
\ 

RADII OF p-ADIC CONVERGENCE OF GENERIC 

SOLUTIONS OF HOMOGENEOUS LINEAR 

DIFFERENTIAL EQUATIONS 

By 

PAUL THOMAS YOUNG 
-'/ 

Bachelor of Science 
Lawrence Institute of Technology 

Southfield, Michigan 
1983 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1985 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PIITLOSOPHY 
December, 1988 



ne~·tS 
\<1~ ~ b 
'lt--t~r 
to~·~ 



\ 

.Oklalioma State Univ. Library 

RADII OF p-ADIC CONVERGENCE OF GENERIC 

SOLUTIONS OF HOMOGENEOUS LINEAR 

DIFFERENTIAL EQUATIONS 

Thesis Approved: 

Dean of the Graduate College 

ii 

1334955 



\ 

ACKNOWLEDGMENTS 

It is my pleasure to acknowledge a debt of gratitude to Dr. Alan Adolphson for his 

guidance, patience, and encouragement throughout the course of this work. Without his 

helpful advice, this study would not have been completed, and without his careful proof­

reading, the quality of this paper would have suffered considerably. I consider myself very 

fortunate to have had the opportunity to work with him on this project. 

My appreciation is also extended to Dr. J. Brian Conrey, Dr. Amit Ghosh, Dr. Joel 

Haack, and Dr. Kent Olson for serving as my graduate committee; I am further indebted 

to Dr. Ghosh for introducing me to the field of p-adic analysis. I would also like to thank 

the Oklahoma State University Foundation and the McAlester Scottish Rite Foundation, 

who partially supported me during my graduate study. 

I am also grateful to Gregg Wonderly and Dr. David Wright for their help in the 

typesetting of this paper. Finally, I wish to thank all my friends and family who have 

supported and encouraged me from the beginning. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

IT. ANALYTIC ELEMENTS AND INDICES ...................................... 6 

ill. FIRST ORDER OPERATORS ................................................ 16 

IV. ffiGHER ORDER OPERATORS ............................................. 23 

V. SECOND ORDER OPERATORS AND THE RICCATI EQUATION .......... 44 

VI. APPLICATION TO THE p-ADIC BESSEL EQUATION ...................... 56 

BIBLIOGRAPHY .................................................................... 66 

iv 



CHAPTER! 

INTRODUCTION 

Motivated by the recent results ofP. Robba ([16], [17]) relating the index ofp-adic linear 

differential operators to the generic r~dius of convergence of their homogeneous solutions, 

the present work provides a detailed study of the radii of p-adic convergence of such solutions 

at a generic point. We then use the information obtained to verify that the index formula 

conjectured by Robba ([16], §4.13) does indeed hold, under a slightly stronger assumption. 

In addition, we use the correspondence between radii of convergence of solutions and slopes 

of the associated Newton polygon to describe an explicit factorization of linear differential 

operators, which is an extension of the factorizations given in [10]. We also demonstrate 

how these methods can be applied to the description of solutions unbounded in the generic 

disk and of solutions at irregular singular points. As a further application we show how one 

may use these ideas to obtain information about the indices of the symmetric powers of the 

p-adic Bessel equation. 

The theory of p-adic convergence of solutions of differential equations began with E. 

Lutz [12], who proved that at an ordinary point, all formal power series solutions of a 

first order system have strictly positive radii of p-adic convergence. Later, D.N. Clark [5] 

showed that this is also true at singular points of linear differential equations where the 

roots of the indicia! polynomial are p-adically non-Liouville. This stands in contrast to the 

theory of linear differential equations in the complex domain. A further difference between 

the p-adic and classical theories is that in the p-adic situation, a power series solution 

at an ordinary point need not converge up to the nearest singularity; for this reason the 

question of p-adic radii of convergence of solutions is somewhat more difficult. For example, 
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one may easily construct examples of higher order equations which at each ordinary point 

have solutions with distinct radii of p-adic convergence, using the fact that the exponential 

function is not p-adically entire. B. Dwork and P. Robba [10], however, have shown that 

there is a factorization of linear differential operators corresponding to the filtration of the 

solution space near the generic point according to radius of p-adic convergence and growth 

conditions, which implies that the phenomenon of distinct radii of convergence is related to 

the reducibility of the operator over a certain ring. Nevertheless, there have remained no 

general methods for determining the precise radii of convergence of solutions at a generic 

point, or for determining when distinct radii of convergence will occur. 

Although results giving the exact radii of convergence of solutions of p-adic differential 

equations have been lacking, there are some well-known estimates. A lower bound for the 

common radius of p-adic convergence of the entries in the local solution matrix at a generic 

point for a linear differential equation written in matrix form appears in G. Christal's book 

([4), Prop. 4.1.2). This estimate has the advantage of depending only on the norm of the 

coefficient matrix, but it does not give any information about the possibility of distinct 

radii of convergence. The recursion formula stated there is essentially the same as that 

found in Theorem 3.1 below. In this theorem we show that this estimate is exact in certain 

instances for first order operators. Our first instinct in trying to generalize this theorem for 

higher order operators was that the radii of convergence of solutions should be determined 

in certain cases by the absolute values of the eigenvalues of the coefficient matrix. However, 

for computational purposes we found it easier to work with operators in scalar form, and in 

doing so we realized that one must consider the slopes of the associated Newton polygon, 

rather than the eigenvalues of the coefficient matrix, to achieve the proper generalization 

(Theorem 4.3 below). This result is the first we know of that gives formulae for the exact 

radii of generic convergence of solutions for such a wide class of operators, without any 

hypothesis on the existence of Frobenius structures. 

Probably the best known non-trivial example of a linear differential operator whose 
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solutions have distinct radii of p-adic convergence at a generic point is P. Monsky's example 

involving the confluent hypergeometric function. In Chapter 4 we give a detailed explanation 

and extension of this example, showing how the magnitude of the parameter influences 

whether or not distinct radii of convergence occur. In addition to the factorization theorem 

based on convergence and growth conditions, Dwork and Robba have also shown that there 

is a factorization of differential operators related to their associated Newton polygons ([10], 

§6.2.3.3). However, this result treated only the fust side of the Newton polygon, and the 

relation between these two factorizations remained unclear. One of the purposes of this 

study has been to explain and extend this idea; in particular, Corollary 4.4 below does give 

the precise relation between the two factorizations. 

Some of the fust results on the index of p-adic differential operators were due to A. 

Adolphson [1], who in particular demonstrated a relationship between the index on spaces 

of holomorphic functions and index on rational functions. At this time Robba ([14], [15]) 

also established some general properties of the index, being mostly concerned with index 

of operators on spaces of analytic elements. The connection between index and radius of 

convergence at generic points fust appeared in the 1984 paper of Robba (16], where we 

find the statement of this relationship for fust order operators. Here Robba also established 

certain properties of the index Xc(L, r) which closely paralled those of the function ordc(f, r ). 

These similarities provide some evidence for Robba's conjecture that a similar index-radius 

relation should hold for higher order operators. These two developments provided much 

of the inspiration for the present work; specifically, if one assumes that the conjecture is 

true, then the similarities between Xc( L, r) and ordc(f, r) suggest that there should be some 

relation between the "total radius of convergence" Pc(L, r) and the norm function lflc(r ); 

we have shown this to be the case for fust order operators (under certain conditions) in 

Theorem 3.1 below, and generalized this for higher order operators in Theorem 4.3. Indeed, 

it has been our demonstration of this relationship that has enabled us to partially prove 

Robba's conjecture (Corollary 4.6). 
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One of the difficulties we have encountered in this work is that even in the cases where 

we are able to determine the radii of convergence of all generic solutions exactly, we are not 

always able to determine whether the bounded solutions converge on the circumferenced or 

uncircumferenced disk of that radius. However, we are able to choose a particular basis for 

the generic solution space such that the solutions in that basis whose radii of convergence 

are known exactly have uncircumferenced disks of convergence. We also know that all such 

solutions have uncircumferenced disks of convergence when the order of the operator is 

two or less (Theorem 3.1 and Theorem 5.1). It seems likely that this should also be true 

for operators of arbitrary order, but the technique of Theorem 5.1 (analyzing a continued 

fraction expansion for a solution of the associated Riccati equation), which we used to 

establish this result for operators of order two, appears to generalize only to certain types 

of higher order operators. 

It will also be observed that our results do not always give the precise radii of con­

vergence for all generic solutions; indeed we may often be able to give only simple lower 

bounds. The extent to which we can give exact values depends on the shape of the Newton 

polygon of At(L) (cf. Chapter 4). For example, if c = 0 and r = 1 in the notation of Corol­

lary 4.4, we find that those solutions which correspond to positive slopes of the Newton 

polygon have radii of convergence which are determined only by the corresponding slope; 

however, the radii of convergence of solutions corresponding to non - positive slopes are 

not determined by the corresponding slope. Indeed the second order operator D 2 - 1 has 

solutions converging only on B(t, (p-1/(P-1))-), while the second order equation satisfied by 

the hypergeometric function F( t, t, 1; :z:) has a solution converging in B( t, 1-) when p ::j: 2 

[9], yet both these operators have Newton polygons whose only side has slope zero. 

The shape of the Newton polygon of At(L) is influenced in part by the singularities 

of the operator. In relating our results to the general theory of p-adic differential equa­

tions, therefore, it does not appear that our results give much new insight into deformation 

equations arising in the p-adic cohomology associated to families of algebraic varieties over 
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finite fields, except perhaps in the treatment of exceptional primes. This is because such 

equations generally have at worst regular singularities, and our method generally gives only 

lower bounds for the radii of convergence for such equations. However, because our results 

seem to be well adapted to the study of equations with irregular singularities ( cf. Corollaries 

3.4 and 4.9), we are hopeful that they may prove to be useful in the study of differential 

equations associated to the p-adic theory of exponential sums. 

As an illustration, we show how our methods may be applied to the study of the p-adic 

Bessel equation, complementing the work of Robba [18]. In that article Robba used p-adic 

methods to analyze certain infinite products which are natural extensions of the L-function 

associated to Kloosterman sums; these products represent polynomials whose degrees are 

related to the indices of the symmetric powers of the p-adic Bessel operator. Robba's method 

for computing the indices is based on the results of [8], [17], and a knowledge of the local 

solution matrices near 0 and oo. The irregular singularity at oo is particularly troublesome, 

however, and the index can only be computed using a conjectured result. Robba computes 

the index by analyzing a related system obtained by ramifying the variable at oo, and 

using a conjecture concerning the effect of this ramification of the variable on the index. In 

Chapter 6 we present some calculations which support Robba's formula by showing that 

the conjecture is true for the odd symmetric powers, relative to small disks about oo. 



CHAPTER II 

ANALYTIC ELEMENTS AND INDICES 

In this chapter we introduce the basic notations, definitions and properties of analytic 

elements which we shall use throughout the remainder of this study. Many of our terms 

and notations are generalizations of those found in earlier papers ([10], (16]), and we have 

therefore tried to indicate how our nomenclature is related to the previous literature. We 

also give some of the basic properties of the index of differential operators on spaces of 

analytic elements. 

Throughout this paper we will be making use of the elementary theory of p-adic an­

alytic functions, particularly the properties of non-archimedean valuations and the theory 

of Newton polygons for polynomials and analytic functions. For an introduction to these 

topics, the reader is referred to ([6], §1) or ([3], Chapitre 4). 

For the remainder of this study, K will denote an algebraically closed field of charac­

teristic zero, complete under a non-archimedean valuation, ord, which is normalized so that 

ordp = 1, where p > 0 is the characteristic of the residue-class field of K. We imbed Kin 

an extension field n which is complete under a valuation extending that of K and whose 

valuation ring contains a unit t whose image l in the residue class field is transcendental 

over the residue class field of K. Such an element t will be called a generic unit. We also 

suppose that the absolute value thus induced on n by ord is normalized so that IPI = p-1 ; 

therefore if z E n is such that I z I = r, then ord z = -log r, where log refers to the usual 

real logarithm to the base p. 

Let 

lfl*l = {lzl: z E S1 \ {0}} 

6 
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be the multiplicative group of values of n•. By our hypotheses 1n•1 is dense in R+. For 

a E n and r E In *I we define the circumferenced and uncircumferenced disks 

B(a,r+)={zEn: lz-al$r}, 

B(a,r-) ={zEn: lz- al < r}, 

and the circumference 

C(a,r) ={zEn: lz- a!= r}. 

At times we may find it convenient to write disks in additive notation; for example, the 

disk B(a, r-) may also be written as 

B(a,r-) ={zEn: ord(z- a)> -logr}. 

H c E K, we say that t E n is a generic pointfor c of radius r (or a c, r- generic point) 

if It- cl = r > 0 and B(t, r-) n K = 0. H lei $ 1 and r = 1 this is equivalent to saying that 

tis a generic unit. The disk B(t, r-) is called a c, r-generic disk. (In Robba's terminology 

[16], tis called a generic point on the circumference C(c, r), and B(t, r-) is called a generic 

disk of the circumference C( c, r ). ) By our hypotheses on n there exist c, r-generic points 

for every c E K and every r E 1n•1. 

We now define, for each c E K and r E R+, an absolute value I · lc( r) on K( :c) as 

follows: For IE K[z], write I= :E ai(z- c)i and define 

We extend the definition of I · lc( r) to rational functions h = g /I by setting 

lhlc(r) = lulc(r)/lllc(r) 

where I, g E K[z]. It is well-known that this definition is independent of the choice of g, I, 

and that in fact lhlc(r) = lh(t)l for all h E K(z) and all c, r-generic points t. We define 



8 

Ec,r to be the completion of K(z) under the norm l·lc(r); the K -algebra Ec,r is then a 

(non-archimedean) Banach space over K. Notice that the field Eo,l is the same as the field 

E described in [10]. 

A subset A of P(!l) is said to be a c, r-very standard set if A is a union of sets which 

are either of the form B(ai, r-) with lai - cl ~ r, or the set B( c, r+y. Note that if A is 

a c, r-very standard set and a E B( c, r+) then A is an a, r-very standard set. -yve may 

sometimes use the term "very standard set" without explicit reference to c and r. (In [10], 

Dwork and Robba have used the term "very standard set" to describe what would be called 

a "0, 1-very standard set" in our terminology.) 

If A is a subset of P(!l) with d(A, A c) > 0 (in particular, if A is a very standard 

set), we define R(A) to be the set of all f E K(z) which as functions on P(!l) have no 

poles on A. A function f : A ~ n is an analytic element on A if it is the uniform limit 

on A of a sequence in R(A); we denote the set of analytic elements on A by H(A). The 

K -algebra H(A) is then a (non-archimedean) Banach space over K under the supremum 

norm llfi!A = supzEA 1/(z)l. 

It is not possible, in general, to extend the definition of I ·lc(r) from R(A) to H(A) 

by continuity; for example, if A = B( c, p-) with p < r, one can easily find a sequence of 

polynomials {fn} with llfni!A ~ 0 while lfnlc(r) ~ oo. If A contains a c,r-generic point 

t, however, then for all f E R(A) we have lf(t)l = 1/lc(r) and therefore lflc(r) ~ llfi!A, so 

it does make sense to extend the definition of I · I c ( r) to H (A) in this case. As this next 

proposition shows, this can also be done when A is a c, r-very standard set, and in fact 

1/lc(r) = IIJIIA for all f E H(A). 

