SIMULATION OF THE DYNAMIC PERFORMANCE OF

AIR-SOURCE, EARTH-SOURCE, AND

SOLAR ASSISTED EARTH-SOURCE

HEAT PUMP SYSTEMS

Ву

FAISAL IBRAHEM AL-JUWAYHEL

Bachelor of Science University of Pittsburgh Pittsburgh, Pennsylvania 1973

Master of Science Oklahoma State University Stillwater, Oklahoma 1977

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1981

Thesis 1981 D 44145 Wp.2

SIMULATION OF THE DYNAMIC PERFORMANCE OF

AIR-SOURCE, EARTH-SOURCE, AND

SOLAR ASSISTED EARTH-SOURCE

HEAT PUMP SYSTEMS

Thesis Approved:

Dean of the Graduate College

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation and thanks to my adviser Dr. Jerald D. Parker for his excellent guidance, patience, and understanding throughout this study. I would also like to extend my appreciation to Drs. Faye C. McQuiston, John A Wiebelt, Lester L. Boyer, and David G. Lilley for their helpful comments and advice.

Many thanks to Kuwait University for the financial support and encouragement throughout my graduate program.

I am very grateful to my friend Beverly Frierson for her great help in the interpretation of the collected data. The generosity of Karl Ledbetter and Bill Bouldin, of AC Service Company of Stillwater, Oklahoma, in supplying information and sharing their expert opinion concerning the heat pump units is greatly appreciated.

I would like to thank Dr. Dulaihan Al-Harbi, Dr. Saed Akasha, Fahed Al-Habdan, Baleid Kuwairi, Sulaiman Diab, Lider Sun, Ahmad Busnana, Dr. Americo Hossni, Dr. Yahya Sharat-Eldeen, Stann Sandoval, and Andrea Reeves for their unforgettable friendship, encouragement, and helpful suggestions.

I am particularly indebted to my wife Fatima, son Nawaf and daughter Qadeer for their patience, understanding, encouragement, moral support, and love. I am grateful to my brother and sisters for their continuous moral support and encouragement.

Last but not least, many thanks and appreciation to Terri Tackett for typing this manuscript in such a short notice, and to Eldon Hardy for his excellent work.

TABLE OF CONTENTS

Chapte	r	Page
I.	INTRODUCTION	1
II.	OBJECTIVE	7
	System Simulation	7 11
III.	LITERATURE SURVEY	13
IV.	DESCRIPTION OF THE HEAT PUMP SYSTEMS	20
	The Air-to-Air Heat Pump System	20 21
	Pump System	23
٧.	DATA ACQUISITION	26
VI.	SIMULATION PROCEDURE	35
	The Space Heating/Cooling Load	35 36 43 49 55 59
VII.	DISCUSSION OF SIMULATION RESULTS	68
VIII.	CONCLUSIONS AND RECOMMENDATIONS	76
REFERE	NCES	79
APPEND	IXES	83
	APPENDIX A - PHYSICAL DATA, DIMENSIONS AND PERFORMANCE DATA OF THE HEAT PUMP UNITS	84
	APPENDIX B - LDSIM INPUT LIST AND PROGRAM LISTING	89
	APPENDIX C - HPSIM INPUT LIST, FLOWCHARTS AND PROGRAM LISTING	111

LIST OF TABLES

Table		Pa	ige
I.	Design Data and Loads for the Perkins Houses	• .	8
II.	Summary of Residents Consumption Habits		9
III.	Measured Parameters		28
IV.	Order of Edited Data on Tape		33
v.	Simulated vs. Measured Performance of the Ground- Air Heat Pump System (West House - Dec. 21, 1980)		62
VI.	Simulated vs. Measured Performance of the Air-Air Heat Pump System (East House - Dec. 19, 1980)		62
VII.	Simulated vs. Measured Performance of the Ground- Air Heat Pump System (West House - Aug. 6, 1980)		63
VIII.	Assumed Values for Internal Generation, Infiltration Rates and Temperature Setting for the Aug. and Dec. Simulation Runs		69
IX.	Winter Simulation Results for the Three Heat Pump Systems (December 19-21, 1980)		70
х.	Summer Simulation Results for the Three Heat Pump Systems (August 4-6, 1980)		73

LIST OF FIGURES

Figu	ure	Pa	age
1.	Schematic of the Vertical Water-Earth Heat Exchanger System (VEWEX)		5
2.	Schematic of the Ground Source/Sink Heat Pump System		22
3.	Schematic of the Solar Assist Ground Source/Sink Heat Pump System	•	24
4.	Energy Gains and Losses in the System	•	27
5.	Basic Data Collection System	•	29
6.	Data Conversion and Storage		31
7.	Sample of Recorded Data From a Data Set File		32
8.	Heat Pump Cyclic Heating/Cooling Capacity	•	40
9.	Schematic of the Solar Energy System		44
10.	Schematic of VEWEX for Computational Purposes		51
11.	Flow of Information for the Dynamic Simulation	•	56
12.	Simulated vs. Measured Indoor Temperatures		60
13.	Simulated vs. Measured Indoor Temperatures		61
14.	Simulated vs. Measured Collector Outlet Temperatures (Heat Pump Off - Well Pump On)	•	65
15.	Simulated vs. Measured Well Outlet Temperatures (Solar Heat Addition - Heat Pump Off)	•	66
16.	Simulated Effect of Temperature on the Heating Coefficient of Performance (December 19, 1980)	•	72
17.	Simulated Effect of Temperature on the Cooling Coefficient of Performance (August 5, 1980)		7 5

Figur	e	Page
18.	Main Program Flowchart	114
19.	Flowchart for Heat Pump Subroutines	116
20.	Subroutine SOLAR Flowchart	117
21.	Subroutine VEWEX Flowchart	119

NOMENCLATURE

a _o , a ₁ ,, a ₆	-	constants used in Equation (1)
Ac	_	solar collector area, ft ²
An	-	surface area of nth well increment, ft ²
b_0, b_1, \dots, b_4	-	constants used in Equation (2)
b	-	length of bond between collector and tubing, ft
c _o , c ₁ ,, c ₇	_	constants used in Equation (3)
c _b		solar collector plate-tubing bond conductance, Btu/hr-ft-°F
CFC, CFHC	_	blower CFM correction factors for heating capacity, Equations (1,6)
CFCHR, CFHE	_	blower CFM correction factors for the heat rejection and extraction rates, Equations (8,6)
CFKW, CKW	-	blower CFM correction factors for compressor power input, Equations (7,2)
CEM	_	air volume flow rate, ft ³ /min
C _p	.—	specific heat of ethylene-glycol solution, Btu/lb-°F
D	-	inside diameter of solar collector tubing, ft
Do	_	outside diameter of solar collector tubing, ft
e _o , e ₁ ,, e ₇	-	constants used in Equation (5)
EWT	-	temperature of water entering well-heat pump heat exchanger, ${}^{\circ}F$
f _o , f ₁ ,, f ₇	_	constants used in Equation (6)
F		configuration factor between solar collector and sky
F	_	fin efficiency, Equation (22)

F'	- solar collector efficiency factor
$\mathbf{F}_{\mathbf{R}}$	- solar collector heat removal factor
G	 mass flow rate per unit of solar collector area, 1b/hr-ft²
GPM	- water volume flow rate through the well, gal/min
G _r	- grashof number
h _o , h ₁ ,, h ₇	- constants used in Equation (8)
h _c	- natural convection heat transfer coefficient, Btu/hr $-\mathrm{ft}^2-{}^\circ\mathrm{F}$
h _{f,i}	- film coefficient inside solar collector tubing, Btu/hr-ft2-°F
h _r _{p-s}	 radiation heat transfer coefficient between solar collector plate and sky, Btu/hr-ft²-°R
h _r p-w	 radiation heat transfer coefficient between solar collector plate and adjacent wall, Btu/hr-ft²-°R
h w	- forced convection heat transfer coefficient, Btu/hr $-\text{ft}^2$
I _t	- total solar radiation incident on the solar collector surface, $\mbox{\it Btu/hr-ft}^2$
j _o , j ₁ ,, j ₇	- constants used in Equation (9)
k	- thermal conductivity of air, Btu/hr-ft-°F
k _p	 thermal conductivity of solar collector plate, Btu/hr -ft-°F
L	- length of the solar collector, ft
L _t	- total length of solar collector tubing, ft
m	- ethylene-glycol solution mass flow rate, 1b/hr
М	- mass of water in the nth well depth increment, 1b
n	- number of tubes in solar collector
PCS	- power input to compressor (cooling), Kw
PHS	- power input to compressor (heating), Kw

```
- Prandtl number
                 - conduction heat transfer through the soil, Btu/hr-ft<sup>2</sup>-°F
^{\mathrm{Q}}_{\mathrm{cond}}
Q_{conv}
                 - convection heat transfer to the well surface, Btu/hr
                    -ft<sup>2</sup>-°F
OCS
                 - heat pump steady state cooling capacity, Btu/hr
Q<sub>cy</sub>
                 - heat pump cyclic capacity, Btu/hr
Q<sub>enth</sub>
                 - heat flow due to enthalpy change in the fluid passing
                    through the nth well depth increment, Btu/hr
QHES
                 - heat pump heat extraction rate, Btu/hr
QHRS
                - heat pump heat rejection rate, Btu/hr
QHS
                 - heat pump steady state heating capacity, Btu/hr
Q<sub>so1</sub>
                - heat transfer rate between the solar loop and the well.
                    Btu/hr
Q_{st}
                - heat storage rate in the nth well depth increment. Btu/hr
Q
                - useful heat gain in the solar collector, Btu/hr
^{R}_{p-f}
                - heat transfer resistance between the collector plate
                    and fluid, hr-ft<sup>2</sup>-°F/Btu
                - time, hour
t
                - heat pump cycle time, hr
                - heat pump operating time, hr
^{\mathrm{T}}_{\mathrm{avg}_{\mathrm{n}}}
                 - fluid mean average temperature in the nth well depth
                    n increment, °F
^{\mathrm{T}} and
                 - ambient temperature, °F
                 - solar collector inlet temperature, °F
T<sub>f,i</sub>
                 - mean average temperature of fluid in collector tubing, °F
Tf.m
\mathbf{f}_{\mathbf{n}}
                 - inlet temperature to the nth fluid increment in the well,
                 - outlet temperature of the nth fluid increment in the
                    well, °F
T<sub>f,o</sub>
                 - solar collector outlet temperature, °F
```

Tg	- soil far-field temperature, °F
T _{p,m}	- mean temperature of solar collector plate, °F
T _w	- temperature of the wall adjacent to solar collector, °F
$\mathbf{v}_{\mathbf{n}}$	- surface temperature for the nth well depth increment, ${}^{\circ}F$
TDB	- dry bulb temperature of the air entering indoor coil, ${}^{\circ}\mathrm{F}$
TFC	- temperature correction factor for heating capacity, Equation (1)
TF _{hp}	- water temperature exiting the heat pump heat exchanger, ${}^{\circ}F$
то	- outdoor dry bulb temperature, °F
TWB	- indoor wet bulb temperature, °F
$U_{\mathbf{b}}$	 back heat loss coefficient for the solar collector, Btu/hr-ft²-°F
Uo	 overall heat loss coefficient for the solar collector, Btu/hr-ft²-°F
U _t	- top heat loss coefficient for the solar collector, Btu/ $hr\text{-}ft^2\text{-}^\circ F$
WV	- wind velocity, mile/hr
	GREEK LETTER SYMBOLS
α	- solar absorptance of collector plate
Δθ	- timp step, hour
ΔΖ	- well depth increment
Υ	- average thickness of collector-tube bond, ft
$\epsilon_{ m p}$	- heat exchanger effectiveness
$\epsilon_{_{_{ m W}}}$	- solar collector plate emittance
ε	- emittance of wall adjacent to solar collector
σ	- Stefan-Boltzman constant = $0.1712 \times 10^{-8} \text{ Btu/hr-ft}^2 - \text{°R}^4$
τ	- heat pump time constant, hour

CHAPTER I

INTRODUCTION

More than one-fourth of the energy consumed in the United Sates is used for residential and commercial space heating, cooling, and water heating (1)*. About 83% of the energy used for these services is supplied by oil and natural gas. Because of the foreseeable increases in energy demands, and because of the widely publicized energy shortage, more efficient heating/cooling equipment and alternative energy sources are needed as means for energy conservation.

The heat pump presents an energy-conscious concept in the HVAC field. This is due to, first, its ability to deliver more energy (in the form of heat) than it takes to operate it and, second, to its attractive feature of performing the dual functions of heating and cooling with the same equipment. Awareness of such advantages led many people to install the heat pump in their homes. A 1977 survey indicated that over one and a half million unitary heat pumps were in operation in the United States (2). Some researchers project over one quarter million units to be sold annually (3).

The most widely used heat pump today is the air-source heat pump.

This is mainly because most of the experience on the heat pump design

^{*}Numbers in parantheses refer to cited references except for equation numbers.

and testing has been with this type, and because air is universally available as a heat source/sink. However, because the efficiency of this heat pump type is dependent on the ambient temperatures, some type of backup heat (usually electric resistance) is usually required to assist or carry the heating load during periods of low ambient temperatures. The heat pump coefficient of performance decreases as the outdoor ambient temperatures increases. The use of electric heat backup and inefficient heat pump operations present winter and/or summer load peaking problems for the utility companies. As a result, the utility companies are interested in more efficient heat pump systems that will help in "shaving" off the peak load demands (see for example reference 4).

Water is a very satisfactory heat source/sink for the heat pump provided there is a sufficient quantity available. When water is the heat source/sink it usually comes from wells, city mains, or nearby bodies of water (lakes or rivers). Water temperatures from such sources are usually within the temperature range for efficient year-round heat pump operation. However, obtaining water from these sources (when possible) is always associated with some concerns besides those of high cost. When using well water, some measures must often be provided to prevent scaling or corrosion in the heat exchanger. Also, some means of returning the water to the ground (usually by means of a return well adjacent to the supply well) may be needed to prevent the depletion of this source. If water from city mains is the source/sink, then some means must be provided to return the cooled or heated water to the mains. This is because water is becoming an increasingly expensive commodity in most societies; therefore, its once-through use will surely

be objected to by many localities. The possibility of any trace of contamination to the returned water is another concern. Such difficulties with water sources tend to impair the energy conservation potential of the water source heat pump. However, many studies (5, 6, and 7) indicate that such a potential can be better realized through the concept of Heat Pump Centered Integrated Community Energy Systems (HP-ICES). This concept calls for interconnecting buildings within a HP-ICES community by a common hydronic loop that would exchange heat with the individual heat pump units in each building. A central plant maintains the water temperature in the loop within the desired range. Waste heat (when available) from any nearby industrial plant can be utilized in the loop. An interesting feature of the HP-ICES is that when simultaneous heating and cooling demands exist within the community, wasted heat from buildings requiring cooling can be transferred to those requiring heating via the hydronic loop.

One heat source/sink that has not been given adequate attention in the past is the earth itself. At a sufficient depth, the ground retains a relatively uniform temperature throughout the year. Collins (8) stated that at depths from 30 to 60 feet the seasonal variation in ground temperature is not more than 1°F; and, for the major part of the continental United States the ground temperature, at these depths, will be in excess of 60°F. These figures were later supported by data compiled and analyzed by Kusuda et al. (9). The uniform temperature and the ease of accessibility make the ground an ideal heat source/sink for the heat pump and shows promise in reducing, if not eliminating, the electric resistance heat backup associated with the use of air-source heat pumps. This would, in turn, help in alleviating the load-peaking

problems the utilities are experiencing and/or anticipating.

There are many methods that can be used for the heat exchange between the heat pump and the ground. Kemler (10) presented schematics of several earth heat recovery systems for the heat pump and pointed out the advantages and disadvantages of each. The configuration that Kemler recommended as best, and recently gave successful experimental results reported by Bose et al. (11) is essentially identical to that shown in Figure 1. This configuration is coupled with two of the heat pump systems considered in this study.

Solar energy can be used effectively to further upgrade the performance of ground source heat pumps (11, 12). First, the system can be improved by adding back to the ground heat that was absorbed. Second, solar collectors coupled with ground source systems would operate at higher efficiencies because of reduced operating temperatures. And, third, the heat pump will operate more efficiently because of relatively high temperatures through the earth heat exchanger.

The above review of different heat pump types indicates that there still exists room for doubt as to which heat pump type would be superior from technical and economical points of view. Therefore, some work is needed to compare the economics of different heat pump systems and establish the impact of their performances on utility systems. This is the objective of a project supported by both the Oklahoma Gas and Electric Company (OG&E) and the Electric Power Research Institute (EPRI), of which this study is a part. The project involves comparing the performance of three different heat pump systems presently installed in three nearly identical houses in Perkins, Oklahoma. The three heat pump systems are a conventional air-source, a ground-source/sink, and a

Figure 1. Schematic of the Vertical Water-Earth Heat Exchanger System (VEWEX)

solar assisted ground-source/sink. The performance of the three systems is to be measured in terms of:

- 1. Overall life-cycle cost,
- 2. Peak demand on the electric system,
- 3. Reliability and maintenance, and
- 4. Kilowatt-hour consumption by customer.

The main objective of this study was the construction and application of a computer program to simulate the dynamic performance of airsource/sink, ground-source/sink, and solar assisted-ground source/sink heat pump systems.

The simulation procedures and performances analyses are explained in detail in later chapters. It should be noted that the performance analyses in this study were based on energy perspectives only. No attempt was made to include economic analyses of the systems.

CHAPTER II

OBJECTIVE

The objective of this study was to construct and apply a computer program to simulate the dynamic performance of three different heat pump systems, and to perform comparative analyses of the performance of these systems in terms of electrical power consumption and system efficiency.

The heat pump systems are currently installed in three nearly identical houses located on adjacent lots in Perkins, Oklahoma. The three houses are facing north. The west house has been occupied by the owner since July, 1980, and the other two have been occupied since November, 1980. The east house is equipped with the air-to-air heat pump, the middle with the solar assisted ground-source/sink heat pump, and the west with the ground-source/sink heat pump. All the houses have been instrumented for direct measurement of heat pump performance data (see Chapter V for details) and a weather station has been located in one of the back yards. Table I shows the design data and loads for these houses. Table II shows number of occupants and appliances within each house.

System Simulation

A dynamic simulation model of the three heat pump systems was constructed and is described in detail in Chapter IV. The simulation model

TABLE I

DESIGN DATA AND LOADS FOR THE PERKINS HOUSES

Location		Perkins, Oklahoma
Latitude		36° 1' N
Longitude		97° 5' W
House Area (ft ²)		1200
Volume (ft ³)		9600
Ratio, window area to total area (%)		5
Number of Occupants (East)		4
Number of Occupants (Middle)		4
Number of Occupants (West)		2
Total number of degree days		3725
Design temperatures: Heating (°F) Cooling (°F)	•	0 Outdoors 76 Indoors 100 Outdoors 74 Indoors
Heat Loss (Btu/hr)		18,860
Heat Gain (Btu/hr)		14,870
Insulation: Walls Roof		R-19 R-34

TABLE II
SUMMARY OF RESIDENTS CONSUMPTION HABITS

	East	Middle	West
Number of Occupants			
During the Day	1	2	1
In the Evening	4	4	2
On the Weekend	4	4	2
Thermostat Setting*			
Day	72	72	68
Night	68	70	68
Appliances	washing machine	washing machine	washing machine
	dryer	dryer	dryer
	dishwater	dishwater	dishwater
	refrigerator	refrigerator	refrigerator
	TV (2)	TV (2)	TV (2)
	oven	oven	oven
	range	range	range
	freezer	stereo	freezer
	stereo	small heater	stereo
Loads of Laundry/Week	15	4	4
Water Temperature	warm	warm	warm, hot
Vindows	double paned	double paned	double paned
	curtains	curtains	curtains
Lights Commonly Used	(1) 250W	(1) 250W	(3) 100W
	(2) 200W	(10) 60W	(1) Fluorescent

TABLE II (continued)

	East	Middle	West
Lights Commonly Used	(8) 60W (1) fluorescent		

^{*}Heating season settings

was intended to predict the dynamic performance of each of the three systems as a function of the occupied space load and weather (air-to-air heat pump), the ground contribution (ground-source/sink heat pump), or the solar-ground contribution (solar assisted ground source/sink pump).

The simulation model was intended to be general enough to accept a wide range of parameters and, of course, be able to predict heat pump performance in both the heating and cooling modes. An essential part of the objective was that the simulation model be able to predict the cyclic (on/off) behavior of the heat pump since it resembles that realistic heat pump performance under conditions of house heating or cooling loads below that of the heat pump capacity. Simplicity was a major concern in building the model. It was desirable that the program user not be burdened with a great deal of input. Rather, the particular house and the simulation period should suffice as input. On the other hand, it was borne in mind that generality should be reserved as a mark of the program. Therefore, all constants, in the model, are presented by variable names and made flexible for the user to change as desired.

System Performance Analysis

The second part of the objective involves the investigation and comparative analysis of the performance of the three heat pump systems in response to varying environmental parameters. The comparative analysis of the performance of these systems was to be based on the following:

- 1. Number of compressor cycles,
- Compressor on time,

- 3. Electrical power consumption, and
- 4. Coefficient of performance of the heat pump system.

In particular, the analyses were to shed a light on the advantages of the ground-source/sink heat pump over the air-to-air heat pump.

Furthermore, it was necessary to determine the merits (if any) of including the solar loop in the ground heat pump system.

CHAPTER III

LITERATURE SURVEY

Inspection of the available literature indicates that a great amount of research has been devoted to the simulation and analysis of the performance of the air-to-air heat pump. This is due to the fact that the air source heat pump has been manufactured in large quantities and has been the most popular type for several years. Relatively little work has been done on the water or ground source heat pumps, with most work in this area classified as being in the initiation stages.

Hiller et al. (13) and Ellison et al. (14) used similar techniques to simulate the air-to-air heat pump. Their approach consists of tracing the refrigerant path in the heat pump cycle and hunting for the state point temperatures at the various stages in the cycle. The compressor, expansion device, indoor and outdoor heat exchangers were accounted for by a sophisticated and a rather lengthy procedure. Their simulation programs can only predict the steady - state performance of the heat pump. However, it is well known that under circumstances when the space load is lower than the heat pump capacity, the heat pump will cycle to satisfy the low demand.

Kelly et al. (14) presented results of tests conducted on an airto-air heat pump in an effort to evaluate its cyclic performance and to determine what effect this cycling would have on the seasonal performance factor of the heat pump. The test consisted of measurements of the length of time the heat pump was on during a cycle period. The measured data were then used to establish a pattern on the part-load performance of the heat pump. The findings were then used to compute the cyclic coefficient of performance (COP) and seasonal performance factor (SPF). The conclusion presented therein indicated that the cyclic, or part-load heat pump operation COP and SPF values were lower than those obtained with steady state operation. The magnitude of the difference was inversely proportional to the ratio of the cyclic to steady state heat pump capacity.

Groff et al. (15) described a computer program, developed at the Carrier Corporation Research Center, for predicting the dynamic performance of air-source heat pumps. The simulation procedure consists of modeling the structure load, the heat pump steady state capacity, thermostatic controls, and the actual capacity of the heat pump. The actual heat pump capacity was modeled by a first-order differential equation of the form:

$$\frac{dQ}{dt} = \frac{1}{T} (Q_{ss} - Q)$$

where:

Q = actual capacity,

 Q_{ss} = steady state capacity,

t = time,

T = heat pump time constant.

The Carrier Computer program is very complex and requires a great deal of detailed input including characteristics of the heat pump and controls. The model was validated by use of data from a heat pump installed within a controlled environment. The results indicated that the model can predict the air-source heat pump performance with a very reasonable accuracy.

Murphy et al. (16) and Goldschmidt et al (17) presented field-test results and performance analysis of a 3 ton air conditioner and an air-to-air heat pump, respectively. Their objective was to establish values of the degradation coefficient for the units. In simple terms, the degradation coefficient is a measure of the decrease in the steady state heat pump capacity due to the transient effects of cycling. The researchers performed detailed mathematical analysis on the experimental results with the purpose of establishing general correlations by which predictions of heat pump "on" time are made possible. The resultant correlations indicate that the heat pump "on" time is dependent on the structure thermal capacity, thermostat dead band, and the steady-state capacity of the heat pump.

The literature contains many other reports on experimental and analytical results of the cyclic behavior of air source heat pumps (see for example references 18 to 21). To some extent, the experimental and analytical procedures employed in these references for the determination of heat pump performance are similar to those described above. Common to all these works is the conclusion that cycling can cause a substantial reduction in the heat pump rated capacity and thus seasonal performance. The recommendation shared by some is that the rated capacity of heat pumps should be represented in terms of cyclic rather than steady state performance.

In the area of water source/sink heat pump systems, Lawrence (22) performed a parametric study on different techniques for reducing the operation costs of heat pumps in colder climates. The study included

the use of solar energy and underground water. He used a very simplistic procedure to model a solar source heat pump with a closed loop that contained unglazed collectors, and thermal storage on the evaporator side. The heat pump model was obtained from a normalized empirical curve fit of an analytical model which assumes a constant condensing temperature. Lawrence concluded that solar energy can provide a heat pump source of marginal economic feasibility but does not compare favorably with deep well water (when available).

Freeman (23) prepared a generalized digital computer model for a residential size heat pump. His modeling strategy is to "design" or "size" the four major components of the vapor compression cycle to yield any desired condition performance. Once the system has been defined, the program computes an off-design "performance map" of heat added and heat rejected at all possible combinations of inlet flow-stream conditions. The model was then incorporated with the modular simulation program, TRNSYS (24) to simulate the performance of an "in-line" and a "parallel" solar-heat pump heating and cooling systems. Freeman compared the two systems and concluded that the "in-line" system performed with slightly better efficiency than the "parallel" one, while economically the latter was slightly less costly than the first system.

Search of the literature revealed that very little work has been devoted to the simulation of solar-assisted ground source/sink heat pumps. Andrews and Metz (12) have done a study on the utilization of ground as a heat source/storage. They prepared a computer simulation program of a groundcoupled heat pump connected, in series, to a solar load. Their work concentrated on the modeling of the earth coil. The space load, equipment and solar collectors were modeled through the use

of TRNSYS (24).

Tank and pipe grid configurations were considered for the ground coil model. The computer model solves the heat flow finite difference equations over a system of "blocks" of earth. Each block can have a distinct shape, size and thermal properties specified by the user. Two types of blocks are used: "Rigged Blocks" that provide the necessary boundary conditions and "Free Blocks" for which the temperatures are solved.

In modeling the pipe grid, the pipe plane was assumed as a thin sheet of water flowing in the plane of the pipe field. The heat transfer area of the water sheet is that of the pipe array reduced by a factor that is dependent on the pipe and block dimensions and the distance between adjacent pipes.

Schlosser and Teisler (25) have written a computer simulation model to simulate the performance of solar-assisted heat pump systems using the ground for energy storage. The earth collector consisted of a buried pipe grid. The pipe grid was modeled in both the vertical and horizontal directions. Heat exchanger effectiveness was used to model the ground-heat pump heat exchanger, of which the effectiveness was assumed to vary according to the flow rate of the heat transporting fluid. The operation of the compressor was described with a polynomial regression at the two temperature levels. The solar collectors were modeled through the use of equations and empirical relations found in Duffie and Beckman (26). As for the earth collector, the transient temperature field in the soil was found by a finite element solution of one-dimensional heat equation. The spatial elements of integration are triangles with six nodes per element. In the simulation, 400 nodes were

used and a time step of three days was found appropriate.

Bose et al. (11) studied the actual performance of a solar-assisted heat pump using geothermal source/storage. The findings describe the geothermal well as an excellent source/storage system for the heat pump. The inclusion of the solar energy system in the ground coupled heat pump showed some improvement in the heat pump performance.

Wise (34) addressed the problem of conduction heat transfer, caused by step function heat input from the heat pump, in the vertical earthwater heat exchanger system (VEWEX) shown in Figure 1. By using a Fourier series representation of step function heat input and adapting Bessel functions, Wise introduced an analytical solution to the temperature distribution and heat transfer in the soil surrounding a VEWEX system. However, his solution is only valid for ON-OFF step function heat input of heat pump cycle times greater than 10 hours. In real situations, however, the cycle times of heat pump operations are less than 30 minutes.

Kanchanalai (35) analyzed the same problem of Wise (34) using numerical solutions. Finite difference solutions were used to solve the one-dimensional heat conduction equation for the temperature distribution and heat transfer in the soil surrounding a ground well. Kanchanalai compared results from these solutions with those from the exact solutions of Carslaw and Jaeger (36) and obtained excellent agreement.

The numerical solutions used Kanchanalai (35) proved to be valid for long and short heat pump cycles. After some modifications (see Chapter VI for details) these solutions are used in this study to solve for the heat transfer rates and temperature profiles in the VEWEX heat exchanger of the ground source/sink and the solar assisted ground-source

/sink heat pump systems.

The determination of the transient heating and cooling demands of buildings is an essential part of predicting the behavior of heat pump systems. CHLSYM (30) is a computer simulation program developed in the school of Mechanical and Aerospace Engineering Department at Oklahoma State University to predict the transient heating and cooling demands of residential and commercial buildings. The program uses the transfer function method outlined in the 1972 ASHRAE Handbook of Fundamentals (31) to compute the transient heat transfer through the building exterior structure and the heating and cooling demands. Solar input and internal heat generation due to people, lights, and appliances are accounted for in the load calculations. The program is equipped with a routine for the computation of the indoor air temperature and heat extraction or addition rates as a function of equipment capacity and schedule of operation.

After slight modifications, to suit the requirements of the heat pump simulation program (see Chapter VI for details), CHLSYM has been used in this study to predict the heating and cooling loads and interior temperatures in the Perkins Houses.

CHAPTER IV

DESCRIPTION OF THE HEAT

PUMP SYSTEMS

The systems described in this chapter are the air-to-air, the ground-source/sink, and the solar assisted ground-source/sink heat pump systems, briefly mentioned in Chapter II. Most of the information pertaining to the heat pump units were obtained from manufacturer's catalogs (27, 28).

The Air-to-Air Heat Pump System

The heat pump is a Carrier Model 38CQ015/40A018 of the split system type, with a rated cooling capacity of 15,500 Btu/hr and a heating capacity of 16,500 Btu/hr. The outdoor section contains the compressor, fan coil, and defrost mechanism. The defrost cycle is activated when the outdoor temperature is below 45°F and the coil saturated suction temperature indicates freezing. The maximum defrost time is 10 minutes within each 90-minute period. The indoor section contains a direct expansion fan coil unit supplied with a 3-kw electric heater for emergency heat (common to the three heat pumps). Physical data, dimensions, and performance data for the heat pump systems are presented in Appendix A.

The indoor thermostat (common to the three heat pump systems) is a Carrier model that uses mercury in glass for electrical switching (27). The thermostat provides two-stage heating and one-stage cooling controls.

The set point for energizing the second stage heat is set manually. Changeover of the heat pump mode of operation from heating to cooling, or vice versa, can be accomplished manually by setting a desired temperature differential. The thermostat is provided with two levers that can be parted to set this differential. The minimum value for the changeover temperature differential is 3°F. Information regarding the thermostat dead band temperature range and anticipator characteristics were not available.

The Ground Source/Sink Heat Pump System

This is a water-to-air heat pump model SWP-150 manufactured by Command-Aire Corporation. The unit is a single-package such that the compressor, coils, and blower are all housed in a single cabinet. The rated cooling capacity is 19,500 Btu/hr and the rated heating capacity is 28,000 Btu/hr. The water-refrigerant heat exchanger is connected to the VEWEX exchanger (as shown in Figure 2) for heat extraction or rejection.

Unprepared earth was drilled to contain the VEWEX system shown in Figure 1. A 5-inch Polyvinyl Chloride (PVC) casing was fitted in the 250-foot deep hole. The casing is capped, at both the top and bottom, and contains water as the heat transporting fluid. Two 1-1/4" PVC pipes are used to circulate the exchange fluid through the water-refrigerant heat exchanger. This type of earth heat exchange system has two major advantages over other types (10). First, it reduces to a minimum, if not eliminates, scale deposit in the heat exchanger. Scale deposit can be very detrimental to the heat exchanger from effectiveness and corrosion points of view. Second, pumping power required to circu-

FIGURE 1-4 Schematic of the Ground - Source / Sink Heat Pump System.

late the water is reduced to that necessary only to overcome friction in the system.

The Solar-Assisted Ground Source/Sink Heat Pump System

Figure 3 shows a schematic of this heat pump system arrangement. The heat pump unit and earth-water heat exchanger are the same as those described for the previous system. The additional item in this system is the solar energy loop which is used to assist the heat pump during both the heating and cooling seasons.

The solar loop consists of the solar panels, the heat exchanger, the circulation pump, and the accumulator. The collection area consists of five bare steel plates (4' x 7') with 1/2" copper tubing spaced 4 inches center-to-center. The panels have nonselective black coating. The solar system is of the closed loop type and uses a 50% ethyleneglycol solution as the heat transfer fluid. Heat is exchanged with the VEWEX-heat pump system through the glycol-water heat exchanger. The exchanger is a TACO model B4414W 4-pass shell and tube with a total heat transfer area of 16.4 ft².

During the heating seasons, the collected solar heat will be transferred to VEWEX exchanger in order to assist in the energy supply to the heat pump. However, during the cooling season, the heat pump rejects heat to the VEWEX exchanger. Under suitable weather condition, the solar system will dissipate some of this heat to the ambient. This, in turn, will mean lower return fluid temperatures to the heat pump and thus more efficient heat pump operation.

Figure 3. Schematic of the Solar Assisted Ground-Source/Sink Heat Pump System

Both convection and radiation heat transfer to the air are greatly enhanced through the use of bare collectors. Furthermore, to maximize the performance of the collectors, they are vertically located on the south wall of the house. This will enable the collection of winter energy (low sun rays) and better heat rejection during summer (since the collectors would be partly shaded because of high sun rays and the house overhang). The solar loop can make great use of the lower night temperatures for heat rejection.

For the above two heat pump systems, the VEWEX circulating pump operates whenever the heat pump is on. The present control strategy for turning the solar loop pump requires a temperature differential of 20°F or greater to exist between the solar panels and the water in the VEWEX exchanger. The pump ceases operation when this differential falls below 5°F.

