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CHAPTER I
CHANGES IN THE FAUNA OF THE LITTLE RIVER DRAINAGE,
SOUTHEASTERN OKLAHOMA, 1948-1955 TO 1981-1982:

A TEST OF THE HYPOTHESIS OF
ENVIRONMENTAL DEGRADATION

Introduction

Declines in the occurrences of fish species in the central United
States have been documented in many studies (Trautman 1939; Black 1949;
Minckley and Cross 1959; Larimore and Smith 1963; Smith 1971; Trautman
and Gartman 1974; Pflieger 1975; Cross et al. 1983). These declines are
often attributed to anthropogenic environmental changes, and are often
accompanied by increased occurrence of species considered more tolerant
of environmental disturbance.

In this paper I present, for the Little River of southeastern
Oklahoma, an analysis of differences in the fish fauna between two
intervals of time separated by 25 years. In those 25 years, the
terrestrial environment was greatly altered by clear-cutting forestry
practices, and the purpose of this study is to determine whether there
have been any associated changes in the fish fauna. Comparison of
collections made in the 1981-82 survey of the Little River drainage with
those in the same area in 1948-55 (Reeves 1953; Finnell et al. 1956)
suggest that some species declined in occurrence while others increased
and that there have been changes in indices of community structure.

Any two ichthyofaunal surveys made by different workers at times

separated by two and a half decades are likely to show changes. Such



changes may be due to any or all of three hypothetical causes: (1)
human-related environmental change, (2) natural fluctuations in faunal
structure, or (3) sampling bias. In this analysis hypotheses 2 and 3
cannot be eliminated; on the other hand, neither do these hypotheses
provide easily seen corollaries regarding qualitative faunal changes.
However, since intense human activity generally would cause a decline in
environmental quality for natural faunas, hypothesis 1 produces the
following corollary: species with greater tolerances to environmental
extremes should increase in occurrence while those with lesser
tolerances should decrease. Tolerance is defined as the persistence of
a species in the face of environmental extremes, by whatever means;
e.g., behavioral and reproductive attributes, not just physiological
tolerances.

To examine the expected corollary to human-related change, I looked
for trends among changes in occurrence of two groups of fishes in the
Little River drainage: (1) those occurring westward into plains streams
of Oklahoma and (2) those restricted to the eastern half of the state.
In general, those fishes that can tolerate plains streams should have
the greater tolerances to environmental extremes (cf., Matthews 1987).

Species of plains streams are exposed to widely fluctuating
variables such as salinity, oxygen concentrations, temperature and
waterflow (Hubbs and Hettler 1959; Cross 1967; Echelle et al. 1972;
Matthews and Hill 1980) and natural die-offs probably are common,
especially during harsh periods such as droughts coupled with high
temperatures (e.g., Matthews et al. 1982). In contrast, conditions in
streams of the forested area east of the plains environment are more

stable and less harsh (Cross 1967; Ross et al. 1985). Thus, species



restricted to eastern Oklahoma should be less tolerant of environmental
extremes than would those occurring in plains streams. Based on that
assumption, I examine the null hypothesis that changes in the Little
River drainage fish fauna are not related to the assumed tolerances of
the species. This allows potential falsification of the hypothesis that

the observed changes are due to human activities.



MATERIALS and METHODS

Study Area
The Little River drains about 5700 km? in LeFlore, Pushmataha and

McCurtain counties of southeastern Oklahoma. The system has three major
components--the Little River proper and two major tributaries, Glover
Creek and Mountain Fork River. The Little River flows in Oklahoma for
about 241 km and then 129 km in Arkansas to its confluence with the Red
River. Two large, artificial reservoirs occur in the drainage--Broken
Bow Reservoir (1,952 km?, impounded in 1968) and Pine Creek Reservoir
(1,644 km?, impounded in 1969).

The headwaters of the drainage lie in the Kiamichi and Ouachita
Mountains, where the typical streams are small and clear and have rocky
bottoms and steep gradients. The lower sections of the river pass
through Towlands where streams are sluggish and bordered by swampy
areas. The upper and middle reaches of the Little River flow through
mixed pine/deciduous forest used primarily for silvicultural activities.
There are few farms, communities, or other developments that might
affect the fish fauna.

The human population in the three-county area of the Little River
drainage (McCurtain, Pushmataha, LeFlore) grew 15% (from 35,276 to
40,698) between 1950 and 1980 (Peach and Pool 1965a, b; Dikeman and
Earley 1982). Much, if not all population growth was in the larger
urban centers (Peach and Pool op. cit.). In the Little River system,
the larger urban centers (Broken Bow and Idabel) are in the lowlands and

are downstream of or well removed from all locations used in the



analysis of frequencies of occurrence.

Poor soil quality has insured continuously low agricultural
activity in the Little River drainage. In fact, total area devoted to
farmlands has declined from 444,316 ha in 1950 (Peach et al. 1965) to
405,754 ha in 1978 (Dikeman and Earley 1982). Altered farming practices
(e.g., increased fertilizer application) could cause changes in the fish
fauna despite reduced farmland. However, water analyses at many sites
do not suggest an increase in nutrient inputs (B. Burks, pers. comm.).

Commercial forestry in southeastern Oklahoma began around 1910 with
selective cutting of pine, cypress and oak (Honess 1923). Selective
cutting continued to be the dominant forestry method until the 1960's
when intensive silvicultural activities were initiated, including
clearcutting and extensive dirt and gravel road building. Now, more
than 16,200 ha are clearcut each year and, since 1970, an extensive
network of more than 6,400 km of new logging roads have been constructed
in southeastern Oklahoma (Oklahoma State Dept. Agric. 1982). This kind
of activity is especially intense in the Little River drainage.

Weather conditions generally were similar in 1948-1955 and
1981-1982. Average annual rainfall across nine weather stations over
the Little River drainage was 115.8 cm in 1948-1955 and 113.3 cm in
1981-1982. Average annual temperatures for these periods were 17.3°C
and 16.3°C, respectively (U.S. Weather Bureau 1948-1955; National

Oceanic and Atmospheric Administration 1975-1982).

Data Collection

The data for 1948-1955 were taken from 91 collection localities

reported by Reeves (1953) and 62 reported by Finnell et al. (1956).



Reeves' collections were made with seines and/or gillnets in August
1948, 1950 and 1951 by George A. Moore and his students, including J.
D. Reeves. Collections reported by Finnell et al. were made with seines
or rotenone in July-August 1955.

In July-September 1981 and 1982, fishes were samplied at 156
localities in the Little River drainage, of which 44 were also sampled
by Reeves (1953) or Finnell et al. (1956), or both. Of the sites
sampled in the two earlier surveys, 98 were not included in this survey
for one or another of three reasons: 1) they were non-stream sites
(oxbows, stockponds), or 2) they had been inundated by reservoir
construction, or 3) they could not be located from the available
descriptions.

Each sample area extended from the first available riffle (usually
downstream from the access bridge) downstream to the next riffle or, if
no second riffle was encountered, to a point about 100 m downstream.
Sampling consisted of 45-60 minutes of electroshocking (AC generator,
220 v. 12 amp.; hand-held electrodes) followed by intensive seining of
all available microhabitats. Seining was done with either a 1.2- X
3.7-m seine with 3.2-mm Ace mesh or a 1.8- x 9.1-m seine with 4.8-mm Ace
mesh, or both. A1l fish were preserved in 10% formalin and returned to
the laboratory for identification.

Each collection locality was scored for six environmental variables
that are not likely to have changed significantly since 1948-55. This
allows examination of changes in the fish fauna relative to the physical
environment in a situation where there is no information on past
environmental conditions.

The variables recorded were maximum stream width based on on-site



measurements, four variables based on U. S. Geological Survey maps:
elevation, stream gradient, stream order and distance from the headwater
terminus of the stream and soil type taken from U. S. Soil Conservation
Service maps. Strahler's (1957) method was used for stream order. Soil
type was scored as follows: 1 = clay, 2 = silt loam, 3 = loam, 4 = fine

sandy loam, 5 = sandy-gravelly loam, 6 = gravelly loam.

Data Analysis

Frequencies of occurrence of each species in the two periods (early
and recent) were compared based on the presence or absence in
collections (Appendix A). Chi-square analysis of 2 X 2 contingency
tables (o = 0.05) were used to test the null hypothesis of no difference
between recent and early collections in the presence or absence of
species. In these analyses, only species occurring in a combined total
of 10 or more recent or early collections (hereafter called "common"
species; those in fewer than 10 collections are termed "rare") were
included. Fisher's exact test was used for contingency table analysis
in cases where expected frequency in one or more cells was fewer than
five. Data for the 1948-1955 collections made by gill netting or with
rotenone were eliminated from this analysis. This approach allowed
direct comparison of 44 early seine collections with recent seine and
electroshocking collections from the same locations (Figure 1).

Small cyprinids and other small, nectonic fishes generally are more
susceptible to seining than to electroshocking, and seining efforts may
have been less intensive than those in 1948-55. However, attempts were
made to sample all available microhabitats at each site, and during the

electroshocking effort I tried to preserve as many cyprinids and other



small fishes as possible. Furthermore, all analyses are based only on
the presence or absence of species, and the weighting of a single
specimen equaled that of a large number of specimens of one species.

The use of electroshocking and the absence of this in the 1948-55
collecting effort might produce a bias towards higher frequencies of
occurrence of larger, more mobile fishes (centrarchids, catfishes,
suckers) in recent collections. However, of the five members of this
group that showed statistically significant deviations from the early
frequencies, two were less common in recent than in earlier collections.
This would not be predicted based on more efficient sampling in the
recent efforts.

To help search for sampling bias relevant to this study of
widespread and restricted species, all fishes were divided into two
groups taken at the 44 localities sampled both in 1948-55 and 1981-82.
From experience, gars, bowfin, shad, suckers, catfishes (except Noturus
nocturnus) and centrarchids were placed in a group considered more
susceptible to capture by electroshocking than by seining. A1l other
species were considered more susceptible to seining; these included
species that, in general, are smaller than the members of the other
group and tend to be less affected by electroshock (e.g., minnows,
darters, pirate perch, pigmy sunfish, brook silverside). Chi-square
tests of contingency between membership in the two groups and whether
frequency of occurrence increased or decreased from 1948-55 to 1981-82
revealed no significant relationship in separate analyses of the common
(x? = 1.1) and rare species (1.2), nor for the common and rare species
considered together (2.1).

As an indication of environmental tolerance each species was rated



based on whether it is a common inhabitant of plains streams in the Red
River drainage of western Oklahoma. Contingency chi-square analysis (a
= 0.05) was used to test for independence between increased or decreased
frequency of occurrence and whether species have widespread or
restricted distributions.

To help examine patterns of change in community structure, the
simple matching coefficient of similarity (Sneath and Sokal 1973) in
presence/absence of species was computed, separately for the recent and
the early data sets, for all pairwise combinations of collections.
Mantel test (Sokal 1979) was then used to test for covariance between
recent and early matrices. If patterns of relative similarity among
sites are similar in the matrices of recent and early collections the
Mantel test produces a significantly positive test statistic (=
positive covariation), while if the matrfces differ in pattern of
relative similarity the test statistic is either nonsignificant (no
covariation) or significantly negative (negative covariation).
Significant negative values suggest an overall tendency toward reversed
patterns in which similarities that are high for the early collections
are Tow for the recent collections and vice versa.

