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CHAPTER I 

INTRODUCTION 

The Enhanced Modular Signal Processor (EMSP) is the 

next generation signal processor for the U.S. Navy. The 

EMSP is an embedded real-time signal processor. It must 

have enough resources to meet the time requirements, in 

terms of signals per time, of the signal processing 

application, and it must be physically small enough to fit 

in the space available. The EMSP is a hybrid dataflow 

computer which executes signal processing graphs according 

to the dataflow methodology and executes command programs 

according to the standard control flow methodology. 

The EMSP Common Operational Software (ECOS) is the 

software programming methodology for which the EMSP is 

designed to operate. The ECOS programming methodology is 

a graph-based methodology which uses dataflow graphs to 

describe the signal processing algorithms and traditional 

high order language command programs to control and 

configure the graphs. When the EMSP application 

programmer produces an EMSP application, ~he programmer 

specifies the functionality of the application, but not 

the numbers of functional units needed to carry out that 

functionality. 

1 



2 

Because of the embedded real-time nature of the 

Enhanced Modular Signal Processor, it is critical that the 

EMSP be as small as possible. The minimal EMSP 

configuration for a particular signal processing 

application is the smallest configuration which will 

execute the application. The dynamic scheduling of the 

operations of the EMSP makes finding the minimal EMSP 

configuration a time-consuming and costly trial-and-error 

simulation process. 

Given the universe of pos~ible EMSP configurations, 

the lower bound configuration for a particular signal 

processing application is the configuration for which 

there can be no smaller configuration which will execute 

the application. The lower bound configuration does not 

guarantee that the application will execute with the lower 

bound numbers of units; it does guarantee that the 

application cannot execute with fewer units. 

The research problem of this thesis is to identify 

the lower bound configuration. The outcome of the thesis 

is a lower bound algorithm which analytically identifies 

the lower bound configuration as specified by the numbers 

of functional units.· The EMSP packager can use the 

lower bound configuration as a beginning toward 

configuring an EMSP and as a measure of minimality of the 

chosen configuration. 

The next chapter, The Literature Review and 

Background Information, defines embedded real-time signal 



processing requirements and reviews dataflow 

implementations of real-time signal processors. Chapters 

three and four, The Enhanced Modular Signal Processor and 

The EMSP Common Operational Software, describe the 

hardware and software for which this work applies. 

3 

Chapter five, Configuring the EMSP, describes the problem 

of identifying the smallest system, tells why the present 

approach does not provide the solution to the problem, and 

introduces an alternate approach to the solution. Chapter 

six, The Algorithm, develops the lower bound algorithm. 

The thesis closes with chapter seven, Summary and 

Conclusions. The figures are in the appendix. 



CHAPTER II 

THE LITERATURE REVIEW AND 

BACKGROUND INFORMATION 

This chapter reviews real-time systems and dataflow 

implementations of real-time signal processors. The 

information forms a base for the description in the next 

chapter of the Enhanced Modular Signal Processor (EMSP). 

The EMSP is an embedded real-time signal processing system 

which executes using a hybrid dataflow methodology. 

Real-time Systems 

Real-time systems are both driven and defined by 

their applications. Real-time systems are not batch 

systems printing end-of-day reports. Real-time systems 

are not interactive systems providing word processing 

facilities. Real-time systems are not transaction systems 

answering database queries. Real-time systems are systems 

in which failure to satisfy their critical timing 

requirements may result in an external catastrophe. 

Definitions 

Allworth [1] defines a real-time system as a system 

which contains application software that controls a set of 

4 



devices in a timely manner. This definition 

differentiates real-time systems from other systems by 

focusing on the criticality of their deadlines. If a 

deadline is missed by a multiprocessing system, 

performance of the system may be degraded; if a deadline 

is missed by a real-time aircraft control system, the 

aircraft may crash. 

5 

Glass [2] defines a real-time system as one which 

provides services to or control to an on-going physical 

process. This definition differentiates real-time systems 

from other systems by focusing on responsiveness and 

efficiency. The automobile fuel injection system must 

react as we depress the accelerator pedal; the anti-lock 

braking system must react as we depress the brake pedal. 

Kowal [3] defines a real-time system as one which 

contains processes that operate concurrently with 

independent real world events and have a regular or 

predictable time relationship with those real world 

events. This definition differentiates real-time systems 

from other systems by flow of control. In most cases, a 

user sitting at a terminal waiting for a response does not 

constitute an independent external event; the user 

activity is dependent on the actions of the system. A 

real-time system produces output responses which must be 

synchronized with independent external events. 

Ward [4] defines a real-time system as a system for 

which the elapsed time between an external stimulus and 
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the corresponding response by the system constitutes an 

important part of the performance of that system. In 

other words, each potential stimulus to the system has an 

associated quantitative deadline and system performance is 

acceptable if and only if the system responds to each 

stimulus within its deadline. This definition 

differentiates real-time systems from other systems in 

which the system performance is qualitative (the response 

time is acceptable to the user) or averaged (the backlog 

does not grow indefinitely). 

Characteristics 

The participants at a workshop sponsored by the 

Office of Naval Research (ONR) could not agree on a 

definition for real-time systems. However, they did agree 

on three characteristics of real-time systems: time is 

the most precious and most critical resource, reliability 

is crucial, and the environment in which the real-time 

system operates is an active part of the system [5]. 

The first two characteristics, time and reliability, 

can be thought of as components of real-time systems. The 

third characteristic, synergism, can be thought of as the 

interplay between the systems and their environments. 

Time is the most precious and most critical resource 

which a real-time system manages. Not satisfying time 

constraints leads to failure. The result of a failure, as 

in flight control for an aircraft, or in sensor based 



environment acquisition for a submarine, may be a 

catastrophe. Reliability of the component parts of a 

real-time system is crucial to meet the time constraints. 

Parts failure will result in failure to satisfy the time 

constraints. 
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The environment is an active part of a real-time 

system. The system and its environment are a synergistic 

pair. The aircraft may not fly without the flight control 

system; the submarine may not survive without its 

environment acquisition system. 

Embedded Real-time Systems -

Embedded real-time systems are not only critically 

interconnected with their environments, their processing 

power must fit in a tightly constrained space. Embedded 

real-time systems operate in environments where physical 

space is costly. The embedded real-time system for an 

aircraft must fit inside that aircraft along with all the 

other space consuming requirements for that aircraft; the 

embedded real-time system for a submarine must fit inside 

that submarine along with all the other space consuming 

requirements for that submarine. Space is at a premium; a 

too large real-time system means less space is available 

for other critical needs. Embedded real-time systems must 

satisfy the requirements for real-time systems and also 

must be small in size. 
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In addition to satisfying requirements of time, 

reliability, and size, most military embedded real-time 

systems and many non-military embedded real-time systems 

must be fully shielded. A fully shielded system affects 

only its environmental subset, is unaffected by the 

environment outside its subset, and is undetectable by the 

environment outside its subset. Fully shielding an 

embedded real-time computer system further constrains the 

space available for the processing power. 

Signal Processing Systems 

Signal processing systems [6], [7] are systems which 

respond to signals and produce other signals. A real-time 

signal processing system continually accepts streams of 

input and produces results at a rate no less than that 

needed to keep up with the input streams. 

There are four typical reasons to do signal 

processing. One reason to do signal processing is to 

estimate the characteristic parameters for a signal: 

estimating the rise time of return signals from a matrix 

radar for distance determination might be done using 

waveform analysis, perhaps implementing mathematical 

curvefitting techniques. Another typical reason is to 

eliminate or reduce unwanted interference: reducing 

background noise during aircraft communications might be 

done using filtering techniques, perhaps using a finite 

impulse response (FIR) filter. Another typical reason is 



to transform signals into another more informative form: 

changing time-domain sensor signals into frequency-domain 

power information for underwater submarine identification 

might be done using Fourier techniques, perhaps using a 

fast Fourier transform (FFT). The fourth typical reason 

to do signal processing is to modify the characteristics 

of a system: controlling an inherently unstable high 

performance aircraft might be done using feedback 

techniques, perhaps using a least mean squares (LMS) 

algorithm. 

9 

The four typical reasons to do signal processing 

exist for many application areas. Signal processing 

applications occur in fields such as acoustics, sonar, 

radar, geophysics, communications, and medicine. A number 

of dataflow signal processors have been designed to 

execute signal processing applications. 

Dataflow Signal Processors 

Many researchers are designing dataflow machines for 

signal processing applications. Researchers from Canada, 

England, Finland, and the United States are represented by 

the following dataflow signal processor designs. 

The Dataflow Computer 

In 1982, Wong and Ito [8], from the University of 

British Columbia in Canada, published a paper proposing a 

data-driven parallel computing machine for signal 



processing applications, applications in which program 

code is executed repeatedly. The objectives of the 

machine design of their dataflow computer (DFC) were to 

allow concurrent computations while avoiding unnecessary 

replication of code. Figure 1 in the appendix shows a 

block diagram of the architecture of the dataflow 

computer. 

10 

The design of the DFC differs in some ways from 

traditional dataflow computers. They replaced the low 

level processing elements of traditional dataflow 

computers by small general purpose processors, which they 

continued to name processing elements (PEs). Using 

general purpose processors results in fewer types of 

components needed, higher resource utilization through 

interchangeability, and increased fault tolerance 

capabilities. It also increases the service rate, as the 

dataflow operations (DFOs) can be assigned to the first 

free processing element, without the DFO first being 

decoded. 