CHAPTER V

DATA ACQUISITION

On-site data measurement is very necessary for more accurate comparisons of the performance of the heat pump systems. Also, the measured data can be usefully utilized in validating the computer simulation model. Presented in this chapter is a brief description of the data acquisition process. Most of the information on this topic was obtained from Frierson (29) which covers data acquisition and storage procedure in great detail.

The parameters needed to compare the three heat pump systems were determined from energy balances performed on various parts of the occupied space-heat pump systems. Figure 4 shows points in the system where power consumption, heat transfer, and environmental parameters were to be measured for the solar-assisted ground source/sink heat pump system. A list of all the measured parameters, for the three houses, is shown in Table III.

The data acquisition system is composed of three parts: the transducers, the data logger, and the data storage and transmission devices. Figure 5 shows the data collection system and identifies the devices involved. The "brain" of the collection system is a Campell Scientific CRS data logger which receives analog or pulse signals from various sensors, conditions the signals and outputs the data, in meaningful units, to recording devices. The pulse signals from the various sensors

Figure 4. Energy Gains and Losses in the System

TABLE III MEASURED PARAMETERS

	East House	Middle House	West House
Environmental Measurements	Dry Bulb Temperature Humidity	Dry Bulb Temperature Humidity Water Temp from Well Water Temp to Well EGS Temp from Collector	Dry Bulb Temperature Humidity Water Temp from Well Water Temp to Well
Heat Transfer Measurements	Hot Water Usage Hot Water Btu	Hot Water Usage Hot Water Btu Rate Well Water Flow Rate Well Water Btu Rate Solar Loop Flow Rate Solar Loop Btu Rate	Hot Water Usage Hot Water Btu Well Water Flow Rate Well Water Btu Rate
Power Consumption Measurements	Total Resistance Heat Hot Water Hot Shot Compressor and Crankcase Heater Inside Blower Outside Blower	Total Resistance Heat Hot Water Hot Shot Compressor Inside Blower Well Pump Solar Loop Pump	Total Resistance Heat Hot Water Hot Shot Compressor Inside Blower Well Pump

Weather data are: Solar Insolation

Dry Bulb Temperature

Humidity

Wind Speed and Direction

Figure 5. Basic Data Collection System

are input through 60 channels (five channels were recently added for measurement of additional data). Data from the channels are scanned every 15 minutes and output to a TEAC audio tape recorder. The recorder has the capability of storing 7 - 10 days worth of data unattended.

The process currently used to convert data from the audio tape recording to a useable form is charted in Figure 6. Data recorded on the audio tapes are transmitted to the Interdata mini-computer, in the School of Mechanical and Aerospace Engineering at Oklahoma State University (OSU), and are retained in disk storage. This data file is then copied onto a magnetic tape for backup and is transmitted by phone to the OSU IBM 370 computer. The data in the IBM 370 file are then edited for missing and inaccurate data, formated and copied on another magnetic tape for permanent storage. From the permanent storage tapes, TSO data set file can be created for any desired period of time for use by the computer simulation model (details are given in the next chapter). Figure 7 shows a sample of the data, from the 60 channels, after editing. Description of the content of each channel is presented in Table IV.

Figure 6. Data Conversion and Storage

```
00+1513 01+1510 02+1543 03+0117 04+0236 05+0204 06+0209 07+0135 08+0095 09+0214 10+0207 11+0208 12+0260 13+0518 14+0333 15+0250 16+0321 17+0421 18+0588 19+0001 20+0001 21+0016 22+0007 23+0034 24+0001 25+0087 26+0003 27+0003 28+0000 29+0000 30+0003 31+0000 32+0009 33+0000 34+0168 35+0111 36+0078 37+0000 38+0000 39+0012 40+0000 41+0000 42+0000 43+0007 44+0120 45+0048 46+0026 47+0000 48+0000 49+0082 50+0003 51+0177 52+0000 53+0000 54+0690 55+0000 56+0000 57+0000 58+0141 59+0217
```

Figure 7. Sample of Recorded Data From a Data Set File

TABLE IV

ORDER OF EDITED DATA ON TAPE

Permanent Storage Order	Original Channel Number		Conversion factor	Units
1	•			
1	0	Day		
2	1	Hour		
.3	2	Minute	0 1	90
4	3	Outdoor Temp.	0.1	°C
5	4	East Air Temp.	0.1	°C
6	6	Middle Air Temp.	0.1	°C
7	9	West Air Temp.	0.1	°C
8	13	Outdoor Humidity	0.1	%
9	14	East Humidity	0.1	%
10	16	Middle Humidity	0.1	%
11	15	West Humidity	0.1	%
12	25	Wind Direction	1	
13	26	Wind Speed	1	MPH
14	27	Mean Wind Run	1	. 2
15	18	Horizontal Insolation	1/886	KW/M_2^2
16	17	Vertical Insolation	1/688	KW/M ²
17	11	Middle to Well Temp.	0.1	°C °C
18	10	Middle from Well Temp.	0.1	°C
19	12	Solar Collector Outlet	0.1	°C
		Temp.		
20	Open			
21	49	Middle Well Flow	1/15	gal/15 min
22	50	Middle Well Btu	1000.	btu
23 ·	0pen			
24	51	Middle Solar Flow	1/15	gal/15 min
25	52	Middle Solar Btu	1000.	btu
26	Open			
27	0pen			
28	Open			
29	8	West to Well Temp.	0.1	°C
30	7	West from Well Temp.	0.1	ိ င
31	39	West Well Flow	1/15	gal/15 min
32	40	West Well Btu	1000.	btu
33	0pen		•	
34	21	East Total Wh Usage	24	Wh
35	29	East Hot Water Usage	1	ga1/15 min
36	28	East Hot Water Btu	1000	btu
37	31	East Hot Water Wh	0.9	Wh
38	34	East Compressor and Crankage Heat Wh	0.72	Wh
39	30	East Resistance Heat and Controller Wh	0.72	Wh
40	32	East Hot Shot Wh	0.24	Wh
41	35	East Indoor Fan Wh	0.24	Wh

TABLE IV (continued)

Permanent Storage Order	Original Channel Number	Description	Conversion factor	Units
42	36	East Outdorr Fan Wh	0.24	Wh
43	22	West Total Wh Usage	24.	Wh
44	37	West Hot Water Usage		
45	38	West Hot Water Btu	1000.	btu
46	42	West Hot Water Wh	0.9	Wh
47	44	West Compressor Wh	0.72	Wh
48	41	West Resistance Heat Wh		Wh
49	43	West Hot Shot Wh	0.24	Wh
50	45	West Indoor Fan and	0.24	Wh
		Controller Wh		
51	46	West Well Pump Wh	0.24	Wh
52	23	Middle Total Wh Usage	24.	Wh
53	48	Middle Hot Water Usage	1/15	ga1/15 min
54	47	Middle Hot Water Btu	1000.	btu
55	54	Middle Hot Water Wh	0.9	Wh
56	56	Middle Compressor and	0.72	Wh
		Controller Wh		
57	53	Middle Resistance Heat V	Wh 0.72	Wh
58	55	Middle Hot Shot Wh	0.24	Wh
59	57	Middle Indoor Fan Wh	0.24	Wh
60	58	Middle Well Pump Wh	0.24	Wh
61	59	Middle Solar Pump and	0.24	Wh
		Solar Loop Controller	Wh	
62	5	Shed Temp.	0.1	°C
63	Open			
64	Open			
65	Open			

CHAPTER VI

SIMULATION PROCEDURE

The total system consists of "sub-systems" that represent the heat pump units, the solar loop, and the VEWEX system. Each of these sub-systems is modeled by a separate subroutine. The space heating and cooling demands are simulated by a separate computer program. The procedure for interconnecting these subroutines to interact with each other is explained in the discussion on the total system. Program listings, flow charts, and input/output instructions are presented in Appendix B.

The Space Heating/Cooling Loads

In order to determine performance characteristics of the heat pump, it is necessary to establish the heating and cooling demands of the building. CHLSYM (30) the transient heating/cooling load simulation program (described in Chapter III) is used to predict the heating/cooling demands in the Perkins houses. The input to the program include hourly weather data, structure geometry, and internal load generation. Some modifications were applied to CHLSYM (not conflicting with the calculation procedure) in order to make it adaptable to the form of measured data. The modifications to CHLYSM are:

 The program inputs 15-minute data, from the weather tapes, averages them for hourly data input. Appropriate conversion factors are applied to each of the input data to agree with the units used in the program.

 The outside surface film coefficient is made to vary with wind speed by using the following empirical correlation (32),

$$h = 2.2 + WV [0.32 + 0.001 (WV)]$$

- Sensible internal loads from lights and appliances are made hourly inputs.
- 4. Outdoor and indoor relative humidities are made hourly inputs.
- 5. Equations used to calculate the declination and equation of time were replaced by more accurate correlations found in reference (33).
- 6. The procedure for calculating the air humidity ratio has been replaced by a subroutine (13) that computes the psychrometric properties of air for a wet bulb temperature range of -32 < Twb < 100°F.

The modified version of CHLSYM is called LDSIM. The user's input to the program consists of an index identifying the house, the month of simulation, the first and last days of simulation, and the desired type of output.

The Heat Pump Units

The steady-state performance of the heat pump units is described by polynomials obtained from least-square curve-fit of the manufacturer's performance data. For the Carrier air-to-air heat pump unit, the polynomials are:

Heating capacity (Btu/hr)

QHS = CFC·TFC(
$$a_0 + a_1$$
· TO + a_2 · TO² + a_3 · TO³ + a_4 · TO⁴
+ a_5 · TO⁵ + a_6 · TO⁶) (1)

Power input, heating, (KW)

PHS =
$$CKW \cdot TKW(B_0 + b_1 \cdot TO + b_2 \cdot TO^2 + b_3 \cdot TO^3 + b_4 \cdot TO^4)$$
 (2)

Cooling capacity (Btu/hr)

QCS =
$$C_0 + C_1 \cdot TO + C_2 \cdot TO^2 + C_3 \cdot TWB + C_4 \cdot TWB^2 + C_5 \cdot CFM$$

+ $C_6 \cdot CFM^2 + C_7 (TO \cdot TWB \cdot CFM)$ (3)

Power input, cooling, (KW)

PCS =
$$d_0 + d_1 \cdot TO + d_2 \cdot TO^2 + d_3 \cdot TWB + d_4 \cdot TWB^2 + d_5 \cdot CFM$$

+ $d_6 \cdot CFM^2 + d_7 (TO \cdot TWB \cdot CFM)$ (4)

where:

TO = outdoor dry-bulb temperature. (°F)

TWB = indoor air wet-bulb temperature. (°F)

CFM = air volume rate. (ft^3/min)

CFC, CKW = heating capacity and power input correction factors, respectively, when the air volume \neq 575 CFM.

CFC = 0.82022 + 2.25E - 05(CFM)

CKW = 0.91011 + 1.12E - 04(CFM)

TFC,TKW = heating capacity and power input correction factors, respectively, when the inlet air dry-bulb temperature # 80 °F.

TFC = 1.28 - 0.004 (TDB)

TKW = 0.86 + 0.002 (TDB)

TDB = entering air dry-bulb temperature. (°F)

a's, b's, c's, d's = resultant curve-fit coefficients.

For the Command-Aire water-to-air heat pump unit, the polynomials are;

Heating capacity (Btu/hr)

QHS = CFHC(
$$e_0 + e_1 \cdot EWT + e_2 \cdot EWT^2 + e_3 \cdot TDB + e_4 \cdot TDB^2$$

+ $e_5 \cdot GPM + e_6 \cdot GPM^2 + e_7 (EWT \cdot TDB \cdot GPM)$) (5)

Heat extraction rate (Btu/hr)

QHES =
$$CFHE(f_0 + f_1 \cdot EWT + f_2 \cdot EWT^2 + f_3 \cdot TDB + f_4 \cdot TDB^2 + f_5 \cdot GPM + f_6 \cdot GPM^2 + f_7(EWT \cdot TDB \cdot GPM))$$
 (6)

Power input, heating, (KW)

PHS =
$$CFKW(g_0 + g_1 \cdot EWT + g_2 \cdot EWT^2 + g_3 \cdot TDB + g_4 \cdot TDB^2 + g_5 \cdot GPM + g_6 \cdot GPM^2 + g_7 (EWT \cdot TDB \cdot GPM))$$
 (7)

Cooling capacity (BTU/hr)

QCS = CFCHR(
$$h_0 + h_1 \cdot EWT + h_2 \cdot EWT^2 + h_3 \cdot TWB + h_4 \cdot TWB^2$$

+ $h_5 \cdot GPM + h_6 + GPM^2 + h_7 (EWT \cdot TWB \cdot GPM)$) (8)

Heat rejection rate (Btu/hr)

QHRS = CFCHR(
$$j_0 + j_1$$
 · EWT + j_2 · EWT² + j_3 · TWB + j_4 · TWB²
+ j_5 · GPM + j_6 · GPM² + j_7 (EWT · TWB · GPM)) (9)

Power input, cooling, (KW)

$$PCS = CFKW(k_{0} + k_{1} \cdot EWT + k_{2} \cdot EWT^{2} + k_{3} \cdot TWB + k_{4} \cdot TWB^{2} + k_{5} \cdot GPM + k_{6} \cdot GPM^{2} + k_{7} (EWT \cdot TWB \cdot GPM))$$
(10)

where:

EWT = entering water temperature. (°F)

GPM = water volume flow rate. (gal/min)

CFHC, CFKW = correction factors for heating capacity, heat extraction rate, and power input, respectively, when the air volume \neq 600 CFM.

CFCHR = correction factor for cooling capacity and heat rejection rate when the air volume ≠ 600 CFM.

The correction factors for the Command-Aire unit are represented by fourth-order polynomials in the air volume rate.

During cyclic operations, the heat pump capacity rises slowly until it approaches its steady-state value. Figure 8a shows typical response curves for the heat pump capacity. This transient behavior is due to the refrigerant dynamics and in part to the thermal mass of the heat exchanger (17). Experimental studies (16, 19) showed that the transient performance of the heat pump can be satisfactorily represented by a first order response of the form:

$$\frac{\dot{Q}_{cy}}{\dot{Q}_{ss}} = 1 - e^{-t/\tau} \tag{11}$$

where:

 \dot{Q}_{cy} = heat pump cycle capacity.

 \dot{Q}_{ss} = heat pump steady-state capacity.

t = time

 τ = heat pump time constant.

The cyclic heating/cooling output for a heat pump on-time period, to, can be determined by integrating Equation 11 over that time period. The integration yields.

$$Q_{CV} = \dot{Q}_{SS}[t_{O} - \tau(1 - e^{-t_{O}/\tau})]$$
 (12)

Equation 12 is used in this study to compute the heat pump cyclic output. Solving this equation, however, involves two unknown variables. The first is the heat pump on-time which is dependent on the type of thermostat

(a) CYCLIC CAPACITY FOR 50% ON-TIME HEAT PUMP OPERATION

(b) 15-MINUTE CYCLE OF THE EARTH SOURCE HEAT PUMP Figure 8. Heat Pump Cyclic Heating/Cooling Capacity

used, thermal capacity of the structure, and the steady-state capacity of the heat pump. The second variable is the heat pump time constant, t, which is usually experimentally determined.

The procedure used to solve Equation 12 begins with assigning a value for the heat pump cycle time. For this simulation model, a cycle time of 15 minutes has been assigned. The 15-minute value is somehow arbitrary, however, inspection of the measuared data, for several months, indicated that the cycle times for each of the heat pump units average to about this value. The next step is computing the cyclic output involves determining how long, during a cycle, would the heat pump be operating. According to Murphy et al. and Bullock et al. (16, 19) the heat pump ontime can be closely approximated by the ratio of the building heating or cooling demand to the steady-state heat pump capacity.

That is:

$$t_{o} = t_{c} \left(\frac{QLOAD}{Q_{SS}} \right) \tag{13}$$

where:

t = heat pump on-time in hours.

 t_c = heat pump cycle time in hours.

Since no information could be obtained from either of the heat pump manufacturers, some approximations were made to compute the heat pump time constant using Equation 11. It was assumed that at the end of a heat pump on-time period, the actual capacity (\dot{Q}_{cy}) will be 99.5% of the steady-state value. Therefore, the ratio $\dot{Q}_{cy}/\dot{Q}_{ss}$ in Equation 11 is fixed at 0.995 when the time is equal to t_o . Substituting this ratio into Equation 11 and solving for τ , the following expression was obtained for the time constant,

$$\tau = \frac{t_0}{\ln(0.005)} \tag{14}$$

Equation 14 was used to compute the time constant for the heat pump units. It was found that the time constant varied from 48 seconds for a heat pump on-time of 3 minutes to 2.8 minutes for a heat pump on-time of 15-minutes. Figure 8b shows a cycle for the earth source heat pump operating for 7 minutes when the outdoor temperature was 13°F. For this case, the cyclic output of this heat pump was about 20% less than the steady state capacity.

In summary, the steps for computing the heat pump actual capacity are:

- 1. Compute the space heating or cooling demand, QLOAD,
- 2. Use the curve-fit equations to compute the steady-state capacity of the heat pump, \dot{Q}_{cs} ,
- 3. Use Equation (13) to determine t_0 ,
- 4. Use Equation (14) to determine τ ,
- 5. Substitute the results from steps 2-4 into Equation (12) to obtain the cyclic capacity, \mathbf{Q}_{cy} .

The power input to the heat pump unit (compressor and fan) is calculated using the curve-fit relations of the manufacturers' steady-state data. Experimental data (15, 19) indicate that during each on-time period, the power consumption is characterized by a sharp spike as the motors develop speed, followed by a flat curve. Since this start-up transient occurs very fast (generally within a few seconds), its effect on the total energy consumption is practically negligible. Therefore, steady-state values would be sufficiently accurate for heat pump power consumption.

The Solar Energy System

Figure 9 shows a schematic of the solar energy system. The solar panels were modeled using the correlations and procedure outlined by Duffie and Beckman (26). The following assumptions were incorporated in the simulation model:

- Dust and dirt on the panels have negligible effects.
- Properties of the working fluid in the solar loop are independent of temperature.
- 3. No heat loss in the piping connecting the solar panels to the heat exchanger, so that the outlet and inlet temperatures of the collectors are the same as the exchanger's inlet and outlet temperatures, respectively.

The equations describing the solar collection system involve the overall heat loss coefficient (\mathbf{U}_0) and the useful energy gain ($\mathbf{Q}_{\mathbf{u}}$). The overall loss coefficient consists of the front or top losses ($\mathbf{U}_{\mathbf{t}}$) and the back losses ($\mathbf{U}_{\mathbf{b}}$). The top loss coefficient is composed of convection and radiation terms. The convection heat transfer coefficient is described by the following relation (33).

$$h_{xy} = 0.8 + 0.23 \text{ (WV)}$$
 (15)

where:

 h_{w} = convection heat transfer coefficient (Btu/hr-ft²- F)

WV = wind velocity (mile/hr)

Wind direction is accounted for by inserting a simple control logic in the simulation model. The control logic checks the direction of the prevailing wind and adjusts the value of measured wind velocity accordingly. If the wind is prevailing from east, north, west, or anywhere in between, the

Figure 9. Schematic of the Solar Energy System

measured wind velocity is substituted in Eqn. (15). If, on the other hand, the wind is prevailing from any other direction and the measured velocity exceeds 5 mph, then a value of 5 mph is used in Eqn. (15). This strategy was adopted because if the wind is prevailing from the north, or due north, the solar panels will not experience the full extent of the wind velocity since they will be on the leeward side.

The radiation coefficients between the collector plate and the ambient and the collector plate and the ground are given by the following two expressions:

$$h_{r_{p-s}} = \sigma \varepsilon_p F(T_p^2 + T_s^2) (T_p - T_s)$$
 (16)

$$h_{r_{p-a}} = \sigma \varepsilon_{p} (1-F) (T_{p}^{2} + T_{a}^{2}) (T_{p} - T_{a})$$
 (16a)

where:

 h_{r} = radiation heat transfer coefficient (Btu/hr-ft²-°R) σ = Stefan-Boltzman constant = 0.1712 x 10⁻⁸ Btu/hr-ft²-°R⁴

 $\varepsilon_{\rm p}$ = collector plate emittance

F = configuration factor between panels and sky

 T_{p} = collector plate temperature (°R)

T_a = ambient temperature (°R)

 $T_s = \text{sky temperature} = 1.8 * 0.0552 * (T_a + 273)^{1.5} (^{\circ}R)$

The top loss coefficient is then the sum of the convection and radiation terms.

$$U_{t} = h_{w} + h_{r-s} + h_{r-g}$$
 (17)

The solar panels are mounted vertically on the south wall of the middle house with a 3-inch gap separating the panels from the wall. The back

heat loss coefficient is composed of radiation and natural convection

terms. The radiation coefficient is given by:

$$h_{r_{p-w}} = \sigma \frac{\left(T_{p}^{2} + T_{w}\right)\left(T_{p} + T_{w}\right)}{\frac{1}{\varepsilon_{p}} + \frac{1}{\varepsilon_{w}} - 1}$$
(18)

where:

 r_{p-w} = radiation heat transfer coefficient between the panels and wall (Btu/hr-ft²- R)

 T_{w} = wall surface temperature (R)

 $\epsilon_{\rm w}$ = emittance of the wall

The natural convection term is given by (37),

$$h_c = \frac{k}{L}(0.021) (PrGr)^{2/5}$$
 (19)

where:

 h_c = natural convection coefficient (Btu/hr-ft²-oF)

k = air conductivity (Btu/hr-ft-°F)

L = vertical length of collector (ft)

Pr = Prandtl number for air

Gr = Grashof number

The back loss coefficient is then given by,

$$U_{b} = h_{p-w} + h_{c}$$
 (20)

The overall heat transfer coefficient for the solar collector is the sum of Eqn's 19 and 20.

$$U_0 = U_t + U_b$$

The total useful energy gain of the collector is represented by the following equation:

$$Q_{\mathbf{u}} = A_{\mathbf{c}} F_{\mathbf{R}} [I_{\mathbf{t}} \alpha - U_{\mathbf{o}} (T_{\mathbf{f}, \mathbf{i}} - T_{\mathbf{a}})]$$
 (21)

where:

 $A_c = collector$ area of the solar panels (ft²)

 α = absorptance of the collector plate

 $T_{f,i} = collector inlet temperature (°F)$

 $T_{a} = ambient temperature (°F)$

The collector heat removal factor (F_R) is given by,

$$F_{R} = \frac{Gc}{U_{O}} \left[1 - \exp\left(\frac{U_{O}F'}{G\bar{c}_{P}}\right)\right]$$
 (22)

where G is the mass flow rate per unit of collector area (lb/hr-ft²), and c is the specific heat of the working fluid (Btu/lb-°F). The collector efficiency factor (F') is given by,

$$F' = \left[U_{o}W(\frac{1}{U_{o}D + (W-D)F} + \frac{1}{C_{b}} + \frac{1}{\pi D_{i}h_{f,i}}) \right]^{-1}$$
 (23)

where:

W = tube spacing (ft);

D = tube nominal diameter (ft);

 $C_b = bond conductance; C_b = K_b b/8 (Btu/hr-ft- °F);$

 $K_h = bond thermal conductivity (Btu/hr-ft-°F);$

b = bond length (ft);

 γ = bond average thickness (ft);

D; = tube inside diameter (ft);

h_{f,i} = tube-fluid film coefficient (Btu/hr-ft²-°F);

F = fin efficiency; F = tanh m(W-D)/2 / m(W-D)/2;

$$m = U_O/K_p \delta^{-\frac{1}{2}}$$

 $K_p = plate thermal conductivity (Btu/hr-ft-°F); and$

 δ = plate thickness (ft).

The mean fluid temperature in the tubes of the collector is given by

$$T_{f,m} = T_{f,i} + \frac{Q_u}{A_c U_c F_R} (1 - \frac{F_R}{F'})$$
 (24)

and the mean plate temperature is described by the relationship

$$T_{p,m} = T_{f,m} + Q_u(R_{p-f})$$
 (25)

where:

 R_{p-f} = heat transfer resistance between the plate and fluid;

=
$$1/(h_{f,i}^{\pi D}i^{nL}t)$$

n = number of tubes; and

 L_{t} = length of tubes (ft).

Once the useful heat gain has been computed, the collector exit temperature $(T_{f,o})$ can be determined from,

$$T_{f,o} = T_{f,i} + Q_u / mcp$$
 (26)

where m is the fluid mass flow rate in the collector (lb/hr).

The computation of the top loss coefficient, and consequently the overall loss coefficient, requires knowledge of the plate temperature. However, computation of the absorber plate temperature demands knowledge of the value of the overall loss coefficient. Therefore, an iterative solution is employed in which an assumed value of the plate temperature is used to solve for U_o . This U_o value is then used to calculate approximate values of F', F_R , Q_u , $T_{f,m}$, and finally a new plate temperature. The newly calculated plate temperature is used to compute a new value of

 ${\tt U}_{\tt o}$ and the process is repeated until convergence is established between two successive ${\tt U}_{\tt o}$ values.

The solar energy subroutine (SOLAR) is provided with an option so that either horizontal surface or tilted surface radiation can be input. If radiation incident on a horizontal surface is the input, then it will be converted to that incident on a tilted surface. Correlations found in reference 35 were utilized to perform the conversion process.

The Vertical Earth-Water Heat Exchanger

Numerical solutions proved to be responsive to short heat pump cycles (see Chapter III). Therefore, they were employed to compute the transient heat transfer and temperature distribution in the soil surrounding the vertical earth-water heat exchanger (VEWEX). In particular, the finite difference implicit method is used to avoid the time increment restriction imposed by the explicit method.

The VEWEX subroutine is based on a program provided in reference

35. Some modifications were made to generalize the program and have it
take into effect the fluid temperature variation along the well depth.

The following assumptions were used in the VEWEX model:

- 1. There is no heat transfer by radiation in the system.
- There is no heat transfer by conduction in the vertical direction of the fluid stream or earth.
- 3. The mass flow rate of fluid in the well is constant.
- No horizontal temperature gradient exists in the fluid stream.
- Constant earth thermal diffusivity.
- 6. Perfect contact between the coil pipe and earth.

- The well is sufficiently long so that end effects can be neglected.
- 8. At large radial distance from the wall (r>30 ft), each earth slice (see Figure 10) will remain at its far-field temperature.
- Initially both the exchange fluid and earth are at the farfield temperatures.

To solve for the fluid temperature along the well depth, the well is divided into a finite number of increments (ΔZ)* as shown in Figure 10. Each increment is characterized with a constant far-field temperature (T_g) in the surrounding soil. For each increment, the heat exchange between the fluid and soil is computed and fluid temperature at the end of an increment is determined. This temperature acts as inlet temperature for the next increment. The process is continued until the fluid temperature at the well exit is established.

Solving for the fluid temperatures in dimensional steps, by incrementing the well depth, yields a more accurate picture of the vertical temperature profile. This was demonstrated by the line-source solutions used by Moss (38) to compute temperature profiles in water injection wells.

In solving for the fluid temperature at the end of each increment, the solutions, outlined by Shenck and Dusinberre (39, 40) for buried pipes, were applied in this study. Figure 10 shows fluid increments ΔZ long. Three heat transfer terms must be considered when solving for the fluid temperatures. These are the heat transfer by convection be-

^{*}See nomenclature section for designations.

FIGURE 2-4 Schematic of VEWEX for Computational Purposes

tween the fluid and the well inner surface, the heat flow involving the enthalpy change in the fluid passing through the region and carried out of it, and the heat stored in the fluid increment due to the transient rise in the fluid temperature over a time step.

Following the notation in Figure 10, the heat flow by convection is given by,

$$Q_{conv} = hA_n (T_{avg}' - T_w)$$
(27)

where:

 $h = convection heat coefficient (Btu/hr-ft^2-\circ F)$

 $A_n = \text{surface area of a } \Delta Z_n \text{ increment (ft}^2)$

 T_{w_n} = well surface temperature for the nth increment (°F)

 $T_{avg}^{'}$ = mean average of inlet and outlet temperatures; = $(T_{f} + T_{f})/2$ (°F)

The convection heat transfer coefficient, h, is computed using the Dittus-Boelter correlations (41).

The heat flow due to enthalpy change in the fluid passing through an increment, ΔZ , is given by,

$$Q_{\text{enth}} = \dot{m}c_p \left(T_f - T_f\right)$$
(28)

where:

 $\dot{m}c_{p}$ = fluid capacity rate (Btu/hr-°F)

The storage term in the fluid increment over a time step is represented by,

$$Q_{st} = \frac{Mc_{p}(T_{avg_{n}}^{\dagger} - T_{avg_{n}})}{\Delta\theta}$$
 (29)

where:

 $M = mass of the fluid increment (1b_m)$

 T_{avg}^{\bullet} = mean average temperature in the fluid increment a time step later (°F)

 $\Delta\theta$ = time step (hr)

Energy balance on a fluid increment can then be written as,

$$Q_{st} = Q_{enth} - Q_{conv}$$
 (30)

Substituting the terms from Equations 27, 28 and 29 into equation 30 and rearranging, the temperature of the fluid at the end of an increment can be written as:

$$T_{f_{n+1}} = \frac{1}{XX} \left[2T_{avg_n} + YY \cdot T_{w_n} - ZZ \cdot T_{f_n} \right]$$
(31)

where

$$XX = 1 + \left(\frac{2\dot{m}}{M} + \frac{hA_n}{Mc_p}\right)\Delta\theta$$

$$YY = \frac{2hA_n}{Mc_p} \Delta\theta$$

$$ZZ = 1 - \left(\frac{2\dot{m}}{M} + \frac{hA_n}{Mc_p}\right)\Delta\theta$$

The temperature distribution in the soil is governed by the onedimensional heat conduction equation:

$$\frac{\partial^2 T}{\partial r} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{\alpha} \frac{\partial T}{\partial \theta}$$
 (32)

with the initial condition:

$$T(r,\theta) = T_i$$
 for all $r > r_0$

and boundary conditions:

$$T(a, \theta) = T_i$$
 for all $\theta > \theta_0$

$$-\frac{\partial T}{\partial r}\Big|_{r=r_0} = \frac{Q}{\pi D\Delta Zk}$$
 for all $\theta > \theta_0$

Finite difference techniques are employed to solve for the radial temperatures in the ground. Specifically, the implicit method with nonuniform grids, as described in reference 42, is used to solve the problem of cyclic heat input at the well surface.

The computational strategy applied in the VEWEX model is summarized by the following steps:

- 1. Use the heat extracted or rejected by the heat pump (plus the solar loop contribution in the case of the solar-ground heat pump) as a first estimate of the heat conducted to, or from the ground (Q_{cond}) .
- 2. Use this estimated heat conduction value to solve Equation 32 for the wall temperature, $T_{\overline{W}}$, (the implicit method).
- 3. Compute the fluid temperature at the end of the nth increment, T_{f} , using Equation 31 and T_{w} computed in step 2.
- 4. Calculate Q using Equation 27.
- 5. Compare Q_{conv} (step 4) with the estimated conduction heat transfer (step 1). If the difference $(Q_{\text{conv}} Q_{\text{cond}})$ is within a specified tolerance limit, then begin computation for a new fluid increment. If not, then increment or decrement the Q_{cond} value and repeat steps 2 to 5 until convergence is established.
- 6. Use $Q_{\mbox{cond}}$ from step 5 as a first estimate for the next fluid increment.
- 7. Steps 2 through 6 are repeated for each fluid increment. It should be noted that the larger the number of ΔZ

increments the better the accuracy of results. However, computer run cost increases with the number of increments. In this study, 50 - ft depth increments were found optimum.

The far-field temperatures for the soil increments, T $_{\rm g}$, were assigned according to Collins' recommendation (8). For Oklahoma, the Collins map gives an annual average ground temperature of 62 F for depths from 30 to 60 ft. For greater depths, Collins recommended a 1°F increase for every 64 ft increase in depth.

Flow of Information in the Dynamic Simulation

This section explains the flow of information among the various subroutines and the control logic. Figure 11 shows a schematic of the flow of logic for the dynamic simulation procedure.

The procedure begins with running LDSIM program to compute the heating/cooling demands and indoor temperatures. User's input to the program consists of indices identifying the house, days and month of simulation, thermostat throttling range, thermostat settings and their times, and the equipment maximum and minimum capacities. Other inputs to the programs are stored in data sets for each house which are input automatically through the house index. LDSIM will output the loads and indoor temperatures into a data set file that is linked with the heat pump simulation program (HPSIM). HPSIM is then executed to simulate the performance of a particular heat pump system. User's input to HPSIM includes specifying the house and period of simulation. HPSIM reads the heating/cooling loads and indoor temperatures from the link file; then, linearly interpolates between the hourly points for

Figure 11. Flow of Information for the Dynamic Simulation

the 15-minute values. The mode of heat pump operation (heating or cooling) is determined by a check on the house load and the outdoor temperature. The heat pump will not be operating if the indoor temperature is within the thermostat throttling range.

The type of heat pump system to be simulated is decided by the house index specified by the user. If, for instance, the middle house were specified, then subroutine HPUMP or HPUMPC would be called depending on whether the mode of operation is heating or cooling. The heat pump actual capacity, heat extraction or rejection rate to the well water, operation time, power usage, and the heat pump coefficient of performance are computed in the respective subroutine. Temperature of the water exiting the water-refrigerant heat exchanger is then computed using the heat extraction or rejection rate and the water capacity rate. Next, a check is made to determine whether or not the solar loop pump is circulating fluid. If the pump is on then subroutine SOLAR is called to determine the collector exit temperature.

The control logic for turning on the solar loop pump requires a temperature differential of 20 F between the collector plate temperature and the water temperature at the middle of the well. The pump is turned off when this differential falls below 5 F. In this simulation program the temperature differential for the solar pump control is determined using the sol-air temperature. This is because the sensor for the collector plate temperature is located at the center of the solar panels and is exposed more to the outdoor environment than to the plate temperature, which is influenced by the outdoor environment and the water in the tubing. Simulation runs of some November days

showed excellent agreement between predicted and measured times of the solar loop pump operation.