Proposition 2.1. Let A be a c, r-very standard set. 

i. For all f E R(A), we have 1/lc(r) = II!IIA· Using this to extend the definition ofl·lc(r) 

to H(A) by continuity, lflc(r) = !!filA for all f E H(A). 

ii. If a E A and f E H(A), then lf(a)l < 1/lc(r) if and only iff bas a zero in B(a, r-) 

(resp. in B( c, r+)c) if Ia- cl ~ r (resp. if Ia- cl > r ). In particular, iff has no zero 
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on A then 1/(z)l is constant for z EA. 

Proof: We first treat the case where A does not contain B(c, r+)c. Suppose f E K[z] and 

write f( z) = C ·IT ( z - a;), where the product is finite and C, a; E K. If h( z) = z -a and 

a E A, then h( a) = a- a and lhlc(r) =max{ Ia- cj, r }. Since Ia- cj :5 r, it is easily seen 

that jh(a)l < lhlc(r) if and only if Ia- al < r, and that lhlc(r) = llhiiA· Since 1·1, l·lc(r), 

and II · IIA are all multiplicative, both (i) and (ii) follow for f E K[z]. As a corollary, if 

f E K[z] and f has no zero on A, then f has constant absolute value on A. Iff E R(A), 

then f may be written as f = gjh, where g,h E K[z] and h has no zero on A, whence (i) 

and (ii) extend immediately to the case where f E R(A). Since H(A) is the completion of 

R(A) with respect to II·IJA, and l·lc(r) = II·IIA on R(A), part (i) follows in this case. 

Now let h E H (A) and let a be any point in A; note that we then have B (a, r-) ~ A. 

Since h E H(B(a, r-)), his a bounded analytic function on B(a, r-) ( cf. [4], Proposition 

2.4.1). By the theory ofNewton polygons, if h has no zero on B(a, r-) then lh(z )I is constant 

for z E B( a, r-), since his analytic and has no zero on this disk. Therefore, if hn E R(A) 

and hn--+ h uniformly on A, then for large n we have lhn(z)l = jh(x)l for x E B(a,r-). 

Thus hn has no zero on B(a,r-), whence Jhn(z)i = lhnlc(r) for all z E B(a,r-). Since 

h(z) = limnhn(z) and Jhlc(r) =limn lhnlc(r), we have Jh(x)J = Jhlc(r) for z E B(a,r-). 

Conversely, if a E B(a, r-) is a zero of h, then we may write h = (x- a)g with g E H(A). 

Thus if x E B(a,r-) then we have lh(x)l < r ·lg(x)l :5 r ·lulc(r) = lhlc(r). This completes 

the proof of ( ii) in this case. 

If A contains B(c,r+)c, we need to check that 11/IIA = lflc(r) and that lf(x)l < lflc(r) 

for all z E B(c,r+)c if and only iff has a zero in B(c,r+)c. For f E R(A) we write 

f(x) = C · ITCz- a;)-1 ·IT(:=~;), 
where the products are finite, C, a;, {3,_, "tl E K, and a;, "tl lie in a union of disks of the 

form B(ai,r-) with lai- cl::; r, so in particular we have lai- cl::; rand I"Yt- cl::; r for 

all j, l. By noting that factors of the first type have zeros at oo and factors of the second 
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type have zeros at the f3L we may easily establish the results for elements of R(A). Part 

(i) immediately extends to the case where f E H(A) by continuity. For (ii), we note that 

the transformation T: P{11)----+ P{11) given by T(z) = 1/{z- c) is bijective as a map from 

B(c, r+)c to B(O, {1/r)-) and is stable on P{K). It follows that h H hoT is an isometric 

isomorphism between H(B( c, r+)c) and H(B(O, {1/r )-), because the norms involved are 

the supremum norms. Therefore, iff E H(A), then f oTis a bounded analytic function 

on B(O, (1/r)-), and we may complete the proof by repeating the argument of the previous 

paragraph. 

As a corollary to this proposition, we note that, as far as analytic elements are con­

cerned, we may assume that a c, r-very standard set contains all c, r-generic disks. More 

precisely, if A is a c, r-very standard set and we define B to be the union of A and all 

c, r-generic disks, then the inclusion of H(B) into H(A) given by f H !lA is an isometric 

isomorphism. We do not require, however, that a very standard set should contain all the 

generic disks, although this would cause no loss in generality. 

If A is a subset of P{11) with d(A, A c) > 0, we define M(A), the field of meromorphic 

elements on A, to be the field of quotients of the integral domain H(A). We extend the 

absolute values II · II A and I · I c( r) to M {A) in the natural way: for h = g / f we set 

If A,B are sets of this type with B ~A, and f E M(A) has no poles on B, then f E H(B); 

this follows by observing that if h E H(B) and h has no zeros on B then 1/ h E H(B). 

If B is the union of all c, r-generic disks, then H(B) is a field, and consequently 

H(B) = M(B). Furthermore, Ec,r may be naturally identified with M(B). If A contains a 

c, r-very standard set then we have natural inclusions H(A) ~ M(A) ~ Ec,r• 

If A ~ P{ 11) satisfies d( A, A c) > 0 and h E K ( z) we define ordA h to be the number 

of zeros of h on A minus the number of poles of h on A, counted with multiplicity. As 
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conventions we will also write 

ord~(h,r) = ordB(a,r+)h, 

ord;(h,r) = ordB(a,r-)h, 

ordah = ord{a}h· 

The following proposition will enable us to extend the definition of ordAh to elements 

hE M(A) where A is a very standard set. 

Proposition 2.2. Let A be a c, r-very standard set and lethE H(A), h ::/:- 0. Then h has 

only finitely many zeros on A. 

Proof: We first consider the case where oo rf. A. Let h E H(A) and choose a sequence 

{hn} E R(A) such that h = liiDn hn uniformly on A. Write hn = 9n/ fn, where the 

gn, fn E K[z] and the fn have no zero on A. For simplicity we assume that lfnlc(r) = 1 for 

all n. 

Let a be any point in B( c, r+); we will consider A as an a, r-very standard set. By 

Proposition 2.1, we know that J·la(r) =II· !lA for elements of H(A). Therefore there exists 

N E z+ such that Jhn- hmla(r) < JhJa(r) whenever n,m > N. This certainly implies 

that Jhnla(r) = Jhmla(r) = Jhla(r) when n, m > N, by the properties of non-archimedean 

valuations. Furthermore, since lfnla(r) = lfmla(r) = 1, we have 

but 

whenever n, m > N. It follows from the theory of Newton polygons ( cf. [3], Proposition 

4.3.2) that if F,G E K[z] satisfy JF- GJa(r) < JFla(r) = JGJa(r) then ord;(F,r) = 

ord;(G,r) and ord~(F,r) = ord~(G,r). This shows that ord;(gnfm,r) = ord;(gmfn,r), 

and consequently ord; ( hn, r) = ord; ( hm, r), for all n, m > N. Since 

ordA hn = ordA 9n ~ ord~ (gn, r) ~ ord~ (gnf m, r) 
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holds for all nand m, it follows that ordAhn is bounded as n ~ oo; furthermore, for each 

disk B( a, r-) ~ A we know that ord; ( hn, r) is constant for n > N, and is therefore zero for 

all but finitely many such disks. Since h and the hn are bounded analytic functions on each 

such disk and the hn converge uniformly to h, it follows that the number of zeros of h on 

each disk B( a, r-) ~ A is the limit of the number of zeros of the hn on that disk. Therefore 

h has only finitely many zeros on A, and in fact that number is equal to l.i.mn ordAhn; a 

consequence of the above proof is that this is independent of the choice of { hn}. 

The case where oo E A is treated in a similar manner as in the proof of Proposition 

2.1. This concludes the proof of the proposition. 

It now makes sense for us to extend the definition of ordAh to the case where his a 

meromorphic element on a very standard set A, by setting ordAh = ordAg- ordAf, where 

h = gff with g, f E H(A). 

For linear operators L : H(A)---!- H(A) we define the operator norm 

and if A is a c, r-very standard set we may also define 

IIL!Ic,r =sup ILhlc(r)/lhlc(r). 
h,,O 

Again we find that if A is a c, r-very standard set then II · llc,r = II ·II A· 

If V is a vector space and L : V ~ V is a linear transformation, then L is said to 

have an indez on V if the kernel and cokemel of L are both finite dimensional; in this case 

the index of L on V is defined to be 

x(L; V) =dim ker L- dim cok L. 

In this paper we will be interested in the index of linear differential operators on spaces of 

analytic elements. The reader is referred to [14] and [15] for some of the basic properties of 

indices. The following proposition will be needed in subsequent chapters. 
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Proposition 2.3. If A is a c, r-very standard set and I E H(A), I =f. O, then multiplica­

tion by I is injective and has index x(f; H(A)) = -ordAI, and has a continuous left inverse 

cp: H(A)--+ H(A) with lllfJIIc,r ~ lllc(r)-1 • 

Proof: Robba has already proven these results in the case where IE R(A); see {[15], Lemma 

3.3) and {(17], Lemme 3.4). Suppose then that IE H(A), and choose a sequence fn E R(A) 

such that the In converge uniformly to I on A. Since f =f. 0 we know that llfniiA = II filA for 

large n, because llhiiA = lhlc(r) = lh{t)l for hE H(A). Since fn E R(A), we know that each 

In has a continuous left inverse I{Jn with lllfJniiA ~ lllnii.A1 , so we may choose N large enough 

so that llf- lnliA < lllnll ~ lllfJnii.A1 for n ~ N, and since lim ordAin= ordAI and the limit 

is finite (see the proof of Proposition 2.2) we may also guarantee that ordAfn = ordAf for 

n ~ N. Then by ([14], Lemma 4.4), we have, for n 2: N, 

x(f, H(A)) = X(/n, H(A)) = -ordAfn = -ordAfi 

and f has a left inverse cp with 

The continuity of cp follows from ([14], Lemma 4.3). This completes the proof. 

In this study we shall be particularly concerned with linear differential operators. The 

following proposition indicates why in the study of differential operators it is often more 

convenient to work with the absolute values l·lc(r), rather than II ·IIA· 

Proposition 2.4. The formal derivative map D = (dfd;r,) : K(:c) --+ K(:c) extends 

uniquely to a continuous map (also denoted by D) from Ec,r to itself. Furthermore, for 

each m E z+ and f E Ec,r we have 

Proof: The proof we give is a simple modification of the proof of Proposition 2.1.8 of [4]. 

First suppose that IE K(z], and write f = l::n~o an(z- c)n, with each an E K. Then by 
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definition, 

IJ<m>l (r) = m! L (n)an(z- c)n-m (r) 
c > m n_m c 

= m! (z- c)-m L (:)an(z- c)" (r) $ r-mlm!llflc(r), 
n~m c 

which proves the proposition for polynomials. 

To establish this result for rational functions f = gjh, where g, hE K[z], we proceed 

by induction on m. For m = 0 the statement is trivial. Assume that m > 0 and that the 

result has been proven for all f E K(z) for derivatives of order less than m. We apply the 

Leibniz rule tog= h · (gfh), yielding 

which, after dividing by g, we rewrite as 

(gjh)(m) = g(m) - ~ ( h(m~i) • ~gjh)(i)) • 
m!(gfh) m!g ~ (m-,)!h '!(gfh) 

Then, using the induction hypothesis, and the fact that g, h are polynomials, we see 

that each term on the right has absolute value bounded by r-m; therefore, by the non-

archimedean property, the same is true for the left side. This completes the induction step, 

proving the proposition for all elements of K ( z). 

Taking m = 1 now shows that Dis continuous with respect to l·lc(r) on K(z), and 

therefore extends uniquely to a continuous operator on Ec,ri by passing to the limit, the 

result holds for all f E Ec,r- This completes the proof of the proposition. 

It follows that if A is a c, r-very standard set then the derivative map may be extended 

to a map D : M(A) ---+ M(A). If A is a c, r-very standard set we define <5 A (resp. 

!RA) to be the (non-commutative) Euclidean ring H(A)[D] (resp. M(A)[D]), which we 

identify naturally with the ring of linear differential operators with coefficients in H(A) 
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(resp. M(A)). We also define 9tc,r to be the ring Ec,,.[D]. Note that there are natural 

inclusions (!;A~ mA ~ 9tc,r• We also note ([14], §1.11) that if L = L hiDi E me,,., then 

We may consider the elements of mc,r (resp. (5 A) as linear transformations on Ec,r (resp. 

H(A)); however, we note that as linear operators, the elements of9tA need not be stable on 

H(A). Therefore our index results will be phrased in terms of elements of (5 A, although for 

purposes of generality we will phrase our convergence results in terms of elements of me,.. 

Let L = Dn + q1Dn-t + · · · + qn_1D + qn be a monic element of 9tc,r· Note that 

the situation where L E VlA or (5 A for some c, r-very standard set A is a special case of 

this. We will consider L to be a linear differential operator acting on spaces of germs of 

analytic functions near c, r-generic points t. The primary focus of this work is to determine 

the exact radii of convergence p( u) of solutions u( z) of the homogeneous equation L u = 0 

which are analytic in a neighborhood oft. When A = B( c, R+) and L E (5 A we also propose 

(under certain conditions) to demonstrate a connection between the radii of convergence 

of solutions at t and the variation with r of the index of operator on H(B(c,r±)) for 

r ::::; R. Because we shall need to consider the index of L on H ( B( c, r±)) as a function of 

r, we shall adopt the notation of [16], using x;(L, r) to denote this index. To compare 

our results on first order operators L with those in [16], we shall denote by Pc(L, r) the 

radius of convergence of the nontrivial solutions of L u = 0 at a c, r-generic point t. The 

generalization of this notation to higher order operators will be given in Chapter 4. 

Finally, throughout this paper we will adopt a fairly standard notation, using 1C' to 

denote a solution in K to 1rp-l = -p. 



CHAPTER Ill 

FIRST ORDER OPERATORS 

We begin this chapter with a general radius of convergence theorem for first order linear 

differential operators, and compare this result with the index-radius formula ofRobba [16]. 

As corollaries to this theorem, we prove some general properties of the index of first-order 

operators, and we conclude this section with several examples. Some of these results may be 

obtainable by other means; our purpose in including them here is to illustrate the relation 

of this work to other aspects of the theory of p-adic differential equations. 

Theorem 3.1. Let L E 9\c,r be the monic first-order operator L = D + q. 

i. If q satisfies 

i(z- c) qlc(r) > 1, (3.1) 

then the non-trivial solutions u(z) to L u = 0 near a c, r-generic point t converge and 

are bounded on the disk 

1 
ord(z- t) > -- +loglqlc(r), 

p-1 

and this is the precise disk of their convergence. 

(3.2) 

ii. Ifq satisfies i(z- c)qic(r) :$ 1, then the non-trivial solutions u(z) to Lu = 0 near a 

c, r-generic point t converge at least on the disk 

1 
ord(z- t) > -- + ord (t- c), 

p-1 

and are bounded on this disk. 

