
FIXED SAMPLE SELECTION PROCEDURES AND 

APPROXIMATE KIEFER-WEISS SOLUTION FOR 

NEGATIVE BINOMIAL POPULATIONS 

By 

MADHURI SHRIKRISHNA NAGARDEOLEKAR 
(/ 

Bachelor of Science 
University of Bombay 

Bombay, India 
1980 

Master of Science 
University of Bombay 

Bombay, India 
1982 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfilment of 
the requirements for 

the Degree of 
DOCTOR OF PHILOSOPHY 

December, 1988 



I I I 1.1 I 

--'\ ~e~-\!;. 
\'\~)~t) 
~.\~~~~ 
E:c~. 2.. 



Oklahoma State Univ. Library 

FIXED SAMPLE SELECTION PROCEDURES AND 

APPROXIMATE KIEFER-WEISS SOLUTION FOR 

NEGATIVE BINOMIAL POPULATIONS 

Thesis Approved: 

Dean of the Graduate College 

11 

1335856 



ACKNOWLEDGEMENT 

Number of persons have contributed to the preperation and development of 

this study. I would like to extend sincere appreciation to my major advisor Dr. 

Linda J. Young, for her assistance and encouragement throughout my graduate 

program. Other members of my advisory committee, Dr. J. Leroy Folks, Dr. Gary 

R. Stevens, and Dr. Jerry H. Young all provided helpful comments and suggestions 

and I am grateful to them. 

I would like to thank Dr. J. Leroy Folks, Head, and the Dept. of Statistics for 

providing financial assistance during my graduate work at Oklahoma State U niver

sity. My appreciation is expressed to Dr. J. Leroy Folks, for his encouragement and 

confidence in my abilities. 

I would like to express my appreciation to Dr. R. W. Barker for giving me 

a chance to apply my classroom knowledge of statistics and learn more about its 

practical applications. 

I would like to acknowledge the encouragement and support given to me by my 

family. My father, Shrikrishna Nagardeolekar, provided love and moral support for 

which I am deeply grateful. My husband, Satish Mulekar, deserves much recognition 

and special appreciation for his many sacrifices throughout my graduate career. His 

love, support, understanding, and willingness to help made this thesis possible. 

Finally, I dedicate this dissertation to my mother, the late Mrs. Sunita S. 

Nagardeolekar, who never lost faith in my ability and always taught me to rum 

high. 

111 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION .................................................... 1 

II. REVIEW OF LITERATURE ......................................... 7 

Sequential Probability Ratio Test .............................. 7 
Strength and Weaknesses of the SPRT ........................ 12 
A Need for Selection Procedure ............................... 14 
Different Approaches Used in Deriving Selection 

Procedures ................................................. 15 
Components of Selection Procedures .......................... 17 
Existing Selection Procedures for Negative Binomial ........... 20 

III. AN APPROXIMATE SOLUTION TO THE KIEFER-WEISS 
PROBLEM FOR THE NEGATIVE BINOMIAL ..................... 23 

Lorden's 2-SPRT ............................................. 23 
Asymptotic Solution for the Modified 

Kiefer-Weiss Problem ...................................... 25 
Approximate Solution for Kiefer-Weiss Problem ............... 32 

IV. A FIXED SAMPLE SELECTION PROCEDURE FOR 
NEGATIVE BINOMIAL POPULATIONS ........................... 54 

A Generalized Formulation of Selection Problem .............. 54 
Assumptions and Experimenter's Goal ........................ 56 
Proposed Procedure .......................................... 57 
Confidence Statement ........................................ 59 
Probability of Correct Selection ............................... 60 
Monotonicity Property and the 

Least Favorable Configuration .............................. 61 
Large Sample Approximation ................................. 73 
Normal Approximation and Bounds for the 

Sample Size ................................................ 77 

IV 



Chapter Page 

Alternate Form of the Normal Approximation To The 
Probability of Correct Selection ............................. 80 

Summary ..................................................... 83 

V. A FIXED SAMPLE SIZE SELECTION PROCEDURE FOR 
NEGATIVE BINOMIAL POPULATIONS WITH TWO 
DISTANCE MEASURES ........................................... 126 

Formulation of Problem ..................................... 126 
Proposed Procedure ......................................... 127 
Probability of Correct Selection .............................. 128 
Infimum of Probability of Correct Selection .................. 129 
Determination of the Required Sample Size .................. 133 
Normal Approximation ...................................... 135 

VI. SUMMARY AND CONCLUSIONS ................................. 161 

A SELECTED BIBLIOGRAPHY ........................................... 163 

v 



LIST OF TABLES 

Table 

I. Comparision of Error Probabilities and Average Sample Sizes 
Attained by the SPRT and the 2-SPRT Based on 1000 Samples 

Page 

(Modified Kiefer-Weiss problem) p1 = 1/3, p2 = 1/2 ................. 38 

II. Comparision of Error Probabilities and Average Sample Sizes 
Attained by the SPRT and the 2-SPRT Based on 1000 Samples 
(Kiefer-Weiss problem) Pl = 1/3, P2 = 1/2 ........................... 39 

III. P~] as a Function of h* for r = 1, k = 2(1 )5, 
h* = 0.05(0.05)0.55 and n = 2, 5(5)20 ................................ 85 

IV. Probability of Correct Selection Using Exact and Approximate 
LFC for n = 2, k = 2(1)5, h = 0.05(0.05)0.55 ........................ 87 

V. Probability of Correct Selection Using Exact and Approximate 
LFC for n = 5, k = 2(1)5, h = 0.05(0.05)0.55 ........................ 88 

VI. Probability of Correct Selection Using Exact and Approximate 
LFC for n = 10, k = 2(1)5, h = 0.05(0.05)0.55 ....................... 89 

VII. Probability of Correct Selection Using Exact and Approximate 
LFC for n = 15, k = 2(1)5, h = 0.05(0.05)0.55 ....................... 90 

VIII. Probability of Correct Selection Using Exact and Approximate 
LFC for n = 20, k = 2(1 )5, h = 0.05(0.05)0.55 ....................... 91 

IX. Number of Units Required per Process to Meet Specification 
( P*, h*) for k = 2 and r = 1 ......................................... 92 

X. Number of Units Required per Process to Meet Specification 
( P* , h*) for k = 3 and r = 1 ......................................... 93 

V1 



Table Page 

XI. Number of Units Required per Process to Meet Specification 
( P*, S*) for k = 4 and r = 1 ......................................... 94 

XII. Number of Units Required per Process to Meet Specification 
( P*, S*) for k = 5 and r = 1 ......................................... 95 

XIII. Bounds for Number of Units Required per Process to Meet 
Specification (P*, S*) for k = 2 and r = 1 ............................ 96 

XIV. Bounds for Number of Units Required per Process to Meet 
Specification { P*, S*) for k = 3 and r = 1 ............................ 97 

XV. Bounds for Number of Units Required per Process to Meet 
Specification (P*, S*) for k = 4 and r = 1 ............................ 98 

XVI. Bounds for Number of Units Required per Process to Meet 
Specification ( P*, S*) for k = 5 and r = 1 ............................ 99 

XVII. Number of Units Required per Process for r = 1,2,3, k = 2(1)3 
and P* = 0.95 ...................................................... 100 

XVIII. Bounds for Number of Units Required per Process for 
r = 1,2,3, k = 3,5 and P* = 0.95 .................................. 101 

XIX. Number of Units Required per Process to Meet Specification 
(P*,Si,Si) for P* = 0.75, k = 2 and r = 1 ......................... 137 

XX. Number of Units Required per Process to Meet Specification 
(P* ,Si,Si) for P* = 0.80, k = 2 and r = 1 ......................... 140 

XXI. Number of Units Required per Process to Meet Specification 
(P*,Si,S2) for P* = 0.90, k = 2 and r = 1 ......................... 143 

XXII. Number of Units Required per Process to Meet Specification 
(P*,Si,Si) for p• = 0.95, k = 2 and r = 1 ......................... 146 

XXIII. Number of Units Required per Process to Meet Specification 
(P*, Sj, Si) for P* __: 0.98, k = 2 and r = 1 ......................... 149 

XXIV. Number of Units Required per Process to Meet Specification 
(P*, Si, Si) for P* = 0.99, k = 2 and r = 1 ......................... 152 

Vll 



Table Page 

XXV. Number of Units Required per Process to Meet Specification 
(P*,S;,s;) for P* = 0.95, k = 2 and r = 2 ......................... 155 

XXVI. Number of Units Required per Process to Meet Specification 
(P*,S;,s;) for P* = 0.95, k = 2 and r = 3 ......................... 158 

Vlll 



LIST OF FIGURES 

Figure 

1. Boundaries of the SPRT and the 2-SPRT Using Modified 
Kiefer-Weiss Solution. Pt = 1/3, P2 = l/2 

Page 

and a = 0.05, {3 = 0.10 .............................................. 40 

2. P(Accepting HtiP) Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pl = 1/3, P2 = 1/2 
and a = 0.05, {3 = 0.10 .............................................. 41 

3. P(Accepting HtiP) Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pt = 1/3, P2 = 1/2 
and a = 0.10, {3 = 0.10 .............................................. 42 

4. P( Accepting HtiP) Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pt = 1/3, P2 = 1/2 
and a = 0.10, {3 = 0..05 ...................................... ; ....... 43 

5. Average Sample Sizes Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pt = 1/3, P2 = 1/2 
and a = 0.05, f3 ~ 0.10 .............................................. 44 

6. Average Sample Sizes Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pt = 1/3, P2 = 1/2 
and a = 0.10, {3 = 0.10 ......•................ · ......................... 45 

7. Average Sample Sizes Using Modified Kiefer-Weiss Solution 
Based on 1000 Samples. Pt = 1/3, P2 = 1/2 
and a = 0.10, {3 = 0.05 .............................................. 46 

8. Boundaries of the SPRT and the 2-SPRT Using Kiefer-Weiss 
Solution. PI = 1/3, P2 = 1/2 and a= 0.05, {3 ~ 0.10 ................ .47 

9. P(Accepting HtiP) Using Kiefer-Weiss Solution Based on 1000 
Samples. Pt = l/3, P2 = 1/2 and a= 0.05, {3 = 0.10 ................ .48 

IX 



Figure Page 

10. P(Accepting H1!P) Using Kiefer-Weiss Solution Based on 1000 
Samples. PI = 1/3, P2 = 1/2 and a = 0.10, {3 = 0.10 ................ .49 

11. P(Accepting H1 lp) Using Kiefer-Weiss Solution Based on 1000 
Samples. PI = 1/3, P2 = 1/2 and a= 0.10, {3 = 0.05 ................. 50 

12. Average Sample Sizes Using Kiefer-Weiss Solution Based on 1000 
Samples. PI = 1/3, P2 = 1/2 and a = 0.05, {3 = 0.10 ................. 51 

13. Average Sample Sizes Using Kiefer-Weiss Solution Based on 1000 
Samples. PI = 1/3, P2 = 1/2 and a= 0.10, {3 = 0.10 ................. 52 

14. Average Sample Sizes Using Kiefer-Weiss Solution Based on 1000 
Samples. PI = 1/3, P2 = 1/2 and a = 0.10, {3 = 0.05 ................. 53 

15. Probability of Correct Selection Using the Least Favorable 
Configuration for n = 2, 5(5)25, 50,100 and k = 2 ................... 102 

16. Probability of Correct Selection Using the Least Favorable 
Configuration for n = 2, 5(5)25, 50, 100 and k = 3 ................... 103 

17. Probability of Correct Selection Using the Least Favorable 
Configuration for n = 2, 5(5)25, 50,100 and k = 4 ................... 104 

18. Probability of Correct Selection Using the Least Favorable 
Configuration for n = 2, 5(5)25, 50,100 and k = 5 ................... 105 

19. Error in PCS as a Result of Using the Approximate LFC fork= 3 
and n = 1,2,5,10 .................................................. 106 

20. Error in PCS as a Result of Using the Approximate LFC fork= 5 
and n = 2, 5, 10, 15 ................................................. 107 

21. Sample Size per Process Required to Guarantee ( P*, 6*) using 
Exact LFC fork= 2 and P* = 0.75, 0.80, 0.90, 0.95, 0.98, 0.99 ....... 108 

22. Sample Size per Process Required to Guarantee ( P*, 6*) using 
Exact LFC for k = 3 and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ....... 109 

23. Sample Size per Process Required to Guarantee (P*, 6*) using 
Exact LFC for k = 4 and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ....... 110 

X 



Figure Page 

24. Sample Size per Process Required to Guarantee (P*, c5*) using 
Exact LFC for k = 5 and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ....... 111 

25. Sample Size per Process Required to Guarantee (P*, c5*) using 
Normal Approximation fork= 2 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................ 112 

26. Sample Size per Process Required to Guarantee ( P*, c5*) using 
Normal Approximation fork= 3 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 113 

27. Sample Size per Process Required to Guarantee ( P*, c5*) using 
Normal Approximation fork= 4 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 114 

28. Sample Size per Process Required to Guarantee (P*, c5*) using 
Normal Approximation fork= 5 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 115 

29. Plot of ln( n) versus the Difference c5 for k = 2 
and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ............................. 116 

30. Plot of ln(n) versus the Difference c5 for k = 3 
and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ............................. 117 

31. Plot of ln( n) versus the Difference c5 for k = 4 
and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ............................. 118 

32. Plot of ln( n) versus the Difference c5 for k = 5 
and P* = 0.75, 0.80, 0.90, 0.95, 0.98, 0.99 ............................. 119 

33. Difference in Sample Size Using Normal Approximation and the 
Approximate Upper Bound fork= 2 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 120 

34. Difference in Sample Size Using Normal Approximation and the 
Approximate Upper Bound for k = 3 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 121 

35. Difference in Sample Size Using Normal Approximation and the 
Approximate Upper Bound fork= 4 and 
P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 122 

Xl 



Figure 

36. Difference in Sample Size Using Normal Approximation and the 
Approximate Upper Bound fork= 5 and 

Page 

P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 ................................. 123 

37. Plot of ln(n) versus the Difference 8* for 
r = 2, P* = 0.95 and k = 2(1)5 .................................... 124 

38. Plot of ln(n) versus the Difference 8* for 
P* = 0.95, k = 4 and r = 1, 2, 3. . .................................. 125 

xii 



ASN 

CNB 

DNB 

GLFC 

IZ 

LFC 

oc 

PCS 

PZ 

SPRT 

2-SPRT 

ABBREVIATIONS USED 

Average Sample Number 

Continuous Negative Binomial 

Discrete Negative Binomial 

Generalized Least Favorable Configuration 

Indifference Zone 

Least Favorable Configuration 

Operating Characteristic 

Probability of Correct Selection 

Preference Zone 

Sequential Probability Ratio Test 

Two simultaneously conducted one sided SPRT's 

xiii 



CHAPTER I 

INTRODUCTION 

The negative binomial distribution has been used extensively to describe counts 

of data in many disciplines. Examples include the count of soil bacteria for each 

microscopic field (Jones, Mollison and Quenouille, 1948), insect counts (Anscombe, 

1949), quadrant counts in plant ecology (Skellam, 1951), whitefish counts (Oakland, 

1958), the count of the number of accidents per group (Arbour and Kerrich, 1951) 

and the count of the items purchased (Williamson and Brentherton, 1964). 

Greenwood and_ Yule (1920) used the negative binomial distribution for the 

analysis of accident statistics and to study the concept of accident proneness. In

dividuals working in a homogeneous environment may be non-homogeneous with 

respect to their accident proneness. The number of accidents within a subgroup 

in any given time period was observed to follow a Poisson distribution. The mean 

number of accidents per individual in each subgroup was observed to be gamma 

distributed. The resulting distribution of the number of accidents sustained by the 

total group was negative binomial. 

The absenteesm among the industrial workers was modeled using the nega

tive binomial distribution by Sichel (1951). Here the tendency to be absent from 

work was assumed to differ from person to person and the number of absences of 

individuals in a given time unit followed a negative binomial distribution. Gurland 

(1957) used the negative binomial to study the distribution of dental caries among 

12-year old school children. He also provided an excellent historical review includ

ing interpretation and applications of the negative binomial and other contagious 
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distributions. 

Application of the negative binomial extends to other areas such as consumer 

behavior, economics, and meteorology. The negative binomial distribution was used 

by Williamson and Brentherton (1964) to model industrial purchasing. A theoretical 

model in terms of purchasing behavior was used which led to the negative binomial 

distribution. The purchasing occasions are distributed as a Poisson distribution and 

are the same for all consumers. The amounts bought per occasion are distributed 

as a logarithmic series distribution. Then the total amount purchased over all the 

occasions follows a negative binomial distribution. A mathematical derivation of 

this model is given by Que~ouille (1949). 

A criticism of the Williamson and Brentherton (1964) model is that it is in

consistent with general experience to suppose that different consumer's average 

purchasing patterns are the same. Therefore Chatfield, Ehrenberg and Goodhardt 

(1966) used a compound Poisson model of consumer purchasing to investigate the 

demand by households for frequently purchased products when there is no overall 

trend from one period to the next for the brand or the package size in question. 

They studied the pattern of repeat-purchasing by the same consumers in different 

time periods and the distribution of the amounts bought by different consumers in 

the same time period. The parameters involved are a= mfr and r where m is the 

average amount bought in some time period of "unit" length. The model requires 

that the parameter a should remain constant for all different lengths of analysis 

periods, while the parameter r varies. The purchases of amount Si in the ith time 

period out oft periods of length Ti were shown to follow the multivariate negative 

binomial distribution. Consider stationary purchasing in two equal time periods I 

and II following negative binomial distribution with mean m and exponent r. Given 

all the consumers who bought exactly s units (a non-negative integer) in period I, 

the conditional distribution of their purchases in period II also was the negative 
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binomial distribution with mean (r + s )a/(1 +a) and exponent (r + s ). The gener

alization for two unequal periods, one of unit length and the other of relative length 

T gave rise to the negative binomial distribution with mean (r + s )aT /(1 +a) and 

exponent (r + s ), where a refers to the unit period. The further generalization to 

more than two time periods also resulted in the negative binomial distribution. 

Gabriel and Newmann (1957, 1962) applied a particular case of the negative 

binomial (r = 1), in meteorological models of weather cycles and precipitation 

amounts for Tel Aviv. A weather cycle is defined as the combination of a wet (dry) 

spell with a dry (wet) spell immediately preceding or following it. It was shown that 

the observed length distribution of both spells and weather cycles may be generated 

considering a simple stochastic process in which the occurrence or non-occurrence 

of precipitation on one day depends only on the immediately preceding day. The 

length of wet spells and the length of the dry spells were found to follow the negative 

binomial distribution (r = 1) and to be independent. The length of the weather 

cycle is the combination of these independent negative binomial random variables. 

Solow (1960) used the negative binomial as weights for time series analysis in 
00 

economics. In dealing with a lag of the form Yt = 2: ai Xt-i + Ut where y and 
i=O 

x are observed time series and u is a random disturbance, the lag coefficients ai are 

assumed to decay geometrically either from the very begining, i.e., i = 0 or at least 

starting from i = i 0 • That is ai = a A i ( i > i 0 , 0 < A < 1) . Setting a/ ( 1 - A) = f3 , 

ai was obtained to be {3(1 - A)Ai • Thus, apart from the proportionality constant 

{3, the successive ai are the terms of the negative binomial probability distribution. 

f3 is the size of the completed ultimate response of y to a unit increase in x. He 

suggested the application of this model to the problem of the timing of the effects of 

stabilization policies, where the lag of the expenditure-response behind monetary 

policy actions is to be studied. 

The negative binomial distribution is also known as the 'Pascal distribution', 
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the 'Waiting time distribution', the 'Contagious distribution' and the 'P6lya distri

bution'. Several different forms of this distribution have been used as the situation 

demands. The negative binomial can arise as a waiting time distribution, as a 

Poisson sum of logarithmic series, as a Poisson mixture with gamma mixing distri

bution, as a limit of the P6lya distribution, as a binomial mixture with the beta 

distribution, and numerous other ways. Boswell and Patil (1970) furnish an overall 

discussion of different forms of the negative binomial distribution and situations in 

which they occur. 

One of the most commonly seen forms of the negative binomial probabilities 

is as follows: 

Pr(X = z) - (r + z - 1) Pr (1 - P )z 
r-1 

where z = 0,1,2, ... 

0 < p < 1, r > 0. 

(1.1) 

In the biological sciences, the mean of the distribution is of primary interest. 

Anscombe (1949) suggested a parametrization using the mean f.£ and exponent r, 

not necessarily an integer. 

Pr(X = z) _ (z + r - 1) ( r ) r ( f.£ ) z 

r-1 f.£+r 1-'+r 
(1.2) 

where z = 0,1,2 ... 

f.£> 0, r > 0. 

In this work, it will be assumed that r is known. The main objective of this 

research is to investigate two problems of decision making related to one parame

ter negative binomial populations. Two types of procedures are considered. One 

deals with making a decision about the value of the parameter, i.e., the testing of 

hypotheses. Another attempts to select the 'best' population among a group of k 

following the same distribution with different parameter values. In both the cases, 

it is possible to make a quantitative evaluation of the decisions which is useful in 
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devising new optimal or nearly optimal procedures and comparing them with the 

existing procedures. 

The first objective is to derive a test for the probability of success p that will 

give an asymptotic solution to the modified Kiefer-Weiss problem. The modification 

to the procedure will be obtained such that the resulting solution is an approximate 

Kiefer-Weiss solution. This procedure will be compared with the commonly used 

sequential probability ratio test with respect to the observed error probabilities and 

the average sample sizes. 

The second objective is to devise some fixed sample selection procedures for the 

negative binomial populations using the indifference zone approach. With known 

value of r, the negative binomial may be considered as a one parameter distribution, 

where p or p. is the unknown parameter. When r is the known parameter, the simple 

statistics such as the sample mean or the sum of observed values may be used to 

compare and rank the populations in terms of order of the unknown parameter 

values. 

Chapter II describes the sequential probability ratio test and some of its ad

vantages and drawbacks. The motivation behind the alternative to the sequential 

probability ratio test is presented. Some of the attempts at the modification of the 

sequential probability ratio test are described. The benefits of using selection proce

dures are described. The basic requirements for any selection procedure are stated 

and the general background involved with the terminology is explained. Some of the 

earlier research in the development of selection procedures for the negative binomial 

populations is also presented. 

In chapter III, a closed testing procedure consisting of two simultaneously 

conducted one-sided sequential probability ratio tests is presented for the negative 

binomial distribution. A modification to the test is given so that the resulting 

test provides an approximate solution to the Kiefer-Weiss problem. This test is 
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compared with the sequential probability ratio test with respect to the average 

sample sizes observed and the observed error probabilities obtained as a result of 

Monte Carlo study. 

Chapter IV presents a fixed sample selection procedure for selecting the best of 

k negative binomial populations of interest. All the populations are assumed to have 

a common known value of r. The monotonicity property of the selection procedure 

is proven and used to obtain the required smallest sample sizes. The large sample 

approximation and the normal approximation is studied. A comparative study of 

the probability of correct selection and the sample sizes obtained using the exact 

and the approximate procedures is conducted. The behavior of the sample sizes as 

k becomes large is studied. 

In chapter V, possibility of the improvement in the sample sizes per popula

tion in the selection procedure due to the addition of another distance measure is 

discussed. A fixed sample selection procedure with a pair of distance measures is 

presented. The monotonicity property of the procedure is used to obtain sample 

sizes. The normal approximation is derived and compared with the exact procedure 

with respect to the associated sample sizes. 



CHAPTER II 

REVIEW OF LITERATURE 

In this chapter, Wald's Sequential Probability Ratio Test for the negative bi

nomial distribution will be described. Properties of the sequential probability ratio 

test will be discussed. Some of the literature suggesting modifications of the se

quential probability ratio test to overcome its weaknesses will be reviewed. The 

motivation behind the statistical selection procedures will be explained. The sta

tistical terminology involved will be discussed and some of the previous work on 

selecting the best population or a set of best negative binomial populations will be 

reviewed. 

Sequential Probability Ratio Test (SPRT) 

Sequential procedures differ from other statistical methods in that the sample 

size is not fixed. In sequential processes, the number of observations required to 

reach a terminating decision is a random variable and depends on the outcome 

of the experiment at each stage of sampling. The use of such a method indicates 

recognition of the fact that the sampling goal may be achieved with a smaller average 

sample size under sequential sampling than under fixed sample size methods. 

The idea of using a sequential process for making decisions goes back to Dodge 

and Romig (1929) who used it for a double sampling acceptance procedure. Wald 

(1943) proposed the use of a sequential procedure for the purpose of testing sta

tistical hypotheses. He developed the Sequential Probability Ratio Test, generally 

known as SPRT, for testing a simple versus a simple hypothesis. At first, the 
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sequential procedures were used for acceptance sampling by the military during 

wartime. Later, this information was released for application in non-military fields. 

The merits of sequential methods for testing, including the savings in the average 

sample size, were quickly recognized. Sequential procedures were further developed 

by Wald {1945), Schwarz {1962), Kiefer and Sacks {1963), Ghosh {1970),and others. 

The first reference to the use of the SPRT in the biological sciences is found in 

a paper on whitefish sampling by Oakland {1950). Sequential sampling was used by 

Orr {1955) for forest insect control and by Waters (1955) for forest insect surveys. 

Since then the SPRT has been used extensively by entomologists for determining 

the status of pests and controlling outbreaks. 

Suppose we have a population with mass function or density function f( x; 0), 

where the form of the distribution of the random variable X is known but the value 

of the parameter 0 is unknown to the experimenter. We are interested in testing 

H 1 : 0 = 01 against H 2 : 0 = 02 { 01 < 02). The experimenter specifies the desired 

probabilities of type I and type II errors, a and {3, respectively. A sequence of 

observations (X1, X2 , ••• , Xn) is obtained, where each of the X' s are independently 

and identically distributed. This sequence is used to make a terminating decision 

about the value of the parameter 0. 

At the nth stage of sampling, an observation is taken from the population and 

the likelihood ratio based on then observations is computed as 

f2(X1)f2(X2)···f2(Xn) 
fi{XI)fi(X2)···fi(Xn) 

Based on the value of this likelihood ratio a decision is made as follows: 

a) Accept H1 if (hn/ hn) < B 

b) Accept H2 if {hn/ fin) > A 

c) Continue sampling by adding another observation to the sequence if 

B < (hn/hn) <A. 

(2.1) 
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A and B , 0 < B < 1 <A, are determined using the specified values of a and {3: 

A ~ 1 - {3 and B ~ _{3_ . 
a 1-a 

Consider the parameterization of the negative binomial distribution given in 

(1.1) with a known value of r. Suppose the values of a and {3 have been specified. 

