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PREFACE

This research is conoefnea with the modeling and
evaluation of the powerful process control scheme --
Cumulative Sum (Cusum) Chart.” A special control chart
methodology is introduced and incorporated into this model
along with Weibull process failure mechanism.

The formulation of the model follows the same cost

in

structure as in Duncanfs economic X chart model. An optimi-
zation procedure is employed to economically design the
decision variables of this asymmetric Cusum control chart.
The results are then be compared and analyzed.
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CHAPTER I
THE RESEARCH PROBLEM
Purpose

Concepts of statistical quality control have been
widely applied as tools for process control in various
industrial sectors. Control charts, a powerful statistical
process control (SPC) tool, are used for determining in-
control/out of control status, troubleshooting processes,
analyzing process capability, and maintaining statistical
control. The most commonly used control chart is the
Shewhart chart with 3-sigma control limits. It is designed
to allow the inherent variability (or noise) of a process to
roam randomly between control limits. It is assumed that an
observed value that falls beyond control limits is an
indication of the occurrence of an assignable cause in the
pProcess.

There are numerous modifications and extensions to
Shewhart charts. One important development is the cumula-
tive sum (Cusum) control chart, which is based upon sums of
observations rather than upon individual observations. Some
persons argue that the cumulative sum chart is more sensi-
tive to process shifts than is the Shewhart chart. The use

of any control chart is basically an economical problem.



The cost aspects of a process should be considered when any
SPC procedure is utilized for process control.

The ébjective of this dissertation is to develop proce-
dures for the design and optimization of a new and richer
set of economically-based charte. This research deals with
the design of Cusum control charts for the control of the
mean of a process when the observations are independent. It
extends process control charting by

1. Defining and developing an economically-based Cusum
control chart which explicitly recognizes asymmetric
specification 1imits‘and asymmetric costs of being
off-target.

2. Utilizing a process failure mechanism described by
the Weibull distribution on the in-control time of
the process (an exponential process failure mecha-
nism is the most widely applied by researchers to
date).

3. Developing an optimization procedure in which sample
slze n, sampling interval h, dead band values ku and

kL, and decision intervals du and dL are optimized.
The f Control Chart

A control chart is a statistical device principally
used for the study and control of repetitive processes. At
the basis of the theory of control charts is a differentia-
tion of the causes of variation in quality (Duncan, 1874).

One type of variability, produced by "chance causes”, is



inherent in a process and cannot be removed easily, if at
all. In addition to this variability, there are sources of
relatively large variation, called "assignable causes”,
which are attributed to variabilities in people, machines,
materials, methods, and environments.

Shewhart suggests that samples of size n = 4 or § be
taken from a process at regular intervals (every h hours)
and the samples”™ averages (i) be plotted on a chart. Being
a sample result, X is subject to sampling fluctuations. The
commonly used limits for an X control chart are located at
the process mean plus or minus three standard deviations
(i30g) of the sample averages as depicted in Figure 1.1.

If no assignable causes occur in the process, X'e are
approximately normally distributed. In other words, the
inherent variability of a process or a statistic calculated
from process data is expected to fluctuate within six
standard deviations. Assuming the normal distribution
applies, there is a very small, 0.00135, probability that a
peoint will fall beyond the upper control limit; likewise,
for the lower control limit. Therefore, if a point falls
outside control limits, it should be inferred that one or
more assignable causes exist in the process.

The introduction of the statistical design of the X
chart provides a scientific approcach for control of the
process mean. However, the suggested values of sample size
n = 4 or 5, and 3-sigma control limits might result in a

control chart plan which is far from optimal in an



Figure 1.1 Design of An X Control Chart
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economical sense.

The Cumulative Sum Control Chart

The nature of Shewhart-type control charts, coupled
with rules for reading them, is taking actions based on the
last one or sewveral plotted points. In order to increase
the sensitivity of the control chart in detecting lack of
control, Page (1954) proposes a procedure which adapts a
rule for action based on sums of observations, rather than
individual observations. This is done by the use of a
cumulative sum (or Cusum) chart. The Cusum chart is a
system of charting that is based upon all the data since the
last procese change. It is supposed to detect a sudden and
persistent change in the process average more rapidly than a

comparable Shewhart chart.
Average Run Length. ARL

Page (1954) introduces the concept of the average run
length for a Cusum chart. The value of the process mean and
~ the Cusum chart decision variables determine the ARL. Sup-
pose the cumulative sums are plotted for either the upward
shift or the downward shift only. Then ARLSu represents the
ARL of the process with an upward shift in the process mean;
likewise, ARLSL represents the ARL of a downward shift.

Kemp (1961) presents a formula for computing the ARL of
a two-sided Cusum chart. He considers a two-sided Cusum

chart as a composition of two one-sided Cusum charts.



Letting ARLS:1 be the ARL of a two-sided Cusum chart with a
shift in the process mean, it follows that ARLS:1 is given by

the equation
1 1 1

ARLS1 ARLSvu ARLSL
Kemp declares that this relation is not strictly con-
fined to symmetric Cusum charts. In this dissertation, an
asymmetric model is developed. The ARL for a process with
either an upward shift or a downward shift in the process

mean will be developed in more detail in a later chapter.

Sul Si { Sampli Int 1.

Two of the decision variables with which this research
is concerned are the subgroup size n and sampling interval
h. ©Since this study is conducted on an economical basis,
the optimal subgroup size and the time interval between
subgroups is sought. It is assumed that the subgroup size n
and sampling interval h are constant throughout the opera-

tion of the Cusum chart.

Decision Interval, d

As noted earlier, chance variation is the random varia-
tion which is inherent in the process. Assignable variation
is due to a real change in the process mean. The decision
interval is used to help distinguish which is which. The
rule for deciding when a real change has occurred is to

compute the accumulated sum of deviations from some “dead



band"” value. If the accumulated sum exceeds d, it ie
concluded that the process mean has changed. The criterion
for choosing d is a large ARL for the process operating at
the acceptable quality level, pa, and a small ARL when the
process is running at the rejectable quality level, pr. In
this dissertation two values of d, dv and dL, will be

required due to the asymmetry allowed by the model.

Dead Band Value, k

Ewan and Kemp (1960) report that the use of a “dead
band” will provide advantages by not permitting the Cusum
chart to react to small changes in the mean. The dead band
value often used is k ~ ¥%(na + pur). The value of k is obvi-
ously closely related to both pa and ur. The dead band
value k requires that the sample statistic fall outside ¥%(pna
+ pr) before it adds to the cumulative sum; however, it can
subtract from a positive cumulative sum even if it falls
within the dead band.

In this dissertation, k = %(pa + pur) is used. Again,
there must be two values of k, kv and kL, due to asymmetric

conditions of the model.

Economically Based Cusum Charts

Traditionally, control charting is based on statistical
criteria for process control. In recent years, attention
has been focused on economical aspects of a Cusum chart,

such as the cost of sampling, testing and maintaining



process surveillance.

Taylor (1968) initiates economical design concepts into
cunulative sum control charte. He develops a formula giving
approximately the long-run average cost per unit of operat-
ing time as a function of the Cusum scheme’s decision varia-
bles and design parameters. Goel and Wu (1973), who follow
Duncan s approach for the economical design of X charts
(1956), derive an economical model for Cusum charts. They
employ the "pattern-gearch” method to determine the optimum
values of the sample size, the sampling interval, the dead
band value and the decision interval.

Only symmetric Cusum charts have been considered to
date. An asymmetric Cusum scheme which better reflects
reality is studied in this dissertation. In an asymmetric
Cusum scheme the distance between the acceptable quality
level and upper rejectable quality level is different from
that of the acceptable quality level and lower rejectable
quality level, #5 is the cost of reaching the upper or lower
rejectable quality level. The concept of an asymmetric
Cusum chart is illustrated in Figure 1.2. Based upon
Duncan’s concept, the best values of the decision variables
subgroup size n, time interval between subgroups h, dead
band values kv and kL, and decision intervals dv and dr will

be determined using optimization techniques.
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Process Failure Mechanism

Assumptions about the behavior pattern of a process are
required to formulate the economically-based design of Cusum
charts. An important assumption ie the nature of the occur-
rence of assignable causes which shift the process from an
in-control state to an out of control state. Montgomery
(1980) describes this characteristic as the “"process failure
mechanism™.

It is usually assumed that the process failure mecha-
nism is an exponential random variable. This assumption
considerably simplifies the algorithm for the development of
economical models of Cusum schemes. Baker (1971) suggests
that the choice of process failure mechanism has a somewhat
significant impact on the optimally economical design of
control charts. Gibra (1975) and Montgomery (1980) also
suggest that it is necessary to investigate and recognize
the physical failure pattern of the process so that the
principle of economical design can be validly implemented.
Saniga (1979) investigates the impacts of process failure
mechanisms and the Markov property on the economical design
of X and R charts. He infers that the misusage of the proc-
ess failure mechanism will result in a substantial loss of
cost. Qureishi (1964) points out that statisticians have
questioned the validity of the assumption of the exponential
distribution for the life times of the units put to a test.
Several researchers point out the exponential approximation

to life-data is only a fair approximation for practical
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purposes.

In this dissertation it is assumed that the nature of
the occurrence of assignable causes is according to the
Weibull distribution. The Weibull distribution is regarded
as a better model for the process failure mechanism in the
sense that it embraces a number of interesting situations.
It can reduce to the exponential distribution or reduce to
the Rayleigh distribution.

To avoid incorrect modeling, it is desirable to econom-
ically design a Cusum chart in which the process failure
mechanism is administered by a more generalized distribu-
tion. Accordingly, the Weibull distribution is proposed

rather than the exponential.

Summary of Resgearch Objectives

Obiecti

The primary objective of this research is to

Provide an operational tool which will permit the
cumulative sum chart to be used in an economically
optimum manner as an alternative to Shewhart control
charts for monitoring a process in a realistic

environment.

Subobjectives

In order to accomplish this objective, several subob-

jectives have to be satisfied

1. Develop an economically-based model for evaluating
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Cusum process control plans.

Provide for asymmetric rejectable quality levels and
resultant costs of asymmetric process shifts.
Incorporate a process failure mechanism which is
Weibull distributed.

Develop a computer program which approximately opti-
mizes, based upon economice, the subgroup size n,
sampling interval h, dead band values kv and kL, and

decision intervals dv and dL.



CHAPTER II
LITERATURE REVIEW

This chapter reviews developments in the literature
pertaining to the objectives of this research. Substantia-
tion for this particular research is elaborated upon.
Furthermore, other sources which correspond with the general
concepts relevant to this study are presented.

This chapter is divided into five parts

1. Shewhart control charts and their enhancements and

modifications.

2. Economical design of X control charts.

3. Cumulative sum control charts.

4. Economical design of cumulative sum control charts.

5. Process failure mechanisms.

Shewhart Control Charts and Their

Enhancements and Modifications

Shewhart (1831) originated the control chart for deter-
mining the state of statistical control of a process. ©Sta-
tistical quality control chart techniques have been applied
widely in various fields, such as manufactured products,
delivery services, research works, and developmental

environments. Duncan (1974) and Vance (1983} point out that

13
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Shewhart control charts are fundamentally used for one of
the following three purposes: (a) to determine the goal or
standard for a process that management might strive to
acquire, (b) to judge whether the goal has been achieved,

and (c¢) to maintain current control of a process.

o) Cont C ta
Their Enhancements

Shewhart (1931) develops the use of 3-sigma control
limits as action limits. Meanwhile, he suggests the use of
sample sizes of 4 or 5 as being appropriate for f and R
charts. The sampling interval is left to be determined by
the quality control personnel or other concerned staff.

In the last four decades, many enhancements of Shewhart
control charts have been suggested. For example, a run test
on sample means has been widely used. Weiler (1953)
suggests that to make use of consecutive runs for control
charts for the process mean might significantly decrease
inspection. Warning limits have also been proposed. Page
(1962) adopts the concept of warning limits and demonstrates
a scheme based on warning and action limite. In general,
the scheme is superior to a scheme based on runs. The
sensitivity of Shewhart control charts for detecting small
shifts in the process mean from the specified or target
value is investigated. Weindling et al. (1970) establishes
a pair of warning limits, located inside the action limits,

for detecting small shifts in process mean and indicating a
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possible out of control condition. Hillier (1969) develops
a method for setting the control limits for X and R charts
so that they can be reliably used regardless of how few
subgroups have been inspected. Chung-How and Hillier (1970)
provide guidance on what constants to use for mean and
variance control chart limits if the power of the charts is
of paramount importance, and computational considerations
are secondary.

The background of computing limits on Shewhart control
charts is built on a presumption of normality, justified by
the Central Limit Theorem. Measurable quality characteris-
tics often have non-normal distributions. The introduction
of the assumption of non-normality is another enhancement to
Shewhart control charts. Burr (1967) establishes tables
which provide guidance on what constants to use for X and R
charts if the parent population is markedly non-normally
distributed. ©Schilling and Nelson (1976) facilitate a
numerical method for determining the cumulative probabili-
ties of the distribution of sample means which is non-
normally distributed . Ferrell (1958) suggests that trans-
formation is required when the underlying universe is badly
skewed. Vasilopoulos and Stamboulis (1978) modify and
extend the existing standard methodology by utilizing the
time series analysis approach and by introducing dependence
via a second order autoregressive process (AR(2) Model) when

either independence and/or normality are not present.
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Modificationg of Shewhart Control Charts

The arithmetic mean and the subgroup range have been
used to determine whether or not a state of statistical
control exists for variables in Shewhart control charts.
Moving Average, Moving Range, Median and Midrange, and the
Geometric Moving Average (or Exponentially Weighted Moving
average) charts represent general modifications of Shewhart
control charts. The Cumulative Sum control charts are
relevant to this classification, but they are presented in
the next sections.

Moving Average and Moving Range control charts are used
in situations where the time interval between subgroups is
too great to collect sufficient samples as a rational
subgroup. Or, they are used in continuous process manufac-
ture (e.g., chemicals, refining, mining, etc.) where the
smoothing effect of the moving average has an effect on the
figﬁfes often similar to the effect on the product of the
blending and mixing that happens in the remainder of the
production process. The sensitivity of these control charts
can be increased by allowing more successive points to be
éémputed for the moving average. The more successive points
averaged, the greater the smoothing effect and the more the
curve emphasizes trends rather than point-to-point
fluctuations.

Ferrell (1964) advocates the use of Median and Midrange
chartes using run-size subgroups for controlling certain

processes. Nelson (1982) suggests the use of medians to
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reduce the burdensome calculation of a mean in Shewhart
control charts. In his approach, the setting of control
limits is based upon the average of the subgroup medians and
the average of the ranges.

Roberts (1959, 1966) suggests a procedure for gener-
ating geometric moving averages. The author shows that
teste based upon geometric moving averages are better than
multiple run tests and moving average tests with regard to
simplicity and statistical properties. Wortham et al.
(1974) present an adaptive exponentially smoothed control
system. The adaptive nature is achieved by varying the
welghting factor according to the value of a tracking
signal. The authors also illustrate an example of an
adaptive control chart with associated sensitivity curves
which present the probabilities of acceptance as a function
of sampling periods after a change in a process occurs.
Robinson and Ho (1978) present a numerical procedure for the
tabulation of average run lengths (ARL"s) of geometric
moving average charts. Both one- and two-sided ARL's are
given for various settings of the control limits, smoothing
constant and shift in the nomihal level of process mean.
Hunter (1986) describes a procedure to establish the control
limits for exponentially weighted moving average schemes.
The author declares that the exponentially weighted moving
average can be used as a dynamic process control tool to
provide a forecast of where the process will be in the next

instant of time.
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Economical Design of i Control Charts

Duncan (1956) has established a model for the optimum
economical deeign of the X control chart. His paper was the
first to deal with a fully economical model of a Shewhart-
type control chart. Duncan’s paper leads the way to study
in this area. 1In this model, the following assumptions are
made about the process

1. The process begins in a state of statistical
control.

2. The process standard deviation (o) remains the same
in sepite of the shifting mean of the process.

3. Due to an assignable cause the process mean may
randomly shift t§ po * 80 and stay there until
corrected.

4. The process is not shut down while searching for the
assignable cause.

5. Neither the cost of adjustment or repair, nor the
cost of bringing the process back into a state of
statistical control after the assignable cause is
discovered, is introduced into the economical model.

6. The specification limits are assumed to be symmetri-
cally spaced about the desired process mean.

7. The loss-cost of a shift from po to either po + 6¢
or po - 60 is assumed to be the same.

The process is monitored by an X chart with central

line at po and upper and lower control limits at po * ko/4n,
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respectively. ©Samples are taken at intervals of h hours.
The assignable cause is assumed to occur according to a
Poisson process with an expectation of A occurrences per
hour. The parameters po, 6, and o are assumed known, while
sample size n, the control limit spread k, and the sampling
interval h are decision variables. The expected time the
process will be out of control is the sum of three
components

1. The average number of sampling intervals necessary

for detecting the shift times the length of each
interval, minus the average time of occurrence of
the assignable cause within an interval between
samples.

2. The delay in plotting a point, which is assumed to

be a linear function of the sample size.

3. The average time taken to find the assignable cause.
A production cycle time is defined as the interval of time
from the start of production in a state of statistical
control to the detection and elimination of the assignable
cause. The cycle, therefore, consists of the expected time
the process will be in control and the expected time the
process will be out of control.

Duncan presents a design criterion to minimize the
loss-cost per unit of time. Cost incurred in the process
contains four elements

1. The loss of defective products being produced.

2. The average cost of a false alarm.
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3. The average cost of a real alarm.
4. The average cost for sampling and maintaining
control charts.
Several numerical approximations are used in the optimiza-
tion of thie model which essentially represent a sensitivity
analysies for anticipated changee in the parameters of the

model.

Goel et al. (1968) develop an iterative procedure to
produce the exact optimal solution to Duncan’s model (1956)
by computer. Comparison is made between Duncan’s approxi-
mate method and the developed procedure. The procedure is
superior to Duncan’s approximate optimization technique in
some situations. However, in many cases the difference is
insignificant.

Enappenberger and Grandage (1968) develop a method for
choosing the decigion variables n, h, and k in order to
minimize the expected cost per unit produced. They assume
that the time the process remains in control is an exponen-
tial random variable. In addition, it is assumed that the
process mean is a continuous random variable which can be
satisfactorily approximated by a discrete random variable.
One value of the discrete random variable is associated with
the in-control value of the process mean and the remaining
values are associated with out of control values of the
process mean. The expected total cost, per unit of product,
associated with a quality control test procedure is similar

to Duncan’'s model.
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Optimization of the cost function is not developed
analytically. Rather a two-stage numerical method is
developed for determining the optimal decision variables, n,
h, and k, of the X chart. In the first stage, the expected
cost 18 computed for a wide variety of decision variables,
cost coefficients, and for the desired values of a priori
distribution parameters. In the second stage, the prelimi-
nary estimates obtained from the first stage are used as the
starting point for a search method designed to locate the
optimal values of the decision variables within any desired
accuracy.

Gibra (1971) develops a model for determining the
optimal X chart parameters for maintaining economical
control of a process under practical conditions. These
parameters are again n, h, and k. A cost function is
formulated based upon Duncan’'s model. However, there is a
difference. The sum of times required to take and inspect a
sample, compute and plot a sample average, and to discover
and eliminate the assignable cause has an Erlangian distri-
bution. Gibra gives several examples to show how the
formulated model can be applied and how the relevant cost
function is minimized.

Chiu and Wetherill (1974) propose a simple, approximate
procedure for optimizing Duncan’s model. The principle for
the choice of parameters is to minimize the average loss-
cost, subject to a constraint on the OC-curve. One is free

to choose a consumer’'s risk point on the 0C-curve to acquire
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a desired protection against inferior quality. One may then
determine the values of the sample size and the control
limit coefficients from a table, by a rule of thumb. The
value of a sampling interval is calculated by an algebraic
formula. Chiu and Wetherill declare that this method
permits a rapid determination of the control parameters
which generally yield an average cost close to the exact
minimum. Furthermore, they show that in most cases, despite
its simplification of the problem, the developed method
gives better solutions than Duncan’s more. involved procedure
(1956) with the added advantage that the OC-curve can be
partly controlled by the user.

Baker (1971) develops two discrete-time models in which
a sample of size n is taken at the end of each period and
the computed statistic plotted on a control chart with k-
sigma limits. In the first process model the geometric
distribution is applied to model the number of periods the
process remains in the in-control state. In the second
model any discrete probability function can be used to model
the characteristic of the time to failure of a process. The
author studies a Poisson time to failure and éompares it to
the usual geometric process model. It is shown that the
former process results in smaller sample sizes and narrower
control limits than will be economically optimal in the
latter case.

Jones and Case (1981) develop an economical model to

design a joint X and R control charts with a minimum cost.
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Duncan’'s model (1956) is used as a basis for subsequent
economical model development. The decision variables are
sample size, width of X control chart limits, width of R
control chart limits, and sampling interval in hours. Jones
and Case emphasize the estimation of the expected time the
process will be operating in an out of control condition.
They assume that when a process is out of control, the
resultant effect is an increase in the number of defective
items produced which will cause additional economical
loeses. These losses are assumed to be dependent upon the
types of out of control conditions and the length of time
the process remains in each. Four control conditions are
discussed in the model. That the mean and variance of the
process are in control is defined as the in-control
condition. The out of control conditions occur when either
the process mean, the process variance, or both, are out of
control. The four conditions form seven types of out-of-
control states.

Lorenzen and Vance (1986) present a general process for
determining n, h, and k for the designs of the economical
models of ‘X, p, and u charts. A general process model is
considered, and the hourly cost function is derived. Numer-
ical techniques to minimize this cost function are discuss-
ed, and sensitivity analyses are performed. They also
illustrate an example to reveal the potential savings of

this technique of designing control charts.

Duncan (1971) has generalized his assignable cause
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model to the situation when there are several assignable
causes. Each assignable cause produces a shift of known
magnitude in the process mean. The occurrence times of the
assignable causes are assumed to be independent exponential
random variables. Duncan uses the direct search method to
locate the local minimum of the cost function. The solu-

tions to several example problems and a sensitivity analysis

of the model are presented.

Cumulative Sum Control Charts

The control chart techniques mentioned in the previous
sections are based on the rule, proposed by Shewhart, of
taking action when a point falls outside of the “"control
limits,” usually 3-sigma limits. It is a natural step to
adopt a rule for action that is based upon sums of observa-
tions rather than the last few samples. This is done by the
use of a cumulative sum control chart or "Cusum chart” as it
has come to be called. The Cusum chart makes use of the
historical data and provides an approach which is able to
detect shifts in the process mean, especially if the shift
is not large. It may also indicate the time of shifting
more clearly by reviewing the trend of the cumulative sum.

Page (1954) initiates the Cusum chart scheme. Starting
from a process revision and restart, all subsequent plots
contain information from the whole set of observations up
to, and including, the plotted point. That is, the ordinate

of the ith point in a Cusum chart equals that of the (i-1)th



25

point plus the statistic value computed from the ith gample.
Page introduces the average run length (ARL) to develop
rules that use all the observations and that are suitable
for detecting any magnitude of shift in the mean parameter.
The inspection process developed permits detection of param-
eter variation in one and two directions. The value of the
process mean determines the ARL of a Cusum scheme. General-
ly, the two specified mean levels are the acceptable quality
level pa and the rejectable quality level pr, and the ARL at
these quality levels are denoted by ARLo and ARL1, respec-
tively.

Page (1961) examines the practice of Cusum charts. He
declares that the cumulative sum schemes are much more
sensitive than the ordinary Shewhart control chart. Johnson
and Leone (1962) give a complete description of Cusum charts
with some basic deviations. Ewan (1963) outlines the varie-
ty of continuous graphical control schemes and the types of
processes for which Cusum charts are most appropriate. He
compares Cusum charts with Shewhart and weighted mean
charts. Ewan concludes that Cusum charts are moré effective
than Shewhart control charts in detecting sustained changes
in the process mean in the region 0.5-sigma to 2.0-sigma.
Ewan also discusses the practical scale problems, the use of
exact decision procedures, sample size, sampling interval

and detection of trends.
Bakir and Reynolds (1979) develop a nonparametric

procedure based on Wilcoxon signed-rank statistics where
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ranking is within groups. The procedure combines a Cusum
chart with Wilcoxon statistics for quickly detecting any
gshift in the mean of a sequence of observations from a
specified control value.

Johnson and Bagshaw (1974) study the effects of serial
correlation on the performance of one-sided Cusum charts.
Later, they (1975) develop another approximation to the
cumulative sum charts which allows one to study the run
length distribution after a change in level has occurred.
They emphasize the effects on the run length distribution
caused by the presence of serial correlation. Lucas and
Crosier (1982) evaluate a standard Cusum control scheme and
four modified Cusum control schemes for robustness. The
average run length for each scheme is evaluated using a
contaminated normal distribution, a distribution that has
longer tails than the normal. They conclude that a Cusum
control scheme that ignores the first suspected outlier, but
gives an out of control signal for two successive outliers
is found to perform well. Bissel (1984a) makes a comparison
of the run length properties for Cusum schemes, Shewhart
charts, and control‘charts with warning limits when there is
a linear trend in the underlying mean.

Lucas (1985) and Vardeman and Ray (1885) describe
design and implementation procedures for utilizing Cusum
charts for attributes where the observations are Poisson or

exponential random variables.

Woodall (1985, 1886) develops a method for designing



27

quality control charts on the basis of their statistical
performance over specified in-control and out of control
regions of control 1limit spreads. He divides and defines
the control 1limit spread of a two-sided Cusum chart as
in-control, indifference, and out of control states.

Although a change in trend on a cumulative sum chart
will indicate that a change has occurred in the process, it
is desirable to have a visual record of data in both direc-
tions, upward and downward, for indicating where the change
occurs and when it needs an action. The use of a V-ghaped
mask is implemented for this purpose. The vertex of the
mask is placed a distance, called the lead distance, ahead
of the last plotted point. The process is considered to be
in a state of statistical control as long as all previously
plotted points fall within the arms of the mask. Johnson
and Leone (1962) show how to determine the dimensions and
the significant characteristics of the V-mask. Lucas (1876)
discusses practical aspects of the design and the use of V-
mask control schemes. He recommends for plotting purposes a
gscale of one sample unit on the abscissa equaling two
standard deviations of the process (Z20) on the ordinate.
Lucas also presents a computational form of the V-mask. He
declares that this fofm is especially helpful when the data
arrive rapidly or when many parameters are being controlled
simultaneously.

Ewan (1963) first proposes the use of two or more V-

masks simultaneously to improve the sensitivity of the Cusum
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schemes to large shifts in the process mean. Later, Lucas
(1973), Bissell (1979), and Rowlands et al. (1982) also
advocate changes in the shape of the V-mask near its vertex,
introducing a parabolic section. Lucas (1982) proposes a
combined Cusum-Shewhart quality control scheme which will be

classified as a modified V-mask.

Economical Design of Cumulative Sum

Control Charts

Taylor (1968) first introduces economical design
concepts into cumulative sum control charts. He studies the
economical design of Cusum charts for controlling the proc-
ess mean having normally distributed quality characteristics
with known variance. The costs of repairing the process, of
operating out of control, and of maintaining the control
chart are assumed known. The process is shut down while
searching for the assignable cause. If the assignable cause
is not a false alarm, then adjustment time and cost are
added to the process. In his research, Taylor finds no
statistical significance and no practical difference in the
run lengths as the number of samples taken when the process
leaves control varies between 0 and 50. Thus, he assumes
that the average time between the first sample after the
occurrence of the assignable cause and the last sample prior
to its detection equals the product of the sampling interval
times the value (ARLi-%). He develops a formula giving

approximately the long-run average cost per unit of
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operating time as a function of the sample size n, sampling
interval h, and the Cusum scheme s design parameters.

