
THE LOWER BOUND ALGORITHM FOR

THE ENHANCED MODULAR

SIGNAL PROCESSOR

By

ARLEN NORMAN LONG
11

Bachelor of Science
Moravian College

Bethlehem, Pennsylvania
1968

Master of Science
Iowa State University

of Science and Technology
Ames, Iowa

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 1988

T\.e."5\~
\~<&~\)

L~l..\'dJ­
c._or, a.

THE LOWER BOUND ALGORITHM FOR

THE ENHANCED MODULAR

SIGNAL PROCESSOR

Thesis Approved:

ii
1322615

Chapter

I.

II.

TABLE OF CONTENTS

INTRODUCTION

THE LITERATURE REVIEW AND
BACKGROUND INFORMATION . .

Real-time Systems . .
Dataflow Signal Processors

III. THE ENHANCED MODULAR SIGNAL PROCESSOR

The EMSP
EMSP Communications
EMSP Sequential Command Operation
EMSP Dataflow Graph Execution . .
EMSP Operation

IV. THE EMSP COMMON OPERATIONAL SOFTWARE

Page

1

4

4
9

18

19
21
22
23
24

26

The ECOS 26
ECOS Graph Constructs 27
ECOS Command Program Constructs . . 31
ECOS Programming 32

V. CONFIGURING THE EMSP

The Need for Minimal EMSP Systems
The Present Approach . . .
The Lower Bound Approach

VI. THE ALGORITHM

The Well-formed ECOS Graph
Ready to Configure
The Lower Bounds

VII. SUMMARY AND CONCLUSIONS

REFERENCES

APPENDIX

Further Work

iii

34

34
35
37

39

39
45
46

61

62

68

71

LIST OF FIGURES

Figure

1. The Dataflow Computer .•......

2. The Data Driven Signal Processor

3. The Data Flow Signal Processor

4. The Dataflow Binary Tree Processor

5. The Roman Circus System ..

Page

72

73

74

75

76

6. The Enhanced Modular Signal Processor 77

7. A Graph • 78

8. ECOS SPGN for the Graph in Figure 7 79

9. Command Program for the Graph in Figure 7 . 80

10. Command Program for a Dynamically
Reconfigurable Graph . • • .

11. The Produce Calculator

81

82

12. The Relative Frequency Calculator . 83

13. The Required Frequency Calculator 84

14. The Maximum Frequency Calculator 85

15. Graph for Lower Bound Example . . 86

16. Required Frequencies for Lower Bound Example 87

17. Node Data for Lower Bound Example 88

18. Lower Bound on the Number of APs

19. Lower Bound on the Number of GMs

20. Lower Bound on the Number of lOPs .

21. Lower Bound on the Number of DTNs

iv

89

90

91

92

ALPS

AP

ASP

BM

CASE

cc

CM

CP

CPP

Cbus

DDSP

DFC

DFO

DFSP

DM

DTN

ECOS

EMSP

FFT

FIR

GIP

GM

GMU

NOMENCLATURE

Alternative Low-level Primitive Structures

Arithmetic Processor

Advanced Signal Processor

Basic Memory

Computer Assisted System Engineering

Circus Controller

Count Memory

Command Program

Command Program Processor

Control Bus

Data Driven Signal Processor

Dataflow Computer

Dataflow Operation

Data Flow Signal Processor

Data Memory

Data Transfer Network

EMSP Common Operational Software

Enhanced Modular Signal Processor

Fast Fourier Transform

Finite Impulse Response

Graph Instantiation Parameter

Global Memory

Global Memory Unit

v

HOL

ICU

roc

lOP

LM

LMS

MAP

NEP

ONR

PE

PID

PIP

PM

POPS

PRIM

PRIM IN

PRIM OUT

RNS

SCH

SI

SPGN

SPU

TS

High Order Language

Interface Control Unit

Input-output Controller

Input Output Processor

Local Memory

Least Mean Squares

Mapping Table

Node Execution Parameter

Office of Naval Research

Processing Element

Primitive Interface Definition

Primitive Interface Procedure

Processing Module

Principles of Operations

Primitive

Primitive Input

Primitive Output

Residue Number System

Scheduler

Sensor Interface

Signal Processing Graph Notation

Signal-processing Unit

Task Supervisor

vi

CHAPTER I

INTRODUCTION

The Enhanced Modular Signal Processor (EMSP) is the

next generation signal processor for the U.S. Navy. The

EMSP is an embedded real-time signal processor. It must

have enough resources to meet the time requirements, in

terms of signals per time, of the signal processing

application, and it must be physically small enough to fit

in the space available. The EMSP is a hybrid dataflow

computer which executes signal processing graphs according

to the dataflow methodology and executes command programs

according to the standard control flow methodology.

The EMSP Common Operational Software (ECOS) is the

software programming methodology for which the EMSP is

designed to operate. The ECOS programming methodology is

a graph-based methodology which uses dataflow graphs to

describe the signal processing algorithms and traditional

high order language command programs to control and

configure the graphs. When the EMSP application

programmer produces an EMSP application, ~he programmer

specifies the functionality of the application, but not

the numbers of functional units needed to carry out that

functionality.

1

2

Because of the embedded real-time nature of the

Enhanced Modular Signal Processor, it is critical that the

EMSP be as small as possible. The minimal EMSP

configuration for a particular signal processing

application is the smallest configuration which will

execute the application. The dynamic scheduling of the

operations of the EMSP makes finding the minimal EMSP

configuration a time-consuming and costly trial-and-error

simulation process.

Given the universe of pos~ible EMSP configurations,

the lower bound configuration for a particular signal

processing application is the configuration for which

there can be no smaller configuration which will execute

the application. The lower bound configuration does not

guarantee that the application will execute with the lower

bound numbers of units; it does guarantee that the

application cannot execute with fewer units.

The research problem of this thesis is to identify

the lower bound configuration. The outcome of the thesis

is a lower bound algorithm which analytically identifies

the lower bound configuration as specified by the numbers

of functional units.· The EMSP packager can use the

lower bound configuration as a beginning toward

configuring an EMSP and as a measure of minimality of the

chosen configuration.

The next chapter, The Literature Review and

Background Information, defines embedded real-time signal

processing requirements and reviews dataflow

implementations of real-time signal processors. Chapters

three and four, The Enhanced Modular Signal Processor and

The EMSP Common Operational Software, describe the

hardware and software for which this work applies.

3

Chapter five, Configuring the EMSP, describes the problem

of identifying the smallest system, tells why the present

approach does not provide the solution to the problem, and

introduces an alternate approach to the solution. Chapter

six, The Algorithm, develops the lower bound algorithm.

The thesis closes with chapter seven, Summary and

Conclusions. The figures are in the appendix.

CHAPTER II

THE LITERATURE REVIEW AND

BACKGROUND INFORMATION

This chapter reviews real-time systems and dataflow

implementations of real-time signal processors. The

information forms a base for the description in the next

chapter of the Enhanced Modular Signal Processor (EMSP).

The EMSP is an embedded real-time signal processing system

which executes using a hybrid dataflow methodology.

Real-time Systems

Real-time systems are both driven and defined by

their applications. Real-time systems are not batch

systems printing end-of-day reports. Real-time systems

are not interactive systems providing word processing

facilities. Real-time systems are not transaction systems

answering database queries. Real-time systems are systems

in which failure to satisfy their critical timing

requirements may result in an external catastrophe.

Definitions

Allworth [1] defines a real-time system as a system

which contains application software that controls a set of

4

devices in a timely manner. This definition

differentiates real-time systems from other systems by

focusing on the criticality of their deadlines. If a

deadline is missed by a multiprocessing system,

performance of the system may be degraded; if a deadline

is missed by a real-time aircraft control system, the

aircraft may crash.

5

Glass [2] defines a real-time system as one which

provides services to or control to an on-going physical

process. This definition differentiates real-time systems

from other systems by focusing on responsiveness and

efficiency. The automobile fuel injection system must

react as we depress the accelerator pedal; the anti-lock

braking system must react as we depress the brake pedal.

Kowal [3] defines a real-time system as one which

contains processes that operate concurrently with

independent real world events and have a regular or

predictable time relationship with those real world

events. This definition differentiates real-time systems

from other systems by flow of control. In most cases, a

user sitting at a terminal waiting for a response does not

constitute an independent external event; the user

activity is dependent on the actions of the system. A

real-time system produces output responses which must be

synchronized with independent external events.

Ward [4] defines a real-time system as a system for

which the elapsed time between an external stimulus and

6

the corresponding response by the system constitutes an

important part of the performance of that system. In

other words, each potential stimulus to the system has an

associated quantitative deadline and system performance is

acceptable if and only if the system responds to each

stimulus within its deadline. This definition

differentiates real-time systems from other systems in

which the system performance is qualitative (the response

time is acceptable to the user) or averaged (the backlog

does not grow indefinitely).

Characteristics

The participants at a workshop sponsored by the

Office of Naval Research (ONR) could not agree on a

definition for real-time systems. However, they did agree

on three characteristics of real-time systems: time is

the most precious and most critical resource, reliability

is crucial, and the environment in which the real-time

system operates is an active part of the system [5].

The first two characteristics, time and reliability,

can be thought of as components of real-time systems. The

third characteristic, synergism, can be thought of as the

interplay between the systems and their environments.

Time is the most precious and most critical resource

which a real-time system manages. Not satisfying time

constraints leads to failure. The result of a failure, as

in flight control for an aircraft, or in sensor based

environment acquisition for a submarine, may be a

catastrophe. Reliability of the component parts of a

real-time system is crucial to meet the time constraints.

Parts failure will result in failure to satisfy the time

constraints.

7

The environment is an active part of a real-time

system. The system and its environment are a synergistic

pair. The aircraft may not fly without the flight control

system; the submarine may not survive without its

environment acquisition system.

Embedded Real-time Systems -

Embedded real-time systems are not only critically

interconnected with their environments, their processing

power must fit in a tightly constrained space. Embedded

real-time systems operate in environments where physical

space is costly. The embedded real-time system for an

aircraft must fit inside that aircraft along with all the

other space consuming requirements for that aircraft; the

embedded real-time system for a submarine must fit inside

that submarine along with all the other space consuming

requirements for that submarine. Space is at a premium; a

too large real-time system means less space is available

for other critical needs. Embedded real-time systems must

satisfy the requirements for real-time systems and also

must be small in size.

