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PREFACE 

This thesis presents three primary ideas: 1) an extension of the traditional 

Burg (forward-backward harmonic mean) estimation method from its least 

squares (L2 norm) roots to the more general LP normed case; 2) an adaptive 

speech coding scheme which attempts to find the optimal p-normed estimator 

for a given segment of speech; and 3) some experimental results in what might 

be called explicit Markov models for speech recognition, which is based on 

work that has been done in so-called "hidden" Markov models. 
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CHAPTER I 

INTRODUCTION 

Overview of Speech Coding 

Transmission of speech over a digital communications channel poses a 

number of problems not found in the analog world; among the most significant 

of these is information bandwidth. If one assumes that analog voice requires 

4kHz of bandwidth, the most popular coding technique (J.L-Iaw, J.L=255) used by 

the telecommunications industry would require 64 kbits/sec. or about 64 kHz 

of bandwidth, assuming a modest one Hz/bit transmission scheme. Clearly, 

this 16-fold bandwidth increase is undesirable; to reduce the information rate, 

various forms of data compression are employed, adding to the complexity of 

the system. These compression systems fall into a range of general categories 

(Jayant and Noll [1984], p. 9): 1) Waveform compression, such as ADPCM 

(Rabiner and Schafer [1978], p. 226); 2) Parametric models, such as short

time Fourier transform or linear predictive models (Rabiner and Schafer 

[1978], p. 396); and 3) literal recognition of speech with text to speech 

reconstruction at the receiver (Flanagan, 1972). 

The tradeoffs involved in each can be summarized as follows: 
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Coding type Complexity 

Uncoded Very Low 

Waveform Low 

(ADPCM, etc.) 

Parametric Moderate 

(LPC, short term Fourier) 

Recognition High 

2 

Comments 

• At least 64 kbits/sec required for 

transmission 

• Clarity excellent 

• Voice characteristics (inflection, 

tonality) preserved 

• 8-32 kbits/sec 

• Clarity greatly diminished at lower 

rates 

• Voice characteristics preserved 

• 2.4-9.6 kbits/sec 

• Clarity better than with equivalent 

waveform coder rate 

• Voice characteristics not preserved 

as well as in waveform coding 

• <1 00 bits/sec 

• Synthesis from text to speech; 

inflection and tonality lost 

In many applications, especially telephony, retention of the speakers' 

speech characteristics is important for normal, natural conversation. This, in 

conjunction with the fact that 2400-4800 bits/sec can be transmitted relatively 

easily over commercial phone lines , implies that a good parametric model 

would seem to be of great importance. 

Given that a parametric model is desired, two problems remain: 
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1 )ehoice of an approach used to develop a model, and 

2) Determination of the "best" model for a given approach. 

Obviously, a number of books could be and have been written on these 

topics; it is the intent here to address some new issues in the determination of 

a suitable model and computation of the model parameters, where a statistical 

approach to the modelling problem is used as a basis. 

Use of Parametric models for Speech Coding 

A widely used model in statistics is the autoregressive (AR) model, 

which is also called the "linear predictive" model. 

The name "linear prediction" comes from the formulation of the model; 

the basic assumption is that the next sample in a sequence can be estimated 

from a linearly weighted combination of previous samples. In more 

mathematical terms, if we assume a sequence x(n), n=1 ,2,3, ... ,N then the 

following relation would apply (Rabiner and Schafer, 1978, p. 399): 

m 

;(n)= :Laix(n-i+ 1) 
i=1 (1.1) 

where m is the order of the predictor and the ai are predictor coefficients, 

which must be calculated from the data. The process of extracting the ai from 

the data x(n) is also called "deconvolution". 

Parameters of a linear predictive model are usually calculated by 

minimizing the sum of the squared residuals (or errors), where the residual is 



4 

the difference between the actual data and the model. This is also referred to 

as an L2 model, where the "2" indicates the residual terms are raised to the 

second power before summing. In general, one could raise the residual terms 

to some arbitrary p-th power and minimize this quantity; this is called the Lp 

normed model. Values of p other than two may offer some advantages in a 

number of ways; several studies have been done using the Lp model in other 

areas, particularly seismic data processing, with particular interest in L1 

models (Taylor, et a/, 1979 and Yarlagadda, et a/, 1985). Qualitatively, the 

L1 (absolute value) solution tends to ignore outliers while the L2 model tries to 

satisfy all points as best it can; values of p between one and two blend these 

characteristics somewhat. Thus, the L1 model is "best" for a "long-tailed" 

probability density function, such as Laplacian. 

In fact, it can be shown (Pham and DeFigueiredo, 1987) that for a given 

value of p, the Lp model will be the maximum likelihood estimator for residuals 

whose distribution is of the form e-lriP. If the nature of the residuals can be 

characterized to show they are of this form for speech, then the Lp models 

should be more optimal in a statistical sense. 

Also of importance in parametric modeling is stability of the model. If the 

AR parameters ai are considered coefficients of a recursive filter structure, the 

synthesis filter would have a transfer function 

G 
P(z)=----

1-!ai£i 
i=1 

where G is the overall gain and z is the z-transform operator. 

(1.2) 

For a synthesis system to properly reproduce the speech, this filter must 

be stable - the poles of P(z) must lie inside the unit circle. The basic linear 
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predictive model only assures stability under special circumstances; synthesis 

structures called lattice filters allow a stable model to be computed under all 

circumstances. 

This work will review techniques for calculation of the L2 then examine 

the methods that can be used to calculate the Lp model. An extension of the 

L2 lattice techniques to the more general Lp case will next be considered. 