The heat transfer rate between the well circulating water to the solar loop (via the glycol-water heat exchanger, shown in Figure 3) is computed from:

$$Q_{sol} = \varepsilon(\dot{m}c_p)_w (TC_o - TF_{hp})$$
(33)

where:

 ϵ = heat exchanger effectiveness (considered constant at 63%); $(\dot{m}c_p)$ = heat capacity rate of water (Btu/hr- F);

 $TC_{O} = collector outlet temperature (°F);$

TF_{hp} = water exit temperature from the refrigerant-water heat exchanger (°F).

 $\mathbf{Q}_{\mathrm{sol}}$ is then used to compute the temperature of the water entering the well.

The last step in the simulation is calling subroutine VEWEX (Vertical Earth-Water Heat Exchanger) to calculate the water temperature exiting the well, which is influenced by the heat transfer between the water and the earth. The value of time step is set according to the heat pump operation time. VEWEX is called twice during a 15-minute cycle time. The first time step is set equal to the heat pump on-time during the 15-minute cycle, and the second time step is that of the cycle time minus the heat pump on-time. If the heat pump were operating or not operating the full 15 minutes, then the time step is set equal to one-half the cycle time. This strategy was adopted in order to account for the solar contribution when the heat pump is off, or the heat transfer occurring between the water and earth when the well circulating pump is

The same logic is used in simulating the ground-source heat pump (west house), except that subroutine SOLAR is bypassed. As for the air-to-air heat pump (east house), the cyclic performance is determined by subroutine APUMPH or APUMPC depending on whether the mode of operation is heating or cooling, respectively.

Model Validation

On-site measured data proved very helpful in the verification of the simulation model. Actual data a for few days in both the heating and cooling seasons were chosen for comparison with predictions of the simulation model. These comparisons were used to refine the values of some constants and factors related to the structures, the equipment and controls, the solar loop, and the vertical earth-water heat exchanger. Some of these factors included infiltration and internal heat generation rates, thermostat throttling range, effective solar absorptance and emittance for the solar panels, thermal diffusivity of the ground, etc.

Figures 12 and 13 show comparisons of actual and simulated results of hourly average indoor temperatures for the west and east house for selected days in the heating and cooling seasons for which complete data were available. Tables V through VII show comparisons of actual and simulated heat pump performance in the respective houses for the selected days. Reasonably good agreement exists between the predicted and actual data considering unpredictability of the habits of the people occupying the houses. For instance, observation of the available measured data for some December days for the east house indicated that the residents turn off the heat pump for a few hours after midnight and

Figure 12. Simulated vs. Measured Indoor Temperatures

Figure 13. Simulated vs. Measured Indoor Temperatures

TABLE V

SIMULATED VS. MEASURED PERFORMANCE OF THE GROUND-AIR HEAT PUMP SYSTEM (WEST HOUSE - DEC. 21, 1980)

	Measured	Simulated
Total heat pump operating time (hr)	6.0	6.4
Compressor and fan total energy usage (KWH)	16.3	17.1
Total electric resistance heat (KWh)	0.0	0.0

TABLE VI

SIMULATED VS. MEASURED PERFORMANCE
OF THE AIR-AIR HEAT PUMP SYSTEM
(EAST HOUSE - DEC. 19, 1980)

	Measured	Simulated
Total heat pump operating time (hr)		16.9
Compressor and fans total energy usage (KWH)	26.4	28.9
Total electric resistance heat (KWh)	1.4	. 1.5

TABLE VII

SIMULATED VS. MEASURED PERFORMANCE OF
THE GROUND-AIR HEAT PUMP SYSTEM
(WEST HOUSE - AUG. 6, 1980)

	Measured	Simulated
Total heat pump operating time (hr)	9.7	10.6
Compressor and fan total energy usage (KWh)	25.9	24.8

change their thermostat setting twice during the day. The observation also indicated high intermittent internal heat generation throughout the day which was probably caused by frequent cooking or operation of home appliances. This high internal heat generation caused higher indoor temperature fluctuations than otherwise would be attained by the thermostatic control.

Comparison between measured and simulated data on the performance of the solar-earth heat pump system in the middle house was not possible. This is because this heat pump system has been malfunctioning since its installation. The malfunction was detected very recently and has been attended to. In regard to the solar loop-earth heat exchanger performance, however, some comparisons with the actual data were possible. Visual inspection of the measured data for the month of November indicated that there were two days during which the heat pump was turned off for the entire day, while the solar loop was adding heat to the well water. Forcing the heat pump to be off during those November days, the

simulation model was used to predict the rise in both the solar collector and well outlet temperatures as a result of solar heat addition. Figures 14 and 15 show the simulated and measured collector and well outlet temperatures respectively. Good agreement exists between the measured and simulated data during the solar collection period (when the solar and well pumps are activated). The difference can be attributed to the assumed constant physical properties of soil and solar loop fluid. During the period of no solar heat collection, the collector outlet temperature (measured) is approximately that of the house attic since that is where the temperature sensor is located. The well temperature is virtually that of the house since the sensor is located in the utility closet in the living room.

It was desired that simulation results be compared with measured data for more days in both the heating and cooling seasons. However, very few data (in useable format) were available for the simulation tests. All the compiled measured data are "raw data". They are stored in a form such that they cannot be used directly in a computer program. The storage tapes contain missing data for hours and sometimes days. This has been caused by the frequent breakdown of the data recording equipment. Presently, however, the measured data are being checked and corrected for missing scans and unrecognized characters. Data for several months will be stored on a single tape. This will improve both the method and the speed of inputing the data into the simulation program and will allow for long simulation period.

Finally, due to the difference in the daily habits of the residents of the Perkins houses, the difference in their preference for indoor temperature setting, and the malfunction of the middle house heat pump,

. 1

Figure 14. Simulated vs. Measured Collector Outlet Temperatures (Heat Pump Off - Well Pump O_{D})

Figure 15. Simulated vs. Measured Well Outlet Temperatures (Solar Heat Addition - Heat Pump off)

it is very difficult to make a decision (using measured indoor data) regarding the merits of one heat pump system over the others. Therefore, it was decided to assume unified values for the internal heat generation and temperature settings for the three houses, and use these values with the measured weather data to simulate the performances of the three heat pump systems. The results of these simulations are discussed in the next chapter.

CHAPTER VII

DISCUSSION OF SIMULATION RESULTS

In order to compare the performances of the three heat pump systems, simulation runs were made for three winter and three summer days for each of the houses (results are presented in Tables IX and X). In these simulation runs, internal loads, infiltration and ventilation rates, and thermostat settings were assumed to be the same for each of the three houses. These assumed values are tabulated in Table VIII.

Inspection of the winter simulation results (Table IX) clearly indicates the superior performance of the earth and solar-earth heat pumps over that of the air-to-air heat pump. During the simulation period, the electrical energy consumption by the air-to-air heat was approximately 43% higher than that used by either of the other two heat pump system. Its heating coefficient of performance, COP*, was about 47% lower than that of the other two. The reason for the less efficient performance of the air source heat pump is the cold temperature it experienced during those December days. The averages of measured outdoor temperatures for those days were 28°, 18°, and 24°F. In contrast, the earth and solar-earth heat pumps operated at

^{*}For the air-to-air heat pump, COP is based on energy usage by indoor-outdoor fans and resistance heat; for the other two heat pumps it is based on resistance heat, indoor fan and the well pump energy usage.

ASSUMED VALUES FOR INETERNAL GENERATION, INFILTRATION RATES AND TEMPERATURE

TABLE VIII

SETTING FOR THE AUG. AND DEC. SIMULATION RUNS

	Daytime (8.0-17 hrs)	Nightime (0-8.0 and 18-24 hrs)
Number of people in house	1	4
<pre>Infiltration rate (air changes / hr)</pre>	1/2	3/4
Thermostat setting (F)	76 (summer) 70 (winter)	76 (summer) 70 (winter)
Lighting (KW)	0.5	1.0
Sensible heat loads from appliances, etc. (Btu/hr)	300	500
Latent heat loads from appliances, etc.	100	300
Relative humidity	50%	50%

TABLE IX

WINTER SIMULATION RESULTS FOR THE
THREE HEAT PUMP SYSTEMS
(DECEMBER 19-21, 1980)

Day		Air Heat Pump		Solar-Earth Heat Pump
19	Heat pump operating time (hr)	16.38	7.12	7.12
19	Energy consumed by compressor and fan(s) (KWh)	27.8	19.28	19.28
19	Resistance heat (KWh)	1.73	0.00	0.00
19	Avearage COP*	1.54	2.15	2.15
20	Heat pump operating time (hr)	20.87	9.72	9.72
20	Energy consumed by compressor and fan(s) (KWh)	34.59	25.95	25.95
20	Resistance heat (KWh)	16.76	0.00	0.00
20	Average COP	1.36	2.14	2.14
21	Heat pump operating time (hr)	16.87	7.71	7.67
21	Energy consumed by compressor and fan(s) (KWh)		20.60	20.57
21	Resistance heat (KWh)	5.51	0.00	0.00
21	Average COP	1.52	2.14	2.14
	Totals a	and Average	s	
Tota	l heat pump operating time (hr)	54.12	24.54	24.51
Tota	l energy consumed by compressor and fan(s) (KWh)		65.83	65.80
Tot a	l resistance heat (KWh)	24.00	0.00	0.00
Avera	age COP	1.46	2.14	2.14

(water from the earth heat exchanger) that averaged 60, 58, and 58 F for the respective simulation days. The coefficient of performance of the heat pumps versus the outdoor and well exit temperatures are plotted in Figure 16.

A somehow unexpected result is that of the performance of the solar-earth heat pump. The simulation results indicate that the solar panels were unable to collect enough heat to transfer it to the well water, which in turn would result in increase in the heat pump efficiency. This is despite the fact that both December 19 and 21 were sunny days (the 20th day of December was a very cloudy day with very low levels of insolation recorded). The solar loop pump operated intermittently about midday of December 21st for a collector time of 1.5 hours. However, the contributed solar heat hardly affected the performance of the heat pump. The middle house recorded data for the 19th and 21st days of December show that the solar loop pump was in operation for approximately 4 and 5 hours, respectively. However, the recorded well temperatures were in the high 40's-low 50's range when the solar loop pump began operation. This is a good indication that during cold sunny days, the solar loop will assist in maintaining the well water temperature at a convenient level for efficient heat pump operation (50-90°F).

The simulation results of the three summer days of August, shown in Table X, show a different trend for the performance of the three heat pumps than that of the winter days. The results indicate that the three heat pump systems operated with nearly the same efficiency. The cooling coefficient of performance of the air source heat pump

Figure 16. Simulated Effect of Temperature on the Heating Coefficient of Performance (December 19, 1980)

TABLE X

SUMMER SIMULATION RESULTS FOR THE THREE HEAT PUMP SYSTEMS (AUGUST 4-6, 1980)

Day		Н			Solar-Earth Heat Pump
4	Heat pump operating time	(hr)	18.56	14.64	14.64
4	Energy consumed by compress and fan(s) (38.93	36.16	36.16
4	Average COP		1.70	1.80	1.80
5	Heat pump operating time	(hr)	18.94	15.26	15.26
5	Energy consumed by compresso and fan(s)		39.84	38.56	38.56
5	Average COP		1.70	1.72	1.72
6	Heat pump operating time	(hr)	19.45	15.84	15.84
6	Energy consumed by compress and fan(s)		41.00	40.47	40.47
6	Average COP		1.71	1.70	1.70
	Totals	and	Averages		
Tota	al heat pump operating time	(hr)	56.95	45.74	45.74
Tot	al energy consumed by compre and fan(s) (119.77	115.18	115.18
	Average COP		1.70	1.74	1.74

lagged that of either of the other two heat pump systems by only 4%. The close proximity among the cooling efficiencies of the three heat pump systems can be explained by reviewing Figure 17. The air source heat pump makes use of the low night temperatures operating at higher efficiency which drops fast as the ambient temperatures climb up to the 100's. The earth and solar-earth heat pump systems, however, operated at a relatively constant efficiency droping off slightly late in the day as the well temperature keeps building up. A very probable reason for the high well temperatures is that the heat is rejected continuously to the well, due to non-cycling of the heat pump.

Theoretically, the solar loop in the solar-earth heat pump system should be able to assist in maintaining the well temperatures at a lower level during the evening and early morning hours by dissipating some of the heat in the well to the cooler surroundings. However, the 3-day August simulation results did not support this theory. Unfortunately, there are no recorded data of the actual performance of the solar-earth heat pump system during the cooling season of 1980 to validate the simulation results.

Figure 17. Simulated Effect of Temperature on the Cooling Coefficient of Performance (August 5, 1980)

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

A heat pump simulation model was constructed to simulate the performances of an air-to-air, an earth-source/sink, and a solar-assisted earth-source/sink heat pump systems. With the aid of the building cooling/heating load simulation program CHLSYM (30), the model is capable of predicting the heat pump cyclic performance as influenced by the building external and internal loads. The model was validated using the few days of available useable computer data and was found to be in reasonable agreement with the recorded data.

The model was used to compare the performances of the three heat pump systems during both summer and winter operations when subjected to similar external and internal loads. The outcome of these comparisons favors both the earth and solar-earth heat pump systems. The simulation results indicate that the earth-source/ sink heat pumps operate at a relatively constant coefficient of performance and consume less electrical energy to perform the same duties required from an air-to-air heat pump. This is especially true for winter operations as demonstrated by the results of Table IX. It should be noticed that throughout the winter simulation period, neither of the earth coupled heat pump systems required resistance heat although the outdoor temperatures were in the low teens for long

durations. Because of the relatively constant coefficient of performances, lower energy consumption, and the possibility of very low backup resistance heat requirement, it can be concluded that earth source heat pumps would prove to be very helpful in reducing the load peaking problems of the electric utility companies.

Neither the summer or the winter simulation results showed the anticipated advantages of the solar loop in the solar-earth heat pump system. However, the available recorded winter data for the middle house indicate that the solar loop can be of a great help in maintaining the well water temperatures at a level much above freezing during very cold sunny days. No definite conclusion can be made regarding the summer performance of the solar loop.

It should be noted that all the conclusions made regarding the efficiency and power consumption of the heat pump units do not take into consideration the difference in the rated capacities and designs of the heat pump equipments.

Some suggestions regarding further work on this project are listed in the following:

- 1. Currently, the well inlet and outlet temperatures are measured across the heat pump. This arrangement does not allow the effect of the solar loop heat exchange on the water entering the well to be seen. The suggestion is to measure the well inlet temperature downstream of the solar loop.
- More study of the summer data of the middle house is needed in order to determine the extent of summer solar assist.
- 3. Multiple-well arrangement should be studied and compared to the solar loop in the earth coupled heat pump system.

- 4. Economic study should be performed in order to determine the economic feasibility of the inclusion of the solar loop in the earth coupled heat pump system.
- 5. If possible, the telephone link with data logger should be connected to the computer for short period (few days) data file creation. This might prove helpful in monitoring and presention of the measured data graphically.
- 6. It is strongly suggested that more frequent communications be made with the Perkins houses occupants regarding daily indoor activities. This will be very helpful in future simulations.

REFERENCES

- 1. Calm, J. M. "Heat Pump Systems for District Heating and Cooling".

 ASHRAE Journal, Vol. 21, No. 9 (Sept. 1979), pp. 54-58.
- Pietsch, J. A. "The Unitary Heat Pump Industry 25 years of Program". ASHRAE Journal, Vol. 19, pt. 2 (July 1977), pp. 15-18.
- 3. Duffy, G. and T. A. Mahoney. "Statistical Panorama". Air Conditioning, Heating and Refrigerating News (January 29, 1979), pp. 52-61.
- 4. Greiner, P. C. "Electric Utility Outlook for Heat Pumps". <u>Heat Pump Technology Conference</u>. Stillwater: Oklahoma State University, 1975.
- Christian, J. E. <u>Unitary Water-to-Air Heat Pumps</u>. Oak Ridge, Tennessee: Oak Ridge National Laboratory, Lab. Report ANL/CES/TE-77-9, 1977.
- 6. Smith, Wade W. "Water Cooled Heat Pumps: Energy Savers?". Heating Piping, and Air Conditioning, Vol. 51, pt. 1 (March 1979), pp. 49-61.
- 7. Crane, R. E., H. G. Lorsch, and R. G. Werden. "Integrated Community Energy System Based on Existing Heat Pump Technology". Proceedings of the 5th Annual Heat Pump Technology Conference.

 Stillwater: Oklahoma State University, 1980.
- 8. Collins, W. D. "Temperature of Water Available for Industrial Use in the United States". <u>U.S. Geological Survey Water Supply</u>, Paper 520-F, 1925.
- 9. Kusuda, T. and P. R. Achenbach. "Earth Temperature and Thermal Diffusivity at Selected Stations in the United States".

 ASHRAE Trans., Vol. 71, pt. 1 (1965), pp. 61-75.
- 10. Kemler, E. N. "Methods of Earth Heat Recovery for the Heat Pump". Heating and Ventilating, Vol. 44 (Sept. 1947), pp. 69-72.
- 11. Bose, J. E., C. W. Ledbetter, and J. R. Partin. "Experimental Results of a Low Cost Solar-Assisted Heat Pump Using Earth Coil and Geothermal Well Storage". Proceedings of the Fourth Annual Heat Pump Technology Conference. Stillwater: Oklahoma State University, 1979.

- 12. Andrews, J. W. and P. D. Metz. "Computer Simulation of Ground Coupled Storage in a Series Solar Assisted Heat Systems". Unpublished report, Brookhaven National Laboratory, New York: Upton, 1978.
- 13. Hiller, C. C. and R. Glickman. <u>Improving Heat Pump Performance Via Compressor Control-Analysis and Test</u>. Cambridge, Massachusetts: Heat Transfer Laboratory, Massachusetts Institute of Technology, Report No. 24525-96, 1976.
- 14. Kelly, G. E. and J. Bean. "Dynamic Performance of a Residential Air-to-Air Heat Pump". Second Annual Heat Pump Technology Conference. Stillwater: Oklahoma State University, 1976.
- 15. Groff, G. C. and C. E. Bullock. "A Computer Simulation Model for Air-Source Heat Pump System Seasonal Performance Studies". Second Annual Heat Pump Technology Conference. Stillwater: Oklahoma State University, 1976.
- 16. Murphy, W. E. and V. W. Goldschmidt. "The Degradation Coefficient of a Field-Tested Self-Contained 3-Ton Air Conditioner". ASHRAE Trans., Vol. 85, pt. II (1979), pp. 396-405.
- 17. Goldschmidt, V. W., G. H. Hart, and R. C. Reiner. "A Note on the Transient Performance and Degradation Coefficient of a Field Tested Heat Pump - Cooling and Heating mode". <u>ASHRAE</u> <u>Trans.</u>, Vol. 86, pt. II (1980), pp. 368-375.
- 18. Hart, G. H. and V. W. Goldschmidt. "Cycle Times of a Unitary Heat Pump Under a Revised Cycle for Defrosting: Some Measurements and Observations". Heat Pump Technology Conference. Stillwater: Oklahoma State University, 1978.
- 19. Bullock, C. E. and W. R. Reedy. "Heat Pump Cyclic Performance and it's Influence on Seasonal Operation". <u>Heat Pump Technology</u> <u>Conference</u>. Stillwater: Oklahoma State University, 1978.
- 20. Parkins, W. Jr., R. W. Beausoliel, and G. Kelly. "Factors Affecting the Performance of a Residential Air-to-Air Heat Pump". ASHRAE Trans., Vol. 83, pt. I (1977), pp. 839-849.
- 21. Bonne, U., A. Patini, R. D. Jacobson, and D. A. Mueller. "Electric Driven Heat Pump Systems: Simulation and Controls". ASHRAE Trans., Vol. 83, pt. I (1977), pp. 849-859.
- 22. Lawrence, R. A. "Performance of Heat Pumps Using Cold-Side Energy Storage and Unconventional Heat Sources". Presented at ASME Winter Annual Meeting, Paper 74-WA/HT-17, November 1974.

- 23. Freeman, T. L., W. A. Beckman, J. W. Mitchell, and J. A. Duffie. "Computer Modeling of Heat Pumps and the Simulation of Solar Energy-Heat Pump Systems". M.S. Thesis, University of Wisconson, Madison, Wisconson, June 1975.
- 24. Solar Energy Laboratory of University of Wisconson. "TRNSYS-A Transient Simulation Program". Engineering Experiment Station Report 38, December, 1976.
- 25. Schlosser, K. and B. Teislev. "Mathematical Simulation of a Solar Assisted Heat Pump System Using the Ground for Energy Storage". Energy and Buildings, Vol. 2, No. 1 (Jan. 1979), pp. 37-43.
- 26. Duffie, J. and W. Beckman. Solar Energy Thermal Process. New York: John Wiley & Sons Inc., 1974.
- 27. Carrier Corporation. "38CQ Split System Heat Pump Outdoor Sections". Catalog No. 523-858, Syracuse, New York, 1978; 40 AQ & 40 AS Direct Expansion Fan Coils, Catalog No. 524-045, Syracuse, New York, 1978; Heat Pump Control, Instructions, Catalog No. 60-0524-3, Syracuse, New York, 1978.
- 28. Command-Aire Corporation. "Single Package Water to Air Heat Pumps". Series 070-500, Catalog No's. SWP 79330-DB and SWPCAP 79515-5MA, Waco, Texas.
- 29. Frierson, Beverly. "Data Acquisition and Management for Three Heat Pump Study Homes". M.S. Report, School of Mechanical and Aerospace Engineering, Oklahoma State University, May 1981.
- 30. Mechanical and Aerospace Engineering Department. "CHLSYM-A Transient Simulation Program". Stillwater: Oklahoma State University, 1979.
- 31. American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ASHRAE Handbook of Fundamentals. New York 1972.
- 32. Peavy, B. A. "A Model for Predicting the Thermal Performance of Ventilated Attics". Washington, D.C.: Center for Building Technology, National Bureau of Standards, 1979.
- 33. Lunde, Peter J. Solar Thermal Engineering. New York: John Wiley & Sons, 1980.
- 34. Wise, D. M. "Analysis of a Vertical Ground Coil Heat Storage/Source System". M.S. Report, Oklahoma State University, July 1979.
- 35. Kanchanalai, K. "Numerical Analysis of a Vertical Ground Coil Assisted Heat Pump". M.S. Report, Oklahoma State University, December 1979.

- Carslaw, H. S. and J. C. Jaeger. <u>Conduction of Heat in Solids</u>. Oxford: Oxford University Press, 1949.
- 37. Parker, J. D., J. H. Boggs, and E. F. Blick. <u>Introduction to Fluid Mechanics and Heat Transfer</u>. Massachusetts: Addison-Wesley Publishing Co., 1974.
- 38. Moss, J. T. and P. D. White. "How to Calculate Temperature Profiles in a Water-Injection Well". The Oil and Gas Journal, Vol. 59, (March 9, 1959), pp. 174-178.
- 39. Shenck, H. Fortran Methods in Heat Flow. New York: The Ronald Press Co., 1963.
- 40. Dusinberre, G. M. <u>Heat Transfer Calculations by Finite Differences</u>. Scranton, Pennsylvania: International Textbook Co., 1961.
- 41. Kays, W. M. and M. E. Crawford. <u>Convective Heat and Mass Transfer</u>. New York: McGraw-Hill Book Co., 1980.
- 42. Croft, D. and D. Lilley. <u>Heat Transfer Calculations Using Finite</u>
 <u>Difference Equations</u>. London: Applied Science Publishers,

 1977.

APPENDIXES

APPENDIX A

PHYSICAL DATA, DIMENSIONS, AND
PERFORMANCE DATA FOR THE
HEAT PUMP UNITS

Carrier 38C[015 Air-to-Air Heat Pump Physical Data and Dimensions

UNIT	1,777			38CO	2 - 1 2 1 15	1.77	3	
Oleten	015	020	027	033	039	044	048	
OPER WT (lb)	145	160	166	180	210	212	222	
REFRIGERANT*	ĺ			22				
Refrig Control	AccuRater™							
COMPRESSOR				Hermetic				
Cylinders				2				
Rpm (60-Hz)				3500				
FAN			Propeller	-Type, Dir	ect Drive			
Air Discharge				Vertical				
Air Oty (cfm)	2000	2000	2600	2800	2800	2600	3400	
Motor Hp	1/8	1/8	1/4	1/4	1/4	1/4	1/2	
Motor Rpm	1075	1075	1075	1075	1075	1075	1075	
COIL (Type)				Plate Fin				
Number				I			1.7	
Fins/in.				9			19/15.6	
Face Area (sq ft)		7 !	7	10.5	10.5	10.5	13.1	
Rows	1.5	1.5	1.5	1.3	1.7	1.9	1.7	
DIM. (ft-in.)								
Length A	2-10-1/4							
Width B	1-10							
Height C	1-4-1/81	1-4-1/81	1-4-1/8	2-0-1/8	2-0-1/8	2-0-1/8	2-6-1/8	
CONN. (in.)	Compatible Fitting (Suction) & Flare (Liquid)							
Vapor Linet	5/8 3/4							
Liquid Linet				3/8				
								

*The 38CQ contains correct operating charge for complete system when connected to 40FS/28HQ,VQ; 40AQ or 40DQ indoor units with 25 ft or less of tubing of recommended diameter. Charge adjustment may be required for mix-matches. See Installation, Start-Up and Service Instructions for details.

MODEL 40AS,AQ	018	024	030	036			
OPERATING WT (Ib)							
Standard Unit	69	83	100	114			
Bare Box AQ	59	78	96	110			
REFRIGERANT		2	2				
Refrig Control		Bypass Ac	cuRater [™]				
FAN	C	entrifugal -	Direct Drive	9			
Rpm, 60-Hz		950/85					
Air Discharge	Upfle	ow, Horizont	al* or Down	flow			
Range Cfm	450-600	600-1000	750-1250	900-1500			
PSC Motor Hp	1/8	1/4	1/3	1/3			
COIL (RowsFins/in.)		3	13				
Face Area (sq ft)	1.64	2.02	2.52	3.16			
DIMENSIONS (ft-in.)							
Length A	1-0-3/16	1-2-3/8		1-9			
Width B		19-					
Height C	2-9-1/4	3-2-3/8	3-4-11/16	3-6			
DUCT INLET (ft-in.)							
, D	0-9-7/8		1-2-11/16	1-6-3/8			
E		1-6-	3/4				
DUCT OUTLET (ft-in.)							
F		1-0-1/16		1-6-5/8			
G		0-9-1	1/16				
CONNECTIONS (in.)							
Suction ODF† H	5/8	5/8	3/4	3/4			
Liquid ODF† J		3/	•				
Condensate, FPT	3/4						
FILTER‡ (1)		Permanent,	1-in. thick				

.

Indoor Section

Outdoor Section

Carrier 38CQ015/40AQ018 Air-to-Air Heat Pump Heating and Cooling Performance

INTEGRATED HEATING CAPACITIES*

OUTDOOR	INDOOR			TEMPE	RATURE	OF AIR	ENTERIN	G OUTDO	OR UNIT	(Edb)		
OUTDOOR		-10	0	10	17	20	30	40	47	50	60	70
UNIT	UNIT	Cap. Kw	Cap. Kw	Cap. Kw	Cap. Kw	Cap.: Kw						
38CQ015	40AQ018							13.5 1.3				

38CQ015/40AQ018

Tem	p (F)		1	Air Ent	Indo	or Uni	t — C	fm/BF	:				
Air Ent		5	15/.1	0	. 5	75/.1	1	6	645/.12				
-	door		Indoor Unit Ent Air Temp — Ewb (F)										
	nit	72	67	62	72	67	62	72	67	62			
85	TC SHC KW	16.5 8.4 2.08	11.1		16.4 8.4 2.10	15.6 11.5 2.06	14.9 14.3 2.02	16.5 8.7 2.14	15.7 11.9 2.10	15.2 14.8 2.07			
	TC SHC KW	16.4 8.4 2.23		14.1 13.6 2.10	16.4 8.6 2.25	15.5 11.9 2.20	14.4 14.2 2.14	16.6 8.9 2.30	15.6 12.4 2.24	14.7 14.6 2.19			
100	TC SHC KW	16.2 8.5 2.30	15.0 11.2 2.23		16.3 8.7 2.33	15.1 11.8 2.26	14.1 13.9 2.19	16.4 9.0 2.38		14.4 14.4 2.25			
105	TC SHC KW	16.1 8.5 2.38	14.7 11.1 2.28	13.4 13.1 2.20	16.2 8.8 2.41	14.8 11.6 2.32	13.7 13.6 2.25	16.3 9.1 2.46	15.0 12.3 2.37	14.1			
	TC SHC KW	15.8 8.5 2.53		12.8 12.7 2.30	15.9 8.9 2.58	14.1 11.4 2.44	13.1 13.1 2.36	16.1 9.3 2.61	14.3 12.1 2.49	13.4 13.5 2.42			

Cap. - Capacity (1000 Btuh), includes fan motor heat and deduction for thermal line losses of 15 ft of piping exposed to outdoor

HEATING CAPACITY CORRECTION FACTORS

CFM/TON*	- 10 1 1 1 1 1	ECTION TORS	TEMP AIR ENT INDOOR	CORRECTION FACTORS		
COIL	Cap.	Power	COIL (F)	Cap.	Power	
400	.98	.99	65	1.02	.99	
450	1.0	1.0	70	1.0	1.0	
500	1.02	1.01	75	.98	1.01	

^{*}Determine cfm/ton from Combination Rating tables.

COMBINATION RATING NOTES

1. Direct interpolation is permissible. Do not extrapolate. 2. SHC is based on 80 F db temperature of air entering indcor unit. Below 80 F db, subtract (corr factor x cfm) from SHC.

Above 80 F db, add (corr factor x cfm) to SHC.

-		CALEGRADO ALO DOVIDILIDADO DE											
		İ	ENTERING AIR DRY-BULB TEMP (F)										
	BYPASS	79	78	77	76	75	under 75						
FACTOR		81	: 82	83	84	85	aver 85						
				Cor	rection	actor							
•	.10 .20 .30	.98 .87 .76	1.96 1.74 1.53	2.94 2.62 2.29	3.92 3.49 3.05	4.91 4.36 3.82	Use formula shown below.						

Interpolation is permissible. Correction Factor = $1.09 \times (1 - BF) \times (db - 80)$

Kw - Power input includes compressor motor power input, indoor and outdoor fan motor input.

^{*}Integrated Heating Capacities - Values shown reflect a capacity reduction at those outdoor air temperatures at which frost forms on outdoor coil.

Command-Aire SWP-150 Water-to-Air Heat Pump Physical Data and Dimensions

MODEL: SWP	150			
Capacities at ARI COOLING Standard Conditions EER	19,500 8.6			
HEATING (SWP only) COP	28,000 3.3			
BLOWER: Centrifugal Dia. & Width Direct Drive CFM Range	9x7 450-750			
MOTOR: HP RPM	1/8 1075			
COIL: Plate Fin Fins per Inch Rows Face Area Ft. ²	13 3 1.56			
FILTER: Throw Away (1" thick) SIZE	14½x17¼			
OPERATING WEIGHT SHIPPING WEIGHT	200 210			
HEAT EXCHANGER:	Tube and s	shell, 3/4" Finned Copper Tube, Hydrostatic pressure-test	ed to 2250 lbs.	•

MODEL:	BLOWER PERFORMANCE Actual CFM / External Static Pressure	WATER PRESSURE DROP THRU HEAT EXCHANGER GPM/△P, PSI			
150	800/.15 600/.49 400/.67 700/.35 500/.59	5.0/1.7 4.0/1.2 3.0/.75			

Command-Aire SWP-150 Water-to-Air Heat Pump Heating and Cooling Performance

Cooling Performance 150

EWT	600 CFM 80 ⁰ ENT. DB TEMP.	ENTERING AIR WET BULB TEMP.								
		Ì	3 GPM	. 1		4 GPM		1 '	5 GPM	
		63°	67 ⁰	71°	63 ⁰	67°	710	63°	67 ⁰	710
	TOTAL / SENSIBLE MBH	17.0 / 14.9	18.0 / 12.7	19.2 / 10.4	18.2 / 15.4	19,5 / 13.2	20.8 / 10.8	19.0 / 15.6	20.4 / 13.6	21.8 / 11.3
800	COMPRESSOR INPUT KW	2.31	2.44	2.56	2.1,3	2.23	2.33	2.04	2.11	2.19
	HEAT REJECTED MBH	25.6	, 27.0	28.6	26.1	27.8	29.4	26.6	28.3	30.0
	TOTAL / SENSIBLE MBH	15.9 / 14.4	17.0 / 12.3	17.9 / 9.9	17.1 / 14.9	18.4 / 12.8	19.7 / 10.6	18.0 / 15.2	19.4 / 13.2	20.7 / 10.9
90 ⁰	COMPRESSOR INPUT KW	2.46	2.58	2.70	2.27	2.38	2.48	2.16	2.27	2.35
	HEAT REJECTED MBH	25.0	26.5	27.8	25.5	27.2	28.8	26.1	27.8	29.4
-	TOTAL / SENSIBLE MBH	14.9 / 14.0	15.8 / 11.8	16.6 / 9.3	16.1 / 14.5	17.2 / 12.3	18.4 / 10.1	16.9 / 14.8	18.2 / 12.7	19.5 / 10.5
1000	COMPRESSOR INPUT KW	2.62	2.74	2.86	2.43	2.55	2.65	2.32	2.42	2.52
	HEAT REJECTED MBH	24.5	25.8	27.0	25.1	26.6	28.1	25.5	27.1	28.8

Air Volume Factor - Cooling

OT COOL & HT REJ MBH 0.92 0.97 1.00 1.03 1.05									
CFM	400	500	600	700	800				
TOT COOL & HT REJ MBH	0.92	0.97	1.00	1.03	1 05				
SENSIBLE COOLING MBH	0.83	0.92	1.00	1.07	1.14				
COMPRESSOR INPUT KW	0.97	0.99	1.00	1.01	1.02				

Air Volume Factor - Heating

]	CFM	400	500	600	700	800
1	TOTAL HEATING MBH	0.97	0,98	1.00	1.01	1.02
1	HEAT EXTRACTED MBH	0.91	0.95	1.00	1.03	1.06
I	COMPRESSOR INPUT KW	1.21	1.09	1.00	0.93	0.90

Sensible Cooling Factor for Other Dry Bulb Temps.