Rather than being devoid of local storage, as is the 

case in traditional dataflow computers, each PE in the DFC 

has associated with it a substantial local memory (LM); 

each local memory holds colored multiple concurrent 

activations of a single signal processing procedure. A 

group of processing elements with their local memories is 

called a processing module (PM). Separate data memories 

(DMs) are backing stores for code, and separate count 
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memories (CMs) contain the operand counts and numbers of 

operands for the dataflow operations. A single task 

supervisor (TS) monitors the states of the PMs and updates 

individual mapping tables (MAPs) to indicate which LMs 

contain what procedures. A timeshared bus carries all 

execution related traffic. 

Simulation of the design of the DFC provided five 

major results. First, timeshared busses are inadequate 

for their traffic. Second, if switching networks are used 

to solve the traffic problem of the timeshared busses, 

then the number of PEs should be approximately equal to 
4 

the number of paths provided. Third, global count 

memories worked as well as independent count memories. 

Fourth, more capable processing elements increased the 

service rate. Fifth, colored multiple concurrent 

activations were faster than either sequential or 

pipelined operations. 

The Data Driven Signal Processor 

In 1982, Hogenauer, Newbold, and Inn [9], working at 

ESL Corporation, a subsidiary of TRW, published a 

description of their proposed Data Driven Signal Processor 

(DDSP). The objectives of their machine design were to 

allow easy programming and modular expandability while 

providing a maximum configuration execution rate of 71 

mflops. Figure 2 in the appendix shows a block diagram of 

the architecture of the Data Driven Signal Processor. 
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The design of the DDSP is similar to the machine of 

Watson and Gurd [10] from the University of Manchester. 

Each processor contains a queue which holds input, a 

matching store which groups labeled tokens, and a 2.22 

mflops floating point processing element. Two networks 

connect the processors: a circular packet switch network 

connects the processors for nearest-neighbor 

communication, and a three level tree network connects the 

processors for long-distance communication. 

Simulation of the design of the DDSP provided three 

major results. First, the dataflow nature of the DDSP 

allows programming flexibility and effectiveness not 

possible with array processors. Second, although the 

processor efficiency (the percentage of time during which 

the processor is doing useful work) decreases for larger 

numbers of processors if the number of parallel operations 

is kept constant, processor efficiency increases for 

larger processor configurations if the number of parallel 

operations is also increased. Third, processor efficiency 

can be very high, with percentages above 90 percent for 

large systems. 

The Data Driven Signal Processor was an unsuccessful 

competitor in the design race for the next generation 

standard signal processor for the U.S. Navy. 
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The Data Flow Signal Processor 

From 1982 through 1983, Kronlof, et. al. [11]-[15], 

from the Helsinki University of Technology in Finland, 

published a number of papers describing their proposed 

Data Flow Signal Processor (DFSP). The objectives of 

their machine design were to use a bus oriented 

architecture to implement efficiently a processor mainly 

intended for data intensive applications such as digital 

signal processing while also providing expandability and 

convenient programming. Figure 3 in the appendix shows a 

block diagram of architecture of the Data Flow Signal 

Processor. 

The design of the DFSP uses a bank of high level, and 

potentially special purpose, processors called processing 

elements (PEs). An update unit matches colored result 

tokens and allocates data storage for the results; the 

result transfer unit controls storing the results in the 

data storage. A fetch unit assigns executable operations 

and data to appropriate free PEs; after transmission, the 

data transfer unit deallocates the data storage. The 

queue allows transmitting results from a PE, via the 

update unit and result transfer unit, to the fetch unit 

without those results being stored into the data storage. 

Two busses carry the data and control traffic: one 

bus carries the signal processing data; the other bus 

carries the operation and result control packets for and 

from the operation execution, respectively. 
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Simulation of the design of the DFSP provided four 

major results. First, the update unit is the major 

bottleneck in the control section of the machine. Second, 

it is relatively simple to obtain uniform utilization of 

the processors. Third, the value of the size of the 

packets is linearly dependent on the bandwidth of the 

busses and inversely dependent on the throughput of the 

control section. Fourth, the fetch unit is not critical 

for performance. 

The Dataflow Binary Tree Processor 

In 1984, Jamali, et. al. [16], from the University of 

Windsor in Canada, published a paper proposing a dataflow 

binary tree digital signal processor. The objectives of 

their machine design were to exploit the fast 

computational approaches of distributed, parallel, and 

pipeline techniques while reducing or eliminating the 

communication problems and indeterminacy associated with 

conventional dataflow architectures. Figure 4 in the 

appendix shows a block diagram of the architecture of the 

dataflow binary tree processor. 

The design of the dataflow binary tree digital signal 

processor implements the carry free arithmetic operations 

of the residue number system (RNS) by using multiple large 

memories. The processor prestores the arithmetic 

operations (multiplication, addition, or subtraction) in 

the memories. It performs an arithmetic operation by 
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forming an address using the two input numbers and then 

reading the result from memory. The execution time for 

any arithmetic operation is the time to access the memory 

added to the time to capture the result into the latch. 

Each cell, or node, of the complete binary tree 

processor is a computational element. Cells located at 

nodes which have two children are called T-cells. T-cells 

perform arithmetic operations. Cells located at leaf 

nodes are called base cells or C-cells. C-cells store the 

look up tables into the T-cells prior to beginning 

algorithm execution, receive data and coefficients from 

the data busses, perform the specified arithmetic 

operation and create an output packet with sufficient 

control bits to travel up the tree through the T-cells. 

Jamali~ et. al., state that the design of the 

dataflow tree processor provides four major benefits. 

First, there is only a 7.5 percent overhead of bits 

associated with packets, compared to 200 percent overhead 

in other dataflow architectures. Second, the packets are 

transmitted in parallel, thus avoiding the overhead 

associated with serial communication protocol. Third, the 

approach is deterministic and the throughput rate can be 

estimated. Fourth, the computation time of any arithmetic 

operation is reduced to the access time of the memory. 
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The Roman Circus System 

Also in 1984, Wu, Constantinides, Curtis, and Wu [17] 

published a paper describing their proposed Roman Circus 

System. Y. S. Wu is from the U.S. Naval Research 

Laboratory, Curtis is from the Admiralty Underwater 

Weapons Establishment in England, and Constantinides and 

L. J. Wu are from the Imperial College of Science and 

Technology in England. The objective of their machine 

design was to execute efficiently alternative low-level 

primitive structures (ALPS) for acoustic signal 

processing. Figure 5 in the appendix shows a block 

diagram of the architecture of the Roman Circus System. 

The design of the Roman Circus System contains three 

classes of functional primitive modules: processing 

elements (PEs), basic memories (BMs), and sensor 

interfaces (Sis). A standard system interface control 

unit (ICU) performs input and output queue management, 

data buffering, activation and deactivation of the 

primitive, and system communication and monitoring. The 

interface control units and their associated modules make 

up units: an ICU and a PE comprise a signal-processing 

unit (SPU), an ICU and a BM comprise a global memory unit 

(GMU) , and an ICU and an SI comprise an input-output 

controller (IOC). 

Three concentric communication paths carry the 

traffic: a serial message circus, a parallel data circus, 

and a parallel monitor circus. The monitor circus doubles 
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as a redundant data circus. A circus controller (CC), or 

network manager, monitors system performance, dynamically 

reconfigures the system, and initially loads structures 

onto the paths. The CC allows only one item of message, 

data, or signal onto each path at any time. 

Wu, et. al. anticipate that the Roman Circus System 

will provide two major benefits in addition to executing 

ALPS primitives. First, the modularity of the system can 

allow for extra modules to increase computational power 

and system redundancy. Second, multiple Roman Circus 

Systems can be combined easily by defining each system be 

a module of an even higher level Roman Circus System, thus 

making a hierarchical cluster system with even greater 

connectivity, computational power, and system redundancy. 



CHAPTER III 

THE ENHANCED MODULAR SIGNAL PROCESSOR 

The United States Navy places many embedded real-time 

signal processing applications into its ships and aircraft 

[18]. During the late 1970's, the Navy determined that 

its future signal processing requirements could not be 

attained by its current signal processing architecture, 

the Advanced Signal Processor (ASP). Experience with the 

ASP had proved that the concept of a single software 

development system coupled with a limited number of 

hardware module types could satisfy the needs of multiple 

Navy signal processing applications. However, new 

technologies would be necessary to increase the 

performance per cubic inch of the embedded real-time 

signal processors. Further, new programming methodologies 

would be needed to reduce the cost of creating and 

maintaining the increasingly numerous and complex signal 

processing applications. The new signal processing 

architecture would be called the Enhanced Modular Signal 

Processor (EMSP) [19]-[21]. 

A real-time signal processing application is 

characterized by repeatedly executing a well-defined 

sequence of signal processing algorithms against signal 

18 
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values as those signal values become available. Signal 

processing application programmers typically begin 

designing an application by drawing a picture of the flow 

of signal values through the appropriate signal processing 

transformations. The picture is a directed graph where 

the arcs represent the flow of data, and the nodes 

represent the operations done to the data. 

To reduce the cost of creating and maintaining the 

signal processing applications, the Navy decided on a 

graph-based programming methodology, the EMSP Common 

Operational Software (ECOS) [20], [22]-[24]. The Navy 

then requested bids for a machine architecture which would 

directly execute ECOS, the EMSP. AT&T Bell Laboratories, 

AT&T Technologies, and Unisys jointly are developing and 

producing the Enhanced Modular Signal Processor. 