Taylor utilizes the expressions, derived by Goldsmith
and Whitfield (1961), for ARL for in-control and out-of-
control states to find by trial and error the values of the
Cusum scheme’'s design parameters.

Goel and Wu (1973) follow Duncan’s approach for the
economical design of X charts (1956) to derive their
economical model of Cusum charts which gives the long-run
average cost as a function of decision variables, n, h, k,
and decision interval d. The value k is defined as half of
the sum of the desired and the shifted process means. In
addition, the expected elapsed time between the first sample
after the occurrence of the assignable cause and the last
sample prior to its detection is determined using the
results derived by Taylor (1968). Goel and Wu assign an
integer value to n and then employ the "pattern-search”
technique to determine the optimum valuees of the sampling
interval h and the decision interval d. They also investi-
gate numerically the cost surfaces, the effects of shifts in
parameters, cost factors and the expected time for an
assignable cause to occur on the loss-cost surfaces and the
optimum designs, which provide information about the
neighborhood of the optimum.

Chiu (1974) uses the decision interval criterion to
develop the economical model of a Cusum chart for quality

surveillance. He follows the general modeling strategy of
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Duncan’s X chart model but shuts down the process and makes
a search for the assignable cause when the decision interval
ie exceeded. Chiu employs the Fibonacci search technigue in
two-dimensional space to find the optimum value of decisgion
interval h, given sample size n. He also derives a simpli-
fied version of the algorithm which gives control plans
close to optimum. A brief sensitivity analysis and a
discussion of an extension of the model to a multiple cause
system are given.

Goel (1968) makes a comparison for the economically
optimal X and Cusum charts. He shows that the Cusum chart
is very efficient in detecting a lack of control where the
shift in the process level is close to the value for which
it is designed. If the actual shift is much smaller or much
larger, an X chart seems to be better. In general, more
sampling will be required when using an X chart while keep-
ing both ARLo and ARL1 equal for the two charte. Further-
more, the optimum loss-cost for the Cusum chart is slightly
less than that of the X chart. When a smaller than optimum
sample size is used, the loss-cost difference makes the
Cusum chart become more favorable. The variation in loss-
cost for shifts smaller or larger than the designed value
also shows that the Cusum chart is more economical than the
X chart.

Woodall (1986) studies the methods of designing Cusum
quality control charts. He shows that the statistical

performance of control procedures obtained using economical
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models is often unsatisfactory. A numerical example is
given to indicate that the more traditional Cusum procedure
produces few false alarms, yet provides much more rapid
detection of esmall shifts in the mean than the economically
designed Cusum charts. Woodall declares that a major weak-
ness of the economical models is that the shift that is
assumed to occur when the process goes out of control

usually corresponds to a substantial loss of quality and

profit.

Process Failure Mechanisms

Duncan (1856) aessumes that the occurrence of assignable
causes during an interval between samples is according to a
Poisson process. In other words, the time to failure is an
exponential random variable. This assumption simplifies
considerably the development of the economical model. Mont-
gomery (1980) calls the characteristic of the occurrence of
assignable causes the "process failure mechanism”. Baker
(1971) proposes a model that allows the probability function
of the time to failure of a process to be any discrete prob-
ability function. He reports that a non—ﬁarkovian process
with a Poisson failure mechanism resultes in smaller sample
sizes and narrower coﬁtrol lihits than will be economically
optimal in the geometric case. Baker concludes that the
choice of process failure mechanism has a somewhat
significant impact on the optimal economical design of

control charts.
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Gibra (1975) and Montgomery (1980) suggest that it is
essential to examine and understand the physical behavior of
the deterioration process so that the principle of economi-
cal design can be validly implemented. Saniga (1979) inves-
tigates the effects of process failure mechanisms and the
Markov property (the memoryless property) on the economical
design of X and R charts. He applies the long-run average
time cost function developed by Baker (18971) to geometric,
Poisson, and logarithmic series models. Numerical results
are presented. These results indicate that both the Markov
assumption and the process failure mechanisms are important
determinants to the economically-based designs of X and R
control charts. Saniga infers that the use of an incor-
rectly specified process failure mechanism will result in a
substantial loss of cost.

Johnson (1966) describes a method for construction of
cumulative sum control charts for controlling the mean of
gequences of independent variables each having the same
Weibull distribution. He points out that a Weibull distri-
bution often gives a markedly more accurate representation
than the exponential. Johnson presents several results to
show the use of such charts when a non-exponential Weibull

distribution would be more appropriate.
Summary

A literature survey of the problems, contributions, and

needs related to the objectives of this research is
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presented. In the previous economically-based models of
two-sided Cusum charts discussed above, all the researchers
assume symmetric control limit spreads, symmetric decision
intervals, and equal costs for either upward or downward
shifts in the process mean. There has been no work done for
seeking an optimum condition to the economically-based two-
sided Cusum chart scheme which is associated with asymmetric
control limit spreads, asymmetric decision intervals, and
unequal costs for a shift in either the upward or downward
direction. Further, this survey substantiates that most of
the currently available economical models assume that the
occurrence of the assignable cause is according to a Poisson
process. The task of formulating an economical model of the
cumulative sum control chart with a Weibull distributed
process failure mechanism is yet to be accomplished.

This survey indicates that a need exists to:

1. Provide an economically-based cumulative sum control
chart model in which the process failure mechanism
is Weibull distributed.

2. Introduce asymmetric rejectable quality levels,
asymmetric procéss shifts, and unequal costs into
this economically-based cumulative sum control
chart.

3. Develop appropriate procedures for the optimal
design of the proposed model.

4. Adopt decision variables, sample size n, sampling

interval h, dead band values ku and kn, decision



intervals dv and dL for modeling and optimization

purposes.
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CHAPTER III

MODEL DEVELOPMENT OF AN ASYMMETRICAL
ECONOMICALLY-BASED CUSUM CHART

Introduction

This chapter analyzes the asymmetric cumulative sum
chart and develops an economically-based model that is used
to optimize the design of cumulative sum charts when
associated with the Weibull process failure mechanism. The
general economically-based modeling concepts developed by
Duncan (1956) are applied in this research. However, they
are applied to a Cusum chart, with an improvement on the
assumption of the process failure mechanism to have a
Weibull distribution of time to failure. This provides a
more realistic model of the process environment. Concise

assumptions and notation are presented to facilitate model

development.

Assumptions

In order to develop the asymmetric cumulative sum

chart, the following assumptions are made

1. The asymmetric cumulative sum chart is applied to

monitor and help maintain the statistical control of =a

process,
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2. The process begins in a state of statistical control
at a mean level uo.

3. The process standard deviation o remains the same in
spite of mean shifte in the process.

4. The process mean may randomly shift, due to an
assignable cause, to po + 6uoc or po - 6Lo and stay there

until corrected.

5. The occurrence of the process mean shift is inestan-
taneous; the process will not drift from the in-control
state, such as is the case with tool wear.

6. The process is not shut down while searching for the

assignable cause.

7. As soon as the assignable cause is found, it is
fixed instantly.

8. Neither the cost of adjustment or repair, nor the
cost of bringing the process back into a state of statisti-
cal control after the assignable cause is discovered, is
introduced into the economic model.

9. The hourly cost of sampling, measuring, computing
and plotting the control chart has a linear relationship
with subgroup size.

10. The occurrence times for thg assignable causes are
independent and follow a Weibull distribution.

The assumption of an exponential failure mechanism is a
special case of assumption number 10. The other assumptions

are similar to those used in Duncan’s model (Duncan, 1956).
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Notation

The following notation is introduced and will be

employed throughout the entire dissertation.

n

du

dL

ku

kL

The number of individual measurements or samples
that comprise a subgroup.

The time interval between subgroups; subgroups
of size n are taken from the process every h
hours.

The decision interval in the upward direction;
cumulative sums beyond this value indicate a
process mean shift.

The decision interval in the downward direction;
cumulative sums beyond this value indicate a
process mean shift.

The "dead band” value for detecting upward
shifts; subgroup averages must be beyond the
"dead band” to begin adding to the cumulative
gum.

The "dead band” value for detecting downward
shifts; subgroupr averages must be beyond the
"dead band” to begin adding to the cumulative
sum.

The parameters related to the time of occurrence
of the assignable cause. The distribution of
the process in control is Weibull distributed
with a mean time 8I'(1+1/S), where 68 > 0 is the

scale parameter and S > 0 is the shape
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parameter. The density function of the Weibull

distribution is

S5-1 S
£f(t) = (5/8)(t/8) exp(-(t/8) ); t20. (3.1)

The expected value of a function of variable t.
The process mean p has the standard or desired
value po before any shifting occurs.

The standard or desired process standard devia-
tion which remains the same in spite of the
occurrence of any shift.

The magnitude of an upward shift in the process
mean, expressed in multiples of o (dvuoc); an
upward shift will occur from po to po + Svo.
The magnitude of a downward shift in the process
mean, expressed in multiples of ¢ (6Lo); a
downward shift will ocour’from po to po - SLo,
The hourly income which accrues from operation
of the process in-control at mean level no.

The hourly income which accrues from operation
of the process out of control at mean level

Ho + duo,

The hourly income which accrues from operation
of the process out of control at mean level

o - BLo.

The diminution of hourly income attributed to
the occurrence of an upward mean shift from po
to po + 6uog; Mu = Vo - Vu,.

The diminution of hourly income attributed to
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the occurrence of a downward mean shift from uo
to po - SLo; ML = Vo - Vi.

The cost per subgroup of sampling, measuring,
computing, plotting, and making the acceptance/
rejection decision that is independent of the
subgroup size,.

The cost per unit of sampling, measuring, com-
puting and plotting that is related to the sub-
group size; the relationship is assumed to be
linear.

The average time taken to find the assignable
cause, once an out of control condition is
detected.

The per unit average time for sampling,
measuring, computing and plotting; this time is
assumed proportional to the subgroup size n.
The average cost per event of searching for an
assignable cause when none exists.

The average cost per event of searching for an
assignable cause when one does exist.

The conditional probability that if there is a
shift in the mean, the shift will be in the
upward direction.

The conditional probability that if there is =a
shift in the mean, the shift will be in the
downward direction.

The proportion of time the process is in a state
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of statistical control (u = po).

The proportion of time the process is out of
control in the upward diretion (g = po + Ouc).
The proportion of time the process is out of
control in the downward direction (¢ = po - 6LO),
The expected length of time a process is in-
control at the acceptable quality level.

The expected number of subgroups taken until a
false alarm is indioatedqwhen a process 1is in-
control at the acceptable quality level.

The average number of subgroups taken before a
shift in the process mean from uo to either

Ho + Ouo or po - 6o is detected by virtue of
exceeding either the upper decision interval or
the lower decision interval.

The average number of subgroups taken following
an upward shift from po to po + Suoc before
detection by virtue of the cumulative sum
exceeding decision interval du.

The average number of subgroups taken following
a downward shift from Ho to po - 8no before
detection by virtue of the cumulative sum
exceeding decision intérval du.

The average number of subgroups taken following
an upward shift from po to poe + duoc before
detection by virtue of the cumulative sum

exceeding decision interval dL.
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The average number of subgroups taken following
a downward shift from po to po - 8Lo before
detection by virtue of the cumulative sum
exceeding decision interval dL.

The average number of subgroups taken before an
upward shift from po to po + 6uc will be detect-
ed by virtue of exceeding either the upper
decision interval or lower decision interval.
The average number of subgroups taken before an
upward shift from po to po - 6Lo will be detect-
ed by virtue of exceeding either the upper
decision interval or lower decision interval.
The average time elapsed from the time the
process mean shifts from po to either po + dvuo
or po - 8Lo until the detecting subgroup is
taken.

The average time elapsed for sampling, measur-
ing, computing and plotting a sample statistic
and finding an assignable cause.

The expected time of occurrence of a process
shift within a particular interval between
subgroups.

The expected time of occurrence of a process
shift within the interval between subgroups,
over all intervals between subgroups.

The expected number of subgroups taken during

the period of the process in control.
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Tout : The expected length of time a process is out of
control at a rejectable quality level.
Tecycie : The average time for one in-control, out of

control cycle.

Model Formulation

QQ“Q ra I S truc !!!g re

The operation of a two-sided Cusum control scheme for
surveilling the process mean comprises three basic proce-
dures: (1) sampling and measuring subgroups of size n at
regularly espaced intervals of h hours, (2) computing and
plotting the cumulative sums

Sju = Max (O,fj - ku + S(j-1)u)
and

Max (0,kL - ij + S(j-1)L).

]

SiL
for subgroup j (Souv = SorL = 0), and (3) comparing the
cumulative sums Sju and SjL to the decision intervals dv and
dL, respectively. Whenever the computed value Sju of a
rplotted point is greater than or equal to the upper decision
interval, dv, it indicates the likely occurrence of an
upward shift in the process mean. Similarly, if the comput-
ed value SjL of a plotted point is greater than or equal to
the lower decision interval, dr, it indicates a likely
downward shift in the process mean. In other words, a
decision that the process mean has shifted from the desired
value is reached when either the upper or the lower decision

interval is exceeded. Therefore, the subgroup size n, time
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interval between subgroups h, dead band values ku and kL,
and decision intervals dvu and dL are the decision variables

required for implementing a two-sided Cusum control chart.

Average Run [ength (ARL)

The run length of a control scheme is the number of
subgroups necessitated before there is an out of control
signal. An out of control signal indicates that an assign-
able cause has probably occurred in the process and that
action should be taken to search for and remove the assign-
able cause. The ARL is used as a performance measure to
evaluate the Cusum control chart. The decision variables n,
h, kv, kL, dv, and dr of the Cusum chart determine values of

8,

ARLo and ARL1 at acceptable and rejectable quality level

@

respectively. In general, a good control chart scheme has
very large value of ARLo, when the process is in-control,
and a very small ARL1, when the process mean has shifted.

The desired values of ARLo and ARL1 at the acceptable
and rejectable quality levels, respectively, are generally
specified, in order to determine the decision variables of a
Cusum control scheme. The decision variables are then form-
ed by using homograms of Ewan and Kemp (1960), Goel (1968)
or Geol and Wu (1973) to satisfy, approximately, the speci-
fied ARLo and ARL1. This approach of designing the Cusum
control scheme does not, however, take into consideration
the cost aspects of the process and the time interval

between subgroups, h, which has to be determined by some
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rule of thumb. In general, nomograms are inconvenient and
not precise.

Economically designed Cusum control schemes require
repeated ARL computations to minimize an expected cost
function. Vance (1986) presents a computer program for
evaluating the ARL. This program is used to avoid the
drawbacks of nomograms. However, Vance s ARL program
produces an ARL value for one-sided Cusum control schemes.
Fortunately, one may consider a two-sided Cusum control
scheme as a synthesis of two one-sided Cusum control
schemes. An asymmetric two-sided Cusum control scheme will
have to deal with the magnitudes of an upward shift dvc and
a downward shift Lo in the process mean, upper and lower
dead band values, ku and kL, and upper and lower decision
intervals, dvu and dnL. Recall that ARLA1(8vu) 1is the average
number of subgroups taken before a magnitude of upward shift
6u will be detected by virtue of exceeding either the upper
decision interval or lower decision interval. EKemp (1961)

shows that

1 1 1
= + .
ARLA1(6u) ARLAv (6u) ARLAL(6u)

Likewise, recall that ARLA1(6L) is the average number of
subgroups taken before a magnitude of downward shift 6L will
be detected by virtue of exceeding either the upper decision
interval or lower decision interval. Then,

1 1 1

= + .
ARLA1(6L) ARLAu(8L) ARLAL(SL)
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It is assumed that there is a possibility a that the process
mean will shift upwardly. Then the ARL, ARL:i, of the two-
sided Cusum control scheme is given by

ARLy = a x ARLA1(6u) + (l-a) * ARLA1(6L).
Nature of the Process and Cycle Time

The process starts at time t = 0 in a state of statis-
tical control with a mean v;lue uo and a known standard
deviation ¢ which remains constant. An assignable cause
occurs randomly and causes a shift in the process mean of a
known magnitude, either 8uc or &Lo. Therefore, the shifted
process mean is either pu = po + 6uoc or p = po - 8Lo, depend-
ing on the direction of shift. The process stays at this
level until the shift is detected and adjustments are made
to bring the process back to the desired mean value, po.
Then it stays in an in-control condition until the next
assignable cause occurs.

The cycle time of the process is defined as the total
time of the process, starting from an in-control state,
shifting to an out of control condition, detecting the lack
of control and finding the assignable cause. In other
words, cycle time is composed of durations in-contreol, out
of control before detection of the assignable cause, and

while searching for the assignable cause. An illustration

of cycle time is given in Figure 3.1.
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Derivation of the Economic Model

Average cycle time plays an important role in deter-
mining the cost components of the model. When the average
cycle time is determined, then the cost components can be
converted to an hourly cost basis. A diagrammatic explana-

tion of the procedures involved in the derivation is given

in Figure 3.2.
and Cvecle Tipe

As illustrated in Figure 3.2, the average cycle time is

developed as follows:

(1) (2)

Average Average Average time the process is
cycle = in-control + out of control before a
time time detecting subgroup is taken
(3) (4)
Average time for sampling, Average time
+ measuring, computing and + seeking for the
rlotting a subgroup assignable cause

(1) From Egq. (3.1), the probability that an assignable cause
occurs in the interval t to t+4t is approximately

5-1 S
f(t)at = (S/68)(t/68) exp(-(t/8) ) t.

The average time required for the assignable cause to

occur is
E(£(t)) = S tf(t)dt = 6r(1+1/8).
0

The time period the process remains in the in-control

state, given that it begins in-control, is equal to the
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Figure 3.2. Diagrammatric Explanation of
the Cost Model Derivation



49

mean of the distribution governing the process failure
(mean shift} mechanism. Hence the expected length of
time, Tin, for which the process is in-control at level
Ho is given by
Tin = BT (1+41/5). (3.2)
(2.a) If subgroups are taken at intervals of h hours, then
given the occurrence of the assignable cause in the
interval between the ith and (i+l1l)th subgroup (see
Figure 3.3), the average time of occurrence within
that interval is given by
(i+1)h
8 f(t)(t-ih)dt

ih
ATOWI

1l

(i+1)h
5 f(t)dt
ih

This can be simplified as follows

(i+1)h

(i+1)h
5 f(t)tdt - S f(t)ihdt
ih ' ih
ATOWI =
(i+1)h
S f(t)dt
ih
(i+1)h
S f(t)tdt
ih
= - ih. (3.3)
(i+1)h
j f(t)dr
ih

When t is Weibull distributed, from Egq. (3.1) ATOWI is

as follows:
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ith Assignable (i+1)th subgroup; the first
subgroup cause occurs subgroup taken after the

1 process goes out of control
i X '

|

—ATOWI——|

Figure 3.3. Average Time of Occurrence of
Assignable Cause Within an
Interval Between Subgroups



(2.b)

((i+l)h o-1 S
) (5/8)(t/8) exp(-(t/8) )tdt
ih
ATOMI = - ih
(i+1)h S5-1 S
S (5/8)(t/8) exp(-(t/8) )dt
ih :
S 5-1
Letting (t/8) = u, then (5/8)(t/8) dt = du. Also,
S 1/5 1/5
(t./8) = u implies that t/8 = u or t = Bu
Therefore,
S
((i+1)h/®) 1/5
u exp(-u)du
S
(ih/8)
ATOWI = - ih
S
((i+1)h/8)
exp(-u)du
S
(ih/8)
S S
B(§((1+1/8),((1i+1)Yh/8) ) - ¥((1+1/S),(ih/8) ))
) S S
exp(-(ih/8) ) - exp(-((i+1)h/8) )
- ih, (3.4)

where

§(a,x) represents the incomplete Gamma integral;
X a-1
f(a,x) = 5 exp(-t)t dt.
0
Given the average time of the occurrence of the
assignable cause between subgroups i and i+1 (ATOWI)

above, in Eq. 3.3, the expected time of occurrence of

the assignable causes within an interval is given by
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@ ((i+1)h
ETOPS = £ ATOWI | f(t)dt

i=0 /ih
o ((i+1)h

= 2 ) f(t)(t-ih)dt
i=0 ih
@ (i+1)h (i+1)h

= 2 ( g f{(t)tdt - ih S f{t)dv).
i=0 ih ih

(2.c) When the process mean shifts from upo to po + 8uo, then
the average number of subgroups taken before the shift
in the process will be caught by virtue of the cumula-
tive sum exceeding decision interval dv is ARLAu(dvu),
and by virtue of exceeding dr, ARLAL(Su). Kemp (1961)
shows that the average number of subgroups taken
before this upward shift in the process will be caught

is ARLA1(68vu), where

1 1 1
= + .
ARLA1(dvu) ARLAu(6u) ARLAL(6u)

(2.d) When the process mean shifts from po to uwoe - 8rno, then
the average number of subgroups taken before the shift
in the process will be caught by virtue of the cumula-
tive sum exceeding decision interval dv is ARLAu(6L),
and by virtue of éxceeding drL, ARLAL(6L). Therefore,
the average number of subgroups taken before this
downward shift in the process will be caught is

ARLA1(8L), where

1 1 1
= +

ARLA1(61L) ARLAu(6L) ARLAL(SL).

(Z2.e) The average number of subgroups taken before a shift
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in the process mean is caught is noted as ARL:i. That
is, ARL1 is the ARL of an asymmetric two-sided Cusum
control chart when the process is out of control and
is given by

ARL1 = a * ARLA1(6u) + (l-a) * ARLA1(6L).
Therefore, the average time elapsed for which the
process mean will be at the rejectable gquality level
before the detecting subgroup is given by

Ti1 = ARL1 *x h - ETOPS.

(3) The time required to sample, measure, compute, and plot
a point is proportional to the subgroup size n. That
ig, delay until a point is plotted is en hours.

(4) An average time of D hours is required to find an
assignable cause after its detection. Thus, the process
will continue at the rejectable quality level for an
additional Tz = en + D hours since the process is not
shut down while searching for the assignable cause.
Therefore, the total expected time the process is out
of control, Tout, is given by

Tout = T1 + T2

ARL1 *x h - ETOPS + en + D. (3.4)
Combining expressions in Eqs. (3.2) and (3.4), the average
time Tcycie for one in-control, out of control cycle is
given by

Tcycle = T;n + Tout

8r(1+1/s) + ARL1 * h - ETOPS + en + D.
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Cost Formulation

The components of this model are (1) loss due to
defective products being produced, (2) cost of searching for
an assignable cause when none exists, (3) cost of searching
for an assignable cause when one exists, and (4) cost of

sampling, measuring, computing and plotting the control

chart.

Based upon the average in-control, out of control and

cycle time, the hourly net income from the process is

developed as follows:

(1) (2)
Process average Average hourly Average hourly
hourly = in-control + out of control
net income income income

(3) (4)
Average hourly Average hourly

- false alarm - real alarm
cost cost

(5)
Average hourly cost for sampling,
- measuring, computing and plotting
the control chart

(1) The proportion of time a process is in-control is
gr(1+1/8)
T'o = —4mM8

Tcycle

Therefore, the average hourly income due to the process
being in-control is beo.
(2.a) The proportion of the time a process will be out of
control due to an upward shift in the process is

a ¥ (ARLA1(S6u) ¥ h - ETOPS + en + D)

Tu =
Teycile



(Z2.b)

(3.a)

(3.b)
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Thus, the average hourly income due to the process
being out of control in the upward direction is Vulu.
The proportion of the time a process will be out of
control due to a downward shift in the process is

(1-a) * (ARLA:1(SL) * h - ETOPS + en + D)

L =
Teycle

Thus, the average hourly income due to the process
being out of control in the downward direction is
Vil'e.

A false alarm occurs when the cumulative sum value of
& subgroup reaches either the upper or lower decision
interval, while the process is actually in-control.
The false alarm demands a search for the nonexistent
aesignable cause. The average number of subgroups,
taken from an in-control process, between false alarms
is ARLoe. Hence the proportion of time a subgroup
point will fall outside the decision interval when the
process is in-control is 1/ARLo.

If the process goes out of control in the ith inter-
val, the expected number of subgroups taken during the

period in which the process is in-control is given by

ENSIN = Z if(t)dt

® S(i+1)h
i=0

ih

Using Eq. (3.1), ENSIN is as follows

© (i+1)h S5-1 5]
ENSIN = Z S i(s5/8)(t/8) exp(-(t/0) )dt
i=0 7 1ih
o 5-1

Letting (t/6) = u, then (5/8)(t/8) dt = du. Also,
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S 1/5 1/5
(t/8) = u implies that t/8 = u or t = Bu

© S )
ENSIN = 2 i(exp(-(ih/8) ) - exp(-((i+1}h/8) ))
i=0

S S S
exp(-(h/8) )+2exp(-(2h/8) )+-+-+ n exp(-(nh/8) )} +---

]

S S
-lexp(-(2h/8) )-----(n-1)exp(-(nh/8) )----

S S S
exp(-(h/8) )+exp(-(2h/8) )+exp(-(3h/0) )+---

© S
exp(-(ih/8) )

1
™

i=1
(3.c) The average hourly false alarm cost is therefore

1
* T % ENSIN

ARLo

Tecycle
(4) The process is truly out of control once every Tcycle
hours. Therefore, the average number of times per hour
that the process actually goes out of control is
1/Tecycie. If the average cost of finding the assignable
cause when it occurs is W, the average cost per hour for
finding as actual alarm will be W/Tcyc1ie.
(5) The average hourly cost for sampling, measuring, comput-
ing and plotting charts is
b+cn
h

The process hourly net income is therefore:
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1
¥ T x ENSIN
ARLo W b+cn

I = Yoo + Vuluv + ViIL - —
Teycile Tcyc1le h

Since Mu = Vo - Vu, ML = Vo - VL and To + Tu + 'L = 1,
Yolo + Vulu + VLI'L = VolTo + (Vo - Mu)Tu + (Vo - ML)IL
Volo + Volu + VeolI'L - Mul'w - MLTL

Yo - MuTu - MulL

Thus,
1
T % ENSIN
ARLo W b+cn
I = Vo - Mulv - MuTL - - _
Teycile Teyecle ks
= Vo - L.
where
L = Loss-cost
1
¥ T % ENSIN
ARLo W b+cn
= MuTv + MLTL + + +
Tcycile Tecycle h
T % ENSIN + W X ARLo b+cn
= MuTu + MLTL + +
ARLo % Tecycile h

According to the formulation above, to maximize avérage
hourly net income is equivalent to minimizing the loss-cost

L. This observation corresponds to that of Duncan.
Optimal-Seeking Methods

The economically-based Cusum chart model is now used to
find an optimal or near-optimal combination of values of the

decision variables, minimizing the loss-cost L and thereby
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maximizing the average hourly net income of the process. An
analytically definite optimal solution has not been
determined for the value of L as a loss-cost function of the
decision variables n, h, kv, ki, du, and dr. A multi-
dimensional direct search technique is used for near-
optimizing the loss-cost function.

The Nelder-Mead simplex procedure (Nelder and Mead,
1965) (0"Neill, 1971) is utilized as the search algorithm.
Olsson and Nelson (1975) show the generality of the Nelder-
Mead simplex method, its accuracy, and the simplicity of the
information required for the computer input statement. This
method is described for the minimization of a multivariable
function without constraints. The simplex procedure derives
its name from the geometric figure which is moved along the
response surface in search of the minimum. No derivatives
of the objective fuhction are required, which is a so-called
"direct” procedure.