8

In addition to satisfying requirements of time,

reliability, and size, most military embedded real-time

systems and many non-military embedded real-time systems

must be fully shielded. A fully shielded system affects

only its environmental subset, is unaffected by the

environment outside its subset, and is undetectable by the

environment outside its subset. Fully shielding an

embedded real-time computer system further constrains the

space available for the processing power.

Signal Processing Systems

Signal processing systems [6], [7] are systems which

respond to signals and produce other signals. A real-time

signal processing system continually accepts streams of

input and produces results at a rate no less than that

needed to keep up with the input streams.

There are four typical reasons to do signal

processing. One reason to do signal processing is to

estimate the characteristic parameters for a signal:

estimating the rise time of return signals from a matrix

radar for distance determination might be done using

waveform analysis, perhaps implementing mathematical

curvefitting techniques. Another typical reason is to

eliminate or reduce unwanted interference: reducing

background noise during aircraft communications might be

done using filtering techniques, perhaps using a finite

impulse response (FIR) filter. Another typical reason is

to transform signals into another more informative form:

changing time-domain sensor signals into frequency-domain

power information for underwater submarine identification

might be done using Fourier techniques, perhaps using a

fast Fourier transform (FFT). The fourth typical reason

to do signal processing is to modify the characteristics

of a system: controlling an inherently unstable high

performance aircraft might be done using feedback

techniques, perhaps using a least mean squares (LMS)

algorithm.

9

The four typical reasons to do signal processing

exist for many application areas. Signal processing

applications occur in fields such as acoustics, sonar,

radar, geophysics, communications, and medicine. A number

of dataflow signal processors have been designed to

execute signal processing applications.

Dataflow Signal Processors

Many researchers are designing dataflow machines for

signal processing applications. Researchers from Canada,

England, Finland, and the United States are represented by

the following dataflow signal processor designs.

The Dataflow Computer

In 1982, Wong and Ito [8], from the University of

British Columbia in Canada, published a paper proposing a

data-driven parallel computing machine for signal

processing applications, applications in which program

code is executed repeatedly. The objectives of the

machine design of their dataflow computer (DFC) were to

allow concurrent computations while avoiding unnecessary

replication of code. Figure 1 in the appendix shows a

block diagram of the architecture of the dataflow

computer.

10

The design of the DFC differs in some ways from

traditional dataflow computers. They replaced the low

level processing elements of traditional dataflow

computers by small general purpose processors, which they

continued to name processing elements (PEs). Using

general purpose processors results in fewer types of

components needed, higher resource utilization through

interchangeability, and increased fault tolerance

capabilities. It also increases the service rate, as the

dataflow operations (DFOs) can be assigned to the first

free processing element, without the DFO first being

decoded.

Rather than being devoid of local storage, as is the

case in traditional dataflow computers, each PE in the DFC

has associated with it a substantial local memory (LM);

each local memory holds colored multiple concurrent

activations of a single signal processing procedure. A

group of processing elements with their local memories is

called a processing module (PM). Separate data memories

(DMs) are backing stores for code, and separate count

11

memories (CMs) contain the operand counts and numbers of

operands for the dataflow operations. A single task

supervisor (TS) monitors the states of the PMs and updates

individual mapping tables (MAPs) to indicate which LMs

contain what procedures. A timeshared bus carries all

execution related traffic.

Simulation of the design of the DFC provided five

major results. First, timeshared busses are inadequate

for their traffic. Second, if switching networks are used

to solve the traffic problem of the timeshared busses,

then the number of PEs should be approximately equal to
4

the number of paths provided. Third, global count

memories worked as well as independent count memories.

Fourth, more capable processing elements increased the

service rate. Fifth, colored multiple concurrent

activations were faster than either sequential or

pipelined operations.

The Data Driven Signal Processor

In 1982, Hogenauer, Newbold, and Inn [9], working at

ESL Corporation, a subsidiary of TRW, published a

description of their proposed Data Driven Signal Processor

(DDSP). The objectives of their machine design were to

allow easy programming and modular expandability while

providing a maximum configuration execution rate of 71

mflops. Figure 2 in the appendix shows a block diagram of

the architecture of the Data Driven Signal Processor.

12

The design of the DDSP is similar to the machine of

Watson and Gurd [10] from the University of Manchester.

Each processor contains a queue which holds input, a

matching store which groups labeled tokens, and a 2.22

mflops floating point processing element. Two networks

connect the processors: a circular packet switch network

connects the processors for nearest-neighbor

communication, and a three level tree network connects the

processors for long-distance communication.

Simulation of the design of the DDSP provided three

major results. First, the dataflow nature of the DDSP

allows programming flexibility and effectiveness not

possible with array processors. Second, although the

processor efficiency (the percentage of time during which

the processor is doing useful work) decreases for larger

numbers of processors if the number of parallel operations

is kept constant, processor efficiency increases for

larger processor configurations if the number of parallel

operations is also increased. Third, processor efficiency

can be very high, with percentages above 90 percent for

large systems.

The Data Driven Signal Processor was an unsuccessful

competitor in the design race for the next generation

standard signal processor for the U.S. Navy.

13

The Data Flow Signal Processor

From 1982 through 1983, Kronlof, et. al. [11]-[15],

from the Helsinki University of Technology in Finland,

published a number of papers describing their proposed

Data Flow Signal Processor (DFSP). The objectives of

their machine design were to use a bus oriented

architecture to implement efficiently a processor mainly

intended for data intensive applications such as digital

signal processing while also providing expandability and

convenient programming. Figure 3 in the appendix shows a

block diagram of architecture of the Data Flow Signal

Processor.

The design of the DFSP uses a bank of high level, and

potentially special purpose, processors called processing

elements (PEs). An update unit matches colored result

tokens and allocates data storage for the results; the

result transfer unit controls storing the results in the

data storage. A fetch unit assigns executable operations

and data to appropriate free PEs; after transmission, the

data transfer unit deallocates the data storage. The

queue allows transmitting results from a PE, via the

update unit and result transfer unit, to the fetch unit

without those results being stored into the data storage.

Two busses carry the data and control traffic: one

bus carries the signal processing data; the other bus

carries the operation and result control packets for and

from the operation execution, respectively.

14

Simulation of the design of the DFSP provided four

major results. First, the update unit is the major

bottleneck in the control section of the machine. Second,

it is relatively simple to obtain uniform utilization of

the processors. Third, the value of the size of the

packets is linearly dependent on the bandwidth of the

busses and inversely dependent on the throughput of the

control section. Fourth, the fetch unit is not critical

for performance.

The Dataflow Binary Tree Processor

In 1984, Jamali, et. al. [16], from the University of

Windsor in Canada, published a paper proposing a dataflow

binary tree digital signal processor. The objectives of

their machine design were to exploit the fast

computational approaches of distributed, parallel, and

pipeline techniques while reducing or eliminating the

communication problems and indeterminacy associated with

conventional dataflow architectures. Figure 4 in the

appendix shows a block diagram of the architecture of the

dataflow binary tree processor.

The design of the dataflow binary tree digital signal

processor implements the carry free arithmetic operations

of the residue number system (RNS) by using multiple large

memories. The processor prestores the arithmetic

operations (multiplication, addition, or subtraction) in

the memories. It performs an arithmetic operation by

15

forming an address using the two input numbers and then

reading the result from memory. The execution time for

any arithmetic operation is the time to access the memory

added to the time to capture the result into the latch.

Each cell, or node, of the complete binary tree

processor is a computational element. Cells located at

nodes which have two children are called T-cells. T-cells

perform arithmetic operations. Cells located at leaf

nodes are called base cells or C-cells. C-cells store the

look up tables into the T-cells prior to beginning

algorithm execution, receive data and coefficients from

the data busses, perform the specified arithmetic

operation and create an output packet with sufficient

control bits to travel up the tree through the T-cells.

Jamali~ et. al., state that the design of the

dataflow tree processor provides four major benefits.

First, there is only a 7.5 percent overhead of bits

associated with packets, compared to 200 percent overhead

in other dataflow architectures. Second, the packets are

transmitted in parallel, thus avoiding the overhead

associated with serial communication protocol. Third, the

approach is deterministic and the throughput rate can be

estimated. Fourth, the computation time of any arithmetic

operation is reduced to the access time of the memory.

16

The Roman Circus System

Also in 1984, Wu, Constantinides, Curtis, and Wu [17]

published a paper describing their proposed Roman Circus

System. Y. S. Wu is from the U.S. Naval Research

Laboratory, Curtis is from the Admiralty Underwater

Weapons Establishment in England, and Constantinides and

L. J. Wu are from the Imperial College of Science and

Technology in England. The objective of their machine

design was to execute efficiently alternative low-level

primitive structures (ALPS) for acoustic signal

processing. Figure 5 in the appendix shows a block

diagram of the architecture of the Roman Circus System.

The design of the Roman Circus System contains three

classes of functional primitive modules: processing

elements (PEs), basic memories (BMs), and sensor

interfaces (Sis). A standard system interface control

unit (ICU) performs input and output queue management,

data buffering, activation and deactivation of the

primitive, and system communication and monitoring. The

interface control units and their associated modules make

up units: an ICU and a PE comprise a signal-processing

unit (SPU), an ICU and a BM comprise a global memory unit

(GMU) , and an ICU and an SI comprise an input-output

controller (IOC).

Three concentric communication paths carry the

traffic: a serial message circus, a parallel data circus,

and a parallel monitor circus. The monitor circus doubles

17

as a redundant data circus. A circus controller (CC), or

network manager, monitors system performance, dynamically

reconfigures the system, and initially loads structures

onto the paths. The CC allows only one item of message,

data, or signal onto each path at any time.

Wu, et. al. anticipate that the Roman Circus System

will provide two major benefits in addition to executing

ALPS primitives. First, the modularity of the system can

allow for extra modules to increase computational power

and system redundancy. Second, multiple Roman Circus

Systems can be combined easily by defining each system be

a module of an even higher level Roman Circus System, thus

making a hierarchical cluster system with even greater

connectivity, computational power, and system redundancy.

