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CHAPTER I 

INTRODUCTION 

The history of mankind is replete with efforts to predict the 

future, the outcome of the roll of the dice, the outcome of an experi

ment yet to be performed, the sex of an unborn child. Fortune telling, 

reading of palms or tea leaves, consultation of horoscopes, and sorti

lege are among the methods used to predict the future and, hence, to 

lessen uncertainty and increase control over one's life. 

Although prediction is intended to give one a glimpse of the 

future, various methods have been used to warp that glimpse. For 

example, David (1955) mentions faked dice for cheating used in Egypt 

about 300-30 B.C. These dice were used in some form of divination rite, 

with prediction biased to suit the user. 

Statistics also attempts to predict the outcome of future experi

ments but utilizes mathematical techniques and estimates the goodness of 

the resulting prediction. 

Frequently statistics is concerned with design of experiments, col

lection of sample data, and subsequently the estimation of parameter 

values of the population distribution, calculation of confidence inter

vals, or testing of hypotheses. Nearly all standard statistical texts 

discuss such topics. However, with the exception of linear regression, 

few explicitly explore prediction. Yet the point of many statistical 

analyses is prediction of the outcomes of similar future experiments. 

1 
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According to Lindley (in the Discussion section of the paper by Harrison 

and Stevens, 1976) most statistical tasks are concerned with predicting. 

The implicit assumption is that one can consider what has occurred and 

project a similar outcome for a future experiment. But no specific con

sideration is given to the impact of variability of sample data on the 

precision of that implicit prediction (Aitchison and Dunsmore, 1975). 

In recent years, increasing interest has come to be focused on Bayesian 

techniques for solutions to a wide range of statistical problems. 

Some of the statistical problems concern the switching regression 

model for a sequence of random variables. That regression model 

involves a system which switches among several regression regimes. If 

exactly one switch occurs, the two-phase regression model is the case at 

hand. Previous studies of two-phase regression have emphasized estima

tion of any unknown parameters: the switch point, any of several 

regression coefficients, or the variance about a regression line. 

The model employing a sequence of multivariate random vectors has 

been explored by Salazar (1980) and the posterior distribution of the 

change point was derived. This model has been applied (Austin and 

Heghinian, 1977) to traffic deaths in Illinois and estimations made. 

Prediction for this model has not been studied in the literature. 

Autoregressive time series models are frequently used in applica

tions, for example in econometrics. Prediction has been achieved by 

several methods, including extrapolation of the model obtained by esti

mating the parameters in that model. Box and Jenkins (1970) and Kendall 

(1973) outline some of the more frequently used forecasting techniques. 

Fuller and Hasza (1981) studied the properties of predictors for both 

stationary and non-stationary processes. They looked only at 



non-Bayesian predictors and hence did not incorporate prior 

information. 
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Formal statistical prediction is built upon appropriate design, 

data collection and analysis, and parameter estimation. Since much of 

that foundation has been laid for the cases mentioned above, our problem 

is to proceed to the stage of prediction. 



CHAPTER II 

BAYESIAN ROUTE TO PREDICTION 

An overview of the Bayesian approach to be employed in this study 

follows so that the details and rationale can be examined in a simpler 

setting. 

Suppose Y is a random sample {y1, yz, ••• , Yn} of size n from 

N(µ, a2). Let no denote an appropriate prior density for the unknown 

parameters. For example, suppose µ is known and cr2 unknown, a2 > O. To 

indicate vague prior knowledge of the value of a2, assign 

Incidentally, Lindley (1972) commented that cr-1 is the only prior den-

sity for a which is invariant under changes of scale and origin. Note 

that no(a2) is an improper prior density, that is, 

Also, the term "prior" denotes the density assigned to a2 before the 

sample data are analyzed; that is, the density is prior to the data 

being collected. Dickey (1976) commented that one of the reasons 

Bayesian methods were partially discredited and fell into disuse for 

over a century, well into the 1900's, was a tendency for early ~riters 

such as Laplace to select an arbitrary unique prior. The basis for 

4 
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selecting a uniform prior to express vague information, Bayes Principle 

of Insufficient Reason, was formally expressed first in the writings of 

Thomas Bayes (1958) but much earlier a similar idea was advanced by 

Jacob Bernoulli (Barnett, 1973). Hence vague prior knowledge is 

represented by a vague or noninformative prior which allows the data to 

dominate the results. This is especially appropriate in cases where the 

amount of a priori information is small relative to the amount of infor-

mation from the experiment (Box and Tiao, 1973). More specific a priori 

knowledge can be coded appropriately in the prior density. Winkler 

(1967) examined approaches to eliciting informative priors. 

Next, the likelihood function of the sample, denoted L(Y!o2) where 

a2 is treated as a constant, is calculated. Let Un=(µ, ••• , µ)~be 

an nxl vector. 

Then the posterior probability density function (p.d.f.) for o2, the 

density arising posterior to knowledge of the sample data, is obtained 

by combining the prior density for o2 with the likelihood function for 

the sample data Y. Denote the posterior by rr1(02jy). 

2 
rr 1 (a jY) = J'"'i<Ylo2) • rro(o2)d o2 

0 

, cr2 > O. 

The expression on the right is an application of Bayes' Theorem of 

Inverse Probability or, simply, Bayes' Theorem. Note that the denomina-

tor is a normalizing constant with the function of producing a value of 

f~rr1(02jy) do2 = 1. 
0 
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Thus n1(021y) is a proper density function. For notational simplicity, 

n1 is frequently expressed by 

n1(021y) can be used, for example, to estimate a2, calculate a region 

of highest probability density (HPD), or test a hypothesis about cr2. 

For a more general discussion of Bayesian statistics, prior densi-

ties and their selection, and applications of Bayes' Theorem, see 

Chapter 1 of Box and Tiao (1973) or DeGroot (1970). 

The posterior density can be a means for estimation but also is 

needed for the predictive density. For a future sample of size k 

{Yn+l' ••• , Yn+k}, for clarity let Yn+i=Wi and then denote W = {w1, 

wz, ••• , wk}. Then likelihood is calculated. The likelihood is the 

conditional density of the k future values, W, conditioned on cr2. Using 

the posterior p.d.f. of a2 and this conditional density, the predictive 

density of w is obtained. Thus, letting uk=(µ, ••• , µ)'be a kxl 

vector, 

g(WIY) = J=f(Wicr2) • n1( 02JY)do2 « J= (o2)-(n+k+2)/2 
0 0 

Let l/o2 = r, then do2 = -r-2dr, and letting a2+o, we get r+oo, and 

as a2+oo, we get r+O. So, 

g(W!Y) « J=r(n+k-2)/2 exp {(-l/2)[(Y - Un)'(Y - U0 ) + 

0 



Then using the fact that this integral is in the form of a gamma 

density, one obtains 

7 

Thus we have an expression for the prediction density of the k future 

values. Guttman and Tiao (1964) call this the density of future obser

vations. It is also labeled the predictive density of W given Y. For a 

general discussion of predictive distributions, see Chapter 2 of 

Aitchison and Dunsmore (1975). 



