FACTORS AFFECTING STREAM-FISH COMMUNITY STRUCTURE: EFFECTS OF SILVICULTURAL ACTIVITIES IN SOUTHEASTERN OKLAHOMA

By

DOUGLAS ALLEN RUTHERFORD, JR
11
Bachelor of Science
Baylor University
Waco, Texas
1977
Master of Science Baylor University Waco, Texas 1980

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1988

Oklahoma State Univ. Library

FACTORS AFFECTING STREAM-FISH COMMUNITY
STRUCTURE: EFFECTS OF SILVICULTURAL
ACTIVITIES IN SOUTHEASTERN
OKLAHOMA

Thesis Approved:

PREFACE

I would like to thank all the people who helped me with this project: Dr. Anthony A. Echelle, major advisor, for his invaluable help; Bruce Wagner, David Edds, Alice F. Echelle and the members of the Oklahoma Cooperative Fisheries Research Unit for technical support; and Dr. M. E. Douglas for help with data analysis. I am thankful to my committee members, Drs. O. E. Maughan, R. W. McNew, S. F. Fox, and A. V. Zale for valuable suggestions.

My strongest support came from my wife Cyndy and daughter Casey, who sacrificed so much for this project.

Financial support was provided by the Environmental Protection Agency, U. S. Fish and Wildlife Service, Oklahoma Department of Wildlife Conservation and Oklahoma State University.

TABLE OF CONTENTS
Chapter Page
I. CHANGES IN THE FAUNA OF THE LITTLE RIVER DRAINAGE,SOUTHEASTERN OKLAHOMA, 1948-1955 TO 1981-1982: ATEST OF THE HYPOTHESIS OF ENVIRONMENTAL DEGRADATION1
Introduction 1
Materials and Methods. 4
Study Area. 4
Data Collection 5
Data Analysis 7
Results. 11
Drainage-Wide Presence or Absence 11
Frequence of Occurrence 12
Pairwise Species Associations 14
Community Similarities. 14
Environment Versus Community Similarity 15
Discussion 16
LITERATURE CITED 19
II. THE EFFECTS OF SILVICULTURAL ACTIVITIES ON STREAM-FISHES OF SOUTHEASTERN OKLAHOMA 30
Introduction 30
Materials and Methods 34
Study Area. 34
Fish Data 34
Environmental Data. 35
Data Analysis 37
Results 44
PC Analysis of Assemblage Structure 44
MSR Analysis of Effects of
Clearcutting on Fish Assemblages. 46
MSR Analysis of Effects of Clearcutting on Individual Fish Populations 47
Community Indices 48
Clearcutting Versus Tolerance and Life History of Fishes 48
Discussion 51

Page

LITERATURE CITED 57
APPENDIXES 73
APPENDIX A - PRESENCE/ABSENCE DATA FOR 31 COMMON SPECIES AT 44 COLLECTION LOCALITIES IN 1948-55 AND 1981-82 74
APPENDIX B - LOCATIONS OF THE 156 COLLECTION SITES IN THE LITTLE RIVER DRAINAGE WHERE FISH COLLECTIONS WERE MADE IN 1981-1982 77
APPENDIX C - FISH ABUNDANCE DATA, ENVIRONMENTAL DATA, AND HARVEST DATA FROM 156 COLLECTIONS
MADE IN 1981-1982 79
Table PageI. Frequency of occurrence of species in all collectionsmade in 1948-55 and 1981-82 and at the reduced setof 44 collection localities common to the two surveys. . . 22
II. Contingency Table to Test the Hypothesis that Changesin Frequency of Occurrence of Fish Species in RecentVersus Early Collections Are Not Associated withDistribution of the Species25
III. Principal Component Loadings for Each Species Having a Loading $\geqq 1.35$ i on a Component. 62IV. Stepwise multiple regression of fish principal componentscores (PCI-PCV) on a subset, p, of 27 environmentalcovariables and eight clear-cutting variables.63
V. Stepwise multiple regression of log coded-abundance ofthe 29 common fish species on a subset, p, of 27environmental covariables and eight clear-cuttingvariables. 64
VI. Stepwise multiple regression of community indices on a subset, p, of 27 environmental covariables and eightclear-cutting variables65
VII. Response of the 29 common fish species to the eight silvicultural variables (Year 1-8) 66FigurePage

1. Locations of 44 Sites in the Little River DrainageWhere Fish Collections Were Made Both in 1948-1955and in 1981-1982.27
2. Common Fish Species, Grouped by General Microhabitat Preference, in Collections From 1948-1955 and 1981-1982 29
3. Locations of 89 Fish Collection Sites in the Little River Drainage Used in the Analysis of the Effects of Silvicultural Activities. 68
4. Relationship Between Oklahoma Distribution (Widespread versusRestricted) and Species Responses to the Eight SilviculturalVariables70
5. Relationship Between Life History Strategy and Species Responses to the Eight Silvicultural Variables 72

CHAPTER I

CHANGES IN THE FAUNA OF THE LITTLE RIVER DRAINAGE, SOUTHEASTERN OKLAHOMA, 1948-1955 TO 1981-1982:
A TEST OF THE HYPOTHESIS OF ENVIRONMENTAL DEGRADATION

Introduction

Declines in the occurrences of fish species in the central United States have been documented in many studies (Trautman 1939; Black 1949; Minckley and Cross 1959; Larimore and Smith 1963; Smith 1971; Trautman and Gartman 1974; Pflieger 1975; Cross et al. 1983). These declines are often attributed to anthropogenic environmental changes, and are often accompanied by increased occurrence of species considered more tolerant of environmental disturbance.

In this paper I present, for the Little River of southeastern Oklahoma, an analysis of differences in the fish fauna between two intervals of time separated by 25 years. In those 25 years, the terrestrial environment was greatly altered by clear-cutting forestry practices, and the purpose of this study is to determine whether there have been any associated changes in the fish fauna. Comparison of collections made in the 1981-82 survey of the Little River drainage with those in the same area in 1948-55 (Reeves 1953; Finnell et al. 1956) suggest that some species declined in occurrence while others increased and that there have been changes in indices of community structure.

Any two ichthyofaunal surveys made by different workers at times separated by two and a half decades are likely to show changes. Such
changes may be due to any or all of three hypothetical causes: (1) human-related environmental change, (2) natural fluctuations in faunal structure, or (3) sampling bias. In this analysis hypotheses 2 and 3 cannot be eliminated; on the other hand, neither do these hypotheses provide easily seen corollaries regarding qualitative faunal changes. However, since intense human activity generally would cause a decline in environmental quality for natural faunas, hypothesis 1 produces the following corollary: species with greater tolerances to environmental extremes should increase in occurrence while those with lesser tolerances should decrease. Tolerance is defined as the persistence of a species in the face of environmental extremes, by whatever means; e.g., behavioral and reproductive attributes, not just physiological tolerances.

To examine the expected corollary to human-related change, I looked for trends among changes in occurrence of two groups of fishes in the Little River drainage: (1) those occurring westward into plains streams of Oklahoma and (2) those restricted to the eastern half of the state. In general, those fishes that can tolerate plains streams should have the greater tolerances to environmental extremes (cf., Matthews 1987).

Species of plains streams are exposed to widely fluctuating variables such as salinity, oxygen concentrations, temperature and waterflow (Hubbs and Hettler 1959; Cross 1967; Echelle et al. 1972; Matthews and Hill 1980) and natural die-offs probably are common, especially during harsh periods such as droughts coupled with high temperatures (e.g., Matthews et al. 1982). In contrast, conditions in streams of the forested area east of the plains environment are more stable and less harsh (Cross 1967; Ross et al. 1985). Thus, species
restricted to eastern Oklahoma should be less tolerant of environmental extremes than would those occurring in plains streams. Based on that assumption, I examine the null hypothesis that changes in the Little River drainage fish fauna are not related to the assumed tolerances of the species. This allows potential falsification of the hypothesis that the observed changes are due to human activities.

MATERIALS and METHODS

Study Area

The Little River drains about $5700 \mathrm{~km}^{2}$ in LeFlore, Pushmataha and McCurtain counties of southeastern Oklahoma. The system has three major components--the Little River proper and two major tributaries, Glover Creek and Mountain Fork River. The Little River flows in Oklahoma for about 241 km and then 129 km in Arkansas to its confluence with the Red River. Two large, artificial reservoirs occur in the drainage--Broken Bow Reservoir ($1,952 \mathrm{~km}^{2}$, impounded in 1968) and Pine Creek Reservoir (1,644 km², impounded in 1969).

The headwaters of the drainage lie in the Kiamichi and Ouachita Mountains, where the typical streams are small and clear and have rocky bottoms and steep gradients. The lower sections of the river pass through lowlands where streams are sluggish and bordered by swampy areas. The upper and middle reaches of the Little River flow through mixed pine/deciduous forest used primarily for silvicultural activities. There are few farms, communities, or other developments that might affect the fish fauna.

The human population in the three-county area of the Little River drainage (McCurtain, Pushmataha, LeFlore) grew 15\% (from 35,276 to 40,698) between 1950 and 1980 (Peach and Pool 1965a, b; Dikeman and Earley 1982). Much, if not all population growth was in the larger urban centers (Peach and Pool op. cit.). In the Little River system, the larger urban centers (Broken Bow and Idabel) are in the lowlands and are downstream of or well removed from all locations used in the
analysis of frequencies of occurrence.
Poor soil quality has insured continuously low agricultural activity in the Little River drainage. In fact, total area devoted to farmlands has declined from 444,316 ha in 1950 (Peach et al. 1965) to 405,754 ha in 1978 (Dikeman and Earley 1982). Altered farming practices (e.g., increased fertilizer application) could cause changes in the fish fauna despite reduced farmland. However, water analyses at many sites do not suggest an increase in nutrient inputs (B. Burks, pers. comm.).

Commercial forestry in southeastern Oklahoma began around 1910 with selective cutting of pine, cypress and oak (Honess 1923). Selective cutting continued to be the dominant forestry method until the 1960's when intensive silvicultural activities were initiated, including clearcutting and extensive dirt and gravel road building. Now, more than 16,200 ha are clearcut each year and, since 1970, an extensive network of more than $6,400 \mathrm{~km}$ of new logging roads have been constructed in southeastern Oklahoma (Oklahoma State Dept. Agric. 1982). This kind of activity is especially intense in the Little River drainage.

Weather conditions generally were similar in 1948-1955 and 1981-1982. Average annual rainfall across nine weather stations over the Little River drainage was 115.8 cm in 1948-1955 and 113.3 cm in 1981-1982. Average annual temperatures for these periods were $17.3^{\circ} \mathrm{C}$ and $16.3^{\circ} \mathrm{C}$, respectively (U.S. Weather Bureau 1948-1955; National Oceanic and Atmospheric Administration 1975-1982).

Data Collection

The data for 1948-1955 were taken from 91 collection localities reported by Reeves (1953) and 62 reported by Finnell et al. (1956).

Reeves' collections were made with seines and/or gillnets in August 1948, 1950 and 1951 by George A. Moore and his students, including J. D. Reeves. Collections reported by Finnell et al. were made with seines or rotenone in July-August 1955.

In July-September 1981 and 1982, fishes were sampled at 156 localities in the Little River drainage, of which 44 were also sampled by Reeves (1953) or Finnell et al. (1956), or both. Of the sites sampled in the two earlier surveys, 98 were not included in this survey for one or another of three reasons: 1) they were non-stream sites (oxbows, stockponds), or 2) they had been inundated by reservoir construction, or 3) they could not be located from the available descriptions.

Each sample area extended from the first available riffle (usually downstream from the access bridge) downstream to the next riffle or, if no second riffle was encountered, to a point about 100 m downstream. Sampling consisted of 45-60 minutes of electroshocking (AC generator, 220 v. 12 amp.; hand-held electrodes) followed by intensive seining of all available microhabitats. Seining was done with either a 1.2-x 3.7-m seine with $3.2-\mathrm{mm}$ Ace mesh or a $1.8-x$ 9.1-m seine with $4.8-\mathrm{mm}$ Ace mesh, or both. All fish were preserved in 10% formalin and returned to the laboratory for identification.

Each collection locality was scored for six environmental variables that are not likely to have changed significantly since 1948-55. This allows examination of changes in the fish fauna relative to the physical environment in a situation where there is no information on past environmental conditions.

The variables recorded were maximum stream width based on on-site
measurements, four variables based on U. S. Geological Survey maps: elevation, stream gradient, stream order and distance from the headwater terminus of the stream and soil type taken from U. S. Soil Conservation Service maps. Strahler's (1957) method was used for stream order. Soil type was scored as follows: $1=$ clay, $2=$ silt loam, $3=10 a m, 4=$ fine sandy loam, 5 = sandy-gravelly loam, 6 = gravelly loam.

Data Analysis

Frequencies of occurrence of each species in the two periods (early and recent) were compared based on the presence or absence in collections (Appendix A). Chi-square analysis of 2×2 contingency tables $(\alpha=0.05)$ were used to test the null hypothesis of no difference between recent and early collections in the presence or absence of species. In these analyses, only species occurring in a combined total of 10 or more recent or early collections (hereafter called "common" species; those in fewer than 10 collections are termed "rare") were included. Fisher's exact test was used for contingency table analysis in cases where expected frequency in one or more cells was fewer than five. Data for the 1948-1955 collections made by gill netting or with rotenone were eliminated from this analysis. This approach allowed direct comparison of 44 early seine collections with recent seine and electroshocking collections from the same locations (Figure 1).

Small cyprinids and other small, nectonic fishes generally are more susceptible to seining than to electroshocking, and seining efforts may have been less intensive than those in 1948-55. However, attempts were made to sample all available microhabitats at each site, and during the electroshocking effort I tried to preserve as many cyprinids and other
small fishes as possible. Furthermore, all analyses are based only on the presence or absence of species, and the weighting of a single specimen equaled that of a large number of specimens of one species.

The use of electroshocking and the absence of this in the 1948-55 collecting effort might produce a bias towards higher frequencies of occurrence of larger, more mobile fishes (centrarchids, catfishes, suckers) in recent collections. However, of the five members of this group that showed statistically significant deviations from the early frequencies, two were less common in recent than in earlier collections. This would not be predicted based on more efficient sampling in the recent efforts.

To help search for sampling bias relevant to this study of widespread and restricted species, all fishes were divided into two groups taken at the 44 localities sampled both in 1948-55 and 1981-82. From experience, gars, bowfin, shad, suckers, catfishes (except Noturus nocturnus) and centrarchids were placed in a group considered more susceptible to capture by electroshocking than by seining. All other species were considered more susceptible to seining; these included species that, in general, are smaller than the members of the other group and tend to be less affected by electroshock (e.g., minnows, darters, pirate perch, pigmy sunfish, brook silverside). Chi-square tests of contingency between membership in the two groups and whether frequency of occurrence increased or decreased from 1948-55 to 1981-82 revealed no significant relationship in separate analyses of the common $\left(x^{2}=1.1\right)$ and rare species (1.2), nor for the common and rare species considered together (2.1).

As an indication of environmental tolerance each species was rated
based on whether it is a common inhabitant of plains streams in the Red River drainage of western Oklahoma. Contingency chi-square analysis (α $=0.05$) was used to test for independence between increased or decreased frequency of occurrence and whether species have widespread or restricted distributions.

To help examine patterns of change in community structure, the simple matching coefficient of similarity (Sneath and Sokal 1973) in presence/absence of species was computed, separately for the recent and the early data sets, for all pairwise combinations of collections. Mantel test (Sokal 1979) was then used to test for covariance between recent and early matrices. If patterns of relative similarity among sites are similar in the matrices of recent and early collections the Mantel test produces a significantly positive test statistic (= positive covariation), while if the matrices differ in pattern of relative similarity the test statistic is either nonsignificant (no covariation) or significantly negative (negative covariation). Significant negative values suggest an overall tendency toward reversed patterns in which similarities that are high for the early collections are low for the recent collections and vice versa.

With the simple matching coefficient and the Mantel test, the recent and early species-by-species matrices of similarity of presence/absence were compared across the 44 sites. This allows insight into the possible changes in pairwise species associations.

Patterns of covariation between the matrices of community similarity and a matrix of environmental dissimilarity at the collection sites was also examined with the Mantel test. Environmental dissimilarity was computed as Euclidean distance based on the six
environmental variables described earlier.
Computations of similarity coefficients included only common species as defined above. Similarity coefficients and Mantel tests were computed, respectively, with NT-SYS (Numerical Taxonomy System), a multivariate computer program developed by F. J. Rohlf, J. Kishpaugh and R. Bartcher, GEOVAR (a series of computer programs written by D. M. Mallis, State Univ. of New York at Stony Brook).

Drainage-wide Presence or Absence
Totals of 96 and 74 species, respectively, were taken from the 153 collections in 1948-55 and 156 in 1981-82 (Table I). All species in the recent collections were also present in the early collections, with three exceptions: Hybognathus hayi, Erimyzon sucetta and Etheostoma collettei. These species were recognized only recently as occurring in Oklahoma (Miller and Robison 1973; Matthews and Robison 1982; Rutherford et al. 1985). Two of these, Erimyzon sucetta and Etheostoma collettei, were present, but misidentified, in early collections from the area. It is possible, but not verified, that \underline{H}. hayi was also present, but confused with \underline{H}. nuchalis.

In 1981-82 I failed to collect 25 species taken in the earlier collections. Most of these species were lowland forms inhabiting marshes or large waters, which were not well represented in recent collections. The collections on class field trips or communications with others (C. Hubbs, W. J. Matthews, J. Pigg) revealed that most of these fishes still occurred in the Little River drainage in 1981-1982. However, I am aware of no recent Little River collections of Polyodon spathula, Alosa spp., Hiodon spp., Moxostoma carinatum, Hybognathus nuchalis, or Ictalurus nebulosus. Most of these species were rare in the early collections and their absence in recent collections probably reflects restricted collecting effort in the larger waters. Reeves (1955) reported the only known record, a single specimen, of Notropis pilsbryi from the Little River drainage. Presumably this was a stray,
or perhaps a released baitfish.
In regular sampling from the Little River drainage over the past 8 years, J. Pigg (pers. comm.) collected the following species, which were absent in both the early and recent collections: Ichthyomyzon gaigei, Notropis buchanani, N. lutrensis, Ictalurus furcatus, Menidia beryllina, Morone mississippiensis, Percina shumardi and P. macrolepida. Also in 1983, Miller (1984) collected the first specimens of Notropis hubbsi known from the Little River. All these species are rare in the Little River system. Finally, the recently described Notropis snelsoni (Robison 1985) brings the ichthyofaunal total for the Little River system to 109 species from 20 families.

Frequency of Occurrence

A total of 70 fish species were taken in collections from the 44 sites analyzed for frequency of occurrence of species in 1981-82 versus 1948-55 (Table I). Of these species, 35 (50%) were less frequent and 26 (37\%) were more frequent in the recent collections; 9 (13\%) were equally frequent in both series of collections. Each common species (occurring in a combined total of 10 or more recent and early collections) was placed in one of four groups based on microhabitat preference and a subjective assessment of their susceptibility to capture by seining; recent occurrence was then plotted against historical occurrence (Figure 2).

Nine of the 15 "small, easily seinable fishes," a group composed primarily of cyprinids, were less frequent in the 1981-82 collections than in those taken in 1948-55 collections (Figure 2a). Three species, Notropis whipplei, N. atrocaudalis and Pimephales notatus, showed
statistically significant decreases in frequency. No member of this group was significantly more frequent in recent collections.

Six of the nine "large, nectonic, pool dwelling" fishes, primarily centrarchids, were more frequent in the recent than in the early collections. The increases of two of these, Lepomis cyanellus and \underline{L}. punctatus, were statistically significant (Figure 2b). One species, Micropterus punctulatus, was significantly less frequent in the recent collections.

Of three "large, bottom-dwelling" fishes, one (Ictalurus natalis) was significantly more frequent in the 1981-82 collections and a second, (Moxostoma erythrurum) was significantly less frequent (Figure 2c). Two of the four "small, riffle-dwelling" fishes (Noturus nocturnus and Etheostoma spectabile) were significantly more frequent in recent collections (Figure 2d).

There was a non-random association between whether a species was more frequent or less frequent in recent than in early collections, and whether the species was widely distributed or restricted to eastern Oklahoma (Table II). Species that were equally or more frequent in the 1981-82 collections were about evenly divided between widespread species and restricted species, whereas those occurring less frequently in recent collections tended to be those with restricted distributions. This relationship was statistically significant for all species considered together and for the common species, but not for the rare species alone.

All five common species showing statistically significant reductions in occurrence are restricted to the eastern half of Oklahoma. In contrast, four of the five common species showing statistically
significant increases in occurrence are either widespread throughout Oklahoma (Ictalurus natalis, Lepomis cyanellus), or are more widely distributed and occur farther westward than their congeners in this study (Noturus nocturnus, Etheostoma spectabile); the fifth species, Lepomis punctatus, is a lowland form restricted to eastern Oklahoma.

Pairwise Species Associations

The Mantel test comparing recent and early matrices of pairwise similarities of occurrence among species revealed significant positive covariation between the two matrices when all 31 common species were included in the analysis ($t=+8.93, p<0.001$) and when only those 22 species restricted to eastern Oklahoma were considered (t = +2.03, p < 0.05). The test involving the nine widespread species alone revealed positive, albeit nonsignificant, covariation between recent and early matrices $(t=+1.07, p<0.05)$. The Mantel estimate is relatively crude for matrices as small as a 9×9 matrix of similarity among widespread species (Sokal and Wartenberg 1983); thus, the nonsignificant t-value is suspect.

Community Similarities

The Mantel test comparing early and recent matrices of similarity among collections produced a nonsignificant, negative test statistic for the matrices based on all 31 common species ($t=-.986, \mathrm{p}>0.05$). This suggests that the 1981-82 pattern of similarities among local communities is not predictable from the pattern of similarities present in 1948-55. However, when the widespread species and those restricted to eastern Oklahoma are analyzed separately, an interesting difference
emerges: The widespread species show significant positive covariation (t $=+3.08, \mathrm{p}<0.005$), while the restricted species show a significant negative relationship ($t=-2.09, p<0.05$). The occurrences of widespread species apparently have not changed significantly, and the lack of predictability from 1948-55 to 1981-82 seems due to changes in occurrences of restricted species. The contingency analysis of occurrence (Table II) and plots of recent versus early occurrence onto maps of the drainage suggest that these changes primarily result from a drainage-wide decline in occurrence of restricted species and not from any localized patterns of change.

Environment Versus Community Similarity

Mantel tests of congruence between the matrix of environmental dissimilarity among collection sites and matrices of community similarity showed significant negative covariation in all six cases ($p<$ 0.005 ; three analyses each for early and recent data--the 31 common species, the 22 restricted species and the nine widespread species). Thus, community similarities are somewhat predictable from the environmental features examined.

The early data set and the recent data set both show higher covariance with environmental similarity for those species restricted to eastern Oklahoma than for the more widely distributed species ($t=-6.73$ and -3.59 for early collections; -4.48 and -2.91 for recent). Thus, the occurrences of widespread species may be less tightly related to the environmental variables measured than are occurrences of the species restricted to eastern Oklahoma. This direct comparison of t-values is valid because the early and recent matrices are the same size.

There is no compelling evidence for extinctions nor for invasions of new species in the Little River drainage since 1948-55. Thus, the present species-list probably represents the natural fauna of the drainage. However, frequency of occurrence of individual species and indices of community similarity suggest that the faunal structure is different from that in 1948-55.

The results of the comparison of 1948-55 and 1981-82 collections agree with the expected corollary to human-induced faunal changes: (1) Little River species that also occur in the plains environment of western Oklahoma seem to have undergone little overall decline in frequency of occurrence while species restricted to eastern Oklahoma appear to have declined. (2) Statistically significant changes in patterns of interlocality community similarity have occurred between the early and recent collections and these seem centered in the decline in occurrence of those species restricted to eastern Oklahoma. As argued previously in this paper, these observations are consistent with the hypothesis that human activities have caused environmental changes that favor species with greater tolerance of environmental extremes.

The small sizes and distribution of urban centers compared with the recent collection localities, and the generally sparse population and declining agricultural activity of the area suggest that these factors cannot explain the observed changes. Regarding other anthropogenic factors, the most conspicuous changes in the Little River watershed in the period from 1949-55 to 1981-82 have resulted from commercial
forestry and reservoir construction.
Reservoir construction and associated alterations in downstream flow and thermal regimes can have direct effects on occurrences of stream fishes (Mundy and Boschung 1981; see Wagner 1984, for an example in Little River). However, such effects probably do not explain the observed changes. None of the 44 collection sites used in the analysis of frequency of occurrence were from reservoirs, and all were from smaller streams well outside the direct influence of reservoirs. Echelle and Schnell (1976) suggested that dispersal of generalist species from reservoirs into tributary streams might cause faunal shifts of the kind shown by this survey. However, such effects would be most pronounced in waters near the reservoir and, because of the positions of the recent collection sites (Figure 1) I doubt that this has been an important factor.

The decade and a half of intensive clearcutting (and associated activities--e.g., roadbuilding) that began in the 1960 s remains as the one conspicuous anthropogenic factor that might explain the apparent faunal changes that have occurred since 1948-55. I am aware of no previous attempt to document the effects of forestry activities on a warmwater system as large as the Little River of southeastern Oklahoma. Most studies have either dealt with coldwater faunas or they have attempted to compare "experimental" and "control" stretches of stream for short term effects on community structure (e.g., Boschung and O'Neil 1981).

Comparisons, such as the one described herein, of drainage-wide surveys separated by long periods of time are fraught with problems, including (1) lack of rigid control of sampling differences, (2) the
possibility that observed differences are part of an unknown, normal cycle that is intrinsic to the fauna itself, (3) the possibility that subtle climatic change is causing faunal change, and (4) the possibility that faunal change is a synergistic result of a poorly understood interaction of different factors. Nonetheless, such comparisons typically represent the only avenue of investigation that can provide empirical insight into the possible long-term effects of a given environmental perturbation. For Little River fishes, the apparent changes are of a type that is consistent with expectations based on anthropogenic effects, and forestry practices seem to be the only intensive human activity that is closely associated with the change.

LITERATURE CITED

Black, J. D. 1949. Changing fish populations as an index of pollution and soil erosion. Trans. Ill. State Acad. Sci. 542:145-8.

Boschung, H. T. and P. O'Neil. 1981. The effects of forest clearcutting on fishes and macroinvertebrates in an Alabama stream, pp. 200-217. In: The Warmwater Streams Symposium. C. F. Bryan, G. E. Hall and G. B. Pardue (eds.). Southern division, American Fisheries Society, Lawrence, Kansas.

Cross, F. B. 1967. Handbook of fishes of Kansas. Univ. Kansas Mus. Nat. Hist., Misc. Pub. 45.
, O. T. Gorman and S. G. Haslouer. 1983. The Red River shiner, Notropis bairdi, in Kansas with notes on depletion of its Arkansas River cognate, Notropis girardi. Trans. Kans. Acad. Sci. 86:93-98.

Dikeman, N. J. and M. E. Earley 1982. Statistical abstract of Oklahoma. Center for Economic and Management Research, Univ. of Oklahoma.

