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PREFACE 

The problem addressed in this dissertation is that of determining 

the optimum economically based double sampling plan. This topic is not 

covered in any textbook on statistical quality control. The purpose of 

this research is to provide the modeling and optimization technology as 

well as a new and well-developed tool in selecting the most cost effective 

double acceptance sampling plan. 

The modified Guthrie-Johns model, including fixed costs, is 

developed. The methodology and an interactive computer program are 

developed to select the optimum double sample size pair and corresponding 

acceptance/rejection number vector which provide the minimum total 

expected cost. The model sensitivities are presented to determine 

relative economic advantages. 
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grateful for the.encouragement and support of the government. 
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always been welcome. His guidance during this research has been very 

helpful and is reflected in many places throughout this dissertation. 

Dr. Case has been a truly outstanding teacher and advisor. I would like 

to-thank Professor Joe H. Mize for his inspiration and advice during my 

graduate study. It has been an invaluable experience to associate with 
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and advice in the preparation of this study. Mr. Eldon Hardy deserves 

recognition for his outstanding work in drawing the numerous figures and 

graphs herein. 

I would like to thank my parents, Mr. and Mrs. C. C. Chen, for the 
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CHAPTER I 

THE RESEARCH PROBLEM 

Purpose 

One of the most important aspects of quality control is acceptance 

sampling. Traditional acceptance sampling plans make accept/reject 

decisions based upon calculable statistical risks instead of cost con

siderations. Sometimes, the plans are economically good; however, at 

other times they are very costly. In order to obtain plans capable of 

low total expected costs, economically based double acceptance sampling 

by attributes plans are studied herein. The relevant economic model 

employs Bayesian decision theory. 

The basic model to be used is that of Guthrie and Johns which 

includes the cost of sampling, lot acceptance, and lot rejection. 

Fixed cost factors are added in order to provide a more realistic 

model. Newly developed procedures for model optimization are required 

in order to select the appropriate sample sizes and acceptance and 

rejection numbers which provide the minimum total expected cost. An 

interactive computer program is developed, suitable for use by 

practitioners with a minimum of technical background. The double 

sampling model is then investigated in comparison to a comparable 

single sampling model in order to determine the relative economic 

advantage of double sampling. 
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Introduction 

General 

The selection of appropriate acceptance sa~nling plans is one of 

the most important jobs of the quality control engineer. Acceptance 

sampling is used to make accept/reject decisions on incoming parts, 

in-process items, and finished goods. Its purpose is to determine a 

course of action, not to estimate or control lot quality. It is 

specifically for the purpose of sentencing lots to either acceptance 

or/rejection. 

J l,m;_pec:tiQD .by _attributes i s inspect i on -wh aPeby e i t he.c the _uni LQf. 

p~j_s_~}-~~-~!.~.-~9 __ ~_i_m.p1y ___ a$ ... defective-or ... nondefecti.v§ .. L_or the 

number ___ o.:f-de.f.ects_ jJLthe unit of product . .is ... counted, .... :w.ttb ___ respect to a -·- • .....,c,~-~---·-· 

gjv_enrequtrgm~r:iL.or.s.et.of requirements. There are several types of 

attributes sampling plans for lot-by-lot inspection. They include 

single-sampling, double-sampling, multiple sampling, and sequential 

sampling plans. 

The most commonl_y used plans in industry are single-sampling and 

double-sampling. Double-sampling plans are known to have some 

advantages and some disadvantages with respect to single-sampling 

plans.· One relatively unknown area of comparison is in regard to the 

degree of economic advantage achieved by double-sampling. A thorough 

Bayesian economic model for single-sampling now exists. The following 

double-sampling effort not only advances the leading edge of econom-

ically based sampling, but permits a valid assessment of the economic 

comparison between double- and single-sampling. 
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gle-Sampling 

The single-sample fraction-defect·ive sampling plan is very simple. 

It ca]ls for a decision on the basis of evidence from one sample taken 

from a lot. It specifies the sample size (n) .()f.items that should be 
. ·- . -- .... , 

taken randomly f~£m. t~~ .. -1.gt. If the number of defective __ ~~ems (x) in 

the sample is less than, or equal to the acceptance number (c), the 

lot is accepted; otherwise, it is rejected. 

The single-sampling decision criterion is shown as follows: 

Sample n: If x ~ c, accept 

If x > c, reject 

A flow chart of the procedures is presented in Figure I.1. 

START 

no yes 

ACCEPT 

STOP 

Figure I.1. Flow Chart of Single-Sampling 
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Double-Sampling 

Double-sampling plans involve four possibilities. Acceptance or 

rejection may take place immediately following observation of the first 

sample. Alternatively, the decision may be deferred to where acceptance 

or rejection take place following the second sample. 

The plan is designated by six numbers (n1, n2, c1, r1, c2, and r2), 

c1 being less than r1 and c2+1 being equal to r 2. A sample of size n1 

items is taken from a given lot. If the number of defective items in 

the sample is less than or equal to the first acceptance number c1, the 

lot is accepted. If the number of defective items in the sample equals 

or exceeds r1, the lot is rejected. However, if the number of defective 

units is greater than c1 but less than r1, a second sample of size n2 

is taken from the remainder of the lot. If the number of defectives 

in the combined samples does not exceed the second acceptance number c2, 

the lot is accepted. If there are more than c2 defectives, the lot is 

rejected. 

The double-sampling decision criteria are shown as follows: 

Sample n1: If x1 ~ cl, accept 

If x1 ::- rl' reject 

If c1 < xl < rl' take second sample. 

If x1 + x2 < C3, accept 

If x1 + x2 > C3' reject 

A flow chart of the procedures is presented in Figure I.2. 

A double-sampling plan has some possible advantages over a single

sampling plan. First, it may reduce the total amount of inspection. 

Second, a double-sampling plan provides the psychological advantage of 

giving a lot a second chance. This advantage is, of course, purely 
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psychological. It also provides a lower total expected cost of 

operation. The primary disadvantage of double-sampling is the 

difficulty with which it is administered in an actual inspection 

operation. 

Yes 

START 

lST SAMPLE 
nl 

No 

2ND SAMPLE 

STOP 

Yes 

Figure I.2 .. Flow Chart of Double-Sampling 
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5i sk~-~~-~_?.Ci ated With Acce_ptan_c;_eu Sampi i ng 

The classical risk-based sampling plan may be determined once 

certain criteria (e.g., AQL, LTPD, AOQ) have been satisfied. The most 

popular approach for designing a sampling plan is the 11 2-point design. 11 

That is, a producer's risk (a) is identified with a 11 good 11 fraction 

defective (p1). A consumer 1 s risk (S) is identified with a 11 poor 11 

fraction defective (p2). Those risks lead to a desired high probability 

of lot acceptance 1-a when the lot has been formed from a process having 

a good fraction defective p1. Also, the desired low probability of lot 

acceptance is S when the lot has been formed from a process having poor 

fraction defective p2. 

Put differently, a good sampling plan is one which provides a 

small producer's risk that lots of good quality will be rejected. Like-

wise, it provides a small consumer 1 s risk that lots of poor quality 

will be accepted. 

The classified methods are usually determined based upmra mental 

assessment of the risks inherent due to sampling. Unfortunately, it is 

very difficult to accurately mentally assess these risks and costs and 

arrive at a defensible set of criteria by which to determine an attri-

butes acceptance sampling plan. Sometimes, the resulting risk-based 

plans are very costly due to either over- or under-inspection of lots. 

/ 

le6sts Associated With Acceptance Sampling 

Generally speaking, the costs associated with acceptance sampling 

can be classifiedas (1) costs due to sampling and insp~_C:tio_n, (2) costs 

due to rejecting good items, and ( 3) cos ts due to accepting ba_d g_ems. 

These cost~j~clude variable and fixed cost components. The cost of _,,.-··----·-
\ --
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sampling is dependent upon the number of items inspected, and the 

manpower required. The cost of rejecting good items consists of all 

monies lost as a result of the decision to reject a lot such as costs 

of sorting, repairing, and reinspecting. The cost of accepting and 

passing on bad items is the most important of all and includes costly 

handling, rework, repair, and paperwork processing. The details of 

cost items are discussed in the following section. 

E-C:onomically Based Acceptance Sampling 

In an attempt to truly optimize the sampling effort and resultant 

risks for double-sampling plans, a stochastic mathematical economically

based acceptance sampling model is derived. The well known Guthrie-

Johns model for single-sampling is redeveloped for double-sampling. It 

is also modified to contain nine cost elements rather than six, 

including three components each associated with the cost of sampling, 

lot acceptance, and lot rejection. The model is Bayesian in nature, 
'----·-··- -------·----

r:-e_quiring a 11 prior 11 distribution to express the user's pre-sampling 

beliefs about the quality of the lots, based either upon past data, 

personal feeling, or both. 

The model describes the total expected cost per lot according to 
·---·-·. 

the decision criteria for double-sampling discussed in the previous 

section. In particular, it accounts for the cost of sampling, 

inspection, and rework of any defectives found therein. It also 

considers the downstream adverse effects of defective items which have 

either escaped in accepted lots or have been incorrectly classified 

as good. Finally, it allows for the cost of screening rejected lots 
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and rewor~lng any defective items found. 

The 11111del is a function of several variables. They include lot 

size (N), first and second sample sizes (n 1 and n2), acceptance and 

rejection numbers for the first and second samples (c1, r 1, c2, r 2), 

number of defectives in the lot (X), and number of defectives in the 

first and ·-ccond samples (x1 and x2). Often, the variable r2 is 

omitted, ~t·cause always in double sampling, r 2 = c2 + 1. The variables 

n1, n2' c1 • r1 , c2, and r2 are decision variables under control of the 

user. The variables X, x1 , and x2 are random variables over which the 

user has n,, control. The variable of lot size may or may not be under 

the user's control. It is assumed fixed in this research. 

The n\•,j-:.~1 is reduced to the point that it is a function only of 

decision v~1·iables by taking the expectation over X, x1, and x2. 

Assuming t':at the lot size is fixed, total cost is a function of only 

the decisi,·~1 variables, TC(n1 , n2, c1 , r1 , c2). Newly developed exact 

analytical ~nd search procedures are developed for the model to be 

optimized ~Y selecting the appropriate decision variables which provide 

a minimum ~.,tal expected cost. The required developments are described 

subsequent~ \ . 

Cost El em_~'·": s 

The Gl ~hrie-Johns model, proposed in 1959, contains six cost 

elements, i ·eluding two each concerned with the cost of sampling, lot 

acceptance~ and lot rejection, has been referenced and used by numerous 

authors. :~ is a versatile Bayesian economically-based attributes 

acceptance '0mpling model for single-sampling. Unfortunately, it omits 

factors fo~ fixed costs which do not vary in proportion to the quantity 
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of sampled items or resultant defectives. For 20 years, no comments or 

modifications to include a complete set of fixed costs have been 

published in the open literature. 

The Guthrie-Johns model, in addition to bei~g modified for double-

sampling, will contain not only the original six cost elements, but 

also three fixed factors for each cost. The cost elements are 

described as follows: 

1. s0 =fixed cost of sampling, inspection, and testing per lot. 

This includes lot handling, print review, inspection 

setup, incremental first item inspection, and any other 

cost per lot for sampling, inspection, and testing, 

regardless of the number of items to be considered. 

2. s1 = cost per item of sampling, inspecting, and testing. This 

includes manpower, overhead, inspection tool wear, 

materials used, and any other costs incurred during 

inspection and/or test. 

3. s2 =additional cost per defective item found during sampling, 

inspection, and testing. This includes rework/repair 

manpower, overhead; and materials. It also includes 

additional record keeping, reinspection, and related 

handling. Any extra expenditures per item due to the 

fact that the item was found defective during sampling 

are accounted for here. 

4. A0 = fixed cost of accepting a lot containing one or more 

defective items, when that lot is identified as defective 

downstream. This includes writing a reject tag, 

engineering fix, manufacturing corrective action writeup, 
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SP.qregation, stores checking and reinspecting, etc. 

This is usually a substantial cost which should not 

bt~ ignored. 

5. A1 = CO\t per item of the N-n items not inspected in an 

accepted lot. These items are considered the "norm. 11 

If good, they will go on to earn a profit for the 

cnn1µany which is 11 expected. 11 As such, this cost is 

usually taken as zero. If this portion of the lot 

requires 11 special handling, 11 for example, A1 may be 

grt 1ater than zero. 

6. A2 = adJitional cost per defective item later discovered in 

an accepted lot. This includes rework/repair manpower, 

overhead and materials. It includes damage, dismantling, 

lo~t goodwill, and work stoppage costs downstream. Also 

involved are reject tag processing costs, fix approval, 

relnspection and related handling. Any extra expendi

tui-es per item due to the fact that the item was found 

defectiye after having been accepted are accounted for 

hc'1'e. This cost can be quite high. 

7. R0 = fi\ed cost of rejection per lot rejected on original 

in\pection. This includes writing a rework, repair, or 

reject tag, handling of the rejected lot, and any other 

c0~t assessed per lot for a lot found defective and 

rejected in its own shop. 

8. R1 = c0~t per item of the N-n items in the rest of a rejected 

10~. This will normally be the cost per item of inspec

tL~n and testing. This includes manpower, overhead, 
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inspection, tool wear, materials used, and any other 

costs incurred in treating a rejected lot. This cost 

is often less than or equal to s1. 

9. R2 = additional cost per defective item found while 

inspecting and testing the rest of a rejected lot. This 

includes rework/repair manpower, overhead, and materials. 

It also includes additional record keeping, reinspection, 

and related handling. Any extra expenditures per item 

due to the fact that the item was found defective while 

inspecting and testing the rest of a rejected lot are 

accounted for here. This cost is often equal to s2. 

Distributional Considerations 

The methods utilized in this research are based upon Bayesian 

decision theory. Historical data and/or beliefs are used to predict 

the quality of a lot before it is observed. Then, the lot quality 

history is combined quantitatively with actual sample results to form 

an opinion about the ~ot after sampling. Based upon this latter 

opinion, the lot is either accepted or rejected. 

The Bayesian approach to statistical inference is based upon a 

theorem first presented by Thomas Bayes (1702-1761). Bayes• basic 

theorem was later modified by Laplace, and this modified version is 

used today and is commonly referred to as Bayes' theorem. 

In order to demonstrate the development of this theorem, the 

intersection probability of two events A and B is described as: 

P(AB) = P(A) P(B!A) = P(B) P(A!B). 
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From this, conditional probability relations such as the following may 

be stated: 

P(AjB) = P(A) p~~~t) . 
Here, P(A) is the prior probability of event A before the information 

about event B becomes available, and P(AIB) is the posterior prob

ability of event A based upon the results of event B. This is similar 

to the version of Bayes' theorem used in this research. 

The decision variables X, x1, and x2 represent the number of 

defectives in the lot and the number of defectives in the first and 

second samples, as discussed earlier. Considering only the first 

sample, the joint distribution of X and x1 are the four probability 

distributions described previously may be expressed as follows: 

or 

12 

Joint = Prior Sampling Marginal Posterior 
Distribution Distribution X Distribution = Distribution X Distribution 

The four non-joint distributions can be defined as follows: 

l,Ari or _di strjJ>v.ti9n fN{X) _..._ This di stri b.uti on represents the 

decision maker's beliefs, prior to sampling, concerning 

the probability of X defectives occurring in a lot of 

size N. 

The prior distribution must be specified in advance to describe 

the user's beliefs prior to sampling about the quality of the lot. 

These beliefs may be based upon past data or 11 feel. 11 

In the quality control job, when product items are grouped in 

batches of finite size prior to acceptance sampling, it is obvious 
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that the lot fraction defective on each attribute must be discrete. 

As the lot size increases, the number of possible lot fractions 

defective increases. Often, a continuous density function is used 

to express the prior distribution. But a continuous distribution 

is only an approximation to the exact discrete distribution. The 

desire to use discrete prior distributions is more important with 

smaller lot sizes, due to the significantly poorer approximation 

capability of continuous distributions. 

One of the most important discrete prior distributions is 

the mixed binomial mass function. It is a realistic and applicable 

prior distribution which represents the situation when many vendors 

supply incoming parts, with each vendor furnishing a proportion 

produced at each process fraction defective. Similarly, it may be 

used to describe product coming from different machine/material/ 

operator sources when each is operating at a different process 

fraction defective. 

Sampling distribution £nix1 !X) - This distribution gives the 

probability of observing x1 defectives in a random first 

sample of size n1, given that there are X defectives in 

the lot. The appropriate distribution here is the 

hypergeometric. 

Marginal distribution g (x1) - This distribution gives the uncon
n1 

ditional probability of observing x1 defectives in a 

random first sample of size n1, taken from the lot. 

Posterior distribution hN-n (X-x1!x1) -This distribution gives the 
1 

probability of having X defectives in a lot of size N 

given that x1 defectives were observed in a random first 

sample of size n1 taken from the lot. 
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Design 

The double-sampling plan and its total expected cost model had been 

discussed. It is a function of decision variables n1, n2, c1, r1, c2, 

and r2, as well as random variables X, x1, x2. lt has been noted that 

four possible decision profiles can be formed with acceptance or rejec

tion coming on either the first or second sample. These four possibili

ties are reflected in the mathematical model. 

The cost function can be expressed in the following form: 

Case 1: Accept the lot after taking the first sample 

Case 2: Reject the lot after taking the first sample 

= TCR 1 (N' n1, r 1, X, xl) if x1 ~ rl 

Case 3: Accept the lot after taking the second sample 

= TCA 2 (N' nl' n2' c1, r1, r 2, X, x1, x2) 

if c1 < x1 < r1 and xl + x2 s c2 

Case 4: Reject the lot after taking the second sample 

= TCR2 (N, nl' n2' c1, r 1, r 2, X, x1, x2) 

if c1 < xl < rl and 

xl + x2 ~ r2 = c2 + 1 



15 

Since X, x1, and x2 are random variables, it is necessary to take 

the expectation over them in order to obtain a function of decision 

variables (n1, n2, c1, r1, c2, r2). These six decision variables are 

reduced to five by recognizing that r2 = c2 + 1. Selection of values 

for the remaining five unknowns to minimize total expected costs is 

required. 

It is possible to equate TCA2 (N, n1, n2, c1, r1, c2, x1, x2) to 

TCR2 (N, n1, n2, c1, r1, c2, x1, x2) following the expectation of these 

cost formulas over X. This results in the ability to determine at what 

posterior value of X the two costs are equal, or at break even. From 

this, it is possible to determine the largest number of sampled defec

tives, x1 + x2, for which the least cost choice is to accept the lot. 

Such a value will be known as c2. This approach is shown in Figure I.3. 

The methodology outlined for determining c2 is also applied to the 

selection of c1 and r1. This task is much more difficult; however, it 

utilizes the breakeven principle to select c1 and r1. Only n1 and n2 

then remain to be determined. In practice, a fixed relationship often 

dictates n2 = n1 or ~2 = 2n1, and thus a univariate search is used to 

select values which optimize total expected cost. 

Re?~arch_ Object~v_es 

Based upon the above discussions, the overall objective of this 

research can be stated. 

OVERALL OBJECTIVE: To Rrovide industry and government with a new and 

well-developed tool to assist in selecting the cost 

effective double acceptance sampling plan for a wide 

range of realistic situations. 



$ 

Break Even 

Conditional Number of Defectives in Lot 

Figure I.3. Acceptance and Rejection Costs as a Function of the 
Posterior Expectation of X 
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In order to accomplish this objective, several specific sub-

objectives must be included as follows. 

SUBOBJECTIVES: 

(1) Development of the Guthrie-Johns model for use in double

sampling. 

17 

(2) Modification of the Guthrie-Johns model to include fixed cost 

components for sampling, rejection, and acceptance. 

\k{) Development of the theoretically exact analytical and search 

procedures for optimizing double-sampling plans using a 

discrete mathematical model with the fixed cost expansion. 

V(4) Development of an interactive computer program for double

sampl ing in a format suitable for use by industry and 

government. 

Comparison of optimum single and double-sampling plan total 

expected costs in order to determine the relative economic 

advantage of double-sampling. 

Summary 

The successful completion of this research provides benefits to 

both the theoretician and the practitioner in industry and government. 

Theoretically, the accomplishment of the objectives of this study fills 

several voids that now exist in the theory of economically based 

acceptance sampling for double-sampling plans. Many concepts involved 

are not presented in any textbooks on statistical quality control, but 

are of considerable and growing interest in the quality control area. 

The practitioner will benefit from this research because it 

provides sound procedures for evaluating alternative sampling strategies. 



Improved decision making capabilities will result from having the 

methodology to compare single-sampling vs. double-sampling, various 

first and second sample size relationships, and the sensitivity of 

total expected costs to economic components, distributional parameters, 

etc. The net result should be increased profitability through quality 

control. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

'~' 
This chapter reviews developments in the literature relevant to the 

objectives of this research. General support for the research effort 

has been documented in Chapter I. This chapter elaborates on this 

support. In addition to economically based double-sampling work, other 

sources which communicate concepts relating to the objectives of this 

study will be presented. 

This chapter is divided into three areas. These are: 

(1) Attributes sampling plan design methodologies. 

(2) Early origins of economically based acceptance sampling. 

(.3) Development of economically based acceptance sampling. 

Attributes Sampling Plan Design 

Methodologies 

Statistical quality control was introduced by Shewhart [65, 66, 67] 

in the 1920's and 1930's. These concepts and techniques have spread 

throughout the world, and Duncan [25] indicates that almost all 

industrialized nations use statistical quality control. Case [12] points 

out that quality control can be used by both large and small manu

facturers. Perhaps the most widely used statistical quality control 

area is acceptance sampling. While traditional sampling plans have 
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been based upon statistical risks, considerable effort and emphasis is 

being placed upon economically based sampling. Evidence of the wide

spread research of acceptance sampling schemes with emphasis on the 

economic aspect is given by a bibliography, contained in Wetherill and 

Chiu's [79] recent paper, which contains 246 references on this field. 

Their work indicates the most widely used acceptance sampling technique 

is attribute sampling. 

Both single and doub1e-sampling plans for statistically based 

acceptance sampling (SBAS) and economically based acceptance sampling 

(EBAS) have been discussed in Chapter I. According to Chen [17], due 
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to (1) high precision technology, (2) multinational company organization 

and expenditures, (3) new management philosophies introduced, and 

(4) the energy crisis, all industries are facing an era of challenge 

with high competition. Sound ways to succeed against this challenge are 

to: (1) improve product quality, (2) reduce the cost of goods, and 

(3) get more efficient management. So, Case [13] predicts that during 

the 1980 1 s, a fundamental change will be made by government and industry 

in the philosophy and design of attributes acceptance sampling. 

Statistically based sampling schemes, using techniques held sacred for 

50 years, may be replaced and will surely be supplemented by economically 

based philosophies. 

Case and Keats [15] indicate that attributes acceptance sampling 

pl ans may be categorized as in Figure I I.1. This figure shows the four 

distinct breakdowns of sampling plan design methodology as published in 

the literature. 

Category 1 describes the traditional approach to sampling plan 

design. It draws upon producer and consumer risks as depicted by the 



Risk-Based Economically-Based 

Non-Bayesian 1 2 

Bayesian 3 4 

Figure II~l. Classification of Attributes Sampling 
Plan Design Methodologies 
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operating characteristic (OC) curve. MIL-STD-1050 [51], ISO 2859 [48], 

the Dodge-Romig tables [24], much of Hald's work, and many other contri

butions belong to this area. The vast majority of practitioners today 

are applying Category 1 plans because they are widely available, widely 

accepted, and relatively easy to use. 

Category 2 focuses upon the economic aspects of sampling and the 

literature through Breakwell [5], Brown et al. [6], Martin [54], 

Truscott [72], and van der Waerden [75]. This approach aims at mini

mizing costs or regrets without a prior knowledge of the process fraction 

defective. Usually, minimax principles are used here to choose the 

sampling plan. However, its acceptance in industry has been relatively 

limited. None of the sampling plans of Categories 1 or 2 require that 

the distribution of defectives from lot to lot be known. 

During the past ten years there has been a dramatic increase in the 

number of papers using the Bayesian approach to sampling plan design. 

Plans using a Bayesian approach fall into Categories 3 and 4. Bayesian 

sampling plans require the user to explicitly specify the distribution 

of defectives from lot to lot. This distribution is known as the prior 

distribution. It expresses the user's pre-sampling beliefs about the 

quality of the lot, based either upon past data, personal feeling, or 

both. Decisions to accept or reject the lot are then based on a 

posterior distribution which combines the user's prior knowledge of lot 

to lot variation with the sampling inspection results. 

In Category 3, the producer's and consumer's risks are associated 

with Bayes' theorem and are used for determining the sampling plan. The 

prior distributions are needed for decision-making, but the costs are 

not explicitly considered as are the statistical risks~ 



While there is limited work in Category 3. [Lauer [53], Moreno [57, 

58, 59], Schafer [62], Hald [35, 36]], there are numerous published 

works in Category 4. These are discussed in detail in the following 
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section. Also, recently, several large companies have begun implementing 

the economically based Bayesian plans of Category 4 on some product lines. 

Early Origins of Economically-Based 

Acceptance Sampling 

Among the early contributions relevant to Bayesian economically 

based acceptance sampling, one of the most important is by Mood [56], who 

states that 11 Sampling of lots drawn from a binomial population will 

provide no basis whatsoever for inferences concerning the remainder of 

the lot. 11 The binomial population to which Mood refers is one in which 

the population fraction defective is constant. This implies that the 

number of defectives occurring from one lot to the next is independent 

and binomially distributed. It is most startling to discover that when-

ever this assumption is valid, then the sample obtained from any lot 

provides no information whatsoever about the quality of the unsampled 

portion of the lot. Barnard [l] states differently, if a process is in 

a perfect state of statistical control for fraction defective, it makes 

no sense to perform acceptance sampling on lots formed as a sequence of 

Bernoulli trials from the process. 

Several studies of prior distributions applicable to economically 

based acceptance sampling were published in the early 1950's. The most 

well known studies are those of Sittig [68], Champernowne [16], Barnard 

[l], Horsell [47], Taylor [71], and Hamaker [43]. Sittig presents the 

power prior distribution f(p) = 1 - A, p = 0 
= A (s + 1) (1 - p)s, p > O 



in his paper. Hamaker discusses various expressions and derives the 

optimum sample size using the minimax principle. These results may be 

successful in isolated cases, but do not lead to simple principles with 

a wide field of application as needed in industry. 

In the later 1950's, Vagholkar and Wetherill present the applica

tions of decision theory to sampling schemes in theses. Vagholkar [73] 
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studies a two-ordinate process curve with a two component mixed binomial 

distribution for acceptance sampling problems. He also collaborates 

with Wetherill [74] on a binomial prior distribution in the Bayesian 

version of the sequential probability ratio test. Wetherill [76] 

investigates the mixed binomial 

components (a;, pi)' (i = 1, 2, 

prior distribution with more than two 
k 

... , k), ·I a.= 1 which provides a 
i =1 l 

method of obtaining a single-sampling scheme with minimum risk for the 

particular model. This gives a simple relationship between n and c. 

The optimum n is found by directly minimizing expected costs. 

~ _/ 
"-Divel opment of Economically-Based 

. -- -·-----~·---·"' .-- -·-----~-------·--- ... ., __ -- --

- "-""-·-----·-··---- ---- --

Acceptance Sampling 

Following the early origins of economically based acceptance 

sampling, more systematic treatments were forthcoming in this area of 

research. Guthrie and Johns [32] develop the theory for a versatile 

economic cost model for attributes sampling plan in their paper of 1959. 

Also, sampling tables which minimize the average costs for various prior 

distributions are derived by Hald [33] in his paper of 1960. Since then, 

the economic design of quality control models has been receiving much 

attention in the literature. 

___ 9.u.tbill_~!2d ~~~~~ [32] prg_g_Q$..§_a general linear cost model of the 



decision procedures and sample sizes which are optimal in the Bayes 

sense. They proceed to find explicit asymptotic characterizations for 

large batch sizes. Their model contains six cost elements, including 
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two each associated with the cost of sampling, acceptance, and rejection. 

Similarly, Suzuki [70] considers and introduces Bayesian procedures into 

an inspection scheme with a beta prior distribution. 

Hald [33] discusses single-sampling inspection plans in detail. His 

classic paper consists of two main parts. One studies the general 

theorem for the compound hypergeometric distribution and reproducibility. 

Properties of this distribution associated with rectangular, Polya, and 

mixed binomial prior distributions are investigated. The other part 

gives a general solution for determining the optimum sampling plan, i.e., 

his paper, presented in 1960, provides a theoretical and systematic 

foundation for research in this field. 

A series of papers is published by Hald dating from 1960 to 1970 

[34, 35, 36, 37, 38]. Two papers from 1967 on single-sampling plans 

based on the producer's and consumer's risk belong to Category 3 [35, 36]. 

In another 1967 paper, Hald proposes a twice differentiable prior distri

bution in an open interval about the break-even point, a general loss 

function, an operating characteristic written as an Edgeworth expansion, 

and sampling costs expressible as a polynomial in the sample size. This 

is a special case of asymptotic expressions for the Bayesian single-

sampl ing plan [37]. 

In another two papers, Hald [39, 40] sets up a model based on a 

differentiable prior distribution, a linear loss function, an asymptoti

cally normal sampling distribution and sampling costs proportional to the 

sample size. Asymptotic expressions are derived for sample sizes, 
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acceptance and rejection criteria and minimum regret by minimizing the 

average regret for the sampling and decision procedure. The results for 

single, double, and multiple sampling plans are presented. He obtains 

a very interesting result in double sampling plans that the first sample 

should be proportional to 1n N and the second sample should be propor

tional to IN. 