CHAPTER III 

REVIEW OF PREVIOUS WORK 

Switching Regression and Time Series 

Before proceeding to a review of work on the problem, one must 

define the problem itself. 

Consider an experiment in which data are taken from a population 

such that 

Yi is distributed as N(a1 + S1xi, cr2), i = 1, 2, ••• , m; 

or distributed as N(a2 + S2xi, cr2), i = m + 1, ••• , n, where 

also, m = 1, 2, ••• , n - 1. 

Assume that a1, S1, a1, Sz, m, and cr2 are a priori independent. This 

model is a form of two-phase or switching regression; that is, at 

some point m, 1 'm < n, the Yi's switch linear regression regimes. 

Various cases may be encountered and considered, with any or all of (a1, 

S1), (a2, Sz), m and cr2 unknown. It is assumed that n is known, as is 

the sample S = {(x1, y1), (x2, y2), ••• , (xn, Yn)}. Among the labels 

that have been applied to m are switch point, change point, and shift 

point. 

Over the past few decades, switching regression problems have been 

8 



studied by several methods. The earlier work relied upon classical 

statistical methods whereas more recent papers have included Bayesian 

approaches. Several methods have been used for prediction for 

time series. 

Prediction efforts have focused on the simple extrapolation of 

ordinary least squares for linear regression and more sophisticated 

methods for time series; more recently, prediction work has included 

Bayesian methods. None of these has been applied specifically to fore

casting for two-phase regression. Furthermore, Bayesian prediction for 

autoregressive time series processes has not been achieved. 

Classical Estimation 

9 

The early work with switching sequences of random variables and 

two-phase regression used non-parametric tests. D. V. Lindley (1952) 

used what he termed the method of minimum unlikelihood as a solution to 

the estimation of the change point m. Page (1954) proposed continuous 

inspection schemes and decision rules to detect a change in a sequence. 

Then (1955) he used control charts to detect a change in µ and o2 for a 

sequence from a normal population. He used cumulative sums as the basis 

for the charts. Later (1957) he considered a discrimination approach 

with restricted sequential procedures. 

Quandt (1958) assumed two simple linear regression regimes with one 

switch and continuity at the switch between the regimes. He used maxi

mum likelihood (ML) to estimate the parameters of the regression 

regimes. To estimate the switch point he calculated the value of the 

likelihood function for all possible values of the switch point. Then 

he took as his estimate of the switch point the value corresponding to 
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the maximum among the likelihood values. To test the hypothesis that no 

switch occurred, he suggested a likelihood ratio test. Also, he tested 

that the two regression regimes are the same by a method employing the 

sums of squares of regression from the two groups and from a single 

regression based on the data as a whole. He later (1960) emphasized 

classical methods to test that the linear regression followed two 

regimes and suggested an F-test. 

Robison (1964) used a maximum likelihood estimate for the point of 

intersection of two polynomial regressions. He also derived a confi

dence interval for that point when the time of the switch was known. He 

encountered practical difficulties in the implementation of his estima

tion methods. He commented that sometimes the a priori information is 

not used but it is much better than the information received from the 

sample (p. 219). However, he made no attempt to use Bayesian methods 

and incorporate the a priori information. Hudson (1966) proposed a 

method for calculating the maximum likelihood estimate of the abscissa 

of the point of intersection when the switch point was unknown. Hinkley 

(1969) derived an asymptotic distribution for the abscissa of the point 

of intersection and produced an improved approximation for moderate 

size samples. Later (197la) he worked with the application of the esti

mation procedures, especially on the intercepts and point of intersec

tion in two-phase regression. Also (197lb) he tried a cumsum scheme, 

that is, one using cumulative sums, for detecting the change point in a 

sequence of random variables, not for two-phase regression. 

Farley and Hinich (1970) were interested in the problem of a shift

ing slope coefficient in a linear time series, where they assumed at 

most one shift. When the shift point (if any) was known, they compared 
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the pooled regression squared residuals to weighted squared residuals 

of the assumed pre- and post-shift regression and tested to see if a 

shift had occurred. Under the assumption of shift point unknown, they 

calculated the regression for the observations by groups and used a Chi

square test on the likelihood of a switch. When a shift was indicated, 

they used Quandt's likelihood ratio to estimate the location. Although 

they did not use Bayesian methods, they did assume no prior knowledge 

and that probability of shift was equal at each of the possible points. 

Brown, Durbin, and Evans (1975) used the cumulative sums (cumsum) of 

least-squares residuals to test for constancy in regression relation

ships. This cumsum technique was mathematically intractable and thus 

they made a transformation to recursive residuals and standardized cum

sums of N(O, a2) variables. Regression coefficients and their stability 

were examined by two methods of Garbade (1977). His time series 

oriented paper emphasized variable parameters regression (VPR) in the 

linear regression model and the cumsum of squares test of Brown, Durbin, 

and Evans. Garbade used both methods on the problem of detecting a 

change and estimating the variation of the coefficients. 

Bayesian Estimation 

One of the earlier papers using a Bayesian approach was Guttmann 

and Tiao (1964) which considered a sequence of random variables distrib

uted as either normal or exponential random variables. They used vague 

priors with rr(cr) ~ 1/cr and rr(µ) ~ k1, a constant. Their work achieved 

the,estimation of a tolerance interval for the population. 

A tracking problem was motivation for the study of a sequence of 

normally distributed random variables where the mean of the distribution 
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is subject to a change. Chernoff and Zacks (1964) used a Bayesian 

viewpoint to obtain an estimation of the second mean and also obtained a 

minimum variance linear unbiased estimator as well as a simpler "at 

most one change" (AMOC) Bayes estimator. They then considered an ad hoc 

procedure, a combination of AMOC and a sequence of tests to locate the 

point of the last change in mean. This approach is similar to one used 

by Page but the latter did not involve Bayesian aspects. A paper by 

Kander and Zacks (1966) continued the work of Chernoff and Zacks by 

looking at the properties of the test statistic they had proposed, a 

weighted cumsum value. Kander and Zacks considered in particular the 

case of any positive upward change in the mean of the sequence of 

N(µi, cr2) random variables and also generalized to the one parameter 

exponential family. They also used a Bayesian approach with a vague 

prior for the time of change, 

no(M) = l/(n -1), m = 1, 2, ••• , n - 1, 

= 0 otherwise. 

