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CHAPTER I 

INTRODUCTION 

Pantoyl lactone (PL), first synthesized by Glassen in 

1904, was brought to the attention of the biological commun­

ity by R. J. Williams et al. (1933, 1938, 1939) who demon­

strated that PL is a component of the hydrolysis products of 

pantothenic acid (Mitchell et al., 1940; Stiller et al., 

1940b). Several biological systems were also capable of syn­

thesizing their pantothenate requirements by utilizing PL as 

a substrate. These include yeast (Weiland and Moler, 1941; 

Kuhn and Weiland, 1942), Neurospora (Wagner et al., 1948), 

Clostridium speticum (Ryan et al., 1945), Brucella 

abortus (Altenbern and Ginoza, 1954), Escherichia coli 

(Kawachi, 1960), and Acetobacter suboxydans (Hall et 

al., 1945; Sarett and Cheldelin, 1945). However, some yeast 

are not able to grow by utilizing PL as a pantothenate pre­

cursor (Hartelus and Johnson, 1946) and alkaline hydrolysis 

of PL to pantoic acid will increase its growth stimulating 

activity for some organisms (Sarett and Cheldelin, 1945; 

Stansly and Schlosser, 1945). 

In view of these data it has been suggested that PL is 

not a natural intermediate in pantothenic acid anabolism 
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(Stansly and Schlosser, 1945). However, the ability to 

utilize exogenous PL in pantothenate synthesis is fairly 

widespread among microorganisms and PL has a fairly wide 

distribution in nature. In addition to being a hydrolytic 

breakdown product of pantothenic acid (Williams et al., 

1933, 1938, 1939; Mitchell et al., 1940; Stiller et al., 

1940a), which is ubiquitously distributed in nature, PL is 

believed to be in part responsible for the aroma of sherry 

(Webb et al., 1967), tobacco (Fujimore et al., 1976; Lloyd 

et al., 1976), cigarette smoke <Schumacher et al., 1977), 

molasses (Ito, 1976), cooked meat (Flament et al., 1978), 

and soy hydrolyzate (Liardon and Philipossian, 1978). 

PL utilization as a growth factor has not been 

demonstrated in any vertebrates. Conversely, PL shows many 

inhibitory activities in the$e systems. The d-isomer 

produces convulsions or related symptoms in rats, pigeons, 

rabbit ears and dog heart (Chan et al., 1960; Benda and 

Peres, 1961) and the 1-isomer elicits aggressive behavior 

from rats (Chan et al., 1960). The acute intra-peritoneal 

LD50 of PL for mice is 0.59 g/kg <Dorofeev, 1975). PL is 

apparently not metabolized by man (Sarett, 1945) but will 

inhibit K+ transport into cold stored human erythrocytes 

(Kahn and Cohen, 1957.). In rabbits maintained on a high 

cholesterol diet, PL < 185 mg/kg/6 days) lowered serum , 

cholesterol levels. 

One of the most intriguing aspects of PL's physiolog­

ical effects is its abililty to induce cell 
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division in division-inhibited bacteria (Grula and Grula, 

1962; Adler and Hardigree, 1965; 1972; Swenson et al., 1972; 

Kirby et al., 1972). Division inhibition and subsequent 

reversion to normal sized cells is a complex and much 

studied phenomenon. Many investigators (see Grula and 

Grula, 1964) have demonstrated that division inhibition by a 

wide variety of compounds results in reduced levels of 

mucopeptide in the cell walls of the affected cells. 

However, reversion to normal sized cells initiated by an 

equally diverse group of compounds does not result in 

increased levels of mucopeptide incorporation (Grula and 

Grula, 1964; King and Grula, 1972). The cell membranes of 

division-inhibited cells are also altered. Alterations 

include proteins (Grula and King, 1971), density CGrula and 

King, 1972), and phospholipids (Johnson and Grula, 1980). 

These cells also leak periplasmic proteins and phospholipids 

(Grula and Hopfer, 1972; Johnson, 1978). Treatment with PL 

will prevent or reverse many of these effects. However, 

growth in the presence of PL induces further alterations in 

the phospholipids (Johnson et al., 1980). 

Several hypotheses have been advanced to explain the 

effect PL has upon division. The Grula group has favored 

explanations that implicate the cell membrane as being cen­

tral to division with PL exerting its effects through this 

medium (Grula and Grula, 1962; Grula and Grula, 1964; Grula 

and King, 1971; Johnson and Grula, 1980). Yoshiyama (1972) 

suggests that PL induces filaments to divide by the 
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selective inhibition of the initiation of a new round of DNA 

synthesis. Others (Van de Putt et al., 1963; Adler and 

Hardigree, 1965) suggest that PL stimulates septum forma­

tion. Clearly, confusion between cause and effect has 

resulted in these divergent models. 