Pfanzagl and Shuler [61] make a model of acceptance inspection by 

which an objective comparison is made of sequential sampling plans in 

terms of costs. Pfanzagl [60], in another paper, suggests a double

sampl ing scheme where the second sample size (n2) can depend on the out

come (x1) of the first sample. The reason that one would prefer to 

choose the size of n2 in advance is to ease administration of the 

sampling scheme. 

Johansen [49] discusses asymptotic properties of the restricted 

Bayesian double-sampling plan. The lot size, cost function, and mixed 

binomial prior distribution are given. The optimal double-sampling 

plan is defined as the plan which minimizes the asymptotic expansion of 

the regret function between the five parameters: two sample sizes, two 

acceptance numbers, and one rejection number where the lot size approaches 

infinity. He indicates that the exact solution for double-sampling plan 

is very complicated. This is the reason why most authors study th·is 

problem by considering asymptotic behavior. 

One of the most important mathematical acceptance sampling models 

is presented by Smith [69] in which he combines the basic concepts of 

the Guthrie-Johns and Hlad papers. He describes the total cost function 

by six elements--two each for inspection, acceptance, and rejection. He 

then takes the expectation over the number of defectives in both the lot 



and sample. Finally, the asymptotic formula is used to determine the 

approximate values for single-sampling plans. His work provides a long 

step toward rational economic decision making in sampling inspection. 

Similar modeling techniques are applied in another paper by Wortham and 
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Wilson [82]. They apply a backward recursive technique (dynamic 

programming) for designing optimal sequential sampling plans. This 

method is based upon Bellman 1 s principle of optimality and the Markovian 

property of sequential sampling plans. 

Guenther [30] considers the degenerate, the beta, and the two-point 

distributions as prior distributions in the determination of single-

sampling attribute plans based upon a linear cost model. He modifies 

Hald's work with these different prior distributions. Barnett [2] 

discusses the relationships of Bayesian decision theoretic methods 

applied to industrial problems in 1973. After that he proposes [3] a 

particular cost structure but no prior information. He uses the break

even quality for the loss function to choose the sample size and 

acceptance number which is economically most desirable for the batch. 

He also discusses the Bayesian solution when no process information is 

available. At the same time, Chiu [18] points out a new prior distri

bution other than the beta. Sampling tables are constructed using a 

model of a normally distributed quality characteristic, whose mean has 

a normal prior distribution. Asymptotic single attributes sampling 

plans using this new prior distribution are studied. 

Schmidt and Bennett [63] and Case et al. [11] develop a mathematical ,// 

model for economic mul tia~:t._riQl,!!.§ ___ ~~fi'!2_ta_!lce_ sa':!lE~ These papers ·------·--··----

develop and analyze models for which the cost components are influenced 

by a lot acceptance/rejection decision based upon the simultaneous 
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assessment of several distinct and independent attributes. Each attribute 

is assumed to have its own sampling plan consisting of a sample size and 

an acceptance number (n., c., i = l, 2, ... , m). Any item inspected on 
1 1 

one attribute may be inspected on all other attributes, thus the total 

number of items sampled is max {n1, n2, ... ,nm}. The lot is accepted 

only if x1 ~ ci; i = 1, 2, ... , m. The first paper utilizes continuous 

density functions to approximate the number of defective items of each 

attribute in a lot. The second utilizes discrete prior mass functions 

to describe the system. Search techniques and sensitivity measures are 

investigated in those papers. 

As the lot size becomes larger, the number of possible lot fractions 

defective on each attribute will be large, and it becomes reasonable to 

utilize continuous density functions to approximate the discrete system. 

But, when product items are grouped in batches of relatively small size 

prior to acceptance sampling~ it is obvious that the lot fraction defective 

on each attribute must be discrete. 

Case [11] concludes that, for large lot sizes, either continuous or 

discrete models may be used to determine the optimal sampling plan or as 

a predictor of total expected cost. Even for small lot sizes, the 

continuous approximate model is satisfactory to determine the optimal 

sampling plan. As a predictor of total cost, however, the deviation is 

quite sharp at low values of the lot size (N ~ 20). 

Stewart et al. [64] presents an approximate model for the optimum 

economic design of double-sampling plans for attributes in 1979. Four 

decision variables (n1, c1, n2, c2) are used instead of five decision 

variables (n1, c1, r1, n2, c2) in determining the minimum total cost. 

Total cost is assumed to consist of the cost of sampling, the cost of 

j 
/ 
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accepting defectives, and the cost of rejecting good items. Fixed costs 

of sampling inspection only are considered. The prior distribution of 

the process fraction defective used in this study is the beta distribu

tion. Curtailment of the second sample, and model sensitivity are 

investigated. 

More recent work is provided by Case [13]. An economically based 

single acceptance sampling plan is provided using the modified Guthrie

Johns model, including fixed cost elements. The Polya and mixed 

binomial distributions are available at the users option. Bayesian 

decision theory is applied to obtain the posterior expected value in 

order to find the minimum total expected cost. An exact model with a 

discrete prior distribution is presented. 

Summary 

This chapter presents a survey of the literature on the problems, 

contributions, and needs relative to the objectives of this research. 

This survey demonstrates the interest in the economic design of quality 

control models in the area of attributes acceptance sampling. Models 

using the discrete prior distribution for single and sequential sampling 

are well developed. But, all such models omit some fix cost factors. 

Also, there is no work toward developing double sampling plans utilizing 

a discrete distribution. A need has been cited for new methods of 

optimizing the total cost. 

This survey indicates that in the case of economically based 

acceptance sampling for attributes, a need exists for the following: 

(1) Inclusion of fixed cost factors in each of the types of 

costs for double-sampling plans. 



(2) Newly developed optimization procedures for double-sampling 

plans, using exact discrete modeling. 

(3) An interactive computer program suitable for use by 

practitioners with a minimum of technical background. 

(4) Comparisons of model sensitivity to the cost coefficients and 

to potential misspecification of the parameters of the prior 

distribution, as well as the total cost of approximate and 

exact models. 
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The author believes that this research will complete an important gap 

that currently exists in the theory and application of economically-based 

acceptance sampling by attributes. 



CHAPTER II I 

ECONOMICALLY BASED MODEL DEVELOPMENT 

Introduction 

The purposes of this chapter are to develop the Guthrie-Johns model 

for use in double-sampling and to modify the Guthrie-Johns (MGJ) model 

to include fixed cost components for sampling, rejection, and acceptance. 

The methods utilized in this chapter are based upon Bayesian decision 

theory. The prior, sampling, marginal, and posterior distributions 

dealing with double-sampling plans are used to derive the expected cost 

model. Nine situations using the MGJ model associated with four 

decisions for double-sampling plans are discussed. 

The Polya and mixed binomial families are used as prior distribu

tions in this study. These have been shown to describe well the actual 

lot quality in real situations. Reproducible properties of these 

priors permit the derivation of mathematical relationships for the cost 

modeling employed in this research. Methodology is developed to 

express a wide range of expected cost models for double-sampling plans. 

It is assumed that the reader has at least a basic understanding of 

acceptance sampling cost modeling. 

Notations 

This section defines the mathematical notations used in this 

res.earch. 
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N = lot size. 

n1 = first sample size. 

n2 = second sample size. 

X = number of defective$ in the entire lot. 

x1 = number of defectives in the first sample. 

x2 = number of defectives in the second sample. 

c1 = acceptance number for first sample. 

c2 = acceptance number for second sample. 

r1 = rejection number for first sample. 

r2 = rejection number for second sample. 

s0 =fixed cost of sampling, inspection, and 

testing per lot. 

s1 = cost per item of sampling, inspecting, and 

testing. 

s2 = additional cost per defective item found 

during sampling, inspection, and testing. 

A0 = fixed cost of accepting a lot containing one 

or more defective items yet to be found 

downstream. 

A1 = cost per item of handling the items not 

inspected in an accepted lot. 

A2 = additional cost per defective item later 

discovered in an accepted lot. 

R0 = fixed cost of rejection per lot rejected on 

original inspection. 

R1 = cost per item of inspecting and testing the 

items in the rest of a rejected lot. 
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R2 = additional cost per defective item found 

while inspecting and testing the rest of a 

rejected lot. 

f N(X) = discrete 11 prior 11 distribution describing 

the probability of having X defectives in 

a lot of size N. (X = 0, 1, 2, ... , N). 

,Q,_01 (x1!X) = hypergeometric 11 sampling 11 distribution 

describing the probability of hav"ing x1 

defectives in a sample of size n1 taken 

from a lot having X defectives (x1 = 0, 

1, 2, ... , min(n1,X)). 

in +n (x1+x2 !X) = hypergeometric 11 sampling 11 distribution 
1 2 

describing the probability of having x1+x2 

defectives in a sample of size n1+n2 taken 

from a lot having X defectives (x1+x2 = 0, 

1, 2, ... , min(n1+n2,X)). 

gn (x1) = 11 marginal 11 (or unconditional) distribution 
1 

describing the probability of having x1 

defectives in a sample of size n1 taken 

from a 1 ot. (x1 = 0, 1, 2, . . . , n1). 

gn1+n/x1+x2) = 11 marginal 11 (or unconditional) distribution 

describing the probability of having x1+x2 

defectives in a combined sample of size 

n1+n 2 taken from a lot (x1+x2 = 0, 1, 

2, ... , n1+n 2). 

hN-n (X-x1 jx1) = 11 posterior 11 distribution describing the 
1 

probability of having X-x1 defectives in 
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the rest of a lot of size N-n1 given that 

x1 defectives are observed in a sample n1 

taken from the lot. (X-x1 = 0, 1, 2, ... , 

N-n1). 

hN-n -n (X-x1-x2!x1+x2) = 11 posterior 11 distribution describing the 
1 2 

probability of having X-x1-x2 defectives 

in the rest of a lot of size N-n1-n2 

given that x1+x2 defectives are observed 

in a combined sample n1+n2 taken from the 

hN-n {X-x1=D!x1) = 11 posterior 11 distribution describing the 
1 

probability of having no defectives in the 

rest of lot of size N-n1 given that xl 

defectives were observed in a sample n1 

taken from the lot. 

hN-n1-n2(X-x1-x2=0jx1+x 2) = 11 posterior 11 distribution describing the 

probability of having no defectives in the 

rest of a lot of size N-n 1-n 2 given that 

x1+x 2 defectives are observed in a combined 

sample n1+n 2 t~ken from the lot. 

hn2(x2ix1) = 11 marginal 11 distribution describing the 

probability of having x2 defectives in 

the second sampling with size n2 given 

that x1 defectives were observed in a 

sample n1 had taken from the lot. 

E[X-x1ix1J =expected number of defectives in the rest 

of a lot, X-x1, given the number of 

defectives x1 in the first sample. 
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E[X-x1-x21x1+x2] = expected number of defectives in the rest of a 

lot, X-x1-x2, given the number of defectives 

x1+x2 in the combined first and second samples. 

TC1(·) =total expected cost on the ith sample as a 

function of the variables in the argument. 

TCAi(·) =total expected cost of acceptance on the ;th 

sample as a function of the variables in the 

argument. 

TCRi(·) =total expected cost of rejection on the ;th 

sampl~ as a function of the variables in the 

argument. 

Basic Model 

The nine situations of MGJ model for double sampling are described 

as follows: 

1. Lot 100% inspected. 

2. Lot accepted outright with no inspection; defectives found 

downstream. 

3. Lot accepted outright with no inspection; no defectives found 

downstream. 

4. First sample inspected; lot accepted; defectives found downstream. 

5. First sample inspected; lot accepted; no defectives found 

downstream. 

6. First sample inspected; lot rejected. 

7. Second sample inspected; lot accepted; defectives found downstream. 

8. Second sample inspected; lot accepted; no defectives found 

downstream. 



9. Second sample inspected; lot rejected. 

A flow chart of these nine situations is presented in Figure I.II.l. 

The basic model is described mathematically as follows: 

1. = s0 + NS1 + XS2 

(Lot 100% inspected) 

n = 0 1 

X = 1, 2, ... , N 

(3.la) 

(3.lb) 

(Lot accepted outright with no inspection; defectives found 

downstream) 

3. = NA 1 
n1 = 0 

x = 0 

(Lot accepted outright with no inspection; no defectives 

found downstream) 

4. = s0 + n1s1 + x1s2 + A0 + (N - n1) A1 + (X - x1) A2 

n1 > 0 

xl ~ cl 

X - x1 = 1, 2, ... , N-n1 

(First sample inspected; lot accepted; defectives found 

downstream) 

n1 > 0 

xl ~ cl 

X - x1 = O 

(3.lc) 

(3.ld) 

(3.le) 
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Flow Chart of Nine Situations in the Basic MGJ 
Model for Double Sampling 
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(first sample inspected; lot accepted; no defectives found 

downstream) 

6. = s0 + n1s1 + x1s2 + R0 + (N - n1) R1 + (X - x1) R2 

n1 > 0 (3.lf) 

xl ~ rl 

X - x1 = 0, 1, 2, ... , N-n1 

(First sample inspected; lot rejected) 

7. = s0 + s1 (n1 + n2) + s2 (x1 + x2) + A0 + (N - n1 - n2) A1 

+ (X - x1 - x2) A2 

n1 > 0 

n2 > 0 

cl < xl < rl 

xl + x2 ~ c2 

(3.lg) 

X - x1 - x2 = 1, 2, ... , N - n1 - n2 

(Second sample inspected; lot accepted; defectives found 

downstream) 

8. = s0 + s1 (n1 ·+ n2) + s2 (x1 + x2) + (N - n1 - n2) A1 

n1 > 0 

n2 > 0 

cl < xl < rl 

xl + x2 :;; c2 

X - x1 - x2 = 0 

(3.lh) 

(Second sample inspected; lot accepted; no defectives found 

downstream) 

9. = s0 + s1 (n1 + n2) + s2 (x 1 + x2) + R0 + (N - n1 - n2) R1 

+ (X - x1 - x2) R2 
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n1 > 0 

n2 > 0 

cl < xl < rl 

xl + xi:'. ~ r2 

(Second sample inspected; lot rejected) 

(3.li) 

Those costs are seen to be a function of N, n1, n2, X, x1, x2, 

c1 , r1 , c2, and r2 . Some of these variables (n1, n2 , c1, r1 , r 2) are 

11 decision 11 variables under the control of the user; others are random 

variables (X, x1, x2) over which the user has no control. The variable 

N may or may not be under the user's control. 

Distributional Properties 

The relevant probability distributions for the first sample are 

shown in Chapter I as: 

J(X - x1, x1) = fN (X.) in (x1 1X) = g (x1) hN (X - x1!x1) 
1 nl · -nl 

(3.2) 

or 
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Joint =Prior Sampling =Marginal Posterior 
Distribution Distribution x Distribution Distribution x Distribution 

From this, the distributions for the second sample may be expressed 

as: 

J(X - xl - x2' xl +x2) = hN-nl (X - xii xl) ,Q,n2 (x2!X - xl) 

(3.3) 

The posterior distribution from the first sample becomes the prior 

distribution for the rest of the lot from which the second sample is 

taken. 



Polya Distribution 

The Polya prior distribution is described mathematically as: 

f (X) = ( N ) ~(s + X) f(t + N - X) f(s + t) 
N X f (s) f(t) f (s + t + N) 

The mean of Polya distribution is: 

and its variance is: 

,1 5 
E ( X) = ---'-'--1" -s + t 

Var(X) = Nst 
(s + t) 2 

(s + t + N) 
(s + t + 1) 

s, t > 0 

X=0,1, ... ,N 

(3.4) 

(3.5) 

(3.6) 

Proper selection of s and twill cause the Polya to become a discrete 

uniform, binomial, hypergeometric, or literally infinite other distri-

butions. Since the Polya distribution is reproducible to hypergeometric 

sampling. This means that with a Polya prior and a hypergeometric 

sampling distribution, the marginal distribution is known to be a 

Polya distribution. The marginal distribution of the number of 

defectives observed in the first sample is: 

-(n) r(s + x1) r(t + n1 - x1) r(s + t) 
gn (xl) - x1 r(s) r(t) r(s + t + n1) 

1 1 

s, t > 0 

(3.7) 

x1 = 0, 1, 2, ... , n1 

The posterior distribution considers both the prior parameters and the 

sample results to express the quality of the lot following sample 

inspection. The mathematical expression for the posterior distribution 
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of defectives in the rest of the lot following the first sample 

hN-n (X-x1!x1), is found from Equation (3.2) as follows: 
1 

( N) r(s+t) r(t+N~x) r(s+t) 
= X r(s) r(t) r(s+t+N) 

( n1) r(s+x1) r(t+n1-xl.) r(s+t) 
xl r(s) r(t) r(s+t+n1) 

(
N-n ) r(s+X) r(t+N-X) r(s+t+n1) 

=, X-xi r(s+x1) r(t+n1-x1) r(s+t+N) 

X-x1 = 0, 1, 2, ... , N-n1 (3.8) 

The posterior distribution following the second sample is similar to the 

above expression: 

( N-n 1-n2 ) r(s+X) f(t+N-X) r(s+t+n1+n 2) 
hN-n1-n2(X-xl-x21xl+x2) = x:x1-x2 r(s+x1+x2) r(t+n 1+n2-x1-x2) r(s+t+N) 

(3.9) 

Mixed Binomial Distribution 

The mixed binomial prior distribution is very useful when it is 

likely that a lot s is formed from one of m process fractions defective, 

p1, p2, ... , Pm· The weights w1, w2 , •.• , wm correspond to an 

estimate of the fraction of product formed at the process fraction 
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defective p1, p2, ... , Pm· The distribution is described mathematically 

as: 

m ( N) X N-X 
~ Wi X Pi (1-pi) , 

i =1 
0 < p. < 1 

1 
(3.10) 



x = 0, 1, 

m 
L: w. = 1 

i=l 1 

The mean of the mixed binomial distribution is: 

m 
E[XJ = Np = L: 

i =1 

and its variance is: 

w.Np. 
1 1 

m m 
Var[X] = L: w.Np.(1-p.) + L: w.N 2{p.-p) 2 

i=l 1 1 l i=l 1 l 

2, . . . ' N 

Hald has shown that the mixed binomial distribution is also 

(3.11) 

(3.12) 

"reproducible to hypergeometric sampling." Thus, the marginal distri-

bution of the number of defectives in the first sample may be written 

directly as 

m n ) x n -x 
= L: w. ( 1 p. 1(1-p.) 1 1 

i =l i x1 i i ' 
x1 = 0, 1, 2, ... , n1 

(3.13) 

The posterior distribution of the number of defectives in the rest 

of the lot given that x1 defectives have been observed in the sample is: 

m ( N ) X N-X L: w. x p. (1-p.) 
i =1 1 1 1 

hN-n (X-x1lx1) = ----------
1 ~ w. ( nl) p. xl ( 1-p.) nl-xl 

= 

i=l 1 x1 · 1 i 

fN(X)2n1 (x1 iX) 

gn (xl) 
1 
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m ( N-nl) X N-X 
l: w. X p. (1-p.) 

i =l i -x1 i i 
= ------"'--------m x1 · n1-x1 

L: w. p. (1-~i) .. 
i=l 1 1 

(3.14) 

X-x1 = 0, 1, 2, ... , N-n1 

The posterior distribution of the number of defectives in the 

rest of the lot given that x1+x2 defectives are observed in the combined 

sample is 

m ( N-nl -n2) X N-X 
L: w. x p. {1-p.) 

i=l 1 -x1-x2 i , 
=------------~ (3.15) 

Expectation 

In discussing the cost function, it is desired to express total 

cost as a function of only the decision variables, TC(n1, n2, c1, 

r1, c2, r2). _This requires taking expectations over x1, x2, X, and 

simply remov{ng N from the argument as it is assumed fixed. 

The nine situations of the MGJ model for double sampling can be 

classified into one of the following four decisions: 

1. Lot 100% inspected. 

2. Lot accepted outright. 

3. Lot decision made following inspection of first sample. 

(a) Lot accepted 

(b) Lot rejected 

4. Lot decision made following inspection of second sample. 
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(a) Lot accepted 

(b) Lot rejected 

Lot 100% Inspected 

A valid action is to perform 11 100% inspection"; however, it is a 

special case which is treated separately. No decision variables and no 

random variables exist in the case of 100% inspection. Thus, the 

total cost remains at: 

(3.16) 

The decision to inspect 100% will be attractive when either quality is 

usually very poor, or the cost consequences of passing on defectives 

·is substantial. 

Lot Accepted Outright With No Inspection 

"No inspection" is another valid decision. It includes two 

possible outcomes: 1) defectives four1d downstream, and 2) no defectives 

found downstream. 

Consider Equations (3.lb) and (3.lc) in which no inspection is 

performed and the lot is accepted. No decision variables exist in this 

case; therefore, it is only necessary to take the expectation with 

respect to X. The probabilities to be used in taking this expectation 

over X are described by the prior distribution, fN(X). The expected 

cost wi 11 be 
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(3.17) 

If a ~olya prior distribution is used, it is known from Equation 

(3.4) that: 

fN(X=O) = rttJNL r(s+t) 
r t r(s+t+N) · (3.18) 

Also, from Equation (3.5) 

E[X] = ~. · s+t (3.19) 

Therefore, for a Polya prior distribution, the expected total cost 

of lot acceptance without inspection is: 

TC(N) = A (1 - r(t+N) r(s+t ) + NAl + A ~ o r t r s +t +N 2 s + t (3.20) 

If a mixed binomial prior distribution is used, it is known from 

Equation (3.10) that: 

Also, from Equation (3.11) 

E(X) 

m 
= L: w. (l-p1. }N 

. 1 1 1= 

m 
= E w. Np .• 

. 1 1 1 1= 

(3.21) 

(3.22) 

Therefore, for a mixed binomial prior distribution, the expected total 

cost of lot acceptance without inspection is: 

m 
TC(N) = A0(1 - i~l wi (1-pi)N) + NA1 + A2 

m 
Z:: w. Np1 .• (3.23) 

. 1 1 1= 

The "no inspection" case may save considerable money when either 

quality is usually very good, or the cost consequence of passing on 

defectives is slight. 
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Lot Decision Made Following Inspection 

of First Sample 

When a decision is made following inspection of the first sample, 

Equations (3.ld), (3.le), and (3.lf) are appropriate. Expectation will 

take place over both random variables X and x1, with X being first for 

computational reasons. When expecting over X, the weight to be used is 

the posterior probability of the number of defectives in the rest of 
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the lot given the number of defectives in the first sample, hN-n (X-x1!x1). 
1 

This decision includes three situations: 

1. Lot accepted after first sample, defectives found downstream. 

2. Lot accepted after first sample, no defectives found downstream. 

3. Lot rejected after first sample. 

An acceptance cost term and a rejection cost term are written separately, 

since the decision to accept depends on x1 being less than or equal to 

c1, while the decision to reject occurs if. x1 equals or exceeds r1. 

where 

The acceptance cost term is 

= s0+n1s1+x1s2+A0[1-hN-n (X-x1=0!x1)J 
1 

+ (N-n1)A1 + A2E[X-x1!x1J (3.24) 



nl > 0 

xl ~ cl 

X-x1 = 0, 1, 2, . . . ' N-n1 

The term E[X-x1 1x1J is the posterior expected value follo1t1ing the 

first sample. It stems from the expression 

which sums X-x1 over its entire range, and uses as weights the posterior 

distribution. 

where 

The rejection cost term is 

Summarizing 

nl > 0 

xl ~ rl 

X-x1 = 0, 1, 2, . . . ' N-n1 

the total cost expression to this point, 

= s0+n1s1+x1s2+A0[1-hN-n (X-x1=0ix1)J 
1 

+ (N-n1)A1+A2E[X-x1ix1J , 

(3.25) 

(3.26) 
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or 

( 3. 27) 

The only random variable in these expressions is the number of 

defectives in the first sample. These relationships are later used in 

order to determine the optimum acceptance and rejection numbers for the 

first sample. 

The cust term TC1 (N,n1,c1,r1,x1) may be reduced to TC1 (N,n1,c1,r1). 

This is pe~formed by taking the expectation over x1 in Equations (3.26) 

and (3.27) using the marginal probability function g (x1) for the 
nl 

weighting probabilities. That is, 

+ 

+ 

(3.28) 
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Lot Decision Made Following Inspection 

of Second Sample 

If the number of defectives in the first sample x1 is greater than 

c1 but less than r1, a second samp1e is taken. If in the combined 

samples there are c2 or fewer defective units, the lot is accepted. 

If there are more than c2 defective units, the lot is rejected. This 

decision also includes three situations: 

1. Lot accepted after second sample; with defectives found 

downstream. 
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2. Lot accepted after second sample; no defectives found downstream. 

3. Lot rejected after second sample .. 

When a second sample is inspected, Equations (3.lg), (3.lh), and (3.li) 

are appropriate. An acceptance cost term and a rejection cost term are 

written separately. 

The acceptance cost term is 

TCA2(N,n1,n2,c1,r1,c2,r2,x1,x2) = [S0+(n1+n2)s1+(x1+x2)s2 

+ (N-n1-n2)A1]hN-n -n (X-x1-x2=0jx1,x2) 
1 2 

· hN (X-x1-x2!x1,x2) 
-nl-n2 

= Sa+(nl+n2)Sl+(xl+x2)S2 

+Aa[l-hN-n1-n2(X-x1-x2=0lx1,x2)J 

+ (N-nfn2)A1+E[X-x1-x2 jx1,x2JA2. 
(3.29) 



nl > 0 

n2 > 0 

cl < xl < rl 

xl + x2 5 c2 

x - xl - x2 = 0, 1, 2, . . . ' N - n1 - n2 

The term E[X-x1-x2 ix1,x2J is the posterior expected value following the 

second sample. It stems from the expression 

N-n1-n2 
E 

X-x1-x2=o 

which sums X-x1-x2 over its entire range from 0 to N-n 1-n2, and uses 

as weights the posterior distribution. 

The rejection cost term is 

N-n1-n2 
= E [s0+(n1+n 2)s1+(x1+x2)s2+R0 

X-x1-x2=o 
+ R1(N-n1-n2) 

+ R2(X-x1-x2)JhN-n -n (X-x1-x2!x1 ,x2) 
1 2 

= s0+(n1+n2)s1+(x1+x2)s2+R0+R1 (N-n1-n2) 

n1 > 0 

n2 > 0 

cl < xl < rl 

xl + x2 f! r2 

X - x1 - x2 = 0, 1, 2, . . . , N - n1 - n2 

Summarizing the total cost expression to this point, 

'(3. 30) 
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or 

and for all above 

n1 > 0 

n2 > 0 

cl < xl < rl 

X - x1 - x2 = 0, 1, 2, ... , N - n1 - n2 

(3.31) 

(3.32) 

The cost term TC 2(N,n1,n2,c1,r1,c 2,r2,x1,x2) may be reduced to 

TC 2(N,n1,n2,c1.r1,c2,r2). This is performed by taking the expectation 

with respect to x1 and x2 in Equations (3.31) and (3.32) using the 

marginal probability function g (x1) and conditional distribution 
nl 
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r -1 
1 { - L: 

x =c +l 1 1 

Equation (3.33) completes development of the objective cost 

(3.33) 

function for the second sample. The only decision variables remaining 

include the first sample size (n1), second sample size (n2), and the 

acceptance and rejection numbers for first and second sampling (c1, r1, 

c2, r2). The total cost depends upon the values selected for those 

decision variables. 
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Summary 

The cost model developed in this chapter utilizes the basic 

Guthrie-Johns model for economically based sampling. The GJ model has 

been modified for use in double sampling and includes fixed cost 

components for sampling, rejection, and acceptance. The Modified 

Guthrie-Johns model for double sampling includes nine situations 

described within four decisions: Lot 100% inspected; lot accepted 

outright; lot decision made following inspection of first sample; and 
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lot decision made following inspection of second sample. These decisions 

and their mathematical cost functions are summarized in Table III.1. 

Two general families of prior distributions, the Polya and mixed 

·binomial families, have been used to describe actual lot quality. 

The model developed in this research entertains the selection of all 

possible decision variables (n1, n2, c1, r1, c2, r2); the total expected 

cost is a function of these. Optimization of these decision variables 

is discussed in the next chapter. 



TABLE III.1 

SUMMARIZED MGJ MODEL DECISIONS AND THEIR MATHEMATICAL COST FUNCTIONS 

Decision 

Lot 100% Inspected 

Lot Accepted Outright 
With No Inspection 

Lot Decision Made 

Decision and 
Random Variables 

N,X 

N 

Following Inspection N,n1,c1,r1,x1 
of First Sample 

Lot Decision Made 
Following Inspection 
of Second Sample 

N,n1 ,n2,c1, 

rl,c2,r2,xl, 

x2 

Limitation 

n >O 
1< Xl-Cl 

X-x1=0,l, ... ,N-n1 

Cost Function 

s0 + NS 1 + XS2 

A0[1-fN(X=O)] + A1N + A2 E[X] 

s0 + s1n1 + s2x1 + A0[1-hN-n (X-x1=o!x1)J 
+ A1(N-n1) + A2 E[X-x 1 Jx 1 ~ 

n1>o 
x 1 ~r1 s0 + s1n1 + s2x1 + R0 + R1(N-n1) + R2 E[X-x1!x1J 

X-x1=0,1, ... ,N-n1 

n1>0 
n >O 

cl<~l<rl 
xl+x2:;c2 
X-x1-x2=0,1, ... , 

N-n -n 1 2 
n1>0 
n >O 

cl<~l<rl 
x1+x 22r2 
X-x1-x2=0,l, ... , 

N-n1-n2 

SO+ Sl(nl+n2) + S2(xl+x2) + Aa[l-hN-n -n (X-xl 
1 2 

-x2=0Jx1,x2)J 
+ A1(N-n1-n2) + A2 E[X-x1-x2Jx1,x2J 

s0 + s1(n1+n2) + s2(x1+x2) + R0 + R1(N-n1-n2) 

+ R2 E[X-x1-x2Jx1,x2J 

01 
+:> 



CHAPTER IV 

COST MODEL OPTIMIZATION 

Introduction 

The purpose of this chapter is to develop the methodology for 

determining the optimum values of the decision variables, including sample 

. d t d . t• ·b ( * * * * * *) sizes an accep ance an reJec ion num ers n1 , n2 , c1 , r1 , c2 , r2 . 

