MODELING AND DESIGN OF ECONOMICALLY

 BASED DOUBLE SAMPLING PLANSBy
SHAO-SHING CHEN
II
Bachelor of Science
Chung Cheng Institute of Technology
Taoyuan, Republic of China 1971

Master of Commerce National Cheng Chu University Taipei, Republic of China 1975

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1981

Thesis
19810
$C 518 \mathrm{~m}$

MODELING AND DESIGN OF ECONOMICALLY BASED DOUBLE SAMPLING PLANS

Thesis Approved:

PREFACE

The problem addressed in this dissertation is that of determining the optimum economically based double sampling plan. This topic is not covered in any textbook on statistical quality control. The purpose of this research is to provide the modeling and optimization technology as well as a new and well-developed tool in selecting the most cost effective double acceptance sampling plan.

The modified Guthrie-Johns model, including fixed costs, is developed. The methodology and an interactive computer program are developed to select the optimum double sample size pair and corresponding acceptance/rejection number vector which provide the minimum total expected cost. The model sensitivities are presented to determine relative economic advantages.

My graduate work was made possible by the financial support of the government of the Republic of China for three and a half years. I am grateful for the encouragement and support of the government.

I would like to express sincere appreciation to my major advisor, Professor Kenneth E. Case, whose timely advice and encouragement has always been welcome. His guidance during this research has been very helpful and is reflected in many places throughout this dissertation. Dr. Case has been a truly outstanding teacher and advisor. I would like to thank Professor Joe H. Mize for his inspiration and advice during my graduate study. It has been an invaluable experience to associate with
such an outstanding individual as Dr. Mize. I would also.like to express my gratitude to Dr. Lyle D. Broemeling, Dr. Carl B. Estes, and Dr. M. Palmer Terrell who have contributed advice, counsel, and encouragement throughout my graduate study. It has been a pleasure and privilege to have worked under such an outstanding doctoral committee.

Special credit is due Mrs. Margaret Estes for her excellent typing and advice in the preparation of this study. Mr. Eldon Hardy deserves recognition for his outstanding work in drawing the numerous figures and graphs herein.

I would like to thank my parents, Mr. and Mrs. C. C. Chen, for the inspiration and encouragement they have given.

I would also like to express appreciation to my wife, Karen, and son, Lee-Jen, for the many sacrifices they have made. I hope my effort in graduate school has been worthy of my family's effort.

TABLE OF CONTENTS

Chapter Page
I. THE RESEARCH PROBLEM 1
Purpose 1
Introduction 2
Economically Based Acceptance Sampling 7
Research Objectives 15
Summary 17
II. LITERATURE REVIEW 19
Introduction 19
Attributes Sampling Plan Design Methodologies 19
Early Origins of Economically-Based Acceptance Sampling 23
Development of Economically-Based Acceptance Sampling 24
Summary 29
III. ECONOMICALLY BASED MODEL DEVELOPMENT 31
Introduction 31
Notations 31
Basic Model 35
Expectation 43
Summary 53
IV. COST MODEL OPTIMIZATION 55
Introduction 55
Optimum Acceptance and Rejection Number for Second Sample 56
Optimum Acceptance and Rejection Number for the First Sample 59
Optimum Sample Size Pair 65
Summary 68
V. USING THE INTERACTIVE COMPUTER PROGRAM 69
Introduction 69
Overview 69
Designing An Economically Based Sampling Plan 70
Designing the Optimum Acceptance/Rejection Number Vector 80
Chapter Page
Evaluating the Expected Cost of a Sampling Plan 85
Summary 89
VI. SENSITIVITY ANALYSIS 93
Introduction 90
Sensitivity to Sample Size and Different Constant Factors 90
Sensitivity to the Cost Coefficients 91
Sensitivity to the Prior Distribution 105
Comparison With Optimum Single Sampling and Tabulated Sampling Plans 110
Summary 113
VII. SUMMARY AND CONCLUSION 115
BIBLIOGRAPHY 119
APPENDIXES 125
APPENDIX A - MODIFIED GUTHRIE-JOHNS COMPUTER PROGRAM FOR DOUBLE SAMPLING PLAN 126
APPENDIX B - DERIVATION OF THE CONDITIONAL PROBABILITY distribution of the number of defectives FOUND IN A SECOND SAMPLE, GIVEN THE NUMBER OF DEFECTIVES FOUND IN THE FIRST SAMPLE . . . 149

LIST OF TABLES

Table Page
III.1. Summarized MGJ Model Decisions and Their Mathematical Cost Functions 54
VI.1. Sensitivity of the Expected Total Cost to Different Sample Sizes and Different Constant Factors 92
VI.2. Sensitivity to the Cost Coefficients 96
VI.3. Sensitivity to the Prior Distribution 106
VI.4. Comparison of Optimal Double Sampling Plans and Optimal Single Sampling Plans 111
VI.5. Comparison of Optimal Double Sampling Plans and Sampling Plans From Military Standard 105D 112
LIST OF FIGURES
Figure Page
I.1. Flow Chart of Single-Sampling 3
I.2. Flow Chart of Double-Sampling 5
I.3. Acceptance and Rejection Costs as a Function of the Posterior Expectation of X 16
II.1. Classification of Attributes Sampling Plan Design Methodologies 21
III.1. Flow Chart of Nine Situations in the Basic MGJ Model for Double Sampling 37
IV.1. Total Expected Cost Per Lot Response Surface as a Function of First Sample Size, Using Optimum Acceptance/Rejection Number Vector for Each Sample Size Pair 67
V.1. Flow Chart of All Major Activities in Modified Guthrie- Johns Computer Program 71

CHAPTER I

THE RESEARCH PROBLEM

Purpose

One of the most important aspects of quality control is acceptance sampling. Traditional acceptance sampling plans make accept/reject decisions based upon calculable statistical risks instead of cost considerations. Sometimes, the plans are economically good; however, at other times they are very costly. In order to obtain plans capable of low total expected costs, economically based double acceptance sampling by attributes plans are studied herein. The relevant economic model employs Bayesian decision theory.

The basic model to be used is that of Guthrie and Johns which includes the cost of sampling, lot acceptance, and lot rejection. Fixed cost factors are added in order to provide a more realistic model. Newly developed procedures for model optimization are required in order to select the appropriate sample sizes and acceptance and rejection numbers which provide the minimum total expected cost. An interactive computer program is developed, suitable for use by practitioners with a minimum of technical background. The double sampling model is then investigated in comparison to a comparable single sampling model in order to determine the relative economic advantage of double sampling.

Introduction

General

The selection of appropriate acceptance samnling plans is one of the most important jobs of the quality control engineer. Acceptance sampling is used to make accept/reject decisions on incoming parts, in-process items, and finished goods. Its purpose is to determine a course of action, not to estimate or control lot quality. It is specifically for the purpose of sentencing lots to either acceptance or rejection.

Inspection by attributes is inspection whereby either the unit of product is classified simply as defective or nondefective, or the number of defects in the unit of product is counted, with respect to a given requirement or set of requirements. There are several types of attributes sampling plans for lot-by-lot inspection. They include single-sampling, double-sampling, multiple sampling, and sequential sampling plans.

The most commonly used plans in industry are single-sampling and double-sampling. Double-sampling plans are known to have some advantages and some disadvantages with respect to single-sampling plans. One relatively unknown area of comparison is in regard to the degree of economic advantage achieved by double-sampling. A thorough Bayesian economic model for single-sampling now exists. The following double-sampling effort not only advances the leading edge of economically based sampling, but permits a valid assessment of the economic comparison between double- and single-sampling.

The single-sample fraction-defective sampling plan is very simple. It calls for a decision on the basis of evidence from one sample taken from a lot. It specifies the sample size (n) of items that should be taken randomly from the lot. If the number of defective items (x) in the sample is less than, or equal to the acceptance number (c), the lot is accepted; otherwise, it is rejected.

The single-sampling decision criterion is shown as follows:

$$
\begin{aligned}
\text { Sample } n: & \text { If } x \leq c, \text { accept } \\
& \text { If } x>c, \text { reject }
\end{aligned}
$$

A flow chart of the procedures is presented in Figure I.1.

Figure I.1. Flow Chart of Single-Sampling

Double-sampling plans involve four possibilities. Acceptance or rejection may take place immediately following observation of the first sample. Alternatively, the decision may be deferred to where acceptance or rejection take place following the second sample.

The plan is designated by six numbers $\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}\right.$, and $\left.r_{2}\right)$, c_{1} being less than r_{1} and $c_{2}+1$ being equal to r_{2}. A sample of size n_{1} items is taken from a given lot. If the number of defective items in the sample is less than or equal to the first acceptance number c_{1}, the lot is accepted. If the number of defective items in the sample equals or exceeds r_{1}, the lot is rejected. However, if the number of defective units is greater than c_{1} but less than r_{1}, a second sample of size n_{2} is taken from the remainder of the lot. If the number of defectives in the combined samples does not exceed the second acceptance number c_{2}, the lot is accepted. If there are more than c_{2} defectives, the lot is rejected.

The double-sampling decision criteria are shown as follows:

$$
\begin{aligned}
& \text { Sample } n_{1}: \text { If } x_{1} \leq c_{1}, \text { accept } \\
& \\
& \text { If } x_{1} \geq r_{1}, \text { reject } \\
& \text { If } c_{1}<x_{1}<r_{1}, \text { take second sample. } \\
& \text { Sample } n_{2}: \quad \text { If } x_{1}+x_{2} \leq c_{3}, \text { accept } \\
& \\
& \\
& \text { If } x_{1}+x_{2}>c_{3}, \text { reject }
\end{aligned}
$$

A flow chart of the procedures is presented in Figure I.2.
A double-sampling plan has some possible advantages over a singlesampling plan. First, it may reduce the total amount of inspection. Second, a double-sampling plan provides the psychological advantage of giving a lot a second chance. This advantage is, of course, purely
psychological. It also provides a lower total expected cost of operation. The primary disadvantage of double-sampling is the difficulty with which it is administered in an actual inspection operation.

Figure I.2. Flow Chart of Double-Sampling

Risks Associated With Acceptance Sampling

The classical risk-based sampling plan may be determined once certain criteria (e.g., AQL, LTPD, AOQ) have been satisfied. The most popular approach for designing a sampling plan is the "2-point design." That is, a producer's risk (α) is identified with a "good" fraction defective $\left(p_{1}\right)$. A consumer's risk (β) is identified with a "poor" fraction defective $\left(p_{2}\right)$. Those risks lead to a desired high probability of lot acceptance 1- α when the lot has been formed from a process having a good fraction defective p_{1}. Also, the desired low probability of lot acceptance is β when the lot has been formed from a process having poor fraction defective p_{2}.

Put differently, a good sampling plan is one which provides a small producer's risk that lots of good quality will be rejected. Likewise, it provides a small consumer's risk that lots of poor quality will be accepted.

The classified methods are usually determined based upon a mental assessment of the risks inherent due to sampling. Unfortunately, it is very difficult to accurately mentally assess these risks and costs and arrive at a defensible set of criteria by which to determine an attributes acceptance sampling plan. Sometimes, the resulting risk-based plans are very costly due to either over- or under-inspection of lots.

Costs Associated With Acceptance Sampling

Generally speaking, the costs associated with acceptance sampling can be classified as (1) costs due to sampling and inspection, (2) costs due to rejecting good items, and (3) costs due to accepting bad items. These costs include variable and fixed cost components. The cost of
sampling is dependent upon the number of items inspected, and the manpower required. The cost of rejecting good items consists of all monies lost as a result of the decision to reject a lot such as costs of sorting, repairing, and reinspecting. The cost of accepting and passing on bad items is the most important of all and includes costly handling, rework, repair, and paperwork processing. The details of cost items are discussed in the following section.

Economically Based Acceptance Sampling

Modeling

In an attempt to truly optimize the sampling effort and resultant risks for double-sampling plans, a stochastic mathematical economicallybased acceptance sampling model is derived. The well known GuthrieJohns model for single-sampling is redeveloped for double-sampling. It is also modified to contain nine cost elements rather than six, including three components each associated with the cost of sampling, lot acceptance, and lot rejection. The model is Bayesian in nature, requiring a "prior" distribution to express the user's pre-sampling beliefs about the quality of the lots, based either upon past data, personal feeling, or both.

The model describes the total expected cost per lot according to the decision criteria for double-sampling discussed in the previous section. In particular, it accounts for the cost of sampling, inspection, and rework of any defectives found therein. It also considers the downstream adverse effects of defective items which have either escaped in accepted lots or have been incorrectly classified as good. Finally, it allows for the cost of screening rejected lots
and reworking any defective items found.
The model is a function of several variables. They include lot size (N), rirst and second sample sizes (n_{1} and n_{2}), acceptance and rejection numbers for the first and second samples $\left(c_{1}, r_{1}, c_{2}, r_{2}\right)$, number of refectives in the lot (X), and number of defectives in the first and vecond samples (x_{1} and x_{2}). Often, the variable r_{2} is omitted, brcause always in double sampling, $r_{2}=c_{2}+1$. The variables $n_{1}, n_{2}, c_{1}, r_{1}, c_{2}$, and r_{2} are decision variables under control of the user. The variables x, x_{1}, and x_{2} are random variables over which the user has nu control. The variable of lot size may or may not be under the user's control. It is assumed fixed in this research.

The madel is reduced to the point that it is a function only of decision variables by taking the expectation over x, x_{1}, and x_{2}. Assuming trat the lot size is fixed, total cost is a function of only the decisisin variables, $T C\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}\right)$. Newly developed exact analytical and search procedures are developed for the model to be optimized selecting the appropriate decision variables which provide a minimum sotal expected cost. The required developments are described subsequent: x.

Cost Eleme": s

The Guthrie-Johns model, proposed in 1959, contains six cost elements, :cluding two each concerned with the cost of sampling, lot acceptance, and lot rejection, has been referenced and used by numerous authors. \because is a versatile Bayesian economically-based attributes acceptance ‘ampling model for single-sampling. Unfortunately, it omits factors fo. fixed costs which do not vary in proportion to the quantity
of sampled items or resultant defectives. For 20 years, no comments or modifications to include a complete set of fixed costs have been published in the open literature.

The Guthrie-Johns model, in addition to beirig modified for doublesampling, will contain not only the original six cost elements, but also three fixed factors for each cost. The cost elements are described as follows:

1. $S_{0}=$ fixed cost of sampling, inspection, and testing per lot. This includes lot handling, print review, inspection setup, incremental first item inspection, and any other cost per lot for sampling, inspection, and testing, regardless of the number of items to be considered.
2. $S_{1}=$ cost per item of sampling, inspecting, and testing. This includes manpower, overhead, inspection tool wear, materials used, and any other costs incurred during inspection and/or test.
3. $S_{2}=$ additional cost per defective item found during sampling, inspection, and testing. This includes rework/repair manpower, overhead, and materials. It also includes additional record keeping, reinspection, and related handling. Any extra expenditures per item due to the fact that the item was found defective during sampling are accounted for here.
4. $A_{0}=$ fixed cost of accepting a lot containing one or more defective items, when that lot is identified as defective downstream. This includes writing a reject tag, engineering fix, manufacturing corrective action writeup,
seuregation, stores checking and reinspecting, etc. This is usually a substantial cost which should not be ignored.
5. $A_{1}=$ cost per item of the $N-n$ items not inspected in an accepted lot. These items are considered the "norm." If good, they will go on to earn a profit for the company which is "expected." As such, this cost is usually taken as zero. If this portion of the lot requires "special handling," for example, A_{1} may be gruater than zero.
6. $A_{2}=$ additional cost per defective item later discovered in an accepted lot. This includes rework/repair manpower, overhead and materials. It includes damage, dismantling, lost goodwill, and work stoppage costs downstream. Also involved are reject tag processing costs, fix approval, reinspection and related handling. Any extra expenditures per item due to the fact that the item was found defective after having been accepted are accounted for here. This cost can be quite high.
7. $R_{0}=$ fi\ed cost of rejection per lot rejected on original inspection. This includes writing a rework, repair, or reject tag, handling of the rejected lot, and any other cost assessed per lot for a lot found defective and rejected in its own shop.
8. $R_{1}=\cos t$ per item of the $N-n$ items in the rest of a rejected 1re. This will normally be the cost per item of inspection and testing. This includes manpower, overhead,
inspection, tool wear, materials used, and any other costs incurred in treating a rejected lot. This cost is often less than or equal to S_{1}.
9. $R_{2}=$ additional cost per defective item found while inspecting and testing the rest of a rejected lot. This includes rework/repair manpower, overhead, and materials. It also includes additional record keeping, reinspection, and related handling. Any extra expenditures per item due to the fact that the item was found defective while inspecting and testing the rest of a rejected lot are accounted for here. This cost is often equal to S_{2}. Bayesian Distributional Considerations

The methods utilized in this research are based upon Bayesian decision theory. Historical data and/or beliefs are used to predict the quality of a lot before it is observed. Then, the lot quality history is combined quantitatively with actual sample results to form an opinion about the lot after sampling. Based upon this latter opinion, the lot is either accepted or rejected.

The Bayesian approach to statistical inference is based upon a theorem first presented by Thomas Bayes (1702-1761). Bayes' basic theorem was later modified by Laplace, and this modified version is used today and is commonly referred to as Bayes' theorem.

In order to demonstrate the development of this theorem, the intersection probability of two events A and B is described as:

$$
P(A B)=P(A) P(B \mid A)=P(B) P(A \mid B)
$$

From this, conditional probability relations such as the following may be stated:

$$
P(A \mid B)=P(A) \frac{P(B \mid A)}{P(B)} .
$$

Here, $P(A)$ is the prior probability of event A before the information about event B becomes available, and $P(A \mid B)$ is the posterior probability of event A based upon the results of event B. This is similar to the version of Bayes' theorem used in this research.

The decision variables X, x_{1}, and x_{2} represent the number of defectives in the lot and the number of defectives in the first and second samples, as discussed earlier. Considering only the first sample, the joint distribution of X and X_{1} are the four probability distributions described previously may be expressed as follows:

$$
J\left(X-x_{1}, x_{1}\right)=f_{N}(x) l_{n_{1}}\left(x_{1} \mid x\right)=g_{n_{1}}\left(x_{1}\right) h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)
$$

or
$\underset{\text { Distribution }}{\text { Joint }}=\underset{\text { Distribution }}{\text { Prior }} \times \underset{\text { Distribution }}{\text { Sampling }}=\underset{\text { Distribution }}{\text { Marginal }} \times \underset{\text { Distribution }}{\text { Posterior }}$

The four non-joint distributions can be defined as follows:
LPrior distribution $f_{N}(X)$ - This distribution represents the decision maker's beliefs, prior to sampling, concerning the probability of X defectives occurring in a lot of size N.

The prior distribution must be specified in advance to describe the user's beliefs prior to sampling about the quality of the lot. These beliefs may be based upon past data or "feel."

In the quality control job, when product items are grouped in batches of finite size prior to acceptance sampling, it is obvious
that the lot fraction defective on each attribute must be discrete. As the lot size increases, the number of possible lot fractions defective increases. Often, a continuous density function is used to express the prior distribution. But a continuous distribution is only an approximation to the exact discrete distribution. The desire to use discrete prior distributions is more important with smaller lot sizes, due to the significantly poorer approximation capability of continuous distributions.

One of the most important discrete prior distributions is the mixed binomial mass function. It is a realistic and applicable prior distribution which represents the situation when many vendors supply incoming parts, with each vendor furnishing a proportion produced at each process fraction defective. Similarly, it may be used to describe product coming from different machine/material/ operator sources when each is operating at a different process fraction defective.

Sampling distribution $\ell_{n_{1}}\left(x_{1} \mid x\right)$ - This distribution gives the probability of observing x_{1} defectives in a random first sample of size n_{1}, given that there are X defectives in the lot. The appropriate distribution here is the hypergeometric.

Marginal distribution $g_{n_{1}}\left(x_{1}\right)$ - This distribution gives the unconditional probability of observing x_{1} defectives in a random first sample of size n_{1}, taken from the lot. Posterior distribution $h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)$ - This distribution gives the probability of having X defectives in a lot of size N given that x_{1} defectives were observed in a random first sample of size n_{1} taken from the lot.

Design

The double-sampling plan and its total expected cost model had been discussed. It is a function of decision variables $n_{1}, n_{2}, c_{1}, r_{1}, c_{2}$, and r_{2}, as well as random variables x, x_{1}, x_{2}. It has been noted that four possible decision profiles can be formed with acceptance or rejection coming on either the first or second sample. These four possibilities are reflected in the mathematical model.

The cost function can be expressed in the following form:

$$
\text { TC }\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x, x_{1}, x_{2}\right)=
$$

Case 1: Accept the lot after taking the first sample

$$
=\operatorname{TCA}_{1}\left(N, n_{1}, c_{1}, X, x_{1}\right) \quad \text { if } x_{1} \leq c_{1}
$$

Case 2: Reject the lot after taking the first sample
$=\operatorname{TCR}_{1}\left(N, n_{1}, r_{1}, x, x_{1}\right) \quad$ if $x_{1} \geq r_{1}$

Case 3: Accept the lot after taking the second sample

$$
\begin{aligned}
& =\operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, r_{2}, x, x_{1}, x_{2}\right) \\
& \quad \text { if } c_{1}<x_{1}<r_{1} \text { and } x_{1}+x_{2} \leq c_{2}
\end{aligned}
$$

Case 4: Reject the lot after taking the second sample

$$
\begin{aligned}
& =\mathrm{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, r_{2}, x, x_{1}, x_{2}\right) \\
& \text { if } c_{1}<x_{1}<r_{1} \text { and } \\
& x_{1}+x_{2} \geq r_{2}=c_{2}+1
\end{aligned}
$$

Since x, x_{1}, and x_{2} are random variables, it is necessary to take the expectation over them in order to obtain a function of decision variables $\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right)$. These six decision variables are reduced to five by recognizing that $r_{2}=c_{2}+1$. Selection of values for the remaining five unknowns to minimize total expected costs is required.

It is possible to equate $\operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, x_{1}, x_{2}\right)$ to $\operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, x_{1}, x_{2}\right)$ following the expectation of these cost formulas over X. This results in the ability to determine at what posterior value of X the two costs are equal, or at break even. From this, it is possible to determine the largest number of sampled defectives, $x_{1}+x_{2}$, for which the least cost choice is to accept the lot. Such a value will be known as c_{2}. This approach is shown in Figure I.3.

The methodology outlined for determining c_{2} is also applied to the selection of c_{1} and r_{1}. This task is much more difficult; however, it utilizes the breakeven principle to select c_{1} and r_{1}. Only n_{1} and n_{2} then remain to be determined. In practice, a fixed relationship often dictates $n_{2}=n_{1}$ or $n_{2}=2 n_{1}$, and thus a univariate search is used to select values which optimize total expected cost.

Research Objectives

Based upon the above discussions, the overall objective of this research can be stated.

OVERALL OBJECTIVE: To provide industry and government with a new and well-developed tool to assist in selecting the cost effective double acceptance sampling plan for a wide range of realistic situations.

Conditional Number of Defectives in Lot
Figure I.3. Acceptance and Rejection Costs as a Function of the Posterior Expectation of X

In order to accomplish this objective, several specific subobjectives must be included as follows.

SUBOBJECTIVES:
(1) Development of the Guthrie-Johns model for use in doublesampling.
(2) Modification of the Guthrie-Johns model to include fixed cost components for sampling, rejection, and acceptance.
(3) Development of the theoretically exact analytical and search procedures for optimizing double-sampling plans using a discrete mathematical model with the fixed cost expansion.
$V(4)$ Development of an interactive computer program for doublesampling in a format suitable for use by industry and government.
(5) Comparison of optimum single and double-sampling plan total expected costs in order to determine the relative economic advantage of double-sampling.

Summary

The successful completion of this research provides benefits to both the theoretician and the practitioner in industry and government. Theoretically, the accomplishment of the objectives of this study fills several voids that now exist in the theory of economically based acceptance sampling for double-sampling plans. Many concepts involved are not presented in any textbooks on statistical quality control, but are of considerable and growing interest in the quality control area.

The practitioner will benefit from this research because it provides sound procedures for evaluating alternative sampling strategies.

Improved decision making capabilities will result from having the methodology to compare single-sampling vs. double-sampling, various first and second sample size relationships, and the sensitivity of total expected costs to economic components, distributional parameters, etc. The net result should be increased profitability through quality control.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter reviews developments in the literature relevant to the objectives of this research. General support for the research effort has been documented in Chapter I. This chapter elaborates on this support. In addition to economically based double-sampling work, other sources which communicate concepts relating to the objectives of this study will be presented.

This chapter is divided into three areas. These are:
(1) Attributes sampling plan design methodologies.
(2) Early origins of economically based acceptance sampling.
(3) Development of economically based acceptance sampling.

Attributes Sampling Plan Design
 Methodologies

Statistical quality control was introduced by Shewhart [65, 66, 67] in the 1920's and 1930's. These concepts and techniques have spread throughout the world, and Duncan [25] indicates that almost all industrialized nations use statistical quality control. Case [12] points out that quality control can be used by both large and small manufacturers. Perhaps the most widely used statistical quality control area is acceptance sampling. While traditional sampling plans have
been based upon statistical risks, considerable effort and emphasis is being placed upon economically based sampling. Evidence of the widespread research of acceptance sampling schemes with emphasis on the economic aspect is given by a bibliography, contained in Wetherill and Chiu's [79] recent paper, which contains 246 references on this field. Their work indicates the most widely used acceptance sampling technique is attribute sampling.

Both single and double-sampling plans for statistically based acceptance sampling (SBAS) and economically based acceptance sampling (EBAS) have been discussed in Chapter I. According to Chen [17], due to (1) high precision technology, (2) multinational company organization and expenditures, (3) new management philosophies introduced, and (4) the energy crisis, all industries are facing an era of challenge with high competition. Sound ways to succeed against this challenge are to: (1) improve product quality, (2) reduce the cost of goods, and (3) get more efficient management. So, Case [13] predicts that during the 1980 's, a fundamental change will be made by government and industry in the philosophy and design of attributes acceptance sampling. Statistically based sampling schemes, using techniques held sacred for 50 years, may be replaced and will surely be supplemented by economically based philosophies.

Case and Keats [15] indicate that attributes acceptance sampling plans may be categorized as in Figure II.1. This figure shows the four distinct breakdowns of sampling plan design methodology as published in the literature.

Category 1 describes the traditional approach to sampling plan design. It draws upon producer and consumer risks as depicted by the
Risk-Based Economically-Based
Non-Bayesian
Bayesian

1	2
3	4

Figure II.1. Classification of Attributes Sampling Plan Design Methodologies
operating characteristic (0C) curve. MIL-STD-105D [51], ISO 2859 [48], the Dodge-Romig tables [24], much of Hald's work, and many other contributions belong to this area. The vast majority of practitioners today are applying Category 1 plans because they are widely available, widely accepted, and relatively easy to use.

Category 2 focuses upon the economic aspects of sampling and the literature through Breakwell [5], Brown et al. [6], Martin [54], Truscott [72], and van der Waerden [75]. This approach aims at minimizing costs or regrets without a prior knowledge of the process fraction defective. Usually, minimax principles are used here to choose the sampling plan. However, its acceptance in industry has been relatively limited. None of the sampling plans of Categories 1 or 2 require that the distribution of defectives from lot to lot be known.

During the past ten years there has been a dramatic increase in the number of papers using the Bayesian approach to sampling plan design. Plans using a Bayesian approach fall into Categories 3 and 4. Bayesian sampling plans require the user to explicitly specify the distribution of defectives from lot to lot. This distribution is known as the prior distribution. It expresses the user's pre-sampling beliefs about the quality of the lot, based either upon past data, personal feeling, or both. Decisions to accept or reject the lot are then based on a posterior distribution which combines the user's prior knowledge of lot to lot variation with the sampling inspection results.

In Category 3, the producer's and consumer's risks are associated with Bayes' theorem and are used for determining the sampling plan. The prior distributions are needed for decision-making, but the costs are not explicitly considered as are the statistical risks.

While there is limited work in Category 3. [Lauer [53], Moreno [57, 58, 59], Schafer [62], Hald [35, 36]], there are numerous published works in Category 4. These are discussed in detail in the following section. Also, recently, several large companies have begun implementing the economically based Bayesian plans of Category 4 on some product lines.

Early Origins of Economically-Based
Acceptance Sampling

Among the early contributions relevant to Bayesian economically based acceptance sampling, one of the most important is by Mood [56], who states that "Sampling of lots drawn from a binomial population will provide no basis whatsoever for inferences concerning the remainder of the lot." The binomial population to which Mood refers is one in which the population fraction defective is constant. This implies that the number of defectives occurring from one lot to the next is independent and binomially distributed. It is most startling to discover that whenever this assumption is valid, then the sample obtained from any lot provides no information whatsoever about the quality of the unsampled portion of the lot. Barnard [1] states differently, if a process is in a perfect state of statistical control for fraction defective, it makes no sense to perform acceptance sampling on lots formed as a sequence of Bernoulli trials from the proces.

Several studies of prior distributions applicable to economically based acceptance sampling were published in the early 1950's. The most well known studies are those of Sittig [68], Champernowne [16], Barnard [1], Horsell [47], Taylor [71], and Hamaker [43]. Sittig presents the power prior distribution $f(p)=1-A, p=0$

$$
=A(s+1)(1-p)^{s}, p>0
$$

in his paper. Hamaker discusses various expressions and derives the optimum sample size using the minimax principle. These results may be successful in isolated cases, but do not lead to simple principles with a wide field of application as needed in industry.

In the later 1950 's, Vagholkar and Wetherill present the applications of decision theory to sampling schemes in theses. Vagholkar [73] studies a two-ordinate process curve with a two component mixed binomial distribution for acceptance sampling problems. He also collaborates with Wetherill [74] on a binomial prior distribution in the Bayesian version of the sequential probability ratio test. Wetherill [76] investigates the mixed binomial prior distribution with more than two components $\left(a_{i}, p_{i}\right),(i=1,2, \ldots, k), \sum_{i=1}^{k} a_{i}=1$ which provides a method of obtaining a single-sampling scheme with minimum risk for the particular model. This gives a simple relationship between n and c. The optimum n is found by directly minimizing expected costs.

Development of Economically-Based
Acceptance Sampling

Following the early origins of economically based acceptance sampling, more systematic treatments were forthcoming in this area of research. Guthrie and Johns [32] develop the theory for a versatile economic cost model for attributes sampling plan in their paper of 1959. Also, sampling tables which minimize the average costs for various prior distributions are derived by Hald [33] in his paper of 1960. Since then, the economic design of quality control models has been receiving much attention in the literature.

Guthrie and Johns [32] propose a general linear cost model of the
decision procedures and sample sizes which are optimal in the Bayes sense. They proceed to find explicit asymptotic characterizations for large batch sizes. Their model contains six cost elements, including two each associated with the cost of sampling, acceptance, and rejection. Similarly, Suzuki [70] considers and introduces Bayesian procedures into an inspection scheme with a beta prior distribution.

Hald [33] discusses single-sampling inspection plans in detail. His classic paper consists of two main parts. One studies the general theorem for the compound hypergeometric distribution and reproducibility. Properties of this distribution associated with rectangular, Polya, and mixed binomial prior distributions are investigated. The other part gives a general solution for determining the optimum sampling plan, i.e., his paper, presented in 1960, provides a theoretical and systematic foundation for research in this field.

