hopf algebra of class functions and
I INNER PLETHYSMS

By
ROBERT ALLEN DIVALL
Bachelor of Arts
University of California, Berkeley
Berkeley, California 1971
Master of Science Oklahoma State University
Stillwater, Oklahoma 1974

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
        for the Degree of
        DOCTOR OF PHILOSOPHY
            December, 1981
```

Thesis 1981D Dlel8h cop,2

HOPF ALgEBRA OF CLASS FUNCTIONS AND
INNER PLETHYSMS

Thesis Approved:

PREFACE

Let R be the graded ring of representations on the symmetric groups. This thesis is concerned with finding an explicit construction of the operations in R known as inner plethysms.

Chapter I provides a background for these results by giving a detailed account of the Hopf algebra structure of class functions on the symmetric groups. We have no claim to new results in this part, but rather to the direct approach to the theory. It is shown that the ring C_{z} of integer-valued class functions on the symmetric groups is isomorphic to a divided polynomial Hopf ring in infinite generators, while the algebra C_{F} over the rationals or the complex field forms a Hopf polynomial algebra.

Chapter II contains a proof of the self-duality of C_{F} along with a proof of the C_{F}-version of Newton's formula.

Chapter III contains a short proof of Frobenius' fundamental theorem by taking advantage of Newton's formula.

In Chapter IV we establish a C_{F}-version of Liulevicius' self-duality and show how it is related to Atiyah's Δ^{\prime}.

In Chapter V we show how Doubilet's Forgotten symmetric functions may be found by using Atiyah's $\Delta_{n, k}$.

Finally, in Chapter VI, we establish the theory of inner plethysms for R. We snow how Littlewood's Theorems I and II [6] may be proved in R. Using these theorems and Proposition 6.9, we illustrate all necessary procedures for evaluating any inner plethysm.

I would like to thank my adviser, Professor Hiroshi Vehara, for his generous help and encouragement through my doctoral program and the numerous suggestions for the preparation of this thesis. I would also like to thank the other members of my committee, Professors Boler, Coram, Scott and Wolfe, for their assistance. I would like to extend my appreciation to my parents, Mr. and Mrs. Robert DiVall. Finally, I would especially like to thank the typists at TOP Services Unlimited for the excellent job of typing this thesis.

TABLE OF CONTENTS

Chapter Page
I. HOPF ALGEBRA OF CLASS FUNCTIONS 1
II. SELF-DUALITY 10
III. FROBENUIS' FUNDAMENTAL THEOREM 16
IV. LIULEVICIUS' SELF-DUALITY AND ATIYAH'S Δ^{\prime} 20
V. ATIYAH'S Δ^{\prime} AND DOUBILET'S FORGOTTEN SYMMETRIC FUNCTIONS 23
VI. INNER PLETHYSMS 28
VII. SUMMARY 48
A SELECTED BIBLIOGRAPHY. 49

CHAPTER I

HOPF ALGEBRA OF CLASS FUNCTIONS

Let R be a commutative ring with unity and let G be a finite group. An R-valued class function is a map $f: G \rightarrow R$ satisfying $f(a b)=f(b a)$ for $a l l a, b \varepsilon G$. Equivalently we may require that f be constant on each conjugacy class of G. $C_{R}(G)$ denotes the R module of all R-valued class function with addition defined by $(f+g)(a)=f(a)+g(a)$ and scalar multiplication defined by $(r \cdot f)(a)=r(f(a))$ for all $r \varepsilon R, a \varepsilon G$, and $f, g \varepsilon C_{R}(G)$. In the sequel R will be the complex field F or the ring of integers Z.

For a subgroup H in G, the inclusion map $i: H \rightarrow G$ induces the restriction map $i!=\operatorname{Res}_{H}^{G}: \quad C_{R}(G) \rightarrow C_{R}(H)$ and the induction map $i_{!}=$ Ind $H_{H}: \quad C_{R}(H) \rightarrow C_{R}(G)$. For $g \in C_{R}(G)$ and for any $t \varepsilon H$,

$$
\left(\operatorname{Res}_{H}^{G} g\right)(t)=g(t) .
$$

While for $f \varepsilon C_{R}(H)$ and for any $s \varepsilon G$,

$$
\left(\operatorname{Ind}_{H}^{G} f\right)(s)=\frac{1}{|H|} \sum_{\substack{t \varepsilon G \\ t-1 \\ s t \varepsilon H}} f\left(t^{-1} s t\right)
$$

Let S_{n} denote the symmetric group of degree n. Consider the graded connected R-module $C_{R}=\left\{C_{R}\left(S_{n}\right) \mid n=0,1,2, \ldots\right\}$. We define a multiplication $m: C_{R} \otimes C_{R} \rightarrow C_{R}$ so that C_{R} forms a graded algebra. Let
$i_{p, q}: S_{p} \times S_{q} \rightarrow S_{p+q}$ be an embedding defined by

$$
i_{p, q}(\sigma, \tau)=\left(\begin{array}{cccccc}
1 & 2 & \cdots & p & p+1 & \ldots \\
\sigma(1) & \sigma(2) & \cdots & \sigma(p) & p+\tau(1) & \cdots \\
p+\tau(q)
\end{array}\right)
$$

for $(\sigma, \tau) \varepsilon S_{p} \times S_{q}$. If $f_{t} \varepsilon C\left(S_{p}\right)^{\dagger}$ and $g_{s} \varepsilon C\left(S_{q}\right)$ are characteristic functions of the conjugacy class $\overline{\mathrm{t}}$ in S_{p} and the class $\overline{\mathrm{s}}$ in S_{q} respectively, then the characteristic function h of the conjugacy class $\overline{(t, s)}$ in $S_{p} x S_{q}$ is defined by

$$
h(\sigma, \tau)=f_{t}(\sigma) \cdot g_{s}(\tau) .
$$

For any G, the characteristic functions of the conjugacy classes of G form a base for $C_{R}(G)$; hence, we have an isomorphism

$$
\psi_{p, q}: \quad C\left(S_{p}\right) \otimes C\left(S_{q}\right) \rightarrow C\left(S_{p} \times S_{q}\right)
$$

Define $m_{p, q}: C\left(S_{p}\right) \otimes C\left(S_{p+q}\right) \rightarrow C\left(S_{p+q}\right)$ as the composite $i_{p, q}!\circ \psi_{p, q} \cdot$
A set or sequence $\pi=\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ of positive integers is said to be a partition of n (In notation, $\pi r n$), if their sum is n. An element σ in S_{n} is said to have shape π if the disjoint cycle decomposition of σ produces the partition π. A conjugacy class of S_{n} is said to have shape π if a representative has shape π. Let K_{π} be the characteristic function of the conjugacy class of shape π, then $\left\{K_{\pi} \mid \pi r n\right\}$ is a base for $C_{R}\left(S_{n}\right)$. If $\pi=\{n\}$, the shape of n-cycles, then $K_{\{n\}}$ will be denoted by c_{n}. If $\pi=\left\{1^{r} 1,2^{r_{2}}, \ldots, n^{r_{n}}, \pi\right.$! stands for $r_{1}!r_{2}$! $\ldots r_{n}!$ and $|\pi|=r_{1}!r_{2}!\ldots r_{n}!1^{r_{1}} 2^{r_{2}} \ldots n^{r_{n}}$. The number of elements in a conjugacy class of shape π is $n!/|\pi|$.

[^0]Proposition 1.1 Let

$$
\pi=\left\{1^{a} 1,2^{a} 2, \ldots, p^{a} p_{\} \vdash p}\right.
$$

and

$$
\sigma=\left\{1^{b}, 2^{b_{2}}, \ldots, q^{b} q_{\} \vdash q} .\right.
$$

The we obtain $K_{\pi} \cdot K_{\sigma}=(\pi v \sigma)!/ \pi!\sigma!$, where

$$
\pi v \sigma=\left\{1^{a} 1^{+b} 1,2^{a} 2^{+b} 2, \ldots\right\}
$$

Proof. For each $s \in S_{p+q}$, consider

$$
\begin{gathered}
\left(K_{\pi} \cdot K_{\sigma}\right)(s)=\left(\operatorname{Ind}_{S_{p} \times S_{q}}^{S_{p+q}} \psi \psi_{p, q}\left(K_{\pi} \otimes K_{\sigma}\right)\right)(s)= \\
\frac{1}{p!q!} \underset{t-1}{t \varepsilon S_{p t \varepsilon} S_{p} \times q} S_{q} \psi_{p, q}\left(K_{\pi} \otimes K_{\sigma}\right)(t-1 s t)
\end{gathered}
$$

If the shape of s is not $\pi v \sigma$, then $\left(K_{\pi} \cdot K_{\sigma}\right)(s)$ and $K_{\pi v \sigma}(s)$ are both 0 . When the shape of s is $\pi v \sigma$, the number of $t \varepsilon S_{p+q}$ such that

$$
\psi_{p, q}\left(K_{\pi} \otimes K_{\sigma}\right)\left(t-1_{s t}\right)=1
$$

is

$$
\frac{p!}{|\pi|} \frac{q!}{|\sigma|}|\pi v \sigma|=p!q!\frac{(\pi v \sigma)!}{\pi!\sigma!} \cdot
$$

This completes the proof.

$$
\text { Corollary } 1.2 \quad K_{\sigma} \cdot K_{\pi}=K_{\pi} \cdot K_{\sigma} \text { and }\left(K_{\pi} \cdot K_{\sigma}\right) \cdot K_{\nu}=
$$

$$
K_{\pi} \cdot\left(K_{\sigma} \cdot K_{\nu}\right) \text { for partitions } \sigma, \pi \text { and } \nu \text {. }
$$

Proof. The first equality is obvious. To prove the second, we consider

$$
\begin{gathered}
\left(K_{\pi} \cdot K_{\sigma}\right) \cdot K_{\nu}=\frac{(\pi v \sigma)!}{\pi!\sigma!} K_{\pi v \sigma} \cdot K_{\nu}=\frac{(\pi v \sigma)!}{\pi!\sigma!} \frac{(\pi v \sigma v \nu)!}{(\pi v \sigma)!\nu!} K_{\pi v \sigma v \nu}= \\
\frac{(\pi v \sigma v \nu)!}{\pi!\sigma!v!} K_{\pi v \sigma v \nu} \cdot
\end{gathered}
$$

Similarly, $K_{\pi} \cdot\left(K_{\sigma} \cdot K_{\nu}\right)$ is also equal to this expression. It follows that C_{R} is a graded commutative algebra with unit. Proposition 1.3 If c_{π} denotes $c_{1}{ }^{r_{1}} c_{2}{ }^{r_{2}} \ldots c_{n}{ }^{r} n$ for a partition $\pi=\left\{1^{r} 1,2^{r} 2, \ldots, n^{r} n_{\}}\right.$of n, then we obtain $c_{\pi}=\pi!K_{\pi}$. Proof. For i with $n \geqslant i \geqslant 1$, by Proposition 1.1

$$
\left.\begin{array}{c}
c_{i} r_{i}=c_{i} r_{i}-1 \\
\left.\cdot c_{i}=(r-1)!k_{\{i} r_{i}-1\right\} \\
\quad(r-1)!k_{\{i\}}= \\
\left(r_{i}-1\right)!1!
\end{array}{ }_{\{i} r_{i\}}=r_{i}!k_{\{i} r_{i}\right\} .
$$

$$
\text { If } i \neq j \text { and } n \geqslant i, j \geqslant 1
$$

$$
c_{i} r_{i} \cdot c_{j}{ }^{r_{j}}=r_{i}!r_{j}!k i_{\{i} r_{i\}}{ }_{\{j} r_{j\}}=r_{i}!r_{j}!k{ }_{\{i} r_{i}, j r_{j\}}
$$

This completes the proof.

Proposition 1.4 C_{F} is a polynomial algebra over F in an infinite number of variables $c_{1}, c_{2}, \ldots, c_{n}, \ldots$, where the degree of c_{n} is $2 n$. In notation,

$$
C_{F}=P_{F}\left[c_{1}, c_{2}, \ldots\right] .
$$

Proof. It is immediate from Proposition 1.3.
Proposition 1.4 is not true for the ring C_{Z}. Instead, we are going to see the algebra C_{Z} is a divided polynomial ring with generators C_{1}, $c_{2}, \ldots, c_{n}, \ldots$ By a divided polynomial ring $D[x]$ with one generator x of even degree, we mean a graded abelian group $\left\{Z x_{n} \mid n=0,1, \ldots, n\right.$, $\ldots\}$ with a base $x_{0}=1, x_{1}=x, x_{2}, \ldots, x_{n}, \ldots$, such that multiplication is given by

$$
x_{p} \cdot x_{q}=\frac{(p+q)!}{p!q!} x_{p+q} \cdot
$$

Then $x_{n}=n!x_{n}$. By abuse of language x is called a generator of the ring $D[x]$.

