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CHAPTER I 

INTRODUCTION 

1. 1 Introductory Remarks 

Of all the engineering tradeoffs which arise in large system design 

and management, one of the most prevalent, indeed nearly ubiquitous, of 

the inverse relations is that of computational speed versus storage. 

These are computational complexity and available communications bandwidth. 

This is a technologically interesting and exciting age compared to 

even the near past. It used to be that "systems thinking11 was secondary 

if it indeed ever occurred. The theoretician was not particularly con­

cerned if his algorithm could not be implemented in any extant or even 

foreseeable computation device. The radio engineer did not really have 

to be overly concerned about bandwidth contention. 

It was primarily due to military and space research and engineering 

programs that a unification was achieved between the theoreticians, com­

munications engineers, computational specialists, and hardware experts. 

Modern military contingency planning requires the accurate and timely 

transfer of enormous quantities of information. The military and space 

efforts both require high speed communications to and from transceivers 

located at decentralized, remote and uninhabitable locations. 

One discipline in particular, image compression and pattern recogni­

tion, is cf great importance and involves tradeoffs among the four 
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variables. A typical scenario is shown in Figure l. In Figure 1, Remote-

ly Piloted Vehicles (RPVs) are depicted with on-board sensors reporting 

back to a centralized processing facility, via a satellite, elements from 

their optical field of view. If, for example, the RPVs are travel! ing at 

Mach 3 and it is required to send a 1024 x 1024 pixel, two-tone picture 

back every 1/2 mile, simple encoding of the picture with one bit per 

pixel results in a required bit rate of about a megabit per second per 

RPV. If there are 100 PRVs, then the satellite must handle 100 megabits 

per second. 

It is clear, then, that the bit rates may easily exceed the trans-

mission relay facilities available. For this reason it is desirable to 

seek methods by which the information may be compressed or otherwise 

winnowed before transmission. 

Another application example is that of template storage. Consider 

a weapon delivery system that attempts to match electro-optical or other 

two-dimensional sensory data against stored templates. How can the de-

sired templates be quickly coded and entered into a reasonably sized, 

moderately low cost (expendable) memory? What efficient and universal 

technique may be used to encode the image data for storage in the weapon 

system's on-board memory? 

Let us assume that each template is a 1024 x 1024 pixel, two-tone 

image. If the system is to be able to recognize 1000 targets~ complete 

and direct encoding would require a storage capability of over one bil-

1 ion bits. 

Fortunately, as we will show later on in the paper, templates may be 

highly corrupted by noise and still perform well. This fact and the phe-

nomenon of the 11global" spreading of the information by the method to be 
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proposed in section 1.2 (and discussed in section 1.3) unite to commend 

the method to be proposed for consideration for template encoding and 

storage in limited capacity memory facilities. 

1.2 Image Representation and Compression 

4 

The direction of contemporary image representation and compression 

research is towards orthogonalization schemes which winnow out the less 

important, small coefficients of various transforms and thereby achieve 

a bandwidth reduction [1-4], and other methods aimed at reducing redun­

dancy such as run-length coding [5]. There is little doubt that this 

approach is efficacious provided, of course, that the image yields ex­

ploitable characteristics under the transform or other algorithm being 

applied. Also, there is the question of computational complexity, time, 

and hardware cost of implementation. Suboptimal methods such as Hada­

mard compression [6] can be made to operate relativel~ quickly as com­

pared to a Karhunen-Loeve scheme, for example. 

Huang [5], in his excellent paper on coding of two-tone images, . 

opines that, "The three basic heuristic concepts are: skipping white; 

transmitting only boundary points between black and white; and pattern 

recognition." (p. 1408). In this paper we offer a fourth, truly heur­

istic method. The method will not usually be optimum but it will be 

universal and it is particularly motivated by practic~l concepts such 

as speed and ease of representation as well as flexibility and integra­

bility into modern telecommunication architectures. What is proposed 

is image representation and subsequent compression by way of a relative­

ly unsophisticated method, but a method that, nevertheless, h~s many 
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commending advantages for some specialized situations, particularly in 

the military arena. 

The concept is directed primarily towards image representation 

rather than that of image compression; however, compression naturally re-

suits as the proposed representation scheme requires fewer elements of 

information than the image itself. The price paid for the compression 

is exacted in terms of noise. 

1.2. 1 The Image 

We will be concerned with an image, P, that is mathematically ex-

pressible as a bounded set of contiguous lattice elements (such as small 

squares). 

where 

p = (p .. ) 
I J 

p .. dO, 1} 
I J 

( 1 • 1 ) 

Thus P is a two-tone matrix, e.g., each element is either black or white 

and an image of n elements per row with n rows is exactly described by 

. f 2 b. a strtng o n Its. 

1.2.2 Decomposition Into Frames 

A frame, F, is defined as a square submatrix of the image matrix. 

The frame is of dimension k x k and is derived as follows: 

· where 

F= (f..) 
IJ 

f .. = 
IJ p. I . J I+ ' J+ 

l::;i,j::;k ( 1 .2) 
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where I and J move the frame across the image. To decompose the image in-

to non-overlapping adjacent frames, k must divide n without remainder and 

ll == kQ, 

J == km 
0:5Q,, m 

n 
< k- ( 1. 3) 

How can we represent the frames with less than k2 bits? This is the essen-

tial question of the paper. 

1.2.3 Representation by Selected Matrices 

\.Je assume we have a set of k xk matrices: 

The set in Equation (1.4) is termed the 11codematrix•• set. Codematrix is 

a synthesized word, offered and employed as an analogy to the linear con-

noting term ••codeword. 11 

We calculate the number of disagreeing pixels, d., between a given 
I 

frame and each of the codematrices. The disagreement numbers are placed 

into the set D= {d 1, d2 , ... ,dR} in a natural ordering, i.e., di is the 

number of disagreeing pixels 

k {n .. } represent the elements 
IJ 

between the frame and codematrix N .. Let 
I 

of matrix Nk. The number of disagreements 

between th·~ frame and this matrix, dk' is the number of ones in the matrix 

produced by exclusive oring, term-by-term, Nk and F. This can be written 

directly as 

k k 

I I 
i==l j==l 

k k 
(n .. +f .. - 2n .. f .. ). 

I J I J I J I J 
( 1 • 5) 

(In Equation (1.5) we used 11+11 and ··-·· as normal addition and subtraction, 

respectively. We will usually use 11+11 to represent modulo 2 addition. It 
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is believed that those cases wherein 11+11 denotes normal addition will be 

~ self-evident.) The frame is represented by a codematrix v where 

( 1 • 6) 

At this juncture, four remarks are in order: 

1. The compression achievable is 

( 1. 7) 

where 

la, a an 

[a] + 1, 

integer 

a not an integer 

where [a] is the integer part of a. 

2. Some sets of matrices wi 11 be better than others with respect to 

minimizing the average number of disagreements, the variance of the num-

ber of dis.1greements and other moments. 

3. There wi 11 be an upper 1 imit to the number of errors that can be 

made in each frame•s representation. This limit will be determined by the 

maximum d observed when all possible frame matrices are represented using 
v 

the codematrix set given in tquation (1.4). 

4. The system that implements the image representation will have to 
') 

provide Rk'- bits of memory in order to store the set of R matrices unless 

the matrices can be generated from a smaller amount of stored information. 

The question then naturally presents itself: 11 Can one devise a set 

of matrices that provides adequate representation at a given compression 

ratio and does not require a burdensome amount of storage or computation 

time to create? 11 This question is an embellishment and refinement of the 
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paper's essential question and will be the main concern of Chapter Ill. 

1.3 A Comparison 

An old cpncept for achieving compression at the expense of resolu­

tion is to decimate the image field by transmitting only a portion of the 

elements such as every other line, every other point, e.tc. This type of 

compression is equivalent to laying a mesh or "grill" over the image and 

transmitting only that portion of the image that is visible~ In addition 

to reduced resolution, there is a problem with periodic grill sampling (or 

indeed any periodic sampling) and this is the problem of aliasing [7]. 

The aliasing may be of two types. The first occurs if the image contains 

periodic structures. This situation may give rise to annoying and possi­

bly obfusc<lting Moire patterns. The second type of aliasing results from 

the sampling lattice or grill being insensitive to.certain regions of spa­

tial frequ·~ncies. This can cause smearing, edge definition problems, and 

incorrect .3mpl itude information. 

Matching by randomly-derived matrices differs from the above "grill" 

concept in a number of ways and some rather unexpected advantages accrue. 

First of all, let us consider the aliasing problem. It is clear that we 

may still be plagued withal lasing if large portions of the image field 

are locally periodic, for then the selection of best matched matrices may 

also be periodic. For this reason we choose to prewhiten the image before 

representing it with a collage of randomly derived matrices. Prewhitening 

consists of merely adding (modulo two) randomly derived bits to the image 

before putting it into frames and matching the codcmatrices to the frames. 

To explore another, more subtle, difference b('tween this method and 

the gri l I method, let us reflect on the "phi losophy 11 of the representation 



9 

methods by way of a simple example. Consider that we have a· grill that 

skips every other line and every other column. A cell of· the grill is 

shown in Figure 2. Note that the grill lets bit of information pass 

through and suppresses 3 bits for each cell. Given the data allowed 

through the grill, and assuming that all images are equally likely, it is 

clear that the best estimate or reconstruction of the image is provided 

by filling in the obscured bits by randomly derived bits, such as from a 

balanced Bernoulli source. Following this line of reasoning we make the 

following two remarks. 

1. The grill of F1gure 2 provides a compression of 4:1. 

2. One bit per cell is known exactly. Half of the filled-in bits 

will, on the average, be correct. 

