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PREFACE 

Let R be the graded ring of representations on the symmetric 

groups. This thesis is concerned with finding an explicit construction 

of the operations in R known as i~ner plethysms. 

Chapter I provides a background for these results by giving a 

detailed account of the Hopf algebra structure of class functions on the 

symmetric groups. We have no claim to new results in this part, but 

rather to the direct approach to the theory. It is shown that the ring 

Cz of integer-valued class functions on the symmetric groups is 

isomorphic to a divided polynomial Hopf ring in infinite generators, 

while the algebra CF over the rationals or the complex field forms a 

Hopf polynomial algebra. 

Chapter II contains a proof of the self-duality of CF along with a 

proof of the CF-version of Newton 1 s formula. 

Chapter III contains a short proof of Frobenius 1 fundamental 

theorem by taking advantage of Newton 1 s formula. 

In Chapter IV we establish a CF-version of Liulevicius 1 

self-duality and show how it is related to Atiyah 1 s A1 • 

In Chapter V we show how Doubilet 1 s Forgotten symmetric functions 

may be found by using Atiyah 1 s An,k· 

Finally, in Chapter VI, we establish the theory of inner plethysms 

for R. We show how Littlewood 1 s Theorems I and II [6] may be proved in 

R. Using these theorems and Proposition 6.9, we illustrate all 

necessary procedures for evaluating any inner plethysm. 
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CHAPTER I 

HOPF ALGEBRA OF CLASS FUNCTIONS 

Let R be a commutative ring with unity and let G be a finite group. 

An R-valued class function is a map f: G + R satisfying f(ab) = f(ba) 

for all a, b s G. Equivalently we may require that f be constant on each 

conjugacy class of G. CR(G) denotes the R module of all R-valued class 

function with addition defined by (f + g)(a) = f(a) + g(a) and scalar 

multiplication defined by (r • f)(a) = r(f(a)) for all r ER, a s G, and 

f, g e CR(G). In the sequel R will be the complex field For the ring 

of integers Z. 

For a subgroup H in G, the inclusion map i: H + G induces the 

restriction map i ! = ResG: CR(G) + CR(H) and the induction map i ! = 
H 

(ResG g)(t) = g(t). 
H 

While for f s CR(H) and for any s e G, 

Let Sn denote the symmetric group of degree n. Consider the graded 

connected R-module CR= {CR(Sn)ln = 0, 1, 2, ..• }. We define a 

multiplication m: CR© CR+ CR so that CR forms a graded algebra. Let 
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ip,q: SpxSq + Sp+q be an embedding defined by 

ip,q(cr, T) = ( 1 2 ••• p p+l ••• p+q ) 
cr(l) cr(2) ••• cr(p) p+,(l) ••• p+,(q) 

for (cr, c) € SpxSq. If ft € C{Sp)t and gs € C{Sq) are characteristic 

functions of the conjugacy class tin Sp and the class sin Sq 

respectively, then the characteristic function h of the conjugacy class 

(t, s) in SpxSq is defined by 

h{a, -r) = ft(cr) • 9s(T). 

For any G, the characteristic functions of the conjugacy classes of G 

form a base for CR{G); hence, we have an isomorphism 

~p,q: C{Sp) © C(Sq) + C(Sp x Sq)• 

Define mp,q: C{Sp)@ C(Sp+q) + C(Sp+q) as the composite ip,ql 0 wp,q• 

2 

A set or sequence rr = {r1, r2, ••• , ru} of positive integers is 

said to be a partition of n {In notation, rr~n), if their sum is n. An 

element er in Sn is said to have shape rr if the disjoint cycle 

decomposition of cr produces the partition rr. A conjugacy class of Sn is 

said to have shape rr if a representative has shape rr. let Krr be the 

characteristic function of the conjugacy class of shape rr, then {Krrlrr~n} 

is a base for CR{Sn). If rr = {n}, the shape of n-cycles, then K{n} will 
r r r 

{l 1, 2 2, .•• , n n}, rr ! stands for ri ! rz ! be denoted by Cn. If rr = 

r ' and 1-1 = ri·.r r2'· • • • n . " 
r r r 

rn! 1 1 2 2 ••• n n. The number of 

elements in a conjugacy class of shape rr is n!/lrrJ. 

trf no confusion arises, C(Sp) stands for CR(Sp)· 



Proposition 1.1 Let 

a1 a2 a 
TI = { 1 , 2 , • • • , p p }I- p 

and 

... ' 
The we obtain KTI • K0 = (nvcr)!/TI!cr!, where 

Proof. For each s E Sp+q• consider 

If the shape of s is not nvcr, then (Kn • K0 )(s) and KTiv 0 (s) are both O. 

When the shape of s is nvcr, the number of t E Sp+q such that 

is 

p! q! lnvol = p!q! (nvcr)! 
l1TT TcrT TI j 0 j 

This completes the proof. 

Corollary 1.2 K0 • Kn = Kn • K0 and (Kn • K0 ) • Kv 

Kn • (K 0 • Kv) for partitions o, n and v. 
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Proof. The first equality is obvious. To prove the second, we 

consider 

= (irvcr) ! Krrvcr • Kv = (irvcr) ! 
ir!cr! ir!cr! 

irv crvv ! Kir vcrvv = 
irvcr .v. 

( ir vcrvv) ! Kir vcrvv • 
'11' !cr ! v ! 

Similarly, Kir • (Kcr • Kv) is also equal to this expression. 

It follows that CR is a graded commutative algebra with unit. 

Proposition 1.3 
r r 2 r 

If cir denotes c1 1 c2 ••• en n for a 

part it ion ir ... ' r 
n n1 of n, then we obtain cir 

Proof. For with n ) i ) 1, by Proposition 1.1 

r. r.-1 
Ci 1 = Ci 1 . Ci = (r - 1) ! K r.-1 . K { i} 

{ i 1 } 

r· I 1 • K = r. I K (r - 1) ! r. 1 • r. • 
( ri - 1) ! 1 ! {; 1 } { i 1} 

If * j and n ,. i , j ;;is 1, 

r. r. 
Ci l • Cj J = 

This completes the proof. 

= r; ! r j ! K r. 
{ i 1 

= ir ! 

= 

r. • 
j J} 

Kir. 

Proposition 1.4 CF is a polynomial algebra over F in an infinite 

number of variables c1, cz, ••• , Cn, ••• ,where the degree of en is 2n. 

In notation, 
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Proof. It is immediate from Proposition 1.3. 