150 SW

SW - SWP SWH - SWPH

ENT		El	TERING	AIR DRY	BULB TE	4P	
w.B.	740	760	78°	800	82°	840	860
63°	0.82	0.89	0.96	1.00	1.10		
670		0.83	0.91	1.00	1.07	1.14	1.22
710				1.00	1.07	1.16	1.25

Heating Performance 150

EWT	200 0511	ENTERING AIR DRY BULB TEMP.								
	600 CFM	3 GPM			4 GP.M			5 GPM		
		60°	70°	80°	60°	70°	800	60°	70°	80°
60°	TOTAL HEATING MBH	21.6	21.0	20.5	23.6	22.9	22.5	24.8	24.1	23.6`
	HEAT-EXTRACTED M8H	15.3	14.5	13.7	!7.0	16.0	15,2	17.5	16.5	15.5
	COMPRESSOR INPUT. KW	1.87	1.93	2.02	1.96	2.05	2.15	2.14	2.25	2.33
	TOTAL HEATING MBH	23.9	23.2	23.0	26.2	25.6	25.1	27.4	26.7	26.2
70°	HEAT EXTRACTED MBH	17.2	16.2	15.5	19.0	18.0	17.0	19.5	18.4	17.4
	COMPRESSOR INPUT KW	1.99	2.07	2.22	2.13	2.25	2.39	2.34	2.46	2.59
	TOTAL HEATING MBH	26.1	25.9	25.6	28.9	28.4	27.7	30.1	29.5	26.8
80°	HEAT EXTRACTED M8H	19.0	18.2	17.4	21.1	20.0	18.8	21.5	20.4	19.3
	COMPRESSOR INPUT KW	2.10	2.26	2.42	2.31	2.47	2.63	2.54	2.67	2.80

APPENDIX B

LDSIM INPUT LIST AND PROGRAM LISTING

INPUT LIST AND FORMAT

User's input to LDSIM simulation program is in the NAMELIST format. The input variables are:

/INPT/

IHOUSE - Index identifying the house to be simulated

- = 1 (East House)
- = 2 (Middle House)
- = 3 (West House)

MONTHS - The month in which simulation is to be performed

MDAY1 - The first day of simulation

MDAY2 - The last day of simulation

NPRT - Type of output described

- (a) NPRT = 0... Total load for each day
- (b) NPRT = 1... a above, plus hour by hour load for each day
- (d) NPRT = 3... c above plus individual contributions
- (e) NPRT = 4... d above, plus sol-air temp., heat gain through each surface

Note: When NPRT>2 the output will be very large for periods greater than one day.

INWRIT - Index for writing input data

= 0 (input data will not be written)

```
= 1 (input data will be written)
```

PRNT - Index for writing loads into the link file

- = 0 (loads will not be output to link file)
- = 1 (loads will be output to link file)

/NAM4/

NPN - Number of people in the house during nighttime

NPD - Number of people in the house during daytime

CFMN - (Infiltration and ventilation) in CFM During nighttime

CFMD - (Infiltration and ventilation) in CFM during daytime

OFST - Daytime starting hour (e.g. OFST = 8.0)

OFCT - Nighttime starting hour (e.g. OFCT = 17.0)

/NAM5/

- QOTSN Sensible heat loads (e.g., appliances) during nighttime, (Btu/hr)
- QOTSD Sensible heat loads (e.g., appliances) during daytime, (Btu/hr)
- QOTLN Latent heat loads (e.g., appliances) during nighttime, (Btu/hr)
- QOTLD Latent heat loads (e.g., appliances) during daytime, (Btu/hr)
- QFLD Flourescent lights during daytime, KW

/NAM6/

- QFLN Flourescent lights during nighttime, KW
- QTLN Tungsten lights during nighttime, KW
- QTLD Tungsten lights during daytime, KW
- TROOM Room design temperature, F
- NHTX Index for calling HEATX subroutine
 - (a) NHTX = 0... No call
 - (b) NHTX = 1... Call HEATX
- IHTG Index for input sensible heat generation

- (a) IHTG = 0... sensible heat loads are read from measured data. Values in NAM5 and NAM6 will not be used in the program
- (b) IHTG = 1... the user must input values of variables in NAM5 and NAM6

/NAM7/

ERMAX - Maximum capacity of heating/cooling equipment, Btu/hr (negative for heating and positive for cooling)

ERMIN - Minimum capacity of heating/cooling equipment, Btu/hr (negative for heating and positive for cooling)

FLAREA- Total floor area of the building, ft^2

THRANG- Thermostat range - the dead band, F

/NAM8/

THSETD - Thermostat set temperature during daytime, F

THSETN - Thermostat set temperature during nighttime, F

THTIMD - Thermostat set time in the daytime (THTIMD = OFST-1)

THTIMN - Thermostat set time in the nighttime (THTIMN = OFCT)

Note: Other input values concerning building geometry, transfer function coefficients, latitude, longitude, etc. are stored in three files, one for each house. The files are called

'OSU.ACT11451.FF.DATA(EHOUSE)'

'OSU.ACT11451.FF.DATA(MHOUSE)'

'OSU.ACT11451.FF.DATA(WHOUSE)'

These data will be automatically read from the respective files according to the house index specified in the input list.

LDSIM PROGRAM LISTING

```
12345678901234567890123456789012345578901234567890123456789012345578901234567890
CARD
0 00 1
     c
0002
     2003
0004
            BUILDING COOLING AND HEATING LOAD SIMULATION PROGRAM
0 0 0 5
      c
0006
     C.**
          ****************
J 00 7
0008
0009
      c
            THIS PROGRAM CALCULATES THERMAL LOAD OF A BUILDING
0010
      C.
0011
      C
            USING TRANSFER FUNCTION TECHNIQUE AND
0012
            HOURLY WEATHER INFERMATION
      c
            THIS PROGRAM SIMULATES THE WHOLE PERIOD HOUR BY HOUR
0013
      c
0014
      c
              .4.
0015
     c
0016
            INTEGER FLUX
0017
            REAL*8 ORIENT, ZORNT
0018
     C
0019
            COMMON/SOL1/ ATCE(24),SOLH(24),XID(24),XIDHV(24),XIT(24)
0020
            COMMON/SOL2/ XLATR.EPR.PSIR.DLUNG. ID AY 1
            COMMON/SO_3/ SH(24),CH(24),CZ(24),CT(24),CE.RTD
0021
0022
            COMMON/BLOCKI/IIN.IOT.MC.NPRT.INWRIT.TROCM.OFST.OFCT.CFMD.XKT.XLF.
0023
                  INIT . I NI HX . MONTH . I DAYM
            COMMUNZELOCKZZOTCTAL (24) . PENT. THOUSE
0024
2025 C
0026
            DIMENSION 2 HO (24) . R4 I (24) . HO (24) . NV (24) . AT NB I (24)
            JIMENSICN ATWB(24), DATR(24), DN(24), ALPAJ(8), TAUJ(8)
3027
            DIMENSION SHGF(24), QEN(24), TSW(24), TSWR(10,48), BT(7), DT(7)
0 02.8
            DIMENSION QEWR(10.43),QSSW(43),QSSWR(48),QED(24),QSWR(24)
0.029
            DIMENSION QFLS(49), QTLS(24), QPPS(24), QPPL(24), QOTHS(24), QOTHL(24),
0.630
           * QIVS(24).QIVL(24).Q30(24).Q31(24).Q34(48).Q35(24)
3031
            DIMENSION SGV (12), CWRV(12), HG_V(12), HGEPRV(12), RTFW(12)
3032
0(33
            DIMENSION QSFW(48),Q37(48),Q33(48),Q39(48),QTSHL(24)
1034
            DIMENSION CRATEG(12), CFATEP(12), NDYM(13)
            DIMENSIGN ZWRL(10), ZWRW(10), ZAD(10), ZAW(10), ZEPR(10), ZPSIR(10),
0035
           1ZHO(10,24), ZHI(10,24), ZRCG(10), ZALP(10), ZEFSWR(10), ZSCG(10),
0.036
           2ZUWR4(10), ZUW(101, ZUD(10), ZORNT(10), 26T(10,7), ZUWRT(10),
0037
1038
           3ZDT(10,7), ZAWR(10), ZXNI(10,2+), ZCNS(10), ZCNST(10)
0035 C
            NAMEL IST / INPT/ I HOUSE, MONTHS, MDAY 1, MDAY 2, NPR 1, INWRIT, PRNT
0040
            NAMELIST /NAMI/NWAR, MC, XLAT, ACLUNG, STLONG, XLF
0 64 1
               /NAM2/WRL . WRW . AD . A W. EFSILN . PSI . HI . R CG . ALPHWR . EFSWR . S CG . U . PA
·j:042
1043
               .UW.UD. ORIENT
9 Ç44
               /NAM3/BT.DT.UWRT
0045
               /NAM4/NPN, NPD, CFMN, CFMD, GFST, OFCT
0 04 6
               /NAM5/QOTSN,QCTSD,QOTLN,QOTLD,QFLD
0 C4 7
               /NAM6/QFLN.QTLN.QTLD.TROOM.NHTX.IFTG
0048 C
0 04 9
            DATA SGV/0 - 27 27 - 0 - 3 400 - 0 - 1 169 - J - 00 64 - 0 - 221 7 - 0 - 33 54 - 0 - 1443 -
0 05 0
           * -0.0128,J.2155,-0.3712,0.1790,-0.0160/
0 05 1
            DATA CWRV/0.6582.-1.2017,0.6617.-0.1150.0.7108.-1.4456.0.9639.
v 052
           * -0.2108.0.7055.-1.5668.1.1378.-0.2698/
0053
           DATA HGLV/0.3178 -- 0.4507 .0.2349 .- 0.0328.0.2605.- 0.4662.0.2819 .
```

```
12345678901234567890123456789012345578901234567390123456789012345578901234567890
CARD
0054
           * -0.0579,0.2430,-0.5085,0.3547,-0.0825/
            DATA HGEPRV/0.3251,-0.4267,0,1524,-0.0076,0.2574,-0.4036,0.1830.
0055
           * -0.0183,0.2503,-0.4446.0.2255,-0.0245/
0056
            DATA RTFW/0.000.-1.8260.1.0697.-0.2005.0.000.-2.1092,1.4606.
0 05 7
           * -0.3331,0.000,-2.2906,1.7252,-0.4277/
0 058
0 C5 9
            DATA CRATEG/1.73,-3.50,2.22,-0.45,1.68,-4.22,3.08,-0.74,1.89,
0060
           * -4.55,3.61,-0.95/
            DATA CRATFP/1.000,-1.6260,1.0697,-0.2005.1.000.-2.1092,1.4606.
0 06 1
           * -0.3331,1.000,-2.2908,1.7252,-0.4277/
0062
0063
0064
            COEFFICIENTS FOR REGULAR DS SHEET GLASS
      c
0045
      c
            DATA ALPAJ/0.01154..77674.-3.94657.8.57881.-8.38135.3.01188.0.,J.
0066
            DATA TAUJ/-0.00885,2.71235,-J.62062,-7.07329,9.75995,-3.89922.0.0,
0067
0668
           * 0.0/
0.069
     c
0 07 0
            DATA NAT, NSCG. MONTH1, MONTH2/6, 0, 1, 1/
            DATA NDYM/ 1,32,61,92,122,153,183,214,245,275,306,336,366/
0071
0072
0073
         10 FORMAT(IX )
0074
         20 FORMAT( /)
         30 FORMAT (1H1)
0075
         40 FORMAT(56X. LCAD CALCULATIONS')
0076
         50 FORMAT(48X,35(***))
0077
         70 FORMAT( 3( 2X,8(5X ,12 ,2X,F5.1 ) ./))
0078
         EO FORMAT( 5x. SCLAR INCIDENT ENERGY ON SURFACE .2X.AB.2X. IN BTU/HR-
0079
0.080
           *FT**2*1
         SO FORMAT( 5x . *SCL-AIR TEMPERATURE FOR SURFACE . 2x . A8, 2x . IN F .)
3681
        100 FORMAT( 5x. SOLAR HEAT GAIN FACTOR FOR WINDOW ON SURFACE , 2x, A8, 2x
0082
J 083
           *, ' IN BIU/HR-FT* #2")
        110 FORMAT( 5x, SCL-AIR TEMPERATURE FOR WINDOW ON SURFACE , 2x, A8, 2x,
0.084
0085
           **IN F * 1
        120 FORMAT ( 5x, "FEAT GAIN THROUGH SURFACE", 2X, A8, " IN BTU/HR
                                                                           AREA
0.086
0087
           * ',F8.0.1X,'SC.FT.')
0088
        130 FORMAT( 3( 4X.8(2X : 12.2X.F8.0)./))
        150 FORMAT( 5x, "HEAT GAIN THROUGH WINDOW DN SUFFACE", 2x, A8. " IN STU/HR
0 089
0090
                 AREA= ',F6.1.' SC.FT.')
        160 FORMAT( 5X, "HEAT GAIN THROUGH DOOR ON SURFACE", 2X, A8, 5X, AREA=",
1900
0092
           *F6.1, *FT**2 *, 2X, *IN BTU/HR*)
        180 FORMAT( 52X. 'INST SENSIBLE HEAT GAIN (BTU/HR)")
0093
        190 FORMAT ( 10X, *TIME*, 3X, *ON-DFF LIGHTS*, 4X, *CN LIGHTS*, 6X, *PEOPLE*.
0094
           * 9X, 'EQUIPMENT', EX, 'INFLE VENT', 7X, SURFACES', 13X, 'TOTAL')
0095
        200 FORMAT ( 1)X . [3.1X. 6E15.4. E18.4)
0096
        210 FORMAT( 52X, LATENT FEAT LOADS (BTU/FR))
0 09 7
0098
        220 FORMAT( 10X, *TIME*, 5X, *PEOPLE*, 9X, *E QUIPMENT*, 6X, *INFLE VENT*, 10X,
0099
           * 'TOTAL')
        230 FORMAT( 10X.13.1x.3E15.4.E18.4)
0100
0 10 1
        240 FORMAT( 35x, *SENSIBLE COOLING LOAD COMPONENTS DUE TO VARIOUS HEAT
           *GAINS (BTU/HR)*)
0102
        250 FORMAT( 1)X . TIME: .SX, INSTANT: .5X, LIGHTS ON OFF: .5X, SURFACES!
0103
           * .5X, PEOPLESEQUIP*, 5X, WINDOWS UNSH*, 7X, TOTAL*)
0104
        260 FORMAT( 10X,14 ,5E15.4,E18.4)
0105
        270 FORMAT ( 48X, 'TOTAL COCLING/HEATING LOAD (BTU/HR)')
0106
0107
        280 FORMAT( 1)X, TIME:,5X, DB TEMP:,3X, WB TEMP:,3X, HUM DIF:,10X,
           $'SENSIBLE', 12X, 'LATENT', 15X, 'TOTAL')
0108
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0109
        250 FORMAT( 10X.14,2F10.1.F13.6,3E20.5)
        300 FORMAT(10X, THE TOTAL LOAD FOR THE WHOLE DAY*, 15, * OF MONTH*, 15,
0110
           $//,10X, 'COOLING=',E12.5,2X, 'HEATING=',E12.5,5X, 'ROOM TEMP=',F5.1)
0111
0112
      c
0113
      C
0114
     C
            HOUSE INDEX
0115
      c
0116
      c
            IHOUSE =1
                        (EAST HOUSE)
0117
      C
            IHOUSE =2
                        ( MIDDLE HCUSE)
0118
      c
            IHOUSE=3
                        (WEST HOUSE)
0119
0120
0121
            READ(5. INT)
0122
            RTD=57. 29578
0 123
            MONTH 1 = MONTHS
0124
            MONTH=MONTHS
0125
            11N=5
0126
            10T=6
0127
            C=T INI
            MC =2
0 128
            NW AR=6
3129
0130
            IF LAGO = 0
0131
            XLF=0.0
            XKT = 0.0
0132
            XLAT=36.0
0133
0134
            STLONG= 90.0
            ACLCNG=97.0
0135
0136
            PB=14.696
0137
            DLONG=(ST_DNG-ACLONG)/15.0
            REAC(IHGUSE . NAM1)
0138
            IF(INWRIT.LE.O) GC TC 310
0139
            WRITE(10T.30)
0140
            WRITE (ICT , NAM1)
0141
0142
      310
            MDAY=1
0143
            NCHECK= $6*( 1+MDA Y2~4DAY1)
0144
            IF (MDAY1.EQ.19) GO TO 320
0145
            KDAY=MDAY1-1
0146
            DO 3131 I=1.18000
0147
            READ(4,2) MDAY . MHF . MIN
0 148
            FORMAT(5X, I 2, 6X, I2, 6X, I2, ////)
0149
            IF(MDAY.GT.MDAY1) GO TO 919
            IF (MDAY.EQ. KDAY.AND. MHR.EQ.23.AND.MIN.EQ.45) GO TO 320
0150
0151
      3131
            CONTINUE
0152
      32 C
            XLATR=XLAT/RTD
0153
            DO 340 NS=1,NWAR
0154
            WRL=0.0
            WRW=0.0
0155
            AD = 0. 0
0156
0157
            C.0=WA
            PSI =0 . 0
0158
0159
            EPSILN=90.0
0160
            HI=1.46
            ROG=0.2
0161
            ALPHWR=0.8
0162
            EPSWR=0.9
0163
```

```
12345678901234567890123456789012345378901234567890123456789012345678901
CARD
0164
            SC G=0.0
            UWRA = 0 . 0
0165
0166
            UW=0.0
            UD =0.0
0167
            DO 342 I=1.7
9310
            BT (1)=0.0
0169
0170
            DT(1) =0.0
0 17 1
     342
            CONTINUE
0172
            REAC(IHOUSE . NAM2)
0173
            UWR T=UWRA
0174
            READ( IHOUSE , NAM3)
0175
            IF(INWRIT-LE-0) GO TC 344
0176
            WRITE(101.20)
0177
            WPITE( IOT, NAM2)
0178
            WRITE(IGT,20)
0179
            WRITE (IDT, NAN3)
            ZWRL(NS) = WRL
ZWRW(NS) = WRW
J180 344
0181
0 18 2
            ZAD(NS) = AD
J183
            ZAW(NS) = AW
0184
            ZEPR(NS) = EFSILN/RTD
0185
            ZPSIR(NS) = PSI/RTD
0186
            ZROG(NS) = FOG
0187
            ZALP(NS) = ALPHWF
0188
            ZEPSWR(NS) = EPSWR
0189
            ZSCG(NS) = SCG
0190
            ZUWRA(NS) = LWRA
0191
            ZUW(NS) = UW
0192
            ZUD(NS) = UD
            ZORNT(NS) = ORIENT
ZAWR(NS) = (WRL*WRW)-AD-AW
0193
0194
0.195
            XKT=XKT+(ZA WR(NS)+UWRA)+(AD+JD)+(AW+UW)
0196
            UP = UWRA/JWRT
0157
            ZCNS(NS) =0.0
0198
            DC 346 I=1.7
0199
            ZBT(NS, I)=BT(I)+UR
            ZDT(NS,I)=DT(I)
0200
            ZCNS(NS)=ZCNS(NS)+ZBT(NS.I)
0201
1202
     346
            CONTINUE
5010
            ZDT(NS.1)=0.0
            CONTINUE
0 2 0 4
      340
0205
            XKT=XKT/X_F
            FC1=1.0-(0.019*XKT)
0206
            FC 2=1 . 0-(0. 016* XKT)
0 20 7
            FC3=1.0-(0.022*XKT)
0208
            FC4=1.0-(0.025*XKT)
0209
0210
            I= (4*MC)-3
0211
            13 = 1 + 3
            I = I
0212
0213
            DO 350 J=1.13
            SGV(IJ)=SGV(J)*FC1
0214
0215
            CWRV(IJ)=CWRV(J)+FC2
0216
            HGLV(IJ)=HGLV(J)*FC3
0217
            HGEPRV(IJ) =HGEPRV(J) *FC4
```

RTFW(IJ)=RTFW(J)

```
CARD
             IJ = IJ + 1
0219
      350
             CONTINUE
0220
             IF(MDAY1.LT.1) MDAY1=1
0221
             IF(MDAY2.LE.O) IFLAGD=1
0222
             IF ( WDAY 1. EQ. 1. ANC. MD AY2. EQ. 1) MONTH 2= MONTH 1
0223
             IF (MDAY2._T.1) MDAY2=1
0 2 2 4
0225
             IF (MDAY1.NE.MEAY2) MCNTH2=NTH1
             IF (IFLAGD. EQ. 1) MDAY2=32
0226
             IF(MONTH2.LT.MONTH1) MONTH2=40NTH1
0227
             DO 400 MONTH=MONTH1 . MCNTH2
0228
             INIHX=0
0229
3230
             NPN=0
             NPD =0
0231
             CEMN=0.0
0232
             CFMD=0.0
0233
             QFLN=0.0
0234
             QFLD= 0.0
0 2 3 5
             QTLN=J.O
0236
0237
             QT LD=0.0
0238
             OFST= 8.0
0239
             OFCT=17.0
0240
             IENERG=0
0241
             READ(5, NA44)
0242
             READ(5, NAM5)
0243
             READ( 5. NAM6)
0244
             IF (INWRIT-LE-0) GO TO 410
0 24 5
             WFITE(ICT.20)
0 24 6
             WPITE(IOT, NAM4)
0247
      410
             wRITE(IOT,30)
0246
             WRITE(ICT,40)
0 24 9
             WP ITE( IOT, 50)
0250
             DC 405 NS=1 .NWAR
0251
             ZCNST(NS)=ZCNS(NS)*TREOM
0252
         4 05 CONTINUE
0253
             ND MM=NDYM( MCh TH+1)-NDYM(MONTH)
             IF (MDAY2.GT.NOMM) MDAY2=NDM4
0254
0 25 5
             DO 420 IDAYM=MDAY1,MEAY2
0256
             NKOLNT=0
             IDAY1=0
0257
0258
             IDAYY=NOYM( WCNTH )+IDAYM-1
             00 430 NH=25,49
0 259
0260
             I=NH-24
             I TOB=0
0261
0.262
             IRHO=0
J263
             IRHI=0
             FLUX=0
02E4
             IWV =0
0265
             ITUSE=3
J266
             ICRES=0
0267
0268
             IWHTR= 0
0269
             IHSE=0
0270
             DO 431 IJI=1.4
             NKOUNT=NKJUNT+1
0271
             READ(4,1) MDAY.KTOUT.KRHC.KRHE.KRHW.KRHM.KFLUX.KETJT.KWTOT.KMTOT.
0272
            SKWV .KERES . KE MHT , KEH SH . KECOM . KEFAN . KEOFA . KWRES . KWWHT . KWHSH . KWCOM .
0273
```

```
123456789012345678901234567890123455789012345678901234567890123456789012345678901
CARD
0274
           EKWFAN .KMRES .KAWHT .KMHSH .KMCCM .KAFAN
0275
          1 FORMAT( 5x, 12, 19x, 15, 48x, /, 23x, 5 (4x, 14), /, 7x,
0276
           63(4X, I4), 20X, I4, /, 3X, I4, 2(4X, I4), 8X, 3(4X, I4), /, 7X, 5(4X, I4), /,
0277
           £23x,5(4x,14))
0278
            ITOB= I TOB+K TOLT
0279
            IWV=IWV+K#V
0 2 8 0
            IRHC=IRHC+KRHC
            IF(KFLUX-E-1) KFLUX=0
0 28 1
0282
            FLUX=FLUX+KFLUX
0283
            IF(MDAY GT. IDAYM. AND , NKGUNT. LT. 96) GG TO 939
            IF (IHOUSE GT . 1) GO TO 301
0284
0285
            IRHI=IRHI+KFFE
            ITUSE = ITUSE + KETGT
0286
            ICRES = ICRES +KERES+KECOM
0287
            I WHTR=I WHTR+KEWHT
0288
0289
            I HSF= I HSF+K EHSH+KEFA N+KE OFA
        801 IF(IHOUSE.NE.2) GO TO 802
0290
0291
            IRHI=IRHI+KEH>
            ITUSE= ITUSE +KMTOT
0292
            ICRES=ICRES+KMRES+KACCM
0293
            I WHTR = I WHTR + K WHT
0294
            IHSF=IHSF+KMHSH+KMFAN
0295
        802 1F (IHCUSE. LT.3) GO TO 431
0296
0297
            IRHI=IRHI+KRHW
            ITUSE=ITUSE+KWT DT
0298
0299
            ICRES=ICRES+KWRES+KWCCM
0 30 0
            IWHTR= IWHFR +K WWHT
0301
            IHSF = IHSF + KWHSH
0302
        431 CONTINUE
0303
             IF(IHTG.EQ. 1) GO TO 637
0304
            QU THS (I ) =3. 41215*(24.0* I TUSE-0.72 * ICRES-0.9 * IWHT R-0.24* IHSF)
0 30 5
        637 WV(I)=IWV/4
0306
            HO(I)=2.2+WV(I)*(0.32+0.001*WV(I))
0367
            ATDB(1) =(1TDB/4.0)*0.18+32.0
0308
            2HO(1)= [RHO/400.0
0309
             IF (RHC(I).GT.1.0) RHO(I)=IRHO/4000.0
0210
             IF (RHO(I).GT.1.0) R+C(I)=1.0
0311
            0.004/IHRI = [ I ] I HR
             IF(RHI(I).GT.1.0) RHI(I)=IRHI/4000.0
0312
0313
             IF(RHI(I).GT.1.0) RHI(I)=1.0
0314
            SOLH(1)=0.25*FLUX/2.79498
            DATR(I) =ATDE(I)-TECOM
0315
            CALL XMOIST(ATD8(I).ATW8(I).RHU(I).2.PB.HAIR.WSAT.WAIPO.TWALL)
0316
            CALL XMOIST (TROOM.ATWEI(I), RHI(I), 2, PB. HAIR, WSAT, WA IRI, TWALL)
0317
            DW(I) = WAIRO-WAIRI
0318
            QSSWR (NF)=0.0
0319
0320
            055W(NH)=0.0
0321
      430
            CONTINUE
            DO 443 NS=1.NWAR
0322
            EPR=ZEPR(NS)
0323
            PSIR=ZPSIR(NS)
0324
            CALL SOLAR ( ICAYY )
0.325
0326
            DC 450 IH=25.48
            I= IH-24
0327
            QEW(I)=0-0
0328
```