Optimal selection of p for speech coding applications will also be discussed, 

where optimality will be with reference to a measure of the distribution of the 

residuals. Finally, spectral estimation of speech using Lp models will be 

discussed and experimental results will be described. 

Overview of speech recognition issues 

The final chapter of this thesis is a brief introduction to the field of 

sequential decision processes. A sequential decision process (or sequential 

classifier) has the attractive property of being "real-time"; that is, a signal can 

be classified as it is received, without having to be captured and processed. 

Sequential classifiers also have the interesting property that they follow a 

"most likely" path as they attempt to arrive at a decision, which should allow 

"soft" decisions to be made and the "lines of reasoning" to be traced, both of 

which are important artificial intelligence concepts. 

The primary purpose of the chapter is to explore some current ideas in 

sequential classification as applied to speech recognition. Why speech 

recognition? Well, tracking the temporal patterns of the spectrum of the 

speech signal would seem to be a reasonable way to extract the information 
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in a speech signal (Levinson eta/, 1983). Other signals have a structure that 

is amenable to sequential processing, of course; convolutional codes used in 

digital communication are especially suited to sequential processing 

techniques. 

Some words of caution are in order before proceeding; speech 

recognition is an extremely difficult problem. As Flanagan (1976) stated: "The 

speech typewriter ... in its full fledged form ... may not happen this century, if 

ever." Pierce(1969), in a refreshingly self-critical letter to the Journal of the 

Acoustical Society of America, was equally candid: 

It is hard to gauge the the success of an attempt 
at speech recognition even when the statistics are 
given. In general, it appears that recognition around 
95% correct can be achieved for clearly pronounced 
isolated words from a chosen small vocabulary (the 
digits, for example) spoken by a few chosen talkers. 
Better results have been attained for one talker. 
Performance has gone down dramatically as the 
vocabulary was expanded, and appreciably as the 
number and variety of talkers were increased. It is not 
easy to see a practical, economically sound 
application for speech recognition with this capability. 

While speech recognition systems have improved somewhat since 

1969, the point of Pierce's letter is well taken; the difficulty of the problem will 

likely prevent any quantum leaps in performance. Some researchers 

(Flanagan eta/, 1980) believe that grandiose projects should be minimized 

and that research should concentrate on incremental improvements in 

existing techniques. Many research programs purport to be the one that will 

finally solve the problem, and while good results have been obtained, natural 

man-machine communication is still far in the future. This investigation makes 



7 

no claim that any technique is THE answer; rather, it is an attempt to gain a 

better understanding of sequential detection and its application to signal 

recognition - an incremental increase in existing techniques. 

The recognition techniques described in this thesis are based on work 

performed at Bell Laboratories (Rabiner eta/, 1983) and at IBM (Baker, 1975; 

Kaneko and Dixon, 1983) with some significant differences. 

Chapter Outline 

Chapter II reviews existing methods for selecting a linear predictive 

model for speech; it describes both forward prediction as well as lattice 

(forward-backward) techniques. Maximum likelihood models are also briefly 

discussed. 

Chapter Ill describes the properties of and solution strategies for what 

are called p-normed forward prediction models; these are a generalization of 

traditional least squares models (L2) for the Lp case. 

Chapter IV gives a derivation of a new algorithm for calculating the Burg 

estimators based on a p-normed error criterion. Some previous results for the 

L1 case are described and the Lp approach is developed by extending 

previous work in L2 and L1 modeling. 

Chapter V contains some experimental results using an adaptive coding 

scheme for a ·digital speech communications system. The kurtosis of the 

residual is used to arrive at a "near" optimal p-normed model for a given 

segment of speech. 

Explicit spectral models are the subject of Chapter VI; the linear 
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prediction inverse filter P(z) is treated as a spectral estimate of the time signal 

x(n). Speech signals are examined by a variety of spectral estimators, where 

performance both with and without additive noise is demonstrated. 

A different subject, speech recognition, is the topic of Chapter VII. Some 

experimental results in Markov modeling and sequential classification are 

described. 

Finally, conclusions and future work comprise Chapter VIII, the final 

chapter, which is followed by references. 



CHAPTER II 

LINEAR PREDICTIVE MODELS FOR SPEECH CODING 

Preliminaries 

The usual method of solving for the predictor coefficients is to minimize 

the squared error between the predicted values (x) and the actual values (x). 

There are a number of ways to formulate this problem, however, and there are 

some implicit assumptions in the least squared error approach. To begin with, 

the linear predictor given previously can be written as a matrix equation as 

follows (Yarlagadda, eta/, 1985): 

x1 0 ••• 0 x2 

x2 x1 ••• 0 x3 

x3 x2 ••• 0 x4 
••• • •• • •• 
Xm Xm-1 ••• x1 

a1 
Xm+1 

a2 ••• • •• = • •• 
••• 

XN-1 XN-2 ••• XN-m XN 

XN XN-1 ••• XN-m+1 
am 0 

0 XN ••• XN-m+2 0 
••• • •• • •• 
0 0 ••• XN 0 

(2.1) 

or Xa=y_ 
N is the window width 

X (qxm) .a (mx1) ~(qx1) q =N+m-1 

9 
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This is called the autocorrelation formulation of the one-step ahead 

linear prediction problem for the least squares (L2) solution; the sequence is 

arbitrarily set to zero outside of the analysis interval. 

Another way to set up the prediction equations is called the covariance 

formulation in L2 (shown below); here no assumption is made about the length 

of the sequence. 

