
AN INTRODUCTION TO PARALLEL

COMPUTER ARCHITECTURES

By

PHYLLIS JOHNSON THORNTON
tl

Bachelor of Arts

in Liberal Arts and Sciences

San Diego State University

San Diego, California

1970

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF EDUCATION
July, 1988

\\\es\5
\'\nb
's-1~\
coy.~

AN INTRODUCTION TO PARALLEL

COMPUTER ARCHITECTURES

Thesis Approved:

Dean of the Graduate College

132255~

C 0 P Y R I G H T

by

Phyllis Johnson Thornton

July, 1988

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to the

members of my doctoral committee. I am grateful to Dr.

Sharilyn A. Thoreson, my dissertation adviser, and Dr.

George E. Hedrick, my committee chairman, for their joint

efforts on my behalf, their teaching, counsel, support,

encouragement, and friendship. Further, Dr. Thoreson's

expert advice and direction in the study of parallel

systems was invaluable. I thank Dr. John J. Gardiner, for

his aid and guidance in Higher Education, and Dr. Michael

J. Folk, for his insightful suggestions and assistance as

a member of my doctoral committee.

Appreciation and gratitude is extended to all my

professors at Oklahoma State University from whom I have

gained so much. Also, I thank my fellow faculty members

at Central State University for their encouragement and

cooperation in class scheduling which has allowed me to

pursue these studies.

A special thank you goes to my parents, Phillip and

Fern Johnson, the source of my educational aspirations,

for their love, concern, and encouragement in all my

endeavors through the years.

Most of all I want to thank my husband, Michael, and

children, Justin and Jennifer, for their patience and

iii

understanding, for their help and encouragement, for their

love. I would never have attained this goal without their

support. Michael, Justin, and Jenny, thank you for being

the best husband, the best son, and the best daughter a

wife and mother ever had -- I love you.

iv

Chapter

I.

II.

III.

TABLE OF CONTENTS

INTRODUCTION.
1.0 Statement of the Problem and

Proposed Solution . • • • . •
1.1 Intended Audience For the

Treatise • . . . • . •
1.2 Specific Topics for the

Treatise . • • • . . • • •
1.3 Existing Literature .
1.4 Operational Terms and

Reading Aids . . • • . . .

A REVIEW OF THE VON NEUMANN COMPUTER
ARCHITECTURE. . . • • • . . • • • • •

2.0 Introduction and Historical
Perspective. . . • • . . . • • .

2.1 Von Neumann Computer
Organization • . • • • .

2.2 Summary and Preview ••••.

. .

. .
ARRAY PROCESSORS: THE ILLIAC IV

3.0
3.1

Introduction to Array Systems .
Basic Ingredients of an Array

System • • • • • • • • • • • • • •
3.1.1 Configuration of Array

Systems: ILLIAC and BSP . .
3.1.2 Processing Element

Enablement. • • • • .
3.1.3 Interconnection

Page

1

1

9

10
10

11

15

15

18
24

26

26

26

27

31

Networks. • • . . • . • • • • • • • 31
3.1.4 Reconfigurability. . . • • 33
3.1.5 Array Processors and

Associative Processors. . • . . • • 33
3.2 The ILLIAC IV - The Computer and

Its Beginnings • • • . • • • • . • • 34
3.2.1 The Components of the

ILLIAC IV . . • . . . • • • 37
3.2.2 Processing Dimensional

Structures, an Example. • • 49
3 . 3 Summary • . • • . . • • • . • • • . . 52

v

Chapter Page

IV. PIPELINED COMPUTERS: THE HEP. . • • • . . . 53

v.

4.0 Introduction to Pipelining. • • • 53
4.0.1 Pipeline Configurations. . 56
4.0.2 Classifications of

Pipelines • • • • • • • • • . . 58
4.1 Pipeline Input Sequencing • • • • 59

4.1.1 A Function's Computational
Sequence. • • • • • • • . . . •

4.1.2 Reservation Tables •..•
4.1.3 Forbidden Latency and the

Collision Vector. . • • • • . • • .
4.2 Pipeline Applications •••...••

4.2.1 Instruction Pipelining •.
4.2.2 Arithmetic Pipelines .•••.
4.2.3 Pipelining Embedded in Other

Parallel Architectures. . •.•
4.3 The Heterogeneous Element

Processor, HEP • . . • • . •
4.3.1 The HEP Memory System.
4.3.2 The HEP Instruction

Processing Unit • . • • . . • .
4.3.3 Interprocess

Communication • • • • • .
4.3.4 Conclusion on HEP •.

4.4 summary • • • • • . . .
MULTIPROCESSORS: THE ALLIANT FX/8 AND
THE COSMIC CUBE . . • . • • • • •

.

.
5.0 Introduction to

Multiprocessors. • . . • • • • •
5.0.1 What a Multiprocessor

Is Not. • • .
5.0.2 What a Multiprocessor

Is.
5.1 Issues in the Design of a

Multiprocessor •••..••
5.1.1 How is the Memory or

Memories Attached to the

60
62

63
64
65
76

78

79
82

84

87
90
90

92

92

92

94

96

Processors? • • • . • • . . . • 97
5.1.2 How Do Processes Executing

Concurrently on Separate
Processors Communicate? How Do
the Processes Synchronize Their
Activities? • • . . • • • . • . . • 104

5.1.3 on Which Processor(s) Is
the Operating System
Executing? ••••..•..•••• 117

vi

Chapter

VI.

VII.

Page

5.1.4 How Are Computations
Partitioned to Exploit
Parallelism? ••....•

5.2 The Alliant FX/8
Multiprocessor • • . • . • • .

5.2.1 The Computational

. . • 121

. 141

Element • • • • • • • • . • • • • • 144
5.2.2 Alliant Cache and Memory

Systems • • • • • . • . • . . • 150
5.2.3 Concurrency and the Alliant

FX/FORTRAN Compiler • • • • . • • . 156
5.3 The Cosmic Cube •••••..•••• 162

5.3.1 Hypercube Topology •••••• 163
5.3.2 The Cosmic Cube

Multiprocessor and Its Offspring,
the iPSC. . • • . • . . • . . . • • 168

5 • 4 • Summary. • • • • • • • • • • • . • • • 17 3

DATA FLOW COMPUTERS: THE DENNIS STATIC
DATA FLOW MACHINE AND THE MANCHESTER
DYNAMIC DATA FLOW MACHINE • • • • • . • • 174

6.0 An Introduction to Data Flow ••••• 174
6.1 An Introduction to the Data Flow

Graph. • • • • • • • . • • . • • . • . • 178
6.2 The static Data Flow Approach and

the Dynamic Data Flow Approach to
Activity Template Firing and Program
Graphs • . • . . • • • • • • . . . • • • 185

6.3 Looping with a Data Flow Graph ••.. 187
6.4 Recursion, Tagging, and

Maintaining Temporal Concurrency in
the Iterative Data Flow Graph. • • • • • 200

6.5 Data structures in the Data Flow
Environment. • • . . • • • • . • • . 204

6.5.1 I-Structure Storage .••••. 205
6.5.2 Finite Directed Acyclic

Graphs. . • • • • . . • • • . . . • 2 07
6.6 Implementations of the Data Flow

Graph, the Data Flow Computer. • . • 213
6.6.1 The Dennis Static Data Flow

Machine
6.6.2 The Manchester Machine

6.7 Data Flow Languages
6.8 Summary . • •

REDUCTION MACHINES: THE ALICE •
7.0 Introduction to Reduction .
7.1 An Introduction to Functional

Languages. . • • . . • • • . •

vii

. . . 214 . . 221 . 225 . 227

• • • 229

• 229

• 231

Chapter Page

VIII.

7.1.1 Procedural Languages and
Contrasting Them to Functional
Languages • • • • . • • • . . • 231

7.1.2 Hope, an Example of a
Functional Language • . • • • . . • 235

7.2 Implementing the Functional Model
and ALICE • • • • . • • • • • • • • • • • 2 41

7.2.1 The Basic Scheme - Graph
Reduction and Eager
Evaluation. • • . • • • . • . •

7.2.2 Constrained parallelism.
7.2.3 Lazy Evaluation .••••
7.2.4 ALICE, an Architecture for

0 0 241
0 251
0 253

Implementing Reduction. . . • • 256
7. 3 summary • . . • . . . • • • • 265

SUMMARY AND POSSIBLE EXTENSIONS. 0 0 0 0 0 0 0 267
8.0 Summary 0 0 0 0 0 0 0 0 0 0 0 267
8.1 Proposed Additions to the Text. 0 268
8.2 Text Readability. 0 0 0 0 0 0 0 0 0 0 269
8.3 Final statement 0 0 0 0 0 0 0 0 0 0 0 271

BIBLIOGRAPHY • 0 0 0 272

APPENDIXES . • 280

APPENDIX A - GLOSSARY 0 281

APPENDIX B - LIST OF ACRONYMS 0 0 0 0 294

viii

Table

I.

LIST OF TABLES

University Catalogs Consulted to
Determine What Parallel Computer
Courses Are Offered at the
Undergraduate Level ..•••••

II. Analysis Data of Text Readability

Page

. 5

for the Fry Readability Scale. • • • • • . . 270

ix

LIST OF FIGURES

Figure Page

1. Organization of the von Neumann Computer. 20

2. Illiac Type Array Configuration • 29

3. BSP Type Array Configuration ••. 30

4. The Original 4-Quadrant ILLIAC IV System
with Host 36

5. ILLIAC IV Processing Element Block
Diagram 40

6. ILLIAC IV Nearest Neighbor Communication
Network . . • • • . . • . . 44

7. ILLIAC IV Array organization with
Common Bus. • • • • • • • • • • 44

8. ILLIAC IV Control Unit Block Diagram. . . 45

9. Possible Configurations of ILLIAC IV •. 48

10. A Two by Two Array Loaded Skewed Fashion into
PEMs o 1 1 1 and 2 • • . • • • . . • • • • . • 5o

11. Execution of FUNCTION Equivalent to Pipeline
Execution of f 0f 1f 2 •.• fN_1 . • . • • . ••. 55

12. Pipeline with Latches between Stages. 55

13. Pipeline Connections.

14.

15.

16.

17.

Example Static Non-Linear Pipeline. •

Reservation Table for Pipeline of
Figure 14 • • • • • • • • • • .

Possible stage Sequence for Illiac IV
Instruction Fetch/Execute Function.

.

.

Possible Reservation Table for ILLIAC IV
Instruction Fetch/Execute Function.

X

57

61

62

75

75

Figure Page

18. Arithmetic Pipeline to Add Two Floating Point
Values. 78

19. HEP system Showing the Process Execution
Module, switch, and Data Modules Accessible

20.

21.

22.

23.

24.

25.

by the PEM. • • . • • . • . . • • • • • . . 81

98 Multiprocessor with Global Memory

Multiprocessor with Global Memory
and Private Caches. • • 98

Multiprocessor with Global Memory
and Local Memories ••••...

Multiprocessor with Only Local Memories •

Linear Array of Four Processors • . • • •

Tree Configuration of Seven Processors ..

. . .

. . .

. . .

101

• 103

• 105

• 105

26. Star Configuration of Seven Processors ••.••• 106

27. Near-Neighbor Mesh Configuration with
Twelve Processors • • • • • • . . • 106

28. Ring Configuration of Six Processors. • • 107

29. Four-Dimensional Hypercube Configuration .. • 108

30. Uniprocessor Implementation of P and v ••.... 110

31. Multiprocessor Implementation of P and v. • 111

32. Multiprocessor with Global Memory and
Interrupt Signal Interconnection System • • • • 112

33. Message Packet Format for Interprocessor

34.

35.

36.

communication . • • • • . • • . • . • • •

Statements for Parallel Evaluation. •

Fork and Join Representation for
Figure 34 • . • . • •

. .

Sample Code

• 114

. 123

• 128

. 129

37. Code of Minimally Dependent Blocks .• . . . • • • 130

38. Data Dependence of Code in Figure 37 ••. • 131

xi

Figure Page

39. Parallel Implementation of Figure 37
Using Fork and Join • • 133

40. Flow of Control Graph of Code of
Figure 39 . • • • . . . • • . • • • . . • . 134

41. Parbegin and Parend Construction
Equivalent to the Fork and Join Code
of Figure 39. . • • ..•••.•••••• 136

42. Parfor for Generating P Parallel
Processes to Calculate N Inner
Products where S = N/P .•• ,. • • •.... 138

43. Process Code for Calculation of C(l)
and C(2) from Figure 42 ..••...•••.. 138

44. Process Code for Calculation of C(3)
and C(4) from Figure 42 . . •• • • 138

45. Use of Multiprocessor P and v Operations to
Synchronize Execution of a Critical Section
by Parallel Processes Pl and P2 • . • • • • . . 140

46. The Alliant FX/8 Multiprocessor System •••••• 142

47.

48.

Alliant Computational Element
Block Diagram . • • • • • .

Alliant Cross Bar Interconnect with
Memory Bus, Caches, and Computational

• • • . • 146

Elements. 152

49. Cache Coherency Maintained by Hardware. • . • 154

so. Distribution of DO Loop Iterations over
Three Computational Elements •...••..•• 158

51. Correlation of Hypercube Dimension, Node
Count, Channels, and Topology • • . • • • • . . 165

52.

53.

54.

55.

Eight Node Linear Array Topology
on a 3-Cube . • • • . . • •

Sixteen node Ring Topology on a 4-Cube. •

Sixteen Node Near Neighbor Mesh
on a 4-Cube • . • . • • . .

Activity Template

xii

. • • 166

. 166

• • 167

. • 179

Figure

56. Data flow graph for
z = v * (x + y) - x * (u + w)

57. Values ready to enter the graph for
computation. First expression evaluated is
2*(3 + 4) - 4*(1 + 5). Second expression is

Page

• . 180

3*(2 + 6) - 6*(2 + 1) ••...••.••••. 182

58. Operators or Nodes for a Data Flow Graph .•••• 188

59. Data Flow Graph Corresponding to z = xn .. . 192

60. Recursive Graph for POWER Macro Function.
POWER Computes z = xn • . • • . • • • • • • . • 202

61. POWER expansion resulting from input values
x = 3 and n = 2 • • • • • . • • • • • • • • 203

62.

63.

64.

Storage Scheme for a Three by
Three Array A . • • • . • •

A Data Flow Graph That Duplicates an Array
and Serially Assigns New Values
to Two of its Elements ••.•••.•..

B is a Duplication of Token A • •

65. Generation of New Token C from B by
Setting Element in Row Two and

. • • 208

209

• • 209

Column Three to Zero .••••.•••••••• 210

66. Generation of New Token D from c by
Setting Element in Row Three and
Column Three to Zero. • • • • • •

67. A Data Flow Graph That Duplicates an Array
and Concurrently Assigns New Values

• • • 211

to Two of its Elements. • • • • • • . • • • . . 212

68.

69.

Concurrent Generation of New
Tokens c and D. • . • • . • . . .

Machine Organization for the Dennis
Static Data Flow Machine. • • •

70. Cell Block Architecture ••

• • • • • • • 212

. . . • 215

. 219

71. Cell Block Implementation of
Dennis Machine. . • • • • • • • • • • • 22 0

xiii

Figure Page

72. Manchester Data Flow System
Organization, Based on Tagged
Tokens and Dynamic Graphs • • • • 222

73. Steps One Through Fourteen in the Sequential
Reduction of Fact(S) ••.••••..•••.• 237

74. Eight Steps in the Parallel Graph
Reduction of Fact(5) ...••

75. Software Packet • •
76. Graph of Factb(O,l) * Factb(l,2) and

. 240

. 242

Equivalent Packet Representation. • • 244

77. Shorthand Notation for Packets
in Figure 76. • . • • • . . • • • • . • • • . . 245

78. Steps One Through Six in the
Packet Reduction of Fact(3) •..•.•..•. 246

79. Steps One Through Six in the
Reduction of Fact(3) with
Packet Signaling •••••• 249

80. Reduction Graph for the Function Numbers. . • 254

81.

82.

Single Module of ALICE. •

Multi-module ALICE System •

xiv

. 260

. . . • 264

CHAPTER I

INTRODUCTION

1.0 Statement of the Problem

and Proposed Solution

The computer was developed to perform the tedious

time consuming calculations required to solve problems

from many areas of application. As time has passed, more

and more complex problems have been identified for which

solutions are desired. Solutions are needed to such

problems as weather forecasting, signal and image

processing, expert systems and implementation of

artificial intelligence, and the implementation of current

military applications and future ones such as the

Strategic Defense Initiative (SDI). Feasible solutions to

these problems and others will not be possible without the

use of high-performance supercomputers.

The first approach to building better computers has

been to build faster von Neumann computers by improving

gate speeds, reducing transfer distances, and generally

improving the existing architecture technologically.

However, there is a limit to the amount of computing power

compressible into one package. The speed of light and

electricity has been determined to be a constant; it

1

2

cannot be exceeded. This constant establishes a

fundamental limiting factor on the computing capacity of

the standard uniprocessor architecture. The speed of

light is approximately 3 x 108 mjsec in a vacuum and the

signal transmission speed in silicon is at best about 3 x

107 mjsec after gate switching delays are taken into

account. A three centimeter chip can propagate a signal

in approximately 10-9 sec. Such a chip can perform in the

neighborhood of 109 floating point operations per second

(FLOPS), since a nonparallel chip can produce at best, one

floating point operation per signal propagation. Thus, it

appears that the standard von Neumann uniprocessor will

not be able to exceed 109 FLOPS or one giga-FLOPS

(GFLOPS). The supercomputers presently available are

within a factor of 10 of this limit [22].

From the above discussion, it should be clear that

the need for increased computer speed will not be met and

challenging problem solutions will not be attainable

within a feasible time limit without major improvements in

computer organizations and programming techniques.

Parallel architectures offer a partial solution to this

problem.

Parallel computer architectures allow 1) instruction

parallelism, the execution of two or more machine

instructions within a time interval, 2) data parallelism,

the processing of several data elements at a time, or 3)

both data and instructional parallelism may take place

within the same time interval. These architectures were

described by Michael Flynn in 1966 [30]. Under his scheme

of characterization, machines with no parallelism were

single-instruction-stream single-data-stream (SISD)

machines. Computers with only instruction parallelism

were characterized as multiple-instruction-stream single­

data-stream (MISD) computers; those with only data

parallelism were single-instruction-stream multiple-data­

stream (SIMD) ones. And finally, those computers with

both instruction and data parallelism were multiple­

instruction-stream multiple-data-stream (MIMD) computers.

3

Some operations that would have to be performed one

after another on a standard von Neumann uniprocessor can

be performed concurrently on parallel computer

architectures. For example, let a given job, taking T

time units when executed sequentially, be partitioned into

n substeps, each requiring T/n time units. If each

substep can be executed concurrently on a parallel

computer, then, theoretically, the result could be

expected in 1/n-th of the sequential time. Although such

results are currently only approximated in real

applications, considerable speedup can be verified.

The study and exploitation of these parallel systems

is of utmost importance if we are to attain computers with

sufficient speed of computation to reach feasible

solutions to many critical problems.

4

currently, knowledge of parallel systems is not widely

disseminated. Within most universities, education of

students into the aspects of parallel architectures is not

initiated until the graduate level. An informal survey of

thirty-eight universities indicated this to be true. The

catalogs of the thirty-eight universities listed in Table

I were consulted to determine what parallel computer

architecture courses are offered by the universities.

Although a number of them offered courses dealing with

some aspect of parallel computer architecture at the

graduate level, few offered anything at the undergraduate

level. Seven of the thirty-eight offered general computer

logic and organization courses whose descriptions included

some allusion to parallel processing topics. Only two

universities offered undergraduate courses whose

descriptions indicate a strong emphasis on parallel

computer architectures.

This deferring of parallel computer architecture

curriculum is unfortunate. The sequential nature of von

Neumann uniprocessors and the procedural languages

developed to execute on them frequently establish a mind­

set for students which colors their view of computing for

the rest of their lives. Further, if they are not

introduced to parallel computing during their

undergraduate experience, they may never give the matter

serious thought. Different architectures give alternate

ways of approaching problems; without knowledge of these

TABLE I

UNIVERSITY CATALOGS CONSULTED TO DETERMINE
WHAT PARALLEL COMPUTER ARCHITECTURE

COURSES ARE OFFERED AT THE
UNDERGRADUATE LEVEL

University catalog Parallel Course
Year Offered

Air Force Academy 1986-1988 None

Baylor University 1985 None .
Bowling Green 1987-1989 None
State University

Central State 1988 None
University

California State 1985-1987 None.
University, Fullerton

Case Western 1985-1987 None
Reserve University

Duke University 1988-1989 A*

East Texas State 1986-1987 None
University

Illinois Institute 1986-1988 None
of Technology

Indiana State 1986-1988 A*
University

John Hopkins 1986-1987 None
University

Kent State 1985-1986 A*
University

Louisiana State 1986-1987 A*
University

Massachusetts 1985-1986 None
Institute of
Technology

Michigan State 1987-1988 None
University

5

6

TABLE I (Continued)

Murray State 1986-1988 A*
University

North Dakota 1986-1988 None
State University,
Fargo

Ohio State 1985-1986 None
University

Oklahoma State 1986-1988 None
University

Pennsylvania 1985-1986 A*
state University

Princeton University 1987-1989 A*

Purdue University 1987-1989 None

Texas Women's 1987-1989 None
University

Vanderbilt 1987-1988 None
University

Virginia Polytechnic 1988-1989 p*
Institute and State
University

United States 1987-1988 None
Naval Academy

University of 1984-1985 None
Arizona

University of 1985-1986 None
Arkansas at
Little Rock

University of 1985-1987 None
Boston

University of 1987-1988 None
California,
Riverside

University of 1986-1987 None
Connecticut

TABLE I (Continued)

University of 1987 None
Idaho

University of 1987-1988 None
Miami

University of 1984-1986 None
Texas at Dallas

University of 1985-1986 None
Rhode Island

University of 1987-1989 None
Wisconsin, Milwaukee

Washington State 1987-1989 None
University

Yale University 1985-1987 p*

A* indicates course description included some allusion to
parallel processing topics.

p* indicates course description implies a strong emphasis
on parallel computer architectures.

7

alternate systems the student is locked out from a whole

new perspective on problem solving. The earlier in their

computer education process that students are introduced to

parallel architectures the better will be their

opportunity for growth.

The computer science student of today is the computer

designer, engineer, analyst, and programmer of tomorrow.

Current students must be the identifiers and solvers of

the computational problems of the present and future. It

is the responsibility of the computer educator of today to

facilitate the learning of these students in the concepts

of parallel architectures. Thus, the fundamental concepts

of parallel systems should be introduced into the computer

science curriculum as soon as possible.

The purpose for this dissertation is to produce an

introductory treatise on parallel architectures which will

be appropriate for study by undergraduate computer science

students in their junior or senior year of academic study.

By bringing these architectures to the attention of the

student early in his learning experience, the student's

perspective on computing will be broader and more

fruitful.

8

1.1 Intended Audience For the Treatise

The appropriate audience for this treatise is upper

division undergraduate students majoring in computer

science. These students should have mastered the

following:

1) programming in a high level procedural language

such as Pascal or c. The student should have a clear

understanding of procedures, parameter passing, pointers,

and algorithms.

9

2) programming in an assembly language such as IBM

370 Assembly Language or VAX 11 Assembly Language. The

study of a computer architecture implies the investigation

of the machine at this low level. The student should be

familiar with the low level workings of at least one

machine so that he/she can extrapolate that understanding

to new and, perhaps, more complicated architectures.

3) the fundamental concepts of computer logic and

computer organization. The student should already be

conversant in the integral components of a computer; such

comprehension is necessary for the appreciation of the new

parallel systems he/she will be studying.

4) the basic concepts of data structures including

stacks, queues, linear and circular linked lists,

matrices, and trees. Many of the structures studied in

such a course are utilized, either in software or

hardware, within parallel systems.

5) the basic concepts of operating systems.

Parallel systems frequently involve the concurrent andjor

simultaneous execution of programs on the same or

different processors. Such execution is controlled by an

operating system. Knowledge of how program execution is

managed on a nonparallel system will be helpful in the

study of parallel program executions.

1.2 Specific Topics for the Treatise

10

Three types of parallel architectures commonly

identified are array, pipeline, and multiprocessor

architectures. These three architectures are extensions

of the von Neumann architecture. There are two other

parallel architectures that are non-von Neumann. The

first of the two non-von Neumann machines is referred to

as a data-driven or a data flow machine. The second is

referred to as a demand-driven or reduction machine. This

treatise introduces each of these five parallel

architectures by examining the general aspects of each.

Also, specific machines that implement these architectures

are presented.

1.3 Existing Literature

The literature which presents aspects of array,

pipeline, multiprocessor, data flow, and reduction

architectures are plentiful in periodicals and books.

Included with this dissertation is a bibliography of

11

sources used for the documentation and completion of this

treatise. Kartashev and Kartashev (1982) [48] has an

excellent review of array processors and Kogge (1981) [52]

covers pipelining in great depth, but their breadth is

limited. Others such as Baer (1980) [7] and Stalling

(1987) [75] briefly introduce some of these topics but

their primary focus is on the von Neumann architecture.

Calingaert (1982) [16] and Peterson and Silberschatz

(1985) [63] briefly present some aspects of

multiprocessing from the perspective of the operating

system but do little with the architecture. Few existing

works bring together under one cover the architectural

topics presented in this dissertation. Two that cover

most of the topics are Hwang and Briggs (1984) [41] and

Stone (1986) [76], but they are posed for presentation at

the graduate level. No known work attempts to present the

concepts of array, pipeline, multiprocessor, data flow,

and reduction at a level appropriate for the undergraduate

student. This treatise attempts to satisfy the need for a

book to aid the computer science undergraduate student in

the study of parallel computer architectures.

1.4 Operational Terms and Reading Aids

The following operational terms and their definitions

may be of assistance to the reader of this treatise.

Additional terms and definitions may be found in Appendix

A, a glossary of terms used in this dissertation.

Further, Appendix B contains a list of acronyms and the

words from which they are formed.

A computer architecture is the arrangement of the

parts of a computer system, their interconnections,

dynamic interactions, implementations, and management.

A parallel computer can perform multiple operations

at the same time.

Supercomputer is a loose term for an extremely

powerful mainframe computer that provides high speed

computing.

12

A von Neumann computer is based on the work of

mathematician and computer designer John von Neumann. The

computers are characterized by 1) a single computing

element incorporating processor, communications, and

memory, 2) linear organization of fixed size random­

access memory cells, 3) a sequential, centralized control

of computation. A machine instruction program is loaded

sequentially in main memory and executed under the

sequencing of a program counter.

Data dependency is the state of being dependent or

conditional on the value of the data read or written in a

single instruction or in a block of code. Data

dependencies exist between operations when the action of

one operation on data affects the outcome of the other

operation and vice versa.

An array processor is a computer with one control

unit, multiple arithmetic/logic units, and multiple memory

13

units. The control unit fetches instructions from the

memories, decodes them and broadcasts the instructions to

the arithmetic/logic units. Each arithmetic/logic unit

can fetch its own data for processing. An array processor

performs duplicate operations on multiple data items

simultaneously.

An associative processor is a computer system much

like an array processor with the distinction that it

operates on ~ssociative memories.

Pipelining is the process of partitioning a job into

distinct steps and streaming inputs through the steps. The

mechanism is like that of materials moving through an

assembly line.

A multiprocessor is a computer system with more than

one central processing unit. It is used to decrease the

time to completion for a single job.

A data flow computer is one in which instructions are

executed based on data dependencies. Programs are

represented by data flow graphs. Availability of operands

triggers the execution of operations.

A data flow graph is a directed graph used to

represent a data flow program, where nodes are

instructions or processes whose outputs pass along links

to subsequent processes. A node executes, or fires, if

all its input links are carrying values. The graph

represents the data dependencies inherent in the computer

program.

A reduction machine is a computer in which the

requirement for a result triggers the operation that will

generate it.

14

Reduction is a computation system in which programs

are built from nested expressions. The nearest analogy to

an instruction is a function application where the

function returns its result in place (a CALL-RETURN

pattern of control). A function or its arguments may be

recursively defined as a primitive operation, such as add

or multiply, as a constant, as an expression, or as

another function. In reduction, a program is equivalent

to its result in the same way that 2+2 is equivalent to 4.

The main points of reduction are that 1) program

structures, instructions, and arguments are all

expressions, or functions; 2) there is no concept of

updatable storage; 3) there are no sequencing constraints

other than those implied by demands for operands; 4)

demands may return both simple or complex arguments, such

as a function.

Graph reduction is a form of reduction in which each

instruction that accesses a particular definition will

manipulate references to the definition. That is, graph

manipulation is based on the sharing of arguments using

pointers. When a functional value is demanded the

reference is traversed in order to reduce the definition

and return with the actual value.

CHAPTER II

A REVIEW OF THE VON NEUMANN

COMPUTER ARCHITECTURE

2.0 Introduction and Historical

Perspective

This section briefly reviews the history and earliest

organization of the the von Neumann computer architecture.

The evolution of computer development has its

beginnings in the 1400's when Blaise Pascal invented the

first mechanical calculator. Charles Babbage, an English

mathematician, inventor, and philosopher of the 1800's

initiated a calculating engine which was to have a control

unit, arithmetic unit, memory, and I/O devices.

Unfortunately for him and his collaborator Lady Ada

Augusta Lovelace, the technology for such a machine was

not available and they were never able to complete their

work.

In 1946, J.W. Mauchly and J.P. Eckert working at the

Moore School of Electrical Engineering at the University

of Pennsylvania, were credited with building the

Electronic Numerical Integrator and Calculator, better

known as ENIAC. For many years, the ENIAC was credited as

being the first electronic computer. However, in the

15

16

1970's, it was shown that Mauchly and Eckert had drawn

very heavily from the work of John Atanasoff and Clifford

Berry. The Atanasoff-Berry machine built at Iowa State

University in 1939 now is credited as the first electronic

computer.

While working on the ENIAC project, Mauchly and

Eckert collaborated with John von Neumann, a prominent

mathematician of that period, on problems of machine

design. In 1945, von Neumann wrote a memo as an ENIAC

consultant suggesting a stored program machine, its

possible implementation and implications. This important

idea led to the construction of EDVAC (Electronic Discrete

Variable Automatic Computer) which was begun in 1946. The

EDVAC is credited as being the first stored program

computer. Although it was not the first such computer to

become operational, it was the first computer for which a

workable plan was established to implement a stored

program. During the time when the EDVAC was being

constructed, von Neumann also joined with a group of

scientists at Princeton University's Institute for

Advanced Studies. In June 1946, they published a report

entitled "Preliminary Discussion of the Logical Design of

an Electronic Computer." It was a well argued paper on

the many details of machine design. These documents led

to the construction of the Institute for Advanced Studies

computer (IAS). Both the EDVAC and the IAS became

operational in 1952 [55, p. 68].

17

It is interesting to compare the mechanisms used by

these two machines for the purpose of fetching machine

instructions from the computer memory to the control unit

for decoding and execution. The EDVAC whose construction

was begun first, had a 1024 word mercury delay line

memory. Each instruction was composed of an operation

code, or opcode, and four address fields. Two of the

addresses specified the locations in the memory of the

operand values to be used in the execution of the

instruction. The third address field specified the

location in the computer memory at which the result of the

execution should be stored. The fourth field contained

the address at which the next instruction to be executed

could be found. The instructions were not loaded

sequentially in the memory; to the contrary, the

instructions could be anywhere in the circulating mercury

delay line memory. The instructions were related

logically as nodes on a singly linked list. To place the

program into execution, only the list head pointer, the

address of the first instruction to be executed was

required. Each subsequent instruction to be executed was

fetched from the location specified in the next field of

the current instruction [55, p. 65-69].

The IAS computer contained a Random Access Memory

(RAM) implemented by Williams tubes. Williams tubes were

developed by F.C. Williams in 1947. They were cathode ray

tubes with bits stored on their face. The bits could be

18

capacitively sensed, and access time was a function of

electron beam switching and sensing times only. The IAS

memory was built on 40 1024-bit Williams tubes. These

provided 1024 40-bit words. Each 20-bit instruction

contained an opcode and one 10-bit address. The address

specified the location of one operand value in the memory

while the second operand was held in a dedicated register

and the result of the operation was stored back into this

register (accumulator). Because the memory was random

access, given its address, each instruction could be

accessed directly. The "next instruction field" of

EDVAC's instruction field format was eliminated by

introduction of a program counter register (PC). The

program was loaded sequentially into the RAM. The address

of the first instruction to be executed was loaded into

the PC and the instruction to be executed was fetched from

that location; then, the PC content value was incremented

by the length of the instruction giving it the address of

the subsequent instruction to be executed [7, p. 3-4, 55,

p. 65-69].

2.1 Von Neumann Computer Organization

This section identifies the essential elements of a

von Neumann computer architecture.

The EDVAC and especially the IAS computer were the

prototypes for what has become the basic structure for

most sequential machines in use today. This basic

19

architecture is called the von Neumann architecture. In a

von Neumann architecture, each machine operation that is

under programmer control is specified in a machine

instruction. Each instruction is composed in some format

(determined by the machine designers) of an opcode which

specifies the nature of the operation and address fields.

Each address field contains the address in the RAM at

which the operand value(s) to be acted on by the opcode

may be found. These instructions are loaded sequentially

in the computer memory. Von Neumann architectures are

called control flow computers because the flow of

execution is sequential and is controlled by a program

counter [Figure 1].

A general-purpose von Neumann architecture digital

computer has the fundamental elements illustrated in

Figure 1. The following discussion gives an outline of

its operation from the beginning of an instruction cycle

to the beginning of the next cycle. All these events may

be carried out asynchronously; that is, each activity is

performed by a designated module, and the activities are

performed sequentially; when the first module has

finished its work, it signals the second module to begin

its work, etc. EDVAC and IAS were asynchronous machines;

however, computer designers soon realized that the extra

control hardware and time for acknowledge signals between

elementary operations required too much overhead as

20

CONTROL UNIT

~------------;=;t Program Counter 1~----7 I Incrementer

current Instruction ""'-"' Register
..

