINTS} \\
\hline & & \multicolumn{3}{|l|}{} \\
\hline ISN & 2022 & \multicolumn{3}{|c|}{\(0055 \mathrm{I}=2, \mathrm{NPI}\)} \\
\hline ISN & 0023 & \multicolumn{3}{|c|}{CALL FUNC（I，X，L（I））} \\
\hline ISN & 0024 & \multicolumn{3}{|c|}{AITAE（I）＝ITAE} \\
\hline ISN & 5025 & \multicolumn{3}{|c|}{IEVAL＝IEVAL +1} \\
\hline I5＊ & 0026 & \multicolumn{3}{|c|}{55 こONTINJE} \\
\hline ISN & 0027 & \multirow[t]{2}{*}{130} & \multicolumn{2}{|l|}{2LO＝く（1）} \\
\hline ISN & 0028 & & \multicolumn{2}{|l|}{\(2 H I=\langle 111\)} \\
\hline ISN & 0029 & \multicolumn{3}{|c|}{\(L=1\)} \\
\hline ISN & 0030 & \multicolumn{3}{|c|}{\(K=1\)} \\
\hline ISY & 0031 & \multicolumn{3}{|c|}{\(001401=2 \cdot N P 1\)} \\
\hline ISN & 0032 & \multicolumn{3}{|c|}{IFIZII）GE：ZLOI GOTO 135} \\
\hline
\end{tabular}
```

ISV 2034
ISN 0035
ISN 0030
ISN 0038
ISY 0039
ISM 0040
ISN 0O41
ISN 0042
ISN OO43
ISN 0044
IS y 0045
ISN 0046
ISN 0047
ISN 5048
ISN 3049
ISN 0052
ISN 0053
ISN 0054
ISN }005
I5* 0057
ISN 005S
ISN 0059
ISN }006
ISN 0061
ISN 3062
IS 4 0063
ISN 0064
ISN 0065
ISN 0066
ISN 0067
ISN 0068
ISN 0070
IS4 3071
ISN 0072
ISN 0074
ISN 2075
15 V 0077

```
```

 2LO= L|I|
    ```
        2LO= L|I|
        1=1
        1=1
        135 1FIZII) LE: 2HIN GO TO 140
        135 1FIZII) LE: 2HIN GO TO 140
        \angleHI=\angleCI)
        \angleHI=\angleCI)
        K=I
        K=I
        140 CONTINUE
        140 CONTINUE
        ITR=ITR+I
        ITR=ITR+I
co-i=*
co-i=*
C PRINT THE INTERMEOIATE RESULTS
C PRINT THE INTERMEOIATE RESULTS
C-0-OV
C-0-OV
        -*RITE\5,150) IT R:IEVAL
        -*RITE\5,150) IT R:IEVAL
    150 FOKMATG//:3X, 'ITERATION NUMBER',I 3.*, EVALUATION *,
    150 FOKMATG//:3X, 'ITERATION NUMBER',I 3.*, EVALUATION *,
        * 'NUMGER.,I3)
        * 'NUMGER.,I3)
            00 100 J=1,NP1
            00 100 J=1,NP1
    160 WRITE(5,165) (J,IgX(J:I), I= 1;N)
```

 160 WRITE(5,165) (J,IgX(J:I), I= 1;N)
    ```


```

 00 170 I=1,NP1
    ```
            00 170 I=1,NP1
    170 WRITE(G,180) I, ZIIJ,I,AITAESI)
```

 170 WRITE(G,180) I, ZIIJ,I,AITAESI)
    ```


```

 * 1PEIO.3)
    ```
        * 1PEIO.3)
C-\infty-\infty-*:
C-\infty-\infty-*:
C NAS THE SPECIFIED NUMBER OF ITERATIONS REACHED ?
C NAS THE SPECIFIED NUMBER OF ITERATIONS REACHED ?
C=0-0.7
C=0-0.7
        IFIITR,GEOITMAXI GO TO 400
        IFIITR,GEOITMAXI GO TO 400
C--\infty--7:
C--\infty--7:
C calculate the centroid of the Simplea vertices
C calculate the centroid of the Simplea vertices
C.. EXCEPTING THE MORST HOINT
C.. EXCEPTING THE MORST HOINT
C\therefore=0.-i
C\therefore=0.-i
            DO 220 J=1,N
            DO 220 J=1,N
            SUM=0.
            SUM=0.
            OO 210 I= 1,NP1
            OO 210 I= 1,NP1
            IF(I*EU*K) GO TO 210
            IF(I*EU*K) GO TO 210
            SUM=SUM+KII,J)
            SUM=SUM+KII,J)
    210 CONTINUE
    210 CONTINUE
            KCEN(K,J)=SUM/FLJAT(N)
            KCEN(K,J)=SUM/FLJAT(N)
    220 AXCEN(K,J)=\BS(XEEN(K,J):
    220 AXCEN(K,J)=\BS(XEEN(K,J):
C=0-0.0
C=0-0.0
C REFLECTIUN THROUGH THE EENTROID
C REFLECTIUN THROUGH THE EENTROID
Cがーのーロ゙
Cがーのーロ゙
            00 240 J=1,N
            00 240 J=1,N
            XREFIK,J)=XCENKK, JI+ALFAF(XCENI K, J)=X{K,JI)
            XREFIK,J)=XCENKK, JI+ALFAF(XCENI K, J)=X{K,JI)
    240 AXREF(K.J)=ABS{X२EF(K.JO)
    240 AXREF(K.J)=ABS{X२EF(K.JO)
            CALL FUNEIK,AXREF,YI
            CALL FUNEIK,AXREF,YI
            ZREF=Y
            ZREF=Y
            RITAE=ITAE
            RITAE=ITAE
            IEVAL=IEVAL+I
            IEVAL=IEVAL+I
C--\infty-*!
C--\infty-*!
C EXTENSION, RETAIM REFLECTION OR CONTRACIION?
C EXTENSION, RETAIM REFLECTION OR CONTRACIION?
C-O-O-*
C-O-O-*
            IF\LREFOLT.ZGLJ)GO TO 355
            IF\LREFOLT.ZGLJ)GO TO 355
            J=0
            J=0
            00 250 I=S,NP1
            00 250 I=S,NP1
            IF(Z(I) ,GT: ZRE=) J=J+1
            IF(Z(I) ,GT: ZRE=) J=J+1
    250 CONTINUE
    250 CONTINUE
            IFIJ.EO. O) GO TO 250
            IFIJ.EO. O) GO TO 250
            IFIJ ©G「.. 1) GJ [.0 365
            IFIJ ©G「.. 1) GJ [.0 365
C-0ー日が:
C-0ー日が:
C CONTRACTION ON THE REFLECTION SIDE OF THE CENTKOID
```