CHAPTER III

THE ENHANCED MODULAR SIGNAL PROCESSOR

The United States Navy places many embedded real-time

signal processing applications into its ships and aircraft

[18]. During the late 1970's, the Navy determined that

its future signal processing requirements could not be

attained by its current signal processing architecture,

the Advanced Signal Processor (ASP). Experience with the

ASP had proved that the concept of a single software

development system coupled with a limited number of

hardware module types could satisfy the needs of multiple

Navy signal processing applications. However, new

technologies would be necessary to increase the

performance per cubic inch of the embedded real-time

signal processors. Further, new programming methodologies

would be needed to reduce the cost of creating and

maintaining the increasingly numerous and complex signal

processing applications. The new signal processing

architecture would be called the Enhanced Modular Signal

Processor (EMSP) [19]-[21].

A real-time signal processing application is

characterized by repeatedly executing a well-defined

sequence of signal processing algorithms against signal

18

19

values as those signal values become available. Signal

processing application programmers typically begin

designing an application by drawing a picture of the flow

of signal values through the appropriate signal processing

transformations. The picture is a directed graph where

the arcs represent the flow of data, and the nodes

represent the operations done to the data.

To reduce the cost of creating and maintaining the

signal processing applications, the Navy decided on a

graph-based programming methodology, the EMSP Common

Operational Software (ECOS) [20], [22]-[24]. The Navy

then requested bids for a machine architecture which would

directly execute ECOS, the EMSP. AT&T Bell Laboratories,

AT&T Technologies, and Unisys jointly are developing and

producing the Enhanced Modular Signal Processor.

The EMSP

The dataflow methodology of computer operation is

that a computer should execute an operation as soon as the

operands for that operation become available. A dataflow

computer executes graphs where the arcs represent the flow

of data, and the nodes represent the operations done to

the data. The results of a research group at Helsinki

University, Helsinki, Finland show that a dataflow signal

processing computer can execute efficiently real-time

signal processing applications [14].

The Enhanced Modular Signal Processor is a hybrid

dataflow computer. Graphs, which describe the signal

processing algorithms, execute according to the dataflow

methodology. Command Programs, which control and

configure graphs, execute according to the standard

control flow methodology.

20

Certain features and implementations of the EMSP are

changes from traditional dataflow architectures. Each arc

of the ECOS graph allows multiple instances of data

elements, as compared to only one element, and is

implemented as a queue. Further, each node of the ECOS
I

graph is arbitrarily complex, as compared to consistently

simple. Example ECOS node operations include Fast-Fourier

Transform, Finite Impulse Response Filter, and Frequency

Domain Beamformer. The results of a research group at

AT&T Bell Laboratories show that the EMSP can execute

efficiently real-time signal processing applications [21].

The hardware modules which comprise an EMSP can be

grouped into three basic categories: functional elements

used primarily for the communications within the EMSP,

functional elements used primarily for the sequential

command program operation, and functional elements used

primarily for the dataflow graph execution. Figure 6 in

the appendix shows a block diagram of the architecture of

the Enhanced Modular Signal Processor. The following

sections describe the functional elements and their

interrelationships.

21

EMSP Communications

The Control Bus

The Control Bus (Cbus) is the bus which provides

paths among the various functional elements of the EMSP

for transmitting control and status messages. These short

messages move over the 8 byte token passing bidirectional

bus asynchronously at a maximum data rate of 4.61

megabytes per second. An EMSP has one Control Bus.

The Data Transfer Network

The Data Transfer Network (DTN) is the network which

provides paths among the functional elements of the EMSP

for transmitting messages comprised of large blocks of

data. The DTN is an N by N crossbar switch and provides

parallel unidirectional asynchronous communication paths

for up toN simultaneous paths. An EMSP has one or two

Data Transfer Networks.

The Global Memory

The Global Memory (GM) is the intelligent storage

element for the EMSP. The GM frees the application

programmer from many tasks of allocating and controlling

resources in software. It contains instruction streams,

queues, and graph variables. When a graph is instantiated

(an executing graph is created from a graph template), it

creates the nodes, queues, and graph variables for the

22

graph instance. It allocates and deallocates memory as

queues are written and consumed. It identifies when a

queue is over threshold, that is: when the number of

operands on an arc is equal to or greater than that needed

by the node to execute (providing all other arcs also meet

or exceed their thresholds). An EMSP has one or more

Global Memories.

EMSP Sequential Command Operation

The Command Program Processor

The Command Program Processor (CPP) is the control

element for the EMSP. It starts and stops graph

execution, starts and stops input, and interacts with the

operator to configure graphs. It does not participate

directly in graph execution. An EMSP has one Command

Program Processor.

The Input Output Processor

The Input Output Processor (lOP) is the channel

controller for the EMSP. It performs the input of signal

values to the graph and performs the output of results

from the graph. An EMSP has one or more Input Output

Processors.

23

EMSP Dataflow Graph Execution

The Scheduler

The Scheduler (SCH) is the node scheduler for the

EMSP. It contains the graph topology information needed

for graph execution. For instance, the Scheduler knows

which queues are inputs to a node. When the Global Memory

identifies a queue over threshold, it sends a message to

the Scheduler. The Scheduler checks all the input queues

for the node to which the over threshold queue is an input

and if all the input queues are over threshold, the

Scheduler schedules execution of the node on an Arithmetic

Processor. The EMSP has one Scheduler.

The Arithmetic Processor

The Arithmetic Processor (AP) is the node processor

for the EMSP. It executes the node operations. An

Arithmetic Processor can be executing portions of three

nodes concurrently. One node may be in its setup phase,

during which all needed information is read from the

Global Memories. A second node may be in its execute

phase, during which the operations are performed on the

data. A third node may be in its breakdown phase, during

which the results of its execution are stored in the

Global Memories. An EMSP has one or more Arithmetic

Processors.

24

All the functional elements work together

concurrently to execute an embedded real-time signal

processing application in the Enhanced Modular Signal

Processor. The following section describes the overall

operation of the EMSP by tracing the path of execution of

one node.

EMSP Operation

When the Scheduler recognizes that a node is ready to

execute, the Scheduler assigns the node to an Arithmetic

Processor and sends a message over the Control Bus to the

specific Global Memory which contains the instruction

stream of the node. The Global Memory then sends the

instruction stream over the Data Transfer Network to the

designated Arithmetic Processor.

The Arithmetic Processor executes the instruction

stream by completing the setup phase, the execute phase,

and the breakdown phase. During the setup phase, the

Arithmetic Processor sends messages requesting the data

needed to execute the node over the Control Bus to Global

Memories. After the Arithmetic Processor has received all

the requested data from the Data Transfer Network, the

Arithmetic Processor executes the node. During the

breakdown phase, the Arithmetic Processor sends messages

containing the results to be stored through the Data

Transfer Network to the Global Memories.

25

As a Global Memory stores results into a queue, it

also checks if the queue has gone over threshold,

indicating that there is enough data in the queue for the

next node to execute. For any queue which has gone over

threshold, the Global Memory sends a message over the

Control Bus to the Scheduler which checks to see if all

needed data is available for execution of another node.

This starts another cycle of execution.

\
\

_

CHAPTER IV

THE EMSP COMMON OPERATIONAL SOFTWARE

A real-time signal processing application is

characterized by repeatedly executing a well-defined

sequence of signal processing algorithms against signal

values as those signal values become available. Signal

processing application programmers typically begin

designing an application by drawing a picture of the flow

of signal values through the appropriate signal processing

transformations. The picture is a directed graph where

the arcs represent the flow of data, and the nodes

represent the operations done to the data.

To reduce the cost of creating and maintaining the

signal processing applications, the Navy decided on a

graph-based programming methodology, the EMSP Common

Operational Software (ECOS) [20], [22]-[24]. AT&T

Technologies is developing and producing the EMSP Common

Operational Software. It is also developing and producing

the initial signal processing applications using ECOS.

The ECOS

The EMSP Common Operational Software is a hybrid

programming methodology which uses dataflow graphs to

26

27

describe the signal processing algorithms, and traditional

high order language (HOL) command programs to control and

configure the graphs.

The software features which complete an ECOS signal

processing application can be grouped into two basic

categories: features used primarily for producing the

ECOS graphs, and features used primarily for producing the

command programs. The ECOS graphs and the command

programs make up the signal processing application. The

application programmer describes the nodes, arcs, and

various parameters by using Signal Processing Graph

Notation (SPGN). The programmer describes the command

program by using a high order language and Command Program

SPGN.

ECOS Graph Constructs

A signal processing application programmer typically

begins designing an application by drawing a graph of the

flow of signal values through the appropriate signal

processing transformations. Each of these transformations

is a signal processing algorithm which the programmer

represents as a node of the graph. Each connection

between transformations is a queue which the programmer

represents as an arc of the graph. The programmer also

specifies to the graph various parameters which allow for

changing sensor conditions.

28

The Node

An ECOS node represents the signal processing entity

in an ECOS program, or graph. Example ECOS node

operations include Fast-Fourier Transform, Finite Impulse

Response Filter, and Frequency Domain Beamformer. The

ECOS signal processing application programmer builds

signal processing graphs using these predefined signal

processing operations, called primitives (PRIMs). For

each node in the graph, the programmer specifies the name

of the primitive to execute, and the names of the queues

and variables which are connected to the logical input and

logical output ports of the node.

Associated with each node is a Primitive Interface

Procedure (PIP) which provides data elements to the

primitive as it executes. These data elements, called

primitive inputs (PRIM_INs) and primitive outputs

(PRIM_OUTs), include constants, graph controls, and data

from the queues.

The Queue

An ECOS queue represents the primary data storage in

an ECOS program. These expandable first-in first-out

structures do not branch and are connected at both ends to

nodes. Two types of queues exist: data queues and

trigger queues. Most queues are data queues; they contain

data elements of arbitrary complexity. Relatively few

queues are trigger queues; they contain only

29

synchronization signals and are used to synchronize nodes

which must share a timing relationship but which share no

data relationship. Queues are internal or dynamic.