Bacon and Watts (1971) tackled the same problems as Hinkley, 

Robison, and Quandt but used Bayesian procedures rather than maximum 

likelihood estimation to estimate the parameters of the model and the 

join point. Their Bayesian method led to a bimodal posterior density 

for the join point and transition parameter. They assumed a smooth 

transition from one regression regime to the next. Broemeling (1972) 

used Bayesian procedures to detect the change in distribution parameters 

in a sequence of random variables. Also (1974) he looked at an observed 

sequence of independent random variables of the regular exponential 

class and considered Bayesian procedures to estimate the time point at 
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which a parameter change occurred. He also generalized the work to the 

two-phase regression problem. Holbert (1973) assumed exactly one switch 

and used improper priors and Bayesian methods to estimate the switch 

point. For a sequence of normally distributed random variables, the 

other parameters were estimated. Extended to the case of two-phase 

regression, the work produced an estimate of the shift point, the 

abscissa of the point of intersection, and the posterior distributions 

of the regression parameters. Chin Choy (1977) used natural conjugate 

priors and the general linear model to obtain results analogous to 

Holbert's. She gave point estimates for the unknown parameters in the 

two regression regimes and gave a point estimate as well as made infer

ences about the abscissa of the point of intersection of the regimes. 

Swamy and Mehta (1975) discussed a Bayesian solution and, to sim

plify quite lengthy calculations, proposed an approximate Bayesian solu

tion for estimation. The switching regression problem where the number 

of changes is known but not necessarily two was the subject of work by 

Ferriera (1975). The change points were assumed unknown and Bayesian 

estimates for these points were given for each of three different priors 

and also for maximum likelihood. Also Holbert and Broemeling (1977) 

discuss Bayesian results for inference and estimation with shifting 

sequences and especially for two-phase regression. These results are an 

aspect of earlier research (Holbert, 1973). 

Bayesian Prediction 

The preceding papers deal with estimation. An early paper dealing 

with Bayesian prediction was Aitchison (1964) which discussed the 

relationship of guaranteed coverage predictors to a Bayesian form of 
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interval prediction. With a linear regression model Kakwani (1965) used 

Bayesian forecasting to incorporate prior information on the regression 

coefficients into the forecasting procedures. He also gave the sampling 

error of the resulting forecast value. Comparison of the variance of 

the forecast using no prior information with that incorporating a prior 

showed a gain in efficiency for the Bayesian forecast. 

Forecasting based on Bayesian principles but applied to time series 

was the subject of a paper by Harrison and Stevens (1971). They looked 

at changes in slope and trend over a short term. Lindley's (1972) 

review of Bayesian statistics included a discussion of tolerance regions 

and predictive densities. Green and Harrison (1973) applied Bayesian 

forecasting to the problem of a mail order company. This work involved 

time series and included estimates for the number of returned items. 

Bayesian prediction analysis was treated thoroughly in a book by 

Aitchison and Dunsmore (1975). They gave examples, lists of conjugate 

priors, posteriors, and predictive densities. They did not treat two-

phase regression, nor even simple linear regression as such, but the 

discussions are illuminating. Brown and Payne (1975) discussed a modi-

fied ridge regression approach to election night forecasting and used a 

vague prior for the intercept parameter. They used Bayesian methods for 

forecasting but did not use a linear regression model. 

Statistical Forecasting is the title and subject of a book by 

Gilchrist (1976). He made the point that 

••• common error in use of forecasts is to treat the fore
cast in the same way as one would treat the true future obser
vation, if only one had a crystal ball to see it. However, 
••• number out of a crystal ball is a known constant ••• 
the number one obtains in statistical forecasting is essen-
tially the value taken by a random value distinction 
between constant and random variable (p. 308). 
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A significant and comprehensive extension of past work was pre-

sented by Harrison and Stevens in the report "Bayesian Forecasting" 

(1976). They proposed a dynamic linear model (DLM) which uses Kalman 

filter recurrence relations and a Bayesian approach. Linear regression, 

exponential smoothing, and linear time series models as well as the 

static case are special cases of the DLM. As Chatfield (1975, p. 231) 

commented, " ••• Adaptive Forecasting could be a better description of 

the method. . . . subjective information can be incorporated as one 

goes along as well as in the priors." 

Broemeling (1977) extended his previous work with Bayesian estima-

tion and sequences of random variables to the case of forecasting when 

exactly one change occurs at an unknown point in the sequence. He 

analyzed cases for normal, exponential, and binomial sequences. Bibby 
. 

and Toutenburg (1977) produced a comprehensive view of recent work in 

prediction and estimation in linear models, especially that which had 

appeared in the German Democratic Republic and USSR. Thus results which 

had not been available in English were summarized and related to work 

published in English. Although Bibby and Toutenburg's volume is not 

Bayesian, in it they made references to incorporating prior 

information. 



CHAPTER IV 

TWO-PHASE REGRESSION PREDICTIVE DENSITIES 

FROM VAGUE PRIORS 

Overview 

Suppose that sample data, denoted S = {(x1, y1), (xz, yz), 

(xn• Yn)}, are from two regression regimes. Suppose also that 

1 , 2, ••• , m, 

••• J 

Suppose '> O, -~ < ai < ~, i = 1, 2, 3, 4; and m is the switch point 

of the system. Assume 1 ' m < n, that is, that the switch has occurred 

at one of the first n-1 observed values. Also assume a1, az, a3, a4, 

M, and ' are a priori independent. It is desired to predict, using 

prior knowledge and the sample data, the next k values of the system, 

{(xn+l• Yn+l), ••• (xn+k• Yn+k)}, denoted for clarity as {(v1, w1), (vz, 

wz), ••• , (vk, wk)}'. Let V =- [(l, ••• , 1) .. , (v1, ••• , vk) ... ] and W = 

(w1, wz, ••• wk) .... We assume Vis known. Also let X1 = [(l, ••• , 1) ... , 

• • • • Xm) l. Xz = [ (1, • • • • 1) .. • <xm+ l • ... ' Xn) ,. ] > y 1 = ( J 1 ' • • • ' 

Ym), Yz = <Ym+l• ••• , Yn) .... 

One can consider various cases, some using a vague or non

informative prior distribution as well as others using a conjugate prior 

16 
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distribution, where some or all of the parameters ai, a2, a3, a4, M, and 

Tare unknown. Let Pl= (a1. a2)~ and e2 = (a3, a4)~. Note that if 61, 

62, and T are known and M is unknown then one can obtain the prediction 

equation when M€{l, 2, ••• , n-1}. If Tis unknown then one must esti

mate T. In this case, if Mis unknown, one can consider M€{2, 3, ••• , 

n-2}, since the posterior distribution of M does not exist at M=l, n-1, 

n for rro(T) = T. If T is known, one can let T = 1 without loss of gen

erality. This simplification will be followed. 