Theoretically, it is possible to evaluate all combinations of (n1, n2, c1, 

r1 , c2, r2) in the total cost model. Practically, however, it is time 

consuming even for small lot size and infeasible for large lot sizes. 

Due to the large number of decision variables, it is desirable to 

determine the optimum acceptance and rejection numbers (c1, r1, c2, r2), 

given any sample size pair (n 1, n2). Those optimum acceptance and rejec

tion numbers can be determined by considering and comparing the posterior 

expected costs of (1) accepting after the first sample, (2) taking a 

second sample and making an accept/reject decision on the lot, and 

(3) rejecting after the first sample. Once the acceptance and rejection 

numbers are determined, the total cost of the double sampling plan may 

be determined. Then, other sample size pairs and their corresponding 

optimum acceptance and rejection numbers may be evaluated. An appropriate 

heuristic search procedure over only (n1, n2) may then be used to 

determine the economically optimum double sampling plan. 
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Optimum Acceptance and Reject'ion Nt.:rmber for 

Second Sample 

The cost equations (3.31) (3.32) are utiliz~d to decide upon the 

optimum acceptance and rejection numbers for a ccnnplete double sample. 

It is reasonable to assume that if the total numt~r of defectives 
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observed in the combined samples (x1 + x2) causes the expected acceptance 

cost term for the combined sample to be less thar. or equal to the 

expected rejection cost term for the combined scr:Dle (TCA2 ::;,: TCR2), the 

logical decision is to accept the lot. ConverseTy, the lot should be 

rejected if TCA2 > TCR2. For any given sample s1:e pair, it is possible 

to determine the highest value of x1 + x2 such that TCA2 ~ TCR2. This 

value of x1 + x2 will be designated the acceptance number for the 

combined number of defectives following the second sample (c2). The 

corresponding rejection number (r2) is c2 + 1. 

Based upon the above logic, it is desired to find the largest 

value of x1 + x2 such that; 

or 

s0+(n1+n2)s1+(x1+x2)s2+A0[1-hN-n -n (X-x1-x2=0!xl,x2)J+A1(N-n1-n2) 
. 1 2 

+A2E[X-x1-x2jx1,x2J ~ 

This results in 

(4.1) 

., 
(4.2) 
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or 

(4.4) 

It is easy to find the largest value of x1+x2 satisfying inequality 

(4.4) if only the expressions for hN-n -n (X-x1-x2=0!x1,x2) and 
1 2 

E[X-x1-x21x1,x2J are known. These expressions depend upon whether the 

Polya or mixed binomial prior distribution is being used. 

The term hN-n -n (X-x1-x2=o[x1,x2) is the probability that the 
1 2 

number of defectives in the entire lot is the same as the number 

actually found in the combined samples. That is, it is the probability 

that all of the lot defectives are found in the first and second 

samples. This probability will usually be quite small, except in the 

case where quality is extremely good and there are no defectives found 

in the sample because there are none in the lot. 

For the Polya prior distribution, this probability may be found 

utilizing Equation (3.9) for hN-n -n (X-x1-x2!x1,x2) and letting X=x1+x2: 
1 2 ' 

r(s+t+n1+n2) 
r(s+t+N) (4.5) 

For a mixed binomial prior distribution, this probability may be 

(4.6) 
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Those equations in this form correspond with the computer program 

written to perform these and other calculations. 

This term is the expected value of the number of defectives 

remaining in the lot (X-x 1-x2) given that x1+x2 defectives have actually 

been observed in the combined sample. Hald ~~ has shown that, for both 

the Polya and mixed binomial distributions, the posterior expectation 

for single sampling is: 

E[X-xlxJ = 
(N-n)(x+l) gn+l(x+l) 

(n+l) gn(x) (4.7) 

It follows that: 

(4.8) 

For the polya prior distribution, the posterior expectation is: 

n1+n2+1) r(s+x1+x2+l)r(t+n1+n2-x1-x1)r(s+t) 
(N-n1-n2)(x1+x2+l)(x1+x1+1 r(s) r(t) r(s+t+n1+n 2+1) 

= -.----='--~-=-___:::.__~-....::...._::;_~--=..,---~~-.--=--.-:-~~~~--.-=-r--:--.-~~~ 
(nl+n2+1) (nl+n2) r(s+xl+x2) r(t+nl+n2-xl-x2)r(s+t) 

= 

is: 

x1+x2 r(s) r(t) r(s+t+n1+n 2) 

(N-n1-n2)(s+x1+x2) 
(s+t+n1+n2) (4.9) 

For the mixed binomial prior distribution, the posterior expectation 



nl-n2-xl-x2 
(1-p;) 
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(4.10) 

where 
m 
E W. = 1., 

i=l 1 
0 ~ p. ~ 1 

1 

These equations are presented in this form to correspond with the 

computer program written to perform these and other calculations. 

Optimum Acceptance and Rejection Number for the 

First Sample 

The same methodology outlined in the above section for determining 

c2 and r2 is also applied to the selection of the optimum acceptance 

and the rejection numbers for the first sample (c1 and r1). There 

exists a logical relationship between the total expected cost of 

acceptance following the first sample (TCA1), the total expected cost of 

acceptance or rejection following the second sample (TCC2, TCC2 = TCA2 

+ TCR2), and the total ~xpected cost of rejection following the first 

sample (TCR1). If the number of defectives in the first sample is 0, 

this is often an indication that the lot may be good and acceptance 

should take place immediately. In this case, TCA1 will be less than or 

equal to TCC2 or TCR1. This reason will hold for any value of x1 from 

0 through some value, later to be designated c1. As the number of 

defectives in the first sample (x1) increases, there is uncertainty about 

the desirability of the lot and a decision is made to consider a second 

sample. In this case, rcc2 will be the smallest among the three 
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expected costs. When x1 reaches a sufficiently large value, later to be 

designated r1 , the expected cost TCR1 becomes smalles_t, indicating the 

desirability of rejecting on the first sample. 

Using the above reasoning, it is desir,ed to accept the lot 

following the first sample as long as x1 results in TCA1 5 TCC2 5 TCR1• 

If x1 is such that TCA1 > TCC2, and TCC 2 5 TCR1, then a second sample is 

observed. Finally, if TCA1 ~ TCC2 > TCR1, the decision is made to 

reject the lot following the first sample. 

Since the optimum acceptance and rejection numbers for the combined 

first and second samples (c2 and r2) have already been decided, it is 

possible to calculate TCC2 by considering all possible values which x2 

may assume, splitting the calculation into two parts (TCA2 and TCR2). 

Then, by comparing TCA1 against TCC 2, for any given first sample size 

(n1), it is possible to determine the highest value of x1 such that 

TCA1 ~ TCC2• This value of x1 is the optimum first sample acceptance 

number, c1. 

Using the same logic, comparing the TCC2 against TCR1, the smallest 

value of x1 may be found such that TCC2 > TCR1. This number of defectives 

in the first sample (x1) is designated the rejection number for the first 

sample (r1). The cost function (3.24), (3~31), and (3.32) are recon

sidered, on the basis of above logic, to determine the largest value of 

x1 such that: 

+ (4.11) 
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That is, 

+ 

(4.12) 

The above inequality may be determined once the values of hN-n (X-x1=0lx1),· 
1 

E[X-x11x1J, hN-n1-n2(X-x1-x2=olx1,x2), E[X-x1-x21x1,x2J, and hn2(x2!x1) 

have been decided. Then, the largest value of x1 satisfying inequality 

(4.12) may be found; its value is designated c1. 

The cost functions (3.25), (3.31), and (3.32) are reconsidered 

to form another inequality used to determine the smallest value of x1 

such that: 

(4.13) 

That is 
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+ 

(4.14) 

The smallest value of x1 satisfying inequality (4.14) is the optimum 

rejection number designated r1. 

The values of hN-n1-n2(x-x1-x2=ojx1,x2) and E[X-x1-x2!x1,x2J have 

been established in the previous section. The values remaining 

undecided are hN-n (X-x1=0!x1), E[X-x1!x1J, and hn (x2jx1). 
1 2 .. 

Find hN-n (X-x1=0lx1) 
1 

The term hN-n (X-x1=0lx1) is the probability that the number of 
' 1 

defectives in the entire lot is the same as the actual number found 

in the first sample. That is, it is the posterior probability of having 

no defectives in the rest of a lot of size N-n1 given that x1 defectives 

are observed in the first sample. This probability is usually quite 

small, except in the case where quality is extremely good and there 

are no defectives found in the sample because there are none in the lot. 

For a Polya prior distribution, this probability may be found using 



For a mixed binomial prior distribution, this probability may be 

found using Equation (3.14): 
m x1 N-x1 

· L. w. P1· (1-p1.) 
. 1 l i= 

hN-n (X-x1=Dlx1) = m x n -x 
1 . L: w. P,· 1 (l-p,.) 1 1 

i=l l 
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(4.15) 

(4.16) 

This term is the expected value of the number of defectives 

remaining in the lot (X-x1) given that x1 defectives have actually been 

observed in the first sample. Adapting Equation (4.7), 

(N-n1)(x1+1) gn +l(x1+1) 

E [ X-x 1 Ix 1] = -.-( n_l_+.,.....l )---g-n 1_ ..... ( x-1..-) -
1 

For the Polya prior distribution, the posterior expectation is: 

= 
(N-n1 )(s+x1) 

(s+t+n1) 

r(t+n1-x1) r(s+t) 
r(t) r(s+t+n1+1) 

r(t+n1-x1) r(s+t) 
r(t) r(s+t+n1) 

(4.17) 

(4.18) 

For the mixed binomial prior distribution, the posterior expectation is: 

m ( n1+1) x1+1 n -x 
(N-n1)(x1+1) L: w. 1 p. (1-p.) 1 1 

i=l , xl+ , l 
E[X-x1!x1) = (4.19) 

m ( n1) xl n -x 
(n1+1) L: w. p. (1-p.) 1 1 

i =l 1 xl l l 



This probability is the conditional distribution of the number of 

defectives found in a second sample x2, given x1 defectives are found in 

the first sample. In order to solve for hn2(x2!x1), it is necessary to 

realize that the posterior distribution of first sample will be the 

prior distribution of the second sample. 

For the Polya distribution, Equation (3.8) is the posterior 

following the first sample and the prior preceding the second sample. 

That is: 

(N-n1) r(s+X)r(t+N-X)r(s+t+n1) 
hN-n1 (X-x1lx1) = X-x1 r(x+x1)r(t+n1-x1)r(s+t+N) 

Appendix B shows that the conditional distribution for the second sample 

is: 
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n2 r(s+x1+x2)r(t+n1+n2-x1-x2)r(s+t+n1) 
hn2 (x2lx1) =( x2J r(s+x1) r(t+n1-x1) r(s+t+n1+n 2) (4.20) 

For the mixed binomial distribution, Equation (3.14) is the posterior 

following the first sample and the prior preceding the second sample. 

That is, 

m . ( N-nl) X N-X 
l: w. x p. {1-p.) 

i =l i -x1 i i 
hN-n (X-x1!x1) = 1 m xl . nl-xl 

. l: w,. p. {1-p.) 
1 1 i =1 

Appendix B shows that the conditional distribution for the second 

sample is: 
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w. . n2 x2 n2-x2 _l_( ) p. (1-p.) 
m x2 1 1 

(4.21) 
· l: w. 
·. 1 1 i= 

Now that all terms in inequalities (4.12) and (4.14) are explained, 

the optimum first sample acceptance and rejection numbers (c1,r1) for 

any sample size pair (n1,n2) may be found. The value c1 is the largest 

value of x1 for which inequality (4.12) is satisfied; rl is the smallest 

value of x1 for which inequality (4.14) is satisfied • 

Using the above inequalities and a simple search procedure, the 

optimum acceptance and rejection numbers for the first and second 

samples can be found explicitly for any sample size pair (n1,n2) of 

interest. There is no need to include decision variables (c1,r1,c2,r2) 

in an extensive and time consuming search. 

Optimum Sample Size Pair 

Optimizing the sample size pair involves finding the values of n1 

and n2, with their corresponding vector (c1,r1,c2,r2) that minimize the 

total expected cost function (3.33). This might be done by trying every 

possible sample size pair, determining the optimum c1,r1,c2,r2 for each 

as outlined previously, and evaluating each set of decision variables in 

Equation (3.33). This, however, is time consuming and likely infeasible. 

Normally, double sampling plans have a consistent relationship between 

n1 and n2 such that n2 = Constant x n1. If this condition is accepted, 

the only decision variable remaining to be solved is the first sample 

size n1. A search procedure follows for selecting the optimal sampling 

pl an. 
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Cost Surface 

It is unknown whether the total cost surface as a function of n1 is truly 

convex. Yet, it is reasonably well behaved as shown in Figure IV.1. The 

value of TC(n1,n2,c1,r1,c2,r2) makes successive dips, each dip being 

associated with a particular acceptance/rejection number vector. 

The minimum point of each dip becomes lower and lower, up to a 

point (the global optimum) at which time it begins to increase. It has 

been observed in this and previous research that the locus of TC values 

associated with an acceptance/rejection number vector is nearly convex, 

occasionally having only a small ripple containing, say, two local 

minima. It is suspected that these minor ripples are due to computer 

roundoff mechanisms. Since these are always so close in total cost, 

nothing practical is lost by treating each dip as strictly convex with 

but one local optimum. Also, the locus of the local minima have but 

one global optimum over all possible sample sizes. Finally, another 

observed property is that the sample size n1 at the global minimum total 

cost occurs approximately midway between the sample sizes at which the 

next lower and higher acceptance/rejection number vectors become 

optimum. Utilizing these properties, a search procedure follows for 

finding the optimum double sampling plan (n1,n2,c1,r1,c2,r2). 

Search Procedure 

The procedure developed and programmed is to find the midpoint of 

the range of sample sizes for which the first acceptance/rejection 

number vector (c1,r1,c2,r2) is optimum. Then, the sample size n1 is 

increased (as is n2) until the midpoint of the range of sample sizes 

for the next acceptance/rejection number vector is determined. At each 
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midpcint, the total cost is evaluated. This procedure continues until 

the tDtal cost at a midpoint just begins to increase over that at the 

previous midpoint. 

The search procedure then returns to the range of the last three 

acceptance/rejection number vectors. One by one, the sample sizes 

aroun~ each midpoint are evaluated and compared until the lowest cost 

is found. This minimum cost is then taken as the global optimum. An 
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interactive .computer program perf!orms these calculations, within a format 

suitable for use by industry and government; 

Summary 

This chapter develops the theoretically exact analytical and search 

procedures for economically optimizing a double-sampling plan using a 

discrete mathematical model with the fixed cost expansion. Based upon 

the analysis and design in this chapter, the following results may be 

determined: 

(1) Optimum acceptance and rejection numbers for the combined 

first and second samples (c2* and r2*). 

(2) Optimum acceptance and rejection numbers for the first 

sample (c1* and r1*). 

(3) Optimum double-sampling size pair and corresponding acceptance/ 

. t" b t ( * * * * * *) reJec ion num er vec or n1 , n2 , c1 , r 1 , c2 , r2 . 

The above original methodology is developed using a break-even 

approach and an appropriate search procedure. An interactive computer 

program is established for use by government and industry; its operation 

is covered in the next chapter. 



CHAPTER V 

USING THE INTERACTIVE COMPUTER PROGRAM 

Introduction 

This chapter details the use of an interactive computer program 

which permits easy utilization of the design, and evaluation methodology 

presented in Chapters III and IV. The actual FORTRAN program is 

documented and appears in Appendix A. It has been implemented on an 

IBM 370/168 using various time share terminals. 

The entire program is interactive, and the user is prompted for 

all necessary inputs by the computer. Many typical or often-used values 

of inputs are pre-programmed. These are presented to the user for 

either verification or change. If the user changes any values, they are 

again presented for verification or change. Only when a set of inputs 

has been verified does the program continue. 

When several values are to be input, they need only be separated by 

a comma or a space. With the prompting and verification feature, the 

input mechanism is virtually self-explanatory, as long as the user 

understands the terms being input and their mathematically feasible 

ranges. All relevant mathematical and computer terms and notation are 

explained in Chapters III and IV. 

Overview 

The modified Guthrie-Johns computer program provides the capability 
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for three major activities: 

(1) Design an economically based sampling plan. 

(2) Design the optimum acceptance/rejection number vector, given 

the sample size pair. 

{3) Evaluate the expected cost of a sampling plan. 

The flowchart of all major activities is presented in Figure V.1. 
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Designing an economically based sampling plan refers to the selection 

of the sample sizes (n1, n2), acceptance numbers (c1, c2), and rejection 

numbers (r1, r2) needed to minimize the expected total cost per lot. 

Designing the optimum acceptance/rejection number vector refers to 

minimizing the expected total cost per lot given a prespecification of 

the sample size pair (n1, n2). Evaluating the expected total cost of 

a sampling plan refers to calculating the expected total cost per lot 

for any desired double sampling plan. 

used: 

The program begins by stating the three tasks for which it may be 

? 

THIS PROGRAM PERMITS YOU TO DO THE FOLLOWING THINGS: 
( 1) DESI Gil AN ECOliOMlCALLY BASED SAMPLING PLAl! 
(2) DESIGN ';'HE on ACC/REJ VECTOR. GIVEN SAMP SIZE PAIR 
(3) EVALUATE THE EXPECTED COST OF A SAMPLl~G PLAN 
WHICH DO YOU VANT TO DO ? ENTER 1 , 2 ,OR 3 

The user has entered a 11 1, 11 indicating a desire to design an economically 

based sampling plan. 

Designing An Economically Based Sampling Plan 

Before proceeding with sampling plan design, the program verifies 

the user's selection: 

YOU WANT TO DESlG!l AN ECliHCMlCALLY BASED SAMPLING PLAN 
CORRECT? NO lO) UR YES (1) 

? 
1 

The user responds by confirming the desire to design an economically 
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START 

*1 DESIGN AN ECONOMICALLY BASED SAMPLING Pl.AN 

*2 GIVEN THE LOT AND SAMPLE SIZES FIND OPTIMUM 
ACCEPTANCE/REJECTION NUMBER VECTOR 

*3. EVALUATE THE EXPECTED COST OF A SAMPLING PLAN[ 

STOP 

Figure V.l. Flow Chart of All Major Activities in Modified 
Guthrie-Johns Computer Program 
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based sampling plan. Had an error been made, the user would input a 

11011 and the program would start over automatically. 

The user is next asked whether the Bayesian prior is a mixed 

binomial or Polya. In the following illustration, a Polya distribution 

is selected: 

? 
1 

WHICH IS THE PRIOR DISTRIBUTION??? 
MIXED BlNOMlAL(O) OR POLYA(1) 
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The current parameters of the Polya distribution are then displayed 

for verification. In the following illustration, the Polya parameters 

are correct: 

POLYA PARAMETERS ARES= 0.462103 T= 6.539455 
CORRECT??? NC(O) OR YES(1) 

? 
1 

During subsequent runs of the program, the Polya parameters will remain 

fixed at these values unless changed. The nine cost values are next 

displayed for verification. In the following illustration, the cost 

factors are correct: 

? 
1 

COST VALUES ARE SO=. 3.00 S1= 2.50 S2= 1.90 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.90 
CORRECT??? NO(O) OR YES(1) 

The constant factor is 1: 

CONSTANT FACTOR = 1 .OO 
CORRECT??? NO(O) OR YES(1) 

7 
1 

The lot size is next displayed for verification. In the following 

illustration, the lot size is correct: 

LOT SiZE = 500.00 
CORRECT??? NO(O) OR YES(1) 

? 
1 

At this point, all necessary data have been entered in order to 

design the economically optimum double sampling plan. Output of the 



results begins with a statement that this is an economically based 

sampling plan design. The lot size, optimal sample sizes (n1*, n2*), 

distribution parameters, and cost values are then listed to provide the 

user with a permanent record of all relevant input. Next, the optimum 

acceptance and rejection numbers (c1*, r1*, c2*, r2*) are listed. The 

last item output is the minimum expected total cost per lot. 

******************************************************************** 
******************************************************************** 
******************************************************************** 

ECONOMICALLY BASED DOUBLE SAMPLING PLAN DESIGN 
LOT SIZE = 500.0 1ST SAMP SIZE = 26.0 2ND SAMP SIZE = 26.0 
POLYA PARAMETERS ARE S= 0.462103 ~= 6.539455 
COST VALUES ARE SO= 3.00 S1= 2.50 S2= 1.90 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.90 
ACC NO 1 = O.O RJ NO 1 = 3.0 ACC NO 2 = 2.0 RJ NO 2 = 3.0 
TOTAL COST = 712.344 

******************************************************************** 
******************************************************************** 
******************************************************************** 
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The opportunity to design another sampling plan, changing the prior 

distribution, parameters, and/or costs, is then offered. In the 

following illustration, the user does exercise this option: 

WANT TO DESIGN PLAN USING NEW PRIOR/COST 
PARAMETERS??? NO(O) OR YES(1) 

? 

At this time, the program again requests the user to input the prior 

distribution. In the following illustration, a Polya distribution is 

requested again. 

? 
1 

WHICH IS THE PRIOR DlSTRIBUTlON??? 
MIXED BlNOMlAL(O) OR POLYA(1) 

The current parameters of the Polya prior distribution are then displayed 

for verification. In the following illustration, the Polya parameters 

are not correct: 

? 
0 

POLYA PARAME~ERS ARE S= 0.46210) 
CORRECT??? NO(O) UR YES{1) 

'l!= 6.5)9455 



The user is then told to enter the two Polya parameters. These values 

must be non-negative; however, they need not be integers. The entries 

must be separated by a comma or a space: 
ENTER S,T 

? 
.679445,7.89941 

The Polya parameters are again displayed for verification and found to 
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· be correct. During subsequent runs of the program, the Pol ya parameters_____.? 

will remain fixed at these values unless changed: 

POLYA PARAMETERS ARES= 0.679445 T= 7.899410 
CORRECT??? NO(O) OR YES(1) 

? 
1 

From this point, the program operates exactly as described previously, 

providing the opportunity to modify cost values, constant factor, and 

the lot size. Then, the results are presented: 

COST VALUES ARE SO= 3.00 81= 2.50 S2= 1.90 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.90 
CORRECT??? NO(O) OR YES(1) 

? 
1 

CONSTANT FACTOR= 1.00 
CORRECT??? NO(O) QR YES(1) 

? 
1 

LOT SIZE = 500.00 . 
'CORRECT??? NO(O} OR YES(1) 
? 

******************************************************************** 
******************************************************************** 
****************~*************************************************** 

ECUhOMlCALLY BASED DUUl:lLE SAMPLlNG PLAN DBSiGN 
LU'i' SiZE = 500.u lST SAMP s,;.zE = 27.0 2ND SAMP SlZE = 27.0 
POLYA PARAMETERS ARE S= 0.679445 'i'= 7°b99410 
COS'i' VALUES ARE SO= ).00 Sl= 2.50 S2= 1.90 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.gO 
ACC NO 1 = 0.0 RJ NO 1 = 3.0 ACC NO 2 = 2.0 RJ NO 2 = 3.0 
TOTAL COST = 8)8.851 

******************************************************************** 
******************************************************************** 
*********~********************************************************** 

Again, the opportunity to design a sampling plan using a new prior 

distribution and/or cost parameters is offered. In the following 



illustration, a Polya distribution and different cost parameters are 

presented: 

· WANT TO DESIGN PLA!l USlNG !IE'tl PRIOR/COST 
PARAMETERS??? UO(O) OR YES(1) 

? 
1 

WHICH IS THE PRIOR DiSTRIBUTIOU??? 

? 
1 

MIXED BIGOMIAL(O) OR POLYA(1) 

POLYA PARAMETERS· ARE S= 0.679445 T= 7-899410 
CORRECT??? NO(O) OR YES(1) 

? . 
1 

COST VALUES ARE SO= ).CO S1= 2.50 S2= 1.90 "AO= 10.00 
Al= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.90 
CORRECT??? NO(O) OR YES(1) 

? 
0 

ENTER SO,S1 ,S2,AO,A1,A2,RO,R1, AND R2 
? 
) '2. 5' 1 . 56' 10'. '40' 5 '2' 1 . 56 

COST VALUES ARE SO= ).00 S1= 2.50 
5.00 R1= 

S2= 1.56 AO= 10.00 
2.00 R2= 1.56 

? 
1 

Al= 0.0 A2= 40.00 RO= 
CORRECT??? NO(O) og YES(1) 

CONSTANT FACTOR= 1.00 
CORRECT??? NO(O) OR YES(1) 

. . 

? . 
1 

LOT SIZE = 500.00 
CORRECT??? NO(O) OR YES(1) 

? 
1 

******************************************************************** 
******************************************************************** 
******************************************************************** 

ECONOMICALLY BASED DOUBLE SAMPL!hG PLAN DES~GN 
LOT SIZE = 500.0 1ST SAMP SlZE = 29.0 2ND SAMP SIZE = 29.0 
POLYA PARAMETERS ARE S= 0.679445 T= 7.899410 
COST VALUES ARE SO= ).00 Sl= 2.50 S2= 1.56 AO= 10.00 
A1= 0.0 A2= 40.00 . RO= 5.00 R1= 2.00 R2= 1.56 
ACC NO 1 = 0.0 RJ NU 1 = ,.O ACC NO 2 = 2.0 RJ NO 2 = 3.0 
TOTAL COST = 827.382 

***************************************************~**************** 
******************************************************************** 
***************************************~**************************** 

Again, the opportunity to design a sampling plan using new prior/cost 

parameters is offered. In the following illustration, a mixed binomial 

distribution is selected: 

. WANT TO DESIGN PLAN USHIG NEW PRlOR/COST 
PARAMETERS??? NO(O) OR YES(1) 

? 
1 

WHICH IS THE PRIOR DISTRIBUTION??? 

? 
0 

MIXED iINOMIAL(O) OR POLYA(1) 

78 



The current parameters of the mixed binomial distribution are then 

displayed for verification. In the following illustration, the mixed 

binomial parameters are not correct: 

MIXED BINOMIAL PARAMETERS ARE Wl=0.6000 W2=0.3000 
W3=0.1000 F1= 0.0100000 F2= 0.1000000 F3= 0.3000000 
CORRECT??? NO(O) OR YES{1) 

? 
0 
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The user is then told to enter the six mixed binomial parameters. First, 

however, the user is reminded that the three weights (w1, w2, w3) must 

sum to 1 and all must be positive. Also, the three process fractions 

defective (f1, f 2, f3) must be between 0 and 1, but not 0 or 1. A value 

of 0.0 would indicate a perfectly operating process, and would normally 

be a legitimate entry; however, certain mathematical operations disallow 

the use of a 0, and a .0000001 is recommended instead. Similarly, a 

.9999999 is recommended in place of a 1. Even if one or two of the 

weights are 0, the corresponding process fraction defective must be 

entered: 

? 

REMEMBER, W1+W2+W3=1.0 AND ALL MUS~ BE POSITIVE 
ALSO, Fl , :f'2, AND F3 MUST BE BE'fWEEN 0 AND 1 , BUT NOT 0 OR 1 
ENTER W1,W2,W3,F1,F2,F3 

• 58, . 3 , . 1 2 ' . 01 •.. 1 ' . 3 

The mixed binomial parameters are again displayed. for verification and 

found to be correct. During subsequent runs of the program the mixed 

binomial parameters will remain fixed at these values unless changed: 

? 

MIXED BlNOMIAL PARAMETERS ARE Wl=0.5800 W2=0.3000 
W3=0.1200 Fl= 0.0100000 F2= 0.1000000 F)= 0.)000000 
CORRECT??? NO(O) OR YES(1) 

The nine cost values and lot size are next displayed for verification. 

In the following illustration, both of them are correct: 



COST VALUES AlIB SO= j.00 S1= 2.50 S2= 1.56 AO= 10.00 
A1= 0.0 A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.56 
CORRECT??? NO{O) OR YES(1) 

? -
1 

CONSTANT FACTOR= 1.00 
CORRECT??? NO(O) OR YES(1) 

? 
1. 

LOT SIZE = 
CORRECT??? 

? 

500.00 
NO(O) OR YES ( 1 ) 

1 
******************************************************************** 
*****************************************"''************************** 
*******************************•******"'***************************** 

ECONOMICALLY BAS.ED DOUBLE SAMPLING PLAN DES:GN 
LOT SIZE = 500.0 1ST SAMP SlZE = 30.0 2ND SAM? SIZE = 30.0 
MIXED BiNCMlAL PARAMETERS ARE W1=0.5b00 W2=0.)000 
W3=0.1200 F1= o.u100000 F2= 0.1000000 F3= Q.)000000 
COST VALUES ARR SO= j.l~ 21= 2.50 32= 1 .56 AO= 10.00 
Al= O.O A2= 40.CO RO= 5.00 R1= 2.00 R2= 1 .56 
ACC .NO 1 = 0. 0 RJ iW 1 = j. 0 ACC lW 2 = 2. 0 RJ lW 2 = 3. 0 
T0TAL COST : 679.475 

******************************************************************** 
**************•*-**************************************************** 
******************************************************************** 

Again, the opportunity to design a sampling plan using new prior/ 

cost parameters is offered. In the following illustration, this 

opportunity is declined: 

? 
0 

WANT TO DES:i.GH PLAN USlNG NEW PRlOR/COST 
PARAMETERS??? NO(O) CIR YES(1) 

The user is then given the opportunity to begin the program over; this 

option is accepted: 

WANT TO START DVER ??? NO(O) OR YES(1) 
? 