With the simple matching coefficient and the Mantel test, the
recent and early species-by-species matrices of similarity of
presence/absence were compared across the 44 sites. This allows insight
into the possible changes in pairwise species associations.

Patterns of covariation between the matrices of community
similarity and a matrix of environmental dissimilarity at the collection
sites was also examined with the Mantel test. Environmental

dissimilarity was computed as Euclidean distance based on the six



10

environmental variables described earlier.

Computations of similarity coefficients included only common
species as defined above. Similarity coefficients and Mantel tests were
computed, respectively, with NT-SYS (Numerical Taxonomy System), a
multivariate computer program developed by F. J. Rohlf, J. Kishpaugh and
R. Bartcher, GEOVAR (a series of computer programs written by D. M.

Mallis, State Univ. of New York at Stony Brook).



RESULTS

Drainage-wide Presence or Absence

Totals of 96 and 74 species, respectively, were taken from the 153
collections in 1948-55 and 156 in 1981-82 (Table I). A1l species in
the recent collections were also present in the early collections, with

three exceptions: Hybognathus hayi, Erimyzon sucetta and Etheostoma

collettei. These species were recognized only recently as occurring in
Oklahoma (Miller and Robison 1973; Matthews and Robison 1982; Rutherford

et al. 1985). Two of these, Erimyzon sucetta and Etheostoma collettei,

were present, but misidentified, in early collections from the area. It
is possible, but not verified, that H. hayi was also present, but
confused with H. nuchalis.

In 1981-82 I failed to collect 25 species taken in the earlier
collections. Most of these species were lowland forms inhabiting
marshes or large waters, which were not well represented in recent
collections. The collections on class field trips or communications
with others (C. Hubbs, W. J. Matthews, J. Pigg) revealed that most of
these fishes still occurred in the Little River drainage in 1981-1982.
However, I am aware of no recent Little River collections of Polyodon

spathula, Alosa spp., Hiodon spp., Moxostoma carinatum, Hybognathus

nuchalis, or Ictalurus nebulosus. Most of these species were rare in

the early collections and their absence in recent collections probably
reflects restricted collecting effort in the larger waters. Reeves
(1955) reported the only known record, a single specimen, of Notropis

pilsbryi from the Little Rivef drainage. Presumably this was a stray,

11
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or perhaps a released baitfish.
In regular sampling from the Little River drainage over the past 8
years, J. Pigg (pers. comm.) collected the following species, which were

absent in both the early and recent collections: Ichthyomyzon gaigei,

Notropis buchanani, N. lutrensis, Ictalurus furcatus, Menidia beryllina,

Morone mississippiensis, Percina shumardi and P. macrolepida. Also in

1983, Miller (1984) collected the first specimens of Notropis hubbsi

known from the Little River. A1l these species are rare in the Little

River system. Finally, the recently described Notropis snelsoni

(Robison 1985) brings the ichthyofaunal total for the Little River

system to 109 species from 20 families.

Frequency of Occurrence

A total of 70 fish species were taken in collections from the 44
sites analyzed for frequency of occurrence of species in 1981-82 versus
1948-55 (Table I). Of these species, 35 (50%) were less frequent and 26
(37%) were more frequent in the recent collections; 9 (13%) were equally
frequent in both series of collections. Each common species (occurring
in a combined total of 10 or more recent and early collections) was
placed in one of four groups based on microhabitat preference and a
subjective assessment of their susceptibility to capture by seining;
recent occurrence was then plotted against historical occurrence (Figure
2).

Nine of the 15 "small, easily seinable fishes," a group composed
primarily of cyprinids, were less frequent in the 1981-82 collections
than in those taken in 1948-55 collections (Figure 2a). Three species,

Notropis whipplei, N. atrocaudalis and Pimephales notatus, showed
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statistically significant decreases in frequency. No member of this
group was significantly more frequent in recent collections.

Six of the nine "large, nectonic, pool dwelling" fishes, primarily
centrarchids, were more frequent in the recent than in the early

collections. The increases of two of these, Lepomis cyanellus and L.

punctatus, were statistically significant (Figure 2b). One species,

Micropterus punctulatus, was significantly less frequent in the recent

collections.

0f three "large, bottom-dwelling" fishes, one (Ictalurus natalis)

was significantly more frequent in the 1981-82 collections and a second,

(Moxostoma erythrurum) was significantly less frequent (Figure 2c). Two

of the four "small, riffle-dwelling" fishes (Noturus nocturnus and

Etheostoma spectabile) were significantly more frequent in recent

collections (Figure 2d).

There was a non-random association between whether a species was
more frequent or less frequent in recent than in early collections, and
whether the species was widely distributed or restricted to eastern
Oklahoma (Table II). Species that were equally or more frequent in the
1981-82 collections were about evenly divided between widespread species
and restricted species, whereas those occurring less frequently in
recent collections tended to be those with restricted distributions.
This relationship was statistically significant for all species
considered together and for the common species, but not for the rare
species alone.

A1l five common species showing statistically significant
reductions in occurrence are restricted to the eastern half of Oklahoma.

In contrast, four of the five common species showing statistically
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significant increases in occurrence are either widespread throughout

Oklahoma (Ictalurus natalis, Lepomis cyanellus), or are more widely

distributed and occur farther westward than their congeners in this

study (Noturus nocturnus, Etheostoma spectabile); the fifth species,

Lepomis punctatus, is a lowland form restricted to eastern Oklahoma.

Pairwise Species Associations

The Mantel test comparing recent and early matrices of pairwise
similarities of occurrence among species revealed significant positive
covariation between the two matrices when all 31 common species were
included in the analysis (t = +8.93, p < 0.001) and when only those 22
species restricted to eastern Oklahoma were considered (t = +2.03, p <
0.05). The test involving the nine widespread species alone revealed
positive, albeit nonsignificant, covariation between recent and early
matrices (t = +1.07, p < 0.05). The Mantel estimate is relatively crude
for matrices as small as a 9 x 9 matrix of similarity among widespread
species (Sokal and Wartenberg 1983); thus, the nonsignificant t-value

is suspect.

Community Similarities

The Mantel test comparing early and recent matrices of similarity
among collections produced a nonsignificant, negative test statistic for
the matrices based on all 31 common species (t = -.986, p > 0.05). This
suggests that the 1981-82 pattern of similarities among local
communities is not predictable from the pattern of similarities present
in 1948-55. However, when the widespread species and those restricted

to eastern Oklahoma are analyzed separately, an interesting difference



15

emerges: The widespread species show significant positive covariation (t
= +3.08, p < 0.005), while the restricted species show a significant
negative relationship (t = -2.09, p < 0.05). The occurrences of
widespread species apparently have not changed significantly, and the
lack of predictability from 1948-55 to 1981-82 seems due to changes in
occurrences of restricted species. The contingency analysis of
occurrence (Table II) and plots of recent versus early occurrence onto
maps of the drainage suggest that these changes primariiy result from a
drainage-wide decline in occurrence of restricted species and not from

any localized patterns of change.

Environment Versus Community Similarity

Mantel tests of congruence between the matrix of environmental
dissimilarity among collection sites and matrices of community
similarity showed significant negative covariation in all six cases (p <
0.005; three analyses each for early and recent data--the 31 common
species, the 22 restricted species and the nine widespread species).
Thus, community similarities are somewhat predictable from the
environmental features examined.

The early data set and the recent data set both show higher
covariance with environmental similarity for those species restricted to
eastern Oklahoma than for the more widely distributed species (t = -6.73
and -3.59 for early collections; -4.48 and -2.91 for recent). Thus, the
occurrences of widespread species may be less tightly related to the
environmental variables measured than are occurrences of the specieé
restricted to eastern Oklahoma. This direct comparison of t-values is

valid because the early and recent matrices are the same size.



DISCUSSION

There is no compelling evidence for extinctions nor for invasions
of new species in the Little River drainage since 1948-55. Thus, the
present species-list probably represents the natural fauna of the
drainage. However, frequency of occurrence of individual species and
indices of community similarity suggest that the faunal structure is
different from that in 1948-55.

The results of the comparison of 1948-55 and 1981-82 collections
agree with the expected corollary to human-induced faunal changes: (1)
Little River species that also occur in the plains environment of
western Oklahoma seem to have undergone 1ittle overall decline in
frequency of occurrence while species restricted to eastern Oklahoma
appear to have declined. (2) Statistically significant changes in
patterns of interlocality community similarity have occurred between the
early and recent collections and these seem centered in the decline in
occurrence of those species restricted to eastern Oklahoma. As argued
previously in this paper, these observations are consistent with the
hypothesis that human activities have caused environmental changes that
favor species with greater tolerance of environmental extremes.

The small sizes and distribution of urban centers compared with the
recent collection localities, and the generally sparse population and
declining agricultural activity of the area suggest that these factors
cannot explain the observed changes. Regarding other anthropogenic
factors, the most conspicuous changes in the Little River watershed in

the period from 1949-55 to 1981-82 have resulted from commercial

16
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forestry and reservoir construction.

Reservoir construction and associated alterations in downstream
flow and thermal regimes can have direct effects on occurrences of
stream fishes (Mundy and Boschung 1981; see Wagner 1984, for an example
in Little River). However, such effects probab]y do not explain the
observed changes. None of the 44 collection sites used in the analysis
of frequency of occurrence were from reservoirs, and all were from
smaller streams well outside the direct influence of reservoirs.

Echelle and Schnell (1976) suggested that dispersal of generalist
species from reservoirs into tributary streams might cause faunal shifts
of the kind shown by this survey. However, such effects would be most
pronounced in waters near the reservoir and, because of the positions of
the recent collection sites (Figure 1) I doubt that this has been an
important factor.

The decade and a half of intensive clearcutting (and associated
activities--e.g., roadbuilding) that began in the 1960s remains as the
one conspicuous anthropogenic factor that might explain the apparent
faunal changes that have occurred since 1948-55. I am aware of no
previous attempt to document the effects of forestry activities on a
warmwater system as large as the Little River of southeastern Oklahoma.
Most studies have either dealt with coldwater faunas or they have
attempted to compare "experimental" and "control" stretches of stream
for short term effects on community structure (e.g., Boschung and 0'Neil
1981).

Comparisons, such as the one described herein, of drainage-wide
surveys separated by long periods of time are fraught with problems,

including (1) Tlack of rigid control of sampling differences, (2) the
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possibility that observed differences are part of an unknown, normal
cycle that is intrinsic to the fauna itself, (3) the possibility that
subtle climatic change is causing faunal change, and (4) the possibility
that faunal change is a synergistic result of a poorly understood
interaction of different factors. Nonetheless, such comparisons
typically represent the only avenue of investigation that can provide
empirical insight into the possible long-term effects of a given
environmental perturbation. For Little River fishes, the apparent
changes are of a type that is consistent with expectations based on
anthropogenic effects, and forestry practices seem to be the only

intensive human activity that is closely associated with the change.
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Table I. Frequency of occurrence of species in all collections made in
1948-55 and 1981-82 and at the reduced set of 44 collection localities
common to the two surveys. Numbers in parentheses correspond with
identification numbers of the species represented in Figure 2.