There are 16 cases possible, differing in which of the parameters 

are unknown. It can be shown that for cases involving known precision, 

the resulting predictive density involves the k-dimensional normal 

density. For cases with unknown precision the predictive density 

involves a k-dimensional t-density. Recall that k represents the number 

of steps ahead for which a prediction is to be obtained. Also, cases 

involving unknown M result in a form with summation over M. Hence, if M 

and the precision are unknown, the resulting predictive density is a 

mixture of k-dimensional t's. And, if the precision is known and M 

unknown, the result is a mixture of multivariate normals. The general 

case with T known will be examined in some detail and then the cor

responding case with the precision unknown. 

Precision Known, General Case 

Suppose 61, 6z, and Mare unknown. The precision T is known and 

without loss of generality, let T = 1. Also,-~< ai < ~. M€{l, 2, ••• , 

n-1}, i = 1, 2, 3, 4. Assume that a1, az, a3, a4, and Mare a priori 

independent with prior densities 



no(M) = _l_ 
n - 1 

18 

, M£{1, 2, ••• , n - 1}. 

The likelihood function for the sample S, given the unknown parameters, 

is 

The joint posterior p.d.f. of the unknown parameters is proportional to 

the product of no and L. The density of the future values W, condi-

tional on the parameters, is normal and the predictive density of W 

is proportional to the product of the joint posterior and the condi-

tional density. After summation over the possible values of M and inte-

gration with respect to 61 and Sz, one obtains as the predictive density 

of W 

where 

A 

,* 

* µ 

and the 

= 

= 

= 

n-1 
g(W!S) = ~ K* • N(µ*, •*), W£Rk, 

m=l m 

X2 'Xz + V'V 

I - VA-lv' 

( ,*)-1 VA-1 xz' Yz 

normal density N( µ*' ,*) is k-dimensional with mean 

. . * b precision T as a ove. Also, the mixing coefficients K* are 
m 

* and µ 



K* = IX1'X1AT*J-(l/2) exp {(-l/2)(Y1 ... Y1 + Y2'Y2)} 
m 

Thus, we have proved the following theorem. 

Theorem 4.1. Given sample data from regression regimes, 

Yi-N(a1 + azxi, T), i = 1, 2, ••• , m, 

19 

Suppose 81, 8z, and Mare unknown but T is known. Assign a vague prior 

to 81 and Bz and assign rro(M)=l/(n-1). Then the predictive density of 

W, the next k values, is 

n-1 
g(WJS) ~ Z K* N(µ*, -r*), WeRk, 

m=l m 

with K*, µ*, and -r* as defined above. 
m 

is 

Corollary 4.1. For k=l, the predictive density in Theorem 1.1 

A = Xz ... Xz + v2 

n-1 
g(w1) ~ Z K* N(w1; µ*, -r*), w1eR, 

m=l m 

and the precision is 



and the mixing coefficients are 

K* IX1'X1A•*1(-l/Z) exp {(-l/2)(Y1'Y1 + Yz'Yz)} 
m 

20 

This case is used as an example and computer programs utilized to obtain 

the mode, mean, higher moments, and variance of the predictive density 

as well as a highest forecast density (RFD) region of content 1-a, where 

HFD region is defined analogously to the definition of HPD region given 

by Box and Tiao (1965, P• 1469). 

Letting R denote the region, 

(i) Pr (9eR!S) = l - a and 

(ii) for 61eR and 6zeR, P(61/S) ~ P(62!S). 

This is the 1-a region of highest predictive (or forecast) density, that 

is, the one of smallest volume with content 1-a. 

For the example, k=l is used. For k greater than one, multiple 

integration techniques would be required and computer costs would 

escalate. Also the results could not so easily be compared with known 

data sets. 

Numerical Example 

The data of Quandt (1958), used by Holbert (1973) and Chin Choy 



(1977) are used in this example. The data are given in Table I of 

Appendix A. These data were generated by the model 

Yi= 2.s + 0.7 Xi+ ei, i = 1, •••• 12 

and 

Yi= 5 + 0.5 Xi+ ei, i = 13, •••• 20, 

where the ei's are i.i.d. N(O, 1). 

Computer subroutines MODE and HPD developed by Cook (1980) were 

used with the function for the predictive density. The results are as 

follows: 

n 
1 
2 
3 
4 

Point Estimates 

mode 
median 
mean 
variance 
std. dev. 

11.6200 
11.7170 
11. 7242 

131.2489 
11.4564 

Moments 

E(wn) 
11. 7242 

268.7066 
6233.4971 

179094.9370 

E[w - E(w)]n 
0 

131.2489 
5.5316 

51693.8639 

90% 
95% 
98% 
99% 

H.F.D. Regions 

-4.7152, 28.1502 
-6.0436, 29.4837 
-6.8917, 30.3353 
-7.1538, 30.5984 

Next the most general case, that is, all parameters unknown, will 

be examined in some detail. 

Precision Unknown, General Case 

Consider the most general case in two-phase regression. S1, Sz, 
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M, and 1 are unknown. Assume a priori that they are independent and 

assign priors as follows: 

rro(M) = l/(n-3), M = 2, 3, ••• J n - 2; 

The likelihood function for S is 

L(sl o a M ~) = (2rr~-l)-(n/2) µl• µ2> I L L exp {(-T/2) 

The joint posterior p.d.f. is 

The conditional density of the k future values W is 

Combining the posterior p.d.f. and the conditional density, one obtains 

the predictive density of W as 

n-2 
g(Wls)~ z IAi-1/2 B-(n+k+2)/2JT*J-l/2 • T(W; n + k - 3, µ*, r*), W€Rk, 

where 

m=2 

A = x2Ax2 + v.,.v 

B = I - vA-lv 



F = K - G~B-lG 

K = Yz~Yz - Y 2 ~x2A-lx2 ~Y 2 

G vA-lx2Y2· 
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Also, T(W; n+k-3, µ*, T*) is at density with degrees of freedom n+k-3, 

location parameter µ* and precision T* where 

µ* = B-lc 

T* = (n + k - 3)F-1B. 

Thus the predictive density of W is a mixture of k-dimensional multi-

variate t densities with degrees of freedom n+k-3, location vector µ*, 

and precision matrix T*. 

Thus, we have proved the following theorem. 

Theorem 4.2. Suppose 

Yi~ N(a1 + a2xi, T), i = 2, ••• , m, 

and 

Yi~ N(a3 + a4xi, T), i = m + 1, ••• , n, Me{2, ••• , n - l}. 

