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CHAPTER 1
INTRODUCTION TO FREE ELECTRON LASERS
Introduction

After the discovery [1] of Synchrotron Radiation, many devices based
on the concept of "stimulated synchrotron emission" have been proposed
and successfuly operated during the period between 1950 and 1960. Free
Electron Lasers (refered to henceforward by its acronym, FEL ) belong to
this large family of "free electron" devices which include Klystrons{2],
Magnetron [3], traveling wave tubes [4], Orotron [5], Ubitron [6], and
Gyrotron [7]. These other devices generated coherent radiation in cm
and mm wavelengths. The generation of short wavelength coherent
radiation via stimulated synchrotron emission at infrared, visible and
ultraviolet regions of the glectromagnetic spectrum have eluded
researchers for some time until the first successful operation of
Stanford FEL in 1976 [8].

FEL was proposed in its present form by Madey [9] in 1971 but the
history of FEL goes back to Pierce [10] who derived the gain expression
for traveling wave tubes in 1950 and to Motz [11] who proposed the
magnetic undulator and successfuly generated spontaneous emission using
this undulator in 1951. Coherence could not be achieved due to the lack
of a bunching mechanism. This shows the critical dependence of FEL
operation on the characteristics of the accelerator being used.

A separate chapter (Chapter II ) will be devoted to the physics of



accelerators used in FEL experiments.
Components

The basic components of an FEL are an accelerator, an undulator
(wiggler) and a set of mirrors . Figure 1 depicts the FEL set-up at
Bell Laboratories. 1In other FEL facilities different accelerators are
used. The original Stanford FEL was inserted to the end of the
superconducting rf-linac (SCA). A diagram of the original Stanford
oscillator along with other parameters is given in Figure 2 . While a
more detailed description of these accelerators will be given in Chapter
1I, here we will simply assume that an accelerator produces relativistic
electrons (pulsed or continous beam) which are injected into a wiggler
where the electrons radiate due to the wiggling motion. This is
basically a synchrotron radiation even though some researchers prefer
the term "magnetic bremstrahlung" refering to the fact that electrons
slow down as they radiate. But there is a subtle difference between the
concepts of "synchrotron radiation" and "magnetic bremstrahlung". 1In
the synchrotron radiation the transverse momentum of the electron need
not be conserved (it can be absorbed by the bending magnets) whereas in
a bremstrahlung process momentum in every direction must be strictly
conserved. Therefore wiggler (undulator) radiation should be labeled as
a synchrotron radiation.

The theory of synchrotron radiation can be found in Schwinger's
original paper [1] . Spectral and directional properties of synchrotroﬁ
radiation in relation to FEL radiation will be discussed in Chapter VIII
Here it will suffice to say that the synchrotron radiation from circular

accelerators exhibit a very broad spectrum and as a consequence
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Figure 2. A schematic diagram of the original Stanford FEL oscillator



power-per—frequency is low. A light source with a broad spectrum has
its advantages but generaly is not suitable for spectroscopic studies.
Motz [11] proposed the undulator [Figure 3 ] to improve the
power-per-frequency. Figure 4 compares the spectra of circular
machine synchrotron radiation and undulator radiation. The sharpness of
the undulator radiation spectrum is due to the fact that in the
undulator the average angle of deviation of the trajectory from the axis
is lower than the aperture of emission cone (Hence the necessity for
relativistic electrons which emit photons in a very narrow cone,
approximately 1/¥ radians, where ¥ is the Lorentz factor). Therefore
the pulse duration observed by an observer on the axis will be much
longer than that of circular-machine radiation. For the undulator ot

will be approximately

2

51:3%:- Y (14r% (1.1)

where L 1is the length of the undulator and K 1is the strength

parameter given by

eB

rms)‘w
R=—me ¥ (1.2)
2Nmoc

Brms is the magnetic field on the axis. The uncertainty relation

Aw 6t . @ leads us to

‘ 2
Aw gE o~ 2%9 Y —l—z (1.3)
1+K

This bandwith is ¥ times smaller than the circular-machine radiation

bandwith which is given by

3n¢ 73

Aw =~ 4P

p : radius of curvature (1.4)
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The fundemental frequency of the undulator radiation will be formally

calculated in later chapters, here we simply report the result.

2 2
wo=2ck"¥ J(1+K7) where kwE 271/1w (1.5)

There are also harmonics but only odd harmonics are emitted in the axis
direction. The harmonics can be utilized for the purpose of higher
frequency generation of coherent radiation but in general they are
detrimental to the operation of FEL since they steal power from the
fundemental. This situation motivated the development of the helical
wigglers. Figure 5 shows various helical wiggler magnets. The
synchrotron radiation from a helical wiggler does contain harmonics but
only the fundemental is emitted on the axis. Since it is the most
widely used magnet geometry we shall concentrate on the helical wigglers
from this point on. For a theoretical quantum mechanical treatment, the
vector potential of thevhelical wiggler can be represented as (on the

axis)

- -~

K =a cossz X+ a sinsz y (1.6)
We conclude this section by mentioning the significance of the strength
parameter K .,  As we shall see in Chapter VIII, when K >1 most of the
radiation is emitted in an off-axis direction which is not desirable in
a laser device. 1In most experiments K is chosen to be approximately

K =1 and this corresponds to a magnetic field strength of 1 KG.
FEL Interaction

A quantitative description of the interaction between the electron
beam (pulsed or continuous) and the radiation field (single mode or

multi-mode) inside a wiggler and the growth of radiation (gain) along
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with the growth of coherence, have been approached by many physicists
from very different angles. The literature on the subject is
voluminuous., Historicaly the first analysis was quantum mechanical [9]
but here we shall present the simplest classical analysis given by
Colson [12]. The easiest way to calculate photon gain is by calculating
the energy loss of the electrons. It is assumed that the energy lost by
the electrons is the energy gained by the radiation field. The electron
energy variation can be written as

eESvL

7 = —— (1.7)

moc

where v, is the transverse electron velocity and E, is the electric

field of the copropagating wave.

Py cK/E .
v,= w7 = - 7 sin sz (1.8)
Es= Eocos(wt-kz + ¢ ) (1.9)

where ¢ is the field phase and k = @ [c¢ is the laser phase
wavenumber. The laser energy gain is related to the electron energy
loss as follows.

Awg: - moc2 Ay | (1.10)

The gain is defined as

(1.11)

where WOs is the initial energy of the laser field. For a linearly

polarized electromagnetic wave

2
W= (1/81I)E0 v (1.12)

V is the volume. Inserting (1.8) and (1.9) in (1.7) we obtain
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¥= - ———— ( sin¥_ - sin¥ ) (1.13)

m,c Y/E
where we define
t

Assuming weakly perturbed electron motion (small-signal regime)

¥ = (k + k)z-0t-¢ (1.14)

z = Bect (1.15)

then we can neglect sinW+ since it is the rapidly oscillating part.
(1.13) becomes (by taking ¥ =¥ )

EOeK

Y= - ——gsin ¥ (1.16)

mOCZY/E

and (1.14) can be differentiated with respect to time

V=¥ =-0+kek )z (1.17)

The square of the instantaneous velocity can be written as

2
-2

z + <vL2> = 21- 779 (1.18)

Substituting this in (1.17)

z%c [1 - —12(1+K2)] (1.19)

2y

taking the derivative with respect to time, we obtain

"

7

which can be written , by using (1.16), as

2

" e EBory  (14k%) sin?

z=c —15 (1+K%) (1.20)

e . — 00w (1.21)

4ﬁ74(m0c2)2

This is the well-known equation of FEL dynamics. It states that the



dynamics of an FEL obeys a pendulum equation.

the gain in terms of the variation in ¥

obtain (assuming Ay << ¥

i .
Ay =
v 2kwc a¥

Combining equations (1.11),

3 2
8ﬂkwr0c K AV

(1.17) and

1V Q

where Q =
2
(mgye¥)

For n electrons the gain expression becomes

3.2
Bﬂkwr c Kan

0 <A¥ >

G = - 3

v !

n

where <A¥ > = —% Y (a¥ )y

i=1

Integration of (1.21) yields

2

¥ - ¥(o) = ZQZ(COSW - cos¥(0))

where ¥Y(0) and %(0) contain all the initial conditions

¥(0)= -(0 t +0 )

. (v - wo)
¥(0)= - —5— <k,
(4]

where t is the starting time and ®

0

wiggler spontaneous emission.

assumed all along is characterized by

Y= - Q° sin ¥

Q << (c/L)

By integrating

we obtain

(1.

(1.

(1.

(1.

(1.

(1.

(1.

(1.

is the central frequency of
The small-signal regime which we have

, also note that

12

This allows us to write

(1.21) we

22)

23)

24)

25)

26)

27)

28)

29)

the

(1.29) can be written in terms of a dimensionless detuning parameter V.
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© -0
v = 21N g y N :Number of magnet elements (1.30)
o in the wiggler
¥(0) = (c/L)v . (1.31)
This leads us to
b L 2_5 sin UIZ)} .
&Y & -(=) < [ wr2) )sin /2 + ¥(0)] (1.32)
| ar *c a sin(V/2) 2 2
+ (—C- ) 5 d—v-[ w/2) J {sin [vi2 + ‘I’(O)]}

The average of the quantity AV s the physically relevant parameter so

we take the average of A¥  over all the initial phases.

2

s . ontc d §iﬂ£212)]
M>=CO [ w12 (1.33)

The average of the first term in (1.32) vanishes. The gain expression
becomes
2 2.3 2
47 rOK Ln

_ d (sin(vl2)J
G = - (1.34)
A1V @ T @/2)

This is an important and unique result in FEL theory. It is known as
Madey's theorem [13]. Madey has shown that the gain is proportional to
the derivative of the spontaneous emission line-shape and this holds
true for all the undulators and the wigglers. This conclusion has since
been experimentally verified [14].

The expression for gain can be written in terms of the parameters

which are more relevant to the experiments.