Thus, the reconstructed image will exhibit an average error rate of (3/2)/4 

= 0.375. Note that we are sending one bit per grill cell and using this 

bit to specify precisely one, specific, pixel. 

Consider now that we represent the image by specifying, for each 2x2 

frame, the matrix from the arbitrarily chosen codematrix set: 

)0 1 1 0} (1.8) ll 0, 0 1 

which exhibits the fewest disagreements. Figure 3 displays the results 

obtained by this alternate method. 

The nsults displayed in Figure 3 show that the compression afforded 

by matching matrices according to fewest disagreements also yields a com-

pression of 4:1 and yet exhibits an average error rate of only 0.3125 

vice 0.375 for the grill method. Why is the error rate reduced? Why, 

from an information theoretic viewpoint, does the latter method result in 

a decreased error rate for the same bit rate or compression? The answer 



Figure 2. The Grill and One of 
Its Elements 
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is subtle, intriguing, and important. It results from the way in which 

~· we use our single bit of information. Consider firstthe following gedan­

ken experiments in probability theory: 

EXPERIMENT A: An experimenter flips two unbiased coins. They land 

out of sight of the audience. The experimenter re-

ports: 11 At least one of the coins shows a head.•• 

EXPERIMENT B: An experimenter flips two unbiased coins. They land 

out of sight of the audience. The experimenter re-

ports: 11The coin on my left shows a head.•• 

We now ask for the probability that both coins in Experiment A show heads 

and the sane question regarding Experiment a. 

The coins are unbiased and their flippings presumably uncorrelated. 

We know from the experimenter•s reports that in both cases there is at 

least one head showing and we are perhaps tempted to believe that the 

probability that both coins show heads is one-half for both experiments. 

But let us consider what is implied by the experimenter 1s statements .. 

Concerning Experiment A, all that the experimenter has told us is, that 

of the four possible cases: 

Coin on Experi­
menter1s Left 

H 

H 

T 

T 

only the last case is not possible. 

Coin on Expe r i -
menter•s Right 

H 

T 

H 

T 

Thus, the probability that there are 

two heads ;howing in the outcome of Experiment A is one-third. Concerning 

Experiment B, the experimenter has told 1,1s that there are onlytwo possible 
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cases: either the coin on his right shows a head or a taiL The outcome 

1, of the coin on his left is precisely known. Thus, the probability that 
l 

there are two heads showing in Experiment B is one-half. 

The above situation is somewhat analogous to our different coding 

methods. In the case of the grill, we are using our single bit of inform-

ation to precisely specify one pixel. In the most closely matched matrix 

method, our single bit serves a more "global'' function. It is spread 

equally over all the pixels and thus contributes little information re-

garding any single, specific pixel. This results in a more efficient, 

lower error rate coding. One further analogy is to the game of "twenty 

questions.'' If a player proceeds through a list of objects using the 

question: 11 1s it object i?'' it is c1ear that he will be able to exhaust 

only twenty objects. If, however, he divides the objects into two equal 

size classes, discards the negative class, again divides the remaining 

class into two small, equal size classes, and so forth, he will be able 

with twenty questions, to identify a particular object out of a group of 

over one million entries. 

1.4 An Example 

Consider the 30 x 30 pixel two-tone 11house11 image shown in Figure 4. 

We will represent the house image by the method proposed in Equation 

(1.2). For our first experiment, we ·choose k = 3 and cre~te the codema-

trix set shown in Figure 5. The first two members of the.co.dematrix set, 

the all zero (all white) codematrix and the all ones (all black) codema-

trix, will, by convention, compose the first two entries of each codema-

trix set. The remaining six matrices were randomly derived by using a 

pseudorandom (deterministic) bit generator approximating a balanced binary 
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Figure 4. The )Ox30 Pixel Two-Tone 
"House" Image 
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Bernoulli source. 
2 As there are k = 9 bits per frame and we rquire only 

~ log2 8= 3 bits to represent a frame, we achieve a compression of 3:1. 

Figure 6 shows the result ;of the above coding with the original i•mage 

presented on the bottom for comparison. Note the periodic nature of the 

pixel structure especially on the edges. This is an example of the alias-

ing problem discussed in section 1.3. 

To obviate the aliasing problem, we will prewhiten the image before 

coding as follows : 

1. IF the frame is all white or all black, no prewhitening is per-

formed and the code for either the all-white or all-black frame is sent. 

2. If the frame comprises a mixture of black and white pixels, then 

a spatially dependent, balanced, and pseudorandom (deterministic) binary 

bit stream is first added to the frame and then it is coded against the 

remaining codematrices. Upon reception, the pseudorandom stream is, of 

course, subtracted before presentation. 

Figure 7 shows the result of performing encoding with the codema-

trices of Figure 5, but also using the prewhitening technique just de-

scribed. Note that the aliasing problem is no longer apparent and, for-

tuitously, the error rate has been somewhat reduced. 

Figures 8, 9, and 10 are the results of encoding {with prewhitening) 

usinQ randomly derived codematrix sets successively augmented to 16, 32, 

and 64 members, respectively. Table I summarizes the results. 

As an aside it should be noted that, for small frame dimensions, k, 

most images will contain many solid white/black frames. An improvement 

on the compression may sometimes be easily achieved by a simple encoding 

trick such as has been employed by Kunt and Johnsen [8]. Let: 
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F i g u re 6 • A 1 i as i n g , 3 : I Compress i on , 
No Prewhitening 



Figure]. Prewhitening, 3:1 Compres­
sion 
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Figure 8. Prewhitening, 2.25:1 
Compression 
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Figure 9. Prewhitening, 1.8 : 1 
Compression 
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Figure 10. Prewhitening, 1.5:1 
Compression 
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TABLE I 

SUMMARY OF COMPRESSION RESULTS 

Codenia t r i x Error 
Set Size Compression Rate Remarks 

8 3: 1 0.319 No Prewhitening 

8 3: I 0.278 Prewhitening 

16 2. 25: I 0.230 Prewhitening 

32 1 . 8; 1 0. 171 Prewhitening 

64 1. 5: 1 0. I 31 Prewhitening 
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1. 00 represent a solid white frame (before prewhitening) 

2. 01 represent a solid black frame (before prewhitening) 

3. lb 1b2 ; •. bm represent the codematrix (other than the all wlite 

and black codematrices) whose m-bit binary number is b1b 2 ... bm. 

A binary stream coded with respect to the above convention is comma-

free and the only special convention to. be followed in decoding is that 

00 and 01 indicate that no prewhitening was used for these frames and that 

the frames are solid white/black. 

We have used an additional bit per frame description i·n the above 

encoding and therefore, if the method is to be an improvement, there must 

be a sufficient area of solid black and white frames to offset the com-

pression loss incurred by the comma-free encoding of unequal word lengths. 

If sis the proportion of frames that are all black or all white, there 

will be an advantage to the above comma-free coding i.f 

2s + ( 1 - s) [ 1 + 1 og2 ( R- 2)] < 1 og2 R ( 1 • 9) 

For largeR. (R» 1), we·can replace R-2 with Rand write the condition 

( Equation [ 1 • 9 ]") as 

r R)s (r >2, R»l (1.10) 

1.5 Thesis Out 1 ine 

This introductory chapter is followed by a chapter that derives 

closed form expressions both for the compression afforded by the codema-

trix method and for the size of the codematrix set. The best compression 

ratio possible by using this scheme is that ratio which obtains upon 

·choosing the most efficient codematrix set. The best compression ratio 
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possible is examined with the aid of information theory and the results 

V obtained. 
~ 

The third chapter addresses implementation of a potential metho~ for 

generating a large codematrix set through the use of finite field mathe-

matics and matrix manipulations. 

The fourth chapter is concerned with a Monte-Carlo experiment which 

validates the viability of the implementation philosophy set forth in 

Chapter II I. 

The fifth chapter is a set of statements concerning possible research 

tracts which would naturally follow this theoretical corpus. Especially 

promising is an idea put forward by the thesis adviser, Professor Rao 

Yarlagadda, that, in essence, proposes the melding of this. 11closest-

codematrix-matching method11 with standard redundancy removal techniques of 

image representation. 



CHAPTER II 

BENCHMARKS 

2 . 1 I n trod uc t i on 

In this chapter we will obtain two sets of results. We will first 

derive a closed-form expression for the compression afforded by the random 

coding scheme introduced in the previous chapter. We will then proceed to 

calculate a theoretically best possible compression ratio via an informa-

tion theoretic ar~um~nt. 

2.2 Purely Random Coding 

Assume that the set of matrices with which we code the frames con-

tains exactly R matrices. Let us call this set the codematrix set. Let 

us additionally assume that the codematrices are produced by a process 

that fills each of the k2 positions of each codematrix with either a one 

or a zero. Further assume that the matrix-filling process comports to 

what Dynkin and Yushkevich [9] call the Markov principle: 11 that the fu-

ture is independent of the past for a known present 11 (p. 1). Finally 

assume that ones and zeros are equally possible .. The probability p (i,j) 
. a 

that the bit in position i,j of the frame, f.., will agree with the bit IJ . . 

in position i ,j of the kth matrix of the codematrix set, n~., is 
. I J 

k k p(n .. =O) p(f .. =O) + p(n .. =l) p(f .. =l) 
I J I J I J ·1 J 

1 1 
= -2 p(f.. =0) + -2 p(f .. = 1) 

I J I J 

25 
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1 1 2 [p (f i j = 0) + p ( f i j = l)] = 2 (2. 1 ) 

Further, it is now clear that the conditional probability 

P (i,j)IP (i 1 ,j 1 ) = p (i,j) a a a 

so 1 ong as i :f:. i 1 or e 1 se j :f:. j 1 • 

2.2. 1 The Metric 

We now wish to choose a metric, d = d (N ,F), to define and mea­a a a 

sure a distance between F and the matrices of the codematrix set. A natu-

raJ choice for d is the Hamming metric [10]. The Hamming metric consid­a 
2 ers F and the matrices of the codematrix set as points in k space. Each 

component of the hyperpoint•s location vector is either a one or a zero. 

