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CHAPTER I 

INTRODUCTION 

1.0 Statement of the Problem 

and Proposed Solution 

The computer was developed to perform the tedious 

time consuming calculations required to solve problems 

from many areas of application. As time has passed, more 

and more complex problems have been identified for which 

solutions are desired. Solutions are needed to such 

problems as weather forecasting, signal and image 

processing, expert systems and implementation of 

artificial intelligence, and the implementation of current 

military applications and future ones such as the 

Strategic Defense Initiative (SDI). Feasible solutions to 

these problems and others will not be possible without the 

use of high-performance supercomputers. 

The first approach to building better computers has 

been to build faster von Neumann computers by improving 

gate speeds, reducing transfer distances, and generally 

improving the existing architecture technologically. 

However, there is a limit to the amount of computing power 

compressible into one package. The speed of light and 

electricity has been determined to be a constant; it 

1 
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cannot be exceeded. This constant establishes a 

fundamental limiting factor on the computing capacity of 

the standard uniprocessor architecture. The speed of 

light is approximately 3 x 108 mjsec in a vacuum and the 

signal transmission speed in silicon is at best about 3 x 

107 mjsec after gate switching delays are taken into 

account. A three centimeter chip can propagate a signal 

in approximately 10-9 sec. Such a chip can perform in the 

neighborhood of 109 floating point operations per second 

(FLOPS), since a nonparallel chip can produce at best, one 

floating point operation per signal propagation. Thus, it 

appears that the standard von Neumann uniprocessor will 

not be able to exceed 109 FLOPS or one giga-FLOPS 

(GFLOPS). The supercomputers presently available are 

within a factor of 10 of this limit [22]. 

From the above discussion, it should be clear that 

the need for increased computer speed will not be met and 

challenging problem solutions will not be attainable 

within a feasible time limit without major improvements in 

computer organizations and programming techniques. 

Parallel architectures offer a partial solution to this 

problem. 

Parallel computer architectures allow 1) instruction 

parallelism, the execution of two or more machine 

instructions within a time interval, 2) data parallelism, 

the processing of several data elements at a time, or 3) 

both data and instructional parallelism may take place 



within the same time interval. These architectures were 

described by Michael Flynn in 1966 [30]. Under his scheme 

of characterization, machines with no parallelism were 

single-instruction-stream single-data-stream (SISD) 

machines. Computers with only instruction parallelism 

were characterized as multiple-instruction-stream single­

data-stream (MISD) computers; those with only data 

parallelism were single-instruction-stream multiple-data­

stream (SIMD) ones. And finally, those computers with 

both instruction and data parallelism were multiple­

instruction-stream multiple-data-stream (MIMD) computers. 

3 

Some operations that would have to be performed one 

after another on a standard von Neumann uniprocessor can 

be performed concurrently on parallel computer 

architectures. For example, let a given job, taking T 

time units when executed sequentially, be partitioned into 

n substeps, each requiring T/n time units. If each 

substep can be executed concurrently on a parallel 

computer, then, theoretically, the result could be 

expected in 1/n-th of the sequential time. Although such 

results are currently only approximated in real 

applications, considerable speedup can be verified. 

The study and exploitation of these parallel systems 

is of utmost importance if we are to attain computers with 

sufficient speed of computation to reach feasible 

solutions to many critical problems. 
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currently, knowledge of parallel systems is not widely 

disseminated. Within most universities, education of 

students into the aspects of parallel architectures is not 

initiated until the graduate level. An informal survey of 

thirty-eight universities indicated this to be true. The 

catalogs of the thirty-eight universities listed in Table 

I were consulted to determine what parallel computer 

architecture courses are offered by the universities. 

Although a number of them offered courses dealing with 

some aspect of parallel computer architecture at the 

graduate level, few offered anything at the undergraduate 

level. Seven of the thirty-eight offered general computer 

logic and organization courses whose descriptions included 

some allusion to parallel processing topics. Only two 

universities offered undergraduate courses whose 

descriptions indicate a strong emphasis on parallel 

computer architectures. 

This deferring of parallel computer architecture 

curriculum is unfortunate. The sequential nature of von 

Neumann uniprocessors and the procedural languages 

developed to execute on them frequently establish a mind­

set for students which colors their view of computing for 

the rest of their lives. Further, if they are not 

introduced to parallel computing during their 

undergraduate experience, they may never give the matter 

serious thought. Different architectures give alternate 

ways of approaching problems; without knowledge of these 



TABLE I 

UNIVERSITY CATALOGS CONSULTED TO DETERMINE 
WHAT PARALLEL COMPUTER ARCHITECTURE 

COURSES ARE OFFERED AT THE 
UNDERGRADUATE LEVEL 

University catalog Parallel Course 
Year Offered 

Air Force Academy 1986-1988 None 

Baylor University 1985 None . 
Bowling Green 1987-1989 None 
State University 

Central State 1988 None 
University 

California State 1985-1987 None. 
University, Fullerton 

Case Western 1985-1987 None 
Reserve University 

Duke University 1988-1989 A* 

East Texas State 1986-1987 None 
University 

Illinois Institute 1986-1988 None 
of Technology 

Indiana State 1986-1988 A* 
University 

John Hopkins 1986-1987 None 
University 

Kent State 1985-1986 A* 
University 

Louisiana State 1986-1987 A* 
University 

Massachusetts 1985-1986 None 
Institute of 
Technology 

Michigan State 1987-1988 None 
University 

5 
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TABLE I (Continued) 

Murray State 1986-1988 A* 
University 

North Dakota 1986-1988 None 
State University, 
Fargo 

Ohio State 1985-1986 None 
University 

Oklahoma State 1986-1988 None 
University 

Pennsylvania 1985-1986 A* 
state University 

Princeton University 1987-1989 A* 

Purdue University 1987-1989 None 

Texas Women's 1987-1989 None 
University 

Vanderbilt 1987-1988 None 
University 

Virginia Polytechnic 1988-1989 p* 
Institute and State 
University 

United States 1987-1988 None 
Naval Academy 

University of 1984-1985 None 
Arizona 

University of 1985-1986 None 
Arkansas at 
Little Rock 

University of 1985-1987 None 
Boston 

University of 1987-1988 None 
California, 
Riverside 

University of 1986-1987 None 
Connecticut 



TABLE I (Continued) 

University of 1987 None 
Idaho 

University of 1987-1988 None 
Miami 

University of 1984-1986 None 
Texas at Dallas 

University of 1985-1986 None 
Rhode Island 

University of 1987-1989 None 
Wisconsin, Milwaukee 

Washington State 1987-1989 None 
University 

Yale University 1985-1987 p* 

A* indicates course description included some allusion to 
parallel processing topics. 

p* indicates course description implies a strong emphasis 
on parallel computer architectures. 
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alternate systems the student is locked out from a whole 

new perspective on problem solving. The earlier in their 

computer education process that students are introduced to 

parallel architectures the better will be their 

opportunity for growth. 

The computer science student of today is the computer 

designer, engineer, analyst, and programmer of tomorrow. 

Current students must be the identifiers and solvers of 

the computational problems of the present and future. It 

is the responsibility of the computer educator of today to 

facilitate the learning of these students in the concepts 

of parallel architectures. Thus, the fundamental concepts 

of parallel systems should be introduced into the computer 

science curriculum as soon as possible. 

The purpose for this dissertation is to produce an 

introductory treatise on parallel architectures which will 

be appropriate for study by undergraduate computer science 

students in their junior or senior year of academic study. 

By bringing these architectures to the attention of the 

student early in his learning experience, the student's 

perspective on computing will be broader and more 

fruitful. 

8 



1.1 Intended Audience For the Treatise 

The appropriate audience for this treatise is upper 

division undergraduate students majoring in computer 

science. These students should have mastered the 

following: 

1) programming in a high level procedural language 

such as Pascal or c. The student should have a clear 

understanding of procedures, parameter passing, pointers, 

and algorithms. 

9 

2) programming in an assembly language such as IBM 

370 Assembly Language or VAX 11 Assembly Language. The 

study of a computer architecture implies the investigation 

of the machine at this low level. The student should be 

familiar with the low level workings of at least one 

machine so that he/she can extrapolate that understanding 

to new and, perhaps, more complicated architectures. 

3) the fundamental concepts of computer logic and 

computer organization. The student should already be 

conversant in the integral components of a computer; such 

comprehension is necessary for the appreciation of the new 

parallel systems he/she will be studying. 

4) the basic concepts of data structures including 

stacks, queues, linear and circular linked lists, 

matrices, and trees. Many of the structures studied in 

such a course are utilized, either in software or 

hardware, within parallel systems. 



5) the basic concepts of operating systems. 

Parallel systems frequently involve the concurrent andjor 

simultaneous execution of programs on the same or 

different processors. Such execution is controlled by an 

operating system. Knowledge of how program execution is 

managed on a nonparallel system will be helpful in the 

study of parallel program executions. 

1.2 Specific Topics for the Treatise 

10 

Three types of parallel architectures commonly 

identified are array, pipeline, and multiprocessor 

architectures. These three architectures are extensions 

of the von Neumann architecture. There are two other 

parallel architectures that are non-von Neumann. The 

first of the two non-von Neumann machines is referred to 

as a data-driven or a data flow machine. The second is 

referred to as a demand-driven or reduction machine. This 

treatise introduces each of these five parallel 

architectures by examining the general aspects of each. 

Also, specific machines that implement these architectures 

are presented. 

1.3 Existing Literature 

The literature which presents aspects of array, 

pipeline, multiprocessor, data flow, and reduction 

architectures are plentiful in periodicals and books. 

Included with this dissertation is a bibliography of 
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sources used for the documentation and completion of this 

treatise. Kartashev and Kartashev (1982) [48] has an 

excellent review of array processors and Kogge (1981) [52] 

covers pipelining in great depth, but their breadth is 

limited. Others such as Baer (1980) [7] and Stalling 

(1987) [75] briefly introduce some of these topics but 

their primary focus is on the von Neumann architecture. 

Calingaert (1982) [16] and Peterson and Silberschatz 

(1985) [63] briefly present some aspects of 

multiprocessing from the perspective of the operating 

system but do little with the architecture. Few existing 

works bring together under one cover the architectural 

topics presented in this dissertation. Two that cover 

most of the topics are Hwang and Briggs (1984) [41] and 

Stone (1986) [76], but they are posed for presentation at 

the graduate level. No known work attempts to present the 

concepts of array, pipeline, multiprocessor, data flow, 

and reduction at a level appropriate for the undergraduate 

student. This treatise attempts to satisfy the need for a 

book to aid the computer science undergraduate student in 

the study of parallel computer architectures. 

1.4 Operational Terms and Reading Aids 

The following operational terms and their definitions 

may be of assistance to the reader of this treatise. 

Additional terms and definitions may be found in Appendix 

A, a glossary of terms used in this dissertation. 



Further, Appendix B contains a list of acronyms and the 

words from which they are formed. 

A computer architecture is the arrangement of the 

parts of a computer system, their interconnections, 

dynamic interactions, implementations, and management. 

A parallel computer can perform multiple operations 

at the same time. 

Supercomputer is a loose term for an extremely 

powerful mainframe computer that provides high speed 

computing. 
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A von Neumann computer is based on the work of 

mathematician and computer designer John von Neumann. The 

computers are characterized by 1) a single computing 

element incorporating processor, communications, and 

memory, 2) linear organization of fixed size random­

access memory cells, 3) a sequential, centralized control 

of computation. A machine instruction program is loaded 

sequentially in main memory and executed under the 

sequencing of a program counter. 

Data dependency is the state of being dependent or 

conditional on the value of the data read or written in a 

single instruction or in a block of code. Data 

dependencies exist between operations when the action of 

one operation on data affects the outcome of the other 

operation and vice versa. 

An array processor is a computer with one control 

unit, multiple arithmetic/logic units, and multiple memory 
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units. The control unit fetches instructions from the 

memories, decodes them and broadcasts the instructions to 

the arithmetic/logic units. Each arithmetic/logic unit 

can fetch its own data for processing. An array processor 

performs duplicate operations on multiple data items 

simultaneously. 

An associative processor is a computer system much 

like an array processor with the distinction that it 

operates on ~ssociative memories. 

Pipelining is the process of partitioning a job into 

distinct steps and streaming inputs through the steps. The 

mechanism is like that of materials moving through an 

assembly line. 

A multiprocessor is a computer system with more than 

one central processing unit. It is used to decrease the 

time to completion for a single job. 

A data flow computer is one in which instructions are 

executed based on data dependencies. Programs are 

represented by data flow graphs. Availability of operands 

triggers the execution of operations. 

A data flow graph is a directed graph used to 

represent a data flow program, where nodes are 

instructions or processes whose outputs pass along links 

to subsequent processes. A node executes, or fires, if 

all its input links are carrying values. The graph 

represents the data dependencies inherent in the computer 

program. 



A reduction machine is a computer in which the 

requirement for a result triggers the operation that will 

generate it. 
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Reduction is a computation system in which programs 

are built from nested expressions. The nearest analogy to 

an instruction is a function application where the 

function returns its result in place (a CALL-RETURN 

pattern of control). A function or its arguments may be 

recursively defined as a primitive operation, such as add 

or multiply, as a constant, as an expression, or as 

another function. In reduction, a program is equivalent 

to its result in the same way that 2+2 is equivalent to 4. 

The main points of reduction are that 1) program 

structures, instructions, and arguments are all 

expressions, or functions; 2) there is no concept of 

updatable storage; 3) there are no sequencing constraints 

other than those implied by demands for operands; 4) 

demands may return both simple or complex arguments, such 

as a function. 

Graph reduction is a form of reduction in which each 

instruction that accesses a particular definition will 

manipulate references to the definition. That is, graph 

manipulation is based on the sharing of arguments using 

pointers. When a functional value is demanded the 

reference is traversed in order to reduce the definition 

and return with the actual value. 



CHAPTER II 

A REVIEW OF THE VON NEUMANN 

COMPUTER ARCHITECTURE 

2.0 Introduction and Historical 

Perspective 

This section briefly reviews the history and earliest 

organization of the the von Neumann computer architecture. 

The evolution of computer development has its 

beginnings in the 1400's when Blaise Pascal invented the 

first mechanical calculator. Charles Babbage, an English 

mathematician, inventor, and philosopher of the 1800's 

initiated a calculating engine which was to have a control 

unit, arithmetic unit, memory, and I/O devices. 

Unfortunately for him and his collaborator Lady Ada 

Augusta Lovelace, the technology for such a machine was 

not available and they were never able to complete their 

work. 

In 1946, J.W. Mauchly and J.P. Eckert working at the 

Moore School of Electrical Engineering at the University 

of Pennsylvania, were credited with building the 

Electronic Numerical Integrator and Calculator, better 

known as ENIAC. For many years, the ENIAC was credited as 

being the first electronic computer. However, in the 

15 
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1970's, it was shown that Mauchly and Eckert had drawn 

very heavily from the work of John Atanasoff and Clifford 

Berry. The Atanasoff-Berry machine built at Iowa State 

University in 1939 now is credited as the first electronic 

computer. 

While working on the ENIAC project, Mauchly and 

Eckert collaborated with John von Neumann, a prominent 

mathematician of that period, on problems of machine 

design. In 1945, von Neumann wrote a memo as an ENIAC 

consultant suggesting a stored program machine, its 

possible implementation and implications. This important 

idea led to the construction of EDVAC (Electronic Discrete 

Variable Automatic Computer) which was begun in 1946. The 

EDVAC is credited as being the first stored program 

computer. Although it was not the first such computer to 

become operational, it was the first computer for which a 

workable plan was established to implement a stored 

program. During the time when the EDVAC was being 

constructed, von Neumann also joined with a group of 

scientists at Princeton University's Institute for 

Advanced Studies. In June 1946, they published a report 

entitled "Preliminary Discussion of the Logical Design of 

an Electronic Computer." It was a well argued paper on 

the many details of machine design. These documents led 

to the construction of the Institute for Advanced Studies 

computer (IAS). Both the EDVAC and the IAS became 

operational in 1952 [55, p. 68]. 
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It is interesting to compare the mechanisms used by 

these two machines for the purpose of fetching machine 

instructions from the computer memory to the control unit 

for decoding and execution. The EDVAC whose construction 

was begun first, had a 1024 word mercury delay line 

memory. Each instruction was composed of an operation 

code, or opcode, and four address fields. Two of the 

addresses specified the locations in the memory of the 

operand values to be used in the execution of the 

instruction. The third address field specified the 

location in the computer memory at which the result of the 

execution should be stored. The fourth field contained 

the address at which the next instruction to be executed 

could be found. The instructions were not loaded 

sequentially in the memory; to the contrary, the 

instructions could be anywhere in the circulating mercury 

delay line memory. The instructions were related 

logically as nodes on a singly linked list. To place the 

program into execution, only the list head pointer, the 

address of the first instruction to be executed was 

required. Each subsequent instruction to be executed was 

fetched from the location specified in the next field of 

the current instruction [55, p. 65-69]. 

The IAS computer contained a Random Access Memory 

(RAM) implemented by Williams tubes. Williams tubes were 

developed by F.C. Williams in 1947. They were cathode ray 

tubes with bits stored on their face. The bits could be 
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capacitively sensed, and access time was a function of 

electron beam switching and sensing times only. The IAS 

memory was built on 40 1024-bit Williams tubes. These 

provided 1024 40-bit words. Each 20-bit instruction 

contained an opcode and one 10-bit address. The address 

specified the location of one operand value in the memory 

while the second operand was held in a dedicated register 

and the result of the operation was stored back into this 

register (accumulator). Because the memory was random 

access, given its address, each instruction could be 

accessed directly. The "next instruction field" of 

EDVAC's instruction field format was eliminated by 

introduction of a program counter register (PC). The 

program was loaded sequentially into the RAM. The address 

of the first instruction to be executed was loaded into 

the PC and the instruction to be executed was fetched from 

that location; then, the PC content value was incremented 

by the length of the instruction giving it the address of 

the subsequent instruction to be executed [7, p. 3-4, 55, 

p. 65-69]. 

2.1 Von Neumann Computer Organization 

This section identifies the essential elements of a 

von Neumann computer architecture. 

The EDVAC and especially the IAS computer were the 

prototypes for what has become the basic structure for 

most sequential machines in use today. This basic 
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architecture is called the von Neumann architecture. In a 

von Neumann architecture, each machine operation that is 

under programmer control is specified in a machine 

instruction. Each instruction is composed in some format 

(determined by the machine designers) of an opcode which 

specifies the nature of the operation and address fields. 

Each address field contains the address in the RAM at 

which the operand value(s) to be acted on by the opcode 

may be found. These instructions are loaded sequentially 

in the computer memory. Von Neumann architectures are 

called control flow computers because the flow of 

execution is sequential and is controlled by a program 

counter [Figure 1]. 

A general-purpose von Neumann architecture digital 

computer has the fundamental elements illustrated in 

Figure 1. The following discussion gives an outline of 

its operation from the beginning of an instruction cycle 

to the beginning of the next cycle. All these events may 

be carried out asynchronously; that is, each activity is 

performed by a designated module, and the activities are 

performed sequentially; when the first module has 

finished its work, it signals the second module to begin 

its work, etc. EDVAC and IAS were asynchronous machines; 

however, computer designers soon realized that the extra 

control hardware and time for acknowledge signals between 

elementary operations required too much overhead as 



20 

CONTROL UNIT 

~------------;=;t Program Counter 1~----7 I Incrementer 

current Instruction ""'-"' Register 
.. 

J. .... 
I 

Address I operation Decoder _______ .,._ 

L..:rocessor 

+= ,,. 

~--

I I I, srq'te~cer 1---- Branch I Processor iJfo-1~ 

I J I i 
I 

I I I 
i I I r .. 

PROCESSOR 
,.. I Y I 

I Arithmetic Unit Logic Unitj Working 

1' t_ r Registers 

I 

---------------------------------------~General 
II · !Registers 

-------~~+--------------- ~ 
... :--

I 

MEMORY I Memory Control Unit I 
I 
I J I 
I RAM I '\ ·r Address -

Memory Decoder - Memory 
Address ., - ., Buffer 
Register Register 

L, 
Control ------ Data 

Figure 1. Organization of the von N~umann Computer 



computing speeds increased. Today most computers are 

synchronous machines. That is, each event takes place 

under the synchronization of a clock, whose signals are 

distributed throughout the machine. 
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An instruction cycle on a von Neumann machine has six 

steps. Initially, the program counter (PC) contains the 

address of the next instruction to be executed. The steps 

are the following: 

1) Instruction Fetch. The address in the PC is sent 

through the memory control unit and stored in the Memory 

Address Register (MAR). The address is decoded and the 

instruction is passed from memory into the Memory Buffer 

Register (MBR) and through the memory control unit to the 

Current Instruction Register (CIR). 

2) Program Counter Increment. The program counter 

is incremented by the length of the current instruction so 

that it points to the next sequential instruction in 

memory. Should an abnormal termination occur during the 

execution of the current instruction, the PC contains the 

address of the next instruction to be executed, not the 

one causing the termination. 

3) Address Calculation. The address portion of the 

current instruction is sent to the address processor. The 

address processor translates the address field values into 

target addresses. 

The mode of addressing indicated for the instruction 

determines the use of the target address. If the mode of 



addressing is that of immediate addressing, the target 

address is used as an operand. If the addressing mode is 

direct or indirect and the operand is in memory, an 

operand fetch is initiated. 
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4) Operand Fetch. If the operands reside in memory, 

each target address is passed from the address processor 

through the memory control unit into the MAR. The address 

is decoded and the memory value is copied from the 

appropriate memory bytes into the MBR. If a direct 

addressing mode is indicated in the instruction, the MBR 

value is the operand value and is routed to the processor. 

If the mode is indirect, then the MBR holds the indirect 

address: this value is routed back around to the MAR and 

undergoes address decode. The bytes identified by the 

second address decode procedure are copied into the MBR; 

the MBR value is the operand value. This value is routed 

to the processor. When the operand value arrives in the 

processor, it is placed into some appropriate register 

within the processor. 

5) Opcode Decode and Execution. The operation code 

for the instruction is passed from the CIR to the 

operation decoder where the bit pattern of the field is 

converted into electrical signals that drive the 

processor. 

If the opcode indicates a jump or branch 

(nonsequential execution) then the branch processor is 

signaled to determine whether a branch should occur. If 



the branch processor determines that a branch is required 

and a direct addressing mode was indicated, then the 

target address calculated by the address processor is 

passed into the program counter instead of the MAR as in 

the case of an operand fetch from memory. If indirect 

addressing was indicated, then the target address is used 

to cycle memory for the indirect address and the indirect 

address is copied from the MBR to the PC. 

6) Result Store. If the opcode indicates a write 

back to memory, the result generated in the processor is 

passed from a processor register through the memory 

control unit into the MBR. concurrently, the target 

address is passed from the address processor through the 

memory control unit and into the MAR. The address is 

decoded and the value in the MBR is written to the bytes 

specified by the MAR. 
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This concludes one instruction cycle. The program 

counter contains the address of the next instruction to be 

executed and the next instruction cycle begins [55, p. 

281]. 

From this discussion, two important characteristics 

of the von Neumann architecture should be clear: 

1) It has a global addressable memory to hold both 

data and program instructions. The instructions 

frequently update the data cells as the program executes. 

These shared data cells are the means by which data is 

passed from one instruction to the next. 



2) Sequencing of instructions is determined by a 

program counter. The program has complete control over 

instruction execution sequencing based on the original 

order in which the instructions were loaded into 

sequential memory. The flow of control is implicitly 

sequential. One instruction may execute at a time. 

2.2 Summary and Preview 
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This chapter briefly reviews the historical 

beginnings of modern computing, focusing on the historical 

source of what is known as the von Neumann architecture. 

The essence of the von Neumann architecture as it is 

understood today is reviewed. 

The need for faster computations, shorter turnaround 

times, and greater system throughput has generated a great 

deal of activity directed toward creating von Neumann 

machines which operate faster. Increased speedup has been 

accomplished through new advances in underlying 

technology. However, the architecture now appears to be 

bounded by the speed of light itself. Since man has 

little hope for changing the basic laws of nature, 

computer designers are now searching for alternate 

approaches to computer design which will speedup computer 

processing. A primary approach to the problem of 

increasing the computer's operational speed has been to 

design systems which allow multiple operations to occur 

concurrently whenever possible within an algorithm; this 



is exploitation of parallelism. The next chapters are 

devoted to introducing the reader to the principal 

parallel systems in use today. 
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CHAPTER III 

ARRAY PROCESSORS: THE ILLIAC IV 

3.0 Introduction to Array Systems 

This chapter presents array systems. Array systems 

are parallel computer systems that allow multiple data·· 

items to be processed in exactly the same way at the same 

time. This form of parallelism is termed data 

parallelism. Such machines are single-instruction-stream 

multiple-data-stream computers, or SIMD, as described :Oy 

Michael Flynn in his computer architecture classification· 

[ 31] 0 

The basic components of array systems and their 

general strategy of operation are presented first. 

the operation of the ILLIAC IV array processor is 

Late!!':, 

reviewed. The ILLIAC was an array processor developed ··in · 

the late 1960's and the predecessor of modern array 

systems. ~: : 

3.1 Basic Ingredients of an 

Array System 

This section identifies the basic elements of an 

array system. It demonstrates how they are organized and 

controlled, and how data is transmitted within the system. 
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The manner in which some systems can alter or reconfigure 

their arithmetic/logic units, allowing them to operate on 

different size data words is reviewed. Lastly, the 

section distinguishes between array processors and 

associative processors, the two subclasses of array 

systems. 

3.1.1 Configuration of Array Systems: 

ILLIAC and BSP 

Array systems generally are understood to have the 

following basic elements: 

1) P processing elements (PEs), or arithmetic logic 

units with attached registers, and 

2) M memory modules (PEMs) for the storage of 

operands to be processed by the PEs, and 

3) a single control unit (CU) with its own memory 

for program and scalar storage. 

The CU fetches instructions from its own memory. 

Scalar and control operations are performed in the cu•s 

local registers. Vector operations are broadcast to the 

PEs (single instruction stream) where each of the P 

processing elements fetches operands from one of the M 

memory modules (multiple data stream). The PEs then 

execute the same instruction synchronously. The array 

system achieves spacial parallelism through the duplicate 

lockstep actions of the PEs. 
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Array systems usually have ·another general-purpose 

computer that acts as a front-end for the system. This 

general-purpose machine acts as a host to the array 

system. The host interacts with the outside world, 

oversees all I/0 functions and manages the various 

resources of the overall system. 
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Within an array system there must be a communication 

network which links the processing elements, PEs, so that 

data may be passed from one PE to another. There are two 

basic configurations. The first is termed the ILLIAC type 

configuration because it was implemented on the ILLIAC IV 

array processor. Within this configuration the number of 

processing elements, P, is equal to the number of memory 

modules, M. Each PE is attached directly to its own 

memory module, or PEM, and directly accesses its operands 

from that PEM. The PEs are linked by an interconnection 

network [Figure 2]. The second basic configuration is 

termed the BSP type configuration since it was used in the 

Burroughs Scientific Processor. Here an alignment network 

(see APPENDIX A) is used. The alignment network is 

positioned between the memories and processing elements. 

The memories act as a shared resource for the PEs; a PE 

may fetch its operands from any one of the memory modules. 

The number of PEs, P, may differ from the number of 

memories, M; they have, in some cases, been chosen to be 

relatively prime [Figure 3]. 
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3.1.2 Processing Element Enablement 

The CU broadcasts the instructions to the PEs, and 

the PEs all execute the instructions together. However, 

on certain occasions all PEs may not be required to 

execute an instruction. In such a case, masking schemes 

are employed to control the execution or non-execution of 

an instruction by a specific PE. Under the masking 

scheme, a PE may be enabled or disabled. Only enabled PEs 

will execute a broadcast instruction. In general, each PE 

has an enable/disable bit. If the bit is 1, the PE is 

enabled; if the bit is o, the PE is disabled. Within the 

CU there is a mask register (MR) containing one bit for 

each PE. The bit pattern of the MR is set by control 

operations within the cu. When the enablement of the PEs 

is to be established, each bit in the masking register, 

MRi, i = O,l,2, ••. ,P-l, is exchanged with its 

corresponding PEi enable/disable bit. Thus, the 

programmer can control which PEs are executing at a given 

time by setting the cu•s mask register bit pattern. 

3.1.3 Interconnection networks 

In an array system there must be a way for data to 

move from PE to PE. This is accomplished via a network. 

The ILLIAC type configuration interconnection network 

seems to be the most frequently discussed in the 

literature and it is the focus here. An interconnection 
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network can be described by a set of interconnection 

functions, where each interconnection function is a one­

to-one and onto mapping, or bijection, on the set of PE 

addresses. When an interconnection function f is applied 

to PEi, PEi sends the contents of a data transfer register 

to that of PEf(i)· This occurs for each i = o, 1, 2, ••• , 

P-1 and PEi enabled. This implies that each enabled PE 

sends data to exactly one PE; and each PE receiving data 

receives it from only one PE. Generally, a disabled PE 

cannot send data, but may receive it. To pass information 

from one PE to another, a programmed sequence of one or 

more interconnection functions must be executed. Data may 

be transferred directly by one function execution or may 

move through a series of PEs by executing a series of 

functional instructions. Since an array processor is 

SIMD, all enabled PEs must execute the same 

interconnection function at the same time. Several 

different interconnection functions have been defined for 

SIMD systems. Some of the common ones are known as 

shuffle-exchange, barrel shifter (see APPENDIX A), and 

ILLIAC network functions [41, p. 333] .. section 3.2.1.6 

presents the specific attributes of the ILLIAC network 

function when it examines the ILLIAC IV parallel array 

system. 
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3.1.4 Reconfiqurability 

An attribute possessed by some array systems is 

reconfigurability. The term is sometimes used to refer to 

the capability of disabling certain PEs as presented 

above. However, the term is also applied to identify the 

capability of a machine to rearrange each PE and PEM into 

several smaller size processors and memory modules, or 

vice versa, under software control. For example, a 64 bit 

word PE and PEM may be able to be reconfigured into two 32 

bit word PEs and PEMs. Thus a reconfigurable array system 

may increase or decrease the number of data items 

·processed in parallel by changing the processor's size. 