A series of papers is published by Hald dating from 1960 to 1970 [34, 35, 36, 37, 38]. Two papers from 1967 on single-sampling plans based on the producer's and consumer's risk belong to Category 3 [35, 36]. In another 1967 paper, Hald proposes a twice differentiable prior distribution in an open interval about the break-even point, a general loss function, an operating characteristic written as an Edgeworth expansion, and sampling costs expressible as a polynomial in the sample size. This is a special case of asymptotic expressions for the Bayesian singlesampling plan [37].

In another two papers, Hald [39, 40] sets up a model based on a differentiable prior distribution, a linear loss function, an asymptotically normal sampling distribution and sampling costs proportional to the sample size. Asymptotic expressions are derived for sample sizes,
acceptance and rejection criteria and minimum regret by minimizing the average regret for the sampling and decision procedure. The results for single, double, and multiple sampling plans are presented. He obtains a very interesting result in double sampling plans that the first sample should be proportional to $\ell n \mathrm{~N}$ and the second sample should be proportional to \sqrt{N}.

Pfanzagl and Shuler [61] make a model of acceptance inspection by which an objective comparison is made of sequential sampling plans in terms of costs. Pfanzag1 [60], in another paper, suggests a doublesampling scheme where the second sample size (n_{2}) can depend on the outcome $\left(x_{1}\right)$ of the first sample. The reason that one would prefer to choose the size of n_{2} in advance is to ease administration of the sampling scheme.

Johansen [49] discusses asymptotic properties of the restricted Bayesian double-sampling plan. The lot size, cost function, and mixed binomial prior distribution are given. The optimal double-sampling plan is defined as the plan which minimizes the asymptotic expansion of the regret function between the five parameters: two sample sizes, two acceptance numbers, and one rejection number where the lot size approaches infinity. He indicates that the exact solution for double-sampling plan is very complicated. This is the reason why most authors study this problem by considering asymptotic behavior.

One of the most important mathematical acceptance sampling models is presented by Smith [69] in which he combines the basic concepts of the Guthrie-Johns and Hlad papers. He describes the total cost function by six elements--two each for inspection, acceptance, and rejection. He then takes the expectation over the number of defectives in both the lot
and sample. Finally, the asymptotic formula is used to determine the approximate values for single-sampling plans. His work provides a long step toward rational economic decision making in sampling inspection. Similar modeling techniques are applied in another paper by Wortham and Wilson [82]. They apply a backward recursive technique (dynamic programming) for designing optimal sequential sampling plans. This method is based upon Bellman's principle of optimality and the Markovian property of sequential sampling plans.

Guenther [30] considers the degenerate, the beta, and the two-point distributions as prior distributions in the determination of singlesampling attribute plans based upon a linear cost model. He modifies Hald's work with these different prior distributions. Barnett [2] discusses the relationships of Bayesian decision theoretic methods applied to industrial problems in 1973. After that he proposes [3] a particular cost structure but no prior information. He uses the breakeven quality for the loss function to choose the sample size and acceptance number which is economically most desirable for the batch. He also discusses the Bayesian solution when no process information is available. At the same time, Chiu [18] points out a new prior distribution other than the beta. Sampling tables are constructed using a model of a normally distributed quality characteristic, whose mean has a normal prior distribution. Asymptotic single attributes sampling plans using this new prior distribution are studied.

Schmidt and Bennett [63] and Case et a1. [11] develop a mathematical model for economic multiattribute acceptance sampling. These papers develop and analyze models for which the cost components are influenced by a lot acceptance/rejection decision based upon the simultaneous
assessment of several distinct and independent attributes. Each attribute is assumed to have its own sampling plan consisting of a sample size and an acceptance number $\left(n_{i}, c_{i}, i=1,2, \ldots, m\right)$. Any item inspected on one attribute may be inspected on all other attributes, thus the total number of items sampled is $\max \left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$. The lot is accepted only if $x_{1} \leq c_{i} ; i=1,2, \ldots, m$. The first paper utilizes continuous density functions to approximate the number of defective items of each attribute in a lot. The second utilizes discrete prior mass functions to describe the system. Search techniques and sensitivity measures are investigated in those papers.

As the lot size becomes larger, the number of possible lot fractions defective on each attribute will be large, and it becomes reasonable to utilize continuous density functions to approximate the discrete system. But, when product items are grouped in batches of relatively small size prior to acceptance sampling, it is obvious that the lot fraction defective on each attribute must be discrete.

Case [11] concludes that, for large lot sizes, either continuous or discrete models may be used to determine the optimal sampling plan or as a predictor of total expected cost. Even for small lot sizes, the continuous approximate model is satisfactory to determine the optimal sampling plan. As a predictor of total cost, however, the deviation is quite sharp at low values of the lot size ($N \leq 20$).

Stewart et al. [64] presents an approximate model for the optimum economic design of double-sampling plans for attributes in 1979. Four decision variables ($n_{1}, c_{1}, n_{2}, c_{2}$) are used instead of five decision variables $\left(n_{1}, c_{1}, r_{1}, n_{2}, c_{2}\right)$ in determining the minimum total cost. Total cost is assumed to consist of the cost of sampling, the cost of
accepting defectives, and the cost of rejecting good items. Fixed costs of sampling inspection only are considered. The prior distribution of the process fraction defective used in this study is the beta distribution. Curtailment of the second sample, and model sensitivity are investigated.

More recent work is provided by Case [13]. An economically based single acceptance sampling plan is provided using the modified GuthrieJohns model, including fixed cost elements. The Polya and mixed binomial distributions are available at the users option. Bayesian decision theory is applied to obtain the posterior expected value in order to find the minimum total expected cost. An exact model with a discrete prior distribution is presented.

Summary

This chapter presents a survey of the literature on the problems, contributions, and needs relative to the objectives of this research. This survey demonstrates the interest in the economic design of quality control models in the area of attributes acceptance sampling. Models using the discrete prior distribution for single and sequential sampling are well developed. But, all such models omit some fix cost factors. Also, there is no work toward developing double sampling plans utilizing a discrete distribution. A need has been cited for new methods of optimizing the total cost.

This survey indicates that in the case of economically based acceptance sampling for attributes, a need exists for the following:
(1) Inclusion of fixed cost factors in each of the types of costs for double-sampling plans.
(2) Newly developed optimization procedures for double-sampling plans, using exact discrete modeling.
(3) An interactive computer program suitable for use by practitioners with a minimum of technical background.
(4) Comparisons of model sensitivity to the cost coefficients and to potential misspecification of the parameters of the prior distribution, as well as the total cost of approximate and exact models.

The author believes that this research will complete an important gap that currently exists in the theory and application of economically-based acceptance sampling by attributes.

CHAPTER III

ECONOMICALLY BASED MODEL DEVELOPMENT

Introduction

The purposes of this chapter are to develop the Guthrie-Johns model for use in double-sampling and to modify the Guthrie-Johns (MGJ) model to include fixed cost components for sampling, rejection, and acceptance. The methods utilized in this chapter are based upon Bayesian decision theory. The prior, sampling, marginal, and posterior distributions dealing with double-sampling plans are used to derive the expected cost model. Nine situations using the MGJ model associated with four decisions for double-sampling plans are discussed.

The Polya and mixed binomial families are used as prior distributions in this study. These have been shown to describe well the actual lot quality in real situations. Reproducible properties of these priors permit the derivation of mathematical relationships for the cost modeling employed in this research. Methodology is developed to express a wide range of expected cost models for double-sampling plans. It is assumed that the reader has at least a basic understanding of acceptance sampling cost modeling.

Notations

This section defines the mathematical notations used in this research.

$$
N=1 \text { ot size. }
$$

$n_{1}=$ first sample size.
$n_{2}=$ second sample size.
$X=$ number of defectives in the entire lot.
$x_{1}=$ number of defectives in the first sample.
$x_{2}=$ number of defectives in the second sample.
$c_{1}=$ acceptance number for first sample.
$c_{2}=$ acceptance number for second sample.
$r_{1}=$ rejection number for first sample.
$r_{2}=$ rejection number for second sample.
$S_{0}=$ fixed cost of sampling, inspection, and testing per lot.
$S_{1}=$ cost per item of sampling, inspecting, and testing.
$S_{2}=$ additional cost per defective item found during sampling, inspection, and testing.
$A_{0}=$ fixed cost of accepting a lot containing one or more defective items yet to be found downstream.
$A_{1}=$ cost per item of handing the items not inspected in an accepted lot.
$A_{2}=$ additional cost per defective item later discovered in an accepted lot.
$R_{0}=$ fixed cost of rejection per lot rejected on original inspection.
$R_{1}=$ cost per item of inspecting and testing the items in the rest of a rejected 1ot.

$$
\begin{aligned}
& R_{2}=\text { additional cost per defective item found } \\
& \text { while inspecting and testing the rest of a } \\
& \text { rejected lot. } \\
& \mathrm{f}_{\mathrm{N}}(\mathrm{X})=\text { discrete "prior" distribution describing } \\
& \text { the probability of having } X \text { defectives in } \\
& \text { a lot of size } N . \quad(X=0,1,2, . . ., N) \text {. } \\
& \ell_{n_{1}}\left(x_{1} \mid X\right)=\text { hypergeometric "sampling" distribution } \\
& \text { describing the probability of having } x_{1} \\
& \text { defectives in a sample of size } n_{1} \text { taken } \\
& \text { from a lot having } X \text { defectives }\left(x_{1}=0\right. \text {, } \\
& \left.1,2, . . ., \min \left(n_{1}, x\right)\right) \text {. } \\
& \ell_{n_{1}}+n_{2}\left(x_{1}+x_{2} \mid X\right)=\text { hypergeometric "sampling" distribution } \\
& \text { describing the probability of having } x_{1}+x_{2} \\
& \text { defectives in a sample of size } n_{1}+n_{2} \text { taken } \\
& \text { from a lot having } X \text { defectives }\left(x_{1}+x_{2}=0\right. \text {, } \\
& \left.1,2, \ldots ., \min \left(n_{1}+n_{2}, x\right)\right) \text {. } \\
& g_{n_{1}}\left(x_{1}\right)=\text { "marginal" (or unconditional) distribution } \\
& \text { describing the probability of having } x_{1} \\
& \text { defectives in a sample of size } n_{1} \text { taken } \\
& \text { from a lot. } \quad\left(x_{1}=0,1,2, \ldots, n_{1}\right) \text {. } \\
& g_{n_{1}+n_{2}}\left(x_{1}+x_{2}\right)=\text { "marginal" (or unconditional) distribution } \\
& \text { describing the probability of having } x_{1}+x_{2} \\
& \text { defectives in a combined sample of size } \\
& n_{1}+n_{2} \text { taken from a lot }\left(x_{1}+x_{2}=0,1\right. \text {, } \\
& \left.2, . . ., n_{1}+n_{2}\right) \text {. } \\
& h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right)=\text { "posterior" distribution describing the } \\
& \text { probability of having } X-x_{1} \text { defectives in }
\end{aligned}
$$

the rest of a lot of size $N-n_{1}$ given that x_{1} defectives are observed in a sample n_{1} taken from the lot. $\left(X-x_{1}=0,1,2, \ldots\right.$, $\left.N-n_{1}\right)$.
$h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}+x_{2}\right)=$ "posterior" distribution describing the probability of having $X-x_{1}-x_{2}$ defectives in the rest of a lot of size $N-n_{1}-n_{2}$ given that $x_{1}+x_{2}$ defectives are observed in a combined sample $n_{1}+n_{2}$ taken from the lot. $\left(X-x_{1}-x_{2}=0,1, ., ., N-n_{1}-n_{2}\right)$. $h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)=$ "posterior" distribution describing the probability of having no defectives in the rest of lot of size $N-n_{1}$ given that x_{1} defectives were observed in a sample n_{1} taken from the lot.
$h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}+x_{2}\right)=$ "posterior" distribution describing the probability of having no defectives in the rest of a lot of size $N-n_{1}-n_{2}$ given that $x_{1}+x_{2}$ defectives are observed in a combined sample $n_{1}+n_{2}$ taken from the lot. $h_{n_{2}}\left(x_{2} \mid x_{1}\right)=$ "marginal" distribution describing the probability of having x_{2} defectives in the second sampling with size n_{2} given that x_{1} defectives were observed in a sample n_{1} had taken from the lot.
$E\left[X-x_{1} \mid x_{1}\right]=$ expected number of defectives in the rest of a lot, $X-x_{1}$, given the number of defectives x_{1} in the first sample.

$$
\begin{aligned}
E\left[x-x_{1}-x_{2} \mid x_{1}+x_{2}\right]= & \text { expected number of defectives in the rest of a } \\
& \text { lot, } x-x_{1}-x_{2}, \text { given the number of defectives } \\
& x_{1}+x_{2} \text { in the combined first and second samples. } \\
T C_{i}(\cdot)= & \text { total expected cost on the } i^{\text {th }} \text { sample as a } \\
& \text { function of the variables in the argument. } \\
T C A_{i}(\cdot)= & \text { total expected cost of acceptance on the } i^{\text {th }} \\
& \text { sample as a function of the variables in the } \\
& \text { argument. } \\
\mathrm{TCR}_{\mathrm{i}}(\cdot)= & \text { total expected cost of rejection on the } i \text { th } \\
& \text { sample as a function of the variables in the } \\
& \text { argument. }
\end{aligned}
$$

Basic Mode1

The nine situations of MGJ model for double sampling are described as follows:

1. Lot 100% inspected.
2. Lot accepted outright with no inspection; defectives found downstream.
3. Lot accepted outright with no inspection; no defectives found downstream.
4. First sample inspected; lot accepted; defectives found downstream.
5. First sample inspected; lot accepted; no defectives found downstream.
6. First sample inspected; lot rejected.
7. Second sample inspected; lot accepted; defectives found downstream.
8. Second sample inspected; lot accepted; no defectives found downstream.
9. Second sample inspected; lot rejected.

A flow chart of these nine situations is presented in Figure III.1.
The basic model is described mathematically as follows:
$\operatorname{TC}\left(N, n_{1}, n_{2}, X, x_{1}, x_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right):$

1. $=S_{0}+N S_{1}+X S_{2}$
(Lot 100\% inspected)
2. $=A_{0}+N A_{1}+X A_{2}$

$$
\begin{align*}
& n_{1}=0 \tag{3.1b}\\
& x=1,2, \ldots, N
\end{align*}
$$

(Lot accepted outright with no inspection; defectives found downstream)
3. $=N A_{1}$

$$
\begin{align*}
& n_{1}=0 \tag{3.1c}\\
& x=0
\end{align*}
$$

(Lot accepted outright with no inspection; no defectives found downstream)
4. $=S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}+\left(N-n_{1}\right) A_{1}+\left(X-x_{1}\right) A_{2}$

$$
\begin{align*}
n_{1} & >0 \tag{3.1d}\\
x_{1} & \leq c_{1} \\
x-x_{1} & =1,2, \ldots, N-n_{1}
\end{align*}
$$

(First sample inspected; lot accepted; defectives found downstream)
5. $=S_{0}+n_{1} S_{1}+x_{1} S_{2}+\left(N-n_{1}\right) A_{1}$

$$
\begin{align*}
n_{1} & >0 \tag{3.1e}\\
x_{1} & \leq c_{1} \\
x-x_{1} & =0
\end{align*}
$$

Figure III.1. Flow Chart of Nine Situations in the Basic MGJ Model for Double Sampling
(First sample inspected; lot accepted; no defectives found downstream)
6. $=S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}+\left(X-x_{1}\right) R_{2}$

$$
\begin{align*}
n_{1} & >0 \tag{3.1f}\\
x_{1} & \geq r_{1} \\
x-x_{1} & =0,1,2, \ldots, N-n_{1}
\end{align*}
$$

(First sample inspected; lot rejected)
7. $=S_{0}+S_{1}\left(n_{1}+n_{2}\right)+S_{2}\left(x_{1}+x_{2}\right)+A_{0}+\left(N-n_{1}-n_{2}\right) A_{1}$ $+\left(x-x_{1}-x_{2}\right) A_{2}$

$$
\begin{align*}
n_{1} & >0 \tag{3.1~g}\\
n_{2} & >0 \\
c_{1} & <x_{1}<r_{1} \\
x_{1} & +x_{2} \leq c_{2} \\
x-x_{1}-x_{2} & =1,2, \ldots, N-n_{1}-n_{2}
\end{align*}
$$

(Second sample inspected; lot accepted; defectives found downstream)
8. $=S_{0}+S_{1}\left(n_{1}+n_{2}\right)+S_{2}\left(x_{1}+x_{2}\right)+\left(N-n_{1}-n_{2}\right) A_{1}$

$$
\begin{align*}
n_{1} & >0 \tag{3.1h}\\
n_{2} & >0 \\
c_{1} & <x_{1}<r_{1} \\
x_{1} & +x_{2} \leq c_{2} \\
x-x_{1}-x_{2} & =0
\end{align*}
$$

(Second sample inspected; lot accepted; no defectives found downstream)
9. $=S_{0}+S_{1}\left(n_{1}+n_{2}\right)+S_{2}\left(x_{1}+x_{2}\right)+R_{0}+\left(N-n_{1}-n_{2}\right) R_{1}$ $+\left(x-x_{1}-x_{2}\right) R_{2}$

$$
\begin{align*}
& n_{1}>0 \tag{3.1i}\\
& n_{2}>0 \\
& c_{1}<x_{1}<r_{1} \\
& x_{1}+x_{2} \geq r_{2}
\end{align*}
$$

(Second sample inspected; lot rejected)
Those costs are seen to be a function of $N, n_{1}, n_{2}, x, x_{1}, x_{2}$, c_{1}, r_{1}, c_{2}, and r_{2}. Some of these variables $\left(n_{1}, n_{2}, c_{1}, r_{1}, r_{2}\right)$ are "decision" variables under the control of the user; others are random variables (X, x_{1}, x_{2}) over which the user has no control. The variable N may or may not be under the user's control.

Distributional Properties

The relevant probability distributions for the first sample are shown in Chapter I as:

$$
\begin{equation*}
J\left(x-x_{1}, x_{1}\right)=f_{N}(x) \ell_{n_{1}}\left(x_{1} \mid x\right)=g_{n_{1}}\left(x_{1}\right) h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right) \tag{3.2}
\end{equation*}
$$

or

$$
\begin{aligned}
& \text { Joint } \\
& \text { Distribution }
\end{aligned}=\begin{aligned}
& \text { Prior } \\
& \text { Distribution }
\end{aligned} \times \begin{aligned}
& \text { Sampling } \\
& \text { Distribution }
\end{aligned}=\begin{aligned}
& \text { Marginal } \\
& \text { Distribution }
\end{aligned} \times \begin{aligned}
& \text { Posterior } \\
& \text { Distribution }
\end{aligned}
$$

From this, the distributions for the second sample may be expressed as:

$$
\begin{align*}
J\left(x-x_{1}-x_{2}, x_{1}+x_{2}\right) & =h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right) \ell_{n_{2}}\left(x_{2} \mid x-x_{1}\right) \tag{3.3}\\
& =g_{n_{2}}\left(x_{2}\right) h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}+x_{2}\right)
\end{align*}
$$

The posterior distribution from the first sample becomes the prior distribution for the rest of the lot from which the second sample is taken.

Polya Distribution

The Polya prior distribution is described mathematically as:

$$
\begin{align*}
& f_{N}(X)=\binom{N}{X} \frac{\Gamma(s+X) \Gamma(t+N-X) \Gamma(s+t)}{\Gamma(s)} \Gamma(t) \tag{3.4}\\
& s, t>0 \\
& X=0,1, \ldots, N
\end{align*}
$$

The mean of Polya distribution is:

$$
\begin{equation*}
E(X)=\frac{N s}{s+t} \tag{3.5}
\end{equation*}
$$

and its variance is:

$$
\begin{equation*}
\operatorname{Var}(X)=\frac{N s t}{(s+t)^{2}} \quad \frac{(s+t+N)}{(s+t+1)} \tag{3.6}
\end{equation*}
$$

Proper selection of s and t will cause the Polya to become a discrete uniform, binomial, hypergeometric, or literally infinite other distributions. Since the Polya distribution is reproducible to hypergeometric sampling. This means that with a Polya prior and a hypergeometric sampling distribution, the marginal distribution is known to be a Polya distribution. The marginal distribution of the number of defectives observed in the first sample is:

$$
\begin{array}{r}
g_{n_{1}}\left(x_{1}\right)=\binom{n_{1}}{x_{1}} \frac{\Gamma\left(s+x_{1}\right) \Gamma\left(t+n_{1}-x_{1}\right) \Gamma(s+t)}{\Gamma(s)} \Gamma(t) \tag{3.7}\\
s, t>0 \\
x_{1}=0,1,2, \ldots, n_{1}
\end{array}
$$

The posterior distribution considers both the prior parameters and the sample results to express the quality of the lot following sample inspection. The mathematical expression for the posterior distribution
of defectives in the rest of the lot following the first sample $h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right)$, is found from Equation (3.2) as follows:
$h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=\frac{f_{N}(x) \ell_{n_{1}}\left(x_{1} \mid x\right)}{g_{n_{1}}\left(x_{1}\right)}$

$$
\begin{align*}
& =\frac{\binom{N}{X} \frac{\Gamma\left(s+X^{2}\right) \Gamma(t+N-x) \Gamma(s+t)}{\Gamma(s) \Gamma(t)} \frac{\Gamma(s+t+N)}{\binom{n_{1}}{x_{1}} \frac{\Gamma\left(s+x_{1}\right) \Gamma\left(t+n_{1}-x_{1}\right) \Gamma(s+t)}{\Gamma(s)} \Gamma(t)} \frac{\binom{n_{1}^{1}}{x_{1}}\binom{N-n_{1}}{X-x_{1}}}{\binom{N}{X}}}{}=\binom{N-n_{1}}{x-x_{1}^{1}} \frac{\Gamma(s+X) \Gamma(t+N-x) \Gamma\left(s+t+n_{1}\right)}{\Gamma\left(s+x_{1}\right) \Gamma\left(t+n_{1}-x_{1}\right) \Gamma(s+t+N)} \\
x-x_{1} & =0,1,2, \ldots ., N-n_{1}
\end{align*}
$$

The posterior distribution following the second sample is similar to the above expression:

$$
\begin{align*}
n_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}+x_{2}\right) & =\binom{N-n_{1}-n_{2}}{x-x_{1}-x_{2}} \frac{\Gamma(s+x) \Gamma(t+N-x) \Gamma\left(s+t+n_{1}+n_{2}\right)}{\Gamma\left(s+x_{1}+x_{2}\right) \Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right) \Gamma(s+t+N)} \\
x-x_{1}-x_{2} & =0,1,2, \ldots, N-n_{1}-n_{2} \tag{3.9}
\end{align*}
$$

Mixed Binomial Distribution

The mixed binomial prior distribution is very useful when it is likely that a lot s is formed from one of m process fractions defective, $p_{1}, p_{2}, . . ., p_{m}$. The weights $w_{1}, w_{2}, . . ., w_{m}$ correspond to an estimate of the fraction of product formed at the process fraction defective $p_{1}, p_{2}, \ldots, p_{m}$. The distribution is described mathematically as:

$$
\begin{equation*}
f_{N}(x)=\sum_{i=1}^{m} w_{i}\binom{N}{x} p_{i}^{X}\left(1-p_{i}\right)^{N-X}, \quad 0<p_{i}<1 \tag{3.10}
\end{equation*}
$$

$$
\begin{aligned}
X & =0,1,2, \ldots, N \\
\sum_{i=1}^{m} w_{i} & =1
\end{aligned}
$$

The mean of the mixed binomial distribution is:

$$
\begin{equation*}
E[X]=N \bar{p}=\sum_{i=1}^{m} w_{i} N p_{i} \tag{3.11}
\end{equation*}
$$

and its variance is:

$$
\begin{equation*}
\operatorname{Var}[X]=\sum_{i=1}^{m} w_{i} N p_{i}\left(1-p_{i}\right)+\sum_{i=1}^{m} w_{i} N^{2}\left(p_{i}-\bar{p}\right)^{2} \tag{3.12}
\end{equation*}
$$

Hald has shown that the mixed binomial distribution is also "reproducible to hypergeometric sampling." Thus, the marginal distribution of the number of defectives in the first sample may be written directly as

$$
\begin{equation*}
g_{n_{1}}\left(x_{1}\right)=\sum_{i=1}^{m} w_{i}\binom{n_{1}}{x_{1}} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}, \quad x_{1}=0,1,2, \ldots ., n_{1} \tag{3.13}
\end{equation*}
$$

The posterior distribution of the number of defectives in the rest of the lot given that x_{1} defectives have been observed in the sample is:

$$
\begin{aligned}
n_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right) & =\frac{\sum_{i=1}^{m} w_{i}\binom{N}{x} p_{i}^{x}\left(1-p_{i}\right)^{N-x}}{\sum_{i=1}^{m} w_{i}\binom{n_{1}}{x_{1}} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}} \frac{\binom{n_{1}}{x_{1}}\binom{N-n_{1}}{x-x_{1}}}{\binom{N}{x}} \\
& =\frac{f_{N}(x) \ell_{n_{1}}\left(x_{1} \mid x\right)}{g_{n_{1}}\left(x_{1}\right)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\sum_{i=1}^{m} w_{i}\binom{N-n_{1}}{X-x_{1}} p_{i}^{X}\left(1-p_{i}\right)^{N-X}}{\sum_{i=1}^{m} w_{i} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}} \tag{3.14}\\
X-x_{1} & =0,1,2, \ldots ., N-n_{1}
\end{align*}
$$

The posterior distribution of the number of defectives in the rest of the lot given that $x_{1}+x_{2}$ defectives are observed in the combined sample is

$$
\begin{align*}
h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}, x_{2}\right) & =\frac{\sum_{i=1}^{m} w_{i}\binom{N-n_{1}-n_{2}}{x-x_{1}-x_{2}} p_{i}^{x}\left(1-p_{i}\right)^{N-X}}{\sum_{i=1}^{m} w_{i} p_{i}^{x_{1}+x_{2}}\left(1-p_{i}\right)^{n_{1}+n_{2}-x_{1}-x_{2}}} \tag{3.15}\\
x-x_{1}-x_{2} & =0,1,2, \ldots ., N-n_{1}-n_{2}
\end{align*}
$$

Expectation

In discussing the cost function, it is desired to express total cost as a function of only the decision variables, $T C\left(n_{1}, n_{2}, c_{1}\right.$, r_{1}, c_{2}, r_{2}). This requires taking expectations over x_{1}, x_{2}, x, and simply removing N from the argument as it is assumed fixed.

The nine situations of the MGJ model for double sampling can be classified into one of the following four decisions:

1. Lot 100% inspected.
2. Lot accepted outright.
3. Lot decision made following inspection of first sample.
(a) Lot accepted
(b) Lot rejected
4. Lot decision made following inspection of second sample.
(a) Lot accepted
(b) Lot rejected

Lot 100% Inspected

A valid action is to perform " 100% inspection"; however, it is a special case which is treated separately. No decision variables and no random variables exist in the case of 100% inspection. Thus, the total cost remains at:

$$
\begin{equation*}
T C(N)=S_{0}+N S_{1}+X S_{2} \tag{3.16}
\end{equation*}
$$

The decision to inspect 100% will be attractive when either quality is usually very poor, or the cost consequences of passing on defectives is substantial.

Lot Accepted Outright With No Inspection

"No inspection" is another valid decision. It includes two possible outcomes: 1) defectives found downstream, and 2) no defectives found downstream.

Consider Equations (3.1b) and (3.1c) in which no inspection is performed and the lot is accepted. No decision variables exist in this case; therefore, it is only necessary to take the expectation with respect to X. The probabilities to be used in taking this expectation over X are described by the prior distribution, $f_{N}(X)$. The expected cost will be

$$
\begin{aligned}
T C(N) & =N A_{1} f_{N}(X=0)+\sum_{X=1}^{N}\left(A_{0}+N A_{1}+X A_{2}\right) f_{N}(X) \\
& =\sum_{X=1}^{N} A_{0} f_{N}(X)+\sum_{X=0}^{N} N A_{1} f_{N}(X)+\sum_{X=1}^{N} X A_{2} f_{N}(X)
\end{aligned}
$$

$$
\begin{equation*}
=A_{0}\left(1-f_{N}(X=0)\right)+N A_{1}+A_{2} E[X] \tag{3.17}
\end{equation*}
$$

If a Prolya prior distribution is used, it is known from Equation (3.4) that:

$$
\begin{equation*}
f_{N}(X=0)=\frac{\Gamma(t+N)}{\Gamma(t)} \frac{\Gamma(s+t)}{\Gamma(s+t+N)} \tag{3.18}
\end{equation*}
$$

Also, from Equation (3.5)

$$
\begin{equation*}
E[X]=\frac{N S}{S+t} \tag{3.19}
\end{equation*}
$$

Therefore, for a Polya prior distribution, the expected total cost of lot acceptance without inspection is:

$$
\begin{equation*}
T C(N)=A_{0}\left(1-\frac{\Gamma(t+N) \Gamma(s+t)}{\Gamma(t)} \Gamma(s+t+N)+N A_{1}+A_{2} \frac{N s}{s+t} .\right. \tag{3.20}
\end{equation*}
$$

If a mixed binomial prior distribution is used, it is known from Equation (3.10) that:

$$
\begin{equation*}
f_{N}(x=0)=\sum_{i=1}^{m} w_{i}\left(1-p_{i}\right)^{N} \tag{3.21}
\end{equation*}
$$

Also, from Equation (3.11)

$$
\begin{equation*}
E(X)=\sum_{i=1}^{m} w_{i} N p_{i} \tag{3.22}
\end{equation*}
$$

Therefore, for a mixed binomial prior distribution, the expected total cost of lot acceptance without inspection is:

$$
\begin{equation*}
T C(N)=A_{0}\left(1-\sum_{i=1}^{m} w_{i}\left(1-p_{i}\right)^{N}\right)+N A_{1}+A_{2} \sum_{i=1}^{m} w_{i} N p_{i} \tag{3.23}
\end{equation*}
$$

The "no inspection" case may save considerable money when either quality is usually very good, or the cost consequence of passing on defectives is slight.

Lot Decision Made Following Inspection

 of First SampleWhen a decision is made following inspection of the first sample, Equations (3.1d), (3.1e), and (3.1f) are appropriate. Expectation will take place over both random variables X and X_{1}, with X being first for computational reasons. When expecting over X, the weight to be used is the posterior probability of the number of defectives in the rest of the lot given the number of defectives in the first sample, $h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right)$. This decision includes three situations:

1. Lot accepted after first sample, defectives found downstream.
2. Lot accepted after first sample, no defectives found downstream.
3. Lot rejected after first sample.

An acceptance cost term and a rejection cost term are written separately, since the decision to accept depends on x_{1} being less than or equal to c_{1}, while the decision to reject occurs if x_{1} equals or exceeds r_{1}.