Proposition 1.4 is not true for the ring Cz. Instead, we are going 

to see the algebra Cz is a divided polynomial ring with generators c1, 

c2, ••• ,en, •••• By a divided polynomial ring D[x] with one generator 

x of even degree, we mean a graded abelian group {ZxnJn = 0, 1, ••• , n, 

••• }with a base xo = 1, x1 = x, x2, ••• , Xn, ••• ,such that 

multiplication is given by 

Xp • Xq = (p+g) ! Xp+q• 
p !q ! 

Then xn = n!xn. By abuse of language x is called a generator of the 

ring D[x]. 

Proposition 1.5 The ring Cz is isomorphic to the divided 

polynomial ring 

Then 

b· , 
k 

Cn, 

D[c1, c2, ••• , en, ••• ] = © D[cnJ. 
n=l 

Proof. Consider a basis element 

b1T = @ bi in ® D[cnJ• 
i = 1 n= 1 

there exists { i l • i 2' ... ' i k} such that bi = (ci 

r 
= (ci ) k and bi = 1 otherwise. Defining f: Cz + 

k 
r r r 

••• ]by f ( KTI) = b1T for TI = { i 1 1, i 2 2' i k k} ' ... ' 

r 
) ; 

' ... ' 

D[c1, c2, 

we obtain 

isomorphism of graded abelian groups. To prove this is a ring 

isomorphism, we compute 

... ' 

an 



= (nvcr)! f(Knvcr) 
TI ! 0 ! 

= (TI v cr) ! bn v cr = bn • b cr = f ( Kn ) • f ( K0 ) • 

TI ! <1 ! 

Hence the proof is complete. 

Let an= I sgnn l<.,r, where sgnn denotes the sign of the permuta
m-n 

tion rr. Also, let us consider Sn= i:: Kn and Yn = ncn. Then it is 
nt-n 

obvious that Cf= PF[Yl, Y2, ••• , Yn' ••• ]. In a later section we 

shall show that Cf= PF[cq, ••• , a. 11 , ••• ] = Pf[B1, ••• , Bn, ••• ]is 

also true. 

We are now going to show that CR is a graded Hopf algebra. 

Explicitly, we construct algebra homomorphisms A: CR+ CR® CR and 

E: CR+ R which along with multiplication and the unit map n: R +CR 

satisfy the following properties: 

1. A is coassociative. This means the following diagram 

commutes, 

A © 1 
CR ® CR © CR----------· CR © CR 

t t 
I 

1 © /::,. 

CR® CR.------------

2. The counit map E satisfies the following commutative diagram, 

6 



1 ® e: 

We first define ~p,q: CR(Sn) + CR(Sp) © CR(Sq) for each p,q with 

Sn 
p + q = n to be the composition ~-lp,q o Res We then define 

spxsq 

~: CR(Sn) + r CR(Sp) ® CR(Sq) by An = E Ap,q· Define the map 
p+q=n 

e:: CR+ R by projection of CR onto CR(S0 ). 

Proposition 1.6 For each m-n, 

An(K'TT) = E Kcr@ Kv• 
crvv="TT 

Sn 
Proof. Res takes value 1 on conjugacy classes with shape 

SpxSq 

7 

rr in the canonically embedded subgroup SpxSq of Sn and takes the value O 

otherwise. A pair (s, t) in SpxSq with s and t having shape o and v 

respectively is embedded by ip,q as an element with shape ovv, and 

conversely. Hence the proof is complete. 

The coassociativity and the counit conditions for a coalgebra 

follow from Proposition 1.5, because 

E Kp ® Kp•@ Kp" = (A® 1) A (K'TT), 
pVp 1 Vp"="TT 

and 



(:;: @ 1) .:. ( K11') = 1 @ K1\'. 

It follows that CR is a coalgebra with respect to the comultiplication 

~ and the counit €. 

and 

We now show that ~ is an algebra homomorphism. Cqnsider 

i: 

~ (K11' • K0 ) = (11'VO') ! 
11' ! O' ! 

l: KP x Kp1 
ovp 1 =rrvcr 

= ( i: 
ava 1 ='!1' 

Kil ® Kil • )( i: Ka ® Ka • ) = 
eva 1 =cr 

a.vo.'=11' 
svs 1 =cr 

(avs)! (0. 16 1 )! Ka.vs® Ka 1vs 1 = 
a!S! Cl 1 !a'! 

(rrvcr) ! i: Kp © Kp 1. 

11'!0'[ pVp 1 =1\'VO' 

Hence, we indeed have 

Since it is trivially verified that ~is an algebra homomorphism, we 

have proved 

Prooosition 1.7 CR is a Hopf algebra. 

This fact is known. For example, see Geissinger [3]. 

Theorem 1.8 CF is a polynomial Hopf algebra in variables 

: 1, cz, ... , en, ..• ,or in variables Yl• yz, ... , Yn· •..• Cz is a 

divided polynomial Hopf algebra D(c1, c2, ••. ,en, ••• ]. 

As a matter of fact, CF is a polynomial Hopf algebra if F is a 

fie1d of cnaracteristic 0. 

Before closing the present section, we evaluate ~(a~) and ~(3nl· 
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u (a.,,)= sgn'!l' ( l: 
pVp'='!l' 

K © K I '1 = p p ) 

I" sgn(pvp') Kp ·~ K I = i: ( i: s gnp Kp) @ i.. 'P \. 
i+j=n i+j=n pri 

pt-i 
pf-j 

r 
i: sgnp I KP I) i: ® Clj. ( = Cli 

p 'i-j i+j=n 

Similarly, we obtain 

6. (en) = i: 
i+j=n 

and 

4 (rn) = 1 © Yn + Yn ® 1. 



CHAPTER II 

SELF-DUALITY 

By the usual inner product 

<f ,g> = 1 E f(t) 9Tt) 
nT teSn 

for f, ge CF(Sn), the vector space CF(Sn) becomes an inner product space 

over F. An immediate consequence of Schur's Lemma [9] is that the 

characters of the irreducible representations of Sn form an orthogonal 

basis for CF(Sn)• Furthermore, the Frobenius reciprocity theorem shows 

that for any subgroup Hin Sn and for f e CF(Sn) and g e CF(H), 

s s 
<Res n f, g> = <f, Ind n g> 

H H 

where, of course, the inner product on the left is on CR(H). If a 

bilinear forms is defined on CF by the orthogonal sum such that for f e 

s(f, g) = )
Oifp*q 

<f' g> if p = q 

then the graded vector space of finite type CF becomes an inner product 

space. It is obvious that s induces a vector space isomorphism A: CF + 

CF* by the map A(f) = '3(f, ) for f e CF. Since CF is a Hopf algebra, 

10 



11 

its dual cF* is also a Hopf algebra with multiplication ~*and comulti

plication m* if CF*@ CF* is identified with (CF® CF)*. We are going 

to see that A preserves multiplication and comultiplication, so that A 

is a Hopf algebra isomorphism. 

