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CHAPTER1

INTRODUCTION

Motivated by the recent results of P. Robba ([16], [17]) relating the index of p-adic linear
differential operators to the generic radius of convergence of their homogeneous solutions,
the present work provides a detailed study of the radii of p-adic convergence of such solutions
at a generic point. We then use the information obtained to verify that the index formula
conjectured by Robba ([16], §4.13) does indeed hold, under a slightly stronger assumption.
In addition, we use the correspondence between radii of convergence of solutions and slopes
of the associated Newton polygon to describe an explicit factorization of linear differential
operators, which is an extension of the factorizations given in [10]. We also demonstrate
how these methods can be applied to the description of solutions unbounded in the generic
disk and of solutions at irregular singular points. As a further application we show how one
may use these ideas to obtain information about the indices of the symmetric powers of the
p-adic Bessel equation.

The theory of p-adic convergence of solutions of differential equations began with E.
Lutz [12], who proved that at an ordinary point, all formal power series solutions of a
first order system have strictly positive radii of p-adic convergence. Later, D.N. Clark [5]
showed that this is also true at singular points of linear differential equations where the
roots of the indicial polynomial are p-adically non-Liouville. This stands in contrast to the
theory of linear differential equations in the complex domain. A further difference between
the p-adic and classical theories is that in the p-adic situation, a power series solution
at an ordinary point need not converge up to the nearest singularity; for this reason the

question of p-adic radii of convergence of solutions is somewhat more difficult. For example,
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one may easily construct examples of higher order equations which at each ordinary point
have solutions with distinct radii of p-adic convergence, using the fact that the exponential
functionvis not p-adically entire. B. Dwork and P. Robba [10], however, have shown that
there is a factorization of linear differential operators corresponding to the filtration of the
solution space near the generic point according to radius of p-adic convergence and growth
conditions, which implies that the phenomenon of distinct radii of convergence is related to
the reducibility of the operator over a certain ring. Nevertheless, there have remained no
general methods for determining the precise radii of convergence of solutions at a generic

point, or for determining when distinct radii of convergence will occur.

Although results giving the exact radii of convergence of solutions of p-adic differential
equations have been lacking, there are some well-known estimates. A lower bound for the
common radius of p-adic convergence of the entries in the local solution matrix at a generic
point for a linear differential equation written in matrix form appears in G. Christol’s book
([4], Prop. 4.1.2). This estimate has the advantage of depending only on the norm of the
coefficient matrix, but it does not give any information about the possibility of distinct
radii of convergence. The recursion formula stated there is essentially the same as that
found in Theorem 3.1 below. In this theorem we show that this estimate is exact in certain
instances for first order operators. Our first instinct in trying to generalize this theorem for
higher order operators was that the radii of convergence of solutions should be determined
in certain cases by the absolute values of the eigenvalues of the coefficient matrix. However,
for computatioha.l purposes we found it easier to work with operators in scalar form, and in
doing so we realized that one must consider the slopes of the associated Newton polygon,
rather than the eigenvalues of the coefficient matrix, to achieve the proper generalization
(Theorem 4.3 below). This result is the first we know of that gives formulae for the exact
radii of generic convergence of solutions for such a wide class of operators, without any

hypothesis on the existence of Frobenius structures.

Probably the best known non-trivial example of a linear differential operator whose



solutions have distinct radii of p-adic convergence at a generic point is P. Monsky’s example
involving the confluent hypergeometric function. In Chapter 4 we give a detailed explanation
and extension of this example, showing how the magnitude of the parameter influences
whether or not distinct radii of convergence occur. In addition to the factorization theorem
based on convergence and growth conditions, Dwork and Robba have also shown that there
is a factorization of differential operators related to their associated Newton polygons ([10],
§6.2.3.3). However, this result treated only the first side of the Newton polygon, and the
relation between these two factorizations remained unclear. One of the purposes of this
study has been to explain and extend this idea; in particular, Corollary 4.4 below does give

the precise relation between the two factorizations.

Some of the first results on the index of p-adic differential operators were due to A.
Adolphson [1], who in particular demonstrated a relationship between the index on spaces
of holomorphic functions and index on rational functions. At this time Robba ([14], [15])
also established some general properties of the index, being mostly concerned with index
of operators on spaces of analytic elements. The connection between index and radius of
convergence at generic points first appeared in the 1984 paper of Robba [16], where we
find the statement of this relationship for first order operators. Here Robba also established
certain properties of the index x.(L, ) which closely paralled those of the function ord.(f, r).
These similarities provide some evidence for Robba’s conjecture that a similar index-radius
relation should hold for higher order operators. These two developments provided much
of the inspiration for the present work; specifically, if one assumes that the conjecture is
true, then the similarities between x.(L, ) and ord.(f,r) suggest that there should be some
relation between the “total radius of convergence” p.(L,r) and the norm function |f|.(r);
we have shown this to be the case for first order operators (under certain conditions) in
Theorem 3.1 below, and generalized this for higher order operators in Theorem 4.3. Indeed,
it has been our demonstration of this relationship that has enabled us to partially prove

Robba’s conjecture (Corollary 4.6).
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One of the difficulties we have encountered in this work is that even in the cases where
we are able to determine the radii of convergence of all generic solutions exactly, we are not
always able to determine whether the bounded solutions converge on the circumferenced or
uncircumferenced disk of that radius. However, we are able to choose a particular basis for
the generic solution space such that the solutions in that basis whose radii of convergence
are known exactly have uncircumferenced disks of convergence. We also know that all such
solutions have uncircumfereﬁced disks of convergence when the order of the operator is
two or less (Theorem 3.1 and Theorem 5.1). It seems likely that this should also be true
for operators of arbitrary order, but the technique of Theorem 5.1 (analyzing a continued
fraction expansion for a solution of the associatedv Riccati equation), which we used to
establish this result for operators of order two, appears to generalize only to certain types

of higher order operators.

It will also be observed that our results do not always give the precise radii of con-
vergence for all generic solutions; indeed we may often be able to give only simple lower
bounds. The extent to which we can give exact values depends on the shape of the Newton
polygon of A(L) (cf. Chapter 4). For example, if ¢ = 0 and » = 1 in the notation of Corol-
lary 4.4, we find that those solutions which correspond to positive slopes of the Newton
polygon have radii of convergence which are determined only by the corresponding slope;
however, the radii of convergence of solutions corresponding to non - positive slopes are
not determined by the corresponding slope. Indeed the second order operator D? — 1 has
solutions converging only on B(t, (p~1/(?~1))~), while the second order equation satisfied by
the hypergeometric function F(%,},1;z) has a solution converging in B(t,1~) when p # 2
[9], yet both these operators have Newton polygons whose only side has slope zero.

The shape of the Newton polygon of A.(L) is influenced in part by the singularities
of the operator. In relatiﬁg our results to the general theory of p-adic differential equa-
tions, therefore, it does not appear that our results give much new insight into deformation

equations arising in the p-adic cohomology associated to families of algebraic varieties over
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finite fields, except perhaps in the treatment of exceptional primes. This is because such
equations generally have at worst regular singularities, and our method generally gives only
lower bounds for the radii of convergence for sﬁch equations. However, because our results
seem to be well adapted to the study of equations with irregular singularities (cf. Corollaries
3.4 and 4.9), we are hopeful that they may prove to be useful in the study of differential
equations associated to the p-adic theory of exponential sums.

As an illustration, we show how our methods may be applied to the study of the p-adic
Bessel equation, complementing the work of Robba [18]. In that article Robba used p-adic
methods to analyze certain infinite products which are natural extensions of the L-function
associated to Kloosterman sums; these products represent polynomials whose degrees are
related to the indices of the symmetric powers of the p-adic Bessel operator. Robba’s method
for computing the indices is based on the results of [8], [17], and a knowledge of the local
solution matrices near 0 and co. The irregular singularity at oo is particularly troublesome,
however, and the index can only be computed using a conjectured result. Robba computes
the index by analyzing a related system obtained by ramifying the variable at oo, and
using a conjecture concerning the effect of this ramification of the variable on the index. In
Chapter 6 we present some calculations which support Robba’s formula by showing that

the conjecture is true for the odd symmetric powers, relative to small disks about oo.



CHAPTER I
ANALYTIC ELEMENTS AND INDICES

In this chapter wé introduce the basic notations, definitions and properties of analytic
elements which we shall use throughout the remainder of this study. Many of our terms
and notations are generalizations of those found in earlier papers ([10], [16]), and we have
therefore tried to indicate how our nomenclature is related to the previous literature. We
also give some of the basic properties of the index of differential operators on spaces of
analytic elements.

Throughout this paper we will be making use of the elementary theory of p-adic an-
alytic functions, particularly the properties of non-archimedean valuations and the theory
of Newton polygons for polynomials and analytic functions. For an introduction to these
topics, the reader is referred to ([6], §1) or ([3], Chapitre 4).

For the remainder of this study, K will denote an algebraically closed field of charac-
teristic zero, complete under a non-archimedean valuation, ord, which is normalized so that
ordp = 1, where p > 0 is the characteristic of the residue-class field of K. We imbed K in
an extension field 2 which is complete under a valuation extending that of K and whose
valuation ring contains a unit ¢ whose image f in the residue class field is transcendental
over the residue class field of K. Such an element ¢ will be called a generic unit. We also
suppose that the absolute value thus induced on Q2 by ord is normalized so that |p| = p~%;
therefore if z € () is such that |z| = r, then ordz = — logr, where log refers to the usual
real logarithm to the base p.

Let

1% = {l=| : = € @\ {0}}

6



7

be the multiplicative group of values of Q*. By our hypotheses |Q*| is dense in R*. For

a €  and r € |Q*| we define the circumferenced and uncircumferenced disks
B(a,r*)={z€Q: |z —a| <1},

B(a,r")={z€Q: |z—a|<r},

and the circumference

Cla,r)={z€Q: |z —a|=r}

At times we may find it convenient to write disks in additive notation; for example, the

disk B(a,r”) may also be written as
B(a,r")={z € Q: ord(z —a) > —logr}.

If c € K, we say that t € Q is a generic point for ¢ of radius r (or a ¢, r—generic point)
if|t—c/=r>0and B(t,r")NK =0. If || < 1 and r = 1 this is equivalent to saying that
t is a generic unit. The disk B(t,7~) is called a ¢, r—generic disk. (In Robba’s terminology
[16], t is called a generic point on the circumference C(c, ), and B(t,r ™) is called a generic
disk of the circumference C(c,).) By our hypotheses on {2 there exist ¢, »—generic points
for every ¢ € K and every r € |Q*|.

We now define, for each ¢ € K and r € R™, an absolute value | - |.(r) on K(z) as

follows: For f € K|[z], write f = 3 a;(z — ¢)* and define
|fle(r) = sup |a;|r*.
We extend the definition of | - |(r) to rational functions A = g/f by setting

|hle(r) = lgle(r) /I fle(r)

where f,g € K[z]. It is well-known that this definition is independent of the choice of g, f,

and that in fact |h|.(7) = |h(¢)| for all h € K(z) and all ¢, r—generic points t. We define
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E. . to be the completion of K(z) under the norm | - |(r); the K —algebra E. , is then a
(non-archimedean) Banach space over K. Notice that the field Eo ; is the same as the field
E described in [10].

A subset A of P() is said to be a ¢, r—very standard set if A is a union of sets which
are either of the form B(a;,r~) with |a; — c| < 7, or the set B(c,r7*)°. Note that if 4 is
a c,r—very standard set and a € B(c,r*) then A is an a,r—very standard set. We may
sometimes use the term “very standard set” without explicit reference to ¢ and ». (In [10],
Dwork and Robba have used the term “very standard set” to describe what would be called
a “0,1—very standard set” in our terminology.)

If A is a subset of P(Q2) with d(4,A°) > 0 (in particular, if A is a very standard
set), we define R(A) to be the set of all f € K(z) which as functions on P(f2) have no
poles on A. A function f: A — Q is an analytic element on A if it is the uniform limit
on A of a sequence in R(A); we denote the set of analytic elements on 4 by H(A). The
K —algebra H(A) is then a (non-archimedean) Banach space over K under the supremum
norm || fll4 = supaca |(2)-

It is not possible, in general, to extend the definition of | - |.(r) from R(A) to H(A)
by continuity; for example, if A = B(c,p~) with p < r, one can easily find a sequence of
polynomials {f,} with || fa||4 — 0 while |f,|.(r) — oo. If A contains a ¢, r—generic point
t, however, then for all f € R(A) we have |f(t)| = | f|.(r) and therefore |f|.(r) < || f]l4, so
it does make sense to extend the definition of | - |.(r) to H(A) in this case. As this next

proposition shows, this can also be done when A is a c,r—very standard set, and in fact
|fle(r) = [|f|| 4 for all f € H(A).

Proposition 2.1. Let A be a ¢,r—very standard set.
i. For all f € R(A), we have |f|.(r) = ||fl|a. Using this to extend the definition of |- |.(r)
to H(A) by continuity, | f|.(r) = ||f||a for all f € H(A).
ii. Ifa € A and f € H(A), then |f(a)| < |f|c(r) if and only if f has a zero in B(a,r™)

(resp. in B(c,r%)) if |a — ¢| < r (resp. if |a — ¢| > 7). In particular, if f has no zero



on A then |f(z)| is constant for z € A.

Proof: We first treat the case where A does not contain B(e,r*)°. Suppose f € K[z] and
write f(z) = C - [[(z — a;), where the product is finite and C, a; € K. If h(z) = 2 — a and
a € A, then h(a) = a — a and |h|.(r) = max{|a — ¢|,r}. Since |a — c| < r, it is easily seen
that |h(a)| < |h|c(r) if and only if |@ — a| < r, and that |h|.(r) = ||h]| 4. Since |- |, | - |c(7),
and || - ||4 are all multiplicative, both (i) and (ii) follow for f € K[z]. As a corollary, if
f € K[z] and f has no zero on A, then f has constant absolute value on A. If f € R(4),
then f may be written as f = g/h, where g,h € K[z] and h has no zero on A, whence (i)
and (ii) extend immediately to the case where f € R(A). Since H(A) is the completion of
R(A) with respect to || - ||4, and | - |c(r) = || - || 4 on R(A), part (i) follows in this case.

