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A THEORY OF ELECTROLYTE SOLUTIONS
CHAPTERI
INTRODUCTION

For many years the interionic attraction theory of Debye and
Huckel (1) has provided the accepted description of the behavior of elec-
trolyte solutions at low concentrations. Although preceded by the work
of Milner {2), the complex nature of the result obtained in this earlier
analysis obscured the concentration dependence of the solution proper-
ties, i.e. the solution properties dependent on a fractional power of the
concentration at high dilution,

Details and discussions of the theory of Debye and Huckel are
readily available, so only the most general considerations will be dis-
cussed here. Their model of a solution of a completely dissociated elec-
trolyte consists of a system of rigid, spherical ions in a homogeneous,
continuous medium whose dielectric constant is unaffected by the pres-
ence of ions. The disorder prevailing among the ions is modified by
the spherically symmetrical electrical interactions with a chosen central

ion. The Poisson equation of electrostatics is combined with the statistical



distribution function of Boltzmann to give an equation for the average
electrostatic potential. The limiting form of the interionic attraction
theory was obtained by retaining only the linear term in the expansion
of the Poisson-Boltzmann equation. The assumptions and approxima-
tions involved in this development are covered in a number of sources,
€. g. Kirkwood (3), Robinson and Stokes (4). In the years immediately
following, a number of investigators including Gronwall (5), Gronwall,
La Mer and Sandved (6) and Muller (7), undertook the solution of the com-
plete Poisson-Boltzmann equation in order to extend the range of applica-
bility of the interionic attraction theory. Evaluation of the complete equa-
tion by the method of Muller has been recently reexamined by Guggen-
heim (8) utilizing the capability of modern high-speed computers. How-
ever, the applicable concentration range has not been significantly ex-
tended by this approach, and, in fact, the internal consistency of the
Poisson-Boltzmann equation at higher concentrations and for unsym-
metrical electrolvtes has been questioned by Robinson and Stokes (4).
erally assumed that the applicable concentration range certainly
cannot extend past 0, 1M even for 1-1 electrolytes. The development
and application of more rigorous statistical treatments (9-12) apparently
confirm the limiting form of the Debye-Huckel theory.

A number of semi-empirical correction terms have been pro-
posed to extend the range of validity of the interionic attraction theory.

Several investigators have attempted to correct for the change in the



dielectric constant of the medium as the electrolyte concentration in-
creased, e.g. Huckel (13) and Jones and Bickford (14). Shortly after the
publication of the Debye-H{ickel theory, Bjerrum (15) suggested that the
higher order terms in the expansion could be considered as a correction
arising from the formation of cation-anion pairs. This approach is a
correction in the direction of weak electrolytes to the interionic attraction
theory of strong electrolytes. Many workers, including Bjerrum (16),
Scatchard (17), Robinson and Stokes (4) and Glueckauf (18), have proposed
correction terms arising from ion hydration which serves to remove
'""free' solvent from the solution., Utilizing hydration number as an addi-
tional parameter, experimental data are fit to high concentrations. Ex-
cluded volume effects arising from the finite size of the ions (or hydrated
ions) have been considered by Van Rysselberghe and Eisenberg (19) and
Eigen and Wicke (20); the latter treatment has met with criticism on log-

ical grounds {21).

It has long been cbgerved that the properties of strong electro-
lvte solutiona display a long segment of linear dependence on the cube
. - * -
root of concentration. In fact, Xohlrauzch {22} used cube-roct-ci-con-

centration plots for conductance data for many years before adopting the
square root dependence. Several years before the theory of Debye and
Huckel, Bjerrum {23} proposed & cube-root-of-cor

for dilute electrolyte solutions and later extended this to include concen-

trated solutions (16). More recently, Robinson and Stokes (4) have again
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commented on the long linear segraent in plots of log y, versus the cube
root of cencentration beginning at about 0, 001 M. Proceeding irom these
observations, Frank and Thompson (24) examined the theory of Debye

and Huckel and concluded that the square-root-of-concentration depend-
ence is limited to a range between zero and some critical value of the
concentration where the assumptions are no longer valid. From their
calculations they found this "'breakdown'' to occur in the vicinity of 0. 001M
for 1-1 electrolytes, and, at even lower concentrations, for electrolytes
of higher valence. Based on these results, a "diffuse lattice' picture

1/3 depend-

was postulated as a possible explanation for the observed M
ence of electrolyte solution properties in the experimentally convenient
concentration range. Fuoss and Onsager (26) have also discussed the
possibility that the theory of electrolyte solutions should contain a term
which would reflect the simple Ml/3 dependence of solutions of rnoderate
to high concentrations. In 1218, Ghosh (25) attempted to describe elec-
trolvte solutions in terms of an ionic lattice; however, his lack of con-
sideration of the proner statistical treatment resulted in the invalidation
of the approach {1). Unfortunately, the criticism of this treatment led
to the exclusion of the cube-root-of-concentration dependence of elec-
trolyte solution properties from theoretical investigat-ion for many years.
The interionic attraction theory of Debye and Huckel was derived
for dilute electrolyte solutions and, even in the most favorable case {1-1

electrolytes), the underlying assumptions become invalid at concentratiors
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higher than about 0, 001 molar (24), At least in the range above this
"critical" region to moderate concentrations, the colligative properties
can be represented by an expression involving a simple cube-root-of-
concentration dependence. By assuming a more restricted model for an
electrolyte solution than was adopted by Debye and Huckel, mathematical
expressicns describing electrolyte solution properties can be derived
which have a simple cube-root-of-concentration dependence at low elec-
trolyte concentrations, while, in higher concentration regions, the prop-
erties are described by a series in ascending powers of the cube root of
concentration. Smith (27) adopted a model wherein the counter ion (ini-
tially considering a symmetrical electrolyte) was restricted to a "cell"
of radius R determined by the solute concentration (417R3/3 = 1000/N M),
where N, is Avogadro's number and M the molar concentration, and
was able to approximate 1-1 electrolyte solution data over rather exten-
sive concentration ranges. For electrolytes of the n-1 type, Smith as-

sumed the counter ions to ba equidistant from the central ion and from

experimental data were obtained over substantial concentration ranges,
and the correct shape for activity coefficient curves was predicted. In
the present approach, a rather less restricted model is chosen resulting
in an ircrease in mathematical complexity but offering an excelleat fit

§

to experimentzl results over a surprisingly wide concentration range.



Recently, Murphy and Weissenbdck (28), using the constant pressuze
(TPN) ensemble (29), have improved the statistical foundation of the pair
distribution function obtained in this work. Their treatment considers

a general potential energy function rather than the specific case of cou-

lomb interaction used here.



CHAPTER 1I

MATHEMATICAL DEVELOPMENT

Development of the Unit Partition Function

The adopted model of an electrolyte solution assumes that, at
any instant, the solute ions can be grouped into electrically-neutral,
chemical formula units. The interactions between unit members are
obtained by first choosing a central ion as the center of coordinates,
with the restriction that Izclz |zg|, where z_ is the charge of the central
ion and zg the individual charge of the counter ion(s). Considering only
the interactions between oppositely charged ions, the pairing proceeds
stepwise until all unit members have been included. Of course, for
symmetrical electrolytes, there is a single pair of ions per chemical
formula (and electrically-neutral) unit. For electrolytes of the n-1 type,
there are n pairs of electrostatic interactions between.‘oppositely charged
species per unit, In the consideration of electrolyte solutions, the spe-
cific assumptions inveolved are:

(1) The statistical mechanical ensemble consists of electricaily-

neutral, chemical formula units of ions containing ¥ members

oy = 4l mcvmmmbemie £ 2 mim o S b wmlel Al 4l
\¢/ — uiicC FRVER WA« UL LULLD 1.0 wWillCiL L

-~J
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(2) The motion of the center of mass of these units can be treated
independently of the relative motion of the constituent ions;
electrostatic interactions are part of the latter treatment
and are considered to be angularly independent (smearing ap-
proximation).

{3) Only pairwise interactions between oppositely charged ions
are considered; for units containing more than a single
counter ion, pairing proceeds in a stepwise manner from
the chosen central ion (Izc|_>_ lzg|).

(4) Other than electrostatic interaction, the only non-ideal gas °
contribution considered is hard core repulsion.

(5) The solvent is a structureless dielectric medium; the bulk
dielectric constant of the pure solvent is used at all solute
concentrations.

It is assumed that each pair (unit) is independent, i.e., there is no poten-

ical partifion function Q of the system by the equation
In Q = N[In(q/N) + 1] (1)
where N is the number of units in the ensemble.

For symmetrical electrolvtes the unit partition function ic

q l-Zﬁ(m_l_ + m_)k'I‘T)’/Z (Zﬁrn+m_;< "3/2 .
- = Z g \21
N L h? J limy + m_n4  °®

center of mass internal

trarslation translations
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where m; and m_ are the masses of the cation an
T is the absolute temperature, k is Boltzmenn's constant and h is Planck's

constant. Equation 2 can be simplified to yield

2mm_ kT 3
S o
S (4)
and
A = (8% /2mm kT (s)
The pair configuration integral ;s given by
®
C= ij’ exp [—Bu(r) - yvf]41rr2dr (6)
a
where
B = 1/kT (7)
vy = 1/5¢% (8)
5 - - b= (1000/NM) - 4ra’/3 {9)
vi = 4'.1(r3 -a%)/3 (10)

a is the distance between centers, cation-anion contact.