4 

One way to distinguish between cause and effect is to 

determine the time course of the various reactions being con­

sidered. Alterations in membrane phospholipids and melting 

point are slow. Generations are required before PL exerts 

its full effect (Johnson et al., 1980). Therefore these 

changes probably represent an adaptation to PL. This is sup­

ported by the fact that one of the immediate effects of PL 

is a 'tightening' of the membrane CGrula and King, 1971; 

Johnson et al., 1979) and phospholipid changes observed 

result in a more fluid membrane thereby counterbalancing the 

tightening due to PL. Another immediate effect of PL is 

transport inhibition (Grula and King, 1971). 

Since one of the objectives of this work was to de­

scribe a mechanism for the inhibition of transport, a review 

of the current concepts of active transport is included. 

Classically, transport is divided into three major cate­

gories; simple diffusion, facilitated diffusion and active 

transport. Of these, only simple diffusion is not mediated 

by a membrane-bound perrnease and is therefore the only one 

that does not demonstrate saturation kinetics. Substrates 

transported in this manner are lipid soluble and are not 

accumulated against a concentration gradient in a freely 



soluble form. 

Facilitated diffusion does not result in movement of a 

solute against its concentration gradient either. Hallmarks 

of this system are rates of transport across the hydrophobic 

membrane that are greater than would be predicted by simple 

diffusion, susceptibility to mutation, stereospecificity, 

and, as already mentioned, saturation kinetics. 

The last category is distinguished by solutes that are 

accumulated against their concentration gradient and require 

energy. Active transport is divided into two types based 

upon whether or not the solute is chemically modified during 

transport. Those that are modified are accumulated by group 

translocation and those that are not modified are accumu­

lated by active transport. This results in some confusion; 

therefore, alternative terminology is being adopted. 

Mitchell's (1963) terminology starts from the concept 

of vectorial metabolism. Simply speaking, vectorial metab­

olism results from enzymes embedded in an impermeable mem­

brane that catalyze the cleavage of a substrate with the 

subsequent separation of the resulting products across the 

membrane. As an example, when water is the substrate a H+ 

ion is extruded and an OH ion is retained resulting in 

the generation of a membrane potential that is both alkaline 

and electrically negative inside. This potential is 

mathematically expressed by equation 1. 
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+ AH =AllJ­µ 
RT 

2 .3 F ApH ( 1) 

Where µH+ is the proton motive force in millivolts and 
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is a measure of the combined electrical and chemical forces 

acting on the protons; Al.f! is the electric~l potential dif-

ference across the membrane; R is the gas constant, Tis 

temperature in degrees Kelvin; F is the Faraday constant and 

Apa is the pH difference that exists across the membrane. 

Mitchell's terminology divides active transport into 

two major groups--primary translocations and secondary trans-

locations. Primary translocations are directly linked to a 

biochemical reaction and may be of two kinds--group trans-

location and enzyme-linked solute trans location. In the lat-

ter class, the substrate is not altered as the result of the 

biochemical reaction but is obligately translocated as a 

result. H+- and Na+- pumping ATPases are examples of 

enzyme-linked solute translocators. Secondary translocators 

are not directly coupled to a biochemical reaction and are 

of three basic types: uniport, in which only the solute in-

teracts with the permease corresponding to facilitated dif-

fusion; symport or co-transport, in which the translocation 

of one solute is linked to the translocation of a second 

solute in the same direction; and antiport, in which the 

translocation of two solutes is linked but each moves in op-

posite directions. 

In this thesis, group translocation and facililtated 

diffusion are used as described and the term active 



transport refers to processes that are catalyzed by 

chemiosmotic symport mechanisms. 
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CHAPTER II 

MATERIALS AND METHODS 

Test Organisms and Growth Media 

The two organisms used during the course of this study 

were Micrococcus lysodeikticus dis-IIp+ and Strepto­

coccus faecalis. ~- lysodeikticus is a highly aero-

bic bacterium and its ATPase is isolated in a cryptic form 

(Carreira et al., 1975) while~- faecalis is a strictly 

fermentative organism. The ATPase of S. faecalis is not 

cryptic, ie. it is not isolated in a form that is stimulated 

by trypsin treatment (Abrams and Baron, 1967; Schnebli and 

Abrams, 1970; Schnebli et al., 1970). These facts lend cre­

dence to the hypothesis that ~- lysodeikticus ATPase is 

physiologically employed in the synthesis of ATP utilizing 

the membrane potential formed by electron transport for 

energy while the ATPase of S. faecalis operates pri-

marily in the reverse direction, hydrolyzing ATP produced by 

substrate level phosphorylation to generate the membrane po­

tential. 