Now let h € H(A) and let a be any point in A; note that we then have B(a,r™) C A.
Since h € H(B(a,r™)), h js a bounded analytic function on B(a,r~) (cf. [4], Proposition
2.4.1). By the theory of Newton polygons, if h has no zero on B(a,r~) then |h(z)] is constant
for z € B(a,r™), since h is analytic and has no zero on this disk. Therefore, if h, € R(A)
and h,, — h uniformly on A, then for large n we have |h,(z)| = |h(z)| for z € B(a,r7).
Thus h, has no zero on B(a,r~), whence |h,(z)| = |hp|c(r) for all z € B(a,r~). Since
h(z) = lim,, hp(z) and |k|.(r) = lim, |hy|c(7), we have |h(z)| = |h|c(r) for z € B(a,r™).
Conversely, if a € B(a,r™) is a zero of h, then we may write h = (z — a)g with ¢ € H(A).
Thus if z € B(a,r~) then we have |h(z)| < r-|g(z)| < 7 |glc(r) = |h|c(r). This completes
the proof of (ii) in this case.

If A contains B(c,r*)¢, we need to check that ||f||a = |f|(r) and that |f(2)| < |f].(r)

for all z € B(c,*)c if and only if f has a zero in B(c,7*). For f € R(A) we write

- z—f
fz)=c- [l - o JT (2222),
-
where the products are finite, C, a;,8¢,v¢ € K, and a;,7, lie in a union of disks of the

form B(a;,r~) with |a; — ¢| < r, so in particular we have |a; — ¢| < r and |y, — ¢| < r for

all j,£. By noting that factors of the first type have zeros at co and factors of the second
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type have zeros at the B, we may easily establish the results for elements of R(4). Part
(i) immediately extends to the case where f € H(A) by continuity. For (ii), we note that
the tra.néformation T : P(Q) — P(Q) given by T(z) = 1/(z — c) is bijective as a map from
B(c,r*)¢ to B(0,(1/r)”) and is stable on P(K). It follows that h + h o T is an isometric
isomorphism between H(B(c,r*)¢) and H(B(0,(1/r)”), because the norms involved are
the supremum norms. Therefore, if f € H(A), then f o T is a bounded analytic function
on B(0,(1/r)”), and we may complete the proof by repeating the argument of the previous
paragraph.

As a corollary to this proposition, we note that, as far as analytic elements are con-
cerned, we may assume that a c,r—very standard set contains all ¢, »—generic disks. More
precisely, if A is a ¢,r—very standard set and we define B to be the union of 4 and all
¢, r—generic disks, then the inclusion of H(B) into H(A) given by f — f I 4 is an isometric
isomorphism. We do not require, however, that a very standard set should contain all the
generic disks, although this would cause no loss in generality.

If A is a subset of P(Q) with d(A4, A°) > 0, we define M(A), the field of meromorphic
elements on A, to be the field of quotients of the integral domain H(A). We extend the

absolute values || - ||4 and | - |(r) to M(A) in the natural way: for h = g/f we set

I2lla = llglla/lifllas lhle(r) = lgle(r)/|fle(r)-

If A, B are sets of this type with B C A, and f € M(A) has no poles on B, then f € H(B);
this follows by observing that if h € H(B) and h has no zeros on B then 1/h € H(B).

If B is the union of all ¢,r—generic disks, then H(B) is a field, and consequently
H(B) = M(B). Furthermore, E, , may be naturally identified with M(B). If A contains a
¢, r—very standard set then we have natural inclusions H(A) C M(A) C E. ,.

If A C P(Q) satisfies d(A4,A°) > 0 and h € K(z) we define ord4h to be the number

of zeros of h on A minus the number of poles of ~ on A, counted with multiplicity. As
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conventions we will also write
ord} (h,r) = ordp(a,r+)h,
ord; (h,r) = ordp(a,r-)h,
ordsh = ord(gyh.
The following proposition will enable us to extend the definition of ord 4k to elements
h € M(A) where A is a very standard set.

Proposition 2.2. Let A be a ¢,r—very standard set and let h € H(A), h # 0. Then h has

only finitely many zeros on A.

Proof: We first consider the case where co ¢ A. Let h € H(A) and choose a sequence
{h.} € R(A) such that h = lim, h, uniformly on A. Write h, = g¢,/f., where the
gns fn € K[z] and the f,, have no zero on A. For simplicity we assume that |f,|.(r) = 1 for
all n.

Let @ be any point in B(c,rt); we will consider A as an a,r—very standard set. By
Proposition 2.1, we know that |- |4(r) = || - || 4 for elements of H(A). Therefore there exists
N € Z* such that |h, — hpm|a(?) < |h|a(r) Whenever n,m > N. This certainly implies
that |hn|a(?) = |Am|a(r) = |h|a(r) When n,m > N, by the properties of non-archimedean
valuations. Furthermore, since |f,|a(7) = |fm|a(r) = 1, we have

|gnfmla(r) = |gm fala(r) = |hla(r),
but
|9nfm — gmfnla(r) < |Rla(r)
whenever n,m > N. It follows from the theory of Newton polygons (cf. [3], Proposition
4.3.2) that if F,G € Klz] satisfy |F — Glo(r) < |Fl|a(r) = |Gla(r) then ord; (F,r) =
ord; (G,r) and ord} (F,r) = ord} (G, ). This shows that ordE (g, fm,r) = ordE (g fn, 7),

and consequently ordjf(hn, r)= ordf(hm, r), for all n,m > N. Since

ordsh, =ordy g, < ord;"(gn,r) < ord;*'(gnfm,r)
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holds for all n and m, it follows that ord 4 h,, is bounded as n — oo; furthermore, for each
disk B(a,r~) C A we know that ord, (hn,r) is constant for n > IV, and is therefore zero for
all but finitely many such disks. Since h and the h,, are bounded analytic functions on each
such disk and the h, converge uniformly to A, it follows that the number of zeros of h on
each disk B(a,r”) C A is the limit of the number of zeros of the h, on that disk. Therefore
h has only finitely many zeros on A, and in fact that number is equal to lim, ordsh,.; a
consequence of the above proof is that this is independent of the choice of {h,}.

The case where co € A is treated in a similar manner as in the proof of Proposition
2.1. This concludes the proof of the proposition.

It now makes sense for us to extend the definition of ord4h to the case where A is a
meromorphic element on a very standard set A, by setting ord4h = ord 4 - ord, f, where
h = g/f with g, f € H(A).

For linear operators L : H(A) — H(A) we define the operator norm

ILlla = sup [|Lh||4/||]|4,
h#0

and if A is a ¢, r—very standard set we may also define

I Llle,r = sup |Lhle(r)/[R]e(r).
h#0

Again we find that if A is a ¢, 7—very standard set then ||« |lc,» = || - || -
If V is a vector space and L : V — V is a linear transformation, then L is said to
have an indez on V if the kernel and cokernel of L are both finite dimensional; in this case

the index of L on V is defined to be
x(L; V) = dim ker L — dim cok L.

In this paper we will be interested in the index of linear differential operators on spaces of
analytic elements. The reader is referred to [14] and [15] for some of the basic properties of

indices. The following proposition will be needed in subsequent chapters.
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Proposition 2.3. If A is a c¢,r—very standard set and f € H(A), f # 0, then multiplica-
tion by f is injective and has index x(f; H(A)) = —ord4 f, and has a continuous left inverse

o H(A) — H(A) with lpller < |Fle(r) .

Proof: Robba has already proven these results in the case where f € R(A); see ([15], Lemma
3.3) and ([17], Lemme 3.4). Suppose then that f € H(A), and choose a sequence f,, € R(A)
such that the f,, converge uniformly to f on A. Since f # 0 we know that ||f,||4 = ||f||a for
large n, because ||h||4 = |h|c(r) = |h(t)| for h € H(A). Since f, € R(A), we know that each
f» has a continuous left inverse ¢, with ||@n||a < || a2} so we may choose N large enough
so that || f— falla < ||fall £ ll@nl|3! for n > N, and since limord 4 f, = ord4 f and the limit
is finite (see the proof of Proposition 2.2) we may also guarantee that ord 4 f,, = ord, f for

n > N. Then by ([14], Lemma 4.4), we have, for n > N,
x(f, H(A)) = x(fn, H(A)) = —orda fn = —ord4f;

and f has a left inverse ¢ with

lella < lenlla < Ifale(r)™ = [fle(r)™".

The continuity of ¢ follows from ([14], Lemma 4.3). This completes the proof.
In this study we shall be particularly concerned with linear differential operators. The
following proposition indicates why in the study of differential operators it is often more

convenient to work with the absolute values | - |(r), rather than || - || 4.

Proposition 2.4. The formal derivative map D = (d/dz) : K(z) — K(z) extends
uniquely to a continuous map (also denoted by D) from E,, to itself. Furthermore, for

eachm € ZT and f € E. . we have
|F™(r) < 27 |ml| - | fle(r).

Proof: The proof we give is a simple modification of the proof of Proposition 2.1.8 of [4].

First suppose that f € K[z], and write f = 3° -, an(z — ¢)", with each a, € K. Then by



14

definition,

(r)

c

7] )=t 3 () e -

n>m

=|mt(e =9 X (1) ante - 0P| (1) <+ imlfLer),

n>m

c
which proves the proposition for polynomials.

To establish this result for rational fu.ﬁctions f = g/h, where g, h € K[z], we proceed
by induction on m. For m = 0 the statement is trivial. Assume that m > 0 and that the
result has been proven for all f € K(z) for derivatives of order less than m. We apply the
Leibniz rule to g = h - (g/h), yielding

(m) M/ p(m—i) )
% =2 ((‘m—- ) (g/i!) ) ’

i=0

which, after dividing by g, we rewrite as

(g/R)™ gt = R (g/R)O
m!(g/h) T mlyg Z ((m—-i)!h i!(g/h)) ’

i=0
Then, using the induction hypothesis, and the fact that g,h are polynomials, we see
that each term on the right has absolute value bounded by r~™; therefore, by the non-
archimedean property, the same is true for the left side. This completes the induction step,
proving the proposition for all elements of K(z).

Taking m = 1 now shows that D is continuous»with respect to | - |(r) on K(z), and
therefore extends uniquely to a continuous operator on E..; by passing to the limit, the
result holds for all f € E. .. This completes the proof of the proposition.

It follows that if A is a ¢, 7—very standard set then the derivative map may be extended
to a map D : M(A) — M(A). If A is a c,r—very standard set we define &4 (resp.
R4) to be the (non-commutative) Euclidean ring H(A)[D] (resp. M(A)[D]), which we

identify naturally with the ring of linear differential operators with coefficients in H(A)
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(resp. M(A)). We also define ., to be the ring E.,[D]. Note that there are natural

inclusions &4 C R4 C R, .. We also note ([14], §1.11) that if L = ) h;D* € R,,,, then
I Llle,r = m?x{r"ili!l “Jhile(r)}

We may consider the elements of R, (resp. ®4) as linear transformations on E., (resp.
H(A)); however, we note that as linear operators, the elements of {34 need not be stable on
H(A). Therefore our index results will be phrased in terms of elements of & 4, although for
purposes of generality we will phrase our convergence results in terms of elements of R, ,.
Let L = D*+ ¢tD™! + ... + gn_1D + g, be a monic element of R, .. Note that
the situation where L € R4 or ® 4 for some ¢,r—very standard set A is a special case of
this. We will consider L to be a linear differential operator acting on spaces of germs of
analytic functions near ¢, —generic points . The primary focus of this work is to determine
the exact radii of convergence p(u) of solutions u(z) of the homogeneous equation Lu =0
which are analytic in a neighborhood of . When A = B(c, R*) and L € & 4 we also propose
(under certain conditions) to demonstrate a connection between the radii of convergence
of solutions at ¢ and the variation with r of the index of operator on H(B(c,r%)) for
r < R. Because we shall need to consider the index of L on H(B(c,r*)) as a function of
r, we shall adopt the notation of [16], using x*(L,r) to denote this index. To compare
our results on first order operators L with those in [16], we shall denote by p.(L,r) the
radius of convergence of the nontrivial solutions of L u = 0 at a ¢,r—generic point ¢. The
generalization of this notation to higher order operators will be given in Chapter 4.
Finally, throughout this paper we will adopt a fairly standard notation, using = to

denote a solution in K to 771 = —p.



CHAPTER III
FIRST ORDER OPERATORS

We beéin this chapter with a general radius of convergence theorem for first order linear
differential operators, and compare this result with the index-radius formula of Robba [16].
As corollaries to this theorem, we prove some general properties of the index of first-order
operators, and we conclude this section with several examples. Some of these results may be
obtainable by other means; our purpose in including them here is to illustrate the relation

of this work to other aspects of the theory of p-adic differential equations.

Theorem 3.1. Let L € R, , be the monic first-order operator L = D + q.
i. If q satisfies

I(m - C) q'c(r) >1, (31)

»

then the non-trivial solutions u(z) to L u = 0 near a c,r—generic point t converge and

are bounded on the disk
1
ord (z — t) > pray + log|glc(r), (3.2)
and this is the precise disk of their convergence.
ii. If ¢ satisfies |(z — ¢) g|c(r) < 1, then the non-trivial solutions u(z) to L u = 0 near a
¢, r—generic point t converge at least on the disk
1
ord(z —t) > p— + ord (t ~ ¢), (3.3)
and are bounded on this disk.

Proof: Let u(z) be a solution to L u = 0 which is analytic in a neighborhood of ¢, and which

is normalized so that u(t) = 1. Since D u+ qu = 0, we may define functions {b,m}m>0 such

16
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that D™u = bu. We find that by = 1, by = —¢q, b = ¢> — ¢', and in general, for m > 0

the b,, satisfy the recursion formula
bmi1 = —qbm + b, (3.4)

Since each b,, is a polynomial in ¢ and its derivatives with integer coefficients, it follows
that b,, € E., for all m. Therefore, since ¢ is a c,r—generic point, we have |b,(t)| =

|bm|c(r). By Taylor’s theorem, in a neighborhood of ¢ we have

= b (t m

ue)= Y B gy, (3.5)
m=0

since we assume u(t) = 1. Therefore, we can determine the radius of convergence of u by

computing |bpm|c(7).

First suppose that ¢ € E,, satisfies (3.1); we therefore have |g|.(r) > r~1.

Since
bm € E.r, Proposition 2.4 shows that |b!,|c(r) < r~?|bu|c(r), while on the other hand we
have | — gbm|c(r) > r7!|bm|c(r) for all m. By applying induction to (3.4) and using the

non-archimedean property of | - |.(7), we find that for all m > 0,
[bmle(r) = |g™|c(), or ord by, (t) = mord g(t). (3.6)

From (3.5) and (3.6) it follows that u(z) converges and is bounded on the disk given
by (3.2), and that this is the exact domain of convergence for all solutions at ¢.

In the case where |(z — ¢)g|.(r) < 1, a similar induction argument applied to (3.4)
shows that |by|c(r) < »~™ for all m. It then follows from (3.5) that the solutions of L at
t all converge on the disk (3.3) and are bounded on this disk; however, it is possible that

they may converge on a larger disk.