Proposition 2.1 s(~(f), g ® h) = s(f, m(g ® h)) for all f, g, and 

Proof. Let g e C(Sp), h s C(Sq), and f s C(Sn) with n = p + q. 

Since ~p•q preserves inner products and since the Frobenius reciprocity 

holds true for Sp x Sq in Sn, we obtain 

<~(f), g ® h > = 

<f, IndSn ~p,q(g ® h)> = 
SpxSq 

<f, m(g ® h )>. 

Since s is the orthogonal sum of inner products, the proof is 

complete. 

Proposition 2.2 A(m(f ® g )) = ~*(A(f)@ A(g)) 

and (A 0 A) (~(f)) = m*A(f) for f, g E CF· Thus, A: CF+ cF* is a Hopf 

algebra isomorphism. 

Proof. First observe that, if we identify R ® R with R, we obtain 

(A(f)@ A(g)) (a® b) = A(f)(a) • A(g)(b) = <f,a> <g,b> = 

<f ® g, a® b>. 
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Then we have 

A* ( I. ( f ) @ A ( g ) ) ( h ) = ( >. ( f ) @ A ( g )) ( bh ) = 

<f ® g, bh> = <m(f ® g), h> = >.(m(f ® g)) (h). 

Similarly, 

m *[ >. ( f) ( h ® k) = >. ( f) ( m ( h ® k) ) = < f , m ( h ® k) > = 

<bf, h ® k> = ((>- ® >.) (b(f))) (h ® k). 

This completes the proof. 

Since the cardinality of a conjugacy class of shape 1T is n! , we 

have 

~0if1T*1T 1 

(~if1T=1T 1 • 

For the base {y1T I 1T t- n} of Cf(Sn), we obtain 

) 
0 if 

K1T•> = 11TI if1T='11" 1 • 

It follows that {y'lf} is an orthogonal base. Since 

>-hn) (K'lf) = <Yn• Kir> =) 0 if 1T * {n}. 
1 if 'If = n 

1iT 

A(Yn) maps K{n} of n cycles into 1 and the other characteristic 

functions into O. Atiyah denotes >.(yn) by ~n; thus, we have 

(2.1) 

(2.2) 



Proposition 2.3 The isomorphism\: CF+ CF* maps Yn into '¥n· 

Hence CF*= PF['¥1, '¥2, ••• ,'¥n, ... ]. 

Theorem 2.4 Let an = l: sgn'lT Krr and Yn = nK{n}. Then we obtain 
'lTt-n 

Newton's formula, 

13 

( 2 .3 ) 

Proof. Denote the 1 eft-hand side of equation 2. 3 by N( y ,a.). If 

A(N(y,a.)) (K'lT) = <N(y,a.), ~> = 0 for all 'lT~n, then we must have 

N(y,a) = O. 

Consider 

(-l)n-i ,l: <an_;, Kp> <y;, Kp•>. 
p Vp = 1T 

If 'lT does not contain i as a member, then <y;, Kp•> = 0 for any p 1 by 
r 

(2.2). Hence <(-l)n-lan-iYi' Krr> = O for i * i1, iz, ••• , ip if 1T = {i1 1 
r 2 r 

i2 , •• ., ip P}. By removing ik from 'lT we obtain a partition 
r r -1 r 

{i1 1, ••• , ik k , ••• , ip P} which will be denoted by 1TA{ik}. 

we get 

Since 

and 

i +l 
sgn (TIA{ik}) = (sgn'lT) (-1) k 

Then 



lnA{ik} I = ~ 
rk i k 

we obtain 

n-i n-ik 
<(-1) k a Yik' 1<,r> = 

n+l 
(-1) (sgnn) rk ik. 

In I 

Hence, 

<N(a,y), Kn> 
p 

= l:: 
k = 1 

( -1 ) n + 1 s g n1f r k i k + ( - 1 ) n n <an , Krr > 
I 1T I 

= (-l)n+l sgnn n + (-l)n sgnn n = 0. 
Tn1 TTIT 

This completes the proof. 

14 

Solving a system of linear equations with respect to Yl· ••• , Yn· 

we obtain Yn =On (a1, a2, ••• ,an), which is the well-known nth Newton 

polynomial. Solving the system with respect to a1, ••• ,an, we also 

have an = Q (Y1,Y2, ••• , Yn) over F. 

Corollary 2.5 (Girard's Formula) 

Yn = (-l)n n E 
1Trn 

1T = 

Proof. It is an immediate consequence of the fact that 
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'Yn =On (a1, ••• an)· (See, for example, p. 195, [8]). Similarly 

we may prove 

Proposition 2.6 

'Yn = (-1) n r (-l)rl + r2 + ••• + rn (rl + r2 + ••• rn-1)! S 
Tit-n rl! r2! ••• rn! TI 

and also 

Sn = Wn ( n, 'Y2, ••• , Yn) over F. 



CHAPTER I I I 

FROBENUIS' FUNDAMENTAL THEOREM 

Let Hn,k be the R-module of symmetric functions of degree k in n 
n 

variables x1, x2, ••• , Xn with coefficients in R. Let nm: Hn,k + Hm,k 

for non-negative integers n, m with n > m, be defined by 

n 
Tim (f(x1, •• , xn)) = f(x1, ••• , Xm, 0, ••• , 0). 

n m n 
Since Tim o Tip = np for all integers n ) m > p, we have an inverse system 

n 
of R-modules {Hn,k=Tim}. Let an,k• hn,k• and sn,k be the kth elementary, 

homogeneous, power, and symmetric functions in n variables. To be 

precise, 

hn,k = 

Sn,k = 

~ 

i'ii<i2< ••• <ik'n 

l:: 
l'i i 'i 2" ••• ~i k~n 

k k 
x1 + x2 + . . . 

x1· x1· ••• x1· 1 . 2 k 

x· x· 
1 1 1 2 ... x· lk 

k 
+ Xn . 

The inverse limits of these functions under Tin,k are denoted by ak, hk, 

and sk respectively and are called the k-th elementary, homogeneous, and 

power symmetric functions in infinite variables x1, xz, ••• , xn, •••• 

The graded R-module HR= {H, kik = 0, 1, 2, ••• }forms an R-algebra by 

defining 

Tin,p+q (f • g) = nn,p (f) • Tin,q (g) 

16 



for fEH,p and gsH,q. It is well known [3][4] that HR is a polynomial 

Hopf algebra PR[a1, a2, ••• ,an, ••• ] = PR[h1, h2, ••• , hn, •.• ]if we 
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define comultiplication by ~(an) = E 
i+j=n 

ai ® aj and define the obvious 

counit. When R = F, then HF is known to form PF[s1, ••• , sn, ••• ] with 

~(sn) = 1 ® Sn + Sn® 1. 