The EMSP 

The dataflow methodology of computer operation is 

that a computer should execute an operation as soon as the 

operands for that operation become available. A dataflow 

computer executes graphs where the arcs represent the flow 

of data, and the nodes represent the operations done to 

the data. The results of a research group at Helsinki 

University, Helsinki, Finland show that a dataflow signal 

processing computer can execute efficiently real-time 

signal processing applications [14]. 



The Enhanced Modular Signal Processor is a hybrid 

dataflow computer. Graphs, which describe the signal 

processing algorithms, execute according to the dataflow 

methodology. Command Programs, which control and 

configure graphs, execute according to the standard 

control flow methodology. 

20 

Certain features and implementations of the EMSP are 

changes from traditional dataflow architectures. Each arc 

of the ECOS graph allows multiple instances of data 

elements, as compared to only one element, and is 

implemented as a queue. Further, each node of the ECOS 
I 

graph is arbitrarily complex, as compared to consistently 

simple. Example ECOS node operations include Fast-Fourier 

Transform, Finite Impulse Response Filter, and Frequency 

Domain Beamformer. The results of a research group at 

AT&T Bell Laboratories show that the EMSP can execute 

efficiently real-time signal processing applications [21]. 

The hardware modules which comprise an EMSP can be 

grouped into three basic categories: functional elements 

used primarily for the communications within the EMSP, 

functional elements used primarily for the sequential 

command program operation, and functional elements used 

primarily for the dataflow graph execution. Figure 6 in 

the appendix shows a block diagram of the architecture of 

the Enhanced Modular Signal Processor. The following 

sections describe the functional elements and their 

interrelationships. 
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EMSP Communications 

The Control Bus 

The Control Bus (Cbus) is the bus which provides 

paths among the various functional elements of the EMSP 

for transmitting control and status messages. These short 

messages move over the 8 byte token passing bidirectional 

bus asynchronously at a maximum data rate of 4.61 

megabytes per second. An EMSP has one Control Bus. 

The Data Transfer Network 

The Data Transfer Network (DTN) is the network which 

provides paths among the functional elements of the EMSP 

for transmitting messages comprised of large blocks of 

data. The DTN is an N by N crossbar switch and provides 

parallel unidirectional asynchronous communication paths 

for up toN simultaneous paths. An EMSP has one or two 

Data Transfer Networks. 

The Global Memory 

The Global Memory (GM) is the intelligent storage 

element for the EMSP. The GM frees the application 

programmer from many tasks of allocating and controlling 

resources in software. It contains instruction streams, 

queues, and graph variables. When a graph is instantiated 

(an executing graph is created from a graph template), it 

creates the nodes, queues, and graph variables for the 
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graph instance. It allocates and deallocates memory as 

queues are written and consumed. It identifies when a 

queue is over threshold, that is: when the number of 

operands on an arc is equal to or greater than that needed 

by the node to execute (providing all other arcs also meet 

or exceed their thresholds). An EMSP has one or more 

Global Memories. 

EMSP Sequential Command Operation 

The Command Program Processor 

The Command Program Processor (CPP) is the control 

element for the EMSP. It starts and stops graph 

execution, starts and stops input, and interacts with the 

operator to configure graphs. It does not participate 

directly in graph execution. An EMSP has one Command 

Program Processor. 

The Input Output Processor 

The Input Output Processor (lOP) is the channel 

controller for the EMSP. It performs the input of signal 

values to the graph and performs the output of results 

from the graph. An EMSP has one or more Input Output 

Processors. 
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EMSP Dataflow Graph Execution 

The Scheduler 

The Scheduler (SCH) is the node scheduler for the 

EMSP. It contains the graph topology information needed 

for graph execution. For instance, the Scheduler knows 

which queues are inputs to a node. When the Global Memory 

identifies a queue over threshold, it sends a message to 

the Scheduler. The Scheduler checks all the input queues 

for the node to which the over threshold queue is an input 

and if all the input queues are over threshold, the 

Scheduler schedules execution of the node on an Arithmetic 

Processor. The EMSP has one Scheduler. 

The Arithmetic Processor 

The Arithmetic Processor (AP) is the node processor 

for the EMSP. It executes the node operations. An 

Arithmetic Processor can be executing portions of three 

nodes concurrently. One node may be in its setup phase, 

during which all needed information is read from the 

Global Memories. A second node may be in its execute 

phase, during which the operations are performed on the 

data. A third node may be in its breakdown phase, during 

which the results of its execution are stored in the 

Global Memories. An EMSP has one or more Arithmetic 

Processors. 
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All the functional elements work together 

concurrently to execute an embedded real-time signal 

processing application in the Enhanced Modular Signal 

Processor. The following section describes the overall 

operation of the EMSP by tracing the path of execution of 

one node. 

EMSP Operation 

When the Scheduler recognizes that a node is ready to 

execute, the Scheduler assigns the node to an Arithmetic 

Processor and sends a message over the Control Bus to the 

specific Global Memory which contains the instruction 

stream of the node. The Global Memory then sends the 

instruction stream over the Data Transfer Network to the 

designated Arithmetic Processor. 

The Arithmetic Processor executes the instruction 

stream by completing the setup phase, the execute phase, 

and the breakdown phase. During the setup phase, the 

Arithmetic Processor sends messages requesting the data 

needed to execute the node over the Control Bus to Global 

Memories. After the Arithmetic Processor has received all 

the requested data from the Data Transfer Network, the 

Arithmetic Processor executes the node. During the 

breakdown phase, the Arithmetic Processor sends messages 

containing the results to be stored through the Data 

Transfer Network to the Global Memories. 
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As a Global Memory stores results into a queue, it 

also checks if the queue has gone over threshold, 

indicating that there is enough data in the queue for the 

next node to execute. For any queue which has gone over 

threshold, the Global Memory sends a message over the 

Control Bus to the Scheduler which checks to see if all 

needed data is available for execution of another node. 

This starts another cycle of execution. 

\ 
\ 

\_ 



CHAPTER IV 

THE EMSP COMMON OPERATIONAL SOFTWARE 

A real-time signal processing application is 

characterized by repeatedly executing a well-defined 

sequence of signal processing algorithms against signal 

values as those signal values become available. Signal 

processing application programmers typically begin 

designing an application by drawing a picture of the flow 

of signal values through the appropriate signal processing 

transformations. The picture is a directed graph where 

the arcs represent the flow of data, and the nodes 

represent the operations done to the data. 

To reduce the cost of creating and maintaining the 

signal processing applications, the Navy decided on a 

graph-based programming methodology, the EMSP Common 

Operational Software (ECOS) [20], [22]-[24]. AT&T 

Technologies is developing and producing the EMSP Common 

Operational Software. It is also developing and producing 

the initial signal processing applications using ECOS. 

The ECOS 

The EMSP Common Operational Software is a hybrid 

programming methodology which uses dataflow graphs to 
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describe the signal processing algorithms, and traditional 

high order language (HOL) command programs to control and 

configure the graphs. 

The software features which complete an ECOS signal 

processing application can be grouped into two basic 

categories: features used primarily for producing the 

ECOS graphs, and features used primarily for producing the 

command programs. The ECOS graphs and the command 

programs make up the signal processing application. The 

application programmer describes the nodes, arcs, and 

various parameters by using Signal Processing Graph 

Notation (SPGN). The programmer describes the command 

program by using a high order language and Command Program 

SPGN. 

ECOS Graph Constructs 

A signal processing application programmer typically 

begins designing an application by drawing a graph of the 

flow of signal values through the appropriate signal 

processing transformations. Each of these transformations 

is a signal processing algorithm which the programmer 

represents as a node of the graph. Each connection 

between transformations is a queue which the programmer 

represents as an arc of the graph. The programmer also 

specifies to the graph various parameters which allow for 

changing sensor conditions. 
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The Node 

An ECOS node represents the signal processing entity 

in an ECOS program, or graph. Example ECOS node 

operations include Fast-Fourier Transform, Finite Impulse 

Response Filter, and Frequency Domain Beamformer. The 

ECOS signal processing application programmer builds 

signal processing graphs using these predefined signal 

processing operations, called primitives (PRIMs). For 

each node in the graph, the programmer specifies the name 

of the primitive to execute, and the names of the queues 

and variables which are connected to the logical input and 

logical output ports of the node. 

Associated with each node is a Primitive Interface 

Procedure (PIP) which provides data elements to the 

primitive as it executes. These data elements, called 

primitive inputs (PRIM_INs) and primitive outputs 

(PRIM_OUTs), include constants, graph controls, and data 

from the queues. 

The Queue 

An ECOS queue represents the primary data storage in 

an ECOS program. These expandable first-in first-out 

structures do not branch and are connected at both ends to 

nodes. Two types of queues exist: data queues and 

trigger queues. Most queues are data queues; they contain 

data elements of arbitrary complexity. Relatively few 

queues are trigger queues; they contain only 
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synchronization signals and are used to synchronize nodes 

which must share a timing relationship but which share no 

data relationship. Queues are internal or dynamic. 

Internal queues are declared within a graph to connect 

nodes. Dynamic queues are defined in a command program to 

connect together multiple graphs or to connect graphs to 

input/output procedures. 

The Graph Variable 

A Graph Variable (GV) represents a memory location 

which holds one data element of arbitrary complexity. 