Proposition 1.5 The ring C_{Z} is isomorphic to the divided polynomial ring

$$
D\left[c_{1}, c_{2}, \ldots, c_{n}, \ldots\right]=\bigotimes_{n=1}^{\infty} D\left[c_{n}\right] .
$$

Proof. Consider a basis element

$$
b_{\pi}=\stackrel{\otimes}{\otimes=1} b_{i} \text { in } \underset{n=1}{\otimes} D\left[c_{n}\right] .
$$

Then there exists $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ such that $b_{i}=\left(c_{i}\right)^{r}{ }^{i}, \ldots$, $b_{i}=\left(c_{i_{k}}\right)^{r} k$ and $b_{i}=1$ otherwise. Defining $f: C_{Z} \rightarrow D\left[c_{1}, c_{2}, \ldots\right.$, $\left.c_{n}, \ldots\right]$ by $f\left(K_{\pi}\right)=b_{\pi}$ for $\pi=\left\{i_{1}{ }^{r_{1}}, i_{2}{ }^{r_{2}}, \ldots, i_{k}{ }^{r_{k}}\right.$, we obtain an isomorphism of graded abelian groups. To prove this is a ring isomorphism, we compute
$f\left(K_{\pi} \cdot K_{\sigma}\right)=\frac{(\pi v \sigma)!}{\pi!\sigma!} f\left(K_{\pi v \sigma}\right)=\frac{(\pi v \sigma)!}{\pi!\sigma!} b_{\pi v \sigma}=b_{\pi} \cdot b_{\sigma}=f\left(K_{\pi}\right) \cdot f\left(K_{\sigma}\right)$.

Hence the proof is complete.
Let $\alpha_{n}=\sum_{\pi r n} \operatorname{sgn} \pi K_{\pi}$, where $\operatorname{sgn} \pi$ denotes the sign of the permutation π. Also, let us consider $B_{n}=\sum_{\pi r-n} K_{\pi}$ and $\gamma_{n}=n c_{n}$. Then it is obvious that $C_{F}=P_{F}\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \ldots\right]$. In a later section we shall show that $C_{F}=P_{F}\left[\alpha_{1}, \ldots, \alpha_{n}, \ldots\right]=P_{F}\left[\beta_{1}, \ldots, \beta_{n}, \ldots\right]$ is also true.

We are now going to show that C_{R} is a graded Hopf algebra. Explicitly, we construct algebra homomorphisms $\Delta: C_{R} \rightarrow C_{R} \otimes C_{R}$ and $\varepsilon: C_{R} \rightarrow R$ which along with multiplication and the unit map $n: R \rightarrow C_{R}$ satisfy the following properties:

1. Δ is coassociative. This means the following diagram commutes,

2. The counit map ε satisfies the following commutative diagram,

We first define $\Delta_{p, q}: \quad C_{R}\left(S_{n}\right) \rightarrow C_{R}\left(S_{p}\right) \otimes C_{R}\left(S_{q}\right)$ for each p, q with $p+q=n$ to be the composition $p-1 p, q \circ \operatorname{Res}_{S_{p}}^{S_{n}} S_{q}$. We then define $\Delta_{n}: C_{R}\left(S_{n}\right) \rightarrow \sum C_{R}\left(S_{p}\right) \otimes C_{R}\left(S_{q}\right)$ by $\Delta_{n}=\underset{p+q=n}{\sum} \Delta_{p, q}$. Define the map $\varepsilon: \quad C_{R} \rightarrow R$ by projection of C_{R} onto $C_{R}\left(S_{O}\right)$.

Proposition 1.6 For each $\pi-n$,

$$
\Delta_{n}\left(K_{\pi}\right)=\sum_{\sigma V V=\pi} K_{\sigma} \otimes K_{V} .
$$

Proof. Res $S_{S_{n}} \times S_{q}$ takes value 1 on conjugacy classes with shape π in the canonically embedded subgroup $S_{p} \times S_{q}$ of S_{n} and takes the value 0 otherwise. A pair (s, t) in $S_{p} x S_{q}$ with s and t having shape σ and v respectively is embedded by $i_{p, q}$ as an element with shape ovv, and conversely. Hence the proof is complete.

The coassociativity and the counit conditions for a coalgebra follow from Proposition 1.5, because

$$
\begin{aligned}
(1 \otimes \Delta) \Delta\left(K_{\pi}\right)= & \underset{\rho v \rho^{\prime} v_{\rho} "=\pi}{\sum} K_{\rho} \otimes K_{\rho}{ }^{\prime} \otimes K_{\rho \prime \prime}=(\Delta \otimes 1) \Delta\left(K_{\pi}\right), \\
& (1 \otimes \equiv) \Delta\left(K_{\pi}\right)=K_{\pi} \otimes 1,
\end{aligned}
$$

and

$$
(\varepsilon \otimes 1) \Delta\left(K_{\pi}\right)=1 \otimes K_{\pi} .
$$

It follows that C_{R} is a coalgebra with respect to the comultiplication Δ and the counit ε. We now show that Δ is an algebra homomorphism. Consider

$$
\Delta\left(K_{\pi} \cdot K_{\sigma}\right)=\frac{(\pi v \sigma)!}{\pi!\sigma!}{ }_{\rho v \rho^{\prime}=\pi v \sigma}^{\Sigma} K_{0} \times K_{\rho}^{\prime}
$$

and

$$
\begin{gathered}
\Delta\left(K_{\pi}\right) \Delta\left(K_{\sigma}\right)=\left(\sum_{\alpha \vee \alpha^{\prime}=\pi}^{\sum} K_{\alpha} \otimes K_{\alpha^{\prime}}\right)\left(\sum_{\beta \vee \beta^{\prime}=\sigma}^{\sum} K_{\beta} \otimes K_{\beta}{ }^{\prime}\right)= \\
\sum_{\substack{\alpha \vee \alpha^{\prime}=\pi \\
\beta \vee \beta^{\prime}=\sigma}} \frac{(\alpha \vee \beta)!}{\alpha!\beta!} \frac{\left(\alpha^{\prime} \beta^{\prime}\right)!}{\alpha^{\prime}!\beta^{\prime}!} K_{\alpha v \beta} \otimes K_{\alpha \alpha^{\prime} v \beta^{\prime}}=\frac{(\pi v \sigma)!}{\pi!\sigma!}{ }_{\rho v \rho^{\prime}=\pi v \sigma}^{\Sigma} K_{\rho} \otimes K_{\rho} \prime^{\prime} \cdot
\end{gathered}
$$

Hence, we indeed have

$$
\Delta\left(K_{\pi} \cdot K_{\sigma}\right)=\Delta\left(K_{\pi}\right) \cdot \Delta\left(K_{\sigma}\right) .
$$

Since it is trivially verified that ε is an algebra homomorphisin, we have proved

Prodosition 1.7 C_{R} is a Hopf aigebra.
This fact is known. For example, see Geissinger [3].

Theorem 1.8 C_{F} is a polynomial Hopf algebra in variables
$c_{1}, c_{2}, \ldots, c_{n}, \ldots$ or in variables $r_{1}, r_{2}, \ldots, r_{n}, \ldots . c_{Z}$ is a divided polynomial Hopf algebra $D\left[c_{1}, c_{2}, \ldots, c_{n}, \ldots\right]$.

As a matter of fact, C_{F} is a polynomial Hopf algebra if F is a field of characteristic 0.

Before closing the present section, we evaiuate $\Delta\left(a_{n}\right)$ and $\Delta\left(3_{n}\right)$.

$$
\begin{aligned}
& \Delta\left(a_{n}\right)=\sum_{\pi \vdash n} \operatorname{sgn} \pi \Delta\left(K_{\pi}\right)=\sum_{\pi-n} \operatorname{sgn} \pi\left(\sum_{\rho \vee \rho} \sum_{i=\pi} K_{\rho} \otimes K_{\rho}{ }^{\prime}\right)= \\
& \sum_{i+j=n} \operatorname{sgn}\left(\rho v_{0}{ }^{\prime}\right) K_{\rho} \otimes K_{\rho}{ }^{\prime}=\sum_{i+j=n}\left(\sum_{\rho-i} s g n_{\rho} K_{\rho}\right) \otimes \\
& \text { م成 } \\
& \text { or-j } \\
& \left(\underset{\rho p^{\prime} \dot{j}}{\Sigma} \text { sgno }^{\prime} K_{\rho}{ }^{\prime}\right)=\underset{i+j=n}{\Sigma} a_{i} \otimes a_{j} .
\end{aligned}
$$

Similarly, we obtain

$$
\Delta\left(\beta_{n}\right)=\sum_{i+j=n} \beta_{i} \otimes \beta_{j}
$$

and

$$
\Delta\left(\gamma_{n}\right)=1 \otimes \gamma_{n}+\gamma_{n} \otimes 1 .
$$

```
SELF-DUALITY
```

By the usual inner product

$$
\langle f, g\rangle=\frac{1}{n!} \sum_{t \varepsilon S_{n}}^{\Sigma} f(t) \overline{g(t)}
$$

for $\mathrm{f}, \mathrm{g} \varepsilon \mathrm{C}_{\mathrm{F}}\left(\mathrm{S}_{\mathrm{n}}\right)$, the vector space $\mathrm{C}_{\mathrm{F}}\left(\mathrm{S}_{\mathrm{n}}\right)$ becomes an inner product space over F. An immediate consequence of Schur's Lemma [9] is that the characters of the irreducible representations of S_{n} form an orthogonal basis for $C_{F}\left(S_{n}\right)$. Furthermore, the Frobenius reciprocity theorem shows that for any subgroup H in S_{n} and for $f \varepsilon C_{F}\left(S_{n}\right)$ and $g \varepsilon C_{F}(H)$,

$$
\left\langle\operatorname{Res}_{H}^{S}{ }_{n} f, g\right\rangle=\left\langle f, \operatorname{Ind}_{H} S_{n} g\right\rangle
$$

where, of course, the inner product on the left is on $C_{R}(H)$. If a bilinear form β is defined on C_{F} by the orthogonal sum such that for $f \varepsilon$ $C_{F}\left(S_{p}\right)$ and $g \varepsilon C_{F}\left(S_{q}\right)$

$$
\beta(f, g)=\left\{\begin{array}{l}
0 \text { if } p \neq q \\
\langle f, g\rangle \text { if } p=q
\end{array}\right.
$$

then the graded vector space of finite type C_{F} becomes an inner product space. It is obvious that β induces a vector space isomorphism $\lambda: C_{F} \rightarrow$ $C_{F}{ }^{*}$ by the map $\lambda(f)=\beta(f$,$) for f \varepsilon C_{F}$. Since C_{F} is a Hopf algebra,
its dual $C_{F}{ }^{*}$ is also a Hopf algebra with multiplication Δ^{*} and comultiplication m^{*} if $C_{F}{ }^{*} \otimes C_{F}{ }^{*}$ is identified with $\left(C_{F} \otimes C_{F}\right)^{*}$. We are going to see that λ preserves multiplication and comultiplication, so that λ is a Hopf algebra isomorphism.

Proposition $2.1 \beta(\Delta(f), g \otimes h)=\beta(f, m(g \otimes h))$ for all f,g, and h in C_{F}.

Proof. Let $g \in C\left(S_{p}\right), h \varepsilon C\left(S_{q}\right)$, and $f \varepsilon C\left(S_{n}\right)$ with $n=p+q$. Since Ψ_{p}, q preserves inner products and since the Frobenius reciprocity holds true for $S_{p} \times S_{q}$ in S_{n}, we obtain

$$
\begin{gathered}
\langle\Delta(f), g \otimes h\rangle= \\
\left\langle\Psi-1 p, q \operatorname{Res}_{S_{p} \times S_{q}} f, g \otimes h\right\rangle= \\
\left\langle f, \text { Ind }_{S_{n}} \times S_{q} \Psi p, q(g \otimes h)\right\rangle= \\
\langle f, m(g \otimes h)\rangle .
\end{gathered}
$$

Since β is the orthogonal sum of inner products, the proof is complete.

Proposition $2.2 \lambda(m(f \otimes g))=\Delta^{*}(\lambda(f) \otimes \lambda(g))$
and $(\lambda \otimes \lambda)(\Delta(f))=m^{*} \lambda(f)$ for $f, g \varepsilon C_{F}$. Thus, $\lambda: C_{F} \rightarrow C_{F}{ }^{*}$ is a Hopf algebra isomorphism.

Proof. First observe that, if we identify $R \otimes R$ with R, we obtain

$$
(\lambda(f) \otimes \lambda(g))(a \otimes b)=\lambda(f)(a) \cdot \lambda(g)(b)=\langle f, a\rangle\langle g, b\rangle=
$$

Then we have

$$
\begin{aligned}
& \Delta^{*}(\lambda(f) \otimes \lambda(g))(h)=(\lambda(f) \otimes \lambda(g))(\Delta h)= \\
& \langle f \otimes g, \Delta h\rangle=\langle m(f \otimes g), h\rangle=\lambda(m(f \otimes g))(h) .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
m^{\star}[\lambda(f)(h \otimes k)=\lambda(f)(m(h \otimes k))=\langle f, m(h \otimes k)\rangle= \\
\langle\Delta f, h \otimes k\rangle=((\lambda \otimes \lambda)(\Delta(f)))(h \otimes k) .
\end{gathered}
$$

This completes the proof.