In this section we shall study the fundamental theorem due to 

Frobenious by bridging between CF and HF rather than between the 

representation algebra RF and HF· Our approach hardly employs 

representation theoretic arguments. 

Theorem 3.1 The map T: CF + HF defined by T(rm) = Sm is a Hopf 

algebra isomorphism such that T(an) = an and T(Sn) = hn. 

Proof. From Theorem 1.8, CF= PF[n, ••• , Yn' ••• ]with 

~(rn) = 1 ® Yn + Yn ® 1. Hence T is a Hopf algebra isomorphism. In 

virtue of Corollary 2.5, T(an) = T(Q(y1, ••• , Yn)) = Q (T(y1), ... ' 

... ' Similarl,Y, T(Sn) = hn· For any 

r r 
al 1 an n = an. The same is true with T(Sn) = hn. This completes 

the proof. 

Corollary 3.2 CF= PF[a1, a2, ••• , an, ••• ] = 

PF[S1, S2, ••• , Sn, ••• ]. 

Proof. It is evident from Theorem 3.1. Let RF(Sn) be the F-vector 

space of complex representations of Sn, then it is well known [9] that 

the character map x: RF(Sn) + CF(Sn) is an isomorphism. 



and !ln: 

respectively. 

Sn 

Since x commutes with wp,q. 

L: 
p+q=n 

and Res , x defines a graded Hopf algebra isomorphism 
SpxSq 

r 

18 

For each partition TI ... ' n n} of n, 1 et STI stand for 

the subgroup STI of Sn, 

------------- ----------s 1T = S1x ••• xS1 x S2x ••• xS2 x 

Then the trivial representation ls and the sign representation Alt S1T 
1T 

are both well known one dimensional irreducible representations of S1T. 

We denote the induced representations by p1T 

Sn 
Ind Alt S1T. If Pn and nn devote P{n} and n{n}, then by definition 

s1T 

Proposition 3.3 x: Rf+ CF is a Hopf algebra isomorphism such 

that x(p1T) = 131T and x(nrr) =arr· 

Proof. Let rr = {t1, t2, ••• , tu}~n. We check that p1T = Pt1 Pt 2 

••• Pt by induction on u. This is trivial if u = 1. Assume that the 
·u 

hypothesis is true for all u < m and let 



and 

Then, we have 

(Pt Pt • • • Pt ) Pt = 
1 2 m-1 m 

Pir I • Pt 
m 

s 
Ind n ° ~p,t (Pir 1 ®Pt ) = 

SpxSt m m 
m 

s 
(Ind P ls ®ls s I Tf I tm 

1T 

S xS 
(Ind P tm ls ) = 

Sir ir 

Sn 
Ind 

s 
1T 

ls = 
1T 

p • 
Tf 

= 

= 

nt • This completes the proof. 
m 

Defining F: RF + HF by the composite T o x, we obtain the 

fundamental theorem. 

Proposition 3.4 The Frobenius isomorphism F: RF + HF maps 

F-basis elements Pir into hrr and nir into air. 
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CHAPTER IV 

LIULEVICIUS 1 SELF-DUALITY AND ATIYAH 1 S ~· 

Let {Vn} be the base consisting of the irreducible representations 

of Sn and let <Vn, Vn'> = on,rr'. It is well known that the character 

isomorphism x: Rf + CF preserves inner products. Then an isomorphism 

µ: Rf + RF* with a commutative diagram 

x 

µ 

+ x* + 
Rf *--------CF* 

is evidently obtained by µ([M])([N]) = <M, N> for any representations M 

and N of symmetric groups. This comes from the verification that 

denotes crn and An elements in RF* satisfying 

and 

) 
1 if VTT = 1 , 

crn([VnJ) = Sn 
0 otherwise 

) 
1 if Vn = Alt Sn 

= O otherwise. 

20 



Proposition 4.1 u: RF + RF* is a Hopf algebra isomorphism such 

that µ(pn) =an and u(nn) = >-n· Hence RF*= PF[P11 ••• , Pn• ••• ] = 

PF [>-1 •••• , An ' • •. J. 

= ~ ~ if v'IT = 1 , 
Proof. U ( Pn )( [ V 'IT] ) = <l s ' V'IT> Sn -- otherwise. n 

Thus u(Pn) = an· Similarly, µ(nn) = >-n· This completes the 

proof. 

Consider the diagram 

x 
RF~~~~~~~~~~~cF 

I I 
I I 
lu IT 

+ ~· + 
RF*~~~~~~~~~~--HF 

where~· is Atiyah's isomorphism (Proposition 1.2 and Corollary 1.3 in 

[l]). Then the diagram commutes, because ~'u(nnl = ~'(>.n) =an from 

Proposition 4.1. 

Corollary 4.2 The Frobenius map F satisfies F =TX= ~ 1 µ. 

n * n Consider the element (a1 ) in CF* which maps cq into 1 and ~ 

into 0 if 'IT * {ln}. Then we obtain 

Proposition 4.3 >.: 

n * ( 81 ) • 

Proof. Observe that 

* n * CF + CF maps Bn into ( a1 ) and an into 
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from (2.3). For TI 
rl r2 

= {1 ' 2 ' 

by Proposition 2.1, and 

= 0 

... ' 

22 

K >=n!=l 
on} nT 

r 
n n} with n > rl > 0, 

r 
by induction on n, because 1T = { 1 1} VTI' , and TI 1 does not contain 1. If 

TI has the property rl = O and is not {n}, then <en, air> = O can again be 

proved by induction on n as before. Finally, if TI= {n}, then <er , air> 
1 

= <Alt Sn, 1 > = 0 because Alt Sn and 1 are irreducible. This proves 
Sn Sn 

the following proposition. 

Proposition 4.4 The map 2: * n * CF+ CF defined by t(an) = (a1 ) 

is the CF-version of the Liulevicius Hopf algebra isomorphism [7]. 

Proof. By Corollary 3.2, 1p: CF+ CF defined by ijJ(a.n) =Sn is an 

isomorphism, hence 2 =A ow is an isomorphism. If 2 is translated 

. n 
via T: CF+ HF, the Liulevicius isomorphism maps an into (a1 )*. 

This completes the proof. 



CHAPTER V 

ATIYAH'S 6 1 AND DOUBILET'S FORGOTTEN 

SYMMETRIC FUNCTIONS 

Atiyah (Corollary 1.4, [1]) shows that when 6n,k = i:: bi® si 

e: R(Sn) ® Hn,k for n ) k, then {b;} and U:i} are "dual bases" to each 

other. The following proposition states how the b; determine the si 

and vice versa. 

