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PREFACE 

This study investigates computation in nonnegative 

rational numbers among preservice elementary teachers. The 

purpose is to determine if instruction in mathematics 

methods courses can increase achievment in nonnegative 

rational numbers using two different methods. They are a 

lecture/ demonstration method and a method based on Jerome 

Bruner's three modes of representation. 
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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Professional courses for teacher education in 

elementary mathematics give instruction in mathematics and 

on the use of materials and methods used in teaching and are 

grounded in the theories of Piaget, Bruner, Gagne, Dienes, 

and others. These courses are based on the assumption that 

preservice teachers possess the basic computational skills 

taught in elementary schools. 

Overview of Problem 

Mathematical competency is a basic element in the 

effective teaching of mathematics. When researching factors 

influencing the achievement of computational skills, Watson 

(1983) found a positive correlation between the mathematical 

skill levels of teachers and the mathematics achievement 

scores of their intermediate students. Results of a study 

by Hathaway (1983) showed that the number of semester hours 

of mathematics studied by the teacher made a significant 

difference in pupil performance. However, mathematical 
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knowledge must be connected with teaching ability according 

to the studied opinion of The Educational Commission of the 

States (1983)~ The commission concludes that improvement of 

students' understanding of mathematics can only be 

accomplished by teachers who are well trained in mathematics 

.an . .d in the teaching of mathematics. 

Better preparation in mathematics education at the 

college level is one way to provide better classroom 

teaching in mathematics (Isenberg & Altizer-Tuning, 1984). 

Critics have faulted institutions of teacher education for 

devoting too much time to educational ••methods"' courses and 

not enough time to subject matter (Berman & Friederwitzer, 

1987). However, the subject matter courses needed by 

elementary teachers are not always available to them. In a 

nationwide study. Pitts (1974) found that there did not 

exist an identifiable pattern for meeting the mathematical 

needs of elementary majors in the undergraduate mathematics 

content courses in the universities he researched. This is 

in light of the fact that the Mathematical Association of 

American and the National Council of Teachers of Mathematics 

have published recommendations for many years. The 

Mathematical Association of American (Alder et al, 1983) 

recommends that for elementary teachers three courses should 

be required. The content of these courses should include 

the development of the whole and real number systems, 
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geometry. measurement, probability and statistics. and basic 

computer concepts. The National Council of Teachers of 

Mathematics (Commission on the Education of Teachers of 

Mathematics, 1981) recommends that four courses should be 

completed by elementary and middle school teachers. These 

courses are; 

1. a course on number systems through the rational 
numbers; 

2. a course on informal geometry including mensuration, 
graphing, geometrical constructions, similarity. and 
congruence; 

3. a course on topics in mathematics including the real 
number system, elementary probability and statistics. 
coordinate geometry and number theory; and 

4. a course on the methods of teaching the mathemetics 
of the lower grades for primary teachers and the upper 
grades for intermediate and middle school teachers. 

The assumption that preservice teachers possess basic 

computational skills is not always borne out in fact. 

Recently, the author tested elementary level computational 

skills of students in two intermediate mathematics methods 

courses at the university where she was teaching. Almost 

one-half of those tested showed deficient skills in 

nonnegative rational numbers. The mathematics methods 

course in which these students were enrolled has as a 

prerequisite any three hour mathematics content course 

carrying university credit. Dossey et al (1988) published 

an extensive report profiling the findings of the 1986 

National Assessment Of Educational Progress. This report of 
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9, 12, and 17 year olds stated that the levels of 

proficiency exhibited by American students, particularly in 

the higher age groups, are 1 ik.ely to be inadequate for the 

demands of the times. Apparently I these deficiencies are 

not remedied by the time preservice elementary teachers 

complete their lower division coursework.. 

Purpose of the Study 

The purpose of this study was to answer the question, 

'"Can instruction in an elementary mathematics methods course 

improve computation skills of preservice teachers?'" 

Specifically I this study compared two methods of 

instruction: a lecture/demonstration method that assumed 

computational competency and a theory based method designed 

to assure competency by including enactivel iconic, and 

symbolic components. The computational skills studied were 

nonnegative rational numbers. 

The lecture/demonstration method consisted of teacher 

lectures from a selected mathematics methods textbook. 

(Ashlock. et al, 1983). Pattern Blocks, Cuisenaire Rods, and 

Base Ten Blocks were used for demonstration and short hands­

on activity sessions. All three representations (enactive, 

iconic, symbolic) were not included for all topics covered. 

Computational competency was assumed, so no objectives for 

basic skills were given. The emphasis was on methods of 
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teaching, and no specific instruction or review in basic 

skills were given. 

The theory based model was developed from the works of 

Jerome Bruner. Computational competency was not assumed, 

but was a goal. The same mathematics methods textbook 

(Ashlock et al, 1983) was used as with the 

lecture/demonstration method. However, specific skills were 

identified and addressed. The study of each of these skill 

topics began with a stated objective, included enactive, 

iconic, and symbolic activities, and terminated with a 

computational evaluation. 

Definition and Terms 

The following terms and definitions were utilized in 

this study: 

1. M.a.tbematics Achievement.: The attainment of 

mathematical knowledge or proficiency by an individual as 

evidenced by a score on a test designed to measure 

mathematical skills and concepts. 

2. M;~thematics Content ...Cme.: .A course, taught by a 

mathematics department, emphasizing a selected area of 

mathematical study. 

3. ~u.tat ional Comp.e..lim..Q.e: Possession of sufficient 

knowledge, skill, and experience in the basic skills of 

addition, subtraction. multiplication, and division of 

whole numbers, fractions, decimals, and percents to score 
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at the 80th percentile on a mathematics achievement 

test at the eighth grade level. 

4. Mathematics Methods Course: A course emphasizing the 

teaching of a selected area of the mathematics curriculum. 

5. ICSP test: The Individualized Computational Skills 

Program standardized computational test published, by 

Houghton-Mifflin Company. 

The Research Question 

This research investigated the effects on 

computational skill in nonnegative rational numbers among 

preservice elementary teachers using two different methods 

of instruction. Preservice elementary teachers in two 

classes of intermediate level mathematics methods courses in 

the 1988 spring semester were the subjects for this study. 

Method I was the lecture/demonstration method. Method II 

was the theory based model containing objectivesi enactive, 

iconic, and symbolic components; and evaluation of skills. 

The following questions were addressed: 

(1) Does a mathematics methods course significantly 

improve the computational skills in nonnegative rational 

numbers of preservice elementary education teachers? 

(2) If Method I is used in an elementary mathematics 

methods course, do computational skills significantly 

improve in nonnegative rational numbers? 
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(3) If Method II is used in an elementary mathematics 

methods course, do computational skills significantly 

improve in nonnegative rational numbers? 

(4) Is there a significant difference in the 

improvement of skill levels of preservice elementary 

teachers in nonnegative rational numbers when comparing 

Method I to Method II? 

Assumptions 

The basic assumptions of this study were as follows: 

(1) The students enrolled in the selected mathematics 

methods courses are typical of college students in such 

courses. 

(2) There is no known bias in the selection by the 

students of one section over the other. 

(3) The mix of achievement levels is approximately the 

same across groups. 

Limitations 

This study was subject to the following limitations: 

(1) The investigation covered only selected 

computational skills. 

(2) Time constraints limited the study. The treatment 

period was organized around the regular allotted time for 

these concepts in the mathematics methods course. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

The review of the literature will examine three areas. 

They are (1) studies relating to the mathematical 

proficiency of preservice elementary teachers, (2) the 

theoretical basis of this research, and (3) related studies 

of efforts to .affect the mathematical abilities of 

preservice elementary teachers. A synthesis of the 

literature will present the rationale for a method of 

instruction that attempts to assure the computational 

competency of preservice elementary mathematics teachers. 

The chapter will close with the research hypotheses. 

Mathematical Ability of Preservice 

Teachers 

Feistritzer (1983) surveyed college-bound seniors in 

1982. A comparison was made of the Scholastic Aptitude Test 

scores for students who selected from thirty-six possible 

career choices. Those planning to study education were 

forty-eight points lower on the mathematics section than all 

college-bound seniors and they ranked thirty-third. Only 
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seniors intending to major in home economics, ethnic 

studies, or trade and vocational fields had lower 

mathematics scores. 

Jo and Robert Barger (1984) conducted a study of 3831 

Eastern Illinois University students who graduated in the 

years 1982-1983. They collected data from education and 

noneducation majors on American College Test scores, high 

school rank, and university grade point average. Their 

findings showed that teacher certification graduates 

performed as well or better than nonteaching certification 

graduates on grade point averages. However, teaching 

certification graduates generally were one or two points 

weaker than nonteaching graduates in academic potential for 

college work as measured by their composite American College 

Test scores and high school percentile ranks. Specifically, 

the average American College Test scores of elementary 

education majors was eighteen as compared with twenty-two 

for all nonteaching graduates. 

Higdon (1975) specifically measured the mathematics 

achievement of preservice and inservice teachers. His study 

was based on random samples of 1,008 prospective and 

experienced elementary teachers in the state of Texas during 

the 1972 spring semester. To collect data, two 

questionnaires, an attitude test, and three arithmetic 

subtests of a standardized achievement test were 

administered. Analysis of the data revealed that eleven and 
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twelve percent of both samples had not completed a single 

college level mathematics course, while only twenty-six 

percent of both samples had completed as many as three. 

Mathematics was selected as a specialization by only 4.6 

percent of the prospective and 3.5 percent of the 

experienced teachers. Of the experienced teachers, over 

one-third reported that it had been between five and ten 

years since they had completed a college level mathematics 

course. He also compared the achievement of both samples to 

elementary students. When compa~ing the scores with eighth 

and ninth grade norms, they ranked in the 70th and 60th 

percentiles respectively. Higdon concluded that these 

results indicate that prospective and experienced elementary 

teachers do not possess the desired mathematical 

fundamentals that are expected of most junior high school 

students. These achievement results were significantly 

related to the number of high school and college math 

courses completed. Respondents who completed a greater 

number of math courses in high school and college attained 

higher scores on arithmetic achievement than those 

completing fewer courses. 