The Hamming metric between F and any of the codematrices is computed as 

2 the number of coordinates in k space in which they differ. 

That this choice is an appropriate metric is easily shown by consid-

eration of the requirements for a metric. Kowalsky, in his work [11], 

provides an excellently stated definition of a metric: 

A metric is an appropriate generalization 
tion of distance between two points. 
over the fundamental set R is a mapping 
the following properties: 

( M 1 ) o ( p , q) ;:: 0 and o ( p , p) = 0. 

(M2) o(p,q) = o{q,p) (symmetry). 

of the intuitive no­
a metric defined 

R x R-+ R passes s in g 

(M3) o(p,r) s o(p,q) +o(q,r) (triangle inequality). 

(M4 o(p,q) =0 implies p=q (pp. 50-51). 

By inspection, the proposed metric satisfies Ml, M2, and M4. To show that 

it also satisfies M3 requires only a simple argument.· Consider that in 

computing the metric we compare the location vectors and sum dis.agreements 

of location components, component by component. As an example, consider 
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h . . k2 4 t e two points 1n = space: (1,0,0,0) and (1,0,1,1). \.Je note that 

;, their third and fourth components differ and therefore the metric com-.. 
• 

putes a distance of 2 between the two points. In general, if we have~the 

three points p, q, and rand their location vectors: p = {p 1, p2 , ... ·, 

p 2), q = (ql' 
k 

rics specified 

q2 , ... ,\2), and r = (r 1, r2 , ... , rk2 ) we form 

in (M3) above by sequentially considering pk: qk, 

the met-

and rk 

for each k. The following table lists the eight possibilities and com­

putes the metrics specified in (M3). 

TABLE II 

EIGHT POSSIBILITIES AND COMPUTATION OF M3 METRICS 

pk qk rk o(pk,qk) + o(qk,rk) o (pk, r k) 

0 0 0 0 0 

0 0 1 

.0 1 0 2 0 

0 1 1 . 

0 0 

0 1 2 0 

0 1 

0 0 

We note that (M3) is satisfied for each triple pk, qk' rk and is thus sat is.,. 

fied for the entire location vectors. 
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2.2.2 The Probability Density 

~ Function for the Metric 
'~ 

Having established that d is indeed a valid metric we now proceed 
a 

to determine the probability distribution ford (N ,F). Consider again 
a ex 

the probability density function p (i ,j). The properties it possesses 
a 

show it to be equivalent to the classical Bernoulli density function. The 

metric d (N ,F) can then be viewed as the number of ones produced, in any 
a a 

order, from k2 trials of p (i ,j). This description of the metric 1 s prob­
a 

ability density is the same description of the special case of the binomi-

al density wherein the probability of a one is equal to the probability of 

a zero: 

-k2 2 
= 2 (k ) 

d 
(2. 2) 

a 

2. 2,. 3 The P robab i 1 i ty Den.s i ty Function 

for the Minimum of the Metric 

The next step is to investigate the behavior of the optimum matcb be-

tween F and our codematrix set of R matrices, {N 1 ... NR}. To do this, 

consider that we construct the distance set D = {d 1 •.. dR} as the set of · 

Hamming distances from F to each of the N. codematrices. The distances 
I 

are placed into D with the natural ordering, i.e.,, distance dk is the dis­

tance from the frame toNk. Let P0(x) represent. the probability that 

min {d 1 .. dR} = dv = x. To calculate P0(x) we proceed as follows: 

1. Let i0 be the number of members in the set {d 1 .. 

exactly zero. Similarly, let i 1 be the number that are exactly one. 

Generalizing, let ik be the number that are exactly k. 
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REMARK 1: If the maximum is to be x, then·clearly ix>O and iQ,=O 

for a 11 .Q, > x. 

X 

REMARK I I : I i k = R. 
k=O 

2. The probability that i0 specific members of {d 1 • dR} wi 11 be 

equal to zero, i 1 , specific members equal to one, .•• and ix specific mem­

bers equal to x is 

3. I F we remove the above requirement that the set members be spec i-

fically assigned, then we see that there are 

. I 
I • 

X 

R! 
. I lo. 

ways in which they can be chosen. Thus the probability. that i 0 members 

of {d 1 ••. dR} will be zero, i 1 members unity, and so on, is: 

i 
R! x :'-. -=,~--:.--:-, P 0 ( x) 

I x" 10" 
(2. 3) 

REMARK Ill: The probability expression (2.3) is immediately recog-

nized as the multinomial probability density function. 

4. Ti1us the probabi 1 ity that the maximum of the set {d 1 ••• dR} is 

exactly x, p0(x), is the discrete integral of the multinomial probability 

density function over the appropriate space, viz.: 

R! 
i io 

" (x) I Po X( x) (2.4) 
0 i ! • I Po (o) 

i io X 'o· 
X 

for a 11 i io such that 
X 
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X 

(a) I ik = R 
k=O 

(2.5a) 

(b) i >0 
X 

(2J~b) 

Unfortunately, the multinomial (2.3) is extremely difficult to integrate 

over the hyperspace specified by Equation (2.5a-2.5b). We are therefore 

either led to seek an approximation for P0(x) or to try an entirely dif­

ferent approach. It is appropriate at this juncture to review our near 

term goals before embarking on more mathematical pursuits. The first con-

sideration is to recall that the compression, C, afforded is solely deter-

mined by R and shown, in Chapter I, to be 

c = 

The second consideration is that the moments of the distribution of the 

error rate 

where 

d 
v 

(2. 6) 

(2. 7) 

depends upon k and R. It thus seems reasonable (and, we hope, tractable) 

to express the compression as a function of k, R, and a requirement on 

the expectation, the first moment, of the error rate distribution. 

Proceeding along this track we first set up a framework: 

1. ERROR RATE: Let e: be an acceptable error rate. We define the 

first moment of the error rate distribution by stating that we expect k2e: 

errors. We desire,then,that k2 -d fall in the 11 tail'' interval 
v 
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2 2 
[k(l-c),k]. (2. 8) 

2. The probability that a specific ~mber of the codematrix set, a, 

exhibits a distance, d , such that k2 - d 
~ 

falls in the tai 1 interval 
a a 

Equation (2.8) is immediately found by (discretely) integrating Equation 

(2.2) over the tai.l interval. Let this probability be denoted by a. We 

then have 

(2.9) 

3. Now let ~E(a,R) be the probability that E! le~st one of the di 

2 in the set {d 1 ••• dR} causes k -di to fall within the tail interval. 

Because the codematrices have been generated independently of each other, 

we can write 

From Equation (2.10) we can determineR: 

R = 
11 og [ 1 - <P E (a , R) ] I 

11 og ( 1 - a) I 

(2. 1 0) 

(2. 11) 

The expression (2. 11) may at first appear unorthodox because it yields R 

as a function of a and <PE, the latter term appearing to be a function of 

R. But recall that <PE(a,R} is a number that is fixed prior to the calcu­

lation. 

4. Having determined R we can now compute the compression: 

2 
= . k log, ,2 . 

logllog [1- <PE(a,R)] I- logllog (1- a) I (2. 12) 
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It is helpful to put the reasoning so far into the flowchart form of 

~ Figure 11. 
·~ 

It is clear that if we wish to study the behavior of R and C as ~ 

function of their parameters, we will have to acquire a suitable approxi-

mation to a as a function of£. The first thought that comes to mind is 

the normal or other standard approximations to the binomial. However, we 

are operating in the tail region and we must be careful. Consulting Fry 

[12] we find the caution: 

The normal distribution. is a fair approximation to the bi­
nomial distribution so long as y3/o [the cube of the standard­
ized binomial variable divided by the standard deviation of the 
unstandardized.binomial variable] is not too large. In the 
vicinity of the 1 tails'--that is, when the deviations are large 
--it is never satisfactory (p. 232). · 

when using the binomial approximation when p = 1/2. 

As it turns out, the approximation of the tail of a binomial distri-

bution is a difficult problem to handle with a manageable (i.e., easily 

computable) form. Fortunately, Brockwell [13] has worked out such a form 

in the structure of an asymptotic expansion. Brockwell considers the sum 

S (n) 
r (2. 13) 

where nand nr but not necessarily rare integers and rp < 1. Brockwell •s 

approximation is 

S (n) 
r 

-I 
1 p 1 (p ) 

(nr) n nr-n [ ( - ·) 
n P q Po P + --n-- + · • ~ + 

where 

y - I 
=--

y - r 

-1 
pk(p ) 

k 
n 

(2. 14) 

(2. 15) 



ACCEPTABLE ERROR RATE, e::, 

DECIDED UPON 

\II 

e:: DETERMINES THE TAIL REGION 

[k2 (1- e::), k2] INTO WHICH AT 

LEAST ONE OF THE DISTANCES 
2 

k - di MUST FALL 

'II 

THE PROBABILITY, o, THAT A 

SPECIFIC d. WILL CAUSE k2 - d. 
I I 

TO FALL INTO THE TAIL REGION 

DETERMINED BY e:: IS COMPUTED 

. \il 

THE PROBABILITY ~E(o,R) THAT 

WE WILL OPERATE AT OR BELOW 

THE ERROR RATE e: 

IS DECIDED UPON 

" 
BOTH R AND C CAN 

NOW BE COMPUTED 

Figure 11. The Reasoning Process 
Used to Derive the 
Size of the Codema­
trix Set and the 
Afforded Compres­
sion 

33 



and 

p 1 (y) = y (y. 1) __<L p (y) 
y- r dy 0 

p (y) =(y(y-1) ..E...)k p (y) 
k y • r dy 0 

34 

(2. 16) 

(2. 17) 

in general. The remainder term, Rk' in Equation (2.14) satisfies the fol­

lowing bound: 

-1 
k+ 1 I pk (p ) I 

0 ::; (- 1 ) Rk < n k • (2. 18) 

Carrying out Brockwe11 1 s approximation to order k=l, we find that for our 

case of interest, i.e., p=q=l/2, 

S (n) 
r 

[ 
2 ] 
- (r- 1) 

(nr) _1 __ n . . • 
n 2-r (2 -r)3 

The maximum error, Er' is, by Equation (2.18), easily shown to be 

2 n (2 - r) _ 1 
2(r-l) 

(2. 19) 

(2.20) 

Examining Equation (2.20) we see that Brockwe11 1 s approximation can be an 

excellent one for tail regions beginning at large deviations from the mean. 

