DEVELOPMENT OF AN ECONOMICALLY-BASED ASYMMETRIC

CUMULATIVE SUM CHART WITH WEIBULL
PROCESS FAILURE MECHANISM

By
CHUNG-YU " PAN
Bachelor of Engineering Feng Chia University

Taichung, Taiwan
Republic Of China 1977

Master of Engineering
Tennessee Technological University
Cookeville, Tennessee 1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 1988

Thesis
19880
Pl87d
cop. 2

DEVELOPMENT OF AN ECONOMICALLY-BASED ASYMMETRIC

 CUMULATIVE SUM CHART WITH WEIBULLPROCESS FAILURE MECHANISM

Thesis Approved:

M. P. Henele

Dean of the Graduate College

PREFACE

This research is concerned with the modeling and evaluation of the powerful process control scheme -Cumulative Sum (Cusum) Chart. A special control chart methodology is introduced and incorporated into this model along with Weibull process failure mechanism.

The formulation of the model follows the same cost structure as in Duncar's economic $\overline{\mathrm{X}}$ chart model. An optimization procedure is employed to economically design the decision variables of this asymmetric Cusum control chart. The results are then be compared and analyzed.

I wish to express sincere appreciation to my major adviser, Dr. Kenneth E. Case, for his constant encouragement, guidance, assistance throughout this research and during my doctoral program. Thanks also to my committee members, Dr. Carl B. Estes, Dr. Barry K. Moser, Dr. Allen C. Schuermann and Dr. M. Palmer Terrell, for their interest and assistance.

The help of Professor John P. Chandler in using two computer subroutines is appreciated. I am thankful to the unforgettable friendship and encouragement of Earl and Sue Knight.

Finally, special gratitude is expressed to my parents, Mr. and Mrs. Chia-Shen Pan, my parents-in-law, Mr. and Mrs. Shao-Hsien Day, and my wife, Ping-Ting Day, who always encouraged me in my academic endeavors.

TABLE OF CONTENTS

Chapter Page
I. THE RESEARCH PROBLEM 1
Purpese 1
The X Control Chart 2
The Cumulative Sum Control Chart 5
Average Run Length, ARL. 5
Subgroup Size, n, and Sampling Interval, h. 6
Decision Interval, d 6
Dead Band Value, k 7
Economically Based Cusum Charts 7
Process Failure Mechanism 10
Summary of Research Objectives. 11
Objective 11
Subobjectives. 11
II. LITERATURE REVIEW. 13
Shewhart Control Charts and Their Enhancements and Modification 13
Shewhart Control Charts and Their Enhancements 14
Modifications of Shewhart
Control Charts_. 16
Economical Design of X Control Charts 18
Cumulative Sum Control Charts 24
Economical Design of Cumulative Sum Control Charts. 28
Process Failure Mechanisms 31
Summary 32
III. MODEL DEVELOPMENT OF AN ASYMMETRICAL ECONOMICALLY-BASED CUSUM CHART 35
Introduction. 35
Assumptions 35
Notation 37
Model Formulation 42
General Structure 42
Average Run Length (ARL) 43
Nature of the Process and Cycle Time 45
Derivation of the Economic Model. 47
Average In-control, Out-of-control and Cycle Time 47
Cost Formulation 54
Optimal-Seeking Methods 57
Summary 62
IV. RESULTS, COMPARISON AND ANALYSIS 64
Introduction. 64
Comparison of Results for the Symmetric Design. 65
Analysis of the Asymmetric Design 68
Decision Variables and Loss-costs 69
Effect of Probability of Upward Shift, a 75
Effect of Risk Parameter, M. 79
Effect of Weibull Shape Parameter, S 81
Effect of Weibull Scale
Parameter, θ 82
Effect of Shift Parameter, δ 90
Effect of Initial Point for Search Procedure 91
Summary 96
V. USING THE INTERACTIVE COMPUTER PROGRAM 97
Introduction 97
Design of an Economically-Based
Asymmetric Cusum Control Chart 98
Evaluation of a Cusum Control Chart 103
Summary 105
VI. SUMMARY AND CONCLUSION 107
REFERENCES. 110
APPENDIX. 115

LIST OF TABLES

Table Page
4.1 Cost and Riek Factors and Parameters for Three Examples. 65
4.2 Results for Goel's Cusum Chart and Economically-based Design 66
4.3 Loss-costs for Various Subgroup Sizes for Three Examples. 67
4.4 Optimum Results of Economically-based
Design for Different Initial Points 68
4.5 Deviation in Loss-cost with Subgroup Size n 69
4.6 Optimum Decision Variables and Loss-costs for the Weibull Process FailureMechanism with Shape Parameter $S=1$,Scale Parameter $\theta=100$ and Initial Pointas Follows: Decision Interval-Upper duand Lower di, Time Interval BetweenSubgroups $h=0.1$, Dead Band-Upper $k u$ andLower kL, Subgroup Size $n=1:$. 71
4.7 Optimum Decision Variables and Loss- costs for the Weibull Process FailureMechanism with Shape Parameter S=2,Scale. Parameter $\theta=100$ and Initial Pointas Follows: Decision Interval-Upper duand Lower di, Time Interval BetweenSubgroups $h=0.1$, Dead Band-Upper $k u$ andLower kl, Subgroup Size n=1:. 72
4.8 Optimum Decision Variables and Loss-costs for the Weibull Process FailureMechanism with Shape Parameter $S=1$,Scale Parameter $\theta=50$ and Initial Pointas Follows: Decision Interval-Upper duand Lower di, Time Interval BetweenSubgroups $h=0.1$, Dead Band-Upper $k u$ andLower kL, Subgroup Size $n=1:$.73
4.9 Optimum Decision Variables and Losscosts for the Weibull Process Failure Mechanism with Shape Parameter S=2, Scale Parameter $\theta=50$ and Initial Point as Follows: Decision Interval-Upper du and Lower di, Time Interval Between Subgroups $h=0.1$, Dead Band-Upper $k u$ and Lower kl, Subgroup Size n=1:
4.10 Optimum Values of $\Gamma \mathrm{J}, \mathrm{\Gamma}, \mathrm{ARL}, \mathrm{ARL}, \mathrm{A}$, $h * E N S I N$ and Cycle Time for the Weibull Process Failure Mechanism with Shape Parameter $S=1$, Scale Parameter $\theta=100$ and Initial Point as Follows: $n=1, h=.1$, $d v$, dL, ku and $\mathrm{kL}:$. 83
4.11 Optimum Values of $\Gamma u, \Gamma \mathrm{~L}, \mathrm{ARL} 0$, ARL 1 , h*ENSIN and Cycle Time for the Weibull Process Failure Mechanism with Shape Parameter $S=2$, Scale Parameter $\theta=100$ and Initial Point as Follows: $n=1, \mathrm{~h}=.1$, du , d , ku and $\mathrm{kL}:$.84
4.12 Optimum Values of $\Gamma \mathrm{J}, \Gamma_{\mathrm{L}}$, ARLo, ARLi, $\mathrm{h} * E N S I N$ and Cycle Time for the Weibull Process Failure Mechanism with Shape Parameter $S=1$, Scale Parameter $\theta=50$ and Initial Point as Follows: $\mathrm{n}=1, \mathrm{~h}=.1$, du , dL, ku and $k \mathrm{~L}$:
4.13 Optimum Values of $\Gamma \mathrm{U}, \Gamma_{\mathrm{L}}, \mathrm{ARL} 0$, ARL_{1}, h*ENSIN and Cycle Time for the Weibull Process Failure Mechanism with Shape Parameter $S=2$, Scale Parameter $\theta=50$ and Initial Point as Follows: $n=1, h=.1$, du, d , ku and $\mathrm{kL}:$.
4.14 Values of Subgroup Size, Time Interval Between Subgroups, Decision Intervals and Loss-cost for $\mathrm{Mu}>\mathrm{ML}$. 91
4.15 Optimum Decision Variables and Losscosts for the Weibull Process Failure Mechanism with Shape Parameter $S=1$, Scale Parameter $\theta=100$ and Initial Point as Follows: Decision Interval-Upper du and Lower di, Time Interval Between Subgroups $h=3.0$, Dead Band-Upper $k v$ and Lower kL, Subgroup Size $\mathrm{n}=10$: 92
TablePage
4.16 Optimum Decision Variables and Losscosts for the Weibull Process Failure Mechanism with Shape Parameter $\mathrm{S}=2$, Scale Parameter $\theta=100$ and Initial Point as Follows: Decision Interval-Upper du and Lower di, Time Interval Between Subgroups $h=3.0$, Dead Band-Upper $k u$ and Lower kl, Subgroup Size $\mathrm{n}=10$: 93
4.17 Optimum Decision Variables and Losscosts for the Weibull Process Failure Mechanism with Shape Parameter $S=1$, Scale Parameter $\theta=50$ and Initial Point as Follows: Decision Interval-Upper du and Lower di, Time Interval Between Subgroups $h=3.0$, Dead Band-Upper $k u$ and Lower kl, Subgroup Size n=10: 94
4.18 Optimum Decision Variables and Losscosts for the Weibull Process Failure Mechanism with Shape Parameter $S=2$, Scale Parameter $\theta=50$ and Initial Point as Follows: Decision Interval-Upper du and Lower di, Time Interval Between Subgroups $h=3.0$, Dead Band-Upper $k u$ and Lower kL, Subgroup Size $n=10:$. 95

LIST OF FIGURES

Figure Page
1.1 Design of an X C 4
1.2 Design of an Asymmetric Cusum Chart 9
3.1 Cycle Time. 46
3.2 Diagrammatric Explanation of the
Cost Model Derivation 48
3.3 Average Time of Occurrence of an
Assignable Cause Within an Interval Between Subgroups 50
3.4 Schematic Description of the Search Procedure 60
4.1 Average Loss-Cost Vs. Probability of Upward Shift (a) for Overall Factor M, Average Over All Combinations of Factor δ 76
4.2 Average Loss-Cost Vs. Probability of Upward Shift (α) for Overall Factor δ, Average Over All Combinations of Factor M 78
4.3 Average Loss-Cost Vs. Magnitude of a Shift
in Process Mean (δ) for Overall Factor α, Average Over All Combinations of Factor M 80
4.4 Average Loss-Cost Vs. Magnitude of a Shift in Process Mean (δ) for Overall Factors M and a 87
4.5 Average Loss-Cost Vs. Probability of Upward
Shift (α) for Overall Factors δ and M 88
4.6 Average Loss-Cost Vs. Diminution of Hourly Income (M) for Overall Factors δ and α. 89

CHAPTER I

THE RESEARCH PROBLEM

Purpose

Concepts of statistical quality control have been widely applied as tools for process control in various industrial sectors. Control charts, a powerful statistical process control (SPC) tool, are used for determining incontrol/out of control status, troubleshooting processes, analyzing process capability, and maintaining statistical control. The most commonly used control chart is the Shewhart chart with 3-sigma control limits. It is designed to allow the inherent variability (or noise) of a process to roam randomly between control limits. It is assumed that an observed value that falls beyond control limits is an indication of the occurrence of an assignable cause in the process.

There are numerous modifications and extensions to Shewhart charts. One important development is the cumulative sum (Cusum) control chart, which is based upon sums of observations rather than upon individual observations. Some persons argue that the cumulative sum chart is more sensitive to process shifts than is the Shewhart chart. The use of any control chart is basically an economical problem.

The cost aspects of a process should be considered when any SPC procedure is utilized for process control.

The objective of this dissertation is to develop procedures for the design and optimization of a new and richer set of economically-based charts. This research deals with the design of Cusum control charts for the control of the mean of a process when the observations are independent. It extends process control charting by :

1. Defining and developing an economically-based Cusum control chart which explicitly recognizes asymmetric specification limits and asymmetric costs of being off-target.
2. Utilizing a process failure mechanism described by the Weibull distribution on the in-control time of the process (an exponential process failure mechanism is the most widely applied by researchers to date).
3. Developing an optimization procedure in which sample size n, sampling interval h, dead band values ku and $k L$, and decision intervals $d u$ and $d x$ are optimized.

The \bar{X} Control Chart

A control chart is a statistical device principally used for the study and control of repetitive processes. At the basis of the theory of control charts is a differentiation of the causes of variation in quality (Duncan, 1974). One type of variability, produced by "chance causes", is
inherent in a process and cannot be removed easily, if at all. In addition to this variability, there are sources of relatively large variation, called "assignable causes", which are attributed to variabilities in people, machines, materials, methods, and environments.

Shewhart suggests that samples of size $n=4$ or 5 be taken from a process at regular intervals (every h hours) and the samples' averages (\bar{X}) be plotted on a chart. Being a sample result, \bar{X} is subject to sampling fluctuations. The commonly used limits for an \bar{X} control chart are located at the process mean plus or minus three standard deviations $\left(\pm 3 \sigma_{\bar{x}}\right)$ of the sample averages as depicted in Figure 1.1. If no assignable causes occur in the process, \bar{X} 's are approximately normally distributed. In other words, the inherent variability of a process or a statistic calculated from process data is expected to fluctuate within six standard deviations. Assuming the normal distribution applies, there is a very small, 0.00135 , probability that a point will fall beyond the upper control limit; likewise, for the lower control limit. Therefore, if a point falls outside control limits, it should be inferred that one or more assignable causes exist in the process.

The introduction of the statistical design of the \bar{X} chart provides a scientific approach for control of the process mean. However, the suggested values of sample size $\mathrm{n}=4$ or 5 , and 3 -sigma control limits might result in a control chart plan which is far from optimal in an

$$
U C L=\mu+3 \sigma_{\bar{x}}
$$


```
UCL \(=\) upper control limit
    LCL = lower control limit
        \(\mu=\) process mean
        \(\sigma_{\bar{x}}=\) standard deviation of sample averages
    \(h=t i m e ~ i n t e r v a l ~ b e t w e e n ~ s u b g r o u p s ~\)
    \(\mathrm{n}=\) subgroup size
```

Figure 1.1 Design of An \bar{X} Control Chart
economical sense.

The Cumulative Sum Control Chart

The nature of Shewhart-type control charts, coupled with rules for reading them, is taking actions based on the last one or several plotted points. In order to increase the sensitivity of the control chart in detecting lack of control, Page (1954) proposeв a procedure which adapts a rule for action based on sums of observations, rather than individual observations. This is done by the use of a cumulative sum (or Cusum) chart. The Cusum chart is a system of charting that is based upon all the data since the last process change. It is supposed to detect a sudden and persistent change in the process average more rapidly than a comparable Shewhart chart.

Average Run Length. ARL

Page (1954) introduces the concept of the average run length for a Cusum chart. The value of the process mean and the Cusum chart decision variables determine the ARL. Suppose the cumulative sums are plotted for either the upward shift or the downward shift only. Then ARLSu represents the ARL of the process with an upward shift in the process mean; likewise, ARLSL represents the ARL of a downward shift.

Kemp (1961) presents a formula for computing the ARL of a two-sided Cusum chart. He considers a two-sided Cusum chart as a composition of two one-sided Cusum charts.

Letting ARLS 1 be the ARL of a two-sided Cusum chart with a shift in the process mean, it follows that ARLS 1 is given by the equation

$$
\frac{1}{A R L S_{1}}=\frac{1}{A R L S u}+\frac{1}{\text { ARLSL }}
$$

Kemp declares that this relation is not strictly confined to symmetric Cusum charts. In this dissertation, an asymmetric model is developed. The ARL for a process with either an upward shift or a downward shift in the process mean will be developed in more detail in a later chapter.

Subgroup Size, n, and Sampling Interval, h

Two of the decision variables with which this research is concerned are the subgroup size n and sampling interval h. Since this study is conducted on an economical basis, the optimal subgroup size and the time interval between subgroups is sought. It is assumed that the subgroup size n and sampling interval h are constant throughout the operation of the Cusum chart.

Decision Interval, d

As noted earlier, chance variation is the random variation which is inherent in the process. Assignable variation is due to a real change in the process mean. The decision interval is used to help distinguish which is which. The rule for deciding when a real change has occurred is to compute the accumulated sum of deviations from some "dead
band" value. If the accumulated sum exceeds d, it is concluded that the process mean has changed. The criterion for choosing d is a large ARL for the process operating at the acceptable quality level, $\mu \mathrm{a}$, and a small ARL when the process is running at the rejectable quality level, $\mu \mathrm{r}$. In this dissertation two values of $d, d u$ and $d L$, will be required due to the asymmetry allowed by the model.

Dead Band Value, k

Ewan and Kemp (1960) report that the use of a "dead band" will provide advantages by not permitting the Cusum chart to react to small changes in the mean. The dead band value often used is $k \approx k_{2}\left(\mu_{a}+\mu r\right)$. The value of k is obviously closely related to both μ_{a} and μ_{r}. The dead band value k requires that the sample statistic fall outside $k_{2}\left(\mu_{a}\right.$ $+\mu r$) before it adds to the cumulative sum; however, it can subtract from a positive cumulative sum even if it falls within the dead band.

In this dissertation, $k=\frac{1}{2}\left(\mu_{a}+\mu_{r}\right)$ is used. Again, there must be two values of $k, k u$ and $k L$, due to asymmetric conditions of the model.

Economically Based Cusum Charts

Traditionally, control charting is based on statistical criteria for process control. In recent years, attention has been focused on economical aspects of a Cusum chart, such as the cost of sampling, testing and maintaining
process surveillance.
Taylor (1968) initiates economical design concepts into cumulative sum control charts. He develops a formula giving approximately the long-run average cost per unit of operating time as a function of the Cusum scheme's decision variables and design parameters. Goel and Wu (1973), who follow Duncan's approach for the economical design of \bar{X} charts (1956), derive an economical model for Cusum charts. They employ the "pattern-search" method to determine the optimum values of the sample size, the sampling interval, the dead band value and the decision interval.

Only symmetric Cusum charts have been considered to date. An asymmetric Cusum scheme which better reflects reality is studied in this dissertation. In an asymmetric Cusum scheme the distance between the acceptable quality level and upper rejectable quality level is different from that of the acceptable quality level and lower rejectable quality level, as is the cost of reaching the upper or lower rejectable quality level. The concept of an asymmetric Cusum chart is illustrated in Figure 1.2. Based upon Duncan's concept, the best values of the decision variables subgroup size n, time interval between subgroups h, dead band values ku and kl, and decision intervals du and du will be determined using optimization techniques.

Figure 1.2 Design of An Asymmetric Cusum Chart

Process Failure Mechanism

Assumptions about the behavior pattern of a process are required to formulate the economically-based design of Cusum charts. An important assumption is the nature of the occurrence of assignable causes which shift the process from an in-control state to an out of control state. Montgomery (1980) describes this characteristic as the "process failure mechanism".

It is usually assumed that the process failure mechanism is an exponential random variable. This assumption considerably simplifies the algorithm for the development of economical models of Cusum schemes. Baker (1971) suggests that the choice of process failure mechanism has a somewhat significant impact on the optimally economical design of control charts. Gibra (1975) and Montgomery (1980) also suggest that it is necessary to investigate and recognize the physical failure pattern of the process so that the principle of economical design can be validly implemented. Saniga (1979) investigates the impacts of process failure mechanisms and the Markov property on the economical design of \bar{X} and R charts. He infers that the misusage of the process failure mechanism will result in a substantial loss of cost. Qureishi (1964) points out that statisticians have questioned the validity of the assumption of the exponential distribution for the life times of the units put to a test. Several researchers point out the exponential approximation to life-data is only a fair approximation for practical
purposes.
In this dissertation it is assumed that the nature of the occurrence of assignable causes is according to the Weibull distribution. The Weibull distribution is regarded as a better model for the process failure mechanism in the sense that it embraces a number of interesting situations. It can reduce to the exponential distribution or reduce to the Rayleigh distribution.

To avoid incorrect modeling, it is desirable to economically design a Cusum chart in which the process failure mechanism is administered by a more generalized distribution. Accordingly, the Weibull distribution is proposed rather than the exponential.

Summary of Research Objectives

Objective

The primary objective of this research is to:
Provide an operational tool which will permit the cumulative sum chart to be used in an economically optimum manner as an alternative to Shewhart control charts for monitoring a process in a realistic environment.

Subobjectives

In order to accomplish this objective, several subobjectives have to be satisfied :

1. Develop an economically-based model for evaluating

Cusum process control plans.
2. Provide for asymmetric rejectable quality levels and resultant costs of asymmetric process shifts.
3. Incorporate a process failure mechanism which is Weibull distributed.
4. Develop a computer program which approximately optimizes, based upon economics, the subgroup size n, sampling interval h, dead band values $k u$ and $k L$, and decision intervals $d u$ and du.

CHAPTER II

LITERATURE REVIEW

This chapter reviews developments in the literature pertaining to the objectives of this research. Substantiation for this particular research is elaborated upon.

Furthermore, other sources which correspond with the general concepts relevant to this study are presented.

This chapter is divided into five parts :

1. Shewhart control charts and their enhancements and modifications.
2. Economical design of \bar{X} control charts.
3. Cumulative sum control charts.
4. Economical design of cumulative sum control charts.
5. Process failure mechanisms.

Shewhart Control Charts and Their
Enhancements and Modifications

Shewhart (1931) originated the control chart for determining the state of statistical control of a process. Statistical quality control chart techniques have been applied widely in various fields, such as manufactured products, delivery services, research works, and developmental environments. Duncan (1974) and Vance (1983) point out that

Shewhart control charts are fundamentally used for one of the following three purposes: (a) to determine the goal or standard for a process that management might strive to acquire, (b) to judge whether the goal has been achieved, and (c) to maintain current control of a process.

Shewhart Control Charts and Their Enhancements

Shewhart (1931) develops the use of 3-sigma control limits as action limits. Meanwhile, he suggests the use of sample sizes of 4 or 5 as being appropriate for \bar{X} and R charts. The sampling interval is left to be determined by the quality control personnel or other concerned staff.

In the last four decades, many enhancements of Shewhart control charts have been suggested. For example, a run test on sample means has been widely used. Weiler (1953) suggests that to make use of consecutive runs for control charts for the process mean might significantly decrease inspection. Warning limits have also been proposed. Page (1962) adopts the concept of warning limits and demonstrates a scheme based on warning and action limits. In general, the scheme is superior to a scheme based on runs. The sensitivity of Shewhart control charts for detecting small shifts in the process mean from the specified or target value is investigated. Weindling et al. (1970) establishes a pair of warning limits, located inside the action limits, for detecting small shifts in process mean and indicating a
possible out of control condition. Hillier (1969) develops a method for setting the control limits for \bar{X} and R charts so that they can be reliably used regardless of how few subgroups have been inspected. Chung-How and Hillier (1970) provide guidance on what constants to use for mean and variance control chart limits if the power of the charts is of paramount importance, and computational considerations are secondary.

The background of computing limits on Shewhart control charts is built on a presumption of normality, justified by the Central Limit Theorem. Measurable quality characteristics often have non-normal distributions. The introduction of the assumption of non-normality is another enhancement to Shewhart control charts. Burr (1967) establishes tables which provide guidance on what constants to use for \bar{X} and R charts if the parent population is markedly non-normally distributed. Schilling and Nelson (1976) facilitate a numerical method for determining the cumulative probabilities of the distribution of sample means which is nonnormally distributed . Ferrell (1958) suggests that transformation is required when the underlying universe is badly skewed. Vasilopoulos and Stamboulis (1978) modify and extend the existing standard methodology by utilizing the time series analysis approach and by introducing dependence via a second order autoregressive process (AR(2) Model) when either independence and/or normality are not present.

Modifications of Shewhart Control Charts

The arithmetic mean and the subgroup range have been used to determine whether or not a state of statistical control exists for variables in Shewhart control charts. Moving Average, Moving Range, Median and Midrange, and the Geometric Moving Average (or Exponentially Weighted Moving average) charts represent general modifications of Shewhart control charts. The Cumulative Sum control charts are relevant to this classification, but they are presented in the next sections.

Moving Average and Moving Range control charts are used in situations where the time interval between subgroups is too great to collect sufficient samples as a rational subgroup. Or, they are used in continuous process manufacture (e.g., chemicals, refining, mining, etc.) where the smoothing effect of the moving average has an effect on the figures often similar to the effect on the product of the blending and mixing that happens in the remainder of the production process. The sensitivity of these control charts can be increased by allowing more successive points to be computed for the moving average. The more successive points averaged, the greater the smoothing effect and the more the curve emphasizes trends rather than point-to-point fluctuations.

Ferrell (1964) advocates the use of Median and Midrange charts using run-size subgroups for controlling certain processes. Nelson (1982) suggests the use of medians to
reduce the burdensome calculation of a mean in Shewhart control charts. In his approach, the setting of control limits is based upon the average of the subgroup medians and the average of the ranges.

Roberts (1959, 1966) suggests a procedure for generating geometric moving averages. The author shows that tests based upon geometric moving averages are better than multiple run tests and moving average tests with regard to simplicity and statistical properties. Wortham et al. (1974) present an adaptive exponentially smoothed control system. The adaptive nature is achieved by varying the weighting factor according to the value of a tracking signal. The authors also illustrate an example of an adaptive control chart with associated sensitivity curves which present the probabilities of acceptance as a function of sampling periods after a change in a process occurs. Robinson and Ho (1978) present a numerical procedure for the tabulation of average run lengths (ARL's) of geometric moving average charts. Both one- and two-sided ARL's are given for various settings of the control limits, smoothing constant and shift in the nominal level of process mean. Hunter (1986) describes a procedure to establish the control limits for exponentially weighted moving average schemes. The author declares that the exponentially weighted moving average can be used as a dynamic process control tool to provide a forecast of where the process will be in the next instant of time.

Economical Design of \bar{X} Control Charts

Duncan (1956) has established a model for the optimum economical design of the \bar{X} control chart. His paper was the first to deal with a fully economical model of a Shewharttype control chart. Duncan's paper leads the way to study in this area. In this model, the following assumptions are made about the process :

1. The process begins in a state of statistical control.
2. The process standard deviation (σ) remains the same in spite of the shifting mean of the process.
3. Due to an assignable cause the process mean may randomly shift to $\mu 0 \pm \delta \sigma$ and stay there until corrected.
4. The process is not shut down while searching for the assignable cause.
5. Neither the cost of adjustment or repair, nor the cost of bringing the process back into a state of statistical control after the assignable cause is discovered, is introduced into the economical model.
6. The specification limits are assumed to be symmetrically spaced about the desired process mean.
7. The loss-cost of a shift from $\mu 0$ to either $\mu 0+\delta \sigma$ or $\mu 0-\delta \sigma$ is assumed to be the same.

The process is monitored by an \bar{X} chart with central line at $\mu 0$ and upper and lower control limits at $\mu_{0} \pm k \sigma / \sqrt{n}$,
respectively. Samples are taken at intervals of h hours. The assignable cause is assumed to occur according to a Poisson process with an expectation of λ occurrences per hour. The parameters $\mu 0, \delta$, and σ are assumed known, while sample size n, the control limit spread k, and the sampling interval h are decision variables. The expected time the process will be out of control is the sum of three components :

1. The average number of sampling intervals necessary for detecting the shift times the length of each interval, minus the average time of occurrence of the assignable cause within an interval between samples.
2. The delay in plotting a point, which is assumed to be a linear function of the sample size.
3. The average time taken to find the assignable cause. A production cycle time is defined as the interval of time from the start of production in a state of statistical control to the detection and elimination of the assignable cause. The cycle, therefore, consists of the expected time the process will be in control and the expected time the process will be out of control.

Duncan presents a design criterion to minimize the loss-cost per unit of time. Cost incurred in the process contains four elements :

1. The loss of defective products being produced.
2. The average cost of a false alarm.
3. The average cost of a real alarm.
4. The average cost for sampling and maintaining control charts.

Several numerical approximations are used in the optimization of this model which essentially represent a sensitivity analysis for anticipated changes in the parameters of the model.

Goel et al. (1968) develop an iterative procedure to produce the exact optimal solution to Duncan's model (1956) by computer. Comparison is made between Duncan's approximate method and the developed procedure. The procedure is superior to Duncan's approximate optimization technique in some situations. However, in many cases the difference is insignificant.

Knappenberger and Grandage (1969) develop a method for choosing the decision variables n, h, and k in order to minimize the expected cost per unit produced. They assume that the time the process remains in control is an exponential random variable. In addition, it is assumed that the process mean is a continuous random variable which can be satisfactorily approximated by a discrete random variable. One value of the discrete random variable is associated with the in-control value of the process mean and the remaining values are associated with out of control values of the process mean. The expected total cost, per unit of product, associated with a quality control test procedure is similar to Duncan's model.

Optimization of the cost function is not developed analytically. Rather a two-stage numerical method is developed for determining the optimal decision variables, n, h, and k, of the \bar{X} chart. In the first stage, the expected cost is computed for a wide variety of decision variables, cost coefficients, and for the desired values of a priori distribution parameters. In the second stage, the preliminary estimates obtained from the first stage are used as the starting point for a search method designed to locate the optimal values of the decision variables within any desired accuracy.

Gibra (1971) develops a model for determining the optimal \bar{X} chart parameters for maintaining economical control of a process under practical conditions. These parameters are again n, h, and k. A cost function is formulated based upon Duncan's model. However, there is a difference. The sum of times required to take and inspect a sample, compute and plot a sample average, and to discover and eliminate the assignable cause has an Erlangian distribution. Gibra gives several examples to show how the formulated model can be applied and how the relevant cost function is minimized.