2
- - d [sin(V/2) -
G=-gnt a;—( TIR) ) (1.33)
AL
_ 4r O I 2
where g= 4 3T FE 4N (1.36)

E 4]
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10 is the central wavelength of the spontaneous radiation, EE is the
e-beam cross-section, I is the beam current and F 1is a filling factor
which takes into account the fact that only the electrons in the

intersection of the e-beam and the laser beam count. That is

1 if ZE > ZL
F - EE . (1.37)
z if ZE < ZL
L
2
ga— £ 1,5 — (1.38)
1+K 0

Bunching, gain and the coherence

Having discuésed the gain mechanism, let us now consider the
relationship between the gain and the bunching mechanism. The electron
beam from rf-accelerators come in pulses which may sometimes exhibit a
micro-structure. Each pulse consists of many bunches of electrons.
These bunches are typically 1 mm - 1 cm long spatially. The FEL
bunching is conceptually very similar to the rf-cavity bunching. Inside
the wiggler each electron bunch is further bunched at the optical
wavelengths (the spatial dimension of these bunches is approximately
equal to the wavelength of the FEL radiation) and this is the mechanism
responsible for the coherence of FEL radiation since the radiation
emitted from each electron in the bunch will interfere constructively.
FEL bunching is independent of the size of the rf-electron pulse,
therefore FEL bunching will occur even when a continous electron beam is
used. The growth of coherence and the coherence properties of FEL

radiation will be examined in much more detail in later chapters here we



15

would like to describe the bunching mechanism from the viewpoint of
classical physics.
For the purpose of this section we will express the helical wiggler

vector potential in the following form.

~

> e a - % (k z+ck t)
A = — e " v + c.c (1.39)
w = 7 . .
~ (ex$ ie )
where er = ——jz?——— are unit vectors representing left and right

circular polarization. This is one of the possible ways of representing
the static wiggler field as a traveling wave propogating in a direction
opposite to the incident electrons. The laser field may be expanded as
a sum over all the spatial modes of the cavity. If we assume that only

one lasing mode is supported, then the laser field vector potential will

> e_a_ -i(Wt-kz)
be AL = —75——— e + c.c (1.40)

Now consider the Lorentz force on the electrons,

> I S >
F=e(E+vVvxXB) , we are interested in the longitudinal force FL
> - >
given by FL= ev, x B
P >
since v=—z= - cK/2 sin k 2z x A
mOY 7 w

v, is proportional to A = Aw+ AL , therefore
> - > 5 5
F,ox AxXxcurl A « 3 (A7) (1.41)

where A2 is the square of the total field and given by
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-[(@ -ck /2 )t - (k,/2 + k )z ]

2 2 2
A" =a+ a_ + {aaS e +c.c } (1.42)

2 2

a_ and a do not contribute to the derivative, only the cross terms
9

(beating of the wiggler and the laser fields) give rise to F . This

force creates a "bunching potential" which is sinusoidal in nature and

propogates with the velocity

® - ckw/z

S EEYE (1.43)

Figure 6 illustrates how the bunching process works. The electrons
are either accelerated or decelerated depending on their relative phase
with respect to the phase of the bunching potential. 1In either case
they tend to fall into the potential wells and become bunched at the
bottom which determines the size of the bunch ( approximately equal to
2n/k ) . 1If the electron enters the wiggler with the velocity v

it will neither be accelerated nor decelerated hence no gain. Therefore
it is necessary to bias the average electron velocity v, of the
rf-bunch so that VZZ v, This makes sure that there is some net
deceleration of the electrons, and their excess energy is radiated into
the laser field.

The relationship between the gain and the bunching is an indirect
one. For the most part, gain can be derived from single particle
dynamics (assuming no spaée-charge effectS). There is however a subtle
relationship which can only be explained by noting the fact that when
the electrons are not bunched at the optical wavelengths, the fields
produced by different electrons tend to interfere destructively,

resulting in a low operating efficiency.



v
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Y

Figure 6. FEL bunching. Here the incident electrons
are shown stationary with respect to
bunching potential.
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CHAPTER II

FREE ELECTRON LASERS FROM ACCELERATOR PHYSICS

PERSPECTIVE
Introduction

The relationship between the particle accelerator and the FEL goes
beyond the component-device connectioﬁ. Obviously the accelerator is a
component of the FEL and it will have effects on the operation of FEL as
such. But as mentioned by Morton [1], the equations of FEL dynamics are
analogous to the equations of electron dynamics in an accelerator. This
analogy made it possible for accelerator physicists to formulate the FEL
dynamics in their own language and make significant contributions in the
practical realizations of the FEL devices. From this formulation
emerged the conclusion that not any accelerator can be used as an FEL
component and that it has to be optimized for the FEL operation. In some
cases a totally new design was needed. The most recent trend in FEL
development is to build accelerators specifically tuned to FEL operation
since the beam quality requirements for an FEL operation exceeds the
up-grading capabilities of the existing accelerators which were designed
and built for high-energy physics and synchrotron-radiation research
experiments originally.

It is beyond the scope of this thesis to give a complete treatment

of the electron dynamics in an accelerator. We will briefly review the
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properties of accelerators relevant to the FEL operation. Even though
Linac type accelerators are commonly used for FEL experiments, we
shall concentrate on storage-ring type accelerators in this chapter.
Thié.is due to our emphasis on quantum mechanical aspects of FELs
throughout the thesis and the fact that those FELs which exhibit
quantum mechanical properties are designed to be inserted in

storage-rings.
Single Particle Dynamics

In circular accelerators there is an orbit called "design orbit" or
"equilibrium orbit" which is a function of particleyenergy, such that if
a particle is launched on this orbit in the ring it will return to the
same point traveling with the same initial direction.

Obviously, not all the particles in the beam follow this design
orbit since they enter the ring at slightly different positions and

times. The seperation of equilibrium-orbits for different energies is

given by
1)
6x = n A (2.1)
¥
where 71 , a function of azimuth in the accelerator, is called the
"Dispersion". The difference between the total path length of two
different energy equilibrium orbits is given by
5L ac 67
L - g2 ( ] (2.2)
where o is an integral around the azimuth called the "momentum
compaction factor". This integral involves the dispersion function 0

and the local bending radius R . B= v/c
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Let us investigate the particle motion in the transverse plane
(x,y). The path length s along the ring is used as the independent
variable instead of time t, since for relativistic particles the
velocity is practically independent of the energy ('ds/dt ®c ).

Linearized and decoupled equations of motion for a particle with the

design energy are [2]

2
d z = - K (s) x ’ (2.3)
ds .
2 .
R OR (2.4)
y
ds

The coefficients K y(s) ("Focusing functions") are periodic functions
of the magnetic configuration of the guide field. In Table I, we have
listed KX for various elements. The periodicity of K v is the

same as that of the machine

Kx y(s+L) = K (s) (2.5)

X,y
where L 1is the orbit length. The general solutions of equations

(2.3)-(2.4) can be written as
x(s) = aE(s)cos[¢(s)-¢0] (2.6)

where E(s) and ¢(s) are specially defined functions of s with certain
convenient properties and "a", "¢O" are constants (initial conditions)

which determine a particular trajectory. It is customary to define

®(s) = f de (2.7)
OE(S')
so that
1] =-d—‘-<E——]'—=1
Pr(s) = s -z = B (2.8)

ey}
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therefore the solution looks like

x(s) = a¥B(s) cos(¢(s)—¢0) (2.9)

. _ ° ds
with ®(s) = fo B (2.10)
and B(s) = E°(s) (2.11)

The "Beta function" PB(s) can be interpreted as the "instantaneous
wavelength" of the betatron oscillations (oscillations of the particle
with respect to design orbit) and is uniquely determined once the
"focusing function" Kx,y(s) for'the ring is given. Therefore B(s)
can serve as an alternate representation of the focusing
characteristics of the ring. Usually a plot of the desired f(s) is
the first step in the design of a circular (cyclic) accelerator.
Accelerator designers try to come up with a magnet configuration
("Lattice") which has the desired Beta-function. This process of design
is an art-form and involves intricate engineering considerations.

Once the Beta-function is known, one can also define the frequency
of "Betatron oscillations" per revolution which is commonly called the

"Betatron tune",

L
= L[ _ds’
b= jo e (2.12)

Until now, we have assumed that the particle's energy is equal to the
design-orbit energy. Particles with different energies see different
K v which leads to a change in the betatron tumne v - At this

point we have to define a new parameter called the "Chromaticity" of the

machine.
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X,y
C = =0 AR (2.13)
X,Y¥

In a well designed machine this parameter must be kept as small as
possible to avoid a large frequency spread in the beam. Chromaticity is
controlled by sextupole magnets.

If we follow the evolution of x(s) and (dx/ds) , turn after turn,
at a particular S, 1 we see that x, x'=(dx/ds) describe an ellipse
whose area is given by

£ = MW (2.14)

where €. is called the beam-emittance. W is an invariant given by
2 2
W= Y(s)x + 2u(s)xx' + B(s)x' = constant (2.15)

where o(s) and 7Y(s) are functions dependent on B(s)

dB(s)

o(s) = - -% ds (2.16)
_ 1+ a°(s)
¥(s) = ~FBls) (2.17)

x(s) , B(s) , ¥(s) are generally called "Twiss coefficients" and W is
called the "Courant-Snyder" invariant [4]. The ellipse described by
(2.15) changes throughout the machine but the area (emittance) is
constant which is a consequence of the Liouville theorem.