J.
I

Address I operation Decoder _______ .,._

L..:rocessor

+= ,,.

~--

I I I, srq'te~cer 1---- Branch I Processor iJfo-1~

I J I i
I

I I I
i I I r ..

PROCESSOR
,.. I Y I

I Arithmetic Unit Logic Unitj Working

1' t_ r Registers

I

---------------------------------------~General
II · !Registers

-------~~+--------------- ~
... :--

I

MEMORY I Memory Control Unit I
I
I J I
I RAM I '\ ·r Address -

Memory Decoder - Memory
Address ., - ., Buffer
Register Register

L,
Control ------ Data

Figure 1. Organization of the von N~umann Computer

computing speeds increased. Today most computers are

synchronous machines. That is, each event takes place

under the synchronization of a clock, whose signals are

distributed throughout the machine.

21

An instruction cycle on a von Neumann machine has six

steps. Initially, the program counter (PC) contains the

address of the next instruction to be executed. The steps

are the following:

1) Instruction Fetch. The address in the PC is sent

through the memory control unit and stored in the Memory

Address Register (MAR). The address is decoded and the

instruction is passed from memory into the Memory Buffer

Register (MBR) and through the memory control unit to the

Current Instruction Register (CIR).

2) Program Counter Increment. The program counter

is incremented by the length of the current instruction so

that it points to the next sequential instruction in

memory. Should an abnormal termination occur during the

execution of the current instruction, the PC contains the

address of the next instruction to be executed, not the

one causing the termination.

3) Address Calculation. The address portion of the

current instruction is sent to the address processor. The

address processor translates the address field values into

target addresses.

The mode of addressing indicated for the instruction

determines the use of the target address. If the mode of

addressing is that of immediate addressing, the target

address is used as an operand. If the addressing mode is

direct or indirect and the operand is in memory, an

operand fetch is initiated.

22

4) Operand Fetch. If the operands reside in memory,

each target address is passed from the address processor

through the memory control unit into the MAR. The address

is decoded and the memory value is copied from the

appropriate memory bytes into the MBR. If a direct

addressing mode is indicated in the instruction, the MBR

value is the operand value and is routed to the processor.

If the mode is indirect, then the MBR holds the indirect

address: this value is routed back around to the MAR and

undergoes address decode. The bytes identified by the

second address decode procedure are copied into the MBR;

the MBR value is the operand value. This value is routed

to the processor. When the operand value arrives in the

processor, it is placed into some appropriate register

within the processor.

5) Opcode Decode and Execution. The operation code

for the instruction is passed from the CIR to the

operation decoder where the bit pattern of the field is

converted into electrical signals that drive the

processor.

If the opcode indicates a jump or branch

(nonsequential execution) then the branch processor is

signaled to determine whether a branch should occur. If

the branch processor determines that a branch is required

and a direct addressing mode was indicated, then the

target address calculated by the address processor is

passed into the program counter instead of the MAR as in

the case of an operand fetch from memory. If indirect

addressing was indicated, then the target address is used

to cycle memory for the indirect address and the indirect

address is copied from the MBR to the PC.

6) Result Store. If the opcode indicates a write

back to memory, the result generated in the processor is

passed from a processor register through the memory

control unit into the MBR. concurrently, the target

address is passed from the address processor through the

memory control unit and into the MAR. The address is

decoded and the value in the MBR is written to the bytes

specified by the MAR.

23

This concludes one instruction cycle. The program

counter contains the address of the next instruction to be

executed and the next instruction cycle begins [55, p.

281].

From this discussion, two important characteristics

of the von Neumann architecture should be clear:

1) It has a global addressable memory to hold both

data and program instructions. The instructions

frequently update the data cells as the program executes.

These shared data cells are the means by which data is

passed from one instruction to the next.

2) Sequencing of instructions is determined by a

program counter. The program has complete control over

instruction execution sequencing based on the original

order in which the instructions were loaded into

sequential memory. The flow of control is implicitly

sequential. One instruction may execute at a time.

2.2 Summary and Preview

24

This chapter briefly reviews the historical

beginnings of modern computing, focusing on the historical

source of what is known as the von Neumann architecture.

The essence of the von Neumann architecture as it is

understood today is reviewed.

The need for faster computations, shorter turnaround

times, and greater system throughput has generated a great

deal of activity directed toward creating von Neumann

machines which operate faster. Increased speedup has been

accomplished through new advances in underlying

technology. However, the architecture now appears to be

bounded by the speed of light itself. Since man has

little hope for changing the basic laws of nature,

computer designers are now searching for alternate

approaches to computer design which will speedup computer

processing. A primary approach to the problem of

increasing the computer's operational speed has been to

design systems which allow multiple operations to occur

concurrently whenever possible within an algorithm; this

is exploitation of parallelism. The next chapters are

devoted to introducing the reader to the principal

parallel systems in use today.

25

CHAPTER III

ARRAY PROCESSORS: THE ILLIAC IV

3.0 Introduction to Array Systems

This chapter presents array systems. Array systems

are parallel computer systems that allow multiple data··

items to be processed in exactly the same way at the same

time. This form of parallelism is termed data

parallelism. Such machines are single-instruction-stream

multiple-data-stream computers, or SIMD, as described :Oy

Michael Flynn in his computer architecture classification·

[31] 0

The basic components of array systems and their

general strategy of operation are presented first.

the operation of the ILLIAC IV array processor is

Late!!':,

reviewed. The ILLIAC was an array processor developed ··in ·

the late 1960's and the predecessor of modern array

systems. ~: :

3.1 Basic Ingredients of an

Array System

This section identifies the basic elements of an

array system. It demonstrates how they are organized and

controlled, and how data is transmitted within the system.

26

The manner in which some systems can alter or reconfigure

their arithmetic/logic units, allowing them to operate on

different size data words is reviewed. Lastly, the

section distinguishes between array processors and

associative processors, the two subclasses of array

systems.

3.1.1 Configuration of Array Systems:

ILLIAC and BSP

Array systems generally are understood to have the

following basic elements:

1) P processing elements (PEs), or arithmetic logic

units with attached registers, and

2) M memory modules (PEMs) for the storage of

operands to be processed by the PEs, and

3) a single control unit (CU) with its own memory

for program and scalar storage.

The CU fetches instructions from its own memory.

Scalar and control operations are performed in the cu•s

local registers. Vector operations are broadcast to the

PEs (single instruction stream) where each of the P

processing elements fetches operands from one of the M

memory modules (multiple data stream). The PEs then

execute the same instruction synchronously. The array

system achieves spacial parallelism through the duplicate

lockstep actions of the PEs.

27

Array systems usually have ·another general-purpose

computer that acts as a front-end for the system. This

general-purpose machine acts as a host to the array

system. The host interacts with the outside world,

oversees all I/0 functions and manages the various

resources of the overall system.

28

Within an array system there must be a communication

network which links the processing elements, PEs, so that

data may be passed from one PE to another. There are two

basic configurations. The first is termed the ILLIAC type

configuration because it was implemented on the ILLIAC IV

array processor. Within this configuration the number of

processing elements, P, is equal to the number of memory

modules, M. Each PE is attached directly to its own

memory module, or PEM, and directly accesses its operands

from that PEM. The PEs are linked by an interconnection

network [Figure 2]. The second basic configuration is

termed the BSP type configuration since it was used in the

Burroughs Scientific Processor. Here an alignment network

(see APPENDIX A) is used. The alignment network is

positioned between the memories and processing elements.

The memories act as a shared resource for the PEs; a PE

may fetch its operands from any one of the memory modules.

The number of PEs, P, may differ from the number of

memories, M; they have, in some cases, been chosen to be

relatively prime [Figure 3].

I

29

Host _I

l
II;o Interface I

" Data and Instructions
"" .

Data Bus
... ~

cu Memory
Control

cu ----------------------------, I
II

~ Jj.. ..Jj..
Control Bus

,..n,
PEo ~ PE1 k= PE3 ~ PEp-1 ~
PEMo PEM1 PEM3 PEMp-1

l 1 1 1
~ ~ ' ~ t==

Interconnection Network

Figure 2. Illiac Type Array Configuration
[41, p. 326]

+-

Data and Instructions

Data Bus

cu Memory
Control

cu ---------------------------

Control Bus

Alignment Network

Figure 3. BSP Type Array Configuration
[41, p. 326]

~--

30

31

3.1.2 Processing Element Enablement

The CU broadcasts the instructions to the PEs, and

the PEs all execute the instructions together. However,

on certain occasions all PEs may not be required to

execute an instruction. In such a case, masking schemes

are employed to control the execution or non-execution of

an instruction by a specific PE. Under the masking

scheme, a PE may be enabled or disabled. Only enabled PEs

will execute a broadcast instruction. In general, each PE

has an enable/disable bit. If the bit is 1, the PE is

enabled; if the bit is o, the PE is disabled. Within the

CU there is a mask register (MR) containing one bit for

each PE. The bit pattern of the MR is set by control

operations within the cu. When the enablement of the PEs

is to be established, each bit in the masking register,

MRi, i = O,l,2, ••. ,P-l, is exchanged with its

corresponding PEi enable/disable bit. Thus, the

programmer can control which PEs are executing at a given

time by setting the cu•s mask register bit pattern.

3.1.3 Interconnection networks

In an array system there must be a way for data to

move from PE to PE. This is accomplished via a network.

The ILLIAC type configuration interconnection network

seems to be the most frequently discussed in the

literature and it is the focus here. An interconnection

32

network can be described by a set of interconnection

functions, where each interconnection function is a one­

to-one and onto mapping, or bijection, on the set of PE

addresses. When an interconnection function f is applied

to PEi, PEi sends the contents of a data transfer register

to that of PEf(i)· This occurs for each i = o, 1, 2, ••• ,

P-1 and PEi enabled. This implies that each enabled PE

sends data to exactly one PE; and each PE receiving data

receives it from only one PE. Generally, a disabled PE

cannot send data, but may receive it. To pass information

from one PE to another, a programmed sequence of one or

more interconnection functions must be executed. Data may

be transferred directly by one function execution or may

move through a series of PEs by executing a series of

functional instructions. Since an array processor is

SIMD, all enabled PEs must execute the same

interconnection function at the same time. Several

different interconnection functions have been defined for

SIMD systems. Some of the common ones are known as

shuffle-exchange, barrel shifter (see APPENDIX A), and

ILLIAC network functions [41, p. 333] .. section 3.2.1.6

presents the specific attributes of the ILLIAC network

function when it examines the ILLIAC IV parallel array

system.

33

3.1.4 Reconfiqurability

An attribute possessed by some array systems is

reconfigurability. The term is sometimes used to refer to

the capability of disabling certain PEs as presented

above. However, the term is also applied to identify the

capability of a machine to rearrange each PE and PEM into

several smaller size processors and memory modules, or

vice versa, under software control. For example, a 64 bit

word PE and PEM may be able to be reconfigured into two 32

bit word PEs and PEMs. Thus a reconfigurable array system

may increase or decrease the number of data items

·processed in parallel by changing the processor's size.

3.1.5 Array Processors and

Associative Processors

Array systems frequently are classified into two

subgroups. The first is that of array processors. Array

processors access standard random access memory modules.

They were developed to do parallel computations on

matrices. Many algorithms including matrix operations of

addition, multiplication, transposition and inversion,

summation and Fast Fourier transformations, and partial

differential equation solutions have been developed for

array processors. The ILLIAC IV and Burroughs Scientific

Processor are array processors. The second subgroup is

that of associative processors. Associative processors

34

access content addressable memories. These systems are a

special class of array or SIMD computers. As such they

are applied to specific specialized problems, usually

related to fast information retrieval and data base

retrieval. Examples of associative processors are the

Burroughs' Parallel Element Processing Ensemble, PEPE, and

Goodyear Aerospace STARAN. The PEPE accomplishes real­

time radar tracking of antiballistic missiles, and the

STARAN computer performs image processing.

3.2 The ILLIAC IV- The Computer and

Its Beginnings

This section discusses the work of some early

researchers in the area of array systems and the initial

steps to implement the first such computer system.

The concepts of array processors had their beginnings

early in the history of digital computers. In 1958, S.H.

Unger proposed a two dimensional array of PEs operating in

lockstep under a common control unit [41, p. 394]. In

1962, DanielL. Slotnick, et al., proposed the SOLOMON

computer [9]. The SOLOMON introduced a high degree of

parallelism. This parallelism may be outlined by four

principle features:

1) A single control unit broadcasts a single

instruction (single instruction stream) to a large array

of arithmetic units, each processing distinct data

elements (multiple data stream) in lockstep fashion.

2) In addition to instructions, the control unit

also broadcasts memory addresses and global data values.

3) Local enable/disable flip-flops allowed

individual arithmetic units to execute only selected

instructions.

4) Processing elements had nearest-neighbor

connections to provide direct communication. These

communication channels operated simultaneously (9].

35

Studies of these features indicated that such a

parallel approach was feasible by the late sixties due to

the advent of LSI circuitry. The work to create a machine

based on the SOLOMON description was initiated by the

Department of Computer Science of the University of

Illinois in the late 1960's. The Illinois Array Computer,

better known as the ILLIAC, was originally designed to

contain 256 processing elements arranged in four

reconfigurable SOLOMON-like arrays of 64 processors each.

Each array of 64 processors, or quadrant, was to be

directed by its own control unit. The four control units

were to be capable of independent processing. Thus a

multiple-single-instruction stream - multiple-data stream

or MSIMD parallelism was to be implemented [Figure 4].

However, due to cost escalation and schedule delays the

system was ultimately limited to one set of the 64

processors and one control unit. Although the ILLIAC IV

is no longer operational, it is of interest as it was the

Co

Illine

User Terminals I
Ji"'

ARPA
ntractors
Netwfrk r:- System Disk

"' t B6500 "Peripherals

11-
.

Jl.- .Jl.-_

CUl CU2

64 I • 64
r=} PEs fF= , PEs +

64 64
f"

PEMs PEMs
.. IOC

.---

B IOS
-- = ~I

"' 1- ...__

CUl CU2
-1r 1

==t 64 I bJ 64 ~ 109 Bit
I~

PEs PEs Disk
I Real Time

64 64 Inputs
PEMs PEMs

-11' Jl

Figure 4. The Original 4-Quadrant ILLIAC IV
System with Host [54)

36

37

first major array supercomputer developed and is a direct

predecessor of the Burroughs Scientific Processor and the

Phoenix project of Feierbach and Stevenson [41, p. 394].

Further, the ILLIAC demonstrates the basic concepts of an

array system in a simple straight forward manner; its

concepts may be extrapolated to more complex array systems

such as the Connection Machine built by Danny Hillis and

the Massively Parallel Processor (MPP) from Goodyear

Aerospace [59].

3.2.1 The Components of the ILLIAC IV

This section details the structure of the components

of the ILLIAC array processor and the organization of

those components within the system. Section 3.2.2 shows

how the ILLIAC memory, PEs, and cu work together to

implement processing of matrices.

The basic structure of the ILLIAC IV computer is

shown as it was originally conceived in Figure 4 and as it

was finally built in Figure 2.

3.2.1.1 The ILLIAC Host Computer. The ILLIAC had a

Burroughs B6500 that acted as a front-end for the system

[Figures 2 and 4]. The B6500 was timeshared by ILLIAC IV,

its highest priority user, and several other terminal

users, ARPA and ILLINET networks. A high speed 109 - bit

head-per-track parallel access Burroughs disk system was

directly attached to the array. When a user was ready to

38

run, he would request space on this disk for his programs

and data files. ILLIAC's control unit program memory and

the PEMs data memory would be loaded from the disk and all

output from the user program would be written to the disk.

As the host computer, the B6500 held and executed the

ILLIAC operating system. It was to the B6500 that the

user issued his request for space on the ILLIAC I/O disk

and for execution time on the ILLIAC system. The host

administered batch mode job scheduling on the ILLIAC. It

oversaw all array-disk I/0 and the loading of programs and

data into the array processor system.

3.2.1.2 ILLIAC Memory and Operand Access. In the

ILLIAC System, each PE connected directly to one and only

one PEM. Each PEM was composed of 2048 64-bit random

access words. While each PE referenced only its own PEM,

the cu accessed the entire combined PEM system. Both data

and instructions were stored in the PEMs. Data to be

processed by an individual PE was loaded in its associated

PEM.

Each address used by a PE to access an operand within

its PEM, a local operand, contained three components:

1) a fixed value contained in the instruction

(analogous to the displacement value in an IBM-370

instruction) ;

2) a CU base value added by the CU from a CU

accumulating register;

3) a local PE index value added by the PE from a PE

register prior to PEM access.

39

Thus, when an instruction was broadcast from the

control unit, each PEM access could be tailored to the

specific operand load pattern characteristic to that PE -

PEM organization. Global values, operands to be processed

by all PEs together, were fetched and stored by the

control unit and broadcast to the PEs through the

instruction involving the value. Not only did this have

the benefit of eliminating the need for duplicate copies

in each PEM, but it also allowed for a degree of

parallelism in that these global values ·could be fetched

by the control unit while the PEs were executing.

3.2.1.3 ILLIAC Processing Elements. Each PE

performed local indexing for operand fetches and executed

the data computations dictated by the CU.

Each PE was composed of the following units [Figure

5]:

1) For holding operands and results, there were four

64-bit registers:

i) register A was the accumulator,

ii) register B held the operand to be processed

with the accumulated value,

iii) register R held the multiplicand and was

used for routing data between PEs,

iv) register S was a general purpose storage

area,

To ne1rest
PE's Mode Driver/ To control

f-N register 1- receivers -unit bus
(RGMI

Driver/ -s
receivers -e I -w CBO

Tl, R regisur I IRGRI

j S register h Operand

[lAGS) select
gates

IOSGI

Multiplicand
select I gates IMSGI

8 register
IRGBI

Pseudo adder
tree (PAT}

f
Carry propagate J .--

adder (CPA)
r--

l ! J
I I j A register (RGA~1 Logic unit

l (LOG I

~MIR

I Leading one's I I Barrel switch I
detector (LODIJ I IBSWI J

Figure 5. ILLIAC IV Processing Element
Block Diagram [48, 9]

11
Address
adder
(ADA)

X register
(RGXI

Memory
address
registers
(MARl

l
ToPE

memory

40

41

2) There were modules for performing

i) arithmetic operations--the adder/multiplier

units, the multiplicand select gate, pseudo adder

tree, and carry propagate adder,

ii) Boolean operations--the logic unit,

iii) shifting operations--the barrel switch,

3) Memory addresses were calculated by the address

adder. It added the contents of the local index register

to the address broadcast with instruction by the control

unit. The index register {RGX) was a 16-bit register.

The result of this calculation was sent to the memory

address registers (MAR) for PEM access.

4) results of tests were held in an 8-bit mode

register.

3.2.1.4 PE Reconfigurability and Enablement. A

processing element could be reconfigured into either a

floating point 64-bit word processor, or two floating

point 32-bit word subprocessors, or eight a-bit binary

word subprocessors. By utilizing these data formats, the

array of 64 PEs could process 64, 128, or 512 data items

at a time.

Each PEM could be either enabled or disabled. Two

bits of the mode register controlled the enablement of the

PE. When the PE was configured to a 64-bit mode only one

of the bits was monitored. When the PE was configured to

two 32-bit subprocessors both bits were monitored, one for

each subprocessor. If the PE were configured to eight a­

bit subprocessors, the individual subprocessors did not

have separate enable/disable modes.

42

3.2.1.5 Fault Detection. Additional bits in the

mode register established masking information; other bits

were set by arithmetic faults such as overflov.r and

underflow. Fault bits were monitored continuously by the

cu to detect a fault condition and to begin a cu trap.

3.2.1.6 The ILLIAC Interconnection Network. The PEs

were linked together so that data could be transferred

from PE to PE. As mentioned earlier in the discussion of

general array systems, this was implemented by an

interconnection network. This network established a 64-

bit wide routing path from each PE to four of its nearest

neighbors. The interconnection functions applied were

f(i) = i + 1 (mod 64)

or f(i) = i + 8 (mod 64)

where i = o, 1, ••• ,63 identified the address of each PE.

For example, if PE57 were enabled, it could transfer

data to one and only one of the following: PE56, PEsg,

PE49 , or PE1 • Similarly, PE0 could receive data from one

of the following: PE63 , PE1 , PE8 , or PE56 • Thus, when

data was to be routed, all enabled PEs might transfer the

contents of their routing register, R, to their ne~ghbor

PE + 8 positions away. All enabled PEs must execute the

same transfer operation under control of the cu.

Logically, the arrays could be considered to be

positioned in an 8x8 array with nearest neighbor

connections and wraparound end connections [Figure 6].

The maximum number of data transfers required to shift

data from any PE to any other would be 7. However,

transfers numbering more than 2 steps were rare [9].

43

3.2.1.7 The ILLIAC Control Unit. The ILLIAC

instruction set was composed of two distinct types: those

which were executed by the CU (branching, operating on

common global values) and those which were executed by the

PEs. Instructions were fetched from the combined memory

[Figure 7 and Figure 8] and flowed into the control unit's

instruction buffer on the control unit bus. The

instructions were loaded into the 64 word instruction

buffer in blocks of 8 words (each instruction was 32-bits

in length and each word was 64 bits, giving 16

instructions per block). The von Neumann style program

counter maintained standard sequentiality in program

execution via a mapping process facilitated by a content

addressable memory. As control advanced, each instruction

was copied into the instruction register and sent to the

advanced instruction station (ADVAST). In ADVAST, the

instruction was decoded. If it was a CU instruction, it

was executed in ADVAST; otherwise, ADVAST processed

address or operand values, as necessary, and stacked the

results into the final queue to await broadcasting to the

to
PE

II

to
PE 6

to
PE 57

to
PE 63

to
==+\ PE 0

Figure 6. ILLIAC IV Nearest Neighbor
Communication Network [48]

Routing Network

Common Data Bus
(memory address and common operands)

JL ! .l
Control -> PE <--> PE <-••• -> PE

.J~

Unit 0 1

l:L> Local Local
>Control Memory Memory

'->Lines

II II
Control Unit Bus

(instructions and common operands)

63

Local
Memory

II

Fiqure 7. ILLIAC IV array orqanization
with common bus [9, 48]

44

<-

,--
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L-

From
r--------------------,.t---control

{512 512t unitbus

Instruction Content· Local dltl buffer addressable
(PLA) memory buller

(LOB)

{32

Instruction Program
)'64 register counter

CADV ---- --------------------------- ASTJ --, ------
24/ / n r '24

Address Car 0
adder

24,/ Car 1

I Car 2

Car 3

,.."'24
I

64
/

~v54
/

I

6~

i i /
Logical

unit
tCOLOGl

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---- ------------ ----------------- _..J

l
I Final I

qul!\ll I

l

~
Control si nals g
(200) for PE's

64
-/

64, ;' 24

I Common data I
buller

164

Common data
bus toPE's

24
/

Memory
access

control

24,.. v

1/0 requests
from 1/0 unit

Mode f
PE ena
disable

rom
ble/
F-F

Figure 8. ILLIAC IV Control Unit Block
Diagram [9, 48]

45

46

PEs. The PE instructions were extracted in sequence from

the final queue, taken to the final instruction station

sequencer, and transmitted via control pulses to all the

PEs. Scalar values were passed from the final queue to

the common data buffer and onto the common data bus to the

PEs.

3.2.1.8 Inherent Parallelism within the Control

Unit. The PE instruction Final Queue allowed for a degree

of instruction parallelism. The execution of CU

instructions in ADVAST could be overlapped with execution

of PE instructions in the processing elements.

CU's instruction buffer held 64 words or 128

instructions. This size was believed to be ample to hold

a loop structure of average size. When the instruction or

program counter had progressed to the eighth instruction

in a block of 16 instructions, fetch of the next block was

initiated. The possibility of a branch operation was

ignored. If the next block to be executed was already

present in the instruction buffer, then the fetch

operation was immediately aborted. If the block was not

present in the buffer then the next block was fetched from

the combined array memory. Thus a loop of a size small

enough to fit in the instruction buffer could execute

until exit without accessing the relatively slow array

memory. Fetch of a new block to the instruction buffer

from array memory required approximately the same amount

of time as executing 8 instructions. Thus, if execution

continued straight line in the old block, the new block

would be in place in the instruction buffer by the time

execution of the old block was complete. In this way, an

additional element of parallelism was introduced into the

ILLIAC processing.

All these. time saving strategies needed to be known

to the programmer in order for the most efficient use of

the hardware to be made. This resulted in increased

programming time and costs. Also, it required

considerable expenditure of effort in developing

optimizing compilers for the system.

3.2.1.9 Proposed Reconfiqurability for the ILLIAC

IV. The original MSIMD design of the ILLIAC was as

indicated in Figure 4. Under this original plan the

Burroughs B6500 host computer was to have the capability

of reconfiguring the 256 processing elements into the

following 3 distinct configurations [Figure 9]:

1) Four arrays of 64 PEs under control of the four

control units; each cu executing its own unique program,

fetched from its own array memory. Under this

configuration the interconnection network or routing

scheme functions were as given earlier, f(i) = i + 1

(mod 64) or f(i) = i ± 8 (mod 64).

2) Two arrays of 128 PEs. Each 128 PE array is

controlled by two CUs.

3) One array of 256 PEs under control of four

control units.

47

PEs PEs PEs PEs

Configuration 1: Four Arrays of 64 PEs. Each Array Under
the Control of One Control Unit. Addresses of PEs Range
from 0 to 63.

PEs PEs

Configuration 2: Two Arrays of 128 PEs. Each Array
Under the Control of Two Control Units. Addresses of
PEs Range from 0 to 127.

PEs

lo ... 63 64 ••• 127 128 ••• 191 192 ••. 2551

I 88 I

[cu oj lcu 31

Configuration 3: One Array of 256 PEs Under
the Control of One Control Unit. Addresses of
PEs Range from 0 to 255.

Figure 9. Possible Configurations of ILLIAC IV

48

In configurations 2) and 3), the control units

controlling a common array were to fetch their

instructions from a common instruction stream. Such

reconfiguration techniques would have allowed the number

of distinct instruction streams to be 1, 2, or 4; and

would have allowed considerable latitude in dealing with

data sets of various dimensions. The multiple control

units controlling one array could execute asynchronously

except when fetching new instruction blocks, routing data

between PEs, implementing branch instructions, and

changing configurations. Configurations 2) and 3) above

required the routing paths to be restructured so that the

interconnection functions could be described as

f(i) = i ± 1 (mod N)

or f(i) = i ± 8 (mod N)

where N was the number of PEs in the array and i was the

address of each PE relative to the new array size.

3.2.2 Processing Dimensional

Structures. an Example.

49

The ILLIAC, like other array processors, was

developed primarily for processing dimensional data sets.

To get a brief feel for how the array processor was used,

consider an array of 3 enabled PEs designated to process a

3x3 matrix A. By loading the matrix A into the PEM

memories in a skewed fashion, each row and each column may

be accessed (Figure 10]. suppose the PEs are to multiply

PEa

XRo

.......
LOC BASE+O ao,o ao,1 ao,2

LOC BASE+1 a1,2 a1,0 a1,1

LOC BASE+2 a2,1 a2,2 a2,0

Figure 10. A Two by Two Array Loaded Skewed Fashion into PEMs
0, 1, and 2. XRi is the Index Register of PEi·

50

51

row 2 by the scalar b. The Index Registers, XRi, i =
0,1,2, would be set to 2. Then the CU would broadcast the

scalar b, the base address and the control pulses to

multiply. Each PEi would add its own index value, c(XRi)

= 2, to the base address, fetch from location base +

c(XRi) (= base + 2) and multiply the value by b. Thus

each element of row 2 would be processed simultaneously.

Alternatively, suppose the PEs are to multiply a

column by a scalar b. Each Index Register, XRi would be

set to ((i- j) (mod 3)), where j is the column number.

If j = 1, then XR0 = ((o - 1) (mod 3)) = 2;

XR1 = ((1- 1) (mod 3)) = O;

XR2 = ((2 - 1) (mod 3)) = 1.

The process would then proceed as before, each PE adding

its index register value to the base address to access the

operand to be multiplied. Thus all elements in column 1

would be processed in lockstep. Any other row or column

could be accessed in a manner similar to that just

described.

The size of the matrix could be extended from lxl to

MxN, where M < 2048 and N ~ 64; (each of the 64 PEMs

contained 2048 64 bit words. Some of these words were

used to hold instructions and global data) • These figures

for M and N would apply for a 64 bit element format.

Larger arrays could be handled; however, reconfiguration

of the PEs for fewer bits per element andjor alternate

mappings of the matrix onto memory would be required.

3.3 Summary

This chapter presents the basic elements of an array

processor. It demonstrates the method by which multiple

data elements may be processed at one time using the

lockstep action of multiple processing elements under the

control of a single control unit. In this single­

instruction-stream multiple-data-stream environment, data

parallelism is established.

52

This chapter reviews the ILLIAC IV array processor

and demonstrates how an array processor may be utilized to

process matrices.

CHAPTER IV

PIPELINED COMPUTERS: THE HEP

4.0 Introduction to Pipelining

This section introduces pipelining and its

fundamental concepts and elements. Also, it introduces

pipeline configurations and classifications that are used

to either describe or identify various forms of pipelines

which may be found.

Pipelining is another technique frequently used to

implement parallelism in a computer architecture. The

parallelism introduced by pipelining is quite distinct

from that of array systems. In an array system, a basic

function such as that performed by a PE is replicated many

times and each replica performs the same function at the

same time. Pipelining, on the other hand, takes the same

function and partitions it into many autonomous but

interconnected subfunctions. Input flows from subfunction

to subfunction much as fluid in a physical pipeline; or,

as products may move from station to station on an

assembly line. Each subfunction may be performed during

the same time span but on different input. Throughput

through the pipe is directly dependent on the rate at

which input enters the pipe; once the pipe is full, enter

53

rate is the same as exit rate. In general, if some

function with a straightforward design takes T time units

to complete, then a full pipeline designed to perform the

same function but divided into N subfunctions may produce

a result every T/N time units [Figure 11]. Such

pipelining can deliver an N-fold increase in performance.

Pipelining can increase the parallelism of a computer

system and can deliver dramatic performance gains.

The hardware (combinational circuits) required to

perform each subfunction is called a stage. Thus input

flows from stage to stage until processing is complete.

54

In order for input to pass in orderly clocked intervals

from stage to stage, each stage should perform its

associated subfunction in the same amount of time.

Frequently, this is not possible precisely; but, it is the

ideal. When each stage executes its function in the same

amount of time, the stages can operate synchronously with

full resource utilization. When the delays are unequal,

the stages must be timed for the slowest stage. The

slowest stage becomes the bottleneck in the process flow.

To facilitate the passing of input from stage to stage,

data is buffered between stages in fast registers, termed

latches. These registers are so named because they are

frequently implemented with the hardware module referred

to as a latch. A latch hardware module is a limited form

of clocked flip-flop that is activated by a positive, or

Time Units
'<:------ T ------>

Once Each -----> FUNCTION L___>
Input Enters 1
T ·Time Units ~-------------~r---

Time Units
T/N T/N T/N T/N

<----> <----> <----> ••• < >

output Exits
Once Each
T Time Units

Input Enters w- GJ-. · GJ- J L_ . output Exits
Once ~ach --.--> fo > f 1 > f 2 .>1 fN-lr-> Once Each
T/N T~me Un~ts T/N Time Units

Input

===>

Figure 11. Execution of FUNCTION Equivalent to
Execution of fof1f2~··fN-1·

L L L L L

output

=> => ====>

CL ---~------~-------------

L: Latch Si: Stage CL: Clock

Figure 12. Pipeline with ·Latches between Stages (52]

55

high, level on the clock input. D-type latches which

change their state to match their input are especially

appropriate for this type register. These registers may

also be called staging platforms or reservation stations.

The latches then act as holding areas for retaining

semiprocessed input between unequal delay time stages

(Figure 12].

4.0.1 Pipeline Configurations

There are many distinct pipeline configurations.

56

These configurations may be categorized as linear and non­

linear. The simplest of these is termed a linear

pipeline. The pipeline in Figure 12 is a linear pipeline.

A linear pipeline is characterized by the fact that each

stage, Sj, receives its input only from stage Si, where

j = i + l (Figure l3.a].

In addition to the simple linear configuration,

pipelines may also be expanded to more general

configurations in which a stage may receive input from

some stage several steps backward or forward in the

subfunction sequence. More precisely stated, a pipeline

may contain feed forward connections such that some stage,

Sj, receives input from another stage si, where j > i + 1

[Figure 13.b]. Also, a pipeline may contain feedback

connections in which some stage, si, receives input from

some stage, Sj, such that j ~ i (Figure 13.c].

------'i~ ____ s_i __ ~~-------->j~----s-j __ ~~----->

--->

Figure 13.a. Linear Pipeline Connection.

1---'-->

Sj only receives input
from Si where j = i+l

J s i +1 ,_. • >j~ __ s_j ___ __.t------->

Figure 13.b. Feed Forward Connection.
Sj may receive input
from si where j > i+l

_[> .-----8-i----.f---> _[0>· .. ->,___s_J_· __ :---'-->
j = i j > i

Figure lJ.c. Feed Backward Connection.
Si receives input from
Sj where j ~ i

57

58

4.0.2 Classifications of Pipelines.

Based on the functional configurations of a pipeline,

and the control strategies used to implement it, certain

terms can be used to classify a pipeline.

4.0.2.1 Unifunctional vs. Multifunctional. A

pipeline may be termed unifunctional or multifunctional.