Internal queues are declared within a graph to connect

nodes. Dynamic queues are defined in a command program to

connect together multiple graphs or to connect graphs to

input/output procedures.

The Graph Variable

A Graph Variable (GV) represents a memory location

which holds one data element of arbitrary complexity.

Graph variables provide communication among graphs and

command programs. Graph variables are internal or

dynamic. Internal graph variables are declared within the

graph definition and are local to that graph; that is,

they are read and write accessible to the graph, and read­

only accessible to subgraphs of that graph. Dynamic graph

variables are defined in the command program and are read­

only accessible to a graph using them.

The Node Execution Parameters

The Node Execution Parameters (NEPs) describe the

ways in which the availability of data on queues affects

the execution of the nodes. Associated with each node is

a Primitive Interface Procedure (PIP) which calculates the

amounts for each Node Execution Parameter at run time and

which provides the data items to the primitive as it

30

executes. Each arc of the ECOS graph allows multiple

instances of data elements; this provides flexibility and

reduces data transfer overheads as compared to traditional

one element arcs. The application programmer specifies

the number of data elements needed for the various

operations per queue. Threshold, Read, Offset, and

Consume amounts are the NEPs which relate to the node

input ports. Valve, Produce, and Pulse amounts are the

NEPs which relate to the node output ports.

The Threshold amount is the number of data elements

which must be present on the queue for the node to

execute. The Read amount is the number of data elements

on the queue which are used by the node when it executes;

for fault-tolerance, node execution reads are non­

destructive. The Offset amount is the number of data

elements on the queue to skip before beginning to read the

data elements; often in signal processing applications,

parts of the data stream are ignored as execution

proceeds. The Consume amount is the number of data

elements to remove from the queue after node execution;

often in signal processing applications parts of the data

stream are reused in subsequent executions of the node.

The Valve amount is a switch which enables or

disables the output of the node; it may be that a

particular graph configuration does not need the output to

a specific port of the node downstream from the node. The

Produce amount is the number of data elements to be added

to an output data queue. The Pulse amount is the number

of pulses to be added to an output trigger queue. The

application programmer does not specify the Produce and

the Pulse amounts; the PIP calculates them based on the

execution rules of the primitive.

ECOS Command Program Constructs

A signal processing application programmer builds a

Command Program (CP) by writing in a high order language

(HOL) and including in it special calls to graph

operations (Command Program SPGN).

A command program has five functions: command

program control, input/output control, queue control,

graph instance control, and graph variable control.

31

Because of the dataflow nature of the system, command

programs do not schedule tasks, allocate resources, or

manage memory. Command programs do start and stop graphs,

create queues, read and write queues and control

variables, and perform exception handling. Command

programs control graph instantiation and dynamic

reconfiguration; they do not do any signal processing.

The High Order Language

The High Order Language (HOL) is an arbitrary high

order language into which the programmer embeds predefined

Signal Processing Graph Notation procedure calls (Command

Program SPGN). Although the present command programs are

written in the Navy designed high order language CMS2,

future command programs are to be written in Ada.

The HOL programs provide control structures within

which SPGN procedure calls are embedded to control graph

execution and interaction. The HOL programs also

establish communications between the command program and

the outside world.

The Embedded ECOS Statement

32

The embedded ECOS statements are predefined Signal

Processing Graph Notation procedure calls (Command Program

SPGN). The procedure names are prefaced with a percent

sign.

The embedded ECOS statements allow command programs to

start and stop graphs, create queues, read and write

queues and control variables.

ECOS Programming

The ECOS programmer begins programming by drawing a

graph of the signal processing application. Circles,

representing nodes, are labeled with names of signal

processing primitives. Arcs, representing queues, are

labeled with names of queues containing data along with

the values of their associated node execution parameters.

Boxes, representing data elements for the primitives, are

labeled with the names of the primitive inputs and

primitive outputs, and are attached to the appropriate

nodes. After drawing the graph, the programmer converts

the graph to the appropriate ECOS SPGN. The programmer

also writes a separate command program with its embedded

Command Program SPGN to control the graph.

Figure 7 in the appendix shows a graph, Figure 8 in

the appendix shows the ECOS SPGN for the graph in Figure

7, and Figure 9 in the appendix shows a command program

for the graph in Figure 7.

33

By writing high level procedures which contain all

the Command Language SPGN, the programmer can make the

command program look as if it is written in only a high

order language; all the command .program SPGN can be buried

inside procedures. Further, by writing a procedure which

has the command program modify a graph control, the high

order language program can reconfigure dynamically the

graph during execution.

Figure 10 in the appendix shows a command program for

a dynamically reconfigurable graph.

CHAPTER V

CONFIGURING THE EMSP

The Enhanced Modular Signal Processor (EMSP) is the

next generation embedded real-time signal processor for

the U.S. Navy. At its system level, the EMSP operates as

a dataflow computer. It uses a single command program

processor and a single scheduler to oversee the operations

of multiple processors, memories, and data

interconnections.

The Need for Minimal EMSP Systems

The EMSP must operate in real-time: that is, it must

produce its output at a rate equal to or greater than its

respective input rates. The EMSP must be embedded: that

is, it must fit into a confined space. In some ways,

these two criteria conflict. Increasing the functionality

of the computer tends to increase the number of modules

needed to obtain that functionality, and thus tends to

increase the size of the machine to the point where it

does not fit in the space available.

The real-time portions of the computer are described

by the number of operations per second which the computer

must execute. The projected throughput requirements to

34

35

process the data from a submarine large-aperture array is

4 trillion operations per second, with 2.4 trillion of

those operations being complex multiplications. Even

small airborne signal processors have requirements of 300

million complex operations per second for the 1990 time

frame [25]. Failure to meet these requirements in an

operational signal processor will result in potential

disaster.

The embedded characteristics of the computer are

described by the size of the environments into which it

must fit. In this case, the anticipated environments are

locations in aircraft and submarines. In every instance,

space is at a premium and the larger the computer, the

less space for other critical needs.

As the EMSP is a modular computer, matching the

number of modules to the needs of its signal processing

application will result in the smallest physical size, and

thus allow maximal operational functionality in the

smallest overall package.

The Present Approach

The EMSP is designed to execute EMSP Common

Operational Software (EGOS). EGOS is a graph-based

programming methodology where arcs represent flow of

signal values and nodes represent signal processing

transformations. When the EMSP application programmer

produces an EMSP application, the programmer specifies the

functionality of the application, but not the hardware

modules needed to carry out that functionality.

36

Because of the embedded real-time nature of EMSP

systems, it is critical that an EMSP system be as small as

possible. In other words, it is critical that the machine

have the fewest numbers of processors, memories, and data

interconnections needed to execute the signal processing

application.

The present approach to identifying the smallest

system is based on information obtained by executing the

signal processing application. The approach is: 1) find

an existing application with functionality similar to the

new application, and then 2) modify the machine which

executes the existing application by adding or deleting

processor, memory, and data interconnection modules to

obtain a new machine which will execute the new

application. Unfortunately, there are at least three

difficulties with the present approach.

Problems with the Present Approach

First, the present approach requires finding an

existing similar application. If the new application has

functionality dramatically different from all existing

applications, or if the new application is the first

application (as is the present case, EMSP being a new

signal processor with no ECOS programs for it yet), the

present approach fails.

37

Second, to obtain any configuration information, the

present approach requires executing the application.

Based only on dynamic information obtained from executing

the application, the present approach is expensive.

Third, even if a modified machine were obtained which

executes the new application, the present approach gives

no information as to how close that machine configuration

is to the minimal configuration.

The Lower Bound Approach

Given the universe of possible EMSP configurations,

the lower bound configuration for a particular signal

processing application is the configuration for which

there can be no smaller configuration which will execute

the application.

The lower bound approach to identifying the lower

bound configuration is based on static information

obtained from the well-formed ECOS graph. The approach

is: 1) for each type of hardware module, determine the

minimum needed capacity for its functionality, be that

minimum in cycle rates, memory space, data rates, or

transfer rates, and then 2) divide the minimum needed

capacity by the EMSP specified capacity for that type of

module.

The lower bound approach does not rely on previously

existing applications or machines. It uses only static

information from the graph, the Primitive Interface

38

Definition (PID), the application, and the characteristics

of the EMSP to identify the lower bound configuration.

CHAPTER VI

THE ALGORITHM

The Well-formed ECOS Graph

A well-formed ECOS graph satisfies a number of

criteria. First, the graph has correct syntax. Second,

the graph has no deadlocked cycles. Third, the graph

contains only consistent node execution frequencies.

A correct solution to an ECOS signal processing

problem has a graph which is well-formed. Having a well­

formed graph does not imply that the solution to an ECOS

signal processing problem is correct, but having a graph

which is not well-formed does mean that the solution is

incorrect. It is wasteful to configure an EMSP for a

solution which is wrong. Therefore, it is important to

assure that the graph is well-formed before continuing.

Computer Assisted System Engineering (CASE) tools can

traverse the graph and identify if it is well-formed.

The Graph Parser

A graph having correct syntax satisfies the

conditions that each node has the correct numbers and data

types of input queues, output queues, and primitive

parameters, and that each queue of the graph has exactly

39

40

one source node and one sink node. The definition of each

primitive available to an ECOS graph node is contained in

the Primitive Interface Definition (PID). A Graph Parser

can check each node of the graph against the definition of

the primitive of that node and report discrepancies. It

also can report the names of queues used too many or too

few times.

The Deadlock Detector

A graph has a deadlocked cycle if there exists a

cycle such that each node in the cycle needs data from a

predecessor in the cycle before that node can execute. If

there is a deadlocked cycle in a graph executing on a

dataflow processor, no node in the deadlocked cycle can

obtain its needed data. The nodes in a deadlocked cycle

will never go over threshold; the nodes in a deadlocked

cycle will never execute.

A graph has no deadlocked cycles if there is no cycle

where each node in the cycle needs data from a predecessor

in the cycle before that node can execute. Nodes in

deadlocked cycles can be identified by the following

process: create a reachability matrix where a 1 in (a,b)

indicates a direct path from node a to node b; zero out

fully initialized paths; form the transitive closure of

the resulting matrix (Warshall's Algorithm [26] is

appropriate for this process); a 1 in (a,a) indicates that

node a is in a deadlocked cycle. Fully initializing one

41

of the queues can eliminate the deadlocked cycle. A graph

Deadlock Detector can report the names of nodes which are

contained in deadlocked cycles.

