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PREFACE 

This research is concerned with the modeling and 

evaluation of the powerful process control scheme 

Cumulative Sum (Cusum) Chart. A special control chart 

methodology is introduced and incorporated into this model 

along with Weibull process failure mechanism. 

The formulation of the model follows the same cost 

structure as in Duncan's economic X chart model. An optimi­

zation procedure is employed to economically design the 

decision variables of this asymmetric Cusum control chart. 

The results are then be compared and analyzed. 
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CHAPTER I 

THE RESEARCH PROBLEM 

Purpose 

Concepts of statistical quality control have been 

widely applied as tools for process control in various 

industrial sectors. Control charts, a powerful statistical 

process control (SPC) tool, are used for determining in­

control/out of control status, troubleshooting processes, 

analyzing process capability, and maintaining statistical 

control. The most commonly used control chart is the 

Shewhart chart with 3-sigma control limits. It is designed 

to allow the inherent variability (or noise) of a process to 

roam randomly between control limits. It is assumed that an 

observed value that falls beyond control limits is an 

indication of the occurrence of an assignable cause in the 

process. 

There are numerous modifications and extensions to 

Shewhart charts. One important development is the cumula­

tive sum (Cusum) control chart, which is based upon sums of 

observations rather than upon individual observations. Some 

persons argue that the cumulative sum chart is more sensi­

tive to process shifts than is the Shewhart chart. The use 

of any control chart is basically an economical problem. 

1 



The cost aspects of a process should be considered when any 

SPC procedure is utilized for process control. 

2 

The objective of this dissertation is to develop proce­

dures for the design and optimization of a new and richer 

set of economically-based charts. This research deals with 

the design of Cusum control charts for the control of the 

mean of a process when the observations are independent. It 

extends process control charting by : 

1. Defining and developing an economically-based Cusum 

control chart which explicitly recognizes asymmetric 

specification limits and asymmetric costs of being 

off-target. 

2. Utilizing a process failure mechanism described by 

the Weibull distribution on the in-control time of 

the process (an exponential process failure mecha­

nism is the most widely applied by researchers to 

date). 

3. Developing an optimization procedure in which sample 

size n, sampling interval h, dead band values ku and 

kL, and decision intervals du and dL are optimized. 

The X Control Chart 

A control chart is a statistical device principally 

used for the study and control of repetitive processes. At 

the basis of the theory of control charts is a differentia­

tion of the causes of variation in quality (Duncan, 1974). 

One type of variability, produced by "chance causes", is 
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inherent in a process and cannot be removed easily, if at 

all. In addition to this variability, there are sources of 

relatively large variation, called "assignable causes", 

which are attributed to variabilities in people, machines, 

materials, methods, and environments. 

Shewhart suggests that samples of size n = 4 or 5 be 

taken from a process at regular intervals (every h hours) 

and the samples' averages (X) be plotted on a chart. Being 

a sample result, X is subject to sampling fluctuations. The 

commonly used limits for an X control chart are located at 

the process mean plus or minus three standard deviations 

{±3a_) of the sample averages as depicted in Figure 1.1. 
X 

If no assignable causes occur in the process, x·s are 

approximately normally distributed. In other words, the 

inherent variability of a process or a statistic calculated 

from process data is expected to fluctuate within six 

standard deviations. Assuming the normal distribution 

applies, there is a very small, 0.00135, probability that a 

point will fall beyond the upper control limit; likewise, 

for the lower control limit. Theref9re, if a point falls 

outside control limits, it should be inferred that one or 

more assignable causes exist in the process. 

The introduction of the statistical design of the X 

chart provides a scientific approach for control of the 

process mean. Howe~er, the suggested values of sample size 

n = 4 or 5, and 3-sigma control limits might result in a 

control chart plan which is far from optimal in an 



X 

X 

~X 

4 
1~ ---h----~--h--~~--h.--~1 
n n n n 

UCL = upper control limit 

LCL = lower control limit 

f..l. = process mean 

0"_ = standard deviation 
X 

of 

h = time interval between 

n = subgroup size 

4 

UCL = f..l. + 3o-_ 
X 

LCL = f..l. - 3o-_ 
X 

sample averages 

subgroups 

Figure 1.1 Design of An X Control Chart 
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economical sense. 

The Cumulative Sum Control Chart 

The nature of Shewhart-type control charts, coupled 

with rules for reading them, is taking actions based on the 

last one or several plotted points. In order to increase 

the sensitivity of the control chart in detecting lack of 

control, Page (1954) proposes a procedure which adapts a 

rule for action based on sums of observations, rather than 

individual observations. This is done by the use of a 

cumulative sum (or Cusum) chart. The Cusum chart is a 

system of charting that is based upon all the data since the 

last process change. It is supposed to detect a sudden and 

persistent change in the process average more rapidly than a 

comparable Shewhart chart. 

Average Run Length. ARL 

Page (1954) introduces the concept of the average run 

length for a Cusum chart. The value of the process mean and 

the Cusum chart decision variables determine the ARL. Sup­

pose the cumulative sums are plotted for either the upward 

shift or the downward shift only. Then ARLSu represents the 

ARL of the process with an upward shift in the process mean; 

likewise, ARLSL represents the ARL of a downward shift. 

Kemp (1961) presents a formula for computing the ARL of 

a two-sided Cusum chart. He considers a two-sided Cusum 

chart as a composition of two one-sided Cusum charts. 
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Letting ARLS1 be the ARL of a two-sided Cusum chart with a 

shift in the process mean, it follows that ARLS1 is given by 

the equation 

1 1 1 
= + 

ARLS1 ARLSu ARLSL 

Kemp declares that this relation is not strictly con­

fined to symmetric Cusum charts. In this dissertation, an. 

asymmetric model is developed. The ARL for a process with 

either an upward shift or a downward shift in the process 

mean will be developed in more detail in a later chapter. 

SubgrouP Size. n. and Sampling Interval. h 

Two of the decision variables with which this research 

is concerned are the subgroup size n and sampling interval 

h. Since this study is conducted on an economical basis, 

the optimal subgroup size and the time interval between 

subgroups is sought. It is assumed that the subgroup size n 

and sampling interval h are constant throughout the opera­

tion of the Cusum chart. 

Decision Interval. d 

As noted earlier, chance variation is the random varia­

tion which is inherent in the process. Assignable variation 

is due to a real change in the process mean. The decision 

interval is used to help distinguish which is which. The 

rule for deciding when a real change has occurred is to 

compute the accumulated sum of deviations from some "dead 



band" value. If the accumulated sum exceeds d, it is 

concluded that the process mean has changed. The criterion 

for choosing d is a large ARL for the process operating at 

the acceptable quality level, ~a, and a small ARL when the 

process is running at the rejectable quality level, ~r. In 

this dissertation two values of d, du and dL, will be 

required due to the asymmetry allowed by the model. 

Dead Band Value. k 

7 

Ewan and Kemp (1960) report that the use of a "dead 

band" will provide advantages by not permitting the Cusum 

chart to react to small changes in the mean. The dead band 

value often used is k ~~(~a+ ~r). The value of k is obvi­

ously clqsely related to both ~a and ~r. The dead band 

value k requires that the sample statistic fall outside ~(~a 

+ ~r) before it adds to the cumulative sum; however, it can 

subtract from a positive cumulative sum even if it falls 

within the dead band. 

In this dissertation, k = ~(~a + ~r) is used. Again, 

there must be two values of k, ku and kt, due to asymmetric 

conditions of the model. 

Economically Based Cusum Charts 

Traditionally, control charting is based on statistical 

criteria for process control. In recent years, attention 

has been focused on economical aspects of a Cusum chart, 

such as the cost of sampling, testing and maintaining 
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process surveillance. 

Taylor (1968) initiates economical design concepts into 

cumulative sum control charts. He develops a formula giving 

approximately the long-run average cost per unit of operat­

ing time as a function of the Cusum scheme's decision varia­

bles and design parameters. Goel and Wu (1973), who follow 

Duncan's approach for the economical design of X charts 

(1956), derive an economical model for Cusum charts. They 

employ the "pattern-search" method to determine the optimum 

values of the sample size, the sampling interval, the dead 

band value and the decision interval. 

Only symmetric Cusum charts have been considered to 

date. An asymmetric Cusum scheme which better reflects 

reality is studied in this dissertation. In an asymmetric 

Cusum scheme the distance between the acceptable quality 

level and upper rejectable quality level is different from 

that of the acceptable quality level and lower rejectable 

quality level, as is the cost of reaching the upper or lower 

rejectable quality level. The concept of an asymmetric 

Cusum chart is illustrated in Figure 1.2. Based upon 

Duncan's concept, the best values of the decision variables 

subgroup size n, time interval between subgroups h, dead 

band values ku and kL, and decision intervals du and dL will 

be determined using optimization techniques. 



X/ 
I .---x 
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dL = lower decision interval 

Figure 1.2 Design of An Asymmetric Cusum Chart 

dL 



10 

Process Failure Mechanism 

Assumptions about the behavior pattern of a process are 

required to formulate the economically-based design of Cusum 

charts. An important assumption is the nature of the occur­

rence of assignable causes which shift the process from an 

in-control state to an out of control state. Montgomery 

(1980) describes this characteristic as the "'process failure 

mechanism". 

It is usually assumed that the process failure mecha­

nism is an exponential random variable. This assumption 

considerably simplifies the algorithm for the development of 

economical models of Cusum schemes. Baker (1971) suggests 

that the choice of process failure mechanism has a somewhat 

significant impact on the optimally economical design of 

control charts. Gibra (1975) and Montgomery (1980) also 

suggest that it is necessary to investigate and recognize 

the physical failure pattern of the process so that the 

principle of economical design can be validly implemented. 

Saniga (1979) investigates the impacts of process failure 

mechanisms and the Markov property on the economical design 

of X and R charts. He infers that the misusage of the proc­

ess failure mechanism will result in a substantial loss of 

cost. Qureishi (1964) points out that statisticians have 

questioned the validity of the assumption of the exponential 

distribution for the life times of the units put to a test. 

Several researchers point out the exponential approximation 

to life-data is only a fair approximation for practical 
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purposes. 

In this dissertation it is assumed that the nature of 

the occurrence of assignable causes is according to the 

Weibull distribution. The Weibull distribution is regarded 

as a better model for the process failure mechanism in the 

sense that it embraces a number of interesting situations. 

It can reduce to the exponential distribution or reduce to 

the Rayleigh distribution. 

To avoid incorrect modeling, it is desirable to econom­

ically design a Cusum chart in which the process failure 

mechanism is administered by a more generalized distribu­

tion. Accordingly, the Weibull distribution is proposed 

rather than the e~ponential. 

Summary of Research Objectives 

Objective 

The primary objective of this research is to : 

Provide an operational tool which will permit the 

cumulative sum chart to be used in an economically 

optimum manner as an alternative to Shewhart control 

charts for monitoring a process in a realistic 

environment. 

Subobiectjyes 

In order to accomplish this objective, several subob­

jectives have to be satisfied : 

1. Develop an economically-based model for evaluating 
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Cusum process control plans. 

2. Provide for asymmetric rejectable quality levels and 

resultant costs of asymmetric process shifts. 

3. Incorporate a process failure mechanism which is 

Weibull distributed. 

4. Develop a computer program which approximately opti­

mizes, based upon economics, the subgroup size n, 

sampling interval h, dead band values ku and kL, and 

decision intervals du and dL. 



CHAPTER II 

LITERATURE REVIEW 

This chapter reviews developments in the literature 

pertaining to the objectives of this research. Substantia­

tion for this particular research is elaborated upon. 

Furthermore, other sources which correspond with the general 

concepts relevant to this study are presented. 

This chapter is divided into five parts : 

1. Shewhart control charts and their enhancements and 

modifications. 

2. Economical design of X control charts. 

3. Cumulative sum control charts. 

4. Economical design of cumulative sum control charts. 

5. Process failure mechanisms. 

Shewhart Control Charts and Their 

Enhancements and Modifications 

Shewhart (1931) originated the control chart for deter­

mining the state of statistical control of a process. Sta­

tistical quality control chart techniques have been applied 

widely in various fields, such as manufactured products, 

delivery services, research works, and developmental 

environments. Duncan (1974) and Vance (1983) point out that 

13 



Shewhart control charts are fundamentally used for one of 

the following three purposes: (a) to determine the goal or 

standard for a process that management might strive to 

acquire, (b) to judge whether the goal has been achieved, 

and (c) to maintain current control of a process. 

Shewhart r-ontrol Char~s and 

Their Enhancements 

14 

Shewhart (1931) develops the use of 3-sigma control 

limits as action limits. Meanwhile, he suggests the use of 

sample sizes of 4 or 5 as being appropriate for X and R 

charts. The sampling interval is left to be determined by 

the quality control personnel or other concerned staff. 

In the last four decades, many enhancements of Shewhart 

control charts have been suggested. For example, a run test 

on sample means has been widely used. Weiler (1953) 

suggests that to make use of consecutive runs for control 

charts for the process mean might significantly decrease 

inspection. Warning limits have also been proposed. Page 

(1962) adopts the concept of warning limits and demonstrates 

a scheme based on warning and action limits. In general, 

the scheme is superior to a scheme based on runs. The 

sensitivity of Shewhart control charts for detecting small 

shifts in the process mean from the specified or target 

value is investigated. Weindling et al. (1970) establishes 

a pair of warning limits, located inside the action limits, 

for detecting small shifts in process mean and indicating a 
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possible out of control condition. Hillier (1969) develops 

a method for setting the control limits for X and R charts 

so that they can be reliably used regardless of how few 

subgroups have been inspected. Chung-How and Hillier (1970) 

provide guidance on what constants to use for mean and 

variance control chart limits if the power of the charts is 

of paramount importance, and computational considerations 

are secondary. 

The background of computing limits on Shewhart control 

charts is built on a presumption of normality, justified by 

the Central Limit Theorem. Measurable quality characteris­

tics often have non-normal distributions. The introduction 

of the assumption of non-normality is another enhancement to 

Shewhart control charts. Burr (1967) establishes tables 

which provide guidance on what constants to use for X and R 

charts if the parent population is markedly non-normally 

distributed. Schilling and Nelson (1976) facilitate a 

numerical method for determining the cumulative probabili­

ties of the distribution of sample means which is non­

normally distributed . Ferrell (1958) suggests that trans­

formation is required when the underlying universe is badly 

skewed. Vasilopoulos and Stamboulis (1978) modify and 

extend the existing standard methodology by utilizing the 

time series analysis approach and by introducing dependence 

via a second order autoregressive process (AR(2) Model) when 

either independence and/or normality are not present. 
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Modifications of Shewhart Control Charts 

The arithmetic mean and the subgroup range have been 

used to determine whether or not a state of statistical 

control exists for variables in Shewhart control charts. 

Moving Average, Moving Range, Median and Midrange, and the 

Geometric Moving Average (or Exponentially Weighted Moving 

average) charts represent general modifications of Shewhart 

control charts. The Cumulative Sum control charts are 

relevant to this classification, but they are presented in 

the next sections. 

Moving Average and Moving Range control charts are used 

in situations where the time interval between subgroups is 

too great to collect sufficient samples as a rational 

subgroup. Or, they are used in continuous process manufac­

ture (e.g., chemicals, refining, mining, etc.) where the 

smoothing effect of the moving average has an effect on the 

figures often similar to the effect on the product of the 

blending and mixing that happens in the remainder of the 

production process. The sensitivity of these control charts 

can be increased by allowing more successive points to be 

computed for the moving average. The more successive points 

averaged. the greater the smoothing effect and the more the 

curve emphasizes trends rather than point-to-point 

fluctuations. 

Ferrell (1964) advocates the use of Median and Midrange 

charts using run-size subgroups for controlling certain 

processes. Nelson (1982) suggests the use of medians to 
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reduce the burdensome calculation of a mean in Shewhart 

control charts. In his approach, the setting of control 

limits is based upon the average of the subgroup medians and 

the average of the ranges. 

Roberts (1959, 1966) suggests a procedure for gener­

ating geometric moving averages. The author shows that 

tests based upon geometric moving averages are better than 

-multiple run tests and moving average tests with regard to 

simplicity and statistical properties. Wortham et al. 

(1974) present an adaptive exponentially smoothed control 

system. The adaptive nature is achieved by varying the 

weighting factor according to the value of a tracking 

signal. The authors also illustrate an example of an 

adaptive control chart with associated sensitivity curves 

which present the probabilities of acceptance as a function 

of sampling periods after a change in a process occurs. 

Robinson and Ho (1978) present a numerical procedure for the 

tabulation of average run lengths (ARL's) of geometric 

moving average charts. Both one- and two-sided ARL's are 

given for various settings of the control limits, smoothing 

constant and shift in the nominal level of process mean. 

Hunter (1986) describes a procedure to establish the control 

limits for exponentially weighted moving average schemes. 

The author declares that the exponentially weighted moving 

average can be used as a dynamic process control tool to 

provide a forecast of where the process will be in the next 

instant of time. 
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Economical Design of X Control Charts 

Duncan (1956) has established a model for the optimum 

economical design of the X control chart. His paper was the 

first to deal with a fully economical model of a Shewhart­

type control chart. Duncan's paper leads the way to study 

in this area. In this model, the following assumptions are 

made about the process 

1. The process begins in a state of statistical 

control. 

2. The process standard deviation (a) remains the same 

in spite of the shifting mean of the process. 

3. Due to an assignable cause the process mean may 

randomly shift to ~o ± 6~ and stay there until 

corrected. 

4. The process is not shut down while searching for the 

assignable cause. 

5. Neither the cost of adjustment or repair, nor the 

cost of bringing the process back into a state of 

statistical control after the assignable cause is 

discovered, is introduced into the economical model. 

6. The specification limits are assumed to be symmetri­

cally spaced about the desired process mean. 

7. The loss-cost of a shift from ~o to either ~o + 6~ 

or ~o - 6~ is assumed to be the same. 

The process is monitored by an X chart with central 

line at ~o and upper and lower control limits at ~o ± ka/fn, 
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respectively. Samples are taken at intervals of h hours. 

The assignable cause is assumed to occur according to a 

Poisson process with an expectation of A occurrences per 

hour. The parameters ~o, o, and a are assumed known, while 

sample size n, the control limit spread k, and the sampling 

interval h are decision variables. The expected time the 

process will be out of control is the sum of three 

components : 

1. The average number of sampling intervals necessary 

for detecting the shift times the length of each 

interval, minus the average time of occurrence of 

the assignable cause within an interval between 

samples. 

2. The delay in plotting a point, which is assumed to 

be a linear function of the sample size. 

3. The average time taken to find the assignable cause. 

A production cycle time is defined as the interval of time 

from the start of production in a state of statistical 

control to the detection and elimination of the assignable 

cause. The cycle, therefore, ,consists of the expected time 

the process will be in control and the expected time the 

process will be out of control. 

Duncan presents a design criterion to minimize the 

loss-cost per unit of time. Cost incurred in the process 

contains four elements : 

1. The loss of defective products being produced. 

2. The average cost of a false alarm. 
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3. The average cost of a real alarm. 

4. The average cost for sampling and maintaining 

control charts. 

Several numerical approximations are used in the optimiza­

tion of this model which essentially represent a sensitivity 

analysis for anticipated changes in the parameters of the 

model. 

Goel et al. (1968) develop an iterative procedure to 

produce the exact optimal solution to Duncan's model (1956) 

by computer. Comparison is made between Duncan's approxi­

mate method and the developed procedure. The procedure is 

superior to Duncan's approximate optimization technique in 

some situations. However, in many cases the difference is 

insignificant. 

Knappenberger and Grandage (1969) develop a method for 

choosing the decision variables n, h, and k in order to 

minimize the expected cost per unit produced. They assume 

that the time the process remains in control is an exponen­

tial random variable. In addition, it is assumed that the 

process mean is a continuous random variable which can be 

satisfactorily approximated by a discrete random variable. 

One value of the discrete random variable is associated with 

the in-control value of the process mean and the remaining 

values are associated with out of control values of the 

process mean. The expected total cost, per unit of product, 

associated with a quality control test procedure is similar 

to Duncan's model. 
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Optimization of the cost function is not developed 

analytically. Rather a two-stage numerical method is 

developed for determining the optimal decision variables, n, 

h, and k, of the X chart. In the first stage, the expected 

cost is computed for a wide variety of decision variables, 

cost coefficients, and for the desired values of a priori 

distribution parameters. In the second stage, the prelimi­

nary estimates obtained from the first stage are used as the 

starting point for a search method designed to locate the 

optimal values of the decision variables within any desired 

accuracy. 

Gibra (1971) develops a model for determining the 

optimal X chart parameters for maintaining economical 

~ontrol of a process under practical conditions. These 

parameters are again n, h, and k. A cost function is 

formulated based upon Duncan's model. However, there is a 

difference. The sum of times required to take and inspect a 

sample, compute and plot a sample average, and to discover 

and eliminate the assignable cause has an Erlangian distri­

bution. Gibra gives several examples to show how the 

formulated model can be applied and how the relevant cost 

function is minimized. 

Chiu and Wetherill (1974) propose a simple, approximate 

procedure for optimizing Duncan's model. The principle for 

the choice of parameters is to minimize the average loss­

cost, subject to a constraint on the OC-curve. One is free 

to choose a consumer·s risk point on the OC-curve to acquire 
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a desired protection against inferior quality. One may then 

determine the values of the sample size and the control 

limit coefficients from a table, by a rule of thumb. The 

value of a sampling interval is calculated by an algebraic 

formula. Chiu and Wetherill declare that this method 

permits a rapid determination of the control parameters 

which generally yield an average cost close to the exact 

minimum. Furthermore, they show that in most cases, despite 

its simplification of the problem, the developed method 

gives better solutions than Duncan's more. involved procedure 

(1956) with the added advantage that the OC-curve can be 

partly controlled by the user. 

Baker (1971) develops two discrete-time models in which 

a sample of size n is taken at the end of each period and 

the computed statistic plotted on a control chart with k­

sigma limits. In the first process model the geometric 

distribution is applied to model the number of periods the 

process remains in the in-control state. In the second 

model any discrete probability function can be used to model 

the characteristic of the time to failure of a process. The 

author studies a Poisson time to failure and compares it to 

the usual geometric process model. It is shown that the 

former process results in smaller sample sizes and narrower 

control limits than will be economically optimal in the 

latter case. 

Jones and Case (1981) develop an economical model to 

design a joint X and R control charts with a minimum cost. 
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Duncan's model (1956) is used as a basis for subsequent 

economical model development. The decision variables are 

sample size, width of X control chart limits, width of R 

control chart limits, and sampling interval in hours. Jones 

and Case emphasize the estimation of the expected time the 

process will be operating in an out of control condition. 

They assume that when a process is out of control, the 

resultant effect is an increase in the number of defective 

items produced which will cause additional economical 

losses. These losses are assumed to be dependent upon the 

types of out of control conditions and the length of time 

the process remains in each. Four control conditions are 

discussed in the model. That the mean and variance of the 

process are in control is defined as the in-control 

condition. The out of control conditions occur when either 

the process mean, the process variance, or both, are out of 

control. The four conditions form seven types of out-of­

control states. 

Lorenzen and Vance (1986) present a general process for 

determining n, h, and k for the designs of the economical 

models of"X, p~ arid u charts. A general process model is 

considered, and the hourly cost function is derived. Numer­

ical techniques to minimize this cost function are discuss­

ed, and sensitivity analyses are performed. They also 

illustrate an example to reveal the potential savings of 

this technique of designing control charts. 

Duncan (1971) has generalized his assignable cause 
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model to the situation when there are several assignable 

causes. Each assignable cause produces a shift of known 

magnitude in the process mean. The occurrence times of the 

assignable causes are assumed to be independent exponential 

random variables. Duncan uses the direct search method to 

locate the local minimum of the cost function. The solu­

tions to several example problems and a sensitivity analysis 

of the model are presented. 

Cumulative Sum Control Charts 

The control chart techniques mentioned in the previous 

sections are based on the rule, proposed by Shewhart, of 

taking action when a point falls outside of the "control 

limits," usually 3-sigma limits. It is a natural step to 

adopt a rule for action that is based upon sums of observa­

tions rather than the last few samples. This is done by the 

use of a cumulative sum control chart or "Cusum chart" as it 

has come to be called. The Cusum chart makes use of the 

historical data and provides an approach which is able to 

detect shifts in the process mean, especially if the shift 

is not large. It may also indicate the time of shifting 

more clearly by reviewing the trend of the cumulative sum. 

Page (1954) initiates the Cusum chart scheme. Starting 

from a process revision and restart, all subsequent plots 

contain information from the whole set of observations up 

to, and including, the plotted point. That is, the ordinate 

of the ith point in a Cusum chart equals that of the (i-l)th 
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point plus the statistic value computed from the ith sample. 

Page introduces the average run length (ARL) to develop 

rules that use all the observations and that are suitable 

for detecting any magnitude of shift in the mean parameter. 

The inspection process developed permits detection of param­

eter variation in one and two directions. The value of the 

process mean determines the ARL of a Cusum scheme. General­

ly, the two specified mean levels are the acceptable quality 

level ~a and the rejectable quality level ~r, and the ARL at 

these quality levels are denoted by ARLo and ARL1, respec­

tively. 

Page (1961) examines the practice of Cusum charts. He 

declares that the cumulative sum schemes are much more 

sensitive than the ordinary Shewhart control chart. Johnson 

and Leone (1962) give a complete description of Cusum charts 

with some basic deviations. Ewan (1963) outlines the varie­

ty of continuous graphical control schemes and the types of 

processes for which Cusum charts are most appropriate. He 

compares Cusum charts with Shewhart and weighted mean 

charts. Ewan concludes that Cusum charts are more effective 

than Shewhart control charts in detecting sustained changes 

in the process mean in the region 0.5-sigma to 2.0-sigma. 

Ewan also discusses the practical scale problems, the use of 

exact decision procedures, sample size, sampling interval 

and detection of trends. 

Bakir and Reynolds (1979) develop a nonparametric 

procedure based on Wilcoxon signed-rank statistics where 



ranking is within groups. The procedure combines a Cusum 

chart with Wilcoxon statistics for quickly detecting any 

shift in the mean of a sequence of observations from a 

specified control value. 
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Johnson and Bagshaw (1974) study the effects of serial 

correlation on the performance of one-sided Cusum charts. 

Later, they (1975) develop another approximation to the 

cumulative sum charts which allows one to study the run 

length distribution after a change in level has occurred. 

They emphasize the effects on the run length distribution 

caused by the presence of serial correlation. Lucas and 

Crosier (1982) evaluate a standard Cusum control scheme and 

four modified Cusum control schemes for robustness. The 

average run length for each scheme is evaluated using a 

contaminated normal distribution, a distribution that has 

longer tails than the normal. They conclude that a Cusum 

control scheme that ignores the first suspected outlier, but 

gives an out of control signal for two successive outliers 

is found to perform well. Bissel (1984a) makes a comparison 

of the run length properties for Cusum schemes, Shewhart 

charts, and control charts with warning limits when there is 

a linear trend in the underlying mean. 

Lucas (1985) and Vardeman and Ray (1985) describe 

design and implementation procedures for utilizing Cusum 

charts for attributes where the observations are Poisson or 

exponential random variables. 

Woodall (1985, 1986) develops a method for designing 



quality control charts on the basis of their statistical 

performance over specified in-control and out of control 

regions of control limit spreads. He divides and defines 

the control limit spread of a two-sided Cusum chart as 

in-control, indifference, and out of control states. 
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Although a change in trend on a cumulative sum chart 

will indicate that a change has occurred in the process, it 

is desirable to have a visual record of data in both direc­

tions, upward and downward, for indicating where the change 

occurs and when it needs an action. The use of a V-shaped 

mask is implemented for this purpose. The vertex of the 

mask is placed a distance, called the lead distance, ahead 

of the last plotted point. The process is considered to be 

in a state of statistical control as long as all previously 

plotted points fall within the arms of the mask. Johnson 

and Leone (1962) show how to determine the dimensions and 

the significant characteristics of the V-mask. Lucas (1976) 

discusses practical aspects of the design and the use of V­

mask control schemes. He recommends for plotting purposes a 

scale of one sample unit on the abscissa equaling two 

standard deviations of the process (2a) on the ordinate. 

Lucas also presents a computational form of the V-mask. He 

declares that this form is especially helpful when the data 

arrive rapidly or when many parameters are being controlled 

simultaneously. 

Ewan (1963) first proposes the use of two or more V­

masks simultaneously to improve the sensitivity of the Cusum 
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schemes to large shifts in the process mean. Later, Lucas 

(1973), Bissell (1979), and Rowlands et al. (1982) also 

advocate changes in the shape of the V-mask near its vertex, 

introducing a parabolic section. Lucas {1982) proposes a 

combined Cusum-Shewhart quality control scheme which will be 

classified as a modified V-mask. 

Economical Design of Cumulative Sum 

Control Charts 

Taylor (1968) first introduces economical design 

concepts into cumulative sum control charts. He studies the 

economical design of Cusum charts for controlling the proc­

ess mean having normally distributed quality characteristics 

with known variance. The costs of repairing the process, of 

operating out of control, and of maintaining the control 

chart are assumed known. The process is shut down while 

searching for the assignable cause. If the assignable cause 

is not a false alarm, then adjustment time and cost are 

added to the process. In his research, Taylor finds no 

statistical significance and no practical difference in the 

run lengths as the number of samples taken when the process 

leaves control varies between 0 and 50. Thus, he assumes 

that the average time between the first sample after the 

occurrence of the assignable cause and the last sample prior 

to its detection equals the product of the sampling interval 

times the value (ARLl-~). He develops a formula giving 

approximately the long-run average cost per unit of 



29 

operating time as a function of the sample size n, sampling 

interval h, and the Cusum scheme's design parameters. 

Taylor utilizes the expressions, derived by Goldsmith 

and Whitfield (1961), for ARL for in-control and out-of­

control states to find by trial and error the values of the 

Cusum scheme's design parameters. 

Goel and Wu (1973) follow Duncan's approach for the 

economical design of X charts (1956) to derive their 

economical model of Cusum charts which gives the long-run 

average cost as a function of decision variables, n, h, k, 

and decision interval d. The value k is defined as half of 

the sum of the desired and the shifted process means. In 

addition, the expected elapsed time between the first sample 

after the occurrence of the assignable cause and the last 

sample prior to its detection is determined using the 

results derived by Taylor (1968). Goel and Wu assign an 

integer value to n and then employ the "pattern-search" 

technique to determine the optimum values of the sampling 

interval h and the decision interval d. They also investi­

gate numerically the cost surfaces, the effects of shifts in 

parameters, cost factors and the expected time for an 

assignable cause to occur on the loss-cost surfaces and the 

optimum designs, which provide information about the 

neighborhood of the optimum. 