Occurrence
Species 1948-1955 1981-1982
n=153 n=44 n=156 n=44 Distribution?
Ichthyomyzon castaneus 5 0 0 0 R
Polyodon spathula 1 0 0 0 R
Lepisosteus oculatus 11 0 2 0 R
L. osseus 14 0 5 1 W
Amia calva 8 0 3 2 R
Alosa chrysochloris 7 0 0 0 R
A. alabamae 1 0 0 0 R
Dorosoma cepedianum 17 2 7 1 W
D. petenense 3 0 0 0 R
Hiodon alosoides 4 0 0 0 R
H. tergisus 1 0 0 0 R
Esox americanus (24) 64 26 90 26 R
Ictiobus cyprinelius 6 0 0 0 R
I. niger 11 0 0 0 R
I. bubalus 9 1 0 0 R
Carpiodes carpio 15 3 0 0 W
Moxostoma duguesnei 8 3 5 1 R
M. erythrurum (25) 49 18 9 4 R
M. carinatum 6 1 0 0 R
Minytrema melanops 22 4 9 5 R
Erimyzon oblongus (26) 62 22 71 21 R
E. sucetta 0 0 4 0 R
Cyprinus carpio 2 0 0 0 W
Carassius auratus 1 0 0 0 W
Notemigonus crysoleucas (1) 25 8 17 8 W
Semotilus atromaculatus 13 3 9 3 R
Notropis amnis 6 2 1 0 R
N. atherinoides 5 2 0 0 W
N. atrocaudalis (6) 23 11 8 2 R
N. boops (8) 76 25 111 27 R
N. chalybaeus 3 2 0 0 R
N. chrysocephalus (4) 30 14 29 12 R
N. emiliae 10 2 1 1 R
N. maculatus 9 0 0 0 R
N. ortenburgeri 9 1 6 0 R
N. perpallidus 7 0 1 0 R
N. pilsbryi 1 0 0 0 R
N. rubellus 10 1 3 0 R
N. stramineus 2 0 0 0 W



Table I. Continued.

sp.? (2)
umbratilis (3)
venustus
volucellus

N. whipplei (5)
Hybognathus hayi

H. nuchalis

Pimephales notatus (7)
P. vigilax

Campostoma anomalum (9)
Ictalurus melas

. natalis (27)

. nebulosus

punctatus

Noturus eleutherus

N. gyrinus

N. nocturnus (31)
Pylodictis olivaris
Aphredoderus sayanus (14)
Fundulus blairae

F. notatus (10)

E. olivaceus

Gambusia affinis (11)
Labidesthes sicculus (12)
Morone chrysops
Elassoma zonatum (15)
Centrarchus macropterus
Lepomis gulosus (19)
cyanellus (20)
humilis

. macrochirus (22)
marginatus
megalotis (23)

. microlophus
punctatus (21)

L. symmetricus
Micropterus dolomieui (16)
M. punctulatus (18)

M. salmoides (17)
Pomoxis annularis

P. nigromaculatus
Ammocrypta vivax
Crystallaria asprella
Etheostoma asprigene
chlorosomum
collettei

fusiforme

gracile (13)
histrio

nigrum

parvipinne
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Table I. Continued.

E. proeliare 4 1 3 3 R
E. radiosum (30) 83 32 125 33 R
E. spectabile (29) 12 3 29 12 R
Percina caprodes 15 3 21 3 R
P. copelandi 15 6 5 1 R
P. maculata 3 0 0 0 R
P. pantherina 3 0 5 2 R
P. phoxocephala 3 0 2 0 R
P. sciera (28) 15 6 12 5 R

1y = common species with widespread distributions; R = common species
with restricted distributions.

2 N. sp. primarily represents Notropis snelsoni but, because of
identification difficulties, may include N. fumeus.




Table II. Contingency table to test the hypothesis that changes in
frequency of occurrence of fish species in recent versus early
collections are not associated with distribution of the species.

Distribution

Widespread Restricted
Change in
occurrence Common? Rare  Common Rare
Increase or 9 7 8 11
No Change
Decrease 0 6 14 17
Common Rare species A1l species
species? x2 = 0.29 x2 = 6.05
Significance p = 0.002 p = 0.59 NS p =0.01

1 Common = occurrence at 10 or more of the early and/or
recent collections; rare = fewer than 10 occurrences.
2 Fisher's exact probability.
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CHAPTER 11

THE EFFECTS OF SILVICULTURAL ACTIVITIES
ON STREAM-FISHES OF SOUTHEASTERN
OKLAHOMA
Introduction

Rutherford et al. (1987) examined historical changes in the fish
fauna of a drainage area dominated by forestry activities, the Little
River basin of southeastern Oklahoma. Comparison of two surveys
separated by approximately 30 years suggested that less tolerant species
had declined in frequency of occurrence, while more tolerant species
either exhibited increased occurrence or no change. The patterns of
change were consistent with the hypothesis that environmental
degradation had occurred in response to the history of intensive
clearcutting and associated silvicultural activity. However, Rutherford
et al. (1987) suggested that their results might also be explained by
four effects of unknown magnitude: 1) sampling bias, 2) a normal cycle
of change intrinsic to the fauna, 3) climatic change between sampling
periods, and, 4) a poorly understood interaction of factors. These
alternatives are common to all studies of change based on surveys
separated by long periods of time.

My purpose in the present study was to provide a direct assessment
of whether fish assemblages in the Little River system are affected by
silvicultural activity. This study was designed to determine whether

fish assemblage structure in upland streams of the Little River drainage
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exhibits any variation attributable to age and extent of clearcutting in
the watershed associated with each sample locality. May (1972) defined
species assemblages as groups of interacting species having weak
interactions with other groups of species. Fish assemblages in this
study are defined as groups of species (species associations) exhibiting
positive covariance in abundance (Smith and Powell 1971; Echelle and
Schnell 1976; Rose and Echelle 1981; Herbold 1984).

Considerable research on the impacts of silvicultural activities
(e.g., road building, clear-cut logging and site preparation) on stream
ecosystems indicates both short- and long-term alterations (Gibbons and
Salo 1973). Many perturbations to stream biota and physicochemistry are
short-lived, and without continued disturbances, streams may gradually
return to pre-disturbance conditions, often as a function of recovery of
the adjacent terrestrial environment (Chutter 1969, Hamsmann and Phinney
1973, Newbold et al. 1980, Murphy and Hall 1981, Webster et al. 1983,
1988).

The abiotic effects of silviculture on stream ecosystems are
manifold and include the following: increased streamflow (Reinhart and
Eschner 1962, Likens et al. 1970, Patric 1973) for as long as 30 years
after logging (Kovner 1956, Hewlett and Hibbert 1963); elevated nutrient
levels for as long as 16 years after logging (Swank et al. 1988);
increased stream sediments on a short-term basis (Brown and Krygier
1971; Cordone and Kelley 1961; Megahan 1972) with long-term effects
through the redistribution and transport of sediments; reduced
allochthonous input for as long as seven years after logging (Webster
and Waide 1982); reduced forest canopy resulting in increased water

temperature (Gray and Edington 1969, Brown and Krygier 1970, Swift and
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Messer 1971, Swift and Baker 1973, Lee and Samuel 1976, Swift 1982,
Swift 1988); and initially increased woody debris (Likens and Bilby
1982) with long-term decreases in woody inputs. (Silsbee and Larson
1983).

There have been few studies on the effects of silviculture on
warmwater stream-fishes. Studies on coldwater stream-fishes have
indicated some silvicultural impacts, but many studies have been
inconclusive (Chapman 1962, Elson et al. 1972; Eschner and Larmoyeux
1963; Lantz 1967). Studies of the long-term effects of silvicultural
activities on warmwater stream-fishes are absent from the Titerature.
In one of the few short-term studies on warmwater streams, Boschung and
0'Neil (1981) found minimal short-term effects of clear-cut logging
activities.

The relationships between measures of silvicultural activity and
fish populations result in patterns of covariation that are difficult to
interpret. Observed patterns may be due to a silviculturally-related
initial impact (e.g., harvest, site preparation, etc.) followed by
differential population responses. Effects of silvicultural activities
on the fish fauna may be subsequently evident, depending on the
responses of individual species. I hypothesize that how a species
responds will be associated with its tolerance to environmental extremes
and/or its 1ife history strategy. To examine these possibilities I
assessed patterns of abundance in four groups of fishes in the Little
River drainage: (1) fishes occurring in western and eastern Oklahoma,
(2) fishes restricted to eastern Oklahoma, (3) K-selected species, and
(4) r-selected species. Fishes tolerant of the harsh plains streams of

western Oklahoma should have greater tolerance to environmental extremes
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than fishes restricted to the more benign streams of eastern Oklahoma.
Based on this assumption, I examined the null hypothesis that the
response of the Little River fish fauna to silvicultural activities is
not associated with the assumed environmental tolerances of the species.
Correlates of the r - K selection continuum describe population
characteristics of species having opportunistic (r-strategy) or
equilibrial (K-strategy) 1ife histories. K-selected species generally
live longer, grow larger, delay reproduction and reproduce more than
once. The converse is true of r-selected species (Pianka 1978). The
results of this study suggests that r-selected species respond rather
guickly to the changes induced by silvicultural activities, while

K-selected species exhibit more delayed responses.



MATERIALS and METHODS

Study Area

The Little River drains approximately 5,700 km? in southeastern
Oklahoma and has three main components: the Little River proper and two
main tributaries, Glover Creek and Mountain Fork River. The drainage is
heavily forested, making commercial harvest of both pine and oak the
principal economic activity in the area. Much of the watershed is owned
or leased by Weyerhaeuser Company.

Upper reaches of the Little River drainage are characterized by an
east-west folding of terrain which results in short, high, nearly
parallel ridges and produces a trellis-dendritic type of stream pattern.
Tributaries are typified by steep gradients, rubble, boulders and
bedrock substrate, with leaf litter covering many pool areas. The water
chemistry tends to be slightly acidic with Tow specific conductance.

Lower reaches of the drainage basin are characterized by low,
fertile, bottomlands. Lowland streams typically have low gradients,
fine substrates and long, deep pools, separated by shallow riffles.
Cutoff lakes in the Little River floodplain are common and vary from 2.0
to 120 hectares in surface area (Finnell et al. 1956). There are two
large impoundments in the Little River: Pine Creek Reservoir on the

Little River and Broken Bow Reservoir on the Mountain Fork River.
Fish Data
Fishes were taken in July-September 1981 to 1982, from 156

collection localities in the Little River drainage. Eighty-nine of 156
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collection localities were used in this analysis (Figure 3). Localities
were eliminated from analysis if they occurred downstream from the Fall
Line. The Fall Line, which closely coincides with State Highway 3 in
the Little River area, separates upland streams of the Ouachita uplift
from lTowland streams of the coastal plains. Restricting the analysis to
sites above the Fall Line effectively resfricted analysis to one
physiographic region and reduced confounding effects of different
geological subregions. Localities were also eliminated if they were in
downstream locations on major streams. Downstream locations tended to
be large-water situations where it is often difficult to collect both
biological and physicochemical samples efficiently.