Graph variables provide communication among graphs and 

command programs. Graph variables are internal or 

dynamic. Internal graph variables are declared within the 

graph definition and are local to that graph; that is, 

they are read and write accessible to the graph, and read­

only accessible to subgraphs of that graph. Dynamic graph 

variables are defined in the command program and are read­

only accessible to a graph using them. 

The Node Execution Parameters 

The Node Execution Parameters (NEPs) describe the 

ways in which the availability of data on queues affects 

the execution of the nodes. Associated with each node is 

a Primitive Interface Procedure (PIP) which calculates the 

amounts for each Node Execution Parameter at run time and 

which provides the data items to the primitive as it 
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executes. Each arc of the ECOS graph allows multiple 

instances of data elements; this provides flexibility and 

reduces data transfer overheads as compared to traditional 

one element arcs. The application programmer specifies 

the number of data elements needed for the various 

operations per queue. Threshold, Read, Offset, and 

Consume amounts are the NEPs which relate to the node 

input ports. Valve, Produce, and Pulse amounts are the 

NEPs which relate to the node output ports. 

The Threshold amount is the number of data elements 

which must be present on the queue for the node to 

execute. The Read amount is the number of data elements 

on the queue which are used by the node when it executes; 

for fault-tolerance, node execution reads are non­

destructive. The Offset amount is the number of data 

elements on the queue to skip before beginning to read the 

data elements; often in signal processing applications, 

parts of the data stream are ignored as execution 

proceeds. The Consume amount is the number of data 

elements to remove from the queue after node execution; 

often in signal processing applications parts of the data 

stream are reused in subsequent executions of the node. 

The Valve amount is a switch which enables or 

disables the output of the node; it may be that a 

particular graph configuration does not need the output to 

a specific port of the node downstream from the node. The 

Produce amount is the number of data elements to be added 



to an output data queue. The Pulse amount is the number 

of pulses to be added to an output trigger queue. The 

application programmer does not specify the Produce and 

the Pulse amounts; the PIP calculates them based on the 

execution rules of the primitive. 

ECOS Command Program Constructs 

A signal processing application programmer builds a 

Command Program (CP) by writing in a high order language 

(HOL) and including in it special calls to graph 

operations (Command Program SPGN). 

A command program has five functions: command 

program control, input/output control, queue control, 

graph instance control, and graph variable control. 
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Because of the dataflow nature of the system, command 

programs do not schedule tasks, allocate resources, or 

manage memory. Command programs do start and stop graphs, 

create queues, read and write queues and control 

variables, and perform exception handling. Command 

programs control graph instantiation and dynamic 

reconfiguration; they do not do any signal processing. 

The High Order Language 

The High Order Language (HOL) is an arbitrary high 

order language into which the programmer embeds predefined 

Signal Processing Graph Notation procedure calls (Command 

Program SPGN). Although the present command programs are 



written in the Navy designed high order language CMS2, 

future command programs are to be written in Ada. 

The HOL programs provide control structures within 

which SPGN procedure calls are embedded to control graph 

execution and interaction. The HOL programs also 

establish communications between the command program and 

the outside world. 

The Embedded ECOS Statement 
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The embedded ECOS statements are predefined Signal 

Processing Graph Notation procedure calls (Command Program 

SPGN). The procedure names are prefaced with a percent 

sign. 

The embedded ECOS statements allow command programs to 

start and stop graphs, create queues, read and write 

queues and control variables. 

ECOS Programming 

The ECOS programmer begins programming by drawing a 

graph of the signal processing application. Circles, 

representing nodes, are labeled with names of signal 

processing primitives. Arcs, representing queues, are 

labeled with names of queues containing data along with 

the values of their associated node execution parameters. 

Boxes, representing data elements for the primitives, are 

labeled with the names of the primitive inputs and 

primitive outputs, and are attached to the appropriate 



nodes. After drawing the graph, the programmer converts 

the graph to the appropriate ECOS SPGN. The programmer 

also writes a separate command program with its embedded 

Command Program SPGN to control the graph. 

Figure 7 in the appendix shows a graph, Figure 8 in 

the appendix shows the ECOS SPGN for the graph in Figure 

7, and Figure 9 in the appendix shows a command program 

for the graph in Figure 7. 
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By writing high level procedures which contain all 

the Command Language SPGN, the programmer can make the 

command program look as if it is written in only a high 

order language; all the command .program SPGN can be buried 

inside procedures. Further, by writing a procedure which 

has the command program modify a graph control, the high 

order language program can reconfigure dynamically the 

graph during execution. 

Figure 10 in the appendix shows a command program for 

a dynamically reconfigurable graph. 



CHAPTER V 

CONFIGURING THE EMSP 

The Enhanced Modular Signal Processor (EMSP) is the 

next generation embedded real-time signal processor for 

the U.S. Navy. At its system level, the EMSP operates as 

a dataflow computer. It uses a single command program 

processor and a single scheduler to oversee the operations 

of multiple processors, memories, and data 

interconnections. 

The Need for Minimal EMSP Systems 

The EMSP must operate in real-time: that is, it must 

produce its output at a rate equal to or greater than its 

respective input rates. The EMSP must be embedded: that 

is, it must fit into a confined space. In some ways, 

these two criteria conflict. Increasing the functionality 

of the computer tends to increase the number of modules 

needed to obtain that functionality, and thus tends to 

increase the size of the machine to the point where it 

does not fit in the space available. 

The real-time portions of the computer are described 

by the number of operations per second which the computer 

must execute. The projected throughput requirements to 
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process the data from a submarine large-aperture array is 

4 trillion operations per second, with 2.4 trillion of 

those operations being complex multiplications. Even 

small airborne signal processors have requirements of 300 

million complex operations per second for the 1990 time 

frame [25]. Failure to meet these requirements in an 

operational signal processor will result in potential 

disaster. 

The embedded characteristics of the computer are 

described by the size of the environments into which it 

must fit. In this case, the anticipated environments are 

locations in aircraft and submarines. In every instance, 

space is at a premium and the larger the computer, the 

less space for other critical needs. 

As the EMSP is a modular computer, matching the 

number of modules to the needs of its signal processing 

application will result in the smallest physical size, and 

thus allow maximal operational functionality in the 

smallest overall package. 

The Present Approach 

The EMSP is designed to execute EMSP Common 

Operational Software (EGOS). EGOS is a graph-based 

programming methodology where arcs represent flow of 

signal values and nodes represent signal processing 

transformations. When the EMSP application programmer 

produces an EMSP application, the programmer specifies the 



functionality of the application, but not the hardware 

modules needed to carry out that functionality. 
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Because of the embedded real-time nature of EMSP 

systems, it is critical that an EMSP system be as small as 

possible. In other words, it is critical that the machine 

have the fewest numbers of processors, memories, and data 

interconnections needed to execute the signal processing 

application. 

The present approach to identifying the smallest 

system is based on information obtained by executing the 

signal processing application. The approach is: 1) find 

an existing application with functionality similar to the 

new application, and then 2) modify the machine which 

executes the existing application by adding or deleting 

processor, memory, and data interconnection modules to 

obtain a new machine which will execute the new 

application. Unfortunately, there are at least three 

difficulties with the present approach. 

Problems with the Present Approach 

First, the present approach requires finding an 

existing similar application. If the new application has 

functionality dramatically different from all existing 

applications, or if the new application is the first 

application (as is the present case, EMSP being a new 

signal processor with no ECOS programs for it yet), the 

present approach fails. 
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Second, to obtain any configuration information, the 

present approach requires executing the application. 

Based only on dynamic information obtained from executing 

the application, the present approach is expensive. 

Third, even if a modified machine were obtained which 

executes the new application, the present approach gives 

no information as to how close that machine configuration 

is to the minimal configuration. 

The Lower Bound Approach 

Given the universe of possible EMSP configurations, 

the lower bound configuration for a particular signal 

processing application is the configuration for which 

there can be no smaller configuration which will execute 

the application. 

The lower bound approach to identifying the lower 

bound configuration is based on static information 

obtained from the well-formed ECOS graph. The approach 

is: 1) for each type of hardware module, determine the 

minimum needed capacity for its functionality, be that 

minimum in cycle rates, memory space, data rates, or 

transfer rates, and then 2) divide the minimum needed 

capacity by the EMSP specified capacity for that type of 

module. 

The lower bound approach does not rely on previously 

existing applications or machines. It uses only static 

information from the graph, the Primitive Interface 
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Definition (PID), the application, and the characteristics 

of the EMSP to identify the lower bound configuration. 



CHAPTER VI 

THE ALGORITHM 

The Well-formed ECOS Graph 

A well-formed ECOS graph satisfies a number of 

criteria. First, the graph has correct syntax. Second, 

the graph has no deadlocked cycles. Third, the graph 

contains only consistent node execution frequencies. 

A correct solution to an ECOS signal processing 

problem has a graph which is well-formed. Having a well­

formed graph does not imply that the solution to an ECOS 

signal processing problem is correct, but having a graph 

which is not well-formed does mean that the solution is 

incorrect. It is wasteful to configure an EMSP for a 

solution which is wrong. Therefore, it is important to 

assure that the graph is well-formed before continuing. 

Computer Assisted System Engineering (CASE) tools can 

traverse the graph and identify if it is well-formed. 