Chiu (1974) uses the decision interval criterion to 

develop the economical model of a Cusum chart for quality 

surveillance. He follows the general modeling strategy of 
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Duncan's X chart model but shuts down the process and makes 

a search for the assignable cause when the decision interval 

is exceeded. Chiu employs the Fibonacci search technique in 

two-dimensional space to find the optimum value of decision 

interval h, given sample size n. He also derives a simpli­

fied version of the algorithm which gives control plans 

close to optimum. A brief sensitivity analysis and a 

discussion of an extension of the model to a multiple cause 

system are given. 

Goel (1968} makes a comparison for the economically 

optimal X and Cusum charts. He shows that the Cusum chart 

is very efficient in detecting a lack of control where the 

shift in the process level is close to the value for which 

it is designed. If the actual shift is much smaller or much 

larger, an X chart seems to be better. In general, more 

sampling will be required when using an X chart while keep­

ing both ARLo and ARL1 equal for the two charts. Further­

more, the optimum loss-cost for the Cusum chart is slightly 

less than that of the X chart. When a smaller than optimum 

sample size is used, the loss-cost difference makes the 

Cusum chart become more favorable. The variation in loss­

cost for shifts smaller or larger than the designed value 

also shows that the Cusum chart is more economical than the 

X chart. 

Woodall (1986) studies the methods of designing Cusum 

quality control charts. He shows that the statistical 

performance of control procedures obtained using economical 
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models is often unsatisfactory. A numerical example is 

given to indicate that the more traditional Cusum procedure 

produces few false alarms, yet provides much more rapid 

detection of small shifts in the mean than the economically 

designed Cusum charts. Woodall declares that a major weak­

ness of the economical models is that the shift that is 

assumed to occur when the process goes out of control 

usually corresponds to a substantial loss of quality and 

profit. 

Process Failure Mechanisms 

Duncan (1956) assumes that the occurrence of assignable 

causes during an interval between samples is according to a 

Poisson process. In other words, the time to failure is an 

exponential random variable. This assumption simplifies 

considerably the development of the economical model. Mont­

gomery (1980) calls the characteristic of the occurrence of 

assignable causes the ''process failure mechanism". Baker 

(1971) proposes a model that allows the probability function 

of the time to failure of a process to be any discrete prob­

ability function. He reports that a non-Markovian process 

with a Poisson failure mechanism results in smaller sample 

sizes and narrower control limits than will be economically 

optimal in the geometric case. Baker concludes that the 

choice of process failure mechanism has a somewhat 

significant impact on the optimal economical design of 

control charts. 
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Gibra (1975) and Montgomery {1980) suggest that it is 

essential to examine and understand the physical behavior of 

the deterioration process so that the principle of economi­

cal design can be validly implemented. Saniga (1979) inves­

tigates the effects of process failure mechanisms and the 

Markov property (the memoryless property) on the economical 

design of X and R charts. He applies the long-run average 

time cost function developed by Baker (1971) to geometric, 

Poisson, and logarithmic series models. Numerical results 

are presented. These results indicate that both the Markov 

assumption and the process failure mechanisms are important 

determinants to the economically-based designs of X and R 

control charts. Saniga infers that the use of an incor­

rectly specified process failure mechanism will result in a 

substantial loss of cost. 

Johnson (1966) describes a method for construction of 

cumulative sum control charts for controlling the mean of 

sequences of independent variables each having the same 

Weibull distribution. He points out that a Weibull distri­

bution often gives a markedly more accurate representation 

than the exponential. Johnson presents several results to 

show the use of such charts when a non-exponential Weibull 

distribution would be more appropriate. 

Summary 

A literature survey of the problems, contributions, and 

needs related to the objectives of this research is 
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presented. In the previous economically-based models of 

two-sided Cusum charts discussed above, all the researchers 

assume symmetric control limit spreads, symmetric decision 

intervals, and equal costs for either upward or downward 

shifts in the process mean. There has been no work done for 

seeking an optimum condition to the economically-based two­

sided Cusum chart scheme which is associated with asymmetric 

control limit spreads, asymmetric decision intervals, and 

unequal costs for a shift in either the upward or downward 

direction. Further, this survey substantiates that most of 

the currently available economical models assume that the 

occurrence of the assignable cause is according to a Poisson 

process. The task of formulating an economical model of the 

cumulative sum control chart with a Weibull distributed 

process failure mechanism is yet to be accomplished. 

This survey indicates that a need exists to: 

1. Provide an economically-based cumulative sum control 

chart model in which the process failure mechanism 

is Weibull distributed. 

2. Introduce asymmetric rejectable quality levels, 

asymmetric process shifts, and unequal costs into 

this economically-based cumulative sum control 

chart. 

3. Develop appropriate procedures for the optimal 

design of the proposed model. 

4. Adopt decision variables, sample size n, sampling 

interval h, dead band values ku and kL, decision 



intervals du and dL for modeling and optimization 

purposes. 
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CHAPTER III 

MODEL DEVELOPMENT OF AN ASYMMETRICAL 

ECONOMICALLY-BASED CUSUM CHART 

Introduction 

This chapter analyzes the asymmetric cumulative sum 

chart and develops an economically-based model that is used 

to optimize the design of cumulative sum charts when 

associated with the Weibull process failure mechanism. The 

general economically-based modeling concepts developed by 

Duncan (1956) are applied in this research. However, they 

are applied to a Cusum chart, with an improvement on the 

assumption of the process failure mechanism to have a 

Weibull distribution of time to failure. This provides a 

more realistic model of the process environment. Concise 

assumptions and notation are presented to facilitate model 

development. 

Assumptions 

In order to develop the asymmetric cumulative sum 

chart, the following assumptions are made : 

1. The asymmetric cumulative sum chart is applied to 

monitor and help maintain the statistical control of a 

process. 

35 
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2. The process begins in a state of statistical control 

at a mean level ~o. 

3. The process standard deviation a remains the same in 

spite of mean shifts in the process. 

4. The process mean may randomly shift, due to an 

assignable cause, to ~o + 6ua or ~o - 6La and stay there 

until corrected. 

5. The occurrence of the process mean shift is instan­

taneous; the process will not drift from the in-control 

state, such as is the case with tool wear. 

6. The process is not shut down while searching for the 

assignable cause. 

7. As soon as the assignable cause is found, it is 

fixed instantly. 

8. Neither the cost of adjustment or repair, nor the 

cost of bringing the process back into a state of statisti­

cal control after the assignable cause is discovered, is 

introduced into the economic model. 

9. The hourly cost of sampling, measuring, computing 

and plotting the control chart has a linear relationship 

with subgroup size. 

10. The occurrence times for the assignable causes are 

independent and follow a Weibull distribution. 

The assumption of an exponential failure mechanism is a 

special case of assumption number 10. The other assumptions 

are similar to those used in Duncan's model (Duncan, 1956). 



Notation 

The following notation is introduced and will be 

employed throughout the entire dissertation. 
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n : The number of individual measurements or samples 

that comprise a subgroup. 

h The time interval between subgroups; subgroups 

of size n are taken from the process every h 

hours. 

du The decision interval in the upward direction; 

cumulative sums beyond this value indicate a 

process mean shift. 

dL The decision interval in the downward direction; 

cumulative sums beyond this value indicate a 

process mean shift. 

ku The "dead band" value for detecting upward 

shifts; subgroup averages must be beyond the 

"dead band" to begin adding to the cumulative 

sum. 

kL The "dead band" value for detecting downward 

shifts; subgroup averages must be beyond the 

"dead band" to begin adding to the cumulative 

sum. 

e , s The parameters related to the time of occurrence 

of the assignable cause. The distribution of 

the process in control is Weibull distributed 

with a mean time 8f(l+l/S), where 8 > 0 is the 

scale parameter and S > 0 is the shape 
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parameter. The density function of the Weibull 

distribution is 

S-1 S 
f(t) = (S/B)(t/8) exp(-(t/8) ); t~O. ( 3. 1) 

E(f(t)) The expected value of a function of variable t. 

The process mean ~ has the standard or desired 

value ~o before any shifting occurs. 

a The standard or desired process standard devia-

tion which remains the same in spite of the 

occurrence of any shift. 

6u The magnitude of an upward shift in the process 

mean, expressed in multiples of a (6ua); an 

upward shift will occur from ~o to ~o + 6ua. 

6L The magnitude of a downward shift in the process 

mean, expressed in multiples of a (6La); a 

downward shift will occur from ~o to ~o - 6La. 

Vo The hourly income which accrues from operation 

of the process in-control at mean level ~o. 

Vu The hourly income which accrues from operation 

of the process out of control at mean level 

~o + ova. 

VL The hourly income which accrues from operation 

of the process out of control at mean level 

~0 - OLa. 

Mu The diminution of hourly income attributed to 

the occurrence of an upward mean shift from ~o 

to ~o +ova; Mu = Vo - Vu. 

ML The diminution of hourly income attributed to 
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the occurrence of a downward mean shift from ~o 

to ~o - oLcr; ML = Yo - VL. 

b The cost per subgroup of sampling, measuring, 

computing, plotting, and making the acceptance/ 

rejection decision that is independent of the 

subgroup size. 

c The cost per unit of sampling, measuring, com­

puting and plotting that is related to the sub­

group size; the relationship is assumed to be 

linear. 

D The average time taken to find the assignable 

cause, once an out of control condition is 

detected. 

e The per unit average time for sampling, 

measuring, computing and plotting; this time is 

assumed proportional to the subgroup size n. 

T The average cost per event of searching for an 

assignable cause when none exists. 

W The average cost per event of searching for an 

assignable cause when one does exist. 

a The conditional probability that if there is a 

shift in the mean, the shift will be in the 

upward direction. 

1-a The conditional probability that if there is a 

shift in the mean, the shift will be in the 

downward direction. 

ro The proportion of time the process is in a state 



40 

of statistical control (~ = ~o). 
ru The proportion of time the process is out of 

control in the upward diretion (~ = ~o + 6ua). 

fL The proportion of time the process is out of 

control in the downward direction (~ = ~o - 8La). 

Tin The expected length of time a process is in­

control at the acceptable quality level. 

ARLo 

ARL1 

ARLAu(6u) 

ARLAu(6L) 

ARLAL(6u) 

The expected number of subgroups taken until a 

false alarm is indicated when a process is in­

control at the acceptable quality level. 

The average number of subgroups taken before a 

shift in the process mean from ~o to either 

~o + 8ua or ~o - 8La is detected by virtue of 

exceeding either the upper decision interval or 

the lower decision interval. 

The average number of subgroups taken following 

an upward shift from ~o to ~o + 8ua before 

detection by virtue of the cumulative sum 

exceeding decision interval du. 

The average number of subgroups taken following 

a downward shift from ~o to ~o - 8La before 

detection by virtue of the cumulative sum 

exceeding decision interval du. 

The average number of subgroups taken following 

an upward shift from ~o to ~o + 8ua before 

detection by virtue of the cumulative sum 

exceeding decision interval dL. 



ARLAL(OL) 

ARLA1(ou) 

ARLAl(OL) 
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The average number of subgroups taken following 

a downward shift from ~o to ~o - OLO before 

detection by virtue of the cumulative sum 

exceeding decision interval dL. 

The average number of subgroups taken before an 

upward shift from ~o to ~o + ouo will be detect­

ed by virtue of exceeding either the upper 

decision interval or lower decision interval. 

The average number of subgroups taken before an 

upward shift from ~o to ~o - OLo will be detect­

ed by virtue of exceeding either the upper 

decision interval or lower decision interval. 

T1 The average time elapsed from the time the 

process mean shifts from ~o to either ~o + ouo 

or ~o - oLo until the detecting subgroup is 

taken. 

Tz The average time elapsed for sampling, measur­

ing, computing and plotting a sample statistic 

and finding an assignable cause. 

A TOW I 

ETOPS 

ENS IN 

The expected time of occurrence of a process 

shift within a particular interval between 

subgroups. 

The expected time of occurrence of a process 

shift within the interval between subgroups, 

over all intervals between subgroups. 

The expected number of subgroups taken during 

the period of the process in control. 
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Tout The expected length of time a process is out of 

control at a rejectable quality level. 

Tcycle The average time for one in-control, out of 

control cycle. 

Model Formulation 

General Structure 

The operation of a two-sided Cusum control scheme for 

surveilling the process mean comprises three basic proce­

dures: (1) sampling and measuring subgroups of size nat 

regularly spaced intervals of h hours, (2) computing and 

plotting the cumulative sums 

Sju =Max (O,Xj - ku + S(j-l)U) 

and 

SjL =Max (O,kL- Xj + S(j-l)L). 

for subgroup j (Sou= SoL- 0), and (3) comparing the 

cumulative sums Sju and SjL to the decision intervals du and 

dL, respectively. Whenever the computed value Sju of a 

plotted point is greater than or equal to the upper decision 

interval, du, it indicates the likely occurrence of an 

upward shift in the process mean. Similarly, if the comput­

ed value SjL of a plotted point is greater than or equal to 

the lower decision interval, dL, it indicates a likely 

downward shift in the process mean. In other words, a 

decision that the process mean has shifted from the desired 

value is reached when either the upper or the lower decision 

interval is exceeded. Therefore, the subgroup size n, time 
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interval between subgroups h, dead band values ku and kL, 

and decision intervals du and dL are the decision variables 

required for implementing a two-sided Cusum control chart. 

Average Run Length CARL) 

The run length of a control scheme is the number of 

subgroups necessitated before there is an out of control 

signal. An out of control signal indicates that an assign­

able cause has probably occurred in the process and that 

action should be taken to search for and remove the assign­

able cause. The ARL is used as a performance measure to 

evaluate the Cusum control chart. The decision variables n, 

h, ku, kL, du, and dL of the Cusum chart determine values of 

ARLo and ARL1 at acceptable and rejectable quality levels, 

respectively. In general, a good control chart scheme has a 

very large value of ARLo, when the process is in-control, 

and a very small ARL1, when the process mean has shifted. 

The desired values of ARLo and ARL1 at the acceptable 

and rejectable quality levels, respectively, are generally 

specified, in order to determine the decision variables of a 

Cusum control scheme. The decision variables are then form­

ed by using nomograms of Ewan and Kemp (1960), Goel (1968) 

or Geol and Wu (1973) to satisfy, approximately, the speci­

fied ARLo and ARL1. This approach of designing the Cusum 

control scheme does not, however, take into consideration 

the cost aspects of the process and the time interval 

between subgroups, h, which has to be determined by some 



rule of thumb. In general, nomograms are inconvenient and 

not precise. 
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Economically designed Cusum control schemes require 

repeated ARL computations to minimize an expected cost 

function. Vance (1986) presents a computer program for 

evaluating the ARL. This program is used to avoid the 

drawbacks of nomograms. However, Vance's ARL program 

produces an ARL value for one-sided Cusum control schemes. 

Fortunately, one may consider a two-sided Cusum control 

scheme as a synthesis of two one-sided Cusum control 

schemes. An asymmetric two-sided Cusum control scheme will 

have to deal with the magnitudes of an upward shift oua and 

a downward shift 6La in the process mean, upper and lower 

dead band values, ku and kL, and upper and lower decision 

intervals, du and dL. Recall that ARLA1(6u) is the average 

number of subgroups taken before a magnitude of upward shift 

ou will be detected by virtue of exceeding either the upper 

decision interval or lower decision interval. Kemp (1961) 

shows that 

1 1 1 
= + 

ARLAl(ou) ARLAu(ou) ARLAL(ou) 

Likewise, recall that ARLA1(6L) is the average number of 

subgroups taken before a magnitude of downward shift OL will 

be detected by virtue of exceeding either the upper decision 

interval or lower decision interval. Then, 

1 1 1 
+ 

ARLAI(6L) ARLAu(oL) ARLAL(6L) 
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It is assumed that there is a possibility a that the process 

mean will shift upwardly. Then the ARL, ARL1, of the two-

sided Cusum control scheme is given by 

ARL1 =a* ARLA1(6u) + (1-a) * ARLA1(6L). 

Nature of the Process and Cycle Time 

The process starts at time t = 0 in a state of statis-

tical control with a mean value ~o and a known standard 

deviation a which remains constant. An assignable cause 

occurs randomly and causes a shift in the process mean of a 

known magnitude, either Bucr or 6Lcr. Thefefore, the shifted 

process mean is either ~ = ~o + Bua or ~ = ~o - Bta, depend-

ing on the direction of shift. The process stays at this 

level until the shift is detected and adjustments are made 

to bring the process back to the desired mean value, ~o. 

Then it stays in an in-control condition until the next 

assignable cause occurs. 

The cycle time of the process is defined as the total 

time of the process, starting from an in-control state, 

shifting to an out of control condition, detecting the lack 

of control and finding the assignable cause. In other 

words, cycle time is composed of durations in-control, out 

of control before detection of the assignable cause, and 

while searching for the assignable cause. An illustration 

of cycle time is given in Figure 3.1. 



Process begins 
in-control 
~ 

Assignable 
cause 

Lack of 
control 
detected 

~ 

lh 2h • • • ih (i+l)h ••• 

In-control Out of control 

Cycle 

Figure 3.1. Cycle Time 

46 

Assignable 
cause\ 
found ~ 
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Derivation of the Economic Model 

Average cycle time plays an important role in deter-

mining the cost components of the model. When the average 

cycle time is determined, then the cost components can be 

converted to an hourly cost basis. A diagrammatic explana-

tion of the procedures involved in the derivation is given 

in Figure 3.2. 

Average In-control. Out of control 

and Cycle Time 

As illustrated in Figure 3.2, the average cycle time is 

developed as follows: 

Average 
cycle 
time 

( 2 ) ( 1 ) 
Average 

- in-control + 
time 

Average time the process is 
out of control before a 

detecting subgroup is taken 

( 3 ) 
Average time for sampling, 

+ measuring, computing and 
plotting a subgroup 

(4) 
Average time 

+ seeking for the 
assignable cause 

(1) From Eq. (3.1), the probability that an assignable cause 

occurs in the interval t to t+~t is approximately 

S-1 S 
f(t)At = (S/9)(t/9) exp(-(t/9) ) t. 

The average time required for the assignable cause to 

occur is 

E(f(t)) = ): tf(t)dt = 9[(1+1/S). 

The time period the process remains in the in-control 

state, given that it begins in-control, is equal to the 
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----------------+-----

First 
cycle 

Assignable Detecting Lack of Assignable 
cause subgroup control cause 

begins occurs selected detected fourid 
+ l ~ / / 
~X--+-............J~ I ~--+---'' ~~~~-----~ 

• • • ih (i+l)h ••• . . . ••• 

r--en--f--D----f 

~----Tl----+------Tz----_, 

~-Tin--+-----------Tout---------~ 

~-----------------Tcycle------------------~ 

~~one In-control, Out of control Cycle--~ 

Tin = ercl+l/S) T1 = ARL1 * h - ETOPS 

Tout = T1 + Tz Tz = en + D 

Tcycle = Tin + Tout 

Figure 3.2. Diagrammatric Explanation of 
the Cost Model Derivation 
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mean @f the distribution governing the process failure 

Cmea:n shift} mechanism. Hence the expected length of 

time~ Tin, for which the process is in-control at level 

1-lO i.s given by 

Tin = 8f(l+l/S). (3.2) 

(2.a) If subgroups are taken at intervals of h hours, then 

given the occurrence of the assignable cause in the 

interval between the ith and (i+l)th subgroup (see 

Figure 3.3), the average time of occurrence within 

that interval is given by 

ATOWI = 

)
(i+l)h 

f(t)(t-ih)dt 
ih 

)
( i + 1) h 

f(t)dt 
ih 

This can be simplified as follows : 

ATOWI = 

)(i+l)h 

ih 
= r i+l )h 

ih 

\(i+l)h 
f(t)tdt - Jih f(t)ihdt 

)
(i+l)h 

f(t)dt 
ih 

f(t)tdt 

- ih. 

f(t)dt 

(3.3) 

When tis Weibull distributed, from Eq. (3.1) ATOWI is 

as follows: 
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ith Assignable (i+l)th subgroup; the first 
subgroup cause occurs subgroup taken after the 
l ~ p~ goes out of control 

~--+1--------~x--------~--------------------

f---A TOW!--~ 

Figure 3.3. Average Time of Occurrence of 
Assignable Cause Within an 
Interval Between Subgroups 
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\(i+l)h S-1 S 
) (S/8)(t/8) exp(-(t/8) }tdt 
ih 

ATOWI - - ih 
rCi+l)h s-1 s 
)ih (S/8)(t/8) exp(-{t/8) )dt 

S S-1 
Letting {t/8) = u, then (S/8)(t/8) dt = du. Also, 

S 1/S 1/S 
(t/8) = u implies that t/8 = u or t = Bu 

Therefore, 

ATOWI -

s 
\((i+l):/8) 

)(ih/8) 

s 
rCCi+l)h/8) 

J(ih/8) 5 

1/S 
u exp(-u)du 

- ih 

exp(-u)du 

s s 
ectc c 1+1/Sl, c Ci+Uh/8) > - 6< c 1+1/S), c ih/8) ) > 

= 
s s 

exp(-(ih/8) ) - exp(-((i+l)h/8) ) 

- ih, (3.4) 

where 

~(a,x) represents the incomplete Gamma integral; 

(X a-1 
t(a,x) = )o exp(-t)t dt. 

(2.b) Given the average time of the occurrence of the 

assignable cause between subgroups i and i+1 (ATOWI) 

above, in Eq. 3.3, the expected time of occurrence of 

the assignable causes within an interval is given by 
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00 ((i+l)h 
ETOPS - L A TOW I f(t)dt - i 

i=O J ih 

OJ ) (i+l)h 
= L f(t)(t-ih)dt 

i=O ih 

= 
OJ r Ci+l)h )ci+l)h 
L ( ) f(t)tdt - ih f{t)dt). 

i=O ih ih 

(2.c) When the process mean shifts from ~o to ~o + ouo, then 

the average number of subgroups taken before the shift 

in the process will be caught by virtue of the cumula-

tive sum exceeding decision interval du is ARLAu(ou), 

and by virtue of exceeding dL, ARLAL(6u). Kemp (1961) 

shows that the average number of subgroups taken 

before this upward shift in the process will be caught 

is ARLAI(ou), where 

1 1 1 
+ 

ARLA1(6u) ARLAu(ou) ARLAL(ou) 

(2.d) When the process mean shifts from ~o to ~o - OLO, then 

the average number of subgroups taken before the shift 

in the process will be caught by virtue of the cumula-

tive sum exceeding decision interval du is ARLAu(oL), 

and by virtue of exceeding dL, ARLAL(OL). Therefore, 

the average number of subgroups taken before this 

downward shift in the process will be caught is 

ARLA1(6L), where 

1 1 1 
= + 

ARLA 1 ( o L) ARLAu(oL) ARLAL(OL) 

(2.e) The average number of subgroups taken before a shift 
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in the process mean is caught is noted as ARL1. That 

is, ARL1 is the ARL of an asymmetric two-sided Cusum 

control chart when the process is out of control and 

is given by 

ARL1 -a* ARLA1(6u) + (1-a) * ARLAI(6L). 

Therefore, the average time elapsed for which the 

process mean will be at the rejectable quality level 

before the detecting subgroup is given by 

T1 = ARL1 * h - ETOPS. 

(3) The time required to sample, measure, compute, and plot 

a point is proportional to the subgroup size n. That 

is, delay until a point is plotted is en hours. 

(4) An average time of D hours is required to find an 

assignable cause after its detection. Thus, the process 

will continue at the rejectable quality level for an 

additional Tz = en + D hours since the process is not 

shut down while searching for the assignable cause. 

Therefore, the total expected time the process is out 

of control, Tout, is given by 

Tout = T1 + Tz 

= ARL1 * h - ETOPS + en + D. (3.4) 

Combining expressions in Eqs. (3.2) and (3.4), the average 

time Tcycle for one in-control, out of control cycle is 

given by 

Tcycle = Tin + Tout 

= 8[{1+1/S) + ARL1 * h - ETOPS + en + D. 
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Cost Formulation 

The components of this model are (1) loss due to 

defective products being produced, (2) cost of searching for 

an assignable cause when none exists, (3) cost of searching 

for an assignable cause when one exists, and (4) cost of 

sampling, measuring, computing and plotting the control 

chart. 

Based upon the average in-control, out of control and 

cycle time, the hourly net income from the process is 

developed as follows: 

Process average 
hourly 

net income 
= 

( 1) 
Average hourly 

in-control 
income 

( 3) 
Average hourly 
false alarm 

cost 

( 2 ) 
Average hourly 

+ out of control 
income 

( 4) 
Average hourly 

real alarm 
cost 

( 5) 
Average hourly cost for sampling, 

- measuring, computing and plotting 
the control chart 

(1) The proportion of time a process is in-control is 

8f(l+l/S) 
ro = 

Tcycle 

Therefore, the average hourly income due to the process 

being in-control is Vofo. 

(2.a) The proportion of the time a process will be out of 

control due to an upward shift in the process is 

a* (ARLAl(ou) * h- ETOPS + en+ D) 
ru = 

Tcycle 



55 

Thus, the average hourly income due to the process 

being out of control in the upward direction is vuru. 
(2.b) The proportion of the time a process will be out of 

control due to a downward shift in the process is 

(1-a) * (ARLA1(6L) * h - ETOPS + en+ D) 
fL -

Tcycle 

Thus, the average hourly income due to the process 

being out of control in the downward direction is 

VLfL. 

(3.a) A false alarm occurs when the cumulative sum value of 

a subgroup reaches either the upper or lower decision 

interval, while the process is actually in-control. 

The false alarm demands a search for the nonexistent 

assignable cause. The average number of subgroups, 

taken from an in-control process, between false alarms 

is ARLo. Hence the proportion of time a subgroup 

point will fall outside the decision interval when the 

process is in-control is 1/ARLo. 

(3.b) If the process goes out of control in the ith inter-

val, the expected number of subgroups taken during the 

period in which the process is in-control is given by 

m )(i+1)h 
ENSIN = ~ if(t)dt 

i=O ih 

Using Eq. (3.1), ENSIN is as follows 

m )(i+1)h S-1 S 
ENSIN = ~ i(S/8)(t/8) exp(-(t/8) )dt 

i=O ih 

S S-1 
Letting (t/8) - u, then (S/8)(t/8) dt- du. Also, 



S l/S 1/S 
(t/8) = u implies that t/8 = u or t = 8u 

00 s 
ENSIN = ~ i(exp(-(ih/8) ) 

i=O 

s 
exp(-((i+l)h/8) )) 

s s s 

56 

- exp(-(h/8) )+2exp(-(2h/8) )+···+ n exp(-(nh/8)) +··· 

s s 
-lexp(-(2h/8) )-···-(n-l)exp(-(nh/8) )-··· 

s s s 
= exp(-(h/8) )+exp(-(2h/8) )+exp(-(3h/8) )+··· 

00 

l: 
i=l 

s 
exp(-(ih/8) ) 

(3.c) The average hourly false alarm cost is therefore 

1 
* T * ENSIN 

ARLo 

Tcycle 

(4) The process is truly out of control once every Tcycle 

hours. Therefore, the average number of times per hour 

that the process actually goes out of control is 

1/Tcycle. If the average cost of finding the assignable 

cause when it occurs is W, the average cost per hour for 

finding as actual alarm will be W/Tcycle. 

(5) The average hourly cost for sampling, measuring, comput-

ing and plotting charts is 

b+cn 

h 

The process hourly net income is therefore: 
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1 
* T * ENSIN 

ARLo w b+cn 
I - Vofo + Vufu + VLfL -

Tcycle Tcycle h 

Since Mu = Vo - Vu, ML = Vo - VL and fo + fu + fL = 1, 

Vofo + Vufu + VLfL = Vofo + (Vo - Mu)fu + (Vo - ML)fL 

- Voro + Voru + VofL Mufu - MLfL 

- Vo - Mufu - MLfL 

Thus, 

1 
* T * ENSIN 

ARLo w b+cn 
I - Vo - Mufu - MLfL -

Tcycle Tcycle h 

= Vo - L. 

where 

L = Loss-cost 

1 

* T * ENSIN 
ARLo w b+cn 

- Muru + MLfL + + + -
Tcycle Tcycle h 

T * ENSIN + W * ARLo b+cn 
= Muru + MLfL + + 

ARLo * Tcycle h 

According to the formulation above, to maximize average 

hourly net income is equivalent to minimizing the loss-cost 

L. This observation corresponds to that of Duncan. 

Optimal-Seeking Methods 

The economically-based Cusum chart model is now used to 

find an optimal or near-optimal combination of values of the 

decision variables, minimizing the loss-cost L and thereby 
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maximizing the average hourly net income of the process. An 

analytically definite optimal solution has not been 

determined for the value of L as a loss-cost function of the 

decision variables n, h, ku, kL, du, and dL. A multi­

dimensional direct search technique is used for near­

optimizing the loss-cost function. 

The Nelder-Mead simplex procedure (Nelder and Mead, 

1965) (O'Neill, 1971) is utilized as the search algorithm. 

Olsson and Nelson (1975) show the generality of the Nelder­

Mead simplex method, its accuracy, and the simplicity of the 

information required for the computer input statement. This 

method is described for the minimization of a multivariable 

function without constraints. The simplex procedure derives 

its name from the geometric figure which is moved along the 

response surface in search of the minimum. No derivatives 

of the objective function are required, which is a so-called 

"direct" procedure. 

The simplex procedure approaches the minimum by moving 

away from the highest values of the objective function 

rather than by trying to move in a line toward the minimum. 

The procedure is operated by reflection, extension, contrac­

tion or shrinkage so as to conform to the characteristics of 

the response surface. The operation continues until either 

a specified number of evaluations has been reached or the 

function values differ from themselves by less than a 

specified amount. Based on empirical evidence, multiple 

starting points are required in order to lend confidence 



that an optimal or near-optimal solution of the loss-cost 

function has been reached. 
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In thie research, the subgroup size n is the only deci­

sion variable which must be an integer. A brief schematic 

description of the search procedure is given in Figure 3.4. 