C CONTRACTION ON THE REFLECTION SIDE OF THE CENTKOID

```
C-\infty-\infty-*:
C-\infty-\infty-*:
    255 x(K,J)=XREF(x,v)
    255 x(K,J)=XREF(x,v)
C=*-*-:
C=*-*-:
C CGNTRAETIC ON THE mURST POINT SIDE OF THE CENTROID
C CGNTRAETIC ON THE mURST POINT SIDE OF THE CENTROID
C-m-m-*
C-m-m-*
    260 DO 270 J=1,N
    260 DO 270 J=1,N
            XCUN&KOJ)=ACEN(K,J)+BETA*(X(K,J)O-XCEN(K,J))
            XCUN&KOJ)=ACEN(K,J)+BETA*(X(K,J)O-XCEN(K,J))
    270.axCON(K,U)=ABS\X:1ON(K:N)!
    270.axCON(K,U)=ABS\X:1ON(K:N)!
            CALL FUNC(K,AXSOV,Y)
            CALL FUNC(K,AXSOV,Y)
            ZCON=Y
            ZCON=Y
            CITAE=LTAE
            CITAE=LTAE
            IEVAL=IEVAL+1
            IEVAL=IEVAL+1
            IF(2CON.LE.2(KJ)GO TO 340
            IF(2CON.LE.2(KJ)GO TO 340
C^ーロージ:
C^ーロージ:
C . CONTRACT mHOLE SIMPLEX
C . CONTRACT mHOLE SIMPLEX
C-0-0-0,
C-0-0-0,
            O 320 J=10N
            O 320 J=10N
            OO 320 I= 1,NP1
            OO 320 I= 1,NP1
            x(L,j)=(x(I) J)+x(Ls, \)*0.5
            x(L,j)=(x(I) J)+x(Ls, \)*0.5
    320 AXII,J)=ABS(X(I,J)\
    320 AXII,J)=ABS(X(I,J)\
            OO 330 I=1,NP1
            OO 330 I=1,NP1
            IFSI EO..LI GO TO 330
            IFSI EO..LI GO TO 330
            CALL FUNC(I,AX,<CI!)
            CALL FUNC(I,AX,<CI!)
            AITAEIII=IT苙
            AITAEIII=IT苙
            IEVAL=IEVAL+I
            IEVAL=IEVAL+I
        330 CONTINJE
        330 CONTINJE
            GO TO 130
            GO TO 130
    340 00 350 J=1,N
    340 00 350 J=1,N
    350 x(K&N)=xCON(K,J)
    350 x(K&N)=xCON(K,J)
            2(A)=2CON.
            2(A)=2CON.
            AITAE{K)=CITAE
            AITAE{K)=CITAE
            GO TO 130
            GO TO 130
    C SUCCESSFUL REFLEETION: SO EXTENSION
    C SUCCESSFUL REFLEETION: SO EXTENSION
    C0-me.:
    C0-me.:
    355 DO 360 J=1,N
    355 DO 360 J=1,N
            XEXT(K;JI=XCENYK,J)+GAMA*(XREF(K,J)=XCENIK,J!)
            XEXT(K;JI=XCENYK,J)+GAMA*(XREF(K,J)=XCENIK,J!)
    360 AXEKT(K,JI=ABS(XEXT(K,J))
    360 AXEKT(K,JI=ABS(XEXT(K,J))
            ZALL FJYE(K,AXEXf,gY)
            ZALL FJYE(K,AXEXf,gY)
            ZEXT=Y
            ZEXT=Y
            EITAE=ITAE
            EITAE=ITAE
            IEVAL=IEVAL+1
            IEVAL=IEVAL+1
    C-\infty=-0.!
    C-\infty=-0.!
    C RETAIN EXTEYSIJN OR REFLEETION ?
    C RETAIN EXTEYSIJN OR REFLEETION ?
    C-\infty-\infty-0:
    C-\infty-\infty-0:
            LF\2EXTOLT.ZREFI GO TO 380
            LF\2EXTOLT.ZREFI GO TO 380
    365 DO 370 J=1,N
    365 DO 370 J=1,N
    370 K(K,v)=XREF(K,J)
    370 K(K,v)=XREF(K,J)
            Z(K)=2REF
            Z(K)=2REF
            AITAE|XI=RITAE
            AITAE|XI=RITAE
            GO TO 130
            GO TO 130
    C-\infty-0.!
    C-\infty-0.!
    C RETAINEXTENSIJN
    C RETAINEXTENSIJN
    C-\infty-\infty-!
    C-\infty-\infty-!
    380 00 390 J=1:N
    380 00 390 J=1:N
    390 x(x,\mp@code{)= XEXT(K,J)}
    390 x(x,\mp@code{)= XEXT(K,J)}
    <(K)= ZEXT
    <(K)= ZEXT
\(\begin{array}{ll}\text { ISN } 0124 \\ \text { ISN } & 3123\end{array}\)
        AITAEGKI=EITAE
        AITAEGKI=EITAE
        GOTO 130
        GOTO 130
    C PRINT THE OPTIMUM VALUES OF THE FUNCTION AND VARIABLES
    C PRINT THE OPTIMUM VALUES OF THE FUNCTION AND VARIABLES
    C"=0ご
    C"=0ご
    400 WRITE&5,430) ITR: LLO
    400 WRITE&5,430) ITR: LLO
    430 FOKMATIH/P3X, 'AFTER •,I2,' ITEPATIOVS,",
    430 FOKMATIH/P3X, 'AFTER •,I2,' ITEPATIOVS,",
        *//,3X,*THE IMPROVED VALUE OF F x*,2PE10.3)
        *//,3X,*THE IMPROVED VALUE OF F x*,2PE10.3)
        MRITE(6:440)
        MRITE(6:440)
    440 FORMATA/: 3x, "IMPROVED VALUES OF VARIABLES'I
    440 FORMATA/: 3x, "IMPROVED VALUES OF VARIABLES'I
        DO 45O I=1:N
        DO 45O I=1:N
    450 MRITE(6,460) IOXIL:I)
    450 MRITE(6,460) IOXIL:I)


        RETURN
        RETURN
        ENU
        ENU

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\(N=4\)} \\
\hline \multicolumn{2}{|l|}{OEL(1) \(=0.03\) DE} & DEL2 \({ }^{\text {a }}=\) & 1.10 & \multicolumn{2}{|l|}{DELS 3 \% 0.68} & \multicolumn{3}{|l|}{DEL \(41=00.34\)} \\
\hline ALPHA \(=1.0\) & \multicolumn{2}{|l|}{BETA \(=0,05\)} & \multicolumn{3}{|c|}{GAMMA \(=2.0\)} & & & \\
\hline \(P P=1, D O E-\) & 03 M & \multicolumn{4}{|l|}{MIT15 3. \(205+04\)} & & & \\
\hline ITERATION & NUMBER & 1. & \multicolumn{2}{|r|}{EvALUATION} & N NUMBER & \multicolumn{2}{|l|}{5} & \multirow[b]{2}{*}{5.00} \\
\hline X 13, 1) \(=\) & 0.35 & X11,2 & \(=18\) & . 20 x & \(\times 12,31=\) & 1.00 & x 1 1,41 & \\
\hline \(x(2,1)=\) & 0.33 & x 42,2 & \(=1\) & \(30 \times\) & \(\times(2,3)=\) & 1.00 & x 20.41 & 5.00 \\
\hline \(x(3,1)=\) & 0.33 & \(\times 13.2\) & \(=1\) & \(20 \times\) & \(\times 13,31=\) & 1.68 & x \(3=41\) & 5.00 \\
\hline \(x(4,1)=\) & 0.33 & xit, 2 & \(=18\) & \(20 \times\) & \(x(4,3)=\) & 1.00 & x14.41 & 4. 66 \\
\hline \(x(5,1)=\) & 0.33 & x 15,2 & \(=2\) & \(20 \times\) & \(x(5: 3)=\) & 2.00 & x15,41 & 5.00 \\
\hline \(F(1)=4.7\) & \(30 E+00\) & & AEC1 & \(=2.85\) & \(56 E+04\) & & & \\
\hline \(f(2)=4.7\) & 708E+00 & & AEC 2 & \(=3.01\) & \(135+04\) & & & \\
\hline \(F(3)=4.7\) & 44E+00 & & AES3 & \(=2.85\) & \(575+04\) & & & \\
\hline \(F(4)=4.7\) & \(37 E+00\) & & AEA 1 & \(=2.88\) & 80ミ+04 & & & \\
\hline \(F(5)=4.7\) & \(747 E+00\) & & TEIS & \(=2.87\) & 7E. +04 & & & \\
\hline ITERATION & NUMBER & 2, & Ev & UATIDV & V VUMBE? & 6 & & \\
\hline \(x(1,1)=\) & 0.30 & \(x<1,2\) & \(=1\) & \(75 \times\) & \(x(1,3)=\) & 2.34 & x 61.40 & *. 83 \\
\hline \(x(2,1)=\) & 0.33 & x 12,2 & \(=1\) & \(30 \times\) & \(\times 12.31=\) & 1. 00 & X 2,41 & 5.00 \\
\hline \(\mathrm{X}(3,2)=\) & 0.33 & x13,2 & \(=18\) & \(20 \times\) & \(x(3,3)=\) & 1.68 & xt 3,41 & 5.00 \\
\hline \(x(4,11=\) & 0.33 & X14, 2 & \(=-1\) & \(20 \times\) & \(\times(4,3)=\) & 1.00 & x 4,4, & 4. 65 \\
\hline x \(5: 11=\) & 0.33 & x45:2 & \(=1\) & \(20 \times\) & \(\times(5,3)=\) & 1.00 & x 5 , 4i & 5:00 \\
\hline \(F(1)=4.7\) & \(18 E+00\) & & AES 1 & \(=2.95\) & \(555+04\) & & & \\
\hline FS2: \(=4.7\) & 708E+00 & & AE6 2 & \(=3.01\) & \(13 \mathrm{E}+04\) & & & \\
\hline \(F(3)=4.7\) & +4E+00 & & AES 3 & \(=2.85\) & \(57 E+04\) & & & \\
\hline \(F(4)=407\) & \(37 E+00\) & & AEI4 & \(=2.88\) & \(80 E+04\) & & & \\
\hline \(F(5)=4.7\) & 74E+00 & & AEIS & \(=2 \cdot 87\) & 7 7E + 04 & & & \\
\hline ITERATION & NUMEER & 3, & & UATION & N NUMBER & 8 & & \\
\hline \(x(101)=\) & 0.30 & \(x<1,2\) & \(=1\) & \(75 \times\) & \(x(1,3)=\) & 1.34 & x(1,4) & 4. 83 \\
\hline x12:11 \(=\) & 0.33 & x62,2 & \(=19\) & \(30 \times\) & \(x(2,3)=\) & 1.00 & x 2041 & S. 00 \\
\hline \(x(3,1)=\) & 0.33 & x13,2 & \(=1\) & \(20 \times\) & \(x(3,3)=\) & 2.68 & x(3,4) & 5.00 \\
\hline X 6 (1) \(=\) & 08.33 & x 4,2 & \(=1\) & \(29 x\) & x44.31 \(=\) & 1.00 & x 4 4,41 & \(4 \% 66\) \\
\hline
\end{tabular}

(Skip 9 iterations)



\section*{G. 5 Program for Simulation}

This program is used to evaluate the system performance and to study the parametric effects on the proposed vehicle drive system. In the MAIN program, engine, HST, and vehicle data are read; system parameters are specified and calculated; initial conditions are set up; and simulation results are plotted. All variables in the MAIN program have the same definitions as those in program 4.

Subprograms used in this program are described as follows:

INTGRL
This is the integration routine which develops the trajectories of the state and the algebraic variables. On the consideration of accuracy and efficiency, the fourth-order Adams Predictor/corrector numerical integration method is used with the fourth-order Runge-Kutta method as a "starting" step.

The variable KEEP is used to indicate when the numerical technique has reached the end of an integration step. KEEP is set equal to 1 when a valid integration step has been completed. For intermediate steps, KEEP is specified to 0. KEEP will be used in subroutine \(F\) as an indicator.

The values of the input vector \(\overline{D Y}\) at any prescribed time are obtained by calling subroutine \(F\). In addition to subroutine \(F\), two other subprograms, CHECK and DELAY, are called each time when a valid integration has been done. CHECK is used to check the hard constraints on the state variables. DELAY is used to simulate the engine transport delay.

The program logic of subroutine DELAY is substantially the same as that of the subprogram YSHIFT (recall section 6.5.2). The only difference is that the sampling time interval used in YSHIFT now is replaced by the step size of integration \(H\).

The trajectories are stored after a prescribed number of integration steps as specified by \(\operatorname{INDEX}\) in line 66. The integration will be terminated by the control parameter IEND in line 83.

\section*{F}

This subroutine contains the dynamic system model (see Chapter IV) in the forms of algebraic equations and first order differential equations. The definitions of variables and parameters used in this subroutine are presented in Table XIV.

The routine evaluates the algebraic variables \(\bar{x}\) and state derivatives \(\overline{D Y}\) based on the state variables \(\bar{Y}\), parameters \(\bar{P}\) and the independent variable time, TT. (Computation procedure was given in Appendix F).

The values of state variables are furnished by the calling routine INTGRL. Parameters and the independent variable are furnished via common storages.

The statement in line 12 allows the algorithms in lines 14 through 41 to be executed only at each sampling instant. This simulates that the data acquisition unit can only sense signals at each sampling time.

The statement in line 13 is used to insure that the same algorithms mentioned earlier can only be executed when a valid integration is performed.
```