Xm Xm-1 ••• x1 Xm+1 

Xm+1 Xm ••• x2 Xm+2 

Xm+2 Xm+1 ••• Xs Xm+3 
••• • •• a1 • •• 

X 2m X2m-1 ••• Xm-1 a2 = X2m+1 
••• • •• ••• • •• 

XN-m XN-m-1 ••• XN-2m am XN-m+1 
••• ••• • •• 

XN-2 XN-3 ••• Xq-1 XN-1 

XN-1 XN-2 ••• Xq XN 

(2.2) 

or Xa=¥ 
N is the window width 

X (qxm) B (mx1) ~ (qx1) q = N-m-1 

Solution of either of these formulations for the predictor coefficients ai 

involves solution of an overdetermined system of equations, which cannot be 

solved in a conventional sense without some further assumptions. One 

approach, which yields the least squares solution, is to multiply both sides by 

X\ then recognize that xtx is square and (usually) invertible. In this thesis, it is 

assumed that X is of maximum rank. In certain applications X may not be of 

full rank; in such cases, methods such as diagonal loading are used where [el 

+ xtx] is used instead of xtx, where I is the identity matrix, and e is some small 
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positive number. In the usual case however, the least squared error solution 

to the set of linear prediction equations can be written as: 

.s = (xtxr1 xty (2.3) 

The squared error can now be derived by defining the error or residual 

sequencer: 

ri = Yi - (X_s)i (2.4) 

E2 = L>~ = L (yi - (Xa)/ 
i i (2.5) 

While this solution may seem compact and well formulated, it may not yield a 

good model for speech. Why? Predictor coefficients derived from the least 

squares method are the maximum likelihood estimators only if the sequencer 

is Gaussian [Mendel, 1987, p. 93]. This assumption may not be true for 

speech, especially voiced speech, which does not sound like Gaussian noise 

at all. As Geary [1947] says, "all texts should state: Normality is a myth, there 

has never been, and never will be, a normal distribution". These issues will 

be addressed in more detail later in this thesis. For now, we shall review 

techniques for solving the L2 problem and use these as an introduction to LP 

solution methods. 

Classical Least Squares Solution Techniques 

As noted in equation (2.3), the form of the least squares solution is 

a= (Xtxr1 xty,, regardless of whether the problem was formulated as an 

autocorrelation or as a covariance problem (although obviously the X andy, 
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are different in each case). Calculation of the .9 vector could be done by using 

direct techniques, but this is almost never done because inversion of the xtx 
matrix directly is too time consuming except for the case where m, the size of 

the square xtx matrix, is small. Instead, the xtx matrix is inverted by 

exploiting special properties it possesses. In particular, if the autocorrelation 

problem has been posed, the xtx matrix will be Toeplitz (symmetric with all 

values along a given diagonal equal); and the .9 vector can be solved for quite 

efficiently using the Levinson-Durbin procedure (Rabiner and Schafer, 1978, 

p. 411 ). In this case, the xtx matrix turns out to be a matrix of autocorrelation 

values ; thus the system of equations to be solved is of the following form: 

Rn(O) Rn(1) ••• Rn(m-1) a1 Rn(1) 
Rn(1) Rn(O) ••• Rn(m-2) a2 Rn(2) 

= ••• ••• ••• ••• ••• • •• 

Rn(m-1) Rn(m-2) ••• Rn(O) am Rn(m) 
(2.6) 

where Rn(k) is the autocorrelation of the signal x(n) at the k-th lag which is 

given by: 

N-k 
Rn(k) = _'Lx(n+i) x(n+i+k) 0 $ k $ m 

i=1 

In series form, the system of equations can be written: 

m 
L aiRn(lj-il) = Rn(j) 1 $j$m 
i=1 

(2.7) 

(2.8) 

Rabiner and Schafer (1978, p. 411) offer a concise and clear summary 

of Durbin's method; the details of the algorithm will not be described here. 

If the problem is to solve the covariance formulation, the xtx matrix is 

symmetric but not Toeplitz. An efficient means exists to find a, although it is 

not as fast as the Levinson-Durbin algorithm. This technique is called the 



13 

square root method or Cholesky decomposition. For this case the xtx matrix 

is a matrix of values that has the properties of a covariance matrix, and the 

system of equations takes the following form: 

<1>n(1, 1) <1>n(1 ,2) ••• <1>n(1 ,m) <I> n( 1 , 0) a1 
<1>n(2, 1) <1>n(2,2) ••• <1>n(2,m) a2 <1>n(2,0) 

= 
••• ••• ••• ••• ••• • •• 

<l>n(m, 1) <1>n(m,2) ••• <l>n(m,m) am <l>n(m,O) 
(2.9) 

which can be written in matrix notation as <I>a=*· The entries in <I> are 

expressed by (Rabiner and Schafer, 1978, p. 403) 

N 

<l>n(i,k) = L x(n+j-i) x(n+j-k) 
i=1 

1 ~i ~ m 
O~k~m 

(2.1 0) 

Solution of the equations can efficiently be accomplished using the 

Cholesky decomposition as mentioned above, which factors the <I> matrix into 

the form vovt, where V is lower triangular and D is diagonal (Graybill, 1976, 

p. 231 ). 