Following is a more detailed description of the search 

procedure. 

1. Fix ku and kL at the middle of the desired process 

mean and upper rejectable quality level and lower 

rejectable quality level, respectively. Apply the 

Nelder-Mead algorithm with the other four variables 

to find the near-optimal point of real values of n, 

h, du and dL. 

2. With ku and kL remaining at the same values as they 

were in step 1, the real value of subgroup size n is 

truncated to an integer and treated as a constant. 

The values of h, du and dL, obtained from the 

preceding step, serve as a new starting point in the 

direct search which is then performed on decision 

variables h, du and dL. The result of h, du and dL 

with this integer value n and fixed ku and kL is 

treated as an intermediate best solution. 

3. Repeat step 2 by doing a line search along integer 

values of n to find the minimum loss-cost. 

4. Let the best result realized in step 3 be a new 

starting point and, with n fixed, do a five varia­

bles direct search to optimize values of h, du, dL, 



Input: 
Process Parameters: S, 8, a, a, Target, ou, OL. 

Cost and Time Factors: b, c, D, e, T, W, Mu, ML. 

Initial Point: n, h, du, dL, ku) kL. 

• Keep ku and kL constant. 
• Input criteria & step size for optimizing 

n, h, du and dL. 
• Optimize n, h, du, dL; determine loss-cost. 

• Truncate n to an integer n*; let n- n*. 
• Keep ku and kL constant. 
• Input criteria & step size for 

optimizing h, du and dL. 
• Optimize h, du, dL; determine loss-cost. 

• Keep ku and kL constant. 
• Optimize h, du, dL; determine loss-cost. 

Yes 

60 



61 

~ 
-'n - n + 11 I 

-

l . Keep ku and kL constant . . Optimize h, du, dL; determine loss-cost. 

Yes loss-
ost lower than 

best? 

No 

• Input criteria & step size for 
optimizing h, du, dL, ku and kL. 

1 
• Input step size for incrementally 

varying du and dL. . Vary du and dL; determine lower loss-cost. 

1 . Input step size for incrementally 
varying ku and kL. 

• Vary ku and kL; determine lower loss-cost. 

l 
• Restart . . Evaluate a defined Cusum chart. 
• Exit. -

~-

Figure 3.4. Schematic Description of the Search Procedure 
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'ku and Kt. 

5 .. :.r·ncremer..t,a~lly vary du ~'~ dlt. A4i well as ku and kL on 

,;tre resu11:. of -step 4L 'fhe fin~l outcome is then the 

tbe.e.t or ~-best ~;c;!i_$;:ji<OJn variable set ( n, h, ku, 

lkL, dv, dii:..') .for t~ ~CfO>fi;t)S:ical.ly-based Cusum chart. 

Incre~"t"ll.11y 'Q'a~liJill!£ k:u ,, !kn;,,, du and d~ on the result of the 

search ~ocedur-~ l\'l<lUl.l lL<e.ratd t.l() a slightly better outcome in 

most <>f 'tlit.e ~iS~$ .. 

In ~ ee.s~s~ search aetb.ods do not require continuity 

of the objectiv-e functi.on and the existence of derivatives. 

However. in general, in solving unconstrained nonlinear 

programming problems. gradient and second-derivative methods 

converge faster than direct search methods. 

Summary 

An economically-based model is developed to describe 

the use of a generalized Cusum chart. This model is devel­

oped using Duncan's approach to the economical design of 

control charts. The mathematical development and derivation 

of the hourly net income for this generalized Cusum chart is 

discussed. The model developed in this chapter has the 

characteristic of representing various process failure 

mechanisms while Duncan's model only deals with the expo­

nential time to failure mechanism. In addition, this model 

has the added capability of dealing directly with asymmet­

rical upper and lower decision intervals, dead bands and 

cot~ ts. 
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1m Q.tt>'tj.'ID.iiz:~tion procedure is used to find the decision 

variahlee; mL, l:ltb ltr.t, kL, du, and dL required to construct the 

contr()l ~end minimize the loss-cost function. The 

minim11a l~-C:Q5"t design is equivalent to the design which 

maximizes li<:Jllllll"'lY net income of a process. The Nelder-Mead 

direct sear-ch algorithm is utilized in this optimization 

procedure. 



CHAPTER IV 

RESULTS, COMPARISON AND ANALYSIS 

Introduction 

This chapter first discusses results achieved on Cusum 

charts of symmetric design. Results of the economically­

based model are compared with those of Goel (1968) based on 

his data sets numbered 1, 16 and 21. Then the asymmetric 

design is presented through Goel's number 1 data set. 

Factors which produce asymmetry of the model are: (1) 

a, the conditional probability that if there is a shift in 

the mean, the shift will be in the upward direction, (2) 6, 

the magnitude of the shift in the process mean in either the 

upward direction, ou, or downward direction, oL, (3) M, the 

diminution of hourly income that attributes to the occur­

rence of the assignable cause in either the upward direc­

tion, Mu, or downward direction, ML. A 3251 factorial 

experiment is conducted to verify the validity of the asym­

metric design. Different initial points are employed to 

confirm the validity of the model and its associated search 

procedure. 

64 
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Comparison of Results for 

the Symmetric Design 

In order to validate the economically-based asymmetric 

model developed in Chapter III and the search procedure 

associated with the model, three representative examples 

from Goel's research {1968) are optimized. The costs and 

other relevant parameters for these three examples are given 

in Table 4.1. 

TABLE 4.1 

COST AND RISK FACTORS AND PARAMETERS FOR THREE EXAMPLES 

Example 
No. ::>-.. 0 M e D T w b c 

1 0.01 2.0 100.00 0.05 2 50 25 0.5 0.1 
16 0.01 1.0 12.87 0.05 2 50 25 0.5 0.1 
21 0.01 0.5 2.25 0.05 2 50 25 0.5 0.1 

Goel presents his results based on a minimum cost 

criterion for a two-sided symmetric Cusum chart. Subgroup 

size n, time interval between subgroups h, decision 

intervals du and dL, and loss-cost values for these examples 

are reevaluated and are listed in Table 4.2. These results 

for the economically-based design are computed under the 

conditions: (a) o. = 0.5, (b) Mu = ML, and (c) ou = oL. This 
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is the only circumstance in which the asymmetric model 

developed herein is used to optimize a symmetric t~o-sided 

Cusum chart. Based on the results listed in Table 4.2, it 

can be noted that the asymmetric model developed has results 

very close to those of Goel's Cusum chart. 

TABLE 4.2 

RESULTS FOR GOEL'S CUSUM CHART AND 
ECONOMICALLY-BASED DESIGN 

Goel' s COSO! chart ~s Goel"s COSO! chart as enluated COSO! chart ae opthiled and euluated 
lmple euluated by Goel by aodel deYeloped by asynetric aodel 
lo. n ~ d Cost h dl d~ Cost k dt d~ Coat 

5 1.4 0.39 4.0093 uo 0. 39 0.39 um 1.40 0. 3893 0. 3895 um 
16 14 5.4 0.23 I. 4128 14 5.40 0. 23 0.23 I. 4113 14 5.(0 0. 2311 um 1.4113 

21 37 22.29 O.IZJ 0.8339 37 22.29 0.123 0.123 um 38 2U2 0.1061 0.1063 0. 8291 

A further comparison is to calculate the loss-costs for 

varying subgroup sizes of these 3 examples. The results are 

listed in Table 4.3. These loss-costs provide a measure of 

the performance of the control chart. From Table 4.3, the 

validity of the economically-based design and its associated 

search procedure can be confirmed. 

Different initial points are employed to further vali-

date the model and its associated search procedure. Each 

example is performed starting from two subgroup sizes to 

search for the optimal or near-optimal plan. As shown in 



67 

TABLE 4.3 

LOSS-COSTS FOR VARIOUS SUBGROUP SIZES 
FOR THREE EXAMPLES 

LOSS-COST 
Goel's CUSUft chart Goel's CUSOM chart CUSUft chart as opti1i:ed 

huple Subgroup as enluated as evaluted by and e•aluated by 
Ro. size by Goel 1odel defeloped asy11etric aodel 

3 4.1265 4.1251 4.1264 
4 4. 0232 4. 0225 4.0227 
5 4. 0093 4. 0088 4.0088 
6 t0464 4. 0461 4.0462 

13 1. 4138 1. 4122 1.4191 
16 14 1. 4128 1. 4113 1.4113 

15 1. 4145 l. 4130 1. 4152 
16 l. 4184 1.4173 l. 4183 

37 0.8339 0.8289 0.8292 
21 38 0.8340 0.8291 0.8291 

39 0.8342 0.8294 0.8293 
40 0.8346 0.6299 0.8296 

Table 4.4, for examples 1 and 16, results of the asymmetric 

model are very close to those of Goel. An interpretation of 

example number 21, in which the decision variables do not 

match well, is that the surfaces of the loss-cost become 

flatter as o decreases, as declared by Goel and Wu (1973). 

In order to explore the slope of the loss-cost 

surfaces, loss-costs are investigated by increasing and 

decreasing the subgroup size n from its optimum value. For 

each value of n, the model is optimized using the Nelder-

Mead technique, holding only n constant, with the other five 

decision variables initially set to their original optimum 
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TABLE 4.4 

OPTIMUM RESULTS OF ECONOMICALLY-BASED 
DESIGN FOR DIFFERENT INITIAL POINTS 

haaple fro• ~•all ~ubgroup ~he (n=l) Fro• large Bubgroup 6ize (n=IO} 
Ko. n h d~ dL Co6t n h dl dL Cost 

1 (6=2.0) 5 1.39 0.3991 0.3926 4.0089 5 1. 40 0.3893 0.3895 4. 0088 

16 (6=1.0) 14 5.31 0.2325 0.2316 1.4114 l( 5.40 0.2311 0. 2472 1.4113 

21 (6=0.5) 35 20.86 0.1291 0.1330 0.8292 38 24.22 0.1069 0.1063 0.8291 

value. The deviations in loss-cost with subgroup size n, as 

shown in Table 4.5, are the largest for o = 2 (example #1) 

and are the smallest for o = 0.5 (example #21) in either 

increasing or decreasing subgroup sizes from optimum. 

Analysis of the Asymmetric Design 

Factors, a, o, and M reflect the asymmetry of the 

model. The optimal results for asymmetric Cusum charts are 

analyzed by evaluating a 3251 factorial design. For factor 

a, there are five levels of interest, which are levels 0.00, 

0.25, 0.50, 0.75, and 1.00. For factor o, there are two 

different values, 4 and 2, for each of ou and oL which are 

used to form three pairwise combinations of ou and OL. 

Those are: 

(1) ou > OL where ou = 4, OL = 2. 

(2) ou - OL where ou = 2, OL - 2. 

(3) ou < OL where ou - 2, OL - 4. 
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TABLE 4.5 

DEVIATIONS IN LOSS-COST WITH 
SUBGROUP SIZE n 

Example Subgroup Loss-cost Deviation 
No. size 

3 4.1264 
4 4.0227 0.1037 

1 5 4.0088 0.0139 
6 4.0462 0.0374 
7 4.1123 0.0661 

12 1.4180 
13 1.4127 0.0053 

16 14 1.4113 0.0014 
15 1.4138 0.0025 
16 1.4188 0.0050 

36 0.8294 
37 0.8291 0.0003 

21 38 0.8291 0.0000 
39 0.8293 0.0002 
40 0.8298 0.0005 

Likewise, for factor M, three combinations of Mu and ML 

are : 

(1) Mu > ML where Mu = 1000, ML = 100. 

(2) Mu = ML where Mu = 100, ML = 100. 

(3) Mu < ML where Mu - 100, ML = 1000. 

Decision variables and Loss-costs 

To study the nature of the asymmetry, consider the 

design of a two-sided Cusum chart based on Goel's example 

number 1 with the following cost and risk factors: 

b = $ 0.50 D - 2.00 
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c- $ 0.10 e -- 0.05 

T = $50.00 0 - 1.00 

w = $25.00 Target = 100.00 

The results are obtained using the optimization procedure 

described in Chapter III, and are summarized in Tables 4.6-

4.9. 

It can be seen that each cell of each table has its 

mirror image through the centroid. Based on the results 

listed in the tables, conclusions within each table can be 

generated as follows: 

1. Each subgroup size (n) has its mirror image through 

the centroid. 

2. Two cells the same distance from and mirrored 

through the centroid have the same or nearly the 

same values of the time intervals between subgroups 

(h) and loss-costs (Cost). 

3. Two cells the same distance from and mirrored 

through the centroid have the upper and lower 

decision intervals (du and dL) very close to the 

lower and upper decision intervals (du and dL), 

respectively, in the other cell. 

4. The value of the upper decision interval (du) at 

a = 0.00 tends to be a relatively large number. 

This results in a very small possibility of a false 

alarm in the upward direction. Likewise, the value 

of lower decision interval (dL) at a = 1.00 tends to 

be a relatively large number. This results in a 
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TABLE 4.6 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=l, 
SCALE PARAMETER 9=100 AND INITIAL POINT AS FOLLOWS: 

« 

~ 
dt 
dL 

0. 00 D ,, 
lL 
Co8t 

k 
dl 
dL 

0.25 I 

kl 
h 
Cost 

h 
dt 
dL 

0. 50 n 
ll 
h 
Cost 

h 
dt 
dL 

0.75 I 

t• 
h 
Cost 

h 
dt 
dL 

1.00 n 
kl 
lL 
Cost 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=O.l, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=l: 

dJ:C, dL=2, kt= 102, h=99 dt=fL:2, h:lQt, h:99 dr=2 ,dL=4, kt= 101, t1=98 

ftt > ftL 
1000 100 

1.31 
4.1125 
o.mo 
c 

102.0524 
99.0116 
3.9556 

0.59 
D. 4893 
1.2523 
z 

102.015( 
98.9971 
9. 5369 

0,(8 
0. (693 
1.(695 
z 

101.9835 
9U02i 
14.6227 

0. 42 
0. 4675 
1.7217 
2 

102.0000 
99.0000 
19.6238 

0.33 
0.9(20 
6. 4357 
1 

102.0000 
99.0000 
24.4790 

6• ) h 
( 4} (2) 

ftt : BL 
160 100 

1.31 
4.1125 
o.mo 
4 

102.0524 
99.0116 
3. 9556 

1.33 
0. 6300 
0.446( 
4 

102.0000 
99.0000 
3.9146 

1.19 
0.4474 
G. 6969 
3 

101.9185 
91.0098 
3.8619 

1.23 
uou 
0. 7989 
3 

101.8491 
99.0085 
3.7560 

1.23 
0.4719 
5.ll51 
2 

101.9910 
99.0219 
3.4840 

!t < BL It > !L 
100 1001 1000 100 

0. 36 1.31 
3. 2116 3.5675 
0.5782 0. 4126 
3 4 

102.0579 101.0000 
98.9967 99. 0000 
26.6099 3. 9556 

e. u 0. 71 
1.8324 0. 4673 
0. 6059 0.6343 
3 4 

101.9203 100.9858 
99.0159 99.0192 
21.ZI6( 1D.!S29 

0. (9 us 
0. 5271 0. (263 
0. 6082 0.7591 
3 ( 

102.0211 . 101.0061 
89.0046 99.0158, 
15.7083 15.6229 

0. 72 0.10 . o.&llO 0. 6008 
O.H25 1.2260 
4 3 

101.8429 100.9933 
98.9962 99.0216 
9. 9926 21.2944 

l.Z3 0.36 
0.4719 0. 5796 
5.1151 2.2578 
2 3 ' 

101.9910 101.0018 
99.0219 99.0586 
3.4840 26.6099 

61 : I,L 
(2} (2} 

!1 : !L 
100 100 

1.31 
U875 
0.4126 
4 

101.0000 
99.0000 
3. 9556 

1.40 
U821 
0.3587 
5 

100.9844 
99.0012 
U02t 

1.39 
0. 3991 
0.3926 
5 

101.0000 
99.0000 
U089 

I.U 
0.3514 
0. (601 
5 

100.9375 
98.9920 
4.0023. 

1.31 
0.4126 
3. 5875 
4 

101.0000 
99.0000 
3. 9556 

ftt < BL 
100 1000 

0.36 
2.1692 
0.5824 
3 

101.0666 
99.0010 
26.6099 

0. 40 
1.2211 
0. 6039 
3 

100.9772 
99.0091 
21.291( 

O.S5 
0. 7511 
0. (353 
( 

100.9862 
99.0021 
15.8229 

0. Tl 
0.6076 
0. 4604 
4 

101.0131 
99.0087 
10.1530 

1.31 
0. 4126 
3. 5875 
4 

101.0000 
99.0000 

3. 9556 

ftt > BL 
1000 100 

1.19 
5.1201 
0. 4100 
2 

101.0269 
98.0211 
3.48(0 

0. 72 
0. 4366 
0.4467 
( 

101.0062 
96.0619 
9.9925 

0.19 
0' 6051 
o. 5m 
3 

100.99H 
98.0253 
15.7081 

o.u 
0.5929 
0. 759( 
3 

100.9938 
98.0549 
21.2161 

0. 36 
0.5753 
3. 2093 
3 

101.0067 
98.0556 
26.6099 

tl < 6L 
f2) (4) 

Bt : !L 
100 100 

1.19 
5.1201 
0.4700 
2 

I 01.0269 
98.0217 
3.mo 

1.23 
0. 7863 
0.4581 
3 

101.0030 
98.1103 
3. 7559 

1.19 
0. 6952 
0. tOOl 
3 

100.9916 
98.0432 
3.8619 

1.31 
o.mo 
0.4703 
4 

100.9758 
98.0904 
3.9139 

1.29 
o.m4 
um 
4 

101.0000 
98.0000 
3. 9563 

II < IL 
100 1000 

U3 
6.4357 
0.9420 
I 

101.0000 
98.0000 
24.1790 

0.42 
1.1336 
0.4838 
2 

100.9913 
98.0169 
19.6238 

U8 
1.4529 
0. 4985 
2 

101.0066 
98.016( 
14.6229 

0.59 
1.23(( 
0. 5269 
2 

101.0044 
91.9945 
9.5370 

1.29 
0.4324 
um 
4 

101.0000 
96.0000 
3. 9563 
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TABLE 4.7 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=2, 
SCALE PARAMETER 9=100 AND INITIAL POINT AS FOLLOWS: 

• 
k 
dJ 
dl 

0. 00 n 
tJ 
lL 
Co8t 

h 
dt 
dL 

O.Z5 l 

ll 
h 
Co8t 

h 
dl 
dL 

0. 50 II 

ll 
[I 

Co8t 

k 
dl 
dL 

•• 75 I 
kt 
h 
Cost 

~ 

dl 
dL 

1.00 I 

tl 
h 
Co8t 

DECISION INTERVAL-UPPER do AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=O.l, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=l: 

4F!, dL:2, if: 102, (L:99 

!t > IL 
1000 100 

1.24 
3.924! 
0-4102 
4 

102.0581 
96.9961 
4.3459 

0.56 
0.5120 
1.2513 
2 

101.9951 
99.0009 
IO.S562 

0. 46 
o.m4 
1.4966 
2 

101.995S 
99.0173 
16.2491 

uo 
0. 4658 
I. 7525 
2 

101.9679 
99.014S 
21.8534 

0. 31 
0. 9453 
6. 2307 
I 

102.0000 
99.0000 
27.2751 

6t ) 61 
( 4) (2) 

Bt : K1 
100 100 

1.21 
3. 9246 
0.1102 
4 

1020561 
98.9961 
4.3459 

1.24 
0. 3332 
O.H92 
4 

102.0266 
99. 0005 
4.3017 

1.13 
0 .l318 
0.6875 
3 

101.9240 
98.9990 
4.2441 

1.16 
0.3446 
0.6014 
3 

101.9743 
99.0089 
4.1319 

1.14 
0.4372 
3. 9068 
2 

102.0262 
99.0173 
3.8412 

h < BL 
100 1000 

0. 31 
3.6906 
0. 5603 
3 

102.0000 
99. 0000 
29.5913 

0. 3.9 
0. 7787 
0.5870 
3 

101.8932 
99.0005 
23.5656 

0.46 
0. 5162 
0. 5961 
3 

102.0000 
99.0000 
17.4167 

0.61 
0.4568 
0. 6339 
3 

101.9171 
99.0143 
11.0552 

1.14 
0.4372 
3.9068 
2 

102.0262 
99.0473 
3. 6412 

!t > BL 
1000 100 

1.21 
3. 7103 
0.1265 
4 

101.0000 
99.0000 
1.3!64 

0. 67 
0. 4617 
0.6345 
4 

100.9908 
99.01S2 
II. 2297 

0. 52 
0. 4371 
0. 7351 
4 

. 100.9914 
98.9998 
17.5549 

1.38 
1.5962 
1.2H2 
3 

100. 996( 
99.0461 
23.6411 

0.34 
0. 5858 
2.5529-
3 

100.9967 
99.0600 
29.5913 

&t : 6L 
tzi(Z) 

It : BL 
100 108 

1.21 
3.7403 
0. 4268 
4 

101.0000 
99.0000 
4.3464 

1.32 
0.4550 
0. 3714 
5 

101.0050 
99.0198 
4.3981 

1.33 
0.3988 
0,409( 
5 

100.9951 
U.0187 
4.4051 

1.34 
8.3511 
um 
5 

100.9961 
99.0156 
4.3962. 

1.24 
o.mo 
3.5632 
4 

!00. 9871 
99.0562 
4.3439 

81 < IL 
100 1000 

0. 34 
um 
0. 581i 
3 

101.0667 
99.0035 
29.5914 

0. 39 
1.2198 
o.mo 
3 

100.9832 
sum 
23.6(68 

0. 52 
0. 7328 
o.ms 
4 

101.0000 
99.0000 
17.5549 

0.67 
uuo 
9.1617 
4 

100.9911 
99.0112 
II. 2296 

1.24 
o.mo 
3. 5632 
4 

100.9611 
99.0562 
4.3459 

II > IL 
1000 100 

1.13 
1.0213 
0. 4329 
2 

10!.0284 
sum 
3.am 

0.61 
0.611S 
0.4950 
3 

101.0049 
98.0637 
11.0552 

0.47 
0. 6006 
0.5416 
3 

100.9925 
98.0151 
17.4167 

0. 39 
0.5950 
0.6666 
3 

100.9916 
98.0586 
23.5655 

0. 34 
0. 5603 
3. 6906 
3 

101.0000 
96.0000 
29.5913 

6t < 01 
(2) w 
Bt : BL 

100 100 

1.13 
U213 
8.4329 
2 

101.0284 
97.9626 
3.8412 

1.16 
o.ms 
0,3511 
3 

101.0098 
98.&246 
4.1319 

1.14 
0.6777 
0.3721 
3 

10!. 0000 
98.0000 
um 
1.25 
0.(464 
0. 3066 
4 

101.0000 
98.0000 
4.3011 

1.24 
0. 4057 
3.5232 
4 

101.0082 
98.0565 
U459 

h < !1 
100 1000 

0.31 
U(67 
0. 9153 
I 

101.1000 
98. OGOO 
21.2151 

Ul 
1.1341 
o.ms 
z 

101.0073 
98.0164 
21.8538 

0. 45 
1.4834 
0.4916 
2 

100.9891 
96.0206 
16.2490 

0.56 
l.Z321 
0 .51ST 
2 

101.0152 
98.8123 
10.5564 

1.24 
0. 405 7 
3. 9232 
4 

101.0082 
96.0565 
4.3159 
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TABLE 4. 8 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR 'l'HE WEIBJJL,b 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=l, 
SCALE PARAMETER &::50 AND INITIAL POINT AS FOLLOWS: 

a 

b 
dt 
dL 

0. 00 D 
it 
kL 
Coat 

b 
dt 
dL 

G.25 I 

kl 
kL 
Cott 

h 
dt 
dL 

0. 50 R 

tt 
tL 
Cost 

b 
d• 
dL 

0. 75 I 

h 
tL 
CoBt 

h 
dt 
dL 

1.00 n 
tt 
kL 
CoBt 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=O.l, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=l: 

!t l !L 
1000 100 

us 
3.6791 
0.4188 
4 

102.0257 
99.0064 
6.8420 

0.43 
0.5510 
1.2676 
2 

101.9493 
99.0113 
11.1569 

G.35 
0.4796 
1.(896 
2 

101.9854 
99.0012 
26.8545 

U6 
0.9488 
3.4419 
I 

102.0235 
99.0030 
36.3444 

0. 24 
0.9490 
5. 5102 
I 

101.9854 
98 .79(7 
45.6028 

6t > 6 L 
( 4) (2) 

!t : ftL 
100 100 

0.95 
3.6791 
6.4188 

• 102.0257 
99.0064 
um 
0. 9{ 
0.4908 
0.4540 
4 

101.9075 
99.0054 
6' 7852 

0. 87 
0,(511 
0.6959 
3 

101.9167 
99.0141 
6.6886 

0. 76 
0.5254 
1.2440 
z 

102.0020 
99.0183 
6.5423 

0.87 
0. 4294 
3. 5300 
2 

102.0265 
99.0148 
6.1150 

Bt ( ftL 
100 1000 

0.26 
5.1222 
0.5798 
3 

102.0260 
99.0020 
49.0532 

0.30 
1.5469 
O.S110 
3 

101.1452 
98.9949 
38.8731 

0. 35 
0.5680 
0. 5890 
3 

101.9993 . 
98.9963 
28.5330 

0.47 
I 

0. 7645 
0.6395 
3 

101.6681 
99.0252 
17.9082 

0.87 
0. 4294 
3. 5300 
2 

102.0265 
99.0148 
6.1450 

d!=dL=2 ,it=!O!, iL=99 

!t l !L 
I 000 100 

0. 95 
2. 6959 
0.4209 

• 101.0198 
99.0040 
6.8421 

0. 51 
0. 4616 
0.6292 
4 

100.9907 
99' 0099 
18.1935 

o.JS 
U953 
1.0374 
3 

100.9984 
99.0099' 
28.7306 

0.29 
0.5918 
1.2184 
3 

100.9946 
98.9989 
38.9634 

0.26 
O.S739 
2.8168 
3 

101.0046 . 
99.0212 
49.0533 

6f : 6L 
{21 (2) 

ftt : !L 
100 100 

0.95 
2. 6959 
0.4209 
4 

101.0198 
99. oo•o 
6' 8421 

0. 94 
0.5869 
0.4539 
4 

101.0000 
99.0000 
6' 9188 

0.93 
0.5106 
0.5110 
4 

100.9926 
99.0029 
6.9338 

0.94 
0.4539 
0. 5869 
4 

101.0000 
99.0000 
6. 9188. 

0.95 
o.mt 
2.1150 
4 

100.9944 
99.0219 
6.8421 

ftt < ftL 
160 1000 

U6 
2. 8175 
0. 5769 
3 

10l.OW 
9B.9962 
{9. 0532 

0.30 
1.2079 
0. 5939 
3 

101.0104 
99.0089 
38.9634 

0,35 
1.0492 
0.5987 
3 

100.9859 
V8. 9996 
28.7305 

0. 51 
0. 6221 
0. 4605 
4 

100.9936 
99.0141 
18.1933 

0. 95 
0.4201 
2. 7150 
4 

100.9944 
99.0219 
6.8421 

ftt } !L 
!GOO IOU 

0.8t 
3.5393 
0,(387 
2 

10l.OZU 
97.9158 
6.H50 

0.46 
0.6235 
0.6978 
3 

100.9906 
98.2012 
!1. 9080 

0. 36 
0.5851 
0.5786 
3 

101.0067 
98.0536 
28.5329 

8.30 
um 
2.6494 
3 

It !.Om 
99.3831 
38.8890 

0.26 
0. 5837 
5.1236 
3 

100.9929 
98.0213 
•s.om 

Jt< h 
m !4l 

I• : ftL 
lit 100 

1.88 
3. 5393 
6.4387 
2 

101.02(1 
91.9158 
6.H50 

0.11 
1.2349 
0.5491 
2 

100.9878 
98.0191 
um 
0. 87 
U039 
8.4007 
3 

100.9813 
n. 0461 
6. 6886 

8.96 
0.4286 
0.6159 
4 

101.0122 
98.1202 
6. 7854 

0.96 
0.4151 
3.7534 
4 

101.0000 
98.0000 
6.8422 

ftt < ftL 
100 1000 

8.24 
5.6492 
0.9370 
I 

101.1000 
98.0000 
45.6028 

0.26 
3. 4403 
0. 9692 
I 

100.9967 
98.0013 
36.3442 

0. 35 
1.4869 
0,4825 
2 

100.9985 
98.0133 
26.8545 

0.43 
1.2493 
0. 5286 
2 

100.9978 
98.0225 
17.1568 

0.96 
0.4151 
3. 7534 
4 

101.0000 
98.0000 
6.8422 
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TABLE 4.9 

OP'flt!l~' DECISION VARIABLES AND LOSS-COSTS FOR 'FHE WEIBULJ,. 
PROCESS fAILURE MECHANISM WITH SHAPE PARAMETER S=2, 
SCALE PARAMETER 8=50 AND INITIAL POINT AS FOLLOWS: 

Q 

~ 
dl 
dL 

0 0 00 ; 

h 
II 
Cott 

• dl 
dl 

G.25 A 

ll 
h 
Co:t 

i 
dl 
dL 

uo A 

kl 
kl 
Cost 

k 
dl 
dL 

0.15 I 
kl 
kl 
Cost 

h 
dl 
dL 

1.00 D 

It 
kl 
Cott 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=O.l, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=l: 

d•=4, 41=U•=102 ,k\=99 dt=2 ,dL=4, lt=101, k\:i! 