A number of subprograms are called in this subroutine; they are:
STEP }->\mathrm{ simulates a step input
AMPULS -> simulates an ideal sampler
SIGIN -> simulates transducer, A/D converter, involves data
scaling
PIC
YSHIFT (see descriptions in section 6.5.2)
FG
SIGOUT -> simulates D/A converter, involves data scaling
ZHOLD -> simulates a zero order hold
LIMIT ;
simulate the crossover control circuit (see section 4.7)
DEADSP
INTERP -> for table lookup and bi-linear interpolation (see Appen-
dix B)

```
\begin{tabular}{|c|}
\hline \(P(1)=G_{p}\) \\
\hline \(P(2)=G_{m}\) \\
\hline \(P(3)=R\) \\
\hline \(P(4)=C_{f p} D_{p m}\) \\
\hline \(P(5)=C_{d p} \mu D_{p m}\) \\
\hline \(P(6)=w a\) \\
\hline \(P(7)=b\) \\
\hline \(P(B)=0.5 C_{a} \quad P \mathrm{~A}\) \\
\hline \(P(9)=W \sin \phi\) \\
\hline \(P(10)=17.6 \mathrm{~V}_{\text {cmax }} / \mathrm{R}\) \\
\hline \(P(11)=S_{\text {lmax }}\) \\
\hline \(P(12)=Y_{\text {max }}\) \\
\hline \(P(13)=S_{\text {emax }}\) \\
\hline \(P(14)=T_{\text {lmax }}\) \\
\hline \(P(15)=T_{\text {emax }}\) \\
\hline \(P(16)=c_{1}\) \\
\hline \(P(17)=\tau_{1}\) \\
\hline \(P(18)=c_{2}\) \\
\hline \(P(19)=\tau_{2}\) \\
\hline \(P(20)=Y I_{\text {min }}\) \\
\hline \(P(21)=D I_{\text {min }}\) \\
\hline \(\mathrm{P}(22)=\mathrm{D}_{\mathrm{pm}}\) \\
\hline \(P\left(23=D_{m m}\right.\) \\
\hline
\end{tabular}
\[
P\left(23=D_{m m}\right.
\]
\[
\begin{aligned}
& P(24)=C_{f m} D_{m m} \\
& P(25)=C_{d m} \mu D_{m m} \\
& P(26)=\tau_{y} \\
& P(27)=\tau_{d} \\
& P(28)=B / v \\
& P(29)=\left(C_{s p} D_{p m}+C_{s m} D_{m m}\right) / \mu \\
& P(30)=J_{C} \\
& P(31)=W_{a} / b \\
& P(32)=M_{c} R \\
& P(33)=K_{3} \\
& P(34)=Y_{i d l e} \\
& X(1)=S_{e} \\
& X(2)=S_{m} \\
& X(3)=V \\
& X(4)=T_{p} \\
& X(5)=T_{e} \\
& X(6)=T_{l s} \\
& X(7)=15 A M P \\
& X(8)=S_{c} \\
& X(9)=S_{c d} \\
& X(10)=S_{l d} \\
& X(11)=Y_{d} \\
&
\end{aligned}
\]

TABLE XIV (Continued)
\begin{tabular}{|c|c|}
\hline \(x(12)=\) Sed & \(x(31)=T_{m}\) \\
\hline \(x(13)=T_{l s d}\) & \(x(32)=T_{l}\) \\
\hline \(x(14)=T_{\text {ed }}\) & \(x(33)=F_{\text {acc }}\) \\
\hline \(x(15)=\Delta S\) & \(x(34)=D_{\text {rp }}\) \\
\hline \(X(16)=Y 1\) & \(x(35)=D_{\text {rm }}\) \\
\hline \(x(17)=Y_{\text {rd }}\) & \(x(36)=r_{e}\) \\
\hline \(x(18)=Y_{s}\) & \(x(37)=H P_{e}\) \\
\hline \(x(19)=T_{o p}\) & \(X(38)=H P_{\ell}\) \\
\hline \(x(20)=\Delta T\) & \\
\hline \(x(21)=D 1\) & \(Y(1)=Y\) \\
\hline \(X(22)=D_{\text {r }}\) & \(Y(2)=D_{p}\) \\
\hline \(X(23)=Y_{r_{B}}\) & \(Y(3)=\tilde{D}_{m}\) \\
\hline \(X(24)=Y_{\text {rh }}\) & \(Y(4)=P\) \\
\hline \(X(25)=Y_{r}\) & \(Y(5)=S_{p}\) \\
\hline \(x(26)=D_{r a}\) & \(Y(6)=S_{2}\) \\
\hline \(X(27)=D_{r h}\) & \(Y(7)=f\) \\
\hline \(x(28)=D_{r}\) & \(x(8)=L\) \\
\hline \(x(29)=T_{\text {cut }}\) & \(x(9)=1 T A E\) \\
\hline \(x(30)=D_{m}\) & \\
\hline
\end{tabular}