Proposition 5.1 Given bases {b;} for RF(Sk) and {si} for H,k· 

Then 6,k = i:: b; ® si if and only if <b;, F-l(sj)> = o;j, where Fis 

the Frobenius map and Oij denotes the Kronecker delta. 

Proof. Let F(vj) = sj· Then we obtain 

F(vj) = 6 1 µ(vj) from Corollary 4.2 

= i:: µ(vj)(bi)si by definition of 61 

= i:: <b;, F-l(sj )>si = sj. 
i 

if and only if <bi, F-1 (sj)> = o;j· This completes the proof. 

Corresponding to {a~lnr-k}, the base for H,k consisting of products 

of elementary symmetric functions, there exists a base {bnln~k} for 

RF(Sk) such that 6,k = i:: bn ®an. Then, by Proposition 5.1 

23 
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Since {nnlm-k} is a base for Rf(Sk) and <nn, a,,.'> = onn', we obtain ~.k 

= ~ nn ® F(bn) by another use of the proposition. 

Definition 5.2 The members of the base {F(bn)ln~k} for H,k are 

called the Doubilet forgotten symmetric functions [2]. 

In the rest of this section we shall determine the bn so that the 

Doubilet functions may be recovered. Note that b{k} is determined by 

Atiyah (Proposition 1.9, [l]). 

Theorem 5.3 Let r bn ®an = r nn ® F(bn), where an is a 

monomial of elementary symmetric functions. For 

~ = {lrl, 2r2, krk} h .. • •• , we ave 

b = 1 
n -:;;-r 

n. 

t 
cr={l 1, tk ••• ~ k } 

where Qi (a 1, ... , ai) is the i-th Newton polynomial for si. 

Proof. 
t 

For cr = {1 1, . .. ' 

K t t 
{l 12 2 

By (2.1) we get <K 0 , y 0 1 > = 800 '. By Theorem 3.1 and Proposition 5.1 



6. k 
. ' 

= z Kcr ~ F-l(ycr)= z x-l(Kcr) © F-l(x-l(ycr)) = 
crrk cri-k 

r x-l(Kcr) © T(ycr) = z x-l(Kcr) ® Scro 
crl* k crt- k 

... ' 
t 

ak) k is a polynomial of degree k in variables ai, a2, ••• , ak, the 

coefficient q rr of the monomial air 
CJ 

r 
ak k in scr is obtained by 

ir ri +r2+ ••• +rk 
q cr = -...---:-! __ __,.. __ a ______ _ 

ri!r2! ••• rK! r r r 1 2 k a aia a2 ••• a ak 

Hence, 

So, 

1f 
x-l(Kcr) 

rr tl 
brr = L: qO' = ... qcr 1 Q1(n1) " 

cr k cr k Toi 

t t 
cr = {l 1 ... k k}. 

This proves the theorem. 

25 

For example, in the case when k = 3, let us calculate the Ooubilet 

functions: 
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Similarly, 

3 3 
d { 3} = a 1 - 3a 1 a 2 + 3a 

and 

Hence the projection of d e H,3 into H3,3 is the symmetric 
{ 1, 2} 

function 

3 3 3 2 2 2 2 2 2 
- {2(x1 + x2 + x3) + x1 x2 + x1 x3 + x2 x1 + x2 x3 + x3 x1 + x3 x2}. 

As a check of our calculations, we now verify that {bnlnr--3} and 

{nnlTit-3} are dual bases for R(S3). Let M denote the Specht irreducible 

representation of S3, so that {[ls3J, [Alt S3], [M]} is an orthnormal 

base for R(S3). Using characters, we have 

111112 = [M] + [Alt S3], 

and 

Hence, 



and 

3 
b{3} = n1 - 3n1n2 + 3n3 = [ls] - [M] +[Alt S3], 

3 

3 
b = Sn1n2 - 2n1 - 3n3 = [M] - 2[1S3], 

{ 1, 2} 

It is easily verified that <bn, nn'> = onn'· 
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CHAPTER VI 

INNER PLETHYSMS 

Let M be a representation of Sn and let {e1, .•• , ei} be a base for 

M. The k-th tensor product M»k may be considered a representation of 

Sn x Sk with the group operations defined by 

for any (o, -r) e Sn x Sk and for any basis element ei @ e; @ ••• @ e; 
1 2 k 

with 1 <; iJ, i2, ••• , ik <; t. Since R(Sn x Sk) is isomorphic to R(Sn)@ 

R(Sk) we have @k: R(Sn) + R(Sn) © R(Sk) defined by ©k([M]) = [~k]. 

\fa now are going to show that ®k is well defined (compare Atiyah 

[l], Proposition 2.2). Let G be a finite group and consider the 

semi-ring M(G) = {(M,N) I M,~ G-modules} with addition and 

multiplication defined by 

(M, N) + (M', N') = (M~M', N$N 1 ) 

and 

(M, N) • (M', N') = (M@ M' $ N® N', M@ N' Eli M' © N). 

We define an equivalence relation - on M(G) by (M, N) - (M', N') if and 

only if M & N' "'M' EJl N. We donate by <M, N> the equivalence class 
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containing (M, N). 

Let R(G) = M(G)/-. R(G) is a ring with 0 = <D,D> and <M, N>-1 

= <N, M>. It is clear from the construction that the map h: R(G) + 

R(G) defined by h(<M, N>) = [M] - [NJ is a ring isomorphism. 

For each integer k, we define a map Xk: M(Sn) +M(Sn x Sk) by 

29 

Xk (M, N) = (M, N)k. Xk preserves equivalence classes, since Xk {M ~ 0, 

N $ D) = (M ® D, N@ O)k - (M, D)k = Xk {M, N) for all Sn-modules M, N, 

and D. 

Consider the diagram 

Xk 
M{Sn) 

I 
M{Sn x Sk) 

I 
p p 

+ ®k + 
R(Sn) R(Sn x Sk) 

I 
h h 

+ <»k + 
R(Sn) R{Sn x sk) 

where xk is induced by Xk and P is the projection. Since 

hoPoXk (M, 0) = hoP (t40k, 0) = h <M®k, 0> = [M®k] = 

©k ([M]) = ®KohoP (M, 0), 

it follows that ®k is also induced by Xk; consequently, the diagram 

commutes. 

We now calculate ©k ([M] - [NJ) for the general element [M] - [NJ s 

R(Sn). 