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
CARD
0329
            7HO(NS. 1)=HO(1)
            ZHI(NS.I)=HI
2330
            ZXNI(NS,I)=HI/(HI+HO(I))
0.331
            IF(ZAW(NS).LE.0.0) GO TO 452
0332
0333
            ALPAD=ALPAJ(1)
0.334
            TAUD= TAUJ(1)
            DUM=1.0
0335
            DO 454 J=2 . NAT
0236
            DUM=DUM *CT ( I )
0.337
            ALPAD=ALPAD+(ALPAJ(J)*DUM)
0338
            TAUD=TAUD+(TAUJ(J)+DUN)
0.339
            CONTINUE
0340 454
0341
            SALPAJ=0.0
0342
            STAUJ=0.0
0343
            00 456 J=1 . NAT
0344
            XJ=1.0/(J+1)
0345
            SALPAJ= $A_PAJ+(ALPAJ(J)*XJ)
0346
            STAUJ= STAUJ+(TAUJ(J)*XJ)
0347
      456
            CONTINUE
0348
            SHGTC=(XID( I) *TAUD)+(XIDHV(I) *2. 0* STAUJ)
0349
            SHGAC=(XID(1)*ALFAD)+(XIDH(1)*2.0*SA_PAJ)
0350
            ALPAW=0.0
0351
            IF (SHGACeLE.O.O.OR.XIT(I).LE.O.O) GO TO 458
0352
            ALPAW=SHGAC/XIT(I)
0 153
      456
            EM EW= ALPAW
0354
            SHGF(I) = SHGTC+ZXNI(NS, I)*SHGAC
0355
            QEW(I) = ZAW(AS) + (ZUW(NS) +DATR(I) +ZSCG(NS) +SHGF(I))
0356
0357
            SOL-AIR TEMPERATURE CALCULATIONS
0358
      c
0359
            TSW(1)=ATDB(1)+(ALPAW *X IT(1)/ZHO(NS. 1))-(EMEW*20.0*CE/ZHO(NS.1))
0360
      452
            TSWR(NS,IH) = ATDB(1)+(2ALP(NS) * X IT (1)/ZHQ(NS, I))-(ZEPSWR(NS) * 20.0*
0361
           $CE/ZHD(NS, I))
0362
      450
            CONTINUE
0363
            IF(INIT.GT. 0) GC TO 480
0364
            DG 490 I=1.24
            IH=I+24
0365
0366
            QEWR(NS.I) = ZUWPA(NS)*(TSWR(NS.IH)-TRGCM)
            ISWR(NS.I) = TSWR(NS.IH)
3367
0368
      490
            CONTINUE
            DO 500 K=25.48
0.369
      480
            QEWRT = ZET(NS.1) *TSWR (NS.K)
0370
0.371
            DG 502 J=2.7
0372
            JJ = K+1-J
            QEWRT = (ZBT(NS, J) *TSWR(NS, JJ))-(ZDT(NS, J) *QEWR(NS, JJ))+QEWRT
0373
            CONTINUE
0.374
     502
            QEWR(NS.K) = GEWFT-ZCNST(NS)
0375
     500
0376
            CONTINUE
0377
            DO 510 [=1,24
0378
            IH=I+24
            QEWR(NS.I) = ZAWF(NS) +QEWR(NS.IH)
0379
            QED(I)=ZAD(NS)*ZUD(NS)*(TSWR(NS.IH)-TROOM)
0380
0 381
            QSWR(I)=QEWR(NS, 1)+QEC(I)+QEA(I)
```

0.383

QSSMR(IH) = GSSMR(IH)+QSMR(I)TSWR(NS,I)=TSMR(NS,IH)

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0384
0385
            IF(ZAW(NS).LE.0.0.OR.ZSCG(NS).LT.0.9) GO TO 520
0386
            NSCG=1
0387
            00 530 I=1.24
3886
            IH=I+24
            QSSW(IH) = GSSW(IH)+CEW(I)
0389
0390
      530
            CONTINUE
0391
      520
            IF(NPRT-LT-4) GC TO 545
0392
            WR ITE( 101,20)
0393
            IF (ZALP(NS) .LE. 0.0)
                                  GO TO 535
            WRITE(ICT,80) ZCRNT(NS)
WPITE(ICT,70) ((1.XIT(1),1=N,24.3),N=1.3)
0394
0395
0396
            WRITE(ICT.10)
0397
      535
            WRITE([0T.90]
                           ZCRNT(NS)
0398
            wRITE(IOT.70) ((I.TSWR(NS.I).I=N.24.3),N=1.3)
0299
            IF(ZAW(NS) . LE.0.0) GC TO 538
0400
            WR ITE( 101.20)
0 40 1
            WRITE(IGT. 100) ZGRNT (NS)
0402
            WRITE(IGT.70) ((1,SHGF(1),I=N.24,3),N=1,3)
0403
            WRITE(101.20)
0404
            WRITE(ICT.110) ZCRNT(NS)
0405
            WRITE(IDT.70) ((I.TSW(1).I=N.24.3).N=1.3)
0406
      538
            WRITE(ICT, 20)
            WPITE(10T,120) 2CRNT(NS),ZAWR(NS)
WPITE(10T,130) ((1,QEWR(NS,1),1=N,24,3),N=1,3)
0407
0408
0409
            IF(ZAW(NS).LE.0.0) GC TO 540
0410
            WRITE(ICT.20)
0411
            WRITE(IDT. 150) ZORNT(NS).ZAW(NS)
0412
            WRITE(IOT,130) ((1,GEW(1),I=N,24,3),N=1,3)
            IF(ZAD(NS) . LE . 0 . 0) GC TO 545
0413
      540
            WRITE(IGT.20)
3414
0415
            WRITE(101.160)
                            ZCRNT(NS),ZAD(NS)
            WFITE(IOT, 130) ((1, QED(1), I=N, 24, 3), N=1, 3)
0416
0417
      545
            00 550 I=1.24
0418
            IH=I+24
0419
            QEWR(NS.I)=QEWR(NS.IH)
J420
      550
            CONT INUE
0421
      440
            CONTINUE
0422
      c
0423
     c
         CALCULATION OF HEAT GAIN DUE TO PEOPLE, LIGHTS, OTHER EQUIPMENT,
0424
      c
            VENTILATION AND INFILTRATION
0425
      c
0426
            DG 600 I=1.24
0427
            IH=I+24
0428
            x = 1
9429
            CIVL=4840.0*DW(I)
0430
            CFM=CFMN
0431
            X NP=NPN
0432
            QOTS=QOTSN
0433
            QOTL=QOTLN
0434
            QFL E=QFLN
            QTLE=QTLN
0435
            IF(IHTG.EQ. 1) GC TO 647
0436
0437
            IF(XI-GT-JFST-AND-XI-LE-OFCT) GD TO 647
            QUTHS(1) =0. 95*QCTHS(1)
043E
```

```
12345678901234567890123456789012345578901234567890123456799012345578901234567890
CARD
0439
             QOTHL(1)=0.10*Q01HS(1)
        647 IF(XI.LE.DFST. DR. XI.GT. DFCT) GO TO 610
0440
0441 C
0442 C
         OFFICE HOURS
0443
      c
0444
             CFM=CFMD
0445
             XNP=NPD
0446
             OFLE= OFLD
0447
             QTLE=QTLD
0448
             Q0 T S= Q0 T SD
0449
             QUIL = QUIL D
0450
             IF (IHTG.EQ. 1) GC TC 610
             QOTHS([]=0.9*QOTHS([)
0451
0452
             QCTHL(1)=0.10 *QOTHS(1)
0453 C
         CFF OFFICE HOURS
0454
      c
0455
      c
0456
            QFLS(IH)=4095.6*CFLE
      610
            QTLS( 1)=3413.0*QTLE
0457
045E
             QPPS(1) =250 . 0 *X NF
             QPPL( I ) =200.0*XNF
0459
             IF(IHTG.NE.1) GO TO 674
0460
0 46 1
             QOTHS(I)=QOTS
0462
             QOTHL(I)=QOTL
0.463
        674 QIVS(I)=CFM+1.08+DATR(I)
0464
             QIVL(I) =CF M*C IVL
0465
             030(1)=QIVL(1)+QPPL(1)+QOTHL(1)
0466
             Q31(1)=QTLS(1)+QIVS(1)+(0.5*QPPS(1))+QQTHS(1)
0467
             Q34(IH)=0.5*GFPS(I)
0458
             035(1) = 031(1)+GFLS(1H)+GSSWR(1H)+Q34(1H)
0469
      600
            CONTINUE
0470
      c
0471 C
         SENSIBLE CCOLING LCAD DUE TO UNSHADED WINDOWS
0472
      c
0473
             IF(INIT.GT.O) GG TO 620
0474
             DO 630 I=1.24
0475
             IH= I+24
-0476
             QFLS(I)=QFLS(IH)
0477
             QSSWR(I)=QSSWR(IH)
0478
             QSSW( I )=QSSW( IH)
0479
             Q34(I)=Q34(IH)
0480
             QSFW( I ) =QSSW( IH)
0481
             037 (I) = QFLS (IH)
0482
             038(1)=CSSWR(IH)
0483
             Q39(1)=Q34(1H)
0 4 8 4
             QSFW(IH)=0.0
0485
      630
            CONTINUE
0486
      620
             IF( NSCG.NE.1) GO TO 540
0487
             00 650 1=25.48
             QSSWR(I)=QSSWR(I)-QSSW(I)
048E
0489
      650
             CCATINUE
            DO 660 K=25,48
QSFWT = SGV(1)*QSSW(K)
0490
0491
0492
             DO 655 J=2.4
0493
             JJ = K+1-J
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0494
            QSFMT = QSFMT+SGV(J) +CSSW(JJ)-RTFW(J)+GSFW(JJ)
0495
      €55
            CONTINUE
0 49 €
            QSFW(K) = QSFWT
           CONTINUE
0497
0498
     c
         SENSIBLE COOLING LOAD DUE TO LIGHTS, SURFACES, AND FAD, FRACE OF PEOPLE
0499
     c
0500
     c
0501
     643
            DO 670 K=25,48
            QFWRT=CWRV(1)*QSSWR(K)
0502
0503
            QFFLT=HGLV(1) *QFLS(K)
            QF34T=HGEPRV(1)*Q34(K)
0504
0505
            00 680 J=2.4
            JJ=K+1-J
0506
            QFFLT = GFFLT+HGLV(J)+QFLS(JJ)-RTFW(J)+Q37(JJ)
0507
            QFWRT=QFWRT+CMRV(J)+ CSSWR(JJ)-RTFW(J)+Q38(JJ)
0508
            QF34T=QF34T+HGEPRV(J)+Q34(JJ)-RTFW(J)+Q39(JJ)
0509
            CONTINUE
0510
      680
            Q37(K) = QFFLT
0 5 1 1
            Q38(K) = 2FWRT
0512
0513
            Q39(K) = QF34T
0514
      670
            CONTINUE
0515
            DO 700 I=1.24
0516
            IH=I+24
0517
            QSSM(I) =QSSM(IH)
0518
            QSSWR(I)=QSSWR(IF)
0519
            Q37(I) = Q37(IF)
0520
            Q38(I)=Q39(IH)
0521
            Q39(I)=Q39(IF)
0522
            QSFW(I) =QSF W(IH)
0523
            QFLS(I)=QFLS(IH)
0524
            Q34(I)=Q34(IF)
0525
            CONTINUE
0526
            QTOTFC=0.3
0527
            QTOTFH=0.0
            DO 710 I=1.24
0528
            QTSHL(I)=QSFW(I)+Q37(I)+G38(I)+Q39(I)+Q31(I)
0 52 9
            QTOTAL(1)=QTSHL(1)+Q30(1)
0530
            IF(QTOTAL(1).GT.0.0) QTOTFC=QTOTFC+QTOTAL(1)
0531
            IF(QTOTAL(I).LT.0.0) GTOTFH=GTOTFH+GTOTAL(I)
0532
0533
      710
            CONTINUE
0534
            QTOTEH=-QTOTEH
            IF(NPRT+LE+1) GO TO 800
IF(NPRT+LE+2) GC TO 810
0535
0536
0537
         WRITE INSTANTANEOUS SENSIBLE HEAT GAINS
0538
     c
0539
     c
0540
            WRITE(ICT.30)
            WRITE(6.180)
0541
0542
            WRITE(6.50)
0543
            WRITE(6.190)
            WRITE(6,20)
0544
0545
            DO 820 I=1 .24
            WPITE(6,200) 1,QFLS(1),QTLS(1),QPPS(1),QOTHS(1),QIVS(1),QSSWR(1),
0546
0547
           *Q35(I)
0548
            WR ITE(6, 10)
```

```
CARD
0549
     820
0550
     c
        WRITE LATENT HEAT GAINS
0551
     c
0552
     c
0553
           WRITE(6,30)
0554
           WR ITE( 6, 210 )
0555
           WRITE(6,50)
0556
           WRITE(6, 220)
0557
           WRITE(6.20)
0558
           DO 830 I=1.24
0559
           WRITE(6,230) I, QPPL(I), QOTHL(I), QIVL(I), Q30(I)
0560
           WRITE(6 .10)
0561 830
           CONTINUE
0562
     c
0563 C
        WRITE SENSIBLE CCOLING LGAD DUE TO VARIOUS HEAT GAINS
0564
     c
0 5 6 5
           WRITE(6.30)
0566
           WRITE(6.240)
0567
           WRITE(6.50)
0568
           WRITE(ICT .250)
           WRITE(6.20)
0569
           DO 840 I=1.24
0570
           WRITE(6,250) 1,031((),037(1),038(1),039(1),QSFW(1),QTSHL(I)
0571
0572
           WRITE(6,10)
           CONTINUE
0573 840
0574
     810
           CONTINUE
0575
           WF ITE(6,30)
0576
           WRITE(6,270)
0577
           WR I TE ( 6 ,50 )
0578
           WP ITE(6,230)
0579
           WEITE(6.20)
0580
           DO 850 [=1.24
           WRITE(6,290) 1, ATDB(1), ATWB(1), DW(1), QTSHL(1), Q30(1), QTOTAL(1)
0581
0582
           WRITE(6,10)
5830
     850
           CONTINUE
0584
           WF ITE(6,20)
           WRITE(6,300) IDAYM, MCNTHS . QTOTFC . QTOTFH. TRCCM
0585
0586
           WR ITE( 101, 30)
0587
           CONTINUE
0588
           IF(NHTX.EQ. 1) CALL HEATX
0589
           IN IT=1
0590
           INIHX=1
0591
           WRITE(6,30)
           IF(FENT.EQ.O) GO TO 420
0592
           WRITE(8,900) (QTCTAL(1),1=1,24)
0593
       900 FDPMAT(4(E20.5))
0 59 4
0595
     420
           CONTINUE
059€
           CONTINUE
     400
0597
           GO TO 959
0558
     919
           WRITE(6,929)
           FDRMAT(////, 2(10X,72(***)/),10X,5(***),62X,5(***),/,10X,5(***),
0599
          &5X, DATA FOR THE SPECIFIED SIMULATION PERIOD ARE MISSING .5X.5( *
0600
          &'),/,10X,5('*'),62X,5('*'),/,2(10X,72('*')/))
0601
           GO TO 959
0602
       939 MISS=97-NKOUNT
0603
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0604
            WRITE(6.949) MISS.IDAYM.MONTH
            FORMAT(////,2(1 0x,70('*')/),10x,5('*'),60x,5('*'),/,10x,5('*'),5
0605
      949
           EX, 'OF THE SIMULATION PERIOD SPECIFIED, '. 20X, 5( ** '), /. 10X, 5( ** ') ,5
0606
           EX.I5.2X. (15-MINUTE) CATA INTERVALS' .22X.5('*'), /.10X.5('*').5X.
0607
           EARE MISSING FCR DAY", 15, 2x, "OF MONTH", 15, 16x, 5( ** ), /, 10x, 5( ** ),
0608
           660X,5(***),/,10X,5(***), EX, *CHOOSE AND THER SIMULATION PERIOD* .22X
0609
           &,5('*'),/,10x,5('*'),60x,5('*'),/,2(10X,70('*')/))
0610
      959
            STOP
0611
0612
            END
0613
      c
0614
      C ****************
0615
      Ċ*
      C *
            SUBROUTINE SCLAR CONVERTS RADIATION FALLING ON HORZONTAL
0616
0617
      C *
            SURFACE TO THAT ON AN INCLINED SURFACE.
0618
      C *
0619
      0620
      C
0 621
             SUBFOUTINE SCLAR (ICAY)
0622
            COMMON/SUL1/ ATDE(24),SOLH(24),XID(24),XIDHV(24),XIT(24)
            CCMMCN/SOL 2/ XLATR, EPR, PSIR, D_ONG, IDAY 1
CGMMON/SGL3/ SH(24), CH(24), CZ(24), CT(24), CE, RTD
0623
0624
0 625
            DIMENSION SID( 241.SIDHV( 24)
0626
             SC=429.2
0627
            IF ( IDAY . EQ . IDAY1 ) GC TC 10
0628
             DAY=IDAY
0629
             IF (DAY. LT. 100.) ECT [ME=-5.-9.*S IN((2. *DAY-1.)/RTD)
0630
            IF (DAY. GE. 100. AND. DAY. LE. 242. ) EQTIME =-1.+5. *SIN((DAY-100.)/
0631
           & (.395*RTD))
0632
            IF (DAY. GT. 242.) ECTIME = -2.5+18.6 +5 IN( (DAY-242.)/(.685*RTD))
0633
            STC=(EQTIME/60.0)+DLDNG
             D=(23.45/RT C) +S IN((( 1CAY-80.1/370.)+360./RTD)
0634
0635
             SD = SIN(D)
            CD=COS(D)
0636
0637
            SL=SIN(XLATR)
9830
            CL =COS(XLATR)
0639
            CZT=SD*SL
0640
            CDL=CD*CL
0641
            DO 20 I=1,24
            STLTIM=STC+I
0642
0643
            H=3.1416-(0.2618*STLTIM)
            SH( I )=S IN( H)
0 64 4
0645
            CH(I)=CCS(H)
0446
            CZ(I)=CZT+(CDL*CH(I))
            IF(CZ(I).LT.0.05) CZ(I)=0.05

XKX=SOLH(I)/(SC*CZ(I))
0647
064€
            IF (XKX.GT.0.75) XKX=0.75
0649
            RATIO=0.5*(1.0+CGS(XKX*3.14159))
0650
            SIDHV(I)=RATIC*SCLH(I)
0651
            SID(1)= SOL H(1)-SIDHV(1)
0652
0653
     20
            CONTINUE
            SE = SIN(EPR)
0654
      10
0.655
            CF=COS(EPR)
            SP=SIN(FSIR)
0656
            CP=COS(PSIR)
0657
```

CTT=SD*(SL*CE-CL*SE*CF)

3658

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0659
            DO 30 I=1.24
0660
            CT[[]=0.0
0661
            0.0=(1)T1X
0 6 6 2
            XID(1)=0.0
0663
            X I DHV ( I )=0 . 0
            IF (SOLH(1) . LE.0.0) CC TO 30
0 £ € 4
            CT(1)=CTT+(CH(1)*CD)*((CL*CE)+(SL*SE*CP))+(CD*SE*SP*SH(1))
0665
0666
            IF (CT (I) . LT . 0 . 0) CT (I) = 0. 0
            RB=CT(I)/CZ(I)
0667
            IF (RB.GT.5.0) R8=1.0
0668
            XIDHV(I)=SID+V(I)+0.5*(1.0+CE)
0669
0670
            XID(I) = SID(I) *RB
            XIT(I) = XID(I) + XIDHV(I)
0671
0672
      30
            CONTINUE
0673
            IDAY1 = IDAY
0674
            RETURN
0675
            END
0676
0677
0678
0679
      C*********************************
0680
      0681
J 68 2
            SUBFOUTINE XMGIST (TDE, TWB, RH, INDIC, PATM, HAIR, WSAT, WAIR, TWALL)
0683
0684
0685
                  TO DETERMINE THE ENTHALPY, SATURATION MOISTURE CONTENT,
                  AND ACTUAL MOISTURE CONTENT OF MOIST AIR, AND ALSO, THE NECESSARY WALL TEMPERATURE TO INDUCE MCISTURE REMOVAL,
0686
0687
                  GIVEN DRY BULB TEMPERATURE AND EITHER WET BULB TEMPERATURE
0688
                  OR RELATIVE HUMIDITY.
0689
                  (NOTE : THIS PROGRAM ESSENTIALLY REPRODUCES PSYCHROMETRIC
0690
                  CHART CATA)
0691
0€92
               DESCRIPTION OF PARAMETERS
0693
                INPUT
0694
                  TDB
                            DRY BLLB TEMPERATURE (F)
0695
                            WET BULB TEMPERATURE (F)
                  TWB
0696
                            RELATIVE FUMIDITY
                  RH
0697
                  INDIC
                         - INPUT INDICATOR
0698
                         =1. INPUTS ARE TOB. AND TWB
0699
                         =2 . INPLTS ARE TOB. AND RH
0700
                         - ATMOSPHERIC PRESSURE (PSIA)
0701
                  PATH
0702
                DUTPUT
0703
                            ENTHALPY OF MOIST AIR (BTU/LBM DRY AIR)
                  HAIR
0704
                            SATURATION HUMIDITY (LBM WATER/LBM DRY AIR)
0705
      c
                  WSAT
                            CORRESPONDING TO THE EXISTING WET BULB TEMP.
ACTUAL HUMIDITY (LBM WATER/LBM DRY AIR)
0706
                  WAIR
0707
                             CORRESPONDING TO THE GIVEN DRY BULB TEMP. .
0708
                             PRES. , AND REL. HUMIDITY OR WET BULB TEMP.
0709
                            SATURATION OR DEW POINT TEMPERATURE (F)
0710
                  TWALL
                            CORRESPONDING TO THE GIVEN TOB. PATM. AND TWB. OR
0711
      C
0712
      C
0713
            K = 0
```

```
CARC
0714
           IF ( INDIC.NE.1 )GC TO 30
0715
0716
           T=TW8
0717 C
0718 C
              DETERMINING SATURATION PARTIAL PRESSURE 'PS' (PSIA)
0719
              OF WATER VAPOR AT THE GIVEN TEMPERATURE
0720
         10 T1=273.16/(((T-32.0)/1.8)+273.16)
0721
           A1=-8.25692*((1.C/T1)-1.0)
0722
            A2=4.76955*(1.0-T1)
0723
           A3=10.75586*(1.0-T1)+5.02808*ALUG10(T1)+1.50474E-04*(1.0-10.**A1)
0724
          6+0.42873E-03*((10.0**A2)-1.0)-2.2196
0725
           PS={10.0**A3)*14.696
0726
            W=1.004*18.01*PS/(28.967*(PATM-PS))
0727
           IF (K. NE.0) GO TO 50
0728
            IF (INDIC.EQ.2) GC TO 40
0729
           IF(I.NE.1) GO TO 20
0730
           I=2
0731
            WSAT=W
0732
           WAIR=WSAT-0.000236*( TDB-T)
           HAIR=0.24*(TWB-32.0)+WSAT*(1050.9+0.444+TWB)
0733
           P=PATM/(1.004*18.01/(28.967*WAIR)+1.0)
0734
0735
           T=T08
073€
           SO TO 10
0737 C
0738 C
             . FINDING THE CCRRESPONDING RELATIVE HUMIDITY, GIVEN
0735 C
              THE WET BLLB TEMPERATURE
0740
0741
         20 RH=P/PS
           GD TO 90
0742
         30 T= TD8
0743
0744
           GO TO 10
0745
         40 P=RH*PS
0746
           WAIR=RH*W*(PATM-PS)/(PATM-P)
0747 C
              FINDING THE CERRESPENDING WET BULB TEMPERATURE, GIVEN
074E C
              THE RE_ATIVE HUMIDITY
0749 C
0750 C
0 75 1
           DT=-10.0
        45 F=T+DT
0752
0753
           K=K+1
0754
           IF(K.GT.301GO TO 70
0755
           GO TO 13
0756
         50 WS=W-0.000236*(TDB-T)
0 75 7
           IF (ABS( WS- WA IR ) . LE . 0 . 00005) 30 TO 80
0758
           IF(WS-WAIR) 60,80,65
0755
         60 T=T-DT
0760
           DT=DT/2.0
0761
         65 CONTINUE
0762
           GO TO 45
0763
        70 WPITE(6,100)
0764
         80 TWB=T
0765
           WSAT=W
0766
           HAIR=0.24*TDB+WAIR*( 1060.9+0.444*TDB)
0767
```

DETERMINING THE SATURATION OR DEW POINT TEMP. 'TWALL'

076E C

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
CARD
0769
               CORRESPONDING TO THE GIVEN PRESSURE. DRY BULB TEMPERATURE.
0770
                AND RELATIVE HUMIDITY OR WET BULB TEMP.
      c
0771
      C
0772
         SO IF(P.LE.O.0185) THALL=(P-0.0185)/0.00077
             IF (P.GT.J. 0185) TWALL=(P-0.0185)/0.00124
0773
            IF(P.GT.0.0309) TWALL=(P-0.0113)/0.00196
0774
            IF(P.GT.0.0505) TWALL=(P+0.0129)/0.00317
0775
            IF (P. GT .0.0885) TWALL=(P+0.0441)/0.004145
0776
            IF (P. GT. 0, 1217) TWALL=(P+0.10394)/0.005641
0777
             IF (P.GT.0.17811) THALL=(P+0.21284)/0.007819
0778
            IF (P. GT.0.2563) TWALL=(P+0.3845)/0.01068
0779
            IF(P.GT.0.3681) TWALL=(P+0.6435)/0.01438
0780
             IF(P.GT.0.5069) TWALL=(P+1.0235)/0.01913
J 78 1
0782
            IF (P. GT. 0. 6982) TWALL=(P+1.5008)/0.0251
0783
        100 FORMAT( * **** I TERATION IN XMOIST DCES NOT CONVERGE!)
0784
            RETURN
0785
            FND
0786
      c
0787
0788
      C******* SUBFOUTINE HEATX COMPUTES THE HEAT EXTRACTION RATES
0789
0790
      c
0791
            SUBROUTINE HEATX
0792
      c
0793
            COMMON/BLOCK1/IIN.IOT.MC.NPRT, INWRIT.TROOM.DFST.OFCT.CFMD.XKT.XLF.
0754
                   INIT . I NIH X . WONTH . I DAYM
0795
            COMMON/BLJCK2/QTCTAL(24).PRNT. IHOUSE
0796
            DIMENSION G (4), P (4), ZG(12), ZP(12)
0797
            DIMENSION XI(24), QTOT(48), EP(48), T(48)
07.98
            NAMELIST/NAMT/EFMAX, ERMIN, FLAREA, THRANG
                    /NAMB/THSETD.THSETN.THT IMD.T HT IMN
0799
0800
           . DATA ZG/1.73,-3.5,2.22,-0.45,1.88,-4.22,3.08,-0.74,1.89,-4.55,3.61
0801
                    ,-0.95/
0602
            DATA ZP/1.00,-1.08260.1.0697.-0.2005.1.000.-2.1092.1.4606.-0.3331,
0803
           દ
                    1.300,-2.2908,1.7252,-0.4277/
0 6 0 4
         10 FORMAT(1X )
0805
         20 FORMAT(/)
0806
         30 FORMAT( 51x,31( ***), //)
0607
         35 FORMAT (52X , 'HEAT EXTRACTION RATES (BTJ/HR)')
8 08 0
         36 FORMAT(52X, 'HEAT ADDITION RATES (BTWHR)')
         40 FORMAT( 3( 2X,8(5X, 12 ,2X,F5.1 ),/))
0809
         50 FORMAT(5X. FCCM AIR TEMPERATURES 1-24 HRS' .5X. THERMOSTAT SETTING'
0110
           6, F5 - 1 , 1 X + F + , 1 X + AT + , F4 - 0 + HRS + , 3 X + F 5 - 1 + 1 X + F + , 1 X + AT + , F4 + 0 + + HRS + )
0811
         60 FURMAT(5x. FEAT EXTRACTION RATES 1-24 HRS',5x, ERMIN=',G13.6,2x,
0612
                    'ERMAX=' .F9.0.2X, 'BTU/HOUR')
0813
           £
         61 FORMAT(5x, "HEAT ADDITION RATES 1-24 HRS",5x, "ERMIN=",G13,6,2x,
0814
                   'ERMAX = ' . F9. 0 , 2X , ' BTU/HOUR' )
0815
           3
         70 FORMAT(3(4X, E(2X, 12, 1X, F9.0),/))
0 6 1 6
         80 FORMAT(5x. TOTAL COOLING LOAD PROVIDED DURING THE 24 HRS = , E14.6.
0817
                   1X. BTL/DAY')
0 6 1 8
          3
         E1 FORMAT(5X, 'TOTAL HEATING LOAD PROVIDED DURING THE 24 HRS = ', E14.6.
0819
                   1X. * BTU/DAY * 1
0.620
           3
0821
         SO FORMAT(5x. TCTAL CCOLING LOAD FROM BEGINING (OF MONTH) TO TODAY ..
                    "=" . E 14. 6. 1X. 'BTU')
0822
         $1 FORMAT(5x. TCTAL HEATING LOAD FROM BEGINING (OF MONTH) TO TODAY .
0823
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0 6 2 4
                    "=" .E14.6.1X, "ETU")
         100 FORMAT(5x, MONTH= ',12,5x, DAY = ',13,/)
0825
0 62 6
             IF (INIHX.GT.O) GC TO 200
0 6 2 7
             IFLAGH=0
0328
             ERTOP C= 3.0
0829
             ERTOPH=0.0
0830
             ERMIN=0.0
1 88 6
             ERMAX=0.0
0 6 3 2
             FLAERA=0.0
0833
             THRANG= 2.0
0834
             IF(INIT.GT.0) GG TO 205
0835
             I=4*MC-3
0836
             IP 3= I+3
0837
             1 J=1
8 6 3 0
             DO 210 J=I . I F3
0 83 9
             G( IJ )=ZG( J )
0840
             P(IJ)=ZF(J)
0 6 4 1
             1 J=1 J+1
0842
        210 CONTINUE
0 6 4 3
             SUMP=P(1)+P(2)+P(3)+F(4)
0844
             DO 215 I=1.24
0 64 5
             QTOT(1)=QTOTAL(1)
0846
             ER(I)=QTCTAL(I)
0847
        215 CONTINUE
0848
        205 CONTINUE
0849
             TH SETD = TROOM
0850
             THSETN= TP30M
0851
             THTIMN=OFCT
0 6 5 2
             THTIMD=CFST-1.0
0853
            PEAD( IIN, NAM7 )
0 6 5 4
             READ(IIN, NAME)
             OM ITHT = ON ITI
0855
0856
             ITIMN=THTIMN
0857
             IF (INWRIT. GE. 1) WRITE (IOT .N AM7 )
             IF (INWRIT. GE. 1) WRITE (IOT. NAMB)
0858
             IF(ERMAX.LT.0.0) IFLAGH=1
0 65 9
             OM 1THT= OI
0860
             IN=THT IFN
1630
             G(1)=(G(1)*FLARE A)+(((XKT*XLF)+(CFND*1 .08))*SUMP)
0 & 6 2
             G(2)=G(2)*FLAREA
0863
             G(3) =G(3) +F LAREA
0 8 6 4
0865
             G(4)=G(4)*FLAREA
             SUMG=G(1)+G(2)+G(3)+G(4)
6680
            DO 220 I=1.24
0 8 6 7
0868
             T(I)=THSETN
             IF (I.GE. ID. AND. I.LT. IN) T(I)=THSETD
0869
0 2 7 0
             T(1+24)=T(1)
3871
        220 CONTINUE
0872
             FO = FRMAX-FRMIA
            S=ED/THRANG
0873
0874
             S=ABS(S)
0875
             WN=(ED/2.0) -S*THSETN
            WD= (ED/2.0)-$+THSET)
0876
            DUM=1.0/(S+G(1))
0877
```

GT 1=G(1) *>UM

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
CARD
0879
            ST1=S+DUM
        200 CONTINUE
0880
0681
            DO 300 I=1.24
0882
            QTOT(I+24) = QTOTAL(I)
0883
        300 CONTINUE
0 6 6 4
            KOUNT=1
0885
            I I=25
9830
            IL=ID-1+24
0 687
        340 WT=WN
0888
        330 DO 310 K=II.IL
0889
            X I T = 0 . 0
0890
            DO 320 J=2.4
0891
            JJ=K+1-J
0892
            XI T=XIT-G(J)+T(JJ)+P(J)+QT GT(JJ)-P(J)+ER(JJ)
        320 CONTINUE
0893
0894
            KJ=K-24
            XI(KJ)=XIT+TFCOM*SUMG+P(1)*QTOT(K)
0895
            ER (K) = (GT1 * WT )+(ST1 *XI(KJ))
0896
0897
            IF(IFLAGH.E G. 1)GC TO 325
            IF(ER(K) .. T . ERMIN) ER(K) = EPMIN
0898
            IF(ER(K).GT.EFMAX) ER(K)=ERMAX
0899
        GO TO 315
325 IF(ER(K).GT.EFMIN) ER(K)=ERMIN
IF(ER(K).LT.EFMAX) ER(K)=ERMAX
0900
0901
0902
        315 T(K)=(XI(KJ)-ER(K))/G(1)
0903
        310 CONTINUE
0904
0905
            KOUNT=KOUNT+1
0906
            II=IL+1
0907
            11 = IN+24
0908
            GW = TW
0909
            IF (KOUNT.EQ.2) GC TO 330
0510
            IL=48
0511
            IF(KOUNT.EQ.3) GO TO 340
0512
            ERTOTC=0.0
0913
            ER TOTH = 0.0
0914
            DO 350 I=1, 24
0915
            IP24=I+24
0516
            QTOT(I) =QTOT(IP24)
0917
            ER (1)=ER(1224)
0516
            T(1)=T(1P24)
0919
        350 CONTINUE
0520
            IF (NPRT . EQ . 0 ) GO TO 360
0921
            IF(IFLAGH.EG.1) GO TO 370
            DO 365 I=1.24
0922
            ERTOTC=ERTOTC+ER(I)
0923
        365 CONTINUE
0524
            ERTOPC=ERTOPC+ERTOTC
0925
            WRITE(ICT,20)
0926
0927
            WRITE(101.35)
            WRITE(101.30)
0928
0929
            WRITE (IDT. 100) MCNTH. IDAYM
0530
            WFITE(IOT. 50) THSETD. THTIMD. THSETN. THTIMN
0931
            WRITE(ICT,10)
             WRITE(101,40) ((1.T(1),1=4,24,3),N=1,3)
0932
```

[F(FRNT.EQ.0) GO TO 3761

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARC
0934
                            WRITE(8.93) THEETD.THEETN.THRANG. ITIMD. ITIMN
                            WRITE(8,92) (7(1),1=1,24)
0935
                3761 WP ITE ( 10T, 201
0936
                            WRITE(ICT.60) ERMIN. EFMAX
0537
9520
                            WRITE(IDT.10)
                            WRITE(ICT, 70) ((I, ER(1), I=N, 24, 3), N= 1, 3)
0939
0540
                           WRITE(IGT,20)
0941
                  380 WRITE(10T,80) ERTOTC
0942
                           WRITE(IGT, 20)
                            WRITE(IGT.90) ERTCPC
0543
0944
                           WR ITE( 101, 20)
 0545
                           RETURN
0946
                  370 ERMAXH=-ERMAX
0947
                           ERMINH= ABS ( ERMIN )
0948
                           DO 375 I=1.24
0949
                           XI(I)==EQ(I)
0950
                           ERTOTH=ERTOTH+X I(1)
0551
                   375 CONTINUE
0952
                           EPTOPH= ERTOPH+ERTOTH
0953
                           WRITE(ICT.20)
0554
                            WRITE(10T,36)
0955
                           WP ITE( ICT, 30)
0556
                           WRITE (101,100) MCNTH, IDAYM
0957
                            WRITE(IDT, 50) TH SETD, THTIMD, TH SETN, THTIMN
0958
                            WRITE(10T.10)
0559
                            WRITE(ICT.40) (( I.T(I).I=N.24.3).N=1.3)
0960
                            IF(PRNT.E2.0) GO TO 376
0561
                            WRITE(8.93) THEETD.THEETN.THRANG. ITIMO. ITIMN
0562
                     93 FORMAT( 3F1 0 . 1 . 21 10)
                           WRITE(8,92) (T(1),1=1,24)
0563
                     92 FORMAT (4(F20.1))
0564
                   376 WRITE(101.20)
0565
0966
                           WRITE(ICT, 61) ERMINH. ERMAXH
0567
                            WRITE(IGT.10)
                           WRITE(IOT, 70) (( I, XI(I), I=N, 24,3), N=1,3)
0 96 8
0969
                           WRITE(IOT,20)
0970
                  390 MRITE(IGT.81) ERTCTH
0 97 1
                           WR ITE( 101, 20)
0572
                            WRITE(ICT.91) ERTOPH
0 97 3
                           WRITE(1CT, 20)
0974
                           RETURN
0575
                  360 WRITE(IOT,100) MCNTH, IDAYM
                           IF(IFLACH-EQ.1) GO TO 390
0976
0977
                           GC TO 380
                           END
0578
              SENTRY
0 9 7 9
                EINPT IHOUSE=3.MCNTHS=12.MDAY1=21.MDAY2=21.NPRT=3.INWRIT=1.PRNT=1.EEND
0 98 0
                END

O . OP. = 0.CFM. = 81.5.CFMD=120.0.OFST=11.0.0.OFCT=20.0.0.END

O . OP. = 0.0.OFM. 
0581
0982
0983
                ENAM7 ERMAX=-24000.0.ERMIN=0.0.FLAREA=1240.0.THRANG=2.0. END
0984
                EN AMB THSETD=70.0.THSETN=68.0.THTIMD=11.0.THTIMN=20.0.END
0985
              $185YS
```

APPENDIX C

HPSIM INPUT LIST, FLOWCHARTS AND PROGRAM LISTING

INPUT LIST AND FORMAT

User's input to the heat pump simulation model is in the NAMELIST format. The input variables are,

/INPUT/

MONTH - Month of simulation

MDAY1 - First day of simulation

MDAY2 - Last day of simulation

INDEX - Index specifying type of measured incident solar incident solar radiation

- = 1, input is radiation incident on a horizontal surface
- = 2, input is radiation incident on a vertical surface
- KPRINT Index for printing the temperature distribution in the soil
 - = 0, no temperature distribution printout
 - = 1, temperature distribution will be printed

Note: If the simulation period is more than one day and KPRINT is set = 1, then the printout will be very large.

IHOUSE - Index identifying the house to be simulated

- = 1, East House
- = 2, Middle House
- = 3, West House

IDP - index for output format

- = 0, hourly average heat pump performance data are printed
- = 1, 15-minute performance data are printed

The measured environmental data are stored into OSU library files. At the present the data stored are as follows:

Month	Days	Name of the File
November	(whole month)	'OSU.ACT11451.NOVDATA.DATA'
August	(4 - 6)	'OSU.ACT11864.AUGDATA.DATA'
December	(19-21)	'OSU.ACT11451.DECDATA.DATA'

These data will be automatically read from the respective files according to the month and days of specified into the input list. The cooling/heating loads as computed by LDSIM are automatically input into the program through a link file named 'OSU.ACT11451.CHLOAD.DATA'.