Suppose S1, Sz, Mand Tare unknown and a priori independent. Assign 

priors as above. Then the predictive density of W, the next k 

observations, is 

n-2 
g(W!S) ~ ~ 1Ai-l/2B-(n+k+Z)/21T*i-l/2 • T(W; n + k - 3, µ*, T*), WeRk, 

m=2 

where the parameters and mixing coefficients are as defined above. 



CHAPTER V 

PREDICTIVE DENSITIES FOR GENERAL LINEAR MODEL 

Conjugate Priors 

Complementing the work with vague priors, the predictive density 

with conjugate priors for the general linear model for two-phase regres

sion will show some similarities. Bayesian methods and, in this case, 

conjugate priors will be used. Basically, this will take Chin Choy• s 

(1977) work and extend it to prediction. 

The general linear model (GLM) of interest LS 

Yi N (x(.61, a2), i = 1, 2, ••• , m 

and N (Xi .. B2, a2) , L = m + 1, ••• , n, 

where S = Xi is a pxl vector of known fixed quantities on p regressors 

for the i-th observation. Also, 61 and 62e:R2) and 61 *62. 

Let Y1=<y1, ••• , Ym) .. be the mxl vector of observations on the 

first linear model and let Yz3 (Ym+l• ••• , Yn) .. be the (n-m)xl vector of 

observations on the second linear model. Also, Y=(Y1, Yz) .. is the nxl 

vector of all observations. 

is an m.xp matrix, and 

24 
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is an (n-m)xp matrix. 

Define 

where the $'s are zero matrices and Xis an nx2p matrix. 

The objective of this effort is the predictive density of the next 

k values, denoted by (v1, w1), ••• , (vk, wk) where Vi is pxl and known, 

w. 

For the general case, assume S1, 82, cr2, and Mare unknown and a 

priori independent and assign prior densities as follow: 

M has marginal prior probability mass function (p.m.f.) 

1 ,M=l, ••• ,n-1. 
n - 1 

The parameters S1, S2, and cr2 are assigned a joint conjugate prior 

density. Let R = l/cr2, S = (S1', S2~). Then the conditional distribu-

tion of S when R = r, r > 0, is a 2p-variate normal distribution with 

mean vector Sµ and precision matrix rT where SµsR2P, 1 is a given 2p x 

2p symmetric positive definite matrix. The marginal distribution of R 

is a gamma distribution with parameters a and b, a > O, b > O. 

If ~o<Blr) and ~o(r) denote the conditional p.d.f. of B when R=r and the 

marginal p.d.f. of R, respectively, then, according to Chin Choy (1977), 
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and 

It can be shown that the joint posterior of B, M, and R is 

~(B, M, R) ~ r(2a+2p+n-2)/2 

x exp {(-r)[b + (l/2)(B - Bµ)'1(B - Bµ) + (1/2) (Y - XB)~(y - XB)]} 

for M = 1, 2, ••• , n - 1, BeR2P, r > O. 

One obtains the conditional density of the k future values f(WIB, 

M, r), and uses that and the joint posterior p.d.f. above to derive the 

predictive density of W. For the case of a2 known, and any of the other 

parameters unknown, one finds the predictive density of W to be a mix-

ture of multivariate normals. For a2 unknown, one notes the predictive 

density is a mixture of multivariate-t densities. Since the latter case 

with a2 unknown and the other parameters also unknown is the most 

general, its development will be outlined. 

From the posterior p.d.f. of B, M, and R, we obtain the joint 

marginal p.d.f. of B2 and R. Since the conditional density of W depends 

on Bz, not B, this marginal p.d.f. is needed. It is found by integra-

tion of the joint marginal of B, M, and Rover B1, and summation over M. 

This marginal p.d.f. of B2 and R is a mixture pf p-variate normals. 

n-1 
TI(B2, R) ~ E r(2a+n-2)/21ul-p exp {(-r)[b + (l/2)(Y'Y + 

m=l 



where 

U = T + X'X which is a 2px2p matrix 

Q = TSµ + X'Y which is a 2pxl vector 

and 

It is clear µz* consists of the (p+l)th through (2p)th element of the 

2pxl vector u-lq and Tz* is as given. Let Xn+j=vj, j=l, ••• , k and 

V=(v1 , ••• , vk)' and Yn+j=wj, j=l, ••• , k, and W=(w1, ••• ,wk)'. The 

conditional density of the k future values, W, is 

Thus the predictive density of W is 

n-1 
g(W!Y) ~ z 1u-2u2*1p/21ADl-l/21A11-(n+p+k+2a-2)/2 

m=l 

x Tk(W; 2a + p + n - 1, C, P), WeRk, 

where Tk is a k-dimensional general t density with 2a+p+n-l degrees of 

freedom, location parameter C and precision P=(2a+p+n-l)AD, with 

and 

A = V'V + Uz* 

D = I - VA-lV' 

27 
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Thus we have proved the following theorem. 

Theorem 5.1 

Given the general linear model for two-phase regression as above 

and quasi-conjugate priors as specified, all parameters unknown with R > 

O, 6£R2P, and M = 1, 2, ••• , n -1, then the predictive density of the 

next k observations W is a mixture of k-dimensional general t densities, 

with mixing coefficients and parameters as given above. 



CHAPTER VI 

PREDICTION FOR AUTOREGRESSIVE TIME SERIES 

The recognition that a set of observations may be ordered by time 

was made many centuries ago. For example, the Romans knew that the 

apparent motion of the sun was time dependent and used that idea in con

struction of a calendar. Others also utilized time dependency in study

ing data. Lagrange in 1777 used rational functions to analyze the 

periods and thus the orbit of a comet, according to Bloomfield (1976). 

Although the recognition of time dependent processes has existed for 

centuries, only in the past forty years have significant strides been 

made in the investigation of the description and analysis of time ser

ies. According to Kendall (1973), the gains have been possible at least 

in part due to the development of electronic computers, which have made 

feasible the extensive computations necessary for study of time series. 

Kendall (1973) also commented that work by Udny Yule in 1927 brought out 

the non-deterministic nature of processes and this led toward the ideas 

of stochastic processes. A stochastic process is a set of random vari

ables which have an order in time. Time series work is one aspect of 

the developments resulting from Yule's work. Chatfield (1975) notes 

that around 1920 Yule introduced autoregressive-type processes. In 

fact, second order autoregressive processes are sometimes called Yule 

autoregressive processes (Kendall, 1973). 

An autoregressive process of order m is one in which Yt is 

29 
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regressed not upon an independent variable but upon the preceding m 

values of y. Thus, a first order autoregressive process, denoted AR(l), 

can be written 

Yt = ao +al Yt-1 + Ut• t = 1, 2, ••• , T; 

and the ut are i.i.d. N(O, r), where T is the precision, T > 0, 

ao and a1 are real numbers. 