The acceptance cost term is

$$
\begin{align*}
\operatorname{TCA}_{1}\left(N, n_{1}, C_{1}, x_{1}\right)= & {\left[S_{0}+n_{1} S_{1}+x_{1} S_{2}+\left(N-n_{1}\right) A_{1}\right] n_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right) } \\
+ & \sum_{X-x_{1}=1}^{N-n_{1}}\left[S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}+\left(N-n_{1}\right) A_{1}\right. \\
& \left.+\left(X-x_{1}\right) A_{2}\right] h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right) \\
= & S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}\left[1-h_{i N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)\right] \\
& +\left(N-n_{1}\right) A_{1}+A_{2} E\left[X-x_{1} \mid x_{1}\right] \tag{3.24}
\end{align*}
$$

where

$$
\begin{aligned}
n_{1} & >0 \\
x_{1} & \leq c_{1} \\
x-x_{1} & =0,1,2, \ldots, N-n_{1}
\end{aligned}
$$

The term $E\left[X-x_{1} \mid x_{1}\right]$ is the posterior expected value following the first sample. It stems from the expression

$$
\sum_{x-x_{1}=0}^{N-n_{1}}\left(x-x_{1}\right) h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)
$$

which sums $X-x_{1}$ over its entire range, and uses as weights the posterior distribution.

The rejection cost term is

$$
\begin{align*}
\operatorname{TCR}_{1}\left(N, n_{1}, r_{1}, x_{1}\right)= & \sum_{X-x_{1}=0}^{N-n_{1}}\left[S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}\right. \\
& \left.+R_{2}\left(X-x_{1}\right)\right] h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right) \\
= & S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}+R_{2} E\left[X-x_{1} \mid x_{1}\right] \tag{3.25}
\end{align*}
$$

where

$$
\begin{aligned}
n_{1} & >0 \\
x_{1} & \geq r_{1} \\
x-x_{1} & =0,1,2, \ldots, N-n_{1}
\end{aligned}
$$

Summarizing the total cost expression to this point,

$$
\begin{align*}
& T C_{1}\left(N, n_{1}, C_{1}, r_{1}, x_{1}\right)= \operatorname{TCA}_{1}\left(N, n_{1}, C_{1}, r_{1}, x_{1}\right) \\
&= S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}\left[1-h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)\right] \\
&+\left(N-n_{1}\right) A_{1}+A_{2} E\left[x-x_{1} \mid x_{1}\right], \tag{3.26}\\
& x_{1} \leq c_{1}
\end{align*}
$$

or
$\operatorname{TCR}_{1}\left(N, n_{1}, C_{1}, r_{1}, x_{1}\right)=S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}+R_{2} E\left[X-x_{1} \mid x_{1}\right]$

$$
\text { if } x_{1} \geq r_{1}
$$

The only random variable in these expressions is the number of defectives in the first sample. These relationships are later used in order to determine the optimum acceptance and rejection numbers for the first sample.

The cost term $T C_{1}\left(N, n_{1}, C_{1}, r_{1}, x_{1}\right)$ may be reduced to $T C_{1}\left(N, n_{1}, C_{1}, r_{1}\right)$. This is performed by taking the expectation over x_{1} in Equations (3.26) and (3.27) using the marginal probability function $g_{n_{1}}\left(x_{1}\right)$ for the weighting probabilities. That is,

$$
\mathrm{TC}_{1}\left(N, n_{1}, c_{1}, r_{1}\right)={ }_{\sum_{x_{1}}^{1}=0}^{c_{1}} T C A_{1}\left(N, n_{1}, c_{1}, r_{1}, x_{1}\right) g_{n_{1}}\left(x_{1}\right)
$$

$$
+\sum_{x_{1}=r_{1}}^{n_{1}^{1}} \mathrm{TCR}_{1}\left(N, n_{1}, c_{1}, r_{1}, x_{1}\right) g_{n_{1}}\left(x_{1}\right)
$$

$$
\begin{align*}
&=\sum_{x_{1}=0}^{c} \quad\left\{S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}\left[1-h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)\right]+\left(N-n_{1}\right) A_{1}\right. \\
&\left.+A_{2} E\left[X-x_{1} \mid x_{1}\right]\right\} g_{n_{1}}\left(x_{1}\right) \\
&+\sum_{x_{1}=r_{1}}^{n_{1}}\left\{S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}+R_{2} E\left[X-x_{1} \mid x_{1}\right]\right\} g_{n_{1}}\left(x_{1}\right) \tag{3.28}
\end{align*}
$$

Lot Decision Made Following Inspection

of Second Sample

If the number of defectives in the first sample x_{1} is greater than c_{1} but less than r_{1}, a second sample is taken. If in the combined samples there are c_{2} or fewer defective units, the lot is accepted. If there are more than c_{2} defective units, the lot is rejected. This decision also includes three situations:

1. Lot accepted after second sample; with defectives found downstream.
2. Lot accepted after second sample; no defectives found downstream.
3. Lot rejected after second sample.

When a second sample is inspected, Equations (3.1g), (3.1h), and (3.1i) are appropriate. An acceptance cost term and a rejection cost term are written separately.

The acceptance cost term is

$$
\begin{align*}
& \operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)=\left[S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}\right. \\
& \left.+\left(N-n_{1}-n_{2}\right) A_{1}\right] h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right) \\
& +\underset{X-x_{1}-x_{2}=0}{N-n_{1}-n_{2}}\left[S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}\right. \\
& \left.+A_{0}+\left(N-n_{2}-n_{2}\right) A_{1}+\left(X-x_{1}-x_{2}\right) A_{2}\right] \\
& \text { - } h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}, x_{2}\right) \\
& =S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2} \\
& +A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)\right] \\
& +\left(N-n_{1}-n_{2}\right) A_{1}+E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] A_{2} . \tag{3.29}
\end{align*}
$$

$$
\begin{aligned}
n_{1} & >0 \\
n_{2} & >0 \\
c_{1}<x_{1} & <r_{1} \\
x_{1}+x_{2} & \leq c_{2} \\
x-x_{1}-x_{2} & =0,1,2, \ldots, N-n_{1}-n_{2}
\end{aligned}
$$

The term $E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$ is the posterior expected value following the second sample. It stems from the expression

$$
\sum_{x-x_{1}-x_{2}=0}^{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}\right) h_{N-n_{1}-n_{2}}\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right]
$$

which sums $X-x_{1}-x_{2}$ over its entire range from 0 to $N-n_{1}-n_{2}$, and uses as weights the posterior distribution.

The rejection cost term is

$$
\left.\begin{array}{rl}
\operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)= & \sum_{x-x_{1}-x_{2}=0}^{N-n_{2}}\left[S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}\right. \\
+ & +R_{1}\left(N-n_{1}-n_{2}\right)
\end{array}\right] \begin{aligned}
& \left.R_{2}\left(x-x_{1}-x_{2}\right)\right] n_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2} \mid x_{1}, x_{2}\right) \\
= & S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}+R_{1}\left(N-n_{1}-n_{2}\right) \\
& +R_{2} E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \tag{3.30}\\
& n_{1}>0 \\
& n_{2}>0 \\
c_{1}< & x_{1}<r_{1} \\
x_{1}+ & x_{2} \geq r_{2} \\
x- & x_{1}-x_{2}=0,1,2, \ldots, N-n_{1}-n_{2}
\end{aligned}
$$

Summarizing the total cost expression to this point,

$$
\begin{align*}
T C_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)= & \operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right) \\
= & S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2} \\
& +A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}+x_{2}\right)\right] \\
& +\left(N-n_{1}-n_{2}\right) A_{1}+E\left[X-x_{1}-x_{2} \mid x_{1}+x_{2}\right] A_{2} \\
& \text { if } x_{1}+x_{2} \leq c_{2} \tag{3.31}
\end{align*}
$$

or

$$
\begin{align*}
& =\operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right) \\
& =S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}+R_{1}\left(N-n_{1}-n_{2}\right) \\
& \quad+R_{2} E\left[X-x_{1}-x_{2} \mid x_{1}+x_{2}\right] \tag{3.32}\\
& \quad \quad \text { if } \quad x_{1}+x_{2} \geq r_{2}
\end{align*}
$$

and for all above

$$
\begin{aligned}
n_{1} & >0 \\
n_{2} & >0 \\
c_{1}<x_{1} & <r_{1} \\
x-x_{1}-x_{2} & =0,1,2, \ldots, N-n_{1}-n_{2}
\end{aligned}
$$

The cost term $T C_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)$ may be reduced to $T C_{2}\left(N, n_{1}, n_{2}, C_{1}, r_{1}, c_{2}, r_{2}\right)$. This is performed by taking the expectation with respect to x_{1} and x_{2} in Equations (3.31) and (3.32) using the marginal probability function $g_{n_{1}}\left(x_{1}\right)$ and conditional distribution $h_{n_{2}}\left(x_{2} \mid x_{1}\right):$

$$
\begin{align*}
& T C_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right)=\sum_{x_{1}=c_{1}+1}^{r_{1}-1}\left\{\sum_{x_{2}=0}^{c_{2}^{-x_{1}}} \operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)\right. \\
& \text { - } h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& +\sum_{x_{2}=r_{2}-x_{1}}^{n_{2}} \operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right) \\
& \text { - } \left.n_{n_{2}}\left(x_{2} \mid x_{1}\right)\right\} g_{n_{1}}\left(x_{1}\right) \\
& =\sum_{x_{1}=c_{1}+1}^{r_{1}-1}\left\{\begin{array}{l}
c_{2}-x_{1} \\
\sum_{x_{2}=0}\left[S_{0}+\left(n_{1}+n_{2}\right) s_{1}+\left(x_{1}+x_{2}\right) S_{2}, ~\right.
\end{array}\right. \\
& +A_{0}\left(1-h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}+x_{2}\right)\right. \\
& \left.+\left(N-r_{1}-n_{2}\right) A_{1}+A_{2} E\left[X-x_{1}-x_{2} \mid x_{1}+x_{2}\right]\right] \\
& \text { - } h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& +\sum_{x_{2}=r_{2}-x_{1}}^{n_{2}}\left[S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}\right. \\
& \left.+R_{1}\left(N-n_{1}-n_{2}\right)+R_{2} E\left[X-x_{1}-x_{2} \mid x_{1}+x_{2}\right]\right] \\
& \text { - } \left.n_{n_{2}}\left(x_{2} \mid x_{1}\right)\right\} g_{n_{1}}\left(x_{1}\right) \tag{3.33}
\end{align*}
$$

Equation (3.33) completes development of the objective cost function for the second sample. The only decision variables remaining include the first sample size $\left(n_{1}\right)$, second sample size $\left(n_{2}\right)$, and the acceptance and rejection numbers for first and second sampling (c_{1}, r_{1}, c_{2}, r_{2}). The total cost depends upon the values selected for those decision variables.

Summary

The cost model developed in this chapter utilizes the basic Guthrie-Johns model for economically based sampling. The GJ model has been modified for use in double sampling and includes fixed cost components for sampling, rejection, and acceptance. The Modified Guthrie-Johns model for double sampling includes nine situations described within four decisions: Lot 100\% inspected; lot accepted outright; lot decision made following inspection of first sample; and lot decision made following inspection of second sample. These decisions and their mathematical cost functions are summarized in Table III.1. Two general families of prior distributions, the Polya and mixed binomial families, have been used to describe actual lot quality. The model developed in this research entertains the selection of all possible decision variables $\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right)$; the total expected cost is a function of these. Optimization of these decision variables is discussed in the next chapter.

TABLE III. 1
SUMMARIZED MGJ MODEL DECISIONS AND THEIR MATHEMATICAL COST FUNCTIONS

Decision	Decision and Random Variables	Limitation	Cost Function
Lot 100\% Inspected	N, X		$S_{0}+N S_{1}+X S_{2}$
Lot Accepted Outright With No Inspection	N		$A_{0}\left[1-f_{N}(X=0)\right]+A_{1} N+A_{2} E[X]$
Lot Decision Made Following Inspection of First Sample	$N, n_{1}, c_{1}, r_{1}, x_{1}$	$\begin{gathered} n_{1}>0 \\ x_{1} \leq c_{1}, \ldots, N-n_{1} \\ x-x_{1}=0,1, \ldots, N \end{gathered}$	$\begin{aligned} S_{0} & +S_{1} n_{1}+S_{2} x_{1}+A_{0}\left[1-h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)\right] \\ & +A_{1}\left(N-n_{1}\right)+A_{2} E\left[X-x_{1} \mid x_{1}\right] \end{aligned}$
		$\begin{aligned} n_{1} & >0 \\ x_{1} & \geq r \\ x-x_{1} & =0,1, \ldots, N-n_{1} \end{aligned}$	$S_{0}+S_{1} n_{1}+S_{2} x_{1}+R_{0}+R_{1}\left(N-n_{1}\right)+R_{2} E\left[X-x_{1} \mid x_{1}\right]$
Lot Decision Made Following Inspection of Second Sample	$\begin{aligned} & N, n_{1}, n_{2}, c_{1}, \\ & r_{1}, c_{2}, r_{2}, x_{1}, \\ & x_{2} \end{aligned}$	$\begin{gathered} n_{1}>0 \\ n_{2}>0 \\ c_{1} \ll_{1}<r_{1} \\ x_{1}+x_{2} \leq c_{2} \\ x-x_{1}-x_{2}=0,1, \ldots, \\ N-n_{1}-n_{2} \end{gathered}$	$\begin{gathered} S_{0}+S_{1}\left(n_{1}+n_{2}\right)+S_{2}\left(x_{1}+x_{2}\right)+A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(X-x_{1}\right.\right. \\ \left.\left.-x_{2}=0 \mid x_{1}, x_{2}\right)\right] \\ +A_{1}\left(N-n_{1}-n_{2}\right)+A_{2} E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \end{gathered}$
		$\begin{gathered} n_{1}>0 \\ n_{2}>0 \\ c_{1} \ll_{1}<r_{1} \\ x_{1}+x_{2} \geq r_{2}^{1} \\ x-x_{1}-x_{2}=0,1, \ldots, \\ \quad N-n_{1}-n_{2} \end{gathered}$	$\begin{aligned} S_{0} & +S_{1}\left(n_{1}+n_{2}\right)+S_{2}\left(x_{1}+x_{2}\right)+R_{0}+R_{1}\left(N-n_{1}-n_{2}\right) \\ & +R_{2} E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \end{aligned}$

CHAPTER IV

COST MODEL OPTIMIZATION

Introduction

The purpose of this chapter is to develop the methodology for determining the optimum values of the decision variables, including sample sizes and acceptance and rejection numbers ($n_{1}^{*}, n_{2}^{*}, c_{1}^{*}, r_{1}^{*}, c_{2}^{*}, r_{2}^{*}$). Theoretically, it is possible to evaluate all combinations of $\left(n_{1}, n_{2}, c_{1}\right.$, r_{1}, c_{2}, r_{2}) in the total cost model. Practically, however, it is time consuming even for small lot size and infeasible for large lot sizes.

Due to the large number of decision variables, it is desirable to determine the optimum acceptance and rejection numbers $\left(c_{1}, r_{1}, c_{2}, r_{2}\right)$, given any sample size pair $\left(n_{1}, n_{2}\right)$. Those optimum acceptance and rejection numbers canbe determined by considering and comparing the posterior expected costs of (1) accepting after the first sample, (2) taking a second sample and making an accept/reject decision on the lot, and (3) rejecting after the first sample. Once the acceptance and rejection numbers are determined, the total cost of the double sampling plan may be determined. Then, other sample size pairs and their corresponding optimum acceptance and rejection numbers may be evaluated. An appropriate heuristic search procedure over only $\left(n_{1}, n_{2}\right)$ may then be used to determine the economically optimum double sampling plan.

The cost equations (3.31) (3.32) are utilized to decide upon the optimum acceptance and rejection numbers for a complete double sample. It is reasonable to assume that if the total numicer of defectives observed in the combined samples $\left(x_{1}+x_{2}\right)$ causes the expected acceptance cost term for the combined sample to be less thar or equal to the expected rejection cost term for the combined sample $\left(T C A_{2} \leq T C R_{2}\right)$, the logical decision is to accept the lot. Conversety, the lot should be rejected if $T C A_{2}>T C R_{2}$. For any given sample size pair, it is possible to determine the highest value of $x_{1}+x_{2}$ such that $T_{2} \leq$ TCR $_{2}$. This value of $x_{1}+x_{2}$ will be designated the acceptance number for the combined number of defectives following the second sample $\left(c_{2}\right)$. The corresponding rejection number $\left(r_{2}\right)$ is $c_{2}+1$.

Based upon the above logic, it is desired to find the largest value of $x_{1}+x_{2}$ such that:
$\operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right) \leq \operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}, x_{1}, x_{2}\right)$
or

$$
\begin{gathered}
S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{2}, x_{2}\right)\right]+A_{1}\left(N-n_{1}-n_{2}\right) \\
+A_{2} E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \leq
\end{gathered}
$$

$$
\begin{equation*}
S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}+R_{1}\left(N-n_{1}-n_{2}\right)+R_{2} E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \tag{4.2}
\end{equation*}
$$

This results in

$$
\begin{equation*}
\left(A_{2}-R_{2}\right) E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \leq R_{0}-A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)\right]+\left(R_{1}-A_{1}\right)\left(N-n_{1}-n_{2}\right) \tag{4.3}
\end{equation*}
$$

or
$E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \leq \frac{R_{0}-A_{1}\left[1-h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)\right]+\left(R_{1}-A_{1}\right)\left(N-n_{1}-n_{2}\right)}{A_{2}-R_{2}}$

It is easy to find the largest value of $x_{1}+x_{2}$ satisfying inequality (4.4) if only the expressions for $h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)$ and $E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$ are known. These expressions depend upon whether the Polya or mixed binomial prior distribution is being used.

Finding $h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)$

The term $h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)$ is the probability that the number of defectives in the entire lot is the same as the number actually found in the combined samples. That is, it is the probability that all of the lot defectives are found in the first and second samples. This probability will usually be quite small, except in the case where quality is extremely good and there are no defectives found in the sample because there are none in the lot.

For the Polya prior distribution, this probability may be found utilizing Equation (3.9) for $h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2} \mid x_{1}, x_{2}\right)$ and letting $X=x_{1}+x_{2}$:
$n_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)=\frac{\Gamma\left(t+N-x_{1}-x_{2}\right)}{\Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right)} \quad \Gamma\left(s+t+n_{1}+n_{2}\right)$

For a mixed binomial prior distribution, this probability may be found utilizing Equation (3.15):

$$
\begin{equation*}
n_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)=\frac{\sum_{i=1}^{m} w_{i} p_{i} x_{1}+x_{2}\left(1-p_{i}\right)^{N-x_{1}-x_{2}}}{\sum_{i=1}^{m} w_{i} p_{i} x_{1}^{+x_{1}}\left(1-p_{i}\right)^{n_{1}+n_{2}-x_{1}-x_{2}}} \tag{4.6}
\end{equation*}
$$

Those equations in this form correspond with the computer program written to perform these and other calculations.

Finding $E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$

This term is the expected value of the number of defectives remaining in the lot $\left(x-x_{1}-x_{2}\right)$ given that $x_{1}+x_{2}$ defectives have actually been observed in the combined sample. Hald [33] has shown that, for both the Polya and mixed binomial distributions, the posterior expectation for single sampling is:

$$
\begin{equation*}
E[X-x \mid x]=\frac{(N-n)(x+1) g_{n+1}(x+1)}{(n+1) g_{n}(x)} \tag{4.7}
\end{equation*}
$$

It follows that:
$E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right]=\frac{\left[N-n_{1}-n_{2}\right]\left(x_{1}+x_{2}+1\right) g_{n_{1}+n_{2}+1}\left(x_{1}+x_{2}+1\right)}{\left(n_{1}+n_{2}+1\right)} g_{n_{1}+n_{2}\left(x_{1}+x_{2}\right)}$
For the Polya prior distribution, the posterior expectation is:

$$
\begin{align*}
& E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] \\
& =\frac{\left(N-n_{1}-n_{2}\right)\left(x_{1}+x_{2}+1\right)\binom{n_{1}+n_{2}+1}{x_{1}+x_{1}+1} \frac{\Gamma\left(s+x_{1}+x_{2}+1\right) \Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{1}\right) \Gamma(s+t)}{\Gamma(s)} \Gamma\binom{n_{1}+n_{2}}{x_{1}+x_{2}} \frac{\Gamma\left(s+x_{1}+x_{2}\right) \Gamma(t)}{\Gamma(s)} \Gamma}{\Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right) \Gamma(s+t)} \Gamma \Gamma\left(s+t+n_{1}+n_{2}\right) \\
& =\frac{\left(N-n_{1}-n_{2}\right)\left(s+x_{1}+x_{2}\right)}{\left(s+t+n_{1}+n_{2}\right)} \tag{4.9}
\end{align*}
$$

For the mixed binomial prior distribution, the posterior expectation is:
$E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$

$$
\begin{equation*}
=\frac{\left(N-n_{1}-n_{2}\right)\left(x_{1}+x_{2}+1\right)}{\left(n_{1}+n_{2}+1\right)} \frac{\sum_{i=1}^{m} w_{i}\binom{n_{1}+n_{2}+1}{x_{1}+x_{2}+1} p_{i} x_{1}+x_{2}+1}{\left(1-p_{i}\right)^{n_{1}-n_{2}-x_{1}-x_{2}}} \underset{\sum_{i=1}^{m} w_{i}\binom{n_{1}+n_{2}}{x_{1}+x_{2}} p_{i} x_{1}^{+x_{2}}}{\left(1-p_{i}\right)^{n_{1}-n_{2}-x_{1}-x_{2}}} \tag{4.10}
\end{equation*}
$$

where

$$
\sum_{i=1}^{m} w_{i}=1, \quad 0 \leq p_{i} \leq 1
$$

These equations are presented in this form to correspond with the computer program written to perform these and other calculations.

Optimum Acceptance and Rejection Number for the
First Sample

The same methodology outlined in the above section for determining c_{2} and r_{2} is also applied to the selection of the optimum acceptance and the rejection numbers for the first sample $\left(c_{1}\right.$ and r_{1}). There exists a logical relationship between the total expected cost of acceptance following the first sample $\left(T C A_{1}\right)$, the total expected cost of acceptance or rejection following the second sample $\left(T C C_{2}, T C C_{2}=T C A_{2}\right.$ $+\mathrm{TCR}_{2}$), and the total expected cost of rejection following the first sample (TCR_{1}). If the number of defectives in the first sample is 0 , this is often an indication that the lot may be good and acceptance should take place immediately. In this case, TCA_{1} will be less than or equal to TCC_{2} or TCR_{1}. This reason will hold for any value of x_{1} from 0 through some value, later to be designated c_{1}. As the number of defectives in the first sample (x_{1}) increases, there is uncertainty about the desirability of the lot and a decision is made to consider a second sample. In this case, $T C C_{2}$ will be the smallest among the three
expected costs. When x_{1} reaches a sufficiently large value, later to be designated r_{1}, the expected cost $T C R_{1}$ becomes smallest, indicating the desirability of rejecting on the first sample.

Using the above reasoning, it is desired to accept the lot following the first sample as long as x_{1} results in $T_{1} \leq T C C_{2} \leq \operatorname{TCR}_{1}$. If x_{1} is such that $T C A_{1}>T C C_{2}$, and $T C C_{2} \leq T C R_{1}$, then a second sample is observed. Finally, if $T C A_{1} \geq \mathrm{TCC}_{2}>\mathrm{TCR}_{1}$, the decision is made to reject the lot following the first sample.

Since the optimum acceptance and rejection numbers for the combined first and second samples (c_{2} and r_{2}) have already been decided, it is possible to calculate TCC_{2} by considering all possible values which x_{2} may assume, splitting the calculation into two parts (TCA_{2} and $T C R_{2}$). Then, by comparing $T C A_{1}$ against TCC_{2}, for any given first sample size $\left(n_{1}\right)$, it is possible to determine the highest value of x_{1} such that $T C A_{1} \leq T C C_{2}$. This value of x_{1} is the optimum first sample acceptance number, c_{1}.

Using the same logic, comparing the TCC_{2} against TCR_{1}, the smallest value of x_{1} may be found such that $T C C_{2}>T C R_{1}$. This number of defectives in the first sample $\left(x_{1}\right)$ is designated the rejection number for the first sample $\left(r_{1}\right)$. The cost function (3.24), (3.31), and (3.32) are reconsidered, on the basis of above logic, to determine the largest value of x_{1} such that:

$$
\begin{gather*}
\operatorname{TCA}_{1}\left(N, n_{1}, c_{1}, x_{1}\right) \leq \sum_{x_{2}=0}^{c_{2}^{-x}} \operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, x_{1}, x_{2}\right) h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
+\underset{x_{2}=c_{2}-x_{1}+1}{\sum_{2}^{2}} \operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, r_{2}, x_{1}, x_{2}\right) h_{n_{2}}\left(x_{2} \mid x_{1}\right) \tag{4.11}
\end{gather*}
$$

That is,

$$
\begin{align*}
& S_{0}+n_{1} S_{1}+x_{1} S_{2}+A_{0}\left[1-h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)\right]+\left(N-n_{1}\right) A_{1}+E\left[X-x_{1} \mid x_{1}\right] A_{2} \\
& \leq \sum_{x_{2}=0}^{c_{2}-x_{1}}\left\{S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+A_{0}\left[1-h_{N-n_{1}-n_{2}}\left(x-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)\right]\right. \\
& \left.\quad+\left(N-n_{1}-n_{2}\right) A_{1}+E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] A_{2}\right\} n_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& +\sum_{x_{2}=c_{2}-x_{1}+1}^{n_{2}}\left\{S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}+\left(N-n_{1}-n_{2}\right) R_{1}+E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] R_{2}\right\} \\
& \tag{4.12}
\end{align*}
$$

The above inequality may be determined once the values of $h_{N-n_{1}}\left(x-x_{1}=0 \mid x_{1}\right)$, $E\left[X-x_{1} \mid x_{1}\right], h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right), E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$, and $h_{n_{2}}\left(x_{2} \mid x_{1}\right)$ have been decided. Then, the largest value of x_{1} satisfying inequality (4.12) may be found; its value is designated c_{1}.

The cost functions (3.25), (3.31), and (3.32) are reconsidered to form another inequality used to determine the smallest value of x_{1} such that:

$$
\begin{align*}
& { }_{x_{2}=0}^{c_{2}^{-x_{1}}} \operatorname{TCA}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, x_{1}, x_{2}\right) h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& \quad+\sum_{x_{2}=c_{2}^{-x_{1}+1}}^{n_{2}} \operatorname{TCR}_{2}\left(N, n_{1}, n_{2}, c_{1}, r_{1}, r_{2}, x_{1}, x_{2}\right) h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& \quad>\operatorname{TCR}_{1}\left(N, n_{1}, c_{1}, x_{1}\right) \tag{4.13}
\end{align*}
$$

That is

$$
\begin{align*}
& \left.+\left(N-n_{1}-n_{2}\right) A_{1}+E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right] A_{2}\right\} \quad h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& +\sum_{x_{2}=c_{2}^{-x_{1}}+1}^{n_{2}^{2}}\left\{S_{0}+\left(n_{1}+n_{2}\right) S_{1}+\left(x_{1}+x_{2}\right) S_{2}+R_{0}+\left(N-n_{1}-n_{2}\right) R_{1}+E\left[x-x_{1}-x_{2} \mid x_{1}, x_{2}\right] R_{2}\right\} \\
& \text { - } h_{n_{2}}\left(x_{2} \mid x_{1}\right) \\
& >S_{0}+n_{1} S_{1}+x_{1} S_{2}+R_{0}+\left(N-n_{1}\right) R_{1}+E\left[X-x_{1} \mid x_{1}\right] R_{2} \tag{4.14}
\end{align*}
$$

The smallest value of x_{1} satisfying inequality (4.14) is the optimum rejection number designated r_{1}.

The values of $h_{N-n_{1}-n_{2}}\left(X-x_{1}-x_{2}=0 \mid x_{1}, x_{2}\right)$ and $E\left[X-x_{1}-x_{2} \mid x_{1}, x_{2}\right]$ have been established in the previous section. The values remaining undecided are $h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right), E\left[X-x_{1} \mid x_{1}\right]$, and $h_{n_{2}}\left(x_{2} \mid x_{1}\right)$.

Find $h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)$

The term $h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)$ is the probability that the number of defectives in the entire lot is the same as the actual number found in the first sample. That is, it is the posterior probability of having no defectives in the rest of a lot of size $N-n_{1}$ given that x_{1} defectives are observed in the first sample. This probability is usually quite small, except in the case where quality is extremely good and there are no defectives found in the sample because there are none in the lot.

For a Polya prior distribution, this probability may be found using Equation (3.8) for $h_{N-n_{1}}\left(X-x_{1} \mid x_{1}\right)$ and letting $X=x_{1}$:

$$
\begin{equation*}
h_{N-n_{1}}\left(X-x_{1}=0 \mid x_{1}\right)=\frac{\Gamma\left(t+N-x_{1}\right)}{\Gamma\left(t+n_{1}-x_{1}\right)} \frac{\Gamma\left(s+t+n_{1}\right)}{\Gamma(s+t+N)} \tag{4.15}
\end{equation*}
$$

For a mixed binomial prior distribution, this probability may be found using Equation (3.14):

$$
\begin{equation*}
h_{N-n_{1}}\left(x-x_{1}=0 \mid x_{1}\right)=\frac{\sum_{i=1}^{m} \dot{w}_{i} p_{i}^{x_{1}}\left(1-p_{i}\right)^{N-x_{1}}}{\sum_{i=1}^{m} w_{i} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}} \tag{4.16}
\end{equation*}
$$

$\underline{\text { Finding } E\left[X-x_{1} \mid x_{1}\right]}$

This term is the expected value of the number of defectives remaining in the lot $\left(X-x_{1}\right)$ given that x_{1} defectives have actually been observed in the first sample. Adapting Equation (4.7),

$$
\begin{equation*}
E\left[X-x_{1} \mid x_{1}\right]=\frac{\left(N-n_{1}\right)\left(x_{1}+1\right) g_{n_{1}+1}\left(x_{1}+1\right)}{\left(n_{1}+1\right)} g_{n_{1}}\left(x_{1}\right) \quad, \tag{4.17}
\end{equation*}
$$

For the Polya prior distribution, the posterior expectation is:

$$
\begin{align*}
E\left[x-x_{1} \mid x_{1}\right] & =\frac{\left(N-n_{1}\right)\left(x_{1}+1\right)\binom{n_{1}+1}{x_{1}+1} \frac{\Gamma\left(s+x_{1}+1\right)}{\Gamma(s)} \frac{\Gamma\left(t+n_{1}-x_{1}\right)}{\Gamma(t)} \frac{\Gamma(s+t)}{\Gamma\left(s+t+n_{1}+1\right)}}{\left(n_{1}+1\right)}\binom{n_{1}}{x_{1}} \frac{\Gamma\left(s+x_{1}\right)}{\Gamma(s)} \frac{\Gamma\left(t+n_{1}-x_{1}\right)}{\Gamma(t)} \frac{\Gamma(s+t)}{\Gamma\left(s+t+n_{1}\right)} \\
& =\frac{\left(N-n_{1}\right)\left(s+x_{1}\right)}{\left(s+t+n_{1}\right)} \tag{4.18}
\end{align*}
$$

For the mixed binomial prior distribution, the posterior expectation is:
$E\left[X-x_{1} \mid x_{1}\right)=\frac{\left(N-n_{1}\right)\left(x_{1}+1\right) \sum_{i=1}^{m} w_{i}\binom{n_{1}+1}{x_{1}+1} p_{i}{ }^{x_{1}+1}\left(1-p_{i}\right)^{n_{1}-x_{1}}}{\left(n_{1}+1\right)} \sum_{i=1}^{m} w_{i}\binom{n_{1}}{x_{1}} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}$
$\underline{\text { Finding } h_{n_{2}}\left(x_{2} \mid x_{1}\right)}$

This probability is the conditional distribution of the number of defectives found in a second sample x_{2}, given x_{1} defectives are found in the first sample. In order to solve for $h_{n_{2}}\left(x_{2} \mid x_{1}\right)$, it is necessary to realize that the posterior distribution of first sample will be the prior distribution of the second sample.