The SPRT procedure for testing HI : p =PI against H2 : p = P2 (PI < P2) is 
n 

performed as follows. The sum of the first n observations 2: Xi, is computed for 
i=I 

n = I, 2, 3, .... For each new observation, a decision as to whether sampling should 

continue is made as follows: 
n 

a) Accept HI if a*+ bn < 2: Xi 
i=I 
n 

b) Accept H2 if a+ bn 2:: 2: Xi 
i=I 

n 

c) Continue sampling if a+ bn < 2: Xi < a* + bn 
i=I 

where 

and 

a* _ log(B) 
log( q2 I qi) ' 

b = log(pJ/p2) . 
log(q2l qi) 

The Operating Characteristic (OC) function L(p) is the probability of accepting H1 

as a function of p. L(p) may be stated as 

Ah(p) -1 
L(p) = Ah(p)- Bh(p) 

where A and Bare defined above and h(p) is a nonzero solution of 

p-
(PI I P2) h(p) [1 - (q21 ql) h(p)] 

1- (q2pJ/(qiP2)] h(p) 
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For given values of p, this equation is solved for h(p) and the OC function values 

L(p) are computed. For h(p) = 0, 

log( A) 
L(p) = log(A) -log(B) 

where A and B are defined above and the corresponding pis given by 

The Average Sample Number (ASN) Ep(n) gives the average number of obser-

vations required to make a terminating decision as a function of p. For the nonzero 

values of h(p ), 

L(p) log(B) + (1- L(p)) log(A) 

(kqjp)log(q2/q1) + k log(p2/Pt) · 

When h(p) = 0, 

Ep(n) = -p2 log(A) logSB) . 
rq(log(q2/ q1 )) 

Consider the parameterization of the negative binomial distribution in terms 

of the mean J.L given in (1.2) with a known r. The SPRT for testing H 1 : J.L = J.LI 

against H2 : J.L = J.L2 (J.Lt < J.L2) is performed as follows. At the nth stage of the 
n 

sampling, compute the sum of the n observations, 2: Xi. Based on this sum, make 
i=l 

one of the following decisions: 
n 

a) Accept H1 if a+ bn > 2: Xi 
i=l 

n 
b) Accept H2 if a*+ bn < 2: Xi 

i=l 
n 

c) Continue sampling if a + bn < 2: Xi < a* + bn 
i=l 

where 

a 
log( B) 

a* 
log( A) 



and 

b 

The OC function L(J.L) as a function of J.L can be stated as follows: 

Ah(p.) -1 
L(J.L) = A h(p.) - Bh(p.) 

A and B are as defined above. h(J.L) is a nonzero solution of 

11 

for given values of J.L· This equation is solved for h(J.L) and the OC function values 

L(J.L) are then computed. When h(J.L) = 0, 

L J.L _ log(A) 
( ) - log(A) -log(B) 

where A and B are defined above and the corresponding J.L is given by 

r log(&±..!:) P.1+r 

For the nonzero values of h(J.L), the average sample number, Ep.(n), as a function 

of J.L is 

Ep.(n) 

When h(J.L) = 0, 

Ep.(n) 

L(J.L) log(B) + (1- L(J.L)) log(A) 

11-log(J!::l.P.l+r) + r log(P.1 +r) 
r- P.l P.2+r P.2+r 

-log(A) log(B) 
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Strength and Weaknesses of the SPRT 

The properties of the SPRT have been studied extensively. These include ex

istence of a unique SPRT, monotonicity and optimality. The existence of a unique 

SPRT, with specified probabilities of error at the two hypotheses, was first proven 

by Weiss (1956) for the case in which the likelihood ratio as defined in (2.1) has a 

continuous distribution with positive probability on every interval in (0, oo ). Ander

son and Friedman (1960) presented this property using the optimality of the SPRT. 

Wijsman (1960) used the monotonicity property of the SPRT in order to prove the 

unique existence. Govindarajulu (1975) describes the monotonicity property of the 

SPRT. If the upper stopping bound of the SPRT is increased and the lower stopping 

bound decreased, then at least one of the error probabilities decreases. That is, un

less the new test is equivalent to the old one, in which case. the error probabilities 

are unchanged. 

The optimality property of SPRT can be stated in the words of Govindarajulu 

(1975) as "among all tests whose error probabilities do not exceed those of SPRT, 

the SPRT has the smallest expected sample size under both hypotheses". The Op

timality of the SPRT for testing a simple hypothesis H1 against a simple hypothesis 

H2 was first proven by Wald and Wolfowitz (1948). A much simpler proof is given 

by Mattes (1963). 

Usually one is interested in the performance of the procedure for more values 

of the parameter than the hypothesized ones. Although the SPRT has the optimum 

property of having the smallest expected sample sizes under the null and alterna

tive hypotheses, the expected sample sizes tend to be larger for the values of the 

parameter between the two hypothesized values. If the true parameter value lies in 

between the two hypothesized values, it is difficult to make a decision as to which 

one should be accepted. Therefore, more observations are needed in order to make 
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a correct decision. However, practically speaking, we may be indifferent as to which 

hypothesis is selected when the true parameter value is between the two specified 

values. Yet in this case more observations must be made in order to reach a de

CISion. This problem raised a need for a sequential procedure that will minimize 

the expected sample size at some value between the two specified values without 

substantially increasing the sample size at the specified values. 

Another difficulty with Wald's SPRT is that the number of observations, which 

is a random variable, is unbounded. For SPRT, since the boundaries are parallel 

lines, there is a positive chance of obtaining a sample size larger than any given 

constant. To avoid this difficulty, the truncated SPRT is often used, but it generally 

increases the expected sample size at the hypothesized values of the parameter and 

the actual error probabilities. Several different schemes have been proposed to 

overcome these difficulties. 

Weiss (1953) has introduced the generalized SPRT. For the generalized SPRT 

the predetermined constants A and B change at each stage of sampling whereas they 

remain unchanged throughout the experiment for the SPRT. Armitage (1957) has 

proposed certain restricted SPRT's for testing the mean of the normal distribution. 

These tests result in closed boundaries. 

Structure theorems about the tests for several formulations are presented by 

Kiefer and Weiss (1957). Section 4 of their paper deals with the problem of minimiz

ing the expected sample size Ee(n) at a point()= ()0 subject to error probabilities, 

a and {3, at two other points, 01 and 02 • It was shown in Lemma 4.1 that this 

modified Kiefer-Weiss problem is equivalent to the Bayes problem of minimizing 

a weighted average of Ee0 (n) and the two error probabilities. For the class of 

parametric families, including the Koopman-Darmois families, the solutions to the 

modified Kiefer-Weiss problem have bounded sample size. For the normal and the 

binomial distributions, Weiss (1962) has shown that the Kiefer-Weiss problem, i.e., 
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the problem of minimizing the maximum expected sample size subject to the error 

probabilities, reduces to the modified Kiefer-Weiss problem in case of procedures 

symmetric about 00 • No optimal results have been obtained for this problem. 

Anderson (1960) has considered a special case of the problem when the distri-

bution is normal with known variance and the parameter of interest is the mean. 

The problem is to test H1 : 0 = 81 against H2 : 0 = 82 .(01 < 82) such that Eo(n) 

is minimized at 0 = Oo where Oo = (81 + 02)/2. This is equivalent to minimizing 

the supremum of Eo(n). He has developed approximations to the OC and the ASN 

functions by replacing the sum of observations by the Wiener stochastic processes 

drifts. A considezoable decrease in average sample size at the parameter value be

tween the two hypothesized ones is obtained. The boundaries achieved in this test 

are linear in the sample size. He used different boundary slopes to get convergent 

lines and minimize Eo0 (n). 

Lorden (1976) studied a subclass of Anderson's procedures related to SPRT's 

which he called 2-SPRT. This procedure involvs simultaneous execution of two 

one-sided SPRT's. The resulting boundary lines are convergent in nature. This 

test provides the maximum number of observations to be taken and is shown to 

minimize the expected sample size as a and f3 tend to 0. Thus for any fixed 00 , 

the 2-SPRT prQvides an asymptotic solution to the modified Kiefer-Weiss problem. 

If for some 00 the expected sample size is maximized, then the resulting 2-SPRT 

will be an approximate solution to the Kiefer-Weiss problem. Huffman (1983) has 

shown a Oo = 8 exists such that the supremum of the expected sample size over 0 

is attained at Oo at least to within o( j::(i}). 

A Need for Selection Procedures 

Research on tests of homogeneity and efficient experimental designs is available 

from several sources. However, there seems to be doubt as to the usefulness of hy-
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potheses testing in certain situations. For example, in an agricultual problem, the 

hypothesis that several different cultivars of grains have the same mean yield is ob

viously meaningless if the cultivars are actually different. In a medical experiment, 

the hypothesis that different drugs have the same average effect is pointless when 

we are aware of their different chemical compositions. With the aid of a sufficiently 

large sample, existence of differences can be established at any preassigned level of 

significance, even for the slightest deviation from exact equality of parameters. It 

seems more logical to show interest in selecting the 'best' or 'a set of best' cultivars 

or drugs of the lot. Cochran and Cox {1957, page 5) state that, "On the whole, ... 

tests of significance are less frequently useful in experimental work than confidence 

limits. In many experiments it seems obvious that the different treatments must 

have produced some differences, however small, in effect. Thus the hypothesis that 

there is no difference is unrealistic: the real problem is to obtain estimates of the 

sizes of the differences." 

Commonly, in situations when the test of homogeneity results in significant 

differences, the method of least significant differences based on the t-test is used to 

detect significant differences in the average yields of cultivars and then to select the 

'best' one. Eventhough popular in practice, this method is not efficient because it 

does not provide any guarantee against wrong decisions. Thus selection procedures 

originated out of this need for a logical alternative to multiple comparisions. For 

these procedures, the goal is to select the 'best' one of k (k > 2) processes or 

populations on the basis of the observations from each population where best is 

defined in terms of a parameter of the populations. Often 'best' is defined as the 

population having the largest (smallest) value of the ranking parameter. 

Different Approaches Used in Deriving Selection Procedures 

In the past few years, considerable research has been directed towards devel-
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opment of various selection and ranking (ordering) procedures. Broadly speaking 

selection procedures can be formulated under one of the following basic approaches: 

the Bayesian approach, comparision with a control approach, indifference zone ap

proach and subset selection approach. 

Dunnett (1960), Guttman and Tio (1964), Bland and Bratcher (1968), Govin

darajulu and Harvey (1974), and Goel and Rubin (1977) have used the Bayesian 

approach with different prior distributions for developing procedures for selection of 

the best population from a set of k. Under this approach, the optimum sample size 

n is obtained by minimizing the maximum expected loss over all parametric con

figurations or by minimizing the risk for known prior distributions for parameters. 

In this case with prior knowledge of the bounds on the differences in parameters, 

8[1e) - 8[,1 , i = 1, 2, ... , k - 1, a minimax solution can be acquired if the expected 

loss is unbounded above. 

The method of comparison with a control can be used for population selection 

instead of using multiple comparisons as shown by Sobel and Tong (1971 ). Edwards 

and Hsu (1983) used it for selecting new treatments by sequential procedures. In 

this approach, the set of k populations is partitioned into two subsets with control 

as their boundary, one set consisting of the better treatments in comparison with 

the control and the other consisting of those worst than the control. This separation 

is backed by a specified probability of correct decision P*. For a given total sample 

size, the optimal allocation is achieved either by minimizing the expected number 

of misclassifications or by maximizing the probability of correct decision. 

Bechhofer (1954) introduced the indifference zone approach for selection and 

ranking procedures. This pioneering paper on indifference zone deals with the 

selection of the best normal population for the mean with a common and known 

variance. In this approach we are interested in devising a selection procedure which 

guarantees a specified probability P* of selecting the population associated with the 
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largest (or smallest) parameter value as the best one, whenever the best population 

is at least 6* units away from the second best population in terms of the parameter 

value. The infimum of the probability of correct selection is evaluated to obtain the 

smallest sample size satisfying the P* condition. Using the operating characteristic 

curve and the sample size, we judge the performance of the selection procedure. 

The first paper to present a general theory of subset selection is by Gupta 

(1965). Gupta and Huang (1976) proposed selection procedures with unequal sam

ple sizes using a subset selection approach. In this approach, interest lies in selecting 

a nonempty subset of populations such that the probability that the selected sub

set will include the populations corresponding to the largest fh is guaranteed to 

be at least equal to the predetermined number P*. This approach differs from 

the indifference zone approach in that the number of selected populations is not 

predetermined but is an outcome of the experiment and hence a random variable. 

Let T1 , T2, . . . , T1c be the appropriate statistics computed from the samples 

from the populations 71"1 , 71"2, . . . , 11"1c • A population is chosen to be in the subset 

if and only if Ti > ma.x(T1 , ••• , T~c) - D. The constant D is determined by 

k, P* and n. By this approach a. selection rule satisfying the P*-condition can be 

obtained for any given sample size n which is quite contrary to the indifference zone 

approach. The expected subset size, the expected minimal rank, and the expected 

sum of ranks of the selected populations are used to judge the performance of the 

selection procedure. The infimum of probability of correct selection is evaluated 

over the entire parameter space; whereas, in the indifference zone approach it is 

over the preference zone. 

Components of Selection Procedures 

The indifference zone approach for negative binomial populations will be de

veloped in this work. The components of a selection procedure are described. We 
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first assume that there exists a 'best' population among the k populations of in

terest. Without this assumption, the outcome of the selection procedure cannot be 

guaranteed. We also assume that it is possible to rank populations with respect 

to the parameter values and that the experimenter is able to specify the minimum 

distance the best population should be from the second best population in order to 

be considered as the 'best'. 

Selection goals can be classified into two categories. The first one is to select 

an unordered set oft best populations from the set of k available populations. The 

second goal is to select the ordered set of the t best populations from the set of k 

available populations. Suppose 1r1, 1r2, • • • , 1r'fc are the populations characterized 

by distributions with real valued parameters fh, 62 , ••• , 61c E 0 . Then by the first 

goal, the subset { 1ri1 , 1ri2 , • • • , 1ri, } associated with the set { 6i1 , 6i2 , • • • , fJi,} 

is selected; whereas, by the second goal, a population 1ri1 associated with (J[k], a 

population 1ri2 associated with (J[Ic-l], • • • , and a population 1ri, associated with 

(J[k-t+l] is selected. We are interested in selecting only one best population from a 

set of size k. If there is more than one population tied for the 'best' position, then 

we are willing to select randomly one of the tied populations as the best one, and 

assume that loss due to the wrong selection is negligible. 

The first step towards the application of selection procedures is determining 

the definition of the 'best' population and the measure of distance 8. In defining the 

distance measure, the computational convenience and simplicity for understanding 

as well as economic consequences are taken into account. Bechhofer, Kiefer, and 

Sobel (1968) listed the properties that a distance function or a measure of distance 

must satisfy, which are as follows: 

In order for a function 8( (Ji, (J;) to serve as a measure of 'distance' between the 

frequency functions of the variates Xi and X; associated with (Ji and 6;, respectively, 

it must satisfy, 
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a) 6(a,b) ~ 0 for all pairs (a, b) 

b) 6(a,b) = 0 if and only if a= b 

c) 6(a,b) = 6(b,a) for all pairs (a, b) 

d) 6( a, b) is strictly increasing (decreasing) in a for fixed b 

when a ~ b (a ~ b) . (2.2) 

Suppose (}1 , (}2 , • • • , (}Tc are the parameters associated with the k populations 

under consideration. The entire parameter space is a k-dimensional region, 

0 - {~:~=((}b ... ,(}Tc), (}i E ~' i = 1,2, ... ,k }. 

Let (}[1] < (}[2] < ... (J[lc] be the ordered (}i, i = 1, 2, ... , k . The populations 

are ranked in terms of their e-values. No prior information about the ranking 

of (}'s and their association with the populations is assumed. Since we are inter

ested in selecting only one population, we are not concerned about the values of 

(}[1], (}[2], ••• , (J[Tc-2] • All interest is centered around the values of (J[lc] and (J[lc-1] • 

In general, to set up a decision criterion, we have to analyze the parameter space 

and distinguish two regions. One region where we have a strong preference for mak

ing a correct decision is known as the Preference Zone (PZ). The other region where 

we are indifferent between the two or more solutions is known as the Indifference 

Zone (IZ). Therefore the specified value 6* of the distance measure, partitions the 

parameter space into two parts: a preference zone where (J[lc] - (J[lc-1] ~ 6* 

and its compliment, the indifference zone. The special configuration in the prefer

ence zone, for which the probability of correct selection is a minimum over all(} in 

the preference zone is referred to as the least favorable configuation, and it can be 

defined in terms of the parameters through the distance measure. 

Gupta and Panchpakesan (1979, section 1.6 and 3.4) state the following prop

erties of selection procedures. For a good rule, one would like to have 
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i = 1,2, ... ,k-1 
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This property is known as the unbiasedness of the rule. A stronger property called 

the monotonicity is defined by, 

Pr( '1r(i) is selected ) > Pr( '1r(j) is selected ) 

for any pair such that '1r(j) < '1r(i)· 

Let F = {F(:z:; 8), (J E E>} be a stochastically increasing family such that 

the k populations under consideration have distributions F(:z:; 8i), (Ji E E>. Let 

T = T(X1 , ••• , Xn.) be the real valued ranking statistic used to select the best 

population with distance measure 5. Then T is consistent with respect to ( F, 5) if 

for every 5* > 0 and 1/k < p• < 1, 

lim inf P111 (Correct Selection I R) 1. 
n.-oo wE0(6*) , 

Existing Selection Procedures for Negative Binomial 

A few selection procedures for negative binomial populations have been devel

oped based on Pi, the probability of success for the ith population. Bartlett and 

Govindarajulu (1967) proposed two selection procedures for negative binomial pop-

ulations. These were derived using a subset selection approach and an indifference 

zone approach. They are both applicable to the negative binomial as a waiting 

time distribution, i.e., in case of inverse binomial sampling in which the sample size 

is not :fixed in advance. These procedures are compared with the procedures for 

ordinary binomial sampling in which the sample size is :fixed in advance. Inverse 

binomial sampling procedures are found to be advantageous when p, the probability 

of success, is near unity. Some large sample procedures are also derived. 

Gupta and Nagel (1971) considered a selection rule for the k negative binomial 

populations in the framework of a subset selection problem. A selection rule for 
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negative binomial populations with a large probability of success p is given. The 

probability function used is in terms of the total number of trials required for the 

occurence of r successes. With T(Xt, X 2 , ••• , Xk) , a sufficient statistic for 8, the 

selection rule is 

Pk(z) = 

where p = p(T,P*,k) and CT = CT(P*,k) are determined to satisfy 

The paper presents tables giving values of constants CT and p for selected values 

of k, P* and r. 

A sequential subset selection procedure for negative binomial populations is 

given by Bechhofer, Kiefer and Sobel (1968). bi,j = log(1 - (}[j]) -log(l - (}[i]) is 

used as a measure of distance between the populations associated with (}[i] and 
m 

O[j] • This procedure used the statistic Y[im] = - I: Xij , i = 1, 2, ... , k where 
j=l 

Xij is the observation from the ith population at the Ph stage of experiment. Let 

U = (!) for a fixed integer t, 1 < t < k- 1. For each m consider the U possible 

sums 

u=1,2, ... ,u 

obtained by adding t of the k observed Yim-values. Let Y(ij~ ~ Y(~j~ < . . . < 

Y(~m be the ranked yJ:J.-values. Then the stopping rule is given as follows: 

Stop the experiment at the first value n of m for which 

U-1 (1- P*) 2: exp{ -8*(Y(~m - Y(J~~)} < P* 
j=l 
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When the goal is to select only one population with the largest probability 

of success, the ranked yJ:J.-values u = 1, 2, ... , U, reduce to the ranked Yim-

values: Y[I)m < Y[2]m :5 . . . < Y[k)m· With differences D(i,j)m = Y[i)m -

Y(31m' i > j, j ~ 1, 2, ... , k; the stopping rule is given as follows: 

Stop at the first value n of m for which 

k-1 (1- P*) L exp{ -6* D(k,j)m} :5 P* 
j=l 

Thus the stopping rule depends on the mk observations only through ( k - 1) dif-

ferences, D(k,i)m' i = 1, 2, ... , k -1. Hence the selection. procedure is to select the 
n 

population that gave rise to the Y[k)m , i.e.,the smallest 2: Xi;, i = 1, 2, ... , k, 
j=l 

as the population associated with 9(k). 



CHAPTER III 

AN APPROXIMATE SOLUTION TO THE 

KIEFER-WEISS PROBLEM FOR 

THE NEGATIVE BINOMIAL 

In this chapter, an aymptotic solution for the modified Kiefer-Weiss problem 

for the negative binomial distribution will be derived. This procedure is compared 

with the SPRT with respect to the observed OC and ASN functions. A procedure 

to obtain an approximate solution for the Kiefer-Weiss problem for the negative 

binomial distribution is developed. Results of the Monte Carlo studies comparing 

this procedure with the SPRT are presented. 

Lorden's 2-SPRT 

Keeping in view the difficulties faced in application of the SPRT, Lorden (1976) 

proposed a testing procedure called 2-SPRT to solve the modified Kiefer-Weiss 

problem. The 2-SPRTis based on two one-sided SPRT's to make a decision between 

two hypotheses. To test H1 : fJ = 81 against H2 : () = 82, this procedure minimizes 

the expected sample size at a given point fJo among all tests with error probabilities 

controlled at two other points, 81 and 82 ( 81 < 80 < 82 ). Under this scheme, a 

one-sided SPRT of fJo against 81 is performed to reject 81 while another one-sided 

SPRT of fJo against 82 is performed to reject 82 • 

Suppose we are interested in testing H 1 : () = 81 against H 2 : fJ = fJz ( 81 < fJz) 

with error probabilities at most a and {3. For the purpose of conducting two SPRT's 

simultaneously, a third hypothesis Ho : () = 80 is created where 80 can be obtained 

23 
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as a function of fh and 02 for which the expected sample size is to be minimized. 

The common distributions of the random variable X under the hypotheses H 0 , HI 

and H 2 are denoted by f(x;Oo), f(x;fJI) and j(x;fJ2) respectively. The decision to 

accept HI or H 2 is based on a sequence of random variables X1, X 2 , • • • with 

common density f(x; 0) with respect to some a--finite measure v. Each of these X's 

are independently and identically distributed on the sample space. 

At each stage of the test, an observation is taken from the population under 

consideration and the usual likelihood ratios 

/1(X1)···/1(X.,) 
fo(X1)···fo(X.,) 

and hn 
Jon 

!2(XI)···f2(X.,) 
fo(X1)···fo(X.,) 

(3.1) 

are constructed. Then based on the values of the likelihood ratios, one of the 

following decisions is made: 

a) Reject H1 if (f1n/ fo.,) < A 

b) Reject H2 if (!2.,/fo.,) < B (3.2) 

c) Continue sampling if both the inequalities are not satisfied, 

where 0 < A, B < 1 are not both zero and a+ f3 ::5 max( A, B). The sample 

size N(A, B) is the smallest N > 0 such that the sampling is stopped by reaching 

either of the terminating decisions (a) or (b). Choose N = f ( x; 01 ) if decision (b) is 

made, and choose N = f( x; fJ2) if decision (a) is made. If (a) and (b) are satisfied 

simultaneously then any fixed rule can be used for deciding between f( x; 01 ) and 

f( x; 02 ). The constants A and B can be determined approximately as 

a 
A < Pr(Accepting H2 when Ho is true) 

~ < Pr(Accepting H 1 when H 0 is true) 

In practice the inequalities in (3.2) are transformed by taking logarithms and pre-

senting the terms of the inequalities in terms of simple statistics, e.g., the sum of 
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observations. The 2-SPRT has been shown to be approximately optimal in the 

following theorem by Lorden (1976) which is stated without proof. 

Theorem 3.1 (Lorden (1976)): 

Let a( A, B) and j3(A, B) denote the error probabilities of the 2-SPRT 

(N(A,B), N) . Let n(A,B) denote the infimum of E(n) over all tests satisfying 

a< a( A, B) and j3 < j3(A, B) . Under the assumption that 

and E log2 ( fol ) 
hl 

are finite and / 0 , h, h are distinct, if A, B > 0, 

{EN( A, B) - n(A, B)} ~ 0 as min( A, B) ~ 0. 

In other words, if F( a, j3) is the class of all tests which have error probabilities at 

most a and /3, then for a 2-SPRT with the true error probabilities a and /3, we 

observe 

E9N(A,B) = inf{E9(n) I F(a,j3)} + o(1) 

as a, j3 ~ 0, where ()is fixed. Thus for any fixed () = 00 , the 2-SPRT provides 

an asymptotically optimal solution to the modified Kiefer-Weiss problem. In a 

symmetric case A > 2a and B > 2j3. Therefore, A= 2a and B = 2/3 give a good 

approximation. 

Asymptotic Solution For Modified 

Kiefer-Weiss Problem 

The knowledge of the mathematical distribution of the sampling units is nec

essary for implementing both the SPRT and the 2-SPRT. We are interested in 

deriving 2-SPRT for the negative binomial distribution and comparing it with the 

SPRT. The parameter should be specified under the two alternative hypotheses, 
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H1 and H2. When working in an entomological setting, Fowler and Lynch (1987) 

referred to them as the economic thresholds or the pest density levels. Two kinds 

of errors, known as the errors of the first and second kind are involved in these 

procedures. The experimenter will have to specify the tolerable chances of taking 

these risks with due consideration given to the practical feasibility and uncertainty 

of attaining them. 

Suppose X 1 , X2, · · ·, are independent and identically distributed random vari

ables. Their common distribution is known to be negative binomial with unknown 

proportion p and known value of r. Further let q = 1- p. The problem is to test 

the simple hypothesis H1 : p = p1 against the simple alternative H2 : p = p2. The 

values p1 and P2 are specified by the investigator with p1 < p2. We are interested in 

minimizing the expected sample size for p = po, PI <Po < P2 . The random vari

ables are assumed to be observable one at a time and have mass function nb( x; Pi, r). 

Provided PI =f:. p2, it is desired to test whether the true distribution is nb(x;p1 ,r) 

or nb(z;p2,r). The test must also satisfy the properties 

and 

Prpl(Hl accepted) < f3 . 

Since the negative binomial belongs to the Koopman-Darmois family of distri

butions, the mass function can be written in the following form: 

nb(z;p,r) = exp{8:u - b(8)}, fl.< 8 < 0 

where 8 = log(l- p) and b(8) = -rlog(p) . Also Ee(X) = b'(8), and Ve(X) = 

b"(8) . Defining a test for testing H1 : p =PI against H2 : p = P2 (PI < P2) is 

identical to defining a test for testing H 1 : 8 = 81 against H 2 : 8 = 82 ( 82 < 81 ). 