Since the cardinality of a conjugacy class of shape π is $\frac{n!}{|\pi|}$, we have

$$
\begin{align*}
& \left\langle K_{\pi}, K_{\pi}^{\prime}\right\rangle=\frac{1}{n!} \sum_{\varepsilon \varepsilon S_{n}} K_{\pi}(t) K_{\pi^{\prime}}^{\prime}(t)= \\
& \left\{\begin{array}{l}
0 \text { if } \pi \neq \pi^{\prime} \\
\frac{1}{\pi} \text { if } \pi=\pi^{\prime}
\end{array}\right. \tag{2.1}
\end{align*}
$$

For the base $\left\{\gamma_{\pi} \mid \pi \vdash n\right\}$ of $C_{F}\left(S_{n}\right)$, we obtain

$$
\left\langle\gamma_{\pi}, \gamma_{\pi}^{\prime}\right\rangle=\langle | \pi\left|K_{\pi},\left|\pi^{\prime}\right| K_{\pi^{\prime}}\right\rangle=\left\{\begin{array}{l}
0 \text { if } \pi \neq \pi^{\prime} \\
|\pi| \text { if } \pi=\pi^{\prime}
\end{array}\right.
$$

It follows that $\left\{\gamma_{\pi}\right\}$ is an orthogonal base. Since

$$
\lambda\left(\gamma_{n}\right)\left(K_{\pi}\right)=\left\langle\gamma_{n}, K_{\pi}\right\rangle=\left\{\begin{array}{l}
0 \text { if } \pi \neq\{n\} . \tag{2.2}\\
1 \text { if } \pi=n
\end{array}\right.
$$

$\lambda\left(\gamma_{n}\right)$ maps $K_{\{n\}}$ of n cycles into 1 and the other characteristic functions into 0 . Atiyah denotes $\lambda\left(\gamma_{n}\right)$ by Ψ_{n}; thus, we have

Proposition 2.3 The isomorphism $\lambda: C_{F} \rightarrow C_{F}{ }^{*}$ maps γ_{n} into Ψ_{n}. Hence $C_{F}{ }^{*}=P_{F}\left[\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}, \ldots\right]$.

Theorem 2.4 Let $\alpha_{n}=\underset{\pi r-n}{\sum} \operatorname{sgn\pi } K_{\pi}$ and $\gamma_{n}=n K_{\{n\}}$. Then we obtain Newton's formula,

$$
\begin{equation*}
\gamma_{n}-\alpha_{1} \gamma_{n-1}+\alpha_{2} \gamma_{n-2}-\ldots+(-1)^{n-1} \alpha_{n-1} \gamma_{1}+(-1)^{n} n_{n}=0 . \tag{2.3}
\end{equation*}
$$

Proof. Denote the left-hand side of equation 2.3 by $N(\gamma, \alpha)$. If $\lambda(N(\gamma, \alpha))\left(K_{\pi}\right)=\left\langle N(\gamma, \alpha), K_{\pi}\right\rangle=0$ for all $\pi+n$, then we must have $N(\gamma, \alpha)=0$.

Consider

$$
\begin{gathered}
\left\langle(-1)^{n-i} \alpha_{n-i} \gamma_{i}, k_{\pi}\right\rangle=(-1)^{n-i}\left\langle\alpha_{n-i} \otimes \gamma_{i}, \Delta\left(K_{\pi}\right)\right\rangle= \\
(-1)^{n-i} \rho v_{\rho} \rho^{\Sigma}=\pi\left\langle\alpha_{n-i}, K_{\rho}\right\rangle\left\langle\gamma_{i}, k_{\rho},\right\rangle .
\end{gathered}
$$

If π does not contain i as a member, then $\left\langle\gamma_{i}, K_{\rho}{ }^{\prime}\right\rangle=0$ for any $\rho{ }^{\prime}$ by (2.2). Hence $\left\langle(-1)^{n-1_{a_{n-i}}}, k_{\pi}\right\rangle=0$ for $i \neq i_{1}, i_{2}, \ldots, i_{p}$ if $\pi=\left\{i_{1}{ }^{r_{1}}\right.$ $i_{2}{ }^{r}{ }^{2}, \ldots, i_{p}{ }^{r_{p}}$. By removing i_{k} from π we obtain a partition $\left\{i_{1}{ }^{r_{1}}, \ldots, i_{k}{ }^{r_{k}-1}, \ldots, i_{p}{ }^{r_{p}}\right.$ which will be denoted by $\pi \wedge\left\{i_{k}\right\}$. Then we get

$$
\begin{gathered}
\left\langle(-1)^{n-i_{k}} \alpha_{n-i_{k}} \gamma_{k}, k_{\pi}\right\rangle=(-1)^{n-i_{k}}\left\langle\alpha_{n-i_{k}}, K_{\left.\pi \wedge\left\{i_{k}\right\}\right\rangle=}\right. \\
\left.(-1)^{n-i_{k}}<{\underset{\pi}{ }{ }^{\prime} \vdash n-i_{k}}_{\sum} \operatorname{sgn} \pi^{\prime} K_{\pi}, k_{\pi \wedge\left\{i_{k}\right\}}\right\rangle=(-1)^{n-i_{k}} \operatorname{sgn}\left(\pi \wedge\left\{i_{k}\right\}\right) \frac{1}{\left|\pi \wedge\left\{i_{k}\right\}\right|} \cdot
\end{gathered}
$$

Since

$$
\operatorname{sgn}\left(\pi \wedge\left\{i_{k}\right\}\right)=(\operatorname{sgn} \pi)(-1)^{i_{k}+1}
$$

and

$$
\left|\pi \wedge\left\{i_{k}\right\}\right|=\frac{|\pi|}{r_{k} i_{k}}
$$

we obtain

$$
\left\langle(-1)^{n-i_{k}} \alpha^{n-i_{k}} \gamma_{i_{k}}, k_{\pi}\right\rangle=(-1)^{n+1}(\operatorname{sgn} \pi) \frac{r_{k} i_{k}}{|\pi|} .
$$

Hence,

$$
\begin{aligned}
\left\langle N(\alpha, \gamma), K_{\pi}\right\rangle & =\sum_{k=1}^{p}(-1)^{n+1} \operatorname{sgn} \pi \frac{r_{k} i_{k}}{|\pi|}+(-1)^{n_{n}}\left\langle\alpha_{n}, K_{\pi}\right\rangle \\
& =(-1)^{n+1} \operatorname{sgn} \pi \sum_{k=1}^{p} \frac{r_{k} i_{k}}{|\pi|}+(-1)^{n_{n}} \operatorname{sgn} \pi \frac{1}{|\pi|} \\
& =(-1)^{n+1} \operatorname{sgn} \pi \frac{n}{|\pi|}+(-1)^{n} \operatorname{sgn} \pi \frac{n}{|\pi|}=0 .
\end{aligned}
$$

This completes the proof.
Solving a system of linear equations with respect to $\gamma 1, \ldots, \gamma n$, we obtain $\gamma_{n}=Q_{n}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, which is the well-known nth Newton polynomial. Solving the system with respect to $\alpha 1, \ldots, \alpha_{n}$, we also have $\alpha_{n}=\bar{Q}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ over F.

Corollary 2.5 (Girard's Formula)

$$
\begin{gathered}
\gamma_{n}=(-1)^{n} n \underset{\pi r n}{\sum}(-1)^{r_{1}}+r_{2}+\ldots+r_{n} \frac{\left(r_{1}+\ldots+r_{n}-1\right)!}{r_{1!} \ldots r_{n}!} \alpha_{\pi} \\
\pi=\left\{1^{r_{1}}, 2^{r_{2}}, \ldots . n^{r_{n}}\right\}
\end{gathered}
$$

where $\alpha_{\pi}=\alpha_{1}{ }^{r_{1}} \alpha_{2}{ }^{r_{2}} \ldots \alpha_{n}{ }^{r_{n}}$.

Proof. It is an immediate consequence of the fact that
$\gamma_{n}=Q_{n}\left(\alpha_{1}, \ldots \alpha_{n}\right)$. (See, for example, p. 195, [8]). Similarly we may prove

Proposition 2.6

$$
\gamma_{n}=(-1) n_{\pi \vdash n}(-1) r_{1}+r_{2}+\ldots+r_{n} \frac{\left(r_{1}+r_{2}+\ldots r_{n-1}\right)!}{r_{1}!r_{2}!\ldots r_{n}!} \beta_{\pi}
$$

and also

$$
\beta_{n}=W_{n}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \text { over } F .
$$

CHAPTER III

FROBENUIS' FUNDAMENTAL THEOREM

Let $H_{n, k}$ be the R-module of symmetric functions of degree k in n variables $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in R. Let $\pi_{m}^{n}: H_{n, k} \rightarrow H_{m, k}$ for non-negative integers n, m with $n \geqslant m$, be defined by

$$
\pi_{m}^{n}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)
$$

Since $\pi_{m}^{n} \circ \pi_{p}^{m}={ }^{n}$ n for all integers $n \geqslant m \geqslant p$, we have an inverse system of R-modules $\left\{H_{n, k}: \pi_{m}^{n}\right\}$. Let $a_{n, k}, h_{n, k}$, and $s_{n, k}$ be the kth elementary, homogeneous, power, and symmetric functions in n variables. To be precise,

$$
\begin{aligned}
& a_{n, k}={ }_{i \leqslant i_{1}<i_{2}<\ldots<i_{k} \leqslant n}^{\Sigma}{ }^{x_{i_{1}}} x_{i_{2}} \cdots x_{i_{k}} \\
& n_{n, k}={ }_{1 \leqslant i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{k} \leqslant n}^{\Sigma} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \\
& s_{n, k}=x_{1}^{k}+x_{2}^{k}+\ldots+x_{n}{ }^{k} .
\end{aligned}
$$

The inverse limits of these functions under $\pi_{n, k}$ are denoted by a_{k}, h_{k}, and s_{k} respectively and are called the k-th elementary, homogeneous, and power symmetric functions in infinite variables $x_{1}, x_{2}, \ldots, x_{n}, \ldots$. The graded R-module $H_{R}=\{H, k \mid k=0,1,2, \ldots\}$ forms an R-algebra by defining

$$
\begin{equation*}
\pi_{n, p+q}(f \cdot g)=\pi_{n, p}(f) \cdot \pi_{n, q} \tag{g}
\end{equation*}
$$

for $f \varepsilon H, p$ and $g \varepsilon H, q$. It is well known [3][4] that H_{R} is a polynomial Hopf algebra $P_{R}\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]=P_{R}\left[h_{1}, h_{2}, \ldots, h_{n}, \ldots\right]$ if we define comultiplication by $\Delta\left(a_{n}\right)=\underset{i+j=n}{\sum} a_{i} \otimes a_{j}$ and define the obvious counit. When $R=F$, then H_{F} is known to form $P_{F}\left[s_{1}, \ldots, s_{n}, \ldots\right]$ with $\Delta\left(s_{n}\right)=1 \otimes s_{n}+s_{n} \otimes 1$.

In this section we shall study the fundamental theorem due to Frobenious by bridging between C_{F} and H_{F} rather than between the representation algebra R_{F} and H_{F}. Our approach hardly employs representation theoretic arguments.

Theorem 3.1 The map $T: \quad C_{F} \rightarrow H_{F}$ defined by $T\left(\gamma_{m}\right)=s_{m}$ is a Hopf algebra isomorphism such that $T\left(\alpha_{\pi}\right)=a_{\pi}$ and $T\left(\beta_{\pi}\right)=h_{\pi}$.

Proof. From Theorem 1.8, $C_{F}=P_{F}\left[\gamma_{1}, \ldots, \gamma_{n}, \ldots\right]$ with $\Delta\left(\gamma_{n}\right)=1 \otimes \gamma_{n}+\gamma_{n} \otimes 1$. Hence T is a Hopf algebra isomorphism. In virtue of Corollary 2.5, $T\left(\alpha_{n}\right)=T\left(\bar{Q}\left(\gamma_{1}, \ldots, \gamma_{n}\right)\right)=\bar{Q}\left(T\left(\gamma_{1}\right), \ldots\right.$, $\left.T\left(\gamma_{n}\right)\right)=Q\left(s_{1}, \ldots, s_{n}\right)=a_{n}$. Similarly, $T\left(\beta_{n}\right)=h_{n}$. For any $\pi=\left\{1^{r_{1}}, \ldots, n^{r_{n}}\right\} \vdash n, T\left(\alpha_{\pi}\right)=T\left(\alpha_{1} r_{1}, \ldots, \alpha_{n}{ }^{r}{ }_{n}\right)=T\left(\alpha_{1}\right)^{r_{1}} \ldots T\left(\alpha_{n}\right)^{r} n^{n}=$ $a_{1}{ }^{r_{1}} \ldots a_{n}{ }^{r}{ }_{n}=a_{\pi}$. The same is true with $T\left(\beta_{\pi}\right)=h_{\pi}$. This completes the proof.

Corollary $3.2 \quad C_{F}=P_{F}\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right]=$ $P_{F}\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n}, \ldots\right]$.