!f > !I 
1000 100 

uo 
3.7567 
0.40H 
4 

102.0290 
98.9893 
1.5323 

o.u 
0. 5091 
1.2459 
2 

102 0 0000 
99 0 0000 
19 0 0130 

0. 33 
0.1788 
1. 5265 
2 

101.9998 
99.0111 
29.8561 

0.21 
0 0 9608 
3.(336 
I 

102.0001 
98.9978 
40 0 4336 

0. 23 
0 0 9516 
5.1137 
I 

101.9902 
98.9231 
50.8165 

" ) 61 
(C) (2) 

ftt : !1 
100 100 

uo 
3.7567 
0. 4024 
4 

102.0290 
98.9893 
7 0 5323 

0.91 
0 0 4967 
8.4104 
4 

101.9568 
99.0217 
7.4116 

0.82 
0. 6829 
0.7075 
3 

101.6123 
99.0220 
7 0 3658 

0. 73 
0.5U2 
1.2230 
2 

101.9668 
99.0121 
7 0 2062 

0.81 
0 0 4352 
I. 7101 
2 

102.0000 
99 0 0000 
6 0 7871 

!1 < !1 !t > !1 
100 1000 1000 100 

0.25 0.91 
4.1468 2.7168 
0 0 5860 0 0 4123 
3 4 

102.0223 101.0192 
99.0071 99.0039 
51.5689 7.5323 

0.28 U9 
1.1555 O.W9 
0,5811 0.6197 
3 I 

101.5405 101.0000 
99 0 0033 99 0 0000 
43' 2033 20.1416 

0 0 3l 0.33 
0. 6494 0 0 5955 
0.5919 1.0315 
3 3 

101.9237 . 101.0000 
99 0 0057 99.0000. 
31.6689 31.8717 

O.H 0.28 
' 0 0 8308 0 0 5508 

0 0 6230 1.6897 
3 3 

101.6060 101.0343 
99.0099 99.2136 
19 0 8326 13 0 3037 

0.81 0 0 25 
0 0 4352 0,5822 
4. 7101 2.6664 
2 3 

102.0000 100.9935 
99 0 0000 99.0259 
6. 7811 54.5688 

6t : 6L 
(2) (2) 

!J : !L 
100 100 

0.91 
2 0 7168 
0 0 4123 
4 

101.0192 
99.0039 
7 0 5323 

0. 87 
0 0 5870 
0. 45(3 
I 

101.0018 
98 0 9948 
1.613! 

0 0 89 
0.1993 
0 0 5002 
4 

101.0000 
99 0 0000 
7 0 6290 

0.89 
0.4535 
0 0 6031 
I 

100.9910 
99.0123 
7.613( 

0. 91 
0 0 4132 
2. 7183 
I 

100 0 9955 
99 0 0207 
7 0 5323 

It < IL 
lot 1000 

u~ 
U665 
U808 
3 

101.0571 
9U048 
5U688 

U8 
um 
t.S892 
3 

100.99$0 
sum 
13.2912 

0.33 
1.0315 
0.5955 
3 

101.0000 
99 0 0000 
31.8117 

U9 
0.6197 
0.1439 
4 

101.0000 
99.0000 
20.1416 

0.91 
0.1132 
2. 7183 
t 

100.9955 
99.0207 
7.5323 

!I ) II 
1000 1 .. 

1.13 
UJ71 
um 
2 

101.&270 
91.9786 
i. 7872 

u.u 
1.6283 
t.mo 
3 

100.9870 
98.1367 
19.8328 

0,34 
a. 5857 
0. 5730 
3 

IOU971 
98.0411 
31.6689 

9.28 
t. 5852 
8.9255 
3 

100.9948 
98.2969 
43.2032 

0,25 
0. 5813 
U504 
3 

100.9922 
98.0259 
54.5689 

6r < 61 
(2) ({) 

II : !1 
100 100 

9.83 
4.6371 
0.4413 
2 

101.0270 
97.9786 
6.7872 

0.72 
1.2012 
0.5187 
2 

101.0106 
97.9933 
1. 2064 

0.82 
0.6771 
0.1821 
3 

101.0003 
98.1151 
1. 3656 

0.92 
0.4458 
0.6316 
4 

106.9949 
98.2051 
1.(724 

0.90 
0.4027 
3.7530 
4· 

101.0068 
98.0253 
7.5323 

!1 < !L 
IOU 1900 

1.22 
5.6355 
0.9561 
I 

101.1222 
98.0205 
50.8164 

0.25 
3.42%5 
0.9591 
I 

101.0057 
97 0 9996 
10,1336 

0. 33 
1.5161 
0.1803 
2 

100.9851 
98.0099 
29 0 8558 

o.u 
1.2192 
0.5111 
z 

101.0032 
98.0134 
19.0129 

0.90 
0.1027 
3 0 7530 
I 

101.0088 
98.0253 
1. 5323 



very small possibility of a false alarm in the 

downward direction. 

75 

5. The upper dead band value (ku) is in the vicinity of 

~o + ~oua. Similarly to the lower dead band value 

(ku) is in the vicinity of ~o - ~6La. 

Effect of Probability of Upward Shift. a 

Figure 4.1.a shows that there is no major change in 

loss-cost as factor a is varied, when the magnitude of a 

shift in the process mean is equal in either direction, 

Bu = 6L. However, the curve of 6u = BL shows that whenever 

a= 0.00 or a = 1.00 there is a slightly lower average loss­

cost. This is because a two-sided asymmetric Cusum control 

chart becomes a pure one-sided Cusum control chart whenever 

a = 0.00 or a - 1.00. Only when a= 0.50 is the two-sided 

asymmetric chart considered to be a two-sided symmetric 

chart. Yet, when a is at an extreme value of 0.00 or 1.00, 

the Cusum chart can be made more efficient for detecting an 

out of control condition. This leads to a slightly lower 

average loss-cost. When a = 0.50, however, the Cusum chart 

must be able to detect an out of control condition in either 

direction, causing it to be slightly less efficient, 

resulting in a higher average loss-cost. 

The condition where ou > OL indicates a shift in the 

upward direction, if it occurs, will be larger and more 

easily detected than a downward shift. The average loss­

cost with a small value of factor a is higher and the 
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average loss-cost with a high value of a is lower. When a 

is low, there will more likely be a downward shift in the 

process mean, which is less easily detected, resulting in a 

higher average loss-cost. On the contrary, when a is high, 

there is more likely an upward shift in the process mean 

which is more easily detected, resulting in a lower average 

loss-cost. 

The condition where ou < oL indicates a shift in the 

downward direction, if it occurs, will be larger and more 

easily detected than an upward shift. The average loss-cost 

with a small value of factor a is lower and the average 

loss-cost with high value of a is higher. When a is low, 

there will more likely be a downward shift in the process 

mean, which is more easily detected, resulting in a lower 

average loss-cost. On the contrary, when a is high, there 

is more likely an upward shift in the process mean, which is 

less easily detected, resulting in a higher average loss­

cost. 

Figure 4.2.a shows that there is virtually no change in 

average loss-cost as factor a is varied, when the magnitude 

of the diminution of hourly income is equal in either 

direction, Mu = ML. This is because the proportion of time 

the process is out of control is the same regardless of the 

value of a, and there is no differential cost effect in 

either direction. 

The condition where Mu > ML indicates that a shift in 

the upward direction, if it occurs, will be extremely 
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costly, $1000 per hour. On the contrary, a downward shift 

is not so costly, $100 per hour, when it occurs. The 

average loss-cost with a low value of factor a is lower and 

the average loss-cost with a high value of a is higher. 

This is because when a is small, it is more likely a shift 

in the process mean will be in the downward direction, which 

and is not so costly. 

The condition where Mu < ML indicates that a shift in 

the downward direction, if it occurs, will be extremely 

costly, $1000 per hour. On the contrary, an upward shift is 

not so costly, $100 per hour, when it occurs. The average 

loss-cost with a low value of factor a is higher and the 

average loss-cost with a high value of a is lower. This is 

because when a is small, it is more likely a shift in the 

process mean will be in the downward direction, which is 

extremely costly. 

Effect of Risk Parameter. M 

Figure 4.3.a shows that there is no major change in 

average loss-cost when the diminution of hourly income 

Mu = Mt, whether au > at, au = at or au < at. When au > at, 

however, a shift in the upward direction is more easily 

detected and results in a slightly lower average loss-cost 

than that of au = at. Likewise, when au < at, a shift in 

the downward direction is more easily detected and results 

in a slightly lower average loss-cost than that of au = at. 

The condition in which Mu > Mt causes a strong upward 
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shift in the average loss-cost, due primarily to the large 

increase of Mu to $1000 per hour. When ou > OL, the average 

loss-cost is lower than in the situation where ou < OL. 

This is because the magnitude of the upward shift makes it 

easier to detect. Likewise, when Mu < ML, there is again a 

strong upward shift in the average loss-cost. When ou < oL, 

the average loss-cost is lower than in the situation where 

ou > oL. This is because the magnitude of the downward 

shift makes it easier to detect. 

Effect of Weibull Shape Parameter, 5 

The shape parameter, S, governs the shape of the 

process failure distribution. When S = 1, the Weibull 

distribution reduces to an exponential distribution. From 

Figure 4.l.a to 4.l.b and 4.2.a to 4.2.b and 4.3.a to 4.3.b 

where the scale parameter e = 100, the shape parameter 

increases from 1 to 2. It can be seen that shapes of 

figures do not change, but the average loss-cost increases 

asS increases. Similarly, from Figure 4.1.c to 4.l.d and 

4.2.c to 4.2.d and 4.3.c to 4.3.d, where the scale parameter 

6 = 50, the observation above continues to hold. 

In addition, from Table 4.6 to 4.7 where 6 = 100, in 

all cases the time interval between subgroups (h) decreases 

as 5 increases. Similarly, in Tables 4.8 and 4.9, where 6 = 
50, the observation continues to hold. 

From Table 4.10 to 4.11, again S increases from 1 to 2 

while holding constant the scale parameter e = 100. It can 
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be seen that in all cases: (a) the total proportion of time 

the process is out of control (fu + fL) increases as S 

increases and {b) the cycle time (Tcycle) decreases as S 

increases. Likewise, in Tables 4.12 and 4.13 for 9 =50, 

observations (a) and (b) also hold. 

Figures 4.4, 4.5 and 4.6 show the overall effect of a, 

6 and M, respectively, on the average loss-cost. Again the 

average loss-cost increases as S increases from 1 to 2. 

Effect of Weibull Scale Parameter. 6 

The scale parameter, 6, also has relevance to the 

change in the process failure mechanism. When the Weibull 

distribution reduces to an exponential distribution, the 

reciprocal of 6 is equal to the average number of assignable 

causes per unit time. A decrease in 6 is equivalent to an 

increase in the frequency of assignable causes. 

From Figures 4.1.a to 4.l.c, 4.2.a to 4.2.c, 4.3.a to 

4.3.c, where the shape parameterS = l, the scale parameter 

decreases from 100 to 50. It can be seen that shapes of 

figures do not change, but the average loss-cost increases 

as 6 decreases. Similarly, from Figures 4.1.b to 4.l.d and 

4.2.b to 4.2.d and 4.3.b to 4.3.d, where the shape parameter 

S = 2, the observation above continues to hold. 

In addition, from Tables 4.6 and 4.8 where S = 1, in 

all cases the time interval between subgroups (h) decreases 

as 6 decreases. Similarly, in Tables 4.7 and 4.9, where 

S = 2, the same observation continues to hold. 
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TABLE 4.10 

OPTIMUM VALUES OF fu, f L, ARLo, ARL 1, h*ENSIN AND CYCLE. TIME 
FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH 

' 
AILAJ(61) 
r, 
AiLAI(6L) 

uo fL 
AiL I 
msu 
m. 
Terc It 

AiLAI(6t) 
r, 
AiLAI(h) 

' 0 .25 fL 
AiLJ 
mm 
m. 
Tc,clt 

ARLAJ(6tl 
r, 
ULAI(6L) 

.50 fL 
ABL1 
mm 
ULt 
TCJ<II 

ULAI(h) 
r. 
ULAI(6L) 

.15 r~ 
UL! 
liiSII 
m. 
Tcrelt 

AiLh(h) 
r. 
AILAI(6L) 

.00 fL 
AIL I 
msn 
m. 
TcJclt 

SHAPE PARAMETER S=l, SCALE PARAMETER 8=100 
AND INITIAL POINT AS FOLLOWS: 
n=l, h=.l, du, dL, ku AND kL: 

d1:( ,d1:2 ,kl: 102, h:99 dFdo:Z,kt=IOI,h=99 

K1 > KL 
1000 100 

2.6H 
0 
1.129 
0. 0294 
1.129 

99.35 
(13,2 
103.0262 

1.011 
0. 0059 
1.924 
0.0215 
1.698 

99.70 
731.8 
102. 8118 

1.015 
O.OIH 
2.139 
0.01U 
1.577 

99.76 
1343 
102.6161 

l.t15 
0.0170 
2.413 
0.0011 
1.365 

99.79 
%398 
102.4634 

1.156 
0. 0222 
7.183 
0 
1.156 

99.84 
584.7 
102.26S5 

61 > 6L 
( () (2) 

!1 : KL 
100 100 

2.644 
0 
1.129 
0.0294 
1.129 

99.35 
413.2 
103.0262 

1.003 
0. 0070 
1.114 
0. 0222 
1.109 

99. 3( 

501.6 
103.0082 

1.002 
0.0134 
1.340 
0.0153 
1.171 

99.40 
498.8 
102.9516 

1.002 
0.0202 
1.422 
0. 0080 
1.107 

99.39 
852.6 
102.8993 

1.015 
0. 0266 
5.689 
0 
1.015 

99.39 
4019 
102.7328 

Bt < BL 
100 10&0 

%.196 
0 
1.267 
o.om 
1.267 

99.82 
297. T 
102.1m 

1.015 
0.0058 
l.ZTZ 
0.8181 
1.208 

99.80 
307 .I 
102. ((03 

1.006 
0.0117 
1.281 
0.0124 . 
1.1H 

99.76 
330. ( 

I 102.(651 

1.001 
1.&181 
l.lH 
8.0065 
1.837 

99.64 
501.9 
102.5869 

1.015 
0. 0266 
5.689 
0 
I. 015 

99.39 
4019 
102.7328 

!t ) !1 
1000 100 

4.203 
0 
1.128 
8.0294 
I.IZ8 

99.35 
!08.0 
IOJ.om 

1.1!7 
1.0065 
1.2(0 
8.0199 
1.217 

99.65 
384.3 
102.1064 

1.131 
0. 0124 
1.337 
o.om 
1.237 

99.73 
IOU 
102.6025 

1.215 
t.mo 
1.818 
8.0065 
l.Ul 

99.80 
304.4 
102.5189 

1.267 
o.om 
%. 769 
0 
1.267 

99.82 
291.5 
102.4288 

6t : 61 
(2j ( 2) 

Bl : !L 
100 !OS 

U03 
t 
t.m 
•. 0294 
1.128 

99.35 
408.0 
103.0260 

1.122 
0.0076 
1.078 
0.0223 
1.089 

99.30 
565.1 
103.0194 

1.093 
0. 0149 
1.091 
0.0149 
I. 092 

99.31 
54o.6 
103.0739 

1.075 
0.0223 
1.123 
0.0076 
1.087 . 

99.30 
544.0 
103.0806 

1.128 
o.om 
4.203 
0 
1.128 

99.35 
408.0 
103.0260 

!1 < BL . 1 It > IL 
100 IUOO 1000 100 

3.041 5.956 
0 0 
1.267 1.01( 
o. om 0.0264 
1.267 1.0[( 

99.82 99.U 
297.0 3720 
102.4291 I 02.7119 

1.817 1.1!3 
0. 0065 0. 0065 
1.275 1.001 
0. 0180 t.0187 
1.411 1.036 

99.80 99.64 
304.9 498.1 
102.5188 102.5862 

1.332 1.277 
0.0129 o.om 
1.138 1.005 
0.0124 0.0117 
1.235 1.141 

99.73 99.76 
407.3 313.3 
102.6025 102.4632 

1.247 1.270 
0.0199 0.0181 
1.146 1.012 
0.0065 0. 0058 
1.221 1.206 

99.65 99.79 
388.5 303.7 
102.7091 102.4410 

1.128 1.268 
0.0294 0.0237 
U03 2.113 
0 0 
1.128 1.268 

99.35 99.82 
408.0 299.1 
103.0260 102.4290 

61 < 61 
(2) ( () 

h : !L 
100 !GO 

U56 
0 
1.01( 
0. 0264 
I.OH 

99.41 
3720 
102.7119 

1.423 
0. 0080 
I. 002 
0.0202 
1.107 

99.39 
856.1 
102.8967 

1.340 
0. 015 3 
1.002 
0.0134 
1.171 

99.40 
498.2 
102.9527 

1.146 
0.0222 
1.001 
0.0069 
1.110 

99.35 
511.0 
103.0001 

Ll37 
o.om 
2.685 
0 
1.137 

99.36 
460.4 
103.0242 

!II IL 
106 10«0 

1.183 
0 
US6 
um 
1.156 

99.84 
584.7 
102.2655 

2.(01 
0.0071 
1.015 
t.Ol70 
1.362 

99.79 
2346 
102.4621 

2.138 
0.0140 
1.016 
0.0114 
1.577 

99.76 
1360 
102.6137 

1.908 
0.0214 
1.019 
0. 0059 
1.686 

99.70 
101. ( 
102.8047 

1.137 
0. 0294 
2.685 
0 
1.137 

99.36 
460.4 
103.0242 
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TABLE 4. 11 

OPTIMUM VALUES OF fu, fL, ARLo, ARL1, h*ENSIN AND CYCLE TIME 
FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH 

a 

0. co 

U5 

. 50 

. 75 

. 00 

SHAPE PARAMETER S=2, SCALE PARAMETER 8=100 

ARLAI(h) 
r, 
!RLA1(6L) 
fL 
ARL1 
mm 
ARLt 
Tcrcle 

&RLAI(6tl 
r, 
AiLA1(6L) 
fL 
AIL! 
mm 
m. 
Tc rc 11 

ARLA1(61) 
fl 
ARL&!(OL) 
fL 
&iLl 
mm 
liLt 
Tcyclt 

&RLA!(6t) 
ft 
ULA1(5L) 
fL 
AIL! 
mm 
AiLt 
Tcych 

ARLAI(OI) 
fl 
&iLAl(OL) 
fl 
AiL! 
mm 
m. 
fcycle 

AND INITIAL POINT AS FOLLOWS: 
n=1, h=.1, du, dL, ku AND kL: 

dt=4 'dL=2' t •= I 02' tL=99 dt =d L =2 'kf: I 01' tL=99 dt :Z,dL=4, t t= I 0 I, kL:98 

!1 > !L 
1000 100 

2.537 
0 
1.129 
0. 0325 
1.129 

88.00 
112.1 
91.6027 

1.018 
0. 0065 
I. 921 
0. 0238 
1.695 

88.34 
724.9 
91.3915 

1.016 
0.0128 
2.112 
0. 0156 
1.579 

88.40 
1357 

91.2140 

1.011 
0.0190 
2. 409 
0.0019 
1.363 

88.42 
2282 

91.0661 

1.157 
0. 0218 
6.978 
0 
1.157 

88.17 
590.7 
90.S778 

6t > 61 
( 4) (2) 

!I : !L 
100 100 

2. 537 
0 
1.129 
0. 0325 
1.129 

88.00 
412.1 
91.6027 

1.001 
0.0077 
1.145 
0. 0216 
1.109 

88.00 
508.5 
91.5782 

1.002 
0.0148 
1.342 
0.0170 
1.172 

88.06 
506.1 
91.5337 

1.002 
0.0224 
1.424 
0.0088 
1.107 

88.01 
856.6 
91.4155 

1.015 
0.0291 
1.109 
0 
1.015 

88.05 
1033 

91.3079 

!I < !L !1 > !L 
100 1000 1000 100 

2.361 4.356 
0 • 1.266 1.135 
0.0265 0. 0324 
I. 266 1.135 

88.15 88.02 
295 .I HU 
91.0349 91.5928 

1.011 1.147 
0. 0064 0.0072 
1.270 1.2H 
0. 0202 i.0221 
I. 206 1.217 

88.(3 88.29 
301.1 383.9 
sum 91.3022 

1.005 1.135 
0. 0131 0.0139 
1.278 1.332 
0.0138 . 0.0114 
1.142 1.233 

88.39 88.36 
322.2 396.3 

I 91.0101 91.2021 

1.003 1.271 
0.0202 0.0201 
1.291 1.832 
0. 0072 0. 0073 
1.075 1. 411 

88.32 88.43 
354.7 303.3 
91.1223 91.1223 

I. 015 I. 268 
0. 0291 0. 0265 
1.409 3.040 
0 0 
1.015 1.268 

88.05 88.15 
4033 298.2 

91.3079 91.0357 

61 : 6L 
( 2) ( 2) 

!1 : !1 
100 100 

4.356 
0 
1.135 
0.0324 
1.135 

66.02 
H4.9 
91.5928 

1.119 
0. 0081 
I. 076 
0. 0216 
1.087 

81.96 
539.5 
91.6161 

I. 091 
0. 0166 
1.090 
0.0166 
1.091 

67.96 
525.0 
91.6515 

1.075 
0. 0217 
1.122 
0.0081 
1.087 . 

87.95 
537.0 
91.6611 

1.129 
0. 0325 
3. 980 
0 
1.129 

88.00 
112.1 
91.6000 

!1 < !L 
100 1000 

J.m 
0 
1.269 
0. 0265 
1.269 

88.15 
lOU 
sum 

1.818 
0. 0073 
1.272 
0.0201 
1.108 

88.43 
291.6 
91.1231 

1.330 
0.0114 
1.134 
0.0139 
1.232 

88.36 
390.6 
91.2030 

1.2H 
0. 0222 
1.115 
0.0072 
1.219 

88.29 
383.2 
91.3063 

1.129 
0. 0325 
J. 980 
0 
1.129 

88.00 
112.1 
91.6000 

h>IL 
1000 100 

4.834 
0 
1.014 
0.0293 
1.014 

88.06 
3761 

91.3019 

1.291 
0. 0072 
1.003 
0. 0202 
1.175 

88.32 
353.8 
91.1222 

1.2H 
0.0138 
1.005 
0. 0131 
l.HO 

88.39 
313.0 
91.0120 

1.270 
0.0202 
1.009 
0.0064 
1.205 

88.43 
303.4 
91.0460 

1.266 
0.0265 
2. 361 
0 
1.266 

88.45 
295.1 
91.0349 

61 < 61 
(2) ( 4) 

!1 : !1 
100 100 

4.834 
0 
1.014 
0.0293 
1.014 

88.06 
3761 

91.3019 

1.129 
0. 0088 
1.002 
0.0221 
1.109 

88.05 
885.8 
91.4159 

1.331 
0.0170 
1. 002 
0.01(9 
1.168 

88.05 
479.0 
91.5365 

1.114 
0.0246 
1.000 
0.0017 
1.108 

88.00 
501.1 
91.5854 

1:129 
0. 0325 
2. 399 
0 
1.129 

88.00 
112.1 
91.6020 

!t < IL 
110 uoo 

7.021 

• 1.157 
o.om 
t.m 

88.11 
590.7 
so.em 

2.433 
0.0078 
1.015 
0.8190 
1.369 

88.43 
2405 

91.0628 

2.139 
0. 0156 
1.015 
0.0128 
1.571 

88.40 
1341 

91.2121 

1.922 
0. 0238 
1.017 
8.0065 
1.696 

88.34 
725.7 
91.3942 

1.129 
0. 0325 
2. 399 
0 
1.129 

88.00 
412.1 
91.6020 
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TABLE 4.12 

OPTIMUM VALUES OF ru, fL, ARLo, ARLI, h*ENSIN AND CYCLE TIME 
FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH 

• 
ULh(h) 
r, 
ARLAI(6L) 

0. 00 fL 
AiL I 
mm 
ARLo 
! e J< It 

ARLA1(61) 
fl 
AILAI(6L) 

.25 fL 
ABLI 
mm 
m. 
Tqe le 

ABLA1 ( 6v) 
fl 
ARLAI(6L) 

.so fL 
ARLI 
mm 
m. 
Tqelo 

ARLA1(6t) 
rl 
ARLAI(6L) 

.75 r1 
ARLI 
mm 
ABLt 
Tcrelo 

ARLA1(61) 
ft 
ARLh(6L) 

. 00 fL 
ABLI 
msu 
ARLt 
Tqclo 

SHAPE PARAMETER S=l, SCALE PARAMETER 8=50 
AND INITIAL POINT AS FOLLOWS: 
n=l, h=.l, du, dL, ku AND kt: 

d!=4,dL=2, kl= I 02, kL:99 

~' ) ~~ 
1000 100 

2.356 
0 
1.128 
0. 0529 
1.128 

49.53 
406.6 
52.7951 

1.017 
0.0110 
1.919 
0.0386 
1.693 

49.79 
715.1 
52.6132 

1.015 
0.0217 
2.162 
0.0255 
1.589 

49.83 
1409 

57.4811 

1.164 
0.0318 
4.179 
0.0143 
1.918 

49.87 
567.1 
52.1154 

1.154 
o.om 
7. 673 
0 
1.154 

49.88 
569.4 
52.2066 

61 > 61 
(() (2) 

~' : ~~ 
100 100 

2.356 
0 
1.128 
0. 0529 
1.128 

49.53 
406.6 
52.7951 

1.001 
0.0127 
1.145 
0. 0399 
1.109 

49.53 
501.3 
52.7760 

1.002 
o.om 
1.336 
0. 0273 
1.169 

49.57 
483.9 
52.7308 

1.019 
0.0355 
1.885 
0. 0149 
1.235 

49.62 
m.4 
52.6567 

1.015 
0.0485 
4.164 
0 
1.015 

49.57 
3677 

52.5495 

ftl < !L 
100 1000 

3.145 
0 
1.265 
o.om 
I. 265 

49.87 
291.6 
52.3508 

1.012 
0.0110 
1.268 
o.om 
1.204 

49.85 
298.8 
52.3606 

1.007 
0. 0222 
1.275 . 
0. 0231 
1.141 

49.82 
• 31U 

52.3768 

1.003 
0.0342 
1.287 
0.0120 
1.014 

49.76 
342.8 
52.4211 

1.015 
0.0485 
4.164 
0 
1.015 

49. 57 
3877 

52.5495 

!1 > h 
1000 100 

3.369 
0 
1.130 
0.0530 
1.130 

19.53 
m.t 
52.8003 

1.146 
0.0120 
1.214 
0. 0368 
1.219 

49.75 
386.8 
52.5675 

1.215 
0. 0231 
1.611 
0. 0243 
I. 458 

49.83 
287.5 
52.4855 

1.270 
0. 0340 
1.843 
0. 0121 
1.413 

49.85 
294.9 
52.4185 

1.266 
O.OH9 
3. 389 
0 
1.266 

49.87 
293.6 
52.3507 

61 : 61 
(2) (2) 

~V : !L 
100 100 

3.369 
0 
1.130 
0. 0530 
1.130 

49.53 
418.1 
52.8003 

1.223 
0.0136 
1.147 
0.0399 
1.166 

49.53 
368.5 
52.6262 

1.113 
0.0268 
1.176 
0. 0268 
1.174 

49.53 
363.0 
52.8305 

1.147 
0. 0399 
1.223 
0.0136 
1.166 

49.53 
368.5 
52.8262 

1.129 
0.0530 
3.327 
0 
1.129 

49.53 
411.8 
52.8007 

II < !L 11, > IlL 
!GO 1000 10&0 lnO 

3.538 U20 

• 0 
l.m U15 
0.0449 0.0486 
1.266 1.015 

49.87 !9.56 
293.5 4013 
~2.3512 52.5520 

1.816 1.288 
0.0122 U120 
1.269 1.005 
0. 0340 o.om 
1.413 1.076 

49.85 49.77 
292.6 346.9 
52.4205 52.4179 

1.6H 1.275 
0.0243 0.0232 
1.279 1.005 
0. 0230 0. 0222 
1.463 1.140 

49.83 49.82 
296.0 313.5 
52.4828 52.3714 

1.211 1.263 
0.0368 0.0341 
1.143 1.102 
0.0120 0.0111 
1.217 1.223 

49.74 49.85 
373.8 283 .• 9 
52.5687 52.3699 

1.129 1.264 
0.0530 0.0449 
3.327 3.079 
0 0 
1.129 1.264 

49.53 49.87 
111.8 289 .I 
52.8007 52.3517 

61 ( 61 
(2) ( 4) 

!I : ~~ 

100 100 

4.320 
G 
1.015 
0.0486 
1.015 

49.56 
4023 

52.5520 

1.885 
0.0150 
1.019 
0.0356 
1.235 

49.62 
650.1 
52.6665 

1.338 
0. 0273 
1.002 
0.0245 
1.170 

49.57 
489.8 
52.7311 

1.142 
1.0401 
1.001 
0.0127 
1.106 

49.52 
486.8 

52 .. 7865 

1.129 
0. 0531 
2. 368 
0 
1.129 

49.52 
414.1 
52.8045 

!v < !L 
100 1000 

7.028 
0 
1.155 
o.om 
t.m 

49.38 
515.1 
52.Z063 

4.177 
0.0143 
1.163 
0.0318 
1.916 

49.87 
557.7 
52.U61 

2.159 
0. 0256 
1.015 
0.0217 
1.587 

49.82 
1408 

52.4830 

1.914 
8.0386 
1.011 
0.0110 
1.690 

49.78 
706.8 
52.6137 

1.129 
0.0531 
2.368 
0 
1.129 

49.52 
414.1 
52.8045 
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TABLE 4.13 

OPTIMUM VALUES OF fu, fL, ARLo, ARL1, h*ENSIN AND CYCLE TIME 
FOR THE WEIBULL PROCESS FAILURE MECHANISM WITH 

a 

ULAt(6r) 
r. 
ULA1(5L) 

0. 00 rL 
ARLt 
mm 
m, 
Tnct• 

ARLA 1 ( 61) 
fl 
ULAt(6LJ 

. 25 fL 
\ ARL1 

mm 
AiLt 
TcJclt 

ARLAt(6r) 
r. 
ARLA I[ o L) 

.50 r, 
ARLt 
msn 
ARLt 
TCJCII 

ARLA1 ( 61) 
r, 
ARLAI(6L) 

. 75 fL 
ARLI 
mm 
ABLt 
Tqcll 

ARLAI(OI) 
rr 
ARL!t(6L) 

. 00 rL 
ARLt 
mm 
ARL1 
Tqc!t 

SHAPE PARAMETER S=2, SCALE PARAMETER 8=50 
AND INITIAL POINT AS FOLLOWS: 
n=l, h=.l, du, dL, ku AND kL: 

dt=~, dL=2 ,tr=IOZ ,h=99 dt=dL=2. tt= I 0 1,tL=99 d!=2 ,dL=~ ,tr =10 1, kL=98 

!r > !L 
1000 1UO 

2.403 
0 
1.129 
0. 0588 
1.129 

43.86 
410.5 
47.0795 

1.018 
0.0123 
1.814 
o.om 
1.690 

44.11 
708.3 
46.8994 

1.016 
0. 0243 
2.178 
0. 0284 
1.597 

44.14 
1503 

46.1764 

1.161 
0.0355 
4.190 
0. 0158 
1.918 

44.19 
548.7 
46.7088 

1.156 
0.0413 
1. 006 
0 
1.156 

44.20 
583.1 
46.5090 

6r > 6L 
(4) (2) 

!r = !L 
100 100 

z.m 
8 
1.129 
1.1588 
1.129 

43.86 
410 .s 
41.6195 

!. 001 
0.8141 
1.144 
1.04H 
1.109 

43.36 
sou 

47 .0€43 

1.002 
0.0272 
1.338 
0.0301 
1.170 

43.90 
m.t 
H .0076 

1.01! 
1.0396 
1.873 
0. 0165 
1.231 

43.95 
615.8 
46.9445 

1.014 
0. 0540 
5. 399 
0 
1.014 

43.89 
3475 

46.8431 

!r < !L !1 > !L 
100 1000 1000 100 

2.630 3.389 
0 0 
1.265 1.126 
0. 0502 0.0588 
1.265 1.126 

44.19 43.86 
291.7 397.1 

46.6511 47.0821 

1.012 1.143 
0. 0123 0. 013( 
1.265 !.W 
0.0380 o.om 
1.202 1.219 

44.17 44.07 
292.0 373.9 
46.6606 46.8630 

1.007 1.276 
0. 0249 0. 0257 
1.270 1.648 
0. 0258 0. 0270 
1.138 . 1.462 

44.14 44.15 
302.8 291.2 
46.6768 46.1758 

1.003 1.272 
0. 0381 0. 0379 
1.287 2.001 
0.0134 0.0137 
1.074 I. 454 

44.09 44.17 
344.4 302.3 
46.1164 46.7246 

1.014 1.263 
0. 0540 0. 0502 
5.399 3.239 
0 0 
1.014 1.263 

43.89 44.19 
3415 287.6 

46.8431 46.6515 

6r : 6L 
(2) (2) 

!r : !L 
100 100 

3.389 
I 
1.126 
0. 0538 
1.126 

43.86 
397.1 
47.0821 

1.226 
0.0150 
1.150 
0. 0441 
1.169 

43.87 
382.3 
47.0966 

1.111 
0. 0297 
1.171 
0. 0297 
1.111 

43.87 
350.4 
47.1060. 