The Produce Calculator

A requirement of a correctly executing graph is that

a queue does not overflow. In other words, the Node

Execution Parameters (NEPs) specified by the ECOS

application programmer must coordinate the Produce amounts

of a predecessor node and the Consume amounts of the

current node such that the input queue of the current node

does not overflow. The programmer does not specify the

Produce amounts of ·a node when creating a graph; the

Primitive Interface Procedure (PIP) calculates the Produce

amounts as the graph executes based upon the NEPs and the

execution rules of the primitive in the Primitive

Interface Definition (PID). A Produce Calculator, using

information from the graph and from the PID, can calculate

the Produce amount for each output queue for one execution

of a predecessor node. The Produce amount is needed to

calculate the frequencies of a node. Figure 11 in the

appendix shows an example of the operation of the Produce

Calculator.

The Frequency Calculators

A graph contains only consistent node execution

frequencies if the graph contains only consistent

42

assignments of Node Execution Parameters (NEPs), contains

only consistent assignments of input data rates, and

contains no unachievable performance requirements.

The Relative Frequency Calculator. Nodes communicate

via queues. An output queue from one node is an input

queue to another node. The relative frequency of a node

describes how relatively often the node must execute and

consume data to keep up with the produced data of its

initial input node. Relative frequencies are in terms of

the symbolic rate of the initial input node frequency,

freq(i). If a predecessor node executes two times as

often as its initial input node frequency, producing 1024

data items from each execution, and the current node

consumes 512 data items at each execution, then the

current node must execute four times as often as its

initial input node frequency (4*freq(i)) to keep up with

the produced data and prevent queue overflow.

relative frequency of current node =
relative frequency of predecessor node
MULTIPLIED BY produce amount of predecessor

node for queue from predecessor to
current

DIVIDED BY consume amount of current node
for queue from predecessor to current

A node of the graph may have multiple paths to it

from one input node. The programmer must specify

consistent NEPs for each queue of the graph such that each

node executes at a consistent frequency relative to each

of its initial input nodes. A node can execute only at

43

one frequency; if the relative frequencies for a node

imply that the node must consume data from one of its

input queues three times as often as it must consume data

from another of its input queues, then at least one

specified NEP is incorrect. Figure 12 in the appendix

shows an example of the operation of the Relative

Frequency Calculator.

The Required Frequency Calculator. The required

frequency of a node describes how often the node must

execute and consume data to keep up with the produced data

of its predecessor node. Required frequencies are in

terms of actual executions per second. If a predecessor

node executes two times a second, producing 1024 data

items from each execution, and the current node consumes

512 data items at each execution, then the current node

must execute four times a second to keep up with the

produced data and prevent queue overflow.

required frequency of current node =
required frequency of predecessor node
MULTIPLIED BY produce amount of predecessor

node for queue from predecessor to
current

DIVIDED BY consume amount of current node
for queue from predecessor to current

If the node is an initial node, then the required

frequency of the current node describes how often the

initial node must execute and consume data to keep up with

the data provided by its sensor input. If a sensor is

providing data at a rate of 32768 data items per second,

and the initial node consumes 1024 data items at each

execution, then the initial node must execute 32 times a

second to keep up with the sensor data.

required frequency of initial node =
input data rate

44

DIVIDED BY consume amount of input node for
queue from sensor to current

A node of the graph can have multiple predecessor

nodes. The programmer must specify consistent NEPs for

each queue of the graph such that each node executes at a

consistent frequency relative to each of its predecessor

nodes. A node can execute only at one frequency; if the

required frequencies for a node imply that the node must

consume data from one of its input queues three times as

often as it must consume data from another of its input

queues, then the required frequencies of the node are

inconsistent. If all the relative frequencies of a graph

are consistent and the required frequencies of the node

are inconsistent, then at least one specified NEP is

incorrect or at least one input data rate is incorrect.

Figure 13 in the appendix shows an example of the

operation of the Required Frequency Calculator.

The Maximum Frequency Calculator. The maximum

frequency of a node describes the maximum number of times

a node can execute in a particular EMSP configuration. If

the clock rate of an arithmetic processor (AP) is 100,000

cycles per second, and the node requires 4000 cycles to

execute once, then the node can execute at most 25

executions per second.

maximum frequency of node =
clock rate of arithmetic processor
DIVIDED BY cycles needed to execute node

45

If the required frequency for a node is greater than

its maximum frequency, then the EMSP cannot execute the

application as it is written. There is at least one node

which is too large and must be divided into smaller nodes

that can execute concurrently, or there is at least one

initial input data rate which is too great and must be

reduced. Figure 14 in the appendix shows an example of

the operation of the Maximum Frequency Calculator.

Ready to Configure

Prior to configuring, Computer Assisted System

Engineering (CASE) tools can traverse the graph and

identify if it is well-formed. A Graph Parser can check

each node of the graph against the definition of the

primitive of that node and report discrepancies. It also

can report the names of queues used too many or too few

times. A Deadlock Detector can report the names of nodes

which are contained in deadlocked cycles. A Produce

Calculator can calculate the Produce amount for each

output queue for one execution of predecessor node.

Frequency Calculators can check that a graph contains

consistent assignments of Node Execution Parameters,

46

contains consistent assignments of input data rates, and

contains no unachievable performance requirements. It is

now reasonable to identify the lower bounds on each type

of functional unit needed to execute the graph.

The Lower Bounds

This section contains 4 sub-sections. Each sub­

section describes one part of the complete algorithm which

identifies the lower bound on the number of each type of

hardware module needed to execute a signal processing

application on the Enhanced Modular Signal Processor

(EMSP). The algorithm uses only static information from

the graph, the Primitive Interface Definition (PID), the

application, and the characteristics of the EMSP to

identify the attributes and resultant hardware needs of

the application. The sub-sections are in the order of the

functional units they address and are in the order:

. Arithmetic Processors (APs), Global Memories (GMs), Input

Output Processors (lOPs), and Data Transfer Networks

(DTNs).

Each sub-section identifies the lower bound for one

type of functional unit. The lower bounds assume a well­

formed graph and 100% utilization of the functional units.

The first sub-section identifies the lower bound on the

number of APs needed to execute the graph in real-time.

The second sub-section identifies the lower bound on the

number of GMs needed to hold the instruction streams and

47

the data. The third sub-section identifies the lower

bound on the number of lOPs needed to handle the input and

output in real-time. The fourth sub-section identifies

the lower bound on the number of DTNs needed to support

the data communications among the APs and GMs in real­

time.

The descriptions are in separate sub-sections for

clearness of explanation. For efficient execution, the

implementation of the algorithm can combine the sub­

sections appropriately so as to gather all the information

in one graph traversal, and later make the necessary

computations to identify the lower bounds. Each sub­

section is described using successive decomposition of the

unknowns until the lower bound is defined completely by

known quantities.

The Lower Bound on Arithmetic

Processors

Sub-section one identifies the lower bound on the

number of Arithmetic Processors (APs).

The lower bound on the number of Arithmetic

Processors needed is the total number of machine cycles

per time-unit needed to execute the graph divided by the

number of machine cycles per time-unit obtainable from one

Arithmetic Processor. In other words, it is the total

needed cycle rate divided by the Arithmetic Processor

cycle rate.

lower bound on the number of APs
CEILING OF (

total needed cycle rate
DIVIDED BY cycle rate of AP)

A graph consists of a number of nodes. The total

48

cycle rate needed to completely execute the graph is the

total of the cycle rates needed per node for all the nodes

in the graph.

total needed cycle rate =
SUM OVER all nodes
OF cycle rate per node

all nodes =
SPECIFIED IN the graph

An individual node may be required to execute a

number of times to complete one execution of the graph.

Therefore, the total cycle rate needed for a node is the

cycles needed for one node execution multiplied by the

number of times the node is executed per time-unit.

cycle rate per node =
cycles for one node execution
MULTIPLIED BY node execution rate

The cycles needed for one node execution is a

function of the Read amount for the underlying primitive

of the node. Looking up the primitive name in the

Primitive Interface Definition (PID) provides the formula

to calculate the number of cycles. Inspecting the graph

provides the Read amount to substitute into the formula.

49

cycles for one node execution =
CALCULATE USING Read amount and PID formula

Read amount =
SPECIFIED IN the graph

PID formula =
CHARACTERISTIC OF the primitive

The node execution rate is the required frequency of

the node.

same

All

node execution rate =
required frequency of node

required frequency of node =
CALCULATE USING the Required Frequency

Calculator

the APs in a particular EMSP operate with the

cycle time. The cycle rate for an AP is a

characteristic of the particular EMSP.

cycle rate of AP =
CHARACTERISTIC OF the EMSP

Arithmetic Processor Summary. The following

operationally summarizes the AP sub-section of the Lower

Bound Algorithm.

At each node, calculate the cycles needed for one

execution of that node by using the Read amount in the

graph and the formula in the PID. Also calculate the

execution rate of that node by using the Required

Frequency Calculator. Multiplying the cycles needed for

one execution by the execution rate gives the cycle rate

50

needed for that node to execute the graph. Add that

amount to a needed cycle rate counter.

After traversing all nodes, divide the needed cycle

rate by the cycle rate of an AP to get the lower bound on

the number of APs needed.

Figure 18 in the appendix shows an example of the

computation of the lower bound on the number of APs using

the graph of Figure 15, the computed required frequencies

of Figure 16, and the node data of Figure 17. The example

is small compared to a complete ECOS application; the

computed lower bound on the number of APs for the lower

bound example equals one.

The Lower Bound on Global Memories

Sub-section two identifies the lower bound on the

number of Global Memories (GMs).

The lower bound on the number of Global Memories

needed is the total number of memory bytes needed to

store the graph divided by the number of bytes available

in each Global Memory.

lower bound on the
CEILING OF (

number of GMs

total needed memory space
DIVIDED BY memory space in GM)

A graph contains both instruction streams and data.