Another issue mentioned earlier is filter stability, which is important for 

analysis/synthesis systems. The L2 autocorrelation method is always 

guaranteed to yield a stable P(z) - all poles are inside the unit circle; the L2 

covariance method may not always yield a stable polynomial (Makhoul, 

1977). A relatively recent solution to this problem can be found in lattice 

structure models; in these cases, filter stability can be assured using a wide 

variety of constraint functions. Figure 1 shows the lattice architecture, where 

the ki are called reflection coefficients (they are also the same as partial 

autocorrelation coefficients in L2 - often the ki are used with a minus sign) 

(Makhoul, 1977). For an m-th order predictor, if all lkil<1, then this is a 

necessary and sufficient condition for stability of P(z) (Markel and Gray, 1976, 
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p. 98). Thus, any solution method that can be shown to always have all lkil<1 

will always yield stable predictors. 

x(n) 

Figure 1 : Lattice Architecture 

••• forward 
prediction 
error 

••• backward 
prediction 
error 

The L2 solution that assures stability is due to Burg; the derivation will 

lay the groundwork for the LP solution. At the j-th stage of the lattice, the Burg 

algorithm requires minimization of the quantity (Burg, 1968): 

N N 

Ek = Lie~(n)l2 + Lie~(n)l2 
n=L n=L (2.11) 

where N is the number of data samples, e+j(n) is the forward error at sample n 

for the jth stage, e)(n) is the backward error at sample n for the jth stage, and 

L is the lower limit of the analysis interval. Viswanathan and Makhoul (1979) 

use two different values for L: L=j+1 or L=m+1, with the former being used 

more commonly in speech. 
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We want to find a reflection coefficient ki+1 that allows the errors to be a 

first order recursion from one lattice stage to the next. 

. 1 . . e: (n) = e~(n) + ki+1 e~(n-1) 
(forward error) (2.12) 

(backward error) (2.13) 

and 

0 0 
e)n) = e_ (n) = x(n) 

(initial error is data sequence) (2.14) 

Solution for the desired ki+1 is accomplished by setting the derivative of 

the error to zero and rearranging terms. At the j+ 1st stage, the error is: 

N N 

E:1 = L [e:\n)]2 + L[e~+\n)]2 
n=L n~L (2.15) 

Substituting in the recursion expressions for the error terms yields: 

N 
i+1 ""' j j 2 E8 = L . .tfe)n) + ki+1e_(n-1)] 

n=L 

(2.16) 

Taking the partial derivative with respect to ki+1 and setting it to zero 

gives the expression: 

N N 

0 = Le~(n)e~(n-1) + ki+ 1 Le~(n-1 )2 

n=L n=L 

(2.17) 

The reflection coefficient can now be solved for directly. 
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(2.18a) 

which is, in vector form, 

(2.18b) 

From the expression in equation (2.18a), it follows that any lkj+11 < 1 

since the ratio is of the form -2ab/(a2 + b2), and since (a+b)2 >0 this implies 

that a2 + b2 > 12abj. 

In general, the Burg solution will be different from either the 

autocorrelation or the covariance solution. What we have, then, are three 

formulations of the same problem that yield three different answers. We shall 

soon see that each formulation can be solved for a p-normed solution, further 

complicating the choice of the best model to use. 

A topic that should also be addressed when discussing optimal Lp 

models is that of efficiency of the model. In particular, the optimal estimator in 

a statistical sense is the one which is the maximum likelihood estimator for a 

given probability density function (pdf) (Mendel, 1987, p. 91 ). In the case of a 

linear predictive (autoregressive) process, the distribution of the residual 

sequence should be used to establish the maximum likelihood predictor (Rice 

and White, 1964). 

While there is an infinite number of distributions that the residual could 

be drawn from, the selection process can be greatly simplified if some logical 

assumptions can be made. A good starting point would be examination of the 
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distribution of the speech signal and the residual from linear predictive 

analysis. Paez and Glisson (1972) report that the pdf of speech is closer to a 

gamma or Laplace density, as shown in Figure 2; while it is difficult to infer the 

distribution of the residuals from this, we shall see later that experimental 

results bear this out. It can be shown that the maximum likelihood estimator 

for a Laplacian distribution is the L1 estimator (Hogg, 1977); this gives a 

strong motivation for investigating models other than L2 for speech. 

Pham and deFiguiredo (1987) show that both the Gaussian and 

Laplacian distributions are special cases of a more general family of 

distributions called p-Gaussian. These pdf's are of the form e·lriP, where we 

define r as the residual sequence and p is generally in the range 1 ~p~oo. 

Thus, p=2 gives a Gaussian distribution and the Laplacian distribution results 

when p=1. An infinite set of distributions can be generated by varying p; some 

of these are shown in Figure 3, which also indicates that asp goes to infinity, 

the uniform distribution results. The p-Gaussian family of pdf's, then, 

represent a wide range of likelihood functions. Pham and deFiguredo (1987) 

point out that the LP predictor is maximum likelihood for the corresponding p

Gaussian pdf; any computational procedure which would allow calculation of 

an Lp model for a variety of values of p would give great flexibility in choosing 

an efficient model for speech, especially if a criterion can be found that will 

choose an optimal value for p. 
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CHAPTER Ill 

SOLUTION AND PROPERTIES OF THE Lp LINEAR PREDICTOR 

Introduction 

As mentioned previously, the L2 solution is only one of an infinite 

number of solutions to the overdetermined system of linear prediction 

equations. In particular, one can define a p-normed error criterion as follows: 

Ep= I jyr(Xa)t =I lrt 
i i (3.1) 

where ri = ~- (X.a)i and Ep is to be minimized for a given value of p. 

For L2 , the solution exists and can be found using Durbin's method (for 

the autocorrelation formulation) or Cholesky's decomposition (for the 

covariance formulation) (Rabiner and Schafer, 1978, p.407). For other values 

of p, some specific procedures have been developed. For example, the L1 

solution can be calculated using linear programming (as will be shown 

shortly), as can the the L00 solution (Pham and deFigueiredo, 1987). In 

general, the p-normed solution to the linear prediction problem can be 

efficiently solved by using the residual steepest descent (RSD) algorithm, 

among others. Some of these techniques will be described later in this 

chapter. 