Echelle, A. A., A. F. Echelle and L. G. Hill. 1972. Interspecific interactions and limiting factors of abundance and distribution in the Red River pupfish, Cyprinodon rubrofluviatilis. Am. Midl. Nat. 88:109-130.
and G. D. Schnell. 1976. Factor analysis of species associations among fishes of the Kiamichi River, Oklahoma. Trans. Am. Fish. Soc. 105:17-31.

Finnell, J. C., R. M. Jenkins and G. E. Hall. 1956. The fishery resources of the Little River system, McCurtain County, Oklahoma. Okla. Fish. Res. Lab. Rep. No. 55.

Honess, C. W. 1923. Geology of the southern Ouachita Mountains of Oklahoma. Part II. Geography and Economic Geology. Oklahoma. Geol. Surv. Bull. 32:1-76.

Hubbs, C. and W. F. Hettler. 1959. Fluctuation in some central Texas fish populations. Southwest. Nat. 3:13-16.

Larimore, R. W. and P. W. Smith. 1963. The fishes of Champaign County, Illinois, as affected by 60 years of stream changes. Bull. Ill. State Nat. Hist. Surv. 28:299-382.

Matthews, W. J. 1987. Physicochemical tolerance and selectivity of stream fishes as related to their geographic ranges and local distributions. pp. 111-120 In: Community and Evolutionary Ecology of North American Stream Fishes. W. J. Matthews and D. C. Heins (eds.). Univ. of Oklahoma Press, Norman, Okla.

Matthews, W. J. and L. G. Hill. 1980. Habitat partitioning in the fish community of a southwestern river. Southwest. Nat. 25:51-66.
and H. W. Robison. 1982. Addition of Etheostoma collettei (Percidae) to the fish fauna of Oklahoma and of the Red River drainage of Arkansas. Southwest. Nat. 27:215-246.
\qquad , E. Surat and L. G. Hill. 1982. Heat death of the orangethroat darter, Etheostoma spectabile (Percidae) in a natural environment. Southwest. Nat. 27:216-217.

Miller, R. J. 1984. The occurrence of Notropis hubbsi in Oklahoma. Okla. Acad. Sci. 64:45.
and H. W. Robison. 1973. The fishes of Oklahoma. Oklahoma State Univ. Press, Stillwater, Okla.

Minckley, W. L. and F. B. Cross. 1959. Distribution, habitat and abundance of the Topeka shiner, Notropis topeka (Gilbert) in Kansas. Am. Midl. Nat. 61:210-217.

Mundy, P. R. and H. T. Boschung. 1981. An analysis of the distribution of lotic fishes with application to fisheries management, page 266-275. In: The Warmwater Streams Symposium. C. F. Bryan, G. E. Hall and G. B. Pardue (eds.). Southern division, American Fisheries Society, Lawrence, Kansas. National Oceangraphic and

NOAA [National Oceanic and Atmospheric Administration]. 1975-1982. Climatological Data, Oklahoma. Vols. 76-91. U.S. Government Printing Office, Washington, D. C.

Oklahoma State Department of Agriculture. 1982. Oklahoma forest resources issue, an assessment of concerns and opportunities facing forestry in the 80 's. Okla. State Dep. Agric., Forestry Division.

Peach, N. W. and R. W. Pool. 1965a. Human and material resources of McCurtain County, a profile for growth and development. Technology Use Studies Center Pub., Southeastern State College, Durant, Okla.
and R. W. Pool. 1965b. Human and material resources of Pushmataha County, a profile for growth and development. Technology Use Studies Center Pub., Southeastern State College, Durant, Okla.
\qquad , R. W. Pool and J. D. Tarver. 1965. County building block for regional analysis. Oklahoma Research Foundation, Oklahoma State Univ., Stillwater, Okla.

Pflieger, W. L. 1975. The Fishes of Missouri. Missouri Dept. of Conservation, Western Publishing Co.

Reeves, J. D. 1953. The fishes of the Little River system in Oklahoma. Ph.D. Diss., Oklahoma State Univ., Stillwater, Okla.

Robison, H. W. 1985. Notropis snelsoni, a new cyprinid from the Ouachita Mountains of Arkansas and Oklahoma. Copeia 1985:126-134.

Ross, S. T., J. W. Matthews and A. A. Echelle. 1985. Persistence of stream fish assemblages: Effects of environmental change. Am. Nat. 126: 24-40.

Rutherford, D. A., A. A. Echelle and O. E. Maughan. 1985. An addition to the fish fauna of Oklahoma: Erimyzon sucetta (Catostomidae). Southwest. Nat. 30:305-306.

Smith, P. W. 1971. Illinois streams: a classification based on their fishes and an analysis of factors responsible for disappearance of native species. Illinois Natural History Survey Biological Note 76.

Sneath, P. H. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.

Sokal, R. R. 1979. Testing statistical significance of geographic variation patterns. Syst. Zool. 28:227-232.

Sokal, R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman, San Francisco.
and D. E. Wartenberg. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219-237.

Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Un. 38:913-920.

Trautman, M. B. 1939. The effects of man-made modifications on the fish fauna in Lost and Gordon Creeks, Ohio, between 1887-1938. Ohio J. Sci. 39:275-288.
and D. K. Gartman. 1974. Re-evaluation of the effects of man-made modifications on Gordon Creek between 1887 and 1973 and especially as regards its fish fauna. Ohio J. Sci. 74:162-173.

United States Weather Bureau. 1948-1955. Climatological Data, Oklahoma. U.S. Government Printing Office, Washington, D.C., Vols. 59-64.

Wagner, B. A. 1984. Status and habitat utilization of the peppered shiner Notropis perpallidus (Pisces: Cyprinidae). M. S. thesis, Okla. State Univ., Stillwater.

Table I. Frequency of occurrence of species in all collections made in 1948-55 and 1981-82 and at the reduced set of 44 collection localities common to the two surveys. Numbers in parentheses correspond with identification numbers of the species represented in Figure 2.

Species	Occurrence				Distribution ${ }^{1}$
	1948-1955		1981-1982		
	$\bar{n}=153$	$n=44$	$\bar{n}=156$	$n=44$	
Ichthyomyzon castaneus	5	0	0	0	R
Polyodon spathula	1	0	0	0	R
Lepisosteus oculatus	11	0	2	0	R
L. osseus	14	0	5	1	W
Āmia calva	8	0	3	2	R
Alosa chrysochloris	7	0	0	0	R
A. alabamae	1	0	0	0	R
Dorosoma cepedianum	17	2	7	1	W
D. petenense	3	0	0	0	R
Hiodon alosoides	4	0	0	0	R
H. tergisus	1	0	0	0	R
Esox americanus (24)	64	26	90	26	R
Ictiobus cyprinellus	6	0	0	0	R
I. niger	11	0	0	0	R
\bar{I}. bubalus	9	1	0	0	R
Carpiodes carpio	15	3	0	0	W
Moxostoma duquesnei	8	3	5	1	R
M. erythrurum (25)	49	18	9	4	R
\bar{M}. carinatum	6	1	0	0	R
Minytrema melanops	22	4	9	5	R
Erimyzon oblongus (26)	62	22	71	21	R
E. Sucetta	0	0	4	0	R
Cyprinus carpio	2	0	0	0	W
Carassius auratus	1	0	0	0	W
Notemigonus crysoleucas (1)	25	8	17	8	W
Semotilus atromaculatus	13	3	9	3	R
Notropis amnis	6	2	1	0	R
N. atherinoides	5	2	0	0	W
\bar{N}. atrocaudalis (6)	23	11	8	2	R
$\overline{\mathrm{N}}$. boops (8)	76	25	111	27	R
\bar{N}. chalybaeus	3	2	0	0	R
\bar{N}. chrysocephalus (4)	30	14	29	12	R
\bar{N}. emiliae	10	2	1	1	R
\bar{N}. maculatus	9	0	0	0	R
\bar{N}. ortenburgeri	9	1	6	0	R
\bar{N}. perpallidus	7	0	1	0	R
\bar{N}. pilsbryi	1	0	0	0	R
N. rubellus	10	1	3	0	R
N. stramineus	2	0	0	0	W

Table I. Continued.

N. sp. ${ }^{2}$ (2)	27	11	64	12	R
$\overline{\mathrm{N}}$. umbratilis (3)	54	20	51	18	R
$\overline{\mathrm{N}}$. venustus	4	2	4	0	W
\bar{N}. volucellus	8	0	3	1	R
\bar{N}. whipplei (5)	62	19	25	6	R
Hybognathus hayi	0	0	1	0	R
H. nuchalis	8	2	0	0	R
Pimephales notatus (7)	62	19	48	11	R
P. vigilax	3	1	2	0	W
Campostoma anomalum (9)	84	34	123	34	W
Ictalurus melas	14	3	13	5	W
I. natalis (27)	53	17	95	27	W
$\overline{\mathrm{I}}$. nebulosus	6	0	0	0	R
$\overline{\text { I }}$. punctatus	11	0	9	3	W
Noturus eleutherus	1	0	1	0	R
N. gyrinus	19	0	4	0	W
\bar{N}. nocturnus (31)	7	1	40	10	R
Pylodictis olivaris	13	1	13	4	W
Aphredoderus sayanus (14)	35	5	29	10	R
Fundulus blairae	12	1	6	4	R
F. notatus (10)	73	25	63	20	R
\bar{F}. olivaceus	4	3	26	6	R
Gambusia affinis (11)	44	18	40	18	W
Labidesthes sicculus (12)	67	22	72	14	R
Morone chrysops	3	0	0	0	W
Elassoma zonatum (15)	21	7	11	5	R
Centrarchus macropterus	15	5	7	3	R
Lepomis gulosus (19)	28	3	30	10	W
L. cyanellus (20)	92	32	151	41	W
L. humilis	7	0	3	2	W
L- macrochirus (22)	63	20	77	26	W
L. marginatus	16	2	1	1	R
L. megalotis (23)	107	36	137	38	W
L. microlophus	11	4	8	3	W
\underline{L}. punctatus (21)	26	4	29	16	R
\underline{L}. symmetricus	3	0	3	2	R
Micropterus dolomieui (16)	32	8	31	7	R
M. punctulatus (18)	36	14	27	5	R
\bar{M}. salmoides (17)	47	12	53	17	W
Pomoxis annularis	17	2	6	2	W
P. nigromaculatus	13	1	1	1	W
Ämmocrypta vivax	4	0	1	0	R
Crystallaria asprella	1	0	1	0	R
Etheostoma asprigene	14	4	2	1	R
E. chlorosomum	10	1	3	2	R
E. collettei	0	0	3	0	R
E. fusiforme	4	0	0	0	R
E. gracile (13)	22	8	13	5	R
E. histrio	2	0	3	0	R
E. nigrum	13	4	1	0	R
E. parvipinne	5	4	2	2	R

Table I. Continued.

E. proeliare	4	1	3	3	R
E.	radiosum	(30)	83	32	125
E.	33	R			
E. Spectabile (29)	12	3	29	12	R
Percina caprodes	15	3	21	3	R
P. Copelandi	15	6	5	1	R
P..$\frac{\text { maculata }}{\text { Patherina }}$	3	0	0	0	R
P. panther	3	0	5	2	R
P. phoxocephala	3	0	2	0	R
P. Sciera (28)	15	6	12	5	R

${ }^{1} \mathrm{~W}=$ common species with widespread distributions; $\mathrm{R}=$ common species with restricted distributions.
${ }^{2}$ N. sp. primarily represents Notropis snelsoni but, because of identification difficulties, may include \mathbb{N}. fumeus.

Table II. Contingency table to test the hypothesis that changes in frequency of occurrence of fish species in recent versus early collections are not associated with distribution of the species.

Change in occurrence	Distribution			
	Widespread		Restricted	
	Common ${ }^{1}$	Rare	Common	Rare
Increase or No Change	9	7	8	11
Decrease	0	6	14	17
	Common species ${ }^{2}$	Rare species $x^{2}=0.29$		All species $x^{2}=6.05$
Significance	$p=0.002$	$p=0.59$	NS	$p=0.01$

[^0]

CHAPTER II

THE EFFECTS OF SILVICULTURAL ACTIVITIES
 ON STREAM-FISHES OF SOUTHEASTERN OKLAHOMA

Introduction

Rutherford et al. (1987) examined historical changes in the fish fauna of a drainage area dominated by forestry activities, the Little River basin of southeastern Oklahoma. Comparison of two surveys separated by approximately 30 years suggested that less tolerant species had declined in frequency of occurrence, while more tolerant species either exhibited increased occurrence or no change. The patterns of change were consistent with the hypothesis that environmental degradation had occurred in response to the history of intensive clearcutting and associated silvicultural activity. However, Rutherford et al. (1987) suggested that their results might also be explained by four effects of unknown magnitude: 1) sampling bias, 2) a normal cycle of change intrinsic to the fauna, 3) climatic change between sampling periods, and, 4) a poorly understood interaction of factors. These alternatives are common to all studies of change based on surveys separated by long periods of time.

My purpose in the present study was to provide a direct assessment of whether fish assemblages in the Little River system are affected by silvicultural activity. This study was designed to determine whether fish assemblage structure in upland streams of the Little River drainage
exhibits any variation attributable to age and extent of clearcutting in the watershed associated with each sample locality. May (1972) defined species assemblages as groups of interacting species having weak interactions with other groups of species. Fish assemblages in this study are defined as groups of species (species associations) exhibiting positive covariance in abundance (Smith and Powell 1971; Echelle and Schnell 1976; Rose and Echelle 1981; Herbold 1984).

Considerable research on the impacts of silvicultural activities (e.g., road building, clear-cut logging and site preparation) on stream ecosystems indicates both short- and long-term alterations (Gibbons and Salo 1973). Many perturbations to stream biota and physicochemistry are short-lived, and without continued disturbances, streams may gradually return to pre-disturbance conditions, often as a function of recovery of the adjacent terrestrial environment (Chutter 1969, Hamsmann and Phinney 1973, Newbold et al. 1980, Murphy and Hall 1981, Webster et al. 1983, 1988).

The abiotic effects of silviculture on stream ecosystems are manifold and include the following: increased streamflow (Reinhart and Eschner 1962, Likens et al. 1970, Patric 1973) for as long as 30 years after logging (Kovner 1956, Hewlett and Hibbert 1963); elevated nutrient levels for as long as 16 years after logging (Swank et al. 1988); increased stream sediments on a short-term basis (Brown and Krygier 1971; Cordone and Kelley 1961; Megahan 1972) with long-term effects through the redistribution and transport of sediments; reduced allochthonous input for as long as seven years after logging (Webster and Waide 1982); reduced forest canopy resulting in increased water temperature (Gray and Edington 1969, Brown and Krygier 1970, Swift and

Messer 1971, Swift and Baker 1973, Lee and Samuel 1976, Swift 1982, Swift 1988); and initially increased woody debris (Likens and Bilby 1982) with long-term decreases in woody inputs. (Silsbee and Larson 1983).

There have been few studies on the effects of silviculture on warmwater stream-fishes. Studies on coldwater stream-fishes have indicated some silvicultural impacts, but many studies have been inconclusive (Chapman 1962, Elson et a1. 1972; Eschner and Larmoyeux 1963; Lantz 1967). Studies of the long-term effects of silvicultural activities on warmwater stream-fishes are absent from the literature. In one of the few short-term studies on warmwater streams, Boschung and O'Neil (1981) found minimal short-term effects of clear-cut logging activities.

The relationships between measures of silvicultural activity and fish populations result in patterns of covariation that are difficult to interpret. Observed patterns may be due to a silviculturally-related initial impact (e.g., harvest, site preparation, etc.) followed by differential population responses. Effects of silvicultural activities on the fish fauna may be subsequently evident, depending on the responses of individual species. I hypothesize that how a species responds will be associated with its tolerance to environmental extremes and/or its life history strategy. To examine these possibilities I assessed patterns of abundance in four groups of fishes in the Little River drainage: (1) fishes occurring in western and eastern Oklahoma, (2) fishes restricted to eastern Oklahoma, (3) K-selected species, and (4) \underline{r}-selected species. Fishes tolerant of the harsh plains streams of western Oklahoma should have greater tolerance to environmental extremes
than fishes restricted to the more benign streams of eastern Oklahoma. Based on this assumption, I examined the null hypothesis that the response of the Little River fish fauna to silvicultural activities is not associated with the assumed environmental tolerances of the species. Correlates of the r - K selection continuum describe population characteristics of species having opportunistic (r-strategy) or equilibrial (K-strategy) life histories. K-selected species generally live longer, grow larger, delay reproduction and reproduce more than once. The converse is true of \underline{r}-selected species (Pianka 1978). The results of this study suggests that \underline{r}-selected species respond rather quickly to the changes induced by silvicultural activities, while \underline{K}-selected species exhibit more delayed responses.

MATERIALS and METHODS

Study Area

The Little River drains approximately $5,700 \mathrm{~km}^{2}$ in southeastern Oklahoma and has three main components: the Little River proper and two main tributaries, Glover Creek and Mountain Fork River. The drainage is heavily forested, making commercial harvest of both pine and oak the principal economic activity in the area. Much of the watershed is owned or leased by Weyerhaeuser Company.

Upper reaches of the Little River drainage are characterized by an east-west folding of terrain which results in short, high, nearly parallel ridges and produces a trellis-dendritic type of stream pattern. Tributaries are typified by steep gradients, rubble, boulders and bedrock substrate, with leaf litter covering many pool areas. The water chemistry tends to be slightly acidic with low specific conductance.

Lower reaches of the drainage basin are characterized by low, fertile, bottomlands. Lowland streams typically have low gradients, fine substrates and long, deep pools, separated by shallow riffles. Cutoff lakes in the Little River floodplain are common and vary from 2.0 to 120 hectares in surface area (Finnell et al. 1956). There are two large impoundments in the Little River: Pine Creek Reservoir on the Little River and Broken Bow Reservoir on the Mountain Fork River.

Fish Data
Fishes were taken in July-September 1981 to 1982, from 156 collection localities in the Little River drainage. Eighty-nine of 156
collection localities were used in this analysis (Figure 3). Localities were eliminated from analysis if they occurred downstream from the Fall Line. The Fall Line, which closely coincides with State Highway 3 in the Little River area, separates upland streams of the Ouachita uplift from lowland streams of the coastal plains. Restricting the analysis to sites above the Fall Line effectively restricted analysis to one physiographic region and reduced confounding effects of different geological subregions. Localities were also eliminated if they were in downstream locations on major streams. Downstream locations tended to be large-water situations where it is often difficult to collect both biological and physicochemical samples efficiently.

Each collection locality included the first available riffle (usually downstream from an access bridge) and all areas immediately downstream either to the next riffle, or to a point approximately $100-\mathrm{m}$ downstream. Sampling consisted of 45 to 60 minutes of electroshocking (230 v. 12 amp., AC generator with wading and hand-held electrodes) followed by intensive seining of all available microhabitats. Seining was done with either a $1.2 \times 3.7-\mathrm{m}$ seine with $3.2-\mathrm{mm}$ Ace mesh or a 1.8 x 9.1-m seine with $4.8-\mathrm{mm}$ Ace mesh, or both. All fishes were preserved in 10% formalin and returned to the laboratory for species identification and enumeration.

Environmental Data

Thirty-five environmental variables were assessed for each collection locality. These included twenty-three habitat variables evaluated on-site, four variables evaluated from topographic maps, and eight clear-cutting variables evaluated from Weyerhaeuser data. The 23
on-site variables were scored at 60 to 100 transect points, 0.5 to $1.0-\mathrm{m}$ apart (1.0 m in large streams, 0.5 m in small streams) along transects. Following Gorman and Karr (1978) transects were perpendicular to stream flow and separated by $5-\mathrm{m}$ intervals over the entire sample area.

Current speed at each transect point was estimated by observing movement of water around a measuring pole ($3.5-\mathrm{cm}$ diameter) marked in millimeter increments and calibrated with a Pigmy-Gurley current meter. Categories were as follows: 1) no ripples around pole $=$ very slow (0 to $0.05 \mathrm{~m} / \mathrm{sec}) ; 2$) slight "tail" around pole $=$ slow (0.05 to $0.2 \mathrm{~m} / \mathrm{sec}$); 3) 5 to $10-\mathrm{mm}$ vertical displacement on pole $=$ moderate (0.2 to $0.4 \mathrm{~m} / \mathrm{sec}$); 4) 10 to $50-\mathrm{mm}$ vertical displacement $=$ fast (0.4 to $1.0 \mathrm{~m} / \mathrm{sec}$); 5) > $50-\mathrm{mm}$ vertical displacement $=$ torrent $(>1.0 \mathrm{~m} / \mathrm{sec})$.

Bottom type at each transect point was recorded as dominant substrate in an area approximately $0.5-\mathrm{m}$ in diameter immediately around the measuring pole. Substrate types were categorized as follows: 1) mud (soft sediments); 2) sand (firm, "grainy" sediments); 3) gravel (ca. 5 to 20 mm$)$; 4) rubble (ca. 20 to 300 mm) ; 5) boulders and 6) bedrock.

Depths were divided into five ranges: Depth 1 (0 to 5 cm); Depth 2 (5 to 20 cm); Depth 3 (20 to 50 cm); Depth 4 (50 to 100 cm) and Depth 5 ($>100 \mathrm{~cm}$).

Vegetation was recorded at each transect point as algae, emergent vascular plants (EVP), submergent vascular plants (SVP)(living and dead, primarily logs and roots) and leaf litter (LL). Each of the six substrate types, four vegetation types, five ranges of current speed and five ranges of depth were expressed as the percentage of all transect points at the collection locality.

Other on-site measurements taken were total nonfilterable residue
(NFR), turbidity (TURB), and specific conductance (SC) (EPA 1979). A water sample from each collection locality was taken to the laboratory and measured for total nonfilterable residue (mg / l) (a measure of suspended solids retained by a $0.45-\mathrm{mic}$ con glass fiber filter). Turbidity, in nephelometric units (NTU) was measured with a Hach Model 2100A portable nephelometer. Specific conductance was measured with a Yellow Springs Instruments Co. SCT meter.

For each collection locality, elevation, stream gradient (SG), stream order (SO)(Hynes 1972) and distance from the headwater terminus of the stream (DFH) were taken from U.S. Geological Survey maps.

Relative abundance of eight age classes of clearcuts upstream from each collection locality was calculated from records and maps provided by Weyerhaeuser Company. Categories used were as follows: Year $1=$ clearcuts less than 12 months old; Year $2=13$ to 24 months; Year $3=25$ to 36 months; Year $4=37$ to 48 months; Year $5=49$ to 60 months; Year 6 $=61$ to 72 months; Year $7=73$ to 84 months; and Year $8=85$ months and longer. These variables were expressed as the percent of the total watershed in each of eight clear-cut classes (Year 1 to Year 8). The proportion of the area with no prior clearcutting was negligible, as virtually the entire watershed has been harvested at one time or another.

Data Analysis

Data analysis was restricted to 29 common fish species (fishes occurring in at least 5% of the collections) from 89 collection localities. Species diversity in each collection was quantified from computations of the Shannon-Wiener diversity index, the species richness
index and Simpson's dominance index (Pielou 1977).
To obtain indices of absolute abundance the fish abundances were coded as follows: $0=$ absent, $1=$ rare ($1-5$ specimens), $2=$ uncommon (6-10 specimens), $3=$ common (11-20 specimens) and $4=$ abundant (>20 specimens). Coded fish abundances and environmental variables were examined for univariate normality with measures for skewness and kurtosis (PROC UNIVARIATE program, SAS 1982). Data transformations were performed to improve univariate normality. All proportions (i.e. percent abundance of mud, etc.) were reexpressed as arcsin transformations (arcsin of the square root of the proportion). All other variables (coded fish abundance, elevation, distance from the headwaters, etc.) were reexpressed as the common logarithmic transformation (Mosteller and Tukey 1977).

I used principal components analysis (PCA) to ordinate the fish samples. The goal of ordination is to discover whether there is some underlying order of entities (e.g., samples characterized by fish species abundance). Hill and Gauch (1980) proposed detrended correspondence analysis (DCA) as a new method for ordination in ecology. DCA is an ad hoc adjustment of correspondence analysis (CA)(Hill and Gauch 1980). CA is similar to PCA except that it decomposes an association matrix based on the chi-square distance metric rather than correlation or variance-covariance matrices (Gauch 1980). DCA has come into vogue because it claims to remove nonlinear dependencies among axes (the arch effect) and extracts one or more ordination axes (gradients) such that species show unimodal (bell-shaped) response curves with respect to these axes. Wartenburg et al. (1987) review and discuss the limitations of ordination techniques and argue that DCA is not an
improvement but is influenced, as are all current methods, by data curvature and scaling. Several authors (Wartenburg et al. 1987; Gauch 1980; Ter Braak and Prentice 1986) propose the use of PCA over DCA in situations having short gradients (< 3.0 SD) with much species overlap. Short gradients and high species overlap indicate that most species are behaving monotonically over the gradient length (Gauch 1980). I used PCA because most fishes in upland streams of the Little River drainage occur throughout the system, producing a short ordination gradient.

The matrix of log-transformed coded abundance of common fish species was subjected to PCA (PROC FACTOR, SAS 1982). PCA reduces the number of variables in a data set to a few dimensions (principal components). Each principal component is a linear, weighted combination of all original variables (coded abundance of fishes). The first component (PC I) is computed to explain the maximum amount of the variance that can be explained by a single linear axis. The second component (PC II) must be orthogonal (mathematically uncorrelated) to PC I and is computed to explain the maximum amount of remaining variance, and so on for successive components. Each PC defines a new variable for which each sample unit (collection locality) has a position or score.

The first five principal components extracted by PCA were used for further analysis. Elimination of the remaining components was based on Cattell's Scree Test and Horn's Test (Green 1978). Cattell's scree test entails plotting variance accounted for by each principal component in their order of extraction and then looking for an elbow in the curve. This graphical technique can be subjective if a clear break is not apparent from the plot (Green 1978). Horn's Test entails plotting eigenvalue size against principal component number (ordered from large
to small) for actual data and randomly generated data matrices. Using independent and normally distributed standardized variates (PROC MATRIX, SAS 1982), I generated 3089×29 data matrices (representing 29 "species" and 89 "sample sites"). Each data set was then subjected to PCA and eigenvalues for each PC (I, II, III,...XXIX) extracted were averaged over 30 randomly generated matrices. Mean eigenvalues and eigenvalues from actual data were plotted together and the number of components retained (five) are those prior to the point where the two plotted 1 ines cross (Green 1978).

The PCA analysis produced 1) a factor structure matrix showing the loading (correlation) of each original variable (log-transformed coded fish abundance) on each PC (= "fish PC" herein), and 2) a matrix of scores for each collection locality on each PC. Species having positive correlations with a given principal component tend to show higher coded abundance at collection localities having positive scores on that principal component and vice versa for localities having negative scores.

Each of the dependent variables (five fish PCs, the log coded abundance of each fish species, and each species diversity index) was regressed separately on a subset, p, of the 35 transformed environmental variables. The procedure utilized multiple stepwise regression with the maximum r^{2} improvement technique (MSR)(PROC STEPWISE, SAS 1982). MSR finds the "best" one-variable, two-variable, three-variable, 35 -variable models, each with the highest r^{2}. At all levels each variable in the model is compared to each variable not in the model. In each comparison, MSR determines if replacing one variable with another produces a larger r^{2}. Comparisons continue until MSR finds no switch in
variables that would increase r^{2}. Mallows' C_{p} statistic ($C_{p}=p$) was used as the criterion for model selection (Daniel and Wood 1980).

