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PREFACE 

This work is devoted to a calculation of various higher-order 

processes in perturbative Quantum Electrodynamics (QED) and Quantum 

Chromodynamics (QCD). 

We have analytically determined, in sixth-order, the contributions 

to the muon anomalous magnetic moment from second and proper fourth­
m 

e We have also analyti-order electron vacuum polarization to order 
mµ 

cally calculated the mass-dependent n-bubble diagram contribution to the 

muon anomaly to 0(1). 

An extensive review of the current experimental and theoretical 

situation for the lepton anomalies is given. 

We have evaluated in detail the three gluon final state produced in 

h 0 . 
the weak decay of t.e heavy neutral vector boson Z and, also, in elec-

tron-positron annihilation. A detailed comparison with the more familiar 

quark-antiquark-gluon final state is given. 

Finally, in order for the reader to follow these calculations, some 

topics in Gauge Theories are discussed. 
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CHAPTER I 

INTRODUCTION 

The purpose of this work'has been to calculate certain higher-order 

processes in Quantum Electrodynamics (QED) and perturbative Quantum 

Chromodynamics (QCD) , the latter being the candidate for the theory of 

. . 1 strong interactions. 

They are both renormalizable gauge field theories with gauge groups 

U(l) and SU(3)-color respectively. 1 

QED has existed for the· last three decades and is now the well-

established theory of pure electromagnetic interactions. It consists of 

massive spin-~ particles, called leptons, which come in three different 

varieties: electron, muon and tauon, denoted e, µ and T. They interact 

electromagnetically via the Abelian spin-1 photon field. This theory 

has had tremendous success over the years, particularly in predicting the 

2 gyromagnetic ratios of the electron and muon. For the electron, the 

experiments are now so precise, 3 (performed on a single electron in a 

Penning-trap), that we can actually test the anomalous magnetic moment of 
g -2 

the electron a = ~e~ in sixth-order rigorously. At the present stage, 
e 2 

theory and experiment for g cgree to 10 significant figures. The theo­
e 

retical uncertainty is due to the experimental error in the fine struc-

ture constant a and errors coming from numerical integration of certain 

sixth-order diagrams, which have not yet been analytically evaluated. 

Finally, the contribution. from.the eighth-order tennis not yet known 

1 



although an attempt to nwnerically evaluate this contribution from the 

4 
891 diagrams is under way, and a result is anticipated within the next 

year. 

The situation for the muon magnetic moment is almost as impres­

sive. 5 However, since the muon is much heavier than the electron, the 

situation is complicated by the fact, that strong interaction effects 

are significant. The hadronic contribution is calculable only as a 

+ -spectral integral over the experimental cross section for e e annihila-

tion into hadrons and the experimental error here dominates the errors. 

Since the weak interaction effects are calculable in the Weinberg-Salam 

6 
model, we would be able to isolate these (therefore serving as an inde-

pendent check of W-S model) , by an improvement in the measurement of 

g -2 
aµ = ~ and a better knowledge of the strong interaction contribution. 

In QED the only difference between the electron and muon anomalies 

comes from the mass-dependent diagrams, giving rise to potentially large 
m 

log~ terms. One usually calculates also the 0(1) term, but neglects 
m 

e 
m 

e O(;-) and lower. To r~medy this, we have calculated their contribution 
µ 

2 

7-8 
analytically in sixth-order from 17 of the 24 mass-dependent diagrams. 

To see if their effects could be large in higher order we then evaluated 

analytically to 0(1), the muon anomaly from the mass-dependent n-bubble 

d . 9 
iagram. We found that the neglected terms are non-negligible, in fact 

bigger than the sum of the terms included for n ~ 10. 

Although pure QED has been so successful as a theory, it is now 

widely believed that the electromagnetic and weak interactions can be 

unified into one gauge theory, with a bigger gauge group SU(2)~U(l), known 

. ( ) f 1 . . 10-11 as the Weinberg-Salam model W-S o e ectro-weak interactions. 



This model, besides the mas~less photon, also contains three heavy vec­

tor bosons, two charged i/ and one neutral z0 , which mediate the 

3 

12 
electro-weak force. In addition, we have three massless neutrinos v , 

e 

v and v . 
µ T 

The W's and z0 are very heavy, around 90 GeV, which is the reason 

that they have not yet been produced in the laboratory, but one will be 

able to obtain CM energies of this magnitude within the next few years 

at the CERN pp collider, ISABELLE at Brookhaven and the Fermilab pp 

. 13 
proJect. 

So far, the W-S model has been successfully tested in high-energy 

. . 14 d' . f . . . ff neutrino experiments, and the pre iction o parity violation e ects 

h 1 b . 11 . f. d 15 as a so een experiroenta y veri ie • 

The theory of QCD was developed by Fritzsch, Gell-Mann, Leutwyler, 

. nb d . 1 16 d . b d h Ab l' . 11 Wei erg, Gross an Wi czek an is ase on t e non- e ian Yang-Mi s 

17 
(YM) theory. In a sense it is very similar to QED. It consists of 

massive, fractionally charged spin-~ particles called quarks. They come 

in five flavors: up, down, strange, charm and beauty denoted u, d, s, c 

and b. A sixth flavor, top, denoted t is conjectured with a mass around 

18 
19 GeV but has, so far, not been seen. The quarks are the building 

blocks for the strongly interacting particles called hadrons. These can 

be subdivided into two groups: baryons (like the proton and neutron) are 

composed of three quarks, and mesons (like the pion and kaon) are com-

posed of a quark-antiquark pair. The quarks interact strongly via eight 

non-Abelian spin-1 qluon fields. Like the photon, the gluons are mass-

less, and electrically neutral, but they carry, as do the quarks, a non-

Abelian charge called color. Each quark then comes in three colors: 

"red," "green" and "blue". 

The non-Abelian nature of the gluons has the consequence that they 



4 

can interact among themselves, in contrast with the photons of QED. A 

. 2 
further consequence of this, is that the strong coupling constant o. (q ) , 

s 

in the so-called Renormalization Group improved perturbation theory, 

actually goes to zero for large q 2 (momentum transfer), i.e., small dis­

tances, and the theory is said to be asymptotically free. 19 This is 

exactly the property that makes the theory tractable and enables one to 

study high energy scattering processes, like deep inelastic e p and vN 

. 2) + -scattering (space like q , and, also, e e and pp annihilation into 

hadrons (time-like q 2 ). 

A general term for quarks and gluons is the word parton. It was 

20 
originally suggested by Bjorken, Feynman and Paschos and motivated by 

the SLAC deep inelastic e p scattering experiments, in which the electron 

was actually being scattered by pointlike (non-interacting) objects in-

side the proton. The processes were described by structure functions 

depending only on the fraction x of the parton energy to the proton 

energy, and not on the momentum transfer. This leads to scale invariance. 

This is only approximately true, however, and QCD, in fact, predicts a 

1 . hm' 1 . 1 . 21 b . h h 1 . ogarit ic sea e vio ation , est seen in t e Nae tmann moment ana ysis, 

which seems to agree with experiment. However, there are indications that 

higher twist terms (m2/q2 ) can modify this analysis. 22 
q 

At large distances (typically of the order of 1 fm, radius of the 

proton), a. becomes infinite, thus, presumably, leading to confinement of 
s 

quarks and gluons. This is known as infrared slavery, but whether or not 

QCD actually leads to confinement is still an open question. 

The cleanest test of QCD is electron-positron annihilation into 

23 
hadrons. In lowest order perturbation theory, a quark-antiquark pair 

is produced, which then materializes into two jets of hadrons. The dis-

. + -
tribution of jets in the angle e (angle between jet axis and e e beams) 



5 

2 
is consistent with the form 1 + cos 8 which is expected for the produc-

tion of a pair of spin-~ pointlike quarks. 

At higher CM-energies, IS~ 30 GeV, planar three jet events have 

24 
been seen at PETRA. They are interpreted as a quark, an antiquark and 

a gluon radiated off from the quarks, and they are evidence for the 

spin-1 nature of the gluon. 
+ -

Other sources for three jet events are e e 

annihilation into quarkonia states J/ijJ and l1f which predominantly decay 

into three gluons (one gluon forbidden by color and two gluons by charge 

conjugation). For the l1f the experimental data is consistent with an 

2 
angular distribution of the form 1-1/3 cos 8, which is a clear indication 

of the spin-1 nature of the gluon. One problem is that the energies of 

the gluons are rather low (around 3 GeV) and toponium is expected to 

give us a much cleaner three jet structure. 

0 25 
Three gluon jets can also be produced in Z decay and in the con-

+ - * 26 tinurn e e + Y +ggg in higher order. We were motivated to study this 

0 27 
by the expected z -factory at LEP. In contrast to the qqg process, the 

three gluon decay is actually an infrared finite process. To see the 

full gauge structure of QCD, i.e., the self-coupling of the gluons, one 

has to study radiative corrections to qqg and, in same order, four-jet 

28 
events. Evidence for four-jet events has recently been reported at 

PET HA. 

QCD is the only field theory available for strong interactions. 

This has motivated people to construct toy models with scalar gluons or 

simply Monte Carlo phase space models, in order to have alternative 

models to compare with QCD. But so far QCD has been successful in agree-

ing with the experimental data while these toy models have not. 

Once we reach the thresholds for producing W's and z0 we should be 



6 

able to study many interesting weak and strong decay processes, thus, 

hopefully, leading to a better understanding of the W-S model and QCD. 

The thesis is organized as follows: In Chapter II, we give a status 

report of the anomalous magnetic moments of the electron and muon and 

compare the theoretical values with the experimental ones. 
m 

In Chapter III, we analytically calculate the order~ corrections 
m 

µ 

to the sixth-order muon anomaly, which arise from the proper fourth-order 

electron vacuum polarization insertion into the lowest order muon vertex. 

Of the 24 mass-dependent diagrams, three diagrams contribute to this 

process. 

Chapter IV is a continuation of this work and we calculate, also 
m 

analytically, the order~ terms due to second-order electron vacuum 
m 

µ 
polarization insertion into the fourth-order muon vertex. Fourteen 

diagrams contribute to this process. 

In Chapter V, we calculate analytically the muon anomaly to 0(1) 

from the mass-dependent n-bubble diagram using the Borel transform tech-

nique, and we show how this expansion breaks down in high order. 

Chapter VI contains the basic elements of the gauge-theories of 

the electro-weak and strong interactions. We describe the experimental 

and theoretical basis for color. Gauge invariance of QED and QCD are 

described in detail. This is followed by a discussion of the Weinberg-

Salam model and the so-called Standard Model. We then set up the propaga-

tors and vertices using a method due to t'Hooft-Veltman. Finally, we dis-

cuss the so-called running coupling constant in QED and QCD, and what is 

meant by Renormalization-Group-improved perturbation theory. 

0 
In Chapter VII, we study the three gluon decay of the Z • The process 

proceeds mainly through the six box diagrams with one heavy external leg. 
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This process is quite similar to photon splitting in QED, and, along 

with photon-photon scattering, which so far has been tested only in the 

electron and muon magnetic moments, are examples of non-linear effects 

in QED and QCD. 

We calculate the differential and the total decay rates, using the 

standard W-S model and QCD. 

In Chapter VIII, we present the differential and the total cross 

+ -sections for the process e e + ggg mediated by a virtual photon in the 

continuum. + -
A detailed comparison with e e + qqg is given. 

Finally, Chapter IX contains a summary of the obtained results and 

conclusions. 
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CHAPTER II 

STATUS OF THE ANOMALOUS MAGNETIC 

MOMENTS OF THE LEPTONS 

Introduction 

In this chapter we will review the experimental-as well as the 

theoretical situation for the electron, positron and the positive and 

negative muon magnetic moments. 

From atomic spectroscopy the term g-factor or Lande-factor is 

well-known, and we shall adopt the same definition for the g£-factors of 

the leptons. These are dimensionless numbers which relate their magnetic 

dipole moments to their intrinsic angular momentum (spin). We can there-

fore writeµ£= g£( 2:c), and if the leptons obey the Dirac equation, 

1 
then g =2 exactly. 

£ 

An eventual substructure would lead to a deviation from the point-

like structure, implied by the Dirac equation, and therefore to a g£ 

value different from two. For other spin-~ particles such as the proton 

and neutron, the substructure leads to a substantial change in their 

magnetic moments, namely g 
p 

2.79 and g = -1.91. 
n 

Based on the present 

Theory 
level of agreement between ge d Experiment (S x 10-10) f . . 

an ge errru.onic 

-16 2 
substructure could occur only at distances smaller than 2 x 10 cm, 

-5 
which is roughly a factor 10 smaller than the Compton wave length of 

the electron. 

11 
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However, even in the absence of an intrinsic structure of the 

leptons, the electromagnetic interaction leads to a modification of the 

-3 
g2-factor of the order 10 One then defines the so called anomalous 

and, hence, the name "g-2 experiments". 

Experimental Status 

When leptons are placed in a circular orbit in a plane perpendicular 

to a uniform static magnetic field, the spin will rotate faster than the 

momentum vector with a relative frequency (anomaly frequency) 

the Larmor 

determine 

-Here w 
c 

-eB 
is the cyclotron frequency and wL me 

spin frequency. In principle, by measuring \) and 
a 

\) \) -\) 

the anomaly a 2 = a L c 
\) \) 

c c 

w = w -a L 

(eB ) . = g -- J.S 
2 2mc 

\) 
c' we can 

We shall begin by describing the latest g-2 experiment of the elec­

tron, which is basically a radiofrequency experiment. 3 A non-relativistic 

electron (1 meV) is stored and kept in a so-called Penning trap. The 

axial oscillatory resonance frequency v2 ~ 60 MHZ is easily detected. 

The electron is bound to the earth, (through the axial magnetic field 

and the electric quadrupole field) in a superheavy atom called "Geonium". 

The Breit-Rabi energy levels are given as (m = ± ~, n,k,q = 0,1,2, •.. ) 

1 E = m v + (n+~) (v -o ) + (k+~) v -(q+~)v . 
hmnkq s ce Z rn 

(1-1) 

Due to the electric field, the cyclotron frequency has been changed to 

v -o where o = ~ 
c e e 

2 
v2 / (v -o ) . 

c e 
v is the magnetron frequency, which for 

m 

ideal axial syrrmetry is equal to o 
e 

Spin flips at the anomaly frequency and excitation of the cyclotron 
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resonance are detected by making v2 slightly dependent on m and n. Use 

of a magnetic bottle leads to ov2 (m,n) = (m+n+l)Hz. 

Now by monitoring the axial frequency the cyclotron resonance is mea-

sured via excitation to n>>l, while spin-flips and therefore v is 
a 

measured as changes ov2 = ± 1.0 HZ when ~m = ± 1 (n=O) occur. 

This leads to the incredibly precise value 

a -e 
1159 652 200(40) x lo-12 

and, hence, 

ge_ 2.002319304400(80) 

which is one of the most accurate measurements of any physical quantity 

ever determined. 

This experimental set up can also be used to determine the positron 

anomaly a + very accurately. A preliminary result for a + has recently 
e . e 

been obtained, 4 with the value 

a+ 1159 652 222(50) x lo-12 . 
e 

Together with a _ this give a weighted average value 
e 

a 
e 

1159 652 211(32) x 10-12 • 

This gives an extremely good test of the CPT-theorem, which states 

I -9 
that ge+ = g . From above follows a - a +I/a ~ 19 x 10 or 

e- e- e e 

. s I compared with an earlier Russian experiment which gave lge_ - ge+ 

-9 /g ~ 12 x 10 . 
e 
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Next we describe the latest CERN muon (g-2) experiment, 6 which pro-

vides us also with a test of Einstein's theory of special relativity 

(time dilation) , and the CPT-theorem. 

First we notice that the anomaly frequency is unaffected by time 

dilation. 
2 -~ 

Consider namely a high energy muon with y = (1-B ) >>l. 
-

The cyclotron frequency is w 
c 

eB =--
ymc 

The circular motion of the parti-

cle leads to a relativistic effect in which the particle rest frame 

1 eB 
appears to rotate with precession frequency wT = (1 - -)- (Thomas Pre­

y me 

. ) 7 cession . The net angular rotation frequency of the spin is w = 
s - -

(a 
µ 

1 eB 
+ -) and therefore w a 

eB 
Indeed v 

a 
is unaffected 

y me a µ me 

by time-dilation. 

-If we add a transverse electric field E, (to provide vertical 

focusing) , we find 

w 
a 

w 
a 

+ (-1- - a ) SxE e 
y2_1 µ me 

(1-2) 

1 

However, by choosing a y = (1 + l/a )~ ~ 29.3, or equivalently, a momen­
µ 

tum 3.094 GeV/c, the effect of E can be reduced to zero, leaving w 
a 

unchanged. 

The anomaly frequency is determined by looking at the observed 

electron counting rate as a function of time 

N (t) N exp{-t/T}{l - A[cos(w t + ~)]} 
o a 

where t = YT is the dilated muon lifetime. 
0 

(1-3) 

In the same experiment the effective mean proton resonance frequency 

w' is determined leading to a known ratio R = w /w '. If this is com-
p a p 

bined with measurements of ;\ = w '/w ' = (g /g ) of muon to proton 
µ p µ. p 



frequencies in liquid Bromid, 8 the anomaly can be determined from 

-1 
a = R(R-A) . This leads to 

µ 

1165 936(12) x 10-9 , 

a+ µ 
1165 910(12) x 10-9 

with an overall weighted value 

a 
µ 

= 116 5923(9) x 10-9 . 

15 

I -8 
The CPT-theorem is tested very accurately by gµ_ - gµ+l/gµ = 2.6 x 10 • 

Since the counting rate is damped exponentially we can also determine 

+ 
the lifetimes ofµ-. In this experiment y = 29.326, and using the best 

value of muon life time at rest T = 2.1 9711 µs, yields a "theoretical" 
0 

lifetime T = 64.435 µs. From the counting rate it was found Texp = 

64.378 µs, thus leading to an accuracy of order 10- 3 of the time trans-

formation. The CPT theorem was tested by measuring Tµ_ and Tµ+· It was 

found IT _ - T +l/T ~ 3.0 x 10- 3 giving a stronger limit on any possible 
µ µ µ 

CPT violation. 

Theoretical Status 

First, we would like to show how the anomaly can be obtained formally 

in Quantum field theory. We shall restrict ourselves to QED, and we 

will show that the anomaly a 

. d . f f . 1 lO tric an magnetic orrn actors respective y. 

Let J (x) be the current operator. By definition the charge operator 
µ 

A 

" Q and the magnetic moment operators Mi are: 



A 

Q 

and 

= 

Ja3r: J cX-,t> 
0 

3- 1 -
f d r 2 r x J (r, t) . 

16 

(1-4) 

If we let cjl(x) be a "one electron" state, then the charge and the mag-

netic moment are the expectation values 

e' = 

and (1-5) 

µ' 
Q, 

<cj}l~Q,lcj}> 

Next we expand cj}{x) on a complete set of states with a given momen-

tum p and spin 0: 

cp (x) == 

where u_ are bispinors satisfying the Dirac equation 
pa 

(~-m) u_ 
pa 

o. 

(1-6) 

(1-7) 

The problem is then reduced to evaluating the matrix element <p' IJ Ip>. 
µ 

Using gauge invariance, parity and charge conjugation conservation, the 

most general matrix element is of the form 

<p' !J Ip> µ 
== 

-
eup'o' 

where q == p'-p is the momentum transfer. 

(p+p I) 2 -
2m µ F2(q )} upa (l-8) 



For the charge, one finds easily: 

and therefore e' = eF1 (o). 

eF (o) <P'o' !Pa> 
1 

17 

(1-9) 

That is,the charge is defined at zero momentum transfer. This is 

the so-called Thompson limit. For QCD this limit does not exist and one 

2 
will instead have to define a "running coupling constant" e' (q ). We 

shall return to this point in Chapter VI. 

2 
To obtain the interpretation of F 2 (q) we will consider the non-

2 
relativistic limit q -+o. Then we can write 

<I> (x) (1-10) 

where X(r) is an ordinary spinor. After a tedious calculation one ends 

up with 

ii' ,Q, 

eF 1 (o) 

2m 

where the orbital angular momentum 

<L> 

and the spin angular momentum 

3 + 1 - -
<S> fd r X (r) 2 o X(r) 

e' 
Since the Bohr magneton now is 2m -

eF1 (o) 
----we have 

2m 

µ' 
,Q, 

e' - e' -
2m <L> + 2m g,Q,· <S> 

(1-11) 

( 1-12) 



18 

If we switch off the EM interactions, then F2 (o) = 0 and the g-fac-

tor is indeed equal to two. The reason a/O in field theory is due to 

quantum fluctuations in the field associated with emission and absorp-

tion of virtual photons and the polarization of the vacuum by these 

photons into virtual particle-antiparticle pairs. 

This self interaction between the particle and its field leads to 

infinities in QED. However, these infinities are less severe (diverges 

at most logarithmically) , than the ones in classical EM. 