Both organisms were maintained on trypticase-soy agar 

slants CTSA, Difeo). M. lysodeikticus was grown in a 

defined medium (Grula et al., 1961) for transport studies 
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while ~- faecalis was transferred to trypticase soy 

broth CTSB, Difeo) for transport experiments. s. 

faecalis was cultured in 1% glucose, 1% tryptone (Difeo), 

0.5% yeast extract (Difeo) and 1% K2HP0 4 (Abrams et al., 

1974) for ATPase isolations. 

Uptake Studies 

Cells cultured in their respective media were harvested 

by centrifugation (5,000 x g, 10 min), washed twice in 

uptake buffer (salts of the ~- lysodeikticus defined 

medium) and suspended to an absorbance of 0.5 at 540 nm 

CA540 = 0.5). This suspension was allowed to equilibrate 

at room temperature for 30 min. At this time 2:3 ml samples 

of the cell suspension were transferred to 30 x 180 test 

tubes and shaken on a Burrell wrist action shaker. Pantoyl 

lactone was added 30 s prior to the addition of radioactive 

substrates. PL and substrate additions totaled 0.7 ml to 

bring the total volume to 3 ml. Samples (0.5 ml) were 

taken at 0.5, 1.0, 2.0, and 3.0 min, vacuum filtered (13 rrun 

diameter, 0.45µm pore size Millipore nitrocellulose 

filters), and washed 3 times with cold uptake buffer. The 

filter pads were then placed in 10 ml of scintillation 

cocktail CAquasol, Amersham) and left overnight to dissolve 

the filter pad. The vials were then counted and the results 

reported as counts per min (CPM) or converted to disintegra­

tions per min CDPM) or nmoles substrate accumulated. 

9 



10 

Isolation of ATPases 

Solubilized ATPase from ~· faecalis was isolated by 

the method of Abrams et al. (1974). Isolation of membrane 

bound ATPase utilized the same procedure except that the low 

ionic strength osmotic washes were omitted. Membranes iso­

lated in this manner were resuspended in 10 mM MgC1 2 , 0.1% 

p-amino-benzamidine, 10 rnM TRIS-HCl pH 7.5, centrifuged at 

50,000 x g for 30 min at 4° C, frozen, lyophilized and 

stored at -20° c. The lyophilized membranes were resus­

pended in 10 mM MgC1 2 , 10 mM TRIS-HCl pH 7.5, and 

sonicated to optical clarity with 15 s bursts in a bath-type 

sonicator (Laboratory Supplies, Inc.). The suspension was 

then centrifuged at 20,000 x g for 15 min at 4° C and re­

suspended in the same buffer. 

Porcine cerebral cortex Na+/K+-activated ATPase 

(PCA), Na+/K+-activated dog kidney ATPase, apyrase and 

firefly luciferin-luciferase (L-lase) were purchased from 

Sigma Chemical Co. PCA and apyrase were solubilized in 10 

mM MgCl 2 , 30 mM HEP ES pH 7. 5 and used as such • L-Lase was 

suspended in the same buffer then centrifuged at 35,000 x g 

for 15 min at 4° C. The supernatant was layered onto a 

1.5 x 7 cm Sephadex G-75 column and eluted with the same 

buffer. Five ml fractions were collected. Luciferase 

activity was near the void volume (fraction 3). Fractions 

containing luciferin (5 and 6) were pooled and used for 

assays. 

Turkey heart mitochondria CTHM, Chance and Hagihara, 
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1963) and electron transport particles (ETP) from beef heart 

mitochondria (Crane et al., 1956) were the generous gift of 

Dr. H. J. Harmon, Oklahoma State University, Department of 

Physics, Stillwater, Oklahoma. 

ATPase Assay 

ATPase activity was monitored by measuring the 

inorganic phosphate liberated using the method of Adolphsen 

and Moudrianakas (1971). Buffers and ATP concentrations 

were varied according to the experiment and are given in the 

legends to figures and tables. 

Measurement of Proton Pumping 

and Respiration 

Proton extrusion and respiration were measured by the 

method of Wickstrom and Krab, 1978; Wickstrom, 1977). 

Respiration was monitored using a Clark type electrode 

amplified by a Johnson Foundation oxygen meter. The output 

was recorded on a Linear flat bed stripchart recorder. 