(3.3) 

Proof: Let u( z) be a solution to L u = 0 which is analytic in a neighborhood oft, and which 

is normalized so that u(t) = 1. Since D u + qu = 0, we may define functions {bm}m2:0 such 

16 
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that Dmu = bmu. We find that bo = 1, b1 = -q, b2 = q2 - q', and in general, for m > 0 

the bm satisfy the recursion formula 

(3.4) 

Since each bm is a polynomial in q and its derivatives with integer coefficients, it follows 

that bm E Ec,r for all m. Therefore, since tis a c,r-generic point, we have lbm(t)l 

lbmlc(r). By Taylor's theorem, in a neighborhood oft we have 

00 b (t) 
u(z) = L ~(z- t)m, 

0 m. 
m= 

(3.5) 

since we assume u(t) = 1. Therefore, we can determine the radius of convergence of u by 

computing lbmlc(r). 

First suppose that q E Ec,r satisfies (3.1); we therefore have lqlc(r) > r-1 • Since 

bm E Ec,r' Proposition 2.4 shows that lb~lc(r).::; r-1 lbmlc(r), while on the other hand we 

have 1- qbmlc(r) > r-1lbmlc(r) for all m. By applying induction to (3.4) and using the 

non-archimedean property of l·lc(r), we find that for all m > 0, 

lbmlc(r) = lqmlc(r), or ordbm(t) = mordq(t). (3.6) 

From (3.5) and (3.6) it follows that u(z) converges and is bounded on the disk given 

by (3.2), and that this is the exact domain of convergence for all solutions at t. 

In the case where l(z- c)qlc(r) .::; 1, a similar induction argument applied to (3.4) 

shows that lbmlc(r).::; r-m for all m. It then follows from (3.5) that the solutions of L at 

tall converge on the disk (3.3) and are bounded on this disk; however, it is possible that 

they may converge on a larger disk. 

Proposition 3.2. Let A be a c, r-very standard set and let L = D + q E 9'\A, where 

q = gff with g,f E H(A), and suppose q satisfies the hypothesis (3.1) of Theorem 3.1. 

Then the operator fL = fD + g is injective and has an index as an operator on H(A), and 

that index is given by the formula 

x(!L,H(A)) = -ordAY· (3.7) 
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Proof: If q satisfies condition (3.1) then lqlc(r) > r-1 , so llgllc,,. > 11/DIIc,,. as operators on 

H(A). It follows from Lemma 4.4 of [14] and Proposition 2.3 that 

x(!L,H(A)) = x(g,H(A)) = -ordAg, 

as asserted. 

In the case where q E K(z) is a rational function which satisfies condition (3.1) one 

may give an alternate proof of Proposition 3.2 in the case where A= B(c, r±), by adapting 

Robba's index formula ([16], Theorem 4.2) as follows: The convergence formula (3.2) above 

implies that, for all values ofr E IO*I on an interval for which (3.1) holds, one has Pc(L,r) = 
l?rl·lqlc(r)-1 < r, which, by Robba's theorem, guarantees that fL is injective and has an 

index on H(B(c, r±)) (where q = gf f as above). From (3.2) and the well-known relation 

( cf. [3], Proposition 4.3.2) 

we obtain the formula 

( d log lhlc(r)) ± = d±(h ) 
dl ore ,r, 

ogr 

( dlogpc(L,r))± = -ord~(q, r ). 
d logr 

Then Robba's index formula gives the result: 

x~(!L, r) = -ord~(g, r). 

(3.8) 

It would seem likely that the convergence formula (3.2) should also be obtainable from 

Robba's theorem in this case. Indeed, given (3. 7), if one also knew that Pc(L, r) < r, one 

could then deduce from Robba's theorem that for such r, Pc(L,r) is always of the form 

Pc(L,r) =a ·lqlc(r)-1 for some a. However, even in the case where q E K(z), it has not 

been apparent how one might verify in general that Pc(L, r) < r. Theorem 3.1 (i) and 

Proposition 3.2 provide a relatively simple criterion, concerning only the norm of q, which 

insures that Pc(L,r) <rand therefore that fL has an index, and enables one to compute 

the index and the exact radius of convergence at a generic point. It also shows that the 

above constant a is independent of q, and in fact equals j1rj. 
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We admit, however, that condition (3.1) is not the weakest condition that will insure 

that fL is injective and has an index in H(A); see Example 3.6 below. However, even 

with this restriction, Proposition 3.2 is sufficient to imply certain general principles; for 

example, if q E K(z) is a rational function with nonnegative degree (where the degree is 

the number of zeros minus the number of poles), then for any c E K, f L will have an index 

in H(B( c, r±)) for sufficiently large r, since in this case l(z- c) qlc(r) -+ oo as r -+ oo. 

Other such properties are detailed in the following corollaries. 

Corollary 3.3. Let L = D + q and suppose q( z) is a meromorphic function over K with 

exactly N poles, and write q = g If, where f E K[ z] is a polynomial of degree N and g is 

an entire function with all its coefficients in K. 

i. If g is a polynomial of degree M 2: N, then xt (! L, r) = - M for all sufliciently large 

ii. If g is not a polynomial, then lim xt (! L, r) = -oo, although f L does have an index 
r-++oo 

in H(B(O, r±)) for all sufliciently larger E IO*I· 

Proof: H g is an entire function, then g E H(B(O, r±)) for all r E IO*I· H deg g 2: N, then 

R can be chosen large enough so that (3.1) will hold for all r > R, and Theorem 3.1 (i) will 

apply. Thus for large enough r one has xt(f L, r) = -ordt(g, r ). Since ordt(g, r) is the 

number of zeros of gin B(O, r±), the results follow. 

Corollary 3.4. Let L = D + q and suppose that q = g If is a meromorphic element on a 

disk containing z = c, and that /, g have no common zero. If L has an irregular singularity 

at z = c, then for sufliciently small r E IO*I, JL is bijective on H(B(c,r±)); that is, fL is 

injective and has index zero in H(B( c, r±)). 

Proof: H L has an irregular singularity at z = c then ordc q :::; -2; since f and g have 

no common zero we therefore have ordcf 2: 2 and ordc g = 0. We may therefore choose 

R small enough so that g has no zero on B ( c, R+) and so that ( 3.1) holds for all r < R. 

Proposition 3.2 then gives the result. 
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The above corollary has shown how Proposition 3.2 enables one to easily calculate the 

index of a first order operator relative to small disks about an irregular singular point; this 

is one general situation in which condition (3.1) will be satisfied. It does appear, however, 

that (3.1) will not usually be satisfied near a regular singularity unless a positive power of 

p divides the denominator of q( z ). The next three examples illustrate the wide range of 

possible behavior near a regular singularity. 

Example 3.5. Let L = D- plz, so that c = 0, N = 1, and g(z) = -p in the notation of 

Corollary 3.3. The equation L u = 0 has the entire solution u( z) = zP, so Po ( L, r) = +oo 

for all r > 0, and Robba's theorem does not apply. It may also be seen, by noting that 

izqic(r) = p-1 < 1 for all r E IO*I, that (3.1) is not satisfied for any r, whence Proposition 

3.2 is not applicable. Indeed, the operator zL = zD- pis not injective on H(B(O,r±)) 

for any r; this demonstrates that the condition deg g ~ N in part (i) of Corollary 3.3 is 

necessary. 

Example 3.6. The operator L = D + pI z has solution u( z) = z -p satisfying Po ( L, r) = r 

for all r > 0, but zL is injective on H(B(o,r±)) for all r > 0. (In general, Pc(L,r) < r 

implies injectivity, but the converse does not hold). Here condition (3.1) is not satisfied for 

any r, but zL is injective. 

Example 3.7. Let L = D- (pz)-1 . Here q(z) = (pz)-1 , so condition (3.1) holds for 

all r, and Theorem 3.1 (i) applies. Therefore for any r E IO*I, the solutions of L at any 

O,r-generic point t converge and are bounded exactly on the disk given by ord(x- t) > 

PI(P- 1) -logr. The convergence may be easily verified by noting that 

u( Z) = (ZIt); = ( 1 - ( 1 ~ ~)) ; = I. (-~f )m ( 1 - ~) m 

is an analytic solution at t, and converges for ord ( 1 - (zIt)) > pI (p - 1), or ord ( x -

t) > PI(P - 1) + ordt. Proposition 3.2 shows that zL is injective on H(B(O, r±)) and 

xt(zL,r) = 0 for all r E IO*I; therefore, zL is an example of an operator which is bijective 

on H(B(O, r±)) for all r E IO*I· 



21 

We conclude this chapter with two examples where zero is an ordinary point of the 

operator, illustrating that sometimes (3.1) is the weakest condition that will insure the 

radius of convergence given in (3.2), and sometimes it is not. 

Example 3.8. Let L = D - 11"(1 - p:z:P-l ); then (3.1) clearly holds for r > l'~~"l-1, so 

Theorem 3.1 (i) predicts that analytic solutions of.L at generic points t with ltl = r > l'~~"l- 1 

converge exactly for ord(:z:- t) > -1 + (p- 1)logr. This is confirmed by noting that 

u( :z:) = exp 11"( :z: - t - ( :z:P - tP)) is an analytic solution at t. Setting :z: = t + y, one obtains 

eJCp" ( z - t - ( zP - t•)) = eJCp ll'(y - y") · eJCp ( -r~ (~) r/t•-;) , 
which converges for 

{ -(p- 1) . { -1- (p- j) ordt}} 
ord y > max 2 , max . , 

p 1$;$p-1 3 

if all theseterms are different. One computes that for ordt < -(p2 - p + 1)fp2(p- 1), the 

maximum is -1- (p- 1) ordt, as asserted. Note that in this example, the theorem does 

not give a complete answer to the convergence question; in particular, the result of part (ii) 

does not indicate much about the actual behavior for r :::; 111"1-1, and condition (3.1) is not 

the weakest hypothesis that will give the convergence (3.2). However, Theorem 3.1 does 

imply that, if we replaced 11" with another element 11" 1 of n with I'~~"' I = I'll" I, then for r > l'~~"l- 1 

the radius of generic convergence would not change, although it might change for r :::; l'~~"l- 1 . 

Example 3.9. Let d be a positive integer, and let L = D- 'II":Z:d. We find that part (i) of 

Theorem 3.1 applies for logr > lf(p-1)(d+ 1), and gives ord (:z:- t) > dlogr as the disk of 

convergence of solutions at generic points t with ltl = r. One can verify this by computing 

that 

exp 11" = exp 11" L --"3-,-----(
:z:d+l_td+l) (d+l (d-l:"1)y;td+l-;) 

d+1 ~1 d+1 

(where y = :z:- t) is an analytic solution of L at t, which converges for 

ordy > max 3 { 
[ord(d + 1)- ord (d-l:-1)]- (d + 1- j) ordt} 

1$;$d+1 j ' 
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when all these terms are different. One may easily verify that the term -d ord t, which 

corresponds to j = 1, is the maximal term when ordt < -1/(p-1)(d+ 1), which confirms 

the result of Theorem 3.1. In the case ord(d + 1) > 0, one may also show that there is an 

open interval of the form ( -1/(p- 1)(d + 1), -1/(p- 1)(d + 1) +E) on which the term 

corresponding to j = p is the maximal term. This result is obtained from the estimate 

[ord(d + 1)- ord (d!1)] ::::; ord(j!), with equality if and only if 1 ::::; j ::::; p, and the well­

known estimate ord(j!) ::::; (j- 1)/(p- 1), with equality if and only if j is a power of p. 

This implies that for the operator L = D + q, with q(z) = -1rzd and ord(d + 1) > 0, the 

infimum of the set of radii r such that lzql0(r) > 1 is equal to the infimum of the set of 

radii r for which the nontrivial solutions of L at 0, r-generic points t converge exactly on 

the disk ord(z- t) > 1/(p- 1) +log lql0 (r). Therefore, in this situation we see that the 

hypothesis (3.1) is essentially the weakest possible to insure the convergence (3.2). 



CHAPTER IV 

ffiGHER ORDER OPERATORS 

In this section we extend the radius of convergence result of the last chapter to linear 

differential operators of arbitrary order. For this we will need some general results of Robba 

[14] on the factorization of linear differential operators. Our main theorem will then be used 

to describe a more explicit factorization result for linear differential operators. We then use 

the convergence theorem and an index result to partially prove the conjecture of Robba 

relating the index and radius of convergence. Afte~ presenting several applications, we 

give an explanation of the phenomenon of distinct radii of convergence for the differential 

equation satisfied by the confluent hypergeometric function. 

Let L be the linear nth order operator L = qoDn + q1Dn-l + · · · + qn-tD + qn E ~c,r• 

Lett be a c,r-generic point, and define a polynomial ~t(L) En[.\] by 

(~.1) 

Since !h(t)! = !h!c(r) for all c, r-generic points t and all h E Ec,r, the magnitudes of the 

roots of At(L) are independent of the choice oft. By means of left multiplication by q01 

we may assume that Lis monic (i.e., q0 = 1) without affecting the roots of ~t(L) or the 

solutions at t. 

With L as above, we define 

Pc( L, r) = sup{p( ut) · · · p( Un)}, ( 4.2) 

where the supremum is over all sets of n linearly independent solutions { u1, ... , un} of L u = 0 

at t. We note that by Lemma 4.2 below, the supremum is actually a maximum, since the 

23 
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set of possible values for the p( ui) is discrete. A basis of solutions 23 = { Ut, ... , un} of L at 

t for which the maximum is attained will be called an optimal basis for the kernel of L at t. 

We now state the two factorization results which will be needed in the proof of the 

main result of this chapter. 

Lemma 4.1. Let L = nn + q1nn-l + · · · + qn E Vlc,r and lett be a c, r-generic point. 

Let p E (0, r] and define a norm ll·llp on Vlc,r by 

( 4.3) 

Then if IIR o L- 1llp is bounded away from zero independent of R E Vlc,,., there exist 

nontrivial solutions of L at t which converge at least on the disk B(t,p-). 

Lemma 4.2. Let L = Dn+q1nn-l +· · ·+qn E Vlc,r and lett be a c, r-genericpoint. Then 

for each p E (0, r], there exist unique monic elements M, N E Vlc,r such that L =NoM and 

M annihilates precisely those solutions of L which converge at least on the disk B(t,p-) 

and are bounded on that -disk. 

Proofs: These results are generalizations of some results of Robba ([14], §2), which he 

proved in much greater generality for the case c = 0, r = 1. To obtain the proofs of these 

results for general c and r requires only a minor modification of Robba's proofs. Specifically, 

in that paper one needs to replace the field E (which is written as E 0 ,1 in our notation) 

with the more general Ec,,., and replace Vl (which we denote by Vlo,l) with Vlc,r· The norm 

(4.3) on Vlc,r is the norm associated to the sequence 7rP•0 (i.e., 1f"v = pv for allv ~ 0), and 

this sequence also gives the norm II • II"" = I • lt(P) as the norm on the space Wt, which is 

precisely the space of analytic functions converging and bounded on the disk B ( t, p-) ( cf. 

[14], §1.5, 1.6, (1.11.5)). The proofs of Lemma 2.3, Lemma 2.5, and Theorem 2.6 of that 

paper remain valid in this slightly modified situation. 