There are two types of infinities in QED. Ultraviolet divergencies 

(UV) due to large momenta in the loop integrals, and infrared divergen-

cies (IR) due to the vanishing mass of the photon. The UV-divergencies 

can be removed, order by order in perturbation theory, by adding 

appropriate counter tenns, such that the charge e'=e(F1 (o)=l) and 

therefore a,Q, = F 2 (o) _. This is known as renormalization. To handle the 

IR-divergencies one gives the photon a fictitious mass \<<m, and drops 

\ 
terms of order - and smaller. For each gauge invariant set of diagrams 

m 

and, in particular, in each order of perturbation theory, the diver-

gencies cancel, leaving a finite answer. 

The anomaly can now be written formally as a power series expansion 

2 
in a = e /4'1T 

(1-13) 

and a,Q, arises only from vertex diagrams. Unfortunately, not only does 

the number of diagrams go like N!, in N'th order, but each 

diagram leads to a (N+l)-dimensional parametric integral. These are 

usually very singular along the edges of the integration region, and 



19 

great care must be taken i~ one is doing numerical integration. 

In lowest order (N=2) there is only one diagram (Figure 1). This 

. 11 
was first calculated by Schwinger in 1948 with the result 

(2) 
a 

e = a 
(2) 

µ 
(1-14) 

In fourth order (N=4) there are seven mass-independent diagrams 

(Figure 2) . 
12 

Here the contribution is also known exactly 

( 4) 
a 

e 
197 TI 2 1 2 3 2 
[- + - - 'IT log 2 + 1;(3)](~) 
144 12 2 4 'IT 

(1-15) 

In this order (and higher) there are also mass dependent diagrams (Fig-

ure 3) due to vacuum polarization insertions. Usually the contribution 

from muon vacuum polarization insertion into the electron vertex is 

negligible. One has 

and 

m 
a (4) (_l!.) 

m 
e 

[~ log 

m 
a (4) (__..§..) 

m 
µ 

m 25 _l!. - -+ 
m 36 

e 

= 
m 2 2 

(__..§..) (~) 
45 m TI 

1 

µ 

(1-16) 

2 m 
2 2 

2 m m 
134 

m 
TI e 4 (__..§..) log ___}1_ + (__..§..) ] (~) ---
4 m m m 45 m 'IT µ µ e µ 

It is customary to quote the difference between a and a which in general 
µ e 

is much easier to evaluate. 

a - a 
µ e = 

m 
"' a (-1!.) 

m 
e 

(1-17) 

In sixth-order (N=6) we have 72 mass-independent diagrams (Figure 4), 



Figure 1. Second-Order Contribution to the Lepton 
Anomaly 

AAAA 
AAA 

Figure 2. Mass-Independent Fourth-Order Con­
tributions to the Lepton Anomaly 

µ 

Figure 3. Mass-Dependent Fourth-Order Contri­
bution to the Lepton Anomaly 
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of which 51 diagrams are known exactly and the rest are known numerically 

14 
with the answer 

a (6 ) (I) 
e 

3 
[1.184(7)](~) 

1T 

However an alternate but uncorroborated calculation of the photon-photon 

scattering contribution to a( 6 ) yields15 
e 

a (6 ) (II) 
e 

= 
3 

[1. 213 (14) J (~) • 
1T 

There are 24 mass-dependent diagrams also. (Figure 5). Of these, 

the six light by light diagrams are known numerically to 0(1), and 

f h b . 'b . 16 account or t e iggest contri ution 

= 
2 m 3 

[~ log ~ - 13. 68] (~) 
3 m 1T 

e 

m 
The other 18 diagrams are known analytically17 to O(me). 

µ 

(1-18) 

[~ log2 mµ + (31 + 1T2 

9 m 27 9 
21T 2 m (1075 _ ~ 1T2 

3 log 2 + r; (3)) log mµ + 216 18 
e e 

51T2 11 4 2 2 2 1 4 8 
+ ~3- log 2 - 3 1';(3) + 216 1T - 9 1T log 2 - 9 log 2 - 3 a 4 ) (1-19) 

Therefore 

Since a ( 6 ) 
e 

diagrams. 

( 6) 
a 

µ 
(6) 

- a 
e 

3 
a 

~ (--) we see clearly the importance of the mass-dependent 
1T 



Figure 5. Mass-Dependent Sixth-Order Contributions 
to the Muon Anomaly 
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In eighth-order (N=8) .there are al together 891 mass independent 

diagrams (not shown). These can be classified into five different 

14 
groups. The first group (25 diagrams) consists of second-order ver-

tex diagrams 

insertions. 

with second, fourth and sixth-order vacuum 
4 

. 1 . . . I 08 (a) Numerica integration gives a = 0. - . 
e 7f 

polarization 

The second 

group (54 diagrams) contains fourth-order vertex diagrams with fourth-
4 

order vacuum polarization insertions. Numerically a 1 I = - 0.52 (£) . 
e 7f 

The other three groups: (III) sixth-order vertex diagrams with second-

order vacuum polarization insertions (150 diagrams, (IV) vertex dia-

grams with photon-photon scattering sub-diagrams (144 diagrams) and (V) 

diagrams containing no vacuum polarization loops (518 diagrams) are 

unknown yet. However an answer is expected within the next year. 

There are 469 mass-dependent diagrams (Figure 6). Of these, 304 

diagrams (group A to F') give contributions, which can be obtained by 
m 

renormalization group techniques. The contribution to the logn 1 
m 

18 
terms (n = 1,2,3) is 

( 8) 
aA-F' 

m m m 4 
[c log 1 + D log2 1 + E log 3 -1'...J (£) 

m m m 7f 
e e e 

· 18 a· 19 The group G contains iagrams 

[ '2n3 m m 4 
= log2 1 - 15.1 log 1] (£) 

3 m m 7f 
e e 

4 
17. 2 (£) 

7f 

e 

(1-20) 

(1-21) 

The groups H (18 diagrams) and J (3 diagrams) have been shown to not have 
m 

1 µ 11 
any og -. 

m 
The last three groups I(l8 diagrams), K(48 diagrams) and 

e . 11 
K' (60 diagrams) can be estimated to give 
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This yields an estimate 

( 8) 
a 

)l 

( 8) 
- a 

e 
(135 

4 
± 63) (~) 

1T 
(3.7 

26 

-9 
± 2.1) x 10 • 

Notice again the very large coefficient! This is due to the fact that 

the main contribution arises from diagrams with electron insertion, in 
m 

which the expansion parameter is a log~ rather than a itself. 
m 

e 
Also since the muon is fairly heavy, hadronic and weak contributions 

will add to a . 
)l 

2 
The dominant part (order (~) ) of the hadronic contribution 

7T 

(Figure 8) comes from hadronic vacuum polarization insertion into the 

20 
lowest-order muon vertex. The muon anomaly is expressed as a spectral 

+ -
integral over the total cross section for e e annihilation into hadrons 

oH(s), where s is the CM-energy. 