```

0033
0us4
J035
0036
0037
0038
0039
0 0 4 0
MC=4. ミ33
w=17CO.
A=2552.
AS = O.Cl
CA=0.35
FHC=1.122E-7
ALPHA=0.
VCMAX=45.
C-----
C Sfegify the numeef cf algegfaic vafiagles.
C THE NUMBER OF STATE VA?IABLES.
C THE LEAGTH CF AFFAY XS, USED 8Y CELAY,
C THE LENGTH CF AFRAY YS. USED EY YSHIFT.
C THE NUMBER CF BITS FCR A/D AND D/A CONVERTEFS
0041
00+2
0043
0044
0045
C046
0047
0048
0049
0050
0051
00ゝ2
053
0054
0055
005%
0057
0uj8
059
0 0 0 0
0061
0062
0003
00j4
0005
0000
0007
0008
0057
0.70
0071
0072
0073
0074
NX=3E
NY=9
AXS=\varepsilon0
NYS=40
NYS=40
C----- SFECIFY SANPLING INTERVAL ANC INTEGRATICA
C CCNTFOL PARAIAETERS
C-----
TS=0.004
H=0.CO2
TF=150.
IEND =TF/H+.S
c-----
C SPECIFY, CALCULATE SYSTEM JAFAMETERS
C-\infty-\infty
P(1)=3.7
P{2)=1.5
P(3)=12.
P{4}=CFP*DFM
P(S)=CDP*FMU*OFN
P(E)=AS*W
P(7)=1750.
P(q) =C. 5*CA*RHC*A
P(S)=W*SIN(O.0174E E\#ALPHA)
O(10)=17.6*V(MAX/P:Z)
P(11)=\epsilont*
P{12}=70.
F(13)=315.
P(14)=2\inEO.
P(15)=3)0.
P(1E)=0.327
P(1\epsilon)=0.327
O(17)=20.3
P:18)=1.12
P(19)=4.3
P(2) =0.1575
P{21)=0.
P(22)=DEM
P(23)=0мM
F{24)=(FM*СMM
P(25)=C)M*FN(*)NM

```
C SPECIFY VEHICLE SPECIFICATICA DATA
\(C\)
\(C-\)
```

0075
0097
J0%8
00s9
0 1 0 0
0102
0102
0 1 0 3
0104
0 1 0 5
0 1 0 6
0107
0128
0109
0110
0111
0112
0113
0114

```
```

 p{2&)=8.0E-3
    ```
    p{2&)=8.0E-3
    P:こ7)=75.\epsilonE-3
    P:こ7)=75.\epsilonE-3
    P:28)=E/VCL
    P:28)=E/VCL
    P(29)={CSP*OFN+CSM*CNM\/FMU
    P(29)={CSP*OFN+CSM*CNM\/FMU
        D(こ0)=\.0
        D(こ0)=\.0
        P:31)=P(6)/P(7)
        P:31)=P(6)/P(7)
        P(32)=MC*P(3)
        P(32)=MC*P(3)
        P(33)=10.S
        P(33)=10.S
        P{34)=0.167
        P{34)=0.167
c-----
c-----
C SET LP INITIAL CONDITICNS
C SET LP INITIAL CONDITICNS
C-----
C-----
        DC 20 I=1.Ax
        DC 20 I=1.Ax
        20 X(I)=0.
        20 X(I)=0.
        OC 22 I=1,AY
        OC 22 I=1,AY
        22 Y(I)=0.
        22 Y(I)=0.
        X{15)=P{20)
        X{15)=P{20)
        X(17)=P(20)
        X(17)=P(20)
        Y(1)=P{34)
        Y(1)=P{34)
        Y(5)=18.92
        Y(5)=18.92
        YDELAY=P(34)
        YDELAY=P(34)
        DO 24 I=1,NXS
        DO 24 I=1,NXS
    24 xS{1)=P{34}
    24 xS{1)=P{34}
        DO 2E I=1,NYS
        DO 2E I=1,NYS
    20 YS:1:I=0.13E7
    20 YS:1:I=0.13E7
c-----
c-----
C PFINT ENGINE PEFFCFMANCE DATA anc
C PFINT ENGINE PEFFCFMANCE DATA anc
C OPTIMUM OPEFATING SCHECURES
C OPTIMUM OPEFATING SCHECURES
C-----
C-----
    WPITE(6.40)
    WPITE(6.40)
    40 F(FN&T:1H1)
    40 F(FN&T:1H1)
        CALL TABLEGECATA1.TFFCT1,SEEAT1.15.9.TITLEA." Y*.
        CALL TABLEGECATA1.TFFCT1,SEEAT1.15.9.TITLEA." Y*.
        * ! SE',9,FORMA1,FCFMA2,FCRMA3?
        * ! SE',9,FORMA1,FCFMA2,FCRMA3?
        CALL TAELEiEcATA2,SE[AT2,TECATA.10,11,TITLEE.* SE*.
        CALL TAELEiEcATA2,SE[AT2,TECATA.10,11,TITLEE.* SE*.
        * * TE'.11, oFCRNEI,FCFNEZ,FCFNE3:
        * * TE'.11, oFCRNEI,FCFNEZ,FCFNE3:
            WRITE{6.50)
            WRITE{6.50)
    SO FCRMAT:IHO,///, 10X.'TAU'.SX.'DPTEI',5X.'CPTE2',5X.'CPTEZ',
    SO FCRMAT:IHO,///, 10X.'TAU'.SX.'DPTEI',5X.'CPTE2',5X.'CPTEZ',
        * 5X.'OPTE4',5X,'[FTES',EX.'CFTES'.5X.'CPTE7'/9X.75(1H-))
        * 5X.'OPTE4',5X,'[FTES',EX.'CFTES'.5X.'CPTE7'/9X.75(1H-))
        DC 60 I=1,玉1
        DC 60 I=1,玉1
    60 WFITE{(6,70) THF(T2:I),CFTEI (I).,CFTEZ:I),CPTES(I),CPTE4{(I),
    60 WFITE{(6,70) THF(T2:I),CFTEI (I).,CFTEZ:I),CPTES(I),CPTE4{(I),
        * OPTEE(I),OPTEE(I),CPYET(I)
        * OPTEE(I),OPTEE(I),CPYET(I)
        7U FCFNAT:9X,F4.1,7:F10.1))
        7U FCFNAT:9X,F4.1,7:F10.1))
C---\infty-
C---\infty-
            CALL INTGRL(X,Y,T,XF,YP)
            CALL INTGRL(X,Y,T,XF,YP)
c-----
c-----
WRITE(E,&O)
WRITE(E,&O)
    80 FCRMAT: HH1.///, SX, 'TIME', FX,'Y*.1OX.'SE',1OX."TE,.10X,
```

 80 FCRMAT: HH1.///, SX, 'TIME', FX,'Y*.1OX.'SE',1OX."TE,.10X,
    ```