From (2.14) and (2.15) one can derive the beam envelope (transverse
dimension of the beam) g, and its divergence gl defined as the rms
values of x and X' over many betatron-oscillations (at a fixed s)

1/72
o (s) = <xZ> = [ e, Bs) } (2.18)

2N

€ B(s) y1/2
o (s) =/ <x'®> = (——"——) (2.19)

2N
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TABLE I

FOCUSING FUNCTIONS FOR VARIOUS MAGNET ELEMENTS

Element K K

x y
Free Space 0 0
eB 2
Bending magnet ' ’ [ E y] 0
e an e aBy
Quadrupole magnet T on - 5
1(¢By 12 1 eB 2
Helical wiggler magnet 5(_§z ) 5( = J

E : Energy of the particle
e ! Electrical charge of the particle

Bx v : Magnetic field components
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same reasonings apply to y and y' and one can similarly derive Gy and
oy'

Now, let us investigate the longitudinal motion. This refers to the
interaction of charged particles with the accelerating cavities. During
acceleration, a radio-frequency voltage is generated across the gap of
an accelerating cavity. There is one particle arriving at the gap at a
proper time to receive a predetermined energy gain to stay at the design
orbit governed by the guide field (Lattice). Such a particle is called
"synchronous particle" (s.p). Other particles in the vicinity of s.p.
will execute "Synchrotron Oscillation" aiound the s.p. in both energy
deviation and phase coordinates. Since the phase deviation is
manifested as coordinate deviation in the longitudinal direction this

oscillatory motion is called longitudinal motion. The voltage accross

the gap of the accelerating cavity can be written as

V(t) = V_ sin ¥(t) (2.20)

)
The rf-frequency ® is an integral multiple h ("harmonic number") of

the revolution frequency Qo of the synchronus particle

© = hQ, (2.21)

The energy gain of the s.p. in one revolution will be

630 = eV, sin TO (2.22)

For a non-synchronous particle (n.s.p.) in the vicinity of s.p. the

parameters will be

E Eo + OF Q QO+ &Q

(2.23)

-
i

P, + Sp T, + &y

52
H

TO + oY
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where p is the momentum of the particle. Now we can define the

"dispersion" 1N  which was briefly mentioned in (2.1)

n(s)s_g_g_/_%e =_1__.1_2_ (2.24)
¥

-

2
tr
where 7Y is the relativistic factor and Ytr is the ¥ which defines
the "transition energy". It can be seen from (2.24) that at a
particular energy 7£r the increase in in particle speed with energy is
exactly compensated by the increase in path length with energy. Above
Ytr(y >, ) N becomes negative meaning that the revolution frequency
Q (which is equal to v/L) decreases with increasing energy. This is a
relativistic effect and somewhat surprising to common sense.

The change in path-length with increasing energy was given in (2.2)
where the "momentum compaction factor" & was introduced. Now we give

the full definition of @

=1 n(s)
¢ L p(s) (2.25)

where p(s) is the "radius of curvature" of the particle. Using

(2.24), (2.25) and (2.2) we derive the change in the angular revolution

frequency
d _fav dL) _1 (1 1 .8y
Q- ( v L ] " g2 ( 2~ 2 ] ¥ (2.26)
¥ Ter
Since W = hQ? the average change in the phase Y of the electric field

in the cavity between the time of successive passages of the particle

through the cavity is given by

— - e e | —— e | R (:!'27)
TC 2 2
dz 2R BZR Y Ytr v

where R is the average ring radius equal to the circumference divided by
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2t , and z is the coordinate measured along the design-orbit (s = z).
The rate of change of the particle energy can easily be derived from
{(2.22) for the n.s.p.

eV
_g_z = _22 sin? (2.28)

moc

and for the s.p.

dYo _ eVo
dz ~ 2
mc

sin‘l’0 (2.29)

subtracting we obtain

ddr) _ Yo

dz

> [ sin? - sin‘i'O ] (2.30)
m.c

0
The equations (2.30) and (2.27) are the standard rf-equations of
accelerator physics. Compare (2.30) to (1.13) of Chapter I. Equation
(2.30) of accelerator dynamics and Eq.(1.13) of FEL dynamics are very

similar. This similarity becomes more obvious when we write K in (1.13)

in terms of magnetic field strength and also by making the

transformation
4 > S the Eq.(1.13) becomes
dt dz ! AT
(eE_)(eB_ ¢)
%E(SY) = - 2 0w2 5 [sin¥_- sin? ] (2.31)
Y2 kWY(moc )/5 m,c
kSaSaW
= - — [sin¥ - 51n‘P+]

since the vector potential of the laser (signal) field is

eEO

s (2.32)
Y2 ksmoc

a

and
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eBoc
5 = i (2.33)
2
" /E km.c
w O
Now (2.31) and (2.30) are analogous. The transition from accelerator to

FEL dynamics is made by the replacement
(2.34)

This similarity makes it possible to describe the entrapment of
electrons in the ponderomotive potential of the FEL in terms of the
"phase stability" concepts of accelerator physics. In other words the
ponderomotive potential (a moving beat-wave) of the FEL acts just like
the acceleration cavity of the accelerator.

Having established this analogy we now introduce the "phase
stability" of an accelerator. Changing back to "time" t as the
independent variable and combining (2.27) and (2.30) and linearizing we

obtain the following differential equation for the relative phase

AY = ¥ - TO
LA 2wy = (2.35)
dt
where
o2 eV hr cos¥

s = 2Hp0R
Equation (2.35) has stable oscillatory solutions if

n cos‘l’O <0 (2.36)

which is realizable in a synchrotron in two situations

a) ¥<7, and 0<¥ <mn2

(2.37)
b) ¥ > v, and nj2 < ¥ <=
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(assuming that particles are being accelerated) QS is called the
"synchrotron oscillation frequency" and the physical interpretation of
this phase oscillation is as follows. A lagging particle B will gain
energy when it passes through the cavity and will speed up. At a
certain point it overtakes the synchronous particle and leads it. This
will make it to arrive at the cavity earlier than the s.p. therefore
obtaining less energy from the rf-cavity than the s.p. Then the reverse
process will start., This oscillation in phase (hence in longitudinal
position) is the machanism of "phase stability". The ratio of
"synchrotron oscillation" frequency Qs to revolution frequency Qo is

often called the "tune of the synchrotron oscillation"

(2.38)

This number is usually in the order of 1()—2-10‘-3 for proton
synchrotrons and 10-1 for the electron storage-rings. As a comparison,
Dx,y of the betatron oscillations is in the order of 10, usually less
than 10 but greater than 1. The concept of "phase stability" and
"synchrotron oscillations" is illustrated in Figures 7 and 8.

It is instructive to see the trajectories of stable solutions in the
8y-¥Y plane (Figure 9). The closed trajectories correspond to particles
trapped in "buckets". The maximum stable phase curve of a single bucket

is shown in Figure 10. The maximum value of 0¥y for which a particle

may be trapped in a bucket is given by

2 .
2B ReV 7
Sy = 2 Y (2.39)
max i 1
2 2
v Yor

where
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_ Ty ) 1/2
I'(‘1’0) = [cos‘l’D —(2 sm‘l’0 W0)51nW0]

The analogous expression in the FEL dynamics is

Bymax aa 1/2
) -2 () e

(2.40)
! 1+a

0)

LT N|E

To complete the analogy we list here the other transformations from

accelerator physics to FEL dynamics

2
a
() )
BR 70 y’t.x'- 7O 70
asawcos‘l’O 1/2
Qs > Qs = 2kw(—————3———— ] (2.42)
FEL 1+aw

In the light of (2.42) we now have the understanding that the
fundamental frequency emitted in the FEL is a result of the
"synchrotron-oscillations" of the electrons trapped in the
optical-bucket (opposed to the rf-bucket of the acceleration cavity).
This formulation has been developed in great detail in references [5],
[6] so here we only mentioned the basics of accelerator physics, FEL
dynamics analogy. We shall now move on to other aspects of

FEL-Accelerator complex.
FEL Interaction and Electron Energy Spread

In addition to the energy spread introduced by the rf cavities of
the accelerator (natural-energy spread), the FEL interaction also
introduces an energy-spread. This spread depends on the gain of the FEL
and for the small signal regime there is a theorem derived by Madey [7]
which relates the net energy loss of the electrons <Y -¥ > averaged over

the entry phases relative to the phase of ponderomotive potential., to
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2
the phase-averaged energy spread <(7r—7i) >

=18 2
SV > =g 5y <O > (2.43)

1

The theorem connects the mechanism of FEL gain with the broadening
of the electron energy distribution. This connection will be examined
in some detail again in Chapter VII. From the accelerator physics
perspective this FEL introduced energy spread means trouble if the
accelerator being used is not a Linac. 1In the Linac a fresh bunch
enters the wiggler and when it exits the wiggler it is dumped. But in a
cyclic accelerator such as storage-ring the same electron bunch is
re-injected into the wiggler over and over again. Therefore the beam
must be cooled down before it is re-injected into the wiggler. 1In a
storage-ring accelerator (electron or positron machine) one does not
have to devise extra measures of cooling, the beam cools down rather
automatically due to "Radiation damping". Radiation damping due to the
effect of the radiation loss on the motion of the charged particle is a
well known consequence in Synchrotron Radiation [8]. This damping
process can be slow for the high-gain FELs, in that case the wiggler is
not inserted into the ring but set-up on a by-pass. This way the
electron beam is diverted into the by-pass only when it is cool enough

to satisfy the FEL requirements.
Other FEL Issues in a Storage-Ring Operation

As can be seen from (1.35) and (1.36), the most important
requirements for an FEL to work, ie., to have sufficient gain and to
reach saturation at a reasonable power level, are as follows:

a) The current density of the beam must be sufficiently high.
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b) The energy (or momentum) spread of the beam must be sufficiently
small.

The first requirement is especially strong for the short-wavelength
(A <1000 AD) FELs since no good mirrors are available at these
wavelengths and the only way to achieve coherent radiation from
free electrons is to have a very high gain (hence very bright electron
beam) and a long wiggler.

When we look at these requirements from the accelerator physics
perspective we see that they are conflicting. A high current density in
a storage-ring accelerator is only achieved at the expense of a large
energy-spread. It is difficult to achieve a high electron density in a
storage-ring because of the "quantum-excitation" process. If it were
not for the "quantum-excitation process" (which is a consequence of the
fact that synchrotron radiation is emitted in photons of discrete
energy) the "radiation damping" would cause the beam to collapse into a
very dense and singular electron bunch. The transverse size Ox'y of
the beam is finalized when a balance is reached between the "radiation
damping" and the "quantum excitations".