M is the solute concentration in moles/liter,
and u(r) is the appropriate potential energy function. In essence, this
derivation includes the constraint of constant free volume in addition to
constant energy and constant number of independent pairs when treating

pairwise interactions, This explicit inclusion of constant {ree volume
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results in a modified Maxwell-Boltzmann distribution for independent
pairs as given by the exponential terms in the integrand of Equation 6.
That is, the second exponential, exp(-'yvf), modifies the distribution of
energy states given by the regular Maxwell-Boltzmann term, exp[ -Bu(r)],
with the appropriate expression for the potential energy u(r), Radial
symmetry of a counter ion about 2 chosen central ion is assumed; there-
fore, the probability of 2 counter ion being between r and rtdr is propor-
tional to the integrand in Equation 6.

Extension of the approach to describe units composed of more
than a single pair requires careful consideration of the adopted model.
For a three particle unit (corresponding to a 2-1 electrolyte such as
CaClz), two individual pair interactions are involved, when including
only those pairs made up of oppositely charged ions. Such a unit can be
pictured as shown in Figure la, A doubly-charged cation is taken as the
central ion and the remaining members of this independent, chemical
formula unit are two counter ions. The pairing proceeds outwardly from
the central ion. The iﬁteraction of the closest counter ion with the cen-
tral ion constitutes what is termed an "inner ion pair''; the net electro-
static result is to give a virtual central ion with a charge corresponding
to the charge of the central ion minus the charge of the '"'paired' counter
icn, For a 2-1 electreolyte, the final termed an "outer pair'', is
formed by interactior of the remaining counter ion with the virtual cexn-

tral ion, Figure lb. The electrostatic result is to give an electrically
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Figure l. Pairing Sequence, 2-1 Electrolytes. {a) Inner ion pair formed
from central ion and counter ion at rj. (b) Outer ion pair
formed from virtual central ion {of radius r1) and counter iom
at rs.
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neutral unit as seen by adjacent units.

The unit partition function for a 2-1 electrolyte is

3/2 3/2 3/2

2r{my + 2m_)kT 2rmym_kT 2n(my + m_)m_kT
aq - —_— C (11)
N 2 2 2

h (my + m_)h (my+2m_)h
center of mass internal trans- internal transla-
translation lation, imner ticn, ocuter icn
ion pair pair

with the unit configuration integral being given by
@ @®
-5 (r)) - yvi 4 (r,)-y,v.|4rrodr,  (i2)
C =V exp Bu r Yl 1 Y erf Bu r, 'YZVZ] wr, dr,
a rl

where 'x?f (given by Equation 9) is the free volume term associated with

the contribution from the center of mass term, and

=
i 1/ 2 (13)

£ 3 3
vl-vl-b-41r(r1-a )/ 3 (14)
T]=av-b (15)

1
v, =1/7; (16)
i \
vy E Vy om vy = 417(1'2 - ry )/3 {17)
_f _

v, =%(l-a) (18)

It is assumed that the average free volume of an inner ion pair ig some
iraction of the average volume availabie per unit, Since the fraciivnal

value at finite concentrations is as yet unknown, a is taken 2s a second
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fitting parameter., A more rigorous treatment would attempt to express
a as a function of concentration., Assuming a to be constant with concen-
tration and using it as a fitting parameter gives a value, resulting from
fitting experimental data, which is some type of average for this param-
eter over the concentration range which can be reproduced.
Using the definition employed for symmetrical electrolytes to

give a simplified expression for the unit partition function, the partition

function for a 2-1 electrolyte (Equation 11) becomes

q/N = z;lz/A9 (19)

Evaluation of the Confi&;ration Integral

The pair configuration integrals, Equations 6 and 12, cannot
be solved in closed form, but can be integrated numerically, The follow-
ing dimensionless variables are adopted for transformation of the pair

configurati'on integral for symmetrical electrolytes:

x=v/vi= 4171'3'/3'\'7f (20)
$ = b/"—f (21)
B = zlzzez*!*l/’/r)kra (22)

Sukstitutior: into Equation 6 yields
[>+]
2 af 1/3 _f2
£ = 5 eéj eXp[(B/x / ) - x]dx = (vf) e®1 {23)
®

The function in Equation 23 is transformed into a function of
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x1/3, which is more directly related to r, the distance of separation of

pair members, to give

r - (vf)23e4’fexp[(B/x1/3)-x]x2/3d(x1/3) (24)

¢1/3

1/3
The integrand in Equation £4 is plotted vs x in Figure 2 for a series

of concentrations at a constant value of a, the ion size parameter. The
lecwest concentration considered corresponds approxima;tely to the lower
limit of the experimentally accessible region, i.e., 0,001M. In Figure
2, the lower limit of integration (Ql/3) falls at separation distances
above the location of the minimum in the function. Since the area under
the curve between the lower limit and some value of x1/3 is proportional
to the probability of finding the counter ion at a distance x1/3 (propor-
tional to r) from the central ion, the plot for the lowest concentration in
Figure 2 shows that there is a very small probability of the counter ion

being located close to the central ion for an electrolyte displaying this

e 42
L]

a value ponds to the description of a strong

eiectrolyte, i.e., combplete dissociation. As the concentration increzasesg,
the minimum in the curve moves upward and gradually blends in with

the maximum in the function corresponding to the increased probability

of finding the counter ion close to the central ion,

w
e
o
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ct
ct
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b4
5
b
pa
0
@
+t
[¢]

¥For a corsiant low concentration, the functic

2 remains essentially unaffected as the a value decreases. The only

. . . e o P /3
effect is that the lower limit of integratiorn ($ / ) moves to lower x



213 exp [(B/x1/3)-x]

1.0

0.5

N
N
Z
Z

0.5 /3 1.0 1.5
1/

Family of Curves, x2/3 exp [(B/xl/3)-x] ve., X 3 for Varicus
Values of the Concerntration (M1/3), a=3.5A. O: the lower
limit of the functior for the particular a value and concentra-
tion.
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values and, at sufficiently low a values, moves below the minimum into
the region where the valize of the function is rapidly increasing. There-
fore, an electrolyte requiring a low a value for a fit of the calculated
behavior to solution data, would be an electrolyte which has been termed

classically as intermediate or weak, depending on the a value required.

172
L)

The increased area at low x values for such types would correspond
to an increased probability of the existence of ion-pairs in the sense of
incomplete dissociation, All electrolyte types could be incorporated into
the proposed approach; however, the ion size parameter would be re-
lated to actual ion, or solvated ion, radii only in the case of strong elec-
trolytes where pair members are clearly separated. There is a smooth
transition from ''strong' to ''weak' electrolytes.

The limiting behavior of Equation 23 can be determined by ex-

panding the first exponential

@®
r 2 of - 1719 2/3 1 =X
£ =(v9 e‘Pj [1+ B/ 2+ (B%/2x" ) + oo le Tdx (25)
¢
which gives, considering each term as ¢ -0,
62 L2
ENTTY =14 BDZ/3)+ B {1/3¥/2+ ... {26)

where the second and third terms on the right are given by the appro-
priate gamma funciion,
The unit configuration integral for a 2-1 electrolyte, Equation

12, is transformed using the dimensionless variables

,—£
y=wivy

—~
tv
=3



_f
2.1/3
B, = zjz,e ¢1 /DkTa (29)
_ /--'f (30)
zZ = VZ VZ
®_=-»p /'x?f (31)
2° %20V,
5. 1/3
B, = z),2,¢"®, /DkTr; (32)

where zy is the charge on the central ion, z; is the charge of a counter

ion and 2y, is the charge of the virtual central ion, These variables give

$12 vivi g jexp[(Bl/y”?’) -v]dv T'f.zei’zfexp [‘52/21/3’ " ‘”‘]d‘"‘ (33)
3 %

The limiting form of Equation 33 is obtained by expanding the first expon-

ential term in each integrand to yield, as M~ 0,

c r BZ n
12_ -1+ Br@3)+ —T0/3)+ . x
—f_f_% L 2 J
v Vlvz
r = 2 @
omZ4 B ~Zg4,
L1+ BZ r hd dz 2 Jre dz T o9 (34)
J 1/3 2 2/3 J
z
A A
with
A=a/(l -a) (35)

The limiting behavior for a 2-1 electrolyte is a function of the fraction
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of the average volume available per unit which is occupied, on the aver-
age, by an inner icn pair. The integrals appearing in the seceond term
of Equation 34 have been evaluated using a computer program given in
the Appendix,

The unit configuration integrals, Equations 24 and 33, are eval-
uated by numerical integration using a high-speed compuier. Equaiion

1/3 1/3 for the numerical inte-

33 ig transformed intc a function of y and z
gration, Because of the infinite upper limits, the integrations are per-
formed over subintervals (using Simpson's method) to a preselected
level of precision. The complete computer programs are listed in the