1.144 
0.0442 
1.225 
0.0151 
1.164 

43.86 
360.0 
47.1058 

1.126 
0. 0589 
3.214 
0 
1.126 

43.85 
397.9 
47.0832 

!r < !L 
100 1000 

3.379 
0 
1.263 
0. 0502 
1.263 

H.19 
288.5 
46.6513 

1.848 
0.0135 
1.267 
0. 0380 
I.UZ 

4U7 
288.9 
46.7184 

1.648 
0.0210 
1.276 
0.0257 
1.462 

44.15 
291.2 
46.7758 

1.245 
0. 0410 
1.143 
0.0134 
1.219 

44.07 
373.9 

46.8630 

1.126 
0. 0589 
3.214 
0 
1.126 

43.85 
397.9 
47.0832 

!r > !' ftl : !l. ,, < !t 
1000 109 100 100 111 1000 

5.460 5. 460 1.111 
D 0 I 
1.015 1.015 1.154 
0.05~0 0. 0540 0.0412 
1.015 1.015 1.154 

43.90 43.90 fUO 
4016 4016 m.5 

46.8398 46.8398 46.5083 

1.289 1.88~ U91 
0. 0134 0.0165 0.0158 
1.003 1.019 1.160 
0. 0381 0.0395 0.0355 
1.015 1.235 1.918 

44.09 43.95 44.19 
347.4 647.6 546.7 

46.7126 46.9421 46.7089 

1.268 1.334 2.169 
0. 0258 0.0301 0.0284 
1.006 1.002 l. 015 
0.0249 o.om 0.0243 
1.137 1.168 1.592 

44.14 43.90 44.15 
299.3 m.z 1446 
46.6781 47.0092 46.7740 

1.266 1.141 1.922 
o. 0380 0.0444 0.0429 
1.009 1.001 1.011 
0.0123 0.0141 0.0123 
1.202 1.106 1.695 

44.11 43.35 44.11 
m.o m.• 721.2 
46.6600 41.0670 46.8993 

1.263 1.128 1.128 
0.0502 0,0587 0. 0587 
2.575 2.340 2.340 
0 0 0 
!.Z63 1.128 1.128 

44.19 43.86 43.86 
288.1 406.2 406.2 
46.6513 47.0757 47.0757 
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From Table 4.10 to 4.12, again 8 decreases from 100 to 

50 while holding constant the shape parameterS = 1. It can 

be seen that in all cases: (a) the total proportion of time 

the process is out of control (fu + fL) increases as 8 

decreases, and (b) the cycle time (Tcycle) decreases to 

about half as 8 decreases by a 2:1 ratio. Likewise, in 

Tables 4.11 and 4.13 for S = 2, observations (a) and (b) 

also hold. 

Figures 4.4, 4.5 and 4.6 show the overall effect of a, 

6 and M, respectively, on the average loss-cost. Again the 

average loss-cost increases as 8 decreases from 100 to 50. 

Furthermore, from these figures, it can be seen that the 

scale parameter has more effect on the variation in average 

loss-cost than does the shape parameter. Also, Tables 4.10, 

4.11, 4.12 and 4.13 show that the scale parameter has more 

effect on the variation in cycle time than does the shape 

parameter. 

Effect of Shift Parameter. 0 

The shift parameter 6 specifies the degree of change in 

the process mean, oucr or OLcr, which a Cusum chart is 

designed to detect. Table 4.6 is chosen as representative 

for investigating its effect on n, h and loss-cost. Table 

4.14 is a summary of selected data from Table 4.6 where 

Mu > ML. It can be seen that in all cases subgroup sizes 

and loss-costs for ou = OL are no smaller than those for 

ou > OL. Likewise, the optimum time intervals between 



91 

subgroups for 6u = 6L is no smaller than those for 6u > 6L, 

with one exception which is probably due to the imperfection 

of the search algorithm. In other words, as the shift to be 

detected increases, small subgroup sizes should be taken 

more often, and less expense is expected. 

TABLE 4.14 

VALUES OF SUBGROUP SIZE, TIME INTERVAL BETWEEN SUBGROUPS, 
DECISION INTERVALS AND LOSS-COST FOR Mu > ML 

ou > OL ou : OL 
( 4) (2) (2) (2) 

a n h do dL Cost n h dl dL Cost 

0.00 1. 31 4.1125 0.4270 3.9556 4 1.31 3.5875 0. 4126 3.9556 

0.25 2 0.59 0.4893 1.2523 9.5369 4 0.71 0.4673 0.6343 10.1529 

0.50 0.48 0.4893 1.4695 14.6227 4 0.55 0.4263 0.7591 15.8229 

0.75 2 0.42 0.4675 1.7287 19.6238 3 0.40 0.6006 1.2260 21. 29H 

1. 00 0.33 0.9420 6.4357 24.4790 3 0.36 0.5796 2.2576 26.6099 

Effect of Initial Point for 

Search Procedure 

Results which are listed in Tables 4.15-4.18 are 

obtained by the optimization methods described in Chapter 

III with a significantly different initial point from that 

discussed in the earlier presentation on asymmetric design. 

It is noted that results in Table 4.15 are very close to 
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TABLE 4.15 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=l, 
SCALE PARAMETER 8=100 AND INITIAL POINT AS FOLLOWS: 

I 

h 
dl 
d~ 

0. 00 n 
kl 
kL 
Cost 

k 
dl 
dL 

0. 25 n 
tl 
kL 
Coet 

h 
dl 
dL 

0. 50 n 
tl 
h 
Cost 

k 
dl 
dL 

0. 75 D 
tl 
h 
Cost 

b 
dl 
dL 

1.00 n 
kl 
tL 
Co3t 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=3.0, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=10: 

d1=0. 4, d~=O. 2, k1= 102, k1:99 d1:0. 2 ,d~=O. 4, kl=101 .k~=93 

01 ) 6~ 
( 4) (2) 

!1 > !L !1 : !L !I < !L !1 ) !L 
1000 100 100 100 100 1000 1000 100 

1.31 1.31 0.36 1.31 
1.934$ I. 9345 2.1013 1.7515 
0. 4162 0. 4162 0.5858 0. 4162 
4 4 3 4 

102.0187 102.0187 102.0237 101.0187 
98.9966 98.9966 99.0041 98.9966 

3. 9557 3.9557 26.6099 3.9557 

0.59 1.33 0. 42 0.11 
0.5246 0.3641 0.5848 0. 4708 
I. 2724 0.4462 0.5919 0. 6339 
2 4 3 4 

101.9873 102.0000 102.0204 100.9816 
99.0152 99.0000 99.om 99.0185 
9. 5369 3. 9139 21.2161 10.1529 

0. 48 1.19 0.49 0. 55 
0. 4797 0.483! 0.5137 0.4399 
1.4745 0. 6933 0. 6007 0.7600 
2 3 3 4 

101.9916 101.9052 102.0205 100.9898 
99. 00(3 99.0021 99.0045 99.0119 
14.6227 3.8620 15.7081 15.8230 

. 
0. 42 1.23 0. 73 0. 41 
0. 4779 0.3100 0. 4909 0.5905 
I. 7463 o.mo o.m9 1.1931 
2 3 4 3 

101.9687 101.9935 ' 101.9436 101.0013 
99.0114 98.9970 99.0010 99.0026 
19.6240 3. 7560 9. 9925 21.2943 

0. 33 1.%0 1.20 0.36 
0. 9451 0. 4399 0. 4399 0.5625 
6. 3994 2. 7864 2. 7864 2. 6056 
1 2 2 3 

102.0000 102.0219 102.0219 101.0000 
99.0000 98.9167 98.9167 99.0000 
24.4792 3.4839 3. 4639 26.6099 

01 : 6~ 
{2) (2) 

!1 : !L 
100 100 

1.31 
1.7515 
0. 4162 
4 

101.0187 
98.9966 
3.9557 

1.39 
0. 4603 
0.3521 
5 

101.0000 
99.0000 
4.0023 

1.40 
0. 3893 
0. 3695 
5 

101.0023 
98.9988 
4.0066 

1.39 
0.3521 
0. 4603 
5 

101.0000 
99.0000 
4.0023 

1.31 
0.4109. 
1. 7264 
4 

101.0040 
99.0136 
3. 9556 

!I < !~ 
100 1000 

0.36 
2.5293 
0. 5858 
3 

101.0237 
99.0041 
26.6099 

0. 40 
1.2192 
0. 5887 
3 

10U821 
98.9979 
21.2943 

O.S5 
0. 7525 
0. 4345 
4 

100.9941 
99.0056 
15.8229 

0. 71 
0. 6394 
0. 4659 
4 

100.9750 
99.0121 
10,1529 

1.31 
0.4109 
1. 7284 
4 

101.0040 
99.0136 

3. 9556 

II > !~ 
!GOO 100 

1.21 
2.7384 
0.4418 
2 

101.!000 
98.0000 
3. 4838 

0.13 
0.4430 
o.mo 
( 

101.0042 
98.0527 
9. 9925 

0. 49 
0. 6025 
um 
3 

100.9949 
98.0223 
15.7081 

0.41 
0.5928 
0.6131 
3 

100.9944 
98.0056 
21.2160 

0.36 
0.5825 
2.1175 
3 

101.0000 
98.0000 
26.6099 

01 ( 61 
(2) (() 

II : !L 
100 100 

1.21 
2.7384 
0.4418 
2 

10 1.! 000 
98.0000 

3. 4838 

1.23 
0.1788 
0.3620 
3 

101.0084 
98.0187 
3.7559 

1.19 
0. 6959 
0. 4522 
3 

100.9922 
98.0946 

3.8619 

1.31 
1.4581 
0.3941 
4 

1D0.9925 
98.0300 
3.9138 

1.31 
0.4109 
1.9114 
4 

101.0040 
98.0136 
U556 

II < !L 
100 1008 

U3 
U!H 
0.9570 
I 

101.0193 
98.01(8 
2c.mo 

0. 42 
1.7568 
0.4824 
2 

100.9818 
98.0253 
19.6237 

0,48 
I.H81 
0.5040 
2 

101.0064 
98.0100 
14.6229 

0.59 
1.2600 
0.5533 
2 

100.9903 
98.0475 
1.5368 

1.31 
0.4109 
1.9114 
4 

101.0040 
98.0136 
3. 9556 
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TABLE 4.16 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=2, 
SCALE PARAMETER 8=100 AND INITIAL POINT AS FOLLOWS: 

I 

h 
dl 
dL 

0.00 D 

kl 
kL 
Co~t 

b 
dt 
dL 

us Q 

kl 
k L 
Co~t 

h 
dl 
dL 

0. 50 A 

kt 
tL 
Cost 

~ 
dl 
dL 

0. T5 • kt 
kL 
Cost 

h 
dl 
dL 

1.00 I 

tt 
kL 
Co~t 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=3.0, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=lO: 

di=O. 4, dL=O. 2, kt: I 02, k~:99 dl=dL=O. 2, kt= 101, kL=99 dt:O. 2 ,dL=O. 4, kf: 101, kL:98 

!1 > !L 
1000 100 

1.24 
2.1988 
0.1232 
4 

102.0596 
99.0096 
U159 

0. 56 
0.5171 
1.2198 
2 

102.0000 
99.0000 
lo.5563 

0.16 
U583 
1.1500 
2 

102.0095 
98.9916 
16.2190 

0.10 
0.1610 
1.7110 
z 

101.9933 
98.9991 
21.8531 

0. 31 
0. 9618 
5. 9971 
I 

101.9765 
98.9621 
27.2751 

5t ) 5~ 
(I I ( 2 I 

Kt : !L 
100 100 

1.21 
2.1988 
0.1232 
I 

102.0596 
99.0096 
um 
1.26 
0.1311 
O.H58 
I 

102. 0000 
99.0000 
I. 3018 

1.13 
0.3566 
0. 6836 
3 

102.0001 
98.9986 
uuo 

1.16 
0. 3841 
0. 8196 
3 

101.9612 
99.0239 
1.1320 

1.15 
0.1111 
2.7618 
2 

102.0213 
98.9090 
3.8113 

!1 < !L !J > !L 
100 1000 1000 100 

0. 3( 1.21 
2.7718 1.9988 
0.5820 0. 4232 
3 I 

102.0257 101.0596 
99.0004 99.0096 
29.5913 1.3459 

0. 39 0.67 
0. 6336 0.1637 
0. 5887 0. 6323 
3 I 

102.0211 100.9925 
98.9989 99.0122 
23.5658 11.2299 

0. 41 0. 52 
0.5976 0.4290 
0. 5961 0.7456 
3 I 

101.9911 101.0000 
98.9977 99.0000 
17.1191 17.5551 

. 
1.61 0.38 
0.1391 0.5913 
0.6150 1.1652 
3 3 

' 102.0000 101.0003 
99.0000 98.9961 
11.0551 23.6167 

1.15 0.31 
0.1171 0.5821 
2.7618 2.6161 
2 3 

102.0213 101.0000 
98.9090 99.0000 
3.8113 29.5913 

' 

3t : 6~ 
(21 (21 

!t : !L 
100 100 

1.21 
1.9988 
0.1232 
I 

101.0596 
99.0096 
1.3159 

1.31 
0. 4100 
0. 3578 
5 

100.9887 
99.0084 
U981 

1.32 
0.1112 
0. 4013 
5 

100.9612 
99.9956 
1.1051 

1.32 
0. 3509 
0.1665 
5 

101.0000 
99.0000 
1.3982 

1.21 
0.1255-
2.1019 
I 

100.9893 
99.0323 
1.3459 

!I ( KL 
100 1000 

0.34 
2.5118 
0. 5820 
3 

101.0257 
99.0001 
29.5913 

0.39 
1.1833 
8.5966 
3 

101.0115 
99.0071 
23.6(68 

0.52 
0. 7156 
0.1290 
I 

101.0000 
99.0000 
11.5551 

U6 
0.6116 
0.1526 
I 

100.9988 
99.0019 
11.2291 

I.H 
0.1255 
2.1019 
4 

100.9893 
99.0323 
I. 3159 

!t > !L 
1000 100 

1.11 
2.7381 
0.1112 
2 

101.1000 
98.0000 
3. 8111 

0.61 
0.6150 
0.1394 
3 

101.0000 
98.0000 
11.0551 

0.16 
0. 5968 
0. 6207 
3 

101.0000 
98.1000 
11.1189 

0.39 
0,5891 
0. 6331 
3 

100.9976 
98.0210 
23.5656 

0. 31 
0. 5821 
2. 8161 
3 

101.0000 
98.0000 
29.5913 

61 < 6L 
(21 (41 

!t : BL 
100 100 

1.11 
2.7384 
0.1112 
2 

101.1000 
98.0000 
3.8111 

1.13 
0.3107 
0.1269 
3 

100.9909 
98.1058 
1.1322 

1.13 
0. 6793 
0. 3950 
3 

10l.OOIS 
98.0026 
1.2111 

1.21 
0,4501 
0.3591 
I 

100.9995 
98.0589 
I. 3011 

1.21 
0.1255 
2. 3019 
I 

100.9893 
98.0323 
1.3159 

Bt < KL 
100 1000 

0.31 
5.6501 
0.9171 
I 

101.1000 
98.0000 
27.2751 

0.10 
1.7419 
0.1639 
2 

101.0015 
98.0062 
21.8535 

0.16 
1.1311 
0.1632 
2 

101.0191 
9T. 9913 
16.2191 

0.56 
1.2563 
0.5280 
2 

100.9935 
98.0233 
10.5561 

1.21 
0.1255 
2.3049 
I 

100.9893 
98.0323 
4.3159 
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TABLE 4.17 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=l, 
SCALE PARAMETER 8=50 AND INITIAL POINT AS FOLLOWS: 

I 

h 
dl 
dL 

0. 00 n 
il 
kL 
Co~t 

h 
dl 
dL 

0. 25 n 
il 
kL 
Coat 

h 
dl 
dL 

0.50 A 

tl 
tL 
Co8t 

k 
dl 
dL 

0. 75 A 

tl 
tL 
Co8t 

h 
dl 
dL 

1.00 n 
tl 
h 
Co~t 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=3.0, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=lO: 

d1:0. 4 ,dL:O. 2, iFI02,tL:99 d1:dL :0.2 ,k1:101, iL=99 d1:0. 2, dL=O. 4 ,iF 101, iL=98 

81 > BL 
1000 100 

0.96 
2. 4522 
0. 4143 
4 

102.0194 
99.0034 
6.8420 

0. 43 
0. 5032 
1.2614 
2 

101.9977 
99.0086 
17.1569 

0. 35 
0. 5031 
1.(947 
2 

101.9631 
98.9981 
26.8546 

us 
0. 9595 
3.4828 
I 

102.0072 
99.0138 
36.3444 

0. 24 
0.9314 
6.7291 
1 

102.0000 
99.0000 
45.6028 

61 > 5L 
{4) {2) 

!1 : !L 
100 100 

0. 96 
2.4522 
0.4143 
4 

102.0194 
99.0034 
6.8420 

us 
0.4023 
0. 4504 
4 

102.0000 
99.0000 
6.1352 

0.87 
0. 4963 
0.1155 
3 

101.9154 
99.8304 
6.6890 

0. TT 
0. 5207 
1.2309 
z 

10%.0031 
99.0149 
um 
0.87 
0. 4568 
3.1544 
t 

102.0000 
99.0000 
6.1450 

!1 < ftL !1 > !L 
100 1000 1000 100 

0. 26 0. 96 
2.0882 2.2522 
0.5794 0. 4143 
3 4 

102.0000 101.0194 
99.0000 99.003i 
49.0533 6.8410 

0. 30 0. 51 
0. 6535 0.4428 
0. 5962 0.6189 
3 4 

101.9934 IOI.OOH 
99.0121 99.0018 
38.8729 18.1933 

0. 36 us 
0,46(1 0. 5974 
0. 5858 1.0318 
3 3 

102. 0585 100.9993 
98.9970 99.0055 
28.5328 28.1305 

. 
0. 47 0. 30 
0. 7181 0.5160 
0. 6348 1.3903 
3 3 

• 101.1546 I 01.0055 
99.0117 99.0949 
11.9080 38.9648 

0.81 D.26 
0. 4568 0.5842 
3.1544 2.1960 
2 3 

102.0000 100.9933 
99.00DO 98.9642 
6.1450 49.0534 

61 : 6L 
(2) (2) 

ft1 : !L 
100 100 

0.96 
2.2522 
0. 4143 
4 

I 01.0194 
99. 003i 

6. 8420 

0.93 
0.6013 
0. 4691 
4 

100.9890 
99.0150 
6.9187 

0.92 
0. 5109 
0.5245 
4 

100.9950 
99.0186 
6. 9337 

0. 93 
0. 4678 
0.5960 
4 

100.9910 
99.0064 
6.9188 

0.96 
0. 4154. 
2. 2536 
4 

!00.9955 
99.0207 
6. 8420 

!1 < ftL 
100 1000 

0. 26 
2.1213 
0,5817 
3 

!01.0558 
99.0086 
49.0533 

0. 29 
1.2193 
0. 6155 
3 

101.0033 
99.0232 
38. 96(1 

0. 35 
I. 0264 
0. 5979 
3 

101.0000 
99.0000 
28.1304 

0. 51 
0.6169 
0. 4566 
4 

100.9982 
99.0105 
18.1933 

0. 96 
0. 4154 
2.2536 
4 

100.9955 
99.0207 
6.8420 

Bl ) KL 
1000 100 

0. 81 
3.15H 
0. 4568 
2 

101.0000 
98.0000 
6.1450 

0.47 
0.6295 
0. 6064 
3 

100.9820 
98.1746 
11.9080 

0. 36 
0.5860 
0.5719 
3 

101.0014 
98.0101 
28.5328 

0.%9 
o.58T5 
o.mr 
3 

101.0000 
98.1000 
38.8735 

0. 26 
0.5794 
2. 0882 
3 

101.0000 
98.0000 
49.0533 

61 < 6L 
(2) (4) 

!1 : IL 
100 100 

0.87 
3.1544 
0. 4568 
2 

I 01.0000 
98.0000 
6.1450 

0. 78 
1.2098 
0.5011 
2 

101.0000 
98.0000 
6.5421 

0.81 
0.7254 
0.4645 
3 

100.9613 
98.0120 
6.6891 

0.95 
0.4504 
0. 4023 
4 

101.0000 
98.1000 
6.7851 

8.96 
0.4154 
2. 4536 
4 

!00.9955 
98.0207 
6.8420 

!1 < IL 
100 ttoe 

0.%4 
5. 9136 
0.9%52 
I 

101.0)82 
97.9926 
45.6028 

0.26 
3.4176 
0.9131 
1 

101.0056 
98.0048 
36.3H7 

0.35 
1.4932 
U876 
2 

100.9926 
98.0Z3Z 
26.8545 

8.43 
1.2665 
0.5131 
z 

IOD.9891 
93.0130 
17.1569 

0.96 
0. 4154 
2. 4536 
4 

100.9955 
98.0207 
6. 8420 
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TABLE 4.18 

OPTIMUM DECISION VARIABLES AND LOSS-COSTS FOR THE WEIBULL 
PROCESS FAILURE MECHANISM WITH SHAPE PARAMETER S=2, 
SCALE PARAMETER 6=50 AND INITIAL POINT AS FOLLOWS: 

' 
• dl 
dL 

0. 00 D 

tl 
h 
Cost 

h 
dl 
dL 

0.25 I 

tl 
h 
Cost 

h 
dl 
dL 

0.50 D 
kl 
tL 
Coat 

• dt 
dL 

1.15 D 

tl 
tL 
Cost 

b 
dt 
dL 

1.00 D 

h 
h 
Coat 

DECISION INTERVAL-UPPER du AND LOWER dL, 
TIME INTERVAL BETWEEN SUBGROUPS h=3.0, 

DEAD BAND-UPPER ku AND LOWER kL, 
SUBGROUP SIZE n=lO: 

d1:0. 4 ,dL=O. 2, tu:102, tL:99 dl=dL=0.2, tw:101, tL=99 d1:0. 2 ,dL:O. 4, t1:101, h:98 

Bl ) BL 
1000 100 

0.91 
2.0541 
0.4222 
4 

102.0207 
99.0139 
T. 5323 

0. 41 
0. 5469 
1. 2621 
2 

101.9521 
99.0066 
19.0129 

0.33 
0.4838 
1.5016 
2 

101.9810 
98.9999 
29.8558 

O.Z5 
8.9614 
3. 4313 
1 

102.0000 
99.0000 
40,4331 

0.23 
0.9519 
5. 0082 
1 

101.9822 
98.7450 
5G.8163 

61 > 6L 
(4) (2) 

81 : !L 
100 100 

0.91 
2.0541 
0.4222 
4 

102.0201 
99.0139 
1. 5323 

0.91 
0.5815 
0.4422 
4 

101.9251 
98.9954 
7.4128 

0.82 
0.4306 
0. 6799 
3 

101.9236 
98.9990 
7. 3656 

0.73 
0. 5389 
1.2196 
2 

101.9676 
99.0117 
1. 2062 

uz 
0.4311 
3.0551 
2 

102.0093 
99.0012 
6. 7870 

. 

81 ( KL h > BL 
100 1000 1000 100 

8.%5 0.91 
2. 6609 1.9945 
0. 5800 0.4222 
3 4 

102.0575 101.0207 
99. DOH 99.0139 
54.5688 T. 5323 

U9 0.48 
1.2824 0. 4441 
0. 5869 8.6180 
3 4 

101.4416 101.0000 
99.0059 99.0000 
43.2039 20.1415 

0.34 0. 33 
0.9276 0 0 5966 
0.58&3 I. 0334 
3 3 

101.5994 101.0000 
99.0013 91.0000 
31.6688 31.8711 

1.44 . 0.28 
0. 5394 1.6597 
0.6109 1. 4484 
3 3 

101.8961 100.9404 
99.0010 99.1154 
19.8325 43.3009 

uz 0.25 
0. 4311 o.sm 
3.0551 3. 0306 
2 3 

102.0093 100.9985 
99.00112 99.0211 
6.7870 54.5688 

h : 6L 
(2) (2) 

h: KL 
100 100 

0. 91 
1. 9945 
0. 4222 
4 

101.0207 
99.0139 
7. 5323 

0.88 
0. 6035 
0. 4592 
4 

100.9928 
99.0016 
T .6133 

0.88 
0. 5273 
0.5050 
4 

100.9769 
99.0038 

T. 6291 

0.89 
0. 4561 
0. 5950 
4 

100.9953 
99.0094 
7.6134 

0.90 
0.4201 
2. 0030. 
4 

100.9913 
99.0292 

T. 5323 

Bt < BL 
100 1000 

O.Z5 
2. 9275 
o. 5827 
3 

101.0513 
99.0053 
54.5689 

0.28 
1.2287 
0.5843 
3 

100.9972 
99.0040 
43.2942 

0.33 
1.0517 
0.5961 
3 

100.9852 
98.9982 
31.8718 

0.48 
0.6180 
0. 4441 
4 

101.0000 
99.0000 
2G.1475 

0.90 
0.4201 
2.0030 
4 

100.9913 
99.0292 

T. 5323 

!1 > !L 
1000 100 

0.82 
2.6262 
9.4410 
2 

101.1400 
97.9971 
6.7811 

0.44 
0.6168 
8.4941 
3 

100.9946 
98.0604 
19.8325 

0.33 
0. 5798 
0. 6876 
3 

101.0091 
98.1610 
31.6690 

o.za 
U848 
0.9697 
3 

100.9990 
98.3130 
43.2034 

0. 25 
0.5803 
2.7624 
3 

100.9983 
98.0257 
54.5689 

61 < 6L 
(2) (4) 

B1 : BL 
100 100 

0.82 
2. 6262 
O.HlO 
2 

101.1400 
91.9911 
6. 7871 

0. 72 
1.2128 
0. 5369 
2 

101.0000 
98.0000 
7. 2064 

0. 82 
0.6728 
0.3774 
3 

101.0109 
91.0Z3T 
7.3657 

0.91 
8.4397 
O.H68 
4 

101.0055 
98.0511 
7.4723 

0.90 
0. 4201 
2.0627 
4 

100.9913 
98.0292 
1. 5323 

!1 < BL 
100 1000 

0.23 
4.8534 
0. 9429 
1 

101.3826 
98.0110 
50.8163 

0.24 
3.4461 
0.9703 
1 

101.0027 
98.0085 
40.4336 

0.33 
1.4749 
0. 4930 
2 

101.0060 
98.0311 
29.8557 

0.41 
1.2485 
0.5316 
2 

100.9991 
98.0350 
19.0129 

0.90 
0.4201 
2.0627 
4 

100.9913 
98.0292 
1.5323 
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those in Table 4.6. A similar statement applies to Tables 

4.16 and 4.7, Tables 4.17 and 4.8 and Tables 4.18 and 4.9. 

This lends confidence that the asymmetric economically-based 

design and search procedure are valid. As mentioned 

previously, due to the flatness of some loss-cost functions, 

there are several combinations of time interval between 

subgroups (h), decision intervals (du and dL), and dead band 

values (ku and kL) which yield close to the same loss-cost. 

Loss-costs listed in Tables 4.6 to 4.9 and 4.15 to 4.18 

are outcomes when the process is the steady state. A simu­

lation technique might be applied to obtain the variation of 

the loss-cost over a particular duration during which the 

process is operated. Performing this analysis is beyond the 

scope of this research. 

Summary 

The economically-based asymmetric Cusum model and the 

optimization procedure are analyzed and validated using two 

approaches: (1) evaluate symmetric Cusum examples with known 

solutions using the asymmetric model and compare solutions 

with Goel's data sets, (2) perform a 3251 factorial design 

using asymmetric examples and the asymmetric model to obtain 

near-optimal results, and (3) again perform the optimization 

of (2) using different initial points for the search. 



CHAPTER V 

USING THE INTERACTIVE COMPUTER PROGRAM 

Introduction 

This chapter demonstrates the use of an interactive 

computer program which allows utilization of the design and 

evaluation methodology presented in previous chapters. The 

actual FORTRAN program is documented and appears in the 

Appendix. It has been performed on an IBM 3081D using 

various time share terminals and an IBM PC. 