The hypothesis of Lemma 4.1 implies that {1} does not lie in the closure of the left 

ideal Vlc,,.L. Therefore the monic generator R of Vlc,,.L is not the trivial operator R = 1, 
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and hence has positive order. Thus kertR is not trivial, and our modification of Robba's 

Theorem 2.6 implies that L has nontrivial solutions in We"", which gives the conclusion of 

the lemma. 

To prove Lemma 4.2 we let M be the monic generator of the left ideal ~c,rL. Then 

our modified version of Robba's Theorem 2.6 tells us that M annihilates precisely those 

solutions of L which lie in We"", and that L = N o M for some monic element N of ~c,r• 

The uniqueness of M and N is obvious. This completes the proof of this lemma. 

We will use these lemmata to factor elements of ~c,r according to the filtration of their 

generic solution spaces by radius of convergence. Supposing an operator L has solutions 

Ut, u2 at t with p(ut) < p(u2), one may apply Lemma 4.2 with p(ul) < p < p(uz), 

noting that u2 converges and is bounded on B(t,p-) while u 1 does not converge on this 

disk. However, this result does not permit us to factor L according to whether the disk of 

convergence is circumferenced or not; by this we mean that, if u is a solution of L at t with 

radius of convergence p(u) = p, we are unable to distinguish by factorization whether u 

converges on B( t, p+) or only on B( t, p- ). Nevertheless, the following theorem shows that 

for each element of ~c,r one may choose an optimal basis ~such that those elements of~ 

whose radii of convergence are given exactly by this method have uncircumferenced disks 

of convergence. 

Theorem 4.3. Let L = Dn + q1Dn-l + · · · + qn E ~c,r and lett be a c, r-generic point. 

Then there exists an optimal basis ~ for the kernel of L at t and a one - to - one corre-

spondence between the roots of ~t( L) and the elements of~ such that 

i. Corresponding to every root A of ~t(L) satisfying IAI > r-1 there is an element of~ 

which converges exactly on the disk 

and is bounded on this disk. 

1 
ord(z- t) >--+log IAI, 

p-1 
( 4.4) 

ii. Corresponding to everyroot A of ~t(L) satisfying IAI$ r-1 there is an element of~ 



which converges at least on the disk 

1 
ord(z- t) > -- + ord(t- c), 

p-1 

and is bounded on this disk. 
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(4.5) 

Proof: We proceed by induction on the order of L. We have already proven this theorem 

in the case where n = 1 (Theorem 3.1). Suppose then that n > 1 and assume that the 

theorem has been proven for all monic elements of Dlc,r of order less than n. Let L E ~c,r 

be as above; then if u( z) is any solution to L u = 0 which is holomorphic in a neighborhood 

oft, there are uniquely determined functions {b~)} form~ 0 and 0 :::; j < n such that 
• 

(Here u(j) denotes Diu, but b~) need not denote Dib~>). We find that b~) = 6m,j for 

0 :::; m :::; n - 1, and that for all m > 0 the functions b~) satisfy the recursion relation 

(1 :::; j < n), 
(4.6) 

b(O) = -q b(n-1) + b(0)1 
m+1 · n m m • 

From these formulae it is clear that each b~) E Ec r· 
' 

If every root .\ of ~t(L) satisfies j.\j :::; r-1 , it follows from the theory of Newton 

polygons that jqjlc(r):::; r-i for all j. From (4.6) it is then easy to verify that lb~)lc(r):::; 

ri-m for all j and m, using Proposition 2.4. Considering the Taylor expansion of u at t 

and using the definition of the b~) we conclude that in this case every solution of L at t 

converges at least on the disk ( 4.5) and is bounded there. In this case, any optimal basis 

satisfies the conditions of the theorem. The theorem is therefore proven in this case. 

For the remainder of this argument we will therefore suppose that ~t(L) has at least 

one root with absolute value larger than r-1 • We let 1 be a root of maximal modulus and 

let K be the number ofroots of modulus I"Yii then by the theory of Newton polygons we find 

that 

lqilc(r):::; l1lj for 1:::; j:::; K, 

lqjlc(r) < hlj for K < j:::; n. 

(4.7) 
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From these inequalities, by applying induction to ( 4.6) one may easily verify that lb~) lc( r) ~ 

1;1m-j for all m and j, and that lb~)lc(r) < l;lm-i for j < n- K. when m 2:: n. Therefore, 

every solution at t converges at least on the disk ord ( :z: - t) > 1/ (p- 1) +log I; I, and every 

solution is bounded on this disk. 

We now claim that the equality lb~-l)h:(r) = l;lm+l-n holds for infinitely many 

mE z+: First, we note that it holds form= n- 1 since b~~l) = 1. Now suppose that 

m 2:: n and that lb~.:=Pic(r) = l;lm-n but lb~-l)lc(r) < l;lm+t-n. Then by applying 

induction to (4.6) and using the fact that lbWic(r) < l;lm-i when m 2:: nand j < n-K., we 

obtain lb~-~e)lc(r) = l;lm+~e-n. Now let j be minimal such that lb~-i)lc(r) = l;lm+i-n; 

then 1 < j ~ K.. Again applying ( 4.6) yields 

lb(n-j+l) I ( ) - I lm+j-n • m+l r - i ' 
c 

and if j > 2 then we continue to compute 

and after repeating this argument j- 1 times, we are left with 

Thus we have shown that, while lb~)lc(r) ~ i;lm-i for all m and j, there are infinitely 

many mE z+ for which lb~-l)lc(r) = l;lm+t-n. It follows that if e E fl and 0 < lei < l;l, 

then the set ~0 = { vo, ... , Vn-1} of solutions at t which are normalized by the conditions 

v~n-l)(t) = 1 for 0 ~ i ~ n- 1 

is a basis of solutions at t which all converge and are bounded exactly on the uncircumfer-

enced disk given by ord(:z:- t) > 1/(p- 1) +log Iii· 
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The existence of a basis of solutions which all converge exactly on a given disk does not 

imply that all solutions converge exactly on that disk; however, we have shown that at least 

one solution of L at t has ord(z- t) > 1/{p- 1) +log h•l as its exact disk of convergence. 

We now wish to show that if ~t(L) has roots of absolute value less than 11'1, then L has 

solutions with radii of convergence strictly greater than those in 23o. 

So suppose that 0 < K. < n, where as before K. is the number of roots of Llt(L) of 

absolute value 11'1, and all other roots have smaller absolute values. Then there exists 

u < 11' I such that 

(4.8) 

jqilc(r) :S l1l"ui-~e for K. :S i :S n. 

We set io = n- K, and note that j 0 > 0. Choose{! such that{!< 111, {! > r- 1 , and{!> u. 

We will show that L has solutions converging on the disk ord(z- t) > 1/(p- 1) +log{! by 

applying Lemma 4.1 with p = j7rj(!-1 • To do this, we will in fact show that IIR o L -1llp ~ 1 

for all R E ~c,ro 

Suppose that R o L = Q and write this equation explicitly in the form 

(goDm + g1Dm-1 + · · · + gm) o (Dn + q1Dn-1 + · · · + qn) 

- h nm+n + h nm+n-1 + + h 
- 0 1 • • • m+n' 

which gives the relations 

2: 
l+j=k 

O<l<i<m 
0$]$-n 

(i) (i-l) 
l gm-i qn-j 

(4.9) 

(4.10) 

for 0 :S k :S m + n, with the convention q0 = 1. In order to obtain a contradiction we 

assume that IIQ -1llp < 1. This implies that lhm+n -1lc(r) < 1, which in turn implies that 

lhm+nlc(r) = 1. Now from (4.10) we have 

However, from (4.8) and Proposition 2.4 we also have 
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for 0::; i::; m (the strict inequality holds fori= 0 since io > 0). So since lhm+nlc(r) = 1, 

there must be an index i, 0::; i::; m, such that IYm-ilc(r) > lilio-ne-io-i. 

Let i0 be any index, 0 ::; io ::; m, such that the expression ei lum-i lc( r) attains its 

maximal value when i = io. Set ko = io + io, and note that ko > 0 since io > 0. By the 

result of the previous paragraph, we have IYm-iolc(r) > lilio-ne-ko. We now proceed to 

show that IIQ -1IIP ~ 1 by showing that lhm+n-kolc(r) is sufficiently large. 

From ( 4.10) we have 

2: 
l+j=ko 

O<l<i<m 
o~3~-n 

(i) (i-l) 
l Ym-i qn-j · (4.11) 

Since u < e < 11'1 and e > r-t, equations ( 4.8), Proposition 2.4, and the definition of j 0 

together imply that 

for every choice of i, j, l with i ~ l, except when j = j 0 and i = l, in which case the above 

inequality is the trivial equality. Now in each term in the sum ( 4.11) for hm+n- ko we have 

j + l = ko = io + io, so in each of these terms the factor q~i:J> satisfies 

I ( i-l) I ( ) i-io I I ( ) qn-j c r < e qn-io c r ' 

except for the term in which io = i = l, in which case we again have equality. But by the 

definition ofio, we have IYm-ilc(r) ~ eio-iiYm-iolc(r) for 0 ~ i ~ m. Therefore, each term 

in the sum ( 4.11) for hm+n-ko satisfies 

except for the term Um-ioqn-io itself. 

Therefore, we have shown that 



Since lqn-jolc(r) = liln-io and l9m-iolc(r) > lilio-nu-ko, we have 

lhm+n-kolc(r) > u-ko. 

Since m + n- k0 =/= m + n, we have (for p = l1rlu-1 ) 

IIQ __: 1IIP > lko!ll?rl-kou"olhm+n-kolc(r) > 1. 
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This obviously contradicts the assumption that IIQ - 111P < 1. Therefore, by Lemma 

4.1, this shows that there exist solutions of L at t which converge at least on the disk 

ord(z- t) > 1I(P- 1) +log U· 

Thus we have shown that if Llt(L) has roots of absolute value less than 11'1, then L 

has solutions at t with radii of convergence strictly greater than those in ~0 • Therefore, 

if L has no solutions at t which hav~ greater radius of convergence than those in ~0 , it 

follows that every root of Llt(L) has absolute value equal to 11'1· But in this case, ~o is an 

optimal basis, since all nontrivial solutions at t have the same radius of convergence. Since 

we assume 11'1 > r-1, we see that this basis does satisfy the conditions ofthe theorem; thus 

we have proven the theorem in the case where L has no solutions with radii of convergence 

greater than those in ~0 • Having treated this situation, we turn next to the case where L 

has solutions at t with greater radii of convergence than those in ~0 • 

In fact we now proceed to prove the converse of the previous statement ; that is, we 

will show that if there are solutions of L at t with radii of convergence greater than those 

in ~o, then Llt(L) has roots of absolute value less than 111· For this we will need to use 

the induction hypothesis. Suppose then that there exist solutions at t which have strictly 

greater radii of convergence than those in ~0 , i.e., solutions which converge on a disk which 

properly contains the circumferenced disk ord ( z - t) ;::: 1 I (p- 1) +log 11' I· Then by Lemma 

4.2 and the ensuing remarks, there is a monic right factor M of L (with coefficients in Ec,r) 

which annihilates precisely those solutions. By the result of the previous paragraph we 

know that at least one solution of L has ord ( z - t) > 1 I (p- 1) +log 11' I as its exact disk of 

convergence, so if v is the order of M then 0 < v < n. 
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We write the equation N o M = L more explicitly in the form 

( 4.12) 

from which we may deduce the relations 

(i) (i-l) 
l Yn-11-i f 11-j ( 4.13) 

for 0 ~ k ~ n. (Here we use q0 = g0 = fo = 1 as convention.) By the definition of M, 

every solution of M at t converges on a disk which properly contains the disk ord ( x - t) ~ 

1/(p- 1) +log hi· Since 11 < n, we may apply the induction hypothesis toM to conclude 

that every root of At(M) has absolute value less than 111 (since we assume that 111 > r-1 ). 

It follows that lf3lc(r) < l1lj for 1 ~ j ~ 11. Therefore in equation (4.13), the expressions 

l~f) in the terms of the sum for qn-k all satisfy 

( 4.14) 

except when j = 11 and i = l, in which case we have the trivial equality f~o) = 1. 

We first proceed to show that IYilc(r) ~ l1li for 0 ~ i ~ n- 11. Supposing this 

does not hold, let i be maximal such that IYn- 11-ilc(r) > 11ln-ll-i. From (4.13), we see 

that for j = 11, l = i, and k = i + 11, we have Yn- 11-i as a term in the sum for qn-k' 

and by ( 4.9) we find that all other terms in this sum have strictly smaller absolute value. 

Thus Jqn-lelc(r) = IYn-11-ilc(r) > 111n-1e, contradicting (4.7). Therefore.we must have 

IYilc(r) ~ l1li for all i. As a consequence, all roots of At(N) have absolute value less than 

or equal to 111· 

We have defined 11 to be the order of M. We have also defined K to be the number 

of roots of At( L) of absolute value 111· Set J1. = n - K. We now wish to show that J1. = 11. 

We have already seen that if At ( L) has roots of absolute value less than iJ I, then L has 

solutions at t with radius of convergence strictly greater than those in ~0 ; i.e., we have 
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shown that if p. > 0, then v > 0. Therefore, we know that p. = v when v = 0. So it suffices 

to show that p. = v under our current assumption that v > 0. 

Suppose 0 ~ k < v. Then every term in the sum (4.13) for qn-k must have j < v, so 

by (4.14) these terms have lf~~jl)lc(r) < l;li+"-k. Thus lun- 11-i ~~~jl)lc(r) < liln-k for all 

terms in the sum, so lqn-klc(r) < lil"-k. Then (4.7) shows that k =f. JL· Thus p. is not less 

than v. 

Suppose k ;::: v. Then the terms in the sum ( 4.13) for qn-k all satisfy 

with equality holding if and only if v = j, i = l, and lun- 11-ilc(r) = liln-ll-i = IJI"-k. Since 

lqn-11 lc(r) = IJI"-1-' and p. is minimal with this property, it follows that lun-1-'lc(r) = h·l"-1-' 

and p. is also minimal with this property. 

Suppose now that p. > v. We have l9n- 11 lc(r) =Iii"-~-', and l9n-klc(r) < IJin-k for v ~ 

k < p.. The theory of Newton polygons tells us that Llt(N) has n- p. roots of absolute value 

Iii and p. - v roots of smaller absolute value. By applying the induction hypothesis to N, 

we find that there is a (p.- v) - dimensional subspace of solutions to N u = 0 which converge 

on a disk which properly contains the circumferenced disk ord(z- t);::: 1/(p- 1) +log Iii, 

while the remaining solutions converge at most on this disk. It follows from Lemma 4.2 

that the operator N factors over lRc,r as N = Nz o N1, where N1 annihilates precisely those 

solutions converging on a disk properly containing the disk ord (z- t) ;::: 1/(p- 1) +log Iii, 

and so is of order JL- v. But then by the induction hypothesis the roots of~t(NI) are all 

of absolute value strictly less than IJI. Thus we have L = N 2 o (N1 oM), where N1 oM 

is of order p.; it is also easy to verify, by relations similar to ( 4.13), that all the roots of 

t;,.t(Nt oM) have absolute value less than Iii, using the fact that N 1 and M each have 

this property. Therefore N 1 o M (and hence L) has a p. - dimensional space of solutions 

converging on a disk properly containing ord(z- t) ;::: 1/(p- 1) +log Iii, contradicting the 

definition of M and v. Therefore p. = v, and l9n- 11 lc(r) =Iii"-", so each of then- v roots 
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of At{N) has absolute value equal to Iii· Recall that At{L) also has exactly n- v roots of 

absolute value equal to li I· 

Although the solutions of N at t are not in general solutions of L at t, we have shown 

that the absolute values of the roots of At(N) are the same as those of the maximal roots 

of At(L). One may therefore also expect that since NoM= L, the roots of At(M) should 

correspond with the lesser roots of At(L). Indeed, the definition of M and the induction 

hypothesis have told us that each of the v roots of At(M) has absolute value less than lili 

also, vis exactly the number of roots of At(L) of absolute value less than hi· Furthermore, 

we know that the solutions of M at t are precisely the solutions of L at t which converge on 

a disk which properly contains the disk ord ( z - t) ~ 1/(p- 1) +log Iii, and our induction 

hypothesis states that the correspondence described in the theorem holds for the solutions 

and roots associated toM. 