Appendix,



CHAPTER III

Activity Coefficients

The Helmholtz free energy is given by the statistical thermo-

dynamic expression
A=-RTInQ (36)
In the later development by Murphy and Weissenbock (28) using the con-
stant pressure ensemble, the partition function is related directly to
the Gibbs free energy. For a non-ideal solution, the chemical potential
of the solute is
{37)
where uo is the chemical potential of the standard state and ag the activity
ot the solute, Utilizing the good approximation that the Gibb's free en-
ergy can be replaced by the Helmholtz free energy for a solution, Equa-
tions 36 and 37 yield
-RT In (g/N) = u°+ yRT ln a,

where ay is the mean ionic activity of the solute (ag = a:yh ). Assuming
that the non-ideality displayed by an electrolyte solution arises soiely
from the coulomb interaction befween pair members comprising a

19
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C . . O
formula unit, and including all concentration independent terms in p -,

gives
l/yl;: = ();i/vi)v (38)
where
v Sy (39)
ai = M:Ey:i: (40)
Vi =1/M, = 1/WM=57/W (41)
1
W= (W vY-) v (42)

Using these relations with Equation 23, the activity coefficient

for symmetrical electrolytes is given by

-2
1/yi -1+ @) "% (43)

Combination of the limiting expression for the pair configuration integral
for symmetrical electrolytes (Equation 26) with Equation 43, gives the

limiting relation for the activity coefficient:
z2e2 [4TrNM-ll/3

DkT | 3000} PWNM] ) - .. (44)

2V J Il

0, 6697 (

1 = - 0.
Dy, 6771

--:
Kl

/Cl

The low concentration limiting slope depends only on the valence of the
ions and, considering only the leading term, the cube root of the coancer-

tration. In the limit, there is no dependence on specific characteristics

such as ion size. Conversicr to common logarithms (considering the
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log y, = - 0.286 M3 (45)

culated using Equation 43, is depicted in Figure 3. The limiting line
shows that electrolytes displaying an apparent negative deviation from
the limiting slope at low concentrations could be reproduced using appro-
priate a values. The a values giving the best reproductiion of experimen-
tal data for KC1 (30, 31), NaCl (32, 33) and HCL (34) are shown in Figure
4, 1In all three cases the experimental data are predicted to high concen-
trations for reasonable values cf a, and the theoretical limiting slope is
consgistent with the data at low concentrations. Although the expression
for the limiting slope for 1-1 electrolytes (Equation 45) contains only

the leading term, it describes these experimental data to relatively high
concentrations, Theoretical curves are fit to activity coefficient data
for HI (35), HBr and HNO, (36) in Figure 5; again, the experimental

data are described, at least to the region of the minimum, using rea-
sorable a values, as compared with the HCl results depicted in Figure

4. Tabulated data at round concentrations for LiCl, RbCl and CsCl

oncentration data for CsCl {37}, are fit with theoretical

Lamnl
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5
%
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Q
g
o

curves in Figure 6, For the rubidium and cesium chlorides, the a
values required for a calculated fit are in the reverse order =xpected
from their crystallegraphic radii. In addition, these are the only cases
encountered where the theoretical curve appropriate for the low concen-

iration data goes below the experimental data at the higher concentrations.
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These observations are more fully discussed in the following chapter,
but are consistent with the order obtained using extended forms of the
Debye-H{ickeI theory (4). Experimental data at round concentrations
for NaF and NaBr (36) and Nal (38) are compared with the best fit the-
oretical curves in Figure 7, The a values obtained for the sodium hal-
ides are in the order to be expected from the crystallographic radii.
Similarly compiled data for NaNO; and NH,C1 (36) and NaOH (39) are
shown in Figure 8. As in previous cases, the experimental activity
coefficient data are fit to relatively high concentrations. The isopiestic
data of Bower and Robinson (40) and Lindenbaum and Boyd (41) for tetra-
ethylammonium iodide have been converted to the molar scale using

the density data tabulated in Conway (39), and are shown with the best
fit theoretical curve in Figure 9. The very low activity coefficients
displayed by this salt can be well represented by the present approach,
but a very low a value is required.

Solutions of 2-2 electrolytes are described by the equations
utilized for the 1-1 case with the appropriate change of the valency
terms. The behavior of log vy vs Ml/3 for a series of a values is shown
in Figure 10; included is the limiting behavior considering only the Ml/3
term. F¥or this higher charge type of syimmmetrical electrolyte, terms
of higher order than the cube root play a significant role at very low
concentrations. Tabulated experimental data for ZnSO, (38, 42) are

compared with the best fit theoretical curve and the limiting lire
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1/3 term) for 2-2 electrolytes in Figure 11, The

(considering only the M
low concentration data fall on the theoretical curve corresponding to a
reasonable a value., Deviation of the data from the theoretical curve at
relatively low concentrations is not surprising because of the tendency

of this salt to hydrolyze (43)., The simple Ml/3 limiting line would re-
produce experimental data only at vanishingly small concentrations, In
the past few years a class of apparently well-behaved 2-2 electrolytes,
the salts of benezenedisulfonic acids, has been investigated and the iso-
piestic data of Brubaker and Rasmussen (44) for the Mn(II), Cu(Il) and
Zn(II) salts are compared with theoretical curves in Figure 12, Unfor-
tunately, no density data for these solutions could be found, so the

molal activity coefficients reported by these workers have been corrected
only by the solvent density for these plots. However, the low concentra-

tion data would be little affected by this correction error, and, as can

be seen in Figure 12, these points are well reproduced by the theoretical

curves., Once dengity data for these solutions become available, the a
values reguired for the best fits over 2 wider concentration range can be
determined.

For a 2-1 electrolyte, the mean ionic activity coefficient is

given by

0

o2 i ]2 )}

] \ 3 R . 3 [
..]L = _z_:E = '\7 £_
Y+ Vg M
* ! \ i [

utilizing Equation 33 and the relations given at the beginning of this
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section. The limiting relation for the activity coefficient of a 2-1 elec-
trolyte is obtained using the limiting expression {(Equation 34) for the
complete integral in Equation 46, Considering the cube root terms only,

and normalizing so that the activity coefficient equals unity at infinite

dilution, gives

-]

2 1/3 2 ra -
ny, = - 0.4514 2 z,e [MNM] /3 0.3333 2,2, [ A -z, (47)
DkTal/3 13000 DkT(1 - a)/3 1/3

A
Because a is used as a {fitting parameter in the present development, the

limiting slopes of log y, for various a values are given in Table I. The

TABLE I

THEORETICAL LIMITING VALUES FOR 2-1
ELECTROLYTES AS A FUNCTION OF a

-dlog y, Kx10"', cm

a — —
am!/3 mb/3

0.2 0.810 3.919

.3 . 722 3.495

$33 . 703 3. 403

.35 .691 3.347

.4 . 665 3.217

.5 . 626 3,032

integral appearing in the second term of Equation 47 is evaluated by ex-
pansion of the exponential and term-by-term integration. The program

employed for this integration is given in the Appendix.
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The behavior of Equation 46 for a series of a values, ata

specific value of a, is shown in Figure 13; for a series of a values at a
constant a value in Figure 14. The best fit theoretical curve for CaCl2
experimental data (32, 45) is shown in Figure 15. There is a unique
pair of a and a values (a = 4. 85A, a = 0, 33) which reproduces the experi-
mental activity coefficient data through the observed minimum., The
experimental data diverge from the theoretical limiting line (correspond-
ing to the best-fit value of a) at the lowest concentrations for which activ-
ity coefficient data are available. This divergence shows that terms of

higher order than M1/3

and specific characteristics of the electrolyte be-
come significant at much lower concentrations than is the case for 1-1
electrolytes.

Tabulated data for other alkaline earth chlorides have been
examined, but the experimental data for MgCl, and SrCl, do not extend
to sufficiently low concentrations to be considered. The tabulated data
for Ra_C]Z (36) are compared with the best-fit theoretical curve in Figure
16. The 2 and a values required to best reproduce these data are 0,27
Ag was the case with the alkali metal chlo-
rides, the a values obtained for these two alkaline earth chlorides are
ir: the opposite order of the sum of their univalent radii., The scarcity
of low concentraticn activity coefficient data for most of the alkaline

earth salts (with univalent anions) makes it impossible to complete any

sort of extensive comparison of theoretical predictions with experimental
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data.
The calculated activity coefficient data for the various electro-
lytes which have been examined are tabulated in round values of the cube

root of concentration (mole/liter) in the Appendix.

Conductance

In the limiting case, the average radius of the volume occupied
by a unit can be calculated by equating the limiting expression for the
activity coefficient to the coulombic energy. The average reciprocal
radius (K} can be determined from

2

vkT lny, = - |z;2,] e"K/D (48)
using the appropriate limiting expression for In y,. The K obtained in
this manner can be related to the corresponding average reciprocal
radius of the ion atmosphere (K*) arising from the Debye-Huckel treat-
ment. Having determined this relationship, the Onsager equation for
limiting conductance can be used to compare theoretical limiting lines
from the present treatment with experimental conductance data.