The total memory space needed to completely store the

graph is the sum of the space needed for the instruction

streams and for the queues.

total needed memory space =
memory space for instruction streams
PLUS memory space for queues

The total memory space needed for the instruction

streams is the total of the space needed per instruction

stream for all the nodes in the graph. Looking up the

51

instruction name in the PID provides the space needed for

the instruction stream in bytes.

memory space for instruction streams =
SUM OVER all nodes
OF space for instruction stream per node

all nodes =
SPECIFIED IN the graph

space for instruction stream per node
SPECIFIED IN the PID

The total memory space needed for the queues is the

total of the space needed per queue for all the queues in

the graph.

memory space for queues
SUM OVER all queues
OF space per queue

all queues =
SPECIFIED IN the graph

The EMSP Principles of Operations (POPS) manual

defines the space for a queue to be three times the

Threshold amount for the queue. For each queue,

inspecting the graph to obtain the Threshold amount and

multiplying that number by three gives the space per

queue.

space per queue =
three
MULTIPLIED BY Threshold amount

three =
CHARACTERISTIC OF the EMSP

Threshold amount
SPECIFIED IN the graph

All the GMs in a particular EMSP contain the same

52

number of bytes. The available memory space for a GM is a

characteristic of the particular EMSP.

memory space in GM =
CHARACTERISTIC OF the EMSP

Global Memory Summary. The following operationally

summarizes the GM sub-section of the Lower Bound

Algorithm.

At each node, look up the memory space needed for the

instruction stream in the PID. Add that amount to a

needed memory space counter. At each queue, calculate the

memory space needed for the queue by multiplying the

Threshold amount by three. Add that amount to the needed

memory space counter also.

After traversing the graph, divide the needed memory

space by the memory space in a GM to get the lower bound

on the number of GMs needed.

Figure 19 in the appendix shows an example of the

computation of the lower bound on the number of GMs using

the graph of Figure 15 and the node data of Figure 17.

53

The computed lower bound on the number of GMs for the

lower bound example equals one.

The Lower"Bound on Input Output

Processors

Sub-section three identifies the lower bound on the

number of Input Output Processors (IOPs).

The lower bound on the number of Input Output

Processors needed is the total data rate needed to handle

the input and output data divided by the maximum data rate

obtainable from one Input Output Processor.

lower bound on the number of IOPs
CEILING OF (

total needed input-output data rate
DIVIDED BY data rate of IOP)

A graph receives input and produces output. The

total data rate needed to completely handle the input and

output data is the sum of the rates needed for the input

data and for the output data.

total needed input-output data rate
input data rates
PLUS output data rates

A graph may have multiple inputs. The total data

rate needed for the input data is the total of the data

rates needed per input queue for all the input queues in

the graph. The rate per input queue is specified in the

signal processing application.

input data rates
SUM OVER all input queues to graph
OF data rate per input queue

all input queues to graph =
SPECIFIED IN the graph

data rate per input queue =
SPECIFIED IN the application

54

Similarly, a graph may have multiple outputs. The

total data rate needed for the output data is the total of

the data rates needed per output queue for all the output

queues in the graph.

output rates =
SUM OVER all output queues from graph
OF data rate per output queue

all output queues from graph
SPECIFIED IN the graph

Each output queue has data produced to it by an

output node which executes at a certain rate. The Produce

amount of a node is the amount of data produced in one

node execution. The data rate needed per output queue is

its Produce amount multiplied by the number of times its

output node is executed per time-unit.

data rate per output queue =
Produce amount of output node
MULTIPLIED BY execution rate of output node

Produce amount of output node =
CALCULATE USING the Produce Calculator

The node execution rate is the required frequency of

the node.

execution rate of output node
required frequency of node

required frequency of node
CALCULATE USING the Required Frequency

Calculator

55

All the lOPs in a particular EMSP operate at the same

maximum data rate. The data rate for an lOP is a

characteristic of the particular EMSP.

data rate of lOP =
CHARACTERISTIC OF the EMSP

Input Output Processor Summary. The following

operationally summarizes the lOP sub-section of the Lower

Bound Algorithm.

At each input queue, look up the data rate needed for

the input data in the application specification. Add that

amount to a needed data rate counter. At each output

queue, calculate the amount of data produced to it in one

output node execution by using the Produce Calculator.

Also, calculate the execution rate of the output node by

using the Required Frequency Calculator. Multiplying the

data produced in one execution by the execution rate gives

the data rate needed for the output queue. Add that

amount to the needed data rate counter also.

After traversing the graph, divide the needed data

rate by the data rate of an lOP to get the lower bound on

the number of lOPs needed.

Figure 20 in the appendix shows an example of the

computation of the lower bound on the number of lOPs using

56

the graph of Figure 15 and the computed required

frequencies of Figure 16. The computed lower bound on the

number of lOPs for the lower bound example equals one.

The Lower Bound on Data

Transfer Networks

Sub-section four identifies the lower bound on the

number of Data Transfer Networks (DTNs).

The lower bound on the number of Data Transfer

Networks is the total number of transfer cycles per time­

unit needed to support the data communications divided by

the number of transfer cycles obtainable from one Data

Transfer Network.

lower bound on the number of DTNs
CEILING OF (

total needed transfer rate
DIVIDED BY transfer rate of DTN)

A graph contains many APs and GMs. The total

transfer rate needed to support the data communications

among APs and GMs is the total of the data transfer rates

needed per node for all the nodes in the graph.

total needed transfer rate =
SUM OVER all nodes
OF transfer rate per node

all nodes =
SPECIFIED IN the graph

An individual node may be required to be executed a

number of times to complete one execution of the graph.

57

Therefore, the total transfer rate needed to support a

node is the transfer traffic for one node execution

multiplied by the number of times the node is executed per

time-unit.

transfer rate per node =
traffic for one node execution
MULTIPLIED BY node execution rate

The communication traffic for one node execution is

the sum of the traffic which results from the instruction

stream transfers and from the data transfers.

traffic for one node execution
instruction stream traffic
PLUS data traffic

For one node execution, the communication traffic

resulting from the instruction stream transfer is the size

of the instruction stream. Looking up the instruction

name in the PID provides the size of the instruction

stream.

instruction stream traffic
instruction stream size

instruction stream size =
SPECIFIED IN the PID

For one node execution, the communication traffic

resulting from the data transfer is the sum of the input

data to the node and the output data from the node.

data traffic =
input data traffic to node
PLUS output data traffic from node

58

A node may have many input queues associated with it.

The total amount of input data to the node for one node

execution is the total of the Read amounts per input queue

for all the input queues of the node.

input data traffic to node =
SUM OVER all input queues per node
OF Read amount per queue

all input queues per node =
SPECIFIED IN the graph

Read amount per queue
SPECIFIED IN the graph

Similarly, a node may have many output queues

associated with it. The total amount of output data from

the node for one node execution is the total of the

Produce amounts per queue for all the output queues of the

node.

output data traffic from node =
SUM OVER all output queues per node
OF Produce amount per queue

all output queues per node
SPECIFIED IN the graph

Produce amount per queue =
CALCULATE USING the Produce Calculator

The node execution rate is the required frequency of

the node.

node execution rate =
required frequency of node

required frequency of node =
CALCULATE USING the Required Frequency

Calculator

59

All the DTNs in a particular EMSP operate at the same

transfer rate. The transfer rate for a DTN is a

characteristic of the particular EMSP.

transfer rate of DTN
CHARACTERISTIC OF the EMSP

Data Transfer Network Summary. The following

operationally summarizes the DTN sub-section of the

algorithm.

At each node, obtain the instruction stream transfer

traffic by looking up the instruction stream size in the

PID. Add that amount to a needed transfer traffic

counter. At each input queue of the node, obtain the

input data transfer traffic by looking up the Read amount

in the graph. Add that amount to the needed transfer

traffic counter. At each output queue of the node,

calculate the amount of the output data transfer traffic

by using the Produce Calculator. Add that amount to the

needed transfer traffic counter. The transfer traffic

counter now contains the total of the needed transfer

traffic for one execution of the node. Calculate the

execution rate of the node by using the Required Frequency

Calculator. Multiplying the needed transfer traffic by

the execution rate gives the transfer rate needed for the

node. Add this amount to a needed transfer rate counter,

and zero out the needed transfer traffic counter.

After traversing all nodes, divide the needed

transfer rate by the transfer rate of a DTN to get the

lower bound on the number of DTNs needed.

60

Figure 21 in the appendix shows an example of the

computation of the lower bound on the number of DTNs using

the graph of Figure 15, the computed required frequencies

of Figure 16, and the node data of Figure 17. The

computed lower bound on the number of DTNs for the lower

bound example equals one.

CHAPTER VII

SUMMARY AND CONCLUSIONS

The Enhanced Modular Signal Processor (EMSP) is an

embedded real-time signal processor. Because of the

nature of EMSP systems, it is critical that an EMSP system

have enough resources to meet the time requirements of the

signal processing application and also be as small as

possible.

The present approach to finding the smallest system

is based on information obtained by executing the signal

processing application. The present approach requires

finding a similar application even though there may be no

similar application. It requires time-consuming and

costly trial-and-error simulation. Further, the present

approach gives no information as to how close an obtained

machine configuration is to the minimal configuration.

The lower bound algorithm developed in this thesis

does not require finding a similar application. The lower

bound algorithm identifies the lower bound configuration

using only static information from the graph, the

Primitive Interface Definition (PID), the application, and

the characteristics of the EMSP. An implementation of the

61

algorithm can traverse the graph once and obtain results

quickly and inexpensively.

62

The algorithm requires a well-formed graph. A graph

which has correct syntax, no deadlocked cycles, and only

consistent node execution frequencies is a well-formed

graph. Requiring a well-formed graph is reasonable; an

application having a graph which is not well-formed means

the solution is incorrect and cannot execute, regardless

of the machine configuration.

The lower bound approach is based on the capacities

of by the hardware modules, be those capacities in machine

cycles for the Arithmetic Processors (APs), memory bytes

for the Global Memories (GMs), data rates for the Input

Output Processors (lOPs), or transfer rates for the Data

Transfer Networks (DTNs). The algorithm divides the total

capacity needed for the application by the capacity which

can be supported by one hardware module to identify the

lower bound on the number of that hardware module needed.