Proposition 6.1 



k 
®k ([M] - [N]) = Z 

i=O 

Proof. We first prove that 

k 
Xk ( M, N) = ( Z 

s 
Ind k (~(k-i) @ N®i), 

Sk-iXSi i=O 
even 

by induction on k. If k = 1, this is evident. Assume that the 

hypothesis is true for all integers n' k. Then, we have 

X(k + 1) (M, N) = (M, N)k (M, N) = 

k 
( z 

i=O 
even 

s 
Ind k MJ(k-i) ® ~;, 

sk .xs. 
-1 J 

k 
z 

j=l 
j odd 

Inct 5k ~(k-j) ® ~j) (M, N) = 
sk .xs. 

k 
( z 

i=O 
even 

k 
( z 

j=l 
j odd 

-J 1 

Inct 5k MZi(k-j) ® ~j) ~ N, 
sk .xs. 

-J J 
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k 
( l: 

i=O 
i even 

k 
M @ ( l: 

j=l 
j odd 

k+l s 
( z; Ind k+l ~(k+l-i) © ~i, 

i=O Sk+l-ixSi 
i even 

Since Xk induces ®k, apply hoP and the proposition is proved. 

Let Op{R) denote the set of all operations of R. We define 

addition and multiplication in Op{R) by adding and multiplying values. 

For pe Rand x, x• e Op(R) we have 

and 

X • X1 (p) = X(p) •X 1 (p). 

Hence, Op(R) is a ring. 

Definition 6.2 By the inner plethysm T{X) associated with an 

element x E R*(Sk), we mean the operation z 

defined by (1 ® X)(@k). 
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In the seque 1 , we denote T (;,.) ( [M]) by \ ( [M]) if no confusion 

arises. 

Proposition 6.3 For any \T e R(Sk) with Tl- k and for any 

Sn-representation M, we have 

s 
= [horns (Ind k Alt ST, M®k)J 

k s 
1" 

Proof. It is well known (Atiyah [l]) that if {Vµ I µI- k} is a 

complete set of irreducible Sk-representations, then 

We consider homsk (Vµ, f'<1litk) as a Sn-representation with Sn-operations 

defined by cr•f = o®kof for all f e homsk (Vµ, M!lk) and cr e Sn• 

Consequently, M®k decomposes as an element in R(Sn) ® R(Sk)· Then, by 

definition 

However, 

s 
i:: < Ind S k A 1 t ST , V µ > V µ = 

µ1-k 1" 

Hence \ve obtain 

s 
Ind k Alt ST. 

s 
1" 
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s 
= [horns (Ind k Alt s,, M&ik)]. 

k s 
T 

This completes the proof. Note that this proposition is stated by 

Atiyah as R* is a subring of Op(R). (See [l], page 178) 

- r 1 r 2 rk Proposition 6.4 For any partition T - {l , 2 , ••• , k } and 

for any Sn-representation M we have 

r r r 
A.,([M]) = A.1([M]) 1 A.2([M]) 2 ••• A.k([M]) k. 

Proof. By the Frobenius reciprocity law we have 

By Proposition 6.3, 

s 
horns (Ind k Alt s,, Ml!lk) = 

k s 

horns 
T 

T 

s 
(A 1t s, , Res k ~k) • 

s 
T 

s 
horns (Alts,, Res k fv1Zk) = 

T $ 
T 

k 
© (horns. (Alt Si , M®i )©r i 

i=l 1 

s 
A., ([M]) = [homsk (Ind 5k Alt s,, M®k)J 

T 
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k 
= TT [horns. (Alt Si, Mllli)Jri 

i=l 1 

This completes the proof. 

Using the same methods as in the proofs of Propositions 6.3 and 6.4 

we may prove the following. 

* rl r2 rk Proposition 6.5 For any cr, e R (Sk) with , = {1 , 2 , ••• k } 

and for any Sn- representation M, we have 

cr,([M]) 
s 

= [horns (Ind k 
k s 

T 

1 
s 

T 

~k)J 

r . r r 
= cr1([M]) 1 cr2([M]) 2 ••• crk([M]) k 

Proposition 6.6 Let H<;:GCSn be groups and let N be a represen-

G 
tation of H. Then homG (Alt G, IndH N) and homH (Alt H, N) are 

isomorphic. 

G Proof. We construct a linear map p : homG (Alt G, Ind N) + 
H 

homH (Alt H, N) and its inverse cr. Let {e = ro, q, ••• rt} be a 
G 

Then Ind N "' N <9l 
H 

complete set of coset representatives for G/H. 
G 

riN e ... e rtN. If U e homG (Alt G, Ind N) then there are ni e Ni 
H 

such that 

We let p be the linear map from C to N defined by p(U)(l) = n0 • p is 



an H-homomorphism because if h s H, then 

h p(U)(l) = h n0 = sgn(h) n0 = 

p(U)(sgn(h)) = p(f) (h·l). 

We now construct cr. If w s homH (Alt H, N) and w(l) = n0 , let 

cr be the linear map from C to N@ riN@ ••• @ rtN defined by 

t 
cr(w)(l) = E sgn(r;) r; no. 

i=O 

cr is a G-homomorphism because if g e G, then 

t 
g cr(w)(l) = E sgn(r;) gr; no 

i=O 
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Furthermore, since {gro, gr1, 

for G/H, there exist elements ho, 

grt} is a set of coset representatives 

ht s H and there is a permutation ... ' 
-r of {0, •.• , t} such that gr; = r,(i) h;. Hence, 

t 

t 

t 
E sgn(r; )gr; no = 

i=O 

E sgn(r;) r,(i) h; no= 
i=O 

E sgn(r;) sgn(h;) r,(i) no= 
i=O 

t 
E sgn(g) sgn(r,(;)) r,(;)no = 

i=O 



t 
E sgn(g) sgn(ri) ri no= 

i=O 

sgn(g) cr(w)(l) = cr(w)(sgn(g)) = cr(w)(g·l). 

We now show that crop is the identity. Consider 

t 
U(l) = r rini 

i=l 

t 
and aop(U)(l) = E sgn(ri) rino. 

i=O 

It suffices to show that sgn(rk)no = nk for all k. Since U is a 

G-homomorphism, 

t 
rkU(l) = U(rkl) = U(sgn(rk)) = sgn(rk) E rini. 

i=O 

On the other hand, . 

t 
rkU(l) = E rkr;n;. 

i=O 

since it is obvious that poa is the identity. 
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Propes it ion 6. 7 Let H C GC Sn be groups and 1 et N be a represen
G 

tation of H. Then homG (lG, Ind N) and homH (lH, N) are isomorphic. 
H 

Proof. It is obvious using the methods of Proposition 6.6. 