Figure 18. Main Program Flowchart

Figure 18. (continued)

HEAT PUMP CAPACITY SUBROUTINES

HPUMPC HPUMPH APUMPC APUMPH

Figure 19. Flowchart for Heat Pump Subroutines

Figure 20. Subroutine SOLAR Flowchart

SUBROUTINE SOLAR

Figure 20. (continued)

Figure 21. Subroutine VEWEX Flowchart

Figure 21. (continued)

HPSIM PROGRAM LISTING

```
123 4567 3901 23 4567 8901 23 4567 8901 23 4567 8901 23 4567 8901 23 4567 8901 23 4567 8901 23 4567 8901
CARD
0001
                                                                                00000050
1312
                                                                                00000060
      C
0003 .
      C
                                                                                00000070
1004
      C
                                                                                30000080
1015
      C
                                                                                20000090
0006
                                                                                22200100
1007
                                                                                00000110
8000
                                   (HPSIM)
                                                                                00000120
1009
                                                                                30000130
3310
                                                                                200 201 4 0
0011
               THIS PROGRAM SIMULATES THE CYCLIC PERFORMANCE OF A SOLAR
                                                                                20000150
0012
               ASSISTED-GROUND SOUPCE/SING AND AN AIR-TO-AIR HEAT PUMP
                                                                                200 20160
0013
               SYSTEMS.
                                                                                00000170
      C
               ENVIRONMENTAL DATA ARE READ FROM MUNTHLY WEATHER FILES
                                                                                00000180
0014
      C
               COMPILED FOR THE PERKINS HOUSE'S.
                                                                                00000190
0 115
      c
0016
      C
                                                                                00000200
0017
                                                                                00000210
9 11 8
                                                                                20000220
                                                                                00000230
0019
         *****************
0020
                                                                                 00000240
      c
0 021
                                                                                 00000250
0022
                                                                                 00000260
            COMMON FLOW
            COMMON /BLDCK/ GGPM. KPFINT
                                                                                000 00270
1023
0.024
            DIMENSION GLCAD (24), GSLCF (24), GFORT (24)
                                                                                00000280
            JIMENSION TRECM( 24) . TSLCP(24)
                                                                                 20000290
0.025
                                                                                 00000300
0026
            NAMEL [ST/INPUT/MONTH, MONTY 1, AND X 2, KPRINT, IHCUSE, IDP
                                                                                 00000310
0 (27
            DATA CPF .CPG, EXE, ALPHA/1 .0 .0 .34 .0 .63 .J .95/ .KTIM1/1/
0028
            VITZBA', 'BL', 'GCIM', 'TZAB', EZH, SSZH, SZH, LZH ATAC
                                                                                00000320
3329
          1 FCRMAT(*1*).
                                                                                 20000330
0030
          2 FURMAT( ////, 49X, 'HEAT FUNP PERFURMANCE CALCULATION',/.57X.
                                                                                00000340
           & FOR THE ', A4, ' HOUSE ', /, 50x, ' + OR DAY', 15, ' GF MONTH', 15, /,
                                                                                00000350
3031
0 (32
           849X.34(***),////)
                                                                                 00000360
9033
          00000370
           & FOR THE ', A4,42,' HOUSE', /, 31X, FOR DAY', 15.' CF MONTH', 15,/,
                                                                                 03200380
1 134
                                                                                00000350
0.035
           £49X.34(***).////)
          4 FORMATE ' ', 10X, ' 11ME', 3X, ' DUTDOOR' ,5 X, ' I NDCCF' ,7X, ' HCUSE', 7X,
                                                                                00000400
003€
           S'HT PUMP', 5X, 'HT PUMP', 7X, 'PES, ', 5X, 'COMP, 8', 5X, 'HEAT', /, 19X,
                                                                                20000410
J 937
           S'DR TEMP',5X, DB TEMP',7X, LOAD',8X, ON TIME',6X, CAPACITY',6X,
                                                                                00000420
0038
           6'HEAT', 6X, 'FANS', 7X, 'PUMP', /, 10X, '(HR) ', 7X, '(F)', 9X, '(F)', 9X,
0039
                                                                                000 004 30
0 64 0
           6'(BTU)',8X,'(HR)',9X,'(BTU)',8X,'(KWH)',6X,'(KWH)',6X,'COP',/)
                                                                                 00000440
0041
          5 FOR'MAT(5X. 'TIME',3X. 'CUT DB',4X. 'IN DB',6X. 'HOUSE',5X. 'HT PJMP',4 00000450
           64, "HT PUMP". 7X, "RES, ", 4X, "COMP 6", 5X, "HEAT", 5X, "SCLAR", 7X, "GR CEIL00000460
.) 142
0 043
           E'.4X. GE COIL'.
                                                                                 00000470
0044
           G/, 13x, 'TENP', EX, 'TEMP', EX, 'LOAD', bx, 'ON TIME', 4X, 'CAPACITY', 4X, '
                                                                                00000480
           EHEAT',5X,'FAN',7X,'PUMP',5X,'_DOP Q',5X,'IN TEMP',4X,'DUT TEMP',/,000,00490
.) 045
           65x, (HR), 5x, (F), 5x, (F), 7x, (BTU), 6x, (HR), 7x, (BTU), 8x, (K00000500
·) C 4 E
           EWH) 1, 3X, (KWH) 1, 6X, 'COP', 5X, (BTU/HR)', 8X, (F)', 8X, (F)',/)
                                                                                00000510
0.047
         10 F GRMAT(5X.12,2(6X,12),3(12X,14),4X,14,7,11X,14,7///)
                                                                                 00000520
1048
                                                                                20000530
0.649
         11 FOPMAT( / .4 1X . 'HEAT PUMP AVERAGE COP = 1 .14X .F10 .2)
         12 FORMAT(///,38x, TOTAL HEAT PUMP OPERATING TIME = 111X.F10.2.//.
                                                                                33000540
0.353
           136X . TOTAL CEMPRESSOR & FAN(S) KWH CONSUMPTION = 1.F10.2.//.38X.
                                                                                 00000550
0051
                                                                                00000560
0052
           3 'HEAT PUMP AVERAGE CCEFF. OF PERFCRMANCE =1,2x,F13.2)
0053
         15 FCFMAT (4F20.0)
                                                                                 00000570
```

```
123456799012345578901234557890123455789012345678901234567890123456789012345678901
CARD
0054
          2) FOFMAT(5X, 12, 6X, 12, 6X, 12, 3X, 15, 23X, 14, /, 3X, 14,
                    16x .6(4x .14) . / .43x . 14 . 4x . 14 . / / / )
0.055
           F.
                                                                                    00000600
        601 FORMAT( *0*, 3X, F5, 2, 3X, F5, 1, 5X, F6, 1, 3X, E12, 5, 3X, F5, 3, 3X, E12, 5, 3X,
1055
                                                                                    0100000
           &F5.2.3X.F5.2.EX.F3.3.3X,E12.3.3X,F5.1.6X,F5.1)
0.057
                                                                                    00000620
1058
         tC2 FCRMAT("U",10X,F5<sub>0</sub>2,5X,F5<sub>0</sub>1,7X,F5<sub>0</sub>1,4X,E12,5,5X,F5<sub>0</sub>3,4X,E12,5,
                                                                                    00000630
0.059
           £5X, F5, 2, 5X, F5, 2, 5X, F5, 2)
        £C7 FCFMAT(////,2(10x,72(+*+)/),1)x,5(+*+),62x,5(+*+),/,10x,5(+*+),
                                                                                    00000640
060
            85X, "DATA FOR THE SPECIFIED SIMULATION PERICO ARE MISSING", 5X, 5( * 00000650
0.061
           &*),/,10x,5(***),62x,5(***),/,2(10x,72(***)/))
                                                                                    03302000
0062
        7C1 FOFMAT(////,2(1CX,70(***)/),10X,5(***),60X,5(***),/,10X,5(***),
                                                                                    00000670
0063
            ESX, OF THE SIMULATION PERIOD SPECIFIED. . . . 20X . 5( ***) . / . 10X . 5( ***) . 00000680
3 164
0.655
           EBX,15,2X, (15-MINUTE) DATA INTERVALS 1,22X,5( ** 1)./. 10X,5( ** 1).5X, 00000690
            EMARE MISSING FOR DAY",15,2X, OF MONTH' . 15,15X,5("*"), /.13X,5("*") 00000700
0066
           8,60X,5(**'),/,10X,5(**'),5X,*CHUUSE ANDTHER SIMULATION PERIOD*,23 00000710
1367
           EX,5('*'),/,10X,5('*'),60X,5('*'),/,2(10X,70('*')/))
                                                                                    00000720
3 C 6 E
1069
        732 FORMAT(*1*)
                                                                                    00000730
2070
        703 FORMAT(//// .41x . COMPRESSER UPERATING TIME = 1.10x . F10.2. //. 41x.
                                                                                    00000740
0071
            1'COMPRESSOR & FAN(S) KWH CONSUMPTION = 1.F10.2)
                                                                                    00000750
        704 FC SMAT (/,41X, "RESISTANCE HEAT (KWH) = 1,14X, F10,2,//,41X,
                                                                                    00030760
9 072
           STHEAT PUMP AVERAGE CCP =1.14x.F10.2)
                                                                                    22000770
0073
        707 FORMAT(////:33X. TOTAL HEAT PUMP OPERATING TIME = 1.11X. F1 0.2 .//.
                                                                                    00300780
1074
           138X, TOTAL COMPRESSOR & FAN(S) KWH CONSUMPTION = 1.F10.2.//,38X,
                                                                                    00000750
0175
            2'TOTAL RESISTANCE HEAT = 1,20x, F10,2, //, 38x,
                                                                                    00000800
067E
            3 HEAT PUMP AVERAGE CCEFF OF PERFORMANCE = 1.2X.F 10. 2)
                                                                                    00000810
1077
         7 CR F(FMAT(////,45X,39(!*!),/,45K,!*!,37X,!*!,/,45X,!*!,4X,
                                                                                    J00C0820
0078
            1'TOTALS FOR DAY ',12,' OF MONTH ',12, 1x, 1*', /,45x, 1*',37x, 1*',/,
                                                                                    00000830
2079
                                                                                    00000840
0.030
            245X.39(**1))
         709 FCFMAT(*11,15(/),34x,63(**1),/,34x,***,61X,***,/,34x,***,4X+
                                                                                    00000850
0681
0082
            1 PERFORMANCE SUMMARY FOR THE 1.13.1-DAY SINULATION PERIOD1.4X.1*
                                                                                   .00000860
            2/,34x,***,61x,***,/,34x,63(***))
                                                                                    00000870
0(63
0 C E 4
             3GPM=5.5
                                                                                    00000880
                                                                                    00000890
0035
             FLOW=12.0
                                                                                    00900900
3800
             XMCW=497,3*CFF*GGFM
                                                                                    00000910
             XMCG=518-1*CPG*FLGW
0087
                                                                                    00000920
0.038
             IMID=62.0
                                                                                    00000930
             AVGCOP=0.0
U 089
                                                                                    00000940
0.090
             SUM 5=0.0
                                                                                    00000950
0.091
             SUM6= ) . )
                                                                                    00000960
0092
             SUM7=0.0
             SUM8= 1. 0
                                                                                    00000570
0093
                                                                                    00000980
1394
             KMODE=0.)
                                                                                    00000000
1095
                                                                                    000 01 000
                INDEX FOR THE HOUSE TO BE SIMULATED
3396
      C
                                                                                    30001010
0657
      C
                                                                                    00001020
                IHOUSE=1
                               ( EAST HOUSE )
1398
      C
                               ( MIDDLE HOUSE )
                                                                                    00001030
                IdOUSE = 2
0000
      C
                               ( WEST HOUSE )
                                                                                    30001040
0100
      c
                IHOUSE=3
                                                                                    00001050
01.01
      c
                                                                                    00001060
0 10 2
      C
                                                                                    30001070
0103
             READ(S. INPUT)
                                                                                    00001080
1104
             IF(MDAY1.EQ.4) GC TO 600
             L-IYADM=YACA
                                                                                    00001090
0105
             DG 500 I=1.18000
                                                                                    20001100
1106
             READ(1:10) MEAY . AHR. MIN. KTF. KTM. KTWW . KTW . KTW M
0107
                                                                                    00001110
             IF (MDAY. GY. MDAY1) GD TO 606
                                                                                    00001120
0 108
```

```
12345673901234567890123455789J123455789J 123456789012345678901234567890123456789
CARD
J139
             IF (MDAY . EQ . KD AY . AND. MFR. EQ. 23. AND. MI N. EQ. 45) GO TO 5.30
                                                                                       20001130
0110
         500 CENTINUE
                                                                                       00001140
         600 DU 3000 J=MDAY1 . MDAY2
                                                                                       00001150
0111
             NK GUNT = )
1112
                                                                                       00001160
0113
             SUM 1=3 . 0
                                                                                       00001170
0114
             SUM 2= 0. 0
                                                                                       00001180
             SUM 3=0.0
0115
                                                                                       00001190
             SUM4=0.0
1116
                                                                                       00001200
0117
             WFITE(5 .1)
                                                                                       00001210
)118
             IF (IHOUSE.EQ. 1) WFITE (6,2) HS1.J.MCNTH
                                                                                       00001220
3115
             IF(IHOUSE.EQ.2) WRITE(6.3) HS2, HS22, J. MONTH
                                                                                       00001230
0120
             IF (IHOUSE & EQ. 3) WRITE (6.2) HS3.J. MCNTH
                                                                                       00001240
0121
             IF(IHOUSE.EQ.1) WPITE(6,4)
                                                                                       00001250
0122
             IF ( IHOUSE, E G. 2. CF. IHOUSE, EQ.3) WRITE (6.5)
                                                                                       00001260
0123
             L=MOCM
                                                                                       00001270
1124
             REAC(2.6) TSETD. TSETN. THRANG. ITIMD. I TIMN
                                                                                       00001280
0125
           6 FORMAT(3F10.1.2110)
                                                                                       00001250
0126
             REAC( 2. 7) ( TRCOM( 1 ) . I = 1 . 24)
                                                                                       30001303
0127
           7 FOFMAT (4F20 -1)
                                                                                       00001310
0128
             READ(2.15) (CLUAD(I) .1=1 .24)
                                                                                       20001320
129
             DO 1200 KR = 1, 24
                                                                                       00001330
             OFORT (KE)=QLCAD(KE)/4.0
0130
                                                                                       00001340
        12CO CONTINUE
0131
                                                                                       00001350
3132
             DG 1330 KS=1.23
                                                                                       30001360
0133
             USLCP(KS)=QFCFT(KS+1)-QFCRT((3)
                                                                                       00001370
0134
             TSLOP(KS)=TRCCM(KS+1)=TFOCM(KS)
                                                                                      33031380
0135
        1300 CONTINUE
                                                                                       00001390
0136
             QSLCP(24)=QFCFT(24)-QFORT(1)
                                                                                       20001400
0137
             TSL02(24)=TROOM(24)=TPCOM(1)
                                                                                      30001413
1138
             OC 2930 I=1.24
                                                                                       00001420
0139
             TO SUM = 0.0
                                                                                       00001430
             HPQ SUM= 0.0
140
                                                                                       20001440
1141
             SUNSUM=0.0
                                                                                       00001450
0142
             SUMKWH = 0.0
                                                                                       03001460
0143
             SUMPES=Jo)
                                                                                       30001470
0144
             Q SL SUM = 0. 0
                                                                                       00001480
0145
             COC=MUZITW
                                                                                       00001490
0146
             WTG SUM=0.0
                                                                                       00001500
0147
             TISET=TSETN
                                                                                      00001510
0148
             IF ( I. GT . IT I MD . ANC. I. LT . IT IMN) TISET= TSETD
                                                                                       00001520
0149 C
                                                                                       00001530
                INPUT BUILDING LOAD AND INDOOR TEMPERATURES COMPUTED BY LOSIM
1150 C
                                                                                      00001540
0151 C
                                                                                       00001550
0152
             DO 2000 JJ=1.4
                                                                                      00001560
             QBLDG=GFORT(I)+QSLDP(I)*(JJ-(FIM1)/4.0-
1153
                                                                                       00001570
             TDB=TRGGM( I)+TSLCP( I)+( JJ-KTIM1 )/4.0
0154
                                                                                       00001580
0 155
             KDN=0
                                                                                      00001590
1156
             NK OUNT = NKO J NT +1
                                                                                       00001600
0157
                                                                                       00001610
                 INPUT DATA FROM WEATHER FILES
1158 C
                                                                                      00001620
0155
                                                                                       00001630
0160
            READ(1,20) MDAY, KH CUF, KNI N, KI OUT, KTWW, KTWW, KRHO, KRHE.
                                                                                      00001640
                         KRHW, KRHM, KSRH, KSRV, KWD, KWV
1161
            3
                                                                                      00001650
0162
             HOUR=KHCUF+KMIN/60.0
                                                                                       00001660
             Tww=KTww+0.18+32.0
0163
                                                                                      00001670
```

```
12345679901234567891123456789012345678901234567890123456789012345678901234567890
CARD
0164
             TWM=KTWM*0.18+32.0
                                                                                   00001680
3165
            TAMB=KT CUT * 3 . 13+32 . )
                                                                                   00001690
0166
            FHC=KRHE/100.0
                                                                                   00001700
0167
             1F(FHC.GT.1.0) RFC=9HC/10.0
                                                                                   00001710
             IF (FHU. GT.1.0) RHO=1.0
                                                                                   00001720
1153
0165
             WV=KWV
                                                                                   00001730
0170
             wDF=K w∂
                                                                                   00001740
0171
             IF (KSRH.LE.1) KSRH=)
                                                                                   00001750
             IF(KSRV.LE.1) KSRV=)
1172
                                                                                   20001760
0173
             IF (INDEX. EQ. 1) SP=KSRH/2.79458
                                                                                   20201770
             If (INDEX. EQ.2) SR=KSFV/2.17036
                                                                                   00001780
0174
0175
            IF (IHOUSE GT. 1) GG TC A01
                                                                                   00001790
J 176
            #HI=KRHE/100.0
                                                                                   00001800
0177
        401 IF (1HOUSE. NE. 2) GO TC 402
                                                                                   00001810
0178
            RHI=KRHM/100.0
                                                                                   00301820
3179
            IF (IHOUSE LT . 3) GO TO 403
                                                                                   00001830
0180
            FHI =KRH 4/1 0 0. 0
                                                                                   00001840
9 1 3 1
         403 IF(FHI.GT.1.0) RHI=RHI/10.0
                                                                                   00001850
            1F(MDAY.GT. J. AND.NKOUNT.LT.95) GO TO 700
                                                                                   00001860
0162
             IF ( JJ.LE. 1 . AND. I . LE. 1 . AND. J. EQ. MDAY! ) TCI=TCE
0183
                                                                                   00001870
             IF (JJ.LE.1.AND. I.LE. 1.AND.J.E3, MDAY1.AND.IHOUSE.EQ.2) TFOUT=TWM
3184
                                                                                   03810000
                                                                                   00001890
0185
            If (JJ.LE.1.AND.I.LE.1.AND.J.ZQ.MDAY1.AND.IFOUSE.EC.3) TFOUT=TWW
3136
                                                                                   00001500
0187
      C
                 INDEX FOR HEAT FURP MODE OF OPERATION
                                                                                   00001910
0138
      c
                                                                                   20001920
                 IMODE = 1
0189
                               ( HEAT PUMP IS IN THE HEATING MCDE )
                                                                                   00001930
0190
                 I MODE = 2
                               ( HEAT PUMP IS IN THE COOLING MODE )
                                                                                   00001940
                               ( HEAT PAUP IS OFF')
0191
      C
                 IMODE = 3
                                                                                   00001950
0192
                                                                                   00001960
                                                                                   00001970
0193
            RAT 10 = 1 . 0
            CATIME=0.)
                                                                                   00001980
3154
0195
            OCAP = 0. C
                                                                                   00001990
            CK WH= Ja0
                                                                                   00002000
0196
            CUF =0.0
                                                                                   00002010
0197
0156
            USCL=0. 0
                                                                                   00002020
1199
            ORES= ). 0
                                                                                   0.0002030
0200
            I MODE =3
                                                                                   00002040
201
             IF(QBLDG.ST.O.O)IMODE=2
                                                                                   00002050
0202
            IF(CBLDGoLT.O.).CR.TAMBoLT.60.0) IMDDE=1
                                                                                   20002060
             IF (CBLDG.GT.0.0. AND. TAMB.LT.5).0) IMCDE=3
0203
                                                                                   00002070
0204
             IF ( IMODE.EQ .1.AND. TOB. GE. ( TI SET+THRANG /2. ))) IMODE=3
                                                                                   00002080
             IF ( IMODE . EQ . 2. ANC. TOB . LE. (TISET -THRANG/2.0)) IMUDE= 3
                                                                                   20002090
0295
0206
            IF(ABS(QBL)G).LT.100.0) IMODE=3
                                                                                   20202100
                                                                                   30002110
3237
             IF(IMODE.EQ.2) KMODE=1
0208
            IF( IHOUSE . E Q . 1) GO TO 507
                                                                                   00002120
0209
            IF (IMODE EQ. 3) GC TO 504
                                                                                   00002130
3213
             IF ( IMODE.ED . 2) GC TO 5)1
                                                                                   10002140
0211
            CALL HPUMPH (TFOUT, TDF, GGFM, QBLDG, QGROND, QCAP, CKWH, COP, DNTIME,
                                                                                   00002150
0212
           દ
                          RATIO, QPESI
                                                                                   00002160
0213
            GC TO 502
                                                                                   00002170
        5C1 CALL XMOIST (TDE TWB .FHI .2 .1 + .696 . HA IR . WSAT . WAIR . TWALL)
                                                                                   00002180
0214
0215
            CALL HPUMPC ( TFOUT, TDB, TWB.GJPM, QHLDG, QGFOND, QCAP, CKWH, COP, ONT IME, 000 02190
                          RATIO)
           દ
0216
        502 TEHP=TEOUT+ QGECNO/XMCW
                                                                                   00002210
0217
        504 IF(IMODE.E3.3) TEHP=TFOUT
                                                                                   00002220
0218
```

```
12345673901234557890123456789012345678901234567890123456789012345678901234567890
CARD
0219
             HC=2.2+WV*( 0.32+ 0.0)1*WV)
                                                                                     00002230
222 C
             TSA=TAMB+ALPHA+SR/FO
                                                                                     30002240
0 2 2 1
             30 2500 ITI ME =1.2
                                                                                     20002250
             IF(ITIME.GE.2)TFHO=TFCUT
1222
                                                                                     02002260
             IF(ITIME.GE.2.AND.INDE.LT.3.AND.CNT IME.GE.1.0)
0223
                                                                                     00002270
0224
                TEHP=TED LT+2 GROND / XMC.W
                                                                                     00002280
1225
             IF (IHOUSE . E C. 3. DR. (IMODE. EO. 1. AND. SR . E. 0. 0)) GO TO 511
                                                                                     00002290
1226
             IF (KUN. EQ. 1) GO TO 512
                                                                                     00002300
3227
                                                                                     00002310
9 2 5 0
                CONTROL STRATEGY FOR TURNING THE SOLAR LOCK PUMP ON-
                                                                                     00002320
0229
                                                                                     00002330
0230
             IF( IMUDE SEQ .1 .AND. (TSA-TMID) ._ T. 2J. J) GO TO 511
                                                                                     00002340
             IF(IMODE.EQ.3.AND.KMCDE.EQ.O.AND.(TSA-TMID).LT.20.0) GD TO 511
231
                                                                                     00002350
             IF (IMODE . EQ . 2 . AND. (TMID . TSA) . LT . 20 . 0 ) GC TC 511
                                                                                     00002360
0232
             IF (IMUDE.EQ. 3. ANC.KMODE.EQ. 1. AND. (TMID-TSA).LT. 20.0) GO TG 511
0233
                                                                                     00002370
0 234
         E12 CALL SCLAR (TAMB: NDR: NV.SR: INDEX; HCUF, MCNTH: NDCM: TCI: TCO: QU: TC;
                                                                                     00002380
1235
                          ITIME
                                                                                     00002390
0236
             QSOL=EXE*XMC**( TCO-TFHP)
                                                                                     30002400
0237
             TCI=TCO-QSOL/XMCG
                                                                                     00002410
0 238
             TF I N= TFHP+QSCL/X NCW
                                                                                     00002420
0239
                                                                                     10002430
1243
                CONTROL STRATEGY FOR TURNING THE SOLAR LOOP PUMP OFF.
                                                                                     00002440
      C
0241
      C
                                                                                     30002450
0242
             KCN=1
                                                                                     00002460
             IF (IMODE.EQ. 1. AND. (TC-TMID).GE.5.0) GO TO 506
                                                                                     20002470
0243
             IF(IMODE.EQ.3.AND.KMODE.EQ.J.AND.(TC-TMID).GE.5.0) GO TO 505
1244
                                                                                     00002480
0245
             IF (IMUDE.EQ.2.ANC. (TMID-TC).GE.5.0) GO TO 506
                                                                                     00002450
0 246
             IF( I 4UDE . E Q . 3 . AND . K 4 0 DE . E Q . I . A ND . ( TM I D - T C ) . G E . 5 . 0 ) G U TO 506
                                                                                     00002500
3247
         511 TFIN=TFFP
                                                                                     00002510
0248
             KCN=0
                                                                                     00002520
0249
             Q SOL = 0 . 0
                                                                                     00002530
1251
             BOT=IOT
                                                                                     20002540
0251
         5(6 QEXC=XMCW*(TFIN-TFCUT)
                                                                                     00002550
             IF ( IT IME .. E . 1 ) TWIN = TFIN
                                                                                     30002560
0252
             CALL VENEX (TFIN.GEXC.PATIC.TMID.TFOUT.GNTIME)
0253
                                                                                     00002570
             WII SUM = WII SUM+TFIN
                                                                                     00002580
0254
             WTCSUM=WTOSUM+TFCUT
                                                                                     00002590
1255
0256
        2500 CONTINUE
                                                                                     00002500
3257
             IF(IDP.LE. 0) GO TO 1900
                                                                                     00002610
0258
             WRITE(6,601) FOUR, TAMB, TOB, Q3LDG, ONFIME, QCAP, QRES, CKWH, COP, 2 SOL,
                                                                                     20002620
0259
            E
                           TWIN . TF CUT
                                                                                     20002630
             GC TO 1900
                                                                                     00002640
0350
                                                                                     00002650
1350
        507 IF ( IMODE . EQ . 3 ) GC TO . 609
             IF ( IMODE . EQ. 2) GC TO 508
0 26 2
                                                                                     00002660
             CALL APUMPH (TAME, TEB, GBLDG, JCAP, CKWH, COP, GNTIME, QRES)
                                                                                     02002670
1263
                                                                                     00002680
0264
             GO TO 609
         SCE CALL XMDIST (TDB.TW3.PHI.2.14.696.HAIR.WSAT.WAIP.TWALL)
                                                                                     090002690
0265
             CALL APUMPC (TAME, TDE, TWE, OBLUG, QCAP, CKWH, COP, UNTIME)
                                                                                     00002700
0266
             IF( IDP, LE. 0) GO TO 1900
                                                                                     00002710
0267
        509 WRITE(6,632) HOUR, TAME, TDB, QBLDG, UNTIME, QCAP, QRES, CKWH, COP
                                                                                     00002720
0268
       1900 TOSUM=TOSUM+TAMB
0269
                                                                                     00002730
0270
             HE Q SUM = HPQ SUM + QCAP
                                                                                     30002740
0 27 1
             RUNSUM=RUNSUM+ONT IME
                                                                                     00002750
0272
             SUMKWH=SUMKWH+CKWH
                                                                                     00002760
0 27 3
             SUMRE S= SUMRES+ORES
                                                                                     00002770
```

```
12\,3456789\,11\,23\,4567\,89\,01\,2\,345678901\,2\,3456789012\,3456789012\,3456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456789\,01\,23\,456
CARD
0274
                             SL SUM= QS_ SUM+QSOL
                                                                                                                                                                                           00002780
3275
                 2000 CONTINUE
                                                                                                                                                                                          00002790
0276
                             IF (SUMKWH, LE. 0. 0) GD TO 2001
                                                                                                                                                                                           00002800
0277
                             AVGCDP=FP3 SUM/( 3412.15*SUNK#H)
                                                                                                                                                                                           30332810
0 27 9
                 2.101 TOAVG=TOSUM/4.0
                                                                                                                                                                                          00002820
0275
                            USLAVG=QSLSUM/4 . 0
                                                                                                                                                                                          00002830
                             WT IAVG=WTISUM/8.0
                                                                                                                                                                                          00002840
0280
0 28 1
                                                                                                                                                                                           000 C2 85 0
                             WTCAVG=ATOSLEZ8.0
                                                                                                                                                                                          00002660
0282
                            ZZ = I
                             IF( IDP . GE. 1 ) GO TO 2002
0293
                                                                                                                                                                                          00002870
0284
                             WRITE(6,601)ZZ, TCAVG, TRCCN(I), QLOAD(I), RUNSUN, HPGSUM, SJMRES,
                                                                                                                                                                                          00002880
1225
                          &SUMKWH. AVGCOP.QSLAVG. WT IAVG. WTUAVG
                                                                                                                                                                                          20002390
0286
                 2002 SUM1=SUM1+HPCSUM
                                                                                                                                                                                           00002900
0267
                             SUM 2= SUM 2+ P UN SUM
                                                                                                                                                                                          00002910
0268
                             SUM3=SUM3+SUMFES
                                                                                                                                                                                           00002920
                             SUM4=SUM4+SUMKWH
0289
                                                                                                                                                                                          00002930
                 SOUS CONTINUE
0290
                                                                                                                                                                                          00002940
                            IF (SUM4.LE. 0.0) GO TO 2901
291
                                                                                                                                                                                          00002950
                            DA VCOP = SUM1/(3412.15* SUM4)
0292
                                                                                                                                                                                          00002960
                 2901 WFITE(6,708) J.MCNTH
WFITE(6,703) SUM2, SUM4
J 29 3
                                                                                                                                                                                          00002970
                                                                                                                                                                                           20002980
0294
                             1F(K40DE&EQ.1) GC TO 2002
0295
                                                                                                                                                                                          00002990
029€
                             WEITE(6,704) SUM3,DAVCOP
                                                                                                                                                                                          00003000
1297
                             GO TO 2933
                                                                                                                                                                                           00003010
025E
                 2902 WFITE(6,11) DAVCCP
                                                                                                                                                                                           00003020
0 29 9
                 2303 SUMS= SUM5+ SUM1
                                                                                                                                                                                           00003030
3330
                             SUM6=SUM6+SUM4
                                                                                                                                                                                           00003040
0 30 1
                             SUM7=SUM7+SUM3
                                                                                                                                                                                           00003050
                            SUMB=SUM8+SUM2
                                                                                                                                                                                          00003060
1302
0303
                 3000 CONTINUE
                                                                                                                                                                                          00003070
0.304
                             SA VCOP = SUM 5 / ( 341 2- 15* SUM 6 )
                                                                                                                                                                                          03056666
0.305
                            IPFIOD=NDAY2-NDAY1+1
                                                                                                                                                                                          00003050
0306
                             WRITE(6,709) IPRIOD
                                                                                                                                                                                          20003100
3337
                             IF(KMODE.EQ.1) GO TO 3001
                                                                                                                                                                                          00003110
0.308
                             WRITE(6.707) SUMB, SUME, SUM7, SAVCOP
                                                                                                                                                                                          00003120
3339
                             GO TO 3002
                                                                                                                                                                                          00003130
0310
                 3001 WRITE(6 .12) SUMB . SUMS . SAVCOP
                                                                                                                                                                                           00003140
0311
                 3002 WEITE(6:702)
                                                                                                                                                                                           00003150
0212
                            GO TO 99
                                                                                                                                                                                          00003160
                   6(6 WPITE(6,607)
                                                                                                                                                                                          00003170
0313
                            GO TO 99
                                                                                                                                                                                          00003180
0314
                   7CO MISS=97-NKOUNT
                                                                                                                                                                                           10003190
0315
3316
                            WRITE(6.701) MISS, J. MONTH
                                                                                                                                                                                          00003200
                     99 STOP
                                                                                                                                                                                          00003210
0317
0318
                            END
                                                                                                                                                                                          00003220
3319
                                                                                                                                                                                          00003230
0220
                                                                                                                                                                                          00003240
1321
                                                                                                                                                                                          00003250
             C
0322
             c
                                                                                                                                                                                           00003260
0323
             C
                                                                                                                                                                                          00003270
0324
                                                                                                                                                                                          00003280
                                                                                                                                                                                          00003290
0325
                                                                                                                                                                            ****
                                                                                                                                                                                          00003300
0326
             C****
                                      COCLING, WATER-TO-AIR HEAT PUMP: SUBROLTINE(HEUMPC)
                                                                                                                                                                                          00003310
J 327
              C****
                                                                                                                                                                            ****
                                                                                                                                                                                          10003320
```

0328 C****

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
0329
          ***********************************
                                                                                  00003330
0 330
      C.
                                                                                  10003340
0331
      C
                                                                                  00003350
0332
            SUBROUTINE HPUMPO (ENT.EDE.TWB.GPM.QBLDG.GREJ.QCAP.CKWH.COP.CNTIME30003360
0.333
           3
                                 . PATIO
                                                                                  10003370
                                                                                  00003380
0334
             JATA CFN/600.0/
0335
            DATA CFST0, CFST1, CFST2, CFST3, CFST4, CFST5/8, 3597, -0, 23243.
                                                                                  00003350
1336
                1.05373E-03,-3.724E-02,1.73322E-35,1.06562E-03/
                                                                                  00003400
0337
            DATA CFC0, CFC1, CFC2, CFC3, CFC4/-0.9313, 1.18511E-02,-2.84E-05,
                                                                                  00003410
1238
                3. 08627E- 08,-1.25125E-11/
                                                                                  00003420
J 339
            DATA CFS), CFS1, CFS2, CFS3, CFS4/0.72047.-1.31175E-03.6.96749E-06.
                                                                                  10003430
0340
                 9-17738E-09-4-17127E-12/
                                                                                  02203442
            DATA CK W1, CKW1, CKW2, CKW3, CKW4/0. 23951, 4. 54523E-03,-1.04679E-35.
0.341
                                                                                  00003450
1342
                1.08445E-03,-4.17146E-12/
                                                                                  00003460
0343
            DATA C0.C1, C2.C3.C4, C5.C5.C7/066.06.-73.96.-0.339.303.25,-0.3472. 00003470
       Q
) 344
                 2542.8, -255.56, 1.11636/
                                                                                  00003480
0345
            DATA $C0,5C1,5C2,5C3,5C4,5C5,5C6,5C7/25582.0.-14.7,-0.278,208.84.
                                                                                  00003450
0246
                 -5.503, 737.24,-94.44,776,64/
                                                                                  10003500
            DATA CPO, CP1, CP2, CP3, CP4, CF5, CP6, CP7/- 5, 4522E-02, 2, 223E-03,
347
                                                                                  20203510
9450
                3.333E-05.5.5769E-02.-2.0333E-04.-.45262.4.1667E-02.-6.84E-06/90003520
            DATA HRD, HR 1, HR 2, HP 3, HF 4, HR 5, HR 6, HR 7 / 1 434, 6 .- 58, 31, - 0, 1667, 459, 8, 00003530
0349
0350
                 -1.04157.831.1.-100.0.0.0.10355/
                                                                                  00003540
           3
                                                                                  00003550
0.251
      C
1352
      C
                                                                                  22003560
0353
            GL GAD = OBLDG
                                                                                  00003570
            C=CHR=1.0
J 3 5 4
                                                                                  00003580
1355
            CFSC=1.J
                                                                                  00003590
            CFK %=1 . 0
035€
                                                                                   00003600
            CF SC T=1 . 0
0.357
                                                                                   00003610
                                                                                   00003620
0359
            X 1 = EWT
0359
             KZ=TWB
                                                                                   00003630
            X3=GP4
                                                                                  00003640
0360
                                                                                   00003650
361
             44=X1 *X1
                                                                                  033660
0362
             X5 = X2 * X2
1363
             X6= X3+X 3
                                                                                   10003670
0364
            X7=X1 *X2 *X3
                                                                                  00003660
            3 =CFM/1 0J. U
0365
                                                                                  00003650
            SP=21.35-14.03667*B+3.49*B*B-J.37833*B*B*8+9+0.015*B*B*B*B*B
                                                                                  00003700
0366
                                                                                   00003710
0367
                                                                                  00003720
3351
                CORRECTION FACTORS FOR TOTAL CUELING CAFACITY, HEAT REJECTION
                RATE, SENSIBLE COOLING CAPACITY AND COMPRESSOR POWER INPUT.
1309
      C
                                                                                   20003730
03/0
                FESPECTIVELY. WHEN AIR VOLUME RATE NE. 600 CFM.
                                                                                   00003740
      C
                                                                                  00003750
0371
      C
                                                                                   00003760
372
            IF(CFM.EG.600.0) GO TO 101
                                                                                  00003770
0373
            Z1 =CF M
0 374
            Z2=Z1*Z1
                                                                                  00003780
0375
            23 = Z1 * Z2
                                                                                  00003790
0376
                                                                                   00003300
            Z4=Z2*Z2
            CF CHR = CFC) + CFC 1 + Z1 + CFC2 + Z 2 + CFC 3 + Z 3 + CFC 4 + Z4
                                                                                   00003810
0377
            CF SC=CFS0+CFS1*Z1+CFS2*Z2+CF33*Z3+CFS4*Z4
                                                                                   00003820
2376
            CFK W=CK NO+CKN 1+Z 1+CK W 2*Z 2+CKW 3+ Z 3+CK N4+Z4
                                                                                  00003830
0379
                                                                                   00003840
1380
        101 IF(EDB. EQ. 80.0) GO TO 102
                                                                                  00003850
0361
      C
0.382
                CORRECTION FACTOR FOR SENSIBLE COOLING CAPACITY WHEN THE
                                                                                  00003860
      C.
                ENTERING DRY BULB TEMPERATURE IS NE. 80 F.
                                                                                   00003870
0.383
```