For the Polya distribution, Equation (3.8) is the posterior following the first sample and the prior preceding the second sample. That is:
$h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=\binom{N-n_{1}}{x-x_{1}} \frac{\Gamma(s+X) \Gamma(t+N-X) \Gamma\left(s+t+n_{1}\right)}{\Gamma\left(x+x_{1}\right) \Gamma\left(t+n_{1}-x_{1}\right) \Gamma(s+t+N)}$

Appendix B shows that the conditional distribution for the second sample is:
$h_{n_{2}}\left(x_{2} \mid x_{1}\right)=\binom{n_{2}}{x_{2}} \frac{\Gamma\left(s+x_{1}+x_{2}\right) \Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right) \Gamma\left(s+t+n_{1}\right)}{\Gamma\left(s+x_{1}\right) \quad \Gamma\left(t+n_{1}-x_{1}\right)} \Gamma \Gamma\left(s+t+n_{1}+n_{2}\right) \quad$
For the mixed binomial distribution, Equation (3.14) is the posterior following the first sample and the prior preceding the second sample. That is,
$h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=\frac{\sum_{i=1}^{m} w_{i}\binom{N-n_{1}}{x-x_{1}} p_{i}^{x}\left(1-p_{i}\right)^{N-X}}{\sum_{i=1}^{m} w_{i} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}}$

Appendix B shows that the conditional distribution for the second sample is:

$$
\begin{equation*}
h_{n_{2}}\left(x_{2} \mid x_{1}\right)=\sum_{i=1}^{m} \frac{w_{i}}{\sum_{i=1}^{m} w_{i}}\binom{n_{2}}{x_{2}} p_{i}^{x_{2}}\left(1-p_{i}\right)^{n_{2}-x_{2}} \tag{4.21}
\end{equation*}
$$

Now that all terms in inequalities (4.12) and (4.14) are explained, the optimum first sample acceptance and rejection numbers $\left(c_{1}, r_{1}\right)$ for any sample size pair $\left(n_{1}, n_{2}\right)$ may be found. The value c_{1} is the largest value of x_{1} for which inequality (4.12) is satisfied; r_{1} is the smallest value of x_{1} for which inequality (4.14) is satisfied.

Using the above inequalities and a simple search procedure, the optimum acceptance and rejection numbers for the first and second samples can be found explicitly for any sample size pair (n_{1}, n_{2}) of interest. There is no need to include decision variables ($c_{1}, r_{1}, c_{2}, r_{2}$) in an extensive and time consuming search.

Optimum Sample Size Pair

Optimizing the sample size pair involves finding the values of n_{1} and n_{2}, with their corresponding vector $\left(c_{1}, r_{1}, c_{2}, r_{2}\right)$ that minimize the total expected cost function (3.33). This might be done by trying every possible sample size pair, determining the optimum $c_{1}, r_{1}, c_{2}, r_{2}$ for each as outlined previously, and evaluating each set of decision variables in Equation (3.33). This, however, is time consuming and likely infeasible. Normally, double sampling plans have a consistent relationship between n_{1} and n_{2} such that $n_{2}=$ Constant $\times n_{1}$. If this condition is accepted, the only decision variable remaining to be solved is the first sample size n_{1}. A search procedure follows for selecting the optimal sampling plan.

Cost Surface

It is unknown whether the total cost surface as a function of n_{1} is truly convex. Yet, it is reasonably well behaved as shown in Figure IV.1. The value of $T C\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right)$ makes successive dips, each dip being associated with a particular acceptance/rejection number vector.

The minimum point of each dip becomes lower and lower, up to a point (the global optimum) at which time it begins to increase. It has been observed in this and previous research that the locus of TC values associated with an acceptance/rejection number vector is nearly convex, occasionally having only a small ripple containing, say, two local minima. It is suspected that these minor ripples are due to computer roundoff mechanisms. Since these are always so close in total cost, nothing practical is lost by treating each dip as strictly convex with but one local optimum. Also, the locus of the local minima have but one global optimum over all possible sample sizes. Finally, another observed property is that the sample size n_{1} at the global minimum total cost occurs approximately midway between the sample sizes at which the next lower and higher acceptance/rejection number vectors become optimum. Utilizing these properties, a search procedure follows for finding the optimum double sampling plan $\left(n_{1}, n_{2}, c_{1}, r_{1}, c_{2}, r_{2}\right)$.

Search Procedure

The procedure developed and programmed is to find the midpoint of the range of sample sizes for which the first acceptance/rejection number vector ($c_{1}, r_{1}, c_{2}, r_{2}$) is optimum. Then, the sample size n_{1} is increased (as is n_{2}) until the midpoint of the range of sample sizes for the next acceptance/rejection number vector is determined. At each

Figure IV.1. Total Expected Cost Per Lot Response Surface as a Function of First Sample Size, Using Optimum Acceptance/Rejection Number Vector for Each Sample Size Pair (The parameters ($\left.w_{1}, w_{2}, w_{3}, f_{1}, f_{2}, f_{3}\right)=(.6, .3, .1, .01, .1, .3)$ $\left.\left(S_{0}, S_{1}, S_{2}, A_{0}, A_{1}, A_{2}, R_{0}, R_{1}, R_{2}\right)=(3.0,2.5,1.9,10.0,0.0,40.0,5.0,2.0,1.9).\right)$
midpoint, the total cost is evaluated. This procedure continues until the total cost at a midpoint just begins to increase over that at the previous midpoint.

The search procedure then returns to the range of the last three acceptance/rejection number vectors. One by one, the sample sizes around each midpoint are evaluated and compared until the lowest cost is found. This minimum cost is then taken as the global optimum. An interactive computer program performs these calculations, within a format suitable for use by industry and government.

Summary

This chapter develops the theoretically exact analytical and search procedures for economically optimizing a double-sampling plan using a discrete mathematical model with the fixed cost expansion. Based upon the analysis and design in this chapter, the following results may be determined:
(1) Optimum acceptance and rejection numbers for the combined first and second samples ($c_{2}{ }^{*}$ and $r_{2}{ }^{*}$).
(2) Optimum acceptance and rejection numbers for the first sample ($c_{1}{ }^{*}$ and $r_{1}{ }^{*}$).
(3) Optimum double-sampling size pair and corresponding acceptance/ rejection number vector $\left(n_{1}{ }^{*}, n_{2}{ }^{*}, c_{1}{ }^{*}, r_{1}{ }^{*}, c_{2}{ }^{*}, r_{2}{ }^{*}\right)$.

The above original methodology is developed using a break-even approach and an appropriate search procedure. An interactive computer program is established for use by government and industry; its operation is covered in the next chapter.

CHAPTER V

USING THE INTERACTIVE COMPUTER PROGRAM

Introduction

This chapter details the use of an interactive computer program which permits easy utilization of the design, and evaluation methodology presented in Chapters III and IV. The actual FORTRAN program is documented and appears in Appendix A. It has been implemented on an IBM 370/168 using various time share terminals.

The entire program is interactive, and the user is prompted for all necessary inputs by the computer. Many typical or often-used values of inputs are pre-programmed. These are presented to the user for either verification or change. If the user changes any values, they are again presented for verification or change. Only when a set of inputs has been verified does the program continue.

When several values are to be input, they need only be separated by a comma or a space. With the prompting and verification feature, the input mechanism is virtually self-explanatory, as long as the user understands the terms being input and their mathematically feasible ranges. All relevant mathematical and computer terms and notation are explained in Chapters III and IV.

Overview

The modified Guthrie-Johns computer program provides the capability
for three major activities:
(1) Design an economically based sampling plan.
(2) Design the optimum acceptance/rejection number vector, given the sample size pair.
(3) Evaluate the expected cost of a sampling plan.

The flowchart of all major activities is presented in Figure V.1.
Designing an economically based sampling plan refers to the selection of the sample sizes $\left(n_{1}, n_{2}\right)$, acceptance numbers $\left(c_{1}, c_{2}\right)$, and rejection numbers $\left(r_{1}, r_{2}\right)$ needed to minimize the expected total cost per lot. Designing the optimum acceptance/rejection number vector refers to minimizing the expected total cost per lot given a prespecification of the sample size pair $\left(n_{1}, n_{2}\right)$. Evaluating the expected total cost of a sampling plan refers to calculating the expected total cost per lot for any desired double sampling plan.

The program begins by stating the three tasks for which it may be used:

THIS PROGRAM PERMITS YOU TO DO THE FOLLOWING THINGS:
(1) DESIGN AN ECOHOMICALLY BASED SAMPLING PLAH
(2) DESIGN THE OPM ACC/REJ VECTOR,GIVEN SAMP SIZE PAIR
(3) EVALUATE THE EXPECTED COST OF A SAMPLING PLAN

WHICH DO YOU WANT TO DO ? ENTER 1,2 ,OR 3
$\stackrel{?}{i}$
The user has entered a "1," indicating a desire to design an economically based sampling plan.

Designing An Economically Based Sampling Plan

Before proceeding with sampling plan design, the program verifies the user's selection:

YOU WANT TO DESIGN AN ECONCMICALLY BASED SAMPLING PLAN ! CORRECT ? NC (O) OR YES (1)
?
The user responds by confirming the desire to design an economically

Figure V.1. Flow Chart of All Major Activities in Modified Guthrie-Johns Computer Program

* 4 IF NCODE = O, PRIOR DISTRIBUTION IS MIXED BINOMIAL; OTHERWISE, IT IS POLYA *5 ATODES AUTOMATICALLY DESIGN AN EGONOMICALLY BASED SAMPLING PLAN

Figure V.1. (Continued)

* 4 IF NCODE $=0$, PRIOR DISTRIBUTION IS MIXED BINOMIAL; OTHERWISE, IT IS POLYA
* 6 COSCNT AUTOMATICALLY dESIGNS AN ECONOMICALly bASED DOUBLE SAMPLING PLAN GIVEN THE SAMPLE SIZE PAIR

Figure V.1. (Continued)

*4 IF NCODE = 0, prIOR DISTRIBUTION IS MIXED BINOMIAL; OTHERWISE, it IS POLYA

* 7 Coscal calculates the expected total cost of a double sampling plan

Figure V.1. (Continued)
based sampling plan. Had an error been made, the user would input a " 0 " and the program would start over automatically.

The user is next asked whether the Bayesian prior is a mixed binomial or Polya. In the following illustration, a Polya distribution is selected:

```
WHICH IS THE PRIOR DISTRIBUTION???
    MIXED BINOMIAL(O) OR PGLYA(1)
?
```

The current parameters of the Polya distribution are then displayed for verification. In the following illustration, the Polya parameters are correct:

POLYA PARAMETERS ARE $S=0.462103 \quad T=6.539455$
CORRECT??? NO(O) OR YES (1)
?
During subsequent runs of the program, the Polya parameters will remain fixed at these values unless changed. The nine cost values are next displayed for verification. In the following illustration, the cost factors are correct:

CORRECT??? NO(O) OR YES (1)
i
The constant factor is 1 :

```
    CONSTANT FACTOR = 1.00
```

 CORRECT??? NO(O) OR YES(1)
 $\stackrel{?}{i}$

The lot size is next displayed for verification. In the following illustration, the lot size is correct:

LOT SIZE $=500.00$
CORRECI??? $\mathrm{HO}(0)$ OR YES(1)
?
At this point, all necessary data have been entered in order to design the economically optimum double sampling plan. Output of the
results begins with a statement that this is an economically based sampling plan design. The lot size, optimal sample sizes $\left(n_{1} *, n_{2}{ }^{*}\right)$, distribution parameters, and cost values are then listed to provide the user with a permanent record of all relevant input. Next, the optimum acceptance and rejection numbers $\left(c_{1}{ }^{*}, r_{1}{ }^{*}, c_{2}{ }^{*}, r_{2}{ }^{*}\right)$ are listed. The last item output is the minimum expected total cost per lot.


```
***********************************************************************
```

economically based double sampling plan design
LOT SIZE $=500.0$ 1ST SAMP SIZE $=26.0$ 2ND SAMP SIZE $=26.0$
POLYA PARAMETERS ARE $S=0.462103 \mathrm{~T}=6.539455$
COST VALUES ARE $S 0=3.00 \quad S 1=2.50 \quad \mathrm{~S} 2=1.90 \quad \mathrm{~A}=10.00$
$\mathrm{A} 1=0.0 \quad \mathrm{~A} 2=40.00 \quad \mathrm{RO}=5.00 \quad \mathrm{R} 1=2.00 \quad \mathrm{R} 2=1.90$
ACC NO $1=0.0$ RJ NO $1=3.0 \mathrm{ACC} \mathrm{NO} 2=2.0 \mathrm{RJ} \mathrm{NO} 2=3.0$
TOTAJ COST $=\quad 712.344$
**

$* ~+~$

The opportunity to design another sampling plan, changing the prior distribution, parameters, and/or costs, is then offered. In the following illustration, the user does exercise this option:

```
WANT TO DESIGN PLAN USING NEW PRIOR/COST
    PARAMETERS??? NO(0) OR YES(1)
?
i
```

At this time, the program again requests the user to input the prior distribution. In the following illustration, a Polya distribution is requested again.

WHICH IS THE PRIOR DISTRIBUTION??? MIXED BINOMIAL(0) OR POLYA(1)
$?$
The current parameters of the Polya prior distribution are then displayed for verification. In the following illustration, the Polya parameters are not correct:

```
    POLYA PARAMETERS ARE }\textrm{S}=0.46210% T= 6.539455
    CORRECT??? NU(O) UR YES(1)
?
```

The user is then told to enter the two Polya parameters. These values must be non-negative; however, they need not be integers. The entries must be separated by a comma or a space:

```
    ENTER S,T
?
.679445,7.89941
```

The Polya parameters are again displayed for verification and found to be correct. During subsequent runs of the program, the Polya parameters
will remain fixed at these values unless changed:
POLYA PARAMETERS ARE $S=0.679445 \quad T=7.899410$
CORRECT??? NO(0) OR YES(1)
?
From this point, the program operates exactly as described previously, providing the opportunity to modify cost values, constant factor, and the lot size. Then, the results are presented:

```
COST VALUES ARE SO= 3.00 S1= 2.50 S2= 1.90 AO= 10.00
A1= 0.0 A2 = 40.00 R0= 5.00 R1= 2.00 R2= 1.90
CORRECT??? NO(O) OR YES(1)
?
CONSTANT FACTOR = 1.00
    CORRECT??? NO(0) OR YES(1)
i
    LOM SIZE = 500.00
    CORRECT??? NO(0) OR YES(1)
i
```

$* *$
$* *$
$* *$

**

Again, the opportunity to design a sampling plan using a new prior distribution and/or cost parameters is offered. In the following
illustration, a Polya distribution and different cost parameters are presented:

```
WANT TO DESIGN PLAN USSING NEN PRIOR/COST
        PARAMETERS??? NO(0) OR YES(1)
?
    WHICH IS THE PRICR DISTRIBUTIOLi???
        MIXED BIFOMIAL(0) OR POLYA(i)
?
    POLYA PARAMETERS ARE S= 0.679445 T= 7.899410
    CORRECT??? NO(O) OR YES(1)
?
    COST VALUES ARE SO= 3.CO S1=2.50 S2= 1.90, AO=10.00
    A1=0.0 A2 = 40.00 RO = 5.00 R1= 2.00 R2= 1.90
    CORRECT??? NO(O) OR YES(1)
?
    ENTER SO,S1,S2,AO,A1,A2,RO,R1, AND R2
?
3,2.5,1.56,10,.,40,5,2,1.56
    COST VALUES ARE SO = 3.00 S1=2.50 S2= 1.56 AO=10.00
    A1= 0.0 A2 = 40.00 RO = 5.00 R1=2.00 R2= 1.56
    CORRECT??? NO(O) OR YES(1)
?
1
    CONSTANT FACTOR = 1.00
    CORRECT??? NO(0) OR YES(1)
?
    LOT SIZE = 500.00
    CORRECT??? NO(O) OR YES(1)
?
    ****************************************************************************
    **************************************************************************
    ECONOMICALLY BASED DCUBLE SAMPLELIG PLAIF DESIGN
    LOT SIZE = 500.0 1SM SAMP SIZE = 29.0 2ND SAMP SIZE = 29.0
    POLYA PARANIETERS ARE S=0.679445 T=7.899410
    COST VALUES ARE SO= 3.00 S1= 2.50 S2= 1.56 AO= 10.00
    A1= 0.0 A2 = 40.00, RO= 5.00 R1= 2.00 R2= 1.56
    ACC NO 1=0.URJ NO 1=3.0 ACC NO 2 = 2.0 RJ NO 2 = 3.0
    TOTAL COST = 827.j82
    ************************************************************************
    **********************************************************************
***********************************************************************
```

Again, the opportunity to design a sampling plan using new prior/cost parameters is offered. In the following illustration, a mixed binomial distribution is selected:

```
WANT TO DESIGN PLAN USING NEW PRIOR/COST
    PARAMETERS??? NO(0) OR YES(1)
?
1
    WHICH IS THE PRIOR DISTRIBUTION???
        MIXED BINOMIAL(0) OR POLYA(1)
?
```

The current parameters of the mixed binomial distribution are then displayed for verification. In the following illustration, the mixed binomial parameters are not correct:

```
MIXED BINOMIAL PARAMEMERS ARE W1=0.6000 W2 =0.3000
W3=0.1000 F1=0.0100000 F2 = 0.1000000 F3=0.3000000
CORREC'???? NO(O) OR YES(1)
?
```

The user is then told to enter the six mixed binomial parameters. First, however, the user is reminded that the three weights $\left(w_{1}, w_{2}, w_{3}\right)$ must sum to 1 and all must be positive. Also, the three process fractions defective $\left(f_{1}, f_{2}, f_{3}\right)$ must be between 0 and 1 , but not 0 or 1 . A value of 0.0 would indicate a perfectly operating process, and would normally be a legitimate entry; however, certain mathematical operations disallow the use of a 0 , and a . 0000001 is recommended instead. Similarly, a .9999999 is recommended in place of a 1 . Even if one or two of the weights are 0 , the corresponding process fraction defective must be entered:

```
    REMEMBER, W1+W2+W3=1.0 AND ALL MUSI BE POSITIVE
    ALSO, F1, F2, AND FZ MUST BE BETWEEN O AND 1, BUT NOT O OR 1
    ENTER W1,W2,W3,F1,F2,F3
?
.58,.3,.12,.01,.1,..3
```

The mixed binomial parameters are again displayed for verification and found to be correct. During subsequent runs of the program the mixed binomial parameters will remain fixed at these values unless changed:

```
MIXED BINOMIAL PARAMETERS ARE W1=0.5800 W2=0.3000
W3=0.1200 F1=0.0100000 F2 = 0.1000000 Fj = 0.3000000
CORRECT??? NO(O) OR YES(1)
?
1
```

The nine cost values and lot size are next displayed for verification. In the following illustration, both of them are correct:

```
COST VALUES ARE SO= 3.00 S1=2.50 S2= 1.56 AO= 10.00
A1= 0.0 A2 = 40.00 R0 = 5.00 R1 = 2.00 R2= 1.56
CORRECT??? NO(O) OR YES(1)
?
CONSTANT FACTOR = 1.00
    CORRECT??? NO(O) OR YES(1)
?
    LOT SIZE = 500.00
    CORRECT??? NO(O) OR YES(1)
?
1
    *************************************************************************
    ***************************************************************************
    **************************************************************************
    ECONOMICALLY BASED DOUBLE SAMPLING PLAN DESIGN
    IOI SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMF SIZE = 30.0
    MIXED BINCMIAL PARAMETERS ARE W1=0.5800 W 2 =0.3000
    Wj=0.1200 Fi=0.0100000 F2=0.1000000 Fj= 0.j0000000
    COST VALUES ARE SO= 5.C S1= 2.50 S2= 1.56 AC= 10.00
    A1=0.0 A2 = 40.00 RO = 5.00 R1= 2.00 R2= 1.56
    ACC NO 1 = 0.0 RJ NU 1 = 3.0 ACC NU 2 = 2.0 RJ NO 2 = 3.0
    CUIAL COST = 679.475
    #********************************************************************
    ************责芜若*******************************************************
```


Again，the opportunity to design a sampling plan using new prior／ cost parameters is offered．In the following illustration，this opportunity is declined：

```
WANT TO DESIGN PLAN USING NEW PRIOR/COST
        PARANETERS??? NO(O) OR YES(1)
?
```

The user is then given the opportunity to begin the program over；this option is accepted：

WANT TO START OVER ？？？NO（O）OR YES（1）
？
1

Designing the Optimum Acceptance／Rejection
Number Vector

The program again lists the three activities permitted and request the user＇s choice．In the following illustration，design of the optimum
acceptance/rejection number vector given the sample size pair is
selected and verified:

```
    THIS FROGRAM PERMITS YOU TO DC THE FOLLOWING THTHGS:
    (1) DESIGA AN ECONOMICALLY BASED GARPLING PLAN
    (2) DESIGN THE OPM ACC/FEJ VECTOR, UIVEN SAMP SIZE PAIR
    (3) EVALUATE THE EXPECTED CCST OF A SAMPLING PLAT
    WHICH DO YOU WAHY TO DO ? ENTER 1,2 , OR 3
?
    YOU WANT TO DESIGN OPI ACC/REJ VECMOR GIVEN SANPIE SIZE PAIR !
    CORRECT ? NO (O) OR YES (1)
?
```

The prior distribution and costs are again presented for verification and possible modification:

```
    WH_CH IS THE PRIOR DISIRIBUTION???
        MiXED BINCMLAL(O) OR POLYA(1)
?
    MIXED BINCMIAL PARAMETERS ARE W1=0.5800 W2=0.;000
    Wj=0.1200 F1= 0.0100000 F2 = 0.1000000 Fj=0.j000000
    CURRECTI??? NO(O) OR YES(1)
?
    COST VALUES ARE SO= 3.00 S1=2.50 S2= 1.55 AO=10.00
    A1= 0.0 A2 = 40.00 RO= 5.00 R1= 2.00 R2= 1.56
    CORRECTI??? NO(O) OR YES(1)
?
```

Next, the lot size, and sample sizes are presented for verification.
In the following illustration, the sample sizes are to be changed:

```
LOT SIZE = 500.0 1ST SAMP SIZE = 60.0 2ND SMMP SIZE = 60.0
CORRECT1??? NO(O) OR YES(1)
?
```

The user is then told to enter the new lot size and sample sizes:

```
    ENTER LOT SIZE,1ST SAMP SIZE,AND 2ND SAMP SIZE
?
500,40,40
```

These values are again presented for verification:

```
LOT SIZE = 500.0 1ST SAMP SIZE = 40.0 2ND SAKP SIZE = 40.0
    CORRECM??? NO(0) OR YES(1)
?
```

At this point, all necessary data have been entered in order to find an optimum acceptance/rejection number vector. Output of the results begins with a statement that this optimum acceptance/rejection number
vector design. The lut size, sample sizes, prior distribution, cost parameters, and optin:um acceptance and rejection numbers are presented. Four additional cost terms are primarily useful for someone attempting to compare numerical results with the model formulation presented in Chapters III and IV. The general user will be interested only in the expected total cost:

```
**************************************************************************
*************************************************************************
*************************************************************************
OPTIMUN ACC/REJ \:MBER VECIOR DESIGN
LOT SIZE = 500.N1ST SAMP SIZE = 40.0 2ND SkMP SIZE = 40.0
MIXED BINOMIAL FAKAMENERS ARE W1=0.5800 W2=0.5000
W3=0.1200 F1= U. 100000 F2=0.1000000 F3=0.3000000
COST VALUES ARE }\because\because=3.00 S1=2.50 S2=1.56 AO = 10.00
A1 = 0.0 A2 - 40.00 RO = 5.00 R1 = 2.00 R2 = 1.56
ACC NO 1=1.0 \EJ NO 1=3.0 ACC NO 2= 3.0 REJ NO 2=4.0
ACC 1ST SAMP COS: = 209.18 REJ 1ST SAMP COSP = 413.12
ACC 2ND SAMP CON: = 17.67 REJ 2ND SAMP COST = 46.03
TOTAL COST = 685.990

The user is given the opportunity to evaluate another lot size or/and sample sizes, but maintaining the same prior distribution, parameters, and costs. In the fillowing illustration, the user does exercise this option:
```

WANT TO EVAL ANOr.GER SAMP PLAN USING LOT, SAMP SIZES
???
NO(O) OR YES(1)
i

```

The new lot size and sample sizes are requested:
```

 ENTER LOT SIZE,?:` SAMP SIZE,AND 2ND SAMP SIZE
 ?
400,25,25

```
and verified:
```

LOT SIZE = 400.0 1ST SAMP SIZE = 25.0 2ND SAMP SIZE = 25.0
CORRECT??? NO(O) \R YES(1)
?

```

The new results are ayain printed:


Again, the opportunity to evaluate a new lot or sample sizes is offered and declined:
```

 WANT TO EVAL ANOMHER SAMP PLAN USING LOT, SAMP SIZES ???
 NO(0) OR YES(1)
 ?

```

The opportunity to evaluate using new prior/cost parameters is offered. In the following illustration the user does exercise this option:

WANT TO DO ECCN EVAL USING NEW PRIOR/COST PARAMETERS ??? NO(O) OR YES(1)
\(?\)
At this time, the program requests the user to input the prior distribution. In the following illustration, a Polya distribution is requested:

WHICH IS THE PRIOR DISTRIBUTICN???
MIXED BINOMIAL(0) OR POLYA(1)
?
1
Note that the most recent parameters of Polya distribution are again displayed for verification and possible change, as are the costs, lot size, and sample sizes. Any of these may be changed if desired. The results are then printed:

POLYA PARAMETERS ARE \(S=0.679445 \quad T=7.899410\)
CORRECT??? NO(O) OR YES (1)
\(?\)
```

 ENTER S,T
 ?
.462103,6.539455
POLYA PARAMEMERS ARE }S=0.462103 T= 6.53945
CORRECT??? NO(O) OR YES(1)
i
COST VALUES ARE SO= 3.00 S{= 2.50 S2 = 1.56 AO = 10.00
A1=0.0 A2 = 40.00 RO= 5.00 R1= 2.00 R2= 1.56
CORRECT??? NO(O) OR YES(1)
?
LOT SIZE = 400.0 1ST SAMP SIZE = 25.0 2ND SAMP SIZE = 25.0
CORRECT??? NO(0) OR YES(1)
?
ENTER LOT SIZE,1ST SAMP SIZE,AND 2ND SAMP SIZE
?
500,30,30
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0
CORRECT??? NO(O) OR YES(1)
?
**

OPMIMUM ACC/REJ NUMBER VECTOR DESIGN
IUT S\&ZE = 500.0 1ST SAMP SLZE = %0.0 2ND.SAMP SIZE = 30.0
POLYA PARAMETERS ARE S=0.462103 T= 6.539455
COST VALUES ARE SO = 3.00 S1=2.50 S2 = 1.56 AO = 10.00
A1 = 0.0 A2 = 40.00 R0 = 5.00 R1 = 2.00 R2 = 1.56
ACC NO 1 = 0.0 REJ NO 1=4.0 ACC NO 2= 3.0 REJ NO 2=4.0
ACC 1ST SAMP COST = 142.18 REJ 1ST SAMP COST = 257.58
ACC 2ND SAMP COST = 164.99 REJ 2ND SAMP COSI = 162.81
TOTAL COST = 707.561

```

Again, the opportunity to find a new plan, or even use new prior/ cost parameters is offered. In the following illustration, these opportunities are declined:
```

 WANT TO EVAL ANOTHER SAMP PLAN USING LOT, SAMP SIZES ???
 NO(O) OR YES(1)
 ?
WANT TO DO ECON EVAL USING NEW PRIOR/COST
PARAME'ERS ??? NO(O) UR YES(1)
?

```

The user is then given the opportunity to start the program over again.
In the following illustration, this option is accepted:
WANT TO START OVER ??? NO(O) OR YES(1)
?

Evaluating the Expected Cost of a
Sampling Plan

Once again, the program will list three activities permitted and request the user's choice. In the following illustration, evaluating the expected cost of a sampling plan is selected and verified.
```

 THIS PROGRAM OPERMITS YOU TO DO THE FULLOWING THINGS:
 (1) DESIGN AN ECONOMICALLY BASED SAMPLING PLAN
 (2) DESIGN CHE OPM ACC/REJ VECTOR,GIVEN SAMP SIZE PAIR
 (3) EVALUATE THE EXPECTED COST OF A SAMPLING PLAN
 WHICH DO YUU WANT TO DC ? ENTER 1, 2,OR 3
 ?
YOU WANT TO EVALUȦTE THE EXPECTED COST OF A SAMPLING PLAN !
CORRECT ? NO (O) OR YES (1)
?

```

The prior distribution and costs are again presented for verification and possible modification. The cost parameters are not correct and all to be changed or verified:
```

WHICH IS THE PRIOR DISTRIBUTION???
MIXED BINOMIAL(0) OR POLYA(1)
?
MIXED BINOMIAL PARAMETERS ARE W1=0.5800 W2 =0.3000
W3=0.1200 F1=0.0100000 F2=0.1000000 F3=0.j000000
CORRECT??? NO(O) OR YES(1)
?
1
COST VALUES ARE SO = 3.00 S1 = 2.50 S2 = 1.56 AO=10.00
A1=0.0 A2 = 40.00 RO = 5.00 R1= 2.00 R2= 1.56
CORRECT??? NO(0) OR YES(1)
?
ENTER S0,S1,S2,AO,A1,A2,RO,R1, AND R2
?
3,2.5,1.9,10,0,40,5,2,1.9
COST VALUES ARE SO= 3.00 S1=2.50 S2= 1.90 AO= 10.00
A1= 0.0 A2 = 40.00 RO = 5.00 R1 = 2.00 R2= 1.90
CORREC1??? NO(O) OR YES(1)
?
i

```

Next, the lot size, sample sizes, acceptance, and rejection numbers are presented for verification:
```

LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0
CORRECT??? NO(O) OR YES(1)
?
ACC/REJ NUMBERS ARE C1 = 0.0 R1 = 4.0 C2= 3.0 R2= 4.0
CORRECT??? NO(O) OR YES(1)
i

```

At this point, all necessary data have been entered in order to evaluate the expected cost of a sampling plan. Output is listed as follows:
```


**
EXPECMED COST EVALUATION
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0
MIXED BINOMIAL PARAMETERS ARE W1=0.5800 W2=0.3000
W'j=0.1200 F1=0.0100000 F2 = 0.1000000 F3 = 0.j000000
COST VALUES ARE SO= 3.CO S1=2.50 S2 = 1.90 AO = 10.00
A1 = 0.0 A2 = 40.00 R0 = 5.00 R1 = 2.00 R2 = 1.90
ACC NO 1=0.0 REJ NO 1=4.0 ACC NO 2=3.0 REJ NO 2=4.0
ACC 1ST SAMP COST = 14%.42 REJ 1ST SAMP COST = 273.25
ACC 2ND SAMP CCST = 114.58 REJ 2ND SAMP COST = 171.03
TOTAL COST = 702.278

```