The Graph Parser 

A graph having correct syntax satisfies the 

conditions that each node has the correct numbers and data 

types of input queues, output queues, and primitive 

parameters, and that each queue of the graph has exactly 
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one source node and one sink node. The definition of each 

primitive available to an ECOS graph node is contained in 

the Primitive Interface Definition (PID). A Graph Parser 

can check each node of the graph against the definition of 

the primitive of that node and report discrepancies. It 

also can report the names of queues used too many or too 

few times. 

The Deadlock Detector 

A graph has a deadlocked cycle if there exists a 

cycle such that each node in the cycle needs data from a 

predecessor in the cycle before that node can execute. If 

there is a deadlocked cycle in a graph executing on a 

dataflow processor, no node in the deadlocked cycle can 

obtain its needed data. The nodes in a deadlocked cycle 

will never go over threshold; the nodes in a deadlocked 

cycle will never execute. 

A graph has no deadlocked cycles if there is no cycle 

where each node in the cycle needs data from a predecessor 

in the cycle before that node can execute. Nodes in 

deadlocked cycles can be identified by the following 

process: create a reachability matrix where a 1 in (a,b) 

indicates a direct path from node a to node b; zero out 

fully initialized paths; form the transitive closure of 

the resulting matrix (Warshall's Algorithm [26] is 

appropriate for this process); a 1 in (a,a) indicates that 

node a is in a deadlocked cycle. Fully initializing one 
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of the queues can eliminate the deadlocked cycle. A graph 

Deadlock Detector can report the names of nodes which are 

contained in deadlocked cycles. 

The Produce Calculator 

A requirement of a correctly executing graph is that 

a queue does not overflow. In other words, the Node 

Execution Parameters (NEPs) specified by the ECOS 

application programmer must coordinate the Produce amounts 

of a predecessor node and the Consume amounts of the 

current node such that the input queue of the current node 

does not overflow. The programmer does not specify the 

Produce amounts of ·a node when creating a graph; the 

Primitive Interface Procedure (PIP) calculates the Produce 

amounts as the graph executes based upon the NEPs and the 

execution rules of the primitive in the Primitive 

Interface Definition (PID). A Produce Calculator, using 

information from the graph and from the PID, can calculate 

the Produce amount for each output queue for one execution 

of a predecessor node. The Produce amount is needed to 

calculate the frequencies of a node. Figure 11 in the 

appendix shows an example of the operation of the Produce 

Calculator. 

The Frequency Calculators 

A graph contains only consistent node execution 

frequencies if the graph contains only consistent 
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assignments of Node Execution Parameters (NEPs), contains 

only consistent assignments of input data rates, and 

contains no unachievable performance requirements. 

The Relative Frequency Calculator. Nodes communicate 

via queues. An output queue from one node is an input 

queue to another node. The relative frequency of a node 

describes how relatively often the node must execute and 

consume data to keep up with the produced data of its 

initial input node. Relative frequencies are in terms of 

the symbolic rate of the initial input node frequency, 

freq(i). If a predecessor node executes two times as 

often as its initial input node frequency, producing 1024 

data items from each execution, and the current node 

consumes 512 data items at each execution, then the 

current node must execute four times as often as its 

initial input node frequency (4*freq(i)) to keep up with 

the produced data and prevent queue overflow. 

relative frequency of current node = 
relative frequency of predecessor node 
MULTIPLIED BY produce amount of predecessor 

node for queue from predecessor to 
current 

DIVIDED BY consume amount of current node 
for queue from predecessor to current 

A node of the graph may have multiple paths to it 

from one input node. The programmer must specify 

consistent NEPs for each queue of the graph such that each 

node executes at a consistent frequency relative to each 

of its initial input nodes. A node can execute only at 
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one frequency; if the relative frequencies for a node 

imply that the node must consume data from one of its 

input queues three times as often as it must consume data 

from another of its input queues, then at least one 

specified NEP is incorrect. Figure 12 in the appendix 

shows an example of the operation of the Relative 

Frequency Calculator. 

The Required Frequency Calculator. The required 

frequency of a node describes how often the node must 

execute and consume data to keep up with the produced data 

of its predecessor node. Required frequencies are in 

terms of actual executions per second. If a predecessor 

node executes two times a second, producing 1024 data 

items from each execution, and the current node consumes 

512 data items at each execution, then the current node 

must execute four times a second to keep up with the 

produced data and prevent queue overflow. 

required frequency of current node = 
required frequency of predecessor node 
MULTIPLIED BY produce amount of predecessor 

node for queue from predecessor to 
current 

DIVIDED BY consume amount of current node 
for queue from predecessor to current 

If the node is an initial node, then the required 

frequency of the current node describes how often the 

initial node must execute and consume data to keep up with 

the data provided by its sensor input. If a sensor is 

providing data at a rate of 32768 data items per second, 



and the initial node consumes 1024 data items at each 

execution, then the initial node must execute 32 times a 

second to keep up with the sensor data. 

required frequency of initial node = 
input data rate 
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DIVIDED BY consume amount of input node for 
queue from sensor to current 

A node of the graph can have multiple predecessor 

nodes. The programmer must specify consistent NEPs for 

each queue of the graph such that each node executes at a 

consistent frequency relative to each of its predecessor 

nodes. A node can execute only at one frequency; if the 

required frequencies for a node imply that the node must 

consume data from one of its input queues three times as 

often as it must consume data from another of its input 

queues, then the required frequencies of the node are 

inconsistent. If all the relative frequencies of a graph 

are consistent and the required frequencies of the node 

are inconsistent, then at least one specified NEP is 

incorrect or at least one input data rate is incorrect. 

Figure 13 in the appendix shows an example of the 

operation of the Required Frequency Calculator. 

The Maximum Frequency Calculator. The maximum 

frequency of a node describes the maximum number of times 

a node can execute in a particular EMSP configuration. If 

the clock rate of an arithmetic processor (AP) is 100,000 

cycles per second, and the node requires 4000 cycles to 



execute once, then the node can execute at most 25 

executions per second. 

maximum frequency of node = 
clock rate of arithmetic processor 
DIVIDED BY cycles needed to execute node 
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If the required frequency for a node is greater than 

its maximum frequency, then the EMSP cannot execute the 

application as it is written. There is at least one node 

which is too large and must be divided into smaller nodes 

that can execute concurrently, or there is at least one 

initial input data rate which is too great and must be 

reduced. Figure 14 in the appendix shows an example of 

the operation of the Maximum Frequency Calculator. 

Ready to Configure 

Prior to configuring, Computer Assisted System 

Engineering (CASE) tools can traverse the graph and 

identify if it is well-formed. A Graph Parser can check 

each node of the graph against the definition of the 

primitive of that node and report discrepancies. It also 

can report the names of queues used too many or too few 

times. A Deadlock Detector can report the names of nodes 

which are contained in deadlocked cycles. A Produce 

Calculator can calculate the Produce amount for each 

output queue for one execution of predecessor node. 

Frequency Calculators can check that a graph contains 

consistent assignments of Node Execution Parameters, 
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contains consistent assignments of input data rates, and 

contains no unachievable performance requirements. It is 

now reasonable to identify the lower bounds on each type 

of functional unit needed to execute the graph. 

The Lower Bounds 

This section contains 4 sub-sections. Each sub­

section describes one part of the complete algorithm which 

identifies the lower bound on the number of each type of 

hardware module needed to execute a signal processing 

application on the Enhanced Modular Signal Processor 

(EMSP). The algorithm uses only static information from 

the graph, the Primitive Interface Definition (PID), the 

application, and the characteristics of the EMSP to 

identify the attributes and resultant hardware needs of 

the application. The sub-sections are in the order of the 

functional units they address and are in the order: 

. Arithmetic Processors (APs), Global Memories (GMs), Input 

Output Processors (lOPs), and Data Transfer Networks 

(DTNs). 

Each sub-section identifies the lower bound for one 

type of functional unit. The lower bounds assume a well­

formed graph and 100% utilization of the functional units. 

The first sub-section identifies the lower bound on the 

number of APs needed to execute the graph in real-time. 

The second sub-section identifies the lower bound on the 

number of GMs needed to hold the instruction streams and 
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the data. The third sub-section identifies the lower 

bound on the number of lOPs needed to handle the input and 

output in real-time. The fourth sub-section identifies 

the lower bound on the number of DTNs needed to support 

the data communications among the APs and GMs in real­

time. 

The descriptions are in separate sub-sections for 

clearness of explanation. For efficient execution, the 

implementation of the algorithm can combine the sub­

sections appropriately so as to gather all the information 

in one graph traversal, and later make the necessary 

computations to identify the lower bounds. Each sub­

section is described using successive decomposition of the 

unknowns until the lower bound is defined completely by 

known quantities. 

The Lower Bound on Arithmetic 

Processors 

Sub-section one identifies the lower bound on the 

number of Arithmetic Processors (APs). 

The lower bound on the number of Arithmetic 

Processors needed is the total number of machine cycles 

per time-unit needed to execute the graph divided by the 

number of machine cycles per time-unit obtainable from one 

Arithmetic Processor. In other words, it is the total 

needed cycle rate divided by the Arithmetic Processor 

cycle rate. 



lower bound on the number of APs 
CEILING OF ( 

total needed cycle rate 
DIVIDED BY cycle rate of AP ) 

A graph consists of a number of nodes. The total 
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cycle rate needed to completely execute the graph is the 

total of the cycle rates needed per node for all the nodes 

in the graph. 

total needed cycle rate = 
SUM OVER all nodes 
OF cycle rate per node 

all nodes = 
SPECIFIED IN the graph 

An individual node may be required to execute a 

number of times to complete one execution of the graph. 