This review was limited to studies conducted in the 

last fifteen years. The. author felt earlier studies lacked 

relevance to current research. 
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Theoretical Basis 

This research attempted to find whether instruction in 

mathematics methods courses for.preservice elementary 

teachers can increase computational competency. Portions of 

the instruction was based on the theory of Jerome Bruner. 

Among the wide scope of his investigations, 

psychologist Jerome Bruner has studied intellectual growth, 

instruction, and mathematical learning. His observations in 

the labortory have yielded theoretical conclusions on how 

man goes from experience to the achievement of insight, 

understanding, and competence (Bruner, 1973). From these 

conclusions he has developed a theory of instruction and 

intellectual growth. 

Theory of InstructiQn 

Bruner's (1968) theory of instruction has four major 

features. They are 1) predisposition toward learning, 2) 

structure of knowledge, 3) sequence of present at ion •. and 4) 

reinforcement. 

Learning depends upon the exploration of alternatives. 

To implant a predisposition toward learning, instruction 

must facilitate and regulate these explorations. To 

activate the learning experience, some optimal level of 

uncertainty is a condition. Curiosity is a positive 

response to uncertainty and ambiguity. Exploration can be 

maintained if the learner feels free to take risks. 
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Therefore, instruction should minimize the consequences of 

wrong alternatives. Predispostion toward learning also 

requires direction. This can be provided by a sense of the 

goal of a task and feedback of results as alternatives are 

tested. 

Optimal structure is that which is most readily grasped 

by the learner. To achieve this level, instruction should 

include the three modes of representation (action, images, 

and symbols). It should be economical by minimizing the 

information the learner needs to hold in mind and process to 

achieve comprehension. And, it should be powerful by 

generating new propositions through making connections from 

information that seems separate. 

The sequence of instruction affects the difficulty of 

achievement of mastery. There is no unique sequence for all 

learners because of the presence of individual differences 

of the learners. The course of intellectual development 

moves from action through image to the symbolic 

representations. Therefore, an optimal sequence would 

progress in the same direction. It may be possible to by-

pass the first two stages, but only at the risk that the 

learner may not possess the imagery to fall back on if 

symbolic transformations fail to achieve the goal. 

Learning occurs in a cycle; first is the formulation of 

a testing prodedure or trial, then the operation of this 

prodedure or trial, and finally the comparison of the 

12 



results of the test with some criteria. Reinforcement in 

the form of knowledge of results must come at a time and at 

a place in this cycle where the knowledge can be used for 

correction. It should come when the learner is comparing 

the results of his try-out with the criteria that he seeks 

to achieve. 

Bruner (1968) feels intellectual growth occurs when 

human beings translate experience into a model of the world. 

They do this by representation. A system of representation 

consists of the rules by which a learner conserves events 

that are encountered. Events are represented by the actions 

they require, by pictures, or in words or other symbols. 

These modes of represent at ion at"'e enact ive, iconic, and 

symbolic (Bruner, 1973). 

Enactive representation is knowing through action. 

Many things are known which have no imagery and no words. 

Examples are riding a bicycle and skiing. Trying to teach 

these skills through words or diagrams is ineffective. This 

mode of representation is governed by a schema which 

interfaces learning and execution. 

Iconic representation depends upon visual or other 

sensory organization and upon the use of summarizing images. 

It is governed by perceptual organization. An image carried 

in the mind or on a page can provide a schema around which 

13 



action can be organized. Through images the learner 

selectively records events that are experienced. 

Symbolic representation features words, language. or 

other symbols. Symbols are arbitrary and remote. Yet, they 

at"" e high 1 y productive and generate rules for man ipu 1 at ing 

reality not possible through actions or images, Symbols 

permit condensation and compacting of information, which 

allows deeper and broader understanding 

Bruner's (1968) research has shown that intellectual 

development runs the course of these three systems of 

representation until the human being is able to command all 

three. Growth is not a series of stages. but a successive 

mastering of these three representations along with their 

partial translation into each other (Bruner, 1973). 

Each of the three modes of representation - enactive, 

iconic, and symbolic -has its unique way of representing 

events. Each places a powerful impression on the mental life 

of human beings. and their interplay persists as one of the 

major features of adult intellectual life (Bruner, 1966). 

Gains in Achievement 

Several research studies showing an increase in the 

mathematical skills of preservice and inservice teachers 

have been completed. Four are reported here. 

Improvement of basic skills was as byproduct in a study 

by Tishler (1980). This study attempted to relieve the math 
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anxiety of preservice teachers by specifically teaching to 

their areas of weakness in mathematics. Twenty-six students 

enrolled in elementary methods courses participated in the 

study. In addition to the regular class sessions, the 

experimental group met for thirteen weeks in specially 

designed study sessions. The instruction systematically 

covered the areas of weakness of the students as assessed by 

a pretest. Although the purpose of the study was to 

determine the change in math anxiety, mathematics 

achievement was also measured. The experimental group was 

found to be significantly higher than the control group on 

mathematics achievement when comparisons were made between 

pretests and posttests. 

Pluta (1980) studied the effects of two instructional 

treatments to the learning of mathematics concepts by 

preservice elementary teachers. Forty-two students were 

classified as concrete operational, transitional, or formal 

operational and then were randomly assigned to either a 

laboratory mode of instruction or a quasi-lecture mode of 

instruction. The laboratory mode of instruction 

incorporated active manipulation of physical objects and an 

inductive approach. The quasi-lecture mode of instruction 

presented the content in a deductive form. The results 

indicated that for the transitional and formal operational 

students, those receiving the laboratory mode of treatment 

scored significantly higher than those receiving the quasi-
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lecture mode of treatment on the tests used to measure 

achievement and retention. Neither instructional treatment 

was effective in promoting learning by students classified 

as concrete operational. 

Kleinhaus (1976) also found that a laboratory approach 

and manipulatives significantly increased the mathematical 

knowledge base of college students. The laboratory 

approach was used with fifty-one preservice teachers in 

a mathematics content course. Forty activities making 

use of manipulative materials were used by students 

working in groups. Comparisons of initial and terminal 

scores on an achievement test showed growth to be 

significant. 

Berman (1981) developed an inservice program for 

elementary teachers on the topic of metric measurement. It 

employed activities for teachers that paralleled those 

suggested for children. Each activity built upon previous 

activities, using manipulatives throughout. The teaching 

method, the manipulative materials, and the printed matter 

were all intended to serve as models for subsequent use by 

participating teachers in their classrooms. The teachers 

were required to use these lessons in their classrooms. 

Pretest and posttests for metric knowledge were given. 

All participants exhibited significant gain in metric 

knowledge. 
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Synthesis of the Literature 

Studies of the mathematical proficiency of preservice 

teachers were reviewed. The results show that, overall, 

those choosing teaching were either below average on the 

achievement tests or had not achieved mastery. The scores 

on the mathematics subtest of the Scholastic Aptitude Test 

of college bound seniors choosing teaching were forty-eight 

points below the average of all surveyed. The American 

College Test scores of college students majoring in 

education were four points below nonteaching majors. And, 

an examination of achievement scores of randomly selected 

preservice and inservice teachers showed them to be below 

mastery. 

Research studies showing increases in the mathematics 

achievement of college students entering teaching were 

reviewed. Additional time, use of manipulatives, laboratory 

methods, and hands on experiences were shown to improve 

mathematical achievement with college students, preservice 

teachers, and inservice teachers. The achievement gains 

were, however, either a by-product of another study in a 

mathematics methods course or they were made in a 

mathematics content course for preservice teachers. No 

studies were found that specifically attempted to raise 

mathematics proficiency in an elementary mathematics methods 

course. 
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The theory of intellectual growth of psychologist 

Jerome Bruner, although aimed at elementary children, 

applies to human beings of all ages. Bruner's research has 

found that humans grow cognitively in three ways - by action 

(enactive), by image (iconic), and by language or other. 

symbols (symbolic). He concludes that instruction should 

proceed in the same direction and include each mode of 

representation. 

The review of the literature discloses that it is 

likely mathematics proficiency of preservice elementary 

teachers in mathematics methods courses is not near mastery. 

The thesis of the research study reported here contends 

that mathematics proficiency can be improved in the 

mathematics methods course by the inclusion of a 

supplementary math skills unit based on Bruner's theory of 

instruction. For each skill, a predisposition for learning 

was implanted by the establishment of goals (objectives) and 

completion of exploratory tasks containing enactive, iconic, 

and symbolic components. Reinforcement came in the form of 

evaluations that gave corrective feedback. 

From these disclosures and contentions the following 

hypotheses have been drawn. 

Research Hypotheses 

For the purpose of stating these hypotheses, the 

methods will be labeled. The lecture/demonstration method 
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of teaching will be labeled M1 and the theory based model 

containing objectives, evaluation, and enactive, iconic, and 

symbolic components will be labeled M2 • 

The null hypotheses are as follows: 

H01 : There is no significant difference in the pretest 

and posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in two sections of a mathematics methods course. 

H02 : There is no significant difference in the pretest 

and posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in a mathematics methods course using M1 • 

H03 : There is no significant difference in the pretest 

and posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in a mathematics methods course using M2 • 

H04 : There is no significant difference in the gains 

between the pretest and posttest scores on a test of 

computation in nonnegative rational numbers of preservice 

elementary teachers enrolled in a mathematics methods course 

when comparing M1 and M2 • 

The null hypotheses were tested against the alternate 

hypotheses, which are: 

H1 1 : There is a significant gain between the pretest 

and posttest scores on a test of computation in nonnegative 
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rational numbers of preservice elementary teachers enrolled 

in two mathematics methods courses. 

H1 2 : There is a significant gain between the pretest 

and posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in a mathematics methods course using M1 • 

H1 3 : There is a significant gain between the pretest 

and posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in a mathematics methods course using M~. 

H14 : When comparing the gains between the pretest and 

posttest scores on a test of computation in nonnegative 

rational numbers of preservice elementary teachers enrolled 

in a mathematics methods course of M1 and M~. M2 gains are 

significantly higher than M.i. 