Chiu and Wetherill (1974) propose a simple, approximate procedure for optimizing Duncan's model. The principle for the choice of parameters is to minimize the average losscost, subject to a constraint on the oc-curve. One is free to choose a consumer's risk point on the oc-curve to acquire
a desired protection against inferior quality. One may then determine the values of the sample size and the control limit coefficients from a table, by a rule of thumb. The value of a sampling interval is calculated by an algebraic formula. Chiu and Wetherill declare that this method permits a rapid determination of the control parameters which generally yield an average cost close to the exact minimum. Furthermore, they show that in most cases, despite its simplification of the problem, the developed method gives better solutions than Duncan's more involved procedure (1956) with the added advantage that the OC-curve can be partly controlled by the user.

Baker (1971) develops two discrete-time models in which a sample of size n is taken at the end of each period and the computed statistic plotted on a control chart with ksigma limits. In the first process model the geometric distribution is applied to model the number of periods the process remains in the in-control state. In the second model any discrete probability function can be used to model the characteristic of the time to failure of a process. The author studies a Poisson time to failure and compares it to the usual geometric process model. It is shown that the former process results in smaller sample sizes and narrower control limits than will be economically optimal in the latter case.

Jones and Case (1981) develop an economical model to design a joint \bar{X} and R control charts with a minimum cost.

Duncan's model (1956) is used as a basis for subsequent economical model development. The decision variables are cample size, width of \bar{X} control chart limits, width of R control chart limits, and sampling interval in hours. Jones and Case emphasize the estimation of the expected time the process will be operating in an out of control condition. They assume that when a process is out of control, the resultant effect is an increase in the number of defective items produced which will cause additional economical losses. These losses are assumed to be dependent upon the types of out of control conditions and the length of time the process remains in each. Four control conditions are discussed in the model. That the mean and variance of the process are in control is defined as the in-control
condition. The out of control conditions ocour when either the process mean, the process variance, or both, are out of control. The four conditions form seven types of out-ofcontrol states.

Lorenzen and Vance (1986) present a general process for determining n, h, and k for the designs of the economical models of \bar{X}, p, and u charts. A general process model is considered, and the hourly cost function is derived. Numerical techniques to minimize this cost function are discussed, and sensitivity analyses are performed. They also illustrate an example to reveal the potential savings of this technique of designing control charts.

Duncan (1971) has generalized his assignable cause
model to the situation when there are several assignable causes. Each assignable cause produces a shift of known magnitude in the process mean. The occurrence times of the assignable causes are assumed to be independent exponential random variables. Duncan uses the direct search method to locate the local minimum of the cost function. The solutions to several example problems and a sensitivity analysis of the model are presented.

Cumulative Sum Control Charts

The control chart techniques mentioned in the previous sections are based on the rule, proposed by Shewhart, of taking action when a point falls outside of the "control limits," usually 3-sigma limits. It is a natural step to adopt a rule for action that is based upon sums of observations rather than the last few samples. This is done by the use of a cumulative sum control chart or "Cusum chart" as it has come to be called. The Cusum chart makes use of the historical data and provides an approach which is able to detect shifts in the process mean, especially if the shift is not large. It may also indicate the time of shifting more clearly by reviewing the trend of the cumulative sum.

Page (1954) initiates the Cusum chart scheme. Starting from a process revision and restart, all subsequent plots contain information from the whole set of observations up to, and including, the plotted point. That is, the ordinate of the ith point in a Cusum chart equals that of the (i-1)th
point plus the statistic value computed from the ith sample. Page introduces the average run length (ARL) to develop rules that use all the observations and that are suitable for detecting any magnitude of shift in the mean parameter. The inspection process developed permits detection of parameter variation in one and two directions. The value of the process mean determines the ARL of a Cusum scheme. Generally, the two specified mean levels are the acceptable quality level μ_{a} and the rejectable quality level μr, and the ARL at these quality levels are denoted by ARLo and ARL1, respectively.

Page (1961) examines the practice of Cusum charts. He declares that the cumulative sum schemes are much more sensitive than the ordinary Shewhart control chart. Johnson and Leone (1962) give a complete description of Cusum charts with some basic deviations. Ewan (1963) outlines the variety of continuous graphical control schemes and the types of processes for which Cusum charts are most appropriate. He compares Cusum charts with Shewhart and weighted mean charts. Ewan concludes that Cusum charts are more effective than Shewhart control charts in detecting sustained changes in the process mean in the region 0.5 -sigma to 2.0 -sigma. Ewan also discusses the practical scale problems, the use of exact decision procedures, sample size, sampling interval and detection of trends.

Bakir and Reynolds (1979) develop a nonparametric procedure based on Wilcoxon signed-rank statistics where
ranking is within groups. The procedure combines a Cusum chart with Wilcoxon statistics for quickly detecting any shift in the mean of a sequence of observations from a specified control value.

Johnson and Bagshaw (1974) study the effects of serial correlation on the performance of one-sided Cusum charts. Later, they (1975) develop another approximation to the cumulative sum charts which allows one to study the run length distribution after a change in level has occurred. They emphasize the effects on the run length distribution caused by the presence of serial correlation. Lucas and Crosier (1982) evaluate a standard Cusum control scheme and four modified Cusum control schemes for robustness. The average run length for each scheme is evaluated using a contaminated normal distribution, a distribution that has longer tails than the normal. They conclude that a Cusum control scheme that ignores the first suspected outlier, but gives an out of control signal for two successive outliers is found to perform well. Bissel (1984a) makes a comparison of the run length properties for Cusum schemes, Shewhart charts, and control charts with warning limits when there is a linear trend in the underlying mean.

Lucas (1985) and Vardeman and Ray (1985) describe design and implementation procedures for utilizing Cusum charts for attributes where the observations are Poisson or exponential random variables.

Woodall (1985, 1986) develops a method for designing
quality control charts on the basis of their statistical performance over specified in-control and out of control regions of control limit spreads. He divides and defines the control limit spread of a two-sided Cusum chart as in-control, indifference, and out of control states.

Although a change in trend on a cumulative sum chart will indicate that a change has occurred in the process, it is desirable to have a visual record of data in both directions, upward and downward, for indicating where the change occurs and when it needs an action. The use of a V-shaped mask is implemented for this purpose. The vertex of the mask is placed a distance, called the lead distance, ahead of the last plotted point. The process is considered to be in a state of statistical control as long as all previously plotted points fall within the arms of the mask. Johnson and Leone (1962) show how to determine the dimensions and the significant characteristics of the V-mask. Lucas (1976) discusses practical aspects of the design and the use of V mask control schemes. He recommends for plotting purposes a scale of one sample unit on the abscissa equaling two standard deviations of the process (2 2σ) on the ordinate. Lucas also presents a computational form of the V-mask. He declares that this form is especially helpful when the data arrive rapidly or when many parameters are being controlled simultaneously.

Ewan (1963) first proposes the use of two or more V masks simultaneously to improve the sensitivity of the Cusum
schemes to large shifts in the process mean. Later, Lucas (1973), Bissell (1979), and Rowlands et al. (1982) also advocate changes in the shape of the V-mask near its vertex, introducing a parabolic section. Lucas (1982) proposes a combined Cusum-Shewhart quality control scheme which will be classified as a modified V-mask.

Economical Design of Cumulative Sum

Control Charts

Taylor (1968) first introduces economical design concepts into cumulative sum control charts. He studies the economical design of Cusum charts for controlling the process mean having normally distributed quality characteristics with known variance. The costs of repairing the process, of operating out of control, and of maintaining the control chart are assumed known. The process is shut down while searching for the assignable cause. If the assignable cause is not a false alarm, then adjustment time and cost are added to the process. In his research, Taylor finds no statistical significance and no practical difference in the run lengths as the number of samples taken when the process leaves control varies between 0 and 50. Thus, he assumes that the average time between the first sample after the occurrence of the assignable cause and the last sample prior to its detection equals the product of the sampling interval times the value (ARLi-t/2). He develops a formula giving approximately the long-run average cost per unit of
operating time as a function of the sample size n, sampling interval h, and the Cusum scheme's design parameters.

Taylor utilizes the expressions, derived by Goldsmith and Whitfield (1961), for ARL for in-control and out-ofcontrol states to find by trial and error the values of the Cusum scheme's design parameters.

Goel and Wu (1973) follow Duncan's approach for the economical design of \bar{X} charts (1956) to derive their economical model of Cusum charts which gives the long-run average cost as a function of decision variables, n, h, k, and decision interval d. The value k is defined as half of the sum of the desired and the shifted process means. In addition, the expected elapsed time between the first sample after the occurrence of the assignable cause and the last sample prior to its detection is determined using the results derived by Taylor (1968). Goel and Wu assign an integer value to n and then employ the "pattern-search" technique to determine the optimum values of the sampling interval h and the decision interval d. They also investigate numerically the cost surfaces, the effects of shifts in parameters, cost factors and the expected time for an assignable cause to occur on the loss-cost surfaces and the optimum designs, which provide information about the neighborhood of the optimum.

Chiu (1974) uses the decision interval criterion to develop the economical model of a Cusum chart for quality surveillance. He follows the general modeling strategy of

Duncan's \bar{X} chart model but shuts down the process and makes a search for the assignable cause when the decision interval is exceeded. Chiu employs the Fibonacci search technique in two-dimensional space to find the optimum value of decision interval h, given sample size n. He also derives a simplified version of the algorithm which givee control plans close to optimum. A brief sensitivity analysis and a discussion of an extension of the model to a multiple cause system are given.

Goel (1968) makes a comparison for the economically optimal $\overline{\mathrm{X}}$ and Cusum charts. He shows that the Cusum chart is very efficient in detecting a lack of control where the shift in the process level is close to the value for which it is designed. If the actual shift is much smaller or much larger, an \bar{X} chart seems to be better. In general, more sampling will be required when using an \bar{X} chart while keeping both ARLo and ARLi equal for the two charts. Furthermore, the optimum loss-cost for the Cusum chart is slightly less than that of the \bar{X} chart. When a smaller than optimum sample size is used, the loss-cost difference makes the Cusum chart become more favorable. The variation in losscost for shifts smaller or larger than the designed value also shows that the Cusum chart is more economical than the $\overline{\mathrm{X}}$ chart.

Woodall (1986) studies the methods of designing Cusum quality control charts. He shows that the statistical performance of control procedures obtained using economical
models is often unsatisfactory. A numerical example is given to indicate that the more traditional Cusum procedure produces few false alarms, yet provides much more rapid detection of small shifts in the mean than the economically designed Cusum charts. Woodall declares that a major weakness of the economical models is that the shift that is assumed to occur when the process goes out of control usually corresponds to a substantial loss of quality and profit.

Process Failure Mechanisms

Duncan (1956) assumes that the occurrence of assignable causes during an interval between samples is according to a Poisson process. In other words, the time to failure is an exponential random variable. This assumption simplifies considerably the development of the economical model. Montgomery (1980) calls the characteristic of the occurrence of assignable causes the "process failure mechanism". Baker (1971) proposes a model that allows the probability function of the time to failure of a process to be any discrete probability function. He reports that a non-Markovian process with a Poisson failure mechanism results in smaller sample sizes and narrower control limits than will be economically optimal in the geometric case. Baker concludes that the choice of process failure mechanism has a somewhat significant impact on the optimal economical design of control charts.

Gibra (1975) and Montgomery (1980) suggest that it is essential to examine and understand the physical behavior of the deterioration process so that the principle of economical design can be validly implemented. Saniga (1979) investigates the effects of process failure mechanisms and the Markov property (the memoryless property) on the economical design of \bar{X} and R charts. He applies the long-run average time cost function developed by Baker (1971) to geometric, Poisson, and logarithmic series models. Numerical results are presented. These results indicate that both the Markov assumption and the process failure mechanisms are important determinants to the economically-based designs of \bar{X} and R control charts. Saniga infers that the use of an incorrectly specified process failure mechanism will result in a substantial loss of cost.

Johnson (1966) describes a method for construction of cumulative sum control charts for controlling the mean of sequences of independent variables each having the same Weibull distribution. He points out that a Weibull distribution often gives a markedly more accurate representation than the exponential. Johnson presents several results to show the use of such charts when a non-exponential Weibull distribution would be more appropriate.

Summary

A literature survey of the problems, contributions, and needs related to the objectives of this research is
presented. In the previous economically-based models of two-sided Cusum charts discussed above, all the researchers assume symmetric control limit spreads, symmetric decision intervals, and equal costs for either upward or downward shifts in the process mean. There has been no work done for seeking an optimum condition to the economically-based twosided Cusum chart scheme which is associated with asymmetric control limit spreads, asymmetric decision intervals, and unequal costs for a shift in either the upward or downward direction. Further, this survey substantiates that most of the currently available economical models assume that the occurrence of the assignable cause is according to a Poisson process. The task of formulating an economical model of the cumulative sum control chart with a Weibull distributed process failure mechanism is yet to be accomplished.

This survey indicates that a need exists to:

1. Provide an economically-based cumulative sum control chart model in which the process failure mechanism is Weibull distributed.
2. Introduce asymmetric rejectable quality levels, asymmetric process shifts, and unequal costs into this economically-based cumulative sum control chart.
3. Develop appropriate procedures for the optimal design of the proposed model.
4. Adopt decision variables, sample size n, sampling interval h, dead band values $k u$ and $k L$, decision
intervals du and de for modeling and optimization purposes.

CHAPTER III

MODEL DEVELOPMENT OF AN ASYMMETRICAL ECONOMICALLY-BASED CUSUM CHART

Introduction

This chapter analyzes the asymmetric cumulative sum chart and develops an economically-based model that is used to optimize the design of cumulative sum charts when associated with the Weibull process failure mechanism. The general economically-based modeling concepts developed by Duncan (1956) are applied in this research. However, they are applied to a Cusum chart, with an improvement on the assumption of the process failure mechanism to have a Weibull distribution of time to failure. This provides a more realistic model of the process environment. Concise assumptions and notation are presented to facilitate model development.

Assumptions

In order to develop the asymmetric cumulative sum chart, the following assumptions are made :

1. The asymmetric cumulative sum chart is applied to monitor and help maintain the statistical control of a process.
2. The process begins in a state of statistical control at a mean level $\mu 0$.
3. The process standard deviation σ remains the same in spite of mean shifts in the process.
4. The process mean may randomly shift, due to an assignable cause, to $\mu 0+\delta v \sigma$ or $\mu 0-\delta L \sigma$ and stay there until corrected.
5. The occurrence of the process mean shift is instantaneous; the process will not drift from the in-control state, such as is the case with tool wear.
6. The process is not shut down while searching for the assignable cause.
7. As soon as the assignable cause is found, it is fixed instantly.
8. Neither the cost of adjustment or repair, nor the cost of bringing the process back into a state of statistical control after the assignable cause is discovered, is introduced into the economic model.
9. The hourly cost of sampling, measuring, computing and plotting the control chart has a linear relationship with subgroup size.
10. The occurrence times for the assignable causes are independent and follow a Weibull distribution.

The assumption of an exponential failure mechanism is a special case of assumption number 10 . The other assumptions are similar to those used in Duncan's model (Duncan, 1956).

Notation

The following notation is introduced and will be employed throughout the entire dissertation.
n : The number of individual measurements or samples that comprise a subgroup.
h : The time interval between subgroups; subgroups of size n are taken from the process every h hours.
$d u$: The decision interval in the upward direction; cumulative sums beyond this value indicate a process mean shift.
$d \mathrm{~L}:$ The decision interval in the downward direction; cumulative sums beyond this value indicate a process mean shift.
ky : The "dead band" value for detecting upward shifts; subgroup averages must be beyond the "dead band" to begin adding to the cumulative sum.
kL : The "dead band" value for detecting downward shifts; subgroup averages must be beyond the "dead band" to begin adding to the cumulative sum.
θ, S : The parameters related to the time of occurrence of the assignable cause. The distribution of the process in control is Weibull distributed with a mean time $\theta \Gamma(1+1 / S)$, where $\theta>0$ is the scale parameter and $S>0$ is the shape
parameter. The density function of the Weibull distribution is
$f(t)=(S / \theta)(t / \theta)^{S-1} \exp \left(-(t / \theta)^{S}\right) ; t \geq 0$.
$E(f(t))$: The expected value of a function of variable t. $\mu, \mu 0$: The process mean μ has the standard or desired value μ_{0} before any shifting occurs.
σ : The standard or desired process standard deviation which remains the same in spite of the occurrence of any shift.
δv : The magnitude of an upward shift in the process mean, expressed in multiples of σ ($\delta v \sigma$); an upward shift will occur from μ_{0} to $\mu_{0}+\delta v_{\sigma}$.
$\delta \mathrm{L}:$ The magnitude of a downward shift in the process mean, expressed in multiples of σ ($\delta \mathrm{L} \sigma$); a downward shift will occur from μ_{0} to $\mu_{0}-\delta L \sigma$.

Vo : The hourly income which accrues from operation of the process in-control at mean level $\mu 0$.

Vu : The hourly income which accrues from operation of the process out of control at mean level $\mu 0+\delta v \sigma$.
V_{L} : The hourly income which accrues from operation of the process out of control at mean level Ho- $\delta \mathrm{L} \sigma$.

Mu : The diminution of hourly income attributed to the occurrence of an upward mean shift from μ_{0} to $\mu_{0}+\delta U_{\sigma} ; M U_{U}=V_{0}-V_{U}$.

ML : The diminution of hourly income attributed to
the occurrence of a downward mean shift from $\mu 0$ to $\mu 0-\delta L \sigma ; M_{L}=V_{0}-V_{L}$.
b : The cost per subgroup of sampling, measuring, computing, plotting, and making the acceptance/ rejection decision that is independent of the subgroup size.
c : The cost per unit of sampling, measuring, computing and plotting that is related to the subgroup size; the relationship is assumed to be linear.

D : The average time taken to find the assignable cause, once an out of control condition is detected.
e : The per unit average time for sampling, measuring, computing and plotting; this time is assumed proportional to the subgroup size n.
T : The average cost per event of searching for an assignable cause when none exists.
W : The average cost per event of searching for an assignable cause when one does exist.
α : The conditional probability that if there is a shift in the mean, the shift will be in the upward direction.
$1-\alpha$: The conditional probability that if there is a shift in the mean, the shift will be in the downward direction.
Γ_{0} : The proportion of time the process is in a state
of statistical control $(\mu=\mu 0)$.
ΓU : The proportion of time the process is out of control in the upward diretion ($\mu=\mu 0+\delta v \sigma$).

ГL : The proportion of time the process is out of control in the downward direction ($\mu=\mu 0-\delta L \sigma$).

Tin : The expected length of time a process is incontrol at the acceptable quality level.

ARLo : The expected number of subgroups taken until a false alarm is indicated when a process is incontrol at the acceptable quality level.

ARL 1 : The average number of subgroups taken before a shift in the process mean from μ_{0} to either $\mu 0+\delta \omega \sigma$ or $\mu 0-\delta L \sigma$ is detected by virtue of exceeding either the upper decision interval or the lower decision interval.

ARLAU ($\delta \mathrm{U})$: The average number of subgroups taken following an upward shift from μ_{0} to $\mu_{0}+\delta v \sigma$ before detection by virtue of the cumulative sum exceeding decision interval du.

ARLAU ($\delta \mathrm{L}$) : The average number of subgroups taken following a downward shift from $\mu 0$ to $\mu 0-\delta L \sigma$ before detection by virtue of the cumulative sum exceeding decision interval du.

ARLAL($\delta \mathrm{U})$: The average number of subgroups taken following an upward shift from $\mu 0$ to $\mu_{0}+\delta u \sigma$ before detection by virtue of the cumulative sum exceeding decision interval dL.

ARLAL($\delta \mathrm{L})$: The average number of subgroups taken following a downward shift from $\mu 0$ to $\mu 0-\delta L \sigma$ before detection by virtue of the cumulative sum exceeding decision interval du.

ARLA1 ($\delta u)$: The average number of subgroups taken before an upward shift from μ_{0} to $\mu_{0}+\delta \omega \sigma$ will be detected by virtue of exceeding either the upper decision interval or lower decision interval.

ARLA1($\delta \mathrm{L})$: The average number of subgroups taken before an upward shift from $\mu 0$ to $\mu 0$ - δ Lo will be detected by virtue of exceeding either the upper decision interval or lower decision interval.
T_{1} : The average time elapsed from the time the process mean shifts from μ_{0} to either $\mu_{0}+\delta u_{0}$ or $\mu 0-\delta L \sigma$ until the detecting subgroup is taken.

T2 : The average time elapsed for sampling, measuring, computing and plotting a sample statistic and finding an assignable cause.

ATOWI : The expected time of occurrence of a process shift within a particular interval between subgroups.

ETOPS : The expected time of occurrence of a process shift within the interval between subgroups, over all intervals between subgroups.

ENSIN : The expected number of subgroups taken during the period of the process in control.

Tout : The expected length of time a process is out of control at a rejectable quality level.

Tcycle : The average time for one in-control, out of control cycle.

Model Formulation

General Structure

The operation of a two-sided Cusum control scheme for surveilling the process mean comprises three basic procedures: (1) sampling and measuring subgroups of size n at regularly spaced intervals of h hours, (2) computing and plotting the cumulative sums

$$
S_{j u}=\operatorname{Max}\left(0, \bar{X}_{j}-k U+S(j-1) U\right)
$$

and

$$
S_{j L}=\operatorname{Max}\left(0, k L-\bar{X}_{j}+S(j-1) L\right)
$$

for subgroup j (SOU $=S O L=0)$, and (3) comparing the cumulative sums $S_{j u}$ and S_{j} to the decision intervals du and di, respectively. Whenever the computed value $S_{j u}$ of a plotted point is greater than or equal to the upper decision interval, du, it indicates the likely occurrence of an upward shift in the process mean. Similarly, if the computed value $S_{j} \mathrm{~L}$ of a plotted point is greater than or equal to the lower decision interval, du, it indicates a likely downward shift in the process mean. In other words, a decision that the process mean has shifted from the desired value is reached when either the upper or the lower decision interval is exceeded. Therefore, the subgroup size n, time
interval between subgroups h, dead band values $k u$ and $k L$, and decision intervals $d u$ and du are the decision variables required for implementing a two-sided Cusum control chart.

Average Run Length (ARL)

The run length of a control scheme is the number of subgroups necessitated before there is an out of control signal. An out of control signal indicates that an assignable cause has probably occurred in the process and that action should be taken to search for and remove the assignable cause. The ARL is used as a performance measure to evaluate the Cusum control chart. The decision variables n, $h, k u, k L, d u$, and $d L$ of the Cusum chart determine values of ARLo and ARLi at acceptable and rejectable quality levels, respectively. In general, a good control chart scheme has a very large value of ARLo, when the process is in-control, and a very small ARL1, when the process mean has shifted.

The desired values of ARLo and ARLi at the acceptable and rejectable quality levels, respectively, are generally specified, in order to determine the decision variables of a Cusum control scheme. The decision variables are then formed by using nomograms of Ewan and Kemp (1960), Goel (1968) or Geol and $W u(1973)$ to satisfy, approximately, the specified ARLo and ARL1. This approach of designing the Cusum control scheme does not, however, take into consideration the cost aspects of the process and the time interval between subgroups, h, which has to be determined by some
rule of thumb. In general, nomograms are inconvenient and not precise.

Economically designed Cusum control schemes require repeated $A R L$ computations to minimize an expected cost function. Vance (1986) presents a computer program for evaluating the ARL. This program is used to avoid the drawbacks of nomograms. However, Vance's ARL program produces an ARL value for one-sided Cusum control schemes. Fortunately, one may consider a two-sided Cusum control scheme as a synthesis of two one-sided Cusum control schemes. An asymmetric two-sided Cusum control scheme will have to deal with the magnitudes of an upward shift $\delta v \sigma$ and a downward shift $\delta \mathrm{L} \sigma$ in the process mean, upper and lower dead band values, $k u$ and $k L$, and upper and lower decision intervals, du and dL. Recall that ARLAl($\delta \mathrm{u})$ is the average number of subgroups taken before a magnitude of upward shift δu will be detected by virtue of exceeding either the upper decision interval or lower decision interval. Kemp (1961) shows that

$$
\frac{1}{\operatorname{ARLA} 1(\delta u)}=\frac{1}{\operatorname{ARLA}(\delta u)}+\frac{1}{\operatorname{ARLAL}(\delta v)}
$$

Likewise, recall that ARLAl($\delta \mathrm{L})$ is the average number of subgroups taken before a magnitude of downward shift $\delta \mathrm{L}$ will be detected by virtue of exceeding either the upper decision interval or lower decision interval. Then,

$$
\frac{1}{\operatorname{ARLA} 1(\delta L)}=\frac{1}{\operatorname{ARLAU}(\delta L)}+\frac{1}{\operatorname{ARLAL}(\delta L)} .
$$

It is assumed that there is a possibility α that the process mean will shift upwardly. Then the ARL, ARLi, of the twosided Cusum control scheme is given by
$\operatorname{ARL}_{1}=\alpha * \operatorname{ARLA}_{1}(\delta U)+(1-\alpha) * \operatorname{ARLA}_{1}(\delta \mathrm{~L})$.

Nature of the Process and Cycle Time

The process starts at time $t=0$ in a state of statistical control with a mean value $\mu 0$ and a known standard deviation σ which remains constant. An assignable cause occurs randomly and causes a shift in the process mean of a known magnitude, either $\delta u \sigma$ or $\delta L \sigma$. Therefore, the shifted process mean is either $\mu=\mu 0+\delta u \sigma$ or $\mu=\mu_{0}-\delta \mathrm{L} \sigma$, depending on the direction of shift. The process stays at this level until the shift is detected and adjustments are made to bring the process back to the desired mean value, $\mu 0$. Then it stays in an in-control condition until the next assignable cause occurs.

The cycle time of the process is defined as the total time of the process, starting from an in-control state, shifting to an out of control condition, detecting the lack of control and finding the assignable cause. In other words, cycle time is composed of durations in-control, out of control before detection of the assignable cause, and while searching for the assignable cause. An illustration of cycle time is given in Figure 3.1.

Figure 3.1. Cycle Time

Derivation of the Economic Model

Average cycle time plays an important role in determining the cost components of the model. When the average cycle time is determined, then the cost components can be converted to an hourly cost basis. A diagrammatic explanation of the procedures involved in the derivation is given in Figure 3.2.