Significant partial correlations of the eight silvicultural variables in the regressions of dependent variables (fish component scores, log-transformed coded abundance of the 29 common fish species, and diversity indices) on subsets of the 35 environmental variables indicate associations between the silvicultural variables and each dependent variable. Partial correlations are correlations between a dependent variable and one independent variable with all other independent variables held constant (Steel and Torrie 1980).

When many significance tests are performed at the 0.05 alpha level the probability of rejecting at least one true null hypothesis (Type I error) is larger than 0.05. To decrease the number of significance tests examined, a subset of independent variables was chosen using Mallows' C_{p} statistic. Significance tests were performed only on silvicultural variables included in a particular model as a result of subset selection. If more than one clear-cutting variable was included in a model by subset selection, the significance level was determined using the Bonferroni method. For a significance level of 0.05 and \mathbb{C} significance tests, each test is done at a significance level of $0.05 / \underline{c}$ to guarantee an overall significance level of less than 0.05 .

Multiple least squares regression is highly susceptible to the effects of collinearities (interrelationships among the independent variables) and tends to distort coefficient estimates, variances and covariances of the estimators, test statistics and predicted responses among the independent variables (Gunst and Mason 1980). Using singular-value decomposition and variance decomposition proportions
(Belsley et al. 1980), three linear dependencies (five depth categories, six current categories, five substrate categories) were identified among the 35 independent variables used in this study. There was no indication of collinearity among the eight clear-cutting variables or between the clear-cutting variables and the environmental covariates.

The purpose of including the 23 non-clear-cutting habitat variables in my analysis was to account for variation in fish abundance due to between locality variation in habitat variables (covariates) other than clearcutting. Collinearity among the non-silvicultural variables could be a serious problem if my purposes had included predictive model building or other regression applications where statistical inference of regression coefficients from collinear independent variables can lead to erroneous conclusions (Gunst and Mason 1980). In the present study the eight silvicultural variables are of interest and these variables show little collinearity among themselves or with other independent variables as assessed by the procedures recommended by Belsley et al. (1980).

Trends in fish-species response and patterns of silvicultural activity were examined using contingency analysis. The abundance of the 29 common fish species were regressed on each silvicultural variable (Year 1 - Year 8) and the 27 environmental covariables. From the regression of each species the regression coefficient for each clear-cutting variable was scored for sign (+ or -) regardless of magnitude or statistical significance. The signs were used as indicators of a species responses to the silvicultural variables.

As an index of environmental tolerance, I rated each of the 29 common species on the basis of whether it is commonly collected in the plains streams of the Red River drainage of western Oklahoma or
restricted to the forested streams of eastern Oklahoma (Rutherford et al. 1987). Each species was also scored as an \underline{r}-strategist or a K-strategist based on Pianka's (1978) correlates of r and K selection. Fisher's exact test for 2×2 contingency tables ($\alpha=0.05$) was used to test for independence between positive or negative responses to the silvicultural variables and whether species have widespread or restricted distributions or whether they have \underline{r} - or \underline{K}-selected life histories. The raw data for all analyses reported in this paper are presented in Appendix C.

RESULTS

PC Analysis of Assemblage Structure
Principal component loadings (= correlations) of the 29 common species on the five fish PCs are given in Table III. Each PC defines one or more groups of positively associated species (= assemblages). Species having high correlations with a given PC tend to covary in distribution and abundance. A PC with both positively and negatively correlated species indicates two assemblages with contrasting distributions. Species having low principal component loadings (<0.35) on all five PCs have essentially independent distribution patterns (Echelle and Schnell 1976). In this paper each assemblage is named for the species having the highest PC loading of the group. PC I contrasts a group of 10 species (spotted bass assemblage) having high positive loadings (Micropterus punctulatus, Notropis umbratilis, Lepomis macrochirus, Notropis ortenburgeri, Fundulus notatus, Micropterus salmoides, Fundulus olivaceus, Lepomis cyanellus, Aphredoderus sayanus and Lepomis punctatus) with the orangethroat darter assemblage, a group of six species (Etheostoma radiosum, Notropis. sp., Noturus nocturnus, Notropis boops and Micropterus dolomieui) having high negative component loadings (Table III). The former assemblage is typical of pools and downstream areas of slow flow, while the latter is typical of faster flowing habitat.

PC II represents an assemblage of nine species (creek chub assemblage) having positive loadings (Semotilus atromaculatus, Percina caprodes, Gambusia affinis, Etheostoma spectabile, Notropis whipplei,

Micropterus punctulatus, Noturus nocturnus, Notropis chrysocephalus, and Lepomis megalotis). PC II defines a downstream assemblage associated with riffles or raceways. Gambusia affinis, Lepomis megalotis and Micropterus punctulatus seem to be exceptions and may be associated with pools adjacent to fast-flowing habitats or may represent juveniles using the slow-water margins of riffles and raceways as refugia from predation.

PC III contrasts an assemblage of four species (brook silverside assemblage) having positive component loadings (Labidesthes sicculus, Lepomis megalotis, Notropis $s p$. and Lepomis macrochirus) with the central stoneroller assemblage, a group of three species having negative component loadings (Campostoma anomalum, Etheostoma spectabile and Etheostoma radiosum. The former assemblage occupies primarily deeper, slower waters, while the latter occupies shallower, moderately flowing waters.

PC IV represents the bigeye shiner assemblage, a group of six species with positive loadings (Notropis boops, Pimephales notatus, Lepomis cyanellus, Etheostoma radiosum and Notropis umbratilis). The members of this assemblage occur in a diversity of habitats throughout the study area.

PC V contrasts a quiet-water assemblage (warmouth assemblage) having positive component loadings (Lepomis gulosus, Fundulus olivaceus) with an assemblage (striped shiner assemblage) that occupies faster-flowing waters (Notropis chrysocephalus and Etheostoma spectabile).

MSR Analysis of Effects of Clearcutting on Fish Assemblages
The regression models obtained by multiple stepwise regression (MSR) of PC scores on habitat variables explained high proportions of the variance in scores on PCs I, II and III ($r^{2}=.62-.75$) and were only weakly associated with variance in PCs IV and V ($r^{2}=.08$ - . 14) .

The relationship between a silvicultural variable and a species assemblage (PC I-V) is indicated by comparing the sign of the PC loadings for the species assemblage (Table III) with the sign of the partial correlation coefficient for the clear-cutting variable in the MSR analysis of the PC scores (Table IV). Positive associations are inferred when the loadings and the partial correlations have the same sign: i.e., when an assemblage loads positively on a $P C$ and the clear-cutting variable exhibits a positive partial correlation coefficient or when the assemblage has a negative PC loading and a clear-cutting variable exhibits a negative partial correlation coefficient. Negative associations are inferred when the component loadings and partial correlations have opposite signs.

One or another of five clear-cut classes, Year 1, Year 2, Year 4, Year 6 and Year 7 was significantly associated with collection locality scores on three fish components, PC I, PC II and PC III (Table IV). In situations where the PC was a contrast of two different assemblages (PCs I, III, V), this analysis cannot be interpreted to indicate whether only one or both assemblages were affected by clearcutting. In such instances, a strong association between PC scores of one of the contrasting assemblages and a clear-cutting variable would result in a significant partial correlation and be interpreted incorrectly for the other assemblage.

MSR Analysis of Effects of Clearcutting on Individual Fish Populations
Results of multiple stepwise regression of each of the 29 common fish species (log transformed) regressed on a subset, p, of the 27 environmental covariates and eight silvicultural variables are shown in Table V. Significant partial correlation coefficients ($p<0.05$) indicate the sign and degree of association between each species and each clear-cutting variable.

Comparison of Tables IV and V shows only rough correspondence between the significant partial correlation coefficients of assemblages and their component populations. Different members of the spotted bass assemblage had both positive and negative associations with silvicultural variables Year 5 and Year 6 , while sample scores for the entire assemblage were negatively associated with Year 4. The orangethroat darter assemblage had a positive association with Year 4 clearcuts and one member of that assemblage, Noturus nocturnus, exhibited a positive response to Year 4 clearcuts. Significant responses of other members of the orangethroat darter assemblage were associated with silvicultural variables Year 1, Year 2 and Year 6. The creek chub assemblage was positively associated with clear-cutting variable Year 4, and negatively with Years 6 and 7. Among the members of that assemblage, only Noturus nocturnus showed a positive response to Year 4, while no members of this assemblage were associated with Years 6 and 7.

The brook silverside assemblage showed better correspondence between assemblage and population level responses. This assemblage was negatively associated with Year 1 and Year 6 clearcuts and positively with Year 2 clearcuts and two member species, Labidesthes sicculus and

Notropis sp., exhibited the same responses. The central stoneroller assemblage exhibited responses similar to the brook silverside assemblage -- the assemblage-level response was positive with Year 1 and Year 6 clearcuts and negative with Year 2 clearcuts. Among members of that assemblage, Campostoma anomalum exhibited a positive response to Year 6 clearcuts, while Etheostoma radiosum exhibited a negative response to Year 2 clearcuts.

Community Indices

Table VI shows the significant partial correlation coefficients (p < 0.05) from separate multiple stepwise regressions of the Shannon-Wiener index of diversity, species richness and Simpson's dominance index regressed on environmental covariates and eight silvicultural variables. Year 6 clearcuts were associated with all indices, negatively with the Shannon-Wiener index and species richness, positively with Simpson's index. None of the other clear-cutting variables had significant partial correlations with species diversity, species richness or dominance.

Clearcutting Versus Tolerance and Life History of Fishes
The signs of the partial correlations of the eight clear-cutting variables in the multiple regression models for each of the 29 common fish species are shown in Table VII. For each clear-cutting variable, Figures 4 and 5 compare numbers of species in which the sign of the partial correlation (= species response, see Materials and Methods) was negative and numbers of species for which the sign was positive in each of four separate categories of species: (1) species occurring only in
eastern Oklahoma and assumed to have narrow environmental tolerances ("restricted species"), (2) species occurring in both eastern and western Oklahoma and assumed to have broad environmental tolerances ("widespread species"), (3) species having \underline{r}-selected life-histories, and (4) species having \underline{K}-selected life-histories.

None of the four groups of fishes exhibited statistically significant heterogeneity of species responses across the eight clear-cutting variables (Heterogeneity G-test, Sokal and Rohlf 1969; $\alpha=$ 0.05). This may be a function of small sample sizes in the four categories of fish (8-21 species) because in three of the four groups (r-selected, \underline{K}-selected and widespread) there were apparent shifts in the pattern of responses between Years 3 and 4 (Figures 4 and 5). The widespread species and the \underline{K}-selected species both exhibited predominantly positive responses to clearcut years 1-3, and predominantly negative responses to Years 4-8, while \underline{r}-selected species showed the reverse pattern.

There was a significant negative correlation between \underline{r}-selected and \underline{K}-selected fishes in their responses to the different age-classes of clearcut (Spearmann's $\underline{r}=-.76, p<0.02)$. Correspondingly, the contingency analysis indicated that, for four of the eight clear-cutting variables (Years 2, 3, 5, 6), responses of individual species were significantly associated with whether the species was \underline{r} - or \underline{k}-selected (Fisher's exact test, Figure 5). There was little evidence of covariation between restricted and widespread fishes ($\underline{r}=-.44, p=$ 0.10), although, for two clear-cutting variables (Years 7 and 8), there was a significant association between response and whether the species was widespread or restricted in occurrence (Figure 4).

The similar patterns of variation in response due to life history and geographic variation may be in part due to a lack of independence between these two variables. A contingency analysis indicates a tendency for the restricted species to be r-selected (15 of 21) while widespread species tend to be \underline{K}-selected (6 of 8; Fisher's exact test, p $=0.03)$.

Two sets of observations from this study indicate that clear-cutting activities are associated with changes in upland fish assemblages of the Little River drainage: (1) Regressions of a variety of indices of community structure on habitat variables revealed significant partial correlations with the clear-cutting variables. The dependent variables significantly associated with clear-cutting variables include scores for three multivariate measures of community structure (fish PCs I, II, III), individual abundances of 14 fish species, and all three measures associated with overall species diversity. (2) Responses of individual species to the clear-cutting variables were contingent upon life history (\underline{r} - vs \underline{K}-selected species) and, to a lesser extent, whether the species was geographically widespread (assumed environmentally tolerant) or restricted (less tolerant).

The regressions consistently gave small partial correlations for the clear-cutting variables (< 0.10 in all instances). Thus, as expected, other habitat variables are the primary determinants of community structure in Little River fishes (e.g., substrate, current speed, depth of stream, etc,), while clear-cutting apparently is rather weakly associated with community structure. Nonetheless, in the long-term, small drainage-wide effects could cause notable faunal changes, such as those reported for the Little River ichthyofauna between 1948-1955 and 1981-1982 (Rutherford et al. 1987).

The study by Rutherford et al. (1987) indicated that the restricted
species occurred at fewer sites in 1981-82 than they did in samples from the same sites in 1948-55. Those results are difficult to compare with those of the present study because of the potential in the latter for differential responses to different ages of clearcuts and because of the difference in time scale of the two studies. There is no overall tendency for the restricted species to exhibit negative responses. Sixty-two percent (8) of the 13 statistically significant partial correlations between restricted species and clear-cutting variables were negative, but this pattern is not a statistically significant deviation from random expectation ($x^{2}=0.69$).

The relatively high frequency of significant partial correlations involving Year 6 clearcuts warrants further investigation. No other age-class of clearcut was significantly associated with the three indices of species diversity, while the proportionate abundance of Year 6 clearcuts was negatively associated with Shannon-Wiener diversity and species richness, and positively with Simpson's dominance index. In addition, Year 6 was significantly associated with seven fish species (2 positive associations, 5 negative) and two fish PCs, while the numbers of significant associations for the remaining seven age-classes of clearcuts were 0-3 with fish species and 0-2 with the fish PCs. Year 6 accounted for 12 (46%) of the 26 significant partial correlations involving clear-cutting variables. This is a highly significant ($p<$ 0.005), non-random distribution of correlations among the eight clear-cutting variables ($x^{2}=26.3$). Considering only the 16 significant correlations for fish species, 44 percent were with Year 6 -- again producing a highly significant Chi-square ($x^{2}=14.3, p<$ 0.005). Additional study would be required for an understanding of the
significance of this pattern of correlations.
Another area of potential interest for future research is the possibility for differential responses of smallmouth bass, Micropterus dolomieui, relative to largemouth bass, Micropterus salmoides, and spotted bass, M. punctulatus. The smallmouth, which was one of only two species exhibiting significant correlations with more than one clear-cutting variable, -- showed a positive correlation with the relative abundance of Year 1 clearcuts, and a negative correlation with Year 6 clearcuts, while neither of the other two basses exhibited a significant correlation with clearcutting. In Oklahoma, the smallmouth is restricted to clear, flowing waters in upland areas of the extreme eastern part of the state, while the other two basses are much more widespread (Miller and Robison 1973). Thus, smallmouth bass would be expected to be more sensitive to environmental disturbances than the other two species, and this might explain the differential responses of the three species.

The positive correlation between smallmouth bass abundance and relative abundance of Year 1 clearcuts may be due to the life span of the fish relative to the time since Year 1 clearcuts were made. Year 1 clearcuts were made in previously uncut areas or after an interval of time sufficient to allow regrowth of harvestable trees. During that time, the smallmouth bass population might have had time to recover. Thus, the relationship between abundance of smallmouth bass and relative abundance of Year 1 clearcuts might be more reflective of a time-lag in its response (e.g., altered reproduction), rather than of any positive effects attributable to Year 1 clearcuts.

A similar explanation might explain the significant negative
correlation between \underline{r}-selected and \underline{K}-selected species in their responses to the eight clear-cutting variables. In general, \underline{K}-selected species exhibited positive responses to Years 1-3 clearcuts and negative responses to Years 4-8. The reverse pattern for \underline{r}-selected species may reflect a quicker response of these shorter-lived fishes to the negative effects of Years $1-3$ clearcuts and, due to a higher reproductive potential, a quicker recovery during Years 4-8. This suggestion implies that the negative effects of Years 1-3 clearcuts are greater than those of Years 4-8 clearcuts, and there is some indication that this may be true (Webster et al. 1988).

Within one to three years after clearcutting, sites are prepared for planting new pine seedlings. This activity includes bulldozing stumps and any hardwood trees left after clearcutting, onsite burning of the resulting piles of wood, preparing the soil for planting by creating plowed "furrows" on the surface, and often the broadcast application of a granular herbicide (e.g., Pronone). Planting of new pine-seedlings generally occurs from December through February following site preparation and may include the spraying of a liquid herbicide (e.g., Velpar, or Velpar and Oust). After planting, the primary activity consists of pre-commercial thinning (ca. 5-7 years post harvest) of trees and shrubs to create cleared rows -- the felled trees are left lying on the site. Thus, it appears that the disturbance to the terrestrial environment, and by inference the aquatic habitat, would be maximal during years 1-3. This corresponds well with studies demonstrating increased streamflow (Reinhart and Eschner 1962, Likens et al 1970, Patric 1973, Swank 1988), increased sedimentation (Tebo 1955, 1957; Brown and Krygier 1971; Burns 1972), increased water temperature
(Brown and Krygier 1970, Swift and Messer 1971, Swift 1982) and decreased allochthonous inputs (Webster and Waide 1982) in the years immediately following clearcutting.

Studies of the type represented here can easily be over interpreted with ad hoc hypotheses and speculation. It should be emphasized that this study does not demonstrate cause and effect between clearcutting and fish community structure. The demonstration of causation, in a study like this, requires that changes in the dependent variable ("fish variables") can be induced by changes in the independent variables (clear-cutting) and that the independent variables are the only effectors involved (Gunst and Mason 1980). This study was designed in such a way as to examine associations between clearcutting and fish assemblage structure while statistically "holding other habitat variables constant". It is possible, however, that some important causal variable(s) were not considered. Such a factor could covary with clearcutting without being a function of that activity. However, if such factors exist, they are not readily obvious. Thus, while not directly demonstrating causality, the data do indicate an apparently causal effect of clearcutting on fish assemblage structure.

The significance of this study is that it is the first attempt to demonstrate an association between patterns of clearcutting and fish assemblage structure. The results indicate that such an association exists. This provides support for the suggestion (Rutherford et al. 1987) that changes in the overall frequency of occurrence of individual species in the Little River drainage are associated with the initiation of clearcutting in the 1960's. Since that time, silvicultural activities have been intensive over virtually the entire study area.

Because of the low density of the human population and low levels of agriculture, silvicultural activities are by far the major human activity in the study area (Rutherford et al. 1987).

Belsley, D. A., E. Kuh and R. E. Welsch. 1980. Regression diagnostics: identifying influential data and sources of collinearity. John Wiley, New York.

Boschung, H. and P. O'Neil. 1981. The effects of forest clearcutting on fishes and macroinvertebrates in an Alabama stream. pp. 200-217 In: Proceedings of the Warmwater Stream Symposium. L. A. Krumholz (ed.), Univ. of Tennessee Press, Knoxville, TN.

Brown, G. W. and J. T. Krygier. 1970. Effects of clearcutting on stream temperatures. Water Resour. Res. 6:1135-1139.

Brown, G. W. and J. T. Krygier. 1971. Clear-cut logging and sediment production in the Oregon coast range. Water Resour. Res. 7:1189-1198.

Burns, J. W. 1972 Some effects of logging and associated road construction on northern California streams. Trans. Am. Fish. Soc. 101:1-17.

Chapman, D. W. 1962. Effects of logging upon fish resources of the west coast. J. Forest. 60:533-537.

Chutter, F. M. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34:57-76.

Cordone, A. J. and D. W. Kelley. 1961. The influences of inorganic sediment on the aquatic life of streams. Calif. Fish and Game. 47:187-228.

Danie1, C. and F. S. Wood. 1980. Fitting equations to data: computer analysis of multifactor data. John Wiley, New York.

Echelle, A. A. and G. D. Schnell. 1976. Factor analysis of species associations among fishes in the Kiamichi River, Oklahoma. Trans. Amer. Fish. Soc. 105:17-31.

Elson, P. F., J. W. Sanders and V. Zitko. 1972. Impact of forest-based industries on freshwater-dependent fish resources in New Brunswick. Fish. Res. Board of Can., Tech. Rep. 325.

Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Waste. EPA600/4-79-020, EPA, Cincinnati, OH.

Eschner, A. R. and J. Larmoyeux. 1963. Logging and trout: four experimental forest practices and their effects on water quality. Prog. Fish-Cult. 25:59-67.

Finnell, J. C., R. M. Jenkins and G. E. Hall. 1956. The fishery resources of the Little River system, McCurtain Co., OK. Okla. Fish. Res. Lab. Rep. No. 55.

Gauch, H. G. 1980. Multivariate Analysis in Community Ecology. Cambridge Univ. Press, Cambridge, England.

Gibbons, D. R. and E. O. Salo. 1973. An annotated bibliography of the effects of logging on the fish of the western United States and Canada. U. S. Dept. of Agric., For. Serv. Gen. Tech. Rep. PNW10, Pacific N. W. For. and Range Exper. Stat., Portland, Oregon.

Gorman, O. T. and J. R. Karr. 1978. Habitat structure and stream fish communities. Ecology 59:507-515.

Gray, J. R. A. and M. J. Edington. 1969. Effects of woodland clearance on stream temperature. J. Fish. Res. Board Can. 26:399-403.

Green, P. E. 1978. Analyzing Multivariate Data. The Dryden Press, Hinsdale, IL.

Gunst, R. F. and R. L Mason. 1980. Regression Analysis and its Application: A Data-Oriented Approach. Marcel Dekker, New York.

Hamsmann, E. W. and H. K. Phinney 1973. Effect of logging on periphyton communities in coastal streams of Oregon. Ecology 54:194-199.

Herbold, B. 1984. Structure of an Indiana stream fish association: Choosing an appropriate model. Amer. Nat. 24:561-572.

Hewlett, J. D. and A. R. Hibbert. 1963. Moisture and energy conditions within a sloping soil mass during drainage. J. Geophys. Res. 68:1080-1087.

Hill, M. O. and H. G. Gauch 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:47-58.

Hynes, H. B. N. 1972. The Ecology of Running Waters. Univ. of Toronto Press, Toronto.

Kovner, J. L. 1956. Evapotranspiration and water yields following forest cutting and natural regrowth. Proc. Soc. Am. For. 1956:106-110.

Lantz, R. L. 1967. An ecological study of the effects of logging on salmonids. Proc. 47th Annu. Conf. West. Assoc. State Game and Fish Comm., 328-35.

Lee, R. and D. E. Samuel 1976. Some thermal and biological effects of forest cutting in West Virginia. J. Environ. Qual. 5:362-366.

Likens, G. E. and R. E. Bilby. 1982. Development, maintenance, and role of organic-debris dams in New England streams. pp. 122-128. In: Sediment budgets and routing in forested drainage basins. F. J. Swanson, R. J. Janda, T. Dunne and D. N. Swanson (eds.). U. S. For. Ser. and Range Exp. Stat. Gen. Tech. Rep. PNW-141.
\qquad , F. H. Bormann, N. M. Johnson, D. W. Fisher and R. S. Pierce. 1970. The effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed ecosystem. Ecol. Monogr. 40:23-47.

May, R. M. 1972. Will a large complex system be stable? Nature 238:413-414.

Megahan, W. F. 1972. Sedimentation in relation to logging activities in the mountains of central Idaho. Proc. Sedimentation Workshop, USDA Sediment Lab., Oxford, MS. U. S. Agric. Res. Serv. Rep. ARS-S40.

Miller, R. J. and H. W. Robison. 1973. The fishes of Oklahoma. Oklahoma State Univ. Press, Stillwater, Okla.

Mosteller, F. and J. W. Tukey. 1977 Data Analysis and Regression. Addison-Wesley, Reading. Mass.

Murphy, M. L. and J. D. Hall. 1981. Varied effects of clear-cut logging on predators and their habitat in small streams of the Cascade Mountains, Oregon. Canadian J. Fish. Aquatic Sci. 38:137-145.

Newbold, J. D., D. C. Erman and K. B. Roby. 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Canadian J. Fish. Aquatic Sci. 37:1076-1085.

Patric, J. H. 1973. Deforestation effects on soil moisture, stream flow and water balance in the central Appalachians. USDA For. Serv. Res. Paper NE259.

Pianka, E. R. 1978. Evolutionary Ecology. Harper and Rowe, New York.
Pielou, E. C. 1977. Mathematical Ecology. John Wiley, New York.
Reinhart, K. G. and A. R. Eschner. 1962. Effect on streamflow of four different forest practices in the Allegheny Mountains. J. Geophys. Res. 67:2433-45.

Rose, D. R. and A. A. Echelle. 1981. Factor analysis of associations of fishes in Little River, central Texas, with an interdrainage comparison. Amer. Mid1. Nat. 106:379-91.

Rutherford, D. A., A. A. Echelle and O. E. Maughan. 1987. Changes in the fish fauna of the Little River drainage, southeastern Oklahoma, 1948-1955 to 1981-1982: a test of the hypothesis of environmental degradation. pp. 178-183. In: Community and Evolutionary Ecology of North American Stream Fishes. W. J. Matthews and D. C. Heins (eds.). Univ. of Oklahoma Press, Norman.

SAS Institute. 1982. SAS User's Guide: Basics, Statistics. SAS Institute, Cary, NC.

Silsbee, D. G. and G. L. Larson. 1983. A comparison of streams in logged and unlogged areas of Great Smoky Mountains National Park. Hydrobiologia 102:99-111.

Smith, C. L. and C. R. Powell. 1971. The summer fish communities of Brier Creek, Marshall County, Oklahoma. Amer. Mus. Nov. 2458.

Steel, R. J. and J. H. Torrie. 1980. Principals and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York.

Swank, W. T., W. L. Swift and J. E. Douglass. 1988. Streamflow changes associated with forest cutting, species conversions, and Natural Disturbances. pp. 297-312. In: Forest Hydrology and Ecology at Coweeta. W. T. Swank and D. A. Crossley (eds.). Springer-Verlag, New York.

Swift, L. W. 1982. Duration of stream temperature increases following forest cutting in the southern Appalachian mountains. Proc. Int. Symp. Hydrometerol. p. 273-275.

- 1988. Forest access roads: Design, maintenance, and soil loss. pp. 313-324. In: Forest Hydrology and Ecology at Coweeta. W. T. Swank and D. A. Crossley (eds.). Springer-Verlag, New York.
\qquad and S. E. Baker. 1973. Lower water temperatures within a streamside buffer strip. USDA For. Serv. Res. Note SE193.
and J. B. Messer. 1971. Forest cuttings raise temperatures of small streams in the southern Appalachians. J. Soil and Water Conserv. 26:111-116.

Tebo, L. B. 1955. Effects of siltation resulting from improper logging on the bottom fauna of a small brook trout stream in the southern Appalachians. Prog. Fish-Cult. 17:64-70.
. 1957. Effects of siltation on trout streams. Soc. Amer. For. Proc. 1956:198-202.