20 



21 

Properties of the Lp Solution 

To demonstrate the properties of the LP solution, consider taking the 

impulse response of some known linear system; we would expect the 

recovered model coefficients to correspond to the parameters of the 

underlying linear system if the model order is sufficiently high and no noise is 

present. As an example, consider the difference equation: 

x(n)=s(n) + 1.6 x(n-1)- 0.8 x(n-2) (3.2) 

which has a unit sample response of 

1' 1.6, 1. 76, 1.536, 1.05, 0.4506, -0.119, ... 

This is a linear system with conjugate poles at 0.8 ± j0.4 in the Z-plane; it 

corresponds to two vectors whose magnitude is approximately 0.9. Thus, 

while this is a stable system, the poles are fairly near the unit circle. The linear 

prediction equations for the autocorrelation formulation for the case of m=2 

and q=6 are then: 

1 0 
1.6 1 
1.76 1.6 
1.536 1.76 
0 1.536 

[ ::] = 

1.6 
1.76 
1.536 
0 
0 (3.3) 

which is the practical problem of a truncated sequence. The ideal solution 

should correspond to the system parameters (1.6, -O.S)t. 

This system of equations translates into the following minimization 

problem when solving for the p-normed error: 
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Minimize: 

<!>(a1, a2) = (j1.6-a1J)P + (11.76 -1.6a1 - a2J)P + (11.536 -1.76a1 -1.6a2J)P 

+ (l-1.536a1 -1.76a21)P + (l-1.536a21)P (3.4) 

where the values of a1 and a2 are unconstrained. 

Before exploring techniques for finding the minimum of the error function 

<P(a1, a2)=Ep, a discussion of some graphical methods may help clarify the 

problem. Two types of plots will be employed; the first is the error surface 

generated by <!> while a1 and a2 are varied over a range of p values; this 

surface should have a "valley" for a minimum to exist. While these surfaces 

show important properties such as convexity, the second type of graph, which 

is a contour plot of the error function <!>. will be useful when looking at solution 

trajectories. The contours are drawn at ten equally spaced values of <P(a1, a2) 

over the rectangular region bounded by 0 ::;; a1 ::;; 2 and -2 ::;; a2 ::;; 0. The 

residual at any point in these plots will point perpendicular to the contour lines 

shown; thus, the system will have a solution whenever there is an open circle 

or a "spot" that indicates a minimum. Figure 4a) is the L2 error surface, while 

b) is its corresponding contour plot. Likewise, Figures Sa) and b) are the L1_5 

error surface and contour plot, and Figures 6a) and b) are the plots for the L1 

case. Finally, Figures 7a) and b) give the error surface and contour plots for 

the L0.5 case. The first three cases clearly have solutions in the vicinity of g_ = 

(1.6, -0.8), but when P=0.5, something goes awry; while the function has a 

global minimum, it also appears to have numerous other local minima. The 

case for p=O.S does not, in fact, correspond to a linear normed space (not 

globally convex - not all points in the space can be represented as a linear 

combination of the basis vectors), but it may still have some usefulness. In this 

case, the residual does not always point in the direction of the global solution. 
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Figure Sb: L1.5 Contour Plot 



25 

2t . 

115 . 

u . 

5 . 

• • 
-2 e2 0 

Figure Sa: L1 Error Surface 

ERROR NORM: 1.000000 

-2 a2 0 

Figure 6b: L1 Contour Plot 



26 

15 . 0 

p:O.S 
11 . 3 

15 . 7 . 5 

11. 3 . B 

7 . 

3 . 
tl 1 

-2.0 e2 0.0 

Figure 7a: Lo.s Error Surface 

ERROR NORM: 0 . 5000000 

-2 e2 0 

Figure 7b: Lo.s Contour Plot 



27 

The L2 autocorrelation method is always guaranteed to yield a stable 

P(z) - all poles inside the unit circle; the L2 covariance method is not 

(Makhoul, 1977). In the general LP problem, no formulation mentioned so far 

can assure stability except for the autocorrelation form with p=2; other values 

of p may yield unstable models, no matter which method is used. In particular, 

the autocorrelation model is always stable for 2~p<3, but there may exist 

some p0 in the interval 1 <p0<2 for which the prediction filter may not be stable. 

In that case, stability is not assured for any model generated in the range 

1 <P<Po (Bednar, et a/, 1986). Filter stability can be assured by using a 

different formulation of the linear prediction problem - the lattice or Burg 

algorithm, which will be addressed in Chapter IV. As a simple example of the 

instability problem, consider the following scalar case: 

1 2 
2 3 
3 a= 4 
4 5 
5 0 (3.5) 

The L2 solution to this problem is 50/55 = 10/11, which is less than one, 

indicating a stable solution. The L1 solution, on the other hand, is 5/4, which 

yields an unstable predictor. 

Before proceeding, some words about the L1 solution are in order: <j>(a1, 

a2) becomes linear when P=1, indicating that the minimum occurs at a vertex 

of the polytope bounded by <!> (Jeter, 1986, p. 68). For this, the L1 case, we 

want to find a set of two equations that are satisfied exactly and yield the 

minimum sum of absolute errors. A "brute force" approach would require 

examining 5C2 = 10 sets of equations (or qC2 in general). If the five equations 

are sketched in the a1 - a2 plane, the solution space in Figure 8 results, which 
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shows the possible solution locations at the intersections of each pair of lines. 