To convert tquations (2. 19) and (2.20) into our notation we make the sub-

stitutions: 

1 r +--
1 - € 

2 
n+k (1-s) 

(2.21a) 

(2.2lb) 

These substitutions give us the following expression for the first order 

approximation: 
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II 

(2.22) 

(2.23) 

Examining Equations (2.11) and (2.12) we find that both expressions 

contain the term log (1-o). As o«l, we can approximate this factor by 

noting that \log (1- o)\:: o for small o. A further approximation that is 

evidently needed is a tractable expression for the factor 

(2.24) 

that occurs in Equation (2.22). 

Expanding Equation (2.24) we find that 

(2.25) 

To approximate Equation (2.25) we will need an approximation to the fac-

torial. We choose the zeroth term approximation given by Stirling•sseries 

truncated to the first term, as described by Levy and Roth [14]: 

' - ;-:;---2 n+t -n n. - v L1f n e • (2. 26) 

Applying the above approximation to Equation ~2.25) we obtain! 

(2.27) 
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Substituting Equation (2.27) into Equation (2.22) we obtain: 

(2.28) 

Checking Equation (2.28), we let£= 0.2 and k = 5. From tables compiled 

by Harvard University [151, we find that a:::o.00204, the result of a direct 

computation to five decimal places. The approximation Equation (2.28) 

yields a::: 0.00205(294) which is quite respectable. 

2.2.4 Closed Form Approximation for R ~nd C 

Using our approximation for o,we can now determine an expression for 

the number of matrices required for the codematrix set, R: 

--· h rr £ ( I - E) II og [ I - <I>"( a , R) ] I ( ·) 2 
R - t... k [2(1 ~ !). 1-£ (£s]k 

[~- 2£(1-~)] 
I - 2s k2 (I _ 2£) 3 

(2.29) 

In like manner, we can determine an expression for the compression, C: 

As 

and 

c ::: log2 

~ {logllog [I- <I>E {o,R)JI + loghrr£ (I- d -log [ 1
1_- 2££ 

k 

(2.30) 

(2.31) 
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(2.32) 

2.2.5 Analysis of C and. R 

It is an interesting property of C for large k that C is a function 

only of the acceptable error rate and not of the probability, ¢~(cr,R), of 

achieving that error rate. We denote C for 1 arge k as C which then serves 
00 

as a convenient upper bound for the compression. It is usefu·1 to have a 

feel for C as we will have to make engineering tradeoffs if we ever imp1e-
oo 

ment the system. For this reason we have plotted C in Figure 12. 
• CY> 

Note 

that the initial gains in compression as we sacrifice fidelity are modest 

compared with the 11ava1anche 11 of increased compression that occurs in the 

higher error rate regions. 

Considering R, we note that it depends on c: and the probability ci>L:(cr,R) 

for even large k. Let us look at its specific dependence on ci>L:{cr,R). We 

have, in Figure 13, plotted the factor jlog[l -ci>L:(o,R)]j against ci>l:(cr,R) 

across a reasonable range of interest, 0.5 < ¢L:(cr,R) < 0.95. We note that R 

is fairly insensitive to ¢L:(cr,R) within this range. This is perhaps a 'bit 

surprising and deserves at least a passing analysis. 

To best understand the behavior of R with respect to qJ2:(cr,R), we must 

return to the exact distribution in Equation (2.4), the integral of the 

multinomial distribution. Although it is computationally intractable to 

evaluate in general over the region specified, and thus derive P0 (x), the 

probability density function of the minimum value contained. in the set 

{d 1 ... dR}' it is possible to compute nearly exact values for small R. 

Figure 14 shows the probability density function, P0 (x), for the cases in 

which R = 1, 2, 3, 4, and 5 based on the binomial distribution with k2 =9. 
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3.0 
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1.0 

t- ---:-+ r -+ I 
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4>L (a, R) 

Figure 13. jlog[l- 4>L(cr,R)]j Versus .PL(a,R) 
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For R 
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1, P0 (x) is, of course, the familiar binomial density function: 

2-9 (9). Continuing on, we note two things from Figure 14. First, 
X 

as R increases, the first moment, the mean, migrates to the right. Tliis 

is intuitively expected. Second, as R increases the variance tightens up 

so that only a small range of values becomes probable. In light of this 

limited experiment it is not difficult to extend our intuition to larger 

k x k matrices and very 1 arge va 1 ues of R where we expect a simi 1 ar mi gra-

tion of the mean but, more importantly for the present discussion, also a 

tightening of the variance providing only a relatively small range of 

probable values for the maximum. 

2.2.6 Simultaneous Consideration of R ~nd C 

Consider that we are operating with kxk matrices at an acceptable 

error rate and that we wish to increase our compression. We can do this 

in three ways. We can increase the error rate, we can increase k, or both. 

It is clear that increasing k will have an impact on computational time 

or computational complexity. This is so because of the great sensitivity 

of R to changes in k. If we try to more closely approximate C by holding 
00 

the acceptable error rate constant, we may end up by driving R to a compu-

tationally infeasible magnitude. It i~ thus qesirable to prepare a nomo-

graph which will allow a quick evaluation of the choices. An example of 

such a nomograph is shown in Figure 15. The compression, C, is plotted 

vertically on the left end and the common logarithm of the number of rna-

trices required for the codematrix set, R, is plotted vertically on the 

right. Both C and log 10R are plotted against the acceptable error rate, 

E, for the presumed typical value of ~L(o,R) = 0.9. 
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2.3 An Upper Bound · 

So far we have considered only a codematrix set based on matrices de-,. 

rived from a balanced Bernoulli source. This seems perhaps unsophisticat-

ed and smacks of 11 brute force.•• Can we do better by a careful planning of 

our codematrix set? 

This question is a reasonable one. Before giving it the analysis it 

deserves, let us consider a simple example along the lines of an experi-

ment conducted in Chapter I. Suppose we are trying to encode 2x2 matrices 

using the following two 4-member codematrix sets, each of which provides a 

two-to-one compression: 

SET A: 

SET B: 

0 0 
0 1 

0 0 
0 0 

0 0 
1 0 

0 1 
1 0 

0 1 
0 0 

1 0 
0 1 

1 0 
0 0 

Figure 16 shows the best results of the best match to all possible 2 x 2 

frames for sets A and B. Assuming all frames are equally likely, the aver-

age error rate realized using codematrix set A is 0.28125 while that rea-

lized by codematrix set B is 0.25000. It is clear, then, that set B is 

superior. Set B was specially designed so that the four matrices were 

distributed in the four space so that no frame could exhibit a Hamming 

distance metric greater than 2. Notice that this is not so for codematrix 

set A. The al.l-unity frame~ ~ is at a distance 3 from all of the codema-

trices. 

It would seem, then, that for a given codematrix set size R there 

should be a best codematrix, or set of codematrices, that would generally 

surpass and only occasionally equal the performance of randomly generated 

sets. 
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t--~ 

Set A Set B · 
A 11 Possible Errors Resulting Errors Resulting 
2x2 Frames From Best Match From Best Match 

0 0 
0 0 0 

0 0 
0 0 1 

0 0 
0 1 0 

0 0 
2 1 1 

0 1 
0 0 0 

0 1 
2 0 1 

0 1 
0 1 0 

0 1 
2 1 1 

1 0 
0· 0 0 

1 0 
0 0 1 

1 0 
2 1 0 

0 
2 1 

1 1 
2 0 0 

1 1 
2 0 1 

1 
2 0 

3 0 

Figure 16. Results of Using Codematrix Sets A and B 
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The above supposition seems reasonable but the analysis is quite sur-

l prising. Consider that what we are doing by this coding scheme is achiev­

ing compression by representing a volume in hyperspace by a single po'int. 

The volume is, of course, all those frames which lie at a Hamming distance 

of k2c from a point which is the clbsest codematrix. Diagrammatically, 

see Figure 17, we see that, in effect, we are chopping up the k2 hypercube 

into a set of smaller volumes. There are efficient ways and. inefficient 

ways in which this can be done. Codematrix set A, in the example just 

presented, is an example of an inefficient way. For codematrix set A to 

allow representation of all points in the hyperspace, we must allow a max-

imum distance of 3, else the all ones frame cannot be represented. Thus 

there is a great deal of overlap between the hypervolumes representable 

by the various codematrices. For example, frame~: is equally close, or 

distant, to three of the codematrices and maximally distant from the fourth. 