The user is prompted for all necessary inputs by the 

computer. The entire program is interactive and values of 

all the parameters are presented to the user for verifi­

cation. Only when a set of inputs has been confirmed does 

the program continue. 

When several values are to be entered, a space or a 

comma is used to separate them. Integer numbers should be 

entered without decimal points. If a decimal point is 

included, an error message is issued and the user is 

prompted to reenter values. The input mechanism is vir­

tually self-explanatory, as long as the user understands the 

terms being input and their mathematically feasible range. 

In the remainder of this chapter, actual interactive 

outputs are interspersed with comments and explanations. 
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All computer outputs illustrated are generated automatically 

by the computer except for the terminal inputs which follow 

a question mark (?). 

The interactive computer program provides the capa-

bility to do two activities: (1) design an economically-

based asymmetric Cusum control chart and (2) evaluate a 

user-defined Cusum control chart. The program begins by 

prompting option menu (M.1). The selection of "1" indicates 

the design of an economically-based asymmetric Cusum control 

chart is to be performed. 

? 

************************ * MAIN MKRU * 
************************ 

WHAT WOULD YOU Ll[K TO DO ? 
1. DKSIGH AK KCONOMICALLY-BASKD CUSUB CONTROL CHART 
2. KVALOATK A CUSUM CONTROL CHART 
3. KilT. 

KNTKR THK OPTIOH KUMBKR PLKASK! 

Design of an Economically-Based 

Asymmetric Cusum Control Chart 

( M. 1) 

After the economically-based chart design is chosen, 

input of the following values are sequentially prompted by 

the program: 

(1) The process parameters, 

(2) The cost and time factors, 

(3) The initial point for the search procedure, 
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(4) The criteria and step sizes for optimization of n, 

h, du and dL, 

(5) The criteria and step sizes for optimization of h, 

du and dL, 

(6) The criteria and step sizes for optimization of h, 

du, dL, ku and kL, 

(7) The step size for varing incrementally the values 

of du and dL, 

(8) The step size for varing incrementally the values 

of ku and kL. 

The program prints these input data each time for verifica-

tion by the user. Only after the user confirms the validity 

of the input does the program continue. 

PLEASE KKTKR PROCESS PARA"KTKRS, INPUT VALUES Of: 
SHAPE, SCALI, SIGMA, ALPHA, TARGKT, DKLTA(UP), DELTA(LOW) 

? 
2.0,100.0,1.0,0.25,100.0,2.0,4.0 

THK fOLLOWING VALUES HAVE BKKB INPUTTED: 
SHAPE : 2.00 SCALI : 100.00 
ALPHA : 0.25 TARGET : 100.00 
DELTA(UP)= 2.00 DELTA(LOW): 4.00 

ARK THKSK DATA RIGHT? 
PLKASK INTER 1 fOR YES, 2 lOR HO. 

? 

SIGBA : 1.00 

PLEASE ENTER COST AND Till fACTORS, IBPUT VALUES Of: 
B, C, D, K, T, W, "U, IL 

? 

0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0 

THK fOLLOWING VALUES HAVE BKKH INPUTTED: 
B= 0.50 C: 0.10 D = 2.00 
T= 50.00 W= 25.00 "U: 100.00 

K = 0.05 
ML= 100.00 



? 

? 

? 

Ail THISI DATA RIGHT? 
PLIASi KITKR 1 FOR YKS, 2 FOR KO. 

Til fOLLOWING INITIAL POIRT IS SOGGISTKD: 
SOB&ROOP SIZK N : 10 SAftfLIMG INTIRVAL H : 3.00 
DECISION IKTKRVAL(OP) DO= 0.2000 DECISION IITtiVAL(LON) DL= 0.4000 
DUD BARD YALOI(OP) IU : 101.0000 DUD BAND V&LUI(LON) IL : 98.0000 

DO TOO ACCIPT THIS POINT? 
PLIASK KNTKR 1 FOR YKS, 2 lOR NO. 

THI FOLLOWING VALOIS ARK SOGGKSTID FOR OPTIMIZATION: 
TERMINATION LIMIT= 0.100D-03 
BAl. KVALOATIONS : 200 
STKP fOR N : 1.000 STEP FOR H : 0.200 
STKP fOR DO= 0.200 STEP FOR DL= 0.200 

DO YOU ACCEPT THIS SDGGISTIOK? 
PLIASK KMTKR 1 fOR YKS, 2 fOR MO. 

100 

The Nelder and Mead direct search method is performed 

after the criteria and step sizes for n, h, du and dL have 

been verified. The optimal point values and their associ-

ated hourly loss-cost are printed. 

** OPTIMIZATION IS PROCISSING ** 

*********************************************** 
AfTIR OPTiftiZATIOH THE DESIGN IS 

H: 2.46 DO= 1.0751 10=101.0000 
H= 1.02 DL= 0.5247 IL= 98.0000 
LOSS-COST= 4.1325 

*********************************************** 

Thereafter, the subgroup size is automatically 
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truncated to an integer and the intermediate values of n, 

du, dL, ku and kL are used. The next phase of the optimi-

zation is then run after the criteria and step sizes for h, 

du and dL have been inputted and verified. The search for 

an integer n, the optimal decision variable values and their 

associated hourly loss-cost are then printed. 

THK fOLLOWING VALOIS ARK SOGGISTKD: 
TKRKIHATIOK LIMIT= 0.100D-05 
KAI. KVALUATIOHS : 300 
STKP FOR H: 0.150 STKP FOR DO= 0.150 STKP FOR DL= 0.150 

DO YOU ACCEPT THIS SUGGKSTIOR? 
PLKASK KHTKR 1 FOR YKS, 2 FOR HO. 

? 

1 

*** OPTIKIZATIOI ITKRATIOI *** 

N H DU DL IU [L LOSS-COST 

2. 1. 01 1.1943 0.5077 101.0000 98.0000 4.H76 

1. 0.75 2.4269 1.1677 101.0000 98.0000 4.4586 

3. 1.19 0.7889 0.4311 101.0000 98.0000 4.1332 

t 1. 27 0.5635 0.3739 101.0000 98.0000 4.1879 

*********************************************** 
AfTKR OPTIBIZATIOR THK DKSIGI IS 

I= 3.00 DO= 0.7889 10=101.0000 
H= 1.19 DL= 0.4371 IL= 98.0000 
LOSS-COST: 4.1332 

******************************************·***** 

The direct search is again applied, automatically using 

a fixed subgroup size n and the new intermediate values of 

h, du, dL, ku and kL as an initial point for another 



iteration. Again, new criteria and step sizes must be 

inputted and verified. 

' 

THK FOLLOWING VALOKS ARK SOGGKSTKD: 
TERMINATION LIMIT= 0.1000-06 
MAX. EVALUATIONS : 300 
STKP FOR H: 0.100 
STKP FOR DO: 0.100 STKP FOR DL= 0.100 
STKP FOR [0: 0.100 STKP YOR [L: 0.100 

DO YOU ACCEPT THIS SUGGKSTIOR? 
PLKASK KHTKR 1 fOR YKS, 2 lOR KO. 

*********************************************** 
AFTKR OPTIMIZATION THK DKSIGK IS 

N: 3.00 DO= 0.8027 10=100.9889 
H= 1.13 DL= 0.4029 lL= 98.1078 
LOSS-COST= 4.1323 

*********************************************** 
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Finally, incrementally varying the value of du and dL 

as well as ku and kL brings about the optimal or near-

optimal design of an economically-based asymmetric Cusum 

control scheme. 

STKP= 0.0020 IS SOGGKSTKD lOi IRCRKftKRTALLY VARYING DO AHD DL. 

DO YOU ACCKPT IT? PLKASK KHTKR 1 FOR YKS, 2 lOR NO. 

? 

tttttttttttttttttttttttttttttttttttlttttttttttt 
AFTKR VARYING DO AND DL THK DKSIGI IS 

H: 3. DO= 0.8107 10= 100.9889 
H= 1.13 DL= 0.4289 lL= 98.1078 
LOSS-COST= 4.1322 

ttttttttttttttttttttttttttttttttttttttttttttttt 



STEP= 0. 0020 IS SUGGISUD FOR IICRIKUTALLY VARYING lO AftD lL. 

DO YOU ACCEPT IT? PLEASK KHTKR 1 fOR TKS, 2 FOR NO. 

? 

iiitiitittitttiiiiiiiitiiiiiittiiittitiitttitti 
A¥TKR VARYING lU AND lL THE DESIGN IS 
K= 3. DU= 0.8107 KU= 100.9909 
H: 1.13 DL= 0.4269 (L: 98.1058 
LOSS-COST: 4.1322 

*********************************************** 

************************************************************************ 
THE ECONOMICALLY-BASED COSO! CHART IS EVALUATED AS: 

SUBGROUP SIZE N : 3. SA!rt!KG INTERVAL B : 1.13 HRS 
DECISION INTKRVAL(UP) DU= 0.8107 DECISION INTKRVAL(LOW) DL= 0.4289· 
DEAD BAND VALOE{UP) lU = 100.9909 DEAD BAND VALUK(LOW) lL : 96.1058 
GA~~A(O): 0.0088 ARL1= 1.11 KKSIN : 74.09 
GAM~A(L): 0.0223 ARLO= 898.63 CYCLE TIKK= 91.46 HRS 
GAKKA(O): 0.9690 THK HOURLY LOSS-COST IS$ 4.1322 

*********************************************************************** 

Evaluation of A Cusum Control Chart 

A selection of "2" from menu ( M. 1) leads to the 
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evaluation of a specified Cusum control chart. The inter-

active procedure and the input data follow the first three 

steps in designing an economically-based asymmetric Cusum 

control chart. The format of the resulting listing is very 

similar to that of economically-based design. 

************************ * MAIN KKKU * 
************************ 

WHAT WOULD YOU LilK TO DO ? 
1. DKSIGH AK ECONOMICALLY-BASED CUSUft CONTROL CHART 
2. EVALUATE A CUSUK CONTROL CHAiT 
3. KilT. 

EHTER THE OPTIOH NUMBER PLKASK! 



PLKASK iNTER PROCiSS PAiA!fTKiS, IIPUT VALUES Of: 
SHAPI, SCALI, SIGftA, ALPHA, TARGIT, DKLTA(UP), DKLTA(LON) 

? 

2.0,100.0,1.0,0.25,100.0,100.0,2.0 

? 
2 

THI fOLLOWING VALUES HAVE BilK IKPUTTKD: 
SHAPI : 2.00 SCALI : 100.00 SIGMA : 1.00 
ALPHA : 0.25 TARGET : 100.00 
DKLTA(OP)=100.00 DILTA(LON)= 2.00 

ARK THESK DATA RIGHT? 
PLKASI INTIR 1 FOR YIS, 2 fOR 10. 

PLKASI KKTKR PROCESS PARABKTKRS, INPUT VALOIS Of: 
SHAPI, SCALI, SIGftA, ALPHA, TARGET, DKLTA(UPJ, DKLTA(LON) 

? 
1.0,100.0,1.0,0.25,100.0,2.0,2.0 

THE FOLLOWIBG VALOIS HAVI BIER INPUTTED: 
SHAPI : 1.00 SCALI : 100.00 SIGftA : 1.00 
ALPHA : 0.25 TARGIT = 100.00 
DKLTA(UP): 2.00 DILTA(LONJ= 2.00 

ARK THKSK DATA RIGHT? 
PLKASK ENTER 1 FOR YKS, 2 FOR NO. 

? 

PLIASK IKTIR COST AND TI!I fACTORS, INPUT VALOIS Of: 
B, C, D, I, T, W, !U, !L 

? 
0.5,0.1,2.0,0.05,50.0,25.0,100.0,100.0 

THI fOLLONIIG VALOIS HAVI Bill UPUTTKD: 
B= 0.50 C= 0.10 D: 2.00 I: 0.05 
T= 50.00 N= 25.00 !0= 100.00 !L= 100.00 

ARK THKSK DATA RIGHT? 
PLKASI KKTIR 1 fOR YKS, 2 fOR NO. 

? 

PLIASK IKTKR INITIAL POIRT, IIPOT VALOIS Of: 
N, H, DO, DL, 10, lL 

5,1.(0,0.(821,0.3587,100.98((,99.0012 

104 



THI fOLLOWIBG VALDIS HAVE BKKN IKPDTTID: 
SUBGROUP SIZK N : 5 SAKPLIKG IKTIRYAL B : 1.(0 
DECISION IITKRYAL(OP) DO= 0.4&21 DICISIOK IKTiRfAL(LOW) DL= 0.3587 
DIAD BARD VALOI(OP) ID : 100.98(4 DIAD BARD YALOI(LON) IL : 99.0012 

ARK TBISK DATA RIGHT? 
PLIASK KRTKR 1 FOR YIS, 2 FOR HO. 

? 

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
THK CDSOK CHART IS KVALOATID AS: 

SUBGROUP SUI K : 5. SAKPLIKG INTERVAL B : 1. (0 HRS 
DICISIOI IKTKRVAL(OP) DO: 0.4821 DKCISIOH IHTIRYAL(LOW) DL: 0.3587 
DIAD BARD ULOI(OP) 10 : 100.9844 DIAD BAND Y&LOI{LOW) lL = 99.0012 

GAKKA(O): 0.0076 ARL1= 1.09 IHSIH . = 70.93 
GAKKA(L): 0.0223 ARLO= 565.05 CYCLI TIKI= 103.08 HRS 
GAKKA(O): 0.9702 THI HOURLY LOSS-COST IS $ 4.002( 

ttttttttt*ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

In the main menu, a selection of "3" terminates the 

execution of the interactive computer program. 

ttttittttttttttttttttttt 
t KAIH KKKD t 

************************ 

WHAT WOULD YOU LIII TO DO ? 
1. DKSIGI AK ICOROKICALLY-BASID COSO! CORTROL CHART 
2. IYALOATI A COSO! CONTROL CHART 
3. lilT. 

KKTIR THI OPTION KOKBIR PLIASI! 
? 
3 
RKADY 

Summary 

According to the numerical results in Chapter IV, as 

shown in Tables 4.6 to 4.9 and 4.15 to 4.18, there is an 
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average of 1.8251 minutes CPU time with a standard deviation 

of 0.5833 minutes for a single run. The minimum CPU time is 
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0.8688 minutes and the maximum CPU time is 3.3565 minutes. 

It has been observed that the major effect in the variation 

of CPU time is the quality of the initial point for the 

search procedure. 

Nearly every feature of the interactive computer 

program of this research has been demonstrated in this 

chapter. The interactive feature and its flexibility make 

this computer program a useful tool for designing and 

evaluating Cusum control schemes economically. Through its 

additional design and evaluation capability, this inter­

active computer program will help with better design and 

assessment and broader application of Cusum control schemes. 



CHAPTER VI 

SUMMARY AND CONCLUSION 

This research extends the state of the art in quality 

control charting by fulfilling the objective and subobjec­

tives stated in Chapter I. It provides an operational tool 

which will permit the Cusum control chart to be used in an 

economically optimum manner as an alternative to Shewhart 

control charts for monitoring a process in a realistic 

environment. This has been achieved by accomplishing the 

following: 

1. An asymmetric Cusum control chart methodology has 

been developed in which shifts in process mean, 

probabilities of shift direction and the associated 

costs of process shifts are asymmetric. 

2. A Weibull process failure mechanism has been assumed 

and incorporated into the asymmetric Cusum control 

chart model. 

3. An economically-based Cusum model has been formu­

lated by following the same cost structure as in 

Duncan's classic economically-based X-chart model. 

4. Methodologies for statistically evaluating and 

designing an asymmetric Cusum control chart have 

been presented. 
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5. Economical design of the asymmetric Cusum control 

chart has been compared under a variety of condi­

tions. The effect of the Weibull process failure 

mechanism has been examined. 
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6. A versatile interactive computer program has been 

developed and demonstrated to facilitate the design 

and evaluation of (1) economically-based asymmetric 

Cusum control chart, and (2) user defined Cusum 

control charts. 

Based on the results obtained in this research: 

1. The Weibull scale parameter affects more the 

variation in loss-cost and cycle time than does the 

Weibull shape parameter. 

2. It is observed that smaller subgroup sizes should be 

taken more often when the magnitude of shift in the 

process mean, which is to be detected, increases. 

3. A symmetric Cusum control chart is a special case of 

the asymmetric Cusum control scheme. 

4. Based on the loss-costs obtained, a symmetric Cusum 

control chart seems slightly less efficient than 

does a one-sided asymmetric Cusum control chart. 

5. In order to have more confidence in the near-optimal 

solution, multiple starting points are used in the 

optimal-seeking search procedure. 

6. In this study, the upper dead band value ku is about 

~o + ~Bua and the lower dead band value kL is about 

~o - ~6La. 
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The following are recommendations for future research 

on the same subject to facilitate implementation of Cusum 

control charts: 

1. Multiple assignable causes may be considered in an 

extension to this research. In this study, a single 

assignable cause is assumed. 

2. The economically-based formulations of Cusum control 

charts can be extended to have a process failure 

mechani~m which follows the rich Weibull 

distribution. 

3. Step sizes for the decision variables in optimi­

zation procedures do affect the final result. 

Optimal step sizes should be a consideration in 

improving the computer program and obtaining a 

better solution. 
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Cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
c t 
C THIS INTERACTIVE PROGRAM PERfORMS AN ASYMMETRICAL KCOROMICALLY- t 
C BASED DESIGN Of CUMULATIVE SUK CONTROL CHART. * 
c * 
C BY CHUNG-YO PAN, SCHOOL Of INDUSTRIAL KNGIKKKRING t 
C AND MAKAGKMKKT t 
C O!LAHOMA STATE UNIVERSITY t 

c * 
C DISSERTATION ADVISOR: DR. liNNKTH I. CASK * 
c * 
Cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
c t 
C DKFINITIOK OF SOBROOTIHKS: t 

c * C DESIGN : PERfORM THI DESIGN OF ICOHOBICALLY-BASID CUMOLATIYI t 
C SOB CORTROL CHARTS. * 
c * 
C KVALOK : PERFORM THI IVALUATIOK OF A COSO! CONTROL CHART. t 
c i 
C NKLMl : PERFORM THK NELDKR AND MKAD DIRECT SEARCH ALGORITHM * 
C WITH THRKE OR FOUR VARIABLES TO FIND THK OPTIMAL OR t 
C MKAR-OPTIMAL. t 
c t 
C NILM2 : PERfORM THE NELDIR AND MEAD DIRECT SEARCH ALGORITHM t 
C WITH FIVK VARIABLES TO fiND THE OPTIMAL OR NEAR- t 
C OPTIMAL. t 
c t 
C LOSS : PERfORM THE EVALUATION Of LOSS-COST. t 

c * 
C CYCLE : PERFORM THK KVALOATION Of CYCLE TIMK. * 
c t 
C LKHGTH : PKRfORK THK KVALOATIOR Of AVERAGE RUM LIKGTH (ARL). t 
c * 
C SCALH : PERfORM HAMMING'S KITHOD TO SCALI A SQUARE MATRIX. t 

c * C RISCAL : PIRfORK THI OPERATION OF RKSCALIIG A SQOARK MATRIX. t 

c * C LSOLV : PKRfORB GAOSSIAI KLIKIIATIOR NITH PARTIAL PIYOTIHG * 
C TO SOLVE A SISTU Of LIRKAR EQUATION. * 
c * 
C IRCRKD : PERfORM THK LINEAR ADJUSTKKHT OF DKCISIOK INTERVALS * 
C TO l!RD AR OPTIMAL. * 
c * C IHCRKD : PERFORM THK LIIIAR ADJUSTMENT Of DIAD BARD VALOIS * 
C TO l!RD AR OPTIMAL. * 
c * 
c * 
C DKFIKITIOR OF FOHCTIOIS: * 
c * C DPHI : PERfORM THK CUMULATIVE DISTRIBUTION FORCTION OF t 
C STANDARD NORMAL VARIABLE. * 
c * C KHSIH : PERFORM THE KVALUATIOK OF THK KXPKCTKD MUMBKR Of * 

116 



117 

c SUBGROUPS TAlKM IN THE PERIOD Of THK PROCESS IM- ' c CONTROL. * c * c * c DKFIKITIOH OF VARIABLES: * c i 

c K : THK HUMBER OF INDIVIDUAL ftKASURKftEKTS OR SAMPLES * c THAT COMPRISE A SUBGROUP. * c H : THK TIME INTERVAL BKTWEKM SUBGROUPS. * c DU : THE UPPER DECISION INTERVAL. * c DL : THE LOWER DECISION INTERVAL. * c (0 : THK UPPER DKAD BAND VALUE. * c n : THK LOWER DiAD BAHD VALUE. * c TARGET : THE DESIRED PROCESS ftKAH. * c SIGMA : THE STANDARD OR DESIRED PROCESS STANDARD DEVIATION. * 
c DKLTAD : THE ftAGNITDDK OF AK OPPER SHIFT IN THE PROCESS MKAH. * 
c DKLTAL : THE ftAGKITUDK OF .A DOWNWARD SHIFT IK THK PROCESS * c ftKAR. * c xu : THK LOCATION or THE PROCESS ftKAK WITH AK UPPER * c SHIFT, THAT IS, IO =TARGET+ DELTAU *SIGMA. * c XL : THE LOCATION OF TBK PROCESS MKAH WITH A DOWNWARD * c SHIFT, THAT IS, XL : TARGET - DKLTAL * SIGMA. * c ALPHA : THE COKDITIOHAL PROBABILITY THAT IF THKRE IS A * c SHifT IM THE MKAR, THK SHIFT WILL BE IM THK OPPER * c DIRECTION. * c SHAPE : THE SHAPE PARAftKTKR or THE PROCESS FAILURE KECHAHISK.* 
c SCALK : THE SCALE PARAMKTKR OF THK PROCESS FAILURE ftECHAKISft.* 
c AlDKLU : THE AV!RAGK NUMBER OF SUBGROUPS TA!KK BEFORE AN * c OPPKR SHIFT WITH A KAGHITODK OF DKLTAU WILL BK * c DETECTED BY VIRTUE OF KXCKKDIMG EITHER UPPKR * c DECISION IKTKRVAL OR LONKR DECISION INTERVAL. * c AlDELL : THE AVKRAGI IOftBKR Of SUBGROUPS TA!KN BEFORE A * c DOWNWARD SHifT WITH A ftAGKITDDK OF DELTAL WILL BK * c DETECTED BY VIRTUE OF IICIIDIMG EITHKR OPPER * c DECISION IITERVAL OR LONER DECISION INTERVAL. * 
c ARLO : THE AVERAGE ROBBER or SUBGROUPS TAlER WRKR A PROCESS * 
c IS 11-COITROL AT ACCKPTABLK LIVKL. * c ARLl : THI AVIRAGK IDBBKR or SDBGROOPS TAlKR BKrORE A SHifT * 
c II THE PROCESS ftKAB IS DKTECTKD BY VIRTUE or * c EICEKDIMG EITHIR DPPIR OR LONER DECISION IHTKRVALS. * 
c GAKO : THE PROPOiTIOI OF TlftE THE PROCESS IS IN-CONTROL. * c GAftO : THE PROPORTION Of Tlftl THE PROCISS IS ODT-OF-COMTROL * 
c II UPNARD DIRECTION. * 
c GAML : THE PROPORTIOR or TIME THI PROCESS IS OUT-OF-CONTROL * 
c II DOWHWARD DIRECTION. * c CYC : THE AVERAGE TiftK FOR ONE IN-CONTROL, OUT-OF-COHTROL * c CYCLE. * c B : TRI COST PIR SUBGROUP Of SAMPLING, PLOTTING AND * 
c !AliiG THE ACCEPTARCK/REJICTION DECISION. * c c : THE PIR OMIT COST or SAftPLIIG, BIASURIRG, COMPUTING * 
c AID PLOTTING. * c D : THE AVERAGE TIME TUKH TO FIND THE ASSIGNABLE CADSI. * 
c K : THK PER UNIT AVKRAGK TiftK SAMPLING, ftKASURING, * c COMPOTIHG AMD PLOTTING. * 



c T : THK AVKRAGK COST PER KUHT Of SEARCHING FOR AN t 

c ASSIGUBLK CAOSK NHKM NOKK KIISTS. t 

c M : THK AVKRAGK COST PKR IVINT Of SIARCHIHG fOR AN t 

c ASSIGNABLE CAUSE WHIM OHK DOKS KIIST. • 
c KO : THK DIKIIUTIOI OF HOURLY IMCOMK ATTRIBUTED TO THK t 

c OCCURRKHCK OF AN OPPER MKAH SHIFT FROM TARGKT TO XU. t 
c KL : THK DIMINUTION OF HOURLY INCOKK ATTRIBUTED TO THK * 
c OCCURRKNCK Of A DOWNWARD KKAN SHIFT FROM TARGKT TO * 
c XL. * 
c COST : THK YALUI Of LOSS-COST. * 
c • 
C******************************************************************* 
c 
c !AIR PROGRAM 
c 

IMPLICIT RIALtO (A-H,O-Z) 
RIALtO IO,lL,MO,KL,I(6),MIH(6),CONS(6),STKP(6),Y(6),YTKKP(6) 
COMMON SHAPK,SCALI,SIGMA,ALPHA,CONS,DKLTAU,DKLTAL,TARGKT,IU,XL 
COKKOK GAMKA,AlDKLU,GAMU~AlDKLL~GAKL,ARLl~HKNSIM,ARLO,CYCIGAKO 

c 
C PROMT MAIM MKHO 
c 

c 

c 

c 

10 MRITK(6,200) 

RKAD( 5, * )MKMU 
GO TO (30,30~300) KINO 

20 MRITK( 6 I 210) 

READ( 5 I* )IKHTKR 
GO TO (10,300) IKITKR 
GO TO 20 

C INPUT PROCESS PARAMITIRS 
c 

c 

30 WRIT1(6,220) 
RKAD(5 1 t)SBAPI,SCALI,SIGMA,ALPHA,TARGIT,DILTAU,DELTAL 
GAMMA=DGAK!A(l.DO+l.DO/SHAPI) 

C ECHO PROCESS PARAMITIRS 
c 

c 

40 NRITI(6,230)SHAPI,SCALI,SIGKA,ALPHA,TARGKT~DKLTAO,DKLTAL 
RKAD(5,t)ICBICl 
GO TO (50,30) ICHICl 
GO TO 40 

C INPUT COST AMD TIKI FACTORS 
c 

50 NRIT1(6,240) 
READ(5,t)B,C,D~I,T,W,KU~ML 

c 
C ECHO COST AKD TIKI FACTORS 
c 

60 MRITK(6,250)B~C,D,K,T,~.KO,!L 
READ{ 5, *) ICHKCl 

118 



c 

c 

c 

GO TO (70,50) ICHKCl 
GO TO 60 

70 CONS(l):B 
COHS(2):C 
COHS(J):D 
COHSW =K 
COHS(5):T 
COKS(6)=W 
COKS(7)=MU 
COHS(8)=ML 
IU=TARGET+DKLTAUtSIGMA 
IL=TARGET-DELTALtSIGMA 
GO TO (80,90) MENU 

80 CALL DESIGN 
GO TO 10 

90 CALL KVALUK 
GO TO 10 

200 FORMAT{1H1,12I,2((1Ht),/, 
l 13X,'* MAIN MENU *',/,13X,24(1H*l.//, 
l 31, 'WHAT WOULD YOU LilE TO DO ?' 
l ,/,51, '1. DESIGN AN ECONOMICALLY-BASED CUSUM CONTROL CHART' 
l ,/,5X, '2. KVALOATK A CUSUM CONTROL CHART' 
l ,/,SX, '3. EXIT.' 
l ,//,31, 'EHTKR THE OPTION NUMBER PLEASE!') 