The Kullback-Leibler information numbers are given by 
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Ep{log( nb(x;p,r))} 
nb(x;pi, r) 

= ~log(~) + rlog(~) 
i = 1,2. Both are positive on (pi,P2)· 

Take one observation at a time from the population of interest and compute 
n 

the sum of observations obtained up to that stage. Let Tn = I: Xi, the sum 
i=l 

of the first n observations. Then Ee(Tn) = nEe(X1) = nb'(O) and Ve(Tn) = 

nVe(XI) = nb"(O) . The log-likelihood function is given by OTn- nb(O) . Defining 

a third hypothesis Ho : p = po, a one-sided SPRT of H0 against H1 is conducted for 

possible rejection of H1. Simultaneously another one-sided SPRT of H0 against H2 

is conducted for possible rejection of H2. The 2-SPRT for this problem operates as 

follows: 

Stop after n < M (given by 3.5) observations, and 

a) Accept H2 : p = P2 if 

(:r (::r sA 
that is, if 

Tn < log( A) + nr log(po / P1) 
log(q1/ qo) 

(3.3) 

b) Accept H1 : p = P1 if 

(:) n• (::) T. < B 

that is, if 
> log(l/B) + nrlog(p2/Po) 

Tn - log(qo/q2) 
(3.4) 

c) If both (3.3) and (3.4) are not satisfied, then continue sampling until the 

number of observations reaches M, where 
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M (p0 ) the smallest integer 

> log.(B)log(qiiqo) + log(A)log(qolq2) (3.5) 

r [log(p2l Po) log( q1 I qo) - log(po I PI) log( qo I q2)] 

At n = M make a decision as follows: 

a) accept H1 if TM > Mrqolpo, 

b) accept H2 if TM < Mrqolpo, 

c) randomize with equal probability between 

the two decisions if TM = M rqo I Po. 

Thus the 2-SPRT can be described graphically in the plane of n X Tn using 

two convergent lines. The continuation region is the triangular area enclosed by the 

lines, 

(3.6) 

and 

(3.7) 

where constants A and B are derived using the specified a and f3. The moment 

Tn leaves this triangular area, a terminating decision is made and the sampling is 

discontinued. The boundary lines intersect at point (M(p0 ),T(p0 )), where M is 

given by (3.5) and 

log(A)log(P21Po) + .log(B)log(poiPI) 
T(po) = log(qiiqo)log(p2IPo) - log(qolq2)1og(pi/po) · (3.8) 

Define ai(P) = I-1(p,pi)1og(qlqi), i = 1,2 where ai(P) < 0 < a2(p) . Huffman 

(1983) has shown that the actual error probabilities can be evaluated asymptotically 

as 

~ ai(Po) A L(po,PI) 
ai(Po)- a2(Po) I(po,pi) 

and 

~ a2(Po) B L(po,p2) 
a2(Po)- ai(Po) I(po,P2) 
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where the numbers L(p0 ,p) are defined in equation (4) by Lorden (1977) as 

i =j:. j = 0, 1,2, L(i,j) = L(j,i) and L(i,j)'s are positive fori=/:- j. The corrections 

for the excess over the boundary L(po,Pi)l I(po,Pi), i = 1, 2, are usually close to 

1. Therefore for desired error probabilities a and {3, the constants A and B can be 

defined asymptotically using the relations 

(3.9) 

The negative binomial distribution is not a symmetric distribution. Therefore 

it was observed that the use of Po =(PI +P2)12 tends to move the 2-SPRT stopping 

boundaries asymmetrically with respect to the SPRT boundaries. In order to com

pare the two selection rules with respect to their performance, the use of the geomet

ric mean of qi and q2 as qo is proposed. Thus use Po = 1 - ..J ( 1 - PI) ( 1 - P2), (PI < 

Po < p2) to conduct two one-sided SPRTs. For this specific value of p0 , the point 

of intersection of the two boundary lines is given by (M, T) where 

and 

M = log(A-I B-I) 

r log(p5 I (PIP2)) 

T = log(A)log(p2IPo) + log(B)log(poiPI) . 

log( ..;q;;q;. ) log(P2PI I P5) 

(3.10) 

Suppose the mean of the distribution is of primary interest. Then the test can 

be conducted based on the mean. Testing HI : p. = f.LI against H 2 : p. = p.2 (P.I < 

f.L2) is equivalent to testing HI :()=()I against H2 : () = 82 (8I < 82) where() is 

defined as log(p.) -log(r + p.) • The information numbers are given by 
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I(p,, P.i) = p, log - ' + r log :;.....'--( p, p,- + r) (~-'" + r) 
1-'i p,+r p,+r 

(3.11) 

fori= 1, 2, and the constants ai(P.) i = 1, 2, are defined by 

(3.12) 

n 

At each stage of sampling one observation is taken and the sum Tn = :E Zi 
i=l 

is obtained. A decision to stop after n < M and to accept H2 is made if 

and to accept Ht is made if 

log(1/A) + nrlog( ~) 
log(/!:9.. P.l+r) 

1'1 P.o+r 

log(B) + nrlog( ~) 
log(~ p.o+r) 

P.o P.:.~+r 

(3.13) 

(3.14) 

H both (3.13) and (3.14) are not satisfied, then continue sampling until n = M 

where 

M - the smallest integer 

(3.15) 

At n = M a decision is made as follows: 

a) Accept Ht if TM < Mp.o 

b) Accept H2 if TM > Mp,o 

c) Randomize with equal probability if TM - Mp,0 • 
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The constants A and B can be determined using relations 

A(JL) -

(3.16) 

and 

To get the approximate symmetry of the boundary lines of the 2-SPRT with 

respect to those of the SPRT it is advisable not to use the arithmetic mean of /-Ll 

and JL2 for JLo. The use of 

C*r 
JLo = where o· 

1- c• (J.LI + r )(JL2 + r) 
(3.17) 

is recommended. In this case the truncation point of 2-SPRT is given by, 

M > log(AB) log-l ( (JLo + r)2 ) 
r (JLI + r)(JL2 + r) 

(3.18) 

number of observations. 

A Monte Carlo study was conducted to test H 1 : p = 1/3 against H 2 : p = 1/2. 

The error probabilities a = 0.01, 0.05, 0.10 and (3 = 0.01, 0.05, 0.10 were used in 

the computation. Random numbers were drawn from a uniform (0,1) population 

by using the IMSL subroutine GGUW (International Mathematical and Statisti

cal Libraries, 1980). This subroutine consists of the random number generater 

package LLRAN DOM due to Learmonth and Lewis (1973) with shuffiing. An 

algorithm due to Norman and Cannon (1972) was then used to determine the ran

dom variates from negative binomial populations with parameters r = 1 and mean 

JL = 0.10{0.10)3.00. From each population 1000 samples were generated. The value 

of Po was computed as 1 - y'(1 - P1 ){1 - P2) . Both the SPRT and the 2-SPRT 

were employed to make inference about the population parameter p. Figure 1 shows 
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boundaries for both tests for a= 0.05 and {3 = 0.10. The location of the 2-SPRT 

boundaries in comparision with the SPRT boundaries changes depending on the 

values of a and {3. Table I shows the values of the type I and type II errors attained 

by both testing procedures. It also gives the average sample sizes at Ho, H1, H2. 

Figures II-IV show the operating characteristic curves simulated for the SPRT and 

the 2-SPRT. In most of the cases studied the 2-SPRT resulted in larger type I error 

probabilities but much smaller type II error probabilities than the SPRT. Figures 

5-7 show the observed average sample sizes for the two procedures. When the actual 

population proportion is between the two hypothesized values, the 2-SPRT results 

in a much smaller average sample size than the SPRT. Outside the range of two 

hypothesized values the 2-SPRT has larger expected sample size than the SPRT. 

The maximum expected sample size for 2-SPRT was found to be almost half of 

the largest possible sample size M and considerably smaller than the one for the 

SPRT. At H1 and H2 the 2-sprt was observed to take 1-6 observations more than 

the SPRT but for p1 < p < p2 the 2-SPRT was observed to save as much as 24 

observations. 

Approximate Solution For Kiefer-Weiss Problem 

According to the theorem of Lorden {1976), if a and {3 are the true error 

probabilities of 2-SPRT then for a fixed p0 , 2-SPRT minimizes the maximum 

expected sample size to within o((log a-1 ) 112 ) subject to the condition that 

0 < c1 < log(a)/log(/3) < c2 < 00 for fixed but arbitrary constants c1 and 

C2 as a, {3 ---+ 0. Therefore for any fixed p = p0 an asymptotic solution to the 

modified Kiefer-Weiss problem is obtained by application of the 2-SPRT. Logically 

from Lorden's theorem {1976) it can be said that if there exists a p that maximizes 

the expected sample size at p0 = p, then the resulting 2-SPRT will provide an 

approximate solution to the Kiefer-Weiss problem. 
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To obtain such p, it is necessary to explore the works of Schwarz (1962) and 

Lorden (1983) and study the stopping process in more detail. As one by one obser

vations are taken and the sum Tn, n = 1, 2, ... , is obtained, the path of these sums 

can be traced in then X Tn plane. At the point (0,0) the experiment is yet to begin. 

The path is traced as long as Tn is within the triangular continuation area. Tracing 

is stopped the moment Tn crosses one of the two boundaries. Suppose crossover 

occurs at the upper boundary, then for :z: > b' (log( qt)) and :z: E { 0, 1, 2, ... } , the 

ray Tn = nz intersects the upper boundary. From (3.6), 

Thus the point of intersection is given by 

n.(z) = log(l/A) [rlog(=:) + zlog(::) r 
Similarly the crossing point for the lower boundary using (3. 7) is given as 

n1(z) = log(l/B) [rlog(:) + zlog(:) r 
By the stopping rule, sampling is discontinued at the first crossing of Tn = nz over 

any one boundary giving the sample size, 

n(:z:) = min(nu(:z:) , nl(z)) . 

The point of intersection is not necessarily an integer; therefore, (l, Sl) is a termi

nating decision point if and only if l ~ n(Szfl). For large-valued observations, 

crossing is more likely to occur at the upper boundary with a small number of 

observations. In other words, nu(:z:) is a decreasing function of :z:. By a similar ar

gument, nl( :z:) is an increasing function of :z:. The maximum likelihood estimate of(} 

on Tn = nz is obtained from the previously given representation as B( :z:) = (b') -l ( :z:) 

for :z: E ( :z: l, Zu), a range of the functions b'. Thus, 

p(z) = 1- exp{(b')-1 (:z:)} . 
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Since b' ( 0( :z:)) = :z:, the information numbers are given by 

and 

The information numbers are monotonic in behavior and so is the function b' on 

the parameter space. Therefore, there exists some p in (Pl , P2) such that 

log(1/A) 
- log(1/B) · 

(3.19) 

Let p = p* be the solution of (3.19), and q* = 1 - p*. The lines nv.( :z:) and nz( :z:) 

intersect at :z: = b'(log(q*)). Using the momotonicity property of nv.(z) and nz(z) 

the common sample size is given by, 

* log(1/A) _ log(1/ B) _ ( ) 
n = I(p*,p1) - I(p*,p2) - m:xn :z: • (3.20) 

As long as the ratio log(1/A)/log(1/B) is bounded away from 0 and oo; the 

solution p* remains away from Pl and P2. 

Applying the results discussed in section 2 of Huffman (1983), p that maximizes 

the expected sample size can be generated using the solution p* from (3.20) as 

p = 1 - q* exp ( ~) . 
u* n* 

(3.21) 

where 

~( ·) denotes the cum.m.ulative distribution function of the standard norma! variate. 

n* is obtained from (3.20) and u* = ~ fp*. Now ii. is obtained from (3.21), 

replacing p* by p. Using (3.5) the maximum possible observations M(p) can be 
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obtained and I(p,pi), ai(P) i = 1, 2, u are defined accordingly. The theorem of 

Huffman {1983) can be stated for the negative binomial as follows: 

With n(A(p),B(p)) = inf{supEe(n)IF(A(p),B(p))} and ii and pas defined in 

(3.21) , if the ratio log(1/A)/log{1/B) is bounded away from 0 and oo, then as 

A(p) and B(p) ---+ 0, 

and 

n(A(p),B(~)) = 1- o({1/log(A(p))}-112 ) 

supP Ep(N) 

where ¢( ·) denotes the density function of the standard normal variate. From 

this result, it can be said that the 2-SPRT constructed with Po = p provides an 

approximate solution to the Kiefer-Weiss problem. 

Similarly when testing H 1 : p. = p.1 against H2 : p. = p.2 , p.* can be obtained 

by solving the following equation: 

Using this solution, derive {t as 

r p.* exp(u*/(u*fo )) 

JL - p.* [1- exp(u*/(u*vn ))] + r 

where u* is obtained from the following expression. 

The performance of this procedure is compared with the performance of the 

SPRT conducted under the same error probabilities in terms of the OC and ASN 

functions. Monte Carlo methods were used to evaluate the procedures. Random 

observations were generated from the appropriate negative binomial populations 
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with r = 1. The value of I" ranged from 0.10 to 3.00 with the increment of 0.10. 

Exactly 1000 samples were generated from each population. Both procedures were 

applied to test HI : PI = 1/3 against H2 : P2 = 1/2. p = p* was obtained as a 

solution to (3.19) and then p = p was computed using (3.21). po = p was used 

to conduct two simultaneous one-sided SPRT's. Computations were carried out 

for the combinations of a = 0.01, 0.05, 0.10 and {3 = 0.01, 0.05, 0.10. The average 

sample sizes and the error probabilities attained by both the tests are listed in table 

II. Figure 8 shows the continuation region and the terminating decision regions 

seperated by boundaries for SPRT and 2-SPRT computed for a = 0.05 and {3 = 0.10. 

The SPRT has parallel boundaries whereas the 2-SPRT has convergent boundaries. 

The resulting 00 curves are presented in figures 9-11. The ASN plots are shown in 

figures 12-14. 

Inspection of the graphs shows that the average sample sizes required by SPRT 

are large compared with those required by 2-SPRT when the true p is in between PI 

and P2· A more important fact is that the 2-SPRT is a closed procedure requiring 

at most M observations whereas SPRT is an open procedure which occasionally 

results in large values of n. The closed nature of 2-SPRT offers an assurance of 

termination with a definite decision which sometimes is essential. Also it can be 

noticed that in all cases, the average sample sizes are almost less than half the value 

of M. In all the simulations conducted a terminating decision was made before the 

sample size n reached M. In most of the cases, the probability of a type I error was 

observed to be larger than the specified a. The observed probability of a type II 

error was less than the specified {3. The procedure is affected more by the changes 

in a than by the changes in {3. Lowering of a resulted in larger average sample 

sizes and M values than those obtained by lowering {3 by the same amount. On an 

average, the 2-SPRTwas observed to take up to 6 more observations at HI or H 2 , 

but was observed to save up to 29 observations for p between PI and p2 • 
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Comparison of the modified Kiefer-Weiss solution and the Kiefer-Weiss solution 

shows the computational simplicity of the Modified Kiefer-Weiss solution. The p0 

for the modified Kiefer-Weiss problem can be obtained exclusively in terms of the 

specified p1 and P2 whereas the p* for the Kiefer-Weiss problem cannot be stated in 

an exclusive form. It is obtained as a solution to the equation (3.20) by iteration. 

From the Monte Carlo results the average sample sizes for the modified Kiefer-Weiss 

problem are observed to be smaller under H1 and larger under H2 than the Kiefer

Weiss problem. It is oberved that the modified Kiefer-Weiss resulted in larger error 

probabilities than the Kiefer-Weiss. The maximum possible sample sizes for the 

Kiefer-Weiss solution are observed to be more affected by the changes in a than 

the changes in {3. No such preference was observed for the modified Kiefer-Weiss 

solution. 



TABLE I 

COMPARISION OF ERROR PROBABILITIES AND AVERAGE SAMPLE 
SIZES ATTAINED BY SPRT AND 2-SPRT BASED ON 1000 SAMPLES 

(MODIFIED KIEFER-WEISS PROBLEM) Pt = 1/3, P2 = 1/2 

a f3 

0.01 0.01 

0.05 0.05 

0.10 o.1o-

0.01 0.05 

0.05 0.01 

0.01 0.10 

0.10 0.01 

0.05 0.10 

0.10 0.05 

(a) SPRT 
(b) 2-SPRT 

a f3 

0.011 0.008 
0.013 0.004 
0.045 0.043 
0.078 0.030 
0.094 0.081 
0.150 0.063 
0.011 0.041 
0.011 0.047 
0.044 0.006 
0.091 0.002 
0.011 0.077 
0.009 0.098 
0.090 0.006 
0.191 0.001 
0.048 0.077 
0.064 0.073 
0.093 0.042 
0.165 0.022 

M Nat Ht Nat H2 Nat Ho 

30.072 40.764 83.850. 
113 36.495 41.053 59.846 

19.344 24.514 39.322 
66 21.554 23.023 30.495 

13.984 17.579 23.438 
46 15.258 14.498 19.030 

20.834 38.149 58.573 I 

90 23.229 34.514 45.811 ' 
28.243 26.770 52.728 

90 33.915 23.737 38.037 
16.958 35.484 49.344 I 

80 17.395 37.073 37.092 . 
26.254 21.382 42.811 

80 30.411 16.650 26.655 
15.405 20.437 31.272 

56 16.166 21.691 24.922 
17.758 19.420 31.062 

56 19.244 16.211 22.571 

""' 00 



TABLE II 

COMPARISION OF ERROR PROBABILITIES AND AVERAGE SAMPLE 
SIZES ATTAINED BY SPRT AND 2-SPRT BASED ON 1000 SAMPLES 

(KIEFER-WEISS PROBLEM) P1 = 1/3, P2 = 1/2 

a f3 

0.01 0.01 

0.05 0.05 

0.10 0.10 

0.01 0.05 

0.05 0.01 

0.01 0.10 

0.10 0.01 

0.05 0.10 

0.10 0.05 

(a) SPRT 
(b) 2-SPRT 

& f3 

0.011 0.011 
0.011 0.010 
0.045 0.036 
0.065 0.031 
0.094 0.067 
0.118 0.064 
0.015 0.034 
0.015 0.025 
0.044 0.011 
0.048 0.012 
0.011 0.063 
0.020 0.046 
0.090 0.012 
0.081 0.011 
0.048 0.065 
0.074 0.058 
0.093 0.037 
0.101 0.037 

p M Nat H1 Nat H2 

30.072 39.219 
0.4172 112 34.464 39.219 

19.344 24.456 
0.4173 66 20.494 24.357 

13.984 17.439 
0.4173 46 13.884 15.953 

20.834 37.414 
0.4315 90 . 25.574 36.396 

28.243 26.226 
0.4031 86 29.343 30.311 

16.958 35.469 
0.4409 80 22.014 32.433 

26.254 20.477 
0.3938 74 25.777 25.261 

15.405 22.805 
0.4270 57 16.883 20.754 

17.758 18.832 
0.4076 55 17.611 19.475 

Nat Ho 

89.821 
60.999 
38.653 
30.817 
23.900 
19.016 
59.478 
45.948 
56.184 
43.028 
50.200 
40.023 
44.694 
36.255 
30.572 
24.940 
31.153 
24.579 

Cl,j 
co 
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CHAPTER IV 

A FIXED SAMPLE SIZE SELECTION PROCEDURE 

FOR NEGATIVE BINOMIAL POPULATIONS 

This chapter describes a fixed sample selection procedure for selecting the best 

negative binomial population. An approximate least favorable configuration for 

large sample sizes is obtained and compared with the exact least favorable con

figuration with respect to the probability of correct selection achieved. A normal 

approximation to the negative binomial as the distance approaches 0 is used to 

obtain approximate sample sizes. The upper and lower bounds for the smallest 

sample size required per process are derived and tabulated. An alternative form of 

the normal approximation to the probability of correct selection is given. The effect 

of change of the exponent r on the sample size is observed. The limiting behavior 

of the sample size as the number of populations under consideration increases is 

studied. 

A Generalized Formulation of Selection Problem 

A basic selection procedure consists of three parts: the sampling rule, the 

stopping rule, and the terminal decision rule. The sampling rule describes how the 

observations should be taken; the stopping rule tells when the experimenter should 

cease taking observations; and the terminal decision rule explains what decision to 

take at the end of the experiment. The terminal decision depends on the outcome 

of the experiment. Hence this rule can be written as a function of a statistic. 

For sequential sampling procedures, these three parts are distinctly recognizable. 

54 
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However, for fixed sample size procedures, the sampling and stopping rules are 

combined. 

The problem of selecting the t best populations with the largest parameter 

values using the indifference zone approach can be formulated in many different 

ways. One may be interested in selecting a subset of size 8 (8 > t) containing 

the t best populations or a subset of size 8 (8 < t) which contains any 8 of the t 

best populations. Mahamunulu {1967) has discussed different formulations and has 

given a generalized formulation of the selection problem. When selecting the t best 

populations from a set of k, the correct selection should be made with probability 

at least P*, whenever 8[/c-t] and 8[1c-t+1] are at least 5* units apart where P* 

and 5* are specified by the user. Mahamunulu has shown that in the preference 

zone {8; 5(8[1c-t+1] , 8[/c-t]) > 5*} the least favorable configuration is given by 

8[1] - 8[2] = . . . = 8[/c-t] 

8[1c-t+1] - 8[1c-t+2] = . . . = 8[/c] 

and 5(8[1c-t+1] , 8[/c-t]) = 5* 

under the assumption that the ranking statistic is an absolutely continuous random 

variable and its distributi<?n function is stochastically increasing in 8i for each value 

of n. In a fixed sample size procedure, this least favorable configuration depends 

on the sample size n. 

Consider the case t = 1. Before the experiment is conducted, the experimenter 

is required to specify the probability of correct selection P* {1/k < P* < 1) and 

the minimum difference 5* {0 < 5* < 1) between the values of 8 associated with 

the best and the second best processes. The selection procedure is supposed to 

detect the best process with probability at least P*. Here the preference zone is 

defined by 5 = 8[/c] - 8[1c-1] > 5* . The least favorable configuration {LFC) is the 

set of values of 8 such that the probability of correct selection is minimized over all 
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(} E 0 for which S > S*. 

Sobel and Huyett (1957) have developed selection procedures for binomial 

populations according to the magnitude of the probability of success on a single 

trial. The indifference zone approach was used in the derivation. For n > 10, the 

least favorable configuration was approximately given by a symmetric configuration 

P[k] = (1 + S*)/2 and P[k-1] = (1- S*)/2 , which is independent of nand depends 

only on the difference 8* = P[k] - P[k-1]. An alternative specification was presented 

for use when the experimenter has some prior knowledge of the processes and their 

probabilities of success. 

Assumptions and Experimenter's Goal 

A selection process for negative binomial populations parallelling the work of 

Sobel and Huyett (1957) on binomial populations will be developed. Assume that 

1ri, i = 1, 2, ... , k, are the k negative binomial populations under consideration. 

Each population 1ri is associated with a fixed probability of success Pi where 0 < 

Pi < 1, i = 1, 2, · · ·, k. No prior information is assumed to be available about the 

values of Pi or their order of magnitude. Let P[1] < P[2] ~ • • • ~ P[k-1] < P[k] 

be the ranked values of Pi, i = 1, 2, · · ·, k. Before the experimentation begins, the 

investigator is not aware of the association between P[ k] and 1r1, 1r2, • • • or 7rk. Let 

Xi; be the jth. independent observation from the ith. negative binomial population 

1ri, i.e. nb( z; Pi, r ), i = 1, 2, · · ·, k; j = 1, 2, · · ·, n. We assume that r is known and 

is the same for all populations. Since a population is characterized by its probability 

of success Pi, the 'best' population may be defined as the one having the largest 

probability of success, the '2nd best' as the one having the 2nd largest probability 

of success, etc. Thus the problem of selecting the 'best' population can be stated 

equivalently as the problem of selecting a population associated with P[k]· 

We have a strong preference to select the best population if that best population 
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differs by at least some minimal threshold value from all the others. The investigator 

is willing to accept any one of the t populations as the 'best' if there are t ties for 

first place, say P[k] = P[k-1] = · · · = P[k-t+1]· The simple distance measure 

6 = P[k] - P[k-1] is used as an indicator of the true difference between the best 

and the second best population. It can be assumed that the error of selecting 

the second best population as the best one is negligible for all practical purposes 

if the difference is small. The experimenter desires to determine the number of 

observations he should take from each population in order to ensure the probability 

P* (1/k < P* < 1) of making a correct selection whenever the true difference 6 

is greater than or equal to 6*. P* and 6* are specified by the user. By selecting 

a population randomly, the P* value of 1/k can be attained. Thus P* should be 

greater than 1/k for a procedure to be reasonable. Therefore, the selection problem 

can be formulated as follows. The goal is to select the population associated with 

P[k] such that 

Probability of Correct Selection > P* 

whenever 6 > 6* 

for 0 < Pi < 1 

1/ k < P* < 1 and 0 < 6* < 1. (4.1) 

Proposed Procedure 

Once the k sets of sample data values are obtained, the procedure to select the 

best negative binomial population is quite simple and straightforward. Let Xij, i = 

1, 2, · · ·, k; j = 1, 2, · · ·, n, be independent observations from the population 11"i, i = 
1,2, · · · ,k, having probability mass functions nb(ziiPi,r), respectively. Let Ti = 

n 

:E Xij be the sum of then observations from the population 11"i, i = 1, 2, · · ·, k. 
j=1 

Then T1, T2, · · · , Tk is an independent set of sufficient statistics and Ti is 
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distributed as nb(ti; Pi,nr), i = 1,2, · · · ,k. As the value of p increases, the value 

of Ti would tend to decrease. Therefore, the population for which the value of the 

statistic T is smallest will be selected as the best one. Although it is known which 

population produced the smallest T value, it is not known if the same population 

has parameter value P[k]· The possibility of error in making a decision is always 

present because the population with the largest p value P[k] does not always produce 

the smallest value among the statistics. The goal is not to estimate the value of 

P[k] but only to select the population which has the largest p value, P[k]· Then the 

selection rule is given as follows: 

Selection rule R1: 

Select the population 1ri associated with the smallest sum of n obser

vations and randomize with equal probability if there are any ties. 

The procedure is completely defined by the specification of the common sample 

size n and the selection rule Rl. Thus the problem reduces to that of obtaining 

the common sample size n so that ( 4.1) is satisfied. This being a fixed sample size 

procedure, the stopping rule and the sampling rule are combined and the combined 

rule may be stated as, 'Take a random sample of size n from each of the k populations 

of interest where n is determined such that the probability of correct selection is 

at least P* '. The terminal decision rule can be expressed as, 'select the population 

associated with the smallest sum of n observations T and randomize with equal 

probability in case of ties'. 
n 

The ranking statistic Ti - :E Xij in this selection procedure R 1 is a con
j=l 

sistent estimator of proportion p. However, according to Tong (1972), a consistent 

estimator is not necessarily consistent for the selection procedure. Therefore, we 

are interested in exploring the possibility of T being consistent for R 1 • If the selec

tion procedure depends on Xij only through (T1, T2 , ••• , T~c), then it is completely 

specified by the ranking statistic T. In that case, T is consistent for the selection 
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procedure. 