Each hypothesis was tested for all four scores -­

fractions. decimals. percents. and the total score for all 

three subtests. All comparisons were a~~. Both 

orthogonal and non-orthogonal comparisons were made. Each 

hypothesis was tested at the .05 level of confidence. 
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CHAPTER III 

METHOD AND PROCEDURE 

Introduction 

This was an experimental study investigating the 

computation in nonnegative rational numbers among preservice 

teachers in two sections of an intermediate grade 

mathematics methods course. One teacher provided 

instruction in both classes. As a result of previous 

computation tests administered to preservice teachers and 

conclusions drawn from the literature only the pretest and 

posttest scores for nonnegative rational numbers were used. 

Specifically. this study compared a lecture/demonstration 

method that assumed computational competence and a theory 

based method designed to assure competence by including 

enactive, iconic, and symbolic components. 

The lecture/demonstration method (Method !) consisted 

of teacher lectures derived from a selected mathematics 

methods textbook (Ashlock et al. 1983). Fraction concepts 

were were demonstrated with Pattern Blocks and Cuisenaire 

Rods. Decimals and Percents concepts were demonstrated with 

Base Ten Blocks. Students also participated in short hands­

on activity sessions with these manipulatives. All three 
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representations (enactive, iconic, symbolic) were not 

included for all topics covered. Computational competence 

was assumed. so no objectives for basic skills were given. 

The emphasis was on methods of teaching. There was no 

specific instruction or review in basic skills. 

The theory based model (Method II) was developed from 

the works of Jerome Bruner. Computational competency was 

not assumed. but was a goal. The same mathematics methods 

textbook (Ashlock et al, 1983) was used as with the 

lecture/demonstration method. However, specific skills in 

were identified and addressed. The study of each of these 

skill topics began with a stated objective, included 

enactive, iconic, and symbolic activities. and terminated 

with a computation evaluation. 

Population and Sample 

This research was conducted as a field study during the 

spring semester of 1988. The author had no control over the 

selection of subjects or the assignment of subjects to 

groups. The author did have control of the assignment of 

groups to treatments; a flip of a coin was used in making 

the assignment. Later analyses will reveal no statistically 

significant differences between the groups on pertinent 

measures. As in other studies of this nature. the 

population is hypothetical as determined by the available 

sample. 
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The majority of students in these classes were juniors 

and seniors who had been admitted to teacher education. The 

class using Method I consisted of 28 female students. One 

student was a graduate and one was a sophomore. All were 

elementary education majors. The class using Method II 

consisted of 28 students. Two were male and two were 

graduate students. Three students were not elementary 

education majors. One student from each class was 

eliminated because of incomplete test scores leaving a 

sample of 27 in each class. 

Instrument 

The students' computational scores in nonnegative 

rational numbers were derived from Computation Test C (Forms 

A and B) from the Individualized Computational Skills 

Program. published by Houghton Mifflin Company in 1980. 

The Individualized Computational Skills Program (ICSP) 

was developed as a supplementary mathematics program to 

teach students basic computational skills in grades one 

through twelve. It consists of several components, 

including standardized computational tests. skills 

inventory, teaching model cards, practice pages, and records 

of progress. The program was originally designed and 

developed, with statistical evaluation, during a seven-year 

period. The tests were normed and validated using more 

than 90,000 students in both large urban schools and smaller 
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elementary and secondary schools throughout the country. 

The tests serve two types of evaluation, grade equivalence 

and achievement growth. 

Computation Test C (Forms A and B) was designed to test 

computation skills in grades seven through twelve consisting 

of sixty problems, there are twenty problems on the basic 

operations of whole numbers, ten problems on the basic 

operations of fractions, ten problems on the basic 

operations of decimals, ten problems on rates, ratios, and 

proportions, and ten problems on percents. Students had 

forty-five minutes to complete the test. All sections were 

administered, but only the sections on fractions, decimals, 

and percents were used for this resarch. The greatest 

possible subscores for each section were ten with a total of 

thirty. 

Content validity of these tests was demonstrated by the 

aptitudes, skills, and knowledge required of the students 

for succssful test performance. Computation with the four 

basic operations of fractions. decimals, and percents was 

the basic premise of this study. Each of these skills was 

addressed with ten test items. Although this test was 

designed for students in grades seven through twelve, 

computation for college students is not significantly 

different. 
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Reliability of the Instrument 

Test reliability was determined by the split half 

reliability method. A correlation r was calculated between 

student scores obtained on Computation Test C (forms A and 

B) on two random halves of each subtest and on the test as a 

whole. The random halves chosen were the odd items and the 

even items. The r estimated the reliability of half the 

test. From this, the reliability of the whole test was 

estimated using the Spearman-B~own Formula (Isaac & Michael, 

1985) ; 

__ n(r )_ 
1+(n-1)r 

This formula gives the reliability of a test n times as 

long. In this case, n was equal to 2. 

The reliabilities were established on the pretest and 

posttest scores, and are summarized in Table 1. 

TABLE 1 

RELIABILITY OF THE TEST AND SUBTESTS 

·--.----RE.L..li\ail..T.'-'Y.____ __ .. __ f.Q.SI.JJ::.S.L .. _ ______E.EL,I AB I l....I.1Y. 

FRACTIONS .84 FRACTIONS .82 

DECIMALS .70 DECIMALS .50 

PERCENTS .90 PERCENTS .85 

TOTAL .92 TOTAL .89 

25 



Research Design 

The research design was quasi-experimental. It 

involved an applied setting where it was impossible to 

randomize the assignment of students to groups or groups to 

sections. However, the sections were randomly assigned to 

methods. Subjects in both sections were given a pretest on 

computation of nonnegative rational numbers. All conditions 

were the same for both groups, except that instruction in 

one section utilized Method I and the instruction in the 

other section utilized Method II. The period of instruction 

was designed to include four and one-half two hour class 

sessions. At the end of the treatment time, both groups 

were tested on computation of nonnegative rational numbers. 

Differences between the pretest and posttest means were 

compared. One-way within groups analyses of variances and a 

one-way between groups analysis of covariance were used as 

the statistical tests to determine whether the differences 

were significant. 

Materials and Tasks 

An activity book entitled "A Teacher's Kit for Rational 

Numbers" was prepared by the author together with concrete 

manipulatives consisting of circular and square regions. 

Activities in the booklet were carried out by the students 

and addressed skills in the basic operations of fractions, 
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decimals, and percents. These activities were based upon 

Bruner's theory of instruction as outlined in Chapter 2. 

The fraction unit consisted of basic skills, addition, 

subtraction, multiplication, and division of fractions. 

Materials consisting of circular regions made into 

fractional parts were an integral part of the activities. 

The decimal unit consisted of basic skills, addition, 

subtraction, multiplication and division of decimals. 

Materials consisting of square regions and strips 

representing wholes, tenths, and hundredths were used. The 

percent unit consisted of the concepts of percent and 

operations with percents. Materials consisted of square 

regions divided into hundredths. 

Objectives were set forth at the beginning of each 

unit. Activities progressed through the three levels of 

concrete, pictoral, and symbolic representation. Each unit 

culminated with a written evaluation. A copy of the 

materials is in Appendix A. 

Procedures 

The ICSP Computation Test C (Form A) was administered 

to both classes at the beginning of the semester. Students 

were told that they would be a part of an experimental study 

but no specific reference to the study was made and no feed­

back of test results was given until after the posttests 

were administered. 
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Both sections were given instruction from the same 

textbook (Ashlock et al, 1983). The teaching of fractions, 

decimals, and percents was studied during four and one-half 

class periods. 

For one section (Method I), the lecture/demonstration 

method was employed. The content of the textbook was 

emphasized in the lectures with demonstrations to consist of 

manipulatives and pictoral models taken from the 

illustrations given in the textbook. The topic of session 

one was "Developing Concepts of ~ational Numbers". It 

included making a Venn Diagram of the real number system, 

definition of rational numbers, ordering rational numbers, 

equivalent fractions, ratio, renaming to higher and lower 

terms, the relationship of fractions, decimals, and 

percents. The second and third sessions were "Developing 

Algorithms for Addition, Subtraction, Multiplication and 

Division of Fractions". These sessions included both 

developmental and the most efficient algorithms for the four 

operations on fractional numbers. Suggestions for concerete 

and semi-concrete activities were given. Session four and 

session five (one hour) were "Developing Algorithms for 

Decimals and Percents." These sessions covered the 

relationship of fractions and decimals, properties and rules 

with decimals, models of decimal problems, meaning of 

percent, solving percent problems using fractions and 
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decimals. and solving percent problems using the ratio and 

proportion method. 

The students in the other section (Method II) used the 

same textbook (Ashlock et al. 1983) and covered the same 

material as those using Method I. In addition. they were 

given the activity book based on Bruner's theory of 

instruction entitled "Teacher's Kit for Rational Numbers" 

and the correspon,ding manipulatives. This took place prior 

to the beginning of the first class period of the 

experimental study. At this time the instructor assigned, 

as homework. the sections titled 11Making Sets of Equivalent 

Fractions .. and ""Equal Fractions" in the activity book. 

Other sections were assigned as homework for the entirety of 

the experimental period. Each succeeding class period 

consisted of (1) review and discussion of activities 

completed as homework which had been assessed by the 

instructor (2) discussion and collection of assigned 

homework (3) lecture from the textbook and (4) assignment of 

homework from activity book. 

Assignment two was .. Addition and Subtraction of 

Fractions... Assignment three was 11Multiplying and Dividing 

Fractions... Assignment four was 11Making and Regrouping 

Decimals... 11Adding and Subtracting Decimals ... and 

.. Multiplying and Dividing Decimals... Assignment five was 

11 The Meaning of Percent .. and 11 Solving Percent Problems ... 
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After the four and one-half week study was completed, the 

ICSP Computation Test (form B) was given. 

Experimental Design and Analysis of Data 

Data in the form of raw scores were collected from·the 

pre and posttest assessments. The sections on nonnegative 

rational numbers from the ICSP Computation Test C Form A 

were utilized for the pretesti Form B was used for the 

posttest. The pretest set the baseline for students' 

computational scores on nonnegative rational numbers. The 

posttest determined if mathematics methods courses have an 

effect on computational scores and if the treatments would 

lead to one group obtaining a significantly greater gain in 

computational scores. 