The limiting expression for the rational activity coefficient, as
given by the Debye-Huckel approach, is

s

2
In f, = lmza|e K (49)
2DkT 1+ K'a

At low concentrations yy = £y and K a<<l, therefore, comparison of
Equations 48 and 49 yields

K*/K = 2/v (50)
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Using reliable values for the dielectric constant (46) and vis-
o
cosity (47) of water at 25 C, the Onsager equation for limiting conduc-

tance becomes

- 1/2
A =Ao - {7.1356 x 10 8 ,zlzzu:q/(l+ q / )]Ao

+2.7634 % 107° (2| + [2,)IK /3 (51)

where
lzlzzl

% (g ¥ [25]) (zp [t + f2y]t5)

o

5 are the limiting transference numbers of the respective

1/

ions, In the case of symmetrical electrolytes q/(1+ g

and t(; and t

2) = 0,2929, For

1-1 electrolytes, Equation 51 becomes
- -6 *
A =A% - (2.0900 x 1075A° + 5,5268 x 10"°)K /3 (52)

Using Equations 45 and 48, the value of K for 1-1 electrolytes is given

by
- 3
K, em . 1.8435 x 107 Mt/ (53)
The limiting conduciance, as obtained from the Cnsager eguation using

th experimen-

tal data for HC1 (48) in Figure 17; the relation giving the best fit to the

experimental data is
1/3

. _ n a0 2 (54)
N 4Jl UV = 07,9 4iVL \.14./
HC1 :
Included in Figure 17 is the limiting conductance curve obtained using

[B]
the Debye-Huckel treatment. The present approach gives the better
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approximation of the experimental conductance data over a wider concen-~
tration range.
For 2-1 electrolytes the limiting expression for ln y, is depen-

dent on a, therefore, K depends on the value of this parameter. In

2-1
order to compare the limiting conductance predicted from the present
approach to low concentration data, one can either use the vaiue of a ob-
tained from the best fit to activity coefficient data, or, a can be deter-
mined by fitting the conductance data, The best fit to the low concentra-
tion conductance data for CaCl, {49) is obtained with a = 0,5 (the cor-

responding value of K is given in Table I). For 2-1 electrolytes the On-

sager equation for limiting conductance

A= Ao - {1.2283 x10-8A°+ 2.7634x10-6)K* (55)
becomes, for CaCl, (with the K value for a = 0, 5),
= 137.6 - 90,0 m/3 (56)

ACaCIZ

This relation is compared with the limiting equation from the Debye-

1t .
Hiuckel treatment and the low concertration conductarce data for CaCl,

in Figure 18. Using the K value corresponding to the a which gave the
best fit to Call, activity coefficient data gives
1/3
=138,0 - 101, 1 M (a = 0,33) (57)

Acaci,
The two limiting conductance expressions, Equations 56 and 57, are
compared with the Debye-H'L{ckel limiting curve and the experimental

Aata 1 o
cata in =
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Heat of Dilution

At present only the interpretation of low concentration limiting
cases can be considered. The partial molar enthalpy of the electrolyte
is given by

L, = -yRT%(d1ny,/3T) (58)
where R is the gas constant, From the limiting expression for ln Vyr
Equation 58 becomes

L, = - RT?{(31nV/31nT)/3 + (31nD/3InT) + 1} (] 2,2, | e’/ DKT) (59)
The relative apparent molar enthalpy, &; , is more directly comparable
with experimental data since it differs from the integral heat of dilution

only by a constant, 'I’L can be obtained from _I.-JZ by the relation
M
2y = wmfTam= 3/ L, (60)
o

Use of the limiting expression for K and Equations 59 and 60 yields the

_ U ¥
(PL, caifmole = 1Y8,5 1 {ol)
Values for ine ierms inside ihe brackeis in Equation 55 weie obtaiced
from Harned and Owen {50). The theoretical line closely matches the
limiting slope of the experimental data for NaCl (51), Figure 20, and

approximates the data over a wide concentration range.

The relative apparent molar enthalpy for a 2-1 electrolyte is,

2 b o~ = 0B
: L W = Ve oy

3 1
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The theoretical limiting behavior is compared with experimental hezt
of dilution data for CaCl, (52} in Figure 20. The theoretical line repro-
duces the experimental data at the lower concentrations. Because the
experimental data at the lowest concentrations are too limited to distin-
guish between a values, only the value giving the best fit to low concen-

tration conductance data is considered.



CHAPTER IV

DISCUSSION OF RESULTS

Activity Coefficients

For the numerous electrolytes examined in the preceding
chapter, the theory discussed in Chapter II reproduces the experimental
data to relatively high concentrations and predicts the correct behavior
in the higher concentration region. A summary of the a values required
to fit the experimental data is given in Table II; included are values ob-
tained using modified forms of the Debya-H{::ckel treatment. One method
involves the inclusion of terms of higher order in concentration than
MI/2 (53); the other considers hydration number asv an additional param-
eter (18, 54). Table II also contains the sums of the various univalent
radii as calculated from crystallographic data by Pauling (55), ard the
more recent experimental data of Gourary and Adrian (56).

Comparison of the a-values for the strong acids obtained from
the present approach with those from extended forms of the Debye-
Huckel theory shows both rank the acids in the same order of the ion
size parameter. In addition, the theory predicts the three halogen ac:ds
to be closer in size than is predicted by other approaches, i.e., varicus

49
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TABLE II

JON SIZE PARAMETER VALUES REQUIRED TO FIT
EXPERIMENTAL ACTIVITY COEFFICIENT DATA

1-1 Electrolytes, 25°

a value, angstroms

This Debye-Huckel r + T
Electrolyte Theory Sand R R and HP Pauling® G and A

d

HNO3 4,33
HCl 4,80 4, 47 4,3
HBr 5.23 5.18
HI 5. 58 5.69 5.5
LiCl 4.62 4,32 4.25 2.4l 2.58
NaCl 3.67 3.97 4,20 2.76 2,81
KC1 3,23 3.63 3.85 3.14 3.13
RbCl 3.10 3.49 3.2 3.29 3.27
CsCl 2.80 2.5 3. 46 3.50
Na 2.59 2.31 2,33
NaCl 3.67 3.97 4.2 2.76 2.81
NaBr 4.00 4,24 4.2 2.91 2.97
Nal 4. 47 4. 47 4,2 3.13 3.22
NaOH 3.89

-~ NI 2 K2
NaNQC;y 2,52
N:_q-:bl 3=2"—’ 3 29
(C2H5)4NI 0.75

@Extended form considering ion hydration, Stokes and Robincor (54).
bExtended form using higher order terms, Robinsor and Harzed (53).
“Tabulated univalent radii of Pauling (55).

dExperimental univalent radii of Gourary and Adrian (56).
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forms of the Debye-Huckel treatment. Although the differences between

=t

the hzlide iong iz fhese acids, as determined by the prese
larger than those valculated using Pauling's (univalent) radii, the a value
differences obtained from the theory are closer to the univalent radii dif-
ferences than those obtained from the extended forms of the Debye-Hﬁckel
equation., For the alkali metal chlorides, both general approaches order
the salts in the opposite direction expected from their univalent radii,
This can be explained by considering hydration to occur in the case of
the smaller cations, lithium and sodium, while, for the largest catiouns,
rubidium and cesium, their large area and small charge could allow
interpenetration on contact leading to an a value smaller than the sum
of their respective univalent radii. There is also the possibility that
the rubidium and cesium chlorides might be associated to a very slight
extent (53). The a value obtained for potassium chloride is quite close
to the sum of the univalent radii,

Among the sodium halides, Table II, the crder of the a vilues
is as would be expected from the corresponding ucivalent radii. The
value of the ion size parameter for sodium hydroxide is slightly larger
fhan the a value for sodium chloride. This suggests that the hydroxyl
icn cannot be extenzively hydrated or entrapped in any water struciure
thizt might be present; this follows from estimations of icnic: hydration

discussed in later paragraphs, The relatively low a values obiained fox
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association in solution. In the case of sodium nitrate, the small a value
might result from a significant number of close approaches of the planar
nitrate ion in a specific orientation where the plane of the ion is more
or less perpendicular to the cation-nitrogen line of centers.