3.1.5 Array Processors and 

Associative Processors 

Array systems frequently are classified into two 

subgroups. The first is that of array processors. Array 

processors access standard random access memory modules. 

They were developed to do parallel computations on 

matrices. Many algorithms including matrix operations of 

addition, multiplication, transposition and inversion, 

summation and Fast Fourier transformations, and partial 

differential equation solutions have been developed for 

array processors. The ILLIAC IV and Burroughs Scientific 

Processor are array processors. The second subgroup is 

that of associative processors. Associative processors 
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access content addressable memories. These systems are a 

special class of array or SIMD computers. As such they 

are applied to specific specialized problems, usually 

related to fast information retrieval and data base 

retrieval. Examples of associative processors are the 

Burroughs' Parallel Element Processing Ensemble, PEPE, and 

Goodyear Aerospace STARAN. The PEPE accomplishes real­

time radar tracking of antiballistic missiles, and the 

STARAN computer performs image processing. 

3.2 The ILLIAC IV- The Computer and 

Its Beginnings 

This section discusses the work of some early 

researchers in the area of array systems and the initial 

steps to implement the first such computer system. 

The concepts of array processors had their beginnings 

early in the history of digital computers. In 1958, S.H. 

Unger proposed a two dimensional array of PEs operating in 

lockstep under a common control unit [41, p. 394]. In 

1962, DanielL. Slotnick, et al., proposed the SOLOMON 

computer [9]. The SOLOMON introduced a high degree of 

parallelism. This parallelism may be outlined by four 

principle features: 

1) A single control unit broadcasts a single 

instruction (single instruction stream) to a large array 

of arithmetic units, each processing distinct data 

elements (multiple data stream) in lockstep fashion. 



2) In addition to instructions, the control unit 

also broadcasts memory addresses and global data values. 

3) Local enable/disable flip-flops allowed 

individual arithmetic units to execute only selected 

instructions. 

4) Processing elements had nearest-neighbor 

connections to provide direct communication. These 

communication channels operated simultaneously (9]. 
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Studies of these features indicated that such a 

parallel approach was feasible by the late sixties due to 

the advent of LSI circuitry. The work to create a machine 

based on the SOLOMON description was initiated by the 

Department of Computer Science of the University of 

Illinois in the late 1960's. The Illinois Array Computer, 

better known as the ILLIAC, was originally designed to 

contain 256 processing elements arranged in four 

reconfigurable SOLOMON-like arrays of 64 processors each. 

Each array of 64 processors, or quadrant, was to be 

directed by its own control unit. The four control units 

were to be capable of independent processing. Thus a 

multiple-single-instruction stream - multiple-data stream 

or MSIMD parallelism was to be implemented [Figure 4]. 

However, due to cost escalation and schedule delays the 

system was ultimately limited to one set of the 64 

processors and one control unit. Although the ILLIAC IV 

is no longer operational, it is of interest as it was the 
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first major array supercomputer developed and is a direct 

predecessor of the Burroughs Scientific Processor and the 

Phoenix project of Feierbach and Stevenson [41, p. 394]. 

Further, the ILLIAC demonstrates the basic concepts of an 

array system in a simple straight forward manner; its 

concepts may be extrapolated to more complex array systems 

such as the Connection Machine built by Danny Hillis and 

the Massively Parallel Processor (MPP) from Goodyear 

Aerospace [59]. 

3.2.1 The Components of the ILLIAC IV 

This section details the structure of the components 

of the ILLIAC array processor and the organization of 

those components within the system. Section 3.2.2 shows 

how the ILLIAC memory, PEs, and cu work together to 

implement processing of matrices. 

The basic structure of the ILLIAC IV computer is 

shown as it was originally conceived in Figure 4 and as it 

was finally built in Figure 2. 

3.2.1.1 The ILLIAC Host Computer. The ILLIAC had a 

Burroughs B6500 that acted as a front-end for the system 

[Figures 2 and 4]. The B6500 was timeshared by ILLIAC IV, 

its highest priority user, and several other terminal 

users, ARPA and ILLINET networks. A high speed 109 - bit 

head-per-track parallel access Burroughs disk system was 

directly attached to the array. When a user was ready to 
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run, he would request space on this disk for his programs 

and data files. ILLIAC's control unit program memory and 

the PEMs data memory would be loaded from the disk and all 

output from the user program would be written to the disk. 

As the host computer, the B6500 held and executed the 

ILLIAC operating system. It was to the B6500 that the 

user issued his request for space on the ILLIAC I/O disk 

and for execution time on the ILLIAC system. The host 

administered batch mode job scheduling on the ILLIAC. It 

oversaw all array-disk I/0 and the loading of programs and 

data into the array processor system. 

3.2.1.2 ILLIAC Memory and Operand Access. In the 

ILLIAC System, each PE connected directly to one and only 

one PEM. Each PEM was composed of 2048 64-bit random 

access words. While each PE referenced only its own PEM, 

the cu accessed the entire combined PEM system. Both data 

and instructions were stored in the PEMs. Data to be 

processed by an individual PE was loaded in its associated 

PEM. 

Each address used by a PE to access an operand within 

its PEM, a local operand, contained three components: 

1) a fixed value contained in the instruction 

(analogous to the displacement value in an IBM-370 

instruction) ; 

2) a CU base value added by the CU from a CU 

accumulating register; 



3) a local PE index value added by the PE from a PE 

register prior to PEM access. 
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Thus, when an instruction was broadcast from the 

control unit, each PEM access could be tailored to the 

specific operand load pattern characteristic to that PE -

PEM organization. Global values, operands to be processed 

by all PEs together, were fetched and stored by the 

control unit and broadcast to the PEs through the 

instruction involving the value. Not only did this have 

the benefit of eliminating the need for duplicate copies 

in each PEM, but it also allowed for a degree of 

parallelism in that these global values ·could be fetched 

by the control unit while the PEs were executing. 

3.2.1.3 ILLIAC Processing Elements. Each PE 

performed local indexing for operand fetches and executed 

the data computations dictated by the CU. 

Each PE was composed of the following units [Figure 

5]: 

1) For holding operands and results, there were four 

64-bit registers: 

i) register A was the accumulator, 

ii) register B held the operand to be processed 

with the accumulated value, 

iii) register R held the multiplicand and was 

used for routing data between PEs, 

iv) register S was a general purpose storage 

area, 
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2) There were modules for performing 

i) arithmetic operations--the adder/multiplier 

units, the multiplicand select gate, pseudo adder 

tree, and carry propagate adder, 

ii) Boolean operations--the logic unit, 

iii) shifting operations--the barrel switch, 

3) Memory addresses were calculated by the address 

adder. It added the contents of the local index register 

to the address broadcast with instruction by the control 

unit. The index register {RGX) was a 16-bit register. 

The result of this calculation was sent to the memory 

address registers (MAR) for PEM access. 

4) results of tests were held in an 8-bit mode 

register. 

3.2.1.4 PE Reconfigurability and Enablement. A 

processing element could be reconfigured into either a 

floating point 64-bit word processor, or two floating 

point 32-bit word subprocessors, or eight a-bit binary 

word subprocessors. By utilizing these data formats, the 

array of 64 PEs could process 64, 128, or 512 data items 

at a time. 

Each PEM could be either enabled or disabled. Two 

bits of the mode register controlled the enablement of the 

PE. When the PE was configured to a 64-bit mode only one 

of the bits was monitored. When the PE was configured to 

two 32-bit subprocessors both bits were monitored, one for 



each subprocessor. If the PE were configured to eight a­

bit subprocessors, the individual subprocessors did not 

have separate enable/disable modes. 
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3.2.1.5 Fault Detection. Additional bits in the 

mode register established masking information; other bits 

were set by arithmetic faults such as overflov.r and 

underflow. Fault bits were monitored continuously by the 

cu to detect a fault condition and to begin a cu trap. 

3.2.1.6 The ILLIAC Interconnection Network. The PEs 

were linked together so that data could be transferred 

from PE to PE. As mentioned earlier in the discussion of 

general array systems, this was implemented by an 

interconnection network. This network established a 64-

bit wide routing path from each PE to four of its nearest 

neighbors. The interconnection functions applied were 

f(i) = i + 1 (mod 64) 

or f(i) = i + 8 (mod 64) 

where i = o, 1, ••• ,63 identified the address of each PE. 

For example, if PE57 were enabled, it could transfer 

data to one and only one of the following: PE56, PEsg, 

PE49 , or PE1 • Similarly, PE0 could receive data from one 

of the following: PE63 , PE1 , PE8 , or PE56 • Thus, when 

data was to be routed, all enabled PEs might transfer the 

contents of their routing register, R, to their ne~ghbor 

PE + 8 positions away. All enabled PEs must execute the 

same transfer operation under control of the cu. 

Logically, the arrays could be considered to be 



positioned in an 8x8 array with nearest neighbor 

connections and wraparound end connections [Figure 6]. 

The maximum number of data transfers required to shift 

data from any PE to any other would be 7. However, 

transfers numbering more than 2 steps were rare [9]. 
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3.2.1.7 The ILLIAC Control Unit. The ILLIAC 

instruction set was composed of two distinct types: those 

which were executed by the CU (branching, operating on 

common global values) and those which were executed by the 

PEs. Instructions were fetched from the combined memory 

[Figure 7 and Figure 8] and flowed into the control unit's 

instruction buffer on the control unit bus. The 

instructions were loaded into the 64 word instruction 

buffer in blocks of 8 words (each instruction was 32-bits 

in length and each word was 64 bits, giving 16 

instructions per block). The von Neumann style program 

counter maintained standard sequentiality in program 

execution via a mapping process facilitated by a content 

addressable memory. As control advanced, each instruction 

was copied into the instruction register and sent to the 

advanced instruction station (ADVAST). In ADVAST, the 

instruction was decoded. If it was a CU instruction, it 

was executed in ADVAST; otherwise, ADVAST processed 

address or operand values, as necessary, and stacked the 

results into the final queue to await broadcasting to the 
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PEs. The PE instructions were extracted in sequence from 

the final queue, taken to the final instruction station 

sequencer, and transmitted via control pulses to all the 

PEs. Scalar values were passed from the final queue to 

the common data buffer and onto the common data bus to the 

PEs. 

3.2.1.8 Inherent Parallelism within the Control 

Unit. The PE instruction Final Queue allowed for a degree 

of instruction parallelism. The execution of CU 

instructions in ADVAST could be overlapped with execution 

of PE instructions in the processing elements. 

CU's instruction buffer held 64 words or 128 

instructions. This size was believed to be ample to hold 

a loop structure of average size. When the instruction or 

program counter had progressed to the eighth instruction 

in a block of 16 instructions, fetch of the next block was 

initiated. The possibility of a branch operation was 

ignored. If the next block to be executed was already 

present in the instruction buffer, then the fetch 

operation was immediately aborted. If the block was not 

present in the buffer then the next block was fetched from 

the combined array memory. Thus a loop of a size small 

enough to fit in the instruction buffer could execute 

until exit without accessing the relatively slow array 

memory. Fetch of a new block to the instruction buffer 

from array memory required approximately the same amount 

of time as executing 8 instructions. Thus, if execution 



continued straight line in the old block, the new block 

would be in place in the instruction buffer by the time 

execution of the old block was complete. In this way, an 

additional element of parallelism was introduced into the 

ILLIAC processing. 

All these. time saving strategies needed to be known 

to the programmer in order for the most efficient use of 

the hardware to be made. This resulted in increased 

programming time and costs. Also, it required 

considerable expenditure of effort in developing 

optimizing compilers for the system. 

3.2.1.9 Proposed Reconfiqurability for the ILLIAC 

IV. The original MSIMD design of the ILLIAC was as 

indicated in Figure 4. Under this original plan the 

Burroughs B6500 host computer was to have the capability 

of reconfiguring the 256 processing elements into the 

following 3 distinct configurations [Figure 9]: 

1) Four arrays of 64 PEs under control of the four 

control units; each cu executing its own unique program, 

fetched from its own array memory. Under this 

configuration the interconnection network or routing 

scheme functions were as given earlier, f(i) = i + 1 

(mod 64) or f(i) = i ± 8 (mod 64). 

2) Two arrays of 128 PEs. Each 128 PE array is 

controlled by two CUs. 

3) One array of 256 PEs under control of four 

control units. 
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PEs PEs PEs PEs 

Configuration 1: Four Arrays of 64 PEs. Each Array Under 
the Control of One Control Unit. Addresses of PEs Range 
from 0 to 63. 

PEs PEs 

Configuration 2: Two Arrays of 128 PEs. Each Array 
Under the Control of Two Control Units. Addresses of 
PEs Range from 0 to 127. 

PEs 

lo ... 63 64 ••• 127 128 ••• 191 192 ••. 2551 
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Configuration 3: One Array of 256 PEs Under 
the Control of One Control Unit. Addresses of 
PEs Range from 0 to 255. 

Figure 9. Possible Configurations of ILLIAC IV 
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In configurations 2) and 3), the control units 

controlling a common array were to fetch their 

instructions from a common instruction stream. Such 

reconfiguration techniques would have allowed the number 

of distinct instruction streams to be 1, 2, or 4; and 

would have allowed considerable latitude in dealing with 

data sets of various dimensions. The multiple control 

units controlling one array could execute asynchronously 

except when fetching new instruction blocks, routing data 

between PEs, implementing branch instructions, and 

changing configurations. Configurations 2) and 3) above 

required the routing paths to be restructured so that the 

interconnection functions could be described as 

f(i) = i ± 1 (mod N) 

or f(i) = i ± 8 (mod N) 

where N was the number of PEs in the array and i was the 

address of each PE relative to the new array size. 

3.2.2 Processing Dimensional 

Structures. an Example. 
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The ILLIAC, like other array processors, was 

developed primarily for processing dimensional data sets. 

To get a brief feel for how the array processor was used, 

consider an array of 3 enabled PEs designated to process a 

3x3 matrix A. By loading the matrix A into the PEM 

memories in a skewed fashion, each row and each column may 

be accessed (Figure 10]. suppose the PEs are to multiply 
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....... . . . . . . . . ...... 
LOC BASE+O ao,o ao,1 ao,2 

LOC BASE+1 a1,2 a1,0 a1,1 

LOC BASE+2 a2,1 a2,2 a2,0 ...... . ...... . ...... 

Figure 10. A Two by Two Array Loaded Skewed Fashion into PEMs 
0, 1, and 2. XRi is the Index Register of PEi· 
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row 2 by the scalar b. The Index Registers, XRi, i = 
0,1,2, would be set to 2. Then the CU would broadcast the 

scalar b, the base address and the control pulses to 

multiply. Each PEi would add its own index value, c(XRi) 

= 2, to the base address, fetch from location base + 

c(XRi) (= base + 2) and multiply the value by b. Thus 

each element of row 2 would be processed simultaneously. 

Alternatively, suppose the PEs are to multiply a 

column by a scalar b. Each Index Register, XRi would be 

set to ( (i- j) (mod 3)), where j is the column number. 

If j = 1, then XR0 = ( ( o - 1) (mod 3)) = 2; 

XR1 = ((1- 1) (mod 3)) = O; 

XR2 = ( (2 - 1) (mod 3)) = 1. 

The process would then proceed as before, each PE adding 

its index register value to the base address to access the 

operand to be multiplied. Thus all elements in column 1 

would be processed in lockstep. Any other row or column 

could be accessed in a manner similar to that just 

described. 

The size of the matrix could be extended from lxl to 

MxN, where M < 2048 and N ~ 64; (each of the 64 PEMs 

contained 2048 64 bit words. Some of these words were 

used to hold instructions and global data) • These figures 

for M and N would apply for a 64 bit element format. 

Larger arrays could be handled; however, reconfiguration 

of the PEs for fewer bits per element andjor alternate 

mappings of the matrix onto memory would be required. 



3.3 Summary 

This chapter presents the basic elements of an array 

processor. It demonstrates the method by which multiple 

data elements may be processed at one time using the 

lockstep action of multiple processing elements under the 

control of a single control unit. In this single­

instruction-stream multiple-data-stream environment, data 

parallelism is established. 
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This chapter reviews the ILLIAC IV array processor 

and demonstrates how an array processor may be utilized to 

process matrices. 



CHAPTER IV 

PIPELINED COMPUTERS: THE HEP 

4.0 Introduction to Pipelining 

This section introduces pipelining and its 

fundamental concepts and elements. Also, it introduces 

pipeline configurations and classifications that are used 

to either describe or identify various forms of pipelines 

which may be found. 

Pipelining is another technique frequently used to 

implement parallelism in a computer architecture. The 

parallelism introduced by pipelining is quite distinct 

from that of array systems. In an array system, a basic 

function such as that performed by a PE is replicated many 

times and each replica performs the same function at the 

same time. Pipelining, on the other hand, takes the same 

function and partitions it into many autonomous but 

interconnected subfunctions. Input flows from subfunction 

to subfunction much as fluid in a physical pipeline; or, 

as products may move from station to station on an 

assembly line. Each subfunction may be performed during 

the same time span but on different input. Throughput 

through the pipe is directly dependent on the rate at 

which input enters the pipe; once the pipe is full, enter 
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rate is the same as exit rate. In general, if some 

function with a straightforward design takes T time units 

to complete, then a full pipeline designed to perform the 

same function but divided into N subfunctions may produce 

a result every T/N time units [Figure 11]. Such 

pipelining can deliver an N-fold increase in performance. 

Pipelining can increase the parallelism of a computer 

system and can deliver dramatic performance gains. 

The hardware (combinational circuits) required to 

perform each subfunction is called a stage. Thus input 

flows from stage to stage until processing is complete. 
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In order for input to pass in orderly clocked intervals 

from stage to stage, each stage should perform its 

associated subfunction in the same amount of time. 

Frequently, this is not possible precisely; but, it is the 

ideal. When each stage executes its function in the same 

amount of time, the stages can operate synchronously with 

full resource utilization. When the delays are unequal, 

the stages must be timed for the slowest stage. The 

slowest stage becomes the bottleneck in the process flow. 

To facilitate the passing of input from stage to stage, 

data is buffered between stages in fast registers, termed 

latches. These registers are so named because they are 

frequently implemented with the hardware module referred 

to as a latch. A latch hardware module is a limited form 

of clocked flip-flop that is activated by a positive, or 
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high, level on the clock input. D-type latches which 

change their state to match their input are especially 

appropriate for this type register. These registers may 

also be called staging platforms or reservation stations. 

The latches then act as holding areas for retaining 

semiprocessed input between unequal delay time stages 

(Figure 12]. 

4.0.1 Pipeline Configurations 

There are many distinct pipeline configurations. 
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These configurations may be categorized as linear and non­

linear. The simplest of these is termed a linear 

pipeline. The pipeline in Figure 12 is a linear pipeline. 

A linear pipeline is characterized by the fact that each 

stage, Sj, receives its input only from stage Si, where 

j = i + l (Figure l3.a]. 

In addition to the simple linear configuration, 

pipelines may also be expanded to more general 

configurations in which a stage may receive input from 

some stage several steps backward or forward in the 

subfunction sequence. More precisely stated, a pipeline 

may contain feed forward connections such that some stage, 

Sj, receives input from another stage si, where j > i + 1 

[Figure 13.b]. Also, a pipeline may contain feedback 

connections in which some stage, si, receives input from 

some stage, Sj, such that j ~ i (Figure 13.c]. 
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4.0.2 Classifications of Pipelines. 

Based on the functional configurations of a pipeline, 

and the control strategies used to implement it, certain 

terms can be used to classify a pipeline. 

4.0.2.1 Unifunctional vs. Multifunctional. A 

pipeline may be termed unifunctional or multifunctional. 

A unifunctional pipeline can evaluate or perform one and 

only one function. A multifunctional pipeline can perform 

a set of functions where each function has its own 

peculiar stage sequence or configuration. 

4.0.2.2 Static vs. Dynamic Multifunctional 

Pipelines. The manner in which a pipeline configuration 

is controlled to implement the performance of 

multifunctions is indicated by terming them either static 

or dynamic. A static pipeline is one such that at any 

instant in time only one configuration is active and only 

one function is under evaluation. Clearly, a 

unifunctional pipeline is always static. A static 

multifunctional pipeline implies that only one of the 

possible functions of the pipe will be performed over some 

period of time so that a sequence of inputs may be 

streamed into it. Thus, inputs which require the same 

functional processing are grouped together and streamed 

one after the other into the pipe. When performance of a 

different function is required then the pipe must be 



reconfigured. This implies that incoming input which 

require the new functional processing must be delayed 

until the pipe empties and the stage connections are 

altered appropriately. When the stage sequence has been 

reconfigured then inputs may again stream into the pipe. 
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Dynamic multifunctional pipes permit pipelining among 

several active configurations at the same time. Thus, 

several functions may be under evaluation at the same 

time. Each distinct set of inputs clocked into the 

pipeline will follow a functional path distinct from other 

inputs requiring alternate functional processing. Such 

pipelines obviously require elaborate control and 

sequencing techniques. 

4.1 Pipeline Input Sequencing 

This section discusses how to determine when inputs 

may be allowed to enter a non-linear pipeline. It 

discusses the use of special tools, the reservation table 

and collision vector, which may be used to make this 

determination. 

When considering a non-linear pipeline, an important 

concept that must be dealt with is that of sequencing. 

That is, controlling the time of entry for each input 

value. If an evaluation of a function is initiated at a 

time ti and a second initiation of the function is made at 

time tj, where j > i, it may be that both functional 

evaluations will require the use of the same stage at the 
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same time. such a condition is termed a collision. In 

the determination of viable function initiation sequences 

a common tool is a reservation table. From the 

reservation table, a collision vector can be created. The 

collision vector will indicate proper sequencing of the 

input values for the pipeline. These concepts will be 

investigated in greater detail in the following 

subsections. 

4.1.1 A Function's 

Computational Sequence 

Each function is defined by its computational 

sequence; that is, the sequence of stages through which 

inputs are piped in order to produce the required 

functional output. This computational sequence will 

determine the allowable time table for inputs to the 

pipeline. 

As an example, consider the non-linear pipeline of 

Figure 14. The crosses refer to data multiplexors. Each 

multiplexor is used to select among multiple connection 

paths in evaluating different functions. Thus, this 

pipeline is multifunctional, and for the purposes of this 

example, static. 
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Figure 14. Example Static Non-Linear Pipeline. 
Each Stage Requires an Equal 
Time to Execute 

Assuming each stage requires an equal time unit to 

perform its subfunction, one function's definition may 

61 

require the inputs to traverse the stages in the following 

computational sequence: 

at time to, input passes to Sl; 

at time tl, input passes to S2; 

at time t2, input passes to S3; 

at time t3, input passes to S4; 

at time t4, input passes to Sl; 

at time ts, input passes to S2; 

at time t6, input passes to S3; 

at time t7, input passes to S2; 

and from s2 out of the pipeline. 
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4.1.2 Reservation Tables 

The computational sequence of a function can be 

indicated clearly and graphically in a reservation table. 

In a reservation table, row i corresponds to stage Si, and 

column j corresponds to time tj• A mark in a square (i,j) 

indicates use of stage Si at time tj. Multiple marks in a 

column indicate concurrent use of two or more stages while 

multiple marks in a row indicate reuse of the same stage 

in overall functional evaluation performed in the 

pipeline. 

The computational sequence described in section 4.1.1 

above would lead to the reservation table shown in Figure 

15. 

1 X 

STAGE 2 X 

3 

4 

0 1 

Figure 15. 

X 

X X 

X X 
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2 3 4 5 6 7 ' 
TIME 

Reservation Table for Pipeline 
of Figure 14. An Entry in 
Row i and Column j Indicates 
the Use of stage i at Time j 



4.1.3 Forbidden Latency and the 

Collision Vector 

A scheduling strategy may be developed for the 

pipeline based on the computational sequence and 

reservation table of a function. The strategy should 

schedule inputs into the pipe in such a way as to prevent 

collisions and to maximize the throughput of the pipe. 

The technique for implementing such a strategy is based 

upon the concepts of forbidden latencies and collision 

vectors. Simple latency is the time between successive 

initiations of the pipeline. 
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If stage Si is in use at times tm and tn, then the 

difference ltm - tnl is called a forbidden latency. If 

two initiations of the pipeline occur ltm - tnl time units 

apart, a collision will be generated. In the example of 

Figures 14 and 15, the forbidden latency for stage s1 is 

4; for stage s2 , it is 2 and 4; and, for stage s3 , it is 

4. There is no forbidden latency associated with stage 

s 4 . Zero is always a forbidden latency (two inputs cannot 

begin at the same time). The set of forbidden latencies 

for all stages establishes a forbidden list. The 

forbidden list in our example in section 4.1.1 is {0, 2, 

4}. 

The collision vector is constructed from the 

forbidden list. The collision vector has d elements, 



where d is the number of time units required to traverse 

the pipeline (compute time) . 
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If C = (c0 , c1 , c 2 , ... , cd_1 ) is the collision vector 

and i is an element of the forbidden list, then ci = 1; 

otherwise, Ci = o. For the pipeline of our example, d = 8 

and C = (1, 0, 1, o, 1, 0, o, 0). By use of the collision 

vector, a simple control mechanism can be used to prevent 

collisions. Before initiating a new computation, the 

collision vector can be tested. If for each previous 

initiation of the pipeline, the difference between the 

previous initiation time and a new initiation time is i 

and Ci = o, then the new initiation is allowed; if Ci = 1, 

the initiation is delayed. A control strategy which 

minimizes the immediate delay time and allows initiation 

of the pipeline as soon as the control vector allows is 

called a greedy strategy. Performance analysis of various 

control strategies indicate that a greedy strategy may not 

insure the maximum throughput for the pipe while a more 

patient one may increase throughput [52, p. 80]. 

4.2 Pipeline Applications 

There are two functional areas where pipelining is 

employed most often. One is the instruction fetch-execute 

process of the control unit, instruction pipelining. The 

other is computation of the arithmetic/logic unit, 

arithmetic pipelines. The following sections, discuss 

these two important areas. 
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4.2.1. Instruction Pipelining 

This section presents instruction pipelining. It 

details some problems (or hazards) which are inherent in 

this technique for speeding up a control unit's operation. 

Some possible techniques for resolving these problems are 

discussed. Finally, it reviews the ILLIAC's instruction 

cycle in the context of pipelining. 

Instruction execution by the control unit may be 

partitioned into several distinct subfunctional steps: 

instruction fetch, program counter update, operation code 

decode, compute addresses of operands, operand fetch, 

execute, operand store, and housekeeping. These steps may 

be accomplished by a series of stages to establish an 

instruction pipeline. Thus one instruction may be fetched 

while another is decoded, another has its operand 

addresses calculated, etc. 

In a non-pipelined control unit, total execution of 

one instruction is completed before initiation of the next 

is begun. In a non-pipelined computer, the order of 

execution matches the logical order of the program. In a 

pipelined design, one instruction is begun before its 

predecessor is completed. This difference can cause 

problems if not adequately dealt with during the design 

phase of the pipeline. 



4.2.1.1 Hazards and Their Classifications. An 

instruction which depends on the preceding instruction's 

results may enter the pipe and begin the execution 

sequence before the preceding instruction has completed 

the sequence. Such critical dependencies between 

instructions generate hazards. A data hazard occurs when 

two separate instructions access or update the same 

storage location while their execution is overlapped 

within the instruction pipeline. These hazards must be 

detected by the computer and resolved so that the final 

product of the instruction sequence is that expected by 

the programmer. Such resolution may prevent the pipeline 

from accepting inputs at the maximum rate. 
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These types of hazards are possible especially when 

the control structure of the pipe is such that 

instructions may exit the pipe in an order other than that 

in which they entered. This may occur in pipes with 

multiple execution stages. That is, when an instruction 

has progressed through the pipe to the execute stage, it 

may be routed to one of several parallel execute stages. 

An ADD instruction going to one stage while a COMPARE 

would pass into another, etc. Each distinct execute stage 

may require a different amount of time for completion, 

allowing one instruction to exit the pipe before another 

which preceded it into the pipeline. 

Hazards may be grouped into several different 

classifications. Some simple examples demonstrate those 
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classifications. For the purpose of discussion, two 

instructions Il and I2 are ordered by having Il precede I2 

into the pipe. Il and I2 are in different stages within 

the instruction pipeline. Three primary classes of 

hazards exist: 

l) The Read after Write hazard exists when Il updates 

a data element which I2 reads. For example, consider the 

2-address, IBM-370 instruction sequence 

Il ST l,DATA /* ST = STORE */ 

I2 A 2,DATA /* A = ADD */ 

If the ADD is in the operand fetch stage while the STORE 

is still in the execute stage, the contents of register l 

may not reside in DATA when it is fetched for ADD. Some 

previous value of DATA may be added to register 2. 

2) The Write after Read hazard exists when Il reads a 

data item which is to be updated by I2. For example, 

consider the following IBM-370 instruction sequence. 

Il A 2,DATA /* A = ADD */ 

I2 LR 2,3 /* LR = LOAD REGISTER */ 

The LR instruction may pass over the operand fetch stage 

since both of its operands are in registers and into the 

execute stage while the ADD instruction is still 

completing its operand fetch. Thus register 2 may have 

been updated by the LR instruction before the ADD has an 

opportunity to act on it. The value in register 2 that is 

actually added to DATA may be "too new." 