Proposition 3.2. Let A be a c¢,r—very standard set and let L = D + q € R4, where

g = g/f with g, f € H(A), and suppose q satisfies the hypothesis (3.1) of Theorem 3.1.
Then the operator fL = fD + g is injective and has an index as an operator on H(A), and

that index is given by the formula

x(fL,H(A)) = —ordag. (3.7)
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Proof: If ¢ satisfies condition (3.1) then |g|.(r) > 71, so ||gl|c,r > ||fD|lc,r as operators on

H(A). It follows from Lemma 4.4 of [14] and Proposition 2.3 that
x(fL, H(A)) = x(g, H(A)) = —orda g,

as asserted.

In the case where ¢ € K (z) is a rational function which satisfies condition (3.1) one
may give an alternate proof of Proposition 3.2 in the case where A = B(c, r*), by adapting
Robba’s index formula ([16], Theorem 4.2) as follows: The convergence formula (3.2) above
implies that, for all values of 7 € |Q*| on an interval for which (3.1) holds, one has p.(L,r) =
|| - |q|c(r)_1 < r, which, by Robba’s theorem, guarantees that fL is injective and has an
index on H(B(c,r*)) (where ¢ = g/f as above). From (3.2) and the well-known relation

(cf. [3], Proposition 4.3.2)

+
(dl«;glLf;I:(r)) = ord¥(h,r), (3.8)

we obtain the formula

= —ord; (g,7).

d logpe(L,r)\ *
dlogr

Then Robba’s index formula gives the result:
Xz (fLyr) = —ord7 (g, 7).

It would seem likely that the convergence formula (3.2) should also be obtainable from
Robba’s theorem in this case. Indeed, given (3.7), if one also knew that p.(L,r) < r, one
could then deduce from Robba’s theorem that for such r, p.(L,r) is always of the form
pe(L,r) = a-|g|(r)™" for some a. However, even in the case where ¢ € K(z), it has not
been apparent how one might verify in general that p.(L,r) < r. Theorem 3.1 (i) and
Proposition 3.2 provide a relatively simple criterion, concerning only the norm of ¢, which
insures that p.(L,r) < » and therefore that fL has an index; and enables one to compute
the index and the exact radius of convergence at a generic point. It also shows that the

above constant a is independent of ¢, and in fact equals |r|.
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We admit, however, that condition (3.1) is not the weakest condition that will insure
that fL is injective and has an index in H(A); see Example 3.6 below. However, even
with this restriction, Proposition 3.2 is sufficient to imply certain general principles; for
- example, if ¢ € K(z) is a rational function with nonnegative degree (where the degree is
the number of zeros minus the number of poles), then for any ¢ € K, fL will have an index
in H(B(c,r*)) for sufficiently large r, since in this case |(z — ¢) g|.(r) — o0 as r — 0.

Other such properties are detailed in the following corollaries.

Corollary 3.3. Let L = D + ¢ and suppose ¢(z) is a meromorphic function over K with

exactly N poles, and write ¢ = g/ f, where f € K[z] is a polynomial of degree N and g is
an entire function with all its coefficients in K.
i. If g is a polynomial of degree M > N, then xE(fL,r) = —M for all sufficiently large
r € |Q*|.
ii. If g is not a polynomial, then '__l_’iglo‘> xE(fL,r) = —oo, although fL does have an index

in H(B(0,r%)) for all sufficiently large r € |Q*|.

Proof: If g is an entire function, then g € H(B(0,r%)) for all » € |Q*|. If deg ¢ > N, then
R can be chosen large enough so that (3.1) will hold for all » > R, and Theorem 3.1 (i) will
apply. Thus for large enough r one has x¥(fL,r) = —ordi(g,7). Since ordi(g,r) is the

number of zeros of g in B(0,r%), the results follow.

Corollary 3.4. Let L = D + q and suppose that ¢ = g/f is a meromorphic element on a
disk containing = = ¢, and that f, g have no common zero. If L has an irregular singularity
at z = c, then for sufficiently small r € |Q*|, fL is bijective on H(B(c,r*)); that is, fL is

injective and has index zero in H(B(c,r%)).

Proof: If L has an irregular singularity at # = ¢ then ord, ¢ < —2; since f and g have
no common zero we therefore have ord.f > 2 and ord. g = 0. We may therefore choose
R small enough so that g has no zero on B(c, R*) and so that (3.1) holds for all » < R.

Proposition 3.2 then gives the result.
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The above corollary has shown how Proposition 3.2 enables one to easily calculate the
index of a first order operator relative to small disks about an irregular singular point; this
is one general situation in which condition (3.1) will be satisfied. It does appear, however,
that (3.1) will not usually be satisfied near a regular singularity unless a positive power of
p divides the denominator of g(z). The next three examples illustrate the wide range of
possible behavior near a regular singularity.

Example 3.5. Let L = D — p/z, so that ¢ = 0, N = 1, and g(z) = —p in the notation of
Corollary 3.3. The equation L u = 0 has the entire solution u(z) = z?, so po(L,r) =

for all » > 0, and Robba’s theorem does not apply. It may also be seen, by noting that
|zgq|c(r) = p~! < 1 for all r € |Q*|, that (3.1) is not satisfied for any r, whence Proposition
3.2 is not applicable. Indeed, the operator zL = zD — p is not injective on H(B(0,r%))
for any r; this demonstrates that the condition degg > N in part (i) of Corollary 3.3 is
necessary.

Example 3.6. The operator L = D + p/z has solution u(z) = 77 satisfying po(L,7) = r

for all » > 0, but zL is injective on H(B(0,r*)) for all » > 0. (In general, p.(L,r) < r
implies injectivity, but the converse does not hold). Here condition (3.1) is not satisfied for
any r, but zL is injective.

Example 3.7. Let L = D — (pz)~!. Here ¢(z) = (pz)~!, so condition (3.1) holds for
all r, and Theorem 3.1 (i) applies. Therefore for any r € |2*|, the solutions of L at any
0, r—generic point ¢ converge and are bounded exactly on the disk given by ord(z — t) >

p/(p— 1) — logr. The convergence may be easily verified by noting that

u(z) = (2/t)r = (1— (1-— —))% Z - 1/P)m( - %)m

is an analytic solution at ¢, and converges for ord (1 — (z/t)) > p/(p — 1), or ord(z —
t) > p/(p — 1) 4+ ordt. Proposition 3.2 shows that zL is injective on H(B(0,7%)) and
Xi(zL,7) = 0 for all r € |Q*|; therefore, zL is an example of an operator which is bijective

on H(B(0,r*)) for all » € |Q*.
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We conclude this chapter with two examples where zero is an ordinary point of the
operator, illustrating that sometimes (3.1) is the weakest condition that will insure the
radius of convergence given in (3.2), and sometimes it is not.
Example 3.8. Let L = D — w(1 — pzP~!); then (3.1) clearly holds for r > |r|7!, so
Theorem 3.1 (i) predicts that analytic solutions of L at generic points ¢ with [¢| = r > |x|™!
converge exactly for ord(z — t) > —1 + (p — 1)logr. This is confirmed by noting that
u(z) = expw(z — t — (2P — tP)) is an analytic solution at ¢. Setting z = ¢ + y, one obtains

p—1
expr(z —t— (2% —17)) = expm(y — y*) -exp [ -7 ) | (I;) yitP

Jj=1

which converges for

~(p-1) —1—(p¢j)ordt}},

ordy > ma.x{ Foat 15j5p—1{ ;

if all these terms are different. One computes that for ordt < —(p? — p +1)/p*(p — 1), the
maximum is —1 — (p — 1) ordt, as asserted. Note that in this example, the theorem does
not give a complete answer to the convergence question; in particular, the result of part (ii)
does not indicate much about the actual behavior for » < |r|~!, and condition (3.1) is not
the weakest hypothesis that will give the convergence (3.2). However, Theorem 3.1 does
imply that, if we replaced 7 with another element 7' of Q with |r'| = |r|, then for r > |x|!
the radius of generic convergence would not change, although it might change for » < |x|~1.
Example 3.9. Let d be a positive integer, and let L = D — wz¢. We find that part (i) of
Theorem 3.1 applies for logr > 1/(p—1)(d+1), and gives ord (z —t) > dlogr as the disk of
convergence of solutions at generic points t with |t| = r. One can verify this by computing

that
d+1 (d+1 j4d+1—3

emr(_ﬁl—) =R :’z:;_—d-{-l—

(where y = z — t) is an analytic solution of L at t, which converges for

[ord(d+ 1) — ord (‘“?1)] —(d+1-j)ordt
ordy > max 2 ,
1<5<d+1 j
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when all these terms are different. One may easily verify that the term —dord¢, which
corresponds to j = 1, is the maximal term when ord¢ < —1/(p — 1)(d + 1), which confirms
the resuit of Theorem 3.1. In the case ord(d + 1) > 0, one may also show that there is an
open interval of the form (-1/(p— 1)(d+ 1), —-1/(p — 1)(d + 1) + € ) on which the term
corresponding to j = p is the maximal term. This result is obtained from the estimate
[ord (d + 1) — ord (*+')] < ord (j!), with equality if and only if 1 < j < p, and the well-
known estimate ord (5!) < (7 — 1)/(p — 1), with equality if and only if j is a power of p.
This implies that for the operator L = D + ¢, with ¢(z) = —7z? and ord(d + 1) > 0, the
infimum of the set of radii » such that |zq|o(r) > 1 is equal to the infimum of the set of
radii 7 for which the nontrivial solutions of L at 0, r—generic points ¢ converge exactly on
the disk ord(z — t) > 1/(p — 1) + log|g|o(r). Therefore, in this situation we see that the

hypothesis (3.1) is essentially the weakest possible to insure the convergence (3.2).



CHAPTER IV
HIGHER ORDER OPERATORS

In this section we extend the radius of convergence result of the last chapter to linear
differential operators of arbitrary order. For this we will need some general results of Robba
[14] on the factorization of linear differential operators. Qur main theorem will then be used
to describe a more explicit factorization result for linear differential operators. We then use
the convergence theorem and an index result to partially prove the conjecture of Robba
relating the index and radius of convergence. After presenting several applications, we
give an explanation of the phenomenon of distinct radii of convergence for the differential
equation satisfied by the confluent hypergeometric function.

Let L be the linear nth order operator L = go D"+ ;D™ 1 ++--+ g,_1 D + ¢, € R .

Let t be a c,7—generic point, and define a polynomial A;(L) € Q[A] by
A(L)A) = (A" + @ (A7 + -+ + gn-1 ()X + ga(2). (4.1)

Since |h(t)| = |k|c(r) for all ¢,r—generic points £ and all h € E, ., the magnitudes of the
roots of A;(L) are independent of the choice of t. By means of left multiplication by g,
we may assume that L is monic (i.e., go = 1) without affecting the roots of A;(L) or the

solutions at t.

With L as above, we define

pe(L,r) = sup{p(u1) - - - p(un)}, (4.2)

where the supremum is over all sets of n linearly independent solutions {uy,...,u,} of Lu = 0

at t. We note that by Lemma 4.2 below, the supremum is actually a maximum, since the

23



24

set of possible values for the p(u;) is discrete. A basis of solutions B = {uy,...,un} of L at
t for which the maximum is attained will be called an optimal basis for the kernel of L at ¢.
We now state the two factorization results which will be needed in the proof of the

main result of this chapter.

Lemma 4.1, Let L = D* + D™ ! + ...+ g, € R, and let t be a ¢, r—generic point.

Let p € (0,7] and define a norm || - ||, on R, by

|3 amD™| = suptimtlo"lam(r)} £3)

Then if ||R o L — 1|, is bounded away from zero independent of R € R.,, there exist

nontrivial solutions of L at t which converge at least on the disk B(t,p™).

Lemma 4.2. Let L = D*"+¢, D™ ! +-..4¢, € R, and let t be a c,r—generic point. Then
for each p € (0, 7], there exist unique monic elements M, N € R, , such that L = NoM and
M annihilates precisely those solutions of L which converge at least on the disk B(t,p™)

and are bounded on that disk.

Proofs: These results are generalizations of some results of Robba ([14], §2), which he
proved in much greater generality for the case ¢ = 0, » = 1. To obtain the proofs of these
results for general ¢ and r requires only a minor modification of Robba’s proofs. Specifically,
in that paper one needs to replace the field E (which is written as Egp; in our notation)
with the more general E. ., and replace R (which we denote by g ;) with R, .. The norm
(4.3) on R, is the norm associated to the sequence 7##° (i.e., 7, = p¥ for all v > 0), and
this sequence also gives the norm ||« ||x = | - |¢(p) as the norm on the space W/, which is
precisely the space of analytic functions converging and bounded on the disk B(t,p~) (cf.
[14], §1.5, 1.6, (1.11.5)). The proofs of Lemma 2.3, Lemma 2.5, and Theorem 2.6 of that
paper remain valid in this slightly modified situation.

The hypothesis of Lemma 4.1 implies that {1} does not lie in the closure of the left

ideal R, L. Therefore the monic generator R of R, .L is not the trivial operator R = 1,
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and hence has positive order. Thus ker;R is not trivial, and our modification of Robba’s
Theorem 2.6 implies that L has nontrivial solutions in W, which gives the conclusion of
the 1em1ﬁa..

To prove Lemma 4.2 we let M be the monic generator of the left ideal R, L. Then
our modified version of Robba’s Theorem 2.6 tells us that M annihilates precisely those
solutions of L which lie in W, a.nd that L = N o M for some monic element N of R, ..
The uniqueness of M and N is obvious. This completes the proof of this lemma.

We will use these lemmata to factor elements of R, , according to the filtration of their
generic solution spaces by radius of convergence. Supposing an operator L has solutions
u, uz at ¢ with p(u;) < p(uz), one may apply Lemma 4.2 with p(u;) < p < p(u2),
noting that u, converges and is bounded on B(t,p~) while u; does not converge on this
disk. However, this result does not permit us to factor L according to whether the disk of
convergence is circumferenced or not; by this we mean that, if u is a solution of L at ¢ with
radius of convergence p(u) = p, we are unable to distinguish by factorization whether u
converges on B(t, pt*) or only on B(t,p~). Nevertheless, the following theorem shows that
for each element of R, one may choose an optimal basis B such that those elements of ‘B
whose radii of convergence are given exactly by this method have uncircumferenced disks

of convergence.