Average In-control, Out of control

and Cycle Time

As illustrated in Figure 3.2, the average cycle time is developed as follows:
(1)

Average Average Average time the process is cycle $=$ in-control + out of control before a time time detecting subgroup is taken
(3)

$$
\begin{array}{cc}
\text { Average time for sampling, } & \text { Average time } \\
+ \text { measuring, computing and } & \text { seeking for the } \\
\text { plotting a subgroup } & \text { assignable cause }
\end{array}
$$

(1) From Eq. (3.1), the probability that an assignable cause occurs in the interval t to $t+\Delta t$ is approximately

$$
f(t) \Delta t=(S / \theta)(t / \theta)^{S-1} \exp \left(-(t / \theta)^{S}\right) t
$$

The average time required for the assignable cause to occur is

$$
E(f(t))=\int_{0}^{\infty} t f(t) d t=\theta \Gamma(1+1 / S)
$$

The time period the process remains in the in-control state, given that it begins in-control, is equal to the

Figure 3.2. Diagrammatric Explanation of the Cost Model Derivation
mean of the distribution governing the process failure (mean shift) mechanism. Hence the expected length of time. Tin, for which the process is in-control at level $\mu 0$ is given by

$$
\begin{equation*}
T_{\text {in }}=\theta \Gamma(1+1 / S) . \tag{3.2}
\end{equation*}
$$

(2.a) If subgroups are taken at intervals of h hours, then given the occurrence of the assignable cause in the interval between the ith and (i+1)th subgroup (see Figure 3.3), the average time of occurrence within that interval is given by

$$
\text { ATOWI }=\frac{\int_{i h}^{(i+1) h} f(t)(t-i h) d t}{\int_{i h}^{(i+1) h} f(t) d t}
$$

This can be simplified as follows :

$$
\begin{align*}
\text { ATOWI } & =\frac{\int_{i h}^{(i+1) h} f(t) t d t-\int_{i h}^{(i+1) h} f(t) i h d t}{\int_{i h}^{(i+1) h} f(t) d t} \\
& =\frac{\int_{i h}^{(i+1) h} f(t) t d t}{\int_{i h}^{(i+1) h} f(t) d t}-i h .
\end{align*}
$$

When t is Weibull distributed, from Eq. (3.1) ATOWI is as follows:

> Figure 3.3. Average Time of Occurrence of Assignable Cause Within an Interval Between Subgroups

$$
\begin{aligned}
& \text { ATOWI }=\frac{\int_{i h}^{(i+1) h}(S / \theta)(t / \theta)^{S-1} \exp \left(-(t / \theta)^{S}\right) t d t}{\int_{i h}^{(i+1) h}(S / \theta)(t / \theta)^{S-1} \exp \left(-(t / \theta)^{S}\right) d t}-\text { ih } \\
& \text { Letting }(t / \theta)^{S}=u, \text { then }(S / \theta)(t / \theta)^{S-1} d t=d u . \text { Also, } \\
& (t / \theta)^{S}=u \text { implies that } t / \theta=u^{1 / S} \text { or } t=\theta u^{1 / S} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \text { S } \\
& \operatorname{ATOWI}=\frac{\int_{(i h / \theta)}^{((i+1) h / \theta)} \mathrm{u}^{1 / S} \exp (-u) d u}{\int_{(i h / \theta)}^{((i+1) h / \theta)^{S}} \operatorname{s} \exp (-u) d u}-i h \\
& =\frac{\theta\left(\gamma\left((1+1 / S),((i+1) h / \theta)^{S}\right)-\gamma\left((1+1 / S),(i h / \theta)^{S}\right)\right)}{\exp \left(-(i h / \theta)^{S}\right)-\exp \left(-((i+1) h / \theta)^{S}\right)} \\
& \text { - ih, } \tag{3.4}\\
& \text { where } \\
& \gamma(a, x) \text { represents the incomplete Gamma integral; } \\
& \gamma(a, x)=\int_{0}^{x} \exp (-t) t^{a-1} d t .
\end{align*}
$$

(2.b) Given the average time of the occurrence of the assignable cause between subgroups i and $i+1$ (ATOWI) above, in Eq. 3.3, the expected time of occurrence of the assignable causes within an interval is given by

$$
\begin{aligned}
\text { ETOPS } & =\sum_{i=0}^{\infty} \text { ATOWI } \int_{i h}^{(i+1) h} f(t) d t \\
& =\sum_{i=0}^{\infty} \int_{i h}^{(i+1) h} f(t)(t-i h) d t \\
& =\sum_{i=0}^{\infty}\left(\int_{i h}^{(i+1) h} f(t) t d t-i h \int_{i h}^{(i+1) h} f(t) d t\right) .
\end{aligned}
$$

(2.c) When the process mean shifts from μ_{0} to $\mu_{0}+\delta v_{\sigma}$, then the average number of subgroups taken before the shift in the process will be caught by virtue of the cumulative sum exceeding decision interval du is ARLAu($\delta u)$, and by virtue of exceeding dL, ARLAL($\delta \mathrm{v}$). Kemp (1961) shows that the average number of subgroups taken before this upward shift in the process will be caught is ARLA1 ($\delta \mathrm{U})$, where

$$
\frac{1}{\operatorname{ARLA} 1(\delta U)}=\frac{1}{\operatorname{ARLA}(\delta U)}+\frac{1}{\operatorname{ARLAL}(\delta U)}
$$

(2.d) When the process mean shifts from $\mu 0$ to $\mu 0-\delta L \sigma$, then the average number of subgroups taken before the shift in the process will be caught by virtue of the cumulative sum exceeding decision interval du is ARLAu($\delta \mathrm{L}$), and by virtue of exceeding dL, ARLAL($\delta \mathrm{L})$. Therefore, the average number of subgroups taken before this downward shift in the process will be caught is ARLA1($\delta \mathrm{L})$, where

$$
\frac{1}{\operatorname{ARLA}_{1}(\delta L)}=\frac{1}{\operatorname{ARLAU}(\delta L)}+\frac{1}{\operatorname{ARLAL}(\delta L)} .
$$

(2.e) The average number of subgroups taken before a shift
in the process mean is caught is noted as ARL1. That is, ARL1 is the ARL of an asymmetric two-sided Cusum control chart when the process is out of control and is given by

$$
\operatorname{ARL}_{1}=\alpha * \operatorname{ARLA}_{1}(\delta u)+(1-\alpha) * \operatorname{ARLA}_{1}(\delta L) .
$$

Therefore, the average time elapsed for which the process mean will be at the rejectable quality level before the detecting subgroup is given by $\mathrm{T}_{1}=\mathrm{ARL}_{1} * \mathrm{~h}-\mathrm{ETOPS}$.
(3) The time required to sample, measure, compute, and plot a point is proportional to the subgroup size n. That. is, delay until a point is plotted is en hours.
(4) An average time of D hours is required to find an assignable cause after its detection. Thus, the process will continue at the rejectable quality level for an additional $T 2=e n+D$ hours since the process is not shut down while searching for the assignable cause. Therefore, the total expected time the process is out of control, Tout, is given by

$$
\begin{align*}
\text { Tout } & =\mathrm{T}_{1}+\mathrm{T} 2 \\
& =\text { ARL } 1 * \mathrm{~h}-\mathrm{ETOPS}+\mathrm{en}+\mathrm{D} . \tag{3.4}
\end{align*}
$$

Combining expressions in Eqs. (3.2) and (3.4), the average time Tcycle for one in-control, out of control cycle is given by

$$
\begin{aligned}
\text { Tcycle } & =\text { Tin }+ \text { Tout } \\
& =\theta \Gamma(1+1 / S)+\text { ARL } 1 * h-E T O P S+e n+D .
\end{aligned}
$$

Coct Eormulation

The components of this model are (1) loss due to defective products being produced, (2) cost of searching for an assignable cause when none exists, (3) cost of searching for an assignable cause when one exists, and (4) cost of sampling, measuring, computing and plotting the control chart.

Based upon the average in-control, out of control and cycle time, the hourly net income from the process is developed as follows:
(1)
(2)

Process average Average hourly Average hourly hourly $=$ in-control + out of control net income income income
(3)
(4)

Average hourly Average hourly - false alarm - real alarm cost cost
(5)

Average hourly cost for sampling,

- measuring, computing and plotting the control chart
(1) The proportion of time a process is in-control is

$$
\Gamma_{0}=\frac{\theta \Gamma(1+1 / S)}{T c y c l e}
$$

Therefore, the average hourly income due to the process being in-control is Vo「o.
(2.a) The proportion of the time a process will be out of control due to an upward shift in the process is

$$
\Gamma u=\frac{a *(\operatorname{ARLA} 1(\delta u) * h-\operatorname{ETOPS}+e \mathrm{n}+\mathrm{D})}{\operatorname{Tcycle}} .
$$

Thus, the average hourly income due to the process being out of control in the upward direction is Vuru.
(2.b) The proportion of the time a process will be out of control due to a downward shift in the process is

$$
\Gamma_{L}=\frac{(1-\alpha) *(\operatorname{ARLA} 1(\delta L) * h-\operatorname{ETOPS}+e n+D)}{T c y c l e} .
$$

Thus, the average hourly income due to the process being out of control in the downward direction is Vl「l.
(3.a) A false alarm occurs when the cumulative sum value of a subgroup reaches either the upper or lower decision interval, while the process is actually in-control. The false alarm demands a search for the nonexistent assignable cause. The average number of subgroups, taken from an in-control process, between false alarms is ARLo. Hence the proportion of time a subgroup point will fall outside the decision interval when the process is in-control is $1 / A R L o$.
(3.b) If the process goes out of control in the ith interval, the expected number of subgroups taken during the period in which the process is in-control is given by

$$
\operatorname{ENSIN}=\sum_{i=0}^{\infty} \int_{i h}^{(i+1) h} i f(t) d t
$$

Using Eq. (3.1), ENSIN is as follows :
ENSIN $=\sum_{i=0}^{\infty} \int_{i h}^{(i+1) h} i(S / \theta)(t / \theta)^{S-1} \exp \left(-(t / \theta)^{S}\right) d t$
Letting $(t / \theta)^{S}=u$, then $(S / \theta)(t / \theta)^{S-1} d t=d u$. Also,

$$
(t / \theta)^{S}=u \text { implies that } t / \theta=u^{1 / S} \text { or } t=\theta u^{1 / S} \text {. }
$$

$$
\text { ENSIN }=\sum_{i=0}^{\infty} i\left(\exp \left(-(i h / \theta)^{S}\right)-\exp \left(-((i+1) h / \theta)^{S}\right)\right)
$$

$$
5 \quad 5
$$

$$
=\exp (-(h / \theta))+2 \exp (-(2 h / \theta))+\cdots+n \exp (-(n h / \theta))+\cdots
$$

$$
-1 \exp \left(-(2 h / \theta)^{S}\right)-\cdots-(n-1) \exp \left(-(n h / \theta)^{S}\right)-\cdots
$$

$$
=\exp \left(-(h / \theta)^{S}\right)+\exp \left(-(2 h / \theta)^{S}\right)+\exp \left(-(3 h / \theta)^{S}\right)+\cdots
$$

$$
=\sum_{i=1}^{\infty} \exp \left(-(i h / \theta)^{S}\right)
$$

(3.c) The average hourly false alarm cost is therefore

$$
\frac{\frac{1}{\operatorname{ARLo}} * \mathrm{~T} * \operatorname{ENSIN}}{\mathrm{Tcycle}}
$$

(4) The process is truly out of control once every Tcycle hours. Therefore, the average number of times per hour that the process actually goes out of control is
 cause when it occurs is W, the average cost per hour for finding as actual alarm will be W/Tcycle.
(5) The average hourly cost for sampling, measuring, computing and plotting charts is

$$
\frac{\mathrm{b}+\mathrm{cn}}{\mathrm{~h}} .
$$

The process hourly net income is therefore:

$$
\begin{aligned}
& 1 \\
& \text { - } * \mathrm{~T} * \operatorname{ENSIN} \\
& I=V_{0} \Gamma_{0}+V_{U} \Gamma U+V_{L} \Gamma_{L}-\frac{A R L 0}{T c y c l e}-\frac{W}{T c y c l e}-\frac{b+c n}{h} \\
& \text { Since } M U_{U}=V_{0}-V_{U}, M_{L}=V_{0}-V_{L} \text { and } \Gamma_{0}+\Gamma u+\Gamma_{L}=1 \text {, } \\
& V_{0} \Gamma_{0}+V_{U} \Gamma u+V_{L} \Gamma_{\mathrm{L}}=V_{0} \Gamma_{0}+\left(V_{0}-M_{u}\right) \Gamma \mathrm{U}+\left(V_{0}-M_{L}\right) \Gamma_{\mathrm{L}}
\end{aligned}
$$

$$
\begin{aligned}
& =V_{0}-M u \Gamma u-M l \Gamma ц
\end{aligned}
$$

Thus,

$$
\begin{aligned}
I & =V_{0}-M_{U} \Gamma u-M_{L} \Gamma L-\frac{\frac{1}{A R L o} * T * \operatorname{ENSIN}}{T c y c l e}-\frac{W}{\text { Tcycle }}-\frac{b+c n}{h_{2}} \\
& =V_{0}-L .
\end{aligned}
$$

where
$L=\operatorname{Loss}-\cos t$

$$
\begin{aligned}
& =M u \Gamma U+M L \Gamma L+\frac{\frac{1}{\operatorname{ARL} 0} * T * \text { ENSIN }}{T c y c l e}+\frac{W}{T c y c l e}+\frac{b+c n}{h} \\
& =M u \Gamma u+M L \Gamma L+\frac{T * E N S I N+W * A R L O}{A R L O * T c y c l e}+\frac{b+c n}{h} .
\end{aligned}
$$

According to the formulation above, to maximize average hourly net income is equivalent to minimizing the loss-cost L. This observation corresponds to that of Duncan.

Optimal-Seeking Methods

The economically-based Cusum chart model is now used to find an optimal or near-optimal combination of values of the decision variables, minimizing the loss-cost L and thereby
maximizing the average hourly net income of the process. An analytically definite optimal solution has not been determined for the value of L as a loss-cost function of the decision variables $n, h, k u, k L, d u$, and $d t$. A multidimensional direct search technique is used for nearoptimizing the loss-cost function.

The Nelder-Mead simplex procedure (Nelder and Mead, 1965) (O'Neill, 1971) is utilized as the search algorithm. Olsson and Nelson (1975) show the generality of the NelderMead simplex method, its accuracy, and the simplicity of the information required for the computer input statement. This method is described for the minimization of a multivariable function without constraints. The simplex procedure derives its name from the geometric figure which is moved along the response surface in search of the minimum. No derivatives of the objective function are required, which is a so-called "direct" procedure.

The simplex procedure approaches the minimum by moving away from the highest values of the objective function rather than by trying to move in a line toward the minimum. The procedure is operated by reflection, extension, contraction or shrinkage so as to conform to the characteristics of the response surface. The operation continues until either a specified number of evaluations has been reached or the function values differ from themselves by less than a specified amount. Based on empirical evidence, multiple starting points are required in order to lend confidence
that an optimal or near-optimal solution of the loss-cost function has been reached.

In this research, the subgroup size n is the only decision variable which must be an integer. A brief schematic description of the search procedure is given in Eigure 3.4. Following is a more detailed description of the search procedure.

1. Fix $k v$ and $k L$ at the middle of the desired process mean and upper rejectable quality level and lower rejectable quality level, respectively. Apply the Nelder-Mead algorithm with the other four variables to find the near-optimal point of real values of n, $h, d u$ and $d L$.
2. With $k u$ and $k L$ remaining at the same values as they were in step 1 , the real value of subgroup size n is truncated to an integer and treated as a constant. The values of $h, d u$ and $d L$, obtained from the preceding step, serve as a new starting point in the direct search which is then performed on decision variables h, $d u$ and $d L$. The result of $h, d u$ and $d L$ with this integer value n and fixed ku and kL is treated as an intermediate best solution.
3. Repeat step 2 by doing a line search along integer values of n to find the minimum loss-cost.
4. Let the best result realized in step 3 be a new starting point and, with n fixed, do a five variables direct search to optimize values of $h, d u, d L$,

1
Input:
Process Parameters: S, θ, σ, α, Target, $\delta u, \delta L$.
Cost and Time Factors: b, c, D, e, T, W, Mu, Mu.
Initial Point: $n, h, d u, d u, k u, k l$.

- Keep kv and kl constant.
- Input criteria \& step size for optimizing $n, h, d u$ and du.
- Optimize $\mathrm{n}, \mathrm{h}, \mathrm{du}, \mathrm{d} ;$ determine loss-cost.
- Truncate n to an integer n^{*}; let $n=n^{*}$.
- Keep kv and kl constant.
- Input criteria \& step size for
optimizing h, $d u$ and de.
- Optimize $h, d u, d u ; ~ d e t e r m i n e ~ l o s s-c o s t . ~$

Figure 3.4. Schematic Description of the Search Procedure

4n and Ku.
5. Trerementeiny vary du and well as $k u$ and $k L$ on the result of step 4 . final outcome is then the vest or moar-bect decision variable set ($n, h, k u$, AL, dv, dil for thencally-based Cusum chart.
 search procedure wh Hed to slighty better outcome in most of the ones.

In cases, search methods do not require continuity of the objective function and the existence of derivatives. However, in general, in golving unconstrained nonlinear programming problems, gradient and second-derivative methods converge faster than direct search methods.

Summary

An economically-based model is developed to describe the use of a generalized Cusum chart. This model is developed using Duncan's approach to the economical design of control charts. The mathematical development and derivation of the hourly net income for this generalized Cusum chart is discussed. The model developed in this chapter has the characteristic of representing various process failure mechanisms while Duncan's model only deals with the exponential time to failure mechanism. In addition, this model has the added capability of dealing directly with asymmetrical upper and lower decision intervals, dead bands and costs.

An opetimization procedure is used to find the decision variables w_{n} kv, $k L, d u$, and di required to construct the control chand minimize the loss-cost function. The minimas loseos design is equivalent to the design which maximizes howrly net income of a process. The Nelder-Mead direct search algorithm is utilized in this optimization procedure.

CHAPTER IV

RESULTS, COMPARISON AND ANALYSIS

Introduction

This chapter first discusses results achieved on Cusum charts of symmetric design. Results of the economicallybased model are compared with those of Goel (1968) based on his data sets numbered 1,16 and 21 . Then the asymmetric design is presented through Goel's number 1 data set.

Factors which produce asymmetry of the model are: (1) a, the conditional probability that if there is a shift in the mean, the shift will be in the upward direction, (2) δ, the magnitude of the shift in the process mean in either the upward direction, $\delta \mathrm{u}$, or downward direction, $\delta \mathrm{L}$, (3) M , the diminution of hourly income that attributes to the occurrence of the assignable cause in either the upward direction, Mu, or downward direction, ML. A 3251 factorial experiment is conducted to verify the validity of the asymmetric design. Different initial points are employed to confirm the validity of the model and its associated search procedure.

Comparison of Results for the Symmetric Design

In order to validate the economically-based asymmetric model developed in Chapter III and the search procedure associated with the model, three representative examples from Goel's research (1968) are optimized. The costs and other relevant parameters for these three examples are given in Table 4.1.

TABLE 4.1
COST AND RISK FACTORS AND PARAMETERS FOR THREE EXAMPLES

Example No.	$\boldsymbol{\lambda}$	δ	M	e	D	T	W	b	c
1	0.01	2.0	100.00	0.05	2	50	25	0.5	0.1
16	0.01	1.0	12.87	0.05	2	50	25	0.5	0.1
21	0.01	0.5	2.25	0.05	2	50	25	0.5	0.1

Goel presents his results based on a minimum cost criterion for a two-sided symmetric Cusum chart. Subgroup size n, time interval between subgroups h, decision intervals $d u$ and $d L$, and loss-cost values for these examples are reevaluated and are listed in Table 4.2. These results for the economically-based design are computed under the conditions: (a) $\alpha=0.5$, (b) $M u=M L$, and (c) $\delta v=\delta L$. Thie
is the only circumstance in which the asymmetric model developed herein is used to optimize a symmetric two-sided Cusum chart. Based on the results listed in Table 4.2, it can be noted that the asymmetric model developed has results very close to those of Goel's Cusum chart.

TABLE 4.2
RESULTS FOR GOEL'S CUSUM CHART AND ECONOMICALLY-BASED DESIGN

Ixanple$10 .$	Goel's cosor chart as evaluated by Goel				Goel's CoSOM chart as eraloated by adel dereloped					cosor chart as optinised and evaluated by asfuetric nodel				
	-	1	d	Cost	-	b	di	dt	Cost	1	,	dr	dt	Cost
1	5	1.4	0.39	4.0093	5	1.40	0.39	0.39	4.0888	5	1.40	0.3893	0.3895	4.0088
16	14	5.4	0.23	1.4128	14	5.40	0.23	0.23	1.4113	14	5.40	0.2371	0.2472	1.1113
21	37	22.29	0.123	0.8339	37	22.29	0.123	0.123	0.8289	38	24.22	0.1069	0.1063	0.8291

A further comparison is to calculate the loss-costs for varying subgroup sizes of these 3 examples. The results are listed in Table 4.3. These loss-costs provide a measure of the performance of the control chart. From Table 4.3, the validity of the economically-based design and its associated search procedure can be confirmed.

Different initial points are employed to further validate the model and its associated search procedure. Each example is performed starting from two subgroup sizes to search for the optimal or near-optimal plan. As shown in

TABLE 4.3
LOSS-COSTS FOR VARIOUS SUBGROUP SIZES
FOR THREE EXAMPLES

Exanple Ho.	Subgroup size	Goel's COSOH chart as eraluated by Goel	LOSS-COST Goel's COSOH chart as evaluated by nodel developed	COSDH chart as optinized and eraluated by asynetric adel
1	3	4.1265	4.1257	4.1264
	4	4.0232	4.0225	4.0227
	5	4.0093	4.0088	4.0088
	6	4.0464	4.0461	4.0462
16	13	1.4138	1.4122	1.4191
	14	1.4128	1.4113	1.4113
	15	1.4145	1.4130	1.4152
	16	1.4184	1.4173	1.4183
21	37	0.8339	0.8289	0.8292
	38	0.8340	0.8291	0.8291
	39	0.8342	0.8294	0.8293
	40	0.8346	0.8299	0.8296

Table 4.4, for examples 1 and 16 , results of the asymmetric model are very close to those of Goel. An interpretation of example number 21, in which the decision variables do not match well, is that the surfaces of the loss-cost become flatter as δ decreases, as declared by Goel and Wu (1973).

In order to explore the slope of the loss-cost surfaces, loss-costs are investigated by increasing and decreasing the subgroup size n from its optimum value. For each value of n, the model is optimized using the NelderMead technique, holding only n constant, with the other five decision variables initially set to their original optimum

TABLE 4.4
OPTIMUM RESULTS OF ECONOMICALLY-BASED DESIGN EOR DIFEERENT INITIAL POINTS

Exaple Ho.		ronsiallh	all eubgrou$d v$	pisedi	$\begin{aligned} & (n=1) \\ & \text { Cost } \end{aligned}$		$\begin{gathered} \text { ro large } \\ \mathrm{b} \end{gathered}$	e subgrou$d ı$	$\begin{array}{ll} \text { up sise } & (n=10) \\ d t & \operatorname{cost} \end{array}$	
$1(8=2.0)$	5	1.39	0.3991	0.3926	4.0089	5	1.40	0.3893	0.3895	4.0088
16 (6-1.0)	14	5.31	0.2325	0.2316	1.4114	14	5.40	0.2371	0.2472	1.4113
$21(8=0.5)$	35	20.86	0.1291	0.1330	0.8292	38	24.22	0.1069	0.1063	0.8291

value. The deviations in loss-cost with subgroup size n, as shown in Table 4.5 , are the largest for $\delta=2$ (example \#1) and are the smallest for $\delta=0.5$ (example $\# 21$) in either increasing or decreasing subgroup sizes from optimum.

Analysis of the Asymmetric Design

Factors, α, δ, and M reflect the asymmetry of the model. The optimal results for asymmetric Cusum charts are analyzed by evaluating a 3251 factorial design. For factor α, there are five levels of interest, which are levels 0.00 , $0.25,0.50,0.75$, and 1.00 . For factor δ, there are two different values, 4 and 2 , for each of $\delta \mathrm{u}$ and $\delta \mathrm{L}$ which are used to form three pairwise combinations of δu and δL. Those are:
(1) $\delta u>\delta \mathrm{u}$ where $\delta u=4, \delta \mathrm{u}=2$.
(2) $\delta \mathrm{U}=\delta \mathrm{L}$ where $\delta \mathrm{U}=2, \delta \mathrm{~L}=2$.
(3) $\delta \mathrm{u}<\delta \mathrm{L}$ where $\delta \mathrm{u}=2, \delta \mathrm{~L}=4$.

TABLE 4.5
DEVIATIONS IN LOSS-COST WITH
SUBGROUP SIZE n

Example No.	Subgroup size	Loss-cost	Deviation
	3	4.1264	
1	4	4.0227	0.1037
	5	4.0088	0.0139
	6	4.0462	0.0374
	7	4.1123	0.0661
	12	1.4180	
16	13	1.4127	0.0053
	14	1.4113	0.0014
	15	1.4138	0.0025
	16	1.4188	0.0050
	36	0.8294	
21	37	0.8291	0.0003
	38	0.8291	0.0000
	39	0.8293	0.0002
	40	0.8298	0.0005

Likewise, for factor M, three combinations of $M u$ and $M L$ are :
(1) $\mathrm{Mu}>\mathrm{Ml}_{\mathrm{l}}$ where $\mathrm{Mu}=1000, \mathrm{Ml}_{\mathrm{l}}=100$.
(2) $\mathrm{Mu}=\mathrm{Ml}$ where $\mathrm{Mu}=100, \mathrm{Ml}=100$.
(3) $\mathrm{Mu}<\mathrm{Ml}_{\mathrm{w}}$ where $\mathrm{Mu}=100, \mathrm{Ml}_{\mathrm{L}}=1000$.

Decision Variables and Loss-costs

To study the nature of the asymmetry, consider the design of a two-sided Cusum chart based on Goel's example number 1 with the following cost and risk factors:
$b=\$ 0.50$
$D=2.00$

$$
\begin{array}{rlrl}
\mathrm{c} & =\$ 0.10 & \mathrm{e} & =0.05 \\
\mathrm{~T} & =\$ 50.00 & \sigma & =1.00 \\
\mathrm{~W} & =\$ 25.00 & \text { Target } & =100.00
\end{array}
$$

The results are obtained using the optimization procedure described in Chapter III, and are summarized in Tables 4.64.9.

It can be seen that each cell of each table has its mirror image through the centroid. Based on the results listed in the tables, conclusions within each table can be generated as follows:

1. Each subgroup size (n) has its mirror image through the centroid.
2. Two cells the same distance from and mirrored through the centroid have the same or nearly the same values of the time intervals between subgroups (h) and loss-costs (Cost).
3. Two cells the same distance from and mirrored through the centroid have the upper and lower decision intervals (du and du) very close to the lower and upper decision intervals (du and du), respectively, in the other cell.
4. The value of the upper decision interval (du) at $\alpha=0.00$ tends to be a relatively large number. This results in a very small possibility of a false alarm in the upward direction. Likewise, the value of lower decision interval (d L) at $\alpha=1.00$ tends to be a relatively large number. This results in a

TABLE 4.6
ORTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=1$, SCALE PARAMETER $\theta=100$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dU AND LOWER dL, TIME INTERVAL BETWEEN SUBGROUPS $\mathrm{h}=0.1$,

DEAD BAND-UPPER ku AND LOWER kl, SUBGROUP SIZE $\mathrm{n}=1$:

	$d \mathrm{l}=1, \mathrm{dt}=2, \mathrm{ta}=102, \mathrm{k}=99$				$d=d t=2, t r=101, t u=99$			$d r=2, d t=4, \mathrm{kr}=101, \mathrm{t}=98$		
		$\begin{array}{ll} 81 & 81 \\ \text { (1) } \\ (2) \end{array}$			$\begin{aligned} & \delta 1=\delta 1 \\ & (2) \quad(2) \end{aligned}$			$\begin{array}{ll} 61 & <6 \\ \text { (2) } \\ \text { (1) } \end{array}$		
a		$\begin{array}{cc} \mathrm{Kr} & > \\ 1000 & 100 \end{array}$	$\begin{gathered} n_{1}= \\ 100 \end{gathered}=\frac{u_{6}}{100}$	${ }_{100}^{\mathrm{BlO}_{10}<\mathrm{Bl}_{10}}$	$\begin{array}{cc} y_{1} & \mathrm{HL}_{1} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}= \\ 100 \end{gathered}$	$\begin{array}{cc} y_{r} & <x_{6} \\ 100 & 1000 \end{array}$	$\begin{array}{c\|c} X_{1}> & x_{6} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{10}=y_{10} \\ 100 \end{gathered}$	$\begin{array}{cc} K_{1} & <\mathrm{Kb}_{6} \\ 100 & 1000 \end{array}$
0.00	1	1.31	1.31	0.36	1.31	1.31	0.36	1.19	1.19	0.33
	d	4.1125	4.1125	3.2116	3.5875	3.5875	2.1692	5.1201	5.1201	6.1357
	ds	0.1270	0.4270	0.5782	0.4126	0.4126	0.5824	0.4700	0.4700	0.9420
	a	1	1	3	1	4	3	2	2	1
	!	102.0524	102.0524	102.0579	101.0000	101.0000	101.0866	101.0269	101.0269	101.0000
	k	99.0116	93.0116	98.9967	99.0000	99.0000	99.0010	98.0217	98.0217	98.0000
	Cost	3.9556	3.9556	26.6099	3.9556	3.9556	26.6099	3.1840	3.4840	24.4790
0.25	1	0.59	1.33	0.41	0.71	1.40	0.40	0.72	1.23	0.42
	d	0.4893	0.6300	1.8324	0.4673	0.1821	1.2271	0.4366	0.7863	1.1336
	dt	1.2523	0.4464	0.6059	0.6313	0.3587	0.6039	0.4467	0.4581	0.4838
	1	2	,	3	4	5	3	1	3	2
	k	102.0154	102.0000	101.9203	100.9858	100.9844	100.9772	101.0082	101.0030	100.9913
	k	98.9971	99.0000	99.0159	99.0192	99.0012	99.0091	98.0619	98.1103	98.0169
	Cost	9.5369	3.9146	21.2164	10.1529	4.0024	21.2944	9.9925	3.1559	19.6238
0.50	b	0.48	1.19	0.49	0.55	1.39	0.55	0.19	1.19	0.48
	dr	0.4893	0.4174	0.5271	0.4263	0.3991	0.7511	0.6051	0.6952	1.4529
	ds	1.4695	0.6969	0.6082	0.7591	0.3926	0.4353	0.5419	0.4001	0.4985
	a	2	3	3	,	5	\%	3	3	2
	b	101.9835	101.9185	102.0211	101.0061	101.0000	100.9862	100.9916	100.9916	101.0066
	1	99.0029	99.0098	99.0046	99.0158	99.0000	99.0021	98.0253	98.0132	98.0164
	Cost	14.6227	3.8619	15.7083	15.8229	4.0089	15.8229	15.1081	3.8619	14.6229
0.75	b	0.42	1.23	0.72	0.40	1.41	0.71	0.41	1.31	0.59
	di	0.4675	0.5088	0.6110	0.6008	0.3514	0.6076	0.5929	0.4770	1.2344
	ds	1.7287	0.7989	0.4425	1.2260	0.4601	0.4604	0.7594	0.4703	0.5269
	,	2	3	4	3	5	4	3		2
	11	102.0000	101.8491	101.8429	100.9933	100.9975	101.0137	100.9938	100.9758	101.0044
	${ }_{5}$	99.0000	99.0085	98.9962	99.0216	98.9920	99.0087	98.0549	98.0904	97.9945
	Cost	19.6238	3.1560	9.9926	21.2944	4.0023.	10.1530	21.2161	3.9139	9.5370
1.00					0.36	1.31	1.31	0.36	1.29	
	d	0.9420	0.4719	0.4719	0.5796	0.4126	0.4126	0.5753	0.4324	0.4324
	ds	6.4357	5.1551	5.1151	2.2578	3.5875	3.5875	3.2093	4.2934	4.2934
	,	1	2	2	3.	4	1	3	4	4
	1	102.0000	101.9910	101.9910	101.0018	101.0000	101.0000	101.0067	101.0000	101.0000
	k	99.0000	99.0219	99.0219	99.0586	99.0000	99.0000	98.0556	98.0000	98.0000
	Cost	24.4790	3.4840	3.8840	26.6099	3.9556	3.9556	26.6099	3.9563	3.9563