where 

One finds 

(H) 
a 

)l 

K (2) ( ) 
)l s 

3 

(H) 
a 

)l 

2 
x (1-x) 1 

~~~-'-~-=-~- + ~ for s + oo 
2 2 3s 

x m + (1-x)s 
)l 

(70. 2 
-9 

± 8.0) x 10 • 

( a) ( . ) . 20 In higher order - Figure 9 one obtains 
7T 

(H) -9 
a (- 3.5 ± 1.4) x 10 

)l 

giving a total 

(1-22) 



Figure 8. Hadronic Vacuum Polari­
zation Correction to 
Lowest-Order Contri­
bution to a 
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a; 

Figure 9. Hadronic Contributions 
3 

to a of Order <%> 
µ 
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(H) 
a 

µ 
(66.7 

-9 
± 9.4) x 10 • 

The contribution to a(H) is indeed very small since 
e 

and 

(H) 
a e 

2 
m 

~ (~) 
m 

µ 

(H) 
a µ 

-12 
1. 6 x 10 • 

21 
Finally for the weak contributions in the W-S model we have 

(W) 
a 

e 

(W) -9 
a = (2.l±0.2)xl0 

µ 

(W) 
a 

µ 
::: 

-12 
0.05 x 10 • 
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In Table I and II we have given the different contributions to a 
e 

-1 
and a using the latest value of a ~ 137.035963(15) (obtained from the 

µ 
22-

Josephson effect). By comparison with the experimental values we see 

that, in the case of the muon, theory and experiment agree beautifully. 

In the case of the electron, there is a fair agreement (2.4 0) 

(6) 6 
provided one uses a (I). If, however a (II) is correct, there is a 3.3 

e e 

standard deviation discrepancy between theory and experiment. Assuming 

a(S) ~ (-~-) 4 = 29 x l0-12 , this could mean a breakdown of pure QED. But 
e 1T 

( 6) 
before drawing such a conclusion, we must, of course, know the a term 

e 

analytically, in particular the light by light contribution. This would 

also determine which of the two a( 6 ) (I) and a( 6) (II) is correct. 
e e 
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TABLE I 

CONTRIBUTIONS TO aTHEORY AND COMPRISON WITH aEXPERIMENT 

(2) 
a 

e 

(4) 
a 

e 

a( 6 ) (I) 
e 

a ( 6 ) (II) 
e 

(8) 
a 

e 

(4) 
a (muon) 

e 

(4) 
a (tauon) 

e 

(4) 
a (hadron) 

e 

(2) 
a (weak) 

e 

aTheory(I) 
e 

Theory( ) a II 
e 

Experiment 
a 

e 

e e 

(1161410039 ± 130) x lo-12 

(-1772303 ± 1) x lo-12 

(14838 ± 88) x 10-12 

(15202 ± 176) x lo-12 

? (29) x lo-12 

2 8 10-12 
• x 

0.01 x lo-12 

1 6 10-12 
. x 

0.05 x lo-12 

(1159652567 

(1159652931 

± 150) x lo-12 

-12 
± 220) x 10 

(1159652200 ± 40) x lo-12 



TABLE II 

THEORY EXPERIMENT 
CONTRIBUTIONS TO a AND COMPARISON WITH a 

(2) 
a 

µ 

(4) 
a 

µ 

(6) 
a µ 

(8) 
a 

µ 

(4) 
a (electron) 

µ 

a C4> (tauon) 
µ 

(4) 
a (hadron) 

µ 

(6) 
a (hadron) 

µ 

(2) 
a (weak) 

µ 

Theory 
a 

µ 

Experiment 
a 

µ 

µ µ 

(1161410.0 ± 1.3) x 10-9 

(-1772.3) x 10-9 

(306.3 ± 0.8) x 10-9 

(3.7 ± 2.1) x 10-9 

(5904.1) x 10-9 

-9 
0.4 x 10 

(70.2 ± 8.0) x 10-9 

(-3.5 ± 1.4) x 10-9 

-9 
(2.1 ± 0.2) x 10 

-9 
(1165920.0 ± 13.8) x 10 

(1165923 ± 12) x 10-9 
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CHAPTER III 

CORRECTIONS TO THE SIXTH-ORDER ANOMALOUS 

MAGNETIC MOMENT OF THE MUON 

Introduction 

In sixth-order, the difference between the muon and electron mag-

netic moments can be expressed, for m /m >> 1, as 
µ e 

( 6) 
a 

µ 
( 6) 

- a 
e = 

3 
(2'..) 

'IT 

2 
{Aln (m /m ) + Bln(m /m ) + C + D(m /m ) 

µ e µ e e µ 

2 2 ] + o[(m /m) ln (m /m) } . 
e µ µ e 

d 1 1 1 . 11 1,2 A an B are comp ete y known ana ytica y. 

A 2/9. 

B 
2 2'1T 2 

31/27 + 7n /9 - 3 ln2 + s(3). 

( 3-1) 

( 3-2) 

All contributions to C, except the light-by-light contribution C(yy), 

1 k 1 . 11 3 (C (yy) . k · 4 ' S are a so nown ana ytica y. is nown numerically. ) 

c 1075 
216 

where 

11 4 
648 '1T 

2 2 2 l 4 8 
- TI ln 2 - ln 2 - - a 
27 27 9 4 
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and 

( 3-3) 

The only contribution to D which is known analytically is the double­

bubble contribution6 (diagram (d) of Figure 10) 

2 = -41T /45 ( 3-4) 

The contribution to D due to the other diagrams of Figure 10 ·is known 

numerically, 

0 (a+b+c) 
-5.6776256 

D (e+f) = 0. (3-5) 

In this paper we present an analytic calculation of D(a+b+c)' the contri­

bution to D from fourth-order electron vacuum polarization (the proper 

diagrams a, b and c of Figure 10) • 

. . 7,8 
This quantity is given by the following expression. 

(a+b+c) 
D 

where 

. 2 

.!_ Im1T*( 4 ) (l)]/(~) 
1T 1T 

(3-6) 

1 I * ( 4) ( ) - ffi'IT X 
7T 

(~) 2 {[5x _ 3x3] -1 x 2 64x 4 (11 11 2 = n 8 8 +x(2+6)ln( 23)+ 16+24x 

2 
[ 4 ip (- 1-x) + 2 1> (1-~) + .'.!__]} 

l+x l+x 2 

(1-x ) 

( 3-7) 
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Figure 10. Feynman Diagrams Representing the Fourth-Order Vacuum Polarization 
Contribution to the Sixth-Order Muon Anomaly 
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and 

So we can write 

.!. Imn * <4 > (1) 
1T 

·1 2 
(~) 

4 1T 

36 

(3-8) 

D (a+b+c) = 
7r 
2 

2 [ R + R - l fl dxx ] (3-9) 
1T Rl + 2 + R3 + R 

4 5 4 o (l-x2)3/2 

where the five R. correspond to the five terms in Eqn. (3-7). It is 
J. 

easy to see that R2 + R3 , R4 and R5 are finite and the combination 

is also finite. 

R' 
1 

. 

= 
l:_ 11 __ x __ _ 

4 o (l-x2)3/2 

We now evaluate the integrals. Our results are as follows: 

and 

R' = 
1 

= 

13TI2 

1 
4 

1f 

32 

2117r 
nln2 - 288 

= --- 7r ln2 - 1517r 
36 9 216 

(3-10) 

(3-11) 

( 3-12) 

(3-13) 

Adding the terms in Eqns. (3-11), (3-12) and (3-13) and substituting into 

Eqn. (3-9), we obtain our result. 

(a+b+c) 
D 

l31T3 ----
18 

16rr2 79rr2 
9 ln2 + ~ = - 5.6776257 (3-14) 

This is in excellent agreement with the numerical value in Eqn. (3-5): 
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Interestingly, although the terrn proportional to TI cancels out, there 

remains a n3 term. This is the first time an odd power of TI occurs in 

a g-2 contribution. 

Using Eqns. (3-4}, (3-5) and (3-14), the contribution to D from all 

the graphs of Figure 10 can be written, 

(a+b+c) (d} (e+f) 
D + D + D . = 

13n3 
- ~~ -

18 

2 
16TI l 2 ~~ n + 

9 
383TI2 

135 
(3-15) 

We would like to mention that the above result in Eqn. (3-15) can be 

also obtained from the vacuum polarization potential of muonic atoms in 

2 
order a (Za}. For more on this point see Reference 9. 
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CHAPTER IV 

MORE CORRECTIONS TO THE SIXTH-ORDER ANOMALOUS 

MAGNETIC MOMENT OF THE MUON 

Introduction 

3 
The contributions to a( 6) - a(G) (in 

µ e 
units of (~) ) from the graphs 

7T 

in Figures 11 and 12 are respectively: 1 

2 /4"m2 dt .!. Im7T (2) (t) L (4) (t) 
IL t 7T e µ ' 

e 

M (4 ) (t) 
µ 

with the total given by 

where 

00 

IK = 2 J 4rn 2 
e 

dt l 
t 7T 

Im7T (2) (t) 
e 

K ( 4 ) (t) ::: L ( 4 ) (t) + M ( 4 ) (t). 
µ µ µ 

K <4 > Ct) 
µ 

Here _!_ Imn( 2) (t) . th d d t 1 f t' is e secon -or er spec ra unc ion 
1T e 

_!_ Im'IT ( 2 ) (t) = 
7T e 

1 1 2 
x(- - - x ) 

2 6 
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e (t - 4m 2 > 
e 

(4-1) 
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Figure 11. Sixth-Order Vertex Graphs With a Single Second-Order Vacuum Polarization 
Insertion 

.i::. 
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µ 

Figure 12. Sixth-Order Vertex Graphs With Mixed Fourth-Order Vacuum 
Polarization Insertion 

µ 

~ 
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with 

x = 
4m 1/2 

(1 - ~) 
t 

42 

(4-2) 

while K( 4 ) (t) and LC 4 ) (t) are one half of the fourth-order anomaly, with 
µ ]J 

a heavy photon of mass It, with and without vacuum polarization inser-

tions, respectively. 

t 1 
For b::: -- > 4 we have 2 -

K C4 ) (b) 
µ 

m 
µ 

- 139 + llS b + 19 7 23 2 1 
144 72 (12 - 36 b + 144 b + b-4) log b 

+ [- i + 127 b _ 115 b2 + ~ b3] logy + (~ + -2_ b _ .l b2 _ ~)~( 2 ) 
3 36 72 144 lb(b-4) 4 24 2 b 

+ ~ b2 2 (- .l b + .lZ_ b2 _ ]__ b3) log y log b 
96 log b + 2 24 48 lb{b-4) 

+ (19 + ~ b _ ~ b2 _ _!_ + ~2-)log2y 
24 48 96 3b b-4 

D (b) 

+ (-2b + .lZ. b 2 - 2 b 3 ) -:==p'== 
6 12 lb (b-4) 

1 7 1 2 
+ (2 - 6 b + 2 b ) T (b) 

and 

M ( 4 ) (b) 
µ 

(4-3) 



with 

and 

16 4b 
+ (3 - 3 

4b2 b 3 
-+-) 

3 3 

y 

log y 

&b-4) 

1 b b 2 1 2 
+ (2 + 6 - 12 - 3b) log Y 

D {b) 
m 

lb (b-4) 

lb" - lb-4 

lb + Vb-4 I 

D {b) 
p 

1 2 
Li2{y) + logy log(l-y) - 4 logy - s(2) I 

T (b) 

D {b) 
m 

+ 

+ 

1 2 1 = Li 2 (-y) + 4 logy+ 2 s(2) 

2 
-6Li 3 (y) - 3Li3 (-y) +logy log{l-y) 

~ [log 2y + 6s(2)] log(l+y) 

Outline of Calculation 

The integral IK in Eqn. (4-1) can be written as follows: 

IK = ~ Imrr (2) (co) /'' 2 dt K (4) {t) 
Tr e 4m tµ 

e 

(4) 00 dt [l (2) 1 (2) ] + . 2K (o) J4m2 - - ImTr (t) - - ImTr (co) + R 
µ e t Tr e .1f e K 

43 

(4-4) 

(4-5) 



1 
where 

+ 

[ 197 + 7T 2 _ 27T2 mµ 
108 9 3 log 2 + ~(3)] log ;--

e 

[ 2861 - 77 7T2 + 57T 2 
648 54 3 · log 2 

7 11 4 
2 <';;( 3 ) + 216 7T 

44 

(4-6) 

27T2 2 
9 log 2 

2 / 4"'m2 dt [l Imrr( 2 ) (t) - l Im7T( 2) (oo)][K( 4 ) (t) - K(4 } (o}] 
t1f e 1f e µ µ 

e 

and 

4m 2 
S = - 3_ Imrr ( 2 ) (00 ) f e dt [K ( 4 ) (t) - K <4 > (o}] • 

K 1f e o t J.l µ 

We will show in Appendix A that, in the limit b + o, 

K ( 4 ) (b) 
)J 

K( 4 ) (o) - ..! lb" - lb log b + O(b} 
µ 8 2 

with the fourth-order result having been verified to be 

K ( 4 ) (o) 
J.l 

197 1f 2 
= -- + 

144 12 

1f2 3 
~log 2 + - (;(3). 
2 4 

(4-7) 

Since the result in Eqn. (4-7) plays a crucial role in our calcula-

tion, we have performed a numerical check. The results of our numerical 



computations are shown in Figures 13 and 14. In Figure 13 we have 

plotted KC 4 > (o) - K( 4 ) (b) - .!?. log b versus lb. One can see that in 
µ µ 2 

45 

the limit b + O, the computed points asymptotically approach a straight 

line through the origin of slope .39 = rr/8, in agreement with the result 

of Eqn. (4-7). In Figure 14 we have a semi-log plot of b versus 

! [K< 4 > (b) - K< 4> (o) +~lb]. Again, in the limit b + O, the com-
b µ µ 8 

puted points asymptotically approach a straight line. The line inter-

cepts the vertical axis at b = 1 (log b = 0). The slope is - 1.15, 

which becomes on conversion to the natural log, - 1.15/log 10 = - 1.15/ 

2.30 = - .50, in agreement with the result of Eqn. (4-7). 

and 

or 

m 
Using Eqns. (4-6) and (4-7) one finds to order~ 

m 
µ 

= 

= 

~+ SK = 

m 
rr e 
3 m 

µ 

2 
'IT 

m 
e 

8 m 
µ 

m 
e 

m 
µ 

Similarly, we have 

I = Q + R + s 
M M M M 

. h2 
WJ. t 

(4-8) 
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~+ 

with 

Eqn. 

SM. 

2 m 
7T 2 61 

QM == [119 - ~] log -1!. + [27 - 162] 27 9 m 
e 

. 3 
m 2 

SM is known numerically to be of order (__!:.) 
m 

µ 

We find easily, in the limit b + O, 

( 4-9) 

M ( 4 ) (b) 
µ = M(4) (o) + [115 - 7T2J b + O(b3/2) 

µ 108 9 

M ( 4 ) (o) 
µ 

119 
36 

now shows that only the order 

Summary of Results for 

2 
1T 

3 

m 
(-!:.) 
m 

µ 

a 
(6) 
µ 

2 
term is present 

a 
(6) 
e 

48 

(4-9) 

in RM + 

The total contribution from all graphs in sixth order, to the dif-

ference between the muon and electron magnetic moments, for m /rn >> 1, 
µ e 

is given by 

(6) 
a 

µ 
(6) 

a 
e = 

+ 

3 
(~) 

2 rn rn 
[A log ......H. + B log ......H. + C 

1T m rn 
e e 

m m 2 2 m 
log _H.)] D ~ + 0( (~) 

rn m 
µ µ 

m 
e 

All coefficients are now completely known analytically4 except for the 

light-by-light contributions to C and D, denoted by c(YY) and D(YY), re-

spectively. (The light-by-light contribution is known numerically5 ). 

The results are: 
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2 
A -

9 

31 7rr2 2rr 2 
log 2 + i;; (3), B -+--- --

27 9 3 

1075 25 2 Srr2 
log 2 - 3 i;; (3) 3C + C(YY) c --- 18 Tr + -- + 216 3 4 

with 

11 4 2 2 2 1 4 8 
c4 648 Tr 27 Tr log 2 - 27 log 2 9 a4 

and 

3199 2 16 2 
log 2 

13 3 + 0 (YY) (4-10) D --- Tr - - Tr - - Tr . 1080 9 18 
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CHAPTER V 

BOREL TRANSFORM TECHNIQUE AND THE n-BUBBLE DIAGRAM 

CONTRIBUTION TO THE LETPON ANOMALY 

Introduction 

In calculating the mass-dependent contribution to the muon g-2, it 

has been customary for many years to use the large mass ratio m /m - 207 
µ e 

1,2 
as a good expansion parameter. We restrict ourselves to the class of 

diagrams with electron vacuum polarization insertions into the lowest 

order muon vertex (see Figure 15). 

One considers the asymptotic part of the photon's self-energy 

0022 . 22 3 
d (q /m ), that is, terms of order O(m /q) are neglected. From this 

R e e 

one can, in principle, calculate the anomaly to 0(1). Another possibility 

is to use the Kinoshita-method. 4 For low order perturbation theory this 

approximation seems to work very well. The question is whether this will 

be valid in high order n>>l, and how strongly the approximation depends 

on m /m • 
µ e 

It is the purpose of this paper to investigate this question for a 

simple class of diagrams, namely the mass-dependent n-bubble diagram (see 

Figure 16). 

Our analysis shows that the expansion breaks down for n > n , where 
- 0 

n is dependent on the mass ratio m /m . In particular we show that the o µ e 

answer starts oscillating like (-l)n in disagreement with the exact anomaly 

which is positive for all n. 
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µ 

Figure 15. Electron Vacuum Polari­
zation Insertion Into 
the Lowest-Order Muon 
Vertex 

µ 

Figure 16. The Mass-Dependent n-Bubble 
Diagram Contributing to 
g-2 of the Muon 
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It is possible to explain why this so-called "false expansion" 

breaks down. We have neglected terms 
. 2 2 

like m /q • 
e 

Now to get the full 

d ( 2 /m2) with q 
2 2 2 

the anomaly one must integrate = - m x /(1-x) over R q e µ 
2 2 

range O <$. x <$. 1. Clearly, the term m /q contains a singularity at x=O, 
e 

and so the neglected terms may become important! The full anomaly does 

not have such a problem since dR goes to zero for x + O. 

co 
It has been shown earlier that dR satisfies a homogenous Callan-

Symanzik equation, 3 and since the asymptotic anomaly is a linear functional 

00 

of dR, it itself satisfies a CS-equation. This equation is then solved 

to all orders, but in view of the above, one might question the validity 

of this. That is, one can not neglect the right-hand side function 

~(q2/m2 ) in the CS equation even if ~(q2/m2 ) + o. 
e e 

Downstairs we calculate the anomaly exactly for all n, in the 

I . 5 
limit m m >> 1, by making use of the Borel transform technique. 

µ e 
For 

large n an approximate expression is obtained. The exact anomaly is eval-

uated numerically and is compared to the above mentioned anomaly for dif­

ferent mass ratios. We also compare with Lautrup's asymptotic estimate. 6 

Muon Anomaly From the Mass-Dependent n-Bubble Diagram 

The exact muon anomaly from the mass-dependent n-bubble diagram is 
n+l 

a (~) where 
n 1T 

a 
n 

= 
1 [ (2) x 2 

f dx(l-x) - 1T (-
o 1-x 

2 
m n 
_µ_)] 

2 
m 

e 

(5-1) 

(2) 6 
1T being the standard second order vacuum polarization function given 

by 

1T ( 2) (_!:__) 
2 

m 
e 

= 
8 
9 

1 02 0-1 (- - -. ) o log 
2 6 0+1 
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and 

The anomaly (evaluated in the limit m /m >> 1) is denoted b and uses 
µ e n 

the asymptotic vacuum polarization function 

( 2) 
1T 

co 

5 = - -
9 

2 m 1 x2 
log .....!:!. - log 

3 m 3 1-x 
e 

(5-2} 

h 1 d f . h 2 . <2> 1 d Furt ermore, et en stan or the anomaly with t e x in 1T00 rep ace 

by 1. c represents the true asymptotic value of a for large n. 
n n 

In the following let L stand for log m /m , a = 59 - ~3 L and b = 
. µ e 

1 
3 

In order to evaluate b we will consider the Borel transform B(K) of the 
n 

series 

5 
which is defined as 

B(K) = 
co 
l: 

n=O 

b 
n n 

K 
n! 

Using Eqns. (5-1), (5-2) and (5-4) one finds 

B (K) 
(l+Kb) 

(2-Kb) (1-Kb) 
f(l+Kb)f (l-2Kb) 

f(l-Kb) 

To obtain b one now differentiates B (K) n times v:ith respect to K: 
n 

b 
n = - B(n) (0) 

K=O 

(5-3} 

(5-4) 

(5-5} 

(5-6} 



55 

Since it is easier to differentiate log f(Z), we find it convenient to 

define G(K) = log B(K). Using the fact that the Euler-function ~(Z) sat-

is fies 

we find 

1jJ (Z) 

~ (n) (Z) 

Z=l 

G (l) (0) = 

G (n) (0) 

d = - log f (Z) 
dZ 

n+l 
(-1) n!l',;(n+l) 

2 25 
= ) L - 18 

+ l',;(n)[(-l)n + 2n - l]}, n ~ 2. 

(n) 
Asymptotically for large n, G (0) approaches 

G (n) (0) "" (2b) n (n-1) ! 

(5-7) 

(5-8) 

(5-9) 

To obtain b we first notice that the following recursion formula holds 
n 

(easily proved by differentiation of B(K) = exp{G(K)}): 

B (n) (K) 

and, therefore, 

If we further write 

b = 
n 

= (5-10) 

( 5-11) 
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n 
b = I b Lm 

n m=O n,m 
(5-12) 

Eqn. (5-11) gives easily 

b = n,m 

+ 

3. b - 25 b 
3 n-1,m-l 18 n-1,m 

n-2 
I 

k=rn 
(n-l)G (n-k) (O)b 

k k,m (5-13) 

with the requirement b 
o,m 

1 = - 0 
2 o,m 

We now have a recursion relation 

allowing us to calculate the coefficients b of Lm for arbitrary n. 
n,m 

Using "REbUCE", 7 we have calculated b up to n=l8. Table III shows the 
n,m 

results up to n=5. 
1 2 3 4 

The n=0,1,2,3 values are well-known. ' ' ' 

To get an asymptotic estimate for b· for n>>l, we go back to Eqn. 
n 

(5-2) . We notice that the singularity at x=O is stronger than the x=l 

singularity. Putting x=O, and using the Method of Steepest Descents we 

obtain for large n 

b 
n 

m 
2 n ' 5/6 (__£) n>>l • 

~ (- -) n.e m , 
3 µ 

(5-14) 

Notice that the answer is of O(m /m ) and so is comparable with the 
e µ 

neglected terms. For a mass ratio m /m = 10, we checked that this esti­
µ e 

mate was good to within 2% for n ~ 6 (see Table IV). To see how good b 
n 

approximates a we evaluated a by numerical integration. The results 
n n 

for a , b 
n n 

and c 
n 

6 
where 

c 
n 

~ (l) 
6 

n m 4 
I -10/J (_I:!_) n.e 

m 
e 

(5-15) 

are shown in Tables V and VI for the mass ratios m /m = 207 and m /m = 10. 
µ e µ e 



bo,o 

bl,O . 

bl,l 

b2,0 

b2,l 

b2 2 
I 

TABLE III 

THE COEFFICIENTS b UP TO n=5 

1 
2 

25 
36 

1 
3 

2 
L; ( 2) 

317 - + --
9 324 

25 
27 

2 -
9 

~ 1:;(3) - ~~ 1:;(2) 

~ s (2) 
317 +--
162 

4 
27 

25 
27 

8609 ---
5832 

- _!..§_ 1:;(3) - 200 1:;(2) 
27 81 

8602 
2187 

~~ 1:;(2) + ~~~ 

8 
81 

200 
243 

n,m 

51 



TABLE III (Continued) 

b 5 ,o _ 4o r,;( 5 ) _ 8810 r,;( 3) s( 2) _ 1000 r;C 4 ) _ 500 s2( 2 ) _ 3110 sCJ> 
27 243 243 729 

43045 1;;(2) 
6561 

2182775 
472392 

b 16801 r; (4) + 80 r;2 (2) + 1000 1;;(3) + 6340 s (2)" + 323065 
5, 1 81 243 729 39366 

b _ 80 sC 3) _ 1000 r;< 2 > _ 43045 
5,2 81 243 6561 

160 
243 r; <2 ) 

500 
729 

16 
243 

6340 +--
2187 

58 
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TABLE IV 
m 

CHECK OF ASYMPTOTIC EXPRESSION FOR b FOR THE MASS RATIO --1:!_ = 10 
n m 

e 

n b b (Asympt) 
n n 

0 0.500 0.230 

1 0.072 - 0.153 

2 0.390 0.205 

3 - 0.180 - 0.409 

4 1. 36 1.09 

5 - 3.23 - 3.64 

6 1.51 x 101 1.45 x 101 

1 
- 6.78 x 101 7 - 6.70 x 10 

8 3.64 x 10 
2 

3.62 x 10 
2 

3 
- 2.17 x 103 9 - 2.17 x 10 

4 
1.45 x 104 10 1.45 x 10 

11 - 1. 06 x 105 - 1. 06 x 105 

12 8.52 x 105 8.49 x 105 

13 - 7. 38 x 106 - 7.36 x 106 

7 
6.87 x 107 14 6.89 x 10 

15 - 6.89 x 108 - 6. 87 x 108 



n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TABLE V 

THE QUANTITIES a , b AND c UP TO n = 15 FOR THE 
n n n m 

PHYSICAL MASS RATIO _g_ = 207 
m 

e 

a b 
n n 

0.500 0.5 

1.09 1.08 

2.72 2. 72 

7.23 7.19 

2.02 x 101 2.02 x 101 

5.85 x 101 5.81 x 10 
1 

1. 75 x 102 1. 75 x 102 