3) A Write after Write hazard exists whenever Il and 

I2 both attempt to update the same location but I2 

completes before Il. For example, consider the following 

IBM-370 instruction sequence. 

Il STM 14,12,SAVE /* STM = STORE MULTIPLE 

REGISTERS */ 

I2 ST 14,Save+56 /* ST = STORE */ 
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Both instructions update a location 14 full words down 

from location SAVE, but, the STM will take longer to 

update the location as it must first store in the 13 full 

words preceding SAVE + 56. Although the ST will enter its 

execute stage after the STM, it will complete execution 

while the STM continues its execution stage; and finally 

as a last activity places the contents of register 12 into 

SAVE+ 56 .••. overwriting the value placed there by the 

ST. 

An additional interesting hazard may exist. This 

hazard is a result of self-modifying code. In this 

situation I1 may alter I2 itself. Thus a Read after Write 

hazard is established between the write action of I1 and 

the instruction fetch action of the instruction pipeline. 

4.2.1.2 Hazard Detection and Resolution. The 

detection and resolution of hazards is a major 

consideration in the design of an instruction pipeline. 

There are two common approaches in hazard detection. Both 

approaches imply the maintenance of a set of facts which 
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characterize each instruction in the pipeline. Each 

characterizing set includes an indication of all locations 

(registers, memory, etc.) whose contents are updated by 

the execution of the corresponding instruction. In the 

first hazard detection approach, the characteristics of an 

instruction in the pipeline instruction fetch stage are 

compared with all those already in the pipeline. A hazard 

is detected if there is any intersection between the sets 

of instruction characteristics. The second approach is 

similar but more complex in its implementation. An 

instruction is allowed to flow through the pipe in the 

usual way until any element in its characterizing set is 

required. At that point, the control unit checks the 

intersection between the instruction in question's 

characterizing set and those of all other instructions in 

the pipe. If any non-null intersection exists, then a 

hazard is recognized. 

Resolution of a detected hazard may be handled in one 

of two ways. If Il and I2 are instructions and Il has 

preceded I2 into the pipe, then one method of resolution 

is as follows. If I2 is found to generate a hazard 

condition with Il, then I2 and all succeeding instructions 

are halted and prevented from progressing further into the 

pipeline, while Il and all other instructions preceding I2 

continue through the pipeline. When Il has passed all 

stages which could effect I2, then I2 and those 

instructions succeeding it are allowed to continue through 



the pipeline. Although this is a relatively simple 

technique, it degrades the performance of the pipeline 

because all stages are not kept busy. It may actually 

imply a complete emptying of the pipeline. In such a 

case, output from the pipe cannot resume until the pipe 

has been filled. 
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An alternative to this that may be employed, is to 

halt the progress of I2 when its hazard condition with Il 

is detected, but, to allow those instructions logically 

behind I2 and which have no hazard relation to I2 or any 

other instruction in the pipeline to stream into and 

through the pipe. When Il has passed all the stages which 

could effect I2, then I2 is allowed to proceed. In this 

way, some instructions which logically follow I2 may enter 

the pipe and complete execution before I2. This is 

perfectly acceptable since their execution and results are 

independent of I2. Such hazard resolution has value since 

it keeps the pipeline filled most of the time and thus 

more productive. But, it is more complex to implement and 

requires more hardware design overhead. 

4.2.1.3 Branching in an Instruction Pipeline. Even 

worse than the instruction dependencies just discussed, 

branching and interrupt handling can diminish greatly the 

performance of an instruction pipeline. Branching alters 

the program counter and implements nonsequential access to 

program memory. The instruction fetch stage cannot 
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continue to fetch its instructions from memory in the 

usual sequential fashion. However, the address to which 

the program counter will be updated is not available until 

the effective address of the branch is evaluated in the 

later address calculation stage; and in the case of a 

conditional branch, the conditions of the branch may not 

be known until some instruction ahead in the pipe 

completes the execution stage. Resolution of the dilemma 

has been accomplished in several ways. Two of these ways 

will be discussed here. For unconditional branches, a 

simple technique used is to include enough logic in the 

instruction fetch stage to recognize or -decode a branch, 

calculate its specified effective address and update the 

program counter appropriately, then continue the fetch 

function. For conditional branches, an extension of this 

technique has been used called "guess and correct." Here 

a nguess" is made as to the likelihood of the branch 

actually being implemented. The program counter is 

adjusted according to the indication of the prediction and 

the fetch function continues in the usual way. When the 

branch instruction has progressed far enough in the pipe 

for the correctness of the guess to be ascertained, a 

check is made to determine if a correct guess was made. 

If so, the instructions continue to stream through the 

pipe; if not, all instructions behind the branch in the 

pipe are aborted, the pipe is flushed, the program counter 

is updated to the correct branch value and the fetch 



function restarts. This technique is viable because 

statistically over 50% of all conditional branches are 

taken and certain types of branches (eg. branch on count) 

are nearly always taken [52, p. 243]. The better the 

"predictive technique," the better the performance of the 

pipe. Apparently, if the programmer in such a case knows 

the guess algorithm, he can write more efficient 

algorithms. This is a good example of software-hardware 

interdependencies. 
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A second technique employed for conditional branches 

is to have a secondary program counter which is used when 

a branch is decoded in the fetch stage (as described 

above). The program counter and the secondary one are 

updated, one with an address from one side of the branch 

option, the second with the address from the other side; 

then tagged instructions from both sides of the branch are 

fetched into the pipe according to the two program 

counters. When the branch instruction has progressed far 

enough into the pipe for the proper pathway to be 

established, the instructions in the pipe tagged from the 

wrong side of the branch are aborted. This method 

involves more instruction fetches and thus can contend 

with operand fetches from a common memory, but it has the 

advantage of keeping the pipeline full and the execute 

stage busy a greater proportion of the time than did the 

"guess and correct" method. 
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4.2.1.4 Interrupt Handling in an Instruction 

Pipeline. Interrupts disrupt the sequential instruction 

fetch in much the same way that branches do. When an 

instruction generates an interrupt condition, the 

interrupt should be handled before the instructions behind 

it in the pipe are executed. Since interrupts are 

unpredictable, no technique such as "guess and correct" or 

"fetch from both sides" is viable. The IBM 360/91 

implemented a technique of interrupt handling which has 

proven successful [66]. In the IBM 360/91, interrupts are 

categorized as precise and imprecise [52, p. 269]. 

Precise interrupts are ones that can be detected early in 

the pipe stage sequence (eg. illegal operation code is 

detected in decode stage, immediately after fetching) . In 

the case of a precise interrupt, fetch of new instructions 

is halted. All instructions behind the interrupt 

generating instruction are aborted while those ahead in 

the pipe are allowed to flow on through the pipe in the 

usual way. Imprecise interrupts are generated in stages 

internal to the pipe (eg. operand fetch or execute 

stages). In such cases, the pipe contains multiple 

instructions behind the offending one which have already 

undergone various stages of processing. To flush them 

would be counterproductive. When an imprecise interrupt 

occurs, fetches of new instructions are halted but all 

instructions which have already entered the pipe are 

allowed to stream on through to completion. 
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Whether precise or imprecise, the program counter can 

be initialized with the interrupt handler address while 

the pipe is being emptied. Debugging of imprecise 

interrupts may be difficult due to the nonsequentiality of 

the offending instruction and the action of the interrupt 

handler. However, since some interrupts such as I/O 

interrupts are unrelated to the instructions within the 

pipeline, such techniques are clearly advisable. 

4.2.1.5 A Review of the ILLIAC's Instruction Cycle 

and Pipelining. The ILLIAC IV instruction fetch-execute 

function employs an overlap instruction fetch and 

instruotion.execute technique whereby a 16 instruction 

block is fetched while an 8 instruction subblock is 

executed. This establishes a sequence of subfunctions 

that act in a nearly pipelined fashion. But, instructions 

are passed in blocks and processed in blocks; the input to 

individual stages is not individual instructions as found 

in modern pipelined systems. One configuration of the 

stages might be as given in Figure 16 and the related 

reservation table in Figure 17. 

The reservation table indicates a forbidden latency 

of lt2 - tol for stage 1; but, according to the 

reservation table, stage 1 should be able to receive 

inputs at time t 1 • In a true pipeline, stage 1 would be 

active with a new set of inputs at time t 1 • But, the 

ILLIAC does no fetch during execution of the first 8 



<------------------------------~ 

M: Multiplexor 

Figure 16. Possible Stage Sequence for 
ILLIAC IV Instruction 
Fetch/Execute Function 

stage 1: 
Fetch 16 
Instructions 

stage 2: 
Execute First 
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Execute Second 
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Figure 17. Possible Reservation Table for 
ILLIAC IV Instruction 
Fetch/Execute Function. In a 
True Pipeline Stage 1 Would Be 
Active at Time t 1 with a New 
set of Inputs 
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instructions in the block. Such a system can only be 

characterized as overlapped or asynchronous. Asynchronous 

or overlapped systems have at least one of the following 

characteristics: 1) dependencies between evaluations; 2) 

each evaluation may require a different configuration of 

subfunctions; 3) subfunctions are not closely related; and 

4) the time required by each stage is not constant [52, p. 

5]. The ILLIAC meets overlap specifications 1), 3) and 

4) • 

4.2.2. Arithmetic Pipelines 

This section examines arithmetic pipelines and how 

they relate to computers termed vector processors. 

Arithmetic functions constitute another major 

application for pipelining. An arithmetic pipeline is 

like any other pipeline; in this case, the function to be 

performed is simply the calculation of some arithmetic 

value. The most common example of an arithmetic pipe is 

that of a floating point adder where the addition of two 

floating point values may be broken into a series of 

subfunctionjstages as shown in Figure 18. When a large 

number of floating point number pairs require addition, 

the pairs can be streamed through the pipe producing 

output of one floating point sum for each pair input. 

Arithmetic pipelines have been built to perform a 

wide variety of arithmetic functions such as floating 

point addition, subtraction, multiplication, division, and 
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square root functions. Frequently an arithmetic pipe is 

multifunctional, capable of performing several functions 

such as those just listed above. If the reconfiguration 

of the multifunction arithmetic pipe may be controlled by 

the user programmer at the machine instruction level, the 

computer architecture is called a vector processor. In a 

vector processor, a single machine instruction specifies 

an operation and the location of a set of arithmetic 

values which are located according to some linear mapping 

function (vector elements which are stored contiguously or 

are separated by some stride distance) . The pipeline is 

configured to execute the operation specified and the 

vector elements are streamed through the pipe. After all 

the values have been streamed through, the next 

instruction can request a distinct operation and the 

arithmetic pipe can again be reconfigured to its 

specifications. Vector processors were designed 

especially for processing vectors just as array processors 

were also developed for that purpose, but each has its own 

unique architecture. 

4.2.3 Pipelining Embedded in 

Other Parallel Architectures 

The parallelism made available through instruction 

and arithmetic pipelining can be embedded within many 

architectural environments. For example, an array 

processor's control unit could employ an instruction 



pipeline; the overlapped system of the ILLIAC could be 

replaced with one. Further, the PEs of an array system 

could have arithmetic pipelines allowing each PE to 

process a stream of values concurrently. 
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In Chapter 5 of this treatise, the Alliant FX/8 

multiprocessor is surveyed. The Alliant has both 

instruction and arithmetic pipelines embedded within each 

of its multiple CPUs. As is discussed in Chapter 5, it is 

the multiple CPUs that give the Alliant its multiprocessor 

standing, but the use of pipelining within each processor 

extends its exploitation of parallelism. 

4.3 The Heterogeneous Element 

Processor, HEP 

In the late 1970's, The Heterogeneous Element 

Processor or HEP computer was initiated by Denelcor, Inc., 

under contract to the u.s. Army Ballistics Research 

Laboratory. By 1981, it was commercially available from 

Denelcor, Inc. It is a highly pipelined computer capable 

of implementing a multiple-instruction stream multiple­

data stream (MIMD) architecture as described by Flynn 

[31]. It is capable of executing 10 million instructions 

per second (MIPS). Because of its ability as an MIMD 

machine to perform concurrent processes and to establish 

such a high degree of parallelism, the HEP has generated a 

great deal of interest. 
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The HEP computer consists of one or more Process 

Execution Modules (PEMs) with a common data memory base 

[Figure 19]. The number of PEMs in a system makes no 

difference in the way processes are created and managed or 

in the way they communicate. Only the number of 

instructions executing at a time is affected; each PEM can 

have about 12 instructions in some stage of execution at a 

time. Each PEM consists of an Instruction Processing Unit 

(IPU) and 3 distinct memory entities. The PEM's memory 

entities are program, register and constant memory. In 

addition to the PEM's internal memories, each PEM has an 

attached local data memory module. Furthermore, all PEMs 

may access one or more global memory modules through a 

packet switched network. 

This section examines in detail the HEP computer and 

its intensive use of the pipeline concept. Sections 4.3.1 

and 4.3.2 describe in detail the organization of the HEP 

memories and instruction processing units and the way HEP 

has of resolving instruction pipeline hazards. Section 

4.3.3 describes further use of pipelining made in the HEP 

data transfer system which simplifies interprocess 

communication. 
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Figure 19. HEP System Showing the Process Execution 
Module, switch, and Data Modules 
Accessible by the PEM. 
SFU - Accesses Local Data Synchronously. 

Accesses Data Memory Asynchronously 
through the switch. 

DIV - Consists of 8 Distinct Asynchronous 
Floating Point Divider Modules. 

ADD - Performs Synchronously all Floating 
Point Addition and Subtraction. 

MUL - Performs Synchronously all Floating 
Point Multiplication. 

IFU - Performs Synchronously Integer 
Operations and Logical, Shift, 
Compares, and Type Conversions. 

HA - Hardware Access Unit Reads and 
Writes Program Memory and Performs 
all Bit Encode and Decode Operations 
Synchronously. 

SPI - System Performance Instrument 
Collects Data for Measurement of 
Performance Synchronously. 

Create Funct. Unit - Performs all 
Operations Affecting PSWs 
Synchronously. 

* - Undefined Units (20, 21] 



4.3.1 The HEP Memory System 

4.3.1.1 Program Memory of the PEM. Program memory 

is expandable in 1 megabyte units to 8 megabytes. It is 

execute-only memory for non-privileged users. One 

instruction can be fetched every 100 nanoseconds. This 

rate is important as it makes the program memory 

consistent with the requirements of the Instruction 

Processing Unit (IPU) • 
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4.3.1.2 Register Memory of the PEM. Each PEM's 

register memory consists of 2048 64-bit registers for 

storing operands and operational results. A process 

executes at its fastest possible rate when utilizing these 

registers. 

4.3.1.3 Constant Memory of the PEM. Constant memory 

is a read-only data area for non-privileged users. This 

area can be loaded during the same time period as the 

program load for a process and can be accessed during 

execution to facilitate fast constant retrieval. It 

consists of 4048 64-bit registers. 

4.3.1.4 Data Memory Modules. There exists a fourth 

memory element in a HEP system. This is called the data 

memory module. There can be as many as 128 of these in a 

HEP system. Each module can be from 1 to 8 megabytes in 

size. one data memory module may be local to a given PEM. 
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All other data memory modules can only be accessed by a 

PEM through a high speed packet switching network. It is 

used for storing most of the data of the system and for 

communication between processes executing on separate 

PEMs. Interaction between data memory and the PEM is much 

slower than that between the PEM and its internal memories 

(program, register, and constant memories). 

4.3.1.5 HEP Hardware Memory Management. The HEP 

utilizes a dynamic relocatable partitioned memory 

management system. Each program or job step constitutes a 

task; each task is assigned a region in program, register, 

constant, and data memory. The first byte address and 

last byte address of each region is recorded as base and 

limit values along with other status information in a Task 

Status Word (TSW). Effective addresses within each 

program are assembled as though the program will be loaded 

at location zero. Then as the program executes, effective 

addresses from instructions are added to the base value in 

the Task Status Word to determine a real address for 

access. Memory is protected by comparing the real address 

calculated with the limit value. If the real address is 

larger than the limit value, a memory protection exception 

is generated. Constant memory is different; it has no 

limit value, only a base. 



4.3.2 The HEP Instruction 

Processing Unit 

The Instruction Processing Unit (IPU) consists of a 

control unit and function units. The function units are 

of two varieties, synchronous and asynchronous. The 

function units are identified in Figure 19. 

4.3.2.1 The IPU Pipelines. All synchronous 

84 

function units are pipelined in eight stages, each with a 

delay time of 100 nanoseconds. The control unit is also 

pipelined, performing the instruction fetch, decode, 

operand address calculation, and operand fetch. Then it 

passes its results to the appropriate function unit. The 

control unit can fetch an instruction from program memory 

to the function units once every 100 nanoseconds. Thus 

when fully utilized, synchronous function units can 

produce a result every 100 nanoseconds, giving the 10 MIPS 

result of which the HEP is capable. 

4.3.2.2 The IPU's Task Status Words. A Task Status 

Word (TSW) is assigned each task, as discussed earlier in 

the context of memory management. Each task's TSW is 

maintained in the IPU. The IPU holds a maximum of 16 Task 

Status Words in a hardware queue. Half of these are 

allocated for user tasks, the other half for supervisor 

tasks. 
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4.3.2.3 The IPU's Process Status Words. The 

execution of a program constitutes a process. To identify 

the position of program execution for a process, a Process 

Status Word (PSW) is maintained for each process. The 

Process status Word acts as the program counter for each 

process. Normally, when a task is ready for execution, it 

is assigned one PSW, identifying the initial instruction 

for execution of the task. A task may be modularized by 

the programmer into a series of subprograms which, if 

executed in parallel would minimize the time requirements 

for task execution. By use of a CREATE instruction, the 

programmer can require additional PSWs to be created for 

his task, one for each subprogram to be run concurrently. 

By doing this he is initiating parallel execution of his 

subprograms, creating concurrent processes. 

4.3.2.4 The Task Queue and the Process Queue. The 

PSWs are maintained in a process queue. Each PSW in the 

queue is identified by a Process Tag (PT); that is, each 

Process Tag is a pointer to a unique PSW in the process 

queue. When a task is loaded, it is assigned a Task Queue 

as well as a Task Status Word. The PT for each Process 

Status Word initiated for a task is maintained in this 

hardware Task Queue. The process queue can hold a maximum 

of 128 PSWs. Sixty four are allocated for supervisor use. 

This leaves a total of 64 PSWs available for user use. 

These are divided in a first-requested, first-allocated 
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manner among the 8 possible user tasks. If one task can 

CREATE requests sooner than the other tasks, it may 

utilize all 64 slots in the process queue. Thus one task 

could generate 64 concurrent processes, each process 

working towards the completion of the given task. 

When the Control Unit of the IPU fetches an 

instruction, it accesses Task i's FIFO Task Queue for a PT 

and logically removes it from the Task Queue. The PT 

directs the Control Unit to a PSW in the process queue 

which in turn addresses the correct program memory word 

containing the instruction to be fetched. The instruction 

is piped into the Control Unit pipeline where the Task 

Status Word will be consulted for real operand address 

calculation, etc., and the PSW is updated. Beginning on 

the next 100 nanosecond period, the Control Unit accesses 

Task i + 1 (mod 16) •s Task Queue for the PT pointer to the 

PSW pointer to the next instruction to be fetched. The 

next instruction fetched for execution will be from a 

process distinct from that of the previously fetched 

instruction. 

The PT is not returned logically to the Task Queue 

until an 800 nanosecond delay has transpired. This is the 

time required for the instruction to flow through one of 

the synchronous Function Units (ie. complete execution). 

After the delay, the PT is returned to its original Task 

Queue and becomes available once again for selection by 



the Control Unit as it makes its round-robin poll of the 

Task Queues. 
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4.3.2.5 The Beauty of the HEP Pipelines. This then 

is what makes the HEP instruction pipeline distinct from a 

conventional one; each instruction in the pipe is from a 

distinct different process, a unique instruction stream. 

There are no instructional dependencies within the pipe! 

There are no data hazards, no read after write, no write 

after read hazards! There is no hazard detection and 

resolution, and no "guess and correct" branching schemes! 

Each instruction stream is handled as though it were 

executing on a nonpipelined control unit, one instruction 

executing at a time. 

Additionally, the HEP utilizes its pipeline to obtain 

its multiple-instruction-stream categorization. Although 

only one instruction is fetched from program memory each 

100 nanoseconds, during an instruction's total execution 

period, at least 8 instructions will be fetched and each 

from a different process stream. 

4.3.3 Interprocess Communication 

Because the HEP was designed to implement concurrent 

processing, it has built into its register and data 

memory, hardware access states to facilitate communication 

between cooperating processes. Data memory access states 

can be "full" or "empty". A LOAD instruction can be made 
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to wait if its designated location is "empty" and wait 

until it is set "full" by a concurrently executing STORE. 

This setting of states occurs in one machine cycle. 

Register memory has similar states. An instruction 

executing on register memory may require both operands to 

be full and the destination empty before executing and 

then mark the destination as "reserved" while it is in the 

pipeline. The programmer can designate when the states 

should be tested. Thus, the HEP implements in hardware 

some significant LOCK and UNLOCK, P and V type activities 

[ 20] • 

4.3.3.1 Asynchronous Function Units. Synchronous 

function units all compute their results in eight 100 

nanosecond cycles and access register and constant memory 

for their operands. There are two asynchronous function 

units, the Scheduler Function Unit (SFU) and the Divider 

Function Unit. The Divider contains 8 individual 64-bit 

floating point divider modules. It can complete a divide 

instruction in 1700 nanoseconds. The Divider utilizes the 

reserved state of register memory to prevent a synchronous 

function unit from utilizing a destination register before 

it is filled. This acts to prevent a read after write 

hazard for an instruction which would follow a DIVIDE in a 

process instruction stream. 

The Scheduler Function Unit (SFU) is both synchronous 

and asynchronous. It executes all instructions involving 
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data transfers to or from Data Memory. Most Data Memory 

Modules are connected to a PEM by the packet switching 

network; but, one module may be local to a PEM. The SFU 

executes transfers through the switch asynchronously, 

while those to a local Data Memory are executed 

synchronously. The SFU is pipelined and can receive a new 

data transfer request once each machine cycle, 100 

nanoseconds. When a Data Memory transfer instruction is 

piped to the SFU, the PT associated with that instruction 

fetch is not returned to the Task Queue after the usual 

delay. The SFU contains 16 queues analogous to the Task 

Queues of the IPU. The PT is placed into one of these 

corresponding queues of the SFU instead. The SFU also 

contains a queue analogous to the process queue of the 

IPU. In this queue the SFU maintains SFU Status Words 

(SSW). Each SSW contains enough information about the 

conditions of the Data Memory transfer to restart it as 

many times as necessary. If a location is accessed by the 

SFU, but its access state "full"/"empty" is not that 

prescribed by the programmer, the SFU aborts and tries 

again later when the ssw for that transfer comes up again 

in a round-robin poll of the SSW Queue. This process 

continues until all the conditions of access are met and 

the data transfer is completed. Then the PT for the 

completed instruction is returned to its IPU Task Queue 

and removed from the SFU. The data has now been 

transferred as requested and the Control Unit is now able 
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to access the PT again to fetch the next instruction in 

that process. Thus, once again, any hazard which could 

have existed due to the unequal compute time of the SFU 

with that of the other synchronous Function Units has been 

averted. Additionally, by virtue of being a pipelined 

data transfer function, the SFU is in the process of 

transferring multiple data elements during a given period 

of time, thereby qualifying it as a Multiple Data Stream 

computer. 

4.3.4 Conclusion on HEP 

The designers of HEP made excellent use of the 

hardware technology available and the reduced cost of RAM. 

These elements were combined with existing procedures and 

some new ideas to create a very exciting machine. 

4.4 Summary 

This chapter presents pipelines. Pipelines allow 

multiple inputs to be in various stages of processing at 

any given time. Their use in implementing machine 

instruction cycles allow the execution of multiple 

instructions to be under way at any given time. When the 

instructions piped into the pipeline are from the same 

process, then hazards may occur. These must be detected 

and resolved. When the instructions are from different 

processes, as in the HEP, no hazards exist and execution 

is from multiple instruction streams. The use of 



arithmetic pipelines allow multiple data elements to be 

operated on within the pipe at the same time allowing a 

form of data parallelism. A data fetch pipeline such as 

the Scheduler Function Unit of the HEP allows the 

processing of multiple data streams. 
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Furthermore, each type of pipeline can be implemented 

within the same machine so that each of the multiple 

instructions streams in the pipe can be executing on its 

own stream of data. Thereby, pipelines can be used to 

establish instructional parallelism or data parallelism or 

both. 



CHAPTER V 

MULTIPROCESSORS: THE ALLIANT FX/8 

AND THE COSMIC CUBE 

5.0 Introduction to Multiprocessors 

Chapter 3 presents the way parallelism can be 

introduced into a system by maintaining one control unit 

and many arithmetic/logic units. The use of such an array 

system allows multiple data elements to be processed 

simultaneously, providing data parallelism. such a 

computer is a single-instruction-stream multiple-data­

stream (SIMD) computer. Chapter 4 introduced pipelining. 

An instruction pipeline allows multiple instructions to be 

in various stages of evaluation at the same time; thus, 

affording instructional parallelism as is done in the 

Heterogeneous Element Processor (HEP). Further, an 

arithmetic pipeline can be employed to provide data 

parallelism as is done in vector processors. In the HEP 

computer, instruction pipelining in the Instruction 

Processing Unit (IPU) and data transfer pipelining through 

the Scheduler Function Unit (SFU), provides both 

instructional and data parallelism. These considerations 

show that the HEP is a multiple-instruction-stream 

multiple-data-stream (MIMD) computer. 
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Another computer architecture that affords an MIMD 

system is the multiprocessor. A computer system that is 

composed of more than one CPU is a multiprocessor. 

Unfortunately, this simple definition may be applied not 

only to multiprocessors, but to distributed systems and 

computer networks as well. 

5.0.1 What a Multiprocessor is Not 
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What are distributed systems and network systems and 

how they are different from a multiprocessor? A 

distributed system is a computer system composed of 

multiple stand alone computers that communicate via 

telephone lines or a high speed bus. The user of such a 

system logs onto the system as a whole and is unaware of 

which computer is giving him service. The system hides 

the hardware from the user at logon and routes his service 

request to a particular computer unit based on 

availability. The interface with which the user interacts 

runs on each computer unit; thus, the system appears the 

same to the user regardless of his logon location. 

A computer network implies the existence of a 

collection of interconnected autonomous computers, similar 

to a distributed system. Each of the computers is capable 

of supplying service to the user; but, the user specifies 

at logon the computer to be utilized. Networks with 

geographically widespread computers are connected via 

leased communication lines or satellite links while those 



94 

with computers located in close proximity may be connected 

by radio, coaxial cable, fiber optics, etc. 

Once a user has been assigned a computer as in a 

distributed system or has specified one as in a network, 

the execution of that user's job proceeds on the one 

computer. Thus, although there are multiple processes 

active in distributed and networked systems, each job is 

serviced by one and only one individual computer at a 

time. Exploitation of parallelism in the individual job 

is that afforded by the one computer to which the user's 

job is mapped. 

5.0.2 What a Multiprocessor Is 

This chapter presents the class of MIMD systems 

termed multiprocessors. A multiprocessor system is one in 

which more than one processor, or CPU, is combined to form 

one computer and each processor contributes to the 

solution of a single problem or task. In a 

multiprocessor, the user's job is partitioned into 

separate subtasks (or subroutines) and these subtasks are 

mapped onto the set of CPUs. Thus, different portions of 

the user's code is executed simultaneously on different 

processors, each processor working on its own data; this 

is the significant difference between a multiprocessor 

system and systems termed distributed or networked. 

As a simple example of the application and problems 

of a multiprocessor, consider the task of multiplying two 
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N x N matrices, A and B. Recall that for each of the N2 

elements in the result, this matrix multiplication implies 

the multiplication of the elements of a row vector of A by 

the corresponding elements of a column vector of B and 

then the summation of these products. That is to say, N2 

inner products must be computed. On a uniprocessor this 

means the total time required for the multiplication will 

be that required for N2 inner product computations. If it 

were possible to divide the inner product computations 

evenly between two processors then the time required would 

be that required for the computation of N2/2 inner 

products. It should be noted that exactly how this may be 

done is not necessarily clear; there are many design 

issues that must be considered. In this example, one of 

many issues is where should the array values be stored? 

If they are all in one large global memory, stored in 

column major order as is common on many uniprocessor 

systems, then how can the data elements be accessed by the 

concurrently executing processors? The two processors 

easily could attempt to access the same element of A or B 

at the same time; that is, they could clearly contend for 

memory access, resulting in poor turnaround. 



5.1 Issues in the Design of 

a Multiprocessor 

Variations in multiprocessor architecture are many. 

There are certain fundamental points which one should 

consider when examining a given multiprocessor 

architecture. Some of the most significant are the 

following: 

1) How is the memory, or memories, attached to the 

processors? 

2) How do processes executing concurrently on 

separate processors communicate? How do the processes 

synchronize their activity? 

3) On which processor(s) is the operating system 

executing? 

4) How are computations partitioned to exploit 

parallelism? How is the job divided into subtasks? 
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This section gives some general answers to these 

questions. Subsequent sections present two very different 

multiprocessors, the Alliant FX/8 and the Cosmic Cube, 

that demonstrate some contrasting solutions to these 

questions. 



5.1.1 How is the Memory or Memories 

Attached to the Processors? 
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Initially, most multiprocessors were designed to 

share access to main storage (16, p. 108] [55, p. 131]. 

Most multiprocessor systems now fall into one of two 

categories of memory-processor organizations: (1) all 

processors accesss a global memory, and (2) each processor 

has access only to its own local memory. 