This study investigated four questions related to the 

computational skill levels on nonnegative ratiional numbers 

of preservice teachers. To analyze the data, one-way within 

subjects analyses of variance and one-way between subjects 

analysis of covariancee were used. Cell sizes were equal. 

To diminish the effect of preexisting individual 

differences, statistical adjustments were made by 

designating the pretest as a covariate and analyzing the 

data with the one way analysis of covariance. 
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CHAPTER IV 

RESULTS OF THE STUDY 

The presentation and analysis of the data are divided 

into four major sections congruent to the four questions 

asked in this study. The questions were: 

1. Will there be a significant difference in the 
pretest and posttest scores of computation of nonnegative 
rational numbers after an intermediate mathematics methods 
course? 

2. Will there be a significant difference in pretest 
and posttest scores of computation of nonnegative rational 
numbers after an intermediate mathematics methods course 
using M.1 ? 

3. Will there be a significant difference in pretest 
and posttest scores of computation of nonnegative rational 
numbers after an intermediate mathematics methods course 
using M2 ? 

4. will there be a significant difference in posttest 
scores of computation of nonnegative rational numbers when 
comparing M.1 and M2 while holding the pretest scores 
constant? 

Additional analyses will be made to assist in the 

translation of the data. These analyses will include 

a statistical listing, tests of association, and 

t-tests. 

Summary of the Data 

There were 56 students enrolled in the two sections of 

Teaching Mathematics at the Intermediate Level used in this 
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study. Students who failed to take both the pretest and the 

posttest were eliminated from consideration in the 

statistical analysis. There were two students eliminated 

for this reason, one in each section, leaving 54 subjects 

for the experiment. 

The data collected were from mathematics subscores on 

the ICSP Computation Test C, pretest scores and posttest 

scores. Each subject had four pretest and posttest scores, 

one each for fractions, decimals, and percents and the 

fourth for the total. A tabular summary of the data is 

contained in Appendix B. 

Statistical Design 

The analysis of the data for this experiment relied 

upon one-way within subjects analyses of variance for the 

first three questions and a one-way between subjects 

analysis of covariance for the fourth question. The 

computer program Systat (Wilkinson, 1987) was used for the 

analyses. 

The basic limitations and assumptions of the analysis 

of variance are: 

1. The design must be a fixed-effects model. This 
means that the levels of the independent variable have been 
arbitrarily chosen by the researcher and no generalizations 
are to be made beyond the levels that are studied. 

2. The scores must be from a genuine interval scale. 

3. The scores must be normally distributed in the 
population. 
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4. The variance in the treatment conditions or groups 
must be homogeneous. 

In most cases, violations of normality and 
homogeneity of variance do not severely effect 
the outcome of the analysis of variance. 
Although tests have been developed to determine 
non-normalcy and heterogeneity of variance, many 
are less robust than the analysis of variance and 
~~e more susceptible to distortion than the 
analysis of variance itself. (Linton and Gallo, 
1975) 

Eta Squared (~2) was used as the measure of 

association for the ANOVAs. The computational formula used 

was (Jaccard, 1983): 

Eta squared represents the proportion of variance in the 

dependent variable that may be accounted for by the 

independent variable. 

Analysis of covariance is an extension of analysis of 

variance in which the effect of the independent variables on 

the dependent variable is assessed after the effects of one 

or more covariates are partialled out. When subjects cannot 

be randomly assigned to treatments, the ANCOVA is used as a 

statistical matching procedure which removes prior 

differences between subjects in the different groups. 

(Tabachnick and Fidell, 1983). 

The squared multiple R was used as the measure of 

association for the ANCOVAs. The multiple R is the measure 

of association between the dependent variables and the 
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independent variables. The squared multiple R is the 

proportion of the dependent variable's variance shared with 

the independent variable. It takes on values between 0 and 

1, with the former indicating no relationship with the 

independent variables and the latter indicating a perfect 

relationship. A low effect size is .10, a moderate effect 

size is .30 and a high effect size is .50. (Cohen & Cohen, 

1983) 

Statistical analyses of each treatment group were run. 

The descriptive statistics inclu~ed listings of the number 

of cases, the minimum score, the maximum score, the mean and 

the standard deviation for each of the pre and post subtests 

and the total pretest and posttest. Table 2 shows these 

listings. When comparing the means of the two groups , the 

pretest means for the class using Method I were higher than 

the pretest means for the class using Method II. When 

comparing the posttest means for the class using Method I to 

those of the class using Method II, the posttest means for 

Method II were higher on the percent subtest. 

t-tests were computed to determine if significant 

differences existed on the pretest scores of the two 

classes. Table 3 shows the results of these tests. Neither 

class was significantly higher on any pretest. 

Testing the Hypotheses 

To test each of the first three hypotheses stated in 
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N OF CASES 
MINIMUM 
Ml>..XIHU}1 
HEAN 
STANDARD DEV 

N OF CASES 
MINIMUH 
Ml>..XIMUM 
MEAN 
STANDARD DEV 

N OF CASES 
MINIHUM 
MAXIMUM 
MEAN 
STANDl>.RD DEV 

N OF CASES 
MINIMUH 
MAXIMUH 
MEAN 
STANDARD DEV 

SOURQE 
FRAT IONS 
DECIMALS 
PERCENTS 
TOTAL 

TABLE 2 

STATISTICS 

EBAQ1 I:!EQ1 EEBQ1 IQI1 

METHOD I 

27 27 27 27 
3 4 0 14 

10 10 10 30 
7.185 8.481 6.296 21.963 
2.058 1.602 3.244 5.33 

METHOD II 

27 27 27 27 
1 4 1 9 

10 10 10 29 
6.296 7.741 5. 778 19.815 
2.509 1.992 2.607 5.623 

ER.b.QZ I:!EQZ EEBQZ IQIZ 
METHOD I 

27 27 27 27 
3 7 1 16 

10 10 10 29 
7.815 9.074 6.926 23.815 
1.861 0.997 2.868 4.507 

METHOD II 

27 27 27 27 
1 4 2 8 

10 10 10 30 
7.111 8.481 7.741 23.333 
2. 722 1.762 2.459 5.824 

TABLE 3 

INDEPENDENT t-TESTS PRETEST 
SCORES OF TWO GROUPS 

t 
1.424 
1.506 

.647 
1.440 

p 
.161 
.138 
.520 
.156 
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Chapter I, four one-way within subjects analyses of variance 

were conducted. The fourth hypothesis was tested using the 

analysis of covariance. Within each hypothesis, four 

analyses were made, one for each of the three subparts of 

the test and one for the total. 

Effect of Mathematics Methods Courses 

on Test Scores 

To determine if taking a mathematics methods course 

increases computational skills in nonnegative rational 

numbers among preservice teachers, four one-way within 

subjects ANOUA F-tests were computed using data gathered 

from the pretests and posttests of all students completing 

both the pretest and posttest in both classes. Cell sizes 

were equal, so no adjustments were necessary. 

The data from Tables 4-7 indicate that there is a 

significant gain at the .05 level of confidence between the 

pretest scores and posttest scores on all subtests. 

The P values indicating the significance of the 

difference betwen the means for the pretest and posttest 

scores for the analyses were .029 •. 001, .000. and .000 with 

1 and 53 degrees of freedom. Thus, there is sufficient 

evidence to reject the null hypotheses. The eta squared 

computations of the four analyses were .25, .17 •. 16, and 

.08, respectively. The strength of association shows that 

for the fraction, decimal, percent, and total posttest 
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SOURCE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

TABLE 4 

ONE WAY WITHIN SUBJECTS ANOVA 
COMBINED - FRACTIONS 

ss 
14.083 

147.417 

DF 
1 

43 

M3 
14.083 

2.781 

TABLE 5 

F 
5.063 

ONE WAY WITHIN SUBJECTS ANOVA 
COMBINED - DECIMALS 

ss 
12.000 
50.000 

DF 
1 

53 

TABLE 6 

12.000 
0.943 

F 
12.720 

ONE WAY WITHIN SUBJECTS ANOVA 
COMBINED - PERCENTS 

ss 
45.3?0 

143.630 

DF 
1 

53 

MS 
4E•. 3?0 

2.710 

TABLE 7 

F 
16.742 

ONE WAY WITHIN SUBJECTS ANOVA 
COMBINED - TOTAL 

ss 
194.676 
262.824 

DF MS 
1 194.676 

53 4.95 

F 
39.258 

* SIGNIFICP~T AI THE .05 LEVEL 

p 
0.029* 

p 

0.001* 

p 

p 
O.OOOtt 

?'7 ...,, 



scores, 25Y., 17Y., 16Y.. and BY. of the portion of variance in 

the change in scores can be accounted for by attending a 

mathematics methods course. The effect sizes were moderate 

for fractions and low for decimals, percents, and total as 

defined by Cohen and Cohen (1983) in a previous section. 

Effect of Method I on Test Scores 

To determine if a mathematics methods course using 

Method I as described in Chapter 2 increases computational 

skills in nonnegative rational numbers among preservice 

teachers. four one-way within subjects ANOVA F-tests were 

computed using data gathered from the pretests and posttests 

of all students completing both the pretest and posttest in 

both classes. Cell sizes were equal, so no adjustments were 

necessary. 

The data from Tables 8-11 indicate that there was a 

significant gain at the .05 level of confidence between the 

pretest scores and posttest scores on the decimal problems 

and on the total problems of the students in the mathematics 

methods courses using Method I. 

There was not a significant difference at the .05 level 

of confidence between the pretest scores and posttest scores 

on the fraction problems or percent problems of the students 

in the mathematics methods course using Method I. 