5.40 x 102 5.34 x 102 

1. 71 x 103 1. 71 x 103 

5.53 x 10 
3 

5.40 x 103 

l. 83 x 104 1.89 x 104 

6.20 x 104 5.65 x 104 

2.14 ~ 105 2.54 x 105 

7.55 x 105 3.96 x 105 

2. 71 x 106 6.06 x 106 

9.93 x 10 6 - 2.36 x 107 

60 

c 
n 

3.27 x 107 

5.45 x 106 

1.82 x 106 

9.10 x 105 

6.06 x 105 

5.05 x 105 

5. 05 x 10 
5 

5.90 x 105 

7.86 x 106 

1.18 x 106 

1.97 x 106 

3.60 x 106 

7.21 x 106 

1. 56 x 107 

3.64 x 107 

9.11 x 107 



n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TABLE VI 

THE QUANTITIES an, bn AND en UP TO n 20 
. mµ 

FOR THE MASS RATIO - = 10 
me 

a b 
n n 

0.500 0.500 

0.248 o. 072 

0.217 0.390 

0.236 - 0.180 

0.293 1.36 

0.405 - 3.23 

0.610 1.51 x 101 

0.990 - 6.70 x 101 

l. 72 3.64 x 102 

- 2.17 
3 

3.19 x 10 

1. 45 
4 

6.30 x 10 

1.31 x 101 - l. 06 x 105 

2.92 x 101 8.52 x 105 

6.84 x 101 - 7.38 x 106 

1.69 x 102 6.69 x 107 

4.42 x 102 - 6.89 x 108 

1.21 x 103 7.35 x 109 

3 1010 3.54 x 10 - 8.33 x 

1.08 x 104 9.99 x 1011 

4 13 
3.45 x 10 - 1.27 x 10 

1.15 
5 1014 x 10 1.69 x 

61 

c 
n 

1. 78 x 102 

2.97 x 101 

9.90 

4.95 

3.30 

2.75 

2.75 

3.21 

4.28 

6.42 

1.07 x 101 

1.96 x 101 

3.93 x 101 

8.50 x 101 

1.98 x 102 

4.96 x 102 

l. 32 x 10 
3 

3.75 x 103 

1.12 x 104 

3.56 x 10 
4 

1.17 x 105 
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We see that for the physical mass ratio m /m = 207 the approxima­
µ e 

tion a ~ b is good up to n ~ 10, while for the ratio m /m = 10, the 
n n µ e 

approximation is totally wrong for all n ~ 1. That is, in the latter 

case, the neglected terms of O(m /m ) are now bigger than the logarithmic 
e µ 

terms and the 0(1) term together! On the other hand for n > 18, the 

approximation a ~ c is very good. 
n n 

To summarize, for very large mass ratios, b provides a good approxi­
n 

mation for low n, while c is good for very large n. In the region in 
n 

between, neither is valid, and one must, therefore, use the full anomaly. 

This might have some relevance for the T-lepton anomaly with muon bubble 

insertions since (m /m ) = 16.9. 
T µ 
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CHAPTER VI 

ELEMENTS OF GAUGE THEORIES 

The Need for Color 

Soon after the quark model was introduced by Gell-Mann and Zweig in 

1964, 1 an apparent paradox arose concerning the properties of the 

quarks. We recall from Chapter I that the baryons are three quark states 

jqqq> and the mesons are quark-antiquark pairs, jqq>. These quarks come 

in 5(6) different flavors denoted u,d,s,c,b(t). The problem has to do 

with the spin-statistics theorem. 
++ 

Consider the ~ made of three u-quarks 

or Q made of three s-quarks. Now, since the spin of the quarks is J=~, 

and~++, Q 3 
have J = 2' they should satisfy Fermi-Dirac statistics. 

++ -
However, in the ground state (S-wave), the ~ and Q are totally symme-

tric in interchanging the quarks. 

The easiest way out of this puzzle, is to introduce a new quantum 

2 
number called "color". Each quark flavor now comes in three varieties 

"red", "green" or "blue." We shall later see that "color" is the non-

Abelian counterpart of electric charge. The wave function is now made 

totally antisymmetric in the color indices (ijk). 

= 1 
1-6 . z E "k I U, U, u.. > • 

v i=R,G,B 1J i J k 

In group theoretical language, this state now forms a singlet under 

SU(3)-color, which is easily seen from the decomposition 

64 
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,-
8 (+ 8 + 10 • 

Similarly for the mesons lqq>, we have the decomposition 

3 ( x 3 = 1 \,+ 8. 
\..,, 

Notice, however, that a diquark lqq> can not exist in a singlet 

state: 

~ r: -$ 3 (x : 3 = 6 \t,, 3 : ; 1 • 
~.; 

We have chosen three colors, for which there is good experimental evi-

dence. If we had chosen, say, four colors, the lowest singlet state 

would have been a four quark state lqqqq> 3 . This "exotic" state has 

not been seen in nature. 

We could have chosen instead an S0(3)-color group. However, this 

would have allowed a diquark, and moreover, it would lead to no asymp-

totic freedom for Nf > 2, and we know already that Nf ~ 5. 

The reason we choose the color singlet state, is that free quarks have 

not been observed in any high energy experiment, and it is natural to 

postulate "color" confinement. However, there is an experiment by Fair-

4 
bank et al., in which they claim to see fractional charges of± 1/3 e. 

Whether these charges can be identified with quarks is too early to say, 

and if it does, would it mean that QCD is wrong? Clearly other experiments 

would be important to confirm Fairbank's experiment. 

There is additional experimental evidence for N=3 colors. First con­

sider the decay TI 0+yy. Using PCAC, 5 one can relate this decay to the axial 

vector coupling to two photons, which in lowest order proceeds via a 

virtual quark loop (VVA - triangle diagram). 

The decay rate is then given as: 
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N2 0. 89 eV 8.01 ev 

for N 3 colors. The experimental value is 

(7.95 ± 0.55) eV 

This is clearly an indication of N = 3 colors. 

Evidence for N = 3 colors is also obtained by considering the so-

called R value, which is defined in electron-positron annihilation into 

6 
hadrons as: 

R -

+ -
crT(e e +hadrons) 

a (e+e- + µ+µ-) 

In the asymptotic high-energy region one has 

R 

where qi is the quark charge. Below "charm", one has experimentally 

R"' 2 - 2.5 (u,d,s), while RTH = 3·~ = 2(N=3). Above the "charm" thresh­

hold, R "' 4.5-5. Now, allowing one unit of REXP for T lepton production, 

the value RTH 10 . . d . h EXP = ~ is in goo agreement wit R For CM energies 

above 13 GeV, the data shows R to be constant with <R> = 3.94. With five 

TH 
flavors R = 3.7. Including radiative corrections, this value is 

TH 
actually lifted to R = 3.92. 

The last reason we give for color is of a theoretical nature, and has 

to do with cancellation of the Adler-Bell-Jackiw anomalies (VVA triangle 

. ) 7 diagrams . It is required, that these anomalies, which are independent 

of the masses of the leptons and quarks, cancel in order to have a renormali-

8 
zation theory. In the Standard Model of electro-weak and strong interactions, 
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the condition reads Tr[QA +QA ] - o, 3 ' 9 where QA and QA are the 
lep had - lep had 

charge matrices for leptons and quarks. 

We shall assume lepton-hadron universality, so that to each weak-

isospin doublet corresponds a quark doublet: 

t t 

and 

[:] ' [:] ' [:] 
Since Q(\) ) 

e,µ ,-r 
o, Q{e,µ,-r) 1, Q(u,c,t) 

find 

Tr [Q" l + Q" ] 
ep had 

- 3 + N 

2 
- and Q(d,s,b) 
3 

1 
= - 3 we 

In order for this to vanish, we must have precisely N=3. We shall dis-

cuss the Standard-Model later. 

Gauge Invariance of Abelian QED and Non-Abelian QCD 

We begin with the free field Lagrangian for a massive ferrnionic 

field 1jl(x): 9110 

= 1/l(x) {i?-m)iJ! (6-1) 

where the slashed notation~= a yµ, yµ being the usual gamma matrices. 
].1 

Clearly LF is invariant under the global transformation 

1)J ( x) -+ iJ!' ( x) exp {-ie }iJ! (x) 
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and leads to a conserved current j (x) = lji(x)y lji(x). 
jJ µ 

This is not very exciting, since we are just multiplying the wave-

function by a phase factor, which is a non-observable. So let us instead 

try to make LF invariant under a local transformation lji(x) + U(x}lji(x) = 

exp {-i8 (x) }lji(x). 

However, we discover that since 

a ljJ (x) + u (x) {d ljJ - i a 8} 
jJ jJ jJ 

(6-2) 

LF is no longer invariant. The way to remedy this, is to introduce an 

Abelian gauge field A , and define a covariant derivative D =a - igA 
jJ µ µ µ' 

and require A to transform as 
µ 

A +A' 
jJ µ 

UA U-l 
µ 

i < a u) u-1 
g µ 

A little algebra now shows that D ¢ transforms as 
µ 

< a -igA • > $' µ µ 

A 
µ 

= (3 -igA + ia 8)U(x}lji(x) 
µ jJ jJ 

U (x) (D $) • 
µ 

and the Lagrangian 

= ljJ (i~ -m) ljJ 
µ 

1 a e 
g µ. 

(6-3) 

(6-4) 

(6-5) 

is indeed invariant. Notice that we have introduced the minimal coupling 

to the electromagnetic field: L1 = gjµ(x)Aµ(x). 

To get the total QED Lagrangian, we must add the kinetic term: 

L . = - !_ F Fµv 
Kin 4 µv 
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where the electromagnetic field tensor F 
lJ\) 

a A - 3 A is clearly 
µ \) \) µ 

invariant. To summarize, the QED Lagrangian is 

(6-6) 

with one conserved current. ·This is the Abelian U(l) symmetry. 

We will now try to generalize QED by imposing an SU(N) symmetry 

. d 3,9,10 instea . Each fermion (quark) is now represented as a (.N ~· 1) 

color matrix (tjJ ) and the fermion Lagrangian is 
i i=l,2, ... ,N 

~. Ci~o .. - A .. >$. 
1. 1.) 1.) J 

h A . . 
w ere M .. is the mass matrix. 

J.) 

Again we will consider the local transformation 

tjJ. (x) -+ tjJ~ (x) = U(x)tjJ. (x) 
J. 1. J. 

exp {-i T 6 (x) }1/1 (x) 
a a 

(6-7) 

2 
Notice that since we require SU(N) symmetry, we need N -1 generators T 

a 
2 

and, therefore, N -1 parameters 6 (x). 
a 

For N=2, we have T 
a 

l T T being the ordinary Pauli-matrices, 
2 a' a 

and for N=3 we have T 
a 

1 2 Aa' Aa being the Gell-Mann matrices. 

The generators Ta no longer commute, but satisfy [Ta,Tb] = i fabc Tc 

where fabc are the structure constants of SU(N). For N=2, fabc 

T now represents the non-Abelian charge. 
a 

€ b . a c 

For each generator, we introduce a Non-Abelian field Aa and define 
µ 

the covariant derivative Dij 
µ 

as 

a a 
TA 

µ 
(6-8) 
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Then we find again (Dij~) ' 
J.l 

U(Dij~). If 0 (x) is infinitesimal, we 
J.l a 

obtain 

ifabc T~ yields 

a' 
A 

µ 

(6-9) 

(6-10) 

The second term represents an isospin rotation. Eqn. (6-10) also shows 

a 
that the transformation 0£ A is representation independent. 

jJ 

How should we define Fa this time. It must transform as 
µv 

-1 u 

which, for infinitesimal transformations, reads 

and, using the technique as above, we find 

a' 
+F 

µv 
a 

F 
µv 

which is an isospin rotation. Clearly. 

a' aµv' 
F F 

µv 

= 

due to the antisynunetry of fabc" 

a 
F µv 

(6-11) 

(6-12) 

(6-13) 

(6-14) 



We claim that 

will do the job. 

After some trivial algebra one finds 

a' 
F 

µv = 

The last parenthesis can be written as 

where we have used the Jacobi identity 

[[T ,Tb],T ] + [[Tb,T ],T ] + [[T ,T ],Tb] 
a c c a c a 

a' 
It follows that F can be written as in Eqn. (6-13) 

]1\) 

a' 
F 

µv 

The QCD Lagrangian is then 
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(6-15) 

(6-16) 

0 (6-17) 

(6-18) 

(6-19) 
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The Standard Model 

For completeness we would like to describe the Weinberg-Salam model 

of the electro-weak interactions. The gauge group is here SU(2)L ig:u{l) 

( ) . 9, 10 f 1 . 1 d k where SU 2 is the weak isospin group. · I we a so inc u e quar s 

with the gauge group SU(3) , we call this the Standard Model. 
c 

We begin with the W-S model, which consists of a weak isospin 

doublet of a left-handed electron and neutrino 

L 

- 1 where eL = 2(l+y5 )e, and also a right handed electron {singlet) 

1 
eR = 2<1-Y5)e. We shall assume that these particles are massless from 

the beginning. 

Let the generator for the U(l) symmetry be denoted weak hyper-

1 
charge Y, so that the charge Q = T 3 + 2 Y. Clearly Y(eL) = Y(vL) = -1 

and Y(eR) = -2. 

Assuming the SU(2)L i; U(l) symmetry, the fermion Lagrangian must 

be invariant under the combined transformations. 

L -+ L' 
i a a 

= exp{- 2 T 8 {x)}L 

and (6-20) 

R-+ R' exp{- i e• (x} }R 

and we must add four gauge bosons Aa (a=l,2,3) and B giving the µ µ 

Lagrangian 

along with the kinetic term 



L . 
Kin 

1 a aµv 1 µv 
--F F --G G 

4 µv 4 µv 

where 

and 

G Cl B -Cl B 
µv µ v v µ 

The • 's are the usual Pauli matrices 
a 

1 
T 

0 -i 3 
(i 0 ) and T (1 0) 

0 -1 
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(6-21) 

(6-22) 

(6-23) 

The first step is to change <A 1 A2) to two other fields (W+,W-) 
. µ' µ µ µ 

(charged vector bosons) : 

Al = l (W+ + W ) 
µ 12 µ µ 

(6-24) 

A 2 i (W+ -- w ) • 
µ Fi. µ µ 

We also introduce the "charge currents" j: = (j~)+ 

= (6-25) 

where the last equality follows from the fact that y5 anticomrnutes with 

1 
yp and P = 2(1 + y 5 ) is a projection operator. It follows easily from 

Eqns. (6-23) and (6-25) that 

- 1 
L yµ T L = 

2 
Ly T L 

µ 

(6-26) 

= 
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and, therefore, the part of the Lagrangian containing A1 and A2 is 
µ µ 

g - µ 1 2 2 g [ - +µ + w-µ] 
- LY (TA +TA) L = --= j W + j 
2 µ µ /2 µ µ 

T:1e rest. of the Lagrangian is 

where we defined 

,3 __ 1L-Y 3 
J = T L µ 2 µ 

and the "neutral current" 

- g'LY L 
µ 

2g'RY R 
µ 

1 -
-(vY v 
2 µ L 

eY e) 
µ 

It is convenient to introduce the electromagnetic current 

.3 1 .n = J + - J µ 2 µ 

so that Eqn. (6-28) becomes 

- eY e 
µ ' 

. 3 3 µ , ( . e • m • _ J. 3) Bµ 
gJµA + g Jµ µ 

(6-27) 

(6-28) 

(6-29) 

(6-30) 

(6-31) 

3 
We then introduce a rotation of (A ,B) ~ (A ,Z ), in such a way so 

µ µ µ µ 

that the "photon fi~ld" A couples only to the electromagnetic current: 
µ 

[B~J lr c~se w -sinew] [Aµ] 

A sine cos6 . z 
µ w w µ 

(6-32) 



with 

tane 
w 

8 is called the Weinberg angle. 
w 

£ 
g 

We find easily from Eqns. (6-31) and (6-32) 

I e .e.m. Aµ + g g cos J . 
w µ cose 

w 

Therefore, we can identify the electric charge e 

We have also defined the neutral current jn as 
µ 

g sine 
w 

.3 . 2 8 .e.m. 1 - 2 -
-2 (vY v - eY e) +sine (eY e) J - sin J 

µ w µ µ L µ L w µ 

The fermion Lagrangian reads 

g'cose . 
w 
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(6-33) 

(6-34) 

Next, how do we include quarks? We will assume again a lefthanded 

doublet 

L :::: 

and, in this case, two right-handed singlets (u ) and (d ) . Since Q(u) 
R R 

2 1 3 and Q(d) = 3' the hypercharges in this case are Y(uL) 

4 
Y(uR) = J and Y(dR) = 

2 
3 

The Lagrangian is written in exactly the 

+ 
same way. The w- now changes a u-quark into a d-~uark and vice versa. 

µ 

uY d 
µ L 

l(u y u - d y d ) + e 
2 µ L µ L 

. 28 sin 
w 

(6-35) 
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This is the Standard Model. 

The next question is how do we generate the mass of the electron 

while keeping the neutrino massless? This is done through a mechanism 

. ( ) 11 known as spontaneous symmetry breaking SBB . 

We introduce an SU(2) doublet of complex scalar fields (all toget-

her four fields). 

. [::] 
The scalar Lagrangian is 

2 
where the scalar potential is assumed to be (µ < o) 

2 + + 2 
µ (cp cp) + 7\(cp cp) • 

The Yukawa interaction must be SU(2)L Q_{'U(l) invariant and reads 

L 
Yu 

- + 
G (Rep L + (Lcp) R) 

e 

(6-36) 

(6-37) 

( 6-38) 

The potential v(cp+cp) has a minimum at lct>I = (-µ 2/2A)~. Due to the 

SU(2) symmetry we can choose this minimum such that only the neutral 

component cp has a non-vanishing expectation value. 
0 

with 

v = 

1 (ov> 
12 

(6-39) 

Instead of expanding cp = cp 0 + cp 1 we will parametrize cp in terms of 
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4 new fields ~0 (a=l,2,3) and n which for infinitesimal fields reduces 

a a 
u (~) = exp{- t ~ (x) 1 

2v 

u-lcu 1 0 
d> (v+n) ' 12 

to ~ (v+n+i~). This eliminates unwanted massless Goldstone Bosons. 

Since we have SU(2) symmetry we can transform 

while changing Aa 
µ 

¢ ·-+ ¢I 

a a' 
T A 

µ 
a a -1 = U(~)T AU (~) 

µ 

U(~) ¢ ( 0 ) 
v+n 

The quadratic part of the scalar Lagrangian becomes simply 

(6-40) 

g'B ) 2 } (6-4la) 
µ 

while the quadratic part of the kinetic Lagrangian is 

- .!.1 aw+ -a w+l 2 
2 µ \) \) µ 

.!.c a z - a z ) 2 
4 µ \) \) µ 

1 2 -< a A - a A > 4 µv vµ 
( 6-4lb) 

+ 
Introducing (W-, Z, A) we obtain for the quadratic part of the total 

Lagrangian 

L .!. I + - a w+ 12 !. < gv > 2 I w + I 2 d w + 
0 2 µ \) \) µ 4 µ 

1 z ) 2 
2 

2 2 2 - a v 
(6-42) -(() z + 8 

(g +g I ) (Z ) 
4 µ \) \) µ µ 
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1 
4 

a A - a A >2 
].J \) \) ].J 

(6-42) 

From this we see that three of the gauge bosons have acquired 

masses, while the photon remains massless: 

with 

M· w:t 
1 2 gv, 

v( 2 12)1/2 M O 
2g+g. 'A= 

cos6 w 

(6-43) 

The last term; in Egn. (6-42) represents a heavy scalar particle 

called the "Higgs" boson with mass m 
H 

What has happened is that three of the originally four massless 

"Goldstone" Bosons have been eaten up by giving longitudinal terms 

to the three vector bosons, which then acquire masses. One of the 

left-over bosons has also acquired mass. 

Finally, we would like to relate the coupling constants (g,g') to 

-5 -2 
the four fermion coupling constant G = 1.2 x 10 GeV 

S . h w f 11 2 . . 1 1 h' . ince t e propagator or sma q is simp y ~-2 g t is give an 

effective Lagrangian 

2 
..!.(~) ( . +. -µ) 
2 M JJ.JJ 

w 
h 'l h f f . . . 2r:::2 (.+.-µ) w i e t e our ermion Lagrangian is v~ G J J • 

M w 

1 

2v 
2 and therefore 

1 

37.3 = 

37.3 
sin6 w 

:.::: 78 GeV 

:.::: 90 GeV 

].J 

~ j.J\) 

It follows 

(6-44) 
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. h . 2 e using t e value sin 
w 

0.23 obtained from experiment. We also find 

l l = 2 v G (ee) which gives a mass rn 
e e 2 GeV, while the neutrino 

remains massless. 

Propagators and Vertices 

Once the Lagrangian is given the socalled propagators and vertices 

can be found. This can be done rigorously using Feynman path integral 

formalism or canonical quantization. Here we shall adopt a method by 

t'Hooft and Veltman, from which we can read off the propagators and 

12 
vertices in a very simple way. 

Consider any field ¢. and look at the bilinear part of the 
i 

Lagrangian 

L cfi,I' .. ¢. 
i i] J 

The propagator G .. is then defined as 
i]. 

G. ,F 'k iJ J 
= 

if it exists, always considered in momentum space. That is, a deriva-

tive Cl is replaced by -ik , for example. 
µ µ 

The vertices are defined as the trilinear or quartic terms in 

L = ¢ · ¢ · rlik r · ·k 
l J lJ 

Consider QED first and recall that 

(6-45) 

The fermion propagater is simply given by 

soo 1 1 = --+--
i;J-m ;K-m 

( 6-46) 
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and the vertex is r = eY . 
µ µ 

The photon propagater is tricky, since the inverse does not exist! 

We can avoid_this problem, however, by adding a gauge-breaking term 

l (a Aµ/,3,10,13 so that 
2a µ 

= 

where we have defined 

-+ + 
fag 

µ 
(a f) g and f a g = f ( a g). 

µ µ µ 

The term in the bracket (in momentum space) reads r 
µv 

l + (l - -)k k . 
a µ v 

(6-47) 

2 
- k g 

µv 

Due to gauge invariance the propagater must have the form 

G 
µv 

G 
µv 

By solving r GvA = g A we find easily 
µv µ 

gµ\1 k k 
-- + (1-a.) ~ 
k2 k4 

(6-48) 

The case a=l gives the Feynman gauge, a.=O the Landau gauge, and finally 

a.+oo corresponds to the unitary gauge. 

Although we have spoiled the gauge invariance, it turns out to be 

harmless, since a Aµ is a free field. This property allows one to show 
µ 

that the unphysical degree of polarization of the photon, decouples from 

the theory and the s-matrix is gauge invariant and unitary. 

We can also find the W± and z0 propagators quite easily. Recall 

the bilinear part of the Lagrangian L in Eqn. (6-42) is 
0 

l 1a w + - a w + I 2 + M 2 I w + 12 
2 µv vµ W,µ 

- 2 ~--+ 
{W { (M + 3·3) g 

µ w µv 
+-+ } +v - a a w µ \) 

(6-49) 