The simplex procedure approaches the minimum by moving
away from the highest values of the objective function
rather than by trying to move in a line toward the minimum.
The procedure is operated by reflection, extension, contrac-
tion or shrinkage sc as to conform to the characteristics of
the response surface. The operation continues until either
a specified number of evaluations has been reached or the
function values differ from themselves by less than a
specified amount. Based on empirical evidence, multiple

starting points are required in order to lend confidence
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that an optimal or near-optimal solution of the loss-cost

function has been reached.

In this resgearch, the subgroup size n is the only deci-

sion variable which must be an integer. A brief schematic

description of the search procedure is given in Figure 3.4,

Following is a more detailed description of the search

procedure.,

1.

Fix kv and ki at the middle of the desired process
mean and upper rejectable quality level and lower
rejectable quality level, respectively. Apply the
Nelder-Mead algorithm with the other four variables
to find the near-optimal point of real values of n,
h, dv and dvL.

With ku and kL remaining at the same values as they
were in step 1, the real value of subgroup size n is
truncated to an integer and treated as a constant.
The values of h, dv and dL, obtained from the
preceding step, serve as a new starting point in the
direct search which is then performed on decision
variables h, dv and dr. The result of h, dv and dL
with this integer value n and fixed kv and kL is
treated as an intermediate best solution.

Repeat step 2 by doing a line search along integer
values of n to find the minimum loss-cost.

Let the best result realized in step 3 be a new
starting point and, with n fixed, do a five varia-

bles direct search to optimize values of h, dv, dL,



Start|

Input:
Process Parameters: S, 8, o, a, Target, 6u, 6L.

Cost and Time Factors: b, ¢, D, e, T, W, Mu, ML.

Initial Point: n, h, dv, dr., ku, kL.

« Keep ku and kL constant.
» Input criteria & step size for optimizing

n, h, du and dw.
» Optimize n, h, du, di; determine loss-cost.

e Truncate n to an integer n¥*; let n = n¥*.

« Reep ku and kL constant.

e Input criteria & step size for
optimizing h, dv and dw.

« Optimize h, dvu, dL; determine loss-cost.

« Keep ku and kL constant.
e Optimize h, dv, dL; determine loss-cost.

Yes
cost lower tha

60



Keep ku and kL constant.
Optimize h, du, dv; determine loss-cost.

Yes

ost lower than

Input criteria & step size for
optimizing h, dvu, dr, kv and kL.

Input step size for incrementally
varying dv and dv.

Vary du and drL; determine lower loss-cost.

Input step size for incrementally
varying kv and kL.

Vary kv and kL; determine lower loss-cost.

Restart.
Evaluate a defined Cusum chart.

Exit. L

Figure 3.4.
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Schematic Description of the Search Procedure
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¥u end KRL.
S, Incrementelly vary dv and 4L as well as ku and kL on

The result of step 4. The final outcome is then the

rest or remr-best fecisjon variable set (n, h, kv,

ki, dv, du) for the =conomically-based Cusum chart.
Incremem%t®»lly varving kv, %L, dv and de on the result of the
search pmocedure will lesd to @ slightly better outcome in
most of thre cases.

In amy cases, search methods do not require continuity
of the objective function and the existence of derivatives.
However, in general, in solving unconstrained nonlinear
programming problems, gradient and second-derivative methods

converge faster than direct search methods.
Summary

An economically-based model is developed to describe
the use of a generalized Cusum chart. This model is devel-
oped using Duncan’s approach to the economical design of
control charts. The mathematical development and derivation
of the hourly net income for this generalized Cusum chart is
discussed. The model developed in this chapter has the
characteristic of representing various process failure
mechanisms while Duncan’s model only deals with the expo-
nential time to failure mechanism. In addition, this model
has the added capability of dealing directly with asymmet-

rical upper and lower decision intervals, dead bands and

costs,
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An optimization procedure is used to find the decision
variables m, &, kv, ki, du, and dr required to construct the
control chart snd minimize the loss-cost function. The
minimue Ioes-cost design is equivalent to the design which
maximizes hawrly net income of a process. The Nelder-Mead
direct search algorithm is utilized in this optimization

procedure.



CHAPTER IV
RESULTS, COMPARISON AND ANALYSIS
Introduction

This chapter first discusses results achieved on Cusum
charts of symmetric design. Results of the economically-
based model are compared with those of Goel (1968) based on
his data sets numbered 1, 16 and 21. Then the asymmetric
design is presented through Goel s number 1 data set.

Factors which produce asymmetry of the model are: (1)
a, the conditional probability that if there is a shift in
the mean, the shift will be in the upward direction, (2) &,
the magnitude of the shift in the process mean in either the
upward direction, 6u, or downward direction, 6L, (3) M, the
diminution of hourly income that attributes to the occur-
rence of the assignable cause in either the upward direc-
tion, Mu, or downward direction, ML. A 3251 factorial
experiment is conducted to verify the validity of the asym-
metric design. Different initial points are employed to

confirm the validity of the model and its associated search

procedure.
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Comparison of Results for

the Symmetric Design

In order te validate the economically-based asymmetric
model developed in Chapter III and the search procedure
associated with the model, three representative examples
from Goel s research (1968) are optimized. The costs and
other relevant parameters for these three examples are given

in Table 4.1.

TABLE 4.1
COST AND RISK FACTORS AND PARAMETERS FOR THREE EXAMPLES

Example

No. A o} M e D T W b c

1 0.01 2.0 100.00 0.05 2 50 25 0.5 0.1
16 0.01 1.0 12.87 0.05 2 50 25 0.5 0.1
21 0.01 0.5 2.25 0.05 2 50 25 0.5 0.1

Goel presents his results based on a minimum cost
criterion for a two-sided symmetric Cusum chart. Subgroup
size n, time interval between subgroups h, decision
intervals dv and dL, and loss-cost values for these examples
are reevaluated and are listed in Table 4.2. These results
for the economically-based design are computed under the

conditions: (a) a = 0.5, (b) Mu = ML, and (<) 6u = 6. This
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is the only circumstance in which the asymmetric model
developed herein is used to optimize a symmetric two-sided
Cusum chart. Based on the results listed in Table 4.2, it
can be noted that the asymmetric model developed has results

very close to those of Goel s Cusum chart.

TABLE 4.2

RESULTS FOR GOEL"S CUSUM CHART AND
ECONOMICALLY-BASED DESIGN

Goel's CUSON chart as Goel's COSON chart as evaluated COSUN chart as optinized and evaluated
Ixanple evaluated by Goel by nodel developed by asymaetric model
fo. LI d Cost 2 h dv di Cost B h dv de Cost

1 § L4 039 40093 § L0 0.39 0.39  4.0088 § L.40 0.3883 0.3895 4.00%8
16 M4 023 1418 M 540 028 023 1413 540 0,231 0472 Lund

21 T 2229 0.123 0.833 3T 2229 0.123 0.123 0.8289 38 2022 0.1068 0.1063 0.8291

A further comparison is to calculate the loss-costs for

varying subgroup sizes of these 3 examples. The results are

listed in Table 4.3. These loss-costs provide a measure of
the performance of the control chart. From Table 4.3, the
validity of the economically-based design and its associated
search procedure can be confirmed.

Different initial points are employed to further vali-
date the model and its associated search procedure. Each
example is performed starting from two subgroup sizes to

search for the optimal or near-optimal plan. As shown in
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TABLE 4.3

LOSS-COSTS FOR VARIOUS SUBGROUP SIZES
FOR THREE EXAMPLES

[055-COST
Goel's COSOM chart Goel's CUSUN chart CUSUM chart as optimized
Example  Subgroup as evaluated as evaluated by and evaluated by
Ko. size by Goel podel developed asymaetric model
3 {.1265 4,1251 {1264
t { 4.0232 4.022% 4.0227
5 4.0093 4,0088 4.0088
6 {.0464 4.0461 4.0462
13 1.4138 1.4122 1.4191
16 14 1.4128 1.4113 1.4113
15 14145 1.4130 1.4182
16 1.4184 14173 1.4183
i 0.8339 0.8289 0.8292
1 38 0.8340 0.8291 0.8291
39 0.8342 0.829¢4 0.8293
{0 0.8346 0.8289 0.8296

Table 4.4, for examples 1 and 16, results of the asymmetric
model are very close to those of Goel. An interpretation of
example number 21, in which the decision variables do not
match well, is that the surfaces of the loss-cost become
flatter as 6 decreases, as declared by Goel and Wu (1973).
In order to explore the slope of the loss-cost
surfaces, loss-costs are investigated by increasing and
decreasing the subgroup size n from its optimum value. For
each value of n, the model is optimized using the Nelder-
Mead technique, holding only n constant, with the other five

decision variables initially set to their original optimum
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TABLE 4.4

OPTIMUM RESULTS OF ECONOMICALLY-BASED
DESIGN FOR DIFFERENT INITIAL POINTS

Exaaple From small cubgroup size (n=I) Fros large subgroup size (n=1{)
Ko. 1 h de ds Cost n b de ds Cost

1(6=2.0) ~ % 1.39 0.3991 0.3926 4.0088 § 1.40 0.3883 0.3635 4.0088
16 (6-1.0) 14 5.31 0.232% 0.2316 1.4114 o540 0.23T1 0.2412 1413

21 (6=0.5) 35 20.86 0.1291 0.1330 0.8292 36 24,22 0.1069 0.1063 0.8281

value. The deviations in loss-cost with subgroup size n, as
shown in Table 4.5, are the largest for 6 = 2 (example #1)
and are the smallest for 6 = 0.5 (example #21) in either

increasing or decreasing subgroup sizes from coptimum.
Analysis of the Asymmetric Design

Factors, a, 6, and M reflect the asymmetry of the
model. The optimal results for asymmetric Cusum charts are
analyzed by evaluating a 3251 factorial design. For factor
a, there are five levels of interest, which are levels 0.00,
0.25, 0.50, 0.75, and 1.00. For factor &, there are two
different values, 4 and 2, for each of 8u and 6. which are
used to form three pairwise combinations of 6u and 0OL.

Those are:

(1) 8u > 61 where 6u = 4, 6. = 2.
(2) 6u = 6L where Su = 2, 6L = 2.
(3) 8y < 8L where Su = 2, 6L = 4.
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TABLE 4.5

DEVIATIONS IN LOSS-COST WITH
SUBGROUP SIZE n

Example Subgroup Loss-cost Deviation

No. size
3 4.1264
4 4.0227 0.1037
1 5 4,0088 0.0139
6 4.0462 0.0374
7 4.1123 0.0661
12 1.4180
13 1.4127 0.00563
16 14 1.4113 0.0014
15 1.4138 0.0025
16 1.4188 0.0050
36 0.8294
37 0.8291 0.0003
21 38 0.8291 0.0000
39 0.8293 0.0002
40 0.8298 0.0005

Likewise, for factor M, three combinations of Mu and ML

are

1000, ML = 100.

(1) Mu > ML where Mu

H

100.

(2) Mu ML where Mu 100, ML

100, MwL 1000.

(3) Mu ML where Mu

~N

) ' ]

To study the nature of the asymmetry, consider the
design of a two-sided Cusum chart based on Goel s example
number 1 with the following cost and risk factors:

b =% 0.50 D = 2.00
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c=$ 0.10 e = 0.0%
T = $50.00 g = 1.00
W = $25.00 Target = 100.00

The results are obtained using the optimization procedure
described in Chapter III, and are summarized in Tables 4.6-
4.9.

It can be seen that each cell of each table has its
mirror image through the centroid. Based on the resulte
listed in the tables, conclusions within each table can be
generated as follows:

1. Each subgroup size (n) has its mirror image through

the centroid.

2. Two cells the same distance from and mirrored
through the centroid have the same or nearly the
same values of the time intervals between subgroups
(h) and loss-costs (Cost).

3. Two cells the same distance from and mirrored
through the centroid have the upper and lower
decision intervals (dv and dL) very close to the
lower and upper decision intervals (dv and du),
respectively, in the other cell.

4. The value of the upper decision interval (du) at
a = 0.00 tends to be a relatively large number.
This results in a very small possibility of a false
alarm in the upward direction. Likewise, the value
of lower decision interval (drL) at a = 1.00 tends to

be a relatively large number. This results in =a
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=1,
SCALE PARAMETER 6=100 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER du AND LOWER dr,

TIME INTERVAL BETWEEN SUBGROUPS h=0.1,

DEAD BAND-UPPER ku AND LOWER ki,

SUBGROUP SIZE n=1:

dv=d,de=2, k6= 102, k=99

do=du=2, ke=101, k499

de=2,du=4, ko= 101, ke=08

Su by |1 1 by ¢ L
() ) (2 (2) (2 (4
LI 19 oy = i LU 1 o LU [ LUK 9 LU {2 LI 11 M (M
[} 1000 100 160 100 100 1000 | 1000 160 100 100 100 1000 | 1000 100 100 160 100 1000
] Ly 1.31 0.36 1.3t 1.3 0.36 119 118 0.3
v £.1125 4.112% 3.2116 3.5875 3.5875 2.1692 5.1201 5.1201 6.4357
du 0.4270 0.4270 0.5782 0.4126 0.4126 0.5824 0.4700 0.4700 0.9420
0.00 » { { 3 { 4 3 2 2 1
14 1020824 | 102.0524 | 102.0879 101.0000 { 101.0000 | 101.0866 101.0269 | 101.0269 | 101.0000
k 99.0116 93.0116 98.9967 99.0000 99.0000 99.0010 98.0217 98.0217 98.0000
Cost 3.95%6 3.9556 26.6089 3.9566 3.9556 26.6099 3.4840 4840 24,4790
A 0.59 1.3 0.4 0.1 1.40 0.40 0.712 L2 0.42
dv 0.4893 0.6300 0.8324 0.4673 0.4821 1.2 0.4366 0.7863 1.1336
di 1.2523 04464 0.6059 0.6343 0.3587 0.6039 0.4467 0.4581 0.4838
0.25 2 2 { 3 { 5 3 { 3 ]
kv 1020154 | 102.0000 | 101.9203 100.9858 | 100.9644 | 100.9772 101.0082 | 101.0030 | 100.9913
{1 98.9971 99,0000 99.0159 §9.0192 §9.0012 89.0091 98.0619 98.1103 98.0169
Cost 9.9369 39146 21.2164 10,1529 4.0024 21.2944 9.992% 3.7589 19.6238
b 0.48 .19 0.49 0.55 1.39 0.5 0.48 119 0.48
de 0.4893 04414 0.5211 0.4263 0.3991 0.7511 0.6051 0.6952 1.4529
dc 1.4698 0.6969 0.6082 0.7591 0.3926 0.4383 0.5419 0.4001 0.498%
0.50 2 2 3 3 { 5 { 3 3 2
kv 101.9835 | 101.9185 | 102.0211 101.0061 ; 101.0000 [ 100.9862 100.9916 | 100.9916 | 101.0066
kt 99.0028 §9.0088 §9.0046 §9.0188.{  99.0000 99.0021 98,0283 98.0432 88,0164
Cost  14.8227 3.8619 15,7083 15.8229 4.0088 15.8229 15.7081 3.8619 14,6229
b 0.42 1.23 8.72 0.40 1.4 0.11 0.41 1.3 0.59
dv 0.4675 0.5088 ' 0.6110 0.6008 0.3514 0.6076 0.5929 0.4770 1.2344
(13 11281 0.7989 0.4425 1.2260 0.4601 0. 4604 0.754 0.4703 0.5269
0.75 a 2 3 { 3 5 { 3 { ?
14} 102.0000 | 101.8491 | 101.8429 100.9933 | 100.9975 | 101.0137 100.9938 | 100.9758 | 101.0044
143 99.0000 99.0085 §8.9962 99.0216 96.9920 99.0087 98.0549 98.0904 91.9945
Cost  19.6238 3.7560 9.9926 21.2%4 £.0023.]  10.1530 21.2161 3.9139 9.5370
b 0.3 1.23 1.23 0.36 1.3 1.31 0.36 1.29 1.29
ds 0.9420 0.4719 0.4719 0.5796 0.4126 0.4126 0.5753 0.432 0.4324
dt 6.4387 5.1151 51181 2.2578 3.5875 3.587% 3.2083 {2334 42934
1.00 a 1 | 2 3 { { 3 { {
{} 102.0000 | 101.99t0 | 101.9910 101.0018 | 101.0000 | 101.0000 101.0067 | 101.0000 | 101.0000
kL 99.0000 99,0219 99.0219 §9.0586 99.0000 99.0000 98.0556 98.0000 98.0000
Cost 24,4790 3.4040 3.4840 26.6099 3.9556 3.95%6 26.6099 3.9563 3.9563
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TABLE 4.7

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=2,
SCALE PARAMETER ©6=100 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dv AND LOWER dr,
TIME INTERVAL BETWEEN SUBGROUPS h=0.1,
DEAD BAND-UPPER kv AND LOWER ki,
SUBGROUP SIZE n=1:

dv=4,de=2,kv=102,k1=99 dv=de=2,ke=101, kL=99 de=2,du=4,ke=101,ke=98
6v ) & L IR bv < bt
() (2) (1) () (2) (W)
.U 13 LUBEN 1) LUK® 18 LU 13 | (I .UKQ {t LN {3 LN 13 .UNH 13
t 1000 100 100 100 100 1000 | 1000 100 100 109 100 1000 | 1000 100 100 100 100 1000
] 1.2¢ 1.2 0.3 1.2 1.21 0.3 .13 1.13 0.31
dv 3.9248 3.9248 3.6906 3.7403 3.7403 2.6252 4.0213 40213 §.6487
di 0.4102 0.4102 0.5803 0.4268 0.4268 0.5878 0.4329 8.4329 0.9483
0.00 » ] { 3 { { 3 2 2 1

ke 102.0581 | 102.0581 | 102.0000 161.0000 [ 101.0000 { 101.0667 101.0284 | 101.0284 | 101.1000
kt 98.9961 98.9961 99.0000 99.0000 $9.0000 99.0035 97.9826 97.9826 98.0000

Cost 4.3458 4.3459 295913 £.3464 4.3464 29.5914 3.8412 3.8412 21,2051

] 0.56 1.2 0.39 0.67 1.32 0.39 0.61 1.16 0.39

dv 0.8120 0.3332 0.7787 0.4617 0.4550 1.2198 0.6118 0.7858 1731

di 1.358 0.4492 0.5870 0.6345 0.3114 0.6000 0.4950 0.3541 0.4768
0.25 2 2 4 3 { 5 ) 3 3 4

ty 101.9957 | 102.0266 | 101.8932 100.9908 | 101.0050 | 100.9832 101.0049 | 101.0098 | 101.0073
ke §9.0009 §9.000% 99.0005 §9.0192 99.0198 99.01902 98.0637 §8.6248 98.0184
Cost 10,3562 £.3017 23.9656 11.2297 4.3981 23.6468 11,0852 41318 21.8538

b 0.46 1.13 0.46 0.52 1.33 0.52 0.41 1.1 0.45

dv 0.4784 0.4318 0.5162 0.4371 0.3988 0.7328 0.6006 0.6711 14834

du 1.4966 0.6875 0.5981 0.7351 0.4084 0.42%8 0.5416 0.372¢ 0.4916
0.50 » 2 3 3 ¢ ] { 3 3 2

k 101.9955 | 101.9240 | 102.0000 [, 100.9914 | 100.9951 | 101.0000 100.9925 | 101.0000 | 100.9891
k 99.0113 98.9990 |  99.0000 98,9998 §9.0187 99.0000 98.0151 98.0000 |  98.0206
Cost  16.2491 4.2441 17.4187 17,5549 £.40581 17.5548 17.4187 L2442 16.2490

] 0.40 116 | 0.61 .38 1.3 0.67 0.39 1.2§ 0.56

dv 0.4658 0.3446 | 0.4588 0.5862 0.3517 0.6280 0.5950 0.4464 1.2

du 1.1528 0.8014 0.6339 1.2142 0.4817 0.4677 0.6866 0.3066 0.5157
075 2 2 3 3 3 ] 4 2

{ 3
kv 101.9879 | 101.9743 | 101.9771 100.9964 | 100.9961 | 100.9917 100.9918 | 101.0000 | 101.0152
kt 99.0143 99.0089 99.0143 99.0467 99.0156 88.0172 §8.0586 98.0000 | 98.0123
Cost  21.853¢ 41319 11,0582 23.6471 4.3982.] 11.2298 23,5655 3017 10.5564

] 0.31 1.4 114 0.3 1.2 LU 0.3 L2 LU

dv 0.9433 0.4312 0.4372 0.5858 0.4280 0.4280 0.5803 0.4087 0.4087

do 6.2307 3.9068 3.9068 2.9529. 3.5632 3.5632 3.6906 3.9232 3.9232
1.00 » 1 A H 3 { 3 { {

{
14 102.0000 | 102.0262 | 102.0262 100.9967 | 100.9871 | -100.9871 101.0000 | 101.0082 | 101.0082
143 $9.0000 99.0473 99.0473 99.0600 99.0562 99.0562 98.0000 98.0565 98.0565
Cost  27.2151 3.8412 3.68412 29.5913 4.3459 4.3459 29.5913 L3489 4.3459
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOQR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=1,
SCALE PARAMETER 8=50 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER du AND LOWER di,

TIME INTERYAL BETWEEN SUBGROUPS h=0.1,

DEAD BAND-UPPER ku AND LOWER kL,

SUBGROUP SIZE n=1:

do=d,de=2,ke=102, k1283

dv=di=2, ke=101, 11298

de=2, 414, ko= L0 bu=B8

G &t Sv - Bt L
(4) () 2} (2) 2} (4)
LURN '} By = Ky LUK 13 LU 1} -l Mo ¢ Nt LU 19 | L3 13 LIS 11
] 1000 100 100 100 100 1000 § 1000 100 100 100 180 1000 | 1606 106 188 100 100 1000
h 0.95 0.95 0.26 0.95 0.95 0.26 0.8 6.88 0.2
dv 3.6781 3.6791 5.1222 2.6959 2.6958 2.8175 3.5393 3.5393 5.6492
dt 0.4188 0.4168 0.5798 0.4208 0.4209 0.5769 0.4387 0.4387 0.9310
0.00 » { { 3 { { 3 2 | 2 1
{] 102.0257 | 102.0287 102.0260 101.0198 | 101.0198 | 101.0248 101.0241 | 101.0241 | 101.1000
ke 99.0064 99.0064 99.0020 99.0040 99,0040 98.9982 97.9758 97.9758 98.0000
Cost 6.8420 6.8420 49,0532 6.8421 {  6.8421 49.0532 6.1450 6.1450 £5.6028
b 0.8 0.94 0.30 0.51 0.9¢ 0.30 0.46 0.77 0.26
dv 0.5510 0.4908 1.5469 0.4616 0.5869 1.2079 0.623% 1.2349 3.403
du 1.2676 0.4540 0.5170 0.6292 0.4539 0.5938 0.6978 0.5491 0.9692
0.25 2 { 3 { { 3 3 2 1
v 101.9493 | 101.9075 1 101.1452 100.9907 | 101.0000 | 101.0104 100.9966 | 100.9878 | 100.9967
kL 99.0113 §9.005¢ 98,9948 99.0099 99.0000 99.0089 98.2012 98.0191 98.0013
Cost  17.1569 6.7852 38.8731 18.1935 §.9188 38.9634 17.9080 6.5421 36.3442
b 0.35 0.87 0.3% 0.35 0.93 0.35 .36 6.87 0.3%
de 0.4796 0.4517 0.5680 0.5953 0.5106 1.0492 0.5851 0.7033 1.4869
de 1.4896 0.6358 0.5890 1.0314 0.5110 0.59817 0.5786 0.4007 0.4825
0.50 o 2 3 3 3 { 3 3 3 2
ky 101.9854 | 101.9167 | 101.9993 100.9984 | 100.9926 | 100.985¢ 101.0067 | 100.9813 | 100,9985
1§ 99.0012 99.0141 98.9963 99.0099 4 99.0029 8.9996 98.0536 98.0461 98.0133
Cost  26.8545 6.6886 28.5330 28,7306 6.9338 28,7305 28.5329 6.6886 26.8545
b 0.26 0.16 0.47 0.29 0.4 0.51 0.3 0.96 0.43
v 0.9488 0.5254 |' 0.7645 0.5918 0.4539 0.6221 0.4824 0.4266 1.2493
du .y 1.2440 0.6385 12184 0.5869 0.4608 2.6494 0.615§ 0.5286
0.75 I B | 3 3 { { 3 { 2
kv 102.0235 | 102.0020 | 101.6681 100.9946 | 101.0000 | 100.9936 101.0832 | 101.0122 | 100.9978
{1 99.0030 99.0183 99.0252 98.9989 99.0000 99.0141 99.3630 98.1202 98.0225
Cost  36.3444 6.5423 17.9082 38.96M 6.9188.] 18.1933 38,3890 6.7854 17.1568
b 0.4 0.87 0.67 0.26 0.95 0.95 0.26 0.96 0.96
dv 0.9490 0.4294 0.4294 0.5139 0.4201 0.4201 0.5837 0.4151 0.4151
du 5.5102 3.5300 3.5300 2.8168 2.1150 2.7150 5.1236 37534 3154
1.00 o 1 2 7 3 { { K} i {
kv 101.9854 102.0265 | 102.0265 101.0046.1 1009944 100.9844 100.9929 | 10£.0000 | 101.0000
ki 98,7947 99.0148 99.0148 99,0242 99.0219 99.0219 98.0213 98.0000 98.0000
Cost  45.6028 6.1450 6.1450 49.0533 6.8421 6.8421 19,0533 6.8422 6.8422
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=2,
SCALE PARAMETER 6=50 AND INITIAL POINT AS FOLLOWS:

DECYSION INTERVAL-UPPER dv AND LOWER dL,

TIME INTERVAL BETWEEN SUBGROUPS h=0.1,

DEAD BAND-UPPER ku AND LOWER ki,

SUBGROUP SIZE n=1:

dv=d,d1=2,kv=102,ke=99

dv=de=2,ke=101,ki=9¢

de=2,de=4, ko101, ke=98

[ 1P 1 [N 1 be ¢ &1
(€) (2) (2) (2) (2) )
.UBN {3 LI 1) | LN 3 .U 3 .UBEN 13 By ¢« i .URN 1 Moz Nt L URS 13
[ 1000 100 100 100 100 1000 | 1000 100 100 100 16 1000 | 1000 168 100 100 100 1600
1} 0.90 0.90 0.28 0.91 0.91 [ 313 (K & 0.83 .22
(1] 3.7567 3.7567 4. 1468 2.7168 2.7168 2.566% {6371 4.6371 5.6358
& 0.402¢ 0.4024 0.5860 0.4123 0.4123 0.5808 9.4413 0.4413 0.9564
0.00 » { { 3 { { 3 2 2 1
ke 102.0290 | 102.0290 | 102.0223 101.0192 | 101.0192 | 101.0574 101.6270 | 101.0270 | 101.1222
ki 98.9893 96.9893 99.007¢ 99.0039 99.0039 89.06048 97.4786 97.9766 98.0208
Cost 1.5323 1.5323 54,5689 71.5323 7.5323 54.5688 §.7872 6.1872 50.8164
[ 0.41 0.91 0.28 .49 0.87 8.28 .4 .n 0.25
dv 0.5091 0.4967 1.1558% 0.4439 0.5870 1.2263 4.6283 1.2012 3.4225
d 1.2459 8.4704 0.9617 0.6197 0.4543 §.5892 8.5730 0.5187 0.9581
0.25 » 2 { 3 { 4 3 3 2 1
ke 102.0000 | 101.9568 | 101.5405 101.0000 | 101.0048 | 100.8980 100.9870 | 101.0106 § 101.0057
|11 99.0000 99.0217 99.0033 99.0000 1 98.9948 99.0071 98.1367 97.9933 97.9996
Cost  19.0130 1.4726 43,2033 20.1476 1.6134 43.2942 19.8328 7.2064 10,4336
b 0.33 0.82 0.3 0.33 0.89 0.33 0.3 0.82 0.33
] 0.4788 0.6629 0.6494 0.5955 0.4993 1.0315 0.5857 0.6771 1.5187
di 1.5265 0.7075 0.5819 1.0315 0.5002 0.5955 0.5730 0.4821 0.4803
0.50 2 2 3 3 3 { 3 3 3 2
kv 101.9998 | 101.6723 | 101.9237 101.0000 | 101.0000 | 101.6000 100.9977 | 101.0003 | 100.9851
kt 99.0141 99.0220 99.0057 99.0000 4 99.0000 99,0000 98.0411 98.1151 98.0099
Cost  29.8561 1.3658 31.6689 3.8717 1.6290 Ry 31.6689 1.3656 29.8558
] 0.24 0.13 0.4 0.28 0.89 0.48 0.28 0.92 0.41
dv 0.9608 0.5412 {' 0.8308 0.5508 0.4535 0.6197 8.5852 0.4458 1.2492
13 3.4336 1.2230 0.6230 1.6897 0.6031 0.4439 8.9255 0.6316 0.5111
0.7 a 1 2 3 3 { { 3 { 2
1{] 102.0001 | 101.9668 { 101.6060 101.0343 | 1009940 | 101.0000 100.9948 | 100.9949 | 101.0032
{! 98.9978 99.0121 99.0099 99.2136 99.0123 99.0000 98.2969 98.2051 96.0134
Cost  40.4336 1.2062 19.8326 43,3037 1.6130.]  20.1478 43.2032 1.4 19.0129
b 0.23 0.84 0.84 0.25 0.91 0.91 0.2§ 0.90 0.90
dv 0.9516 0.4352 0.4352 0.5622 0.4132 0.4132 0.5843 0.4027 0.4027
du 5.1131 47101 47101 2.6684 2.7183 2.7183 4. 1504 3.7530 3.7530
1.00 » 1 2 2 3 { [} 3 { {
kv 101.9902 | 102.0000 | 102.0000 100.9935 { 100.9955 | 100.9955 100.9922 | 101.0088 | 101.0088
{3 98.9231 99.0000 99.0000 99.0259 99,0207 99.0207 98.0259 98.0253 98.0283
Cost  50.8165 6.7871 6.7871 54.5688 1.5323 1.5323 54,5689 1.5323 71.5323
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very small possibility of a false alarm in the
downward direction.
5. The upper dead band value {(ku) is in the vicinity of

po + X¥3uo, Similarly to the lower dead band value

(ku) is in the vicinity of uo - %6Lo.
ect ‘ ilit ] Shift., ¢

Figure 4.1.a shows that there is no major change in
loss-cost as factor a is varied, when the magnitude of a
shift in the process mean is equal in either direction,
5y = 6L. However, the curve of 6§u = 6L shows that whenever
a = 0.00 or a = 1.00 there is a slightly lower average loss-
cost. This is because a two-sided asymmetric Cusum control
chart becomes a pure one-sided Cusum control chart whenever
a = 0.00 or a = 1.00. Only when a = 0.50 is the two-sided
asymmetric chart considered to be a two-sided symmetric
chart. Yet, when « is at an extreme value of 0.00 or 1.00,
the Cusum chart can be made more efficient for detecting an
out of control condition. This leads to a slightly lower
average logs-cost. When a = 0.50, however, the Cusum chart
must be able to detect an out of control condition in either

direction, causing it to be slightly less efficient,

resulting in a higher average loss-cost.