Proof. It is evident from Theorem 3.1. Let $R_{F}\left(S_{n}\right)$ be the F-vector space of complex representations of S_{n}, then it is well known [9] that the character map $x: R_{F}\left(S_{n}\right) \rightarrow C_{F}\left(S_{n}\right)$ is an isomorphism.

As in the case of C_{F}, we define $m_{p, q}: \quad R_{F}\left(S_{p}\right) \otimes R_{F}\left(S_{q}\right) \rightarrow R_{F}\left(S_{p+q}\right)$
and $\Delta_{n}: \quad R_{F}\left(S_{n}\right) \rightarrow \sum_{p+q=n}^{\sum} R_{F}\left(S_{p}\right) \otimes R_{F}\left(S_{q}\right)$ by Ind $\underset{S_{p} \times S_{q}}{S_{p+q}} \quad \circ \psi_{p, q}$ and $\underset{p+q=n}{\sum}$ $\psi^{-1}, q \circ \operatorname{Res}_{S_{p} x S_{q}}^{S_{n}}$ respectively. Since x commutes with $\psi_{p, q}$, $\underset{S_{p} \times S_{q}}{S_{n}}$, and Res ${ }_{S_{p} \times S_{q}}^{S_{n}}$, x defines a graded Hopf algebra isomorphism from $R_{F}=\left\{R_{F}\left(S_{n}\right)\right\}$ to C_{F}.

For each partition $\pi=\left\{1^{r} 1,2^{r} 2, \ldots, n^{r} n\right\}$ of n, let S_{π} stand for the subgroup S_{π} of S_{n},

$$
s_{\pi}=\frac{r_{1}}{s_{1} \times \ldots \times s_{1}} \times \frac{r_{2}}{s_{2} \times \ldots \times s_{2}} \times \ldots \times \frac{r_{3}}{s_{n} \times \ldots \times s_{n}}
$$

Then the trivial representation ${ }^{1} S_{\pi}$ and the sign representation Alt S_{π} are both well known one dimensional irreducible representations of S_{π}. We denote the induced representations by $\rho_{\pi}=\operatorname{Ind}{ }_{S_{\pi}}^{S_{n}} 1_{S_{\pi}}$ and $n_{\pi}=$ Ind $_{S_{\pi}}^{S_{n}}$ Alt S_{π}. If ρ_{n} and n_{n} devote $\rho\{n\}$ and $\eta_{\{n\}}$, then by definition $x\left(\rho_{n}\right)=\beta_{n}$ and $x\left(n_{n}\right)=\alpha_{n}$.

Proposition $3.3 \mathrm{x}: R_{F} \rightarrow C_{F}$ is a Hopf algebra isomorphism such that $x\left(\rho_{\pi}\right)=\beta_{\pi}$ and $x\left(n_{\pi}\right)=\alpha_{\pi}$.

Proof. Let $\pi=\left\{t_{1}, t_{2}, \ldots, t_{u}\right\}+n$. We check that $\rho_{\pi}=\rho t_{1} \rho t_{2}$... ρt_{u} by induction on u. This is trivial if $u=1$. Assume that the hypothesis is true for all $u<m$ and let

$$
\pi=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\} r n, p=t_{1}+t_{2}+\ldots+t_{m-1}
$$

and

$$
\pi^{\prime}=\pi \wedge\left\{t_{m}\right\} r p .
$$

Then, we have

$$
\begin{aligned}
& \left(\rho t_{1} \rho t_{2} \cdots \rho t_{m-1}\right) \rho t_{m}=\rho_{\pi}^{\prime} \cdot \rho t_{m}= \\
& { }^{\text {Ind }} \underset{S_{p} x S_{t_{m}}}{S_{n}} \quad \circ \psi p, t_{m}\left(\rho_{\pi}^{\prime} \otimes \rho t_{m}\right)= \\
& \operatorname{Ind}_{S_{p} \times S_{t_{m}}}^{S_{n}} \quad\left(\operatorname{Ind}_{S_{m}}^{S_{p}} 1_{S_{\pi}} \otimes 1_{S_{t_{m}}}\right)= \\
& \operatorname{Ind} S_{S_{p} \times S_{t_{m}}} \quad \text { (Ind } S_{S_{\pi}}{ }_{p} \times S_{t_{m}} 1_{S_{\pi}} \text {) }= \\
& \operatorname{Ind} S_{\pi}^{S_{n}} 1_{S_{\pi}}=\rho_{\pi} .
\end{aligned}
$$

Similarly, $n_{\pi}=n_{t} n_{t} \ldots n_{m}$. This completes the proof.

Defining $F: R_{F} \rightarrow H_{F}$ by the composite $T \circ X$, we obtain the fundamental theorem.

Proposition 3.4 The Frobenius isomorphism $F: R_{F} \rightarrow H_{F}$ maps F-basis elements ρ_{π} into h_{π} and η_{π} into a_{π}.

CHAPTER IV

LIULEVICIUS' SELF-DUALITY AND ATIYAH'S Δ^{\prime}

Let $\left\{V_{\pi}\right\}$ be the base consisting of the irreducible representations of S_{n} and let $\left\langle V_{\pi}, V_{\pi}{ }^{\prime}\right\rangle=\delta_{\pi, \pi}{ }^{\prime}$. It is well known that the character isomorphism $x: R_{F} \rightarrow C_{F}$ preserves inner products. Then an isomorphism $\mu: R_{F} \rightarrow R_{F}^{*}$ with a commutative diagram

is evidently obtained by $\mu([M])([N])=\langle M, N\rangle$ for any representations M and N of symmetric groups. This comes from the verification that $\left(x^{*} \lambda x([M])([N])\right)=\left(\lambda\left(X_{M}\right)\right)\left(X_{N}\right)=\left\langle X_{M}, X_{N}\right\rangle=\langle M, N\rangle$. Atiyah [1] denotes σ_{n} and λ_{n} elements in R_{F} satisfying

$$
\sigma_{n}\left(\left[V_{\pi}\right]\right)=\left\{\begin{array}{l}
1 \text { if } V_{\pi}=1 S_{n} \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
\lambda_{n}\left(\left[V_{\pi}\right]\right)=\left\{\begin{array}{l}
1 \text { if } V_{\pi}=A l t S_{n} \\
0 \text { otherwise }
\end{array}\right.
$$

Proposition $4.1 \mu: R_{F} \rightarrow R_{F}{ }^{*}$ is a Hopf algebra isomorphism such that $\mu\left(p_{n}\right)=\sigma_{n}$ and $\mu\left(n_{n}\right)=\lambda_{n}$. Hence $R_{F}^{*}=P_{F}\left[\rho_{1}, \ldots, \rho_{n}, \ldots\right]=$ $P_{F}\left[\lambda_{1}, \ldots, \lambda_{n}, \ldots\right]$.

Proof. $\mu\left(\rho_{n}\right)\left(\left[V_{\pi}\right]\right)=\left\langle 1_{S_{n}}, V_{\pi}\right\rangle=\left\{\begin{array}{l}1 \text { if } V_{\pi}=1_{S_{n}}, \\ 0 \text { otherwise. }\end{array}\right.$

Thus $\mu\left(\rho_{n}\right)=\sigma_{n}$. Similarly, $\mu\left(\eta_{n}\right)=\lambda_{n}$. This completes the proof.

Consider the diagram

where Δ^{\prime} is Atiyah's isomorphism (Proposition 1.2 and Corollary 1.3 in [1]). Then the diagram commutes, because $\Delta^{\prime} \mu\left(n_{n}\right)=\Delta^{\prime}\left(\lambda_{n}\right)=a_{n}$ from Proposition 4.1.

Corollary 4.2 The Frobenius map F satisfies $F=T X=\Delta^{\prime} \mu$.
Consider the element $\left(\alpha_{1}{ }^{n}\right)^{*}$ in C_{F}^{*} which maps $\alpha_{1}{ }^{n}$ into 1 and α_{π} into 0 if $\pi \neq\left\{1^{n}\right\}$. Then we obtain

$$
\frac{\text { Proposition } 4.3}{\left(\beta_{1}^{n}\right)^{*}} \lambda: \quad C_{F} \rightarrow C_{F}^{*} \text { maps } \beta_{n} \text { into }\left(\alpha_{1}^{n}\right)^{*} \text { and } \alpha_{n} \text { into }
$$

Proof. Observe that

$$
\lambda\left(\beta_{n}\right)\left(\alpha_{1}^{n}\right)=\left\langle\sum_{\pi \vdash n} k_{\pi}, n!k_{\left\{1^{n\}}\right.}\right\rangle=n!\left\langle k_{\left\{1^{n}\right\}}, k_{\left\{1^{n}\right\}}\right\rangle=\frac{n!}{n!}=1
$$

from (2.3). For $\pi=\left\{1^{r} 1,2^{r_{2}}, \ldots, n^{r_{n}}\right.$ with $n>r_{1}>0$,

$$
\left\langle\beta_{n}, \alpha_{\pi}\right\rangle=\left\langle\beta_{n}, \alpha_{1}{ }^{r} \alpha_{\pi} \alpha^{\prime}\right\rangle=\left\langle\Delta\left(\beta_{n}\right), \alpha_{1}{ }^{r} 1 \otimes \alpha_{\pi}{ }^{\prime}\right\rangle
$$

by Proposition 2.1, and

$$
\begin{aligned}
& =\left\langle\beta_{r_{1}} \otimes \beta_{n-r_{1}}, \alpha_{1}^{r}{ }^{r} \otimes \alpha_{\pi}^{\prime}\right\rangle \\
& =\left\langle\beta_{1}, \alpha_{1}^{r} l^{1}\right\rangle\left\langle\beta_{n-r_{1}}, \alpha_{\pi}^{\prime}\right\rangle \\
& =0
\end{aligned}
$$

by induction on n, because $\pi=\left\{1^{r}\right\} \vee \pi^{\prime}$, and π^{\prime} does not contain 1 . If π has the property $r_{1}=0$ and is not $\{n\}$, then $\left\langle\beta_{n}, \alpha_{\pi}\right\rangle=0$ can again be proved by induction on n as before. Finally, if $\pi=\{n\}$, then $\left\langle\beta_{r_{1}}, \alpha_{\pi}\right\rangle$ $=\left\langle\right.$ Alt $\left.S_{n}, 1_{S_{n}}\right\rangle=0$ because Alt S_{n} and $1_{S_{n}}$ are irreducible. This proves the following proposition.

Proposition 4.4 The map $\ell: C_{F} \rightarrow C_{F}^{*}$ defined by $\ell\left(\alpha_{n}\right)=\left(\alpha_{1}{ }^{n}\right)^{*}$ is the C_{F}-version of the Liulevicius Hopf algebra isomorphism [7].

Proof. By Corollary 3.2, $\psi: \quad C_{F} \rightarrow C_{F}$ defined by $\psi\left(\alpha_{n}\right)=\beta_{n}$ is an isomorphism, hence $\ell=\lambda \circ \psi$ is an isomorphism. If ℓ is translated via $T: \quad C_{F} \rightarrow H_{F}$, the Liulevicius isomorphism maps a_{n} into $\left(a_{1}{ }^{n}\right)^{*}$. This completes the proof.

CHAPTER V

ATIYAH'S Δ ' AND DOUB ILET'S FORGOTTEN

SYMMETRIC FUNCTIONS

Atiyah (Corollary 1.4, [1]) shows that when $\Delta_{n, k}=\Sigma b_{i} \otimes \xi_{j}$ $\varepsilon R\left(S_{n}\right) \otimes H_{n, k}$ for $n \geqslant k$, then $\left\{b_{j}\right\}$ and $\left\{\xi_{j}\right\}$ are "dual bases" to each other. The following proposition states how the $\mathrm{b}_{\boldsymbol{j}}$ determine the $\xi_{\boldsymbol{j}}$ and vice versa.

Proposition 5.1 Given bases $\left\{b_{j}\right\}$ for $R_{F}\left(S_{k}\right)$ and $\left\{\xi_{j}\right\}$ for H, k. Then $\Delta, k=\Sigma b_{i} \otimes \xi_{j}$ if and only if $\left\langle b_{i}, F-1\left(\xi_{j}\right)\right\rangle=\delta_{i j}$, where F is the Frobenius map and $\delta_{i j}$ denotes the Kronecker delta.

Proof. Let $F\left(v_{j}\right)=\xi_{j}$. Then we obtain

$$
\begin{aligned}
F\left(\nu_{j}\right) & =\Delta^{\prime} \mu\left(\nu_{j}\right) \text { from Corollary } 4.2 \\
& =\underset{i}{\sum_{i}} \mu\left(\nu_{j}\right)\left(b_{i}\right) \xi_{i} \text { by definition of } \Delta^{\prime} \\
& =\underset{i}{\sum_{i}\left\langle v_{j}, b_{i}\right\rangle \xi_{i}} \\
& =\underset{i}{\sum_{i}}\left\langle b_{i}, F^{-1}\left(\xi_{j}\right)\right\rangle \xi_{i}=\xi_{j}
\end{aligned}
$$

if and only if $\left\langle b_{i}, F^{-1}\left(\xi_{j}\right)\right\rangle=\delta_{i j}$. This completes the proof.