Respiration was driven by malate + glutamate and started by 

the addition of 2.5 mM ADP. Proton pumping was monitored 

using a Corning combination electrode and pH meter. Output 

was recorded on a Linear flat bead strip-chart recorder. 

The instrument was calibrated and changes in buffering 

capacity were monitored by the addition of 2µ1 of 0.100 N 

HCl following each experiment. Proton extrusion was driven 

by the addition of 2.04 mM ATP in the presence of 81.8 mM 



TRIS-sulfate pH 7.1. Where indicated, oligomycin was 

present at 0.163 mM. 

Luciferin-Luciferase Assay 

ATP-dependent light production was measured in a 

Lab-Line ATP photometer in peak height mode and set for a 6 

s interval. The sensitivity setting was 300 and the zero 

setting was 180. 

Protein Determination 

Protein was estimated by the method of Lowry et al. 

(1951). 

Chemicals 

12 

Carbonylcyanide-~-chlorophenylhydrazone (CCCP) and 

dicyclohexylcarbodiimide (DCCD) were the gifts of Drs. H. J. 

Harmon and R. Essenberg respectively. All other chemicals 

were reagent grade and commercially available. 



CHAPTER III 

RESULTS 

Studies on Transport 

Pantoyl lactone inhibits the transport of D-alanine, 

L-aspartate, L-glutamate, and glycerol in both division­

inhibited and normal cells. (Grula and King, 1971; Johnson 

and Grula, 1980; Johnson et al., 1980). This inhibition is 

over and above the reduced rates of transport reported in 

filamentous cells <Grula et al., 1968). PL also inhibits 

K+ accumulation by cold-stored human erythrocytes (Kahn 

and Cohen, 1957). Figures 1-3 confirm that PL inhibits 

D-alanine, L-aspartate, and L-glutamate transport in normal 

~- lysodeikticus cells. The pH profile of aspartate tran­

sport is given in data presented in Figure 4. The data are 

similar to those for filament induction. D-Glucose trans­

port is also inhibited (Fig. 5) even though D-glucose is a 

poorly utilized substrate and is not accumulated at the same 

rate as the amino acids. D-Glucose transport demonstrates 

saturation kinetics (Fig. 5), indicating that~- lyso­

deikticus possesses a functioning D-glucose permease even 

though it is a poorly utilized substrate. 

A physical interaction with the membrane has been 

13 



Figure 1. Effect of pantoyl lactone on D-alanine transport 
by~· lysodeikticus (dose response curve). 

D-Alanine (232 Ci/mole) was present at 31.3 uM. 
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Figure 2. Effect of pantoyl lactone on L- aspartate transport 
by ~· lysodeikticus (initial velocity curve). 
L-aspartate (232 Ci/mole). O, control cells;e 
0.22 M Pl. 
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Figure 3. Effect of pantoyl lactone on L-glutamate transport 
by~- lysodeikticus Cinital velocity curve). 
O , control cells; • , 0. 22 M Pl. 



.....---
l-100 ws 

ti 90 
~ ti 
:c( 0 80 5 ...J 

G ~ 10 
u 

~ ~ 60 
oW 
~ ~ 50 
c. z 
~ 40 
~ 

w JO 
~ 
a:: 

10 

0 10 20 30 40 
L:.- GLUTAMATE (uM) 

19 



Figure 4. Effect of pH on L-aspartate transport by ~· 
lysodeikticus. L-Aspartate <232 Ci/mole) was 
present at SOµM. 
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Figure 5. Effect of pantoyl lactone on D-glucose transport by 
~· lysodeikticus <initial velocity curve). o, 
control cells; e, 0.22 M PL. 
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proposed (Johnson et al., 1980) since it was deemed unlikely 

that PL could be conpetitively interacting with so many di­

verse transport systems. Further studies on M. lyso­

deikticus transport indicate that PL is a non-competitive 

inhibitor of D-alanine, L-aspartate, L-glutamate and 

D-glucose transport (Figs. 6-9). These data lend credence 

to the physical interaction hypothesis proposed by Johnson 

et al.<1978), especially since examples of three of the four 

major transport mechanisms are inhibited. Glycerol uptake 

CGrula and King, 1971) is considered an example of simple 

diffusion whereas D-glucose transport appears to occur via 

facilitated diffusion (Fig. 5). The amino acids tested are 

accumulated by active transport. 