Therefore, the total cycle rate needed for a node is the 

cycles needed for one node execution multiplied by the 

number of times the node is executed per time-unit. 

cycle rate per node = 
cycles for one node execution 
MULTIPLIED BY node execution rate 

The cycles needed for one node execution is a 

function of the Read amount for the underlying primitive 

of the node. Looking up the primitive name in the 

Primitive Interface Definition (PID) provides the formula 

to calculate the number of cycles. Inspecting the graph 

provides the Read amount to substitute into the formula. 
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cycles for one node execution = 
CALCULATE USING Read amount and PID formula 

Read amount = 
SPECIFIED IN the graph 

PID formula = 
CHARACTERISTIC OF the primitive 

The node execution rate is the required frequency of 

the node. 

same 

All 

node execution rate = 
required frequency of node 

required frequency of node = 
CALCULATE USING the Required Frequency 

Calculator 

the APs in a particular EMSP operate with the 

cycle time. The cycle rate for an AP is a 

characteristic of the particular EMSP. 

cycle rate of AP = 
CHARACTERISTIC OF the EMSP 

Arithmetic Processor Summary. The following 

operationally summarizes the AP sub-section of the Lower 

Bound Algorithm. 

At each node, calculate the cycles needed for one 

execution of that node by using the Read amount in the 

graph and the formula in the PID. Also calculate the 

execution rate of that node by using the Required 

Frequency Calculator. Multiplying the cycles needed for 

one execution by the execution rate gives the cycle rate 
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needed for that node to execute the graph. Add that 

amount to a needed cycle rate counter. 

After traversing all nodes, divide the needed cycle 

rate by the cycle rate of an AP to get the lower bound on 

the number of APs needed. 

Figure 18 in the appendix shows an example of the 

computation of the lower bound on the number of APs using 

the graph of Figure 15, the computed required frequencies 

of Figure 16, and the node data of Figure 17. The example 

is small compared to a complete ECOS application; the 

computed lower bound on the number of APs for the lower 

bound example equals one. 

The Lower Bound on Global Memories 

Sub-section two identifies the lower bound on the 

number of Global Memories (GMs). 

The lower bound on the number of Global Memories 

needed is the total number of memory bytes needed to 

store the graph divided by the number of bytes available 

in each Global Memory. 

lower bound on the 
CEILING OF ( 

number of GMs 

total needed memory space 
DIVIDED BY memory space in GM ) 

A graph contains both instruction streams and data. 

The total memory space needed to completely store the 

graph is the sum of the space needed for the instruction 

streams and for the queues. 



total needed memory space = 
memory space for instruction streams 
PLUS memory space for queues 

The total memory space needed for the instruction 

streams is the total of the space needed per instruction 

stream for all the nodes in the graph. Looking up the 
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instruction name in the PID provides the space needed for 

the instruction stream in bytes. 

memory space for instruction streams = 
SUM OVER all nodes 
OF space for instruction stream per node 

all nodes = 
SPECIFIED IN the graph 

space for instruction stream per node 
SPECIFIED IN the PID 

The total memory space needed for the queues is the 

total of the space needed per queue for all the queues in 

the graph. 

memory space for queues 
SUM OVER all queues 
OF space per queue 

all queues = 
SPECIFIED IN the graph 

The EMSP Principles of Operations (POPS) manual 

defines the space for a queue to be three times the 

Threshold amount for the queue. For each queue, 

inspecting the graph to obtain the Threshold amount and 

multiplying that number by three gives the space per 

queue. 



space per queue = 
three 
MULTIPLIED BY Threshold amount 

three = 
CHARACTERISTIC OF the EMSP 

Threshold amount 
SPECIFIED IN the graph 

All the GMs in a particular EMSP contain the same 
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number of bytes. The available memory space for a GM is a 

characteristic of the particular EMSP. 

memory space in GM = 
CHARACTERISTIC OF the EMSP 

Global Memory Summary. The following operationally 

summarizes the GM sub-section of the Lower Bound 

Algorithm. 

At each node, look up the memory space needed for the 

instruction stream in the PID. Add that amount to a 

needed memory space counter. At each queue, calculate the 

memory space needed for the queue by multiplying the 

Threshold amount by three. Add that amount to the needed 

memory space counter also. 

After traversing the graph, divide the needed memory 

space by the memory space in a GM to get the lower bound 

on the number of GMs needed. 

Figure 19 in the appendix shows an example of the 

computation of the lower bound on the number of GMs using 

the graph of Figure 15 and the node data of Figure 17. 
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The computed lower bound on the number of GMs for the 

lower bound example equals one. 

The Lower"Bound on Input Output 

Processors 

Sub-section three identifies the lower bound on the 

number of Input Output Processors (IOPs). 

The lower bound on the number of Input Output 

Processors needed is the total data rate needed to handle 

the input and output data divided by the maximum data rate 

obtainable from one Input Output Processor. 

lower bound on the number of IOPs 
CEILING OF ( 

total needed input-output data rate 
DIVIDED BY data rate of IOP ) 

A graph receives input and produces output. The 

total data rate needed to completely handle the input and 

output data is the sum of the rates needed for the input 

data and for the output data. 

total needed input-output data rate 
input data rates 
PLUS output data rates 

A graph may have multiple inputs. The total data 

rate needed for the input data is the total of the data 

rates needed per input queue for all the input queues in 

the graph. The rate per input queue is specified in the 

signal processing application. 



input data rates 
SUM OVER all input queues to graph 
OF data rate per input queue 

all input queues to graph = 
SPECIFIED IN the graph 

data rate per input queue = 
SPECIFIED IN the application 
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Similarly, a graph may have multiple outputs. The 

total data rate needed for the output data is the total of 

the data rates needed per output queue for all the output 

queues in the graph. 

output rates = 
SUM OVER all output queues from graph 
OF data rate per output queue 

all output queues from graph 
SPECIFIED IN the graph 

Each output queue has data produced to it by an 

output node which executes at a certain rate. The Produce 

amount of a node is the amount of data produced in one 

node execution. The data rate needed per output queue is 

its Produce amount multiplied by the number of times its 

output node is executed per time-unit. 

data rate per output queue = 
Produce amount of output node 
MULTIPLIED BY execution rate of output node 

Produce amount of output node = 
CALCULATE USING the Produce Calculator 

The node execution rate is the required frequency of 

the node. 



execution rate of output node 
required frequency of node 

required frequency of node 
CALCULATE USING the Required Frequency 

Calculator 
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All the lOPs in a particular EMSP operate at the same 

maximum data rate. The data rate for an lOP is a 

characteristic of the particular EMSP. 

data rate of lOP = 
CHARACTERISTIC OF the EMSP 

Input Output Processor Summary. The following 

operationally summarizes the lOP sub-section of the Lower 

Bound Algorithm. 

At each input queue, look up the data rate needed for 

the input data in the application specification. Add that 

amount to a needed data rate counter. At each output 

queue, calculate the amount of data produced to it in one 

output node execution by using the Produce Calculator. 

Also, calculate the execution rate of the output node by 

using the Required Frequency Calculator. Multiplying the 

data produced in one execution by the execution rate gives 

the data rate needed for the output queue. Add that 

amount to the needed data rate counter also. 

After traversing the graph, divide the needed data 

rate by the data rate of an lOP to get the lower bound on 

the number of lOPs needed. 

Figure 20 in the appendix shows an example of the 

computation of the lower bound on the number of lOPs using 
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the graph of Figure 15 and the computed required 

frequencies of Figure 16. The computed lower bound on the 

number of lOPs for the lower bound example equals one. 

The Lower Bound on Data 

Transfer Networks 

Sub-section four identifies the lower bound on the 

number of Data Transfer Networks (DTNs). 

The lower bound on the number of Data Transfer 

Networks is the total number of transfer cycles per time­

unit needed to support the data communications divided by 

the number of transfer cycles obtainable from one Data 

Transfer Network. 

lower bound on the number of DTNs 
CEILING OF ( 

total needed transfer rate 
DIVIDED BY transfer rate of DTN ) 

A graph contains many APs and GMs. The total 

transfer rate needed to support the data communications 

among APs and GMs is the total of the data transfer rates 

needed per node for all the nodes in the graph. 

total needed transfer rate = 
SUM OVER all nodes 
OF transfer rate per node 

all nodes = 
SPECIFIED IN the graph 

An individual node may be required to be executed a 

number of times to complete one execution of the graph. 
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Therefore, the total transfer rate needed to support a 

node is the transfer traffic for one node execution 

multiplied by the number of times the node is executed per 

time-unit. 

transfer rate per node = 
traffic for one node execution 
MULTIPLIED BY node execution rate 

The communication traffic for one node execution is 

the sum of the traffic which results from the instruction 

stream transfers and from the data transfers. 

traffic for one node execution 
instruction stream traffic 
PLUS data traffic 

For one node execution, the communication traffic 

resulting from the instruction stream transfer is the size 

of the instruction stream. Looking up the instruction 

name in the PID provides the size of the instruction 

stream. 

instruction stream traffic 
instruction stream size 

instruction stream size = 
SPECIFIED IN the PID 

For one node execution, the communication traffic 

resulting from the data transfer is the sum of the input 

data to the node and the output data from the node. 

data traffic = 
input data traffic to node 
PLUS output data traffic from node 
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A node may have many input queues associated with it. 