Theorem 4.3. Let L = D™+ D™ ! +...4 ¢, € R, and let t be a c,r—generic point.
Then there exists an optimal basis B for the kernel of L at t and a one - to - one corre-
spondence between the roots of A;(L) and the elements of B such that

i. Corresponding to every root A of A;(L) satisfying |\| > r~! there is an element of B

which converges exactly on the disk
1
ord(z —-t) > ;—I +10g|A|, (4.4)

and is bounded on this disk.

ii. Corresponding to every root A of A,(L) satisfying |A| < r~! there is an element of B



26
which converges at least on the disk
ord(z — 1) > ;i—l +ord (t - ¢), (4.5)
and is bounded on this disk.

Proof: We proceed by induction on the order of L. We have already proven this theorem
in the case where n = 1 (Theorem 3.1). Suppose then that n > 1 and assume that the
theorem has been proven for all monic elements of R, , of order less than n. Let L € R,
be as above; then if u(z) is any solution to L u = 0 which is holomorphic in a neighborhood

of t, there are uniquely determined functions {bs,{)} for m > 0 and 0 < j < n such that
]
D™u = by o Dy 4 50,
(Here u(9) denotes DJu, but 9 need not denote Djbsg)). We find that 5 = bm,; for

0 <m < n-—1, and that for all m > 0 the functions bs,{) satisfy the recursion relation

B, = —gno BV 4 59 4 8D (1<j<n), (45)
:
- !
B0y = —anb D + 50,

From these formulae it is clear that each bs;";) € E.r.

If every root A of A.(L) satisfies |A\] < 771, it follows from the theory of Newton
polygons that |g;|.(r) < =7 for all j. From (4.6) it is then easy to verify that Ib%')|c(r) <
rJ~™ for all j and m, using Proposition 2.4. Considering the Taylof expansion of u at ¢
and using the definition of the bs,{) we conclude that in this case every solution of L at ¢
converges at least on the disk (4.5) and is bounded there. In this case, any optimal basis
satisfies the conditions of the theorem. The theorem is therefore proven in this case.

For the remainder of this argument we will therefore suppose that A(L) has at least
one root with absolute value larger than r—!. We let 4 be a root of maximal modulus and
let £ be the number of roots of modulus |y|; then by the theory of Newton polygons we find

that
lgele(r) =[],

lgile(r) S Iyl for 1<j <k, (4.7)

lgjle(r) < 7P for K <j<m.
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From these inequalities, by applying induction to (4.6) one may easily verify that |b$,{)]c(r) <
|y|™~7 for all m and j, and that |b$§';)|c(r) < |y|™~7 for j < n — K when m > n. Therefore,
every soiution at t converges at least on the disk ord (z —t) > 1/(p— 1) +1og|7y|, and every
solution is bounded on this disk.

We now claim that the equality |b$,':—1)|c(r) = |y|™*!~™ holds for infinitely many

)

m € Z*: First, we note that it holds for m = n — 1 since bg:f_-ll = 1. Now suppose that

m > n and that |b$::11)|c(r) = |y|™™ but |b$,':_l)|c(r) < |y|™*1~™. Then by applying
induction to (4.6) and using the fact that lbs;’;)lc(r) < |y|™~7 when m > nand j < n—k, we
obtain |b$,'.'—'°)|c(r) = |y|™*+*-". Now let j be minimal such that |65~ 7| (r) = |y|™+i—™

then 1 < j < k. Again applying (4.6) yields

—j+1 - n—i
Ibg::+i7 )Ic(") = l’)’|m+J ™ |b$n+1)

(r) < |y|™+H " for 1<i<j-1,
[+

and if 7 > 2 then we continue to compute

b("—")

|b(n—.1+2)lc(r) — |7|m+j—n; -

m+2

(M) <™ for 1<i<j-2,
and after repeating this argument j — 1 times, we are left with

n—1 ) —
o] (1) = I,

Thus we have shown that, while |b£,’;)|c(r) < |7|™-7 for all m and j, there are infinitely
many m € Z* for which |b£,':_1)|c(r) = |y|™*+1-". It follows that if ¢ € Q and 0 < |¢| < |7/,

then the set By = {vg,...,vn—1} of solutions at ¢ which are normalized by the conditions
ij)(t) =§;;6" 17 for 0<j<n—1,

'vgn_l)(t)=1 for 0<i<n-1

is a basis of solutions at ¢ which all converge and are bounded exactly on the uncircumfer-

enced disk given by ord(z —t) > 1/(p— 1) + log|7|.
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The existence of a basis of solutions which all converge exactly on a given disk does not
imply that all solutions converge exactly on that disk; however, we have shown that at least
one solution of L at ¢ has ord(z — t) > 1/(p — 1) + log|v| as its exact disk of convergence.
We now wish to show that if A;(L) has roots of absolute value less than |y|, then L has
solutions with radii of convergence strictly greater than those in Bj.

So suppose that 0 < & < n, where as before x is the number of roots of A;(L) of
absolute value |y|, and all other roots have smaller absolute values. Then there exists

o < || such that
lgxle(r) = |7I%,

lgile(r) < IP for 1<i<k, (4.8)
lgile(r) < |7|%0*™™ for K<i<m.
We set jo = n — &, and note that jo > 0. Choose p such that o < |y|, 2 > r~, and ¢ > 0.
We will show that L has solutions converging on the disk ord (z —t) > 1/(p— 1) + log ¢ by
applying Lemma 4.1 with p = |r|¢~!. To do this, we will in fact show that |Ro L —1||, > 1
for all R € R, p.

Suppose that R o L = @ and write this equation explicitly in the form

(90D™ + D™ 4+t gm) o (D" + @ D™ 4114 ¢p)
(4.9)
= hODm+n + th'm+n—1 +eeet hm-l-ru

which gives the relations

1 i
hmin-k = Z (t) gm—iQS,_jt) (4.10)

3=k
0<t<i<m
0<5<n
for 0 < k < m + n, with the convention go = 1. In order to obtain a contradiction we
assume that ||@Q —1||, < 1. This implies that |hmin — 1|o(r) < 1, which in turn implies that

|Rm+nlc(r) = 1. Now from (4.10) we have

hmin = gmn + m-14n + * - + gog5™-
However, from (4.8) and Proposition 2.4 we also have

1421e(r) < r¥ |y [" o0 R < [y|ndogiot
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for 0 < i < m (the strict inequality holds for i = 0 since jo > 0). So since |hpminlc(r) =1,
there must be an index i, 0 < 7 < m, such that |gn—_i|c(r) > |y|?o "o~ ~%.

Let.io be any index, 0 < i < m, such that the expression ¢‘|g,—i|.(r) attains its
maximal value when i = %y. Set kg = jo + %0, and note that kg > 0 since jo > 0. By the

—ko, We now proceed to

result of the previous paragraph, we have |gm—i,|c(r) > |7|% ™0
show that ||@ — 1||, > 1 by showing that |Rmyn—k,|c(r) is sufficiently large.

From (4.10) we have

i i
hm+ﬂ-—ko = Z (l) gm—i qs;-—jl)‘ (4‘11)

Lt j=ko
0<t<i<m
0<j<n

Since o < ¢ < |7| and ¢ > 7!, equations (4.8), Proposition 2.4, and the definition of jo

together imply that

qg:;) L('r) < Q(jo_j)+(i_t) Iqﬂ—.‘io |C(r)

for every choice of 7, 7, £ with 7 > £, except when j = jo, and 7 = £, in which case the above
inequality is the trivial equality. Now in each term in the sum (4.11) for hmin—k, We have

j+ £ = ko = i + jo, so in each of these terms the factor ¢ satisfies

(i-2)
n—j

it i
qf:_,-)|c(7‘) <pe 'olqn—onC(r)’

except for the term in which iy = i = £, in which case we again have equality. But by the
definition of iy, we have |gm—i|c(?) < 07| gm—i,|c(r) for 0 < i < m. Therefore, each term

in the sum (4.11) for h,,4n—k, satisfies

i (-1
I (l) gm-—iqn—j

except for the term g,,_i qn—j, itself.

(r) < |gm—io@n—jole(),
c

Therefore, we have shown that

|Rmtn—tole(r) = |9m—i0n—jo le(7)-
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Since [gn-jol<(r) = IY|"~ and |gm—s,e(r) > 717"~ *, we have

| Ao le(r) > Q—ko .

Since m + n — kg # m + n, we have (for p = |7|p™1)
1@ = 1l > Ikolllm| ™5 0" [y niy|e(r) > 1.

This obviously contradicts the assumption that ||@ — 1||, < 1. Therefore, by Lemma
4.1, this shows that there exist solutions of L at ¢ which converge at least on the disk
ord(z —t)>1/(p—1)+1loge.

Thus we have shown that if A;(L) has roots of absolute value less than |y|, then L
has solutions at ¢ with radii of convergence strictly gréa.ter than those in By. Therefore,
if L has no solutions at ¢ which have greater radius of convergence than those in By, it
follows that every root of A;(L) has absolute value equal to |y|. But in this case, By is an
optimal basis, since all nontrivial solutions at ¢ have the same radius of convergence. Since

1. we see that this basis does satisfy the conditions of the theorem; thus

we assume |y| > r~
we have proven the theorem in the case where L has no solutions with radii of convergence
greater than those in By. Having treated this situation, we turn next to the case where L
has solutions at ¢ with greater radii of convergence than those in B,.

In fact we now proceed to prove the converse of the previous statement ; that is, we
will show that if there are solutions of L at ¢ with radii of convergence greater than those
in By, then A,(L) has roots of absoiute value less than |y|. For this we will need to use
the induction hypothesis. Suppose then that there exist solutions at ¢ which have strictly
greater radii of convergence than those in By, i.e., solutions which converge on a disk which
properly contains the circumferenced disk ord (z —t) > 1/(p—1) +1log|y|. Then by Lemma
4.2 and the ensuing remarks, there is a monic right factor M of L (with coefficients in E, ,)
which annihilates precisely those solutions. By the result of the previous paragraph we

know that at least one solution of L has ord(z —t) > 1/(p— 1) + log|y| as its exact disk of

convergence, so if v is the order of M then 0 < v < mn.
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We write the equation N o M = L more explicitly in the form

(D™ + @ D"+t gny)o (DY + DT 44 1)
(4.12)
=D"+ @ D" 4+ 4 g,

from which we may deduce the relations

In—-k = Z (z) In—v—i f(:_:) (4.13)

L=k
0<t<Li<n—-v
0<j<v

for 0 < k¥ < n. (Here we use go = go = fo = 1 as convention.) By the definition of M,
every solution of M at ¢ converges on a disk which properly contains the disk ord (z —t) >
1/(p— 1) + log|y|. Since v < n, we may apply the induction hypothesis to M to conclude
that every root of A;(M) has absolute value less than |y| (since we assume that |y| > r~1).
It follows that |f;|c(r) < |7|9 for 1 < j < v. Therefore in equation (4.13), the expressions

60

,—; in the terms of the sum for ¢, all satisfy

-J

K| ) < i | (414)

except when j = v and ¢ = £, in which case we have the trivial equality féo) =1.

We first proceed to show that |gi|.(r) < |y|* for 0 < i < n — v. Supposing this
does not hold, let 7 be maximal such that |g,—,—i|c(r) > |7|""*~*. From (4.13), we see
that for j = v, £ = i, and k = i + v, we have g,,_,; as a term in the sum for ¢,_g,
and by (4.9) we find that all other terms in this sum have strictly smaller absolute value.
Thus |gn-k|c(r) = |gn-v-ilc(r) > |7|*~%, contradicting (4.7). Therefore we must have
|9ile(r) < |y for all i. As a consequence, all roots of A;(V) have absolute value less than
or equal to |y|.

We have defined v to be the order of M. We have also defined x to be the number
of roots of A¢(L) of absolute value |y|. Set u = n — k. We now wish to show that p = v.
We have already seen that if A,(L) has roots of absolute value less than |y|, then L has

solutions at ¢ with radius of convergence strictly greater than those in 9B,; i.e., we have
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shown that if x > 0, then v > 0. Therefore, we know that y = v when v = 0. So it suffices
to show that g = v under our current assumption that v > 0.

Supi)ose 0 < k < v. Then every term in the sum (4.13) for g, must have j < v, so
by (4.14) these terms have If,(,‘_zt)lc(r) < |y|*¥~*. Thus |gn-p—i f,(,i__j‘)lc(r) < |y|** for all
terms in the sum, so |gn—&|c(7) < |7|**. Then (4.7) shows that k # p. Thus p is not less

than v.

Suppose k > v. Then the terms in the sum (4.13) for g, all satisfy

i (i-0)
(l) In—v—i fu—j

with equality holding if and only if v = 7,1 = £, and |gn—p—i|c(r) = |7|* ¥~ = |y|**. Since

(r) < "7,
[

|gn—ule(r) = |y|** and g is minimal with this property, it follows that |gn—u|.(r) = |[y|*#
and p is also minimal with this property.

Suppose now that > v. We have |gn_,|c(r) = |7|*#, and |gn—k|c(r) < |7|** for v <
k < p. The theory of Newton polygons tells us that A;(N) has n— u roots of absolute value
|¥| and g — v roots of smaller absolute value. By applying the induction hypothesis to N,
we find that there is a (41— ») - dimensional subspace of solutions to N u = 0 which converge
on a disk which properly contains the circumferenced disk ord (z —t) > 1/(p— 1) + log |7/,
while the remaining solutions converge at most on this disk. It follows from Lemma 4.2
that the operator NV factors over R, , as N = N; o N;, where N; annihilates precisely those
solutions converging on a disk properly containing the disk ord (z —t) > 1/(p—1) +log|y|,
and so is of order p — v. But then by the induction hypothesis the roots of A;(N;) are all
of absolute value strictly less than |y|. Thus we have L = N, o (Ny o M), where N; o M
is of order y; it is also easy to verify, by relations similar to (4.13), that all the roots of
A¢(Ny o M) have absolute value less than |y|, using the fact that N; and M each have
this property. Therefore Ny o M (and hence L) has a p - dimensional space of solutions
converging on a disk properly containing ord (z —t) > 1/(p— 1) + log ||, contradicting the

definition of M and v. Therefore u = v, and |gn—,|c(7) = |7¥|™Y, so each of the n — v roots
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of A¢(N) has absolute value equal to |y|. Recall that A;(L) also has exactly n — v roots of

absolute value equal to |y|.

Although the solutions of N at t are not in general solutions of L at £, we have shown
that the absolute values of the roots of A;(IV) are the same as those of the maximal roots
of A¢(L). One may therefore also expect that since N o M = L, the roots of A;(M) should
correspond with the lesser roots of A;(L). Indeed, the definition of M and the induction
hypothesis have told us that each of the » roots of A;(M) has absolute value less than |y|;
also, v is exactly the number of roots of A;(L) of absolute value less than |y|. Furthermore,
we know that the solutions of M at ¢ are precisely the solutions of L at ¢ which converge on
a disk which properly contains the disk ord (z — ¢t) > 1/(p — 1) + log 7|, and our induction
hypothesis states that the correspondence described in the theorem holds for the solutions

and roots associated to M.