The isopiestic activity coefficient data for ammonium chloride
are well represented by the theory and the a value obtained is quite close
to the sum of the univalent radii, Table II. The low concentration data
for this salt, as determined by freezing point depression measurements
(57), deviate from the Debye-Huckel limiting law in the negative direc-
tion. However, Frank (58) has shown that these data are linear in the
cube root of concentration. The activity coefficient data for tetraethyl-
ammonium iodide also deviate in the negative direction from the Debye-
Huckel limiting law,but can be reproduced with the present theory using
a low value of the ion size parameter, The very low a value required,

Table II, suggests that a significant amount of association is occurring;

1
c+

Sobe)
0o

o+
i

h

Ser
Aamas

being formed in such solutions. This explanation would be consistent

The low a value determined for tetraethylammonium iodide is consistent
with the values found for several quaternary halides by Evans and Kay
{60) using precise conductance data and an extended form of the Fucss-

Onsager conductance equation.

it is of particular interest to note that the a value obtained for
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potassium chloride using the theory is quite close to the sum of fhe uni-
valent radii. This suggests that the individual ions are essentially unhy-
drated; therefore, their individual radii could be used to estimate the de-
gree of hydration of other electrolytes containing one of these ions. How-
ever, the individual univalent radii of K' and C17 as determined by Paul-
ing do not appear to be consistent with limiting transference number data
(38), assuming that both ions are essentially unhydrated. The limiting
transference number data have been used, in conjunction with the a value
determined by fitting activity coefficient data with the preseht theory, to
determine the ionic radii. These results have been compared with the
radii calculated from Stokes law using the limiting ionic mobilities of K
and C1-. However, Stokes law

u=1/6mpr (63)
where u is the ionic mobility and 7 the viscosity of the solvent, was de-

rived for the motion of a sphere through a continuous medium. This is

a solvent such

f the mediurm ig not confinuous, ihe constant in the denomi-
naior of Equation 63 is something less than 67 but its exact value is un-
certain., In view of this complication, the results obtained using the ion
size parameter are compared with results calculated using two different

factors in the denominator of Equation 63. The univalent radii of Pauling

and the more recent experimental determinations of Gourary and Adrian

are irncluded with the above results in Table III,
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TABLE III

COMPARISON OF ION RADII, KCl1

¥
Trom Stokes Law Univalent Radii
ransport
Data 6w 4 Pauling® G and A€
Radius of K', A 1. 65 1.25 1,88 1.33 1,49
Radius of C1I—, A 1. 58 1.21 1.81 1,81 1. 64

%Calculated using limiting transference numbers and a = 3. 23A,
Tabulated univalent radii of Pauling (55).
CExperimental data of Gourary and Adrian (56).
The results obtained using the ion size parameter value for KCl,
as determined by the theory, with the limiting transference numbers,
agree quite well with the univalent radii determined by Gourary and Adriar.

The results are also consistent with a form of Stokes law containing a

somewhat reduced value for the numerical constant in the denominator.

The chloride ion radius, as determined from transport data and
the ion size parameter, can be used to estimate the degree of hydration
of other chioride-coniaining elecirolyies, remembering the underlying

assumption that the chloride ion is essentially unhydrated. Two specific

examples have been calculated, sodium chloride and hydrochloric acid.
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In calculating the hydration number of the sodium ion, it was assumed
that its unhydrated radius was in the same proportion to its univalent
radius (Pauling) as the ratio of the calculated radius of the potassium
ion to its univalent radius, Table III. Pauling's radii were used in these
calculations because of the more extensive tabulations which are avail-
able., Once the volume of the solvation shell is calculated, one must
decide which value for the volume of a water molecule is to be adopted.
Stokes and Robinson (54) and Glueckauf (18) used the value of 30 A’ cor-
responding to the apparent volume occupied by each molecﬁle in one
mole of water. However, if one assumes a solvation sheath with a sig-
nificant time of occupancy by specific molecules, then the value of 11, SA3
adopted by Bernal and Fowler (61) appears to be the more appropriate,
This volume corresponds to the actual volume of the water molecule as
approximated from structure data. Upon the adoption of a value for the
volume of a water molecule, the calculations are straightforward and
lead to the results compiled in Table IV; included are the sodium ion
radius and extent of hydration estimated using the limiting transference
numbers of NaCl {38) in conjunction with the chloride ion radius deter-
mined from the potassium chloride data, Table III,

As regards the Na+ data in Table IV, the bare ion radius is con-
sistent with the results of Gourary and Adrian, and the apparent radius
compares well with the value obtained using the limiting transference

numbers of NaCl with the chloride ion radius determined from the KCl
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TABLE IV

CALCULATION OF RADIUS AND EXTENT OF
HYDRATION OF Na' and H'

Radius, angstroms

From Ion Size Transport No. Hydration

Parameter (ISP) Univalent Number
and re)- from

Ion Bare Apparent KCl data (TN) Pauling® Gand A” ISP TN

Na 1.18 2.09 2,37 0.95 1.17 2,8 4.2

H  .© 3,22 d - - 12 .

2Tabulated univalent radii of Pauling (55).

byalues of Gourary and Adrian (56).

CAssumed the bare proton to be of insignificant size.

dBecause of unusual transport mechanism of the proton, cannot use

limiting transference numbers to estimate size.

data (Table II, first column). The hydration numbers vary according to
the method of calculating the radius (apparent) of the sodium ion but are
comparable to the value obtained by Glueckauf (18) for the hydration
number of the molecule, i.e., 3.60. However, it must be remembered
that Glueckauf did not assume that the chloride ion is unhydrated, and,
the voelume of the water molecule which he adopted for his calculations
is much different than the value used in these determinations. Both the
bare ion radius and the hydration number obtained using the ion size

parameter from this theory are reasonable compared with the experimen-

tal univalent radius and various hydration numbers which have been re-
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The hydration number for the proton in solution (Table IV) is a
maximum value with no consideration of the packing of water molecules
about the bare proton. It is of interest to note that the volume corre-
sponding to the apparent radius of the proton (140A3) approximates the
volume occupied by a regular pentagonal dodecahedron (161A3) with an
edge length of 2, 76A, the O-H «++0O bond distance in water, with no voi-
ume corrections for the atoms comprising the framework. The dodec-
ahedral structure has been found for the crystalline clathrate compound
chlorine hydrate (63). The postulated form of the proton in water, H904+,
might either be contained in such a clathrate structure or be the primary
fragment of such a structure. The repeated forming and reforming of
the structure to various degrees of perfection could account for the minor
difference between the two volumes, i.e.,, the apparent volume of the
proton obtained by fitting activity coefficient data with the theory and
the volume of the regular pentagonal dodecahedron. Of course, there
is always the possibility that a somewhat different polyhedron is the pri-
mary structure.

The same calculations could be anplied to the other electrolytes
containing the appropriate ions in order to estimate the extent of hydra-
tion. However, in the absence of good hydration number data for com-
parison, these calculations are at present superfluous,

The values of the ion size parameter required by the thecry to

fit experimental activity coefficient data for several 2-2 electrolytes are
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summarized in Table V; included are a values obtained by other workers

TABLE V

ION SIZE PARAMETER VALUES REQUIRED TO FIT
EXPERIMENTAL ACTIVITY COEFFICIENT DATA

2-2 Electrolytes, 25°

pass s ———————————————

a value, angstroms

This Debye-Huckel ry ¥ r_,
Electrolyte Theory Modifications Pauling
ZnSO4 3.30 3. 64b 3. 83 (max)
MnBDs? 6.1 - 5.71¢ -
zZnBDS? 6.0 5, 22°€ -
CuBDs? 5.8 4.97°¢ -

a .
BDS: m-benzenedisulfonate

bValue obtained by Cowperthwaite and LaMer (64).

€Values obtained by Brubaker and Rasmussen (44).

- - L. -~ - -—— - "-" - - “ A - s s "
using variations of the Debye-Huckel approach. At low conceniraiions;
ithe data for zinc suliate are reproduced uy the
a value, which is somewhat lower than the value determined by Cowper-

"
thwaite and LaMer using a form of the Debye-Huckel equation. Both a
values determined by fitting activity coefficient data are lower than the

maximum a value for zinc sulfate calculated using Pauling's univalent

a avrnoarirmantal a
e experimential c2 sn

at relatively low concentrations, but this salt is known to hydrolyze (42).
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The m-benzenedisulfonates appear to be very well-behaved 2-2 electro-
lytes which could be readily fit by the theory. However, the lack of ac-
curate density data precludes fitting into the high concentration region
at the present time, The a values obtained by the theory, considering
only the low concentration data, are of comparable size with those deter-
mined by Brubaker and Rasmussen using an extended form of the Debye-
Huckel equation. The present theory gives somewhat higher values of
the ion size parameter and the range of values is less for the various
disulfonates than reported by Brubaker and Rasmussen,

The a values for two 2-1 electrolytes obtained with this theory
are compared with the results of other workers, using modified forms
of the Debye-H{ickel equation, and with the sum of their univalent radii,
in Table VI, The theory ranks the ion size parameters of the two alka-
line earth chlorides in the same order as the two forms of the Debye-
Huckel approach, and, as was the case for the alkali metal chlorides,
in the opporite order expected from the univalent radii. In both cases,

the theory gives much larger a2 values than the sum of the univalent radii,

Al A L]
thus ghowin

g the large extent of hydration of these small, doubly-charged
cations. The span of a values obtained from the theory is slightly greater
than the range displayed by the Debye-Huckel modification considering

hydration, and somewhat smaller than the range regulting from the modi-

fication including higher order terms. The a values required for these

fits, Table VI, vary according to the electrolyte, and increase with the
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TABLE VI

ION SIZE PARAMETER VALUES REQUIRED TO FIT
EXPERIMENTAL ACTIVITY COEFFICIENT DATA

2-1 Electrolytes, 25°

a value, angstroms

™ _1 _ 1'7'“,1__1
Uepye-fiuCKes

This

r+ + Tr_,

Electrolyte Theory Sand R* R and HP Pauling®
CaCl, 4.85 (0,33)d 4,73 5.2 2. 80
BaGl, 4.26 (0.27)4 4.45 4.1 3.16

2Extended form considering ion hydration, Stokes and Robinson (54),
bExtended form using higher order terms, Robinson and Harned (53).
€Tabulated univalent radii of Pauling (55).
dThe a value required for the best fit to experimental data.
a value. This may or may not be significant because there are insuffi-
cient low concentration data to give an unequivocal fit to a particular
value of a. With presently available data, a can easily vary by as much

as 0,02, A shortage of low concentration data prevents examination of

most 2-1 electrolytes.