210 FORMAT(///,51, 'ENTERED HOHBER ERROR!,,//, 
& 5!, '1. REKHTER OPTION HUMBER,.,/, 
& 5!,'2. EXIT.') 

220 FORHAT(/,31, 'PLEASE ENTER PROCESS PARAMETERS,', 
& ' INPUT VALUES OF:.,/ ,5X I 

& 'SHAPE, SCALE, SIGH!, ALPHA, TARGET, DELTA(OP), DELTA(LOH)' ,/) 
230 FORMAT(/,31, 'THE FOLLOWING VALUES HAVE BEEN INPUTTED:',/, 

' 51 I • SHAPE :' I F6. 2 ,51 I' SCALE :'I f7. 2 I 
& 51, 'SIGMA :' ,¥6.2,/, 
& 51, 'ALPHA :' ,F6.2,5I, 'TARGET :' ,F7.2,/, 
l 51, 'DELTA(UP):' ,F6.2,5I, 'DELTA(LOH):' ,¥7.2,//, 
& 3X, 'ARK THESE DATA RIGHT?',/, 
I 31, 'PLEASE ENTER 1 FOR YES, 2 FOR NO.',/) 

240 FORMAT(/,31, 'PLEASE ENTER COST AND TIME FACTORS, INPUT VALUES Of:' 
,/,51, 'B, C, D, K, T, H, MU, ML' ,/) 

250 FORMAT(/,31, 'THE FOLLOWING VALUES HAVE BEEN INPUTTED:',/, 
l 5I,'B:' ,¥7 .2,51, 'C:' ,n .2,51, 'D :' ,n .2,51, 'K :' ,¥7.2, 
l /,51, 'T:',¥7.2,51, 'W:' ,F7.2,5X, 'MU=' ,r7.2,5X, 'ML=' ,r7.2, 
l //,31, 'ARK THESE DATA RIGHT?',/, 
l 31, 'PLEASE ENTER 1 FOR YES, 2 FOR NO.',/) 

300 STOP 
KHD 

C**************************tttttttttttttttttttttttttttttttttttttttttttt 
SUBROUTIIK DESIGN 

Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
IMPLICIT RK!Lt8 (A-H,O-Z) 
RKALt8 lU,lL,HU,ML,X(6),MIN(6),CONS(8),STEP(6),Y(6),YTEMP(6) 
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c 

COKKOM SHAPK,SCALK,SIGKA,ALPHA,CONS,DKLTAO,DKLTAL,TARGKT,IO,IL 
COMMON GAKKA,A1DKLO,SAKO,A1DKLL,GAKL,ARL1,HKKSIH,ARLG,CYC,GAKO 
DATA H/10/,H/3.0/ 
DO=SIGMAtDKLTAU/10.0 
DL=SIGKAtDKLTAL/10.0 
[U:T!RGKT+0.5tSIGKAtDKLTAU 
!L=TARGKT-0.5tSIGMA*DKLTAL 

C IHPOT INITIAL POINT OF CUSUK CHARTS 
c 

c 

WRITE(6,300)H,H,DU,DL,!U,!L 
RKAD{5,t)ICHKCI 
GO TO (6,2) ICHKCI 

2 WRITE( 6 I 305) 
READ(5,*)N,H,DO,DL,lO,IL 

C KCHO THK INITIAL POIKT 
c 

c 

4 NRITE(6,310)H,H,DU,DL,lO,lL 
RKAD( 5, t )ICHKC! 
GO TO (6,2) ICHKC! 
GO TO 4 

6 I(ll=H 
X(2l=DO 
X{3l=DL 
X(() =FLOAT{ I l 
1(5):!0 
X{6)=1L 

C INPUT CRITERIA AND STKP SIZES FOR HKLDKR-MKAD OPTIMIZATION 
C PROCEDURE WITH FOUR VARIABLES 
c 

c 

RKQ:0.0001 
ICOONT=200 
STKP{l):O.Z 
STKP(2):0.2 
STKP(3):0.2 
STKP(():l. 0 
WRITK{6,315)RKQ,ICOONT,STKP{4),{STKP{l),I:l,3) 
RKAD { 5 , *)I CHKC! 
GO TO (30,10) ICHKCl 

10 WRITK(6,400) 
RKAD{5,i)RKQ,ICOONT,STKP(4),{STKP(l),I:1,3) 

C KCHO INPUT DATA 
c 

c 

20 WRITK(6,410)RKQ,ICOUMT,STKP(4),(STKP(I),I=l,3) 
RKAD(S,*liCHKC! 
GO TO (30,10) ICKECI 
GO TO 20 

C PKRrORM OPTIMIZATION PROCKDORI 
c 

30 WRITE( 6, 415) 
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c 

CALL HKLM1(I,4~STKP,RKQ,MIN,Z~IM,ICOUMT) 
~RITK(6,420l~IM{4l~MIK{2l~~IM(5),~IK(l),MIH(3l .~IH(6),ZMIK 

C TROHCATK SUBGROUP SIZi AK IHTKGKR AHD OPTI~IZK H, DO AKD DL 
c 

c 

X(4l=AIHT(!IN(4ll 
If (X(4l .KQ. 0.0) 1(4)=1.0 
OPKR= 1. 0 
DO 40 Ml=l~6 

40 Y(~ll=MIH(Kl) 
Y(4)=X(4) 
ZKIH=l. DlO 
RKQ=O.OOOOOI 
ICOUHT=300 
SUP(1):0.15 
STKP(2)=0.15 
STKP(3)=0.15 
WRITE( 6,425 )UQI ICOOHT I (STEP (I) I I=l, 3) 
RKAD(S~i)ICHKCl 
GO TO (70,50) ICHKCl 

50 ~RIU(6,00) 
RKAD(5 1 i)RKQ 1 ICOOHT 1 (STKP(I)~I=1~3l 

C XCHO IHPUT DATA 
c 

c 

60 WRITK(6~440)RKQ 1 ICOONT,(STKP(IJ,I=1~3l 
READ ( 5 It )I CHKC! 
GO TO (70150) ICHKC! 
GO TO 60 

C PERFORM OPTIMATION PROCKDORK 
c 

70 ~COOHT=ICOOHT 
WRITK(61450) 

80 DO 90 K2=1, 3 
90 I(KZl=KII(M2) 

CALL IKLK1(1,3,STKP,RIQ,KII,Z,ICOOBT) 
MRITI(6,460)MIM(4),KIK(l),MIM(2),ftii{3),KIR(5),MIN(6),Z 
If (& .LT. ZKIRJ GO TO 100 
GO TO 120 

100 DO 110 11:1,6 
110 Y(IIJ=KIM(Ill 

OPIR=OPKR+l.O 
1{4)=1(4)-1.0 
ZKIK=Z 
ICOORT=ftCOOIT 
IF (1(4) .KK. 0.0) GO TO 80 

120 1(4)=1{4)+0PKR 
130 ICOOHT=KCOOHT 

CALL NKLftl(l,3,STKP,REQ,KIH,Z,ICOOHT) 
MRITK(6,460)ftiH(4J,KIH(l),KIH(2),K!H(3),ftiN(5),K!H(6),% 
If (X .GI. ZKIM) GO TO 160 
DO HO K3= 1,3 

140 I(K3l=~IH(K3) 
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c 

DO 150 84:1,6 
!50 Y(~4l=~IM(K4) 

ZKU=Z 
1(4):1(4)+1 '0 
GO TO 130 

160 WRITK(6,420)Y(4),Y(2),Y(5),Y(l),Y(3),Y(6),ZB!M 

C FIX SUBGROUP SIZK AND OPTIKIZK H, DU, DL, !U ARD lL 
c 

c 

DO 170 K5=L6 
170 X(K5):Y(M5) 

RKQ=O.OOOOOO! 
ICOUKT=JOO 
STKP(l ):0 .1 
STKP(2)=0.1 
STIP(3)=0.1 
SUP( 4):0.0 
STKP(5):0.1 
STKP(6):0.1 
WRITE(6,465)REQ,ICOUHT,(STKP(I),l:1,3),(STKP(J),J:5,6) 
RKAD(5,*)ICHKC! 
GO TO (200,160) ICHKC! 

160 WRITI( 6,470) 
RKAD(5,*)RKQ,ICOOHT,(STKP(I),I=1,3),(STKP(J),J:5,6) 

C KCHO IRPOT DATA 
c 

c 

190 WRITK(6,480)RKQ,ICOUHT,(STKP(l),I=1,3),(STKP(J),J:5,6) 
READ( 5, i)ICHKC! 
GO TO (200,180) ICHKCI 
GO TO 190 

C PKRFORK OPTIKIZATIOR PROCIDURI 
c 

c 

200 CALL IILK2(I,6,STKP,RKQ,BIH,Z,ICOONT) 
NRITI(6,420)KIR(4),KIH{2),Bli(5),KII(1),KIR(3),KIR(6),Z 

C IKCREBIITALLY VARY DO AHD DL 
c 

DATA STKPD/0.002/ 
NRITK(6,485}STKPD 
RKAD(5,t.)ICHKCI 
GO TO (230,210) ICHKCI 

210 WRITI(6,490) 
RKAD(5,*)STKPD 

c 
C KCHO INPUT DATA 
c 

220 NRITI(6,500)STKPD 
RKAD(5,t.)ICHKC! 
GO TO (230,210) ICHICI 
GO TO 220 

230 CALL IHCRKD(MIH,Z,STKPD) 
NRITK(6,510)K!N(4),KIN(2),KIH(5),KIH(l),KIH(3),MIH(6),Z 
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c 
C INCREMENTALLY VARY 10 AND IL 
c 

DATA STKP!/0.002/ 
NRITK(6,515)STKPI 
RKAD { 5 I* )1 CHKC! 
GO TO (260,240) ICHKC!' 

240 NRITK{6,520) 
RKAD(5,*)STKPI 

c 
C ECHO INPUT DATA 
c 

c 

250 WRITK{6,500)STEPI 
RKAD{ 5 I* )ICHKC! 
GO TO (260,240) ICHECI 
GO TO 250 

260 CALL IKCRKI(!IN,Z,TARGIT,STKP!) 
NRITK{6,530)!IK(4),!IN(2),!IK(5),MIK{l),!1N(3),!IN(6),Z 
KHSIN=HKKSIH/1{1) 
NRITK(6,540)MIK{ 4) I (MIKOl I I=L 3) I (KIN(J) ,J:5,6) 
NRITK(6,550)GAKO,ARLl,KNSIH,GAML,ARLO,CYC,GAKO,Z 

300 FOR!AT(/,31, 'THE FOLLOWING INITIAL POINT IS SUGGESTED:',/, 
4 51, 'SUBGROUP SUI I :' ,14,101, 
6 'SAMPLING IITKRYAL H :',F7.2,/, 
4 51, 'DECISION IKTKRVAL(OP) DO=' ,F9.4,5X, 
& 'DECISION IMTKRV!L(LON) DL=' ,f9.4,/, 
& 5X, 'DEAD BAHD VALUI(OP) IU :' ,f9.4,5X, 
4 'DIAD BAND VALUK(LON) !L :',f9.4,//, 
& 3X, 'DO YOU ACCEPT THIS POINT?',/, 
& 31, 'PLKASK IMTKR 1 FOR YKS, 2 FOR NO.',/) 

305 FOR!AT(/,3X, 'PLEASE IKTKR IKITI!L POINT, INPUT VALOIS OF:',/, 
6 51, 'K, H, DO, DL, IU, IL' ,/) 

310 FORK!T(/,31, 'TBI fOLLONIRG YALUIS HAVE BKKH INPOTTID:' ,/, 
6 51,'SUBGROUP SIZI I :' ,!4,101, 
l 'SAKPLIIG IBTKRYAL B :' ,F7.2,/, 
l 51, 'DICISIOI IITIRVAL(UPJ DO:' ,F9.4,51, 
6 'DICISIOI IITIRV!L(LON) DL=' ,F9.4,/, 
6 51, 'DK!D BARD VALUI(UP) (0 :',F9.4,51, 
l 'DIAD BAlD VALUI{LON) (L :'I F9. 4 I II I 
• 31 I' ARK THIS I DATA RIGHT?',/ I 
' 31 I 'PLKASI KNTIR 1 FOR YKS I 2 FOR NO .. I/) 

315 FOR!AT{/,31, 'THI FOLLONIIG VALOIS ARK SUGGESTED FOR OPTIMIZATION:' 
6 ,/,51, 'TiRKIMATION LIKIT=' ,D12.3, 
l /,51,'KAI. IVALUATIOKS :' ,I4, 
& /,51, 'STKP FOR 8 =· ,¥6.3,51,'STKP fOR H :' ,F6.3, 
& /,5X, 'STKP FOR DU=' ,F6.3,5I, 'STIP FOR DL:' ,F6.3, 
l //,31, 'DO YOU ACCEPT THIS SUGGISTION?' ,/, 
l 31,'PLKASK IMTKR 1 fOR YKS, 2 FOR NO.',/) 

(00 FOR!AT(/,3X, 'PLIASK IKTKR CRITERIA AND STKP SIZES FOR', 
6 ' OPTIMIZATION,' ,/,31, 'INPUT VALOIS OF:' ,/,51, 
& '1, TKRMIK!TIHG LIMIT FOR VARIANCE Of FUKCTIOH VALOIS.' ,/,51, 
& '2. MAXIMUM HUKBKR OF FOKCTIOH KVALUATIOHS.' ,/,51, 
& '3. STIP SIZES FOR N, H, DU AND DL, RKSPKCTIVKLY. ',/) 
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410 FORMAT(/,31, 'THE FOLLOWING VALOiS HAVK BKKH IKPOTTKD:., 
l /,51, 'TKRMIRATIOK LIIIT=' ,Dl2.3, 
6 /,5I, 'IAI. ifALOATIOHS :·,I(, 
l /,5I, 'STKP FOR H :' ,f6.3,5I, 'STIP fOR H :' ,¥6.3, 
l /,51, 'STEP fOR DO:' ,f6.3,51,'STKP fOR DL:' ,f6.3, 
l //,31, 'ARK THKSI DAT& RIGHT?',/, 
l 3!, 'PLKASI IRTKR 1 fOR YKS, 2 fOR HO. ',/) 

415 fORMAT{/,3!, 'lt OPTIMIZATION IS PROCESSING it',/) 
420 fORMAT(/,l!,47(lHi),/,31, 'AfTKR OPTIIIZATIOH THE DESIGN IS',/, 

l 5X,'R:',f6.2,51,'DO=' ,l7.4,51, 'IU=',f8.4,/, 
& 51, 'H:' ,f6.2,51, 'DL=' ,H.4,5I, 'IL:' ,F8.4,/, 
l SX, 'LOSS-COST:' ,fl0.4,/,l!,47(1H*ll 

425 !ORMAT(/,3!, 'THE fOLLOWING VALOiS ARK SUGGKSTKD:' I 

6 /,51, 'TKRKIKATIOH LIMIT=' ,Dl2.3, 
6 /,51, 'MAX. iVALUATIOHS :' ,14, 
& /,51, 'STIP fOR H :',J6.3,5I, 'STEP fOR DO:' ,¥6.3,51, 
6 'STIP fOR DL=' ,f6.3, 
& //,31,'DO YOU ACCEPT THIS SUGGESTION?',/, 
6 31, 'PLKASK KKTKR 1 fOR YIS, 2 FOR NO .. ,/) 

430 FORMAT(/,31, 'PLKASK IKPOT VALOIS Of:. ,/,51, 
~ ·1. TERMINATING LIMIT FOR VARIAMCi OF FUNCTION VALOiS .. ,/,5X, 
l ·z. MAXIMUM KOKBKR OF FOHCTION EVALUATIONS.' ,/,51, 
l '3. STEP SIZES fOB B, DO ARD DL, RISPICTIVKLY .. ,/) 

440 FORKAT(/,3X,'THK FOLLOWING VALUES HAVI BKKH INPOTTKD:', 
6 /,5l,'TIRKIRATION LIKIT:',D12.3, 
l /,SX, 'KAI. IVALOATIOKS =· ,14, 
& /,51, 'STKP FOR H :· ,¥6.3,51, 'STKP FOR DO:' ,F6.3,5X, 
& 'STIP FOR DL=' ,F6.3, 
6 //,3!, 'ARK THKSK DATA RIGHT?',/, 
& 31, 'PLKASI IKTKR 1 FOR YIS, 2 FOR MO.',/) 

450 FORKAT(/,11,18!, '*** OPTIMIZATION ITIRATIOM ***' ,//, 
6 61, T ,SX, 'H' ,6I,'DU' ,7I,'DL',8I,'ID',8X,'IL' ,8!, 'LOSS-COST') 

460 FORKAT(/,5I,F3.0,21,F6.2,2(2I,f7.4),2(2l,,f8.4),2X,f9.4) 
465 fORKAT(/,31, 'TBK fOLLOWING VALOIS ARK SDGGKSTiD:', 

l /,51, 'TKiKIIATIOM LIMIT=' ,Dl2.3, 
l /,51, 'KAI. IVALOATIOIS :' ,14, 
l /,51, 'STIP fOR H =· ,f6.3, 
l /,51, 'STIP fOR DU:' ,¥6.3,51, 'STIP FOR DL=' ,F6.3, 
l /,51, 'STEP fOR 10=' ,F6.3,5I, 'STIP FOR IL=' ,F6.3, 
l //,3I,'DO YOU ACCEPT THIS SOGGKSTIOB?' ,/, 
l 31, 'PLIASI IMTIR 1 fOR TiS, 2 FOR HO.' ,/) 

470 FORKAT(/,31, 'PLIASI IKPUT VALDIS Of:' ,/,51, 
l '1. TKRKIBATIKG LIMIT fOR VARIAHCK OF FUKCTIOB VALOIS .. ,/,51, 
l '2. MAXIMUM IUKBIR Of FUICTIOK IVALUATIONS .. ,/,51, 
6 '3. STIP SIZIS FOR H, DU, DL, lO AID IL, RKSPICTIVILY .. ,/) 

480 FORKAT(/,31, 'THK FOLLOWIKG VALDIS HAVE BilK IHPOTTKD:', 
& /,5I,'TKRKIMATIOM LIKIT=',D12.3, 
l /,51, 'MAl. IVALOATIOKS =· ,I4, 
l /,5I,'STKP fOR H =· ,F6.3, 
l /,5!, 'STIP FOR D0=',¥6.3,51, 'STIP FOR DL:' ,f6.3, 
& /,51, 'STIP FOR IU=' ,f6.3,5I,'STIP fOR IL:' ,f6.3, 
l //,3X,'ARI THKSI DATA RIGHT?',/, 
& 31, 'PLKASE KNTKH 1 fOR YKS, 2 fOR NO.',/) 

485 FORKAT(/,5X, 'STEP:' ,F8.4,· IS SOGGISTID FOR IKCRKKKKTALLY VARYIHG' 
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l , . DO AND DL .. ,//,31, 'DO YOU ACCEPT IT? PLEASE ENTER 1 fOR YKS' 
l ,', 2 FOR NO.' ,/l 

490 FOR~AT{/,31, 'PL!ASI INTER STEP SIZE FOR IKCREKEKTALLY YARYIKG', 
& • DO AND DL.',/l 

500 FORKAT(/,51, 'STKP:' ,F8.4,. HAS BKKK INPUTTED .. ,// 
& ,3I,'IS IT BIGHT? PLKASK KKTER 1 fOR YES, 2 fOR MO.·,/) 

510 f0R!AT{/,1X,47(1Ht),/,31,'AFTKR VARYING DO AND DL THE DKSIGH IS', 
& /,5X, '1:' ,U.O, 7X, 'DU:' ,¥7.4,51, 'XU:' ,f9.4,/, 
l 51, 'H:' ,f6.2,51, 'DL:',F7.4,51, '(L:' ,F9.4,/, 
l 51, 'LOSS-COST=' ,Fl0.4,/,li,47{1Ht)) 

515 FOR~AT(f,5X, 'STKP=' ,F8.4,. IS SUGGESUD FOR IMCRKKEKTALLY VARYING' 
& ,· X~ AND XL.',//,3I,'DO YOU ACCKPT IT? PLKASK KNTKR 1 FOR YES' 
& I • I 2 fOR NO .. Ill 

520 FORKAT(/, 3I, 'PtUSE INTER STKP SIZE FOR IHCRKKKHTALLY VARYING., 
& . IU AND XL.',/) 

530 FORKAT{/,11,47(1Ht),/,51, 'AFTIR VARYING 10 AND IL THE DESIGN IS', 
& /,51, 'N:' ,H.O, 71, 'DU:' ,F7.4,5I, 'XU=' ,F9.4,/, 
& 51, 'H:' ,F6.2,5I,'DL=' ,F7.4,5X, 'XL:' ,F9.4,/, 
6 51, 'LOS5-COST:',fl0.4,/,li,47(1Ht)) 

540 FORKAT{/,1I,72(1Ht),/,12I, 
& 'THE KCOHOKICALLY-BASED COSUM CHART IS KVALOATKD AS:', 
& /,11, 'SUBGROUP SIZE K :· ,F5.0,6I, 
& • SAMPLING INTERVAL H :. I F6. 2, . HRS. ,/I 
l 11, 'DECISION IKTKRVAL(UP) DU:' ,¥9.4,21, 
& 'DECISION IKTERVAL{LOW) DL=' ,¥8.4,/, 
6 11, 'DKAD BAKD VALUK(OP) 10 :' ,F9.4,2I, 
! 'DKAD BAND VALOK(LOHl lL :' ,F8.4l 

550 fOR~AT{3X, 'GAMKA{U):' ,F7.4,6I, 'ARLl:' ,Fl0.2,6X, 'KKSIH :' ,¥7.2, 
& /,31, 'GAMKA(L):' ,F7. 4,6X, 'ARLO=' ,F10.2,6I, 'CYCLK TIMK=' ,n .2, 
&' HRS' ,/,31, 'GAMKA(O):' ,F7.4,6X, 'TBK HOURLY LOSS-COST IS$' ,FlO.(, 
& I I 72 (!Hi),//} 

RKTURK 
KKD 

c 
Ctttt***************************************ttttttttttttttttl*********** 

SUBROUTIRI KVALUI 
C*********************************************************************** 

IMPLICIT RIALt8 (A-H,O-Zl 

c 

iEAL*8 1{6),COKS{8),lU,IL,KU,KL 
COKKOH SHAPE,SCALI,SIGKA,ALPHA,COKS,DKLTAU,DILTAL,TARGIT,1U,IL 
COKKOR GAKKA,AlDKLU,GAKU,AlDILL,GAKL,ARLl,HKNSIB,ARLO,CYC,GAKO 

C IKPOT IRITIAL POINT 
c 

c 

10 NRITK(6,100) 
RKAD(5,*)H,H,DU,DL,lU,lL 

C KCHO THK IKITIAL POINT 
c 

20 NRITI(6,110)N,H,DU,DL,lO,!L 
RKAD(5,*llCHICI 
GO TO (30,10) ICHECX 
GO TO 20 

30 l(ll=H 
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-------- --

c 

I(2)=DU 
I(3)=DL 
I(4l=FLOAT(H) 
I{5)=IU 
I(6)=IL 

C KHLOi A COSOM CONTROL rH!RT 
c 

c 

c 

CALL LOSS(I,COSTJ 
KHSIM=HKNSIH/I(l) 
WBITK(6,120)1(4),(X(IJ,I=1,3),(I(J),J:5,6) 
WRITK(6,130)GAMO,!RLl,KKSIH,GAML,ARLO,CYC,GAMO,COST 

100 fORKAT(/,31, 'PLEASE KKTIR INITIAL POINT, INPUT VALUES OF:',/, 
l 51, 'H, H, DO, DL, 10, IL' ,/) 

110 FORMAT(f,3I,'THK FOLLOUIG VALUES HAVK BEEN IHPOTTKD:',/, 
& 5X,'SUBGROUP SUE H =· ,14,101, 
& 'SAMPLING INTERVAL H :· ,f7.2,/, 
& 5X,'DKCISIOM I!URVAL(UP) DO=' ,f9.4,5I, 
6 'DECISION INURVAL(LOM) DL:' ,F9.4,/, 
& 51, 'DEAD BAND VALOK(OP) IO :· ,¥9.4,5!, 
l 'DEAD BAND VALOK(LOWJ IL =· ,¥9.4,//, 
l 31, 'ARE THESE DA1A RIGHT?',/, 
l 3I,'PLKASK ENTER 1 FOR YKS, 2 fOR NO.',/) 

120 FORMAT(/,li,72(1H*),/,21I, 
& 'THK CUSUK CHART IS EVALUATED AS:', 
& /,li,'SOBGROOP SIZI K :' ,f5.0,6X, 
& 'SAKPLIMG IKTKRVAL H :',¥6.2,' HRS' ,/, 
& lX,'DKCISIOH IHTERVAL(OP) Do=· ,19.4,2!, 
l 'DKCISIOH IHTKRVAL(LOW) DL:' ,f8.4,/, 
l lX, 'DEAD BAND VALUK(UP) IO =· ,f9.4,2I, 
l 'DEAD BARD VALOK(LOM} IL :',f8.4) 

130 FORKAT(3I,'GAKMA(U):' ,F7.4,6I,'ARL1=',fl0.2,6I,'KKSIH :',f7.2, 
l /,31,'GAMBA(L)=',f7.4,61, 'ARLO:',f10.2,6I,'CYCLK TIBK=',f7.2, 
l' HRS' ,/,31, 'GAft!A(O):' ,¥7.4,61, 'THE HOURLY LOSS-COST IS$' ,¥10.4, 
l /,72(18*),//) 

RETURN 
UD 

C********************************************************************** 
SUBROUTINE LOSS(1,COST) 

C********************************************************************** 
IMPLICIT RKAL*6 (A-H,O-Z) 

c 

RKALt8 1(6),COHS(8) 
COKKOK SHAPE,SCALK,SIGMA,ALPHA,COKS,DELTAU,DKLTAL,TARGKT,IU,1L 
COMBOK GAMftA,AlDKLO,GAKU,AlDKLL,GAftLjARLl,HKKSIH,ARLO,CYC,GAKO 

C CALL SOBROOTIHE CYCLE. THOSE DECISION VARIABLES TO BE 
C OPTI!IhKD ARK COKTAIHED IH X. 
c 

CALL CYCLK(I,COKF,STDDO,STDDL) 
c 
C COMPOTE DISTANCES BKTWKKH TARGET AND UPPER A~D LONER 
C DEAD B!HDS, RKSPKCTIVKLY. THOSE DISTANCES ARK COMPARED 
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C WITH THK UPPER !MD LONKR DECISION IHTKRYALS TO COMPUTE 
C TBK ARLO. 
c 

c 

DlffO:(TARGKT-I(5))tCOif 
DifFL=(X(6)-TARGKT)tCOKf 
CALL LKMGTH(STDDO,DiffU,ARLOU) 
CALL LKKGTB(STDDL,DIFfL,ARLOL) 
TK~P=l.DO/ARLOO+l.DO/ARLOL 
ARLO= 1. DO/TKKP 

C TO KVALOTK TBK LOSS COST KQUATIOH 
c 

c 

ELK1=GAMUtCOMS(7)+GAMLtCOHS(6) 
KLKZ=(COIS(5)tHKSSIN/I{l)+COHS(6)tARLO)/(ARLOtCYC) 
KLK3=(COHS(l)+COMS{2)ti{4))/I(l) 
COST=iLKl+KLK2+KLK3 
RKTORK 
KKD 

C********************************************************************** 
SOBROOTIKK CYCLK(X,COKf,STDDU,STDDL) 

C********************************************************************** 
IMPLICIT RKAL*B (A-H,O-Zl 

c 

RKALt8 1{6),COKS(8) 
COKKOM SHAPK,SCALK,SIGKA,ALPHA,COIS,DKLTAO,DKLTAL,TARGKT,IO,IL 
COKMOK GAKKA,AlDKLO,GAKU,AlDKLL,GAKL,ARLl,HKHSIH,ARLO,CYC,GAKO 
COEF=DSQRT(!(4))/5IGMA 
STDDO=X(2)tCOKf 
STDDL=X(3)tCOKF 
DIFfU=(XU-X(5))tCOKY 
DIFYL=(I(6)-IU)tCOKf 
CALL LKHGTH(STDDU,DiffO,AUDILO) 
CALL LKHGTH(STDDL,DiffL,ALDKLU) 
TKKPl=l.DO/AODKLO+l.DO/ALDKLU 
AlDKLU=l.DO/TK!Pl 
DIFfO:(IL-1(5})tCOKf 
DlffL:(I(6}-IL)tCOKf 
CALL LKMGTH{STDDO,DIJFO,AODKLL) 
CALL LKMGTH(STDDL,DiffL,ALDKLL) 
TK!P2=1.DO/AODKLL+l.DO/ALDKLL 
A1DKLL=l.DO/TK!P2 
ARLl=ALPHA*AlDKLU+(l.DO-ALPHAl*AlDKLL 
HKMSII=KNSIB(SHAPK,SCALK,I(l))ti(l) 
CYC=ARLl *I( 1 )+HKNSI R+COHS( 4 l*U 4 l +CONS( 3 l 
TIKKIM=SCALK*GAKKA 
GAKO=TI~KIH/CYC 
TKMP3=AlDKLU*I(l)-TIMKIM+HKNSIH+COBS{4)ti(4)+COH5(3) 
GAMO:ALPHAtTKMP3/CYC 
TK~P4=AlDKLL*I(1)-TIKKIM+HKRSIH+COIS(4)ti(4)+CORS(3) 
GAML=(l.DO-ALPHA}*TEMP4/CYC 
RKTORM 
KKD 

C********************************************************************** 
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SUBROOTIKK LKMGTH(STDH,Diff,AiL} 
Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

c 

IKPLICIT RKAL*8 (A-ti,O-~} 
RKALt8 Al{24),A{24,24),1(24),Z%(24),Zl{24),Y{24),Zl(12),Al(12), 

lDA(24),DB(24),C{24,24) 
DIKKHSIOH KA(24),MB(24) 
DATA Zl/-.9951872199970214D0,-.9747285559713095DO, 

Z -.9382745520027328D0,-.8664155270044010DO, 
3 -.8200019859739029D0,-.7401241915785544DO, 
4 -.6480936519369756D0,-.5454214713888395DO, 
5 -.4337935076260451D0,-.3150426796961634DO, 
6 -.1911188674736163D0,-.0640568928626056DO/ 

DATA Al/.0123412297999872D0,.0285313886289337DO. 
2 .0442774388174198D0,.0592985849154368DO, 
3 .0733464814440803D0,.0861901615319533DO, 
4 .0976186521041139D0,.1074442701159655DO, 
5 .1155056680537256D0,.1216704729278034DO, 
6 .1258374563468283D0,.1279381953467522DO/ 

C INITIALIZE PARAMETERS 
c 

c 

c 

DATA M/24/,KAI/25/,PI/3.1415926535898DO/ 

DO 40 L=1,12 
ZZ(Ll=Zl{L) 
ZZ{25-L)=-Z1(L) 
A!(L)=DLOG(Al(L)) 

40 A!(25-Ll=Al(Ll 

C TRANSfORM Zl FROM THK (-1,1) IHTKRVAL TO THE (O,STDH) INTERVAL 
C FOR GAUSSIAN KLIKIHATIOH 
c 

DO 10 I=l,K 
10 Zl(I):(ZZ{I)+l.DO)tSTDB/2.DO 

c 
C SIT UP THK A MATRIX AND TBK B VICTOR AND I VICTOR 
c 

c 

TKKVAL=DLOG{STDB)+DLOG(.5DO)-DLOG(DSQRT(2.DOtPI)) 
DO 20 I=l,l 
DO 20 J:l,K 
AD=.5DOt((Zl(J)-Zl(I)-DifFl**2l 
TIMP=Al(J)+TKMVAL-AD 
IF (TKKP .GT. -1.8D2) GO TO 15 
A(l,J):O.ODO 
GO TO 18 

15 A(l,Jl=-DKIP{TKKP) 
18 IF {l.IQ.J) A{l,J):A(I,J)+1.DO 
20 COHTIJUK 

C SCALING A KATRII 
c 

CALL SCALB(A,24,24,24,0,NA,NB,DA,DBl 
CHKC~=O.O 
BIGHOM:O.O 
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c 

DO 25 1=1.1 
DO 24 J:l,J 
A(I,Jl=DA(I)t!(I,J)tDB{J) 
If (DABS(A(I,J)) .LT. l.D-38) CHiCI=l.O 
If (DABS(A(I,J)) .GT. BIGHUK) BIGNUK=DABS(A(I,J)) 