As the current density increases the collective effects become
important. The most important of these are

a) Touschek-effect (Intra-beam scattering): Two electrons
oscillating within a bunch may Coulomb scatter, transferring some of the
oscillation energy of each electron from one coordinate to another.

When such a scatter occurs in a dispersive region of the Lattice, a
radial betatron oscillation is excited. As a result, beam grows both
radially and longitudinally, thereby increasing the emittance and

decreasing the electron density.
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Formal treatment of the intrabeam-scattering is very complicated but

an approximate expression for the radial diffusion rate was found {9].

1 I /H

< > (2.44)
T 2 3
€ o] Y
x . o ¥ By
where
2 2
H=73yn +2am +Bn

with o« Bx v 7 being the Twiss parameters, 7 the dispersion
function and ' its derivative with respect to s. UP is the natural
momentum spread.

The stored beam in a storage-ring accelerator has a finite life
time. The Touschek lifetime is proportional to 73 , to the square of
the momentum acceptance and inversely to the beam density. So aside
from the limitation that Touschek—effect prevents the achivement of a
dense beam, supposing that we have such a beam, then the lifetime of the
beam would be shortened, an undesirable feature.

b) Coherent Instabilities: The circulating electron beam produces
electromagnetic fields on the vacuum chamber walls which influence the
motion of the other stored electrons. Such collective interactions can
cause "unstable coherent oscillations" which lead to a growth of the
bunch size © i or to the loss of electrons from the bunch thereby
decreasing current density.

It is now clear that in a storage-ring accelerator one cannot
achieve very dense electron beam (compared to other type of accelerators
storage-ring still has the best beam quality, i.e. highest current
density and lowest energy spread) without increasing the energy spread

or without causing some collective effects to arise.
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CHAPTER III

QUANTUM THEORY OF THE FREE ELECTRON LASER :

INTRODUCTION TO LATER CHAPTERS
Introduction

Classical theories of the FEL have been largely successful in
explaining the experimentally relevant features of the existing FEL
devices as we described in Chapters I and II. The first analysis and
the proposal of the FEL mechanism was based on a quantum mechanical
calculation by Madey [1]. It was however realized later that the
expression for gain did not contain h and the quantum theory of the
FEL was abandoned so that subsequent research efforts were concentrated
on the classical aspects of the FEL.

From a theoretical point of view, classical theory of the FEL is not
satisfactory. At the most fundamental level the gain mechanism of the
classical theory ignores the recoil momentum of the electron due to the
emission or absorption of a photon and thus becomes only a rough
approximation.

Even though the quantum theory was neglected in the early
development of FEL, everyone agrees on the fact that a quantum theory is
essential for a proper treatment of the start-up of the FEL from the
initial noise and for an explanation of the evolution of coherence.

This is due to the fact that in the early stages of FEL start-up the

number of photons in the cavity is small and the relative magnitude of
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the fluctuations is large. The frequency and the phase of the signal
are not very well defined and the gain is much lower than the value
predicted by the classical theory.

The questions involving photon statistics and the quantum coherence
are far from being purely academic questions, on the contrary, photon
statistics has observable, macroscopic consequences in the operation
of an FEL. Unfortunately we do not have a satisfactory fully quantum
mechanical many photon theory of the FEL at hand to treat the start-up
problem properly. The problem of photon statistics cannot be treated
separately from the electron dynamics. Until now all the efforts for
the formulation of the photon statistics of an FEL relied on approximate
solutions of either Klein-Gordon or Dirac equation {(in the case of
moving.frame formulation the solutionsbof Schrodinger equation) for the
motion of electrons. 1In this thesis, we shall derive the solutions of
Dirac equation for the motion of an electron in a uniform helical
wiggler, a tapered helical wiggler and a wiggler with axial guide field
respectively. These solutions are 2-D solutions, i.e., transverse
momentum components have been included right from the beginning in the
Dirac Hamiltonian. Once the transverse momentum effects have been
included in the electron dynamics, it is our hope that a complete theory
of the photon statistics of the FEL will be developed based on our 2-D
solutions.

In addition to derivations of 2-D solutions of Dirac Equation for
the motion of an electron in various helical wiggler geometries we
also carried out perturbational calculations to obtain the small-signal

gain expressions in these configurations. We especially demonstrated
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the effects of quantum mechanical transverse momentum corrections on the
spontaneous-emission linewidth and gain. Quantum mechanics sheds some
further light on the "instability region" when there is an axial-guide
field, this will be discussed in Chapter VI. In Chapter VII we carry
out numerical calculations to investigate the effects of quantum
mechanics on saturation mechanism. In Chapter VII we also develop a
classical model for the FEL and incorporate the quantum mechanical
effects into it.

Finally, we would like to point out that quantum theory, especially
the electron dynamics aspects of it, significantly alters the classical
theory of the FELs operating in the xX-ray region. Therefore the quantum
theory of the FEL becomes absolutely essential for the short-wavelength

FELs.

Formulation: Preliminaries

In our formulation we chose the Relativistic-Quantum Mechanical
approach since in general the transverse motion is nontrivial and there
is no frame in which the electron is completely nonrelativistic. Also
multimode fields, pulse propagation problems and nonuniform wigglers
cannot be handled by a nonrelativistic approach. Above all, we want to
avoid approximations as much as possible. A moving-frame formulation
involves many approximations. Before we discuss the laboratory-frame
formulation in detail let us briefly summarize the moving-frame
formulation.

The moving-frame approach is based on the basic idea that the
wiggler field is seen by the electron as a radiation field moving

towards it. This is the inherent approximation of this formulation
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(akin to Weisacker-Williams approximation) which is problematic from

a theoretical point of view since the transverse motion complicates
this picture. Once this is accepted then the FEL interaction reduces to
a scattering problem. In other words the laser and wiggler photons hit
the electron from opposite directions and the electron scatters the
"wiggler—-photons" into "Laser-photons" and vice versa. Gain is possible
because the stimulated forward scattering of wiggler photons into laser
photons is larger than that of backward scattering. This process is
illustrated in Figure 11.

In the formulation one has the freedom of choosing any moving frame
in which the motion of the electron is nonrelativistic. There is one
choice which is particularly useful for the clarification of the ideas.
namely the so called Bambini-Renieri frame [2], in which the laser
photons and the wiggler photons have the same frequency. Let us assume

only two modes and hence a quantized radiation field

> >
A= AL + Aw (3.1)

L and w label the laser and wiggler fields.

1/2

> _ (2meh ) ikz ~ +  -ikz "%

AL = 1{—6—v J (aL e e +a e e ) (3.2)
172

> [2mch ) -ikz © . + ikz "%

Aw = 1( 0 v (aw e e+a e e ) (3.3)

~ ~

+ ey . . .
where a and a are the annihilation and creation operators

~

respectively. Both Laser and Wigglar photons are assumed to be

circularly polarized

e=%—2-(;<+i;r) (3.4)

Vv is the interaction volume, ® is the common frequency of photons in
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FEL process in non-relativistic formulation (a) stimulated
backward scattering (negative gain) (b) stimulated
forward scattering (positive gain)

Figure 11.
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Bambini-Renieri frame. The Hamiltonian can be written as

-1 2 _e3 + 1 + 1
H = 2mo(p cA) +ho (aja+ 5 ) + 40 (aa +7) (3.5)
more explicitly
2
- Z + -2ikz + 2ikz + 1
H = 2n, + #C [aLaw e +aa e ] + 4w +C)(aLaL+ 5 (3.6)

+ 1
+ A(w +C)(awaw+ 2

where P, is the longitudinal momentum and

2
2%c ¢ 2
C = 90 r = £
© vV ! 0 2
m,c

the interaction term of the above Hamiltonian is the second term

+ -2ikz + 2ikz
HI— #acl aa e +aa e ] (3.7)

which can be understood as follows
1st term in (3.7): a Laser photon is created, a wiggler photon is
annihilated, the electron loses 2fik of its momentum.
2nd term in (3.7): a Laser photon is annihilated, a Wiggler photon
created, the electron gains 2fik of momentum.
In order to derive gain it is simpler to use a Schrodinger wave
function. The Hilbert space is taken as [3]
H=|n> | n> [p> (3.8)
namely the direct product of fields and electron Fock spaces. The

quantum state can be written as [4]

2 p
-i(p /728k) WOt 0o (s} z0
¥ >= e z ; CllnL +1, n -1, Ak 1> (3.9)
0 o
where P, is the initial electron momentum, o, is the initial number

of laser (wiggler) photons and | is the number of exchanged photons.
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Number of wigler photons is practically unchanged (nw >>|1|). Using
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this information, Schrodinger equation yields the following differential

equation for the time-dependent Cl coefficient.

/0 /o
iCi: - (D-EI)ICI+ p( nL+1+1 cl+1+ nL+1 01-1) (3.

with initial condition

c,(0) = é (3.

1,0

where the prime means derivative with respect to T =(t/At), At being

interaction time and

P
v = 20 At mzz , €=2whAt , p=cCy nS At (3
0

we now use the small-signal approximation

p Y ng << 1 (3.

which allows a perturbative solution of (3.10). Expanding up to the

first order in p , it was found

0 1
C,®C, +pC (3.
with initial conditions
0 1
c,(0) = 81,0 , c,(0) =0 (3.
inserting (3.14) into (3.10) and using (3.15), it was obtained
Co(T) = 1
i(V-€)T
1 _ 0 1- e
€, (F) =P ¥ o+l ( v-€ ]
(3.