Each collection locality included the first available riffle
(usually downstream from an access bridge) and all areas immediately
downstream either to the next riffle, or to a point approximately 100-m
downstream. Sampling consisted of 45 to 60 minutes of electroshocking
(230 v. 12 amp., AC generator with wading and hand-held electrodes)
followed by intensive seining of all available microhabitats. Seining
was done with either a 1.2 x 3.7-m seine with 3.2-mm Ace mesh or a 1.8 x
9.1-m seine with 4.8-mm Ace mesh, or both. All fishes were preserved in
10% formalin and returned to the laboratory for species identification

and enumeration.

Environmental Data

Thirty-five environmental variables were assessed for each
collection locality. These included twenty-three habitat variables
evaluated on-site, four variables evaluated from topographic maps, and

eight clear-cutting variables evaluated from Weyerhaeuser data. The 23
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on-site variables were scored at 60 to 100 transect points, 0.5 to 1.0-m
apart (1.0 m in large streams, 0.5 m in small streams) along transects.
Following Gorman and Karr (1978) transects were perpendicular to stream
flow and separated by 5-m intervals over the entire sample area.

Current speed at each transect point was estimated by observing
movement of water around a measuring pole (3.5-cm diameter) marked in
millimeter increments and calibrated with a Pigmy-Gurley current meter.
Categories were as follows: 1) no ripples around pole = very slow (0 to
0.05 m/sec); 2) slight "tail" around pole = slow (0.05 to 0.2 m/sec); 3)
5 to 10-mm vertical displacement on pole = moderate (0.2 to 0.4 m/sec);
4) 10 to 50-mm vertical displacement = fast (0.4 to 1.0 m/sec); 5) >
50-mm vertical displacement = torrent (>1.0 m/sec).

Bottom type at each transect point was recorded as dominant
substrate in an area approximately 0.5-m in diameter immediately around
the measuring pole. Substrate types were categorized as follows: 1)
mud (soft sediments); 2) sand (firm, "grainy" sediments); 3) gravel (ca.
5 to 20 mm); 4) rubble (ca. 20 to 300 mm); 5) boulders and 6) bedrock.

Depths were divided into five ranges: Depth 1 (0 to 5 cm); Depth 2
(5 to 20 cm); Depth 3 (20 to 50 cm); Depth 4 (50 to 100 cm) and Depth 5
(>100 cm).

Vegetation was recorded at each transect point as algae, emergent
vascular plants (EVP), submergent vascular plants (SVP)(1iving and dead,
primarily logs and roots) and leaf Titter (LL). Each of the six
substrate types, four vegetation types, five ranges of current speed and
five ranges of depth were expressed as the percentage of all transect
points at the collection locality.

Other on-site measurements taken were total nonfilterable residue
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(NFR), turbidity (TURB), and specific conductance (SC) (EPA 1979). A
water sample from each collection locality was taken to the laboratory
and measured for total nonfilterable residue (mg/1)(a measure of
suspended solids retained by a 0.45-micron glass fiber filter).
Turbidity, in nephelometric units (NTU) was measured with a Hach Model
2100A portable nephelometer. Specific conductance was measured with a
Yellow Springs Instruments Co. SCT meter.

For each collection locality, elevation, stream gradient (SG),
stream order (SO)(Hynes 1972) and distance from the headwater terminus
of the stream (DFH) were taken from U.S. Geological Survey maps.

Relative abundance of eight age classes of clearcuts upstream from
each collection locality was calculated from records and maps provided
by Weyerhaeuser Company. Categories used were as follows: Year 1 =
clearcuts less than 12 months old; Year 2 = 13 to 24 months; Year 3 = 25
to 36 months; Year 4 = 37 to 48 months; Year 5 = 49 to 60 months; Year 6
= 61 to 72 months; Year 7 = 73 to 84 months; and Year 8 = 85 months and
longer. These variables were expressed as the percent of the total
watershed in each of eight clear-cut classes (Year 1 to Year 8). The
proportion of the area with no prior clearcutting was negligible, as
virtually the entire watershed has been harvested at one time or

another.

Data Analysis

Data analysis was restricted to 29 common fish species (fishes
occurring in at least 5% of the collections) from 89 collection
localities. Species diversity in each collection was quantified from

computations of the Shannon-Wiener diversity index, the species richness
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index and Simpson's dominance index (Pielou 1977).

To obtain indices of absolute abundance the fish abundances were coded
as follows: 0 = absent, 1 = rare (1-5 specimens), 2 = uncommon (6-10
specimens), 3 = common (11-20 specimens) and 4 = abundant (>20
specimens). Coded fish abundances and environmental variables were
examined for univariate normality with measures for skewness and
kurtosis (PROC UNIVARIATE program, SAS 1982). Data transformations were
performed to improve univariate normality. A11 proportions (i.e.
percent abundance of mud, etc.) were reexpressed as arcsin
transformations (arcsin of the square root of the proportion). All
other variables (coded fish abundance, elevation, distance from the
headwaters, etc.) were reexpressed as the common logarithmic
transformation (Mosteller and Tukey 1977).

I used principal components analysis (PCA) to ordinate the fish
samples. The goal of ordination is to discover whether there is some
underlying order of entities (e.g., samples characterized by fish
species abundance). Hill and Gauch (1980) proposed detrended
correspondence analysis (DCA) as a new method for ordination in ecology.
DCA is an ad hoc adjustment of correspondence analysis (CA)(Hill and
Gauch 1980). CA is similar to PCA except that it decomposes an
association matrix based on the chi-square distance metric rather than
correlation or variance-covariance matrices (Gauch 1980). DCA has come
into vogue because it claims to remove nonlinear dependencies among axes
(the arch effect) énd extracts one or more ordination axes (gradients)
such that species show unimodal (bell-shaped) response curves with
respect to these axes. Wartenburg et al. (1987) review and discuss the

lTimitations of ordination techniques and argue that DCA is not an
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improvement but is influenced, as are all current methods, by data
curvature and scaling. Several authors (Waftenburg et al. 1987; Gauch
1980; Ter Braak and Prentice 1986) propose the use of PCA over DCA in
situations having short gradients (< 3.0 SD) with much species overlap.
Short gradients and high species overlap indicate that most species are
behaving monotonically over the gradient length (Gauch 1980). I used
PCA because most fishes in upland streams of the Little River drainage
occur throughout the system, producing a short ordination gradient.

The matrix of log-transformed coded abundance of common fish
species was subjected to PCA (PROC FACTOR, SAS 1982). PCA reduces the
number of variables in a data set to a few dimensions (principal
components). Each principal component is a linear, weighted combination
of all original variables (coded abundance of fishes). The first
component (PC I) is computed to explain the maximum amount of the
variance that can be explained by a single linear axis. The second
component (PC II) must be orthogonal (mathematically uncorrelated) to PC
I and is computed to explain the maximum amount of remaining variance,
and so on for successive components. Each PC defines a new variable for
which each sample unit (collection locality) has a position or score.

The first five principal components extracted by PCA were used for
further analysis. Elimination of the remaining combonents was based on
Cattell's Scree Test and Horn's Test (Green 1978). Cattell's scree test
entails plotting variance accounted for by each principal component in
their order of extraction and then looking for an elbow in the curve.
This graphical technique can be subjective if a clear break is not
apparent from the plot (Green 1978). Horn's Test entails plotting

eigenvalue size against principal component number (ordered from large
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to small) for actual data and randomly generated data matrices. Using
independent and normally distributed standardized variates (PROC MATRIX,
SAS 1982), I generated 30 89 x 29 data matrices (representing 29
"species" and 89 "sample sites"). Each data set was then subjected to
PCA and eigenvalues for each PC (I,II,III,...XXIX) extracted were
averaged over 30 randomly generated matrices. Mean eigenvalues and
eigenvalues from actual data were plotted together and the number of
components retained (five) are those prior to the point where the two
plotted 1ines cross (Green 1978).

The PCA analysis produced 1) a factor structure matrix showing the
loading (correlation) of each original variable (log-transformed coded
fish abundance) on each PC (= "fish PC" herein), and 2) a matrix of
scores for each collection locality on each PC. Species having positive
correlations with a given principal component tend to show higher coded
abundance at collection localities having positive scores on that
principal component and vice versa for localities having negative
scores.

Each of the dependent variables (five fish PCs, the log coded
abundance of each fish species, and each species diversity index) was
regressed separately on a subset, p, of the 35 transformed environmental
variables. The procedure utilized multiple stepwise regression with the
maximum r? improvement technique (MSR)(PROC STEPWISE, SAS 1982). MSR
finds the "best" one-variable, two-variable, three-variable, ....
35-variable models, each with the highest r2. At all levels each
variable in the model is compared to each variable not in the model. In
each comparison, MSR determines if replacing one variable with another

produces a larger r2. Comparisons continue until MSR finds no switch in
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variables that would increase r?. Mallows' Cp statistic (Cp=p) was used
as the criterion for model selection (Daniel and Wood 1980).

Significant partial correlations of the eight silvicultural
variables in the regressions of dependent variables (fish component
scores, log-transformed coded abundance of the 29 common fish species,
and diversity indices) on subsets of the 35 environmental variables
indicate associations between the silvicultural variables and each
dependent variable. Partial correlations are correlations between a
dependent variable and one independent variable with all other
independent variables held constant (Steel and Torrie 1980).

When many significance tests are performed at the 0.05 alpha level
the probability of rejecting at least one true null hypothesis (Type I
error) is larger than 0.05. To decrease the number of significance
tests examined, a subset of independent variables was chosen using
Mallows' Cp statistic. Significance tests were performed only on
silvicultural variables included in a particular model as a result of
subset selection. If more than one clear-cutting variable was included
in a model by subset selection, the significance level was determined
using the Bonferroni method. For a significance level of 0.05 and ¢
significance tests, each test is done at a significance level of 0.05/c
to guarantee an overall significance level of less than 0.05.

Multiple least squares regression is highly susceptible to the
effects of collinearities (interrelationships among the independent
variables) and tends to distort coefficient estimates, variances and
covariances of the estimators, test statistics and predicted responses
among the independent variables (Gunst and Mason 1980). Using

singular-value decomposition and variance decomposition proportions
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(Belsley et al. 1980), three linear dependencies (five depth categories,
six current categories, five substrate categories) were identified among
the 35 independent variables used in this study. There was no
indication of collinearity among the eight clear-cutting variables or
between the clear-cutting variables and the environmental covariates.

The purpose of including the 23 non-clear-cutting habitat variables
in my analysis was to account for variation in fish abundance due to
between locality variation in habitat variables (covariates) other than
clearcutting. Collinearity among the non-silvicultural variables could
be a serious problem if my purposes had included predictive model
building or other regression applications where statistical inference of
regression coefficients from collinear independent variables can lead to
erroneous conclusions (Gunst and Mason 1980). In the present study the
eight silvicultural variables are of interest and these variables show
1ittle collinearity among themselves or with other independent variables
as assessed by the procedures recommended by Belsley et al. (1980).