```
12345678901234567890123455789012345578901234567390123456789012345678901234567890
CARD
                                                                              00003880
)384
     C
                                                                              00003890
385
           Y1=608
                                                                              00003900
0386
           Y2=Y1*Y1
           C = SC T=CFST 0+CFST 1+X2+CF ST2+X3+C = ST3+Y1+CFST4+Y2+CFST5+X2+Y1
                                                                              00003910
0.337
                                                                              00003920
1338
     c
               COMPUTE THE STEADY STATE COOLING CAPACITY (ETUH). SENSIBLE
                                                                              00003930
0.389
     c
               COOLING CAPACITY (BIUH), HEAT REJECTION RATE (BIUH), AND
                                                                              01003940
0390
     C
                                                                              00003950
3331
     c
               COMPRESSOR POWER INPUT. RESPECTIVELY.
                                                                              00003960
0392
                                                                              00003970
1393
       1 J2 Q=CFCHR*(C0+C1*X1+C2*X4+C3*X2+C4*X5+C5*X3+C6*X6+C7*X7)
                                                                              00003980
           QSCSS=CFSC*CFSCT*(SC0+SC1*X1+SC2*X4+SC3*X2+SC4*X5+SC5*X3+SC6*X6
0394
                              +SC7*X71
                                                                              00003990
1395
            QHFSS=CFCHR* (HR0 +HF1 *X1 +HR2 *X4 +HR3 *X 2+HR4*X5+FF5*X3+HR6*X6+HR7* X7)00004000
0386
3 39 7
           CPOWER= CF( W*( CP 0+CP1* X1+CP2*X4+CP3*X2+ CP4*X5+CP5*X3+CP5*X6+CP7*X7 )000040 10
            QP ART =0 .25 *Q
                                                                              00004020
1398
                                                                              00004030
           UNTIME =0.25
0399
                                                                              10074040
0400
     c
                                                                              00004050
               CHECK IF THE HEAT PLIMP WILL CYCLE ON-OFF
1 4.1 1
     c
                                                                              00004060
0402
     c
                                                                              30004070
0403
            RATIO=OLDAD/OPART
                                                                              00004080
3434
            ONTIME=0.25 *FATIC
                                                                              00004090
24.05
            IF (ONTI ME. 3 T. 0. 25) ONTI ME = 0.25
            IF (CNT IME.LT. 0.06) ONTIME=0.16
                                                                              00004100
0406
           TIMEC =- CNTIME/ALCG(0.005)
                                                                              00004110
9407
            OCYCLE=Q*(ONTIME-TIMEC*(I+O-EXP(-GNTIME/TIMEC)))
                                                                              30004120
9478
            OP ART =Q CYCL E
                                                                              00004130
14.19
                                                                              00004140
            OKE J=OHRSS
0410
                                                                              03004150
            2 CAP=Q2A2T
341.1
                                                                              00004160
            FP=9a395E-04+SP * CFM
1412
            CK WH=(CPGWER+FP+0+075)*CNTINE
                                                                              00004170
0413
                                                                              00004180
0414
            COP=QP ART/( 3412.15*C KWH)
                                                                              00004150
0415
            RETURN
                                                                              02004200
0416
            CME
                                                                              00004210
0417
     c
                                                                              00004220
0418
     ,c
                                                                              00004230
0419
     C
                                                                              20004240
1420
     C
     00004250
0421
                                                                         **** 00004260
1422
     C * * * *
               HEATING. WATER-TO-AIR HEAT PUMP: SUBROUTINE(HEUMPH)
                                                                         **** 00004270
1423
     C****
                                                                         **** 00004280
0424
     C****
     00004290
2425
                                                                              20004300
0426
     c
                                                                              00004310
1427
     c
            SUBROUTINE HOUMPH (EWT.EDB.GPM.QBLDG.QEXT.GCAP.CKWH.COP.ONTIME.
                                                                              00004320
1423
                                                                              00004330
                               RATIC: QRES)
0425
           ε
           DATA CFM/60'0.0/
                                                                              00004340
0430
           DATA CFH), CFH1, CFH2, CFH3, CFH4/2, 48131, -1. 08012E-02, 2. 79006E-05.
                                                                              00004350
1431
               -3.08633E-08,1.25129E-11/
                                                                              00004360
1432
           DATA CHEO, CHE 1. CHE2. CHE3. CHE4/3. 2022 7. -1. 70532 E-02. 4.53358E-05.
                                                                              00004370
1433
                                                                              20004350
               -5.0885 E-08.2.08555E-11/
3434
                                                                              10004390
           DATA HK WJ. HKW 1. HKW 2. HKW 3. HK W4/3. 2412 3. -1. 17673E- 32. 2. 64E-05.
1435
                                                                              00004400
               -2.9195E-03.1.25121E-11/
9436
           DATA HO.H1.H2.H3.H4.H5.H6.H7/1903.4.175.32.0.556.-135.8.0.556.
                                                                              00004410
0637
                                                                              00004420
0438
               5962.5, -544.4, 1.6715E-02/
```

```
123456739312345678931234567893123455789312345678931234567893123456789312345678931
CARD
1439
            DATA HED, HE 1, HE 2, HE3, HE4, HE5, HE6, HE7/- 262) 4,170,28, 0,278,-117,5, 00004430
0440
                0.278,5339.6,-622.2,-0.0525/
                                                                                  00204440
)441
            DATA CIO:CI 1:CI 2:CI3:CI4:CI5:CI6:C17/1:2965:5:99063E-03:4:444E-05 J00J4450
1442
                ,-7.73159E-23,9.444E-05,-0.10627,0.02111,2.464E-05/
                                                                                  00004460
0443
                                                                                  00004470
0444
                                                                                  00004480
                                                                                  00004490
1045
            uL 040=-08_0G
1446
            CFHC=1.3
                                                                                  00004500
            CF HE =1 . 0
0447
                                                                                  00004510
            CFK WH= 1 . 0
)648
                                                                                  33034523
1449
            OF E S=0 . 0
                                                                                  00004530
                                                                                  00004540
0450
            X1=EWT
1451
            X2=E0B
                                                                                  00004550
1452
            X3 =GPM
                                                                                  00004560
0453
             <<= × 1 * × 1</p>
                                                                                  10004570
                                                                                  00004580
            x5=x2*x2
1454
0455
            X6 = X3 * X3
                                                                                  00004590
0456
            X7=X1*X2*X3
                                                                                  00004500
1457
            B= CFM/130.3
                                                                                  00004610
            SP = 21. 35-14.03667*8+3-49*8*8-).37833*8*8*8*8+0.015*8*8*8*8
0459
                                                                                  00004620
1459
      C
                                                                                  00004630
               CORRECTION FACTORS FOR TOTAL HEATING CAPACITY, HEAT EXPACTION
                                                                                  00004640
146.0
      C
               FATE AND COMPRESSOR FOWER INPUT. RESPECTIVELY.
                                                                                  20004650
0461
      c
0462
                                                                                  30004660
J463
            IF (CFM. EQ. 500.0) GD TO 101.
                                                                                  00004670
J464
            Z1 = CF M
                                                                                  00004680
) 465
            Z2=Z1*Z1
                                                                                  20204690
            Z3=Z1*Z2
                                                                                  01004710
946€
1467
            Z4= Z2*Z2
                                                                                  00004710
0468
            CFHC=CFH0+CFH1*Z1+CFH2*Z2+CFH3*Z3+CF+4*Z4
                                                                                  00004720
            C=HE=CHE0+CHE1+Z1+CHE2*Z2+CHE3+Z3+CHE4+Z4
                                                                                  00004730
0465
            C FKWH=HKW3+HKW1+Z1+HKW2+Z2+HKW3+Z3+HKW4+Z4
                                                                                  00004740
1470
0471 C
                                                                                  00004750
.)472
      C
               COMPUTE THE STEADY STATE HEATING CAPACITY (BTUH). HEAT
                                                                                  00004760
9473
      c
               EXTRACTION RATE (BTUH), AND COMPRESSOR FOWER INPUT (KW),
                                                                                  20004770
0474
      c
               PESPECT IVELY.
                                                                                  33304780
0475
                                                                                  00004750
0476
        101 Q=CFHC*(H0+H1*X1+H2*X4+H3*X2+H4*X5+H5*X3+H6*X6+H7*X7)
                                                                                  00004300
                                                                                  01840 ( 00
0477
            QHESS=CFHE*(HE)+HE1*X1+HE2*X4+HE3*X2+HE4*X5+HE5*X3+HE6*X6+HE7*X7)
0478
            CPOWER=CFKWH* (CI G+C1 1* 11+CI2*X4+C13* X2+CI4*X5+CI5*X3+CI6*X6
                                                                                  00004820
0479
                           +C17.*X71
                                                                                  00004830
           ε
            GPAFT=0.25*G
                                                                                  00004840
948C
                                                                                  00004850
            ONTIME = 0.25
0481
                                                                                  20021860
0492 C
0483
      c
               CHECK IF THE HEAT FUMP WILL CYCLE ON-CFF
                                                                                  00004870
0484
      c
                                                                                  10004880
)485
            RAT IO=QLOAD/GPART
                                                                                  00004890
348€
            IF (RA TI 0.3 T.1.0) QRES=(QLCAD-QPART)/3412.15
                                                                                  00004900
            ONTIME= J.25 *RATIO
                                                                                  00004910
0487
                                                                                  00004920
3 B & C
            IF (CNTIME, GT. J. 25) ONT IME = 0.25
            1F (ONTI ME. LT. 0. 06) CATI ME = 0. 35
                                                                                  00004930
0489
3490
            TIMEC=-ONT IME/ALCG(0.005)
                                                                                  00004940
0491
            QCYCLE = C* (ONTIME-TIMEC* (1.0-EKP (-CNT IME/TIMEC)))
                                                                                  00004950
0492
            OP ART=OCYCLE
                                                                                  00004960
            QEXT=-QHESS
                                                                                  00004970
0493
```

```
123456789012345578901234557890123455789012345678901234567890123456789012345678901
CARD
1494
           · QCAP=QPART
0495
            FP=90395E=04*SP*CFM
                                                                                00004990
0496
            CK WH=(CPOWER+FP+0.075)*CNTIME
                                                                                99005000
0497
            COP=UP ART/ ( 3412.15*( CKWH+QRE 5) )
                                                                                00005010
0498
            EETUEN
                                                                                00005020
0499
            END
                                                                                00005030
0 500
                                                                                00005040
15)1
                                                                                00005050
0502
      ******* 00005060
0503
      C****
                                                                           **** 00005070
      C****
0 E 0 4
                  COOLING, AIR-TO-AIR HEAT PUMP: SUBROUTINE(APJMPC)
                                                                           **** 00005080
J505
      C****
                                                                           **** 23005090
      0506
                                                                                00005109
0 50 7
                                                                                00005110
3508
                                                                                00005120
0509
            SUBROUTINE APUMPO (TAMB, TOB, FAB, QBLDG, CCAP, CKWH, COP, ONT IME)
                                                                                00005130
0510
            DATA CFM /575.0/
                                                                                00005140
0511
            DATA CO.C1.C2.C3.C4.C5.C6.C7/31793.8.36.78393.-0.7037.-528.723.
                                                                                00005150
                4.93333 -- 13.24353, 4.7619E-03.1.55021E-03/
0512
                                                                                00005160
3513
            DATA U0, U1, U2, U3, U4, U5, U6, U7/2, 33606, 1, 04283F-02, -2, 391E-05,
                                                                                00005170
0514
               -3,43148E-02,2,8E-04,-1,33345E-03,6,5E-07,1,9E-07/
                                                                                00005180
            DATA 50,51,52,53,54,55,56,57/-21778,0,75,67,-0,84127,1494,7,
0515
                                                                                00005190
0516
                -15.867,-2.03211,-4.7619E-03,2.12277E-03/
                                                                                00005200
0517
     C
                                                                                00005210
0518
                                                                                00005220
0519
            QL DAD=QBLDG
                                                                                33005233
0520
            X1 = TAMB
                                                                                00005240
            X2 = TWB
0521
                                                                                00005250
0522
            X3=CFM
                                                                                00005260
1523
            X4=X1 *X1
                                                                                00005270
1524
            x5= x2* x2
                                                                                00005280
0525
            X6= X3 + X3
                                                                                00005290
            X7 = X1 * X 2 * X 3
                                                                                20005300
0526
0527
            DN TIME =0.25
                                                                                00005310
0528
      (
                                                                                00005320
0529
      C
               CORRECTION FACTOR FOR THE SENSIBLE COOLING CAPACITY WHEN THE
                                                                                00005330
0530
               ENTERING DRY BULB IS NE. 30.0 F.
                                                                                00005340
0531
                                                                                00005350
0532
            BF =00 0212+1 05354 E-04 *X3
                                                                                00005360
3 5 3 3
            OCF=1.09*X3*(1.0-BF)*(TDB-80.0)
                                                                                20035370
1534
                                                                                00005380
0 5 3 5 C
               CUMPLIE THE HEAT FUMP STEADY STATE TOTAL CAPACITY (BTUH).
                                                                                00005350
               SENSIBLE CAPACITY (BTUH), AND POWER INPUT (COMPRESSOR, INDOOR,
                                                                                00005400
0.536
      C
               AND OUTDOOR FANS) (KW).
                                                                                00005410
0537
      C.
0536
     C
                                                                                22005420
                                                                                30005430
0539
            0= C0+C1 *X1+C2*X4+C3*X2+C4*X5+C5*X3+C6* X6+C7* X7
0540
            US=QCF+S0+S1*X1+S2*X4+S3*X2+S4*X5+S5*X3+S6*X6+S7*X7
                                                                                00005440
0541
            UK W=UU+ L1* X 1+ L2* >4+U3* X2+L4* X5 +U5* X3 +U6* X6 +U7* X7
                                                                                20005450
1542
            Q#AFT=0.25 *Q
                                                                                00005460
0543 C
                                                                                00005470
               CHECK IF THE HEAT PUMP WILL CYCLE ON-GFF
                                                                                00005480
0544
1645
0546
            TAASOLCAULT AR
                                                                                00005500
            IF(RAT 10.LE.0.)6) RATIO=0.06
                                                                                00005510
0547
                                                                                00005520
0 54 E
            CNTIME=0.25*RATIC
```

```
12345678901234567890123455782012345573201234567320123456789012345678901234567890
CAPE
0549
            IF (CHTIME. GT.0.25) CATIME=0.25
                                                                               00005530
0550
            TIMEC =- ONTI ME /ALCG (0.005)
                                                                               00005540
            GCYCLE= G*( DNT IME-TIMEC*(1. J-EXP(-DNT IME/TIMEC)))
) 551
                                                                               20005550
            QPART=QCYCLE
2552
                                                                               00005560
            JCAP=QPART
0553
                                                                               00005570
            CHWF=UKW*CNTIME
3554
                                                                               00005580
0555
            COP=OPART/(3412.15*J KW*CNTIME)
                                                                               00005590
            RE TURN
0.556
                                                                               00005600
3557
            END
                                                                               00005610
0.55€
                                                                               00005620
0559
      C
                                                                               00005630
1560
                                                                               00005640
0561
                                                                               00005650
      C****************************
3562.
                                                                               00005660
0563
      (****
                                                                         ***
                                                                               00005670
0564
      (****
                HEATING. AIR-TC-AIR HEAT PUMP: SUBROUTINE(APUMPH)
                                                                         ****
                                                                               00005680
      C****
3165
                                                                         ***
                                                                               10005690
1566
      20005700
0567
      c
                                                                               00005710
0568
                                                                               33035720
J569
            SUBSCUTINE APUMPH (TAMB, TOB, WHLDG, QCAP, CKWH, CCP, CNTIME, QRES)
                                                                               00005730
1571)
            DATA CF 1/575.0/
                                                                               00005740
0571
            DATA HO .H1 .H2 .H3 .H4 .H5 .H5/5393 .4 .187 .435 .2 .89421 .-0 .47104.
                                                                               00005750
                2.34434E-02.-3.2059E-04.1.71E-06/
)572
                                                                               00005760
0.573
           DATA C0,C1,C2,C3,C4/1.59131.1.45083E-02,-1.11042E-03.3.365E-05.
                                                                               00005770
0574
              -2-75-07/
                                                                               00005780
15.75
                                                                               00005790
      c
0576
      C.
                                                                               0008800
0577
            GLOAD=- GSLDG
                                                                               03005810
0578
            CF C = 1 . 0
                                                                               00005820
0579
            CKW=1 . 0
                                                                               00005830
0580
            TCF=1.0
                                                                               00005840
                                                                               000 05850
1531
            TKW=1.09
0582
            QRES=0.0
                                                                               00005860
0.583
            XI=TAMB
                                                                               00005870
            X2 = X1 * X1
                                                                               00005660
0584
                                                                               00005890
0585
            x3 = x1 * x2
                                                                               00005900
3536
            X4=X1*X3
                                                                               00005910
0587
            X5 = X1 * X4
9568
            XE = X1 * X5
                                                                               00005920
9589
            ONT 1ME=0.25
                                                                               00005930
0.63.0
                                                                               00005940
0591
               CORRECTION FACTOR FOR DIFFERENT VALUES OF CFM AND IDOOR DRY
                                                                               00005950
               BULB TEMPERATURES
                                                                               00005960
0 592
      C
                                                                               00005970
0593
      c
                                                                               10005980
0594
            CF C=0 a77+3 a 0004 #CFM
            CKW=0.335+0.0002*CFM
                                                                               00005990
0595
            TFC =1.28-0. CC1* TCB
                                                                               00006000
0596
                                                                               00006010
1597
            TKW= ) .86+0.002*TCB
                                                                               00006020
0558 C
               COMPUTE THE HEAT PUMP STEADY STATE PEFFCPMANCE AND POWER
0555
      C
                                                                               00006030
1600
      C
               INPUT (COMPRESSOR, INDOOR & OUTDOOR FANS).
                                                                               00006040
0601
                                                                               00006050
0602
            Q= CFC*T FC* ( H0 +H1 *X1+ h2*X2+H3*X3+H4*X4+H5*X5+H6*X6)
                                                                               00006060
0603
            UK N=C K N* TK W* ( CO+C1 *X1 +C2 *X2 +C3 *X3 +C4 *X 4 )
                                                                               00006070
```

```
12345678901234567890123456789012345578901234567890123456789012345678901
CARD
0604
      C
                                                                             00006080
               CHECK IF THE HEAT FUMP WILL CYCLE UN-CFF
0605
      (
                                                                             00006090
0606
      C
                                                                             00006100
0607
            2PART =0.25 * Q
                                                                             000006110
0603
            PATID=QLOAD/QPART
                                                                             100 061 20
9609
            IF (FATIO.GT.1.)) GRES=(GLCAD-QPART)/3412.15
                                                                             00006130
2610
            ONTIME= 1.25 *PATIO
0611
            IF (CNTIME. GT. 0.25) CNTIME=0.25
                                                                             00006150
            I=(CNTIME.LT.0.06) CNTIME=0.36
                                                                             00006160
0 012
3613
            TIMEC=-ONTIME/ALOG( ).015)
                                                                             00006170
            GCYCLE = G* (DNT IME-TIMEC*(1.00-EKP(-ONTIMEC)))
                                                                             00006180
2614
            QPART=QCYCLE
0 6 1 5
                                                                             00006190
1616
            CC AP= 3P AFT
                                                                             00006200
9c17
            CUP=CPART/(3412.15*(UKW*CNTIME+QRES))
                                                                             10006210
1618
            C < WH= JK W+DN TI ME
                                                                             00006220
            RETURN
                                                                             00006230
0619
                                                                             00006240
0620
J € 2 1
                                                                             00006250
253C
0623
                                                                            10006270
0 62 4
                                                                    ******* 00006280
        * * * * * * * *
0 625
        * * * * * * * *
                           SUBFCLTINE
                                                SULAR
                                                                    ******* 00006290
      C
                                                                    ******* 00006300
1626
      C
      0627
1) 628
      c
                                                                             00006320
9629
      c
                                                                             00006330
0c30
            SUBROUTINE SOLAR (TAMB, WOR, WV, SR, INDEX, HOUR, MONTH, NDOM, TCI, TCO, QU, 00006340
                                                                             00106350
J£31
                              TC . IT IME )
                                                                             00006360
0632
0633
                                                                             00006370
0634
            PURPOSE:
                                                                             00006380
      c
                   TO COMPUTE THE COLLECTOR EXIT TEMPERATURE AND THE RATE OF
                                                                             00006390
2635
      C
                   HEAT EXCHANGE BETWEEN THE COLLECTOR AND THE AMBIENT FOR A
                                                                             00006400
0636
                   SOLAR ENERGY LCOP. THE LOUP CONSISTS OF A BARE COLLECTOR
                                                                             00006410
3637
      C
                   PANEL(S) . A HEAT EXCHANGER AND A CIRCULATING PUMP.
                                                                             00006420
0638
      C
                   HORIZONTAL OR TILTED SURFACE SOLAR PADIATION CAN BE INPUT
0639
      C.
                                                                            00006430
                   IF HORIZONTAL SOLAR RADIATION IS THE INPUT. THE SUBROUTINE 00006440
0640
      c
0641
                   WILL CONVERT IT TO THAT INCIDENT IN A TILTED SURFACE.
                                                                             220064E0
1642
                                                                             20206460
                                                                             20006470
2643
                   DESCRIPTION OF PARAMETERS:
                   I NP U T-
0644
                                                                             00006480
                        TAMB - DRY BULB TEMPERATURE OF THE AMBIENT (F)
                                                                             00006490
1645
      C
                            - WIND VELCCITY (MILE/HR)
                                                                             00006500
0646
      c
                        k V
                                                                             00006510
                        ND3
                            - WIND DIPECTION (DEGREES)
0647
      c
                            - SCLAR RADIATION INCIDENT ON THE SURFACE
                                                                             00006520
0 6 4 8
      C
                        SR
                                                                             00006530
                               (RTJ/HR-FT**2)
0649
      c
                        INDEX- INDEX IDENTIFYING THE TYPE OF SOLAR RADIATION 00006540
1650
      C
0651
                              INFUT
                                                                             00006550
                             = 1 (HCFLIZONTAL SURFACE SCLAR RADIATION)
= 2 (TILTE) SURFACE SCLAR RADIATION)
0 € 5 2
      c
                                                                             00006560
1653
                                                                             22006570
                        HOUR - LCCAL STANDARD TIME (HOURS)
                                                                             00006580
0654
                        00006590
0655
                        NDOM - NUMBER OF JAY THE OF MONTH (E.G. 1,2,000,30)
                                                                             00006600
0656
      c
0657 C
                        TCI - C(LLECTOR INLET TEMPERATURE (F)
                                                                             00006610
                                                                             00006620
0658
```

```
0)0000001111111111112222222222333333334444444555555555656666667777777778
      123456789012345578901234567890123455789012345678901234567890123456789012345678901
CARD
1659
                  OUTPUT-
                                                                                    00006630
0660
      C
                          TCO
                              - COLLECTOR SUTLET TEMPERATURE (F)
                                                                                    00006640
1661
                          Qυ
                               - RATE OF ENERGY EXCHANGE BETWEEN COLLECTOR AND
                                                                                    10006650
1662
      c
                                 AMBIENT (STJ/HR)
                                                                                    0000660
0663
                               - CCLLECTOR PLATE TEMPERATURE (F)
                                                                                    00006670
1) 66 4
      c
                                                                                    00006680
1665
      C
                                                                                    00006690
9666
                                                                                    00005700
             COMMON FLOW
JE67
                                                                                    20236710
             DIMENSION CST (14) NOY M(12)
9630
                                                                                    00006720
0669
            DATA CST/0.057.0.058.0.06.0.071.0.097.0.121.0.134.0.136.0.122.
                                                                                    00006730
1073
                 J. 092, 0.073, J. 063, J. 057, J. 058/
                                                                                    20006740
J & 71
             JATA NDYM/0.31.55.90.120.151.181.212.243.273.304.334/
                                                                                    00006750
0672
             DATA RAD. TZ . ACLUNG . XLAT. REF . [1 LT/. 01745.60 . 97. . 36.017. . 2.90.)/
                                                                                    33006763
0673
             DATA SIGMA.CHITE.AC.EF.W/0.1712E-U8.7.0.140.0.0.0.50.0.333/
                                                                                    20006770
             DATA DI.PI.CB:ALPHA.HFI/).04512.3.14159.38.52.0.95.100.0/
1674
                                                                                    00006780
0 c 75
             DATA EK. TN. TL. DO/0.4.60.0.7.7. J. U. 0520 9/ . CPG/0. 84/
                                                                                    00006790
9676
            DATA D0.D1.D2.D3.D4.D5.D6/8.53633E-02.-1.8859E-04.2.76608E-07.
                                                                                    00006800
            63. 05179E-09 - 4. 04333E-11, 1, 93653E-13, - 3. 32374E-16/
0€77
                                                                                    00006810
            DATA C0.C1.C2.C3.C4.C5.C6/1.31089E-02.2.63437E-05.2.03083E-05.
2678
                                                                                    00006820
7679
            6-5.33445E-10,1.07253E-11.-5.20563E-14,5.11518E-17/
                                                                                    00006830
26 13 2
            DATA VO.V1.V2.V3.V4.V5.V6/0.4553.1.79714E-03.2.42925E-06.
                                                                                    00206840
0631
            6-3.32359E-08.3.50757E-10.-1.0353E-12.2.8E-15/
                                                                                    20306850
1682
             DATA PO, PI, P2, P3, P4, P5, 96/0.72204, -2.01553E-04, -1.1113E-06,
                                                                                    00006860
0 683
            6 5. 874d9E-08,-7.49793E-10,3.85345E-12,-7.03039E-15/
                                                                                    20006870
                                                                                    08880000
1684
                                                                                    00006890
1685
                                                                                    0006900
0686
0 €87
                                                                                    20206912
             IF (ITIME.EQ.1.AND.HDUR.LE.O.U) HGUR= 24.0
                                                                                    0006920
1633
                                                                                    00006930
            HT=SQ
0689
0.690
             HUF=HOUR
                                                                                    33006943
0691
             G=FLOW * 518 a 1 / AC
                                                                                    20006950
1692
             XMCG=518-1*CFG*FLCW
                                                                                    00006960
0693
             IF(ITIMEDED .2) HUP=HUF+ Jo 125
                                                                                    10006970
0694
             IF (INDEX. EQ. 2) GC TO 77
                                                                                    00006980
0695
                                                                                    20006990
1696
      C***
            CONVERT HORIZONTAL SURFACE RADIATION TO THAT OF A TILTED SURFACE
                                                                                    00007000
                                                                                    30007010
0697
      C
0 E S E
             HT/OM=MA
                                                                                    22227020
             NOY=NOYM(NM)+NOCM
                                                                                    20007030
1699
             NM=NM+1
                                                                                    00007040
0700
                                                                                    00007050
             NM 1=NM
0701
                                                                                    00007060
0702
             DNDCM=21-NDCM
0703
             IF (DNOUMOLT.O.O) NM=NN+1
                                                                                    00007070
3734
             CSTT=(CST(NM)-CST(NM-1))/3005
                                                                                    00007080
0705
             IF (NDY. LT. 100) ECT =-5.0-9.0 *5 IN ((2.0 *N DY -2.0) *RAD)
                                                                                    00007090
2706
             IF (NDY.GE, 100.AND.NDY.LE, 242) EQT =-1.+5.0*SIN((NDY-100.)*FAD/.395)0007100
             IF (NDY . GT . 242) EQT = - 2.5+18.6 +SIN((NDY- 242.) +RAD/0.685)
                                                                                    00007110
3737
                                                                                    00007120
370€
             C=CST(NM1)-(CSTT*DNDCN)
             D= 23,45*SIN((NDY-30,0)*360,0*RAD/370.0)
                                                                                    00007130
0709
0710
             STIME =HUR+T Z= (ACLCNG/15.0)+EUT/60.0
                                                                                    00007140
0711
             HANGLE = ( STI ME-12.0) * 15.0
                                                                                    00007150
            SINA=CDS(X_AT*RAD)*COS(D*RAD)*COS(HANGLE*RAD)+SIN(XLAT*RAD)*
                                                                                    00007160
0712
                                                                                    000 671 70
                 SIN(D# RAD)
```

```
12345676901234567890123456769012345578901234567890123456789012345678901234567890
CARD
0714
                                                                                  00007180
0715
            CESTH=COS((XLAT-TILT)*RAD)*CJS(D*RAD)*COS(HANGLE*PAD)+
                                                                                  00007190
1716
                   SIN( (XLAT-TILT ) + RAD) + SIN( D+RAD )
                                                                                  00007200
            HDRECT=HON* COST F
0717
                                                                                  00007210
0.718
            HD IFUZ = 0.5 * HD N* (C* (1.0+ COS(TILT*RAD))+REF*(C+SINA)*
                                                                                  00007220
0719
                    (1.J-CC3(TILT *FAD)))
                                                                                  00007230
0720
            HT =HOREC THHD I FUZ
                                                                                  00007240
0721
                                                                                  00007250
1722
                BEGIN CALCULATION FOR THE COLLECTE USEFul HEAT GAIN/LOSS AND
                                                                                  00007260
0723
                THE COLLECTOR CUTLET TEMPERATURE
                                                                                  00007270
0724
                                                                                  00007290
3725
          77 TC=200.0
                                                                                  00007290
0726
             UC HK = 0 . 0
                                                                                  00007300
0727
             IF(WDR-LT-90-0-DR-WDR-ST-270-Q-AND-WV-GT-100-0) WV=5-0
                                                                                  10007310
072€
            HW=0.3+0.23 *WV
                                                                                  00007320
            FS=0.5*(1.0+CCS(TILT*FAD))
0729
                                                                                  20007330
0733
         88 [AVG=(TC+[AMB ]/2.0
                                                                                  00007340
3731
            IREF=TC+0.38*(TAMB-TC)
                                                                                  00007350
9732
            X2=TAVG*TAVG
                                                                                  00007360
0733
            X3=X2*TAVG
                                                                                  10007370
0734
            X4=X3*TAV3
                                                                                  00007380
0735
            X5=X4*TAV3
                                                                                  00007390
0736
            X6=X5*T AVG
                                                                                  00007400
U737
             TCF = TC + 460 . 0
                                                                                  00007410
2738
             TAMBK = ( (TAMB-32. ))/1.8)+273.3
                                                                                  03007420
             TSKYR=1.8*(0.0552*(TANBK**1.5))
0739
                                                                                  00007430
0740
            TAMER=TAMB+460.0
                                                                                  00007440
0741
            HPPS=SIGMA*EP*FS*(TCR*TCR+T'SKYR*TSKYR)*(TCF+TSKYR)
                                                                                  02007450
.)742
            HPPG=SIGM4 * EP *FS * (TCR * TCR + TA 43R * TAMBR) * (TCR + TAMBR)
                                                                                  00007460
2743
            HRPW=SIGMA* (TCR*TCF+TAMBR)*(TCP+TAMBR)/(1.0/EP+1.0/EW-1.0)
                                                                                  00007470
3744
            TC TA=00+01* TA VG+D2* X 2+D3* X3+D4* X4+D5*X5+D6*X6
                                                                                  00037480
1745
            ROT R=D)+C1 *TREF+C2*TREF**2,+U3*TREF**3.+D4*TREF**4+D5*TREF**5.
                                                                                  00007490
074E
                +06*TREF**6.0
                                                                                  00007500
3747
            VISC=(V0+V1 * TAVG+V2* X2+ V3 * X3+ V4 * X4+ V5 * X5+ V6 * X6)/3.6E03
                                                                                  0 10 0 75 10
0748
            PEN=P0+P1*TAV G+P2*X2+F3*X3+P4*X4+P5*X5+P6*X6
                                                                                  00007520
0749
            AIFK=C9+C1* TA VG+C2*X2+C3*X3+C4*X4+C5*X5+C6*X6
                                                                                  00007530
            SETA=RCTA*((1.0/ROTR-100/ROTA)/(TREF-TAVG))
                                                                                  00007540
1750
            GRL=32.2*3E TA*ABS(TC-TAMB)*(CHITE**3.)/(VISC*VISC)
                                                                                  0-2007550
0751
            HNC=0.021*(AIPK/CHITE)*((PCN*GRL)**0.4)
0.752
                                                                                  20007560
0753
            UT=HW+HRES+HEEG
                                                                                  00007570
0.754
            UB =HRPW+HNC
                                                                                  00007580
1755
            UL =UT+UB
                                                                                  00007590
0756
            IF (ABS(UL-UCHK).LEn0.001) GO TO 39
                                                                                  00007600
0757
                                                                                  00007610
            UC HK = JL
            AM=SURT (U_/0.0)949)
0753
                                                                                  00007620
0759
            DUM=0.5*AM* ( N-DC)
                                                                                  00007630
0760
            FEFF= TANH( DUM )/D LM
                                                                                  22227640
            DJM1=JL *(DG+FEFF*(W-CO))
                                                                                  00007650
1761
            F1=1.0/((W*UL)*(1.0/DU'11+1.0/CB+1.0/(PI*DI*hFI)))
                                                                                  00007660
0762
0763
            DUM2=G*CPG/UL
                                                                                  00007670
            FR = DUM2 * (1 a 0 -- EXP(--F1/DUM2))
07c4
                                                                                  00007680
1765
            UU=AC*FR*(HT*ALPHA-UL*(TCI-TAMB))
                                                                                  33037690
            TF M=TCI+(1.0-FR/F1)+GU/(AC+UL+FR)
                                                                                  00007700
3766
0767
            IC = TF M+QU*(1.0/(HFI*FI*DI*TN*TL))
                                                                                  20207710
0763
            GD TD 83
                                                                                  22007720
```