A unifunctional pipeline can evaluate or perform one and

only one function. A multifunctional pipeline can perform

a set of functions where each function has its own

peculiar stage sequence or configuration.

4.0.2.2 Static vs. Dynamic Multifunctional

Pipelines. The manner in which a pipeline configuration

is controlled to implement the performance of

multifunctions is indicated by terming them either static

or dynamic. A static pipeline is one such that at any

instant in time only one configuration is active and only

one function is under evaluation. Clearly, a

unifunctional pipeline is always static. A static

multifunctional pipeline implies that only one of the

possible functions of the pipe will be performed over some

period of time so that a sequence of inputs may be

streamed into it. Thus, inputs which require the same

functional processing are grouped together and streamed

one after the other into the pipe. When performance of a

different function is required then the pipe must be

reconfigured. This implies that incoming input which

require the new functional processing must be delayed

until the pipe empties and the stage connections are

altered appropriately. When the stage sequence has been

reconfigured then inputs may again stream into the pipe.

59

Dynamic multifunctional pipes permit pipelining among

several active configurations at the same time. Thus,

several functions may be under evaluation at the same

time. Each distinct set of inputs clocked into the

pipeline will follow a functional path distinct from other

inputs requiring alternate functional processing. Such

pipelines obviously require elaborate control and

sequencing techniques.

4.1 Pipeline Input Sequencing

This section discusses how to determine when inputs

may be allowed to enter a non-linear pipeline. It

discusses the use of special tools, the reservation table

and collision vector, which may be used to make this

determination.

When considering a non-linear pipeline, an important

concept that must be dealt with is that of sequencing.

That is, controlling the time of entry for each input

value. If an evaluation of a function is initiated at a

time ti and a second initiation of the function is made at

time tj, where j > i, it may be that both functional

evaluations will require the use of the same stage at the

60

same time. such a condition is termed a collision. In

the determination of viable function initiation sequences

a common tool is a reservation table. From the

reservation table, a collision vector can be created. The

collision vector will indicate proper sequencing of the

input values for the pipeline. These concepts will be

investigated in greater detail in the following

subsections.

4.1.1 A Function's

Computational Sequence

Each function is defined by its computational

sequence; that is, the sequence of stages through which

inputs are piped in order to produce the required

functional output. This computational sequence will

determine the allowable time table for inputs to the

pipeline.

As an example, consider the non-linear pipeline of

Figure 14. The crosses refer to data multiplexors. Each

multiplexor is used to select among multiple connection

paths in evaluating different functions. Thus, this

pipeline is multifunctional, and for the purposes of this

example, static.

I
n
p >
u
t

output
>

> > s2 '--> s3 '---r-> s4

<·----------------------~

<--<
M: Multiplexor

Figure 14. Example Static Non-Linear Pipeline.
Each Stage Requires an Equal
Time to Execute

Assuming each stage requires an equal time unit to

perform its subfunction, one function's definition may

61

require the inputs to traverse the stages in the following

computational sequence:

at time to, input passes to Sl;

at time tl, input passes to S2;

at time t2, input passes to S3;

at time t3, input passes to S4;

at time t4, input passes to Sl;

at time ts, input passes to S2;

at time t6, input passes to S3;

at time t7, input passes to S2;

and from s2 out of the pipeline.

62

4.1.2 Reservation Tables

The computational sequence of a function can be

indicated clearly and graphically in a reservation table.

In a reservation table, row i corresponds to stage Si, and

column j corresponds to time tj• A mark in a square (i,j)

indicates use of stage Si at time tj. Multiple marks in a

column indicate concurrent use of two or more stages while

multiple marks in a row indicate reuse of the same stage

in overall functional evaluation performed in the

pipeline.

The computational sequence described in section 4.1.1

above would lead to the reservation table shown in Figure

15.

1 X

STAGE 2 X

3

4

0 1

Figure 15.

X

X X

X X

X

2 3 4 5 6 7 '
TIME

Reservation Table for Pipeline
of Figure 14. An Entry in
Row i and Column j Indicates
the Use of stage i at Time j

4.1.3 Forbidden Latency and the

Collision Vector

A scheduling strategy may be developed for the

pipeline based on the computational sequence and

reservation table of a function. The strategy should

schedule inputs into the pipe in such a way as to prevent

collisions and to maximize the throughput of the pipe.

The technique for implementing such a strategy is based

upon the concepts of forbidden latencies and collision

vectors. Simple latency is the time between successive

initiations of the pipeline.

63

If stage Si is in use at times tm and tn, then the

difference ltm - tnl is called a forbidden latency. If

two initiations of the pipeline occur ltm - tnl time units

apart, a collision will be generated. In the example of

Figures 14 and 15, the forbidden latency for stage s1 is

4; for stage s2 , it is 2 and 4; and, for stage s3 , it is

4. There is no forbidden latency associated with stage

s 4 . Zero is always a forbidden latency (two inputs cannot

begin at the same time). The set of forbidden latencies

for all stages establishes a forbidden list. The

forbidden list in our example in section 4.1.1 is {0, 2,

4}.

The collision vector is constructed from the

forbidden list. The collision vector has d elements,

where d is the number of time units required to traverse

the pipeline (compute time) .

64

If C = (c0 , c1 , c 2 , ... , cd_1) is the collision vector

and i is an element of the forbidden list, then ci = 1;

otherwise, Ci = o. For the pipeline of our example, d = 8

and C = (1, 0, 1, o, 1, 0, o, 0). By use of the collision

vector, a simple control mechanism can be used to prevent

collisions. Before initiating a new computation, the

collision vector can be tested. If for each previous

initiation of the pipeline, the difference between the

previous initiation time and a new initiation time is i

and Ci = o, then the new initiation is allowed; if Ci = 1,

the initiation is delayed. A control strategy which

minimizes the immediate delay time and allows initiation

of the pipeline as soon as the control vector allows is

called a greedy strategy. Performance analysis of various

control strategies indicate that a greedy strategy may not

insure the maximum throughput for the pipe while a more

patient one may increase throughput [52, p. 80].

4.2 Pipeline Applications

There are two functional areas where pipelining is

employed most often. One is the instruction fetch-execute

process of the control unit, instruction pipelining. The

other is computation of the arithmetic/logic unit,

arithmetic pipelines. The following sections, discuss

these two important areas.

65

4.2.1. Instruction Pipelining

This section presents instruction pipelining. It

details some problems (or hazards) which are inherent in

this technique for speeding up a control unit's operation.

Some possible techniques for resolving these problems are

discussed. Finally, it reviews the ILLIAC's instruction

cycle in the context of pipelining.

Instruction execution by the control unit may be

partitioned into several distinct subfunctional steps:

instruction fetch, program counter update, operation code

decode, compute addresses of operands, operand fetch,

execute, operand store, and housekeeping. These steps may

be accomplished by a series of stages to establish an

instruction pipeline. Thus one instruction may be fetched

while another is decoded, another has its operand

addresses calculated, etc.

In a non-pipelined control unit, total execution of

one instruction is completed before initiation of the next

is begun. In a non-pipelined computer, the order of

execution matches the logical order of the program. In a

pipelined design, one instruction is begun before its

predecessor is completed. This difference can cause

problems if not adequately dealt with during the design

phase of the pipeline.

4.2.1.1 Hazards and Their Classifications. An

instruction which depends on the preceding instruction's

results may enter the pipe and begin the execution

sequence before the preceding instruction has completed

the sequence. Such critical dependencies between

instructions generate hazards. A data hazard occurs when

two separate instructions access or update the same

storage location while their execution is overlapped

within the instruction pipeline. These hazards must be

detected by the computer and resolved so that the final

product of the instruction sequence is that expected by

the programmer. Such resolution may prevent the pipeline

from accepting inputs at the maximum rate.

66

These types of hazards are possible especially when

the control structure of the pipe is such that

instructions may exit the pipe in an order other than that

in which they entered. This may occur in pipes with

multiple execution stages. That is, when an instruction

has progressed through the pipe to the execute stage, it

may be routed to one of several parallel execute stages.

An ADD instruction going to one stage while a COMPARE

would pass into another, etc. Each distinct execute stage

may require a different amount of time for completion,

allowing one instruction to exit the pipe before another

which preceded it into the pipeline.

Hazards may be grouped into several different

classifications. Some simple examples demonstrate those

67

classifications. For the purpose of discussion, two

instructions Il and I2 are ordered by having Il precede I2

into the pipe. Il and I2 are in different stages within

the instruction pipeline. Three primary classes of

hazards exist:

l) The Read after Write hazard exists when Il updates

a data element which I2 reads. For example, consider the

2-address, IBM-370 instruction sequence

Il ST l,DATA /* ST = STORE */

I2 A 2,DATA /* A = ADD */

If the ADD is in the operand fetch stage while the STORE

is still in the execute stage, the contents of register l

may not reside in DATA when it is fetched for ADD. Some

previous value of DATA may be added to register 2.

2) The Write after Read hazard exists when Il reads a

data item which is to be updated by I2. For example,

consider the following IBM-370 instruction sequence.

Il A 2,DATA /* A = ADD */

I2 LR 2,3 /* LR = LOAD REGISTER */

The LR instruction may pass over the operand fetch stage

since both of its operands are in registers and into the

execute stage while the ADD instruction is still

completing its operand fetch. Thus register 2 may have

been updated by the LR instruction before the ADD has an

opportunity to act on it. The value in register 2 that is

actually added to DATA may be "too new."

3) A Write after Write hazard exists whenever Il and

I2 both attempt to update the same location but I2

completes before Il. For example, consider the following

IBM-370 instruction sequence.

Il STM 14,12,SAVE /* STM = STORE MULTIPLE

REGISTERS */

I2 ST 14,Save+56 /* ST = STORE */

68

Both instructions update a location 14 full words down

from location SAVE, but, the STM will take longer to

update the location as it must first store in the 13 full

words preceding SAVE + 56. Although the ST will enter its

execute stage after the STM, it will complete execution

while the STM continues its execution stage; and finally

as a last activity places the contents of register 12 into

SAVE+ 56 .••. overwriting the value placed there by the

ST.

An additional interesting hazard may exist. This

hazard is a result of self-modifying code. In this

situation I1 may alter I2 itself. Thus a Read after Write

hazard is established between the write action of I1 and

the instruction fetch action of the instruction pipeline.

4.2.1.2 Hazard Detection and Resolution. The

detection and resolution of hazards is a major

consideration in the design of an instruction pipeline.

There are two common approaches in hazard detection. Both

approaches imply the maintenance of a set of facts which

69

characterize each instruction in the pipeline. Each

characterizing set includes an indication of all locations

(registers, memory, etc.) whose contents are updated by

the execution of the corresponding instruction. In the

first hazard detection approach, the characteristics of an

instruction in the pipeline instruction fetch stage are

compared with all those already in the pipeline. A hazard

is detected if there is any intersection between the sets

of instruction characteristics. The second approach is

similar but more complex in its implementation. An

instruction is allowed to flow through the pipe in the

usual way until any element in its characterizing set is

required. At that point, the control unit checks the

intersection between the instruction in question's

characterizing set and those of all other instructions in

the pipe. If any non-null intersection exists, then a

hazard is recognized.

Resolution of a detected hazard may be handled in one

of two ways. If Il and I2 are instructions and Il has

preceded I2 into the pipe, then one method of resolution

is as follows. If I2 is found to generate a hazard

condition with Il, then I2 and all succeeding instructions

are halted and prevented from progressing further into the

pipeline, while Il and all other instructions preceding I2

continue through the pipeline. When Il has passed all

stages which could effect I2, then I2 and those

instructions succeeding it are allowed to continue through

the pipeline. Although this is a relatively simple

technique, it degrades the performance of the pipeline

because all stages are not kept busy. It may actually

imply a complete emptying of the pipeline. In such a

case, output from the pipe cannot resume until the pipe

has been filled.

70

An alternative to this that may be employed, is to

halt the progress of I2 when its hazard condition with Il

is detected, but, to allow those instructions logically

behind I2 and which have no hazard relation to I2 or any

other instruction in the pipeline to stream into and

through the pipe. When Il has passed all the stages which

could effect I2, then I2 is allowed to proceed. In this

way, some instructions which logically follow I2 may enter

the pipe and complete execution before I2. This is

perfectly acceptable since their execution and results are

independent of I2. Such hazard resolution has value since

it keeps the pipeline filled most of the time and thus

more productive. But, it is more complex to implement and

requires more hardware design overhead.

4.2.1.3 Branching in an Instruction Pipeline. Even

worse than the instruction dependencies just discussed,

branching and interrupt handling can diminish greatly the

performance of an instruction pipeline. Branching alters

the program counter and implements nonsequential access to

program memory. The instruction fetch stage cannot

71

continue to fetch its instructions from memory in the

usual sequential fashion. However, the address to which

the program counter will be updated is not available until

the effective address of the branch is evaluated in the

later address calculation stage; and in the case of a

conditional branch, the conditions of the branch may not

be known until some instruction ahead in the pipe

completes the execution stage. Resolution of the dilemma

has been accomplished in several ways. Two of these ways

will be discussed here. For unconditional branches, a

simple technique used is to include enough logic in the

instruction fetch stage to recognize or -decode a branch,

calculate its specified effective address and update the

program counter appropriately, then continue the fetch

function. For conditional branches, an extension of this

technique has been used called "guess and correct." Here

a nguess" is made as to the likelihood of the branch

actually being implemented. The program counter is

adjusted according to the indication of the prediction and

the fetch function continues in the usual way. When the

branch instruction has progressed far enough in the pipe

for the correctness of the guess to be ascertained, a

check is made to determine if a correct guess was made.

If so, the instructions continue to stream through the

pipe; if not, all instructions behind the branch in the

pipe are aborted, the pipe is flushed, the program counter

is updated to the correct branch value and the fetch

function restarts. This technique is viable because

statistically over 50% of all conditional branches are

taken and certain types of branches (eg. branch on count)

are nearly always taken [52, p. 243]. The better the

"predictive technique," the better the performance of the

pipe. Apparently, if the programmer in such a case knows

the guess algorithm, he can write more efficient

algorithms. This is a good example of software-hardware

interdependencies.

72

A second technique employed for conditional branches

is to have a secondary program counter which is used when

a branch is decoded in the fetch stage (as described

above). The program counter and the secondary one are

updated, one with an address from one side of the branch

option, the second with the address from the other side;

then tagged instructions from both sides of the branch are

fetched into the pipe according to the two program

counters. When the branch instruction has progressed far

enough into the pipe for the proper pathway to be

established, the instructions in the pipe tagged from the

wrong side of the branch are aborted. This method

involves more instruction fetches and thus can contend

with operand fetches from a common memory, but it has the

advantage of keeping the pipeline full and the execute

stage busy a greater proportion of the time than did the

"guess and correct" method.

73

4.2.1.4 Interrupt Handling in an Instruction

Pipeline. Interrupts disrupt the sequential instruction

fetch in much the same way that branches do. When an

instruction generates an interrupt condition, the

interrupt should be handled before the instructions behind

it in the pipe are executed. Since interrupts are

unpredictable, no technique such as "guess and correct" or

"fetch from both sides" is viable. The IBM 360/91

implemented a technique of interrupt handling which has

proven successful [66]. In the IBM 360/91, interrupts are

categorized as precise and imprecise [52, p. 269].

Precise interrupts are ones that can be detected early in

the pipe stage sequence (eg. illegal operation code is

detected in decode stage, immediately after fetching) . In

the case of a precise interrupt, fetch of new instructions

is halted. All instructions behind the interrupt

generating instruction are aborted while those ahead in

the pipe are allowed to flow on through the pipe in the

usual way. Imprecise interrupts are generated in stages

internal to the pipe (eg. operand fetch or execute

stages). In such cases, the pipe contains multiple

instructions behind the offending one which have already

undergone various stages of processing. To flush them

would be counterproductive. When an imprecise interrupt

occurs, fetches of new instructions are halted but all

instructions which have already entered the pipe are

allowed to stream on through to completion.

74

Whether precise or imprecise, the program counter can

be initialized with the interrupt handler address while

the pipe is being emptied. Debugging of imprecise

interrupts may be difficult due to the nonsequentiality of

the offending instruction and the action of the interrupt

handler. However, since some interrupts such as I/O

interrupts are unrelated to the instructions within the

pipeline, such techniques are clearly advisable.

4.2.1.5 A Review of the ILLIAC's Instruction Cycle

and Pipelining. The ILLIAC IV instruction fetch-execute

function employs an overlap instruction fetch and

instruotion.execute technique whereby a 16 instruction

block is fetched while an 8 instruction subblock is

executed. This establishes a sequence of subfunctions

that act in a nearly pipelined fashion. But, instructions

are passed in blocks and processed in blocks; the input to

individual stages is not individual instructions as found

in modern pipelined systems. One configuration of the

stages might be as given in Figure 16 and the related

reservation table in Figure 17.

The reservation table indicates a forbidden latency

of lt2 - tol for stage 1; but, according to the

reservation table, stage 1 should be able to receive

inputs at time t 1 • In a true pipeline, stage 1 would be

active with a new set of inputs at time t 1 • But, the

ILLIAC does no fetch during execution of the first 8

<------------------------------~

M: Multiplexor

Figure 16. Possible Stage Sequence for
ILLIAC IV Instruction
Fetch/Execute Function

stage 1:
Fetch 16
Instructions

stage 2:
Execute First
8 Instruc.

Stage 3:
Execute Second
8 Instruc.

X

0

X

1
TIME

X

X

2

Figure 17. Possible Reservation Table for
ILLIAC IV Instruction
Fetch/Execute Function. In a
True Pipeline Stage 1 Would Be
Active at Time t 1 with a New
set of Inputs

75

76

instructions in the block. Such a system can only be

characterized as overlapped or asynchronous. Asynchronous

or overlapped systems have at least one of the following

characteristics: 1) dependencies between evaluations; 2)

each evaluation may require a different configuration of

subfunctions; 3) subfunctions are not closely related; and

4) the time required by each stage is not constant [52, p.

5]. The ILLIAC meets overlap specifications 1), 3) and

4) •

4.2.2. Arithmetic Pipelines

This section examines arithmetic pipelines and how

they relate to computers termed vector processors.

Arithmetic functions constitute another major

application for pipelining. An arithmetic pipeline is

like any other pipeline; in this case, the function to be

performed is simply the calculation of some arithmetic

value. The most common example of an arithmetic pipe is

that of a floating point adder where the addition of two

floating point values may be broken into a series of

subfunctionjstages as shown in Figure 18. When a large

number of floating point number pairs require addition,

the pairs can be streamed through the pipe producing

output of one floating point sum for each pair input.

Arithmetic pipelines have been built to perform a

wide variety of arithmetic functions such as floating

point addition, subtraction, multiplication, division, and

Input A Input 8

larger
a111ponent

Figure 18.

Comparator and selector

Other
fraction

Determine
number of
leading zeros

R11ult

Fraction
from smaller
input

Left
slulter

Shift
count

Normaltzed
lracuon

E111ponent
difference

Arithmetic Pipeline to Add Two
Floating Point Values [52]

~ Latches

}
Staoe 1
logic

f Latches

} Stage 2
. logic

t Latches

} Stage J
logic

t Latches

l Stage 4
\ logtc

f Latches

}
Stage 5
logic

77

78

square root functions. Frequently an arithmetic pipe is

multifunctional, capable of performing several functions

such as those just listed above. If the reconfiguration

of the multifunction arithmetic pipe may be controlled by

the user programmer at the machine instruction level, the

computer architecture is called a vector processor. In a

vector processor, a single machine instruction specifies

an operation and the location of a set of arithmetic

values which are located according to some linear mapping

function (vector elements which are stored contiguously or

are separated by some stride distance) . The pipeline is

configured to execute the operation specified and the

vector elements are streamed through the pipe. After all

the values have been streamed through, the next

instruction can request a distinct operation and the

arithmetic pipe can again be reconfigured to its

specifications. Vector processors were designed

especially for processing vectors just as array processors

were also developed for that purpose, but each has its own

unique architecture.

4.2.3 Pipelining Embedded in

Other Parallel Architectures

The parallelism made available through instruction

and arithmetic pipelining can be embedded within many

architectural environments. For example, an array

processor's control unit could employ an instruction

pipeline; the overlapped system of the ILLIAC could be

replaced with one. Further, the PEs of an array system

could have arithmetic pipelines allowing each PE to

process a stream of values concurrently.

79

In Chapter 5 of this treatise, the Alliant FX/8

multiprocessor is surveyed. The Alliant has both

instruction and arithmetic pipelines embedded within each

of its multiple CPUs. As is discussed in Chapter 5, it is

the multiple CPUs that give the Alliant its multiprocessor

standing, but the use of pipelining within each processor

extends its exploitation of parallelism.

4.3 The Heterogeneous Element

Processor, HEP

In the late 1970's, The Heterogeneous Element

Processor or HEP computer was initiated by Denelcor, Inc.,

under contract to the u.s. Army Ballistics Research

Laboratory. By 1981, it was commercially available from

Denelcor, Inc. It is a highly pipelined computer capable

of implementing a multiple-instruction stream multiple­

data stream (MIMD) architecture as described by Flynn

[31]. It is capable of executing 10 million instructions

per second (MIPS). Because of its ability as an MIMD

machine to perform concurrent processes and to establish

such a high degree of parallelism, the HEP has generated a

great deal of interest.

80

The HEP computer consists of one or more Process

Execution Modules (PEMs) with a common data memory base

[Figure 19]. The number of PEMs in a system makes no

difference in the way processes are created and managed or

in the way they communicate. Only the number of

instructions executing at a time is affected; each PEM can

have about 12 instructions in some stage of execution at a

time. Each PEM consists of an Instruction Processing Unit

(IPU) and 3 distinct memory entities. The PEM's memory

entities are program, register and constant memory. In

addition to the PEM's internal memories, each PEM has an

attached local data memory module. Furthermore, all PEMs

may access one or more global memory modules through a

packet switched network.

This section examines in detail the HEP computer and

its intensive use of the pipeline concept. Sections 4.3.1

and 4.3.2 describe in detail the organization of the HEP

memories and instruction processing units and the way HEP

has of resolving instruction pipeline hazards. Section

4.3.3 describes further use of pipelining made in the HEP

data transfer system which simplifies interprocess

communication.

81

Program Memory

Register Constant
Memory Memory

Control Task Queue
unit

Process Queue

SPI I IFU ADD., MUL * * * HA

create Function SFU * * DIV
Unit

Local Data
Module

I Switch I
Data Memory Modules

Unit

Figure 19. HEP System Showing the Process Execution
Module, switch, and Data Modules
Accessible by the PEM.
SFU - Accesses Local Data Synchronously.

Accesses Data Memory Asynchronously
through the switch.

DIV - Consists of 8 Distinct Asynchronous
Floating Point Divider Modules.

ADD - Performs Synchronously all Floating
Point Addition and Subtraction.

MUL - Performs Synchronously all Floating
Point Multiplication.

IFU - Performs Synchronously Integer
Operations and Logical, Shift,
Compares, and Type Conversions.

HA - Hardware Access Unit Reads and
Writes Program Memory and Performs
all Bit Encode and Decode Operations
Synchronously.

SPI - System Performance Instrument
Collects Data for Measurement of
Performance Synchronously.

Create Funct. Unit - Performs all
Operations Affecting PSWs
Synchronously.

* - Undefined Units (20, 21]

4.3.1 The HEP Memory System

4.3.1.1 Program Memory of the PEM. Program memory

is expandable in 1 megabyte units to 8 megabytes. It is

execute-only memory for non-privileged users. One

instruction can be fetched every 100 nanoseconds. This

rate is important as it makes the program memory

consistent with the requirements of the Instruction

Processing Unit (IPU) •

82

4.3.1.2 Register Memory of the PEM. Each PEM's

register memory consists of 2048 64-bit registers for

storing operands and operational results. A process

executes at its fastest possible rate when utilizing these

registers.

4.3.1.3 Constant Memory of the PEM. Constant memory

is a read-only data area for non-privileged users. This

area can be loaded during the same time period as the

program load for a process and can be accessed during

execution to facilitate fast constant retrieval. It

consists of 4048 64-bit registers.

4.3.1.4 Data Memory Modules. There exists a fourth

memory element in a HEP system. This is called the data

memory module. There can be as many as 128 of these in a

HEP system. Each module can be from 1 to 8 megabytes in

size. one data memory module may be local to a given PEM.

83

All other data memory modules can only be accessed by a

PEM through a high speed packet switching network. It is

used for storing most of the data of the system and for

communication between processes executing on separate

PEMs. Interaction between data memory and the PEM is much

slower than that between the PEM and its internal memories

(program, register, and constant memories).

4.3.1.5 HEP Hardware Memory Management. The HEP

utilizes a dynamic relocatable partitioned memory

management system. Each program or job step constitutes a

task; each task is assigned a region in program, register,

constant, and data memory. The first byte address and

last byte address of each region is recorded as base and

limit values along with other status information in a Task

Status Word (TSW). Effective addresses within each

program are assembled as though the program will be loaded

at location zero. Then as the program executes, effective

addresses from instructions are added to the base value in

the Task Status Word to determine a real address for

access. Memory is protected by comparing the real address

calculated with the limit value. If the real address is

larger than the limit value, a memory protection exception

is generated. Constant memory is different; it has no

limit value, only a base.

4.3.2 The HEP Instruction

Processing Unit

The Instruction Processing Unit (IPU) consists of a

control unit and function units. The function units are

of two varieties, synchronous and asynchronous. The

function units are identified in Figure 19.

4.3.2.1 The IPU Pipelines. All synchronous

84

function units are pipelined in eight stages, each with a

delay time of 100 nanoseconds. The control unit is also

pipelined, performing the instruction fetch, decode,

operand address calculation, and operand fetch. Then it

passes its results to the appropriate function unit. The

control unit can fetch an instruction from program memory

to the function units once every 100 nanoseconds. Thus

when fully utilized, synchronous function units can

produce a result every 100 nanoseconds, giving the 10 MIPS

result of which the HEP is capable.

4.3.2.2 The IPU's Task Status Words. A Task Status

Word (TSW) is assigned each task, as discussed earlier in

the context of memory management. Each task's TSW is

maintained in the IPU. The IPU holds a maximum of 16 Task

Status Words in a hardware queue. Half of these are

allocated for user tasks, the other half for supervisor

tasks.

85

4.3.2.3 The IPU's Process Status Words. The

execution of a program constitutes a process. To identify

the position of program execution for a process, a Process

Status Word (PSW) is maintained for each process. The

Process status Word acts as the program counter for each

process. Normally, when a task is ready for execution, it

is assigned one PSW, identifying the initial instruction

for execution of the task. A task may be modularized by

the programmer into a series of subprograms which, if

executed in parallel would minimize the time requirements

for task execution. By use of a CREATE instruction, the

programmer can require additional PSWs to be created for

his task, one for each subprogram to be run concurrently.

By doing this he is initiating parallel execution of his

subprograms, creating concurrent processes.

4.3.2.4 The Task Queue and the Process Queue. The

PSWs are maintained in a process queue. Each PSW in the

queue is identified by a Process Tag (PT); that is, each

Process Tag is a pointer to a unique PSW in the process

queue. When a task is loaded, it is assigned a Task Queue

as well as a Task Status Word. The PT for each Process

Status Word initiated for a task is maintained in this

hardware Task Queue. The process queue can hold a maximum

of 128 PSWs. Sixty four are allocated for supervisor use.

This leaves a total of 64 PSWs available for user use.

These are divided in a first-requested, first-allocated

86

manner among the 8 possible user tasks. If one task can

CREATE requests sooner than the other tasks, it may

utilize all 64 slots in the process queue. Thus one task

could generate 64 concurrent processes, each process

working towards the completion of the given task.

When the Control Unit of the IPU fetches an

instruction, it accesses Task i's FIFO Task Queue for a PT

and logically removes it from the Task Queue. The PT

directs the Control Unit to a PSW in the process queue

which in turn addresses the correct program memory word

containing the instruction to be fetched. The instruction

is piped into the Control Unit pipeline where the Task

Status Word will be consulted for real operand address

calculation, etc., and the PSW is updated. Beginning on

the next 100 nanosecond period, the Control Unit accesses

Task i + 1 (mod 16) •s Task Queue for the PT pointer to the

PSW pointer to the next instruction to be fetched. The

next instruction fetched for execution will be from a

process distinct from that of the previously fetched

instruction.

The PT is not returned logically to the Task Queue

until an 800 nanosecond delay has transpired. This is the

time required for the instruction to flow through one of

the synchronous Function Units (ie. complete execution).

After the delay, the PT is returned to its original Task

Queue and becomes available once again for selection by

the Control Unit as it makes its round-robin poll of the

Task Queues.

87

4.3.2.5 The Beauty of the HEP Pipelines. This then

is what makes the HEP instruction pipeline distinct from a

conventional one; each instruction in the pipe is from a

distinct different process, a unique instruction stream.

There are no instructional dependencies within the pipe!

There are no data hazards, no read after write, no write

after read hazards! There is no hazard detection and

resolution, and no "guess and correct" branching schemes!

Each instruction stream is handled as though it were

executing on a nonpipelined control unit, one instruction

executing at a time.

Additionally, the HEP utilizes its pipeline to obtain

its multiple-instruction-stream categorization. Although

only one instruction is fetched from program memory each

100 nanoseconds, during an instruction's total execution

period, at least 8 instructions will be fetched and each

from a different process stream.

4.3.3 Interprocess Communication

Because the HEP was designed to implement concurrent

processing, it has built into its register and data

memory, hardware access states to facilitate communication

between cooperating processes. Data memory access states

can be "full" or "empty". A LOAD instruction can be made

88

to wait if its designated location is "empty" and wait

until it is set "full" by a concurrently executing STORE.

This setting of states occurs in one machine cycle.

Register memory has similar states. An instruction

executing on register memory may require both operands to

be full and the destination empty before executing and

then mark the destination as "reserved" while it is in the

pipeline. The programmer can designate when the states

should be tested. Thus, the HEP implements in hardware

some significant LOCK and UNLOCK, P and V type activities

[20] •

4.3.3.1 Asynchronous Function Units. Synchronous

function units all compute their results in eight 100

nanosecond cycles and access register and constant memory

for their operands. There are two asynchronous function

units, the Scheduler Function Unit (SFU) and the Divider

Function Unit. The Divider contains 8 individual 64-bit

floating point divider modules. It can complete a divide

instruction in 1700 nanoseconds. The Divider utilizes the

reserved state of register memory to prevent a synchronous

function unit from utilizing a destination register before

it is filled. This acts to prevent a read after write

hazard for an instruction which would follow a DIVIDE in a

process instruction stream.

The Scheduler Function Unit (SFU) is both synchronous

and asynchronous. It executes all instructions involving

89

data transfers to or from Data Memory. Most Data Memory

Modules are connected to a PEM by the packet switching

network; but, one module may be local to a PEM. The SFU

executes transfers through the switch asynchronously,

while those to a local Data Memory are executed

synchronously. The SFU is pipelined and can receive a new

data transfer request once each machine cycle, 100

nanoseconds. When a Data Memory transfer instruction is

piped to the SFU, the PT associated with that instruction

fetch is not returned to the Task Queue after the usual

delay. The SFU contains 16 queues analogous to the Task

Queues of the IPU. The PT is placed into one of these

corresponding queues of the SFU instead. The SFU also

contains a queue analogous to the process queue of the

IPU. In this queue the SFU maintains SFU Status Words

(SSW). Each SSW contains enough information about the

conditions of the Data Memory transfer to restart it as

many times as necessary. If a location is accessed by the

SFU, but its access state "full"/"empty" is not that

prescribed by the programmer, the SFU aborts and tries

again later when the ssw for that transfer comes up again

in a round-robin poll of the SSW Queue. This process

continues until all the conditions of access are met and

the data transfer is completed. Then the PT for the

completed instruction is returned to its IPU Task Queue

and removed from the SFU. The data has now been

transferred as requested and the Control Unit is now able

90

to access the PT again to fetch the next instruction in

that process. Thus, once again, any hazard which could

have existed due to the unequal compute time of the SFU

with that of the other synchronous Function Units has been

averted. Additionally, by virtue of being a pipelined

data transfer function, the SFU is in the process of

transferring multiple data elements during a given period

of time, thereby qualifying it as a Multiple Data Stream

computer.

4.3.4 Conclusion on HEP

The designers of HEP made excellent use of the

hardware technology available and the reduced cost of RAM.

These elements were combined with existing procedures and

some new ideas to create a very exciting machine.

4.4 Summary

This chapter presents pipelines. Pipelines allow

multiple inputs to be in various stages of processing at

any given time. Their use in implementing machine

instruction cycles allow the execution of multiple

instructions to be under way at any given time. When the

instructions piped into the pipeline are from the same

process, then hazards may occur. These must be detected

and resolved. When the instructions are from different

processes, as in the HEP, no hazards exist and execution

is from multiple instruction streams. The use of

arithmetic pipelines allow multiple data elements to be

operated on within the pipe at the same time allowing a

form of data parallelism. A data fetch pipeline such as

the Scheduler Function Unit of the HEP allows the

processing of multiple data streams.

91

Furthermore, each type of pipeline can be implemented

within the same machine so that each of the multiple

instructions streams in the pipe can be executing on its

own stream of data. Thereby, pipelines can be used to

establish instructional parallelism or data parallelism or

both.

CHAPTER V

MULTIPROCESSORS: THE ALLIANT FX/8

AND THE COSMIC CUBE

5.0 Introduction to Multiprocessors

Chapter 3 presents the way parallelism can be

introduced into a system by maintaining one control unit

and many arithmetic/logic units. The use of such an array

system allows multiple data elements to be processed

simultaneously, providing data parallelism. such a

computer is a single-instruction-stream multiple-data­

stream (SIMD) computer. Chapter 4 introduced pipelining.