1 D+E

i(L+€E)T
- /0 -
C-:(T) - - n [_1___9____ J

The difference between the probabilities of absorbing and emitting a

photon will be

10)

11)

the

.12)

13)

14)

15)

16)
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T wee) /2 (v-€)/2

. 2 . 2
L o R T pz[— °[—§i9£535113] +(n2+1){§19£515112-J ]

(3.17)
. o -7
since € a small quantity (for the Stanford experiment € &~ 10 ) we can

use the relation

o) 2
sin(VF€) /2| Fez= [sin V/2)" 9 \[sin v/2
5 [ - os < 5[5 318
(3.17) can be rewritten as
. 2
bn, = p% [1-(200+1)e S 1(&;,2—&] | (3.19)

From (3.19) it can be concluded that there are two contributions to AnL,

i.e., those from the stimulated and those from the spontaneous emission

_ 02 08 (sin(v/2) 2
B0t imutatea = 20P € 55 ( w/2) ] (3.20)
(AnL)spon = (AnL)Z:on + (Anl.)i:on (3'21)
where 2
(AnL)::OH = —pZE g_l) (SI?D7£§)} (3'22)

C . QM
Therefore the spontaneous emission consists of a quantum part (AnL)spon

CM

epon’ The quantum contribution is the

and a classical part (AnL)
"stimulated emission" due to the vacuum field fluctuations and cannot be
derived in any way from a classical theory. If one compares the

)
expression for gain G =(AnL)InL to (1.35) of Chapter I, it can easily

be verified that (1.35) is equivalent to G
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Relativistic Quantum Mechanical Formulation of the FEL

The question of Dirac equation versus Klein-Gordon equation is
resolved clearly and easily in the favor of Dirac equation for the
following reasons., By using Klein-Gordon equation we ignore the spin
effects, important to this thesis, which are nonnegligable for the x-ray
FELs. Not only are the spin-effects important in FEL gain and frequency
calculations but they are also very important to investigate the
polarization of the emitted radiation. We also believe that our
solutions of Dirac equation for the motion of an electron in a helical
wiggler field will find applications in accelerator physics in general,
especially in high energy experiments at SLC type linear colliders where
there is no reliable method of polarizing the electron-beam. Helical
wigglers modified under the guidance of our 2-D solutions of Dirac
equation can be used to polarize electrons in linear colliders
(storage-ring machines automatically polarize the electron beam, given
enough time).

We have to include the wiggler field as an external potential
because it is too strong to be treated as a perturbation to the
free-particle Dirac-spinors. Therefore the solutions of the Dirac
equation for the motion of an electron in a helical wiggler field is the
starting point of a correct quantum theory of the FEL. We shall derive
these solutions for various wiggler geometries in the following
chapters, here we assume that such solutions exist and proceed with the
methods of the formulation.

The QED interaction Hamiltonian for a charged particle and a photon

is given by
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7}

H =e J“A (3.24)
where the current density JH for a single particle is
=¥ My
J, =17 (3.25)

Here 7“ are the Dirac-¥ matrices, the bar means the Dirac conjugate
and the spinors ¥ are the solutions of the Dirac equation for the
electron moving in the presence of an external wiggler potential. And

AH

is the wavefunction of a photon. This interaction Hamiltonian can
be illustrated by Feynman diagrams as in Figure 12. By looking at the
Feynman diagram in Figure 12 one can argue that the stimulated emission
is not included in this picture since it shows only the spontaneous
emission and absorption. This argument is a valid one since in a real
FEL interaction an electron can emit or absorb more than one photon
during its flight through the wiggler due to stimulated emission process.
Therefore we have to include the multiphoton processes (2nd, 3rd, ...
order graphs in the Feynman diag;am) in the interaction Hamiltonian.

But due to a remarkable process unique to the FEL interaction this
will not be necessary if we want to calculate the small-signal gain. We
shall discuss this point shortly, but first, we need to lay-out the plan
for the calculation of small-signal gain.

First, we have to calculate the matrix elements for various

transitions. There are four possible transitions

*p 3 Topr
+p > 4 p'
Tp s ,p

+p > Top

Here the arrows refer to up-spin and down-spin. A relativistic electron
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Figure 12. Feymman diagrams for (a) the emission (b) absorption
of a photon by an electron



50

of momentum p emits or absorbs a photon and makes a transition to p' and
during this transition its spin may or may not flip. All of these four
transitions can produce a backward emission of a photon as well as a
forward emission and same is true for absorption. The emitted or the
absorbed photon can be left-circularly or right-circularly polarized, so
altogether there are 32 matrix elements that need to be calculated. But
fortunately the backward emission and absorption probabilities are very
small and almost equal to each other and thus there is no gain in the
Backward direction. But formally one has to calculate these matrix
elements and probabilities.

The matrix element for the emission or absorption of one photon is

then given by

M = 'iii < final f d*x H, |initial > (3.26)
where
|initial > = |p > lnL>
(3.27)
|final > = |p'> [n,F 1 >

n, stands for the number of photons. The integration in (3.26) is
extended either over all space and a finite interaction time At or,
equivalently, over the wiggler Length Lw and an unrestricted
interaction time (from - ® to + ® ),

Once we have the knowledge of Ip > and ]p'> we can easily calculate
the matrix elements. The gain is then defined as the difference between
the rates for emission and absorption, integrated over the phase-space

of the final electron state, divided by the number of initial photons

and multiplied by the number of electrons.
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N 3
_ _e d p' 2 _ 2
6=3 f (2m)° ( M, el lMabsorp! ) (3.28)

‘z and

From the quantum mechanics of atoms one would think that IM

|M

true. IM

emiss

2 . . . .
absorpl are the same but in the case of FEL interaction this is not

2 2
|“ is slightly greater than IM |“ due to the recoil.

emiss absorp

Therefore a gain is possible.
Now in (3.28) it was assumed that all the electrons initially had
the same energy and momentum, but in a real electron beam there is

always an energy spread. 1In that case (3.28) will be modified as

N 3
_ _e 3 d p' 2 2
G = v J d'p f(p) f (2N)3 ( IMemiss' - |Mabsorpl ] (3.29)

where f(p) is the initial electron momentum distribution with the
following normalization

[ &% o) =1 (3.30)
The approach outlined above calculates the small-signal gain. We have
considered the probabilities of emission and absorption of a single
photon, although we know that in the FEL interaction one electron can
emit or absorb about 1- 105 photons during one pass through the wiggler.
But if we examine (3.29), it can be seen that G involves a subtraction
operation, in other words even though we did not include the higher
order terms in the perturbational calculation we still get the correct
answer since fhe higher order contributions tend to cancel out each
other. Indeed it has been shown [4] that if a proper account is taken
of all the multiphoton (higher order graphs) processes the meaning of

2
the first order quantity IM | changes. It does no longer give the

emiss

probability of one photon emission, but specifies instead the mean

number of emitted photons. This makes it plausible the fact that we



obtained the correct small-signal gain by merely considering the 1lst

order (single-photon) processes [5].
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CHAPTER 1V

TWO-DIMENSIONAL SOLUTIONS OF THE DIRAC EQUATION
FOR THE MOTION OF AN ELECTRON IN A

HELICAL WIGGLER FIELD
Introduction

In the classical analyses of the FEL interaction, the equations of
motion for the relativistic electrons in a helical wiggler play an
essential roie and they have been studied exhaustively in the literature
[1]. 1In the quantum theory of the FEL, one needs a wavefunction in
place of the classical equation of motion. When the amplitude of the
radiation field is small (small-signal regime) the radiation field can
be treated as a perturbation. Therefore one needs the eigenfunctions of
a relativistic quantum mechanical Hamiltonian which includes the helical
wiggler field as an external potential since it can not be treated as a
perturbation. Therefore, ﬁhe solutions of the Dirac equation for the
motion of an electron in a helical wiggler field is the starting point

of a correct quantum theory of the FEL.
The Form of the Solutions

We write the Dirac equation (time-independent) in the direct product

] > 2
notation «=p®C
>
HY = ( c913P+p3m0c2 -EW=0 (4.1)

54
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>, . . > >
Here P 1is the kinetic momentum P = p — = A where

oio

K a cos(ka)x + a sin(k:z)y (4.2)

is the vector potential of the wiggler field on the axis and k; is the
wavenumber of the wiggler. Here the star * refers to a tapered

wiggler where k; is a smoothly increasing function of the form

o

% t
kw(z) = kwo -7 (4.3)
This function is plotted in Figure 13 to show that it is possible to
obtain a smoothly increasing curve by choosing the initial and final

values of the z-parameter. In our matrix elements calculations, only

the length of the wiggler Lw is important and Zeinal * Zinitial do
not affect the results, therefore one is free to choose Z, it and
Zoina1 E© make kw as smooth as desired. Ultimately this form of

tapering, i.e., the decrement of the distance in between magnet poles
(lw) of a wiggler along the axis so that the radiating and slowing
electrons would stay in fesonance, approaches a linear function which is
the most commonly used tapering form in the experiments. The form of
tapering that we adopted (4.3), was illustrated and explained in more
detail in reference [3].

Since we derived the 2-D solutions for both a uniform wiggler and a
tapered one, we shall present the derivation for the tapered one so that
the derivation for the uniform wiggler basically runs along the same
lines and one can obtain the solutions for the uniform wiggler by simply
taking the limit bte 0 in the solutions for the tapered wiggler.

The Dirac Hamiltonian in equation (4.1) can be written in the 4x4

form
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A B ¢1 - |0
B c|| ¢ 0 (4.4)
2
where
[ 2
‘(moc -E) 0
A= 2
| 0 (moc -E)
2
[ -(moc +E) 0
=
c |0 —(m0c2+E)
- -ik z
cp, cp -eae w
B =
ik z
cp,-eae w -cp,
Here
L SR 2 » PE BB

and the tilde " indicates a quantum mechanical operator.

In earlier quantum mechanical treatments of the FEL, the transverse
momentum components p, 'p, were ignored. Becker and Mitter [2] gave
the exact 1-D solutions ( gx=0 ) gy=0 ) for the case of a uniform
helical wiggler. Later, 1-D exact solutions for the case of a tapered
wiggler were derived [3]. In this thesis we shall derive the 2-D [4]
solutions using the Hamiltonian which includes one of the transverse
momentum operators (9x¢o ) Ey=o ). In principle one can also derive 3-D
solutions but these unnecessarily complicate the gain and frequency
calculations. 2-D solutions on the other hand are tractable and also
fully account for the effects of transverse momentum. Experimentally,
2-D solutions are meaningful because the electron beam stays very close
to the axis.