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2 2 
giving r = (M - k )g + k k . µv w µv µ v 

Following steps as above, we obtain 

+ k k /M 2 

G µv 
- gµv µ v w 

k 2 2 
{6-50) 

- M 
w 

0 
and similarly for the Z -propagator. Notice, we do not have to add 

gauge breaking terms, since we already have longitudinal terms in the 

Lagrangian. 

Now let us go to QCD. 

Again we must break the gauge invariance by adding a term - 2
1 (a Aµ) 2 • 
a µ a 

Except for color factors, the fermion and gluon propagator and, also, 

the quark-quark-gluon vertex are the same as in QED. However, in this 

case, there are self-couplings among the gluons. 

For the trilinear terms, a typical term is 

giving a trilinear coupling fabc klµ gvA· Now, due to Bose-Einstein 
• 

statistics, the trilinear coupling must be syrrunetric under interchanging 

the three gluons. By correct symmetrization we find the triple-gluon 

coupling: 

There is also a quartic term 

giving quartic coupling g 2 fabc fade gµv gp 0 . By symmetrization, we 

obtain 
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+ f ace 
(6-52) 

+ c c (g g - g g )} 
ade cbe µcr vp µv crp 

+ -
These are exactly the same as the corresponding couplings YW W and 

+ -YYW w in W-S model. There is just one problem with this procedure, 

namely, the field 3 Aaµ is no longer a free field, and the unphysical 
µ 

degrees of freedom do not cancel, and therefore unitarity and gauge 

invariance are no longer preserved. In order to restore the unitarity, 

a a 
one adds two new fields: the Faddeev-Popov ghosts, n and w . These 

are anticommuting objects and appear only in closed loops. 

One considers the additional Lagrangian 

where (6-53) 

This leads to a ghost propagator, l oab and a coupling to gluons 
k2 , 

Qualitative Difference Between QED and QCD 

The essential difference between QED and QCD lies in the behavior 

of the renormalized coupling constant. It is well-known that the 

physical coupling constant e in QED, defined at large distances 

(Thomson limit), is smaller than the effective coupling constant eeff' 

~hich one would measure at smaller distances, due to the presence of 

vacuum polarization effects. The "bare" electron is surrounded by a 
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+ -cloud of virtual e e pairs, and will attract the virtual positrons and, 

thus, shield part of its electric charge. Hence the vacuum behaves as 

a dielectric. 

In lowest-order perturbation theory (Figure 17) the asymptotic 

behavior of the effective coupling constant is 

2 
a (q ) = 

2 2 
2 , a(µ ) g__ 

a(µ) {l + log(- 2 )}. 
31f 

]J 

(6-54) 

2 
We have renormalized at q 

2 
-µ , to prevent any I.R. singularities. 

Adding "bubbles" yields a geometrical series, which can be summed 

up to give, 

2 
a(q ) = 

1 -

2 
a(µ ) 
2 

a(µ ) 
1f 

2 
log (- L) 

2 
]J 

(6-55) 

2 
The coupling constant does indeed grow with increasing q , that 

is, smaller distances. 

In QCD, the behavior is different. This is due to the self interac-

tion of the gluons. We will separate the contributions due to transverse 

gluonic degrees of freedom (Figure 18) and "Coulomb" degrees of freedom, 

14 
(Figure 19), using the Coulomb gauge. 

The contribution of the transverse gluons leads to color charge 

screening, like e+e- contributions in QED 

= 
2 

a(µ ) 
a(µ2) q2 

{l + log (- - 2 )}, 
41f 

( 6-5 6) 
]J 

while the "Coulomb" gluons lead to an anti-screening, which is twelve 

times larger than the screening due to transverse gluons: 



e 

e 

Figure 17. Vacuum Polarization in QED 

.... - ...... 
/ '\ )e..o.............. ........ ....... .,.., 
\ I 
' / ,_ ... 

Figure 18. Vacuum Polarization in QCD 
Due to Transverse Gluons 
(Dashed Lines) 

Figure 19. Vacuum Polarization in QCD 
Due to a Transverse and 
a "Coulomb" Gluon 
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== 
2 2 

a(µ 2 ) {l - 12 a(µ) log(- L)} 
4'1T 2 

.µ 

Each quark flavor contributes 

2 
Ct (q } 

s 

Altogether 

2 
Ct . (q ) 

s 

= 

2 2 
= a ( µ 2 ) , {l - ( 11 - ~ N ) a ( µ ) log (- L 2 ) } 

3 f 4'1T 
µ 

and sununing the "bubbles" gives 

2 
Ct (q ) 

s 

2 
Ct(µ ) 

2 2 
1 + S0 a(µ ) log(- 3-) 

4'1T 2 
µ 
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(6-57) 

(6-58) 

(6-59) 

(6-60) 

where we have defined S 
0 

2 
=11--N 

3 f 
We see that, if Nf < 16, then 

2 S > 0 and the coupling constant tends to zero for q + - 00 
0 

the so-called asymptotic freedom. 

This is 

Since the effective coupling constant can not depend on the renor­

malization point µ 2 we can write 

4Tf 2 2 2 
a (q } 

s 2 I 

S0 log(- L) 
A2 

Jq I »A (6-61) 

where the constant A !': 500 MeV, has been determined in scaling violations 

in deep inelastic scattering processes. If we put lq21 A 2 . = in eq. (6-61) 

the effective coupling constant becomes singular. This occurs at dis-

tances around 0.5 fm, which is about the size of the hadrons. We shall 

see in the next section that it is possible to do perturbation theory 

2 2 
in a (q ) , rather than using a(µ ) which is of order unity. This is 

s 
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known as renormalization group improved perturbation theory and leads 

+ -to satisfactory predictions in e e annihilation into hadrons and also 

for deep inelastic processes. 

Renormalization Group Equation for Massless 

QED and QCD 

Before we introduce the Renormalization Group Equation (RGE), we 

would like to remind ourselves of what is meant by multiplicative re-

1 . . 3, 13 norma ization. 

Consider for simplicity the Lagrangian for massless QED: 

L = 
0 

(6-62) 

In the tree approximation, there are no loop integrals and every-

thing is finite. But in the 1-loop approximation and higher infinities 

arise due to divergent loop integrals. These can be regulated by intro-

ducing a momentum cut-off fl. •. 

The infinities are then cancelled by adding a suitable counter term 

L to the old Lagrangian L • 
c 0 

Now, since QED is renormalizable, L will take the form: 
c 

L .!cz -1) (a A - a A ) 2 + (Z -1) ¢(ii) 1)1+ (Zl-1) e¢y ijlAµ (6-63) c 4 3 µ \) \) µ 2 µ 

where the z. 's are dependent on the cut-off/\. . 
J. 

If we do a rescaling (renormalization) of the photon field A , the 
µ 

fermion field and the charge e in the following way, 

A 
µ = -1/2 A B 

z3 µ 

(6-64) 
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and 

e = zl/2 
3 

B 
e (6-64) 

then L0 + Le is simply equal to the old Lagrangian, now evaluated using 

the "bare" fields AB, 1/JB and coupling eB. This process can now be 
µ 

repeated to any finite order and we say that.QED is renormalizable to 

any finite order. We would like to mention here that the so-called 

1/2 
Ward identity exists, namely that z1 = z2 and therefore e = Z eB. 

In connection with the QCD Lagrangian, we shall later define the 

renormalization constants uniquely. 

A necessary condition for a theory to be renormalizable follows. 

Consider the mass dimension d of the coupling constant g, which we de-

note [g]. 

If d ? O, the theory is renormalizable and it is non-renormaliza-

ble if d < O. Example: QED. Since [L] = 4 we find easily that [A ] = 1 
µ 

and [iji] = % and, therefore, [e] = 4 - 2 % - 1 = O; and QED has a dimen-

sion less coupling constant and is, hence, renormalizable. QCD and 

the W-S also have dimensionless couplings and are renormalizable. 

Examples of non-renormalizable theories are the old 4-fermion theory .. 
and gravity since [GF] 2 and the Newtonian constant [GN] = - 2. 

For QCD, we write the counter terms as follows: 

2 
- z .! G ·(;µv - z .CJ.. c; • (A xA > - z .L <A: xA > 2 

3 4 µv 1 2 µv µ v 4 4 ~ v 

+ z2F ~(ip)i)! + g z1F ~T·Ri)! 

'- We have introduced the notation Ga 
µv 

(6-65) 
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Ga Gaµv and also (A x A )a= fabc AbAc. 
µv µ v µ v 

Adding L and L , and writing it as the old Lagrangian in the 
0 c. 

"bare" fields, gives us the scale transformations: 

and 

-
A 

µ 

(n ,w) 

ijJ. 
1. 

g 

a. = 

= 
--1/2 -B -B z3 Cn ,w ) , 

(Z F)-1/2 ijJ. B 
2 1. 

z 3/2 
3 B 

---g 
zl 

along with the so-called Slavnor-Taylor identities, 

zl zl zl 
F 

= - = 
z3 - F 

z3 z2 

F F -1 1/2 
so that g = z 2 (z1 ) z 3 gB, as in QED. 

(6-66) 

The renormalization constants are now defined as follows 3 (U refers 

to unrenorrnalized and µ is the renormalization point) • 

The gluon propagator (transverse): 

u0 ab (Tr) (k) I 
µv 2 

k =-µ2 

k k 
.i_ z (g + µ2v) oab 

2 3 µv 
µ µ 



The ghost propagator: 

uGab(k) I 
2 2 

k =-µ 

The fermion propagator: 

usij (k) I 
2 2 

k =-µ 

The triple-gluon vertex: 

The ghost-ghost-gluon vertex: 

and finally the quark-quark-gluon vertex 

-1 
= (Z F) 

1 
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( 6-67) 

. . 3,13,15 
We are now ready to discuss the Renormalization Group equation. 

Consider first a renormalized one-particle irreducible Greens function 

(all external propagators removed) Rr (n) (k.) , with n external gluons. 
1 

Inclusion of fermions is trivial. Rr(n) (k.) can be obtained from the 
1 

unrenormalized amplitude Ur(n) (k,) via multiplicative renormalization. 
l 

The unrenormalized amplitude depends on the cut off A , the bare coupling 
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constant gB and the gauge parameter a , while the renormalized amplitude 
. B 

depends on the renormalization point µ, the renormalized coupling con-

stant g and the gauge parameter a. 

We now suppress the external momenta k. and write 
J_ 

IL (n) 
l' (µ,g,a) = 

z3 depends on A and µ through the combination Aµ • 

(6-68) 

Now since the unrenormalized Greens function does not depend on µ, 

any variation with respect toµ must vanish, i.e., 

0 . (6-69) 

We are now interested in the influence of this variation on the renorma-

lized Greens function. We have 

d µ­
dµ 

µ ~ + S(g,a) _a_._+ o(g,a) a aµ (lg CJ a 

where the S-function: 

.. 

the anomalous dimension y: 

and 

y(g,a) -
1 
2 

o(g,a) = - 2a Y(g,a). 

a 3/2 -1 
- g a log A log ( Z 3 z 1 ) ' 

(6-70) 
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Notice that in the Landau gauge, a=O, and, therefore, o(g,a) vanishes. 

One can prove that S and Y depends only on g, and we have 

[µ-a-+S(g) a -nY(g)]Rr(n)(g,µ)=O. 
<3µ ()g 

(6-71) 

To "solve" this equation, we perform a scaling of all momenta k,+ 
l 

A.k. and write t = log A.. We also define the "running coupling constant" 
l 

g(g,t) with initial value g(g,o)=g through dg = S{g). 
dt 

0 f . d 3,13,15 ne in s 

R (n) r (Ak. ,g Iµ) 
J. 

y ( g I ) dg I }. ( 6- 72) 
8 (g') 

Now we see that the large momentum (;\ + 00 ) behavior is governed by the 

amplitude with g replaced by the running coupling constant g. The 8 

function and the anomalous dimension can both be calculated in pertur-

bation theory and, hence, g can be obtained. 

S(g) = 

y (g) 
2 

c g 
0 

+ ... 

16 In the 1-loop approximation, the renormalization constants are 

(Figure 20) 

YM 
2 

{(.!]_ - 8 _g_ /\ 
z3 = 1 + a)C2 (G) - J T (N) }log µ· 167f 2 3 

YM 2 
{(!2_ - 3a)C (G) 8 11 

zl = 1 +-g- J T (N) }log 
167f 2 6 2 2 µ 

(6-73) 

(6-74) 
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Figure 20. 

(o) 

-0-
(b} 

• 

(c) 

( d) 

Feynman Diagrams Contributing 

the g 2 Corrections to (a) 
F F z3' (b) z2 , (c) z1 and 

(d) z1 
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and 

= 

2 \ 
1 - ~ ac 2 (G)log !_ 

16n µ 

2 
_g_ /\ 1 - 2 (2a)c2 (N)log µ 
16n 

2 
g , 3 a /\ 

1 - -- {(- + -)C (G) + (2a)C2(N) }log-µ 
16n2 2 2 2 

where c 2 (G) = N is the Quadratic Casimir invariant for the adjoint 
2 

representation of G, while c 2 (N) 
N -1 1 
~and T(N) = 2 are the Casimir 

invariants for the fundamental fermionic representation. 

= l: f f 
c,d acd bed 
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T(N)oab = Tr(T T ) 
· ab = 1 

2 °ab 
(6-75) 

T T 
a a 

2 
Notice that the Slavnov-Taylor identities are satisfied to order g . 

We are now ready to calculate the lowest order S function. We find 

= 
2 

1 + _g_ [ 11 C (G) - i T(N)]log 6 
16n2 3 2 3 µ 

(6-76) 

3 
and therefore, S(g) = - S g gives S 

0 0 
= ll C (G) - i T(N) = 11 - ~ N 

3 2 3 3 f 

This is the famous one-loop S-function, which was first obtained by 

Gross,·Wilczek and Politzer in 1973. 17 

17 

This is the same function as the one found in the previous section. 
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To sununarize, we have seen that the large momentum behavior of the 

Greensfunction is governed by the running coupling constant, and that 

QCD leads to an asymptotically-free field theory, provided the number 

of flavors Nf ~ 16. 
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CHAPTER VII 

z0 DECAY INTO THREE GLUONS 

Introduction 

The next generation of electron-positron colliders is expected to 

achieve c.m. energies comparable to the mass of the weak intermediate 

0 
neutral vector boson z . In the standard Weinberg-Salam model, this 

2 
mass is around 90 GeV/c and the SLAC single pass collider, the Cornell 

+ - 1 
e e ring, and LEP are all projected to reach or exceed this energy. 

The purpose is to take advantage of the very large resonant cross section 

at ;; = M and study rare decays of the z0 • 
z 

. 2,3,4,5 d l d d on Calculations have been reporte on severa ecay mo es: NN, 

!l!lY, qq, qqY, qqg, HY, etc. Here we report on a new decay channel, 

0 0 0 
namely Z -+ ggg, and also discuss Z -+ ggY and Z -~ yyy. One of the 

reasons to study these processes is that the corresponding two body decay 

0 
modes Z -+ yy, gY and gg vanish (Figure 21): the first by Yang's 

theorem, 6 the second by color conservations (Tr[T ]=o), and the third 
a 

because the two gluons have to carry the same 

and, therefore, Yang's theorem again applies. 

A 
a 

is the Gell-Mann SU(3) color matrices. 

color (Tr[TaTb] = ~ oa,b), 

As usual T .!_ A where 
a 2 a 

a 3 
This three-gluon decay is a high-order QCD process of order (_____§_) ~ 10-4 

Tf 

relative to the qq decay mode, and with such a small ratio one might worry 

about the experimental significance. However, with a proposed luminosity 

32 -2 -1 5 -
L=lO cm s at LEP, one can expect approximately 1.5 x 10 qq events per 

day, so that in a typical experiment one can obtain some 107 qq events. 

Therefore, we should expect a significant number of ggg events, thus providing 

97 
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a test of higher-order perturbative QCD. 

Our calculations are based on the standard W-S model and QCD. 

Furthermore, to simplify our results, we will consider only the limit 

of vanishing quark masses, i.e. m /M -+O. 
q z 

The Feynman diagrams can be divided into two sets: box diagrams 

(Figure 22a), and triangle diagrams (Figure 22b). One must, of course, 

sum over colors as well as flavors in the quark loops of Figure 22. 

Then we easily find that the triangle diagrams sum up to zero, because 

each diagram is found explicitly to be free of any mass singularities; 

m 
i.e., there are no log __g_ terms and is proportional to the axial coupling 

Mz 
Thus with bi= r 3i (weak isospin) in the standard 

model, the sum within each SU(2) doublet vanishes (bu= -bd = be = -bs = 

t b b = -b 1/2). Needless to say, the vector part of the triangle 

diagrams vanishes identically due to charge conjugation symmetry. 

We are left with the box diagrams which contain both vector and 

axial vector couplings. The VVVV(AVVV) diagrams involve the symmetric 

(antisymmetric) part d b (f b ) of the trace over the color matrices: 
a c a c 

Tr[T TbT ] = -4
1 Cd b + if b ) , since they have charge conjugation C = even(odd) 

a c ac ac 

respectively. Again the sum over quark flavors eliminates the AVVV box 

diagrams by the above argument, and therefore, in the limit of equal 

masses within each doublet, the decay z0 ~ ggg is proportional to the 

i a 
vector couplings a , where a 

c 
a = a 

1 2 . 28 . - - + - sin in the standard model. 
2 3 w 

t 1 
2 

4 . 28 
3 sin w 

d 
and a 

s 
= a = a 

Since we need the box diagram with only o~e massive external leg, 

we start with the expressions given by Costantini, De Tollis and 

. . 7 f Pistoni or photon splitting and take the limit of vanishing fermion 

mass. 

b 

In going from photon splitting to the decay, we have analytical con-
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Figure 22. Feynman Diagrams for the becay z0 ~ ggg. Pennutations Must be Added. 
For Doublets With Massless Quarks Only the VVVV Part of the Box 
Diagrams (a) Contribute 
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0 
tinued from a space-like photon to a time-like z . Normally threshold 

effects might occur, however, Costantini et al. have shown that their 

expressions hold for time-like particles also. 

Though separate parts of the amplitude contain divergences, the 

final answer is free of any mass singularity, and can be written as a 

function of the dimensionless scaling variables x = 2E /M , y = 2Eb/M 
a z z 

and = 2 Ec/MZ, where the E's refer to the gluon energies in the z0 

rest frame. Only two are independent, since x + y + z = 2. We also 

found, to our surprise, that the imaginary parts add up to zero: there 

are twenty-four helicity amplitudes and they are all real. A similar 

8 
result was obtained by Fabricius et al. in their calculation of order 

a 
s 

2 . - . . + -correction to qqg-Jets in e e annihilation. 

Forbidden Decays z0 ~ gg(YY) 

We briefly show why the amplitudes for the two decay modes 

z0 ~ gg(YY) vanish. As mentioned in the beginning, the two gluons must 

be identical, and the two decay modes are proportional to each other. 

We show that they are forbidden follows from a classical syrranetry 

argument, as well as by an explicit calculation, at least in lowest-

order perturbation theory, where the decays take place via a virtual 

triangular quark loop, with only two diagrams contributing (Fiqure 21). 

. h 1 . 9 First t e c assical symmetry arqurnent. 

Let the two photons (qluons) have polarization vectors s 1 , 2 and 

-
let the relative momentum of them be k. Any possible final state will 

be a linear combination in s 1 and s 2 and transform as a vector, if the 

total final state has spin 1. Only three possibilities exists: 
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(7-1) 

and 

The first two possibilities can be ruled out due to antisymmetry in 

1 ++ 2. The last possibility satisfies Bose-Einstein statistics, but it 

can also be ruled out because of the transversality condition, k·s=O. 

Therefore the two photon(gluon) annihilation is forbidden. 

0 10 
More explicitly, we find for the amplitude M(Z + gg): 

(7-2) 

,\ ].l v zo 1 where £ , s 1 and s 2 are the polarization vect0rs for the and g uons 

(photons) respectively, and the tensor s, is: 
"µv 

with the integrals J (k1 ,k2 ) defined as: 
rst 

J (kl,k2) 
rst 

= - l._ fda da da o(l-a -a -a ) 
2 123 123 

TI 

x [ 2 2 2 2] a 1a 2 Ck1+k2) +a1a 3k1+a2a 3k 2-mq 

(7-3) 

(7-4) 

The integration is over the three-dimensional hypercube. For details leading 

to the above expressions see Appendix B. 

Now for real gluons (k1
2 2 

k 2 = O), satisfying the transversality con-
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k 2 ·E 2 and also using (k1+k2 )·E=O, it follows from Eqns. 

(8-2) and (8-3) 
. . . 0 

that the two gluon (photon) amplitude M(Z + gg) vanishes. 

Kinematics and the Three Gluon Decay 