Therefore, let B; = {u3,...,u,} be any optimal basis for the kernel of M at ¢t which
satisfies the conditions of the theorem for M. Since all solutions of M at t are solutions of
L at t, it follows from the definitions of By and of M that B; may be extended to form an
optimal basis ‘B for the kernel of L at ¢ by including n — v elements of By, chosen so that B
remains independent. To establish the required one - to - one correspondence for L, we first
require that the n — v roots of A;(L) of absolute value |y| correspond to the n — v elements
of B which were adjoined from B,. Since |y| > r~1 and the elements of B, all have
ord(z —t) > 1/(p— 1) +log |7| as their exact disk of convergence, we have proven that the
required conditions of the correspondence are satisfied for the roots of At(L) of magnitude
|7]. Finally, since the correspondence between the roots of A;(M) and the elements of B,
satisfies the required condition by the induction hypothesis, to complete the proof of the
theorem for L it suffices to show that the absolute values of the roots of A;(M) are exactly

the same as the absolute values of the roots of A;(L) which are smaller than |7|.

Suppose then that A;(M) has exactly £ roots of absolute value o. Then o < |7|, and
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by the theory of Newton polygons there exists an integer j with 0 < j—£ < j < v such that
I.fv-jlc(r) =A 2 Uv_j,

|fort=ijle(r) = A- o,

o (4.15)
|fo=ile(r) <A-077" for j—L<i<j,
1fozile(r) <A-0%% for 0<i<j—l or j<i<w
Then by applying (4.13) we find that
gnmsle(r) = lons fomslelr) = A- 1™,
|gnt2-31e(r) = |gn-v fore—jle(r) = A+ [y[" "ot
lgn-ile(r) < lgnv foile(r) SA-|4|" 07 for j-L<i<j, (4.16)
lgn—ile(r) < |gn-v fo-ile(r) < A- ['y["""vj"" for 0<i<j—{¢,
lgn=ile(r) < 1gn-v fimile(r) <A-[7|"Y0?™ for j<i<w.
Finally, if v < i < n, then since A > ¢¥~7 and |gn—;i|c(r) < ||, we may write
|gn-ile(r) < A-y|" e (4.17)

Equations (4.16) and (4.17) say precisely that g,_; and gp4¢—; correspond to endpoints of
a segment of the Newton polygon of A;(L) of length £ and slope equal to logo. It follows
that A;(L) has exactly £ roots with absolute value equal to o, as desired. Therefore, we
have proven that L satisfies the conditions of the theorem. By induction, the theorem holds
for all monic elements of R, ,, and the proof is complete.

Although all optimal bases for the kernel of L at ¢t have corresponding solutions with
the same radii of convergence, in the above proof we have taken care to select a particular
optimal basis ‘B so that the elements of B which do not converge for ord (z—t) > 1/(p—1)+
ord (¢t — c) have uncircumferenced disks as their exact disks of convergence. However, one
may certainly construct examples of analytic functions u, v which converge and are bounded

exactly on an uncircumferenced disk B(t, p~) but which have a linear combination w which
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converges exactly on B(t, pt). For this reason, we do not know whether the conditions of
this theorem hold for every optimal basis B; in particular, we know of no example of a
linear differential operator having a solution at a generic point whose disk of convergence is
circumferenced. It should be noted that if the absolute values of the roots of A;(L) which
are larger than r~! are all distinct, then every optimal basis for the kernel of L at ¢ has the
required property.

In the next chapter we will also show that indeed every optimal basis for the kernel
of L at t does satisfy the condition of this theorem when the operator L is of order two.
Therefore, we can conclude that the disk of convergence is uncircumferenced for all solutions
at ¢ which do not converge on the disk (4.5) when the order of the operator is two or less.
We conjecture that this is true for all L € Re,r. In any event, one may say that for every
optimal basis B there is a one - to - one correspondence where the roots A of A,(L) satisfying
|A] > r~1 correspond to elements of B which have either the uncircumferenced disk (4.4) or
the circumferenced disk ord (z —t) > 1/(p— 1) + log || as their precise disk of convergence
and are bounded there, and the remaining roots correspond to solutions converging at least
on the disk (4.5) and bounded there.

We now combine the results of Theorem 4.3 and Lemma 4.2 and rephrase them in
terms of the Newton polygon of A;(L), showing the complete relationship between the
factorization of the type described by Lemma 4.2 and factorization according to the slopes

of the associated Newton polygon (cf. [10], §6.2.3.3).

Corollary 4.4. Let L be a monic element of R, , and let t be a ¢, ?—generic point. Suppose
that mj < my_y < «+- < my are the slopes of the Newton polygon of A;(L) and that the
side of slope m; has horizontal length of projection n; for 1 < ¢ < k; suppose further that
m; > —logr for1 < i< j, and set n' = njyy + - -+ + ng. Then there exist monic elements

Ly,...,L; L' of R, , of orders n,,...,n;,n', respectively, such that
i ' 3

L=Ljo---0LjolL
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Furthermore, L' annihilates precisely those solutions of L at t which converge at least on the
disk ord (z —t) > 1/(p—1)+ord (t—c), and for 1 < i < j the product L(*) = L;0---0L;oL'

annihilates precisely those solutions of L at t which converge at least on the disk

1
ord(z —t) > 1 + m;.

Proof: The conditions on the Newton polygon of A;(L) imply that A(L) has precisely n;
roots of absolute value p™: for each i. Since the absolute values of the roots corresponding
to the slopes m;41,...,m; are no larger than r~!, we see from Theorem 4.3 (ii) that there
is exactly an n'-dimensional space of solutions converging at least on the disk (4.5). By
Lemma 4.2 there is a unique monic right factor L' of L (of order n') which annihilates
precisely those solutions. Applying Theorem 4.3 (i) to the remaining roots of A,(L) shows
that for 1 < 7 < j, the space of solutions converging at least for ord (z —¢) > 1/(p—1) +m;
has dimension n; 4+ -+ n; + n'. Then by Lemma 4.2 there is a unique monic right factor
LG of L (of order n; + -+ -+ n; + n') which annihilates precisely these solutions. From the
uniqueness statement we see that L' is a right factor of each L(¥), and that L(*?) is a right
factor of L(i1) whenever 1 < 4; < ip < j. This gives the required factorization.

We now connect the above results on radii of convergence with cerain properties of the

index of a differential operator to give a partial proof of a conjecture of Robba.

Proposition 4.5. Let L = goD"+¢, D" 1 4...4g, € &4, where A is a c,r—very standard
set. Suppose that every root A of A(L) satisfies |A\| > r~1. Then L is injective and has an

index as an operator on H(A), and that index is given by the formula

x(L,H(A)) = —ord 4(gn)-

Proof: We note that the condition on the roots of A;(L) implies that ||gn|lc,r > || L — gnllc,r
as operators on H(A), by the theory of Newton polygons. It then follows from Lemma 4.4

of [14] and Proposition 2.3 that L is injective and that

x(L; H(A)) = x(gn, H(A)) = —ord 4(gn)-
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Corollary 4.6. Let A= B(c,R*) and let L = goD™ + ;D™ ! + -+ + g, € & 4. Suppose
that, for some ry < R, every root A of Ay, (L) (where to is a c,To—generic point) satisfies
|A| > r5'. Then the formula

dlog pc(L, 1') * + +
—rcNY J = 4.1
( dlogr XC (L’ r) + ordc (go’ 7') ( 8)

(conjectured by Robba in [16]) holds for L and for all r € |Q*| sufficiently close to 7o.

Proof: It follows from Theorem 4.3 that for all r € |Q*| sufficiently close to r, we have

n

pe(Lyr) =]

i=1

Tl _ |9
%= o] )

(where Ay, ..., A, are the roots of A¢(L), t being a ¢, r—generic point), so from (3.8) we may

deduce that

= ord;(g0/gn,7)

dlogpe(L,r)\* _ (dloglgo/gnle(r)\*
dlogr dlogr

= ord;:.t(go,r) - ordf(g,,,r).

But by Proposition 4.5 we find that for such »,
Xf(LaT) = —ordf(g,,,'r),

from which the corollary follows.

The formula (4.18) was proven by Robba for operators of order one [16], and it was
conjectured that this formula should hold for operators of any order provided the operator
has no solution at a c,ro—generic point ¢ which converges for ord (z — t) > ord (t — c). The
above corollary asserts that the formula holds under the stronger assumption that there is
no solution converging for ord (z — t) > 1/(p — 1) + ord (¢ — ¢); this condition is equivalent
to the condition that all roots A of A;(L) satisfy |A| > r5', by Theorem 4.3.

As further applications of Theorem 4.3 we present two results concerning the description

of the solutions of linear differential operators.
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Corollary 4.7. Let L € R.,; let t be a c,r-generic point. If L has an unbounded solution
at t then that solution converges on an uncircumferenced disk which properly contains the
disk

ord(z —t) > I’%l + ord (t — c). (4.19)
Proof: From Theorem 4.3 (i) we see that solutions at ¢ which converge on a disk smaller
than (4.19) are all bounded. Furthermore, if a solution converges at least on the disk (4.19),
it is bounded on this disk by Theorem 4.3 (ii); therefore such a solution must converge on a
strictly larger disk. But if an analytic function is unbounded, then its disk of convergence

must be uncircumferenced. This completes the proof of this corollary.

Corollary 4.8. Let L € R..; let t be a ¢,r—generic point. For p € R let 6(t,p) be the

dimension over (2 of the space of solutions of L u = 0 which converge at least on the disk
ord (z — t) > 1 +1lo
rd (z — — .
p—1 gp

If furthermore L € R4 for some c,r—very standard set A which contains B(c,7~), let 4,
be the dimension over 2 of the space of solutions of L u = 0 which are analytic on B(c,r7).
i. For p > r~1, §(t,p) is equal to the number of roots A of A,(L) which satisfy |\| < p.

ii. For L € R, as above, 7, < §(t,r71).

Proof: The first result follows immediately from Theorem 4.3 (i). For (ii), first suppose
that u is a solution which is analytic on B(c,7~). Then whenever ¢, is a ¢, rg—generic
point with 7o < r, we know that u converges on B(fg,7y ). Since A contains B(c,r~) we
may view the coefficients of L as elements of M(B(c,7y)), and by Theorem 4.3 (i) there
is a corresponding root Ao of A; (L) with |Xo| < r5'. It follows that 7, < 8(to,rg ") for
all ¢,ro—generic points t, with 7o < r. Finally, the theory of Newton polygons tells us
that if A; (L) has j roots of absolute value at most ry! then |gn—:/gn_;|c(ro) < rj 7 for
0 < i< j. Since |h|c(ro) is a continuous function of rg € (0,7] for h € M(A), we find that
vr < 8(to,g") for all 7o < r implies that v, < §(¢,7!) as well, giving (ii). This completes

the proof.



39

We note that part (i) above implies that, if L € & 4 is completely soluble in the generic
disk B(t,r), then every root A of A;(L) satisfies [A| < r~!. Furthermore, if every root A
of A¢(L) satisfies |A| > 1, then L is completely insoluble in B(t,r~).

We present the following application to the study of solutions at irregular singular
points as an extension of the idea in part (ii) above. Here we give a p-adic proof and

extension of a classical result.

Corollary 4.9. Suppose that A contains a disk about the point c € K. Let L = D™ +
@Dl + ...+ ¢, € Ry, and let w; = —ord. g; denote the order of the pole of ¢; at z = c,
with wy = 0. Assume that L has an irregular singularity at ¢ = c; thus w; — j > 0 for
some j. Let k be the minimal integer with the following properties:

i. The difference w; — j attains its maximal value when j = k.

ii. Among those indices j for which the above maximum is attained, the expression
i —)®ig.
Lim(z — ¢)™ g;(z)
attains its maximal value when j = k.

Then the space of solutions of Lu = 0 which are analytic near ¢ = ¢ has dimension at
most n — k over Q. Furthermore, if k = n then (z — ¢)®~ L is injective on H(B(c,r*)) and
xE((z—c)®»L,r) = 0 for all sufficiently small r € |Q*|. In particular there are no nontrivial
solutions to L u = 0 analytic near z = c.

Proof: The hypotheses on L and the definition of k£ imply that, for all sufficiently small
r € |Q*|, we have |gk|c(r) > r~* and |g/gj|c(r) > r7* for all j < k. It follows that the
segments of the Newton polygon of A;(L) whose abcissae lie in [n — k, n] all have slopes
greater than —log r for small r, and therefore A;(L) has at least k roots of absolute value
greater than r~! for all sufficiently small r. By Theorem 4.3 (i), for small r there is at
most an (n — k) - dimensional space of solutions which can converge in B(t,7~). Since any
solution u which is analytic at # = c converges in all ¢, r—generic disks when 7 is less than

the radius of convergence of u at z = c, the first result follows. If ¥ = n then the hypothesis
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of Proposition 4.5 is satisfied for the operator (z — ¢)®»L with A = B(c,r*) when 7 is
sufficiently small, so the second result also follows.

The‘ reader may compare the second result of this corollary to a result of B. Malgrange
([13], Proposition 1.3), which shows in effect that the index of (z — ¢)®~L on the space of
formal power series in powers of z — ¢ is given by max{w; — j} — (@, —n), an integer which
is called the irregularity of L at ¢. If k = n then the index on formal power series is seen to

be zero; the above corollary shows that the index is also zero on all sufficiently small disks.

The first result of the above corollary is an extension of a well-known principle of
operators with irregular singular points in the complex domain (e.g., [11], §17.11). If the
coefficients of L actually lie in @(z) and ¢ € Q, then the class k' of the irregular singular
point ¢ = c is defined to be the least integer which satisfies condition (i) in the statement of
the corollary. Then it is well-known that L u = 0 has at most n — k' independent solutions
regular (in the complex sense) at z = ¢, although there certainly need not be this many.
Our interpretation of the above condition (ii) in the definition of k is that, if £ becomes
larger than k' because of this additional condition, the bound on the dimension of the space
of (p-adically) regular solutions is reduced essentially because of a reduction in the maximal
number of roots of the indicial polynomial of L at = ¢ which can be p-integral.