By calculating the value of <j>(a 1 , a2 ) at each intersection, the minimum 

absolute error solution can be found. Solution for this global minimum in the 

general L1 case can be much more efficiently found using linear programming 

techniques (Barrodale and Roberts, 1973). 
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Figure 8: Example of solution space for L1 problem 
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Use of Linear Programming Techniques for L1 normed models 

Linear programming was the only technique available for L1 

deconvolution until relatively recently. Linear programming is based on the 

idea that if all variables are allowed to take on only positive values in an 

underdetermined system of linear constraint equations with positive solutions, 

then a systematic procedure can be used to arrive at the minimum of a linear 

objective function (assuming a finite minimum exists). This is true because 

positivity of the variables and constants forces the region bounded by the 

objective function and the constraints to be a convex polyhedron (Thie, 1979, 

p. 98). Given some starting point on a vertex of the polyhedron, the "simplex 

algorithm" can be used to move from vertex to vertex until an optimum solution 

is reached. 

Solution of the deconvolution problem with an L1 objective function can 

be put into a linear programming form so that the simplex method can be used 

to solve for the a vector (Barrodale and Roberts, 197 4). The first problem is 

that the LP problem is an overdetermined system of equations while linear 

programming requires an underdetermined system. The process of casting 

the LP problem in standard form will rectify this. 

As noted previously, the system of equations to be analyzed is Xa=~. 

The solution .a is found by a constrainted minimization procedure that 

minimizes Ep, where p equals one for this case. To cast this in a linear 

programming form, we shall change the formulation slightly: 
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Minimize 2.:1 ri I 

Subject to [Xa- rl = r = Col(r1, r2, ... .rq) (3.6) 

which merely states that the p-norm residual is to be minimized. Here, the 

unknowns a and r are "unconstrained" - they can be either positive or 

negative. Since convexity (and hence ability to find a solution) requires 

positive unknowns only, the vectors r and a must be split into the difference 

between two positive vectors: r+- r and g_+- a-. The problem now is (Taylor, 

eta/, 1979): 

Minimize 2.:1 rt I + 2.:1 r~ I 

Subject to: X (,a+- .a-)+ ( r- r+) = ~ (3.7) 

In matrix form, this is: 

+ g 

Minimize: { 0 to t1 t1 1) a 
r 
+ r 

g 

Subject to : (X -X I -I) a 
r 

+ 

+ 

.a+ , .a- ;::: o , r , r+ ;::: o 

r (3.8) 

.a+ , .a- ;::: o , r , r+ ;::: o 

where 1 is a column vector of all ones and 0 is a vector of all zeroes. 
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Figure 9 a) shows this matrix written in tableau form for the simplex 

algorithm, where the objective function (2) r~l + Ll ril) is written along the 

bottom row of the tableau. The 1-normed error will then be the negative of the 

value in the lower right corner when the algorithm stops. 

Using the simplex algorithm, three pivots will be performed to bring the 

tableau into the halting position (see Thie [1979] for details of the simplex and 

dual simplex methods) as shown in Figures 9 b), c) and d). At this point, the 

solution a1 + = 1.6, a2• = 0.8 can be read directly from the tableau. This implies 

that the solution is a= (1.6, -0.8)t. 

a; a2 a 1 e r: r 2 1 2 r: 3 r 4 5 1 2 3 5 

10.00 0.00 -10.0 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 16.00 

16.00 10.00 -16.0 -10.0 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 11.60 

11.Ei0 1Ei.00 -11.Ei -1Ei.0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 15.:36 

15.:3Ei 11.60 -15.:3 -11.6 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 

0.00 15.:36 0.00 -15.:3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 

-58.9 -58.9 58.96 58.96 0.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 -"18 .96] 

2:lr1 I 

Figure 9a: Initial Simplex Tableau 
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0.00 -11."1 0.00 11."16 1.00 0.00 0.00 -0.65 0.00 -1.00 0.00 0.00 0.65 0.00 16.00 

0.00 -8.33 0.00 8.33 0.00 1.00 0.00 -1.0"1 0.00 0.00 -1.00 0.00 1.0"1 0.00 11.60 

0.00 -"1.11 0.00 "1.11 0.00 0.00 1.00 -1.15 0.00 0.00 0.00 -1.00 1.15 0.00 15.36 

1.00 1.15 -1.00 -1.15 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 

0.00 15.36 0.00 -15.3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 

0.00 8.60 0.00 -8.60 0.00 0.00 0.00 3.8"1 0.00 2.00 2.00 2.00 -1.8"1 2.00 -"18.9 

Figure 9b: Simplex Tableau After First Pivot 

0.00 -1.00 0.00 1.00 0.09 0.00 0.00 -0.06 0.00 -0.09 0.00 0.00 0.06 0.00 1."10 

0.00 0.00 0.00 0.00 -0.13 1.00 0.00 -0.51 0.00 0.13 -1.00 0.00 0.51 0.00 5.96 

0.00 0.00 0.00 0.00 -0.36 0.00 1.00 -0.91 0.00 0.36 0.00 -1.00 0.91 0.00 9.5<l 

1.00 0.00 -1.00 0.00 0.10 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 1.60 

0.00 0.00 0.00 0.00 1.3"1 0.00 0.00 -0.81 1.00 -1.3<l 0.00 0.00 0.81 -1.00 21.<l5 

0.00 0.00 0.00 0.00 0.15 0.00 0.00 3.35 0.00 1.25 2.00 2.00 -1.35 2.00 -36.9 

Figure 9c: Simplex Tableau After Second Pivot 

0.00 -1.00 0.00 1.00 0.11 0.00 -0.06 0.00 0.00 -0.11 0.00 0.06 0.00 0.00 0.80 

0.00 0.00 0.00 0.00 -0.50 1.00 -0.62 0.00 0.00 0.50 -1.00 0.62 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 -0."10 0.00 1.10 -1.00 0.00 0."10 0.00 -1.10 1.00 0.00 10.50 