Designing the Optimum Acceptance/Rejection 

Number Vector 
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The program again lists the three activities permitted and request 

the user's choice. In the following illustration, design of the optimum 



acceptance/rejection number vector given the sample size pair is 

selected and verified: 

? 
2 

? 
1 

THIS PROGRAM PEHMITS YOU TO DO THE FOLLOWIHG TH:UG3: 
(1) DES.lGN AN ECOf.IOMlCALL.Y HA~ED ~AMPLl~G PLAN 
(2) DESlGN 'l'HE UP':' ACC/R:SJ Vl::CTOR,GIVEN SAMP SlZE PAIR 
(3) EVALUATE '.:.'HE EXPEC-;:ED CCST OP A SAMPLING PL.!Jl 
WHICH DO YOU WAN'.:.' TO DO ? ENTER 1 , 2 ,OR 3 

YOU WM;T TO DESIGN OPT ACC/REJ VECTOR GIVEN SAHYLE SIZE PAIR 
CORREC'.:.' ? NO (0) OR YES (1) 

The prior distribution and costs are again presented for verifica-

tion and possible modification: 

WlliCH IS THE PRlOR DlS'l'RiBU'llON??? 

? 
0 

? 
1 

MiXED BiNCM1AL(O) OR POLYA(1) 

l1lXED B.ilil]!·LLAL PARAMETERS ARE Wl=0.5800 W2=0.;..ooo 
W)=0.1200 Fi= 0.0100000 P2= 0.1000000 F3= 0.)000000 
CORRECT??? NO(O) (JR YES(1) 

COST VALHES ARE SO= 3.00 S1= 2.50 S2= 1.~6 AO= 10.00 
Al= 0.0 A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.56 
CORRECT??? NO(O) OR YES(1) 

? 
1 
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Next, the lot size, and sample sizes are presented for verification. 

In the following illustration, the sample sizes are to be changed: 

? 
0 

LOT SIZE = 500.0 1ST SAMP SIZE = 60.0 2ND SAMP SIZE = 60.0 
CORRECT??? NO(O) OR YES(1) 

The user is then told to enter the new lot size and sample sizes: 

ENTER LOT SIZE,1ST SAMP SIZE,AND 2ND SAMP s:zE 
?· 
500,40,40 

These values are again presented for verification: 

? 

LOT SIZE = 500.0 1ST SAMP SIZE = 40.0 2ND SAKP SIZE = 40.0 
CORREC'.:'??? NO(O) OR TIS~1) 

At this point, all necessary data have been entered in order to find an 

optimum acceptance/rejection number vector. Output of the results 

begins with a statement that this optimum acceptance/rejection number 
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vector design. The l~t size, sample sizes, prior distribution, cost 

parameters, and opti1~!urn acceptance and rejection numbers are presented. 

Four additional cost terms are primarily useful for someone attempting to 

compare numerical re,ults with the model formulation presented in 

Chapters III and IV. The general user will be interested only in the 

expected total cost: 

****************R~************************************************** 
****************~*************************************************** 
****************-~*****************************~******************* 

OPTIMUM ACC/REJ ;.:·:xBER VEC~OR DESIGN 
LUT S.i.ZE = 5CJO. ,' 1ST~ SAMP SlZE = 40.0 2ND SAMP SIZE = 40.0 
MIXED BINOMIAL .t· 0.'\.\M1'iERS ARE W1=0.5800 W2=0.)000 
'W3=0.1200 F1= ,'.0100000 F2= 0.1000000 F3= 0.3000000 
CUST VALUES ARE ~;= 3.QO S1= 2.50 S2 = 1.56 AO = 10.00 
A1 - 0.0 A2 ~ 40.00 RO = 5.00 R1 = 2.00 R2 = 1 .56 
ACC NO 1 = 1.0 ~EJ NO 1 = 3.0 ACC NO 2 = 5.0 REJ NO 2 = 4.0 
ACC 1ST SAMP cost = 209.18 REJ 1ST SAMP COS! 413.12 
ACC 2ND SAMP co~~ = 11.i1 REJ 2ND SAMP COST = 46.03 
TOTAL COST = 685.990 

****************-~************************************************** 
****************~*******************~******************************* 
****************-•************************************************** 

The user is given th,, opportunity to evaluate another lot size or/and 

sample sizes, but mai11taining the same prior distribution, parameters, 

and costs. In the f01lowing illustration, the user does exercise this 

option: 

WANT TO EVAL Mi(' '~H.ER SAMP PLAN USING LOT, SAMP SIZES ??? 
NO(O) OR YES(1) 

'1 
1 

The new lot size and ~ample sizes are requested: 

ENTER LOT SIZE,~ ~'7 SAMP SIZE, AND 2ND SAMP SIZE 
? 

400,25,25 

and verified: 

,LOT SIZE= 400.'-) 1ST SAMP SIZE 
CORRECT??? NO(Oj ~R YES(1) 

? 

25.0 2ND SAHP SIZE = 25.0 

The new results are 0 -:a in printed: 



******************************************************************** 
******************************************************************** 
*********•*******~***•*~~~*~X~~~*~~~·~~~~~~~-~~~t~-~·~~~~*******~**~ 

OP?!MUM ACC/REJ NUMBER VECTOR DESLGh 
LOT :3J.ZE = 400.U 18'.;.' S1iMP 3.J.ZB = 25.0 2!1D :JAMP S:i.ZE = 25.0 
MlXED B.tNCM1AL PARA~'.ETEW.i /,RE 11'1=0.5800 W2=0.)UOO 
Wj=0.1200 F1= o.u100000 F2= 0.1000000 F3= 0.3000000 
COST VALUES ARE SO= ).00 S1= 2.50 S2 = 1.56 AO= 10.00 
A1 = o.o A2 = 40.00 RO= 5.co R1 = 2.00 R2 = 1.56 
ACC NO 1 = 0.0 REJ NO 1 3.0 ACC NO 2 = 2.0 REJ NO 2 = 3.0 
ACC 1ST SAMP COST = 135.63 REJ 1ST SAMP CC27 242.95 
ACC 2ND SAMP COST = 67. 87 REJ 2llD SAMP CCS'l' = 111 . 20 
TOTAL COST = 557.661 

***************************~**************************************** 
******************************************************************** 
******************************************************************** 

Again, the opportunity to evaluate a new lot or sample sizes is 

offered and declined: 

? 

WANT TO EVAL ANOTHER SAMP PLAN USING LOT, SAMP SIZES 
NO(O) OR YES(1) 

0 

??'? 

The opportunity to evaluate using new prior/cost parameters is offered. 

In the following illustration the user does exercise this option: 

WANT TO DO ECON EVAL USING NEW PRIOR/COST 
PARAMETERS ??? NO(O) OR YES(1) 

? 
t 

At this time, the program requests the user to input the prior 

distribution. In the following illustration, a Polya distribution is 

requested: 
WHICH IS THE PRIOR DlSTRIBUTION??? 

MIXED BINO!UAL(O) OR POLYA(t) 
? 

Note that the most recent parameters of Polya distribution are again 

displayed for verification and possible change, as are the costs, lot 

size, and sample sizes. Any of these may be changed if desired. The 

results are then printed: 

? 
0 

POLYA PARAMETERS ARES= 0.679445 
CORRBCT??? NO(O) OR YES(l) 

T= 7.899410 
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EN'.i'ER S,T 
? 
.462103,6.539455 

POLYA PARAMETERS ARE S= 0.462103 
CORRECT??? NO(O) OR YES(1) 

T= 6.539455 

? 
1 

? 
1 

COST VALUES ARE SO= 3.00 
A1= 0.0 A2= 40.00 RO= 
CORRECT??? NO(O) OR YES(1) 

S1= 2.50 
5.00 R1= 

S2= 1 .56 
2.00 R2= 

AO= 10.00 
1.56 

· LOT SIZE = 
CORRECT??? 

400.0 tST SAMP SIZE = 25.0 2ND SAMP SIZE = 2~.o 

? 
0 
. ENTER LOT 
.? 
500,30,30 
. LOT SIZE = 

CORRECT??? 
? 

NO ( 0) OR YES ( 1 ) 

SIZE, 1 ST SAMP SIZE,AND 

500.0 1ST SAMP SIZE 
N"O(O) OR YES(1) 

2ND SAMP SIZE 

30.0 2ND SAMP SIZE = 30.0 

******************************************************************** 
******************************************************************** 
******************************************************************** 

OPTIMUM ACC/REJ NUMBER VECTOR DESIGN 
LOT SiZE = 500.0 1ST SAMP SlZE = 30.0 2ND-SAMP 
POLYA PARAMETERS ARE S= 0.462103 T= 6.539455 
COST VALUES ARE so~ ).00 S1= 2.50 S2 = 1.56 
Al = 0.0 A2 = 40.00 RO = 5.00 Rt = 2.GO 
ACC NO 1 = 0.0 REJ NO 1 = 4.0 ACC NO 2 = 3.0 
ACC 1ST SAMP COST 142.18 REJ 1ST SAMP COST= 
ACC 2ND SAMP COST = 1 64. 99 REJ 2liD SAMP COS'i' = 
TOTAL COST = 707.561 

SIZE )0.0 

AO 1O.00 
R2 = 1 • 56 

REJ NO 2 = 
237.5s 
1 62. 81 

4.0 

******************************************************************** 
******************************************************************** 
******************************************************************** 

Again, the opportunity to find a new plan, or even use new prior/ 

cost parameters is offered. In the following illustration, these 

opportunities are declined: 

WANT TO EVAL ANOTHER SAMP PLAN USING LOT, SAMP SIZES ??? 
NO(O) OR YES{1) 

? 
0 

WANT TO DO ECON EVAL USlNG NEW PRIOR/COST 
PARAME?ERS '??? NO ( 0) UR YES ( 1 ) 

? 
0 

The user is then given the opportunity to start the program over again. 

In the following illustration, this option is accepted: 

WANT TO START OVER ??? 110(0) OR YES(1) 
? 
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Evaluating the Expected Cost of a 

Sampling Plan 

Once again, the program will list three activities permitted and 

request the user's choice. In the following illustration, evaluating 

the expected cost of a sampling plan is selected and verified. 

? 

THIS PROGRAM 0 PERM:i:TS YOU TO DO THE }'OLLOWlNG THINGS; 
( 1 ) DESlGN Al~ ECONOMICALLY BASED SAMPL.iNG PLAN 
(2) DESIGN THE OPT ACC/REJ VECTOR,GIVEN SAMP SIZE PAIR 
()) EVALUATE THE EXPECTED COST OF A SAMPLING PLAN 
WHICH DO YUU WANT TO DO ? ENTER 1 , ·2 ,OR 3 

3 • 
YOU WANT TO EVALUATE THE EXPECTED COST OF A SAMPLJ:NG PLAN 

. CORRECT ? NO (0) OR YES (1) 
? 

The prior distribution and costs are again presented for verifica-
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tion and possible modification. The cost parameters are not correct and 

all to be changed or verified: 

WHICH IS THE PRIOR DISTRIBUTION??? 
MIXED BIUOMIAL(O) OR POLYA(1) 

? 
0 

MIXED BINOMIAL PARAMETERS ARE W1=0.5800 W2=0.3000 
W3=0.1200 F1= 0.0100000 F2= 0.1000000 F3= 0.3000000 
CORRECT??? NO(O) OR YES(1) 

? 
1 

? 
0 

COST VALUES ARE SO= 3.00 S1= 2.50 S2= .1.56 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.56 
CORRECT??? NO(O) OR YES(1) 

ENTER SO,S1,S2,AO,A1,A2,RO,R1, AND R2 
? 
3' 2. 5, 1 • 9' 10' 0, 40, 5 '2. 1 •. 9 

COST VALUES ARE SO= 3.00 S1= 2.50 S2= 1.90 AO= 10.00 
A1= O.O A2= 40.00 RO= 5.00 R1= 2.00 R2= 1.90 
CORRECT??? NO(O) OR YES(1) 

? 
1 

Next, the lot size, sample sizes, acceptance, and rejection numbers 

are presented for verification: 

? 

LOT SIZE = 500.0 1ST SAMP SlZE = 30.0 2ND SAMP SlZE = 30.0 
CORRECT??? NO(O) OR YES(1) 

1 . 

? 

ACC/REJ Nffi.1BERS ARE C1= O.O R1= 4.0 C2= 3.0 R2= 4.0 
CORRECT??? NO(O) OR YES(1) 



At this point, all necessary data have been entered in order to 

evaluate the expected cost of a sampling plan. Output is listed as 

follows: 

**********************•********************************************* 
******************************************************************** 
******************************************************************** 

EXPECTED COST EVALUATION 
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0 
MIXED BIUCMlAL PARAMETERS ARE W1=0.5800 W2=0.3000 
\(;=O. 1200 F 1 = 0. 01 00000 F2= 0. 1 000000 F3= 0. )000000 
COST VALUES ARE SO= 3.co S1= 2.50 S2 = 1.90 AO= 10.00 
A1 = O.O A2 = 40.00 RO= 5;00 R1 = 2.00 R2 = 1.90 
ACC NO 1 = 0.0 REJ NO 1 = 4.0 ACC NO 2 = 3.0 REJ NO 2 = 4.0 
ACC 1ST SAMP COST = 143,42 REJ 1ST SAMP COST -- 273.25 
ACC 2ND SAMP COST= 114.58 REJ 2ND SAMP COST= 171.0j 
TOTAL COST = 702.278 

******************************************************************** 
******************************************************************** 
***********************~******************************************** 

The user is given the opportunity to evaluate expected cost using a new 

lot size and/or sampling plan, but maintaining the same prior distri

bution, parameters, and costs. In the following illustration, the user 

does exercise this option: 

WANT ~O EVAL AUOTHER SAMP PLAN USlNG LOT,:JAMP SlZES ??? 
NO(O) OR YES(1) 

? 
1 

The new lot size and sample sizes are requested: 

ENTER LOT SIZE, 1ST SAMP SIZE,AND 2ND SAMP SIZE 
? 
500,27,27 

and verified: 
LOT SIZE~ .. 500.0 1ST SAMP SIZE 
CORRECT??? NO(O) OR ES(l) 

27.0 2ND SAMP SIZE = 

? 
1 

The acceptance and rejection numbers are verified: 

? 

ACC/REJ NUMBERS ARE C1= O.O R1= 
CORRECT???.NO(O) OR YES(l} 

4.0 C2= 

The new results are again printed: 

3.0 R2= 4.0 

21.0 
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******************************************************************** 
******************************************************************** 
******************************************************************** 

EXPECTED COST EVALUATION 
LOT SIZE = 500.0 1ST SAMP SlZE = 27.0 2ND SAMP SIZE = 27.0 
MIXED BINOM1AL PARAHE'.LER0S ARE Wl=0.5800 W2=0.)000 
W)=0.1200 F1= 0.0100000 F2= 0.1000000 F3= 0.3000000 
COST VALUES ARE SO= ).00 S1= 2.50. S2 = 1.90 AO= 10.00 
A1 = 0.0 A2 = 40.00 RO= 5.00 R1 = 2.00 R2 = 1.90 
ACC NO 1 = 0.0 REJ NO 1 4.0 ACC NO 2 = 3.0 REJ NO 2 = 4.0 
ACC 1ST SAMP COST = 153.67 REJ 1ST SAMP COST= 247.75 
ACC 2ND SAMP COST = 136.02 REJ 2ND SAMP COST = 174.56 
TOTAL COST= 711.994 

******~************************************************************* 
******************************************************************** 
******************************************************************** 

Again the opportunity to evaluate expected cost using a new lot size 

and/or sample sizes is offered and declined: 

WANT TO EVAL ANOTHER SAMP PLAN USING LOT,SAMP SIZES ??? 
NO(O) OR YES(1) 

? 
0 

The opportunity to evaluate expected cost, changing the prior distri-

bution, parameters, and/or costs, is then offered. In the following 

illustration the user does exercise this option: 

? 
1 

WANT TO CALCULATE COST USIHG NEW PRIOR/COST 
PARMETERS ??? NO(O) OR YES(1) 

At this time, the program again requests the user to input the 

prior distribution. In the following illustration, a Polya distribu-

tion is requested: 

'" 1 

WHICH IS THE PRIOR DISTRIBUTION??? 
MIXED BINOMIAL(O) OR POLYA(1) 

87 

Note that the most recent parameters of the Polya distribution are again 

displayed for verification and possible change, as are the costs, lot 

size, sampling sizes, and acceptance and rejection numbers. Any of these 

may be changed if desired. In the following illustration, the sampling 

plan decision variables are not correct and must be changed and verified. 

The results are then printed: 



? 
1 

? 
1 

? 
0 

? 

POLYA PARAMETERS ARE S= 0.462103 
CORRECT??? NO(O) OR YES(1) 

T= 6.5)9455 

cos~ VALUES ARE SO= 3.00 S1= 2.50 
A1= 0.0 A2= 40.00 RO= 5.00 R1= 
CORRECT??? NO(O) OR YES(1) 

S2= 1.90 
2.00 R2= 

AO= 10.00 
1.90 

LOT SIZE = 500.0 1ST SAMP SIZE = 
CORRECT??? NO(O) OR YES(1) 

27.0 2ND SAMP SIZE = 27.0 

ENTER LOT SIZE, 1ST SAMP SIZE,AND 2ND SAMP SIZE 

500,30,30 
LOT SIZE = 500.0 1ST SAMP SIZE = 
CORRECT??? NO(O) OR YES(1) 

30.0 2ND SAMP SIZE = 30.0 

? 
1 

? 
0 

ACC/REJ NUMBERS ARE C1= 0.0 R1= 
CORRECT??? NO(O) OR YES(1) 

4.0 C2= ).0 R2= 4.0 

ENTER C1,R1,C2,AND R2 
? 
0,2,2,3 

ACC/REJ NUMBERS ARE C1= 0.0 R1:: 
, CORRECT??? NO(O) OR YES(1) 

2.0 C2= 2.0 R2= 3.0 

? 

************************************************•******************* 
******************************************************************** 
**************************************************·****************** 

EXPECTED COS'r EVALUA'i'IGN 
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0 
POLYA PARAMETERS ARE S= 0.462103 T= 6.539455 
COST VALUES ARE SQ; 3.00 31= 2.50 S2 = 1.9() AO= 10.00 
A1 = 0.0 A2 = 40.00 RO = 5.00 R1 ::: 2.00 R2 = 1.90 
ACC NO 1 ::: 0.0 REJ NO 1 = 2.0 ACC NO 2 = 2.0 REJ NO 2 = 3.0 
ACC 1ST SAMP COST= 142.18 REJ 1ST SAMP COST::: 441.05 
ACC 2ND SAMP CCST = 7s.39 REJ 2ND SAMP COST= 59.17 
TOTAL COST = 720.793 

******************************************************************** 
******************************************************************** 
******************************************************************** 

The user is again given the opportunity to evaluate the expected cost 
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of using a new lot size, sampling plan, prior distribution, parameters, 

and/or costs, or to start the program from the beginning. In the 

following illustration, all options are declined: 

? 

WANT TO EVAL ANOTHER SAMP PLAN USlNG LOT,SAMP SIZES 
NO(O) OR YES(1) 

0 

??? 



WANT TO CALCULA'i'E COST USING NEW PRiOR/COST 
PARMETERS ??? NO(O) OR YES(1) 

? 
0 

WANT TO START OVER ??? NO(O) OR YES(1) 
? 
0 

At this time the user is finished with the program and may log off. 

Summary 

Nearly every feature of the program has been illustrated in this 

chapter. It is a powerful tool for designing an economically based 

sampling plan finding an optimum acceptance/rejection number vector for 

a given sample size pair, and evaluating the total cost of a sampling 

plan. It is directly usable in industrial and governmental situations 

as well as in teaching, where the underlying model and assumptions are 

applicable. 
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CHAPTER VI 

SENSITIVITY ANALYSIS 

Introduction 

The purpose of this chapter is to present a wide array of sensi

tivity analyses relevant to this research. Among the different 

situations discussed are the following: 

(1) Sensitivity to sample size and different constant factors. 

(2) Sensitivity to the cost coefficients. 

(3) Sensitivity to the prior distribution. 

(4) Comparison with optimum single sampling plan. 

Tables are displayed to show the sensitivity properties in each case. 

Sensitivity to Sample Size and 

Different Constant Factors 

In actual industrial and government application, the second sample 

size n2 is nearly always set equal to some constant multiple of the 

sample size n1. In order to study the sensitivity of the cost model to 

sample size variations and different constant factors, suppose that the 

lot size is N=500, the cost components of the original model are 

(SO' sl' Sz, Ao, Al' A2' Ro, Rl' Rz) = (3.0, 2.5, 1.9, 10.0, 0.0, 40.0, 

5;0, 2.0, 1.9), with mean and variance for the prior distribution (µ,a2) 

= (32.999971, 1952.98924). For the mixed binomial distribution, the 
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distribution, the parameters are (w1, w2, w3, f1 , f 2, f3) =(0.6, 0.3, 

0.1, 0.01, 0.1, O); for the Polya distribution, the parameters are 
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(s, t) =(0.4621, 6.5394). The interactive computer program presented in 

Appendix A results in data summarized in Table VI.1. 

In Table VI.1, within each constant factor and prior distribution, 

the optimal sampling plan {n1*, n2*, c1*, r1*, c2*, r2*) and expected total 

cost TC* are presented. Given the optimal sample sizes, and maintaining 

the same constant factor of 2, other sample sizes are chosen which 

vary both ±10% and ±20% from the optimum. Using these new sample sizes, 

the optimal acceptance/rejection number vector and the resulting 

expected total cost are calculated. Table VI.1 illustrates the fact 

that values in the neighborhood of optimum are very close in total cost. 

Although the sample sizes are as much as ±20% off of optimum, the expected 

total cost difference never exceeds 2% for the examples considered. 

Another important fact is that the optimal expected total cost 

occurs when the constant factor is 2. That is, of those constant 

factors considered, a second sample size twice that of the first 

sample size (n2 = 2 x n1) is the best choice. It should be remembered 

that only gross (typical) constant factors (CF) are used, including 

values of CF = .75, 1, 1.5, 2, 2.5, and 3. Sensitivity measures over 

the different constant factors considered, but within a prior distribution 

indicate that the expected total cost varies by only 1% from optimum. 

Sensitivity to the Cost Coefficients 

A number of additional problems are solved using various values of 

the cost coefficients assuming a lot size of N = 500. The mixed 

binomial and Polya prior distributions, using the cost coefficients of 



TABLE VI.1 

SENSITIVITY OF THE EXPECTED TOTAL COST TO 
DIFFERENT SAMPLE SIZES AND DIFFERENT 

CONSTANT FACTORS 

N = 500 so = 3.0 A0 = 10.0 

s1 = 2.5 A = 1 0.0 
s2 = 1. 9 A2 = 40.0 

(µ, a2) = (32.999971, 1952.96924) 

R0 = 5.0 
R1 = 2.0 
R2 = 1. 9 

For the Mixed Binomial Distribution, the Parameters Are 

w = 1 .6 w2 = .3 w = 3 .1 

f 1 = . 01 f 2 = .1 f,., = 
.) 

.3 

For the Polya Distribution, the Parameters Are 

s = 0.4621026 . t = 6.53945446 

Constant Prior Sampling Plan Expected % Cost 
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% Cost 
Factor Distribution 

nl n2 cl rl c2 r2 
Total Cost Increase Increase 

CF TC Over Over 
Optimum Optimum 
Within Within 
CF and Prior 
Prior Dist. 
Dist. 

28 14 0 2 1 2 581.880 0.85% 
Mixed 32 16 0 3 2 3 679.666 0.52% 

36 18 0 3 2 3 676.130 1.05% Binomial 40 20 0 3 2 3 678.175 0.30% 
44 22 1 3 2 3 679.740 0.34% 

0.5 
25 12 0 2 1 2 719. 035 0.19% 
28 14 0 3 2 3 719.470 0.25% 

Polya 31 15 0 3 2 3 717. 669 0.88% 
34 17 0 3 2 3 718. 321 0.09% 
37 18 0 3 2 3 721.121 0.48% 

27 20 0 3 2 3 678.406 0.85% 
Mixed 30 22 0 3 2 3 673.933 0.18% 

33 24 0 3 2 3 672.699 0.54% Binomial 36 27 0 3 2 3 674.100 0.21% 
39 29 0 3 2 3 678.634 0.88% 

0.75 
23 17 0 2 1 2 718.555 0.56% 
26 19 0 3 2 3 714.969 0.06% 

Pol ya 29 21 0 3 2 3 714. 554 0.44% 
32 24 0 3 2 3 716.709 0. 30%. 
35 26 0 3 2 3 719.713 0. 72% 
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TABLE VI.l (Continued) 

Constant Prior Sampling Plan Expected % Cost % Cost 
Factor Distribution 

nl n2 cl rl c2 r2 
Total Cost Increase Increase 

CF TC Over Over 
Optimum Optimum 
Hithin \~ithin 
CF and Prior 
Prior Dist. 
Di st. 

24 24 0 3 2 3 677. 223 1.00% 
Mixed 27 27 0 3 2 3 671. 721 0 .17% 

30 30 0 3 2 3 670.542 0.22% Binomial 33 33 0 3 2 3 672.535 0.30% 
36 36 0 ,3 2 3 675.031 0.67% 

1.00 
20 20 0 2 1 2 718. 960 0.93% 
23 23 0 3 2 3 714. 076 0.24% 

Pol ya 26 26 0 3 2 3 712.344 0.13% 
29 29 0 3 2 3 714.625 0.32% 
32 32 0 3 3 4 716.185 0.54% 

20 30 0 3 2 3 678.209 1.28% 
Mixed 23 34 0 3 2 3 671.181 0.23% 

Binomial 26 39 0 3 2 3 669.655 0.09% 
29 43 0 3 2 3 671.074 0.21% 
32 48 0 3 3 4 671.617 0.29% 

1. 50 
20 30 0 3 2 3 713. 660 0.28% 
23 34 0 3 2 3 712.898 0.17% 

Pol ya 26 39 0 3 3 4 711.665 0.04% 
29 43 0 3 3 4 713.495 0.26% 
32 48 0 3 3 4 717.383 0.80% 

20 40 0 3 2 3 674.444 0.80% 
' Mixed 23 46 0 3 2 3 672. 094 0.45% 

/ Binomial 26 52 0 3 3 4 669.086 
29 58 0 3 3 4 671.327 0.33% 
32 64 0 3 4 5 675.294 0.93% 

2.00 
18 38 0 3 2 3 716. 334 0.69% 
21 42 0 3 3 4 712.811 0.20% 

Pol ya 24 48 0 3 3 4 711.409 
27 54 0 3 4 5 713.647 0.31% 
30 60 0 3 4 5 716. 572 0.73% 

17 42 0 3 2 3 681. 570 1.63% 
Mixed 20 50 0 3 3 4 675.761 o. 77% 

Binomial 23 57 0 3 3 4 670.633 0.23% 
26 65 0 3 3 4 671. 250 0.09% 

2.5 29 72 0 3 4 5 674.433 0.57% 
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TABLE VI.1 (Continued) 

Constant Prior Sampling Plan Expected % Cost % Cost 
Factor Distribution 

nl n2 cl rl c2 r2 
Total Cost Increase Increase 

CF TC Over Over 
Optimum Optimum 
Within Within 
CF and Prior 
Prior Di st. 
Dist. 

18 45 0 3 3 4 716. 206 0.51% 
21 52 0 3 3 4 712 .836 0.03% 

2.5 Pol ya 24 60 0 3 4 5 712.609 0.17% 
27 67 0 3 4 5 715.173 0.36% 
30 75 0 3 5 6 719. 283 0.94% 

17 54 0 3 3 4 682.562 1.44% 
Mixed 19 57 0 3 3 4 676. 710 0.57% 

21 63 0 3 3 4 672.891 0.57% Binomial 23 69 0 3 3 4 672.893 0.00% 
25 75 0 3 4 5 673.501 0.09% 

3.0 
18 54 0 3 3 4 716.027 0.38% 
20 60 0 3 4 5 714.379 0.15% 

Pol ya 22 66 0 3 4 5 713. 297 0.27% 
25 75 0 3 5 6 715.611 0.32% 
27 81 0 3 5 6 717.488 0.59% 



the 11original II model (So, 51' s2, Ao, A2' Ro, R1' Rz) = 

(3.0, 2.5, 1.9, 10.0, 0.0, 40.U, 5.0, 2.0, 1.9) with mean and variance 

(µ,o 2) = (32.999971, 1952.96924), are reconsidered. The cost values 

of s0, s1, A0, A1, and R0 are held fixed, while values of R1, R2, 52, 
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and A2 are varied and presented. The constant factor between n1 and n2 

is held and assumed to be 1. Two sensitivity measures, ~l and 62, have 

been developed to help to show the sensitivity properties of the expected 

total cost expression to different cost coefficients. 

where 

The first measure, 61, is expressed as 

.fo(~C) = the original (changed) cost parameter vector 

· f.o*(~*) = the optimum original (changed) decision variable 

vector including sample sizes and acceptance and 

rejection numbers as optimized in the original 

(changed) cost environment 

fo(fc) = the original (changed) prior distribution parameter 

vector 

TCcc(fo,~,fc*) = the total expected cost predicted by the original 

prior distribution, under a changed cost vector, 

using the sampling plan determined to be optimal 

under the changed cost vector. 

Tc00 (fo,f.o,fo*) = the total expected cost predicted by the original 

prior distribution, under the original cost vector, 

using the sampling plan determined to be optimal 

under the original cost vector 
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Thus, ~l represents a measure of inaccuracy of the changed cost 

model when used to determine what is believed to be an optimal sampling 

plan which is then evaluated to predict total expected cost. 