Trends in fish-species response and patterns of silvicultural
activity were examined using contingency analysis. The abundance of the
29 common fish species were regressed on each silvicultural variable
(Year 1 - Year 8) and the 27 environmental covariables. From the
regression of each species the regression coefficient for each
clear-cutting variable was scored for sign (+ or -) regardless of
magnitude or statistical significance. The signs were used as
indicators of a species responses to the silvicultural variables.

As an index of environmental tolerance, I rated each of the 29
common species on the basis of whether it is commonly collected in the

plains streams of the Red River drainage of western Oklahoma or
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restricted to the forested streams of eastern Oklahoma (Rutherford et
al. 1987). Each species was also scored as an r-strategist or a
K-strategist based on Pianka's (1978) correlates of r and K selection.
Fisher's exact test for 2 X 2 contingency tables (a = 0.05) was used to
test for independence between positive or negative responses to the
silvicultural variables and whether species have widespread or
restricted distributions or whether they have r- or K-selected life
histories. The raw data for all analyses reported in this paper are

presented in Appendix C.



RESULTS

PC Analysis of Assemblage Structure

Principal component loadings (= correlations) of the 29 common
species on the five fish PCs are given in Table III. Each PC defines
one or more groups of positively associated species (= assemblages).
Species having high correlations with a given PC tend to covary in
distribution and abundance. A PC with both positively and negatively
correlated species indicates two assemblages with contrasting
distributions. Species having low principal component Toadings
(< 0.35) on all five PCs have essentially independent distribution
patterns (Echelle and Schnell 1976). In this paper each assemblage is
named for the species having the highest PC loading of the group.

PC I contrasts a group of 10 species (spotted bass assemblage)

having high positive loadings (Micropterus punctulatus, Notropis

umbratilis, Lepomis macrochirus, Notropis ortenburgeri, Fundulus

notatus, Micropterus salmoides, Fundulus olivaceus, Lepomis cyanellus,

Aphredoderus sayanus and Lepomis punctatus) with the orangethroat darter

assemblage, a group of six species (Etheostoma radiosum, Notropis. sp.,

Noturus nocturnus, Notropis boops and Micropterus dolomieui) having high

negative component loadings (Table III). The former assemblage is
typical of pools and downstream areas of slow flow, while the latter is
typical of faster flowing habitat.

PC II represents an assemblage of nine species (creek chub

assemblage) having positive loadings (Semotilus atromaculatus, Percina

caprodes, Gambusia affinis, Etheostoma spectabile, Notropis whipplei,

44
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Micropterus punctulatus, Noturus nocturnus, Notropis chrysocephalus, and

Lepomis megalotis). PC II defines a downstream assemblage associated

with riffles or raceways. Gambusia affinis, Lepomis megalotis and

Micropterus punctulatus seem to be exceptions and may be associated with

pools adjacent to fast-flowing habitats or may represent juveniles using
the slow-water margins of riffles and raceways as refugia from
predation.

PC III contrasts an assemblage of four species (brook silverside

assemblage) having positive component loadings (Labidesthes sicculus,

Lepomis megalotis, Notropis sp. and Lepomis macrochirus) with the

central stoneroller assemblage, a group of three species having negative

component loadings (Campostoma anomalum, Etheostoma spectabile and

Etheostoma radiosum. The former assemblage occupies primarily deeper,

slower waters, while the latter occupies shallower, moderately flowing
waters.
PC IV represents the bigeye shiner assemblage, a group of six

species with positive loadings (Notropis boops, Pimephales notatus,

Lepomis cyanellus, Etheostoma radiosum and Notropis umbratilis). The

members of this assemblage occur in a diversity of habitats throughout
the study area.
PC V contrasts a quiet-water assemblage (warmouth assemblage)

having positive component loadings (Lepomis gulosus, Fundulus olivaceus)

with an assemblage (striped shiner assemblage) that occupies

faster-flowing waters (Notropis chrysocephalus and Etheostoma

spectabile).
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MSR Analysis of Effects of Clearcutting on Fish Assemblages

The regression models obtained by multiple stepwise regression
(MSR) of PC scores on habitat variables explained high proportions of
the variance in scores on PCs I, II and III (r? = .62 - .75) and were
only weakly associated with variance in PCs IV and V (r2 = .08 - .14).

The relationship between a silvicultural variable and a species
assemblage (PC I-V) is indicated by comparing the sign of the PC
loadings for the species assemblage (Table III) with the sign of the
partial correlation coefficient for the clear-cutting variable in the
MSR analysis of the PC scores (Table IV). Positive associations are
inferred when the loadings and the partial correlations have the same
sign: 1i.e., when an assemblage loads positively on a PC and the
clear-cutting variable exhibits a positive partial correlation
coefficient or when the assemblage has a negative PC loading and a
clear-cutting variable exhibits a negative partial correlation
coefficient. Negative associations are inferred when the component
loadings and partial correlations have opposite signs.

One or another of five clear-cut classes, Year 1, Year 2, Year 4,
Year 6 and Year 7 was significantly associated with collection locality
scores on three fish components, PC I, PC II and PC III (Table IV). In
situations where the PC was a contrast of two different assemblages (PCs
I, III, V), this analysis cannot be interpreted to indicate whether only
one or both assemblages were affected by clearcutting. In such
instances, a strong association between PC scores of one of the
contrasting assemblages and a clear-cutting variable would result in a
significant partial correlation and be interpreted incorrectly for the

other assembliage.
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MSR Analysis of Effects of Clearcutting on Individual Fish Populations

Results of multiple stepwise regression of each of the 29 common
fish species (log transformed) regressed on a subset, p, of the 27
environmental covariates and eight silvicultural variables are shown in
Table V. Significant partial correlation coefficients (p < 0.05)
indicate the sign and degree of associatiﬁn between each species and
each clear-cutting variable.

Comparison of Tables IV and V shows only rough correspondence
between the significant partial correlation coefficients of assemblages
and their component popuiations. Different members of the spotted bass
assemblage had both positive and negative associations with
silvicultural variables Year 5 and Year 6, while sample scores for the
entire assemblage were negatively associated with Year 4. The
orangethroat darter assemblage had a positive association with Year 4

clearcuts and one member of that assemblage, Noturus nocturnus,

exhibited a positive response to Year 4 clearcuts. Significant
responses of other members of the orangethroat darter assemblage were
associated with silvicultural variables Year 1, Year 2 and Year 6. The
creek chub assemblage was positively associated with clear-cutting
variable Year 4, and negatively with Years 6 and 7. Among the members

of that assemblage, only Noturus nocturnus showed a positive response to

Year 4, while no members of this assemblage were associated with Years 6
and 7.

The brook silverside assemblage showed better correspondence
between assemblage and population level responses. This assemblage was
negatively associated with Year 1 and Year 6 clearcuts and positively

with Year 2 clearcuts and two member species, Labidesthes sicculus and
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Notropis sp., exhibited the same responses. The central stoneroller
assemblage exhibited responses similar to the brook silverside
assemblage -- the assemblage-level response was positive with Year 1 and
Year 6 clearcuts and negative with Year 2 clearcuts. Among members of

that assemblage, Campostoma anomalum exhibited a positive response to

Year 6 clearcuts, while Etheostoma radiosum exhibited a negative

response to Year 2 clearcuts.

Community Indices

Table VI shows the significant partial correlation coefficients (p
< 0.05) from separate multiple stepwise regressions of the
Shannon-Wiener index of diversity, species richness and Simpson's
dominance index regressed on environmental covariates and eight
silvicultural variables. Year 6 clearcuts were associated with all
indices, negatively with the Shannon-Wiener index and species richness,
positively with Simpson's index. None of the other clear-cutting
variables had significant partial correlations with species diversity,

species richness or dominance.

Clearcutting Versus Tolerance and Life History of Fishes

The signs of the partial correlations of the eight clear-cutting
variables in the multiple regression models for each of the 29 common
fish species are shown in Table VII. For each clear-cutting variable,
Figures 4 and 5 compare numbers of species in which the sign of the
partial correlation (= species response, see Materials and Methods) was
negative and numbers of species for which the sign was positive in each

of four separate categories of species: (1) species occurring only in
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eastern Oklahoma and assumed to have narrow environmental tolerances
("restricted species”), (2) species occurring in both eastern and
western Oklahoma and assumed to have broad environmental tolerances
("widespread species"), (3) species having r-selected life-histories,
and (4) species having K-selected life-histories.

None of the four groups of fishes exhibited statistically
significant heterogeneity of species responses across the eight
clear-cutting variables (Heterogeneity G-test, Sokal and Rohlf 1969; o =
0.05). This may be a function of small sample sizes in the four
categories of fish (8-21 species) because in three of the four groups
(r-selected, K-selected and widespread) there were apparent shifts in
the pattern of responses between Years 3 and 4 (Figures 4 and 5). The
widespread species and the K-selected species both exhibited
predominantly positive responses to clearcut years 1-3, and
predominantly negative responses to Years 4-8, while r-selected species
showed the reverse pattern.

There was a significant negative correlation between r-selected and
K-selected fishes in their responses to the different age-classes of
clearcut (Spearmann's r = -.76, p < 0.02). Correspondingly, the
contingency analysis indicated that, for four of the eight clear-cutting
variables (Years 2, 3, 5, 6), responses of individual species were
significantly associated with whether the species was r- or K-selected
(Fisher's exact test, Figure 5). There was little evidence of
covariation between restricted and widespread fishes (r = -.44, p =
0.10), although, for two clear-cutting variables (Years 7 and 8), there
was a significant association between response and whether the species

was widespread or restricted in occurrence (Figure 4).
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The similar patterns of variation in response due to life history
and geographic variation may be in part due to a lack of independence
between these two variables. A contingency analysis indicates a
tendency for the restricted species to be r-selected (15 of 21) while
widespread species tend to be K-selected (6 of 8; Fisher's exact test, p

= 0.03).



DISCUSSION

Two sets of observations from this study indicate that
clear-cutting activities are associated with changes in upland fish
assemblages of the Little River drainage: (1) Regressions of a variety
of indices of community structure on habitat variables revealed
significant partial correlations with the clear-cutting variables. The
dependent variables significantly associated with clear-cutting
variables include scores for three multivariate measures of community
structure (fish PCs I, II, III), individual abundances of 14 fish
species, and all three measures associated with overall species
diversity. (2) Responses of individual species to the clear-cutting
variables were contingent upon 1life history (r- vs K-selected species)
and, to a lesser extent, whether the species was geographically
widespread (assumed environmentally tolerant) or restricted (less
tolerant).

The regressions consistently gave small partial correlations for
the clear-cutting variables (< 0.10 in all instances). Thus, as
expected, other habitat variables are the primary determinants of
community structure in Little River fishes (e.g., substrate, current
speed, depth of stream, etc,), while clear-cutting apparently is rather
weakly associated with community structure. Nonetheless, in the
long-term, small drainage-wide effects could cause notable faunal
changes, such as those reported for the Little River ichthyofauna
between 1948-1955 and 1981-1982 (Rutherford et al. 1987).