Confidence Statement 

A confidence statement about the probability of success of the selected popula

tion can be made after having followed the combined sampling rule and the stopping 

rules. This statement can be considered as an alternative form of the terminal de

cision rule. Suppose p6 is the true p-value of the population selected using the 

procedure stated in the previous section . Since P[k] is the true largest p value, it is 

known that p. < P[k]· Then the difference P[k] - p6 is likely to be at most 8* with 

probability P*. Similarly, let Pv. be the maximum true p-value over all unselected 

populations. Then it is known that P[k-1] ~ Pv. and the difference Pv. - P[k-11 

is at most 8* with probability P*. Therefore, after selecting the population with 

the smallest observed value ofT, the following confidence statement can be made 

about the correctness of the selection. With confidence P*, p6 and Pu satisfy 

P[lc] - 8* < P6 < P[k] , ~.e., 0 < P[k] - P6 < 8* 

or equivalently, 

P[lc-1] ~ Pv. ~ P[lc-1] + 8* , ~.e., 0 ~ Pv. - P[k-1] < 8* · 

The confidence statement that the interval [ p6 , p6 + 8* ] covers the true 

best p value with confidence P* is equivalent. Since the procedure is defined by the 

common sample size, the confidence statement can also be made after the determi

nation of the sample size for the specified values of 8* and P*. For given confidence 

level P*, the 8* can be interpreted as the maximum error likely to be committed in 

the selection procedure. 
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Probability of Correct Selection (PCS) 

n 
Let Ti = E Xij be the statistic based on the sample from the population 

j=1 
corresponding to parameter Pi to be used in the selection procedure. Thus obtain 

T1 , T2, ••• , Tk from populations 1r1 , 1r2, ... , 1r'k corresponding to proportions 

p1, p2, ••• , Pk • Suppose T(i) corresponds to the population associated with P[i], i = 

1, 2, ... , n. The experimenter is unaware of this association between T(i) and P[i]· 

Since we are interested in selecting the population corresponding to P[k], the correct 

selection may be regarded as selection of the population from which T(k) originated. 

In other words, if T(le) turns out to be the smallest of T(1), T(2), ... , T(k) , one 

arrives at the right decision. Thus, for a fixed value of k, the probability of correct 

selection (PCS) is given by the following expression: 

PCS = Pr(T(k) < T(i)' i = 1,2, ... ,k -1) 
k-1 

+ ~ L Pr(T(a) = T(k) and T(k) < T(i)' i = 1, 2, ... , k- 1, i f:. a) 
a=1 

1 + · · · + k Pr(T(1) = T(2) = . . . = T(k)) 

= f [Pr(z < T(i)' i = 1,2, ... ,k -1) 
z=O 

k-1 

+ ~ L Pr( T( a) = z, z < T( i), i = 1, 2, ... , k - 1, i f:. a) 
a=1 

+ · · · + ~ Pr(T(1) = · · · = T(k-1) = z)] Pr(T(k) = z) 

( 4.2) 

Under the least favorable configuration, P[k-1] = · · · = P[I] = P[k] - 6*. This 

simplifies the expression for the probability of correct selection. Since samples are 

drawn independently, 
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1 (k- 1) ( ) k-2 + 2 1 nb(z;P[k-1],nr) 1- NB(z;P[k-l],nr) 

1 (k -1) k 1 l + ··· + k k _ 1 nb- (z;p[k-1],nr) nb(z;P[k],nr) 

Suppose i denotes the number of populations tied with T(k) for the small

est value of T. Each item in the above summation is present to account for 

the possibility that i may be 0, 1, 2, ... , k - 1. Now the conditional probabil-

ity of correct selection given i populations which are tied with the best one is 

(1 + i) -1, i = 1, 2, · · · , k - 1. C'i1) gives the number of different ways in which i 

populations can be tied for the best place. Thus 

PGS 

The exact probability of correct selection under the least favorable configura

tion can be computed using ( 4.3) for given distances and sample sizes. Therefore, 

the next step is to obtain the least favorable configuration and show the existence 

of the sample size to achieve the desired probability of correct selection P* for a 

given distance 5*. 

The Monotonicity Property and the 

Least Favorable Configuration 

The experimenter would need a guarantee that this procedure will choose the 

population corresponding to P[k] (which will be referred to as the best population) 
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with a high probability P*. Since the true values of Pi are unknown, the probability 

of selecting the best population is required to be at least P*, whatever be the values 

of the Pi· Thus, we are actually interested in the configuration of the Pi for which 

the probability of correct selection as defined in ( 4.2) is a minimum, i.e., the least 

favorable configuration (LFC). 

Since the conditions stated by Mahamunulu (1967) are not satisfied by the neg

ative binomial distribution parametrized using the proportion p, we must proceed to 

obtain the least favorable configuration. The parameter p in the negative binomial 

distribution is not a pure location or scale parameter. Therefore, the procedure 

of obtaining the least favorable configuration is not straightforward. Consider the 

following most general configuration: 

P[Tc] - ~ > P[lc-1] ~ • • • > P[2] ~ P[1] • (4.4) 

However, it will be shown that the least favorable configuration can be obtained 

using the following configuration. 

P[lc] - ~ = P[k-1] = · · · = P[2] = P[t] • ( 4.5) 

For any specified P[k] = plk] and ~ = ~0 , if the selection procedure satisfies 

the specifications for configuration ( 4.5) then it also satisfies the specifications for 

configuration (4.4). To complete the proof that the least favorable configuration 

can be found using ( 4.5), it needs to be shown that for any fixed ~ (0 < ~ ~ 1 ), 

the probability of correct selection is smaller for configuation ( 4.5) than any other 

configuration given by ( 4.4) when P[k] is considered fixed and P[i], i = 1, 2, ... , k-1, 

variable. In other words, for a fixed P[k], the probability of correct selection is a 

strictly increasing function of the differences P[k]- P[i], i = 1, 2, ... , k -1. Then we 

can solve for the smallest sample size by setting the probability of correct selection 

equal to P* when P[k]-P[lc-1] = ~·. In that case, the probability of correct selection 
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will improve if the actual configuration differs from the least favorable configuration 

which is generally what occurs in practical experiments. The following three lemmas 

are required in deriving the least favorable configuration and later proving the 

monotonicity property of the selection procedure. 

Lemma 4.1: For any nonnegative integer~, positive r and any 0 (0::::; 0 < 1) not 

depending on p, the function 

H( . 0) - zL-1 (r + j - 1) r j + 0 (r + ~ - 1) r z-1 
~,p, - 1 p q 1 p q 

r- r-
i=O 

( 4.6) 

is a non-decreasing function of p over the unit interval 0 < p < 1. It is strictly 

increasing on (0,1) except for 0 = 0 and~ = 0. 

Proof: We can write equation ( 4.6) as follows: 

H(~;p,O) = NB(~ -1;p,r) + 0 nb(~;p,r) 

where nb(~;p,r) ( r + ~ -1) r z 
r -1 p q 

and NB(~;p,r) - L nb(j;p,r). 
j=O 

(4.7) 

The proof is accomplished using the derivative of the cummulative distribution 

function of the binomial distribution and the relation between the binomial and the 

negative binomial mass functions and the corresponding cummulative distribution 

functions. Differentiating ( 4. 7) with respect to p we have 

8 
Bp H( ~; p, 0) 

~ +r -1 rq- ~p 
= nb(~ -1;p,r) + 0 nb(~;p,r) 

p pq 
~ + r - 1 ~ rq - ~p 

- ( ) nb(~;p,r) + 0 nb(~;p,r) p q~+r-1 pq 

nb(~;p,r) (( ) ( - 1 - 0 ~ + r + ~ )Oq) 
pq 
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which is positive for 0 < p < 1 except when 0 = 0 and x = 0. Therefore, H( x; p, 0) 

is a non-decreasing function of p over (0,1) and is strictly increasing except when 

0 = 0 and x = 0. 

The probability of correct selection as stated in ( 4.2) is not in a suitable form for 

extensive calculations. To achieve a more reasonable form, a 'continuous negative 

binomial' distribution corresponding to the discrete negative binomial distribution 

will be defined as follows. Let X be a discrete negative binomial random variable 

taking non-negative integer values 0, 1, 2,... . Define the 'continuous negative 

binomial' random variable Y to be uniformly distributed in the interval (j- ~ , j + 
~) with the total probability on this interval equal to the probability that the 

discrete random variable X takes value j, j = 0, 1, 2, ... , I.e., 

(
r + j -1) .. 

pr q'' 
r-1 

j=0,1,2, ... 

To make use of the continuous negative binomial distribution it will be established 

that the probability of correct selection remains unchanged if k continuous negative 

binomials are substituted for the corresponding k discrete negative binomials. 

Lemma 4.2: The probability of correct selection is unaltered if each of the k dis

crete negative binomial populations (DNB) is replaced by the k continuous negative 

binomial populations (CNB), i.e., 

PCS(CNB) = PCS(DNB). 

Proof: Define the following terms for i = 1, 2, ... , k. 

Y(i) =the continuous negative binomial random variable associated with 

the population with parameters P[i] and k, 

Y(i) = the value Y(i) assumes, 

x(i) = the nearest integer to Y(i), 

X( i) = the nearest integer to Y( i) . 
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Thus X(i) is a discrete random variable with the same parameters as Y(i)· Let 

f(z;p) = (z+r-1) prq'll' z=0,1,2, .... 
r-1 

With z as the nearest integer to y, the density of the continuous binomial is 

given by f(y;p) = f(z;p). Consider k continuous negative binomial populations. 

Then the probability of correct selection for any configuration with P[k] > P[k-1] 

is given by 

PCS(CNB) 

= loo Pr(Y(Jc) < Y(i)' i = 1,2, ... ,k -1)f(Y(k)iP[kJ)dY(k) 
-1/2 

Within any interval (z(k) - ~' Z(lc) + ~) we have 

Pr(Y(k) < Y(1), Y(lc) < Y(2), · · · , Y(k) < Y(k-1)) 

= Pr(z<~c> < X(1), Z(Jc) < X(2), ... , z<~c> < x<k-1)) 
k-1 

( 4.8) 

+ L Pr(X(a) = Z(Jc)) Pr(Y(k) < Y(i)' i = 1, 2, ... k- 1IX(a) = X(Jc)) + · · · 
a=1 

+ Pr(X(1) = ... = x(Jc-1) = X(Jc)) 

Pr(Y(Ic) < Y(i)' i = 1, 2, ... k- 1IX(1) = ... = x(k-1) = X(Jc)) 

= Pr(x(lc) < x(1), Z(Jc) < x(2)l ... 'X(Jc) < x(k-1)) 
1 k-1 

+ 2 L Pr(X(a) = Z(lc)) Pr(x(k) < X(j), j = 1, 2, ... , k- 1, j =/=a) 
a=1 

1 
+ · · · + k Pr(X(1) = x(2) = · · · = X(~c-1) = z<~c>) 

( 4.9) 



which depends only on Z(k)· Substituting ( 4.9) into ( 4.8) we obtain 

PCS(CNB) 
00 

L [Pr(:z:(k) < x(1),:z:(k) < X(2), · · · , :z:(k) < x<k-1)) 
Z(Jo)=O 

k-1 

+ ~ L Pr(X(a) = Z(k)' & Z(k) <Xu>' j = 1,2, ... ,k -1, a -:f. j) + 
a=1 
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= Pr(X(k) < x<1>' x<k> < X(2), · · · , x<k> < x<k-1)) 
k-1 

+ ~ L Pr(X(a) = x(k)' x(k) <Xu>' j = 1, 2, ... 'k- 1, a -I- j) + ... 
a=1 

1 
+ k Pr(X(1) = X(2) = · · · = x(k)) 

= PCS(DNB). 

Lemma 4.3: Let F(y; p) be the cummulative distribution function of the continuous 

negative binomial with parameters r and p. For any positive real r and any y, the 

function F(y;p) is a nondecreasing function of p. In particular, for 1/2 < y < oo it 

is a strictly increasing function of p. 

Proof: Define functions :z:(y) and O(y) as follows. For any y let 

:z: = :z:(y) = the integer part of (y + ~) 

0 = O(y) = the fractional part of (y + ~) 
(4.10) 

Thus for any -1/2 <Yo < oo, we have 0 ~ :z:(y0 ) < oo and 0 < O(y0 ) ~ 1. Then 

the inverse function y is a single valued function of the pair (:z:, 0), such that 

y(:z:,O) = :z: + 0- ~ where :z: = 0, 1,2,... 0 < 0 ~ 1 

The pair (:z:, 0) = (0, 0) corresponds to the unique value y = -1/2. Hence any pair 

(:z:(yo),O(yo)) as defined in (4.10) must be different from this particular pair since 



it corresponds to y0 which is in the interior of ( -~, oo ). Thus 

F(y;p) = 0 in p for y < -1/2. 

For any y = y0 we have 

F(yo;p) 1Yo 

f(y;p)dy 
-1/2 

z(yo)-1 

:2: f(z;p) + O(yo)f(x(yo);p) · 
z=O 

- H(zo;p, Oo) 
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Thus from lemma 1, F(y;p) is a nondecreasing function in p. In particular for 

-1/2 < y < oo, F(y;p) is a strictly increasing function of p. 

Remark: The sum of independently, identically distributed negative binomial ran

dom variables also follows a negative binomial distribution with the same proportion 

p. Therefore, in the derivation of the results regarding the probability of correct 

selection which is in terms of the sum of independent and identically distributed 

negative binomial random variables, the above results are still applicable with an 

appropriate change in the second parameter of the negative binomial distribution. 

Theorem 4.1: For fixed P[k], the probability of correct selection is a strictly in

creasing function of each of the differences P[k] - P[i], i = 1, 2, ... , k - 1. 

Proof: The observations Xi;, j = 1, 2, ... , n, are independently and identically 
n 

distributed nb(z;pi,r), i = 1,2, ... ,k. Thus Ti = 2:.: Xij are distributed 
j=1 

nb( t; Pi, nr ), i = 1, 2, ... , k . Let Yi ~ i = 1, 2, ... , k, be the corresponding continu-

ous negative binomial random variables. From lemma 3 the probability of correct 

selection for the discrete negative binomial populations is the same as the one for 
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the continuous negative binomial populations. Therefore, the probability of cor

rect selection for k discrete or k continuous negative binomial populations for any 

configuration with P[k] > P[k-1] can be written as 

PCS Pr(Y(k) < Y(1)7 Y(k) < Y(2)' · · · , Y(k) < Y{k-1)) 

100 
Pr(y < Y(i)' i = 1,2,· ··k -1 IY(k) = y)Pr(Y(k) = y)dy 

-1/2 
00 k-1 [,,, g Pr(y < Y(;))Pr(Y(>) = y)dy 

00 k-1 [,,, !! [1- F(y;p!•J)] /(y;pi•J)dy. 

( 4.11) 

Using lemma 3, [1- F(y;P[i] )] is a nonincreasing function of P[~1 . Therefore, 

holding P[k] fixed, the probability of correct selection increases if one or more of 

P[i], i = 1, 2, ... , k - 1 are decreased. From this it follows that, for a fixed P[k] 

the probability of correct selection is a strictly increasing function of each of the 

differences, P[k] - P[i], i = 1, 2, ... , k - 1. 

From these results it is evident that it is sufficient to concentrate on configu-

ration ( 4.5) when searching for the least favorable configuration. The results will 

be applicable to configuration (4.4). Further we are interested in a particular case 

where 5 = 5*. It is not enough to set P(k] - P[k-l] = 5* for the least favorable 

configuration because fixed 5 = 5* only specifies the difference between the p val

ues. The location of the p values in the configuration ( 4.5) still remains unknown. 

Therefore, the probability of correct selection for configuration ( 4.5) depends on 

5*, n, k and the location of the largest p value, i.e., P(k]· 

The minimization of the probability of correct selection may be regarded as a 

two stage procedure. In the first stage, P[k] - P[k-1] is set equal to 5*. Whenever 

the true 5 is greater than or equal to 5* for a fixed P[k] we can replace each P[i], i = 

1, 2, ... , k-1, by P[k]-5*. This will result in a greater probability of correct selection 
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than the specified one. In the second stage, the probability of correct selection with 

respect to P[k] is minimized. When configuration ( 4.5) holds, the probability of 

correct selection for any fixed k, n and b = S* may be considered as a function of 

P[k], S* < P[k} < 1. After substituting terms of P[i] = P[k} - S*, i = 1, 2, ... , k - 1, 

in ( 4.11 ), we can write the probability of correct selection as 

100 ( )k-1 
PCS = 1- F(YiP[k}- S*) f(YiP[kJ) dy · 

-1/2 

(4.12) 

As witnessed in ( 4.12), the probability of correct selection is a continuous and 

bounded function over a closed interval. Hence it attains its minimum at some point 

P~] ( S*, n, k) = P[k} ( S*, n, k) in the interval ( S*, 1 ). The minimum probability of 

correct selection can be achieved by setting P[k] = P~] in ( 4.12). Thus 

100 ( )k-1 
inf(PCS) = 1- F(y;p~l- S*) f(y;p~1 ) dy 

-1/2 
( 4.13) 

The values of p~l ( S*, n, k) evaluated as a function of S* for k = 2, 3, 4, 5, and 

n = 2, 5, 10, 15, are listed in table III. Configuration ( 4.5) with b = S* and 

P[k} = p~] is the least favorable configuration and it depends on the common 

sample size n. Figures 15-18 show the probability of correct selection evaluated as 

a function of S* and n under the least favorable configuration. The required sample 

sizes per process obtained using the exact least favorable configuration are plotted 

in figures 21-24 and listed in tables IX-XII. 

The next step will be to obtain the required sample size n for which the prob

ability of correct selection will meet or exceed the specified value P*. This gives 

rise to the question of existence of a sample size required to make the probability 

of correct selection sufficiently large. 

Mahamunulu {1967) gives a sufficient condition for the existence of the re-
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quired smallest common sample size n for the stochastically increasing family of 

distributions. The negative binomial is not a stochastically increasing family of 

distributions. However, proof of the sufficient condition for the existence of the 

smallest common sample size n for the negative binomial distribution is similar to 

that of Mahamunulu. It has been included here for completeness. 

Theorem 4.2: 

sample size is 

A sufficient condition for the existence of the required smallest 

lim Var(T(1)) + Var(T(k)) 

n->oo [E(T(1)) - E(T(~c))] 2 
0 

provided the infimum of the probability of correct selection exists for some 

P[k] = Plk]' 

Proof: Let 0 = {~: ~ = (P[1J, ... ,P[kJ), P[t1 E .6. = (0,1), i = 1,2, ... ,k} 

be the parameter space. The preference zone n( S*) is a subset of the parameter 

space such that il(S*) = {~: ~ E 0, P[k] - P[k-1] 2: S*}. The generalized least 

favorable configuration ( G LFC) w(P[k], p) is the set of points in il( S*) for which 

· P[1] = P[2] = ... = P[lc-1] = p • From the results of lemma 4.2 and theorem 4.1, the 

probability of correct selection is given by expression ( 4.12). Thus for any specified 

distance S* the probability of correct selection under this generalized least favorable 

configuration is 

Thus 

PCS(GLFC) l oo [1- F(y;p)] k-1 f(YiP[kJ)dy. 
-1/2 

in£ PCS = in£ PCS(GLFC). 
{~E0(6*)} {(P[•l•P); PoP[•JE~, P[•J-p2:6*} 

From the monotonicity property (d) of the distance measure in (2.2) and theorem 

4.1, it follows that for a fixed P[k] there exists some p' such that P[k] - p' = 6*. 
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Thus 

in£ PC S( G LFC) 
{p, P[1t]-p~6•} 

100 
, k-l [1- F(y;p )] f(YiP[kJ)dy 

-1/2 

( 4.14) 

- R(P[k], n) (say) . 

Thus 

in£ PCS = in£ R(P[k], n) . 
E_EO(o•) P[~t]E..O. 

( 4.15) 

The required sample size is the smallest value of n for which ( 4.15) is greater 

than or equal to P*. If the right hand side of the ( 4.15) is a non-decreasing function 

of n then the required sample size is the smallest integer greater than or equal to 

the solution of the equation 

in£ R(P[k], n) = P* . 
P£ttJ e..o. 

Further the above equation has a solution for all P* < 1 if 

lim in£ R(P[kj,n) = 1. 
n-->oo P[~t]E..O. 

This limit will be shown to be equal to 1 in theorem 4.4. Assume that the infimum of 

R(P[k], n) occurs at P[k] = prk]' Therefore, the sufficient condition for the existence 

of the required sample size is the sufficient condition for 

Now 

lim R(p[0k] , n) = 1 . 
n-->oo 

R(plk], n) - Pr(T(Tc) < T(Tc-1), ... , T(Tc) < T(1)) 

- Pr(T(Tc) < min(T(1)' ... , To:-1)) 
lc-1 

Pr( n (T(k) < T(i))) 
i=l 

( 4.16) 
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since T(i) 's are independent random variables. This gives the following inequality. 

k-1 

1-R(p[k1,n) = 1-Pr(n(T(k) < T(i))) 
i=1 

k-1 

- Pr( U (T(k) > T(i))) 
i=1 

( 4.17) 

k-1 

< L Pr(T(k) 2': T(i)) 
i=1 

Thus from ( 4.16) and ( 4.17) a sufficient condition for the required sample size is 

Define 

and let 

z T(1) - T(k) - E(T(1) - T(k)) 

y'Var(T(1) - T(k)) 

Thus using Chebychev's inequality obtain 

Pr(T(k) > ·T(1)) - Pr(T(1) - T(k) < 0) 

Pr(Z < -b) 

< Pr(IZI > b) 
1 

< b2 . 

Hence the sufficient condition for the existence of the required sample size is 

t.e. 
lim Var(T(1)) + Var(T(k)) 

n-+oo [ E(T(1)) - E(T(k))] 2 
0. 
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Let 
V ar(T(l)) + V ar(T(k)) 

y = 2 • 

[E(T(1)) - E(T(~c))] 
( 4.18) 

If limn-+oo Y = 0, then the smallest sample size exists for which the probabil-

ity of correct selection is at least equal to the specified value. For our case, 

Xij, i = 1, 2, ... , k, j = 1, 2, ... , n, are independently and identically distributed 

nb(:z:;P[ij,r) random varibles. T(i) also follows the negative binomial distribution 

with parameters P[i] and nr. Substituting E(T(i)) = nrq[,1 P~]1 and Var(T(i)) = 

nrq[i]P~]2 in ( 4.17) we obtain 

lim Pr1] + Pr~cJ - P[I]P[k] (P[l] + P[lc]) 
n-+oo nr8*2 

lim Y 
n-+oo 

1 
lim - (constant) 

n-+oo n 

-0. 

Thus a sufficient condition for the existence of the smallest sample size is satisfied 

when sampling from negative binomial populations. 

The effect of the parameter r on the number of units required per process is 

also studied. For fixed P* = 0.95, sample sizes per process to meet the specification 

(P* = 0.95, 6*) are obtained for r = 1, 2, 3 and listed in table XVII. It can be noticed 

that the sample sizes decrease as r is increased keeping k, P* and 6* constant. When 

r is increased from r = 1 to r = 2, .·the sample sizes are reduced by almost fifty 

percent. Figure 39 shows the plot of ln(n) versus differenceS* for r = 1,2,3, when 

4 populations are of interest and P* is set at 0.95. 

Large Sample Approximation 

With a fixed number of populations under consideration, the least favorable 

configuration is a function of sample size n and difference S. For any 8 and k, 

the least favorable configuration approaches some approximate configuration as the 

sample size increases. We are interested in obtaining a limiting least favorable 
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configuration that is independent of the sample size and can be obtained through 

the distance measure alone. vskip 10pt 

Theorem 4.3: Under the least favorable configuration, for large n, the probability 

of correct selection is approximately minimized at 

Proof: For P[k] > P[k-1] , the probability of correct selection defined in ( 4.2) 

satisfies the following inequality: 

Pr(T(k) <T(i)' i=1,2, ... ,k-1) < PCS < Pr(T(k) ~T(i)' i=1,2, ... ,k-1). 

(4.19) 

Since samples are drawn independently, the T(i) 's , i = 1, 2, ... , k, are also inde

pendent of each other. Let X(i)' i = 1, 2, ... , k, be the corresponding sample means. 

For large n, X(k) - X(i), i = 1, 2, ... , k- 1, will follow a normal distribution with 

means r(q[k]P~j- q[i]P~]1 ) and variances rn- 1 (q[k]P~j + q[~1p~n, i = 1, 2, ... , k -1, 

respectively. Thus for large n, the probability of correct selection under the config

uration (4.5) can be written as 

PCS ::::::: Pr(X(k) < X(i), i = 1,2, ... , k -1) 

where 

X(k) - X(i) - r(q[k]P~j - q[i]P~]1 ) 

.Jrn-1 (q[k]P~j + q[~1P[i]2) 
f'>J N(O, 1) 
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i = 1, 2, ... , k - 1. For the configuration ( 4.5) with 8 = 8*, define function Q(p) as 

follows: 

Q(p) Plil + Plk] - P[i]P[k] (P[i] + P[k]) 

- -2plk] + (2 + 38*)plk] + 8*(8*- 2)P[k] + 8* 2 • 

( 4.21) 

Obtaining P~] that minimizes the probability of correct selection in ( 4.20) reduces 

to obtaining p~l that maximizes Q(p) in ( 4.21 ). Thus differentiating Q(p) with 

respect to P[k] and equating to 0, we obtain 

P[le] = ~ (2 + 38* ± V4 + 38* 2 ) • 

This P[k] will maximize Q(p) provided the second derivative of Q(p) with respect to 

P[k] is negative. 

~QW -' --'-2 -'- = 2(2 + 38* - 6p[k]) < 0 if v 4 + 38*2 > 0. 
dp[le] 

Since 0 < P~] < 1, P~] = (2 + 38* + .J 4 + 38* 2 )/6 for 0 < 8* < 2- -J2 nnmnnzes 

the probability of correct selection. 

From theorem 4.3 and setting a= (2 + .J 4 + 38*2 )/6, we can write 

8* 8* 
P[k] =a+ 2 and P[i] =a- 2 i = 1, 2, ... , k- 1. ( 4.22) 

( 4.22) gives the approximate least favorable configuration which is independent of 

the sample size for large n and is a function of the specified difference 8* alone. 

Using this approximate least favorable configuration, the approximate infimum of 

the probability of correct selection may be given by 

inf(PGS) ~ Pr(zi > -Vffi 8* i = 1,2, ... ,k -1) 
V2(a2 + 8* 2 /4) - 2a(a2 - 8* 2 /4) 

( 4.23) 
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where Zi "' N(0,1). Note that Zi, i = 1,2, ... ,k -1, are correlated. 