f . f . . 1 7 . We shall ollow the notation o Costantini et a . , with the excep-

. d . . . d f l' . 11 tion that we have use the covariant metric instea o the Pau i metric. 

Let the 4-momenturn of the decaying z0 be denoted k 1 , and the 4-momenta 

of the three outgoing gluons be k. (i=2,3,4). Since all four particles 
i 

2 2 2 
are real (on-shell), we have k 1 =Mz = -4µ 1 and ki = O (i=2,3,4). 

Define three scalar quantities: 

(7-5) 

with the restriction: 

r + s + t + µ 1 O • 

Except for a trivial factor 1/4, r, s and tare the usual M¢ller-Mandel-

stain variables s, t and u respectively. Since we have a three-body decay, 

two of these three variables are sufficient to describe the process. We 

also define r 1 = r+µ 1 and similarly for s 1 and t 1 . 

We shall of course work in the rest frame of the decaying particle 

0 
Z • It is customary to introduce the so-called scaling variables: 

ki•kl 2E. 
2 l (i 2' 3' 4) x. - = = 

i 2 M 
kl z 

(7-6) 

The range of x. is 0 ~ x. < 1, since each gluon can carry at most half the 
i l 
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0 
energy of the Z , and energy-conservation is then expressed as x 2 + x 3 + 

x4 = 2. For convenience, we rename (x 2 , x 3 , x 4 ) -+ (x, y, z) in the 

following. 

The variables (r, s, t) now becomes: 

r = IJJ1l<1-x) 

s = I ]J1 I <1-y> (7-7) 

t = I µ1 I c1-z). 

Let each of the outgoing gluons have helicity A. = ± (i = 2,3,4) 
l 

and let E~ be the polarization vector of the z0 • The matrix element, 

for the box diagram with one massive external leg, for a given 

helicity state is: 

t\ A. A. (1234) 
2 3 4 

(A A A ) 
= G]J 2 3 4 (1234)E~, (7-8) 

where the vacuum polarization tensor: 

(A A A. ) (A A A ) 
G 2 3 4 (1234) = -l {~ 2 3 4 (1234) 

µ / 3211 µ 

+ 
(2) 

EA A A (1234) X (1234)} 
2 3 4 µ 

(7-9) 

with 

(A .A A. ) 
2 3 4 (1234) sJJ 

(1) 
EA A A (1243)N (1243) I 

2 4 3 µ 

(7-10) 

N (1234) = k 
µ 3µ 

(7-11) 



and 

x (1234) 
µ 

A = rst • 

E: 
µvpcr 
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The tensor G is essentially the one used in photonsplitting. As 
µ 

mentioned in the introduction, we have performed an analytical continu-

0 ation from a space-like y (µ 1> O) to a timelike Z (µ 1 < 0). We see 

that all the tensor structure is present in the N and x terms, while 
µ µ 

the real "dynamics" is hidden in the sixteen amplitudes E;i~ A. (i=l,2). 
2 3 4 

Of these sixteen amplitudes, only four are really independent, namely: 

E~!~(i = 1,2), or equivalently, of the eight amplitudes MA A. A. , only 
2 3 4 

two: M+ are independent. _++ 

The remaining six amplitudes can be obtained from M+ (1234) by using _++ 

the following general symmetry-properties of G : 
µ 

and 

(A. A. A. ) 
G 2 3 4 (1234) 

µ 

(->. ->. >. ) 
= G 4 2 3 (1423) 

µ 

(-A. ->. -A. ) 
G 3 4 2 (1342) = 

µ 

(I. >. A ) 
- G 2 4 3 (1243) 

µ 

(->. ->. >. ) 
- G 3 2 4 (1324) 

µ 

(-A. >. -A. ) 
= - G 4 3 2 (1432). 

µ 

(7-12) 

These symmetry relations then yield 

M ( 1234) = - M+++(l324), --+ 

M (1234) M+++(l432), -+-

M 
++-

(1234) = M (1324) ( 7-13) 

M (1234) 
+-+ 

- M (1432) . 



We also have 

and 

( 1) 
E _>.. ->.. ->.. (1234) 

2 3 4 

(2) 
E_>.. ->.. ->.. (1234) 

2 3 4 

For the decay, we shall see that 

( 1) 
- EA. A. A. (1234) 

2 3 4 

so that, indeed, only M are independent amplitudes. 
±++ 
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(7-14) 

(7-15) 

We will not give the exact expressions for the four amplitudes 

E(i) (i=l 2) here. They are cumbersome and are stated in Appendix C. ±++ I 

We are now ready to evaluate the matrix element squared. Consider 

first (>.. 2 >.. 3 >.. 4 ) = (+++). Wherever possible, we shall drop the (1234) 

notation. 

*µ v 
Using the polarization sum El El 

for gauge invariance kµG 
1 µ 

= 

O, and also 

µv µ v 2 
- g + k 1k 1/Mz , the condition 

k~X = 0 we obtain: 
l. µ 

= 

(7-16) 

Remember the amplitudes, in general, are complex, therefore, the asterix 

on I;. From Eqns. (7-14) and (7-16) it follows easily that jM 1 2 
+++ 

IM ___ l2 as promised. 

* The reduction of /;+++/;+++ is straightforward, and using Eqns. (7-10) 

and (7-11), we obtain 

* 
/;+++ /;+++ 

- 4 st jE (l) (1234) 12 - 4 stl IE (l) (1243) 12 
rl +++ rl +++ 
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rr -ss -tt 
-4( l l l ]Re[E ( l) ( 1234)E (l) (1243)]. 

rl +++ +++ 
(7-17) 

2 
For the X -part we use: 

Qi Qi Qi 
p r s 

iklm ok ok cS k 
E: E: = p r s 

prsm 
(7-18) 

01 01 cSl 
p r s 

yielding easily 
2 

X = - 16LL 

It turns out to be convenient to define the following dimensionless 

quantities: 

and 

t(l) (1234) 
+++ 

~ <2 ) (1234) 
+++ 

= l E (l) (1234) 
ss: +++ 

= _l E ( 2 ) (1234). 
4 +++ 

( 7-19) 

Introducing the scaling variables (x,y,z) we arrive at the exact 

expression: 

I 12 8 {y (1-y) [E (1) (x z) ]2 + z (1-z) [11 ( 1) ]2 
M+++ = x(l-x) +++ ,y, x(l-x) E+++(x,z,y) 

2 (1-y) (1-z) ,, (1) I\ (1) [ 1\ (2) ]2 
x(l-x) E+++(x,y,z)E+++(x,z,y) + E+++(x,y,z) } 

(7-20) 

The helicity averaged matrix element squared is then 

= 13 L: 1 I MA ) ' ( 12 34) 12 
po 2 '3/\4 
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2· I 12 12 = 3 { M+++(x,y,z) + (x ++ y) + x ++ z) + IM_++ (x,y,z) } (7-21) 

We are now ready to discuss the double differential decay rate. 

In the rest frame of the decaying z0 , the differential decay rate 

. 12 
l.S 

ar = 3 
(21T) 2E. 

l. 

(7-22) 

where IT1 2 refers to the helicity-averaged matrix element squared. 

Performing three angular integrations, we obtain: 

a 2r 
dxdy 

3 3 
M G a 

Z F s 

512 ./2 1T 4 
( 7-23) 

I- 2 
where Ml is given in Eqn. (7-21). We have used the strong coupling 

constant g 
s 

- . V4 V2 for each q.q.g vertex, and the coupling 2 M G a. for 
l. l. Z F l. 

- 0 
each q.q.Z 

l. l. 

4 
vertex. A factor l/(41T) has been included, since Costantini 

et al. use a loop momentum d 4k/n2 instead of d 4k/(21T) 4 • Finally Cggg 

is the group factor obtained by sununing over gluon colors. 

1 = = L: a a 
4 a,b,c abc abc 

(N2 -1) (N 2 -4) 

4N 

The corresponding decay z0 ~ qq has a width4 

r = L:f(zo ~ q.q.) 
0 i l. l. 

/2 M3G 
ZF 2 b2,) --4-TI-- L (a• + 

i l. l. 

which we use for normalization: 

2 0 _..!.a rcz ~ ggg) = 
a 3 · 

2 
(L: a.) 
i l. 

= 

r dxdy 
0 

1 (~) cggg 
256 1T 2 2 

L::(a. + b.) 
i l. l. 

10 (N--3 ) 3 colors 

(7-24) 

(7-25) 

(7-26) 
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I- 2 
In the limit m + O, we find for Ml 

q. . . 
_ a2F/dxdy, using Eqns. 

(7-20) and (8-21) and Appendices C and D, 

16 {y (1-y) [E (1) (x,y ,z) ]2 + z (1-z) [E (1) (x,z,y) ]2 
3 x(l-x) +++ x(l-x' +++ 

2 (l-y) (l-z) E(l) (x,y,z)E(l) (x,z,y) + [:E( 2 ) (x,y,z>] 2 } (7-27) 
x(l-x) +++ +++ +++ 

64 
+ (x +-+ y) + (x +-+ z) + ~ 

where 

A ( 1) 
E (x,y,z) 

+++ 

and 

+ 

+ 

A ( 2) 
E+++(x,y,z) 

2 (l-z) + [3 - ! + 2 (1::.Y) 
y y 1-x 

1-x J 2 (-2-) log(l-y) 
y 

[ 1 1-z J - 1 + ~ + 2( 1_x) log(l-z) 

[y-z (1-y) (1-z)]G( ) 
~- + 2 2 y,z . 
1-x (1-x) 

[l - l/y + 2(1-y)/(l-x)]£n(l-y) 

+ [l - l/z + 2(1-z)/(l-x)]£n(l-z) 

+ [x/(1-x) + 2(1-y) (l-z)/(l-x) 2]G(y,z) 

We have also used E(l) = 0 and E( 2 ) - 2. 
-++ -++ 

(7-28a) 

(7-28b) 



110 

The function G(y,z) is: 

2 
G(y,z) = log(l-y)log(l-z) + Li2 {y) + Li2 (z) - ~ (7-29) 

where 

- fx dt log (1-t) . 
0 t 

Results 

The function d 2F/dxdy is clearly symmetric under x ++ y, x ++ z, 

or y ++ z, so that it is enough to know the function in one of the six 

small triangles, shown in Figure 23. Normally we would like to show d 2F/dxdy 

as a Dalitz plot, but our computations show that the function changes by 

2 
only a factor two, in going from the center of gravity (x = y = z = 3>, 

where d 2F/dxdy reaches its minimum, to say x = .99. This, of course, 

would make it difficult to see. 
2 

Instead we decided to plot d F/dxdy as 

a function of x for several values of y. This is done in Figure 24. 

The range shown is 1. 01 ~ x + y .'5 1. 98, or equivalently . 02 ~ z ~. 99. 

We characterize the divergence near z + O as infrared and near z + 1 as 

collinear. 
2 64 2 

Both are logarithmic and integrable, d F/dxdy + ~ log z and 
3 

2 64 2 
d F/dxdy + ~ log (1-z) as z + O and z + 1 respectively. 

In finding, the asymptotic behavior above, we used the important 

property G(y,z) + 0 for x + 1. For details see Appendix E. The 

analytic and nuinerical results agree within 5%. 

2 
Since we have highly divergent (x+l) terms of the form 1/(1-x) 

multiplying G(y,z), we found it necessary in our numerical work to calcu-

late the dilog function and. therefore G(y,z) very accurately, in order 

to see this cancelation. We used the: routine "VAC4" developed by Chlouber 

13 
and Samuel to evaluate Li 2 (x) to 13 significant figures. This routine 

makes use of Pade type II approximants. 



0 
x 

Figure 23. The Dalitz Triangle. The Range of x and y is Such 
That 0 S x, y ~ 1 and O ~ x + y ~ 1. The Dashed 
Lines Divides the.Triangle Into Six Symmetric 
Regions. The Roman Numerals I, II and III Refer 
to the Three Edges Where x, y and z ~ 1 
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Figure 24. 

x 
The Double Differential Decay Spectrum 

d 2F/dxdy, as a Function of x, for Several 
Values of y, in the Physical Region 1.01 
~ x + y ::; 1. 98 
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Though not necessary, we introduce a cut-off parameter £ in the 

14 . 
standard manner of treating 3-jet events in e+e- collisions. Experi-

mental cuts will require that each gluon carry a minimum energy of 

E £ £MZ for some o 1 
< £ < -~ 3. Following ref. 14 (see also ref. 5) 

introduce this cut symmetrically and calculate 

fl-£ 
2 

dF d d F 
dx 

l-x+£ 
y dxdy 

and 

F(£) 
1-£ 

dx 
dF 

f 2£ dx 

we 

(7-30) 

( 7-31) 

The upper limits guarantee that the opening angle 8 between any two 

e 2 I~ 
gluons satisfies sin 2 ~ l+s . 

In Figure 25 we show dF/dx for several values of s. Clearly for 

x = 2s, dF/dx = O due to vanishing phase space, and for x + 1, dF/dx 

2 
diverges like log (1-x) . In Figure 26 we plot F(s). 

1 
At£= -3' 

F(~) = O, again due to vanishing phase space, and for s + 0, F(s) 

approaches a finite value, but with an infinite slope. Analytically one 

2 
finds (see Appendix F) F(s) - F(o) = - 128(1 + ~(2) - 2((3)£ log £ 

2 
~ - 30s log s. We have therefore plotted F(s) as a function of 

2 
£ log £ (see Figure 27). Clearly, as£+ O, F(s) approaches a straight 

line with slope dF/ds ~ -30 and intercept F(O) ~ 80. We have used the 

15 Monte Carlo integration routine "VEGAS" developed by Lepage. 

The value of the constant multiplying d 2F/dxdy in Eqn. (7-26) is 

-7 16 
2.3 x 10 in the standard ~odel with 3 quark doublets, and, therefore, 

the branching ratio f (z0 -;.. ggg) /f 0 = 1. 8 x lo- 5 . 5 -
With 1.5 x 10 qq 

events per day, hence, we expect approximately 3 ggg events per day. 
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Figure 25. The Single Differential Decay Spectrum dF/dx, 
as a Function of x, for the Three Values 
of the Cut-off Parameter c 
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0 
For the Z + ggY decay, we need only change the value of the constant 

multiplying d 2F/dxdy ln Eqn. (7-26). It becomes 

a 2 
1 <~> cE:.> cggy 

256 1T 7T 

-8 
:: 6.1 x 10 

where q. is the electric charge of quark i and the color factor CggY 
J. 

1 l: 8 8 
4 a,b ab ab 

2 
N -1 = 8. We obtain a relatively large branching ratio 

0 
rcz + ggY)/r 

0 

-6 = 4.9 x 10 , corresponding to one event per day. This 

is an interesting process because all three interactions, weak, strong 

and electromagnetic, are involved. 

This process may be easier to handle experimentally, since we can 

detect the photon directly and accurately measure its energy, and the 

process is then only a quasi-two-jet event. 

0 
The z + YYY decay channel has a very small branching ratio as ex-

pected. The constant factor in Eqn. (8-26} becomes (N=3} 

"" 5.8 x 10-ll 

where we have included both quark loops and lepton loops. In addition, a 

third class of diagrams should be added in this case, namely W-loop dia-

grams which contribute coherently to the z 0 + yyy amplitude. We have 

not calculated these diagrams, but we see no re~son to suspect that W-loop 

contributions are much larger than fermion-loop contributions. They 

should be smaller. Our estimate, based on fermion-loops and including 

0 -10 
the statistical factor 1/3! is r(z + yyy}/f ""7.7 x 10 . 

0 



Remarks 

+ -
(a) With the flourishing of jet-physics, particularly in e e 
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collisions, it is hoped that it will be possible to distinguish gluon 

. f . . 17 Jets rom quark or antiquark Jets. Clearly, such distinction will 

be very helpful in separating the ggg from the more common qqg final 

state. 

{b) We found earlier, that the decay z0 + ggg is an infrared 

finite process, since d 2F/dxdy behaves like log 2z for z + O. Usually, 

infrared divergences come from terms like l/z, and they are related to 

the fact that the gluon is massless. In addition, the collinear diver-

gences arise when m + o. 
q 

Let us first comment on the box diagrams. That these give an 

infrared finite answer follows from a general result proven by Yennie, 

Frautschi and Suura18 for QED, that infrared logarithms come from 

external bremsstrahlung only, and not _from inner bremsstrahlung. In 

particularly for four or more photons (gluons) attached to a closed 

fermion loop, we have a finite answer. This last statement follows, if 

we notice in the limit k4 + o, the expressions for the box diagrams 

can be obtained by differentiating the lower order expressions (triangle) 

with respect to the loop momentum 2 • We then have an integral of a 
p 

perfect derivative, and the result is zero. 

Explicitly, consider the derivative of the two photon 

(gluon) expression: 

_a Tr[Y, (~ - 1< -m) -ly (i-m) -\ (£ + ,K:~-m) -l] , 
aiP I\ 2 )l v .:> 

( 7-32) 

Using 
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(J;'-m) -1 = -1 -1 
(£'-m) y (l'-P"t) 

p ( 7-33) 

we find three terms, one of which is 

[ -1 . -1 -1 ' -1] - Tr Y, (!-,k -m) y (!-m) y (.(+)<. 3-m) y (.!+}{ 3-m) • 
A 2 µ V p 

( 7-34) 

But this term is simply the corresponding expression for one of the box 

diagrams (VVVV) in the limit k 4 + 0: 

(7-35) 

The other two terms correspond to the remaining two box diagrams, and 

we obtain the statement above. Similarly this also applies to the AVVV 

box diagrams. 

For the triangle diagrams, we also explicitly found an infrared 

finite ·answer (see Appendix B for details). However, in this case, we 

have external bremsstrahlung. We can use the Bloch-Nordsieck19 formalism 

or, more generally, the Kinoshita-Lee-Nauenberg theorem, 20 which states 

that if we also include virtual corrections to the two-gluon process, 

the answer must be finite. Since this last process vanishes, the triangle 

diagrams are finite. 

This is contrary to the qqg decay (Figure 28b), where we find an 

infrared divergence (the gluon attached to an external leg). However, 

by adding the contribution from the interference between the qq state 

(Figure 28a) and its virtual corrections (Figure 28c), a finite answer 

is obtained. 

(c) It is interesting that the imaginary part of the amplitude for 

z0 + ggg vanishes, but we can offer no physical explanation. However, 

we feel that it is connected with the absence of mass singularities in 
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Figure 28. 0 - 0 -

Feynman Diagrams for: (a) Lowest Order Decay Z + qq, (b) z + qq + Gluon 

Bremsstrahlung and (c) zO + qq + Virtual Corrections 
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N 
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each amplitude. This conjecture is based on the relationship between 

mass divergences and imaginary parts of certain diagrams, as pointed 

out by Fabricius and Schmitt. 22 

Consider first the box-diagram with scalar particles. One finds, 

that in n = 4-£ dimensions and with m -+ O, the amplitude M(£) is of 
q 

the form: 

M (£) = ~+E..+y 2 £ 
£ 

and that the imaginary part 

Im M (£) 'IT lim Re M (£) 
2 £-+0 

'IT {Rea + ReS} 
2 £ 

(7-36) 

( 7-37) 

'IT 'IT 
with Im a = O, Im B = 2 Rea and Imy = 2 ReS. The important point is 

that we are considering a decay process. Here the 1/£ 2 term corresponds 

to a linear divergence, the l/m and the 1/£ terms to a logarithmic 
q 

divergence log m • In our case, we also have a tensor structure, so 
q 

that a, B and y become tensors, however the form must still hold. 

Since we have no mass singularities, we must have a=S=O and there-

fore Im M(£) = O according to Eqn. (7-37). 

(d) Finally, we point out that the pure 3-gluon state can also be 

produced in e+e- collisions through the decay of a virtual photon, even 

before the z0 resonance is reached, and is, therefore, accessible in the 

energy region presently covered by PEP and PETRA. 

+ -
Calculations on e e -+ ggg will be given in Chapter VIII. 
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CHAPTER VIII 

ELECTRON-POSITRON ANNIHILATION INTO THREE GLUONS 

Introduction 

The study of three-jet final states in electron-positron collisions 

has flourished both in experiment and in theory over the past several 

1,2 . 1 
years. Experiments at PETRA reveal that three jets constitute a sub-

stantial fraction of hadronic events, which can be analyzed in terms of 

thrust, spherocity, etc. This is in accordance with theory2 based on 

Quantum Chromodynamics, thus providing a firm basis for the existence of 

the gluon and, indeed, for QCD as a whole. To lowest order in QCD, the 

experimental results are interpreted to be electron-positron annihilation 

into a quark, an antiquark, and a gluon, all three particles then mater-

ializing as jets of hadrons. Energy and angular distributions have been 

examined in detail, and the above interpretation seems to be amply 

justified. 

The only other three-jet final state accessible in e+e- annihila-

tions is a state of three gluons. We have studied the reaction (in the 

continuum) • 

+ e + e + g + g + g 

and present the results here. As a corollary, we also discuss 

+ 
e + e + g + g + Y 

We study three gluon states as a test of higher-order perturbative 

QCD. The reaction proceeds via virtual quark loops, in particular, via 

the box diagram shown in Figure 29a. The triangle diagram, Figure 29b, 
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Figure 29. 
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bute. Triangle Diagrams (b) 
Vanish by Charge Conjugation 
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vanishes, essentially because of charge conjugation symmetry. For the same 

reason, e+e- a~nihilati~n into two gluons is forbidden to lowest order, 

+ - + -e e -+ y*-+ gg, but allowed in higher order, e e -+ y*y*-+ gg. 

We should mention, of course, that the three gluon state ggg can also 

be produced, from the Quarkonia states J/~ and T (Figure 30). However, even 

at the T resonance, the energy of the proposed gluon jets is still very 

low (about 3GeV/jet). 

It is natural to compare ggg to qqg, 

out this chapter. Since a(ggg)/a(qqg) -

and we do so consistently through­
a 2 

s 
(~) , we expect very few ggg 

7T 

events at PEP and PETRA, though they are energetically accessible. We 

hope that the results presented here will encourage hunting for such events, 

which will require reliable identification of gluon jets3 •4 (for example 