The study by Rutherford et al. (1987) indicated that the restricted
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species occurred at fewer sites in 1981-82 than they did in samples from
the same sites in 1948-55. Those results are difficult to compare with
those of the present study because of the potential in the latter for
differential responses to different ages of clearcuts and because of the
difference in time scale of the two studies. There is no overall
tendency for the restricted species to exhibit negative responses.
Sixty-two percent (8) of the 13 statistically significant partial
correlations between restricted species and clear-cutting variables were
negative, but this pattern is not a statistically significant deviation
from random expectation (x? = 0.69).

The relatively high frequency of significant partial correlations
involving Year 6 clearcuts warrants further investigation. No other
age-class of clearcut was significantly associated with the three
indices of species diversity, while the proportionate abundance of Year
6 clearcuts was negatively associated with Shannon-Wiener diversity and
species richness, and positively with Simpson's dominance index. In
addition, Year 6 was significantly associated with seven fish species (2
positive associations, 5 negative) and two fish PCs, while the numbers
of significant associations for the remaining seven age-classes of
clearcuts were 0-3 with fish species and 0-2 with the fish PCs. Year 6
accounted for 12 (46%) of the 26 significant partial correlations
involving clear-cutting variables. This is a highly significant (p <
0.005), non-random distribution of correlations among the eight
clear-cutting variables (x? = 26.3). Considering only the 16
significant correlations for fish species, 44 percent were with Year 6
-- again producing a highly significant Chi-square (x* = 14.3, p <

0.005). Additional study would be required for an understanding of the
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significance of this pattern of correlations.
Another area of potential interest for future research is the
possibility for differential responses of smallmouth bass, Micropterus

dolomieui, relative to largemouth bass, Micropterus salmoides, and

spotted bass, M. punctulatus. The smallmouth, which was one of only two
species exhibiting significant corre1atioﬁs with more than one
clear-cutting variable, -- showed a positive correlation with the
relative abundance of Year 1 clearcuts, and a negative correlation with
Year 6 clearcuts, while neither of the other two basses exhibited a
significant correlation with clearcutting. In Oklahoma, the smallmouth
is restricted to clear, flowing waters in upland areas of the extreme
eastern part of the state, while the other two basses are much more
widespread (Miller and Robison 1973). Thus, smallmouth bass would be
expected to be more sensitive to environmental disturbances than the
other two species, and this might explain the differential responses of
the three species.

The positive correlation between smallmouth bass abundance and
relative abundance of Year 1 clearcuts may be due to the life span of
the fish relative to the time since Year 1 clearcuts were made. Year 1
clearcuts were made in previously uncut areas or after an interval of
time sufficient to allow regrowth of harvestable trees. During that
time, the smallmouth bass population might have had time to recover.
Thus, the relationship between abundance of smallmouth bass and relative
abundance of Year 1 clearcuts might be more reflective of a time-lag in
its response (e.g., altered reproduction), rather than of any positive
effects attributable to Year 1 clearcuts.

A similar explanation might explain the significant negative
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correlation between r-selected and K-selected species in their responses
to the eight clear-cutting variables. In general, K-selected species
exhibited positive responses to Years 1-3 clearcuts and negative
responses to Years 4-8. The reverse pattern for r-selected species may
reflect a quicker response of these shorter-lived fishes to the negative
effects of Years 1-3 clearcuts and, due to a higher reproductive
potential, a quicker recovery during Years 4-8. This suggestion implies
that the negative effects of Years 1-3 clearcuts are greater than those
of Years 4-8 clearcuts, and there is some indication that this may be
true (Webster et al. 1988).

Within one to three years after clearcutting, sites are prepared
for planting new pine seedlings. This activity includes bulldozing
stumps and any hardwood trees left after clearcutting, onsite burning of
the resulting piles of wood, preparing the soil for planting by creating
plowed "furrows" on the surface, and often the broadcast application of
a granular herbicide (e.g., Pronone). Planting of new pine-seedlings
generally occurs from December through February following site
preparation and may include the spraying of a liquid herbicide (e.g.,
Velpar, or Velpar and Oust). After planting, the primary activity
consists of pre-commercial thinning (ca. 5-7 years post harvest) of
trees and shrubs to create cleared rows -- the felled trees are left
lying on the site. Thus, it appears that the disturbance to the
terrestrial environment, and by inference the aquatic habitat, would be
maximal during years 1-3. This corresponds well with studies
demonstrating increased streamflow (Reinhart and Eschner 1962, Likens et
al 1970, Patric 1973, Swank 1988), increased sedimentation (Tebo 1955,

1957; Brown and Krygier 1971; Burns 1972), increased water temperature
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(Brown and Krygier 1970, Swift and Messer 1971, Swift 1982) and
decreased allochthonous inputs (Webster and Waide 1982) in the years
immediately following clearcutting.

Studies of the type represented here can easily be over interpreted
with ad hoc hypotheses and speculation. It should be emphasized that
this study does not demonstrate cause and effect between clearcutting
and fish community structure. The demonstration of causation, in a
study 1ike this, requires that changes in the dependent variable ("fish
variables") can be induced by changes in the independent variables
(clear-cutting) and that the independent variables are the only
effectors involved (Gunst and Mason 1980). This study was designed in
such a way as to examine associations between clearcutting and fish
assemblage structure while statistically "holding other habitat
variables constant". It is possible, however, that some important
causal variable(s) were not considered. Such a factor could covary with
clearcutting without being a function of that activity. However, if
such factors exist, they are not readily obvious. Thus, while not
directly demonstrating causality, the data do indicate an apparently
causal effect of clearcutting on fish assemblage structure.

The significance of this study is that it is the first attempt to
demonstrate an association between patterns of clearcutting and fish
assemblage structure. The results indicate that such an association
exists. This provides support for the suggestion (Rutherford et al.
1987) that changes in the overall frequency of occurrence of individual
species in the Little River drainage are associated with the initiation
of clearcutting in the 1960's. Since that time, silvicultural

activities have been intensive over virtually the entire study area.



Because of the low density of the human population and low levels of
agriculture, silvicultural activities are by far the major human

activity in the study area (Rutherford et al. 1987).
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Table III. Principal component loadings for each species having a
loading 2!.35]| on a component.

Species and Fish Components
Assemblage Name

I II ITI v v

Spotted Bass Assemblage
Micropterus punctulatus .60 .40
Notropis umbratilis .57 .38
Lepomis macrochirus .57 .38
Notropis ortenburgeri .55
Fundulus notatus .54
Micropterus salmoides .53
Fundulus olivaceus .51 .51
Aphredoderus sayanus .39
Lepomis punctatus .38

Orangethroat Darter Assemblage
Etheostoma radiosum -.47 -.39 .43
Micropterus dolomieui -.35

Creek Chub Assemblage
Semotilus atromaculatus .85
Percina caprodes .73
Gambusia affinis .67
Etheostoma spectabile .50 -.48 -.35
Notropis whipplei .48
Noturus nocturnus -.36 .38

Brook Silverside Assemblage
Labidesthes sicculus .58
Lepomis megalotis .36 .56 .38

Notropis sp.? -.43 .52

Central Stoneroller Assemblage
Campostoma anomalum -.65
Erimyzon oblongus -.35

Bigeye Shiner Assemblage
Notropis boops -.38 .61
Pimephales notatus .60
Lepomis cyanellus .42 .44
Esox americanus -.35 .36

Warmouth Assemblage
Lepomis gulosus .67

Striped Shiner Assemblage
Notropis chrysocephalus .37 -.46

! Notropis snelsoni and N. fumeus; the former was described after
collections were made.




Table IV. Stepwise multiple regression of fish principal component
scores (PC I - PC V) on a subset, p, of 27 environmental
covariables and eight silvicultural variables.
independent variables was determined by Mallows' C
where C_ = p. Significant partial correlations (p"< 0.05)

are shofin for the eight silvicultural variables.
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The subset of
statistic

Principal p C Significant Silvicultural Variables
(p < 0.05) Year 1 - Year 8

Components
and Assemblages

1 2

3

4

5

6 7

Spotted Bass(+) vs
Orangethroat Darter(-)
i 10 9.2

Creek Chub(+)
I1 7 12.9

Brook Silverside(+) vs
Central Stoneroller(-)
III 14 24.9 -.06 .05

Bigeye Shiner(+)
IV 3 1.4

Warmouth(+) vs
Striped Shiner(-)
vV 4 3.7

-.06

.05

-.05 -.06

-.05

.75

.71

.14

.08
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Table V. Stepwise muitiple regression of log coded abundance of the 29
common fish species on a subset, p, of 27 environmental
covariables and eight silvicultural variables. The subset of
independent variables was determined by Mallows' C_ statistic
where C_ = p. Significant partial correlations (p"< 0.05) are
shown fBr the eight silvicultural variables.

Species p C Silvicultural Variables r?
Year 1 - Year 8

1 2 3 4 5 6 7 8

Esox americanus 57.8 -.05 .33
Campostoma anomalum 7 7.9 +.03 .40
Notropis boops 35.6 -.07 .36
N. chrysocephalus 32.1 .17
N. ortenburgeri 31.8 +.05 .30
N. sp. 6 5.4 -.06 .44
N. umbratilis 4 4.6 .42
N. whipplei 4 5.8 .22
Pimephales notatus 57.2 .28
Semotilus atromaculatus 4 4.4 .46
Erimyzon oblongus 4 2.3 +.08 .30
Ictalurus natalis 2 6.3 .16
Noturus nocturnus 6 4.6 +.06 .43
Aphredoderus sayanus 6 6.3 -.05 .44
Fundulus notatus 7 6.8 -.05-.08 .49
F. olivaceus 7 6.4 .46
Gambusia affinis 34.4 .25
Labidesthes sicculus 4 3.5 +.05 .35
Lepomis cyanellus 56.1 -.06 .43
L. gulosus 56.5 -.05 .28
L. macrochirus 34.8 .41
L. megalotis 6 5.6 .42
L. punctatus 4 3.0 .36
Micropterus dolomijeui 6 6.3 +.06 -.05 .38
M. punctulatus 4 3.9 .34
M. salmoides 32.8 .22
Percina caprodes 2 3.6 .38
Etheostoma radiosum 8 7.4 -.05 .40
E. spectabile 4 6.6 .33
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Table VI. Stepwise multiple regression of community indices on a
subset, p, of 27 environmental covariables and eight
silvicultural variables. The subset of independent variables
was determined by Mallows' C_ statistic where C_ = p.
Significant partial correlatfons (p < 0.05) arePshown for the
eight silvicultural variables.

Community p C Silvicultural Variables r?
Index P Year 1 - Year 8

1 2 3 4 5 6 7 8

Shannon-Wiener 7 8.2 -.08 .49
Diversity
Species Richness 8 6.9 -.05 .62

Simpson's Index 7 7.4 .05 .35




Table VII.

Response of the 29 common fish species to the eight
silvicultural variables (Year 1-8). Species responses were
determined by a multiple regression of each species on a
the eight silvicultural variables and the 27 environmental

covariables.

response of a species.

Species

Species

Species
Distribution! Selection
Strategy?

Clearcut

Year

—

N

3

4

5

(o]

Esox americanus

Erimyzon oblongus

Semotilus atromaculatus

Notropis boops

ZlZiIZiI=2=

Pimephales notatus

chrysocep

halus

ortenburgeri

umbratili

whipplei
sp.