Corresponding to $\left\{a_{\pi} \mid \pi-k\right\}$, the base for H, k consisting of products of elementary symmetric functions, there exists a base $\left\{b_{\pi} \mid \pi r k\right\}$ for $R_{F}\left(S_{k}\right)$ such that $\Delta, k=\Sigma b_{\pi} \otimes a_{\pi}$. Then, by Proposition 5.1

$$
\left\langle b_{\pi}, F^{-1}\left(a_{\pi}^{\prime}\right)\right\rangle=\left\langle b_{\pi}, n_{\pi}^{\prime}\right\rangle=\delta_{\pi \pi}{ }^{\prime} .
$$

Since $\left\{n_{\pi} \mid \pi-k\right\}$ is a base for $R_{F}\left(S_{k}\right)$ and $\left\langle n_{\pi}, \alpha_{\pi}{ }^{\prime}\right\rangle=\delta_{\pi \pi}$ ', we obtain Δ, k $=\Sigma n_{\pi} \otimes F\left(b_{\pi}\right)$ by another use of the proposition.

Definition 5.2 The members of the base $\left\{F\left(b_{\pi}\right) \mid \pi r k\right\}$ for H, k are called the Doubilet forgotten symmetric functions [2].

In the rest of this section we shall determine the b_{π} so that the Doubilet functions may be recovered. Note that $b_{\{k\}}$ is determined by Atiyah (Proposition 1.9, [1]).

Theorem 5.3 Let $\Sigma b_{\pi} \otimes a_{\pi}=\Sigma n_{\pi} \otimes F\left(b_{\pi}\right)$, where a_{π} is a monomial of elementary symmetric functions. For

$$
\pi=\left\{1^{r_{1}}, 2^{r_{2}}, \ldots, k^{r_{k}}\right\} \text { we have }
$$

$$
\begin{aligned}
& b_{\pi}=\left.\frac{1}{\pi!} \quad \sum_{\sigma=\left\{1^{t}\right.}^{\sigma-k}, 2^{t_{2}}, \ldots, k^{t_{k}}\right\} \\
& \frac{a^{r_{1}+r_{2}+\ldots+r_{k}}}{r_{a_{1}} \partial^{r_{2}} a_{2} \ldots \partial^{r_{k}} a_{k}}
\end{aligned} a_{k} .
$$

where $Q_{i}\left(a_{1}, \ldots, a_{i}\right)$ is the $i-t h$ Newton polynomial for s_{i}.

Proof. For $\sigma=\left\{1^{t_{1}}, \ldots, k^{t_{k}}\right\}$,

$$
\begin{aligned}
& \gamma_{\sigma}=\gamma_{1}{ }^{t_{1}}{ }_{\gamma_{2}}{ }^{t_{2}} \ldots \gamma_{k}{ }^{t_{k}}=1^{t_{1}}{ }_{2}^{t_{2}} \ldots k^{t_{k}} \cdot k_{\{1\}}^{t_{1}} k_{\{2\}}^{t_{2}} \ldots k^{t_{k}}= \\
& t_{1}!{ }^{t_{2}}!\ldots t_{k}!1^{t_{1}} \ldots k^{t_{k}} k_{\{1}{ }^{t_{1}}{ }_{2}{ }^{t_{2}} \ldots k^{\left.t_{k}\right\}}=|\sigma| k_{\sigma} .
\end{aligned}
$$

By (2.1) we get $\left\langle K_{\sigma}, \gamma_{\sigma}{ }^{\prime}\right\rangle=\delta_{\sigma \sigma}$ '. By Theorem 3.1 and Proposition 5.1

$$
\begin{aligned}
\Delta, k= & \sum_{\sigma+k} K_{\sigma} \otimes F-1\left(\gamma_{\sigma}\right)=\sum_{\sigma H-k} \chi^{-1}\left(K_{\sigma}\right) \otimes F^{-1}\left(\chi^{-1}\left(\gamma_{\sigma}\right)\right)= \\
& \sum_{\sigma+k} x^{-1}\left(K_{\sigma}\right) \otimes T\left(\gamma_{\sigma}\right)=\sum_{\sigma-k} x^{-1}\left(K_{\sigma}\right) \otimes s_{\sigma} .
\end{aligned}
$$

Since $s_{\sigma}=s_{1}{ }^{t} 1_{s_{2}}{ }^{t} 2 \ldots s_{k}{ }^{t} k=Q_{1}\left(a_{1}\right)^{t}{ }_{1} Q_{2}\left(a_{1}, a_{2}\right)^{t_{2}} \ldots Q_{k}\left(a_{1}, \ldots\right.$,
$\left.a_{k}\right)^{t} k$ is a polynomial of degree k in variables $a_{1}, a_{2}, \ldots, a_{k}$, the coefficient q_{σ}^{π} of the monomial $a_{\pi}=a_{1}{ }^{r_{1}} \ldots a_{k}{ }^{r_{k}}$ in S_{σ} is obtained by

$$
q_{\sigma}^{\pi}=\frac{1}{r_{1}!r_{2}!\cdots r_{k}!} \frac{\partial^{r_{1}+r_{2}+\ldots+r_{k}}}{\partial^{r_{1}}{a_{1}}^{r^{r}} 2_{a_{2}} \ldots \partial^{r_{k_{a_{k}}}}} S_{\sigma} .
$$

Hence,

$$
\begin{aligned}
\Delta, k & =\sum_{\sigma-k} x^{-1}\left(k_{\sigma}\right) \otimes\left(\sum_{\pi r k} q_{\sigma}^{\pi} a_{\pi}\right) \\
& =\sum_{\pi+k}\left(\sum \sum_{\sigma-k}^{\pi} q_{\sigma}^{\pi} x^{-1}\left(k_{\sigma}\right)\right) \otimes a_{\pi} .
\end{aligned}
$$

So,

$$
\begin{aligned}
b_{\pi} & =\sum_{\sigma k}^{\Sigma} q_{\sigma}^{\pi} x^{-1}\left(k_{\sigma}\right)=\sum_{\sigma k} q_{\sigma}^{\pi} \frac{1}{|\sigma|} Q_{1}\left(n_{1}\right){ }^{t_{1}} \ldots Q_{k}\left(n_{1}, \ldots, n_{k}\right)^{t_{k}} \\
\sigma & =\left\{1^{t} 1 \ldots k^{t_{k}}\right\} .
\end{aligned}
$$

This proves the theorem.
For example, in the case when $k=3$, let us calculate the Doubilet functions:

$$
\begin{gathered}
d_{\left\{1^{3}\right\}}=F\left(b_{\left\{1^{3}\right\}}\right)=\frac{1}{6} \frac{\partial^{3}}{\partial a_{1}} S_{1}^{3} \frac{1}{6} Q_{1}\left(a_{1}\right)^{3}+ \\
\frac{\partial^{3}}{\partial 3^{a} T} S_{1} S_{2} \frac{1}{2} Q_{1}\left(a_{1}\right) Q_{2}\left(a_{1}, a_{2}\right)+\frac{\partial^{3}}{\partial 3_{1}} S_{3} \frac{1}{3} Q_{3}\left(a_{1}, a_{2}, a_{3}\right)= \\
a_{1}^{3}-2 a_{1} a_{2}+a_{3} .
\end{gathered}
$$

Similarly,

$$
d_{\{3\}}=a_{1}^{3}-3 a_{1} a_{2}+3 a^{3}
$$

and

$$
d_{\{1,2\}}=5 a_{1} a_{2}-2 a_{1}^{3}-3 a_{3} .
$$

Hence the projection of $d_{\{1,2\}} \varepsilon H_{, 3}$ into $H_{3,3}$ is the symmetric function
$-\left\{2\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2}\right\}$.

As a check of our calculations, we now verify that $\left\{b_{\pi} \mid \pi r-3\right\}$ and $\left\{n_{\pi} \mid \pi r 3\right\}$ are dual bases for $R\left(S_{3}\right)$. Let M denote the Specht irreducible representation of S_{3}, so that $\left\{\left[1 S_{3}\right],\left[A l t S_{3}\right],[M]\right\}$ is an orthnormal
base for $R\left(S_{3}\right)$. Using characters, we have

$$
\begin{aligned}
n_{3} & =\left[\begin{array}{ll}
A l t & S_{3}
\end{array}\right], \\
n_{1} n_{2} & =[M]+\left[A 1 t S_{3}\right]
\end{aligned}
$$

and

$$
n_{1}^{3}=\left[1 S_{3}\right]+2[M]+\left[A 1 t S_{3}\right]
$$

Hence,

$$
\begin{gathered}
b_{\{3\}}=n_{1}^{3}-3 n_{1} n_{2}+3 n_{3}=\left[1 S_{3}\right]-[M]+\left[A 1 t S_{3}\right], \\
b_{\{1,2\}}=5 n_{1} n_{2}-2 n_{1}^{3}-3 n_{3}=[M]-2\left[1 S_{3}\right],
\end{gathered}
$$

and

$$
b_{\left\{1^{3}\right\}}=n_{1}^{3}-2 n_{1} n_{2}+n_{3}=\left[1_{S_{3}}\right] .
$$

It is easily verified that $\left\langle b_{\pi}, n_{\pi}{ }^{\prime}\right\rangle=\delta_{\pi \pi}{ }^{\prime}$.

CHAPTER VI

INNER PLETHYSMS

Let M be a representation of S_{n} and let $\left\{e_{1}, \ldots, e_{\ell}\right\}$ be a base for M. The k-th tensor product may be considered a representation of $S_{n} \times S_{k}$ with the group operations defined by

$$
\begin{gathered}
(\sigma, \tau)\left(e_{i_{1}} \otimes{e_{i_{2}}}_{\infty} \cdots \otimes{e_{i}}_{k}\right)= \\
\left(\sigma e_{\tau(1)} \otimes \sigma e_{\tau(2)} \otimes \ldots \otimes \sigma e_{\tau(k)}\right)
\end{gathered}
$$

for any $(\sigma, \tau) \varepsilon S_{n} \times S_{k}$ and for any basis element $e_{i} \otimes e_{i_{2}} \otimes \ldots \otimes e_{k}$ with $1 \leqslant i_{1}, i_{2}, \ldots, i_{k} \leqslant 2$. Since $R\left(S_{n} \times S_{k}\right)$ is isomorphic to $R\left(S_{n}\right) \otimes$ $R\left(S_{k}\right)$ we have $\otimes k: R\left(S_{n}\right) \rightarrow R\left(S_{n}\right) \otimes R\left(S_{k}\right)$ defined by $\otimes k([M])=\left[M^{\otimes k}\right]$.

We now are going to show that $\otimes k$ is well defined (compare Atiyah [1], Proposition 2.2). Let G be a finite group and consider the semi-ring $M(G)=\{(M, N) \mid M, N$ G-modules $\}$ with addition and multiplication defined by

$$
(M, N)+\left(M^{\prime}, N^{\prime}\right)=\left(M \oplus M^{\prime}, N \oplus N^{\prime}\right)
$$

and

$$
(M, N) \cdot\left(M^{\prime}, N^{\prime}\right)=\left(M \otimes M^{\prime} \oplus N \otimes N^{\prime}, M \otimes N^{\prime} \oplus M^{\prime} \otimes N\right) .
$$

We define an equivalence relation \sim on $M(G)$ by (M, N) ~ (M^{\prime}, N^{\prime}) if and only if $M \oplus N^{\prime} \simeq M^{\prime} \oplus N$. We donate by $\langle M, N\rangle$ the equivalence class
containing (M, N).
Let $\bar{R}(G)=M(G) / \sim \cdot \bar{R}(G)$ is a ring with $0=\langle D, D\rangle$ and $\langle M, N\rangle-1$
$=\langle N, M\rangle$. It is clear from the construction that the map $h: \bar{R}(G) \rightarrow$
$R(G)$ defined by $h(\langle M, N\rangle)=[M]-[N]$ is a ring isomorphism.
For each integer k, we define a map $X k: M\left(S_{n}\right) \rightarrow M\left(S_{n} \times S_{k}\right)$ by $X k(M, N)=(M, N)^{k}$. Xk preserves equivalence classes, since $X k(M \oplus D$, $N \oplus D)=(M \oplus D, N \oplus D)^{k} \sim(M, D)^{k}=X k(M, N)$ for all S_{n}-modules M, N, and D.

Consider the diagram

where $\bar{x} k$ is induced by $X k$ and P is the projection. Since

$$
\begin{gathered}
h \circ P \circ x k(M, 0)=h \circ P(M \otimes k, 0)=h\left\langle M^{\otimes k}, 0\right\rangle=\left[M^{\otimes k}\right]= \\
\otimes k([M])=\otimes K \circ h \circ P(M, 0),
\end{gathered}
$$

it follows that $\otimes k$ is also induced by Xk ; consequently, the diagram commutes.

We now calculate $\otimes k$ ([M] - [N]) for the general element $[M]-[N] \varepsilon$ $R\left(S_{n}\right)$.