```

 2 'ETE'./.6X.127(1H-))
    ```
            2 'ETE'./.6X.127(1H-))
            OO 32 l=1, 2巨1
            OO 32 l=1, 2巨1
    32 WRITE{6,&4) T:I),YF:I,1),XP(I,1},XP(I, S),YP{I,2),XP(I,30),
    32 WRITE{6,&4) T:I),YF:I,1),XP(I,1},XP(I, S),YP{I,2),XP(I,30),
        #YF(I,&),YP(I,7),YF(I,G),XF(1,IE\,XP(I,20)
```

 #YF(I,&),YP(I,7),YF(I,G),XF(1,IE\,XP(I,20)
    ```


```

 FFD=YP(25C,7)/YP(250.8)
    ```
        FFD=YP(25C,7)/YP(250.8)
        WRITE{6,86) FDD,YP{ (S0,5}
        WRITE{6,86) FDD,YP{ (S0,5}
    80 FCFMAT////.6X, 'FPD= .,1PEIl.3/5X."ITAE= 1,E11.3)
    80 FCFMAT////.6X, 'FPD= .,1PEIl.3/5X."ITAE= 1,E11.3)
C-----
C-----
C ScALE variables and plct trajectr=ies
```

C ScALE variables and plct trajectr=ies

```
0115
0110
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0129
0129
0130
0131
0132
0133
0134
0135
0130

0110 0117 0118 0119 0120 \(01<1\) 0122 0123 0124 0125 0126 \(01<7\) 0123 0129 0130 0131 0132 0153 0134 0135
0136 

C－－－－－
\(0090 \mathrm{~J}=1.250 .2\)
\(k=\{j+2) / 3\)
T1（K）＝T（J）
YY：K，1）\(=X F(J, 3) / 752\) ．

\(Y Y: K, Z)=X P\{J, 291 / \equiv O C\) ．
YY：K，4）\(=X F i J, 371 / 14,32\)
\(Y Y(K, 5)=X P(J, 3 B) / 14.32\)
YY（K，E）\(=Y P(J, 7) / 5, E E\)
ZZ（K，1）＝YF\｛J．1）／70．
\(Z Z(K, 2)=Y P(J, 2) / C .323\)
ZZ（k，3）＝XF：J． \(301 / 0\) ． 501
\(Z Z(K, 4)=Y P(J, 4) / 5 C O C\) ．
\(Z Z(K, E)=X P(J, 1 巨) / \in \in\) 。
Z2（K，（6）＝XF（J．2J）／300．
so CONTINUE
CALL PLOTS（204E，204E）
CALL PLCT：2．0．100．－3）
CALL GFAPHCTI．YY，\＆4．E．＇TINE＇．＇V •．8．O．E．OI
CALL GRAPH（TI，ZZ，E4，E，＇TIME＇，＇Y \(\cdot\) ，EOO，G．C）
STCP
END

\section*{\(\begin{array}{ll}C-\infty-\infty \\ C-\infty & \text { SUEFCUTINE TABLE }\end{array}\)}
 ＊FORMI FORN2，FCRN3）
 （ YLAE（1），FCFN！（4），F（EM2：5），FCRM3：6）
WRITE（E．1O）IITLE
10 FCFNAT：1HO．／／． \(1 \in X, S A 4 / / 1\)
WRITE（G，FCFNI）XLAE．（X\｛I），\(I=1, \Lambda X)\)
WRITE（G，FCRMZ）YLAB
DC \(20 \quad \mathrm{I}=1\) ， NY
20 WFITE（G，FCFN3）Y（I）．（TABDAT（I．」）．」＝1．AX） RETUFN
ENO
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \mathrm{C}---\infty \\
& \mathrm{C}
\end{aligned}
\] & SUBFCUTINE INTGFL \\
\hline & C－－－－ & \\
\hline ついつ1 & & SUBRCUTINE INTGFL\＆XC，YO，T，X，Y） \\
\hline ucuz & & FEAL K1，K2，K3，K4 \\
\hline & \(c\) & \\
\hline 2003 & &  \\
\hline & &  \\
\hline & & 2 OY2（S）．DY3（S），DY4（¢）．DY5（9） \\
\hline & \(c\) & \\
\hline 0004 & &  \\
\hline & &  \\
\hline & &  \\
\hline & C－－－－－ &  \\
\hline & C & CCMPLTE FOUR VALLES EY funge－kltia methed \\
\hline & \[
c---
\] &  \\
\hline 2005 & & \(T \omega=0\) 。 \\
\hline 0036 & & \(T \mathrm{~T}=\mathrm{T}\) \\
\hline 3007 & & KEEF＝1 \\
\hline 0008 & & CALL F（XC，YC，OYE） \\
\hline 0009 & & KEEP \(=0\) \\
\hline 0010 & & \(T(1)=T W\) \\
\hline 0011 & & OO 1 ¢ \(1=1, N x\) \\
\hline 0012 & & X（1，1）\(=\times 0: 1)\) \\
\hline 3013 & & DC \(12 \mathrm{~J}=1 . \mathrm{A} Y\) \\
\hline 0014 & & \(Y(1, J)=Y C(J)\) \\
\hline 0015 & & OY（1，J）＝OYC！J） \\
\hline 0016 & & DC \(34 \mathrm{KK}=2.4\) \\
\hline 0017 & & DC \(26 J=1\) ，NY \\
\hline 0018 & & K1： 1 ） \\
\hline 0019 & 20 &  \\
\hline 0020 & & \(T T=T n+0.5 * H\) \\
\hline 3021 & &  \\
\hline 0022 & & JO \(2 \mathrm{E} J=1\) •AY \\
\hline 0023 & & K2（J）＝H\＃CYO（J） \\
\hline 0024 & 22 &  \\
\hline 0025 & &  \\
\hline 0026 & & DO \(24 \mathrm{~J}=1 . \mathrm{NY}\) \\
\hline 0027 & &  \\
\hline 0028 & 24 & YY（J）\(=Y \subset(J)+K \exists(J)\) \\
\hline 0025 & & \(T \mathrm{~T}=\{\mathrm{KK}-1) \neq H\) \\
\hline 0030 & &  \\
\hline 0031 & & DO 2e J＝1．NY \\
\hline 0032 & 20 &  \\
\hline 0033 & & DO \(2 E J=1\) ，NY \\
\hline 0034 & 23 &  \\
\hline 0035 & & CALL CHECK：YC） \\
\hline 0036 & & KEEP \(=1\) \\
\hline 0037 & & CALL F\｛XO，YO．DYO） \\
\hline 0038 & & KEEF \(=0\) \\
\hline & C－－－－－ & \\
\hline & C & ENGIAE TQANSPOマT TIVE DELAY \\
\hline & C－－－－－ & \\
\hline 0039 & &  \\
\hline 0040 & & YDELAY＝DEL AY：YO： 11. TCELAY） \\
\hline 0041 & & OC \(32 J=1 . A Y\) \\
\hline 0042 & & Y（KK．J）\(=Y\)（ \({ }^{\text {（J）}}\) \\
\hline 0043 & 32 & DY：KK，J）＝OYC：」） \\
\hline
\end{tabular}
```

0074
00+5
0U40
00+7
0040
007%
00
0051
00%
00う3
0054
00う5
0056
0057
U0う8
0059
0060
0061
0062
0003
OCO4
0055
0055
0067
0058
0059
0070
0071
0072
0073
0074
0075
00%76
0077
0073
0079
0030
0081
0082
0003
0004
J035