The condition where 6u > 6L indicates a shift in the
upward direction, if it occurs, will be larger and more
easily detected than a downward shift. The average loss-

cost with a small value of factor a is higher and the
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average loss-cost with a high value of a is lower. When «
is low, there will more likely be a downward shift in the
process mean, which is less easily detected, resulting in a
higher average loss-cost. On the contrary, when a is high,
there is more likely an upward shift in the process mean
which is more easily detected, resulting in a lower average
loss-cost.

The condition where 8Su < 6L indicates a shift in the
downward direction, if it occurs, will be larger and more
easily detected than an upward shift. The average loss-cost
with a small value of factor a is lower and the average
loss-cost with high value of a is higher. When a is low,
there will more likely be a downward shift in the process
mean, which is more easily detected, resulting in a lower
average loss-cost. On the contrary, when a is high, there
ie more likely an upward shift in the process mean, which is
less easily detected, resulting in a higher average loss-
cost.

Figure 4.2.a shows that there is virtually no change-in
average loss-cost as factor a is varied, when the magnitude
of the diminution of hourly income is equal in either
direction, Mu = MrL. This is because the proportion of time
the process is out of control is the same regardless of the
value of a, and there is no differential cost effect in
either direction.

The condition where My > ML indicates that a shift in

the upward direction, if it occurs, will be extremely
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costly, $1000 per hour. On the contrary, a downward shift
is not so costly, $100 per hour, when it occurs. The
average lose-cost with a low value of factor a is lower and
the average loss-cost with a high value of a is higher.

This is because when a is small, it is more likely a shift
in the process mean will be in the downward direction, which
and is not so costly.

The condition where Mu < ML indicates that a shift in
the downward direction, if it occurs, will be extremely
costly, $1000 per hour. On the contrary, an upward shift is
not so coestly, $100 per hour, when it occurs. The average
lose-cost with a low value of factor a is higher and the
average loss-cost with a high value of a is lower. This is
because when a is small, it is more likely a shift in the
process mean will be in the downward direction, which is

extremely costly.
Effect of Risk Parameter, M

Figure 4.3.a shows that there is no major change in
average loss-cost when the diminution of hourly income
Mv = ML, whether 86u > 6., 6u = 8L or 6u < 6L. When 6vu > 6L,
however, a shift in the upward direction is more easily
detected and results in a slightly lower average loss-cost
than that of 8v = 6. Likewise, when 8u < 6L, a shift in
the downward direction is more easily detected and results
in a slightly lower average loss-cost than that of 6u = 6L.

The condition in which Mu > ML causes a strong upward
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shift in the average loss-cost, due primarily to the large
increase of Mu to $1000 per hour. When 6u > 6L, the average
loss-cost is lower than in the situation where 6u < 6L.

This is because the magnitude of the upward shift makes it
easier to detect. Likewise, when Mu < ML, there is again a
strong upward shift in the average loss-cost. When 6v < 6L,
the average loss-cost is lower than in the situation where
6u > 6L. This is because the magnitude of the downward

shift makes it easier to detect.

Effect of Weibull SI Parane 5

The shape parameter, S, governs the shape of the
process failure distribution. When S = 1, the Weibull
distribution reduces to an exponential distribution. From
Figure 4.1.a to 4.1.b and 4.2.a to 4.2.b and 4.3.a to 4.3.b
where the scale parameter 8 = 100, the shape parameter
increases from 1 to 2. It can be seen that shapes of
figures do not change,‘but the average loss-cost increases
as S increases. Similarly, from Figure 4.1.c to 4.1.d4 and
4.2.c to 4.2.d and 4.3.¢c to 4.3.d, where the scale parameter
8 = 50, the observation above continues to hold.

In addition, from Table 4.6 to 4.7 where 8 = 100, in
all cases the time interval between subgroups (h) decreases
as S increases. Similarly, in Tables 4.8 and 4.9, where 8 =
50, the observation continues to hold.

From Table 4.10 to 4.11, again S increases from 1 to 2

while holding constant the scale parameter 68 = 100. It can
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be seen that in all cases: (a) the total proportion of time
the process is out of control (Tu + I't) increases as S
increases and (b) the cycle time (Tcycle) decreases as S
increases. Likewise, in Tables 4.12 and 4.13 for & = 50,
observations (a) and (b) also hold.

Figures 4.4, 4.5 and 4.6 show the overall effect of a,
8 and M, respectively, on the average loss-cost. Again the
average loss-cost increases as 5 increases from 1 to 2.
Effect of Weibull Scale Parameter. 8

The scale parameter, 8; also has relevance to the
change in the process failure mechanism. When the Weibull
distribution reduces to an exponential distribution, the
reciprocal of 6 is equal to the average number of assignable
causes per unit time. A decrease in 8 is equivalent t¢c an
increase in the frequency of assignable causes.

From Figures 4.1.a to 4.1.c, 4.2.a to 4.2.¢c, 4.3.a to
4.3.c, where the shape parameter S = 1, the scale parameter
decreases from 100 to 50. It can be seen that shapes of
figures do not change, but the average loss-cost 1lncreases
as 8 decreases. Similarly, from Figures 4.1.b to 4.1.d and
4.2.b to 4.2.d and 4.3.b to 4.3.d, where the shape parameter
S = 2, the observation above continues to hold.

In addition, from Tables 4.6 and 4.8 where S = 1, in
all cases the time interval between subgroups (h) decreases

ag B decreases. Similarly, in Tables 4.7 and 4.9, where

S = 2, the same observation continues to hold.



OPTIMUM VALUES OF Tu,

e,

TABLE 4.10

ARLo,

ARL 1z,
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h*ENSIN AND CYCLE TIME

FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH
SCALE PARAMETER 6=100

SHAPE PARAMETER 5-=1,

AND INITIAL POINT AS FOLLOWS:

n=1, h=.1, dv, di, kv AND ki:
dv=4,de=2,ke=102,k0=99 dv=di=2,ke=101,ke=99 d=2,de=4, k=101, k198
[ 13 by = bt by ¢ bt
)y () {21 (2) (2} 4
.UBN. 12 Kv = N1 Ny ¢ Ko LI 13 ¥v = N Ke ¢ ML - LU 18 L L3N 1 ok
t 1000 100 100 100 100 1660 { 1000 100 100 108 100 1000 | 1000 100 100 100 160 1000
ARLAI(8y)  2.644 2.644 2.196 4.203 4.203 .04 5.9% §.956 1.183
Is [} 0 ] L] ' 0 0 0 L]
ARLAs(6L)  1.129 1.129 1.261 1,128 1.128 1.267 1.014 1,01 1.156
o0 T 0.029¢ 0.0294 8.0237 0.0284 §.0294 0.0237 0.0264 0.0264 9.0222
ARL1 1.129 1.129 1.261 1.128 1.128 1.267 1.014 1.014 1.156
BENSI 99.35 99.35 99.82 99.35 99.35 99.82 99.41 99.41 99.84
ARLy 413.2 413.2 2977 408.0 408.0 297.0 3120 Inn 584.7
I 103.0262 | 103.0262 | 102.4286 103.0269 103.0260 102.4291 102.7118 | 102.7119 | 102.2655
ARLAL(§8) 1.017 1.003 1015 1147 1.122 1.817 1.143 1.423 2.401
(] 0.0059 0.0070 0.0058 0.0065 0.0076 0.0065 0.0065 0.0080 0.0071
. ARLA(81)  1.824 1144 1.212 L.210 1.078 1.215 1.001 1.002 1.015
0B N 0.0215 0.0222 0.0181 0.0199 8.0223 0.0180 9.0187 0.0202 80170
ARy 1.698 1.109 1.208 1.217 1.089 141 1.036 1.107 1.362
HENSIN 99.70 99.34 89,80 99.65 98.30 99.60 99.64 99.39 99.79
ARLs 131.8 501.6 011 3843 565.1 304.9 498.1 856.1 2348
Teyele 102.8118 | 103.0082 | 102.4403 102.7064 103.0794 { 102.5188 102.5862 | 102.8967 | 102.4621
ABLA1(6v) 1.015 1.002 1.006 1137 1,093 1,332 ran 1.340 1.138
] 0.0114 0.013¢ 0.0117 0.0124 0.0148 0.0129 0.08123 0.0153 0.0140
ARLAY(61) 2.138 1.3 1.281 1.337 1.091 1.138 1.005 1.002 1.018
0.5¢ [t 0.0141 0.0153 6.0124 . 0.0129 0.0149 0.0124 0.0117 0.0134 0.0114
ARL1 1.571 .11 1.144 1.231 1.092 1,23 1. 141 111 1.511
HENSIN 99.76 99.40 99.76 99.73 99.31 99.73 99.76 99.40 99.76
ARLe 1343 498.8 330.4 408.4 540.6 101.3 383 498.2 1360
Terele 102.6161 | 102.9516 | 102.4651 102.6025 | 103.0738 | 102.6025 102.4632 { 102.9527 | 102.6137
I8LAi{be)  1.915 1.002 1.001 1.215 1.078 1.247 1.270 1.146 1.908
I $.0170 0.0202 0.8187 §.0180 .0223 0.0199 0.0181 0.0222 0.0214
ARLAI(6e) 2413 1.422 114 1.818 1.123 1.146 1.012 1.001 1.019
0.15 T 0.0071 0.0080 0.0065 0.0065 4.0076 0.0065 0.0058 0.0069 0.0059
[1{A} 1.36% 1.107 1.031 1411 1.987 - 1.221 1.206 1110 1.686
BRNSIR §9.79 99.39 99.64 99.80 99.30 99.85 99.79 99.35 99.70
ARLe 2398 852.6 501.9 044 544.0 368.5 303.7 511.0 10714
Terele 102.463¢ | 102.8993 | 102.5869 102.5189 | 103.0806 | 102.7091 102.4410 | 103.0001 § 102.8047
ARLA1(69)  1.156 1.015 1.015 1.267 1.128 1.128 1.268 1137 L1397
v 0.0222 0.0266 0.0266 0.0237 0.0294 0.029¢ 0.0231 0.0294 0.0294
ARLAX(SL)  T.183 5.689 §.688 2.769 4.203 4.203 2.113 2.685 2.68%
1.0 o (] 0 L] ] 0 0 0 0 0
1A 1.156 1.018 1.015 1.267 1.128 1.128 1.268 1137 113
BENSIE 99.84 §9.39 99.39 99.82 99.35 99.35 99.82 99.36 99.36
ARLs 584,17 4019 1019 281,85 408.0 408.0 299.1 460.4 460.4
Teyele 102.2655 | 102.7328 | 102.7328 102. 4288 103.0260 | 103.0260 102.4290 | 103.0242 | 103.0242




OPTIMUM VALUES OF Tu,
FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH
SCALE PARAMETER 8=100

SHAPE PARAMETER S=2,

re,

TABLE

ARLo,

4.11

ARL1,
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h*ENSIN AND CYCLE TIME

AND INITIAL POINT AS FOLLOWS:

n=1, h=.1, dv, duL, ku AND kvL:
dv=4,de=2,ke=102,k1:-99 do=di=2,ke=101, k1299 dv=2,de=4, ke=101,ke=98
o0 b be = Bt by ¢« 6t
4 (2) 1y () (2) (4
.U 18 .UEN. 11 My < Kt LS 1 . I 1) .U 12 | IR 13 He = Kt He K
[ 1000 160 100 100 100 1000 | 1000 100 160 100 100 1000 | 1000 10O 100 100 180 1000
ARLAL(Sw) 2,531 | 2831 2.361 435 4,35 .41 [ K] £.83¢ 1.0
Ie 0 ] 1 ¢ ¢ 0 (] 0 0 ]
ARLA(8c)  1.129 1.129 1,266 1.135 1.135 1.269 1.014 1.014 1,187
0.00 It 0.0325 0.0325 0.0265 0.0324 0.032¢ 0.0265 0.0293 0.0293 0.0248
ARLs 1.12§ 1.129 1.266 1.138 1.135 1.269 101 1.044 1.187
BEXSIN §8.00 88.00 88.45 88.02 88.02 88.45 88.06 88.06 88.47
ARL+ 412.1 {12.1 295.¢ ey (LI 300.% 3764 364 §90.7
Teyele 91.6027 91.6027 91,0349 91.5928 91.5928 91,0359 91,3019 91,3019 90.6778
ARLAL(6w)  1.018 1.001 1.011 .17 1119 1.818 1.291 1.429 2.43
Iv 0.0065 0.0017 0.0064 0.0072 0.0084 0.0073 0.0072 0.0088 0.0078
“ ARLAr{d)  1.921 1145 1.270 t.241 1.076 1.212 1.003 1.002 1.015
LS T 0.0238 0.0246 0.0202 §.0221 0.0246 0.0201 0.0202 0.0224 0.0180
ARLy 1.695 1.109 1,208 1.217 1.087 1.408 1.875 1.10¢ 1.368
BEASIN 88.34 88.00 88.43 88.29 87.96 88.43 88.32 88.05 88.43
ARl 1249 508.5 3044 383.9 539.5 297.6 353.8 885.8 405
Terele 91,3915 91,5782 91.0460 91.3022 91.6461 91,123 91.1222 91.4759 §1.0628
ARLAL{Gw) 1,016 1.002 1.005 1.135 1.091 1,330 121 1,334 2.139
Tv 0.0128 0.0148 0.0131 0.0139 0.0166 0.0144 0.0138 0.0170 0.0156
AREAI(6L)  2.142 1.342 1.218 1.332 1.090 1.134 1.005 1.002 1.01%
0.50 Tt 0.0156 0.0170 0.0138 {.  9.0144 0.0166 0.0139 0.0131 0.0149 0.0128
ARL1 1.579 1.112 1.142 1.233 1.081 1.232 1.140 1.168 1.511
BENSIN 88.40 88.06 86.39 88.36 §7.96 88.36 88.39 88.05 88.40
ARLs 1357 506.1 322.2 386.3 525.0 390.6 K kR 418.0 1341
Terels 81,2140 81,8337 |, 90701 §1.2024 81,6575 91.2030 91.0720 91.5365 91.2124
ARL&(6v) 1,014 1.002 1,003 1.21¢ 1.075 1.244 1.210 1.1y 1.922
] 0.0190 0.0224 0.0202 0.0201 0.0247 0.0222 0.0202 0.0246 0.0238
— ARLA1(8e)  2.408 1.424 1.291 1.832 1.122 1145 1.009 1.000 1017
0.7 It 0.0079 0.0088 0.0072 0.0073 0.0084 0.0072 0.0064 0.0077 0.0065
ARkt 1.363 1.107 1.075 1.414 1.087 - 1.219 1.205 1.108 1.696
HENSIN 88.42 88.04 88.32 68.43 87.95 88.29 88.43 88.00 88.34
ARLo 2282 856.6 4.7 303.3 531.0 383.2 A 501.1 125.7
Teyels 81.0661 81,4785 91,1223 91,1223 91.6611 91.3063 91,0480 91.5654 91,3842
ARLAI (W) 1,157 1.015 1.015 1.268 1.128 1.129 1,266 1.129 1.129
Iv 0.0248 0.0294 0.029¢ 0.0265 0.0325 0.0325 0.0265 0.0325 0.0325
ARLAR{81)  6.978 4,409 4,409 3.040 3.980 3.980 2.361 2.399 2.398
1.0 Tu 0 0 0 0 0 0 0 0 0
ARl 1.157 1.015 1.015 1.268 1.12¢ 1.129 1.266 | 1.129 1.129
HENSIN 88.47 88.05 88.05 88.45 88.00 88.00 88.45 §8.00 88.00
ARLe 590.7 1033 4033 299.2 2.1 {121 295.4 {12.1 112.1
Teycle 90.8778 91.3079 91.3079 91,0357 91.6000 §1.6000 91.0349 91.6020 91.6020




OPTIMUM VALUES OF Tv,
FOR THE WEIBULL PROCESS FAILURE MECHANISHM WITH

',

TABLE

ARLo,

SHAPE PARAMETER 5=1,
AND INITIAL POINT AS FOLLOWS:

4.12

ARL1,

8%

h*¥ENSIN AND CYCLE TIME

SCALE PARAMETER 6=50

n=1, h=.1, dv, dn, ku AND ku:
deo=4,de=2,ke=102,k0-99 de=de=2,ke=101,k1=99 de=2,de=4,ke=101,k0=98
1) bt §v = L |1 13
(4 (2) () (2) U
LLIBN. 12 . LI 1) By < ¥t .U .13 Ko = Ki Be (ML LU 0 L= 11 Mo (KL
q 1000 100 100 100 106 1000 | 1000 100 100 100 18C¢ 1000 | 1060 100 100 100 100 1000
ARLAr(8y)  2.356 2,356 kR 3.369 3.369 1.538 4.320 4.320 1.028
] 0 0 ] ¢ 0 (] 0 0 0
ARLAL{6L) 1,128 1.128 1.265 1.130 1.130 1,266 1.015 1.015 1.15§
0.00 Tt 0.0529 0.0529 0.0448 0.0530 0.0530 0.0449 0.0486 0.0486 0.0423
LY{A! 1.128 1.128 1.265 1.130 1.130 1.266 1.6815 1.015 1.158
BEKSIN 49.53 49.53 49.87 49.53 19.53 49.87 49.56 49.56 49.88
ARLe 406.6 406.6 291.6 ie.1 118.1 293.% [y 1023 575.1
Teycle 52.7951 52,1951 52.3508 5§2.8003 52.8003 52.3512 52.5520 §2.5520 |  52.2063
ARL&1(Sv)  1.017 1.001 1.012 1. 146 1.223 1.846 1.288 1.86% LIn
N Y] 0.0110 0.0121 0.0110 0.0120 0.0136 0.0122 0.0120 0.0150 0.014
ARLAI(6c)  1.819 1165 1,268 1.244 1147 1.269 1.005 1.019 1.163
0.25 v 0.0386 0.0399 6.0341 0.0368 0.0399 0.0340 0.0341 0.0356 0.0318
ARl 1.693 1.108 1.204 1.219 1.166 141 1.076 1.23% 1.916
EENSIN 49.79 49.53 49.85 49.75 49.53 49.85 8.1 49.62 49.87
4RLe 115.1 507.3 298.8 366.8 368.5 292.6 6.¢ 650.1 §51.1
Teyele $2.6132 52,7760 52.3606 52.5675 52.8262 52.4205 52.4179 52.6665 52.4161
ARLAI(B8) 1,015 1.002 1.007 1.275 1173 1.647 1.275 1.338 2.159
Ty 0.0217 0.0245 0.0222 0.0231 0.0268 0.0243 0.0232 0.0273 0.0256
ARLAN(8L)  2.162 1,336 1275 7 L4l 1.176 1.219 1.005 1.002 1.01%
050 It 0.0265 0.0273 0.0231 0.0243 0.0268 0.0230 0.0222 0.0245 0.0217
ARL: 1.589 1.169 1.141 1.458 1A 1.463 1.140 1.170 1.887
HENSIN 49.83 49.57 49.82 19.83 49.53 49.83 49.62 49,57 49.82
ARLe 1409 483.9 3148 281.5 363.0 286.0 HER) 189.8 1408
Terete 52.4811 52,7308 52.3768 52,4855 52,8305 52.4828 52,3114 §2.7311 52.4830
ARLAL(Gw)  1.164 1.019 1.003 1,270 1147 1.241 1.263 1.1 1.814
I 0.0318 0.0355 0.0342 0.0340 0.0399 0.0368 0.0341 0.0401 8.0386
ARLAI(6L)  4.178 1.685 1.287 1.843 1.223 1.143 1.102 1.001 1.011
0.7 It 0.0143 0.0148 0.0120 6.0121 0.0136 0.0120 0.0111 0.0127 6.0110
ARL1 1.918 1.238 1.014 1.413 1.166 1.1 1.223 1.106 1.690
BENSIN 49.87 49.62 49.76 49.85 19.53 9.7¢ 49.85 49.52 49.78
ARl 567.1 649.4 342.8 2949 368.5 3038 283.9 486.8 106.8
Teyeln 52.4154 52.6567 §2.4211 52.4185 52.8262 52.5687 52,3699 52,7865 52,6137
ARLAL(Su) 1,154 1.015 1,018 1.266 1.129 1.129 1.264 1.129 1.128
[\ 0.0423 0.0485 6.0485 0.0448 0.0530 0.0530 0.0449 0.0531 0.0531
ARLAI{OL)  7.67T3 {.164 L1684 3,389 3.3 .3 3.079 2.368 2.368
1.00 It 0 0 0 0 0 ] 0 0 0
ABLY 1.15¢ 1.015 1.015 1.266 1.129 1.129 1.264 1.129 1.129
HENSIN 49.98 19.51 49.57 49.87 9.53 49.53 49.87 48.52 49.52
ARLy 569.4 3877 3877 293.6 {11.8 §11.8 289.1 4141 4141
Teycte 52.2066 $2.549% 52.5495 §2.3507 52.8007 52.8007 52.3517 §2.804% 52,8045




OPTIMUM VALUES OF Tu,

T'u,

TABLE 4.13

ARLo,

ARL1,

86

hx¥ENSIN AND CYCLE TIME

FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH
SCALE PARAMETER 6=50

AND INITIAL POINT AS FOLLOWS:

SHAPE PARAMETER 5=2,

n=1, h=.1, du, duL, kuv AND ku:
de=4,de=2,ke=102, k1299 dv=de=2,kv=101,k1=99 de=2,de=4,ko=101, k1298
L1 1 b = Bt bv 8L
) (2) 2y (1) (2) ()
LU 1) LI 19 .UM 13 LUP .11 LU 1 .UN@ .} Ko K .U 1 ol
[ 100 1060 100 100 1000 | 1000 100 100 100 100 1000 | 1000 106 100 100 i8¢ 1000
ARLAL(O¥)  2.403 .40 2.630 3.388 3.388 3318 5.460 5.460 i
Iv 0 ] 0 [ L] 0 9 0 L
ARLAI(BL) 1,128 1.129 1.265 1.126 1.126 1.263 1.015 1.015 1,154
0.00 [t 0.0588 8.8588 0.0502 0.0588 0.0588 0.0502 0.0540 0.0540 8.0472
ARL1 1.129 1.128 1,265 1.126 1.126 1.263 1.415 1.015 1.1584
HEKSIN 43.86 43.86 .19 43.86 43.86 “.19 43.90 43.90 «.20
ARLs 410.5 4105 281.7 971 971 288.5 {016 4016 5119
Teycls 47,0798 47.6795 46,6511 47.0821 47,0821 46.6513 46.8396 46,8388 |  46.5083
ARLAY (8¢} 1.018 1.001 1.012 1143 1,226 1.848 1.289 1.884 191
] 0.0123 0.6141 0.0123 0.0134 0.0150 0.0135 00134 0.0165 0.0158
ARLAL(Sc) 1914 1.14 1.265 1.24% 1.150 1.267 1.003 1.018 1.160
N 0.2 TL 0.0429 .04 0.0360 0.0410 0.0441 0.0380 0.0381 0.0395 0.0355
ARl 1.690 1.108 1.202 1.218 1.169 1.412 1.075 1.235 1.918
HENSIR .11 43.86 .11 .07 43.81 (TR .09 43.95 419
ABLs 708.3 504.8 292.0 373.9 382.3 288.9 ¢ 647.6 546.7
Terele 46,8994 47,0643 46.6606 46.8630 {70966 46.7184 46.7126 46.9421 {6.7088
ARLA1(G¥)  1.016 1.002 1.007 1.276 1.171 1.648 1.268 1.334 2.1689
I 0.0243 0.0212 0.0248 0.0287 0.0297 0.0270 0.0258 0.0301 0.0284
ARLAL(SL)  2.178 1.338 1.210 1.648 1.171 1,216 1.006 1.002 1.018
0.50 [u 0.0284 6.0301 0.0258 0.0210 0.0287 0.0257 0.0249 0.0272 0.0243
ARL1 1.597 1110 113§ ] 1462 1171 1.462 1.3 1.168 1.§92
HENSIN Wi 43.90 . .15 43.87 .15 Wl 43.90 44,15
ARLo 1503 489.4 302.8 291.2 350.4 291.2 299.3 {78.2 1446
Teycte 46.7764 47.0076 46.6768 46.7758 47,1060 1  46.7758 46.6781 47,0092 46.7740
ARLA1(6¥)  1.161 1.018 | 1.003 1.212 L1 1.245 1.266 1.14 1,922
] 0.0355 40396 0.0381 0.0379 0.0442 0.0410 0.0380 0.0444 0.0429
ARLAI(6c)  4.190 1.873 1.287 2.001 1.225 1143 1.009 1.001 1.017
1.5 In 0.0158 0.0169 0.0134 6.0137 0.0151 0.0134 0.0123 0.0141 0.0123
ARDL 1.918 1.231 1.074 1484 1.164 1.219 1.202 1.106 1.695
HENSIN 44.19 43.95 44.09 W11 .86 .1 401 (VY 4.8 .1
ARl §48.1 615.8 KT 302.3 360.0 313.9 294.0 83,4 121.2
Teyele 46.7088 46.9445 46.7164 46.7246 47.1058 46.8630 46.6600 47,0670 46.8993
ARLA1(69}  1.156 1.014 1.014 1.263 1.126 1.126 1.263 1.128 1.128
Iv 0.0473 0.0540 0.0540 0.0502 0.0589 0.0588 0.0502 0.0587 0.0887
ARLAI(6L)  7.006 5.39§ 5.399 3.239 3.21 kAL 2.875 2.340 2.340
1.0 T 0 0 0 0 0 0 0 0 0
ARLL 1.156 1.0 1.0l 1.263 1.126 1.126 1.263 1.128 1.128
HENSIN 44.20 43.89 43.89 4419 43.85 43.85 [1¢] 43.86 43.86
ARLs 583.1 U 15 267.8 397.9 397.9 288.7 406.2 106.2
Teyeln 46.5090 46.8431 46.6431 46.6515 47.0832 47,0832 46.6513 47,0787 47,0787
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From Table 4.10 to 4.12, again 8 decreases from 100 to
50 while holding constant the shape parameter S = 1. It can
be seen that in all cases: (a) the total proportion of time
the process is out of control ([v + T'L) increases as ©
decreases, and (b) the cycle time (Tcycle) decreases to
about half as 8 decreases by a 2:1 ratio. Likewise, in
Tables 4.11 and 4.13 for 5 = 2, observations (a) and (b)
also hold.