An instruction pipeline allows multiple instructions to be

in various stages of evaluation at the same time; thus,

affording instructional parallelism as is done in the

Heterogeneous Element Processor (HEP). Further, an

arithmetic pipeline can be employed to provide data

parallelism as is done in vector processors. In the HEP

computer, instruction pipelining in the Instruction

Processing Unit (IPU) and data transfer pipelining through

the Scheduler Function Unit (SFU), provides both

instructional and data parallelism. These considerations

show that the HEP is a multiple-instruction-stream

multiple-data-stream (MIMD) computer.

92

Another computer architecture that affords an MIMD

system is the multiprocessor. A computer system that is

composed of more than one CPU is a multiprocessor.

Unfortunately, this simple definition may be applied not

only to multiprocessors, but to distributed systems and

computer networks as well.

5.0.1 What a Multiprocessor is Not

93

What are distributed systems and network systems and

how they are different from a multiprocessor? A

distributed system is a computer system composed of

multiple stand alone computers that communicate via

telephone lines or a high speed bus. The user of such a

system logs onto the system as a whole and is unaware of

which computer is giving him service. The system hides

the hardware from the user at logon and routes his service

request to a particular computer unit based on

availability. The interface with which the user interacts

runs on each computer unit; thus, the system appears the

same to the user regardless of his logon location.

A computer network implies the existence of a

collection of interconnected autonomous computers, similar

to a distributed system. Each of the computers is capable

of supplying service to the user; but, the user specifies

at logon the computer to be utilized. Networks with

geographically widespread computers are connected via

leased communication lines or satellite links while those

94

with computers located in close proximity may be connected

by radio, coaxial cable, fiber optics, etc.

Once a user has been assigned a computer as in a

distributed system or has specified one as in a network,

the execution of that user's job proceeds on the one

computer. Thus, although there are multiple processes

active in distributed and networked systems, each job is

serviced by one and only one individual computer at a

time. Exploitation of parallelism in the individual job

is that afforded by the one computer to which the user's

job is mapped.

5.0.2 What a Multiprocessor Is

This chapter presents the class of MIMD systems

termed multiprocessors. A multiprocessor system is one in

which more than one processor, or CPU, is combined to form

one computer and each processor contributes to the

solution of a single problem or task. In a

multiprocessor, the user's job is partitioned into

separate subtasks (or subroutines) and these subtasks are

mapped onto the set of CPUs. Thus, different portions of

the user's code is executed simultaneously on different

processors, each processor working on its own data; this

is the significant difference between a multiprocessor

system and systems termed distributed or networked.

As a simple example of the application and problems

of a multiprocessor, consider the task of multiplying two

95

N x N matrices, A and B. Recall that for each of the N2

elements in the result, this matrix multiplication implies

the multiplication of the elements of a row vector of A by

the corresponding elements of a column vector of B and

then the summation of these products. That is to say, N2

inner products must be computed. On a uniprocessor this

means the total time required for the multiplication will

be that required for N2 inner product computations. If it

were possible to divide the inner product computations

evenly between two processors then the time required would

be that required for the computation of N2/2 inner

products. It should be noted that exactly how this may be

done is not necessarily clear; there are many design

issues that must be considered. In this example, one of

many issues is where should the array values be stored?

If they are all in one large global memory, stored in

column major order as is common on many uniprocessor

systems, then how can the data elements be accessed by the

concurrently executing processors? The two processors

easily could attempt to access the same element of A or B

at the same time; that is, they could clearly contend for

memory access, resulting in poor turnaround.

5.1 Issues in the Design of

a Multiprocessor

Variations in multiprocessor architecture are many.

There are certain fundamental points which one should

consider when examining a given multiprocessor

architecture. Some of the most significant are the

following:

1) How is the memory, or memories, attached to the

processors?

2) How do processes executing concurrently on

separate processors communicate? How do the processes

synchronize their activity?

3) On which processor(s) is the operating system

executing?

4) How are computations partitioned to exploit

parallelism? How is the job divided into subtasks?

96

This section gives some general answers to these

questions. Subsequent sections present two very different

multiprocessors, the Alliant FX/8 and the Cosmic Cube,

that demonstrate some contrasting solutions to these

questions.

5.1.1 How is the Memory or Memories

Attached to the Processors?

97

Initially, most multiprocessors were designed to

share access to main storage (16, p. 108] [55, p. 131].

Most multiprocessor systems now fall into one of two

categories of memory-processor organizations: (1) all

processors accesss a global memory, and (2) each processor

has access only to its own local memory.

5.1.1.1 A Global Memory. In the first category, a

collection of processors, usually eight or fewer (59], are

connected to a bank of memory modules via an

interconnection network designed from complete crossbar

switches [30] [Figure 20]. Such multiprocessors are

frequently termed tightly coupled multiprocessors. Under

such an arrangement as this, any processor can address any

memory unit and, thereby, read from or write to any memory

unit [41, p. 460].

A factor which may limit severely the speed of a

tightly coupled multiprocessor is that of memory

contention. This problem was mentioned .earlier in the

example of the matrix multiplication. Memory contention

occurs when more than one processor attempts to access the

same memory unit at the same time. This problem can be

reduced by interleaving multiple memory modules, but it

cannot be eliminated altogether (41, p. 460].

Interconnection Network

P: Processor M: Memory Module

Figure 20. Multiprocessor with Global Memory

Interconnection Network

P: Processor M: Memory Module
PC: Private Cache

Figure 21. Multiprocessor with Global Memory
and Private Caches

98

99

The use of private caches is another method used to

reduce memory contention between tightly coupled

processors [Figure 21] [41, p. 470,517]. A cache is a

small RAM which has a high speed access time that matches

the processor speed. Recently used words and others

spatially local to the used words are held in the cache in

anticipation of their use in the near future [55, p. 420].

Frequently, the next word required from memory by the

processor will be in the cache, thus the processor will

not need to access a global memory module. Since memory

module access is reduced, so is memory contention [34].

As usual, an apparent solution initiates additional

problems. Suppose processor i and processor j , iF j,

each have a copy of location x in their respective caches.

If processor i writes to location x in its cache and if

processor j reads from location x in its cache, then

processor j has an old copy of the data to be processed.

Naturally, this leads to erroneous results. This is

referred to as the cache coherence problem. Two common

ways of solving the problem of cache coherence are now

given.

The first and simplest method of solving cache

coherence problems is the static coherence check. In this

technique, code and data are divided into two categories:

(1) read only information such as instructions (cacheable)

and (2) read or write information such as updatable data

(non-cacheable) . Non-cacheable information is restricted

100

from the processors' caches. Since a large amount of data

and code is cacheable this technique does eliminate many

shared memory accesses while preventing non-coherence of

cached data.

Dynamic coherence checking is the second way to

insure positive cache coherence. As the word dynamic

implies, this technique is activated during run time. In

this scheme, multiple copies of read or write information

are allowed in the processors' caches. However, each time

a processor writes to a location x, it "cross

interrogates" the other processors, via a high speed bus

or other communication line, to determine if they also

have a copy of location x in their caches. If so, the

processors whose caches need updating are signaled to mark

their copies as out or not present. Then the updating

processor "writes-through" or updates shared memory as

well as its own cache. The next time the other processors

need location x's data, they will refresh their caches

from the shared memory.

There is an additional technique used to lower the

frequency of memory contention in some tightly coupled

computer systems. It is to provide each processor with a

local memory as well as the global memory. The local

memory is used to hold operating system and processor

status information pertinent to the particular processor

[Figure 22]. A switch is employed to map each specified

Interconnection Network

P: Processor
S: Switch

M: Memory Module
LM: Local Memory

Figure 22. Multiprocessor wit~ Global Memory and
Local Memories

101

102

address onto either the local or global memory. The local

memory serves to lower the frequency with which the global

memory must be accessed.

Another problem with tightly coupled multiprocessors

is that as the number of processors and memory modules

hung on the interconnection network increases, so also

does the complexity of the network. If there are p

processors and m memory modules, then the number of 2 by 2

crossbar switches is on the order of p*m. Thus the

complexity, cost, and delay time for data transmission

increases rapidly as either the number of processors or

the number of memory units increases.

5.1.1.2 Each Processor Has Access Only to Its own

Local Memory. Multiprocessors of the second category

contain a collection of processors, normally a large

number, from 64 to 65,536 [59], each with its own local

memory where it accesses its own instructions and data.

Each individual processor with its local memory and I/O

devices may be referred to as a computer module. The

computer modules are connected by channels that link the

modules together according to some designer determined

pattern [Figure 23]. A computer system such as this often

is termed a loosely coupled computer system. With the

local memory approach, memory contention is no longer a

problem and there is no costly interconnection network.

I

pl p2 p3 Pp

LM LM LM LM

Channel System

P: Processor LM: Local Memory

Figure 23. Multiprocessor with Only Local
Memories

103

I

104

There are a number of different channel link patterns used

in multiprocessors. Some common configurations are the

(1) linear array, (2) tree, (3) star, (4) near-neighbor

mesh, (5) ring, and (6} hypercube [Figure 24-29]. The

problem to which the multiprocessor will be applied

determines the merit of a given configuration. This issue

is discussed more in the immediately following section.

5.1.2 How do Processes Executing

Concurrently on Separate Processors

Communicate? How do the Processes

Synchronize their Activities?

The answers to the questions, "How do processes

executing concurrently on separate processors communicate?

How do the processes synchronize their activities?"

depends primarily on how the memories are configured.

5.1.2.1 Tightly Coupled Multiprocessors.

Multiprocessors that have a global memory as in Figure 20

communicate by writing to and reading from common memory

locations. That is one reason why the issue of cache

coherence mentioned above is so very significant.

Processes executing concurrently and sharing common data

on a multiprocessor system face many of the same problems

dealt with by concurrent processes running on a

uniprocessor. Issues such as critical sections, mutual

Figure 24. Linear Array of Four Processors

Pl

LM

p2 F= PJ F==

LM LM

p4 Ps p6 p7

LM LM LM LM

Figure 25. Tree Configuration of Seven
Processors

105

pl p2

LM LM

PJ p4

LM LM

p6 p7

LM LM

Figure 26. Star Configuration of Seven
Processors

II j II II
pl p2 PJ p4

LM LM LM L

II II II II
Ps p6 p7 Pa

LM LM LM LM

II II II II
Pg P1o pll pl2

LM LM LM LM
II II II II

Ps

LM

Figure 27. Near-Neighbor Mesh Configuration
with Twelve Processors

106

PJ

LM

pl p2

LM LM

I== !::::=:

== Ps p6 ~

LM LM

Figure 28. Ring Configuration of
Six Processors

107

p4

LM

c

c

c
c-== ----?c

17--

c: Computer Module -
Processor and Local Memory

Figure 29. ·Four-Dimensional Hypercube
Configuration

108

109

exclusion, deadlock, and use of semaphores are handled

similarly to the uniprocessor conventions. For further

study in these areas, the reader is referred to Calingaert

(1982), Chapter 4. The primary complication which

multiprocessors add to these issues is that of

simultaneous access to semaphores by processes executing

concurrently on distinct processors. On a uniprocessor,

access to a semaphore by one and only one process is

implemented by disabling interrupts on the lone processor

during the time period in which the semaphore is

processed. Interrupt disabling by a process prevents any

other process from gaining access to the CPU. However,

disabling interrupts on one processor does not effect

processes running on other processors in a multiprocessor

environment. The common solution to this problem is the

inclusion of indivisible read-write instructions such as

test-and-set into the machine's instruction set. Such

instructions are used to force processes on separate

processors into executing loops, busy waiting, until

processing of the semaphore by the current process is

complete~ Figures 30 and 31 demonstrate the distinction

between P and V operations for a uniprocessor and those

for a global memory based multiprocessor system. The

test-and-set instruction, TS(S.Mutex) [Figure 31], assigns

the variable named Permission the value read from S.Mutex

and sets s.Mutex FALSE in one non-interruptable machine

instruction cycle. Processes executing the procedures P

procedure P(S)
recordS (integer Count, pointer Ptr);
process P;
begin

disable interrupts;
S.Count := S.Count - 1;
if s.count < 0 then

begin

end

insert calling process on list
pointed to by S.Ptr;

P := some ready process;
dispatch P with

interrupts enabled

else enable interrupts
end;

procedure V(S)
recordS (integer Count, pointer Ptr);
process P;
begin

disable interrupts;
s.count := s.count + 1;
if s.count < 0 then

begin
P := remove some process from

the list pointed to by S.Ptr;
WAKE UP P

end;
enable interrupts

end;

Figure 30. Uniprocessor Implementation
of P and V [16, p. 99)

110

procedure P(S)
recordS (integer Count, pointer Ptr, boolean Mutex);
process P;
boolean Permission;
begin

end;

disable interrupts;
repeat permission := TS(S.Mutex)
until permission = TRUE;
S.Count := S.Count - 1;·
if s.count < 0 then

begin
insert calling process on list

pointed to by S.Ptr;
P := some ready process;
S.Mutex := TRUE;
dispatch P with interrupts enabled

end
else begin

S.Mutex := TRUE;
enable interrupts

end

procedure V(S)
records (integer Count, pointer Ptr, boolean Mutex);
process P;
boolean Permission;
begin

disable interrupts;
repeat Permission := TS(S.Mutex)
until permission = TRUE;
s.count := s.count + 1;
if s.count ~ 0 then

end;

begin
P := remove some process from

the list pointed to by S.Ptr;
wake up P;

end;
S.Mutex := TRUE;
enable interrupts

Figure 31. Multiprocessor Implementation
of P and V [16 , p . ~10]

111

or V on other processors execute the repeatjuntil loop

until the process accessing the semaphore member s.count

resets S.Mutex to TRUE and exits the appropriate

procedure. Thereby, one and only one process is allowed

access to the semaphore member s.count, during the

execution of either a P or a V procedure.

Additional communication between tightly coupled

112

multiprocessors can be established via an interrupt system

[Figure 32]. The interrupt system allows interprocessor

interrupts; that is, any processor may interrupt any other

processor. The interrupt signal interconnection system

Signal Interconnection System
--------' I I

Interconnection Network

P: Processor M: Memory Module

Figure 32. Multiprocessor with Global
Memory and Interrupt
Signal Interconnection
System

113

may be a simple time shared bus or a complex crossbar

switch. The bus is lower in cost but slower to use due to

the additional logic needed to make the appropriate

processor to processor connection (arbitration logic).

Use of the interrupt system may allow one process to

signal another of its desire to synchronize. One

multiprocessor called the HYDRA uses such an interrupt

system to provide mutual exclusion (access by one and only

one process) during operations on queues [16, p. 209].

5.1.2.2 Loosely Coupled Multiprocessors.

Multiprocessors that have local memories and are connected

by a pattern of channel links communicqte via message

passing. Data andjor synchronization signals are passed

as message packets via the channels to neighbor computer

modules. The neighbor module may reroute the message to

another module as necessary until the message reaches the

appropriate processor. When synchronization is required

between processes, the processor to which the message is

addressed can be programmed to halt execution at a certain

point in its performance until an expected message packet

arrives at one of its ports.

A message packet is generally a block of bytes

containing such information as the destination processor

address and destination process id, source processor

address and source process id, count of bytes to be

transmitted, data, and control information [Figure 33].

<---------------- HEADER ---------------------->

DESTINATION SOURCE

2 2 2 2 2 2 2 1024
BYTES

PRCS: Process Id. Node: Processor Id.

Figure 33. Message Packet Format for
Interprocessor
Communication (44]

114

2

115

The message packet is compiled by operating system

routines. The communicating process calls the operating

system routines and passes them the information needed to

compile the packet. The operating system may split the

messagejdata into multiple packets depending on the amount

of data to be sent. Then, the operating system routines

route the message over the appropriate channel from the

sending processor onto the channel opened or specified by

the process. Rather than passing straight through each

computer module node on its way to the destination

processor, the packet is stored temporarily in each

computer in a buffer or queue area. Then the packet is

forwarded to the next node in its journey to the

destination by routines of the locally executing operating

system. This store-and-forward packet switching allows

efficient use of the channels which network the computer

modules together.

The use of message packets allows large units of data

to be transferred from one processor to another without

seizing the channel and blocking out messages that need to

be sent over the same path or intersecting path by other

concurrent processes. In the tree configuration of Figure

25, if a process on processor P1 sends a message to a

process running on P7 , and a process on P2 sends a message

to another running on P3 , then the channel from P1 to P3

is required by two concurrent communications. If one

communication is excessively lengthy, it can block the

116

other out for an extended period, negatively effecting the

execution of the blocked process. Similarly, a

communication over a long path can block out many short

path communications. By using packet switched store-and­

forward message passing each packet has its own virtual

circuit through the system.

The problem to which a multiprocessor is applied

determines the merit of a given processor configuration,

ie. linear array, ring, etc. If a given problem may be

solved by the operation of a sequence of subroutines, si,

i=l,2, •. ,n, where the result of subroutine si is passed as

input to subroutine si+l' if this computation needs to be

made for a number of different initial input values, and

if n computer modules are available, the processors can be

configured as a linear array, with si executing on

processor Pi· The result of each subroutine can be passed

as a message packet to the subsequent subroutine on the

next processor down; and the initial input values can be

pipelined through the multiprocessor linear array,

allowing the completion of all computations in about 1/n­

th of the time to do the computations sequentially on a

uniprocessor. This speedup is only approximate after the

pipe is full.

One reason that the speedup anticipated in the above

example is not attained is the high overhead inherent in

message passing; work done by the operating system

routines to implement the message passing can be time

117

consuming. Systems which utilize message packet

communications usually display a high degree of efficiency

as long as the amount of message passing required is

maintained at a low level; otherwise, the overhead

inherent in transferring messages from one module to

another may deteriorate performance significantly [41, p.

468].

5.1.3 On Which Processor(s) is the

Operating System Executing?

Operating Systems for multiprocessors are very

similar conceptually to those that run on uniprocessors

utilizing multiprogramming. The reader is referred to

Calingaert (1982) [16] and other such texts which discuss

the fundamentals of operating system design. The need to

support multiple processors executing asynchronous tasks

is the factor which increases the complexity of

multiprocessor operating systems. Additional intricacy is

involved in the support of graceful degradation. One

advantage of a multiprocessor system is the potential of

keeping the system up and running in the advent of a

hardware fault in one of the multiple processors.

Graceful degradation implies the capability of

reconfiguring the_system to omit the faulty unit and

continue running. Failure to support graceful degradation

mars the positive features of a multiprocessor.

118

An operating system manages the specific facilities

for which it is designed. Of course, that implies that

the operating system's internal design depends directly on

the organization of the hardware. Each multiprocessor

operating system works differently. The processor-memory

organization and the method of interprocess communication

provided by the hardware clearly influences operating

system design. This section outlines three basic

operating system configurations which have been used in

existing multiprocessors: (1) master-slave processor

configuration, (2) each processor with its own separate

supervisor, and {3) floating supervisor which may be in

any processor at a given time.

5.1.3.1 Master-slave Processor Configuration. In a

master-slave processor configured operating system, one

processor is designated as the master processor. The

operating system is executed by this one processor alone.

It maintains the status of each processor in the system

and allocates tasks to the other processors, or slaves,

according to some rule. The slaves are treated as

schedulable resources. This implies that the master

should be able to assign tasks to the slaves as fast as

they can do them. Should the master not be able to match

the speed of slave processor service then the slaves must

wait; clearly, this condition implies poor use of

facilities. If the master fails then the multiprocessor

119

fails; under such circumstance, it is impossible to

degrade gracefully. Since the operating system always

executes on the one processor, a slave processor

communicates with the master through an interrupt signal

interconnection system. The slave either generates a trap

or executes a supervisor call instruction. The master

processor operating system's appropriate interrupt handler

acknowledges the request and performs the required

service. The advantage of a master-slave arrangement is

that it is relatively easy to implement as an extension of

a multiprogramming uniprocessor operating system. Since

only one processor is executing the operating system code,

and in behalf of only one user at a time, the code need

not be reentrant [41, p. 527]. The code need not be

reentrant in the sense that no separate data areas need be

established for separate instances of execution.

Naturally, the machine instructions should not modify

themselves. Master-slave operating systems work well in

environments with special applications such that the tasks

are clearly specified. Also, it works well on

multiprocessors that have only two or three processors, as

the slaves are not so likely to contend for service from

the master.

5.1.3.2 Each Processor with Its Own Separate

Supervisor. Each processor may have its own copy of the

supervisor system to execute, then each processor provides

120

for its own management requirements. Multiprocessors with

local memories as in Figures 22 and 23 utilize this

operating system configuration, although it may also be

used in a totally global memory system such as Figure 20.

Although the processors take care of their own needs, they

must interact with each other. In a message based system,

this implies that each operating system possesses the

routines needed to implement the store-forward data packet

message passing discussed earlier.

In a multiprocessor with a global memory, supervisor

code is replicated for each processor. In order for the

processors to interact, it is necessary for some of the

data structures such as job tables and the state of shared

resources such as file structures to be held in the global

memory and shared by the whole system. Shared tables

create access problems. The prevention of simultaneous

access of the tables by multiple processors may be

implemented using test-and-set instructions and P and V

procedures as discussed in the previous section on

synchronization. Any shared code must be reentrant.

The separate supervisor for each processor

configuration provides more graceful degradation than the

master-slave system; since each processor is providing its

own primary needs, then when one processor fails the

others can continue.

121

5.1.3.3 Floating Supervisor which may be in Any

Processor at a Given Time. Under a floating-supervisor

operating system, any one processor may be executing the

supervisor at a given time. Further, several of the

processors may be executing supervisor service routines at

the same time. All the processors and other resources are

treated equally. Code and tables are maintained in a

global memory and any processor may access the code or

tables for use. Thus, most code must be reentrant and

table access conflicts cannot be prevented, but can be

handled as mentioned earlier with test-and-set

instructions and P and V procedures. This operating

system mode is. considered to be the most difficult plan of

operation and the most adaptable. If a processor fails

the other processors simply pick up its load and continue.

This provides graceful degradation.

These three operating system configurations are

generalizations of the systems found in practice. Actual

systems fit somewhere in the continuum between the simple

master-slave approach and the sophisticated floating­

supervisor mode.

5.1.4 How are Computations Partitioned

to Exploit Parallelism?

A program written for a multiprocessor must exploit

the parallelism of the algorithm in order for there to be

any speedup in the program execution over that found in a

uniprocessor. How the parallelism is detected and the

computation partitioned so that different processors may

work on separate portions of the job is the question

addressed here.

122

Parallelism may exist at different levels. The

chapters on array processors and pipelining demonstrate

how parallelism can be exploited at the data and

instruction levels. The chapters on data flow and

reduction present additional methods of exploiting

parallelism at the instruction level. In the MIMD

environment of a multiprocessor, it is the parallelism

that may exist between blocks of code that' is of concern.

The idea is to identify those blocks of code that are

self-contained units of the computation to be performed

and can be executed during the same time period on

different processors. This does not imply that they must

begin and end execution together, but, rather that the

operation of one may begin before the termination of the

other. In this section, focus is on both this issue and

on how this information is conveyed to the multiprocessor.

5.1.4.1 Data Dependency. The primary issue which

delimits parallelism between blocks of code is data

dependency. Consider the statements of Figure 34.

123

sl X = A + B
s2 Y = M + N
s3 z = X + Y

Figure 34. Statements for Parallel Evaluation

The statement s3 is dependent on the results of statements

sl and s2; there exist data dependencies between s3 and

both statements sl and s2. On the other hand, the

computation of Y is independent of the computation of X,

and vice versa. The computation of z is independent of

the order in which X and Y are computed. Therefore,

statements sl and s2 may be interchanged, or commuted, and

still produce the same result in z.
In general, when two blocks of code demonstrate this

condition of commutativity, as sl and s2 do here, then

there are no data dependencies between them and they can

be executed in parallel. More precisely, the Bernstein

condition must be satisfied before sequentially organized

processes can be exec~ted in parallel [63, p.JlO].

If the following definitions are made, Bernstein's

condition may be identified. B1 and B2 define blocks of

code. Ri defines the set of all memory locations such

that the first access of the location by Bi is a read

124

operation. Wi defines the set of all memory locations to

which Bi performs a write operation.

Bernstein's condition [10] may be stated as follows.

B1 and B2 may be executed in parallel if they fulfill the

following requirements:

1) Rl n w2 = fij·

2) R2 n wl = 9J

3) wl n w2 = J6

Blocks of code that meet the Bernstein condition have no

data dependencies and are appropriate candidates for

parallel execution on distinct processors.

In the example of Figure 34, if Si = Bi, then

R1 = {A, B}, w1 = {X},

R2 = {M, N}, w2 = {Y}.

and {A,B} (\. {Y} = {M,N} (\.{X} = {X} (\. {Y} = 9J

showing that s1 and s 2 may be executed in parallel.

Further,

R3 = {X, Y}' w3 = {Z}, and

R3 (\.w1 = {X, Y}(\. {X} ~ J6, also

R3{"\ w2 = {X, Y}f\. {Y} ~ J6.

The non-empty intersections indicate s 3 may not be

executed in parallel with either s1 or s2.

Although a pair of blocks may demonstrate

commutativity, they are not necessarily appropriate for

parallel execution. Consider the process called Fast

Fourier transform, or FFT. This process produces its

output in bit reversed order. As a result, a complete FFT

computation implies that either (1) the input of the FFT

first be bit reversed or (2) the output from the FFT be

bit reversed. The processes of FFT and bit reversal

125

exhibit commutativity. But, either (1) the output of the

bit reversal, w1 , serves as the input for the FFT, R2, and

w1r-lR2 ~ ~ , or (2) the output of the FFT, w2 , serves as

the input for the bit reversal, R1 , and w2(lR1 ~ ~ •

Clearly, the procedure blocks fail Bernstein's condition

and they are not suitable for parallel execution.

Commutativity is a necessary but not sufficient condition

to insure valid parallel execution [41, p. 542].

It has been determined that the Bernstein condition

is necessary and sufficient for blocks of code to be

executed in parallel. How are the results of a data

dependencies analysis conveyed to the multiprocessor; or,

how does the multiprocessor "know" which blocks may be

executed on different processors? There are two

approaches; one strategy is to employ implicit

concurrency, the other is to apply explicit concurrency.

5.1.4.2 Implicit Concurrency. Implicit concurrency

indicates that the compiler performs a data dependency

analysis of the source program. Based on the above

described conditions, appropriately designed compilers can

determine potential parallelism in high-level language

programs automatically. Most existing parallelizing

compilers examine loops for consideration as parallel

126

blocks, where each iteration of the loop, if executed

sequentially, is considered as a single process. A

subsequent section of this chapter examines the Alliant

FX/8 multiprocessor which is bundled with FX/FORTRAN, a

parallelizing compiler. That section surveys this subject

further.

5.1.4.3 Explicit Concurrency. Explicit concurrency

indicates that the programmer considers his code and

divides it into logical units, considers the data

dependencies between the units, and then specifies the

blocks or program units which may be executed in parallel

using certain language constructs. Some of those

constructs are surveyed in the following paragraphs.

FORK and JOIN are two statements that allow explicit

specification of parallelism or concurrency. These two

statements are not totally standardized; thus, they may be

defined differently in different settings. This

discussion attempts to convey the basic concepts of FORK

and JOIN [55, p. 182] [41, p. 533-534] [63, p. 310-314].

The FORK and JOIN statements function as system

primitives; they are indivisible, or uninterruptable,

procedures.

FORK is used to spawn a new process from code

beginning at a specified address; FORK also continues the

current process in which it is expressed. Execution of

127

the FORK function expressed in the format

FORK Sl

initiates execution of code beginning at statement Sl as

well as allowing execution of the code following the FORK

to continue. Execution of the FORK function expressed in

the format

FORK Sl,J,N

initializes a counter J to the value N; then initiates

execution of code beginning at statement Sl and continues

execution of the code following the FORK, as in FORK Sl

above.

JOIN is used to end all but one of a set of

concurrent processes. JOIN has the format

JOIN J

Execution of this statement results in decrementing

counter J. If the value of counter J is not zero after

decrementing then the process executing the JOIN

terminates. A process that performs the JOIN and sets the

counter to zero continues to execute.

The value N from the FORK Sl,J,N statement specifies

the number of concurrent processes that are to be funneled

together and joined into one process. The counter J is

decremented from N down to zero by JOIN J as each

concurrent process executes the JOIN. This implies that

the longest executing process of the process set will not

be terminated by the JOIN.

128

In the code of Figure 34, statements sl and s2 may be

executed in parallel. This parallel execution may be

implemented by the code in Figure 35. The FORK S2,J,2

sets J to two and begins execution of the code at S2; Sl

also begins execution concurrently with S2. If the

process of S2 reaches the JOIN J first, then the J will be

decremented to one which is not zero, so that process will

terminate; then the process from Sl will GO TO the JOIN,

decrement the counter J from one to zero and continue by

executing statement SJ.

Figure 35.

FORK S2,J,2
Sl X = A + B

GO TO S4
S2 Y = M + N
S4 JOIN J
SJ Z = X + Y

Parallel Implementation
of Figure 34 Using
Fork and Join

129

A more complicated example is given in the code of

Figure 36.

DO S2 I = O,N-1
S1 A(I+1) = 2*I + 1
S2 READ B(I+1)

DO S7 I = 1,N
S3 C(I) = B(I)**2
S4 WRITE C(I)
55 D(I) = C(I)**2 +A(I)
S6 WRITE D(I)
S7 WRITE A(I)

Figure 36. Sample Code

Since the programmer is to express his concurrency

explicitly and wishes to maximize concurrency, it is

appropriate for him to analyze the code in an effort to

break it down into self-contained blocks with minimal data

dependencies between blocks. After considering what

activities may be done independently of the others, he

could rewrite the code as shown in Figure 37.

DO S1 I = O,N-1
S1 A(I+1) = 2*I + 1

DO S2 I = 1,N
S2 READ B(I)

DO S3 I = 1,N
S3 C(I) = B(I)**2

DO S4 I = 1,N
S4 WRITE C(I)

DO S5 I = l,N
S5 D(I) = C(I)**2 + A(I)

DO S6 I = l,N
S6 WRITE D(I)

DO S7 I = l,N
S7 WRITE A(I)

Figure 37. Code of Minimally
Dependent Blocks.
Assume Distinct
I's in Each Loop

130

A data dependence analysis of the blocked code would

show the data relationships presented in the diagram of

Figure 38. Computation of the vector D depends on the

previous computations of vectors A and C; computation of c

depends on reading B; writing of vectors A, c, ~r D may

not proceed until the vector elements are computed.

Vector A can be computed while B is read and then c

computed. Vectors A, c, and D can be written at the same

time, assuming adequate output device resources are

available. Vector A could also be written while B is read

and C computed since those actions are independent of A.

S1

S7

DO S1 I = O,N-1 DO S2 I = 1,N

ss

DO

A(I+1) = 2*I + 1 S2 READ B(I)

1
DO S3 I = 1,N

S3 C(I) = B(I)**2

II
.., ~

DO SS I = ,N
D(I) = C(I)**2 + A(I)

.. "'
DO S4 I = 1,N

S4 WRITE C(I)

~ JL-

S7 I = 1,N DO S6 I = 1,N
WRITE A(I) S6 WRITE D(I)

Figure 38. Data Dependence of Code
in Figure 37

131

132

Vector A could be written while D is computed, since the

operations do not contradict Bernstein's condition; but,

they should not be done concurrently since both processes

would access vector A and contend for memory access.

Thus, the code could be written with FORKs and JOINs

as indicated in Figure 39. Figure 39 can be represented

pictorially as in Figure 40. Thus, the FORK Sll,J,2 in

the initial process indicates J is set to two, the

execution of the current process into Block 1 is

continued, and a new process in the execution of Block 2,

beginning at Sll, is initiated. Blocks 1 and 2 may then

be executed concurrently on separate processors. The JOIN

J at statement Sl2 indicates synchronization, in that the

process to reach statement Sl2 first decrements J to one

and ends; the second process to reach Sl2 decrements J to

zero and continues to execute Block 3. FORK Sl3,J,3 sets

J to three and initiates execution beginning at statement

Sl3, as well as continuing in line execution. FORK Sl4

initiates execution of code beginning at line Sl4 as well

as continuing in line execution. Thus, Blocks 4, 5, and 6

will execute concurrently. The first to complete will

execute JOIN J, decrement J to two, and quit; the second

will execute JOIN J, decrement J to one, and quit; and,

the third to complete will execute JOIN J, decrement J to

zero, and continue execution.

FORK 511,J,2
/*Block 1*/
DO S1 I = O,N-1

51 A(I+1) = 2*I + 1
GO TO 512
/*End 1*/

/*Block 2*/
511 DO 52 I = 1,N
52 READ B(I)

DO 53 I = 1,N
53 C(I) = B(I)**2

/*End 2*/

512 JOIN J

/*Block 3 *I
DO S5 I = 1,N

55 D(I) = C(I)**2 + A(I)
/*End 3*/

FORK 513,J,3
FORK S14
/*Block 4 */
DO 54 I = 1,N

54 WRITE C(I)
GO TO 515
/*End 4 */

/*Block 5*/
513 DO 56 I = 1,N
56 WRITE D(I)

GO TO 515
/*End 5*/

/*Block 6*/
Sl4 DO S7 I = 1,N
S7 WRITE A(I)

/*End 6 */

515 JOIN J

Figure 39. Parallel Implementation of
Figure 36 Using Fork and
Join

133

II
FORK S11,J,2

II
II II

/*Block 1*/ /*Block 2*/
DO S1 I = O,N-1 S11 DO S2 I = 1,N

S1 A(I+1) = 2*I + 1 S2 READ B(I)

S4

GO TO S12 DO S3 I = 1,N
S3 C(I) = B(I)**2

II
S12 JOIN J

II
/*BLOCK 3*/
DO S5 I = 1,N

II

S5 D(I) = C(I)**2 + A(I)

II
~S13,J,3

FORKIIS14

II

/*BLOCK 4 */ /*BLOCK 5 */
DO S4 I = 1,N S13 DO S6 I = 1,N

WRITE C(I) S6 WRITE D(I)
GO TO S15 GO TO S15

/*BLOCK 6 */
S14 DO S7 I = 1,N
S7 WRITE A(I)

S15 JOIN J

Figure 40. Flow of Control Graph of
Code of Figure 39

134

135

FORK is analogous to the use of the GO TO construct

in its effect on the point of execution. Thus, FORK/JOIN

have fallen into disfavor as structured programming has

gained approval. Further, use of FORK/JOIN blurs the

distinction between statements executed sequentially and

those that may be executed concurrently. In the example

of Figure 39, it is not immediately obvious that vector D

is computed alone while vectors A, c, and D are written

concurrently.