``` *****************************************************************
```

The user is given the opportunity to evaluate expected cost using a new lot size and/or sampling plan, but maintaining the same prior distribution, parameters, and costs. In the following illustration, the user does exercise this option:

```
 WANT TO EVAL ANONHER SAMP PLAN USING LOT,SAMP SIZES

The new lot size and sample sizes are requested:
```

    ENMER LOT SIZE, 1ST SAMP SIZE,AND 2ND SAMP SIZE
    ?
500,27,27

```
and verified:
```

LOT SIZE = 500.0 1SN SAMP SIZE = 27.0 2ND SAMP SIZE = 27.0
CORRECT??? NO(O) OR YES(1)
?
1

```

The acceptance and rejection numbers are verified:
```

    ACC/REJ NUMBERS ARE C1 = 0.0 R1= 4.0 C2= 3.0 R2= 4.0
    CORRECT???. NO(O) OR YES(1)
i

```

The new results are again printed:
```

***************************************************************************
****************************************************************************
**************************************************************************
EXPECTED COST EVALUATION
LOT SIZE = 500.0 1ST SAMP SIZE = 27.0 2ND SAMP SIZE = 27.0
MIXED BINOMLAL PARAMENERS ARE W1=0.5800 W2=0.3000
Wj=0.1200 F1 = 0.0100000 F2 = 0.1000000 F}\quad\textrm{F}=0.300000
COST VALUES ARE SO= 3.00 S1=2.50 S2 = 1.90 AO = 10.00
A1 = 0.0 A2 = 40.00 R0 = 5.00 R1 = 2.00 R2 = 1.90
ACC NO 1=0.0 REJ NO 1=4.0 ACC NO 2 = 3.0 REJ NO 2 = 4.0
ACC 1ST SAMP COST = 153.67 REJ 1ST SAMP COST = 247.75
ACC 2ND SAMP COST = 136.02 REJ 2ND SAMP COST = 174.56
TOTAL COST = . . 711.994

```

Again the opportunity to evaluate expected cost using a new lot size and/or sample sizes is offered and declined:
```

    WANT TO EVAL ANOTHER SAMP PLAN USING LOT,SAMP SIZES
                                    ???
    ```
 NO(0) OR YES (1)
?

The opportunity to evaluate expected cost, changing the prior distribution, parameters, and/or costs, is then offered. In the following illustration the user does exercise this option:
```

WANT TO CAICULATE COST USING NEW PRIOR/COST
PARMEMERS ??? NO(O) OR YES(1)
?

```

At this time, the program again requests the user to input the prior distribution. In the following illustration, a Polya distribution is requested:
```

WHICH IS THE PRIOR DISTRIBUTION???
MIXED BINOMIAL(0) OR POLYA(1)
8
1

```

Note that the most recent parameters of the Polya distribution are again displayed for verification and possible change, as are the costs, lot size, sampling sizes, and acceptance and rejection numbers. Any of these may be changed if desired. In the following illustration, the sampling plan decision variables are not correct and must be changed and verified. The results are then printed:
```

POLYA PARAMETERS ARE S= 0.462103 T= 6.539455
CORRECT??? NO(O) OR YES(1)
?
COST VALUES ARE SO= 3.00 S1=2.50 S2= 1.90 AO= 10.00
A1= 0.0 A2 = 40.00 RO = 5.00 R1= 2.00 R2= 1.90
CORRECT??? NO(O) OR YES(1)
?
LOT SIZE = 500.0 1ST SAMP SIZE = 27.0 2ND SAMP SIZE = 27.0
CORRECT??? NO(O) OR YES(1)
?
0
ENTER LOT SIZE, IST SAMP SIZE,AND 2ND SAMP SIZE
?
500,30,30
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0
CORRECI??? NO(0) OR YES(1)
?
1
ACC/REJ NUMBERS ARE C1 = 0.0 R1= 4.0 C2= 3.0 R2= 4.0
CORRECT??? NO(0) OR YES(1)
?
ENTER C1,R1,C2,AND R2
?
0,2,2,3
ACC/REJ NUMBERS ARE C1 = 0.0 R1= 2.0 C2= 2.0 R2= 3.0
CORRECI??? NO(O) OR YES(1)
?
1
************************************************************************

```

```

***********茾************************************************************
EXPECTED COST EVALUATICN
LOT SIZE = 500.0 1ST SAMP SIZE = 30.0 2ND SAMP SIZE = 30.0
POLYA PARAMETERS ARE S=0.462103 T= 6.5j9455
COST VALUES ARE SO= 3.00 S1= 2.50 S2 = 1.00 AO = 10.00
A1 = 0.0 A2 = 40.00 R0 = 5.00 R1 = 2.00 R2 = 1.90
ACC NO 1 = 0.0 REJ NO 1 = 2.0 ACC NO 2 = 2.0 REJ NO 2 = 3.0
ACC 1ST SAMP COST = 142.18 REJ 1ST SAMP COST = 441.05
ACC 2ND SANP CCST = 78.39 REJ 2ND SAMP COST = 59.17
TOTAL COST = 720.793
*********************************************************************

```

```

***********************************************************************

```

The user is again given the opportunity to evaluate the expected cost of using a new lot size, sampling plan, prior distribution, parameters, and/or costs, or to start the program from the beginning. In the following illustration, all options are declined:

WANT TO EVAL ANOTHER SAMP PJAN USING LOT, SAMP SIZES
?
```