Figures 4.4, 4.5 and 4.6 show the overall effect of a,
5 and M, respectively, on the average loss-cost. Again the
average loss-cost increases as 0 decreases from 100 to 50.
Furthermore, from these figures, it can be seen that the
scale parameter has more effect on the variation in average
lose-cost than does the shape parameter. Also, Tables 4.10,
4.11, 4.12 and 4.13 show that the scale parameter has more

effect on the variation in cycle time than does the shape
parameter.
Effect of OShift Parameter. §

The shift parameter &6 specifies the degree of change in
the process mean, 6vo or 6Lo, which a Cusum chart is
designed to detect. Table 4.6 is chosen as representative
for investigating its effect on n, h and loss-cost. Table
4.14 is a summary of selected data from Table 4.6 where
Mu > ML. It can be seen that in all cases subgroup sizes

and loss-coste for 8u = 8L are no smaller than those for

Su > 6. Likewise, the optimum time intervals between
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subgroups for 6u = 6L is no smaller than those for 6u > 8L,
with one exception which ies probably due to the imperfection
of the search algorithm. In other words, as the shift to be
detected increases, small subgroup sizes should be taken

more often, and less expense is expected.

TABLE 4.14

VALUES OF SUBGROUP SIZE, TIME INTERVAL BETWEEN SUBGROUPS,
DECISION INTERVALS AND LOSS-COST FOR Mu > ML

fu > oL fo = 0L
(4 (2) (2) (2)
a n h dv di Cost n b ds di Cost

0.00 £ 130 61125 0.4270  3.9556 ¢ 1.31 3.587% 0.4126 3.95%6
0.25 2 0.59 0.4893 1.2623  9.5369 £ 0,71 0.4673 0.6343 10.1529
0.50 2 0.48 0.4833 1.4695 14.6227 £ 0.5 0.4263 0.7591 15.8229
0.7% 2 0.42 0.467% 1.7287 19.6238 3 0.40 0.6008 1.2260 21.2944
1.00 1033 0.9420 6.4357 24.4790 3 0.36 0.5796 2.2578 26.6099

Effect of Initial Point f
2earch Procedure

Results which are listed in Tables 4.15-4.18 are
obtained by the optimization methods described in Chapter
ITI with a significantly different initial point from that
discussed in the earlier presentation on asymmetric design.

It is noted that results in Table 4.15 are very close to
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S5=1,
SCALE PARAMETER 6=100 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER duv AND LOWER dwi,

TIME INTERVAL BETWEEN SUBGROUFPS h=3.0,

DEAD BAND-UPPER kv AND LOWER ki,

SUBGROUP SIZE n=10:

dv=0.4,de=0.2,kv=102,ke=99

dv=de=0.2,ke=101,ke=99

dv=0.2,du=0.4,kv=101,ke-98

5y & v = Bt by ¢ 61
() () (2) (2) (2) (4
LU 14 L1 JEN 1 U@ 3 LU 1 Ny - L LU |3 LUBN. 1) .. 13 Kv ¢ Mt
[l 1000 100 1000 100 100 1060 | 1000 100 106 100 100 1000 | 1000 100 100 100 100 1000
b 1.31 1.31 0.36 1.3 1.3 0.36 1.21 1.2 0.33
dv 1.9345 1.93¢45 2.1003 1.7515 1.7515 2.5293 2.7384 2.7384 6.3187
du 0.4162 0.4162 0.5858 0.4162 0.4162 0.5858 0.4418 0.4418 0.9570
0.00 { [} 3 { { 3 2 2 1
ky 102.0187 | 102.0187 | 102.0237 101.0187 101.0187 { 101.0237 101.1000 | 101.1000 { 101.0193
[ {8 98,9968 98.9966 99.0041 96,9966 98.9966 99,0041 98.0000 98.0000 98,0148
Cost 3.9587 3.9561 26.6099 3.9587 3.9557 26,6099 3.4838 3.4838 24,4780
1 0.59 1.3 8.42 0.7 1.39 0.40 0.13 1.23 0.42
dv 0.5246 0.3641 0.5648 0.4708 0.4603 1.2192 0.4430 0.1788 1.7568
d 1.2124 0.4462 0.5919 0.6339 0.3521 0.5887 0.4320 0.3620 0.482¢4
§.25 1 2 4 3 { § 3 { 3 2
{) 101.9673 | 102.0000 | 102.0204 100.9816 | 101.0000 | 100.9821 101.0042 | 101.0084 | 100.9818
14 99.0152 99,0000 99.0052 99.0185 99.0000 96.9979 98.0527 98.0187 98,0253
Cost 9.5369 3.9138 21,2161 10.1529 4.0023 21,2943 9.9925 3.7559 19.6237
h 0.48 1.19 0.49 0.5 1.40 0.55 0.49 {.19 0.48
d 0.4797 0.4834 0.5137 0.4399 0.3893 0.7525 0.6025 0.69%9 1.4481
di 14745 9.6933 0.6007 0.7600 0.3895 0.4345 0.5355 0.4522 0.5040
0.50 n 2 3 3 { § 4 3 3 2
ke 101.9916 | 101.9052 | 102.0205 100.9898 | 101.0023 | 100.8941 100.9949 | 100.9922 | 101.0064
ke 99.0043 99.0021 99.0045 99.0179 98.9988 99.0056 98.0223 98.0946 98.0100
Cost  14.6227 3.8620 15.7081 15.8230 4.0088 15.8229 15,7081 3.8619 14.6229
) 0.42 1.23 0.13 0.41 1.39 0.71 8.41 1.31 0.59
dv 0.47119 0.3100 0.4909 0.5905 0.3521 0.6394 0.5928 §.4581 1.2600
d 1.7463 0.7870 84429 1.1931 0.4603 0.4659 0.6131 0.3841 0.5533
0.7 o 2 3 ¢ 3 5 4 3 ] 2
kv 101.9687 | 101.9935 |' 101.9436 101.0013 | 101.0000 { 100.9750 100.9944 § 100.9925 | 100.9903
ke 99.0114 | 98,9970 99.0010 99.0028 99.0000 99.0121 98.0056 98.0300 98.0475
Cost  18.6240 3.7560 9.9925 21.2943 4.0023 10.1529 21.2160 3.9138 9.5368
b 0.33 1.20 1.20 0.36 1.3 1.3 0.36 1.3 1.3
dv 0.9451 0.4399 0.4399 0.5825 0.4109. 0.4109 0.5825 0.4109 0.4109
d 6.3994 2.7864 2.7864 2.6056 1.7284 1.7284 21775 .91 1.911¢
1.90 n 1 2 2 3 { { 3 { {
{] 102.0000 { 102.0218 { 102.0219 101.0000 101.0040 | 101.0040 101.0000 | 101.0040 101.0040
ki 99,0000 98,9167 98.9167 99.0000 99.0136 99.0136 98.0000 98.0136 98.0136
Cost  24.4792 3.4839 3.4839 26.6099 3.9556 3.9556 26.6099 3.9556 3.9556
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=2,
SCALE PARAMETER 6=100 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dv AND LOWER dir,

TIME INTERVAL BETWEEN SUBGROUPS h=3.0,

DEAD BAND-UPPER ku AND LOWER kv,

SUBGROUP SIZE n=10:

dv=0.4,d0=0.2,kv=102,k1=99

dv=di=0.2,kv=101,k1=99

dv=0.2,d0=0.4,ke=101, k(=98

6v > bi [ L I 1 6v < 5L
(4 (@ (2) (2) {2} )
LU 11 LU 1 LU 13 LU 1 .Ul 1 LI 1 Ko N By = M By ¢ Kt
t 1000 100 100 100 100 1000 | 1080 100 100 100 100 1000 | 1000 100 100 100 100 1000
h 1.2 1.2 0.3 1.24 1.2 0.4 1.1 1.14 0.31
dv 2.1988 2.1988 27718 1.9988 1.9988 2.5718 2.738¢ 2.7384 5.6501
d 0.4232 0.4232 0.5620 0.4232 0.4232 0.5820 0.4442 8.4442 0.9471
0.00 o { { 3 { { 3 2 ? 1
ke 102.0596 | 102.0596 | 102.0257 101.0596 | 101.0596 | 10f.0257 101.1000 | 101.1000 | 101.1000
ke 99.0096 49.0096 99,0004 99.0096 99.0096 99,0004 98.0000 98,0000 96.0000
Cost 4.3459 4.3459 29.5913 43459 4.3459 29.5913 38411 3.8411 21.2194
h 0.56 1.26 0.39 0.67 1.3 0.39 0.61 .1 0.40
de 0.5174 0.4341 0.6336 0.4637 0.4700 1.1833 0.6150 0.8107 | 1.7419
de 1.2488 0.4458 0.5887 0.6323 0.3578 8.5966 0.4394 0.4289 0.4639
0.25 a 2 { 3 { 5 3 3 3 2
ky 102.0000 | 102.0000 | 102.0211 100.9925 | 100.9887 | 101.0145 101.0000 | 100.9809 | 101.0015
ki 99,0000 99.0000 98.9989 99,0122 99.006¢ 99.0071 98.0000 98.1058 98.0062
Cost  10.5963 4.3018 23.5658 11,2288 4.3981 23.6468 11.0551 41322 21,8538
b 0.46 1.13 0.47 0.52 1.32 .52 0.46 1.13 0.46
dv 0.4583 0.3566 0.5976 0.4290 0.4112 0.7456 0.5968 0.6793 .an
di 14500 0.6836 0.5964 0.745% 0.4013 0.4290 0.6207 0.3950 0.4632
0.50 2 2 3 3 { ] { 3 3 H
] 102.0095 | 102.0004 | 101.9914 101.0000 { 100.9612 | 101.0000 101.0000 | 101.0018 | 101.01%4
ko $8.9946 98.9986 98,9977 99.0000 99.9956 99.0000 98.1000 93.0026 97.9943
Cost  16.2490 £.2040 17,4181 17,5851 44054 17,5551 17,4189 L2241 16.2491
] 0.40 1.16 0.61 0.38 1.32 0.66 0.39 1.2 0.5
dr 9.4610 0.3847 0.4394 0.5813 0.3509 0.6176 0.5894 0.4501 1.2563
d 17140 0.8196 0.6150 1.1882 0.4665 0.4526 0.6334 0.3591 0.5280
0.75 1 2 3 3 3 H { 3 [ 2
{] 101.9933 | 101.9642 {' 102.0000 101.0003 | 101.0000 { 100.9938 100.9976 |  100.9995 | 100.9935
ke 98,9991 99.0239 | - 99.0000 98.9964 99,0000 99.0019 98.0210 98.0569 98.0233
Cost  21.3534 41320 11,0881 23,6467 4.3982 11.2281 23.5656 4.3017 10.5561
h 0.31 1.1§ 1.15 0.34 1.4 1.4 0.34 .U LU
dv 0.9648 0.4471 0.4471 0.5824 0.4255. 0.4255 0.5824 0.425% 0.428%
di 5.9914 2.7648 2.7648 2.6461 2.1049 2.1049 2.8461 2.3048 2.3048
1.00 » 1 2 2 3 { { 3 { {
kv 101.9768 | 102.0213 | 102.0213 101.0000 | 100.9893 | 100.9833 101.0000 | 100.9893 | 100.9893
ke §8.9621 96.9090 98.9080 99.0000 99.0323 99.0323 98.0000 98.0323 98.0323
Cost  27.2751 3.8413 3.8413 29.5913 4.3499 4.3459 29.5913 4,359 4.3459
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OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S-=1,
SCALE PARAMETER 6=50 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER dv AND LOWER di,

TIME INTERVAL BETWEEN SUBGROUPS h=3.0,

DEAD BAND-UPPER ku AND LOWER ki,

SUBGROUP SIZE n=10:

de=0.4,4029.2,k9=102,k1=99

do=di=0.2,ke=101,k0=99

de=0.2,d1:0. 4, k=101, k198

§o 2 Bt vz bt be ¢ 8t
4 (2 (2} () (2} (4)
B i vz K L 13 LUBR 1} LI JEN 13 B Ny LUBN 1) .U 12 [ LK i3
« 1000 100 100 100 100 1000 | 1000 100 100 100 100 1000 | 1000 100 100 100 100 1000
h 0.96 0.96 0.26 0.96 0.96 0.26 0.87 0.87 0.2
dv 2.4522 2.4522 2.0882 2.2522 2.2522 2.1213 3154 1544 5.9036
de 0.4143 844 0.5794 0.4143 0.4143 0.5877 0.4568 0.4568 0.9262
0.00 2 { { 3 [ { 3 2 2 1
1{] 102.0194 102.0194 | 102.0000 101.0184 | 101.0194 | 101.0558 101.0000 | 191.0000 101.0362
141 99.0034 §9.003¢ 99.0000 99.0034 99.0034 99.0086 98.0000 98.0000 97,9926
Cost 6.8420 6.8420 49,0533 §.8420 6.8420 49,0533 6.1450 6.1450 45.6028
h 0.4 0.95 0.30 0.51 0.93 0.28 0.47 0.78 0.26
ds 0.5032 0.4023 0.6535 0.4428 0.6013 1.2193 0.6295 1.2098 3.4716
du 1.2614 0.4504 0.5962 0.6189 0.4681 0.6155 0.6064 0.5071 0.9731
0.25 o 2 { 3 { { 3 3 2 {
k 101.9977 1 102.0000 { 101.9934 101.004¢ | 100.9890 | 101.0033 100.9620 | 101.0000 | 101.0056
kt 99,0086 §5.0000 99.0121 99.0018 99,0150 99.0232 98.1746 96.0000 96.0048
Cost  17.1569 6.7852 38.8729 18.1933 6.9187 38.9641 17.9080 6.5421 36,3447
h 0.35 0.67 0.36 .35 0.92 0.3% .36 0.87 0.3%
dv 0.5031 0.4963 0.4641 0.5974 0.5109 1.0264 0.5860 0.7254 1.4932
de 1.4847 §.7158 0.5858 1.0318 0.5245 0.5979 0.5719 0.4645 0.4876
0.50 n 2 3 3 3 { 3 3 3 H
() 101.9631 | 101.9154 | 102.0585 100.9993 | 100.9950 | 101.0000 1010014 | 100.9613 | 100.9926
ke 98.9981 99.030¢ 96.9970 99.0055 99.0188 99.0000 98.0101 98.0720 98.0232
Cost  26.8546 6.6890 28.5328 28.7305 6.9337 28,7304 28.5328 6.6891 26.8545
1 .26 0.77 0.4 0.30 . 0.93 0.5t 0.29 .95 0.43
dv 0.9595 0.5207 0.7187 0.5760 0.4678 0.6169 0.5878 0.4504 1.2665
di 3.4828 1.2309 0.6348 1.3903 0.5960 0.4566 0.7267 0.4023 0.5131
0.75 n 1 ? 3 k] { ] 3 4 2
1{ 102.0072 { 102.0031 | 101.7546 101.0055 | 100.9910 | 100.9982 101.0000 | 101.0000 | 100.9897
ke 99.0138 99.0149 99.0117 99.0949 99.0064 99.0105 98.1000 98.1000 98,0130
Cost  36.3444 6.5420 17,9080 38.9648 6.9168 16.1933 38.8735 6.7851 17,1569
h 0.2¢ 0.87 0.87 0.26 0.96 0.96 0.26 0.96 0.96
ds 0.9314 ¢.4568 0.4568 0.5842 0.4154. 0.4154 0.5794 0.4154 0.4154
di 6.229¢ EIR Y TN I S LT 2.1960 2.2536 2.253 2.0882 2.4536 2.4536
1.00 2 1 2 2 3 [} { 3 [} {
ke 102.0000 | 162.0000 | 102.0000 100.9933 100.9955 | 100.985%5 101.0000 | 100.9955 10,9985
ki 99.0000 99.0000 99.0000 98.9642 99.0207 99.0207 98.0000 98.0207 98.0207
Cost  45.6028 6.1480 6.1450 49,0534 6.8420 6.8420 49,0533 6.8420 6.8420
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TABLE 4.18

OPTIMUM DECISION VARIABLES AND LOSS5-COSTS FOR THE WEIBULL
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER 5=2,
SCALE PARAMETER 6=50 AND INITIAL POINT AS FOLLOWS:

DECISION INTERVAL-UPPER duv AND LOWER du,
TIME INTERVAL BETWEEN SUBGROUPS h=3.0,
DEAD BAND-UPPER ku AND LOWER kL,
SUBGROUP SIZE n=10:

dv=0.4,de=0.2,ko=102,k1-99 dv=de=0.2,ke=101,k0-99 dv=0.2,d1=0.4,ke=101,k1=98
[ 2 v = bt by ¢ L
4) (2) (2) (2) (2) (4)
LU 18 Nv = Mo My ¢ NL .U 12 M- N . UKE 1 B> K Hv = N v < Mo
[l 1000 100 100 100 100 1000 | 1000 100 100 100 100 1000 | 1000 100 100 100 100 1000
|} 0.91 0.91 0.25 .91 0.91 0.28 0.82 0.82 0.23
dv 2.0541 2.0841 2.6609 1.9945 1.9945 2.9278 2.6262 2.6262 £.8534
d 0.4222 0.4222 0.5800 0.4222 | . 0.4222 | 0.5821 0.4410 0.4410 0.9429
0.00 o { 3 { { 3 2 2 1

{
kv 102.0207 | 102.0207 | 102.057% 101.0207 | 101.0207 | 101.0573 101.1400 | 101.1400 | 101.3826
kL 99.0139 99,0139 99.0047 89.0139 99.0139 99.0053 97.9971 §7.9971 98.0110

Cost 7.5323 1.8303 54.5688 1.5323 7.5323 94,5689 6.7871 6.7871 50.8163

h 0.41 0.91 | 0.28 0.48 0.88 0.28 0.4 0.712 0.2

dv 0.5469 0.581% 1.2824 0.4441 0.6035 1.2281 0.6168 1.2128 3.4461

dt 1.2621 0.4422 0.5869 0.6180 0.4592 0.5843 0.4947 0.5369 0.9703
0.25 n 2 4 3 { { 3 3 2 1

kv 101.9621 | 101.9251 | 101.4416 101.0000 | 100.9928 | 100.9972 100.9946 | 101.0000 | 101.0027
kL 99.0066 98,9954 §9.0059 §9.0000 99.0076 99.0040 98.0604 98.0000 98.0085
Cost  19.0129 1.4728 43,2039 20.1475 1.6133 §3.2042 19,8328 1.2064 40.4336

b 0.33 0.82 0.34 0.33 0.68 0.33 0.33 0.82 0.33

dv 0.4838 0.4306 0.9276 0.5966 0.5213 1.0517 0.5798 0.6728 14748

du 1.5016 0.6799 0.5883 1.0334 0.5050 0.5961 0.6876 0.3114 0.4930
0.50 » 2 3 3 i { 3 3 3 2

kv 101.9610 | 101.9236 | 101.5954 101.0000 | 100.9769 | 100.9852 101.0091 | 101.0109 | 101.0060
{3 98.9999 |  96.9990 |  99.0013 99.0000 | 99.0038 | 98.9982 98.1610 |  98.0237 § 98.0311
Cost  29.8558 1.3656 31.6688 Len 1.6291 31,8718 31.6690 7.3687 | 29.8587

] 0.2 0.13 Ly 02 0.89 0.48 0.28 0.91 0.41

dv 0.9614 0.5388 0.5394 0.6587 0.4561 0.6180 0.5848 0.4397 1.2485

13 .41 1.21% 0.6109 14484 0.5950 0.4441 0.9697 0.4468 0.5316
.75 n 1 2 3 3 { { 3 4 2

kv 102.0000 | 101.9676 f 101.8961 100.9404 { 100.9953 | 101.0000 100.9990 | 101.0085 | 100.9991
143 99.0000 99.0117 99.0010 99.1154 99.0094 99.0000 98.3130 98.0571 98.0350
Cost  40.4337 1.2062 19.832% 43,3009 1.6134 20,1475 43.2034 1.4113 19.0129

h 0.3 0.82 0.82 0.2 0.90 0.90 0.2% 0.90 0.90

dv 0.9518 0.4317 0.811 0.5117 0.4201 0.4201 0.5803 0.4201 0.4201

du 5.0082 3.0651 3.0581 3.0306 2.0030- 2.0030 2.7624 2.0621 2.0621
1.00 o 1 2 2 3 4 4 3 { {

ky 101.9822 | 102.0093 | 102.0083 100.9985 | 100.9913 | 100.9913 100.9983 | 100.9913 | 100.9913
ko 98.7450 99.0012 99.00112 99.0211 99.0292 99.0292 98.0257 98.0292 98.0292
Cost  50.8163 6.7870 6.7870 54.5688 7.5323 1.5323 54,5689 1.5323 1.5323
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those in Table 4.6. A similar statement applies to Tables
4.16 and 4.7, Tables 4.17 and 4.8 and Tables 4.18 and 4.9.
This lends confidence that the asymmetric economically-based
design and search procedure are valid. As mentioned
previously, due to the flatness of some loss-cost functions,
there are several combinations of time interval between
subgroups (h), decision intervals (du and dr), and dead band
values (ku and kL) which yield close to the same loss-cost.
Loss-costs listed in Tables 4.6 to 4.9 and 4.15 to 4.18
are outcomes when the process is the steady state. A simu-
lation technique might be applied to obtain the variation of
the loss-cost over a particular duration during which the
process is operated. Performing this analysis is beyond the

scope of this research.
Summary

The economically-based asymmetric Cusum model and the
optimization procedure are analyzed and validated using two
approaches: (1) evaluate symmetric Cusum examples with known
solutions using the asymmetric model and compare solutions
with Goel s data sets, (2) perform a 3251 factorial design
using asymmetric examples and the asymmetric model to obtain
near-optimal results, and (3) again perform the optimization

of (2) using different initial points for the search.



CHAPTER V
USING THE INTERACTIVE COMPUTER PROGRAM
Introduction

This chapter demonstrates the use of an interactive
computer program which allows utilization of the design and
evaluation methodology presented in previous chapters. The
actual FORTRAN program is documented and appears in the
Appendix. It has been performed on an IBM 3081D using
various time share terminals and an IBM PC.

The user is prompted for all necessary inputs by the
computer. The entire program is interactive and values of
all the parameters are presented to the user for verifi-
cation. Only when a set of inputs has been confirmed does
the program continue,

When several values are to be entered, a space or a
comma is used to separate them. Integer numbers should be
entered without decimal points. If a decimal point is
included, an error message is issued and the user is
prompted to reenter values. The input mechanism is vir-
tually self-explanatory, as long as the user understands the
terme being input and their mathematically feasible range.

In the remainder of this chapter, actual interactive

outputs are interspersed with commente and explanations.
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All computer outputs illustrated are generated automatically
by the computer except for the terminal inputs which follow
a question mark (7).

The interactive computer program provides the capa-
bility to do two activities: (1) design an economically-
based asymmetric Cusum control chart and (2) evaluate a
user~defined Cusum‘control chart. The program begins by
prompting option menu (M.1l). The selection of "1" indicates
the design of an economically-based asymmetric Cusum control

chart is to be performed.

f383¢2tceetoctticctiset!

X HAIN MERU ¥
33378304483233883 2888381

WHAT WOULD YOO LIEE T0 DO ? (M.1)
1. DESIGN AN ECONOMICALLY-BASED COSOM CONTROL CHART
2. EVALUATE & CUOS0X CONTROL CHART
3. EIIT.
ENTER THE OPTION NOMBER PLEASE!
9

1

Design of an Economically-Based

Asymmetric Cusum Control Chart

After the economically-based chart design is chosen,
input of the following values are sequentially prompted by
the program:

(1) The process parameters,

(2) The cost and time factors,

(3) The initial point for the search procedure,
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(4) The criteria and step sizes for optimization of n,

h, dv and dr,
(5) The criteria and step sizes for optimization of h,
du and di,
(6) The criteria and step sizes for optimization of h,
dv, di, kv and ki,
(7) The etep size for varing incrementally the values
of dv and dr,
(8) The step size for varing incrementally the values
of kv and kL.
The program prints these input data each time for verifica-
tion by the user. Only after the user confirms the validity

of the input does the program continue.

PLEAGE ENTER PROCESS PARAMETERS, INPOT VALUES OF:
SHAPE, SCALE, SIGMA, ALPHA, TARGET, DELTA(UP), DELTA(LOW)

9

é.O,100.0,1.0,0.25,100.0,2.0.4.0

THE FOLLOWING VALUES HAVE BEEN INPUTTED:
SHAPE - 2.00  SCALE - 100.00  SIGMA = 1.00
ALPEA = 0.25 TARGET = 100.00
DELTA(OP)= 2.00  DELTA(LON)= 4.00

ARE THEGE DATA RIGHT?
PLEASE ENTER 1 FOR YES, 2 FOR KO.

PLEASE ENTER COST AND TIME FACTORS, INPOT VALUES OF:
B,C, D, E T, N MU, ML

9
0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0

THE FOLLOWING VALUES HAVE BEEN INPOTTED:
B= 0.50 = 0.10 b= 2.00 E=- 0.05
T= 50.00 K= 25.00 0= 100.00 NL- 100.00



ARE THESK DATA RIGHT?
PLERSE ENTER 1 FOR YES, 2 FOR NO.