Proposition 6.1

$$
\otimes k([M]-[N])=\sum_{i=0}^{k}(-1)^{i}\left[I_{S_{k-i}}^{S_{k}} S_{i} M(k-i) \otimes N \otimes i\right] .
$$

Proof. We first prove that

$$
\begin{aligned}
& X k(M, N)=\left(\sum_{\substack{k=0 \\
i \text { even }}}^{k} \quad \operatorname{Ind} S_{k-i \times S_{i}}\left(M \otimes(k-i) \otimes N^{\otimes i}\right),\right. \\
& \left.\sum_{\substack{k=1 \\
j \text { odd }}}^{\text {Ind }^{S_{k}} S_{k-j} \times S_{j}}(M \otimes(k-j) \otimes N \otimes j)\right)
\end{aligned}
$$

by induction on k. If $k=1$, this is evident. Assume that the hypothesis is true for all integers $n \leqslant k$. Then, we have

$$
\begin{aligned}
& X(k+1)(M, N)=(M, N)^{k}(M, N)= \\
& \left(\sum_{\substack{i=0 \\
i \text { even }}}^{\operatorname{Ind}_{S_{k-i}} S_{k}} \quad \operatorname{Min}(k-i) \otimes i,\right. \\
& \left.\sum_{\substack{k=1 \\
j \text { odd }}}^{\operatorname{Ind} S_{k}} S_{k-j} \times S_{i}(k-j) \otimes j\right)(M, N)= \\
& \left(\sum_{\substack{i=0 \\
i \\
\text { even }}}^{k} \quad \operatorname{Ind} S_{k-i} \times S_{i} M \otimes(k-i) \otimes N \otimes i\right) \otimes M \oplus \\
& \left(\begin{array}{c}
\sum_{j=1}^{k} \\
j \text { odd }
\end{array} \quad \text { Ind } S_{k-j} S_{k} \times S_{j}^{m \otimes(k-j) \otimes N \otimes j) \otimes N,}\right.
\end{aligned}
$$

$$
\begin{aligned}
& M \otimes\left(\begin{array}{c}
\sum_{j=1}^{k} \\
j \text { odd }
\end{array} \quad \operatorname{Ind}_{S_{k-j}}^{S_{k}} \times S_{j} .(k-j) \otimes N \otimes j\right)= \\
& \left(\sum_{\substack{\sum_{i=0}^{k+1} \\
i \text { even }}}^{\operatorname{Ind}^{S_{k+1}} S_{k+1-i} \times S_{i}^{M \otimes(k+1-i)} \otimes N^{\otimes i}, ~}\right. \\
& \left.\sum_{\substack{k+1 \\
j=1 \\
\text { odd }}}^{\operatorname{Ind}^{S_{k+1}}} \quad S_{k+1-j} \times S_{j} \quad M \otimes(k+1-j) \otimes N \otimes j\right) .
\end{aligned}
$$

Since $X k$ induces $\otimes k$, apply hop and the proposition is proved. Let $O p(R)$ denote the set of all operations of R. We define addition and multiplication in $0 p(R)$ by adding and multiplying values. For $\rho \varepsilon R$ and $\lambda, \lambda^{\prime} \varepsilon O p(R)$ we have

$$
\left(\lambda+\lambda^{\prime}\right)(p)=\lambda(\rho)+\lambda^{\prime}(\rho)
$$

and

$$
\lambda \cdot \lambda^{\prime}(\rho)=\lambda(\rho) \cdot \lambda^{\prime}(\rho) \cdot
$$

Hence, $O p(R)$ is a ring.

Definition 6.2 By the inner plethysm $T(\lambda)$ associated with an element $\lambda \varepsilon R_{Z}^{*}\left(S_{k}\right)$, we mean the operation

$$
T(\lambda): R\left(S_{n}\right) \rightarrow R\left(S_{n}\right) \otimes Z=R\left(S_{n}\right)
$$

defined by $(1 \otimes \lambda)(\otimes k)$.

In the sequel, we denote $T(\lambda)([M])$ by $\lambda([M])$ if no confusion arises.

Proposition 6.3 For any $\lambda_{\tau} \varepsilon R\left(S_{k}\right)$ with $\tau-k$ and for any S_{n}-representation M, we have

$$
\lambda_{\tau}([M])=\left[\operatorname{hom}_{k}\left(\operatorname{Ind}_{S_{\tau}}^{S_{k}} A l t S_{\tau}, M \otimes k\right)\right]
$$

Proof. It is well known (Atiyah [1]) that if $\left\{V_{\mu} \mid \mu \vdash k\right\}$ is a complete set of irreducible S_{k}-representations, then

$$
M \otimes k \simeq \underset{\mu-k}{\sum} \text { homs }_{k}\left(V_{\mu}, M \otimes k\right) \otimes V_{\mu} .
$$

We consider homs $S_{k}\left(V_{\mu}, M^{* k}\right)$ as a S_{n}-representation with S_{n}-operations defined by $\sigma \cdot f=\sigma^{\otimes k} \circ$ for all $f \varepsilon$ hom $_{S_{k}}\left(V_{\mu}, M k\right)$ and $\sigma \varepsilon S_{n}$. Consequently, M®k decomposes as an element in $R\left(S_{n}\right) \otimes R\left(S_{k}\right)$. Then, by definition

$$
\begin{aligned}
& T\left(\lambda_{\tau}\right)([M])=\left(1 \otimes \lambda_{\tau}\right)([M \otimes k])= \\
& \sum_{\mu-k} \lambda_{\tau}\left(\left[V_{\mu}\right]\right)\left[\operatorname{hom}_{\mathrm{S}}\left(V_{\mu}, M^{\otimes k}\right)\right]
\end{aligned}
$$

However,

$$
\begin{aligned}
& \sum_{\mu-k} \lambda_{\tau}\left(\left[V_{\mu}\right]\right)=\sum_{\mu+k} \mu\left(n_{\tau}\right)\left(\left[V_{\mu}\right]\right) V_{\mu}= \\
= & \sum_{\mu-k}<\text { Ind }_{S_{\tau}}^{S_{k}} \text { Alt } S \tau, V_{\mu}>V_{\mu}=\text { Ind } S_{\tau} \text { Ait } S_{\tau} .
\end{aligned}
$$

Hence we obtain

$$
T\left(\lambda_{\tau}\right)([M])=\left[\operatorname{homs}_{k}\left(\operatorname{Ind}_{S_{\tau}}^{S_{k}} \text { Alt } S_{\tau}, M^{* k}\right)\right]
$$

This completes the proof. Note that this proposition is stated by Atiyah as R^{*} is a subring of $O p(R)$. (See [1], page 178)

Proposition 6.4 For any partition $\tau=\left\{1^{r} 1,2^{r} 2, \ldots, k^{r} k\right\}$ and for any S_{n}-representation M we have

$$
\lambda_{\tau}([M])=\lambda_{1}([M])^{r} 1 \lambda_{2}([M])^{r} 2 \ldots \lambda_{k}([M])^{r} k .
$$

Proof. By the Frobenius reciprocity law we have

$$
\begin{aligned}
& \operatorname{nom}_{S_{k}}\left(\operatorname{Ind}_{S_{\tau}}^{S_{k}} \operatorname{Alt} S_{\tau}, M \vee k\right) \simeq \\
& \text { nom }_{S_{\tau}}\left(\text { Alt } S_{\tau}, \operatorname{Res}_{S_{\tau}}^{S_{k}} M \otimes k\right) .
\end{aligned}
$$

 $(M \otimes 2) \otimes r_{2} \otimes \ldots \otimes(M \otimes k) \otimes r_{k}$, we obtain

$$
\begin{aligned}
& \operatorname{hom}_{\tau}\left(\operatorname{Alt} S_{\tau}, \operatorname{Res}_{S_{\tau}}^{S_{k}} M \otimes k\right) \simeq \\
& \underset{i=1}{\otimes} \quad\left(\text { homs }_{i}\left(\text { Alt } S_{i}, M \otimes i\right) \otimes r_{i}\right.
\end{aligned}
$$

By Proposition 6.3,

$$
\lambda_{\tau}([M])=\left[\operatorname{hom}_{k}\left(\operatorname{Ind}_{S_{\tau}}^{S_{k}} \text { Alt } S_{\tau}, M \otimes k\right)\right]
$$

$$
\begin{aligned}
& =\prod_{i=1}^{k}\left[\text { homs }_{i}\left(\text { Alt } S_{i}, M i\right)\right] r_{i} \\
& =\lambda_{1}([M]) r_{1} \ldots \lambda_{k}([M]) r_{k}
\end{aligned}
$$

This completes the proof.
Using the same methods as in the proofs of Propositions 6.3 and 6.4 we may prove the following.

Proposition 6.5 For any $\sigma_{\tau} \varepsilon R^{*}\left(S_{k}\right)$ with $\tau=\left\{1^{r} 1,2^{r} 2, \ldots k^{r_{k}}\right\}$ and for any S_{n} - representation M, we have

$$
\begin{aligned}
& \sigma_{\tau}([M])=\left[\operatorname{hom}_{k}\left(\operatorname{Ind}_{S_{\tau}}^{S_{k}} 1_{S_{\tau}}, M \mathrm{M}\right)\right] \\
& =\sigma_{1}([M])^{r_{1}} \sigma_{2}([M])^{r_{2}} \ldots \sigma_{k}([M])^{r_{k}}
\end{aligned}
$$

Proposition 6.6 Let $H \subseteq G \subseteq S_{n}$ be groups and let N be a representation of H. Then nomg $\left(A l t G, \operatorname{Ind}_{H}^{G} N\right)$ and homH (Alt H, N) are isomorphic.

Proof. We construct a linear map $\rho: \operatorname{hom}_{G}\left(A 1 t G\right.$, Ind $\left.{ }_{H}^{G} N\right) \rightarrow$ hom (Alt H, N) and its inverse σ. Let $\left\{e=r_{0}, r_{1}, \ldots r_{t}\right\}$ be a complete set of coset representatives for G / H. Then $I n d_{H}^{G} N \simeq N \oplus$ $r_{1} N \oplus \ldots \oplus r_{t} N$. If $U \varepsilon$ hom $_{G}\left(A l t G\right.$, Ind $\left.{ }_{H}^{G} N\right)$ then there are $n_{i} \varepsilon N_{i}$ such that

$$
U(1)=n_{0}+r_{1} n_{1}+\ldots+r_{t} n_{t} .
$$

We let ρ be the linear map from C to N defined by $\rho(U)(1)=n_{0}$. ρ is
an H-homomorphism because if $h \varepsilon H$, then

$$
\begin{aligned}
& h \rho(U)(1)=h n_{0}=\operatorname{sgn}(h) n_{0}= \\
& \rho(U)(\operatorname{sgn}(h))=\rho(f)(h \cdot 1) .
\end{aligned}
$$

We now construct σ. If $\omega \varepsilon$ hom $_{H}$ (Alt H, N) and $\omega(1)=n_{0}$, let σ be the linear map from C to $N \oplus r_{1} N \oplus \ldots \oplus r_{t} N$ defined by

$$
\sigma(\omega)(1)=\sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) r_{i} n_{0} .
$$

σ is a G-homomorphism because if $g \varepsilon G$, then

$$
g \sigma(\omega)(1)=\sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) g r_{i} n_{0}
$$

Furthermore, since $\left\{g r_{0}, g r_{1}, \ldots g r_{t}\right\}$ is a set of coset representatives for G / H, there exist elements $h_{0}, \ldots, h_{t} \varepsilon H$ and there is a permutation τ of $\{0, \ldots, t\}$ such that $g r_{i}=r_{\tau}(i) h_{i}$. Hence,

$$
\begin{aligned}
& \sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) g r_{i} n_{0}= \\
& \sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) r_{\tau}(i) h_{i} n_{0}= \\
& \sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) \operatorname{sgn}\left(h_{i}\right) r_{\tau}(i) n_{0}= \\
& \sum_{i=0}^{t} \operatorname{sgn}(g) \operatorname{sgn}\left(r_{\tau}(i)\right) r_{\tau(i)^{n_{0}}=}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=0}^{t} \operatorname{sgn}(g) \operatorname{sgn}\left(r_{i}\right) r_{i} n_{0}= \\
\operatorname{sgn}(g) \sigma(\omega)(1)=\sigma(\omega)(\operatorname{sgn}(g))=\sigma(\omega)(g \cdot 1) .
\end{gathered}
$$

We now show that $\sigma^{\circ} \rho$ is the identity. Consider

$$
\begin{gathered}
U(1)=\sum_{i=1}^{t} r_{i} n_{i} \\
\text { and } \sigma \circ \rho(U)(1)=\sum_{i=0}^{t} \operatorname{sgn}\left(r_{i}\right) r_{i} n_{0} .
\end{gathered}
$$

It suffices to show that $\operatorname{sgn}\left(r_{k}\right) n_{0}=n_{k}$ for all k. Since U is a G-homomorphism,

$$
r_{k} U(1)=U\left(r_{k} 1\right)=U\left(\operatorname{sgn}\left(r_{k}\right)\right)=\operatorname{sgn}\left(r_{k}\right) \sum_{i=0}^{t} r_{i} n_{i} .
$$

On the other hand,

$$
r_{k} U(1)=\sum_{i=0}^{t} r_{k} r_{i} n_{i} .
$$

Hence, $\operatorname{sgn}\left(r_{k}\right) r_{k} n_{k}=r_{k} n_{0}$ and $\operatorname{sgn}\left(r_{k}\right) n_{k}=n_{0}$. The proof is complete, since it is obvious that $\rho \circ \sigma$ is the identity.