These findings show that those students who were in the 

class using Method I. the lecture-demonstration method, made 
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SOURQE 
TESTS 
TESTS R SUBJECTS 

SOURCE 
IESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

TABLE 8 

ON~ WAY WITHIN SUBJECTS ANOVA 
METHOD I - FRACTIONS 

ss 
5.352 

61.148 

DF 
1 

26 

MS 
5.352 
2.352 

TABLE 9 

F 
2.276 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD I - DECIMALS 

ss 
4.741 

20.259 

DF 
1 

26 

MS 
4.'741 
0. 779 

TABLE 10 

F 
6.084 

ONE WAY WITHIN SUBJECTS AHOVA 
METHOD I - PERCENTS 

ss 
5.352 

47.148 

DF 
1 

26 

MS 
5.352 
1.9813 

TABLE 11 

F 
2.951 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD I - TOTAL 

ss 
46.296 
96.704 

PF 
1 

26 

MS 
46.2% 

3.719 

F 
12.447 

* SIGNIFICANT AT THE .05 LEVEL 

39 

p 
0.143 

p 
0.021* 

p 
0.098 

p 
0.002• 



significant improvement in the area of decimal computation 

and on the total score. They did not make significant gains 

on the fraction or percent computation scores. 

The P values indicating the significance of the 

difference between the means for the pretest and post scores 

for the analyses were .143, .021, .098, and .002 

respectively with 1 and 26 degrees of freedom. Since the 

decimal problems and total problems were significant at the 

.05 level these null hypotheses can be rejected. The eta 

squares of the two analyses were .21 and .07, respectively. 

Decimals show a moderate effect size and total shows a low 

effect size. 

Effect of Method II on Test Scores 

To determine if taking a mathematics methods course 

using Method II increases computational skills in 

nonnegative rational numbers---four one-way within subjects 

ANOVA F-tests were computed using data gathered from the 

pretests and posttests of all students completing both the 

pretest and posttest in both classes. Cell sizes were 

equal, so no adjustments were necessary. 

The data from Tables 12-15 indicate that there were 

significant gains at the .05 level of confidence between the 

pretest scores and posttest scores on the dec~mal problems, 

percent problems and total problems of the students in a 

mathematics methods course using Method II. 
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SOURCE 
TESTS 
TESTS X SUBJECTS 

SOU ROE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

SOURCE 
TESTS 
TESTS X SUBJECTS 

TABLE 12 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD II - FRACTIONS 

ss 
8.963 

86.037 

DF 
1 

26 

MS 
8. 963 
3.309 

TABLE 13 

F 
2.709 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD II - DECIMALS 
ss 

7.407 
29.593 

DF 
1 

26 

MS 
7.407 
1.138 

TABLE 14 

F 
6.508 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD II - PERCENTS 

ss 
52.019 
84.481 

DF 
1 

26 

MS 
52.019 

3.249 

TABLE 15 

F 
16.009 

ONE WAY WITHIN SUBJECTS ANOVA 
METHOD II - TOTAL 

ss 
167'.130 
147.370 

DF MS 
1 167'.130 

26 5.668 

F 
29.486 

* SIGNIFIC~~T AT THE .05 LEVEL 
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p 
0.112 

p 
0.017* 

p 
0.000* 

p 
o.ooow 



There was not a significant difference at the .OS level 

of confidence between the pretest scores and posttest scores 

on the fraction problems of the students in a mathematics 

methods course using Method II. 

The P values indicating the significance of the 

difference between the means for the pretest and posttest 

scores for the analyses were .112, .017, .000, and .000 

with 1 and 26 degrees of freedom. The decimal. percent and 

total scores were significant at the .05 level, therefore 

the null hypotheses can be rejec~ed. The eta squares were 

.15, .22 and .07. respectively. Decimals and total showed a 

small effect sizes, while percents showed a moderate effect 

size. 

Comparison of Teaching Method 

on Test Scores 

To determine if teaching technique in a mathematics 

methods course increases computational skills in nonnegative 

rational numbers---four one-way between subjects analysis of 

covariance F-tests were computed using data gathered from 

the pretests and posttests of students completing both the 

pretest and posttest in two classes. one using Method I and 

one using Method II. The covariate was the pretest. Before 

analyzing the data with the analysis of covariance model, 

the interaction between the covariate and the treatment was 

tested to assure that it was not significant. The 
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assumption of no interact ion is called the ""homogeneity of 

slopes .. assumption. This means that the slope of the 

regression line of the dependent variable onto the covariate 

should be the same in all cells of the design. It is tested 

with a preliminary model with the interaction between 

treatment and covariate in the model. (Wilkinson. 1987). 

Cell sizes were equal. so no adjustments were necessary. 

The data from Tables 16. 18. 20. and 22 indicate that 

there is no significant interaction between the treatment 

and the covariate for any of the four different analyses. 

The P value for the interactions were .419 •• 214 •. 188. and 

.373. 

The data from Tables 17. 19. 21. and 23 indicate that 

the there were no significant differences at the .05 level 

of confidence between the pretest scores and posttest scores 

on the fraction problems. decimal problems. or total 

problems of the two groups of students. There was a 

significant difference at the .05 level of confidence 

between the pretest scores and posttest scores on the 

percent problems. 

The P values indicating the significance of the 

differences between the means for the pretest and posttest 

scores for the analyses were .631 •. 497 •. 040. and 131 with 

1 and 51 degrees of freedom. Thus. the hypotheses as they 

apply to the fraction. decimal and total subscores cannot be 

rejected. However. the hypothesis as it applies to the 
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TABLE 16 

ANALYSIS OF INTERACTION BETWEEN 
TREATMENT (CLASS) AND 

COVARIATE (FRAC1) 

DEP VAR: FRAC2 N: 5~ MULTIPLE R: .500 MULTIPLE R2: .250 

SOURCE 

CLASS 
FRAC1 
CLASS* 
FRAC1 

ERROR 

ANALYSIS OF VARIANCE 

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 

3.711 1 3.711 0.855 
55.282 1 55.282 12.731 

2.882 1 2.882 0.664 

217.124 50 ~-3~2 

TABLE 17 

ANALYSIS OF COVARIANCE TABLE-FRACTIONS 
COMPARING METHOD I WITH METHOD II 

p 

0.360 
0.001 

0.~19 

DEP VAR: FRAC2 N: 54 MULTIPLE R: .~90 MULTIPLE R2: .240 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO p 

CLASS 1.005 1 1.005 0.233 0.631 
FRAC1 62.735 1 62.735 14.543 0.000 

ERROR 220.006 51 4.314 



TABLE 18 

ANALYSIS OF INTERACTION BETWEEN 
TREATMENT (CLASS) AND 

COVARIATE (DEC1) 

DEP VAR: DEC2 N: 54 MULTIPLE R: .687 MULTIPLE R2: .472 

SOURCE 

CLASS 
DEC1 
CLASS* 
DI~C1 

ERROR 

DEP VAR: 

SOURCE 
p 

CLASS 
DEC1 

ERROR 

ANALYSIS OF VARIANCE 

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 

2.223 1 2.223 1.893 
40.089 1 40.089 34.127 

1.862 1 1.862 1.585 

58.735 50 1.175 

TABLE 19 

ANALYSIS OF COVARIANCE TABLE-DECIMALS 
COMPARING METHOD I WITH METHOD II 

p 

0.175 
0.000 

0.214 

DEC2 N~ 54 MULTIPLE R: .675 MULTIPLE R2: . .f56 

ANALYSIS OF VARIP~CE 

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO p 

0.555 1 0.555 0.467 0.497 
45.996 1 45.996 38.711 0.000 

60.597 51 1.188 



TABLE 20 

ANALYSIS OF INTERACTION BETWCEEN 
TREATMENT (CLASS) AND 

COVARIATE (PERC1) 

46 

DEP VAR: PERC2 N: 54 MULTIPLE R: .705 MULTIPLE R2: .497 

ANALYSIS OF VARIANCEC 

SOURCE SUM-OF -SQU~.RES DF ME.,.I..N -SQUARE F-P..~TIO p 

CLASS 17.114 1 17.114 4.473 0.039 
PERC1 150.782 1 150.782 39.406 0.000 
CLASS* 
PERC1 6.806 1 6.806 1.779 0.188 

ERROR 191.319 60 3.826 

TABLE 21 

ANALYSIS OF COVARIANCE T'~LE-PERCENT 
COMPARING METHOD I WITH METHOD II 

DEP VAR: PERC2 N: 54 MULTIPLE R: .692 

ANALYSIS OF VARIANCE 

MULTIPLE R2: .479 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 

CLASS 
PERC1 

ERROR 

17.286 
172.912 

1 
1 

198.125 51 

17.286 
172.912 

3.885 

*Significant difference at the .05 level. 

4.450 0.040* 
44.510 0.000 



TABLE 22 

ANALYSIS OY INTERACTION BETWEEN 
TREATMENT (CLASS) AND 

COVARIATE (TOT1) 
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DEP VAR: TOT2 N: 54 MULTIPLE R: .840 MULTIPLE R2: .706 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 

CLASS 
TOT! 
CLASS* 

TOT! 

ERROR 

DEP VAR: 

SOURCE 

CLASS 
TOT1 

EP..ROR 

1.934 
976.579 

6.723 

415.684 

1 
1 

1 

50 

1.934 
976.579 

6.723 

8.314 

TABLE 23 

0.233 0.632 
117 • .C67 0.000 

0.809 0.373 

ANALYSIS OF COVARIANCE TABLE-TOTAL 
COMPARING METHOD I WITH METHOD II 

TOT2 N: 54 MULTIPLE R: .837 MULTIPLE R2: .701 

ANALYSIS OF VARIANCE 

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO p 

19.517 1 19.617 2.356 0.131 
987.667 1 987.667 119.248 0.000 

422.407 51 8.282 



percent subscore can be rejected. The squared multiple R 

of the percent analysis was .479. This shows a high main 

effect for percent. 

Summary 

There were significant differences between the compared 

means on the f.irst hypothesis. The analysis indicated that 

taking a mathematics methods course significantly increases 

computation scores in nonnegative rational numbers among 

preschool elementary teachers. ~owever. the strength of 

association showed a moderate to low effect size. Method I 

produced significant differences in pretest and posttest 

scores on decimals and total score with a moderate and a low 

effect size. respectively. Method II produced significant 

differences on decimals. percents. and the total score. The 

effect sizes for decimals and total were low and the effect 

size for percents was moderate. The analysis comparing the 

posttests of the two methods while holding the pretest 

constant showed that there were no significant differences 

between the groups with respect to fractions. decimals. or 

the total score. There was. however. a significant 

difference on percents. The class using Method II posted 

the greater gain. The strength of association showed the 

effect size to be large. 