5.1.1.1 A Global Memory. In the first category, a 

collection of processors, usually eight or fewer (59], are 

connected to a bank of memory modules via an 

interconnection network designed from complete crossbar 

switches [30] [Figure 20]. Such multiprocessors are 

frequently termed tightly coupled multiprocessors. Under 

such an arrangement as this, any processor can address any 

memory unit and, thereby, read from or write to any memory 

unit [41, p. 460]. 

A factor which may limit severely the speed of a 

tightly coupled multiprocessor is that of memory 

contention. This problem was mentioned .earlier in the 

example of the matrix multiplication. Memory contention 

occurs when more than one processor attempts to access the 

same memory unit at the same time. This problem can be 

reduced by interleaving multiple memory modules, but it 

cannot be eliminated altogether (41, p. 460]. 



Interconnection Network 

P: Processor M: Memory Module 

Figure 20. Multiprocessor with Global Memory 

Interconnection Network 

P: Processor M: Memory Module 
PC: Private Cache 

Figure 21. Multiprocessor with Global Memory 
and Private Caches 
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The use of private caches is another method used to 

reduce memory contention between tightly coupled 

processors [Figure 21] [41, p. 470,517]. A cache is a 

small RAM which has a high speed access time that matches 

the processor speed. Recently used words and others 

spatially local to the used words are held in the cache in 

anticipation of their use in the near future [55, p. 420]. 

Frequently, the next word required from memory by the 

processor will be in the cache, thus the processor will 

not need to access a global memory module. Since memory 

module access is reduced, so is memory contention [34]. 

As usual, an apparent solution initiates additional 

problems. Suppose processor i and processor j , iF j, 

each have a copy of location x in their respective caches. 

If processor i writes to location x in its cache and if 

processor j reads from location x in its cache, then 

processor j has an old copy of the data to be processed. 

Naturally, this leads to erroneous results. This is 

referred to as the cache coherence problem. Two common 

ways of solving the problem of cache coherence are now 

given. 

The first and simplest method of solving cache 

coherence problems is the static coherence check. In this 

technique, code and data are divided into two categories: 

(1) read only information such as instructions (cacheable) 

and (2) read or write information such as updatable data 

(non-cacheable) . Non-cacheable information is restricted 
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from the processors' caches. Since a large amount of data 

and code is cacheable this technique does eliminate many 

shared memory accesses while preventing non-coherence of 

cached data. 

Dynamic coherence checking is the second way to 

insure positive cache coherence. As the word dynamic 

implies, this technique is activated during run time. In 

this scheme, multiple copies of read or write information 

are allowed in the processors' caches. However, each time 

a processor writes to a location x, it "cross 

interrogates" the other processors, via a high speed bus 

or other communication line, to determine if they also 

have a copy of location x in their caches. If so, the 

processors whose caches need updating are signaled to mark 

their copies as out or not present. Then the updating 

processor "writes-through" or updates shared memory as 

well as its own cache. The next time the other processors 

need location x's data, they will refresh their caches 

from the shared memory. 

There is an additional technique used to lower the 

frequency of memory contention in some tightly coupled 

computer systems. It is to provide each processor with a 

local memory as well as the global memory. The local 

memory is used to hold operating system and processor 

status information pertinent to the particular processor 

[Figure 22]. A switch is employed to map each specified 



Interconnection Network 

P: Processor 
S: Switch 

M: Memory Module 
LM: Local Memory 

Figure 22. Multiprocessor wit~ Global Memory and 
Local Memories 
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address onto either the local or global memory. The local 

memory serves to lower the frequency with which the global 

memory must be accessed. 

Another problem with tightly coupled multiprocessors 

is that as the number of processors and memory modules 

hung on the interconnection network increases, so also 

does the complexity of the network. If there are p 

processors and m memory modules, then the number of 2 by 2 

crossbar switches is on the order of p*m. Thus the 

complexity, cost, and delay time for data transmission 

increases rapidly as either the number of processors or 

the number of memory units increases. 

5.1.1.2 Each Processor Has Access Only to Its own 

Local Memory. Multiprocessors of the second category 

contain a collection of processors, normally a large 

number, from 64 to 65,536 [59], each with its own local 

memory where it accesses its own instructions and data. 

Each individual processor with its local memory and I/O 

devices may be referred to as a computer module. The 

computer modules are connected by channels that link the 

modules together according to some designer determined 

pattern [Figure 23]. A computer system such as this often 

is termed a loosely coupled computer system. With the 

local memory approach, memory contention is no longer a 

problem and there is no costly interconnection network. 
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Figure 23. Multiprocessor with Only Local 
Memories 
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There are a number of different channel link patterns used 

in multiprocessors. Some common configurations are the 

(1) linear array, (2) tree, (3) star, (4) near-neighbor 

mesh, (5) ring, and (6} hypercube [Figure 24-29]. The 

problem to which the multiprocessor will be applied 

determines the merit of a given configuration. This issue 

is discussed more in the immediately following section. 

5.1.2 How do Processes Executing 

Concurrently on Separate Processors 

Communicate? How do the Processes 

Synchronize their Activities? 

The answers to the questions, "How do processes 

executing concurrently on separate processors communicate? 

How do the processes synchronize their activities?" 

depends primarily on how the memories are configured. 

5.1.2.1 Tightly Coupled Multiprocessors. 

Multiprocessors that have a global memory as in Figure 20 

communicate by writing to and reading from common memory 

locations. That is one reason why the issue of cache 

coherence mentioned above is so very significant. 

Processes executing concurrently and sharing common data 

on a multiprocessor system face many of the same problems 

dealt with by concurrent processes running on a 

uniprocessor. Issues such as critical sections, mutual 
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exclusion, deadlock, and use of semaphores are handled 

similarly to the uniprocessor conventions. For further 

study in these areas, the reader is referred to Calingaert 

(1982), Chapter 4. The primary complication which 

multiprocessors add to these issues is that of 

simultaneous access to semaphores by processes executing 

concurrently on distinct processors. On a uniprocessor, 

access to a semaphore by one and only one process is 

implemented by disabling interrupts on the lone processor 

during the time period in which the semaphore is 

processed. Interrupt disabling by a process prevents any 

other process from gaining access to the CPU. However, 

disabling interrupts on one processor does not effect 

processes running on other processors in a multiprocessor 

environment. The common solution to this problem is the 

inclusion of indivisible read-write instructions such as 

test-and-set into the machine's instruction set. Such 

instructions are used to force processes on separate 

processors into executing loops, busy waiting, until 

processing of the semaphore by the current process is 

complete~ Figures 30 and 31 demonstrate the distinction 

between P and V operations for a uniprocessor and those 

for a global memory based multiprocessor system. The 

test-and-set instruction, TS(S.Mutex) [Figure 31], assigns 

the variable named Permission the value read from S.Mutex 

and sets s.Mutex FALSE in one non-interruptable machine 

instruction cycle. Processes executing the procedures P 



procedure P(S) 
recordS (integer Count, pointer Ptr); 
process P; 
begin 

disable interrupts; 
S.Count := S.Count - 1; 
if s.count < 0 then 

begin 

end 

insert calling process on list 
pointed to by S.Ptr; 

P := some ready process; 
dispatch P with 

interrupts enabled 

else enable interrupts 
end; 

procedure V(S) 
recordS (integer Count, pointer Ptr); 
process P; 
begin 

disable interrupts; 
s.count := s.count + 1; 
if s.count < 0 then 

begin 
P := remove some process from 

the list pointed to by S.Ptr; 
WAKE UP P 

end; 
enable interrupts 

end; 

Figure 30. Uniprocessor Implementation 
of P and V [16, p. 99) 
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procedure P(S) 
recordS (integer Count, pointer Ptr, boolean Mutex); 
process P; 
boolean Permission; 
begin 

end; 

disable interrupts; 
repeat permission := TS(S.Mutex) 
until permission = TRUE; 
S.Count := S.Count - 1;· 
if s.count < 0 then 

begin 
insert calling process on list 

pointed to by S.Ptr; 
P := some ready process; 
S.Mutex := TRUE; 
dispatch P with interrupts enabled 

end 
else begin 

S.Mutex := TRUE; 
enable interrupts 

end 

procedure V(S) 
records (integer Count, pointer Ptr, boolean Mutex); 
process P; 
boolean Permission; 
begin 

disable interrupts; 
repeat Permission := TS(S.Mutex) 
until permission = TRUE; 
s.count := s.count + 1; 
if s.count ~ 0 then 

end; 

begin 
P := remove some process from 

the list pointed to by S.Ptr; 
wake up P; 

end; 
S.Mutex := TRUE; 
enable interrupts 

Figure 31. Multiprocessor Implementation 
of P and V [ 16 , p . ~10] 
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or V on other processors execute the repeatjuntil loop 

until the process accessing the semaphore member s.count 

resets S.Mutex to TRUE and exits the appropriate 

procedure. Thereby, one and only one process is allowed 

access to the semaphore member s.count, during the 

execution of either a P or a V procedure. 

Additional communication between tightly coupled 
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multiprocessors can be established via an interrupt system 

[Figure 32]. The interrupt system allows interprocessor 

interrupts; that is, any processor may interrupt any other 

processor. The interrupt signal interconnection system 

Signal Interconnection System 
--------' I I 

Interconnection Network 

P: Processor M: Memory Module 

Figure 32. Multiprocessor with Global 
Memory and Interrupt 
Signal Interconnection 
System 



113 

may be a simple time shared bus or a complex crossbar 

switch. The bus is lower in cost but slower to use due to 

the additional logic needed to make the appropriate 

processor to processor connection (arbitration logic). 

Use of the interrupt system may allow one process to 

signal another of its desire to synchronize. One 

multiprocessor called the HYDRA uses such an interrupt 

system to provide mutual exclusion (access by one and only 

one process) during operations on queues [16, p. 209]. 

5.1.2.2 Loosely Coupled Multiprocessors. 

Multiprocessors that have local memories and are connected 

by a pattern of channel links communicqte via message 

passing. Data andjor synchronization signals are passed 

as message packets via the channels to neighbor computer 

modules. The neighbor module may reroute the message to 

another module as necessary until the message reaches the 

appropriate processor. When synchronization is required 

between processes, the processor to which the message is 

addressed can be programmed to halt execution at a certain 

point in its performance until an expected message packet 

arrives at one of its ports. 

A message packet is generally a block of bytes 

containing such information as the destination processor 

address and destination process id, source processor 

address and source process id, count of bytes to be 

transmitted, data, and control information [Figure 33]. 



<---------------- HEADER ----------------------> 

DESTINATION SOURCE 

2 2 2 2 2 2 2 1024 
BYTES 

PRCS: Process Id. Node: Processor Id. 

Figure 33. Message Packet Format for 
Interprocessor 
Communication (44] 
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The message packet is compiled by operating system 

routines. The communicating process calls the operating 

system routines and passes them the information needed to 

compile the packet. The operating system may split the 

messagejdata into multiple packets depending on the amount 

of data to be sent. Then, the operating system routines 

route the message over the appropriate channel from the 

sending processor onto the channel opened or specified by 

the process. Rather than passing straight through each 

computer module node on its way to the destination 

processor, the packet is stored temporarily in each 

computer in a buffer or queue area. Then the packet is 

forwarded to the next node in its journey to the 

destination by routines of the locally executing operating 

system. This store-and-forward packet switching allows 

efficient use of the channels which network the computer 

modules together. 

The use of message packets allows large units of data 

to be transferred from one processor to another without 

seizing the channel and blocking out messages that need to 

be sent over the same path or intersecting path by other 

concurrent processes. In the tree configuration of Figure 

25, if a process on processor P1 sends a message to a 

process running on P7 , and a process on P2 sends a message 

to another running on P3 , then the channel from P1 to P3 

is required by two concurrent communications. If one 

communication is excessively lengthy, it can block the 
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other out for an extended period, negatively effecting the 

execution of the blocked process. Similarly, a 

communication over a long path can block out many short 

path communications. By using packet switched store-and­

forward message passing each packet has its own virtual 

circuit through the system. 

The problem to which a multiprocessor is applied 

determines the merit of a given processor configuration, 

ie. linear array, ring, etc. If a given problem may be 

solved by the operation of a sequence of subroutines, si, 

i=l,2, •. ,n, where the result of subroutine si is passed as 

input to subroutine si+l' if this computation needs to be 

made for a number of different initial input values, and 

if n computer modules are available, the processors can be 

configured as a linear array, with si executing on 

processor Pi· The result of each subroutine can be passed 

as a message packet to the subsequent subroutine on the 

next processor down; and the initial input values can be 

pipelined through the multiprocessor linear array, 

allowing the completion of all computations in about 1/n­

th of the time to do the computations sequentially on a 

uniprocessor. This speedup is only approximate after the 

pipe is full. 

One reason that the speedup anticipated in the above 

example is not attained is the high overhead inherent in 

message passing; work done by the operating system 

routines to implement the message passing can be time 
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consuming. Systems which utilize message packet 

communications usually display a high degree of efficiency 

as long as the amount of message passing required is 

maintained at a low level; otherwise, the overhead 

inherent in transferring messages from one module to 

another may deteriorate performance significantly [41, p. 

468]. 

5.1.3 On Which Processor(s) is the 

Operating System Executing? 

Operating Systems for multiprocessors are very 

similar conceptually to those that run on uniprocessors 

utilizing multiprogramming. The reader is referred to 

Calingaert (1982) [16] and other such texts which discuss 

the fundamentals of operating system design. The need to 

support multiple processors executing asynchronous tasks 

is the factor which increases the complexity of 

multiprocessor operating systems. Additional intricacy is 

involved in the support of graceful degradation. One 

advantage of a multiprocessor system is the potential of 

keeping the system up and running in the advent of a 

hardware fault in one of the multiple processors. 

Graceful degradation implies the capability of 

reconfiguring the_system to omit the faulty unit and 

continue running. Failure to support graceful degradation 

mars the positive features of a multiprocessor. 
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An operating system manages the specific facilities 

for which it is designed. Of course, that implies that 

the operating system's internal design depends directly on 

the organization of the hardware. Each multiprocessor 

operating system works differently. The processor-memory 

organization and the method of interprocess communication 

provided by the hardware clearly influences operating 

system design. This section outlines three basic 

operating system configurations which have been used in 

existing multiprocessors: (1) master-slave processor 

configuration, (2) each processor with its own separate 

supervisor, and {3) floating supervisor which may be in 

any processor at a given time. 

5.1.3.1 Master-slave Processor Configuration. In a 

master-slave processor configured operating system, one 

processor is designated as the master processor. The 

operating system is executed by this one processor alone. 

It maintains the status of each processor in the system 

and allocates tasks to the other processors, or slaves, 

according to some rule. The slaves are treated as 

schedulable resources. This implies that the master 

should be able to assign tasks to the slaves as fast as 

they can do them. Should the master not be able to match 

the speed of slave processor service then the slaves must 

wait; clearly, this condition implies poor use of 

facilities. If the master fails then the multiprocessor 
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fails; under such circumstance, it is impossible to 

degrade gracefully. Since the operating system always 

executes on the one processor, a slave processor 

communicates with the master through an interrupt signal 

interconnection system. The slave either generates a trap 

or executes a supervisor call instruction. The master 

processor operating system's appropriate interrupt handler 

acknowledges the request and performs the required 

service. The advantage of a master-slave arrangement is 

that it is relatively easy to implement as an extension of 

a multiprogramming uniprocessor operating system. Since 

only one processor is executing the operating system code, 

and in behalf of only one user at a time, the code need 

not be reentrant [41, p. 527]. The code need not be 

reentrant in the sense that no separate data areas need be 

established for separate instances of execution. 

Naturally, the machine instructions should not modify 

themselves. Master-slave operating systems work well in 

environments with special applications such that the tasks 

are clearly specified. Also, it works well on 

multiprocessors that have only two or three processors, as 

the slaves are not so likely to contend for service from 

the master. 

5.1.3.2 Each Processor with Its Own Separate 

Supervisor. Each processor may have its own copy of the 

supervisor system to execute, then each processor provides 
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for its own management requirements. Multiprocessors with 

local memories as in Figures 22 and 23 utilize this 

operating system configuration, although it may also be 

used in a totally global memory system such as Figure 20. 

Although the processors take care of their own needs, they 

must interact with each other. In a message based system, 

this implies that each operating system possesses the 

routines needed to implement the store-forward data packet 

message passing discussed earlier. 

In a multiprocessor with a global memory, supervisor 

code is replicated for each processor. In order for the 

processors to interact, it is necessary for some of the 

data structures such as job tables and the state of shared 

resources such as file structures to be held in the global 

memory and shared by the whole system. Shared tables 

create access problems. The prevention of simultaneous 

access of the tables by multiple processors may be 

implemented using test-and-set instructions and P and V 

procedures as discussed in the previous section on 

synchronization. Any shared code must be reentrant. 

The separate supervisor for each processor 

configuration provides more graceful degradation than the 

master-slave system; since each processor is providing its 

own primary needs, then when one processor fails the 

others can continue. 
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5.1.3.3 Floating Supervisor which may be in Any 

Processor at a Given Time. Under a floating-supervisor 

operating system, any one processor may be executing the 

supervisor at a given time. Further, several of the 

processors may be executing supervisor service routines at 

the same time. All the processors and other resources are 

treated equally. Code and tables are maintained in a 

global memory and any processor may access the code or 

tables for use. Thus, most code must be reentrant and 

table access conflicts cannot be prevented, but can be 

handled as mentioned earlier with test-and-set 

instructions and P and V procedures. This operating 

system mode is. considered to be the most difficult plan of 

operation and the most adaptable. If a processor fails 

the other processors simply pick up its load and continue. 

This provides graceful degradation. 

These three operating system configurations are 

generalizations of the systems found in practice. Actual 

systems fit somewhere in the continuum between the simple 

master-slave approach and the sophisticated floating­

supervisor mode. 

5.1.4 How are Computations Partitioned 

to Exploit Parallelism? 

A program written for a multiprocessor must exploit 

the parallelism of the algorithm in order for there to be 

any speedup in the program execution over that found in a 



uniprocessor. How the parallelism is detected and the 

computation partitioned so that different processors may 

work on separate portions of the job is the question 

addressed here. 

122 

Parallelism may exist at different levels. The 

chapters on array processors and pipelining demonstrate 

how parallelism can be exploited at the data and 

instruction levels. The chapters on data flow and 

reduction present additional methods of exploiting 

parallelism at the instruction level. In the MIMD 

environment of a multiprocessor, it is the parallelism 

that may exist between blocks of code that' is of concern. 

The idea is to identify those blocks of code that are 

self-contained units of the computation to be performed 

and can be executed during the same time period on 

different processors. This does not imply that they must 

begin and end execution together, but, rather that the 

operation of one may begin before the termination of the 

other. In this section, focus is on both this issue and 

on how this information is conveyed to the multiprocessor. 

5.1.4.1 Data Dependency. The primary issue which 

delimits parallelism between blocks of code is data 

dependency. Consider the statements of Figure 34. 
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sl X = A + B 
s2 Y = M + N 
s3 z = X + Y 

Figure 34. Statements for Parallel Evaluation 

The statement s3 is dependent on the results of statements 

sl and s2; there exist data dependencies between s3 and 

both statements sl and s2. On the other hand, the 

computation of Y is independent of the computation of X, 

and vice versa. The computation of z is independent of 

the order in which X and Y are computed. Therefore, 

statements sl and s2 may be interchanged, or commuted, and 

still produce the same result in z. 
In general, when two blocks of code demonstrate this 

condition of commutativity, as sl and s2 do here, then 

there are no data dependencies between them and they can 

be executed in parallel. More precisely, the Bernstein 

condition must be satisfied before sequentially organized 

processes can be exec~ted in parallel [63, p.JlO]. 

If the following definitions are made, Bernstein's 

condition may be identified. B1 and B2 define blocks of 

code. Ri defines the set of all memory locations such 

that the first access of the location by Bi is a read 
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operation. Wi defines the set of all memory locations to 

which Bi performs a write operation. 

Bernstein's condition [10] may be stated as follows. 

B1 and B2 may be executed in parallel if they fulfill the 

following requirements: 

1) Rl n w2 = fij· 

2) R2 n wl = 9J 

3) wl n w2 = J6 

Blocks of code that meet the Bernstein condition have no 

data dependencies and are appropriate candidates for 

parallel execution on distinct processors. 

In the example of Figure 34, if Si = Bi, then 

R1 = {A, B}, w1 = {X}, 

R2 = {M, N}, w2 = {Y}. 

and {A,B} (\. {Y} = {M,N} (\.{X} = {X} (\. {Y} = 9J 

showing that s1 and s 2 may be executed in parallel. 

Further, 

R3 = {X, Y}' w3 = {Z}, and 

R3 (\.w1 = {X, Y}(\. {X} ~ J6, also 

R3{"\ w2 = {X, Y}f\. {Y} ~ J6. 

The non-empty intersections indicate s 3 may not be 

executed in parallel with either s1 or s2. 

Although a pair of blocks may demonstrate 

commutativity, they are not necessarily appropriate for 

parallel execution. Consider the process called Fast 

Fourier transform, or FFT. This process produces its 

output in bit reversed order. As a result, a complete FFT 



computation implies that either (1) the input of the FFT 

first be bit reversed or (2) the output from the FFT be 

bit reversed. The processes of FFT and bit reversal 
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exhibit commutativity. But, either (1) the output of the 

bit reversal, w1 , serves as the input for the FFT, R2, and 

w1r-lR2 ~ ~ , or (2) the output of the FFT, w2 , serves as 

the input for the bit reversal, R1 , and w2(lR1 ~ ~ • 

Clearly, the procedure blocks fail Bernstein's condition 

and they are not suitable for parallel execution. 

Commutativity is a necessary but not sufficient condition 

to insure valid parallel execution [41, p. 542]. 

It has been determined that the Bernstein condition 

is necessary and sufficient for blocks of code to be 

executed in parallel. How are the results of a data 

dependencies analysis conveyed to the multiprocessor; or, 

how does the multiprocessor "know" which blocks may be 

executed on different processors? There are two 

approaches; one strategy is to employ implicit 

concurrency, the other is to apply explicit concurrency. 

5.1.4.2 Implicit Concurrency. Implicit concurrency 

indicates that the compiler performs a data dependency 

analysis of the source program. Based on the above 

described conditions, appropriately designed compilers can 

determine potential parallelism in high-level language 

programs automatically. Most existing parallelizing 

compilers examine loops for consideration as parallel 
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blocks, where each iteration of the loop, if executed 

sequentially, is considered as a single process. A 

subsequent section of this chapter examines the Alliant 

FX/8 multiprocessor which is bundled with FX/FORTRAN, a 

parallelizing compiler. That section surveys this subject 

further. 

5.1.4.3 Explicit Concurrency. Explicit concurrency 

indicates that the programmer considers his code and 

divides it into logical units, considers the data 

dependencies between the units, and then specifies the 

blocks or program units which may be executed in parallel 

using certain language constructs. Some of those 

constructs are surveyed in the following paragraphs. 

FORK and JOIN are two statements that allow explicit 

specification of parallelism or concurrency. These two 

statements are not totally standardized; thus, they may be 

defined differently in different settings. This 

discussion attempts to convey the basic concepts of FORK 

and JOIN [55, p. 182] [41, p. 533-534] [63, p. 310-314]. 

The FORK and JOIN statements function as system 

primitives; they are indivisible, or uninterruptable, 

procedures. 

FORK is used to spawn a new process from code 

beginning at a specified address; FORK also continues the 

current process in which it is expressed. Execution of 
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the FORK function expressed in the format 

FORK Sl 

initiates execution of code beginning at statement Sl as 

well as allowing execution of the code following the FORK 

to continue. Execution of the FORK function expressed in 

the format 

FORK Sl,J,N 

initializes a counter J to the value N; then initiates 

execution of code beginning at statement Sl and continues 

execution of the code following the FORK, as in FORK Sl 

above. 

JOIN is used to end all but one of a set of 

concurrent processes. JOIN has the format 

JOIN J 

Execution of this statement results in decrementing 

counter J. If the value of counter J is not zero after 

decrementing then the process executing the JOIN 

terminates. A process that performs the JOIN and sets the 

counter to zero continues to execute. 

The value N from the FORK Sl,J,N statement specifies 

the number of concurrent processes that are to be funneled 

together and joined into one process. The counter J is 

decremented from N down to zero by JOIN J as each 

concurrent process executes the JOIN. This implies that 

the longest executing process of the process set will not 

be terminated by the JOIN. 
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In the code of Figure 34, statements sl and s2 may be 

executed in parallel. This parallel execution may be 

implemented by the code in Figure 35. The FORK S2,J,2 

sets J to two and begins execution of the code at S2; Sl 

also begins execution concurrently with S2. If the 

process of S2 reaches the JOIN J first, then the J will be 

decremented to one which is not zero, so that process will 

terminate; then the process from Sl will GO TO the JOIN, 

decrement the counter J from one to zero and continue by 

executing statement SJ. 

Figure 35. 

FORK S2,J,2 
Sl X = A + B 

GO TO S4 
S2 Y = M + N 
S4 JOIN J 
SJ Z = X + Y 

Parallel Implementation 
of Figure 34 Using 
Fork and Join 
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A more complicated example is given in the code of 

Figure 36. 

DO S2 I = O,N-1 
S1 A(I+1) = 2*I + 1 
S2 READ B(I+1) 

DO S7 I = 1,N 
S3 C(I) = B(I)**2 
S4 WRITE C(I) 
55 D(I) = C(I)**2 +A(I) 
S6 WRITE D(I) 
S7 WRITE A(I) 

Figure 36. Sample Code 

Since the programmer is to express his concurrency 

explicitly and wishes to maximize concurrency, it is 

appropriate for him to analyze the code in an effort to 

break it down into self-contained blocks with minimal data 

dependencies between blocks. After considering what 

activities may be done independently of the others, he 

could rewrite the code as shown in Figure 37. 



DO S1 I = O,N-1 
S1 A(I+1) = 2*I + 1 

DO S2 I = 1,N 
S2 READ B(I) 

DO S3 I = 1,N 
S3 C(I) = B(I)**2 

DO S4 I = 1,N 
S4 WRITE C(I) 

DO S5 I = l,N 
S5 D(I) = C(I)**2 + A(I) 

DO S6 I = l,N 
S6 WRITE D(I) 

DO S7 I = l,N 
S7 WRITE A(I) 

Figure 37. Code of Minimally 
Dependent Blocks. 
Assume Distinct 
I's in Each Loop 
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A data dependence analysis of the blocked code would 

show the data relationships presented in the diagram of 

Figure 38. Computation of the vector D depends on the 

previous computations of vectors A and C; computation of c 

depends on reading B; writing of vectors A, c, ~r D may 

not proceed until the vector elements are computed. 

Vector A can be computed while B is read and then c 

computed. Vectors A, c, and D can be written at the same 

time, assuming adequate output device resources are 

available. Vector A could also be written while B is read 

and C computed since those actions are independent of A. 



S1 

S7 

DO S1 I = O,N-1 DO S2 I = 1,N 

ss 

DO 

A(I+1) = 2*I + 1 S2 READ B(I) 

1 
DO S3 I = 1,N 

S3 C(I) = B(I)**2 

II 
.., ~ 

DO SS I = ,N 
D(I) = C(I)**2 + A(I) 

.. "' 
DO S4 I = 1,N 

S4 WRITE C(I) 

~ JL-

S7 I = 1,N DO S6 I = 1,N 
WRITE A(I) S6 WRITE D(I) 

Figure 38. Data Dependence of Code 
in Figure 37 
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Vector A could be written while D is computed, since the 

operations do not contradict Bernstein's condition; but, 

they should not be done concurrently since both processes 

would access vector A and contend for memory access. 

Thus, the code could be written with FORKs and JOINs 

as indicated in Figure 39. Figure 39 can be represented 

pictorially as in Figure 40. Thus, the FORK Sll,J,2 in 

the initial process indicates J is set to two, the 

execution of the current process into Block 1 is 

continued, and a new process in the execution of Block 2, 

beginning at Sll, is initiated. Blocks 1 and 2 may then 

be executed concurrently on separate processors. The JOIN 

J at statement Sl2 indicates synchronization, in that the 

process to reach statement Sl2 first decrements J to one 

and ends; the second process to reach Sl2 decrements J to 

zero and continues to execute Block 3. FORK Sl3,J,3 sets 

J to three and initiates execution beginning at statement 

Sl3, as well as continuing in line execution. FORK Sl4 

initiates execution of code beginning at line Sl4 as well 

as continuing in line execution. Thus, Blocks 4, 5, and 6 

will execute concurrently. The first to complete will 

execute JOIN J, decrement J to two, and quit; the second 

will execute JOIN J, decrement J to one, and quit; and, 

the third to complete will execute JOIN J, decrement J to 

zero, and continue execution. 