This idea can be applied to the question of existence of formal power series solutions
as well. The main tool needed for this is the theorem of Clark [5], which states that, if
the roots of the indicial polynomial of L at ¢ are all p-adically non - Liouville (which is
certainly true if L € Q(z)[D]), then any formal power series solution in powers of z — ¢ has
positive radius of p-adic convergence near z = ¢. We therefore find that, in the notation of
the corollary, there can be at most an (n — k) - dimensional space of formal power series
solutions in powers of z —c when L € Q(z)[D]. This indicates that for such operators L, the
number of independent (complex) regular solutions near an irregular singular point ¢ € Q
can be influenced by the occurence of prime factors in the coefficients of L.

Example 4.10: Let L = D® + az~2D? + Bz~3D + z~*, where o, € Z. The classical
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theory indicates that the irregular singularity at # = 0 has class k' = 1, and therefore there
are at most 2 independent solutions regular at = 0. However, according to the previous
corollar&, if p is a prime dividing o and p does not divide 8, we have k = 2 (considering the
coefficients of L p-adically) and therefore there is at most one (p-adically) regular solution
at z = 0. On the other hand, if p divides both a and §, then k¥ = 3 and thus there are
no (p-adically) regular solutions at z = 0. But then by the result of Clark there can be no
formal power series sblutions in powers of 2, so there can be no (complex) regular solutions
at z = 0.

This phenomenon can be explained more or less by noting that the indicial polynomial
of L at 0is ar?+ (B —a)r+1. The indicial polynomial of L at 0 always has degree n—k' = 2,
but in each of the above cases we see that the length of the segments of its Newton polygon
(with respect to the prime p) which have non-positive slopes is exactly n — k, and this is
what limits the number of possible integral roots.

We conclude this chapter with a specific example. Here we use Theorem 4.3 to explain
and analyze the phenomenon of distinct radii of convergence of solutions of the second order
operator which annihilates the confluent hypergeometric function.

Example 4.11. Consider the differential operator

-2 pi-z)

L,=D?- (4.20)

where a € K satisfies |a| < 1. It has been noted by Monsky that this operator has solutions
with distinct radii of convergence at a generic point t satisfying [t—1] =1 whena€Z,
is not a negative integer. This phenomenon has been treated by Robba and Dwork in [14]
and [10], using the fact that for such values of a, the confluent hypergeometric function

5 (a}052) - 5l (1)’

=0

is a solution of L near z = 1 which converges in B(1,17), so there is also a solution which

converges and is bounded in B(t,17); however, the wronskian at ¢ does not converge on
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B(t,1~). We will use Theorem 4.3 to show that L, has solutions with distinct radii of
convergence at all generic points ¢ for ¢ = 1 under the weaker hypothesis that |a| < 1.

Let ¢ be a 1,r—generic point and let A, o be the roots of A;(L), with |A| > |o|. We
compute that

A=pr7", lo|=la| when r<1,

and

AN=p, |o|=lalr™* when r>1,

so that |A| > r~1 > |o| holds for all » > 0, and therefore Theorem 4.3 (i) applies to )\, while
(ii) applies to o, for all » € |2*|. We find that for all 7, there is a one-dimensional space of

solutions at ¢ which converge at least for
d(z-t)> ! +ord(t—1)
z — s —_—
or T

and are bounded on that disk; the remaining solutions converge and are bounded exactly

on the disk
y4 p
ord(z —t) > ;—_—I + ord (t — 1) (resp. ord(z —t) > p—_——)

when r < 1 (resp. r > 1). Therefore for any a € KNB(0,1%), the operator L, has solutions
with distinct radii of convergence at every 1, r—generic point, regardless of the radius r. We
may therefore consider the existence of solutions with distinct radii of generic convergence
to be an analytic property of L, (i.e., depending only on the norm of the coefficients),
although the existence of a solution converging in B(t,17) is an algebraic property of L,
when a € Z,,.

We note that the behavior of solutions of L, is slightly different when |a] > 1. If we

let |a| = p, for example, then we may compute that
Al=pr~!, |o/j=p when r<1,

and

1/2

Al = le| =pr~ when r>1,
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so that |[A| > |o| > r~1 for »r > p~! and |A\| > 7! > |o| for r < p~1. So for r < p~! there

are solutions at ¢ with ordinals of convergence
P_1ord (t—1) and at least L +ord(t —1)
p-1 p—1 ’

respectively; for p~! < r < 1 the ordinals of convergence are

P

p
S - d ——
1 +ord(t—1) an 1

respectively; but for » > 1 all solutions have the same ordinal of convergence

P 1
P + 2ord(t 1).

In particular, for » < 1, the radii of convergence of solutions at 1,r—generic points ¢ are

distinct, while for » > 1 all solutions have the same radius of convergence.



CHAPTER V
SECOND ORDER OPERATORS AND THE RICCATI EQUATION

The purpose of this section is to slightly improve Theorem 4.3 for second order oper-
ators by showing that in this case every optimal basis B satisfies the conditions of that
theorem. The proof we now give is similar to that of Theorem 4.3, but does not rely on the
factorization principle given in Lemma 4.2. Because this proof is more direct it gives more
insight into the phenomenon of distinct radii of convergence; in particular, it demonstrates
a connection between the larger radius of convergence and the rate of convergence of the

continued fraction expansion for the solution of the corresponding Riccati equation.

Theorem 5.1. Let L € R, be the monic second order operator L = D? 4+ ;D + ¢5 and
let t be a ¢,r—generic point. Let B be any optimal basis for the kernel of L at t. Then
there is a one - to - one correspondence between the roots of A;(L) and the elements of B
such that

i. Corresponding to every root A of A;(L) satisfying |A| > r~! there is an element of B

which converges exactly on the disk
ord(z—t)>1/(p—1)+1logl|A|, _ (5.1)

and is bounded on this disk.
ii. Corresponding to every root A of A.(L) satisfying |A| < =1 there is an element of B

which converges at least on the disk
ord(z —t)>1/(p—1)+ord(t - ¢), (5.2)

and is bounded on this disk.

44
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Proof: Let u(z) be a solution to L u = 0 which is analytic in a neighborhood of ¢. Since
D?u + ¢, Du + gzu = 0, there are uniquely determined functions {bm, ¢;n}m>0 as before
such that D™u = b,u' + cpu. We find that bp = 0, ¢co = 1,0 =1, ¢; = 0, by = —qi,

¢z = —¢z, and that in general, for m > 0 the b,, and ¢, satisfy the recursion formulae
bm+1 = —q1bm + b:n +Cmy, Cm41= "Qme + C:n. (5'3)

As before, since the b,, and c,, are polynomials in ¢;, ¢ and their derivatives with
integer coefficients, it follows that each b,, and c,, lies in E, .. Therefore, since ¢ is generic
for ¢, we have |by(t)] = |bm|c(r) and |em(t)| = |emle(r). If we suppose that u(t) = 1 and

u'(t) = 0, then by Taylor’s theorem, in a neighborhood of ¢ we have

(= <]

u(z)= Y. f';"‘%(z — )™, (5.4)

m=0

Therefore, we can determine the radius of convergence of u by computing |c,|.(7). Similarly,
we can determine the radius of convergence of a solution u which is normalized by u(t) = 0,
u'(t) = 1 by computing |by (7).

We now consider five possible cases.

Case I: Suppose that both roots A, o of A;(L) have absolute value less than or equal to
r~1. By the theory of Newton polygons, this implies that |g;|(r) < ! and |gz].(r) < r~2.
From (5.3) one may easily show by induction that |by,|.(r) < 17™ and |cmlc(r) < 7 ™
for all m. From (5.4) we see that the solutions v, w which are normalized by v(t) = 1,
v'(t) = 0 and w(t) = 0, w'(t) = 1 converge at least on the disk (5.2) and are bounded there.
Since any linear combination of such solutions also converges and is bounded on this disk,
it follows that any optimal basis B satisfies the condition of the theorem.

Case II: In the next two cases we suppose that the roots A, o of A;(L) are of equal
absolute value , and that |A| > r~1. We note that this implies that |gz|.(r) = || and that

lg1le(r) < |A|. We first treat the simpler case in which |g;|.(7) < |A|. For this case we apply
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induction to the recursion formulae to obtain the estimates

[b2s1le(r) = lgzle(r),

leakle(r) = la3le(r),
(5.5)

IbZklc(r) S Iq:_llc(r) : ma'x{r_l, IQIIc(r)}, and

lezes1le(r) < lgzle(r) - max{r™", |gs e(r)}

for all £ > 0. It follows that the solutions v, w normalized by v(t) = 1, v'(t) = 0 and
w(t) = 0, w'(t) = 1 converge and are bounded exactly on the disk given by (5.1). Therefore,
all solutions converge at least on this disk and are bounded on this disk. Now suppose that
u is a solution with u(t) = 1, ¥'(t) = a € Q. To show that u does not converge on any
larger disk, we need to show that there is not too much cancellation in the terms u(™)(t) =
abm(t) + c¢m(t). Cancellation in the m-th term can occur only if |a||bm|c(r) = |em|c(r)-
Using (5.5) and noting that max{r~1,|g|c(r)} < |A|, we see that for m = 2k this requires
|a| > |A], while for m = 2k + 1 we need |a| < |)A| in order to have cancellation. Obviously
there will be infinitely many m in which no cancellation occurs. More precisely, if |a| > ||
then |aby, + cm|c(r) is equal to |aA™~1| for odd m and is less than |aA™"!| for even m;
conversely, if |a| < |A| then |aby + ¢ |c(7) is equal to |A™| for even m and is less than |A™|
for odd m. Therefore, all solutions converge exactly on the indicated disk and are bounded

there. It follows that any optimal basis has the required property.

Case III: Suppose now that the roots A, o of A;(L) satisfy |[A| = |o] > r~! (so
that |gz|c(r) = |A|?), and further suppose that |g;|.(r) = |A|. By induction, the recursion
formulae show that |c,m|c(r) < |[A™| and |by|c(r) < |A™71] for all m > 0. We now proceed
to show that the equalities |c,m|c(7) = |A™| and |bm|c(r) = |A™ | hold for infinitely many
values of m. The recursion ¢pm41 = —g2bm + ¢}, shows that |cni1]c(r) < [A™*?] if and only
if [bm|c(r) < |A™1|. Suppose then that there exists m > 1 such that |b,_1].(r) = |A™2|
but |bm|c(r) < |A™1|, i.e., suppose that the equality holds for b,,_; but fails for b,,. This is

equivalent to saying that it holds for ¢,, but fails for ¢,n+1; therefore we have |c,,|.(7) = |A™|
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and |cmy1]e(r) < |A™*+!|. Therefore, we may compute from (5.3) that

[bm+1le(r) = lemle(r) = |A™],

|bm+2|¢:(7') =|- QIbm+1|C(7') = |’\m+1|, ( )
5.6

lem2le(r) = | — @2bm4ale(r) = |Am+2|a and

lemasle(r) = | = @2bmtzle(r) = [A™F3).

Thus we have shown that if the equality fails for b,, then it must hold for b,,4; and
bm+2; equivalently, if it fails for ¢,,4) then it must hold for ¢;ny2 and cpmy3. It follows that
there are infinitely many values of m for which the equality holds. Therefore, the solutions
v, w which are normalized by v(t) = 1, v'(¢) = 0 and w(t) = 0, w'(¢) = 1 converge and
are bounded exactly on the disk ord(z — t) > 1/(p — 1) + log|A|. Thus any solution will
converge at least on this disk; we must now show that this is the exact disk of convergence
for all solutions. In this case, however, we must adopt a more subtle approach than in Case
II.

We have seen that |by,|.(r) < |[A™~!]| for all m > 0. We now set
M={meZ": [bmc(r) = |A™H3,

and note that M is infinite by the result of the previous paragraph. For each m > 0 we set
Mm = —Cm/bm.
Suppose that there exists m € Z* with m —1 € M but m ¢ M. From the preceding
remarks, this implies that m 4+ 1,m + 2 € M and we have
bmle(r)  <IA™7H,  lemle(r) =A™, so |7mle(r) > Al
Bmale(r) =A™, lemyrle(r) <IA™HY, s0 |7miale(r) < [A; (5.7)
bmizle(r) = A", |emyzle(r) = [A™*2], 50 [Bmyale(r) = AL
Therefore in particular we have |9m4+2 — Jm+1lc(r) = |A|. Since M is infinite, it follows that
if Z* \ M is also infinite then there will be infinitely many such values of m, and therefore

there will be infinitely many pairs m,m + 1 € M for which

[m41 — 'lmlc-'(r) = |Al.
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Now suppose that Z* \ M is finite, and let u be the least positive integer such that
|bm|e(r) = |A™7Y| for m > p. For elements h of E., we set R(h) = h? + qth + g2 + B’
If 4 = 1, then we compute R(7;) = R(0) = g2, so that |R(n,)|c(r) = |A%]. If & > 1 then

|bule(r) = |A¥71| and |eylc(r) < |A#], so that |g,]c(r) < |A], from which we may compute

|B(1)le(r) = lgale(r) = |N*]. (5.8)

The essential point here is just to show that R(n,) # 0.

For m > 0 we compute from the recursion formulae (5.3) that

brm
NMm+1 — NMm = E——'I"R(nm)' (59)

m+

We use this relation to compute

bm
R m =R m + —R m
(Mm+1) (n by 27 ))
bm bm bz b ! bm R("?m)'
= R(nm)| 1+ + 219, + 3R + +
(7 )< n bmt1 g bmir  bZyy (7m) ( m+1) bm+1 R(7m) (5.10)
92b3n - me‘n + bm+l b, bm ! bm R(n‘rn)l
= R(nm T 4+ + = R(7m) - Hm.
(77 )( bsn-{-l <bm+l) bm+1 R(nm) (77 )
One may then compute that
b2 — b,,c! bm+10, b2
20, b: + +1 (1‘) — gz m (1‘) =1 (5‘11)
m+1 c m+1 ¢

when m > u. Since by Proposition 2.4 we also have
()
bm+1

’ m_R(1m)’

(M <r AT <l

c

and

<r UAl<1

for m > p, it follows that the expression H,, in (5.10) satisfies

425
m+1

IHmlc(r) = ( ) =1
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whenever m > p. It follows from (5.8) and (5.9) that for m > p we have m € M and

m+1 = Thmle(r) = |A].

We have therefore shown that in any event, there are infinitely many pairs m, m+1 € M

for which
[Tmt1 = mle(r) = |A]. (5.12)
Therefore, for any a € { we have
limsup |a — 7m(£)] > [l (5.13)
meEM

If u is a solution at t with u(t) = 1, u'(t) = a, then since b, + ¢ = 0, we have
U(t) = abm(t) + m(t) = bm(t)[a = 1m(?)] (5.14)
for every m € Z*. It follows from (5.13) and the definition of M that
limsup [{™(2)] > |A™|, (5.15)
meM

and therefore any such solution u converges precisely on the disk indicated. Since any
solution is a linear combination of the normalized solutions v and w, which are bounded on
this disk, every solution is also bounded on this disk. Therefore, every linearly independent
pair of solutions at ¢t forms an optimal basis, and every optimal basis satisfies the conditions
of the theorem.