The total amount of input data to the node for one node 

execution is the total of the Read amounts per input queue 

for all the input queues of the node. 

input data traffic to node = 
SUM OVER all input queues per node 
OF Read amount per queue 

all input queues per node = 
SPECIFIED IN the graph 

Read amount per queue 
SPECIFIED IN the graph 

Similarly, a node may have many output queues 

associated with it. The total amount of output data from 

the node for one node execution is the total of the 

Produce amounts per queue for all the output queues of the 

node. 

output data traffic from node = 
SUM OVER all output queues per node 
OF Produce amount per queue 

all output queues per node 
SPECIFIED IN the graph 

Produce amount per queue = 
CALCULATE USING the Produce Calculator 

The node execution rate is the required frequency of 

the node. 

node execution rate = 
required frequency of node 

required frequency of node = 
CALCULATE USING the Required Frequency 

Calculator 
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All the DTNs in a particular EMSP operate at the same 

transfer rate. The transfer rate for a DTN is a 

characteristic of the particular EMSP. 

transfer rate of DTN 
CHARACTERISTIC OF the EMSP 

Data Transfer Network Summary. The following 

operationally summarizes the DTN sub-section of the 

algorithm. 

At each node, obtain the instruction stream transfer 

traffic by looking up the instruction stream size in the 

PID. Add that amount to a needed transfer traffic 

counter. At each input queue of the node, obtain the 

input data transfer traffic by looking up the Read amount 

in the graph. Add that amount to the needed transfer 

traffic counter. At each output queue of the node, 

calculate the amount of the output data transfer traffic 

by using the Produce Calculator. Add that amount to the 

needed transfer traffic counter. The transfer traffic 

counter now contains the total of the needed transfer 

traffic for one execution of the node. Calculate the 

execution rate of the node by using the Required Frequency 

Calculator. Multiplying the needed transfer traffic by 

the execution rate gives the transfer rate needed for the 

node. Add this amount to a needed transfer rate counter, 

and zero out the needed transfer traffic counter. 



After traversing all nodes, divide the needed 

transfer rate by the transfer rate of a DTN to get the 

lower bound on the number of DTNs needed. 
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Figure 21 in the appendix shows an example of the 

computation of the lower bound on the number of DTNs using 

the graph of Figure 15, the computed required frequencies 

of Figure 16, and the node data of Figure 17. The 

computed lower bound on the number of DTNs for the lower 

bound example equals one. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The Enhanced Modular Signal Processor (EMSP) is an 

embedded real-time signal processor. Because of the 

nature of EMSP systems, it is critical that an EMSP system 

have enough resources to meet the time requirements of the 

signal processing application and also be as small as 

possible. 

The present approach to finding the smallest system 

is based on information obtained by executing the signal 

processing application. The present approach requires 

finding a similar application even though there may be no 

similar application. It requires time-consuming and 

costly trial-and-error simulation. Further, the present 

approach gives no information as to how close an obtained 

machine configuration is to the minimal configuration. 

The lower bound algorithm developed in this thesis 

does not require finding a similar application. The lower 

bound algorithm identifies the lower bound configuration 

using only static information from the graph, the 

Primitive Interface Definition (PID), the application, and 

the characteristics of the EMSP. An implementation of the 
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algorithm can traverse the graph once and obtain results 

quickly and inexpensively. 
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The algorithm requires a well-formed graph. A graph 

which has correct syntax, no deadlocked cycles, and only 

consistent node execution frequencies is a well-formed 

graph. Requiring a well-formed graph is reasonable; an 

application having a graph which is not well-formed means 

the solution is incorrect and cannot execute, regardless 

of the machine configuration. 

The lower bound approach is based on the capacities 

of by the hardware modules, be those capacities in machine 

cycles for the Arithmetic Processors (APs), memory bytes 

for the Global Memories (GMs), data rates for the Input 

Output Processors (lOPs), or transfer rates for the Data 

Transfer Networks (DTNs). The algorithm divides the total 

capacity needed for the application by the capacity which 

can be supported by one hardware module to identify the 

lower bound on the number of that hardware module needed. 

This dissertation shows how to use only static 

information from the graph, the Primitive Interface 

Definition (PID), the application, and the characteristics 

of the EMSP to identify the lower bound configuration. 

Further Work 

Assignment and Contention 

The lower bounds identify the minimum numbers of 

hardware modules below which the application is guaranteed 
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to fail to execute. However, given an EMSP with the lower 

bound numbers of hardware modules, the application still 

may be unable to execute. In other words, the lower bound 

configuration may not be a minimal configuration. Further 

work is necessary to identify the minimal configuration. 

This work has at least two component parts: the 

assignment problem, and the contention problem. 

The assignment problem is the problem that more 

functional units may be needed for the minimal 

configuration than are required for the lower bound 

configuration. The assignment problem arises because 

there may be EMSP requirements and application 

requirements which prohibit full use of Global Memories 

(GMs) and Input Output Processors (IOPs). 

For example, there may be three queues which, when 

their space requirements are totaled, could be stored by 

two GMs. The lower bound algorithm will identify two as 

the number of needed GMs. However, the EMSP architecture 

requires that a queue cannot be split across GMs. Rather 

than needing only two GMs (the lower bound number), the 

EMSP needs three GMs. 

There may be four sensors which, when their data 

rates are totaled, could be handled by two IOPs. The 

lower bound algorithm will identify two as the number of 

needed lOPs. However, the application may require that 

each sensor be assigned to a different IOP. Rather than 

needing only two IOPs, the EMSP needs four lOPs. 
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The two preceding examples showed instances of the 

assignment problem. The problem exists for assigning 

instruction streams and queues to GMs and assigning 

sensors and output devices to lOPs. The assignments for 

instruction streams, queues, sensors, and output devices 

are static assignments. The initial part of the problem 

is to devise suitable assignment algorithms, or an optimal 

assignment algorithm, for assigning sizes to modules. The 

subsequent part of the problem is to consider how to 

include those assignments when identifying the numbers of 

hardware modules in which the application is guaranteed to 

execute. 

The contention problem is the problem that free 

Arithmetic Processors (APs) or free Data Transfer Network 

(DTN) paths may not be available when needed. The 

contention problem arises because APs and communication 

paths through the DTNs are assigned dynamically by the 

Scheduler (SCH) as the EMSP executes and thus are not 

candidates for static assignment. 

When a node has all its operands and is ready to 

execute, the Scheduler (SCH) looks for a free AP. If 

there is a free AP, the Scheduler schedules the node to 

the AP. If there is no free AP, the node waits. 

When a GM receives the message to send an instruction 

stream to an AP, it places the instruction stream onto the 

DTN. If there is a free path from the GM to the AP, the 
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DTN transfers the instruction stream. If there is no free 

path, the instruction stream waits. 

The two preceding examples showed instances of the 

contention problem. The problem exists for assigning 

nodes to APs and for assigning communication paths through 

DTNs. The contention for free APs and the contention for 

free DTN paths are dynamic events. The initial part of 

the problem is to devise suitable measurements for 

specifying the·amounts of contention. The subsequent part 

of the problem is to 'consider how to include those 

measurements when identifying the numbers of hardware 

modules in which the application is guaranteed to execute. 

Suppose there is no free path from a GM to an AP. 

There may be no set of assignments of instruction streams 

to GMs which would allow contention free operation. 

However, there may be certain sets of assignments which 

would lead to less contention than other assignments. 

Although the assignments are static, the assignments have 

a dynamic effect. In other words, the assignment problem 

and the contention problem interact. This interaction 

complicates both the assignment problem and the contention 

problem. 

Prediction 

The lower bounds identify the minimum numbers of 

hardware modules below which an application is guaranteed 

to fail to execute. Often, having the ability to predict 
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the effect of future changes is important. The prediction 

problem is the problem of predicting the effects of 

changes. 

Many signal processing applications require fault 

tolerance, the ability of a system to continue operating 

correctly even in the presence of a fault. Being able to 

predict the space cost of fault tolerance is important for 

an embedded system. Further work is necessary to identify 

the minimum numbers of functional units needed to provide 

specified levels of fault tolerance. 

Unlike the present approach which gives no guidelines 

as to where to start modifying an existing machine so it 

can execute a new application, the lower bound algorithm 

gives a base below which it is useless to try. Still, 

there are many possible combinations of processors, 

memories, and data interconnections. Further work is 

needed to quantify the relationship between application 

functionality and the numbers of functional units. 