Frequently interest centers on the case with zero mean. Differencing, 

that is, subtracting the mean, is used to obtain the AR process in a 

form with zero mean, Yt = SYt-1 + ut; t = 1, ••• , T. The AR(l) pro

cess is also known as a Markov process, named for the Russian A. A. 

Markov who made contributions to the developing theory. Fuller (1976) 

asserts that the AR(l) model is not only one of the simplest but also 

one of the most frequently used models in time series. This fact is due 

in part to its being an appropriate representation in economic models 

for error time series. 

The AR(2) process, with zero mean, is written 

Yt = S1Yt-l + SzYt-2 + ut, t = 1, ••• , T; ut are i.i.d. N(O, t), 

And, the m-th order autoregressive process AR(m) is 

and the ut are i.i.d. N(O, T), • > O. 

It is assumed that the time intervals are equally spaced. 
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In econometrics as in other fields that use time series, one goal 

may be prediction of the next k observations of the AR(m) process where 

k = 1, 2, ••• , but clearly less than m + 1 as the observations 

separated by more than m steps are independent. 

General Result, AR(m), k Steps 

Consider the AR(m) process already given. Sample data can be 

expressed 

Yt - (S1Yt-l + ••• + SmYt-m) = ut, t = 1, ••• , T, and the 

ut are i.i.d. N(O, <), 1" > O. 

Adoption of convenient notation will make results clearer. Hence, let 

YT-2 . . . 
, which is a Txm matrix. 

Y= [L Y-1 

And for the future values (YT+l• ••• , YT+k) to be predicted, let Wj = 

YT+j• and wo =YT; also let 

and 

wo W-1 W-m+l 
w1 wo W-m+2 

w = which is a kxm matrix. , 

Wk-1 Wk-2 Wk-m 
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Assume initial values Yo = (yo, Y-1• ••• , Y-(m-1)) are given. Assume 

the Si are unknown coefficients. Clearly Sm is assumed non-zero as the 

AR process is of order m. Also, assume little prior information is 

available about p and T, and use a diffuse prior 

The likelihood for YT is 

The posterior p.d.f. rr1 is thus proportional to the product of rro and 

L. The likelihood of wk, the k future values, conditional on e, T and 

Y, is 

So, the Bayesian predictive density for the future values Wk is the 

product of rr1 and f, integrated over p and T. This is 

where 

g(WkJYT) ~ f f ,(T+k-2)/2 exp [(-T/2)E]d8dT, WkeRk, 
T p 

Note that YT-YS is a Txl vector, so (YT - YS)~(Yr-YS) is lxl, a scalar. 

Also (Wk-WS)~(Wk-WS) is a scalar. Thus E=trE. This facilitates 

rewriting E in terms of a to effect the integration. 

So, 

E = tr E 



= tr [YT'YT + Wk'Wk + Y'Yae + w'wee' - 2Y'YTS' - 2W'Wke'J 

= tr[YT'YT + Wk'Wk + (Y'Y + W'W)ee' - 2(Y'YT + W'Wk)S'] 

tr{YT'YT + Wk'Wk + (Y'Y + W'W)[ee' - 2(Y'Y + w'w)-1 

Let A=Y'Y+W'W. Note that A is an mxm matrix. Then continue 

Let 

and then 

E = tr{B + A[S - A-1(Y'YT + W'Wk)J[e - A- 1(Y'YT + W'Wk)]'} 

= tr{B +[e - A-l(y'yT + W'Wk)]'A[S - A-l(y'yT + W'Wk)]}. 

g(Wk!YT) ~ j j ,(T+k-2)/2 exp [(-l/2)•B] 

' a 

Using the form of the normal density to integrate with respect to $, 

g(Wk!YT) ~ j ,(T+k-2)/2 l•Ai-1/2 exp [-•(A/2)]d•, WkgRk. 

' 

By the gamma density with parameters a > 0, b > 0, it can be 

shown 

33 
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Hence, the predictive density for (w1, wz, ••• , wk) is given and the 

following theorem is proven. 

Theorem 6.1 

Given initial values y0 , y_1 , ••• , Ym+l' and vague prior ~o(S, T) ~ 

-1 
T ' the next k values of the m-th order autoregressive process given by 

ut's are i.i.d. N(O, T), 0 < T < ~, t = 1, 2, ••• , T, 

have a predictive density 

where 

Note that A-1 involves w1, ••• , Wk-1, and wk~w involves terms with pro-

ducts and powers of thew's. It appears not to be feasible to write 

g(Wk/Y) in the form of a known density when k is more than one. But, 

that lack affects only the elegance and simplicity of the representation 

of the predictive density, not its utility. In fact, the function of 

the density generally will be written in matrix or summation form before 

computer programs can be implemented to compute the actual values of the 

mode, mean, higher order moments, the plot of the density, or the high-

est forecast density (HFD) regions, and obtain usable values for Wk• 

AR(m), k = 1 

Consider the one-step ahead forecast. Then the following can be 
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proved. 

Corollary 6.1. The predictive density for w1 is a univariate gen-

eral t distribution with T-1 degrees of freedom, location parameter µ, 

and precision 1, where 

with 

and 

••• J 

µ = o-lwA-lY .. YT 

' = (T-l)c-ln 

.. .. 
A = Y Y + W W 

c = YT .. YT - yT"yA-ly .. yT - YT .. YA-lw .. o-lwA-ly .. yT 

D = 1 - WA-lw". 

YT-m+l)• 

Note that 

A Y"Y + W"'W 

T 
= y .. y + E Yt2• 

t=T-m+l 

Hence, A has no term involving w1• 

B in Theorem 6.1 can be expressed as 

B = YT .. YT + w12 - (YT .. y + w1W)A-l(y .. yT + w1W) 

= w12 - ·2w1 WA-ly .. yT - w12wA-lw ... + YT .. YT - YTYA-ly .. yT 

= w12(1 - WA-lW"') - 2w1 (WA-ly"'yT) + (YT .. YT - YT"'YA-ly"'yT) 

= c{l + c-lc1 - wA-lw"')(w1 - (1 - wA-lw"')-lwA-1Y .. YTJ2} 

where C is as given in the statement of this corollary. Note that A 

contains only y's and so A can go into the constant of proportionality. 



Also, C contains only y's and similarly can be disposed of. Thus, we 

are left with 

which is in the form of a general t distribution. 

36 

Hence, g(w1IYT) is a general t density of the random variable w1, 

w1ER, and has degrees of freedom T-1, location parameter µ and precision 

,* , 
µ = (1 - wA-lw')-lwA-lY'YT 

,* = (T - l)c-1(1 - WA-lw'). 