THE FOLLOWING INITIAL POIRT IS SOGGESTED:
SUBGROGP SIZE N = 10

SAMPLING TNTERVAL

DECISION IKTERVAL(UF) DU= 0.2000 DECISION INTERVAL(LOW) Db-=

DEAD BARD VALUE(UP) K0 = 131.0000  DEAD BAKD VALUE(LOW) KL

DO Y00 ACCEPT THIS POINT?
PLEASK ENTER 1 FOR YES, 2 FOR KO.

THE POLLOWING VALUES ARE SUGGESTED FOR OPTIMIZATION:
TERMINATION LINIT=  0.100D-03
NAX. EVALUATIONS - 200
STEP FOR K - 1.000 STEP FOR 8 = 0.200
STEP FOR DU- 0.200 S$TEP FOR DL- 0.200

D0 Y00 ACCEPT THIS SUGGESTION?
PLEASE ENTER 1 FOR YES, 2 FOR XO.

3.00
0.4600
98.0000

100

The Nelder and Mead direct search method is performed

after the criteria and step sizes for n, h, dv and drL have

been verified. The optimal point valuesg and their associ-

ated hourly loss-cost are printed.

xx OPTINIZATION IS PROCESSING ¥

ESEEEESTT3R3001003001404308tsRtRsestR sttt ity
AFTER OPTINIZATION THE DESIGN IS
F= 2.46  DU= 1.0761  K0-101.0000
B= 1.02  DL= 0.5247 KL= 98.0000

L055-C05T=  4.13%%
3T ER280230800Ree0ttteeeetitestidsssattsss)

Thereafter, the subgroup size is automatically
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truncated to an integer and the intermediate values of n,
du, du, ku and ki are used. The next phase of the optimi-
zation is then run after the criteria and step sizes for h,
du and diL have been inputted and verified. The search for
an integer n, the optimal decision variable values and their

associated hourly loss-cost are then printed.

THE FOLLOWING VALOES ARE SOGGESTED:
TERNIRATION LINIT-  0.100D-0%
AL, EVALDATIONS = 300
OTEP FOR H = 0.150 STEP FOR DO= 0.150 STEP FOR DL= 0.150

DO 100 ACCEPT THIS SUGGESTION?
PLEASE ENTER 1 FOR TES, 2 FOR NO.

tax OPTINIZATION ITERATION *xx
X i D0 DL 1 IL L0S5-C05T
2. 101 1.1943 0.5077 101.0000 98.0000 4. 1476
1. 0.75 2.4269 1.1677 101.0000 98.0000 4.4586
3. 119 0.7889 0.4371 101.0000 98.0000 4.1332
£ 1.27 0.563% 0.3783 101.0000 98.0000 £.1879
ftitetitetotatitiititittitostatetititetttotitet]
AFTER OPTINIZATIOR THE DESIGN IS
N= 3.00  DO= 0.7889 K0-101.0000

i= 118  Db= 0.4371 KL= 98.0000

L055-C0ST-  4.1332
e1e8tiEst80s0tstRsttisititttitstinettisetis

The direct search is again applied, automatically using
a fixed subgroup size n and the new intermediate values of

h, du, dn, kv and kit as an initial point for another



iteration. Again, new criteria and step sizes must be

inputted and verified.

THE FOLLOWING VALOES ARE SUGGESTED:
TERMINATION LINIT=  0.100D-06
AX. EVALUATIONS = 300
OTEP FOR £ = 0.100
STEP FOR DU= 0.100 STEP FOR DL= 0.100
STEP FOR KU= 0.100  STEP FOR KL= 0.100

DO T0U ACCEPT THIS SOGGESTION?
PLEASE ENTER 1 FOR YES, 2 FOR NO.

?

1

S22 323 3828334 S eEg et gt eetitersesvs el
AFTER OPTINIZATION THE DESIGN IS
N= 3.00  DO= 0.8027  K0=100.9889
f= 113 Di- 0.4029 KL= 98.1078

L0SS-COST=  4.1323
RELERRRXRRXXIRAREXELARARRRARAXLLLARLIALLILLLY
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Finally, incrementally varying the value of du and dL

as well as kv and kL brings about the optimal or near-

optimal design of an economically-based asymmetric Cusum

control scheme.

STEP=  0.0020 IS SUGGESTED FOR INCRENENTALLY VARYING DU AND DL.
DO TOU ACCEPT IT?  PLEASE ENTER 1 FOR YES, 2 FOR NO.

!
1

fiisteteteitetateetotetceetttetetiniioststistes
AFTER VARYING DU AND DL THE DESIGN IS
= U= 0.8107 kU= 100.9889
- 1.13 DL= 0.4289 KL= 98.1078

L0G5-CosT-  4.1322
3281328838020 88tRSE888 TRt teesiscessisiesy
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STEP=  0.0020 IS SUGGESTED FOR INCREMENTALLY VARYING KU AND L.

DO YOU ACCEPT IT?  PLEASE ENTER 1 FOR YES, 2 FOR MO,

?

!

2228 I0828SREE 28 REEE ettt eeeLcestifen
AFTER VARYING KU AND KL THE DESIGN IS
LERE DO= 0.8167 KO- 100.9909
= 1.13 D= 0.4289 KL= 98.1058

L05S-C05T=  4.1322
2222222 CE S8 RRAS SRS ITTTLEITLTELLLLCHITLLS

LISSRIESSR2 888328t ERtiesitesstestinstisstseesssocssestonticsitectsy
THE ECONOMICALLY-BASED COSON CEART IS EVALUATED AS:

SUBGROOP SIZE N = L SANPLING INTERVAL H = L.13 HRS

DECISION INTERVAL(UP) DU=  0.8107 DECISION INTERVAL(LOW) DL= 0.4289-

DEAD BARD VALUE(OP) KU = 100.9909 DEAD BAND VALUE(LOW) KL = 98.1058
GANNA(0)= 0.0088 ARL1: 111 ENSIN - = T4.09
GAMKA(L)= 0.0223 ARLO=  §98.63 CYCLE TINE= 81.46 HRS
GANNA(0)= 0.9690 THE HOURLY LOSS-COST IS §  4.1322

LLLERSSESSSRS SRS SR80 082 SEeCte teeeieestoeaticeeticeititetivtesesinesy

Evaluation of A Cusum Control Chart

A selection of “2" from menu (M.1l) leads to the

evaluation of a specified Cusum control chart. The inter-

active procedure and the input data follow the first three
steps in designing an economically-based asymmetric Cusum

control chart. The format of the resulting listing is very

similar to that of economically-based design.

prittettttetitostesstiins

¥ NAIN MENU t
KEERXREXKRRRRXRRARRRARLL

NHAT WOOLD 70U LIEE T0 DO ?
1. DESIGN AN ECONOMICALLY-BASED COSOM CONTROL CHARY

2. EVALUATE A COSUM CONTROL CHAR?
3. EIIT.

ENTER THE OPTION NUMBER PLEASK!
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PLEASE ENTER PROCESS PARAMETERS, INPUT VALUES OF:
OHAPE, SCALE, SIGMA, ALPHA, TARGET, DELTA(UP), DELTA(LON)

9

2.0,100.0,1.0,0.25,100.0,100.0,2.0

THE FOLLOWING VALUES HAVE BEEN INPUTTED:
SHAPE = 2.00 SCALE = 160.00 SlGMa = 1.00
ALPEA = 0.25 TARGET = 100.00
DELTA(OP)=100.00 DELTA(LOW)=  2.00

ARE THESE DATA RIGHT?
PLEASE ENTER 1 FOR TES, 2 FOR NO.

PLEASE ENTER PROCESS PARAETERS, INPUT VALOUES OF:
SHAPE, SCALE, SIGNA, ALPHA, TARGET, DELTA(UP), DELTA(LOW)

9

1.0,100.0,1.0,0.25,100.0,2.0,2.0

THE FOLLONING VALUES HAVE BEEN INPUTTED:
OHAPE = 1.00  SCALE = 100.00 oIGNA = 1.00
ALPRA = 0.25 TARGET = 100.00
DELTA(OP)= 2.00 DELTA(LOR)=  2.00

ARE THEGE DATA RIGHT?
PLEASE ENTER 1 FOR YES, 2 FOR NO.

PLEASE ENTER COST AND TIME FACTORS, INPOT VALOES OF: -
B, C, D, E, T, N O, ML

9
0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0

THE FOLLOWING VALOES HAVE BEEN INPOTTED:
B-= 050 €= 010 D= 2.00 E= 0.05
= §0.00 W= 25.00  MO- 100.00 ML= 100.00

ARE THESE DATA RIGHT?
PLEASE ENTER 1 FOR YES, 2 FOR KO,

PLEASE ENTER IRITIAL POINT, INPOT VALUES OF:
¥, §, DU, DL, KU, KL

9
9,1.40,0.4821,0.3587,100.9844,99.0012
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THE BOLLOWING VALUES HAVE BEEN INPOTTED:
o0BGROOP SIZE K =) SAMPLING INTERVAL B = L4

DECISION IKTERVAL(UP) DU=  0.4821 DECISION INTERYAL(LOW) DL=  0.3587
DEAD BAND VALOE(UP) K0 = 100.9844  DEAD BARD VALUE(LOW) KL = 99.0012

ARE THESE DATA RIGHT?
PLEASE ENTER 1 FOR YES, 2 FOR NO.

!

1

20303233000 020380¢0¢0¢00003308¢00esRttetceticticcttitesettteoctettesee
THE COSON CHART IS EVALUATED AS:
SUBGROUP SIZE K = b OAMPLING INTERVAL A = 1.40 HRS
DECISION INTERVAL(UP) DU=  0.4821 DECISION INTERVAL(LOW) DL= 0.3587
DEAD BARD VALUE(UP) KO = 100.9844 DEAD BAND VALUE(LOW) Kb = 99.0012
GANNA{D)= 0.0076 ARL1= 1.08 ENSIN = 10.93
GANNA(L)= 0.0223 ARLO= 965.05 CYCLE TINE= 103.08 HRS

GAMMA(0)= 0.9702 THE BOURLY LOSS-COST 15 ¢  4.0024
LR e R IR et 2R Rtdeeettieeesitisstiseetiitesesttseessitentsfessitestiy

In the main menu, a selection of "3" terminates the

execution of the interactive computer program.

p22eEs382080380¢22282088

¥ HAIN MENU ¥
EERRRRRRKRRRRRRRXRRRRALS

WHAT WOULD YOU LIKE T0 DO ?
1. DESIGN AN ECONOMICALLY-BASED CUSUM CONTROL CHART
2. EVALUATE A COSUM CONTROL CHART
3. EIIT.
ENTER THE OPTION NOMBER PLEASE!
9
3
READY

Summary

According to the numerical results in Chapter 1V, as
shown in Tables 4.6 to 4.9 and 4.15 to 4.18, there is an
average of 1.8251 minutes CPU time with a standard deviation

of 0.5833 minutes for a single run. The minimum CPU time is
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0.8688 minutes and the maximum CPU time is 3.3565 minutes.
It has been observed that the major effect in the variation
of CPU time is the quality of the initial point for the
search procedure.

Nearly every feature of the interactive computer
program of this research has been demonstrated in this
chapter. The interactive feature and its flexibility make
this computer program a useful tool for designing and
evaluating Cusum control schemes economically. Through its
additional design and evaluation capability, this inter-
active computer program will help with better design and

assessment and broader application of Cusum control schemes.



CHAPTER VI
SUMMARY AND CONCLUGSION

This research extends the state of the art in quality
control charting by fulfilling the objective and subobjec-
tives stated in Chapter I. It provides an operational tool
which will permit the Cusum control chart to be used in an
economically optimum manner as an alternative to Shewhart
control charte for monitoring a process in a realistic
environment. This hae been achieved by accomplishing the
following:

1. An asymmetric Cusum control chart methodology has
been developed in which shifts in process mean,
probabilities of shift direction and the associated
costs of process shifts are asymmetric.

2. A Weibull procese failure mechanism has been assumed
and incorporated into the asymmetric Cusum control
chart model.

3. An economically-based Cusum model has been formu-
lated by following the same cost structure as in
Duncan s c¢lassic economically-based X-chart model.

4. Methodologies for statistically evaluating and
designing an asymmetric Cusum control chart have

been presented.

107
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Economical design of the asymmetric Cusum control
chart has been compared under a variety of condi-
tions. The effect of the Weibull process failure
mechaniem hae been examined.

A versatile interactive computer program has been
developed and demonstrated to facilitate the design
and evaluation of (1) economically-based asymmetric
Cusum control chart, and (2) user defined Cusum

control charts.

Based on the results obtained in this research:

1.

The Weibull scale parameter affects more the
variation in loss-cost and cycle time than does the
Weibull shape parameter.

It is observed that smaller subgroup sizes should be
taken more often when the magnitude of shift in the
process mean, which is to be detected, increases.

A symmetric Cusum control chart is a special case of
the asymmetric Cusum control scheme.

Based on the loss-costs obtained, a symmetric Cusum
control chart seems sglightly less efficient than
does a one-sided asymmetfic Cusum control chart.

In order to have more confidence in the near-optimal
solution, multiple starting points are used in the
optimal-seeking search procedure.

In this study, the upper dead band value ku is about
Ho + }¥5uog and the lower dead band value kL is about

Ho - ®SLo.
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The following are recommendations for future research

on the same subject to facilitate implementation of Cusum

control charts:

1.

Multiple assignable causes may be considered in an
extension to this research. In this study, a single
assignable cause 1is assumed.

The economically-based formulations of Cusum control
charts can be extended to have a process failure
mechaniesm which follows the rich Weibull
distribution.

Step sizes for the decision variables in optimi-
zation procedures do affect the final result.
Optimal step sizes should be a consideration in
improving the computer program and obtaining a

better solution.
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{
C THIS INTERACTIVE PROGRAM PERFORMS AN ASYMMETRICAL ECOROMICALLY-
BASED DESIGN OF COMULATIVE SUM CONTROL CHART.

BY CHONG-YU PAN, SCHOOL OF INDUSTRIAL ENGINEERING
AND MANAGENENT
OKLAEOMA STATE UNIVERSITY
DISSERTATION ADVIGOR: DR. KENNETH E. CASE
ETEEIERSEIeTRRTEITRTLLLLLALTLLEILILLTLIILLLLLSILLRILLESSL 4SS

DEFINITION OF SUBROUTINES:

DESIGN : PERFORM THE DESIGN OF ECONOMICALLY-BASED CUMULATIVE
SUM CONTROL CHARTS.

EYALUE : PERFORN THE EVALUATION OF A COSOM CONTROL CHART.

NELM1 : PERFORM THE NELDER ARD MEAD DIRECT SEARCH ALGORITHN
WITH THREE OR FOUR VARIABLES TO FIND THE OPTIMAL OR
NEAR-OPTIMAL.

NELM2 : PERFORM THE WELDER AND MEAD DIRECT SEARCH ALGORITHN
WITH FIVE VARIABLES T0 FIND THE OPTINAL OR NEAR-
OPTINAL.

L0SS  : PERFORM THE EVALUATION OF L0S5-COST.

CYCLE : PERFORM THE EVALUATION OF CYCLE TIME.

LENGTH : PERFORM THE EVALUATION OF AVERAGE RUN LENGTH (ARL).

SCALE : PERFORM HAMMING'S METHOD T0 SCALE A SQUARE MATRII.

RESCAL : PERFORN THE OPERATION OF RESCALING A SQUARE MATRIX.

LSOLY : PERFORM GAUSSIAN ELININATION WITH PARTIAL PIVOTING
10 SOLYE A SYSTEN OF LINEAR EQUATION.

INCRED : PERFORM THE LINEAR ADJUSTMENT OF DECISION INTERVALS
10 FIND AR OPTIMAL.

INCRED : PERFORM THE LINEAR ADJUSTMENT OF DEAD BARD VALUES
T0 FIKD AN OPTIMAL.
DEFINITION OF FURCTIONS:

DPEI  : PERFORM THE CUMOLATIVE DISTRIBOTION FUNCTION OF
STAKDARD ORMAL VARIABLE.

P P PE P P P I PE P e PE P I P P PE P PE P P P PE P I P P P PE P PE PE PE P I Pt Pt P P PE M P I P PG P P e PE P P P P e

OOQQOOOOOOOOGOOQGOQOOQQOO<30<‘JQQQ<‘:OOOOOQOOOOOOOOOOQQQ

ENSIN : PERFORM THE EVALUATION OF THE EXPECTED NUMBER OF
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DEFINITION OF VARIABLES:

N
B
00
I
]
KL
TARGE? :
SIGHA
DELTAD :
DELTAL :
10

1
ALPEA
SHAPK

SCALE
ALDELD :

ADELL :

ARLO
ARL1
GANO
GAND
GANL
CYC

: THE NUMBER OF IKDIVIDUAL XEASUREMENTS OR SAMPLES
: THE TIME INTERVAL BETKEEN SUBGROUPS.

: THE UPPER DECISION INTERVAL.

: THE LOWER DECISIOK INTERVAL.

: THE UPPER DEAD BAND VALUE.

: THE LOWER DEAD BAKD VALUE.

: THE STANDARD OR DESIRED PROCESS STAKDARD DEVIATION.

: TEE LOCATION OF THE PROCESS MEAK WITH AN UPPER
: THE LOCATION OF THE PROCESS MEAK WITH A DOWNWARD

: THE CONDITIONAL PROBABILITY THAT IF THERE IS A

S0BGROGPS TAKEN IN THE PERIOD OF THE PROCESS IN-
CORTROL.

THAT COMPRISE A GUBGROUP.

THE DESIRED PROCESS MEAN.

THE MAGNITODE OF AN OPPER SHIFT IN THE PROCESS MEAK.
THE MAGNITODE OF A DOWNWARD SHIFT IN THE PROCESS
NEAR.

SHIFT, THAT IS, X0 - TARGET + DELTAD ¥ GIGHA.
SHIFT, THAT IS, IL - TARGET - DELTAL ¥ SIGHA.

SHIFT IN THE NEAN, THE SHIFT WILL BE IN THE OPPER
DIRECTION.

PE P P B Pt I PE M PE P PE P e M P I P M P P P P P e M

: THE SHAPE PARAMETER OF THE PROCESS FAILURE MECHANISH.*
: THE SCALE PARAMETER OF THE PROCESS FAILURE MECHARISH.®

Lol

THE AVERAGE NOMBER OF SUBGROUPS TAKEN BEFORE AN
UPPER SHIFT WITH A MAGNITODE OF DELTAU WILL BE
DETECTED BY VIRTOE OF EICEEDING EITHER UPPER
DECISION INTERVAL OR LOWER DECISION INTERVAL.

THE AVERAGE NOMBER OF SUBGROUPS TAKEN BEFORE A
DOWRWARD SHIFT WITH A MAGNITUDE OF DELTAL WILL BE
DETECTED BY VIRTOR OF EICEEDING EITHER UPPER
DECISION INTERVAL OR LOWER DECISION INTERVAL.

P P P PE P S e

: THE AVERAGE KUMBER OF SUBGROUPS TAKEN WHEK A PROCESS *

IS IN-CONTROL AT ACCEPTABLE LEVEL. ¥

: THE AVERAGE RUMBER OF SUBGROOPS TAKEN BEFORE A SHIFT *

IN THE PROCESS NEAN IS DETECTED BY VIRTUR OF X
EICEEDING EITHER UPPER OR LOWER DECISION INTERVALS. *

: THE PROPORTION OF TINE THE PROCESS IS IN-CONTROL. ¥
: TEE PROPORTION OF TIME THE PROCESS IS OOT-OF-CONTROL *

IN UPNARD DIRECTION. x

: THE PROPORTIOK OF TIKE THE PROCESS IS 0UT-OF-COHTROL X

IN DOWEWARD DIRECTION. ¥

: THE AVERAGE TIME FOR OKE IN-CONTROL, 00T-OF-CONTROL

CYCLE.

: THE COST PER SUBGROUP OF SAMPLING, PLOTTING AKD

MAKING THE ACCEPTANCE/REJECTION DECISION.

AND PLOTTING.

: THE AVERAGE TIME TAKEN 10 FIND THE ASSIGNABLE CAUSE.

L3
&
X
¢
: THE PER ONIT COST OF SAMPLIKG, MEASURING, COMPUTING &
s
¢
: THE PER ONIT AVERAGE TINE SAMPLING, MEASURING, ¥

X

CONPOTING AND PLOTYING.
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! : THE AVERAGE COST PER EVENT OF SEARCHING FOR AN
ASSIGNABLE CAUSE WHEN NONE EXISTS.
L : THE AVERAGE COST PER EVENT OF SEARCHING FOR AN

ASSIGNABLE CAUSE WHEN ONE DOES EXIST.

0 : THE DININUTION OF HOURLY INCOME ATTRIBUTED 10 THE
OCCUBRENCE OF AK OPPER MEAN SHIFY FRON TARGET 10 IU.

1 : THE DIMINUTION OF HOURLY INCOME ATTRIBUTED TO THE
OCCORRENCE OF A DOWNWARD MEAN SEIFT FROK TARGET 10

(N ’
C0ST - THE VALOE OF LOSS-COST.

e PP edsoteitoteeseostitistitesiisiehiseitttsesessestseistitaestsn)

HAIN PROGRAM
INPLICIT REAL*8 (A-H,0-)

REAL*8 KU,KL,NU,ML,X(6),MIN(6),CONS(8),STEP(6),1(6), TTEKP(6)

X
4
4
3
4
L]
 §
X
4
3
 §
X

COMMON SEAPE,SCALE,SIGHA,ALPHA,CONS, DELTAU, DELTAL, TARGET, XU, IL
COMMON GAMKA,ALDELU,GANU,A1DELL,GANL,ARL1,HENSIN, ARLO,CTC,GAND

PROMT BAIN MENU
10 WRITE(6,200)
READ(5, %) NERD
GO TO {30,30,300) MEKD
20 WRITE(6,210)
READ(5, %) IENTER
GO TO (10,300) IENTER
G0 10 20
IRPOT PROCESS PARAMETERS
30 WRITE(6,220)
READ(5,%)SHAPE, SCALE, SIGNA, ALPHA, TARGET, DELTAU, DELTAL
GAMMA-DGANNA(1.D0+1.D0/5HAPE)
ECHO PROCESS PARAMETERS
40 WRITE(6,230)SHAPE, SCALE, SIGHA,ALPHA, TARGET, DELTAU, DELTAL
READ(5,¥) ICRECK
G0 10 (50,30) ICHECK
GO 10 40
INPUT COST AND TIME FACTORS

50 WRITE(6,240)
READ(S,%)B,C,D,E,T,N, N0, HL

ECHO COST AND TIME FACTORS

60 WRITE(6,250)B,C,D,E,T,¥, 40, ML
READ(5, %) ICHECK
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GO 10 (70,%0) ICHECK
G0 10 60
¢
70 CONS(1)-B
CORS(2)=C
CONG(3)=D
CONS(4)-E
CONS(5)-1
CONS(6) =N
CONS(T)=N0
CONS(8)=KL
I0-TARGET+DELTAUXSIGNA
XL=TARGET-DELTAL¥SIGHA
GO T0 (80,90) MEND
80 CALL DESIGN
G0 10 10
90 CALL EVALOE
G0 10 10
¢
200 FORMAT(1H1,12X,24(18%),/,
13X, % NAIN MENO £/, 130, 24(18%), /1,
3X, "WHAT WOOLD YOU LIKE T0 DO ?
,/,51,°1. DESIGN AN ECONOMICALLY-BASED COSUN CONTROL CHART'
,/,5%,"2. EVALUATE A COSUM CONTROL CHART'
/298,73, BXIT
/1,3, ENTER THE OPTION NUMBER PLEAGE!’)
210 FORMAT(///,5%, ENTERED NUMBER ERROR!",//,
4 X, "1. REENTER OPTION NUMBER,,/,
& 31,72, EXIT.")
220 FORMAT(/,3X, PLEASE ENTER PROCESS PARAMETERS, ",
& " INPOT VALOES OF:",/,%1,
& 'SHAPE, SCALE, SIGMA, ALPHA, TARGET, DELTA(OP), DELTA(LOW)",/)
230 FORMAT(/,3X, THE FOLLOWING VALOUES HAVE BEEN INPOTTED:",/,

e e Qv QA A* A~

SY,"SHAPE  =",F6.2,51,°SCALE  =",F1.2,
SI,°5IGMA  =",F6.2,/,
SX,"ALPRA  =",F6.2,51, TARGEY  =",F1.2,/,

51, "DELTA(UP)=",F6.2,51, "DELTA(LOW)=",FT7.2,//,

31, "ARE THESE DATA RIGHT?",/,

3X, "PLEAGE ENTER 1 FOR YES, 2 FOR K0.",/)

240 FORMAT(/,3X, PLEASE ENTER COST AND TINE FACTORS, INPUT VALUES OF:°
/,8L,°8, C, D, B, T, ¥, MU, WL',/)

250 FORMAT(/,3X, THE FOLLOWING YALOES HAVE BEER INPOTTED:",/,
L 51,°B=",K7.2,8,°C=",F7.2,8%,°D =", F1.2,8K, "8 =", F1.2,
& /.88, °1=",K1.2,5K, "¥="F7.2,5K, "M0=",F7.2,50, "ML=", 7.2,
&
&

- Qe e O ae Qe

//,3%,"ARE THEGE DATA RIGHT?",/,
3X, 'PLEASE ENTER 1 FOR YES, 2 FOR NO.",/)
300 5T0P
END

¢
(1e3etieittieseteitteteetetttsgtiticeceietetittotetitscestioniestetses!