Some structured constructs in use are PARBEGIN/PAREND

(or, COBEGIN/COEND) and PARFOR. PARBEGIN and PAREND

delimit disjoint blocks of code; all of the code blocks

set aside by the PARBEGIN/PAREND construct may be executed

concurrently. The disjointness of the blocks implies that

a variable X written by one block may not be read by

another block, although all concurrent blocks may

reference the same variable. Using the PARBEGIN/PAREND

construct, the example program using FORK and JOIN may be

rewritten as Figure 41.

The PARFOR construct is analogous in construction to

the Pascal FOR statement. Its basic construct is

PARFOR I = l UNTIL N DO
BEGIN
•••• statements •.•
END

BEGIN·
PARBEGIN

BEGIN /*Block 1*/
DO 51 I = O,N-1

A{I+1) = 2*I 51
END
BEGIN /*

DO
S2

Block 2*/
S2 I = 1,N
READ B(I)

DO S3 I = 1,N

+ 1

S3
END

PAREND

C{I) = B{I)**2

/*BLOCK 3*/ .
DO 55 I = 1,N

SS D(I) = C{I)**2 + A{I)

PARBEGIN
BEGIN /* Block 4*/

DO 54 I = 1,N
WRITE C{I) S4

END
BEGIN /*

DO
56

END

Block 5*/
56 I = 1,N
WRITE D{I)

BEGIN /*BLOCK 6*/

S7
END

PAREND
END

DO 57 I = 1,N
WRITE A{I)

Figure 41. Parbegin and Parend Construction
Equivalent to the Fork and Join
Code of Figure 39

136

137

The PARFOR construct implies that N concurrent processes

will be initiated, one for each value of variable I. Each

process is generated from one iteration of the loop body.

An example is the multiplication of an NxN matrix, A,

by an Nxl vector, B, giving an Nxl vector, c [41, pp.

538]. This multiplication requires the computation of N

inner products. The computation may be divided between

multiple processors by spawning multiple processes for

scheduling on the processors. If there are P processors,

such that P divides N evenly, and S = N/P then the code of

Figure 42 will generate P processes. Each process may be

scheduled on a different processor for parallel execution.

In Figure 42, if there be two processors, P = 2, and

if N = 4, then S = 4/2 = 2. There will be two parallel

processes generated. The first process, for I = 1, is the

execution of the code indicated in Figure 43. This first

process computes C(l) and C{2). The second process, for I

= 2, is the execution of the code indicated in Figure 44.

This second process computes C(3) and C(4).

These examples demonstrate how the FORK/JOIN,

PARBEGIN/PAREND and PARFOR constructs may be used to allow

a programmer to exploit explicitly the potential

parallelism between disjoint code blocks. Of course, not

all processes a programmer wishes to execute in parallel

are disjoint. Many processes need to share common data

PARFOR I = 1 UNTIL P DO
BEGIN

END

FOR J = (I - 1) * S + 1 UNTIL S * I DO
BEGIN

C(J) = O:
FOR K = 1 UNTIL N DO

C(J) = C(J) + A(J,K) * B(K):
END

Figure 42. Parfor for Generating P Parallel
Processes to Calculate N Inner
Products where s = NIP

BEGIN

END

FOR J = 1 UNTIL 2 DO I* (I-1)*S+1 = 1 *I
I* S*I=2 *I

BEGIN
C(J) = O:
FOR K = 1 UNTIL N DO

C(J) = C(J) + A(J,K) * B(K);
END

Figure 43. Process Code for Calculation of C(1) and
C(2) from Figure 42

BEGIN

END

FOR J = 3 UNTIL 4 DO I* (I-1)*S+1=3 *I
I* S*I'=4 *I

BEGIN
C(J) = 0;
FOR K = 1 UNTIL N DO

C(J) = C(J) + A(J,K) * B(K);
END

Figure 44. Process Code for Calculation of C(3) and
C(4) from Figure 42

138

139

bases. A common example of such sharing are

producerjconsumer process pairs. Here one process writes

what another process reads. Clearly, the consumer should

not read a location prior to the writing of the location

by the producer and the producer should not write over

data that has not yet been read by the consumer.

Different languages and architectures handle this problem

differently. In REP's data memory, a solution to this

problem is to flag memory as 'full' or 'empty'.

Code that accesses a variable or data base or other

resource that is common to two or more concurrent

processes is called a critical section. A critical

section must be executed only by one process at a time.

If the concurrent processes are running on separate

processors then a critical section must be executed by

only one processor at a time. This requires that one

processor must 'lock out' all other processors from access

to the shared resource while it is accessing the common

resource. Such an operation is called synchronization.

Means of synchronization are discussed in section 5.1.2.

Synchronization between two parallel processes accessing a

common resource can be implemented using the P and V

operations of Figure 31 as shown in Figure 45. In Figure

45, P1 and P2 could execute in parallel except when they

attempt to access the common resource simultaneously. For

further reading on this topic the reader is referred to

Calingaert (1982) [16], Chapters 4 and 8, and to Hwang and

B~iggs (1984) [41], pages 539-541 and Chapter 8 of Hwang

and Briggs.

RECORD S(INTEGER COUNT: POINTER PTR; BOOLEAN MUTEX)
S.MUTEX =TRUE /*NO.PROCESS EXECUTING P OR V*/

/* IS ACCESSING S.COUNT */
S. COUNT = t /*NO PROCESS HAS EXECUTED P OR V*/
S.PTR = NULL /*LIST OF PROCESSES BLOCKED ON */

PARBEGIN
Pl: BEGIN

P(S}

/* S IS EMPTY INITIALLY*/

CRITICAL SECTION./*ACCESS COMMON RESOURCE*/
V(S)

END
P2: BEGIN

P(S)
CRITICAL SECTION./*ACCESS COMMON RESOURCE*/
V(S)

END
PAREND

Figure 45. Use of Multiprocessor P and V
Operations to Synchronize
Execution of a critical
Section by Parallel Processes
Pl and P2

140

141

5.2 The Alliant FX/8 Multiprocessor

The Alliant is the first of two multiprocessors

surveyed in this chapter. The Alliant FX/Series is a

multiprocessor architecture which combines up to eight

processors in a parallel design. The FX/Series

architecture has gained the interest of many due to its

high performance/cost ratio. In performance comparisons

of different computers running LINPACK [28] software in a

FORTRAN environment the Alliant has shown itself to be a

consistently high performer. Using the Cray-15 computer

as a standard of 1, the Alliant FX/8 has produced

equivalent results in 1.6 times as many time units as that

of the Cray-15. This may be compared with the DEC VAX

8600 which produced its results in 32 times as many time

units as that of the Cray-15 [28].

The full Alliant FX/8 configuration may be pictured

as shown in Figure 46. It is composed of eight FX/l's.

Each FX/1 is composed of one Computational Element {CE)

and one or two Interactive Processors (IP), eight

megabytes of physical memory, one cache for the

Interactive Processors, and one cache for the

Computational Element. The user may upgrade his Alliant

System by purchasing additional FX/1's as needed, up to a

maximum of eight. Thus the full Alliant FX/8 architecture

as pictured [Figure 46] has eight CEs, twelve IPs, sixty

CONCURRENCY
CONTROL
BUS

CE:
IP:

Figure 46.

Computational Element
Interactive Processor

The Alliant FX/8 Multiprocessor
System [3]

142

143

four megabytes of physical memory (it may be increased to

eighty megabytes), two computational processor caches for

the CEs and four caches for the IPs. The CEs are

connected to the computational caches via a crossbar

interconnection network. Each CE is· capable of 11.8

million floating point operations per second (MFLOPS),

allowing more than 94 MFLOPS on the FX/8 system when

operating at peak performance. The CEs as a group are

referred to as the computational complex.

The Alliant FX architecture uses the IPs to run

interactive user jobs; all I/O is done through the IPs.

Concentrix, the Berkeley 4.2 Unix operating system runs in

parallel on the IPs. The computational elements are

scheduled by the operating system as a single resource.

When scheduled and utilized, the CEs reduce time-to­

solution for a single application.

The Alliant FX/8 implements parallelism at several

levels including:

1) Instruction pipelining in the CEs and IPs.

2) Vector processing. Each CE contains a floating

point pipeline for the implementation of floating point

array calculations. Integer and logical operations are

also allowed.

3) Concurrent processing of distinct jobs. The IPs

are used to service individual user jobs as in a

distributed system.

144

4) Concurrent execution of distinct instruction

streams for the same job. The computational complex (the

CEs) is scheduled by the operating system as a single

resource to be applied to the parallel execution of

portions of a single user's program.

It is the parallelism provided by 4) above which

makes the Alliant FX/8 a true multiprocessor as defined in

this chapter. This section examines the computational

element and Alliant cache and memory system to determine

how it implements some of these parallel techniques. The

Alliant FX/FORTRAN parallelizing compiler is also examined

and its concurrency applications are surveyed.

5.2.1 The Computational Element

The computational elements are the heart of the

Alliant multiprocessor system. Each CE is a

microprogrammed computer with pipelined data and control

paths. The basic CE instruction set modes include the

following:

1) concurrency instructions such as test-and-set and

wait-and-start (stops and starts the CEs) •

2) vector processing instructions which allow

logical, integer, and floating point operations on vector

registers which may hold up to 32 elements each. The

vector operations include register-to-memory operations,

comparisons and logical operations on operands in vector

registers, reduction functions such as summing the

elements of a vector, and vector-vector, scalar-vector

arithmetic operations.

3) IEEE floating point instructions.

4) scalar instructions.

The CE supported data types are 32 and 64 bit

floating point; a, 16,and 32 bit integer; BCD; and bit.

145

The CE has four main functional systems [Figure 47].

The first is a pipelined instruction unit. The stages of

the instruction pipeline are as follows:

1) The current or logical instruction cache holds

the current instruction stream. When an instruction fetch

'misses' this immediate cache, the cache controller

initiates a load from the computational cache through the

interconnection network and CE switch. Each instruction

in the stream is piped in se~ence from the logical

instruction cache to the control section.

2) The control section consists of an instruction

parser, microsequencer, and RAM-based control store. The

instruction parser receives the opcodes from the data path

and decodes them to generate control store microaddresses.

The parser also stores the instruction fields of the

opcodes that are in the pipe and checks for dependencies

between instructions that are in various stages of

execution within the pipe. Having thus checked for

hazards, it prevents a new instruction from starting when

a hazard exists. The parser also contains a branch

prediction unit that anticipates the most likely flow of

I

Control Section Logical
Instruction

Instruction Parser Cache

Micro Sequencer
J

RAM-Based Control
Store

-t II Instruction Command
"'

,. Bus
"

Internal ~ II I I

Bus

J 1 .JI..
Instruction Processor

"'
CE switch

= IF I ~

Address Integer/Logic
I"

Register s r= Unit Unit
n~

'A' 'D'
Registers Registers

II

" .Jil ~ ~ . '
concurrency Address Vector Floating

Control Translation Registers Point
Unit Unit Units

I Mult.l Add. Div.

. ,. •II' '
,.

Concurrenc y Address Da a
Control

Bus
Port Port

<-----To Cross Bar Interconnect------>

Figure 47. Alliant Computational Element
Block Diagram

146

'

147

control and prefetches instructions from the predicted

side of the branch. As is observed in the study of

pipelines in Chapter 4, this is a common technique used to

help maintain a full pipeline and the highest possible

performance. The microsequencer and control store are

responsible for issuing the control words to drive the

system. The next stage of the pipe is the instruction

processor.

3) The instruction processor consists of the address

unit and the integer/logic unit.

The address unit contains the instruction buffer, or

current instruction register. The instruction buffer

latches the output of the instruction cache. Immediate

operands, immediate addresses, and displacements are

accessed from the instruction buffer. This unit contains

the circuitry and registers for implementing the various

addressing modes. The program counter also resides here.

The integer/logic unit contains an Arithmetic/Logic

un~t, full barrel shifter, eight data registers and four

temporary registers. Simple integer scalar operations and

shifts are executed here.

When an instruction requires a memory access, the

address computed by the address unit is passed to the

address translation unit.

4) The address translation unit performs logical-to­

physical address translation on memory addresses passed to

it from the address unit. The address translation unit

148

includes a translation cache which stores recently

computed address translations; thus, when the same address

is used repeatedly in close proximity in the instruction

stream, recalculation is not necessary. The translated

address is passed out through the address port to the

interconnection network and the computational caches.

5) Data fetched from the computational caches is

routed to the CE switch. There it is routed by the CE to

the appropriate functional unit for execution. The

executing functional units available are the integer/logic

unit of the instruction processor and the pipelined vector

and floating point unit.

The second main functional system of the CE is the

pipelined vector and floating point unit. It is here that

floating point data and vectors are processed. Each CE

contains several register sets to handle floating point

and vector operations. Use of these registers minimize

cache and memory references. There are eight 32/64-bit

(single or double precision) floating point registers.

Additionally, there are eight vector registers; each

contains thirty-two 64-bit wide components. Each

component in the vector register may hold a single or

double precision floating point number or a 32-bit integer

number. When the microsequencer indicates, the values in

the components are pipelined through the CE switch and

through the floating point or integer arithmetic/logic

unit based on the data type held in the vector register.

149

Three additional registers aid in the processing of

the data in the vector registers. Data register 4 (d4),

the length register, holds a value from 1 to 32 (or, 0 to

31) which indicates the length of the current vector

stored in a given vector register. Vectors of lengths

longer than 32 are processed iteratively in a programming

loop, 32 elements at a time~ For example, a vector of

length 67 would be processed by completely loading a

vector register and piping it through with register d4

holding 32. This action would be repeated a second time.

And finally, the vector register would be loaded with 3

elements, register d4 with the value three, and the last

three elements of the vector would be piped through the

pipe.

Data register 5 (d5), the increment register, may be

used to specify the stride between vector elements. For

example a value of two in d5 will allow ·the processing of

every other element in a vector.

Data register 6 (d6), the mask register, allows the

specifying of any pattern of elements for processing in a

vector register.

The third main functional system in the CE is the CE

switch. This module operates in the instruction unit and

the pipelined vector and floating point unit. The CE

switch acts as a data interface between the main memory

and computational caches and the various modules of the CE

which require data or instructions.

150

The fourth main functional system in the CE is the

concurrency control unit. This functional system is a

very important part of the CE as it relates to the

multiprocessor environment. Each concurrency unit is

connected to the other CEs in the multiprocessor via a

concurrency control bus [Figures 46 and 47]. The

concurrency instructions of the Alliant instruction set

are executed here in the concurrency control unit. One CE

may signal another to start, wait, resume, or suspend

execution. These communications are carried over the

concurrency control bus independent of program data and

instruction paths. This hardware concurrency control

allows from one to eight CEs to execute on a single

program, and provides for the allocation and

synchronization of the CEs.

5.2.2 Alliant Cache and Memory Systems

Having examined in some detail the various elements

of the CE, this section presents the relationship of the

CEs and the computational caches and the global memory.

The Alliant cache and memory system service the multiple

CEs and IPs of the multiprocessor. There is one large

global interleaved memory which services all of the

processors. The FX/8 has eight a-megabyte modules and

each module is four-way interleaved.

The main memory is accessed via a high speed,

synchronous bus that consists of two 72-bit-wide

151

bidirectional data paths, a 28-bit address bus, and a

control bus. The data bus is driven by memory modules,

computational caches, and the IP caches. The memory bus

has an 85 nanosecond cycle time and can sustain a

bandwidth of 188 megabytes per second when performing

sequential reads from memory. It can sustain 150

megabytes per second when performing sequential writes.

The address bus has twice the bandwidth needed to maintain

the data buses at top utilization. The memory bus

supplies the computational and .interactive processor

caches with their required data. The CEs, computational

caches, and memory bus are configured as in Figure 48.

The FX/8 computational cache is composed of two cache

modules, totaling 128 kilobytes. Each module is a two­

way interleaved cache, thus the full cache functions as a

four-way interleaved cache. This computational processor

cache is connected to the computational complex via a

crossbar interconnect that dynamically connects the eight

CEs with the four cache ports. The cache and

interconnection network provide a peak bandwidth to and

from the computational complex of 376 megabytes per

second.

All processors in the Alliant system, CEs and IPs,

share a common view of global memory regardless of the

cache from which the processor is reading. For example,

Meniory Bus

Quadrant Quadrant Quadrant Quadrant

cache

I
I

I CE 1

w X y z
I
I

Board One Cache Board Two

I

Cross Bar Interconnect

I I
CE 3 CE 5 I I CE 7

CE 2 I CE 4 I CE 6 I
Figure 48. Alliant Cross Bar Interconnect

with Memory Bus, Caches, and
Computational Elements

I

152

I

CE 8 I

153

suppose the computational complex has been scheduled to

execute concurrently the iterations of a given FORTRAN DO­

loop. Having completed execution of the loop, the process

is 'stopped' on the computational complex and 'resumed' on

an IP for execution of the nonparallel portion of the

process. Alliant cache coherency guarantees that the IP

will have access to the most up-to-date copy of the data

when the process is resumed. The cache coherency, common

view of global memory, and a minimization of memory bus

traffic is maintained by a hardware implementation of a

memory-to-cache paging policy termed a write-back policy.

On a uniprocessor with only one logical cache, a write­

back policy implies waiting until a page has to be

replaced in the cache before writing the page back to main

memory [7, p. 314, 319]. However, in a multicache system

such as that of the Alliant, this may not be adequate to

maintain coherency. In the example above, suppose the

results of the DO-lopp are in the computational processor

cache when the process is stopped. If its page is not

replaced, the current results of the process will not be

in memory for loading into the IP cache. The Alliant

overcomes this problem by implementing an additional

strategy to that of simple write-back. In each Alliant

cache there is a hardware monitor. Each cache monitors

the memory address bus; when a cache monitor detects that

a request is being made by a second cache for an up-dated

page held by the first, then the first cache intercepts

the request and transmits a copy of the page over the

memory bus to both the requesting cache and main memory

[Figure 49]. This hardware implementation of the write-

154

back policy reduces traffic on the memory bus by

minimizing the number of cache to memory writes. Further,

the writes are in blocks or pages, allowing full

utilization of the 150 megabyte per second sequential

write access available in the memory modules.

. .
I
I
Old

Block

Cache A

Data Bus

: Address Bus

i J
L I

current Old
Block Block

Cache B Main Memory

Figure 49. Cache Coherency Maintained by
Hardware. Cache A's Request
for a current Copy of Old
Block is Intercepted by
Cache B. Cache B Writes Back
to Both the Requesting Cache
and to Main Memory

155

As discussed in earlier sections, multiprocessors

with global memories must deal with memory contention

problems. This problem is a primary cause of inefficiency

in many parallel systems. In the study of this subject in

Section 5.1.1 of this text, the possibility of increasing

the number of interleaved memories is identified as one

aid in decreasing the frequency of memory contention.

However, it is observed that the increase in memory

modules raises the cost and lowers the efficiency of the

interconnection network. Another technique is to provide

private caches with each processor. However, the issues

of cache coherence imply some data cannot be kept in the

cache or else data modified in one cache must be passed

through global memory to update common data held in

another cache. Either practice can increase the time for

completing access of the required data. The Alliant

memory system designers moved the interconnection network

so that it interfaces between the CEs and the

computational processor cache; the cache is connected to

the global memory via the bus.

The purpose of this arrangement is to keep speed

performance as high as possible while keeping cost down.

By maintaining a large sized computational processor cache

with limited ports, four in this case, the interconnection

network complexity and cost can be limited. With only a

four-by-eight interconnection network, cache bank

contention will occur, but the cycle time for cache memory

156

is much less than that for main memory, thus conflicts

arising from more than one processor attempting to read

from the same cache will be resolved relatively quickly.

Since all CEs have access to the same code and data in the

computational cache, the problem of coherence between

private caches is eliminated for the computational

complex; traffic on the memory bus is reduced. When the

computational complex is busy multiprocessing the

iterations of a loop, the data generated by one CE from

one iteration is immediately available for processing in

the next iteration by another CE; again, traffic on the

memory bus is minimized.

5.2.3 Concurrency and the Alliant

FX/FORTRAN Compiler

This section discusses the general philosophy of the

Alliant concurrency, and how it is applied in the Alliant

system. The ways that the system supplies parallelism to

the programmer is discussed as some FX/FORTRAN programming

constructs are presented; and how the constructs are

parallelized by the FX/FORTRAN compiler is reviewed.

The Alliant philosophy is based on the premise that a

very small percentage of a program generally accounts for

most of its running time. That small percentage of a

program, the Alliant designers decided, is the execution

of loops and advanced array operations, such as A = B,

157

where A and B are arrays. The idea determined by these

designers was to develop a compiler that could recognize

loops and array operations, analyze the data dependencies

that exist within the constructs, and ascertain what code

blocks could be executed in parallel. Additionally, they

determined to build a fast multiprocessor in which these

types of operations could be executed in parallel under

the control of instructions placed in the compiled code by

the compiler itself.

Thus, Alliant concurrency uses the program loop as

the instruction stream to be executed in parallel. During

compilation the FX/FORTRAN compiler identifies those

sections of code which may be vectorized and generates

vector instructions for them. It determines the loops

that may be executed concurrently on multiple CEs and

generates the start, wait, resume or suspend instructions

in the code to initiate execution and implement any needed

synchronization. Remember that these instructions are

executed in the concurrency control unit of the CEs and

transmitted on the concurrency control bus linking all of

the CEs.

As an example of the parallelizing of a loop,

consider the following example.

N = 6
F(l) = 10.0
DO 12 I = 1 , N
Xl = A(I)
X2 = 10.0 + Xl * 2.3

12 F(I+l) = F(I) + X2

158

This do-loop contains a common data dependency between

iterations of a loop. A value computed in the current

iteration is used in the next iteration. F(2) = F(l} + X2

and F(3) = F(2) + X2 of iterations 1 and 2, respectively,

may not be executed concurrently as the second statement

depends on the result of the first. The FX/FORTRAN can

detect these statements' dependency and generate wait and

resume instructions which will synchronize these

statements appropriately so that no F(I+l} computation

will be attempted until the corresponding F(I) has been

computed and stored in the computational cache. suppose

the loop is to be executed in parallel by three CEs, then

the concurrent execution of the iterations of the loop may

be illustrated as in Figure 50.

T
I
M
E

CE1

1 N = 6
2 F(1) = 10.0
3 DO 12 I = 1 , N

4
5
6
7
8
9
10
11

X1=A(1)
X2=10.0+X1*2.3
FC1+1l=FCll+X2
X1=A(4)
X2=10.0+X1*2.3
FC4+1l=FC4l+X2

Figure 50.

CE2

X1=A(2)
X2=10.0+X1*2.3

FC2+1l=F(2l+X2
X1=A(5)
X2=10.0+X1*2.3
F CS+ll =FC5l +X2

CEJ

X1=A(3)
X2=10.0+X1*2.3

F(3+1l=FC3l+X2
Xl=A(6)
X2=10.0+X1*2.3
FC6+1l=F,(6)+X2

Distribution of DO Loop Iterations
over Three Computational Elements

159

In this example, processors CE1, CE2, and CE3 each

begin concurrent execution of iterations 1, 2, and 3. As

CE2 and CE3 each reach their data dependent statement,

they wait until the value they require has been stored.

As soon as their awaited value has been stored by the

generating processor, then they resume execution. From

this point forward, each processor may begin the next

appropriate iteration as soon as it has finished the

previous one. The process continues until all iterations

are complete. In this example, with six iterations, it

requires eight time steps to compute the six iterations,

while on a uniprocessor, it would have required at least

eighteen time steps. As the number of iterations

increase, the time expended during the first few

iterations to synchronize the loops will be negligible.

The FX/FORTRAN compiler is an extended ANSI standard

Fortran-77 compiler that also contains most of the VAX/VMS

Fortran extensions. It also has language extensions to

allow assignment and other operations on full arrays. The

FX/FORTRAN in conjunction with the Alliant FX/8 is

designed to perform five modes of execution. They are the

following:

1) scalar. Operations are performed serially. If

the instruction parser of the CE detects no data

dependencies from one instruction to the next, the

instructions are pipelined through the processor. The

FX/FORTRAN compiler orders instructions in the object

160

code to take advantage of this processor aspect whenever

possible.

The following are scalar operations.

A(l) = 5

X = X + 1.0

2) vector. The FX/FORTRAN compiler generates vector

instructions to utilize the 32 64-bit element registers in

the CE whenever simple assignments or operations are made

to an array.

The following equivalent constructs could result in

the generation of vector instructions to execute upon the

32 element registers in the vector unit of one CE.

DO 12 I = 1,32 OR A(l:32) = B(l:32)
12 A(I) = B(I)

3) scalar concurrent. This mode implies that scalar

operations are performed by two or more CEs concurrently.

The example of Figure 50 is an example of scalar

concurrent. Each reference to an individual array element

is handled as a scalar operation as also are the

references to non-dimensional variables Xl and X2.

4) vector concurrent. Vector concurrent implies

that vector instructions are generated and these are

executed concurrently on more than one CE at a time.

An example of code which could be optimized as vector

concurrent are the following two equivalent constructs.

Elements 1 through 32 of the array could be processed in

161

vector mode on CE1, elements 33-64 on CE2, elements 65-96

on CE3, and elements 97-100 on CE4.

DO 12 I = 1,100
12 A(I) = A(I) + 5

OR

A(1:100) = A(1:100) + 5

5) concurrent-outer-vector-inner. Where the loops

are nested, FX/FORTRAN will attempt to run the outermost

loop concurrently while vectorizing the innermost loop.

In the following equivalent constructs, the

operations on the elements of each column of matrix A

would be vectorized while the processing of each distinct

column would be distributed for concurrent execution over

the available CEs.

DO 12 J = 1,8
DO 11 I = 1,100

11 A(I,J) = A(I,J) + 5
12 CONTINUE

OR

DO 11 J = 1,8
11 A(1:100,J) = A(1:100,J)

OR

A(1:100,1:8) = A(1:100,1:8) + 5

Within a given loop or array operation, the

FX/FORTRAN compiler supplies the programmer with the full

scope of optimization available on the Alliant FX/8

162

architecture. Thus, the programmer may purchase a

multiprocessor and run Fortran programs with the problems

of data dependence, synchronization, and execution

scheduling determined by the compiler and operating

system. Here is a very nice turn-key multiprocessor which

delivers high performance with very little start-up time

required from the user.

The next section discusses a very different

multiprocessor, bas~d on both a message passing

interprocessor communication system and multiple

processors, each with its own local memory.

5.3 The Cosmic Cube

This section is a study of the Cosmic Cube

multiprocessor. It is a multiprocessor in which each

processor is a computer module with its own local memory.

The computer modules are connected by a pattern of

channels over which message packets are transferred.

These messages provide the interprocessor communication of

the system. These concepts are discussed in general in

sections 5.1.1 and 5.1.2.

The Cosmic Cube's communication links are configured

in a manner equivalent topologically to a multidimensional

cube- a hypercube [Figure 29]. This processor connection

topology has gained a great deal of popularity in the

design of parallel systems [59]. The next section of this

text is a study of the hypercube topology. After

considering the hypercube topology, the Cosmic Cube's

application of that topology is presented. Finally, the

Intel Personal Supercomputer, iPSC, the offspring of the

Cosmic Cube is surveyed very briefly.

5.3.1 Hypercube Topology

163

The hypercube is a binary n-cube, also referred to as

a binary hypercube or boolean hypercube. A binary n-cube

may be described in one of several ways.

Intuitively, the 3-cube or 3 dimensional cube is the

familiar cube. Higher-dimensioned cubes are built from

this basic structure. The "dimension" in these higher­

dimensions is n, where 2n = N and N is the number of

vertices in the cube. Thus, a cube with 16 vertices would

be a 4 dimensional cube or 4-cube since 24 is equal to 16;

and a 5-cube would have 25 = 32 vertices. Each vertex in

a cube may be referred to as a node. In a multiprocessor

with a hypercube message-transfer system, each node

represents a computer module. Each node in an n-cube is

attached to its n nearest neighbors.

Also, a hypercube may be described recursively; the

n-cube that is used to connect 2n = N-nodes is assembled

from two (n-1)-cubes, with corresponding nodes connected

by an additional channel [95]. This property clearly

identifies one of the benefits of the hypercube; it offers

users of such systems an option to expand to larger

systems as need arises. Other architectures, especially

tightly coupled ones are limited in the extent to which

they can be expanded.

164.

A final hypercube description will be based on graph

theory. This description is helpful in understanding some

relevant topological properties of the hypercube.

Let N = 2n and let <N> = {O,l,2, ••• ,N-l}. Ann-cube

with N nodes may be described as a graph G = (V,E),

where V = <N> = {O,l,2, ••• ,N-l} in binary; and E is the

set of edges incident upon vertices that differ by exactly

one bit in their labels [Figure 51].

For example, if N = 4, then the vertices of the cube

may be labelled oo, 01, 10, 11 (base 2) [Figure 51]. The

edges of the graph are (00,01), (01;11), (11,10), and

(10,00).

A number of standard topologies such as linear

arrays, rings, and 2 dimensional mesh can be embedded into

the binary n-cube.

For example, Figure 52 shows the embedding of an 8

node linear array in a 3-cube. Figure 53 shows the

embedding of a 16 node ring into a 4-cube. Figure 54

shows the embedding of a 16 node near neighbor mesh on a

4-cube.

Dimension Nodes Channels

0 1 0

1 2 1

2 4 4

3 8 12

4 16 32

Topology

vo

ov -- vl

1ov __ vll

I I
ooV -- Vo1

Olol __ ~on nol __ .· tlll
I I I I

oooV -- Voo1 1ooV -- V1o1

L...--1 _L...--1 ==!1-------~1

I .--, -+1----.,
..--- 101ov __ vlOll 111ov __ vllll

I I I I

Figure 51. Correlation of Hypercube Dimension,
Node count, Channels, and Topology.
V's are Vertices.

165

I
010y -- y011

I
110y -- y111

I I
oooV -- Voo1 1ooV -- 101

Figure 52.

I
1010y -- y1011

I
1000V -- V1001

0010y -- y0011

I
oooov --- Vooo1

Eight Node Linear
Array Topology
on a 3-Cube

I
1110y --- y1111

I
iioov

0110y --- y0111

I
0100V --- Vo101

Figure 53. Sixteen node Ring Topology
on a 4-Cube

166

167

--oo1oV

I
00111 01111 01101

--1010V

I
10111 11111 1110V --

I
--1oooV

I
10011 11011 1100V --

I
--oooov

I
00011 01011 0100V --

I
Figure 54. Sixteen Node Near Neighbor Mesh on

a 4-Cube. Note the Node Addresses
are Reordered to Facilitate Viewing

168

A large amount of research activity in concurrent

architectures has centered on interconnect structures.

Various structures such as linear arrays, rings, meshes,

and others have been considered [30]. The hypercube

topology is flexible enough to simulate these structures.

Researchers interested in studying the properties of these

different interconnect structures may find a computer

based on the hypercube topology helpful in their studies.

A specific implementation of a hypercube based

multiprocessor is presented in the next section.

5.3.2 The Cosmic Cube Multiprocessor

and its Offspring, the iPSC

Two well known machines have been built using the

hypercube topology as the basis for their interconnect

system. The first was built at the California Institute

of Technology, under the primary direction of c. L. Seitz

and G. c. Fox [70][95]. The California Institute of

Technology machine is known by several names, including

the Nearest Neighbor Concurrent Processor (NNCP),

Hypercube, Homogeneous machine, and the Cosmic Cube (95].

The second is the Intel Personal Supercomputer or

iPSC. It is based on the hypercube interconnection scheme

developed by Seitz and Fox at California Institute of

Technology. After licensing the concept from California

Institute of Technology, Intel developed the iPSC.

Consequently the fundamental architectural attributes of

the Cosmic Cube and the iPSC are very similar [22].

169

5.3.2.1 The Cosmic Cube. The Cosmic Cube is based

upon a 64 node 6-cube hypercube topology. It has a

computer module at each of its hypercube vertices. Each

computer module is composed of an Intel 8086/8087

microprocessor chip, 128 kilobytes of dynamic RAM with

parity checking, and 8 kilobytes of ROM for

initialization, bootstrap loader, RAM refresh, and dynamic

testing programs. Additionally, each computer module has

7 channels total; one for each connection to an adjacent

node in the hypercube (there are 6), and one additional

channel for connection to a cube manager or intermediate

host. Each channel is asynchronous, full-duplex, and

includes queue storage for a 64-bit hardware packet. The

queue is present in each direction in order to decouple

the sending and receiving program executions. The channel

to the intermediate host is for program and data loading

and communication with the "outside world" [70][95].

Each node or computer module executes its own local

copy of the operating system. This operating system

allows multiprogramming and timeslicing in a round robin

fashion. Thus, in any given time period, each node may be

context switching between the operating system and one or

more user programs.