Theorem 4.4: 

lim inf(PCS) - 1 . 
n-+oo 

Proof: For large n, an approximate configuration given by theorem 4.3 is-a least 

favorable configuration. Using this approximate least favorable configuration the 

infimum of the probability of correct selection obtained is given by ( 4.23). From 

( 4.23), the infimum of the probability of correct selection can be written in terms 

of the cumulative distribution function of the standard normal variate as follows: 

inf(PCS) ~ Pr(Zi<C(n), i=1,2, ... ,k-1) 

where 

[ ( S*2) ( S*2)]-112 
C(n) = fo S* 2 a2 + 4 - 2a a2 - 4 

Noticing C(n) is an increasing function of the sample size n for specified S* and 

taking the limit as n tends to infinity, we obtain 

inf(PG S) ----+ 1 as n --+ oo. 

Thus asymptotically the probability of correct selection for the procedure R 1 is 1. 

This implies, the probability that the smallest T value comes from the population 

with the largest proportion P[lc] tends to 1 as n tends to oo. 

The values of P~] ( S*) can be computed as a function of S* for desired distance 

0 < S* < 2- .J2 using (4.22). For large n, the approximate infimum of the prob

ability of correct selection may be obtained by substituting the approximate least 

favorable configuration given by ( 4.22) into ( 4.13). The probability of correct se

lection computed for r = 1, k = 2(1 )5 and n = 2, 5(5)20, using the exact and the 

approximate least favorable configuration is listed in tables IV-VIII. It is observed 
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that the probability of correct selection computed using the approximate least favor

able configuration approaches the probability of correct selection computed using 

the exact least favorable configuration as the sample size becomes large. Thus, for 

large n, the use of the approximate least favorable configuration is recommended 

to save extensive calculations needed for the derivation of the exact least favorable 

configuration. This approximation works well for computing the probability of cor

rect selection for n 2:: 5 with k = 3. The maximum error incurred is quite negligible 

for all practical purposes. The smallest sample size needed for good approximation 

increases as the number of populations to choose from increases. The error incurred 

in the probability of correct selection due to the use of the approximate least favor-

able configuration instead of the exact least favorable configuration was computed 

and plotted. Figure 19 shows the error incurred for k = 3 and n = 1, 2, 5, 10, and 

figure 20 _shows the error incurred for k = 5 and n = 2, 5, 10, 15, for any value of S 

between 0 and 2- J2. It is obvious from these figures that the error incurred tends 

to 0 as n becomes large. 

Normal Approximation and Bounds for 

the Sample Size 

For large values of n, the probability of correct selection can be computed using 

the approximate least favorable configuration given by ( 4.22). Here, the negative 

binomial can be approximated using the normal distribution. Consider the standard 

normal variate as used previously 

i = 1,2, ... ,k- 1 

where 

E(Zi)- 0 and Var(Zi)- 1, i=1,2, ... ,k-1 
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and 

2 2 

( q[k] ) P[k]P[i] Cov(Zi,Zj) = E(ZiZj) = -2- -2,_-.,...2 -~~c_( ____ ) 
P[k] P[k] + P[i] - P[k]P[i] P[k] + P[i] 

~,) 1, 2, ... , k - 1, i =f. j. Note that the covariances are independent of the 

sample size. Under the least favorable configuration, with P[k] = a+ h* /2 and 

P[i] = a - h* /2, i = 1 , 2 , . . . ' k - 1' 

(1 - a- h* /2) (a- h* /2)2 

Obviously, large samples are needed as the difference becomes small. Hence 

. a2 (1 -a) 
lim Cov(Zi, Zj) = 2 2 ( 1 ) 6•-o a -a 

1 
2• 

Under the configuration ( 4.5) when h = h*, as n --+ oo, the distribution of 

zi, i = 1 '2, ... 'k -1, approaches the joint multivariate normal distribution with 

mean 0, variance 1 and correlation coefficient p that tends to 1/2 as h* tends to 

0. Therefore the selection procedure, described by Bechhofer (1954), which is based 

on the means of the normal populations with known variances can be employed to 

select the best population. The constants C ( P*, k) necessary to select the t largest 

(smallest) population means from k populations under consideration for specified 

probability of correct selection P* are tabulated. Using constants for t = 1, solve 

the equation 

Pr ( Zi > J, i = 1, 2, ... , k - 1) = P* ( 4.24) 

for C. Under the approximate least favorable configuration, comparing ( 4.20) with 

(4.24) and solving for the value of n, we obtain 

(4.25) 

=> n 
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Equation ( 4.25) gives the large sample normal approximation of the sample 

size. In practice, the smallest integer greater than or equal to n should be the 

sample size. Large sample sizes are obtained as the difference becomes smaller, 

i.e., as h* --+ 0 . The large sample normal approximations for sample sizes ob-

tained using ( 4.25) are listed in table (IX-XII) for r = 1, k = 2, 3, 4, 5, P* = 

0. 75, 0.80, 0.90, 0.95, 0.98, 0.99, h* = 0.05(0.05)0.55, along with the smallest integer 

required to meet the specifications (P*, h*). The plots of the sample sizes required 

are shown in figures 25-28, which are convenient for interpolating value of n for val-

ues of h* other than the listed ones. Comparision of the two shows that the normal 

approximation overestimates the sample size. The approximation works better as 

h* --+ 0. The difference between the smallest integer sample size and the approxima-

tion widens as the desired probability of correct selection increases. The number of 

populations k to choose from also has considerable impact on the number of units 

required per process. The sample size is observed to increase with k. 

Further simplification of formula (4.25) is achieved by utilization of the fact 

that as h* --+ 0, a --+ 2/3 . Thus, the approximate sample size is given by, 

(4.26) 

Figures 33-36 show the difference in sample sizes obtained using ( 4.26) and those 

using ( 4.25). Although the difference increases as k increases, it is observed that 

the difference is negligible for practical purposes. Also h* is usually small when n 

is large. Thus n may be approximated as follows: 

( 4.27) 

Values obtained using ( 4.26) and ( 4.27) are presented in tables (XIII-XVI) for r = 

1, k = 2, 3, 4, 5, P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99, and h* = 0.05(0.05)0.55 . A 

sample size obtained using ( 4.26) may be viewed as an upper bound for the smallest 
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integer required to meet the specification ( P*, b*) while that obtained using ( 4.27) 

serves as a lower bound for the same. These results are not obtained using any 

probability statements. Yet for all the cases investigated, ( 4.26) and ( 4.27) give 

reasonably close upper and lower bounds for the number of units required per 

process to meet the specification (P*, b*). Therefore, the combined result may be 

stated as 

[~;~: (1- a)] < n < [~2 (27~*2 + 152) l ( 4.28) 

where [:z:] denotes the smallest integer greater than or equal to :z:. It is observed from 

tables XIII-XVI that the error incurred in estimating the sample size is small. The 

bounds on the sample sizes were computed for fixed P* = 0.95 and k = 3, 5, r = 
1, 2, 3. Table XVIII shows these bounds and the exact sample sizes per process. The 

sample sizes are observed to increase with k and decrease with r. As r increases 

the bounds get closer to the exact smallest sample size required per process. 

Alternate Form of the Normal Approximation 

to the Probability of Correct Selection 

The normal approximation to the probability of correct selection is given by 

( 4.20). This probability of correct selection can be reduced to a form suitable for 

the numerical calculations. Salzar, Zucker, and Capuano (1952) present a table of 

the zeros and weight factors of the Hermite polynomials useful in the calculation 

of integrals over the interval ( -oo, oo) when the integrand is either the product of 

e:c 2 and a polynomial or may be closely approximated by e:c 2 times a polynomial. 

The probability of correct selection can be written in a form that can use these 

tabulated values in computation. Let W(i)' i = 1, 2, ... , k, be the standardized 
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random variables 

Then from ( 4.20) the probability of correct selection is written as 

PCS 

_ f: [IT Pr(X(<) > f(&))l Pr(X<•l = Z(•Jl 
:t(1o)=O 1=1 

_ "" [/crr-1 p (TJrT > P[·1 IJ[Ic] fo(P[Ic] - P[i])) l - LJ r rv(i) W(Jc)- - - Pr(W(k) = W(k)) . 
W(lo) i=1 P[lc] q[i] P[Jc]ytq[if 

( 4.29) 

As X(Jc) takes values in the range [0, oo ), the corresponding W(k) takes values 

in the interval ( -oo, oo ). Thus as n tends to oo, the summation in the expression 

( 4.29) may be replaced by the integration from -oo to oo. This replacement gives 

the probability of correct selection as follows: 

PC S "' 100 [IT { 1 - «P (w P[i] [i;J_- fo(P[lc] - P[t1)) }] rp( w )dw ( 4.30) 
-oo i=l P[lc] v q[i] P[k] ytq[if 

where </>( ·) is the standard normal density and «P( ·) is the cumulative distribution 

function of the standard normal variate. For large n, the approximate configuration 

gives the least favorable configuration. Thus we can use the approximate configu-

ration given by ( 4.22) to compute the probability of correct selection. Let us define 



two constants as follows: 

a- S*/2 

a+ S*/2 

1- a- S*/2 

1- a+ S*/2 

02 = (P[k] - P[i]) = .JTS* 
P[k]~ (a+ S* /2)y'1- a+ S* /2 
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( 4.31) 

For smaller differences, detection of the best population becomes difficult and as 

a result n becomes large. 01 is bounded between 0 and 1. Further, for the least 

favorable configuration, 0 1 ---+ 1 as S* ---+ 0. Thus as n ---+ oo for the least favorable 

configuration ( 4.30) becomes 

( 4.32) 

This integral can be evaluated using the method described by Salzer, Zucker, and 

Capuano (1952) and the tables of zeroes and weight factors provided by the same. 

The minimum sample size required to meet the specifications is a function of 

the specified difference and the location of P[lc] for a fixed number of populations. As 

the number k of populations increases, the sample size required to make a correct 

decision also increases. In fact, the sample size required to meet specifications in 

( 4.1) is shown to be proportional to the l n( k) for the large values of k. To see this, 

let n = n( k) be the unique solution obtained by equating the probability of correct 

selection with the specified value P*, i.e., 

where 01 and 02 are constants given by (4.31) for specified S* and~(·) and¢(·) are 

the cumulative distribution function and the density function of standard normal 

variate, respectively. For specified (P*, S*), 0 1 and 0 2 are known constants such 

that 0 < 01 < 1 and 02 > 0 for all 0 < S* < 2 - .J2. Thus using the symmetry of 

the normal distribution, employing the approximate expansion of the remainder of 
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the cummulative distribution function of the standard normal given by Abramowitz, 

and Stegun (1965), and following the proof given in appendix V of Sobel and Huyett 

(1957) for the binomial populations, we obtain 

n ~ Cln(k) 

where Cis a proportionality constant. 

Summary 

The least favorable configuration for selecting the best negative binomial pop

ulation depends on the sample size nand the specified distance c5*as well as on the 

location of the parameter p. Extensive computer calculations are required for com

putation of the exact least favorable configuration. The approximate least favorable 

configuration obtained for large samples is simple to compute and gives good ap

proximation to the infimum of the probability of correct selection. In practice, for 

large samples, use of the approximate least favorable configuration is recommended. 

Fork = 3, n > 5 was found to be sufficiently large for the approximate least favor

able configuration to be used in practice. If c5* is not less than 0.10 then for k = 5 

sample size greater than or equal to 10 gives good approximation. Approximate 

sample sizes obtained using the normal approximation to the negative binomial as 

c5* --+ 0 tend to overestimate the number of units required per process. Upper and 

lower bounds for the sample sizes are easy to evaluate and give a good approxima

tion to the required sample size. The normal approximation to the probability of 

correct selection is presented in an alternate form which can be evaluated using the 

zeroes and the weight factors of Hermite polynomials. The smallest sample sizes 

decrease as the exponent r of the negative binomial populations increases. The 

tables showing the smallest sample sizes required to meet the specifications and the 

probability of correct selection under the least favorable configuration for various 
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values of S* and n are listed. If for some experiment, n is fixed and 8 is specified, 

then the probability of correct selection can be obtained such that 8 2::: 8* by revers

ing the tables. The values not listed in the tables can be obtained by interpolation. 

This interpolation can be carried out easily using the graphs of the probability of 

correct selection for given n and 8. 



• n 

2 

5 

10 

TABLE III 

P~J AS A FUNCTION OF 5* FOR r = 1, k = 2(1)5 
5* = 0.05(0.05)0.55 AND n = 2, 5(5)20 

5* k=2 k=3 k=4 k=5 

0.05 0.795 0.995 0.920 0.900 
0.10 0.820 0.995 0.970 0.950 
0.15 0.845 0.995 0.995 0.995 
0.20 0.865 0.995 0.995 0.995 
0.25 0.890 0.995 0.995 0.995 
0.30 0.915 0.995 0.995 0.995 
0.35 0.935 0.995 0.995 0.995 
0.40 0.955 0.995 0.995 0.995 
0.45 0.980 0.995 0.995 0.995 
0.50 0.995 0.995 0.995 0.995 
0.55 0.995 0.995 0.995 0.995 
0.05 0.710 0.725 0.740 0.985 
0.10 0.735 0.750 0.745 0.995 
0.15 0.760 0.770 0.760 0.995 
0.20 0.785 0.790 0.785 0.990 
0.25 0.805 0.810 0.840 0.995 
0.30 0.825 0.830 0.850 0.865 
0.35 0.845 0.850 0.865 0.875 
0.40 0.870 0.870 0.840 0.885 
0.45 0.885 0.890 0.995 0.900 
0.50 0.905 0.905 0.995 0.915 
0.55 0.925 0.925 0.995 0.935 
0.05 0.700 0.705 0.995 0.995 
0.10 0.725 0.730 0.750 0.770 
0.15 0.745 0.750 0.765 0.770 
0.20 0.770 0.775 0.780 0.785 
0.25 0.790 0.795 0.800 0.800 
0.30 0.815 0.815 0.820 0.820 
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TABLE III (Continued) 

n 6* k=2 k=3 k=4 k=5 

10 0.35 0.835 0.835 0.835 0.840 
0.40 0.855 0.855 0.855 0.855 
0.45 0.875 0.875 0.875 0.875 
0.50 0.980 0.890 0.890 0.895 
0.55 0.910 0.910 0.910 0.910 

15 0.05 0.695 0.700 0.725 0.995 
0.10 0.720 0.725 0.735 0.740 
0.15 0.745 0.745 0.750 0.755 
0.20 0.765 0.770 0.770 0.775 
0.25 0.790 0.790 0.790 0.795 
0.30 0.810 0.810 0.810 0.815 
0.35 0.830 0.830 0.830 0.835 
0.40 0.850 0.850 0.850 0.850 
0.45 0.870 0.870 0.870 0.875 
0.50 0.890 0.890 0.890 0.890 
0.55 0.910 0.910 0.910 0.910 

20 0.05 0.695 0.700 0.710 0.725 
0.10 0.720 0.720 0.730 0.730 
0.15 0.745 0.745 0.750 0.750 
0.20 0.765 0.765 0.770 0.770 
0.25 0.790 0.790 0.790 0.790 
0.30 0.810 0.810 0.810 0.810 
0.35 0.830 0.830 0.830 0.830 
0.40 0.850 0.850 0.850 0.850 
0.45 0.870 0.870 0.870 0.870 
0.50 0.880 0.880 0.880 0.890 
0.55 0.915 0.915 0.910 0.915 



6* 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

TABLE IV 

PROBABILITY OF CORRECT SELECTION USING 
EXACT AND APPROXIMATE LFC FOR n = 2 

k = 2(1)5, 6* = 0.05(0.05)0.55 

k=2 k=3 k=4 k=5 

0.544683 0.369129 0.200437 0.104488 
0.545606 0.375018 0.248139 0.166137 
0.588865 0.408891 0.222511 0.116353 
0.590635 0.418830 0.287060 0.199414 
0.632063 0.451716 0.248141 0.128979 
0.634532 0.464283 0.329273 0.236719 
0.673815 0.496747 0.287538 0.154228 
0.676789 0.510813 0.374432 0.277937 
0.713712 0.543175 0.338233 0.197238 
0.716961 0.557797 0.422070 0.322829 
0.751396 0.590240 0.396651 0.254256 
0.754679 0.604583 0.471606 0.371020 
0.786559 0.637226 0.459782 0.321550 
0.789661 0.650511 0.522360 0.421993 
0.818980 0.683467 0.525115 0.395580 
0.821711 0.694948 0.573574 0.475093 
0.848489 0.728339 0.590565 0.473118 
0.850724 0.737313 0.624446 0.529541 
0.875015 0.771265 0.654420 0.551305 
0.876672 0.777102 0.674165 0.584460 
0.898888 0.811716 0.715282 0.627692 
0.899600 0.813904 0.721948 0.638910 

(a) Using exact LFC 
(b). Using approximate LFC 
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6* 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

TABLE V 

PROBABILITY OF CORRECT SELECTION USING 
EXACT AND APPROXIMATE LFC FOR n = 5 

k = 2(1)5, 6* = 0.05(0.05)0.55 

k=2 k=3 k=4 k=5 

0.577801 0.409861 0.231429 0.120753 
0.577895 0.410132 0.309149 0.245943 
0.652817 0.491014 0.319807 0.182038 
0.652966 0.491466 0.386985 0.317902 
0.722540 0.573656 0.439291 0.301215 
0.722685 0.574142 0.471064 0.399072 
0.784981 0.654328 0.554678 0.438209 
0.785067 0.654699 0.557974 0.486687 
0.838800 0.729664 0.642043 0.568941 
0.838825 0.729840 0.643755 0.576884 
0.883415 0.796817 0.723789 0.663241 
0.883415 0.796835 0.724418 0.665284 
0.918917 0.853813 0.796446 0.746990 
0.918981 0.853838 0.796502 0.747449 
0.945976 0.899748 0.857458 0.819629 
0.946217 0.900026 0.857549 0.819632 
0.965676 0.934794 0.905666 0.878763 
0.966196 0.935574 0.906383 0.879325 
0.979328 0.960013 0.941358 0.923670 
0.980182 0.961463 0.943113 0.925559 
0.988288 0.977038 0.966002 0.955315 
0.989468 0.979201 0.968940 0.958868 

(a) Using exact LFC 
(b) Using approximate LFC 
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s• 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

TABLE VI 

PROBABILITY OF CORRECT SELECTION USING 
EXACT AND APPROXIMATE LFC FOR n = 10 

k = 2(1)5, s• = o.o5(o.o5)0.55 

k=2 k=3 k=4 k=5 

0.611926 0.448099 0.316645 0.181453 
0.611949 0.448168 0.351743 0.289953 
0.715419 0.568570 0.471993 0.404741 
0.715441 0.568656 0.472737 0.406434 
0.803849 0.684090 0.597712 0.533297 
0.803851 0.684135 0.598087 0.534160 
0.873575 0.784977 0.715571 0.660331 
0.873577 0.784974 0.715672 0.660626 
0.924227 0.864939 0.815116 0.773057 
0.924262 0.864970 0.815115 0.773062 
0.958016 0.922267 0.890458 0.862196 
0.958134 0.922433 0.890588 0.862296 
0.978644 0.959298 0.941310 0.924660 
0.978858 0.959657 0.941732 0.925118 
0.990109 0.980758 0.971785 0.963221 
0.990390 0.981275 0.972485 0.964071 
0.995871 0.991859 0.987931 0.984099 
0.996166 0.992427 0.988747 0.985145 
0.998466 0.996952 0.995453 0.993971 
0.998721 0.997455 0.996194 0.994944 
0.999501 0.999005 0.998511 0.998019 
0.999685 0.999370 0.999056 0.998742 

(a) Using exact LFC 
(b) Using approximate LFC 
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~· 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

TABLE VII 

PROBABILITY OF CORRECT SELECTION USING 
EXACT AND APPROXIMATE LFC FOR n = 15 

k = 2(1)5, ~· = 0.05(0.05)0.55 

k=2 k=3 k=4 k=5 

0.637149 0.477153 0.381766 0.290025 
0.637158 0.477189 0.382220 0.320170 
0.758795 0.625220 0.535220 0.470791 
0.758802 0.625252 0.535461 0.471300 
0.854407 0.757734 0.685208 0.628889 
0.854407 0.757736 0.685279 0.629079 
0.920871 0.860433 0.810826 0.769437 
0.920884 0.860441 0.810821 0.769447 
0.961601 0.929086 0.900434 0.875045 
0.961659 0.929167 0.900497 0.875095 
0.983515 0.968522 0.954599 0.941669 
0.983617 0.968695 0.954807 0.941903 
0.993805 0.987905 0.982230 0.976781 
0.993923 0.988126 0.982534 0.977159 
0.997986 0.996017 0.994082 0.992185 
0.998089 0.996216 0.994372 0.992560 
0.999442 0.998890 0.998341 0.997796 
0.999511 0.999025 0.998541 0.998060 
0.999871 0.999742 0.999614 0.999486 
0.999906 0.999812 0.999718 0.999624 
0.999976 0.999951 0.999927 0.999903 
0.999989 0.999978 0.999967 0.999956 

(a) Using exact LFC 
(b) Using approximate LFC 
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5* 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

TABLE VIII 

PROBABILITY OF CORRECT SELECTION USING 
EXACT AND APPROXIMATE LFC FOR n = 20 

k = 2(1)5, 5* = 0.05(0.05)0.55 

k=2 k=3 k=4 k=5 

0.657848 0.501573 0.407445 0.344870 
0.657854 0.501595 0.407670 0.345340 
0.792193 0.670646 0.586588 0.524881 
0.792195 0.670658 0.586690 0.525105 
0.889388 0.811269 0.750599 0.701944 
0.889386 0.811269 0.750606 0.701993 
0.948993 0.907679 0.872487 0.842100 
0.949015 0.907702 0.872497 0.842104 
0.979860 0.961941 0.945605 0.930661 
0.979909 0.962022 0.945699 0.930760 
0.993271 0.986922 0.980867 0.975094 
0.993334 0.987039 0.981026 0.975288 
0.998125 0.996296 0.994504 0.992752 
0.998177 0.996397 0.994652 0.992942 
0.999571 0.999146 0.998724 0.998305 
0.999602 0.999207 0.998814 0.998425 
0.999921 0.999842 0.999763 0.999685 
0.999934 0.999869 0.999803 0.999738 
0.999988 0.999977 0.999966 0.999954 
0.999992 0.999985 0.999978 0.999970 
0.999998 0.999997 0.999996 0.999995 
0.999999 0.999999 0.999999 0.999998 

(a) Using exact LFC 
(b) Using approximate LFC 
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TABLE IX 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, 8*), 

FOR k = 2 AND r = 1 

P* 0.99 0.98 
8* 
0.55 6.00 5.00 

9.86 7.69 
0.50 7.00 6.00 

10.97 8.55 
0.45 8.00 7.00 

12.46 9.71 
0.40 10.00 8.00 

14.56 11.35 
0.35 14.00 11.00 

17.62 13.73 
0.30 18.00 14.00 

22.34 17.41 
0.25 26.00 21.00 

30.18 23.52 
0.20 41.00 32.00 

44.60 34.77 
0.15 72.00 56.00 

75.78 59.06 
0.10 161.00 126.00 

164.87 128.50 
0.05 642.00 500.00 

645.94 503.43 

(a) Smallest integer required 
(b) Normal approximation 

0.95 0.90 

3.00 3.00 
4.90 2.98 
4.00 3.00 
5.48 3.33 
5.00 3.00 
6.23 3.78· 
6.00 4.00 
7.28 4.42 
7.00 5.00 
8.81 5.35 

10.00 6.00 
11.67 6.78 
14.00 9.00 
15.09 9.16 
21.00 13.00 
22.30 13.54 
36.00 22.00 
37.89 22.99 
81.00 49.00 
82.42 50.03 

321.00 195.00 
322.92 196.02 

0.80 0.75 

2.00 1.00 
1.28 0.82 
2.00 1.00 
1.44 0.92 
2.00 2.00 
1.63 1.04 
2.00 2.00 
1.91 1.22 
3.00 2.00 
2.30 1.48 
3.00 2.00 
2.92 1.88 
4.00 3.00 
3.95 2.54 
6.00 4.00 
5.84 3.75 

10.00 7.00 
9.92 6.37 

22.00 14.00 
21.58 13.86 
84.00 54.00 
84.54 54.30 
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P* 
5* 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

TABLE X 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*,c5*), 

FORk = 3 AND r = 1 

0.99 0.98 0.95 0.90 0.80 

7.00 6.00 4.00 3.00 2.00 
11.92 9.64 6.69 4.43 2.46 
8.00 7.00 5.00 4.00 3.00 

13.26 10.72 7.44 5.04 2.77 
10.00 8.00 6.00 5.00 3.00 
15.07 12.59 8.46 5.73 3.14 
12.00 10.00 8.00 .5.00 4.00 
17.60 14.24 9.88 6.69 3.67 
16.00 13.00 10.00 7.00 4.00 
21.30 17.23 11.96 8.10 4.44 
22.00 18.00 13.00 9.00 6.00 
27.01 21.85 15.16 10.27 5.63 
32.00 26.00 18.00 13.00 8.00 
36.48 29.51 20.48 13.87 7.61 
49.00 40.00 28.00 20.00 11.00 
53.92 43.62 30.27 20.50 11.25 
87.00 71.00 49.00 34.00 19.00 
91.61 74.10 51.42 34.82 19.12 

199.00 158.00 110.00 75.00 42.00 
199.30 161.21 111.87 75.76 41.59 

0.75 

2.00 
1.87 
2.00 
2.08 
3.00 
2.37 
3.00 
2.77 
4.00 
3.35 
5.00 
4.24 
6.00 
5.73 
9.00 
8.47 

15.00 
14.39 
32.00 
31.31 

776.00 628.00 436.00 295.00 162.00 122.00 
780.85 631.61 438.30 296.82 162.94 122.68 

(a) Smallest integer required 
(b) Normal approximation 
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TABLE XI 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, S*), 

FOR k = 4 AND r = 1 

P* 0.99 0.98 
S* 

0.55 7.00 6.00 
13.13 10.80 

0.50 9.00 8.00 
14.61 12.01 

0.45 11.00 9.00 
16.60 13.65 

0.40 14.00 12.00 
19.39 15.95 

0.35 18.00 15.00 
23.47 19.30 

0.30 24.00 20.00 
29.76 24.47 

0.25 35.00 29.00 
40.20 33.06 

0.20 54.00 45.00 
59.41 48.86 

0.15 96.00 79.00 
100.94 83.01 

0.10 219.00 177.00 
219.60 180.59 

0.05 855.00 703.00 
860.36 707.54 

(a) Smallest integer required 
(b) Normal approximation 

0.95 0.90 

5.00 4.00 
7.75 5.48 
6.00 5.00 
8.62 6.09 
7.00 5.00 
9.79 6.92 
9.00 7.00 

11.44 8.08 
11.00 8.00 
13.84 9.78 
15.00 11.00 
17.55 12.41 
21.00 15.00 
23.71 16.76 
33.00 24.00 
35.05 24.77 
57.00 41.00 
59.54 42.08 