Proposition 6.7 Let $H \subseteq{ }_{G} \subseteq S_{n}$ be groups and let N be a representation of H. Then hom $G_{G}\left(1_{G}, \operatorname{Ind}_{H}^{G} N\right)$ and hom $_{H}\left(1_{H}, N\right)$ are isomorphic.

Proof. It is obvious using the methods of Proposition 6.6.
It is well known that for any element $\xi \varepsilon R(G)$, there exist

G-representations M and N such that $\xi=[M]$ - [N]. We consider M to have even grading and N to have odd grading.

Proposition 6.8

$$
\begin{aligned}
& \lambda_{k}([M]+[N])=\sum_{i=0}^{k} \lambda_{k-i}([M]) \lambda_{i}([N]), \\
& \sigma_{k}([M]+[N])=\sum_{i=0}^{k} \sigma_{k-i}([M]) \sigma_{i}([N]), \\
& \lambda_{k}([M]-[N])=\sum_{i=0}^{k}(-1)^{i} \lambda_{k-i}([M]) \sigma_{i}([N])
\end{aligned}
$$

and

$$
\sigma_{k}([M]-[N])=\sum_{i=0}^{k}(-1)^{i} \sigma_{k-i}([M]) \lambda_{i}([N]) .
$$

Proof. We prove the last equation as an example.

$$
\begin{aligned}
& \sigma_{k}([M]-[N])=\left(1 \otimes \sigma_{k}\right)(\otimes K)([M]-[N])= \\
& \left(1 \otimes \sigma_{k}\right)\left(\sum_{i=0}^{k}(-1)^{i}\left[\operatorname{Ind} S_{k-i} \times S_{i} M \otimes(K-i) \otimes N i\right]\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=0}^{k}(-1)^{i}\left[\operatorname{homs}_{k}\left(1_{S_{k}}, \operatorname{Ind}_{S_{k-i} S_{j}}^{S_{k}}{ }^{(k-i) \otimes N \otimes i}\right)\right]=
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=0}^{k}(-1)^{i}\left[\operatorname{hom}_{S_{k-i}} \times S_{i}\left(1 S_{k-i} \otimes 1 S_{i}, M \otimes(k-i) \otimes N\right)\right]= \\
& \sum_{i=0}^{k}(-1)^{i}\left[\operatorname{hom}_{S_{k-i}}\left(1_{S_{k-i}}, M \otimes(k-i)\right) \otimes \operatorname{hom}_{S_{i}}\left(1_{S_{i}}, N^{i}\right)\right]=
\end{aligned}
$$

recalling that N has odd grading

$$
\begin{gathered}
\sum_{i=0}^{k}(-1)^{i}\left[\operatorname{hom}_{k-i}\left(1 S_{k-i}, M \otimes(k-i)\right)\right] \cdot\left[\operatorname{hom}_{i}\left(1 S_{i}, N \otimes i\right)\right]= \\
\sum_{i=0}^{k}(-1)^{i} \sigma_{k-i}([M]) \lambda_{i}([N]) .
\end{gathered}
$$

Proposition 6.9 Let H be a subgroup of a finite group G with the property that H contains no normal subgroup of G except $\{e\}$. Then G can be embedded in the permutation group Aut $G / H=S_{N}$, where N is the index of H in G. Considering G as a subgroup of S_{N}, the induced representation Ind $_{H}^{G} 1_{N}$ of the trivial H representation l_{H} is isomorphic to the G-restriction of the S_{N}-permutation representation $F N$.

Proof. Let G / H be the G-set with the usual G action on the set of G
left cosets. Then G / H is isomorphic to the G-set $I_{H} 1_{H}$. Since H contains no normal subgroups of G except $\{e\}$, the action of the G on G / H is effective in the sense that if $g \bar{x}=\bar{x}$ for any $\bar{x} \varepsilon G / H$, then $g=e$. In this case G can be embedded in the permutation $\operatorname{group} \operatorname{Aut}(G / H)$. Hence the G-set G / H is the G-restriction of the $\operatorname{Aut}(G / H)$-set G / H. It follows that the G-representation ${ }_{\mathrm{In}}^{H}{ }_{\mathrm{G}} 1_{H}$ is isomorphic to the G-restriction of an S_{N}-representation F^{N} with the natural S_{N}-action,
where N is the index of H in G.
Lemma 6.10 Let $\pi=\left\{1^{r} 1,2^{r} 2, \ldots, n^{r} n\right\}+n$ and let $S_{\pi}=S_{1}{ }^{r} 1_{x}$ $\ldots \times S_{n}{ }^{r}{ }^{n}$ be a subgroup of S_{n}. If $\pi \neq\{n\}$, then S_{π} contains no normal subgroup of S_{n} except the trivial group.

Proof. Let $\tau \varepsilon S_{\pi}$ and assume $\tau \neq e$. Then it is easy to find $S \varepsilon$ S_{n} such that $s_{\tau} \mathrm{s}^{-1} \notin S_{\pi}$. Hence there can be no subgroup of S_{π} which is invariant under all conjugations of S_{n}.

Combining proposition 6.9 and Lemma 6.10 we obtain the following.
Theorem 6.11 Any basis element $\rho_{\pi}=\left[\operatorname{Ind}_{S_{\pi}} S_{n} 1_{S_{\pi}}\right]$ in $R\left(S_{n}\right)$ is $\left[\operatorname{Res}_{S_{n}}^{S_{N}} F_{N}\right]$, where N is the index of S_{π} in S_{n}. By the Specht irreducible representation $M(N-1,1)$ we mean the subrepresentation of F^{N} consisting of $\left(z_{1}, \ldots, z_{N}\right)$ with $z_{1}+z_{2}+\ldots+z_{N}=0$ in F_{N}. The orthogonal complement of this hyperplane is spanned by (1, 1, ... 1), so $M^{(N-1,1)}$ is obviously S_{N} - invariant. Hence,

$$
\operatorname{Ind}_{S_{\pi}}^{S_{n}} 1_{S_{\pi}} \simeq \operatorname{Res}_{S_{n}}^{S_{N}} \quad F^{N}=\operatorname{Res}_{S_{n}}^{S_{N}} M(N-1,1) \oplus 1_{S_{n}}
$$

Theorem 6.12 For any basis element $\rho_{\pi} \varepsilon R\left(S_{n}\right)$ and for any basis $\lambda_{\tau} \varepsilon R^{*}\left(S_{k}\right), \lambda_{\tau}\left(\rho_{\pi}\right)$ can be computed effectively provided the character of i-th exterior powers of Specht irreducible representations $M(N-1,1)$ for any i and N, can be computed.

Proof. From Propositions 6.8 and 6.11 we obtain

$$
\lambda_{i}\left(\rho_{\pi}\right)=\lambda_{i}\left(\left[\operatorname{Res}_{S_{n}}^{S_{N}} M(N-1,1)\right]+\left[1_{S_{n}}\right]\right)=
$$

$$
\begin{gathered}
\sum_{j=0}^{i} \lambda_{i-j}\left(\left[\operatorname{Res} S_{S_{n}}^{S_{N}} M(N-1,1)\right]\right) \lambda_{j}\left(\left[1 S_{n}\right]\right)= \\
\lambda_{i}\left(\left[\operatorname{Res}_{S_{n}}^{S_{N}} M(N-1,1)\right]\right)+\lambda_{i-1}\left(\left[\operatorname{Res} S_{S_{n}} N_{M}(N-1,1)\right]\right)= \\
\operatorname{Res}_{S_{N} S_{n}}^{\lambda_{i}}([M(N-1,1)])+\operatorname{Res} S_{N} S_{n} \lambda_{i-1}([M(N-1,1)]) .
\end{gathered}
$$

The commutativity of Res and λ follows immediately from Proposition 6.1. Proposition 6.4 allows us to proceed

$$
\lambda_{\tau}\left(\rho_{\pi}\right)=\lambda_{1}\left(\rho_{\pi}\right)^{r} 1 \lambda_{2}\left(\rho_{\pi}\right)^{r} 2 \ldots \lambda_{k}\left(\rho_{\pi}\right)^{r_{k}} .
$$

Hence the proof is complete.
We now calculate the character of $\lambda_{i}([M(N-1,1)])=\left[\right.$ hom $_{j}$ (Alt S_{i},
$M(N-1,1) \otimes i)]$ for all N and i. Littlewood has done these calculations for the corresponding Schur functions in H. See Theorem II [6] and page 139 [5].

Proposition 6.13

$$
x\left(\lambda_{i}([M(N-1,1)])(\sigma)=\sum_{\omega=0 \sum_{\mu-i 卜 \omega}^{k-1}(-1) \omega \operatorname{sgn} \mu\binom{a_{k}-1}{c_{k}}\binom{a_{k+1}}{c_{k+1}} \ldots\binom{a_{i}}{c_{i}}}^{\left.a_{k}, \ldots . j c_{i}\right\}}\right.
$$

where $\pi=\left\{1^{b} 1,2^{b} 2, \ldots, i^{b}{ }_{i}\right\}$ and the shape of $\sigma \varepsilon S_{N}$ is $\left\{1^{a} 1,2^{a} 2\right.$, $\ldots, N^{a} N$.

The binomial coefficient $\binom{a}{b}$ is 0 if $b>a$.

Proof. $M(N-1,1)$ is the subrepresentation of the permutation representation FN^{N} spanned by

$$
\begin{gathered}
e_{1}=\langle 1,0,0, \ldots, 0,-1\rangle \\
e_{2}=\langle 0,1,0, \ldots, 0,-1\rangle \\
\cdot
\end{gathered}
$$

$$
e_{N-1}=\langle 0,0,0, \ldots, 1,-1\rangle
$$

If we let $e_{N}=0$, then the action of S_{N} on $M(N-1,1)$ is given by $\tau\left(e_{j}\right)=e_{\tau}(i)-e_{\tau}(N)$ for $\tau \varepsilon S_{N}$.

We now construct a basis for homs $S_{i}\left(A l t S_{i}, M(N-1,1) \times i\right)$. Let $I_{i}=$ $\{D \mid D \subseteq\{1,2, \ldots, N-1\}$ and card $D=i\}$. For each $D \varepsilon I_{i}$ with $D=\left\{j_{1}, j_{2}, \ldots, j_{j}\right\}$, we define the basis vector h_{D} by $h_{D}: 1 \rightarrow \sum_{p} e_{j} \otimes \ldots \otimes e_{j}$ where \sum_{p} denotes summation over all signed permutations of the factors.

Since characters are constant on conjugacy classes, we may assume that if $\sigma \varepsilon S_{N}$ is decomposed into disjoint cycles and the cycles then arranged into descending order with respect to cycle length, then the integers occur with their natural order. For example, if shape $\sigma=$ $\left\{1^{2}, 2,3\right\}$, then $\sigma=(1,2,3)(4,5)(6)(7)$. If $D \subseteq\{1,2, \ldots, N\}$, we denote by σD the restriction of σ to D, and by $\sigma(D)$ the image of D by σ. If σ_{D} permutes D, we say that σ_{D} is a subpermutation of D.

Let a_{k} be the first non-zero exponent in $\left\{1^{a} 1,2^{a} 2, \ldots, N^{a} N^{n}\right.$. By our assumption on σ, we have $\sigma(N)=N-k+1$.

Let

$$
D=\left\{j_{1}, j_{2}, \ldots, j_{i}\right\} \varepsilon I_{i}
$$

and let

$$
E=\{j \varepsilon D \mid j \leqslant N-k\}
$$

and

$$
E^{\prime}=\{j \varepsilon D \mid j>N-k\}
$$

Lemma 6.14 Let $D \varepsilon I_{i}$, then $\sigma \cdot h_{D}=\underset{D^{\prime} \varepsilon I_{i}}{\Sigma} C_{D}^{D^{\prime}} h_{D}^{\prime}$ for some $C_{D}^{D^{\prime}}$ in the field F. Then $C_{D}^{D} \neq 0$ if and only if σE is a subpermutation of σ and $E^{\prime}=\left\{N-k+1, N-k+2, \ldots, j_{i}\right\}$.