TABLE 4.7
OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=2$, SCALE PARAMETER $\theta=100$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER du AND LOWER dL, TIME INTERVAL BETWEEN SUBGROUPS $h=0.1$,

DEAD BAND-UPPER kU AND LOWER kL, SUBGROUP SIZE $\mathrm{n}=1$:

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=1, SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dU AND LOWER de, TIME INTERVAL BETWEEN SUBGROUPS $h=0.1$, DEAD BAND-UPPER ku AND LOWER kl, SUBGROUP SIZE $n=1$:

	$d \mathrm{~d}=4, \mathrm{~d}=2, \mathrm{k}=102, \mathrm{t}=99$				$d \mathrm{~d}=\mathrm{d}=2, \mathrm{t}=101, \mathrm{t}=99$					
		$\begin{array}{ll} 61) \\ \text { (4) } & 66 \\ (2) \end{array}$			$\begin{aligned} & \delta_{1}=61 \\ & \text { (2) } \end{aligned}$			iv 18 (2) (4)		
0		$\begin{array}{cc} n_{1} & n_{6} \\ 1000 & 100 \end{array}$	$\underset{100}{u_{1}}=y_{100}$	$\begin{array}{cc} B_{0} & <y_{L} \\ 100 & 1000 \end{array}$	$\begin{array}{rl} y_{1} & >y_{b} \\ 1000 & 100 \end{array}$	$\underset{100}{40}=\frac{100}{100}$	$\begin{array}{cc} 46 & 86 \\ 100 & 1000 \end{array}$	$\begin{aligned} y_{i} & > \\ 1000 & y_{6} \end{aligned}$		
0.00	b	0.95	0.95	0.26	0.95	0.95	0.26	0.88	1.88	0.24
	do	3.6791	3.6791	5.1222	2.6959	2.6959	2.8175	3.5393	3.5393	5.6492
	dı	0.4188	0.4188	0.5798	0.4209	0.4209	0.5769	0.4387	0.4387	0.9370
	-	,	4	3	4	1	3	2		1
	H	102.0257	102.0257	102.0260	101.0198	101.0198	101.0248	101.0241	101.0241	101.1000
	b	99.0064	99.0064	99.0020	99.0040	99.0040	98.9982	97.9758	97.9758	98.0000
	Cost	6.8420	6.8420	49.0532	6.8421	6.8421	49.0532	6.1450	6.1450	45.6028
0.25	d	0.43	0.94	0.30	0.51	0.94	0.30	0.46	0.71	0.26
	dr	0.5510	0.4908	1.5169	0.4616	0.5869	1.2079	0.6235	1.2349	3.4403
	ds	1.2676	0.4540	0.5770	0.6292	0.4539	0.5939	0.6978	0.5491	0.9692
	:	2	4	3	4	4	3	3	2	1
	b	101.3493	101.9075	101.1452	100.9907	101.0000	101.0104	100.9986	100.9878	100.9967
	h_{1}	99.0113	99.0054	98.9949	99.0099	99.0000	99.0089	98.2012	98.0191	98.0013
	Cost	17.1569	6.7852	38.8731	18.1935	6.9188	38.9634	17.9880	6.5121	36.3442
0.50	b	0.35	0.87	0.35	0.35	0.93	0.35	0.36	0.87	0.35
	dı	0.4796	0.4517	0.5680	0.5953	0.5106	1.0192	0.5851	0.7039	1.4869
	ds	1.4896	0.6959	0.5890	1.0374	0.5110	0.5987	0.5786	0.4007	0.4825
	,	2	3	3	3	4	3	3		2
	k	101.9854	101.9167	101.9993	100.9984	100.9926	100.9859	101.0067	100.9813	100.9985
	k	99.0012	99.0141	98.9963	99.0099	99.0029	98.9996	98.0536	98.0461	98.0133
	Cost	26.8545	6.6886	28.5330	28.7306	6.9338	28.7305	28.5329	6.6886	26.8545
0.75	1	0.26	0.16	0.47	0.29	0.94	0.51	0.30	0.96	0.43
	di	0.9488	0.5254	0.7645	0.5918	0.4539	0.6221	0.4824	0.4286	1.2493
	ds	3.4419	1.2440	0.6395	1.2184	0.5869	0.4605	2.6494	0.6159	0.5286
	1	1	2	3	3	4	4			2
	1	102.0235	102.0020	101.6681	100.9946	101.0000	100.9936	101.0832	101.0122	100.9978
	1	99.0030	99.0183	99.0252	98.9989	99.0000	99.0141	99.3830	98.1202	98.0225
	Cost	36.3444	6.5423	17.9082	38.9634	6.9188.	18.1933	38.8890	6.7854	17.1568
1.00	b	0.24	0.87	0.87	0.26	0.95	0.95	0.26	0.96	0.96
	di	0.9490	0.4294	0.4294	0.5739	0.4201	0.4201	0.5837	0.4151	0.4151
	ds	5.5102	3.5300	3.5300	2.8168	2.7750	2.7750	5.1236	3.7534	3.7534
	a	1	2	2	3	1	4	3		
	${ }^{\prime}$	101.9854	102.0265	102.0265	101.0046	100.9944	100.9944	100.9929	101.0000	101.0000
	k	98.7947	99.0148	99.0148	99.0242	99.0219	99.0219	98.0273	98.0000	98.0000
	Cost	45.6028	6.1450	6.1450	49.0533	6.8421	6.8421	49.0533	6.8422	6.8422

TABLE 4.9
OPTIMOM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULE PROCESS PAILURE MECHANISM WITH SHAPE PARAMETER $S=2$, SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dU AND LOWER dl,
TIME INTERVAL BETWEEN SUBGROUPS $h=0.1$,
DEAD BAND-UPPER ku AND LOWER kl,
SUBGROUP SIZE $n=1$:

	drat d $6=2, \mathrm{ta}=102, \mathrm{t}=99$				$d v=d t=2, t r=101, k t=99$			$d s=3, d t=4, t r=101, k t=98$		
		$\begin{array}{ll} 61 & 86 \\ \text { (4) } & (2) \end{array}$			$\begin{aligned} & \delta 1=61 \\ & (2) \quad(2) \end{aligned}$			$\begin{aligned} & 80<66 \\ & (2)(1) \end{aligned}$		
\bullet		$\begin{array}{cc} x_{1}> & x_{6} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}=y_{1} \\ 100 \end{gathered}$	$\begin{array}{cc} 81 & 86 \\ 100 & 1000 \end{array}$	$\begin{array}{rl} y_{1}> & y_{6} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}=y_{6} \\ 100 \quad 100 \end{gathered}$	$\begin{array}{ll} \log _{8} \times \mathrm{BL}_{6} \\ 101 & 1000 \end{array}$	$\begin{gathered} K_{1}>I_{6} \\ 1000 \end{gathered}$	$\begin{gathered} u_{0}=u_{t} \\ 100 \\ 100 \end{gathered}$	$\begin{array}{rl} x_{0} & <y_{6} \\ 100 & 1000 \end{array}$
0.00	1	0.90	0.90	0.25	0.91	0.91	1.95	1.83	0.83	8.22
	did	3.1567	3.7567	4.1668	2.7168	2.7168	2.5665	4.6371	4.6371	5.6355
	di	0.4024	0.4024	0.5860	0.4123	0.4123	0.5808	0.4413	0.4413	0.9564
	${ }^{2}$	4	4	3	1	4	3	2	2	1
	1	102.0290	102.0290	102.0223	101.0192	101.0192	101.0574	101.8270	101.0270	101.1222
	1	98.9893	98.9893	99.0074	99.0039	99.0039	89.0048	97.9786	97.9786	98.0205
	Coot	1.5323	7.5323	54.5689	7.5323	7.5323	54.5688	6.7872	6.1872	50.8164
0.25	1	0.41	0.91	0.28	0.49	0.87	0.28	0.44	0.72	0.25
	dr	0.5091	0.4967	1.1555	0.4439	0.5870	1.2263	1.6283	1.2012	3.1225
	dt	1.2459	0.4704	0.5817	0.6197	0.4543	1.5892	1.5730	0.5187	0.9591
	1	2	4	3	4	4	3	3	2	1
	tI	102.0000	101.9568	101.5405	101.0000	101.0048	100.9990	100.9870	101.0106	101.0057
	4	99.0000	99.0217	99.0033	99.0000	98.9948	99.0071	98.1367	97.9933	97.9996
	Cost	19.0130	7.4726	43.2033	20.1476	7.6134	13.2942	19.8328	7.2064	40.4336
0.50	1	0.33	0.82	0.34	0.33	0.89	0.33	0.34	0.82	0.33
	d	0.4788	0.6829	0.6194	0.5955	0.4993	1.0315	0.5857	0.6771	1.5187
	ds	1.5265	0.7075	0.5919	1.0315	0.5002	0.5955	0.5730	0.4821	0.4803
	2	2	3	3	3	4	J	3	3	2
	11	101.9998	101.6723	101.9237	101.0000	101.0000	101.0000	100.9977	101.0003	100.9851
	k	99.0141	99.0220	99.0057	99.0000	99.0000	99.0000	98.0411	98.1151	98.0099
	Cost	29.8561	1.3658	31.6689	31.8717	1.6290	31.8717	31.6689	1.3656	29.8558
0.75	1	0.24	0.73	0.44	0.28	0.89	0.49	0.28	0.92	0.41
	dis	0.9608	0.5112	0.8308	0.5508	0.4535	0.6197	1.5852	0.4458	1.2492
	ds	3.4336	1.2230	0.6230	1.6897	0.6031	0.4139	8.9255	0.6316	0.5111
	1		2	3	3		1	3		2
	1	102.0001	101.9668	101.6060	101.0343	100.9940	101.0000	100.9948	100.9949	101.0032
	1	98.9978	99.0121	99.0099	99.2136	99.0123	99.0000	98.2969	98.2051	98.0134
	Cost	40.4336	7.2062	19.8326	43.3037	7.6134.	20.1476	43.2032	1.4724	19.0129
1.00	b	0.23	0.84	0.84	0.25	0.91	0.91	0.25	0.90	0.90
	d	0.9516	0.4352	0.4352	0.5822	0.4132	0.4132	0.5843	0.4027	0.4027
	dt	5.1737	4.7101	4.7101	2.6684	2.7183	2.7183	4.1504	3.7530	3.7530
	-	1	2	2	3	1	4	3		4
	1	101.9902	102.0000	102.0000	100.9935	100.9955	100.9955	100.9922	101.0088	101.0088
	k	98.9231	99.0000	99.0000	99.0259	99.0207	99.0207	98.0259	98.0253	98.0253
	cost	50.8165	6.7871	6.7811	54.5688	1.5323	7.5323	54.5689	1.5323	1.5323

very small possibility of a false alarm in the downward direction.
5. The upper dead band value (ku) is in the vicinity of $\mu_{0}+y_{2} \delta u \sigma$. Similarly to the lower dead band value (ku) is in the vicinity of $\mu 0-y_{2} \delta L \sigma$.

Effect of Probability of Upward Shift, a

Figure 4.1.a shows that there is no major change in loss-cost as factor a is varied, when the magnitude of a shift in the process mean is equal in either direction, $\delta u=\delta L$. However, the curve of $\delta u=\delta L$ shows that whenever $\alpha=0.00$ or $a=1.00$ there is a slightly lower average losscost. This is because a two-sided asymmetric Cusum control chart becomes a pure one-sided Cusum control chart whenever $\alpha=0.00$ or $a=1.00$. Only when $\alpha=0.50$ is the two-sided asymmetric chart considered to be a two-sided symmetric chart. Yet, when α is at an extreme value of 0.00 or 1.00 , the Cusum chart can be made more efficient for detecting an out of control condition. This leads to a slightly lower average loss-cost. When $\alpha=0.50$, however, the Cusum chart must be able to detect an out of control condition in either direction, causing it to be slightly less efficient, resulting in a higher average loss-cost.

The condition where $\delta u>\delta L$ indicates a shift in the upward direction, if it occurs, will be larger and more easily detected than a downward shift. The average losscost with a small value of factor a is higher and the

Figure 4.1. Average Loss-Cost Vs. Probability of Upward Shift (a) for Overall Factor M, Average Over All Combinations of Eactor δ
average loss-cost with a high value of α is lower. When α is low, there will more likely be a downward shift in the process mean, which is less easily detected, resulting in a higher average loss-cost. On the contrary, when a is high, there is more likely an upward shift in the process mean which is more easily detected, resulting in a lower average loss-cost.

The condition where $\delta u<\delta L$ indicates a shift in the downward direction, if it occurs, will be larger and more easily detected than an upward shift. The average loss-cost with a small value of factor α is lower and the average loss-cost with high value of α is higher. When α is low, there will more likely be a downward shift in the process mean, which is more easily detected, resulting in a lower average loss-cost. On the contrary, when α is high, there is more likely an upward shift in the process mean, which is less easily detected, resulting in a higher average losscost.

Figure 4.2.a shows that there is virtually no change in average loss-cost as factor α is varied, when the magnitude of the diminution of hourly income is equal in either direction, $M u=M L$. This is because the proportion of time the process is out of control is the same regardless of the value of α, and there is no differential cost effect in either direction.

The condition where $M u$ > ML indicates that a shift in the upward direction, if it occurs, will be extremely

PROBABILITY OF UPWARD SHIET (α)

- Mu > Ml
$+M \nu=M L$
$\diamond M u<M L$
Figure 4.2. Average Loss-Cost Vs. Probability of Upward
Shift (a) for Overall Factor δ, Average Over All Combinations of Factor M
costly, $\$ 1000$ per hour. On the contrary, a downward shift is not so costly, $\$ 100$ per hour, when it occurs. The average lose-cost with a low value of factor α is lower and the average loss-cost with a high value of α is higher. This is because when α is small, it is more likely a shift in the process mean will be in the downard direction, which and is not so costly.

The condition where $M u<M L$ indicates that a shift in the downward direction, if it occurs, will be extremely costly, $\$ 1000$ per hour. On the contrary, an upward shift is not so costly, $\$ 100$ per hour, when it occurs. The average loss-cost with a low value of factor α is higher and the average loss-cost with a high value of α is lower. This is because when α is small, it is more likely a shift in the process mean will be in the downward direction, which is extremely costiy.

Effect of Risk Parameter, M

Figure 4.3.a shows that there is no major change in average loss-cost when the diminution of hourly income $M u=M L$, whether $\delta u>\delta L, \delta u=\delta L$ or $\delta u<\delta L$. When $\delta u>\delta L$, however, a shift in the upward direction is more easily detected and results in a slightly lower average loss-cost than that of $\delta \mathrm{u}=\delta \mathrm{L}$. Likewise, when $\delta \mathrm{u}<\delta \mathrm{L}$, a shift in the downward direction is more easily detected and results in a slightly lower average loss-cost than that of $\delta U=\delta L$. The condition in which Mu > ML causes a strong upward

Figure 4.3. Average Loss-Cost Vs. Magnitude of a Shift
in Process Mean (δ) for Overall Factor a,
Average Over All Combinations of Factor M
shift in the average loss-cost, due primarily to the large increase of Mu to $\$ 1000$ per hour. When $\delta u>\delta \mathrm{L}$, the average loss-cost is lower than in the situation where $\delta u<\delta L$. This is because the magnitude of the upward shift makes it easier to detect. Likewise, when $M u$ < ML, there is again a strong upward shift in the average loss-cost. When $\delta \mathrm{u}<\delta \mathrm{L}$, the average loss-cost is lower than in the situation where $\delta u>\delta L$. This is because the magnitude of the downward shift makes it easier to detect.

Effect of Weibull Shape Parameter, S

The shape parameter, S, governs the shape of the process failure distribution. When $S=1$, the Weibull distribution reduces to an exponential distribution. From Figure $4.1 . \mathrm{a}$ to $4.1 . \mathrm{b}$ and $4.2 . \mathrm{a}$ to $4.2 . \mathrm{b}$ and $4.3 . \mathrm{a}$ to $4.3 . \mathrm{b}$ where the scale parameter $\theta=100$, the shape parameter increases from 1 to 2 . It can be seen that shapes of figures do not change, but the average loss-cost increases as S increases. Similarly, from Figure 4.1.c to 4.1.d and 4.2.c to 4.2.d and 4.3.c to 4.3.d, where the scale parameter $\theta=50$, the observation above continues to hold.

In addition, from Table 4.6 to 4.7 where $\theta=100$, in all cases the time interval between subgroups (h) decreases as S increases. Similarly, in Tables 4.8 and 4.9 , where $\theta=$ 50, the observation continues to hold.

From Table 4.10 to 4.11 , again S increases from 1 to 2 while holding constant the scale parameter $\theta=100$. It can
be seen that in all cases: (a) the total proportion of time the process is out of control ($\Gamma u+\Gamma L$) increases as S increases and (b) the cycle time (Tcycle) decreases as S increases. Likewise, in Tables 4.12 and 4.13 for $\theta=50$, observations (a) and (b) also hold.

Figures $4.4,4.5$ and 4.6 show the overall effect of α, δ and M, respectively, on the average loss-cost. Again the average loss-cost increases as S increases from 1 to 2.

Effect of Weibull Scale Parameter, θ

The scale parameter, θ, also has relevance to the change in the process failure mechanism. When the Weibull distribution reduces to an exponential distribution, the reciprocal of θ is equal to the average number of assignable causes per unit time. A decrease in θ is equivalent to an increase in the frequency of assignable causes.

From Figures 4.1.a to 4.1.c, 4.2.a to 4.2.c, 4.3.a to 4.3.c, where the shape parameter $S=1$, the scale parameter decreases from 100 to 50 . It can be seen that shapes of figures do not change, but the average loss-cost increases as θ decreases. Similarly, from Figures 4.1.b to 4.1.d and 4.2.b to 4.2.d and 4.3.b to 4.3.d, where the shape parameter $S=2$, the observation above continues to hold.

In addition, from Tables 4.6 and 4.8 where $S=1$, in all cases the time interval between subgroups (h) decreases as θ decreases. Similarly, in Tables 4.7 and 4.9, where $S=2$, the same observation continues to hold.

TABLE 4.10
OPTIMUM VALUES OF $\Gamma u, \Gamma \varepsilon$, ARLo, ARLl, $h * E N S I N$ AND CYCLE TIME FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH

SHAPE PARAMETER $S=1$, SCALE PARAMETER $\theta=100$
AND INITIAL POINT AS FOLLOWS:
$\mathrm{n}=1, \mathrm{~h}=.1, \mathrm{du}, \mathrm{dL}, \mathrm{ku}$ AND kL :

		$d \mathrm{~d}=4, \mathrm{~d}=2, \mathrm{tr}=102, \mathrm{t}=99$						$d \mathrm{~d}=2, \mathrm{~d}=4, \mathrm{tr}=101, \mathrm{ta}=9 \mathrm{sa}$		
		$\begin{aligned} & \left.\delta_{1}\right) \delta_{6} \\ & \text { (1) }(2) \end{aligned}$			$\begin{array}{ll} 81=66 \\ (2) & (2) \end{array}$			$\begin{array}{ll} 6 r & 66 \\ \text { (2) } & (1) \end{array}$		
1		$\left.H_{1}\right)_{1}$	$4 \mathrm{~L}=\mathrm{H}_{6}$	H1 H_{4}	B1) \square_{6}	$\mathrm{Br}_{1}=\mathrm{B}_{2}$		(1) ${ }_{\text {W }}$	$\mathrm{Hf}_{5}=86$	41
		1000100	$100 \cdot 100$	1001000	1000100	$100 \quad 100$	$100 \quad 1000$	1000100	$100 \quad 100$	1001000
1.00	BRLA: $\left(\delta_{0}\right)$	2.644	2.641	2.196	4.203	4.203	3.041	5.956	5.956	1.183
	${ }_{1} 1$	0	0	0	0	1	0	0		0
	ARLA1 (6))	1.129	1.129	1.267	1.128	1.128	1.267	1.014	1.014	1.156
	[0.0294	0.0294	0.0231	0.0294	1.0294	0.0239	0.0264	0.0264	0.0222
	ARLI	1.129	1.129	1.269	1.128	1.128	1.267	1.014	1.014	1.156
	HLISII	99.35	99.35	99.82	99.35	99.35	99.82	99.11	99.11	99.84
	4RL	413.2	413.2	297.1	408.0	408.0	297.0	3720	3720	584.7
	iercio	103.0262	103.0262	102. 1286	103.0260	103.0260	102.1291	102.7119	102.7119	102.2655
0.25	ARLA1 (80)	1.017	1.003	1.015	1.147	1.122	1.817	1.143	1.423	2.401
	[1	0.0059	0.0070	0.0058	0.9065	0.0076	0.0065	0.0065	0.0080	0.0071
	ARLAL(86)	1.924	1.144	1.272	1.240	1.078	1.275	1.001	1.002	1.015
	[s	0.0215	0.0222	0.0181	0.0199	0.0223	0.0180	0.0187	0.0202	1.0170
	1 RLI	1.698	1.109	1.208	1.217	1.889	1.411	1.036	1.107	1.362
	Hishir	99.70	99.34	99.80	99.65	99.30	99.80	99.64	99.39	99.79
	arim	131.8	501.6	307.1	384.3	565.1	304.9	498.1	856.1	2346
	iepre	102.8118	103.0082	102.4403	102.1064	103.0794	102.5188	102.5862	102.8967	102.1621
0.50	brlai(8)	1.015	1.002	1.006	1.137	1.093	1.332	1.277	1.340	2.138
	[0.0114	0.0134	0.0117	0.0124	0.0149	0.0129	0.0123	0.0153	0.0140
	ARLA1(6L)	2.139	1.340	1.281	1.337	1.091	1.138	1.005	1.002	1.016
	Ib_{6}	0.0141	0.0153	0.0124	0.0129	0.0149	0.0124	0.0117	0.0134	0.0114
	ARL_{1}	1.571	1.171	1.144	1.237	1.092	1.235	1.141	1.171	1.577
	HBLSII	99.76	99.40	99.76	99.73	99.31	99.73	99.76	99.40	99.76
	ARLo	1343	498.8	330.4	408.4	540.6	407.3	318.3	498.2	1360
	Ierele	102.6161	102.9516	, 102.4651	102.6025	103.0739	102.6025	102.4632	102.9527	102.6137
0.75		1.015	1.002	1.001	1.275	1.075	1.247	1.270	1.148	1.908
	${ }^{1}$	0.0170	0.0202	1.0187	1.1180	0.0223	0.0199	0.0181	0.0222	0.0214
		2.413	1.422	1.144	1.818	1.123	1.146	1.012	1.001	1.019
	Ib	0.0071	0.0080	0.0065	0.0065	0.0076	0.0065	0.0058	0.0069	0.0059
	$1 \mathrm{PLL}_{1}$	1.365	1.107	1.837	1.411	1.087	1.221	1.206	1.110	1.686
	nilisil	99.79	99.39	99.64	99.80	99.30	99.65	99.79	99.35	99.70
	arlo	2398	852.6	501.9	304.4	544.0	388.5	303.7	517.0	107.4
	ferele	102.4634	102.8993	102.5869	102.5189	103.0806	102.7091	102.4410	103.0001	102.8047
1.00	ARLA1($\mathrm{SV}_{\text {I }}$)		1.015	1.015	1.267	1.128	1.128	1.268	1:137	1.137
	[1	0.0222	0.0266	0.0266	0.0237	0.0294	0.0294	0.0237	0.0294	0.0294
	8RLA1 $(\mathrm{f}$)	7.183	5.689	5.689	2.769	4.203	4.203	2.113	2.685	2.685
	$\mathrm{Ib}^{\text {l }}$	0	0	,	0	0	0	0	0	,
	ARL1	1.156	1.015	1.015	1.267	1.128	1.128	1.268	1.137	1.137
	EBMSII	99.84	99.39	99.39	99.82	99.35	99.35	99.82	99.36	99.36
	ARL	584.7	4019	4019	297.5	408.0	408.0	299.1	460.4	460.4
	ferele	102.2655	102.7328	102.7328	102.4288	103.0260	103.0260	102.4290	103.0242	103.0242

TABLE 4.11
OPTIMUM VALUES OF $\Gamma u, \Gamma L, ~ A R L o, ~ A R L 1, ~ h * E N S I N ~ A N D ~ C Y C L E ~ T I M E ~$ FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=2$, SCALE PARAMETER $\theta=100$ AND INITIAL POINT AS FOLLOWS: $\mathrm{n}=1, \mathrm{~h}=.1, \mathrm{du}, \mathrm{d}, \mathrm{ku}$ AND k L :

TABLE 4.12
OPTIMUM VALUES OF Γu, Гl, ARLo, ARLi, h*ENSIN AND CYCLE TIME FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=1$, SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS FOLLOWS: $\mathrm{n}=1, \mathrm{~h}=.1, \mathrm{du}, \mathrm{d}, \mathrm{ku}$ AND kL:

		$d \mathrm{~d}=4, \mathrm{~d}=2, \mathrm{kt}=102, \mathrm{k}=99$			$d \mathrm{~d}=\mathrm{d}=2, \mathrm{l} \mathbf{l}=101, \mathrm{l}=99$			$d r=2, d t=4, \mathrm{tr}=101, \mathrm{dt}=98$		
		$\begin{aligned} & 81) \\ & \text { (4) }(2) \\ & (2) \end{aligned}$			$\begin{aligned} & \delta 1=\delta 6 \\ & (2) \quad(2) \end{aligned}$			$\begin{aligned} & 81<86 \\ & (2) \end{aligned}$		
9		Bf_{8}) H_{6}	$u_{0}=a_{6}$	$81 \times$	$\left.\mathrm{Hf}_{1}\right)^{\text {a }}$	$\mathrm{Lb}_{80}=\mathrm{Bl}_{6}$	HI < H		$\mathrm{HI}_{1}=\mathrm{BL}$	HoCl
		1000100	$100 \quad 100$	1001000	1000100	100100	$190 \quad 1000$	1080100	100100	1001000
0.00) 2.356	2.356	3.145	3.369	3.369	3.538	4.320	4.320	7.028
		0	0	0	0	0	1			
	ARLA $\mathbf{1}_{(86)}$) 1.128	1.128	1.265	1.130	1.130	1.266	1.015	1.015	1.155
	[t	0.0529	0.0529	0.0449	0.0530	0.0530	0.0449	0.0486	0.0186	0.0423
	APL_{1}	1.128	1.128	1.265	1.130	1.130	1.266	1.015	1.015	1.155
	GEMSIM	19.53	49.53	19.87	49.53	49.53	49.87	49.56	49.56	49.88
	arlo	406.6	406.6	291.6	418.1	418.1	293.5	4023	1023	575.7
	iepele	52.7951	52.7951					52.5520		52.2063
0.25	arlai(SH_{1})	1.017	1.001	1.012	1.146	1.223	1.846	1.288	1.885	4.177
	${ }^{1} 1$	0.0110	0.0127	0.0110	0.0120	0.0136	0.0122	0.0120	0.0150	0.0143
	ARLA1(06)	1.919	1.145	1.268	1.244	1.147	1.269	1.005	1.019	1.163
	[t	0.0386	0.0399	0.8341	0.0368	0.0399	0.0340	0.0341	0.0356	0.0318
	ARL1	1.693	1.109	1.204	1.219	1.166	1.413	1.076	1.235	1.916
	日BMSIA	49.79	49.53	49.85	49.75	49.53	49.85	49.77	49.62	49.87
	6RLT	715.1	507.3	298.8	386.8	368.5	292.6	316.9	650.1	557.9
	Iejelo	52.6132	52.1760	52.3606	52.5675	52.8262	52.1205	52.4179	52.6665	52.4161
0.50		1.015	1.002	1.007	1.275	1.173	1.647	1.275	1.338	2.159
	${ }_{1}$	0.0217	0.0245	0.0222	0.0231	0.0268	0.0243	0.0232	0.0273	0.0256
		2.162	1.336	1.275	1.641	1.176	1.279	1.005	1.002	1.015
	$\mathrm{rb}^{\text {d }}$	0.0255	0.0273	0.0231	0.0243	0.0268	0.0230	0.0222	0.0245	0.0217
	8RL1	1.589	1.169	1.141	1.458	1.174	1.463	1.140	1.170	1.587
	GEMSIM	49.83	49.57	19.82	49.83	49.53	49.83	49.82	49.57	49.82
	arla	1409	483.9	- 314.5	287.5	363.0	296.0	313.5	489.8	1408
	Percto	52.8811	52.7308	52.3768	52.4855	52.8305	52.8828	52.3774	52.7311	52.8830
0.75		1.164	1.019	1.063	1.270	1.147	1.241	1.263	1.142	1.914
	${ }_{1}$	0.0318	0.0355	0.0342	0.0340	0.0399	0.0368	0.0341	0.0401	0.0386
	SRLAI (86)	4.179	1.885	1.287	1.843	1.223	1.143	1.102	1.001	1.017
	Ib	0.0143	0.0149	0.0120	0.0121	0.0136	0.0120	0.0111	0.0127	0.0110
	8861	1.918	1.235	1.074	1.413	1.166	1.217	1.223	1.106	1.690
	EBMSI	49.81	49.62	49.76	49.85	49.53	49.74	49.85	49.52	49.78
	arla	567.1	649.4	342.8	294.9	368.5	373.8	283.9	486.8	706.8
	Pipels	52.4154	52.6567	52.4211	52.4185	52.8262	52.5687	52.3699	52.7865	52.6137
1.00	ARLA1 (80)	1.154	1.015	1.015	1.266	1.129	1.129	1.264	1.129	1.129
	$[10$	0.0423	0.0185	0.0485	0.0449	0.0530	0.0530	0.0449	0.0531	0.0531
	ARLAI (86)	7.673	4.164	4.164	3.389	3.327	3.327	3.079	2.368	2.368
	Γ_{6}	0	0	0	0	0	0	0	0	
	$\triangle \mathrm{LL}_{1}$	1.154	1.015	1.015	1.266	1.129	1.129	1.264	1.129	1.129
	BBKSII	49.88	49.57	49.57	49.87	49.53	49.53	49.87	49.52	49.52
	sRLO	569.4	3877	3877	293.6	411.8	411.8	289.1		
	iejele	52.2066	52.5495	52.5495	52.3507	52.8007	52.8007	52.3517	52.8045	52.8045