The second measure, ~ 2 , is expressed as 

TCocC~o' ~, fc*) - Tcoo(£-O, ~, ~*) 
b = x 100% 

2 TCoo(£-O, ~, fa*) 

where 

TCoc(£-O,~,fc*) =the total expected cost predicted by the original 

prior distribution, under the original cost vector, 

using the sampling plan determined to be optimal under 

the changed cost vector. 

Thus, ~2 expressed a measure of how costly it will be to use the changed 

cost model's optimum plan in the original cost model environment. 

That is, b2 is a measure which compares the two models as selectors 

of the optimal sampling plan. 

The value of each changed cost parameter in the set (A2, s2, R2) 

is varied up and down ±20% from the 11 original 11 values. Cost parameter R, 
l 

differs ±10% and ±20% from the "original 11 model (i.e., 1.6, 1.8, 2.0, 

2.2, 2.4 over five cases). The optimal sampling plans, total expected 

costs, and sensitivity measures are as shown in Table VI.2. 

From Table VI.2, it is seen that as s2 = R2 increases while other 

coefficients remain fixed, the optimal expected total costs increase 

while the sample sizes either decrease or remain the same. Thus, 

increasing s2 and R2 causes the plans to be less discriminating. As 

cost A2 increases for fixed other coefficients, the optimal expected 

total cost increases while the sample sizes increase and the acceptance/ 

rejection number vector either decreases or remains the same. Thus, 
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TABLE VI.2 

SENSITIVITY TO THE COST COEFFICIENTS 

Optimal Double Sampling Plans for N = 500, Selected Cost Coefficients, 
and Mixed Binomial and Polya Priors With Mean = 32.999971 and 
Variance = 1952.96924 

Prior s0 = 3.0 A0 = 10.0 R~ = 5.0 
Distribution s1 = 2.5 A1 = 0.0 c - = 1 . 

R1 = 1.6 

A2 
S2=R2 

1.52 1.90 2.28 

28,28,0,3,2,3 28,28,0,3,2,3 26,26,0,3,2,3 

32 
rccc=556.428 rc.cc=567. 342 rc,cc=578 .112 

L:.1=-17.02% f:.1=-15.39% L:.1=-13.78% 
rc0c=670.604 Tc0c=670.604 TCOC =672. 360 

f:.2=0.009% L:.2=0.009% fl2=0.27% 

31,31,0,3,2,3 31,31,0,3,2,3 31,31,0,3,2,3 
Mixed TC.,cc=587.373 TCcc=598.465 rccc=609.557 

40 
Binomial L:.1=-12.40% L:.1=-10.75% L:.l =-9 .10% 

rc0c=670.547 rc0e=670.547 TCoc=670.547 
f:.2=0.0007% 6z=0.0007% 6:z=O. 0007% 

33,33,0,3,2,3 33,33,0,3,2,3 33,33,0,3,2,3 

48 
rccc=615 .509 TCGc=626.703 TCc.e=637 .896 

t:.1=-8.21% L:.1=-6.54% L:.l =-4 .87% 
rc0c=672. 535 rc0c=672 .535 rc0c=672. 535 

~=0.30% ~=0.30% L2=0. 30% 

22,22,0,2,2,3 22,22,0,2,2,3 22,22,0,2,2,3 

rccc=587.604 rccc=597.787 rccc=607.970 

Pol ya 32 f\=-17 .51% l\=-16.08% 6i=-14.65% 
rc0c=715. 214 TCoc=715.214 rc0c=715.214 

4z=0.4% 12=0.4% 12=0. 4% 
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TABLE VI.2 {Continued) 

. R1 = 1. 6 

A2 
S2=R2 

1.52 1.90 2.28 

24,24,0,2,1,2 24,24,0,2.l,2 24,24,0,2,1,2 
Tccc=627.849 TCcc==638.GJ9 TCcc=649.428 

40 1\=-ll.86% 6. - 10 ·_)j"•¥ 1-- •\)JM 6.1=-8.83% 
rc0c=712.sog TCoc=712.B09 rc0c=n2.sog 

Pol ya 
6.2-0. 07% 6.2=o.on. 6.2=0,07% 

29,29,0,2,1,2 29,29,0,2,l,2 29,29,0,2,1,2 
rccc=658.389 Tccc=669.526 rccc=680.662 

48 61=-7.57% 6.1=-6.011. 6.1=-4.45% 
rc0c=714.626 rc0c=714. 6:?6 rc0c=614.626 

~=0.32% 6.2=0. 32'.'(, 62=0. 32% 

R1 = 1.8 

A2 
S2=R2 

1.52 1.90 2.28 

26 ,26 ,0 ,3,2 ,3 26,26,0,3,2,3 26,26,0,3,2,3 

rccc=590.924 TCcc=601.67B rccc=612.423 
32 61=-11,87% 6. - 10 27"' 1-- . .. 1~! 6.1=-8.67% 

rc0c=672.360 . rc0c=672. 3GO rc0c=672.360 

Mixed 62=0.27% 62=0.2n, 62=0. 27% 

Bi nomi a 1 
31,31,0,3,2~3 31,31,0,3,2,3 31,31,0,3,2,3 

TCcc=623.414 TCcc=634.SClG rccc=645.598 
40 11=-7.03% 6i =-5. 37:\~ 6i =3. 72% 

rc0c=670.547 rc0c=670.5~7 rc0c=670.547 
'1=0.0007% '1=o.ooon. '1=0.0007% 
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TABLE VI.2 (Continued) 

R1 = 1.8 

S2=R2 
1.52 1. 90 2.28 

A2 

33,33,0,3,2,3 33,33,0,3,2,3 33,33,0,3,2,3 

Mixed rccc=652.os1 rccc=663.245 rccc=674.438 
48 "'1=-2.76% [1,1 =-1.09% "'1=0.58% 

Binomial 
rc0c=672.535 rc0c=672.535 rc0c=672.535 

"'2=0.30% "'2=0.30% "'2=0. 30% 

22,22,0,3,2,3 22,22,0,3,2,3 22,22,0,3,2,3 

TCcc=620.729 TCcc=630.702 rccc=640.676 
32 "'1=-12.86% "'1=-11.46% "'1=-10.06% 

rc0c=715. 214 rc0c=715.214 rc0c=615.214 

~=0.4% ~=0.4% "'z=0.4% 

27,27,0,3,2,3 26,26,0,3,2,3 26,26,0,3,2,3 

Tccc=666.453 rccc=676.952 TCcc=687.356 
Pol ya 40 "'i =-6. 44% "'i =-4. 97% f\,1=-3.51% 

rc0c=713.038 rc0c=712.344 rc0c=712.344 

~=0.10% ~=0.0% ~=0.0% 

31,31,0,2,2,3 31,31,0,2,2,3 31,31,0,2,2,3 

TCcc=701.382 TCcc=712. 336 rccc=723.291 
48 61=-1.54% 61=-0.001% 61=1.54% 

rc0c=717 .311 rc0c=717. 311 rc0c=717 .311 
6z=0.70% 62=0.70% 62=0.70% 
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TABLE VI.2 (Continued) 

R1 = 2.0 

A2 
S2=R2 

1.52 1. 90 2.28 

26,26,0,3,2,3 26,26,0,3,2,3 26,26,0,3,2,3 

Tccc=625.235 rccc=635.984 Tccc=646.733 
32 61=-6.76% 61=-5.15% L'll=-3.55% 

rc0c=672.360 rc0c=672.360 rc0c=672.36o 

62=0.27% /),2=0.27% 62=0.27% 

31,31,0,3,2,3 30,30,0,3,2,3 28,28,0,3,2,3 

Mixed rccc=659.455 rccc=670.542 rccc=681.524 
40 61=-1.65% lll =1.64% 

Binomial rc0c=670.547 Tc0c=670.604 

ll2=0.0007% /),2=0.009% 

33,33,0,3,2,3 31,31,0,3,2,3 31,31,0,3,2,3 

rccc=688.593 Tccc=699.720 rccc=710.s12 
48 ll1=2.69% 61=4.35% L'l1=6.0l% 

rc0c=672.535 rc0c=670.547 rc0c=670.547 
62="0.30% 62=0.0007% 62=0.0007% 

20,20,0,3,2,3 19,19,0,3,2,3 19,19,0,3,2,3 

rccc=652.264 rccc=661.819 rccc=671. 327 
32 L'li=-8.43% l\ =-7 .09% lll=-5.76% 

rc0c=720.148 rc0c=723.475 rc0c=723.475 

62=1. 09% "'2=1. 56% 62=1.56% 

26,26,0,3,2,3 26,26,0,3,2,3 26,26,0,3,2,3 

rccc=70l.940 rccc=712.344 rccc=722.748 
Pol ya 40 L'll =-1. 46% 61=1.46% 

rc0c=712. 344 rc0c=712.344 

ll2=0.0% 62=0.0% 
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TABLE VI.2 (Continued) 

Rl = 2.0 

S2=R2 
1.52 1.90 2.28 

A2 

31,31,0,3,2,3 31,31,0,3,2,3 31,31,0,3,2,3 

rccc=740.650 rccc=751.463 rccc=762.276 
Pol ya 48 L\1=3.97% L\1=5.49% f\1=7.01% 

rc0c=717 .311 rc0c=717 .311 rc0c=717. 311 

L\2=0.70% L\2=0.70% f\2=0.70% 

R1 = 2.2 

S2=R2 
1.52 1.90 2.28 

A2 

23,23,0,3,2,3 23,23,0,3,2,3 23,23,0,3,2,3 

rccc=658.965 rccc=669.408 rccc=679.880 
32 L\ =-1.73% 1 L\1=-0.17% f\1=1.39% 

rc0c=679.729 rc0c=679.729 rc0c=679.729 

L\2=1.37% f\2=1.37% f\2=1.37% 

28,28,0,3,2,3 28,28,0,3,2,3 28,28,0,3,2,3 

Mixed rccc=694.811 rccc=705.731 TCcc=716.652 
40 61=3.62% L\1=5.25% 61=6.88% 

Binomial rc0c=670.604 rc0c=670.604 rccc=670.604 
L\2=0.009% L\2=0.009% f\2=0.009% 

31,31,0,3,2,3 31,31,0,3,2,3 31,31,0,3,2,3 

rccc=724.669 TCcc=745.404 rccc=746.853 
48 L\1=8.07% 61=11.16% L\1=11. 38% 

rc0c=670.547 rc0c=670.547 rc0c=670.547 
L\2=0.0007% L\2=0.0007% L\2=0.0007% 
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TABLE VI.2 (Continued) 

R1 =2.2 

S2=R2 
1.52 1. 90 2.28 

A2 

19,19,0,3,2,3 19,19,0,3,2,3 19,19,0,3,2,3 

rccc=681.935 rccc=691. 442 rccc=700.949 
32 61=-4.27% 61=-2.93% 61=-1.60% 

rc0c=723.475 rc0c=723.475 rc0c=723.475 

62=1. 56% 62=1. 56% 62=1. 56% 

24,24,0,3,2,3 24,24,0,3,2,3 24,24,0,3,2,3 

rccc=736.573 rccc=746.779 rccc=756.986 
Pol ya 40 61=3.40% 61=4.83% 61=6.27% 

rc0c=712.809 rc0c=712.809 rc0c=712.so9 

62=0.07% 62=0.07% 62=0.07% 

29,29,0,3,2,3 29,29,0,3,2,3 29,29,0,3,2,3 

rccc=778.437 .rccc=798.387 rccc=799.782 
48 61=9.28% 61=12.08% 61=12.27% 

rc0c=714.626 rc0c=714.626 rc0c=714.626 

62=0.32% 62=0.32% 62=0.32% 

R1 = 2.4 

S2=R2 
1.52 1.90 2.28 

A2 

21,21,0,3,2,3 21,21,0,3,2,3 21,21,0,3,2,3 

Mixed TCcc=691.357 rccc=70l.513 rccc=711.67o 

Binomial 32 61 =3 .10% L\=4.62% 61=6.13% 

rc0c=687.653 rc0c=687.653 rc0c=687.653 

L'i2=2.51% 62=2.51% 62=2.51% 
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TABLE VI.2 (Continued) 

R1 = 2.4 

S2=R2 
1.52 1.90 2.28 

A2 

28,28,0,3,2,3 28,28,0,3,2,3 26,26,0,3,2,3 

rccc=729.939 rccc=740.859 Tccc=751.730 
40 61=8.86% 61=10.49% 61 =12 .11% 

rc0c=670.604 rc0c=670.604 rc0c=672.360 
Mixed 62=0.009% 62=0.009% 62=0.27% 

Binomial 31,31,0,3,2,3 31,31,0,3,2,3 31,31,0,3,2,3 

rccc=760. 110 rccc=771.802 rccc=782.894 
48 61 =1~ .45% 61=15 .10% 61=16.77% 

rc0c=670.547 rc0c=670.547 rc0c=670.547 
62=0.007% 62=0.0007% 62=0.0007% 

22,22,0,4,3,4 22,22,0,4,3,4 22,22,0,4,3,4 

rccc=70S.491 rccc=717. 697 rccc=726.902 
32 61=-0.54% 61=0.75% 61=2.04% 

rc0c=715.214 rc0c=715. 214 rc0c=715.214 

62=0.4% 62=0.4% 62=0.4% 

27,27,0,4,3,4 26,26,0,4,3,4 26,26,0,4,3,4 

rccc=76B.985 .Tccc=778.814 TCcc=788.574 
Pol ya 40 61=7.95% 61=9.33% 61=10.70% 

rc0c=713.038 rc0c=712.344 rc0c=712.344 
62=0.10% 62=o.o% 62=0.0% 

33,33,0,4,3,4 26,26,0,4,3,4 26,26,0,4,3,4 

rccc=Bl5.265 rccc=825.767 TCcc=836.170 
48 61=14.45% 61=15.92% 61=17.38% 

rc0c=712.344 rc0c=712.344% 

62=0.0% 62=0.0% 
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Thus, increasing A2 often makes the plans more discriminating, causing 

fewer lots to be accepted. Finally, if cost R1 is increased while other 

coefficients remain fixed, the optimal expected total cost increases 

while the sample sizes decrease and the decision variables either increase 

or remain the same. This causes plans to again be less discriminating. 

The ~l measurement, and hence the model as a predictor of total 

expected cost, is most sensitive to changes in the cost coefficient R1. 

That is, the inaccuracy of the changed cost model is relatively high 

when first used to determine what is believed to be an optimal sampling 

plan, and when then used to evaluate what is believed to be optimal 

total expected cost. A 10% change in the value of R1 causes about a 

5.3% change in the value of 61 for the mixed binomial prior, and a 4.7% 

change for the Polya prior case. A 20% change in the value of A2 causes 

a change of about 4-5% in ~l for the mixed binomial prior case, and a 

5-7% change for the Polya prior case. The performance measure ~l is 

least sensitive to changes in the cost coefficients s2 and R2. A 20% 

change in the values of either s2 or R2 causes about 1.3-1.8% change in 

performance measure 61 for both the mixed binomial and Polya prior 

distribution cases. 

Changes in cost coefficients do not have a significant effect in 

selection of a sampling plan which is then evaluated in the correct 

cost environment. That is, to use the changed cost model's optimum plan 

in the original cost model environment is not terribly costly under 

reasonable circumstances. From Table VI.2, the ~2 values are usually 

below 1%; sometimes 62 goes to 2%. In any case, there is no big 

difference in using the changed cost model's optimum plan in the original 

cost model, so long as incorrect estimates of the cost coefficients R1, 



R2, s2, and A2 are within 20% of the correct value. 

Sensitivity to the Prior Distribution 

Additional problems are solved to investigate the sensitivity of 

the total expected cost to the parameters of the prior distribution. 

Only the Polya prior distribution with lot size N = 500 and three 
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different sets of cost parameters are considered. The values of the mean 

and standard deviation (µ, 0) =(3.3, 44). The constant factor relating 

n1 and n2 is assumed to be 1. Two other sensitivity measures, L'.1 3 and ll4, 

have been developed for studying the sensitivity to the prior distribution. 

The first measure, ll3, may be expressed as 

where 

TC:Cc (fc ,~,~ *) = the total expected cost calculated, using the changed 

prior distribution and the sampling plan determined 

to be optimal using the changed prior distribution 

while holding the cost vector at the original values. 

TC00 Cr-o'~'J-O*) = the total expected cost calculated using the original 

prior distribution and the sampling plan determined to 

be optimal using the original prior distribution while 

holding the cost vector at the original values. 

Thus, b.3 expresses a measure of inaccuracy of the model when using the 

changed prior distribution to determine what is believed to be an optimal 

sampling plan which is then evaluated to predict total expected cost. 

The other measure, ll4, may be expressed as 
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where 

TC0ct!:-O'~'Ec*) = the total expected cost predicted using the original 

prior distribution, but also using the sampling plan 

determined to be optimal under the changed prior 

distribution. The cost vector is held at its original 

values. 

Thus, 64 represents a measure of how costly it will be to use the changed 

prior distribution's optimum plan in the original prior distribution 

environment. That is, 64 is a measure which compares the two models as 

selectors of the optimal sampling plan. 

The optimal sampling plans, total expected costs, and sensitivity 

measures, 63 and 64, are as shown in Table VI.3. Calculations are made 

under three different sets of cost parameters. 

It is found that as the prior mean increases, the sample sizes 

increase and the acceptance/rejection number vector either increases 

or remains the same. For increases in the prior standard deviation, the 

sample sizes decrease and the acceptance/rejection number vector either 

decreases or remains the same. 

The total expected cost is more sensitive to a changed prior mean 

than it is to a changed prior standard deviation, as evidenced by the 63 

measurement. For example, a ±20% change in the prior mean, while holding 

constant the value of the standard deviation, produces approximately a 

±17-20% change in total expected cost. A ±20% change in the prior 

standard deviation, while holding the value of the mean constant, causes 

about a 12-14% change in the total expected cost. That is, the changed 
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TABLE VI. 3 

SENSITIVITY TO THE PRIOR DISTRIBUTION .•. 

Optimum Double Sampling Plans for Different Polya Priors, N = 500 

s0 = 3.0 A0 = 10. 0 R0 = 5.0 

s1 = 2.5 A = 1 0.0 R1 = 2.0 
s2 = i. 9 A2 = 40.0 R2 = 1. 9 

Mean 
Standard 26.4 33.0 39.6 
Deviation 

s=0.496236265 s=0.784033477 s=l.13327789 
t=S.90217590 t=ll. 0952587 t=13.1757803 
25,25,0,3,2,3 28,28,0,3,2,3 36,36,0,3,3,4 

35 TCcc=670.379 TCcc=818.061 TCcc=934.881 
63=-6 .17% 63=14.50% 63=30.85% 

Tc0c=714.849 Tc0c=715.453 rc0c=721.s22 
64=0.05% 64=0.14% 64=1.03% 

s = 0.29196322 s=0.466807723 s=0.679445982 
t=5.23764229 t=6.60603619 t=7.89940834 
23,23,0,3,2,3 26,26,0,3,2,3 27,27,0,3,2,3 

44 rccc=589.304 TCcc=714.475 TCcc=838.852 
~=-20.32% s=17 .41% 

rc0c=716.235 rc0c=83s.ss2 

4+=0. 25% 64=0. 09% 

s=0.183852911 s=0.299380422 s=0.440567017 

t=3.29820919 t=4.23668575 t=5.12214565 

22,22,0,3,2,3 23,23,0,3,2,3 27,27,0,3,2,3 
53 rccc=483.527 TCcc=622.638 rccc=747.632 

~=-32.32% 63=-12.85% 63=4.64% 
rc0c=717. 399 rc0c=716.235 rc0c=715. 495 

64=0.41% 64=0.27% 64=0.09% 
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TABLE VI .. 3 (Continued) 

so = 3.0 A0 = 10.0 R0 = 5.0 
s1 = 2.5 A = 1 0.0 R1 = 1.6 
s 2 = 1.52 s2 = 32.0 R2 = 1.52 

Mean 
Standard 26.4 33.0 39.6 
Deviation 

s=0.496236265 s=0.784033477 s=l.13327789 
t=S.90217590 t=ll.0952587 t=13.1757803 
23,23,0,3,2,3 24,24,0,2,2,3 26,26,0,2,2,3 

35 rccc=553.538 rccc=673.778 rccc=769.309 
fi3=-5.79% 63=14.67% Li3=30.92% 

rc0c=529.566 rc0c=589.621 rc0c=591.226 
l\4=0.33% l14=0.34% L'i4=0.62% 

s=0.29196322 s=0.466807723 s=0.679445982 

t=5.23764229 t=6.60603619 t=7.89940834 
18,18,0,2,1,2 22,22,0,2,2,3 25,25,0,2,2,3 

44 rccc=469.853 rccc=587.604 TCcc=690.325 
63=-20. 04% L'i3=17.48% 

rc0c=590.913 rc0c=59o.sss 

ti 4 =O. 56% 64=0. 50% 

s=O .183852911 s=0.299380422 s=0.440567017 

t=3.29820919 t=4.23668575 t=5.12214565 

16,16,0,2,1,2 19,19,0,2,1,2 24,24,0,2,2,3 

53 rccc=398.069 rccc=513.258 rccc=615.586 
63=-32.25% 63=-12.65% L'i3=4.76% 

rc0c=593.757 rc0c=590.2s2 rc0c=589.621 
t.4=1.05% ' 64=0.46% 64=0.34% 
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TABLE VI.3 (Continued) 

Sa = 3.0 A0 = 10. 0 Ra = 5.0 
s1 = 2.5 A = 1 a.a R1 = 2.4 

52 = 2.28 A2 = 48.0 R2 = 2.28 

Mean 
Standard 26.4 33.0 39.6 
Deviation 

s=a.496236265 s=a.784033477 s=l .13327789 

t=8.90217590 t=ll. 0952587 t=13.1757803 
25,25,0,3,2,3 35,35,0,4,3,4 38,38,0,4,3,4 

35 rccc=786.217 rccc=957.512 rccc=l094.418 
63=-6.25% 63=14 .17% 63=30.17% 

rc0c=839.768 rc0c=839.202 rc0c=842.152 

64=0.13% 64=a.a6% 64=0.42% 

s=a.29196322 s=0.4668a7723 s=0.679445982 

t=5.23764229 t=6.60603619 t=7.89940834 
24,24,0,3,2,3 28,28,0,3,2,3 36,36,0,4,3,4 

44 rccc=567.176 rccc=838.653 rccc=983.239 
63=-20. 45~& 63=17. 24% 

rc0c=840.526 rc0c=840.189 

64=0.22% 64=0.18% 

s=O .183852911 s=a.299380422 s=0.440567017 

t=3.29820919 t=4.23668575 t=S.12214565 

22,22,0,3,2,3 26,26,0,3,2,3 33,33,0,4,3,4 

53 rccc=565.767 rccc=730.o48 rccc=877.979 
63=-32. 54% 63=-12. 95% 63=4.69% 

rc0c=844.691 rc0c=838.706 rc0c=B38.628 
64=0. 72% 64=0.0a6% 64=-0.003% 
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prior distribution's optimum plan, evaluated in the original prior 

distribution environment, is quite good so long as the mean and standard 

deviations are estimated within ±20% of their correct values. 

Comparison With Optimum Single Sampling and 

Tabulated Sampling Plans 

It is instructive to compare economically optimum double sampling 

plans to economically optimum single sampling plans, as well as both 

single and double sampling plans obtained from Military Standard 1050. 

Table VI.4 lists several economically optimal single sampling plans, 

their expected costs, the corresponding cost of the optimal double 

sampling plans, and the percent savings attained by using double sampling. 

The optimal double sampling plans are determined by using the interactive 

program described in Chapter V and listed in Appendix A. The optimal 

single sampling plans are derived using the program developed by Case [13]. 

From Table VI.4, the savings under double sampling using the mixed 

binomial prior distribution range from 2.67% to 3.41%. Savings using 

the Polya prior distribution range from 2.07% to 3.17% for various 

different values of cost and prior parameters evaluated. For increases 

in the value of the prior mean and decreases in the prior standard 

deviation, the economic advantage of double sampling relative to single 

sampling becomes more significant. In contrast, for decreases in the 

value of the prior mean and increases in the prior standard deviation, 

the advantage of double sampling over single sampling becomes less 

significant. 

For comparison purposes, sampling plans from Military Standard 1050 

are presented using lot size N = 500, the original prior and cost terms 



Prior 
Prior Parameters 

Distribution 
2 µ 0 

Mixed Binomial 32.9999 44.1924 

Poly a 32.9999 44.1924 
Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Poly a 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Poly a 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Mixed Binomial 32.9999 44.1924 

Pol ya 32.9999 44.1924 

Pol ya 26.4 35.0 

Poly a 39.6 35.0 

Pol ya 26.4 53.0 

Pol ya 39.6 53.0 

TABLE VI .4 

COMPARISON OF OPTIMAL DOUBLE SAMPLING PLANS AND 
OPTIMAL SINGLE SAMPLING PLANS 

Optimal Single Optimal Double Sampiing Costs Sampling 

SO s1 s2 AO Al A2 RO Rl R2 
Expected Expected 

nl cl Cost nl "2 cl rl c2 r2 Cost 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 1.6 1.9 38 1 617.85 31 31 0 3 2 3 598.465 
3.0 2.5 1.9 10.0 0.0 40.0 5.0 1.6 1.9 36 1 652.39 24 24 0 2 1 2 638.639 
3.0 2.5 1.9 10.0 0.0 40.0 5.0 1.8 1.9 37 1 655.14 31 31 0 3 2 3 634.506 
3.0 2.5 1.9 10.0 0.0 40.0 5.0 1.8 1.9 34 1 690.95 26 26 0 3 2 3 676.952 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 36 1 692.03 30 30 0 3 2 3 670.542 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 32 1 728.37 26 26 0 3 2 3 712.344 
3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.2 1.9 34 1 728.36 28 28 0 3 2 3 705.731 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.2 1.9 29 1 764.56 24 24 0 3 2 3 746. 779 
3.0 2.5 1. 9 10.0 0.0 40.0 5.0 2.4 1.9 49 2 762.39 28 28 0 3 2 3 740.359 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.4 1.9 39 2 797.17 26 26 0 4 3 4 778. 814 

3.0 2.5 1.9 10.0 0.0 32.0 5.0 2.0 1.9 28 1 653.00 26 26 0 3 2 3 635.984 
3.0 2.5 1.9 10.0 0.0 32.0 5.0 2.0 1.9 24 1 677 .67 19 19 0 3 2 3 661.819 

3.0 2.5 1.9 10.0 0.0 48.0 5.0 2.0 1.9 40 1 723.61 31 31 0 3 2 3 699. 720 

3.0 2.5 1.9 10.0 0.0 48.0 5.0 2.0 1.9 38 1 767.29 31 31 0 3 2 3 751. 563 
3.0 2,5 1.52 10.0 0.0 40.0 5.0 2.0 1.52 36 1 681. 09 31 31 0 3 2 3 659.455 

3.0 2.5 1.52 10.0 0.0 40.0 5.0 2.0 1.52 32 1 717 .89 26 26 0 3 2 3 701.940 

3.0 2.5 2.28 10.0 010 40.0 5.0 2.0 2.28 35 1 702.91 28 28 0 3 2 3 681.524 

3.0 2.5 2.28 10.0 0.0 40.0 5.0 2.0 2.28 31 1 738.81 26 26 0 3 2 3 722.748 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 30 1 686.55 25 25 0 3 2 3 670.379 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 53 2 948 .15 36 36 0 3 3 4 934.881 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 26 1 498.84 22 22 0 3 2 3 483.527 

3.0 2.5 1.9 10.0 0.0 40.0 5.0 2.0 1.9 32 1 763.00 27 27 0 3 2 3 747.632 

Percent 
Differences 

3.24 

2.15 
3.25 
2.07 

3.20 

2.25 

3.21 

2.38 
2.91 

2.36 

2.67 
2.34 
1.41 

2 .11 

3.28 

2.27 

3.13 

2.22 

2.41 

1.42 

3 .17 

2.06 ....... 
........ 
....... 



TABLE VI. 5 

COMPARISON OF OPTIMAL DOUBLE SAMPLING PLANS AND 
SAMPLING PLANS FROM MILITARY STANDARD 105D 

Mixed Binomial Prior 

Sampling Plan Total 
Classification Expected 

nl n2 cl rl c2 r2 Cost 

Economically Double 30 30 0 3 2 3 670.542 
Based 

Single 36 1 692.030 

1. 0 Double 32 32 0 2 1 2 699. 564· 

Single 50 1 708.640 
AQL 

1.5 Double 32 32 0 3 3 4 676.853 

Single 50 2 694.970 

Pol ya Prior 

Sampling Plan Total 
Classification Expected 

nl n2 cl rl c2 r2 Cost 

Economically Double 26 26 0 3 2 3 712. 344 
Based 

Single 32 1 7281360 

1.0 Double 32 32 0 2 1 2 738.144 

Single 50 1 751. 240 
AQL 

1.5 Double 32 32 0 3 3 4 716.185 

Single 50 2 735.920 
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Percent 
Difference 

3.21% 

4.33% 

5.68% 

0.94% 

3.64% 

Percent 
Difference 

2.25% 

3.62% 

5.46% 

0.54% 

3.31% 
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{µ, .a, So, s1' s2' Ao, Al' A2' Ro, R.l' R2) = (32.9999, 44.1924, 3.0, 

2.5, 1.9, 10.0, 0.0, 40.0, 5.p, 2.0, 1.9), inspection level II, normal 

inspection, and AQL values of 1.0% and 1.5%. The results, in comparison 

with mixed binomial and Polya prior distributions are displayed in 

Table VI.5. For those examples, the savings range from about 0.5% to 

6%. It is general to find that the economically based double sampling 

plans are considerably more cost-effective than those obtained from 

Military Standard 1050. 

Summary 

The purpose of this chapter is to present a wide array of sensitivity 

analyses for this research. This study considers variations in the 

optimum sample sizes as well as the constant factor relationship between 

first and second sample. This study also demonstrates the effects of 

incorrectly estimating the costs, and the prior distribution parameters. 