24 COHTIMOK 
AR:-ZI(I)-DIH 
P=DPHI(AR) 
I{l)=DA(I )tP 

25 Y(I):DA(l) 
If (CHKCI .KQ. 0.0) GO TO 26 
CALL RKSCAL(A,24,24,24,BIGHOK,I,Y) 

26 DO 30 I=l,H 
DO 30 J=l,l 

30 C(I,J)=A(I,J) 
CALL LSOLV(A,I,24,24) 
CALL LSOLV{C,Y,24,2t) 
DO 60 I=l,K 
l(I)=DB(l)ti(I) 

60 Y{Il=DB(I)tY(I) 
U=-DIH 
PR=DPBI(U) 
IHURO=O. ODO 
PZERO=O.ODO 
DO 90 !=1,1 
ADl=.SDOt({ZI(I)-Diff)tt2) 
TKKP=AI(l)+TKKVAL-ADl 
Ir (I{I) .LK. 0.0) GO TO 50 
TEMPl:Ti~P+DLOG(I(l)) 
I¥ (TKKPl .LT. -1.8D2) GO TO 50 
PZKRO=PZKRO+DKIP(TKKPl) 

50 H (Y(I) .LK. 0.0) GO TO 90 
TKMP2=TIKP+DLOG{l{I)) 
If {TIKP2 .LT. -1.8D2) GO TO 90 
IIZiiO=IHZiiO+DIIP{TIKP2) 

90 COITIBUI 
PZIRO=PZIRO+PI 
IIZKRO=l.DO+IBZIRO 
If (l.DO-PZiiO.LT.l.D-6) GO TO 95 
ARL=IIZiiO/(l.DO-PZIRO) 
GO TO 100 

95 ARL=l. D9 
100 RKTORI 

KID 

Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
DOOBLI PRECISION fOHCTIOI DPHI(I) 

Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
IMPLICIT RIALtB(A-H,O-Z) 
DATA Bl/.319361530DO/,B2/-.356563782DO/,B3/1.781477937DO/, 

6 B4/-1.821255978DO/,B5/1.330274429DO/,B6/.2316419DO/, 
6 PI/3.1415926535698DO/ 
T=l.DO/(l.DO+B6*DAB5(IJ) 
KLMl=DLOG(BltT+B2tTtt2+B3tTtt3+B4*T**(+B5*T**5) 
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c 

iL~2=DLOG(DSQRT(2.DO*PI))+I*I/2.DO 
TEKP=ELM1-KLK2 
DPHI=O.ODO 
I! (TEMP .GT. -1.802) DPHI=DEIP(TKMP) 
IF (I.GK.O.ODO) DPHI=l.ODO-DPHI 
RKTORH 
KKD 

C********************************************************************* SUBROUTINE SCALH (A,!,K,LADIK,IRURM.HA,KB,DA,DB) 
C********************************************************************* c 
C THIS PROGRAM IS PROVIDED BY J. P. CHANDLER 
C COMPUTER SCIKHCK DKPT., OKLAHOMA STATK UNIVERSITY 
c 
C IKPOT: 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A(t,t) : THE !ATRII TO BE SCALKD 
K : HUMBER OF ROHS IK THE MATRIX A 
H : NUMBER OF COLUMNS IN THE MATRIX A 
LADIM : THE FIRST DIMENSION OF THK ARRAY A (M.LK.LADIM) 
KRENRM : =1 TO REKORMALIZE SO THAT THE LARGEST 

MAGKITUDK IS 1.0, 
:0 MOT TO RKMORKALIZK 

C OUTPUT : 
c 
C DA(*) : LEFT DIAGONAL SCALING MATRIX 
C DB(*) : RIGHT DIAGONAL SCALING MATRIX 
c 
C SCRATCH STORAGE: : HA(t),KB(t) 
c 
C******************************************************************* 

c 

c 

DOUBLK PRKCISIOK A,DA,DB, QSQRT,ARG,QABS,QLOG,QKIP, RZKRO, 
i SOK,SO!l,Ti!P,HALFAV,AVK,AKI 

DIKKRSIOR A(LADIK,M),MA(!),RB(K),DA(K),DB(N) 
RURO=O.ODO 

IF(M.LT.l .OR. M.GT.LADIM .OR. K.LT.1) STOP 

C IKITIALIZK. 
c 

c 

DO 10 J=1,K 
DA(J)=RZKRO 

10 HA(J):O 
DO 20 l=1,K 

DB(l)=RZKRO 
20 HB(l)=O 

SOK=RZKRO 
JlSUK=O 

C ACCUMULATE ALL SUMS AND PROCESS A(*,*l BY COLUMNS. 
c 

DO 40 l=l,N 
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c 

SUM~=RZKRO 
!SGM=O 
DO 30 J:l,~ 

TKMP=DABS(A(J,l)) 
If(TKKP.KQ.RZKiO) GO TO 30 
TKMP=DLOG(TIMP) 
DA(J):DA(J)+TKKP 
SOKl=SOKl+TKMP 
SOM=SOM+TKMP 
KA(J):HA(Jl+l 
lSOM=lSOM+l 
JKSUK=JlSO!+l 

30 COHTIKOK 
DB(l)=SOKl 

40 NB(l):lSOK 

C COMPUTE DA(*l AHD DB(*). 
c 

c 

lf(JlSO!.EQ.O) GO TO 70 
TEKP=JlSOM+JlSOM 
HAL FA V =SOM/TKKP 
DO 50 J:l,M 

If(HA(J).KQ.Ol GO TO 50 
TKKP=KA(J) 
DA(J)=HALFAV-DA(J)/TE!P 

50 COHTIHOK 
DO 60 l=l,H 

IF(KB(l).KQ.O) GO TO 60 
TKMP=KB(l) 
DB(l)=HAL¥AV-DB(l)/TKMP 

60 COKTIHOK 

C TAlK ANTILOGS. 
c 

70 DO 80 J=l,K 
80 DA(J)=DKIP(DA(J)) 

DO 90 l=l,H 
90 DB(l)=DKIP(DB(I)) 

c 
If(lRKHRK.HK.ll RKTORI 

c 
C RKKOR!ALIZK SO THAT THE LARGEST KAGHITUDK IS 1.0 • 
c 

AMI=RZIRO 
DO 100 l=l,H 

DBI=DB(l) 
DO 100 J:l,ft 

TKMP=DABS(DA(J)iA(J,l)iDBl) 
lf(TKMP.GT.Aftll AMI=TKMP 

100 COHTIKOK 
TKMP=DSQRT(AKI) 
IF(TKKP.KQ.RZKRO) RETURN 
DO 110 J:l,M 

110 DA(J):DA(J)/TKMP 
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c 

c 

DO 120 [:l,R 
120 DB([):DB([)/TEKP 

RETURN 
END 

C********************************************************************* 
SUBROUTINE LSOLV (A,BI,N,LDIH) 

C********************************************************************* 
c 
C THIS PROGRAH IS PROVIDED BY J. P. CHANDLER 
C COHPUTKR SCIENCE DEPT., OlLAHOHA STATE UNIVERSITY 
c 
C N IS THE NOHBKR or EQUATIONS IN THE LINEAR SYSTEM. 
C ON IHPOT, A(t,t) CONTAINS THE HATRII OF COErFICIEMTS AND BX(t) 
C CONTAINS THE VECTOR OF CONSTANTS (THK RIGHTBAHD SIDES). 
C 01 OUTPUT, BI(t) CONTAINS THK SOLUTION VICTOR AID A(*,*l CONTAINS 
C GARBAGE. 
C LDIH IS THK VALUE Of THK DIHKHSIONS or THE ARRAYS A AND BI. 
C THE VALOK Of N HOST NOT KICKED THE VALUE OF LDIH. 
c 

DOUBLE PRECISION A,BI,QABS,ARG,BIGA,TKHP,EH,SOH 
DIMENSION A(LDIH,LDIH),BI(LDIH) 

c 
C CHIC( FOR AN INVALID VALUE Of N OR LDIH. 
c 

IF(H)240,240,10 
10 If(K-LDIH)20,20,240 

c 
C TRIAKGOLARIZK THK HATRII A. 
c 

c 

20 KHU=N-1 
If(NHU)240,140,30 

30 DO 130 J:l,KHO 

C SEARCH COLOHH J fOR THK PIVOT KLKHKNT. 
c 

c 

BIGA=O. 
DO 50 (:J,H 

TEHP=DABS(A(l,J)) 
If(TKHP-BIGA)50,50,40 

40 BIGA=TKHP 
JPIV=l 

50 CONTINUE 
IF(BIGA)130,130,60 

60 If(JPIV-J)90,90,70 

C IBTKRCHAKGE EQUATIONS J AND JPIV. 
c 

70 DO 80 L=J,K 
TEftP:A{J,L) 
A{J,L):A(JPIV,L) 

80 A{JPIV,L)=TKMP 
TKHP=BI(J) 
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c 

BI( J) =BI ( JPIVJ 
BI(JPIV)=TKMP 

90 JPO=Jtl 
DO 120 [:JPO,H 

C PKRFORM KLIMIKATIOH OK KQUATIOK !. 
c 

100 
110 

KM=A(LJJ/A(J,J) 
I¥ (DABS(Kftl .LT. l.D-30) KM=O.O 
lf(Kft)100,120,100 
DO 110 L=JPO,K 

120 
130 

c 

A(~.L):A(l,L)-ifttA(J,L) 
BI(~l=BX(!)-KMtBX(J) 
COHTIKUK 

COKTINUK 

C DO THK BACl SOLUTION. 
c 

c 

140 DO 230 JIHV=1,N 
J=M+1-JIKV 
TKKP=A(J,J) 
If(TIKP)160,150,160 

150 BI(J):O. 
GO TO 230 

160 SUM=O. 
If{J-8)200,220,220 

200 JPD=J+1 
DO 210 !=JPU,K 

210 SOM=SUM+A(J,!)tBX(!) 
220 BI(J):(BI(J)-SUM)/TKMP 
230 CONTINUE 
240 RKTURH 

HD 

C********************************************************************** 
fUKCTIOB IKSIR(SHAPI,SCALI,H) 

Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
IMPLICIT RI!Lt8 (A-H,O-Z) 
PTOP:(-DLOG(l.D-10))tt(1.DO/SHAPI) 
LIKOP=IKT(PTOPtSCALI/H) 
PTLOW=(-DLOG(l.D0-1.D-10))tt(l.DO/SHAPI) 
LIMLOW=IKT(PTLOWtSCALI/H) 
If (LIBLON .LK. 0) LIMLOW=l 
IISU=O.DO 
DO 1 I=LiftLOW,LIBOP 
B=(ItH/SCALI)ttSHAPI 

1 IISII=KKSIB+DKIP(-B) 
RKTURI 
KKD 

c 
Ctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 

SUBROOTINI RKSCAL(A,B,I,LAD!ft,BIGKOK,I,Y) 
C********************************************************************** 

IMPLICIT RKALt8 (A-H,O-Z) 
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c 

RXAL*8 !(2~.24),DA(24),DB(24),1(24),Y(24) 
DIMgMSIOM HA(24),KB(24) 
BIGA=BIGKUMtl.D-38 
DO 10 1=1. M 
DO 10 J:l,R 
If (D&BS(A(I,J)) .LT. BIGA) A(I,J)=O.O 

10 COMTIMUK 
CALL SCALH(!,M,K,LADIM,O,KA,KB,DA,DBl 
DQ 30 I=l,K 
DO 20 J:l,K 

20 A(I,J}:DA(I)t!(I,J)tDB(J) 
I(I)=DA( I) ti(I) 

30 Y(Il=DA(I)tY(I) 
RKTURR 
KHD 

C********************************************************************** 
SUBRODTIHK KKLKl(I,H,STKP,RKQ,MIM,Z!II,ICOORT) 

C********************************************************************** 
IMPLICIT RKALtS (!-H,O-Z) 

c 

RKAL*8 I(6),KIH(6),STKP(6),P(20,2l),PI(20),P2I(20) ,PBAR(20), 
2 Y(20),Z!IH,RKQ,DK,DHH,Z,SOM,SOKK,YLO,YI,Y2X,CORMIH,DKL, 
3 RCOKfF,KCOKff,CCOKFf,COKS(8) 

DOOBLI PRKCISIOH DfLOAT 
CO!MOH SHAPI,SCALI,SIGMA,ALPHA,COMS,DILTAO,DKLTAL,TARGIT,IO,IL 
COMMON GAMMA,AlDKLU,GAMU,AlDKLL,GAML,ARLl,HKMSIN,ARLO,CYC 

C RKfLKCTIOH,KITKHSIOK AND COKTRACTIOH COKfFICIKNTS 
c 

DATA RCOKff/l.DO/,KCOKff/2.DO/,CCOKff/.5DO/ 
DATA lOHVGK/5/ 
CHKCl=O.O 
lCOUKT=ICOUNT 
ICOOHT=O 
JCOUHT=lOHVGK 
DH=DfLOAT(K) 
KH=K+l 
DHM=DfLOAT(MHl 

c 
C COHSTROCTIOB Of IBITIAL SIMPLKI 
c 

DO 20 1=1,6 
P(l,MH):l(I) 
Pl(I)=l(l) 
P2I(I ):1( I) 

20 !IN(l):I(I) 
CALL LOSS(I,Z) 
ICOORT=ICOOHT+l 
T(IMl=Z 
SUK:Z 
SO!!=UZ 
DO 40 J:l, H 
I(J):I(J)+STKP(J) 
DO 30 I: 1, M 
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c 

30 P(I ,J}:I(l l 
CALL LOSS(I,Zl 
ICOUIT=ICOUKT+l 
J(J}=Z 
SOM=SCM+Z 
SU~K=SUK~+ZtZ 

40 l(J):I{J)-STIP(J) 

C SI~PLKI COHSTROCTIOH COKPLKTK 
c 
C fiHD HIGHTKST AHD LOMKST Y VALOIS. Z ( =Y{IHI ) INDICATES 
C THI YKRTKX Of THK SI~PLIX TO BE REPLACED. 
c 

c 

50 YLO=Y{l) 
Z~IN=YLO 
ILO=l 
IHI=l 
DO 70 I=2,HM 
If (Y{l).GE.YLO) GO TO 60 
YLO:Y(l l 
ILO=I 
GO TO 70 

60 If (Y(l}.LK.ZKIHl GO TO 70 
Zftii:Y( I l 
IHI=I 

70 COITIROl 
SU~=SC~-Z~IM 
SOKK=SUKK-ZKIHtZKIH 

C CALCULATE PBAR, THK CENTROID Of THK SIKPLKI VKRTICKS 
C KICKPTIRG THAT WITH T VALOK 1KIK. 
c 

c 

DO 90 l=l,K 
Z=O.DO 
DO 80 J:l,IR 

80 Z=Z+P(l,J) 
Z=Z-P(I, IBI l 

90 PBAR{I):%/DR 

C RlfLICTIOM THROUGH THI CKKTROID 
c 

c 

DO 100 l=l,K 
PI(l)=(l.DO+RCOKffl*PBAR(l}-RCOKff*P(I,IHI) 
If (PI{Il .GT. 0.0) GO TO 100 
CHKCl=l. 0 
GO TO 110 

100 COKTUUK 
110 YX=l. DlO 

If (CHKCI .HI. 0.0} GO TO 120 
CALL LOSS(PI,Yil 

120 CHKC~=O.O 
ICOOKT=ICOUMT+l 
If (YI.GE.YLO) GO TO 180 
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C SUCCKSSYOL RKFLKCTIOA, THKK IITKHSION 
c 

c 

DO 130 I=l.M 
P2I(I):KCOKfftPI(I)+(1.DO-KCOKffl*PBAR(I) 
H (P2I(I) .GT. 0.0) GO TO 130 
CHKC[:l. 0 
GO TO 201 

130 COHTIKUK 
201 Y2I=l.D10 

If (CHKCl .KK. 0.0) GO TO 150 
CALL LOSS(P2I,Y2I) 

150 CHKC!=O.O 
ICOUKT=ICOUHT+l 

C RITAIK KITKHSIOK OR COKTRACTIOH 
c 

c 

If (Y2X .GK. Yll GO TO 260 
160 DO 170 I=l,K 
170 P(I,IHil=P21(I) 

Y( IHI):Y2I 
GO TO 300 

C NO KITKKSIOH 
c 

c 

180 L=O 
DO 190 I=LHK 
IF (Y(I).GT.YI) L=L+1 

190 COKTIKOK 
IF (h-1) 220,200,280 

C CONTRACTION OH THE REFLECTION SIDK OF THE CENTROID 
c 

c 

200 DO 210 I=l,l 
210 P(I,IHI)=PI(I) 

T(IHI)=YI 

C CONTRACTION OM THK T(IHI) SIDE Of THE CENTROID 
c 

c 

220 DO 230 I=l,l 
P2I(l)=CCOKff*P{l,IHI)+{l.DO-CCOKFfl*PBAR{I) 
If (P21(!) .GT. 0.0) GO TO 230 
CHEC!=l. 0 
GO TO UO 

230 CONTINO! 
240 Y2I=l.D10 

If {CHICI .KE. 0.0) GO TO 250 
CALL LOSS(P2I,Y2I) 

250 CHECI:O.O 
ICOUMT=ICOUKT+1 
If {Y2I.LI.Y(IB!)) GO TO 160 

C CONTRACT WHOLK SIMPLEX 
c 

SUK=O.DO 
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c 

SUKK=O.DO 
DO 270 J=l,U 
DO 260 I=l, H 
P(I,JJ:(P(l,J)tP{I,ILOJ)t.500 

260 ~IH(l)=P(I,J) 
CALL LOSS(MI~.T(J)J 
SOK=SUft+Y(J) 

270 SUft~=SOMft+Y(Jl*T{J) 
ICOOMT=ICOOMT+HI 
GO TO 310 

C RKTAIH RllLKCTIOR 
c 

c 

280 DO 290 I=l,K 
290 P(I,IBI)=PI(I) 

T{IHI):TI 
300 SOM=SUM+T(IHI) 

SOKK=SUKK+T(IHI)*T(IHIJ 
310 JCOOHT=JCOOHT-1 

IF (JCOOKT.Ki.O) GO TO 50 

C CHICK TO SKK I! KIHIKOft REACHED 
c 

c 

If (ICOUMT .GK. ICOUIT) GO TO 320 
JCOUBT=lOMVGI 
CORftiH=(SUKM-(SUKfSU!)/DKKJ/DM 

C CORMIK IS THE VARIAMCI OF THK 8+1 LOSS VALOIS AT THE 
C VKRTICKS 
c 

c 

If (CORKIK.GT.RKQ) GO TO 50 
320 YLO=Y{l) 

ILO=l 
DO 330 1=2,11 
If {Y{l) .Gi. TLO) GO TO 330 
TLO=Y{l) 
ILO=I 

330 CORTIIUI 
DO 340 1=1. I 

340 MIM(I)=P(I,ILO) 
ZKIM=YLO 
RKTORR 
KKD 

C********************************************************************** 
SOBROOTIHK IILK2(I,R,STKP,RIQ,KIM,ZKIH,ICOOHT) 

C********************************************************************** 
IMPLICIT RIALt8 (A-8,0-Z) 
RKAL*8 I(6),KIR(6),STIP(6),P{20,21),PI{20),P2X{20),PBAR{20), 

2 Y(20},1KIK,RKQ,DH,DH~.z.soK,SUKK,YLO,YX,Y2I,CURftli,DKL, 
3 RCOiff,KCOKff.CCOKFF,CORS(8) 

DOUBLE PRECISION DfLOAT 
COMMOK SHAPE,SCALK,SIGMA,ALPHA,COKS,DELiAU,DKLTAL,TARGKT,IU,IL 
COKHOH GAKKA,AlDKLU,GAKO,AlDKLL,GAML,ARLl,HKHSIK,ARLO,CYC 
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c 
C RKFLKCTIOK,KITKHSIOH AMD COHTRACTIOR COKFFICIKRTS 
c 

DATA RCOEFF/l.DO/,KCOKFF/2.DO/,CCOKFF/.SDO/ 
DATA [OHVGE/5/ 
CHKC!=O.O 
!COUHT=ICOOHT 
ICOOHT=O 
JCOUKT=!OKVGK 
DH=DFLOAT(H) 
KK=N+l 
DHH=DYLOAT{ MH) 

c 
C COHSTRUCTIOH 0¥ INITIAL SIMPLEX 
c 

c 

DO 20 1=1,6 
20 P(I,HH):I(I) 

CALL LOSS(I,Z) 
ICOOHT=ICOOHT+l 
Y{HN):Z 
SOM=Z 
SOMM=Z*Z 
DO 40 J:l,R 
I(J):I(J)+STIP(J) 
DO 30 I=l,K 

30 P( l,J):I(I) 
CALL LOSS(I,Zl 
ICOUKT=ICOONT+l 
Y(J):Z 
SOM=SOK+Z 
SUKK=SOKK+Z*Z 

40 I(J):I(J)-STKP(J) 

C SIMPLEX CONSTRUCTION COftPLITI 
c 
C FIND RIGHTIST ARD LOWEST Y VALOIS. Z ( =Y{IHI ) IRDICATIS 
C THI VIRTEI OF THI SiftPLII TO Bl REPLACED. 
c 

c 

50 TLO:Y(l) 
ZftU=YLO 
no=t 
IHI=l 
DO 70 I=2,NN 
IF (Y{I).GK.YLO) GO TO 60 
YLO=Y{ I l 
ILO=I 
GO TO 70 

60 IF (Y{I).LK.ZKIN) GO TO 70 
ZKIK=Y(l l 
IHI=I 

70 COHTIHOK 
SOK:SOK-ZKIR 
SOMM=SOKK-ZKIH*ZMIH 
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C CALCOLATi PBAR, THE CENTROID OF THK SI~PLKI VKRTlCKS 
C KICKPTING THAT WITH Y VALDK ZMIN. 
c 

c 

DO 90 I=LN 
Z=O.DO 
DO 80 J:l,NH 

80 Z=Z+P(I,J) 
~=Z-P(I,IHil 

90 PBAR(IJ=Z/DM 

C R&rLKCTIOH THROUGH TBK CENTROID 
c 

c 

DO 100 I=l,N 
PI(I):(l.DO+P.COKFFl*PBAR(l)-RCOKFf*P(l,IHI) 
H {PX(I) .GT. 0.0) GO TO 100 
CHKCI:l. 0 
GO TO 110 

100 COKTIMOK 
110 YI=l.DlO 

IY (PI(5).LT.TARGKT .OR. PX(6).GT.TARGETJ CBECK:l.O 
If (CBKC! .HK. 0.0) GO TO 120 
PI(():I(4) 
CALL LOSS(PI,YX) 

120 CHKC!=O.O 
ICOUMT=ICOUMT+1 
IF (YI.GK.YLO) GO TO 160 

C SOCCKSSFOL REFLECTION, THEN KITKKSIOH 
c 

c 

DO 130 I=l,N 
P2X(I}=KCOKFF*PX(I)+(1.DO-KCOK!Fl*PBAR(l) 
IF {P2X(I) .GT. 0.0} GO TO 130 
CHKC!=l. 0 
GO TO HO 

130 COWTUUK 
HO T2I=l.D10 

IF (P21(5).LT.TARGKT .OR. P21(6}.GT.TARGKT} CHKCI=l.O 
IF (CHKCI .WK. 0.0) GO TO 150 
P2I( (}:1(4) 
CALL LOSS(P2I,Y2X) 

150 CBKCI=O.O 
ICOUNT=ICOUNT+1 

C RKT!IM KITKISION OR CONTRACTION 
c 

1¥ (Y21 .GK. Yl) GO TO 260 
160 DO 170 1:1,8 
170 P(I,IBI)=PZI(I} 

T(IHIJ=T21 
GO TO 300 

c 
C NO KITKNSIOK 
c 

180 L=O 
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c 

DO 190 I=l,HK 
If (Y(I).GT.YI) L=L+l 

190 COMTINUK 
If (L-1) 220,200,260 

C COHTRACTIOH OK THE RKFLKCTIOK SIDK Of THK CENTROID 
c 

c 

200 DO 210 I=l,l 
210 P(I,IHI)=PI(I) 

Y(IHI l=YX 

C COKTR!CTIOM OK THK Y(IHil SIDE OF THE CKKTROID 
c 

c 

220 DO 230 I=l,N 
P2I(Il=CCOKff~P(I,IBI}t(l.DO-CCOKff)*PBAR(I) 
IF (P2I(l) .GT. 0.0} GO TO 230 
CBKCl=U 
GO TO 240 

230 COHTIKUK 
240 Y2X=l.D10 

IF (P2I(5}.LT.TARGKT .OR. P2X{6).GT.TARGKT) CHECK=l.O 
I~ (CHKCl .ME. 0.0) GO TO 250 
P2I(4):I(4) 
CALL LOSS(P2I,Y2Il 

250 CHKCl=O.O 
ICOUKT=ICOUKT+l 
If (Y2I.LK.Y{IHI)) GO TO 160 

C CONTRACT WHOLE SIMPLEX 
c 

c 

SUK=O.DO 
SUKM=O.DO 
DO 270 J:1,MH 
DO 260 1=1,8 
P(l,J}:(P(I,J}+P(I,IL0})*.5DO 

260 MIK(I)=P(I,J) 
MIH(4):I(4) 
CALL LOSS(KIK,Y(J)) 
SUK=SUM+Y(J) 

270 SUMM=SUMK+Y(J)*Y{J) 
ICODIT=ICOUKT+RK 
GO TO 310 

C RKTAIH RKFLKCTIOM 
c 

c 

280 DO 290 I=l,M 
290 P{I,IHI)=PI(I) 

Y(IHI l=YI 
300 SUM=SUM+Y(IHI) 

SUftft:SUMM+Y(IHil*Y(IHil 
310 JCOUKT:JCOUHT-1 

If (JCOUKT.~K.O) GO TO 50 

C CHKC! TO SKK If MIKIMOM REACHED 
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c 

c 

If (!COUNT .GK. lCOOMT) GO TO 320 
JCOUKT=!OHVGK 
CORKIK=(SOMM-(SOMtSUK)/DKN)/DN 

C CURftiH IS THK VARIANCE Of THK N+1 LOSS VALUES AT THE 
C VKRTICKS 
c 

c 

If (CURMIN.GT.RKQJ GO TO 50 
320 YLO= Y ( 1) 

IL0=1 
DO 330 I=2,MH 
If {Y(I) .GK. YLOl GO TO 330 
YLO=Y{I) 
ILO=I 

330 CONTINUE 
DO 340 I=l,M 

340 MIN(Il=P{I,ILO) 
ZMIK=YLO 
RKTURN 
KKD 

C********************************************************************** 
SUBROUTIU IRCRKD(I,UIN, STKPD) 

C********************************************************************** 
IMPLICIT RKAL*S (A-H,O-Z) 
RKAL*8 X(6),ZMIR,COST 

10 CHKC!=O.O 
c 
C TWKH DL 
c 

c 

!1=0.0 
A2=0.0 

20 X(3):I{3)+STKPD 
CALL LOSS(I,COSTJ 
If (COST .GI. ZMIK) GO TO 30 
ZftiR:COST 
CHKCl=l. 0 
!l=Al+ 1. 0 
GO TO 20 

30 1(3):1(3)-STIPD*(Al+l.O) 
40 If {1{3) .LT. 0.0) GO TO 50 

CALL LOSS(I,COST) 
If (COST .GI. ZMIK) GO TO 50 
ZKIH=COST 
CHICl=l.O 
A2=A2+ 1. 0 
1(3):1(3)-STIPD 
GO TO 40 

50 If (A2 .ME. 0.0) GO TO 60 
I(3):X(3)+STIPDt!l 
GO TO 70 

60 I(3):X(3)+STKPD 
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C TWEH DO 
c 

c 

70 !1=0.0 
!2=0.0 

80 I(2):I(2)+STKPD 
CALL LOSS(X,COST) 
IF (COST .GK. ZMlft) GO TO 90 
ZKIK=COST 
CHKCl=l. 0 
U:A1 + 1. 0 
GO TO 80 

90 I(2)=X(2)-5TKPD*(A1+1.0) 
100 IF (X { 2) . LT. 0. 0) GO TO 110 

CALL LOSS(X,COST) 
If (COST· .GK. ZKIH) GO TO 110 
ZKIM:COST 
CHKCl=l. 0 
A2=A2+ 1. 0 
1{2)=1(2)-STKPD 
GO TO 100 

110 IF {A2 .HI. 0.0) GO TO 120 
X(2):X(2)+STIPDtA1 
GO TO 130 

120 I(2):1(2)+STKPD 
130 IF (CHKCl .KQ. 0.0) RKTURK 

GO TO 10 
KND 

Cttttrrttttttrttttttttttttttttttttttttttttttttttttttt****************** 
SUBROUTINE IHCRKl{I,ZKIH,TARGET,STEPl) 

Ctatatttttttttttttt~tttttttttttttttttttttttttttttttttttttttttit******** 

IMPLICIT RKALt8 {A-H,O-ZJ 
RKALt8 I(6),ZKIH,COST,TARGKT 

10 CHKCl=O.O 
c 
C TWK!l lL 
c 

Al=O.O 
A2=0.0 

20 1(6):1(6)-STKPl 
CALL LOSS(I,COST) 
If (COST .GK. ZKIH) GO TO 30 
ZKIH=COST 
CHKCl= 1. 0 
Al=Al + 1. 0 
GO TO 20 

30 I{6)=I(6)+5TEPlt{A1+1.0) 
(0 If (1{6) .GT. TARGET) GO TO 50 

CALL LOSS{I,COST) 
IF (COST .GK. ZKIK) GO TO 50 
ZKIM=COST 
CHKCl: 1. 0 
A2=A2+1.0 
X{6)=I(6)+STKPl 
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c 

GO TO 40 
50 If (!2 .NK. 0.0} GO TO 60 

1(6)=1(6)-STKPltAl 
GO TO 70 

60 1(6}=1{6)-STKPl 

C TNKAl lU 
c 

70 Al=O.O 
AZ=O.O 

80 1(5)=I(5)+STKP! 
CALL LOSS{1,COST) 
IF (COST .GK. ZftiM) GO TO 90 
ZKIK=COST 
CHICl=l. 0 
!1=!1 + 1. 0 
GO TO 80 

90 1(5):1(5)-STKPlt(Al+1.0) 
100 Ir (1{5) .LT. TARGKT) GO TO 110 

CALL LOSS(I,COSTJ 
rr {COST .GE. ZftiH) GO TO 110 
ZftiM=COST 
CHKCl=l. 0 
A2=A2 + 1. 0 
1(5):1(5)-STKPl 
GO TO 100 

110 IF (!2 .ME. 0.0) GO TO 120 
I(5)=I(5)+STKP!tA1 
GO TO 130 

120 I(5):I(5)+STKPl 
130 If (CHKCl .KQ. 0.0) RKTORH 

GO TO 10 
KHD 
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