128.00 91.00 
129.53 91.55 
504.00 357.00 
507.50 358.67 

0.80 0.75 

3.00 3.00 
3.27 2.58 
3.00 3.00 
3.63 2.87 
4.00 3.00 
4.13 3.26 
5.00 4.00 
4.82 3.81 
6.00 5.00 
5.83 4.61 
7.00 6.00 
7.40 5.84 

10.00 8.00 
9.99 7.89 

15.00 12.00 
14.77 11.66 
25.00 20.00 
25.09 19.81 
55.00 44.00 
54.59 43.10 

213.00 168.00 
213.89 168.87 
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TABLE XII 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, 5*), 

FOR k = 5 AND r = 1 

p• 0.99 0.98 
5* 

0.55 8.00 7.00 
13.99 11.62 

0.50 9.00 8.00 
15.56 12.93 

0.45 12.00 10.00 
17.69 14.69 

0.40 15.00 12.00 
20.66 17.16 

0.35 19.00 16.00 
25.01 20.77 

0.30 26.00 22.00 
31.71 26.34 

0.25 37.00 31.00 
42.83 35.58 

0.20 58.00 48.00 
63.31 52.59 

0.15 102.00 85.00 
107.56 89.34 

0.10 233.00 195.00 
234.01 194.37 

0.05 911.00 757.00 
916.82 761.50 

(a) Smallest integer required 
(b) Normal approximation 

0.95 0.90 

5.00 4.00 
8.50 6.16 
6.00 5.00 
9.46 6.85 
8.00 6.00 

10.75 7.78 
10.00 7.00 
12.56 9.09 
12.00 9.00 
15.20 11.00 
16.00 12.00 
19.28 13.94 
23.00 17.00 
26.02 18.84 
36.00 27.00 
38 . .47 27.85 
63.00 46.00 
65.35 47.32 

141.00 103.00 
142.18 102.94 
554.00 401.00 
557.03 403.32 

0.80 0.75 

3.00 3.00 
3.84 3.11 
4.00 3.00 
4.27 3.45 
4.00 4.00 
4.85 3.91 
5.00 5.00 
5.67 4.59 
6.00 6.00 
6.86 5.55 
8.00 7.00 
8.70 7.04 

12.00 10.00 
11.75 9.50 
17.00 14.00 
17.37 14.05 
30.00 25.00 
29.50 23.87 
65.00 53.00 
64.19 51.92 

250.00 203.00 
251.47 203.42 
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TABLE XIII 

BOUNDS FOR NUMBER OF UNITS REQUIRED PER 
PROCESS TO MEET SPECIFICATION (P*, ~*), 

FOR k = 2 AND r = 1 

P* 0.99 0.98 
~* 

5.25 4.09 
0.55 6.00 5.00 

9.81 7.69 
6.37 4.97 

0.50 7.00 6.00 
10.92 8.51 

7.87 6.15 
0.45 8.00 7.00 

12.43 9.69 
9.99 7.79 

0.40 10.00 8.00 
14.53 11.33 
13.07 10.19 

0.35 14.00 11.00 
17.60 13.72 
17.80 13.88 

0.30 18.00 14.00 
22.33 17.40 
25.65 19.99 

0.25 26.00 21.00 
30.17 23.51 
40.08 31.23 

0.20 41.00 32.00 
44.60 34.76 
71.27 55.54 

0.15 72.00 56.00 
75.78 59.06 

160.36 124.98 
0.10 161.00 126.00 

164.87 128.49 
641.43 499.92 

0.05 642.00 500.00 
645.94 503.43 

(a) Approximate lower bound 
(b) Smallest integer required 
(c) Approximate upper bound 

0.95 

2.63 
3.00 
4.90 
3.19 
4.00 
5.46 
3.94 
5.00 
6.21 
4.99 
6.00 
7.27 
6.53 
7.00 
8.80 
8.90 

10.00 
11.16 
12.82 
14.00 
15.08 
20.04 
21.00 
22.30 
35.63 
36.00 
37.88 
80.17 
81.00 
82.42 

320.66 
321.00 
322.92 

0.90 0.80 0.75 

1.59 0.69 0.44 
3.00 2.00 1.00 
2.98 1.28 0.83 
1.93 0.83 0.54 
3.00 2.00 1.00 
3.31 1.43 0.92 
2.39 1.03 0.66 
3.00 2.00 2.00 
3.77 1.63 1.04 
3.03 1.31 0.84 
4.00 2.00 2.00 
4.41 1.90 1.22 
3.97 1.71 1.10 
5.00 3.00 2.00 
5.34 2.30 1.48 
5.40 2.33 1.50 
6.00 3.00 2.00 
6.78 2.92 1.88 
7.78 3.36 2.16 
9.00 4.00 3.00 
9.15 3.95 2.54 

12.16 5.25 3.37 
13.00 6.00 4.00 
13.53 5.84 3.75 
21.63 9.33 5.99 
22.00 10.00 7.00 
22.99 9.92 6.37 
48.66 20.99 13.48 
49.00 22.00 14.00 
50.03 21.57 13.86 

194.65 83.95 53.92 
195.00 84.00 54.00 
196.02 84.54 54.30 
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TABLE XIV 

BOUNDS FOR NUMBER OF UNITS REQUIRED PER 
PROCESS TO MEET SPECIFICATION (P*, h*), 

FOR k = 3 AND r = 1 

P* 0.99 0.98 
h"' 

6.35 5.14 
0.55 7.00 6.00 

11.86 9.59 
7.70 6.23 

0.50 8.00 7.00 
13.26 10.68 

9.53 7.71 
0.45 10.00 8.00 

15.02 12.15 
12.08 9.77 

0.40 12.00 10.00 
17.57 14.21 
15.80 12.78 

0.35 16.00 13.00 
21.28 17.21 
21.52 17.41 

0.30 22.00 18.00 
26.99 21.83 
31.01 25.08 

0.25 32.00 26.00 
36.47 29.50 
48.45 39.19 

0.20 49.00 40.00 
53.91 43.61 
86.15 69.68 

0.15 87.00 71.00 
91.61 74.10 

193.85 156.80 
0.10 199.00 158.00 

199.30 161.21 
775.40 627.20 

0.05 776.00 628.00 
780.85 631.61 

(a) Approximate lower bound 
(b) Smallest integer required 
(c) Approximate upper bound 

0.95 

3.57 
4.00 
6.57 
4.33 
5.00 
7.41 
5.35 
6.00 
8.43 
6.78 
8.00 
9.86 
8.87 

10.00 
11.94 
12.08 
13.00 
15.15 
17.40 
18.00 
20.47 
27.20 
28.00 
30.26 
48.36 
49.00 
51.42 

108.81 
110.00 
111.87 
435.24 
436.00 
438.30 

0.90 0.80 0.75 

2.41 1.33 1.01 
3.00 2.00 2.00 
4.51 2.45 1.86 
2.93 1.61 1.21 
4.00 3.00 2.00 
5.02 2.76 2.07 
3.62 1.99 1.50 
5.00 3.00 3.00 
5.71 3.14 2.36 
4.59 2.52 1.90 
5.00 4.00 3.00 
6.68 3.67 2.76 
6.01 3.30 2.48 
7.00 4.00 4.00 
8.09 4.44 3.34 
8.18 4.49 3.38 
9.00 6.00 5.00 

10.26 5.63 4.24 
11.78 6.47 4.87 
13.00 8.00 6.00 
13.86 7.61 5.73 
18.42 10.11 7.61 
20.00 11.00 9.00 
20.49 11.25 8.47 
32.75 17.98 13.54 
34.00 19.00 15.00 
34.82 19.12 14.39 
73.69 40.45 30.46 
75.00 42.00 32.00 
75.76 41.59 31.31 

294.74 161.80 121.82 
295.00 162.00 122.00 
296.82 162.94 122.68 
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TABLE XV 

BOUNDS FOR NUMBER OF UNITS REQUIRED PER 
PROCESS TO MEET SPECIFICATION (P*, c5*), 

FOR k = 4 AND r = 1 

P* 0.99 0.98 
c5* 

6.99 5.75 
0.55 7.00 6.00 

13.07 10.75 
8.49 6.98 

0.50 9.00 8.00 
14.55 11.97 
10.50 8.64 

0.45 11.00 9.00 
16.55 13.61 
13.31 10.95 

0.40 14.00 12.00 
19.36 15.92 
17.41 14.32 

0.35 18.00 15.00 
23.44 19.28 
23.71 19.50 

0.30 24.00 20.00 
29.74 24.46 
34.16 28.09 

0.25 35.00 29.00 
40.18 33.04 
53.39 43.90 

0.20 54.00 45.00 
59.40 48.85 
94.92 78.06 

0.15 96.00 79.00 
100.94 83.01 
213.59 175.64 

0.10 219.00 177.00 
219.60 180.59 
854.35 702.56 

0.05 855.00 703.00 
860.36 707.54 

(a) Approximate lower bound 
(b) Smallest integer required 
(c) Approximate upper bound 

0.95 

4.13 
5.00 
7.71 
5.01 
6.00 
8.58 
6.20 
7.00 
9.77 
7.85 
9.00 

11.42 
10.27 
11.00 
13.83 
13.99 
15.00 
17.54 
20.15 
21.00 
23.70 
31.49 
33.00 
35.04 
55.99 
57.00 
59.54 

125.99 
128.00 
129.53 
503.95 
504.00 
507.50 

0.90 0.80 0.75 

2.92 1.73 1.37 
4.00 3.00 3.00 
5.45 3.25 2.57 
3.54 2.11 1.67 
5.00 3.00 3.00 
6.07 3.62 2.86 
4.38 2.61 2.06 
5.00 4.00 3.00 
6.90 4.12 3.26 
5.55 3.31 2.61 
7.00 5.00 4.00 
8.07 4.81 3.80 
7.26 4.33 3.41 
8.00 6.00 5.00 
9.77 5.83 4.60 
9.89 5.90 4.65 

11.00 7.00 6.00 
12.40 7.39 5.84 
14.24 8.49 6.70 
15.00 10.00 8.00 
16.75 9.99 7.89 
22.26 13.27 10.48 
24.00 15.00 12.00 
24.76 14.77 11.66 
39.57 23.60 18.63 
41.00 25.00 20.00 
42.08 25.09 19.81 
89.04 53.10 41.92 
91.00 55.00 44.00 
91.55 54.59 43.10 

356.17 212.40 167.69 
357.00 213.00 168.00 
358.67 213.89 168.87 
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TABLE XVI 

BOUNDS FOR NUMBER OF UNITS REQUIRED PER 
PROCESS TO MEET SPECIFICATION (P*,S*), 

FOR k = 5 AND r = 1 

p• 0.99 0.98 
s• 

7.46 6.19 
0.55 8.00 7.00 

13.93 11.57 
9.05 7.51 

0.50 9.00 8.00 
15.51 12.88 
11.19 9.30 

0.45 12.00 10.00 
17.64 14.65 
14.19 11.78 

0.40 15.00 12.00 
20.63 17.13 
18.55 15.41 

0.35 19.00 16.00 
24.98 20.75 
25.27 20.99 

0.30 26.00 22.00 
31.69 26.32 
36.40 30.24 

0.25 37.00 31.00 
42.82 35.56 
56.89 47.25 

0.20 58.00 48.00 
63.30 52.58 

101.15 84.02 
0.15 102.00 85.00 

107.56 89.34 
227.60 189.04 

0.10 233.00 195.00 
234.01 194.36 
910.42 756.18 

0.05 911.00 757.00 
916.82 761.50 

(a) Approximate lower bound 
(b) Smallest integer required 
(c) Approximate upper bound 

0.95 

4.53 
5.00 
8.46 
5.50 
6.00 
9.42 
6.80 
8.00 

10.72 
8.62 

10.00 
12.53 
11.27 
12.00 
15.18 
15.35 
16.00 
19.25 
22.12 
23.00 
26.01 
34.57 
36.00 
38.46 
61.46 
63.00 
65.35 

138.28 
141.00 
142.17 
553.14 
554.00 
557.03 

0.90 0.80 0.75 

3.28 2.05 1.65 
4.00 3.00 3.00 
6.13 3.82 3.09 
3.98 2.48 2.01 
5.00 4.00 3.00 
6.82 4.25 3.44 
4.92 3.07 2.48 
6.00 4.00 4.00 
7.76 4.84 3.91 
6.24 3.89 3.15 
7.00 5.00 5.00 
9.07 5.66 4.58 
8.16 5.09 4.12 
9.00 6.00 6.00 

10.99 6.85 5.54 
11.12 6.93 5.61 
12.00 8.00 7.00 
13.95 8.69 7.03 
16.01 9.98 8.08 
17.00 12.00 10.00 
18.84 11.74 9.50 
25.03 15.60 12.62 
27.00 17.00 14.00 
27.85 17.36 14.05 
44.50 27.74 22.44 
46.00 30.00 25.00 
47.32 29.50 23.86 

100.12 62.43 50.50 
103.00 65.00 53.00 
102.94 64.19 51.92 
400.50 249.72 202.01 
401.00 250.00 203.00 
403.32 251.47 203.42 
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TABLE XVII 

NUMBER OF UNITS REQUIRED PER PROCESS 
for r = 1, 2, 3, k = 2(1)5 and P* = 0.95 

s· 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

(a) for r = 1 
(b) for r = 2 
(c) for r = 3 

k=2 

3.00 
2.00 
1.00 
4.00 
2.00 
2.00 
5.00 
3.00 
2.00 
6.00 
3.00 
2.00 
7.00 
4.00 
3.00 

10.00 
5.00 
4.00 

14.00 
7.00 
5.00 

21.00 
11.00 

7.00 
36.00 
18.00 
12.00 
81.00 
41.00 
31.00 

321.00 
162.00 
108.00 

k=3 

4.00 
2.00 
2.00 
5.00 
3.00 
2.00 
6.00 
3.00 
2.00 
8.00 
4.00 
3.00 

10.00 
5.00 
4.00 

13.00 
7.00 
5.00 

18.00 
9.00 
6.00 

28.00 
14.00 
10.00 
49.00 
31.00 
17.00 

110.00 
55.00 
37.00 

436.00 
220.00 
147.00 

k=4 k=5 

5.00 5.00 
3.00 3.00 
2.00 2.00 
6.00 6.00 
3.00 3.00 
2.00 2.00 
7.00 8.00 
4.00 4.00 
3.00 3.00 
9.00 10.00 
5.00 5.00 
3.00 4.00 

11.00 12.00 
6.00 6.00 
4.00 4.00 

15.00 16.00 
8.00 8.00 
5.00 6.00 

21.00 23.00 
11.00 12.00 

7.00 8.00 
33.00 36.00 
17.00 18.00 
11.00 12.00 
57.00 63.00 
31.00 32.00 
20.00 21.00 

128.00 141.00 
64.00 71.00 
43.00 47.00 

504.00 445.00 
254.00 279.00 
170.00 186.00 
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TABLE XVIII 

BOUNDS FOR NUMBER OF UNITS REQUIRED PER 
FOR r = 1,2,3, k = 3,5 and P* = 0.95 

k=3 
6* r=1 r=2 

3.57 1.78 
0.55 4.00 2.00 

6.57 3.33 
4.33 2.16 

0.50 5.00 3.00 
7.41 3.71 
5.35 2.68 

0.45 6.00 3.00 
8.43 4.22 
6.78 3.39 

0.40 8.00 4.00 
9.86 4.93 
8.87 4.43 

0.35 10.00 5.00 
11.94 5.97 
12.08 6.04 

0.30 13.00 7.00 
15.15 7.58 
17.40 8.70 

0.25 18.00 9.00 
20.47 10.24 
27.20 13.60 

0.20 28.00 14.00 
30.26 15.13 
48.36 24.18 

0.15 49.00 31.00 
51.42 25.71 

108.81 54.40 
0.10 110.00 55.00 

118.87 55.93 
435.24 217.62 

0.05 436.00 218.00 
438.30 219.15 

(a) Approximate lower bound 
(b) Smallest integer required 
(c) Approximate upper bound 

r=3 
1.89 
2.00 
2.22 
1.44 
2.00 
2.47 
1.78 
2.00 
2.81 
2.26 
3.00 
3.29 
2.96 
4.00 
3.98 
4.03 
5.00 
5.05 
5.80 
6.00 
6.82 
9.07 

10.00 
10.09 
16.12 
17.00 
17.14 
36.27 
37.00 
37.29 

145.08 
146.00 
146.10 

k=5 
r=1 r=2 r=3 

4.53 2.77 1.51 
5.00 3.00 2.00 
8.46 4.23 2.82 
5.50 2.75 1.83 
6.00 3.00 2.00 
9.42 4.71 3.14 
6.80 3.40 2.67 
8.00 4.00 3.00 

10.72 5.36 3.57 
8.62 4.31 2.87 

10.00 5.00 4.00 
12.53 6.27 4.18 
11.27 5.64 3.58 
12.00 6.00 4.00 
15.18 7.59 5.06 
15.35 7.68 5.12 
16.00 8.00 6.00 
19.25 9.63 6.42 
22.12 11.06 7.37 
23.00 12.00 8.00 
26.01 13.01 8.67 
34.57 17.28 11.52 
36.00 18.00 12.00 
38.46 19.23 12.82 
61.46 30.73 20.49 
63.00 32.00 21.00 
65.35 32.67 21.78 

138.28 69.14 46.09 
141.00 71.00 47.00 
142.12 71.09 47.39 
553.14 276.57 184.38 
554.00 277.00 185.00 
557.03 278.51 185.68 
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Figure 15. Probability of Correct Selection Using the Least Favorable Configuration 
for n = 2, 5{5)25, 50, 100 and k = 2 
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Figure 16. Probability of Correct Selection Using the Least Favorable Configuration 
for n = 2, 5(5)25, 50, 100 and lc = 3 
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Figure 17. Probability of Correct Selection Using the Least Favorable Configuration 
for n = 2, 5(5)25, 50, 100 and k = 4 
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Figure 18. Probability of Correct Selection Using the Least Favorable Configuration 
for n = 2, 5(5)25, 50,100 and k = 5 
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Figure 19. Error in PCS as a Result of Using the Approximate LFC for 
k = 3 and n = 1,2,5,10 
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Figure 20. Error in PCS as a Result of Using the Approximate LFC for 
k =5 and n=2,5,10,15 
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Figure 22. Sample Size per Process Required to Guarantee (P•, 6•) Using Exact LFC 
for k = 3 and p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 23. Sample Size per Process Required to Guarantee (P•, h•) Using Exact LFC 
for k = 4 and p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 

...... 

...... 
0 



1000 
0.99 

900 

800 

0.88 
700 

600 0.95 
n 

!500 

400 

300 

200 0.75 

100 

0 ~~--~~--~~--~-T--~~--~~--~~--~~--~~--~~--~~--~~--~ 
0.00 0.0!5 0.10 0. 1!5 0.20 0.2!5 0.30 0.3!5 0.40 

~· 
0.45 0.!50 

Figure 24. Sample Size per Process Required to Guarantee ( P*, b*) Using Exact LFC 
for k = 5 and P* = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 25. Sample Size per Process Required to Guarantee (P•, h*) Using Normal 
Approximation fork= 2 and P* = 0.75,0.80,0.90,0.95,0.98,0.99 
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Figure 26. Sample Size per Process Required to Guarantee (P*, 5"') Using Normal 
Approximation fork= 3 and P* = 0.75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 27. Sample Size per Process Required to Guarantee (P•, 5*) Using Normal 
Approximation for k = 4 and p• = 0.75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 28. Sample Size per Process Required to Guarantee (P-, 5•) Using Normal 
Approximation for k = 5 a.nd p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 29. Plot of ln( n) versus the Difference 6 for k = 2 and 
p• = o. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 30. Plot of ln(n) versus the Difference 6 fork= 3 and 
p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 31. Plot of ln(n) versus the Difference 5 for k = 4 and 
p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 32. Plot of In( n) versus the Difference h for k = 5 and 
p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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Figure 33. Difference in Sample Size Using Normal Approximation and the Approximate 
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Figure 34. Difference in Sample Size Using Normal Approximation a.nd the Approximate 
Upper Bound for k = 3 a.nd p• = 0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 
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CHAPTER V 

A FIXED SAMPLE SIZE SELECTION PROCEDURE 

FOR NEGATIVE BINOMIAL POPULATIONS 

WITH TWO DISTANCE MEASURES 

In this chapter, the possibility of reducing the required sample size by in

troducing a second distance measure in the selection procedure is considered. A 

fixed-sample-size selection procedure for two populations with two distance mea

sures is presented. The normal approximation is employed to obtain the exact and 

approximate sample sizes. Tables are prepared for sample sizes using both the exact 

and approximate methods. The effect of change of r on the sample sizes is observed. 

Formulation of the Problem 

Consider two negative binomial populations, 7ri and 1r2 , with a common r. 

These populations are characterized by the fixed probability of successes PI and p2 , 

respectively, 0 < Pi < 1, i = 1, 2 . The values of PI and p2 or their association 

with 7ri and 1r2 is unknown to the investigator. Let P[I] < P[2] be the ordered values 

of PI and p2, assuming that PI and P2 are different. Define a distance measure 

6 = P[2] - P[I] • Assuming that it is possible to identify the population with the 

larger p value, the problem of selecting the better population may be stated as 

the problem of selecting the population associated with the larger proportion P[2]. 

As discussed in the previous chapter, the probability of correct selection in this 

situation depends not only on the value of 6 but also on the location of P[2] in the 

interval (0,1 ). In some situations it is feasible to provide some additional information 
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about the relative values of P[I] and P[2] and reduce the sample sizes. Therefore, two 

distance measures Ct = P[2] - P[I] and C2 = P[t]/P[2] are defined. It is clear that a 

small value of c1 and a large value of c2 is desirable. Of course in such a case, it will 

be difficult to decide between the two populations. As a result the experimenter 

must take large samples in order to make a decision with a specified probability of 

correct selection. 

Using the specified values of distance measures, c1 = ct and c2 = c2, and the 

desired probability of correct selection P*, the selection problem is formulated as 

follows. 

We want to select the population corresponding to the larger proportion 

and guarantee the probability of correct selection to be at least P* when-

ever 

where 1/2 < p* < 1, 0 < c; < 1, and 0 < c; ::; 1 (5.1) 

In other words, we are interested in selecting the population associated with P[2]. 

Probability of correct selection less than or equal to 1/2 can be achieved without 

sampling by simply choosing a population at random. Thus, specified P* should 

be larger than 1/2 . 

Proposed Procedure 

Suppose from each population we draw a sample of size n. Let Xij be the ph 
n 

observation, from the ith population i = 1, 2, j = 1, 2, ... , n. Define Ti = 2:: Xii , 
j=l 

the total of observed values for the sample from the ith population i = 1, 2. Let T(I) 

and T(2) correspond to the populations associated with P[l] and P[2], respectively. 

Before the experiment is conducted, the association between them is not known to 

the experimenter. 
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With a common and known value of r, the sum of observations can be used 

to estimate the true population proportion. Since T( i) is inversely proportional to 

P['1' i = 1, 2, a smaller value of T(2 ) is expected from the population associated with 

P[2]. Therefore, the selection rule is proposed as follows. 

Selection rule R2: 

a) Select 11"1 if T1 < T2 

b) Select 71"2 if T1 > T2 

c) Select 71"1 or 71"2 at random assigning equal probability 

to each one if T1 = T2 

(5.2) 

Specification of the sample size defines the procedure completely. Hence, for 

specified P*, ht , and h;, the problem reduces to that of determining the number 

of units to be sampled per process to guarantee (5.1) holds with probability at least 

P*. 

Probability Of Correct Selection 

For the selection procedure R2, the selection of the population associated with 

P[2] is a correct selection. The population with the larger proportion does not 

necessarily produce a smaller sum of observations. Thus, there is always a chance 

of making a wrong selection which one would like to make as small as possible. 

The probability of correct selection associated with the proposed procedure R2 is 

obtained as follows. 

PCS - Pr(selecting the population associated with P[2j) 
. 1 

- Pr(T(1) > T(2)) + 2 Pr(T(1) = T(2)) 

Fixing T(2) = :z:, the probability of correct selection can be written as 
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00 

PC S - L:: Pr(T{l) > T(2) I T(2) = :r:) Pr(T(2) = :r:) 

1 00 

+ 2 L:: Pr(T(l) = T(2) I T(2) = :r;) Pr(T(2) = :r;) 
:c=O t. [ Pr(T(t) > z) + ~ Pr(T(t) = z) l Pr(T(') = z) 

(5.3) 

t. [ 1 - N B(z;P[t], nr) + ~nb( z;P[t], nr)] nb( z; P[2], nr) 

Since the Xi;'s are independent and identically distributed random variables, Ti 

also follows negative binomial distribution with parameters Pi and nr, i = 1, 2. 

Thus, the probability of correct selection may be presented in terms of the negative 

binomial mass function and the cummulative distribution function as shown in (5.3). 

Infimum of Probability of Correct Selection 

The true population proportions PI and P2 are unknown. The selection pro

cedure is expected to ensure the probability of correct selection to be at least P*. 

Thus the region of p1 and p2 where the probability of correct selection attains its 

minimum needs to be established. Making this minimum exceed the specified prob

ability of correct selection, the minimum sample size requied to satisfy (5.1) can be 

obtained. 

Now consider the region specified by the distance measures ~1 and ~2 : 

When the Pi's are close to each other, it will be difficult to distinguish between 

them and the chances of making a correct decision will be lowered. Intuitively, the 

infimum of the probability of correct selection over the specified region (5.4) will 

occur when the p.;, 's are as close to each other as possible. If the Pi's are close, the 
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difference S1 = P[2] - P[l] will be as small as possible, i.e., P[2] - P[l] --+ 0 . Also 

the ratio S2 = P[l]/P[2J will be as large as possible, i.e., P[1]/P[2J --+ 1 . Thus the 

infimum of probabillity of correct selection will occur at S1 = Si and S2 = S2. 

A discrete analog of the theorem 2.1 by Gupta and Panchpakesan (1972) is 

employed to corroborate this intuitive result. They present a sufficient condition 

for the monotonicity of the probability of correct selection for the desired selection 

procedure. Their result, which is stated below without proof, is helpful in obtaining 

the infimum of the probability of correct selection. 

Theorem 5.1 (Gupta and Panchpakesan (1972)) : 

Let Fe, 6 E 0 , be a family of absolutely continuous distributions on the 

real line and ,P( :z:, 6) be a real valued function possesing continuous first partial 

derivatives 1/Jz and 1/Je respectively. Then Ee,P(X, 6) is nondecreasing in 6 

provided that 
8 

fe(z),Pe(z,6)- 1/Jz(:z:,6) 86 Fe(z) ~ 0. (5.5) 

Further, Ee,P(X, 6) is strictly increasing in 6 if (5.1) holds with strict inequality on 

a set of positive Lebesgue measures. 