It also compares optimum single sampling as well as plans from Military 

Standard 1050. Both the mixed binomial and Polya prior distribution are 

considered in these analyses. 

The following conclusions are drawn from this study: 

1. As sample sizes vary up to ±20% from optimal sampling plan, 

the changes in cost compared to the optimal cost are never 

over 2%. 

2. The best constant factor between n1 and n2 is 2 (i.e., n2 = 2 

x n1). 

3. The sample sizes are most sensitive in cost parameters A2 and 

R1. If A2 increases, then the sample sizes will increase. 

Contrarily, an increase in R1 will decrease the sample size. 
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4. It is no great disadvantage in using the changed cost mode1 's 

optimum plan then used in the changed environment to predict 

the total expected cost, sensitivity is most sensitive in 

R1 , A2 next, s2 and R2 are the least ones. 

5~ Increases in the prior mean will increase the optimal sample 

sizes. Increases in the prior standard deviation will decrease 

the optimal sample size. 

6. It is no large disadvantage in using either the changed cost 

vector's or prior distribution's optimum plan in the original 

cost or prior, respectively, model environment, provided changes 

in cost terms R1, R2, s2, and A2, and prior mean and standard 

deviation are within ±20%. 

7. Economically based double sampling is more cost effective than 

either economically based single sampling or those plans 

obtained from Military Standard 1050. In this study, the 

savings range from 2% to 4%, and 0.5% to 6%, respectively. 

It should be noted that these conclusions are based only upon the 

various parameter values selected for study herein. 



CHAPTER VII 

SUMMARY AND CONCLUSION 

The overall objective of this research has been to provide industry 

and government with a new and well-developed tool to assist in selecting 

the most effective double acceptance sampling plan for a wide range of 

realistic situations. 

Several specific subobjectives have been to: 

1. Develop the Guthrie-Johns model for use in double sampling, 

including nine situations which depend on four decisions: 

lot 100% inspected; lot accepted outright without inspection; 

lot decision made following inspection of first sample; lot 

decision made following inspection of second sample. 

2. Modify the Guthrie-Johns model to include fixed cost components 

for sampling, rejection, and acceptance. The cost terms 

developed are used to model and evaluate the cost of different 

decision variables and sampling outcomes. 

3. Develop the theoretically exact analytical and search pro

cedures for economically optimizing a double-sampling plan 

using a discrete mathematical model with the fixed cost 

expansion. The methodology is developed using an original 

break-even approach and an appropriate search procedure to 

determine the optimum double sample size pair and 

corresponding acceptance/rejection number vector. Two general 

115 



116 

families of prfor distributions, the Polya and mixed binomial, 

have been used to describe the actual lot quality. 

4. Develop an interactive computer program for double sampling 

in a format suitable for use in industrial and governmental 

situations as well as in teaching. The program developed 

permits easy utilization of the design and evaluation 

methodologies for economically based double sampling. 

5. Compare the optimum single and double-sampling plan total 

expected cost in order to determine the relative economic 

advantage of double-sampling. Sensitivity analyses were 

performed to determine the effects of changes in sample 

sizes, constant factors, cost coefficients, and prior distri

bution parameters on the total expected cost per lot. Also, 

economically based single sampling plans as well as tabulated 

double-sampling plans were evaluated for comparison purposes. 

Based on the results obtained in this research, the following 

statements can be made: 

a. The locus of total expected cost associated with a given 

acceptance/rejection vector is nearly, if not exactly, convex 

with a rather flat total cost surface as a function of sample 

size in the neighborhood of the optimum. Also, the locus of 

the local minima have but one global optimum over all possible 

sample sizes. The values of the total expected cost near the 

optimal sampling plan, even with different acceptance/rejection 

number vectors, are sufficiently close as to form a very flat 

shape so that there is little difference between the optimal 

total expected cost and the total expected cost for it 1 s 



neighbor sample size pairs. 

b. The economically based double-sampling plan has cost 

advantages over economically based single sampling. But, 
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the savings is not significant. In this research, the savings 

range from 2.0% to 4.0% for different combinations of cost 

and prior distribution parameters. 

c. The economically based double-sampling plan is more cost

effective than plans obtained from Military Standard 1050. 

The savings range from 0.5% to 6~0%. 

d. In this research, it was determined that the best choice the 

second sample size n2 is twice that of the first sample size 

n1. Also, however, there is little difference between the 

constant factors 1, 1.5, 2, 2.5, and 3. 

e. The optimal sample size pair and the total expected cost are 

very sensitive to cost coefficients A2 and R1, compared with 

the other cost parameters. 

f. An increase in the prior mean will increase the optimal sample 

size pair. An increase in the prior variance will decrease 

the sample size pair. 

Future research should consider the following: 

1. A logical extension of this research is to apply techniques 

developed herein to economically based multiple-sampling. The 

success with economically based double-sampling plans may be 

extended to mult·iple-sampling. In fact, double-sampling plan 

is one special case of multiple-sampling when the number of 

stages equals two. All concepts of the cost model formulation 

and optimization from this research are applicable to this 

extension. 



2. Economically based sequential sampling with fixed cost 

considerations should be evaluated. Economically based 

sequential sampling using a Bayesian prior distribution has 

already been developed; however, it omits the fixed cost 

factors. 
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3. Type 1 and type 2 inspection errors may be considered in an 

extension to this work. For this research, perfect inspection 

is assumed. However, inspection is well known to be imperfect. 

Thus, their effects should be considered. 

4. Other prior distribution families should be studied. This 

author has been successful in using the Polya and mixed 

binomial families as prior distributions. Other priors may 

better describe actual lot quality in some situations. 

Of course, there are many other related areas in which work 

remains to be initiated or extended. While this dissertation is 

certainly only a small study with respect to the entire area, it is 

hoped that it represents a significant contribution to quality control. 
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APPENDIX A 

MODIFIED GUTHRIE-JOHNS COMPUTER PROGRAM 

FOR DOUBLE SAMPLING PLAN (FORTRAN 

Computer Porgram Listing 

Including Documentation) 
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000\0 c 
00020 c 
00030 c 
00040 c 
00050 c 
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1 ' MiXED B~NOMiAL(O) OR POLYA(1) ') 
READ(5;*) r;coDE 
lF (NCODE.LE.O) GO TO 26 
WRlTE PULYA Ph.RH.ME':ERS 
WRl?Z(6,27l S,'i 
FURMAT(2X,'POLYA PARAMETERS ARES=' ,F10.6,3X,'T=',F10.6) 
CHECK TO SEE IF PARAMETERS ARE CORRECT 
WRI'::'E (6,28) 
FCRMAT (2X, 'CORRECT??? NO(O) OR YES(1)') 
READ(5,*) ICOD:S 
IF (ICCDE.EQ.1) GO TO 29 
n:PUT HW VALUES 
WR1TE(6,JO) 
FCRMAT(2X, 'ENTER S,T') 
READ(5,*) S,T 

00880 
00890 
00900 
'00910 
00920 
0093C 
00940 

9**** CHECK TO ASSURE THAT NEW E~!'I:R:ES ARE R:GHT 
GO TO )2 

00950 C**** 
:00%0 26 
00910 )..J 

00980 

WR.:.TE !L.XED B.d:(.)!LAL PARA!iE'::'ERS 
WR.i.TE(6,jj) W1 ,W2,Wj,F1 ,F2,F3 
FGRHhT (2X, 'M~X~D B~tUMl~L PhRAMETER~ ARE W1=' ,FG.4,jX,'W2=' I 

1 F6.4,jX,/,' Wj=',F6.4,jX,'F1=' ,F10.7,jX,'F2=' ,F10.7,~X.'F)=', 
2 F10.7) . 00990 

01000 C**** CHECK TO SEE lF l;1""W VALUES ARE DES~RED 
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01010 '.rp:nv ((, ··,/.' 
01020 34 ;ci~~iT'f~i; ;CORRECT??? ~0(0) CR YES(t)') 
01030 READ(5,*) lGODE 
01040 IF (iCUDE.EQ.I) GO TO 29 
01050 C**** WRlTE YARN1KG 
01060 59 WRITE (6,60) 
-01070 60 F0RMhT (2X, 'R~HENBlR, W1+W2+W3=1 .O ADD ALL MUST BE POSITlVE') 
~1080 WRITE (6,61) 
P109U 61 FORMAT (2X,'ALS6, Fl, F2, AND F3 MUS~ BE BE~WEEN 0 AND 1, BU7 ' 
:01100 1 'lh;T 0 CR 1 ') 
01110 52 WRl'i.'E(6,;;5) 
01120 C**** 11PUT ~EW VALU~S 
~11j0 ;;5 F0RHA~ (2X, '~liTEH W1,W2,Vj,F1 ,F2,F3') 
01140 REi,1J(5,*) W1,\'12,l(;i,F1,F2,F3 
\01150 C**** CliECK 'LliAl' l:EW EW::'hlES ARE R ... GH'.i! 
~1160 GO TO 26 
~1170 C**** WRiTB C08TS 
~1180 29 CUhTlNUE 
~1190 WRlTE(6,j7) S0,S1 ,S2,AO 
~1200 )7 FORMAT (2X,'C0ST VALUES ARE SO=' ,F6.2,)X,'S1=',FG.2,3X, 'S2=', 
:01210 1 FG.2,jX, 'AC=' ,F6.2) 
P1220 53 WRITE(6,jB) Al ,A2,HO,R1 ,R2 
,01230 ;>8 FCTIMAT (2X, 'A1=' ,FG.2,)X, 'A2=' ,F6.2,3X, 'RO=' ,F6.2, 
'01240 1 3X, 'R1=' ,P6.2,)X, 'TI2=', P6.2) 
~1250 C**** CHECK TO SEE IF CCSTS ARE CORREO? 
~1260 WR1TE(6,39) 
01270 39 FORMA'.:' (2X, 'CORRECT??? JW(O) OR YES(1}') 
.01 280 READ ( 5 , *) :;,·c ODE 
,01290 IP (:i.CCDE.EQ.1) GO TO 40 
01300 C-ll+n INPUT iLEW VALUES 
b1)10 54 WRITE(6,41) 
01320 41 FORMAT (2X,'EDTER SO,S1 ,S2,AO,A1 ,A2,EO,R1, ADD R2') 
01330 READ(5,*) SO,Sl ,S2,AO,A1,A2,RC,R1 ,R2 
;01 AO C**** CHECK TO AflSURE THAT NZW Ell TRIES ARE RlGHT 
01)50 GG TO 29 
01)60 40 :F (JCODE.EQ.1) GO TO 43 
~1)70 IF (JCODE.~Q.2) GO TD 75 
-OljBO C**** CALL COST CALCU~AT.OK SUBR~UT~1E 
b1)90 CALL COSCAL(DGLS,D~21 ,DiiS2,1CCDE,W1,~2.Wj,F1 ,F2,F),S.~, 
01400 1SO,D1 ,02,h:J,R1 ,H2,AO,J,1 ,A2,AC1 ,RJ1 ,AG2,RJ2,T/,CP1 ,TACP2, 
01410 2TRJP2,'..:RJP1 ,'.i'CC) 
~i420 7G ~tl~TE(6,77) 
.01430 C**H G ... VE OPPum:Uli ... TY ':O RU!f hEW PR ... CR/C0ST PARAME11RS 
-01440 77 F0RNA?(2X, 'WA~T TO CALCULaTE COST USiNG tEW PR:OR/COST' 
01450 1,/,' PARH.ET1:.H3 ':'?? Nu(O) uR YE;.;(1)') 
01460 READ(5,*) ~c0DE 
01470 iF(ICODE.EQ.U) GO ~O 46 
D1480 GO ~O 47 
01490 C**** CALL AU~ONA~iC PAR~lAL DESIGN SUBROU~~NE 
91500 75 CALL CCSCU~(DNLS,DN81 ,D~S2,NCODE,W1,U2,W3,F1,F2,F~,S,7, 



:J1510 
01520 
:..>15)0 
01540 
01550 
01560 
01570 
01580 
01590 

1~0,Sl,~2,HO,Rl,R~,AO,A1,A2,AC1,RJ1,AC2,RJ2,'.i.'ACP1,?ACP2,'.i.'RJP2, 
2':.'l·:JP1, '.CC) 

55 WRL7E (6,45) 
C*"*** G.i. VE OPPUR'.;~Ui\~'..:Y ':v RU!i I;Ew PRLOR/COS'.i.' PARA!·lEnH~ 
45 · FOHM1''.i' ( 2x, • ~; ;,.t;r;: r;:o DO i:c01; J<:VAL us :..:iG IlE'.i FtLGR/ cosT • , /, 

1 I p ARMlE'.i.'ERS ? '? '? N () ( 0) UR TIS ( i ) I ) 

READ(5,*) :..CCDE 
IF (ICODE.EQ.O) GO 70 46 
GC '.i.'O 47 

01600 C**** 
01610 43 

CALL AU'.:'CMA'.i.'iC DESIGN SUHROU'.i.'1HE 
CALL A'.i.'ODES(D~LS,tCOD~,W1 ,W2,W3,F1,F2,F3,S,T,SO,S1 ,S2, 

01620 
016:.',0 
01640 
01650 
01660 
J1670 
01660 
01690 

1AO,A1,A2,RO,RI ,R2,DOP':S1 ,DOPTS2,AC1 ,RJ1 ,AC2,RJ2,'.i.'CH1IT,CF) 
C**** GHZ OPPOR'J'Uil.i.'.:'Y '.:'O RUl'i I!EW PR.::OR/COS'.i.' PARAf.lE'.:':::RS 
56 WRITE(6,4B) 
48 FORMAT (2X, 'WAN'.i.' ~O DESIGN PLAN USING NEW PRIOR/COST ',/, 

1' PARAME'.LERS??? NO(O) OR YES(1)') 
READ(5,*) !CODE 
IF (ICODE;EQ.O) GO ~O 46 
GO 'l'O 47 
GIVE JPPORTU!Li.'iY TO EVALUA'.2E 
WRli:;E(6,49) 

NEW SAJiPLlNG PLAN 

???• 
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01700 C**H 
01710 57 
01720 49 
01730 

F-GRMAT(2X, 'Wf\ilT :'C EVAL STAT PERF MEASURES OF ANOTHER PLAN ... ' 

01740 
01750 
01760 
017'/G 
01780 
v1790 
01800 
01810 

C**** 
46 
50 

01820 51 
018~·0 

1 I NO(O) ORE3(1-~') 
READ(5,*) .i.CCDE 
IF (ICODE.EQ.O) GO Tu 46 
G~VE OPPORTUN~TY TO S~bRT 
WR.i.TE(6,50) 
FGRMAT (2X,'W~NT TO START 
REJ..D (5, *) ICGDE 
lF (~CODE.EQ.O) GO TO 51 
Gu TO 1 
STOP 
EliD 

OVER 

OVER ??? llO(O) uR YES(1)') 



01C40 C 
01850 c 
01bGO C 
01870 c 
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01850 C***************************************************************** 
01890 c 
01900 c 
01910 c 
01920 c 
Oi930 C 
01940 c 
01950 c 
01960 c 
J19'/0 c 
01980 c 
'01990 c 
02000 c 
02010 c 
02020 c 
,020j0 c 

SUBROU': iliE A':.'ODES .:.S CALLED TO AU':Ol·::,'.:.':i:CALLY DES:.G1; An 
ECOlWN,;,C.L.LLY BAS1D DOUBLE SA!lPL.Li:G PLAN . ;,,';,' IlEG.dJS W.:.TH 
A FJ.R87 SAHPLE s~~B (D1·~S1) AliD A SECU!'lD 8.LZE (D1;s2 t D~;S2= 
COHS'i:*DliiJ 1 ) CF ZERv . :::HE cc~r;,· LOOP FCR F .:.XED D:SC ~S;,,JN 
VARJ.i'-.BLES( AC1 ,RJ1 .AC2,RJ2 )lD .:.DEh'::.:.Fi.ED BY .:.t:CREi\SED :'HE 

i.'HE ~-0?J~L CGS':' A0~V8J..r\~l.:D W~'.:.1E ';I-iL S1\i·iPLE S .... ZES (RM~D1 AUD 
RMlD2) i.N '.;;liE M~DD1E CJ:f' SEQULVi'.ci\L COS'.:' L0GP~ AHE CALCULA'::ED, 
S'::OR:SD , ;..rm CL.f·lP/1R3D • '.:'IES Pf(..,CEDUR}; CGliT~l;UE3 Ull':lL ~HE 
TOTAL CC;;.>';' BEG.i-;0 'iv !1iSB .... '.:' ':.'HU; SEAHCJIES Fi..iR '.:EE OP'i::.nm1 
SAMPLE S,;.ZES (DJPS:S1 ;.rrn DliP'..':J2) W_'.lH;,,i:; '.:'Hi CUST LOOP 
ASSGC.:.A.TLD \LTH '.lliE l·IliilMUM TOTAL Cv8'.:' • '...'HE OPT.d!UH 
TUTAL ~OST lS (TCH.U) . 

D2040 C***************************************************************** 
02050 c 
,02060 c 
,02070 c 
02080 
02090 
02100 
'0211 0 
02120 
021 :;;o 
02140 
02150 

C**** 
120 
11 0 

.02160 C**** 
:02170 
~021so 111 
'02190 
02200 
;02210 
:02220 

C**** 

022)0 11 j 
'02240 
,02250 C**** 
:02260 
02270 C**** 
102280 1 1 
02290 10 
02)00 C**** 
'02;;10 
02)20 12 
02),:...0 
02340 

SLBROUTIUE ATODES(DNLS,NCODE,W1 ,W2,W3,F1 ,F2,F3,S,T,SO,S1, 
1S2,AO,A1 ,A2,R0,~1,R2,DOPTS1 ,DOPTS2,AC1 ,RJ1 ,AC2,RJ2,TCM::.N,CF) 

IMPLiCiT REA1*8(A-H,O-X) 
DIMENSION DlDP'i1 (200),~CC(200),NIDPT1(200),STPT1(200),NPT1 (200) 
Di:MEHSIOI> SAC1 (200) ,SRJ1 (200) ,SAC2(200) ,SRJ2(200) 
WRITE CCNSTANT FACTOR 
WR :L TE ( 6 , 11 0) CF . 
FORMAT(2X, 'CONSTAN'.:.' FAG~OR = ',F5.2) 
CHECK TO SEE IF CORRECT 
WRiTE(6, 111) 
FORMAT(2X,'CORRECT??? NO(O} OR YES(1 )') 
READ(5,*) iCODE 
IF(::.CCDE.EQ.1) GO '.20 11 
:i.liPU'i kc:W VALUES 
WR:i '.2E ( 6 , 1 1 j ) 
FORMA~(2X,'3NTER CONS'iAN'.2 FACTOR') 
READ(5,*) CF 
CliECK TO ASSURE THAT llEW El!TRY :;:s R,/,,GE'.: 
GO Tu 120 
WRiT~ LG'i 3J.ZE 
WRiTE(6,10) D~LS 
FORHh~l2X,'LJ'.;; ~:;:zE = ',F9.2) 
CHECK TU 3EE iF CORRECT 
WR ... '.2E(6,12) 
FLRHhT(2X,'CCRREC'::??? 80(0) OR YE~(1 )') 
HEAD(5,*). :;:cvDE 
~F(lCUDE.EQ.1) GO TO 18 



J2j50 C**** 

C**l<* 

C**** 
18. 

~liPU:' ilEW VALU.S:J 
\dil'.:'l:( G, 13) 
FJHNAT(2X,'~N~ER LOT 
H.EAD ( 5, j( ) DH::> 
CUEcK ':'O ASSURE ~HAT 
GJ '.i'U 11 

DO 50 ::.::1 ,200 
H'.1:1 ( l) =5 

C**** SEARCH FCR FEf,S:CBLE POIN7 
NP71 ( J. )='.'lPT1 ( 1 )+1 
h P:' 2=CF*H:' 1 ( l) 
DNP'.:'1=liP':'1 (I) 
DliP':'2=11P'.22 
CALL S2S(DilLS,DNPT1 ,DNP1'2,NCODE,W1 ,W2,W3,F1 ,F2,F3,S,'.:',SO, 

181 ,S2,AO,A1 ,A2,RO,R1 ,R2,AC2,RJ2) 
C**** CHECK '.:'HE SECOl!D ACCEPTAliCE NUrrnER '.20 DETERMIUE WEA':'HER OR 
C**** NOT lT iS LESS THAU ZERO 

IF(AC2.L~.O.)GO TO 1 
CALL S1S(DNLS,DNPT1 ,DliPT2,NCODE,V1,W2,W3,F1,F2,F3,S,T,SO,S1 ,S2. 

1AO,A1 ,A2,RO,H1 ,R2,AC1 ,RJ1 ,AC2,RJ2) 
C**** CHECK THE FiRST ACCEPTANCE NUMBER TO DETERMl~E WEATHER OR 
C**** NOT IT lS LESS THAD ZERO 

.iF(AC1 .LT.O.) GO TO 1 
C**** GET THE IIllT~AL Pul1T FCR FIRST COST LOOP 

LOGP=1 
STPT1 ( 1 )::Dr-iP'l'1 
SAC1(1)=ACJ 
SRJ1 ( 1 )=RJ1 
SAC2(1 )=AC2 
8RJ2(1 )=AC2+1 

C**** SEARCH FCR THE NEXT LOOP 
2 NPT1(I)=NP'.l:1(i)+1 

NP'.l2=G:r1*NPT 1 (I) 
DNPT1 =NP':'f (I) 
DHPn=llP'.:2 . 
CALL S2S(D1lLS,DNP'.l:1 ,DNPT2,NCODE,W1,W2,V),F1,F2,F3,S,T,SO, 

1S1 ,S2,AO,A1 ,A2,HO,H1 ,R2,AC2,RJ2) 
CALL S1S(DNLS,DNPT1 ,D1PT2,1CUDE,W1,W2,W),F1 ,F2,F5,S,T,SO,S1,S2, 

1AO,A1 ,A2,RO,R1 ,R2,AC1 ,RJ1 ,AC2,RJ2) 
iF(AC1.EQ.8AC1(LCOP).AND.RJ1 .EQ.SRJ1 (LOOP).AND.AC2.EQ. 

1SAC2(LOOP)) GO ~O 2 
C**** UEXT LOOP liAS BEN FOU~iD, CllECK f'Li.DDLE POINT 

MlDPT1 (LOOP)::(DUPT1-1+STPT1 (LOOP))/2 
DIDPT1(LOOP)=MIDPT1(108P) 
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J2;;GO 
02";;70 1 3 
CJ£.'.j80 
~2;,9G 
02400 
02410 
02420 
024;.0 
02440 
02450 
02460 
02470 
02480 
02490 
02500 
02510 
02520 
025)0 
02540 
02550 
02560 
02570 
02580 
02590 
02600 
02610 
02620 
026)0 
02640 
026')0 
02660 
02670 
02680 
02690 
02700 
02710 
02720 
027)0 
02740 
02750 
02760 
02770 
02780 
02790 
02800 
02810 
02820 
:)2830 
02840 

CALL COSEVL(DNLS,DIDPT1(LOOP),CF*DIDPT1 (LOOP),NCCDE,W1 ,W2, 
1W3,F1 ,F2,F~,3,T,LC,S1 ,S2,RO,R1 ,R2,A0,A1 .A2,SAC1 (L~OP),SRJ1 (LCOP) 
2,SAC2(LOOP),SRJ2(1CCP),?ACP1,TACP2,~RJP2,TRJP1 ,TCC(LOOP)) 

C**** DETERMiNE WHETHER OR NO? ~U STOP SEARCH :u THE TIEXT LOCP 
IF(LOOP.SQ.1) GO TO j 



C**** 

0···850 
dsoo 
0)870 
0)880 22 
03890 6 
03900 
0)910 
0)920 
03930 
0::5940 
03950 
03960 

C**** 

C**** 
5 

03970 4 
05980 C**** 
0:5990 
04000 2j 
04010 
04020 
040)0 
04040 

C**** 

04050 11 
04060 

R~AD({~~~~ lCQ~~~ ~n ro 5 .I.... .L V V....,l.LI • .W • I ) UV ..i. 

.i.NPU7 !i;;W VALUES 
WR.i..n(6,6) 
FCRMAT (2X, 'EN=ER LOT s:zE,13= SAMP s:zE,AND 2ND SAMP SIZE') 
READ(5,*) DNLS,DNS1 ,DNS2 
CEECK i'O ASSUR:2 7HA7 H\/ EN7RlES AR!.: R:::GI!T 
GO ~'0 1 
BEGlN ou=PU':' 
WRITE (6,,~) 
WRITE (6,4) 
'.'iR::':E(6,4) 
FORNAT(2X,68('*')) 
WR.;.7E Tl':LE 
WR~TE (6,23) 
FCR!lAT (/ ,2X, '0P7.:.r-:un ACC/REJ HUMBER VECWR DESiGH') 
WR1TE(6,2) DN1S,DNS1 ,D~S~ 
lF (NCODE.iQ.O) GO TU 10 
WRITE POLYi\ PARAMETERS 
WR.1.'i.E(G,11) S,'i 
FORMA'r (2X, 'PvLYA PARJ.MB'.;.'ERS ARE S='.F1G.6,jX, 'T=' ,F10.6) 
GO TO 12 

04070 C**** WR.i.TE M.i..XED Bi10MIAL PARAMETERS 
04080 10 WR.i..TE (6,13) W1 ,W2,W),F1 ,F2,F3 
04090 1) FvRHJ,T ( 2x, • l·L.XED B:n.orL.AL PARAMETER~ ARE w1 = • , F6. 4, .)X, '\12=' , 
04100 1 F6.4,:;x,/, • '•i)=' ,1:'6.4,:;,x, '1''1=' ,F10.1,;x, 'F2=' ,F10.1,;,x, 'F::.:=·, 
04110 2 F10.i) 
04120 C**** WRlTE COSTS 
041)0 12 WRITE(6,14) SO,S1 ,32,AO 
04140 14 FORMAT (2X,'COST VALUES ARE S0=',F6.2,3X,'S1=',F6.2,3X, 
04150 C 'S2 =',F6.2,)X,'AO =',F6.2) 
04160 WR:::TE(6,15) A1,A2,RO,R1 ,R2 
04170 15 FORMAT (2X,'A1 =',F6.2,~X, 'A2 =' ,F6.2,3X,'R0 =' ,F6.2,JX, 
04180 C 'R1 =' ,F6.2,)X,'R2 =' ,F6.2) 
04190 C**** CALL DEC:~ICN VARIABLES SUBROUTINES S2S,S1S 
04200 CALL S2S(DNLS,DNS1 ,Dr;s2,NCODE.W1 ,W2,Y;,P1 ,F2,F3.S.~. 
04210 1SO,S1,S2,AO,A1 ,A2,RO,R1 ,R2,AC2,RJ2) 
04220 CALL S1S(DNLS,DNS1 ,DNS2,ilCCDE,W1 ,W2.~3.F1,F2,F3,S,T, 
04230 1SO,S1 ,S2,AO,A1 ,A2,RO,R1 ,R2,AC1 .RJ1 ,AC2,RJ2) 
04240 CALL COSEVL(DNLS,DNS1,DtS2.NCODE,W1 ,U2,W3,F1 ,F2.F),S.T, 
04250 1SO,S1 ,S2,RO,R1 ,R2,AO,A1,A2,AC1,RJ1 ,AC2,RJ2,TACP1 ,TACP2, 
04260 2TRJP2,TRJP1 ,TCC) 
04270 WR1TE(6,55)AC1 ,RJ1,~C2,RJ2 
042b0 ~5 FJRMAT(2X, 'Ace NO 1 = ',F5.1,' REJ ~u 1 = '.F5.1, 
04290 1 ·Ace ~a 2 = • ,F~.1, · REJ no 2 = · ,F5.1) 
04;00 WRLTE(6,19) TACPl ,TRJP1 .TACP2,TRJP2,~CC 
04310 19 FuRMAT(2X, 'ACC 1~T SAMP COST = ',F9-2,2X, 
04;20 1 'hEJ 1~~ ~AMP c0s~ = • ,F9.2,/,2x, 'Ace 2~D DAMP cos~ =' 
04)j0 2,l:'9.2,2X,' REJ 2UD 8AMP co~~= ',F~.2,/,2X, 
04)40 )'TOTAL COST = I ,F15.~./) 
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Ot,)50 
04)60 
04)70 
u4:;ao 
v4)90 
04400 
04410 
04420 
li44)0 
044 40 

C**** 
24· 
20 

W!L.'.i.'E {6,1,J 
wr. ... i:::; (6,4) 
WRl'.:.'E(6,4) 
G. n 0PP0R7Uil.i.7Y ':O RUN llEW SAMPLiNG PLi-.rl 
WH.L'i'B(6,20) 
FCRMAT{2X, '~A~T T~ EVAL ANOTHER SAMP PLAN USlNG LOT, SAMP SiZE3 

1 ??'(' ,/,' l.G(O) uR YE8(1)') 
Ri::AD(5,*) lCl:DE 
iF (iCODE.EQ.O) GO TO 21 
GU ~O 22 
RE'.i.'URN 04450 21 

04460 
04470 c 
04480 c 

• END 

04490 c 
04500 C***************************************************************** 
04510 c 
04520 c 
04530 c 
04540 c 
04550 c 

SUBROU'.:.'INE COSCAL CALCULATES THE TO'i'AL COS7 OF DOUBLE 
SAMPLING PLA1 . ?HE INPUTS ARE LOT,1S~.A~D 2JD SAMPLE 
S.i.ZE, ALL DECISION VAR:ABLES . THE CU'.:.'PUT lS TOTAL COST. 