170

The Cosmic Cube architecture is said to be a proven

one for computationally intensive problems from the

natural sciences which enjoy the property of physical or

logical partitionability [95]. Whatever the application,

it is the programmer's responsibility to formulate and

express an algorithm or job explicitly in terms of a

collection of communicating subprogram executions. The

programmer is also required to determine and control the

appropriate assignments of each subprogram to a computer

module or node in order to achieve the desired concurrency

and load balancing. This allows a lot of freedom and

control over the program's activities but it also allows a

lot of room for programmer error.

Compilers for the languages FORTRAN, Pascal, and c

exist for the system. These languages have been extended

with external procedures which implement the sending and

receiving of messages. The programs are compiled on other

computers such as a VAX host which is attached to the

intermediate host or cube manager mentioned earlier. The

job's subprograms, as binary code, data, and stack

segments, are routed from the VAX to the intermediate host

and from the intermediate host to each node as determined

appropriate by the programmer. Each subprogram assigned

to a node runs independently of the subprograms running in

other nodes except for the receiving and sending of

messages over the channels which comprise the message

transfer system.

171

The external message-send/receive procedures which

extend the languages of the system are devised so that

they must be called by the programmer when data or control

information is to pass from one executing subprogram to

another. For an executing subprogram to send a message,

the "SEND" library routine is called and passed the

necessary parameters; these include the IDs of both the

sending and the receiving executing subprograms (each one

is assigned an ID by the local resident operating system),

the addresses of the nodes to and from which the message

is being sent (these addresses would be analogous to the

binary numbers discussed earlier in the context of the

hypercube topology), and the data itself. This

information is packaged in a "packet" along with some

control information and transmitted out along a channel.

If there are intervening nodes, the local operating

systems of those intervening nodes retransmit the packet.

The node addresses are used by the operating systems to

determine the best channel over which to transmit. To

receive a message, the subprogram which awaits the packet

must invoke a "RECV" procedure with the appropriate

parameters. When the packet arrives, the operating system

picks it up from the channel queue and passes it to the

named subprogram which executed the "RECV".

5.3.2.2 The iPse. Intel's iPSC is similar to the

Cosmic cube in many ways. The technology upon which it is

172

built is more advanced. Each computer module in the

hypercube is based on the 80286/80287 microprocessor chip.

The RAM memory has been boosted from the 128 kilobytes of

the Cosmic Cube to 512 kilobytes. Each node has 8

channels; each channel is controlled by an 82586 LAN

coprocessor. This allows considerable leeway in the

dimension of the hypercube. The Intel iPSC may be

configured as a 5, 6, or 7-cube, depending on the needs

and financial standing of the purchaser [44]. The 8-th

channel is a global Ethernet channel which provides direct

access to and from the cube manager (a system 80286/310)

for program loading, data I/0, and diagnostics [44][59].

In Intel's latest configuration, the iPSC-VX, each

node has a vector coprocessor that occupies the slot

adjacent to the processor in the system. A private iLBX

bus connects the two boards in a tightly coupled, shared­

memory interface that maximizes system efficiency but is

transparent to the user. It is reported that this brings

the peak performance of the iPSC-VX/d4, a 16 node 4-cube,

to approximately 106 MFLOPS [59].

The Cosmic Cube and iPSC offer the user a

multiprocessor architecture which provides a great degree

of concurrency and high rate of performance. However, the

programmer must perform his own program partitioning and

synchronization steps while attempting to minimize the

path length for message passing; and, to keep 64

processors (or up to 128 on the iPSC) coordinated and

173

working at a high rate of efficiency or utilization may

well require quite a lot of ingenuity on the part of the

programmer. Nevertheless, if the programmer is up to the

challenge,_computationally intensive problems can receive

rapid service from such a system.

5.4. Summary

This chapter introduces multiprocessors. A

multiprocessor affords a programmer with a computer system

that allows him to exploit parallelism between blocks of

program code which contain no data dependencies. It

reduces the time to solve a single application. The

multiprocessor accomplishes the endeavor by the

distribution of the independent code blocks of the single

job over multiple CPUs. Each processor executes a

different code block; each instruction set executing on

its own data. In this way, the multiprocessor provides an

MIMD architecture and improved turnaround time for the

user.

Various issues of multiprocessor design are discussed

including those of memory, interprocess communication,

operating systems, and exploitation of parallelism.

Finally, this chapter presents two different types of

multiprocessors. The tightly coupled, global memory,

Alliant FX/8 and the loosely coupled, local memory, Cosmic

Cube are examined. Also, the Intel iPSC, the offspring of

the Cosmic Cube is reviewed briefly.

CHAPTER VI

DATA FLOW COMPUTERS: THE DENNIS STATIC

DATA FLOW MACHINE AND THE

MANCHESTER DYNAMIC DATA

FLOW MACHINE

6.0 An Introduction to Data Flow

The need for faster computations, shorter turnaround

times, and greater system throughput has generated a great

deal of activity directed toward creating von Neumann

machines which operate faster. In the preceding chapters,

architectures that extend the von Neumann architecture to

allow the exploitation of parallelism in various ways are

presented. This chapter introduces an architectural

approach that is totally different from any of the ones

studied in the prior chapters. It is that of data flow

computers, a non-von Neumann architecture. After

exploring the general aspects of the data flow machine,

two significant computers that implement the data flow

architecture are reviewed. The first is the Static Data

Flow Machine built by Jack Dennis and his associates at

Massachusetts Institute of Technology. The second is the

Manchester Data Flow Computer built by researchers at the

174

University of Manchester, England; the principal workers

being John R. Gurd, c.c. Kirkham, and Ian Watson.

175

The von Neumann architecture implies the program is

loaded sequentially into main memory and program execution

is under the control of a program counter. The von

Neumann architecture is that of control flow. The data

flow concept of computer operation is that an instruction

executes as soon as all of its operands are available

[80].

In a multiprocessor with global memory, it is

possible for the processors to have race conditions while

updating a memory cell. In such a situation, two

processors may try to write to the same location, a write­

write race. A similar problem is that of the read-before­

write race. When producer and consumer processes share

data cells and execute concurrently, the consumer may read

the shared location before the producer has written to it.

Synchronization must be accomplished by test-and-set,

semaphores, or message-based primitives. Such

synchronization can incur considerable overhead that

degrades the overall benefits of the parallel approach

[5].

The race problems described are inherent to the

shared data cell concept; it is inherent to functions that

have call-by-reference parameter passing, that is, the

function has the address of its parameter, not its value.

Two functions that pass parameters by reference and share

176

common updatable parameters (by one function or the other)

cannot execute concurrent processes successfully without

synchronization. On the other hand, consider a function,

F, with no globally defined variables that employs call­

by-value parameter passing, that is, it has its own

individual copy of its input parameters. If F returns a

distinct value to any function that requires its returned

value, then function F can execute concurrently with any

other such function that does not pass it a parameter and

to whom it does not return a value. Function F cannot

have a race condition with any such functions as there are

no data dependencies between them.

These observations may lead to an understanding of

the data flow architecture. At the machine level, one can

think of each individual machine instruction as a small

function. Under the von Neumann architectural approach,

each machine instruction's operand (parameter) is

established by the address of the data cell where the

actual value resides. Thus, the von Neumann instruction

is a small function with pass by reference parameters. It

is desired to establish a parallel computer architecture

with multiple processing units that allows concurrent

execution of these small functions. Machine level

synchronization techniques such as FORK and JOIN may be

used to specify explicitly single instructions to be

executed concurrently. However, the number of these

functions (instructions) which could execute concurrently

are limited by data dependencies and the resulting race

conditions.

177

However, if an architecture is developed that allows

each function (instruction) to pass parameters (operands)

by value, each instruction will have its own individual

copies of the operands. Since each function will then be

free from any synchronization constraints, it can be

assigned a processing unit as soon as its parameters are

available. A copy of its result, or returned value, is

awaited by the functions (instructions) that use that

value. They, in turn, begin execution as soon as they

have received all their parameters (operands). This

implies that the instructions can execute asynchronously,

without the control of a program counter; and concurrently

'with any instructions that do not supply their operand

values and do not await their returned results. Ordering

of instructions is based on data dependencies within a

program. This computer architecture is currently

implemented by several groups of computer designers around

the world; it is referred to as a data flow or data­

driven architecture since the availability of data values

determines the execution sequencing of the instructions.

6.1 An Introduction to the

Data Flow Graph

Data flow concepts first emerged in the 1960's.

178

Writing compilers for standard serial programs, compiler

writers used data flow graphs to do performance

optimization. A data flow graph is a directed graph in

which the vertices represent primitive functions such as

addition or subtraction and the edges represent data

dependencies between functions. By the 1970's, it was

realized that if such a graph could be executed directly

by a computer architecture, then the parallelism in a

given algorithm would be exploited greatly. In a data

flow architectural environment, data flow programs are

represented by such directed graphs. Each primitive

function is represented by an activity template [Figure

55]. Each such template is very closely related to the

actual machine instructions used in prototype data flow

computers. Each activity template is understood to

contain fields for holding the operands' values, or

tokens, when they arrive. This is call-by-value parameter

passing. Additionally, each instruction contains the

addresses, or destinations, of the instructions awaiting

copies of the result value returned by the current

instruction's execution. The edges on the graph indicate

the logical paths along which the result will be

forwarded. Thus, tokens move along the directed edges of

179

the graph. As it moves along such an edge, each token

carries not only the operand value but also the "name" of

its destination instruction; it may carry other

information as well as will be discussed later in the

context of dynamic tagged systems. Each template may

execute, or fire, according to its firing rules.· The

fundamental firing rule of any data flow system is that

each template may only fire when all its operands are

present. A template which meets its firing conditions is

said to be enabled.

opcode operand operand destination(s)
value value of result

Figure 55. Activity Template

For example, a program may have the following

computations.

Z = V * (X + y) - X * (U + W)

This program segment is represented by the data flow graph

of Figure 56. If the additions received their operand

values during the same time interval, each addition would

be enabled. Each could be assigned a processing unit and

180

executed, or fired. Thus, their execution could occur

during the same time period.

z

Figure 56. Data flow graph for
z = v * (x + y) - x * (u + w)

Any two enabled operations can be fired in any·order

or concurrently. In Figure 56, when the sum of x and y is

available, it can be stored in the multiply instruction

template where the value of v had been copied; similarly,

the sum of u and w can be stored in its prescribed

activity template with the value of x. Each multiply can

181

begin execution on a free processor as soon as its operand

values are in place and the multiplies can proceed

concurrently. Each multiply instruction result is routed

to the subtraction template, triggering _upon their arrival

the execution of the subtraction operation upon a free

processor. The final result is routed to any instruction

requiring the z value or to output.

If the computation of z is done for a series of

distinct ui, Vi, wi, Xi, and Yi, i = 1,2,3, •• ,n, values

then the values can be pipelined through the data flow

graph. Thus, as soon as x1 + y1 and u1 + w1 are computed,

their results are passed to the multiplies. The add

operations can begin again when x2 and y2 arrive at their

add, and similarly for u2 and w2 • This allows multiple

levels of parallel exploitations. Figure 57 demonstrates

an alternative pictorial representation of Figure 56 in

which square nodes represent the ·activity templates.

Figure 57 demonstrates the same graph with pipelined

computation. The darkened squares represent the tokens

with their values written beside them as they flow through

the graph.

The lack of data dependency between the addition

operators, and also between the multiply operators, in the

example graph is sometimes called horizontal, or spatial,

concurrency. This contrasts with the temporal concurrency

of the pipeline [19].

v
3 •
2 •

X
6 •
4 • * 2 • 3

z

X
6 •
4 •

u
2 •
1 •

w
• 1
• 5

Figure 57.a. Values ready to enter the graph for
computation. First expression
evaluated is 2*(3 + 4) - 4*(1 + 5).
Second expression is
3* (2 + 6) - 6* (2 + 1).

v

3 ~
X

6 ~
X

6 ~
u

2 ~
w

~ 1
2 4 •

z

Figure 57.b. Addition template fires with values from
first expression.

182

v X X u w

6

z

Figure 57.c. Multiply templates fire with values from
first expression. Add templates fire
with values from second expression .

v X X . u w

z

Figure 57.d. Subtraction template fires with result
first expression giving (-10).
Multiply templates fire with values
from second expression.

183

v X

~ -10
I
z

X u w

Figure 57.e. Subtraction template fires with values
from second expression giving a
result of 6.

184

6.2 The Static Data Flow Approach and

the Dynamic Data Flow Approach

to Activity Template Firing

and Program Graphs

185

As values are piped into the data flow graph pipeline

there is a problem of matching the rate of a producer

template to that of a consumer template. For example, in

the graph of Figure 57, the time required to produce the

sum of x2 and y2 may be less than that of computing the

product of v1 and {x1 + y1). Thus, the addition template

may be ready to fire (execute) based on its operand

availability before the multiply has completed processing

its current operand values and is ready to receive a new

operand. The destination of the addition template's

output token would not be ready to accept a new value.

Control of the values or tokens passing through the data

flow graph pipeline is a design issue which has been

handled in various ways.

The two most common techniques are termed static and

dynamic. This section investigates the fundamental

concepts of these two approaches. In the static approach,

use of the data flow graph is limited by allowing only one

token to reside on each edge at any time. The firing rule

is rewritten so that an operation is enabled only when:

1) its input tokens or operands are available and

186

2) no tokens exist on its output arc. That is, its

last output value has been processed by its awaiting

operation. The destination instruction is ready to

receive a new operand value.

This implies sequential pipelined use of the data

flow graph. Such pipelining is implemented by use of

acknowledge signals that are returned to the producer

templates by the consumer templates when they are ready to

receive a new token. No template can fire unless it has

received its acknowledge or control token. These

acknowledge signals effectively double the number of edges

in the data flow graph. Additionally, as in any such

pipeline, the speed of the slowest stage determines the

overall throughput for the pipeline. Thus the slowest

executing template would determine the output rate of the

graph.

In the dynamic approach, each operation may fire when

all input tokens are available and multiple tokens may

appear on output arcs. Thus, the dynamic approach

maintains the fundamental firing rule. However, tokens

carry with them a tag. The tag may also be called a label

or color. These tags identify the order of the tokens on

the input arc to the consuming template. The tokens are

consumed according to the order implied by the tags. No

control or acknowledge tokens are required. Instead,

additional time and hardware is needed to attach labels to

187

tokens, and match like tagged tokens for consumption [41,

p. 755].

Both of these approaches have been investigated and

implemented by researchers at various locations. Dennis's

static machine and the Manchester machine are

implementations of these two approaches and are discussed

later in this paper.

6.3 Looping with a Data Flow Graph

The data flow graph example of Figure 57 described a

straight line computation. However, few programs of

interest can be written without conditional looping.

Looping strategies, or iteration~ can be represented

through cyclic data flow graphs. Additional activity

templates other than the simple arithmetic ones must be

included in the implied instruction set in order to

achieve selective routing of data tokens among the

operations. Such templates of primary usage are displayed

pictorially in Figure 58. An important distinction

between these operations and the simple arithmetic

operations discussed earlier is that they include as their

operands not only data values but also controlling boolean

values. They may be described as [19, 41, p. 742]:

DUP T-Gate F-Gate

switch Merge Decider

Literal Operator

Data Link--------~? Control Link------~~~

Figure 58. Operators or Nodes for a Data
Flow Graph

188

189

1) DUP. When a token is required as input in more

than one instruction, its value is replicated and placed

on multiple output paths. There are DUP operations

defined for both data and boolean tokens.

2) T and F gates. These gates are designed to pass

or block data tokens along a designated pathway. Each

operation has a data token input path and a boolean token

input path; each has one output path. T gates route

their data tokens onto the output arc only when their

boolean token is true.

boolean token is false.

No value is sent out if the

F gates have the opposite action.

3) SWITCH. The purpose of this operation is to

direct a data token down one of two possible output paths,

a "true" path and a "false" path. It has as its input a

data token and a boolean token. If the boolean token is

true, the data token is routed onto the output "true"

path; a false boolean value sends the data value down the

"false" path.

The SWITCH operation could be implemented as a DUP

followed by a T and an F gate applied to each of its

output arcs with the identical control signals delivered

to each gate.

4) MERGE. This operation may be thought of as a

selector function. It selects a token from one of two

possible input paths and places the selected value onto

its one output path. There are two data token input

paths, recognized as "true" and "false" paths.

190

Additionally, there is a boolean token input path. If the

boolean token is true, the token on the "true" input path

is routed onto the one output path; otherwise, the one on

the "false" path is selected.

5) DECIDER. Decider operations are used to

implement conditional strategies. It has as its input two

(or more) data tokens. The operation has associated with

it some defined predicate which when applied to the input

values can be determined as true or false. The decider

has one output path which carries the boolean token

determined by the predicate.

6) LITERAL. The LITERAL operation makes the

constants or literal of an expression available to the

proper instruction. It has no input path, only a literal

data token output path. Such a node regenerates its

constant value as often as it is needed by nodes to which

it's value is input. As soon as its constant token is

removed from its output arc, it fires again (19]

7) OPERATOR. This final pictorial template

corresponds to the templates in the example of Figure 56.

The input to the operation are one are more data tokens.

There is one output path that carries a data token.

These templates can be combined to represent

iterative computations. The following algorithm computes

the integer power z = xn.

input x,n;
y = 1;
i = n;
WHILE i > 0 do

begin

end;
z = y;
output z;

¥ =Y.* x;
~ = ~ - 1

191

This computation can be represented by the data flow graph

of Figure 59 [41, p. 743]. Snapshots of the computation

are pictured as the tokens flow through their successive

steps. The computation is performed with x = 3 and n = 1.

The darkened circles on the arcs represent data tokens

with their values written to the side, the squares

represent boolean tokens with their values. The time for

each operational step is assumed to be one. The algorithm

is initiated with "false" values on the boolean input arcs

for the MERGE operations.

Thus, looping can be implemented in a data flow

environment using the operators outlined in Figure 58.

Figure 59.a. Data Flow Graph Corresponding
to z = xn at time t 0
[41, p. 743]

X ~.

Figure 59.b. Tokens at time t1

192

193

~

Figure 59.c. Tokens at time t 2

~

Figure 59.d. Tokens at time t3

194

Figure 59.e. Tokens at time t4

rKUE

~

Figure 59.f. Tokens at time t 5

195

Figure 59.g. Tokens at time t6

:a

Figure 59.h. Tokens at time t7

196

~

Figure 59.i. Tokens at time t 8

~

Figure 59.j. Tokens at time t 9

197

~

Figure 59.k. Tokens at time t1o

~.

~

Figure 59.1. Tokens at time t11

198

~

Figure 59.m. Tokens at time t12

~

Figure 59.n. Tokens at time t13

199

~

Figure 59.o. Tokens at time t14

~

Figure 59.p. Tokens at time t15

6.4 Recursion, Tagging, and Maintaining

Temporal Concurrency in the

Iterative Data Flow Graph

200

In an iterative computation, such as that in the

example of Figure 59, very little pipelining can take

place. In the example, use of the MERGE functions at the

source input arcs limits access to the rest of the graph.

The control tokens to the MERGE functions are always true

until the iterative computation is complete, precluding

entry of further values into the pipe. The horizontal

concurrency is maintained but the temporal concurrency is

lost.

Two different solutions to this problem have been

established. One approach to "unfolding" iterations, or

allowing distinct evaluations to take place as separate

data sets pipe through a cyclic graph, is to apply the

dynamic data flow approach discussed earlier. Two

different groups of researchers, Arvind and Gostelow in

their development of the U-interpreter [4] and a group at

the University of Manchester in England [36], arrived at

the idea of explicitly labeling computational activities

for parallel execution. Tokens are assigned activation

names as tags, or labels, upon each occurrence of reentry

to a graph. Token activation names must match at a

particular node in order for the node to be enabled for a

token set. This allows concurrent executions of the same

201

procedure to share one version of its data flow graph, or

instruction code. Additionally, tokens can be tagged with

their iteration level. Iteration level tags indicate the

tokens specific sequence step through the loop. Tokens

must then also match according to their iteration level in

order to enable their operation to receive them. This

allows each iteration of the loop to proceed at its own

speed, several different iteration values can be active

within a loop at one time. These techniques allow

temporal concurrency to be maintained [4, 36].

A second approach is one used in static environments.

In order to maintain temporal concurrency, looping is

eliminated in favor of a form of recursion. This method

is based upon the observation that any iterative procedure

can be expressed recursively. Under this strategy, each

iterate subgraph is encapsulated into a macrofunction.

This macrofunction replaces the iterate subgraph within

the overall whole. When a token reaches the macrofunction

during execution time, the subgraph is spliced into the

whole. Since the macrofunction can be generated at run­

time for different generations of input tokens, the graph

permits pipelined concurrency [19]. Consider the example

of Figure 59. It could be represented recursively by the

graph in Figure 60. If x = 3 and n = 2, the run time code

generated for those parameters would appear as in Figure

61. This method has the obvious drawback of utilizing

Figure 60. Recursive Graph for POWER
Macro Function. POWER
Computes z = xn

202

Figure 61. POWER Expansion Resulting
from Input Values x = 3
and n = 2

203

a great deal of computer memory when the depth of

recursion is large.

True recursion, using reentrant code, can be

implemented directly in the dynamic tagged environment.

This is done by attaching the activation name within the

context of concurrent executions of the same procedure.

204

In the recursive context, a new activation name is

attached to input tokens on each successive invocation of

the recursive function. Again, tokens are matched

according to their activation name prior to instruction

enablement. This allows for reentry to the one version of

the graph for recursive execution (36].

6.5 Data Structures in the Data

Flow Environment

A major issue of discussion among data flow

researchers and data flow detractors has been that of how

to handle data structures such as vectors, matrices,

trees, and linked lists. If tokens are allowed to carry

structures such as these, the result is a large data

transmission and storage overhead. Furthermore, the size

of the object might not be known until it arrives at a

given node where it should be stored. Frequently, within

an aggregate data structure, only one or a few elements

from the structure are altered or used, yet the entire

structure would require copying from one node to another.

Two proposed solutions are the following:

1) Arvind and Thomas proposed !-structure storage

[6], and

2) Dennis proposed use of finite directed acyclic

graphs to represent structures in memory [33].

205

The goal inherent in these approaches is to p~eserve

the requirements of the data flow environment, the

maintenance of the by value parameter passing mechanism

and enablement only when all tokens are present, as well

as to circumvent structured token recopying from one

instruction to the next.

6.5.1 !-Structure Storage

The !-structure storage concept of Arvind and Thomas

[5, 6] is designed to prevent read before write races.

Within the memory hardware are presence bits associated

with each memory word. Their function is analogous to

that of the semaphores used to synchronize concurrent

processes. These presence bits are very similar to the

status bit used in the Denelcor HEP multiprocessor to

coordinate cooperating concurrent processes.

In the data flow environment, the presence bits are

used to coordinate access of producer/consumer

instructions to a single copy of a structure. In the !­

structure storage, the presence bits have three implied

values. 'A' implies absent or not written. 'P' implies

present or value written. 'W' implies waiting; a read

206

request to this location has been made but not yet

satisfied and the read is waiting in a list of deferred

reads. The presence bits are tested by the memory

controller when a read request for the contents of a given

word arrives. If the presence bits indicate that the word

has been written, the contents are retrieved and forwarded

to the requesting instruction. If a read request arrives

and if its word's presence bits indicate 'absent' or

•waiting,' then the read is deferred until the data

arrives; the read is linked with other reads awaiting the

same datum on a deferred read list. Further, when such a

read is placed on the deferred read list the presence bits

are setjreset to •waiting.' When a write request arrives

for a given word, the presence bits for the word are

tested. If the presence bits are 'absent,' then the data

is written and the presence bits are set to 'present.'

Or, if they are 'waiting,' then the memory module writes

the data to the word, forwards the data to all the reads

linked on the deferred list for that location, and sets

the presents bits to 'present.• To avoid excessive data

transmission of whole structures in a token, the !­

structure storage can be used to hold the structures while

the token carries the address of the structure. Using

such storage, a structure's storage can be allocated, all

its words' presence bits set to 'absent', and its token

address started down the data flow graph (program). If

only a certain element of the structure is to be read and

written, then the token would also carry such indicators

as was needed to identify the specific element, for

example, an index to a vector. An instruction node on

whose input arc the token arrives, reads the element

indicated by the token from the structure in the !­

structure storage. If the token exits the instruction

node on an output arc, the instruction writes to the

structure.

207

Unfortunately, checking for deferred reads on every

write degrades the write process. Also, it appears to be

a move back in the von Neumann direction since tokens are

now carrying addresses rather than values. still, the

data flow rule is maintained since no read can proceed and

no node can fire until the data item is written to its

proper location.

6.5.2 Finite Directed Acyclic Graphs

Jack Dennis is credited with describing a technique

for implementing data structures using finite directed

acyclic graphs [33]. Arrays for example, are stored as

trees; each individual array element is stored as a leaf.

A three by three array is represented by a ternary, or

three-ary, tree as shown in Figure 62. This tree is

maintained in a structure storage memory.

Similar to the !-structure storage discussed earlier,

instead of a token carrying an actual structure, it

carries an address. In this case, the token carries the

al,l a1,2 al,J a2,1 a2,2 a2,3 a3,1 a3,2 a3,3

Figure 62. Storage Scheme for a Three by
Three array Identified by
Token A. The ai,j Represent
the Element Values

208

address of the tree's root node along with whatever

information is needed to identify individual leaves to be

read or written. Each node in the tree contains a

reference count indicating the number of directed edges

arriving at the node.

The data flow graph of Figure 63 indicates a series

of actions to be performed on a three by three array. A

DUPlicate operation [Figure 58] on the array results in

the root node being referenced by two separate tokens, A

and B, one for each output token on the data flow graph.

The reference count for the root is then two [Figure 64].

This circumvents the need for duplicating the data but

yields separate tokens.

Figure 63. A Data Flow Graph that Duplicates
an Array and Serially Assigns
New Values to Two of its
Elements

Figure 64. B is a Duplication of Token A.
Root Reference Count, the
Number of incoming edges, is
Incremented, but no Nodes
are Copied

209

210

Setting the element in row two and .column three to

zero on input token B results in the generation of the

tree pointed to by output token C [Figure 65]. Setting

the element in row three and column three to zero on input

token C would results in the generation of the tree

pointed to by token D (Figure 66]. This is sequential

processing of the two elements in the array.

a2,3 = 0

Figure 65. Generation of New Token C
from B by Setting the
Element in Row Two and
Column Three to Zero.
Token B is Consumed

D

A

a2,~ a3,~
a2,2 a2,3=0 a3,2

Figure 66. Generation of New Token D from c
by Setting the Element in Row
Three Column Three to Zero.
Token c is Consumed

Concurrent execution on the array elements is shown

in the data flow graph of Figure 67. Setting both the

211

element in row two and column three and the element in row

three and column three to zero concurrently results in

output tokens C and D [Figure 68]. The final result of

concurrent execution on the array elements would be quite

different from that of sequential execution. Thus such

activities as setting the elements of a column to zero

would require sequential execution.

Figure 67.

A

A Data Flow Graph that Duplicates
an Array and Concurrently Assigns
New Values to Two of its Elements

D

c

Figure 68. Concurrent Generation of New Tokens
C and D by Concurrently Setting
the Element in Row Two and Column
Three to Zero and ,the Element in
Row Three and Column Three to
Zero

212

213

Furthermore, the updating of reference counts and the

depth of the tree increase the memory references required

to access elements in the represented structure. Clearly,

this lowers the performance level of the machine.

Research on the problem associated with data

structures in a data flow environment continues among data

flow researchers.

6.6 Implementations of the Data Flow

Graph, the Data Flow Computer

Data flow computers are computers whose architecture

allows them to execute the abstract graphical model of the

data flow graph. The data flow graph is the method used

to present data flow programs. The nodes or activity

templates represent machine instructions. The tokens

represent the values processed by the machine.

Many computer systems which are designed to minimize

execution time by exploiting data-driven parallelism

exist. They include the Dennis machine and the Arvind

machine, both at the Massachusetts Institute of

Technology, the Distributed Data Processor designed by the

Texas Instruments Company, the Data-Driven machine at the

University of Utah, the LAU machine at the CERT Laboratory

in Toulouse, France, the Newcastle Data-control Flow

Computer at the University of Newcastle upon Tyne,

England, the EDDY (Experimental system for Data Driven

processor arraY) machine of Japan, and the Manchester

214

machine at the University of Manchester, England [85, 41,

p. 748-768]. Each of these machines has its own

distinctive elements. However, to examine each machine is

beyond the scope of this treatise. Instead, two machines

generally representative of their basic types are

examined. One is the Dennis machine of Massachusetts

Institute of Technology, as described in Dennis's papers

[23, 24]; it is designed to execute a static data flow

graph. The other is the Manchester machine of the

University of Manchester, as described in the papers of

Gurd, Kirkham, and Watson [36, 94]; it is implemented for

execution of dynamic graphs.

6.6.1 The Dennis Static

Data Flow Machine

The Dennis machine of Massachusetts Institute of

Technology is designed to exploit the parallelism

represented by static data flow graphs. It has the

organization displayed in Figure 69. It consists of five

major units connected by channels through which

information packets are passed according to an

asynchronous transmission protocol. The five units are

the following:

1) the Memory Section, partitioned into addressable

Instruction cells. Instruction cells hold individual

instructions and their operands.

Processing Section
Data Tokens Operation Packets

Processing <:--------------------~
unit

<--------------------~

Data Tokens
<------------------~ Processing

Unit

Operation Packets
<

>
>

Control . Tokens

Control
Network

Instruction
> Cell >

> Instruction
Cell

>

Instruction
Cell

Memory Section

>

Figure 69. Machine Organization for the
Dennis Static Data Flow
Machine (41, p. 749, 23, 24]

215

216

2) the Processing Section, consisting of processing

units which perform specialized functional operations on

data tokens.

3) the Arbitration Network, routing executable

instruction packets from the Memory Section to the

Processing Section.

4) the Control Network, routing control tokens from

the Processing Section to the Memory Section.

5) the Distribution Network, routing data tokens

from the Processing Section to the Memory Section.

Instructions are held in the uniquely addressable

Instruction cells {representing the activity templates) of

the Memory Section. When loaded, each instruction cell

holds an instruction operation code of the data flow

programjgraph. The Instruction Cell maintains several

locations for holding result destination addresses; these

implement the output arcs of the data flow graph.

Additionally, the Instruction Cell contains three

registers which will hold the operand values received as

data tokens over the Distribution Network. When all the

operands required by the operation code have arrived in

the instruction cell and the appropriate

control/acknowledge signals have arrived from the Control

Network, the instruction represented in the cell is said

to be enabled.

Upon enablement, the operation code, destination

addresses, and operands are grouped together logically in

operation packets and routed through the Arbitration

network to the Processing Section. As the operation

packets are routed through the Arbitration network, the

opcode is decoded partially. This process allows the

packets to arrive at the proper functional unit for

execution.

217

Processing results are paired with the destination

addresses specified in the processed operation packet, and

sent through the Distribution andjor Control networks to

the Memory Section Instruction cells. The results are

stored in the Instruction cells whose addresses were

specified as destinations. These results may be of two

possible types,

1) Acknowledge signals and boolean values generated

by operations such as DECIDERs.

2) Integer or other data values. These are Data

tokens and are routed over the Distribution network.

Acknowledge signals are directed back to the

instruction cell that produced the result that was just

consumed by the currently executed instruction.

Acknowledge signals indicate that a node has utilized the

token and is ready for another. The acknowledge signals

are used to implement the firing rule for program graphs.

They are Control tokens and are routed over the Control

network.

When all the result packets, data and control,

required by a receiving instruction cell have arrived, it

218

becomes enabled and begins its passage through the

Arbitration network. The requirement that acknowledge

signals arrive before an instruction is enabled maintains

the static data flow firing rule: an instruction may fire

when all its operands are available and there is no token

on its output arc.

In order to maintain equal accessability of

instruction cells, and to minimize the number of devices

and interconnections required to connect the great number

of instruction cells found in such a system, the above

described architecture was refined slightly. The

Instruction cells are grouped into blocks and each block

realized as a single device. Each instruction cell block ·

is accessed via a single input port and single output

port. The resulting structure is shown in Figure 70.

Under this arrangement, cell blocks are grouped together.

A given cell block group is serviced by an arbitration

network which transmits operation packets to a specific

set of functional units. This allows simplification of

the arbitration network. Further, each cell block is

addressable through the distribution network; and the

distribution network has fewer ports to contact.

The mechanism of the cell block itself is as shown in

Figure 71. The grouped instruction cells compose the

activity store. Result packets arrive over the

distribution network at the update unit. The update unit

. writes the operand tokens into the instruction cell

Processing Section
Data Tokens

<:------------------~

<:------------------~

<-----------------

Data Tokens
<:-------------;

Processing
Unit 1

Processing
Unit K

Processing
Unit 1 1

Processing
Unit K1

Operation Packets

<:------~-------------,

<------------------~

·operation
<--~----------~

Packets

Control Tokens

Figure 70. Cell Block Architecture. Each Cell Block
Has its own Input and output Port.
Distribution Network Can Access Each Cell
Block [23]

219

Store Operation

Token
Input
Port

> FIFO Instruction
Address Queue

Access
--,>

Operation
Output

_Port

---> Update
Unit

Fetch ->
Unit

Activity
> Store of

Store Operation Instruction
Cells

-->
Access

Figure 71. Cell Block Implementation of
Dennis Machine (23)

220

221

registers and tests whether all control and data tokens

have arrived at the instruction cell currently being

updated. If they have, the update unit enters the address

of the instruction into the FIFO instruction address queue

unit. Meanwhile, executing asynchronously, the fetch unit

removes an address from the FIFO instruction queue and

reads the corresponding instruction cell from the activity

store. The fetch unit forms it into an instruction packet

and puts it out onto the arbitration network where it is

routed to the appropriate processor as before.

Because of the way the cell blocks are accessed from

the processing units through the distribution network,

c~mmunication of a result packet from any instruction cell

to another requires the same amount of time. During

program execution the number of instructions addressed in

the instruction address queues of the cell blocks gives a

measure of the degree of concurrency present in the

program. The concurrent activities possible are built in

at the hardware level [23, 24, 85].