Conductance

Using the limiting form of the theoretical equation for 1-1 elec-

trolytes, in combination with the Onsager equation for limiting conduc-

(Y]
-
D
Yy
-+
{nd
o]
3

tance; regults in g a good anproximafion of the experi-

mental conductance data for HCl over a wide concentration range. At
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the lowest concentrations, the experimental data appear to diverge from
the theoretical limiting conductance in the direction of the Debye-Hﬁckel
prediction. The low concentration data are insufficient in number to
definitely decide whether or not this divergence is real. In the case of
2-1 electrolytes, it is found that the low concentration data are best
represented {for CaCl,) by an a value of 0.5, while the activity coeffi-
cient data require a value of 0.33; the lower value also better approxi-
mates the conductance data over a wider concentration range. A value
of 0, 5 would be expected as the concentration approaches zero for then
each pair would occupy one half of the unit volume. The lower value
found for activity coefficient data is a result of fitting at higher concen-
trations, Being restricted to consideration of the limiting conductance

at the present stage of development, only the two electrolytes have been

examined.

Heat of Dilution

Only the limiting cases can be considered, but the heat of dilu-
tion data for sodium chloride are well approximated by the theory over
a relatively wide concentration range. The lowest concentration data
for calcium chloride are fit by the theory using an a value of 0. 5. There

are insufficient data to decide between a values.

General Considerations

In all cases, particularly for symmetrical electrolytes wheie
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extensive data are available, the theory reproduces the data over a wide
concentration range; the low concentration data are also generally well-
represented. It must be remembered that, for symmetrical electrolytes,
the theoretical equations contain a single adjustable parameter. How-
ever, there are some indications, considering both conductance and
activity coefficient data, that the data at the lowest concentrations are
deviating from the theoretical limiting line in the direction of the Debye-

1/3 plot). Unfortunately, data at very low

Huckel limiting curve (on an M
concentrations are not only scarce but the most imprecise, thus making

a definite conclusion difficult. However, this possible deviation from
linearity in the cube root of concentration in the direction of the Debye-
Huckel square-root-of-concentration dependence at very low concentra-
tions, would be consistent with the speculations of Frank and Thompson
(24) and Frank (58). These investigators suggested that the theory of
Debye and Huckel might transform into an Ml/3 dependence at finite con-
centrations. Their calculations showed that the Debye-Hl'J'ckel assump-
tions and approximations are valid only at concentrations below 0, 001M

)

or 1-1 elecirolytes {at still lower concentrations for higher charge types).

1=

This transition from a square-root- to a cube-root-of-concentration de-
pendence might well correspond to the concentration where the two the-
cretical limiting curves ceincide (Fi

interesting speculation, its confirmation awaits definitive low concentra-

tion data.



CHAPTER V

By considering an electrolyte solution to be 2 system of chemi-
cal formula units whose members can be paired in a stepwise fashion to
give an electrically neutral unit (as seen by neighboring units), a modi-
fied form of the Maxwell-Boltzmann equation is obtained which can be
used to calculate solution properties. The theory predicts a linearity in
the cube root of concentration for solution properties, e.g., the activity
coefficient of the solute, at low concentrations.

Experimental activity coefficient data for a large number of
electrolytes are reproduced by the theory to high concentrations {typi-
cally above 1 molar). For symmetrical electrolytes, a singie param-
eter (a, the ion size parameter) is sufficient to describe solution behav-
ior over an extensive concentration range. Two parameters are required
for the description of the solution properties of 2-1 electrolytes, the ion
size parameter and a, the fraction of the average unit volume occupied
by the pair formed from the doubly-charged central ion and the inner-

most counter ion, In the case of weli-behaved elecirolyies, the ion size

o

parameter appears to be physically significant and has been used to

63
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estimate the extent of hydration of several ions.

The limiting expression for the appropriate unit configuration
integral can be used to predict limiting conductance and heat of dilution
data. These data are approximated to relatively high concentrations in
the case of 1 -1 electrolytes.

The theory, at its present siage of developmenti, could be ex-
tended by consideration of such effects as a change in ion size with in-
creasing concentration, the overlap of unit volumes at high concentra-
tions, and the change in dielectric constant of the solution with increas-
ing solute concentration. Derivation of an expression describing the
change in a with concentration would allow the elimination of the second
parameter in the fitting of 2-1 electrolyte data. At the present time,
without an expression relating a with concentration, it would be quite
difficult to consider higher charge types of electrolytes in view of the
large amounts of computer time that would be required. Of course, the
development of a computer program with much improved efficiency would
change the situation concerning the higher charge types.

Fitting available experimental data with theoretically calculated
curves has dramatically demonstrated the need for additional low con-
centration data of improved precision, and for experiments which will
determine such parameters as ion size and hydration with increased

surety.
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APPENDIX

COMPUTER PROGRAMS

All programs used in the course of this research were written
in a modified form of Algol 60 for use on the OSAGE computer of the
University of Oklahoma. Following are complete listings, and necesshry

documentation, for the three programs utilized.

Program 202;

Begin Comment Numerical evaluation of integral for 1l:1 electrolytes using

Simpson's Method;
Real A, PREC, DELTA, THETA, VOL, C13, VE, INTGRL, SIMPSON, VA,
PHI12, PHI213, FUNMULT, BETA, LOLIM, LOLIMSQ, LY16, MIN,

MAX, DELCON;

Real Array F [0:3];

Format 01 (J7, Fé, 4, '=A, R5, '=PREC', F5, 4, '=DELTA", F5, 4, '=MIN',
¥5,4,'=MAX', F5, 4, '=DELCON", 2(J1), 82, 'PHI 2!
S5, 'SIMPSON', S9, '12(2)', S5, 'LOG Y16, S3, 'C13+, 83, 'LOOPS,
J1),02{J1, S5, '"VA IS NEGATIVE, ‘C13=', F5, 2},

/N
07



L5

1L12:

03(J1, 2(F9. 6), R9. 8, F9. 6, F4, 2, 14);
READPT(DECIMAL, A);

I_f_A:O Then Goto L35;

READPT(PREC, DELTA, MIN, MAX, DEL.CON);
PRINT(01, A, PREC, DELTA, MIN, MAX, DEL.CON);
THETA < 7,135761/A;

VOL « 4, 1887902%A*A*A*1D-24;

For C13 «~ MIN Step DELCON Until MAX Do

VE « 1.65963D-21/(C13*C13%C13);

INTGRL ~ SIMPSON « 0, ;

VA - VE-VOL;

If VA 0. Then Begin PRINT(02, C13);
Goto L5 End;

PH12 ~ VOL/VA;

2 DIT1?2 & 222223222332323222 % -
J Y A b N 9 ot o od ok o A i d ot ot A ‘,

LOLIM « PHI213-DELTA;

N < 0; LOOPS « 0;

Comment Calculatiorn of Function values at three X values;

:15:

If N<3 Ther. Begin N« N+1: T.OLLTM « LOLIM + DELTA;

= - - T

Goto L20 End;
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Else Goto L25;
LOLIMSQ - LOLIM * LOLIM;
F[N]~LOLIMSQ*(EXP(BETA/LOLIM)-1. )*1. /(EXP(LOLIMSQ*
LOLIM));

Goto Li15;

Comment Integration of Subinterval by Simpsons Method;

L.25:

SIMPSON ~ (DELTA/3. )x(F [1]+ 4.*F [2]+ F[31)
If SIMPSON <PREC Then Goto L30

Else INTGRL «~ INTGRL + SIMPSON;
FQO]-FB]
N «1;
LOOPS ~ LOOPS +1;

Goto L15;

L30: LY16 « -, 5%(LOG(FUNMULT+3. #(EXP)PHI2))*FUNMUL T*INTGRL));

PRINT(03, PHI2, PHI213, SIMPSON, INTGRL, LY16, C13, LOOPS)End

Comment Completion of evaluatici. for a given A value over the complete

L35:

Input:

Er.d Program 202;

he ion size para

y [ 243

1
3
M
+
D
=
=
13
Q
i3
[¢)}
[V}
o+
-
§
53}

PREC, the desired level of precision in the integratiorn

DELTA, the interval size used in the integration
/

MIN  $he cvmwiio s nlue af M1

AV¥ddn ¥y Vil Sotdd badefy Vel Ul 4va
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1/3

MAX, the uppermost M value to be calculated

DELCON, the Ml'/3 increment in advarncing irom MIN to MAX
Program 202 calculates the integrzal by evaluating subintervals of three
points each. The results of the integration are used inside the program
to calculate -log y, at the various concentrations. The program can be
used for 2-2 electrolytes by simply multiplying the progrzm variable
BETA by 4. Calculation stopped by MAX or when the free volume term,
VA, <0,

The urit configuration integral for 2-1 electrolytes is evaluated
by the following program:

Program 207,
Begin Comment Numerical evaluation of double integral for 2-1 electrolytes.
Real VOLMOL, PRETHET, Al, A2, PRECOUT, PRECIN, DELW, DELZ, DEL,