Ter Braak, C. J. F. and I. C. Prentice. 1986. A Theory of Gradient Analysis. ITI-TNO, Wageningen, The Netherlands.

Wartenburg, D., S. Ferson and F. J. Rohlf. 1987 Putting things in order: a critique of detrended correspondence analysis. Amer. Nat. 129:434-448.

Webster, J. R. and J. B. Waide. 1982. Effects of forest clearcutting on leaf breakdown in a southern Appalachian stream. Freshwater Biol. 12:331-334.
\qquad , M. E. Gurtz, J. J. Hains, J. L. Meyer, W. T. Swank, J. B. Waide and J. B. Wallace. 1983. Stability of stream ecosystems. pp. 355-395. In: Stream Ecology. J. R. Barnes and G. W. Minshall (eds.). Plenum Press, New York.
, E. F. Benfield, S. W. Golladay, R. F. Kazmierczak, W. B. Perry and T. Peters. 1988. Effects of watershed disturbance on stream seston characteristics. pp. 279-294. In: Forest Hydrology and Ecology at Coweeta. W. T. Swank and D. A. Crossley, Jr. (eds.). Springer-Verlag, New York.

Table III. Principal component loadings for each species having a loading $\geqq \xlongequal[1]{ } .35$; on a component.

Table IV. Stepwise multiple regression of fish principal component scores (PC I - PC V) on a subset, p, of 27 environmental covariables and eight silvicultural variables. The subset of independent variables was determined by Mallows' C_{p} statistic where $C_{p}=p$. Significant partial correlations ($p^{p}<0.05$) are shown for the eight silvicultural variables.

Table V. Stepwise multiple regression of \log coded abundance of the 29 common fish species on a subset, p, of 27 environmental covariables and eight silvicultural variables. The subset of independent variables was determined by Mallows' C_{p} statistic where $C_{p}=p$. Significant partial correlations ($p^{p}<0.05$) are shown flor the eight silvicultural variables.

Species			Silvicultural Variables Year 1 - Year 8							r^{2}
			1	2	3	4	56	7	8	
Esox americanus	5	7.8				-. 05				. 33
Campostoma anomalum	7	7.9					+. 03			. 40
Notropis boops	3	5.6					-. 07			. 36
N. chrysocephalus	3	2.1								. 17
$\overline{\mathrm{N}}$. ortenburgeri	3	1.8					+. 05			. 30
$\overline{\mathrm{N}}$. $\overline{\mathrm{sp}}$.	6	5.4					-. 06			. 44
\bar{N}. umbratilis	4	4.6								. 42
\bar{N}. whipplei	4	5.8								. 22
Pimephales notatus	5	7.2								. 28
Semotilus atromaculatus	4	4.4								. 46
Erimyzon oblongus	4	2.3			+. 08					. 30
Ictalurus natalis	2	6.3								. 16
Noturus nocturnus	6	4.6				+. 06				. 43
Aphredoderus sayanus	6	6.3				-. 05				. 44
Fundulus notatus	7	6.8					-.05-. 08			. 49
F F olivaceus	7	6.4								. 46
Gambusia affinis	3	4.4								. 25
Labidesthes sicculus	4	3.5		+. 05						. 35
Lepomis cyanellus	5	6.1					-. 06			. 43
L. gutosus	5	6.5		-. 05						. 28
L. macrochirus		4.8								. 41
L. megalotis	6	5.6								. 42
L. punctatus	4	3.0								. 36
\bar{M} icropterus dolomieui	6	6.3	+. 06				-. 05			. 38
M. punctulatus	4	3.9								. 34
\bar{M}. salmoides	3	2.8								. 22
Percina caprodes	2	3.6								. 38
Etheostoma radiosum	8	7.4		-. 05						. 40
E. Spectabite	4	6.6								. 33

Table VI. Stepwise multiple regression of community indices on a subset, p, of 27 environmental covariables and eight silvicultural variables. The subset of independent variables was determined by Mallows' C_{p} statistic where $C_{p}=p$. Significant partial correlations ($p<0.05$) are ${ }^{p}$ shown for the eight silvicultural variables.

Community Index	p	C_{p}	Silvicultural Variables Year 1 - Year 8								r^{2}
			1	2	3	4	5	6	7	8	
Shannon-Wiener Diversity	7	8.2						-. 08			. 49
Species Richness	8	6.9						-. 05			. 62
Simpson's Index	7	7.4						. 05			. 35

Table VII. Response of the 29 common fish species to the eight silvicultural variables (Year 1-8). Species responses were determined by a multiple regression of each species on a the eight silvicultural variables and the 27 environmental covariables. For the contingency analysis (see text), the sign (+ or -) of the regression coefficient of a silvicultural variable is interpreted to represent the response of a species.

Species \quad Spe	$\begin{aligned} & \text { Species } \\ & \text { Distribution } \end{aligned}$	Species Selection Strategy ${ }^{2}$	Clearcut Year									
			1	2		3	4	5	6		7	8
Esox americanus	R	K	+	+	+	+	-	+	+		+	+
Erimyzon oblongus	R	K	+	+	+	+	-	-	+		+	+
Semotilus atromaculatus	tus R	r	+	-		-	+	+	-		-	-
Notropis boops	R	r	-	-		+	+	-	-		-	-
N. chrysocephalus	R	r	+	-	-	-	-	+	+		+	+
\bar{N}. ortenburgeri	R	r	+	+	-	-	-	+	+		-	+
\bar{N}. umbratilis	R	r	-	+	-	-	-	+	+		+	+
$\overline{\mathrm{N}}$. whipplei	R	r	+	-		-	-	-	-		-	-
$\overline{\mathrm{N}}$. sp.	R	r	-	-	-	-	$+$	-	-		+	+
Pimephales notatus	R	r	+	+	-	-	$+$	+	+		+	+
Campostoma anomalum	W	r	-	-		+	+	+	+		-	-
Ictalurus natalis	W	K	-	+		$+$	-	+	+		+	+
Noturus nocturnus	R	r	-	-	+	+	+	+	+		+	+
Aphredoderus sayanus	R	K	+	+		+	-	-	-		-	-
Fundulus notatus	R	r	-	+		-	-	-	-		-	-
F. olivaceus	R	r	-	-	+	+	+	+	+		+	+
Gambusia affinis	W	r	+	-		-	-	-	-		-	-
Labidesthes sicculus	R	r	-	+		+	-	+	+		+	+
Lepomis gulosus	W	K	-	-		$+$	-	-	-		-	+
L. cyanellus	W	K	+	+		+	-	-	-		-	-
L. macrochirus	W	K	+	+		-	+	-	-		-	-
L. megalotis	W	K	-	+		+	-	-	-		-	-
L. punctatus	R	K	-	+		+	+	-	-		-	-
Micropterus dolomieui	i R	K	+	+		+	-	-	-		+	+
M. punctulatus	R	K	+	-		-	-	-	-			-
$\overline{\mathrm{M}}$. salmoides	,	K	-	+		$+$	+	-	-		-	-
Etheostoma radiosum	R	r	+			-	+	+	+		+	+
E. spectabile	R	r	+	-	+	+	+	+	+		+	+
Percina caprodes	R	r	-	+	+	+	+	-	+		-	+

${ }^{1} \mathrm{~W}=$ widespread distributions; $\mathrm{R}=$ restricted distributions.
${ }^{2} K=\underline{K}$-selected life history; $r=\underline{r}$-selected life history.

APPENDIXES

APPENDIX A

Presence/absence data for 31 common species at 44 collection localities in 1948-55 and 1981-82. Species identification numbers correspond with names as shown in Table I. Each column represents a collection ($0=$ absent, $1=$ present). Collections are arranged from left to right in the numerical sequence (1 to 44) that corresponds with the identification numbers given in Figure 1. The collection numbers for the historical analysis are identified in Appendix C next to the site number.

Species	Occurrence in 1948-55
1	00001101000000000001001000000000000000011001
2	01100000101100000010000000011000010011000000
3	00011011000010111010110000001001100101111100
4	00011011000000101100110000000000000111000011
5	10010100010100101110110000000000100111101101
6	0000010100000010001100010000000000000110111
7	1110000001111011001001000111110000010000100
8	0011001111101011111011000000011110111101100
9	111001111111010111011001111111110001111111
10	0000001100111010111011001111110001010111101
11	00001110000000110111011000011000000110011101
12	00010010011000111101010001111111101011000100
13	00000100000000100001000000000000000010111001
14	00000000000000000000001100000000000100001100
15	00001000000000000011000100000000000000001101
16	00010000010100000000000001100100100000000100
17	10000000010100101101010000000100000010001100
18	10011111000010101100010000001100000000000100
19	0100010000000000000000100000000000000000000
20	111101111101010111111110000011100111111111
21	0000001000000000001100000000000000000000100
22	01001100000100111001111100100010000111001101
23	11111001111011111111110011111111111111100101
24	01001110000010111101111110101000101110011111
25	00010010101011101111010000001001000010001101
26	01001001000010100000111110001001001111111111
27	01001100000000100101010001101000011010011101
28	10011110000000000100000000000000000000000000
29	0000001000000010010000000000000000000000000
30	11100001111100101100110111111011111011111111
31	0000001000000000000000000000000000000000000

Appendix A. continued.

Species	Occurrence in 1981-82
1	00000000000000000011001100000000000100011001
2	11000000101100001100010001100000001000100000
3	00001111000000111110010100000000001001111101
4	0000010100000011111001000000000001010000011
5	1010001100100000000000000000000100000000000
6	0000000000000000010000000000000000000000010
7	10000000001000010001010010111110000000000000
8	11010011111111111100110011111111100010000000
9	11110111111111111110110001111111111011000110
10	00000000001111000011110001001100001111011111
11	000011110000001111111111100000000000110001100
12	00000001010011100000101001001101000001011000
13	00000110000000000000000100000000000100001000
14	00000110000000000000111000000000000100011011
15	00000010000000000001001100000000000000001000
16	1010000001110000000000001000001000000000000
17	0100010100000111111101100000000100000111001
18	0011100000000000100010000000000000000000000
19	00001000000000100011001000000000000100111001
20	11111111101111111111111111111111110111110111
21	00000110100000101111110100000000000111001001
22	10101111000001101110011100011110100101111101
23	11111111111101001111111001111111101111111111
24	01100010011000111000101111101110101111011011
25	10000001000000100000000000000000000000000001
26	00001000000000000010010111111111001111111011
27	1110011111111000111000000110111101111101000
28	100100000000000110000000000000000010000000
29	000011100000011111001000000000001010000000
30	110001111111111110011001111111111011010110
31	10010000001000000000110001000111100000000000

APPENDIX B

Locations of 156 sites in the Little River drainage where fish collections were made in 1981-1982. The 44 historical sites are identified with a dot. A double dot indicates two historical collections were made at a location.

APPENDIX C

Fish abundances (as number of specimens), and untransformed environmental and silvicultural data collected at 156 localities in the Little River drainage in 1981-1982. The 44 historical site numbers, and numbers for the 89 sites used in the analysis of silvicultural activities follow the drainage-wide site numbers. Each variable (1 to 109) is identified by name and number on the following pages.

Variable Number	Variable Name
1	Lepisosteus oculatus
2	L. osseus
3	Amia calva
4	Dorosoma cepedianum
5	Esox americanus
6	Moxostoma duquesnei
7	M. erythrurum
8	Minytrema meTanops
9	Erimyzon oblongus
10	E. sucetta
11	Notemigonus crysoleucas
12	Semotilus atromaculatus
13	Notropis amnis
14	N. atrocaudalis
15	\bar{N}. boops
16	\bar{N}. chrysocephalus
17	\underline{N}. ortenburgeri
18	\bar{N}. perpallidus
19	\bar{N}. rubellus
20	$\overline{\mathrm{N}}$. sp.
21	\bar{N}. umbratilis
22	$\overline{\mathrm{N}}$. venustus
23	\bar{N}. volucellus
24	$\overline{\mathrm{N}}$. whipplei
25	Hybognathus hayi
26	Pimephales notatus
27	P. vigilax
28	Campostoma anomalum
29	Ictalurus melas
30	I. natalis
31	$\overline{\text { I }}$. punctatus
32	Noturus eleutherus
33	N. gyrinus
34	\bar{N}. nocturnus
35	Pylodictis olivaris
36	Aphredoderus sayanus
37	Fundulus blairie
38	F. notatus
39	\bar{F}. olivaceus
40	Gambusia affinis
41	Labidesthes sicculus
42	Elassoma zonatum
43	Centrarchus macropterus
44	Lepomis cyanellus
45	L. gulosus
46	L. humilis
47	L. macrochirus
48	L. marginatus
49	L. megalotis
50	L. microlophus
51	$\underline{\text { L }}$. punctatus

Variable Number	Variable Name
52	L. symmetricus
53	$\overline{\mathrm{M}}$. dolomieui
54	\bar{M}. punctulatus
55	\bar{M}. salmoides
56	Pomoxis annularis
57	P. nigromaculatus
58	Ammocrypta vivax
59	Crystallaria asprella
60	Etheostoma asprigene
61	E. chlorosomum
62	E. colletti
63	E. gracile
64	E. histrio
65	\bar{E}. ${ }^{\text {nigrum }}$
66	E. parvipinne
67	E. proeliare
68	E. radiosum
69	E. spectabile
70	Percina caprodes
71	p. copelandi
72	\bar{p}. pantherina
73	\bar{p}. phoxocephala
74	\bar{p}. sciera
75	\% Mud Substrate
76	\% Sand Substrate
77	\% Gravel Substrate
78	\% Rubble Substrate
79	\% Boulder Substrate
80	\% Bedrock Substrate
81	\% Emergent Vascular Plants
82	\% Submergent Vascular Plants
83	\% Algae
84	\% Leaf Litter
85	\% Depth 1
86	\% Depth 2
87	\% Depth 3
88	\% Depth 4
89	\% Depth 5
90	\% Very Slow Current
91	\% Slow Current
92	\% Moderate Current
93	\% Fast Current
94	\% Torrent Current
95	Elevation
96	Stream Gradient
97	Stream Order
98	Distance from the Headwaters
99	Specific Conductance
100	Turbidity
101	Nonfilterable Residue

Variable Number	Variable Name	
102	\% Year 1 Clearcuts	
103	\% Year 2 Clearcuts	
104	\% Year 3 Clearcuts	
105	\% Year 4 Clearcuts	
106	\% Year 5 Clearcuts	
107	\% Year	6
Clearcuts		
108	\% Year 7 Clearcuts	
109	$\%$ Year 8 Clearcuts	

SITE	HISTORICAL	HARVEST	1	2	3	4	5	6	7	8	9	10	11
NUMBER	SITES	SITES											
1	.	1	0	0	0	0	2	0	0	0	3	0	0
2	.	2	0	0	0	0	1	0	0	0	1	0	0
3	.	3	0	0	0	0	1	0	0	0	0	0	0
4	.	4	0	0	0	0	0	0	0	0	1	0	0
5	.	5	0	0	0	0	1	0	0	0	0	0	0
6	.	6	0	0	0	0	0	0	0	0	2	0	0
7	.	.	0	0	0	0	2	0	0	0	0	0	0
8	.	7	0	0	0	0	1	0	0	0	0	0	0
9		.	0	0	0	0	0	0	0	0	0	0	0
10	1	.	0	0	0	0	0	0	1	0	0	0	0
11		8	0	0	0	0	2	0	0	1	0	0	0
12	2	9	0	0	0	0	1	0	0	0	0	0	0
13	3	10	0	0	0	0	2	0	0	0	0	0	0
14	.	11	0	1	0	0	1	0	0	0	1	0	0
15	.	12	0	0	0	0	1	0	0	0	0	0	0
16	.	13	0	0	0	0	0	0	0	0	0	0	0
17	-	.	0	0	0	0	0	0	0	0	0	0	0
18	.		0	0	0	0	0	0	0	0	0	0	0
19	.	14	0	0	0	0	5	0	0	0	16	0	0
20	.	.	0	0	0	0	0	0	0	0	0	0	0
21	.	15	0	0	0	0	0	0	0	0	1	0	0
22	.	16	0	0	0	0	0	0	0	0	0	0	0
23		17	0	0	0	0	0	0	0	0	0	0	0
24	4		0	0	0	0	0	0	0	0	0	0	0
25	.	18	0	0	0	0	2	0	0	1	1	0	0
26	.	19	0	0	0	0	3	0	0	0	0	0	0
27	.	.	0	0	0	0	5	0	0	0	5	0	0
28	.	-	0	0	0	1	1	0	0	0	0	0	0
29	.	.	0	0	0	0	2	0	0	0	0	0	0
30	.	.	0	0	0	33	0	0	0	0	0	0	5
31		.	1	0	0	4	0	0	0	0	0	0	2
32	5	.	0	0	0	0	0	0	0	0	2	0	0
33	.	.	0	0	0	0	0	0	0	0	0	0	0
34		.	0	0	0	0	1	0	0	0	0	0	0
35	6		0	0	0	0	0	0	0	0	0	0	0
36	.	20	0	0	0	0	3	0	0	1	0	0	1
37		21	0	0	0	0	1	0	0	0	1	0	0
38	7		0	0	0	0	2	0	0	0	0	0	0
39	.	22	0	0	0	0	3	0	0	0	2	0	0
40	8	.	0	0	0	0	0	0	2	0	0	0	0
41			0	0	0	0	1	0	0	0	0	0	0
42	.	23	0	0	0	0	4	0	0	0	7	0	0
43	.	24	0	0	0	0	0	0	0	0	0	0	0
44		25	0	0	0	0	0	0	0	0	0	0	0
45		26	0	0	0	0	1	0	0	0	0	0	0
46	.	27	0	0	0	0	1	1	0	0	0	0	0
47	.	28	0	0	0	0	0	0	0	0	0	0	0
48		29	0	0	0	0	4	0	0	0	10	0	0
49	9	30	0	0	0	0	1	0	0	0	0	0	0
50	.		0	0	0	0	0	0	0	0	0	0	0
51		31	0	0	0	0	0	0	0	0	0	0	0
52	-	32	0	0	0	0	2	0	0	0	1	0	0

SITE	HISTORICAL	HARVEST	1	2	3	4	5	6	7	8	9	10	11
NUMBER	SITES	SITES											
53	.	33	0	0	0	0	2	0	0	0	1	0	0
54	.	34	0	0	0	0	1	0	0	0	0	0	0
55	.	35	0	0	0	0	0	0	0	0	0	0	0
56	.	36	0	0	0	0	0	0	0	0	0	0	0
57		37	0	0	0	0	1	0	0	0	0	0	0
58	10	38	0	0	0	0	2	0	0	0	0	0	0
59	.	39	0	0	0	0	1	0	0	0	0	0	0
60	.	40	0	0	0	0	5	0	1	0	23	0	0
61	11	41	0	1	0	0	1	0	0	0	0	0	0
62	.	42	0	0	0	0	4	0	0	0	7	0	0
63	.	43	0	0	0	0	3	0	0	0	0	0	0
64	.	44	0	0	0	0	0	0	0	0	0	0	0
65	.	45	0	0	0	0	0	0	0	0	1	0	0
66	.	46	0	0	0	0	0	0	0	0	2	0	0
67	.	47	0	0	0	0	0	0	0	0	0	0	0
68	.	48	0	0	0	0	2	0	0	0	7	0	0
69	.	49	0	0	0	0	0	0	0	0	0	0	0
70	.	50	0	0	0	0	3	0	0	0	2	0	0
71	.	51	0	0	0	0	0	0	0	0	0	0	0
72	.	52	0	0	0	0	0	0	0	0	0	0	0
73		53	0	0	0	0	3	0	0	0	4	0	0
74	14	54	0	0	0	0	0	0	0	0	0	0	0
75	.	55	0	0	0	0	1	0	0	0	2	0	0
76	.	56	0	0	0	0	0	1	0	0	0	0	0
77	.	57	0	0	0	0	0	0	0	0	30	0	0
78	.	.	0	1	0	0	0	0	0	0	0	0	0
79	.	-	0	0	0	0	2	0	0	0	3	0	0
80	.	.	0	0	0	0	0	0	0	0	3	0	0
81	.	.	0	1	0	10	0	0	0	0	0	0	0
82	.	.	0	0	0	0	3	0	0	0	0	0	0
83	.	.	0	0	0	1	0	0	0	0	1	0	0
84	.	.	0	0	0	0	3	0	0	0	5	0	0
85	.		0	0	0	0	0	0	0	0	0	0	0
86	.	58	0	0	0	0	1	3	0	0	2	0	0
87			0	0	0	0	1	0	5	0	0	0	0
88	15		0	0	0	0	1	0	3	0	0	0	0
89	.	.	0	0	0	0	0	0	0	0	0	0	0
90	.	.	0	0	0	0	0	0	3	0	0	0	0
91	.		0	0	0	2	0	0	0	0	0	0	7
92	.	59	0	0	0	0	5	0	0	0	6	0	0
93		60	0	0	0	0	2	0	0	0	2	0	0
94	16	61	0	0	0	0	1	0	0	0	0	0	0
95		62	0	0	0	0	0	0	0	0	0	0	0
96	17		0	0	0	0	1	0	0	0	1	0	0
97	18		0	0	0	0	0	1	0	0	0	0	0
98	19	.	0	0	0	0	0	0	0	0	5	1	2
99	.		0	0	0	0	0	0	0	0	7	0	0
100	.		0	0	0	0	0	0	0	0	0	0	0
101	.		0	0	0	0	0	0	0	0	0	0	2
102	.	.	0	0	0	0	2	0	0	0	7	0	2
103			0	0	0	0	0	0	0	0	4	0	3
104	20	-	1	0	1	19	0	0	0	0	0	0	6

SITE	HISTORICAL	HARVEST	1	2	3	4	5	6	7	8	9		11
NUMBER	SITES	SITES											
105		63	0	0	0	0	5	0	0	0	0	0	0
106	21	64	0	0	0	0	5	0	0	0	4	0	0
107		.	0	0	0	0	0	0	0	0	7	0	0
108	22	-	0	0	0	0	1	0	0	0	11	0	0
109	.	.	0	0	0	0	2	0	0	0	1	0	0
110		.	0	0	0	0	1	0	0	0	3	0	0
111	23		0	0	0	0	10	0	0	4	1	0	39
112	24		0	0	0	0.	4	0	0	0	0	4	5
113		65	0	0	0	0	1	0	0	0	5	0	0
114	25	66	0	0	0	0	2	0	0	0	10	0	0
115		67	0	0	0	0	0	0	0	0	1	0	0
116	26	68	0	0	0	0	2	0	0	0	1	0	0
117	27	69	0	0	0	0	3	0	0	0	2	0	0
118	.	70	0	0	0	0	1	0	0	0	3	0	0
119	.	71	0	0	0	0	1	0	0	0	13	0	0
120			0	0	0	0	0	0	0	0	0	0	0
121	.		0	2	0	0	0	1	0	0	0	0	0
122	-	72	0	0	0	0	0	0	0	0	0	0	0
123	28	73	0	0	0	0	2	0	0	0	3	0	0
124	29		0	0	0	0	1	0	0	0	1	0	0
125	.	74	0	0	0	0	1	0	0	0	0	0	0
126	.	75	0	0	0	0	2	0	0	0	0	0	0
127		76	0	0	0	0	2	0	0	0	0	0	0
128		77	0	0	0	0	4	0	0	0	1	0	0
129	.	78	0	0	0	0	0	0	0	0	0	0	0
130			0	0	0	0	0	0	0	0	0	0	0
131	32	79	0	0	0	0	0	0	0	0	3	0	0
132		80	0	0	0	0	0	0	0	0	3	0	0
133			0	0	0	0	3	0	0	0	3	0	0
134	33	-	0	0	0	0	1	0	0	0	0	0	0
135		81	0	0	0	0	4	0	0	0	12	0	0
136	34	82	0	0	0	0	0	0	0	0	0	0	0
137		83	0	0	0	0	0	0	0	0	0	0	0
138			0	0	0	0	0	0	0	0	0	0	0
139	.		0	0	0	0	0	0	0	0	0	0	0
140		84	0	0	0	0	2	0	0	0	18	0	0
141	35	85	0	0	0	0	2	0	0	0	7	0	0
142	36		0	0	1	0	2	0	0	7	3	6	15
143	37		0	0	0	0	2	0	0	0	1	0	0
144		86	0	0	0	0	5	0	0	0	0	0	0
145	38	.	0	0	0	0	2	0	0	0	8	0	0
146	39	.	0	0	0	0	0	0	0	0	3	0	0
147	40		0	0	0	0	3	0	0	0	5	0	13
148	41		0	0	0	0	6	0	0	7	0	4	10
149	.	87	0	0	0	0	1	0	0	0	3	0	0
150		88	0	0	0	0	2	0	0	0	3	0	0
151		89	0	0	0	0	1	0	1	0	0	0	0
152	42	.	0	0	0	0	0	0	0	0	0	0	0
153	43	.	0	0	0	0	1	0	0	0	5	0	0
154	44		1	8	0	0	3	0	5	0	3	0	0
155			0	0	0	0	5	0	0	1	8	0	2
156	.	.	0	0	1	0	9	0	1	0	3	0	32

SITE	HISTORICAL	HARVEST	12	13	14	15	16	17	18	19	20		22
NUMBER	SITES	SITES											
1		1	0	0	0	81	0	0	0	0	20	0	0
2	.	2	0	0	0	55	0	0	0	0	23	0	0
3	.	3	0	0	0	20	0	0	0	0	6	0	0
4	.	4	0	0	0	29	0	0	0	0	0	0	0
5	.	5	0	0	0	12	0	0	0	0	1	0	0
6	.	6	0	0	0	32	0	0	0	0	1	0	0
7	.		0	0	0	43	0	0	0	0	28	0	0
8	.	7	0	0	0	0	0	0	0	0	0	0	0
9		.	0	0	0	3	0	0	0	0	22	0	0
10	1		0	0	0	69	0	0	0	12	109	0	0
11		8	0	0	0	9	0	0	0	0	65	0	0
12	2	9	0	0	0	73	0	0	0	0	8	0	0
13	3	10	0	0	0	0	0	0	0	0	0	0	0
14	.	11	0	0	0	121	0	0	0	0	43	0	0
15	.	12	0	0	0	93	0	0	0	0	74	0	0
16	.	13	0	0	0	16	0	1	0	0	8	0	0
17	.	.	0	0	0	43	0	0	0	0	0	13	0
18	.		0	0	0	67	0	0	0	0	13	0	0
19	.	14	0	0	0	26	0	0	0	0	0	0	0
20	.		0	0	0	6	0	0	0	0	0	0	0
21	.	15	0	0	0	22	0	0	0	0	0	0	0
22	.	16	0	0	0	11	0	0	0	0	21	0	0
23		17	0	0	0	121	0	1	0	0	0	0	0
24	4		0	0	0	43	0	0	0	0	0	0	0
25		18	0	0	0	38	6	0	0	0	0	7	0
26	.	19	0	0	0	41	1	1	0	0	0	13	0
27	.	.	0	0	0	3	3	0	0	0	0	23	0
28	.	.	0	0	0	16	0	0	0	0	0	0	0
29	.	.	0	0	0	6	0	0	0	0	0	0	0
30	.	.	0	2	0	0	0	0	0	0	0	0	0
31		.	0	0	0	0	0	0	0	0	4	0	0
32	5	.	0	0	0	0	0	0	0	0	0	4	0
33	.	.	0	0	0	0	0	0	20	0	86	1	4
34		.	0	0	0	0	0	0	0	0	0	20	0
35	6		0	0	0	0	1	0	0	0	0	1	0
36	.	20	0	0	0	0	0	47	0	0	0	1	0
37		21	0	0	0	56	0	0	0	0	0	34	0
38	7		0	0	0	74	0	0	0	0	0	3	0
39		22	0	0	0	1	3	0	0	0	0	1	0
40	8	.	0	0	0	49	18	0	0	0	0	38	0
41	.		0	0	0	0	1	0	0	0	0	5	0
42	.	23	0	0	0	102	0	0	0	0	91	0	0
43	.	24	0	0	0	53	0	0	0	0	28	0	0
44	.	25	0	0	0	22	0	0	0	0	14	0	0
45	.	26	0	0	0	64	0	0	0	0	17	0	0
46	.	27	0	0	0	95	0	0	0	0	56	0	0
47		28	0	0	0	41	0	0	0	0	0	0	0
48		29	0	0	0	20	0	4	0	0	9	0	0
49	9	30	0	0	0	9	0	0	0	0	18	0	0
50	.		0	0	0	0	0	0	0	0	0	0	0
51	.	31	0	0	0	8	0	0	0	0	3	0	0
52	.	32	0	0	0	160	0	0	0	0	73	0	0