The Hamiltonian (4.4) commutes with the P, and P, operators. The

solutions have therefore to be simultaneous eigenfunctions of P py
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and H. Therefore we try the ansatz

[ £,(2) ] ,
i/h + )

f,(2) | o P T Fay) (4.5)

£,(2)

£,(2z) |

8,(2) |
8,(2)
8,(2)
| g,(2) _

i/ (py X + P, ¥ )

o (4.6)

for the up-spin and down-spin electron respectively, although this
nomenclature is not that meaningful when a particle is in a field. Here
pix,p1y ) S pzy are c-numbers. This way the spinors are already the

eigenfunctions of P, and py .

Derivation: Equations

Operation on (4.5) and (4.6) with the (4.4) we obtain two sets of

equations.
*
2 isz
(moc —E)f1+ cnga+ cpi_f4 e - eaf, =0
*
2 -isz
(moc -E)f2+ cp1+f3 e - eaf3- cng4 - ﬁckwf4 =0
*
isz 2
cp f,+ cp, £, e - eaf, - (moc +E)f3= 0
-ikiz 2
cp, f,e - eaf - cp f,- #fick f,- (mjc +E)f, (6.7)
*
2 isz
(moc —E)g1+ cp, g, —hckwg3 +cp, g, € - eag, = 0

%*
-ik z

(m_c>-E)g + Yoo - =0
mOC gz Cp2+g3 e eag3 ngg4 =



%
1sz 2
cgzgl—-hckwgl+ cp,_8, € - eag, - (moc +E)g3 =0

-ik:z 2
cp,.8,e - eag,- cp.g, - (moc +E)g4 =0 (4.8)
here
p1+ = p1x+ ipiy pl- = plx_ ipiy
(4.9)
Poy = Pat 1Py Pa. T Pyy™ 1Py
are c-numbers not operators.
From the last two equations of (4.7) we have
1 1ka
£, = —> [ cng1+ cp, _fe - eaf, } (4.10)
(E+mc )
%
1 -isz
f, = ——" (f cngz - {ickwf2 + cp1+f1e - eafi} (4.11)
(E+m0c ) N
substituting these in the first two equations of (4.7) we obtain
* *
2 2 ik"z ‘ -ik"z 2
(c P, - eac(pl_e +p,.e )+l'],1 )f1+(eahckw)f2 =0 (4.12)
* %
2 2 k2 Sikoz 2 2
[c pz-eac(pi_e + P, )—2(ﬁckw)cpz+nl+(hckw) ]f2+(eahckw)f1= 0
(4.13)
2 2 4 2 2 2 2,2 2
where n1 =moc - E +ea +c¢ (p1x+p1y) (4,14)
is the effective energy parameter (or mass parameter).
Combining (4.12) and (4.13) we obtain
% *
2 2 isz -isz 2 2
(c P, - ea(pi_e + p,,e ) - 2(hckw)cpz+ n, +(ﬁckw) ]
% %
2 2 k= SikeE 2
X {c p,- eac(pi_e + p,,e 4N, }fi(z)=(eaﬁckw) fi(z) (4.15)

Similarly another equation exist for gz(z) of the down-spin electron.
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* *
ik z -ik 2z

2 2 2
(c P, - eac(pz_e " p,.e Y ) - 2(hckw)cpz+n2 +(‘hckw)2 ]

2 2 isz -ik*z > >
w
X {c pz-eac(pz_e +p,.e )+T72 Jg2(2)=(eaﬁckw) gz(z) (4.16)
2 2 4 2 2 2 2, 2 2
where n, = mgc - E +ea +c¢ (p2x+ p2y ) (4.17)
at this stage we change the variable
k z > 28 (4.18)

then (4.15) becomes ( pix# 0, Pyy= 0)

d’ d d°
([—- - 4i=—= - 2qcos2& - (12+4)][——E - 2qcos2& - 12]—13}f1(§)=0 (4.19)

dEZ d€ d4E
where ’ [
4le|acp
qgs —= (4.20)
(hckw)
4n
1 Lea
A - — , A= (——————] (4.21)
(hck“)z 3 hckw

and € is a dimensionless variable. Let
£,(8) = ce,(§,q) + r se, (§,q)

where ce, and se, are the Mathieu functions [5] (even and odd
respectively) of fractional order. r is an unknown constant to be
determined and VY 1is the fractional order parameter. Later we will see
that v is related to P, the effective longitudinal momentum of the
electron moving in a helical wiggler.

The differential equation (4.19) is a 4th order equation, therefore
there must be four independent solutions in general. 1In (4.22) we
considered two of these solutions ce, and se,,. Both ce, and se,,

individually satisfy (4.19) and they are independent since V is not an
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integer [5]. We claim that (4.22) is the most general solution because
(4.22) satisfies, with a change of multiplicative constant, the 2nd
order differential equations that constitute equation (4.19). This can

be seen from

2
d
[ dgz - 2qcos2E - 12](cev +r sep) = - (aq+X2)(ceu+rseU) (4.23)
where a, is a constant which is related to q and v . In other words

aq is the constant which is involved in the definition of Mathieu

functions.
d2
{ > - 2qcos2€ + a ]ce (€&,9) =0 (4.24)
q 12
dg
se,(§,q)
with the expansion
2 1 2 5V2+7 4
a=V+—=——gq + > > q + ... (4.25)
q 2(v°-1) 32(0°-1)7 (V7-4)
subject to the condition
2
q 2
—— KV (4.26)
2(v'-1)

For more details of the Mathieu functions see reference {[5].

Thus, the 4th order differential equation is reduced to a 2nd order
differential equation by employing the defining differential equation
for Mathieu functions of the fractional order. Then (4.22), involving
two independent solutions that satisfy (4.19), becomes the most general
solution. A more physical way of saying the same thing is that the
other two solutions that do not show up belong to the charge conjugate
states (positrons when there is no field) whereas (4.22) is the solution
for "positive energy" electfon states of the Dirac equation.

The method of solution we are employing here can be described as the

"ansatz" method. We are assuming that the final solution will come out
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to be in the form of (4.22) with no undetefmined constants and r will
be a constant not a function of z. If r or any other assumed constant
turns out to be a function of z then (4.22) would no longer be a
solution. A similar assumption was made in the beginning for P, p1y

p,. and p, . If these turn out to be functions of z then again
2 2y

X
solutions will fail. But as we shall see at the end, the ansatz of
(4.22), (4.5) and (4.6) work very well and the final solution does not

contradict the assumptions.

Using (4.23), (4.19) reduces to

dsev dcev
A (A+4) = X ](ce,+ r se,) + 4ik [r & " TE ] =0 (4.27)
where A = aq+)»2 . For (4.27) to be equal to zero, considering the
evenness and the oddness of the Mathieu functions, we must have
[A (A+4) - A Jce, - 4iArF = 0 (4.28)
A (A+4) - lalr se, - 4iAG = 0 (4.29)
Here we denoted
dse dce
) ()
rTE ST 4-30)

We obtain the same conditions (4.28), (4.29) from the second set of

equations (4.8) by letting gz(E) = ce, + r se, . The next step is to

solve these equations (4.28) and (4.29) simultaneously for A and r

We obtain
- X
r= 4ir(F/ce)) (4.31)
where
X = A(A+4) - Xa (4.32)

x2+16x2(1=/ceu)(c/sev) =0 (4.33)
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Equation (4.33) is the most crucial step towards the solution of the

Dirac equation. This is a determining equation for vV since X , A ,F

G, se and ce, are all functions of ¥ . If we could determine V

1Y Y

exactly from this equation we would have exact solutions of the Dirac

equation. But the Mathieu functions ce, , se and their derivatives F

v

and G are only known as power series [5] therefore explicit exact

solutions do not exist in closed form. Exact solutions exist only in

the sense that V can be expressed in terms of Mathieu functions
algebraicly.

Mathieu functions of fractional order can be expanded as

9 (cos(V+2)E cos(V-2)E
ce,(8,q) = cosvg 'a_[ (v+1)  ~ (v-1) ) ¥
2

4 (cos(v+4)§ + cos(V-4)E )+
32{(v+1) (v+2) (v-1)(v-2) e

. 9 [ sin(+2)E  sinW-2)E
se,(€,q) = sin€ - — [ (v+1) T T w-1) ] +
2
9 [sin(v+4)5 + sin(V-4)E }+
32 ((v+1)(v+2)  (v-1)(p-2) e

Therefore the derivatives will be

q -
G = -0 sinVE + — (33131 sin(u+2)E - {822) CihwooyE ]

4 \(v+1) (v-1)

2

q : _

32 [(£ZI§2U+2) sin(V+4)E + z;é%j%%:i)sin(v—4)§J+ cas
q ' _

F = V cosVE - . (%5{%% cos(V+2)E - %g:%% cos(v-z)g]

2

q -

t 33 ((5i1320+2) cos(V+4)E + zé%i%%sjz)cos(v-q)g]+ .

recalling the condition (4.26) we can easily observe that

(4.34)

(4.35)

(4.36)

(4.37)
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(F/cev) % p (4.38)

(G/se,) = -v (4.39)
We shall shortly prove that condition (4.26) is always satisfied for the
FELs in particular and for all the relativistic electron beams in
general.

Using (4.38) and (4.39), after some tedious algebra we obtain

ri
which is a constant (imaginary numbers are allowed) and thus our
original assumption is not contradicted.

The 2-D solutions are required to be consistent with the 1-D
solutions derived in references [2] and [3], i.e., when q = 0 the 2-D
solutions must go over into the 1-D solutions. Mathieu functions reduce

to

ce,(E,q=0) = cosEv (4.41)

sin&p (4.42)

se,,(§,q=0)
and fi(E) becomes

iEp

f1(§)1q=0 = ce, +r sevlq=0 = cosEV + isinfP = e (4.43)

This must be equal to the exponential in the 1-D solution [3]

i&p iD(ka/Z) i/h P,z
e =g 3 e (4.44)

This leads us to the identity
2p1 ‘
ik

w

v =

(4.45)

Here P, is the effective longitudinal momentum of the up-spin electron
moving in a helical wiggler field. Since P, is very large compared to
the momentum imparted by hk" , P 1is a very large number. That is why

condition (4.26) is always satisfied for relativistic electron beams
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(recall that q is proportional to the transverse momentum and p_LIpz
ratio for a relativistic electron in an accelerator is always a small
fraction).