Consider now that the coding were perfect. 2 If so, the k hype rvo 1 ume, 

or frame space, would be eq1,1ally partitioned into "hyperspheres" of radius 

2 
k c. The number of spher~s, pr messages, or codewords, or representations 

would then be 

k2 
2 

k2c 2 

I (k ) 
,11,=0 

,11, 

(2.33) 

where 

k2c 2 

I (k ) 
~.=0 

Q_ 
(2. 34) 

is the "volume'' surrounding a point which would be represented exactly, 

i.e., a member of the codematrix set. (This is the same argument used by 
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Figure 1 7. The Vo 1 ume Encompass.­
ing All Frames With­
in a Hamming Dis­
tance of k2E From . 
the Closest Codema­
tri x 
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Hamming in his paper on error-correcting codes (see Reference [10]). Given 

that the coding is perfectly efficient we use Equation (1.7) and deter-

mine the compression. 

2 
log 2 (2k ) k2 

c = = 
k28 

log2[ /
2 

] 
2 

2 
k - log2 I (k £) 

k £ k2 JI,=O 
Jl, 

I < Jl, ) 
JI,=O 

log2 

1 
k2£ 2 

log2 -- log I (k £) 
k2 JI,=O 

Jl, 

(2.35) 

Appealing to symmetry, 

k2£ 2 k2 2 

I (k ) = I <k > 
.1~=0 

Jl, 
Jl,=k2 ( 1- ) Jl, 

(2.36) 

Substituting Brockwell's approximation Equation (2.19) for Equation (2.36) 

we can write: 

c lo 2 

log2- - 1 log ( 1 · k [....!....:...£_ -
k2 hn£(1-s) 1 ""2£ 

2£ ( 1 - £) ] ) 
2 . 3 

k ( 1 - 2F.) 

+ log [(1- £) (l-£)(££)] 
(2.37) 

As k ~ oo we see that 

C ~ log2 

I og 2 + 1 og [ ( I - s) ( 1 - £) ( ££) ] 

= log2 

1 og [ 2 ( 1 - s) (1- E)(££) ] 

(2.38) 

But Equation (2.38) is the same as C as defined in Equation ·(2.32). We 

are thus led to a most interesting result that, in effect, says we need 
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not worry about trying to refine our codematrix structure for large k--a 

~ randomly derived codematrix set will exhibit behavior approaching the 

optimum codematrix set as k grows larger! 



CHAPTER Ill 

IMPLEMENTATION 

3.1 Introduction 

We now take up the question raised in section 1.2.3, the matter of. 

devising a set of matrices that does not require an onerous amount of 

storage or computation time. Consider, again, that if we a·re to operate 

at a compression rate, 

c (3. 1) 

then, 

(3. 2) 

and the number of bits that must be stored, unless generation is possible, 

is: 

(3.3) 

The following short table wi 11 impart to the reader the nature of the task 

via this approach for four frame sizes when the scheme is operating at a 

compression ratio C = 4 (see Table Ill). Clearly, for even moderate frame 

sizes, storage of all the matrices is impractical and we are naturally led 

to the important subquestion: 11What families of matrices exist that (a) 
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can be generated from a relatively small amount of stored information, 

(b) can be generated quickly, and (c) possess at least some properties 

that would commend their use for this random, or better, pseudo-random 

coding scheme?" 

TABLE Ill 

BIT STORAGE REQUIREMENTS FOR DIFFERENT k FOR C = 4 

Frame 
Dimension 

(k) 

4 

6 

8 

10 

12 

14 

16 

k2 

Storage Required/(Bits = k2 ·2C 

256 
4 

L 84 X 10 
6 

4.19xl0 

3. 36 X 109 

9. 90 X 10 12 

1.10x10 17 

4. 72 X 1021 
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The above question suggests that we should look for our answer within 

formal mathematical structures, but where to start? Fortunately, a candi-

date answer is obvious, the theory of finite, or, Galois fields. Galois 

theory became important to the electrical engineering community in the 

late forties when memory elements and simple logical functions allowed the 

realization of the binary shift register with feedback provided by modulo 

two addition, the exclusive-or, of the contents of various stages. It was 

the synergism created by the melding of an emerging electronics technology 
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with a body of century-old mathematics, long regarded as a mathematical 

curiosity of little overt applicability outside the ken of abstract mathe-

maticians, that brought forth one of the most important tools of modern 

day communications theory, them-sequence. 

3.2 Fields and Other Mathematical Paraphernalia 

Before we consider finite fields, it is prudent to spend a few lines 

reviewing the concept of fields in general. We also introduce some ancil-

lary concepts and terminology at this juncture. 

3. 2. l Fields 

Consider a set of elements E = {e 1 , e2 , ... } which may be either 

finite or infinite and an operation denoted by 11+. 11 If: 

l. for any t:wo elements, e., e. E: E, e. +e. E: E, 
I J I J 

2. for every e., e., and ek in E, e.+ (e. +ek) =(e. +e.) +ek, 
I J I J I J 

3. there exists one and only one element in E, e 1 (the operation 

identity), such that for any element in E, e. +e 1 =e., 
I I 

4. for any e. in E there exists one and only one element (the in-
1 

verse) in E, e.' 
J 

such that e. +e.= e 1, 
I J 

then we have a mathematical structure termed a GROUP. If, further, for 

every e. and e. in E, e. +e. =e. +e., then the group is termed commuta-
1 J I J J I 

tive or 11 abelian. 11 All groups with which we shall work will be abelian. 

An example of an infinite abel ian group is the integers over addi-

tion. For this group the additive identity is 0 and the inverse of inte-

ger a is simply -a. Note, incidentally, that the integers do not form a 

group under subtraction because e.- (e.- ek) #(e.- e.)- ek. 
I J I J 
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If we introduce another commutative operation, "x, 11 and require that 

!' the elements of the 11+11 group, excepting the 11+11 identity element, form a 
1 

group under 11 x, 11 and further require that for every e., e., and ek in 'E, 
I J 

e.x (e. +ek) =(e. xe.) +(e. xek), then we have a mathematical structure 
I J I J I 

termed a FIELD. 

An example of a field is the set of rational numbers over addition 

and multiplication. The additive identity is 0. The multiplicative iden-

tity is 1. The additive inverse of a is simply -a. The multiplicative 

inverse of a (a # 0) is 1/a. 

3.2.2 Number Theoretic Operations and Functions 

We define a set of elements E = {e 1, e2 , ... }. If elements e. =e. 
I J 

+ ek x e.Q,, we note that ek divides (is a factor of) e. -e .. 
I J 

We say that 

e. is CONGRUENT to e. modulo (11mod 11 for short) ek. We denote this by the 
I J 

symbology e. =e. mod (ek). As an example, all even (odd) integers are 
I J 

congruent to each other modulo 2. 

The concept of relative primitivity is important. Two elements, a 

and b, are said to be RELATIVELY PRIME if they share no factors (except-

ing the multiplicative identity) in common. Thus, 6 and 35 are relative-

ly prime even though neither number is itself a prime. A natural exten-

sian is the concept of GREATEST COMMON DIVISOR. The symbology c= (a,b) 

is defined over the positive integers as follows: "Integer cis the larg-

est integer that can be divided without remainder into both integers a 

and b.•• If c= 1, then a and bare relatively prime. 

A very important number theoretic function is the Euler totient or 

"phi 11 function denoted by <j>. This function when applied to a positive 

integer m, <j>(m), gives the count of the number of integers relatively 
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prime tom starting with l (which is relatively prime to all positive in-

$. tegers) and incrementing by I up tom. Thus, ¢(6) = 2 and <j>(8) = 4 for 
• 

examples. For a prime, P> q,(p) = p - l. The function <P is ~aid to be 

"weakly multi.plicative." This means that <j>(mn) = ¢(m)¢(n) if (m,n) = 1, 

i.e., if m and n are relatively prime. One further result about <1> is 

needed before it can be calculated for any positive integer and that is 

that <j>(pn) = pn-l(p-1) if pis prime. Thus, to calct.~late cp for any posi-

tive integer q, we proceed as follows: 

I. Canonically decompose q into its (unique) product of primes, i.e., 

2. Use the fact that <j> is a weakly multiplicative function and write 

3. Sequentially evaluate all right-hand terms using the result that 

(pk-1). 

3.2.3 Finite Fields 

Finite fields, fields with a finite number of elements, are possible 

if and only if the number of elements, N, is a power of a prime number, p, 

n 
i.e., N = p [16]. As we noted earlier, a field has two binary operators 

usually denoted by "+11 and "x." As an example of a finite field iri which 

the number of elements is a prime to the first power (n = 1), we consider 

N= 3. Let the set of elements be {A,B,C}. The following tables define 

the field operators: 
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+ A B c X A B c 

A A B c A A A A 

B B c A B A B c 

c c A B c A c B 

The element A is clearly the additive identity as A+e = e, where e E {A,B,C}. 

The element B is the multiplicative identity and Bxe=e. 

As an example of a finite field in which the number of elements is a 

prime to other than the first power, we cons i de r N = l = 4. Let the set 

. elements be {A,B,C,D} . The tables below define the field operators:. 

+ A B c D X A B c D. 

A A B c D A A A A A 

B B A D c B A B c D 

c c D A B c A c D B 

D D c B A D A D 8 c 

3.2.4 Finite Fields of Order 
n 

2 Where n > 1 

We now proceed to develop a practical framework for working with 

finite fields involving 2n elements (n > 1). 