TABLE 4.13
OPTIMUM VALUES OF $\Gamma \mathrm{U}, \Gamma_{\mathrm{L}}$, ARLo, ARL1, $\mathrm{h} * \mathrm{ENSIN}$ AND CYCLE TIME FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=2$, SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS EOLLOWS:
$\mathrm{n}=1, \mathrm{~h}=.1, \mathrm{du}, \mathrm{dL}, \mathrm{ku}$ AND kL :

	$d \mathrm{~d}=4, \mathrm{dt}=2, \mathrm{kr}=102, \mathrm{dt}=99$				$d_{1}=d^{2}=2, \mathrm{tr}=101, \mathrm{t}=99$			$d \mathrm{c}=2, \mathrm{~d}=4, \mathrm{k}=101, \mathrm{t}=98$		
		$\begin{aligned} & \delta 1) \\ & \text { (1) } \\ & \text { (2) } \end{aligned}$			$\begin{aligned} & 61=61 \\ & \text { (2) } \end{aligned}$			$\begin{aligned} & 81<86 \\ & (2) \quad(1) \end{aligned}$		
0		$\begin{array}{cc} y_{1}> & / 1 \\ 1000 & 100 \end{array}$	$\begin{array}{cc} 41 \\ 100 & =86 \\ 100 \end{array}$	$\begin{array}{cc} 8: 86 \\ 100 & 1000 \end{array}$	$\begin{array}{cc} y_{1} & , y_{6} \\ 1000 & 100 \end{array}$	$\begin{array}{cc} 4_{r} & =y_{b} \\ 100 & 100 \end{array}$	$\begin{array}{cc} K_{1} & <日 l_{6} \\ 100 & 1000 \end{array}$	$\begin{array}{r\|c} \left.y_{1}\right) & 166 \\ 1000 & 100 \end{array}$	$\begin{array}{rl} 6 & =16 \\ 100 & 100 \end{array}$	$\begin{array}{cc} \text { II } & <8 \\ \text { Ifi } & 1000 \end{array}$
0.00		2.403	2.63	2.630	3.389	3.389	3.379	5.460	5.460	7.171
	$[1$,		0	0	0	0			
	18LAL (8b)	1.129	1.129	1.265	1.126	1.126	1.263	1.015	1.015	1.154
	5	0.0588	8.8588	0.0502	0.0588	0.0588	0.0502	0.0540	0.0540	0.0472
	$\Delta \mathrm{LLH}$	1.129	1.129	1.265	1.126	1.126	1.263	1.015	1.015	1.154
	HBYSIK	43.86	43.86	44.19	43.86	43.86	44.19	43.90	43.90	41.20
	88.9	410.5	410.5	291.7	397.1	397.1	288.5	4016	4016	571.5
	fejele	47.0795	41.9795	46.6511	47.0821	47.0821	46.6513	46.8398	46.8398	46.5083
0.25		1.018	1.001	1.012	1.143	1.226	1.848	1.289	1.884	4.191
	[1	0.0123	0.0141	0.0123	0.0134	0.0150	0.0135	0.0138	0.0165	0.0158
	ARLS 1 (6 b)	1.914	1.144	1.265	1.245	1.150	1.267	1.003	1.019	1.160
	It	0.0429	0.0444	0.0380	0.0410	0.0441	0.0380	0.0381	0.0395	0.0355
	SRLI	1.690	1.109	1.202	1.219	1.169	1.412	1.075	1.235	1.918
	EsMSIM	44.11	43.86	44.17	44.07	43.87	44.17	44.09	43.95	44.19
	ALLO	108.3	504.8	292.0	373.9	382.3	288.9	347.4	647.6	566.7
	fercio	46.8994	47.0643	46.6606	46.8630	47.0966	46.7184	46.1126	46.9421	6.7089
0.50	ABLA1(60)	1.016	1.002	1.007	1.276	1.171	1.648	1.268	1.334	2.169
	$[1$	0.0243	0.0272	0.0249	0.0257	0.0297	0.0270	0.0258	0.0301	0.0284
	ARLAL(6 L)	2.178	1.338	1.270	1.618	1.171	1.276	1.006	1.002	1.015
	it	0.0284	0.0301	0.0258	0.0270	0.0297	0.0257	0.0219	0.0272	0.0243
	8RL1	1.597	1.170	1.138	1.462	1.171	1.462	1.137	1.168	1.592
	EBMSII	4.14	43.90	44.14	44.15	43.87	4.15	44.14	43.90	41.15
	ARLO	1503	489.4	302.8	291.2	350.4	291.2	299.3	478.2	1446
	iefele	46.1764	47.0076	46.6768	46.7758	47.1060	46.7158	46.6781	47.0092	46.7740
0.75		1.161	1.018	1.003	1.272	1.144	1.245	1.266	1.141	1.922
	[1	0.0355	1.0396	0.0381	0.0379	0.0442	0.0410	0.0380	0.0444	0.0429
	ARLA $\mathbf{1}_{1}(8)$	4.190	1.873	1.289	2.001	1.225	1.143	1.009	1.001	1.017
	[${ }^{\text {d }}$	0.0158	0.0165	0.0134	0.0137	0.0151	0.0134	0.0123	0.0141	0.0123
	ARL1	1.918	1.231	1.074	1.454	1.164	1.219	1.202	1.106	1.695
	EBMSII	44.19	43.95	44.09	44.17	43.86	44.07	44.17	43.85	44.11
	athe	548.7	615.8	344.4	302.3	360.0	373.9	294.0	483.4	721.2
	icjele	46.7088	46.9445	46.7164	46.7246	47.1058	46.8630	46.6600	47.0670	46.8993
1.00		1.156	1.014	1.014	1.263	1.126	1.126	1.263	1.128	1.128
	[1	0.0473	0.0540	0.0540	0.0502	0.0589	0.0589	0.0502	0.0587	0.0587
	drLa ${ }_{1}(86)$	7.006	5.399	5.399	3.239	3.274	3.274	2.575	2.340	2.340
	[${ }^{\text {b }}$	0	0	0	,	.	0	0		0
	ARL1	1.156	1.014	1.014	1.263	1.126	1.126	1.263	1.128	1.128
	HEHSIM	14.20	43.89	43.89	44.19	43.85	43.85	44.19	43.86	43.86
	Salo	583.1	3475	3475	287.8	397.9	397.9	288.7	406.2	406.2
	fercte	46.5090	46.8431	46.8431	46.8515	47.0832	47.0832	46.6513	47.0757	47.0757

Figure 4.4. Average Lose-Cost Vs. Magnitude of a Shift in Process Mean (8) for Overall Factore M and a

Figure 4.5. Average Loss-Cost Vs. Probability of Upward Shift (α) for Overall Factors δ and M

Figure 4.6. Average Loss-Cost Vs. Diminution of Hourly Income (M) for Overall Factore 8 and a

From Table 4.10 to 4.12, again θ decreases from 100 to 50 while holding constant the shape parameter $S=1$. It can be seen that in all cases: (a) the total proportion of time the process is out of control $(\Gamma u+\Gamma L)$ increases as θ decreases, and (b) the cycle time (Tcycle) decreases to about half as θ decreases by a $2: 1$ ratio. Likewise, in Tables 4.11 and 4.13 for $S=2$, observations (a) and (b) also hold.

Figures $4.4,4.5$ and 4.6 show the overall effect of α, δ and M, respectively, on the average loss-cost. Again the average loss-cost increases as θ decreases from 100 to 50. Furthermore, from these figures, it can be seen that the scale parameter has more effect on the variation in average loss-cost than does the shape parameter. Also, Tables 4.10, $4.11,4.12$ and 4.13 show that the scale parameter has more effect on the variation in cycle time than does the shape parameter.

Effect of Shift Parameter, \&

The shift parameter δ specifies the degree of change in the process mean, $\delta u \sigma$ or $\delta L \sigma$, which a Cusum chart is designed to detect. Table 4.6 is chosen as representative for investigating its effect on n, h and loss-cost. Table 4.14 is a summary of selected data from Table 4.6 where Mu > Ma. It can be seen that in all cases subgroup sizes and loss-costs for $\delta u=\delta \mathrm{L}$ are no smaller than those for $\delta u>\delta L . ~ L i k e w i s e, ~ t h e ~ o p t i m u m ~ t i m e ~ i n t e r v a l s ~ b e t w e e n ~$
subgroups for $\delta u=\delta L$ is no smaller than those for $\delta u>\delta L$, with one exception which is probably due to the imperfection of the search algorithm. In other words, as the shift to be detected increases, small subgroup sizes should be taken more often, and less expense is expected.

TABLE 4.14
VALUES OF SUBGROUP SIZE, TIME INTERVAL BETWEEN SUBGROUPS, DECISION INTERVALS AND LOSS-COST FOR Mu > Ml

Effect of Initial Point for

Search Procedure

Results which are listed in Tables 4.15-4.18 are obtained by the optimization methods described in Chapter III with a significantly different initial point from that discussed in the earlier presentation on asymmetric design. It is noted that results in Table 4.15 are very close to

TABLE 4.15

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=1, SCALE PARAMETER $\theta=100$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dU AND LOWER dL, TIME INTERVAL BETWEEN SUBGROUPS $h=3.0$,

DEAD BAND-UPPER ku AND LOWER kl, SUBGROUP SIZE $\mathrm{n}=10$:

		$d r=0.4, d t=0,2, t r=102, t \leq 99$			$d \checkmark=d \iota=0.2, \mathrm{t}=101, \mathrm{~s}=99$			$\mathrm{dt}=0.2, \mathrm{dt}=0.4, \mathrm{tr}=101, \mathrm{tz}=98$		
		$\begin{aligned} & \left.\delta_{1}\right)^{66} \\ & (4)(2) \end{aligned}$			$\begin{array}{ll} \delta_{1}=\delta_{1} \\ (2) \end{array}$			$\begin{aligned} & 81<86 \\ & (2) \end{aligned}$		
a		$\begin{gathered} u_{1}>y_{6} \\ 1000 \end{gathered}$	$\begin{gathered} y_{1}=8 \mathrm{yb} \\ 100 \\ 100 \end{gathered}$	$\begin{array}{cc} x_{1} & <y_{6} \\ 100 & 1000 \end{array}$	$\begin{aligned} u_{1} & >\Delta_{6} \\ 1000 & u_{100} \end{aligned}$		$\begin{array}{cc} x_{1}< & <8_{6} \\ 100 & 1000 \end{array}$	$\begin{array}{cc} \mathrm{KI} & >86 \\ 1000 & 100 \end{array}$	$\begin{gathered} 10 \\ 100 \\ 100 \\ 100 \end{gathered}$	$\begin{array}{cc} y_{18}<\mathrm{K}_{6} \\ 100 & 1000 \end{array}$
0.00	b	1.31	1.31	0.36	1.31	1.31	0.36	1.21	1.21	0.33
	di	1.9345	1.9345	2.1013	1.7515	1.7515	2.5293	2.7384	2.7384	6.3187
	dt	0.4162	0.4162	0.5858	0.4162	0.4162	0.5858	0.1418	0.4418	0.9570
	,	1	.	3	4		3	2	2	1
	1	102.0187	102.0187	102.0237	101.0187	101.0187	101.0237	101.1000	101.1000	101.0193
	k	98.9966	98.9966	99.0041	98.9966	98.9966	99.0041	98.0000	98.0000	98.0148
	Cost	3.9557	3.9557	26.6099	3.9557	3.9557	26.6099	3.8838	3.4838	24.4790
0.25	1	0.59	1.33	0.42	0.71	1.39	0.40	0.73	1.23	0.42
	di	0.5246	0.3641	0.5818	0.4708	0.4603	1.2192	0.4130	0.7788	1.7568
	ds	1.2724	0.4462	0.5919	0.6339	0.3521	0.5887	0.4320	0.3620	0.4824
	,	2	4	3	,	5	3	\%	3	2
	k	101.9873	102.0000	102.0204	100.9816	101.0000	100.9821	101.0042	101.0084	100.9818
	16	99.0152	99.0000	99.0052	99.0185	99.0000	98.9979	98.0527	98.0187	98.0253
	Cost	9.5369	3.9139	21.2161	10.1529	4.0023	21.2943	9.9925	3.7559	19.6237
0.50	b	0.48	1.19	0.49	0.55	1.40	0.55	0.49	1.19	0.48
	d	0.4797	0.1834	0.5137	0.4399	0.3893	0.7525	0.6025	0.6959	1.4481
	ds	1.4745	0.6933	0.6007	0.7600	0.3895	0.4345	0.5355	0.4522	0.5040
	,	2	3	3	4	5	\%	3	J	2
	1	101.9916	101.9052	102.0205	100.9898	101.0023	100.9941	100.9949	100.9922	101.0064
	1	99.0043	99.0821	99.0045	99.0179	98.9988	99.0056	98.0223	98.0946	98.0100
	Cost	14.6227	3.8620	15.7081	15.8230	4.0088	15.8229	15.7081	3.8619	14.6229
0.75	1	0.42	1.23	0.73	0.41	1.39	0.71	0.41	1.31	0.59
	d_{1}	0.4779	0.3700	0.4909	0.5905	0.3521	0.6394	0.5928	0.1581	1.2600
	ds	1.766	0.7870	0.4429	1.1931	0.4603	0.4659	0.6131	0.3941	0.5533
	0	2	3	4	3	5	4	3		2
	1	101.9887	101.9935	' 101.9436	101.0013	101.0000	100.9750	100.9944	100.9925	100.9903
	16	99.0114	98.9970	99.0010	99.0028	99.0000	99.0121	98.0056	98.0300	98.0475
	Cost	19.6240	3.7560	9.9925	21.2943	4.0023	10.1529	21.2160	3.9138	9.5368
1.00	b	0.33	1.20	1.20	0.36	1.31	1.31	0.36	1.31	1.31
	d	0.9451	0.4399	0.4399	0.5825	0.4109.	0.4109	0.5825	0.4109	0.4109
	dt	6.3994	2.7864	2.7864	2.6056	1.7284	1.7284	2.1775	1.9114	1.9114
	a	1	2	2	3	1	4	3		,
	1	102.0000	102.0219	102.0219	101.0000	101.0040	101.0040	101.0000	101.0040	101.0040
	16	99.0000	98.9167	98.9167	99.0000	99.0136	99.0136	98.0000	98.0136	98.0136
	cost	24.4792	3.4839	3.4839	26.6099	3.9556	3.9556	26.6099	3:9556	3.9556

TABLE 4.16
OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=2, SCALE PARAMETER $\theta=100$ AND INITIAL POINT AS FOLLOWS: DECISION INTERVAL-UPPER dU AND LOWER dL, TIME INTERVAL BETWEEN SUBGROUPS $\mathrm{h}=3.0$, DEAD BAND-UPPER ku AND LOWER kl, SUBGROUP SIZE $\mathrm{n}=10$:

		$\mathrm{dr}=0.1, \mathrm{dt}=0.2, \mathrm{tr}=102, \mathrm{tz}=99$			$\mathrm{dr}=\mathrm{dt}=0.2, \mathrm{kt}=101, \mathrm{t}=99$			$d \mathrm{l}=0.2, d \mathrm{l}=0.4, \mathrm{tr}=101, \mathrm{tc}=98$		
		$\begin{aligned} & 81) \quad 61 \\ & \text { (4) }(2) \end{aligned}$			$\begin{aligned} & \delta 1=\delta b \\ & (2) \quad(2) \end{aligned}$			61 (6 (2) (4)		
-		$\begin{aligned} & u_{1} x_{6} \\ & 1000 \end{aligned}$	$\begin{gathered} y_{10}=\frac{u_{6}}{100} 100 \end{gathered}$	$\begin{array}{cc} y_{1} & <y_{6} \\ 100 & 1000 \end{array}$	$\begin{aligned} & n_{1}> \\ & 1000 \end{aligned} x_{10}$	$\begin{gathered} x_{1}=8 y_{6} \\ 100 \end{gathered}$	$\begin{array}{cc} x_{1} & <x_{6} \\ 100 & 1000 \end{array}$	$\begin{array}{rl} y_{1} & >y_{L} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}=y_{6} \\ 100 \end{gathered}$	$\begin{array}{cc} K r_{i} & <y_{6} \\ 100 & 1000 \end{array}$
0.00	b	1.24	1.24	0.34	1.24	1.24	0.34	1.14	1.14	0.31
	di	2.1988	2.1988	2.7718	1.9988	1.9988	2.5718	2.7384	2.7384	5.6501
	ds	0.4232	0.4232	0.5820	0.4232	0.4232	0.5820	0.442	0.4442	0.9471
	-	1	4	3	1	1	,	2	2	1
	1	102.0596	102.0596	102.0257	101.0596	101.0596	101.0257	101.1000	101.1000	101.1000
	16	99.0096	99.0096	99.0004	99.0096	99.0096	99.0004	98.0000	98.0000	98.0000
	Cost	4.3459	4.3459	29.5913	4.3459	4.3459	29.5913	3.8411	3.8411	27.2754
0.25	d	0.56	1.26	0.39	0.67	1.34	0.39	0.61	1.13	0.40
	dr	0.5174	0.1341	0.6336	0.4637	0.4700	1.1833	0.6150	0.8107	1.7419
	ds	1.2498	0.4458	0.5887	0.6323	0.3578	8.5966	0.4394	0.4289	0.4639
	0	2	,	3	1	S	3	3)	2
	11	102.0000	102.0000	102.0211	100.9925	100.9887	101.0145	101.0000	100.9909	101.0015
	lı	99.0000	99.0000	98.9989	99.0122	99.0084	99.0071	98.0000	98.1058	98.0062
	Cost	10.5563	4.3018	23.5658	11.2299	4.3981	23.6468	11.0551	4.1322	21.8535
0.50	b	0.46	1.13	0.47	0.52	1.32	0.52	0.46	1.13	0.46
	di	0.4583	0.3566	0.5976	0.4290	0.4112	0.7456	0.5968	0.6793	1.4371
	ds	1.4500	0.6836	0.5964	0.7456	0.4013	0.4290	0.6207	0.3950	0.4632
	1	2	3	3	4	s	+	3	J	2
	k	102.0095	102.0004	101.9914	101.0000	100.9812	101.0000	101.0000	101.0018	101.0194
	16	98.9946	98.9986	98.9977	99.0000	99.9956	99.0000	98.1000	98.0026	97.9943
	Cost	16.2490	4.2440	17.4191	17.5551	4.4054	17.5551	17.4189	4.2441	16.2491
0.75	,	0.40	1.16	0.61	0.38	1.32	0.66	0.39	1.24	0.56
	d	0.4610	0.3847	0.4394	0.5913	0.3509	0.6176	0.5894	0.1501	1.2563
	ds	1.7140	0.8196	0.6150	1.1852	0.4665	0.4526	0.6334	0.3597	0.5280
	1	2	3	3	3	5	4	3		2
	1	101.9933	101.9642	' 102.0000	101.0003	101.0000	100.9988	100.9976	100.9995	100.9935
	15	98.9991	99.0239	99.0000	98.9964	99.0000	99.0019	98.0210	98.0589	98.0233
	Cost	21.8534	4.1320	11.0551	23.6667	4.3982	11.2297	23.5656	4.3017	10.5561
1.00	b	0.31	1.15	1.15	0.34	1.24	1.24	0.34	1.24	1.24
	d	0.9648	0.4471	0.4471	0.5824	0.4255.	0.4255	0.5824	0.4255	0.4255
	ds	5.9974	2.7648	2.7648	2.6461	2.1049	2.1049	2.8461	2.3049	2.3049
	1	1	2	2	3	4	4	3	4	4
	1	101.9765	102.0213	102.0213	101.0000	100.9893	100.9893	101.0000	100.9893	100.9893
	k	98.9621	98.9090	98.9090	99.0000	99.0323	99.0323	98.0000	98.0323	98.0323
	Cost	27.2751	3.8413	3.8413	29.5913	4.3459	4.3459	29.5913	4.3459	4.3459

TABLE 4.17
OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=1$,
SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS FOLLOWS:
DECISION INTERVAL-UPPER du AND LOWER $d l$,
TIME INTERVAL BETWEEN SUBGROUPS $\mathrm{h}=3.0$,
DEAD BAND-UPPER ku AND LOWER kl,
SUBGROUP SIZE $\mathrm{n}=10$:

		$d \mathrm{~d}=0.4, \mathrm{~d}_{\text {d }}=0.2, \mathrm{tr}=102, \mathrm{t}=99$			$d \mathrm{~d}=\mathrm{dt}=0.2, \mathrm{tb}=101, \mathrm{t}=99$			$\mathrm{dr}=0.2, \mathrm{dt}=0.4, \mathrm{tr}=101, \mathrm{kl}=98$		
		$\begin{array}{ll} 81 \\ \text { (4) } & 66 \\ (2) \end{array}$			$\begin{aligned} & \delta_{1}=\delta_{6} \\ & (2) \quad(2) \end{aligned}$			$\begin{array}{ll} 81 & 86 \\ (2) & (4) \end{array}$		
c		$\begin{array}{cc} \left.u_{1}\right) \\ 1000 & u_{6} \\ 100 \end{array}$	$\begin{gathered} 81 \\ 100 \end{gathered}=\frac{86}{100}$	$\begin{array}{cl} y_{1} & <y_{t} \\ 100 & 1000 \end{array}$	$\begin{array}{rr} y_{1} & y_{1} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}=u_{6} \\ 100 \end{gathered}$	$\begin{array}{cc} y_{1}<y_{1} \\ 100 & 1000 \end{array}$	$\begin{array}{cc} u_{1} & >u_{b} \\ 1000 & 100 \end{array}$	$\begin{gathered} y_{1}=y_{6} \\ 100 \end{gathered}$	$\begin{array}{cc} \mathbf{H I} & \text { If } \\ 100 & 1000 \end{array}$
0.00	b	0.96	0.96	0.26	0.96	0.96	0.26	0.87	0.87	0.24
	dr	2.4522	2.4522	2.0882	2.2522	2.2522	2.1213	3.1544	3.1544	5.9036
	ds	0.4143	0.4143	0.5794	0.4143	0.4143	0.5877	0.4568	0.4568	0.9262
	a	4	4	3	4	4	3	${ }^{2}$	2	1
	${ }^{1}$	102.0194	102.0194	102.0000	101.0194	101.0194	101.0558	101.0000	101.0000	101.0582
	1	99.0034	99.0034	99.0000	99.0034	99.0034	99.0086	98.0000	98.0000	97.9986
	Cost	6.8420	6.8420	19.0533	6.8420	6.8420	49.0533	6.1450	6.1450	45.6028
0.25	b	0.43	0.95	0.30	0.51	0.93	0.29	0.47	0.78	0.26
	dr	0.5032	0.4023	0.6535	0.4428	0.6013	1.2193	0.6295	1.2098	3.1776
	dt	1.2614	0.4504	0.5962	0.6189	0.4691	0.6155	0.6064	0.5071	0.9731
	a	2	1	3	1	1	3	3	2	1
	b	101.9979	102.0000	101.9934	101.0044	100.9890	101.0033	100.9820	101.0000	101.8056
	1.	99.0086	99.0000	99.0121	99.0018	99.0150	99.0232	98.1746	98.0000	98.0048
	Cost	17.1569	6.7852	38.8729	18.1933	6.9187	38.9641	17.9080	6.5121	36.3447
0.50	1	0.35	0.87	0.36	0.35	0.92	0.35	0.36	0.87	0.35
	dr	0.5031	0.4963	0.4641	0.5974	0.5109	1.0264	0.5860	0.7254	1.4932
	ds	1.4947	0.7155	0.5858	1.0318	0.5245	0.5979	0.5719	0.4645	0.4876
	-	2	3	3	3	4	3	3	3	2
	11	101.9631	101.9154	102.0585	100.9993	100.9950	101.0000	101.0014	100.9613	100.9926
	1	98.9981	99.8304	98.9970	99.0055	99.0188	99.0000	98.0101	98.0720	98.0232
	Cost	26.8546	6.6890	28.5328	28.7305	6.9337	28.7304	28.5328	6.6891	26.8545
0.75	1									
	dr	0.9595	0.5207	0.7187	0.5760	0.6678	0.6169	0.5875	0.4504	1.2665
	ds	3.4828	1.2309	0.6348	1.3903	0.5960	0.4566	0.7257	0.4023	0.5131
	:		2	3	3	4	4	3		2
	11	102.0072	162.0031	101.7546	101.0055	100.9910	100.9982	101.0000	101.0000	100.9897
	1	99.0138	99.0149	99.0177	99.0949	99.0064	99.0105	98.1000	98.1000	98.0130
	Cost	36.3444	6.5420	17.9080	38.9648	6.9188	18.1933	38.8735	6.7851	17.1569
1.00	1	0.24	0.81	0.87	0.26	0.96	0.96			0.96
	dı	0.9314	0.4568	0.4568	0.5842	0.4154.	0.4154	0.5794	0.4154	0.4154
	ds	6.2294	3.1544	3.1544	2.1960	2.2536	2.2536	2.0882	2.4536	2.1536
	a	1	2	2	3	,	4			,
	k	102.0000	102.0000	102.0000	100.9933	100.9955	100.9955	101.0000	100.9955	100.9955
	16	99.0000	99.0000	99.0000	98.9642	99.0207	99.0207	98.0000	98.0207	98.0207
	Cost	45.6028	6.1450	6.1450	49.0534	6.8420	6.8420	49.0533	6.8420	6.8420

TABLE 4.18
OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER $S=2$, SCALE PARAMETER $\theta=50$ AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dU AND LOWER dL, TIME INTERVAL BETWEEN SUBGROUPS $\mathrm{h}=3.0$,

DEAD BAND-UPPER ku AND LOWER kl, SUBGROUP SIZE $\mathrm{n}=10$:

	$\mathrm{dr}=0.4, \mathrm{dt}=0.2, \mathrm{kt}=102, \mathrm{kt}=99$				$d \mathrm{~d}=\mathrm{d}=0.2, \mathrm{tb}=101, \mathrm{tl}=99$			$\mathrm{dv}=0.2, \mathrm{dt}=0.4, \mathrm{tr}=101, \mathrm{tz}=98$			
		$\begin{aligned} & 81) 8 l \\ & (4) \quad(2) \end{aligned}$			$\begin{aligned} & \delta 1=\delta 6 \\ & (2) \quad(2) \end{aligned}$			$\begin{aligned} & 61<66 \\ & \text { (2) (4) } \end{aligned}$			
*		(b) $\\|_{6}$	$\mathrm{HI}_{10}=10$	$4{ }^{1} \times 1$	$\left.{ }^{8} 1\right)^{1} 86$	418			$x_{1}=x_{6}$	$4 \mathrm{Hr} \times 16$	
		$1000 \quad 100$	100100	1001000	1000100	$100 \quad 100$	1001000	1000100	100100	1001000	
0.00	1	0.91	0.91	0.25	0.91	0.91	0.25	0.82	0.82	0.23	
	dr	2.0541	2.0541	2.6609	1.9945	1.9945	2.9275	2.6262	2.6262	4.8534	
	ds	0.4222	0.4222	0.5800	0.4222	0.4222	0.5827	0.4410	0.4410	0.9429	
	a	4	4	3	1	1	3	2	2	1	
	11	102.0207	102.0207	102.0575	101.0207	101.0207	101.0573	101.1400	101.1400	101.3826	
	16	99.0139	99.0139	99.0047	99.0139	99.0139	99.0053	97.9971	97.9971	98.0110	
	Cost	7.5323	7.5323	54.5688	7.5323	7.5323	54.5689	6.7871	6.7871	50.8163	
0.25	b	0.41	0.91	0.29	0.48	0.88	0.28	0.44	0.72	0.24	
	dr	0.5469	0.5815	1.2824	0.4411	0.6035	1.2287	0.6168	1.2128	3.4661	
	dt	1.2621	0.4422	0.5869	0.6180	0.4592	0.5843	0.4947	0.5369	0.9703	
	-	2	4	3	1	4	3	3	2	1	
	1	101.9521	101.9251	101.4416	101.0000	100.9928	100.9972	100.9946	101.0000	101.0027	
	1	99.0066	98.9954	99.0059	99.0000	99.0076	99.0040	98.0604	98.0000	98.0085	
	Cost	19.0129	7.4728	43.2039	20.1475	7.6133	13.2942	19.8325	7.2064	40.4336	
0.50	b	0.33	0.82	0.34	0.33	0.88	0.33	0.33	0.82	0.33	
	dr	0.4838	0.4306	0.9276	0.5966	0.5273	1.0517	0.5798	0.6728	1.4749	
	dt	1.5016	0.6799	0.5883	1.0334	0.5050	0.5961	0.6876	0.3774	0.4930	
	a	2	3	3)	4	J	3		2	
	${ }^{\prime}$	101.9810	101.9236	101.5994	101.0000	100.9769	100.9852	101.0091	101.0109	101.0060	
	k	98.9999	98.9990	99.0013	99.0000	99.0038	98.9982	98.1610	98.0237	98.0311	
	Cost	29.8558	7.3656	31.6688	31.8717	7.6291	31.8718	31.6690	7.3657	29.8557	
1.75	1	0.25	0.73	0.44	0.28	0.89	0.18	0.28	0.91	0.41	
	d	0.9614	0.5389	0.5394	0.6597	0.4561	0.6180	0.5848	0.4397	1.2485	
	dı	3.1373	1.2196	0.6109	1.4884	0.5950	0.4441	0.9697	0.4468	0.5316	
	a	1	2	3	3	1	4	3	4	2	
	1	102.0000	101.9676	101.8961	100.9404	100.9953	101.0000	100.9990	101.0055	100.9991	
	lı	99.0000	99.0117	99.0010	99.1154	99.0094	99.0000	98.3130	98.0571	98.0350	
	Cost	40.4337	7.2062	19.8325	43.3009	7.6134	20.1475	43.2034	1.4723	19.0129	
1.00	b	0.23	0.82	0.82	0.25	0.90	0.90	0.25	0.90	0.90	
	dr	0.9519	0.4317	0.4317	0.5777	0.4201	0.4201	0.5803	0.4201	0.4201	
	ds	5.0082	3.0551	3.0551	3.0306	2.0030	2.0030	2.7624	2.0627	2.0627	
	a	1	2	2	3	,	4	,	4	1	
	1	101.9822	102.0093	102.0093	100.9985	100.9913	100.9913	100.9983	100.9913	100.9913	
	1	98.7450	99.0012	99.00112	99.0271	99.0292	99.0292	98.0257	98.0292	98.0292	
	cost	50.8163	6.7870	6.7870	54.5688	7.5323	7.5323	54.5689	7.5323	1.5323	

those in Table 4.6. A similar statement applies to Tables 4.16 and 4.7 , Tables 4.17 and 4.8 and Tables 4.18 and 4.9. This lends confidence that the asymmetric economically-based design and search procedure are valid. As mentioned previously, due to the flatness of some loss-cost functions, there are several combinations of time interval between subgroups (h), decision intervals ($d u$ and $d L$), and dead band values (ku and $k L$) which yield close to the same loss-cost.