The means of the class using Method I were higher on 

all pretests. However. t-test calculations showed no 
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significant differences in pretest scores between classes, 

Method II had a higher posttest mean score on percents. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

This chapter presents a summary of the study, 

limitations of the study, conclusions drawn from the 

analysis of the data, the educational implications and 

recommendations for further research. 

Summary 

The purpose of this study was to determine if 

mathematics methods courses can improve computation in 

nonnegative rational numbers among preservice elementary 

teachers. Two different techniques of teaching were used. 

The study further attempted to determine if one of the 

methods was more effective in improving computation skills 

than the other. 

This research was designed to investigate the relative 

effect of two methods of instruction on computation scores 

of nonnegative rational numbers of preservice elementary 

teachers. Method I was textbook based and used a lecture/ 

demonstration technique of instruction. Symbolic, pictoral, 

and concrete examples were given at random, but all three 

modes were not given for any one concept. Mathematical 

competence was assumed. The emphasis was on pedagogy. 
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Method II was based on Jerome Bruner's three modes of 

representation. enactive (concrete), iconic (pictoral). and 

symbolic. The author developed a curriculum that followed 

Bruner's theory of instruction. Manipulatives were also 

constructed. Students experienced the three modes of 

representation as they progressed through the curriculum and 

used the manipulatives. Mathematical competence was not 

assumed, but was a goal. The textbook material was also 

presented. 

Pretests and posttests were given to all students. The 

subtests were fractions, decimals, and percents. The total 

scores were also calculated. The statistical analyses 

consisted of analysis of variance, analysis of covariance, 

Pearson r, and tests for association. 

Limitations 

This study was conducted in the 1988 spring semester in 

two sections of Teaching Mathematics at the Intermediate 

Level. First, general.izations must be restricted to the 

hypothetical population determined by the sample. Second, 

the assignments were limited by time constraints. The study 

had to be completed within the time allotted for the topic. 

Another limitation was the classroom situation. All 

assignments from the developed curriculum assigned to 

students in M2 had to be completed outside of class. There 

was no assurance that each student used the manipulatives 
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along with the booklet. Also, there was no assurance that 

each student did his or her own work. 

Finally, the booklet used one set of manipulatives. 

There are many manipulatives that embody the same concepts. 

Possibly, the concrete, pictoral, and symbolic examples 

associated with the textbook material could produce similar 

results. 

Conclusions 

From the analysis of the data, the following 

conclusions were made congruent to the four questions posed 

in Chapter 3; 

1. Completing coursework in an elementary mathematics 

methods course significantly increased the computation 

scores of preservice elementary teachers with nonnegative 

rational numbers. The effect size was moderate to low as 

defined in Chapter IU (Cohen and Cohen, 1983). 

2. The lecture/demonstration method of instruction in 

an elementary mathematics methods course which assumes 

computational competence significantly increased the 

computation scores of preservice elementary teachers on 

decimals with a low effect size. 

3. A technique of teaching in an elementary 

mathematics methods course which included Jer9me Bruner's 

three modes of representation (enactive, iconic, and 

symbolic) and has math competency as a goal, increased the 
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computational scores of preservice teachers on decimals and 

percents with a low and moderate effect size. 

4. When comparing the two methods of instruction (M1 

and M2 as described in Chapter 2) in two elementary 

mathematics methods courses there was no significant 

difference on fractions. decimals, or total score. There 

was a significant difference in favor of M2 on percents. 

The strength of association showed a moderate to large 

effect size. 

Educational Implications 

This study reports that many preservice teachers lack 

computational competence in certain computational skill 

areas. The computational skills addressed were in the area 

of nonnegative rational numbers. 

The results indicate that completing coursework in an 

elementary mathematics methods course can improve 

mathematics computational skills with nonnegative rational 

numbers. The mean score for the total test for Method 1 

increased from 21.963 to 23.815 and for Method II it 

increased from 19.815 to 23.333. 

Assignments using Br~ner/s three modes of 

representation can improve computational skills. Although 

this method was significantly better than the 

lecture/demonstration method for percents, it requires 

additional time and expense. The total mean score on a 
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scale of 30 for M.1 increased 1.852 points and for Ma it 

increased 3.518 points. 

Recommendations for Futher Research 

The author suggests the following areas for further 

research related to this report: 

1. Research on the effectiveness of computerization of 

Method II should be carried out. The booklet "A Teachers 

Kit for Rational Numbers" could be translated into a 

computer simulation. Students could be required to complete 

the assignments using personal passwords. In this way it is 

more likely students will complete their own work. This 

would also eliminate daily grading of each student's papers. 

In addition, the program could offer immediate feedback for 

correct and incorrect answers. 

2. Further research should address the effectiveness 

of mathematics courses preservice elementary teachers 

complete as part of the required coursework. Perhaps 

courses specifically designed for the needs of elementary 

teachers as recommended by the NCTM and MAA could be 

implemented. 

3. Studies on other ways to improve the computational 

skills of preservice elementary teachers are recommended. 

Remediation, math anxiety, or mastery learning might be 

addressed. 
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APPENDIX .A 

CURRICULUM MATERIALS 
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Makin& Sets of Equivalent Fractions 

Objectives& 

1. Name fractional parts of a whole. 
2. Give a written definition of equivalent fractions. 
3. write sets of equivalent fractions. 

Activities: 

1. Using the fraction circles, cover the white circle 
completely with each different color. 

a. Fill in the chart. 
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Draw the How many What part is What Fraction is 
fraction pieces? each piece r equivalent to 

one? 
y 

DB 

0 

p 

LB 

B 

b. Write the set of fractions you made that is equ1va1ent to one. 

c. What do you see about all of the fractions that are equivalent 
to one? 

d. State a aeneral rule for writing fractions equivalent to one. 

e. Write other fractions equivalent to one using your rule. 



2. Use the fraction circle pieces to find fractions 
equivalent to 1/2. (Cover the fraction piece which 
represents 1/2 exactly with another color.) 

a. Draw a picture of each one you find and label it. 
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b. Write the set of fractions you made that are equivalent to 
1/2. 

c. What do you see about the fractions in this set? 

d. Write a aeneral rule for findin1 fractionaequivalent to 1/2. 

e. Usin& your aeneral rule, writ·e other fractions equivalent to 
1/2. 

3. Think of two fractions that are equivalent. 
a. How do the total amounts compare? CSame or different) 

b. How do the number of pieces compare? (Same or different> 

4. Use your answers in 3a and 3b to write a definition of 
equivalent fractions. 

5. One times a number is that number. COne is the identity 
element of multiplication.) 

a. 4 x 1 = 4 SO 1/2 X 1 = 
b. Multiply 1/2 by the each of the fractions you found that 
are equivalent to one. (See exercises lb and 1e.) 

c. How do the your answers in Sb compare to the set of 
fractions you found in 2b and 2e? 

d. Usina your answers to Sa,Sb and Sc, state a 1eneral rule 
for findin& sets of equivalent fractions symbolically. 
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EQUIVALENT FRACTIONS 

Objectives: 

1. Chanaina fractions to lower or hi&her terms. 
2. Reducina fractions to lowest terms. 
3. Recognizin& fractions areater than one. 

Act~ ties; 

1. A fraction made with fraction circle pieces can be traded 
for another fraction made with the circles if they are 
equivalent. (Cover the same space.) 

a. Find the fraction circle piece representin& 1/2. Trade 
it for an equivalent fraction by coverina it exactly with 
another color. Draw and label the fraction 1/2 and the one 
you traded for. 

b. Make 2/3 with the fraction circle pieces. Trade for an 
equivalent fraction by coverina it exactly with another 
color. Draw and label the fraction 2/3 and the one you 
traded for. 

c. When tradina for an equivalent fraction, does the value 
change? Explain your answer. 

2. Represent 2/6 with the fraction circle pieces. 

a. Trade it for an equivalent fraction made with more 
fraction circle pieces. Draw and label your answer. (This 
is an equivalent fraction in hjaher terms.) 

b. Trade 2/6 for an equivalent fraction made with fewer 
fraction circle pieces. Draw and label your answer. (This 
is an equivalent fraction in lower terms.) 
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·c. Make 9/12 with the fraction circle pieces. Trade for an 
equivalent fraction made with the fewest possible pieces. 
Draw and label your answer. (This is an equivalent fraction 
in lowest terms.) 

d. Use activities 2a, 2b. and 2c to write a definition of: 

hi&her terms: 

1 ower terms : 

lowest terms: 

3. Select four of the fraction circle• that represent 1/3. 
a. Draw and label the fraction theae pieces make. (This type 
of fraction is called an t.proper fraction.) 

b. Make a whole circle with the 1/3s and tr.ade it for the 
fraction circle piece representing 1. How many 1/3s are 
left? 

c. Draw and label the fraction you have made. (This type of 
fraction is called a aixed auaber. 

d. State a general rule for chan&ing an improper fraction to 
a mixed number. 

4. Usina the fraction circle pieces. make the fraction 
1 1/4. 
a. Trade the whole number for 1/4s. Draw and label the 
fraction you have made. 

b. Describe the trade you made. 

c. State a general rule for changing a mixed number to an 
improper fraction. 



Addition and Subtraction of Fractions 

Objectives= 

Add and subtract fractions with common denominators. 
Chanae fractions to common denominators. 
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Add and subtract fractions with different denominators. 
Subtract fractions involvin& rearoupina. 

Activities; 

1. Addition means puttin& thinas toaether. To solve 
1/4 + 3/4, put toaether the fraction circle pieces 
representin& 1/4 and 3/4. 

a. When you put them tosether what do you have? 

b. Draw and label the fractions before and after you put 
them toaether. 

c. 1/4 + 3/4 • 

d. Look at the fractions you added and the answer. What did 
you do with the top numbers (Du.eratara)? What happened to 
the bottom numbers (deaa.iaatara)? 

e. State a general rule for adding fractions with the same 
bottom number Ccaa.aa deaa.iaatar). 