Consider polynomials of degree n- 1 of the form 

of 

n-1 
cn-1 x (3. 4) 

in which each of the coefficients is either a one or a zero, i.e., c.dO,I}. 
. . . I 

n-1 
We define addition of two polynomials an_ 1x + ... + a 1x + a0 and 

n-1 · n-1 
b n _ 1 x + . . . + b 1 x + b 0 as a po 1 ynom i a 1 r n _ 1 x + . . . + r 1 x + r 0 , 

where r. is the modulo two sum of a. and b.. A 1 ittle thought wi I I show 
I I I 

that there are 2n polynomials possible of form (3.4) and that the set of 
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all these polynomials forms an abelian group under addition as just defin-

ed. We are thus "halfway" to a field structure and as the next logical 

step we ponder what will suffice for multiplication. Clearly normal mul­

tiplication of polynomials will not work, for if we consider the product 

n-1 
(an-lx + 

+ (an-lbn-2 

polynomial of degree 2n-2. If we. wish to retain multiplication in the 

above ''normal" sense, we will have to manage it so that polynomials that 

exceed the n-lst degree will be mapped or reduced to polynomials of degree 

n- 1 or less. It is a remarkable result that such a mapping can be accom-

plished through the use of modular reduction based on a "primitive" poly-

nomial. 

Like their counterparts, the integers, polynomials can be factored. 

For example, the polynomial / + l cannot be factored over the field of 

polynomials with coefficients from the set of real numbers because two 

factors of the form (x+a)(x+b) = / + (a+b)x+ab cannot be found. How-

2 ever, over the field of polynomials with modulo two coefficients, x + 1 

2 2 can be factored; indeed, it is a perfect square, x + 1 == (x+ 1) . If a 

polynomial is factorable into a product of polynomials of smaller degree, 

the polynomial is said to be REDUCIBLE. Polynomials that cannot be fac-

2 
tored, such as x +x+ l, are said to be IRREDUCIBLE. It is analogous to 

composite and prime numbers in the realm of integers. But this is where 

the analogy ends, for there is a further dichotomization to the set of. 

of irreducible polynomials--those ir.reducible polynomials that are PRIM!-

TIVE and those that are not. 

Only a polynomial, P(x), that is primitive (and this is a practical 

way to define primitivity) can be used as a.modulus of reduction so that 
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2 2n 1 n the set {0, a, a , ... , a - } mod P (x) maps one-to-one onto the 2 po 1 y-

nomials of form (3.4),. The character a stands for a primitive element. 

One of the chief results of finite field theory is. that there exists suit-

n 
able P(x)•s and a•s that allow construction of a finite field of 2 ele-

ments. 

3.3 A Finite Field Whose Members 

are Square Matrices 

We have now come to the essential topic of the chapter. By way of 

introduction to this fascinating and important topic, let us try two ex-

periments. We posit two left-shifting four-stage shift registers with 

feedback as shown in Figure 18. A momentary reflection regarding the 

properties of modulo two addition convinces us that if the shift registers 

are started with the contents of all their stages ar~ $et to zero, this 

set of contents or ••state•• wi 11 perpetuate itself as. the registers are 

clocked. For this reason, we wi 11 avoid the ••all-zero•• state and start 

both registers from a non-all-zero state, say 000 l. A further considera-

tion gives an immediate and important upper bound. Because there are a 

. n· 
finite number of states that the register may assun~,-2,, and because the 

shift register with feedback is a deterministic sequential machine, the 

succession of states assumed over time is, or will become, a cycle. fur-

ther, as the all-zero state generates a 11degenerate 11 cycle of length unity, 

it is clear that the longest cycle possible (although at this point not 

n 
guaranteed achievable) is 2 -1 steps in length. Let us now observe the 

results of the experiment in Figure 18. We see a marked difference in the 

behaviors of the two machines and only a very slight difference in their 

architectures, i.e., one feedback tap is taken from stage 2 for the machine. 



I 

Stage 

G> 

I 
~ 

2 3 

0 0 0 

0 0 1 0 

0 1 0 0 

1 0 0 1 

0 0 1 1 

0 1 1 0 

1 1 0 1 

1 0 1 0 

0 l 0 1 

1 0 

0 1 

1 1 

1 0 

1 1 0 0 

1 0 0 0 

0 0 0 1 

~ 
G> 

J 11 t 
l, Stage 2 3 4 

0 0 0 1 

0 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 0 

1 0 0 0 

0 0 0 1 

Figure 18. Two Four Stage Left-Shifting Shift Registers 
With D i ffe rent Linear Feedbacks 
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on the left vice stage 3 for the machine on the right. We note that both 

~ machines exhibit non-transient states in the Markov sense (there are no 
l• 

lead-in tails to the cycle, i.e, all states exhibited are recurrent) and 

that the machine on the left exhibits a sequence of states that is of 

maximum length, an m-sequence for short. 

How can we analyze the general shift register with linear feedback? 

The most direct approach would be through a state transition matrix. To 

t t t . t 
construct this matrix we let the state vector X = (x1, x2 , ... )., xi e: {O,l}, 

represent the contents of stages one through n at time t. To obtain Xt+l 

we postmultiply Xt by M, where 

0 

M= I n-1 

0 

(3. 5) 

where I 1 is the unit matrix of dimension n- 1 and c.dc1 •.. c} is one 
n- 1 n 

if state i is tapped for feedback and zero otherwise. We now have Xt+l = 

XtM. For our previous example, M, for the lefthand, maximum length cycle 

producing, machine is 

0 0 0 

0 0 
M= (3.6) 

0 0 0 

0 0 0 

Now that we have constructed the state transition matrix, how do we use 

it to analyze the cyclic behavior of the shift register with linear feed-

back? 



Each square matrix A has a determinant; though the determinant 
can be u·sed in the elementary study of the rank of a matrix and 
in the solution of simultaneous linear equations, i.ts mostessen­
tial application in matrix theory is to the definition of the 
characteristic polynomial of a matrix (17, p. 299). 
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The statement above by Birkhoff takes on increased emphasis for us as we 

consider n xn matrices of elements taken from the finite field of two ele-

ments, for it is the characteristic polynomial that determines whether or 

not then xn matrix in question will generate the non-zero elements of a 

finJt,e field of 2n elements. 

Let us now consider the general state transition matrix M given in 

Equation (3.5). We note that it is in the form of a companion matrix and 

that !M+A.IJ will yield the characteristic polynomial which is 

(3. 7) 

(Note that M + A I was writ ten instead of M- A I. Subtraction is not a field 

operator. Loosely, addition and subtraction are the same in GF(2).) ·The 

The characteristic equation is formed by setting the characteristic poly-

nomial Equation (3.7) to zero: 

+ •.. + c2 A + c 1 = 0 (3. 8) 

One magnificent result from matrix theory which will be·needed later and 

is appropriate for introduction at this point is the Cayley-Hamilton the-

orem. Simply stated by Perlis [18, p. 136], 11 Every (square) matrix satis-

fies its characteristic equation." So, th~n, we know tha·t 

(3.9) 

Note that Equation (3.9) guarantees (constructively) that powers of M 

greater than or equal ton can be expressed as a linear combination of 
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n-1 n-2 
the set of matrices {M , M , ... ,M,I}. Now, as we previously stated 

2 2n-1 { in section 3.2.4, if the set of matrices {I, M, M , ..• , M } are all 
,! 

distinct and M2n_l =I, then the characteristic polynomial is termed 11 prim-

itive. 11 It is one of the magnificent results of Galois theory that there 

exist primitive polynomials for n;;:: 3, there being only one for the cases 

n=l and n=2. Explicitly, there are (1/n) <j>(2n-l) primitive polynomials 

of degree n, where <Pis the Euler totient function [19]. 

There is only one field of 2n elements. There may be more than one 

representation; however, all the fields are isomorphic [16]. For example, 

there are two primitive polynomials of degree 3, viz., 

(3. lOa) 

,3 + 2 " A +1. (3. lOb) 

Let us compute the characteristic equation of the general 3x3 matrix: 

G = 

If we take the 

>.3 + 

e 11 e12 .13) 
e21 e22 e23 

e31 e32 e33 

determinant of G +A 13 , we obtain 

2 
>. (ell+ e22 + e33) 

+ >.(elle22 + elle33 + e22e33 + e23e32 + e12e21 + el3e31) 

+ (ell e22e33 +ell e23e32 + el2e21 e33 + e 12e23e31 

(3.11) 

(3. 12) 

Direct solution of the {e .. } for those cases yielding the polynomials in 
IJ 

Equation (3. 12) uncover no fewer than 48 distinct matrices which are 

arrayed in eight fields each with 23 members (each field contains 13 and 
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o3, the 3x3 multiplicative and additive identities, respectively, which 

~ do not, of course, possess a primitive characteristic polynomial). These 

eight fields are shown in Figure 19. 

3.4 Implementations 

The discovery that there are so many field generators for kxk matrix 

member fields is an indication that the family of matrices that can serve 

as generators of each other through exponentiation or through isomorphisms 

may be quite rich. Also, in a, for now, heuristic sense, these matrices, 

viewed as an ensemble, will exhibit several of the requisites for random-

ness. This claim, in effect, derives from the commonly held philosophy 

of using m-sequences as pseudo-random generators in s1mulation work as 

approximators of a balanced binary Bernoulli source. For example, each 

row (column) exhibits, pseudorandomly, all non-zero vectors under repeated 

exponentiation. 