S

Campostoma anomalum

Ictalurus natalis

Noturus nocturnus

Aphredoderus sayanus

Fundulus notatus

F.

Gambusia affinis

olivaceus

Labidesthes sicculus

Lepomis gulosus

L.

cyanellus
macrochir

megalotis

punctatus

icropterus dolomieui

us

punctulatus

salmoides

theostoma radiosum

OIMMIZZ=2r-ir-ir

. spectabile
ercina caprodes
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K

widespread distributions; R = restricted distributions.
K-selected 1ife history; r = r-selected 1ife history.
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For the contingency analysis (see text), the
sign (+ or -) of the regression coefficient of a
silvicultural variable is interpreted to represent the
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14
12

10

Number of
Species 0

4
2

Number of 0
Species

Restricted Species

R+
R_
Widespread Species
W+
w_
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
Clearcut Year
.30 .47 .25 .47 .18 .13 .04* ,05*

Fisher's Exact Probability






10

Number of
Species 0

-10

10

Number of
Species 0

r-Selected Species

r+
r—
K-Selected Species
K+
K_
Y1l Y2 Y3 Y4 Y5 Y6 Y7 Y8
Clearcut Year
.41 .01* .03* .08 .01* .04* .36 .20

Fisher's Exact Probability
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APPENDIX A

Presence/absence data for 31 common species at 44 collection localities
in 1948-55 and 1981-82. Species identification numbers correspond with
names as shown in Table I. Each column represents a collection (0 =
absent, 1 = present). Collections are arranged from left to right in
the numerical sequence (1 to 44) that corresponds with the
identification numbers given in Figure 1. The collection numbers for the
historical analysis are identified in Appendix C next to the site
number.
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Species Occurrence in 1948-55
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Appendix A. continued.

Species Occurrence in 1981-82
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APPENDIX B

Locations of 156 sites in the Little River drainage where fish
collections were made in 1981-1982. The 44 historical sites are
identified with a dot. A double dot indicates two historical
collections were made at a location.
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APPENDIX C

Fish abundances (as number of specimens), and untransformed
environmental and silvicultural data collected at 156 localities in the
Little River drainage in 1981-1982. The 44 historical site numbers, and
numbers for the 89 sites used in the analysis of silvicultural
activities follow the drainage-wide site numbers. Each variable (1 to
109) is identified by name and number on the following pages.
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Variable
Number
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Variable Name

Lepisosteus oculatus
L. osseus

Amia calva

Dorosoma cepedianum
Esox americanus
Moxostoma duquesnei
M. erythrurum
Minytrema melanops
Erimyzon oblongus

E. sucetta
Notemigonus crysoleucas

Semotilus atromaculatus

Notropis amnis
atrocaudalis
boops

. chrysocephalus
ortenburgeri

perpallidus
rubellus

sp.
umbratilis
venustus
volucellus

N. whipplei
Hybognathus hayi
Pimephales notatus
P. vigilax
Campostoma anomalum
Ictalurus melas

1. natalis

I. punctatus

Noturus eleutherus
N. gyrinus

N. nocturnus
Pylodictis olivaris
Aphredoderus sayanus
Fundulus blairie

F. notatus

F. olivaceus
Gambusia affinis
Labidesthes sicculus
Elassoma zonatum
Centrarchus macropterus

ZIZIZzIZzIZIZIZIZIZIZ2I=2

Lepomis cyanellus
. gulosus
humilis
macrochirus
marginatus
megalotis
microlophus
punctatus

IFiIieiririr
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Variable
Number

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
13
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

81

Variable Name

symmetricus
dolomieui

punctulatus

M. salmoides

Pomoxis annularis

P. nigromaculatus
Ammocrypta vivax
Crystallaria asprella
Etheostoma asprigene
chlorosomum
colletti

gracile

histrio

nigrum

parvipinne

. proeliare
radiosum

spectabile
ercina caprodes
. copelandi

. pantherina
phoxocephala

sciera
Mud Substrate
Sand Substrate
Gravel Substrate
Rubble Substrate
Boulder Substrate
Bedrock Substrate
Emergent Vascular Plants
Submergent Vascular Plants
Algae
Leaf Litter
Depth 1
Depth 2
Depth 3
Depth 4
% Depth 5
% Very Slow Current
% Slow Current
% Moderate Current
% Fast Current
% Torrent Current
Elevation
Stream Gradient
Stream Order
Distance from the Headwaters
Specific Conductance
Turbidity
Nonfilterable Residue

ZI=ZI=Ir

32 32 32 s¢|olololojolmimimimimimimimim
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Variable
Number

102
103
104
105
106
107
108
109

%

%
%
%
%
%
%

Variable Name

Year
Year
Year
Year
Year
Year
Year
Year

oO~NO LT P WN

Clearcuts
Clearcuts
Clearcuts
Clearcuts
Clearcuts
Clearcuts
Clearcuts
Clearcuts
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.021 0.042 0.000 0.042 0.458 0.000 0.083
.181 0.000 0.000 0.000 0.361 0.042 0.097
90 0.650 0.090 0.033 0.267 0.000 0.350
90 0.714 0.095 0.000 0.381 0.000 0.000

0
1
.0
1
1
9

0
0
0
0.
0.123 0.538 0.015 0.308 0.185 0.046 0.169
0

0.588 0.235 0.000 0.000 0.647 0.000 0.147
0.159 0.159 0.159 0.381 0.492 0.000 0.730
0.621 0.379 0.000 0.000 0.034 0.000 0.000
0.521 0.110 0.068 0.247 0.315 0.014 0.082
0.615 0.138 0.000 0.154 0.000 0.000 0.000
0.708 0.000 0.000 0.000 0.125 0.000 0.021
0.053 0.000 0.027 0.000 0.253 0.000 0.000
0.593 0.259 0.000 0.074 0.074 0.000 0.000
0.124 0.429 0.210 0.162 0.000 0.010 0.038
0.086 0.210 0.638 0.029 0.210 0.048 0.000
0.077 0.462 0.453 0.009 0.043 0.009 0.000
0.091 0.380 0.512 0.017 0.355 0.000 0.000
0.200 0.229 0.157 0.286 0.400 0.000 0.000
0.111 0.356 0.222 0.289 0.044 0.000 0.000
0.047 0.600 0.200 0.100 0.078 0.000 0.000
0.259 0.600 0.012 0.118 0.388 0.000 0.000
0.509 0.103 0.069 0.207 0.147 0.000 0.147
0.173 0.423 0.404 0.000 0.019 0.000 0.077
0.076 0.430 0.101 0.316 0.089 0.013 0.000
0.778 0.083 0.028 0.083 0.167 0.000 0.000
0.111 0.417 0.222 0.111 0.139 0.000 0.056
0.333 0.490 0.059 0.039 0.510 0.020 0.098
0.194 0.597 0.177 0.016 0.048 0.000 0.032
0.064 0.569 0.174 0.046 0.312 0.000 0.028
0.077 0.462 0.277 0.123 0.031 0.000 0.000
0.102 0.212 0.373 0.297 0.322 0.000 0.011
0.065 0.370 0.537 0.028 0.000 0.000 0.000
0.562 0.094 0.031 0.000 0.000 0.000 0.031
0.286 0.657 0.029 0.000 0.057 0.086 0.600
0.188 0.542 0.146 0.125 0.229 0.021 0.000
0.093 0.419 0.209 0.140 0.000 0.023 0.000
0.422 0.313 0.125 0.094 0.078 0.000 0.000
0.353 0.588 0.039 0.000 0.039 0.000 0.020
0.120 0.347 0.400 0.133 0.120 0.040 0.000
0.157 0.451 0.294 0.098 0.020 0.000 0.078
0.303 0.364 0.000 0.242 0.061 0.000 0.030
0.938 0.031 0.031 0.000 0.203 0.000 0.000
0.513 0.026 0.000 0.000 0.000 0.000 0.000
0.846 0.128 0.000 0.000 0.154 0.000 0.077
0.128 0.769 0.051 0.051 0.051 0.000 0.385
0.800 0.138 0.000 0.000 0.863 0.000 0.000
0.191 0.064 0.000 0.234 0.021 0.000 0.000