Since s. faecalis was to be used in studying the ef­

fect of PL on bacterial energetics, the effect on active 

transport was first determined since it is a sensitive in­

dicator of this physiological activity. P~ inhibits the 

transport of L-aspartate and L-glutamate but not that of 

D-glucose into starved S. faecalis cells (Figs. 10-12) 

In these cells, glucose accumulation is considered to be a 

group translocation process (Harold, 1972). This may be the 

reason ~- faecalis is relatively resistant to PL concen­

trations up to at least 0.48 M (Fig. 13). However, L-aspar­

tate and L-glutamate transport seem to be non-competitively 

inhibited by PL (Figs. 14-15). These data indicate that PL 

can have a differential effect on transport depending upon 

how the process is energized. 



Figure 6. Effect of pantoyl lactone on D-alanine transport by 
~- lysodeikticus (double reciprocal plot) • O, 
control cells;.&, 0.02 M PL; e, 0.22 M PL;•, 
0.44 M PL. 
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Figure 7. Effect of pantoyl lactone on L-aspartate transport 
by~- lysodeikticus (double reciprocal plot). 
O , control cells; e, 0.22 M PL. 
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Figure 8. 

• 

Effect of pantoyl lactone on L-glutamate transport 
by M· lysodeikticus (double reciprocal plot). 
o , control cells; e, 0.22 M PL. 
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Figure 9. Effect of pantoyl lactone on a-glucose transport by 
~· lysodeikticus (double reciprocal plot). 
o , control cells; e, 0.22 M PL. 
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Figure 10. Effect of pantoyl lactone on L-aspartate transport 
by S. faecalis <initial velocity curve). L­
Aspartate C232 Ci/mole) was present at SOµM. 
O , control cells; e, 0.22 M Pl. 
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Figure 11. Effect of pantoyl lactone on L-glutamate transport 
by S. faecalis (initial velocity curve). L­
Glutamate (206 Ci/mole). 0, control cells; •, 
0.22 M PL. 
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Figure 12. Effect of pantoyl lactone on D-glucose transport by 
s. faecalis (dose response curve). 
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Figure 13. Effect of pantoyl lactone on growth of S. 
faecalis. Side-arm flasks of nutrient-broth + 
1% glucose + 0 .1% yeast extract were inoculated 
with cells from 0rypicase-soy agar slants and 
incubated at 25 Con a rotary shaker. PL was 
added at zero time. The absorbance at 540 nm was 
periodically measured using a Bausch and Lomb 
Spectronic 20. o, control cells; ~' 0.273 M PL; 
e , 0. 48 M PL. 
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Figure 14. Effect of pantoyl lactone on L-aspartate transport 
S. faecalis (double reciprocal plot). o , 
control cells; • I 0. 22 M PL. 
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Figure 15. Effect of pantoyl lactone on L-glutamate transport 
bys. faecalis (double reciprocal plot). o , 
controls cells; • , 0.22 M PL. 
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Studies on Energetics 

S. faecalis ATPase 

Since S. faecalis is a strictly fermentative organ­

ism, the only way it has of chemiosmotically energizing its 

membrane (Mitchell, 1963) is via a H+-pumping ATPase 

(Harold, 1972). Since the energy for aspartate and gluta­

mate transport is generated by this enzyme, it should be 

inhibited by PL if the energizing system and not the indi­

vidual permeases is the site of action. The solubilized 

form was isolated and tested for PL sensitivity. It is not 

inhibited by PL (Fig. 16) however, if the enzyme is assayed 

at an earlier stage during the isolation procedure (when it 

is still bound to the membrane) it is sensitive to PL (Fig. 

17). PL is a non-competitive inhibitor of membrane-bound 

S. faecalis ATPase (Fig. 18). These data indicate that 

45 

a membrane-protein interaction is an important factor in PL 

inhibition. The similar apparent KI of PL inhibition of 

membrane-bound ATPase and amino acid transport suggests that 

the inhibition of the energizing system CATPase) is suf­

ficient to account for the transport inhibition. 

Although interactions with other membrane proteins 

Cpermeases) cannot be ruled out, the differential effects on 

dissimilar types of transport systems is evidence against 

this. The inhibition by PL of~- faecalis membrane-

bound ATPase does not seem to be reversed by increasing the 

Mg++ concentration (Fig. 19) as is the case for PL induced 



Figure 16. Effect of pantoyl lactone on solubilized by S. 
faecalis ATPase (initial velocity curve). -The 
buffer used was 30 mM HEPES, 20 mM MgC1 2 , 
pH 7.8. O, control; •, 0.22 M PL 
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Figure 17. Effect of pantoyl lactone on membrane-bound ATPase 
from s. faecalis (initial velocity curve). 
The buffer used was 30 mM HEPES, 20 mM Mgcl 2 , 
pH 7.8. o, control; •, 0.165 M PL. 
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Figure 18. Effect of pantoyl lactone on membrane-bound ATPase 
from s. faecalis (double reciprocal plot). 
The buffer used was 30 mM HEPES, 20 mM Mgcl 2 , 
pH 78. 0, control; •, 0.165 M PL. 
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Figure 19. Influence of Mg++ on pantoyl lactone inhibition 
of S. faecalis membrane-bound ATPase. Each 
assay contained 4.44 mM ATP, 4.44 mM MgC1 2 , 
30Mm HEPES pH 7.8, 0.136 M PL and excess MgCl 
as indicated on the ordinate. Percent inhibition 
was calculated using results from samples without 
PL or excess MgC1 2 as the control value. 
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alterations in the laser Raman spectra of isolated membrane 