Therefore, let !81 = { u1l ... , uv} be any optimal basis for the kernel of M at t which 

satisfies the conditions of the theorem forM. Since all solutions of Mat tare solutions of 

L at t, it follows from the definitions of !Bo and of M that !81 may be extended to form an 

optimal basis !B for the kernel of L at t by including n- v elements of !80 , chosen so that !B 

remains independent. To establish the required one- to- one correspondence for L, we first 

require that then- v roots of At(L) of absolute value Iii correspond to then- v elements 

of !B which were adjoined from !Bo. Since Iii > r-1 and the elements of !80 all have 

ord ( z - t) > 1/ (p- 1) +log li 1 as their exact disk of convergence, we have proven that the 

required conditions of the correspondence are satisfied for the roots of At(L) of magnitude 

Iii· Finally, since the correspondence between the roots of At(M) and the elements of 23 1 

satisfies the required condition by the induction hypothesis, to complete the proof of the 

theorem for Lit suflices to show that the absolute values of the roots of At(M) are exactly 

the same as the absolute values of the roots of At(L) which are smaller than Iii· 

Suppose then that At(M) has exactly l roots of absolute value O". Then u < hi, and 
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by the theory of Newton polygons there exists an integer j with 0 ~ j -l < j ~ II such that 

lfv-jlc(r) =A ;:=: u"'-.i, 

lfv-ilc(r) 

lfv-ilc(r) 

~ A · u.i-i for j - l ~ i ~ j, 

< A · u.i-i for 0 ~ i < j - l or j < i ~ II. 

Then by applying ( 4.13) we find that 

lqn-jlc(r) = l9n-v fv-jlc(r) =A • IJin-v, 

lqn+l-.ilc(r) = l9n-v fv+l-.ilc(r) =A ·liln-vul, 

lqn-ilc(r) ~ l9n-v fv-ilc(r) ~A· IJin-vO'j-i for j -l ~ i ~ j, 

lqn-ilc(r) ~ l9n-v fv-dc(r) <A· hr-"'u.i-i for 0 ~ i < j -l, 

lqn-ilc(r) ~ l9n-v fv-ilc(r) <A ·liln-vO'j-i for j < i ~ 11. 

Finally, if II < i ~ n, then since A ;:=: u"'-j and lqn-ilc(r) ~ liln-i, we may write 

(4.15) 

(4.16) 

(4.17) 

Equations (4.16) and (4.17) say precisely that qn-j and qn+l-j correspond to endpoints of 

a segment of the Newton polygon of ~t(L) of length land slope equal to logu. It follows 

that ~t(L) has exactly l roots with absolute value equal to u, as desired. Therefore, we 

have proven that L satisfies the conditions of the theorem. By induction, the theorem holds 

for all monic elements of !Rc,r' and the proof is complete. 

Although all optimal bases for the kernel of L at t have corresponding solutions with 

the same radii of convergence, in the above proof we have taken care to select a particular 

optimal basis ~ so that the elements of ~ which do not converge for ord ( x- t) > 1/ (p -1) + 
ord ( t - c) have uncircumferenced disks as their exact disks of convergence. However, one 

may certainly construct examples of analytic functions u, v which converge and are bounded 

exactly on an uncircumferenced disk B( t, p-) but which have a linear combination w which 
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converges exactly on B( t, p+ ). For this reason, we do not know whether the conditions of 

this theorem hold for every optimal basis 93; in particular, we know of no example of a 

linear differential operator having a solution at a generic point whose disk of convergence is 

circumferenced. It should be noted that if the absolute values of the roots of ~t(L) which 

are larger than r-1 are all distinct, then every optimal basis for the kernel of L at t has the 

required property. 

In the next chapter we will also show that .indeed every optimal basis for the kernel 

of L at t does satisfy the condition of this theorem when the operator L is of order two. 

Therefore, we can conclude that the disk of convergence is uncircumferenced for all solutions 

at t which do not converge on the disk ( 4.5) when the order of the operator is two or less. 

We conjecture that this is true for all L E 9tc,ro In any event, one may say that for every 

optimal basis 93 there is a one- to- one correspondence where the roots), of ~t(L) satisfying 

1>.1 > r-1 correspond to elements of 93 which have either the uncircumferenced disk (4.4) or 

the circumferenced disk ord (z- t);::: 1/(p-1) +log 1>.1 as their precise disk of convergence 

and are bounded there, and the remaining roots correspond to solutions converging at least 

on the disk ( 4.5) and bounded there. 

We now combine the results of Theorem 4.3 and Lemma 4.2 and rephrase them in 

terms of the Newton polygon of ~t(L), showing the complete relationship between the 

factorization of the type described by Lemma 4.2 and factorization according to the slopes 

of the associated Newton polygon ( cf. [10], §6.2.3.3). 

Corollary 4.4. Let L be a monic element of9tc,r and lett be a c, r-generic point. Suppose 

that m1e < m1e-1 < · · · < m1 are the slopes of the Newton polygon of tl.t(L) and th.at tbe 

side of slope mi bas horizontal length of projection ni for 1 ::; i ::; k; suppose further that 

mi > -logr for 1 ::; i::; j, and set n' = n;+1 + · · · + n~e. Then there exist monic elements 

L1, ... , Lj, L' of 9tc,r of orders n1, ... , nj, n', respectively, such. that 

L=L1 o···oLjoL1• 
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Furthermore, L' annihilates precisely those solutions of L at t which converge at least on the 

disk ord (:e- t) > 1/(p-1) +ord(t- c), and for 1 :::; i:::; j the product L(i) = Li o · · ·oLj oL' 

annihilates precisely those solutions of L at t which converge at least on the disk 

1 
ord(:e- t) >--+mi. 

p-1 

Proof: The conditions on the Newton polygon of ~t(L) imply that ~t(L) has precisely ni 

roots of absolute value pm; for each i. Since the absolute values of the roots corresponding 

to the slopes mJ+t, ... , m~e are no larger than r-1, we see from Theorem 4.3 (ii) that there 

is exactly an n'-dimensional space of solutions converging at least on the disk {4.5). By 

Lemma 4.2 there is a unique monic right factor L' of L (of order n') which annihilates 

precisely those solutions. Applying Theorem 4.3 {i) to the remaining roots of ~t(L) shows 

that for 1 :::; i :::; j, the space of solutions converging at least for ord ( :e - t) > 1/ (p - 1) + mi 

has dimension ni + · · · + nj + n'. Then by Lemma 4.2 there is a unique monic right factor 

L(i) of L (of order ni + · · · + nj + n') which annihilates precisely these solutions. From the 

uniqueness statement we see that L' is a right factor of each L(i), and that L(i1 ) is a right 

factor of L(il) whenever 1:::; i 1 < i 2 :::; j. This gives the required factorization. 

We now connect the above results on radii of convergence with cerain properties of the 

index of a differential operator to give a partial proof of a conjecture of Robba. 

Proposition 4.5. Let L = g0Dn+g1Dn-1 +· · ·+Yn E 15 A, where A is a c, r-very standard 

set. Suppose that every root .>t of ~t(L) satisfies I-AI > r-1 • Then L is injective and has an 

index as an operator on H(A), and that index is given by the formula 

x(L,H(A)) = -ordA(Un)· 

Proof: We note that the condition on the roots of ~t(L) implies that llunllc,r > IlL- Ynllc,r 

as operators on H(A), by the theory of Newton polygons. It then follows from Lemma 4.4 

of (14] and Proposition 2.3 that L is injective and that 

x(L,H(A)) = x(gn;H(A)) = -ordA(Un)· 
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Corollary 4.6. Let A= B(c,R+) and let L = uoDn + Ulnn-1 + · · · + Un E ~A· Suppose 

that, for some r0 < R, every root A of 6t0 (L) (where to is a c,ro-generic point) satisfies 

I A I > r 01 • Then the formula 

( dlogpc(L, r)) ± _ ±(L ) d±( ) 
d l - Xc ' r + or c Uo' r ogr 

( 4.18) 

(conjectured by Robba in [16]) holds for Land for all r E 1!1*1 sufficiently close to ro. 

Proof: It follows from Theorem 4.3 that for all r E 1!1* I sufficiently close to ro we have 

Pc(L,r) =IT I ;.I= j11"1n I Uo I (r) 
i=1 t Un c 

(where At, ... , An are the roots of 6t(L), t being a c, r-generic point), so from (3.8) we may 

deduce that 

( dlogpc(L,r))± _ (dlogluo/Unlc(r))± _ d±( / ) 
dl - dl - or c Uo Um r ogr ogr 

But by Proposition 4.5 we find that for such r, 

from which the corollary follows. 

The formula (4.18) was proven by Robba for operators of order one [16], and it was 

conjectured that this formula should hold for operators of any order provided the operator 

has no solution at a c, r 0 -generic point t which converges for ord ( :z:- t) > ord ( t- c). The 

above corollary asserts that the formula holds under the stronger assumption that there is 

no solution converging for ord{:z:- t) > 1/{p- 1) + ord(t- c); this condition is equivalent 

to the condition that all roots A of at(L) satisfy IAI > r01 , by Theorem 4.3. 

As further applications of Theorem 4.3 we present two results concerning the description 

of the solutions of linear differential operators. 
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Corollary 4. 7. Let L E 9lc,ri lett be a c, r-generic point. If L has an unbounded solution 

at t then that solution converges on an uncircumferenced disk which properly contains the 

disk 

1 
ord(z- t) > -- + ord(t- c). 

p-1 
( 4.19) 

Proof: From Theorem 4.3 (i) we see that solutions at t which converge on a disk smaller 

than (4.19) are all bounded. Furthermore, if a solution converges at least on the disk ( 4.19), 

it is bounded on this disk by Theorem 4.3 (ii); therefore such a solution must converge on a 

strictly larger disk. But if an analytic function is unbounded, then its disk of convergence 

must be uncircumferenced. This completes the proof of this corollary. 

Corollary 4.8. Let L E 9lc,ri lett be a c, r-generic point. For p E R+ let 8(t, p) be the 

dimension over 0 of the space of solutions of L u = 0 which converge at least on the disk 

1 
ord ( z - t) > -- + log p. 

p-1 

If furthermore L E V\A for some c,r-very standard set A which contains B(c,r-), let lr 

be the dimension over n of the space of solutions of L u = 0 which are analytic on B( c, r-). 

i. For p ~ r-1 , 8(t,p) is equal to the number of roots..\ of At(L) which satisfy l..\1 ~ p. 

ii. For L E V\A as above, /r ~ 8(t, r-1 ). 

Proof: The first result follows immediately from Theorem 4.3 (i). For (ii), first suppose 

that u is a solution which is analytic on B( c, r- ). Then whenever t0 is a c, r 0 -generic 

point with ro < r, we know that u converges on B(t0 , r0 ). Since A contains B( c, r-) we 

may view the coefficients of Las elements of M(B(c,r0 )), and by Theorem 4.3 (i) there 

is a corresponding root ..\o of At0 (L) with l..\ol ~ r01 • It follows that /r ~ 8(to,r01 ) for 

all c, ro-generic points t0 with r0 < r. Finally, the theory of Newton polygons tells us 

that if At0 (L) has j roots of absolute value at most r01 then lqn_ifqn-ilc(ro) ~ r~-i for 

0 ~ i ~ j. Since ihlc(ro) is a continuous function of ro E (0, r] for hE M(A), we find that 

/r ~ 8(to, r01 ) for all ro < r implies that 7,. ~ 8(t, r-1 ) as well, giving (ii). This completes 

the proof. 
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We note that part (i) above implies that, if L E ~A is completely soluble in the generic 

disk B(t,r-), then every root A of .6.t(L) satisfies IAI ~ r-1 • Furthermore, if every root A 

of .6.t(L) satisfies IAI > r-1, then Lis completely insoluble in B(t, r-). 

We present the following application to the study of solutions at irregular singular 

points as an extension of the idea in part (ii) above. Here we give a p-adic proof and 

extension of a classical result. 

Corollary 4.9. Suppose that A contains a disk about the point c E K. Let L = Dn + 

q1 nn-1 + · · · + qn E iRA, and let w j = -or de q; denote the order of the pole of q; at :c = c, 

with w0 = 0. Assume that L has an irregular singularity at :c = c; thus w;- j > 0 for 

some j. Let k be the minimal integer with the following properties: 

i. The difference w;- j attains its maximal value when j = k. 

ii. Among those indices j for which the above maximum is attained, the expression 

attains its maximal value w.hen j = k. 

Then the space of solutions of L u = 0 which are analytic near :c = c has dimension at 

most n- k over n. Furthermore, ifk = n then (:c- c)111"L is injective on H(B(c,r±)) and 

x;((:c- c) 111"L, r) = 0 for all sufficiently small r E IO*I· In particular there are no nontrivial 

solutions to L u = 0 analytic near :c = c. 

Proof: The hypotheses on L and the definition of k imply that, for all sufficiently small 

r E IO*I, we have lq~elc(r) > r-k and lq~e/q;lc(r) > ri-k for all j < k. It follows that the 

segments of the Newton polygon of .6.t(L) whose abcissae lie in [n- k, n] all have slopes 

greater than -log r for small r, and therefore .6.t(L) has at least k roots of absolute value 

greater than r-1 for all sufficiently small r. By Theorem 4.3 (i), for small r there is at 

most an (n- k)- dimensional space of solutions which can converge in B(t, r-). Since any 

solution u which is analytic at :c = c converges in all c, r-generic disks when r is less than 

the radius of convergence of u at :c = c, the first result follows. H k = n then the hypothesis 
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of Proposition 4.5 is satisfied for the operator ( z - c )-wn L with A = B( c, r±) when r is 

sufficiently small, so the second result also follows. 

The reader may compare the second result of this corollary to a result of B. Malgrange 

([13], Proposition 1.3), which shows in effect that the index of (z- c)-wnL on the space of 

formal power series in powers of z- c is given by max{ tv j- j}- ( Wn- n ), an integer which 

is called the irregularity of L at c. If k = n then the index on formal power series is seen to 

be zero; the above corollary shows that the index is also zero on all sufficiently small disks. 