Loss-costs listed in Tables 4.6 to 4.9 and 4.15 to 4.18 are outcomes when the process is the steady state. A simulation technique might be applied to obtain the variation of the loss-cost over a particular duration during which the process is operated. Performing this analysis is beyond the scope of this research.

Summary

The economically-based asymmetric Cusum model and the optimization procedure are analyzed and validated using two approaches: (1) evaluate symmetric Cusum examples with known solutions using the asymmetric model and compare solutions with Goel's data sets, (2) perform a 3251 factorial design using asymmetric examples and the asymmetric model to obtain near-optimal results, and (3) again perform the optimization of (2) using different initial points for the search.

CHAPTER V

USING THE INTERACTIVE COMPUTER PROGRAM

This chapter demonstrates the use of an interactive computer program which allows utilization of the design and evaluation methodology presented in previous chapters. The actual FORTRAN program is documented and appears in the Appendix. It has been performed on an IBM 3081D using various time share terminals and an IBM PC.

The user is prompted for all necessary inputs by the computer. The entire program is interactive and values of all the parameters are presented to the user for verification. Only when a set of inputs has been confirmed does the program continue.

When several values are to be entered, a space or a comma is used to separate them. Integer numbers should be entered without decimal points. If a decimal point is included, an error message is issued and the user is prompted to reenter values. The input mechanism is virtually self-explanatory, as long as the user understands the terms being input and their mathematically feasible range.

In the remainder of this chapter, actual interactive outputs are interspersed with comments and explanations.

All computer outputs illustrated are generated automatically by the computer except for the terminal inputs which follow a question mark (?).

The interactive computer program provides the capability to do two activities: (1) design an economicallybased asymmetric Cusum control chart and (2) evaluate a user-defined Cusum control chart. The program begins by prompting option menu (M.1). The selection of " 1 " indicates the design of an economically-based asymmetric Cusum control chart is to be performed.

* MBIN BERO *

 ************************heat hoold yod lice to do ?
(M.1)

1. DESIGH an bcohonically-blsed cosoh control carrt
2. byalodit a cosoa comtrol carat
3. EXIT.
bhtre fer option moubir please!
?
1

Design of an Economically-Based
Asymmetric Cusum Control Chart

After the economically-based chart design is chosen, input of the following values are sequentially prompted by the program:
(1) The process parameters,
(2) The cost and time factors,
(3) The initial point for the search procedure,
(4) The criteria and step sizes for optimization of n, $h, d u$ and $d L$,
(5) The criteria and step sizes for optimization of h, du and de ,
(6) The criteria and step sizes for optimization of h, du, dL, ku and kL,
(7) The step size for varing incrementally the values of $d v$ and $d L$,
(8) The step size for varing incrementally the values of $k v$ and $k L$.

The program prints these input data each time for verification by the user. Only after the user confirms the validity of the input does the program continue.
please emtrr process paraartbrs, inpot palars of:
SHAPR, SCALE, SIGMA, ALPHA, TARGBT, DBLIA(DP), DBLTA(LOH)
?
$2.0,100.0,1.0,0.25,100.0,2.0,4.0$

fer POLLOHING	7aLOR	8	ItID:	SIGH	
SHAPB	2.00	SCALB	$=100.00$		
ALPRA	0.25	targit	$=100.00$		
DRLIS $(0 \mathrm{P})=$	2.00	DBLTA	4.00		

ARE THBSE DATA RIGHT?
PLESSB BHIER 1 POR YBS, 2 POR MO.
?
1
pleses emtrr cost and firs ractors, inpot palobs of:
$B, C, D, B, I, H, H D, B L$
$?$
$0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0$
tar follohing palogs hape beri inpoffed:

$B=0.50$	$C=0.10$	$D=2.00$	$B=0.05$
$I=50.00$	$H=25.00$	$B O=100.00$	$B L=100.00$

ARE THESR DATA RIGAT?
PLESER BMFER 1 FOR PES, 2 POR MO.
$?$
tet rollohing inifial point is soggefid:
SUBGROOP SIZA $N=10 \quad$ SAMPLIMG IMPRRPAL $\quad=3.00$

DO YOO ACCBPP THIS POIMT?
PLEASB BMER 1 POR YBS, 2 POR RO.
?
1
far rollohing valurs are sogeested por opfinization:
terhination linit $=0.100 \mathrm{D}-03$
MAX. BTALDATIONS $=200$
STBP FOR $A=1.000 \quad$ STEP POR $B=0.200$
STRP POR DO $=0.200 \quad$ STEP FOR DL $=0.200$
DO YOO ACCEPT THIS SUGGESTIOH?
PLEASE BMTER 1 POR YBS, 2 POR MO.
?

The Nelder and Mead direct search method is performed after the criteria and step sizes for $n, h, d u$ and $d L$ have been verified. The optimal point values and their associated hourly loss-cost are printed.
** OPPilizaiton IS Procissing **

```
***********************************************
    AffRr OPfinizafioh qGE dESIGH IS
        N=2.46 DD=1.0751 【D=101.0000
        B=1.02 DL= 0.5247 LL=98.0000
    LOSS-COST= 4.1325
```


Thereafter, the subgroup size is automatically

```
truncated to an integer and the intermediate values of n, du, dL, ku and kl are used. The next phase of the optimization is then run after the criteria and step sizes for \(h\), du and du have been inputted and verified. The search for an integer \(n\), the optimal decision variable values and their associated hourly loss-cost are then printed.
```

```
    TER POLLOHING FALUBS ARE SUGGESTED:
        trRhination limit \(=0.100 \mathrm{D}-05\)
        MAI. BTALOAFIOHS \(=300\)
        STRP POR \(\mathrm{A}=0.150 \quad\) STEP POR \(D O=0.150 \quad\) STBP POR \(D L=0.150\)
    DO YOD ACCEPP FBIS SOGGBSIIOR?
    PLBLSE BKIER 1 FOR PES, 2 ROR MO.
```

?
1
*** OPfilmilafion Ifrrailon ***

- 1 DO DL 10 LL LOSS-COST
$\begin{array}{lllllll}\text { 2. } & 1.01 & 1.1943 & 0.5077 & 101.0000 & 98.0000 & 4.1476\end{array}$
$\begin{array}{lllllll}1 . & 0.75 & 2.4269 & 1.1677 & 101.0000 & 98.0000 & 4.4586\end{array}$
$\begin{array}{llllll}3 . & 1.19 & 0.7889 & 0.4371 & 101.0000 & 98.0000\end{array} \quad 4.1332$
$\begin{array}{lllllll}4 . & 1.27 & 0.5635 & 0.3789 & 101.0000 & 98.0000 & 4.1879\end{array}$

AFTER OPHIMIZATIOR PER DESIGI IS
$N=3.00 \quad D 0=0.7889 \quad$ I $0=101.0000$
$\mathrm{H}=1.19 \quad \mathrm{DL}=0.4371 \quad \mathrm{~L}=98.0000$
LOSS-COST= 4.1332

The direct search is again applied, automatically using a fixed subgroup size n and the new intermediate values of $h, d u, d L, k u$ and $k L$ as an initial point for another

```
iteration. Again, new criteria and step sizes must be
inputted and verified.
    Tar poloming paloes are soggrsfed:
        TBRHINATIOH LIMIT= 0.100D-06
        HAX. EPGLDATIOHS = 300
        STEP POR B = 0.100
        STRP FOR DO = 0.100 STEP POR DL=0.100
        STEP FOR SO= 0.100 STEP FOR LL= 0.100
        DO YOD ACCEPY FHIS SOGGESIIOH?
        PLBASB BMPRR 1 FOR YBS, 2 POR NO.
?
1
```



```
    arybr opfinizafion tar desigh IS
        N=3.00 DO= 0.8027 I I =100.9889
        B=1.13 DL=0.4029 KL=98.1078
        LOSS-COST= 4.1323
***********************************************
    Finally, incrementally varying the value of du and dL
as well as ku and kl brings about the optimal or near-
optimal design of an economically-based asymmetric Cusum
control scheme.
```

Stsp $=0.0020$ IS sdgessted por increarhfally parying do and dl.
DO YOD ACCEPY IT? PLEASE BHTBR 1 POR YES, 2 FOR NO.

```
?
1
```


after parying do and dL fri desigh is
$H=3 . \quad D O=0.8107 \quad I D=100.9889$
$H=1.13 \quad D L=0.4289 \quad L L=98.1078$
LOSS-COST= 4.1322

DO YOO ACCEPT If? PLELSE BHPER 1 POR TES, 2 FOR MO.

```
?
l
```



```
    H= 3. DO= 0.8107 EO= 100.9909
    #=1.13 DL=0.4289 KL=98.1058
    losS-CoST= 4.1322
```



```
THR BCOHOHICALLY-BASED COSOH CBARY IS ETALOAFBD AS:
SOBGROOP SILR M = 3. SALPLIMG IMTERTAL | = 1.13 GRS
DBCISION IMTBRPAL(OP) DO= 0.8107 DECISIOR INTBRPAL(LOH) DL= 0.4289.
DBAD BAND FALOB(OP) ED = 100.9909 DEAD BAND VALOE(LOH) KL = 98.1058
    GABLA(0)=0.0088 ARLL: 1.11 BMSIH = 74.09
    GAMMA(L)=0.0223 BRLO = 898.63 CICLR TIMR= 91.46 HRS
    GAB48(0)=0.9680 THE HODRLY LOSS-COST IS $ $.1322
```


Evaluation of A Cusum Control Chart

A selection of "2" from menu (M.1) leads to the evaluation of a specified Cusum control chart. The interactive procedure and the input data follow the first three steps in designing an economically-based asymmetric Cusum control chart. The format of the resulting listing is very similar to that of economically-based design.

 * MAIN MBHO *

HEAT HOLLD YOO LILE TO DO ?

1. DRSIGH AN BCOHOHICALLT-BASED COSOH COHfROL CHART
2. BPALOAIE A COSOH COHFROL CRARI
3. BIIf.

EKTER par Opfioh houbra plrase!

```
    PLESSE EMTRR PROCESS PGRGEEPERS, INPDT PALOES Of:
        SHAPR, SCALR, SIGHA, ALPRA, TARGET, DELFA(DP), DELTA(LOH)
    ?
2.0,100.0,1.0,0.25,100.0,100.0,2.0
qGE POLLOHING FALOES HAPR BEER InPOffED:
SHAPS = 2.00 SCALE = 100.00 SIGHA = 1.00
ALPBA = 0.25 TARGET = 100.00
DRLTA(OP)=100.00 DRLTA(LOH)= 2.00
ARE FAESE DATA RIGET?
PLEASE BHEER 1 POR PES, 2 POR MO.
?
2
```



```
SHAPE, SCALE, SIGHA, ALPBA, iarget, dELFA(DP), dELita(LOH)
?
\(1.0,100.0,1.0,0.25,100.0,2.0,2.0\)
```

```
fa& POLLOHING vaLOES RAPE BREM IMPOTfED:
```

fa\& POLLOHING vaLOES RAPE BREM IMPOTfED:
SHAPB = 1.00 SCALB = 100.00 SIGHA = 1.00
SHAPB = 1.00 SCALB = 100.00 SIGHA = 1.00
ALPGA = 0.25 TARGET = 100.00
ALPGA = 0.25 TARGET = 100.00
DRLTA(OP)= 2.00 DELTA(LOH)=2.00
DRLTA(OP)= 2.00 DELTA(LOH)=2.00
ARE fHESE DLIA RIGHT?
PLEASE BHTER 1 FOR PES, 2 FOR NO.
?
1
please bhtse cost and fiar ractors, inpot paloes or:
B,C,D,B,I, H, MO, KL
?
0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0
far pOLLOHing valors bave brem Inpofted:
$B=0.50 \quad C=0.10 \quad D=2.00 \quad B=0.05$
T= 50.00 H= 25.00 KO= 100.00 ML= 100.00
ARE PBESE DATA RIGHT?
PLBASE BMFRR 1 POR IES, 2 POR RO.
?
i

```

```

 N, H, DO, DL, IO,ML
 ?
5,1,40,0.4821,0.3587,100.9844,99.0012

```
```

TER POLLOHING FALOBS BAPB BREN IIPOTYBD:
SOBGRODP SILR = S SAMPLIMG IRTERPAL B= = 1.40
dECISIOR IRTBRTAL(OP) DO= 0.4821 DECISION INTSAPLL(LON) DL= 0.3587
DILD BAND FALDE(OP) LD = 100.9844 DEAD BAKD PALDE(LOH) IL = 99.0012
ARE TESSR DATA RIGHT?
PLESES BMFER 1 FOR YES, 2 POR NO.
?

```

```

 fa& cosol caart IS BPalodTED as:
 SOBGROOP SIZ\& N = 5. SAGPLING INTRRPAL 日 = 1.40 RRS
DRCISIOH IMTBRPAL(DP) DO= 0.4821 DRCISION IMTBRTAL(LOH) DL= 0.3587
DBAD BAFD FALOB(DP) \D = 100.9844 DEAD BAKD FALOE(LOH) \L =99.0012
GAHKA(0)=0.0076 ARL1: 1.09 BHSIN = 70.93
GAMLA(L)=0.0223 ARLO= 565.05 CTCLE TIME= 103.08 GRS
GAB4(0)= 0.9702 THR ROORLP LOSS-COST IS \$ 4.0024

```

```

 In the main menu, a selection of " 3" terminates the
 execution of the interactive computer program.

```
*********************
* HAIK URKO
*********************
    HBLT HODLD YOD LILE TO DO ?
        1. DESIGM AH BCOHOHICALLP-BASED COSDH CORFROL CBART
        2. braloatr a cosoh control chart
        3. BXIT.
    BMTR TER OPTION MOUBER PLESSE!
?
3
RBADI

\section*{Summary}

According to the numerical results in Chapter IV, as shown in Tables 4.6 to 4.9 and 4.15 to 4.18 , there is an average of 1.8251 minutes CPU time with a standard deviation of 0.5833 minutes for a single run. The minimum CPU time is
0.8688 minutes and the maximum CPU time is 3.3565 minutes. It has been observed that the major effect in the variation of CPU time is the quality of the initial point for the search procedure.

Nearly every feature of the interactive computer program of this research has been demonstrated in this chapter. The interactive feature and its flexibility make this computer program a useful tool for designing and evaluating Cusum control schemes economically. Through ite additional design and evaluation capability, this interactive computer program will help with better design and assessment and broader application of Cusum control schemes.

\section*{CHAPTER VI}

\section*{SUMMARY AND CONCLUSION}

This research extends the state of the art in quality control charting by fulfilling the objective and subobjectives stated in Chapter I. It provides an operational tool which will permit the Cusum control chart to be used in an economically optimum manner as an alternative to Shewhart control charts for monitoring a process in a realistic environment. This has been achieved by accomplishing the following:
1. An asymmetric Cusum control chart methodology has been developed in which shifts in process mean, probabilities of shift direction and the associated costs of process shifts are asymmetric.
2. A Weibull process failure mechanism has been assumed and incorporated into the asymmetric Cusum control chart model.
3. An economically-based Cusum model has been formulated by following the same cost structure as in Duncan's classic economically-based \(\bar{X}\)-chart model.
4. Methodologies for statistically evaluating and designing an asymmetric Cusum control chart have been presented.
5. Economical design of the asymmetric Cusum control chart has been compared under a variety of conditions. The effect of the Weibull process failure mechanism has been examined.
6. A versatile interactive computer program has been developed and demonstrated to facilitate the design and evaluation of (1) economically-based asymmetric Cusum control chart, and (2) user defined Cusum control charts.

Based on the results obtained in this research:
1. The Weibull scale parameter affects more the variation in loss-cost and cycle time than does the Weibull shape parameter.
2. It is observed that smaller subgroup sizes should be taken more often when the magnitude of shift in the process mean, which is to be detected, increases.
3. A symmetric Cusum control chart is a special case of the asymmetric Cusum control scheme.
4. Based on the loss-costs obtained, a symmetric Cusum control chart seems slightly less efficient than does a one-sided asymmetric Cusum control chart.
5. In order to have more confidence in the near-optimal solution, multiple starting points are used in the optimal-seeking search procedure.
6. In this study, the upper dead band value ku is about \(\mu_{0}+\xi_{2} \delta u \sigma\) and the lower dead band value \(k L\) is about \(\mu 0-\frac{1}{2} \delta L \sigma\).

The following are recommendations for future research on the same subject to facilitate implementation of Cusum control charts:
1. Multiple assignable causes may be considered in an extension to this research. In this study, a single assignable cause is assumed.
2. The economically-based formulations of Cusum control charts can be extended to have a process failure mechanism which follows the rich Weibull distribution.
3. Step sizes for the decision variables in optimization procedures do affect the final result. Optimal step sizes should be a consideration in improving the computer program and obtaining a better solution.

\section*{REFERENCES}

Bagshaw, M., and R. A. Johnson. "The Effect of Serial Correlation on the Performance of CUSUM Tests II." Technometrics, 17, 1 (1975), 73-80.

Baker, K. R. "Two Process Models in the Economic Design of an X-Chart." AIIE Transaction, 3, 4 (1971), 257-263.

Bakir, S. T., and M. R. Reynolds Jr. "A Nonparametric Procedure for Process Control Based on Within-Group Ranking." Technometrics, 21, 2 (1979), 175-183.

Bissell, A. F. "A Semi-parabolic Mask for Cusum Charts." The Statisticisn, 28 (1979), 1-7.

Bissell, A. F. "The Performance of Control Charts and Cusum's under Linear Trend." Applied Statistics, 33, 2 (1984a), 145-151.

Burr, I. W. "The Effect of Non-Normality on Constants for \(\bar{X}\) and R Charts." Industrial Quality Contrel, 23, 11 (1967), 563-569.

Chiu, W. K. "The Economic Design of Cusum Charts for Controlling Normal Means." Applied Statistics, 23, 3 (1974), 420-433.

Chiu, W. K., and G. B. Wetherill. "A Simplified Scheme for the Economic Design of X-Charts." Journal of Quality Technology, 6, 2 (1974), 63-69.

Chung-How, Y., and F. S. Hillier. "Mean and Variance Control Chart Limits Based on a Small Number of Subgruops." Journal of Quality Technology, 2, 1 (1970), 9-16.

Duncan, A. J. "The Economic Design of \(\bar{X}\)-Charts Used to Maintain Current Control of a Process." Journal of the American Statistical Asseciation, 51, 1956, 228-242.

Duncan, A. J. "The Economic Design of \(\bar{X}\)-Charts When There Is a Multiplicity of Assignable Causes." Journal of the American Statistical Association, \(66,1971,107-121\).

Duncan, A. J. Quality Contrel and Industrial Statistics (5th ed.), Homewood, Illinois : Richard D. Irwin Inc., 1974.

Ewan, W. D. "When and How to Use Cusum Charts."
Technometrice, 5, 1 (1963), 1-22.
Ewan, W. D., and K. W. Kemp. "Sampling Inspection of Continuous Processes with No Autocorrelation Between Successive Results." Biometriks, 47, 1960, 363-380.

Ferrell, E. B. "Control Charts for Log-Normal Universes." Industrial Quality Control, 15, 2 (1958), 4-6.

Ferrell, E. B. "A Median, Midrange Chart Using Run-Size Subgroups." Industrial Quality Contrel, 20, 10 (1964), 22-25.

Gibra, I. N. "Economically Optimal Determination of the Parameters of an X Control Chart." Management Science, 17, 9 (1971), 635-646.

Gibra, I. N. "Recent Developments in Control Chart Techniques." Journal of Quality Technology, 7, 4 (1975), 183-192.

Goel, A. L. "A Comparative and Economic Investigation of \(\bar{X}\) and Cumulative Sum Charts." PhD. Dissertation, University of Wisconsin, Madison, Wisconsin, 1968.

Goel, A. L., S. C. Jain, and S. M. Wu. "An Algorithm for the Determination of the Economic Design of X-Charts Based on Duncan's Model." Journal of the American Statistical Asseciation, 63, 1968, 304-320.

Goel, A. L., and S. M. Wu. "Economically Optimal Design of Cusum Charts." Management Science, 19, 11 (1973), 1271-1282.

Goldsmith, P. L., and H. Whitfield. "Average Run Lengths in Cumulative Chart Quality Control Schemes." Technometrics, 3 (1961), 11-20.

Hillier, F. S. X- and R- Charts Control Limits Based on a Small Number of Subgroups." Journal of Quality Technology, 1, 1 (1969), 17-26.

Hunter, J. S. "The Exponentially Weighted Moving Average." Journal of Quality Technology, 18, 4 (1986), 203-210.

Johnson, N. L. "Cumulative Sum Control Charts and Weibull Distribution." Technometrics, 8, 3 (1966), 481-191.

Johnson, N. L., and F. C. Leone. "Cumulative Sum Control Charts : Mathematical Principles Applied to Construction and Use." Part I. Industrial Quality Contrel, 18, 12 (1962), 15-21.

Johnson, N. L., and F. C. Leone. "Cumulative Sum Control Charts : Mathematical Principles Applied to Construction and Use." Part II. Industrial Quality Control, 19, 1 (1962), 29-36.

Johnson, N. L., and F. C. Leone. "Cumulative Sum Control Charts : Mathematical Principles Applied to Construction and Use." Part III. Industrial Quality Contrel, 19, 2 (1962), 22-28.

Johnson, R. A., and M. Bagshaw. "The Effect of Serial Correlation on the Performance of CUSUM Tests." Technometrics, 16, 1 (1974), 103-112.

Jones_K. L., and K. E. Case. "Economic Design of a Joint X- and R Control Chart." AIIE Transactions, 13, 2 (1981), 182-195.

Kemp, K. W. "The Average Run Length of a Cumulative Sum Chart When a V-Mask is Used." Journal of the Royal Statistical Society Series B, 23, 1 (1961), 149-153.

Knappenberger, H. A., and A. H. Grandage. "Minimum Cost Quality Control Tests." AIIE Trancactions, 1, 1 (1969), 24-32.

Lorenzen, T. J., and L. C. Vance. "The Economic Design of Control Charts : A Unified Approach." Technometrics, 28, 1 (1986), 3-10.

Lucas, J. M. "A Modified V-Mask Control Scheme." Technometrics, 15, 4 (1973), 833-847.

Lucas, J. M. "The Design and Use of V-Mask Control Schemes." Journal of Quality Technology, 8, 1 (1976), 1-12.

Lucas, J. M. "Combined Shewhart-CUSUM Quality Control Charts." Journal of Quality Technelogy, 14, 2 (1982), 51-59.

Lucas, J. M. "Counted Data CUSUM's." Technometrics, 27, 2 (1985), 129-144.

Lucas, J. M., and R. B. Crosier. "Robust CUSUM : A Robustness Study for CUSUM Quality Control Schemes." Communications in Statistics - Theory and Methods, 11, 23 (1982), 2669-2687.

Montgomery, D. C. "The Economic Design of Control Charts : A Review and Literature Survey." Journal of Quality Technology, 12, 2 (1980), 75-87.

Nelder, J. A., and R. Mead. "A Simplex Method for Function Minimization." The Computer Journal, 7, 1965, 308-313.

Nelson, L. S. "Control Charts for Medians." Journal of Quality Technelegy, 14, 4 (1982), 226-227.

Olsson, D. M. "A Sequential Simplex Program for Solving Minimization Problems." Jeurnal of Quality Technolegy, 6, 1 (1974), 53-57.

Olsson, D. M., and L. S. Nelson. "The Nelder-Mead Simplex Procedure for Function Minimization." Technometrica, 17, 1 (1975), 45-51.

O'Neill, R. "Algorithm AS47 - Function Minimization Using a Simplex Procedure." Applied Statistics, 20, 1971, 338-345.

Page, E. S. "Continuous Inspection Schemes." Biometrika, 41 (1954), 100-115.

Page, E. S. "Cumulative Sum Charts." Technometrics, 3, 1 (1961), 1-9.

Page, E. S. "A Modified Control Chart with Warning Limits." Biometrika, 49, 1962, 171-176.

Qureishi, A. S. "The Discrimination Between Two Weibull Processes." Technometrics, 6, 1 (1964), 57-75.

Roberts, S. W. "Control Charts Based on Geometric Moving Averages." Technometrics, 1, 3 (1959), 239-250.

Roberts, S. W. "A Comparison of Some Control Chart Procedures." Technometrics, 8, 3 (1966), 411-430.

Robinson, P. B., and T. Y. Ho. "Average Run Lengths of Geometric Moving Average Charts by Numerical Methods." Technometrics, 20, 1 (1978), 85-93.

Rowlands,R. J., A. B. J. Nix., M. A. Abdollian., and K. W. Kemp. "Snub-Nosed V-Mask Control Schemes." The Statistician, 31, 1982, 133-142.

Saniga, E. M. "Joint Economic Design of \(\bar{X}\) and \(R\) Control Charts with Alternate Process Models." AIIE Transactions, 11, 3(1979), 254-260.

Schilling, E. G., and P. R. Nelson. "The Effect of NonNormality on the Control Limits of X-Charts." Journal of Quality Technelogy, 8, 4 (1976), 183-188.

Shewhart, W. A. Economic Control of Quality of Manufactured Products. Princeton, N. J.: Van Nostrand Reinhold Co., 1931.

Taylor, H. M. "The Economic Design of Cumulative Sum Control Charts." Technometrics, 10, 3 (1968), 479-488.

Vance, L. C. "A Bibliography of Statistical Quality Control Chart Techniques, 1970-1980." Journal of Quality Technology, 15, 2 (1983), 59-62.

Vance, L. C. "Average Run Lengths of Cumulative Sum Control Charts for Controlling Normal Means." Journal of Quality Technology, 18, 3 (1986), 189-193.

Vardeman, S., and D. Ray. "Average Run Lengths for CUSUM Schemes When Observations Are Exponentially Distributed." Technometrics, 27, 2 (1985), 145-150.

Vasilopoulos, A. V., and A. P. Stamboulis. "Modification of Control Chart Limits in the Presence of Data Correlation." Journal of Quality Technology, 10, 1 (1978), 20-30.

Weiler, G. H. "The Use of Runs to Control the Mean In Quality Control." Journal of the American Statistical Ascociation, 48, 1953, 816-825.

Weindling, J. I., S. B. Littauer., and J. Tiago de Oliveira. "Mean Action Time of the X-Control Chart with Warning Limits." Journal of Quality Technology, 2, 2 (1970), 79-85.

Woodall, W. H. "The Statistical Design of Quality Control Charts." The Statistician, 34, 1985, 150-160.

Woodall, W. H. "The Design of CUSUM Control Charts." Journal of Quality Technology, 18, 2 (1986), 99-102.

Wortham, A. W., G. F. Heinrich., and D. Taylor. "Adaptive Exponentially Smoothed Control Charts." International Journal of Production Research, 12, 6 (1974), 683-690.

APPENDIX
C
C BASED DESIGR OR COHOLATIPS SOH COHFROL CHART.

C
C BY CHONG-YO PAK, SCBOOL OR INDOSPRIAL BHGIRERRING *
        AAD BARAGEABKI *
        OLLAHOHA STATE OHIPBRSITY *

C *

C
DEEINITIOH OR SOBRODTINES: *
* *
    DESIGH : PBRPORH FRE DESIGR OF BCOHOHICALLI-BASED COMOLATIPE *
        SOH COHTROL CHARTS.
        *
        BYALOE : PRRTORE PRE BPALOATIOH OR \(\triangle\) COSDH COHTROL CHART. *

        HITG THREE OR FOOR PARIABLES TO PIND THE OPTIKAL OR *
        NBAR-OPTIMAL.

        WIPH PIVE PARIABLES TO TIND THE OPTIBAL OR NBAR-
        OPTIMAL.
        LOSS : PRRPORM PGR STALOATIOK OR LOSS-COST.
        *
        -
        CYCLR : PBREORG THB EYALOATIOH Of CYCLE TIME. *
        LBHGE : PBREORH fHE BFALOATIOR OR ATBRAGE ROH LBMGTE (ARL). *
        SCALH : PERFORM HABMIHG'S GBYHOD TO SCALE A SQDARE MATRIX.
        RESCAL : PBRPORM TER OPRRATIOR OE RESCALIAG A SQOARE MATRIX. *
        LSOLT : PRRPORU GAOSSIAR BLIMIAATIOR HITH PARTIAL PIPOTING *
        TO SOLPE A SISTBH OR LIREAR RQOATIOR. *
        *

        TO PIRD A OPPIHAL.
    IACRED : PRRRORE fHE LIHEAR ADJOSTHENT OR DBAD BARD FALOBS
        TO IIRD AK OPTIHAL. TO FIRD AR OPHIHAL.

    standard horbal pariable. *