Note that the degrees of freedom depend only on T, the number of 

observations. Hence, as T increases, the degrees of freedom also 

increase. Recall that for a t distribution, the variance is 

(T - l)/[(T - 3)-r*]. 

Now, suppose updating is of interest, that is, w1 is predicted then 

observed and used as observation YT+l • so there are T + 1 observations 

upon which to base the prediction for wz. This clearly results in w2 

having a predictive density which is univariate t with T degrees of 

freedom and analogous values for the location parameter and precision. 

But, suppose the predictive density with its mean is available for w1 

but not the observed value and one needs to find the predictive density 

for wz conditional on w1• This process is an example of the chain rule 

of forecasting (Litterman, 1980). Then, k = 2 is needed. Thus, proceed 

to the next case. 
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AR(m), k"" 2 

It is necessary to update the prediction and g(wzlw1) is needed. 

An approach to finding an expression for g(wzlw1) is to represent g(wl, 

w2 ) as the product of two functions, one of which, say f 1 , is a function 

of w1 only while the other, call it £2 , is a function of both w1 and w2 • 

This product form shows that £2Cw1, wz) is proportional to f(wzlw1)• 

the conditional density of wz given w1· To do this, we let k=2 and use 

the results of Theorem 6.1. 

[
wo 

w = 

"'1 

W-m+l] 

W-m+2 
[

YT 

w1 

YT-1 ... 
YT-m+l] 

YT-m+2 

Thus, W contains w1 and y's but not wz. Since Y is a matrix of y's 

only, Y'Y+W'W is a function of w1 and y's. 

Let d = IY'Y+W'WI 

and 

... 
aim] 
~ • (l/d)a, 

Note that the aij do not involve wz. Also, B can be written 

In order to express B in terms of w1, wz, and y's, we examine the 

expressions in the brackets. 



YO 

[YT YT-1 YT-m+l] a Wz"WaY"YT = ( w1 wz) Y-1 
w1 YT YT-m+2 

Y-m+l 

With further matrix multiplication, it can be shown that 

m m 
Wz"WaY'YT = w1 E [ L YT-1 

j=l i=l 

m m 

a· . J , l. 

T 

T 

( L Yt-j Yt)] 
t=l 

+ wz L [ L YT+l-j 
j=l i=l 

a· . J , l. ( r Yt-j Yt)J. 
t=l 

A similar expansion of the matrix products leads to 

m m 
Wz'WaW'Wz = wz2[ E YT+2-j ( E Y(T+2-i)aij)] 

j=l i=l 

m m 

+ wz{w1[ L Y(T+2-j)( E YT+l-iaij) 
j=l i=l 

m m 
+ E YT+l-j( E YT+2-iaij)]} 

j=l i=l 

m m 
+ {w1 2[ E YT+l-j(.E YT+laij)]}. 

j=l i.=l 

YT-1 Yl 

YT-2 Y2 

YT-m YT 

T 
EYt-lYt 
1 

T 
LYt-mYt 
1 

38 
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Recall B and write it in terms of w2• It can be shown that 

B = wz2[1 - C/d] - w2 D/d + E 

where 

m m 
C = E YT+2-j( E YT+2-iaij) 

j=l i=l 

m m T 
D = 2 E [ E YT+2-iaij( E Yt-jYt)J 

j=l i=l t=l 

m m m m 
+ w1[ E YT+2-j( E YT+l-iaij) + E YT+l-j( E YT+2-iaij)] 

j=l i=l j=l i=l 

m m T 

E = Yr'Yr + w12 - (Yr'YaY'Yr/d) - 2(w1/d)[ E ( E YT+l-iaij E Yt-jYt)J 
j=l i=l t=l 

m m 
- (w1 2/d)[ E YT+l-j( E YT+l-iaij)]. 

j=l i=l 

Note that C, D, and E involve the y's and w1 but not wz. Define F and G 

by 

Then, 

Thus, 

F = E - n2/[d(d - C)] 

G = 1 - (C/d). 

B = G{w22 - [D/(d - C)]wz + [D2/(d -c)2]} + F. 

x {l + F-lG[wz - D/(d - C)]2}-(T+l)/2. 
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expression. Then, g(Wz) can be written as the product of gl and gz 

which indicates that gz is proportional to the conditional density of 

wz given w1· Therefore, g(w2 lw1) is a t density with degrees of freedom 

T, location D/(d-C), precision TF-lG. Hence, the following corollary 

has been proved. 

Corollary 6.2. Given an m-th order autoregressive process, and 

observations y1 , y2 , ••• , yT, the predictive density of YT+2' condi-

tioned on YT+l' is a univariate t with T degrees of freedom, location 

parameter µ, and precision T, where µ and T are as given above. 

In summary, note that w1 has a t distribution with degrees of 

freedom depending only on the number of observations T, not on the order 

of the process. Furthermore, while g(Wz) is not a t, the conditional 

density of w2 given w1 is a general univariate t distribution. 

Consider now the special case where m=l and k=l. Hence, interest 

is on the AR(l) or Markof process with prediction for one step ahead. 

With no great difficulty the following corollary can be proved. 

Corollary 6.3. Given a first order autoregressive process and T 

observations Yl, ••• ,YT, the predictive density of w1=YT+l, a one step 

ahead forecast, is given by 

where t is a univariate general t distribution with T-1 degrees of 

freedom, location parameter µ and precision T, where 

T T 2 
µ = YT( r YtYt-1)/( r Yt-1) 

t=l t=l 
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T2 T2 T T T T 
T = (T - 1)( E Yt-1) 2/{( E Yt-1)( t Yt 2)( t Yt 2)-( t Yt 2)( t YtYt-1) 2}. 

t=l t=l t=l t=O t=O t=l 

Nonzero Mean Case 

Consider the AR(l) process with nonzero mean and explore this case 

to contrast with the preceeding one. This process is defined by 

and the ut are i.i.d. N(O, T), 0 < T < ~, t = 1, 2, ••• , T. 

Assume 61, 62 and T are unknown and a priori independent and assign the 

prior 

Assume the initial value YO is known. Let Y=(yl, ••• , YT). Then 

T 
L (Yl61, 62, T) ~ ,T/2 exp [(-T/2) r (yt - 61 - 62Yt-1) 2]. 

t=l 

The posterior p.d.f. is a product of no and L. Let the future values 

YT+l• ••• , YT+k be denoted by Wk=(wl, ••• ,wk), with, as previously 

defined, wj=YT+j• j=l, ••• , k. The predictive density can be shown to 

be 

where 
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T k 
T E Yt-1 k E Wq-1 

t=l q=l 
A = + 

T T 2 k k 2 
E Yt-1 E Yt-1 E Wq-1 E Wq-1 

t=l 1 1 1 

T k T k 
c = (1.: Yt + E wq' z YtYt-1 + E wqwql) 

1 1 1 1 

T k 
D = E Yt2 + E 2 Wq • 

1 1 

Numerical Example 

The IMSL subroutine FTGEN was used to generate values for autore-

gressive processes. A model used by Zellner (1971) for the AR(l) 

process is 

Yt = 0.8Yt-l + Ut, t = 1, 2, ••• , T, 

where the Ut are i.i.d. N(O, 4), that is •=4, cr=0.5, and initial value 

yo=2.0 is given. The generated data are given in Table II, Appendix. 