FORK 511,J,2 
/*Block 1*/ 
DO S1 I = O,N-1 

51 A(I+1) = 2*I + 1 
GO TO 512 
/*End 1*/ 

/*Block 2*/ 
511 DO 52 I = 1,N 
52 READ B(I) 

DO 53 I = 1,N 
53 C(I) = B(I)**2 

/*End 2*/ 

512 JOIN J 

/*Block 3 *I 
DO S5 I = 1,N 

55 D(I) = C(I)**2 + A(I) 
/*End 3*/ 

FORK 513,J,3 
FORK S14 
/*Block 4 */ 
DO 54 I = 1,N 

54 WRITE C(I) 
GO TO 515 
/*End 4 */ 

/*Block 5*/ 
513 DO 56 I = 1,N 
56 WRITE D(I) 

GO TO 515 
/*End 5*/ 

/*Block 6*/ 
Sl4 DO S7 I = 1,N 
S7 WRITE A(I) 

/*End 6 */ 

515 JOIN J 

Figure 39. Parallel Implementation of 
Figure 36 Using Fork and 
Join 
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II 
FORK S11,J,2 

II 
II II 

/*Block 1*/ /*Block 2*/ 
DO S1 I = O,N-1 S11 DO S2 I = 1,N 

S1 A(I+1) = 2*I + 1 S2 READ B(I) 

S4 

GO TO S12 DO S3 I = 1,N 
S3 C(I) = B(I)**2 

II 
S12 JOIN J 

II 
/*BLOCK 3*/ 
DO S5 I = 1,N 

II 

S5 D(I) = C(I)**2 + A(I) 

II 
~S13,J,3 

FORKIIS14 

II 

/*BLOCK 4 */ /*BLOCK 5 */ 
DO S4 I = 1,N S13 DO S6 I = 1,N 

WRITE C(I) S6 WRITE D(I) 
GO TO S15 GO TO S15 

/*BLOCK 6 */ 
S14 DO S7 I = 1,N 
S7 WRITE A(I) 

S15 JOIN J 

Figure 40. Flow of Control Graph of 
Code of Figure 39 
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FORK is analogous to the use of the GO TO construct 

in its effect on the point of execution. Thus, FORK/JOIN 

have fallen into disfavor as structured programming has 

gained approval. Further, use of FORK/JOIN blurs the 

distinction between statements executed sequentially and 

those that may be executed concurrently. In the example 

of Figure 39, it is not immediately obvious that vector D 

is computed alone while vectors A, c, and D are written 

concurrently. 

Some structured constructs in use are PARBEGIN/PAREND 

(or, COBEGIN/COEND) and PARFOR. PARBEGIN and PAREND 

delimit disjoint blocks of code; all of the code blocks 

set aside by the PARBEGIN/PAREND construct may be executed 

concurrently. The disjointness of the blocks implies that 

a variable X written by one block may not be read by 

another block, although all concurrent blocks may 

reference the same variable. Using the PARBEGIN/PAREND 

construct, the example program using FORK and JOIN may be 

rewritten as Figure 41. 

The PARFOR construct is analogous in construction to 

the Pascal FOR statement. Its basic construct is 

PARFOR I = l UNTIL N DO 
BEGIN 
•••• statements •.• 
END 



BEGIN· 
PARBEGIN 

BEGIN /*Block 1*/ 
DO 51 I = O,N-1 

A{I+1) = 2*I 51 
END 
BEGIN /* 

DO 
S2 

Block 2*/ 
S2 I = 1,N 
READ B(I) 

DO S3 I = 1,N 

+ 1 

S3 
END 

PAREND 

C{I) = B{I)**2 

/*BLOCK 3*/ . 
DO 55 I = 1,N 

SS D(I) = C{I)**2 + A{I) 

PARBEGIN 
BEGIN /* Block 4*/ 

DO 54 I = 1,N 
WRITE C{I) S4 

END 
BEGIN /* 

DO 
56 

END 

Block 5*/ 
56 I = 1,N 
WRITE D{I) 

BEGIN /*BLOCK 6*/ 

S7 
END 

PAREND 
END 

DO 57 I = 1,N 
WRITE A{I) 

Figure 41. Parbegin and Parend Construction 
Equivalent to the Fork and Join 
Code of Figure 39 
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The PARFOR construct implies that N concurrent processes 

will be initiated, one for each value of variable I. Each 

process is generated from one iteration of the loop body. 

An example is the multiplication of an NxN matrix, A, 

by an Nxl vector, B, giving an Nxl vector, c [41, pp. 

538]. This multiplication requires the computation of N 

inner products. The computation may be divided between 

multiple processors by spawning multiple processes for 

scheduling on the processors. If there are P processors, 

such that P divides N evenly, and S = N/P then the code of 

Figure 42 will generate P processes. Each process may be 

scheduled on a different processor for parallel execution. 

In Figure 42, if there be two processors, P = 2, and 

if N = 4, then S = 4/2 = 2. There will be two parallel 

processes generated. The first process, for I = 1, is the 

execution of the code indicated in Figure 43. This first 

process computes C(l) and C{2). The second process, for I 

= 2, is the execution of the code indicated in Figure 44. 

This second process computes C(3) and C(4). 

These examples demonstrate how the FORK/JOIN, 

PARBEGIN/PAREND and PARFOR constructs may be used to allow 

a programmer to exploit explicitly the potential 

parallelism between disjoint code blocks. Of course, not 

all processes a programmer wishes to execute in parallel 

are disjoint. Many processes need to share common data 



PARFOR I = 1 UNTIL P DO 
BEGIN 

END 

FOR J = (I - 1) * S + 1 UNTIL S * I DO 
BEGIN 

C(J) = O: 
FOR K = 1 UNTIL N DO 

C(J) = C(J) + A(J,K) * B(K): 
END 

Figure 42. Parfor for Generating P Parallel 
Processes to Calculate N Inner 
Products where s = NIP 

BEGIN 

END 

FOR J = 1 UNTIL 2 DO I* (I-1)*S+1 = 1 *I 
I* S*I=2 *I 

BEGIN 
C(J) = O: 
FOR K = 1 UNTIL N DO 

C(J) = C(J) + A(J,K) * B(K); 
END 

Figure 43. Process Code for Calculation of C(1) and 
C(2) from Figure 42 

BEGIN 

END 

FOR J = 3 UNTIL 4 DO I* (I-1)*S+1=3 *I 
I* S*I'=4 *I 

BEGIN 
C(J) = 0; 
FOR K = 1 UNTIL N DO 

C(J) = C(J) + A(J,K) * B(K); 
END 

Figure 44. Process Code for Calculation of C(3) and 
C(4) from Figure 42 
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bases. A common example of such sharing are 

producerjconsumer process pairs. Here one process writes 

what another process reads. Clearly, the consumer should 

not read a location prior to the writing of the location 

by the producer and the producer should not write over 

data that has not yet been read by the consumer. 

Different languages and architectures handle this problem 

differently. In REP's data memory, a solution to this 

problem is to flag memory as 'full' or 'empty'. 

Code that accesses a variable or data base or other 

resource that is common to two or more concurrent 

processes is called a critical section. A critical 

section must be executed only by one process at a time. 

If the concurrent processes are running on separate 

processors then a critical section must be executed by 

only one processor at a time. This requires that one 

processor must 'lock out' all other processors from access 

to the shared resource while it is accessing the common 

resource. Such an operation is called synchronization. 

Means of synchronization are discussed in section 5.1.2. 

Synchronization between two parallel processes accessing a 

common resource can be implemented using the P and V 

operations of Figure 31 as shown in Figure 45. In Figure 

45, P1 and P2 could execute in parallel except when they 

attempt to access the common resource simultaneously. For 

further reading on this topic the reader is referred to 

Calingaert (1982) [16], Chapters 4 and 8, and to Hwang and 



B~iggs (1984) [41], pages 539-541 and Chapter 8 of Hwang 

and Briggs. 

RECORD S(INTEGER COUNT: POINTER PTR; BOOLEAN MUTEX) 
S.MUTEX =TRUE /*NO.PROCESS EXECUTING P OR V*/ 

/* IS ACCESSING S.COUNT */ 
S. COUNT = t /*NO PROCESS HAS EXECUTED P OR V*/ 
S.PTR = NULL /*LIST OF PROCESSES BLOCKED ON */ 

PARBEGIN 
Pl: BEGIN 

P(S} 

/* S IS EMPTY INITIALLY*/ 

CRITICAL SECTION./*ACCESS COMMON RESOURCE*/ 
V(S) 

END 
P2: BEGIN 

P(S) 
CRITICAL SECTION./*ACCESS COMMON RESOURCE*/ 
V(S) 

END 
PAREND 

Figure 45. Use of Multiprocessor P and V 
Operations to Synchronize 
Execution of a critical 
Section by Parallel Processes 
Pl and P2 
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5.2 The Alliant FX/8 Multiprocessor 

The Alliant is the first of two multiprocessors 

surveyed in this chapter. The Alliant FX/Series is a 

multiprocessor architecture which combines up to eight 

processors in a parallel design. The FX/Series 

architecture has gained the interest of many due to its 

high performance/cost ratio. In performance comparisons 

of different computers running LINPACK [28] software in a 

FORTRAN environment the Alliant has shown itself to be a 

consistently high performer. Using the Cray-15 computer 

as a standard of 1, the Alliant FX/8 has produced 

equivalent results in 1.6 times as many time units as that 

of the Cray-15. This may be compared with the DEC VAX 

8600 which produced its results in 32 times as many time 

units as that of the Cray-15 [28]. 

The full Alliant FX/8 configuration may be pictured 

as shown in Figure 46. It is composed of eight FX/l's. 

Each FX/1 is composed of one Computational Element {CE) 

and one or two Interactive Processors (IP), eight 

megabytes of physical memory, one cache for the 

Interactive Processors, and one cache for the 

Computational Element. The user may upgrade his Alliant 

System by purchasing additional FX/1's as needed, up to a 

maximum of eight. Thus the full Alliant FX/8 architecture 

as pictured [Figure 46] has eight CEs, twelve IPs, sixty 



CONCURRENCY 
CONTROL 
BUS 

CE: 
IP: 

Figure 46. 

Computational Element 
Interactive Processor 

The Alliant FX/8 Multiprocessor 
System [3] 
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four megabytes of physical memory (it may be increased to 

eighty megabytes), two computational processor caches for 

the CEs and four caches for the IPs. The CEs are 

connected to the computational caches via a crossbar 

interconnection network. Each CE is· capable of 11.8 

million floating point operations per second (MFLOPS), 

allowing more than 94 MFLOPS on the FX/8 system when 

operating at peak performance. The CEs as a group are 

referred to as the computational complex. 

The Alliant FX architecture uses the IPs to run 

interactive user jobs; all I/O is done through the IPs. 

Concentrix, the Berkeley 4.2 Unix operating system runs in 

parallel on the IPs. The computational elements are 

scheduled by the operating system as a single resource. 

When scheduled and utilized, the CEs reduce time-to­

solution for a single application. 

The Alliant FX/8 implements parallelism at several 

levels including: 

1) Instruction pipelining in the CEs and IPs. 

2) Vector processing. Each CE contains a floating 

point pipeline for the implementation of floating point 

array calculations. Integer and logical operations are 

also allowed. 

3) Concurrent processing of distinct jobs. The IPs 

are used to service individual user jobs as in a 

distributed system. 
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4) Concurrent execution of distinct instruction 

streams for the same job. The computational complex (the 

CEs) is scheduled by the operating system as a single 

resource to be applied to the parallel execution of 

portions of a single user's program. 

It is the parallelism provided by 4) above which 

makes the Alliant FX/8 a true multiprocessor as defined in 

this chapter. This section examines the computational 

element and Alliant cache and memory system to determine 

how it implements some of these parallel techniques. The 

Alliant FX/FORTRAN parallelizing compiler is also examined 

and its concurrency applications are surveyed. 

5.2.1 The Computational Element 

The computational elements are the heart of the 

Alliant multiprocessor system. Each CE is a 

microprogrammed computer with pipelined data and control 

paths. The basic CE instruction set modes include the 

following: 

1) concurrency instructions such as test-and-set and 

wait-and-start (stops and starts the CEs) • 

2) vector processing instructions which allow 

logical, integer, and floating point operations on vector 

registers which may hold up to 32 elements each. The 

vector operations include register-to-memory operations, 

comparisons and logical operations on operands in vector 

registers, reduction functions such as summing the 



elements of a vector, and vector-vector, scalar-vector 

arithmetic operations. 

3) IEEE floating point instructions. 

4) scalar instructions. 

The CE supported data types are 32 and 64 bit 

floating point; a, 16,and 32 bit integer; BCD; and bit. 
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The CE has four main functional systems [Figure 47]. 

The first is a pipelined instruction unit. The stages of 

the instruction pipeline are as follows: 

1) The current or logical instruction cache holds 

the current instruction stream. When an instruction fetch 

'misses' this immediate cache, the cache controller 

initiates a load from the computational cache through the 

interconnection network and CE switch. Each instruction 

in the stream is piped in se~ence from the logical 

instruction cache to the control section. 

2) The control section consists of an instruction 

parser, microsequencer, and RAM-based control store. The 

instruction parser receives the opcodes from the data path 

and decodes them to generate control store microaddresses. 

The parser also stores the instruction fields of the 

opcodes that are in the pipe and checks for dependencies 

between instructions that are in various stages of 

execution within the pipe. Having thus checked for 

hazards, it prevents a new instruction from starting when 

a hazard exists. The parser also contains a branch 

prediction unit that anticipates the most likely flow of 
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control and prefetches instructions from the predicted 

side of the branch. As is observed in the study of 

pipelines in Chapter 4, this is a common technique used to 

help maintain a full pipeline and the highest possible 

performance. The microsequencer and control store are 

responsible for issuing the control words to drive the 

system. The next stage of the pipe is the instruction 

processor. 

3) The instruction processor consists of the address 

unit and the integer/logic unit. 

The address unit contains the instruction buffer, or 

current instruction register. The instruction buffer 

latches the output of the instruction cache. Immediate 

operands, immediate addresses, and displacements are 

accessed from the instruction buffer. This unit contains 

the circuitry and registers for implementing the various 

addressing modes. The program counter also resides here. 

The integer/logic unit contains an Arithmetic/Logic 

un~t, full barrel shifter, eight data registers and four 

temporary registers. Simple integer scalar operations and 

shifts are executed here. 

When an instruction requires a memory access, the 

address computed by the address unit is passed to the 

address translation unit. 

4) The address translation unit performs logical-to­

physical address translation on memory addresses passed to 

it from the address unit. The address translation unit 
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includes a translation cache which stores recently 

computed address translations; thus, when the same address 

is used repeatedly in close proximity in the instruction 

stream, recalculation is not necessary. The translated 

address is passed out through the address port to the 

interconnection network and the computational caches. 

5) Data fetched from the computational caches is 

routed to the CE switch. There it is routed by the CE to 

the appropriate functional unit for execution. The 

executing functional units available are the integer/logic 

unit of the instruction processor and the pipelined vector 

and floating point unit. 

The second main functional system of the CE is the 

pipelined vector and floating point unit. It is here that 

floating point data and vectors are processed. Each CE 

contains several register sets to handle floating point 

and vector operations. Use of these registers minimize 

cache and memory references. There are eight 32/64-bit 

(single or double precision) floating point registers. 

Additionally, there are eight vector registers; each 

contains thirty-two 64-bit wide components. Each 

component in the vector register may hold a single or 

double precision floating point number or a 32-bit integer 

number. When the microsequencer indicates, the values in 

the components are pipelined through the CE switch and 

through the floating point or integer arithmetic/logic 

unit based on the data type held in the vector register. 
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Three additional registers aid in the processing of 

the data in the vector registers. Data register 4 (d4), 

the length register, holds a value from 1 to 32 (or, 0 to 

31) which indicates the length of the current vector 

stored in a given vector register. Vectors of lengths 

longer than 32 are processed iteratively in a programming 

loop, 32 elements at a time~ For example, a vector of 

length 67 would be processed by completely loading a 

vector register and piping it through with register d4 

holding 32. This action would be repeated a second time. 

And finally, the vector register would be loaded with 3 

elements, register d4 with the value three, and the last 

three elements of the vector would be piped through the 

pipe. 

Data register 5 (d5), the increment register, may be 

used to specify the stride between vector elements. For 

example a value of two in d5 will allow ·the processing of 

every other element in a vector. 

Data register 6 (d6), the mask register, allows the 

specifying of any pattern of elements for processing in a 

vector register. 

The third main functional system in the CE is the CE 

switch. This module operates in the instruction unit and 

the pipelined vector and floating point unit. The CE 

switch acts as a data interface between the main memory 

and computational caches and the various modules of the CE 

which require data or instructions. 
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The fourth main functional system in the CE is the 

concurrency control unit. This functional system is a 

very important part of the CE as it relates to the 

multiprocessor environment. Each concurrency unit is 

connected to the other CEs in the multiprocessor via a 

concurrency control bus [Figures 46 and 47]. The 

concurrency instructions of the Alliant instruction set 

are executed here in the concurrency control unit. One CE 

may signal another to start, wait, resume, or suspend 

execution. These communications are carried over the 

concurrency control bus independent of program data and 

instruction paths. This hardware concurrency control 

allows from one to eight CEs to execute on a single 

program, and provides for the allocation and 

synchronization of the CEs. 

5.2.2 Alliant Cache and Memory Systems 

Having examined in some detail the various elements 

of the CE, this section presents the relationship of the 

CEs and the computational caches and the global memory. 

The Alliant cache and memory system service the multiple 

CEs and IPs of the multiprocessor. There is one large 

global interleaved memory which services all of the 

processors. The FX/8 has eight a-megabyte modules and 

each module is four-way interleaved. 

The main memory is accessed via a high speed, 

synchronous bus that consists of two 72-bit-wide 
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bidirectional data paths, a 28-bit address bus, and a 

control bus. The data bus is driven by memory modules, 

computational caches, and the IP caches. The memory bus 

has an 85 nanosecond cycle time and can sustain a 

bandwidth of 188 megabytes per second when performing 

sequential reads from memory. It can sustain 150 

megabytes per second when performing sequential writes. 

The address bus has twice the bandwidth needed to maintain 

the data buses at top utilization. The memory bus 

supplies the computational and .interactive processor 

caches with their required data. The CEs, computational 

caches, and memory bus are configured as in Figure 48. 

The FX/8 computational cache is composed of two cache 

modules, totaling 128 kilobytes. Each module is a two­

way interleaved cache, thus the full cache functions as a 

four-way interleaved cache. This computational processor 

cache is connected to the computational complex via a 

crossbar interconnect that dynamically connects the eight 

CEs with the four cache ports. The cache and 

interconnection network provide a peak bandwidth to and 

from the computational complex of 376 megabytes per 

second. 

All processors in the Alliant system, CEs and IPs, 

share a common view of global memory regardless of the 

cache from which the processor is reading. For example, 
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suppose the computational complex has been scheduled to 

execute concurrently the iterations of a given FORTRAN DO­

loop. Having completed execution of the loop, the process 

is 'stopped' on the computational complex and 'resumed' on 

an IP for execution of the nonparallel portion of the 

process. Alliant cache coherency guarantees that the IP 

will have access to the most up-to-date copy of the data 

when the process is resumed. The cache coherency, common 

view of global memory, and a minimization of memory bus 

traffic is maintained by a hardware implementation of a 

memory-to-cache paging policy termed a write-back policy. 

On a uniprocessor with only one logical cache, a write­

back policy implies waiting until a page has to be 

replaced in the cache before writing the page back to main 

memory [7, p. 314, 319]. However, in a multicache system 

such as that of the Alliant, this may not be adequate to 

maintain coherency. In the example above, suppose the 

results of the DO-lopp are in the computational processor 

cache when the process is stopped. If its page is not 

replaced, the current results of the process will not be 

in memory for loading into the IP cache. The Alliant 

overcomes this problem by implementing an additional 

strategy to that of simple write-back. In each Alliant 

cache there is a hardware monitor. Each cache monitors 

the memory address bus; when a cache monitor detects that 

a request is being made by a second cache for an up-dated 

page held by the first, then the first cache intercepts 



the request and transmits a copy of the page over the 

memory bus to both the requesting cache and main memory 

[Figure 49]. This hardware implementation of the write-
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back policy reduces traffic on the memory bus by 

minimizing the number of cache to memory writes. Further, 

the writes are in blocks or pages, allowing full 

utilization of the 150 megabyte per second sequential 

write access available in the memory modules. 
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As discussed in earlier sections, multiprocessors 

with global memories must deal with memory contention 

problems. This problem is a primary cause of inefficiency 

in many parallel systems. In the study of this subject in 

Section 5.1.1 of this text, the possibility of increasing 

the number of interleaved memories is identified as one 

aid in decreasing the frequency of memory contention. 

However, it is observed that the increase in memory 

modules raises the cost and lowers the efficiency of the 

interconnection network. Another technique is to provide 

private caches with each processor. However, the issues 

of cache coherence imply some data cannot be kept in the 

cache or else data modified in one cache must be passed 

through global memory to update common data held in 

another cache. Either practice can increase the time for 

completing access of the required data. The Alliant 

memory system designers moved the interconnection network 

so that it interfaces between the CEs and the 

computational processor cache; the cache is connected to 

the global memory via the bus. 

The purpose of this arrangement is to keep speed 

performance as high as possible while keeping cost down. 

By maintaining a large sized computational processor cache 

with limited ports, four in this case, the interconnection 

network complexity and cost can be limited. With only a 

four-by-eight interconnection network, cache bank 

contention will occur, but the cycle time for cache memory 
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is much less than that for main memory, thus conflicts 

arising from more than one processor attempting to read 

from the same cache will be resolved relatively quickly. 

Since all CEs have access to the same code and data in the 

computational cache, the problem of coherence between 

private caches is eliminated for the computational 

complex; traffic on the memory bus is reduced. When the 

computational complex is busy multiprocessing the 

iterations of a loop, the data generated by one CE from 

one iteration is immediately available for processing in 

the next iteration by another CE; again, traffic on the 

memory bus is minimized. 

5.2.3 Concurrency and the Alliant 

FX/FORTRAN Compiler 

This section discusses the general philosophy of the 

Alliant concurrency, and how it is applied in the Alliant 

system. The ways that the system supplies parallelism to 

the programmer is discussed as some FX/FORTRAN programming 

constructs are presented; and how the constructs are 

parallelized by the FX/FORTRAN compiler is reviewed. 

The Alliant philosophy is based on the premise that a 

very small percentage of a program generally accounts for 

most of its running time. That small percentage of a 

program, the Alliant designers decided, is the execution 

of loops and advanced array operations, such as A = B, 
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where A and B are arrays. The idea determined by these 

designers was to develop a compiler that could recognize 

loops and array operations, analyze the data dependencies 

that exist within the constructs, and ascertain what code 

blocks could be executed in parallel. Additionally, they 

determined to build a fast multiprocessor in which these 

types of operations could be executed in parallel under 

the control of instructions placed in the compiled code by 

the compiler itself. 

Thus, Alliant concurrency uses the program loop as 

the instruction stream to be executed in parallel. During 

compilation the FX/FORTRAN compiler identifies those 

sections of code which may be vectorized and generates 

vector instructions for them. It determines the loops 

that may be executed concurrently on multiple CEs and 

generates the start, wait, resume or suspend instructions 

in the code to initiate execution and implement any needed 

synchronization. Remember that these instructions are 

executed in the concurrency control unit of the CEs and 

transmitted on the concurrency control bus linking all of 

the CEs. 

As an example of the parallelizing of a loop, 

consider the following example. 

N = 6 
F(l) = 10.0 
DO 12 I = 1 , N 
Xl = A(I) 
X2 = 10.0 + Xl * 2.3 

12 F(I+l) = F(I) + X2 
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This do-loop contains a common data dependency between 

iterations of a loop. A value computed in the current 

iteration is used in the next iteration. F(2) = F(l} + X2 

and F(3) = F(2) + X2 of iterations 1 and 2, respectively, 

may not be executed concurrently as the second statement 

depends on the result of the first. The FX/FORTRAN can 

detect these statements' dependency and generate wait and 

resume instructions which will synchronize these 

statements appropriately so that no F(I+l} computation 

will be attempted until the corresponding F(I) has been 

computed and stored in the computational cache. suppose 

the loop is to be executed in parallel by three CEs, then 

the concurrent execution of the iterations of the loop may 

be illustrated as in Figure 50. 
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In this example, processors CE1, CE2, and CE3 each 

begin concurrent execution of iterations 1, 2, and 3. As 

CE2 and CE3 each reach their data dependent statement, 

they wait until the value they require has been stored. 

As soon as their awaited value has been stored by the 

generating processor, then they resume execution. From 

this point forward, each processor may begin the next 

appropriate iteration as soon as it has finished the 

previous one. The process continues until all iterations 

are complete. In this example, with six iterations, it 

requires eight time steps to compute the six iterations, 

while on a uniprocessor, it would have required at least 

eighteen time steps. As the number of iterations 

increase, the time expended during the first few 

iterations to synchronize the loops will be negligible. 

The FX/FORTRAN compiler is an extended ANSI standard 

Fortran-77 compiler that also contains most of the VAX/VMS 

Fortran extensions. It also has language extensions to 

allow assignment and other operations on full arrays. The 

FX/FORTRAN in conjunction with the Alliant FX/8 is 

designed to perform five modes of execution. They are the 

following: 

1) scalar. Operations are performed serially. If 

the instruction parser of the CE detects no data 

dependencies from one instruction to the next, the 

instructions are pipelined through the processor. The 

FX/FORTRAN compiler orders instructions in the object 
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code to take advantage of this processor aspect whenever 

possible. 

The following are scalar operations. 

A(l) = 5 

X = X + 1.0 

2) vector. The FX/FORTRAN compiler generates vector 

instructions to utilize the 32 64-bit element registers in 

the CE whenever simple assignments or operations are made 

to an array. 

The following equivalent constructs could result in 

the generation of vector instructions to execute upon the 

32 element registers in the vector unit of one CE. 

DO 12 I = 1,32 OR A(l:32) = B(l:32) 
12 A(I) = B(I) 

3) scalar concurrent. This mode implies that scalar 

operations are performed by two or more CEs concurrently. 

The example of Figure 50 is an example of scalar 

concurrent. Each reference to an individual array element 

is handled as a scalar operation as also are the 

references to non-dimensional variables Xl and X2. 

4) vector concurrent. Vector concurrent implies 

that vector instructions are generated and these are 

executed concurrently on more than one CE at a time. 

An example of code which could be optimized as vector 

concurrent are the following two equivalent constructs. 

Elements 1 through 32 of the array could be processed in 
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vector mode on CE1, elements 33-64 on CE2, elements 65-96 

on CE3, and elements 97-100 on CE4. 

DO 12 I = 1,100 
12 A(I) = A(I) + 5 

OR 

A(1:100) = A(1:100) + 5 

5) concurrent-outer-vector-inner. Where the loops 

are nested, FX/FORTRAN will attempt to run the outermost 

loop concurrently while vectorizing the innermost loop. 

In the following equivalent constructs, the 

operations on the elements of each column of matrix A 

would be vectorized while the processing of each distinct 

column would be distributed for concurrent execution over 

the available CEs. 

DO 12 J = 1,8 
DO 11 I = 1,100 

11 A(I,J) = A(I,J) + 5 
12 CONTINUE 

OR 

DO 11 J = 1,8 
11 A(1:100,J) = A(1:100,J) 

OR 

A(1:100,1:8) = A(1:100,1:8) + 5 

Within a given loop or array operation, the 

FX/FORTRAN compiler supplies the programmer with the full 

scope of optimization available on the Alliant FX/8 
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architecture. Thus, the programmer may purchase a 

multiprocessor and run Fortran programs with the problems 

of data dependence, synchronization, and execution 

scheduling determined by the compiler and operating 

system. Here is a very nice turn-key multiprocessor which 

delivers high performance with very little start-up time 

required from the user. 

The next section discusses a very different 

multiprocessor, bas~d on both a message passing 

interprocessor communication system and multiple 

processors, each with its own local memory. 

5.3 The Cosmic Cube 

This section is a study of the Cosmic Cube 

multiprocessor. It is a multiprocessor in which each 

processor is a computer module with its own local memory. 

The computer modules are connected by a pattern of 

channels over which message packets are transferred. 

These messages provide the interprocessor communication of 

the system. These concepts are discussed in general in 

sections 5.1.1 and 5.1.2. 

The Cosmic Cube's communication links are configured 

in a manner equivalent topologically to a multidimensional 

cube- a hypercube [Figure 29]. This processor connection 

topology has gained a great deal of popularity in the 

design of parallel systems [59]. The next section of this 

text is a study of the hypercube topology. After 



considering the hypercube topology, the Cosmic Cube's 

application of that topology is presented. Finally, the 

Intel Personal Supercomputer, iPSC, the offspring of the 

Cosmic Cube is surveyed very briefly. 

5.3.1 Hypercube Topology 
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The hypercube is a binary n-cube, also referred to as 

a binary hypercube or boolean hypercube. A binary n-cube 

may be described in one of several ways. 

Intuitively, the 3-cube or 3 dimensional cube is the 

familiar cube. Higher-dimensioned cubes are built from 

this basic structure. The "dimension" in these higher­

dimensions is n, where 2n = N and N is the number of 

vertices in the cube. Thus, a cube with 16 vertices would 

be a 4 dimensional cube or 4-cube since 24 is equal to 16; 

and a 5-cube would have 25 = 32 vertices. Each vertex in 

a cube may be referred to as a node. In a multiprocessor 

with a hypercube message-transfer system, each node 

represents a computer module. Each node in an n-cube is 

attached to its n nearest neighbors. 

Also, a hypercube may be described recursively; the 

n-cube that is used to connect 2n = N-nodes is assembled 

from two (n-1)-cubes, with corresponding nodes connected 

by an additional channel [95]. This property clearly 

identifies one of the benefits of the hypercube; it offers 

users of such systems an option to expand to larger 

systems as need arises. Other architectures, especially 
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they can be expanded. 
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A final hypercube description will be based on graph 

theory. This description is helpful in understanding some 

relevant topological properties of the hypercube. 

Let N = 2n and let <N> = {O,l,2, ••• ,N-l}. Ann-cube 

with N nodes may be described as a graph G = (V,E), 

where V = <N> = {O,l,2, ••• ,N-l} in binary; and E is the 

set of edges incident upon vertices that differ by exactly 

one bit in their labels [Figure 51]. 

For example, if N = 4, then the vertices of the cube 

may be labelled oo, 01, 10, 11 (base 2) [Figure 51]. The 

edges of the graph are (00,01), (01;11), (11,10), and 

(10,00). 

A number of standard topologies such as linear 

arrays, rings, and 2 dimensional mesh can be embedded into 

the binary n-cube. 