INCON, DEL.CON, FINCON, CONCOR, PIMUL, CRPIMUL, WVOL,

Cl3, TIME, VBAR, VBARFCM, VBARF], ATOT, VBARF2, XPHI,

WPHI, WMUL, Bl, W, W2, Rl, BTOT, RIVAR, R1A2, YPHI, ZPHI, B2

Z,22,D, ZMUL, AVOL1, SUMW, SUMZ, DTOT, SUMZMAX, ZPHIOLD,

LOGY213;

Integer DATE, PROGRAM, M, STEPS, N, J;

Real Array PREFUNW/[0:3], FUNZ[0: 3], FUNW[O0:3];

Format 0L(J7, F6. 4, ‘'=Al', Fé6. 4, =A2', R5, '=PRECOUT', R5, '=PRECIN’,
¥5.4, =DELW', 2(J1), F5. 4, '=DELZ',F7. 6, '=INCON',F7, §,

'=DELCON’, F7, 6, :=FINCON:, F5. 4, '=AVOL1:, 2(J1), Fé. 4,
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'=CONCOR!', 16, '=DATE?, 16, '=PROGRAM NO. ', 2(J1), 7, 'X-PHI',
S7, 'OUT-INT!, S6, 'LOGY213', S7, 'C1/3', S9, 'TIME!, S5, 'STEPS',
2(J1)),
02(S5, 'VBARF1 IS NEGATIVE, C1/3=', F17.5,J1),
03(Ré, S1, R8, S2, R8, F8. 6, S5, F5, 3, 52, 16, J1),

04(S5, 'VBARF2 IS NEGATIVE, STEPS=', 16, J1);

Real Procedure SIMPSON (B, C, D, E);

Real B, C, D, E;
Begin SIMPSON «~(B/3, )*(C+ 4. *D+E);End;
PIMUL «~4,1887902047864;
VOLMOL - 1000, /6, 02252D23;
PRETHET + (4, 80298D-10+*4, 80298D-10)/(78. 54*1, 38054D-16%298, 16);
CRPIMUL ~ CUBRT(PIMUL);

LS5: READFT(AL);

PRINT{CI, Al, A2, PRECOUT, PRECIN, DELW, DELZ, INCON, DELCOY,
FINCON, AVOL], CONCOR, DATE, PROGRAM);
Al-Al¥l, D-8;

A2 - Al%l, D-8;
WVOL - PIMUL*AL*AL*AL;

Li2: For Cl3 ~ INCON Step DELCON Until FINCON Do



B egin

XPHI-WVOL/VBARFI;

WPHI- CUBRT(XPHI);

TIME «~ CLOCK;

VBAR ~ VOLMOL/C13%C13%C13);

ATOT « Al+ AZ;

VBARFCM +~ VBAR-PIMUL*(ATOT*ATOT*ATOT);
VBARF1 « VBAR*AVOL1-WVOL;

If VBARF1 < 0. Then Begin PRINT (02, C13);

Goto L5 End;

R1-CUBRT(VBAR*AVOL1)/CRPIMUL;
BTOT«Rl+ A2;

VBARF2- VBAR-PIMUL*(BTOT*BTOT*BTOT);
If VBARF2<0, Then Begin PRINT(04, C13);

Goto L5 End;

WMULe- 3 (EXP(XPHI))*(VBARFCM/VBAR)*(VBARF1/VBAR):

~ - < L -

Bl-{PRETHET/ALl)*WPHI*2, ;

L15: For M~M+l Stepl Until 3 Do Begin

W-W+DELW;
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STEPS-STEPS + 1;
W2~ W*W;
RIVAR -~ CUBRT(VBARF1)*W/CRPIMUL;
RIAZ2~RIVAR + A2;
YPHI ~ (PIMUL*R1A2*R1A2%R1A2)/VBARF2;
ZPHI+~ CUBRT(YPHI);
B2 ~-PRETHET*CRPIMUL/CUBRT(VBARF2);
PREFUNW [M]~ W2*EXP(B1/W)*EXP(-W2*W);
ZMUL « 3, *VBARF2/VBAR;
If J=0 Then Begin DEL -~ DELZ;N~ 0;
ZPHIOLD+ ZPHI;
Z-ZPHI-DEL;
SUMZ+0, ; Goto L25 End
Elge DEL - (ZPHI-ZPHIOLD)/2. ;
Z +~ ZPHIOLD-DEL;

ZPHIOLD+~ ZPHI;

L—‘
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or Ne~ N+1 Step
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FUNZ[N]+~ Z2*EXP(B2/Z)*EXP(-Z2*Z) End;

D« SIMPSON(DEL, FUNZ[1]

2ty

FUNZ[2], FUNZ[3]);

DTOT-ZMUL*D;

If J=0 Then Begin If PRECIN<DTOT Then Begin




Else

L30:
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SUMZ < SUMZ+ DTOT;
FUNZ[1]-[3];
Ne1;

Goto L.25 End

SUMZMAX~SUMZ;J~1;N~ 0;Goto L30;

SUMZ< 0. Then Begin FUNZ[1]~FUNZ[3];
ZPHIOLD +~ ZPHI;

SUMZMAX+~SUMZ;

N~1; End

Else SUMZ ~0;

If 165. <YPHI Then PRINT (04, STEPS);
FUNW[M]-PREFUNW[M] * SUMZ * EXP(YPHI) End;
D~ SIMPSON(DELW, FUNW[1], FUNW[2], FUNW[3]);

DTOT -~ WMUL*D;

1f PRECOUT < DTOT Then Begin

SUMW~SUMW+DTOT,;
FUNW[1]~FUNW[3];

M~1;

LOGY213+~ -LOGISUMW*CONCOR)/3.;

TIME ~ {CLOCK-TIME)/1000. ;
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PRINT(03, XPHI, SUMW, LOGY213, C13, TIME, STEPS);
Eng;
Goto L5;
L.50; End Program 207;
Inputs:
Al, the ion size parameier for an inner ion pair, in angstroms
A2, the ion size parameter for an outer ion pair, in angstroms
(not used as fitting parameter, always taken as zero)
PRECOUT, preselected level of precision for integration of outer
function
PRECIN, preselected level of precision for integration of inner
function, PRECIN<PRECOUT
DELW, step size, outer function
DELZ, step size, inner function
s 1/3
INCON, initial M value to be calculated
1/3 |
DELCON, M increment
. 1/3
FINCON, the maximum value of M to be calculated
AVOLI, the value of the parameter a
CONCOR, the value of the normalization constant to give log y, ~

0 as Ml/3

- 0; CONCOR = 1/a(l-a)
DATE
PROGRAM, the program number

“In the following variable definitions, outer integral denotes the integral



78
involving y and inner integral denotes the integral involving z in Equa-
tion 33, respectively.

The integrands in Equation 33 were transformed into functions
ot yln and 21/3 before programming. The inner integral was evaluated
for each value of y1/3 and used to weight the value of f(y1/3) for each
point used to calculate the complete integral. The inner initegrai was
=valuated over the complete range of integration for the minimum value
of its lower limit and this value stored in the machine. For each subse-

i 2

3 . .
guent step of y“ , the integral between the new y”’ and the previous

o
v 3 wa s evaluated and this amount subtracted from the total value of the
inner integral, This procedure minimized the computer time required
sinc.e it nbviated repeated integration of the inner function over the entire
rang=, The calculations are stopped by having completed all desired
scmputations or by having a free volume term equal zero or go negative,

, . -1/3 .

The last program evaluates the integral containing z in Equa-

ticn 34 to determine the limiting behavior of £, , for various values of a.
ila

The program is based on the following derivation:

A

-] >4
;oo £ L -
| e “dz _ { e “dz | e %dz
J L3 j 173 j BVE
A 0 0
A
o r "‘n
.. I EN A a e o
r(a/3: Z(-l)j R dz
n=0
0
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33§ A=A
¥

o n.’}
0

A
(! f n{1/3).
1 2 az

=

. n .

= A=l (n#(2/3)
ni{n+2/5;

n=

Program 211;

Begin Comment Serica cvaliation of cecond énd third integrals zppearing

in the expansion of the inner integral in the 2-1 elactrolyias cusw,
Reoa! TAMMA, LOLIM, FRAC, PREC, TEST, CONST, STEP, N, SUM, PRETERM,
TERM, INT;
Formst 01{J7, T, Fb, 4, '=GAMMA", Fb, 4, '=1-N', RS, '=PREC!, 2{J1), 87

'LOLIM!', 87, ‘INT', 87, 'Iv', 2(J1}),

02(¥2, Rb, S1, R8, S10, F5, 0);

-
3

READPT(GAMMA):
.'_.1 GAMMA-0, Lﬁ(ll_ (_.'r_g)_t_o_ .05
READPT{I.OLIM, FRAC, PRE, TEST, CONST, STE),

PRINT{01, GAMMA, FRAC, PRE(C

L8  Ne0, SUM-O,,
PRETERM- LOLiME RAC
SUM- BUMS {5, CONSTAPRETERM;
TR

PRETERM - o, 'NPRETERMLOLIM,;

T I WNWINS
L A R R LD )



1.25:

20
OV

1f | TERM| < PREC Then Goto L15;

SUM+~SUM+ TERM;

Goto L9;

INT - GAMMA -SUM;

PRINT(02, LOLIM, INT, N);

Ii LOLIM<TEST Then Begin LOLIM+~LOLIM+STEP;

Goto L5;

End Program 211;

Goto L8 End;

Input: GAMMA, the value of the appropriate gamma function

involving a fractional exponent of z which is a multiple of -1/3 can be

calculated,

LOLIM, the lower limit of integration (A in preceding derivation)

FRAC, the complement of the exponent of Z in the integral to be

evaluated

PREC, preselected precision level for terminating series

CONST, numerator of the fraction corresponding to the appro-

priate gamma function, e

the incremental change in

o
" o

LOLIM if the integ

CONST-2.