```
\begin{tabular}{|c|}
\hline \\
\hline 0uJ 1 \\
\hline 0003 \\
\hline 0007 \\
\hline 0005 \\
\hline 0006 \\
\hline 00コ7 \\
\hline 0008 \\
\hline 0009 \\
\hline 0010 \\
\hline 0011 \\
\hline 3012 \\
\hline 0013 \\
\hline 0014 \\
\hline 0015 \\
\hline 0016 \\
\hline 0017 \\
\hline \multirow[t]{2}{*}{0018} \\
\hline \\
\hline 0020 \\
\hline 0021 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 0022 \\
& 0023
\end{aligned}
\]} \\
\hline \\
\hline 0024 \\
\hline \multirow[t]{2}{*}{0025
0020} \\
\hline \\
\hline 0027 \\
\hline 0028 \\
\hline 0029 \\
\hline 0 O 30 \\
\hline \\
\hline 003 \\
\hline
\end{tabular}
    C--N- SUEGCUTINE F
    c-a--
        SLBREUTINE \(F(X, Y\).DY)
        REAL LIHIT.INTEED
        DIMENSICN \(x: 1\) ),Y:1), OY: 1 )
    C

        1. CPTE3:21),CFTE4 (21), OPTE5:21),CPTE6:21),CPTET(21), P(40),
        \(2 X S(E O), Y S(\angle C), T S, H, Y D E L A Y, N X, N Y, N X S, N Y S, N B I T, K E E F\),IEND
        c--ー-
        \(X(1)=F(1) * Y(5)\)
        \(X(2)=P(2) \neq Y(\epsilon)\)
        \(X: 3)=F: 3) * Y: 6)\)
        \(X(4)=(Y(2)+P(4)) \neq Y(4)+F(5) \neq Y(5)\)
        \(x\{5)=x\{4) / P\{1)\)
        \(X(5)=F(3) *(P(6) *:(1+X(3) / P(7))+P(2) * X(3) * x(3)+P(5))\)
        C--m-
        C SAMPLEO
        c-a--
        \(X(7)=A M P U L S(T S)\)
        C——SANFLING CF NCT ?
        IF (X\{7) .NE, 1) GO TO. 10
    -----
    C IS AA INTEGRATICN FERFCFNED?
    C-----
        IF (KEEF •NE 1) GC TC IC
    \(\mathrm{C}-\mathrm{-}\)
C
\(\mathrm{c}-\infty\)
        SENSING AND SCALING SIGNALS
        \(x: e)=P(10) * S T E F(0.0)\)
        \(x(9)=S I G I N\{X(8), p\{11\}\}\)
        X(10)=SIGINiY(5), Pill)
        \(X(11)=S I G I N(Y(1), F(12))\)
        \(X(12)=S I G I N(X(1), P(13))\)
        \(X\{13)=S I G I N(X(6), F(14))\)
        \(x(14)=51 G I A(x(5), P(15))\)
    C- CALCLLATE CCNTFLL ALGEFITHMS
    \(x(15)=x(9)-x(10)\)
    IF:AES(X(15)) •LT. 1.25E-1) \(X(15)=0\).
        CALL P(C(D\{16),P\{17),X(16),P(11),P(20), X(15), X(17))

        IF \((x(10), L T, 1) \times,(15)=F G(x(1 \varepsilon), C F T E 1)\)


        1 X(19)=FG\{X\{19\},(FTE2\}

    2 . \(\quad\) (19) \(=F G(X(19), C P T E 3)\)

    \(3 \times(X 19)=F(\mathbb{X}(13), O P T E 4)\)

    4 X(IS)=FG(X:18),CPTES)

    5
\(X(19)=F G(X(15)\), CPTES \()\)
```

2
0033
0034
J0う5
0030
0037
0033
0039
00+0
0041
0042
00+3
0044
0045
0076
0047
0048
2073
0050
0051
00う2
0053
0 0 5 4
0055
0 0 5 6

```
```

 IF(X(10).GE.1.,ANO. X(13),GE,247C.) X(1G)=FG(X(1E),OPTE7)
    ```
        IF(X(10).GE.1.,ANO. X(13),GE,247C.) X(1G)=FG(X(1E),OPTE7)
        X{20}=x:191-X:14}
        X{20}=x:191-X:14}
        \F(AES{X{20)) ©LT* 4.50E-3) X:20)=0.
        \F(AES{X{20)) ©LT* 4.50E-3) X:20)=0.
        CALL PIC(O(1E),P{19),X:21),F(15),P{21),X{20).,X(221)
        CALL PIC(O(1E),P{19),X:21),F(15),P{21),X{20).,X(221)
    C-----
    C-----
C OUTPLT CCNTFCL SIENALS
C OUTPLT CCNTFCL SIENALS
c----
c----
    x(23)=SIGCUT(x:17),P:11))
    x(23)=SIGCUT(x:17),P:11))
    x:24)=2HCLS(x(7), x(23),x(27))
    x:24)=2HCLS(x(7), x(23),x(27))
        x(25)=x(24)/10つ.
        x(25)=x(24)/10つ.
        x(26)=SIGCLT:X:22),F:15))
        x(26)=SIGCLT:X:22),F:15))
        x(27)=ZHCLC(x(7),x(2E),x(27))
        x(27)=ZHCLC(x(7),x(2E),x(27))
        x(28)=x{27)/50.
        x(28)=x{27)/50.
        1U X{29)=1NTEFP(X:1),YCELAY,EDATAI,35.,0...35..50.9.15)
        1U X{29)=1NTEFP(X:1),YCELAY,EDATAI,35.,0...35..50.9.15)
        X(30)=D(23)-Y(\Xi)
```