For example, Figure 52 shows the embedding of an 8 

node linear array in a 3-cube. Figure 53 shows the 

embedding of a 16 node ring into a 4-cube. Figure 54 

shows the embedding of a 16 node near neighbor mesh on a 

4-cube. 
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A large amount of research activity in concurrent 

architectures has centered on interconnect structures. 

Various structures such as linear arrays, rings, meshes, 

and others have been considered [30]. The hypercube 

topology is flexible enough to simulate these structures. 

Researchers interested in studying the properties of these 

different interconnect structures may find a computer 

based on the hypercube topology helpful in their studies. 

A specific implementation of a hypercube based 

multiprocessor is presented in the next section. 

5.3.2 The Cosmic Cube Multiprocessor 

and its Offspring, the iPSC 

Two well known machines have been built using the 

hypercube topology as the basis for their interconnect 

system. The first was built at the California Institute 

of Technology, under the primary direction of c. L. Seitz 

and G. c. Fox [70][95]. The California Institute of 

Technology machine is known by several names, including 

the Nearest Neighbor Concurrent Processor (NNCP), 

Hypercube, Homogeneous machine, and the Cosmic Cube (95]. 

The second is the Intel Personal Supercomputer or 

iPSC. It is based on the hypercube interconnection scheme 

developed by Seitz and Fox at California Institute of 

Technology. After licensing the concept from California 

Institute of Technology, Intel developed the iPSC. 



Consequently the fundamental architectural attributes of 

the Cosmic Cube and the iPSC are very similar [22]. 

169 

5.3.2.1 The Cosmic Cube. The Cosmic Cube is based 

upon a 64 node 6-cube hypercube topology. It has a 

computer module at each of its hypercube vertices. Each 

computer module is composed of an Intel 8086/8087 

microprocessor chip, 128 kilobytes of dynamic RAM with 

parity checking, and 8 kilobytes of ROM for 

initialization, bootstrap loader, RAM refresh, and dynamic 

testing programs. Additionally, each computer module has 

7 channels total; one for each connection to an adjacent 

node in the hypercube (there are 6), and one additional 

channel for connection to a cube manager or intermediate 

host. Each channel is asynchronous, full-duplex, and 

includes queue storage for a 64-bit hardware packet. The 

queue is present in each direction in order to decouple 

the sending and receiving program executions. The channel 

to the intermediate host is for program and data loading 

and communication with the "outside world" [70][95]. 

Each node or computer module executes its own local 

copy of the operating system. This operating system 

allows multiprogramming and timeslicing in a round robin 

fashion. Thus, in any given time period, each node may be 

context switching between the operating system and one or 

more user programs. 
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The Cosmic Cube architecture is said to be a proven 

one for computationally intensive problems from the 

natural sciences which enjoy the property of physical or 

logical partitionability [95]. Whatever the application, 

it is the programmer's responsibility to formulate and 

express an algorithm or job explicitly in terms of a 

collection of communicating subprogram executions. The 

programmer is also required to determine and control the 

appropriate assignments of each subprogram to a computer 

module or node in order to achieve the desired concurrency 

and load balancing. This allows a lot of freedom and 

control over the program's activities but it also allows a 

lot of room for programmer error. 

Compilers for the languages FORTRAN, Pascal, and c 

exist for the system. These languages have been extended 

with external procedures which implement the sending and 

receiving of messages. The programs are compiled on other 

computers such as a VAX host which is attached to the 

intermediate host or cube manager mentioned earlier. The 

job's subprograms, as binary code, data, and stack 

segments, are routed from the VAX to the intermediate host 

and from the intermediate host to each node as determined 

appropriate by the programmer. Each subprogram assigned 

to a node runs independently of the subprograms running in 

other nodes except for the receiving and sending of 

messages over the channels which comprise the message 

transfer system. 
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The external message-send/receive procedures which 

extend the languages of the system are devised so that 

they must be called by the programmer when data or control 

information is to pass from one executing subprogram to 

another. For an executing subprogram to send a message, 

the "SEND" library routine is called and passed the 

necessary parameters; these include the IDs of both the 

sending and the receiving executing subprograms (each one 

is assigned an ID by the local resident operating system), 

the addresses of the nodes to and from which the message 

is being sent (these addresses would be analogous to the 

binary numbers discussed earlier in the context of the 

hypercube topology), and the data itself. This 

information is packaged in a "packet" along with some 

control information and transmitted out along a channel. 

If there are intervening nodes, the local operating 

systems of those intervening nodes retransmit the packet. 

The node addresses are used by the operating systems to 

determine the best channel over which to transmit. To 

receive a message, the subprogram which awaits the packet 

must invoke a "RECV" procedure with the appropriate 

parameters. When the packet arrives, the operating system 

picks it up from the channel queue and passes it to the 

named subprogram which executed the "RECV". 

5.3.2.2 The iPse. Intel's iPSC is similar to the 

Cosmic cube in many ways. The technology upon which it is 
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built is more advanced. Each computer module in the 

hypercube is based on the 80286/80287 microprocessor chip. 

The RAM memory has been boosted from the 128 kilobytes of 

the Cosmic Cube to 512 kilobytes. Each node has 8 

channels; each channel is controlled by an 82586 LAN 

coprocessor. This allows considerable leeway in the 

dimension of the hypercube. The Intel iPSC may be 

configured as a 5, 6, or 7-cube, depending on the needs 

and financial standing of the purchaser [44]. The 8-th 

channel is a global Ethernet channel which provides direct 

access to and from the cube manager (a system 80286/310) 

for program loading, data I/0, and diagnostics [44][59]. 

In Intel's latest configuration, the iPSC-VX, each 

node has a vector coprocessor that occupies the slot 

adjacent to the processor in the system. A private iLBX 

bus connects the two boards in a tightly coupled, shared­

memory interface that maximizes system efficiency but is 

transparent to the user. It is reported that this brings 

the peak performance of the iPSC-VX/d4, a 16 node 4-cube, 

to approximately 106 MFLOPS [59]. 

The Cosmic Cube and iPSC offer the user a 

multiprocessor architecture which provides a great degree 

of concurrency and high rate of performance. However, the 

programmer must perform his own program partitioning and 

synchronization steps while attempting to minimize the 

path length for message passing; and, to keep 64 

processors (or up to 128 on the iPSC) coordinated and 
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working at a high rate of efficiency or utilization may 

well require quite a lot of ingenuity on the part of the 

programmer. Nevertheless, if the programmer is up to the 

challenge,_computationally intensive problems can receive 

rapid service from such a system. 

5.4. Summary 

This chapter introduces multiprocessors. A 

multiprocessor affords a programmer with a computer system 

that allows him to exploit parallelism between blocks of 

program code which contain no data dependencies. It 

reduces the time to solve a single application. The 

multiprocessor accomplishes the endeavor by the 

distribution of the independent code blocks of the single 

job over multiple CPUs. Each processor executes a 

different code block; each instruction set executing on 

its own data. In this way, the multiprocessor provides an 

MIMD architecture and improved turnaround time for the 

user. 

Various issues of multiprocessor design are discussed 

including those of memory, interprocess communication, 

operating systems, and exploitation of parallelism. 

Finally, this chapter presents two different types of 

multiprocessors. The tightly coupled, global memory, 

Alliant FX/8 and the loosely coupled, local memory, Cosmic 

Cube are examined. Also, the Intel iPSC, the offspring of 

the Cosmic Cube is reviewed briefly. 



CHAPTER VI 

DATA FLOW COMPUTERS: THE DENNIS STATIC 

DATA FLOW MACHINE AND THE 

MANCHESTER DYNAMIC DATA 

FLOW MACHINE 

6.0 An Introduction to Data Flow 

The need for faster computations, shorter turnaround 

times, and greater system throughput has generated a great 

deal of activity directed toward creating von Neumann 

machines which operate faster. In the preceding chapters, 

architectures that extend the von Neumann architecture to 

allow the exploitation of parallelism in various ways are 

presented. This chapter introduces an architectural 

approach that is totally different from any of the ones 

studied in the prior chapters. It is that of data flow 

computers, a non-von Neumann architecture. After 

exploring the general aspects of the data flow machine, 

two significant computers that implement the data flow 

architecture are reviewed. The first is the Static Data 

Flow Machine built by Jack Dennis and his associates at 

Massachusetts Institute of Technology. The second is the 

Manchester Data Flow Computer built by researchers at the 
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University of Manchester, England; the principal workers 

being John R. Gurd, c.c. Kirkham, and Ian Watson. 
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The von Neumann architecture implies the program is 

loaded sequentially into main memory and program execution 

is under the control of a program counter. The von 

Neumann architecture is that of control flow. The data 

flow concept of computer operation is that an instruction 

executes as soon as all of its operands are available 

[80]. 

In a multiprocessor with global memory, it is 

possible for the processors to have race conditions while 

updating a memory cell. In such a situation, two 

processors may try to write to the same location, a write­

write race. A similar problem is that of the read-before­

write race. When producer and consumer processes share 

data cells and execute concurrently, the consumer may read 

the shared location before the producer has written to it. 

Synchronization must be accomplished by test-and-set, 

semaphores, or message-based primitives. Such 

synchronization can incur considerable overhead that 

degrades the overall benefits of the parallel approach 

[5]. 

The race problems described are inherent to the 

shared data cell concept; it is inherent to functions that 

have call-by-reference parameter passing, that is, the 

function has the address of its parameter, not its value. 

Two functions that pass parameters by reference and share 
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common updatable parameters (by one function or the other) 

cannot execute concurrent processes successfully without 

synchronization. On the other hand, consider a function, 

F, with no globally defined variables that employs call­

by-value parameter passing, that is, it has its own 

individual copy of its input parameters. If F returns a 

distinct value to any function that requires its returned 

value, then function F can execute concurrently with any 

other such function that does not pass it a parameter and 

to whom it does not return a value. Function F cannot 

have a race condition with any such functions as there are 

no data dependencies between them. 

These observations may lead to an understanding of 

the data flow architecture. At the machine level, one can 

think of each individual machine instruction as a small 

function. Under the von Neumann architectural approach, 

each machine instruction's operand (parameter) is 

established by the address of the data cell where the 

actual value resides. Thus, the von Neumann instruction 

is a small function with pass by reference parameters. It 

is desired to establish a parallel computer architecture 

with multiple processing units that allows concurrent 

execution of these small functions. Machine level 

synchronization techniques such as FORK and JOIN may be 

used to specify explicitly single instructions to be 

executed concurrently. However, the number of these 

functions (instructions) which could execute concurrently 



are limited by data dependencies and the resulting race 

conditions. 
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However, if an architecture is developed that allows 

each function (instruction) to pass parameters (operands) 

by value, each instruction will have its own individual 

copies of the operands. Since each function will then be 

free from any synchronization constraints, it can be 

assigned a processing unit as soon as its parameters are 

available. A copy of its result, or returned value, is 

awaited by the functions (instructions) that use that 

value. They, in turn, begin execution as soon as they 

have received all their parameters (operands). This 

implies that the instructions can execute asynchronously, 

without the control of a program counter; and concurrently 

'with any instructions that do not supply their operand 

values and do not await their returned results. Ordering 

of instructions is based on data dependencies within a 

program. This computer architecture is currently 

implemented by several groups of computer designers around 

the world; it is referred to as a data flow or data­

driven architecture since the availability of data values 

determines the execution sequencing of the instructions. 



6.1 An Introduction to the 

Data Flow Graph 

Data flow concepts first emerged in the 1960's. 
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Writing compilers for standard serial programs, compiler 

writers used data flow graphs to do performance 

optimization. A data flow graph is a directed graph in 

which the vertices represent primitive functions such as 

addition or subtraction and the edges represent data 

dependencies between functions. By the 1970's, it was 

realized that if such a graph could be executed directly 

by a computer architecture, then the parallelism in a 

given algorithm would be exploited greatly. In a data 

flow architectural environment, data flow programs are 

represented by such directed graphs. Each primitive 

function is represented by an activity template [Figure 

55]. Each such template is very closely related to the 

actual machine instructions used in prototype data flow 

computers. Each activity template is understood to 

contain fields for holding the operands' values, or 

tokens, when they arrive. This is call-by-value parameter 

passing. Additionally, each instruction contains the 

addresses, or destinations, of the instructions awaiting 

copies of the result value returned by the current 

instruction's execution. The edges on the graph indicate 

the logical paths along which the result will be 

forwarded. Thus, tokens move along the directed edges of 
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the graph. As it moves along such an edge, each token 

carries not only the operand value but also the "name" of 

its destination instruction; it may carry other 

information as well as will be discussed later in the 

context of dynamic tagged systems. Each template may 

execute, or fire, according to its firing rules.· The 

fundamental firing rule of any data flow system is that 

each template may only fire when all its operands are 

present. A template which meets its firing conditions is 

said to be enabled. 

opcode operand operand destination(s) 
value value of result 

Figure 55. Activity Template 

For example, a program may have the following 

computations. 

Z = V * (X + y) - X * ( U + W) 

This program segment is represented by the data flow graph 

of Figure 56. If the additions received their operand 

values during the same time interval, each addition would 

be enabled. Each could be assigned a processing unit and 
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executed, or fired. Thus, their execution could occur 

during the same time period. 

z 

Figure 56. Data flow graph for 
z = v * (x + y) - x * (u + w) 

Any two enabled operations can be fired in any·order 

or concurrently. In Figure 56, when the sum of x and y is 

available, it can be stored in the multiply instruction 

template where the value of v had been copied; similarly, 

the sum of u and w can be stored in its prescribed 

activity template with the value of x. Each multiply can 
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begin execution on a free processor as soon as its operand 

values are in place and the multiplies can proceed 

concurrently. Each multiply instruction result is routed 

to the subtraction template, triggering _upon their arrival 

the execution of the subtraction operation upon a free 

processor. The final result is routed to any instruction 

requiring the z value or to output. 

If the computation of z is done for a series of 

distinct ui, Vi, wi, Xi, and Yi, i = 1,2,3, •• ,n, values 

then the values can be pipelined through the data flow 

graph. Thus, as soon as x1 + y1 and u1 + w1 are computed, 

their results are passed to the multiplies. The add 

operations can begin again when x2 and y2 arrive at their 

add, and similarly for u2 and w2 • This allows multiple 

levels of parallel exploitations. Figure 57 demonstrates 

an alternative pictorial representation of Figure 56 in 

which square nodes represent the ·activity templates. 

Figure 57 demonstrates the same graph with pipelined 

computation. The darkened squares represent the tokens 

with their values written beside them as they flow through 

the graph. 

The lack of data dependency between the addition 

operators, and also between the multiply operators, in the 

example graph is sometimes called horizontal, or spatial, 

concurrency. This contrasts with the temporal concurrency 

of the pipeline [19]. 



v 
3 • 
2 • 

X 
6 • 
4 • * 2 • 3 

z 

X 
6 • 
4 • 

u 
2 • 
1 • 

w 
• 1 
• 5 

Figure 57.a. Values ready to enter the graph for 
computation. First expression 
evaluated is 2*(3 + 4) - 4*(1 + 5). 
Second expression is 
3* (2 + 6) - 6* (2 + 1). 

v 

3 ~ 
X 

6 ~ 
X 

6 ~ 
u 

2 ~ 
w 

~ 1 
2 4 • 

z 

Figure 57.b. Addition template fires with values from 
first expression. 
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v X X u w 

6 

z 

Figure 57.c. Multiply templates fire with values from 
first expression. Add templates fire 
with values from second expression . 

v X X . u w 

z 

Figure 57.d. Subtraction template fires with result 
first expression giving (-10). 
Multiply templates fire with values 
from second expression. 
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v X 

~ -10 
I 
z 

X u w 

Figure 57.e. Subtraction template fires with values 
from second expression giving a 
result of 6. 
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6.2 The Static Data Flow Approach and 

the Dynamic Data Flow Approach 

to Activity Template Firing 

and Program Graphs 
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As values are piped into the data flow graph pipeline 

there is a problem of matching the rate of a producer 

template to that of a consumer template. For example, in 

the graph of Figure 57, the time required to produce the 

sum of x2 and y2 may be less than that of computing the 

product of v1 and {x1 + y1). Thus, the addition template 

may be ready to fire (execute) based on its operand 

availability before the multiply has completed processing 

its current operand values and is ready to receive a new 

operand. The destination of the addition template's 

output token would not be ready to accept a new value. 

Control of the values or tokens passing through the data 

flow graph pipeline is a design issue which has been 

handled in various ways. 

The two most common techniques are termed static and 

dynamic. This section investigates the fundamental 

concepts of these two approaches. In the static approach, 

use of the data flow graph is limited by allowing only one 

token to reside on each edge at any time. The firing rule 

is rewritten so that an operation is enabled only when: 

1) its input tokens or operands are available and 
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2) no tokens exist on its output arc. That is, its 

last output value has been processed by its awaiting 

operation. The destination instruction is ready to 

receive a new operand value. 

This implies sequential pipelined use of the data 

flow graph. Such pipelining is implemented by use of 

acknowledge signals that are returned to the producer 

templates by the consumer templates when they are ready to 

receive a new token. No template can fire unless it has 

received its acknowledge or control token. These 

acknowledge signals effectively double the number of edges 

in the data flow graph. Additionally, as in any such 

pipeline, the speed of the slowest stage determines the 

overall throughput for the pipeline. Thus the slowest 

executing template would determine the output rate of the 

graph. 

In the dynamic approach, each operation may fire when 

all input tokens are available and multiple tokens may 

appear on output arcs. Thus, the dynamic approach 

maintains the fundamental firing rule. However, tokens 

carry with them a tag. The tag may also be called a label 

or color. These tags identify the order of the tokens on 

the input arc to the consuming template. The tokens are 

consumed according to the order implied by the tags. No 

control or acknowledge tokens are required. Instead, 

additional time and hardware is needed to attach labels to 
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tokens, and match like tagged tokens for consumption [41, 

p. 755]. 

Both of these approaches have been investigated and 

implemented by researchers at various locations. Dennis's 

static machine and the Manchester machine are 

implementations of these two approaches and are discussed 

later in this paper. 

6.3 Looping with a Data Flow Graph 

The data flow graph example of Figure 57 described a 

straight line computation. However, few programs of 

interest can be written without conditional looping. 

Looping strategies, or iteration~ can be represented 

through cyclic data flow graphs. Additional activity 

templates other than the simple arithmetic ones must be 

included in the implied instruction set in order to 

achieve selective routing of data tokens among the 

operations. Such templates of primary usage are displayed 

pictorially in Figure 58. An important distinction 

between these operations and the simple arithmetic 

operations discussed earlier is that they include as their 

operands not only data values but also controlling boolean 

values. They may be described as [19, 41, p. 742]: 



DUP T-Gate F-Gate 

switch Merge Decider 

Literal Operator 

Data Link--------~? Control Link------~~~ 

Figure 58. Operators or Nodes for a Data 
Flow Graph 
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1) DUP. When a token is required as input in more 

than one instruction, its value is replicated and placed 

on multiple output paths. There are DUP operations 

defined for both data and boolean tokens. 

2) T and F gates. These gates are designed to pass 

or block data tokens along a designated pathway. Each 

operation has a data token input path and a boolean token 

input path; each has one output path. T gates route 

their data tokens onto the output arc only when their 

boolean token is true. 

boolean token is false. 

No value is sent out if the 

F gates have the opposite action. 

3) SWITCH. The purpose of this operation is to 

direct a data token down one of two possible output paths, 

a "true" path and a "false" path. It has as its input a 

data token and a boolean token. If the boolean token is 

true, the data token is routed onto the output "true" 

path; a false boolean value sends the data value down the 

"false" path. 

The SWITCH operation could be implemented as a DUP 

followed by a T and an F gate applied to each of its 

output arcs with the identical control signals delivered 

to each gate. 

4) MERGE. This operation may be thought of as a 

selector function. It selects a token from one of two 

possible input paths and places the selected value onto 

its one output path. There are two data token input 

paths, recognized as "true" and "false" paths. 
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Additionally, there is a boolean token input path. If the 

boolean token is true, the token on the "true" input path 

is routed onto the one output path; otherwise, the one on 

the "false" path is selected. 

5) DECIDER. Decider operations are used to 

implement conditional strategies. It has as its input two 

(or more) data tokens. The operation has associated with 

it some defined predicate which when applied to the input 

values can be determined as true or false. The decider 

has one output path which carries the boolean token 

determined by the predicate. 

6) LITERAL. The LITERAL operation makes the 

constants or literal of an expression available to the 

proper instruction. It has no input path, only a literal 

data token output path. Such a node regenerates its 

constant value as often as it is needed by nodes to which 

it's value is input. As soon as its constant token is 

removed from its output arc, it fires again (19] 

7) OPERATOR. This final pictorial template 

corresponds to the templates in the example of Figure 56. 

The input to the operation are one are more data tokens. 

There is one output path that carries a data token. 

These templates can be combined to represent 

iterative computations. The following algorithm computes 

the integer power z = xn. 



input x,n; 
y = 1; 
i = n; 
WHILE i > 0 do 

begin 

end; 
z = y; 
output z; 

¥ =Y.* x; 
~ = ~ - 1 
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This computation can be represented by the data flow graph 

of Figure 59 [41, p. 743]. Snapshots of the computation 

are pictured as the tokens flow through their successive 

steps. The computation is performed with x = 3 and n = 1. 

The darkened circles on the arcs represent data tokens 

with their values written to the side, the squares 

represent boolean tokens with their values. The time for 

each operational step is assumed to be one. The algorithm 

is initiated with "false" values on the boolean input arcs 

for the MERGE operations. 

Thus, looping can be implemented in a data flow 

environment using the operators outlined in Figure 58. 



Figure 59.a. Data Flow Graph Corresponding 
to z = xn at time t 0 
[41, p. 743] 

X ~. 

Figure 59.b. Tokens at time t1 
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~ 

Figure 59.c. Tokens at time t 2 

~ 

Figure 59.d. Tokens at time t3 
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Figure 59.e. Tokens at time t4 

rKUE 

~ 

Figure 59.f. Tokens at time t 5 
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Figure 59.g. Tokens at time t6 

:a 

Figure 59.h. Tokens at time t7 
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~ 

Figure 59.i. Tokens at time t 8 

~ 

Figure 59.j. Tokens at time t 9 
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~ 

Figure 59.k. Tokens at time t1o 

~. 

~ 

Figure 59.1. Tokens at time t11 
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~ 

Figure 59.m. Tokens at time t12 

~ 

Figure 59.n. Tokens at time t13 
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~ 

Figure 59.o. Tokens at time t14 

~ 

Figure 59.p. Tokens at time t15 



6.4 Recursion, Tagging, and Maintaining 

Temporal Concurrency in the 

Iterative Data Flow Graph 
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In an iterative computation, such as that in the 

example of Figure 59, very little pipelining can take 

place. In the example, use of the MERGE functions at the 

source input arcs limits access to the rest of the graph. 

The control tokens to the MERGE functions are always true 

until the iterative computation is complete, precluding 

entry of further values into the pipe. The horizontal 

concurrency is maintained but the temporal concurrency is 

lost. 

Two different solutions to this problem have been 

established. One approach to "unfolding" iterations, or 

allowing distinct evaluations to take place as separate 

data sets pipe through a cyclic graph, is to apply the 

dynamic data flow approach discussed earlier. Two 

different groups of researchers, Arvind and Gostelow in 

their development of the U-interpreter [4] and a group at 

the University of Manchester in England [36], arrived at 

the idea of explicitly labeling computational activities 

for parallel execution. Tokens are assigned activation 

names as tags, or labels, upon each occurrence of reentry 

to a graph. Token activation names must match at a 

particular node in order for the node to be enabled for a 

token set. This allows concurrent executions of the same 
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procedure to share one version of its data flow graph, or 

instruction code. Additionally, tokens can be tagged with 

their iteration level. Iteration level tags indicate the 

tokens specific sequence step through the loop. Tokens 

must then also match according to their iteration level in 

order to enable their operation to receive them. This 

allows each iteration of the loop to proceed at its own 

speed, several different iteration values can be active 

within a loop at one time. These techniques allow 

temporal concurrency to be maintained [4, 36]. 

A second approach is one used in static environments. 

In order to maintain temporal concurrency, looping is 

eliminated in favor of a form of recursion. This method 

is based upon the observation that any iterative procedure 

can be expressed recursively. Under this strategy, each 

iterate subgraph is encapsulated into a macrofunction. 

This macrofunction replaces the iterate subgraph within 

the overall whole. When a token reaches the macrofunction 

during execution time, the subgraph is spliced into the 

whole. Since the macrofunction can be generated at run­

time for different generations of input tokens, the graph 

permits pipelined concurrency [19]. Consider the example 

of Figure 59. It could be represented recursively by the 

graph in Figure 60. If x = 3 and n = 2, the run time code 

generated for those parameters would appear as in Figure 

61. This method has the obvious drawback of utilizing 



Figure 60. Recursive Graph for POWER 
Macro Function. POWER 
Computes z = xn 
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Figure 61. POWER Expansion Resulting 
from Input Values x = 3 
and n = 2 
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a great deal of computer memory when the depth of 

recursion is large. 

True recursion, using reentrant code, can be 

implemented directly in the dynamic tagged environment. 

This is done by attaching the activation name within the 

context of concurrent executions of the same procedure. 
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In the recursive context, a new activation name is 

attached to input tokens on each successive invocation of 

the recursive function. Again, tokens are matched 

according to their activation name prior to instruction 

enablement. This allows for reentry to the one version of 

the graph for recursive execution (36]. 

6.5 Data Structures in the Data 

Flow Environment 

A major issue of discussion among data flow 

researchers and data flow detractors has been that of how 

to handle data structures such as vectors, matrices, 

trees, and linked lists. If tokens are allowed to carry 

structures such as these, the result is a large data 

transmission and storage overhead. Furthermore, the size 

of the object might not be known until it arrives at a 

given node where it should be stored. Frequently, within 

an aggregate data structure, only one or a few elements 

from the structure are altered or used, yet the entire 

structure would require copying from one node to another. 



Two proposed solutions are the following: 

1) Arvind and Thomas proposed !-structure storage 

[6], and 

2) Dennis proposed use of finite directed acyclic 

graphs to represent structures in memory [33]. 
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The goal inherent in these approaches is to p~eserve 

the requirements of the data flow environment, the 

maintenance of the by value parameter passing mechanism 

and enablement only when all tokens are present, as well 

as to circumvent structured token recopying from one 

instruction to the next. 

6.5.1 !-Structure Storage 

The !-structure storage concept of Arvind and Thomas 

[5, 6] is designed to prevent read before write races. 

Within the memory hardware are presence bits associated 

with each memory word. Their function is analogous to 

that of the semaphores used to synchronize concurrent 

processes. These presence bits are very similar to the 

status bit used in the Denelcor HEP multiprocessor to 

coordinate cooperating concurrent processes. 

In the data flow environment, the presence bits are 

used to coordinate access of producer/consumer 

instructions to a single copy of a structure. In the !­

structure storage, the presence bits have three implied 

values. 'A' implies absent or not written. 'P' implies 

present or value written. 'W' implies waiting; a read 
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request to this location has been made but not yet 

satisfied and the read is waiting in a list of deferred 

reads. The presence bits are tested by the memory 

controller when a read request for the contents of a given 

word arrives. If the presence bits indicate that the word 

has been written, the contents are retrieved and forwarded 

to the requesting instruction. If a read request arrives 

and if its word's presence bits indicate 'absent' or 

•waiting,' then the read is deferred until the data 

arrives; the read is linked with other reads awaiting the 

same datum on a deferred read list. Further, when such a 

read is placed on the deferred read list the presence bits 

are setjreset to •waiting.' When a write request arrives 

for a given word, the presence bits for the word are 

tested. If the presence bits are 'absent,' then the data 

is written and the presence bits are set to 'present.' 

Or, if they are 'waiting,' then the memory module writes 

the data to the word, forwards the data to all the reads 

linked on the deferred list for that location, and sets 

the presents bits to 'present.• To avoid excessive data 

transmission of whole structures in a token, the !­

structure storage can be used to hold the structures while 

the token carries the address of the structure. Using 

such storage, a structure's storage can be allocated, all 

its words' presence bits set to 'absent', and its token 

address started down the data flow graph (program). If 

only a certain element of the structure is to be read and 



written, then the token would also carry such indicators 

as was needed to identify the specific element, for 

example, an index to a vector. An instruction node on 

whose input arc the token arrives, reads the element 

indicated by the token from the structure in the !­

structure storage. If the token exits the instruction 

node on an output arc, the instruction writes to the 

structure. 
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Unfortunately, checking for deferred reads on every 

write degrades the write process. Also, it appears to be 

a move back in the von Neumann direction since tokens are 

now carrying addresses rather than values. still, the 

data flow rule is maintained since no read can proceed and 

no node can fire until the data item is written to its 

proper location. 

6.5.2 Finite Directed Acyclic Graphs 

Jack Dennis is credited with describing a technique 

for implementing data structures using finite directed 

acyclic graphs [33]. Arrays for example, are stored as 

trees; each individual array element is stored as a leaf. 

A three by three array is represented by a ternary, or 

three-ary, tree as shown in Figure 62. This tree is 

maintained in a structure storage memory. 

Similar to the !-structure storage discussed earlier, 

instead of a token carrying an actual structure, it 

carries an address. In this case, the token carries the 



al,l a1,2 al,J a2,1 a2,2 a2,3 a3,1 a3,2 a3,3 

Figure 62. Storage Scheme for a Three by 
Three array Identified by 
Token A. The ai,j Represent 
the Element Values 
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address of the tree's root node along with whatever 

information is needed to identify individual leaves to be 

read or written. Each node in the tree contains a 

reference count indicating the number of directed edges 

arriving at the node. 