6.6.2 The Manchester Machine

The Manchester machine of the University of

Manchester, England, is designed to execute a tagged token

dynamic data flow graph. The block diagram of the

prototype Manchester system is shown in Figure 72.

To
Host

I/O switch

From
Host

Token
Queue

Matching
Unit

Overflow
'-> Unit

Instruction
Store

Processing
Units

<------------------------~

Figure 72. Manchester Data Flow System Organization,
Based on Tagged Tokens and Dynamic
Graphs (36]

222

223

A host system is attached via an I/O switch module to

the basic ring structure of four modules. The modules are

the following [94, 85, 36):

1) the Token Queue, consisting of a 32K-word

circular FIFO store with three surrounding buffer

registers. Tagged tokens on the output arcs of the

executing data flow graph are queued here to await further

processing.

2) the Matching Unit is a pseudoassociative memory

with 6 pipelined registers and two buffers interfacing it

with the Overflow Unit. Tokens whose destination

inst~uctions are unary operations pass directly through

the Matching Unit. Otherwise, tokens are stored in a

parallel hash table (the pseudoassociative memory) until

another token arrives with a matching "name". The "name"

used for pairing tokens is a combination of the tokens'

tag and their destination instruction address.

2.a) the Overflow Unit handles tokens that cannot be

loaded into the parallel hash table because all table

entries are full. Overflow tokens are stored in the Unit

as linked lists. When space is available in the hash

table, overflow tokens are bussed back to the Matching

Unit and restarted through it. The asynchronous nature of

the data flow model allows tokens to be matched in any

order without effecting the computation. Token pairs

matched on their "name" are passed out of the Matching

Unit to the Instruction Store.

224

3) the Instruction Store consists of a Random Access

Memory and an input and an output register. The

instructions identified by the destination fields of the

tokens are selected from the RAM and coalesced with the

tokens into an operation packet containing an opcode, data

values, operation result destination fields for the·

instruction now enabled, tags and a marker bit. All

instructions now enabled by the presence of all their

tokens are routed to the Processing Unit.

4) the Processing Unit contains a preprocessor which

executes a few instructions, but most are passed on to one

of several homogeneous microcoded function units via a

distribution bus. The instruction packet is processed in

its assigned function unit. An output token is produced

from the execution, composed of tag, operand value,

instruction destination addresses, and marker bit. The

token is then passed out of the Processing Unit to the I/O

switch.

At the I/O switch, the marker bit is decoded to

determine if the token should be routed out of the data

flow system to the host machine or passed back around to

the Token Queue to initiate further computations.

By use of its tagging mechanism, the Manchester

machine is capable of concurrent executions of reentrant

programs; thus, recursion and pipelined iterative loops

are allowed. The machine is operational, running

reasonably large programs at maximum rates of between 1

and 2 million instructions per second (MIPS) [36].

6.7 Data Flow Languages

225

Closely related to the subjects of the data flow

graph and the data flow computer is that of the data flow

language. When problems become complex, direct coding of

data flow graphs into a format appropriate for the

internal workings of the hardware becomes difficult to say

the least. High level languages are needed.

Many data flow languages have been proposed and

compilers for a considerable number of them have been

written. Many data flow research groups have defined a

language for their system. The Dennis group has developed

VAL and VIMVAL [25, 58, 77]. The Manchester group has

SISAL [36], while the Arvind group has defined ID [62].

The number of these languages is too large for this

subject to be dealt with in detail at this time.

However, they display certain common characteristics

worth mentioning [2]:

1) Freedom from side effects, based on functional

programming. They operate by application of functions on

values.

2) Locality of effect. Instructions do not have far

reaching data dependencies. Names are limited in their

scope.

226

3) Equivalence of instructional scheduling

constraints with data dependencies. All of the

information needed to execute a program is contained in

its data flow graph, which can be generated directly from

the high level language.

4) A single assignment convention. Each name may

appear only once within the area of the program in which

it is active, or, more stringently, only once within a

program. Thus, the definition of each name is clear.

5) Unfolding of iterative computations into parallel

constructs. (Related to the discussion earlier on

"unfolding" iterative loops.)

6) A lack of "history sensitivity" in procedural

calls. Names of values are manipulated so that each

function begins execution with new values and is not

influenced by past values.

Most data flow languages are functional languages, as

identified in item 1 above. Functional languages are

discussed in greater depth in section 7.1.

Of course, there are exceptions. The Texas

Instruments Distributed Data Processor is an interesting

case in point. It has been operational since 1978. This

computer is programmed largely in extended FORTRAN 66. A

cross compiler, based on the optimizing FORTRAN compiler

of the highly pipelined Texas Instruments Advanced

Scientific Computer, separately translates FORTRAN

subprograms into directed graph representations. The

directed graphs are then processed by a linkage editor

into an executable program [85].

6.8 Summary

227

Computer architects are searching constantly for new

approaches to designing high-performance computing

machines. Data flow offers a totally different approach

to computing than that of the von Neumann architecture.

It promises to be an exceptional mode for exploiting the

fine grain parallelism embedded in most programs. It also

offers an opportunity to realize the enormous potential of

VLSI technology.

This chapter introduces the data flow graph, and its

firing rules. It identifies the two possible tactics for

firing and program graph interpretation, namely, static

and dynamic rules. Looping and recursion are discussed in

the light of these two strategies.

The problems associated with data structures in the

data flow environment are identified and two possible

alternative solutions are presented, !-structures and

directed acyclic graphs.

Two data flow computers are reviewed. The Dennis

Data Flow Machine is presented as an example of an

architecture implementing static data flow graph firing

228

rules. The Manchester Data Flow Machine is surveyed as an

example of a tagged token, dynamic graph firing rule

implementation.

The common qualities associated with most data flow

languages are identified.

CHAPTER VII

REDUCTION MACHINES

1.0 Introduction to Reduction

Chapter six investigates a computer architecture that

is non-von Neumann in nature; that system model is termed

a data flow system. In a data flow system, the control of

program execution is based on the availability of the

data; when a function or operator has all its required

arguments, it will be evaluated. Thus, the system is said

to be data driven. This chapter presents another non-von

Neumann computer architecture, reduction machines. A

large amount of the work done on reduction machines has

been based on the work of data flow researchers [18, 17].

However, reduction machines have a different form of

program control. In reduction machines, functions are

evaluated or reduced when their result is needed, or

demanded, for the evaluation of some other required

function. Thus, these machines are often said to be

demand driven.

In a data flow system, some computations may be

performed simply because their operands have arrived

although their results will never be needed. This allows

the processors to do non-productive work that in some

229

230

situations can saturate the system and prevent productive

evaluations from taking place. A good compiler can reduce

the number of these non-productive operations, but the

potential for non-productive activities is present in the

data flow architecture. The idea behind a demand driven

system is to allow only the evaluation of those functions

whose value is demanded or needed for the completion of

the assigned task.

In order to understand the notion of a reduction

machine, one needs to first understand a little bit about

functional languages. This is because reduction machines

are closely linked with such languages. In many cases,

machines have been expressly designed for the execution of

programs written in some given functional language [92].

The sections of this chapter introduce some of the primary

aspects of functional languages and the concepts inherent

in a reduction system. A specific implementation of a

reduction machine, ALICE, or the Applicative Language

Idealized Computing Engine, is reviewed. The ALICE

machine is the product of a group headed by John

Darlington, in close association with Mike Reeve, working

at Imperial College of Science and Technology, London,

England [65, 18, 17].

Compilers that compile programs written in Prolog,

Parlog (parallel Prolog), LISP, and HOPE have been written

for ALICE. The functional language HOPE is intended to be

the primary language for use on ALICE. HOPE was designed

231

at Edinburgh University, England, by Burstall, McQueen,

and Sannella [15, 65]. It is an experimental language as

not all required production features have been

incorporated. In this discussion of functional languages

and related reduction concepts, some HOPE programs are

used as examples.

7.1 An Introduction to Functional

Languages

This section defines functional languages and

examines an example of the functional language HOPE. The

program flow of control implied by such a language is

discussed.

7.1.1 Procedural Languages and

Contrasting them to ·.Functional

Languages

Current computer languages fall into several general

classifications based on the way in which they allow the

programmer to communicate with the machine.

The "old" languages such as FORTRAN and COBOL and the

newer ones such as Pascal and Ada are called procedural

languages. In a procedural language, the programmer is

allowed to specify a set of imperative statements that are

to be performed in a particular sequence. The procedural

language concept is a direct extension, or "high level

version," of the von Neumann computer model. One

232

instruction is executed, then the next instruction is

executed, as specified by the program counter. Each

instruction addresses operands at locations in memory, and

since multiple instructions may access the same locations

the order of execution is important. The execution of one

instruction alters the environment of the other

instructions. This environment may be referred to as the

present state of the machine; it includes the program

counter, register values, values of all data stored in

memory, the run time stack, etc. There are some

identifiable disadvantages in thinking of program

execution in terms of the present state and its

manipulation. Disadvantages identified by functional

language proponents are the following [92]:

l) Two widely separated pieces of code may reference

a common global variable and thus produce an unexpected

result. Also, programmers must be concerned about

aliasing, that is, which names are bound to a location.

Such issues increase program complexity.

2) The programmer is forced to focus on data

manipulation rather than on the crucial elements of the

algorithm.

3) Program proof of correctness and program updates

are difficult in a procedural language as the imperative

style does not lend itself to mathematical analysis.

Based on the context in which certain variable names are

used, alteration of code in one area can cause side

effects which undermine other program blocks.

233

4) It is difficult to implement parallel execution

of a program when the asynchronous parallel execution of

its subroutines have side effects on one another. This

last disadvantage is significant in the study of parallel

architectures.

Functional languages contain no notion of a present

state. The program is a function in the true mathematical

sense of the word. The program execution consists of a

function evaluation in which the input data is used as

arguments to the function; the value returned by the

function is the program output. Within the body of the

program, additional required values are attained by

invoking additional functions. In a functional language,

the only activity permitted is the definition,

application, and combination of functions. Because of

this, a functional language may also be referred to as an

applicative language.

The essential notion of a pure functional language is

referential transparency; the value of an expression

depends only on its immediate textual context, rather than

on computational history [92]. Data dependencies exist

only as a result of functional application; that is, the

value of a function is determined completely by its

arguments. More specifically, a strict functional

language does not allow the use of variables or assignment

234

to variables, and the only control structure permitted is

recursion. No data is stored, all data is passed as

arguments to functions and returned as results from

functions [65].

LISP is a well-known example of an applicative

language, although it is not always implemented as a pure

one. Most modern versions of LISP allow assignment using

SET and SETQ statements and iterative loops. The

languages VAL and ID identified earlier in the context of

data flow languages are functional languages but allow the

binding of an expression value to a name; each name may

receive only one assigned value. Thus, these data flow

languages are termed single-assignment languages. HOPE,

the language linked with ALICE, is a functional language.

It is strongly typed, which means that it has data types

which must be declared by the programmer and is checked by

the compiler as in Pascal. It is a pure functional

language in that it does not allow assignment and each

functional evaluation produces no side effects. And, it

is a higher-order functional language which means that

functions may be passed as arguments to other functions or

they may be returned as results (65, 18, 17].

Functional languages are interesting because they do

not have the disadvantages inherent in procedural

languages identified earlier. Because they are based on

mathematical functions, the programmer may address the

problem to be solved at a higher level, with no emphasis

on data manipulation. The problem may be approached in a

more logical fashion allowing for proofs of correctness

based on the well-understood concepts of the function.

Since functional languages do not allow assignment and are

free from side effects it is easier to produce and

maintain correct code. The absence of side effects makes

each part of a functional program independent of every

other part implying that the parts can be executed in

parallel, in any order, without effecting the final

outcome of the evaluation (92].

7.1.2 Hope, an Example of a

Functional Language

This section examines an example of the functional

language HOPE and the program flow of control implied by

the program.

The following HOPE program calculates the factorial

of a positive integer.

dec Fact : num -> num ;

Fact(n) <= Factb(O,n) .
I

dec Factb . num x num -> num . . I

Factb(i, i) <= i ;

Factb(i,i+l)) <= i+l . I

Factb(i,j) <=

Factb(i, (i+j)/2) * Factb((i+j)/2, j) .
I

235

236

The program consists of two declared functions. The

first function is Fact. It maps a value of type num (ie.

a non-negative integer) onto another value of type num.

The second function is Factb. It maps the cross product

of type num values onto a type num value.

One other function is implied; it is the Succ

function. The Succ function or successor function returns

the next larger value in the sequence of whole integers.

The successor function is called a constructor function.

Specifically, Succ is used to construct the elements of

the data type num. For example, use of the digit 3 is a

shorthand for the expression Succ(Succ(Succ((O)))). Each

data type has a constructor function for values of that

type.

The notation --- marks the definitions, or rewrite

rules, of each function. The symbol <= is not an

assignment operator. It implies that an occurrence of the

function meeting the template form of the definition found

on the left hand side of the rule may be rewritten or

reduced to the form on the right hand side. The

identifiers i,j,n are not variables; they are formal

parameters. They refer to the value passed to the

function at runtime, and not to any specific memory

location.

Based on the given program, evaluation of the

function for a given value, Fact(5), can be described by

a graph (Figure 73]. In the graph, a function is linked

Reduction
Step Type

1 B

2 B

3 B

4 B

5 B

6 A

7 B

Figure 73.a.

Reduction Graph Transformations

Fact(S)

Factb(0,5)

I * I
Factb(0,2) Factb(2,5)

* I
I * I Factb(2,5)

Factb(0,1) Factb(1,2)

I * I
I * I Factb(2, 5)

1 Factb(1,2)

I * I
I * I Factb(2,5)

1 2

* I
2 Factb(2,5)

*
2 I

Factb(2,3)

Steps One Through Seven in
the Sequential Reduction
of Fact(5)

* I
Factb (3, 5)

237

238

Reduction Reduction Graph Transformations
Step Type

8 B *I
2 I* I

3 Factb (3, 5)

9 B 1*1
2 1*1

3 I* I
Factb(3,4) Factb(4,5)

10 B *I
2 I *I

3 1·*1
4 Factb(4,5)

11 B *I
2 I *I

3 I* I
4 5

12 A *I
2 I *I

3 20

13 A I *I
2 60

14 A 120

Figure 73.b. Steps Eight Through Fourteen
in the Sequential Reduction
of Fact(S)

to its arguments. The graph representing the state of the

execution is transformed repeatedly. Each transformation

is the result of one of the following two operations:

239

A) A primitive function such as add, subtract,

multiply, or divide has all of its arguments furnished as

constructor functions (eg. succ) that produce constant

values. The function with its arguments is replaced by the

result of the operation on the constants.

B) One of the rewrite rules is applied to the

computation. That is, when a given instance of a function

matches the argument form of some left hand side of a

definition, it is replaced by an instance of the

corresponding right hand side.

Each of the above transformations is called a

reduction. When an initial instance of a function is

replaced based on one of these transformations it is said

to have been reduced. In order for a type B reduction to

take place, the function must be one for which rewrite

rules exists, rather than a constructor function such as

succ. When functional language programs are interpreted

on a von Neumann machine they are reduced one step at a

time, sequentially, as indicated in Figure 73. However,

since each functional value is independent of another, any

function instances ready for reduction at a particular

time could be reduced simultaneously, or in overlapped

time; functions may be reduced in parallel asynchronously.

Figure 74 shows the same function evaluation as indicated

240

Reduction Step Reduction Graph Transformations

Fact(5)

1 Factb(0,5)

2 I *I
Factb(0,2) Factb(2,5)

3 *

I * I 1*1
Factb(0,1) Factb(1,2) Factb(2,3) Factb(3,5)

4 I *I
I * I I* I
1 2 3 I * I

Factb(J, 4) Factb(4,5)

5 I * I
2 1*1

3 I *I
4 5

6 * I
2 I * l

3 20

7 * I
2 60

8 120

Figure 74. Eight Steps in the Parallel Graph
Reduction of Fact(5)

in Figure 73; but, at each step any function ready for

reduction is reduced. Machines which implement this

strategy are termed reduction machines.

Performing the reductions sequentially required

fourteen steps [Figure 73], but, parallel evaluation

required only eight [Figure 74]. A machine capable of

physically realizing such parallel evaluat.ions offers a

significant increase in performance over that of the

conventional sequential implementation.

7.2 Implementing the Functional

Model and ALICE

This section describes the basic scheme used by the

implementors of the reduction machine, ALICE. It

introduces the concepts of graph reduction, eager,

constrained, and lazy evaluation modes. Finally, it

reviews ALICE's architectural approach to reduction.

7.2.1 The Basic Schemes - Graph

Reduction and Eager Evaluation

241

Graph reduction is a form of reduction. Its basis is

that each instruction that accesses a particular

definition will manipulate references to the definition.

That is, graph manipulation is based on .the sharing of

arguments using pointers. When a function with a specific

parameter value is demanded, the function is traversed in

order to reduce the definition and return with the actual

value. Any subsequent references to the function with

that specific parameter will immediately receive the

functional value (85]. True reduction machines use the

graph reduction approach [85, 92].

The basic scheme the designers of ALICE employ to

implement graph reduction is to represent the execution

graph of a function by a collection of packets. Each

packet represents one node of the graph and the arcs

extending downward from that node. Each packet may be

formatted as shown in Figure 75. The primary fields

presented at this time are the following:

Identifier Ref. Status Function Args Signal
Count List

Figure-75. Software Packet

242

1) the Identifier field; it holds a value that

uniquely identifies the packet.

243

2) the Function field; it specifies the function of

the node this packet represents in the graph.

3) the Args field; it contains the identifiers of

the packets representing the arguments of the function.

4) the Ref field; it contains the number of packets

which reference the current packet. For example, this

packet is the argument of a certain number of other

packets; that number is recorded in the Ref field.

Figure 76 shows an expression graph and its packet

representation. The constant arguments of the functions

are represented in their successor constructor function

form. Figure 77 shows the same packet collection with the

shorthand notation [N]. The notation [N] is used to

designate the identifier of the root node of the subgraph

resulting from the succ(Succ(••• succ(O) •••)) construction

of the constant N. Additionally, a packet with no

function or argument field, and only with an integer

constant designates the subgraph resulting from the

Succ(Succ(••. Succ(O) •..)) construction of the constant.

This notation will be used in future examples.

A collection of packets represents the graph

resulting from each reduction step. Figure 78 shows the

packet sets that would result from the evaluation of

Fact(3). At each type B reduction, the packet of the

function being reduced is replaced by a new group of

I * I
Facti·~ ~actb(l·~

0 Succ(.) succ() . succ(~

0 0 succ()

0

Id Ref. Funct. Args.
ct.

i 1 * j k

j 1 Factb m n

k 1 Factb n p

m 2 0

n 3 Succ m

p 1 Succ n

Figure 76. Graph of Factb(O,l) * Factb(1,2) and
Equivalent Packet Representation

244

Id Ref. Funct. Args.
ct.

i 0 * j . i k

j 1 Factb [0] [1] I
k 1 Factb [1] [2] I

Figure 77. Shorthand Notation for Packets in
Figure 76

245

246

Step Packet Set

Id. Funct. Args.

i Fact [3l

1 i Factb [0] [3]

2 i * j k

j Factb [0] [1] I
k Factb [1] [3] I

3 i •• j k

j 1

k * m n

m Factb [1] [2]

n Factb [2] [3]

Figure 78.a. Steps One Through Three in the
Packet Reduction ~f Fact(3)

step

4

5

6

Packet Set

Id. Funct. Args.

I i * j k I
I j 1 I
I k * m n I
I m 2 I
I n 3 I

i * j k

j 1

k 6

i 6

Figure 78.b. Steps Four Through six in the
Reduction of Fact(J)

247

248

packets representing the application of one of the rewrite

rules. The identifier of the reduced function's packet is

associated with the topmost packet of the replacing packet

group. The topmost packet represents the function of

lowest precedence in the replacing expression, this is

referred to as the outermost function. Also, a type A

reduction places the constructor result in the same

identifier packet.

When a function requires a constructor function as an

argument in order to make a type A reduction, it must wait

until all its arguments become of the correct form. While

it is waiting for constructor arguments, it need not be

considered for reduction and can be "put to sleep". Then

when its arguments become of the correct form, they can

signal the sleeping function packet to "awaken". The

"awakened" function is again available for reduction.

This process is implemented by the following two fields

[Figure 75]:

1) the Status field; it holds the number of

arguments which are not yet of the required constructor

form. A value of zero indicates the packet is awake.

2) the Signal field; it holds the identifier of the

packet which needs to be signaled when the current packet

becomes a constructor function packet.

Figure 79 demonstrates this process. Packet i is

reduced to the primitive function multiply; it requires

the constructor function Succ for its two arguments. When

249

Step Packet Set

Id. status Funct. Args. Signal

i Fact [3]

1 i Faeth [OJ (3]

2 i 2 * j k

j Faeth [0] [1] i

k Faeth [1] [3] i

3 >> i 1 * j k

<< j 1 i

k 2 * m n i

m Faeth [1] [2] k

n Faeth (2] [3] k

Signal >>>

Figure 79.a. Steps One Through Three in the
Reduction of Fact(3) with
Packet Signaling

Step Packet Set

4

5

6

Id. Status Funct. Args. Signal

i 1 * j k

j 1 i

>> k 0 * m n i

<< m 2 k

<< n 3 k

~>I i 0 * j k

.. .. I j 1 i
<<I k 6 i

i 6

Signal >>>

Figure 79.b. Steps Four Through Six in the
Reduction of Fact(J)

250

I
I
I
I
I

251

packet i is created, its status field is set to 2

indicating it should sleep until two signals arrive from

constructor function packets. Each of the two argument

packets, j and k, has identifier i written in its Signal

field. When packets j and k are reduced to Succ

constructor functions for the indicated values, each

signals packet i that they are of the correct form. Each

signal decrements the Status field of packet i. In Figure

79, the signal is indicated with >>. When the Status

field of packet i equals zero, the multiply packet wakes

and becomes available for type A reduction.

This scheme is referred to as eager evaluation; each

reducible function is reduced as soon as possible. '

7.2.2 Constrained parallelism

This section considers constrained evaluation which

is a technique to prevent some reducible functions from

being reduced even though they are ready. Constrained

evaluation prevents their reduction in parallel with other

functions.

Suppose a function named Reciprocal were defined with

the following rewrite rule.

--- Reciprocal(x) <= o if x = o else ljx;

The right hand side of the rewrite rule is a conditional

expression which may be written in a more general fashion

as Cond(P,Q,R); where the function Cond returns Q when P

is true; otherwise, R is returned. In an eager

252

evaluation, arguments P, Q, and R will be evaluated in

parallel; when each argument has reduced to constructor

functions, Cond will be reduced. As can be seen in the

Reciprocal example this is not always expedient. R may be

undefined; in Reciprocal's case, R = ljx. or, only one of

Q or R may be required and thus the reduction of one of

them will be non-productive, possibly utilizing resources

which could be applied elsewhere. Thus, in some

situations, it is beneficial to constrain the potential

parallelism existing between P, Q, and R. The usual

approach is to suspend reduction of Q and R while allowing

P to reduce until it has returned either a TRUE or FALSE

constructor; then, the appropriate function is awakened

and its eager reduction begins. When the selected

function reduces to a constructor, Cond will reduce, or

return the value of the selected function.

The process indicated above may be implemented by a

"sleeping/wake up" scheme similar to that discussed

earlier. The programmer may indicate in the source code

when constrained evaluation is required. As a result,

when the packets associated with Cond(P, Q, R) are

generated, those representing Q and R have their Status

field marked as being asleep. When P reduces to a

constructor function generating a TRUE or FALSE value, it

signals its constructor status to Cond. This triggers

Cond to send a wake up signal to the selected function's

packet. Once awakened, the selected function reduces to a

253

constructor and signals Cond. Finally, Cond has its

condition argument, P, and the selected argument, either Q

or R, supplied as constructors and reduces.

This scheme allows parallel evaluation be performed

in the reduction of the selected function, but it prevents

evaluation of an undefined function or of a lengthy and

unnecessary function.

7.2.3 Lazy evaluation

This section presents another form of evaluation,

lazy evaluation. It prevents function packets from

reducing indefinitely when called in an infinitely

recursive fashion. This allows the definition of infinite

data structures; but, only those elements which are needed

are ever generated.

The following HOPE program builds the infinite list

of counting numbers.

dec Numbers : -> list(num) ;

Numbers<= l::IncrementByOne(Numbers) ;

dec IncrementByOne : list(num) -> list(num) ;

IncrementByOne(n::L) <= (n+l)::IncrementByOne(L) ;

The notation:: is a list constructor function; n::L means

the list whose head is n and whose tail is L. For

example, the notation (n::L) matches the list [2, 3, 4],

where n is 2 and Lis [3, 4]. The first four stages of

the graph representation of the evaluation of Numbers is

given in Figure so. Numbers references itself as an

Numbers

r <<

I==-___,
1

I
[1]

.. ..

I==
[1, 2]

[1, 2, 3]

.. . .

IncrementByOne

I==
2

<<--------------------~

IncrementByOne

I <<----------------.

I==
3 IncrementByOne

<<---------------------,

I==
4 IncrementByone

Figure ao. Reduction Graph for the
Function Numbers

254

255

argument for IncrementByOne; thus, establishing the cyclic

arc from IncrementByOne back up into the graph.

Eager evaluation of this program would generate

elements of the list indefinitely. However, in most

cases, only some finite segment of such a list is needed.

As a result, the processing resources may become

thoroughly involved in the computation of values which

currently are unneeded or which may never be needed. This

may be overcome by lazy evaluation of Numbers. As with

constrained evaluation, code that is to be evaluated

lazily can be flagged either by the programmer or by the

compiler. The compiler flags the computation when it

cannot determine that the computation will terminate [92].

Lazy evaluation implies that reduction of a function is

postponed until it explicitly is requested to reduce to a

constructor function by its parent node. In the Numbers

example, an instance of the IncrementByOne function will

not reduce to the :: constructor function on the right

hand side of its rewrite rule until it is requested to do

so by its parent:: list constructor [Figure 80].

Lazy evaluation may be implemented at the packet

level by use of two subfields in the Status field. The

outermost function's packet, for example, the Numbers

packet, w9uld be allowed to reduce eagerly but each

reducible packet generated thereafter would be marked as

"lazy" and "not-yet-required" in the status subfields.

Subsequent reducible packets resulting from the reduction

256

of one of these packets would themselves be marked as

"lazy" and "not-yet-required", thus extending the lazy

feature. Packets marked "not-yet-required" are not

considered for reduction. When an additional reduction is

required, the parent packet signals the ":I:azy" child

packet to reduce by initiating a change in the child's

"not-yet-:-required" subfield; the packet to be signaled is

identified through the argument identifier list in the

Signal field.

Thus, through use of lazy evaluation, infinite

structures can be defined functionally although only some

finite subset is actually to be returned, and results may

be generated sequentially when needed.

7.2.4 ALICE - an Architecture for

Implementing Reduction

This section investigates ALICE, the Applicative

Language Idealized Computing Engine. ALICE implements the

direct evaluation of functional, or applicative,

languages. It is considered to be a true reduction

machine because it utilizes the packet system to represent

each node in the computation and thereby satisfies the

requirements of graph reduction [92]. The ALICE

architecture is that of a shared-memory multiprocessor

connected by a crossbar interconnection network and pairs

of rings [42]. Functionally, it is composed of processing

agents, packet pool segments, an interconnection network,

257

and a distribution system [65]. Abstractly, ALICE is

simply a collection of processing agents and a packet pool

[18, 17].

Each processing agent in the abstract model follows

the following sequence of actions.

1. Remove a non-sleeping packet of a reducible

function from the packet pool.

2. If the packet represents a type A reducible

function then using the Args field to locate

the function's arguments, determine if the

arguments required to be constructor functions

are indeed constructors.

then

If all arguments are of the correct form, then

a. alter the function and argument fields to

represent the constructor function for the

result.

b. decrement the Ref field of unneeded

argument packets, indicating they are no

longer needed by the current packet.

c. jump to step 1.

If any arguments are not of the correct form,

a. write the identifier of the current packet

in the Signal field of each non­

constructor argument packet.

258

b. write the count of the failing argument

packets in the Status field of the current

packet, thus marking the packet "asleep".

c. replace the packet in the packet pool.

d. jump to step 1 above for retrieval of

another packet.

3. Match the current packet's function and its

argument packets with the correct left hand

side of some rewrite rule.

4. Implement the type B reduction of the current

packet by the following actions.

a. Use the current packet to represent the

outermost function of the right hand side

of the rewrite rule. Maintain the same

identifier.

b. For each argument of the outermost

function, obtain an unused identifier.

Generate a packet for each argument.

c. Record the obtained identifiers in the

Args field of the outermost function's

packet.

d. If the current packet was the subject of

lazy evaluation, then mark each of the

generated packets as "lazy" and "not-yet­

required".

259

e. set the Ref field of each newly generated

argument packet to reflect that it is

referenced by the outermost function.

f. Deposit all of the packets into the packet

pool.

5. Jump to step 1. above and retrieve another

packet.

Continuing the abstract description, the packet pool

must provide 3 major aspects. The first is passive in

nature. The packet pool must provide readjwrite access to

any packet based on its identifier; it should provide

simultaneous read access but private write access. The

second and third aspects of the packet pool are active in

nature. The packet pool supplies the-processing agents

with non-sleeping packets of reducible functions. The

packet pool supplies the processing agents with unused

identifiers for type B reductions.

In implementing this abstract model, the developers

of ALICE have utilized a special VLSI chip called a

transputer. Briefly, a transputer is a von Neumann

computer. A processor, 4K bytes local memory, four link

interfaces for interfacing to other transputers,

interfaces for accessing other devices, and system

services such as reset and the clock are all packed onto a

single chip. The transputers are programmed in a language

called Occam. Each transputer in a system executes its

own Occam program using its own local memory (93].

260

The abstract machine is fulfilled by the organization

represented in Figure 81. The agents are implemented by

pairs of transputers. Similarly, the packet pool segment

is implemented via two transputers and standard RAM memory

of 256K bytes [93, 65, 42].

Processable Packet Identifier Ring

RAM
Packet

Pool

Identifier Ring

Packet
Pool

Controller

Figure 81. single Module of ALICE

261

The transputers of the packet pool act as a highly

intelligent memory controller. The passive aspect of the

packet pool is fulfilled in the addressable RAM. Packets

are stored in the RAM. The identifier field of each

packet is dropped and instead, each packet is identified

by its unique address in memory. The active aspect of the

packet pool segment is· implemented by the transputers.

The transputers identify the reducible not-sleeping

packets in the RAM and supply them to the agents.

Further, those packets for which the Ref field value has

fallen to zero are recognized by the transputers as empty

or unused. As new unused identifiers are required for

type B reductions, the memory transputers furnish the

addresses of these packets to the agents. Thus, garbage

collection is performed concurrently with program

evaluation.

The specific processing to be performed by a given

transputer is determined by Occam programs loaded into the

transputers when the system is initialized. This not only

allows the application of the transputer to such distinct

tasks as agent and packet pool controller, but, also

allows certain agents to specialize in the execution of

specific functions such as Input/Output.

The processable packets and unused identifiers are

made available to the agents by the packet pool controller

over two distinct slotted rings [79, p. 312]. Each agent

has its own slot window on the constantly circulating

262

rings. As empty slots pass by on the packet ring [Figure

81], the packet pool controller writes the identifiers, or

addresses, of processable packets into them; and as its

slot passes, each free agent picks off the address of its

next packet from the ring. Similarly, the unused

identifier ring carries unused identifiers from the packet

pool controller. Each unused identifier, or free address,

is written onto the Identifier ring only once. Any agent

needing an unique unused identifier simply picks one off

the Identifier ring.

A shared bus connects the agents with the packet pool

controller. When an agent has seized an address from the

Packet ring, it accesses the RAM by way of the controller

for a copy of the processable packet. Argument packets

and rewrite rules are also accessed in this fashion. This

allows each agent to read from the same memory location

(but, not simultaneously). When an agent has performed a

type B reduction, the addresses seized from the Identifier

ring are employed to rewrite new packets in the RAM via

the bus. Other types of memory rewrites such as

signalling and changing the required status of lazy

packets is also done via the bus. Thus, only one agent

may write to a given location since only one agent

possesses a given address.

The bus is the bottle neck for the system. It is

estimated that each packet pool access takes about 1

nanosecond and the processing of each packet requires

263

approximately six packet pool accesses with an average of

128 nanoseconds required for the processing of a packet.

Figures indicate that twenty agents would be required to

utilize the bus fully [18, 17]. At this time, only two

transputer pairs are mounted on a board, thus excessive

bus contention does not appear to be a problem.

The organization of Figure 81 is a fundamental module

of the ALICE system. A single-user workstation is

composed of a single module. The modules can be combined

to form a multiuser mainframe as shown in Figure 82. In

the larger system, the basic single-user modules are

connected together by a Delta network built from four-by­

four crossbar switches, implemented as a custom chip in

ECL (emitter-coupled logic) [65]. In the extended

environment, the packet pool is distributed throughout the

system in the 256K-byte segments of each module. Each

packet pool segment is addressable from any module over

the Delta network. The Delta network provides for the

movement of packets and rules at a rate of two hundred

megabits per second.

In order to improve load balancing, intelligent links

are positioned between the rings of adjacent modules. A

link monitors the load on functionally equivalent adjacent

rings. It transfers identifiers from heavily loaded rings

to lightly loaded ones. Thus, if each slot were full on

the Packet ring of module two and the Packet ring of

module one was near empty, the link would begin filling

/\gent
Group

1

Local
Packet
Pool
Segment

Agent
Group

2

Local
Packet
Pool
Segment

Delta Network

Agent
Group

Local
Packet
Pool
Segment

Figure 82. Multi-module ALICE System

264

265

module one's empty Packet ring slots with identifiers from

module two's Packet ring. Such a link also exists for the

Identifier Rings. Thus work and storage are distributed

between modules, and identifiers from each ring can

migrate through out the system. The rings and the links

compose ALICE's distribution system.