vesicles {Johnson et al., 1978). 

The inhibition pattern with respect to the solubilized 

enzyme versus the membrane-bound form is similar to the 

inhibition that occurs in the presence of DCCD (Figs. 20, 

21). DCCD and PL inhibition are additive (Table I) and data 

presented in Figure 22 indicate that even though PL and DCCD 

affect the same portion of the enzyme CF 0 >, they have 

different sites of action. 

These data indicate that PL inhibits s. faecalis 

ATPase through interactions with the membrane-bound CF0 ) 

portion of the enzyme even though PL and DCCD have different 

specific sites of action. This is consistent with the mem-

brane lipid-protein interaction hypothesis for the mechanism 

of action of PL. 

Other ATPases 

To see if inhibition by PL was limited to ~- fae-

calis membrane-bound ATPase or if it is more universal, 

other ATPases were assayed for sensi ti vi ty to PL. The 

membrane-bound Na+/K+-activated ATPase from porcine cere-

bral cortex cytoplasmic membrane is inhibited by either PL 

(Fig. 23), DCCD or oligomycin (Fig. 24). The Na+/K+-

activated ATPase from dog kidney is also sensitive to PL 

<Fig. 25). Apyrase, a solubilized ATPase isolated from 

potatoes, is not senstitve to either PL or DCCD (Figs. 26-

27). 
++. 

The membrane-bound Mg -activated ATPase of beef 



Figure 20. Effect of DCCD on solubilized S. faecalis 
ATPase. Assays were done using 7.5 mM ATP in 
10 mM MgC1 2 , 30 mM HEPES pH 7.8 with additions 
as indicated. 0, controls: /:::,. , 0. 8 % ethanol: 
A ' 8 UM DCCD. 
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Figure 21. Effect of DCCD on membrane-bound s. faecalis 
ATPase. Assays were done using-7.5 mM ATP, 10 mM 
MgC1 2 , 30 mM HEPES pH 7.8 with additions as 
indicated. o, control; D,., 0.8% ethanol; A, 
8 mM DCCD. 
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TABLE I 

ADDITIVE NATURE OF PANTOYL LACTONE AND 
DCCD INHIBITION OF S. FAECALIS 

MEMBRANE-BOUND ATPase 

umole P0 4/minute"mg protein* 

Control 2.11 uM DCCD 144 mM PL 2.11 UM DCCD + 144 mM PL 

8.828 5. 67 4.00 2.005 
8.965 5.19 4.18 2.167 
8.654 4.73 3.50 2.067 
9.463 4.67 1.918 
9.165 1.768 
9.015 1.519 

2.430 
2.34 
2.43 
2. 67 
3.08 
1.76 
1. 95 
1.72 
1.81 
2.05 
2.79 
1.74 

x=9.015 x=5.065 x=3.893 x=2.123 
s=0.280 s=0.465 s=0.352 s=0.422 

* Assays were done using 9.9 mM ATP, 10 mM Mgcl 2 , 30 mM 
HEPES pH 7.8. 
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Figure 22. Dixon plot of the effect of DCCD + pantoyl lactone 
on s. faecalis membrane-bound ATPase. Assays 
were done using 9 mM ATP, 9 mM MgCl , 30 mM 
HEPES pH 7.8. 0, control; 0, O.OSS M PL. e, 
0.145 M PL; 8, 0.290 M PL. 
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Figure 23. Effect of pantoyl lactone on Na+/K+-activated 
ATPase from porcine cerebral cortex. Assays were 
done using 5. 94 mM ATP, 28 mM MgC1 2 , 25 mM KCL, 
100 mM NaCl, and 300 mM TRIS pH 7.8. O , 
control; • , 0 .165 M PL. 
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Figure 24. Effect of DCCD and oligomycin on Na+/K+-
acti vated porcine cerebral ATPase. Assays were 
done using 4.5 mM ATP, 28 mM MgC1 2 , 25 mM KCL, 
100 mM NaCl, and.300 mM TRIS pH 7.8. O, 
control; A , 0. 9% ethanol; A , 9µg/ml DCCD; 
• , 9µg/ml oligomycin. 
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heart mitochondria (electron transport particles) is also 

inhibited by PL (Fig. 28). These data further emphasize a 

need for membrane association in PL mediated inhibition. 