The data flow graph of Figure 63 indicates a series 

of actions to be performed on a three by three array. A 

DUPlicate operation [Figure 58] on the array results in 

the root node being referenced by two separate tokens, A 

and B, one for each output token on the data flow graph. 

The reference count for the root is then two [Figure 64]. 

This circumvents the need for duplicating the data but 

yields separate tokens. 



Figure 63. A Data Flow Graph that Duplicates 
an Array and Serially Assigns 
New Values to Two of its 
Elements 

Figure 64. B is a Duplication of Token A. 
Root Reference Count, the 
Number of incoming edges, is 
Incremented, but no Nodes 
are Copied 
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Setting the element in row two and .column three to 

zero on input token B results in the generation of the 

tree pointed to by output token C [Figure 65]. Setting 

the element in row three and column three to zero on input 

token C would results in the generation of the tree 

pointed to by token D (Figure 66]. This is sequential 

processing of the two elements in the array. 

a2,3 = 0 

Figure 65. Generation of New Token C 
from B by Setting the 
Element in Row Two and 
Column Three to Zero. 
Token B is Consumed 



D 

A 

a2,~ a3,~ 
a2,2 a2,3=0 a3,2 

Figure 66. Generation of New Token D from c 
by Setting the Element in Row 
Three Column Three to Zero. 
Token c is Consumed 

Concurrent execution on the array elements is shown 

in the data flow graph of Figure 67. Setting both the 
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element in row two and column three and the element in row 

three and column three to zero concurrently results in 

output tokens C and D [Figure 68]. The final result of 

concurrent execution on the array elements would be quite 

different from that of sequential execution. Thus such 

activities as setting the elements of a column to zero 

would require sequential execution. 



Figure 67. 

A 

A Data Flow Graph that Duplicates 
an Array and Concurrently Assigns 
New Values to Two of its Elements 

D 

c 

Figure 68. Concurrent Generation of New Tokens 
C and D by Concurrently Setting 
the Element in Row Two and Column 
Three to Zero and ,the Element in 
Row Three and Column Three to 
Zero 
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Furthermore, the updating of reference counts and the 

depth of the tree increase the memory references required 

to access elements in the represented structure. Clearly, 

this lowers the performance level of the machine. 

Research on the problem associated with data 

structures in a data flow environment continues among data 

flow researchers. 

6.6 Implementations of the Data Flow 

Graph, the Data Flow Computer 

Data flow computers are computers whose architecture 

allows them to execute the abstract graphical model of the 

data flow graph. The data flow graph is the method used 

to present data flow programs. The nodes or activity 

templates represent machine instructions. The tokens 

represent the values processed by the machine. 

Many computer systems which are designed to minimize 

execution time by exploiting data-driven parallelism 

exist. They include the Dennis machine and the Arvind 

machine, both at the Massachusetts Institute of 

Technology, the Distributed Data Processor designed by the 

Texas Instruments Company, the Data-Driven machine at the 

University of Utah, the LAU machine at the CERT Laboratory 

in Toulouse, France, the Newcastle Data-control Flow 

Computer at the University of Newcastle upon Tyne, 

England, the EDDY (Experimental system for Data Driven 

processor arraY) machine of Japan, and the Manchester 
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machine at the University of Manchester, England [85, 41, 

p. 748-768]. Each of these machines has its own 

distinctive elements. However, to examine each machine is 

beyond the scope of this treatise. Instead, two machines 

generally representative of their basic types are 

examined. One is the Dennis machine of Massachusetts 

Institute of Technology, as described in Dennis's papers 

[23, 24]; it is designed to execute a static data flow 

graph. The other is the Manchester machine of the 

University of Manchester, as described in the papers of 

Gurd, Kirkham, and Watson [36, 94]; it is implemented for 

execution of dynamic graphs. 

6.6.1 The Dennis Static 

Data Flow Machine 

The Dennis machine of Massachusetts Institute of 

Technology is designed to exploit the parallelism 

represented by static data flow graphs. It has the 

organization displayed in Figure 69. It consists of five 

major units connected by channels through which 

information packets are passed according to an 

asynchronous transmission protocol. The five units are 

the following: 

1) the Memory Section, partitioned into addressable 

Instruction cells. Instruction cells hold individual 

instructions and their operands. 
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2) the Processing Section, consisting of processing 

units which perform specialized functional operations on 

data tokens. 

3) the Arbitration Network, routing executable 

instruction packets from the Memory Section to the 

Processing Section. 

4) the Control Network, routing control tokens from 

the Processing Section to the Memory Section. 

5) the Distribution Network, routing data tokens 

from the Processing Section to the Memory Section. 

Instructions are held in the uniquely addressable 

Instruction cells {representing the activity templates) of 

the Memory Section. When loaded, each instruction cell 

holds an instruction operation code of the data flow 

programjgraph. The Instruction Cell maintains several 

locations for holding result destination addresses; these 

implement the output arcs of the data flow graph. 

Additionally, the Instruction Cell contains three 

registers which will hold the operand values received as 

data tokens over the Distribution Network. When all the 

operands required by the operation code have arrived in 

the instruction cell and the appropriate 

control/acknowledge signals have arrived from the Control 

Network, the instruction represented in the cell is said 

to be enabled. 

Upon enablement, the operation code, destination 

addresses, and operands are grouped together logically in 



operation packets and routed through the Arbitration 

network to the Processing Section. As the operation 

packets are routed through the Arbitration network, the 

opcode is decoded partially. This process allows the 

packets to arrive at the proper functional unit for 

execution. 
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Processing results are paired with the destination 

addresses specified in the processed operation packet, and 

sent through the Distribution andjor Control networks to 

the Memory Section Instruction cells. The results are 

stored in the Instruction cells whose addresses were 

specified as destinations. These results may be of two 

possible types, 

1) Acknowledge signals and boolean values generated 

by operations such as DECIDERs. 

2) Integer or other data values. These are Data 

tokens and are routed over the Distribution network. 

Acknowledge signals are directed back to the 

instruction cell that produced the result that was just 

consumed by the currently executed instruction. 

Acknowledge signals indicate that a node has utilized the 

token and is ready for another. The acknowledge signals 

are used to implement the firing rule for program graphs. 

They are Control tokens and are routed over the Control 

network. 

When all the result packets, data and control, 

required by a receiving instruction cell have arrived, it 
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becomes enabled and begins its passage through the 

Arbitration network. The requirement that acknowledge 

signals arrive before an instruction is enabled maintains 

the static data flow firing rule: an instruction may fire 

when all its operands are available and there is no token 

on its output arc. 

In order to maintain equal accessability of 

instruction cells, and to minimize the number of devices 

and interconnections required to connect the great number 

of instruction cells found in such a system, the above 

described architecture was refined slightly. The 

Instruction cells are grouped into blocks and each block 

realized as a single device. Each instruction cell block · 

is accessed via a single input port and single output 

port. The resulting structure is shown in Figure 70. 

Under this arrangement, cell blocks are grouped together. 

A given cell block group is serviced by an arbitration 

network which transmits operation packets to a specific 

set of functional units. This allows simplification of 

the arbitration network. Further, each cell block is 

addressable through the distribution network; and the 

distribution network has fewer ports to contact. 

The mechanism of the cell block itself is as shown in 

Figure 71. The grouped instruction cells compose the 

activity store. Result packets arrive over the 

distribution network at the update unit. The update unit 

. writes the operand tokens into the instruction cell 
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registers and tests whether all control and data tokens 

have arrived at the instruction cell currently being 

updated. If they have, the update unit enters the address 

of the instruction into the FIFO instruction address queue 

unit. Meanwhile, executing asynchronously, the fetch unit 

removes an address from the FIFO instruction queue and 

reads the corresponding instruction cell from the activity 

store. The fetch unit forms it into an instruction packet 

and puts it out onto the arbitration network where it is 

routed to the appropriate processor as before. 

Because of the way the cell blocks are accessed from 

the processing units through the distribution network, 

c~mmunication of a result packet from any instruction cell 

to another requires the same amount of time. During 

program execution the number of instructions addressed in 

the instruction address queues of the cell blocks gives a 

measure of the degree of concurrency present in the 

program. The concurrent activities possible are built in 

at the hardware level [23, 24, 85]. 

6.6.2 The Manchester Machine 

The Manchester machine of the University of 

Manchester, England, is designed to execute a tagged token 

dynamic data flow graph. The block diagram of the 

prototype Manchester system is shown in Figure 72. 
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A host system is attached via an I/O switch module to 

the basic ring structure of four modules. The modules are 

the following [94, 85, 36): 

1) the Token Queue, consisting of a 32K-word 

circular FIFO store with three surrounding buffer 

registers. Tagged tokens on the output arcs of the 

executing data flow graph are queued here to await further 

processing. 

2) the Matching Unit is a pseudoassociative memory 

with 6 pipelined registers and two buffers interfacing it 

with the Overflow Unit. Tokens whose destination 

inst~uctions are unary operations pass directly through 

the Matching Unit. Otherwise, tokens are stored in a 

parallel hash table (the pseudoassociative memory) until 

another token arrives with a matching "name". The "name" 

used for pairing tokens is a combination of the tokens' 

tag and their destination instruction address. 

2.a) the Overflow Unit handles tokens that cannot be 

loaded into the parallel hash table because all table 

entries are full. Overflow tokens are stored in the Unit 

as linked lists. When space is available in the hash 

table, overflow tokens are bussed back to the Matching 

Unit and restarted through it. The asynchronous nature of 

the data flow model allows tokens to be matched in any 

order without effecting the computation. Token pairs 

matched on their "name" are passed out of the Matching 

Unit to the Instruction Store. 
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3) the Instruction Store consists of a Random Access 

Memory and an input and an output register. The 

instructions identified by the destination fields of the 

tokens are selected from the RAM and coalesced with the 

tokens into an operation packet containing an opcode, data 

values, operation result destination fields for the· 

instruction now enabled, tags and a marker bit. All 

instructions now enabled by the presence of all their 

tokens are routed to the Processing Unit. 

4) the Processing Unit contains a preprocessor which 

executes a few instructions, but most are passed on to one 

of several homogeneous microcoded function units via a 

distribution bus. The instruction packet is processed in 

its assigned function unit. An output token is produced 

from the execution, composed of tag, operand value, 

instruction destination addresses, and marker bit. The 

token is then passed out of the Processing Unit to the I/O 

switch. 

At the I/O switch, the marker bit is decoded to 

determine if the token should be routed out of the data 

flow system to the host machine or passed back around to 

the Token Queue to initiate further computations. 

By use of its tagging mechanism, the Manchester 

machine is capable of concurrent executions of reentrant 

programs; thus, recursion and pipelined iterative loops 

are allowed. The machine is operational, running 



reasonably large programs at maximum rates of between 1 

and 2 million instructions per second (MIPS) [36]. 

6.7 Data Flow Languages 
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Closely related to the subjects of the data flow 

graph and the data flow computer is that of the data flow 

language. When problems become complex, direct coding of 

data flow graphs into a format appropriate for the 

internal workings of the hardware becomes difficult to say 

the least. High level languages are needed. 

Many data flow languages have been proposed and 

compilers for a considerable number of them have been 

written. Many data flow research groups have defined a 

language for their system. The Dennis group has developed 

VAL and VIMVAL [25, 58, 77]. The Manchester group has 

SISAL [36], while the Arvind group has defined ID [62]. 

The number of these languages is too large for this 

subject to be dealt with in detail at this time. 

However, they display certain common characteristics 

worth mentioning [2]: 

1) Freedom from side effects, based on functional 

programming. They operate by application of functions on 

values. 

2) Locality of effect. Instructions do not have far 

reaching data dependencies. Names are limited in their 

scope. 
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3) Equivalence of instructional scheduling 

constraints with data dependencies. All of the 

information needed to execute a program is contained in 

its data flow graph, which can be generated directly from 

the high level language. 

4) A single assignment convention. Each name may 

appear only once within the area of the program in which 

it is active, or, more stringently, only once within a 

program. Thus, the definition of each name is clear. 

5) Unfolding of iterative computations into parallel 

constructs. (Related to the discussion earlier on 

"unfolding" iterative loops.) 

6) A lack of "history sensitivity" in procedural 

calls. Names of values are manipulated so that each 

function begins execution with new values and is not 

influenced by past values. 

Most data flow languages are functional languages, as 

identified in item 1 above. Functional languages are 

discussed in greater depth in section 7.1. 

Of course, there are exceptions. The Texas 

Instruments Distributed Data Processor is an interesting 

case in point. It has been operational since 1978. This 

computer is programmed largely in extended FORTRAN 66. A 

cross compiler, based on the optimizing FORTRAN compiler 

of the highly pipelined Texas Instruments Advanced 

Scientific Computer, separately translates FORTRAN 

subprograms into directed graph representations. The 



directed graphs are then processed by a linkage editor 

into an executable program [85]. 

6.8 Summary 
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Computer architects are searching constantly for new 

approaches to designing high-performance computing 

machines. Data flow offers a totally different approach 

to computing than that of the von Neumann architecture. 

It promises to be an exceptional mode for exploiting the 

fine grain parallelism embedded in most programs. It also 

offers an opportunity to realize the enormous potential of 

VLSI technology. 

This chapter introduces the data flow graph, and its 

firing rules. It identifies the two possible tactics for 

firing and program graph interpretation, namely, static 

and dynamic rules. Looping and recursion are discussed in 

the light of these two strategies. 

The problems associated with data structures in the 

data flow environment are identified and two possible 

alternative solutions are presented, !-structures and 

directed acyclic graphs. 

Two data flow computers are reviewed. The Dennis 

Data Flow Machine is presented as an example of an 

architecture implementing static data flow graph firing 
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rules. The Manchester Data Flow Machine is surveyed as an 

example of a tagged token, dynamic graph firing rule 

implementation. 

The common qualities associated with most data flow 

languages are identified. 



CHAPTER VII 

REDUCTION MACHINES 

1.0 Introduction to Reduction 

Chapter six investigates a computer architecture that 

is non-von Neumann in nature; that system model is termed 

a data flow system. In a data flow system, the control of 

program execution is based on the availability of the 

data; when a function or operator has all its required 

arguments, it will be evaluated. Thus, the system is said 

to be data driven. This chapter presents another non-von 

Neumann computer architecture, reduction machines. A 

large amount of the work done on reduction machines has 

been based on the work of data flow researchers [18, 17]. 

However, reduction machines have a different form of 

program control. In reduction machines, functions are 

evaluated or reduced when their result is needed, or 

demanded, for the evaluation of some other required 

function. Thus, these machines are often said to be 

demand driven. 

In a data flow system, some computations may be 

performed simply because their operands have arrived 

although their results will never be needed. This allows 

the processors to do non-productive work that in some 
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situations can saturate the system and prevent productive 

evaluations from taking place. A good compiler can reduce 

the number of these non-productive operations, but the 

potential for non-productive activities is present in the 

data flow architecture. The idea behind a demand driven 

system is to allow only the evaluation of those functions 

whose value is demanded or needed for the completion of 

the assigned task. 

In order to understand the notion of a reduction 

machine, one needs to first understand a little bit about 

functional languages. This is because reduction machines 

are closely linked with such languages. In many cases, 

machines have been expressly designed for the execution of 

programs written in some given functional language [92]. 

The sections of this chapter introduce some of the primary 

aspects of functional languages and the concepts inherent 

in a reduction system. A specific implementation of a 

reduction machine, ALICE, or the Applicative Language 

Idealized Computing Engine, is reviewed. The ALICE 

machine is the product of a group headed by John 

Darlington, in close association with Mike Reeve, working 

at Imperial College of Science and Technology, London, 

England [65, 18, 17]. 

Compilers that compile programs written in Prolog, 

Parlog (parallel Prolog), LISP, and HOPE have been written 

for ALICE. The functional language HOPE is intended to be 

the primary language for use on ALICE. HOPE was designed 
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at Edinburgh University, England, by Burstall, McQueen, 

and Sannella [15, 65]. It is an experimental language as 

not all required production features have been 

incorporated. In this discussion of functional languages 

and related reduction concepts, some HOPE programs are 

used as examples. 

7.1 An Introduction to Functional 

Languages 

This section defines functional languages and 

examines an example of the functional language HOPE. The 

program flow of control implied by such a language is 

discussed. 

7.1.1 Procedural Languages and 

Contrasting them to ·.Functional 

Languages 

Current computer languages fall into several general 

classifications based on the way in which they allow the 

programmer to communicate with the machine. 

The "old" languages such as FORTRAN and COBOL and the 

newer ones such as Pascal and Ada are called procedural 

languages. In a procedural language, the programmer is 

allowed to specify a set of imperative statements that are 

to be performed in a particular sequence. The procedural 

language concept is a direct extension, or "high level 

version," of the von Neumann computer model. One 
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instruction is executed, then the next instruction is 

executed, as specified by the program counter. Each 

instruction addresses operands at locations in memory, and 

since multiple instructions may access the same locations 

the order of execution is important. The execution of one 

instruction alters the environment of the other 

instructions. This environment may be referred to as the 

present state of the machine; it includes the program 

counter, register values, values of all data stored in 

memory, the run time stack, etc. There are some 

identifiable disadvantages in thinking of program 

execution in terms of the present state and its 

manipulation. Disadvantages identified by functional 

language proponents are the following [92]: 

l) Two widely separated pieces of code may reference 

a common global variable and thus produce an unexpected 

result. Also, programmers must be concerned about 

aliasing, that is, which names are bound to a location. 

Such issues increase program complexity. 

2) The programmer is forced to focus on data 

manipulation rather than on the crucial elements of the 

algorithm. 

3) Program proof of correctness and program updates 

are difficult in a procedural language as the imperative 

style does not lend itself to mathematical analysis. 

Based on the context in which certain variable names are 



used, alteration of code in one area can cause side 

effects which undermine other program blocks. 
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4) It is difficult to implement parallel execution 

of a program when the asynchronous parallel execution of 

its subroutines have side effects on one another. This 

last disadvantage is significant in the study of parallel 

architectures. 

Functional languages contain no notion of a present 

state. The program is a function in the true mathematical 

sense of the word. The program execution consists of a 

function evaluation in which the input data is used as 

arguments to the function; the value returned by the 

function is the program output. Within the body of the 

program, additional required values are attained by 

invoking additional functions. In a functional language, 

the only activity permitted is the definition, 

application, and combination of functions. Because of 

this, a functional language may also be referred to as an 

applicative language. 

The essential notion of a pure functional language is 

referential transparency; the value of an expression 

depends only on its immediate textual context, rather than 

on computational history [92]. Data dependencies exist 

only as a result of functional application; that is, the 

value of a function is determined completely by its 

arguments. More specifically, a strict functional 

language does not allow the use of variables or assignment 
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to variables, and the only control structure permitted is 

recursion. No data is stored, all data is passed as 

arguments to functions and returned as results from 

functions [65]. 

LISP is a well-known example of an applicative 

language, although it is not always implemented as a pure 

one. Most modern versions of LISP allow assignment using 

SET and SETQ statements and iterative loops. The 

languages VAL and ID identified earlier in the context of 

data flow languages are functional languages but allow the 

binding of an expression value to a name; each name may 

receive only one assigned value. Thus, these data flow 

languages are termed single-assignment languages. HOPE, 

the language linked with ALICE, is a functional language. 

It is strongly typed, which means that it has data types 

which must be declared by the programmer and is checked by 

the compiler as in Pascal. It is a pure functional 

language in that it does not allow assignment and each 

functional evaluation produces no side effects. And, it 

is a higher-order functional language which means that 

functions may be passed as arguments to other functions or 

they may be returned as results (65, 18, 17]. 

Functional languages are interesting because they do 

not have the disadvantages inherent in procedural 

languages identified earlier. Because they are based on 

mathematical functions, the programmer may address the 

problem to be solved at a higher level, with no emphasis 



on data manipulation. The problem may be approached in a 

more logical fashion allowing for proofs of correctness 

based on the well-understood concepts of the function. 

Since functional languages do not allow assignment and are 

free from side effects it is easier to produce and 

maintain correct code. The absence of side effects makes 

each part of a functional program independent of every 

other part implying that the parts can be executed in 

parallel, in any order, without effecting the final 

outcome of the evaluation (92]. 

7.1.2 Hope, an Example of a 

Functional Language 

This section examines an example of the functional 

language HOPE and the program flow of control implied by 

the program. 

The following HOPE program calculates the factorial 

of a positive integer. 

dec Fact : num -> num ; 

Fact(n) <= Factb(O,n) . 
I 

dec Factb . num x num -> num . . I 

Factb( i, i) <= i ; 

Factb( i,i+l)) <= i+l . I 

Factb( i,j) <= 

Factb( i, (i+j)/2) * Factb( (i+j)/2, j) . 
I 
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The program consists of two declared functions. The 

first function is Fact. It maps a value of type num (ie. 

a non-negative integer) onto another value of type num. 

The second function is Factb. It maps the cross product 

of type num values onto a type num value. 

One other function is implied; it is the Succ 

function. The Succ function or successor function returns 

the next larger value in the sequence of whole integers. 

The successor function is called a constructor function. 

Specifically, Succ is used to construct the elements of 

the data type num. For example, use of the digit 3 is a 

shorthand for the expression Succ(Succ(Succ((O)))). Each 

data type has a constructor function for values of that 

type. 

The notation --- marks the definitions, or rewrite 

rules, of each function. The symbol <= is not an 

assignment operator. It implies that an occurrence of the 

function meeting the template form of the definition found 

on the left hand side of the rule may be rewritten or 

reduced to the form on the right hand side. The 

identifiers i,j,n are not variables; they are formal 

parameters. They refer to the value passed to the 

function at runtime, and not to any specific memory 

location. 

Based on the given program, evaluation of the 

function for a given value, Fact( 5), can be described by 

a graph (Figure 73]. In the graph, a function is linked 



Reduction 
Step Type 

1 B 

2 B 

3 B 

4 B 

5 B 

6 A 

7 B 

Figure 73.a. 

Reduction Graph Transformations 

Fact(S) 

Factb(0,5) 

I * I 
Factb(0,2) Factb(2,5) 

* I 
I * I Factb(2,5) 

Factb(0,1) Factb(1,2) 

I * I 
I * I Factb(2, 5) 

1 Factb(1,2) 

I * I 
I * I Factb(2,5) 

1 2 

* I 
2 Factb(2,5) 

* 
2 I 

Factb(2,3) 

Steps One Through Seven in 
the Sequential Reduction 
of Fact(5) 

* I 
Factb (3, 5) 

237 



238 
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to its arguments. The graph representing the state of the 

execution is transformed repeatedly. Each transformation 

is the result of one of the following two operations: 
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A) A primitive function such as add, subtract, 

multiply, or divide has all of its arguments furnished as 

constructor functions (eg. succ) that produce constant 

values. The function with its arguments is replaced by the 

result of the operation on the constants. 

B) One of the rewrite rules is applied to the 

computation. That is, when a given instance of a function 

matches the argument form of some left hand side of a 

definition, it is replaced by an instance of the 

corresponding right hand side. 

Each of the above transformations is called a 

reduction. When an initial instance of a function is 

replaced based on one of these transformations it is said 

to have been reduced. In order for a type B reduction to 

take place, the function must be one for which rewrite 

rules exists, rather than a constructor function such as 

succ. When functional language programs are interpreted 

on a von Neumann machine they are reduced one step at a 

time, sequentially, as indicated in Figure 73. However, 

since each functional value is independent of another, any 

function instances ready for reduction at a particular 

time could be reduced simultaneously, or in overlapped 

time; functions may be reduced in parallel asynchronously. 

Figure 74 shows the same function evaluation as indicated 
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in Figure 73; but, at each step any function ready for 

reduction is reduced. Machines which implement this 

strategy are termed reduction machines. 

Performing the reductions sequentially required 

fourteen steps [Figure 73], but, parallel evaluation 

required only eight [Figure 74]. A machine capable of 

physically realizing such parallel evaluat.ions offers a 

significant increase in performance over that of the 

conventional sequential implementation. 

7.2 Implementing the Functional 

Model and ALICE 

This section describes the basic scheme used by the 

implementors of the reduction machine, ALICE. It 

introduces the concepts of graph reduction, eager, 

constrained, and lazy evaluation modes. Finally, it 

reviews ALICE's architectural approach to reduction. 

7.2.1 The Basic Schemes - Graph 

Reduction and Eager Evaluation 
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Graph reduction is a form of reduction. Its basis is 

that each instruction that accesses a particular 

definition will manipulate references to the definition. 

That is, graph manipulation is based on .the sharing of 

arguments using pointers. When a function with a specific 

parameter value is demanded, the function is traversed in 

order to reduce the definition and return with the actual 



value. Any subsequent references to the function with 

that specific parameter will immediately receive the 

functional value (85]. True reduction machines use the 

graph reduction approach [85, 92]. 

The basic scheme the designers of ALICE employ to 

implement graph reduction is to represent the execution 

graph of a function by a collection of packets. Each 

packet represents one node of the graph and the arcs 

extending downward from that node. Each packet may be 

formatted as shown in Figure 75. The primary fields 

presented at this time are the following: 

Identifier Ref. Status Function Args Signal 
Count List 

Figure-75. Software Packet 
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1) the Identifier field; it holds a value that 

uniquely identifies the packet. 
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2) the Function field; it specifies the function of 

the node this packet represents in the graph. 

3) the Args field; it contains the identifiers of 

the packets representing the arguments of the function. 

4) the Ref field; it contains the number of packets 

which reference the current packet. For example, this 

packet is the argument of a certain number of other 

packets; that number is recorded in the Ref field. 

Figure 76 shows an expression graph and its packet 

representation. The constant arguments of the functions 

are represented in their successor constructor function 

form. Figure 77 shows the same packet collection with the 

shorthand notation [N]. The notation [N] is used to 

designate the identifier of the root node of the subgraph 

resulting from the succ(Succ( ••• succ(O) ••• )) construction 

of the constant N. Additionally, a packet with no 

function or argument field, and only with an integer 

constant designates the subgraph resulting from the 

Succ(Succ( ••. Succ(O) •.. )) construction of the constant. 

This notation will be used in future examples. 

A collection of packets represents the graph 

resulting from each reduction step. Figure 78 shows the 

packet sets that would result from the evaluation of 

Fact(3). At each type B reduction, the packet of the 

function being reduced is replaced by a new group of 
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packets representing the application of one of the rewrite 

rules. The identifier of the reduced function's packet is 

associated with the topmost packet of the replacing packet 

group. The topmost packet represents the function of 

lowest precedence in the replacing expression, this is 

referred to as the outermost function. Also, a type A 

reduction places the constructor result in the same 

identifier packet. 

When a function requires a constructor function as an 

argument in order to make a type A reduction, it must wait 

until all its arguments become of the correct form. While 

it is waiting for constructor arguments, it need not be 

considered for reduction and can be "put to sleep". Then 

when its arguments become of the correct form, they can 

signal the sleeping function packet to "awaken". The 

"awakened" function is again available for reduction. 

This process is implemented by the following two fields 

[Figure 75]: 

1) the Status field; it holds the number of 

arguments which are not yet of the required constructor 

form. A value of zero indicates the packet is awake. 

2) the Signal field; it holds the identifier of the 

packet which needs to be signaled when the current packet 

becomes a constructor function packet. 

Figure 79 demonstrates this process. Packet i is 

reduced to the primitive function multiply; it requires 

the constructor function Succ for its two arguments. When 
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Step Packet Set 

Id. status Funct. Args. Signal 

i Fact [3] 

1 i Faeth [OJ (3] 

2 i 2 * j k 

j Faeth [0] [1] i 

k Faeth [1] [3] i 

3 >> i 1 * j k 

<< j 1 i 

k 2 * m n i 

m Faeth [1] [2] k 

n Faeth (2] [3] k 

Signal >>> 

Figure 79.a. Steps One Through Three in the 
Reduction of Fact(3) with 
Packet Signaling 
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Id. Status Funct. Args. Signal 

i 1 * j k 

j 1 i 

>> k 0 * m n i 

<< m 2 k 

<< n 3 k 

~>I i 0 * j k 

.. .. I j 1 i .. .. 
<<I k 6 i 

i 6 

Signal >>> 

Figure 79.b. Steps Four Through Six in the 
Reduction of Fact(J) 

250 

I 
I 
I 
I 
I 



251 

packet i is created, its status field is set to 2 

indicating it should sleep until two signals arrive from 

constructor function packets. Each of the two argument 

packets, j and k, has identifier i written in its Signal 

field. When packets j and k are reduced to Succ 

constructor functions for the indicated values, each 

signals packet i that they are of the correct form. Each 

signal decrements the Status field of packet i. In Figure 

79, the signal is indicated with >>. When the Status 

field of packet i equals zero, the multiply packet wakes 

and becomes available for type A reduction. 

This scheme is referred to as eager evaluation; each 

reducible function is reduced as soon as possible. ' 

7.2.2 Constrained parallelism 

This section considers constrained evaluation which 

is a technique to prevent some reducible functions from 

being reduced even though they are ready. Constrained 

evaluation prevents their reduction in parallel with other 

functions. 

Suppose a function named Reciprocal were defined with 

the following rewrite rule. 

--- Reciprocal(x) <= o if x = o else ljx; 

The right hand side of the rewrite rule is a conditional 

expression which may be written in a more general fashion 

as Cond(P,Q,R); where the function Cond returns Q when P 

is true; otherwise, R is returned. In an eager 
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evaluation, arguments P, Q, and R will be evaluated in 

parallel; when each argument has reduced to constructor 

functions, Cond will be reduced. As can be seen in the 

Reciprocal example this is not always expedient. R may be 

undefined; in Reciprocal's case, R = ljx. or, only one of 

Q or R may be required and thus the reduction of one of 

them will be non-productive, possibly utilizing resources 

which could be applied elsewhere. Thus, in some 

situations, it is beneficial to constrain the potential 

parallelism existing between P, Q, and R. The usual 

approach is to suspend reduction of Q and R while allowing 

P to reduce until it has returned either a TRUE or FALSE 

constructor; then, the appropriate function is awakened 

and its eager reduction begins. When the selected 

function reduces to a constructor, Cond will reduce, or 

return the value of the selected function. 