 X(30)=D(23)-Y(\Xi)
    ```


```

 x(32)=P{2)*x:31)
    ```
        x(32)=P{2)*x:31)
        x(33)=x(32)/P(3)-D{(も)-P{5)
        x(33)=x(32)/P(3)-D{(も)-P{5)
    c-----
    c-----
    C CROSSOVER CCNTFCLLEF
    C CROSSOVER CCNTFCLLEF
    C----
    C----
        x{34)=1.2755*LIMIT(X:28),0.C794)
        x{34)=1.2755*LIMIT(X:28),0.C794)
        x(35)=0. 2224*DEADSF(x(29).0.0784)
        x(35)=0. 2224*DEADSF(x(29).0.0784)
    C ENGINE EFFICIENCY
    C ENGINE EFFICIENCY
c--\infty--
c--\infty--
        X(3E)={NTERP(X:29), X{1),EDATA2, C*,0.,30. .35.,11.10)
        X(3E)={NTERP(X:29), X{1),EDATA2, C*,0.,30. .35.,11.10)
    C-----
    C-----
    c EnGINE ELTFLT hf
    c EnGINE ELTFLT hf
C----
C----
        x(37)=x{1)*x:29)/(\inЄCO.
        x(37)=x{1)*x:29)/(\inЄCO.
    c-----
    c-----
    C LOAD REOUIRED MP
    C LOAD REOUIRED MP
    c----
    c----
        X(38)=Y(6)*X:6)/6\in00.
        X(38)=Y(6)*X:6)/6\in00.
    c---m
    c---m
        THFCTTLE FCSITION
        THFCTTLE FCSITION
    C-----
```

 C-----
    ```


```

 C--m
    ```
    C--m
    G PUMP DISPLACEMENT
    G PUMP DISPLACEMENT
        OY:2)=(P(22)/0.1 #X(ミ4)-Y(2))/P(27)
        OY:2)=(P(22)/0.1 #X(ミ4)-Y(2))/P(27)
    C-----
    C-----
    C MOTOF DISPLACEMENT
    C MOTOF DISPLACEMENT
    C-\infty-\infty
    C-\infty-\infty
        DY(3)=(P(23)/O.1*X(JE)-Y(3))/口(27)
        DY(3)=(P(23)/O.1*X(JE)-Y(3))/口(27)
    c-----
    c-----
    c HYORALLIC ffESSUFE
    c HYORALLIC ffESSUFE
    C-----
    C-----
        OY(4)=0{28)*{Y(2)*Y(E)-X(\XiO)#X:(2)-P:25)*Y(4))
        OY(4)=0{28)*{Y(2)*Y(E)-X(\XiO)#X:(2)-P:25)*Y(4))
    C-----
    C-----
    C PLMP SPEED
    C PLMP SPEED
    C-----
    C-----
        DY{\Xi)={X(25)-X{5)}/F(30}
        DY{\Xi)={X(25)-X{5)}/F(30}
    C-----
    C-----
    C VEHICLE SPEEC
    C VEHICLE SPEEC
C-----
```

C-----

```

0057

OY：（E）＝0．
IF（X（I）．EG．O．AND．X（33）LE O．OL GC TC 20

\(\square\)
c flel consumptica fate
C－－－－
20 DY：7）\(=X(1) * x: 25) / X: 3 \in)\)


C DISTANCE TFAVELLEC
C－－
\(\operatorname{DY}(\varepsilon)=X(3)\)
C－ー－ー－
C DRIVE SYSTEM FEFFCFMANCE IVCEX
C－－
DY：9）＝TT＊AES（X（15））
RETLFN
END


C－－－
SUBFCUTINE CHE（KPYC）
DIMENSION YO：1） IF：Y（\｛1）© CT．70．）YOill）＝70． IF（YC（1）．LT． 0.167\()\) Y（ 11\()=0.157\)
 IF（Y（R2）－LT•－0．323）Y（：2）＝－Co323 IF（YC（3）．GT，C．EO1）YC（3）\(=C .508\) IF：YC（3）－LT．－0．501）YD：3）＝－CoE01 IF：Y（\｛4）GT．5000．）Y（： 4 ）\(=5000\) ． IF（YC\＆4）LLT C．YO（4）\(=0\) 。 FETUFN END
\(\mathrm{C}-\infty-\infty\)
C FUNCIICN DELAY
FUNCTICN DELAY：X，TDELAY）
CCMMCN TT，EOATAI（G．15），EDATA2（11．10），CDTE1（21），COTE2（21）．

2 XS\｛gO），YS\｛40\},TS,F,YDELAY,NX,AY,NXS,NYS,NBIT,KEEF,IEND
\(C\)
xS：11＝x
ICUT＝TDELAY／H＋1•5
OELAY＝XS（ICUT）
\(I=\Lambda X \leq-1\)
OC \(1 C \mathrm{~J}=1, \mathrm{I}\)
\(K=N X \leq-J\)
\(10 \times 5(K+1)=x 5: x)\)
RETLEN
END

ひu゙
0032

000 3

2004
0005
vouó
0007
0003
0009
0010
0011
0012
0013 0014
0001

0003
0004
0005
0006

0001
0002

0003
0314
0005
0006
0007
0008
c-----
C FUNCTIOM AMPULS.
C--
FLNCIICN ANPLLS(PEFICD)
DCUBLE PQECISION TESTI, TESTE,DTT,OPERIO,CHECK.TCHECK,FCHECK
C
CCMMCN TT, EDATAI(9,15), EDATA2(11.10). CPTE1(21),CPTE2(21).

2 XS(EO),YS(40),TS,F,YDELAY, NX, NY,NXS,NYS,NBIT,KEEP, IENO
\(c\)
```

CATA TEST1.TEST2/0.C 100.C.C@DO/

```
ANFLLS=0.
DTT=TT
DFEFIC=PEFICC
CHECK=DTT/CPEFIC
1 CHECK=CHECK
TCHECK=OFLCAT:ICHECK)
FCHECK = CHECK-TCHECK
IF\&FCFECK \&E TESTI - Qন. FCHECK OGE. TEST2I AMPULS=1.
RETUFN
ENO
C FUNCTICN STEP
FUNCIICN STEP:TSTAFT)
CCMMCN TT, EOATA1 (G.15), EDATA2 (11.10), CPTE1(21), OPTE2(21),
    1 OPTE3:21), OPTE4(E1), OPTEE: ع 1), OPTEG:21), CPTET:21), F\{40).
    2 XS(EO),YS: 40 ), TS,, YDELAY, NX, AY, NXS,NYS,NBIT, KEEP, IEND
\(c\)
STEF=0.
IF(TT ©GE• TSTAFT) STEF=1•
RETLEN
END
    C-D FUNCTION SIGIN
FLNCIION SIGIN(X,XNAX)

CPTE3:21), OPTE (21), OFTES:21).CPTEG:21), CPTET:(21), PR 40 ),
XS(EO), YS(4O), TS,H, YDELAY,N),NY,AXS,AYS, NBIT,KEEF,IENO
\(c\)
TVCLT=10.ノX*AX*X

LDIGIT= GUANT/IO•*TVCLT
SIGIA =XYAX/QLANT*FLCAT(LDIGIT)
RETUFN
ENO
```