AU AV Uas e

The program is written in such a manner that any integral

reve 1 T B v, IS SR T
ine resuits 10r tne Aintegrars 1nvouLviiig z

-1/3

A
atliv

{(for several values of the lower limit, A) are listed below.

i

_-2/3

ral
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Computer output for J[-E;ﬁ%—z- = INT:
A
1. 3541 = GAMMA , 6666 = 1-N .10000D-9 = PREC
LOLIM INT N
.20 . 87971924 8.
.22 . 85243837 8.
.24 . 82649725 8.
.26 . 80176742 8.
.28 . 77814169 8.
.30 . 75552925 8.
.32 . 73385216 9.
.34 . 71304276 9.
.36 . 69304176 9.
.38 . 67379678 9.
. 40 . 65526113 9.
. 42 . £3739299 9
.44 562015461 10
.46 . 60351178 10,
. 48 . 58743332 10,
.50 . 57189071 10,
.52 . 55685771 10,
.54 . 54231017 10,
.56 . 5282257¢ 10,

. 58 . blabEsbs 10,



LOLIM
. 60
.62
. 64
. 66
.68
.70
.72
.74
.76
.78
. 80
.82
-84

. 86

82
INT
. 50136440
. 48855021
. 47612414
. 46407037
. 45237404
.44102120
. 42999865
. 41929396
. 40889537
. 39879171
. 38897242
. 37942745
. 37014725
.36112273
. 35234522
. 34380647
. 33549857
. 32741398
. 31954548
.31188618

. 30442944

11,

11,

11,

11,

11,

11,

11.

11.

12,

12,

12,

12,

12,

12.

bt
[\]

12,

12,

12.

-
i~
.



Computer output for

2. 6789 = GAMMA
LOLIM
.20
.22
.24
.26
.28
.30
.32
.34

.36

. 46
. 48

.50

.3333 =1-N

INT
1.0074610
.96154992
.91919944
. 87993455
. 84337384
. 80920564
. 77717150
. 74705435
. 71866980

. 69185968

........

. 57719097
. 55747482
. 53865783
. 52068054
. 50348916

+ 48703479

N
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LOLIM INT N
. 60 . 47127290 11.
.62 . 45616276 11,
.64 . 44166702 11,
. 66 . 42775135 11.
.68 . 41438409 11.
.70 . 40153600 11.
.72 . 38917997 11,
.74 . 37729088 11.
.76 . 36584535 11.
.78 . 35482159 12.
.80 . 34419930 12.
.82 . 33395947 12,
.84 . 32408431 12.
.86 . 31455715 12.
.88 . 30536233 12.
.99 . 29648513 12,
.52 .28791168 12
.94 .27962893 12.
.96 .27162456 13.
.28 .26388691 13,
1. 00 . 25640498 13.

The rightmost column in the output listing denotes the number of terms

in the series required to reach ihe iisied ievel of precisioii.



TABLE A-I

CALCULATED ACTIVITY COEFFICIENT DATA,
1-1 ELECTROLYTES, 25°

——— —————— e — — —

-log y,, various a values, angstroms

Mi/3 0. 75 2.52 2.59 2.80 3.10 3,23 3,25 3,67
0.1 0. 0326 0.0295  0.0295 0.0294 0.0294 0.0294 0.0294 00293
.2 . 0748 .0603  .0602  .0600  .0597  .0594  .0595  .0591
.3 . 1275 .0916  .0914  .0907  .0898  .0893  .0893 0879
.4 .1885 L1225 .1220  .1206  .1186  .1177  .1176  .1147
.5 . 2536 L1523 .1514  .1490  .1455  .1440  .1438  .1387
6 .3193 .1803  .1791  .1753  .1700  .1676  .1672  .1594
7 .3832 .2065  .2047  .1993  .1916  .1882  .1877  .1762
.8 . 4442 .2304  .2280  .2207  .2103  .2056  .2049  .1888
.9 . 5017 2520  .2489  .2394  .2257  .2195  .2185  .1969
1.0 . 5557 2712 .2673  .2552  .2377  .2297  .2284  .1999
1.1 . 6063 .2879  .2831  .2680  .2461  .2358  .2342  .1972
1.2 . 6537 .3020 .2962  .2777  .2504  .2375  .2355  .1879
1.5 . 6981 .3134  .3065  .2839  .2505  .2343  .2317  .1706
1. 4 .7399 .3221  .3i38  .2865  .2457  .2255  .2222  .1435
1.5 . 7792 .3278  .3181  .2850  .2353  .2100  .2059  .1034
1.6 . 8163, .3304  .3189  .2790  .2183  .1864  .1813  .0451

Electrolyte (CZHS)ILNI NaNO3 NaF CsCl RbCl KCl NH,4C1 NaCl



TABLE A -I--(Continued)

GALCULATED ACTIVITY COEFFICIENT DATA,
1-1 ELECTROLYTES, 25°

S

-log y4, various a values, angstroms

M 3.89 4,00 4.33 4,47 4, 62 4,890 5.23 5,58
0.1 0.0293 0.0292 0.0292 0,0292 0.0291 0,9291 0.0290  0.0289
L2 . 0588 . 0587 . 0583 . 0581 . 0580 . 0577 . 0571 . 0566
.3 . 0872 . 0868 . 0856 . 0851 . 0846 . 0839 . 0821 . 0805
.4 L1132 .1124 . 1099 . 1088 L1076 . 1061 .1022 . 0988
.5 . 1360 . 1346 .1301 . 1281 . 1259 L1232 L1162 . 1099
Wb . 1550 . 1527 . 1456 . 1424 . 1388 . 1344 .1228 L1122
.7 . 1697 . 1664 . 1556 . 1508 . 1454 . 1386 . 1205 .1039
.8 1797 . 1749 . 1595 . 1525 . 1446 . 1346 .1075 . 0819
.9 . 1843 L1779 . 1563 . 1463 .1351 .1207 . 0806 . 0415
1,0 . 1830 . 1743 . 1446 . 1307 . 1149 . 0941 L0347 -, 02¢4
1.1 . 1748 . 1631 . 1225 .1030 . 0806 .0506 -, 040] -.1418
1,2 . 1582 . 1426 . 0867 . 0591 L0266 -.0182  -.1923  -.3668
1.3 L1312 .1102 .0317 -.0089 -,0581 -.1294 -, 4180

1.4 . 0904 L0616 -,0532  -,1172  -.1993  -.3315

1.5 . 0298 -.0110 -,1932 -,3128

1. 6 -. 0624 -.1242 -, 4808

Electrolyte  NaOH NaBr HNO, Nal LiCl HC1 HBr HI

98
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TABLE A-II

CALCULATED ACTIVITY COEFFICIENT DATA,
2-2 ELECTROLYTES, 25°

~-log Y4 various a values, angstroms

1/3

M 3.30 5.80 6. 00 6.10
0.1 0.1681 0.1328 0.1220 0.1317
.2 . 3937 . 2769 . 2736 0.2721
.3 . 5868 . 4011 . 3948 0.3919
.4 . 7401 . 5000 . 4906 0. 4860
.5 . 8634 . 5756 . 5627 0. 5565
.6 .9648 . 6303 . 6133 0. 6049
.7 1,0494 . 6649 v . 6426 0.6315
.8 1,)207 . 6781 . 6486 0.6334
.9 1.1810 . 6656 . 6247 0. 6029
1.0 1.2319 . 6163 . 5549 0. 5200
1.1 1.2743 . 5006 .3894 0.3150
1.2 1.3088 1944 -. 2244

1.3 1,3355

1.4 1.3542

1.5 1.3643

1.6 1.3645

Electrolyte ZnSOy CuBDS? ZnBDS? MnBDS?

2BDS: m-benzenedisulfonate
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TABLE A-III

~log Vg two a values, angstroms

4,26 4, 85

m!/3 (a = 0,27) (a = 0,33)
0. 05 0.0413 0.0379
.10 . 0829 . 0768
«15 . 1250 . 1157
.20 . 1660 .1534
«25 .2048 . 1889
.30 . 2410 .2218
.35 .2743 .2517
.40 . 3046 . 2786
.45 . 3319 . 3024
.50 . 3562 . 3231
« 55 . 3777 . 3406
.60 . 3961 . 3548
.65 .4116 . 3656
.70 . 4238 3724
.75 . 4326 3748
. 80 . 4375 .3718
.85 . 4375 . 3615
.90 . 4315 . 3407
.95 . 4167 . 3015
1. 00 . 3873 .2173
1. 05 . 3265

1.10 . 0764

Electrolyte B:a.Cl2 CaClZ