The process indicated above may be implemented by a 

"sleeping/wake up" scheme similar to that discussed 

earlier. The programmer may indicate in the source code 

when constrained evaluation is required. As a result, 

when the packets associated with Cond(P, Q, R) are 

generated, those representing Q and R have their Status 

field marked as being asleep. When P reduces to a 

constructor function generating a TRUE or FALSE value, it 

signals its constructor status to Cond. This triggers 

Cond to send a wake up signal to the selected function's 

packet. Once awakened, the selected function reduces to a 
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constructor and signals Cond. Finally, Cond has its 

condition argument, P, and the selected argument, either Q 

or R, supplied as constructors and reduces. 

This scheme allows parallel evaluation be performed 

in the reduction of the selected function, but it prevents 

evaluation of an undefined function or of a lengthy and 

unnecessary function. 

7.2.3 Lazy evaluation 

This section presents another form of evaluation, 

lazy evaluation. It prevents function packets from 

reducing indefinitely when called in an infinitely 

recursive fashion. This allows the definition of infinite 

data structures; but, only those elements which are needed 

are ever generated. 

The following HOPE program builds the infinite list 

of counting numbers. 

dec Numbers : -> list(num) ; 

Numbers<= l::IncrementByOne(Numbers) ; 

dec IncrementByOne : list(num) -> list(num) ; 

IncrementByOne(n::L) <= (n+l)::IncrementByOne(L) ; 

The notation:: is a list constructor function; n::L means 

the list whose head is n and whose tail is L. For 

example, the notation (n::L) matches the list [2, 3, 4], 

where n is 2 and Lis [3, 4]. The first four stages of 

the graph representation of the evaluation of Numbers is 

given in Figure so. Numbers references itself as an 
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argument for IncrementByOne; thus, establishing the cyclic 

arc from IncrementByOne back up into the graph. 

Eager evaluation of this program would generate 

elements of the list indefinitely. However, in most 

cases, only some finite segment of such a list is needed. 

As a result, the processing resources may become 

thoroughly involved in the computation of values which 

currently are unneeded or which may never be needed. This 

may be overcome by lazy evaluation of Numbers. As with 

constrained evaluation, code that is to be evaluated 

lazily can be flagged either by the programmer or by the 

compiler. The compiler flags the computation when it 

cannot determine that the computation will terminate [92]. 

Lazy evaluation implies that reduction of a function is 

postponed until it explicitly is requested to reduce to a 

constructor function by its parent node. In the Numbers 

example, an instance of the IncrementByOne function will 

not reduce to the :: constructor function on the right 

hand side of its rewrite rule until it is requested to do 

so by its parent:: list constructor [Figure 80]. 

Lazy evaluation may be implemented at the packet 

level by use of two subfields in the Status field. The 

outermost function's packet, for example, the Numbers 

packet, w9uld be allowed to reduce eagerly but each 

reducible packet generated thereafter would be marked as 

"lazy" and "not-yet-required" in the status subfields. 

Subsequent reducible packets resulting from the reduction 
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of one of these packets would themselves be marked as 

"lazy" and "not-yet-required", thus extending the lazy 

feature. Packets marked "not-yet-required" are not 

considered for reduction. When an additional reduction is 

required, the parent packet signals the ":I:azy" child 

packet to reduce by initiating a change in the child's 

"not-yet-:-required" subfield; the packet to be signaled is 

identified through the argument identifier list in the 

Signal field. 

Thus, through use of lazy evaluation, infinite 

structures can be defined functionally although only some 

finite subset is actually to be returned, and results may 

be generated sequentially when needed. 

7.2.4 ALICE - an Architecture for 

Implementing Reduction 

This section investigates ALICE, the Applicative 

Language Idealized Computing Engine. ALICE implements the 

direct evaluation of functional, or applicative, 

languages. It is considered to be a true reduction 

machine because it utilizes the packet system to represent 

each node in the computation and thereby satisfies the 

requirements of graph reduction [92]. The ALICE 

architecture is that of a shared-memory multiprocessor 

connected by a crossbar interconnection network and pairs 

of rings [42]. Functionally, it is composed of processing 

agents, packet pool segments, an interconnection network, 
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and a distribution system [65]. Abstractly, ALICE is 

simply a collection of processing agents and a packet pool 

[ 18, 17]. 

Each processing agent in the abstract model follows 

the following sequence of actions. 

1. Remove a non-sleeping packet of a reducible 

function from the packet pool. 

2. If the packet represents a type A reducible 

function then using the Args field to locate 

the function's arguments, determine if the 

arguments required to be constructor functions 

are indeed constructors. 

then 

If all arguments are of the correct form, then 

a. alter the function and argument fields to 

represent the constructor function for the 

result. 

b. decrement the Ref field of unneeded 

argument packets, indicating they are no 

longer needed by the current packet. 

c. jump to step 1. 

If any arguments are not of the correct form, 

a. write the identifier of the current packet 

in the Signal field of each non­

constructor argument packet. 
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b. write the count of the failing argument 

packets in the Status field of the current 

packet, thus marking the packet "asleep". 

c. replace the packet in the packet pool. 

d. jump to step 1 above for retrieval of 

another packet. 

3. Match the current packet's function and its 

argument packets with the correct left hand 

side of some rewrite rule. 

4. Implement the type B reduction of the current 

packet by the following actions. 

a. Use the current packet to represent the 

outermost function of the right hand side 

of the rewrite rule. Maintain the same 

identifier. 

b. For each argument of the outermost 

function, obtain an unused identifier. 

Generate a packet for each argument. 

c. Record the obtained identifiers in the 

Args field of the outermost function's 

packet. 

d. If the current packet was the subject of 

lazy evaluation, then mark each of the 

generated packets as "lazy" and "not-yet­

required". 
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e. set the Ref field of each newly generated 

argument packet to reflect that it is 

referenced by the outermost function. 

f. Deposit all of the packets into the packet 

pool. 

5. Jump to step 1. above and retrieve another 

packet. 

Continuing the abstract description, the packet pool 

must provide 3 major aspects. The first is passive in 

nature. The packet pool must provide readjwrite access to 

any packet based on its identifier; it should provide 

simultaneous read access but private write access. The 

second and third aspects of the packet pool are active in 

nature. The packet pool supplies the-processing agents 

with non-sleeping packets of reducible functions. The 

packet pool supplies the processing agents with unused 

identifiers for type B reductions. 

In implementing this abstract model, the developers 

of ALICE have utilized a special VLSI chip called a 

transputer. Briefly, a transputer is a von Neumann 

computer. A processor, 4K bytes local memory, four link 

interfaces for interfacing to other transputers, 

interfaces for accessing other devices, and system 

services such as reset and the clock are all packed onto a 

single chip. The transputers are programmed in a language 

called Occam. Each transputer in a system executes its 

own Occam program using its own local memory (93]. 
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The abstract machine is fulfilled by the organization 

represented in Figure 81. The agents are implemented by 

pairs of transputers. Similarly, the packet pool segment 

is implemented via two transputers and standard RAM memory 

of 256K bytes [93, 65, 42]. 

Processable Packet Identifier Ring 

RAM 
Packet 

Pool 

Identifier Ring 

Packet 
Pool 

Controller 

Figure 81. single Module of ALICE 
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The transputers of the packet pool act as a highly 

intelligent memory controller. The passive aspect of the 

packet pool is fulfilled in the addressable RAM. Packets 

are stored in the RAM. The identifier field of each 

packet is dropped and instead, each packet is identified 

by its unique address in memory. The active aspect of the 

packet pool segment is· implemented by the transputers. 

The transputers identify the reducible not-sleeping 

packets in the RAM and supply them to the agents. 

Further, those packets for which the Ref field value has 

fallen to zero are recognized by the transputers as empty 

or unused. As new unused identifiers are required for 

type B reductions, the memory transputers furnish the 

addresses of these packets to the agents. Thus, garbage 

collection is performed concurrently with program 

evaluation. 

The specific processing to be performed by a given 

transputer is determined by Occam programs loaded into the 

transputers when the system is initialized. This not only 

allows the application of the transputer to such distinct 

tasks as agent and packet pool controller, but, also 

allows certain agents to specialize in the execution of 

specific functions such as Input/Output. 

The processable packets and unused identifiers are 

made available to the agents by the packet pool controller 

over two distinct slotted rings [79, p. 312]. Each agent 

has its own slot window on the constantly circulating 
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rings. As empty slots pass by on the packet ring [Figure 

81], the packet pool controller writes the identifiers, or 

addresses, of processable packets into them; and as its 

slot passes, each free agent picks off the address of its 

next packet from the ring. Similarly, the unused 

identifier ring carries unused identifiers from the packet 

pool controller. Each unused identifier, or free address, 

is written onto the Identifier ring only once. Any agent 

needing an unique unused identifier simply picks one off 

the Identifier ring. 

A shared bus connects the agents with the packet pool 

controller. When an agent has seized an address from the 

Packet ring, it accesses the RAM by way of the controller 

for a copy of the processable packet. Argument packets 

and rewrite rules are also accessed in this fashion. This 

allows each agent to read from the same memory location 

(but, not simultaneously). When an agent has performed a 

type B reduction, the addresses seized from the Identifier 

ring are employed to rewrite new packets in the RAM via 

the bus. Other types of memory rewrites such as 

signalling and changing the required status of lazy 

packets is also done via the bus. Thus, only one agent 

may write to a given location since only one agent 

possesses a given address. 

The bus is the bottle neck for the system. It is 

estimated that each packet pool access takes about 1 

nanosecond and the processing of each packet requires 
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approximately six packet pool accesses with an average of 

128 nanoseconds required for the processing of a packet. 

Figures indicate that twenty agents would be required to 

utilize the bus fully [18, 17]. At this time, only two 

transputer pairs are mounted on a board, thus excessive 

bus contention does not appear to be a problem. 

The organization of Figure 81 is a fundamental module 

of the ALICE system. A single-user workstation is 

composed of a single module. The modules can be combined 

to form a multiuser mainframe as shown in Figure 82. In 

the larger system, the basic single-user modules are 

connected together by a Delta network built from four-by­

four crossbar switches, implemented as a custom chip in 

ECL (emitter-coupled logic) [65]. In the extended 

environment, the packet pool is distributed throughout the 

system in the 256K-byte segments of each module. Each 

packet pool segment is addressable from any module over 

the Delta network. The Delta network provides for the 

movement of packets and rules at a rate of two hundred 

megabits per second. 

In order to improve load balancing, intelligent links 

are positioned between the rings of adjacent modules. A 

link monitors the load on functionally equivalent adjacent 

rings. It transfers identifiers from heavily loaded rings 

to lightly loaded ones. Thus, if each slot were full on 

the Packet ring of module two and the Packet ring of 

module one was near empty, the link would begin filling 
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module one's empty Packet ring slots with identifiers from 

module two's Packet ring. Such a link also exists for the 

Identifier Rings. Thus work and storage are distributed 

between modules, and identifiers from each ring can 

migrate through out the system. The rings and the links 

compose ALICE's distribution system. 

The processing rates of the ALICE system are very 

positive. Estimates indicate a single-module desk-top 

system will process in the neighborhood of 150,000 packets 

per second. A multi-module system of 4096 nodes can 

process in excess of 150 million packets per second [18, 

17]. 

The packet pool and processing agents work together 

to implement a parallel reduction system based on the 

packet representation of graph reduction. The 

distribution system and delta network function with the 

agents and packet pools to implement a shared memory 

distributed multiprocessor system. 

7.3 Summary 

This chapter introduces the concepts of functional 

languages and reviews the distinctions between functional 

and procedural languages. 

The chapter shows that a machine capable of function 

evaluation, based on application of rewrite rules, 

implements a demand driven system; functions are evaluated 

when their results are demanded. Demanded functions may 
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be evaluated in parallel without effecting the outcomes of 

other functional evaluations. 

The basic scheme of utilizing packets to implement 

graph reduction and to represent the nodes and arcs in a 

reduction graph is introduced and the concepts of eager, 

constrained, and lazy evaluation are reviewed. 

The architecture of the Applicative Language 

Idealized Computing Engine, ALICE, a shared-memory 

multiprocessor, reduction machine is surveyed. 



CHAPTER VIII 

SUMMARY AND POSSIBLE EXTENSIONS 

a.o summary 

This treatise reviews the von Neumann computer 

architecture and presents the fundamental elements of five 

classes of parallel computer architecture. Further, it 

provides example architectures from each of the parallel 

classes. The architectures and examples presented are the 

following: 

1) Array processors and the ILLIAC IV. Array 

processors allow the simultaneous identical processing of 

multiple streams of data and are termed single­

instruction-stream multiple-data-stream processors (SIMD); 

2) Pipelined computers and the HEP. Pipelined 

computers allow functions such as instruction 

fetch/execute and floating point arithmetic operations to 

be broken down into subfunction stages and input to be 

sequenced through the subfunctions to produce a final 

result for each input value. The rate of result production 

is the same as the rate of input entry as long as the 

pipeline of subfunctions is full. This approach allows 

parallel processing of instructions, or data, or both; 
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3) Multiprocessors, the Alliant FX/8, and the Cosmic 

Cube. Multiprocessors allow the application of multiple 

CPUs to the solution of a single problem using a multiple­

instruction-stream multiple-data-stream (MIMD) scheme and 

thus reduce the time to solution of a single problem; 

4) Data flow machines, the Dennis Static Data Flow 

Computer, and the Manchester Data Flow Computer. Data 

flow computers are non-von Neumann in nature. They base 

their execution on data flow graphs where each node in the 

graph fires when all its inputs are available. The 

structure of a data flow graph is based on the 

instructional data dependencies inherent in the program to 

be executed. The control of data flow machines is based 

on operand value availability rather than program 

instruction sequencing. 

5) Reduction machines and the ALICE. Reduction 

machines are also non-von Neumann in nature. Reduction 

machines base their execution on the demand for data and 

graph reduction. A function is evaluated only when its 

result is needed. Thus, they are termed demand driven. 

8.1 Proposed Additions to the Text 

This treatise can be used as a class text in computer 

architecture. Complete utilization suggests certain 

additions should be made to the work. The additions are 

the following: 
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1) appendices on several topics should be added. 

One appendix should investigate networks. Crossbar 

switches, interconnection, alignment, and Delta networks 

should be discussed, focusing on the function, 

similarities and distinctions of the networks. Also, an 

appendix on transputers should be incorporated. 

2) an index should be provided, 

3) a set of problem oriented questions with 

solutions, and a set of discussion oriented questions with 

suggested answers or references to other sources for 

further study should be included with each chapter, 

4) an annotated bibliography should be appended to 

each chapter to aid the student interested in ·further 

investigation on a given topic 

8.2 Text Readability 

This treatise is designed for undergraduate students. 

In order to confirm that the readability of the text is 

appropriate for undergraduates, the text was submitted to 

a readability analysis based on the Fry Readability 

Scale1 • The analysis data is shown in Table II. Based on 

the Fry Readability Scale, the reading grade level of the 

text is eleven. This is satisfactorily low to be read by 

undergraduates. 

lFry, Edward B., Fry Readability Scale. Jamestown 
Publishers, 1978. 
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TABLE II 

ANALYSIS DATA OF TEXT READABILITY 
FOR THE FRY READABILITY 

SCALE 

Text Beginning Line Syllable Sentence 
Page Number Count Count 

17 1 168 5.8 

39 2 156 3.0 

46 12 160 6.1 

58 12 162 5.7 

72 28 168 6.9 

99 1 155 6.4 

148 13 155 6.7 

159 1 173 6.6 

177 3 173 5.5 

216 11 188 5.8 

248 9 154 5.7 

255 3 165 6.8 

--------- ---------
Average ----> 164 5.9 
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8.3 Final Statement 

These chapters have been created with computer 

Science undergraduate students in mind. The discussions 

are designed to lead them to a better understanding of the 

structure and organization of parallel computing systems 

and to open their imaginations to the exciting computing 

possibilities made available by parallel computer 

architectures. 
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APPENDIX A 

GLOSSARY 

accumulator: A holding register for the results of 

arithmetical and logical operations. Usually, the 

accumulator is loaded with the value of an operand 

while any other required operands of an instruction 

remain in memory; the result of the operation is 

placed in the accumulator by the arithmetic/logic 

unit. 

address: An identifier of a memory location, register, or 

device. 

address bus: A unidirectional bus over which is 

transmitted digital information that identifies 

either a device or a memory location. 

aliasing: In procedural languages, two or more names are 

used to denote the same memory address. 

alignment network: A network that allows the simultaneous 

connection of any two or more distinct module pairs. 

For example, in an array or a multiprocessor system, 

any memory may be connected to any processor. 
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arbitration network: A network allowing data from any 

input to be routed to one of several possible 

outputs as specified by information included with 

the data. 

architecture: See computer architecture. 

arithmetic/logic unit (ALU): A unit of the central 

processing unit (CPU) that performs arithmetic and 

logical operations. 
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ARPANET: One of the first large scale packet switched 

networks produced by the ARPA project and funded by 

the u.s Defense Advanced Research Project Agency. 

array processor: A computer with one control unit, 

multiple arithmetic/logic units, and multiple memory 

units. The control unit fetches instructions from 

the memories, decodes them and broadcasts the 

instructions to the arithmetic/logic units. Each 

arithmetic/logic unit can fetch its own data for 

processing. An array processor performs duplicate 

operations on multiple data items simultaneously. 

associative memory: See content addressable memory. 

associative processor: A computer system much like an 

array processor with the distinction that it 

operates on associative memories. 

asynchronous: The starting and stopping of processing 

based on the sending and receiving of 

acknowledgement signals between dependant modules. 



barrel shifter: An interconnection network with the 

interconnect function defined as follows: 

B(j) = (j ± 2i) (mod N) 

where N is the number of modules connected, 

o .:5. j .:5. N-1, o .:5. i .:5. n-1, and n = log2N. 
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bus: A common connector. In data communications, a 

network topology in which workstations are connected 

by T junctions to one main cable. In computing, an 

electrical connection between the components of a 

computer system along which data is transmitted. 

cache: A very high speed buffer memory into which 

instructions and data anticipated for use in the 

near future are loaded from .main storage. The 

processor has direct access to the cache. 

call-by-reference: Method of passing parameters wherein 

the function receives the address of the real 

parameter value. Changes to the formal parameter in 

the function results in changes to the real 

parameter in the calling routine. 

call-by-value: Method of passing parameters wherein the 

function receives a copy of the real parameter. 

Changes to the formal parameter in the function 

results in changes to the parameter's local copy and 

not to the real parameter in the calling routine. 

central processing unit (CPU): The unit of a computer 

containing the control unit, the arithmetic/logic 

unit, and a number of registers. 



computer architecture: The arrangement of the parts of a 

computer system, ·their interconnections, dynamic 

interactions, implementations, and management. 
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content addressable memory: A memory that is content 

addressable; that is, where every memory register 

that contains a specified string of symbols (key) is 

accessed rather than the single register whose 

location is specified. 

control unit (CU): The unit of the central processing unit 

responsible for fetching and decoding of 

instructions, operand address calculation, and 

driving the arithmetic/logic unit and other system 

elements. 

crossbar switch:· A telephone switching network. An 

alignment network that allows simultaneous conflict 

free transmissions between two sets of modules. For 

example, if there are M memories and P processors, 

data may be transmitted on an MxP crossbar switch 

from any memory to any processor, assuming there is 

a one to one mapping. An MxP crossbar switch has M 

inputs and P outputs. 

data dependency: The state of being dependent or 

conditional on the value of the data read or written 

in a single instruction or in a block·of code. Data 

dependencies exist between operations when the 

action of one operation on the data affects the 

outcome of the other operation and vice versa. 



data-driven computer: See data flow computer. 

data flow computer: Computer in which instructions are 

executed based on data dependencies. Programs are 

represented by data flow graphs. Availability of 

operands triggers the execution of operations. 
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data flow graph: A directed graph used to represent a data 

flow program, where nodes are instructions or 

processes whose outputs pass along links to 

subsequent processes. A node executes, or fires, if 

all its input links are carrying values. The graph 

represents the data dependencies inherent in the 

computer program. 

data parallelism: The capability of a computer to process 

multiple data items at the same time. 

delta network: An alignment network establishing a path of 

constant length from any one of its an inputs to any 

one of its bn outputs. This is an anxbn switching 

network with n stages consisting of aXb crossbar 

switches. It is cheaper to construct than an anxbn 

crossbar switch but provides less speed as the 

number of terminals increases. 

demand-driven computer: See reduction machine. 

distributed data processing: The processing of jobs at a 

number of geographically separate locations. 

distribution network: A network that allows data from an 

input to be dispensed to one or more outputs. 
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emitter-coupled logic: In microelectronics, a transistor 

logic circuit characterized by fast action and high 

power dissipation. The fastest of the widely used 

technologies for LSI and VLSI chips. 

fault: In systems, a condition that causes a device, 

component, or element to fail to perform in a 

required manner. The fault may be either physical 

or algorithmic. 

fire: The execution of a node in a data flow graph. 

flip-flop: A simple circuit that can maintain one of two 

possible stable states. 

front-end: In computing, a front-end processor is used to 

handle communication interfacing. 

Goodyear-Aerospace: The division of Goodyear Tire, Akron, 

Ohio, that designs and builds parallel computers (as 

well as other unrelated things) • Notables it has 

built are STARAN (1974) and the Massively Parallel 

Processor (MPP) (1982). 

graceful degradation: Components already in the system 

assume some or all of the responsibilities of failed 

components. The system can continue to operate 

although there may be some reduction of performance. 
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graph reduction: a form of reduction in which each 

i~struction that accesses a particular definition 

will manipulate references to the definition. That 

is, graph manipulation is based on the sharing of 

arguments using pointers. When a functional value 

is demanded the reference is traversed in order to 

reduce the definition and return with the actual 

value. 

host: A computer used to prepare programs to be run on 

other systems. Within a network, it may provide 

services such as computation, database access, or 

allow use of special programming languages. Within 

a distributed system, it may be the primary 

controlling computer within the multiple computer 

installation. 

image processing: The processing of digitized image data 

by a computer to obtain information about the image 

or to change the representation of the image. 

immediate operand: Constant stored in the machine 

instruction. 

instruction parallelism: The capability of a computer to 

execute multiple instructions at the same time. 
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interconnection network: In general, an interconnection 

network allows communication between modules. In 

parallel systems such as array processors, there is 

a specific one to one and onto function defined, say 

f. If there are N modules, the interconnection 

network allows simultaneous communication between 

module i and module f(i) where i= 1,2, ••• N. The 

specific function is a constant for the network and 

designed for the application of the system. 

interleaved memory: If n memory modules are numbered o, 1, 

2, ... , n-1, and if words at address i are located 

in memory module number i (mod n), then the memory 

is n-way interleaved. The n memory modules may be 

operated independently and timeshare the memory bus. 

large scale integration (LSI): The fabrication of 100 to 

1000 gates on a single chip. 

LOCK and UNLOCK operations: Process synchronization 

primitives. Used so that each process accessing 

shared data excludes all others from doing so 

simultaneously. Processes attempting to initiate 

access to shared data while another process has 

access is forced into busy waiting. See P and V 

operations. 

machine instruction: An instruction in binary code that 

can be executed directly by a computer. 
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main memory: The memory in a computer that stores 

instructions and data that are in active use by the 

processor. 

multiprocessor: A computer system with more than one 

central processing unit. Used to decrease the time 

to completion for a single job. 

network: Either a series of interconnected points or a 

system of interconnected communication facilities. 

outermost function: In reduction, in an expression, the 

operation of lowest precedence. 

P and V operations: Process synchroniza~ion primitives. 

Used so that each process accessing shared data 

excludes all others from doing so· simultaneously. 

Processes attempting to initiate access to shared 

data while another process has access is removed by 

the operating system from the list of ready 

processes (put to sleep). 

packet: A self contained component of information. In 

communications, the information is a message 

comprising address, control, and data that can be 

transferred as an entity within a network. 
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packet switching: A method of message transmission in 

which each complete message is assembled into one or 

more packets that can be sent through a network, 

collected and reassembled into the original message 

· at the destination. The individual packets need not 

be sent by the same route. The channels are seized 

only during the duration of packet transmission and 

are then released. 

parallel computer: A computer that can perform multiple 

operations at the same time. 

pipelining: The process of partitioning a job into 

distinct steps and streaming inputs through the 

steps. The mechanism is like that of materials 

moving through an assembly line. 

process: A program or some more or less self-contained 

transformation that is actually being executed by a 

processor. 

processor: A device or system capable of performing 

operations upon data. 

program counter: The register in the control unit of a von 

Neumann computer that holds the address of the next 

machine instruction to be executed. 

random-access memory (RAM): A memory system which accepts 

as input the location of a memory word and returns 

as output the contents of that word. The time to 

access one word is the same as that required to 

access any other word. 
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reduction: A computation system in which programs are 

built from nested expressions. The nearest analogy 

to an instruction is a function application where 

the function returns its result in place (a CALL­

RETURN pattern of control). A function or its 

arguments may be recursively defined as a primitive 

operation, such as add or multiply, as a constant, 

as an expression, or as another function. In 

reduction, a program is equivalent to its result in 

the same way that 2+2 is equivalent to 4. The main 

points of reduction are that 1) program structures, 

instructions, and arguments are all expressions, or 

functions; 2) there is no concept of updatable 

storage; 3) there are no sequencing constraints 

other than those implied by demands for operands; 4) 

demands may return both simple or complex arguments, 

such as a function. 

reduction machine: Computer in which the requirement for a 

result triggers the operation that will generate it. 

referential transparency: A principle which states that 

the replacement of an expression, or function, by 

its value is entirely independent of the context in 

which the function application appears. 



shuffle-exchange: An interconnection network with the 

interconnect function defined as follows: first 

apply the shuffle function and follow it by the 

exchange function. The shuffle function may be 

defined as: 

S(an-l···alao) = an-2···a1aoan-1 
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where the number of processors is N; A= an-1···a1ao 

is a processor address in binary, each ai is a bit, 

and 0 < A < N-1; and n = log2N. The exchange 

function may be defined similarly as E(an-l···alao) 

= an-1···a1ao (the right most bit is complemented). 

supercomputer: A loose term for an extremely powerful 

mainframe computer that provides high speed 

computing. 

token: The operand value emitted by a node in a data flow 

graph. 

transputer: A von Neumann computer implemented on a VLSI 

chip. A processor, 4K bytes local memory, four link 

interfaces for interfacing to other transputers, 

interfaces for accessing other devices, and system 

services such as reset and the clock are all packed 

onto a single chip. The transputers are programmed 

in a language called Occam. Each transputer in a 

system executes its own Occam program using its own 

local memory. 

V operation: See P and V operations. 



very large scale integration (VLSI) : The fabrication of 

100,000 or more gates on a single chip. 
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von Neumann computer: A computer based on the work of 

mathematician and computer designer John von 

Neumann. The computers are characterized by 1) a 

single computing element incorporating processor, 

communications, and memory, 2) linear organization 

of fixed size random-access memory cells, 3) a 

sequential, centralized control of computation. A 

machine instruction program is loaded sequentially 

in main memory and executed under the sequencing of 

a program counter. 



ADVAST 

ALICE 

ARPA 

CE 

CIR 

CPU 

cu 

ECL 

EDVAC 

ENIAC 

FFT 

FLOPS 

GFLOPS 

HEP 

IAS 

IBM 

ILLIAC 

IP 

iPSC 

APPENDIX B 

LIST OF ACRONYMS 

In the ILLIAC control unit, ADVAnced 
instruction STation. 

Applicative Language Idealized Computing 
Engine. 

Advanced Research Project Agency. 

In Alliant, Computational Element. 

current Instruction Register. 

Central Processing Unit. 

Control Unit. 

Emitter-coupled Logic. 

Electronic Discrete Variable Automatic 
Computer. 

Electronic Numerical Integrator and 
Calculator. 

Fast Fourier Transform. 

FLoating Point Operations Per Second. 

Giga (one billion) Floating Point 
Operations Per Second. 

Heterogeneous Element Processor 

Institute for Advanced Studies computer. 

International Business Machines. 

ILLinois Array Computer. 

In Alliant, Interactive Processor. 

Intel Personal Supercomputer. 
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IPU 

LAN 

LINPACK 

LSI 

MAR 

MBR 

MFLOPS 

MIMD 

MIPS 

MISD 

MR 

MSIMD 

PC 

PE 

PEM 

PSW 

PT 

RAM 

SDI 

SFU 

SIMD 

SISD 

ssw 

In the HEP, Instruction Processing Unit. 

Local Area Network. 

LINear equations software PACKages. 

Large Scale Integration. 

Memory Address Register. 

Memory Buffer Register. 

Mega (million) FLoating Point Operations 
Per Second. 
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Multiple-Instruction-stream Multiple-Data­
stream. 

Million Instructions Per Second. 

Multiple-Instruction-stream Single-Data­
stream. 

Mask Register. 

Multiple Single-Instruction-stream 
Multiple-Data-stream. 

Program Counter. 

Processing Element. 

In array processor, Processing Element 
Memory. In the HEP, Process Execution 
Module. 

In the HEP, Process Status Word. 

In the HEP, Process Tag. 

Random-Access Memory. 

Strategic Defense Initiative. 

In the HEP, Scheduler Function Unit. 

Single-Instruction-stream Multiple-Data­
stream. 

Single-Instruction-stream Single-Data­
stream. 

In the HEP, Scheduler Status Word. 



TSW 

VLSI 

XR 

In the HEP, Task Status Word. 

Very Large Scale Integration. 

indeX Register. 
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