Remark: If ,P( :z:, 6) = ,P( :z:) for all 6 E 0 , then ( 5.1) reduces to 

This is satisfied if Fe is a stochastically increasing family of distributions and ,P( :z:) 

is. non decreasing in X and hence Ee,P ( :z:) is nondecreasing in 6, which is a result of 

Lehmann (1959, page 112). A generalization of Lehmann's result has been stated by 

Alam and Rizvi (1966) and Mahamunulu (1967), for the case of independent random 

variables with distribution functions Fe0 i = 1, 2, ... , k, where ,P( :z:1 , :z: 2 , ••• , :z:k) 

is nondecreasing in each argument. 

First write the probability of correct selection given by (5.4) in a more con-

venient form for the application of the sufficiency condition. Defining function g 
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by 
1 

g(z;p) = 1- NB(z;p,r) + 2" nb(z;p,r) (5.6) 

the probability of correct selection can be written as 

(5.7) 

The proof will be given in two parts: (1) Fix SI = s; and prove that the 

probability of correct selection is a nonincreasing function of S2 which will imply 

that the infimum of probability of correct selection will occur when s2 = s;. 
(2) Fix S2 = s; and prove that the probability of correct selection is a nondecreasing 

function of SI which will imply that the infimum of probability of correct selection 

will occur when SI = s;. Without loss of generality assume P[I] = PI and P[2] = P2 

in the proofs of lemma 5.1 and 5.2. 

Lemma 5.1: For a fixed S2 = s;, the probability of correct selection is a nonde-

creaing function of SI. 

Proof: A discrete analog of the above theorem 5.1 shows that the condition to be 

verified for the monotonicity of EP2 {g(z;pi)} relative to SI is 

for z ~ 1. For z = 0, the left-hand side of (5.8) is 0. Substituting the derivatives, 

the left-hand side of (5.8) can be written as 

[nb(z;pi,r)]2 [S;{rqi-:-ZPI ( )} z+r{ z }] 
(1-S2) PI 2qi - z+r + 2p2 1 + qi(z+r-1) · (5·9) 

Since nb( z; PI' r) > 0 and 0 < s; < 1 , the condition to be verified becomes 

(5.10) 

Rewrite (5.10) using y = z + r and u = qi(z + r)- z . Now it is sufficient to 

show that 

( u- qi) 
y y -1 - u > 0, for z > 1 . (5.11) 
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Since y > 0 and 0 < q1 < 1 the inequality in (5.10) reduces to x > 0, which is 

obviously true for X 2: 1. Thus, for a fixed s2 = s;' PCS is a nondecreasing function 

Lemma 5.2: For a fixed S1 = s;, the probability of correct selection is a nonin

creasing function of s2. 

Proof: To show that Ep~g(x;pi) is an increasing function of S2 , it is sufficient to 

show that 

for x 2: 1. For x = 0, the left-hand side of (5.12) is 0. Substituting the derivatives, 

the left-hand side of (5.12) can be rewritten as 

Since nb(x;p2,r) > 0 and 0 < s;,s2 < 1, it is enough to show that 

(x + r)q1 + x- q1 1 [ ] 
(x + r) 1 - c (x + r)q1 + x < 0 

x + r- o2 
(5.14) 

for x 2: 1. Rewrite (5.14) using y = x + r and u = (x + r)q1 + x . Now the 

problem reduces to that of showing 

( u-q1) u 
Y y -1 - s2 < 0' (5.15) 

for x 2: 1. Making use of relation (5.11), the condition to be verified becomes 

( u-q1)( 1) 
Y y -1 1 - s2 < 0 for x 2: 1 . (5.16) 

Since 0 < s2 < 1 and for X> 1, u- q1 > 0 and y -1 > 0, the condition in (5.14) 

is verified. 

Theorem 5.2: (Monotonicity of the probability of correct selection) 
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occurs at 51 = 5i and 52 = 52. 

Proof: From Lemma 5.1, it can be deduced that the probability of correct selection 

is a nondecreasing function of 51 when 52 is kept constant at 52; whereas, Lemma 

5.2 states that the probability of correct selection is a nonincreasing function of 

52 when 51 is fixed at 5i. This implies that the infimum of the probability of 

correct selection occurs when 51 assumes the lowest possible value and 52 assumes 

the highest possible value. Therefore, the infimum of the probability of correct 

selection occurs when 51 = 5i and 52 = 52. 

From the result of theorem 2, it can be said that the least favorable configura

tion is defined by 51 = 5i and 52 =52 , i.e., 

(5.17) 

Determination of the Required Sample Size 

We are interested in obtaining the smallest sample size such that the require

ments in (5.1) are satisfied. The probability of correct selection is a function of 

sample size. A larger sample provides more of the information necessary for the 

decision making and thus contributes more towards the probability of correct se

lection. Hence we expect to obtain a higher probability of correct selection with a 

larger sample. 

Any desired value of P* (0 < P* < 1) can be achieved by choosing n large 

enough. The smallest sample size based on the least favorable configuration (5.17) 

is obtained by making the probability of correct selection given by (5.3) equal to the 

specified value P* and t~en solving for n. For computational convenience we make 

use of the relation between the cumulative negative binomial and the incomplete 

beta function proven by Rider (1962). The probability of correct selection at the 

least favorable configuration for n = 1, 2, ... , was computed using the formula 
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00 

PCS 
1 - L {1- IP[tl(nr,:z: + 1) + 2 nb(:z:;p[1],nr)} nb(:z:;p[2],nr) 

z=O 

(5.18) 

where the incomplete beta function is given by 

( b) 1p r(a +b) a-1 ( )b-ld 
lp a, = 0 r(a) r(b) :z: 1- :z: :z:, :z: > 0 . 

The smallest n for which the probability of correct selection equalled or exceeded P* 

was recorded. These sample sizes are tabulated for different values of P*, Si, and 

S2 for use by experimenters. Tables. XIX-XXIV present the smallest sample size re

quired to satisfy (5.2), for r = 1, k = 2, P* = 0.75, 0.80, 0.90, 0.95, 0.98, 0.99, Si = 

0.05(0.05)0.95 ,and s; = 0.05(0;05)0.95 . 

It is noted from tables XIX-XXIV that it is possible to obtain the same sample 

size for different combinations of (P*, s;, S2). Based on the information concerning 

the availability and economic feasibility of the number of observations from both 

populations, an experimenter can choose the values of (P*, Si, S2) from the available 

possible combinations. The experimenter may have to make some compromise 

between the possible sample size and the desirable probability of correct selection. 

The experiment may have some restrictions on the number of observations to be 

taken from each population. In that case, the experimenter can determine the 

possible level of the probability of correct selection for the specified distance measure 

from tables XIX-XXIV. 

For p• = 0.95 and r = 2, 3 the exact sample sizes to meet the specifications 

(P*, Si, S2) were computed. These sample sizes are presented in tables XXV and 

XXVI. As r increases the required number of observations to meet the specifications 

decrease considerably. It is observed that the sample sizes decrease to almost half 

when r is increased from 1 to 2. 
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Normal Approximation 

A large sample approximation of the sample size n required to achieve the 

desired probability of correct selection P* for stated c5i and c52 is derived. (Xtj, j = 

1, 2, ... ) and (X2;, j = 1, 2, ... ) are independent samples from two populations 

1r1 and 1r2 , respectively. Let X1 and X2 be the corresponding sample means. For 

large n, (X(l) - X(2)) can be regarded as a normal random variable with mean 

r(q[t]P~j -q[2]P~j) and variance rn-1 (q[t]P~j +q[2]P~j) . Therefore, the probability 

of correct selection under the least favorable configuration can be written as 

PCS = ~(c(n)) 

where ~( ·) denotes the distribution function of the standard normal and 

c(n) = Fn (5.19) 

Thus equating the probability of correct selection under the least favorable config

uration with the specified value of probability of correct selection P*, we get 

c(n) = ~-1 (P*) . (5.20) 

Solving (5.20) for n using (5.19), we obtain 

(5.21) 

The smallest integer greater than or equal ton computed with the help of (5.21) is 

used as an approximate sample size per process. 

Theorem 5.3: Consider the probabililty of correct selection as defined in (5.3). 

Then 

lim PCS 1 
n-+oo 
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for the least favorable configuration (5.17). 

Proof: By the above argument for large n, PC S = cp( c( n)) , where c( n) is defined 

in (5.19). For given s; and S2, c(n) is an increasing function of n. Since cp(-) 

is the distribution function of a standard normal variate, cp(c(n)) approaches 1 as 

c( n) becomes large. Thus under the least favorable configuration the probability of 

correct selection approaches 1 as n tends to oo. Therefore, 

lim PCS - lim cp(c(n)) 1 
n-+oo n-+oo 

From theorem 5.2, inf(PC S) is attained when S1 = St and S2 = S2. Thus, from 
n 

the proof of theorem 5.3, T = L:; Xi is consistent for procedure R2 • 
i=l 

The number of observations required per process to meet the specifications 

(P*, Si, S2) were computed using (5.12). These are presented in tables XIX-XXIV 

for r = 1, k = 2, s; = 0.05(0.05)0.95, S2 = 0.05(0.05)0.95 , and p• = 

0. 75, 0.80, 0.90, 0.95, 0.98, 0.99 . From the comparision of the sample sizes obtained 

using the smallest integer required and the large sample approximation, it was 

found that both procedures give the same sample size to meet the specifications 

when P* = 0. 75, 0.80. Some difference is observed between the two as the specified 

probability of correct selection increases. At P* = 0.90, the difference reaches 2, 

and when P* = 0.98, the difference becomes 3. When P* = 0.99, a difference as 

large as 4 between the sample sizes is observed. Large sample approximation tends 

to overestimate small sample sizes. However, as n becomes large, the difference 

between the two sample sizes is negligible. 

The approximate sample sizes for p• = 0.95 and r = 2, 3 are listed in tables 

XXV-XXVI. For r = 2, in most of the cases, the difference between the exact and 

approximate sample sizes is equal to 1, where as it is 2 for r = 1. The sample sizes 

decrease as r increase. Also the better approximation for value of n is obtained. 



.s· 2 0.05 0.10 
.s; 
0.05 1.00 1.00 

0.51 0.57 
0.10 1.00 1.00 

0.50 0.56 
0.15 1.00 1.00 

0.50 0.56 
0.20 1.00 1.00 

0.50 0.55 
0.25 1.00 1.00 

0.50 0.55 
0.30 1.00 1.00 

0.50 0.55 
0.35 1.00 1.00 

0.50 0.54 
0.40 1.00 1.00 

0.49 0.54 
0.45 1.00 1.00 

0.49 0.54 

TABLE XIX 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, .s;, .52), 

FOR P* = 0.75, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

1.00 1.00 1.00 1.00 2.00 2.00 
0.64 0.73 0.84 0.99 1.21 1.41 
1.00 1.00 1.00 1.00 1.00 2.00 
0.63 0.72 0.83 0.96 1.13 1.35 
1.00 1.00 1.00 1.00 1.00 2.00 
0.63 0.71 0.81 0.93 1.09 1.29 
1.00 1.00 1.00 1.00 1.00 2.00 
0.62 0.70 0.79 0.91 1.05 1.23 
1.00 1.00 1.00 1.00 1.00 2.00 
0.61 0.69 0.78 0.88 1.01 1.17 
1.00 1.00 1.00 1.00 1.00 1.00 
0.61 0.68 0.76 0.86 0.97 1.11 
1.00 1.00 1.00 1.00 1.00 1.00 
0.60 0.67 0.74 0.83 0.94 1.00 
1.00 1.00 1.00 1.00 1.00 1.00 
0.59 0.65 0.73 0.81 0.90 0.99 
1.00 1.00 1.00 1.00 1.00 1.00 
0.59 0.64 0.71 0.80 0.86 0.94 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

2.00 
1.72 
2.00 
1.63 
2.00 
1.54 
2.00 
1.45 
2.00 
1.36 
2.00 
1.27 
2.00 
1.18 
2.00 
1.10 
1.00 
1.01 

0.50 

3.00 
2.14 
2.00 
2.00 
2.00 
1.87 
2.00 
1.73 
2.00 
1.59 
2.00 
1.46 
2.00 
1.32 
2.00 
1.18 
2.00 
1.05 

------------

....... 
~ -.:r 



6* 2 0.05 0.10 0.15 
6; 
0.50 1.00 1.00 1.00 

0.49 0.53 0.58 
0.55 1.00 1.00 1.00 

0.49 0.53 0.57 
0.60 1.00 1.00 1.00 

0.49 0.53 0.57 
0.65 1.00 1.00 1.00 

0.49 0.52 0.56 
0.70 1.00 1.00 1.00 

0.49 0.52 0.55 
0.75 1.00 1.00 1.00 

0.48 0.52 0.55 
0.80 1.00 1.00 1.00 

0.48 0.51 0.54 
0.85 1.00 1.00 1.00 

0.48 0.51 0.54 
0.90 1.00 1.00 

0.48 0.51 
0.95 1.00 

0.48 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XIX (Continued) 

0.20 0.25 0.30 

1.00 1.00 1.00 
0.63 0.69 0.75 
1.00 1.00 1.00 
0.62 0.67 0.73 
1.00 1.00 1.00 
0.61 0.66 0.70 
1.00 1.00 1.00 
0.60 0.64 0.68 
1.00 1.00 1.00 
0.59 0.62 0.65 
1.00 1.00 
0.58 0.61 
1.00 
0.57 

0.35 0.40 

1.00 1.00 
0.82 0.88 
1.00 1.00 
0.78 0.82 
1.00 1.00 
0.74 0.76 
1.00 
0.70 

0.45 

1.00 
0.92 
1.00 
0.83 

0.50 

1.00 
0.91 

....... 
w 
00 



~· 2 0.55 0.60 0.65 

~· 1 

0.05 3.00 4.00 5.00 
2.72 3.53 4.72 

0.10 3.00 4.00 5.00 
2.50 3.19 4.15 

0.15 3.00 3.00 4.00 
2.29 2.84 3.58 

0.20 2.00 3.00 3.00 
2.08 2.50 3.01 

0.25 3.00 3.00 3.00 
1.86 2.16 2.44 

0.30 2.00 2.00 2.00 
1.65 1.82 1.87 

0.35 2.00 2.00 2.00 
1.44 1.48 1.30 

0.40 2.00 2.00 
1.22 1.14 

0.45 2.00 
1.01 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XIX (Continued) 

0.70 0.75 0.80 

7.00 10.00 15.00 
6.54 9.48 14.58 
6.00 8.00 11.00 
5.53 7.55 10.46 
5.00 6.00 7.00 
4.53 5.64 6.37 
4.00 4.00 4.00 
3.52 3.73 2.28 
3.00 3.00 
2.52 1.82 
2.00 
1.52 

0.85 0.90 

25.00 44.00 
24.27 43.51 
14.00 7.00 
13.63 4.55 

5.00 
3.03 

0.95 

I 

14.00 I 
9.10 1 

I 

I 
i 

......... 
~ 
~ 



c5* 2 0.05 0.10 
c5* 1 

0.05 1.00 1.00 
0.79 0.88 

0.10 1.00 1.00 
0.78 0.87 

0.15 1.00 1.00 
0.78 0.87 

0.20 1.00 1.00 
0.78 0.86 

0.25 1.00 1.00 
0.78 0.86 

0.30 1.00 1.00 
0.77 0.85 

0.35 1.00 1.00 
0.77 0.85 

0.40 1.00 1.00 
0.77 0.84 

0.45 1.00 1.00 
0.77 0.84 

TABLE XX 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, c5t, c5;), 

FOR P* = 0.80, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

1.00 1.00 1.00 2.00 2.00 2.00 
0.99 1.14 1.31 1.54 1.82 2.19 
1.00 1.00 1.00 2.00 2.00 2.00 
0.89 1.12 1.29 1.50 1.76 2.10 
1.00 1.00 1.00 2.00 2.00 2.00 
0.97 1.10 1.26 1.46 1.70 2.01 
1.00 1.00 1.00 2.00 2.00 2.00 
0.96 1.09 1.23 1.42 1.64 1.92 
1.00 1.00 1.00 2.00 2.00 2.00 
0.95 1.07 1.21 1.38 1.58 1.82 
1.00 1.00 1.00 2.00 2.00 2.00 
0.94 1.05 1.18 1.34 1.52 1.73 
1.00 1.00 1.00 1.00 2.00 2.00 
0.93 1.04 1.16 1.29 1.47 1.64 
1.00 1.00 1.00 1.00 2.00 2.00 
0.92 1.02 1.13 1.25 01.40 1.55 
1.00 1.00 1.00 1.00 2.00 2.00 
0.91 1.01 1.10 1.21 1.33 1.46 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

3.00 
2.68 
3.00 
2.54 
3.00 
2.40 
2.00 
2.26 
2.00 
2.12 
2.00 
1.98 
2.00 
1.85 
2.00 
1.71 
2.00 
1.57 

0.50 

4.00 
3.33 
3.00 
3.12 
3.00 
2.91 
3.00 
2.69 
3.00 
2.48 
2.00 
2.27 
2.00 
2.06 
2.00 
1.84 
2.00 
1.63 

1-' 
fl::>. 
0 



6• 2 0.05 0.10 0.15 
6t 
0.50 1.00 1.00 1.00 

0.77 0.83 0.90 
0.55 1.00 1.00 1.00 

0.77 0.83 0.89 
0.60 1.00 1.00 1.00 

0.76 0.82 0.88 
0.65 1.00 1.00 1.00 

0.76 0.81 0.87 
0.70 1.00 1.00 1.00 

0.71 0.81 0.86 
0.75 1.00 1.00 1.00 

0.76 0.80 0.85 
0.80 1.00 1.00 1.00 

0.75 0.80 0.84 
0.85 1.00 1.00 1.00 

0.75 0.79 0.83 
0.90 1.00 1.00 

0.79 0.75 
0.95 1.00 

0.75 
-- - -- -- ------- ----------

(a) Smallest integer required 
(b) Normal approximation 

TABLE XX (Continued) 

0.20 0.25 0.30 0.35 

1.00 1.00 1.00 1.00 
0.99 1.08 1.17 1.27 
1.00 1.00 1.00 1.00 
0.97 01.5 1.13 1.21 
1.00 1.00 1.00 1.00 
0.95 1.02 1.09 1.15 
1.00 1.00 1.00 1.00 
0.94 1.01 1.05 1.09 
1.00 1.00 1.00 
0.92 0.97 1.01 
1.00 1.00 
0.90 0.95 
1.00 
0.89 

---- ---- --- - --- ---------

0.40 0.45 

2.00 2.00 
1.37 1.43 
2.00 2.00 
1.27 1.29 
1.00 
1.18 

- ------ ---------

0.50 

2.00 
1.42 

-

~ 

fl::. 
~ 



5* 2 0.55 0.60 0.65 
s; 
0.05 4.00 6.00 8.00 

4.23 5.49 7.35 
0.10 4.00 5.00 7.00 

3.90 4.96 6.46 
0.15 4.00 5.00 6.00 

3.56 4.43 5.57 
0.20 3.00 4.00 5.00 

3.23 3.90 4.68 
0.25 3.00 4.00 4.00 

2.90 3.37 3.80 
0.30 3.00 3.00 3.00 

2.36 2.91 2.83 
0.35 3.00 3.00 3.00 

2.24 2.30 2.03 
0.40 2.00 2.00 

1.91 1.77 
0.45 2.00 

1.58 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XX (Continued) 

0.70 0.75 0.80 

10.00 15.00 23.00 
10.19 14.75 22.69 

9.00 12.00 17.00 
8.61 11.76 16.30 
7.00 9.00 10.00 
7.05 8.79 9.92 
6.00 6.00 5.00 
5.49 5.81 3.54 
4.00 4.00 
3.92 2.83 
3.00 
2.57 

0.85 0.90 

38.00 68.00 
37.76 67.71 
21.00 9.00 
21.23 7.09 

6.00 
4.72 

0.95 

15.00 
14.17 

1--' 
t+:>
t-.;) 



,5* 2 0.05 0.10 
c5* 1 

0.05 1.00 1.00 
1.82 2.04 

0.10 1.00 1.00 
1.81 2.02 

0.15 1.00 1.00 
1.81 2.01 

0.20 1.00 1.00 
1.80 1.99 

0.25 1.00 1.00 
1.80 1.98 

0.30 1.00 1.00 
1.79 1.97 

0.35 1.00 1.00 
1.79 1.96 

0.40 1.00 1.00 
1.78 1.95 

0.45 1.00 1.00 
1.78 1.94 

TABLE XXI 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, c5;, c52), 

FOR P* = 0.90, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

2.00 2.00 3.00 3.00 4.00 5.00 
2.30 2.63 3.04 3.56 4.23 5.08 
2.00 2.00 2.00 3.00 4.00 4.00 
2.28 2.59 2.98 3.46 4.08 4.86 
2.00 2.00 2.00 3.00 3.00 4.00 
2.25 2.55 2.92 3.37 3.94 4.65 
2.00 2.00 2.00 3.00 3.00 4.00 
2.23 2.51 2.86 3.28 3.80 4.44 
2.00 2.00 2.00 3.00 3.00 4.00 
2.21 2.47 2.80 3.18 3.65 4.22 
2.00 2.00 2.00 3.00 3.00 4.00 
2.18 2.44 2.74 3.09 3.51 4.01 
2.00 2.00 2.00 2.00 3.00 3.00 
2.16 2.40 2.67 2.99 3.37 3.80 
2.00 2.00 2.00 2.00 3.00 3.00 
2.14 2.36 2.61 2.90 3.23 3.59 
2.00 2.00 2.00 2.00 3.00 3.00 
2.12 2.32 2.55 2.81 3.09 3.37 

(a) Smallest integer required 
·(b) Normal approximation 

0.45 

6.00 
6.21 
5.00 
5.88 
5.00 
5.56 
5.00 
5.24 
4.00 
4.91 
4.00 
4.59 
4.00 
4.27 
3.00 
3.95 
3.00 
3.63 

0.50 I 

7.00 I 

7.73 
7.00 
7.22 
6.00 
6.73 
6.00 
6.24 
5.00 
5.74 
5.00 
5.25 
4.00 
4.76 
4.00 
4.27 
3.00 
3.77 

~ 
~ 
~ 



6* 2 0.05 0.10 0.15 
6j 
0.50 1.00 1.00 1.00 

1.77 1.92 2.09 
0.55 1.00 1.00 1.00 

1.77 1.91 2.07 
0.60 1.00 1.00 1.00 

1.76 1.90 2.05 
0.65 1.00 1.00 1.00 

1.76 1.89 2.02 
0.70 1.00 1.00 1.00 

1.75 1.87 1.99 
0.75 1.00 1.00 1.00 

1.75 1.86 1.98 
0.80 1.00 1.00 1.00 

1.74 1.85 1.95 
0.85 1.00 1.00 1.00 

1.74 1.84 1.93 
0.90 1.00 1.00 

1.82 1.73 
0.95 1.00 

1.73 
----- --- --

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXI (Continued) 

0.20 0.25 0.30 0.35 

2.00 2.00 2.00 2.00 
2.28 2.49 2.72 2.95 
2.00 2.00 2.00 2.00 
2.24 2.43 2.62 2.81 
2.00 2.00 2.00 2.00 
2.21 2.37 2.53 2.67 
2.00 2.00 2.00 2.00 
2.17 2.31 2.44 2.53 
2.00 2.00 2.00 
2.13 2.25 2.34 
2.00 2.00 
2.09 2.19 
1.00 
2.05 

0.40 0.45 

3.00 3.00 
3.16 3.31 
2.00 3.00 
2.95 2.98 
2.00 
2.74 

--

0.50 

3.00 
3.28 i 

I 

' 

I 

I 
I 

I 

: ____________ -------

I-' 
~ 
~ 



s• 2 0.55 0.60 
s• 1 

0.05 9.00 12.00 
9.80 12.74 

0.10 9.00 11.00 
9.02 11.49 

0.15 8.00 10.00 
8.25 10.26 

0.20 7.00 9.00 
7.48 9.03 

0.25 6.00 7.00 
6.72 7.80 

0.30 5.00 6.00 
5.95 6.56 

0.35 5.00 5.00 
5.18 5.33 

0.40 4.00 4.00 
4.14 4.10 

0.45 3.00 
3.65 

(a) Smallest integer required 
(b) Normal approximation 

0.65 

17.00 
17.03 
14.00 
14.95 
12.00 
12.90 
10.00 
10.85 
8.00 
8.79 
6.00 
6.74 
4.00 
4.69 

TABLE XXI (Continued) 

0.70 0.75 0.80 

23.00 34.00 52.00 
23.59 34.19 52.59 
19.00 27.00 37.00 
19.94 27.24 37.74 
16.00 20.00 22.00 
16.32 20.35 22.97 
12.00 13.00 8.00 
12.70 13.46 8.21 
8.00 6.00 
9.09 6.56 
5.00 
5.47 

0.85 

87.00 
87.53 
49.00 
49.17 
10.00 
10.94 

0.90 

156.00 
156.96 

16.00 
16.41 

0.95 

32.00 
32.82 

1-' 
H:>
CTI 



f5• 2 0.05 0.10 
f5• 1 

0.05 1.00 2.00 
2.99 3.35 

0.10 1.00 2.00 
2.99 3.33 

0.15 1.00 2.00 
2.98 3.13 

0.20 1.00 2.00 
2.97 3.29 

0.25 1.00 2.00 
2.96 3.27 

0.30 1.00 2.00 
2.96 3.25 

0.35 1.00 2.00 
2.95 3.23 

0.40 1.00 2.00 
2.94 3.21 

0.45 1.00 2.00 
2.93 3.19 

TABLE XXII 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P•, ht, hi), 

FOR p• = 0.95, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

2.00 3.00 4.00 5.00 6.00 7.00 
3.79 4.33 5.01 5.87 6.98 8.37 
2.00 3.00 4.00 4.00 5.00 7.00 
3.75 4.27 4.91 5.71 6.72 8.02 
2.00 3.00 3.00 4.00 5.00 6.00 
3.72 4.21 4.81 5.56 6.49 7.67 
2.00 3.00 3.00 4.00 5.00 6.00 
3.68 4.14 4.71 5.40 6.26 7.32 
2.00 3.00 3.00 4.00 5.00 6.00 
3.64 4.08 4.61 5.25 6.03 6.97 
2.00 3.00 3.00 4.00 4.00 5.00 
3.60 4.02 4.51 5.10 5.79 6.62 
2.00 3.00 3.00 4.00 4.00 5.00 
3.56 3.95 4.41 4.94 5.56 6.26 
2.00 2.00 3.00 3.00 4.00 5.00 
3.53 3.89 4.31 4.79 5.33 5.91 
2.00 2.00 3.00 3.00 4.00 4.00 
3.49 3.83 4.21 4.64 5.09 5.56 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

9.00 
10.23 

8.00 
9.70 
8.00 
9.17 
7.00 
8.63 
7.00 
8.10 
6.00 
7.57 
6.00 
7.04 
5.00 
6.51 
5.00 
5.98 

--

0.50 

11.00 
12.72 I 

11.00 I 

11.91 
10.00 I 

11.10 

9.oo I 

10.28 
8.00 
9.47 
7.00 . 
8.66 ! 