However, luciferase, a solubilized ATPase <McElroy and 

Seliger, 1962; Cromier et al., 1975) isolated from fire-fly 

(Photonius pyralis) lanterns is sensitive to PL (Fig. 

29). This may be due to competition between PL and luminol 

Cluciferin) (Figs. 29, 30). A clear interpretation of the 

data is not possible because standard type kinetics are not 

demonstrated. 

+ Respiration and H- Pumping 

Based on data given above it appeared that PL inhibits 

ATPases by interacting with the membrane-bound CF0 > por­

tion of this enzyme. As a further test of this hypothesis, 

ATP driven H+ extrusion by isolated turkey heart mitochon-

dria was measured as a function of PL concentration. The 

data presented in Figure 31 show that this process is also 

inhibited. Since many cells can also energize their mem-
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branes through reactions catalyzed by the electron transport 

chain, the effect of PL on respiration was also measured. A 

compound that inhibits ATPase will also inhibit respiration 

when measured as increased o2 consumption in response to 

added ADP. This inhibition can be prevented by uncouplers 

while decreased respiration due to inhibition of the elec-

tron transport system is insensitive to added uncouplers. 

PL inhibition of respiration of turkey heart mitochondria 



Figure 25. Effect of pantoyl lactone on Na+/K+-activated 
ATPase from dog kidney. Assays were done using 
3 mM ATP, 28 mM MgC1 2 , 25 mM KCl, 100 mM NaCl, 
and 300 mM TRIS pH 7. 8. o , control; e , 0. 2 M 
PL. 
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Figure 26. Effect of pantoyl lactone on apyrase. Assays were 
done using 5 mM ATP, 28 mM MgC1 2 , 25 mM KCl, 100 
mM NaCl, 300 mM TRIS pH 7.0. O, control; •, 
0.2 M PL. 
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Figure 27. Effect of DCCD on apyrase. 
9.9 mM ATP, 28 mM MgC1 2 , 
NaCl, and 300 mM TRIS pH 
44 uM DCCD. 

Assays were done using 
25 mM KCl, 100 mM 
7.0. o, control; A, 
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Figure 28. Effect of pantoyl lactone on ATPase activity of 
beef heart mitochondrial electron transport 
particles (Dixon plot). Assays were done using 
9 mM ATP, 10 mM MgC1 2 , 30 mM HEPES pH 7.8. 
KPL = 50 mM. 
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Figure 29. 

Figure 30. 

Effect of pantoyl lactone on luciferin­
luciferase light production (initial velocity 
curve). Peak height was measured using 80µm 
ATP, 10 mM MgC1 2 , 30 mM HEPES, pH 7. 2. 0 , 
controls; • , 55 mM PL. 

Effect of pantoyl lactone on luciferin-luciferase 
light production (double reciprocal plot). Peak 
height was measured using 80µM ATP, 10 mM 
MgC1 2 , 30 mM HEPES, pH 7. 2. 0 , controls; e , 
55 mM PL. 
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Figure 31. Effect of pantoyl lactone on H+ pumping by turkey 
heart mitochondria (Dixon plot). KPL = 143 mM. 
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(Fig. 32), unlike that due to the mitochondrial ATPase 

inhibitor oligomycin, is not relieved by the uncoupler CCCP 

(Fig. 33). These data suggest that PL also inhibits an 

element(s) of the electron transport chain. This is further 

evidence for a generalized physical interaction by PL with 

membrane-bound or associated proteins. 



Figure 32. Effect of pantoyl lactone on respiration by turkey 
heart mitochondria (Dixon plot). KPL = 47 mM. 
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Figure 33. Effect of CCCP on oligomycin and pantoyl lactone 
induced inhibition of respiration Crate tracings) 
Concentration of reagents added at arrows are 
given in Materials and Methods. D1 control 
tracings; A and C, PL mediated inhibition of 
respiration; B, reversal of oligomycin Coligo) 
inhibition of respiration by CCCP; C1 non­
reversable nature of PL inhibition. 
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CHAPTER IV 