.960 0.024 0.000 0.000 0.144 0.000 0.000
0.721 0.000 0.000 0.000 0.000 0.000 0.000
0.083 0.000 0.021 0.000 0.083 0.000 0.000
0.273 0.000 0.000 0.000 0.491 0.000 0.218
0.000 0.000 0.000 0.000 0.000 0.000 0.000
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0.027 0.000 0.230 0.324 0.378 0.068 0.811
0.000 0.111 0.333 0.457 0.099 0.000 0.593
0.095 0.081 0.203 0.297 0.243 0.176 0.878
0.000 0.028 0.394 0.563 0.014 0.000 0.352
0.000 0.172 0.406 0.422 0.000 0.000 0.438
0.133 0.117 0.450 0.433 0.000 0.000 0.300
0.055 0.045 0.236 0.436 0.282 0.000 0.627
0.013 0.091 0.429 0.481 0.000 0.000 0.896
0.031 0.031 0.216 0.526 0.227 0.000 0.536
0.092 0.058 0.242 0.533 0.167 0.000 0.583
0.169 0.026 0.221 0.312 0.442 0.000 0.961
0.000 0.085 0.549 0.366 0.000 0.000 0.507
0.013 0.158 0.513 0.328 0.000 0.000 0.882
0.000 0.029 0.232 0.319 0.420 0.000 0.725
0.000 0.060 0.300 0.320 0.320 0.000 0.760
0.039 0.053 0.197 0.211 0.487 0.053 0.987
0.035 0.133 0.452 0.252 0.139 0.139 0.609
0.000 0.014 0.397 0.270 0.200 0.121 0.702
0.029 0.206 0.397 0.309 0.088 0.000 0.926
0.013 0.052 0.432 0.432 0.077 0.000 0.781
0.071 0.357 0.548 0.095 0.000 0.000 0.881
0.015 0.313 0.328 0.224 0.134 0.000 0.806
0.292 0.135 0.385 0.427 0.052 0.000 0.781
0.139 0.137 0.436 0.162 0.291 0.000 0.530
0.026 0.141 0.449 0.410 0.000 0.000 0.936
0.260 0.000 0.233 0.411 0.315 0.041 0.999
0.262 0.049 0.443 0.508 0.000 0.000 0.999
0.000 0.026 0.372 0.333 0.205 0.064 0.999
0.093 0.012 0.140 0.267 0.337 0.244 0.999
0.200 0.027 0.133 0.387 0.387 0.067 0.999
0.038 0.000 0.013 0.231 0.474 0.282 0.999
0.077 0.128 0.385 0.462 0.026 0.000 0.821
0.022 0.011 0.348 0.457 0.130 0.054 0.652
0.160 0.080 0.360 0.180 0.360 0.020 0.700
0.333 0.022 0.377 0.422 0.177 0.000 0.733
0.000 0.000 0.180 0.348 0.461 0.011 0.999
0.274 0.016 0.177 0.677 0.129 0.000 0.999
0.060 0.024 0.310 0.500 0.167 0.000 0.833
0.047 0.209 0.465 0.279 0.047 0.000 0.953
0.030 0.258 0.348 0.242 0.136 0.015 0.667
0.419 0.000 0.163 0.581 0.256 0.000 0.999
0.059 0.106 0.388 0.423 0.082 0.000 0.388
0.059 0.024 0.424 0.435 0.118 0.000 0.259
0.000 0.068 0.593 0.322 0.017 0.000 0.136
0.033 0.016 0.148 0.369 0.443 0.025 0.385
0.013 0.013 0.127 0.190 0.671 0.000 0.519
0.000 0.089 0.711 0.200 0.000 0.000 0.100
0.031 0.051 0.526 0.300 0.124 0.000 0.639
0.076 0.054 0.359 0.315 0.272 0.000 0.435
0.063 0.053 0.221 0.347 0.379 0.000 0.105
0.008 0.016 0.256 0.620 0.107 0.000 0.174
0.000 0.115 0.345 0.365 0.154 0.019 0.615
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52
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0.185 0.093 0.259 0.333 0.315 0.000 0.870
0.051 0.051 0.458 0.373 0.119 0.000 0.424
0.014 0.139 0.556 0.222 0.083 0.000 0.347
0.000 0.135 0.538 0.327 0.000 0.000 0.288
0.039 0.092 0.592 0.316 0.000 0.000 0.395
0.037 0.370 0.500 0.130 0.000 0.000 0.241
0.019 0.058 0.212 0.173 0.462 0.096 0.827
0.095 0.111 0.413 0.460 0.016 0.000 0.857
0.000 0.055 0.286 0.516 0.143 0.000 0.462
0.000 0.241 0.276 0.276 0.207 0.000 0.931
0.000 0.186 0.605 0.209 0.000 0.000 0.651
0.000 0.009 0.350 0.564 0.077 0.000 0.453
0.036 0.218 0.509 0.273 0.000 0.000 0.764
0.094 0.075 0.415 0.453 0.057 0.000 0.887
0.000 0.067 0.311 0.533 0.089 0.000 0.356
0.019 0.115 0.442 0.308 0.135 0.000 0.904
0.000 0.100 0.420 0.280 0.200 0.000 0.580
0.032 0.097 0.403 0.419 0.081 0.000 0.597
0.025 0.038 0.273 0.291 0.304 0.089 0.810
0.021 0.011 0.245 0.468 0.277 0.000 0.277
0.077 0.135 0.442 0.250 0.173 0.000 0.500
0.000 0.047 0.340 0.528 0.085 0.000 0.236
0.079 0.016 0.143 0.397 0.254 0.190 0.905
0.029 0.043 0.209 0.388 0.360 0.000 0.619
0.025 0.500 0.375 0.025 0.100 0.000 0.725
0.078 0.009 0.172 0.207 0.405 0.207 0.457
0.226 0.000 0.302 0.472 0.226 0.000 0.999
0.000 0.200 0.375 0.425 0.000 0.000 0.999
0.024 0.000 0.218 0.250 0.444 0.089 0.194
0.372 0.000 0.093 0.395 0.512 0.000 0.999
0.197 0.026 0.171 0.224 0.355 0.224 0.999
0.082 0.122 0.327 0.388 0.163 0.000 0.653
0.051 0.103 0.203 0.291 0.253 0.139 0.861
0.000 0.000 0.017 0.183 0.650 0.150 0.999
0.000 0.198 0.319 0.440 0.044 0.000 0.901
0.038 0.063 0.203 0.165 0.544 0.025 0.709
0.011 0.056 0.551 0.337 0.056 0.000 0.708
0.245 0.000 0.117 0.202 0.404 0.277 0.999
0.036 0.023 0.143 0.786 0.048 0.000 0.999
0.290 0.032 0.258 0.419 0.290 0.000 0.999
0.105 0.368 0.421 0.158 0.053 0.000 0.999
0.011 0.023 0.280 0.258 0.161 0.280 0.323
0.000 0.167 0.185 0.167 0.481 0.000 0.944
0.000 0.177 0.468 0.226 0.129 0.000 0.258
0.000 0.041 0.367 0.449 0.143 0.000 0.286
0.075 0.150 0.250 0.350 0.250 0.000 0.999
0.231 0.154 0.462 0.282 0.103 0.000 0.846
0.171 0.000 0.143 0.486 0.314 0.057 0.999
0.020 0.060 0.600 0.340 0.000 0.000 0.999
0.123 0.000 0.220 0.561 0.220 0.000 0.999
0.357 0.024 0.167 0.452 0.333 0.024 0.999
0.133 0.000 0.133 0.483 0.383 0.000 0.999
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0.000 0.176 0.294 0.353 0.176 0.000 0.999
0.032 0.111 0.286 0.460 0.143 0.000 0.999
0.000 0.103 0.310 0.276 0.310 0.000 0.862
0.055 0.288 0.123 0.466 0.123 0.000 0.877
0.031 0.185 0.462 0.323 0.031 0.000 0.923
0.271 0.146 0.604 0.250 0.000 0.000 0.999
0.387 0.040 0.400 0.307 0.093 0.160 0.999
0.148 0.222 0.148 0.185 0.222 0.222 0.667
0.048 0.010 0.181 0.176 0.362 0.124 0.019
0.057 0.000 0.114 0.514 0.371 0.000 0.410
0.000 0.026 0.308 0.513 0.154 0.000 0.043
0.000 0.083 0.298 0.463 0.157 0.000 0.455
0.029 0.114 0.157 0.400 0.329 0.000 0.914
0.022 0.200 0.511 0.288 0.000 0.000 0.911
0.008 0.000 0.219 0.484 0.227 0.070 0.195
0.000 0.035 0.282 0.612 0.071 0.000 0.212
0.043 0.060 0.233 0.388 0.293 0.026 0.922
0.000 0.173 0.577 0.212 0.038 0.000 0.423
0.013 0.038 0.076 0.354 0.430 0.101 0.165
0.056 0.361 0.444 0.194 0.000 0.000 0.944
0.028 0.222 0.361 0.278 0.139 0.000 0.833
0.039 0.196 0.314 0.392 0.098 0.000 0.922
0.048 0.081 0.435 0.323 0.161 0.000 0.903
0.165 0.046 0.284 0.220 0.330 0.119 0.963
0.000 0.046 0.431 0.523 0.000 0.000 0.846
0.000 0.017 0.136 0.551 0.297 0.000 0.500
0.000 0.102 0.380 0.315 0.185 0.019 0.731
0.000 0.063 0.406 0.531 0.000 0.000 0.938
0.057 0.057 0.429 0.429 0.086 0.000 0.999
0.000 0.083 0.271 0.313 0.333 0.000 0.688
0.233 0.000 0.023 0.279 0.512 0.186 0.999
0.125 0.000 0.641 0.359 0.000 0.000 0.266
0.059 0.059 0.294 0.549 0.098 0.000 0.941
0.000 0.040 0.387 0.573 0.000 0.000 0.493
0.000 0.020 0.314 0.588 0.078 0.000 0.490
0.212 0.121 0.333 0.545 0.000 0.000 0.999
0.031 0.016 0.375 0.500 0.109 0.000 0.094
0.385 0.128 0.487 0.385 0.000 0.000 0.974
0.154 0.308 0.564 0.128 0.000 0.000 0.538
0.103 0.026 0.231 0.487 0.256 0.000 0.999
0.038 0.013 0.425 0.563 0.000 0.000 0.138
0.191 0.000 0.106 0.489 0.404 0.000 0.999
0.042 0.021 0.313 0.396 0.250 0.021 0.999
0.042 0.042 0.417 0.514 0.028 0.000 0.972
0.000 0.067 0.267 0.550 0.083 0.033 0.933
0.000 0.333 0.190 0.286 0.190 0.000 0.952
0.031 0.031 0.200 0.262 0.508 0.000 0.999
0.008 0.064 0.248 0.536 0.144 0.008 0.272
0.082 0.016 0.443 0.377 0.148 0.016 0.426
0.038 0.000 0.313 0.563 0.125 0.000 0.958
0.000 0.055 0.454 0.436 0.055 0.000 0.999
0.229 0.000 0.479 0.521 0.000 0.000 0.999

63

105

64

21

106

107

22

108

109
110

23
24

111
112
113

65

66

25

114
115

67

68
69
70
71

26
27

116
117
118
119
120
121

72
73

122
123
124
125

28
29

74
75
76
717

126
127

128
129
130
131

18

79
80

32

132

133
134
135

33

81

136 34 82

137
138

83

139
140

84

85

35
36

37

141

142

143

86

38

144

145

39
40

146

147

41

148

87

149

88

150
151

89

42

152
153
154
155
156

43
44



108

92 93 94 95 96 97 98

HISTORICAL HARVEST 91

SITE

SITES

NUMBER SITES
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0.424 0.085 0.068 0.000 28
0.472 0.167 0.014 0.000 262.
0.404 0.231 0.058 0.019 21
0.434 0.145 0.026 0.000 24
0.593 0.167 0.000 0.000 207.

0.173 0.000 0.000 0.000 20
0.143 0.000 0.000 0.000 21

0.253 0.132 0.154 0.000 176.
0.069 0.000 0.000 0.000 26

0.302 0.047 0.000 0.000 21
0.205 0.111 0.154 0.077 16

0.164 0.073 0.000 0.000 27
0.578 0.044 0.022 0.000 182.
0.077 0.019 0.000 0.000 22
0.140 0.120 0.000 0.020 17
0.177 0.210 0.016 0.000 14
0.127 0.051 0.013 0.000 14

0.170 0.181 0.213 0.160 13
0.115 0.065 0.094 0.108 121.

0.130 0.000 0.000 0.000 31
0.075 0.038 0.000 0.000 24
0.442 0.058 0.000 0.000 13
0.255 0.113 0.311 0.085 12
0.048 0.016 0.032 0.000 12
0.200 0.075 0.000 0.000 14
0.267 0.095 0.147 0.034 11
0.000 0.000 0.000 0.000 13
0.000 0.000 0.000 0.000 13
0.282 0.258 0.258 0.008 10
0.000 0.000 0.000 0.000 10
0.000 0.000 0.000 0.000 10
0.265 0.041 0.041 0.000 106.
0.063 0.063 0.000 0.000 17
0.000 0.000 0.000 0.000 15
0.066 0.022 0.011 0.000 12
0.114 0.101 0.076 0.000 11
0.213 0.056 0.022 0.000 10
0.000 0.000 0.000 0.000 9
0.000 0.000 0.000 0.000 10
0.000 0.000 0.000 0.000 17
0.000 0.000 0.000 0.000 15
0.312 0.097 0.226 0.043 131.
0.037 0.019 0.000 0.000 12
0.371 0.290 0.065 0.000 118.
0.327 0.204 0.184 0.000 100.
0.000 0.000 0.000 0.000 102.
0.154 0.000 0.000 0.000 115.
0.000 0.000 0.000 0.000 112.
0.000 0.000 0.000 0.000 113.
0.000 0.000 0.000 0.000 111.
0.000 0.000 0.000 0.000 11
0.000 0.000 0.000 0.000 101.
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