Proof. Assume $C_{D}^{D} \neq 0$. Then

$$
\begin{align*}
& 0 \neq \sigma \cdot h_{D}(1)= \\
& \sum_{p}\left(e_{\sigma}\left(j_{1}\right)-e_{N^{-k+1}}\right) \otimes \ldots \otimes\left(e_{\sigma}\left(j_{j}\right)-e_{N^{-k+1}}\right)= \\
& \sum_{p}^{\sum} e_{\sigma}\left(j_{1}\right) \otimes \ldots \otimes e_{\sigma}\left(j_{j}\right)- \tag{6.1}\\
& \sum_{\ell}^{\Sigma} \sum_{i}^{i}(-1)^{\ell} e_{N^{-k+1}} \otimes\left[e_{\sigma}\left(j_{1}\right) \otimes \ldots \otimes e \sigma\left(j_{\ell}\right) \otimes \ldots \otimes e_{\sigma}\left(j_{i}\right)\right]
\end{align*}
$$

If the first summand contains $h_{D}(1)$ as a summand, then $D=E$, $E^{\prime}=\phi$, and $\sigma D=\sigma E$ is a subpermutation of σ. If the second summand contains $h_{D}(1)$, then $N-k+1 \varepsilon E^{\prime} \subseteq D$. However, $(N-k+1, N-k+2, \ldots N)$ occurs in the decomposition of σ into disjoint cycles; hence, $j \varepsilon E^{\prime}$ for all $N-k+1 \leqslant j \leqslant j_{i}$, so that $E^{\prime}=\{N-k+1, N-k+2, \ldots j\}$. Moreover, since $\sigma(n)>N-k$ for all $n \varepsilon E^{\prime} U\{N\}$ and $C_{D}^{D} \neq 0$, we have $\sigma(E)=E$;
hence, σE is a subpermutation of σ. Since the converse is clear, the proof of the lemma is complete.

$$
\begin{aligned}
& E^{\prime} \text { may have any cardinality } \omega, 0 \leqslant \omega \leqslant k-1 \text {, so the shape } \mu-i-\omega \\
& \text { of } \sigma E \text { is a subpartition of }\left\{k^{a} k-1,(k+1)^{a} k+1, \ldots N^{a} N\right\} \text { (in notation } \\
& \mu \leqslant \pi \wedge\{k\}) \text {. If } \omega=0 \text {, then from equation } 6.1 \text {, we have } C_{D}^{D}=\operatorname{sgn} \mu \text {. If } \\
& \omega>0 \text {, then } C_{D}^{D}=(-1) \operatorname{sgn}(\mu \vee\{(N-k+1, N-k+2, \ldots, N-k+\omega)\})= \\
& (-1)^{\omega} \operatorname{sgn} \mu \text {. }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& x\left(\lambda_{i}([M(N-1,1])(\sigma)=\right.
\end{aligned}
$$

We now are going to prove the RF version of Littlewood's Theorem I [6].

Definition 6.15 Let $\pi=\left\{r_{1}, r_{2}, \ldots r_{s}\right\}$ be a partition of N with $r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{s}$. The diagram of π consists of s rows of left adjusted boxes with r_{j} boxes in the ith row.

For example, if $\pi=\{4,3,2,2\}$, the diagram of π is

Definition 6.16 The conjugate partition of the partition π corresponds to the diagram obtained by interchanging the rows and columns of the diagram of π. For example, the conjugate partition of $\{4,3,2$, $2\}$ is $\{4,4,2,1\}$.

Definition 6.17 If $\mu=\left\{\mu_{1}, \ldots, \mu_{j}\right\}$ is a partition of i with $\mu_{1} \geqslant \mu_{2} \geqslant \ldots \geqslant \mu_{j}$ and $N \geqslant \mu_{1}$, we define $\mu(N) \mid-N$ as $\mu(N)=\left\{N-\mu_{1}, \mu_{1}-\mu_{2}\right.$, $\left.\ldots, \mu_{j-1}-\mu_{j}, \mu_{j}\right\}$.

We now evaluate $\sigma_{i}\left(\left[F^{N}\right]\right)=\left[\right.$ hom $\left._{i}\left(1_{S_{i}},\left(F^{N}\right) \otimes i\right)\right]$.

Proposition 6.18

$$
\sigma_{i}\left(\left[\mathrm{FN}^{\prime}\right]\right)=\quad \sum_{\mu}=\left\{\mu_{1}, \ldots, \mu_{j}\right\} \vdash{\stackrel{[\operatorname{Ind}}{ } \mathrm{S}_{N}}_{S_{\mu(N)}}^{\left.1_{S_{\mu(N)}}\right]}
$$

Proof. Following Littlewood, let $\left\{e_{1}, \ldots e_{N}\right\}$ be a basis for F^{N}. The symmetric sum $\sum_{p} e_{k_{1}} \otimes \ldots \otimes e_{k_{i}}$ is written in canonical form if

$$
e_{k_{1}} \otimes \ldots \otimes e_{k_{i}}=e_{j_{1}} \otimes m_{1} \otimes \ldots \otimes e_{j} \otimes m_{c}
$$

where $m_{1} \geqslant m_{2} \geqslant \ldots \geqslant m_{c}$, and if $m_{a}=m_{b}$ and $a>b$, then $j_{a}>j_{b}$. It is obvious that each symmetric sum may be written exactly one way in canonical form. Hence a basis for homs ${ }_{i}\left(1_{S i},(F N)^{\otimes j}\right)$ is the set of all homomorphisms $h: 1 \rightarrow \sum_{p} e_{k_{1}} \otimes \ldots \otimes e_{k_{i}}$ with $e_{k_{1}} \otimes \ldots \otimes k_{i}$ in
canonical form. Two basis elements $1+e_{k_{1}}{ }^{\otimes m} 1 \otimes \ldots \otimes e_{k_{c}}{ }_{c}^{\otimes m} c$ and
$1 \rightarrow e_{l}{ }_{1}^{\otimes n} 1 \otimes \ldots \otimes e_{l}{ }_{d}{ }^{\otimes n}$ are in the same orbit of S_{N} if an only if $c=$ d and $m_{t}=n_{t}$ for all $t \leqslant c$; hence, the orbits are in 1 to 1 correspondence with partitions $\mu \vdash$ i. The isotropy group of $1+\sum_{p} e_{1}^{\otimes m} 1 \otimes e_{2} e^{\otimes m} 2 \otimes \ldots \otimes e_{c}{ }^{\otimes m} c$ consists of all permutations $\sigma \varepsilon S_{N}$ such that $\sum_{p} e_{1}^{\otimes m} 1 \otimes \ldots \otimes e_{c}{ }^{\otimes m} c=\sum_{p} e_{\sigma}(1)^{\otimes m} 1_{\otimes} \ldots \otimes e_{\sigma}(c){ }^{\otimes m} c$. Let $\mu=\left\{m_{1}, \ldots, m_{c}\right\}$ and let $\nu=\left\{n_{1}, \ldots, n_{t}\right\}$ be the conjugate of μ, so that $n_{1}=c$. There are $N-c=N-n_{1}$ numbers which are not subscripts of $\sum_{p} e_{k_{1}}{ }^{\otimes m_{1}} \otimes \ldots \otimes e_{k_{c}}{ }^{\otimes m} c$. There are $n_{1}-n_{2}$ subscripts whose superscript is m_{C}. There are $n_{2}-n_{3}$ subscripts with superscripts m_{c-1}, etc. Hence the isotropy group of the basis element h defined by

$$
h(1)=\sum_{p} e_{1}^{\otimes m} 1 \otimes e_{2}{ }^{\otimes m} 2 \otimes \ldots \otimes e_{c}{ }^{\otimes m} c
$$

is $S_{\mu}(N)$. It follows that the subspace spanned by the S_{N} - orbit of h is ismorphic to $\mu(N)$. Summing over all partitions μ i \mathfrak{i} yields the result. Proposition 6.19 For any basis element $\rho_{\pi} \varepsilon R\left(S_{N}\right)$,

$$
\sigma_{i}\left(\rho_{\pi}\right)=\sum_{\mu \vdash i} \operatorname{Res}_{S}^{S} S_{n} \rho_{\mu(N)}
$$

Proof. By Theorem 6.11, $\rho_{\pi}=\left[\operatorname{Res}_{S_{n}}^{S_{N}}{ }_{F}\right]$. So, $\sigma_{i}\left(\rho_{\pi}\right)=$ $\operatorname{Res}_{S_{n}}^{S_{N}} \sigma_{j}\left(\left[F^{N}\right]\right)=\underset{\mu-i}{\sum} \operatorname{Res}^{S_{N}} S_{n} \rho_{\mu}(N)$.

Theorem 6.20 Any inner plethysm $T(\lambda): R_{Z} \rightarrow R_{Z}$ can be evaluated by the procedures in this section.

Proof. For any element $\xi \varepsilon R\left(S_{n}\right)$ and for any $\lambda \varepsilon R^{*}\left(S_{K}\right)$ with with $\lambda=\sum_{\tau+k} a_{\tau} \lambda_{\tau}$, we have

$$
\begin{gathered}
\lambda(\xi)=\sum_{\tau+k}^{\Sigma} a_{\tau} \lambda_{\tau}(\xi)=\sum_{\tau+k}^{\Sigma} a \tau \lambda_{1}(\xi)^{r_{1}} \lambda_{2}(\xi) r_{2} \ldots \lambda_{k}(\xi)^{r_{k}} \\
\tau=\left\{1 r_{1}, \ldots, k r_{k}\right\}
\end{gathered}
$$

because $R^{*}\left(S_{k}\right)$ is a subring of $O p(R)$. Let $\xi=[M]-[N]$, then from Proposition 6.8

$$
\lambda_{i}(\xi)=\sum_{j=0}^{i}(-1)^{j} \lambda_{i-j}([M]) \sigma_{j}([N]) .
$$

Since the S_{n} - representations M and N are direct sums of basis elements of $\rho_{\pi}{ }^{\prime} s, \lambda_{i-j}([M])$ and $\sigma_{j}([N])$ are calculated by Propositions 6.8, $6.13,6.18$, and Theorem 6.12. This completes the proof.

Finally we would like to comment about the character $\sigma_{i}\left(\rho_{\pi}\right)$.
Since

$$
\left.\rho_{\left\{N-\mu_{1}\right.}, \ldots, \mu_{j}\right\}=\rho_{N-\mu_{1}} \rho_{\mu_{1}-\mu_{2}} \ldots \rho_{\mu_{j-1}-\mu_{j}}{ }_{\mu}
$$

and since

$$
\left.x\left(\rho_{\left\{N-\mu_{1}\right.}, \ldots . \mu_{j}\right\}\right)=x\left(\rho_{N-\mu_{1}}\right)\left(\rho_{\mu_{1}-\mu_{2}}\right) \ldots\left(\rho_{\mu_{j}}\right)
$$

$\left.\chi^{\left(\rho\left(N-\mu_{1}, \ldots, \mu_{j}\right\}\right.}\right)$ can be effectively calculated by the facts that
$x\left(\rho_{i}\right)=\sum_{\pi+i} K_{\pi}$ and Proposition 1.1

$$
K_{\pi} \cdot K_{\sigma}=\frac{(\pi v \sigma)!}{\pi!\sigma!} K_{\pi v \sigma} \cdot
$$

This, in turn, enables us to evaluate the character of $\sigma_{\mathfrak{j}}\left(\rho_{\pi}\right)$.

CHAPTER VII

SUMMARY

It has been shown how to construct and evaluate any inner plethysm in R. The apparently harder problem of constructing the operations called outer plethysms (see [4] and [5]) remains unsolved. It would also be of interest to construct the operations corresponding to inner and outer plethysms in the Burnside ring of symmetric groups [4].

A SELECTED BIBLIOGRAPHY

[1] Atiyah, M., Power operations in K-theory, Quart. J. Math. (2) 17 (1966), 165-93.
[2] Doubilet, P., Symmetric functions through the theory of distribution and occupancy, Studies in Applied Math. (4) 11 (1972), 377-96.
[3] Geissinger, L., Hopf algebras of symmetric functions and class functions. Springer Lecture Notes, No. 579 (1976).
[4] Knutson, D., λ-rings and the representation theory of the symmetric group, Springer Lecture Notes, No. 380 (1973).
[5] Littlewood, D., The theory of group characters, Oxford (1950).
[6] Littlewood, D., The inner plethysm of S-functions, Canadian J. Math., 10 (1958), 1-16.
[7] Liulevicius, A., On characteristic classes, Nordic summer school notes, Aarhus (1968).
[8] Milnor, J., and J. Stasheff, Characteristic classes, Princeton (1974).
[9] Serre, J. P., Representations lineares de groupes finis, Hermann (1967).
[10] Uehara, H., and R. DiVall, to be published.

```
    2
        VITA
    Rocert Allen Divall
Candidate for the Degree of
    Doctor of Philosophy
```

Thesis: HOPF ALGEBRA OF CLASS fUNCTIONS AND INNER PLETHYSMS
Major Field: Matnematics
3iographical:
Personal Data: Born in Ponca City, Okiahoma, April 15, 1948, the
son of Mr. and Mrs. Robert J. DiVall.
Education: Graduated from Shidler High School, Shidler, Oklahoma,
in May, 1966; received Bachelor of Science degree in Mathematics from
University of California, Berkeley in 1972; received Master of Science
degree in Mathematics from Oklahoma State University in 1974; completed
resuirements for the Doctor of Philosophy degree at Oklahoma State
University in December, 1981.

Professional Experience: Graduate Teaching Assistant, Department
of Masnematics, DKlanoma Stata University, 1974-1979; Instructor, Depart-
ment of :athematics, Oklahoma State University, 1979-1980; Lecturer,
Deoartment of inathematics, Oklahoma State University, 1980-1081.

[^0]: ${ }^{\dagger}$ If no confusion arises, $C\left(S_{p}\right)$ stands for $C_{R}\left(S_{p}\right)$.