WANT MO CALCULATE COST USING NEW PRIOR/COST
PARMETERS ??? NO(O) CR YES(1)
?
WANT TO START OVER ??? NO(O) OR YES(1)
?

```

At this time the user is finished with the program and may 10 g off.

\section*{Summary}

Nearly every feature of the program has been illustrated in this chapter. It is a powerful tool for designing an economically based sampling plan finding an optimum acceptance/rejection number vector for a given sample size pair, and evaluating the total cost of a sampling plan. It is directly usable in industrial and governmental situations as well as in teaching, where the underlying model and assumptions are applicable.

\section*{CHAPTER VI}

\section*{SENSITIVITY ANALYSIS}

\section*{Introduction}

The purpose of this chapter is to present a wide array of sensitivity analyses relevant to this research. Among the different situations discussed are the following:
(1) Sensitivity to sample size and different constant factors.
(2) Sensitivity to the cost coefficients.
(3) Sensitivity to the prior distribution.
(4) Comparison with optimum single sampling plan.

Tables are displayed to show the sensitivity properties in each case.

\section*{Sensitivity to Sample Size and \\ Different Constant Factors}

In actual industrial and government application, the second sample size \(n_{2}\) is nearly always set equal to some constant multiple of the sample size \(n_{1}\). In order to study the sensitivity of the cost model to sample size variations and different constant factors, suppose that the lot size is \(N=500\), the cost components of the original model are \(\left(S_{0}, S_{1}, S_{2}, A_{0}, A_{1}, A_{2}, R_{0}, R_{1}, R_{2}\right)=(3.0,2.5,1.9,10.0,0.0,40.0\), \(5.0,2.0,1.9\)), with mean and variance for the prior distribution (\(\mu, \sigma^{2}\)) \(=(32.999971,1952.98924)\). For the mixed binomial distribution, the
distribution, the parameters are \(\left(w_{1}, w_{2}, w_{3}, f_{1}, f, f_{3}\right)=(0.6,0.3\), \(0.1,0.01,0.1,0)\); for the Polya distribution, the parameters are \((s, t)=(0.4621,6.5394)\). The interactive computer program presented in Appendix A results in data summarized in Table Vi.1.

In Table VI.1, within each constant factor and prior distribution, the optimal sampling plan (\(n_{1}{ }^{*}, n_{2}^{*}, c_{1}{ }^{*}, r_{1}{ }^{*}, c_{2}^{*}, r_{2}{ }^{*}\)) and expected total cost TC* are presented. Given the optimal sample sizes, and maintaining the same constant factor of 2, other sample sizes are chosen which vary both \(\pm 10 \%\) and \(\pm 20 \%\) from the optimum. Using these new sample sizes, the optimal acceptance/rejection number vector and the resulting expected total cost are calculated. Table VI. 1 illustrates the fact that values in the neighborhood of optimum are very close in total cost. Although the sample sizes are as much as \(\pm 20 \%\) off of optimum, the expected total cost difference never exceeds \(2 \%\) for the examples considered.

Another important fact is that the optimal expected total cost occurs when the constant factor is 2 . That is, of those constant factors considered, a second sample size twice that of the first sample size \(\left(n_{2}=2 \times n_{1}\right)\) is the best choice. It should be remembered that only gross (typical) constant factors (CF) are used, including values of \(C F=.75,1,1.5,2,2.5\), and 3 . Sensitivity measures over the different constant factors considered, but within a prior distribution indicate that the expected total cost varies by only \(1 \%\) from optimum.

\section*{Sensitivity to the Cost Coefficients}

A number of additional problems are solved using various values of the cost coefficients assuming a lot size of \(N=500\). The mixed binomial and Polya prior distributions, using the cost coefficients of

TABLE VI. 1
SENSITIVITY OF THE EXPECTED TOTAL COST TO DIFFERENT SAMPLE SIZES AND DIFFERENT CONSTANT FACTORS
\begin{tabular}{rrrr}
\(N=500\) & \(S_{0}=3.0\) & \(A_{0}=10.0\) & \(R_{0}=5.0\) \\
\(S_{1}=2.5\) & \(A_{1}=0.0\) & \(R_{1}=2.0\) \\
\(S_{2}=1.9\) & \(A_{2}=40.0\) & \(R_{2}=1.9\) \\
\(\left(\mu, \sigma^{2}\right)\) & \(=(32.999971,1952.96924)\) &
\end{tabular}

For the Mixed Binomial Distribution, the Parameters Are
\[
\begin{array}{lll}
w_{1}=.6 & \dot{w}_{2}=.3 & \dot{w}_{3}=.1 \\
f_{1}=.01 & f_{2}=.1 & f_{3}=.3
\end{array}
\]

For the Polya Distribution, the Parameters Are
\[
s=0.4621026 \quad t=6.53945446
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline Constant Factor CF & Prior Distribution & \[
\begin{aligned}
& \text { Sampling Plan } \\
& n_{1} n_{2} c_{1} r_{1} c_{2} r_{2}
\end{aligned}
\] & Expected Total Cost TC & \begin{tabular}{l}
\% Cost \\
Increase \\
Over \\
Optimum \\
Within \\
CF and \\
Prior \\
Dist.
\end{tabular} & \begin{tabular}{l}
\% Cost \\
Increase \\
Over \\
Optimum \\
Within \\
Prior \\
Dist.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{0.5} & Mixed Binomial & \[
\begin{array}{ll}
28 & 14 \\
32 & 16 \\
36 & 18 \\
40 & 20 \\
44 & 22
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & 2
3
3
3
3 & \[
\begin{aligned}
& 581.880 \\
& 679.666 \\
& 676.130 \\
& 678.175 \\
& 679.740
\end{aligned}
\] & \[
\begin{aligned}
& 0.85 \% \\
& 0.52 \% \\
& 0.30 \% \\
& 0.34 \%
\end{aligned}
\] & 1.05\% \\
\hline & Polya & \begin{tabular}{ll}
25 & 12 \\
28 & 14 \\
31 & 15 \\
34 & 17 \\
37 & 18
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & 2
3
3
3
3 & \[
\begin{aligned}
& 719.035 \\
& 719.470 \\
& 717.669 \\
& 718.321 \\
& 721.121
\end{aligned}
\] & \[
\begin{aligned}
& 0.19 \% \\
& 0.25 \% \\
& \\
& 0.09 \% \\
& 0.48 \%
\end{aligned}
\] & 0.88\% \\
\hline \multirow{2}{*}{0.75} & Mixed Binomial & \[
\begin{array}{ll}
27 & 20 \\
30 & 22 \\
33 & 24 \\
36 & 27 \\
39 & 29
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & 3
3
3
3
3 & \[
\begin{aligned}
& 678.406 \\
& 673.933 \\
& 672.699 \\
& 674.100 \\
& 678.634
\end{aligned}
\] & \[
\begin{aligned}
& 0.85 \% \\
& 0.18 \% \\
& \\
& 0.21 \% \\
& 0.88 \%
\end{aligned}
\] & 0.54\% \\
\hline & Polya & \[
\begin{array}{ll}
23 & 17 \\
26 & 19 \\
29 & 21 \\
32 & 24 \\
35 & 26
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 2
3
3
3
3 & 1
2
2
2
2
2 & 2
3
3
3
3 & \[
\begin{aligned}
& 718.555 \\
& 714.969 \\
& 714.554 \\
& 716.709 \\
& 719.713
\end{aligned}
\] & \[
\begin{aligned}
& 0.56 \% \\
& 0.06 \% \\
& 0.30 \% \\
& 0.72 \%
\end{aligned}
\] & 0.44\% \\
\hline
\end{tabular}

TABLE VI. 1 (Continued)

TABLE VI. 1 (Continued)

the "original" model \(\left(S_{0}, S_{1}, S_{2}, A_{0}, A_{2}, R_{0}, R_{1}, R_{2}\right)=\) \((3.0,2.5,1.9,10.0,0.0,40.0,5.0,2.0,1.9)\) with mean and variance \(\left(\mu, \sigma^{2}\right)=(32.999971,1952.96924)\), are reconsidered. The cost values of \(S_{0}, S_{1}, A_{0}, A_{1}\), and \(R_{0}\) are held fixed, while values of \(R_{1}, R_{2}, S_{2}\), and \(A_{2}\) are varied and presented. The constant factor between \(n_{1}\) and \(n_{2}\) is held and assumed to be 1 . Two sensitivity measures, \(\Delta_{1}\) and \(\Delta_{2}\), have been developed to help to show the sensitivity properties of the expected total cost expression to different cost coefficients.

The first measure, \(\Delta_{1}\), is expressed as
\[
\Delta_{1}=\frac{T C_{C C}\left(\underline{P}_{0}, \underline{C}_{C}, \underline{P}_{C}^{*}\right)-T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{0}^{*}\right)}{T C_{00}\left(\underline{P}_{0}, C_{0}, \underline{P}_{0}^{*}\right)} \times 100 \%
\]
where
\[
\begin{aligned}
\underline{C}_{0}\left(\underline{C}_{C}\right)= & \text { the original (changed) cost parameter vector } \\
\underline{P}_{0}^{*}\left(\underline{P}_{C}^{*}\right)= & \text { the optimum original (changed) decision variabie } \\
& \text { vector including sample sizes and acceptance and } \\
& \text { rejection numbers as optimized in the original } \\
& \text { (changed) cost environment } \\
\underline{P}_{0}\left(\underline{P}_{C}\right)= & \text { the original (changed) prior distribution parameter } \\
& \text { vector }
\end{aligned}
\]
\(T_{C C}\left(\underline{P}_{0}, \underline{C}_{C}, \underline{P}_{C}^{*}\right)=\) the total expected cost predicted by the original prior distribution, under a changed cost vector, using the sampling plan determined to be optimal under the changed cost vector.
\(T C_{00}\left(P_{0}, C_{0}, P_{-0}^{*}\right)=\) the total expected cost predicted by the original prior distribution, under the original cost vector, using the sampling plan determined to be optimal under the original cost vector

Thus, \(\Delta_{1}\) represents a measure of inaccuracy of the changed cost model when used to determine what is believed to be an optimal sampling plan which is then evaluated to predict total expected cost.

The second measure, \(\Delta_{2}\), is expressed as
\[
\Delta_{2}=\frac{T C_{0 C}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{-}^{*}\right)-T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{0}^{*}\right)}{T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{0}^{*}\right)} \times 100 \%
\]
where
\(\mathrm{TC}_{O C}\left(\underline{P}_{-0}, \underline{C}_{0}, \mathrm{P}_{-}{ }^{*}\right)=\) the total expected cost predicted by the original prior distribution, under the original cost vector, using the sampling plan determined to be optimal under the changed cost vector.

Thus, \(\Delta_{2}\) expressed a measure of how costly it will be to use the changed cost model's optimum plan in the original cost model environment. That is, \(\Delta_{2}\) is a measure which compares the two models as selectors of the optimal sampling plan.

The value of each changed cost parameter in the set \(\left(A_{2}, S_{2}, R_{2}\right)\) is varied up and down \(\pm 20 \%\) from the "original" values. Cost parameter \(R_{1}\) differs \(\pm 10 \%\) and \(\pm 20 \%\) from the "original" model (i.e., 1.6, 1.8, 2.0, 2.2, 2.4 over five cases). The optimal sampling plans, total expected costs, and sensitivity measures are as shown in Table VI. 2.

From Table VI.2, it is seen that as \(S_{2}=R_{2}\) increases while other coefficients remain fixed, the optimal expected total costs increase while the sample sizes either decrease or remain the same. Thus, increasing \(S_{2}\) and \(R_{2}\) causes the plans to be less discriminating. As \(\operatorname{cost} A_{2}\) increases for fixed other coefficients, the optimal expected total cost increases while the sample sizes increase and the acceptance/ rejection number vector either decreases or remains the same. Thus,

TABLE VI. 2
SENSITIVITY TO THE COST COEFFICIENTS

Optimal Double Sampling Plans for \(N=500\), Selected Cost Coefficients, and Mixed Binomial and Polya Priors With Mean \(=32.999971\) and Variance \(=1952.96924\)

TABLE VI. 2 (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline & & & 1.6 & \\
\hline & & 1.52 & 1.90 & 2.28 \\
\hline & & 24,24,0,2,1,2 & 24,24,0,2,1,2 & 24,24,0,2,1,2 \\
\hline & & \(T_{C C}=627.849\) & \(T_{C C}=638.639\) & \(T_{C C}=649.428\) \\
\hline & 40 & \(\Delta_{1}=-11.86 \%\) & \(\Delta_{1}=-10.35 \%\) & \(\Delta_{1}=-8.83 \%\) \\
\hline & & \(\mathrm{TC}_{0 \mathrm{O}}=712.809\) & \(T C_{0 C}=712.809\) & \(\mathrm{TC}_{\text {OC }}=712.809\) \\
\hline & & \(\Delta_{2}-0.07 \%\) & \(\Delta_{2}=0.07 \%\) & \(\Delta_{2}=0.07 \%\) \\
\hline & & 29,29,0,2,1,2 & 29,29,0,2,1,2 & 29,29, 0,2,1,2 \\
\hline & & \(\mathrm{TC}_{C C}=658.389\) & \({ }^{T} C_{C C}=669.526\) & \({ }^{T} C_{C C}=680.662\) \\
\hline & 48 & \(\Delta_{1}=-7.57 \%\) & \(\Delta_{1}=-6.01 \%\) & \(\Delta_{1}=-4.45 \%\) \\
\hline & & \[
T C_{O C}=714.626
\] & \[
T C_{O C}=714.626
\] & \[
T C_{O C}^{+}=614.626
\] \\
\hline & & \[
\Delta_{2}=0.32 \%
\] & \[
\Delta_{2}=0.32 \%
\] & \[
\Delta_{2}=0.32 \%
\] \\
\hline & & & & \\
\hline & \[
A_{2}
\] & 1.52 & 1.90 & 2.28 \\
\hline & & 26,26,0,3,2,3 & 26,26,0,3,2,3 & 26,26,0,3,2,3 \\
\hline & & \(\mathrm{TC}_{C C}=590.924\) & \(\mathrm{TC}_{C C}=601.678\) & \({ }^{T} C_{C C}=612.423\) \\
\hline & 32 & \(\Delta_{1}=-11,87 \%\) & \(\Delta_{1}=-10.27 \%\) & \(\Delta_{1}=-8.67 \%\) \\
\hline & & \(T C_{\text {OC }}=672.360\) & \(T C_{0 C}=672.360\) & \(\mathrm{TC}_{0 \mathrm{C}}=672.360\) \\
\hline Mixed & & \(\Delta_{2}=0.27 \%\) & \(\Delta_{2}=0.27 \%\) & \(\Delta_{2}=0.27 \%\) \\
\hline Binomial & & 31,31,0,3,2,3 & 31,31,0,3,2,3 & 31,31,0,3,2,3 \\
\hline & & \(\mathrm{TC}_{C C}=623.414\) & \(T_{C C}=634.500\) & \(T_{C C}=645.598\) \\
\hline & 40 & \(\Delta_{1}=-7.03 \%\) & \(\Delta_{1}=-5.37 \%\) & \(A_{1}=3.72 \%\) \\
\hline & & TC \({ }_{\text {OC }}=670.547\) & TC \({ }_{\text {OC }}=670.547\) & TC \({ }_{\text {OC }}=670.547\) \\
\hline & & \(\Delta_{2}=0.0007 \%\) & \(\Delta_{2}=0.0007 \%\) & \(\Delta_{2}=0.0007 \%\) \\
\hline
\end{tabular}

TABLE VI. 2 (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{\(\mathrm{R}_{1}=1.8\)} \\
\hline & \[
A_{2}
\] & 1.52 & 1.90 & 2.28 \\
\hline & \multirow{3}{*}{48} & 33,33,0,3,2,3 & 33,33,0,3,2,3 & 33,33, 0,3,2,3 \\
\hline \multirow[t]{2}{*}{Mixed
Binomial} & & \[
\begin{aligned}
\mathrm{TC}_{C C} & =652.051 \\
\Delta_{1} & =-2.76 \%
\end{aligned}
\] & \[
\begin{aligned}
\mathrm{TC}_{C C} & =663.245 \\
\Delta_{1} & =-1.09 \%
\end{aligned}
\] & \[
\begin{aligned}
\mathrm{TC}_{C C} & =674.438 \\
\Delta_{1} & =0.58 \%
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
\mathrm{TC}_{0 \mathrm{C}}^{1} & =672.535 \\
\Delta_{2} & =0.30 \%
\end{aligned}
\] & \[
\begin{aligned}
\mathrm{TC}_{0 \mathrm{C}} & =672.535 \\
\Delta_{2} & =0.30 \%
\end{aligned}
\] & \[
\begin{aligned}
T C_{0 C} & =672.535 \\
\Delta_{2} & =0.30 \%
\end{aligned}
\] \\
\hline \multirow{15}{*}{Polya} & \multirow{5}{*}{32} & 22,22,0,3,2,3 & 22,22,0,3,2,3 & 22,22,0,3,2,3 \\
\hline & & \(\mathrm{TC}_{C C}=620.729\) & \(\mathrm{TC}_{C C}=630.702\) & \(\mathrm{TC}_{C C}=640.676\) \\
\hline & & \(\Delta_{1}=-12.86 \%\) & \(\Delta_{1}=-11.46 \%\) & \(\Delta_{1}=-10.06 \%\) \\
\hline & & \(\mathrm{TC}_{0 \mathrm{C}}=715.214\) & \(\mathrm{TC}_{0 C}=715.214\) & TC \({ }_{0 C}=615.214\) \\
\hline & & \(\Delta_{2}=0.4 \%\) & \(\triangle_{2}=0.4 \%\) & \(\Delta_{2}=0.4 \%\) \\
\hline & \multirow{5}{*}{40} & 27,27,0,3,2,3 & 26,26,0,3,2,3 & 26,26,0,3,2,3 \\
\hline & & \(\mathrm{TC}_{\text {CC }}=666.453\) & \(\mathrm{TC}_{C C}=676.952\) & \(T_{C C}=687.356\) \\
\hline & & \(\Delta_{1}=-6.44 \%\) & \(\Delta_{1}=-4.97 \%\) & \(\Delta_{1}=-3.51 \%\) \\
\hline & & \(\mathrm{TC}_{0 \mathrm{C}}=713.038\) & \(\mathrm{TC}_{\text {OC }}=712.344\) & TC \({ }_{\text {OC }}=712.344\) \\
\hline & & \(\Delta_{2}=0.10 \%\) & \(\Delta_{2}=0.0 \%\) & \(\Delta_{2}=0.0 \%\) \\
\hline & \multirow{5}{*}{48} & 31,31,0,2,2,3 & 31,31,0,2,2,3 & 31,31,0,2,2,3 \\
\hline & & \(\mathrm{TC}_{C C}=701.382\) & \(\mathrm{TC}_{C C}=712.336\) & \(T_{C C}=723.291\) \\
\hline & & \(\Delta_{1}=-1.54 \%\) & \(\Delta_{1}=-0.001 \%\) & \(\Delta_{1}=1.54 \%\) \\
\hline & & \(\mathrm{TC}_{0 \mathrm{C}}=717.311\) & \(\mathrm{TC}_{0 \mathrm{O}}=717.311\) & \(T C_{0 C}=717.311\) \\
\hline & & \(\Delta_{2}=0.70 \%\) & \(\Delta_{2}=0.70 \%\) & \(\Delta_{2}=0.70 \%\) \\
\hline
\end{tabular}

TABLE VI. 2 (Continued)

TABLE VI. 2 (Continued)

TABLE VI. 2 (Continued)

TABLE VI. 2 (Continued)

Thus, increasing \(A_{2}\) often makes the plans more discriminating, causing fewer lots to be accepted. Finally, if cost \(R_{1}\) is increased while other coefficients remain fixed, the optimal expected total cost increases while the sample sizes decrease and the decision variables either increase or remain the same. This causes plans to again be less discriminating.

The \(\Delta_{1}\) measurement, and hence the model as a predictor of total expected cost, is most sensitive to changes in the cost coefficient \(R_{1}\). That is, the inaccuracy of the changed cost model is relatively high when first used to determine what is believed to be an optimal sampling plan, and when then used to evaluate what is believed to be optimal total expected cost. A \(10 \%\) change in the value of \(R_{1}\) causes about a \(5.3 \%\) change in the value of \(\Delta_{1}\) for the mixed binomial prior, and a \(4.7 \%\) change for the Polya prior case. A \(20 \%\) change in the value of \(A_{2}\) causes a change of about \(4-5 \%\) in \(\Delta_{1}\) for the mixed binomial prior case, and a \(5-7 \%\) change for the Polya prior case. The performance measure \(\Delta_{1}\) is least sensitive to changes in the cost coefficients \(S_{2}\) and \(R_{2}\). A \(20 \%\) change in the values of either \(S_{2}\) or \(R_{2}\) causes about \(1.3-1.8 \%\) change in performance measure \(\Delta_{1}\) for both the mixed binomial and Polya prior distribution cases.

Changes in cost coefficients do not have a significant effect in selection of a sampling plan which is then evaluated in the correct cost environment. That is, to use the changed cost model's optimum plan in the original cost model environment is not terribly costly under reasonable circumstances. From Table VI.2, the \(\Delta_{2}\) values are usually below \(1 \%\); sometimes \(\Delta_{2}\) goes to \(2 \%\). In any case, there is no big difference in using the changed cost model's optimum plan in the original cost model, so long as incorrect estimates of the cost coefficients \(R_{1}\),
\(R_{2}, S_{2}\), and \(A_{2}\) are within \(20 \%\) of the correct value.

\section*{Sensitivity to the Prior Distribution}

Additional problems are solved to investigate the sensitivity of the total expected cost to the parameters of the prior distribution. Only the Polya prior distribution with lot size \(N=500\) and three different sets of cost parameters are considered. The values of the mean and standard deviation \((\mu, \sigma)=(3.3,44)\). The constant factor relating \(n_{1}\) and \(n_{2}\) is assumed to be 1 . Two other sensitivity measures, \(\Delta_{3}\) and \(\Delta_{4}\), have been developed for studying the sensitivity to the prior distribution.

The first measure, \(\Delta_{3}\), may be expressed as
\[
\Delta_{3}=\frac{T C_{C C}\left(\underline{P}_{C}, \underline{C}_{0}, \underline{P}_{C}^{*}\right)-T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{0}^{*}\right)}{T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{-0}^{*}\right)} \times 100 \%
\]
where
\({ }^{T C} C_{C C}\left(P_{C}, C_{-0}, P_{C} *\right)=\) the total expected cost calculated, using the changed prior distribution and the sampling plan determined to be optimal using the changed prior distribution while holding the cost vector at the original values. \(T C_{00}\left(\underline{P}_{0}, \underline{C}_{0}, \underline{P}_{0}^{*}\right)=\) the total expected cost calculated using the original prior distribution and the sampling plan determined to be optimal using the original prior distribution while holding the cost vector at the original values.

Thus, \(\Delta_{3}\) expresses a measure of inaccuracy of the model when using the changed prior distribution to determine what is believed to be an optimal sampling plan which is then evaluated to predict total expected cost.

The other measure, \(\Delta_{4}\), may be expressed as
\[
\Delta_{4}=\frac{T C_{C}\left(\underline{P}_{-0}, C_{0}, P_{-}^{*}\right)-T C_{00}\left(P_{0}, C_{0}, \underline{P}_{-0}^{*}\right)}{T C_{00}\left(\underline{P}_{-0}, C_{0}, P_{0}^{*}\right)} \times 100 \%
\]
where
\(\mathrm{TC}_{O C}\left({ }_{-}{ }_{0}, \mathrm{C}_{0},{ }^{\mathrm{P}}{ }_{-}\right.\). \()=\)the total expected cost predicted using the original prior distribution, but also using the sampling plan determined to be optimal under the changed prior distribution. The cost vector is held at its original values.

Thus, \(\Delta_{4}\) represents a measure of how costly it will be to use the changed prior distribution's optimum plan in the original prior distribution environment. That is, \(\Delta_{4}\) is a measure which compares the two models as selectors of the optimal sampling plan.

The optimal sampling plans, total expected costs, and sensitivity measures, \(\Delta_{3}\) and \(\Delta_{4}\), are as shown in Table VI.3. Calculations are made under three different sets of cost parameters.

It is found that as the prior mean increases, the sample sizes increase and the acceptance/rejection number vector either increases or remains the same. For increases in the prior standard deviation, the sample sizes decrease and the acceptance/rejection number vector either decreases or remains the same.

The total expected cost is more sensitive to a changed prior mean than it is to a changed prior standard deviation, as evidenced by the \(\Delta_{3}\) measurement. For example, a \(\pm 20 \%\) change in the prior mean, while holding constant the value of the standard deviation, produces approximately a \(\pm 17-20 \%\) change in total expected cost. A \(\pm 20 \%\) change in the prior standard deviation, while holding the value of the mean constant, causes about a \(12-14 \%\) change in the total expected cost. That is, the changed

TABLE VI. 3

\section*{SENSITIVITY TO THE PRIOR DISTRIBUTION}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Optimum Double Sampling Plans for Different Polya Priors, \(N=500\)} \\
\hline \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& S_{0}=3.0 \\
& S_{1}=2.5 \\
& S_{2}=1.9
\end{aligned}
\]}} & \(=10.0\) & \(\mathrm{R}_{0}=5.0\) \\
\hline & & \(=0.0\) & \(R_{1}=2.0\) \\
\hline & & \(=40.0\) & \(\mathrm{R}_{2}=1.9\) \\
\hline \multicolumn{4}{|c|}{Mean} \\
\hline \multicolumn{4}{|l|}{Deviation} \\
\hline \multirow{7}{*}{35} & \(s=0.496236265\) & \(s=0.784033477\) & \(s=1.13327789\) \\
\hline & \(t=8.90217590\) & \(t=11.0952587\) & \(t=13.1757803\) \\
\hline & 25,25,0,3,2,3 & 28,28,0,3,2,3 & 36,36,0,3,3,4 \\
\hline & \(\mathrm{TC}_{C C}=670.379\) & \(T_{C C}=818.061\) & \(\mathrm{TC}_{C C}=934.881\) \\
\hline & \(\Delta_{3}=-6.17 \%\) & \(\Delta_{3}=14.50 \%\) & \(\Delta_{3}=30.85 \%\) \\
\hline & \(\mathrm{TC}_{0 \mathrm{C}}=714.849\) & \(\mathrm{TC}_{0 \mathrm{C}}=715.453\) & \(\mathrm{TC}_{0 \mathrm{O}}=721.822\) \\
\hline & \(\Delta_{4}=0.05 \%\) & \(\Delta_{4}=0.14 \%\) & \(\Delta_{4}=1.03 \%\) \\
\hline \multirow{7}{*}{44} & \(s=0.29196322\) & \(s=0.466807723\) & \(s=0.679445982\) \\
\hline & \(t=5.23764229\) & \(t=6.60603619\) & \(t=7.89940834\) \\
\hline & 23,23,0,3,2,3 & 26,26,0,3,2,3 & 27,27,0,3,2,3 \\
\hline & \(\mathrm{TC}_{\text {CC }}=589.304\) & \(T_{C C}=714.475\) & \(\mathrm{TC}_{\text {CC }}=838.852\) \\
\hline & \(\Delta_{3}=-20.32 \%\) & & \(\Delta_{3}=17.41 \%\) \\
\hline & \(\mathrm{TC}_{0 \mathrm{C}}=716.235\) & & \(T C_{0 C}=838.852\) \\
\hline & \(\Delta_{4}=0.25 \%\) & & \(\triangle_{4}=0.09 \%\) \\
\hline \multirow{7}{*}{53} & \(s=0.183852911\) & \(s=0.299380422\) & \(s=0.440567017\) \\
\hline & \(t=3.29820919\) & \(t=4.23668575\) & \(t=5.12214565\) \\
\hline & 22,22,0,3,2,3 & 23,23,0,3,2,3 & 27,27,0,3,2,3 \\
\hline & \(\mathrm{TC}_{C C}=483.527\) & \(T_{C C}=622.638\) & \(T_{C C}=747.632\) \\
\hline & \(\Delta_{3}=-32.32 \%\) & \(\triangle_{3}=-12.85 \%\) & \(\Delta_{3}=4.64 \%\) \\
\hline & \(\mathrm{TC}_{0}=717.399\) & \(T C_{0 C}=716.235\) & TC \({ }_{0 C}=715.495\) \\
\hline & \(\Delta_{4}=0.41 \%\) & \(\Delta_{4}=0.27 \%\) & \(\Delta_{4}=0.09 \%\) \\
\hline
\end{tabular}

TABLE VI. 3 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& s_{0}=3.0 \\
& s_{1}=2.5 \\
& s_{2}=1.52
\end{aligned}
\] & \[
\begin{aligned}
& A_{0}=10.0 \\
& A_{1}=0.0 \\
& S_{2}=32.0
\end{aligned}
\] & \[
\begin{aligned}
& R_{0}=5.0 \\
& R_{1}=1.6 \\
& R_{2}=1.52
\end{aligned}
\] \\
\hline Standard Deviation & Mean 26.4 & 33.0 & 39.6 \\
\hline 35 & \[
\begin{gathered}
\mathrm{s}=0.496236265 \\
\mathrm{t}=8.90217590 \\
23,23,0,3,2,3 \\
\mathrm{TC} \mathrm{CC}=553.538 \\
\Delta_{3}=-5.79 \% \\
\mathrm{TC}_{\mathrm{OC}}=529.566 \\
\Delta_{4}=0.33 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=0.784033477 \\
\mathrm{t}=11.0952587 \\
24,24,0,2,2,3 \\
\mathrm{TC} C_{C C}=673.778 \\
\Delta_{3}=14.67 \% \\
T C_{0 C}=589.621 \\
\Delta_{4}=0.34 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=1.13327789 \\
\mathrm{t}=13.1757803 \\
26,26,0,2,2,3 \\
\mathrm{TC}_{\mathrm{CC}}=769.309 \\
\Delta_{3}=30.92 \% \\
\mathrm{TC}_{0 \mathrm{C}}=591.226 \\
\Delta_{4}=0.62 \%
\end{gathered}
\] \\
\hline 44 & \[
\begin{gathered}
\mathrm{s}=0.29196322 \\
\mathrm{t}=5.23764229 \\
18,18,0,2,1,2 \\
\mathrm{TC} C_{\mathrm{CC}}=469.853 \\
\Delta_{3}=-20.04 \% \\
\mathrm{TC} C_{0 C}=590.913 \\
\Delta_{4}=0.56 \%
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{s}=0.466807723 \\
& \mathrm{t}=6.60603619 \\
& 22,22,0,2,2,3 \\
& \mathrm{TC}_{\mathrm{CC}}=587.604
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{s}=0.679445982 \\
\mathrm{t}=7.89940834 \\
25,25,0,2,2,3 \\
\mathrm{TC} \mathrm{CC}^{=}=690.325 \\
\triangle_{3}=17.48 \% \\
\mathrm{TC} \mathrm{C}_{0 \mathrm{C}}=590.555 \\
\Delta_{4}=0.50 \%
\end{gathered}
\] \\
\hline 53 & \[
\begin{gathered}
\mathrm{s}=0.183852911 \\
\mathrm{t}=3.29820919 \\
16,16,0,2,1,2 \\
\mathrm{TC} \mathrm{CC}=398.069 \\
\Delta_{3}=-32.25 \% \\
T C_{0 C}=593.757 \\
\Delta_{4}=1.05 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=0.299380422 \\
\mathrm{t}=4.23668575 \\
19,19,0,2,1,2 \\
\mathrm{TC}_{\mathrm{CC}}=513.258 \\
\Delta_{3}=-12.65 \% \\
\mathrm{TC}_{0 \mathrm{C}}=590.282 \\
\Delta_{4}=0.46 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=0.440567017 \\
\mathrm{t}=5.12214565 \\
24,24,0,2,2,3 \\
\mathrm{TC}_{\mathrm{CC}}=615.586 \\
\Delta_{3}=4.76 \% \\
\mathrm{TC}_{0 \mathrm{C}}=589.621 \\
\Delta_{4}=0.34 \%
\end{gathered}
\] \\
\hline
\end{tabular}

TABLE VI. 3 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \mathrm{S}_{0}=3.0 \\
& \mathrm{~S}_{1}=2.5 \\
& \mathrm{~S}_{2}=2.28
\end{aligned}
\] & \[
\begin{aligned}
& A_{0}=10.0 \\
& A_{1}=0.0 \\
& A_{2}=48.0
\end{aligned}
\] & \[
\begin{aligned}
& R_{0}=5.0 \\
& R_{1}=2.4 \\
& R_{2}=2.28
\end{aligned}
\] \\
\hline Standard Deviation & Mean
\[
26.4
\] & 33.0 & 39.6 \\
\hline 35 & \[
\begin{gathered}
\mathrm{s}=0.496236265 \\
\mathrm{t}=8.90217590 \\
25,25,0,3,2,3 \\
\mathrm{TC} C_{C C}=786.217 \\
\Delta_{3}=-6.25 \% \\
\mathrm{TC}_{0 \mathrm{C}}=839.768 \\
\Delta_{4}=0.13 \%
\end{gathered}
\] & \[
\begin{gathered}
s=0.784033477 \\
t=11.0952587 \\
35,35,0,4,3,4 \\
T C_{C C}=957.512 \\
\Delta_{3}=14.17 \% \\
T C_{0 C}=839.202 \\
\Delta_{4}=0.06 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=1.13327789 \\
\mathrm{t}=13.1757803 \\
38,38,0,4,3,4 \\
\mathrm{TC} \mathrm{CC}=1094.418 \\
\Delta_{3}=30.17 \% \\
\mathrm{TC}_{0 \mathrm{C}}=842.152 \\
\Delta_{4}=0.42 \%
\end{gathered}
\] \\
\hline 44 & \[
\begin{gathered}
\mathrm{s}=0.29196322 \\
\mathrm{t}=5.23764229 \\
24,24,0,3,2,3 \\
\mathrm{TC} C_{C C}=567.176 \\
\Delta_{3}=-20.45 \% \\
\mathrm{TC}_{0 \mathrm{C}}=840.526 \\
\Delta_{4}=0.22 \%
\end{gathered}
\] & \[
\begin{aligned}
& s=0.466807723 \\
& t=6.60603619 \\
& 28,28,0,3,2,3 \\
& T C_{C C}=838.653
\end{aligned}
\] & \[
\begin{gathered}
s=0.679445982 \\
t=7.89940834 \\
36,36,0,4,3,4 \\
T C_{C C}=983.239 \\
\Delta_{3}=17.24 \% \\
\mathrm{TC}_{0 C}=840.189 \\
\Delta_{4}=
\end{gathered}
\] \\
\hline 53 & \[
\begin{gathered}
\mathrm{s}=0.183852911 \\
\mathrm{t}=3.29820919 \\
22,22,0,3,2,3 \\
\mathrm{TC} C_{C C}=565.767 \\
\Delta_{3}=-32.54 \% \\
\mathrm{TC}_{0 \mathrm{C}}=844.691 \\
\Delta_{4}=0.72 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=0.299380422 \\
\mathrm{t}=4.23668575 \\
26,26,0,3,2,3 \\
\mathrm{TC} C_{C C}=730.048 \\
\Delta_{3}=-12.95 \% \\
\mathrm{TC}_{0 \mathrm{C}}=838.706 \\
\Delta_{4}=0.006 \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{s}=0.440567017 \\
\mathrm{t}=5.12214565 \\
33,33,0,4,3,4 \\
\mathrm{TC}{ }_{C C}=877.979 \\
\Delta_{3}=4.69 \% \\
\mathrm{TC}_{0 \mathrm{C}}=838.628 \\
\Delta_{4}=-0.003 \%
\end{gathered}
\] \\
\hline
\end{tabular}
prior distribution's optimum plan, evaluated in the original prior distribution environment, is quite good so long as the mean and standard deviations are estimated within \(\pm 20 \%\) of their correct values.

\section*{Comparison With Optimum Single Sampling and Tabulated Sampling Plans}

It is instructive to compare economically optimum double sampling plans to economically optimum single sampling plans, as well as both single and double sampling plans obtained from Military Standard 105D. Table VI. 4 lists several economically optimal single sampling plans, their expected costs, the corresponding cost of the optimal double sampling plans, and the percent savings attained by using double sampling. The optimal double sampling plans are determined by using the interactive program described in Chapter \(V\) and listed in Appendix A. The optimal single sampling plans are derived using the program developed by Case [13].

From Table VI.4, the savings under double sampling using the mixed binomial prior distribution range from \(2.67 \%\) to \(3.41 \%\). Savings using the Polya prior distribution range from \(2.07 \%\) to \(3.17 \%\) for various different values of cost and prior parameters evaluated. For increases in the value of the prior mean and decreases in the prior standard deviation, the economic advantage of double sampling relative to single sampling becomes more significant. In contrast, for decreases in the value of the prior mean and increases in the prior standard deviation, the advantage of double sampling over single sampling becomes less significant.

For comparison purposes, sampling plans from Military Standard 105D are presented using lot size \(N=500\), the original prior and cost terms

\section*{TABLE VI. 4}

\section*{COMPARISON OF OPTIMAL DOUBLE SAMPLING PLANS AND OPTIMAL SINGLE SAMPLING PLANS}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Prior Distribution} & \multicolumn{2}{|r|}{Prior Parameters} & \multicolumn{9}{|c|}{Costs} & \multicolumn{3}{|l|}{Optimal Single Sampling} & \multicolumn{7}{|r|}{Optimal Double Sampiing} & \multirow[t]{2}{*}{Percent Differences} \\
\hline & \(\mu\) & \(0^{2}\) & & & & & \(A_{1}\) & \(A_{2}\) & & & \(\mathrm{R}_{2}\) & \({ }^{n} 1\) & & Expected Cost & \(n_{1}\) & & & & & & Expected Cost & \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & & 1.9 & 38 & 1 & 617.85 & 31 & 31 & 0 & 3 & 2 & 3 & 598.465 & 3.24 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 1.6 & 1.9 & 36 & 1 & 652.39 & 24 & 24 & 0 & 2 & 1 & 2 & 638.639 & 2.15 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 1.8 & 1.9 & 37 & 1 & 655.14 & 31 & 31 & 0 & 3 & 2 & 3 & 634.506 & 3.25 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 1.8 & 1.9 & 34 & 1 & 690.95 & 26 & 26 & 0 & 3 & 2 & 3 & 676.952 & 2.07 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 36 & 1 & 692.03 & 30 & 30 & 0 & 3 & 2 & 3 & 670.542 & 3.20 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 32 & 1 & 728.37 & 26 & 26 & 0 & 3 & 2 & 3 & 712.344 & 2.25 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.2 & 1.9 & 34 & 1 & 728.36 & 28 & 28 & 0 & 3 & 2 & 3 & 705.731 & 3.21 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.2 & 1.9 & 29 & 1 & 764.56 & 24 & 24 & 0 & 3 & 2 & 3 & 746.779 & 2.38 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.4 & 1.9 & 49 & 2 & 762.39 & 28 & 28 & 0 & 3 & 2 & 3 & 740.859 & 2.91 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.4 & 1.9 & 39 & 2 & 797.17 & 26 & 26 & 0 & 4 & 3 & & 778.814 & 2.36 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 32.0 & 5.0 & 2.0 & 1.9 & 28 & 1 & 653.00 & 26 & 26 & 0 & 3 & 2 & 3 & 635.984 & 2.67 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 32.0 & 5.0 & 2.0 & 1.9 & 24 & 1 & 677.67 & 19 & 19 & 0 & 3 & 2 & 3 & 661.819 & 2.34 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 48.0 & 5.0 & 2.0 & 1.9 & 40 & 1 & 723.61 & 31 & 31 & 0 & 3 & 2 & 3 & 699.720 & 3.41 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 48.0 & 5.0 & 2.0 & 1.9 & 38 & 1 & 767.29 & 31 & 31 & 0 & 3 & 2 & 3 & 751.563 & 2.11 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.52 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.52 & 36 & 1 & 681.09 & 31 & 31 & 0 & 3 & 2 & 3 & 659.455 & 3.28 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 1.52 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.52 & 32 & 1 & 717.89 & 26 & 26 & 0 & 3 & 2 & 3 & 701.940 & 2.27 \\
\hline Mixed Binomial & 32.9999 & 44.1924 & 3.0 & 2.5 & 2.28 & 10.0 & 010 & 40.0 & 5.0 & 2.0 & 2.28 & 35 & 1 & 702.91 & 28 & 28 & 0 & 3 & 2 & 3 & 681.524 & 3.13 \\
\hline Polya & 32.9999 & 44.1924 & 3.0 & 2.5 & 2.28 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 2.28 & 31 & 1 & 738.81 & 26 & 26 & 0 & 3 & 2 & 3 & 722.748 & 2.22 \\
\hline Polya & 26.4 & 35.0 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 30 & 1 & 686.55 & 25 & 25 & 0 & 3 & 2 & 3 & 670.379 & 2.41 \\
\hline Polya & 39.6 & 35.0 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 53 & 2 & 948.15 & 36 & 36 & 0 & 3 & 3 & 4 & 934.881 & 1.42 \\
\hline Polya & 26.4 & 53.0 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 26 & 1 & 498.84 & 22 & 22 & 0 & 3 & 2 & 3 & 483.527 & 3.17 \\
\hline Polya & 39.6 & 53.0 & 3.0 & 2.5 & 1.9 & 10.0 & 0.0 & 40.0 & 5.0 & 2.0 & 1.9 & 32 & 1 & 763.00 & 27 & 27 & 0 & 3 & 2 & 3 & 747.632 & 2.06 \\
\hline
\end{tabular}

TABLE VI. 5
COMPARISON OF OPTIMAL DOUBLE SAMPLING PLANS AND SAMPLING PLANS FROM MILITARY STANDARD 105D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Mixed Binomial Prior} \\
\hline Classification & & \multicolumn{5}{|l|}{Sampling Plan
\[
n_{1} n_{2} c_{1} r_{1} c_{2} r_{2}
\]} & Total Expected Cost & Percent Difference \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Economically } \\
& \text { Based }
\end{aligned}
\]} & Double & 3030 & 0 & 3 & 2 & 3 & 670.542 & \\
\hline & Single & 36 & 1 & & & & 692.030 & 3.21\% \\
\hline \multirow[t]{2}{*}{1.0} & Double & 3232 & 0 & 2 & 1 & 2 & 699.564 & 4.33\% \\
\hline & Single & 50 & 1 & & & & 708.640 & 5.68\% \\
\hline \multirow[t]{2}{*}{AQL 1.5} & Double & 3232 & 0 & 3 & 3 & 4 & 676.853 & 0.94\% \\
\hline & Single & 50 & 2 & & & & 694.970 & 3.64\% \\
\hline
\end{tabular}

Polya Prior
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Classification & & \multicolumn{5}{|l|}{Sampling Plan
\[
n_{1} n_{2} c_{1} r_{1} c_{2} r_{2}
\]} & \begin{tabular}{l}
Total \\
Expected Cost
\end{tabular} & Percent Difference \\
\hline \multirow[t]{2}{*}{Economically
Based} & Double & 2626 & 0 & 3 & 2 & 3 & 712.344 & \\
\hline & Single & 32 & 1 & & & & 7281360 & 2.25\% \\
\hline \multirow[t]{2}{*}{1.0} & Double & 3232 & 0 & 2 & 1 & 2 & 738.144 & 3.62\% \\
\hline & Single & 50 & 1 & & & & 751.240 & 5.46\% \\
\hline \multirow[t]{2}{*}{AQL 1.5} & Double & 3232 & 0 & 3 & 3 & 4 & 716.185 & 0.54\% \\
\hline & Single & 50 & 2 & & & & 735.920 & 3.31\% \\
\hline
\end{tabular}
\(\left(\mu, \sigma, S_{0}, S_{1}, S_{2}, A_{0}, A_{1}, A_{2}, R_{0}, R_{1}, R_{2}\right)=(32.9999,44.1924,3.0\), \(2.5,1.9,10.0,0.0,40.0,5.0,2.0,1.9\)), inspection level II, normal inspection, and AQL values of \(1.0 \%\) and \(1.5 \%\). The results, in comparison with mixed binomial and Polya prior distributions are displayed in Table VI.5. For those examples, the savings range from about \(0.5 \%\) to \(6 \%\). It is general to find that the economically based double sampling plans are considerably more cost-effective than those obtained from Military Standard 105D.

\section*{Summary}

The purpose of this chapter is to present a wide array of sensitivity analyses for this research. This study considers variations in the optimum sample sizes as well as the constant factor relationship between first and second sample. This study also demonstrates the effects of incorrectly estimating the costs, and the prior distribution parameters. It also compares optimum single sampling as well as plans from Military Standard 105D. Both the mixed binomial and Polya prior distribution are considered in these analyses.

The following conclusions are drawn from this study:
1. As sample sizes vary up to \(\pm 20 \%\) from optimal sampling plan, the changes in cost compared to the optinal cost are never over \(2 \%\).
2. The best constant factor between \(n_{1}\) and \(n_{2}\) is 2 (i.e., \(n_{2}=2\) \(x n_{1}\)).
3. The sample sizes are most sensitive in cost parameters \(A_{2}\) and \(R_{1}\). If \(A_{2}\) increases, then the sample sizes will increase. Contrarily, an increase in \(R_{1}\) will decrease the sample size.
4. It is no great disadvantage in using the changed cost model's optimum plan then used in the changed environment to predict the total expected cost, sensitivity is most sensitive in \(R_{1}, A_{2}\) next, \(S_{2}\) and \(R_{2}\) are the least ones.
5: Increases in the prior mean will increase the optimal sample sizes. Increases in the prior standard deviation will decrease the optimal sample size.
6. It is no large disadvantage in using either the changed cost vector's or prior distribution's optimum plan in the original cost or prior, respectively, model environment, provided changes in cost terms \(R_{1}, R_{2}, S_{2}\), and \(A_{2}\), and prior mean and standard deviation are within \(\pm 20 \%\).
7. Economically based double sampling is more cost effective than either economically based single sampling or those plans obtained from Military Standard 105D. In this study, the savings range from \(2 \%\) to \(4 \%\), and \(0.5 \%\) to \(6 \%\), respectively.

It should be noted that these conclusions are based only upon the various parameter values selected for study herein.

\section*{CHAPTER VII}

\section*{SUMMARY AND CONCLUSION}

The overall objective of this research has been to provide industry and government with a new and well-developed tool to assist in selecting the most effective double acceptance sampling plan for a wide range of realistic situations.

Several specific subobjectives have been to:
1. Develop the Guthrie-Johns model for use in double sampling, including nine situations which depend on four decisions: lot \(100 \%\) inspected; lot accepted outright without inspection; lot decision made following inspection of first sample; lot decision made following inspection of second sample.
2. Modify the Guthrie-Johns model to include fixed cost components for sampling, rejection, and acceptance. The cost terms developed are used to model and evaluate the cost of different decision variables and sampling outcomes.
3. Develop the theoretically exact analytical and search procedures for economically optimizing a double-sampling plan using a discrete mathematical model with the fixed cost expansion. The methodology is developed using an original break-even approach and an appropriate search procedure to determine the optimum double sample size pair and corresponding acceptance/rejection number vector. Two general
families of prior distributions, the Polya and mixed binomial, have been used to describe the actual lot quality.
4. Develop an interactive computer program for double sampling in a format suitable for use in industrial and governmental situations as well as in teaching. The program developed permits easy utilization of the design and evaluation methodologies for economically based double sampling.
5. Compare the optimum single and double-sampling plan total expected cost in order to determine the relative economic advantage of double-sampling. Sensitivity analyses were performed to determine the effects of changes in sample sizes, constant factors, cost coefficients, and prior distribution parameters on the total expected cost per lot. Also, economically based single sampling plans as well as tabulated double-sampling plans were evaluated for comparison purposes.

Based on the results obtained in this research, the following statements can be made:
a. The locus of total expected cost associated with a given acceptance/rejection vector is nearly, if not exactly, convex with a rather flat total cost surface as a function of sample size in the neighborhood of the optimum. Also, the locus of the local minima have but one global optimum over all possible sample sizes. The values of the total expected cost near the optimal sampling plan, even with different acceptance/rejection number vectors, are sufficiently close as to form a very flat shape so that there is little difference between the optimal total expected cost and the total expected cost for it's
neighbor sample size pairs.
b. The economically based double-sampling plan has cost advantages over economically based single sampling. But, the savings is not significant. In this research, the savings range from \(2.0 \%\) to \(4.0 \%\) for different combinations of cost and prior distribution parameters.
c. The economically based double-sampling plan is more costeffective than plans obtained from Military Standard 105D. The savings range from \(0.5 \%\) to \(6.0 \%\).
d. In this research, it was determined that the best choice the second sample size \(n_{2}\) is twice that of the first sample size \(n_{1}\). Also, however, there is little difference between the constant factors \(1,1.5,2,2.5\), and 3.
e. The optimal sample size pair and the total expected cost are very sensitive to cost coefficients \(A_{2}\) and \(R_{1}\), compared with the other cost parameters.
f. An increase in the prior mean will increase the optimal sample size pair. An increase in the prior variance will decrease the sample size pair.

Future research should consider the following:
1. A logical extension of this research is to apply techniques developed herein to economically based multiple-sampling. The success with economically based double-sampling plans may be extended to multiple-sampling. In fact, double-sampling plan is one special case of multiple-sampling when the number of stages equals two. All concepts of the cost model formulation and optimization from this research are applicable to this extension.
2. Economically based sequential sampling with fixed cost considerations should be evaluated. Economically based sequential sampling using a Bayesian prior distribution has already been developed; however, it omits the fixed cost factors.
3. Type 1 and type 2 inspection errors may be considered in an extension to this work. For this research, perfect inspection is assumed. However, inspection is well known to be imperfect. Thus, their effects should be considered.
4. Other prior distribution families should be studied. This author has been successful in using the Polya and mixed binomial families as prior distributions. Other priors may better describe actual lot quality in some situations.

Of course, there are many other related areas in which work remains to be initiated or extended. While this dissertation is certainly only a small study with respect to the entire area, it is hoped that it represents a significant contribution to quality control.

BIBLIOGRAPHY
[1] Barnard, G. A. "Sampling Inspection and Statistical Decisions." Journal of the Royal Statistical Society, B, 16, 2 (1954), 151-174.
[2] Barnett, V. "Bayesian and Decision Theoretic, Methods Applied to Industrial Problems." The Statistician, 22, 3 (1973), 199-226.
[3] Barnett, V. "Economic Choice of Sample Size for Sampling Inspection lan." Applied Statistics, 23 (1974), 149-157.
[4] Bennett, G. K., K. E. Case, and J. W. Schmidt. "The Economic Effects of Inspector Error on Attribute Sampling Plans." Naval Research Logistics Quarterly, 21 (1974), 431-444.
[5] Breakwel1, J. V. "Economically Optimal Acceptance Tests." Journal of American Statistics Association, 51 (1956), 243-256.
[6] Brown, G. G., and H. C. Rutemiller. "Tables for Determining Expected Cost Per Unit Under MIL-STD-105D Single Sampling Schemes." AIIE Transactions, 6, 2 (1974), 135-142.
[7] Burr, I. W. "Average Sample Number Under Curtailed or Truncated Sampling." Industrial Quality Control (1957), 5-7.
[8] Burr, I. W. Elementary Statistical Quality Control. New York and BaseT: Marcel Dekker, Inc., 1979.
[9] Caplen, R. H. "A Contribution to the Problem of Choosing a Sampling Inspection Plan." The Quality Engineer, 26 (July/August, 1962), 103-107.
[10] Case, K. E., G. K. Bennett, and J. W. Schmidt. "The Effect of Inspection Error on Average Outgoing Quality." Journal of Quality Technology, 7, 1 (1975), 28-33.
[11] Case, K. E., J. W. Schmidt, and G. K. Bennett. "A Discrete Economic Multiattribute Acceptance Sampling." AIIE Transactions, 7, 4 (1975), 363-369.
[12] Case, K. E., and L. L. Jones. Profit Through Quality--A Quality Assurance Program for Manufacturers. AIIE Monograph Series. Norcross, Georgia: American Institute of Industrial Engineers, 1978.
[13] Case, K. E. "Economically Based Acceptance Sampling." Boeing's Report (July, 1978).
[14] Case, K. E., and L. L. Jones. "An Interactive Computer Program for the Study of Attributes Acceptance Sampling." Final Technical Report (August, 1979).
[15] Case, K. E., and J. B. Keats. "On the Proper Operator of Attributed Acceptance Sampling." ASQC Technical Conference Transactions, Atlanta (May, 1980), 460-467.
[16] Champernowne, D. G. "The Economics of Sequential Sampling Procedures for Defectives." Applied Statistics, 2 (1965), 118-130.
[17] Chen, S. S. "An Introduction to the Economically-Based Sampling Plans." Speeches in Chinese Society for Quality Control (August, 1979).
[18] Chiu, W. K. "A New Prior Distribution for Attributes Sampling." Technometrics, 16 (1974), 93-103.
[19] Chiu, W. K. "Economic Design of Attribute Control Charts." Technometrics, 17 (1975), 81-87.
[20] Collins, R. D., Jr., K. E. Case, and G. K. Bennett. "The Effects of Inspection Accuracy in Statistical Quality Control." Proceedings of the 23 rd Annual Conference and Convention, American Institute of Industrial Engineers (June, 1972), 423-430.
[21] Collins, R. D., Jr., K. E. Case, and G. K. Bennett. "The Effects of Inspection Error on Single Sampling Inspection Plans." International Journal of Production Research, 11, 3 (1973), 289-298.
[22] Collins, R. D., Jr., and K. E. Case. "The Distribution of Observed Detectives in Attribute Acceptance Sampling Plans Under Inspection Error." AIIE Transactions, 8, 3 (1976), 375-378.
[23] Cox, D. R. "Serial Sampling Acceptance Schemes Derived From Bayes' Theorem." Technometrics, 2 (1960), 353-360.
[24] Dodge, H. F., and H. G. Roming. Sampling Inspection Tables-Single and Double Sampling, 2nd ed. New York: John WiTey and Sons, 1959.
[25] Duncan, A. J. Quality Control and Industrial Statistics, 4th ed. Homewood, Illinois: Richard D. Irwin, Inc., 1974.
[26] Feller, W. An Introduction to Probability Theory and Its Application, 1, 3rd ed. New York: Wiley, 1968.
[27] Feller, W. An Introduction to Probability Theory and Its Application, 2, 3rd ed. New York: Wiley, 1968.
[28] Gottfried, B. S., and J. Weisman. Introduction to Optimization Theory. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1973.
[29] Guenther, W. C. "A Procedure for Finding Double Sampling Plans for Attributes." Journal of Quality Technology, 2 (1970), 219-225.
[30] Guenther, W. C. "On the Determination of Single Sampling Attribute Plans Based Upon a Linear Cost Model and a Prior Distribution." Technometrics, 13 (1971), 483-484.
[31] Guenther, W. C. "The Average Sample Number for Truncated Double Sample Attribute Plans." Technometrics, 13 (1971), 811-816.
[32] Guthrie, D., and M. V. Johns. "Bayes Acceptance Sampling Procedures for Large Lots." Annals of Mathematical Statistics, 30 (1959), 896-925.
[33] Hald, A. "The Compound Hypergeometric Distribution and a System of Single Sampling Inspection Plans Based on Prior Distributions and Costs." Technometrics, 2 (1960), 275-340.
[34] Hald, A. "Asymptotic Properties of Bayesian Single Sampling Plans." Journal Royal of Statistical Society, B, 29 (1967), 162-173.
[35] Hald, A. "The Determination of Single Sampling Attribute Plans With Given Producer's and Consumer's Risk." Technometrics, 9 (1967), 401-415.
[36] Hald, A. "On the Theory of Single Sampling Inspection by Attributes Based on Two Quality Levels." Review of the International Statistical International, 35, 1 (1967), 1-29.
[37] Hald, A. "Bayesian Single Sampling Attribute Plans for Continuous Prior Distributions," Technometrics, 10 (1968), 667-683.
[38] Hald, A. "The Mixed Binomial Distribution and the Posterior Distribution of \(p\) for a Continuous Prior Distribution." Journal of Royal Statistical Society, B, 30 (1968), 359-367.
[39] Hald, A., and N. Keiding. "Asymptotic Properties of Bayesian Decision Rules for Two Terminal Decisions and Multiple Sampling, I." Journal of Royal Statistical Society, B, 31 (1969), 455-471.
[40] Hald, A., and N. Keiding. "Asymptotic Properties of Bayesian Decision Rules for Two Terminal Decisions and Multiple Sampling, II." Journal of Royal Statistical Society, B, 34 (1972), 55-74.
[41] Hald, A. Statistical Theory of Sampling Inspection by Attributes. Part 1. University of Copenhagen: Institute of Mathematical Statistics, 1976.
[42] Hald, A. Statistical Theory of Sampling Inspection by Attributes. Part 2. University of Copenhagen: Institute of Mathematical Statistics, 1978.
[43] Hamaker, H. C. "Some Basic Principles of Sampling Inspection by Attributes." Applied Statistics, 7 (1958), 149-159.
[44] Hamaker, H. C., and V. Van Strik. "The Efficiency of Double Sampling for Attributes." Journal of the American Statistical Association, L (1955), 830-849.
[45] Hastings, N. A. J., and J. B. Peacock. Statistical Distributions. New York: John Wiley and Sons, 1975.
[46] Hill, I. D. "The Economic Incentive Provided by Sampling Inspection." Applied Statistics, 9 (1960), 69-81.
[47] Horsnel1, G. "Economical Acceptance Sampling Schemes." Journal of Royal Statistical Society, A, 120 (1957), 148-201.
[48] International Organization for Standardization. ISO 2829 Sampling Procedures and Tables for Inspection by Attributes. London: International Organization for Standardization, 1974.
[49] Johansen, S. "Asymptotic Properties of the Restricted Bayesian Double Sampling Plan." Technometrics, 12 (1970), 647-667.
[50] Juran, J. M., and F. M. Gryna, Jr. Quality Planning and Analysis. New York: McGraw-Hill, 1970.
[51] Ladany, S. P. "A Practical Meaning of the Bayesian Decision Making Approach to Acceptance Sampling." Journal of Quality Technology, 3 (1976), 127-132.
[52] Ladany, S. L. "Graphical Determination of Single-Sample Attribute Plans for Industrial Sma11 Lots." Journal of Quality Technology, 3 (1971), 115-119.
[53] Lauer, G. N. "Acceptance Probabilities for Sampling Plans Where Proportion Defective Has a Beta Distribution." Journal of Quality Technology, 10, 2 (1978), 52-55.
[54] Martin, C. A. "The Cost Breakdown Point in Attribute Sampling." Industrial Quality Control, 21, 3 (1964), 137-144.
[55] Military Standards 105D. Sampling Procedures and Tables for Inspection by Attributes. Washington, D.C.: Department of Defense, April 1963.
[56] Mood, A. M. "On the Dependence of Sampling Inspection Plans Upon Population Distributions." Annals of Mathematical Statistics, 14 (1943), 415-425.
[57] Moreno, C. W. "A Performance Approach to Attribute Sampling and Multiple Action Decisions." AIIE Transactions, 11 (1979), 183-197.
[58] Moreno, C. W., and A. T. Reeves. "Acceptance Sampling for Small Fraction Defectives." Cosmetic Technology (Nov. 1979), 35-46.
[59] Moreno, C. W. "Statistically and Economically Valid Attribute Acceptance Sampling Plans for High Quality Requirement." Paper presented at AIIE Annual Convention, Atlanta (1980).
[60] Pfanzag1, J. "Sampling Procedures Based on Prior Distributions and Costs." Technometrics, 5 (1963), 47-61.
[61] Pfanzag1, J., and W. Schuler. "The Efficiency of SequentialSampling Plans Based on Prior Distributions and Costs." Technometrics, 12 (1970), 299-310.
[62] Schafer, R. E. "Bayes Single Sampling Plan by Attributes Based on Posterior Risks." Naval Research Logistics Quarterly, 14, 1 (1967), 81-88.
[63] Schmidt, J. W., and G. K. Bennett. "Economic Multiattribute Acceptance Sampling." AIIE Transactions, 4, 3 (1972), 194-199.
[64] Stewart, R. D., D. C. Montgomery, and R. G. Heikes. "Choice of Double Sampling Plans Based on Prior Distributions and Costs. 'V AIIE Transactions, 10, 1 (1978), 19-30.
[65] Shewhart, W.A. "Quality Control Charts." Bell System Technical Journal, 5, 4 (Oct., 1926), 593-603.
[66] Shewhart, W. A. "Quality Control." Bell System Technical Journal, 6, 4 (Oct., 1927), 722-735.
[67] Shewhart, W. A. Economics Control of Quality of Manufactured Product. New York: D. Van Nostrand Co., Inc., 1931.
[68] Sitting, J. "The Economic Choice of Sampling System in Acceptance Sampling." Bulletin of International Statistical Institute, 33, 5 (1951), 51-84.
[69] Smith, B. E. "The Economics of Sampling Inspection." Industrial Quality Control, 21 (1965), 71-79.
[70] Suzuki, Y. "On Sampling Inspection Plans." Ann. Inst. Statist. Math., 11 (1959), 71-79.
[71] Taylor, E. I. "Discovery Sampling by Attributes." ASQC Annual Transactions (1957), 517.
[72] Truscott, W. T. "Batch Acceptance Sampling by Attributes to Reduce Overall Costs." The Quality Engineer, 33, 3 (May/June, 1969), 9-18.
[73] Vagholkar, M. K. "The Process Curve and the Equivalent Mixed. Binomial With Two Components." Journal of Royal Statistical Society, B, 21 (1959), 63-66.
[74] Vagholkar, M. K., and G. B. Wetherill. "The Most Economical Binomial Sequential Probability Ratio Test." Biometrika, 47 (1960), 103-109.
[75] Van der Waerden, B. L. "Sampling Inspection as a Minimum Loss Problem." Annal of Mathematical Statistics, 31 (1960), 369-384.
[76] Wetherill, G. B. "Some Remarks on the Bayesian Solution of the Bayesian Solution of the Single Sample Inspection Scheme." Technometrics, 2 (1960), 341-352.
[77] Wetherill, G. B., and G. E. G. Campling. "The Decision Theory Approach to Sampling Inspection." Journal of Royal Statistical Society, B, 28 (1966), 381-406.
[78] Wetherill, G. B., and W. K. Chiu. "A Review of Acceptance Sampling Schemes With Emphasis on the Economic Aspect." International Statistical Review, 43, 2 (1975), 191-210.
[79] Wetherill, G. B., and W. K. Chiu. "A Simplified Attribute Sampling Scheme." Applied Statistics, 23, 2 (1974), 143-148.
[80] Wilde, D. J., and C. S. Beightler. Foundations of Optimization. Englewood Cliffs, New Jersey: Prentice-Ha11, 1967.
[81] Wortham, A. W., and J. W. Mogg. "A Technical Note on Average Outgoing Quality." Journal of Quality Technology, 2, 1 (1970), 30-31.
[82] Wortham, A. W., and E. B. Wilson. "A Backward Recursive Technique for Optimal Sequential Sampling Plans." Naval Research Logistics Quarterly, 18 (1971), 203-213.

APPENDIXES

\section*{APPENDIX A}

MODIFIED GUTHRIE-JOHNS COMPUTER PROGRAM
FOR DOUBLE SAMPLING PLAN (FORTRAN
Computer Porgram Listing
Including Documentation)
```