Using (4.38) and (4.39), (4.33) becomes

2 2 2
[X(X+4)—13] - 16A°V° =9 (4.46)
Further expanding we obtain
A - AF e = 0 (4.47)

The solution of this equation leads us to

2 2
1 1 2 e a 2 2 1/2
Py = gk, ¥ [(pg + k) = ==+ By, = Py, | (4.48)

This is the determining equation for the effective longitudinal momentum
in terms of the "design" parameters "a", k“ , the initial momentum

components p. and the quantum mechanical correction Py, which is

2 Poy
going to be determined from a condition given by the normalization

procedure,
Derivation: Solutions

The determination of P, and Pyy in terms of the given quantities
completes the solution of the Dirac equation. Once we know fi(z) then
fz(z), fa(z) and f4(z) can be determined from (4.7). The 2-D solution
for an up-spin electron moving in a helical wiggler, satisfying all the
conditions (commutes with P, reduces to 1-D solution when P,,~ 0)

and within the range of the approximations discussed before, will be
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¢11
T ¢ i/n
Y=y 12 _ PP (4.49)
1 ¢21 [cev(z,p1x)+xsev(z.p1x)]e
L¢22-
where
¢11 =1 ‘
lsz
¢12 = K,e (4.50)
ik 2z
[ Y - ea IK.+ ¢
cp, e ea ]K + cp,
(0] =
21 Bt 2
m,c
*
-ik z
w *
[cplxe - ea ]- c(p1+hk")K1 ik z
¢, = Etm o2 e
m c
with
2 2 2 1 22 2
cp, tn + ealp, /p)
K= - - (4.51)
eahck |

and P, as given in (4.48).
The normalization constant N1 and p,, are determined from the

normalization condition

Yv= (4.52)
where ¥ is the Dirac conjugate

7= vy° (4.53)
after some algebra and the same approximations that were used in the
derivation of (4.49) we obtain

N (12172 | (4.54)

’ps w7 (mocz)(ﬂckw)( % +1] (4.55)

where ¥ 1is the relativistic Lorentz factor of the electron and K is

the wiggler strength parameter.
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A similar solution is obtained for the down-spin electron along the

same lines.

¢11 /
¥ .
¥ = Nz ¢12 ) .y ( i/ pzxx
¢21 ce,(z,p, )+ise, z’pr) e
b ¢22 -
where .
-ik =z
¢11 = K,e
¢12 =1
ik =z
w Lk
[cpZXe -ea ]+ c(pz—hk")K2 -ik z
¢21 = Bt 2 e
m,c
-ik z
[ . IK.- ¢
N CP,. & ea IR~ ¢p,
22 E 2
+m ¢
with
2 2 2 1 22 2
c’p, + M, +; ea(p, /Ip,)
K, = - eahck
w
2 _ 24 2 22 2 2
nz = myc - E +ea +c Py,

1/2
2 2 2 2 2 2
w

1 2 1 2
cp, & Ethw+[C (poz- JHk) -ea +cp,, -cp,,
-1/2
N (1/27)

czpzx 7 (mocz)(ﬁckw)( % - 1]

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

These 2-d solutions (4.56) and (4.49) can easily be converted to the

solutions of Dirac equation for the motion of an electron moving in a

uniform wiggler (kw =constant) by simply setting bt = 0 then k; >
k"= constant , and all the expressions retain their form.

It is a simple matter to see that (4.56) and (4.49) reduce to

1-D
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solutions of reference [3], by letting p1’2x = 0.

Further, note that these go over into free-particle spinors of Dirac
theory when we switch-off the wiggler field, i.e., a»> 0 , kw 2> 0.

Now we would like to comment on the physical interpretation of pi'2x
Obviously p1’2x are the eigenvalues of p, operator. Physically it is
the quantum mechanical correction to (ea/c) which is the classical
counterpart of the transverse momentum introduced by the wiggling
motion. (ea/c) should not be confused with the initial transverse
momentum of the electron Pos which is a constant of the motion. The
term p1,2x has a purely quantum mechanical origin and is a consequence
of the Dirac equation. It could not be predicted by any other equation
such as Klein-Gordon or Schrodinger equations. Also note that Py and
P,, for up-spin and down-spin electrons respectively are slightly
different therefore the effects of spin on the electron dynamics is
naturally included. Finally p1,2x is proportional to ¥ therefore
this quantum mechanical correction to (ea/c) should become more
significant when the electrons are highly relativistic ( ¥ > 1()3 ). We
will develop this idea fully in the next chapter.

To conclude this chapter we can say that the solutions presented in
this chapter can form the basis for a perturbation theory of the FEL
operating in the small-signal regime. More importantly, the 2-D Dirac
solutions derived here could provide guidance in the development of a
Dirac Theory of the FEL in a helical wiggler including transverse
momentum based on a Hamiltonian which includes the radiation field ab
inito. Such a formulation could rigorously treat the strong-signal

regime of the FEL. We concentrate in this thesis on the perturbative
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Dirac Theory of the FEL and do not attempt the difficult task of finding
an exact solution of the Hamiltonian including the radiation field. An
approximate way of treating the strong-signal regime in the context of
Quantum Theory of the FEL is available however developed by Fedorov,
McIver and Becker [6]. This treatment of strong-signal regime relies on
the Klein-Gordon equation thereby ignoring the spin effects. It is
possible to extend these calculations by using the solutions of the
Dirac equation for the motion of an electron in the field of a strong
plane wave given by Volkov[7]. Swamy gave an elegant rederivation of
these Volkov solutions [8] which are more suitable for matrix element
calculations that are involved in the FEL quantum theory. Swamy's

solutions are presented in Appendix A.



(1]

(2]
[3]
[4]
[51]

[6]

[7]

(8]

REFERENCES
B.M. Kincaid, J.Appl.Phys. 48, 2684 (1977).
J.P. Blewet and R. Chasman, J.Apll.Phys. 48, 2692 (1977).
W. Becker and H. Mitter, Z.Physik, B35, 399 (1979).
S. Saritepe and N.V.V.J. Swamy, Phys.Lett. 1134, 69 (1985).
S. Saritepe and N.V.V.J. Swamy, Phys.Lett. 126A, 28 (1987).

N.W. McLachlan, "Theory and Application of Mathieu Functions",
Dover (1964).

M.V. Fedorov and J.K. McIver, Phys.Lett.72A, 83 (1979).
W. Becker and J.K. McIver, J.de Physique,44, C1-289 (1983).

D.M. Volkov , Comptes Rendus de 1l'Acad. des Sciences,U.S.S.R
March 21, pp:605-610 (1935).

=4

.V.V.J. Swamy , private communication.

70



CHAPTER V

QUANTUM THEORY OF THE FEL : TRANSVERSE

MOMENTUM EFFECTS
Introduction

In this chapter we will develop the perturbative Dirac Theory of the
FEL based on the 2-D solutions derived in Chapter IV. Perturbative
theory treats the radiation field as a perturbation on the wiggler
potential and utilizes the 2-D solutions as basis functions for
calculation of gain and frequencies. We shall proceed exactly the way
it was laid out in Chapter III. Before we take up the calculation of
matrix elements we would like to present the derivation of frequencies
emitted by an FEL. We shall see that quantum theory predicts four
different frequencies in contrast to the single (fundamental) frequency
predicted by the classical theory for the helical wiggler FELs

(frequencies emitted on the axis).
Frequencies

Frequencies are calculated by applying the conservation of
four-momentum requirement [1]. In this method one introduces the
effective four-momentum for the up-spin and the down-spin electrons

respectively.

u Ey
Piere T (E ' Pyy 0 Pyy 0 Py ) (5.1)

71
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m E
Poerr = (T Py Ppy + Py ) (5.2)

The squares of these four-vectors will be

2 E
u 1 2 2 2
(pleff) T2 Pyt Pyt Py ) (5.3)

2 E
I 2 _ ,2_ 2 2
[pZfo] R Pyt Payt P ) (5.4)

For the emission of a photon the conservation of our-momentum condition

can be written as

p;?Zeff = pg,Zeff - e - “hkf » n=0,1,2 (5.5)
where

kS = (0,0,0,k, ) (5.6)

W= Ex, Tk, k) (5.7)

N

. /2 2
Here hkw is the magnetic quantum of the wiggler field and kx+k +kz

N <

is the quantum of the radiation field. The reason for n =0, 1,
will be clear when we discuss the matrix elements in the next section.

By squaring both sides of (5.5) we obtain

E 2
( LI pf]=[—- - —]—(p1-hkz+nhkw)2—(p1x¢hkx)2—(p1y¥hky)2 (5.8)

From (5.8) we can obtain the frequency ®,

22 2 2 2 2 2 2 2
cp,- ¢ pj +2ncp1ﬁckw+Ei —E1+(nhkw) +(p1x¥nkx) +(p1y¥ﬁky)

™~ ﬁ@1= -
2(E1- cp,- nhckw )

where _ ) -1 emission
+1 absorption (5.9)
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01 refers to the angular frequency of the photon emitted or absorbed by
an up-spin electron making a transition from the momentum state P, to
p{ without a spin-flip. Arrows indicate the spin of the electron

before and after the transition respectively. Similarly for the other

processes we obtain the following frequencies

22 2 2 2 2 2 2 2
C P,~ C P, +2ncp2hckw+Eé —E2+(nhck“) +(p2x¥hkx) +(p2y¥hky)

A hw2= -
2(E2- cp, - nhckw )
where _J -1 emission
- { +1 absorption (5.10)
22 2 2 2 _ 2 2 2 2
¢ p,- ¢ p; +2ncplhckw+El-Eé +(nhckw) +(p2x¥hkx) +(p2y¢hky)
w he = -
2(E2- cp,- nhckw )
where _ ) -2 emission
B { +2 absorption (5.11)
22 2 2 2 2 2 2
cp,- cp, +E) -E, + (p1x¥hkx) + (p1y¥hky)
9= - (5.12)
2(E1— cpl)
emission only
In the ultrarelativistic the frequencies will be (for emission)
272hckw left-circularly
~ ﬁ01= > > y polarized (5.13)
[1+K+K,, +2¥K + K, X +1) ]
2‘12thw left-circularly (5.14)
W ho = — 7 polarized )
[1 + K+ K,,+ 27K, + 7Ko(§ -1) 1]
2 .
4y hckw left-circularly (5.15)

YT e = polarized

2, 2 ¥ _
[1 +K+ K, + 4K+ 27K0(K 1)]
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2
47 fick ‘ right-circularly
™ fiw, = > > = 7 polarized (5.16)
[1+K + K, + 27K0(§ +1)]
where
CPgy
Kos z (5.17)
m,c
hckw
Ky = 2 (5.18)
m,c

The information about the polarizations of the emitted photon is
gained from the matrix elements. This will be discussed in the next
section.