The first result of the above corollary is an extension of a well-known principle of 

operators with irregular singular points in the complex domain (e.g., [11], §17.11). If the 

coefficients of L actually lie in Q( z) and c E Q, then the class k' of the irregular singular 

point z =cis defined to be the least integer which satisfies condition (i) in the statement of 

the corollary. Then it is well-known that L u = 0 has at most n - k' independent solutions 

regular (in the complex sense) at z = c, although there certainly need not be this many. 

Our interpretation of the above condition (ii) in the definition of k is that, if k becomes 

larger than k' because of this additional condition, the bound on the dimension of the space 

of (p-adically) regular solutions is reduced essentially because of a reduction in the maximal 

number of roots of the indicia! polynomial of L at z = c which can be p-integral. 

This idea can be applied to the question of existence of formal power series solutions 

as well. The main tool needed for this is the theorem of Clark [5], which states that, if 

the roots of the indicia! polynomial of L at c are all p-adically non - Liouville (which is 

certainly true if L E Q(z )[D]), then any formal power series solution in powers of z- c has 

positive radius of p-adic convergence near z =c. We therefore find that, in the notation of 

the corollary, there can be at most an ( n - k) - dimensional space of formal power series 

solutions in powers of z- c when L E Q(z )[D]. This indicates that for such operators L, the 

number of independent (complex) regular solutions near an irregular singular point c E Q 

can be influenced by the occurence of prime factors in the coefficients of L. 

Example 4.10: Let L = D 3 + a.z-2 D 2 + {3z-3 D + z-4, where a.,{3 E Z. The classical 
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theory indicates that the irregular singularity at z = 0 has class k' = 1, and therefore there 

are at most 2 independent solutions regular at z = 0. However, according to the previous 

corollary, if pis a prime dividing a and p does not divide /3, we have k = 2 (considering the 

coefficients of L p-adically) and therefore there is at most one (p-adically) regular solution 

at z = 0. On the other hand, if p divides both a and /3, then k = 3 and thus there are 

no (p-adically) regular solutions at z = 0. But then by the result of Clark there can be no 

formal power series solutions in powers of z, so there can be no (complex) regular solutions 

at z = 0. 

This phenomenon can be explained more or less by noting that the indicial polynomial 

of L at 0 is ar2 + (/3- a )r + 1. The indicia! polynomial of L at 0 always has degree n- k' = 2, 

but in each of the above cases we see that the length of the segments of its Newton polygon 

(with respect to the prime p) which have non-positive slopes is exactly n- k, and this is 

what limits the number of possible integral roots. 

We conclude this chapter with a specific example. Here we use Theorem 4.3 to explain 

and analyze the phenomenon of distinct radii of convergence of solutions of the second order 

operator which annihilates the confluent hypergeometric function. 

Example 4.11. Consider the differential operator 

La = D 2 - z D - a , 
p( 1 - :c) p( 1 - z) 

( 4.20) 

where a E K satisfies lal ~ 1. It has been noted by Monsky that this operator has solutions 

with distinct radii of convergence at a generic point t satisfying It- 11 = 1 when a E Zp 

is not a negative integer. This phenomenon has been treated by Robba and Dworkin [14] 

and [10], using the fact that for such values of a, the confluent hypergeometric function 

lFl (a,~; (1- z)) = f (a)s (~)' 
P P s=O (1/P)s s! P 

is a solution of L near z = 1 which converges in B(1, 1-), so there is also a solution which 

converges and is bounded in B(t, 1-); however, the wronskian at t does not converge on 
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B(t, 1-). We will use Theorem 4.3 to show that La has solutions with distinct radii of 

convergence at all generic points t for c = 1 under the weaker hypothesis that lai :S 1. 

Let t be a 1, r-generic point and let A, u be the roots of ~t(L), with IAI 2:: lui. We 

compute that 

!AI = pr-1 , lui = lal when r ::::; 1, 

and 

IAI = p, lui= lalr-1 when r 2:: 1, 

so that IAI > r-1 ;::: lui holds for all r > 0, and therefore Theorem 4.3 (i) applies to A, while 

(ii) applies to u, for all r E 10*1· We find that for all r, there is a one-dimensional space of 

solutions at t which converge at least for 

1 
ord(z- t) > --1 + ord(t -1) 

p-

and are bounded on that disk; the remaining solutions converge and are bounded exactly 

on the disk 

ord(z- t) > _P_ + ord (t -1) 
p-1 ( resp. ord(z- t) > _P_) 

p-1 

when r::::; 1 (resp. r 2:: 1). Therefore for any a E KnB(O, 1+), the operator La has solutions 

with distinct radii of convergence at every 1, r-generic point, regardless of the radius r. We 

may therefore consider the existence of solutions with distinct radii of generic convergence 

to be an analytic property of La (i.e., depending only on the norm of the coefficients), 

although the existence of a solution converging in B( t, 1-) is an algebraic property of La 

when a E Zp. 

We note that the behavior of solutions of La is slightly different when lal > 1. If we 

let lal = p, for example, then we may compute that 

!AI = pr-1 , lui = p when r < 1, 

and 

IAI = lui = pr- 112 when r 2:: 1, 
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so that IAI ~ lo-1 > r-1 for r > p-1 and IAI > r-1 ~ lo-1 for r ~ p-1 • So for r < p-1 there 

are solutions at t with ordinals of convergence 

__!!._ + ord(t -1) and at least - 1- + ord(t -1), 
p-1 p-1 

respectively; for p-1 ~ r < 1 the ordinals of convergence are 

p p --+ ord(t -1) and --, 
p-1 p-1 

respectively; but for r ~ 1 all solutions have the same ordinal of convergence 

p 1 -- + -ord(t -1). 
p-1 2 

In particular, for r < 1, the radii of convergence of solutions at 1, r-generic points t are 

distinct, while for r ~ 1 all solutions have the same radius of convergence. 



CHAPTER V 

SECOND ORDER OPERATORS AND THE RICCATI EQUATION 

The purpose of this section is to slightly improve Theorem 4.3 for second order oper­

ators by showing that in this case every optimal basis ~ satisfies the conditions of that 

theorem. The proof we now give is similar to that of Theorem 4.3, but does not rely on the 

factorization principle given in Lemma 4.2. Because this proof is more direct it gives more 

insight into the phenomenon of distinct radii of convergence; in particular, it demonstrates 

a connection between the larger radius of convergence and the rate of convergence of the 

continued fraction expansion for the solution of the corresponding Riccati equation. 

Theorem 5.1. Let L E 9lc,r be th.e monic second order operator L = D 2 + q1 D + q2 and 

let t be a c, r-generic point. Let ~ be any optimal basis for th.e kernel of L at t. Th.en 

th.ere is a one - to - one correspondence between th.e roots of At( L) and the elements of~ 

such. that 

i. Corresponding to every root A of At(L) satisfying IAI > r- 1 there is an element of~ 

wh.ich converges exactly on th.e disk 

ord(z- t) > 1/(p- 1) +log IAI, (5.1) 

and is bounded on th.is disk. 

ii. Corresponding to every root A of At(L) satisfying IAI ~ r- 1 there is an element of~ 

wh.ich. converges at least on th.e disk 

ord(z- t) > 1/(p- 1) + ord (t- c), (5.2) 

and is bounded on this disk. 

44 
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Proof: Let u( z) be a solution to L u = 0 ·which is analytic in a neighborhood of t. Since 

D 2u + q1 Du + q2 u = 0, there are uniquely determined functions {bm, cm}m~o as before 

such that Dmu = bmu' +emu. We find that bo = 0, co = 1, b1 = 1, c1 = 0, b2 = -q1, 

c2 = -q2, and that in general, form~ 0 the bm and Cm satisfy the recursion formulae 

(5.3) 

As before, since the bm and Cm are polynomials in q1, q2 and their derivatives with 

integer coefficients, it follows that each bm and Cm lies in Ec,ro Therefore, since tis generic 

for c, we have lbm(t)l = lbmlc(r) and lcm(t)l = lcmlc(r). IT we suppose that u(t) = 1 and 

u'(t) = 0, then by Taylor's theorem, in a neighborhood oft we have 

(5.4) 

Therefore, we can determine the radius of convergence ofu by computing lcmlc(r). Similarly, 

we can determine the radius of convergence of a solution u which is normalized by u(t) = 0, 

u'(t) = 1 by computing lbmlc(r). 

We now consider five possible cases. 

Case 1: Suppose that both roots >., u of ~t( L) have absolute value less than or equal to 

r-1. By the theory ofNewton polygons, this implies that lqdc(r) ~ r-1 and lq2 lc(r) ~ r-2. 

From (5.3) one may easily show by induction that lbmlc(r) ~ r 1-m and lcmlc(r) ~ r-m 

for all m. From (5.4) we see that the solutions v, w which are normalized by v(t) = 1, 

v'(t) = 0 and w(t) = 0, w'(t) = 1 converge at least on the disk (5.2) and are bounded there. 

Since any linear combination of such solutions also converges and is bounded on this disk, 

it follows that any optimal basis ~ satisfies the condition of the theorem. 

Case II: In the next two cases we suppose that the roots>., u of ~t(L) are of equal 

absolute value, and that 1>.1 > r-1. We note that this implies that lq2lc(r) = l.\1 2 and that 

lq1lc(r) ~ 1>.1. We first treat the simpler case in which lqdc(r) < 1>.1. For this case we apply 



induction to the recursion formulae to obtain the estimates 

lb27c+llc{r) = lq:lc{r), 

lc21clc{r) = lq:lc(r), 

lb21clc(r) 5 lq:-1lc(r) ·max{r-1, lqdc(r)}, and 

lc27c+llc{r) 5 lq:lc(r) · max{r-1, lq1lc{r)} 
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(5.5) 

for all k ;:::: 0. It follows that the solutions v, w normalized by v(t) = 1, v'(t) = 0 and 

w(t) = 0, w'(t) = 1 converge and are bounded exactly on the disk given by (5.1). Therefore, 

all solutions converge at least on this disk and are bounded on this disk. Now suppose that 

u is a solution with u(t) = 1, u'(t) = a E 0. To show that u does not converge on any 

larger disk, we need to show that there is not too much cancellation in the terms u(m)(t) = 

abm(t) + cm(t). Cancellation in the m-th term can occur only if lallbmlc{r) = lcmlc(r). 

Using (5.5) and noting that max{r-t, lq1lc(r)} < l..\1, we see that form= 2k this requires 

lal > l..\1, while for m = 2k + 1 we need lal < l..\1 in order to have cancellation. Obviously 

there will be infinitely many min which no cancellation occurs. More precisely, if Ia I ;:::: l..\1 

then lobm + cmlc(r) is equal to la..\m-11 for odd m and is less than la..\m-ll for even m; 

conversely, if lal < l..\1 then lobm + cmlc(r) is equal to l..\ml for even m and is less than l..\ml 

for odd m. Therefore, all solutions converge exactly on the indicated disk and are bounded 

there. It follows that any optimal basis has the required property. 

Case III: Suppose now that the roots ..\, u of .6.t(L) satisfy l..\1 = lui > r-1 (so 

that lq2lc(r) = l..\1 2), and further suppose that lqdc(r) = l..\1. By induction, the recursion 

formulae show that lcmlc(r) 5 l..\ml and lbmlc(r) 5 l..\m-11 for all m > 0. We now proceed 

to show that the equalities lcmlc(r) = l..\ml and lb171 lc(r) = l..\171- 11 hold for infinitely many 

values ofm. The recursion Cm+l = -q2bm +c!n shows that lc171+llc(r) < l..\m+11 if and only 

if lbmlc(r) < l..\m-11. Suppose then that there exists m > 1 such that lbm-1lc(r) = l..\m-21 

but lbmlc(r) < l..\m-11, i.e., suppose that the equality holds for 6171-1 but fails for bm. This is 

equivalent to saying that it holds for Cm but fails for Cm+1i therefore we have lcmlc(r) = l..\ml 



and lcm+llc(r) < l>.m+ll. Therefore, we may compute from (5.3) that 

lbm+llc(r) = lcmlc(r) = I.Aml, 

lbm+2lc(r) = 1- qlbm+llc(r) = l>.m+ll, 

lcm+2lc(r) = 1- q2bm+llc(r) = I.Am+21, and 

lcm+3lc(r) = 1- q2bm+2lc(r) = l>.m+31. 
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(5.6) 

Thus we have shown that if the equality fails for bm then it must hold for bm+l and 

bm+2i equivalently, if it fails for Cm+1 then it must hold for Cm+2 and Cm+3· It follows that 

there are infinitely many values of m for which the equality holds. Therefore, the solutions 

v, w which are normalized by v(t) = 1, v'(t) = 0 and w(t) = 0, w'(t) = 1 converge and 

are bounded exactly on the disk ord(z- t) > 1/(p -1) + logi.AI. Thus any solution will 

converge at least on this disk; we must now show that this is the exact disk of convergence 

for all solutions. In this case, however, we must adopt a more subtle approach than in Case 

II. 

We have seen that lbmlc(r):::; l>.m-11 for all m > 0. We now set 

and note that M is infinite by the result of the previous paragraph. For each m > 0 we set 

T'Jm = -cm/bm. 

Suppose that there exists m E z+ with m- 1 E M but m tf. M. From the preceding 

remarks, this implies that m + 1, m + 2 E M and we have 

lbmlc(r) < I.Am-11, lcmlc(r) = I.Aml, SO I7Jmlc(r) > l.-\1; 

(5.7) 

lbm+2lc(r) = l,xm+11, lcm+2lc(r) = l,xm+21, SO I7Jm+2lc(r) = l.-\1. 

Therefore in particular we have I7Jm+2 -TJm+1lc(r) = l.-\1. Since M is infinite, it follows that 

if z+ \ M is also infinite then there will be infinitely many such values of m, and therefore 

there will be infinitely many pairs m, m + 1 E M for which 

I7Jm+l -TJmlc(r) = I.AI. 
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Now suppose that z+ \ M is finite, and let p, be the least positive integer such that 

lbmlc(r) = IJ,m-11 form ~ p,. For elements h of Ec,r we set R(h) = h2 + q1h + qz + h'. 

If p, = 1, then we compute R(171) = R(O) = qz, so that IR(771-')Ic(r) = I.A2 I. If 1£ > 1 then 

lbl-'lc(r) = I.A~-'- 1 1 and lcl-'lc(r) < I.A~-'1, so that 1771-'lc(r) < I.AI, from which we may compute 

The essential point here is just to show that R( 171-') =/:- 0. 

Form> 0 we compute from the recursion formulae (5.3) that 

We use this relation to compute 

bm ( '17m+1 -17m= -b -R 17m)• 
m+1 

(5.8) 

(5.9) 

_ ( ) ( bm bm b~ ( ) ( bm ) 1 bm R( 17m)') - R 17m 1 + q1-b- +277m-b-+ -b2 R 17m + -b- + -b- R( ) (5.10) 
m+1 m+1 m+l m+l m+1 17m 

One may then compute that 

when m ~ 1£· Since by Proposition 2.4 we also have 

and 

I (/m ) 'I (r) $ r-1I.AI-1 < 1 
m+1 c 

I~ R(17m)'l (r) $ r-11.AI-1 < 1 
bm+l R(17m) c 

form~ p,, it follows that the expression Hm in (5.10) satisfies 

IHmlc(r) = l::b~ I (r) = 1 
m+l c 

(5.11) 
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whenever m ~ p.. It follows from (5.8) and (5.9) that for m ~ p. we have m E M and 

l77m+I - 71mlc(r) = IAI. 