 C-m--- SUEFCUTINE OIC
 コしこ!
0002
0003
0004
3005
0000
0000

```
0001
0002
0003
0004
0005
3006
0007
00コ3
0009
0010
0011
3012
0031
3002
0003
0304
0005
0006
0007
0008
0009
0010
0011
0212
0013
    C-DUNCIICN YSHIFT
    FUNCTICN YSHIFT:YIN.SE)
        CCNMCN TT, EDATA1(9.1E), EDATA2(11.10). CPTE1(21),OPTE2(21).

        \(2 X S(\varepsilon O), Y S\{40\}, T S, F, Y D E L A Y, N X, N Y, N X S, N Y S, N B I T, K E E P, I E N D\)
    \(c\)
        YS(1) \(=\mathrm{Y}\) IN
        TDELAY=P: З3)/SE
        ICLT=TDELAY/TS+1•E
        YSHIFT=YS:IOUT)
        \(I=A Y \leq-1\)
        DC \(10 \mathrm{~J}=1.1\)
        \(K=\Lambda Y S-J\)
        10 YS:K+1) \(=Y S(K)\)
        RETUFN
        ENO
    \(\begin{array}{ll}C- \\ C-\infty & \text { FUNCTICN FG }\end{array}\)
        FUNCTION FG: \(X, Z\) )
        DINENSICN 2:1)
        \(X M I N=0.1367\)
        \(X D E L=3.492\)
        \(X C=(X-X M(N) / X O E L+1\)
        \(1 x=x C^{-}\)
        \(F X=X G-I X\)
        (F:Ix EG. 21) GC TC 10
        \(F G=Z(I X)+F X *(Z(I X+1)-Z(\{X\})\)
        GETUFN
        \(10 F G=Z(I X)\)
            RETU=N
        ENO
วOJ1
ひ02
06O 
0004
0005
0006
0007
008
```

```
```

 C--m-- FUNCTICN SIGCUT
    ```
```

 C--m-- FUNCTICN SIGCUT
    ```
        FLNCT:. N SIGOLT:X,XNAX)
```

 FLNCT:. N SIGOLT:X,XNAX)
 CCNN(N TT, ECATAI(G.15), ECATA2:11.10),OPTEI:21),OPTE2{21),
 CCNN(N TT, ECATAI(G.15), ECATA2:11.10),OPTEI:21),OPTE2{21),
 1 CPTE3(21),OFTEG(\Sigma1),CETES(21),CFTEG(21),CPTET(21),F{40),
 1 CPTE3(21),OFTEG(\Sigma1),CETES(21),CFTEG(21),CPTET(21),F{40),
 2 XS(EO),YS:4OI.TS,F,YOELAY,NX,NY,NXS,NYS,MEIT,KEEF.IEND
 2 XS(EO),YS:4OI.TS,F,YOELAY,NX,NY,NXS,NYS,MEIT,KEEF.IEND
 C
 C
 OUANT=2.**(NBIT-1)-1.
 OUANT=2.**(NBIT-1)-1.
 XI=CUANT/XMAX*X
 XI=CUANT/XMAX*X
 IF(XI -GT. GLANT) XI=GLANT
 IF(XI -GT. GLANT) XI=GLANT
 SIGOLT=10./QUANT*X1
 SIGOLT=10./QUANT*X1
 fetufa
 fetufa
 ENO
    ```
        ENO
```

0021
0002
0003
0004
0005
C-N FUNCIICN 2HCLO
FUNCTICN 2HOLC:TAIG,X,XHELD)
ZHCLE =XHELD
IF\{TFIG EQQ 10) ZHCLO=X
RETLFA
END
Cーーーー
C FUNCTION INTERD
C---
REAL FUACTICA IATEFF:X,Y,Z,XHIN,YMIN,XDEL,YCEL,NFCW,NCOL)
DIMENSION Z\{NRCW:1)
XO $=\{X-X M I N) / X D E L+1$.
$Y O=(Y-Y M I N) / Y O E L+1$.
$I X=X 0$
$I Y=Y C$
$F X=X C-I X$
$F Y=Y O-I Y$
IF:IX ©EG. NFCW) GC TC 10
IF(IY EQ. NCCL) GC TC 20
$Z 1=Z(I X, I Y)+F Y \#: Z(I X, I Y+1)-Z(I X, I Y))$
$Z 2=Z: I X+1,(Y)+F Y *(Z(I X+1, I Y+1)-Z: I X+1, I Y)\}$
INTEFD= $\mathrm{Z} 1+F \mathrm{~F} *\left(\mathrm{ZZ}-\mathrm{Z}_{1}\right)$
RETUFA
10 (NTEFF=Z:(X,IY)+FY*:Z:(X,(Y+1)-2\{(X,IY))
RETUFN
20 INTEFF=Z:IX,IY)+FX*\{Z:IX+1,IY|-Z:IX,IY)\}
RETLFN
END


```
C--m-- SLBRCLTINE GRAPM
c-\infty---
    SURFCUTINE GF&FH{X,Y,NFT,NLI,XLAE,YLAE,AXLEN,AYLEN}
        DIMEASION X{1),Y{APT,I),XSCAL:4),YSCAL{4),ISYME(9).
        *XI:&(),Y1:EG,E)
            LCGICAL*I XLAE(1),YLAE(1)
            CATA ISYME/11इ:114,11E,116,117,11E,119,12C.121/
            CALL FLCT(0.0.-19.0.-3)
            CALL FLOT(2.0.1.0.03)
            DC 1C J=1,NFT
            x1: J)=x{J)
            DC 1C I=1,NRI
        10 Y1:J,II=Y:J.I)
            VXMAX=XI{1)
            VXMIA=X1&1)
            VYMAX=Y1:1,1)
            VYMIN=Y1(1.1)
            OO 2C J=1,NPT
            VXNAX=AMAXI:VXMAX,XI(J))
            VXNIA=AMINI(VXNINOXI(J))
            DC 20 I=1.NLI
            VYNAX=AMAXI(VYNAX,YI:J,I))
        2O VYNIN=AMINI(VYMIN,YI(J.I))
            XSCAL(1)=VXMAX
            XSCAL{2)=VXMIN
            YSCAL(1)=VYMAX
            YS(AL:2)=VYMIA
            CALL SCALE(XSCAL.AXLEN.2.1)
            CALL SCALE!YSCAL,AYLEN,Z.1)
            XI(NFT+1)=XSCAL{?)
            X1(NFT+2)=XSCAL(4)
            OC 30 I=1,NLI
            Y1(NFT+1,T)=Y\leqCAL{3)
            30 Y 1:NFT+2, ()= Y ECAL{4)
            CALL AXIS:O.,O.,XLAE,-4,AXLEN,O.,XSCAL:3),XSCAL{4))
            CALL AXIS(0.,C\bullet.YLAE,4,AYLEN,90.,YSCAL(3),YSCAL(4))
            OO 4C I=1.NLI
        40 CALL LINE(X1,YI:I,I),NFT,1,-1,ISYME:I))
            CALL FLOT(O.,C..S\subseteqS)
            RETUFA
            ENO
```


VITA ${ }^{2}$
 Chuen-Bor Lee
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: MICROPROCESSOR CONTROL OF AN ENGINE-HYDROSTATIC TRANSMISSION SYSTEM

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Anhwei, China, June 14, 1944, the son of Mr. and Mrs. Yun Lee.

Education: Graduated from Chien Kuo High School, Taipei, Taiwan, in July, 1962; received the Bachelor of Science degree in Mechanical Engineering from Chung Cheng Institute of Technology, Taoyuan, Taiwan, in 1969; received the Master of Science degree in Mechanical Engineering at National Taiwan University in June, 1972; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1981.

Professional Experience: Staff member of the Mechanical Engineering Department at Chung Cheng Institute of Technology, the author served as teaching assistant, from February, 1969, to August, 1970; instructor and laboratory director, October, 1972, to June, 1976; assistant professor, June, 1976, to December, 1977.

Professional Affiliations: Chinese Society of Mechanical Engineers.

[^0]: *The reason for 20 Hz for all cases in Table VIll is: There is a negative real root of -125 (in unit of rad/sec) in the denominator of Equation (7.1), which is independent of the operating points and is the maximum root of the system.