04560 C***************************************************************** 
04570 c 
04580 c 
04590 c 
04600 
04G10 
04620 

SUBROUT:NE COSCAL(DNLS 1 DNS1 ,DNS2,NCODE,W1 .W2,W3.F1 ,F2,F3,S,T, 
1SO,S1,S2,RO,R1 ,R2,AO,A1 ,A2,AC1 ,RJ1 ,AC2,RJ2,TACP1, 
2TACP2,TRJP2,TRJP1 ,TCC) 

IMPLICIT REAL*B(A-h,0-X) 
C**** WR.LTE LOT SiZE, 1 ST SA!1PLE s.:.zE, AND 2ND SAMPLE SIZE 

046)0 
04640 
04650 
04660 
04670 
046b0 
04690 
04700 ';j 
04710 

1 WR~TE(6,2) DN1S,DNS1 ,DHS2 
2 FORMAT(2X,'LCT SiZE = I ,F7.1 ,' 1ST SAMP S.i.ZE = I .F6.1, 

1 I 2ND DAMi ~lZE = I ,F6.1) 
C**** CHECK TC SEE iF CORRECT 

04720 
04730 C**** 
04740 22 
04750 6 
04760 
04770 C**** 
04780 
04790 32 
04800 )0 

WRiTE(6,j) -
FCRMAT (2X, 'CORRECT??? NU(O) OR YES(1)') 
READ(5,*) iCCDE 
1F (.i.CODE.EQ.1) GO TO )2 
.i.NPU'.;; !iEW VALUES 
WR.:.'l'E(6,6) 
FORMAT (2X, 'ENTER LCT SIZE, 1ST SAMP SIZE,AND 2ND SAMP SlZE') 
READ ( 5, *) DlJLS, DUS 1 , DliS2 
CHECK TO ASSURE THAT NEW E~:TRIES ARE RlGHT 
GO TO 1 
WRITE(6,)0) AC1 ,RJ1 ,AC2,RJ2 
FORMAT(2X,'ACC/REJ NUMBERS AR2 C1= ',F5.1,' R1= ' 

1F5.1,' C2= ',F5.1,' R2= ',F5.1) 
C**** CHECK TO SEE :F CORRECT 

04810 
04820 
04830 
04840 53 

WRHE(6,53) 
FCRllAT (2X, 'CCRRECT??? NO(O) OR YES{1)') 
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04850 
C48GO 
048'/0 C**** 
04880 
04890 31 . 
04900 
04910 
04920 C*H·* 
04930 5 
04940 
04950 
04960 4 
04970 C**H· 
04980 
04990 23 
05000 
05010 
05020 C**** 
050)0 

h.EAD(),*·) .CvD.S 
~F (i.CODE.EQ.1) GC TO 5 
::.~;p;_;i.;: ;n:w V;\I,UES 
WE.i.':'E(6,j1) 
FORMAT(2X,'EN'.:.'ER C1 ,R1 ,C2,A~D 
READ(5,*) AC1,HJ1 ,AC2,RJ2 
GO 70 32 
EEGI.:T OUTPUT 
'1IR.:'.:E (6,4) 
WRj_T:l': (6,4) 
WR:::':.'E(6,4) 
FORMAT(2X,68('*')) 
YlR~':2E 'il?LE 
WRl':'E (G,23) 

R2') 

FORMA? (/,2X,'EXPECTED COST 
WR-'-TB(6,2) DNLS,DtS1 ,DNS2 
i.F (NCODE.EQ.O) GO TO 10 
WR1'.:.'E POLYA PARAMETERS 
v/Ri.TE(6, 11) S, '.i.' 

EVALUATION I) 

05040 11 
0?050 

. FJREA? (2X, I PULYA PARM1lE':'ERS 
GC TO 12 

ARE S=',F10.6,)X, ''I'=' ,Fl0.6) 

05060 C**** 
O?C70 10 
05080 1) 
05090 

v:R-'-'.ib M ... XED B-'-l;eiM:CAL PARAME'.l'ERS 
WR~~E (6,1)) W1 ,W2,WJ,F1,F2,F) 
FuRHA'r (2X, 'H.i.XED B.!.MJM.i.AL PARANETERS ARE W1=' ,F6.4,)X, 'W2=', 

1 F6.4,::,x,/, • W)=' ,1''6.4,JX, 'F1=' ,F10.1,)X, 'F2=' ,F10.7, :;,x, 'F3=', 
2 F10.7) . 05100 

0~110 
05120 
05130 
05140 
05150 

C**** WR.1.TE COSTS 
12 WRlTE(G,14) SO,S1 ,S2,AO 
14 FGRNi,T (2X, 'COST VALUES ARE SO=' ,F6.2,3X,'S1=' ,F6.2,)X, 

:05160 15 

c I S2 =' , F6. 2, )X' 'AO =I 'F6. 2) 
WRl'.i:'E(6,15) A1 ,A2,RO,R1 ,R2 
FORMAT (2X, 'A1 =',F6.2,)X,'A2 =' ,F6.2,3X,'RO =',F6.2,)X, 

C 'R1 =',F6,2,)X,'R2 =',FG.2) 05170 
05180 
05190 
05200 

C**** CAL COST EVALUN::ION SUBROU'.i'INE cos:;;;vr. 

05210 
05220 
05230 55 
05240 
:05250 
05260 19 
05270 
,05280 
05290 
05_;.,00 
05)10 
·05:;,20 
05)30 C**** 
05:;;40 24 

CALL CCSEVL(DNLS,DNS1 ,DliS2,NCODE,W1 ,'i2,W3,F1 ,F2,F3,S,':', 
1SO,S1 ,S2,RO,R1 ,R2,AO,A1 ,A2,AC1 ,RJ1 ,,\C2,RJ2,'.:.'ACP1 ,'.::ACP2, 
2'.::RJP2,~RJP1 .~cc) 
WR~TE(6,55)AC1 ,RJ1,AC2,RJ2 
FORMAT(2X,'ACC NO 1 = I ,P5.1,' REJ NO 1 = ',F5.1, 

1 ' Ace r:o 2 = • , F5. 1 , • REJ ~w 2 = • , F5. 1 ) 
WR1TE(6,19) TACP1 .~RJP1,~ACP2,TRJP2,~CC 
FCRMA'.:.'(2X, 'ACC 1ST SAMP COST = ',F9.2,2X, 

1 'REJ 1ST 8AMP CCET = I ,F9.2./,2X,'ACC 2ND SAMP COST 
2,F9.2,2X,' REJ 2liD SAMP COST= ',F9.2,/,2X, 
3'TCTA1 COST = I ,F15.j,/) 

WR.1.'.::E (6,4) 
WRl':'J.:; (6,4) 
WH~~E(6,4) 
G.i. V3 OPPCRTUI;J.TY TO RUN HEW SAMPLiNG PLAU 
Wh-'-rn(6, 2U) 
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V'.))50 20 
O?_;,LO 
G':u'lU 
Oj_,t;O 
05)90 
05400 21 
05410 
05420 c 
054)0 c 
05440 c 

FuHli~~l2l,'~AhT 7u 1Vh1 hh0~iihR 
1 ?':";',/,' it'..J(U) i.JK YE:J\1)') 

RE...i,11(5, *) "-~-.;Di 
~F (~C~DE.~Q.C) GG 1~ 21 
Gu '.i'G 22 
f{i~':'UHii 
ZliD 

05450 C***************************************************************** 
05460 c 
05470 c 
05480 c 
05490 c 
05500 c 
05510 c 
05520 c 
055;,;o c 

SUBROUTINE COSEVL CALCULA~ES TEE TOTAL COST PER LCT OP 
TliE SAHPLlNG PLA!i (~CC) . lT INCLUDES THE COST CF ACCEP':'AllCE 
Oti. '.i.'EE F:LRS'l' ~Al1PLE ( 'i'ACP1 ) • TIIE COS':' O:F ACCEP'.i'AiiCE '..;!~ 
THE SEC OHD SAt·lPLE ('.:'AC P2) , ':.'HE C CS? 01'' REJ l:C ':'O?l ON '.:'HE 
SECOriD 3M~PLE ( ~RJP2) ' AND 7HE COS".' OF R:EJ::.::c~:;:Qlj on ';.'HE 
FlRST SAMPLE (7HJP1). '.:'CC= ~~CP1+~ACP2+7RJP2+~ACP1. 

05540 C***************************************************************** 
05550 c 
05560 c 

SliBROU";:;:hE COSEVL(D:;1s,m;s1 ,DNS2,NCCiDE,v:1,W2,Wj,F1 ,F2,Fj,S,':', 
1 :3C, l:>1, t:2 ,hO, ri1, L2 ,AO, i11 ,A2,AC1 ,RJ1 ,AC2, nJ2, '...'ACP1, Ti>CP2, 
2TRJP2,~RJP1,TCC) 

... MPL.;.c:..'..'. R:t:A1*S(A-ri,v-X) 
CUHGt:X=O. 

C**** ThiD PAR7 CALCULATES 
C**** (TACP1) 

05570 c 
05580 
05590 
05600 
l.15610 
J~620 
U56)0 
0?640 
05650 
05660 
05670 
05680 
05690 
05700 
05710 
05720 
05730 
05740 
05750 
05760 2 
05770 
05780 
05790 
05800 
05810 
05820 
058)0 
05b40 

THE COST FOR J..CCEPT ... HG p:;:fi::J'..'. SAMPLE 

TACP1=0. 
K=AC1+t.001 
lF(K.LE.O) GO TO 70 

C**** c01;s1DER ;,CCEPTAI<CE RA1jGE 
1 DO ;, J =1 , K 

DND1 =J-1 
iF(NCODB.BQ.1) GO TO 2 
CALL MB1S(Dr.L3,Dl/S1 ,DND1 ,W1 ,W2,W;:.,F1 ,F2,F3, 

1 EXX1GX,EliXX1X) 
CALL HE1SM(DUS1 ,D1'D1 ,W1 ,V12,W),F1 ,P2,F3,GN1X1) 
GO TO 1550 
CALL PL1S(Dr:LS,Dl;s·1 ,DND1 ,J,T,EXX1GX,HtiXX1X) 
CALL PL1SH(DKS1,DUD',S,':,GU1X1) 

C**** CALCULATE CCST 
15 50 ~AC P1=~ .~.CP1 + ( S0+81 *DI~S 1 +DJ:D1 *S2+AO* ( 1 -UiXX1 X) 

1+A1*(DNLS-1~S1 )+h2*EXX1GX)*G~1X1 
C**** ACCUflULA':.1:2: '.:HE ll/·.RG~li/,L 'i'EF.11 

CUi-IGliX=CLl,lGNX.,-Gll 1X1 
3 COli": .:..!WE 
C**** '.;:iil.S PAR'i' CA1CULi,7£S J.'liE TU'.;:'AL C()S~ FLR SECOND Ll1!WLE 
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05G50 
.05860 
;05870 
05880 
,05890 
:059co 
p591 o 

C**** . ::.r,• lNCLU':'·:S ':.'HE CC'.:3'i FCR /CC:2P':1 .::HG SECC-!!D ::::,r:E.HG 
C**** (7ACP2} A.liD ':.'HE CC!::7 FOR REJEC7.:.NG S.ECGliD SAMPL.l.l.G 
C•HtH (TRJP2) • 
C**** CJ..LCU.LAn '.iHE ACCEP'.il.liG SECOlm SAMPLE PAP.':(':.'J,CP2) 

:05920 
,059)0 
\)5940 
p59:;0 
:05%0 

70 ':.'AC P2=0. 
':'RJP2-=0. 
K1=AC1+2 
11 =RJ1 . 

C**** CONSlDl:R F::.RS'.2 SAMPLE R.LSUL?S WL.CH w:..11 Rl:QU:O:RE SECOKD 
CH** SAMPLE 

0?9'i0 
;05930 
:0?99U C**** 
\)6vUO 
'06010 
iObU20 5 
\060:50 C**** 
06040 
;06U50 6 
06060 
:06070 CH.JH> 

'06080 
!06090 
!061 00 C**** 
iC6110 
:06120 
[061 )0 
106140 
!06150 
'.06160 7 
06170 
06180 C**** 
06190 C**** 
06200 8 
06210 C**** 
06220 

DC 22 J1 =K1 ,L1 
DJiDt=Jl-1 
iF(NCCDE.LQ.1) GO '.iO 5 
CAI,:;. f.1B1SM{D:lS1 ,DliD1 ,ii1 ,W2,W),F1 ,F2,F:;;,GI.1X1) 
Ct1LCUL.n'.:'E 7hE BARG.J.I;i:,1 ?ERM 
CUHGt<X=Cill'iGI,X+Gli1X1 
G0 '.i.'v 6 
CALL P11~M(D1~1,U1D1 .~,T,GN1X1) 
CALCULl7~ ~liE ~hRGl~AL TERM 
CUHuiiX=CUMGhX+GH1 X1 
K2=D?;s2+1 . 001 
CU!iH21 =0. 
ccM:.;~DEH EACH POSS.1.BLE DEFBC':'l VT: lN SECOliD SAMPLE 
DO 1) J2=1 ,K2 
DUD2=J2-1 
CHCULATE COMBlNED SAMPLE D}:;FECTlVES 
n=D@1 +Dl:iD2 
iF (liCODE. EQ. 1 ) GG TO 7 
CALL HB2S {DNLS, DHS1, Dli32, '.:X, W1, W2, W),F1, F2, F3,EXX2GX, HNXX2X) 
CALL MB12S(DNLS,DNS1,DNS2,DND1,DND2,W1,W2,Y3,F1 ,F2,F3,lCT2X1) 
GO TO 8 
CALL PL.23 (DNLS, Dil81, Di>S2, ':X, S, '.::, EXX2GX, H'.lXX2X j 
CALL PL12.S(DNLS,DNS1 ,DNS2,DliD1 ,DND2,8,'.::,HX2X1) 
IF l.lUEBER-OF DEFEC'.ilVES lM.SECU1'D GAMPLE EXCEED ALLO\IABLE 
Nmrn:::R 
lP ( DlW2. GT. ( i,C2-DUD 1 ) ) GO TO 20 
CJ.LCULhn 'LEE COS'.: UP REJ'.::.:.u:J CH ':HE SECOim 8h.MPLE 
'.i' AC P2=': h.C P2+ ( ( SC...-J 1 * ( Dli::J 1 +D:1s;:) +S2* (DiiD 1 +Dl;D~~) +f..CJ* ( 1 --m.xx2x) 

1+A1 * ( DliLS-IH;s 1 -DliS2) +.ii.2 *EXX<:GX) *l!X2X1 ) *Gli1X1 062)0 
u6240 
06250 
06260 

C**** ACCUI>;U.L.h'.i'E P:J::l'i;:;RiCJR ~F Dl~D2 G ... vm; m;n i 

062'/0 C**** 
06280 w 

C U!Ui21 =C L"):h21 ...-hX2X 1 
Gv ?O 1) 

Oo290 
06;.00 
06.)10 
06)20 

Ch.:LCULr.T:i;; 7liE REJI:C7_,_,,;G 8ECGI>D l.:1d'1P1E PF.R'i('.LHJP2) 
?hJP2=?RJP2+{(SO+S1*(Dl!J1+DhS2)+~2*(DliD1...-D1D2) 

1-t-TIO+R1*(Dl.J. .. S-DI;;.;1 -11;32 j-rh2*:::XX2GX) *LX2X 1 j -*GI;1X 1 
CH** hCCUl.JU.LAE PGLJ:::.:;R ... GH 0F DHD2 G.J. VLil D1Di 

06))0 1) 
06340 22 

CU1'ih21 =CUlih21 +liX2X1 
:..F(ClJ1<ih21.G'i •• 99S) GO '.i'O 22 
COH '? .... t;u.E 
cm; ':.'.iIWE 
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Ji.>550 C*-K·** c;·~1cULA~'L;J ~L:I: COS? F0H HEJEC'~.._ ... ,l} F ~RS:' LiA!~lPLE 
ubjbU 21 ThJPl=O. 
C;G/10 K:TIJh-1 
06)b0 L=DiiS1+1 
06)90 C*** CU~0-DER REJEC'..'~Oli RAilGE 
06400 14· D0 2~. J:K,1 
U6410 DllD1=J-i 
06420 LF(~CGDE.EQ.1) G0 TU 15 
064)0 CALL HBiS(DliLG,1J!;S1 ,0llD1 ,W1 ,·,;2,',i),F1 ,F2,}'j,EXX1GX,EhXX1X) 
06440 CALL MB1SH(DhS1 ,DliD1 .~1 ,W2,Wj,F1 ,F2,F),Gll1X1) 
06450 GO TO 16 
06460 15 CALL PL1S(DliLS,DriS1 ,DliD1 ,s,•:.:,::r,xx1cx,H:t-jXX1X) 
06470 CALL P11SM(D~S1 ,DND1 ,S,~,G~1X1) 
06480 C**** CALCU~A7E TliE cos~ GF REJECTION ON F:::RST SAMPLE 
06490 16 TRJP1=TRJP1+(SO+S1*DNS1+D~D1*S2+RO+R1*(DULS-DNS1) 
06500 1+R2*EXX1GX)*GN1X1 
06510 C**H ACCL'l:ULf;'..'E THE MARG:::l;;\L TERM 
06520 CUf.iG!lX=CUi:G:iX+GN1 X1 
06530 IF ( CUMGliX. GT .• 999) GO 'l'O 23 
06540 24 COHTIRUE 
06550 C**** CALCULATE TOTAL CCST PER LOT 
06560 2) TCC='.Lf..CP1+?ACP2+~RJP2+TRJP1 
06570 RE'i.'URl> 
06'.;>80 .EliD 
(;6590 c 
06600 c 
06610 (; 
06G20 C***************************~************************************* 
066)0 c 
06640 c 
06650 c 
06660 c 
066'i0 c 
06680 c 
06690 c 

SUBHGUTLNE S2S CALCULATES THE ACCEPTANCE NUMBER (AC2) 
.AliD '.di.E R.EJECTJ.uH NUMBER (RJ2) .LN THB CECUl•D S.ABPLE 
BY CGMPARB ... l.;G 'DiE BR:?;AK EV.J:;li PO ... iiT ( BE ) AliD ' ... HE EXPEC':.ED 
iUMBER ~F DEFECTIVES ... li THE RE~T GF LOT GiVEN ~EE NUNBER OF 
DEFl:.:C'.Li v:t:::.J, ... N 'iiiE l!' ... ii.S'.i.' AND SECGhD 0Af.IPL.ES ( EXX2GX ) 

06700 C***************************************************************** 
06710 c 
06720 c 

,... 
" 

SUBROU'i lUE S2S ( DHS, DliS1 , DNS2, HCODE, W1 , \i2, \ij, F1 , F2, F), 
1S,T,SO,S1 1 S2,AO,A1,A2,RO,R1,R2,AC2,RJ2) 

IMPLlClT REAL*B(A-H,0-X) 
lF (NCODE.EQ.1) GO TO 11 
'.:.'X=-1. 
':'X='..'X+1 • C 
CALL HB2S (DIILS' DliS 1 'ra;s2' TX' \·/1 '\i2 'W3, F1 'F2, F3' EXX2GX' E1;xx2x) 

067")0 c 
06740 
06750 
067GO 
06770 
C6780 
(.,6790 7 
06800 
06810 
06820 
06830 
06840 

C**** CALCUi..A':'E BREAK :!:;VEii 
B.E=(RO-~O*( 1. -liliXX2X )+(R 1-J..1 )*(Dli1S-Dl;s1 -D1;s2)) /( h.2-R2) 
lF (EXX2GX.LE.EE) GO ~O 7 
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061350 ~F (EXX2GX.G7.EE) GD 7G 9 
':X=-1 • C68GO 11 

V6870 C**** l~CREHEN'.l' COMB..:.~ED ~AMPLE DEFEC71VES 
06880 8 ':'X='.'X-r1 .O 
06890 
06900 c 
06910 Ci!*** 
06920 
069::,0 
069•10 C**** 
06950 9 

CALL PL2S{Dr;LS,DHS1 ,DNS2,'.l'X,S,7,.LXX2GX,HNXX2X) 

CALCULA'l'E BREhK EVEN 
BE= (RO-AO* ( 1 . -1e;xx2x )+ {R 1-i,1 ) * ( Dll1S-Dns1 -D11s2)) / ( A2-H2) 
:F (EXX2GX.LE.BE) GD '.l'O 2 
Dl:CH:::i1:::11r:.1 Cvrrn~1;ED 0h.EP1E ;.CCEP':AKCE I~UHBER 
AC2=':X-1. 

CG9GO C**** SB';:' COMB..:.l;Et SJ..liPLE HEJEC'l'::uI> xmrnrn 
CJ69'i0 
06980 
06990 
07000 c 
07010 c 
07020 c 

RJ2=AC2+1 . 
R:t:'..:'URil 
EI;D 

070~0 C***************************************************************** 
07040 c 
070:;0 c 
Vi Ot.O C 
0'{0'10 c 
07080 c 
0'(090 c 
07100 c 
07110 c 
07120 c 
071)0 c 
07140 c 
07150 c 
07160 c 
07170 c 

SUBRUUT ... hE S1S ChLCULA'I'ES THE ACCEP~AUCE (AC1) AND 
R~JEC?lCN (RJ1) ~UME~RS FGR '.i:HB F.1..R~~ SAMPLE . ACCEP'.LANCE 
1-<Ui.:BER AC1 . .i.S DEC ... D~D u~ ... ~iG A Blfr.:1'.K .iNEI< ALALYS ... S 3.i!..'.:.'rlB21' 
'2HE CCS'..: PEn LO'i' CF ACCbP~!,hCI: 0::r 'i'hE Fl.RST SAMPLE (r;;AC1) 
A~:D '.i:liE CGS7 PER LC'l' OF f'iAK:liG A DEC_;_Sl0N Bf\~3bI> UPGli h. 
COMBINED SAMPLE (TC2) . h~JECTlUN NUMBER HJ1 lS DEClD:D 
USlNG A BREAK EVEN ANALYs:s EE~WEEK ~HE CCST PER LOT OF 
REJECT1Cli ON ?HE FlRST SAMPLE (?RJl) AND ~HE CGS'.L PER LOT 
OF llAK.:.:t:1G A DEClS.i.Gl; BASED UPG1i /\ CUNEl.NED SMIPLE ( ':C2). 
TEE TOTAL COST OF ':HE SECCKD SAilPLE (TC2) lS THE SUH CF 
~HE TOTAL COST OF ACCEPTANCE (~AC2) AND REJECT:CN (~RJ2) 
FOLLOWING ~HE SECOND SAMPLE. 

07180 C***************************************************************** 
07190 c 
07200 c 

139 

07210 c 
07220 
072)0 
07240 

SUBROU'2IliE s 1 s ( DXLS' DNS 1 'm;s2' r;coDE' W1 '\'12' w:;;' Fl 'F2' }:'), s' T. ~o, ~1 'D2 

07250 C**** 
U'7260 C**** 
07270 
07200 
v72% 29 
07 OU 
vr 1 o 
u·r 20 
<fl )0 
v'l 40 

1,Ao,;,1,h.2,RO,H1 ,R2,:..c1 ,HJ1 ,AC2,RJ2) 
IMPLiCi= REhL*S(A-il,0-X) 
DE':ERK ... liE 7iiE VALUE CF AC1 
CALClJL11.'.:l.S '.:lAC1 
TX=O. 
DUD1 =-1. 
Dl~D1 =DliD1 +1. 
'.2AC1=0. 
'i"AC2=0. 
'i1HJ2=0. 
~C2=0. 
~F(~CODE.LQ.1) GO TU jO 



CALL i·I:i31 J\fi(il.S, DI<S1, DJ,D1, \'11, W2, W), 1''1,F2, ?:;, , 
1 £XX1GX,iiliAA1X) 

GO TO _:;1 
CALL PL1S(DnS,DllS1 ,DI;D1 ,S,'.',1XX1GX,EilXX1X) 
'.:'AC 1 =S0-1St•DWJ1 -1 DliD i *S2+AU* ( 1-liliXX1X) 

1+A1"*(DNLS-DNS1)+A2*EXX1GX 
C**** CALCULA?E TAC2 

:.;7350 
v'lj6() 
OT)70 
07)80 30 
07)')0 )1 
07400 
07410 
07420 
07430 
07440 
07450 
07460 
07470 
0'/420 
07490 
07500 
07510 
0'(520 
075)0 
07'..>40 
07550 j) 
075GO 
075'(0 
07580 
07590 
07600 
07610 
07620 
076":>0 
07640 
07650 
07660 
07670 
07680 
07690 
07700 
07710 
07720 
07730 
07740 
07750 )4 
07760 
0Ti70 
on so 
0?790 
07800 
07b10 
O'ie20 
O'fLjO C 
O'fB40 

. K=AC2-DllD1+1 .C01 
C**** CONSiDER ACCEP'.:'ANCE RANGE 

D0)2J=1,K 
DND2=J-1 
'.:'X=D~W1 +DliD2 
lF(KCODE.BQ.1) GO TO jj 
CALL rrn2s(D1;LS,DNS1 ,DllS2,'.::X,W1 ,W2,W},F1 ,F2,P),:EXX2GX, 

1 m1xx2x) 
CALL llB1S(D!1LS,DliS1 ,DliD1 ,W1 ,\i2,W),F1,:P2,F3, 

1 EXX1GX,li!JXX1X) 
CALL !-iB120(DllJ,S,DHS1 ,DNS2,DliD1 ,D1JD2,W1 ,W2,W3, 

1 F 1 , F2, :F'), liX2X 1 ) 
GO TO 32 
CJ..i.L PL2G ( Dl;LS, DHS 1 , D1;02, TX, 3, :·, EXX2GX, H.t~XX2X) 
CA:i..1 P11 :J\Dl.L0, DllS1, Dli"D1, S, '.., i::XX1GX,iillXX1 X) 
Gj,LL P.L12S(Dri1.:>,DliS1 ,D1i;.;2,Dim1 ,DND2,J,'i,i.X2X1) 
C;..LCULni.1E CGST 
TJ,C<:='.i AC2+ ( 30+81 * ( DhJ1 ;-D1;s2) +S2* ( DliDt +DHD2 )+AO* ( 1-liNXX2X) 

1+A1*(Di • .L3-DliS1-DW32) +A2*EXX2GX) *HX2Xl 
C**** CALCULATE THJ2 

K=AC2-DND1'+2.001 
L=DllSL'.+1. 801 

C**** CCliSiDER REJECTION RANGE 
DO 35 J=K,1 
Dlrn2=J-1 
TX=DND1+DND2 . · · 
IF(NCCDE.~Q.1) GO TO 34 
CALL MB2S (n:iLS.., :DilS1 'Dl/22' TX, W1 'W2, W3,P1 ,F2,F), EXX2GX, m1xx2x) 
CALL MB1~iDfiLS 1 DNS1 ,DND1 ,W1 ,W2,W3,F1,F2,Fj, 

1 EXX1 GX, iLXX1 X ! .....-. 
CALL MB12S(DHLS,DNS1,DNS2,DHD1 ,DND2,V1,W2.W3, 

1 F1,F2,F:;i,HX2X1) 
GO TO 35 
Ci.LL PL2S (D!iLS, Dtr31 , Dl'i'S2, TX, S, T, :SXX2GX, lHiXX2X) 
CALL PL1S(DliLS,DNS1 ,r~rn1 ,8,';',1XX1GX,h~~XX1X) 
CALL P112S(DliLS,D:lS1 ,Dli:J2,DND1 ,D1W2,S,'I,IIX2X1) 

C**** CALCULt'.i~ C0ST 
:;,5 TRJ2='.:RJ2+ ( SG+L 1*(DhS1 +D1;:.;2 )+ (Dlrn 1 +D:m2) *S2+RO+ 

1R1*(D~L~-DNS1-DHS2)+R2*ZXX2GX)*HX2X1 
C**** Ch1CUL~~E 707AL CCS7 

7C2=':: i1C2+'.:.:l\J2 

iF (TAC1.LE.~C2) GC TO 29 
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'vll~U 
07euO 

~--- •-~* ~~~· r-.L~l-~P' ... :·;,;~'C.L l~Ur.~.:.2~E i\C 1 
AC 1 =D:~L 1 -- ·, • 

c-u-u DE'.:.'Em;it;,.: ':.'HE YALU::: GP RJ1 
C**** CA.LCGL~~E ~RJ1 

07870 
C7l:GO 
07GSO 
07900 
07910 :;,9 
07CJ'd) 
v'f 9_;0 
v'/940 
v'1 ~JU 
v'i'-)60 
07'J'IC 
07%0 
07990 
08000 40 
08010 41 
08020 C**** 

C**** 

':.'X=O. 
DI:D1 =AC 1 
DliD1 =Dl.D1 +1. 
'.i.'RJ1 =0. 
':'AC2=0. 
'?RJ2=0. 
'..:C2=0. 
lP (NCODE.lQ.1) GU 7U 40 
CA.LL MB1;_j(Di:.LS,DMJ1 ,lJ!iD1 ,\11,W2,W),F1 ,P2,r'j, 

1 EXX 1 GX, !:~iXX 1 X) 
GO 70 41 
CALL P11S(D~LS,DN~1 ,DND1 ,S,T,lXX1GX,hliXX1X) 
TRJ1=SC+DNS1*81+DND1*S2+RO+(DDLS-DliS1 )*R1+R2*BXX1GX 
c;..1::;ULA7E ':.'AC2 
K=AC2-DliD1+l.001 
iF(K.LT.1) GO TO 60 
com:lD.2R ACCEP7f,NCE RAllGE 
DJ 42 J=1 ,K 
Dl!D2=J-1 
'iX=DliD1 +n:;n2 
IF(NCCDE.EQ.1) GO 'i'O 43 
c;..,:,1 MB2S (D~:1s, DllS1 'm1s2' ':.'X, W1 'W2' W3' F1 ,F2 'F), EXX2GX, HNXX2X) 
CALL MB1S(D~LS,DNS1,DiiD1 ,W1 ,W2,W3,F1 ,F2,F3, 