1.00 0.00 -1.00 0.00 0.10 0.00 0.00 0.00 0.00 -0 .10 0.00 0.00 0.00 0.00 1.60 

0.00 0.00 0.00 0.00 1.69 0.00 -0.96 0.00 1.00 -1.69 0.00 0.96 0.00 -1.00 12.29 

0.00 0.00 0.00 0.00 0.21 0.00 1."19 2.00 0.00 1.19 2.00 0.51 0.00 2.00 -2z .7B I 
-L 1 Error 

Figure 9d: Final Simplex Tableau 

Referring to the contour maps shown previously, the simplex algorithm 

moves from the origin to the final solution (1.6, -0.8) along the path given in 
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Figure 10. Since the system of equations is explicitly evaluated at each step, 

note that the solution is exact in the sense that it satisfies two equations 

exactly, although much more computation is required to achieve this. 

ERROR NORM: 1.000000 
2 

a 1 

0 
-2 a2 0 

Figure 10: Solution Locus for Linear Programming 

Each point of the simplex tableau could require as many as 6 x 15 = 90 

multiply/add operations, although faster algorithms exist, as will be discussed 

shortly. Thus, this example required about 270 operations. Other methods 

can be employed to achieve approximately the same result with far fewer 

calculations; as m and q become large, the simplex method requires too many 

computations and too much memory to be useful (Yarlagadda, et at, 1985). 
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Improvements to the simplex algorithm have, in some cases, 

dramatically improved the speed of the algorithm; the two techniques 

mentioned most often in the literature are Khachyan's algorithm (see Aspvall 

and Stone, 1979) and Karmarkar's algorithm (Karmakar, 1984). Both 

techniques achieve performance improvements by going through the convex 

solution poltope rather than along its vertices. For more information on 

Karmakar's algorithm, the reader is referred to Rockett and Stevenson (1987) 

as well as Strang (1986), both of which give lucid descriptions of the 

algorithm. It differs from the simplex method primarily in that the locus of 

intermediate solutions does not remain on the polytope but rather on a 

hypersphere drawn from within the solution space. Use of this method allows 

solution of the linear programming problem in O(mk) (polynomial time) rather 

than O(km) (exponential time) (Rockett and Stephenson, 1987) 

Even with these improvements, the fact still remains that linear 

programming can only solve the L1 or Loo problem; the general Lp problem 

requires use of other computation techniques, which will be considered 

shortly. 

Use of Residual Steepest Descent Algorithm for Lp Linear Prediction 

To find a general Lp solution to the linear prediction equations, we shall 

consider the RSD algorithm, as described in Yarlagadda, eta/ (1985). This 

algorithm is a steepest descent method with an adaptive stepsize. For the 

situation at hand, the deconvolution problem X .a= y_ can be solved in the p-
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normed sense for the vector .a by the following algorithm: 

Residual Steepest Descent Algorithm 

0. Calculate initial .a 

a) Use previous .a 

b) Use L2 solution (McCormick and Sposito ,1976) 

ITERATE OVER K 

1. Calculate r(k) = (X.a(k)) - y_ (residual vector) 

2. Let 'Yj(k)=SGN(q(k)) I q(k)IP-1 i=1, ... ,q 

3. Minimize E(k) w.r.t. ~k where 

E(k) = II r(k)- ~X (xtXt1 xt y(k)llp 

This can be solved directly in a p-normed sense or using iteratively 

reweighted least squares (IRLS). 

4. S!(k+ 1) = .a(k)-~k (xtxr1 xt 'Y(k) 

5. If ~k is "sufficiently small", solution has converged; otherwise, go to 

step one. 

This algorithm converges for 1 :s:p:s:3 but does not converge to a true L1 

solution in all cases. For most practical applications, however, the algorithm 

converges to a correct solution within acceptable limits. 

Use of the RSD algorithm on the example problem for the L1 solution 

will now be illustrated. 

The initial L2 solution .a.(O) = (1.116, -0.4133)t yields residual and 

gamma vectors of: 

-0.4840 -1 
-0.3879 -1 

I= -0.2333 ':/.= -1 
0.9866 1 

-0.6349 -1 (3.9) 
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The next step is the minimization given in step three; we shall use IRLS, which 

can be summarized as follows: 

Let ts.' = X (XtX)"1 Xtl(k) (vector derived from quantities in RSD) 

a'= .1.i (at the jth iteration) 

Y . .' = r ( from equation 3.9) 

( (j) = ~~ - i{ a' 

We wish to minimize 

Ep=IIY'n-X'na'IP 
n=1 

Now let W be a diagonal matrix whose entries are defined as 

lr'Wip-2 lr'iO)I > E 

p-2 
E lr'iO}I<e 

(3.1 0) 

(3.11) 

where E is a small positive number, typically 0.001, and the Wii(j) are 

normalized such that the largest value is one. Then, 

a'(j+1) = (~'t W(j) ~T1 ~~t W(j) Y . .' (3.12) 

Note that a' is a scalar and that the quantity on the right is the ratio of 

two scalars. 

In the IRLS part of the algorithm, the a' (.1.k back in the original problem) 

may not go to zero but is merely required to reach a minimum. When a' 

stabilizes, the equivalent .1. value is returned to the RSD algorithm. For the 

example, 



-0.4840 
-0.3880 

( = Y..'- a·~· = -0.2330 - a'(O) 
0.9866 

-0.6399 
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-0.279 
-0.489 
-0.560 
-0.505 
-0.066 (3.13) 

where a'(O) can be picked arbitrarily. If we let a'(O) = 0, the IRLS algorithm will 

calculate a'(1) = 3. 727; continuing in this fashion, a'stabilizes to the second 

decimal place after eight iterations at a value of 0.417. It has been observed 

that the L2 solution is a good starting point for the IRLS algorithm. 