6.00 
7.85 

6.00 i 

7.04 
5.00 
6.22 
---

f-J. 
~ 
0') 



5• 2 0.05 0.10 0.15 
5~ 
0.50 1.00 2.00 2.00 

2.92 3.17 3.45 
0.55 1.00 2.00 2.00 

2.92 3.15 3.41 
0.60 1.00 2.00 2.00 

2.91 3.13 3.37 
0.65 1.00 2.00 2.00 

2.90 3.11 3.34 
0.70 1.00 2.00 2.00 

2.89 3.09 3.30 
0.75 1.00 2.00 2.00 

2.88 3.07 3.26 
0.80 1.00 2.00 2.00 

2.87 3.05 3.22 
0.85 1.00 2.00 2.00 

2.87 3.03 3.18 
0.90 1.00 1.00 

2.86 3.01 
0.95 1.00 

2.85 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXII (Continued) 

0.20 0.25 0.30 0.35 

2.00 3.00 3.00 3.00 
3.76 4.11 4.48 4.86 
2.00 3.00 3.00 3.00 
3.70 4.01 4.33 4.63 
2.00 2.00 3.00 3.00 
3.64 3.91 4.17 4.40 
2.00 2.00 3.00 3.00 
3.57 3.81 4.02 4.16 
2.00 2.00 2.00 
3.51 3.71 3.87 
2.00 2.00 
3.45 3.61 
2.00 
3.38 

0.40 0.45 

4.00 4.00 
5.21 5.45 
3.00 3.00 
4.86 4.92 
3.00 
4.51 

0.50 I 

4.00 
5.41 

i 
! 

~ 

I 

! 

....... 
~ 
~ 



6* 2 0.55 0.60 
6_j_ 
0.05 15.00 20.00 

16.14 20.97 
0.10 14.00 18.00 

14.87 18.94 
0.15 12.00 16.00 

13.61 16.91 
0.20 11.00 14.00 

12.34 14.88 
0.25 10.00 11.00 

11.08 12.85 
0.30 8.00 9.00 

9.81 10.82 
0.35 7.00 7.00 

8.55 8.79 
0.40 6.00 5.00 

7.28 6.77 
0.45 4.00 

6.01 
--

(a) Smallest integer required 
(b) Normal approximation 

0.65 

27.00 
28.04 
23.00 
24.65 
20.00 
21.27 
17.00 
17.89 
13.00 
14.50 

9.00 
11.12 

6.00 
7.73 

TABLE XXII (Continued) 

0.70 0.75 0.80 

38.00 56.00 86.00 
38.84 56.29 86.59 
32.00 44.00 61.00 
32.87 44.92 62.24 
26.00 32.00 36.00 
26.91 33.56 37.88 
20.00 21.00 11.00 
20.95 22.19 13.53 
13.00 9.00 
14.98 10.82 
7.00 
9.02 

0.85 0.90 

144.00 258.00 
144.12 258.43 
80.00 22.00 
81.08 27.06 
15.00 
18.04 

0.95 

54.00 
54.12 

1--' 
,p.. 
00 



c5* 2 0.05 0.10 
c5* 1 

0.05 2.00 3.00 
4.68 5.23 

0.10 2.00 3.00 
4.67 5.20 

0.15 2.00 3.00 
4.65 5.17 

0.20 2.00 2.00 
4.64 5.14 

0.25 2.00 2.00 
4.63 5.11 

0.30 2.00 2.00 
4.61 5.08 

0.35 2.00 2.00 
4.60 5.04 

0.40 2.00 2.00 
4.59 5.01 

0.45 2.00 2.00 
4.58 4.98 

TABLE XXIII 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, c5i, c52), 

FOR P* = 0.98, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

3.00 4.00 5.00 7.00 8.00 11.00 
5.92 6.76 7.82 9.15 10.86 13.06 
3~oo 4.00 5.00 6.00 8.00 10.00 
5.86 6.66 7.66 8.91 10.49 12.51 
3.00 4.00 5.00 6.00 8.00 9.00 
5.80 6.57 7.51 8.67 10.13 11.97 
3.00 4.00 5.00 6.00 7.00 9.00 
5.74 6.47 7.35 8.43 9.79 11.42 
3.00 4.00 5.00 6.00 7.00 8.00 
5.68 6.37 7.19 8.19 9.40 10.87 
3.00 4.00 4.00 5.00 6.00 8.00 
5.62 6.27 7.04 7.95 9.04 10.32 
3.00 4.00 4.00 5.00 6.00 7.00 
5.56 6.17 6.88 7.71 8.68 9.78 
3.00 3.00 4.00 5.00 6.00 7.00 
5.50 6.07 6.73 7.47 8.31 9.23 
3.00 3.00 4.00 5.00 5.00 6.00 
5.44 5.97 6.57 7.23 7.95 8.68 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

13.00 
15.96 
13.00 
15.13 
12.00 
14.30 
11.00 
13.48 
10.00 
12.65 
9.00 

11.82 
8.00 

10.99 
7.00 

10.16 
7.00 
9.33 

0.50 

17.00 
17.85 

16.00 I 
18.58 

15.00 I 

17.31 . 
14.00 
16.05 
12.00 
14.78 
11.00 
13.51 
10.00 
12.25 
8.00 

10.98 
7.00 
9.71 

1--' 
,.j:::.. 
c:o 



5* 2 0.05 0.10 0.15 
s; 
0.50 2.00 2.00 3.00 

4.56 4.95 5.38 
0.55 2.00 2.00 3.00 

4.55 4.92 5.32 
0.60 2.00 2.00 3.00 

4.54 4.88 5.27 
0.65 2.00 2.00 3.00 

4.52 4.85 5.21 
0.70 2.00 2.00 2.00 

4.51 4.82 5.15 
0.75 2.00 2.00 2.00 

4.50 4.79 5.09 
0.80 2.00 2.00 2.00 

4.48 4.76 5.03 
0.85 2.00 2.00 2.00 

4.97 4.72 4.47 
0.90 2.00 2.00 

4.46 4.69 
0.95 2.00 

4.45 
. ---- -- ----

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXIII (Continued) 

0.20 0.25 0.30 0.35 

3.00 4.00 4.00 5.00 
5.87 6.41 6.99 7.59 
3.00 4.00 4.00 4.00 
5.77 6.26 6.75 7.22 
3.00 3.00 4.00 4.00 
5.68 6.10 6.51 6.86 
3.00 3.00 3.00 4.00 
5.58 5.94 6.27 6.90 
3.00 3.00 3.00 
5.48 5.79 6.03 
3.00 3.00 
5.38 5.63 
2.00 
5.28 

------

0.40 

5.00 
8.13 
5.00 
7.59 
4.00 
7.04 

0.45 

6.00 
8.51 
5.00 
7.68 

0.50 

5.00 
8.45 

...... 
CJl 
0 



6* 2 0.55 0.60 
6* 1 

0.05 23.00 30.00 
25.19 32.73 

0.10 21.00 27.00 
23.21 29.56 

0.15 19.00 24.00 
21.24 26.39 

0.20 17.00 21.00 
19.26 23.23 

0.25 15.00 17.00 
17.29 20.06 

0.30 13.00 14.00 
15.31 15.89 

0.35 11.00 11.00 
13.34 13.73 

0.40 8.00 7.00 
11.36 10.56 

0.45 6.00 
9.39 

(a) Smallest integer required 
(b) Normal approximation 

0.65 

41.00 
43.76 
36.00 
38.48 
31.00 
33.19 
25.00 
27.91 
20.00 
22.63 
14.00 
17.35 

8.00 
12.07 

TABLE XXIII (Continued) 

0.70 0.75 0.80 

58.00 85.00 133.00 
60.61 87.84 135.14 
49.00 68.00 94.00 
51.30 70.10 97.13 
39.00 50.00 56.00 
41.99 52.37 59.12 
30.00 32.00 15.00 
32.69 34.63 21.12 
20.00 12.00 
23.38 16.89 
10.00 
14.08 

0.85 

222.00 
224.92 
124.00 
126.54 

20.00 
28.15 

0.90 

401.00 
403.30 

40.00 
42.23 

0.95 

83.00 
84.46 

I-' 
C;fl 
I-' 



c5* 2 0.05 0.10 
c5* 1 

0.05 2.00 3.00 
5.99 6.70 

0.10 2.00 3.00 
5.97 6.66 

0.15 2.00 3.00 
5.96 6.62 

0.20 2.00 3.00 
5.94 6.58 

0.25 2.00 3.00 
5.92 6.54 

0.30 2.00 3.00 
5.91 6.50 

0.35 2.00 3.00 
5.89 6.46 

0.40 2.00 3.00 
5.87 6.41 

0.45 2.00 3.00 
5.86 6.37 

TABLE XXIV 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, c5j, 62), 

FOR p• = 0.99, k = 2 AND r = 1 

0.15 0.20 0.25 0.30 0.35 0.40 

4.00 5.00 7.00 8.00 11.00 13.00 
7.57 8.66 10.01 11.72 13.89 16.72 
4.00 5.00 6.00 8.00 10.00 13.00 
7.50 8.53 9.81 11.41 13.43 16.02 
4.00 5.00 6.00 8.00 10.00 12.00 
7.42 8.40 9.61 11.10 12.97 15.32 
4.00 5.00 6.00 7.00 9.00 11.00 
7.35 8.28 9.41 10.80 12.50 14.62 
4.00 5.00 6.00 7.00 9.00 10.00 
7.27 8.15 9.21 10.49 12.04 13.91 
4.00 5.00 6.00 7.00 8.00 10.00 
7.20 8.02 9.01 10.18 11.57 13.21 
4.00 4.00 5.00 6.00 8.00 9.00 
7.12 7.90 8.81 9.87 11.12 12.51 
3.00 4.00 5.00 6.00 7.00 8.00 
7.04 7.77 8.61 9.57 10.64 11.81 
3.00 4.00 5.00 6.00 7.00 7.00 
6.97 7.64 8.41 9.26 10.18 11.11 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

17.00 
20.43 
16.00 
19.37 
15.00 
18.37 
14.00 
17.25 
13.00 
16.19 
12.00 
15.13 
11.00 
14.07 
9.00 

13.01 
8.00 

11.95 

0.50 

22.00 
25.41 
20.00 
23.79 
19.00 
22.16 
17.00 
20.54 
15.00 
18.92 
14.00 
17.30 
12.00 
15.68 
10.00 
14.06 

8.00 
12.43 

....... 
<:.71 
t-.:1 



5• 2 0.05 0.10 
5t 
0.50 2.00 3.00 

10.81 10.89 
0.55 2.00 3.00 

5.82 6.29 
0.60 2.00 3.00 

5.81 6.25 
0.65 2.00 3.00 

5.79 6.21 
0.70 2.00 2.00 

5.77 6.17 
0.75 2.00 2.00 

5.76 6.13 
0.80 2.00 2.00 

5.74 6.09 
0.85 2.00 2.00 

5.72 6.05 
0.90 2.00 2.00 

5.71 6.01 
0.95 2.00 

5.69 

(a) Smallest integer required 
(b) Normal approximation 

0.15 

3.00 
10.41 

3.00 
6.82 
3.00 
6.74 
3.00 
6.66 
3.00 
6.59 
3.00 
6.51 
3.00 
6.44 
3.00 
6.36 

TABLE XXIV (Continued) 

0.20 0.25 0.30 

4.00 5.00 5.00 
9.71 8.95 8.21 
4.00 4.00 5.00 
7.39 8.01 8.64 
4.00 4.00 5.00 
7.26 7.81 8.34 
3.00 4.00 4.00 
7.14 7.61 8.03 
3.00 4.00 4.00 
7.01 7.41 7.72 
3.00 3.00 
6.88 7.21 
3.00 
6.76 

- ----- ---1-

0.35 0.40 

6.00 7.00 
7.52 6.89 
5.00 6.00 
9.25 9.71 
5.00 5.00 
8.78 9.01 
4.00 
8.32 

0.45 

7.00 
6.33 
5.00 
9.83 

0.50 

6.00 
5.84 

--------

1---" 
<:.11 
~ 



s• 2 0.55 0.60 
6i 
0.05 3.00 4.00 

2.72 3.53 
0.10 2600 35.00 

29.71 37.84 
0.15 24.00 30.00 

27.18 33.79 
0.20 21.00 26.00 

24.66 29.73 
0.25 19.00 22.00 

22.13 25.68 
0.30 16.00 18.00 

19.60 21.62 
0.35 13.00 13.00 

17.07 17.57 
0.40 10.00 8.00 

14.54 13.51 
0.45 7.00 

12.01 

(a) Smallest integer required 
(b) Normal approximation 

0.65 

5.00 
4.72 

46.00 
49.25 
39.00 
42.49 
32.00 
35.73 
25.00 
28.97 
18.00 
22.21 
10.00 
15.45 

TABLE XXIV {Continued) 

0.70 0.75 0.80 

7.00 10.00 15.00 
6.54 9.48 14.58 

63.00 88.00 123.00 
65.67 89.73 124.33 
56.00 63.00 72.00 
53.76 67.03 75.68 
38.00 40.00 18.00 
41.84 44.33 27.03 
26.00 14.00 
29.93 21.62 
11.00 
18.02 

0.85 0.90 

25.00 44.00 
24.27 43.51 

162.00 38.00 
161.97 54.06 

25.00 
36.04 

0.95 

14.00 
9.10 

I 
I 
! 

! 

1-' 
Q1 
t+>-



6"' 2 0.05 0.10 
6t 
0.05 1.00 1.00 

1.49 1.68 
0.10 1.00 1.00 

1.49 1.67 
0.15 1.00 1.00 

1.49 1.66 
0.20 1.00 1.00 

1.48 1.65 
0.25 1.00 1.00 

1.48 1.64 
0.30 1.00 1.00 

1.48 1.63 
0.35 1.00 1.00 

1.47 1.62 
0.40 1.00 LOO 

1.47 1.61 
0.45 1.00 1.00 

1.46 1.59 

TABLE XXV 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION ( P"', 6;, 62), 

FOR P* = 0.95, k = 2 AND r = 2 

0.15 0.20 0.25 0.30 0.35 0.40 

1.00 2.00 2.00 3.00 3.00 4.00 
1.89 2.17 2.51 2.93 3.48 4.18 
1.00 2.00 2.00 2.00 3.00 4.00 
1.88 2.14 2.46 2.86 3.36 4.01 
1.00 2.00 2.00 2.00 3.00 4.00 
1.86 2.10 2.41 2.78 3.25 3.83 
1.00 2.00 2.00 2.00 3.00 3.00 
1.84 1.84 2.07 2.36 2.72 3.13 
1.00 2.00 2.00 2.00 3.00 3.00 
1.82 2.04 2.31 2.63 3.01 3.48 
1.00 1.00 2.00 2.00 2.00 3.00 
1.80 2.01 2.26 2.55 2.89 3.31 
1.00 2.00 2.00 2.00 2.00 3.00 
1.78 1.98 2.21 2.47 2.78 3.13 
1.00 1.00 2.00 2.00 2.00 3.00 
1.76 1.95 2.16 2.39 2.66 2.96 
1.00 1.00 2.00 2.00 2.00 2.00 
1.74 1.91 2.11 2.32 2.55 2.78 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

5.00 
5.11 
4.00 
4.85 

4 
4.58 
4.00 
3.66 
4.00 
4.05 
3.00 
3.79 
3.00 
3.52 
3.00 
3.26 
3.00 
2.99 

0.50 

6.00 
6.36 
6.00 
5.95 

5 
5.55 
5.00 
5.14 
4.00 
4.74 
4.00 
4.33 
3.00 
3.92 
3.00 
3.52 
3.00 
3.11 

1--' 
01 
01 



6* 2 0.05 0.10 0.15 
6* 1 

0.50 1.00 1.00 1.00 
1.46 1.59 1.73 

0.55 1.00 1.00 1.00 
1.46 1.58 1.71 

0.60 1.00 1.00 1.00 
1.45 1.57 1.69 

0.65 1.00 1.00 1.00 
1.45 1.55 1.67 

0.70 1.00 1.00 1.00 
1.45 1.54 1.65 

0.75 1.00 1.00 1.00 
1.44 1.53 1.63 

0.80 1.00 1.00 1.00 
1.44 1.52 1.61 

0.85 1.00 1.00 1.00 
1.43 1.51 1.59 

0.90 1.00 1.00 
1.43 1.51 

0.95 1.00 
1.42 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXV (Continued) 

0.20 0.25 0.30 0.35 

1.00 2.00 2.00 2.00 
1.88 2.06 2.24 2.43 
1.00 2.00 2.00 2.00 
1.85 2.01 2.16 2.31 
1.00 1.00 2.00 2.00 
1.82 1.95 2.09 2.19 
1.00 1.00 2.00 2.00 
1.79 1.90 2.01 2.08 
1.00 1.00 1.00 
1.76 1.85 1.93 
1.00 1.00 
1.72 1.80 
1.00 
1.69 

0.40 0.45 

2.00 2.00 
2.61 2.73 
2.00 2.00 
2.43 2.46 
2.00 
2.26 

0.50 

2.00 
2.71 

1--' 
~ 
0) 



s; 0.55 0.60 
Sj 
0.05 8.00 10.00 

8.07 10.49 
0.10 7.00 9.00 

7.44 9.47 
0.15 6.00 8.00 

6.80 8.46 
0.20 6.00 7.00 

6.17 7.44 
0.25 5.00 6.00 

5.54 6.43 
0;30 4.00 5.00 

4.91 5.41 
0.35 4.00 4.00 

4.27 4.39 
0.40 3.00 3.00 

3.64 3.83 
0.45 2.00 

3.01 

(a) Smallest integer required 
(b) Normal approximation 

0.65 

14.00 
14.02 
12.00 
12.33 
10.00 
10.64 
9.00 
8.94 
7.00 
7.25 
5.00 
5.59 
3.00 
3.86 

TABLE XXV (Continued) 

0.70 0.75 0.80 

19.00 28.00 43.00 
19.42 28.14 43.29 
16.00 22.00 31.00 
16.44 22.46 31.12 
13.00 16.00 18.00 
13.55 16.78 18.94 
10.00 11.00 6.00 
10.47 11.09 6.77 

7.00 5.00 
7.49 5.41 
4.00 
4.51 

0.85 0.90 

72.00 129.00 
72.06 129.21 
40.00 11.00 
40.54 13.53 
8.00 
9.02 

0.95 

23.00 
27.06 

I 

! 

........ 
CJ"1 
--1 



t5* 2 0.05 0.10 
t5* 1 

0.05 1.00 1.00 
0.99 1.12 

0.10 1.00 1.00 
0.99 1.11 

0.15 1.00 1.00 
0.99 1.10 

0.20 1.00 1.00 
0.99 1.09 

0.25 1.00 1.00 
0.99 1.09 

0.30 1.00 1.00 
0.99 1.08 

0.35 1.00 1.00 
0.98 1.08 

0.40 1.00 1.00 
0.98 1.07 

0.45 1.00 1.00 
0.98 1.06 

TABLE XXVI 

NUMBER OF UNITS REQUIRED PER PROCESS 
TO MEET SPECIFICATION (P*, t5;, t5i), 

FOR P* = 0.95, k = 2 AND r = 3 

0.15 0.20 0.25 0.30 0.35 0.40 

1.00 1.00 2.00 2.00 2.00 3.00 
1.26 1.45 1.67 1.96 2.32 2.79 
1.00 1.00 2.00 2.00 2.00 3.00 
1.25 1.42 1.64 1.90 2.24 2.67 
1.00 1.00 1.00 2.00 2.00 2.00 
1.24 1.40 1.60 1.85 2.16 2.56 
1.00 1.00 1.00 2.00 2.00 2.00 
1.23 1.38 1.57 1.80 2.09 2.44 
1.00 1.00 1.00 2.00 2.00 2.00 
1.21 1.36 1.54 1.75 2.01 2.32 
1.00 1.00 1.00 2.00 2.00 2.00 
1.20 1.34 1.50 1.69 1.93 2.21 
1.00 1.00 1.00 2.00 2.00 2.00 
1.19 1.32 1.47 1.65 1.85 2.09 
1.00 1.00 1.00 1.00 2.00 2.00 
1.18 1.29 1.44 1.59 1.78 1.97 
1.00 1.00 1.00 1.00 2.00 2.00 
1.16 1.28 1.40 1.55 1.69 1.85 

(a) Smallest integer required 
(b) Normal approximation 

0.45 

3.00 
3.41 
3.00 
3.23 
3.00 
3.06 
3.00 
2.88 
3.00 
2.70 
2.00 
2.52 
2.00 
2.35 
2.00 
2.17 
2.00 
1.99 

0.50 

4.00 
4.24 
4.00 
3.97 
4.00 
3.69 
3.00 
3.43 
3.00 
3.16 
3.00 
2.89 
2.00 
2.62 • 
2.00 
2.35 
2.00 
2.08 

~ 
0"1 
00 



s• 2 0.05 0.10 0.15 
s• 1 

0.50 1.00 1.00 1.00 
0.97 1.06 1.15 

0.55 1.00 1.00 1.00 
0.97 1.05 1.14 

0.60 1.00 1.00 1.00 
0.97 1.04 1.13 

0.65 1.00 1.00 1.00 
0.97 1.04 1.11 

0.70 1.00 1.00 1.00 
0.96 1.03 1.10 

0.75 1.00 1.00 1.00 
0.96 1.02 1.09 

0.80 1.00 1.00 1.00 
0.96 1.02 1.07 

0.85 1.00 1.00 1.00 
0.96 1.01 1.06 

0.90 1.00 1.00 
0.95 1.01 

0.95 1.00 
0.95 

--

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXVI (Continued) 

0.20 0.25 0.30 0.35 

1.00 1.00 1.00 1.00 
1.25 1.37 1.49 1.62 
1.00 1.00 1.00 1.00 
1.23 1.34 1.44 1.53 
1.00 1.00 1.00 1.00 
1.21 1.30 1.39 147 
1.00 1.00 1.00 1.00 
1.19 1.27 1.34 1.39 
1.00 1.00 1.00 
1.17 1.24 1.29 
1.00 1.00 
1.15 1.20 
1.00 
1.13 

0.40 0.45 

2.00 2.00 
1.74 1.82 
1.00 1.00 
1.62 1.64 
1.00 
1.50 

0.50 

2.00 
1.80 

I-" 
Cll 
t.O 



~· 2 0.55 0.60 0.65 
~; 

0.05 5.00 7.00 9.00 
5.38 6.99 9.35 

0.10 5.00 6.00 8.00 
4.96 6.31 8.22 

0.15 4.00 6.00 7.00 
4.54 5.64 7.09 

0.20 4.00 5.00 6.00 
4.11 4.96 5.96 

0.25 4.00 4.00 5.00 
3.96 4.29 4.83 

0.30 3.00 3.00 3.00 
3.27 3.61 3.71 

0.35 3.00 3.00 2.00 
2.85 2.93 2.58 

0.40 2.00 2.00 
2.43 2.26 

0.45 2.00 
2.01 

(a) Smallest integer required 
(b) Normal approximation 

TABLE XXVI (Continued) 

0.70 0.75 0.80 

13.00 19.00 29.00 
12.95 18.76 28.86 
11.00 15.00 21.00 
10.96 14.97 20.75 

9.00 11.00 12.00 
8.97 11.19 12.63 
7.00 7.00 4.00 
6.98 7.39 4.51 
5.00 3.00 
4.99 3.61 
3.00 
3.01 

0.85 

48.00 
48.04 
27.00 
27.03 
5.00 
6.01 

0.90 

86.00 
86.14 
8.00 
9.02 

0.95 

15.00 
18.04 

t--J. 
0') 
0 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A sequential testing procedure and two fixed-sample-size selection procedures 

for negative binomial populations are studied in this dissertation. The parame

ter r is assumed to be known and the decision-making procedures involving the 

proportion p are discussed. The sequential testing procedure is known as 2-SPRT 

and consists of two simultaneously conducted sequential probability ratio tests for 

known r. A fixed sample procedure for selecting the population with the largest 

proportion is derived. Approximation of this procedure which involves a selection 

procedure for normal means is described. Further, a selection procedure for two 

populations based on two distance measures is presented. 

2-SPRT is a closed procedure. Therefore, before the experiment begins, the 

experimenter has a definite knowledge of the maximum number of observations he 

might have to take. Also for the true proportion p between p1 and p2 , the 2-SPRT 

is observed to terminate with smaller sample sizes than SPRT. In some cases, an 

increase in the error probabilities compared to the SPRT is observed. This solution 

to 2-SPRT provides an asymptotic solution to the modified Kiefer-Weiss problem. 

Modification of Po = p provides an approximate Kiefer-Weiss solution. Simplicity 

of the application of SPRT is preserved in 2-SPRT since only the observation total 

is needed to make a decision at each stage of the sampling. The remaining com

putations may be done before the experiment begins. Numerical evaluation of the 

expected sample sizes using the backward induction method is suggested for future 

research. 
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The sample sizes for the fixed sample selection procedure with the requirement 

of (P*, c5*) are tabulated. Using these tables, the required number of observations 

per population for specified P and c5 may be determined. For a fixed known n, 

these tables may be reversed to obtain the probability of correct selection that 

will be achieved by the procedure. The approximate least favorable configuration 

presented gives a good approximation to the probability of correct selection. The 

limiting behavior of the sample size is investigated. As the number of populations 

involved increases the sample size n can be approximated by Cln(k), where Cis a 

constant of proportionality. The study of the effect of the exponent r on the sample 

sizes reveals that n decreases to almost half when r is doubled. 

A fixed sample procedure for selecting the better of two populations using two 

distance measures is presented. The resulting sample sizes required to achieve the 

specified probability of correct selection are observed to decrease by the addition of 

the second distance measure. The normal approximation to the negative binomial 

for large n is used to obtain the approximate sample sizes. These approximations 

are observed to increasingly overestimate the exact sample sizes as P* increases. 

Therefore, a correction factor for the normal approximation to the negative binomial 

needs to be derived and involved in the computation of sample size. As the exponent 

r increases, sample sizes tend to decrease and so does the amount of overestimation 

by the normal approximation. 

Finally, these selection procedures are based on the assumption that the value 

of r is known and is the same for all the populations involved. This assumption may 

be difficult to meet for all experiments. When unknown, the value of r common 

to several populations may be estimated and tested. If the hypothesis of common 

r is accepted, selection procedures can be used with estimated r. Further research 

is required about the selection procedure based on the proportions of the negative 

binomial populations with known but different r values. 
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