by the fatness of the jets or their charge multiplicity). One might have 

to wait for a higher energy machine like LEP, not because of some 

intrinsic scale (there are no thresholds to be crossed), but because 

of the identification problem. 

Here we consider the limit of massless quarks only. We use the work 

5 
of Costantini et al. on photon splitting, and the calculation is very 

similar to the decay z 0 -+ ggg (see Chapter VII). 

+ - * Kinematics and e e -+ y -+ ggg 

+ - -The kinematics for e e -+ ggg and ·qqg being identical, we follow the 

6 
conventions of Ellis et al. The three final state gluons will lie in a 

plane, as indicated in Figure 31. 

-=F 
Let the e momenta be denoted q1 an q 2 respectively. In the "CM" 

frame we have q10=q20=E = l/2Q and q1 = - q2 , E being the beam energy. 

It is convenient here to let the virtual photon y* have momentum k4 = 

(Q,o) = (2 liµ;:-f,o), while the three outgoing gluons have momenta ki (i=l,2,3)~ 
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This corresponds to the permutation (1234) ~ (4123) in the expression 

for G (see Eqn. (7-9)). 
µ 

E, 2E. 
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1 1 
Introducing scaling variables xi= E""" = ~ (i = 1,2,3), energy con-

servation is 

Q2 

4 

expressed as x 1 + x 2 + x 3 = 2, and the three scalar quanties 

(r,s,t) = (l-x1 , l-x2 , l-x3) (see Eqn. (8-7)). 

Let e denote the angle between the positron momentum q 2 and its pro­

jection in the plane containing the three final jets. In this plane ¢1 , 

¢2 and ¢ 3 are the angles between jets 1, 2 and 3 respectively and this 

projection axis, measured counterclockwise when seen along the direction 

of the positron, with ¢1 > ¢2 > ¢3 • The ¢. range between O and 2TI, and 
1 

6 between -TI/2 and +TI/2. The Euler angle X denotes the angle between the 

projection axis and an arbitrary axis in the three-jet plane. Finally ¢ 

denotes the azimuth angle around the beam axis. 

and 

With these definitions we have (i = 1,2,3): 

= - EE cos¢.cos8 
i 1 

2 

= 
Q2 
4 xi cos¢ i case 

- - - -
q2•ki = - ql·ki ~xi cos¢i case 

and for the angle ¢ .. 
1) 

¢. - ¢.between any two of the three¢. 's: 
1 J 1 

and 

cos¢ .. 
1) 

sin¢ .. 
1) 

k. "k. 
1 J 1 - 2 

1-x 
k 

x.x. 
1 J 

2e.. I 
--2:2 {(1-x.) (1-x.) (1-x ) }1 2 
x.x. 1 J k 

1 J 

where e .. = ± 1 if i ~ j. We have assumed, of course, m o. 
1) q 

(8-1) 

(8-2) 



The differential cross section is 

do 
1 3 

--2 ·~1 
2Q l. 

3-
d k, 

l. 

3 
(27r) 2E. 

l. 

where the invariant matrix element squared 

IT12 a2a3(L: q.) 2 c ggg I 
!MA A A. 12 47f 

\A2A3 s . l. l. 1 2 3 

and 

1 -
(A A A ) 

M -V(q )yµU(q 1 )Gµ l 2 3 (4123) 
AlA2A3 Q2 2 
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(8-3) 

(8-4) 

(8-5) 

The hadronic tensor G was described in the previous chapter. Here q. is 
µ l. 

the electric charge of quark i in units of e. We have summed over colors 

as well as helicity states (A1 A2 A3 ). 

± 
Averaging over e polarizations we find for a given helicity state 

IMA A A 12 - ! 
1 2 3 

where we have used G 
0 

If we write 

(A A A ) 
G l 2 3 (4123) 

µ 

with 

I 
spin !MA A A 12 

1 2 3 

O (since O QG implies G 
0 0 

(A A A ) (A A A ) 

Glµl 2 3 (4123) + G2µ 1 2 3 (4123), 

(8-6) 

0) • 

(8-7) 



and 

(A.AA) 
G l 2 3 (4123) 

l).J 

(A A A ) 
G l 2 3 (4123) 

2).J 

(A A A ) 
..,..:.!.._ ~ 1 2 3 (4123) 
.; 32~ ).J 

-l E~ 2 ~ A (4123)X (4123) 
../ 32~ 1 2 3 ).J 

we find using Eqn. (9-6) 

IMA A A 12 + 
1 2 3 
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(8-8) 

As expected, the cross-tenns cancel out (no asymmetries). From 

Chapter VII, we know that only the helicitystates (A 1A2A3) = (±++) are 

independent, so let us concentrate on these in the following. 

-2 -2 0 
The G1 , and G2 parts are known from the decay Z ~ ggg: (see Eqns. 

(7-17) through (7-19): 

and (8-10) 

( ) !c-<+++))2 
B +++ x l Ix 2 Ix 3 - 8 G 2 (8-11) 
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while for the corresponding (-++) state A 0 and B = 4. Here 
-++ -++ 

(see Eqns. (7-28a) and (7-28b)): 

2(1-x3)/x2 + [3 - l/x2 + 2(1-x2}/(l-x1 ) 

2 
- 2(1-x1 )/x2]£n(l-x2) 

+ 1 [x - x + 2(1-x2) (l-x3)/(l-x1 )]G(x2 ,x3) 
(l-x1 ) 2 3 

and 

A2 
E (x ,x2 ,x3 ) 

+++ 1 

The function G is (Eqn. (7-29)): 

G(x,y) 

where Li2 (x) 

Using Eqns. (7-10) and (7-11) 

q1 ·N C4123) 

- Ix dt £n(l-t) • 
0 t 

2 
~ x 2 [cos¢2-cos¢1]cos8 

(8-12a) 

(8-12b) 

(8-13) 

(8-14) 
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and 

q1 ·x (4123) = 

(8-15) 

we obtain 

(8-16) 

with 

= (8-17) 

For the (-++) state c ::: o. 
-++ 

Finally 

- -(+++) 2 2Q2 B+++(x1 ,x2 ,x3 ) 
. 26 (ql·G2 ) = sin (8-18) 

using Eqns. (8-16) and (8-18) for the four-fold differential cross 

section, (after a trivial integration over ~) can be written 

4 + -
d cr(e e + ggg) 
dXdsin6dx1ax2 

where 

a4 F 

::: 

2 
(~) 

81T 

3 a 
__£ cggg 

2 
Q 

4 
( ~ )2 d F 
l.q. . 8 i i dxdsin dx1 dx2 

(8-19) 
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1 [cos8(cos¢ 2 - cos¢1 )c+++<x1 ,x2 ,x3) 4 (l-x1) (l-x2 ) (l-x3) 

8 2 
+ (1++2) + (1++3)} + - cos 8. 

Tf (8-20) 

The function d 4F/dXdsin0 ax1dx 2 is defined, in such a way, that after 

integration over the angles x and 8 it becomes equal to the one used in 

the z0 + ggg decay. 

2 
For the qqg result one has : 

4 + - -
d a (e e + qqg) 

ax dsin8dxl dx2 

(8-21) 

The complete differential cross section in Eqn. (8-20) , contains too 

many variables to be useful. We will integrate it step by step, beginning 

with the variable x, until we get to the total cross section. 

Using the integral 

J 2 Tf cos¢. cos¢. ax= Tf cos¢.,, 
0 1 J . 1J 

(8-22) 

and Eqn. ( 8- 2) we obtain easily 

2Tf[ ]2 
1-x 

2n[l-cos¢21 ] 
3 f 0 cos¢ 2-cos¢ 1 dx = = 4n --, 

xlx2 
(8-23a) 

2Tf[ ]2 
1-x 

2n[l-cos¢ 31 ] 
2 

Jo cos¢3-cos¢1 ax = = 4n 
xlx3 

(8-23b) 

and 
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= (8-23c) 

using Eqn. (8-20) and Eqns. (8-23a) through (B-23c), several simpli-

fications take place, and the result can be written in the compact form: 

with 

2 3 
3 + -

d o(e e -+ ggg) 
= 

a a d3F __ s_ cggg (l:q.)2 ____ _ 
dsin8dx1ds2 

3 
d F 

2 2 i i dsineax1dx2 (Bir) Q 

2 + (l+-+2) + (l+-+3)} + 16cos e 

2 
For the qqg result we have 

3 + -
d a(e e -+ qqg 

= dsin8dx1dx2 

2 ( 4:q. ) 
l. l. 

2 
{2 + cos 6) 

In Figure 32, we plot the triple-differential cross section: 

3 + -1 d o{e e -+ ggg) 
3 

1 d F = oT(ggg) dsin6dx1dx2 F(O) dsin8dx1ax2 

as a function of sine for x1 = x2 = 0.9. 

(8-24) 

(8-25) 

(8-26) 

We have normalized against the total cross section 0T(ggg), which we 

find below to be finite (F(O) ~ 80). 

The magnitude of the curve is different for other values of x., but 
1 

the shape does not change much. 

Integrating over e we obtain the energy distributions of the final jets. 

2 + -d o(e e -+ ggg) 
dx1dx2 

(8-27) 



1.0 

(x = x = 0.9) 
oT dsin 8 dx1 dx2 1 2 
1 

0.5 

1 da(ggg) 

OL---~~~_.J..~~~~...i....~~~~'--~~~--
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Figure 32. The Triple and Single Differential 
Angular Distributions for the 

+ -Process e e + ggg. The Dashed 
Curve is Included for Comparison 

+ -With e e -+ qqg 
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with 

= 16 ' {A {x ,x ,x3 ) + B {x ,x2 ,x3 ) + {l+-+2) 
3 +++ 1 2 +++ 1 

+ 
64 

(l+-+3)} + -
3 

(8-28) 

and 

2 + - -d a(e e + qqg) 
dx1dx2 

2 
Ba 

3 
(8-29) 

2 
Comparing Eqns. (7-27), (8-10), (8-11) and (8-28), we see that d F/dx1dx2 

is indeed equal to the corresponding one used in the z0 + ggg decay. 

In Figure 33, we show these energy distributions, 

2 d a(ggg) 
dx1ax2 

and 1 
10 

as functions of x1 for two values of x 2 • Comparing the ggg distributions 

with those for qqg, we see that they are substantially different, particu-

larly around the region x1 + x2 ~ 1, i.e., x3 ~ 1. In ggg we find an 

integrable log2 (1-x.) divergence (for details see Appendix E) as any one 
1 

of the xi + 1, while qqg diverges only when x1 + 1 and/or x2 + 1, and is 

non-integrable unless one introduces a cut-off, as discussed below. The 

same comments apply also to infrared divergences x,+O : the ggg is integrable 
1 

while qqg is not. 7 The absence of the l/x. infrared divergence in the 
]. 

+ -reaction e e + ggg can be understood because there is no "bremsstrahlung" 

from external legs. 

To obtain the angular distributions, as well as the total cross sec-

tions, we go back to Eqn. (8-20) and integrate over x1 and x2 after intro­

ducing a cut-off parameter E, as was done by Ellis et al. 2 
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l da(ggg) l dF(E) 

OT (E) dsin6 · F (s) dsin6 

3 Fl (E) + 2F2 (E) 2F2 (E) - Fl (s) 
sin26] = - [ F(s) ][l (8-27) 

8 2F 2 (E) + Fl (E) 

where F (E) 

Fl (E) 
= 16 11-E 

3 2E 
dx1 

fl-E 
l-x1+E dx;{A+++(x1 ,x2 ,x3) + (l*-+-2)+ (l*-+-3)} 

(8-28a) 

and 

F 2 (E) 
16 11-E 1-E ax; {B+++ cx1 ,x2 ,x3 ) (1++2)+ (l*-+-3) = dx1 J + 

3 2E l-x1+£ 

(8-28b) 

We perform a two-dimensional numerical integration8 and in Figure 34 we 

show F1 (s), F/£) as functions of E. For E = 0 we find F1 (0) "' 33, 

F2 (o) "' 47 and F(O) "' 80. Notice if F1 = F2 we would obtain an angular 

d d l l . 26 . d epen ence - 3 sin , as in the qqg case or the ecay QQ + ggg. For 

f . a i a· · · 1 E = o, we in an angu ar istribution ~ 
aT 

do (ggg) 
dsin6 

. 2 
0.6 {l - 0.48 sin 6} 

which is shown in Figure 32. For E = 0.1 and E = 0.05, the angular de-

pendences are 1 - 0.55 sin26 and 1 - 0.52 . 26 sin , respectively. In the 

1 2 
same Figure 32, we have shown the angular distribution l + 2 cos 8 

l 2 -
(equivalent to l - 3 sin 6) for qqg. 

For the total cross sections, we find 

2 
3 

a 
+ - (~) s ggg 2 

oT(e e + ggg) = 2 C O:q.) F ( £) 
87T Q i i 

and 
9 

+ - 16a2 a 
o:l) {in2 (-£-) 

s 
aT(e e + qqg) 

3 Q2 i i 1-s 

(8-29) 
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3 E 2 + 2 (l-2E) £n(1_2E) - TI /6 

and (8-30) 

+ 1/4 (5+3E) (l-3E) + 2Li2 (-E-)} 
1-E 

2 
which diverges like log E for small E. 

10 2 2 
Numerically F(O) ~ 80, which, using a = 0.21 at Q = 1600 GeV , 

s 
+ - -38 2 

gives aT(e e ~ ggg) ~ 4.8 x 10 cm . In Figure 35, we plot the total 

+ - + -
cross sections fore e + ggg and e e ~ qqg, as functions of E. From 

this figure we expect one ggg event for roughly every one or two thousand 

qqg events. 

+ -
For the process e e + ggY, we need only repiace the factor occurring 

in Eqn (9-29) by 

2 
(~) 
8n 

2 
a o. 
__ s cggY 

2 
Q 

2 2 
o: q.) 
i }_ 

where the color factor CggY = 8. Hence the branching ratio a(ggY)/a(ggg) 

20o./3a. ~ 23%. 
s 

Note that the Feynman diagrams for this process, with the external 

+ 
photon radiated off thee-, vanishes identically. 

Remarks 

(i) We find that all of our helicity amplitudes are real, even though 

we are above the qq threshold. The vanishing of the imaginary parts, true 

only in the limit m /Q+O, is connected with the absence of mass singulari­
q . 

. 11 
ties , but we have no physic.al explanation. Of course, the box diagram 

does have imaginary parts in other channels like YY + gg. 

(ii) Eqn. (8-19) averages/sums over all helicities. The result for 

polarized colliding e+e- beams can be derived using the recipe of Bjorken, 13 
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2 
as was done by Ellis et al. for qqg. Gluon helicities are a separate and 

non-trivial problem, to be studied elsewhere. 13 

(iii) Substantial enhancement in three-gluon final states is expected 

near qq resonances, since quarkonia, like ¢ and T; decay predominantly into 

three gluons. The continuum contribution we have calculated is, of course, 

very interesting and important as a test of high-order QCD, but also very 

small. Identification of gluon jets will be necessary to separate the ggg 

state from the more common qqg events. 

(iv) Other applications of the box diagram in QED like photon splitting 

or Delbrlick scattering also have their analogs in QCD, when some of the photons 

are replaced by gluons: e.g., photon scattering and photon conversion into 

one or two gluons in the color field of a target. The calculations are 

fairly straightforward, but what is needed is a good experimental technique 

to separate them from the background. 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

In this work, we have analytically determined several higher-order 

corrections to the anomalous magnetic moment of the muon. We have also 

studied, within the framework of the standard Weinberg-Salam model and 

Quantum Chromodynamics 

+ -

0 
three-gluon jets from the Z decay, as well as 

in e e annihilation. 

Chapter II was devoted to a review of lepton anomalous magnetic 

moments. 

In Chapter III, we determined the O(m /m ) contribution to the sixth­
e Jl 

order muon anomaly from proper fourth-order electron vacuum polarization 

insertion into the lowest-order muon vertex. Including the diagrams 

with improper fourth-order electron vac-pol .. insertion we obtained: 

{- 13 3 
18 TI 

m 3 
16 2 383 TI2} ___.§_(~) 
9 TI log 2 + 

135 rn TI 
j.1 

m 3 
- 6.56 ___.§_ (~) 

m TI 
Jl 

We mentioned that this contribution could also be obtained for the 

order a 2 (Za) vacuum polarization potential in muonic atoms. Interestingly, 

h l b . 3 t e resu t a ove contains a TI term. This is the first, and so far, the 

only place in QED where an odd power of TI occurs. 
m 

In Chapter IV, we continued to determine the O(_§_) corrections from 
m 

Jl 
the second-order electron vacuum polarization insertion into the fourth-

order muon vertex. This required knowledge of the full fourth-order 

muon anomaly with one heavy photon K( 4 ) {b). From this, we extracted its 
Jl 
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asymptotic expression in the limit where b-+O. We also checked this 

nwnerically by constructing an integration subroutine for accurate eval-

uation of the trilog function. We found a contribution 

2 m 
1T (~) (~) 3 
8 m 1T 

µ 

m 

1.23 
m 

e 
m µ 

3 
(~) 

1T 

To summarize: the O(~) contribution from 18 of the 24 mass-dependent 
m 

µ 
diagrams in sixth-order is: 

-5.33 
m 

e 
m 

µ 

3 
- 0.026 (~) 

1T 

-9 
- 0.29 x 10 . 

This corresponds to a 1.5% correction to the sum of the logarithmic and 
3 

0(1) terms, which is 1.944 (~) 
1T 

m 
To see if the O(~) terms and lower are really negligible in higher 

m 
µ 

order, we calculated, analytically to 0(1), the muon anomaly from the 

mass-dependent n-bubble diagram. Using the Borel transform technique, 

a recursion relation was establsihed to give the coefficients b in 
·n,m 

b 
n 

for arbitrary n. 

n 
l: 

m=o 
b 

n,m 

m 
m e 

log (-) 
m µ 

The exact anomaly a was evaluated numerically by 
n 

Gaussian quadrature. Using the method of steepest descents, we found 

asymptotically for large n: 

b 
n 

m 
I 5/6( e) n.e -

m µ 

clearly leading to a breakdown in the "false expansion" since a is 
n 

positive, while the true asymptotic limit c of a is 
n n 



c 
n 

m 4 
n! e-10/3 c-1:!..> 

m 
e 

m 
We compared a , b and c for two different mass ratios -1:!.. = 207 

n n n m e 
m 

(physical) and -1:!.. = 10. Based on this, we found that, in the former 
m e 
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case, the b would approximate a very well up to n ~ 10, while in the 
n n 

latter case this approximation would fail even for n = 1. Therefore 

even for moderately high mass ratios the calculation requires knowledge 
m 

e of o(~) and lower terms. We conclude, therefore, that the neglected 
mµ 

terms are indeed large. 

Chapter VI contained some topics in Gauge theories, such as gauge 

invariance of QED and QCD, the Weinberg-Salam model, the running coupling 

constant and the Renormalization Group equatioA. 

In Chapter VII, we studied three-gluon jets from the z0 decay. We 

argued and showed, by an explicit calculation of the VVA-triangle diagram, 

0 
that the two-gluon decay of Z is forbidden. Next, we showed that the 

axial part (in the three-gluon case) cancels totally, within each doublet, 

in the limit m /M + 0, thus leaving us with only the pure vector part. 
q z 

It also eliminates the diagrams with triple-gluon couplings. 

Starting from the exact expressions for photon splitting, we found, 

after performing an analytical continuation of the amplitudes, the double 

differential decay rate d 2f/dxdy. We extracted the analytical behavior 

2 2 . 2 
d f/dxdy - log (1-x) and log x for x + 1 and x + O respectively, leading 

to an infrared finite process, in accordance with the Kinoshita-Lee-

Nauenberg theorem. This was also checked numerically using the "VAC4" 

subroutine to evaluate G(x,y) very accurately. The numerical integration 

was done using the program "VEGAS", and we found a branching-ratio 

rcz0 -+ ) ggg . -5 = 1.8 x 10 
H(z0 + q.q.) 
i l l 
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Although the rate is small, with the proposed LEP machine, we expect 

approximately 3 events per day. 

We found, surprisingly, that the imaginary part of the full amplitude 

vanishes in the limit m /M ~ 0. 
q z 

This is related to the infrared finiteness of the process, but we 

are unable to give a physical explanation. A similar result was later 

obtained by Schierholtz et al. for the O(a ) radiative corrections to s 

qqg jets, and it would be very interesting to know if this result is also 

valid in higher order. 

+ -In Chapter VIII, we continued the jet analysis by considering e e ~ 

y* ~ ggg in the continuum. We presented the four-fold differential cross 

section and integrated it step by step until we got to the total cross 

-38 2 
section crT(ggg) = 4.8 x 10 cm . This is very small indeed, and we 

-
expect only one event per one or two thousand qqg events. We found that the 

. . dcr h 4 . 2 angular distribution ~-.~8- as the form 1-0. 8 sin 8 for E=O, 
dsin 
1 . 2 . + -

be compared with 1 - ) sin e for both the T-decay and e e ~ 

which should 

qqg. 

Since the qqg rate is much higher than the ggg rate it is, of course, 

very important that we can distinguish between gluon and quark jets. 

Several papers in the literature are concerned with this question, and 

it is our hope that the experimentalist, with more statistics will be 

able to identify gluon and quark jets. 
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APPENDIX A 

ASYMPTOTIC EXPANSION OF K( 4} (b} AND 
µ 

M( 4} (b} FOR b + 0 
µ 

Below we give some of the detailed steps leading to Eqn. (4-7}. 

First we perform an analytical continuation of KC 4} (b) and M( 4} (b) for 
µ µ 

b i<P 
b < 4. If we write c = 4' we can define y = e , - TI < <P < 0 with 

<P = - 2 Arccos h . (A-1) 

From Eqn. (A-1) follows 

and 

. 6 Using 

with 

and 

log (1-y) 

log (l+y} 

1 i 
= log 2 + 2 log(l-c) + 2 (<jl+n) 

1 2 1 1 ..!.. ~ og + 2 og c + 2 ~ 

. ( i8) L12 e = GL2 (8) + iCL2 ( 8) 

2 
TI 

6 
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+ ..!:. 82 
4 

(A-2) 

(A-3) 



we find easily: 

and 

Similarly, using 

with 

and 

we find: 

and 

CL2 (8) = 

. ( i 8) Li 3 e = 

2 

00 

2: 
n=l 

sin(n8) 
2 

n 

GL3 Ce> = 2!._ e - ~ ejel 
6 4 

83 
+-

12 

00 

= l: n=l 

1f 

4 

cos (n8) 
3 

n 

3 
¢1¢1 + .P_J + CL3 (¢) 

12 
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(A-4) 

(A-5) 

(A-6) 



2 
• [ 1T 
l. .- 12 

3 
¢ + j___J .+ CL3 (¢+TI) . . 12 

Using Eqns. (4-5), (A-1), (A-2), (A-4) and (A-6) we arrive at 

and 

T (T) 