This dissertation shows how to use only static

information from the graph, the Primitive Interface

Definition (PID), the application, and the characteristics

of the EMSP to identify the lower bound configuration.

Further Work

Assignment and Contention

The lower bounds identify the minimum numbers of

hardware modules below which the application is guaranteed

63

to fail to execute. However, given an EMSP with the lower

bound numbers of hardware modules, the application still

may be unable to execute. In other words, the lower bound

configuration may not be a minimal configuration. Further

work is necessary to identify the minimal configuration.

This work has at least two component parts: the

assignment problem, and the contention problem.

The assignment problem is the problem that more

functional units may be needed for the minimal

configuration than are required for the lower bound

configuration. The assignment problem arises because

there may be EMSP requirements and application

requirements which prohibit full use of Global Memories

(GMs) and Input Output Processors (IOPs).

For example, there may be three queues which, when

their space requirements are totaled, could be stored by

two GMs. The lower bound algorithm will identify two as

the number of needed GMs. However, the EMSP architecture

requires that a queue cannot be split across GMs. Rather

than needing only two GMs (the lower bound number), the

EMSP needs three GMs.

There may be four sensors which, when their data

rates are totaled, could be handled by two IOPs. The

lower bound algorithm will identify two as the number of

needed lOPs. However, the application may require that

each sensor be assigned to a different IOP. Rather than

needing only two IOPs, the EMSP needs four lOPs.

64

The two preceding examples showed instances of the

assignment problem. The problem exists for assigning

instruction streams and queues to GMs and assigning

sensors and output devices to lOPs. The assignments for

instruction streams, queues, sensors, and output devices

are static assignments. The initial part of the problem

is to devise suitable assignment algorithms, or an optimal

assignment algorithm, for assigning sizes to modules. The

subsequent part of the problem is to consider how to

include those assignments when identifying the numbers of

hardware modules in which the application is guaranteed to

execute.

The contention problem is the problem that free

Arithmetic Processors (APs) or free Data Transfer Network

(DTN) paths may not be available when needed. The

contention problem arises because APs and communication

paths through the DTNs are assigned dynamically by the

Scheduler (SCH) as the EMSP executes and thus are not

candidates for static assignment.

When a node has all its operands and is ready to

execute, the Scheduler (SCH) looks for a free AP. If

there is a free AP, the Scheduler schedules the node to

the AP. If there is no free AP, the node waits.

When a GM receives the message to send an instruction

stream to an AP, it places the instruction stream onto the

DTN. If there is a free path from the GM to the AP, the

65

DTN transfers the instruction stream. If there is no free

path, the instruction stream waits.

The two preceding examples showed instances of the

contention problem. The problem exists for assigning

nodes to APs and for assigning communication paths through

DTNs. The contention for free APs and the contention for

free DTN paths are dynamic events. The initial part of

the problem is to devise suitable measurements for

specifying the·amounts of contention. The subsequent part

of the problem is to 'consider how to include those

measurements when identifying the numbers of hardware

modules in which the application is guaranteed to execute.

Suppose there is no free path from a GM to an AP.

There may be no set of assignments of instruction streams

to GMs which would allow contention free operation.

However, there may be certain sets of assignments which

would lead to less contention than other assignments.

Although the assignments are static, the assignments have

a dynamic effect. In other words, the assignment problem

and the contention problem interact. This interaction

complicates both the assignment problem and the contention

problem.

Prediction

The lower bounds identify the minimum numbers of

hardware modules below which an application is guaranteed

to fail to execute. Often, having the ability to predict

66

the effect of future changes is important. The prediction

problem is the problem of predicting the effects of

changes.

Many signal processing applications require fault

tolerance, the ability of a system to continue operating

correctly even in the presence of a fault. Being able to

predict the space cost of fault tolerance is important for

an embedded system. Further work is necessary to identify

the minimum numbers of functional units needed to provide

specified levels of fault tolerance.

Unlike the present approach which gives no guidelines

as to where to start modifying an existing machine so it

can execute a new application, the lower bound algorithm

gives a base below which it is useless to try. Still,

there are many possible combinations of processors,

memories, and data interconnections. Further work is

needed to quantify the relationship between application

functionality and the numbers of functional units.

Just as with other systems, real-time signal

processing systems are modified in the field. An

application may benefit from a small increase in

functionality. Being able to predict the size cost

implied by a small increase in functionality is important

for a potential field modification. Further work is

needed to quantify the relationship between incremental

increases in application functionality and incremental

increases in machine size.

67

An enclosure for an embedded system may contain some

unused space, space which could hold additional functional

units in preparation for field enhancements. Being able

to predict which functional unit(s) would best be held in

that unused space is important. Further work is needed to

identify the improvements in processing power which result

from increases in the numbers of functional units.

REFERENCES

[1] S. T. Allworth, Introduction to Real-Time Software
Design. New York: Springer-Verlang, 1981.

[2] R. L. Glass, Real-Time Software. Englewood Cliffs,
New Jersey: Prentice-Hall, 1983.

[3] J. A. Kowal, Analyzing Ststems. Englewood Cliffs,
New Jersey: Prentice-Hal , 1988.

[4]

[5] K. G. Shin, "Introduction to the Special Issue on
Real-Time Systems," IEEE Transactions on Computers,
vol. C-36, no. 8, pp. 901-902, Aug. 1987.

[6] A. V. Oppenheim, A. S. Willsky, and I. T. Young,
Signals and Systems. Englewood Cliffs, New Jersey:
Prentice-Hall, 1983.

[7] S. D. Stearns and R. A. David, Signal Processing
Alyorithms. Englewood Cliffs, New Jersey: Prentice­
Ha 1, 1988.

[8] F.S. Wong and M. R. Ito, "A Large-Scale Data-Flow
Computer for Parallel Signal Processing," in
Proceedin s of the 1982 Conference on Circuits and
Computers, ep. 1

[9] E. B. Hogenauer, R. F. Newbold, andY. J. Inn, "DDSP
-- A Data Flow Computer for Signal Processing," in
Proceedin s of the 1982 International Conference on
Para Processing, Aug. 1 , pp. 1

[10] I. Watson and J. R. Gurd, "A Pratical Data Flow
Computer," IEEE Computer, vol. 15, no. 2, pp. 51-57,
Feb. 1982.

[11] K. Kronlof, J. Skytta, I. Hartimo, and 0. Simula,
"Performance of an Experimental Data Flow
Architecture for Signal Processing," in Proceedings
of the 1982 International Conference on Acoustics,
Speech and Signal Processing, May 1982, pp. 695-698.

68

69

[12] K. Kronlof, I. Hartimo, and 0. Simula, "Simulation of
a Digital Signal Processing Architecture Based on the
Data Flow Principle," in Proceedings of the 1982 IEEE
International Sym~osium on Circuits and Systems, May
1982, pp. 1053-10 6.

[13] K. Kronlof, I.
Implementation
Proceedin s of

Hartimo, and 0. Simula, "On the VLSI
of a Data Flow Processor," in
the 1982 IEEE International Conference
Computers, Sep.

[14] I. Hartimo, K. Kronlof, 0. Simula, and J. Skytta,
"DFSP: A Data Flow Signal Processor." IEEE
Transactions on Computers, vol. C-35, no~ pp. 23-
3 3 , J an . 1 9 8 3 .

[15] K. Kronlof, "Execution Control and Memory Management
of a Data Flow Signal Processor," in Proceedings of
the Tenth International S on Com uter
Arc itecture, 1 pp.

[16] M. M. Jamali, G. A. Jullien, W.C. Miller, and S. I.
Ahmad, "A Real Time General Purpose Signal
Processor," in Proceedings of the 1984 International
Conference on Acoustics, S eech and Si nal
Processing, May , pp. 1 . • -1 • . .

[17] Y. S. Wu, A. G. Constantinides, T. E. Curtis, and L.
J. Wu, "Architectural Approach to Alternate Low-Level
Primitive Structures (ALPS) for Acoustic Signal
Processing," IEE Proceedings, vol. 131, part F, no.
3, pp. 327-333, June 1984.

[18] C. B. Robbins, "Navy Real-Time Signal Processor
Development: Second Generation Planned Service
Standard," Real-Time Signal Processing IV, vol. 298,
pp. 216-224, Aug. 1981.

[19] N. H. Brown, "The EMSP Data Flow Computer," in
Proceedin s of the Seventeenth Hawaii International
Con erence on System ciences, Jan. 1 , pp.

[20] F. H. Bloch, "The Enhanced Modular Signal Processor,"
in Proceedin s of the Seventeenth Annual Pittsbur h
Con erence on Mo e ing an Simu ation, Apr. 1 , pp.
829-836.

[21] R. M. Jordan, "Performance Analysis of a New Computer
Architecture by Event Time Simulation," in

Seventeenth Annual Pittsbur h

70

[22] , ECOS/ACOS Common 0 erational Su ort Software
Metho o ogy Speci ication. Was ington, D .. : Naval
Sea Systems Command, 1983.

[23] --, ECOS Tutorial. Washington, D. C.: Naval Sea
Systems Command, 1983.

[24]

[25] --, Enhanced Modular Signal Processor (EMSP)
Principles of Operations (POPS). Washington, D. C.:
Naval Sea Systems Command, 1985.

[26] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data
Structures and Al~orithms. Reading, Massachusetts:
Addison-Wesley, 1 83.