SUBROUTINE DESIGK
[ESETILEERLSTLLILLLE2ILIILCTILILELTLLLLTLLLLL224 223422333228 2282 8228

IMPLICIT REAL*8 (A-H,0-7)

REALX8 KU,EL,M0,NL,X(6),HIN(6),CONS(8),5TEP(6),T(6), TTENP(6)
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<2

<2

CONNOK SHAPE,SCALE,SIGNA,ALPHA,CONS,DELTAU, DELTAL, TARGET, XU, IL
CONNOM GAMNA,A1DELO,GANU,A1DELL, GAKL, ARL1,HENSIN, ARLO,CTC, GAO
DATA ¥/10/,8/3.0/

DO-SIGHA*DELTAU/10.0

DL=SIGMA*DELTAL/10.9

KO-TARGET+0. 5¥SIGHADELTAU

KL=TARGET-0.5%SIGHASDELTAL

INPOT INITIAL POINT OF COSUM CHARTS

WRITE(6,300)N,H,D0,DL, KO, KL
READ(S, %) ICHECK
GO T0 (6,2) ICHECK

2 WRITE(6,30)
READ(S,*)K,H,D0,DL, X0, KL

ECHO THE INITIAL POINT

& WRITE(6,310)N,H,DU,DL, KU, KL
READ(5, %) ICHECK
GO T0 (6,2) ICHECK
GO T0 4
§ I(1)-4
1(2)=D0
1(3)=DL
I(4)=FLOAT(N)
1(5)=R0
I{6)=EL

INPUT CRITERIA AND STEP SIZES FOR NELDER-MEAD OPTINIZATION
PROCEDORE KITH FOOR VARIABLES

REQ=0.0001
ICOURT=200
STEP(1)=0.2
STEP(2)=0.2
STEP(3)=0.2
STEP(4)=1.0
WRITE(6,315)REQ, ICOUNT, STEP(4), (STEP(I),1=1,3)
BEAD(S, *) ICHECK
GO T0 (30,10) ICHECK
10 WRITE(E,400)
READ(5,%)REQ, ICOUNT, STEP(4), (STEP(I),I=1,3)

ECHO INPUT DATA

20 WRITE(6,410)REQ, ICOUKT,STEP(4), (STEP(I),I=1,3)
READ(5, %) ICHECK
G0 T0 (30,10) ICHECK
G0 T0 20

PERFORY OPTIMIZATION PROCEDURE

30 WRITE(6,415)
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CALL NELMI(X,4,STEP,REQ,MIN, ININ, [COUNT)
WRITE(6,420)MINC4), MINC2), NINCS) MIR(1), HIN(3) HIN(E), IHIN

TRONCATE SOBGROOP SIZE AN IRTEGER ARD OPTIMIZE H, DO AKD DL

I(4)=AIRT(MIN(4))
IF (X(4) .RQ. 0.0) I(4)=1.0
OPER-1.0
DO 40 K1=1,6
40 T(NL)=MIN(HI)
T(4)=X(4)
I§IK=1.D10
R£Q=0.000001
ICOUNT=300
STEP(1)=0.13
STEP(2)=0.15
STEP(3)=0.1%
WRITE(6,425)REQ, ICOUNT, (STEP(I),1=1,3)
READ(5, ) ICHECK
G0 T0 (70,50) ICHECK
50 WRITE(6,430)
READ(S,*)REQ, ICOUKT, (STEP(I),I=1,3)

ECHO IRPUT DATA

§0 WRITE(6,440)REQ, ICOUNT, (STEP(I),I=1,3)
READ(S, %) ICHECK
GO T0 (70,50) ICHECK
G0 T0 60

PERFORY OPTINATION PROCEDORE

70 KCOUNT-ICOUNT
WRITE(6,450)
80 DO 90 ¥2-1,3
80 X(N2)=NIN(N2)
CALL WELM1(X,3,STEP,REQ,MIN,Z,ICOUNT)
WRITE(6,460)NIN(4), MIN(1),HIN(2), HIN(3), HIK(5) HIN(6),1
IF (2 .LT. ZMIN) GO T0 100
G0 10 120
100 DO 110 II=1,6
110 Y(II)=NIN(I)
OPER-PER+1.0
I(4)=1(4)-1.0
IMIN=T
ICOUNT-HCOONT
IF (X(4) .NE. 0.0) GO 10 80
120 X(4)=X(4)+0PER
130 ICOUNT=NCOUNT
CALL NELM1(X,3,STEP,REQ,MIN,Z,ICOUNT)
NRITE(G,460)MIN(4) MIN(1), MIN(2),MIN(3), MIN(S) HIN(G),2
IF (1 .GE. ZNIN} GO T0 160
DO 140 ¥3-1,3
140 I(H3)=NIR(¥3)
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DO 150 M4=1,6
150 T(H4)=MIN(K4)
IM1K=1
I(4)=1(4)+1.0
G0 10 130
160 WRITE(6,420)1(4),1(2),¥(5),1(1),¥(3),1(6), IKIN

FII SOBGROUP SIZE AKD OPTINIZE H, DU, DL, KU ARD KL

<2 <A,

DO 170 ¥5-1,6
170 X(¥5)=1(X5)
REQ-0.0000001
1000NT=300
STEP(1)=0.1
STEP(2)=0.1
STER(3)=0.1
STER(4)=0.0
STEP(5)=0.1
STEP(6)=0.1
WRITE(6,465)REQ, ICOONT, (STEP(I),1=1,3),(STEP(J),J=3,6)
READ(5, ¥) ICHECK
GO T0 (200,180) ICHECK
180 WRITE(6,470)
READ(5,%)REQ, ICOUKT, (STEP(I),I=1,3), (STER(J),J=5,6)
C
¢ ECHO IKPOT DATA
0
190 WRITE(6,480)REQ, ICOUNT, (STEP(I),I=1,3), (STER(J),J=3,6)
READ(S, %) ICHECK
G0 T0 (200,180) ICHECK

G0 70 180
¢
C PERFORM OPTIMIZATION PROCEDURE
C

200 CALL NELM2(X,6,STEP,REQ,MIN,Z,ICOUNT)
WRITE(6,420)MIN(4), MIN(2) NIN(5), MIN(1), MIK(3),MIN(6),Z

C

( INCREMENTALLY VARY DU AND DL

C
DATA STEPD/0.002/
WRITE(6,485)5TEPD
READ(3,*) ICHECK

GO 10 (230,210) ICHECK
210 WRITE(6,490)
READ(S,%)STEED
¢
{ ECHO INPOT DATA
¢
220 WRITE(6,500)STEPD
READ(5, %) ICHECK
G0 0 (230,210) ICHECK
GO 10 220
230 CALL INCRED(MIN,Z,STEPD)
WRITE(6,510)MIN(4),MIN(2) MIN(S) MIN(L),MIN(3) HIK(6),2



¢

C [INCREMENTALLY VARY KU AND Kk

¢

¢
0
0

(

DATA STEPE/0.002/

WRITE(6,515)STEPE

READ(5,* ) ICHECE

GO T0 (260,240) ICHECK -
240 WRITE(6,520)

READ(5,¥)STEPK

ECHO IKPOT DATA

250 WRITE(6,500)5TEPL
READ(5, ¥} ICHECE
GO T0 (260,240) ICHECK
G0 T0 250

260 CALL INCREE(MIN,Z,TARGET,STEPK)
WRITE(6,530)KIN(4) MIN(2) MIN(5),MIN(1) HIN(3),HIN(6),2
ENSIN-BENSIN/X(1)
WRITE(6,540)MIN(4), (MINCD),1=1,3), (NIN(J),U=5,6)
WRITE(6,550)GAND, ARL1,ENSIN, GANL, ARLO, CYC,GANO,

300 FORMAT(/,31, THE FOLLOWING INITIAL POINT IS SUGGESTED:",/,
8X, "50BGROOP SIZE N = 14,100,
"GANPLING INTERVAL B SN VR
51, "DECISION INTERVAL(UP) DU=",F9.4,31,
"DECISION INTERVAL{LOW) DL=",F9.4,/,
5, DEAD BAND VALUE(UP) KU =",F9.4,51,
"DEAD BAND VALUE(LOW) KL =",F3.4,//,
3X,°D0 YOU ACCEPT THIS POINT?',/,
31, "PLEASE ENTER 1 FOR YES, 2 FOR K0.",/)
305 FORMAT(/,3X, "PLEASE ENTER INITIAL POINT, INPUT VALUES OF:,/,
§ 5%,°K, 8, DU, DL, KO, KL',/)
310 FORMAT(/,3X, THE POLLOWING VALUES HATE BEEW INPUTTED:',/,
$I, "SUBGROCP SIZE N =7 14, 101,
"SAMPLING INTERVAL H =K./,
51, ‘DECISION INTERVAL(OP) DU=",F9.4,51,
"DECISION INTERVAL(LOW) DL=",F9.4,/,
51, DEAD BABD VALUE(UP) KU =",F9.4,3I,
"DEAD BAND VALOE(LOW) KL =",F9.4,//,
3X,"ARE THESE DATA RIGET?",/,
31, "PLEASE ENTER 1 FOR YES, 2 FOR NO.",/)
315 FORMAT(/,3X, THE FOLLOKING VALUES ARE SUGGESTED FOR OPTINIZATION:
,/,5%, "TERMINATION LINIT=",D12.3,
/.51, "MAX. EVALOATIONS =",I4,
/,5%,"STEP FOR W =",¥6.3,5%,"STEP FOR H =",F6.3,
/,51, STEP FOR DU=",F6.3,5X, STEP FOR DL=",F6.3,
//,3%,°D0 70U ACCEPT THIS SUGGESTION?",/,
31, "PLEASE ENTER 1 FOR YES, 2 FOR NO.',/)
400 FORMAT(/,31, PLEASE ENTER CRITERIA ARD STEP SIZES FOR",
& " OPTINIZATION,",/,3I, INPOT VALUES OF:",/,5L,
§ "1, TERMINATING LIMIT FOR VARIANCE OF FUNCTION VALUES.",/,5I,
& “2. MAXINOK NOMBER OF FUKCTION EVALOATIONS.',/,SI,
& "3, STEP SIZES FOR N, H, DO AND DL, RESPECTIVELY.",/)

e 3 Qe v e A A Qe
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{10 FORMAT(/,3X, THE FOLLOWING VALUES BAYE BEEN INPUTTED:,
/.51, TERMINATION LINIT-",DI2.3,
/,51,"MAL. EVALUATIONS =",I4,
/.51, STEP FOR ¥ =",F6.3,5X, STEP FOR 8 =",F6.3,
/,5%,STEP FOR DO=",F6.3,51, STEP FOR DL=",F8.3,
//,31, ARE THESE DATA RIGHT?",/,
31, PLEASE ENTER 1 FOR YES, 2 FOR K0.',/)
(15 FORMAT(/,3X, xt OPTINIZATION IS PROCESSING **',/)
{20 FORMAT(/,1X,47(18¥),/,3, AFTER OPTIMIZATION THE DESIGN IS",/,
& 51, N=",F6.2,51,°D0=" 874,81, "K0=",F8.4,/,
& 5%,B=",86.2,5X, "DL=",B7.4,81, "KL=",F8.4,/,
§ 51, "L0SS-COST=",F10.4,/,1X,47(10¥))
425 FORMAT(/,3X, TEE FOLLOWING VALUES ARE SUGGESTED:",
/,51, TERNINATION LINIT=",D12.3,
/,51,"MAY. EVALUATIONS =",14,
/5%, STEP ROR B =",F6.3,5K, STRP FOR DO=",F6.3,51,
"$TEP FOR DL=",F6.3,
//,3%,°D0 10U ACCEPT THIS SUGGESTION?",/,
31, PLEASE ENTER 1 FOR TES, 2 FOR NO.",/)
£30 FORMAT(/, 31, PLEASE INPUT VALUES OF:',/,81,
& "1, TERKINATING LIMIT FOR VARIANCE OF FURCTION VALUES.®,/,3%,
k "2. MAXINOM NUMBER OF EUNCTION EVALUATIONS.',/,5I,
& '3. STEP SIZES FOR B, DU ARD DL, RESPECTIVELY.,/)
440 FORNAT(/,31, THE FOLLOWING VALOES HAVE BEEN INPOTTED:",
/,5%, TERMINATION LINIT-",D12.3,
/,51, "MAL. EVALUATIONS =",14,
/,51,"STEP FOR B =",F6.3,5X, "STEP FOR DO=",¥6.3,51,
"STEP FOR DL=",F6.3,
//,3%," AR THESE DATA RIGET?",/,
31, "PLEASE ENTER 1 FOR YES, 2 FOR §0.",/)
£50 FORMAT(/,1X,18X, ‘st (PTINIZATION ITERATION =x¢',//,
& 61,°N",5K,"8",6X,°DU°,7X,"DL",8X, KU",8X, "KL, 8X, "LOGS-COST")
460 FORMAT(/,5X,F3.0,21,86.2,2(21,F7.4),2(2K,F8.4),21,F8.4)
465 FORMAT(/,3X, "THE FOLLOKING VALUES ARE SUGGESTED:",
/,51, "TERMINATION LINIT=",D12.3,
/,51, "MAX. EVALUATIONS =", 14,
/.51, STEP FOR H =",F6.3,
/,51,"STEP FOR DO-",F6.3,5X, STEP FOR DL=",F6.3,
/,5%,STEP FOR KO-",F6.3,5X, STEP FOR KL=",F6.3,
/1,3%,°D0 100 ACCEPT TEIS SUGGESTION? ./,
31, "PLEASE ENTER 1 FOR YES, 2 FOR K0.",/)
470 FORMAT(/,3X, "PLEASE INPUT VALUES OF:",/,5I,
& "1, TERMIKATING LIMIT FOR VARIANCE OF FUNCTION VALUES.",/,8I,
& 2. MAXINON NUMBER OF FUNCTION EVALUATIONS.",/,5I,
& 3. STEP SIZES FOR B, DO, DL, KU ARD KL, RESPECTIVELY.",/)
480 FORMAT(/,31, THE FOLLOWING VALUES HAVE BEEN INPOTTED:,
/,51, TERNINATION LINIT=",D12.3,
/5%, "MAL. EVALUATIONS =", 14,
/,51,"STEP FOR H =",F6.3,
/,51, STEP FOR DU=",¥6.3,5, STEP FOR DL=",F6.3,
/,51,"STEP FOR KU-",F6.3,51, STEP FOR KL=",F6.3,
/1,31, ARE THESE DATA RIGET?",/,
31, PLEASE ENTER 1 FOR YES, 2 FOR NO.",/)
485 FORMAT(/,5X, STEP=",F6.4,” 15 SUGGESTED FOR INCREMENTALLY VARYING'
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&, DO AND DL.",//,3%,°DO TOU ACCEPT IT?  PLEASE ENTER 1 FOR YES'
&,°, 2 FOR KO.°,/)

490 FORMAT(/,3X, PLEASE ENTER STEP SIZE FOR INCREMENTALLY VARTING',
¢ DU AND DL.",/)

500 FORMAT(/,5X, STEP=",F8.4," HAS BEEN INPOTTED.",//

& ,31,°16 1T RIGHT?  PLEASE ENTER 1 FOR YES, 2 FOR ¥0.",/)

510 FORMAT(/,1X,47(18%),/, 3%, ARTER VARYING DU AKD DL THE DESIGK I5°,
§ /.58, ¥=",B4.0,7X,°DU=",FT.4, 51, 'R0=",F9.4,/,
¢ 51, '8=",86.2,58, "Db=",F7. 4,51, "Kb=",F8.4,/,
¢ 51, "L0§S-COST=",F10.4,/,1X,47(18%))

515 FORMAT(/,51, STEP=",#8.4," IS SUGGESTED FOR INCRENERTALLY VARTING'
% ," K0 AND KL.",//,3X,°DO YOU ACCEPT I1T?  PLEASE BNTER 1 FOR YES'
§,, 7 F0R KO.',/)

520 FORMAT(/,3X, PLEASE ENTER STEP SIZE FOR INCREMENTALLY VARYING',

§ L0 ARD EL.7,/)

530 FORMAT(/,1X,47(18%),/,5%, AFTER VARYING KU AKD KL THE DESIGK I5°,
& /,5%,"8=",B4.0,7,°D0="F7.4,5K, 'K0=",F8.4,/,

& 51, "B=",£6.2,5%, "DL=",F7 4,8, "KL=",F9.4,/,
§ 51, '10§S-C0ST=",F10.4,/,1L,47(18¥))

540 FORMAT(/,1X,72(18%),/,121,

"THE ECONOMICALLY-BASED CUSOH CHART IS EVALUATED 45:7,
/,1X,"§0BGROOP SIZE N =", §5.0,61,
"SAMPLING INTERVAL B =", §6.2," HRS',/,

11, "DECISION INTERVAL(UP) DO=",F9.4,21,
"DECISION INTERVAL(LOW) DL=",E8.4,/,

1X, "DEAD BARD VALUE(OP) KU =",F9.4,21,
"DEAD BAND VALUE(LOK) KL =",F8.4)

550 FORMAT(3X, ‘GAMMA(U)=",F7.4,6%, ARL1=",F10.2,6X, "ENSIN =i,
& /.31, GANMA(L)=",F7.4,6X, "ARLO=",F10.2,6X, "CICLE TINE-=",F7.2,
& HRS",/,31, GAMMA(0)=",F7.4,6X, THE HOORLY LOSS-COST IS $,F10.4,
b/, T2(18%), /1)

RETORN

END

e e @ e e O A
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SUBROUTINE EVALUE
RETEEEe1EeRsEeeatiteseinsiiisstotssiciatinsiitetinsstsstsstssessetiissy

INPLICIT REAL*8 (A-H,0-1)

REAL*8 X(6),CONG(8),K0,KL X0, 4L

COMMON SHAPE,SCALE,SIGHA,ALPEA,CONS,DELTAU, DELTAL, TARGET, X0, IL

COMMON GAMMA,A1DELU,GANO,AIDELL,GANL, ARL1, HENSIN, ARLO,CTC,GANO

INPUT INITIAL POINT

<a

10 WRITE(6,100)
READ(S,*)¥,H,D0,DL, K0, KL

ECHO THE INITIAL POINT

<2 <

20 WRITE(6,110)¥,H,D0,DL,K0,KL
READ(5, ) ICRECK
G0 10 (30,10) ICHECK
G0 10 20

30 X(1)=4



1(2)=D0
I(3)=Db
K(4)=FLOAT(N)
I(5)=k0
I(6)=KL

0

C EVALOE & COSUM CONTROL CHART

C

CALL LOSS(X,C05T)

ENSIN-HENSIN/I(1)
WRITE(6,120)X(4),(X(I),1=1,3),(X(J),J=5,6)
KRITE(6,130)GAND,ARL1, ENSIN, GANL, ARLO, CYC,GANO, COST

¢

100 FORMAT(/,3X, PLEASE ENTER INITIAL POINT, INPOT VALOES OF:",/,
& 51,°N, B, DO, DL, KO, KL',/)
110 FORMAT(/,3X, "THE FOLLOWING VALUES HAVE BEEN INPOTTED:",/,
& 51, "SUBGROUP SIZE N =7, 14, 101,
§ "SAMPLING INTERVAL H =2/,
& 5Y,"DECISION INTERVAL(UP) DO=",F9.4,51,
& "DECISION INTERVAL(LOW) DL=",¥9.4,/,
§ 51, DEAD BAKD VALUE(UP) KU =",F9.4,5I,
& "DEAD BAKD VALUE(LOW) KL =",F9.4,//,
¢ 3X, ARE THESE DATA RIGHT?",/,
¢ 31, "PLEASE ENTER 1 FOR YES, 2 FOR KO.",/)
120 FORMAT(/,1X,72(18%),/, 21,
"THE COSOM CHART 15 EVALUATED A5:°,
/,1X,"SUBGROOP SIZE N =", F5.0,61,
"SAMPLING INTERVAL H =862, HRS",/,
1%, "DECISION INTERVAL(OP) DO=",F9.4,21I,
"DECISION INTERVAL(LOW) DL=",F8.4,/,
1X, "DEAD BAKD VALUE(UP) KO =",F9.4,21,
"DEAD BARD VALUE(LOW) KL =",F8.4)

130 FORMAT(3X, GAMMA(U)=",F7.4,61, ARL1=",F10.2,61,"ENSIN  =",F1.2,
& /,31, GANNA(L)=",F7.4,6X, "ARLO=",F10.2,6X, "CYCLE TINE=",FT7.Z,
¢ HRS',/,31, GAMMA(0)=",F7.4,6X, THE HOURLY LOSS-COST IS §°,F10.4,
&/ T(1E%),/))

RETURN
END

- > A~ > O Qe @

¢
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SUBROUTINE LOSS(X,C05T)
(322t e308e¢8ecdteeitiaeisiesstedcsstecitestiteelccsistedttestitecss iy
INPLICIT REAL*8 (A-E,0-Z)
REAL*S I(6),CONS(8)
COMMON SHAPE,SCALE,SIGNA,ALPHA,CONS,DELTAU, DELTAL, TARGET, XU, XL
COMMON GAMMA,AIDELU,GAMO,A1DELL,GANL, ARL1, HENSIN, ARLO,CYC,GAXO
¢
 CALL SUBROUTINE CYCLE. THOSE DECISION VARIABLES T0 BE
C OPTIMIZED ARE CONTAINED IN I.
¢
CALL CYCLE(X,CORF,STDDO,STDDL)
C
¢ COMPOTE DISTAKCES BETWEEN TARGET AND OPPER AND LOWER
 DEAD BANDS, RESPECTIVELY. THOSE DISTANCES ARE COMPARED
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C WITH THE UPPER AND LOWER DECISION INTERYALS 70 COMPUTE
( THE ARLO.

C

C

DIFFO-(TARGET-X(5))3COEF
DIFFL=(X(6)-TABGEY )*COEF

CALL LENGTH(STDDU,DIFFU,ARLOT)
CALL LENGTH(STDDL,DIFFL,ARLOL)
TENP=1.D0/ARLO0+1.D0/ARLOL
ARLO=1.D0/TENP

¢ 10 EVALOTE THE LOSS COST EQUATION

¢

0

ELN1-GANDXCONS(7)+GANL*CONG(8)
ELN2=(CONS(5)sHENSIN/X(1)+CONS(6)*ARLO)/(ARLORCYC)
RLN3=(CONS(1)+CONS(2)*X(4))/X(1)
COST-ELE1+RLU2+ELYI

RETORN

END

(2227 11ttettitteateneeiifliseteeesttttitReasscoissssitactsciztzizsts)

SUBROUTIKE CYCLE(X,COEF,5TDDU,STDDL)

Ct*xXtt‘tXtt*!t!ll!thtttttlt*tttttttttiiltltlKtttttttitt*ttlt*lltt!ttl

C

INPLICIT REAL*8 (A-H,0-7)

REAL*8 I{6),CONS(8) :

CONNON SHAPE,SCALE,SIGKA,ALPHA,CONS,DELTAU, DELTAL, TARGET, XU, IL
COMMOX GAMNA,A1DELU,GAMU,ALDELL,GAL,ARL1, HENSIK, ARLO, CTC, GANO
COEF=DSQRT(X(4))/5IGKA

STDDO=X(2)#COEF

$TDDL=X(3)*COEF

DIFFU=(X0-X(5))*COEF

DIFFL=(X(6)-10)*COE¥

CALL LENGTH(STDDU,DIFFU,AUDELD)

CALL LENGTH(STDDL,DIFEL,ALDELU)
TEMP1=1.D0/AUDELD+1.DO/ALDELY

A1DELO=1.D0/TENP1

DIFFO=(IL-X(5))%COEF

DIFFL=(X(6)-IL)*CORF

CALL LENGTH(STDDU,DIFFU,AUDELL)

CALL LENGTH(STDDL,DIFEL,ALDELL)
TENP2-1.D0/AUDELL+1.DO/ALDELL

A1DELL=1.D0/TENPZ
ARL1=ALPEA*AIDELO+(1.DO-ALPHA)¥A1DELL
HENSIN=ENSIN(SHAPE,SCALE,X(1))*I(1)
CYC=ARLI*X(1)+HENSIN+CONS(4)3X{4)+CONS(3)
TIMEIN=5CALE*GANNA

GAMO-TIHEIN/CYC
TENP3=A1DELO*I(1)-TIMRIN+HENSIR+CORS{4)*X(4)+CORS(3)
GANO=ALPHEA*TENP3/CIC
TENP4=AIDELLSI(1)-TINEIN+HENGIN+CONS(4)3X(4)+CONS(3)
GANL=(1.D0-ALPHA)$TENP4/CYC

RETORN

EXD

(32000 ettiesteossieteoliatiittitecestitcassttteesssssscsssestttz it
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SUBROUTINE LENGYH(STDH,DIFF,ARL)

cxmmmmxmmxmtxumumxmxmmumxxmmxmmtxt

<3

A caca

<2

<

INPLICIT BEAL*S (A-H,0-1)

REALXS AK(24),A(24,24),X(24),22(24),2K(24),Y(24),21(12},AL(12},
4DA(24),DB(24),0(2¢,24)

DINENSION NA(24),KB(24)

DATA 11/-.9951872199970214D0,-.9747285359713095D0,
[ -.9382745520027328D0, -, 8864155270044010D0,
3 -.8200019859739029D0, -, T401241915785544D0,
¢ -.6460936519369756D0,-. 5454214713888395D0,
b -.4337935076260451D0,-.3150426796961634D0,
b -, 1911188674736163D0,-.0640568328626056D0/
DATA £17.0123412297999872D0,.0285313886289337D0,

L0442774388174198D0, . 0592985849154368D0,
.073346481444080300,.0861901615319533D0,
.0976186521041139D0, . 1074442701159655D0,
.1155056680537256D0, .1216704729278034D0,
.1258374563468263D0, . 1279381953467522D0/

> N P L3 DD

IKITIALIZE PARAMETERS
DATA N/24/,MAX/25/,P1/3.1415926535898D0/

Do 40 L=1,12

BL(L)=1L(L)

11(25-0)=-11(L)

AR(L)=DLOG(AL(L))
40 AK(25-L)=AK(L)

TRANSEORN IK FRON THE (-1,1) INTERVAL T0 THE (0,5TDH) INTERVAL
FOR GADSSIAK ELININATION

D0 10 I=1,¥
10 ZE(I)=(22(1)+1.D0)*51DH/2.D0

SET UP THE A NATRIX AND THE B VECTOR AND I VECTOR

TENVAL=DLOG(STDH)+DLOG(. 5D0)-DLOG(DSQRT(2.D0*P1))
D0 20 I=1,¥
D0 20 J=1,X
AD=.5D0%((ZK(J)-IK(1)-DIFF)*42)
TENP=AK(J)+TENTAL-4D
IF (TEMP .GT. -1.8D2) GO 10 15
A(1,9)=0.0D0
G0 10 18
15 A(1,9)=-DEXF(TENP)
18 IF (I.EQ.J) A{I,J)=A(L,J)+1.D0
20 CONTINUE

SCALING A NATRIX
CALL SCALE(A,24,24,24,0,RA,NB,DA,DB)

CHECE=0.0
BIGND¥=0.0
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Cttt!ittXt!ttltttt!tttttlil*t!i‘l*tttXtttttt!ttt*tttlttttt!ttlx!ttttttt

[FSTe1ee 03¢0 o088E0¢8eos80tettaettetitecitesitstsisciistesttetstesittsss

D0 25 I=1,K
D0 24 J=1,%
A(T,3)=DA(I)*A(1,J)*DB(J)
IF (DABS(A(I,J)) .LT. 1.D-38) CHECE=1.0
IF (DABS(A(I,J)) .GT. BIGKUM) BIGNUN=DABS(A(I,J}))
24 CONTINCE
AR=-ZE(I)-DIFF
P=DPEI(AR)
I(1)-DA(I)*P
25 Y(I)=DA(I)
IF (CHECK .EQ. 0.0) GO 70 26
CALL BESCAL(A,24,24,2¢,BIGKON,X,T)
26 D0 30 I=1,K
D0 30 J=1,¥
30 C(1,d)=M(1,7)
CALL LSOLY(A,X,24,2¢)
CALL LSOLY(C,Y,24,2¢)
D0 60 I=1,8
I(T)=DB(1)*X(I)
60 T(I)=DB(I)*Y(I)
AE=-DIFF
PR=DPHEI(AE)
INZER0=0.0D0
PZER0-0.0D0
D0 90 I-1,8
AD1=.5D0%((ZK(1)-DIFF)*%2)
TEMP=AK(I)+TENVAL-AD!
IF (X(I) .LE. 0.0) GO T0 50
TEMP1=TEMP+DLOG(X(I))
IF (TENP1 .LT. -1.8D2) GO 10 50
PZERO-PIERO+DEXP(TENP1)
50 IF (Y(I) .LE. 0.0) GO T0 90
TENP2-TENP+DLOG(Y(I))
IF (TENP2 .LT. -1.8D2) GO T0 90
INZERO=INZERO+DEIP (TENP2)
80 CONTINUE
P2ZERO-PZERO+PR
INZERO=1.DO+INZERO
IF (1.D0-PZERO.LT.1.D-6) GO 10 95
ARL=XNZERO/(1.D0-PZER0)
G0 10 100
95 ARL=1.D8
100 RETORK
END

DOUBLE PRECISION FUNCTION DPEI(X)

INPLICIT REAL*8(A-H,0-1)

DATA B1/.319381530D0/,B2/-.356563782D0/,B3/1. 78147793100/,
& B4/-1.821255978D0/,B5/1.330274429D0/,B6/.2316413D0/,

& PI/3.1415926635898D0/
T=1.D0/(1.D0+B6*DABS (X))
ELN1=DLOG(BI*T+B28T#82+B3xTRx3+BARTRX44BIATRS)
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ELX2:-DLOG(DSQRT(2.DO*PT) ) +X*1/2.00
TENP-ELH1-ELA2

DPRI=0.0D0

IF (TEMP .GT. -1.8DZ) DPRI-DEIP(TENP)
IF (X.GE.0.0D0) DPRI=1.0D0-DPAI
RETURN

EXD

¢
RS2SR eePetebicsitieiiiittotttopbicecttiotetstteieeettetititsssets

SUBRODTINE SCALE (A,N,N,LADIN,KRENRN,NA,KB,D4,DB)
(R3E3TE3SESTE3 L0 RELEITR4E3 SERLTETTREtLEsE3ieReeestesstitesissiisisty

¢
¢ THIS PROGRAK IS PROVIDED BY J. P. CHAKDLER

C COMPOTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY

C

¢ INPOT:

¢

C  A{%,%) : THE MATRII T0 BE SCALED

¢ : NOMBER OF ROWS IN THE MATRIX A

X : NUMBER OF COLUMNS IN THE MATRIX A

LADIN : THE FIRST DIMENSION OF THE ARRAY A (N.LE.LADIY)
KRENRN : =1 T0O RENORMALIZE SO THAT THE LARGEST

MAGNITODE IS 1.0,
=0 NOT T0 RENORMALIZE

DA(*) : LEFT DIAGONAL SCALIKG MATRIZ
DB{*) : RIGHT DIAGONAL SCALING MATRIX

SCRATCH STORAGE: : NA(X),HB(%)

SETeTST32T3 3183 cRTTERTILILERTLLLILNLS SRELTLATILL T3 ERLLELILH
DOUBLE PRECISION A,DA,DB,  QSQRT,ARG,QABS,QLOG,QEXF,  RIERO,
x GO, SUMK, TENP, HALFAY, AVE, AKX
DIMENSION A(LADIN,N),NA(H),KB(N),DA(N),DB(K)

C
C
¢
C
¢
C
¢ 00TPOT :
0
¢
¢
¢
¢
C
¢

RZER0=0,0D0
¢
IF(M.LT.1 .OR. M.GT.LADIN .OR. N.LT.1) STOP
C
C INITIALIZE.
C
DO 10 J=1,H
DA(J)=RZERO
10 KA(J)=0
D0 20 K=1,K
DB(K)=RZERO
20 KB(K)=0
SOM=-RZERO
JES0N=0
¢
C ACCUMOLATE ALL SUMS AND PROCESS A(%,%) BY COLUNS.