It is well known that for any element ~ e R(G), there exist 



G-representations M and N such that s = [MJ - [NJ. 1,.Je consider M to 

have even grading and N to have odd grading. 

and 

Proposition 6.8 

k 
Ak([MJ +[NJ) = Z Ak-i([MJ) Ai([NJ), 

i=O 

k 
crk([MJ +[NJ) = E crk-i([MJ) cri([NJ), 

i=O 

k 
Ak([MJ - [NJ)= E (-l)i Ak-i([MJ) cri([NJ) 

i=O 

k 
crk([MJ - [NJ) = E (-l)i crk-i([MJ) A;([NJ). 

i=O 

Proof. We prove the last equation as an example. 

crk([MJ - [NJ) = (1 ® crk)(©k)([MJ - [NJ) = 

k s 
z (-l)i z crk(V;r )[horns (Vrf' Ind k ~(K-i) ® N©i )J 

; = o rr 1- k k sk . x s. -1 1 
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k 

k 
E 

i=O 
(-l)i[hom (ls .®ls.'~(k-i)®~i)J= 

sk .xs. k-1 1 
-1 1 

E (-1)i[homs .(ls ·' M®(k-i)) ® homs.(ls., ~i)J = 
i=O k-1 k-1 1 1 

recalling that N has odd grading 

k 
E 

i=O 
(-l)i[homs .(ls ·' M®(k-i))J • [homs.(ls., ~i)J = 

k-1 k-1 1 1 

k 
E {-l)i crk-i([M]) A;{[N]). 

i=O 

Proposition 6.9 Let H be a subgroup of a finite group G with the 

property that H contains no normal subgroup of G except {e}. Then 
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G can be embedded in the permutation group Aut G/H = SN, where N is the 

index of H in G. Considering Gas a subgroup of SN, the induced 
G 

representation Ind lN of the trivial H representation lH is isomorphic 
H 

to the G-restriction of the SN-permutation represehtation FN. 

Proof. Let G/H be the G-set with the usual G action on the set of 
G 

left cosets. Then G/H is isomorphic to the G-set Ind lH. Since H 
H 

• contains no normal subgroups of G except {e}, the action of the G on G/H 

is effective in the sense that if gx = x for any x E G/H, then g = e. 

In this case G can be embedded in the permutation group Aut(G/H). 

Hence the G-set G/H is the G-restriction of the Aut{G/H)-set G/H. It 
G 

follows that the G-representation In lH is isomorphic to the 
H 

G-restriction of an SN -representation FN with the natural SN-action, 
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where N is the index of H in G. 

Lemma 6.10 Let ir 
r 

= {l 1, 

r 
x Sn n be a subgroup of Sn. If ir * {n}, then Sir contains no 

normal subgroup of Sn except the trivial group. 

Proof. Let -r E: Sir and assume L' * e. Then it is easy to find s E: 

Sn such that s-rs-1 t Sir. Hence there can be no subgroup of Sir which 

is invariant under all conjugations of Sn. 

Combining proposition 6.9 and lemma 6.10 we obtain the following. 

s 
Theorem 6.11 Any basis element Pir = [Ind n ls ] in R(Sn) is s 1T 

1T 

s 
[RessN FN], where N is the index of s'Tf in Sn. By the Specht 

n 

irreducible representation M(N-1,1) we mean the subrepresentation of 

... ' ZN) with z1 + z2 + ••• +ZN= 0 in FN. The 

orthogonal complement of this hyperplane is spanned by (1, 1, 1), 

so M(N-1,1) is obviously SN- invariant. Hence, 

s 
Ind n ls s 1T 

'IT 

s 
"' Res N 

Sn 

Theorem 6.12 For any basis element p'lT E: R(Sn) and for any basis 

A-re R*(sk), A-r(Pir) can be computed effectively provided the character 

of i-th exterior powers of Specht irreducible representations M(N-1,1) 

for any i and N, can be computed. 

Proof. From Propositions 6.8 and 6.11 we obtain 

s 
Ai(P'Tf) = Ai([RessN M(N-1,1)] + [lsnJ) 

n 
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i s 
J:: '-i-j ([Res N M(N-1,l)J) Aj ([ls J) = 

j=O Sn n 

s s 
'-i ([Res N M(N-1,l)J) + '-i-1 ([RessN M(N-1,l)J) = 

Sn n 

RessN A· ([M(N-1,l)J) + RessN '-i-1 ([M(N-1,l)J). 
Sn 1 Sn 

The commutativity of Res and>. follows immediately from Proposition 

6.1. Proposition 6.4 allows us to proceed 

Hence the proof is complete. 

We now calculate the character of >.;([M(N-1,l)J) = [horns. (Alt S;, 
1 

M(N-1,l)®i)] for all N and i. Littlewood has done these calculations 

for the corresponding Schur functions in H. See Theorem II [6] and page 

139 [5]. 

... ' 

Proposition 6.13 

x(:\i([M(N-1,l)])(cr) = 
k-1 

J:: (-l)W sgn µ (~~-l) (~~:i) ... (~~) 
0 µ-it-w w = 

{kc ·c·} µ= k, ••• ,11 

... , b. a1 a2 i 1} and the shape of cr s SN is {l , 2 , 

The binomial coefficient (a) is O if b >a. 
b 

Proof. M(N-1,1) is the subrepresentation of the permutation 

representation FN spanned by 



e1 = <1, 0, 0, ... ' 0, -1> 

e2 = <O, 1, 0, ••• , 0, -1> 

eN-1 = <O, 0, 0, ••• , 1, -1>. 

If we let eN = 0, then the action of SN on M(N-1,1) is given by 

T ( e; ) = e T ( i ) - e T ( N) for T e: SN • 
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We now construct a basis for horns. (Alt S;, M(N-1,l)xi). Let Ii = 
1 

{DI oC{l, 2, ••• , N-1} and card D = i}. For each De: I; with 

D = {jl, j2, ••• , ji}, we define the basis vector ho by 

ho : 1 + E ej ® .•. @ ej.where r denotes summation over all signed 
p 1 1 p 

permutations of the factors. 

Since characters are constant on conjugacy classes, we may assume 

that if cr e: SN is decomposed into disjoint cycles and the cycles then 

arranged into descending order with respect to cycle length, then the 

integers occur with their natural order. For example, if shape o = 

02, 2, 3}, then o = (1, 2, 3) (4, 5) (6) (7). If o <=o, 2, ••• , N}, 

we denote by oo the restriction of o to D, and by o(D) the image of D by 

o. If oo permutes D, we say that oo is a subpermutation of D. 

a 1 a2 aN Let ak be the first non-zero exponent in {l , 2 , ••• , N }. 

By our assumption on cr, we have o(N) = N -k + 1. 