Case IV: Suppose that the roots A, o of Ay(L) satisfy |A| > |o| > r~1; this implies
that |g1]|c(r) = |A| and |g2|c(r) = |Ao|. In this case one may compute by induction that
|bmle(r) = [A™71| and |em|c(r) = [A™~1o| for m > 1 from the recursion formulae (5.3). It
immediately follows that the solutions v, w which are normalized by v(t) = 1, v'(t) = 0 and
w(t) = 0, w'(t) = 1 converge exactly on the disk ord(z —t) > 1/(p — 1) + log|)\| and are

bounded on this disk.
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For each m > 0 we again set 7, = —¢/bm € E. .. For elements h of E., we again

set R(h) = h? + q1h + g2 + h'. Then from the above we find that for all m > 1,

|7’m|c(7') = IUI’ (5'16)

and we again note that the recursion formulae (5.3) yield

bm
NMm+1 — Nm = b__R(nm)- (517)
m+1

We now proceed to prove by induction that

B(m)le(r) = (5.18)

o
\k—2

for all £ > 0. For k = 1 we compute directly that R(n) = g2, so |R(m)|c(r) = |oA], as

desired. Now assume that (5.18) holds for £k = m. As in (5.10) we compute

B(tmt1) = B (7 + ""bLR("Im))

bm+1
q2b%, — bl + by B! b ! bm R(1m)' (5:19)
—R m mbm m m + m + m m =R m 'Hm'
(Um) b3n+1 (bm+1) bm+1 R(Tlm) (n )
But since
925,27; -— me;n + bm+1b:'n| i
r)=|—
b3n+1 c( ) lA‘ ’
and
b \' o
m < -1 -1 —_
() <
[
and
bm R(nm)l -1 -1 g
—_m_ < Y
Ibm+1 Ry |0 SN <[5

we find that the expression H,, in (5.19) satisfies

Hale(r) = |-

Therefore (5.18) holds for £ = m + 1, so by induction it holds for all k£ > 1.
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So we have shown that |R(7m)|c(r) — 0 as m — o0, i.e., the sequence {R(7m)}
converges to zero in the metric of E. . Furthermore, (5.17) and (5.18) together show that

m

o
[Tm+1 = Nmle(r) = I/\m—l

<|al, (5.20)

so the functions 7,, converge to an element n € E ., since E, , is complete. Equation (5.20)

shows that |7|.(r) = |o| and that

m

g
11— Nmle(r) = )Am—-l :

(5.21)

Set o = 7(t), and let ug be the solution of Lu = 0 such that uy(t) = 1, uh(t) = a

Again, since 1,,by + ¢ = 0, we have
6™ (t) = abm(t) + cm(t) = Bm(B)[1(2) = T (8)]- (5.22)

Then (5.21) shows that |ugm)(t)| = |o|™ for all m > 0. It follows that this particular solution
ug converges exactly on the disk ord (z—t) > 1/(p—1)+log|o| and is bounded there. Since
|0'|‘ < |Al, it follows that every nontrivial solution u at ¢ is either a nonzero scalar multiple
of up (and therefore converges and is bounded exactly for ord (z — t) > 1/(p — 1) + log|o|),
or is of the form u = aug + bv, where v is the solution normalized by v(t) = 1, v'(t) = 0,
with a,b € Q and b # 0 (and therefore u converges and is bouﬁded exactly on the disk
ord(z —t) > 1/(p— 1) + log|\A|). Therefore, any basis which contains a scalar multiple of
ug is an optimal basis, and any optimal basis satisfies the conditions of the theorem.

Case V: Suppose that the roots A, o of A;(L) satisfy |A\| > ! > |o|. Here the proof
is basically a modification of the proof for Case IV. With the new hypotheses on A and ¢
we still have |bpn|c(r) = [A™7 1| and |eml|c(r) = |A™ 10|, so the solutions v, w normalized
by »(t) = 1, ¥'(t) = 0 and w(¢) = 0, w'(t) = 1 converge exactly on the disk given by
ord(z —t) > 1/(p—1)+1log|A| and are bounded there. Defining the 7,, as before, we still
have 7, being an element of E. . with |n,|.(r) = |¢|, and equations (5.17) and (5.19) are

still satisfied. Under the modified hypotheses on A, o, and r we must replace the equality
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(5.18) with the estimate
rl-—mlo.l

. 5.23
|Am=2] ( )

| B (m)]e(r) <

This follows from the same induction argument as in Case IV except that the estimate for

the expression H,, in (5.19) becomes |H,,|.(r) < r~1|A]~!. We find that

rl=m|g
[Mm41 — Nmle(r) < W‘_l—ll <lao|, (5.24)

so the 7, converge in the metric of E. . to an element 5 which satisfies |5(t)| = |o| and

[7(2) = nm ()] < rll;'ilfrll (5.25)

Set o = 7(t) and let uo be the solution at ¢ with ug(t) = 1, uf(¢) = . Then since

u{™ () = b ()[1(t) — B (2))], (5.26)

we find from (5.25) that Iugm)(t)l < r1=™|g| for all m > 0. Therefore this particular solution
ug converges at least on the disk ord(z —t) > 1/(p— 1) + ord (¢ — ¢), and is bounded there.
As in Case IV, any basis of solutions at ¢ which contains a scalar multiple of ug is an optimal
basis, and any optimal basis satisfies the conditions of the theorem.

This completes the proof of the theorem.

The idea for the proof of this theorem centers around a continued fraction expansion

for a solution of the Riccati equation
Ry)=y'+y" +qay+g =0 (5.27)

associated to the homogeneous linear equation Lu = 0. In Cases III, IV,. and V above,
the ratios 7y, = —cm /b are essentially the partial sums in a continued fraction expansion
for a solution y = 7(z) of equation (5.27) (cf. [11], §7.5). It is a well-known property of
this equation that any solution % of (5.27) is the logarithmic derivative of a solution u of

Lu =0, and that the operator L = D? + ¢,.D + g, then factors (formally) as

L=(D+ (g +m)o(D—n). (5.28)
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We know, however, from Lemma 4.2 that if Lu = 0 has solutions with distinct radii
of convergence at ¢ then L must factor in the ring R., as a composition of two first
order opéra.tors, where the right factor annihilates the solutions with the larger radius of
convergence. Therefore, we expect that when the solutions of L exhibit distinct radii of
convergence at t, then L factors as in (5.28) where € E., and 7 is the logarithmic
derivative of a solution with the larger radius of convergence.

On the other hand, we know that if the partial sums 7,, of the continued fraction do
converge with respect to |- |.(r) to a limit #, then n € E,, as well, since n,, € E. , and E. ,
is complete in this metric. It is therefore not surprising that the ratios 7, do converge in
Cases IV and V above (where we know from Theorem 4.3 that distinct radii of convergence
occur). In Cases II and III, there may or may not be a solution 7 to the corresponding
Riccati equation which lies in E. ., but we have shown that in any event the ratios 7,, do
not converge to such a solution. Equations (5.12), (5.20) and (5.24) show explicitly how
the absolute values of the roots of A;(L) affect the rate of convergence of the ratios 7,,. In
Case IV the fact that Iu‘(,m)(t)| = |o|™ agrees with the result of (3.6) applied to the first
order operator D — 7, since in this case |7|.(r) = |o| > r~!. However, in Case V, we see
from (5.26) that it is not |n|.(r), but rather the rate at which the ratios 7,, converge to 7,
that determines the radius of convergence of u,.

As an application of this theorem we rephrase the results of Cases IV and V in terms

of the Riccati equation associated to L.

Corollary 5.2. Suppose that q,, g2 € E., satisfy |q1].(r) > ™! and |g:|s(7) < |¢?|c(7).
Then for any c,r—generic point t there exists a unique a €  with |a| < |q|c(r) such that

the initial value problem

¥ =—-( +ay+a)
(5.29)
y(t)=a

has a solutiony =n € E .

Proof: The conditions on ¢; and ¢, imply that, for the operator L = D?+ ¢, D + ¢, € R, .,
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the roots A, o of A¢(L) satisfy |g1|c(r) = |A| > |o| and |A] > 1. The existence of o and
n then follows immediately from the results of Cases IV and V of Theorem 5.1 applied to
L, wheré 7 is as described there and a = 7(t). To show uniqueness, suppose that ag # a,
|ag| < |A| and that ng € E, » is a solution of (5.29) with 7g(t) = ag. Let u, ug be nontrivial
solutions at ¢ of (D —n)u = 0 and (D — 7 )up = 0, respectively; note also that u and uo are
both solutions of L u = 0. Since ag # a, the functions u and u, are linearly independent over
Q; and by applying Theorem 3.1 to D —  and D — 19, we find that both u and u, converge
on disks which properly contain the circumferenced disk ord(z —¢) > 1/(p — 1) + log|A|,
since |n|c(r) = |o| < |A| and |no]c(r) = |ao| < |A|. This contradicts Theorem 5.1, which
states that Lu = 0 has only a one-dimensional space of solutions at ¢ which converge on
such a disk. This shows that the choice of a is unique, completing the proof.

We remark that if one applies the result of Clark ([5], Theorem 1) to the initial value
problem (5.29) with the stated hypotheses, one finds only that there is a solution 7 which
converges at least for ord (z — t) > 1/(p — 1) + log |A|, which by theorem 5.1 is the smaller
of the distinct disks of convergence of the solutions of Lu = 0 at .

The method of proof of Theorem 5.1 may be extended to give a more explicit factor-
ization for certain higher order operators; specifically, one may adapt this method to obtain
a partial factorization of the operator L = D™ + ¢; D™"! + ...+ ¢, € R, , when A(L) has
a unique root 7 of maximal absolute value and |y| > r~1. In this case one has |g;|.(r) = |7|
and |gjlc(r) < |7)? for 1 < j < n. Defining the functions ) as in the proof of Theorem
4.3, one still has the recursion relations (4.6). We then define the ratios ns,’;) = AC) / pin
for 0 < j <n—1and m > n—1. Then in a manner similar to that yielding (5.17) one may

compute that for each 7 one has

: N AU
7157111 - = _(',‘TIYR%)’
bm+1

where

BD = goj + a0 + 0D + o + 47,
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the 1)5,{_1) term being omitted when j = 0. Then by computations similar to (5.19) one
may show that for each j, R — 0 as m — o0, and that therefore each sequence {ng)}
converges to an element 77(5) € E. . From the definitions and convergence of the RS;";) and

the ng;f) one may easily verify that the operator L then factors in the ring R, , as
L= (D + (Q1 + n(n—z))) ° (Dn—l _ n(n—z)Dn—Z _ T’(n—S)Dn—S e 77(0))'

By an argument similar to that concluding the proof of Theorem 4.3 one may show
that the roots corresponding to the right factor above have exactly the same absolute values
as the roots of A;(L) which are smaller than |y|. Therefore, if all the absolute values of
the roots of A;(L) were distinct, then by applying the above analysis inductively one could
give a constructive proof of the factorization of L given in Corollary 4.4. However, even
under this hypothesis on the roots of A;(L), we do not know how to compute the exact
radii of convergence of the solutions of L at ¢ when the order of the operator is greater than
two, except by applying Theorem 4.3. Furthermore, when A;(L) has more than one root
of maximal absolute value, the above analysis fails because the Rs;’;) and the n,(,{) do not all
converge.

The above line of reasoning was inspired by Dwork’s use of the ratios 7]5,{) in his proof

of a reducibility criterion for linear differential operators ([7], Theorem 4).



CHAPTER VI
APPLICATION TO THE p-ADIC BESSEL EQUATION

In this final chapter we illustrate how the principles of this paper may be used to
obtain information about the index of a linear differential operator when one does not have
an explicit description of the operator and its local solutions. For this we will be considering
the symmetric powers of the p-adic Bessel operator, which have been studied by Robba in
[18]. In that article Robba conjectured a formula for the index of the k - th symmetric power
of this operator which depends only on k and p, based on a conjecture concerning the effect
of ramification of the variable on the index ([17], §8.3). In this chapter we show that for
the odd symmetric powers of the Bessel operator, this latter conjecture holds relative to
sufficiently small disks about the irregular singular point at co. The methods used here
serve to illuminate several features of the index results given in Chapter 4, especially the
role of the irregular singularity and the analytical aspect of the proof.

For this chapter we assume p is an odd prime. We will adopt the notation of [18]. We

begin by considering the Bessel differential operator
=D+ -D— —. (6.1)

Let W denote the associated differential module with basis represented by {v(z),w(z)} as

described in [18], and let

0 1/=z
G= [ﬂ_z (/) ] (6.2)
denote the derivation matrix in W with respect to this basis. The operator L = D — G
therefore annihilates the vector v = [v(z) w(z)]T. Notice that L is a matrix form of the

scalar operator /; in particular, v is annihilated by .

56
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For each k > 0 let W}, denote the k-th symmetric power of the differential module W.
From (6.2) we find that Dv = w/z and Dw = w?v. Therefore, with respect to the basis
{v",vk‘l.w,...,vwk“l,wk}, the derivation matrix G in the differential module Wy is the

(k+1) x (k + 1) matrix given by

0 k/z 0 0 0 0 1
72 0 (k-1)/= 0 0
0 2r? 0 (k-2)/z 0 0
Ge=|0 0 3x? 0 (k-3)/z 0 (6.3)
0 0 (k-1)x%2 0 1/z
L 0 0 0 0 kx?2 0

It follows that Ly = D — Gy is the k-th symmetric power of L, and that L; annihilates the
vector vi = [v* v* 1w ... vw*~! w*]T. Therefore Ly is a matrix form of the k-th symmetric
power l; of I, which is the unique monic operator of order k + 1 which annihilates vk,
Our aim is to compute the index of zL; on HL(r)k“, where
nL = U H2®B0,RY)
R>1/r

is the space of “overconvergent” analytic functions on the disk B(0, (1/r)*) (for more details
on this notation and spaces of this type the reader is referred to [17]). Here we work with
zL;, since Lj is not an endomorphism of this space, although one may discuss the index
of L on such a space using the extended definition of index ([17], §3.6). We will give a
formula for this index when k is odd and r is sufficiently small.

Our first step toward the computation of the above index will be to compute the index

of z*+11;, on H(B(0,r%)) for large r.