DO 40 E=1,K



SOME-RIERO

KS0K=0

DO 30 J=1,H
TEMP=DABS(A(J,K})

IF(TENP.EQ.RZERO) GO T0 30

TENP-DLOG(TENP)
DA{J)=DA{J)+TENP
SUME=SUNE+TENP
SUM=SOM+TEMP
RA(J)=RA(J)+1
ESUM=K50N+1
JESON=JR508+1

30 CORTINUE

DB(K)=50¥K
{0 KB(K)=ES0M

COMPUTE DA(%) AND DB(%).

<

TF(JESUN.EQ.0) GO 10 70
TENP=JESUN+JESOH
HALEAV-5UM/TEKP
D0 50 J=1,4
IF(NA(J).EQ.0) GO T0 30
TEMP=NA(J)
DA(J)=HALFAY-DA(J)/TENP
50  CONTINOE
DO 60 K=1,K
IF(NB(K).EQ.0) GO TO 60
TENP=NB(K)
DB(K)=HALEFAY-DB(K)/TENP
60 CONTINOE

TAKE ANTILOGS.

<

70 DO 80 J=1,M

80  DA(J)=DEXP(DA(J))
DO 90 K=1,¥

90  DB(K)=DEXP(DB(K}))

IF(KREKRM.HE.1) RETURN

<3

AMX-RZERO

DO 100 K=1,K
DBE-DB(K)
DO 100 J=1,K

TEMP=DABS(DA(J)*A(J,K)*DBK)

[F(TENP.GT.ANX) ANI=TEMP
100 CONTINOE
TENP=DSQRT(ANX)
IF(TENP.EQ.RZERO) RETORN
DO 110 J=1,H
110 DA(J)=DA(J)/TEKP

RENORMALIZE S0 THAT THE LARGEST MAGNITODE IS 1.0 .
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¢

(

DO 120 K=1,K

120 DB(K)=DB(K)/TEMP

RETORN
END

[RE8030020800030¢¢88800e8¢2288¢003070¢028¢02¢23008¢¢3838¢3823 88280338388

SUBROUTINE LSOLY (4,BI,N,LDIN)

(130288260080 0080¢0¢00008084¢8080¢00¢e0¢etettstoteteetteteseisetiscesssas!

€I CIMCAMMacCIc,

<

<

L I o I -]

<

THIS PROGRAM IS PROVIDED BY J. P. CHANDLER
COMPUTER SCIENCE DEPT., OKLAHOMA STATE ONIVERSITY

N IS THE NUMBER OF EQUATIONS IK THE LINEAR SYSTEN.

ON IRPUT, A(%,%) CONTAINS THE MATRIX OF COEFFICIENTS AND BX(¥)
CONTAINS THE VECTOR OF CONSTANTS (THE RIGHTHARD SIDES).

OF QOTPOT, BX(*) CONTAINS THE SOLOUTION VECTOR AND A(%,%) CONTAINS
GARBAGE.

LDIN IS THE VALUE OF THE DINENSIONS OF THE ARRAYS A AND BX.

THE VALOE OF N MUST KOT EXCEED THE VALUE OF LDIN.

DOUBLE PRECISION A,BX,QABS,ARG,BIGA,TEXP,EN,S0H
DIMENSION A(LDIN,LDIN),BX(LDIN)

CHECK FOR AN INVALID VALOE OF N OR LDIN.

IF(K)240,240,10
10 IF(K-LDIK)20,20,240

TRIANGOLARIZE THE MATRIX A.

20 NMO-K-1
IF(NNOD)240,140,30
30 DO 130 J=1,KND

SEARCE COLUMN J FOR THE PIVOT ELENENT.

BIGA=0.

D0 §0 K=J,N
TENP-DABS(A(K,J))
IF(TENP-BIGA)S0,50,40

40 BIGA-TENP
JPIT=EK
$0  CONTINUE
IF(BIGA)130,130,60
60  IF(JPIV-J)90,90,70

IRTERCHANGE EQUATIONS J AND JPIV.

70 DO 80 L=J,N
TEMP=A(J,L)
A(J,L)=A(JPIV, L)

80 A(JPIV,L)=TENP

TENP=BX(J)
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90

¢

BI{J)=BI{JPIV)
BI(JPIV)-TEKP
JPO=J+1

Do 120 E=JPQ.N

 PERFORY ELININATION OK EQUATION K.

¢

100
110

120

130
C
( M
0

140

150
160
200
210
220
230
240

¢

EN-A(K,J)/4(J,J)
IF (DABS(EN) .LT. 1.D-30) E¥=0.0
TF(EN)100,120,100
DO 110 L=JPU,¥
A(K,L)=A(K,L)-EN*A(J,L)

BX(K)=BX(K)-EN*BX(J)
CORTINOE

CONTINUE

THE BACE SOLOTION.

DO 230 JINV=1,K
J=H+1-JINY
TENP=A(d,V)
IF(TENP) 160,150,160
BI{J)=0.
G0 10 230
SU¥=0.
IF(J-¥)200,220,220
JPO=J+1
bo 210 E=JP0.N

SOM=SUM+A(J, L) *BI(K)

BX(J)=(BX(J)-5UN)/TENP
CONTINDE

RETORK

E¥D

peteteatestesteteetotetiteitcotttititottsbotostotottotedestottottosesd

FUNCTIOK ENSIN(SHAPE,SCALE,H)

(idtotecettdtstieitetecetitictoteeotetitetitetotititstttictteetettess

1

¢

IMPLICIT REAL#8 (A-H,0-I)
PTOP=(-DLOG(1.D-10))**(1.D0/SHAPE)
LINOP-INT(PTOP*SCALE/R)
PTLON=(-DLOG(1.D0-1.D-10))%*(1.D0/SEAPE)
LIMLON=INT(PTLONXSCALE/H)

IF (LINLONW .LE. 0) LINLOW-1
ENSIN-0.D0

D0 1 I=LIMLOW,LINOP
B=(I*H/SCALE)3¥SHAPE
ENSIN-ENSIN+DEXP(-B)

RETORN

END

(E3EEREstceitsceiitieeeetedectiitetectottetettttcteteteftsscttitessins

SUBROUTINE RESCAL(A,N,N,LADIN,BIGNON,I,Y)

ST RPRFTE284000¢¢038¢¢¢0083¢2¢020289¢088008¢23C8384¢04000¢03¢38¢8888¢3)

[MPLICIT REAL*8 (A-H,0-1)
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REALS A(24,24),DA(24),DB(24),X(24),1(24)
DINENSION NA(24),NB(24)
BIGA-BIGNUN*1.D-38
DO 10 I=1,K
D0 10 J=1,8
IF (DABS(A(I,J)) .LT. BIGA) A(I,V)=0.0
10 CONTINUE
CALL SCALH(A,X,K,LADIN,0,K4,KB,D4,DB)
Do 30 I=1,N
Do 20 J=1,%
20 A(1,3)=DA(I)%A(1,7)%DB(J)
I(T)=DMT)*I(I)
30 Y(I)=DA(IY*Y(I)
RETORN
END

C
CtttXtXXiiittittxtt!tt!tittitittt!ttt*tttttttttXttttttttttttttttttttttt

SOBROUTIHE KELM1(X,N,STEP,REQ,NIN,INIK,ICOURT)
Cttlltt!ttX!tttltttltxxxxlxttt*x*xtttxttititttltttttll!xttlt&tttttttttt

INPLICIT REAL*8 (A-8,0-1)

REALXS X(6),MIN(6),STEP(6),P(20,21),PX(20),P2K(20), PBAR(20),

2 1(20),ZHIK,REQ, DN, DNK,Z, 50K, SO, TLO, YX, Y2X, CURKIN, DEL,

3 RCOEFE,ECOEFF,CCOEEF,CONS(8)

DOOBLE PRECISION DFLOAT

COMMON SEAPE,SCALE,SIGMA,ALPEA,CONS,DELTAU, DELTAL, TARGET, XU, XL

COMMON GAMMA,A1DELD,GAND,A1DELL,GANL,ARL],BENSIK, ARLO,CYC

¢
¢ REFLECTION,EITENSION AND CONTRACTION COEFFICIENTS

C
DATA RCOEFF/1.D0/,ECOEFF/2.D0/,CCOERE/.5D0/
DATA KONVGE/S/
CHECE=0.0
ECOUXT=ICOUNT
ICOUNT=0
JCOURT=KONVGE
DE=DELOAT(N)
NH=R+1
DNN=DELOAT(EN)

¢

{ CONSTROCTION OF IKITIAL SIMPLEX

{
D0 20 I=1,6
P(I,RN)=I(I}
PX{I)=I(I)
p2x(I)=I(I)

20 MIK(I)=I(I)

CALL LOSS(I,Z)
ICOURT=ICOUNT+1
T(KK)=1
S0¥-1
SOuN=2%1
D0 40 J=1,N
I(J)=I(J)+STER(J)
Do 30 I=1,K
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30 P(LI=T)
CALL LOSS(X,1)
ICOURT=1COONT+1
113)=1
SOK-SON+L
SOMN=SUNN+131

40 1(J)=1(J)-STBR(J)

SI¥PLEI CORSTRUCTION COMPLETE

FIND HIGETEST AND LOWEST Y VALUES. I ( =Y(IHI ) INDICATES
THE VERTEX OF THE SIMPLEX T0 BE REPLACED.

50 1LO=T(1)
ININ-TL0
IL0-1
I8I=1
DO 70 I=2,KM
IF (1(1).6E.YL0) GO 10 60
1L0=1(I)
1L0-1
G0 10 70
60 IF (Y(1).LE.ININ) GO T0 70
INIR=Y(I)
THI=1
10 CONTINUE
SUN=5UH-IMIN
SUNN=SUNN-ZHINXZNIN

CALCOLATE PBAR, THE CERTROID OF THE SIMPLEX VERTICES
EXCEPTING THAT WITH T VALOE ZMIN.

DO 90 I=1,N

1=0.D0

D0 80 J=1,K8
80 I=3+P(1,J)

1=1-P(1,IHI)
90 PBAR(I)=1/DX

REFLECTION THEROUGH THE CENTROID

Do 100 I=1,8
PI(I)=(1.DO+RCOERF)*PBAR(I)-RCOEFF*P(I, IRT)
IF (PI(I) .GT. 0.0) GO TO 100
CHECK-1.0
G0 10 110

100 CORTINUE

110 YI=1.D10
IF (CHECK .NE. 0.0) GO T0 120
CALL LOSS(PY,TX)

120 CHECE=0.0
ICOUKT=ICOONT+1
1T (71.GE.TLO) GO TO 180

13



136

C SOCCESSFUL REFLECTION, THEN EITENSIOR
Do 130 I=1,¥
P2X(1)=ECORFF¥PI(1)+(1.D0-ECOEFF)*PBAR(I)
IF (P2X(I) .GT. 0.0) GO 10 130
CHECK-1.0
&0 10 201

130 CONTINUE

201 121-1.D10
IF (CHECE .NE. 0.0) GO T0 130
CALL LOSS(P2I,T2I)

150 CHECK=0.0
ICOUNT-ICOUNT+1

¢

 RBETAIN EITEKSION OR CONTRACTION

C
IF (72X .GE. YX) GO 10 280

160 DO 170 I=1,¥
170 P(I,IHI)-P2K(I)
Y(IRI)=Y21

GO T0 300

¢

C HO EXTENSION

¢

180 1=0

D0 190 I-1,MK

IF (Y(1).6T.TI) L:=L+!
190 CONTINOE

IF (L-1) 220,200,280

¢ :

C CONTRACTION OK THE REFLECTION SIDE OF THE CENTROID

¢

200 D0 210 I=1,K
210 P(I,IRI)=PX(I)

T(IBI)=1X
¢
C CONTRACTION ON THE Y(IHI) SIDE OF THE CENTROID
¢

220 D0 230 I=1,K
P2X(I)=CCOREF*P(I,THI)+(1.D0-CCORFF)xPBAR(I)
IF (P2I(I) .GT. 0.0) GO T0 230
(RECE-1.0
GO 10 240
230 CONTINDE
240 Y21-1.D10
IF (CHECE .KE. 0.0) GO TO 250
CALL LOSS(P2X,Y2I)
250 CHECE=0.0
ICOUNT=ICOUNT+1
IF (Y2X.LE.Y(IRI)) GO 10 160
€
 CONTRACT WHOLE SINPLEX

¢
SU¥=0.D9



S0KN=0.D0
Do 270 J=1,KN
Do 260 I=1,K
P{I,d)=(P(1,J)+P(1,1L0) }*.5D0
260 MIK(I)=P(I,V)
CALL LOSS(NIN,T(J))
SON=50M+1(J)
270 SOKN=SUNM+T(J)*1(J)
ICOUNT=ICOUNT+HR

G0 10 310
¢
{ RETAIK REELECTION
0

260 DO 290 I=1,K
290 P(I,IRI)=PI(I)
T{IRT)-1I
300 SOM=SON+Y(IAI)
SOMM=SUMM+T(IRI)$T(IRI)
310 JCOUNT=JCOOK?-!
IF (JCOUNT.NE.0) GO T0 50
¢
¢ CHECK 10 SEE IF NININOM REACHED
{
IF (ICOUNT .GE. ECOUXT) GO TO 320
JCOORT=RONYVGE
CORMIN=(SUMN- (SUN*SUX) /DEN) /DN
C
C CURMIN IS THE VARIANCE OF THE N+l LOSS VALUES AT THE
{ VERTICES
¢
IF (CORMIK.GT.REQ) GO 10 50
320 YLO=1(1)
IL0-1
Do 330 I=2,MM
IF (Y(I) .GE. TLO) GO T0 330
TL0=1(I)
IL0-1
330 CONTINUE
D0 340 I=1,K
340 MIK(I)=P(I,ILO)
ININ-TLO
RETORN
END

¢
CttttttXttittt*tttttttttiXXttttttt!ttt!ttltititilitttttttittttttttttttt

SUBRODTINE WELM2(X,N,STEP,REQ,MIN,ZNIN,ICOURT)
Ctttttlt*t!ttttt‘tltttlxttiititXlttttttttxtttttttii*ltltittttttttttttxt
INPLICIT BEAL#8 (A-H,0-1)
REALS X(6),NIN(6),STEP(6),P(20,21),PX(20),P2X(20), PBAR(20),
Z 1(20),2XIN,REQ, DX, DK, 2, 50K, SUNX, 11O, YX, T2X, CORMIN, DEL,
3 RCOEFF, ECOEFF, CCOEFF,CONS(8)
DOUBLE PRECISION DFLOAT
CONMON SHAPE,SCALE,SIGNA,ALPHA,CONS,DELTAU,DELTAL, TARGET, XU, IL
COMMON GAMA,A1DELU,GAMD,AIDELL,GANL,ARLI,BENSIN, ARLO,CTC
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REFLECTION,EXTENSIOK AND CONTRACTION COEFFICIENTS

DATA RCOEFE/1.D0/,ECOEFF/2.D0/,CCOEFE/.5D0/
DATA EORVGE/S/

CHECE=0.0

ECOORT=ICOURT

ICOUNT=0

JCOURT=EOKVGE

DR=DFLOAT(N)

NN=N+1

DNN=DFLOAT(KK)

CONSTROCTION OF IRITIAL SIMPLEX

D0 20 I=1,6

20 P(I,8K)=X(I)
CALL LOSS(X,Z)
ICOURT=ICOUNT+1
Y(NK)=1
S0K-=1
SONN=7x]
DO 40 J=1,K
I(J)=X(J)+STEP(J)
DO 30 I=1,K

30 B(I,9)=1(1)
CALL LOSS(X,7)
ICOUNT=ICOUNT+1
1(d)=1
SUN=S50K+2
SUMM=5UNN+I%T

40 X(J)=X(J)-STEP(V)

SINPLEX CONSTRUCTION COMPLETE

FIND HIGHTEST AND LOWEST Y VALOES. Z ( =Y(IHEI ) INDICATES
THE VERTEX OF THE SINPLEX TO BE REPLACED.

50 TLO=Y(1)
ININ-TL0
IL0-1
IRI=1
DO 70 I=2,MN
IF (1(I).GE.YLO) GO TO 60
1L0=Y(I)
IL0-1
G0 T0 70
60 IF (Y(I).LE.Z¥IN) GO 10 70
IKIN=Y(I)
IRI=]
70 CONTINUE
SUN=CON-ZKIN
OUMM=CUNN-IKIN*THIN
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CALCOLATE PBAR, THE CENTROID OF THE SIMPLEX VERTICES
EICEPTING THAT WITH T VALOE ZMIN.

Do 90 I=1,X

1=0.00

DO 80 J=1,KK
80 Z=2+P(1,J)

1=1-P(I,IHI)
90 PBAR(I)=Z/DN

REFLECTION THROUGE THE CENTROID

DO 100 I=1,K
PX(I)=(1.DO+RCOEFF)*PBAR(I)-RCOBKF#P(I,1I)
IF (PX(I) .GT. 0.0) GO T0 100
CHECK=1.0
G0 10 110
100 CONTINUE
110 ¥1=1.D10
IF (PX(5).LT.TARGET .OR. PX(6).GT.TARGET) CHECK-1.0
IF (CHECK .KE. 0.0) GO 10 120
PI(4)=1(4)
CALL LOSS(PI,TX)
120 CHECE=0.0
ICOUNT=ICOUNT+1
IF (TI.GE.YLO) GO TO 180

SUCCESSFUL REFLECTION, THER EXTENSION

D0 130 I=1,X
P2X(1)=ECORFF*PX(I)+(1.D0-ECORFY ) ¥PBAR(I)
IF (P2X(I) .GT. 0.0) GO TO 130
CHECE-1.0
G0 T0 140

130 CONTINOE

140 T2I=1.D10

IF (P2X(5).LT.TARGET .OR. PZI(6).GT.TARGET) CHECK-1.0

IF (CHECK .XE. 0.0) GO T0 150
P2I{4)=1(4)
CALL LOSS(P2I,¥2I)
150 CHECE=0.0
ICOUKT=ICOUNT+]

RETAIK EITENSION OB CONTRACTIOR
IF (Y2I .GE. YI) GO 70 260
160 DO 170 I=1,K
170 B(I,1RI)=P2I(I)
T(IRD)=12X
G0 170 300
R0 EXTERSION

180 =0
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DO 180 I=1,KK
IF (Y(I).GT.71) L=kl
190 CONTINUE
IF (L-1) 220,200,280
¢
C CONTRACTION ON THE REFLECTION SIDE OF THE CENTROID
¢
206 DO 210 I=1,X
210 P(I,IR1)=PX(I)
T(IHD)=1X

CONTRACTION ON THE Y(IEI) SIDE OF THE CENTROID

<32 <y

220 DO 230 I=1,K
P2X(1)=CCOEFF*P(I,1HI)+(1.D0-CCOEFF)*PBAR(I)
IF (P2X(I) .GT. 0.0) GO 10 230
CHECE=1.0
G0 T0 240
230 CONTINUE
240 121-1.D10
IF (P2X(5).LT.TARGET .OR. P2X(6).GT.TARGET) CHECK=1.0
[F (CRECE .NE. 0.0) GO 10 250
P2I(4)=X(4)
CALL LOSS(P2X,Y2I)
250 CHECE=0.0
ICOURT-1COUNT+1
IF (Y2X.LE.Y(IRI)) GO 70 160

¢
¢ CONTRACT WHOLE SINPLEX
0

SU¥=0.D0

oUNN=0.D0

D0 270 J=1,MK

D0 260 I=1,X

P(I,d)=(P(I,d)+P(1,IL0))*.5D0
260 MIN(I)=P(1,J)
KIN(4)=X(4)
CALL LOSS(NIN,Y(J))
SUN=00M+Y(J)
270 SOMN=GUMM+Y(J)*T(J)
ICOUNT=ICOONT+RN

G0 10 310
C
C RETAIN REFLECTION
¢

280 DO 290 I-1,K
290 P(I,IRI)=PI(I)
T(IEI)=1I
300 SOM=COM+Y(IHI)
SOMN=SUMN+Y(IRI)*Y(IEI)
310 JCOUNT=JCOURT-1
IF (JCOUNT.NE.0) GO T0 50
¢
{ CHECK T0 SEE IF MININOM REACHED



¢
[F (ICOUNT .GE. ECOUNT) GO T0 320
JCOONT-EONVGE
CORMIN=(SOMH-(SON&S0H)/DKK) /DN

0

C CORMIN IS THE VARIANCE OF THE N+! LOSS VALUES AT THE
¢ VERTICES
C
IF (CORMIN.GT.REQ) GO 10 50
320 YLO=1(1)
1L0=1
DO 330 I=2,KK
IF (Y(I) .GE. TLO) GO T0 330
1LO=Y(I)
IL0-1
330 CONTINUE
DO 340 I=1,K
340 MIN(I)=P(I,IL0)
IMIN-YLO
RETORK
END
C
(B Eeeieietetesettteeitsceeileseeseeistessliteesitiesteceistesittessttess]

SUBROUTINE INCRED(I,ZNIN,STEPD)
[R833teetteseesstiisceiitifetedteitcitesittstecstedttctititceitestsstes]
INPLICIT REAL*§ (4-H,0-I)
REAL*8 X(6),ZNIN,COST
10 CHECE=0.0
¢
C TWEAK DL
C
A1=0.0
42-0.0
20 X(3)=X(3)+5TEPD
CALL LOSS(X,COST)
IF (COST .GE. ZNIK) GO TO 30
INIR=COST
CHECK=1.0
Al=A1+1.0
G0 10 20
30 X(3)=X(3)-STEPD*(A1+1.0)
40 IF (I(3) .LT. 0.0) GO TO 50
CALL LOSS(X,COST)
IF (COST .GE. ZMIN) GO T0 50
ININ-COST
CHECE=1.0
A2-42+1.0
I(3)=X(3)-STEPD
G0 T0 40
50 IF (A2 .NE. 0.0) GO T0 60
I(3)=X(3)+STEPD*AL
G0 T0 70
60 X(3)=X(3)+5TEPD
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¢ TWEAL DO
0
70 41=0.0
42:0.0
80 X{(2)=X{Z)}+5TEPD
{aLL LOSS(X,C05T)
IF (COST .GE. ZKIN) GO TO 90
IMIN=COST
CHECE=1.0
Al=A141.0
G0 T0 80
90 I{2)=X(2)-STEPD*(A1+1.0)
100 IF (X(2) .LT. 0.0) GO 0 110
CALL LOSS(X,C05T)
IF (COST .GE. ZKIN) GO TO 110
I§1K-C05T
CHECK=1.0
A2=4241.0
1(2)=I(2)-STEPD
G0 T0 100
110 IF (A2 .NE. 0.0) GO TO 120
X(2)=X(2)+5TEPDsAL
G0 10 130
120 1(2)=X(2)+STEPD
130 If (CHECK .EQ. 0.0) RETURN
60 10 10
END
¢
cx:mmmxmmxxxxxxxmmmmmxxxmmnxmummtmm

SOBROUTINE INCREE(X,ZNIK,TARGET,STEPE)
L2220 880t88t2ttreteeeeareeecetseeeteestetveesetctsessetssizesssstits
[¥PLICIT REAL*8 {4-H,0-1)
REAL38 X(6),ZMIK,COST, TARGET
10 CHECE=0.0
¢
¢ INEAL KL
C
41=0.0
42=0.0
20 X(6)=X(6)-STEPK
CALL LOSS{X,C0ST)
IF {COST .GE. IKIN) GO 10 30
I¥IR=C051
CHECE=1.0
A1=A141.0
G0 70 20
30 X(6)=X(6)45TEPE*(A1+1.0)
40 IF (X(6) .GT. TABGET) GO 10 50
CALL LOSS(X,C05T)
[f (COST .GE. IKIN) GO TO 50
1418=C051
CHECE=1.0
B2:-42+1.0
1(6)=X(6)+STEPR
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G0 10 40
50 IF (A2 .KE. 0.0) GO T0 60
1(6)=X(6)-STEPRA]
G0 T0 70
§0 I(6)=X(6)-STEPL
C
¢ THEAK IT
¢
70 A1=0.0
42=0.0
80 X{5)=X(5)+5TEPX
CALL LOSS(X,CO5T)
IF (COST .GE. INIK) GO 10 90
I§IN-COST
CHECE=1.0
A1=A141.0
G0 10 80
90 X(5)=K(5)-STEPE®(A1+1.0)
100 IF (X(5) .LT. TARGET) GO 10 110
CALL LOSS(X,CO5T)
IF (COST .GE. ZKIN) GO T0 110
ININ=COST
CHECE-1.0
A2=A2+1.0
I(5)=X(5)-STEPK
G0 10 100
110 IF (A2 .KE. 0.0) GO 10 120
I(5)=X{5)+STEPE*AL
G0 10 130
120 X{§)=X(5)+5TERK
130 IF (CHECE .EQ. 0.0) RETURK
G0 10 10
END
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