Just as with other systems, real-time signal 

processing systems are modified in the field. An 

application may benefit from a small increase in 

functionality. Being able to predict the size cost 

implied by a small increase in functionality is important 

for a potential field modification. Further work is 

needed to quantify the relationship between incremental 

increases in application functionality and incremental 

increases in machine size. 
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An enclosure for an embedded system may contain some 

unused space, space which could hold additional functional 

units in preparation for field enhancements. Being able 

to predict which functional unit(s) would best be held in 

that unused space is important. Further work is needed to 

identify the improvements in processing power which result 

from increases in the numbers of functional units. 
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Processing Elements 

Figure 2. The Data Driven Signal Processor 
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Figure 4. The Dataflow Binary Tree Processor 
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CBUS 

Figure 6. The Enhanced Modular Signal Processor 
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DATA_IN : INT, T = 1 

DISPLAY OUT : INT 

Figure 7. A Graph 



%GRAPH ( SAMPLE GRAPH 
GIP = N INT 
INPUT Q = DATA IN : INT 
OUTPUT Q = DISPLAY OUT : INT ) 

%% declare the internal queues 
%QUEUE ( Q1, Q4 : INT ) 
%QUEUE ( Q2, Q3 : CINT ) 

%% define the graph topology 
%% 

%% 

%ENDGRAPH 

%NODE ( LPF1 NODE 
PRIMITIVE = LPF 
PRIM IN DATA IN 

THRESHOLD 1 
READ = 1 
CONSUME 1 

PRIM OUT = Q1 ) 

%NODE ( DFT NODE 
PRIMITIVE = DFT 
PRIM IN N 

Q1 
THRESHOLD N 
READ = N 
CONSUME N 

PRIM OUT = Q2 ) 

%NODE ( SELECT NODE 
PRIMITIVE = SELECT 
PRIM IN = N 

Q2 
THRESHOLD = N 

%% if read not specified then 
%% read = threshold 
%% if consume not specified then 
%% consume = threshold 

PRIM_OUT = Q3 ) 

%NODE ( NDET NODE 
PRIMITIVE = NDT 
PRIM IN = N/2 

Q3 
THRESHOLD N/2 

PRIM_OUT = Q4 ) 

%NODE ( LT1 NODE 
PRIMITIVE = LT1 
PRIM IN = N/2 

Q4 
THRESHOLD = N/2 

PRIM OUT = DISPLAY OUT ) 

Figure 8. ECOS SPGN for the graph in Figure 7 
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%COMMANDPROG ( SAHPLE COMMANDPROG ) ; 
%% declare the variables 

GRAPH : GRAPH ID ; 
INPUT Q, OUTPUT Q : QUEUE ID ; 
INPUT-PROC, DISPLAY PROC: IO PROC ID 

%% create tne input and output queues -
INPUT Q := %CREATEQ ( INT ) ; 
OUTPUT Q := %CREATEQ ( INT ) ; 

%% initialize the input and output procedures 
INPUT PROC := %INITIO ( INPUT PROC NAME 

INPUT =-INPUT Q ) ; 
DISPLAY PROC := %INITIO ( DISPLAY PROC NAME 

%% start the graph 
OUTPUT OUTPUT_Q ) 

GRAPH :=%START ( SAMPLE GRAPH 
GIP = lOTI 

%% to be reconfigurable then 
%% the gip would be a control 

INPUT = INPUT Q 
OUTPUT = OUTPUT Q ) 

%% start the output and input procedures 
%STARTIO ( DISPLAY PROC ) ; 
%STARTIO ( INPUT PROC ) ; 
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%% do not run off the end or you stop all your graphs 
WAIT FOREVER ; 

/oENDPROGRAM 

Figure 9. Command Program for the Graph in Figure 7 



RECONFIGURABLE: 
BEGIN 

%% create queues, procedures, and start the graph 
START UP ; 

%% execute the graph until stop 
LOOP 

COMMAND :=GET COMMAND ; 
%% change the graph during runtime 

IF COMMAND = RECONFIGURE THEN 
RECONFIGURE GRAPH ; 

IF COMMAND = STOP THEN 
STOP GRAPH 
EXIT-; 

END LOOP ; 
END RECONFIGURABLE ; 

Figure 10. Command Program for a Dynamically 
Reconfigurable Graph 
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READ= 128 

PRODUCE= 

GlP of 64 tells VECTOR ADD to add 64 data points 
together when producing output 

Therefore, PRODUCE = 2 

Figure 11. Produce Calculator 
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f(2) = 
= 

f(3)b = 
= 

f(3)c = 
= 

input 

freq(I) 

c p = 768 
c = 128 

freq (I) "' 1024 I 1024 
freq(I) 

freq(I) "' 1024 I 512 
freq(I) * 2 

freq(I) * 768 I 128 
freq(I) * 6 

f(3)b does not equal f(3)c 

Therefore, there is an inconsistency in relative frequencies 

Figure 12. Relative Frequency Calculator 
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f(4) = 2 

input 

f p = 32768 
c = 1024 

f(S)e = 2 * 1024 I 512 
= 4 

f(S)f = 32768 I 1024 
= 32 

f(S)e does not equal f(S)f 

Therefore, there is an inconsistency in required frequencies 

Figure 13. Required Frequency Calculator 
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f(4) = 16 

input 

f p = 32768 
c = 1024 

AP executes 100,000 cycles/sec 
(EMSP characteristic) 

node 5 takes 4000 cycles to execute 
(PID information) 

maximum frequency of node 5 = 100,000 I 4000 
= 25 executions per sec 

maximum frequency is less than required frequency 

Therefore, the graph will not execute in real-time 

Figure 14. Maximum Frequency Calculator 
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p = 1024 
c = 1024 

p = 1024 
c = 1024 

Figure 15. Graph for Lower Bound Example 
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Node Required Frequency 
-------------------------------------

1 2048 I 2048 1 1 
2 4096 I 4096 1 1 
3 f( 1) * 512 I 256 1 -~~ 2 2 
4 f(2) ~~ 4096 I 1024 1 -!: 4 4 
5 f(2) * 4096 I 4096 1 * 1 1 
6 f(3) * 1024 I 1024 2 -I: 1 2 
7 f(5) * 2048 I 2048 1 * 1 1 
8 f(6) * 1024 I 2048 2 ~~ 112 1 
9 f(6) * 512 I 256 2 * 2 4 

f(4) ~~ 1024 I 1024 4 * 1 4 
10 f(9) -I: 1024 I 2048 4 -!: 112 2 

f ( 7) * 2048 I 1024 1 * 2 2 
11 f(8) * 512 I 256 1 -;'( 2 2 

f(10) * 1024 I 1024 2 ·!: 1 2 

Figure 16. Required Frequencies for Lower Bound Example 



Node 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Cycles for one 
Node Execution 

4450 
5000 
3900 
3200 
4000 
4000 
3800 
4350 
3700 
4800 
4450 

Space for 
Instruction Stream 

6 
8 

18 
19 
10 
22 
17 
14 
14 
10 
21 

Figure 17. Node Data for Lower Bound Example 
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Total Needed Cycle Rate 
----------------------------

required cycles for one 
frequency node execution 
--------- --------------

1 * 4450 
+ 1 ;'( 5000 
+ 2 "'k 3900 
+ 4 ;': 3200 
+ 1 ;': 4000 
+ 2 ""k 4000 
+ 1 * 3800 
+ 1 * 4350 
+ 4 * 3700 
+ 2 ;': 4800 
+ 2 i'( 4450 
----------------------------

83500 cycles per second 

Cycle rate of AP = 100000 cycles per second 

Lower bound on the number of APs = 
ceiling ( 83500 / 100000 ) = 1 Arithmetic Processor 

Figure 18. Lower Bound on the Number of APs 
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Total Needed Memory Space 

memory space for memory space for 
instruction streams queues 
------------------- ----------------

6 3 ·/( 2048 
+ 8 + 3 "'k 4096 
+ 18 + 3 ..,·~ 256 
+ 19 + 3 ·k 1024 
+ 10 + 3 ;': 4096 
+ 22 + 3 ;'( 1024 
+ 17 + 3 ;'( 1024 
+ 14 + 3 ~·( 2048 
+ 14 + 3 ;'( 2048 
+ 10 + 3 7: 256 
+ 21 + 3 ;': 1024 

+ 3 "'k 256 
+ 3 * 2048 
+ 3 -;'\ 1024 
+ 3 i'( 1024 

------------------- ----------------
159 + 69888 

70047 words 

Memory space in GM = 262144 words 

Lower bound on the number of GMs = 
ceiling ( 70047 / 262144 ) = 1 Global Memories 

Figure 19. Lower Bound on the Number of GMs 



Total Needed Input Output Data Rate 

input data rate 

2048 
+ 4096 

6144 + 

output data rate 

2 7: 1024 

2048 

8192 cycles per second 

91 

Input output data rate of IOP = 80000 cycles per second 

Lower bound on the number of IOPs = 
ceiling ( 8192 I 80000 ) = 1 Input Output Processor 

Figure 20. Lower Bound on the Number of IOPs 
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Total Needed Transfer Rate 
----------------------------------------------------------

required instruction stream data 
frequency traffic traffic 
--------- ------------------ ------------------

1 * ( 6 + 2048 + 512 
+ 1 -1: ( 8 + 4096 + 4096 + 4096 
+ 2 i'\ ( 18 + 256 + 1024 
+ 4 ·k ( 19 + 1024 + 1024 
+ 1 -;'t; ( 10 + 4096 + 2048 
+ 2 7: ( 22 + 1024 + 1024 + 512 
+ 1 .. k ( 17 + 2048 + 2048 
+ 1 ;': ( 14 + 2048 + 512 
+ 4 "'k ( 14 + 256 + 1024 + 1024 
+ 2 "i( ( 10 + 2048 + 1024 + 1024 
+ 2 .. k ( 21 + 256 + 1024 + 102b, 
----------------------------------------------------------

65865 words per second 

Transfer rate of DTN = 1048576 words per second 

Lower bound on the number of DTNs = 
ceiling ( 65865 / 1048576 ) = 1 Data Transfer Network 

Figure 21. Lower Bound on the Number of DTNs 
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