2. Subtraction means takin& away or pullin& down. To solve 
3/6 - 2/6, put out the fraction circle pieces representing 
3/6 and pull down 2/6. 

a. When you pulled down 2/6, what waa left? 

b. Draw a picture of 3/6 and cross out 2/6. 



c. 3/6 ~ 2/6 = 

d. Look at the fractions. you subtracted and the answer. 
What did you do to the numerators? What happened to the 
denoainators? 

e. State a aeneral rule for subtractina fractions with the 
same denominator. 
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3. To solve 1/2 + 113. put out the fraction circles 
representina 1/2 and 1/3. When you put them toaether you 
cannot tell the answer. You must trade to aet all the same 
color (common denominators) before puttina them toaether. 

a. What did you trade 1/2 for? What did you trade 1/3 for? 

b. Draw and label your oriainal problem .nd what you traded 
f~. 

c. Put the fractions to1ether. Draw and label your answer. 

d. Can you trade the answer for an equivalent fraction made 
with fewer pieces (lowest terms)? 

e. 112 = I 

+ 1/3 = I 

f. Describe in words how to add fractions with different 
denominators. 



~. To solve 3/4 - 2/3, 
representing 3/~. You 
change 3/4 to th::.ras. 
both fractions to the 

p<It o~lt t.he fraction circle pieces 
cannot pu!l down 2/3 and you cannot 
So , before you begin you must change 

same color. 

a. What did y~u trade 3/4 for? What did you trade 2/3 for? 

b. Draw and leio~l what you put out and what you traded for. 
Cross out what. you pulled down. 
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c. Can you trade the answer for an equlvalent fraction with 
fewer pieces (lowest terms)? If so, what fraction? 

d. 3/4 = I 

- 2/3 = I 

e. Describe in words how to subtract fractions with 
different denominators. 

5. To solve 1 1/3 - 2/3, put out the fraction circle pieces 
representing 1 1/3 and pull down 2/3. 

a. Describe the trade you have to make in c•rder to pull down 
2/3. 

b. Draw a picture of the problem before and after the trade 
and cross out 2/3. 

c . 1 1/3 = I 

2/3 = I 
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d. State in words how to regroup when subtracting a fraction 
from a mixed number, when the bottom fraction is larger than 
the top fraction. 

6. Solve these problems: 

a. 6/8 
+ 2/4 

d. 4/7 
- 2/7 

b. 2/5 
1/2 

+ 5/10 

e. 3/5 
- 1/6 

c. 2 2/3 
+ 3 4/5 

d. 4 2/7 
- 2 2/3 



Multiplying and Dividing Fractions 

Objectives: 
Multiply and divide common fractions. 
Multiply and diyide mixed numbers. 
State a general rule for multiplying fractions. 
State in words the relationship between 

multipliplication and division of fractions. 
State a general rule for dividing fractions. 

Activities: 

To multiply 3 x 4 means to take 3 4~. **** **** **** To 
multiply 1/2 x 4 means to take a half of four. So, you put 
out 4 and take half (pick up half). * * "'* 

~. To solve 1/2 x l/2, first put out the fraction circle 
pieces representing 1/2. Take (pick up) half of it. In 
order to do this. cover the 1/2 piece with another color 
which takes 2 pieces to exactly cover the 1/2. What 2 
pieces exactly cover l/2? 
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b. Pick up one of the pieces. What fraction circle piece do 
you have in hour hand? 

c. Draw 1/2 and divide it into halves. What does one of the 
halves represent? 

d. 1/2 X 1/2 = 

e. Look at the two factors and your answer. What do you do 
to the numerator of the factors to get the numerator in the 
answer? What do you do to the denominators in the factors 
to get the denominator in the answer? 

f. From le state a general rule for multiplying fractions. 
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2. Sometimes a multiplication problem beains with a mixea 
nuaber. For example, in the problem 3/4 x 1 1/3, you take 
3/4 ~ 1 1/3. U•ina the fraction circle pieces, make the 
mixea number 1 1/3. Now cover this fraction with 4 pieces 
all the same color so that they fit exactly. 

a. What color aia you cover it with? 

b. Pick up 3 of the four parts (Because you want 3/4). What 
ao you have in your· hana? 

c. Draw 1 1/3 and divide it into 4 equal parts. Circle three 
of the four parts. 

d. Can you trade for a fraction m.de with fewer pieces 
(lowest terms)? If so, what is your final answer. 

e. 3/4 X 1 1/3 = 3/4 X = 

f. Describe the extra step that you took when multiplyina 
with a mixed number. 

g. If you are multiplyin& a whole number by a fraction, 
what do you do to the whole number so you can use your 
general rule as stated in le? 

h. Combine the answer in 2f and 2& with the answer in le to 
give a general rule for multiplyina with mixed numbers. 
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3. When dividin& the whole number 16 by 4, you ask "How many 
4s are in 16?.. When dividing one by 1/4. you ask "How many 
1/4s are in one?"' 

a. Put out the fraction circle representing one and fill it 
with 1/4s. How many fit? 

b. 1 + 1/4 = 

4. To solve 1/2 + 1/4 = _. first put out the fraction 
circle pieces representing 1/2 and cover it with 1/4s. 

a. How many times does 1/4 fit? 

b. 1/2 + 1/4 = 

c. Lets compare this problem with a similar multiplication 
problem. 

1/2 X = 2. 

CHow many times do you take (pick up) 1/2 to make 2?) 

d. 1/2 + 1/4 = 
1/2 X._ = 2 

e. Use 4d to state the relationship between multiplication 
of fractions and division of fractions. 

f. Does this always work? Experiment with other examples. 
Describe. 

g. Using 4e and 4f, state the general rule for dividing 
fractions. 



S. Solve these problems: 

a. 1/4 X 3/5 = 

c. 4..:.. . 1/S = 

b. 

d. 

1 2/5 X 8 = 

2 5/8 
• -• 3/4 = 
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Making and Regrouping Decimals 

Objectives: 
Represent decimal fractions with place value squares 

and strips. 
·Re&roup when there is more than nine in a place. 
Rearoup when more is needed in a place. 

Activities: 
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The place value squares and strips can be used to represent 
numbers and to perform the basic operations on d•cimals and 
whole numbers. Each lar1e square represents one. each strip 
represents one tenth. and each small square represents one 
hundredth. 

1. Use the place value squares and strips to make the 
followinl numbers. Draw what you have made. 

a. 2.63 

b. Four and two tenths 

c. . 01 

d. thirteen hundredths 
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2. Represent each picture with the place value •quares and 
strips. Rearoup by tradin& where possible. Draw and label 
your answer • 

a. 

b. 

c. 

~····· ~f-~.!1! ... .,. 

3. Represent each number with the place 
strips. Rearoup by tradin& to make ten 
indicated. Draw and labal your answer. 

a.~: 

value squares and 
more in the place 

1111111111 

\ I 
i_ ~· JJ.f ··­c.= • 

b. 1.23 hundredths 

c. 3.04 hundredths 



Adding and Subtract1ng Dacim~l3 

Objective3; 

Add and ~ubtract dec1mal frac:ions. 
State the relation3hip between adding and subtrac~ing 

whole numbers and adding and 3Ubtracting decimal 
fraction3. 

Activities; 

1. Represent .3 and .8 with the place value strips. 

a. Rdd t::,em by "p:l ~tin g t!-:em t •:.oget~er". Draw the original 
problem and the answer. 

b. Make a trade to regroup ii possible. Draw what you did. 

j . ..,; . 

~-~-----.._6 __ _ 

d. How lS adding decimal fractions like adding whole 
numbe1~:;;., 

e. How are the decimals aligned in the problem., 

f. How is the decimal point positioned 1n the answer" 
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2. Using the place value squares and strips represent these 
two rlllmbers: 

3 and 4 hundredths 
2 and 3 tenths 

a. Add them by "'puttin& them together•• Draw the oriainal 
problem and your answer. 

b. Write the problem and the answer with numbers. 

c. Describe the alianment of the decimal points in the 
problem. 

d. Describe the placement of the decimal point in the 
answer. 

e. Give a general statement for adding decimal fractions. 
(Relate to adding whole numbers.) 

3. Represent 4.26 using the place value squares and strips. 

a. Subtract 2.13 by pulling down 3 from the hundredths 
place. 1 from the tent·hs place and 2 from the ones place. 
What number is left? 

b. Draw the number you originally made. Cross out the 
number you subtracted (pulled down). 
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c. 4.26 
- 2.13 

426 
- 213 

d. Describe the alianment of the decimal point in the 
problem. 

e. Describe the placement of the decimal point in the 
answer. 

f. How is subtractin& decimal fractions like subtracting 
whole numbers? 

g. Give a aeneral statement for subtractin& decimal 
fractions. (Relate to subtractin& whole numbers.) 
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4. Sometimes when subtractin& decimal fractions with the 
place value squares and strips, there are not enouah squares 
or strips in a place to pull down. In that case. tradinc 
Cregroupin&) must occur. 

For example: 1.2 
.9 

Represent the top number with place value strips and squares 

Nine strips cannot be pulled down from the tenths place. 
So the one square is traded for ten tenths. Now 9 tenths 
can be pulled down. 

The answer is three tenths. 
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a. Represent 1.4 with the place value squares. Subtract .17 
by pulling down. Trade (regroup) when necessary. Draw what 
you did. Cross out what you subtracted. 

b. Write the problem and the answer in numbers. 

c. 2.21 
- 1.83 

221 
- 183 

d. How is subtracting decimal fractions with rearouping 
like subtractin& whole numbers with re&roupin&? 

5. Solv~ these problems: 

a. 5.3 + 8.02 + 21.004 = 

c. 26.78 
3.46 

e. 42.003 - 41.006 = 

b. 5. 708 
21.08 

+ 431.633 

d. 53.1 
- 2.84 



Multiplyinl and Dividin& Decimals 

Objectives: 

Multiply and divide decimal fractions. 
State the relationship between multiplyinl and 

dividin& whole numbers and multiplyina and 
dividina decimal fractions. 