SITE HISTORICAL HARVEST 12 13 NUMBER SITES SITES

53		33	0	0	0	0	0	0	0	0	0	0	0
54		34	0	0	0	288	0	0	0	0	132	0	0
55	.	35	0	0	0	42	0	0	0	0	0	0	0
56		36	0	0	0	108	0	0	0	0	0	0	0
57		37	0	0	0	4	0	0	0	0	0	0	0
58	10	38	0	0	0	36	0	0	0	0	0	0	0
59		39	0	0	0	138	0	0	0	0	22	0	0
60		40	0	0	0	31	0	0	0	0	5	0	0
61	11	41	0	0	0	103	0	0	0	0	20	0	0
62	.	42	0	0	0	10	0	0	0	0	2	0	0
63	.	43	0	0	0	12	0	0	0	0	0	0	0
64	.	44	0	0	0	24	0	0	0	0	79	0	0
65		45	0	0	0	0	0	0	0	0	0	0	0
66	.	46	0	0	0	0	0	0	0	0	0	0	0
67	-	47	0	0	0	7	0	0	0	0	12	0	0
68	.	48	0	0	0	80	0	0	0	0	2	0	0
69		49	1	0	0	299	0	0	0	0	6	0	0
70	.	50	0	0	0	173	0	0	0	0	3	0	0
71	.	51	0	0	0	63	0	0	0	0	25	0	0
72	.	52	0	0	0	309	0	0	0	0	0	0	0
73		53	4	0	0	30	1	0	0	0	0	1	0
74	14	54	0	0	0	202	0	0	0	0	0	0	0
75	.	55	0	0	0	10	0	0	0	0	0	22	0
76	.	56	0	0	0	93	0	0	0	4	0	0	0
77	.	57	0	0	0	0	9	0	0	0	0	0	0
78	.	.	0	0	0	17	0	0	0	0	0	0	0
79	.	.	0	0	0	26	0	0	0	0	0	54	0
80	.	.	2	0	0	0	0	0	0	0	0	0	0
81	.	.	0	0	0	0	0	0	0	4	1	3	2
82	.	.	0	0	0	0	0	0	0	0	0	2	0
83	.	-	0	0	0	0	0	0	0	0	0	0	0
84	.	.	0	0	0	0	8	0	0	0	0	12	0
85	.		0	0	0	58	2	0	0	0	0	120	0
86	.	58	0	0	0	238	0	0	0	0	0	26	0
87		.	0	0	0	36	8	0	0	0	0	12	0
88	15	.	0	0	0	42	1	0	0	0	0	5	0
89	.	.	0	0	0	0	0	0	0	0	1	0	119
90	.	.	0	0	0	0	0	0	0	0	0	0	2
91	.		0	0	0	0	0	0	0	0	0	4	0
92		59	1	0	0	0	0	0	0	0	0	0	0
93		60	0	0	0	0	0	0	0	0	0	0	0
94	16	61	0	0	0	33	2	0	0	0	0	19	0
95		62	0	0	0	58	1	0	0	0	22	11	0
96	17		0	0	0	7	13	0	0	0	0	8	0
97	18	.	0	0	0	28	10	0	0	0	0	21	0
98	19	.	0	0	6	0	3	0	0	0	0	11	0
99		.	1	0	24	0	0	0	0	0	0	0	0
100			0	0	0	0	0	0	0	0	0	16	0
101	.	.	0	0	5	0	0	0	0	0	0	11	0
102	.	.	0	0	15	0	0	0	0	0	0	8	0
103			0	0	2	0	0	0	0	0	0	32	0
104	20		0	0	0	0	0	0	0	0	0	0	0

SITE	HISTORICAL	HARVEST			14	15	16	17	18	19	20	21	
NUMBER	SITES	SITES											
105		63	0	0	0	0	10	0	0	0	0	4	0
106	21	64	0	0	0	6	0	0	0	0	0	0	0
107		.	0	0	0	5	15	0	0	0	64	0	0
108	22	.	0	0	0	24	76	0	0	0	16	2	0
109		.	1	0	0	22	0	0	0	0	0	6	0
110		.	0	0	9	0	0	0	0	0	0	0	0
111	23	.	0	0	0	0	0	0	0	0	0	0	0
112	24	.	0	0	0	0	0	0	0	0	0	7	0
113		65	0	0	0	216	0	0	0	0	58	0	0
114	25	66	4	0	0	71	0	0	0	0	0	0	0
115		67	0	0	0	2	0	0	0	0	2	0	0
116	26	68	0	0	0	63	0	0	0	0	43	0	0
117	27	69	0	0	0	27	0	0	0	0	11	0	0
118		70	0	0	0	6	0	0	0	0	1	0	0
119		71	0	0	0	51	0	0	0	0	0	68	0
120	.	.	0	0	0	93	0	0	0	0	28	0	0
121			0	0	0	25	0	0	0	0	22	0	0
122	-	72	0	0	0	23	0	0	0	0	0	0	0
123	28	73	0	0	0	66	0	0	0	0	0	0	0
124	29		0	0	0	1	0	0	0	0	0	0	0
125	.	74	0	0	0	8	0	0	0	0	3	0	0
126	.	75	0	0	0	7	0	0	0	0	14	0	0
127		76	0	0	0	30	0	0	0	0	18	0	0
128		77	0	0	0	72	0	0	0	0	33	0	0
129		78	0	0	0	60	0	0	0	0	5	0	0
130			0	0	0	17	0	0	0	0	0	0	0
131	32	79	0	0	0	3	0	0	0	0	23	0	0
132		80	0	0	0	9	0	0	0	0	0	0	0
133			0	0	0	43	0	0	0	0	7	0	0
134	33		0	0	0	14	0	0	0	0	14	0	0
135		81	0	0	0	78	0	0	0	0	30	0	0
136	34	82	17	0	0	0	0	0	0	0	0	0	0
137		83	0	0	0	16	0	0	0	0	16	0	0
138			0	0	0	7	0	0	0	0	0	0	0
139	.		0	0	0	5	0	0	0	0	33	0	0
140		84	0	0	0	20	25	0	0	0	3	0	0
141	35	85	0	0	0	69	10	0	0	0	0	11	0
142	36		0	0	0	0	0	0	0	0	0	0	0
143	37		0	0	0	22	46	0	0	0	0	0	0
144		86	0	0	0	6	2	0	0	0	0	8	0
145	38	.	0	0	0	28	0	0	0	0	0	15	0
146	39		0	0	0	0	0	0	0	0	0	1	0
147	40		0	0	0	0	0	0	0	0	0	22	0
148	41		0	0	0	0	0	0	0	0	0	83	0
149	.	87	0	0	0	114	0	0	0	0	0	3	0
150		88	0	0	0	50	1	0	0	0	8	11	0
151		89	0	0	0	132	0	4	0	0	103	0	0
152	42	.	0	0	0	73	0	0	0	0	0	5	0
153	43	.	1	0	3	0	1	0	0	0	1	0	0
154	44		0	0	0	0	8	3	0	0	0	35	0
155	.		0	0	1	0	3	0	0	0	0	32	0
156	-	-	0	0	0	0	0	0	0	0	0	3	

SITE	HISTORICAL	HARVEST	23	24	25	26		28	29	30	31	32	33
NUMBER	SITES	SITES											
1		1	0	0	0	0	0	21	0	2	0	0	0
2	-	2	0	0	0	5	0	4	0	1	1	0	0
3	.	3	0	0	0	1	0	1	0	1	0	0	0
4	.	4	0	0	0	0	0	49	0	2	0	0	0
5	.	5	0	0	0	1	0	7	0	0	0	0	0
6	.	6	0	0	0	0	0	15	0	2	0	0	0
7	.	.	0	0	0	0	0	19	0	1	0	0	0
8	.	7	0	0	0	0	0	19	0	1	0	0	0
9	.	.	0	3	0	4	0	9	0	2	0	0	0
10	1	.	13	9	0	4	0	23	0	9	3	0	0
11		8	0	0	0	0	0	0	0	0	0	0	0
12	2	9	0	0	0	0	0	22	0	3	0	0	0
13	3	10	0	0	0	0	0	16	0	6	2	0	0
14	.	11	0	0	0	7	0	9	0	0	0	0	0
15	.	12	0	0	0	0	0	25	0	0	0	0	0
16	.	13	0	0	0	1	0	73	0	2	0	0	0
17	.	.	0	11	0	0	0	52	0	3	2	0	0
18	.		0	16	0	1	0	25	0	2	0	0	0
19		14	0	0	0	0	0	41	0	4	0	0	0
20	.		0	2	0	1	0	39	0	5	5	0	0
21	.	15	0	0	0	1	0	15	0	7	0	0	0
22	.	16	0	0	0	0	0	6	0	0	0	0	0
23		17	4	0	0	4	0	67	0	14	0	0	0
24	4		0	11	0	0	0	35	0	0	1	0	0
25	.	18	0	0	0	5	0	19	0	3	0	0	0
26	.	19	0	0	0	1	0	9	0	1	0	0	0
27	-	.	0	0	0	2	0	15	0	5	0	0	0
28	.	.	0	0	0	2	0	7	0	0	0	0	0
29	.	.	0	0	0	1	0	46	0	4	0	0	0
30	.	.	0	0	0	1	0	0	0	0	0	0	0
31		.	0	0	0	0	0	0	0	0	0	0	0
32	5	.	0	0	0	0	0	0	0	8	0	0	0
33	.	-	0	13	0	0	0	2	0	0	0	0	0
34		.	0	0	0	0	0	19	0	2	0	0	0
35	6	.	0	3	0	0	0	8	0	2	0	0	0
36	.	20	0	0	0	0	0	0	0	1	0	0	0
37	.	21	0	0	0	11	0	40	0	0	0	0	0
38	7		0	0	0	0	0	71	0	16	0	0	0
39		22	0	0	0	0	0	58	0	6	0	0	0
40	8	.	0	26	0	1	0	102	0	4	0	0	0
41	.		0	0	0	0	0	0	0	0	0	0	1
42		23	0	0	0	0	0	39	0	2	0	0	0
43		24	0	0	0	0	0	26	0	2	0	0	0
44	.	25	0	0	0	0	0	11	0	0	0	0	0
45	.	26	0	0	0	0	0	0	0	0	0	0	
46		27	0	0	0	0	0	5	0	0	0	0	0
47		28	0	0	0	2	0	7	0	0	0	0	0
48		29	0	0	0	0	0	0	0	8	0	0	0
49	9	30	0	0	0	0	0	1	0	2	0	0	0
50			0	0	0	0	0	0	0	0	0	0	0
51		31	0	0	0	0	0	0	0	6	0	0	0
52	.	32	0	0	0	1	0	57	0	3	0	0	0

SITE	HISTORICAL	HARVEST	23	24	25	26	27	28	29	30	31	32	33
NUMBER	SITES	SITES											
53	.	33	0	0	0	0	0	12	0	1	0	0	0
54	.	34	0	0	0	4	0	42	0	0	0	0	0
55	.	35	0	0	0	0	0	6	0	0	0	0	0
56	-	36	0	0	0	0	0	16	0	0	0	0	0
57		37	0	0	0	0	0	7	0	0	0	0	0
58	10	38	0	0	0	0	0	15	0	3	0	0	0
59	.	39	0	0	0	0	0	0	0	0	0	0	0
60		40	0	0	0	0	0	17	0	0	0	0	0
61	11	41	0	0	0	3	0	13	0	6	0	0	0
62		42	0	0	0	0	0	3	0	0	0	0	0
63	.	43	0	0	0	0	0	44	0	6	0	0	0
64	-	44	0	3	0	0	0	20	0	0	0	0	0
65	.	45	0	0	0	0	0	19	0	2	0	0	0
66	.	46	0	0	0	0	0	24	0	0	0	0	0
67	.	47	0	0	0	0	0	1	0	1	0	0	0
68	.	48	0	0	0	0	0	27	0	5	0	0	0
69	.	49	0	0	0	0	0	44	0	6	0	0	0
70	.	50	0	0	0	1	0	243	0	0	0	0	0
71	.	51	0	1	0	0	0	3	0	3	0	0	0
72	.	52	0	17	0	0	0	26	0	0	2	0	0
73		53	0	1	0	0	0	49	0	2	0	0	0
74	14	54	0	27	0	0	0	35	0	0	0	0	0
75	.	55	0	0	0	0	0	6	1	1	0	0	0
76	.	56	0	43	0	1	0	46	0	0	1	0	0
77	.	57	0	0	0	0	0	87	0	3	0	0	0
78	.	.	1	118	0	0	0	13	0	1	0	0	0
79	.	.	0	0	0	0	0	0	0	1	0	0	0
80	.	.	0	0	0	0	0	13	0	4	0	0	0
81	.	.	0	29	0	0	1	5	0	0	0	1	0
82	.	.	0	0	0	0	0	0	0	0	0	0	0
83	.	.	0	0	0	0	0	0	0	0	0	0	0
84	.	.	0	0	0	0	0	0	1	2	0	0	0
85	.		0	0	0	8	0	44	0	0	0	0	0
86	-	58	0	0	0	0	0	0	0	0	0	0	1
87		.	0	0	0	1	0	82	0	1	0	0	0
88	15	.	0	101	0	0	0	301	0	0	0	0	0
89	.	.	0	0	0	0	9	25	0	1	0	0	3
90	.	.	0	2	0	0	0	0	0	0	0	0	0
91	.		0	0	0	0	0	0	0	1	0	0	0
92		59	0	0	0	0	0	3	0	0	0	0	0
93		60	0	0	0	0	0	58	0	8	0	0	0
94	16	61	0	0	0	2	0	35	0	0	0	0	0
95		62	0	0	0	1	0	34	0	1	0	0	0
96	17		0	0	0	0	0	70	0	1	0	0	0
97	18	.	0	0	0	0	0	27	0	1	0	0	0
98	19	.	0	0	0	0	0	8	2	1	0	0	0
99			0	0	0	0	0	0	0	0	0	0	0
100			0	0	0	0	0	0	1	0	0	0	0
101	.	.	0	0	0	0	0	1	0	0	0	0	0
102		.	0	0	1	0	0	0	2	0	0	0	0
103			0	0	0	0	2	0	0	0	0	0	0
104	20	-	0	0	0	1	0	0	0	0	0	0	0

SITE	HISTORICAL	HARVEST	23	24	25	26	27	28	29	30	31	32	33
NUMBER	SITES	SITES											
105		63	0	0	0	0	0	22	1	0	0	0	0
106	21	64	0	0	0	0	0	31	0	0	0	0	0
107			0	0	0	0	0	29	0	1	0	0	0
108	22	.	0	0	0	1	0	68	0	0	0	0	0
109		.	0	0	0	0	0	88	0	1	0	0	0
110		.	0	0	0	0	0	3	6	11	0	0	0
111	23		0	0	0	0	0	26	139	0	0	0	0
112	24		0	0	0	0	0	0	0	2	0	0	0
113		65	0	0	0	0	0	0	0	0	0	0	0
114	25	66	0	0	0	3	0	8	0	0	0	0	0
115		67	0	0	0	2	0	20	0	1	0	0	0
116	26	68	0	0	0	0	0	5	0	1	0	0	0
117	27	69	0	0	0	1	0	11	0	1	0	0	0
118		70	0	0	0	0	0	7	0	0	0	0	0
119	.	71	0	0	0	3	0	49	0	0	0	0	0
120	.	.	0	62	0	0	0	5	0	3	0	0	0
121	.		0	0	0	2	0	0	1	1	0	0	0
122		72	0	0	0	0	0	13	0	0	0	0	0
123	28	73	0	0	0	13	0	12	0	0	0	0	0
124	29		0	0	0	1	0	27	0	1	0	0	0
125		74	0	0	0	0	0	8	0	7	0	0	0
126	-	75	0	0	0	0	0	2	0	7	0	0	0
127	.	76	0	0	0	1	0	1	0	1	0	0	0
128	.	77	0	0	0	4	0	1	0	2	0	0	0
129	.	78	0	0	0	0	0	0	0	1	0	0	0
130			0	9	0	0	0	17	0	5	2	0	0
131	32	79	0	0	0	0	0	34	0	2	0	0	0
132	.	80	0	0	0	2	0	13	0	6	0	0	0
133		.	0	0	0	0	0	8	0	2	0	0	0
134	33	.	0	6	0	0	0	44	0	4	0	0	0
135		81	0	0	0	2	0	4	0	4	0	0	0
136	34	82	0	0	0	0	0	25	0	0	0	0	0
137		83	0	0	0	0	0	42	0	2	0	0	0
138	.	.	0	3	0	1	0	50	0	3	0	0	0
139	.		0	3	0	0	0	24	0	1	0	0	0
140		84	0	0	0	0	0	31	0	2	0	0	0
141	35	85	0	0	0	0	0	44	0	3	0	0	0
142	36		0	0	0	0	0	0	0	1	0	0	0
143	37		0	0	0	1	0	135	0	7	0	0	0
144		86	0	0	0	0	0	4	0	3	0	0	0
145	38	.	0	0	0	0	0	10	0	1	0	0	0
146	39		0	0	0	0	0	0	3	4	0	0	0
147	40	.	0	0	0	0	0	5	1	0	0	0	0
148	41		0	0	0	0	0	0	0	2	0	0	0
149	.	87	0	0	0	6	0	33	0	1	0	0	0
150		88	0	0	0	4	0	20	0	2	0	0	0
151		89	0	3	0	3	0	51	0	0	0	0	1
152	42	.	0	0	0	3	0	35	0	0	0	0	0
153	43		0	0	0	0	0	3	1	0	0	0	0
154	44		0	4	0	13	0	0	0	0	0	0	0
155	.	.	0	0	0	0	0	0	4	3	0	0	0
156	.	-	0	0	0	0	0	0	59	2	0	0	0

SITE	HISTORICAL	HARVEST	34	35	36	37	38	39	40			43	44
NUMBER	SITES	SITES											
1	.	1	0	0	0	0	0	0	0	0	0	0	11
2	.	2	0	0	0	0	0	1	0	1	0	0	12
3	.	3	0	0	0	0	0	0	0	4	0	0	7
4	.	4	3	0	0	0	0	0	0	1	0	0	18
5	.	5	2	0	0	0	0	0	0	0	0	0	3
6	.	6	2	0	0	0	2	0	0	0	0	0	5
7	.		11	0	0	0	0	0	0	4	0	0	12
8	.	7	0	0	0	0	0	0	0	0	0	0	4
9		.	6	1	0	0	1	0	0	48	0	0	60
10	1	.	16	0	0	0	0	3	0	4	0	0	22
11		8	0	0	0	0	0	11	0	3	0	0	23
12	2	9	6	0	0	0	0	5	0	0	0	0	18
13	3	10	0	0	0	0	0	0	0	0	0	0	7
14	.	11	0	0	0	0	0	10	0	4	0	0	15
15	.	12	1	0	0	0	0	4	0	17	0	0	23
16	.	13	0	0	0	0	0	5	0	0	0	0	27
17	.	.	7	3	0	0	0	19	0	35	0	0	25
18	.		17	6	0	0	0	1	0	5	0	0	52
19	.	14	0	0	0	0	0	0	0	0	0	0	18
20	.		4	6	0	0	0	0	0	5	0	0	16
21	.	15	1	0	0	0	1	0	0	0	0	0	35
22	.	16	0	0	0	0	0	0	0	0	0	0	24
23	.	17	0	0	0	0	0	16	0	2	0	0	44
24	4		4	2	0	0	0	17	0	0	0	0	4
25	.	18	0	0	0	0	0	0	0	6	0	0	17
26	.	19	0	0	0	0	0	0	0	2	0	0	22
27	.	.	0	0	19	0	0	15	0	0	0	0	23
28	.	.	0	0	0	0	30	2	0	19	0	0	36
29	.	.	0	0	0	0	0	2	0	1	0	0	43
30	.	.	0	0	1	0	0	36	0	70	0	0	5
31	.	.	0	0	1	0	0	1	16	0	1	0	0
32	5	.	0	0	0	0	0	3	10	0	0	0	6
33	.	.	5	2	0	0	0	7	0	8	0	1	13
34		.	2	0	2	0	0	1	12	0	1	0	5
35	6	.	0	0	2	0	0	4	1	0	0	0	6
36	.	20	0	0	0	0	3	0	0	7	0	0	9
37		21	0	0	0	0	5	0	4	12	0	0	59
38	7		0	0	2	0	0	6	7	0	1	0	16
39		22	0	0	2	0	0	0	0	0	0	0	26
40	8	.	0	0	0	0	2	0	1	0	0	0	11
41	.	.	0	0	0	0	0	1	15	0	0	0	2
42	.	23	0	0	0	0	0	0	0	1	0	0	15
43		24	0	0	0	0	0	0	0	7	0	0	5
44	.	25	1	0	0	0	0	0	0	3	0	0	4
45	.	26	3	0	0	0	0	0	0	2	0	0	4
46	.	27	0	0	0	0	0	0	0	13	0	0	2
47		28	0	0	0	0	0	0	0	0	0	0	3
48		29	0	0	0	0	0	0	0	0	0	0	20
49	9	30	0	0	0	0	0	0	0	3	0	0	6
50			0	0	0	0	0	0	0	0	0	0	0
51	.	31	2	2	0	0	0	0	0	3	0	0	2
52	.	32	1	0	0	0	0	0	0	0	0	0	13

SITE	HISTORICAL	HARVEST	34	35	36	37	38	39	40		42	43	44
NUMBER	SITES	SITES											
53		33	0	0	0	0	0	0	0	0	0	0	0
54	.	34	0	0	0	0	0	0	0	0	0	0	6
55	.	35	1	0	0	0	0	0	0	0	0	0	4
56	.	36	0	0	0	0	0	0	0	1	0	0	7
57		37	0	0	0	0	0	0	0	0	0	0	11
58	10	38	0	0	0	0	0	0	0	0	0	0	5
59		39	0	0	0	0	1	0	0	6	0	0	13
60		40	0	0	0	0	2	0	0	0	0	0	18
61	11	41	3	2	0	0	1	0	0	2	0	0	23
62	.	42	0	0	0	0	0	0	0	1	0	0	16
63	.	43	0	0	0	0	0	0	0	0	0	0	17
64	.	44	1	0	0	0	1	0	0	12	0	0	19
65		45	0	0	0	0	0	0	0	0	0	0	1
66		46	0	0	0	0	0	0	0	0	0	0	5
67	.	47	0	0	0	0	2	0	0	0	0	0	15
68	.	48	0	0	0	0	0	0	0	2	0	0	11
69	.	49	0	0	0	0	0	0	0	0	0	0	10
70		50	0	0	0	0	0	0	0	2	0	0	4
71	.	51	0	0	0	0	3	0	0	4	0	0	20
72	.	52	21	0	0	0	0	0	0	3	0	0	7
73		53	0	0	0	0	2	0	0	0	0	0	15
74	14	54	0	0	0	0	1	0	0	1	0	0	31
75		55	0	0	0	0	3	0	0	0	0	0	21
76	.	56	1	0	0	0	1	0	9	3	0	0	22
77	.	57	0	0	0	0	4	0	0	0	0	0	11
78	.	.	1	1	0	0	0	0	0	0	0	0	23
79	.	-	0	0	0	0	6	0	4	0	0	0	12
80	.	.	0	0	4	0	4	0	0	0	0	0	4
81	.	.	4	4	0	0	0	1	1	0	0	0	6
82	.	.	0	0	0	0	0	1	2	1	0	0	0
83	.	.	0	0	0	0	0	2	11	2	0	0	9
84	-	.	0	0	1	0	3	0	0	0	0	4	5
85	.		0	0	0	0	2	0	0	0	0	0	15
86	.	58	0	0	0	0	2	0	0	16	0	0	21
87		.	0	0	0	0	0	0	33	2	0	0	27
88	15	-	0	0	0	0	0	0	2	6	0	0	4
89			0	0	0	0	1	13	44	0	0	0	12
90		.	9	0	0	1	0	0	37	23	0	0	6
91	.		0	0	0	8	0	0	114	0	4	12	5
92	.	59	0	0	1	0	1	0	0	0	0	0	14
93		60	0	0	5	0	0	0	0	0	0	0	12
94	16	61	0	0	0	0	7	0	2	2	0	0	8
95		62	0	0	0	0	15	0	29	9	0	0	20
96	17	.	0	0	0	0	0	0	5	0	0	0	28
97	18	.	0	0	0	0	0	0	7	0	0	0	6
98	19		0	0	0	0	4	0	2	0	0	3	59
99	.	.	0	0	0	0	0	0	18	0	0	0	1
100	.	.	0	0	0	0	0	0	12	0	0	0	34
101		.	0	0	0	0	6	0	110	0	0	0	46
102			0	0	1	0	12	0	22	0	0	0	20
103		.	0	0	2	0	8	0	81	0	0	0	25
104	20	.	0	0	0	3	1	0	130	0	1	0	6