```
 \begin{array}{l} 0\,30\,313\,30\,313\,444\,44444555555555566666666666667777777778\\ 123\,45673\,901\,2345678\,901\,2345578901\,2345678901\,2345678901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,2345678\,901\,23456789\,901\,23456789\,901\,23456789\,901\,23456789\,901\,23466789\,901\,23466789\,901000000000000000000000000000000
```

```
CARD
0769
         99 TCC=TCI+QJ/XMCG
                                                                                 0000774C
0770
            FETUEN
0771
            EN D
                                                                                 10007750
                                                                                 00007760
3772
      C
                                                                                 30007770
0773
      (
                                                                                 30007780
0774
      C
3775
      c
                                                                                 00007790
0776
      ******* 03307800
0777
                                                                            **** ) ) ) ) ) 7810
0778
                     PSYCHECKETRIC PROPERTIES: SUBROUTINE(XMOIST)
                                                                            **** 00007820
                                                                            **** 30007830
0779
      ( * * * *
                                                                                 00007840
1780
      C****
                                                                                 00007850
2781
                                                                                 00007860
2782
0783
            SUBFOUTINE XMCIST (TDE,TWE,RH, INDIC.PATM. HAIR, WSAT,WAIP, TWALL)
                                                                                  00007870
                                                                                 00007880
0784
      C
                                                                                 00007890
               PURPOSE
3 785
      C
                                                                                 20007900
                  TO DETERMINE THE ENTHALPY, SATURATION MOISTURE CONTENT,
0766
      C
0787
      c
                  AND ACTUAL MOISTURE CONTENT OF MOIST AIR+ AND ALSO. THE
                                                                                 00007310
                  NECESSARY WALL TEMPERATURE TO INDUCE MCISTURE REMOVAL.
1738
                                                                                 00007320
0799
                   GIVEN DRY BULB TEMPERATURE AND EITHER WET BULB TEMPERATURE
                                                                                 00007930
0790
                  OYTICINUH BYITALBE PC
                                                                                 30337940
      c
                   (NOI E : THIS PROGRAM ESSENTIALLY REPRODUCES PSYCHROMETRIC
                                                                                 00007950
1)791
      c
                                                                                  10007960
                  CHART DATA)
0792
      •
                                                                                 00007970
0793
      C
                                                                                  00007980
               DESCRIPTION OF PARAMETERS
      C
1794
                                                                                 00007990
0755
      C
                INPLT
                             DRY BLLB TEMPERATURE (F)
                                                                                 20003000
                  TDB
0.746
      c
                             WET BULB TEMPERATURE (F)
                                                                                 00008010
0757
      c
                  T WB
                                                                                 02003020
0798
      c
                  PH
                             RELATIVE HUMIDITY
                                                                                 00008330
0799
      c
                   INDIC
                            INPUT INDICATOR
0600
                          =1 , INPUTS ARE TOB, AND THE
                                                                                 30008060
                          =2. INPUTS ARE TOB. AND RH
                                                                                 00008050
3631
      C
                            ATMOSPHERIC PRESSURE (PSIA)
                                                                                  00008060
0202
                  PATM
      C
                                                                                  00008070
0.603
      c
                                                                                 00008080
                OUTPUT
0804
      C
                             ENTHALPY OF ADIST AIR (BIL/LBM DEY AIR)
                                                                                 00008090
0.805
                  HAIR
      c
                             SATURATION HUNIDITY (LBM WATER/LBM DFY AIR)
                                                                                  00008100
0 6 06
      (
                   WSAT
                             CORRESPONDING TO THE EXISTING WET BULB TEMP.
                                                                                 00008110
1607
      (
                             ACTUAL HUMIDITY (LBM WATER/LEW DRY AIR)
                                                                                 00008120
0809
      c
                  WAIR
                             CORRESPONDING TO THE GIVEN DRY BULB TEMP ..
                                                                                 00008130
0609
      C
                             PRES. . AND REL. HUMIDITY OF WET BULB TEMP.
                                                                                 03008140
0310
      c
                             SATURATION OR DEW PUINT TEMPERATURE (F)
                                                                                 00008150
1611
9512
      C
                             CURRESPONDING TO THE GIVEN TOB, PATM, AND TWB, DR 00005160
                                                                                 00008170
0313
            K=0
                                                                                 00008180
J £14
                                                                                 00008190
            I = 1
0 6 1 5
                                                                                 00280666
            IF (INDICONE . 1)GO TO 30
2816
                                                                                  00008210
0817
            T = T wB
                                                                                  00008220
0616
      c
               DETERMINING SATURATION PARTIAL PRESSURE 'PS' (PSIA)
1619
      C
                                                                                  00008240
               OF WATER VAPOR AT THE GIVEN TEMPERATURE
0 82 0
      c
                                                                                  00008250
          10 T1=273.16/(((T-32.0)/1.9)+273.16)
0821
                                                                                  00008260
0822
            A1=-3.29692*((1.0/T1)-1.0)
                                                                                  00008270
0823
            A2 =4a 76 955 * (1 .0 - 71)
```

```
1\,23\,456\,789\,01\,23\,455\,7\,39\,01\,23\,455\,7\,89\,01\,23\,4\,5\,5\,7\,89\,01\,2\,3\,4\,5\,6\,7\,3\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,4\,5\,6\,7\,8\,9\,01\,2\,3\,2
CARD
0824
                             43 =100 75586*(1.0-T1)+5-02808*ALOG10(T1)+1-50474E-04*(1.0-10.**A1) 00008280
                           6+0 a42973E = 03*((1) 0**A21~100) = 2a 2196
0 825
0 62 6
                             PS=(1000**A3)*141655
                                                                                                                                                                                               00008300
0827
                              #=1.004*15. C1*PS/(23.967*(FATM-PS))
                                                                                                                                                                                               00008310
JS23
                             If (KaNEa)) GO TO 50
                                                                                                                                                                                              00008320
                             IF (INDICAEQ.2) GC TO 40
                                                                                                                                                                                               00008330
0 8 2 9
                              IF ( I- NE -1 ) GO TO 20
                                                                                                                                                                                              00008340
0.630
0.631
                             1 = 2
                                                                                                                                                                                              00008350
                                                                                                                                                                                              00008360
0 8 3 2
                              W SA T = W
0933
                              wAIR= wSAT-J.J0)236*( TD5-T)
                                                                                                                                                                                              00008370
0 £34
                              HAIR=0.24*(TWE-32.0)+WSAT*(1)50.9+0.444*TWB)
                                                                                                                                                                                               00008380
J 83 5
                             D=PATH/(1.004*18.01/(23.567*WAIR)+1.0)
                                                                                                                                                                                               00008390
                             1 = T 0:3
                                                                                                                                                                                               00008400
 1836
0837
                             GO TO 17
                                                                                                                                                                                               00008410
0638 C
                                                                                                                                                                                               00008420
                                     FINDING THE CERRESPONDING RELATIVE HUMIDITY. GIVEN
 1339 (
                                                                                                                                                                                               00008430
                                    THE WET BULB TEMPERATURE
3640 C
                                                                                                                                                                                               JJ008450
0 5 4 1
                      23 RH= P/ PS
                                                                                                                                                                                               00008460
3042
3843
                             66 10 90
                                                                                                                                                                                               00006470
                                                                                                                                                                                               10008483
25.44
                      30 T= TD9
1845
                              30 TO 10
                                                                                                                                                                                               00008490
                      40 P=8H*PS
 1846
                                                                                                                                                                                               03038500
0847
                             WA IP=RH+W+(PATM-PS)/(PATM-P)
                                                                                                                                                                                               J0008510
                                                                                                                                                                                               00008520
J 8 43 €
J 243 C
                                    FINDING THE CORFESCONDING WET BULB TEMPERATURE. GIVEN
                                                                                                                                                                                               000008530
3350 C
                                     THE RELATIVE FUMIDITY
                                                                                                                                                                                               00003540
                                                                                                                                                                                               00009550
0851
             C
                                                                                                                                                                                               10008560
                             OT=-10.0
1852
                      45 I=T+UT
                                                                                                                                                                                               00008570
0853
                                                                                                                                                                                               00008580
085A
                             K = K + 1
                                                                                                                                                                                               10008590
J & 55
                              1F(KoGT+30)GD TO 70
                                                                                                                                                                                               00002600
0856
                              GO TO 10
                                                                                                                                                                                               01380006
J£57
                       50 vS=N-0.000236*(108-T)
3 25 8
                              IF (ABS( WS-WAIR) . LE. 0. 00005) GJ TO 80
                                                                                                                                                                                               00008620
                             IF (WS-WAIR) 60,30,65
                                                                                                                                                                                               00008630
9859
                                                                                                                                                                                               00008640
3560
                      T C-T = 1 03
                             DT = D1 / 2 . )
                                                                                                                                                                                               00008650
1661
                      65 CONTINUE
                                                                                                                                                                                               0 9 9 9 9 0 0 0 0
0862
                                                                                                                                                                                               00008670
                             GD TO 45
0863
                                                                                                                                                                                               20008680
                      79 #RITE(6,100)
3864
                                                                                                                                                                                               10008690
0.65
                       EC TWP=1
1866
                              WSAT= W
                                                                                                                                                                                               00008700
                                                                                                                                                                                               00008710
 1867
                             HAIR=).24*T CB+WAIR*(1060.9+0.444*TDB)
9330
                                                                                                                                                                                               00008720
                                                                                                                                                                                               10008730
0 869
                                     DETERMINING THE SATURATION OR DEW POINT TEMPS "TWALL"
0.830
              c
                                     CORRESPONDING TO THE GIVEN PRESSURE. CRY BULB TEMPERATURE.
                                                                                                                                                                                               00008740
                                     AND RELATIVE HUMIDITY OF WET BOLD TEMPS
                                                                                                                                                                                               00008750
0871
0872
                                                                                                                                                                                                20006760
                       50 IF (P.LE. 0. 0185) TWALL=(P-0.0185)/0.00077
                                                                                                                                                                                               30039770
0 273
                              IF(PaGT, J. 01E5) TWALL=(P-0.0185)/J.00124
                                                                                                                                                                                               00008780
0374
                                                                                                                                                                                                20008750
                             IF (P. GT. 0. 0309) 1WALL = (P-0.0113)/0.00196
0675
                              IF (P.GT. 0. 0505) TWALL=(P+0.0129)/0.00317
                                                                                                                                                                                               00008800
1676
                              IF (Po GT .0.0885) TWA_L=(P+0.0441)/J.004145
                                                                                                                                                                                               00008810
0.377
                              IF (PaGT.0.1217) TWALL=(P+0.1)394)/0.005641
                                                                                                                                                                                               00008820
11878
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345578901234567890
CARD
0 5 7 5
            IF (P. GT. 0.17811) TWALL = (P+0.21284)/0.007819
                                                                                000008830
0.830
            IF (FaGT . ). 2563) THALL=(0+0.3345)/J. 01068
                                                                                10008840
            IF (PoGT.0.3681) TWALL=(P+0.6435)/0.01438
0831
                                                                                00008850
0882
            IF(P.GT.0.5069) TWALL=(P+1.0235)/0.01913
                                                                                03890000
            IF (PoGTa) 69821 TWALL=(P+165003) / J. 0251
0.393
                                                                                10018870
0354
        1.0') FORMAT( * **** ITERATION IN XMDIST DOES NOT CONVERGE !)
                                                                                90006680
0635
            AE TURN
                                                                                20008890
            END
                                                                                00008900
) 365
0 6 2 7
                                                                                00008910
0898
      C
                                                                                00008920
2886
      C
                                                                                00008930
0630
      C
                                                                                00008940
0691
                                                                                20008950
1292
                                                                            ****10008960
0193
          ****
                                                                            ****00002970
                VERTICAL EARTH-WATER HEAT EXCHANGER: SUBFIGUTINE (VEWEX)
                                                                            ****00008980
1894
1895
1896
                                                                           *****00009000
      c
3897
                                                                                00009010
      c
0698
                                                                                00009020
0899
             SUBRUUTINE VEWEX (TEIN-GEXCARATIO-IMID-TECUT-CNTIME)
                                                                                00009030
1937
      C
                                                                                00003040
0.201
                                                                                00009050
0902
                PURPOSE :
                                                                                30309060
0003
                   TO COMPUTE THE WELL EXITING FLUID TEAPERATURE. THE HEAT
                                                                                00009070
0504
                   TRANSFER RATE BETWEEN THE FLJ ID AND THE SUIL, AND THE
                                                                                00009080
0905
                   TEMPERATURE PROFILE IN THE SOIL SURROUNDING THE WELL.
                                                                                20009050
0906
                                                                                00009100
3507
             NOTE: THE PHYSICAL PROPERTIES OF THE SOIL ARE ASSUMED CONSTANT
                                                                                00009110
                    IN THIS PROGRAMO
                                                                                00009120
3938
                                                                                00009130
0505
                                                                                00009140
0510
                DESCRIPTION OF INPUT/OUTPUT PARAMETERS:
                                                                                20009150
)911
0512
                I NPUT-
                                                                                00009160
                     TEIN - TEMPERATURE OF THE FLUID EXITING THE WELL. (F)
0913
                                                                                00009170
1914
                          - HEAT REJECTED (COOLING MUDE) OR EXTRACTED (HEAT
                                                                                00009180
                             ING NODE) BY THE HEAT PUMP AFTER SOLAR LOOP
                                                                                00009190
0515
0916
                             CONTRIBUTION: IN THIS SUPPOUTINE, IT IS USED AS 30009200
0517
                             A FIRST ESTIMATE OF THE HEAT CONDUCTED TO DR
                                                                                00009210
                             FROM THE SCIL. (BTU/HR)
                                                                                00009220
0518
                     RATIO - FRACTION OF THE HEAT PUMP CYCLE THE HEAT PUMP
                                                                                10009230
1910
                                                                                00009240
                             IS ENd
0 92 0
0921
                    CHTIME- PERIOD OF TIME THE HEAT PUMP IS OPERATING. (HR)
                                                                                00009250
                                                                                10009260
0522
.) 923
                                                                                20009270
0524
               OUTPUT-
                                                                                00009280
1925
                     TMID - TEMPERATURE OF THE FLUID AT THE CENTER OF WELL. (F)00009290
                     TFOUT - TEMPERATURE OF THE FLUID EXITING THE WELL. (F)
                                                                                00009300
1526
0527
      c
                                                                                00009310
9528
                                                                                10009323
                                                                                00009330
            COMMON /B_OCK/GGFM.CPRINT
1929
            DIMENSION R(33) .DR(50) .RL(50) .FA(50) .CV(50) .A(50).TAVG(50) .TAVG(50)
0930
            DIMENSION 8(50),C(50,50),CC(30,50),D(50),TF(50),TGROND(12)
                                                                                00009350
0931
            DATA KOUNT, KOUNTI, CYTIME/0,0,3,25/
1932
                                                                                00009370
            DATA FHI, N. RRL, EFSE/3. 14159.32, 30.0.1.1/
1933
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARC
1 934
                                                                                  00000380
0535
      C
                WELL PARAMETERS
                                                                                  00009390
0536
                                                                                  00009400
0537
            DATA RO, ALPHA, DEFTH, COND, DELTAZ, CPF/ 0. 20833, 0.0290, 250. 0, 0.82
                                                                                  00009410
0938
                             ,50, 0,1,0/,R10/62,0/
                                                                                  00009420
1939
      C
                                                                                  00009430
7540
      c
                                                                                  00009440
0541
                                                                                  00009450
        159 FORMAT('1'./////.54X, 'VALUES OF NON-UNIFORM GRID'.//)
1942
                                                                                  20029460
        201 FCFMAT(5x, THE WATER TEMPERATURE='.F8.2,10x, THE HEAT CONDUCTED', 00005470 8 TO 02 FPGM EACHT'.F10.0, 'BTU.'./)
0943
2544
        202 FORMAT (5X, 'THE SOIL TEMPERATURES ARE. ',/)
1545
                                                                                  00009490
054E
        203 FORMAT(4(15x,8(F3,2,1x),/))
                                                                                  00009500
1947
        204 FORMAT(55%, THE TOTAL HEAT TO, OF FROM THE SOIL IST, F10.0. PBTUTAL DO009510
0548
        300 FCFMAT(* *,///,10X, 'TEMPERATURE DISTRIBUTION',F6.1. FEET FFOM* 00005520
1545
                   . THE BOTTOM OF THE WELL' . 3X .///)
                                                                                  00009530
1951
        331 FCFMAT (4(5x,8('DR(',12,')=',F7,4,2x),///))
                                                                                  00009540
2551
        3 02 FCRMAT(//// ,54x , THE FADIUS VA_UES 1,//)
                                                                                  00009550
0952
        303 FORMAT(5(5X,8('P(',12,')=',F7,4,2X),///))
                                                                                  00009560
        3 J4 FCFMAT (*1*)
                                                                                  00009570
1953
9954
        3CE FOFMAT(//:10('*'): VENEX DOES NOT CONVERGE AFTER 20 ITERATIONS')
                                                                                  00009580
                                                                                  33309590
0455
      C
0755
      Ċ
                                                                                  00009500
0957
            U=DF XC
                                                                                  00009610
            TF(1)=TFIN
1953
                                                                                  00000620
1959
            FLFATE=497.3*GGFM
                                                                                  00009630
            JFLUX=FLRATE/(PHI*RO*FU)
                                                                                  00009640
0500
            wMU=8.3574-.18457*TFIN+.2332E-02*TFIN**2.-.17931E-04*TFIN**3.0
                                                                                  00009650
0 26 1
1562
                +a81845E-07*TFIN**4a-a20274E-U9*TFIN**5.+a20919E-12*TFIN**6.
                                                                                  00009660
J 963
            WPF=27.51676-.65809* TFIN+.65057E-02* TFIN**2.-.66433E-04*TFIN**3.
                                                                                  00009670
                +037315E-06*TF IN*+40-074771E-19*TF IN** 50+0 7675E-12*TF IN** 60
                                                                                  00009680
3964
             WE = WMU+CP= / WPR
                                                                                  00009690
0965
            %ED=2 a 0 *GF_ UX *R C/WMJ
                                                                                  00009700
0566
0567
            IF (PED . LE. 2000. 0) H= 4.364* WK/(2.0*RD)
                                                                                  30333710
            IF (RED. GT.2000.0.0AND.GEXC.GT.J.0) H= 0.023*(RED**C.8)*(WPR**O.3)
                                                                                  00009720
3568
0569
           3
                                                 *WK/(2.0*FD)
                                                                                  00009739
0570
            IF (PED. GT. 2 00 0. 0.AND. GFXC. LE. U. 0) . H=U. 023* (PED**0.8)* (MPR**0.4)
                                                                                  30009740
0571
           3
                                                 *W(/(2.0*RD)
                                                                                   00009750
0972
            IF (KOLNT.SE.1) GC TO 500
                                                                                  00009760
0973
                                                                                  00009770
0574
      (
                SET THE VALUE OF FADIUS AND RADIUS INTERVALS.
                                                                                  00009780
0975
                DOMAIN SIZE=30.0 FT. FROM WELL SURFACE.
                                                                                  30009790
      C.
                                                                                  00009800
0576
                                                                                  02009310
            VP1=N+1
1977
                                                                                  00009820
9478
            DEAFPERELIN
                                                                                  00009830
0575
            R(1)=0.0
                                                                                  20003840
0.669
            DO 133 I=2. NF1
                                                                                  00009850
0581
            R(I)=R(I-1)+DFAPF
            DRAPP=DRAPP*EPSR
                                                                                  00009860
0332
0983
        100 CONTINUE
                                                                                  000009670
            FACTUR=FRE/R(NP1)
                                                                                   0.9822000
0534
1985
            19N . S=1 101 00
                                                                                  30339890
1986
            R(I)=R(I)*FACTOR
                                                                                  20009900
                                                                                  00009910
0587
            DR(I) = R(I) - R(I-1)
        101 CONTINUE
                                                                                   10009920
กรุยล
```

```
CARD
1589
            IF (KPRINTHEQ.D) CO TO 111
                                                                            00209930
) è e O
                                                                            00009940
0691 C
              PRINT THE VALUES OF NON-UNIFORM GRID
                                                                            00009950
                                                                            00009960
1992 C
0093
            NF 1 1E(6.199)
                                                                            00009970
994
            WEITE(6.301) (1.09(1).1=2.NP1)
                                                                            100009980
        111 00 122 I=1.NP1
                                                                            00009990
1995
            4(1)=R(1)+RC
                                                                            00010000
1556
        122 CONTINUE
0597
                                                                            330 100 10
0598
            IF (KPRINT. EG.O) GG TC 113
                                                                             00010020
0563
      c
                                                                            00010030
1000
     C
              PRINT THE VALUES OF RADIUS
                                                                             00010040
1001
      C
                                                                             30010050
1.112
                                                                             0001 0060
            ARITE(6.303) (I.R(I).I=1.NP1)
                                                                             30010070
1003
1004
            WP1 TE ( 6.304 )
                                                                            00010080
1005
                                                                            00010090
      c
              BUILD UP FADILS AND FACE AREA OF LEFT FACE OF CONTROL VOLUME
                                                                            00010100
1006
     c
1007
                                                                            00010110
       113 RL(1)=R(1)
1008
                                                                            00010120
1009
           JC 102 I =2.NF1
                                                                            00010130
1010
           #L(I)=(R(I)+R(I-1))/20)
                                                                            00010140
1011
           FA(I) =2.0*PHI*RL(I)
                                                                             00010150
1012
        102 CONTINUE
                                                                            000 10 160
1013
                                                                             00010170
              BUILD UP CENTREL VELUME
                                                                             00010180
1014
     c
                                                                             0910190
1015
      c
1016
           CV(1) =PHI*(RL(2)*FL(2)+FL(1)*RL(1))
                                                                             00010200
                                                                            00010210
1017
           00 104 I=2.N
            CV(I) = PHI*(FL(I+1)*RL(I+1)*R_(I)*FL(I))
                                                                             00010220
1019
                                                                            00010230
1019
        104 CONTINUE
1 02 0
           K= (DEPTH/DELTAZ)
                                                                            00013240
1021
            DOPTH=K
                                                                            0001 02 50
1022
                                                                            00010260
1023
               INITIA_ TEMPERATURE DISTRIBUTION
                                                                            00010270
1024
                                                                             00010280
      c
                                                                            00010290
1 )25
           00 106 J=1.K
           TGFOND(J)=63.0-0.5*(J-1)
                                                                            00010300
1 02€
1 02 7
            TAV(J) = TGRC ND(J)
                                                                             00010310
           DO 106 I=1, NP 1
                                                                            00010320
1 028
                                                                             00010330
        1 06 CC(J,I)=TGRCNC(J)
1 02 9
                                                                            00010340
1030
           00 108 I =2.K
                                                                             00010350
           TF(I)=TGROND(I)
1031
1032
        108 CONTINUE
                                                                            00010360
1033
            APEA= 2. 0*PHI*PO*DELTAZ
                                                                             30010370
1034
           V DL=PHI *FD * RO *JELT AZ
                                                                             00010380
1035
        500 QTOTAL=C.O
                                                                             00010390
                                                                            00010400
103€ C
                                                                             00010410
               SET UP CALCULATION ACCORDING TO HEAT PUMP CYCLING
1037 C
                                                                             30010420
1038 C
            IF(PAT ID .GE . 1.0) GO TO 991
                                                                             30010430
1039
           IF (KOUNT1, EQ. 1) 30 TC 990
                                                                             30010440
1 04 0
                                                                             00010450
           TIME =CNTIME
1041
                                                                            00010469
1042
           MS ET = 1. )
                                                                             0001047C
1043
           50 TO 992
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
CARD
1044
         SSC MSF T=0
                                                                                   00010480
1045
            DI IMESC YTIME-ONTIME
                                                                                   JDD 10490
1346
            30 TJ 992
                                                                                   0001 05 00
1047
        991 OTIME =0.125
                                                                                    00010510
1 04 8
      c
                                                                                    303 105 20
1 049
      c
                BUILD UP CCEFFICIENTS OF THOM
                                                                                    00010530
1050
                                                                                   00010540
      C
1 )5 1
        992 X= 2. ) *FLRATE *DTIME/(FHCI* VOL)
                                                                                   00010550
             Y= H*ARE A* JT INE/ (RHC*VCL*CFF)
1 052
                                                                                    00010560
1053
             4X = X - Y - 1 - 0
                                                                                   00010570
            YY = X + Y + 1 . )
                                                                                    00010560
1 154
1 055
            JG 37 KK=1.K
                                                                                    00010590
1056
            KCHECK= 0
                                                                                    00010600
1 C57
        300 00 109 T=1.NP1
                                                                                    00010610
1058
        109 C(KK,I)=CC(KK,I)
                                                                                    00010620
1.)59
            A(1)==(ALPHA+DT IME *FA(2)/(CV(1) *DR(2)))
                                                                                    00010630
                                                                                    0001 064 C
1050
1051
            C(KK, 1) = C(+K, 1) + (Q*4 LPHA*DTIME)/(DELTA Z*CCND*CV(1))
                                                                                    100 106 50
            0(1)=1.0-A(1)
                                                                                    00010660
1 062
                                                                                    00010670
1063
            4. S= 1 00S 20
            B(1)=-(ALPHA+DT IME*FA(1)/(CV(1)*DR(1)))
1 054
                                                                                    20010660
            A(1) =- (ALPHA*CTIME*F & (1+1)/(CV(1)*DR(1+1)))
                                                                                    3001 0650
1065
1006.
            D(1)=109-3(1)-4(1)
                                                                                   000 10700
1.067
        200 CUNTINUE
                                                                                    00010710
1068
            C(KK,N) =C(KK,N)-A(N) *C(KK,N+1)
                                                                                    00010720
1 169
            A(N)=)0)
                                                                                    00010730
1070
                                                                                    00010740
1071
                TRIDIAGONAL SYSTEM GAUSS ELIMINATION
                                                                                   00010750
      C
1072
                                                                                    20010760
      C
1 6 7 3
               CLAPUTE THE NEW MATRIX. SOLUTION WILL BE STORED IN C ARRAY
                                                                                    00010770
      C
                                                                                    JJ010780
1074
     c
1.175
            N.S=1 &S 00
                                                                                    00010790
1 6 7 6
            25 =B(1)/D(1-1)
                                                                                   00010800
            U( I )= D( I )- 35 *A( I-- 1 )
                                                                                   00010810
1077
1 (78
            C(KK.1) = C(KK.1) - RR * C(KK.1-1)
                                                                                    00010820
1079
          25 CUNTINUE
                                                                                    00010830
1030
      C
                                                                                    00010840
1301
                BACK SUBSTITUTION
                                                                                    00010850
1682
                                                                                    00010860
      C
                                                                                    0001 0870
1083
            C(KK, N)=C(KK, N)/D(N)
1034
            JO 35 1=2.N
                                                                                    00010880
                                                                                    00010890
            J=N-I+1
1065
                                                                                    10011903
1 236
            C(KK, J)=(C(KK, J)-A(J)*C(KK, J+1))/J(J)
            IF (C(KK,N) . LT . TGRCNO (KK)) C(KK, N) = TGROND (KK)
                                                                                    00010910
1687
1038
         35 CONTINUE
                                                                                    10011920
1 08 9
                                                                                    00010930
      C
1 030
      r
                BEGIN ITERATION FOR VERTICAL TEMPERATURE VARIATION
                                                                                    00010940
1091
                                                                                    30013950
      c
1 192
            TF (KK+1)=(XX/YY)*TF(KK)+(200/YY)*(TAV(KK)+Y*C(KK,1))
                                                                                    0001 0960
1093
            TAVG(KK) = ( TF(KK) +TF(KK+1 ) )/2.)
                                                                                    00010970
            OCCNV=H*AREA*(TAVG(KK)-C(KK,1))
                                                                                    10011980
1094
                                                                                    00010990
1.)95
            IF ((ABS(Q)-AES(QCONV))oLE . 10.0) GU TO 1100
            I=(QCUNV.GT.Q) Q=Q+(GCGNV-Q)/2.0
                                                                                    00011000
1056
            IF (Q.JT.QCUNV) Q=Q-(Q-QCONV)/2. J
                                                                                    00011010
1097
                                                                                    00011020
            KCHECK=KCHECK+1
1 058
```

```
CARD
 1 ( 9 9
             IF (KCHECK. GE. 20.0) #FITE(6, 3)5)
                                                                            00011030
            IF ( KCHECK . GE . 20 . 3) 3 C TG 40
                                                                            20011240
1 10 0
                                                                             13311050
            GO TO 300
 1101
        11 CO OC C'ND = Q*DT I ME
                                                                             20011060
 1102
            STOTAL = GTSTAL + GCEND
                                                                             00011070
 1103
 11)4
            TAV (KK)=TAVG(KK)
                                                                             00011080
 1105
            DO 107 I =1 . NP1
                                                                             00011090
 1 106
         107 CC (KK . 1)=C(KK . 1)
                                                                             00011100
            TFCUT=TE(<K+1)
                                                                             00011110
 1137
 1108
            HZ =KK*DELTAZ
                                                                             00011120
 1119
            *MU=3.3574-.18457*TAVG(KK)+.2332E-32*TAVG(KK)**2.
           6 -0 17931E-04 *T AVG(KK) **3.0
                                                                             00011140
 1110
                ++91845E-87*TAVG(KK)**4+-+23274E-05* TAVG(KK)**5
                                                                             10011150
           3
 1111
                +.20919E-12*TAVG(KK)**6.
                                                                             20011162
 1112
                                                                             10011170
            *PF=27.51876-.55899*TAVG(KK)+, 35657E-02*TAVG(KK)**2*
 1113
           & -0 564 33 E-04 *TAV G(KK) **3 .
                                                                             00011180
 1114
                + . 3031 5E- C5+ TAVG (KK) ** 4 . - . 74791E-09+ TAVG (KK) *+5 .
                                                                             00011190
 1115
           દ
1116
                +.7675E-12*TAVG(KK)**60
                                                                             20011209
 1117
            WK=WMU*CF=/WPF
                                                                             00011210
           IF (RED. LE. 2000. 0) H=1.364*WK/(2.0*RO)
                                                                             00011220
 1113
            IF (FE Do GT + 2 00 U. 0 AND O GEXC + GT. 0. 0) H= 0. 023*( RED + 0. 8) * (WPR++0. 3)
                                                                             00011230
 1119
 1120
                                              **K/(2.0*F0)
                                                                            00011240
            IF ( RED + G T + 2 C C 0+ Q+ AND+ GE XC + LE+ 0+ 0) H= 0+ 02 3* ( PED** 0+ 3) * ( WPR** 0+ 4)
                                                                             00011250
 1121
                                           *WK/(2.0*PO)
1122
                                                                             20011260
 1123 C
               PRINT THE RESULTS
                                                                             00011270
                                                                             10011280
 1124
                                                                             00011290
            IF (KPRINT . EQ. 9) GG TC 37
 1125
 1126
            WRITE(6,3)01 HZ
                                                                             10011300
            *PITE(5,231) TF(KK+1),QCON3
                                                                             00011310-
 1127
 1128
            WELTE (6.202)
                                                                            00011320
            #FITE(6,203): (C(KK,I);I=1,32)
                                                                             11011331
 1129
                                                                             00011340
 113)
          37 CONTINUE
             TMID=TAVG(3)
 1131
 1132 C
               RETURN TO FORWARD ANOTHER TIME STEP
 1133 C
                                 00011380
 1 134
                                                                             00011390
 1135
            KCUNT=KCUNT+1
            IF (KPRINT, EQ. 1) WRITE(6, 204) GTOTAL
                                                                             00011400
 1136
            IF (PATIO.GL.1.0) GO TO 47
 1137
                                                                            30011410
 1133
            KCUNT1=1
                                                                            00011420
            IF (MSE T. EQ. 0) KOUNT1 =0 1000
                                                                           . 00011430
 1139
          40 PETURN
                                                                            33311443
 1140
                                                                             00011450
 1141
            END
                                                                             20011460
      //GJ.5YSIN JJ #
 1142
       EINPUT MONTH= 38, MDAY 1=04, MDAY 2=36, INDEX=2, KPRINT=3, IHCUSE =2, IDP=1, ELND 30011470
 1143
      SENDLIST
 1144
                                                                            00011520
 1145
       1184
                                                                             00011530
 1146
```

VITA

Faisal Ibrahem Al-Juwayhel

Candidate for the Degree of

Doctor of Philosophy

Thesis: SIMULATION OF THE DYNAMIC PERFORMANCE OF AIR-SOURCE, EARTH-SOURCE, AND SOLAR ASSISTED EARTH SOURCE HEAT PUMP SYSTEMS

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Kuwait, Kuwait, January 16, 1951, the son of Mr. and Mrs. Ibrahim Al-Juwayhel

Education: Graduated from Keifan High School, Keifan, Kuwait, in May 1969; received the Bachelor of Science degree in Mechanical Engineering from the University of Pittsburgh in December, 1973; received the Master of Science degree in Mechanical Engineering from Oklahoma State University in May, 1977; completed the requirements for the Doctor of Philosophy Degree in December, 1981.

Professional Experience: Project Engineer, Kuwait Oil Company, December, 1973, to July, 1975; graduate Research associate, School of Architecture, Oklahoma State University, July, 1980, to December, 1980; graduate teaching assistant, Mechanical and Aerospace Engineering, Oklahoma State University, September, 1980, to December, 1980.

Professional Organizations: Student Member, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); Member, Kuwait Engineering Society.