1 EXX1GX,iiliXXiX) 
CALL !IB12S ( Dl'iLS, DNf> 1 , DN.S2, DND1, DND2, W1, W2, W), 

1 P1,F2,F3,hX2X1) 
GO TG ~2 
CALL PL2J ( D:iLS, DUS 1 , LliS2, 7X, S, 'I, EXX2G X, riNXX2X) 
CALL PL1S(DliLS,DliS1 ,DND1 ,S,'2,1XX1GX,lillXXiX) 

'i'AC2='i'AC2+( SO+S1 * (DI;s1 ..-DNS2 )+S2* ( DhD1 +DliD2 )+AO* ( 1 -HhXX2X) 
1+A1*(D;11~-BliS1-DNS2 )+A2*EXX2GX) *HX2X1 

080)0 
08040 
08050 
0806C• 
08070 
08080 
08090 
C21CO 
08110 
C8120 
C81)0 
08140 
08150 
08160 4) 
08170 
08180 c 
08190 42 
Oc200 
06210 
Ob220 
002..10 
08240 
08:.'.50 
Ob260 
082'10 
08280 
08290 
08)00 
08)10 
08)20 
08)30 
08340 44 

C**** CALCULA'i'E '::RJ2 
60 K=AC2-D~D1+2.001 

1=D1'32+ 1 • vU 1 
Du 45 J=K,.U 
DilD2=J-1 
TX:::DI.D1 .,..n1m2 
~F (~CUDE.EQ.1) 00 'i'O 44 
CALL l:B2S(D;J:l.,S,Dll31,.u1·:s2,s::x,w1 ,\i2,W::;,F1 ,:r'2,F),EXX2GX,HI;XX2X) 
CALL MB1S(D1;1s,D1~s1 ,LliD1 ,W1 ,W2,W),}"1,F2,F), 

1 EXX1GX,liliXX1X) 
CALL MB12S(Dil1Ll,DNS1 ,DNS2,DND1,DND2,W1,W2,W),F1,F2,F) 

1, HX2X1) 
Gu ':.'0 45 
CALL PL2S (DliLS, DUS 1 , DNS2, ":X, S, '::, :S7.X2GX, IiUXX2X) 
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Gb)50 
00)60 
08)70 45 
oa:,,eo 
08)90 
08400 
06410 
08420 
08430 
08440 
08450 
OS460 0 
Oll470 C 

C**·** 

08480 c 

-:;,.11 PL1;:; \D;,_i_,~, DtiS1, 1l,D1, S, '-', .LXX1 GX,iii1XX1X) 
Cii.11 PL122 .')l1L!J,D:·:0i ,Dt~2,lJ:~Di ,Dr-;112,Gt ~,hX2X1) 
•..:H..J 2='l:RJ 2-i- ( ;;0+;.; 1 * \ Dli:J i -i-D:;;_,2) + ( Dt;D 1 +Dl;D2) *S2-r-RO 
1+R1*(DNL~-D~21-D~S2)+H2*EXX2GX)*liX2XI 

TC2=7i>C2-i-'::hJ2 
RG':'C=(TRJ1-~C2)/7RJ1 
lF(RO~c.c: .. C01) GO r;:c 39 
SET REJEC~~CK NUDBER RJ1 
RJ1=DND1 
RE'.I'URlj 
Elm 

08490 C********-*** *** * *********************** ******** -1(* *** ***-j(-******* *iE·* 
085CO C 
08510 c 
08520 c 
085)0 c 
08540 c 
08550 c 
08560 c 
08570 c 
085GO C 
Ob590 C 

SUBROU~lNE !iB2S CALCULt,':'ES nRM3 FCR MlXED Bll:CtLAL 
PR~OR DlSJ:H_._BU'L0N • ':HE TEP.Tis /,RE RELEV . .\li'i }'0110\L_:m 
7iiE SECUND DAHPLE . S.:liE '.!:ERMS i1'iCLUDE '.2HE EXPEC7ED 
1UMBER UF DEFECTiVES 1H ~HE RES~ CF r;:EE LU';' G~VE~ TliE 
lWHE:i::H vF D:C:F:GCS' ... VEJ ~l< TEE FlRD'i: Ai:D ~ECUllD ~;.r;PLES 
( EXX2GX ) , n~D THE PG~TERi0R PRUBAB_._1_._r;:y ~HAT TliERE 
ARE Nv ADD1'.rl.UlJi.L D.EFLC'...'~ VE:.3 -.H S'liE WT G.L VEN THE l.UilBER 
01" DEFl::CT.i. VE:.; lN THB F ... RS7 A11D SECi.;IlD SAMPLES ( lHiXX2X ) • 

0&600 C***************************************************************** 
Ob610 C 
08620 c 
ObGjO C 
08640 
08650 
08660 
08670 
08680 
08690 
08700 
08710 
08720 
08T50 
08740 
08750 
08760 
08770 
08780 
08790 
08800 
08810 
08820 
088)0 
\.!6840 

C**** 
C**** 

C**** 

SUBROUT.i.NE NB2S(DNLS,DNS1,DNS2,~X,W1,W2,W3,F1,F2,F), 
1 :c:xx2G x, r11:xxn) 

.i.MPLlC1'.:! REAL*t3(A-H,0-X) 
CALCULA~E r;:JiE DENOMiNATOR TERMS FOR EXX2GX AND 
HhXX2X . 
G21L=DLOG(W1 )+(TX)*DLCG(F1 )+(DNE1+DllS2-TX)*DLOG(1 .-F1) 
IF (G211.LE.-174.) G211=-174. 
G21=DEXP(G21L) 
G221=DLOG(W2)+(TX)*DLCG(F2)+(DNS1+D~S2-~X)*DLOG(1 .-F2) 
::.F (G221.LE.-174.) G221=-174. 
G22=DEXP(G221) 
G2)1=D10G(W3)+(TX)*DLOG(Fj)+(DLlS1+D~S2-rX)*DLCG(1 .-F3) 
:i.F (G2~:L.LE.-174.) G23L=-1 '(4. 
G2_)=DEXP(G2::;L) 
CALCUl,;,r_;::s rn:s TER!rn FOR EXX2GX 
W21E=D~CG(F1 )+G211 
1P(W21E.LE.-174.) W21E=-174. 
W'21 =DEXP ( ';i2E) 
W22~=D~GG(F2)+G22L 
iF(W22S.LE.-174.) W22E=-i74. 
W22=Di..XP(W22E) 
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08850 
08860 
08870 
08880 C**** 

W23E=DLCG(F3)+G2~1 
1F(W23S.LE.-174.) W23E=-174. 
W23=-DEXP(W2)E) 
CALCULA7E EXX2GX 
W2'°:'=(W21+W22+W2j)/(G21+G22+G23) 
£XX2GX= (D?:LS-DliS 1--D:iS2) *',\2':2 

C8S90 
08900 
08910 
08920 
089)0 
J8940 
JJ950 
089()(; 

C****CALCULA:E '.i'HE '.i'ERHS FOR HNXX2X 
H21L=DLOG(W1)T'":'X*DLOG(F1 )+(DNLS-~X)*DLOG(1 .-F1) 
iF(H211.LS.-174.) H211=-174. 
H21=D1::XP(!i211) 
H22L=DLGG ( W2 )+'.l'X*DL0G ( F2)+ (Di\LS-'.:.'X) *DLOG ( 1 • -F2) 
lF(li221.iE.-174.) il221=-174. 
ll22=DEXP(H22L) 
H2JL=D1CG(Wj)T'.i'X*DLGG(Fj)+(DNLS-7X)*DLOG(1.-F3) 
~F(H2~L.LE.-1~4.) li2j1=-174. 
H2)=DiXP (li:(;,L) 

C**** CA:UCUL;,'.iE H~lXX2X 

Ji.>970 
Ob980 
v89~0 
OS;OOO 
09010 
09020 
090)0 
~/;)040 
09050 c 
09060 c 
09070 c 

iihXX2X= (1121 +H22+li2j) I ( G21+G22+G2)) 
RE~l.JlUi 
END 

J90BO C***************************************************************** 
:J9090 c 
09100 c 
09110 c 
09120 c 
09130 c 
09140 c 
09150 c 
09160 c 
09170 c 
09180 c 

SUBROU'.:'INE MB1 S CALCULA':'ES TERMS FOR ':'HE MlXED B:r:C!HAL 
PR:i.CR DlS':'RlBU':'IOfi • ':.'HE '.l'ERMS ARE RELBVA!l':' FOLLGW:..I:G 
T~IE FlRS':' SA!lPLE . 7HE 'IERES .:;:ucrnDE T:IE EXPECTED liU!iBER 
OF DEFEC':'IVES .;Jl ':'HE RES':' OF ':'HE LO':' GlVE!l ':'HE IiUiiBER OF 
DEFEC'.i'IVES :i.l~ THE FIRST SAMPLE ( EXXi GX ) , THE POSnR:::.OR 
PROBABILITY THAT ':'HERE ARE NO ADD:TiOUAL DEFEC':'IVES .:.N 
THE 107 GlVEli THE NUMBER OF DEFEC'i.'lVES lN ':'HE Fl.RS':' SAMPLE 
( HNXX1 X.) • 

091SO C**************************************************~************** 
09200 c 
09210 c 
09220 c 
092)0 
09240 
09250 
C:;2o0 C**** 
092·ro 
v92bO 
09290 
OSl;Ou 
09j10 
c9::,,20 
09))0 
09)40 

SUBROU':'.:.I<E MB1S(DHLS,Dl!S1 ,mm1 ,W1 ,W2,W3, 
1 F1,F2,F3,EXX1GX.1UXX1X) 

lMPLlClT REAL*b(A-h,U-X) 
CALCULAS.'E TEL DLI;(;{.;..._!;A'.::GR '.i.:ER!1S FvR EXX1 GX 
G11L=DLCG(W1 )+D1Dl*DLOG(F1 )+(DN~1-D1D1 )*DLUG(1.-F1) 
~F(G111.1E.-174.; G11L=-174. 
G11=DEXP(G111) 
G12L=DLGG(W2)+D1D1*D1GG(F2)+(DN81-DhD1 )*DLUG(1 .-F2) 
iF(G121.LE.-174.) G121=-174. 
G12=DtXP(C 12:U) 
G1 )L=DLOG (fl)) +Dl;D 1 *DLOG ( F}) + ( DNS 1 -DND1 ) *DL<.JG ( 1 • -F3) 
IF(G1)1. J,E. -174.) G1 jL=-174. 
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Gi:,:D:XP\G1>L) 
J;i_,ou C**H CA:l,>_;U.i,f,'.:'.t: ·~·,;.i:: ' ... ERhS FUR :t:XX1 ex 
v':{;,,70 
09)b0 
09_,90 
09400 
09410 
09420 
094)0 
09440 

W11E=DL:..;G(F1)+G11~ 
1F(W11E.LE.-1~4.) W11E=-174. 
W11=DIXP(W11E) 
W 12E=D.:.CG ( P2) +G 1 2L 
~F(W12:.LE.-174~J W12E=-174. 
W12=DEXP ( ~;12B) 
W1).t:=D10G(F..,)+G1)1 
IF(Wl~E.LE.-174.) W1~E=-174. 
W1)=DEXP\W1jE) 09450 

09460 
09470 
09480 

C**** CALSULA~E EXXiGX 
· W1T=(W11+W12+W13)/(G11+G12+G13) 

09490 CH** 
09500 
09510 
09520 
09530 

EXX1GX=(D~LS-D181)*W1~ 
CALCULA~E ~HE ~ERMS FOR HKXX1X 
H111=DLOG(W1 )+DllD1*DLOG(F1 )+(DULS-D!;Di)*DLOG(1.-P1) 
IF{H111.LB.-174.) H11L=-174. 
H 1 1 =D EXP ( H 1 1 L ) 
H12L=DLCG(W2)+DND1*DLCG(F2)+(DNLS-DliD1)*DLOG(1 .-F2) 
IF(li12L.LE.-174.) H121=-174. 09540 

09550 
09560 
09570 

· H12=DEXP(E121) 

09580 
09590 C**** 
09600 
09610 
09620 
v~G)O C 
0~640 c 
09650 c 

H13L=DLOG (W))+DhD1 *DL8G(F3 )+(DHLS-DllDi )*DLOG( 1. -F3) 
IF(H13L.~E.-174.)H1)1=-174. 
H1)=DEXP(H1)1) 
c:...LCULA'.2E HliXX1X 
HHX1X=(H11+H12+H1 ))/ ( G11+G12+G1)) 
RE':: UR Ii 
B!W 

0966U C***************************************************************** 
09670 c 
0961:30 c 
:J'.;1690 c 
09700 c 
09710 c 
09720 c 
097)0 c 

~UBfiJU:i:i.~a.: HB1 23 CALCULATES FUR ?.lit: 1L . .XED Bll.l.ir-I.i.AL 
PR ... GR D.i.8'.:R .. BU'.;.'.i.01< • 'i:HE TERN .... s REL.EVA.I<'..'. FOLLGW.LNG 
F1RS? A!.D SECGliD t;AMPLE . .i.': IS 'illE :::1.;l~D-':.i..Gl<AL 
PRUBAB.i.L.i.'l:Y OF KUMBIR GF DEFEC~.i.VES .i.X :'hE SECOND 
SAMPLE G.i.VEN '.:HE F .LRS'.i: BAl·1PLE ( hX2X1 ) 

09740 C******************************************~********************** 
09750 c 
09760 c 
Cl9770 c 
09780 
09790 
09800 
09810 
09820 
098)0 
09840 

SUEROU:'lliE MB12S(DNL3,DNS1 ,DIIS2,DND1 ,mm2,w1 ,W2,Wj, 
1 F1 ,F2,F),HX2X1) 

IMPLIClT REAL*8(A-H,O-X) 
G11L=DLCG ( W1 )+D!;D 1 *DLCG (Fl )+ (DNS 1-DKD1 )*DLGG ( 1 . -F 1 ) 
IF(G111.LE.-174.) G11L=-174. 
G1i=DEXP(G11L) 
G12L=DLOG(W2)+DND1 *DLOG(F2 )+(Dns1 -m;nt )*DI0GG( 1. -F2) 
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::>9850 
OSL)tJO 
09870 
098('.0 
09S90 
09900 c·•-!** 
09910 
09920 
099)0 
09940 
09950 
09960 
09970 
09980 
09990 
10000 
10010 
10020 
1CO)O 
10040 C**** 
100:)0 
10060 
10070 
100b0 c 
10090 c 
10100 c 

1F(G12L.LE.-174.) G121=-174. 
G 1 2=1JEXP ( G121) 
G 1 :JL=DLQG ( W3)+DliD1 *DLOG ( F) )+ ( nr:s 1 -Dr;D1 ) *DLGG ( 1 . -F3) 
IF(G131.L2.-174.) G1)1=-174. 
G13=DEXP(G131) 
CALCHLA~E ~HE ~ER~S FOR HX2X1 
CC!·1BL2=DLGAllf,(DG:2+1. )-DLGt-.ilA(DIID2+1. )-DLGAHA(DljS2-DI:D2..-1.) 
A21 L::DJ;D2 l!DLGG ( F1 )+ ( DllS2-DriD2) *DLCG( l. -Ft )+CO!lBL2+ 

1 DLOG(G11/(G11+G12+G13)) 
1F(A21L.LE.-174.) A21L=-174. 
A21 =DEXP ( A21L) 
A22L=DJ;D2i!DLCG ( F2) + ( DliS2-DiiD2) *Dl.•.;G( i. -F2 )+COMBL2+ 

1 DLUG(G12/(G11+G12+G13)) 
~F(A22L.LE.-174.) A221=-174. 
A22=Dl::XP(A221) 
A2)L=DND2*DLJG( F) )+ (Di;s2-D1m2) *DL0G{1. -F3 )+COHBL2 

1 ..-D1UG(G1J/(G11..-G12+G1))) 
~F(A2jL.LE.-174.) A2j1=-174. 
A2j=DEXP (J..2JL) 
CAI,CULA'.:'L hX2X1 
iiX2X1=A21+A22+A2j 
RE'l.'Uitli 
END 

10110 C***************************************************************** 
10120 c 
101)0 c 
10140 c 
10150 c 
10160 c 

SU1:3RCU'.LINE NB1 SM GALCULA~ES TERM FOR '2HE MIXED B.:.r:c..n::..t.L 
PRlOR DlSTRlBU'::ION • '::HE nRM IS ?ii~ HARG~J:;AL D::.STR::..BU':.'lCN 
OF NUliBER OF DEFEC71VE:::: :i.U THE FlRS~ SAMPLE ( GI;1X1) . 

10170 C****************************************************************** 
10180 c 
10190 c 
10200 c 
10210 
10220 
10250 
10240 C**** 
10250 
10260 
10270 
10280 
10290 
10)00 
10j10 
10;,20 
1 O:;,jO 
10)40 
10)~0 

SUBROUTiNE MB18M(DNS1 ,DNDl ,W1,W2,W~,P1,F2,F3, 
1 GN1X1) 

IMPL1C.T REAL*B(A-H,0-X) 
CALCULA'.:'E THE '.:'ERMS OP Glil X1 
G111=DLGG(W1 )+DND1*DLCG(F1 )+(D181-DliD1 )*DLGG(1 .-F1) 
G 12L=DLOG ( W2 )+DiiD1 *DLUG ( F2 )+ (D1;01 -D'.lD1 ) *DLCG ( 1 . -F2) 
Gt}L=DL~G(WJ)+D~D1*DLGG(FJ)+(D~~1-D~D1 )*DLGG{1.-F5) 
COMBLI =DLGAIIA ( DliS 1+ 1 . )-DLG.h.M ( DL;D 1 +1 . )-DLGANA ( Dl1S 1-DI;D1+1 . ) 
E1 iL=G111+GGMBL1 
LF(E111 . .LE.-174.) E111:::-174. 
E 11 =DEXP ( E 11 i.) 
E 1 2L=G 1 2L+C Ui'lBL 1 
.F(::;12.L..l:L-1?4.) E12L=-1'/4. 
E12=DZXP(E12L) 
E13L=Gl)L+CvHB11 
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1\..J~/'V 
10)tl0 C**** 
10)90 
10400 
1041 c 

,.. 
v 

lF(~ljL.LE.-174.) 
El )=D:L1:P(i1 .:;1) 
CALCULA':'E GN 1 X1 
GN1X1=E11+E12+E1j 
RETURli 
END 

El :;,L=-·174. 

C***************************************************************** 

10420 c 
104:50 c 
10440 
10450 
10460 
10470 
10480 
10490 
iO:iOO 
10510 
10520 
105;.,o 
10540 
105')0 c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROL'7.l.l:E PL28 CALCULATES 'l'ERH~ FCR THE POI.YA PR.:::8R 
D.i.STRlBU':':CN • ?HE i.i::Il.!IS ARE REL::::V . .'.,:l~ FOLLGW .1..1;G ':HE 
SEGo:rn SA!-!PLE . '.i.'HE T.r:m:::; :..11CLUDE TE3 EXPECTED liU!lE.ER 
OF DEF::-:C':'.i.VES il; S.'EE REST OF TEE LV.:' G.i.Eli THE lIUr'.BI:R 
OF DEFEcr::,;_vEs :1; r;:·EE F.i.RST AliD GECOKD St,MPLES (EXX2GX 
AND THE PUSTER:CR PROBAB.L ... TY THA~ THERE ARE NJ ADDlTi0NAL 
DEF1C'!'.1.. YES ... li ';:I!E LCJT G iEl~ '::HE l.Ui'iB.2R GF DEFECT ... YES .N 
THE F ms~ AND SECul\D SA!iPLES ( mn:.xa ) . 

lO~LO C***************************************************************** 
1 c.;570 c 
10580 c 
10'.;i90 c; 
10600 
10u10 
10620 C**** 
106)0 
10640 C**** 
10650 
10660 
10670 
10680 
10690 
10700 
10710 c 
10720 c 
10730 c 

SU:SRGU'.1.'.:i.~E PL2J (nr;w' Dl1S1 'DNS2' 'i:X, D, '.i: ,1XX2GX,hllXX2X) 
iMPL:CCiT REAL*B(A-H,0-X) 
CALCUL,,'i.:E J.'HE 1XX2GX 
EXX2G X= ( DNLS-DliJ 1-Dl;S2) '* ( S+TX) / ( S+T+DN"S 1 +DllS2) 
CALCULATE '.:'HE llHX2X 
H21 P=DLGAHA ( T+Dl:LS-i'X )-DLGA!-lA( T+DN81 +DNS2-TX) 
1+DLGAMA(S+T+DliS1+D~S2)-DLGAMA(S+T+DNLS) 
IF(H21P.LE.-174.) H2~P=-174. 
HKXX2X=DEXP(H21P) 
RETURN 
EilD 

10740 C***************************************************************** 
10750 c 
107GO C 
i 07'70 c. 
10780 c 
10790 c 
10000 c 
10810 c 
10b20 c 
lObJO G 
1 OiAC C 

SUBRCU~IllE PL1 S CALCULA'.:ES ?ERHS FCR TEE PCLYA PR.:.OR 
D.i.S'i'R.i.IlUTlC:i . THE ~LRMS ARE RELEVA1<'2 FvLLGW.:.liG THE 
FiRST SA!lPLE. TlfE 'i:EriM::.O ... liCLUDE THE EXPEC'i':C:J:: NU!IBER 
liF DEFEC'.:'1 VES 11i ';,'HE P.ES'.::' i.JF '::HE LC:' G. VEN THE UU!!BER 
UF D:C:FEC'I.1..VES _ii 'J:HE F.cH~/;: SA}iPLE ( .t:XX1GX ) ' rnz 
PuS~ER1UR PR~BAE.1..L~TY ~Hh'I ~HERE ~RE ~Q ADD.';;.cGNAL 
};DFEC7. VEiJ .1.H :EE LVi G.:. V:Lll '.::IiE l:iUE3BR C;F DEFECT~ VES 
1N i;::H.r: I:' ... R8'.i.' SAi'!PLE ( HllXX1 X ) • 

108J0 C*************~*************************************************** 
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1Uc60 C 
10870 c 
10880 c 
103~0 
10900 
10910 C*~** 
10920 
109:;,o co** 
10':140 
10950 
1 O')bO 
10970 
10%0 
10S:90 
11000 c 
11010 c 
11020 c 

sumwu:·:;:r;r PLl s (DHS' DHS 1 'DI;Di. S, 7 ,UX1 GX. m;xx1x) 
..LEPL.cC .1. '.:' RE1\1*8 (.<',-ii, 0-X) 
CALCULATE ~XX1GX 
BXX1GX=(D~1~-DNS1 )*(S+D~D1)/(S+7+Dh~l) 
CALCUL.hr;'E w;xxD: 
H 11 P=DliGAMi, ( '.i:'+Dl•L:.3-DliD 1 )-DLGAUA ( ~+DiiS1 -DliD1 ) 

1 +DLG,'..l·L;.(;:.i-r':.:+DN:.51 )-DLGALA(S+?+Dlil.:s) 
.LF (H11P.LE.-174.J li11P=~174. 
il~XX1X=D1XP(H11P) 
RE'.i:URli 
END 

110)0 C***************************************************************** 
11040 c 
11050 c 
11060 c 
11070 c 
11080 c 
11090 c 
11100 c 

SUBROU';.'IH PL12S CALCULATES TERM FCR '.:'HE POLY.A. PR.;.CR 
DlSTRIBUTLCN • THE TERM IS RELEVENT FOLLOWi~G THE FiRST 
AND SECOND SAMPLE • i'.I' IS ~Ht CCNDI7~0~tL PRCBAB:Li'.:'Y 
OF 1lUMBER CFDEFECTIV:ES :i.H ?HE SECOND SM·!PLE Gl. VEN '.::HE 
FlRST SAMPLE ( HX2X1 ) • 

11110 C***************************************************************** 
111 20 c . • 
111 30 c 
11140 c 
11150 
11160 
111 '/0 C**** 
11180 

, 1 11 90 
11200 
11210 
11220 
112.:,.0 
11240 
11250 
11260 
11270 c 
11280 C. 
11290 c 

SUBROUTINE PL12S(Dl~LS,DNS1 ,DNS2,DND1,DliD2,S,T,HX2X1) 
iMPLiC..L? REAL*B(A-H,C-X) 
CALCULATE liX2X1 
CONBL2=DLOANA(Dl;S2+1 )-DLG/,HA(DliD2+1 }-DLGAMA(DUS2-DND2+1) 
A21L=DLGANA(S+D~D1+DhD2)-DLGANAlS+D~D1) 
.A221=DLGAMA ( T+Di:JS 1-rDli82-Dt;D1 -DliD2 )-JJ:.G.i'-JH, ( T+DliS 1·-Dl!D1 ) 
A2)L=DLG1~!1A ( ::l+'.:'+Di'JS1 ) ···DLGid·iA( S+T+Dl.~1+DI;S2} 
A2T=A21L+A221~A2~L+COMBL2 
iF(A2T.1E.-i74.) A2T=-1/4. 
HX2X1:::.DEXP(A2T) 
RETURI; 
mm 

11)00 C***************************************************************** 
11;,1oc 
11:)20 c 
11))0 c 
11340 c 
11 )50 c 

SUBROU'.:.'I!rn PL1 SH CALCULA'.::'Ei:; TERM F0R PCLYA PR~OR 
DIS'.::'RIBUTIC~ • THE TERM iS THE NARG~IAL Dl3TR~BUTION 
CF NUHBER OF DEFECTIVES :1~ THE FJ:R3'2 s;-.rrPLE (Gll1 X1) 

11360 C*************~**************************4************************ 
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11370 c 
11380 c 
11390 c 
11400 
11410 
11420 
114)0 
11440 
11450 
11460 
114'{0 
11480 
114~0 
11 500 

SUEROUTI~E PL1SM(D~S1 ,DND1 ,S,T,Gll1X1) 
iMPLlC~~ REAL*8(A-R.O-X) 
COMBL1 =DLGA!iA(DI~Gi +1 )-DLGA!1A(D11D1 +1 )-DLGAMA(DHS1 -DliD1 +1) 
B11L=DLGANA(S+DNDi)-DLG~NA(S) 
B12L=DLGANA(T+DKS1-DND1 )-DLGAHA(T) 
B1)L=DLGANA(S+~)-DLGAMA(S+~+DNS1) 
B1~=B11L+B121+B1)L+CCNBL1 
lF (Bl'l'.LE.-174.) B1~=-174. 
G i.1 .X: 1 = D EXP ( E 1 'l' ) 
R1':'.URN 
EI~D 
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APPENDIX B 

DERIVATION OF THE CONDITIONAL PROBABILITY 

DISTRIBUTION OF THE NUMBER OF DEFECTIVES 

FOUND IN A SECOND SAMPLE, GIVEN THE 

NUMBER OF DEFECTIVES FOUND IN 

THE FIRST SAMPLE 
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This appendix refers to the derivation of the conditional prob-

ability distribution of the number of defectives found in a second 

sample x2, given the number of defectives found in the first sample x1. 

Both the mixed binomial and Polya cases are derived. 

Mixed Binomial Distribution Case 

Consider a mixed binomial distribution with the following prior 

probability function: 

where 

m · ( N ) X N-X = l: W. X p. (1-p.) 
i=l l l l 

0 < p < 1 
m 
l: w. = 1 

i=i l 

X = 0, 1, 2, ... , N 

The conditional probability distribution of the number of 

defectives found in a second sample, given the number of defectives in 

the first sample, is: 

where · 

Logic: 

Consider the prior: 

m 

w. 
l 

n x n -x 
( 2) p. 2 {1-p.) 2 2 

l: w. 
i=l 1 

x2 i i 

0 < p. < 1 
l 

m 
l: 

i=l 
VJ. = 1 

l 

x2 = 0, l, 2, ... , n2 



m ( N) X N-X fN(X) = L: W. X p. (J.-p.) 
i=l l l l . 

From Equation (3.14), 

~ w . ( Nx- n 1) P . x (1-p . ) N-x 
i=l i -x1 i i 

hN-n (X-x1lx1) = m x n -x 
1 L: w. p. 1(1-p.) 1 1 

Then, 

= 

Since 

therefore 

i=l l l l 

m 
= L: 

i=l 

m 
. L: 

i=l 
n -x 

(1-p.) 2 2 
1 

Polya Distribution Case 

x n -x 
W.p. l(l-p.) 1 1 

l 1 1 
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Consider a Polya distribution with the following prior probability 

function: 
f (X) _ ( N) r(s+X)r(t+N-X)r(s+t) 
N - x r(s) r(t) r(s+t+N) 
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where s' t < 0 

X = 0, 1, 2, •.. , N 

The conditional probability distribution of the number of defectives 

found in a second sample, given the number of defectives in the first 

sample, is: 

where s, t < 0 

xl = 0, 1, 2, nl ... ' 
x2 = 0, 1, 2, n2 ... ' 

Logic: 

Consider the prior: 

f (X) -( N )r(s+X)r(t+N-X)r(s+t) 
N - x r(s) r(t) r(s+t+N) 

From Equation (3.8), 

Let M = N - nl 

y = x - xl 
I s = s + x1 

t' = t + n . 1 - xl 

Then, 

h (X-x Ix ) =(M) r(s 1 +Y)r(t'+M-Y r(s 1 +t 1
) 

N-n 1 1 1 Y r s' r t 1 r s 1 +t 1 +M 



since 

The ref ore 

Thus, 

Again, 1 et 

Then, 

Therefore, 

L = M - n2 

Z = Y - x2 

s" = s' + x2 

t" = t' + n2 - x2 

(SI +t I) 
(s'+t'+M) 
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_ f n2 ) r(s+t+n1)r(s+x1+x2)r(t+n1+n2-x1-x2) 

- \x2 r(s+xl) r(t+nl-xl)r(s+t+nl+n2) 
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