The isomorphisms of the basic Galois field can be of significant 

practical importance and should not be regarded as mere mathematical curl-

osities. For example, Warlick and the author have shown that a particular 

isomorphism class is of direct benefit to ultra-high-rate direct sequence 

spread spectrum systems [20]. The following from Berlekamp underscores 

this point: 

From an engineering standpoint, it is misleading to overstress 
the uniqueness of GF(pk), for this field may have many differ­
ent representations .... The design and cost of circuitry to 
perform calculations in GF(pk) depend critically on the repre­
sentation. For this reason, some engineers prefer to think of 
different representations of GF(pk) as different fields. This 
viewpoint is particularly justified in solutions where the cost 
of transforming from one representation to another is large 
[2 1 ' p. 1 04] . 
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Field A Field B Fie 1 d C Field D Fie 1 d E Fie 1 d F Field G Field H --
000 000 000 000 000 000 000 000 

03 000 000 000 000 000 000 000 000 
000 000 000 000 000 000 000 000 

111 111 111 111 111 111 111 111 
M 11 0 110 1 01 1 01 100 100 011 011 

100 0 11 100 0 ll 11 0 101 110 101 

M2 
10.1 010 110 001 101 110 010 001 
001 001 0 11 100 111 111 101 11 0 
111 101 11 1 11 0 011 010 100 010 

M3 
011 110 010 011 001 011 0 11 101 
100 011 001 111 101 11 0 001 100 
101 100 11 0 010 010 100 111 011 

M4 
010 001 101 110 110 0(}] 101 010 
111 101 100 001 001 011 110 111 
011 111 010 101 100 111 010 110 

M5 
110 011 0 11 010 Oll 101 001 011 
101 100 111 011 110 001 100 001 
010 010 101 100 111 11 0 011 100 

M6 
001 101 001 101 010 010 110 110 
011 111 110 110 011 101 111 101 
110 110 011 111 101 011 1 01 1 11 

M? =I 
100 100 100 100 100 100 100 100 
010 010 010 010 010 010 010 010 3 001 001 001 001 001 001 001 001 

Figure 19. The Eight Fields of 3x3 Matrices With GF(2) Elements 

0" 
N 
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One note of caution must be cited. If 2n- 1 is a (Mersenne) prime, 

'15 all matrices, excepting the unit matrix, generated by a matrix wh6se char-,, 

acteristic polynomial is primitive can, themselves, serve as the field 

generator. If 2n- 1 is not prime, then this is not so. 
n 

Let 2 - 1 be com-

posite, i.e., 

zn - 1 = pq (3. 13) 

where p and q are integers satisfying 1 < p, q < 2n- 1. 1 f M i.s a rnatrix 

whose characteristic polynomial is primitive, then the smallest non-zero 

integer, r, for which Mr = ln is r = 2n- 1. Consider, however, MP. It is 

clear that (Mp)q = Mpq = M2n-l = I and therefore MP cannot generate the 

field, it is not a primitive element, or, equivalently, Mp does not pos-

ses.s a primitive characteristic polynomial. As an example, consider 

0 0 0 

0 0 
M = (3.14) 

0 0 0 

0 0 0 

It is easily shown that M's characteristic polynomial is >.. 4 +>..+1 which 

is known to be primitive. Calculating 24 - 1 = 15, we see that the period 

of the cycle generated by M is a composite number (=3·5). From the dis­

cuss ion above, we know that M3 and M5 are not qual i fled generators of a 

maximum length cycle as they are not relatively prime to the period. To 

complete the example, we note, by direct calculation, that 

0 

0 0 
(3. 15) 

1 0 

0 0 
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The characteristic polynomial of M5 is easily shown to be 

4 2 
A + A + 1. (3. 16) 

Not only is Equation (3.16) not primitive, it is also reducible (a per-

feet square in fact): 

( 3. 1 7) 

3.5 A Key Theorem for Implementation 

Consider the set of n xn matrices: 

2 3 n-1 {I, A, A , A , ..• , A } (3.18). 

If A possesses a characteristic polynomial that is primitive, then there 

will exist an independent set of a's such that 

An+i = An+i-1 An+i-2 N Ai 
al + a2 + • • · + ""n (3.19) 

where a =1. Notice that the form (3.19) requires that each matrix ele­
n 

ment of successive powers of A will exhibit the same sequence. This se-

quence will, in fact, be the same sequence exhibited by a shift register 

with linear feedback as shown, for example, in Figure 18. We call this 

sequence the inherent linear m-sequence. ltis known that i-f anm-sequence 

is term-by-term added to a phase shift of itself, the resulting sequence 

will be yet another phase shift of them-sequence. We also know that the 

n m-sequences that describe any column or row of successive powers of A 

will be independent of each other, i.e., no term-by-term sums of up to 

n - 1 of any of the row or co 1 umn sequences wi 11 y i e 1 d the nth remaining 

row or column sequence. These observations immediately yield the follow-

ing theorem. Every power of A is expressible as the following matrix, 
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i . e. , the following form is invariant over exponentiation: 

inl m2 m 
n 

L2 1 (!!!_) 
' 

L2 2(~ 
' 

L2 n (!!!_) 
' (3. 20) 

Ln-1 1 (!!!) 
' 

Ln-1 2 (!!!_) 
' 

Ln-l,n(,!!!) 

The m1dO,l}. The Li ,j(,!!!) are linear combinations of m1 , m2 , ... , mn. 

Consider the field structure shown in Figure 20. By some elementary 

linear equations, the general form (3.20) of the matrices in the field is 

easily shown to be 

(3.21) 

Notice that all matrices of the field shown in Figure 20 can be derived 

by letting (m1 ,m2 ,m3) assume all poss~ble 23 =8 binary triples. 

3.6 Other Matrices--Similarity Transformations 

Reca 11 that R, the n'umber of matrices in the codemat-ri x set, may be 

very large depending upon its parameters. It may be that R far exceeds 

n 
2 - 1, or the number of matrices that can be generated by a field genera-

tor. How then can we generate others? Fortunately there is a result 

from the mathematics of matrices that is extremely helpful. This result 

is the similarity transformation. The theorem, see Reference [22] for 

example, is as follows. Let P be any non-singular n xn square matrix and 

P-1 . . 
1 ts 1 nve rse. If M is a non-singular square nxn matrix whose ~harac-

teristic polynomial is f(.A), then the nxn square matrix· 
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000 
~ 

03 = 000 
000 

111 
M = 110 

011 

M2 = 
010 
001 
101 

110 
M3 = 011 

100 

001 
M4 = 101 

111 

Ms 
011 

,... 100 
010 

101 
M6 = 111 

110 

M7 
100 

= I3 = 010 
001 

Figure20. The Eight Fie 1 d 
Elements of 
Field B of 
Figure 19 
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PMP-l (3.22) 

also possesses the characteristic polynomial f(A). The form (3.22) is 

called a similarity transformation of M. 

Similarity transformations seem to offer a way of easily achieving 

some of the isomorphic field structures. But which similarity transforma-

tions, or classes of transformations, should be used and how hard are they 

to i rilp 1 emen t? 

3.7 ·The Permutation Similarity Transformation 

One particularly simple similarity transformation can be built from 

the simple concept of a permutation of rows and columns. It is well known 

that premultiplication by a permutation matrix swaps rows and postmulti-

plication swaps columns. A permutation matrix can be written either as 

FORM I: 

o(pl,l) o(p 1 ,2) o (p 1 ,n) 

o(p2 ,1) o(p2 ~2) o(p2,n) 
(3.23) 

o(p ,1) 
n 

0 (p ,2) 
n 

o ( p , n) 
n 

or as FORM II: 

o(l,c 1) o ( 1 , c2 ) o(l ,c ) n 

o(2,c1) .o(2,c2) o(2,c ) n 
(3.24) 

o(n,cl) o(n,c2) o(n,c ) n 

where o(i ,j) is the Kronecker symbol and defined in the us ua 1 way: 
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1 ' i=j 
o(i ,j) = (3. 25) 

0, i ~ j 

Either FORM I or FORM II may be used to specify a permutation matrix 

since permutation matrices are doubly stochastic. If we require that a 

matrix of FORM I have as its inverse a matrix of FORM II, then we must 

satisfy the n-equations: 

0 ( p 1 , 1) 0 (1 'c 1 ) + 0 ( p 1 '2) 0(2 'c 1 ) + 

o(p2 ,1)o(l ,c2 ) + o(p2 ,2)o(2,c2) + 

+ o(p 1 ,n)o(n,c1)· = 

+ o(p2,n)o(n,c2) = 

o(p ·,l)o(l,c) + o(p ,2)o(2,c) + ... + o(p ;n)o(n,c) = 1 
n n n n · n n 

(3.26) 

Examination of Equation (3.26) convinces us that o(p.,j) = o(j,c.) for 
I I · 

T 
all i and j, and thus P is the inverse of P. 

Because the inverse of a permutation matrix is merely itstranspose, 

a simi 1 a ri ty transformation of the form 

(3. 27) 

where Pis a permutation matrix can be electronically implemented easily 

and very quickly. Let us study the behavior of the.six transforms of the 

form (3.27) on the generator matrix of field family B of Figure 19. The 

results are shown in Figure 20. Note that six different field representa-

tions are created by application of the six transformations on the single 

generator matrix. It thus seems reasonable to ask the question: "When 

will all n! similarity transformations of the form (3.27) yield n! differ-

ent field representations?•• 



69 

Fortunately this question can be answered very simply. By way of 

' ;: introduction, consider again the field representation shown in Figure 20. 

The generator matrix is: 

(3.28) 

We see in Figure 21 that the similarity transformation 

(3. 29) 

leads to a generator of the C field representation. Now consider the 

general form (3.20) of the field representation generated by M. It is 

(3.30) 

Applying the similarity transformation shown in Equation (3.29) to Equa-

tion (3.30), we obtain: 

(: 
0 

\J 0 

(3. 31) 

Note that m1 +m2 +m3, m3, and m2 +m3, the top row elements of Equation 
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(100) (Ill) coo) c 11) 010 110 010 = 110 Member of FIELD B 
001 011 001 011 

coo) c 11) coo) COl) 001 110 001 . = 110 Member of Fl ELD H 
010 011 010 010 

(001) c 11) ( 001) ( 110) 010 11 0 010 = 011 Member of FIELD c 
100 011 100 111 

( 010) c 11) ( 010) c 10) 100 11 0 100 = 111 Member of FIELD G 
001 011 001 101 

("01) c 11) C10l Cll 100 110 001 = I I I Member of FIELD E 
010 01 I 100 011 

.(010) Clll ( 001) COl) 001 110 100 = 110 Member of FIELD D 
100 .. 011 010 111 

Figure 21. The Results of App,lying the Six 
Similarity Transforms to the 
FIELD B Generator Matrix 
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(3.31) are independent, as expected. 
A A A 

Let us form a new basis,. m1 , m2 , m3 , 

such that 

A 

ml = ml + m2 + m3 (3.32a) 

A 

m2 - m3 (3.32b) 

A 

m3 = m2 + m3 {3. 32c) 

Solving Equation (3.32) for m1, m2 , and m3, we obtain 

A 

ml m2 m3 

m3 ml + m3 m2 (3.33) 

"' A 

rn2 m2 + m3 ml + m3 

It is easily verified that Equation (3.33) is the general ·form of the 

field representation of FIELD C. 