U0510 IF(JCODE.LE.2) GO TO 6
OO5;0 C**** S'ART UVER iF ONHER IHAN 1,2,OR % ENOERED
00540 . WRIFE (6,j)
00550 3 FORHAM(2X,'TCU DAD NOT EITNER A 1,2, OR j ')
00560 GOTU 1
00570 C**** STANE INTENE OF USER
00580 4 WRITE (6,5)
005905 FCRHAM(2X,'YOU WAYM DO DESIGN AN ECONOMICALLY BASED SAMPLING PLAN
00600 1 ! ')
00610 GO TO 8
00620 6 WRImE (6,7)
O06307 FORMAT(2X,'YOU WAMM IO DESIGN OPM ACC/REJ VECMOR GIVEN SAMPLE SIZE
C0640 { PAIR ! ')
00650 GO EO \&
0066070 WRIME(6,71)
00670 71 FORMAT(2X,'YGU WANT IO EVALUATE THE EXPECMED COST OF A SAMPLilig P
00650 1LAN ! ')
00690 C**** GOTTO 8
00%10 % WRTE(6,9)
0O720 g FOPMAT(2X,'CCRRECT ? NU (O) OR YES (1) ')
OO7%O READ (5,*) LCODE
00740 iF(ICODE.EQ.O) GO TO 1
00750 C**** UBTA\perpN PRIOR D.STRGBUT\perpON
0076047 WRIRE (6,25)
OO770 25 FURMAS (2X, 'WHICH \&S MHE PR\&UR DISNR\&BUMION??? ',/,
00780 1, M\&XED B+NOFAAL(0) UR POLYA(1) ')
00790 READ(5,*) NCCDE
O0800 IF (NCODE.IE.0) GO TO 26
00810 0**** WRITE POLYA PARAMEREIRS
00820 %2 WRIRE(6,27) S,T
008j0 27 FGRMAT(2X,'POLYA PARAMETERS ARE S=',F10.6,jX,'T=',F10.6)
00840 C**** CHECK TO SEE IF PARAMEIERS ARE CORRECM
00350 WRIME (6,28)
00860 28 FCRMAT (2X,'CORRECI??? NO(O) OR YES(1)')
00970 READ(5,*) ICODE
00830 IF (ICCDE.EQ.1) GO TO 29
CO890 C**** IT:PUN NEW VALUES
0090044 WRITE(6,30)
00910 j0 FCRHAR(2X,'ENTER S,G')
00920 READ(5,*)S,T
OOQ\XiO C**** CHECK TO ASSUURE THAR NEN ENTRIEES ARE RIGHT
00940 GO TO z2
00950 C**** WR-TE MIXED BHMMMALL PARAMEMERS
,0096026 WRITE(6,j`) W1,W2,W',F1,F2,F%

```


```

00gg0 2 F10.7)
01000 C**** CHECK TO SEE IF NEH VALUE'S ARE DES_RED

```
```

01010 FRIME (6,j- FORHAT (2Y,CORRECM??? NO(0) CR YES(1)')
010`0 READ(5,*) ICODE
01040 IF (ICODE.IQQ.1) GO TO 29
01050 0**** WRIME WARNING
0 1 0 6 0 5 9 . ~ M R I F E . ~ ( 6 , 6 0 ) ~
01070 60 . FURMMT (2X,'REHEMBER, W1+W2+WJ=1.0 AMD ALL MUST BE POSEMVE')
01080 NRIFE (6,61)
O109061 FORMAT (2X,'ALSO, F1, F2, AND FF MUS' BE BETNEEN O AND 1, BUT ',
01100 1 viuT OOR 1')
0111052 MRITE(6,>5)
01120 C***** iliPUC NEM VALUES

```

```

01140 RE\&D(5,*)W1,W2,W3,F1,F<,F%
O1150 C**** CHECK CHiAT NEV ENMKIES ARE R+GHT
01160 GO TO 26
01170 C**** WR+TE COSNS
01180 29 CUlvFINUE
O1190 WRITE (6,j7) SO,S1,S2,AO
O1200 37 FURMAm (2X,'COSm VALUES ARE SO=',F6.2,jX,'S1=',F6.2,3X,'S2=',
01210 ( FG.2,3X,'AC=',F6.2)
O122053 WRITE(6,j8) A1,A2,HO,R1,R2
01230 %8 FORMAT (2X, 'A1=',FG.2,'XX,'A2=',F6.2,3X,'RO=',F6.2,
01240 1 3X, 'R1=',F6.2, jX,'R2=1, F6.2)
:O1250 C**** CHECK TO SEE IF CCSTS ARE CORREC?
01260 VRIME (6,39)
01270 39 FORMAN (2X,'CORRECC??? NO(O) OR YES(1)')
01280 READ(5,*) ICODE
01290 IF (ICODE.EQ.1) GO IO 40
01300 C**** INPUT IINH VALUES
O131054 WRITE (6,41)
0132041 FORNAT (2X,'ENTER SO,S1,S2,AO,A1,A2,RO,R1, AND R2')
O1330 READ (5,*) SO,S1,S2,AO,A1,A2,RC,R1,R2
01j40 C**** CHECK TO ASSURE THAT NEW EITRRIES ARE RIGHT
01j50 GO FO 29
O136040 EF (JCCDE.EQ.1) GO TO 4j
01970 IF (JCODE.EQ.2) GO EO 75
01%80 C**** CiLI COST CAICULARIONTSUBRUUTAME

```

```

O1400 1SO,S1,N2,FO,R1,R2,AO,A1,A2,AC1,RJ1,AC2,FJ2,FACP1,NACP2,
01410 2rikJP2,'NHJP1,SCC)

```

```

014j0 C**** G_VE OPPORTUIN_TY FO RULI LEW PR,OR/CUSN PARAMETERS
O1440 77 FOHHAR'(2X,'VANT IC CALCULATE COST
01450 1,/,' (5*) PARMESERS ??? NC(O) UR YEK(1)')
01460 KEAD (5,*) ,CODE
01470 IF(ICODE.EQ.U) GO TO 46
01480 GO T0 47
O1490 C**** CALL AUTONARIC PARMLAL DESIGN SUBROUSINE
01500 75 CALI CCSCIFIDNLS,DNS1,DLIS2,NCODE,W1,W2,W%,F1,F2,F%,S, F,

```

```

01520 2mFJP1,SCC)
0150055 WRATE (6,45)
01540 C**** GiVE OPPORTIURINY rIU RUM NEW PRIOR/COET PARAMETERR
01550 45. FORMAT (2X,'GMNM TO DO ECON EVAL USARG HEN FR\&CR/COST',/,
01560 1, PARNMENERS ???NO(0) UR YES(1)')
01570 READ(5,*) iCCDE
01580 IF (ICODE.EQ.C) GO TO 46
0 1 5 9 0 ~ G C ~ T O ~ 4 7 ~
01600 C**** CALL \&URCMATIC DESIGN SUBROUTINE
0161043 CALL ARODES(DNLS,NCODE,W1,W2,HJ,F1,F2,FJ,S,T,SO,S1,S2,
01620 1AO,A1,h2,RO,R1,R2,DUPIS1,DOPTS2,AC1,RJ1,AC2,RJ2, TCMIN,CF)
016j0 C**** GIVE OPPORTUNISY IO RUF IIEW PRIOR/COSN PARAMENERS
01640 56 WRITE (6,48)
01650 46 FORMAT (2X,'WANM MO DESIGN PLAN USTHG NEN PRIOR/COST ',/,
01660 1, PARAMETERS??? NO(0) OR YES(1)')
01670 READ(5,*) ICODE
01680 IF (ICODE.EQ.O) GO MO 46
0 1 6 9 0 ~ G O ~ \% O ~ 4 7 ~
01700 C**** GIVE OPPORMUHITY TO EVALUATE NEN SAFPIINGG PLAN
0171057 WRIRE(6,49)
O172049 FORMAT(2X,'WAHT MC EVAL STAT PERF MEASURES OF AMOTHER PLAN ???',
01730 1 'NO(0) CR YES(1-j')
01740 READ (5,*) ICCDE
01750 IF (ICODE.EQ.O) GO TO 46
01760 C**** G_VE OPPGRTUNLPY TO START OVER
0177C 46 WKiTE(6,50)
01780 50 FORHAT (2X,'WANM TO START OVER ??? NO(0) UR YES(1)')
U1790 READ(5,*) ICCDE
01800 IF (_CODE.EQ.O) GO TO 51
01810 GO TO 1
O1820 51 STOP
O18%0 END N ,

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 01840 \mathrm{C} \\
& 01850 \mathrm{C}
\end{aligned}
\]}} \\
\hline & \\
\hline 01860 C & \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|r|}{} \\
\hline 01890 C & \\
\hline 01900 C & SUBROUCAE ASODEG IS CALLED TO AUROMAMCALIY DESAGM AM \\
\hline 01910 C & ECONOH,CALIY BASED DCUBLE SAMPLING PLAN - - BEGAMS WiTH \\
\hline 01920 C & \\
\hline 01930 C & CONST*DHS1) OF LERU. THE COSCI LCOP FCR FIXED DECASLON \\
\hline 01940 C & VARIABLES (AC1, RJ1.AC2, RJ2) İ idelirified by ilicreased zhe \\
\hline 01950 C & \\
\hline 01960 c & \\
\hline 01970 C & \\
\hline 01980 C & \\
\hline 01990 C & \\
\hline 02000 C & \\
\hline 02010 C & \\
\hline 02020 C & TUNAL COSi ls (TCHAN) \\
\hline ,02030 C & C \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{C -} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline 02070 C & \\
\hline 02080 & \\
\hline 020901 & \\
\hline 02100 & IMPLICIT REAL* (\(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{X}\)) \\
\hline 02110 & \\
\hline 02120 & DIMEMSIONF SAC1 (200), SRJ1 (200), SAC2(200), SRJ2(200) \\
\hline . \(02130 \mathrm{C}^{* * * *}\) & WRITE CCNSTIANT FACMOR \\
\hline 02140120 & \(\operatorname{VRITE}(5,110) \mathrm{CF}\) \\
\hline 02150110 & FORMAm (2X, CONGTANE FACMOR = , F5.2) \\
\hline C2160 C**** & CHECK TO SEE IF CORRECT \\
\hline \(\bigcirc 02170\) & \(\operatorname{WRiTE}(6,111)\) \\
\hline 02180111 & \\
\hline 02190 & \(\operatorname{READ}(5, *)\) ICODE \\
\hline 02200 & IF(ICCDE.EQ.1) GO TO 11 \\
\hline 02210 C**** & INPU工 IVEV ValUES \\
\hline 02220 & WRime (6,113) \\
\hline 022 0113 & \\
\hline U2240 & READ (5,*) CF \\
\hline 02250 C**** & CHECK \({ }^{\text {co }}\) ASSURE CHAT NEW ENTRY IS Righia \\
\hline 02260 & GO TU 120 \\
\hline \(02270 \mathrm{C}^{* * * *}\) & WRicie IUs SLEE \\
\hline 0228011 & WRise \((6,10)\) Diils \\
\hline 0229010 & FORHan(2X, Lur Size = ', F9.2) \\
\hline \(02200 \mathrm{C} * * *\) & CHECK IU SEE + F CORREC: \\
\hline 02ز10 & WR」re (6,12) \\
\hline 02,20 12 & \\
\hline 02300 & \(\operatorname{READ}(5, *)\) ICCDE \\
\hline 02340 & [F(iCODE.EQ.1) GO TO 18 \\
\hline
\end{tabular}
```

32;50 C***** AIPUT NEN VALUES
02jE0 WHIRL(6,13)

```

```

02%80 READ(5,*) DIILS

```

```

02400 Gu RU 11
02410 C**** +{゙m\&NLiZE VARiABLES
02420 18* DO 50 I=1,200
024;0 NPN11(i)=5
02440 0**** SEARCH FOR FEASIBLE PUIN'M
02450 1 NPTi(i)=NPN1(I)+1
02460 NPPT2=CF*NPr!1(I)
02470 . DNP「1=NPN1(I)
02480 - DNPN2=NPM2
02490 CALL S2S(DINLS,DNPT1, DNPT2,NCODE,W1,W2,Vj,F1,F2,Fj,S,m,SO,
02500 1S1,S2, RO,A1, i2,RO,R1,R2, AC2,RJ2)
02510 C**** CHECK MHE SECCID ACCEPTALCE NUMBER CO DETERMINE WEAOHER OR
02520 C**** NOT IT IS LESS THAII ZERC
O2530 IF(AC2.Ir.O.)GO MO 1
O2540 CALL SIS(DNLS,DNPF1,DNPP2,NCODE,H1,W2,WJ,F1,F2,FJ,S,T,SO,S1,S2.
02550 1AO,A1,A2,RO,R1,R2,AC1,RJ1,AC2,RJ2)
O2560 C**** CHECK THE FIPST ACCEPTANCE NUMBER TO DETERMINE WEATHER OR
02570 C**** NOM IT IS LESS THANI ZERO
02580 IF(AC1.IT.O.) GOTO 1
02590 C**** GEF THE IHITIAL PUNFI FUR FIRST COS'S LOOP
02600 IOCP=1
02610 STPT1(1)=DiFPT1
02620 SAC1(1)=AC1
026>0 SRO1(1)=RJ11
02650 SRJ2(1)=AC2+1
02660 C**** SEARCH FCR THE NEXT LOOP
02670 2 NPr11(I)=NPM1 (I) +1
02680 NPT2=CF*NPT1 (I)
02690 DNPr1=NPMf(i).
02700 DNPM2=NPM2
02710 CALL S2S(DNLS,DNPM1,DNPT2,NCODE,W1,W2,W3,F1,F2,Fジ,S,N'SO,
02720 1S1,S2,AO,A1,A2, RO, F1, R2,AC2, RJ2)
O2730 CALL S1S(DHIS,DNPT1,DNP'12,NCUDE,W1,W2,WJ,F1,F2,FJ,S,T,SO,S1,S2,
02740 1AO,A1,A2,RO,R1,R2,AC1,RJ1,AC2,RJ2)
02750 IF(AC1.EQ.SAC1(ICOP).AND.RJ1.EQ.NRJ1 (LOOP).AND.AC2.EQ.
02760 1SAC2(LOOP)) GO TO 2
O2770 C**** NEX2 LOOP ILAS BEEN FOUND,CHECK MIDDIE POINN
02780 MIDPI1(LOOP)=(DNPT1-1+SNPF1(LOOP))/2
02790 DIDPM1(IOCP)=MLDPF1(LOOP)
02800 CALL CCSEVL(DNLS,DIDPIT1(LOOP),CF*DIDPN1(IOOP),NCCDE,W1,W2,
02310 1W3,F1,F2,FS,S,T,SC,S1, N2,RO,R1,F2,AO,A1,N2,SAC1(LOOP),SRJ1(LOOP)
02820 2,SAC2(LOOP),SRJ2(INCP), TACP1, ,ACPP2, TRJP2,TRJP1, 「CC(IOOP))
O2830 C**** DETERHINE WHEOHER OR HOT MO STOP SEARCH -NT MHE NEXT LCOP
02840 IF(LOOP.EQ.1) GO TO %

```
```

| 808850 |  |  |
| :---: | :---: | :---: |
| 03870 | C**** | INPU' HEW VALUES |
| 03880 | 22 . | $\operatorname{HRiPLE}(6,6)$ |
| 03890 |  | FCRMAA (2X, ENMER LOT SEZE, 1 S' SAMP SIRE, ATD 2ND SAMP SIZE') |
| 03900 |  | READ (5,*) DIILS, DHS 1, DivS2 |
| 03910 | C**** | Check ro assure mhas dev elvries are righr |
| 03020 |  | GO $\mathrm{r}: 1$ |
| 03930 | こ**** | BEGIN OUCPUT |
| 03940 |  | HRITE (6,4) |
| 03950 |  | WRITE $(6,4)$ |
| 03960 |  | HRETE (6.4) |
| 03970 |  | FORMAT(2X,68('*')) |
| 0 0,980 | C**** | WRire cimic |
| 03990 |  | WRime (6,2j) |
| 04000 | 2\% | FCRMAS (/,2X,'OPR-MUM ACC/REJ NUMBER VECIOR DESIGM') |
| 04010 |  | WRITE (6, 2) DNLS, DISS1, DNS2 |
| 04020 |  | iF (NCODE.EQ.O) GO IU 10 |
| 04030 | C**** | WRITe POLYA Paramerers |
| 04040 |  |  |
| 04050 |  |  |
| 04060 |  | GO TO 12 |
| 04070 | C**** | kRict Mixed BiAOMIAL Paramierers |
| 04080 | 10 | WPis re ( 6,13 ) W1, W2, W', F1, F2, Fj |
| 04090 | 13 |  |
| 04100 |  |  |
| 04110 |  | 2 F10.7) |
| 04120 | C**** | WRite custs |
| 04130 |  | $\operatorname{WRITE}(6,14) \mathrm{SO}, \mathrm{S1}, 52,40$ |
| 04140 | 14 |  |
| 04150 |  | C 'S2 =', $\mathrm{F} 6.2,3 \mathrm{X}, \mathrm{AO}={ }^{\prime}, \mathrm{F} 6.2$ ) |
| 04160 |  | $\operatorname{WRITE}(6,15) \mathrm{A} 1, \mathrm{~A} 2, \mathrm{RO}, \mathrm{R1}, \mathrm{R} 2$ |
| 04170 | 15 | FORMA ${ }^{\text {C }}$ ( $2 \mathrm{X}, \mathrm{A} 1=^{\prime}, \mathrm{F} 6.2,3 \mathrm{X}, \mathrm{A} 2=^{\prime}, \mathrm{F} 6.2,3 \mathrm{X}, \mathrm{RO}={ }^{\prime}, \mathrm{F} 6.2, j \mathrm{X}$, |
| 04180 |  | C 'R1 =', F6.2, jX, 'R2 =',F6.2) |
| 04190 | C**** | CALI DECIEICN VAREABLES SUBRCUMTIES S2S,Sis |
| 04200 |  |  |
| 04210 |  | 1S0, S1, S2, AO, A1, A2, RO, R1, R2, AC2, RJ2) |
| 04220 |  |  |
| 04230 |  | 1S0, S1, S2, A0, A1, A2, RO, F1, R2, AC1, RJ1, AC2,RJ2) |
| 04240 |  |  |
| 04250 |  |  |
| 04260 |  | 2TRJP2, TRJP1, TCC) |
| 04270 |  |  |
| 04280 | 5.5 |  |
| 04290 |  | $1^{\prime}$ ACC ITO $2=$, F5.1, REJ NO $2=1, F 5.1$ ) |
| 04,00 |  |  |
| 04310 | 19 |  |
| 04,20 |  |  |
| 04350 |  | 2,F9.2, $2 \mathrm{X}, \mathrm{\prime}$ REJ 2HD SAMP COL'' = , Fg. $2, /, 2 \mathrm{X}$, |
| $04>40$ |  | 3'MOTAL COST $=1, \mathrm{~F} 15.2,1)$ |

```

\begin{tabular}{|c|c|}
\hline U5う50 20 & \\
\hline 05:60 & \\
\hline -5 270 & \\
\hline 05 0,80 & +F (ICUDE.EQ.C) GU 21 \\
\hline 05\%90 & Gu TC 22 \\
\hline 0540021 & Ficrund \\
\hline 05410 & Elid \\
\hline 05420 C & \\
\hline 05430 C & \\
\hline 05440 C & \\
\hline 05450 C***** & \\
\hline 05460 C & \\
\hline 05470 C & SUBROUT \({ }^{\text {NE }}\) COSEVL CALCULAMES THE TOTAL COST PER LCR OF \\
\hline 05480 C & \\
\hline 05490 C & CNTEE FIRSP SAMPLE (TACP1) . THE COST OF ACCEPAALCE OR \\
\hline 05500 C & \\
\hline 05510 C & SECOLD SAMPLE (TRJP2), AMD THE COST OF REJECTION ON CHE \\
\hline 05520 C & \\
\hline C55\% \({ }^{\text {c }}\) & \\
\hline & ** \\
\hline 05550 C & \\
\hline 05560 C & \\
\hline 05570 C & \\
\hline 05580 & \\
\hline 05590 & \\
\hline 05600 2 & 2TRuP2, 'RLP1, SCC) \\
\hline U5610 & \\
\hline 05620 & CUFGNX=0. \\
\hline U56j0 C**** & Thas Para calculices fiie Cosa fur mCCEPTING Firsic sample \\
\hline C5640 C**** & (TaCP1) \\
\hline 05650 & TACP1 \(=0\). \\
\hline 05660 & \(\mathrm{K}=\mathrm{HCl}+1.001\) \\
\hline 05670 & LF(K.LE.O) GOTO 70 \\
\hline 05680 C**** & COIVSIDER ACCEPPAIVEE RAIVGE \\
\hline 056901 & DO j J=1, K \\
\hline 05700 & DND1 \(=\boldsymbol{j}-1\) \\
\hline 05710 & IF(FCODE.EQ.1) GO TO 2 \\
\hline 05720 & \\
\hline 05730 & 1 ExXIGX, Fildxix) \\
\hline 05740 & \\
\hline 05750 & GO TG 1550 \\
\hline 057602 & \\
\hline 05770 & \\
\hline 05780 C**** & Calculare cose \\
\hline 057901550 & \\
\hline 05800 & \\
\hline 05810 C**** & ACCUHULATE THE MARGAMA PERM \\
\hline 05820 & CUHGIX = CUTGMX+GH1X1 \\
\hline 058503 & COFicande \\
\hline 05840 C**** & CEis Part dalculares rile momal cost fur gecond gnmple \\
\hline
\end{tabular}
```

05850 C***** . Ir INCLUM:%S rHE COSI FCR ACCEPMENG SECOMD SANPLAMC
05860 C**** (TACP2) Alid SILE CCSI FOR REUECNING SECGIDD SAMPLILGG
05870 C**** (TRJP2) .
O5880 C**** ChICULATmE mHE ACCEPMZMG SECOHD SAMPLE PART(mACP2)
05890 %O. FACP2=0.
05900 - TRJP2=0.
05910 - K1=AC1+2
05920 L1=RJ1
059j0 C**** CONSIDER FIRST SAMPLE RESULTS WL_CH WILL REQU~RE SECCRD
05940 C***** SAMPEE
05950 DÓ 22 J1=K1, L1
05900 DHD1=J1-1
O5970 - NF(FCODE.EQ.1) GO FO 5
05980 CALE MB1SH(DNS1,DND1, Wi,W2,W%,F1,F2,F%,GI1X1)
O59gO C**** CALCULiATE THE MARG_NAL TERM
OECOO CURGLX=CUNGLXXGHIX1
06010 GO TG E
OOU20 5 CALI PLISM(DIS1, DND1,O,N,GII1X1)

```

```

O6040 CUMGiN=CUMGLXX+GN1X1
O50506 K2=DES2+1.CO1
06060 CULH21=0.
COOTO C**** COISGDER EACH POSSIBLE DEFECMIVE IN SECOLDD SAMPLE
06080 DO 1う J2=1,K2
!06090 DND2=J2-1
O6100 C**** CALCULATE COMBINED SAMPLE DEFECTIVES
C6110 FX=DND1 +DND2
06120 IF(IICODE.EQ.1) GO TO 7
061>0 CALL HB2S (DNLS,DHS1,DHE2,MX,W1,W2,W%,F1,F2,F3,EXX2GX,HNXX2X)
06140 CALL MB12S(DNLS,DINS1,DNS2,DND1,DND2,H1,W2,W3,F1,F2,F'S, HMX2X1)
06150 GO TO 8
06160 7 CALİ PL2S(DNLS,DNS1, DNO2, EX, S,`,EXX2`XX,IHNXX2X)
06170 CALL PL12S(DNLS,DNS1,DNG2,DHD1,DND2, S, , HX2X1)
06180 C**** IF NUNBER,OF DEFECTIVES IN SECOND SAMPLE EXCDED ALLOWABLE
06190 C**** NUNEDR
06200 8 LF(DHD2.GR.(AC2-DHD1)) GO TO 20
06210 C**** CALCULATE SHE COET OF REJCNUN OL TIE SECORD SAMPLE

```

```

062゙JC 1+A1*(DNLS-DLiS1-DLiS2)+A2*EXX<GX)*ILX2X1)*CN1X1

```

```

06250 CUHH23=CUNH2; +HX2X1
06260 GO 20 1j
062'/O C**** ChLCULATE THE REJECTAGG SECLND SAMPLE PART(TRJP2)
06280 20 TKuP2=2RJP2+((SO+S1*(DHN1+DHGZ ) +S2*(DHD1+DHD2)

```

```

06%00 0**** \&CCUHUL\&TE PCNTERAOR UF DIND2 G\&VEIN DNDi
06,10 CUMi\#Z1=CUNH21+HM2X1
06%20 \&F(CUHZ21.GF..gQS) GO TO 22
063%0 13 CONTANUE
0634022 CONITNUE

```

```

06850 IF (EXX2GX.GT.BE) GO TU G
06860 11 MX=-1.
UG87O C**** INCREMLHS COMBANED SAMPLE DEFECNIVES
0.880 \& TX = X X 1.0
06890 CALL PLZS(DIILS,DHS1,DNS2,TX,S,r, EXX2GX,HHXX2X)
06900 C
06910 C**** CALCULATE BRE:K EVEN
06920 BE=(RO-AO*(1.-HRXX2X)+(R1-H1)*(DIHLS-DNS1-DHS2))/(A2-R2)
C69j0 IF (EXX2GX.IE.BE)GO MO \&
06940 C**** DECREMENL COMBAMED SHMPLE ACOEPFANCE MUHBER
06950 9 AC2 = = X-1.
C6960 C**** SER COMBLNED SMMPIE REJECMEUN NUMBIR
00970 RJट2=AC2+1.
06980 RENURI
06990 ENilO
0 7 0 0 0 ~ C
07010 C
07020 ©
070;0C\************************************************************************
07040 C
OTOFO C SUBRUUTANE SIS CALCULAMES THE ACCEPNANCE (AC1) AND
UTOGO C - REJECRICN (RJ1) WUHEERN FUR GHE F\&ROS SAMPLE . ACCEPTANGE

```

```

UTOEO C SHE CUSN PER LOT OF ACCEPGAIOE GN THE F\perpRST SAMPIE (OAC1)
OTOSO C AT:D THE CUSH' PER LOT OF HAKMIGG A DECISIUN BASED UPCH \&
07100 C COHBIHED SGMPLE (TC2) , FEJECTION NUHBER RJ1 IS DEU:DED
O7110 C USING A BREAK EVEN ANALYSZS BETWEEN THE CCST PER LCY OF
07120 C REJECTICN ON THE FARST SAMPLE (TRJ1) AND THE COSN PER LOR
07130 C OF HAKING A DECLSION BANED UPON A COMBINED SAMPLE (IC2).
07140 C MFE TOTAL CCST OF THE SECOND SAMPLE (TC2) IS MHE SUA OF
O7150 C THE TOFAL COST OF ACCEPTANCE (NAC2) AND REJECTICN (IRJ2)
07160 C FOLLOWING MHE SECOND SEMPLE.
07170 c
07180C********************************************************************
C7190 C
0 7 2 0 0 ~ C
07210 C
0 7 2 2 0
07230 1,AO,:11,A2,KO,K1,R2, AC1, RJ1, HC2,HJ2)
07240 IMPLICIC REAL*E(A-H,U-X
O'1250 C**** DENERMAIE MRE VALUS OF AC1
U7260 C***** CALCULATE TAC1
07270 TX=0.
07200 - DND 1=-1.
C729C 29 DND1=DHD1+1.
07j00 FaCl=0.
U/j10 TAC2=0.
CTj20 Ti'RJ゙ぐ=0.
0TjうO -
UTj4O SF(NCODE.EQ.1) GC FO jO

```

```

~7560
07%70
07380
07590
0 7 4 1 0
0 7 4 2 0
07430
07440
07450
07460
O7470
07400
0 7 4 9 0
07500
07510
0%520
075%0
07540
07550
0 7 5 6 0

```

```

07580 C**** C\&ICULiram CuSI
C75G0 %2 THAC2=TAC2+(SO+S1*(DHE1+DNOS2)+S2*(DIND1+DHD2)+AO*(1-HNXX2X)

```

```

07610 C**** CaICULAME Thu2
0 7 6 2 0
0 7 6 5 0
07640 C**** CCHNSDER REJOCTION RANGE
07650 DO 35 J=K,工
07660
07670 TX=DND1 +DND2
07680 IF(HCODE.EQ.1) GOO IO %4
0 7 6 9 0
07700
07710
07720
07730
0 7 7 4 0
07750
0 7 7 6 0
07770
07780 C**** CALCULAME CUSN
07790 j5 TRJ`=~RJ2+(SG+S1*(DNS1+DNL2)+(DND1+DND2)*S2+RO+
07800 1R1*(DNLS-DNS1-DIFS2)+R2*EXX2GX)*HX2X1
07810 C**** CaLCUL\&TE TUMAL UCSEN
0'i820
O'心%0
O'/840 IF (TAC1.IE.TCZ2) GC TO 29.