As can be seen above, the quantum theory predicts four different
frequencies for the photons emitted within the cone of synchrotron
radiation emission. There are of course a few photons having the
harmonics of the above mentioned frequencies emitted in the directions
beyond the synchrotron radiation cone, but we are not interested in
those photons since their number is very small. The classical theory
[2] in contrast to the quantum theory, predicts the following frequency
for the photons emitted in the same cone if the wiggler geometry is

helical
27 fek

fundemental

1+ K> + Ki_]

where Ko; can also be written as Y8 , 8 being the angle between the
average trajectory and the wiggler axis. When we compare (5.19) to
(5.13)-(5.16) we see that quantum mechanics yields the same result plus
two correction terms. The &4th term in the denominator of (5.13)-(5.13)
is the correction term due to recoil which is ignored in classical

calculations. The 5th term in the same denominator is the correction
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term which arises as a consequence of 2-D Dirac solutions and is missing
in the frequency expressions given by the 1-D theory [3], [4].

Therefore the Sth term is the new contribution to the Quantum Theory of
the FEL.

Also note that the 5th term is different for © and wz . Even in

1

the 1-D quantum theory ©,- wz difference is noticable, with the
discovery of 5th term this difference becomes even more significant and
it may very well be observable in the short-wavelength FELs. We
conclude this section by noting the fact that the 5th term is
proportional to 12 whereas the 4th term is only proportional to ¥
Therefore we conclude that the transverse momentum effect, hitherto
ignored, is greater than the previously noted recoil effect as far as

the frequencies are concerned. As ¥ gets larger so does the quantum

mechanical correction to frequencies.
Matrix Elements and Transition Rates

Matrix elements for various transitions are given by the integral

[\ o) L/2 R N
i(w t-k.r
¥ 47 —
M = 7”;—; e |dt sz 2RR de (‘P(p')w¢ ‘I’(p)]e (5.20)
= .ps2 -R

Here + and - refer to the right-circular and left-circular polarizations
respectively. L is the length and R is the radius of the cylindrical
interaction region, ® and k are the angular frequency and the
wavenumber of the emitted photon. The interaction time is assumed to be
infinite to conserve energy. 7$ are the Dirac-Y matrices combined

with the polarization vectors.
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1 2
=Y OF Y (5.21)

ey 4Tt

—756 is the normalization constant of the photon wavefunction.

Using the 2-D solutions given in (4.56) and (4.49) we obtain the

following matrix elements

1 .
= sin Rs1 L cp?
- 2e/m 51 ca . ("1 ! . L
M = o /2 mc2 {w1 Sln[»“’2 ] (0, +5) sinl[(w +k )3 ]} (5.22)
0
e/_ ; sin Rs2 0 L e
~ _ 2¢/m 52 ca ("2 2y ' L
G /2 mc’ { Wy sm( 2 ] Gw k) SinlGirk)g ]} (5.23)
0
where
P, p{
R TR AR
P, pé
*5 "8 Kok (5.26)
p‘lx p"lx
STTh TR T M
P P!
s = 2x " 2x Tk

2 B h y

These are the relevant matrix elements for the calculation of gain
because as it turns out M;¢ and MI¢ are very small and completely
negligable and MIT y MI¢ ) Mi? , M;¢ are associated with absorption
and we will not need them in the calculation of gain in this chapter.
We only consider forward emission because the gain for the backward
emission is very very small. The question of which matrix elements

contribute to emission can easily be answered by examining the
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expressions for w . The peak of the function é sin(wL/2)

1,2,3,4

occurs at w = 0, therefore by equating the expressions for Wy 5 54 tO
» » 2

zero we can obtain the wavenumber of the emitted photon. In the case of
emission, (pi-pi) > 0 and also (pi-pi) > kw therefore from (5.24)
kz turns out to be positive as it should be. For some of the
conditions w1,2,3,4 =0, kz turns out to be negative and this means

absorption. This way one can figure out the matrix elements that

contribute to emission by examining the argument (w1 2 3 4 ) of the
function 1 sin WL .
w 2

To calculate the transition rates we can use the Fermi's Golden rule
because transitions are from a discrete level to a continuum. Therefore,

the probability of emission of a single photon per unit time will be

p=J 2% M° p(@) dp , (5.25)

P}+P}
2

of final states of the electron. pP(®W) is the density of final states

Here the integral is over p'= thus we take care of the density
2 .
for the photons. M is the average of the mod squares of the matrix

elements that contribute to emission
2 1 - 2 -2 -2 + 2
e 1 { Dl DI ¢ el o+ Intl® | (5.26)

This averaging over the spin polarizations is necessary because of the
experimental FEL set-up inwhich the electrons are not polarized before
they enter the wiggler and their polarizations are not measured when

2
they exit the wiggler. M will be approximately

2
u® x 22T G(Rs). {ezaz G(Lw/2) + c’p’ G[(w+kw)L/2]} (5.27)
2mc ¥

where
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2
sin (WL/2)
G(wL/2) = $in (WL/2) (5.28)
w
2
G(Rs) = -s—m—zﬁs—l (5.29)
S
with
P P
w=--2-5k -k
A 4 (5.30)
P, P,
s=2e-n ¥ k,
and
p1+p2 p‘l>|z+p2x
p=— ' P, = — 5 (5.31)

During the calculation of M2 we did not integrate over p; because
Py and p,, are constants of motion. When a photon is emitted in a
direction other than the wiggler axis the transverse momentum of the
electron will obviously change due to recoil in the transverse direction
but this electron after the transition can now be considered as a
different electron with a different initial momentum Py, - At the end,
one has to integrate over the initial Py, distribution to come up with
the correct gain expression anyway. Therefore the calculation does not

contradict the interpretation of Piy’ Poy being the constants of motion

2
(Eigenvalues).
Using (5.27) the transition rates can be calculated. The

probability of emission of a single photon at the fundamental frequency

will be
1 2
- 4Te 2
Pspon' = fo —;;5 K G(Lw/2) (5.31)
emiss.

And the probability of a\single photon emission at the harmonic

frequency will be
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2 cp

har 1 4%e x
spon. ~Hc 2 [ 2] Gl (wrk, )L/2] (5.32)

Wy m.c

Here by the "harmonic frequency" we are refering to the frequency given
by (5.15) which is approximately equal to the lst harmonic of (5.13).
The other frequency (5.16) is very weak and cannot be observed. |
Eq.(5.14) is almost equal to (5.13) therefore it was included as the
fundamental frequency.

In order to arrive at (5.31) and (5.32) we have used the following
information. Since P, is a constant of motion as explained above,
p,- P, was considered zero and this makes G(Rs) a Dirac-delta function

X

centered at kx=0. Consequently the density of final states for photons

2
W dw
which is equal to ___Q__QQ__ in 3~-dimensions will reduce to

(2me)’

The physical explanation of this formal result is as follows. The

2Xc

emission cone of the synchrotron-radiation is very narrow due to
relativistic electron energies and also the laser cavity does not
support the photons emitted off-axis. The combined effect of these
factors will be a laséf cavity almost perfectly l-dimensional so that
the 1-D version of the density of final states is used.

We did not multiply 5%2 by two to account for the two
polarizations of photons because only left-circularly photons are
emitted (M*¢ is small). The physical explanation of this is of course
given by the sense of winding of the helical wiggler. An oppositely
wound wiggler would cause the emitted photons to be right-circularly
polarized.

We also used the fact that G(wL/2) is almost like a Dirac-delta

function since it is very sharp around the peak.
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Calculation of the Gain

In Chapter III we have defined the gain of the FEL as the difference
between the transition rates for emission and absorption of a single

photon integrated over the initial momentum distribution.

Ne 3 dgE' 2 2
G = V_ Jd p £(p) I 3 lMemissl - IMabsol (5.33)
(2r)
Since the difference IM ) I —lM l is small,it can be written as
emiss abs
2 2 d 2
|Memissl - IMabsl =3 dw lMemissl (5.34)
where
=20 -© .
emiss abs | (5.35)

. 4(hkwlm0c)7 ©

2 2 2
[1+K + Ky, + 2¥K, + 7V (KOIK)]

for the derivative of the transition rate with respect to ® we have

22 2

d 2 _ e a A4Tte dG

dw IMemissl - [ 2,.2 ] dw (5.36)
©,2(mpec )Y

since the derivative of the lineshape function G(®) is given by

d G(wL/2) _ ,_sin(wL/2) d (sin(WLIZ)) dw (5.37)

dw - c W dw W dw

and finally

2 2 2
dw [1+K 4K, +2VK +7 (K, /K)]

de 27°

(5.38)
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d {sin(wL/2 1 L .
a;(——:;——L—)) = ;5 [-1 + coswL + —%— sinwL ] (5.39)

combining all of these we can write

N k 2 2
__e .3 et |_e K dG(w)
Gpuna.= 7 J4P f(p){ ten— ( 2) K 42 2 dw }
m,c [1+ +K, +2VK + 7 (Kc/K)
(5.40)
and 