APPENDIX

71

Processing
Module

•
•
•

Processing
Module

Input Output
Processor

Task
Supervisor

Global
Data
Network

Map
Tables

Figure 1. The Dataflow Computer

72

Data
Memory

•
•
•

Data
Memory

Count
Memory

•
•
•

Count
Memory

73

SBUS

CBUS's

Processing Elements

Figure 2. The Data Driven Signal Processor

Update
Unit

I/0

Bank of
Processing
Elements

Queue

Data
Storage

Fetch
Unit

Figure 3. The Data Flow Signal Processor

74

75

Scalar

T-Cells
C-Cells

Figure 4. The Dataflow Binary Tree Processor

•
•

•

.... ·.· ·.···· ,.,.,.,.,.,.,.,:,., Circus
Controller

•
•

•

Signal
Processor
Unit

circus
•

•
•

Global
Memory
Unit

•
•

•

Figure 5. The Roman Circus System

76

77

CBUS

Figure 6. The Enhanced Modular Signal Processor

78

DATA_IN : INT, T = 1

DISPLAY OUT : INT

Figure 7. A Graph

%GRAPH (SAMPLE GRAPH
GIP = N INT
INPUT Q = DATA IN : INT
OUTPUT Q = DISPLAY OUT : INT)

%% declare the internal queues
%QUEUE (Q1, Q4 : INT)
%QUEUE (Q2, Q3 : CINT)

%% define the graph topology
%%

%%

%ENDGRAPH

%NODE (LPF1 NODE
PRIMITIVE = LPF
PRIM IN DATA IN

THRESHOLD 1
READ = 1
CONSUME 1

PRIM OUT = Q1)

%NODE (DFT NODE
PRIMITIVE = DFT
PRIM IN N

Q1
THRESHOLD N
READ = N
CONSUME N

PRIM OUT = Q2)

%NODE (SELECT NODE
PRIMITIVE = SELECT
PRIM IN = N

Q2
THRESHOLD = N

%% if read not specified then
%% read = threshold
%% if consume not specified then
%% consume = threshold

PRIM_OUT = Q3)

%NODE (NDET NODE
PRIMITIVE = NDT
PRIM IN = N/2

Q3
THRESHOLD N/2

PRIM_OUT = Q4)

%NODE (LT1 NODE
PRIMITIVE = LT1
PRIM IN = N/2

Q4
THRESHOLD = N/2

PRIM OUT = DISPLAY OUT)

Figure 8. ECOS SPGN for the graph in Figure 7

79

%COMMANDPROG (SAHPLE COMMANDPROG) ;
%% declare the variables

GRAPH : GRAPH ID ;
INPUT Q, OUTPUT Q : QUEUE ID ;
INPUT-PROC, DISPLAY PROC: IO PROC ID

%% create tne input and output queues -
INPUT Q := %CREATEQ (INT) ;
OUTPUT Q := %CREATEQ (INT) ;

%% initialize the input and output procedures
INPUT PROC := %INITIO (INPUT PROC NAME

INPUT =-INPUT Q) ;
DISPLAY PROC := %INITIO (DISPLAY PROC NAME

%% start the graph
OUTPUT OUTPUT_Q)

GRAPH :=%START (SAMPLE GRAPH
GIP = lOTI

%% to be reconfigurable then
%% the gip would be a control

INPUT = INPUT Q
OUTPUT = OUTPUT Q)

%% start the output and input procedures
%STARTIO (DISPLAY PROC) ;
%STARTIO (INPUT PROC) ;

80

%% do not run off the end or you stop all your graphs
WAIT FOREVER ;

/oENDPROGRAM

Figure 9. Command Program for the Graph in Figure 7

RECONFIGURABLE:
BEGIN

%% create queues, procedures, and start the graph
START UP ;

%% execute the graph until stop
LOOP

COMMAND :=GET COMMAND ;
%% change the graph during runtime

IF COMMAND = RECONFIGURE THEN
RECONFIGURE GRAPH ;

IF COMMAND = STOP THEN
STOP GRAPH
EXIT-;

END LOOP ;
END RECONFIGURABLE ;

Figure 10. Command Program for a Dynamically
Reconfigurable Graph

81

READ= 128

PRODUCE=

GlP of 64 tells VECTOR ADD to add 64 data points
together when producing output

Therefore, PRODUCE = 2

Figure 11. Produce Calculator

82

f(2) =
=

f(3)b =
=

f(3)c =
=

input

freq(I)

c p = 768
c = 128

freq (I) "' 1024 I 1024
freq(I)

freq(I) "' 1024 I 512
freq(I) * 2

freq(I) * 768 I 128
freq(I) * 6

f(3)b does not equal f(3)c

Therefore, there is an inconsistency in relative frequencies

Figure 12. Relative Frequency Calculator

83

f(4) = 2

input

f p = 32768
c = 1024

f(S)e = 2 * 1024 I 512
= 4

f(S)f = 32768 I 1024
= 32

f(S)e does not equal f(S)f

Therefore, there is an inconsistency in required frequencies

Figure 13. Required Frequency Calculator

84

f(4) = 16

input

f p = 32768
c = 1024

AP executes 100,000 cycles/sec
(EMSP characteristic)

node 5 takes 4000 cycles to execute
(PID information)

maximum frequency of node 5 = 100,000 I 4000
= 25 executions per sec

maximum frequency is less than required frequency

Therefore, the graph will not execute in real-time

Figure 14. Maximum Frequency Calculator

85

p = 1024
c = 1024

p = 1024
c = 1024

Figure 15. Graph for Lower Bound Example

86

87

Node Required Frequency

1 2048 I 2048 1 1
2 4096 I 4096 1 1
3 f(1) * 512 I 256 1 -~~ 2 2
4 f(2) ~~ 4096 I 1024 1 -!: 4 4
5 f(2) * 4096 I 4096 1 * 1 1
6 f(3) * 1024 I 1024 2 -I: 1 2
7 f(5) * 2048 I 2048 1 * 1 1
8 f(6) * 1024 I 2048 2 ~~ 112 1
9 f(6) * 512 I 256 2 * 2 4

f(4) ~~ 1024 I 1024 4 * 1 4
10 f(9) -I: 1024 I 2048 4 -!: 112 2

f (7) * 2048 I 1024 1 * 2 2
11 f(8) * 512 I 256 1 -;'(2 2

f(10) * 1024 I 1024 2 ·!: 1 2

Figure 16. Required Frequencies for Lower Bound Example

Node

1
2
3
4
5
6
7
8
9

10
11

Cycles for one
Node Execution

4450
5000
3900
3200
4000
4000
3800
4350
3700
4800
4450

Space for
Instruction Stream

6
8

18
19
10
22
17
14
14
10
21

Figure 17. Node Data for Lower Bound Example

88

89

Total Needed Cycle Rate

required cycles for one
frequency node execution
--------- --------------

1 * 4450
+ 1 ;'(5000
+ 2 "'k 3900
+ 4 ;': 3200
+ 1 ;': 4000
+ 2 ""k 4000
+ 1 * 3800
+ 1 * 4350
+ 4 * 3700
+ 2 ;': 4800
+ 2 i'(4450

83500 cycles per second

Cycle rate of AP = 100000 cycles per second

Lower bound on the number of APs =
ceiling (83500 / 100000) = 1 Arithmetic Processor

Figure 18. Lower Bound on the Number of APs

90

Total Needed Memory Space

memory space for memory space for
instruction streams queues
------------------- ----------------

6 3 ·/(2048
+ 8 + 3 "'k 4096
+ 18 + 3 ..,·~ 256
+ 19 + 3 ·k 1024
+ 10 + 3 ;': 4096
+ 22 + 3 ;'(1024
+ 17 + 3 ;'(1024
+ 14 + 3 ~·(2048
+ 14 + 3 ;'(2048
+ 10 + 3 7: 256
+ 21 + 3 ;': 1024

+ 3 "'k 256
+ 3 * 2048
+ 3 -;'\ 1024
+ 3 i'(1024

------------------- ----------------
159 + 69888

70047 words

Memory space in GM = 262144 words

Lower bound on the number of GMs =
ceiling (70047 / 262144) = 1 Global Memories

Figure 19. Lower Bound on the Number of GMs

Total Needed Input Output Data Rate

input data rate

2048
+ 4096

6144 +

output data rate

2 7: 1024

2048

8192 cycles per second

91

Input output data rate of IOP = 80000 cycles per second

Lower bound on the number of IOPs =
ceiling (8192 I 80000) = 1 Input Output Processor

Figure 20. Lower Bound on the Number of IOPs

92

Total Needed Transfer Rate
--

required instruction stream data
frequency traffic traffic
--------- ------------------ ------------------

1 * (6 + 2048 + 512
+ 1 -1: (8 + 4096 + 4096 + 4096
+ 2 i'\ (18 + 256 + 1024
+ 4 ·k (19 + 1024 + 1024
+ 1 -;'t; (10 + 4096 + 2048
+ 2 7: (22 + 1024 + 1024 + 512
+ 1 .. k (17 + 2048 + 2048
+ 1 ;': (14 + 2048 + 512
+ 4 "'k (14 + 256 + 1024 + 1024
+ 2 "i((10 + 2048 + 1024 + 1024
+ 2 .. k (21 + 256 + 1024 + 102b,
--

65865 words per second

Transfer rate of DTN = 1048576 words per second

Lower bound on the number of DTNs =
ceiling (65865 / 1048576) = 1 Data Transfer Network

Figure 21. Lower Bound on the Number of DTNs

VITA

Arlen N. Long

Candidate for the Degree of

Doctor of Philosophy

Thesis: THE LOWER BOUND ALGORITHM FOR THE ENHANCED
MODULAR SIGNAL PROCESSOR

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Fountain Hill, Pennsylvania,
January 3, 1947, the son of Norman R. and Martha
G. Long.

Education: Graduated from Liberty High School,
Bethlehem, Pennsylvania, in June 1964; received
Bachelor of Science degree in Mathematics from
Moravian College, Bethlehem, Pennsylvania, in
May, 1968; received Masters of Science degree in
Computer Science from Iowa State University of
Science and Technology, Ames, Iowa, in May 1979;
completed requirements for the Doctor of
Philosophy degree at Oklahoma State University,
in July, 1988.

Professional Experience: Teaching Assistant,
Department of Computer Science, Iowa State
University of Science and Technology, Ames,
Iowa, November, 1977, to September, 1979;
Associate Programmer, General Technologies
Division, International Business Machines
Corporation, East Fishkill, New York, October,
1979, to August, 1981; Manager of Software
Development, Time Management Software, Cushing,
Oklahoma, August, 1981, to August, 1983;
Assistant Professor, Department of Computing and
Information Sciences, Oklahoma State University,
August, 1983, to Present.

Professional Organizations: Member, Association of
Computing Machinery.