DISCUSSION 

The data reported clearly indicate that PL (in the 

concentrations used to revert filaments) has profound 

effects upon the energetics of a cell. + Transport, H 

extrusion, respiration, and membrane-bound forms of both 

++ + + . Mg and Na /K -activated ATPases are inhibited. The 

concentration of PL needed to inhibit these vectorial 

reactions varies over an approximately three to five-fold 

range. This variation can be correlated with the sideness 

of the particular enzymatic system and probably indicates 

that PL is not readily transported across the cytoplasmic 

membrane. For example, transport, H+ extrusion and ATPase 

activity of isolated membranes indicate KPL values in the 

150-250 mM range while enzymatic systems that are trans-

membranous or everted (electron transport chain and the 

ATPase of electron transport particles) indicate KPL 

values in the 40-50 mM range. The only solubilized system 

that has been determined to be sensitive to PL <luciferase), 

has an even lower KPL C20mM). In addition, equilibrium 

dialysis experiments and the uptake of labelled PL have been 

uniformly negative in attempts to demonstrate accumulation 

of PL by cells. Such data indicate a permeability problem 
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and, in part, explain the non-physiological concentrations 

of PL required. 

85 

All transport systems that demonstrated saturation kin­

etics are mediated by a permease. Permeases can be 

described as membrane associated proteins that catalyze the 

movement of solutes across biological membranes and are an 

integral part of all proposed models of active transport. 

Of all transport systems tested, D-glucose accumulation by 

S. faecalis is the only one not inhibited by PL. It 

is also the only one that is energized by substrate level 

phosphorylation as opposed to a membrane potential which is 

the driving force behind the other transporters. This 

information leads one to postulate that PL is inhibiting 

transport by interfering with those enzymatic systems that 

generate the membrane potential. As reported in this 

thesis, PL does inhibit such enzymes CATPase and electron 

transport chain}. However, the non-competitive kinetics of 

transport inhibition indicate that specific permeases are 

probably also affected. 

My results support generalized physical interactions 

with membranes as a mechanism of action for PL (Johnson et 

al., 1980). In addition, a profound effect on cellular ener­

getics is indicated. Correlation of these results with PL's 

effect on growth and division indicate an involvement of the 

membrane potential with these processes.. Inhibition 'Of 

growth by PL can be directly attributed to the inhibition of 

transport which can, in turn, be at least partly linked to 



inhibition of membrane-bound ATPase and the respiratory 

system. Stimulation of division by PL suggests an involve­

ment of membrane potential in this process. However, there 

is, as yet, no clear relation between division and.the mem­

brane potential. Cell division is intimately associated 

with the cell membrane (Grula and King, 1971; Harold, 1972) 

thus implying that vectorial reactions may be associated 

with cell division. Filament formation induced by diverse 

agents results in altered cell membranes (Grula and King, 

1971; Grula and Hopfer, 1972; Johnson, 1978) which could 

easily alter a cell's ability to maintain or respond to the 

membrane potential. In addition to PL, several other com­

pounds which either potentiate or retard filament formation 

can also alter the membrane potential. For .. example, inclu­

sion of high levels of NH 4+ in media will often result 
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in shorter cells (Grula, 1970). Ammonia is accumulated in 

response to the membrane potential and can act as a mobile 

cation thereby depleting the membrane potential. Inclusion 

of glucose on the other hand often results in longer cells 

CE. Grula, 1960; M. Grula, 1970). Glucose can be viewed as 

an excellent substrate for growth and energy production or 

as a repressor of oxidative phosphorylation (Cavari et al., 

1968; Hempfling, 1970; Sanwal, 1970). The effect of glucose 

on membrane potential would depend upon which of the above 

effects predominated in the particular organism being 

utilized. Aeration which would certainly favor formation of 

larger membrane potentials is important for good filament 
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formation CE. Grula, 1960). The medium pH has a distinct 

effect on filament formation (Grula and Grula, 1961). 

Raising the pH to 7.5 which is equivalent to the internal pH 

maintained by most cells (Harold, 1972), results in smaller 

cells and ApH. 

Using the above information, it would seem that an 

increase in the membrane potential is associated with in­

creased cell length. However, some lines of evidence exist 

which are contrary to such an association. Primarily, 

2,4-dinitrophenol, which destroys the membrane potential, 

does not cause filaments to divide and, in fact, prevents 

PL-induced division (Grula and Grula, 1962). Also, Felle et 

al. (1978) used microelectrodes and fluorescent dyes to meas­

ure the membrane potential of normal and penicillin-induced 

giant cells of Escherichia coli and found that no sub­

stantial differences exist. Finally, Harold and Van Brunt 

(1977> using enriched media in addition to elevated K+ 

levels and pH demonstrated that ~· faecalis grew nor-

mally in the presence of gramicidin and other ionophores 

under conditions wherein there was no membrane potential. 
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