Proposition 6.1. For every odd positive integer k there exists R > 0 such that for all

r > R, z*t11, is injective and has index on H(B(0,r%)), and that index is given by

(=1, H(B(0,7%))) = — kzi (6.4)
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Proof: From (6.3) and the fact that L) vi = 0 we may deduce the system

dug 4
z:i;.=:ku1’

de . 2 . .
g—~ = jmiruj + (k= j)uj (1<j<k), (6.5)
zi"-‘-’i = krleup_q

dz

of first order scalar differential equations involving the basis elements {u; = v*~Iw} of
Wp. This system may then be reduced to obtain a single homogeneous linear differential
equation of order k + 1 satisfied by ug = v*. Specifically, one may verify by induction that
for 1<j<k+1and0<i< j, there exist P{") € Z[x?|[z] such that
J
3 POu) = k(k—1)---(k - 5 + 1)uj,
i=0

(with the convention 4z = 0), where P_,Ej) = z7, and deg PJ(.i) =j-[(7-71+1)/2]. In
showing that this gives the exact degree of PJ(-O we in fact show that the term of highest
z-degree in P}i) is in fact a single monomial of the form a - 72¢z°, where d = [(j — 1)/2],
e=j—[(j—i+1)/2], and a € Z with sgn(a) = (=1)I(G=9)/2); this shows that there is no
cancellation in the leading term of PJ('.). When j = k + 1 the above equation becomes

k41

S Pl <o,

i=0
which implies that EP,E?lDi = gk+1], since I is the unique monic operator of order
k + 1 which annihilates uy. By setting qpi1-; = P)Ei)v we will write *+1, in the form
gkl = gk+t1p*+l L g D* +... 4 qz11. Then each g; lies in Z[n%][z], go = z**!, and when
k is odd, gr41 is a polynomial of degree (k + 1)/2 in z, and g¢; is a polynomial of degree
E+1-[(7+1)/2]in z for 1 < j < k. Therefore, if one chooses Ry > 1 so large that every
root of each g; lies in B(0, Ry ), then for r > Ry one has

La| 2 ormtrore,

zktl

6.6
k41 ( )

; (r) 2 Cr(H1=0/2 (1< j<k)
J

0
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for some constant C € (0,1). If one then chooses R > max{Ro,C~?} it follows that when
r > R, |gk+1/g5lo(r) > r~(*+1=9) for 0 < j < k, whence every root X of A(z*+1l;) satisfies
|A| > 1. By applying Proposition 4.5 to z*+1l;, with A = B(0,7*) and » > R, we see
that the desired index is given by —ord¥ (gey1,7) = — deg gry1 = —(k + 1)/2, as asserted.

We remark that if k is even, then for large r, A;(z**1l)) has at least k roots of absolute
value greater than r~!, but for almost all primes p there will a single root of absolute value
at most r~1. This occurs because for even k we have deg gx = 1 + deg gr1, While for odd
k we have deg gr = deggr+1. So when k is even, Proposition 4.5 is not applicable.

At any rate, for odd k£ we note that it is the irregular singularity of /. at oo which
allows us to compute this index by Proposition 4.5. Indeed, since the coefficients of z*+1[;
are polynomials, if the singularity at co were regular then the degree of gx4+; would have
to be zero, so we would have |z~(*t1)g, . ]o(r) < »~(*+1) for large 7, and the roots of
A4(z**+11;) would not grow larger than r~!. This type of calculation is close in spirit to
that of Corollary 4.9, except that here we are calculating the index on the complement of a
small disk about an irregular singular point.

We now establish the precise relation bet;veen the index of z**1l;, and the index of

:ch.

Proposition 6.2. Let H be any C,-algebra of analytic functions in one variable on which
differentiation is stable. Then z*t'l, is injective and has an index on H if and only if zL;,

is injective and has an index on H**!, and in this case the two indices are equal.

Proof: We define functions ¢; : H — H, for 0 < j < k as follows: Set ¢_; = 0 as a
convention, and ¢o(§) = £ for all £ € H. For j > 0 we define the ¢; recursively by

z (7 —1)r%z

d
F+1-7) 5(451‘—1(5)) TS $j-2(§)-

$;(€) =
Then we define functions u,v : H — H**! by setting u(£) = [¢o(€) ¢1(£) - - - $x(£)]T and
v(€) = [0---0 &/(k!)]T. It is obvious that u and v are both injective. Furthermore, if

zLiy = z, where y = [yo y1 - - -y&])T and z = [z 2 - - - 2] are elements of H**!, then from
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(6.5) we see that
. 2 d .
21 ==(j —1)r’zy;2 +2 —yj-1 = (k+1-3)y; (6.7)

for 1 < j < k + 1 (with the conventions y_; = 0, yx41 = 0). Comparing this with the
definition of the ¢; we see that z**1l,(¢) = ¢ if and only if zLi(u(£)) = v(¢). It follows

that the diagram

zk+llk

0 — ker(z**ll) — H H — cok(z*tll,) — 0

" L

zL, po.

0 — ker(zLy) — H**' ——— — cok(zLgy) — 0

is commutative and has exact rows, where % is the restriction of u and ¥ is the reduction of
v. Since u is injective, so is 4. To show that @ is surjective, suppose y € ker(zL,). Then

from (6.7) we have

; d .
0=—( - 1)r’zy;_s += Y1~ (k+1-7)y;

for 1 < j <k+1 (with y_y = yr41 = 0), which implies that y; = ¢;(yo) for 0 < 7 < &k,
so that y = u(y). Since we assume y € ker(zL;), we have 2L,(u(yo)) = 0. Since
zk+11,(€) = ¢ if and only if zLi(u(€)) = v(({), we find that z*¥*1l;(yo) = 0. Therefore
Yo € ker(z**1l;) and u(yo) = y. Therefore % is also surjective, hence @ is a bijection.

The relation z*+11,(¢) = ¢ if and only if zLx(u(€)) = v({) also tells us that if ¢ €
im(z*t1l;) then v({) € im(zL,); this shows that ¥ is well-defined. To show that ¥ is
injective, suppose v(() € im(zLy), say v(¢) = [0---0 {/(k¥")]T = zLiy. Then from (6.7) we
have

d
¢/(k) = —knlzyp_y + = 72 Y0

and for 1 < j < k (with y_; = 0),

. d .
0= —(] - 1)7r2zyj_2 +z d—z'yj_l — (k +1- ])yg.
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This latter equation says precisely that y; = ¢;(yo) for 0 < j < k, so y = u(yo), and thus
v(¢) = Lx(u(yo))- This implies that z*¥+1l;(yo) = ¢, whence ¢ € im(z**1l;) and thus ¥ is
injective. To show that ¥ is surjective, we must show that any element z of #**! may be
represented modulo im(zL;) by an element of v(*). Given z € H**1, if we define y_; = 0,

yo = 1, and recursively define

oy — (- )nPayie — 2o
= (k+1-3)

for 1 < j < k, we find by comparison with (6.5) that L,y differs from z only in the
last component. It follows that z is congruent modulo im(zLj) to an element of v(H), as
asserted. Therefore, ¥ is also surjective, and hence is a bijection.

Since the kernels and cokernels of these operators are isomorphic, it follows that if
either has an index then so does the other, and then their indices must be equal. This
proves the proposition.

We now establish a formula for the index of zL;, on ’HL (r)**1, when k is odd and 7 is

sufficiently small.

Theorem 6.3. Ifk is odd and r is sufficiently small, the operator z L, is injective and has

index —(k + 1)/2 as an endomorphism of’HL(r)"“.

Proof: From Proposition 6.1 and 6.2 we know that there exists R > 0 such that zL; is
injective and has a finite cokernel on H(B(0,(1/r)%)) for r < R~'. Therefore, z L} is
injective as an operator on 7'(1,,(1-)’°+1 for » < R™!. To show that zL; has an index on
'HL (r)¥*! for such r, we must show that the cokernel is finite dimensional. -

Suppose then that f},...,f,, are elements of 7'(1‘,(1')"‘*'1 which are linearly independent
modulo the image of zLj on HL(r)”“. Then by the definition of 'HL (r) there exists R' >
r~! such that fi, ..., f,, also lie in H(B(0,s%))**! for all s € (r~*, R'). Furthermore, for s €
(r~', R'), f1, ..., £, are linearly independent modulo the image of zL; on H(B(0,st))*+1,
since if 3, ¢; f; lies in the image of zL; on H(B(0, s*))**! then 3, ¢; f; also lies in the image

of zL; on 'HL,(r)"'H, a contradiction. It follows that the dimension of the cokernel of zL;
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on 'I'tj;‘,(r)""'1 is not greater than the dimension of the cokernel of zL; on H(B(0,s*))k+!
for any s € (r~!, R'). Since r~! > R, from Proposition 6.1 we see that the dimension of the
cokernel of zLj on HL(T)k'H is at most (k + 1)/2, and is therefore finite. Therefore zL;
has an index on ’H'!.‘,(r)""'1 for r < B!, and that index is at least —(k + 1)/2. However,
if s € (R,77!), then zL is also continuous and has index —(k + 1)/2 as an operator on
H(B(0,s%))**!, and 'HL(r) is dense in H(B(0, s%t)), so by Lemma 4.5 of [14], the index of
zL; on '}'t:L,(r)"'*'1 is at most —(k + 1)/2. This completes the proof of the theorem.
Robba has conjectured [18] that

x(sz,'HL(l)k“) _ { ~k/2 + [k/2p], if k is even,
—(k+1)/2+ [(p+ k)/2p], if kis odd,
and has shown that this is in fact true when k is even and k¥ < 2p and when k is odd and
k < p. For odd k, we interpret the term —(k+1)/2 as the contribution from the irregularity
of zL; at oo, and the remaining term as arising from the behavior of the 0,1—generic
solutions. This formula is based on a conjectured relationship between the index of zL;
and the index of zLj, where L is the differential operator obtained from L by the change of
variable z — —z2, and Ly is its k - th symmetric power. This ramification of the variable
allows one to put the system in Turrittin normal form for the irregular singularity at oo,
and has enabled Robba to compute the index of zLj on ’HL(I)"‘H, based on a knowledge
of the local solution matrix at co and using the methods of [17]. The conjectured index
formula then arises from Robba’s conjecture ([18], p. 214, [17], §8) that the index of zL)
on '}'tl‘,(l)k"'1 is exactly twice that of zLy.
Robba’s computation of the index of zLj on ’HI‘,(I)"‘+1 ([18], p. 204) also shows that
the index of zLj on HL(?)"'H is equal to —(k + 1) (resp. —k) when k is odd (resp. even),
for sufficiently large r. Here we sketch another proof of this for odd ¥ using the same

technique as was used for L.

Theorem 6.4. If k is odd and r is sufficiently small, the operator z L} is injective and has

index —(k + 1) as an endomorphism of')'tL,(r)”"’l.
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Proof: The ramification of variable z — —z? transforms the operator [ into
7 2, 1 2

Let I, I}, and Lj be the operators obtained from L, Ix, and Lj by this change of variable.

Then we may write Ly = D — Gy, where

-0 2k/z 0 0 0 0
—27%z 0 2(k—-1)/=z 0 0 0
0 —4rniz 0 2(k—2)/z 0 0
G = 0 0 —6r’z 0 2(k—3)/z 0
0 0 0 —2(k — 1)n’z 0 2/z
L 0 0 0 0 —2kn?z 0 J

By reducing the corresponding system of first order equations to obtain the scalar operator
z*+1], (as was done in Proposition 6.1), we find that z*+11, = z*+*! D*+1 4 p, D*4...4py .,
where each p; lies in Z[n?][z], pp = z**!, that degp; = k+ 1 when j is even and degp; = k

when j is odd. Therefore, when k is odd one can find R > 1 so that

(r) > p(k+1-3)
0

Pk+1
pj

for 0 < 7 < k whenever » > R. Noting that this implies that every root of At(mk“fk) has
absolute value greater than r~!, applying Proposition 4.5 shows that the index of z*+11,
on H(B(0,r*)) is equal to — degpxy1 = —(k + 1) whenever 7 > R.

We remark that when k is even, we again have degpy = 1 + deg pr+1, and thus for all
but finitely many primes p, Proposition 4.5 will not be applicable.

To complete the proof of this theorem, we note that Proposition 6.2 is also valid if I,
and Ly, are replaced by I and Ly, respectively. The theorem then follows by repeating the
argument given in the proof of Theorem 6.3.

As a summary of these results, we note that the indices of the operators L; and L do

agree with the conjecture of Robba ([17], §8.3), when k is odd and r is sufficiently small.



64

Corollary 6.5. For every odd positive integer k, there exists R > 0 such that

X (sz,HL(rl/z)k“) =2x (sz,’HL(r)kH) (6.8)

for all? < R.

Although this particular confirmation does lend support to the conjecture, it would be
more interesting to know the index of zLy on ‘HL(I)"“. Indeed, in [18] Robba has shown
how this index of zLj is related to the degree of the polynomial defined by the infinite
product M, ,(cq)(t) associated to a Kloosterman sum defined over the finite field F, of ¢ = p°

elements. In particular, he has shown ([18], pp. 213-4) that
deg M(2) = —x(zLy, 11, (1)*+1).

We remark that if one knew that [, has a zero-kernel at ¢ for all 0, »—generic points ¢ with

r > 1, then one could show that

P e m L)) < 0

when k is odd, by applying Proposition 4.5 (i) of [16] and using an argument similar to
that of Theorem 6.3 above. This would then imply an upper bound for deg M ,(cq)(t). For
the ramified operator with k¥ = 1 Dwork has shown ([8], Lemma 8.1) that if |a] > 1 then
the solutions of [ at a converge exactly in the disk B(a,1~), which implies that I has a
zero-kernel at ¢ when r > 1. But this is not valid for the even symmetric powers of I. In
particular, from Robba’s article ([18], p.203) we see that when k = 27, I; has the formal
solution z; = 277 vf 'vg which is analytic in B(oco,17), which implies that I, does not have
a zero-kernel at ¢ for [t| > 1 when k is even. Furthermore, Dwork’s calculation is not
valid for the unramified operator I. In fact, Theorem 4.3 tells us that the solutions of { at
0,r—generic points ¢t converge in B(t,(r'/?)~) when r > |r|~2. Thus in particular [ has
solutions converging in a disk about ¢ of radius greater than 1 when |t| is large enough. So

we do not yet know how to determine whether I, has a zero-kernel at t when |t| > 1.
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In conclusion we remark that the existence of an upper bound for the degree of M ,(eq)(t)
which is independent of ¢ has played a role in Adolphson’s proof of the equidistribution
of angleé of the associated Kloosterman sums [2]. We therefore hope it may be possible
that methods such as these may be useful in the study of other types of exponential sums,

particularly those whose cohomology is two - dimensional.
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