We have therefore shown that in any event, there are infinitely many pairs m, m+ 1 E M 

for which 

(5.12) 

Therefore, for any a E 0 we have 

lim sup Ia- 71m(t)l ~ IAI. (5.13) 
mEM 

If u is a solution at t with u(t) = 1, u'(t) =a, then since 71mbm + Cm = 0, we have 

u<m>(t) = abm(t) + Cm(t) = bm(t)[a- 'lm(t)] (5.14) 

for every mE z+. It follows from (5.13} and the definition of M that 

lim sup lu(m)(t)l ~ IAml, (5.15) 
mEM 

and therefore any such solution u converges precisely on the disk indicated. Since any 

solution is a linear combination of the normalized solutions v and w, which are bounded on 

this disk, every solution is also bounded on this disk. Therefore, every linearly independent 

pair of solutions at t forms an optimal basis, and every optimal basis satisfies the conditions 

of the theorem. 

Case IV: Suppose that the roots A, u of ~t(L) satisfy IAI > lui > r-1 ; this implies 

that lqtlc(r) = IAI and lq2lc(r) = IAul. In this case one may compute by induction that 

lbmlc(r) = IAm-ll and lcmlc(r) = lAm-lui form> 1 from the recursion formulae (5.3). It 

immediately follows that the solutions v, w which are normalized by v(t) = 1, v'(t) = 0 and 

w(t) = 0, w'(t) = 1 converge exactly on the disk ord(z- t) > 1/(p- 1) +log IAI and are 

bounded on this disk. 
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For each m > 0 we again set TJm = -cmfbm E Ec,f'• For elements h of Ec,r we again 

set R(h) = h2 + q1 h + q2 + h'. Then from the above we find that for all m > 1, 

ITJmlc(r) = lui, 

and we again note that the recursion formulae (5.3) yield 

1'/m+l - 1'/m = bbm R(TJm)• 
m+l 

We now proceed to prove by induction that 

IR(TJ~c)lc(r) =I )..::2 1 

(5.16) 

(5.17) 

(5.18) 

for all k > 0. Fork = 1 we compute directly that R(TJt) = q2, so IR(TJdlc(r) = lu.\1, as 

desired. Now assume that (5.18) holds fork= m. As in (5.10) we compute 

But since 

I q2b~- b~~~ + bm+lb~ I (r) = ~~~, 
m+l c 

and 

and 

we find that the expression Hm in (5.19) satisfies 

Therefore (5.18) holds for k = m + 1, so by induction it holds for all k > 1. 
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So we have shown that IR("7m)lc(r) ---+ 0 as m ---+ oo, i.e., the sequence {R(1]m)} 

converges to zero in the metric of Ec,r• Furthermore, (5.17) and (5.18) together show that 

1"7m+1- '7mlc(r) =I A:~1~ < JuJ, (5.20) 

so the functions '17m converge to an element '7 E Ec,r' since Ec,r is complete. Equation (5.20) 

shows that 1"7ic(r) =lui and that 

1"7- "7mlc(r) = I A:~1l· (5.21) 

Set a = '1(t), and let u0 be the solution of Lu = 0 such that u0 (t) = 1, u~(t) = a. 

Again, since '7mbm + Cm = O, we have 

U~m)(t) = abm(t) + Cm(t) = bm(t)['1(t)- '7m(t)]. (5.22) 

Then (5.21) shows that lu~m)(t)l = lulm for all m ~ 0. It follows that this particular solution 

u0 converges exactly on the disk ord (z -t) > 1/(p-1) +log lui and is bounded there. Since 

Jul < !AI, it follows that every nontrivial solution u at tis either a nonzero scalar multiple 

of u0 (and therefore converges and is bounded exactly for ord (z- t) > 1/(p -1) +log JuJ), 

or is of the form u = au0 + bv, where vis the solution normalized by v(t) = 1, v'(t) = 0, 

with a, b E n and b f 0 (and therefore u converges and is bounded exactly on the disk 

ord(z- t) > 1/(p- 1) +log !AI). Therefore, any basis which contains a scalar multiple of 

u0 is an optimal basis, and any optimal basis satisfies the conditions of the theorem. 

Case V: Suppose that the roots A, u of .6.t(L) satisfy IAI > r-1 ~ lui. Here the proof 

is basically a modification of the proof for Case IV. With the new hypotheses on A and u 

we still have lbmlc(r) = IAm-ll and icmlc(r) = !Am-1uJ, so the solutions v, w normalized 

by v(t) = 1, v'(t) = 0 and w(t) = 0, w'(t) = 1 converge exactly on the disk given by 

ord(:z:- t) > 1/(p- 1) +log !AI and are bounded there. Defining the '1m as before, we still 

have '17m being an element of Ec,r with 1'1mlc(r) = JuJ, and equations (5.17) and (5.19) are 

still satisfied. Under the modified hypotheses on A, u, and r we must replace the equality 
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(5.18) with the estimate 

(5.23) 

This follows from the same induction argument as in Case IV except that the estimate for 

the expression Hm in (5.19) becomes JHmlc(r):::; r-1 J).J-1 • We find that 

(5.24) 

so the Tim converge in the metric of Ec,r to an element TJ which satisfies JTJ(t)J = JlTJ and 

(5.25) 

Set a= TJ(t) and let u0 be the solution at t with uo(t) = 1, u~(t) =a. Then since 

(5.26) 

we find from (5.25) that Ju~m)(t)J:::; r1-mJuJ for all m > 0. Therefore this particular solution 

u0 converges at least on the disk ord ( z - t) > 1 j (p - 1) + ord ( t - c), and is bounded there. 

As in Case IV, any basis of solutions at t which contains a scalar multiple of uo is an optimal 

basis, and any optimal basis satisfies the conditions of the theorem. 

This completes the proof of the theorem. 

The idea for the proof of this theorem centers around a continued fraction expansion 

for a solution of the Riccati equation 

R(y) = y' + y2 + q1 y + qz = 0 (5.27) 

associated to the homogeneous linear equation L u = 0. In Cases ill, IV, and V above, 

the ratios fJm = -cmfbm are essentially the partial sums in a continued fraction expansion 

for a solution y = TJ(z) of equation (5.27) (cf. [11], §7.5). It is a well-known property of 

this equation that any solution TJ of (5.27) is the logarithmic derivative of a solution u of 

L u = 0, and that the operator L = D 2 + q1 D + q2 then factors (formally) as 

(5.28) 
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We know, however, from Lemma 4.2 that if L u = 0 has solutions with distinct radii 

of convergence at t then L must factor in the ring fflc,r as a composition of two first 

order operators, where the right factor annihilates the solutions with the larger radius of 

convergence. Therefore, we expect that when the solutions of L exhibit distinct radii of 

convergence at t, then L factors as in (5.28) where 7J E Ec,r and 7J is the logarithmic 

derivative of a solution with the larger radius of convergence. 

On the other hand, we know that if the partial sums 7Jm of the continued fraction do 

converge with respect to l·lc{ r) to a limit 7], then 7J E Ec,r as well, since 7Jm E Ec,r and Ec,r 

is complete in this metric. It is therefore Iiot surprising that the ratios 7]m do converge in 

Cases IV and V above (where we know from Theorem 4.3 that distinct radii of convergence 

occur). In Cases II and ill, there may or may not be a solution 7J to the corresponding 

Riccati equation which lies in Ec,r' but we have shown that in any event the ratios f/m do 

not converge to such a solution. Equations (5.12), (5.20) and (5.24) show explicitly how 

the absolute values of the roots of .6.t(L) affect the rate of convergence of the ratios 7Jm· In 

Case IV the fact that lu~m)(t)l = IO'Im agrees with the result of (3.6) applied to the first 

order operator D- 7], since in this case I7Jic(r) = 10'1 > r- 1 . However, in Case V, we see 

from (5.26) that it is not I7Jic( r ), but rather the rate at which the ratios 7Jm converge to 7], 

that determines the radius of convergence of uo. 

As an application of this theorem we rephrase the results of Cases IV and V in terms 

of the Riccati equation associated to L. 

Corollary 5.2. Suppose that ql, qz E Ec,r satisfy lqllc(r) > r-1 and lq2lc(r) < lqllc(r). 

Then for any c,r-generic point t there exists a unique a En with lal < lqdc(r) such that 

the initial value problem 

has a solution y = 7J E Ec,ro 

y' = -(y2 + qly + q2), 

y(t) =a 
(5.29) 

Proof: The conditions on q1 and q2 imply that, for the operator L = D 2 + q1 D + q2 E fflc,,., 
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the roots.\, (J' of Llt(L) satisfy jq1 lc(r) = j.\1 > I(J'I and j.\1 > r-1 • The existence of a and 

11 then follows immediately from the results of Cases IV and V of Theorem 5.1 applied to 

L, where 11 is as described there and a = TJ(t). To show uniqueness, suppose that ao f=. a, 

lao! < j.\j and that f'Jo E Ec,r is a solution of(5.29) with 'T]o(t) = ao. Let u, uo be nontrivial 

solutions at t of (D -TJ)u = 0 and (D -ryo)uo = 0, respectively; note also that u and uo are 

both solutions of L u = 0. Since a 0 =/: a, the functions u and u0 are linearly independent over 

n; and by applying Theorem 3.1 to D -1] and D -1]0 , we find that both u and u0 converge 

on disks which properly contain the circumferenced disk ord(:~J- t) ;:: 1/(p- 1) +log j.\1, 

since ITJic(r) = I(J'I < j.\j and ITJolc(r) = lao! < j.\j. This contradicts Theorem 5.1, which 

states that L u = 0 has only a one-dimensional space of solutions at t which converge on 

such a disk. This shows that the choice of a is unique, completing the proof. 

We remark that if one applies the result of Clark ([5], Theorem 1) to the initial value 

problem (5.29) with the stated hypotheses, one finds only that there is a solution TJ which 

converges at least for ord (:ll- t) > 1/(p- 1) +log l.\1, which by theorem 5.1 is the smaller 

of the distinct disks of convergence of the solutions of L u = 0 at t. 

The method of proof of Theorem 5.1 may be extended to give a more explicit factor-

ization for certain higher order operators; specifically, one may adapt this method to obtain 

a partial factorization of the operator L = Dn + q1Dn-1 + · · · + qn E 91c,r when 6t(L) has 

a unique root 1 ofma:ximal absolute value and Iii> r-1 • In this case one has jqllc(r) =Iii 

and jqjlc(r) < lilj for 1 < j ~ n. Defining the functions b<..f..) as in the proof of Theorem 

4.3, one still has the recursion relations (4.6). We then define the ratios 7]~) .= -b~~? jbr.;;:-1) 

for 0 ~ j < n- 1 and m ;:: n- 1. Then in a manner similar to that yielding (5.17) one may 

compute that for each j one has 

. b(n-1) 
.,.,(;) - ,(j)- _m __ R(j) 
'lm+l 'lm - b(n-1) m ' 

m+1 

where 
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the r/-~-l) term being omitted when j = 0. Then by computations similar to (5.19) one 

• may show that for each j, R(j,_) ---+ 0 as m---+ oo, and that therefore each sequence {17~)} 

converges to an element 7J(j) E Ec,ro From the definitions and convergence of the R~) and 

the 11W one may easily verify that the operator L then factors in the ring 9tc,r as 

By an argument similar to that concluding the proof of Theorem 4.3 one may show 

that the roots corresponding to the right factor above have exactly the same absolute values 

as the roots of At(L) which are smaller than 111· Therefore, if all the absolute values of 

the roots of At(L) were distinct, then by applying the above analysis inductively one could 

give a constructive proof of the factorization of L given in Corollary 4.4. However, even 

under this hypothesis on the roots of At(L), we do not know how to compute the exact 

radii of convergence of the solutions of L at t when the order of the operator is greater than 

two, except by applying Theorem 4.3. Furthermore, when At(L) has more than one root 

of maximal absolute value, the above analysis fails because the R~) and the 17~) do not all 

converge. 

The above line of reasoning was inspired by Dwork's use of the ratios 17~) in his proof 

of a reducibility criterion for linear differential operators ((7], Theorem 4). 



CHAPTER VI 

APPLICATION TO THE p-ADIC BESSEL EQUATION 

In this final chapter we illustrate how the principles of this paper may be used to 

obtain information about the index of a linear differential operator when one does not have 

an explicit description of the operator and its local solutions. For this we will be considering 

the symmetric powers of the p-adic Bessel operator, which have been studied by Robba in 

[18). In that article Robba conjectured a formula for the index of the k- th symmetric power 

of this operator which depends only on k and p, based on a conjecture concerning the effect 

of ramification of the variable on the index ([17), §8.3). In this chapter we show that for 

the odd symmetric powers of the Bessel operator, this latter conjecture holds relative to 

sufficiently small disks about the irregular singular point at oo. The methods used here 

serve to illuminate several features of the index results given in Chapter 4, especially the 

role of the irregular singularity and the analytical aspect of the proof. 

For this chapter we assume pis an odd prime. We will adopt the notation of [18]. We 

begin by considering the Bessel differential operator 

1 1("2 
l = D 2 +-D--. 

z z 
(6.1) 

Let W denote the associated differential module with basis represented by { v( x), w( z)} as 

described in [18), and let 

(6.2) 

denote the derivation matrix in W with respect to this basis. The operator L = D - G 

therefore annihilates the vector v = [v(z) w(z)]T. Notice that Lis a matrix form of the 

scalar operator l; in particular, vis annihilated by l. 

56 
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For each k > 0 let W~c denote the k-th symmetric power of the differential module W. 

From (6.2) we find that Dv = wfz and Dw = 1r2v. Therefore, with respect to the basis 

{vk,vk-lw, ••. ,vwk-l,wk}, the derivation matrix G1c in the differential module W~c is the 

(k + 1) x (k + 1) matrix given by 

0 k/z 0 0 0 0 

?r2 0 (k- 1)/z 0 0 0 

0 2?r2 0 (k- 2)/z 0 0 

G~c = 0 0 3?r2 0 (k- 3)/z 0 (6.3) 

0 0 0 (k- 1)?r2 0 1/z 

0 0 0 0 k?r2 0 

It follows that L~c = D- G1c is the k-th symmetric power of L, and that L~c annihilates the 

vector v1c = [vk vk-lw • • • vwk-l wk]T. Therefore L~c is a matrix form of the k-th symmetric 

power l1c of l, which is the unique monic operator of order k + 1 which annihilates vk. 

Our aim is to compute the index of zL1c on rt:!o(r)k+l, where 

rt:!o(r) = U H(B(o,R+)) 
R>l/r 

is the space of "overconvergent" analytic functions on the disk B(O, (1/r )+)(for more details 

on this notation and spaces of this type the reader is referred to [17]). Here we work with 

zL~c, since L~c is not an endomorphism of this space, although one may discuss the index 

of L~c on such a space using the extended definition of index ([17], §3.6). We will give a 

formula for this index when k is odd and r is sufficiently small. 