```

```

07870 0**** DErEmaile rHE VALUE OF RJ1
0788C C***** C\&ICUL\&'2E こ'RJ1
OTS50 }\because\textrm{X}=0
07900 DIFD1=AC1
07910 <9 DHD1=DHD1+1.
079c0 - TRU1=0.
VIG%0 TAこ2=0.
U7S40 TRJ2=0.
v゙GうO OC2=0.
V'960 -F (INCODE.5Q.1) GU D0 40

```

```

07900 1 EXX1GX, m,NXX1X)
07990 GO IO 41
0800040 CHLE PL1S(DNLS,DNS1, DND1,S, M, EXX1GX,HiNXX1X)
0801041 TRU1=SC+DNK1*S1+DND1*S2+RO+(DNISS-DNS1)*R1+R2*EXX1CX
08020 C**** CalCULATE TAC2
08050 K=AC2-DIND1+1.001
08040 IF(K.LT.1) GO TO 60
O8050 C**** COHSIDER ACCEPNANCE RANGE
08060 DU 42 J=1,K
08070 D DIID2=J-1
08080 TX=DND1+DNiD2
08090 IF(NCCDE.EQ.1) GO TO 4%

```

```

08110 CALL MB1S(DHLS,DHE1,DHD1,W1,W2,W3,F1,F2,Fj,
C8120 1 EXX1GX,MINX1X)
C8130 CALL HB12S(DNIE,DFS1,DNS2,DND1,DND2,W1,W2,WJ,
08140 1 F1,F2,Fj,HX2X1)
08150 GO MC 42
081604j CALL PLZS(DNLS,DHS1,LLIS2,GX,S,T,EXX2GX,MHXXCZX)
08170 CALL PL1S(DNLS,DISS1,DND1,S,F,EXX1GX, HiNXX1X)
08180
08190442
0\&200 1+A1*(DNLE-BNS1-DNS2)+A2*EXX2GX)*HX2X1
08210 C***** CALCULANE TRJ2
08220 60 K=AC゙2-DNLD1+2.001
0OZ2,0 L=Difīž+1. LO1
C8240 DU 45 J=K,i
C8<50 DNDL2=J-1
O8260 TX =DND1+DND2
O\&2'OO IF (INCUDE.EQ.1) GU TO 44
C8260 CALL IR2S(DNLS,DINS1, HIS2,TX,W1,W2,W%,Fi,F2,F`, EXX2GX,HHXX2X)
C8290 CALL MB1S(DINSS,DHS1,IHD1,W1,W2,Wう,F1,F2,Fj,
08;00 1. EXX1GX,HMXX1X;
08%10 CALL MB12S(DNLOL,DNS1,DNS2,DHD1,DHD2,H1,W2,W%,F1,F2,FJ
08:20 1,HX2X1)
08350 GU T0 45
O834044 CALL PL2S(DHLS,DHS1,DNS2,FX,S,F,ETX2GX,HMXX2X)

```
\begin{tabular}{|c|c|c|}
\hline 08550 & & \\
\hline 08060 & & \\
\hline 08370 & 45 & \\
\hline 08580 & & \\
\hline 08.990 & & \\
\hline 08400 & & RCSC= (TRJ1-rC2)/rRu1 \\
\hline 08410 & & IF(ROCC.GF..CO1) GO SC 39 \\
\hline 08420 & \(C^{* * * *}\) & itet piejecijen number ruj \\
\hline \(084 \% 0\) & & RJ1 = DND1 \\
\hline 08440 & & RETUFI\% \\
\hline 08450 & & EIND \\
\hline C8460 & C & \\
\hline 03470 & C & \\
\hline 03480 & C & \\
\hline 08490 & C***** & \\
\hline 08500 & C & \\
\hline 08510 & & SUBROUMINE MB2S CALCULȦES MERMS FCR MIXED BIMCMIAL \\
\hline 08520 & & PRIOR DISTRIBU'SUN . THE TERMS ARE REIEVAMI FOLICHAIG \\
\hline 08550 & & TiiE SECOND SAMPLE . THE TERMS ImCIUDE THE EXPECRED \\
\hline 08540 & & NUMBER UF DEFECTIVES iN mile Rest cf che lon Gaveri ihe \\
\hline 08550 & C & \\
\hline 08560 & & \\
\hline 08570 & & \\
\hline 08580 & & \\
\hline 08590 & - & \\
\hline 08600 & \(C^{* * * * *}\) & ** \\
\hline 06610 & C & \\
\hline 08620 & C & \\
\hline 086;0 & C & \\
\hline 08640 & & SUBROURINE MB2S (DNLS , DNS1, DNS2, CX , W1, W2, W\%, F1, F2, Fj, \\
\hline 08650 & & 1 EXX2GX, midX2X) \\
\hline 08660 & & \\
\hline 08670 & C'**** & Calculare che denominator qerms for exxegy and \\
\hline 08680 & C**** & HMXX2X . \\
\hline 08690 & & \\
\hline 08700 & & IF (G21L. LE.-174.) G21L=-174. \\
\hline 08710 & & G21 \(=\operatorname{DEXP}(\mathrm{G} 21 \mathrm{~L})\) \\
\hline 08720 & & \\
\hline 08730 & & IF (G22L.LE.-174.) G22L=-174. \\
\hline 08740 & & G22=DEXP (G22L) \\
\hline 08750 & & \\
\hline 08760 & & IF (G2jL.LE.-174.) G2jL=-174. \\
\hline 08770 & & G2j=DEXP (C2-1) \\
\hline 08780 & C**** & CALCULAME TIIE TERNS FUR EXX2GX \\
\hline 08790 & & \(W 21 E=\operatorname{LCG}(F 1)+\mathrm{G} 21 \mathrm{~L}\) \\
\hline 08800 & & IF (V21E.LE.-174.) W215=-174. \\
\hline 08810 & & W21-DEXP (V21玉) \\
\hline 03820 & & W22ら=DLCG (F2)+G<2L \\
\hline 08830 & & -F(W225.LE.-174.) W22E=-174. \\
\hline U6840 & & W22=DEXP (WZ2E) \\
\hline
\end{tabular}
```

| 08550 |  | $\mathrm{V} 23 \mathrm{E}=\mathrm{DLCG}(\mathrm{F} 3)+\mathrm{G} 2 \mathrm{~L}$ |
| :---: | :---: | :---: |
| 08560 |  | IF (H235.LE.-174.) W23E=-174. |
| 08870 |  | $\mathrm{W} 2 \mathrm{~J}=\mathrm{DEXP}(\mathrm{W} 2 \mathrm{E}$ ) |
| 08880 | C**** | CaLCUlirde EXX2GX |
| 08890 |  | $W 2 \mathrm{~L}=(\mathrm{W} 21+\mathrm{W} 22+\mathrm{W} 23) /(\mathrm{G} 21+\mathrm{G} 22+\mathrm{G} 23)$ |
| 08900 |  | EXX2GX $=($ DILS - DMS $1-$ DiS2 $) * W 2 m$ |
| 08910 | C*** | Calculime mhe merhs for hrxx 2 X |
| 08920 |  |  |
| C8950 |  | iF(H21L.LE.-174.) F21L=-174. |
| 08940 |  | $\mathrm{H} 21=\mathrm{DEXP}(\mathrm{I} 21 \mathrm{~L})$ |
| 08950 |  |  |
| 03960 |  | IF (H22L. LE . -174.$) \mathrm{H} 22 \mathrm{~L}=-174$. |
| 00970 |  | H22=DEXP (H22L) |
| 05980 |  |  |
| U8990 |  |  |
| 05000 |  | H2j=Dexp (H2jL) |
| 09010 | C**** | CAiCUlirse haxx 2 X |
| 09020 |  | HifXX2X $=(\mathrm{H} 21+\mathrm{Hz} 2+\mathrm{H} 23) /(\mathrm{G} 21+\mathrm{G} 22+\mathrm{G} 2 \mathrm{j})$ |
| 09030 |  | Refiduli |
| 09040 |  | END |
| 09050 | C |  |
| 09060 | C |  |
| 09070 | C |  |
| 29080 | $C^{* * * *}$ |  |
| J9090 | C |  |
| 09100 | C | SUBROUMINE MB1S CALCULACES TERMS FOR CHE MIXED BIMOMIAL |
| 09110 | C | PRICR DISIRIBUTION . SHE TERMS ARE RELEVATI FULICWING |
| 001120 | C | THE FIRET SAHPLE . THE TERMS ENCIUDE THE EXPDCTED HUHBER |
| 09130 | C | OF DEPECMTVES If GHE RESM OF THE IOC GIVEI SHE MUMBER OF |
| 09140 | C | DEFECTIVES IN MHE FIRST SMMPLE ( EXXIGX) , THE POESERIOR |
| 09150 | C | PROBABILITY THAM SHERE ARE NO ADDITIONAL DEPECSIVEC in |
| 09160 | C | THE LOT GIVEI THE NUMBER OF DEFECTIVES IN THE FiRS' SAMPLE |
| 09170 | C | ( HNXX1X) . |
| 09180 | C |  |
| 09190 | C**** |  |
| 09200 | C |  |
| 09210 | C |  |
| 09220 | C |  |
| 09230 |  | SUBRCUSEIVE MB1S(DIILS, DNS 1 , DITD1,W1,W2, W\%, |
| 09240 |  | 1 F1, FC, $\mathrm{F}^{\prime \prime}$, EXX1GX. $\mathrm{H} \mathrm{XXX1X}$ ) |
| 09250 |  |  |
| 09260 | C**** | calculate mhe dehmminaror rermi fur exxigx |
| 09270 | $\therefore$ | G11L=DLCG (W1) +DI, Di*DLOG (F1) + (DNE1-DinD1)*DLUG(1.-F1) |
| 09260 |  | +F(G11L.LE.-174.) G11L=-174. |
| 09290 |  | G11=DEXP (G11】) |
| 09300 |  |  |
| 09う10 |  | IF(G12L.LE.-174.) G12L=-174. |
| 09\%20 |  | G12=DEXP (C12L) |
| 09330 |  |  |
| 09\%40 |  | IF(G13L.IE.-174.) G13L=-174. |

```

```

O9350
09800
09870
0cekO
00990
09000
09910
09020
09950
09940
09050
09960
09970
09g80
09990
10000
10010
10020
10030
10040 C**** CALCUL\&Em KiX2X
10050 - HX2X1 = \&21 +A22+A゙2j
0060 REFUKH
10070 END
10080
10090 C
10100 ©
10110 C ************************************************************************
10120 C
10130 C SUBROUIINE MB1SM CALCULAMES RERM FOR RHE MIXED BENCMIAL
10140 C PRIOR DISTRIBUMION , THE TERM IS THE MARGIFAL DISTRIBUNICN
10150 C OF NUHBER OF DEFECTIVES IN THE FIRSE SMMPIE (GN1X1).
10160 C
10170C*************************************************************************
10180 C
10190 C
10200 C
10210
10220
102:0 1 GMIX1)
iMPLIC+T REAL*\&(A-H,O-X)
10240 C**** CALCULARE THE TERMS OF GM1X1
10250 G11L=DLUG(V1)+DND1*DLOG(F1)+(DNS1-DHD1)*DLCG(1.-F1)
10260 G12L=DLOG(VI2)+DHD1*DLGG(F2)+(DNO1-D\DD1)*DLCG(1.-F2)
10270 G1`L=DLUG(W゙)+DND1*DLGG(F゙j)+(DNS1-DILD1)*DLCG(1.,-F%)
10280 COMBL!=DLGAHA(DLIS1+1.)-DLG\&MA(DHFD1+1.)-DLGFMA(DHS1-DIND1+1.)
10290 E11L=C11L+CUMBE1
10j00 \&F(E11L.LE.-i74.) E11L=-174.
10j10 E11=DEXP(E11L)
10j20 E12I=G121+COMBL!
10,j0 -F(E12L.IE.-174.) E12L=-174.
10j40 - E12=DEXP(E12L)
10j50 E1jL=G1jL+COMBL1

```
\begin{tabular}{|c|c|c|}
\hline 10，60 & & 2F（こ1）L．LE．－174．）E1シL＝－174． \\
\hline 10，70 & & E1う＝DEXP（E1う」） \\
\hline 10\％80 & C＊＊＊＊ & Calcumate GNiX1 \\
\hline 10；90 & & \(\mathrm{G} 11 \mathrm{X1}=211+\mathrm{E} 12+\mathrm{E} 13\) \\
\hline 10400 & & REMURI \\
\hline 1041C & & END \\
\hline 10420 & C & \\
\hline 10430 & C & \\
\hline 10440 & C & \\
\hline 10450 & C＊＊ & ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 10460 & C & \\
\hline 10470 & & SUBROURIME PLZS CALCULATES RERME FCR MHE POLYA PRIOR \\
\hline 10480 & & \\
\hline 10490 & & SECOND SAMPLE ．THE TERMS \\
\hline 10500 & & \\
\hline 10510 & & OF DEFECTEVES IIT TEE FIRGT ALD SECOND SAMPLES（EXX2GX） \\
\hline 10520 & C & \\
\hline 105\％0 & C & \\
\hline 10540 & & THE FIRST ARD SECOND SAMPLES（ HMXXCX ）． \\
\hline 10550 & & \\
\hline 10560 & C＊＊＊＊ & ＊＊＊ \\
\hline 10570 & C & \\
\hline 10580 & C & \\
\hline 10590 & C & \\
\hline 10600 & & SUbRCUSNE PLZĖ（DLLS，DHS1，DNS2，TX，S． \\
\hline 10610 & & 二HPL＝Cis REAL＊E（A－H，U－X） \\
\hline 10620 & C＊＊＊＊ & Calcularis fhe EXX2GX \\
\hline 10650 & & \\
\hline 10640 & C＊＊＊＊ & Cadculare phe hixxax \\
\hline 10650 & & \\
\hline 10660 & & \\
\hline 10670 & & IF（H21P．IE．－174．）H21P＝－174． \\
\hline 10680 & & HNXX2X＝DEXP（H21P） \\
\hline 10690 & & REMURN \\
\hline 10700 & & END \\
\hline 10710 & C & \\
\hline 10720 & C & \\
\hline 10730 & C & \\
\hline 10740 & C＊＊＊＊ & \\
\hline 10750 & C & \\
\hline 10760 & C & SUBROUSIHE PL1S CALCULATEN OERHS FCR THE PCLYA PRIOR \\
\hline 10770 & C． & \\
\hline 10780 & C & FIRST SAMPLE．THE PERME AVCLUDE CIIE EXPECTED NUMBER \\
\hline 10790 & C & \\
\hline 10800 & C & \\
\hline 10810 & C & \\
\hline 10820 & C & \\
\hline 108；0 & C & di THE F－ROT Shille（ HNXXIX ）． \\
\hline 10840 & C & \\
\hline 10850 & C＊＊＊＊ & \\
\hline
\end{tabular}

11370 C
11380 C
11390 C
11400
11410
```

SUBROUTINE PL1SM(DIS1,DHD1,G,T,GIN1X1)
MMPLiCIF REAL*O(A-H,O-X)
COMBL1 = DLGAHA(DNET + ) -DLGAMA(DND1 +1)-DLGAMA(DNE1-DND1 +1)
B11L=DIGAMA(S+DINDi)-DLGMMA(S)
B12L=DIGAMA(T+DNS1-DND1)-DEGAMA(I)
B1jL=DLGAMA(S+?)-DLGAMA(S+r1+DNST)
B1T=B11L+B12I+B15L+COMBL1
ZF(B1T.IE.-174.) B1N=-174.
GIV\X1=DEXP(BiII)
RECURN
E:D

```

\section*{APPENDIX B}

DERIVATION OF THE CONDITIONAL PROBABILITY DISTRIBUTION OF THE NUMBER OF DEFECTIVES FOUND IN A SECOND SAMPLE, GIVEN THE NUMBER OF DEFECTIVES FOUND IN THE FIRST SAMPLE

This appendix refers to the derivation of the conditional probability distribution of the number of defectives found in a second sample \(x_{2}\), given the number of defectives found in the first sample \(x_{1}\). Both the mixed binomial and Polya cases are derived.

\section*{Mixed Binomial Distribution Case}

Consider a mixed binomial distribution with the following prior probability function:
\[
f_{N}(x)=\sum_{i=1}^{m} w_{i}\binom{N}{X} p_{i}^{X}\left(1-p_{i}\right)^{N-X}
\]
where
\[
\begin{aligned}
& 0<p<1 \\
& \sum_{i=1}^{m} w_{i}=1 \\
& x=0,1,2, \ldots, N
\end{aligned}
\]

The conditional probability distribution of the number of defectives found in a second sample, given the number of defectives in the first sample, is:
\[
n_{n_{2}}\left(x_{2} \mid x_{1}\right)=\sum_{i=1}^{m} \frac{w_{i}}{\sum_{i=1}^{m} w_{i}}\binom{n_{2}}{x_{2}} p_{i}^{x_{2}}\left(1-p_{i}\right)^{n_{2}-x_{2}}
\]
where
\[
\begin{aligned}
& 0<p_{i}<1 \\
& \sum_{i=1}^{m} W_{i}=1 \\
& x_{2}=0,1,2, \ldots, n_{2}
\end{aligned}
\]

Logic:
Consider the prior:
\[
f_{N}(X)=\sum_{i=1}^{m} w_{i}\binom{N}{X} p_{i}^{X}\left(1-p_{i}\right)^{N-X}
\]

From Equation (3.14),

Then,
\[
h_{n_{2}}\left(x_{2} \mid x_{1}\right)=\sum_{x-x_{1}}^{\sum} \ln _{2}\left(x_{2} x_{1}, x-x_{1}\right) h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)
\]
\[
=\sum_{X-x_{1}}^{\sum} \frac{\binom{n_{2}}{x_{2}}\binom{N-n_{1}-n_{2}}{X-x_{1}-x_{2}} \sum_{i=1}^{m}\binom{N-n_{1}}{X-x_{1}} w_{i} p_{i}^{X}\left(1-p_{i}\right)^{N-X}}{\binom{N-n_{1}}{X-x_{1}}} \sum_{i=1}^{m} \quad w_{i} p_{i}^{x_{1}}\left(1-p_{i}\right)^{n_{1}-x_{1}}
\]
\[
=\sum_{i=1}^{m} \frac{W_{i}}{\sum_{i=1}^{m} W_{i}} p_{i}^{x_{2}}\left(1-p_{i}\right)^{n_{2}-x_{2}}
\]

Since
\[
\sum_{x-x_{1}}\binom{N-n_{1}-n_{2}}{x-x_{1}-x_{2}^{2}} p_{i}^{x-x_{1}-x_{2}}\left(1-p_{i}\right)^{N-n_{1}-n_{2}+x_{1}+x_{2}}
\]
\[
\sum_{x-x_{1}}\binom{N-n_{1}-n_{2}}{x-x_{1}-x_{2}} p_{i}^{x-x_{1}-x_{2}}\left(1-p_{i}\right)^{N-n_{1}-n_{2}+x_{1}+x_{2}}=1
\]
therefore
\[
h_{n_{2}}\left(x_{2} \mid x_{1}\right)=\sum_{i=1}^{m} \frac{w_{i}}{\sum_{i=1}^{m} w_{i}}\binom{n_{2}}{x_{2}} p_{i}^{x_{2}}\left(1-p_{i}\right)^{n_{2}-x_{2}}
\]

\section*{Polya Distribution Case}

Consider a Polya distribution with the following prior probability function:
\[
f_{N}(X)=\binom{N}{X} \frac{\Gamma(s+X) \Gamma(t+N-X) \Gamma(s+t)}{\Gamma(s) \Gamma(t)} \frac{\Gamma(s+t+N)}{\Gamma(t)}
\]
where
\[
\begin{aligned}
& s, t<0 \\
& x=0,1,2, \ldots, N
\end{aligned}
\]

The conditional probability distribution of the number of defectives found in a second sample, given the number of defectives in the first sample, is:
\(n_{n_{2}}\left(x_{2} \mid x_{1}\right)=\binom{n_{2}}{x_{2}} \frac{\Gamma\left(s+x_{1}+x_{2}\right) \Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right) \Gamma\left(s+t+n_{1}\right)}{\Gamma\left(t+n_{1}-x_{1}\right)} \quad \Gamma\left(s+t+n_{1}+n_{2}\right) \quad(1)\)
where
\[
\begin{aligned}
& s, t<0 \\
& x_{1}=0,1,2, \ldots, n_{1} \\
& x_{2}=0,1,2, \ldots, n_{2}
\end{aligned}
\]

Logic:
Consider the prior:
\[
f_{N}(x)=\binom{N}{X} \frac{\Gamma(s+X) \Gamma(t+N-X) \Gamma(s+t)}{\Gamma(s) \quad \Gamma(t)} \frac{\Gamma(s+t+N)}{}
\]

From Equation (3.8),
\[
n_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=\binom{N-n_{1}}{x-x_{1}} \frac{\Gamma(s+x) \Gamma(t+N-x) \Gamma\left(s+t+n_{1}\right)}{\Gamma\left(s+x_{1}\right) \Gamma\left(t+n_{1}-x_{1}\right) \Gamma(s+t+N)}
\]

Let
\[
\begin{aligned}
M & =N-n_{1} \\
Y & =x-x_{1} \\
s^{\prime} & =s+x_{1} \\
t^{\prime} & =t+n_{1}-x_{1}
\end{aligned}
\]

Then,
\[
h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=\binom{M}{Y} \frac{\Gamma\left(s^{\prime}+Y\right) \Gamma\left(t^{\prime}+M-Y\right) \Gamma\left(s^{\prime}+t^{\prime}\right)}{\Gamma\left(s^{\prime}\right)} \Gamma \Gamma\left(t^{\prime}\right) \frac{\Gamma\left(s^{\prime}+t^{\prime}+M\right)}{}
\]
since
\[
\sum_{x-x_{1}}^{\Sigma} \ell_{n_{2}}\left(x_{2} \mid x_{1}, x-x_{1}\right) h_{N-n_{1}}\left(x-x_{1} \mid x_{1}\right)=h_{n_{2}}\left(x_{2} \mid x_{1}\right)
\]

Therefore
\[
\sum_{Y} \ell_{n_{2}}\left(x_{2} \mid x_{1}, Y\right) h_{M}\left(Y x_{1}\right)=h_{n_{2}}\left(x_{2} \mid x_{1}\right)
\]

Thus,
\[
\begin{aligned}
n_{n_{2}}\left(x_{2} \mid x_{1}\right)= & \sum_{Y-x_{2}=0}^{M-n_{2}} \frac{\binom{n_{2}}{x_{2}}\binom{M-n_{2}}{Y-x_{2}}}{\binom{M}{Y}}\binom{M}{Y} \frac{\left(s^{\prime}+Y\right)\left(t^{\prime}+M-Y\right)\left(s^{\prime}+t^{\prime}\right)}{\left(s^{\prime}\right)\left(t^{\prime}\right)}\left(s^{\prime}+t^{\prime}+M\right) \\
= & \binom{n_{2}}{x_{2}} \frac{\Gamma\left(s^{\prime}+t^{\prime}\right) \Gamma\left(s^{\prime}+x_{2}\right) \Gamma\left(t^{\prime}+n_{2}-x_{2}\right)}{\Gamma\left(s^{\prime}\right)} \Gamma \Gamma\left(t^{\prime}\right) \frac{\Gamma\left(s^{\prime}+t^{\prime}+n_{2}\right)}{} \\
& \underset{Y-x_{2}}{\sum\binom{M-n_{2}}{Y-x_{2}} \frac{\Gamma\left(s^{\prime}+Y\right) \Gamma\left(t^{\prime}+M-Y\right) \Gamma\left(s^{\prime}+t^{\prime}+n_{2}\right)}{\Gamma\left(s^{\prime}+x_{2}\right) \Gamma\left(t^{\prime}+n_{2}-x_{2}\right) \Gamma\left(s^{\prime}+t^{\prime}+M\right)}}
\end{aligned}
\]

Again, let
\[
\begin{aligned}
& L=M-n_{2} \\
& Z=Y-x_{2} \\
& s^{\prime \prime}=s^{\prime}+x_{2} \\
& t^{\prime \prime}=t^{\prime}+n_{2}-x_{2}
\end{aligned}
\]

Then,
\[
\begin{aligned}
& \sum_{Y-x_{2}}\binom{M-n_{2}}{Y-x_{2}} \frac{\Gamma\left(s^{\prime}+Y\right) \Gamma\left(t^{\prime}+M-Y\right) \Gamma\left(s^{\prime}+t^{\prime}+n_{2}\right)}{\Gamma\left(s^{\prime}+x_{2}\right) \Gamma\left(t^{\prime}+n_{2}-x_{2}\right) \Gamma\left(s^{\prime}+t^{\prime}+M\right)} \\
& =\sum_{Z}\binom{L}{Z} \frac{\Gamma\left(s^{\prime \prime}+Z\right) \Gamma\left(t^{\prime \prime}+L-Z\right) \Gamma\left(s^{\prime \prime}+t^{\prime \prime}\right)}{\Gamma\left(s^{\prime \prime}\right) \Gamma\left(t^{\prime \prime}\right) \frac{\Gamma\left(s^{\prime \prime}+t^{\prime \prime}+L\right)}{}=1}
\end{aligned}
\]

Therefore,
\[
\begin{aligned}
h_{n_{2}}\left(x_{2} \mid x_{1}\right) & =\binom{n_{2}}{x_{2}} \frac{\Gamma\left(s^{\prime}+t^{\prime}\right) \Gamma\left(s^{\prime}+x_{2}\right) \Gamma\left(t^{\prime}+n_{2}-x_{2}\right)}{\Gamma\left(s^{\prime}\right) \Gamma\left(t^{\prime}\right) \Gamma \Gamma\left(s^{\prime}+t^{\prime}+n_{2}\right)} \\
& =\binom{n_{2}}{x_{2}} \frac{\Gamma\left(s+t+n_{1}\right) \Gamma\left(s+x_{1}+x_{2}\right) \Gamma\left(t+n_{1}+n_{2}-x_{1}-x_{2}\right)}{\Gamma\left(s+x_{1}\right)} \Gamma\left(t+n_{1}-x_{1}\right) \Gamma\left(s+t+n_{1}+n_{2}\right)
\end{aligned}
\]

\author{
VITA \({ }^{\text {d }}\) \\ Shao-Shing Chen \\ Candidate for the Degree of \\ Doctor of Philosophy
}

Thesis: MODELING AND DESIGN OF ECONOMICALLY BASED DOUBLE SAMPLING PLANS Major Field: Industrial Engineering and Management

Biographical:
Personal Data: Born in Chai-ji, Taiwan, Republic of China, October 6, 1948, the son of Mr. and Mrs. Chau-Cheun Chen.

Education: Graduated from Provincial Chai-ji High School, Chai-ji, Taiwan, Republic of China, in June, 1967; received Bachelor of Science degree in Industrial Engineering from Chung Cheng Institute of Technology in 1971; received Master of Commerce degree in Business Administration from National Cheng Chu University in 1975; completed requirements for the Doctor of Philosophy degree at OkTahoma State University in July, 1981.

Professional Experience: Assistant Scientist, Chung Shan Institute of Science and Technology, 1974-1977; Teaching Assistant, Chung Chen Institute of Technology, 1971-1972.

Professional Organizations: Alpha Pi Mu; American Institute of Industrial Engineers; American Society for Quality Control; Chinese Institute of Industrial Engineers; Chinese Society for Quality Control.```