```

C i : fl\& atralge cosf pbr bybMf of sblaching for an *
C ASSIGMBLR CAOSE MAEH NOHE BMISTS. *
c : caf averag cost per bybht or seaching for an *
C ISSIGMABLP CAOSB REBK ONE DOES EXIST. *

```

```

C OCCORRBNCE OF AR OPPER GEAH SHIPI RROG TARGET EO ID.*

```

```

C OCCORRBHCR OF \triangle DOHWHARD HEAH SBIFT PROH TLRGET TO *
C \L. *
C COST : fRE PALOR OR LOSS-COST. *
C : *
C***
C
c main prograk
C
IHPLICIT RSLL*8 (A-H,O-Z)
RBAL*\& \D,NL,MO,HL,I(6),HIB(6),CONS (8),STBP(6),Y(6),YTBUP(6)
COHHOH SHAPE,SCALE,SIGHA, ALPBA, COHS,DELIAD,DSLTAL,TARGET,CD,SL

```

```

C
C PROHT MAIN MENC
C
10 HRITE(6,200)
C
RBLD(5,*)HEMD
60 90 (30,30,300) पहRO
20 HRITE (6,210)
C
RRAD(5,*)IBMTBR
GO TO (10,300) IENTBR
G0 10 20
C
C IMPOT PROCESS PARaHETRRS
C
30 WRITP(6,220)
RRLD(5,*)SHAPR,SCALI,SIGHA,ALPHA,TARGRT,DBLTAD,DELPAL
GAMOL=DGHHLA(1.DO+1.DO/SHAPE)
C
C bcho process paraurtsrs
C
40 MRITE(6, 230)SHAPR,SCALB,SIGMA,ALPHA,TARGRT,DBLTAD,DELFAL
RBLD(5,*)ICABCL
GO 90 (50,30) ICBECL
GO T0 40
c
C inpot cost and tikr ractors
C
50 WRITE (6,240)
RBAD(5,*)B,C,D,B,T,H,GO,GL
C
C rcho cost and filkr factors
C
60 MRIPB(6,250)B,C,D,B,T,H,40,HL
RBAD(5,*)ICGBCL

```
```

 60 90 (70,50) ICHBCI
 60 10 60
 C
70 COHS(1)=B
COMS(2)=C
COHS(3)=D
cons(4)=E
COHS(5)=:
CONS(6)=:
COHS(7)=:0
COHS(8)=:LL
IO=TARGFT+DRLTAD*SIGMA
\L=TARGET-DELTALSSIGMS
G0 T0 (80,90) \B%
8O CALL DESIGH
G0 90 10
90 CALL EPALOB
G0 T0 }1
C
200 FORHLIT(1H1,12X,24(1H*),/,
\& 138,* MAIN WENO *',/,138,24(14*),//.
d 3\,'柤OT HOLLD YOD LIEE YO DO ?'
\& ,/,5X,'1. DESIGH AH BCOHOHICALLY-BASBD COSD\# COHTROL CBARY'
\& ,/,58,'2. spaloats a COSOH COHPROL CHARF'
\& ,/,5\,'3. BXIT.'
4 ,//,3L, bhybr far opfioh nobber plrasb!')
210 format(///,5\, 'bMered nohber brror!',//,
a 58,'1. REEMTER Opyioh nomber,',/,
\& 5\,'2. EXIT.')

```

```

 & ' IMPOT Palobs OR:',/,58,
 & 'SHAPE, SCALB, SIGHA, ALPHA, TARGEF, DRLIA(DP), DRLFA(LOH)',/)
    ```

```

 & 5L,'SHAPB =',P6.2,51,'SCALB =',P7.2,
 & 5I,'SIGHA =',R6.2,/,
 & 5\,'ALPEA =', P6.2,5\,'TARGSY =', P7.2,/,
 & 5\,'DELHA(DP)=',P6.2,51,'DELTA(LOH)=',P7.2,//,
 & 3X,'ARE THESE DATA RIGHT?',/,
 | 3L,'PLEASR EHFBR 1 POR PES, 2 POR MO.',/)
 240 FORHAF(/,3I,'PLESSE BHYER COST AND IIGE RACYORS, IHPOT PALOES OR:
 ,/,5&,'B, C, D, B, I, H, MD, LL',/)
 250 FORMAT(/,3L,'TGB POLLOHLIGG FALDES HAPB BEER IMPOTTED:',/,

```


```

 & //,3\,'ARE THRSE DATA RIGHT?',/,
 & 3I,'PLESSE EMPBR 1 POR PES, 2 FOR NO.',/I
 300 STOP
BHD
C
C**
SOBRODIIRE DESIGR
C***
IHPLICIT RESL*8 (A-H,O-Z)

```

```

 COHKOR SAAPR,SCALR,SIGMA,ALPHA,COHS,DELPAD,DELTAL,TARGET,ID,IL
    ```

```

 DATS $/10/, #/3.0/
 DOESIGMS*DRLFAD/10.0
 DL=SIGU& #ELTAL/10.0
 IO=TARGET+0.5*SIGMAEDSLFAO
 RL=FARGET-0.5*SIGMa*DELTGL
 C
c inPOT inifial point of cosola charfs
C
KRITE(6,300)M,B,DD,DL,IO,LL
RBAD(5,*)ICHBCI
g0 T0 (6,2) ICEBCX
2 HRITE(6,305)
RRAD(5;*)H,H,DC,DL,IO,NL
C
C BCHO TEE IMITIAL POIMT
C
4/WRIPB(6,310)N,H,DD,DL,ED,NL
RBAD(5;*)ICBRCL
G0 TO (6,2) ICHECX
60 T0 4
6 (1)=:
\(2)=DD
I(3)=DL
I(4)=RLOAT(M)
\(5)=\Sigma0
|(6)=LL
C
C Inpot Criteria akd stbe sizes por nbldir-head Opfimizlioh
c procedore hith foor variables
C
RRQ=0.0001
ICODHf=200
STBP(1)=0.2
STEP(2)=0.2
STEP(3)=0.2
STBP(4)=1.0
\#RITB(6,315)REP, ICOOKF,STEP(4), (STBP(I),I=1,3)
READ(5,*)ICHBCS
GO TO (30,10) ICHBCL
10 MRITE (6,400)
READ(5,*)REQ,ICOOHT,STBP(4),(STBP(I),I=1,3)
C
c rcho Impof data
C
20 KRITR(6,410)RRP,ICOOHT,STPP(4),(STBP(I),I=1,3)
RBAD(5,*)ICHECI
GO IO (30,10) ICHECI
G0 t0 20
`
C PERTORL OPPIHILATIOH PROCBDORE
C
30 RRITE(6,415)

```
```

 CALL NBLHI(I,4,STEP,REQ,MIN,ZHIN, ICODHI)
    ```

```

C
TRDHCate Sobgroop SILE aH Ihfrger and Opyimize 日, do and dl
C
I(4)=AIMF(MIN(4))
If (x(4).EP. 0.0) I(4)=1.0
OPBR=1.0
DO 40 M1=1,6
40 P(M1)=|IH(41)
P(4)=\(4)
ZHIH=1.D10
REQ =0.000001
ICODHT=300
STBP(1)=0.15
STEP(2)=0.15
STPP(3)=0.15
MRIPB(6,425)REQ,ICOOHF, (STEP(I),I=1,3)
RBAD(5,*)ICBBCI
GO TO (70,50) ICBBCX
50 KRITR(6,430)
RBDD(5,*)REQ,ICOOHT, (STEP(I),I=1,3)
C
C BCHO IRPOT DATA
C
60 MRIPR(6,440)RES,ICOONT,(STRP(I),I=1,3)
RBAD(5,*)ICBECL
GO IO (70,50) ICHBCI
60 90 60
C
prrfory OPfIMATIOR PROCBDORE
C
70 BCODMF=ICOORI
\#RITE(6,450)
80 DO 90 M2=1,3
90 I(H2)=HII(K2)
CALL NELH1(X,3,STPP, RRQ,UIN,Z, ICODHT)
HIITE(6,460)GIN(4),UIN(1),MIM(2),MIN(3),HIN(5),MIN(6),6
If (% .ht. 2HII) GO IO 100
G0 YO 120
100 DO 110 II=1,6
110 Y(II)=HIN(II)
OPBR=OPRR+1.0
I(4)=I(4)-1.0
2WIH=Z
ICOOMF=4COOHT
IF(\mathbb{IC}).HE, 0.0)G0 T0 80
120 \(4)=\Sigma(4)+OPBR
130 ICODHF:KCOOHT
CALL MRLH1(I,3, STBP, REQ,MIR, L,ICOONT)

```

```

 If(% GE. ZHIN) 60 To 160
 D0 140 #3=1,3
 140 X(43)=HIN(43)

```
```

 DO 150 M4:1,6
 150 Y(44)=HIN(44)
 2HIN=%
 \(4)=\(4)+1.0
 60 10 130
 160 WRIPB(6,420)Y(4),P(2),Y(5),Y(1),Y(3),Y(6),2:IM
 C
c fid sebgroop size amd optilize a, DD, DL, yo amd al
C
DO 170 }\$5=1,
170 X(45)=Y(45)
RRQ=0,0000001
ICOONT=300
STEP(1)=0.1
STPP(2)=0.1
StPP(3)=0.1
STRP(4)=0.0
STBP(5)=0.1
STBP(6)=0.1
HRITE(6,465)RRC, ICODNT,(STEP(I),I=1,3),(STRP(J),J=5,6)
RBAD(5,*)ICHBCL
GO TO (200,180) ICBBCL
180 WRIPR(6,470)
RBAD(5,*)REC,ICONM,(STBP(I),I=1,3),(STBP(J),J=5,6)
C
C bcho impof data
C
190 KRITB(6,480)REQ,ICODHT, (STEP(I),I=1,3),(STBP(J),J=5,6)
RBLD(5,*)ICEBCS
G0 TO (200,180) ICBECK
G0 %0 190
C
C PBRTORH OPPILIZAIIOH PROCEDDRE
C
200 CALL MRLL2(I,6,STEP,REP,MIN,7,ICOOMT)

```

```

C
C IMCREKEHTALLY FARY DD AND DL
C
DATA STEPD/0.002/
MRITR(6,485)STEPD
RRCD(5,*)ICBRCI
G0 %O (230,210) ICBBCL
210 MRITE(6,490)
RBAD(5,*)STRPD
C
c BCEO IMPDI DATA
C
220 NRITB(6,500)STBPD
RBLD(5,*)ICHRCL
60 TO (230,210) ICBBCK
G0 10 220
230 CALL IHCRED(HIN,Z,STBPD)

```

```

C
C IRCRBMERTGLLY FARY IO AMD LL
C
DATA STBPI/0.002/
\#RITB(6,515)STBPI
RRAD(5,*)ICHBCK
60 TO (260,240) ICBBCI -
240 MRITB(6,520)
RRSD(5,*)STEPL
C
C bcho impot data
C
250 MRITE(6,500)STEPE
RBAD(5,*)ICHRCL
G0 10 (260,240) ICBBCL
60 T0 250
260 CALL IHCRES(HIN,Z,TARGRT,STEPL)
MRITB(6,530)MIH(4),MIN(2),MIN(5),MIM(1),MIN(3),MIN(6),2
EHSIH-EBHSIH/Z(1)
HRITE(6,540)HIN(4),(HIN(I),I=1,3),(HIN(J),J=5,6)
\#RITE(6,550)GABO,ARL1, ENSIH,GAKL,ARLO,CYC,GABO,Z
C

```

```

 & 5L,'SOBGROOP SILR = =',14,10I,
 & 'SABPLING IMPBRYAL Q =',P7.2,/,
 4 5\, DRCISION IMTBRPAL(DP) DO=', P9.4,5L,
 & 'drcisIOR IMreryal(LOH) DL=',P9.4,/,
 & 5&, DESD BAND PALDE(DP) ID =', P9.4,58,
 & 'DELD BAND PALOE(LOH) KL =',89.4,//,
 & 3X,'DO YOD ACCBPT this POIMT?',/,
 4 3X,'PLESSE BMFBR 1 FOR YES, 2 FOR MO.',/)
 305 fORMAT(/,3X,'PLBGSE EMTBR IHITIAL POIMP, IHPOP PALOES OR:',/,
\& 5I,'H, B, DO, DL, ID, ML',/\
310 PORHAT(/,3X, 'tGE POLLOHIMG FALDES HAPB BEBH IMPDFTBD:',/,
\& 5I,'SOBGRODP SIZE I =',14,10X,
'SALPLING IHTRRTAL 目 =',P7.2,/,
5\, DRCISIOH IHTRR7AL(DP) DD=',P9.4,5\,
'DECISIOM IRTRRTAL(LOH) DL=',P9.4,/,
5L, DEAD BARD FALOE(DP) ED =',P9.4,5L,
'DELD BAND FALOE(LOH) \L =',P9.4,//,
* 3X,'ARE YHESE DAIA RIGHT?',/,
\& 3X,'PLSLSE BMfRR 1 POR PBS, 2 FOR MO.',/)

```

```

 & ,/,5\, 't8RIMafIOM LIMIT=',D12.3,
 | l,5\,'MAX. BYALOATIONS =',I4,
 & /,5X,'STEP FOR I=',P6.3,5\,'STBP POR 日 =',P6.3,
 & /,5\,'STEP POR DO=',P6.3,5\,'STBP POR DL=',P6.3,
 | //,3I,'DO YOD ACCBPF THIS SGGGESTION?',/,
 4 3L,'PLBSSE BHFBR 1 POR YBS, 2 POR NO.',/)
 400 PORMLP(/,3X,'PLESSE BMTBR CRITBRIA ARD STBP SIZES POR',
\& 'OPIIHIZATION,',/,3L,'IMPOT PLLOES OR:',/,5\$,
4 '1. trrainatimg limit por variakce of fonction valobs.',/,5\,

```

```

 & 3. STEP SIZES POR N, B, DO AND DL, RESPBCFIPELY.',/)
    ```


```

 - 1,51, MAX. EPLDLAIIOBS \(=1,14\),
    ```


```

 \& //,3I, ARB TEESR DIIA RIGHI?',/,
 1 3I, PLBASE EHFRR 1 POR IBS, 2 POR NO.', 11
 415 PORHAT(/,3K, ** OPFIMIZation IS PROCESSING **',/)

```



```

 (51, 'LOSS-COSF \(=\) ', \(\mathrm{P} 10,4, /, 11,47\) (17*))
    ```


```

 \& \(\quad\), 52, MAI. EPLDOAFIOHS \(=\prime, 14\),
    ```

```

 'STBP POR DL=', P6.3,
 //,3Z, 'DO YOD ACCBPI THIS SOGGESTIOR?',/,
    ```




```

 1'3. STEP SIZES POR 日, DD ARD DL, RESPBCIIPBLI.',//
    ```

```

 a \(1,5 \mathrm{~L}\), ' TrRHinafion limif=', D12.3,
 \& \(1,5 \mathrm{SX}, \mathrm{MAX}\). हPALDAIIOKS \(=1,14\),
    ```

```

 'STEP POR DE=', P6.3.
    ```

```

 4 3X, PLBASE BMPR 1 FOR PSS, 2 POR NO. \({ }^{\prime}, / 1\)
    ```



```

465 formai ($/, 3 \mathrm{JI}$, 'THE POLLOHIRG VALOES ARE SDGGESTED:',
\& /,5X,'TRRHIMATION LIHIT=', D12.3,
1 /,5x, HAX. BPLLDAFIOHS $=\prime, 14$,
($1,5 \mathrm{5L}$, 'STBP POR $\mathrm{B}={ }^{\prime}, \mathrm{P6} .3$,
(1,51, STBP FOR DD=', P6,3,51, 'STBP POR DL=', P6.3,

```

```

 1 \(/ 1,3 \mathrm{~B}\), 'DO YOD ACCBPI THIS SOGGBSTIOH?', \(/\),
 13 3L, PLESSE EMFBR 1 POR IES, 2 FOR MO. \(1 / 1)\)
 470 PORMAT(/,3L,' PLESSE IMPDP VALDES OE:',/,5L,

```


```

 4.3. STEP SIZRS POR B, DD, DL, ID AND KL, RESPCCIIPLLY.',/)
    ```

```

 1 /,5d, 'trRhinafiol limit=', D12.3,
 (\(1,5 \mathrm{~L}\), HAI. BPALOAIIOHS \(=\prime, 14\);
    ```

```

 \& \(1,5 \mathrm{SI}\), 'STEP POR DO=', P6.3,51,'STPP POR DL=', P6.3,
    ```

```

 \& //,3I, 'ARE PBESE DATA RIGHT?',/,
 \(\&\) 3Z, PLBASE BMERR 1 POR YBS, 2 POR NO.',/)
    ```


```

 4, , 2 FOR NO. ',/l
    ```

```

 & ' DD MND DL.',/I
 500 PORMST(/,5\, 'STEP=',R8.4,' HAS BEBN INPOTTED.',//
 & 3Z,IS IT RIGHT? PLEASE BMPER 1 FOR PES, 2 FOR NO.',/)
 510 formaf(/,18,47(18*),/,3\, aftre varyimg do amd dL faE dESIGM IS',
 & /,5L,'N=',N4.0,74,'DO=',77.4,5\,'ED=', P9.4,1,
 * 5I,'#=', P6,2,5\,'DL=', P7.4,5L,'KL=',P9.4,1,
 & 5\,'LOSS-CosT=', P10.4,/,14,47(1-*))
 515 PORMLP(/,5X,'STBP=',P8.4,' IS SDGGESTED POR IMCRBMBNTMLLP PARPING'
 &,'ID AND KL.',//,3X, DO YOD ACCBPT IT? PLBASB BHTBR I POR PBS'
 4, 2 %OR NO.',/1
    ```

```

 & 'ID AMD LL.',/)
 530 porlaf(/,1\,47(1H*),/,5\, APTBR FARYiNG IO AKD IL fEB DESIGN IS',
    ```

```

 4 5\,'日=',P6.2,5\,'DL=',P7.4,54,'KL=',79.4,/,
 6 51,'LOSS-COST=',P10.4,/,11,47(14*))
 540 rORHST(/,11,72(14*),/,128,
    ```

```

 & I,18,'SGBGROOP SIZR : =', M5,0,6I,
    ```

```

 14, DRCISION IHTBRPLL(OP) DD=',P9.4,2I,
 DECISIOM IMPERYAL(LOH) DL=',88.4,/,
 & IL, DEAD BAND PALOE(OP) IO =', P9.4,2L,
 4 'DBAD BAND FALOE(LOH) LL =',P8.4)
    ```

```

 & 1,3\,'GABM(L)=', P7,4,6\,'\triangleRLO=', P10.2,68,'CYCLE TIHE=',P7.2,
    ```


```

 RETORN
 BHD
 C

```

```

 SOBRODIIRS BPALOB
    ```

```

 IHPLICII RBLL*8 ((-H,0-Z)
 RBLL*8 I(6),COHS(8),ED,KL,KO,HL
 COHHON SHAPR,SCALE,SIGHA,ALPRA, COHS, DELTAD,DLLFAL,TARGET,LD,IL
 COHGOR GABM, ADDELD,GAMO, ADPLL,GALL, ARLL,HRRSIT, ARLO, CYC,GAMO
 C
C InPot IHITIAL POINT
C
10 MRITP(6,100)
RBLD(5,*)H,H,DD,DL,ID,IL
C
C BCHO TR\& InIfIAL POIRI
C
20 NRITE(6,110)N,H,DD,DL,ID,IL
REDD(5,*)ICHBCS
60 10 (30,10) ICBECa
G0 t0 20
30 \(1)=|

```
```

 I(2)=DO
 \(3)=DL
 X(4)=RLOAT(N)
 \(5)=ED
 I(6)=【L
 C
C BPALOR I COSOM COHTROL CHART
C
CALL LOSS(1,COST)
BNSIR-BEMSIN/X(1)
MBITB(6,120)X(4),(\mathbb{Z}(\textrm{I}),\textrm{I}=1,3),(\mathbb{X}(J),J=5,6)
\#RITE(6, 130)GAKO, BRL1, BHSIH,GALL, ARLO, CYC,GAMO,COST
C

```

```

 & 58,'H, B, DO, DL, KD, KL',/)
    ```

```

 & 5\,'SOBGRODP SILR =',14,10X,
 & 'SAMPLING IMTERYAL 日 =', P7.2,/,
 & 5\,'DRCISION IMTRRYLL(OP) DD=',P9.4,5\,
 & 'DBCISIOR IMFRRPAL(LOH) DL=', P9.4,/,
 & 5\,'DEAD BAKD FALOB(OP) KO =',P9.4,58,
 & DBED BAKD FALOB(LOH) \L =',P9.4,//,
 * 3\, ARE THBSR DLTA RIGHT?',/,
 & 3X,'PLBASE BNTBR 1 POR YES, 2 FOR MO.',/)
 120 PORMAT(/,11,72(18*),/,211,
 & 'TGR COSOH CHART IS graldated AS:',
    ```

```

 'SAMPLING IMTBRYAL & =',P6.2,' RRS',/,
 18, DECISION INHBRYL(OP) DD=', P9,4,28,
 DECISION IMPERPAL(LOH) DL=', [8.4,/,
 14, DRAD BAND PALOE(OP) LD =', P9,4,24,
 'DRD BARD FALOE(LOH) IL =',I8.4
 130 PORMAT(3X,'GAML(D)=',M7.4,6X,'GRLI=',F10.2,6\,'EMSIK =',77.2,
 & (,3X,'GABMA(L)=', P7,4,6X,'ARLO=', P10.2,6I,'CYCLE TIHE=',P7.2,
 &' GRS',l,3I,'GAMUA(0)=',P7.4,6\, '7BR HOORLY LOSS-COST IS $',P10.4,
 l /,72(1H*),//)
 RBTORN
 BND
 C

```

```

 SOBRODFIMR LOSS(X,COST)
    ```

```

 IMPLICIT RESL*8 (A-H,O-Z)
 RBLL&& I(6),COHS(8)
 COHKOM SHAPE,SCALE,SIGHA,ALPBA,CONS,DBLTAD,DRLFAL,TARGET,IO,LL
 COHOON GABH, ADDELD,GAED,ADDLL,GAKL, ARLI, GEMSIN, ARLO,CYC,GABO
 C
C CALL Sobrodilne cycle, fhose dECISION variables to be
C OPHIHIZED ARE COHPLINED IN A.
C
CALL CYCLB(I,COSR,STDDO,STDDL)
C
C COHPOTE DISTAKCES BETHEBH TARGET AKD OPPER AKD LOHER
C dEAD BANDS, RESPECTIVBLY. fHOSE DISTAMCES arr cohparbd

```
```

C HITG far oppgr aND lOHsR DBCISIOR IMTRRYALS YO COMPOTB
C IGB ARLO.
C
DITFO=(TARGET-\(5))*COES
DITFL=(\#(6)-TARGRT)*CORR
CALL LRNGFG(STDDO,DIFPO,ARLOD)
CALL LBHGPG(STDDL,DIPFL,ARLOL)
TBHP=1.DO/ARLOO+1.DO/ARLOL
ARLO=1.DO/TBGP
C
C TO gTALOTE TEE LOSS COST BQOATION
C
BLA1=GAMO*CORS(7)+GABL*CONS(8)
BLH2=(COMS(5)*BBRSIN/Z(1)+CORS(6)*ARLO)/(ARLO*CYC)
BLA3=(COHS (1)+CONS(2)*\(4))/\(1)
COST=RLH1+BLLA2+BLH3
RETORH
BND
C
C**
SOBRODIIRR CICLB(Z,CORI,STDDD,STDDL)
C**
IHPLICIF RBAL\&8 (A-H,O-Z)
REAL*8 \(6),COHS(8)
COHYON SHAPB, SCALE,SIGHA, ALPHA, COHS, DELTAD, DELTAL,TARGPT,ZD,IL

```

```

 COEF=DSQRT(I (4))/SIGMA
 STDDO= = (2)*COSP
 STODL=Z(3)*COBR
 DIFSO=(80-8(5))*CORP
 DIPRL=(\square(6)-8D)*COBP
 CALL LENGTH(STDDD,DIPPD,AODRLO)
 CALL LENGPE(STDDL,DIPRL,ALDRLD)
 IBMP1=1.DO/AODRLD+1.DO/ALDRLD
 \triangle1DSLD=1.DO/TBUP1
 DIPPO=(XL-I(5))*COBP
 DIPPL=(X(6)-\L)*COBT
 CALL LENGPG(STDDO,DIPPO,AODRLL)
 CALL LEHGYR(STDDL,DIPRL,ALDELL)
 IRHPZ=1.DO/ADDELL+1.DO/ALDELL
 ADRLL=1.DO/PBMP2
 ARL1=ALPHA*A1DELO+(1.DO-ALPHA)*A1DRLL
 GBKSIM= BNSIZ(SHAPB,SCALB, I(1))*\(1)
 CYC=ARL1*I(1)+HEHSIH COHS(4)*I(4)+COHS(3)
 TIMEIN=SCALB*GAKMA
 GABO=TIGBIR/CYC
    ```

```

 GABO=\triangleLPHA*TBYP3/CYC
 ISHP4=\1DELL*I(1)-TIMBIN+HBNSIN+COHS(4)*Z(4)+COHS(3)
 GABL=(1.DO-ALPHA)*TBUP4/CYC
 RBTORM
 BND
 C
C**

```
```

 SOBRODIMR LBHGPG(STOG,DIPT,ARL)
    ```

```

 IHPLICIT BEAL:8 (A-H,O-Z)
    ```

```

 4DA(24),DB(24),C(24,24)
 DIWBESIOH NA(24), RB(24)
 DAT& Z1/-.9951872199970214DO,-.9747285559713095D0,
 2 -.9382745520027328DO,-.8864155270044010DO,
 3-.8200019859739029DO,-.7401241915785544DO,
 4-.6480936519369756DO,-.5454214713888395D0,
 5 -.4337935076260451D0,-.3150426796961634D0,
 6 -.1911188674736163D0,-.064056892862605600/
 DLTA 41/.0123412297999872DO,.0285313886289337DO,
 ? .0442774388174198D0,.0592985849154368D0,
 3 .0733464814440803D0,.0861901615319533D0,
 .0976186521041139DO,.1074442701159655DO,
 .1155056680537256DO,.1216704729278034DO,
 .1258374563468283DO,.1279381953467522DO/
 C
C INITIALIZR PARAMETBRS
C
DAT\& N/24/,MAS/25/,PI/3.1415926535898DO/
C
DO 40 L=1,12
24(L)=71(L)
2Z(25-L)=-Z1(L)
AR(L)=DLOG(B1(L))
40 AA (25-L) =AK (L)
C

```

```

C TOR GAOSSIAR BLIGINATIOH
C
DO 10 I=1,N
10 ZX(I)=(ZZ(I)+1.DO)*STDH/2.DO
C
C SRT OP TEP A MATRIX AND THE B FBCFOR ARD I FRCFOR
C
TBHYAL=DLOG(STDH)+DLOG(.5DO)-DLOG(DSSRT(2.DO*PI))
DO 20 I=1,!
DO 20 J=1,|
AD=.5DO*((4IN (J)-4K(I)-DIRT)**2)
TBLP=AL(J)+TBUPAL-AD
If (IBMP .GT. -1.8D2) GO IO 15
A(I,J)=0.0DO
G0 10 18
15A(I,J)=-DEXP(TBMP)
18 If (I.BQ.J) A(I,J)=A(I,J)+1.D0
2O COHTINOS
C
C SCALING A MATRIX
C
CALL SCALH $(4,24,24,24,0, N A, N B, D A, D B)$
CBBCE=O.O
BIGHOH: 0.0

```
```