Then subroutines MODE and HPD (Cook, 1980) were used with the predictive 

density function given by Corollary 6.3 to obtain values for mode, 

median, mean and higher order moments, as well as variance for the pre-

diction. Using xg as YO and x9 through x2s as sample data, the results 

for predicting Y21 are 

Point Estimates 

mode 
median 
mean 

-0.2358 
-0.2349 
-0.2349 



HFD regions of content 1-a 

content 
.90 
.95 
.98 
.99 

end points 
-.8123 
-.8585 
-.8866 
-.8959 

of region 
0.3424 
0.3883 
0.4167 
0.4261 

Next, consider updating a prediction for the same AR(l) model. Given 

YT+l• predict YT+2• Again, using MODE and HPD we obtain the point 

estimates 

mode -.1500 

median -.1525 

mean -.1525. 
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CHAPTER VII 

SUMMARY 

The main objective of this paper is the development of predictive 

densities for several cases of interest, including switching regression 

with vague priors, the general linear model with quasi-conjugate priors 

and with one switch in regression parameters, and autoregressive pro

cesses of order m, AR(m). The last is a special case of a time series 

model. 

For each case, the Bayesian predictive density is obtained. Cer

tain results are demonstrated with numerical examples. All calculations 

for examples were done in double precision on an IBM 370/158 Computer at 

Oklahoma State University Computer Center. In general, if the precision 

is known, then the predictive density involves a normal density. If the 

precision is unknown, then the predictive density involves a general t 

density. If the switch point is known (or not applied, as in the AR 

process), then the result is a simple density, the particular one being 

as indicated above. If there is a switch point and it is unknown, then 

the predictive density is a mixture of densities (normal or t, as seen 

above) and the mixing coefficients are functions of the observations. 

Furthermore, from numerical work, it appeared that a mixture of t densi

ties is, at least approximately, also a t. 

For k steps ahead, the predictive density for the AR(m) process is 

derived. For k more than one, the joint density of the k future values 
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is not a known form. But for one step (k=l) ahead and also for a second 

step, conditioned on the predicted value of the first step, we obtained 

a Bayesian predictive density in the form of a univariate general t 

density, with the degrees of freedom being T-1 or T, respectively, where 

T observations on the process are available. We note that the degrees 

of freedom depend on the number of observations, not the order of the 

process. Thus, as noted, T observations produce T-1 for the degrees of 

freedom parameter. However, although the so-called initial values YO• 

Y-1• ••• , Y-(m-1) are not considered observations as such, they are 

values obtained from the process and do enter into the calculations for 

the predictive density and its parameters. 

Although not an addition to theory, as are the results delineated 

above, but merely an addition to technique, that which made obtaining 

the most general case, AR(m), k steps, a possibility was defining the 

matrix of autoregressive values for Yt as 

y = 

YT-2 ... 

Y-1 Y-(m+l )] 

YT-m 

and for W similarly. As Pigno remarked (Kolata, 1981), "Historically, 

it's always turned out that new methods have more significance than the 

original problem" (p. 31). Perhaps this technique of representing the 

process can be adapted to help solve the problem of finding a predictive 

density in a number of other interesting and useful cases. Among these 

unsolved cases is prediction for moving average (MA) processes, that is, 

a time series model of the form 
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where the ut are i.i.d. N(O, T), for finite precision r, T > 0, and the 

8i, i = 1, 2, ••• , q are constants. Also, the MA(q) process could be 

studied with quasi-conjugate as well as with vague priors for the pre

diction of future values. Also, prediction for the AR(m) process could 

be approached from the standpoint of conjugate or quasi-conjugate priors 

on the unknown parameters. Lahiff (1980) has tackled this particular 

problem, assuming stationarity, and has found the solution mathemati

cally intractable and has proceeded numerically to seek an approximate 

solution. But, perhaps that problem merits further study and with dif

ferent restrictions on the priors assigned. 

Similarly, the ARMA(p, q) process with vague and with quasi

conjugate priors, and the respective predictive densities would be of 

interest as would the autoregressive integrated moving average (ARIMA) 

process and the corresponding predictive densities. 

Furthermore, each of these time series models deserves attention 

from the standpoint of a switch in the parameters occurring at some 

point and yet a need exists to predict future values, considering the 

switch and various priors on the parameters. The switch could be abrupt 

or gradual, as in the work of Salazar (1980). 

In any of the problems suggested, the predictive density derived 

mathematically could be compared, mathematically or numerically, with 

non-Bayesian results, to explore under what conditions each approach is 

superior to other ways. In addition, forecasts for both stationary and 

non-stationary time series processes deserve to be explored, with suit

able priors in each case. Hence, many problems remain for resolution in 

the future, but it is hoped that this study completes at least a step 

toward better understanding of forecasting and provides a sound 

theoretical base for work on predictive densities in other cases. 
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TABLE I 

DATA SET GENERATED BY QUANDT 

Obs. No. i 1 2 3 4 5 6 

x· l. 4 13 5 2 6 8 

Yi 3.473 11.555 5.714 5. 710 6.046 7.650 

Obs. No. i 11 12 13 14 15 16 

x· 1 15 11 3 14 16 10 

Yi 13. 036 8.264 7.612 11.802 12.551 10.296 

7 8 

1 12 

3.140 10.312 

17 18 

7 19 

10.014 15 .472 

9 10 

17 20 

13. 353 17.197 

19 20 21 

18 19 13 

15.65 9.871 

lJl 
N 



TABLE II 

AR(l), Xt = 0.8 Xt-1 + Ut, Ut ~ i.i.d. N(O, 4), YO= 2.0 

i 1 2 3 4 5 6 7 8 

Xi .7046 -.0748 -.4559 -.4650 -.0348 .2017 .0201 -.1317 

1 11 12 13 14 15 16 17 18 

Xi .1466 -.0966 -.5410 -.6694 -.7044 -.5654 -.5354 -.1964 

i 21 22 23 24 25 26 27 28 

x· 1 .4762 .9060 .0195 .4863 .6922 .4337 .2119 -.3618 

9 

-.0248 

19 

-.8373 

29 

-1. 2544 

10 

.1289 

20 

-.3751 

30 

-.8735 

l/1 
w 
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