D (T) 
p 

i[~ log 2+1 log(l-T) + CL2 (~)] , 

D (T) 
m = 

- 6CL (¢) - 3CL3 (¢+n) - 2~ 
. 3 

2 2 
+ (!!.._ - 1.L) 

2 2 
- "' 2 2 2 log 2 ; log(l-T) + i<n -~ ) log T . 
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(A-7) 

Notice now, that D and D are purely imaginary while T is purely real. 
m p 

Eqn. (4-3) now reads (b < 4): 

! l=TJ log 4T 

+ [±.. _ 127 T + 115 / _ 46 T3] Arccosh 
3 18 9 9 /-r (1-T) 

+ [~ + 2 T - 8T2 - __!_] 
4 6 2T 

c; ( 2) 

5 2 1 2 4T + [-r 17 2 14-r 3] Arccosh + -6 T og - -3 T . + -3-
h (1-T) 

log 4T 

[ 19 + _53 T _ 58 T2 1 2 ] /: 2 - - - -- (Arccosv-r) 
6 3 3 3T 1-T 

(A-8) 

34 2 _ 28 T3] 
Im D (T) 

+ [- 2T + -T 
3 3 hCl-T) 

13 7 2 8 3 1 
l=TJ 

Im D (T) 
m 

+ [---<+ T - - T +-
12 6 3 4 /T(l-T) 



+ 1 14 2] 
[- - - T + 8T 

2 3 
Re T(T), 

while Eqn. (4-4) reads: 

+ 

35 + ~ T + [i - _i T - 40 T2] log 4T 
36 9 3 9 9 

2 [- -
3 

38 
-T 

9 
32 2 + 20 -r3] Arccosh 

9 T 9 ./-r (1-T) 

4 8 2 
+ [l + J T - J T ~.J ?;; (2) 

+ [- 2 - ~ T + 1 ~ -r 2 + ~.J [Arccosh] 2 

+ 
4 4 

[- - - T 
3 3 

16 2 
3 T 

16 T3] +3 
Im D (b) 

m 

/-r (1-T) 

We now go to the limit T + o. We have 

. 1/2 T3/ 2 5/2 
- TI + 2T + -- + O(T ) . 

3 

By Taylor-series expansion of CL2 (~) around ~ -TI, together with 

- log 2, we find 
~ = -TI 

1/2 
- 2(log 2)-r + O(T) . 

. 6 
For 6 + 0 we use the expansion 

CL2 (6) e[1 - log I e I + 
B ·e2 

1 
2·3·2! 

4 
B ·6 

+ 2 
4•5•4! 

+ ... ] 
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(A-8) 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

where Bl = 1/6 and B2 1/32 are the first and second Bernoulli Numbers. 
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From Eqns. (A-10) and (A-12) follows 

1/2 1/2 T3/ 2 T3/ 2 2 
2T - T log 4T - log 4T + ~~ + O(T ) . (A-13) 

6 9 

Finally using Eqns. (A-5) , (A-11) and (A-12) we find 

and 

From Eqns. (A-7) and (A-10) through (A-14) we arrive at 

Im D {T) 
p 

- 1T log 2 + 0 ( T) 

(A-14) 

Im D (T) 
m 

1/2 1/2 T312 3/ 2 
2T - T log 4T - ~~ log 4T + _T~- + 0(T 2 ) (A-15) 

6 9 

Re T{T) = ~ ~(3) - 1T 2 log 2 + 1T [4 - 6 log 2 - log T]T 112 + O(T) • 

Use of Eqns. (A-7), (A-8), (A-10) and (A-15) now easily leads to 

and 

K ( 4) ( T) 
µ 

M ( 4 ) (T) 
µ 

= K{ 4 ) (o) 
µ 

1T 

4 
1/2 

T - 2T log T + o{T) 

= 
2 

M{4) (o) + [115 _ ±:!.'..__] T + O(T3/2) 1 

µ 27 9 
(A-16) 

with K <4 > (o) and M <4 > (o) as in Eqns. (4-7) and (4-8), respectively. 
µ µ 



APPENDIX B 

Using the well-known Feynman rules, one finds for the triangular 

fermion loop with two vector vertices and one axial vector vertex 

(WA): 

d4,Q, 
2 J 

( 21T) 4 

Tr[Y 5YA (~-~1+m)Yµ(,+m)Yv(1+X2+m)] 
2 2 2 2 2 2 [(i-k1 ) -m ][£ -m ][C£+k2) -m] 

• (B-1) 

The factor two, in front of the Feynman integral, comes from the fact 

that both diagrams (Figure 21) contribute equally. Needless to say, 

the WV-part vanishes due to charge conjugation conservation. 

To do the integral, we shall use the standard technique of Feynman 

parametrization. The three terms in the denominator are combined via 

the following triple integral: 

1 
(B-2) 

The integration is over the 3-dimensional hypercube. 

We obtain easily: 
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with 

and 

t 
0 

Next we would like to shift the variable i + t+t , but simple 
0 
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(B-3) 

power counting, reveals that the integral contains a linearly divergent 

part, so that shifting this variable is in fact illegal. However, it 

is sufficient here to know only the "leading" terms, i.e. terms of 

the form: 

They are all finite and the only ones unambiguously defined. For these 

terms, the shift i + i+£ is permitted. 
0 

The correct tensor is then determined by the requirement of gauge 

invaraince (vector current conservation) : 

(B-5) 

This method, equivalent to any regularization scheme, determines the 

finite "subleading" terms uniquely. It was introduced by Karplus and 

Neumann7 in their first calculation of light by light-scattering. 

Performing the trace in Eqn. (B-1) and integrating over £, we 

obtain for the "leading" part of the tensor: 



with 

Now writing the correct tensor (c1 and c2 constants): 

N A.µv 
N + C £ ka + c £ ka 

A.µv 1 A.µva 1 2 A.µva 2 

and imposing gauge invariance we obtain: 

N A.µv 

Finally, using the identity: 

and, also defining the integrals J (k1 ,k2·>: 
rst 

x 
as t 

2 a. 
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(B-6) 

(B-7) 

(B-8) 

0 I (B-9) 

(B-10) 
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we arrive at: 

+ 

2 
We notice, that even for real gluons (k1 

2 
k 2 = 0) , the axial cur-

rent is not conserved 

which is the famous result on triangle anomalies. 10 

As a consequence of Eqn. (B-11), we show that the triangle diagrams 

(Figure 22b) are infrared finite, and free of mass singularities. 

The amplitude is proportional to the two-gluon amplitude 

SAµVCk 1 ,k2) with one real 

the triple gluon coupling 

2 
gluon (say k 1 O} and one virtual gluon, and 

v 
rpa (k3,k4): 

(B-13) 

Here k 2 = k 3 + k 4 is the momentum of 'the virtual gluon, which splits 

into two real gluons with momenta k 3 and k 4 respectively. The triple 

gluon coupling is: 

- (2k3+k4)~ gpv + (k3-k4)vgp~ + (k +2k) g v 
v u 3 4po · (B-14) 

O, and also current con-



v 
servation k2 r (k3 ,k4) 

v pa . 
O, we obtain 

Notice that the te:rm l/k~ has cancelled away, suggesting infrared 

finiteness. 

Consider now the limit where k 4 + O, and using k 3·s3 

we arrive at 

with 

x 
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{B-15) 

0 

(B-16) 

{B-17) 

Let mq + O, and change variables (a1 ,a2 ,a3 ) + (xy,x(l-y) ,1-x). J 011 

then reduces to 

i f 1 xdx f 1 dy 
2 0 0 

7T 

1-x (B-18) 
xy M2 + 2k •k (1-x) 

z 3 4 

This integral is now trivial, and we obtain easily, using 

= 22 2 • log 1-.!:_I , 
M TI µl 

{B-19) 

z 

which is indeed free of any mass singularity. The other diagrams, of 
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course, have a similar form (logl~I and logjJ:_I>. 
' µl_ - µl 



APPENDIX C 

THE EXACT EXPRESSIONS FOR E!l), E! 2 ) AND THEIR _++ _++ 

ASYMPTOTIC VALUES FOR m /M + 0 
q z 

We begin by giving the exact expressions for the four basic ampli­

tudes E;i) (1234) (i=l,2). _++ 

These are as follows: 

.!. E (l) (1234) 
8 +++ 

l:_ E(l) (1234) 
8 -++ 

2st 
2 4µ 1st 2 2 + {4st _ 2st}B(t) 4s t 

= - --+ {- --- + _s_}B (s) 
2 r t 1 sl rs1 

sl 
sl 

+ {-
4µ 1st 4µ 1st 2µ 1s 2µ 1s . s s 

+ 2 
+--- --}B(-µ ) + {- - -}T (r) 

tl 1 r t rs1 

+ {2s (s-t) 
r 

sl 

2 
4s t - ---

2 
r 

sl 

3s 2st s -------
2 r 

sl 

2 
+ {2s(s-t) _ 4s t + ~ _ ~}T(t) 

r r2 t 1 r 

l}T(s) 

2 
2s (s-t) 4s t 3s s 2st s s + { - + -. - + - - - + -- + - + - }T (-µ ) 

r 2 s 1 t 1 2 r t 1 
r s 1 

2 
2s (s-t) 4s t s 3s 

+ {- r + --2- - t + ~ + 2}Io(s,t,µl) , 
r 
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(C-la) 

(C-lb) 



tl 
- - I (s,t,µ 1), 

r o 
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(C-lb) 

_! E ( 2 ) '1234) 
4 +++' 

4 2 4t 2 4iil 2ii1 2 ii1 
{2. + 2.}B(s) + {- + _..:!:.}B (t) + {- + - + -}B (-µ ) 
r s 1 r t 1 r s 1 t 1 1 

and 

_! E (2 ) (1234) 
4 -++ 

+ {- 1 
r 

1 1 
- - -}T(r) 
s t 

4st 2r1 r 3 4 t 2r1 rl 
+ {- - + - + - - -r}T ( t) + {+ -

r2 r st1 r r st 

2r r 
{4st ___ l _ __! + .?_ + 1 

+ 2 r st r st}Io (s,·t,µl)' 
r 

1 1 1 [ J - 2 + {- - - - - -} T(r) + T(s) + T(t) - T(-µl) 
r s t 

+ {.! + L}r (r,s,µ 1 ) + {.! + L}r (r,t,µ 1 ) 
t rs o s rt o 

l l 
+ {- + -t}I (s,t,µ 1 ) 

r s o 

(C-lc) 

(C-ld) 

The functions B(r), T(r) and I 0 (r,s,µ 1) appearing in Eqns. (C-la) 

through (C-ld) read: 

Re{B(r)} 

Im{B(r)} 

Re{ - 1 b(r) 1 (b(r)+l)} 
+ 2 n b{r)-1 

'IT 
- - b(r) 8 (r-1) 

2 
(C-2a) 



and 

with 

Re{F(r,a)} 

Finally, 

Re{T(r)} [ l b(r)+l ] 2 
Re 2 ln(b(r)-l) , 

Im{T(r)} - 1T arcosh Ir 8 (r-1) , 

F(r,a) + F(s,a) - F(- µ 1 ,a) 

l [ 2 2 a+l Re{-2 ln{r(a -b (r)) }lnC-1 ) 
a a-

a+l 
Li2(a+b(r)) 

. ( a-1 ) . ( a+ l ) . ( a-1 ) ] } 
+ Li2 a+b(r) - Li2 a-b(r) + Li2 a-b(r) ' 

Im{F(r,a)} = 

a 

b (r) 

1T ln(a-b(r))S(r-1) 
2a a+b(r) 

t 1/2 
(l + rs) ' 

l 1/2 
(1 - -) 

r 

and the dilog-function is defined as 

= _ 1x dt log (1-t) 
0 t 
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(C-2b) 

(C-2c) 

(C-2d) 

The above expressions are all exact for any va~ue of r,s,t and µ 1 . From 

now on, we will only consider the limit where r,s,t,-µ 1 + 00 , which is 

equivalent to letting the quarkmass go to zero. It turns out then, to 

be convenient to write: 



and 

:E <1 > c1234> 
·±++ 

:E< 2 > c1234) 
±++ 

- _!.._ E (l) (1234) 
BS ±++ 

- .!_ E (2 ) (1234) 
4 ±++ 

Keeping only terms of o(!.) several simplifications occur. 
s 

From Eqns. (C-la) and (C-3) we obtain: 

:E< 1 > c1234) 
+++ 

4µ1t 2s 
-- + -}B(s) + 2 s 1 

4t 2t {- - -}B(t) 
r t 1 sl 

2st s-t + {~2- - -;-}G(s,t,µ 1 ) 
r. 

with 

Using the old trick of writing: 

B (s) 

and similarly for B(t) Eqn. (C-4) can be written as: 

E< 1 > c1234) 
+++ 

rst 4µ1t 
{- - - --- + 

rs 2 
1 s 1 

~}[B(s) - B(- µ )) 
s 1 1 

+ { 4t _ 2t}[B'(t) _ B(-" )) + {2st s-t}G( t ) ,., -2- - -r 8 ' ,µl · r t 1 1 r 
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(C-3) 

(C-4) 

(C-5) 

(C-6) 
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Finally, introducing scaling variables x, y and z and using the 

following asymptotic expressions (see Eqns. (D-la) and (D-9)) 

B(s) = 
1 = 2 log(l-y), 

1 
= 2 log (1-z) (C-7) 

and 

we arrive at: 

A ( 1) 
E (x,y ,z) 

+++ 

+ 

+ 

G(y,z) = 
2 

lgo (1-y) log (1-z) + Li 2 (y) + Li2 (z) - : 

2(l-z) + [3 -.!.+ 2(.!.::Y) 
y y 1-x 

1-x J 2 (-2-) log (1-y) 
y 

1 1-z J [- 1 +-; + 2( 1_x) log(l-z) 

[~ + 2 (1-y) (l;z) ]G (y ,z) . 
1-x (1-x) 

(C-8) 

The E(l) (1234) is trivial and gives zero: 
-++ 

A ( 1) 
E (x,y,z) 

-++ 
0 • (C-9) 

• .A similar analysis can be performed for :E( 2) (1234) for which we 
+++ 

find: 

F. <2 > (1234> 
+++ 

4s 2s J 4t 2t [ J {~ + ~}(B(s) - B(-µ) + {~ + ~} B(t)-B(-µ) 
r s 1 1 r t 1 1 

+ {2 st 
2 

r 
(C-10) 



or, in terms of scaling variables: 

A (2) [ J E+++(x,y,z) = 1 - l/y + 2(1-y)/(l-x) £n(l-y) 

Finally: 

+ [l - l/z + 2(1-z)/(l-x)]£n(l-z) 

+ [x/(1-x) + 2(1-y) (l-z)/(l-x) 2]G(y,z) . 

A(2) 
E (x,y,z) 

-++ 
- 2 • 
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(C-11) 

(C-12) 

A(2) 
As can be easily seen from Eqns. (C-9) .and (C-11), the E -func­

+++ 
A ( 1) 

tion is symmetric in interchanging y ~ z, while E does not have 
+++ 

this property. 



APPENDIX D 

DERIVATION OF THE FUNCTION G(x,y) 

Here we will give the asymptotic expressions for B(r), T(r) and 

G(r,s,µ 1 ) in the limits r,s,t,-µ 1 + 00 • 

and 

7 
For the B and T functions one has (r + 00) : 

Re{B(r)} 
1 

~ - 1 + 2 log(4r), 

Im{B(r)} 
1T 

- -
2 

1 2 
2 

Re{T(r)} 
1T 

~ 4 log . (4r) -
' 4 

Im{T(r)} 
1T 

~ 2 log (4r) . 

(D-la) 

(D-lb) 

So the only function left to study is G(r,s,µ 1 ). We recall from Eqns. 

(C-2c) and (C-5) : 

2{[F(r,a) - T(r)] + [F(s,a) - T(s)] 

(D-2a) 

where the exact expression for F(r,a) is: 
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R~{F(r,a)} 

and 

Also 

and 

= 
l . l · [ 2 2 ] a+ l 
-2 Re{- log r(a -b (r)) log(~-) 

a a-1 

. ( a+ l ) ( a-1 ) . ( a+ l ) 
Li2 b(r)+l + Li2 a+b(r) - Li2 a-b(r) 

a-1 
+ Li2(a-b(r))} 

Irn{F(r,a)} 

a = 

b (r) 

= 1T lo (a-b(~)) 
2a g a+b (r) 

1/2 
[l + ..!...] 

rs 

1 1/2 
= [l - -] 

r 
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(D-2b) 

(D-2c) 

Let u collectively stand for r,s,t or -µ 1 . Expanding a and b(r) 

to lowest nontrivial order, Eqn. (D-2b) with r=u reduces to: 

and 

Re{F(u,a)} = _21 Re{log(ut+rs)log(4rs) 
rs t 

2 
Li (4urs ) + Li ( ut ) _ ]!_} 

2 ut+rs 2 ut+rs 6 

Im{F(u,a)} = 1T lo (ut+rs) 
2 g 4urs 

(D-3) 

23 
TDe following three equations from Lewins book prove to be useful 



in the further reduction of F(u,a): 

l 2 1T2 
2 log v + 3 i1Tlogv, v > 1 

2 
Tr 

= - log v·log(l-v) + (;"" , O<v<l 

and Abel's relation: 

Li (1-v . 1-w) _ Li (1-v) _ Li (1-w) 
2w v 2w 2v 

= - Li2 (1-v) - Li2 (1-w) - log v·log w • 

Now using Eqn. (D-4a) with 

v 

and Eqn. (D-4b) with: 

Eqn. (D-3) reduces to 

4urs 
--- >> 1 
ut+rs 

v = ut 
ut+rs 
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(D-4a) 

(D-4b) 

(D-4c) 

1 2 
Re{F(u,a)} = - log (4u) 

4 

2 
1T 
6 

1 2 rs 1 . ( rs ) 
4 log (ut+rs) - 2 Li2 ut+rs · (D-S) 

Finally, using the asymptotic expression for T(r), Eqn. (D-6), 

with r=u, can be written as: 

Re{F(u,a) - T(u)} 

and 

Im{F(u,a) - T(u)} = 

2 
1 lo 2( rs ) _ _!Li ( rs ) + .2!._ 
4 g ut+rs 2 2 ut+rs 12 

Tr lo (ut+rs) 
2 g rs 

(D-6) 
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Notice that all the arguments in the above equation are dimensionless. 

We have therefore proven that there are no quark mass singularities, 

which otherwise would show up in terms such as log r. 

We are now ready to attack the function G(r,s,µ 1 ) itself. Using 

the fact that: (t+r) (t+s) = - µ1t +rs one finds for the imaginary 

part: 

µ1t+rs t+r t+s 
7T {log (-) +log (-) - log (- ) } = O • 

r s rs 
(D-7) 

That is, the amplitude G(r,s,µ 1 ) is purely real in the limit of vanish-

ing quark mass! 

Using Eqns. (D-2a) and (D-6), the real part reads: 

+ Li ( rs ) - Li (_..E_) - Li (~s-) 
2 -µ 1t+rs· 2 t+r 2 t+s 

2 
log(l-x)log(l-y) +2!"__ +Li (l-x.!_::y) 

y x 6 2 y x 

1-x 1-v - Li (-) - Li (-=-.L) 
2 y 2 x 

The last equation has been re-expressed in the convenient scaling 

variables x and y, defined in the main text. 

(D-8) 

Using Abel's relation Eqn. (D-4c) and Eqn. (D-4b) once more, we 

obtain G(x,y) in its final form: 

Re{G(x,y)} = 

and 

·1m{G(x,y)} 

2 
7T log(l-x) ·log(l-y) + Li2 Cx) + Li 2 (y) - 6 

0 . 

(D-9) 
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This is really a remarkably simple function. Notice that all the 

divergences at, say x = 0 or x = 1, have now been transformed into the 

log function. 

An interesting property of G(x,y), is that it vanishes identically 

for y = 1-x, according to Eqn. (D-4b): 

2 
G(x,1-x) log x log(l-x) + Li2 (x) + Li (1-x) - .:!!.._ = o. 

2 6 
(D-10) 

This identity proves important to show that the decay process is finite, 

that is, no infrared singularities are present. 



APPENDIX E 

2 
ANALYTICAL EXPRESSIONS FOR d F/dxdy ALONG 

THE THREE EDGES (I, II AND III) 

OF THE PHASE SPACE 

In this appendix, we will first determine the asymptotic expression 

for IM+++(x,y,z) 1 2 close to the three edges I, II and III in the phase­

space (see Figure 23 in main text). Then d 2F/dxdy follows automatically. 

Since the y +-+ z symmetry is satisfied, it is sufficient to find IM 12 in 

the region y + l (denoted II) and also in the region x-+ l (denoted I) . 

First let y = 1-E and therefore z = l+E-x. We shall determine: 

and 

in the limit where E + o. 

A(l) . 
E (x,y,z), 

+++ 

:Ec 1> ex z y> +++ I I 

A (2) 
E (x,y,z) 

+++ 

(E-1) 

Using the fact that the leading expression for G(y,z) (see Eqn. 

(C-8)) is 

G(l-E, l+E-x) ~ log E • log x {E-2) 

it now follows easily from Eqns. (C-9) and (C-11) that 
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--(1) . [ x ] 
E+++(x,1-s,l+sx) ~ 2x + l-x log x log E 

and (E-3) 

"(l) 
E (x, l+s-x, 1-E) 

+++ 
A (2) x 
E (x,1-s,l+s-x) = - ~- log x • log E • 

+++ · .1-x 

Inserting Eqn. (E-3) into Eqn. (8-20) yields 

IM (x,1-s,l+s-x) !2 
+++ 

~ 8{[i(l) (x) + s-x,l-E)] 2 + [~( 2 ) (x11-E,l+s-x)] 2 } 
+++ 1 +++ 

(E-4) 

From Eqn. (E-4), we see that IMl 2 vanishes for x-+o, and for x-+l it 

2 IMl2 diverges only as log s. Therefore, in region II and III is inte-

grable. We show below that this statement holds also for the region I. 

Next let x = 1-E and z l+s-y. This time we must be more careful 

with the expansion of G(y,z), simply because IMl 2 contains terms like 

1 
2 

(1-x) 

Using 

G (y, l+s-y) 

2 
7f 

log(l-y)log(y-s) + Li 2 (y) + Li2 Cl+y-E) - 6 

with the asymptotic expansions for E -+ o: 

and 

log (y-s) 

Li2 (1+s-y) 

E 
"' log y -

y 

2 
l E 
22 

y 

log y 
"'Li2 (1-y) - l-y E 

1 [ 1 + - + 
2 y(l-y) 

log YJ 2 
2 E 

(1-y) 

(E-5) 

(E-6) 
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and also Eqn. (D-46), we obtain: 

G(y,1+£-y) [logy+ log(l-y)]£ + .!.[ 1 + 
1-y y 2 y(l-y) 

logy_ log(l-y)J 2 
2 2 £ • 

(1-y) y 

(E-7) 

Substituting Eqn. (E-7) into Eqns. (C-9) and (C-11) gives after a 

trivial, but tedious calculation, the simple answer: 

A(l) A 
E (1-£,y,1+£-y) = E (1-£,1+£-y,y) 

+++ +++ 

1 + log y + log(l-y) 
1-y y 

(E-8) 

Inserting Eqn. (E-8) into Eqn. (8-20) yields 

8. {[E(l) (1-£,y,1+£-y)]? + rn<2> (l-£,y,1+£-y)]2} 
+++ +++ 

2 
= 16{1 +logy+ log(l-y)} 

1-y y 
(E-9) 

The above expression, at first glance, does not look symmetric in y+-+z, 

however, since x+l we have y+l-z, so that log(l-y)/y + log z/(1-z). 

Therefore, let us use the symmetrical form: 

jM (x,y,z) j 2 
+++ 

for x+l. If also q+o, then IM! 2 ~ 

divergence. 

2 
16 {1 + log y + log z} 

1-y 1-z 
{E-10) 

2 
16 log q. This is the infrared 

2 
We are now l:eady to give the asymptotic expressions for d F/dxdy 

in the three regions. Using the fact that the asymptotic expression 

for !Ml (y,x,z) 12 in region.II is the same as IM(x,y,z) 12 in region I 

and similarly for jM(z,y,x) 12 , we obtain in region I: 
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3 · 2 2 z 2 2 2 = 2 { 1 + log y. + log z} + E { (J_) 2 ( ) } ) 
3 l-y l-z 3 l-y log y + l-z log z log (1-x 

(E-11) 

The expressions for the other two regions are easily obtained by the 

interchanges ~y and ~z. 

In the infrared limit, z~o and therefore x - g ~ 1, we obtain from 

Eqn. (E-11) 

64 2 
- logy 

3 
(E-12) 

To sununarize, we have shown that in the infrared region z~ 

d 2F/dxdy behaves like log2z, while in the case of collinear gluons, z~l, 
2 2 

d F/dxdy behaves like log (1-z). We conclude that this process is 

infrared finite and is free of any mass singularities. 



APPENDIX F 

EVALUATION OF THE SLOPE dF/d€ 

Here we shall give an expression for F(£)-F(o) in the limit €--K>. 

Assuming F(€) is a well-behaved function, we can expand it around £=o: 

F (£) = F(o) + (dF(€» € + .•• 
de 

(F-1) 
e--K> 

The leading term dF/d€ is the only part which we will be concerned about. 

Now, for any function f(x,y), let us define the following double 

integral: 

F(e) 
l-€ 

J2 £ dx F1 (x,e) 

where 

1-€ 
f l+e-x dy f(x,y) 

Using the well-known differentiation rule: 

d 
de 

fb(E.:) dx g(x,E.:) 
a ( E.:) 

fb(E.:) dx 3g(x,E.:) 
a(€) 3E.: 

3b(E.:) 3a(E.:) 
+ g(b(E.:) ,E.:) - g(a(e) ,e) dE.: 

dE.: 

we easily obtain: 
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(F-2) 

(F-3) 



dF (E:) 
dE: 

= 
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1-E: 1-E: aFl (x,E:) 
- f 2E: dy f(l-E:,y) + J2 E: dx __ a_E: __ 

= 
1-E: 1-E: 1-E: 

- J2E: dy f(l-E:,y) - J2 E: dx f(x,1-E:) - J2E: dx f(x,l+E:-x) • 

(F-4) 

These three integrals represent precisely integrations in the 

regions I, II and III, respectively. In particular, if f (x,y) is the 

double-differential function d 2F/dxdy, we can use the asymptotic expres-

sions in Eqn. (E-11). Each of the integrals then give the same contri-

bution, and changing y+x in the first integral, we obtain from Eqn. 

(E-11) 

dF (E:) 
dE: 

= 
64 1 x 2 2 2 

- 3 • ~ f dx(-1~) log x·log E: 
3 0 -x 

2 = - 128{s(2) + 1 - 2s(3)}log E: (F-5) 

2 
To summarize, the function F(E:) behaves like E:log E: around E:=o with 

a coefficient: -128{s(2) + 1 - 2s(3)} ~ - 30. 
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