Let 

and 1 et 



E = {j s D I j ' N - k} 

and 

E1 = {j € D I j > N - k} 

o' 
Lemma 6 .14 Let D s Ii, then a • h = ~ C ho 1 for some 

D DI di D 
DI D 

C in the field F. Then C * 0 if and only if crE is a subpermutation 
D D 

of cr and E 1 = {N-k+l, N-k+2, . . . ' 

D 
Proof. Assume C * o. Then 

D 

j . } • 
1 

o * cr·ho {1) = 
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L: ea { j ) © • • • © ea { j . ) -
p 1 . 1 (6.1) 

If the first summand contains ho(l) as a summand, then D = E, 

E1 = ~. and cro = crE is a subpermutation of a. If the second summand 

contains ho(l), then N-k+l i::: E1 C D. However, (N-k+l, N-k+2, N) 

occurs in the decomposition of a into disjoint cycles; hence, j s E1 for 

all N-k+l < j < ji, so that E1 = {N-k+l, N-k+2, •.• j;}. Moreover, 

D 
since cr (n) > N-k for all ns E1 U {N} and C * 0, we have cr(E) = E; 

D 



hence, OE is a subpermutation of o. Since the converse is clear, the 

proof of the lemma is complete. 

E' may have any cardinality w, 0 c w c k-1, so the shape u~i-w 

a a a 
of OE is a subpartition of {k k-1, (k+l) k+l, ••• N N} (in notation 

D 
µ '1Tf\{k}). If w = 0, then from equation 6.1, we have C = sgn µ. 

D 

0 
w > 0, then C = (-1) sgn (u V {(N-k+l, N-k+2, ••• , N-k+w)}) = 

D 

(-l)W sgn µ. 

Hence, 

I: 
D e: Ii 

X (Ai ([M(N-1,lJ) (o) = 

D c = 
D 

k-1 
(ak-1) (ak+l) (-l)W sgn µ c c ••• 

k k+l 
I: I: 

w = 0 µ1-i-w 
µ = {kCk, ••• , iCi} 

If 
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We now are going to prove the RF version of Littlewood 1 s Theorem I 

[6]. 

Definition 6.15 Let 1T = {r1, rz, ••• rs} be a partition of N 

with r1 ) r2 ) ••• ) rs. The diagram of 1T consists of s rows of left 

adjusted boxes with r; boxes in the ith row. 

For example, if 1T = {4, 3, 2, 2}, the diagram of 1T is 

DODD 
DOD 
DD 
DD 



44 

Definition 6.16 The conjugate partition of the partition TI cor-

responds to the diagram obtained by interchanging the rows and columns 

of the diagram of TI. For example, the conjugate partition of {4, 3, 2, 

2} is {4, 4, 2, l}. 

Definition 6.17 If µ = {µ1, ••• , µj} is a partition of i with 

µ1) µ2) ••• ) µj and N) µ1, we define µ(N)~N as µ(N) = {N-µ1, µ1-µ2, 

... ' µj-1-µj, µj}· 

We now evaluate cr;([FN]) = [horns. (ls., (FN) ®i)J. 
l l 

Proposition 6.18 

Proof. Following Littlewood, let {e1, ••• eN} be a basis for FN. 

The symmetric sum r 
p 

ek ® •.• ® ek. is written in canonical form if 
1 1 

where m1 ) m2 ) ••• >me, and if ma= rnb and a> b, then ja > jb. It is 

obvious that each symmetric sum may be written exactly one way in 

c anoni cal form. 

homomorphisms h : 

canonical form. 

. ©i . 
Hence a basis for horns. (ls;, (FN)) 1s the set of all 

1 

1 + r ek ® ••• ® ek. with ek @ ••• ® k. in 
p 1 1 1 1 

©ml ©m 
Two basis elements 1 + ek ® ••• ® ek c and 

1 c 
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®nl @nd 1 + ei © .•. © ei are in the same orbit of SN if an only if c = 
1 d 

d and mt = nt for all t ( c; hence, the orbits are in 1 to 1 corres

pondence with partitions µ 1- i. The isotropy group of 

®ml ®m2 ®me 1 + z e1 © e2 © ••• © ec consists of all permutations cr e SN 
p 

®m 
such that z e1 1 © 

p 
... '°' ec©Tlc = "' e ( )®m1~ © e Q.l'.ffic 

\CY ~ cr 1 -'1X> ••• cr(c) Let 

... ' me} and let v = {n1, ••• , nt} be the conjugate ofµ, so 

that ni = c. There are N - c = N - ni numbers which are not subscripts 

®ml ®me of z ek ® ••. ® ek There are nl - n2 subscripts whose super-
P 1 c 

script is me. There are n2 - n3 subscripts with superscripts mc-1• etc. 

Hence the isotropy group of the basis element h defined by 

@Ill 1 -®111 z «m c h ( 1) = z e1 © e2 © ••• © ec 
p 

is Sµ(N)· It follows that the subspace spanned by the SN - orbit of h is 

ismorphic to µ(N). Summing over all partitions µi- i yields the result. 

Proposition 6.19 For any basis element pTI s R(SN), 

s 
= Z Res N Pµ(N) 

µt-i Sn 

Proof. By Theorem 6.11, pTI 

s 
Res N cri ([FN]) = s 

n 

s 
Z Res N Pµ(N)· 

ilf- i Sn 



Theorem 6.20 Any inner plethysm T(A): Rz + Rz can be evaluated 

by the procedures in this section. 

Proof. For any element~ e R{Sn) and for any A e R* (SK) with 

with A = E a, \,, we have 
Tt-k 

\(~) = E a, A,(~)= E a, \1(s)r1 A2(~)r2 ••• Ak(s)rk 
Tt--k Tf-k 

... ' 
because R*(Sk) is a subring of Op(R). Let ~ = [M] - [NJ, then from 

Proposition 6.8 

i 
Ai (s) = E (-l)j Ai-j ([M]) crj ([NJ). 

j=O 
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Since the Sn- representations M and N are direct sums of basis elements 

of Pw 1 s, Ai-j ([M]) and crj([N]) are calculated by Propositions 6.8, 

6.13, 6.18, and Theorem 6.12. This completes the proof. 

Finally we would like to comment about the character ai(Pw)· 

Since 

and since 

p p 
\J . 1-)J . \J J- J 

x(P{N-µ µ }) = x(PN-µ) (p\J -µ) ••• (p\J.) 
l' .••• j 1 1 2 J 

... ' ) can be effectively calculated by the facts that 
\J . } 
J 

x(Pi) = E KTI and Proposition 1.1 
m-i 



Kn • K0 = (nvcr)! Knvcr· 
n!cr! 

This, in turn, enables us to evaluate the character of cri(Pn). 
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CHAPTER VII 

SUMMARY 

It has been shown how to construct and evaluate any inner plethysm 

in R. The apparently harder problem of constructing the operations 

called outer plethysms (see [4] and [5]) remains unsolved. It would 

also be of interest to construct the operations corresponding to inner 

and outer plethysms in the Burnside ring of symmetric groups [4]. 
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