 DO 25 I=1,1
 DO 24 J=1,趷
 A(I,J)=DA(I)*A(I,J)*DB(J)
 If (DABS(A(I,J)) .LT. 1.D-38) CBECE=1.0
 If (DABS(A(I,J)) .GI. BIGYOK) BIGKOG=DABS(A(I,J))
 24 COMTHOE
 AR=-ZI(I)-DIPI
 P=DPRI(AR)
 I(I)=DA(I)*P
 25 P(I)=DA(I)
 If (CHECI. .E. O.0) 60 90 26
 CALL RESCAL(A, 24,24,24,BIGKOH, X,Y)
 26 DO 30 I=1,1
 DO 30 J=1,%
 30 C(I,J)=A(I,J)
 CALL LSOLP(4,1,24,24)
 CALL LSOLP(C,Y,24,24)
 D0 60 I=1,1
 I(I)=DB(I)*I(I)
 60 Y(I)=DB(I)*P(I)
 AE=-DIPI
 PR=DPHI(AE)
 IHZERO=0.ODO
 PZERO=O.ODO
 D0 90 I=1,\
 ADI=.5DO*((ZL(I)-DIPP)**2)
 TBHP=AL(I)+TBHYLL-ADI
 If (1)(I) LE. 0.0) G0 T0 50
 TEHP1=TEHP+DLOG(X(I))
 IP(PBGP1 LT. -1.8D2) G0 %0 50
 PZRRO=PIERO+DEIP(TRUP1)
 50 IF (%(I).LR. 0.0) 60 90 90
 TRUP2=PRGP+DLOG(I(I))
 If(TBMP2 .LT. -1.8D2) G0 T0 90
 IH2RRO=XNLSRO+DESP(TBMP2)
 90 COHIILOE
 PZRRO=PZERO+PR
 \M2ERO=1.DO+\MLEPO
 IF (1.DO-PLEPO.LT.1.D-6) G0 10 95
 ARL=XHEERO/(1.DO-PLRPO)
 60 T0 100
 95 ARL=1.D9
 100 R&fogm
 BHD
 C

```

```

 DOOBLE PRECISIOH POKCHIOM DPHI(X)
    ```

```

 IHPLICIT RBLL*8(A-B,O-Z)
 DLTA B1/.319381530DO/,B2/-.356563782DO/,B3/1.781477937D0/,
 & B4/-1.821255978DO/,B5/1.330274429DO/,B6/.2316419DO/,
 & PI/3.1415926535898DO/
 T=1.DO/(1.DO+B6*DABS(X))
 RLH1=DLOG(B1*9+B2*T**2+B3*1**3+B4*T**4+B5*T**5)
    ```
```

 SLU2=DLOG(DSQRT(2.DOtPI))+\:$I/2.DO
 TSUP=ELY1-RLA2
 DPEI=0.0DO
 If (TEHP .GT. -1.8D2) DPGI=DBYP(TBUP)
 IP(I.GE.O.ODO) DPGI=1.DDO-DPBI
 REPORH
 BND
 C

```



```

C
c fhis prograk is proyided bl J. P. chardlbr
C COMPDTBR SCIBMCB DBPT., ORLAHOMA STATB DHIPERSITY
C
C IMPOT:
C
C A(*,*): TGR MATRII TO BE SCLLED
C : NOBBER OR ROHS IN THE MaprI\ A
C n : Mohbrr OR colouns in tar matriza
C LADIG : THB FIRST DIMENSIOH OR fGR ARRAP A (H.LE.LADIK)
C \RENRY: =1 TO REHORHLLIZE SO FBET THR LARGEST
C MAGMITODE IS 1.0,
C =O HOT TO REHORMALIZS
C
C ODPPOT:
C
c DA(*) : LSPT DIGGOHLL SCALIHG Matria
C DB(*) : Righy diagonal scaling matris
C
C SCRATCH STORAGR: : MA(*),MB(*)
C
C***
DOOBLB PRECISIOR A,DA,DB, QSQRf,ARG,QABS,QLOG,QBYP, RLERO,
* SOH,SOKI,TBYP,HSLPAT,APB,AKI
DIHBRSIOH A(LADIL,N),MA(H),MB(K),DA(H),DB(N)
RZERO=0.ODO
C
IP(M.LT.1 .OR. B.GT.LADIM .OR. M.LT.1) STOP
C
C IHITILLIZE.
C
DO 10 J=1,4
DA(J)=RZRRO
10 NA(J)=0
DO 20 }\textrm{A}=1,\textrm{H
DB(L)}=\mathrm{ R2BRO
20 MB(I)=0
SOH=RZERO
JLSOH=O
`
C ACCOKOLATE ALL SOHS AND PROCRSS A(*,*) BY COLOHNS.
C
DO 40 |=1, |

```
```

 SOGB=RZERO
 \SOM=0
 DO 30 J=1.4
 TIGP=DABS(A(J,V))
 If(TBMP. BQ.RZ880) G0 I0 30
 TBMP=DLOG(TBUP)
 DA(J)=DA(J)+IBHP
 SOHE=SOKIT+EMP
 SOH=SOL+TEHP
 NA(J)=NA(J)+1
 \SOK=\SOK+1
 JKSOL=JLSOLI
 cOHTINOE
 DB(S)=SDHE
 BB(K)=\SOH
 C
C COHPOTB DA(*) AKD DR(*).
C
IP(JSSOH.RQ.O) GO IO 70
TBHP=JKSOH+JKSOL
HALEAP=SDU/TBHP
DO 50 J=1,|
IP(NA(J).RQ.O) 60 10 50
TBuP= Na(J)
DA(J)=HALPAP-DA(J)/TBKP
5 0 ~ C O M T I R O R ~
DO 60 I=1,H
IR(NB(\triangle).BQ.O) GO T0 60
TBMP=NB(E)
DB(L)=RALPAP-DB(I)/TIMP
60 cOHTINOS
C
C TARE ARTILOGS.
C
70 DO 80 J=1,H
80 DA(J)=DBIP(DA(J))
DO 90 }\textrm{E}=1,\textrm{N
90 DB(\mathbb{C})=\operatorname{DBXP(DB(I))}
C
IP(IRBRRM.NR.1) RPTORM
C
C RBNORGALIZR SO fHat fHE LARGBST MGGITODE IS 1.0.
C
AHZ=RZBRO
DO 100 | = 1, H
DBE=DB(K)
DO 100 J=1,4
IBGP=DABS(DA(J)*A(J,L)*DBZ)
IP(TBMP.GT.AKZ) AKI=TEMP
100 CONTINOS
TEMP=DSQRT(AKX)
IP(TBGP.BQ.RZERO) RRTORN
DO 110 J=1,4
110 DA(J)=DA(J)/TBGP

```
```

 DO 120【=1,|
 120 BB(I)=DB(B)/TBAP
 C
RBTORN
BHD
C
C**\&***
SOBRODIINE LSOLP (A,BX,H,LDIM)
C***
C
C IHIS PROGRAK IS PROYIDED BP J. P. CHANDLSR
C COHPOTBR SCIBHCE DEPT., ORLAHOMA STATB OHIPBRSITY
C
C IS IHB NOMBRR OP BQOATIOHS IN THE LIMEAR SPSTBH.
C ON IRPOT, A(*,*) CORTAIMS THR MATRIX Of COBTPICIRMTS AMD BX(*)
C CORTAIMS f\#R PBCYOR OR COHSTAMTS (fGR RIGHPHAND SIDSS).
C O\& ODfPOT, BX(*) CONTAINS fHB SOLUTIOH PRCTOR AHD A(*,*) CORTAIMS
C GARBAGE.
C LDIE IS FGR FALOR OR TGB DIMENSIOHS OR IER ARRAYS A AND BX.

```

```

C
DOOBLE PRECISION A,BL,QABS,ARG, BIGA,TBHP, BH,SOH
DIKENSION A(LDIK,LDIG),BX(LDIK)
C
C CHECE POR AN INPALID VALOE OR N OR LDIH.
C
IP(N)240,240,10
10IP(H-LDIK)20,20,240
C
C IBIANGOLARIZE THR MAFRIXA.
C
20 MMO=N-1
If(NOD)240,140,30
30 DO 130 J=1, 昭
C
C SBARCH COLOLA J POR IHE PITOT BLBHBHT.
C
BIGA=0.
DO 50【=J,N
ITMP=DABS(A(I,J))
IP(TBZP-BIGA)50,50,40
40 BIGA=FBUP
JPIP=\
5 0 ~ C O H P I M O B ~
IP(BIGA)130,130,60
60 IP(JPIP-J)90,90,70
C
C IATBRCHANGR RQOATIOHS J AKD JPIP.
C
70 DO 80 L=J,N
TBMP=A(J,L)
A(J,L)=A(JPIV,L)
80
A(JPIV,L)=TRHP
TBMP=BX(J)

```
```

 BI(J)=BX(JPIV)
 BX(JPIV)=TEUP
 90 JPO=J+1
 DO 120 【=JPO,N
 C

```

```

C
BH=A(I,N)/A(J,J)
If (DABS(BH) .LT. 1.D-30) BH=0.0
IP(BH) 100,120,100
100 DO 110 L=JPO, %
110 A(L,L)=\Delta(L,L)-BG* (J,L)
BX(E)=BX(E)-B4*BX(J)
conilmos
conimos
C
C DO TEB BLCL SOLOPIOH.
C
140 DO 230 JIHF=1,|
J=R+1-JINP
TEMP=\&(J,J)
IF(TBYP)160,150,160
150 BI (J) =0.
60 10 230
160 SOK=0.
IP(J-8)200,220,220
200 JPO=J+1
DO 210 \=JPO,N
SOH=SDG +A(J,W)*BX(K)
BX(J)=(BX(J)-SOG)/TBMP
conifhos
240 RETORM
BND
C
C**
POHCHIOR BKSIN(SHAPR,SCLLB,H)
C**
IHPLICIT RBLL*8 (}1-\textrm{B},0-2\mathrm{ -)
PTOP=(-DLOG(1.D-10))**(1.DO/SHAPB)
LIHOP=INF(PTOP*SCALR/H)
PTLOH=(-DLOG(1.DO-1.D-10))**(1.DO/SEAPB)
LIHLOH=INT(PTLOH*SCOLB/E)
If (LIHLOH .LE. O) LIELOH=1
BMSIM=O.DO
DO 1 I=LIHLOH,LIMOP
B=(I*H/SCOLB)**SHAPE
1 EMSIM=BNSIM+DESP(-B)
RgTORM
SND
C
C**
SOBRODTINE RESCAL(A,V, N, LADIK, BIGHOK, , Y, Y)
C*\&*\&***
IHPLICIT RBLL*8 (A-H,O-2)

```
```

 BBAL*8 A(24,24),DA(24),DB(24), D(24),I(24)
 DIMBHSIOH N(24),NB(24)
 BIGA=BIGNDY$1.D-38
 DO 10 I=1, %
 DO 10 J=1,:
 IP(DABS(A(I,J)) .LI. BIGA) A(I,J)=0.0
 10 COHTINOS
 CALL SCALH(A,H,R,LADIM,O,NA,NB,DA,DB)
 DO 30 I=1,H
 DO 20 J=1,N
 20 A(I,J)=DA(I)*&(I,J)*DB(J)
 \(I)=DA(I)*I(I)
 30 P(I)=DS(I)*P(I)
 BRTORM
 BND
 C

```

```

 SOBRODTINE MRLHI(I,N,STBP,REQ,HIN,ZUIR,ICOORT)
 C**
IUPLICII RBLL*8 (A-H,0-Z)
RBAL*8 X(6), KIN(6),STBP(6),P(20,21),PX(20),P2X(20), PBAR(20),

```

```

 3 RCOBRP,BCOSTR,CCOEPR,COHS(8)
 DOOBLE PRBCISIOH DRLOAT
 COHMOH SHAPR, SCALE,SIGMA, ALPHA, COHS,DRLTAO,DRLIAL,TARGBT,SO,ZL
 COHKOR GAKKA, A1DRLD,GAKD,A1DSLL,GAKL, ARL1,HEHSIR, ARLO,CPC
 C
C RERLECTION, BYTENSION AND CONTRACTION COBPIICIRMPS
C
DATA RCOBTP/1.DO/, BCORTR/2.DO/,CCOETR/.5DO/
DATA SOHPGB/5/
CHRCR=0.0
LCOOMF=ICOONT
ICOOMT=0
JCOORT=LONPGR
DH=DPLOAT(K)
WN=R+1
DHK=DPLOAP(NN)
C
C CONSTROCTIOM OR IHITIAL SIHPLEX
C
DO 20 I=1,6
P(I, 㬳)=\(I)
PI(I)=I(I)
P2I(I)=I(I)
20 BIN(I)=1(I)
CALL LOSS(1,z)
ICOORT=ICOOHT+1
I(WN)=Z
SOL=?
SOHK=?*Z
DO 40 J=1,N
Z(J)=\mathbb{I}(J)+STBP(J)
DO 30 [=1,H

```
```

 30 P(I,J)=\(I)
 CaLL LOSS(X,ఇ)
 ICOORT=ICODYT+1
 I(J)=?
 SOH=SOK+%
 SOHH-SOKY+2*T
 40I(J)=\(J)-STBP(J)
 C
C SIMPLBI COHSTROCTION COHPLETE
C
C PIND BIGHTSSE AND LOHEST I PALOBS. 2 (= %(IGI) INDICATES
C FHR PRRTEX OR IGR SIMPLEX YO BE RRPLACED.
C
50 FLO=`(1)
2HIN=7LO
ILO=1
IHI=1
0070 I=2,NH
If (7(I).GE.PLO) 60 90 60
PLO=P(I)
ILO=I
g0 10 70
60 If (II(I).LB.64IN) 60 90 70
2HIN=?(I)
IHI=I
70 COHTINOS
SOK=SOH-ZHIN
SOHK=SDMH-ZHIN*ZHIN
C
C CALCOLATB PbAR, fHB CERTROID OR qGE SIHPLBX PBRTICES
C BXCEPTING fHAI hIEG Y PALOB gMIN.
C
D0 90 I=1,1
C=O.DO
0080 J=1,㮩
80 I=Z+P(I,J)
Z=Z-P(I,IAI)
90 PBAR(I)=Z/DA
C
C REPLECIION EHRONGZ IER CEMTROID
C
DO 100 I=1,|
PI(I)=(1.DO+RCORPF)*PBLR(I)-RCOBTP*P(I,IBI)
IP (PX(I) .6T. 0.0) 60 %0 100
CHECR=1.0
60 10 110
100 COHPINOS
110 ME=1.D10
If (CHBCL .NB, O.0) GO %O 120
CALL LOSS(PI,Y\)
120 CHECL}=0.
ICOOMf=ICODKT+1
If (YA.GB.YLO) 60 T0 180
C

```
```

C SNCCESSFOL RBPLECHIOH, PGEM BITEHSIOH
C
DO 130 [=1,N
P2X(I)=RCOBRF*PI(I)+(1.DO-BCOEPI)APBAR(I)
IP(P2X(I).G7. 0.0) G0 \$0 130
CABCL=1.0
60 T0 201
130 contimos
201 Y28=1.D10
IF (CHECL .HE. 0.0) 60 90 150
CALL LOSS(P2I,Y2X)
150 CHCCI=0.0
ICODNP=ICOOMT+1
C
rgtain ratrusion or confactioh
C
IF (928.G8. YB) GO T0 280
160 DO 170 I=1,H

```

```

 P(IHI)=Y2X
 60 10 300
 C
C ho butchsiOH
C
180 L=0
DO 190 I=1, 㹸
If (P(I).G7.PK) L=L+1
190 continos
If (b-1) 220,200,280
c
c contraction on tar rifliction Side or qer CEhfroid
C
200 DO 210 I=1,R
210 P(I,IHI)=PI(I)
Y(IHI)=Y\
C
COMfRACHION 0N THE Y(IBI) SIDE OR TER CENTROID
C
2 2 0 ~ D O ~ 2 3 0 ~ I = 1 , 1]
P2X(I)=CCOSPP*P(I,IHI)+(1.DD-CCOEPI)*PBAR(I)
If (P2I(I) .GI. 0.0) G0 Y0 230
CBCCL=1.0
60 T0 240
230 COMTINOB
240 128=1.D10
IP (CABCL .RE. O.0) 60 TO 250
CALL LOSS(P2I,Y2I)
250 CHBCL=0.0
ICOOHF=ICODNT+1
If (T2X.LB.Y(IHI)) 60 T0 160
c
C COHTRACH MHOLS SIMPLEX
C
SOH=0.DO

```
```

 SOFG=O.DO
 00 270 J=1, % %
 DO 260 I=1,N
 P(I,J)=(P(I,J)+P(I,ILO))*,5D0
 260 MIH(I)=P(I,J)
 CALL LOSS(BIN,I(J))
 SOH=SOH+?(J)
 270 SOHM=SOKH+Y(J)*I(J)
 ICOOMT=ICOONT+H:
 G0 90 310
 C
C RETAIN REPLBCFIOH
C
280 D0 290 I=1,N
290 P(I,IHI)=PI(I)
I(IBI)=I\
300 SOL=SOK+Y(IHI)
SOHK=SOLK+1(IBI)*T(IBI)
310 JCODHE=JCOOHF-1
IP (JCOORT.NE.O) GO IO 50
C
C CHECE TO SEE IF HIHIMOH RBACHRD
C
If (ICOOKT .GB. ICOOMI) GO YO 320
JCOOKT=ROHPGS
CORMIH=(SOMH-(SOE*SOW)/DIR)/DH
C
C coruin IS fug pariance or far n+1 loss palors at ter
C PrRiICBS
C
IP (CORIIN.GN.REQ) GO T0 50
320 %LO=?(1)
ILO=1
DO 330 I=2, HN
IP(I(I) .GE. ILO) 60 IO 330
ILO=P(I)
ILO=I
330 COMTIMOB
DO 340 I=1,|
340 MIN(I)=P(I,ILO)
ZHIN=YLO
RETORN
BND
C
C**
SGBRODPIMR MBLZZ(X, R, STEP,REQ,MIM, ZHIN,ICODMI)
C***
IGPLICIT BEAL*8 (A-H,0-%)
RBAL*8 X(6), MIM(6),STBP(6),P(20,21),PX(20),P2X(20),PBAR(20),
2 I(20),ZHIH, REP,DN,DHM, Z,SOH, SOHK, YLO,IL, I2I,CORHIM,DEL,
3 RCOBTP,BCOETP,CCOEPS,COHS(8)
DOOBL\& PRECISION DFLOAT
COMYOH SHAPE, SCALE, SIGHA,ALPHA;COHS,DELTAD,DELTAL,TARGRT,XD,ZL

```

```

C
C RBLLECFION,BYPEMSIOH and contraction comfilCibrts
C
DDTA RCOERF/1.DD/,BCOBRT/2.DO/,CCOBFT/.5DO/
DLTA LOHFGE/5/
CHECE=0.0
\&CONH=[CODHT
ICOOHF=0
JCOOHF=SORTGB
DH=DRLOAT(H)
NH=N+1
DHM=DPLOLT(MN)
C
c constroction or initial sibplex
C
DO 20 I=1,6
20 P(I,MN)=\(I)
CALL LOSS(L,Z)
ICODNT:ICOOHT+1
P(NH)=2
SOH=2
SOHH=2*?
DO 40 J=1,1%
\(J)=\(J)+5TBP(J)
DO 30 I=1,11
30 P(I,J)=\ (I)
CALL LOSS(X,Z)
ICOOHT=ICOONT+1
Y(J)=2
SOH=SOH+Z
SOHH=SOUH+2*2
40 X(J)=\Sigma(J)-StEP(J)
C
SIHPLEX COHSTROCFION COMPLETR
C
C FIND HIGHTEST AND LOHEST Y PALOBS. Z (=?(IHI) INDICATES
fGB VERTEI OR THE SIMPLEX YO BE REPLACED.
C
50 ILO=Y(1)
ZHIN-YLO
ILO=1
IHI=1
DO 70 I=2, MH
IP(Y(I).GE.YLO)GO 9060
YLO=P(I)
ILO=I
60 T0 70
60 If (Y(I).LB.2HIN) 60 T0 70
ZHIH=Y(I)
IBI=I
70 COHTIMOE
SOH=SDH-2HII
SOHY=SOHY-2HIN\&ZHIM
C

```

```

C sicepylMg yat wiph y palob ZHIN.
C
DO 90 I =1,1%
I=0.DO
DO 80 J=1, MH
80 Z=Z+P(I,J)
l=Z-P(I,IHI)
90 PBAR(I)=Z/DH
C
C RRCLECTION THRODGE 9GR CBHPROID
C
DO 100 I=1,\#
PI(I)=(1.DO+RCOBFT)*PBAR(I)-RCOBRI*P(I,IBI)
If (PX(I) .GT. 0.0) G0 T0 100
CHECI=1.0
60 t0 110
100 covilums
110 P8=1.010
If(PI(5).LP.TARGEF .OR. PX(6).GT.TAGGBP)CABCL=1.0
If (CHBCL . BR, 0.0) GO TO 120
PI(4)=\(4)
CALL LOSS(PI,YX)
120 CHBCL=0.0
ICOOMF=ICOOMH+1
IP(PX.GE.YLO) GO T0 180
`
socCesspol reflecfioh, tabr blfbhsioh
C
D0 130 1=1,H
P2X(I)=ECOBRF*PA(I)+(1.DO-BCOBFI)*PBAR(I)
If (P2X(I) .G7. 0.0) 60 T0 130
CABCR=1.0
G0 TO 140
130 conimos
140 \2X=1.D10
If (P2I(5).LT.TARGET .OR. P2X(6).G7.TARGRT) CHBCI=1.0
If (CHBCL .HE. 0.0) GO T0 150
PZI(4)=I(4)
CLLL LOSS(P2X,Y2X)
150 CHECL=0.0
ICODHf=ICOOMI +1
C
C retain bytmbion OR confraction
C
IP(721 .GB. Y4) 60 T0 280
160 DO 170 I=1,H
170 P(I,IHI)=P2X(I)
Y(IHI)=12X
60 \$0 300
C
C MO BMTERSIOH
C
180 L=0

```
```

 D0 190 [=1, RH
 If(Y(I).G7.YM) L=L+1
 190 COHIINOE
 IP (L-1) 220,200,280
 `
C confraction O\# cas reflection Side or far cenfroid
C
200 D0 210 I=1,1
210 P(I,III)=P\(I)
I(IHI)=YD
C
C contacyion on ta\& y(iti) side of ter cenfroid
C
220 DO 230 I=1,1
P2Z(I)=CCOBPF*P(I,IBI)+(1.DO-CCOBFI)*PBAR(I)
IP(P2X(I) .GT. 0.0) G0 Y0 230
CHBCI=1.0
60 T0 240
230 COHHIMOB
240 428=1.D10
If (P2X(5).LT.TARGB4.OR. P2X(6).GT.IARGET) CBRCE=1.0
IP (CBRCL .HB. 0.0) 60 90 250
P2X(4)=\&(4)
CALL LOSS(P2X,72I)
250 CHCCL=0.0
ICOOKT=ICOONT +1
If(Y2I.LE.Y(IHI)) 60 T0 160
C
c contracy holes siuplse
C
SOH:0.DO
SOHL=0.DO
DO 270 J=1,䕎
DO 260 I=1,|
P(I,J)=(P(I,V)+P(I,ILO))*.5DO
260 MIN(I)=P(I,J)
BIM(4)=\(4)
CALL LOSS(HIH,Y(J))
SOH=SOH+Y(J)
270 SOHM=SOHM +Y(J)*P(J)
ICODMT=ICOOHT+MH
G0 \$0 }31
C
C rriain rembchion
C
280 DO 290 I=1,1
290 P(I,IHI)=PI(I)
P(IBI)=YI
300 SOH:SOLHY(IBI)
SOHH=SOHL+Y(IHI)*I(IHI)
310 JCOONF=JCOOAT-1
If (JCOORT.NB.O) GO YO 50
C
C chic\& to Sre if minimou rbgched

```
```

C
IR (ICOONT .GE. ICODHT) GO TO 320
JCOOKT=LOHYGB
CORHIN=(SOHLC-(SOH5SDH)/DNH)/DH
c
C corlin is fab pariakce of per n+1 loss palobs at fers
C PrRiICES
C
If (comyin.g+. REO) 60 90 50
320 YLO=Y(1)
ILO=1
DO 330 I =2, MH
If (P(I) .68. PLO) G0 %0 330
YLO=Y(I)
ILO=I
330 COHIINOE
D0 340 I=1,|
340 HIN(I)=P(I,ILO)
ZHIN=FLO
RBPORM
BND
C
C**
SOBRODIIRE IMCRBD(I,ZMIH,STRPD)

```

```

 IHPLICIT RELL*8 (
 RBLL*& &(6),ZHIR,COST
 10 CBBCK=0.0
 C
C THBAE DL
C
A1=0.0
\Delta2=0.0
20 X(3)=\(3)+5TPPD
CALL LOSS(I,COST)
IP (COST .GE. 2HIN) GO TO 30
ZHIN=COST
CHBCL=1.0
11=41+1.0
60 T0 20
30 Z(3)=\(3)-STPPD*(41+1.0)
40 IP (1)(3) .LT. 0.0) G0 T0 50
CALL LOSS(I,COST)
If (COST .GR. 2HIN) GO T0 50
ZHIN=COST
CHBCI=1.0
\Delta2= 22+1.0
\(3)=\(3)-STPPD
G0 I0 40
50 If (A2 .NB. 0.0) G0 90 60
\(3)=\(3)+5TEPD* \&
60 T0 70
60 X(3)=\(3)+5TEPD
C

```
```

C [HBME DO
C
70 11=0.0
12=0.0
80 I(2)=\&(2)+STEPD
CALL LOSS(I, COST)
If (COST .GE. ZUIN) GO t0 90
2BIN=COST
C日BC=1.0
12=11+1.0
60 T0 }8
90 \(2)=工(2)-STEPD*(41+1.0)
100 If (x(2).Lf. 0.0) 60 90 110
CLLL LOSS(X,COST)
If (COST .GE. ZHIT) GO 90 110
ZMIN=COST
CHBCI=1.0
\Delta2=a2+1.0
I(2)=I(2)-STEPD
60 T0 100
110 If (12 .NB. 0.0) 60 90 120
Z(2)=Z(2)+STEPD*41
GO TO 130
120 1(2)=\(2)+5TRPD
130 If (CBECE .RQ. O.0) RBTORH
GO f0 10
EWD
C

```

```

 SOBRODTINR IMCRES(X,ZMIR,TARGET,STEPE)
 Cz***
IMPLICIT RESL*8 (}4-\textrm{B},0-Z\mathrm{ \)
RGAL48 I(6),ZHIH, COST,TARGET
10 CBECE=0.0
C
C %MGAK LL
C
11=0.0
\Delta2=0.0
20 \(6)=\(6)-STEPI
CALL LOSS(X,COST)
If (COSF .GR. ZMIN) GO T0 30
ZHIT=COST
CABCE=1.0
11=11+1.0
60 10 20
30 \ (6)=\Sigma(6)+5TEPE * (A1+1.0)
40 If (I(6) .GI. IARGBI) G0 \$0 50
CALL LOSS(X,COST)
If (COST .GE. ZMIM) GO TO 50
ZHIN=COST
c.acce=1.0
12=82+1.0
X(6)=\(6)+STBPL

```
```

 60 10 40
 50 If (12 .H8. 0.0) 60 10 60
 I}(6)=\mathbb{Z}(6)-5TBPE*A
 60 90 }7
 60 \(6)=\(6)-STPP\
 C
chbat IO
C
70 11=0.0
\Delta2=0.0
80 \ (5)=\(5)+57BP\
CALL LOSS(I,COST)
If (COST .GE. 2MIN) GO IO 90
ZHIN=C0S%
CHBCE=1.0
\Delta1=11+1.0
60 90 80
90 \ (5) =\(5)-STBP* (41+1.0)
100 If (% (5) .LT. GARGRT) GO TO 110
CALL COSS(1, COST)
If (COST .GE. 2KIN) GO 10 110
2HIN=COST
CHBCR=1.0
\Delta2=12+1.0
I(5) = X (5)-STPPL
G0 %0 100
110 If (A2 .NB. 0.0) G0 T0 120
Z(5)=\(5)+STBPZ*\1
60 90 130
120 \(5)=\(5)+5T\&P\
130 IN (CHBCL .RQ. O.0) RRYORM
G0 10 10
BND

```
\[
\begin{gathered}
\text { VITA } \\
\text { Chung-Yu Pan } \\
\text { Candidate for the Degree of } \\
\text { Doctor of Philosophy }
\end{gathered}
\]

Thesis: DEVELOPMENT OF AN ECONOMICALLY-BASED ASYMMETRIC CUMULATIVE SUM CHART WITH WEIBULL PROCESS FAILURE MECHANISM

Major Field: Industrial Engineering and Management
Biographical:
Personal Data: Born in Kaohsiung, Taiwan, Republic of China, October 5, 1955, the son of Chia-Shen and Wu Hai-Tang Pan. Married to Ping-Ting Day on December 24, 1984.

Education: Graduated from Kaohsiung Senior High School, Kaohsiung, Taiwan, in June, 1973; received Bachelor of Engineering Degree in Textile Engineering from Feng-Chia University in June, 1977; received Master of Engineering degree from Tennessee Technological University in March, 1982; Completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1988.

Professional Experience: Graduate Assistant, Industrial Engineering Department, Tennessee Technological University, 1981 to 1982; Superintendent, Industrial Development Bureau, Ministry of Economic Affairs, Taiwan, Republic of China, 1982 to 1984; Industrial Engineer, Mercury Marine, Division of Brunswick Corp., 1985 to 1986; Teaching Assistant, School of Industrial Engineering and Management, Oklahoma State University, 1986 to present.```