SITE	HISTORICAL	HARVEST	34	35	36		38	39	40	41	42		44
NUMBER	SITES	SITES											
105		63	0	0	1	0	1	0	0	1	0	0	66
106	21	64	1	0	1	0	2	0	1	0	0	0	31
107		.	0	0	3	0	8	0	0	0	0	0	8
108	22	.	1	0	1	0	8	0	2	1	0	0	16
109		.	0	0	1	0	5	0	0	1	0	0	11
110			0	0	4	0	3	0	65	0	1	0	42
111	23		0	0	7	0	0	0	4	0	1	2	2
112	24		0	0	0	0	0	0	32	1	2	0	18
113		65	0	0	0	0	0	0	0	0	0	0	0
114	25	66	0	0	0	0	0	0	0	0	0	0	15
115		67	9	0	0	0	0	0	0	0	0	0	10
116	26	68	5	0	0	0	2	0	0	0	0	0	9
117	27	69	0	0	0	0	0	0	0	5	0	0	12
118		70	0	0	0	0	0	0	0	0	0	0	9
119		71	2	0	0	0	0	0	0	0	0	0	32
120		.	3	0	0	0	0	0	0	4	0	0	24
121	.		0	0	0	0	3	0	0	15	0	0	6
122	-	72	0	0	0	0	0	0	0	0	0	0	3
123	28	73	0	0	0	0	0	0	0	0	0	0	23
124	29		0	0	0	0	1	0	0	0	0	0	4
125	.	74	0	0	0	0	1	0	0	3	0	0	21
126	.	75	0	0	0	0	4	0	0	3	0	0	25
127	.	76	1	0	0	0	0	0	0	0	0	0	12
128	.	77	1	0	0	0	5	0	0	18	0	0	16
129	.	78	0	0	0	0	1	0	0	9	0	0	19
130			3	1	0	0	0	0	0	1	0	0	10
131	32	79	1	4	0	0	0	0	0	0	0	0	16
132	.	80	0	0	0	0	2	0	0	0	0	0	6
133		.	0	0	0	0	0	0	0	0	0	0	34
134	33		3	0	0	0	0	0	0	11	0	0	20
135		81	0	0	0	0	0	0	0	10	0	0	8
136	34	82	0	0	0	0	0	0	0	0	0	0	3
137	.	83	0	0	0	0	16	0	0	4	0	0	24
138			0	1	0	0	1	0	0	5	0	0	26
139	.		3	0	0	0	1	0	0	6	0	0	15
140		84	0	0	2	0	3	0	0	0	0	0	27
141	35	85	0	0	0	0	4	0	0	0	0	0	10
142	36	.	2	0	14	0	8	0	6	0	0	0	14
143	37		0	0	0	0	6	0	7	0	0	0	17
144		86	0	0	0	0	13	0	0	21	0	0	40
145	38	.	0	0	0	0	3	0	0	0	0	0	7
146	39		0	0	0	0	0	0	0	4	0	0	17
147	40		0	0	1	1	4	0	0	0	0	0	35
148	41		0	0	1	2	4	0	20	17	1	0	2
149	.	87	0	0	0	0	0	0	0	14	0	0	37
150	.	88	0	0	0	0	0	0	0	1	0	0	19
151		89	0	0	1	0	4	0	0	26	0	0	25
152	42	.	0	0	0	0	3	0	1	5	0	0	12
153	43	-	0	0	3	0	6	0	0	0	0	0	2
154	44	.	0	0	8	0	3	0	0	0	0	0	20
155			0	0	7	0	26	0	5	0	11	0	30
156	.	.	0	0	18	0	6	0	17	70	13	1	5

SITE	HISTORICAL	HARVEST	45	46	47	48	49	50			53	54	
NUMBER	SITES	SITES											
1	.	1	0	0	0	0	14	0	0	0	0	0	0
2	.	2	0	0	1	0	20	0	0	0	0	0	0
3	.	3	0	0	2	0	6	0	0	0	1	0	0
4	.	4	0	0	3	0	26	0	0	0	3	0	0
5		5	0	0	0	0	11	0	0	0	1	0	0
6	.	6	0	0	0	0	20	0	0	0	0	0	0
7	.		0	0	0	0	25	0	0	0	1	1	0
8	.	7	0	0	0	0	0	0	0	0	0	0	0
9		.	0	0	1	0	65	0	0	0	2	1	2
10	1		0	0	2	0	51	0	0	0	1	0	0
11	.	8	0	0	12	0	11	0	0	0	0	0	1
12	2	9	0	0	0	0	37	0	0	0	0	0	1
13	3	10	0	0	2	0	3	0	0	0	1	1	0
14	.	11	0	0	5	0	23	0	0	0	0	0	0
15	.	12	0	0	0	0	31	0	0	0	0	0	0
16	.	13	0	0	5	0	20	0	0	0	0	1	1
17	.	.	0	0	4	0	56	0	0	0	0	5	2
18	.		0	0	0	0	69	0	0	0	0	0	2
19	.	14	0	0	0	0	0	0	0	0	0	0	0
20	.		0	0	0	0	44	0	0	0	0	3	0
21	.	15	0	0	1	0	0	0	0	0	0	0	0
22	.	16	0	0	0	0	13	0	0	0	0	0	1
23		17	4	0	9	0	31	0	3	0	0	0	1
24	4		0	0	0	0	44	0	0	0	0	14	0
25	.	18	0	0	2	0	40	0	1	0	0	0	3
26	.	19	0	0	9	0	18	0	3	0	0	0	0
27		.	2	0	2	0	5	0	0	0	0	0	3
28	.	.	1	0	6	0	15	0	0	0	0	0	7
29	.	.	0	0	9	0	20	0	2	0	0	1	2
30	.	.	3	0	97	0	2	74	0	0	0	0	2
31	.	-	8	0	33	0	0	1	0	0	0	0	3
32	5	-	1	0	5	0	3	0	0	0	0	1	0
33		.	2	0	67	0	22	0	2	0	0	8	2
34		.	0	0	2	0	2	0	3	0	0	0	0
35	6		0	0	8	0	2	0	2	0	0	0	3
36	.	20	1	0	4	0	17	0	1	0	0	0	1
37		21	0	0	1	0	30	0	1	0	0	0	0
38	7		0	0	1	0	70	0	12	0	0	0	0
39		22	0	0	0	0	30	0	0	0	0	0	0
40	8	.	0	0	3	0	14	0	0	0	0	0	
41	.		0	0	10	0	8	1	0	0	0	0	0
42	.	23	0	0	0	0	26	0	0	0	0	0	0
43	.	24	0	0	0	0	10	0	0	0	0	0	0
44	.	25	0	0	0	0	4	0	0	0	0	0	0
45	.	26	0	0	0	0	1	0	0	0	1	0	0
46		27	0	0	0	0	1	0	0	0	1	0	0
47	-	28	0	0	0	0	5	0	0	0	1	0	0
48	.	29	0	0	2	0	13	0	5	0	0	0	0
49	9	30	0	0	1	0	13	0	1	0	0	0	
50			0	0	0	0	0	0	0	0	0	0	0
51		31	0	0	2	0	17	0	0	0	4	0	0
52	.	32	0	0	0	0	4	0	0	0	0	0	0

SITE	HISTORICAL	HARVEST	45	46	47	48	49	50	51	52	53	54	55
NUMBER	SITES	SITES											
53		33	0	0	0	0	0	0	0	0	0	0	0
54	.	34	0	0	0	0	18	0	0	0	0	0	0
55	.	35	0	0	0	0	5	0	0	0	0	0	0
56		36	0	0	0	0	9	0	0	0	0	0	0
57		37	0	0	0	0	4	0	0	0	1	0	0
58	10	38	0	0	0	0	15	0	0	0	0	0	0
59		39	0	0	0	0	10	0	0	0	1	0	1
60		40	0	0	1	0	7	0	0	0	0	0	0
61	11	41	0	0	0	0	25	0	0	0	1	0	0
62	.	42	0	0	0	0	15	0	0	0	0	0	0
63	.	43	0	0	0	0	31	0	0	0	0	0	1
64	.	44	0	0	0	0	48	0	0	0	2	0	0
65	.	45	0	0	0	0	0	0	0	0	0	0	0
66		46	0	0	0	0	5	0	0	0	0	0	0
67	.	47	0	0	0	0	15	0	0	0	1	0	0
68	.	48	0	0	0	0	11	0	0	0	0	0	0
69	-	49	0	0	0	0	28	0	0	0	3	0	0
70	.	50	0	0	0	0	46	0	0	0	0	0	0
71	.	51	0	0	0	0	41	0	0	0	1	0	0
72	.	52	0	0	0	0	28	0	0	0	1	0	0
73		53	0	0	0	0	13	0	0	0	1	0	0
74	14	54	0	0	1	0	22	0	0	0	0	0	1
75	.	55	0	0	0	0	18	0	0	0	0	0	0
76	.	56	0	0	4	0	63	0	0	0	0	2	1
77	.	57	0	0	0	0	0	0	0	0	0	0	0
78	.	.	0	1	1	0	41	0	0	0	0	3	0
79	.	.	0	0	0	0	16	0	4	0	0	0	4
80	.	.	0	0	0	0	0	0	0	0	0	0	2
81	.	.	1	0	16	0	34	0	0	0	0	9	5
82	.	.	3	0	7	0	5	0	0	0	0	0	0
83	.	.	2	0	9	0	29	1	3	0	0	3	2
84	.	.	1	0	4	0	1	0	1	0	0	0	0
85	.		0	0	0	0	10	0	0	0	0	0	0
86	.	58	0	0	1	0	14	0	0	0	1	0	1
87			0	0	4	0	28	0	0	0	0	0	1
88	15	-	5	0	12	0	23	0	2	0	0	0	5
89		.	1	0	2	0	10	3	0	0	0	5	8
90	.	.	2	0	18	0	25	9	5	0	0	2	1
91	.		2	0	25	0	2	0	0	3	0	0	7
92	.	59	0	0	11	0	11	0	0	0	0	0	1
93		60	0	0	3	0	0	0	0	0	0	0	0
94	16	61	0	0	0	0	0	0	0	0	0	2	1
95		62	0	0	3	0	23	0	0	0	0	6	0
96	17		0	0	8	0	13	0	3	0	0	0	3
97	18		0	0	0	0	20	0	5	0	0	5	1
98	19		2	1	7	0	6	0	2	0	0	0	3
99	.	.	0	0	22	0	0	0	0	0	0	0	0
100	.	.	1	0	0	0	0	0	0	0	0	0	0
101			2	0	10	0	5	0	0	0	0	1	8
102	.		1	0	10	0	7	0	0	0	0	0	1
103		.	4	0	32	0	4	0	0	0	0	0	4
104	20	.	22	8	79	0	8	8	3	2	0	0	10

SITE	HISTORICAL	HARVEST	45	46	47		49		51	52	53	54	55
NUMBER	SITES	SITES											
105		63	0	0	6	0	0	0	0	0	0	0	2
106	21	64	0	0	0	0	25	0	2	0	0	0	0
107		.	0	0	2	0	7	0	1	0	0	0	1
108	22	.	0	0	1	0	12	0	2	0	0	2	1
109	.	.	0	0	4	0	12	0	1	0	0	0	3
110		.	0	0	18	0	0	0	0	0	0	0	0
111	23	-	4	0	23	0	0	0	0	0	0	0	5
112	24	.	0	0	4	0	0	0	2	0	0	0	0
113		65	0	0	0	0	6	0	0	0	0	0	0
114	25	66	0	0	0	0	4	0	0	0	0	0	0
115		67	0	0	0	0	17	0	0	0	1	0	0
116	26	68	0	0	0	0	14	0	0	0	1	0	0
117	27	69	0	0	0	0	15	0	0	0	0	0	0
118	.	70	0	0	0	0	5	0	0	0	0	0	0
119	.	71	0	0	0	0	11	0	0	0	0	1	0
120	.		0	0	0	0	42	0	0	0	0	1	1
121	.		0	0	0	0	31	0	0	0	0	0	1
122	-	72	0	0	0	0	3	0	0	0	2	0	0
123	28	73	0	0	3	0	7	0	0	0	0	0	0
124	29		0	0	2	0	1	0	0	0	0	0	0
125	.	74	0	0	0	0	6	0	0	0	0	0	0
126	.	75	1	0	1	0	6	0	0	0	0	0	0
127	.	76	0	0	0	0	8	0	0	0	1	0	0
128	.	77	0	0	1	0	32	0	0	0	0	0	0
129	-	78	0	0	3	0	34	0	0	0	0	3	0
130			0	0	4	0	69	0	0	0	1	1	0
131	32	79	0	0	0	0	42	0	0	0	3	0	0
132	.	80	0	0	3	0	6	0	0	0	0	0	0
133		.	0	0	0	0	19	0	0	0	0	0	0
134	33		0	0	3	0	58	0	0	0	2	0	1
135		81	0	0	0	0	10	0	0	0	0	0	0
136	34	82	0	0	0	0	0	0	0	0	0	0	0
137	.	83	0	0	0	0	14	0	0	0	0	0	0
138	.	.	0	0	3	0	84	0	0	0	1	1	0
139	.		0	0	0	0	63	0	0	0	0	2	0
140		84	0	0	0	0	0	0	0	0	0	0	0
141	35	85	0	0	0	0	7	0	0	0	0	0	0
142	36	.	1	0	2	0	3	0	2	0	0	0	0
143	37		0	0	0	0	58	0	2	0	0	0	0
144		86	0	0	0	0	20	0	0	0	0	0	0
145	38	.	0	0	1	0	1	0	1	0	0	0	0
146	39	.	1	0	4	0	2	0	0	0	0	0	1
147	40	.	1	0	4	3	2	1	0	0	0	0	1
148	41		2	0	27	0	30	0	6	0	0	0	5
149	.	87	0	0	0	0	19	0	0	0	1	0	0
150	.	88	0	0	0	0	28	0	0	0	0	0	0
151		89	1	0	1	0	54	0	0	0	1	0	0
152	42		0	0	1	0	17	0	0	0	0	0	0
153	43	.	0	0	0	0	2	0	0	0	0	0	0
154	44	.	5	0	0	0	31	0	0	0	0	0	0
155	.		0	0	0	0	38	0	0	0	0	0	2
156	.	-	0	0	0	0	12	0	0	0	0	0	3

SITE	HISTORICAL	HARVEST	56	57	58	59	60	61	62	63	64	65	66
NUMBER	SITES	SITES											
1	.	1	0	0	0	0	0	0	0	0	0	0	0
2	.	2	0	0	0	0	0	0	0	0	0	0	0
3	.	3	0	0	0	0	0	0	0	0	0	0	0
4	.	4	0	0	0	0	0	0	0	0	0	0	0
5	.	5	0	0	0	0	0	0	0	0	0	0	0
6	.	6	0	0	0	0	0	0	0	0	0	0	0
7	.		0	0	0	0	0	0	0	0	0	0	0
8	.	7	0	0	0	0	0	0	0	0	0	0	0
9	.	.	0	0	0	0	0	0	0	0	0	0	0
10	1		0	0	0	0	0	1	0	0	0	0	0
11		8	0	0	0	0	0	0	0	0	0	0	0
12	2	9	0	0	0	0	0	0	0	0	0	0	0
13	3	10	0	0	0	0	0	0	0	0	0	0	0
14	.	11	0	0	0	0	0	0	0	0	0	0	0
15	.	12	0	0	0	0	0	0	0	0	0	0	0
16	.	13	0	0	0	0	0	0	0	0	0	0	0
17	.	.	0	0	0	0	0	0	0	0	0	0	0
18	.		0	0	0	0	0	0	0	0	0	0	0
19	.	14	0	0	0	0	0	0	0	0	0	0	0
20	.		0	0	0	0	0	0	0	0	0	0	0
21	.	15	0	0	0	0	0	0	0	0	0	0	0
22	.	16	0	0	0	0	0	0	0	0	0	0	0
23		17	0	0	0	0	0	0	0	0	0	0	0
24	4		0	0	0	0	0	0	0	0	0	0	0
25	.	18	0	0	0	0	0	0	0	0	0	0	0
26	.	19	0	0	0	0	3	0	0	0	0	0	0
27	.	.	0	0	0	0	0	0	1	0	0	0	0
28	.	-	2	0	0	0	0	0	0	0	0	0	0
29	.	.	0	0	0	0	0	0	0	0	0	0	0
30	.	.	3	0	0	0	0	0	0	0	0	0	0
31		.	3	0	0	0	0	0	0	4	0	0	0
32	5	.	0	0	0	0	0	0	0	0	0	0	1
33	.	.	0	0	2	0	0	0	0	4	16	0	0
34		.	0	0	0	0	0	0	0	0	0	0	0
35	6		0	0	0	0	0	0	0	1	0	0	0
36	.	20	0	0	0	0	0	0	0	0	0	0	0
37		21	0	0	0	0	0	0	1	0	0	0	0
38	7		0	0	0	0	0	0	0	0	0	0	0
39		22	0	0	0	0	0	0	0	0	0	0	0
40	8	.	0	0	0	0	0	0	0	0	0	0	0
41	.	.	0	0	0	0	0	0	0	4	0	0	0
42	.	23	0	0	0	0	0	0	0	0	0	0	0
43	.	24	0	0	0	0	0	0	0	0	0	0	0
44	.	25	0	0	0	0	0	0	0	0	0	0	0
45	.	26	0	0	0	0	0	0	0	0	0	0	0
46		27	0	0	0	0	0	0	0	0	0	0	0
47	-	28	0	0	0	0	0	0	0	0	0	0	0
48		29	0	0	0	0	0	0	0	0	0	0	0
49	9	30	0	0	0	0	0	0	0	0	0	0	0
50			0	0	0	0	0	0	0	0	0	0	0
51	.	31	0	0	0	0	0	0	0	0	0	0	0
52		32	0	0	0	0	0	0	0	0	0	0	0

SITE	HISTORICAL	HARVEST	56	57	58	59	60	61	62	63	64	65	66
NUMBER	SITES	SITES											
53	.	33	0	0	0	0	0	0	0	0	0	0	0
54	.	34	0	0	0	0	0	0	0	0	0	0	0
55	.	35	0	0	0	0	0	0	0	0	0	0	0
56	.	36	0	0	0	0	0	0	0	0	0	0	0
57		37	0	0	0	0	0	0	0	0	0	0	0
58	10	38	0	0	0	0	0	0	0	0	0	0	0
59	.	39	0	0	0	0	0	0	0	0	0	1	0
60		40	0	0	0	0	0	0	0	0	0	0	0
61	11	41	0	0	0	0	0	0	0	0	0	0	0
62		42	0	0	0	0	0	0	0	0	0	0	0
63	.	43	0	0	0	0	0	0	0	0	0	0	0
64	.	44	0	0	0	0	0	0	0	0	0	0	0
65	.	45	0	0	0	0	0	0	0	0	0	0	0
66	.	46	0	0	0	0	0	0	0	0	0	0	0
67	.	47	0	0	0	0	0	0	0	0	0	0	0
68	.	48	0	0	0	0	0	0	0	0	0	0	0
69	.	49	0	0	0	0	0	0	0	0	0	0	0
70	.	50	0	0	0	0	0	0	0	0	0	0	0
71	.	51	0	0	0	0	0	0	0	0	0	0	0
72	-	52	0	0	0	0	0	0	0	0	0	0	0
73		53	0	0	0	0	0	0	0	0	0	0	0
74	14	54	0	0	0	0	0	0	0	0	0	0	0
75		55	0	0	0	0	0	0	0	0	0	0	0
76		56	0	0	0	0	0	0	0	0	0	0	0
77	.	57	0	0	0	0	0	0	0	0	0	0	0
78	.	.	0	0	0	0	0	1	0	0	2	0	0
79	.	.	0	0	0	0	0	0	0	0	0	0	0
80	.	.	0	0	0	0	0	0	0	0	0	0	0
81	.	.	0	0	0	0	0	0	0	0	4	0	0
82	.	.	0	0	0	0	0	0	0	0	0	0	0
83	.	.	0	0	0	0	0	0	0	0	0	0	0
84	.	.	0	0	0	0	0	0	0	0	0	0	0
85	.		0	0	0	0	0	0	0	0	0	0	0
86	.	58	0	0	0	0	0	0	0	0	0	0	0
87			0	0	0	0	0	0	0	0	0	0	0
88	15	.	0	0	0	0	0	0	0	0	0	0	0
89	.	.	0	0	0	0	0	0	0	0	0	0	0
90	.	.	0	0	0	3	0	0	0	0	0	0	0
91	.		0	0	0	0	0	0	0	0	0	0	0
92	.	59	0	0	0	0	0	0	0	0	0	0	0
93		60	0	0	0	0	0	0	0	0	0	0	0
94	16	61	0	0	0	0	0	0	0	0	0	0	0
95		62	0	0	0	0	0	0	0	0	0	0	0
96	17		0	0	0	0	0	0	0	0	0	0	0
97	18	.	0	0	0	0	0	0	0	0	0	0	0
98	19	.	0	0	0	0	0	0	0	0	0	0	0
99			0	0	0	0	0	0	0	0	0	0	0
100	.		0	0	0	0	0	0	0	0	0	0	0
101	.	.	0	0	0	0	0	0	0	0	0	0	0
102	.		1	0	0	0	0	0	0	5	0	0	0
103			0	0	0	0	0	0	0	0	0	0	0
104	20	-	5	1	0	0	0	1	0	0	0	0	0

SITE	HISTORICAL	harvest	56	57	58	59	60	61	62	636		65	66
NUMBER	SITES	SITES											
105		63	0	0	0	0	0	0	0	0	0	0	0
106	21	64	0	0	0	0	0	0	0	0	0	0	0
107			0	0	0	0	0	0	0	0	0	0	0
108	22		0	0	0	0	0	0	0	0	0	0	0
109			0	0	0	0	0	0	0	0	0	0	0
110			0	0	0	0	0	0	0	5	0	0	0
111	23		1	0	0	0	0	0	0	0	0	0	0
112	24		0	0	0	0	0	0	0	9	0	0	22
113		65	0	0	0	0	0	0	0	0	0	0	0
114	25	66	0	0	0	0	0	0	0	0	0	0	0
115		67	0	0	0	0	0	0	0	0	0	0	0
116	26	68	0	0	0	0	0	0	0	0	0	0	0
117	27	69	0	0	0	0	0	0	0	0	0	0	0
118		70	0	0	0	0	0	0	0	0	0	0	0
119		71	0	0	0	0	0	0	0	0	0	0	
120			0	0	0	0	0	0	0	0	0	0	0
121	.		0	0	0	0	0	0	0	0	0	0	0
122		72	0	0	0	0	0	0	0	0	0	0	0
123	28	73	0	0	0	0	0	0	0	0	0	0	0
124	29		0	0	0	0	0	0	0	0	0	0	
125		74	0	0	0	0	0	0	0	0	0	0	0
126	.	75	0	0	0	0	0	0	0	0	0	0	0
127	.	76	0	0	0	0	0	0	0	0	0	0	0
128		77	0	0	0	0	0	0	0	0	0	0	0
129	.	78	0	0	0	0	0	0	0	0	0	0	
130			0	0	0	0	0	0	0	0	0	0	0
131	32	79	0	0	0	0	0	0	0	0	0	0	0
132		80	0	0	0	0	0	0	0	0	0	0	
133			0	0	0	0	0	0	0	0	0	0	
134	33		0	0	0	0	0	0	0	0	0	0	
135		81	0	0	0	0	0	0	0	0	0	0	0
136	34	82	0	0	0	0	0	0	0	0	0	0	0
137		83	0	0	0	0	0	0	1	0	0	0	
138			0	0	0	0	0	0	0	0	0	0	0
139			0	0	0	0	0	0	0	0	0	0	
140		84	0	0	0	0	0	0	0	0	0	0	0
141	35	85	0	0	0	0	0	0	0	0	0	0	0
142	36		0	0	0	0	1	0	0	3	0	0	
143	37		0	0	0	0	0	0	0	0	0	0	
144		86	0	0	0	0	0	0	0	0	0	0	
145	38		0	0	0	0	0	0	0	0	0	0	
146	39	.	0	0	0	0	0	0	0	0	0	0	
147	40	.	0	0	0	0	0	0	0	0	0	0	
148	41		0	0	0	0	0	0	0	5	0	0	0
149		87	0	0	0	0	0	0	0	0	0	0	
150		88	0	0	0	0	0	0	0	0	0	0	
151		89	0	0	0	0	0	0	0	0	0	0	0
152	42		0	0	0	0	0	0	0	0	0	0	0
153	43	.	0	0	0	0	0	0	0	0	0	0	0
154	44	.	0	0	0	0	0	0	1	0	0	4	0
155			0	0	0	0	0	0	0	18	0	0	
156			0	0	0	0	0	0	0	1	0	0	

SITE	HISTORICAL	HARVEST	67	68	69	70	71	72	73	74	75	76
NUMBER	SITES	SITES										
1		1	0	21	0	0	0	0	0	0	0.000	0.000
2	.	2	0	1	0	0	0	0	0	0	0.000	0.037
3	.	3	0	1	0	0	0	0	0	0	0.000	0.081
4	.	4	0	9	0	0	0	0	0	0	0.000	0.000
5	.	5	0	10	0	0	0	0	0	0	0.000	0.031
6	-	6	0	9	0	0	0	0	0	0	0.000	0.133
7	.		0	13	0	0	0	0	0	0	0.000	0.036
8	.	7	0	1	0	0	0	0	0	0	0.000	0.039
9			0	8	0	1	0	1	0	0	0.000	0.000
10	1		0	25	0	0	0	0	0	5	0.000	0.167
11		8	0	4	0	0	0	0	0	0	0.000	0.169
12	2	9	0	19	0	0	0	0	0	0	0.000	0.000
13	3	10	0	0	0	0	0	0	0	0	0.000	0.013
14	.	11	0	3	0	0	0	0	0	0	0.000	0.174
15	.	12	0	32	0	0	0	0	0	0	0.000	0.000
16	.	13	0	8	0	0	0	0	0	0	0.000	0.000
17	.		0	50	0	3	0	0	0	2	0.000	0.000
18	.		0	15	0	2	0	0	0	0	0.000	0.000
19		14	0	38	0	0	0	0	0	0	0.000	0.000
20	.		0	16	0	0	0	0	0	1	0.000	0.013
21	.	15	0	19	0	0	0	0	0	0	0.000	0.000
22	.	16	0	2	0	0	1	0	0	0	0.000	0.045
23		17	0	130	0	0	0	0	0	0	0.000	0.208
24	4		0	21	0	0	0	0	0	4	0.000	0.026
25	.	18	0	7	0	0	0	0	0	0	0.000	0.051
26	.	19	0	3	0	0	0	0	0	0	0.082	0.466
27	.	.	0	1	0	1	0	0	0	0	0.000	0.262
28	.		0	1	0	0	0	0	0	0	0.013	0.154
29	.	.	0	7	0	0	0	0	0	0	0.035	0.302
30		.	0	1	0	4	1	0	0	0	0.080	0.333
31			0	0	0	0	0	0	0	0	0.974	0.026
32	5	-	0	0	1	0	0	0	0	0	0.000	0.436
33	.	.	0	10	3	1	0	0	0	4	0.000	0.054
34			0	0	1	0	0	0	0	8	0.240	0.320
35	6		0	1	13	0	0	0	0	0	0.089	0.333
36	.	20	0	0	0	0	0	0	0	0	0.000	0.135
37		21	0	17	0	0	0	0	0	0	0.000	0.081
38	7		1	22	1	0	0	0	0	0	0.012	0.095
39		22	0	22	0	0	0	0	0	0	0.000	0.000
40	8	.	0	50	69	0	0	0	0	0	0.000	0.197
41	.		0	0	0	0	0	0	0	0	0.953	0.047
42	.	23	0	6	0	0	0	0	0	0	0.082	0.000
43		24	0	12	0	2	0	0	0	0	0.000	0.000
44		25	0	20	0	0	0	0	0	0	0.000	0.000
45	.	26	0	9	0	0	0	0	0	0	0.016	0.008
46		27	0	7	0	1	0	0	0	0	0.038	0.000
47		28	0	10	0	0	0	0	0	0	0.000	0.000
48		29	0	4	0	0	0	0	0	0	0.000	0.206
49	9	30	0	5	0	0	0	0	0	0	0.000	0.141
50			0	0	0	0	0	0	0	0	0.000	0.126
51		31	0	9	0	0	0	1	0	0	0.016	0.000
52	.	32	0	29	0	0	0	0	0	0	0.000	0.038