The processing rates of the ALICE system are very

positive. Estimates indicate a single-module desk-top

system will process in the neighborhood of 150,000 packets

per second. A multi-module system of 4096 nodes can

process in excess of 150 million packets per second [18,

17].

The packet pool and processing agents work together

to implement a parallel reduction system based on the

packet representation of graph reduction. The

distribution system and delta network function with the

agents and packet pools to implement a shared memory

distributed multiprocessor system.

7.3 Summary

This chapter introduces the concepts of functional

languages and reviews the distinctions between functional

and procedural languages.

The chapter shows that a machine capable of function

evaluation, based on application of rewrite rules,

implements a demand driven system; functions are evaluated

when their results are demanded. Demanded functions may

266

be evaluated in parallel without effecting the outcomes of

other functional evaluations.

The basic scheme of utilizing packets to implement

graph reduction and to represent the nodes and arcs in a

reduction graph is introduced and the concepts of eager,

constrained, and lazy evaluation are reviewed.

The architecture of the Applicative Language

Idealized Computing Engine, ALICE, a shared-memory

multiprocessor, reduction machine is surveyed.

CHAPTER VIII

SUMMARY AND POSSIBLE EXTENSIONS

a.o summary

This treatise reviews the von Neumann computer

architecture and presents the fundamental elements of five

classes of parallel computer architecture. Further, it

provides example architectures from each of the parallel

classes. The architectures and examples presented are the

following:

1) Array processors and the ILLIAC IV. Array

processors allow the simultaneous identical processing of

multiple streams of data and are termed single­

instruction-stream multiple-data-stream processors (SIMD);

2) Pipelined computers and the HEP. Pipelined

computers allow functions such as instruction

fetch/execute and floating point arithmetic operations to

be broken down into subfunction stages and input to be

sequenced through the subfunctions to produce a final

result for each input value. The rate of result production

is the same as the rate of input entry as long as the

pipeline of subfunctions is full. This approach allows

parallel processing of instructions, or data, or both;

267

268

3) Multiprocessors, the Alliant FX/8, and the Cosmic

Cube. Multiprocessors allow the application of multiple

CPUs to the solution of a single problem using a multiple­

instruction-stream multiple-data-stream (MIMD) scheme and

thus reduce the time to solution of a single problem;

4) Data flow machines, the Dennis Static Data Flow

Computer, and the Manchester Data Flow Computer. Data

flow computers are non-von Neumann in nature. They base

their execution on data flow graphs where each node in the

graph fires when all its inputs are available. The

structure of a data flow graph is based on the

instructional data dependencies inherent in the program to

be executed. The control of data flow machines is based

on operand value availability rather than program

instruction sequencing.

5) Reduction machines and the ALICE. Reduction

machines are also non-von Neumann in nature. Reduction

machines base their execution on the demand for data and

graph reduction. A function is evaluated only when its

result is needed. Thus, they are termed demand driven.

8.1 Proposed Additions to the Text

This treatise can be used as a class text in computer

architecture. Complete utilization suggests certain

additions should be made to the work. The additions are

the following:

269

1) appendices on several topics should be added.

One appendix should investigate networks. Crossbar

switches, interconnection, alignment, and Delta networks

should be discussed, focusing on the function,

similarities and distinctions of the networks. Also, an

appendix on transputers should be incorporated.

2) an index should be provided,

3) a set of problem oriented questions with

solutions, and a set of discussion oriented questions with

suggested answers or references to other sources for

further study should be included with each chapter,

4) an annotated bibliography should be appended to

each chapter to aid the student interested in ·further

investigation on a given topic

8.2 Text Readability

This treatise is designed for undergraduate students.

In order to confirm that the readability of the text is

appropriate for undergraduates, the text was submitted to

a readability analysis based on the Fry Readability

Scale1 • The analysis data is shown in Table II. Based on

the Fry Readability Scale, the reading grade level of the

text is eleven. This is satisfactorily low to be read by

undergraduates.

lFry, Edward B., Fry Readability Scale. Jamestown
Publishers, 1978.

270

TABLE II

ANALYSIS DATA OF TEXT READABILITY
FOR THE FRY READABILITY

SCALE

Text Beginning Line Syllable Sentence
Page Number Count Count

17 1 168 5.8

39 2 156 3.0

46 12 160 6.1

58 12 162 5.7

72 28 168 6.9

99 1 155 6.4

148 13 155 6.7

159 1 173 6.6

177 3 173 5.5

216 11 188 5.8

248 9 154 5.7

255 3 165 6.8

--------- ---------
Average ----> 164 5.9

271

8.3 Final Statement

These chapters have been created with computer

Science undergraduate students in mind. The discussions

are designed to lead them to a better understanding of the

structure and organization of parallel computing systems

and to open their imaginations to the exciting computing

possibilities made available by parallel computer

architectures.

BIBLIOGRAPHY

1. Abe, s., Hiraoka, R., Fukunaga, et al. Preliminary
Evaluation of data flow computers. Proceedings of the
24-th IEEE Computer Conference (San Francisco,
Calif., Feb.). IEEE, New York, 1982, 87-90.

2. Ackerman, W.B. Data flow languages. IEEE Computer
(Feb. 1982}, 15-25.

3. Alliant computer Systems Corporation. Alliant
FX/Series Product Summary. October 1986.

4. Arvind and Gostelow, K.P. The U-interpreter. IEEE
Computer (Feb. 1982), 42-49.

5. Arvind, and Iannucci, R.A. A critique of
multiprocessing von Neumann style. Proceedings of the
10-th Annual International Symposium on Computer
Architecture (Stockholm, Sweden, June 13-17). ACM,
New York, 1983, 426-436.

6. Arvind and Thomas,R.E. !-structures: An'efficient
data type for functional languages. Rep. LCS/TM-178,
Lab. for Computer Science. Massachusetts Institute
of Technology, June 1980.

7. Baer, J. Computer systems architecture. Computer
Science Press, Inc., Rockville, Md., 1980.

8. Baer, J. Computer Architecture. IEEE Computer
(October 1984), 77-87.

9. Barnes, G.H., Brown, R.M., Kate, M., Kuck, D.J.,
Slotnick, D.L., and Stokes, R.A. The ILLIAC IV
Computer. IEEE Trans. on Computers (Aug. 1968), 746-
757.

10. Bernstein, A.J. Program analysis for parallel
processing. IEEE Transactions on Electronic Computers
(Oct. 1966), 757-762.

11. Bic, L. Data-driven logic: a basic model. Proceedings
of the Conference on High Level Language Computer
Architecture (Los Angeles, Calif., May}. 1984.

272

12. Bril, R.J. On cacheability of lock variables in
tightly coupled multiprocessor systems. Computer
Architecture News (June 1987), 25-32.

273

13. Burns, D.M., and Rome, D.L. Computer architecture
alters concept of parallel processing. Research and
Development (April 1986), 70-74.

14. Bursky, D. Advanced ECL family boosts performance
threefold. Electronic Design (July 23, 1987), 41-46.

15. Burstall, R.M., McQueen, D.B., and Sannella D.T.
HOPE: an experimental applicative language. Internal
Report, Dept. of Computer Science, University of
Edinburgh, 1980.

16. Calingaert, P. Operating System Elements: A User
Perspective. Inc., Englewood Cliffs, New Jersey,
1982.

17. Darlington, J., and Reeve, M. ALICE- a multi­
processor reduction machine for the parallel
evaluation of applicative languages. Proceedings ACM
Conf. Functional Programming Languages Computer
Architecture, 1981, 65-75.

18. Darlington, J., and Reeve, M. ALICE- a multi­
processor reduction machine for the parallel
evaluation of applicative languages. Proceedings of
the International Symposium on Functional Programming
Language Computers and Architecture (Goteborg,
Sweden, June). 1981, 32-63.

19. Davis, A.L., and Keller, R.M. Data flow program
graphs. IEEE Computer (Feb. 1982), 26-41.

20. Denelcor, Inc. Heterogeneous Element Processor:
Principles of Operation, April 1981.

21. Denelcor, Inc. Techdatasheet, Sept. 1982.

22. Denning, P.J. Parallel computing and its evolution.
Communications of the ACM (Dec. 1986), 1163-1167.

23. Dennis, J.B. Data flow supercomputers. IEEE Computer
(Nov. 1980), 48-56.

24. Dennis, J.B. The varieties of data flow computers.
IEEE Proceedings of the Conference on Distributed
Computing, 1979, 430-439.

274

25. Dennis, J.B., Stoy, J., and Guharoy,B. Vim: an
experimental multi-user system supporting functional
programming. Proceedings of the Conference on High
Level Language Computer Architecture (Los Angeles,
Calif., May). 1984.

26. Dhas, c.R. A ring-based data-flow multiprocessor.
Proceedings of the 24-th IEEE Computer Conference
(Francisco, Calif., Feb.). IEEE, New York, 1982, 87-
90.

27. Dias, D.M., and Jump, J.R. Packet switching
interconnection networks for modular systems. IEEE
Computer (Dec. 1981), 43-53.

28. Dongarra, J.J. Performance of various computers using
standard linear equations software in a Fortran
environment. Argonne National Laboratory, Mathematics
and Computer Science Division, Technical Memorandum
No. 23 (July 29, 1986).

29. Dubois, M., Scheurich, c. and Briggs, F.A.
Synchronization, coherence, and event ordering in
multiprocessors. IEEE Computer (Feb. 1988), 9-21.

30. Feng, T. A survey of interconnection networks. IEEE
Transactions on Computers (Sept 1980), 109-124.

31. Flynn, M.J. Very high-speed computing systems.
Proceedings of the IEEE 54 (1966), 1901-1909.

32. Frenkel, K.A. Evaluating two massively parallel
machines. Communications of the ACM (August 1986),
752-758.

33. Gajski, D.O., Padua, D.A., Kuck, D.J., and Kuhn, R.H.
A second opinion on data flow machines and languages.
IEEE Computer (Aug. 1982), 58-69.

34. Gajski, D.O., and Peir, J. Essential issues in
multiprocessor systems. IEEE Computer (June 1985),
9-27.

35. Gerdts, A., and Kowalewski, D.L. First experiences
with an emulation of a system of cooperating
reduction machines. Proceedings of the 10-th Annual
International Symposium on Computer Architecture
(Stockholm, Sweden, June 13-17). ACM, New York, 1983,
8.8-8.15.

36. Gurd, J.R., Kirkham, c.c., and Watson, I. The
Manchester prototype data flow computer.
Communications of the ACM 28, 1, (Jan. 1985), 34-52.

275

37. Gutzmann, K.M. Optimal dimension of hypercubes for
sorting. Computer Architecture News (March 1987), 68-
72.

38. Handler, w. The impact of classification schemes on
computer architecture. Proc. 1977 Int. Conf. on
Parallel Processing, 7-15.

39. Hankin, c., Till, D., and Glaser, H. Linking data
flow and functional languages. Byte (May 1986), 123-
134.

40. Hughes, J.L. Implementing control-flow structures in
data flow programs. Proceedings of the 24-th IEEE
Computer Conference (San Francisco, Calif., Feb.).
IEEE, New York, 1982, 87-90.

41. Hwang, K., and Briggs, F.A. Computer Architecture and
Parallel Processing. McGraw Hill, New York, NY.,
1984.

42. Hwang, K., Ghosh, J., and Chowkwanyun, R. Computer
architectures for artificial intelligence processing.
IEEE computer (January 1987), 19-27.

43. Hwu, w.w., and Patt, Y.N. Checkpoint repair for out­
of-order execution machines. The 14-th Annual
International Symposium on Computer Architecture
(Pitsburgh, Pennsylvania, June 2-5, 1987). IEEE
Computer Science Press, Washington, D.C., 1987, 18-
26.

44. Intel iPSC Data Sheet, Intel Scientific Computers.

45. Irwin, M.J. Reconfigurable pipeline systems. ACM
Computing Surveys (Jan. 1978), 86-92.

46. Jordan, H.F. Experience with pipelined multiple
instruction streams. Proceedings of the IEEE vol. 72,
no. 4, (Jan. 1984), 113-123.

47. Jordan, H.F. Performance measurement of HEP - a
pipelined MIMD computer. Proceedings lOth Ann. Symp.
Computer Architecture (June 1983), 207-212.

48. Kartashev, S.P., and Kartashev, I.S., eds. Designing
and Programming Modern Computers and Systems. Vol.I,
LSI Modular Computer Systems. Prentice-Hall, Inc.,
Englewood, N.J., 1982.

49. Keller, R.M., and Lin, F.C.H. Simulated performance
of a reduction-based multiprocessor. IEEE Computer
(July 1984), 70-82.

50. Keller, R.M., Lin, F.C.H., and Tanaka, J. Rediflow
processing. Proceedings of the 26-th Computer
Conference (February 1984), 410-417.

276

51. Kluge, W.E. Cooperating reduction machines. IEEE
Transactions on Computers (November 1983), 1002-1012.

52. Kogge, P.M. The Architecture of Pipelined Computers.
McGraw Hill, New York, 1981.

53. Krajewski, R. Multiprocessing: an overview. Byte
(May, 1985), 171-181.

54. Kuck, D.J. Illiac IV software and application
programming. IEEE Trans. on Computers (Aug 1968),
746-757.

55. Kuck, D.J. The Structure of Comouters and Computa­
tions, Vol. 1. John Wiley and Sons, New York, N.Y.,
1978.

56. Kumar, M. Performance enhancement in buffered delta
networks using crossbar switches and multiple links.
Journal of Parallel and Distributed Computing 1,
(1984), 81-103.

57. Lee, R.L., Yew, P.C., and Lawrie, D.H. Multiprocessor
cache design considerations. The 14-th Annual
International Symposium on Computer Architecture
(Pitsburgh, Pennsylvania, June 2-5, 1987). IEEE
Computer Science Press, Washington, D.c., 1987, 27-
34.

58. McGraw, J.R. Data flow computing - software
development. IEEE Transactions on computers (Dec.
1980), 1095-1103.

59. Mokhoff, N. Parallelism breeds a new class of
supercomputers. Computer Design (March 15, 1987), 53-
64.

60. Myers, w. Getting the cycles out of a supercomputer.
IEEE Computer (March 1986), 89-92.

61. Oldehoeft A.E., Allan s., Thoreson, S.A., Retnadhas
C. and Zingg, R.J. Translation of high level programs
to data flow and their simulated execution on a
feedback interpreter. Iowa State University Technical
Report #78-2 (1978).

62. Paseman, W.G. Applying data flow in the real world.
Byte (May 1986), 201-214.

277

63. Peterson, J.L. and Silberschatz, A. Operating System
Concepts. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1985.

64. Poplett, J., and Kurver, R. The DSI transputer
development system. Byte (Feb. 1988), 249-254.

65. Pountain, D. Parallel processing: a look at the ALICE
hardware and Hope language. Byte (May 1985), 385-394.

66. Ramamoorthy, c.v., and Li, H.F. Pipeline
architecture. ACM Computing surveys (March 1977), 61-
102.

67. Ravishankar, c.v., and Goodman, J.R. VLSI
considerations that influence data flow architecture.
Proceedings of the 24-th IEEE Computer Conference
(San Francisco, Calif., Feb.). IEEE, New York, 1982,
87-90.

68. Ryder, B.G., and Paull, M.C. Elimination algorithms
for data flow analysis. ACM Computing Surveys
(September 1986), 277-316.

69. Seban, R.R., and Siegal, H.J. Shuffling with the
Illiac and PM2I SIMD Networks. IEEE Trans on Comp.
(July 1984), 619-625.

70. Seitz, C.L. The Cosmic Cube. Communications of the
ACM (January 1985), 22-33.

71. Smith, B.J. A pipelined shared resource MIMD
computer. Proc. 1978 Int'l. Conf. on Parallel Proc.,
1978, 6-8.

72. Smith, B.J. Architecture and applications of the HEP
multiprocessor computer system. Real Time Signal
Processing IV (Aug. 1981), 241-248.

73. Sohi, G.S., and Vajapeyam, s. Instruction issue logic
for high-performance, interruptable pipelined
processors. The 14-th Annual International Symposium
on Computer Architecture (Pitsburgh, Pennsylvania,
June 2-5, 1987). IEEE Computer Science Press,
Washington, D.C., 1987, 27-34.

74. Srini, V.P. An architectural comparison of data flow
systems. IEEE Computer (March 1986), 68-88.

75. Stalling, w. Computer organization and Architecture.
MacMillan Publishing Co.,Inc., New York City, New
York, 1987.

76. Stone, H. High Performance Computer Architectures.
Addison-Wesley Publishing co., Reading,
Massachusetts, 1986.

278

77. Syre, J.C. The data flow approach for MIMD
multiprocessor systems. Parallel Processing Systems.
Cambridge University Press, 1982, 239-274.

78. Tanenbaum, A.S. structured Computer Organization.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1984.

79. Tanenbaum, A.S. Computer Networks. Prentice-Hall,
Inc., Englewood Cliffs, NewJersey, 1981.

80. Thoreson, S.A. and Long, A.N. Applying program
restructuring to dataflow environments. The
Proceedings of Workshop on Applied Computing
(Stillwater, Ok., Oct. 1986), 58-62.

81. Thoreson, S.A. and Long, A.N. Modeling a virtual
memory in a dataflow environment. Proceedings of the
Sixteenth Annual Pittsburgh Conference on Modeling
and Simulation 16 (1985), 951-957.

82. Thoreson, S.A. and Long, A.N. A feasibility study
of a memory hierarchy in a dataflow environment.
Proceedings of the 1985 International Conference on
Parallel Processing (1985), 356-360.

83. Thoreson, S.A. and Oldehoeft, A.E. Instruction
reference patterns in data flow programs. ACM '80
Proceedings (1980), 211-216.

84. Treleaven, P.C. Parallel models of computation.
Parallel Processing Systems, Cambridge University
Press, 1982. 274-282.

85. Treleaven, P.C., Brownbridge, D.R., and Hopkins, R.P.
Data-driven and demand-driven computer architectures.
ACM Computing Surveys (Mar.1982), 93-143.

86. Treleaven, P.C., and Lima, I.G. Japan's fifth­
generation computer systems. IEEE Computer (Aug.
1982), 79-88.

87. Treleaven, P.C., and Lima, I.G. Future computers:
logic, data flow, ••• , control flow? IEEE Computer
(March 1984), 47-58.

279

88. Treleaven, P.C., and Mole, G.F. A multiprocessor
reduction machine for user-defined reduction
languages. Proceedings of the 7-th Annual Symposium
on Computer Architecture (May 6-8). ACM, New York,
1980, 121-130.

89. Treleaven, P.C., Hopkins, R.P., and Rautenbach, P.W.
Combining data flow and control flow computing. The
Computer Journal (May 1982).

90. Turner, D. Combinator reduction machines. Proceedings
of the 10-th Annual International Symposium on
Computer Architecture (Stockholm, sweden, June 13-
17). ACM, New York, 1983, 5.26-5.38.

91. Veen, A.H. Dataflow machine architecture. ACM
Computing Surveys (December 1986), 365-396.

92. Vegdahl, s.R. A survey of proposed architectures for
the execution of functional languages. IEEE
Transactions on Computers (December 1984), 1050-1071.

93. Walker, P. The transputer. Byte (May 1985), 219-235.

94. Watson, I., and Gurd, J. A practical data flow
computer. IEEE Computer (Feb. 1982), 51-57.

95. Welty, L.L., and Patton, P.C. Hypercube
architectures. National Computer Conference (1985),
259-265.

APPENDIXES

280

APPENDIX A

GLOSSARY

accumulator: A holding register for the results of

arithmetical and logical operations. Usually, the

accumulator is loaded with the value of an operand

while any other required operands of an instruction

remain in memory; the result of the operation is

placed in the accumulator by the arithmetic/logic

unit.

address: An identifier of a memory location, register, or

device.

address bus: A unidirectional bus over which is

transmitted digital information that identifies

either a device or a memory location.

aliasing: In procedural languages, two or more names are

used to denote the same memory address.

alignment network: A network that allows the simultaneous

connection of any two or more distinct module pairs.

For example, in an array or a multiprocessor system,

any memory may be connected to any processor.

281

arbitration network: A network allowing data from any

input to be routed to one of several possible

outputs as specified by information included with

the data.

architecture: See computer architecture.

arithmetic/logic unit (ALU): A unit of the central

processing unit (CPU) that performs arithmetic and

logical operations.

282

ARPANET: One of the first large scale packet switched

networks produced by the ARPA project and funded by

the u.s Defense Advanced Research Project Agency.

array processor: A computer with one control unit,

multiple arithmetic/logic units, and multiple memory

units. The control unit fetches instructions from

the memories, decodes them and broadcasts the

instructions to the arithmetic/logic units. Each

arithmetic/logic unit can fetch its own data for

processing. An array processor performs duplicate

operations on multiple data items simultaneously.

associative memory: See content addressable memory.

associative processor: A computer system much like an

array processor with the distinction that it

operates on associative memories.

asynchronous: The starting and stopping of processing

based on the sending and receiving of

acknowledgement signals between dependant modules.

barrel shifter: An interconnection network with the

interconnect function defined as follows:

B(j) = (j ± 2i) (mod N)

where N is the number of modules connected,

o .:5. j .:5. N-1, o .:5. i .:5. n-1, and n = log2N.

283

bus: A common connector. In data communications, a

network topology in which workstations are connected

by T junctions to one main cable. In computing, an

electrical connection between the components of a

computer system along which data is transmitted.

cache: A very high speed buffer memory into which

instructions and data anticipated for use in the

near future are loaded from .main storage. The

processor has direct access to the cache.

call-by-reference: Method of passing parameters wherein

the function receives the address of the real

parameter value. Changes to the formal parameter in

the function results in changes to the real

parameter in the calling routine.

call-by-value: Method of passing parameters wherein the

function receives a copy of the real parameter.

Changes to the formal parameter in the function

results in changes to the parameter's local copy and

not to the real parameter in the calling routine.

central processing unit (CPU): The unit of a computer

containing the control unit, the arithmetic/logic

unit, and a number of registers.

computer architecture: The arrangement of the parts of a

computer system, ·their interconnections, dynamic

interactions, implementations, and management.

284

content addressable memory: A memory that is content

addressable; that is, where every memory register

that contains a specified string of symbols (key) is

accessed rather than the single register whose

location is specified.

control unit (CU): The unit of the central processing unit

responsible for fetching and decoding of

instructions, operand address calculation, and

driving the arithmetic/logic unit and other system

elements.

crossbar switch:· A telephone switching network. An

alignment network that allows simultaneous conflict

free transmissions between two sets of modules. For

example, if there are M memories and P processors,

data may be transmitted on an MxP crossbar switch

from any memory to any processor, assuming there is

a one to one mapping. An MxP crossbar switch has M

inputs and P outputs.

data dependency: The state of being dependent or

conditional on the value of the data read or written

in a single instruction or in a block·of code. Data

dependencies exist between operations when the

action of one operation on the data affects the

outcome of the other operation and vice versa.

data-driven computer: See data flow computer.

data flow computer: Computer in which instructions are

executed based on data dependencies. Programs are

represented by data flow graphs. Availability of

operands triggers the execution of operations.

285

data flow graph: A directed graph used to represent a data

flow program, where nodes are instructions or

processes whose outputs pass along links to

subsequent processes. A node executes, or fires, if

all its input links are carrying values. The graph

represents the data dependencies inherent in the

computer program.

data parallelism: The capability of a computer to process

multiple data items at the same time.

delta network: An alignment network establishing a path of

constant length from any one of its an inputs to any

one of its bn outputs. This is an anxbn switching

network with n stages consisting of aXb crossbar

switches. It is cheaper to construct than an anxbn

crossbar switch but provides less speed as the

number of terminals increases.

demand-driven computer: See reduction machine.

distributed data processing: The processing of jobs at a

number of geographically separate locations.

distribution network: A network that allows data from an

input to be dispensed to one or more outputs.

286

emitter-coupled logic: In microelectronics, a transistor

logic circuit characterized by fast action and high

power dissipation. The fastest of the widely used

technologies for LSI and VLSI chips.

fault: In systems, a condition that causes a device,

component, or element to fail to perform in a

required manner. The fault may be either physical

or algorithmic.

fire: The execution of a node in a data flow graph.

flip-flop: A simple circuit that can maintain one of two

possible stable states.

front-end: In computing, a front-end processor is used to

handle communication interfacing.

Goodyear-Aerospace: The division of Goodyear Tire, Akron,

Ohio, that designs and builds parallel computers (as

well as other unrelated things) • Notables it has

built are STARAN (1974) and the Massively Parallel

Processor (MPP) (1982).

graceful degradation: Components already in the system

assume some or all of the responsibilities of failed

components. The system can continue to operate

although there may be some reduction of performance.

287

graph reduction: a form of reduction in which each

i~struction that accesses a particular definition

will manipulate references to the definition. That

is, graph manipulation is based on the sharing of

arguments using pointers. When a functional value

is demanded the reference is traversed in order to

reduce the definition and return with the actual

value.

host: A computer used to prepare programs to be run on

other systems. Within a network, it may provide

services such as computation, database access, or

allow use of special programming languages. Within

a distributed system, it may be the primary

controlling computer within the multiple computer

installation.

image processing: The processing of digitized image data

by a computer to obtain information about the image

or to change the representation of the image.

immediate operand: Constant stored in the machine

instruction.

instruction parallelism: The capability of a computer to

execute multiple instructions at the same time.

288

interconnection network: In general, an interconnection

network allows communication between modules. In

parallel systems such as array processors, there is

a specific one to one and onto function defined, say

f. If there are N modules, the interconnection

network allows simultaneous communication between

module i and module f(i) where i= 1,2, ••• N. The

specific function is a constant for the network and

designed for the application of the system.

interleaved memory: If n memory modules are numbered o, 1,

2, ... , n-1, and if words at address i are located

in memory module number i (mod n), then the memory

is n-way interleaved. The n memory modules may be

operated independently and timeshare the memory bus.

large scale integration (LSI): The fabrication of 100 to

1000 gates on a single chip.

LOCK and UNLOCK operations: Process synchronization

primitives. Used so that each process accessing

shared data excludes all others from doing so

simultaneously. Processes attempting to initiate

access to shared data while another process has

access is forced into busy waiting. See P and V

operations.

machine instruction: An instruction in binary code that

can be executed directly by a computer.

289

main memory: The memory in a computer that stores

instructions and data that are in active use by the

processor.

multiprocessor: A computer system with more than one

central processing unit. Used to decrease the time

to completion for a single job.

network: Either a series of interconnected points or a

system of interconnected communication facilities.

outermost function: In reduction, in an expression, the

operation of lowest precedence.

P and V operations: Process synchroniza~ion primitives.

Used so that each process accessing shared data

excludes all others from doing so· simultaneously.

Processes attempting to initiate access to shared

data while another process has access is removed by

the operating system from the list of ready

processes (put to sleep).

packet: A self contained component of information. In

communications, the information is a message

comprising address, control, and data that can be

transferred as an entity within a network.

290

packet switching: A method of message transmission in

which each complete message is assembled into one or

more packets that can be sent through a network,

collected and reassembled into the original message

· at the destination. The individual packets need not

be sent by the same route. The channels are seized

only during the duration of packet transmission and

are then released.

parallel computer: A computer that can perform multiple

operations at the same time.

pipelining: The process of partitioning a job into

distinct steps and streaming inputs through the

steps. The mechanism is like that of materials

moving through an assembly line.

process: A program or some more or less self-contained

transformation that is actually being executed by a

processor.

processor: A device or system capable of performing

operations upon data.

program counter: The register in the control unit of a von

Neumann computer that holds the address of the next

machine instruction to be executed.

random-access memory (RAM): A memory system which accepts

as input the location of a memory word and returns

as output the contents of that word. The time to

access one word is the same as that required to

access any other word.

291

reduction: A computation system in which programs are

built from nested expressions. The nearest analogy

to an instruction is a function application where

the function returns its result in place (a CALL­

RETURN pattern of control). A function or its

arguments may be recursively defined as a primitive

operation, such as add or multiply, as a constant,

as an expression, or as another function. In

reduction, a program is equivalent to its result in

the same way that 2+2 is equivalent to 4. The main

points of reduction are that 1) program structures,

instructions, and arguments are all expressions, or

functions; 2) there is no concept of updatable

storage; 3) there are no sequencing constraints

other than those implied by demands for operands; 4)

demands may return both simple or complex arguments,

such as a function.

reduction machine: Computer in which the requirement for a

result triggers the operation that will generate it.

referential transparency: A principle which states that

the replacement of an expression, or function, by

its value is entirely independent of the context in

which the function application appears.

shuffle-exchange: An interconnection network with the

interconnect function defined as follows: first

apply the shuffle function and follow it by the

exchange function. The shuffle function may be

defined as:

S(an-l···alao) = an-2···a1aoan-1

292

where the number of processors is N; A= an-1···a1ao

is a processor address in binary, each ai is a bit,

and 0 < A < N-1; and n = log2N. The exchange

function may be defined similarly as E(an-l···alao)

= an-1···a1ao (the right most bit is complemented).

supercomputer: A loose term for an extremely powerful

mainframe computer that provides high speed

computing.

token: The operand value emitted by a node in a data flow

graph.

transputer: A von Neumann computer implemented on a VLSI

chip. A processor, 4K bytes local memory, four link

interfaces for interfacing to other transputers,

interfaces for accessing other devices, and system

services such as reset and the clock are all packed

onto a single chip. The transputers are programmed

in a language called Occam. Each transputer in a

system executes its own Occam program using its own

local memory.

V operation: See P and V operations.

very large scale integration (VLSI) : The fabrication of

100,000 or more gates on a single chip.

293

von Neumann computer: A computer based on the work of

mathematician and computer designer John von

Neumann. The computers are characterized by 1) a

single computing element incorporating processor,

communications, and memory, 2) linear organization

of fixed size random-access memory cells, 3) a

sequential, centralized control of computation. A

machine instruction program is loaded sequentially

in main memory and executed under the sequencing of

a program counter.

ADVAST

ALICE

ARPA

CE

CIR

CPU

cu

ECL

EDVAC

ENIAC

FFT

FLOPS

GFLOPS

HEP

IAS

IBM

ILLIAC

IP

iPSC

APPENDIX B

LIST OF ACRONYMS

In the ILLIAC control unit, ADVAnced
instruction STation.

Applicative Language Idealized Computing
Engine.

Advanced Research Project Agency.

In Alliant, Computational Element.

current Instruction Register.

Central Processing Unit.

Control Unit.

Emitter-coupled Logic.

Electronic Discrete Variable Automatic
Computer.

Electronic Numerical Integrator and
Calculator.

Fast Fourier Transform.

FLoating Point Operations Per Second.

Giga (one billion) Floating Point
Operations Per Second.

Heterogeneous Element Processor

Institute for Advanced Studies computer.

International Business Machines.

ILLinois Array Computer.

In Alliant, Interactive Processor.

Intel Personal Supercomputer.

294

IPU

LAN

LINPACK

LSI

MAR

MBR

MFLOPS

MIMD

MIPS

MISD

MR

MSIMD

PC

PE

PEM

PSW

PT

RAM

SDI

SFU

SIMD

SISD

ssw

In the HEP, Instruction Processing Unit.

Local Area Network.

LINear equations software PACKages.

Large Scale Integration.

Memory Address Register.

Memory Buffer Register.

Mega (million) FLoating Point Operations
Per Second.

295

Multiple-Instruction-stream Multiple-Data­
stream.

Million Instructions Per Second.

Multiple-Instruction-stream Single-Data­
stream.

Mask Register.

Multiple Single-Instruction-stream
Multiple-Data-stream.

Program Counter.

Processing Element.

In array processor, Processing Element
Memory. In the HEP, Process Execution
Module.

In the HEP, Process Status Word.

In the HEP, Process Tag.

Random-Access Memory.

Strategic Defense Initiative.

In the HEP, Scheduler Function Unit.

Single-Instruction-stream Multiple-Data­
stream.

Single-Instruction-stream Single-Data­
stream.

In the HEP, Scheduler Status Word.

TSW

VLSI

XR

In the HEP, Task Status Word.

Very Large Scale Integration.

indeX Register.

296

VITA

Phyllis Johnson Thornton

Candidate for the Degree of

Doctor of Education

Thesis: AN INTRODUCTION TO PARALLEL COMPUTER
ARCHITECTURES

Major Field: Higher Education

Area of Specialization: Computing and Information
Sciences

Biographical:

Personal Data: Born in Sherman, Texas, December 16,
1947, the daughter of Phillip and Fern L.
Johnson. Married to Michael c. Thornton on June
5, 1971. The mother of Justin Glenn and
Jennifer Dawn Thornton.

Education: Graduated from Yuma Union High School,
Yuma, Arizona, in May 1966; received a Bachelor
of Arts Degree in Mathematics with a minor in
Physics from San Diego state University, San
Diego, California, in June 1970; attended
graduate school at San Diego State University
from 1970 to 1974; completed the requirements
for the Doctor of Education at Oklahoma State
University in July, 1988.

Professional Experience: Teaching Assistant,
Department of Mathematics and Computer science,
San Diego State University, September, 1970, to
June, 1973; Part Time Instructor, Department of
Mathematics, Arizona Western College, Yuma,
Arizona, 1979 and 1980; Instructor and Assistant
Professor, Department of Computer Science,
Central State University, Edmond, Oklahoma,
January, 1981 to present; current member of the
Association for Computing Machinery and The
Institute of Electrical and Electronics
Engineers' Computer Society.