Our first step toward the computation of the above index will be to compute the index 

Proposition 6.1. For every odd positive integer k there exists R > 0 such that for all 

r ~ R, zk+l[k is injective and bas index on H(B(O, r±)), and that index is given by 

(6.4) 
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Proof: From (6.3) and the fact that zL~c v~c = 0 we may deduce the system 

duj . 2 (k ') 
Z dz = J7r ZUj-1 + - J Uj+t (1 ~ j < k), (6.5) 

durc 2 
Z dz = k1r ZUk-1 

of first order scalar differential equations involving the basis elements {uj = vk-iwi} of 

Wrc. This system may then be reduced to obtain a single homogeneous linear differential 

equation of order k + 1 satisfied by u0 = vk. Specifically, one may verify by induction that 

for 1 ~ j ~ k + 1 and 0 ~ i ~ j, there exist P?) E Z[1r2)[z] such that 

j 

Lp?)u~i) = k(k- 1) · · ·(k- j + l)uj, 
i=O 

(with the convention Uk+t = 0), where Pji> = zi, and degP?) = j- [(j- i + 1)/2]. In 

showing that this gives the exact degree of P?) we in fact show that the term of highest 

:~:-degree in PJi) is in fact a single monomial of the form a· 1r2dxe, where d = [(j- i)/2], 

e = j- [(j- i + 1)/2], and a E Z with sgn(a) = (-1)l(j-i)/2l; this shows that there is no 

cancellation in the leading term of P?). When j = k + 1 the above equation becomes 

k+t 
"" (i) (i) ~pk+1uo =0, 
i=O 

which implies that :E P~21 Di = zk+ 1l1e, since l1e is the unique monic operator of order 

k + 1 which annihilates u0 • By setting qk+l-j = P~~l' we will write zk+tzk in the form 

zk+1lrc = zk+1 Dk+l + q1Dk + · .. + qk+t. Then each qj lies in Z(1r2)[z ], q0 = z.k+t, and when 

k is odd, qle+l is a polynomial of degree (k + 1)/2 in x, and qj is a polynomial of degree 

k + 1- [(j + 1)/2] in z for 1 ~ j ~ k. Therefore, if one chooses R0 > 1 so large that every 

root of each qj lies in B(O, R0), then for r > Ro one has 

I qk+t I ( ) > c -{le+1)/2 
k+1 r - r ' z 0 

l qk~ll (r) 2: cr-(le+1-j)/2 
q) 0 

(1 ~ j ~ k) 
(6.6) 
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for some constant C E {0, 1). If one then chooses R > max{R0 , c-2 } it follows that when 

r;::: R, lqlc+tfq;lo(r) > r-(lc+l-i) for 0:::; j:::; k, whence every root A of Llt(z"'+1 I~e) satisfies 

IAI > r-1 • By applying Proposition 4.5 to zk+1 I~e, with A = B(O, r±) and r 2: R, we see 

that the desired index is given by -ordg={qk+ll r) =- deg qle+1 = -(k + 1)/2, as asserted. 

We remark that if k is even, then for larger, Llt(zk+ 1 I~e) has at least k roots of absolute 

value greater than r-1 , but for almost all primes p there will a single root of absolute value 

at most r-1. This occurs because for even k we have deg q1e = 1 + deg qlc+l, while for odd 

k we have deg q1c = deg qk+l• So when k is even, Proposition 4.5 is not applicable. 

At any rate, for odd k we note that it is the irregular singularity of h at oo which 

allows us to compute this index by Proposition 4.5. Indeed, since the coefficients of zk+1 l~c 

are polynomials, if the singularity at oo were regular then the degree of qk+1 would have 

to be zero, so we would have lz-(le+l)qk+1l0 {r) :::; r-(lc+l) for large r, and the roots of 

Llt(zk+ 1 I~e) would not grow larger than r-1. This type of calculation is close in spirit to 

that of Corollary 4.9, except that here we are calculating the index on the complement of a 

small disk about an irregular singular point. 

We now establish the precise relation between the index of zk+1[k and the index of 

Proposition 6.2. Let 1{ be any Cp·algebra of analytic functions in one variable on which 

differentiation is stable. Then zk+1 I~c is injective and has an index on 1{ if and only if a:L1c 

is injective and has an index on 1tk+1, and in this case the two indices are equal. 

Proof: We define functions <Pi : 1{ ---'-+ 1t, for 0 :::; j :::; k as follows: Set <J;_1 = 0 as a 

convention, and <Po(~)=~ for all~ E 11.. For j > 0 we define the <Pi recursively by 

Then we define functions u,v: 1t- 1tk+1 by setting u(e) =[<Po(~) ¢J1 (~) •• ·¢~e(~)JT and 

v(~) = [0 .. · 0 ~/(k!)]T. It is obvious that u and v are both injective. Furthermore, if 

a:L~cy = z, where y =[Yo Y1 · · ·Y~c]T and z = [zo Zt • • ·z~c]T are elements of1tk+t, then from 
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(6.5) we see that 

Zj-1 = -(j- 1)7r2ZYj-2 + z d:Yj-1 - (k + 1- j)y; (6.7) 

for 1 ~ j ~ k + 1 (with the conventions y_1 = 0, Yk+1 = 0). Comparing this with the 

definition of the ¢3 we see that zle+ 1 Z~e(e) = (if and only if zL~e(u(e)) = v((). It follows 

that the diagram 

0 ---+ ker(zk+Iz~e) 1t 
zle+lzle 

1t cok( zle+ 1 Z~e) ---+ 0 ---+ ---+ 

lu lu lv lv 

0 ---+ ker(zL~e) 1tk+1 
zL1c 

1tk+1 cok(zL~e) ---+ 0 ---+ ---+ 

is commutative and has exact rows, where u is the restriction of u and v is the reduction of 

v. Since u is injective, so is u. To show that u is surjective, suppose y E ker(xL~e). Then 

from ( 6. 7) we have 

for 1 ~ j ~ k + 1 (with Y-1 = Y1e+1 = 0), which implies that Yi = f/Jj(Yo) for 0 ~ j :S k, 

so that y = u(y0 ). Since we assume y E ker(xL~e), we have zL~e(u(y0 )) = 0. Since 

zk+1 Z~e(e) = ( if and only if zL~e(u(e)) = v((), we find that zk+I[k(Yo) = 0. Therefore 

y0 E ker(zk+1 Z~e) and u(yo) = y. Therefore u is also surjective, hence u is a bijection. 

The relation zk+Iz~e(e) = (if and only if zL~c(u(e)) = v(() also tells us that if ( E 

im(zk+1 Z~e) then v(() E im(zL~c); this shows that v is well-defined. To show that ii is 

injective, suppose v(() E im(zL~c), say v(() = [0·· ·0 (/(k!)JT = zL1cY· Then from (6.7) we 

have 

and for 1:::; j:::; k (with Y-1 = 0), 
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This latter equation says precisely that Yi = </>i(Yo) for 0 $ j $ k, soy= u(yo), and thus 

v(() = zL~e(u(y0 )). This implies that zk+1 l~e(Yo) =(,whence ( E im(zk+1 l~e) and thus vis 

injective. To show that ii is surjective, we must show that any element z of ?tk+ 1 may be 

represented modulo im( zL~e) by an element of v(?t). Given z E ?tle+l, if we define Y-t = 0, 

Yo = 1, and recursively define 

zyj_1 - (j- 1)7r2ZYj-2 - Zj-1 

Yi= (k+1-j) 

for 1 $ j $ k, we find by comparison with (6.5) that zL1ey differs from z only in the 

last component. It follows that z is congruent modulo im(zL~e) to an element of v(?t), as 

asserted. Therefore, ii is also surjective,· and hence is a bijection. 

Since the kernels and cokernels of these operators are isomorphic, it follows that if 

either has an index then so does the other, and then their indices must be equal. This 

proves the proposition. 

We now establish a formula for the index of zL1e on ?tL(r)k+t, when k is odd and r is 

sufficiently small. 

Theorem 6.3. If k is odd and r is sufficiently small, tbe operator zL~e is injective and bas 

index -(k + 1)/2 as an endomorphism of?tL(r)k+1 • 

Proof: From Proposition 6.1 and 6.2 we know that there exists R > 0 such that zL~e is 

injective and has a finite cokernel on H(B(O, (1/r)+)) for r < R-1 • Therefore, zL~e is 

injective as an operator on ?tL(r)k+1 for r < R-1 . To show that zL~e has an index on 

?t!o(r)k+1 for such r, we must show that the cokernel is finite dimensional.· 

Suppose then that fh ... , fm are elements of ?iL ( r )k+1 which are linearly independent 

modulo the image ofzL1e on ?tL(r)le+l, Then by the definition of?tL(r) there exists R' > 

r-1 such that fh ... , fm also lie in H(B(O, s+))k+t for all s E (r-t, R'). Furthermore, for s E 

(r-1,R'), fb···,fm are linearly independent modulo the image of zL1e on H(B(O,s+))k+t, 

since ifL:i Ci fi lies in the image of zL1e on H(B(O, s+))k+1 then L:i Ci fi also lies in the image 

of zL~e on ?tL(r)le+t, a contradiction. It follows that the dimension of the cokernel of zL~e 
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on 1tl,(r)k+1 is not greater than the dimension of the cokernel ofzL~e on H(B(O,s+))k+1 

for any s E (r-1 , R'). Since r-1 > R, from Proposition 6.1 we see that the dimension of the 

cokernel of ~Lk on 1tl,(r)k+l is at most (k + 1)/2, and is therefore finite. Therefore zL~e 

has an index on 1tl,(r)k+1 for r < R-1, and that index is at least -(k + 1}/2. However, 

if s E (R, r-1 ), then zL~e is also continuous and has index -(k + 1)/2 as an operator on 

H(B(O, s+))k+l, and 1tl,(r) is dense in H(B(O, s+)), so by Lemma 4.5 of [14], the index of 

zL~e on 1tl,(r )k+1 is at most -(k + 1)/2. This completes the proof of the theorem. 

Robba has conjectured [18] that 

x(zL~e,1tl,(1)k+l)= ' { 
-k/2 + [k/2p] 

-(k + 1)/2 + [(p + k)/2p], 

if k is even, 

if k is odd, 

and has shown that this is in fact true when k is even and k < 2p and when k is odd and 

k < p. For odd k, we interpret the term -(k + 1}/2 as the contribution from the irregularity 

of zL1e at oo, and the remaining term as arising from the behavior of the 0, 1-generic 

solutions. This formula is based on a conjectured relationship between the index of zL~e 

and the index of zL~e, where Lis the differential operator obtained from L by the change of 

variable z H -z2 , and L~e is its k - th symmetric power. This ramification of the variable 

allows one to put the system in Turrittin normal form for the irregular singularity at oo, 

and has enabled Robba to compute the index of zL~e on 1tl,(1)k+t, based on a knowledge 

of the local solution matrix at oo and using the methods of [17]. The conjectured index 

formula then arises from Robba's conjecture ([18], p. 214, [17], §8) that the index of zL~e 

on 1tl,(1)k+1 is exactly twice that of zL~e. 

Robba's computation of the index of zL~e on 1tl,(1)k+1 ([18], p. 204) also shows that 

the index ofzL~e on 1tl,(r)k+1 is equal to -(k + 1} (resp. -k) when k is odd (resp. even), 

for sufficiently large r. Here we sketch another proof of this for odd k using the same 

technique as was used for zL~e. 

Theorem 6.4. If k is odd and r is sufficiently small, the operator zL~e is injective and bas 

index -(k + 1} as an endomorphism o£1tl,(r)k+l. 
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Proof: The ramification of variable z H -z2 transforms the operator l into 

Let I, l~e, and L~e be the operators obtained from L, h, and L~e by this change of variable. 

Then we may write L~e = D - G~e, where 

0 2kjz 0 0 0 0 

-211'2 Z 0 2(k -1)/z 0 0 0 

0 -411'2Z 0 2(k- 2)/z 0 0 

G~e= 0 0 -611'2 Z 0 2(k- 3)/z 0 

0 0 0 -2(k- 1)11'2Z 0 2/x 

0 0 0 0 -2k11'2 X 0 

By reducing the corresponding system of first order equations to obtain the scalar operator 

zk+1 l~e (as was done in Proposition 6.1), we find that zk+l]k = zk+1 Dk+l +p1Dk+· · ·+Pk+l, 

where each Pi lies in Z[1r2][z], Po = xk+1 , that degpj = k + 1 when j is even and degpj = k 

when j is odd. Therefore, when k is odd one can find R > 1 so that 

I Pk~l~ (r) > r-(k+l-j) 
PJ o 

for 0 ::=; j ::=; k whenever r ~ R. Noting that this implies that every root of ~t(xk+l[k) has 

absolute value greater than r-1 , applying Proposition 4.5 shows that the index of xk+l[k 

on H(B(o,r±)) is equal to- degpk+1 = -(k + 1) whenever r ~ R. 

We remark that when k is even, we again have degpk = 1 + degpk+l! and thus for all 

but finitely many primes p, Proposition 4.5 will not be applicable. 

To complete the proof of this theorem, we note that Proposition 6.2 is also valid if l~e 

and L~e are replaced by 1k and L~e, respectively. The theorem then follows by repeating the 

argument given in the proof of Theorem 6.3. 

As a summary of these results, we note that the indices of the operators Lk and L~e do 

agree with the conjecture of Robba ([17], §8.3), when k is odd and r is sufficiently small. 
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Corollary 6.5. For every odd positive integer k, there exists R > 0 such that 

(6.8) 

for all r :$ R. 

Although this particular confirmation does lend support to the conjecture, it would be 

more interesting to know the index of zLk on 7tL(1)k+1 • Indeed, in [18] Robba has shown 

how this index of zLk is related to the degree of the polynomial defined by the infinite 

product Mk q) ( t) associated to a Kloosterman sum defined over the :finite field F q of q = pa 

elements. In particular, he has shown ([18], pp. 213-4) that 

We remark that if one knew that lk has a zero-kernel at t for all 0, r-generic points t with 

r > 1, then one could show that 

when k is odd, by applying Proposition 4.5 (i) of [16] and using an argument similar to 

that of Theorem 6.3 above. This would then imply an upper bound for deg Mk q) ( t ). For 

the ramified operator with k = 1 Dwork has shown ([8), Lemma 8.1) that if ial > 1 then 

the solutions of 1 at a converge exactly in the disk B( a, 1-), which implies that I has a 

zero-kernel at t when r > 1. But this is not valid for the even symmetric powers of I. In 

particular, from Robba's article ([18], p.203) we see that when k = 2j, 1k has the formal 

solution z; = z-ivfv4 which is analytic in B( oo, 1-), which implies that lk does not have 

a zero-kernel at t for ltl > 1 when k is even. Furthermore, Dwork's calculation is not 

valid for the unramified operator l. In fact, Theorem 4.3 tells us that the solutions of l at 

0, r-generic points t converge in B(t, (r112)-) when r > 111'1-2 • Thus in particular l has 

solutions converging in a disk about t of radius greater than 1 when It! is large enough. So 

we do not yet know how to determine whether lk has a zero-kernel at t when ltl > 1. 
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In conclusion we remark that the existence of an upper bound for the degree of M~q)(t) 

which is independent of q has played a role in Adolphson's proof of the equidistribution 

of angles of the associated Kloosterman sums [2]. We therefore hope it may be possible 

that methods such as these may be useful in the study of other types of exponential sums, 

particularly those whose cohomology is two - dimensional. 
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