We thus cart. state that all n! similarity transformations. of the form 
... ·~····. • . i.it,;:_~' 

(3.27) will result in different field representationswhen the general 

form of M (Equation (3.20)) contains no symmetries. 

If a generator matrix can be found whose general form contains no 

symmetries, then similarity transformations of the form (3.27) will be 

capable of generating 

rd (2.n- I) (3. 34) 

different llXn matrices. The following will impart to the reader just 

how rapid the growth of Equation (3.34) is with respect to n (see Table 

IV). 

3.8 Implementing the Codematrix Library 

We have just seen that the permutation similarity transformation is 



TABLE IV 

GROWTH OF EQUATION ( 3. 34) 
WITH RESPECT TO n 

n n I (2n - 1) 

3 42 

4 360 

5 3720 

6 45 '360 

7 640,080 

8 10,281,600 

9 1. 854x1 0 
8 

10 
. 9 

3.712x10 
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an excellent candidate for helping to generate a codematrix family of 

i' n! (2n- 1) members. A permutation matrix is desirable from an electronic 
~' 

implementation point of view because its inverse, which is demanded by 

the similarity transformation, is simply its transpose. How then can we 

generate permutations? 

There are many schemes available for generating permutations. One 

particular method of great interest .is due to D. H. Lehmer and is often 

referred to as Lehmer's lexicographical method [23]. We shall describe 

this system by means of an example which is presented not in the hope 

that we will be mathematically rigorous, but rather in the hope that we 

show it as a procedure which can be quickly understood, generalized by 

the reader to other nand fruitfully applied. 

Every non-negative integer, n, can be uniquely expressed· in the 11 fac-

torial number system,'' i.e., 

n = d 1 • 1 ! + d2 • 2! + d3 • 3! + . • • + dk • k! + • . • 

where each d. in Equation (3.35) satisfies 
J 

0 5 d. s j 
J 

(3.36) 

Then! permutations of the first integers (starting from 0) may be lexica-

graphically ordered. Table V exhibits the lexicographical ordering of the 

24 permutations of the integers 0, l, 2, and 3. To specify a particular . . 

permutation, a number p is chosen such that 0 :S p ~23·. The "factorial 

digits 11 of pare computed and arrayed from least significant to most sig-

nificant along a 45° diagonal. The factorral digits of pare prefaced 

with an additional 0. This is shown in Figure 22 for p = 3. The isosce-

les right triangle is filled in by proceeding from left to right from the 



TABLE V 

THE 24 PERMUTATIONS OF 0123 
ORDERED LEXICOGRAPHICALLY 

Permutation Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0 

2 

2 3 

0 0 0 1 

Permutation 

0 1 2 3 
0 1 3 2 
0 2 1 3 
0 2 3 1 
0 3 1 2 
0 3 2 1 
1 0 2 3 
1 0 3 2 
1 2 0 3 
1 2 3 0 
1 3 0 2 
1 3 2 0 
2 0 1 3 
2 0 3 1. 
2 1 0 3 
2 1 3 0 
2 3 0 1 
2 3 1 0 
3 0 l 2 
3 0 2 1 
3 1 0 2 
3 1 2 0 
3 2 0 1 
3 2 1 0 

Figure 22. Computation of 
the Fourth 
Permutation 
of 0123 
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diagonal of factorial digits according to the rule: 11 lf the column head-

/;, er, the factorial digit at the head of the column being filled in during 

the left-to~right progression, is greater than the integer which has just 

been filled in or occupies the posi·tion to the· immediate left of the col­

umn, the integer is copied as is; otherwise, it is increased by one. 11 

Note that the triangle of Figure 22 has been filled in according to this 

rule and that the resulting permutation (the fourth permutation per our 

example) is derived by reading down the right-most column .. for our exam­

ple, we obtain 0231. 



CHAPTER IV 

AN EXAMPLE 

4.1 Introduction 

In an attempt to see whether or not the implementation method of 

Chapter Ill would produce a compression versus acceptable error rate as 

predicted for a kxk frame, a Monte-Carlo experiment was conducted. Be­

cause a general purpose digital computer is not amenable to storing a 

large codematrix set or modeling the great number of computations that 

could be quickly and efficiently performed by special hardware built to 

realize the architecture proposed in Chapter I I I, it was necessary to 

attempt a simulation of only a small frame size within a small range of 

acceptable errors. 

4.2 The Experiment 

A square frame with k = 7 was arbitrarily selected. The acceptable 

error range 0.24 ~ E 5 0.34 was investigated. The implementation used 

the primitive trinomial 

IJ+A+ ( 4. 1) 

The companion matrix for this trinomial is shown in Figure 23. By solv­

ing the appropriate simultaneous equations in GF(27), the general form 

(3.20) is easily derived and shown in Figure 23. The codematrix set was 

created by producing each of the 27 - 1 = 127 matrices corresponding to 

76 
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0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Figure 23. The Companion Matrix 
for the Primitive 
T r i nom i a 1 A 7 + A + 1 
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powers of the matrix product (similarity transformed companion matrix) 

PMP-l (4.2) 

where the successive P's of (4.2) are the permutations·of seven elements 

in lexicographic order. The P 1 s can be generated by t~e Lehmer lexico­

graphic method explained in section 3.8. We note that the general matrix 

form shown in Figure 24 possesses no symmetries and hence all of the 

matrices within the codematrix set, with the exception of the identity 

matrices (PMP- 1) 127, will be different. 

Figure 25 shows the results of·the Monte-Carlo expeFiment as points 

overlaid on C(k = 7) computed by Equation (2.30) and displayed in Figure 

15. The agreement between· theory and experiment deomonstrated in Figure 

25 lends credence to belief in the efficacy of the implementation method 

p~t forth in Chapter Ill. 
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ml m2 m3 m4 m5 m6 ml 

ml ml + m2 m2 + m3 m3 + m4 m4 + m5 m5 + m6 m6 + m7 

m6 ml ml + m2 m2 + m3 m3 + m4 m4 + m5 ms + m6 

ms m6 m7 ml + m2 m2 + m3 m3 + m4 m4 + ms 

m4 ms m6 ml ml + m2 m2 + m3 m3 + m4 

m3 m4 ms m6 m7 ml + m2 m2 + m3 

m2 m3 m4 m5 m6 m7 ml + m2 

Figure 24. General Form of Powers of the Companion Matrix 
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CHAPTER V 

'SUMMARY AND POSS I B I LIT I ES FOR EXTENDED STUDY 

5.1 Summary 

-we have investigated image representation using a codematr ix set 

of randomly derived square matrices. We have derived expressions relat­

ing compression to error rate. We have also explored some ideas regard­

ing; architectures that will allow ,for high-speed and efficient implemen­

tation of the method. 

We have concluded that the codematrix matching method has value 

because it is universal. It will accept any two-tone image regardless 

of the image's statistical properties and it allows a near continuous 

tradeoff between compression and error rate. We also note that high 

compression rates are achievable only through a high error rate. While 

this is not a serious detriment to some defense oriented tasks such as 

template matching, it is a decided concern for image compression. 

5.2 Extensions 

An intriguing idea suggested by Dr. Rao Yarlagadda, and our first 

proposal, is to use the codematrix coding technique to follow a conven­

tional redundancy removing technique such as the Discrete Cosine Trans­

form (OCT) followed, upon receipt, by noise cleaning procedures such as 

median filtering. The appeal of this concept is that the conventional 
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or 11front-endrr transform would perform essentially the same function as 

prewhitening the data, i.e., it would remove the correlations between 

what the codematdx method can consider as pixels. B~cause the residuals 

will not, in general, be binary valued entities, they must be converted 

to binary form before applying the codematrix coding method. A number 

of conversion schemes appear possible and especially attractive are those 

PCM techniques that allow for Unequal Symbol Protection (USP). 

Our second proposal is to examine other, nonbinary, number bases and 

various mathematical architectures for implementing the procedure. The 

use of number bases other than binary have particular problems as regards 

electronic implementation howev.er., they may have special rewards. Ex­

tension of the mathematics to study these cases is not anticipated to be 

a difficult task but rather it is anticipated that the challenges will 

1 ie in creating the appropriate 11closest-matching 11 metrics, influenced 

perhaps by psychovisual considerations, and implementation architectures 

should other number bases appear theoretically preferable to binary sys-

terns. 

A third area for potential follow-on is selection of the best permu­

tation scheme for achieving the similarity transformations put forth in 

Chapter I II. The best choice will be influenced by many parameters, the 

chief one of which will be ease and speed of electronic implementation. 

A potential fourth area for research concerns the search for a fast­

er 11 best-frame-matchu as opposed to the present architecture of exhaust­

ing all 2k- 1 matri~es of (PMPT)i for each P. This is probably an 

extremely difficult problem and it is not even known whether or not a 

method of subexponential complexity can indeed exist. 
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