SITE	HISTORICAL	HARVEST	67	68	69	70	71	72	73	74	75	76
NUMBER	SITES	SITES										
53	.	33	0	1	0	0	0	0	0	0	0.000	0.185
54	.	34	0	42	0	0	0	0	0	0	0.000	0.017
55		35	0	13	0	0	0	0	0	0	0.000	0.000
56		36	0	35	0	0	0	0	0	0	0.000	0.000
57		37	0	2	0	0	0	0	0	0	0.000	0.026
58	10	38	0	46	0	0	0	0	0	0	0.000	0.019
59		39	0	5	0	0	0	0	0	0	0.000	0.077
60		40	0	8	0	0	0	0	0	0	0.000	0.365
61	11	41	0	6	0	0	0	0	0	0	0.000	0.033
62	.	42	0	3	0	0	0	0	0	0	0.000	0.069
63	-	43	0	27	0	0	0	0	0	0	0.000	0.000
64		44	0	16	0	4	0	0	0	0	0.000	0.017
65	.	45	0	0	0	0	0	0	0	0	0.000	0.055
66	.	46	0	11	0	0	0	0	0	0	0.000	0.057
67		47	0	2	0	0	0	0	0	0	0.000	0.000
68		48	0	13	0	0	0	0	0	0	0.000	0.096
69		49	0	26	0	0	0	0	0	0	0.000	0.020
70	.	50	0	108	0	0	0	0	0	0	0.000	0.048
71	.	51	0	2	0	0	0	0	0	0	0.000	0.000
72		52	0	40	0	6	2	0	0	0	0.000	0.000
73		53	0	17	8	0	0	0	0	0	0.000	0.154
74	14	54	0	18	0	5	1	3	0	0	0.000	0.000
75	.	55	0	6	1	0	0	0	0	0	0.000	0.206
76		56	0	36	15	1	0	0	0	0	0.000	0.144
77		57	0	10	5	0	0	0	0	0	0.000	0.025
78	.	.	0	60	14	0	0	0	0	12	0.000	0.284
79	.	.	0	0	0	0	0	0	0	0	0.377	0.113
80	.		0	8	0	0	0	0	0	0	0.000	0.175
81			0	32	27	14	2	0	4	12	0.000	0.379
82	.	.	0	0	0	0	0	0	0	0	0.000	0.651
83	.	-	0	0	0	0	0	0	0	0	0.000	0.632
84	.	.	0	17	0	0	0	0	0	0	0.000	0.510
85	.		0	83	0	0	0	0	0	0	0.000	0.103
86		58	0	0	0	0	0	0	0	0	0.000	0.033
87		.	0	67	162	0	0	0	0	0	0.000	0.022
88	15	.	0	126	221	0	0	0	0	0	0.013	0.089
89	.	.	0	4	31	1	0	0	0	0	0.000	0.000
90		.	0	0	13	2	0	0	1	5	0.000	0.362
91			0	0	0	0	0	0	0	0	0.999	0.000
92	.	59	0	0	0	0	0	0	0	0	0.000	0.323
93		60	0	15	0	0	0	0	0	0	0.000	0.079
94	16	61	0	113	1	0	0	0	0	0	0.000	0.000
95		62	0	13	0	0	0	0	0	0	0.000	0.056
96	17		0	99	28	0	0	0	0	1	0.032	0.000
97	18	.	0	31	53	1	0	0	0	2	0.020	0.082
98	19	.	0	3	2	0	0	0	0	0	0.025	0.225
99			0	0	0	0	0	0	0	0	0.000	0.769
100	.	.	0	0	0	0	0	0	0	0	0.000	0.871
101	.	.	0	0	0	0	0	0	0	0	0.020	0.080
102	.	.	0	0	0	0	0	0	0	0	0.317	0.024
103			0	0	0	0	0	0	0	0	0.024	0.000
104	20	-	0	0	0	0	0	0	0	0	0.350	0.650

SITE	HISTORICAL	HARVEST	67	68	69	70	71	72	73	74	75	76
NUMBER	SITES	SITES										
105		63	0	0	0	0	0	0	0	0	0.059	0.118
106	21	64	2	9	0	0	0	0	0	0	0.000	0.143
107			0	16	0	0	0	0	0	0	0.000	0.000
108	22	.	0	17	1	1	0	0	0	0	0.000	0.055
109	.	.	0	60	0	0	0	0	0	0	0.000	0.092
110		.	0	0	0	0	0	0	0	0	0.063	0.083
111	23		0	0	0	0	0	0	0	0	0.120	0.800
112	24		0	1	0	0	0	0	0	0	0.037	0.037
113		65	0	1	0	0	0	0	0	0	0.000	0.028
114	25	66	0	14	0	0	0	0	0	0	0.029	0.010
115		67	0	34	0	0	0	0	0	0	0.000	0.000
116	26	68	0	5	0	0	0	0	0	0	0.000	0.000
117	27	69	0	15	0	0	0	0	0	0	0.000	0.129
118		70	0	7	0	0	0	0	0	0	0.022	0.000
119	.	71	0	16	0	0	0	0	0	0	0.000	0.016
120			0	5	0	2	0	0	0	0	0.000	0.012
121	.		0	4	0	0	0	0	0	0	0.000	0.112
122		72	0	10	0	0	0	0	0	0	0.000	0.000
123	28	73	0	27	0	0	0	0	0	0	0.000	0.076
124	29		0	11	0	0	0	0	0	0	0.000	0.028
125	.	74	0	12	0	0	0	0	0	0	0.000	0.139
126	-	75	0	4	0	0	0	0	0	0	0.000	0.078
127	.	76	0	15	0	0	0	0	0	0	0.000	0.016
128	.	77	0	12	0	0	0	0	0	0	0.000	0.147
129	.	78	0	0	0	0	0	1	0	0	0.015	0.046
130			0	7	0	12	0	0	0	0	0.000	0.017
131	32	79	0	53	0	0	0	0	0	0	0.000	0.000
132	.	80	0	9	0	0	0	0	0	0	0.031	0.281
133			0	5	0	0	0	0	0	0	0.000	0.029
134	33		0	16	0	1	0	0	0	0	0.000	0.000
135		81	0	3	0	0	0	0	0	0	0.000	0.140
136	34	82	0	7	0	0	0	0	0	0	0.000	0.047
137	.	83	0	26	0	0	0	0	0	0	0.000	0.020
138		.	0	10	0	0	0	0	0	0	0.000	0.000
139			0	10	0	1	0	1	0	0	0.000	0.000
140		84	0	7	0	0	0	0	0	0	0.000	0.091
141	35	85	0	22	2	0	0	0	0	0	0.000	0.000
142	36	.	0	0	0	0	0	0	0	0	0.179	0.282
143	37		1	74	8	0	0	0	0	1	0.000	0.026
144		86	0	7	0	0	0	0	0	0	0.000	0.000
145	38	.	0	10	0	0	0	0	0	0	0.000	0.063
146	39	.	0	0	0	0	0	0	0	0	0.660	0.106
147	40	.	0	1	0	0	0	0	0	0	0.000	0.896
148	41		0	0	0	0	0	0	0	0	0.333	0.125
149	.	87	0	2	0	0	0	0	0	0	0.000	0.017
150	.	88	0	3	0	0	0	0	0	0	0.000	0.000
151		89	0	12	0	0	0	0	0	0	0.000	0.015
152	42		0	45	0	0	0	0	0	0	0.016	0.000
153	43	.	0	13	0	0	0	0	0	0	0.049	0.230
154	44	.	0	0	0	0	0	0	0	0	0.521	0.063
155			0	0	0	0	0	0	0	0	0.145	0.182
156	-	-	0	0	0	0	0	0	0	0	0.021	0.250

SITE	HISTORICAL	HARVEST	77	78	79	80	81	82	83
NUMBER	SITES	SITES							
105		63	0.588	0.235	0.000	0.000	0.647	0.000	0.147
106	21	64	0.159	0.159	0.159	0.381	0.492	0.000	0.730
107			0.621	0.379	0.000	0.000	0.034	0.000	0.000
108	22		0.521	0.110	0.068	0.247	0.315	0.014	0.082
109			0.615	0.138	0.000	0.154	0.000	0.000	0.000
110			0.708	0.000	0.000	0.000	0.125	0.000	0.021
111	23		0.053	0.000	0.027	0.000	0.253	0.000	0.000
112	24		0.593	0.259	0.000	0.074	0.074	0.000	0.000
113		65	0.124	0.429	0.210	0.162	0.000	0.010	0.038
114	25	66	0.086	0.210	0.638	0.029	0.210	0.048	0.000
115		67	0.077	0.462	0.453	0.009	0.043	0.009	0.000
116	26	68	0.091	0.380	0.512	0.017	0.355	0.000	0.000
117	27	69	0.200	0.229	0.157	0.286	0.400	0.000	0.000
118		70	0.111	0.356	0.222	0.289	0.044	0.000	0.000
119		71	0.047	0.600	0.200	0.100	0.078	0.000	0.000
120			0.259	0.600	0.012	0.118	0.388	0.000	0.000
121			0.509	0.103	0.069	0.207	0.147	0.000	0.147
122		72	0.173	0.423	0.404	0.000	0.019	0.000	0.077
123	28	73	0.076	0.430	0.101	0.316	0.089	0.013	0.000
124	29		0.778	0.083	0.028	0.083	0.167	0.000	0.000
125		74	0.111	0.417	0.222	0.111	0.139	0.000	0.056
126		75	0.333	0.490	0.059	0.039	0.510	0.020	0.098
127		76	0.194	0.597	0.177	0.016	0.048	0.000	0.032
128		77	0.064	0.569	0.174	0.046	0.312	0.000	0.028
129		78	0.077	0.462	0.277	0.123	0.031	0.000	0.000
130			0.102	0.212	0.373	0.297	0.322	0.000	0.011
131	32	79	0.065	0.370	0.537	0.028	0.000	0.000	0.000
132		80	0.562	0.094	0.031	0.000	0.000	0.000	0.031
133			0.286	0.657	0.029	0.000	0.057	0.086	0.600
134	33		0.188	0.542	0.146	0.125	0.229	0.021	0.000
135		81	0.093	0.419	0.209	0.140	0.000	0.023	0.000
136	34	82	0.422	0.313	0.125	0.094	0.078	0.000	0.000
137		83	0.353	0.588	0.039	0.000	0.039	0.000	0.020
138			0.120	0.347	0.400	0.133	0.120	0.040	0.000
139			0.157	0.451	0.294	0.098	0.020	0.000	0.078
140		84	0.303	0.364	0.000	0.242	0.061	0.000	0.030
141	35	85	0.938	0.031	0.031	0.000	0.203	0.000	0.000
142	36		0.513	0.026	0.000	0.000	0.000	0.000	0.000
143	37		0.846	0.128	0.000	0.000	0.154	0.000	0.077
144		86	0.128	0.769	0.051	0.051	0.051	0.000	0.385
145	38		0.800	0.138	0.000	0.000	0.863	0.000	0.000
146	39	.	0.191	0.064	0.000	0.234	0.021	0.000	0.000
147	40	.	0.021	0.042	0.000	0.042	0.458	0.000	0.083
148	41		0.181	0.000	0.000	0.000	0.361	0.042	0.097
149		87	0.090	0.650	0.090	0.033	0.267	0.000	0.350
150		88	0.190	0.714	0.095	0.000	0.381	0.000	0.000
151		89	0.123	0.538	0.015	0.308	0.185	0.046	0.169
152	42		0.960	0.024	0.000	0.000	0.144	0.000	0.000
153	43		0.721	0.000	0.000	0.000	0.000	0.000	0.000
154	44		0.083	0.000	0.021	0.000	0.083	0.000	0.000
155			0.273	0.000	0.000	0.000	0.491	0.000	0.218
156			0.000	0.000	0.000	0.000	0.000	0.000	0.000

SITE	HISTORICAL	HARVEST	84	85	86	87	88	89	90
NUMBER	SITES	SITES							
1		1	0.027	0.000	0.230	0.324	0.378	0.068	0.811
2	.	2	0.000	0.111	0.333	0.457	0.099	0.000	0.593
3		3	0.095	0.081	0.203	0.297	0.243	0.176	0.878
4		4	0.000	0.028	0.394	0.563	0.014	0.000	0.352
5		5	0.000	0.172	0.406	0.422	0.000	0.000	0.438
6		6	0.133	0.117	0.450	0.433	0.000	0.000	0.300
7			0.055	0.045	0.236	0.436	0.282	0.000	0.627
8	.	7	0.013	0.091	0.429	0.481	0.000	0.000	0.896
9			0.031	0.031	0.216	0.526	0.227	0.000	0.536
10	1		0.092	0.058	0.242	0.533	0.167	0.000	0.583
11		8	0.169	0.026	0.221	0.312	0.442	0.000	0.961
12	2	9	0.000	0.085	0.549	0.366	0.000	0.000	0.507
13	3	10	0.013	0.158	0.513	0.328	0.000	0.000	0.882
14		11	0.000	0.029	0.232	0.319	0.420	0.000	0.725
15	.	12	0.000	0.060	0.300	0.320	0.320	0.000	0.760
16		13	0.039	0.053	0.197	0.211	0.487	0.053	0.987
17			0.035	0.133	0.452	0.252	0.139	0.139	0.609
18			0.000	0.014	0.397	0.270	0.200	0.121	0.702
19		14	0.029	0.206	0.397	0.309	0.088	0.000	0.926
20			0.013	0.052	0.432	0.432	0.077	0.000	0.781
21	.	15	0.071	0.357	0.548	0.095	0.000	0.000	0.881
22		16	0.015	0.313	0.328	0.224	0.134	0.000	0.806
23		17	0.292	0.135	0.385	0.427	0.052	0.000	0.781
24	4		0.139	0.137	0.436	0.162	0.291	0.000	0.530
25		18	0.026	0.141	0.449	0.410	0.000	0.000	0.936
26		19	0.260	0.000	0.233	0.411	0.315	0.041	0.999
27			0.262	0.049	0.443	0.508	0.000	0.000	0.999
28		.	0.000	0.026	0.372	0.333	0.205	0.064	0.999
29		-	0.093	0.012	0.140	0.267	0.337	0.244	0.999
30		.	0.200	0.027	0.133	0.387	0.387	0.067	0.999
31			0.038	0.000	0.013	0.231	0.474	0.282	0.999
32	5	.	0.077	0.128	0.385	0.462	0.026	0.000	0.821
33		.	0.022	0.011	0.348	0.457	0.130	0.054	0.652
34			0.160	0.080	0.360	0.180	0.360	0.020	0.700
35	6		0.333	0.022	0.377	0.422	0.177	0.000	0.733
36		20	0.000	0.000	0.180	0.348	0.461	0.011	0.999
37		21	0.274	0.016	0.177	0.677	0.129	0.000	0.999
38	7		0.060	0.024	0.310	0.500	0.167	0.000	0.833
39		22	0.047	0.209	0.465	0.279	0.047	0.000	0.953
40	8		0.030	0.258	0.348	0.242	0.136	0.015	0.667
41			0.419	0.000	0.163	0.581	0.256	0.000	0.999
42	-	23	0.059	0.106	0.388	0.423	0.082	0.000	0.388
43		24	0.059	0.024	0.424	0.435	0.118	0.000	0.259
44		25	0.000	0.068	0.593	0.322	0.017	0.000	0.136
45		26	0.033	0.016	0.148	0.369	0.443	0.025	0.385
46	.	27	0.013	0.013	0.127	0.190	0.671	0.000	0.519
47		28	0.000	0.089	0.711	0.200	0.000	0.000	0.100
48		29	0.031	0.051	0.526	0.300	0.124	0.000	0.639
49	9	30	0.076	0.054	0.359	0.315	0.272	0.000	0.435
50			0.063	0.053	0.221	0.347	0.379	0.000	0.105
51		31	0.008	0.016	0.256	0.620	0.107	0.000	0.174
52		32	0.000	0.115	0.345	0.365	0.154	0.019	0.615

SITE	HISTORICAL	HARVEST	84	85	86	87	88	89	90
NUMBER	SITES	SITES							
53		33	0.185	0.093	0.259	0.333	0.315	0.000	0.870
54		34	0.051	0.051	0.458	0.373	0.119	0.000	0.424
55		35	0.014	0.139	0.556	0.222	0.083	0.000	0.347
56		36	0.000	0.135	0.538	0.327	0.000	0.000	0.288
57		37	0.039	0.092	0.592	0.316	0.000	0.000	0.395
58	10	38	0.037	0.370	0.500	0.130	0.000	0.000	0.241
59		39	0.019	0.058	0.212	0.173	0.462	0.096	0.827
60		40	0.095	0.111	0.413	0.460	0.016	0.000	0.857
61	11	41	0.000	0.055	0.286	0.516	0.143	0.000	0.462
62		42	0.000	0.241	0.276	0.276	0.207	0.000	0.931
63		43	0.000	0.186	0.605	0.209	0.000	0.000	0.651
64		44	0.000	0.009	0.350	0.564	0.077	0.000	0.453
65		45	0.036	0.218	0.509	0.273	0.000	0.000	0.764
66		46	0.094	0.075	0.415	0.453	0.057	0.000	0.887
67		47	0.000	0.067	0.311	0.533	0.089	0.000	0.356
68		48	0.019	0.115	0.442	0.308	0.135	0.000	0.904
69		49	0.000	0.100	0.420	0.280	0.200	0.000	0.580
70		50	0.032	0.097	0.403	0.419	0.081	0.000	0.597
71		51	0.025	0.038	0.273	0.291	0.304	0.089	0.810
72		52	0.021	0.011	0.245	0.468	0.277	0.000	0.277
73		53	0.077	0.135	0.442	0.250	0.173	0.000	0.500
74	14	54	0.000	0.047	0.340	0.528	0.085	0.000	0.236
75		55	0.079	0.016	0.143	0.397	0.254	0.190	0.905
76		56	0.029	0.043	0.209	0.388	0.360	0.000	0.619
77		57	0.025	0.500	0.375	0.025	0.100	0.000	0.725
78			0.078	0.009	0.172	0.207	0.405	0.207	0.457
79			0.226	0.000	0.302	0.472	0.226	0.000	0.999
80			0.000	0.200	0.375	0.425	0.000	0.000	0.999
81			0.024	0.000	0.218	0.250	0.444	0.089	0.194
82			0.372	0.000	0.093	0.395	0.512	0.000	0.999
83			0.197	0.026	0.171	0.224	0.355	0.224	0.999
84			0.082	0.122	0.327	0.388	0.163	0.000	0.653
85			0.051	0.103	0.203	0.291	0.253	0.139	0.861
86	-	58	0.000	0.000	0.017	0.183	0.650	0.150	0.999
87			0.000	0.198	0.319	0.440	0.044	0.000	0.901
88	15		0.038	0.063	0.203	0.165	0.544	0.025	0.709
89			0.011	0.056	0.551	0.337	0.056	0.000	0.708
90		-	0.245	0.000	0.117	0.202	0.404	0.277	0.999
91			0.036	0.023	0.143	0.786	0.048	0.000	0.999
92		59	0.290	0.032	0.258	0.419	0.290	0.000	0.999
93		60	0.105	0.368	0.421	0.158	0.053	0.000	0.999
94	16	61	0.011	0.023	0.280	0.258	0.161	0.280	0.323
95		62	0.000	0.167	0.185	0.167	0.481	0.000	0.944
96	17	.	0.000	0.177	0.468	0.226	0.129	0.000	0.258
97	18		0.000	0.041	0.367	0.449	0.143	0.000	0.286
98	19		0.075	0.150	0.250	0.350	0.250	0.000	0.999
99	.	.	0.231	0.154	0.462	0.282	0.103	0.000	0.846
100			0.171	0.000	0.143	0.486	0.314	0.057	0.999
101			0.020	0.060	0.600	0.340	0.000	0.000	0.999
102			0.123	0.000	0.220	0.561	0.220	0.000	0.999
103			0.357	0.024	0.167	0.452	0.333	0.024	0.999
104	20		0.133	0.000	0.133	0.483	0.383	0.000	0.999

SITE	HISTORICAL	HARVEST	84	85	86	87	88	89	90
NUMBER	SITES	SITES							
105		63	0.000	0.176	0.294	0.353	0.176	0.000	0.999
106	21	64	0.032	0.111	0.286	0.460	0.143	0.000	0.999
107			0.000	0.103	0.310	0.276	0.310	0.000	0.862
108	22		0.055	0.288	0.123	0.466	0.123	0.000	0.877
109			0.031	0.185	0.462	0.323	0.031	0.000	0.923
110			0.271	0.146	0.604	0.250	0.000	0.000	0.999
111	23		0.387	0.040	0.400	0.307	0.093	0.160	0.999
112	24		0.148	0.222	0.148	0.185	0.222	0.222	0.667
113		65	0.048	0.010	0.181	0.176	0.362	0.124	0.019
114	25	66	0.057	0.000	0.114	0.514	0.371	0.000	0.410
115		67	0.000	0.026	0.308	0.513	0.154	0.000	0.043
116	26	68	0.000	0.083	0.298	0.463	0.157	0.000	0.455
117	27	69	0.029	0.114	0.157	0.400	0.329	0.000	0.914
118		70	0.022	0.200	0.511	0.288	0.000	0.000	0.911
119		71	0.008	0.000	0.219	0.484	0.227	0.070	0.195
120			0.000	0.035	0.282	0.612	0.071	0.000	0.212
121			0.043	0.060	0.233	0.388	0.293	0.026	0.922
122		72	0.000	0.173	0.577	0.212	0.038	0.000	0.423
123	28	73	0.013	0.038	0.076	0.354	0.430	0.101	0.165
124	29		0.056	0.361	0.444	0.194	0.000	0.000	0.944
125		74	0.028	0.222	0.361	0.278	0.139	0.000	0.833
126		75	0.039	0.196	0.314	0.392	0.098	0.000	0.922
127		76	0.048	0.081	0.435	0.323	0.161	0.000	0.903
128		77	0.165	0.046	0.284	0.220	0.330	0.119	0.963
129		78	0.000	0.046	0.431	0.523	0.000	0.000	0.846
130			0.000	0.017	0.136	0.551	0.297	0.000	0.500
131	32	79	0.000	0.102	0.380	0.315	0.185	0.019	0.731
132		80	0.000	0.063	0.406	0.531	0.000	0.000	0.938
133			0.057	0.057	0.429	0.429	0.086	0.000	0.999
134	33		0.000	0.083	0.271	0.313	0.333	0.000	0.688
135		81	0.233	0.000	0.023	0.279	0.512	0.186	0.999
136	34	82	0.125	0.000	0.641	0.359	0.000	0.000	0.266
137		83	0.059	0.059	0.294	0.549	0.098	0.000	0.941
138			0.000	0.040	0.387	0.573	0.000	0.000	0.493
139			0.000	0.020	0.314	0.588	0.078	0.000	0.490
140		84	0.212	0.121	0.333	0.545	0.000	0.000	0.999
141	35	85	0.031	0.016	0.375	0.500	0.109	0.000	0.094
142	36		0.385	0.128	0.487	0.385	0.000	0.000	0.974
143	37		0.154	0.308	0.564	0.128	0.000	0.000	0.538
144		86	0.103	0.026	0.231	0.487	0.256	0.000	0.999
145	38		0.038	0.013	0.425	0.563	0.000	0.000	0.138
146	39		0.191	0.000	0.106	0.489	0.404	0.000	0.999
147	40		0.042	0.021	0.313	0.396	0.250	0.021	0.999
148	41		0.042	0.042	0.417	0.514	0.028	0.000	0.972
149		87	0.000	0.067	0.267	0.550	0.083	0.033	0.933
150		88	0.000	0.333	0.190	0.286	0.190	0.000	0.952
151		89	0.031	0.031	0.200	0.262	0.508	0.000	0.999
152	42		0.008	0.064	0.248	0.536	0.144	0.008	0.272
153	43		0.082	0.016	0.443	0.377	0.148	0.016	0.426
154	44		0.038	0.000	0.313	0.563	0.125	0.000	0.958
155			0.000	0.055	0.454	0.436	0.055	0.000	0.999
156			0.229	0.000	0.479	0.521	0.000	0.000	0.999

SITE	HISTORICAL	HARVEST	91	92	93	94	95	96	97	98
NUMBER	SITES	SITES								
1		1	0.081	0.081	0.027	0.000	353.6	10.8	3	2.7
2		2	0.235	0.111	0.049	0.012	280.4	5.1	3	15.3
3	.	3	0.081	0.041	0.000	0.000	362.7	9.2	3	11.4
4		4	0.380	0.211	0.056	0.000	320.0	11.2	3	19.5
5		5	0.281	0.125	0.141	0.016	277.4	5.9	3	26.2
6		6	0.383	0.217	0.100	0.000	259.1	5.9	3	30.1
7			0.200	0.082	0.091	0.000	228.6	1.1	4	32.3
8		7	0.078	0.013	0.013	0.000	253.0	6.3	2	6.8
9			0.351	0.113	0.000	0.000	198.4	1.0	4	46.1
10	1		0.325	0.083	0.008	0.000	193.5	1.0	4	53.3
11		8	0.039	0.000	0.000	0.000	210.3	4.1	3	6.5
12	2	9	0.268	0.183	0.042	0.000	210.3	3.2	4	31.8
13	3	10	0.118	0.000	0.000	0.000	216.4	9.2	2	13.8
14		11	0.174	0.087	0.014	0.000	195.1	3.3	4	38.8
15		12	0.160	0.060	0.020	0.000	198.1	5.7	3	14.8
16		13	0.013	0.000	0.000	0.000	195.1	5.6	2	9.1
17	.		0.235	0.139	0.017	0.000	185.9	1.0	5	60.3
18			0.206	0.092	0.000	0.000	179.8	1.0	5	64.4
19		14	0.074	0.000	0.000	0.000	243.7	10.5	2	7.0
20			0.200	0.013	0.000	0.000	165.2	1.0	5	75.1
21		15	0.119	0.000	0.000	0.000	216.4	7.6	2	14.4
22		16	0.179	0.000	0.015	0.000	179.8	3.4	3	19.7
23		17	0.188	0.031	0.000	0.000	167.6	1.2	4	31.3
24	4		0.231	0.239	0.000	0.000	155.4	1.0	5	82.7
25		18	0.064	0.000	0.000	0.000	231.6	12.2	2	13.2
26		19	0.000	0.000	0.000	0.000	185.9	1.7	2	6.0
27			0.000	0.000	0.000	0.000	140.2	5.4	2	7.0
28			0.000	0.000	0.000	0.000	169.2	6.4	3	5.8
29			0.000	0.000	0.000	0.000	146.3	5.5	3	10.6
30			0.000	0.000	0.000	0.000	146.3	2.3	4	15.6
31			0.000	0.000	0.000	0.000	137.5	1.2	3	8.5
32	5		0.051	0.128	0.000	0.000	115.8	3.0	2	6.9
33			0.250	0.098	0.022	0.000	109.7	1.0	5	123.1
34			0.160	0.140	0.000	0.000	112.8	2.5	3	8.8
35	6		0.200	0.022	0.044	0.000	115.5	1.5	2	7.2
36		20	0.000	0.000	0.000	0.000	164.6	3.9	3	16.5
37		21	0.000	0.000	0.000	0.000	121.9	2.2	3	25.7
38	7		0.095	0.060	0.012	0.000	117.3	1.7	3	29.4
39		22	0.047	0.000	0.000	0.000	149.3	6.3	3	6.8
40	8		0.258	0.076	0.000	0.000	112.8	4.6	3	18.7
41			0.000	0.000	0.000	0.000	117.3	4.6	2	3.3
42	.	23	0.494	0.082	0.024	0.012	280.4	10.8	3	8.2
43		24	0.553	0.153	0.035	0.000	268.2	12.2	3	9.3
44		25	0.492	0.305	0.034	0.034	301.7	10.8	3	9.4
45	.	26	0.484	0.041	0.090	0.000	259.1	4.9	4	11.1
46		27	0.380	0.051	0.038	0.013	265.2	7.5	4	18.2
47		28	0.567	0.300	0.033	0.000	222.5	2.6	4	21.0
48		29	0.351	0.010	0.000	0.000	185.9	2.9	1	1.7
49	9	30	0.522	0.033	0.011	0.000	228.6	4.5	3	12.5
50			0.568	0.158	0.126	0.042	216.4	3.9	4	23.6
51		31	0.347	0.264	0.165	0.050	185.9	4.6	4	38.8
52		32	0.269	0.058	0.058	0.000	323.1	10.8	2	5.8