Activities: 

1. To multiply 2 x .13 usin& the place value squares and 
strips. represent 1 tenth two times and 3 hundredths two 
times. 

• ·~ w ~ 
~ ~ .... .... ~· • •• • ~ ~ 

2 X .13 • .26 

a. Multiply 3 x 1.24 with the place value squares and 
strips. Re1roup where necessary. Draw your answer. 

b. Write the answer in numbers. 

c. 1.24 
X 3 

124 
X 3 

d. Describe the alianment of numbers in the problems. 

e. Describe the placement of the decimal in the answer. 
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f. How is multiplyin& by decimals like multiplyin& by whole 
numbers? 
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2. .2 times 1 means divide one into ten equal parts and 
take two • 

• 1 x .2 means divide two tenths each into ten equal 
parts and take one tenth of each. 

a. Draw a picture to show what .1 x 2 means. Write the 
answer in numbers. 

b. Draw a picture to show what .2 x .2 means. Write the 
answer in numbers. 

c. Draw a picture to show what .01 x 3 means. Write the 
answer in numbers. 
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d. In 2a, how many places after the decimal point were in 
the two factors? How many places after the decimal point in 
the answer? 

In 2b, how many places after the decimal point were in 
the two factors? How many places after the decimal point in 
the answer? 

In 2c, how many places after the decimal point were in 
the two factors? How many places after the decimal point in 
the answer? 

e. Using your answer in lf and 2d, give a aeneral statement 
for multiplying decimals. 

3. Usina the place value squares and strips. divide .1 by.Ol 
by determining how many hundredths there are in one tenth. 
(Cover one tenth wfth hundredths.) 

Ten hundredths cover one tenth. 

10 

.01~ 

a. Divide .2 by .02 (Cover 2 strips with as many groups of 2 
small squares as possible.) Draw two strips. Mark each with 
10 equal parts. Circle as many aroups of 2 as possible . 

b. . 02F 
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c. How do the two answers in 3b compare with each other? 

d. Does it change the answer of a division problem if both 
the dividend (number you're dividing into) and the divisor 
(number you're dividing by) are multiplied by the same power 
of ten? 

e. .04 )'1.3 

f. Use your answers on 3c-3e to write a aeneral statement 
for dividing decimals. 

4. Solve these problems: 

a. 0.26 
X 0.43 

d. 0.02 ) 12.044 

b. 14 
X 0.004 

e. 

c. 12.06 
X 3.02 

-
1.02) 6120 
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The Meanin& of Percents 

Objectives; 

Make percents of one whole. 
Write fractions and decimals as percents. 

Activitiea1 

Percent means "p.-t of aae hundred••. In any percent problem 
the whole is alway• divided into 100 pieces. Let ' s take the 
number one for example. Divide it into 100 pieces. 

All of it is 100X. Each small square is lX. 

If we lay a straw down the middle we have divided it into 
halves. One half contains 50 amall squares. It represents 
SO percent. 

Use the square that has been divided into 100 pieces. 

a. Lay the straws on it to show 2SX. Draw you answer. 

b. Lay the straw on it to show lOX. Draw your answer. 

·-~ 

c. Lay the straw on it to show 75X. Draw your answer. 
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2. Percents can be written as fractions and decimals. When 
the number one is divided into 100 pieces, each small square 
is 1%. Each piece is also .01 and 1/100. 

a. Place the straws on one square to show SOX. Draw your 
answer. 

Now think of it as being a fraction. What fraction did you 
make? 

Now think of it as beina a decimal. What decimal did you 
make? 

b. Show .60 by placing a straw on the square. Draw your 
answer. 

What fraction did you make? 

What percent did you make? 

3. Sometimes a fraction or decimal is not written in 
hundredths. To change them to a percent they must first be 
written in hundredths. 

a. 1/2 = _1100 = ~ -
b. .2 = = -" 
c. 1/3 = _/100 = X -
d. 4 = . = -" - -



e. Use 3a and 3c to help you aive a general rule for 
changin& from fractions to percents. 

f. Use 3b and 3d to help you give a general rule for 
changin& decimals to percents. 
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g. State a aeneral rule for changing percents to fractions. 

h. State a aeneral rule for chan&ing percents to decimals. 

4. Solve these problems: 

a. -2.L 
100 = 

c. 0.75 = 

X ---

---" 

b. _a 
10 = 

d. 2.14 = 

X ---· 

---" 



Solving Percent Problems 

Objectives~ 

Compute the percent when the part and whole are &iven. 
Compute the part when the percent and whole are &iven. 
Compute the whole when the percent and part are given • 

.Activities; 
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In percent problema there is a percent, a &bole, and a part. 

Percent problems can be written in this form: 

Cpercent>X of CMbole> = Cpartl 

1. In the problem 40X of 80 = ? the part is missing. 

<Remember percent means to diyide the whple into 100 piece=) 

So ·each percent is equal to 80 divided by 100 or .eo In 
this case we want 40X or 40 pieces. 40 times .80 is 32, 
so 40X of SD • 32. 

Problem: 20X of 30 = ? 

a. What is 1X? 

b. How many 1Xs do we want? 

c. X = 

Problem: lSX of 25 = 

d. What is 1X? 

e. How many 1Xs do we want? 

f. Solve and show your work. 

2. In the problem ----" of 36 = 18 , the percent is missing. 

We divide the whole into one hundred parts. 36 divided by 
100 is equal to .36 If each percent is .36 and all of the 
percents times .36 equals 18, then to find the number of 
percents we determine how many .36s there are in 18. To do 
this we divide .36 into 18. 50 

·~J18.~ 
There are 50 lXs in 18. So, our answer is SOX. 



Problem: _x of 80 = 60 

a. What is lX? 

b. How many 1Xs are ·in 60? 

c. Our answer is _x 

Problem: X of 14 = 28 

d. What is U'.? 

e. How many 1Xs are in 28? 

f. Our answer is ____ x. 

3. In the problem 60X of = 9 • the ubole is missing. 

We know 60 of the 1Xs are equal to 9. So, to find what the 
lX is we divide 9 by 60. 

• J 5 
60) s.oo 

lX is equal to .15 so lOOX is equal to 15. 

Problem: SOX of = 20 

a. What is lX? 
(80 times some number is 20. 
20 divided by 80 gives that number.) 

b. What is 100X? 

Problem: 75r. of = 30. 

a. What is lX? 

b. What is lOOX? 
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4. A convenient way to remember how to work percent problems 
is to think of this trian1le. 

(Represent as 
1X) ~ ~ 

Fi 11 in the known parts and solve for the missing number . 
(When one number is on top of another it means divide. When 
two numbers are side by side it means multiply.) 

Examples: (Remember to chan1e the whole to 1X by dividing 
by 100.) 

ssx. of 40 • ? as x .40 • 34 

u 
7SX of ____ = 15 75 = .20 = 20 

_a 
_x of 20 = 8 .20 = 40X 

S. Solve these problems. 

a. 20X of 90 = b. 300X of 12 = 

c. ____ x of 32 = 16 d. ____ x of 19 = 36 

e. SOX of = 36 f. lSOX of ____ = 90 



APPENDIX B 

SUMMARY TABLE 
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TABULAR SUMMARY OF RAW DATA 

METHOD I 

CASE FRAC1 DEC1 PERC1 TOT1 FRAC2 DEC2 PERC2 . TOT2 

1 7 8 7 22 7 9 6 22 
2 10 7 9 26 10 9 10 29 
3 3 8 3 14 9 7 5 21 
4 9 8 10 27 10 9 10 29 
.5 7 9 0 16 7 9 2 18 
6 4 8 4 16 7 9 .5 21 
7 8 8 .5 21 8 10 8 26 
8 6 10 5 21 8 9 7 24 
9 9 7 5 21 8 10 3 21 

10 4 6 4 14 5 9 3 17 
11 7 10 2 19 9 9 6 24 
12 10 10 8 28 9 10 8 27 
13 7 10 3 20 3 9 5 17 
14 7 10 9 26 9 9 10 28 
15 10 9 10 29 8 10 10 28 
16 6 10 10 26 10 10 9 29 
17 9 10 10 29 9 10 10 29 
18 8 6 0 14 7 7 2 16 
19 5 9 10 24 5 9 9 23 
20 10 10 10 30 10 10 9 29 
21 9 10 10 29 10 10 9 29 
22 7 7 5 19 7 9 6 22 
23 7 10 10 27 10 10 9 29 
24 7 4 5 16 8 7 9 24 
25 9 9 7 25 5 10 10 25 
26 4 7 4 15 6 7 6 19 
27 .5 9 5 19 7 9 1 17 
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METHOD II 

CASE FRAC1 DEC1 PERC1 TOT1 FRAC2 DEC2 PERC2 TOT2 

1 7 4 3 14 4 7 10 21 
2 10 9 10 29 10 10 10 30 
3 9 7 10 26 7 10 9 26 
4 7 10 9 26 10 8 10 28 
5 6 10 5 21 5 9 7 21 
6 9 10 8 27 9 10 8 27 
7 7 10 5 22 8 10 9 27 
8 4 8 2 14 5 10 10 25 
9 6 8 7 21 9 9 9 27 

10 8 9 9 26 10 8 8 26 
11 1 5 3 9 3 5 4 12 
12 7 7 5 19 8 6 3 17 
13 3 10 6 19 9 10 10 29 
14 6 10 9 25 9 10 10 29 
15 5 6 1 12 6 6 4 16 
16 2 6 7 15 9 6 7 22 
17 3 4 3 10 2 4 2 8 
18 9 9 5 23 10 10 10 30 
19 6 7 9 22 10 9 9 28 
20 2 7 3 12 2 9 6 17 
21 7 8 4 19 8 9 8 25 
22 6 5 3 14 1 10 4 15 
23 9 7 7 23 7 9 8 24 
24 6 9 8 23 7 9 10 26 
25 9 9 4 22 8 9 10 27 
26 10 10 .5 25 9 10 8 27 
27 6 5 6 17 7 7 6 20 
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