SITE	HISTORICAL	HARVEST	91	92	93	94	95	96	97	98
NUMBER	SITES	SITES								
53		33	0.130	0.000	0.000	0.000	316.9	21.7	2	3.2
54		34	0.424	0.085	0.068	0.000	283.5	8.1	3	9.5
55		35	0.472	0.167	0.014	0.000	262.1	12.2	3	13.2
56		36	0.404	0.231	0.058	0.019	216.4	5.3	3	7.9
57		37	0.434	0.145	0.026	0.000	246.9	9.3	3	11.6
58	10	38	0.593	0.167	0.000	0.000	207.3	12.2	2	18.7
59		39	0.173	0.000	0.000	0.000	208.8	2.4	4	21.0
60		40	0.143	0.000	0.000	0.000	216.4	8.5	2	3.4
61	11	41	0.253	0.132	0.154	0.000	176.8	2.3	5	41.9
62		42	0.069	0.000	0.000	0.000	265.2	7.9	2	4.1
63		43	0.302	0.047	0.000	0.000	210.3	6.6	3	9.7
64		44	0.205	0.111	0.154	0.077	164.6	1.2	5	50.1
65		45	0.164	0.073	0.000	0.000	271.3	6.8	2	3.3
66		46	0.075	0.038	0.000	0.000	246.9	7.5	2	5.4
67		47	0.578	0.044	0.022	0.000	182.9	8.3	3	16.1
68		48	0.077	0.019	0.000	0.000	228.6	8.1	2	9.1
69		49	0.140	0.120	0.000	0.020	179.8	6.7	3	10.7
70		50	0.177	0.210	0.016	0.000	149.4	3.7	3	16.1
71		51	0.127	0.051	0.013	0.000	143.3	6.1	3	18.1
72		52	0.170	0.181	0.213	0.160	131.1	2.7	5	63.9
73		53	0.442	0.058	0.000	0.000	134.1	5.1	2	3.7
74	14	54	0.255	0.113	0.311	0.085	125.0	1.4	5	69.5
75		55	0.048	0.016	0.032	0.000	125.0	9.3	2	2.9
76		56	0.115	0.065	0.094	0.108	121.6	1.4	5	77.1
77		57	0.200	0.075	0.000	0.000	140.2	9.7	1	3.0
78			0.267	0.095	0.147	0.034	112.8	1.3	5	80.7
79	.		0.000	0.000	0.000	0.000	137.2	4.6	2	3.3
80	.		0.000	0.000	0.000	0.000	131.1	4.8	2	5.0
81	.	.	0.282	0.258	0.258	0.008	100.6	1.0	6	149.0
82			0.000	0.000	0.000	0.000	106.7	2.6	2	5.1
83	.	-	0.000	0.000	0.000	0.000	100.6	1.0	6	164.5
84			0.265	0.041	0.041	0.000	106.7	5.1	2	4.3
85			0.063	0.063	0.000	0.000	173.7	6.5	2	5.0
86		58	0.000	0.000	0.000	0.000	155.4	2.1	3	7.4
87			0.066	0.022	0.011	0.000	125.0	2.9	3	17.9
88	15		0.114	0.101	0.076	0.000	118.9	3.1	3	20.4
89	.		0.213	0.056	0.022	0.000	100.6	2.8	3	31.0
90			0.000	0.000	0.000	0.000	97.5	1.0	6	175.8
91			0.000	0.000	0.000	0.000	102.4	1.0	0	0.5
92	.	59	0.000	0.000	0.000	0.000	170.7	8.9	2	2.9
93		60	0.000	0.000	0.000	0.000	158.5	4.5	3	6.4
94	16	61	0.312	0.097	0.226	0.043	131.1	6.5	3	12.0
95		62	0.037	0.019	0.000	0.000	125.0	3.7	3	14.7
96	17	.	0.371	0.290	0.065	0.000	118.9	1.9	3	18.3
97	18	.	0.327	0.204	0.184	0.000	100.6	1.2	3	21.1
98	19		0.000	0.000	0.000	0.000	102.1	1.6	1	0.3
99			0.154	0.000	0.000	0.000	115.8	7.4	1	0.7
100	.		0.000	0.000	0.000	0.000	112.8	2.0	3	11.6
101	.	.	0.000	0.000	0.000	0.000	113.4	3.4	2	5.0
102			0.000	0.000	0.000	0.000	111.2	2.2	2	7.0
103			0.000	0.000	0.000	0.000	117.3	4.5	2	3.5
104	20		0.000	0.000	0.000	0.000	101.2	2.3	3	20.7

SITE	HISTORICAL	HARVEST	91	92	93	94	95	96	97	98
NUMBER	SITES	SITES								
105		63	0.000	0.000	0.000	0.000	172.2	7.7	1	0.6
106	21	64	0.000	0.000	0.000	0.000	138.7	4.8	3	4.4
107			0.138	0.000	0.000	0.000	123.4	3.2	3	8.3
108	22	.	0.123	0.000	0.000	0.000	117.3	3.2	3	10.2
109			0.031	0.046	0.000	0.000	120.4	3.6	3	3.6
110			0.000	0.000	0.000	0.000	106.7	5.7	2	7.4
111	23		0.000	0.000	0.000	0.000	102.1	2.4	2	3.8
112	24		0.333	0.000	0.000	0.000	99.1	1.8	2	4.7
113		65	0.714	0.105	0.086	0.028	329.2	12.2	2	15.4
114	25	66	0.162	0.238	0.086	0.105	304.8	8.7	3	14.5
115		67	0.214	0.368	0.282	0.094	280.4	8.1	4	20.9
116	26	68	0.298	0.165	0.066	0.017	248.4	5.7	4	25.6
117	27	69	0.057	0.029	0.000	0.000	247.2	5.9	4	12.3
118		70	0.044	0.022	0.022	0.000	268.2	14.4	2	5.5
119		71	0.125	0.234	0.305	0.141	249.9	8.9	3	12.7
120			0.200	0.176	0.271	0.141	227.7	1.9	4	38.3
121			0.060	0.009	0.009	0.000	243.7	2.7	3	22.9
122		72	0.308	0.135	0.135	0.000	274.3	9.7	3	15.3
123	28	73	0.443	0.190	0.203	0.000	237.7	7.5	3	19.7
124	29		0.056	0.000	0.000	0.000	231.6	5.5	3	14.8
125		74	0.167	0.000	0.000	0.000	281.9	22.9	2	2.5
126		75	0.078	0.000	0.000	0.000	228.6	3.0	3	9.1
127		76	0.065	0.032	0.000	0.000	257.6	10.8	3	8.1
128		77	0.037	0.000	0.000	0.000	213.4	7.1	3	13.5
129		78	0.154	0.000	0.000	0.000	217.9	3.1	4	14.1
130			0.288	0.127	0.085	0.000	189.0	2.2	5	67.4
131	32	79	0.194	0.074	0.000	0.000	220.4	7.8	3	16.7
132		80	0.031	0.031	0.000	0.000	254.5	4.6	2	8.0
133			0.000	0.000	0.000	0.000	271.3	10.3	2	4.6
134	33		0.146	0.104	0.063	0.000	237.7	2.0	4	16.3
135		81	0.000	0.000	0.000	0.000	256.0	6.6	2	4.2
136	34	82	0.234	0.281	0.219	0.000	281.9	17.7	1	2.7
137		83	0.059	0.000	0.000	0.000	231.6	7.4	3	3.8
138			0.440	0.067	0.000	0.000	213.4	3.0	4	27.5
139			0.412	0.078	0.020	0.000	190.0	3.5	4	37.1
140		84	0.000	0.000	0.000	0.000	120.4	6.0	3	7.0
141	35	85	0.281	0.250	0.297	0.078	114.3	6.9	3	8.8
142	36	.	0.026	0.000	0.000	0.000	108.2	5.5	2	3.3
143	37		0.359	0.077	0.026	0.000	105.2	1.0	2	15.4
144		86	0.000	0.000	0.000	0.000	126.5	4.7	2	11.1
145	38		0.575	0.200	0.075	0.013	108.2	2.9	2	13.3
146	39	.	0.000	0.000	0.000	0.000	114.3	5.7	1	0.4
147	40	.	0.000	0.000	0.000	0.000	102.1	2.2	3	4.3
148	41		0.028	0.000	0.000	0.000	102.1	1.4	2	6.2
149		87	0.067	0.000	0.000	0.000	192.0	9.4	2	17.4
150		88	0.000	0.048	0.000	0.000	173.7	14.4	3	9.9
151		89	0.000	0.000	0.000	0.000	112.8	2.5	4	16.5
152	42		0.112	0.256	0.280	0.080	106.7	2.5	4	19.9
153	43		0.295	0.246	0.033	0.000	117.3	7.4	2	0.4
154	44		0.042	0.000	0.000	0.000	92.9	1.8	3	17.0
155			0.000	0.000	0.000	0.000	105.2	2.6	2	2.1
156			0.000	0.000	0.000	0.000	102.1	1.8	3	8.9

SITE	HISTORICAL	HARVEST	99	100	101	102	103	104	105
NUMBER	SITES	SITES							
1		1	28	320	0.9	0.079	0.000	0.056	0.000
2		2	40	100	4.1	0.077	0.089	0.000	0.000
3	.	3	32	40	2.7	0.008	0.000	0.041	0.000
4		4	30	60	1.4	0.021	0.000	0.022	0.015
5		5	30	70	1.8	0.014	0.000	0.014	0.009
6		6	33	140	7.0	0.012	0.000	0.012	0.008
7	.		42	100	3.0				
8		7	48	197	4.5	0.000	0.000	0.000	0.000
9			49	110	5.7				
10	1		50	90	1.9				
11		8	52	70	15.7	0.000	0.000	0.044	0.030
12	2	9	50	70	2.7	0.053	0.020	0.032	0.039
13	3	10	50	190	7.2	0.111	0.000	0.000	0.000
14		11	70	40	5.4	0.061	0.025	0.037	0.030
15		12	58	360	9.1	0.029	0.000	0.022	0.056
16	.	13	62	240	5.1	0.024	0.048	0.031	0.131
17		.	51	50	1.7	.			.
18			51	90	1.8				
19	.	14	51	50	4.4	0.053	0.000	0.041	0.000
20			51	120	1.6				
21	.	15	73	50	3.8	0.000	0.055	0.000	0.135
22		16	75	45	4.1	0.000	0.069	0.028	0.096
23		17	70	50	3.2	0.050	0.000	0.036	0.055
24	4		60	370	2.0				
25		18	60	70	2.5	0.000	0.000	0.074	0.000
26		19	87	130	8.2	0.000	0.000	0.000	0.000
27	-	.	63	70	2.9	.	.		.
28	.	.	95	100	4.1	.			
29	.	.	89	100	10.2	.	-		
30		.	97	140	10.9	.	-		.
31		.	99	650	31.0	.	.		.
32	5	.	71	340	7.8	.			
33	.	.	57	140	4.8				
34			63	120	3.2				
35	6		185	200	9.0				
36	.	20	72	100	6.4	0.080	0.045	0.009	0.014
37		21	72	60	1.9	0.056	0.031	0.006	0.009
38	7		75	180	12.7				
39		22	172	30	5.4	0.000	0.000	0.058	0.000
40	8	.	170	40	0.9	.	.		
41	.		240	150	15.1				
42		23	25	110	1.1	0.000	0.103	0.000	0.000
43		24	35	130	1.8	0.000	0.108	0.000	0.000
44		25	30	130	2.5	0.000	0.000	0.016	0.061
45	.	26	35	120	2.3	0.038	0.000	0.015	0.058
46		27	35	120	2.0	0.040	0.049	0.030	0.055
47		28	35	70	3.9	0.044	0.040	0.035	0.045
48		29	61	125	14.2	0.000	0.000	0.000	0.000
49	9	30	50	80	3.3	0.011	0.036	0.044	0.042
50			48	60	4.1	0.041	0.033	0.036	0.037
51		31	42	85	3.7	0.053	0.039	0.035	0.030
52		32	25	170	4.6	0.000	0.013	0.000	0.076

SITE	HISTORICAL	HARVEST	99	100	101	102	103	104	105
NUMBER	SITES	SITES							
53	.	33	30	90	0.1	0.000	0.000	0.000	0.051
54		34	32	120	0.3	0.000	0.027	0.000	0.040
55		35	35	70	1.3	0.000	0.035	0.000	0.043
56		36	43	60	2.1	0.101	0.068	0.000	0.000
57		37	40	25	1.4	0.081	0.022	0.026	0.028
58	10	38	45	45	0.9	0.006	0.029	0.000	0.036
59		39	42	40	3.6	0.042	0.033	0.006	0.027
60		40	60	40	4.8	0.000	0.000	0.126	0.147
61	11	41	49	55	4.2	0.049	0.034	0.026	0.035
62		42	58	50	6.3	0.202	0.000	0.000	0.000
63		43	60	30	1.9	0.000	0.047	0.000	0.075
64		44	50	60	2.1	0.045	0.034	0.025	0.038
65	.	45	45	45	0.8	0.000	0.130	0.000	0.000
66	.	46	35	30	0.5	0.000	0.089	0.000	0.000
67		47	45	40	7.7	0.046	0.017	0.006	0.076
68		48	53	35	3.4	0.000	0.111	0.132	0.000
69		49	50	35	0.1	0.000	0.000	0.000	0.000
70		50	90	30	0.6	0.000	0.000	0.000	0.085
71	.	51	80	15	3.9	0.000	0.000	0.000	0.000
72		52	51	50	0.8	0.037	0.031	0.026	0.035
73		53	245	15	1.3	0.174	0.000	0.000	0.000
74	14	54	55	60	3.0	0.037	0.030	0.026	0.036
75		55	370	20	1.0	0.000	0.000	0.000	0.000
76	-	56	70	30	2.6	0.037	0.028	0.027	0.036
77		57	320	20	0.7	0.000	0.000	0.046	0.000
78			61	70	9.2				
79	.	.	325	50	0.7	.		.	.
80	.	.	320	60	3.8
81	.	.	81	160	6.6	.		.	
82			81	110	3.1	.			
83	.		91	110	3.6	.		.	.
84	.	.	65	120	4.5
85	.		142	30	2.0				
86	.	58	272	25	3.8	0.043	0.053	0.046	0.059
87			238	125	8.8				.
88	15	.	195	80	7.8
89	.	.	300	110	6.2
90	.	.	249	70	6.5	.	.	.	
91	.		102	450	13.9				
92	.	59	192	120	10.6	0.000	0.423	0.000	0.000
93		60	149	75	0.6	0.057	0.055	0.000	0.000
94	16	61	22	90	26.3	0.050	0.088	0.000	0.019
95		62	180	50	2.0	0.061	0.095	0.000	0.028
96	17		111	90	6.2				
97	18		110	100	5.0	.		.	
98	19	.	311	80	1.8			.	
99	.	.	60	250	34.7				
100	.		500	90	17.8				
101	.	.	450	190	21.1			.	
102	.	.	210	390	34.0	.		-	-
103			240	650	14.1			.	.
104	20	.	250	820	5.6			.	

SITE	HISTORICAL	HARVEST	99	100	101	102	103	104	105
NUMBER	SITES	SITES							
105		63	31	220	1.1	0.000	0.000	0.000	0.000
106	21	64	105	30	0.6	0.026	0.000	0.045	0.000
107			102	75	3.7			.	
108	22	.	150	50	6.4				
109			79	40	0.5				
110	.		147	340	9.9				
111	23		110	450	1.8				
112	24		51	150	2.2				
113		65	20	130	2.9	0.000	0.000	0.000	0.000
114	25	66	25	110	0.5	0.048	0.000	0.000	0.000
115		67	16	180	2.9	0.056	0.000	0.054	0.051
116	26	68	31	70	3.7	0.000	0.014	0.000	0.000
117	27	69	49	140	3.7	0.016	0.043	0.000	0.081
118	.	70	50	180	1.6	0.000	0.000	0.000	0.000
119	.	71	50	190	1.7	0.000	0.000	0.017	0.000
120	.	.	49	290	1.0				
121	.		55	45	8.9				
122	.	72	32	40	0.4	0.000	0.000	0.000	0.000
123	28	73	35	55	1.7	0.017	0.012	0.000	0.000
124	29		68	70	45.9				
125	.	74	45	125	2.8	0.000	0.180	0.000	0.000
126	.	75	61	70	4.0	0.000	0.047	0.000	0.000
127	.	76	40	60	1.3	0.000	0.056	0.000	0.000
128	.	77	45	50	4.0	0.019	0.049	0.042	0.017
129	.	78	52	315	2.7	0.012	0.041	0.026	0.052
130			53	60	2.3				
131	32	79	40	130	1.4	0.059	0.035	0.075	0.028
132	.	80	45	140	11.6	0.000	0.000	0.000	0.000
133		.	55	50	5.3	.	.	.	
134	33		51	235	4.6				
135		81	46	200	1.0	0.000	0.120	0.000	0.000
136	34	82	42	110	3.1	0.015	0.000	0.043	0.022
137	.	83	50	52	2.3	0.000	0.000	0.000	0.000
138	.	.	50	100	3.7	.			
139	.		50	55	7.7				
140		84	60	150	2.7	0.070	0.105	0.090	0.000
141	35	85	18	290	2.3	0.063	0.095	0.133	0.000
142	36	.	125	160	4.8				
143	37		92	100	2.5				
144		86	71	70	1.6	0.000	0.064	0.000	0.000
145	38		10	120	2.9	.	. 064	0.000	.
146	39	.	54	80	4.7
147	40	.	90	950	8.7	-			
148	41		87	250	12.8				
149		87	62	40	0.7	0.043	0.038	0.044	0.048
150	.	88	51	80	6.3	0.000	0.072	0.000	0.075
151		89	61	130	4.3	0.053	0.056	0.036	0.036
152	42		20	150	1.4			.	
153	43	.	16	150	1.2	.		.	.
154	44	.	72	270	5.8			.	
155	.		1790	380	9.2			-	
156	.	-	100	710	22.1			.	.

SITE	HISTORICAL	HARVEST	106	107	108	109
NUMBER	SITES	SITES				
1		1	0.000	0.000	0.000	0.000
2		2	0.128	0.000	0.126	0.000
3		3	0.000	0.000	0.000	0.000
4		4	0.000	0.000	0.000	0.000
5	.	5	0.000	0.000	0.017	0.000
6	.	6	0.000	0.000	0.015	0.000
7	.					
8	-	7	0.000	0.155	0.073	0.034
9						
10	1					
11		8	0.000	0.045	0.045	0.050
12	2	9	0.017	0.028	0.035	0.000
13	3	10	0.034	0.000	0.000	0.009
14	.	11	0.026	0.032	0.040	0.012
15	.	12	0.086	0.000	0.041	0.000
16	.	13	0.000	0.045	0.052	0.025
17	-	.		.	.	
18	.					
19	-	14	0.000	0.000	0.069	0.000
20						
21		15	0.000	0.000	0.000	0.000
22	.	16	0.000	0.000	0.026	0.000
23		17	0.010	0.057	0.035	0.018
24	4					
25		18	0.053	0.000	0.000	0.171
26	.	19	0.160	0.000	0.000	0.000
27	
28	-	-	.	-	.	
29		.		.	.	
30	
31		-		.	.	
32	5	
33			.	.	.	
34				.		
35	6					
36		20	0.024	0.093	0.036	0.122
37		21	0.027	0.065	0.025	0.101
38	7					
39		22	0.052	0.062	0.087	0.126
40	8	.		.	.	
41						
42		23	0.000	0.000	0.000	0.000
43		24	0.000	0.000	0.000	0.000
44		25	0.030	0.000	0.000	0.000
45	. \cdot	26	0.029	0.000	0.000	0.012
46		27	0.010	0.019	0.040	0.057
47		28	0.014	0.015	0.062	0.047
48		29	0.000	0.000	0.000	0.000
49	9	30	0.000	0.031	0.064	0.008
50			0.025	0.023	0.054	0.036
51		31	0.029	0.019	0.061	0.077
52		32	0.052	0.000	0.000	0.000

SITE	HISTORICAL	HARVEST	106	107	108	109
NUMBER	SITES	SITES				
53	.	33	0.074	0.000	0.000	0.000
54		34	0.107	0.000	0.000	0.000
55		35	0.075	0.000	0.065	0.033
56		36	0.087	0.000	0.050	0.123
57		37	0.039	0.000	0.241	0.000
58	10	38	0.073	0.000	0.061	0.046
59		39	0.071	0.000	0.091	0.050
60		40	0.000	0.000	0.083	0.159
61	11	41	0.042	0.010	0.072	0.077
62	.	42	0.000	0.000	0.000	0.432
63	.	43	0.048	0.000	0.000	0.121
64		44	0.040	0.009	0.061	0.089
65	-	45	0.000	0.075	0.000	0.000
66	.	46	0.100	0.051	0.000	0.000
67	.	47	0.059	0.026	0.000	0.034
68		48	0.065	0.112	0.000	0.076
69	-	49	0.088	0.000	0.073	0.000
70	.	50	0.009	0.032	0.000	0.000
71	.	51	0.082	0.009	0.031	0.000
72	.	52	0.040	0.012	0.050	0.069
73		53	0.000	0.000	0.000	0.000
74	14	54	0.038	0.012	0.049	0.071
75	.	55	0.051	0.135	0.095	0.435
76	.	56	0.036	0.012	0.049	0.075
77	-	57	0.000	0.000	0.137	0.424
78
79	.	-	-	.	.	
80	.	.	.	-	.	.
81	-	
82	.	-	.	.	.	
83	.	-	-	.	.	
84	.	-
85	.			-		
86	-	58	0.039	0.000	0.092	0.028
87		
88	15	-		.	.	
89	.	-	.	.	.	
90	
91	.					
92	.	59	0.187	0.000	0.000	0.000
93		60	0.034	0.076	0.070	0.046
94	16	61	0.056	0.038	0.059	0.136
95		62	0.072	0.029	0.047	0.129
96	17
97	18	.	.			
98	19	.		.	.	
99						
100
101		
102	
103						
104	20					

SITE	HISTORICAL	HARVEST	106	107	108	109
NUMBER	SITES	SITES				
105		63	0.000	0.000	0.000	0.000
106	21	64	0.057	0.000	0.000	0.005
107						
108	22					
109		.	-	-		
110			.			
111	23	.	.			
112	24					
113		65	0.000	0.000	0.000	0.000
114	25	66	0.000	0.000	0.000	0.000
115		67	0.108	0.023	0.000	0.028
116	26	68	0.000	0.000	0.030	0.000
117	27	69	0.029	0.020	0.048	0.051
118		70	0.044	0.000	0.000	0.000
119	.	71	0.072	0.000	0.000	0.000
120	.					
121	.					
122		72	0.000	0.000	0.000	0.000
123	28	73	0.000	0.000	0.000	0.000
124	29					
125	.	74	0.000	0.000	0.000	0.000
126	.	75	0.000	0.000	0.000	0.000
127	.	76	0.000	0.000	0.000	0.000
128	.	77	0.027	0.000	0.040	0.000
129	.	78	0.000	0.000	0.000	0.000
130						
131	32	79	0.034	0.000	0.000	0.186
132	.	80	0.000	0.000	0.000	0.003
133		.		.		
134	33					
135		81	0.038	0.149	0.000	0.000
136	34	82	0.000	0.000	0.000	0.055
137	.	83	0.128	0.000	0.000	0.000
138	
139	.					
140		84	0.019	0.000	0.098	0.313
141	35	85	0.017	0.000	0.088	0.281
142	36	
143	37					
144		86	0.000	0.074	0.107	0.099
145	38
146	39	-
147	40		.		.	
148	41					
149	.	87	0.096	0.000	0.082	0.066
150	.	88	0.062	0.000	0.081	0.062
151		89	0.065	0.016	0.105	0.103
152	42
153	43			.	.	.
154	44					-
155	.		.			.
156

VITA

Douglas Allen Rutherford, Jr.
Candidate for the Degree of
Doctor of Philosophy

Thesis: FACTORS AFFECTING STREAM-FISH COMMUNITY STRUCTURE: EFFECTS OF SILVICULTURAL ACTIVITIES IN SOUTHEASTERN OKLAHOMA

Major Field: Zoology
Biographical:
Personal Data: Born in Beeville, Texas, 15 August 1955, the son of D. A. and Barbara W. Rutherford. Married to Cyndy A. Wehman on 24 July 1976. One child, Casey Noel, born 18 December 1984.

Education: Graduated from Pleasanton High School, Pleasanton, Texas, in May, 1973; received Bachelor of Science degree in Biology from Baylor University, Waco, Texas, in December, 1977; received Master of Science degree in Biology from Baylor University, Waco, Texas, in August, 1980; completed requirements for the Doctor of Philosophy degree in Zoology at Oklahoma State University, Stillwater, Oklahoma, in December, 1988.

Professional Experience: Undergraduate Teaching Assistant, Department of Biology, Baylor University, Waco, Texas, 1975 1978; Graduate Teaching Assistant, Department of Biology, Baylor University, Waco, Texas, 1978 - 1980; Instructor, Department of Biology, Baylor University, Waco, Texas, 1980 1981; Research Assistant, Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, 1981-1982; Teaching Assistant, Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, 1982 - 1984; Staff Teaching Assistant, Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, 1984 - 1985; Instructor, School of Forestry Wildlife - Fisheries, Louisiana State University, Baton Rouge, Louisiana, 1985 to present.

[^0]: ${ }^{1}$ Common $=$ occurrence at 10 or more of the early and/or recent collections; rare $=$ fewer than 10 occurrences. ${ }^{2}$ Fisher's exact probability.