Going back to the RSD algorithm, this value of of d 1 = a' = 0.417 yielded 

a new ,a(1) = (1.232, -0.394)t which is closer to the ''true" value of (1.6, -0.8)t. 

On the second pass through the loop, d 2 = 0.006 was calculated and 

yielded .a(2) = (1.1222, -0.3954)t. At this point, the algorithm was terminated 

since d had converged to less than 0.1 (a typical value). For this solution, the 

residual vector is: 

-0.368 
-0.184 

(~- X.a) = r = o.ooo 
1.200 

-0.607 L1 (3.14) 

where the last two values are attempts to predict outside the rectangular 

window and can be disregarded. The three values inside the window were 

predicted quite closely; compare this to the L2 residual: 

-0.484 
-0.388 

r= -0.233 
0.987 

-0.635 L2 (3.15) 
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which shows the effect of "outliers" on the coefficients and residual. 

An insightful way to analyze the performance of RSD is to use the 

contour map and plot the locus of intermediate solutions as the algorithm 

iterates. Figure 11 a) shows the solution trajectory for L1 when the algorithm is 

started at the L2 solution (1.116, -0.4133)t, while 11 b) shows an initial solution 

of (0, O)t. Clearly, the choice of initial solution is not critical, although one or 

two extra iterations may be required. 
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Figure 11 a: Solution Locus Using L2 at Start 
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Finally, the RSD algorithm was run using other values of p; Figures 12 

a), b), and c) show the locus of intermediate solutions for P=2, 1.5, and 0.5 

respectively. For p=2 and 1.5, the algorithm was started at (0, O)t, while p=0.5 

was started from the L2 solution. Notice that in all cases, the algorithm 

stopped before reaching the ''true" minimum; this is typical of steepest descent 

algorithms since convergence is only tested to within some E (tolerance 

value). For the L1 and L2 cases, the difference between the actual p-normed 

error and the error when RSD stopped is only a few percent, at most. 
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Figure 12a: Solution Locus for L2 
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Figure 12b: Solution Locus for L1.5 
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Figure 12c: Solution Locus for L0.5 
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The number of operations required to compute the L1 solution using 

RSD can be derived as follows: 



Step 

0 

1 

2 

3 

4 

Estimated Number of 
Operations (Multiply/add) 

0 

mq 

0 

m2(q+1) 

mq 

mq 

2(6q) 

m 

Comments 

(if previous solution used) 

)l- X.a 

(sgn time is negligible) 

(xtXt1 

(xtxt 1 xtg(k) 

(xtxt 1 xtg(k) 

IRLS algorithm loops twice 

a(k+1) 

Total: 3mq + 12q + m2(q + 1) + m 

For the example: 116 
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Thus, for this simple example, the RSD algorithm required only 116 

operations while the simplex method required 270, a considerable savings. 

According to Makhoul (1977), the Cholesky decomposition requires 

operations on the order of m3, although it is not an iterative procedure 

because the L2 solution can be expressed in closed form. 



CHAPTER IV 

GENERALIZED BURG ALGORITHM 

As mentioned in Chapter II, lattice techniques have been widely used in 

speech synthesis; as formulated by Burg, these models are always stable and 

yield a solution in terms of reflection coefficients, which can be coded quite 

efficiently in a transmission system (ltakura and Saito, 1972). In addition, the 

reflection coefficients are calculated sequentially; another term can be added 

to the model quite easily. Extension of the traditional L2 procedures to Lp 

would be quite useful because 1) Lp models are not always stable, and 2) The 

statistics of the speech residual indicate that the Lp model is more efficient. 

Alternative norms for the Burg algorithm have been investigated only briefly in 

the literature -most recently by Denoel and Solvay (1985), who solved the 

Burg problem in L1 using what they refer to as a weighted median. As an 

example, consider calcualtion of the first reflection coefficient of the sequence 

x(n) = 1, 2, 3, 4, 5 

For the first stage, the derivation given in Chapter II, equation (2.14) 

requires that 

e+ O(n) = e_o(n) = x(n). 
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The L2 algorithm would then give, from equation (2.18), 

N 

-2Le~ (n)e~ (n-1) 
n=L 

k1 =~N~~--------
""0 2 0 2 
~[e_ (n-1) + e+ (n) ] 
n=L 

in this example L equals two, which results in k1 = -0.9524. 
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(4.1) 

Denoel and Solvay (1985) begin with the harmonic mean objective 

function as defined by Burg: 

E; = ~~ e~l +I e~IJ 
I (4.2) 

then substitute the error recursion 

· [I ·1 ·1 I I ·1 ·1 1n E~ = t: e~ (i) + k1e~- (i-1) + e~- (i-1) + k~~ (i) U 
(4.3) 

By isolating the reflection coefficient term and pulling a term out of the 

absolute value, the expression can be written as: 

E; = L. [1 e~-1(i-1) I ~-~1(i) + ki +I e~1(i) I e:-~(i-1) + ki ~ 
I J 1 (' 1 ) J 1 (") e_ 1- e+ 1 

(4.4) 

which is a combination of sums of the general form: 

E; = l[l wi-1(i) II qi-\i)- ki I J 
I (4.5) 

where the w(i) correspond to the first terms in the absolute value signs and the 

q(i) correspond to the ratios. 

A solution to this scalar L1 problem is what Denoel and Solvay call the 

weighted median of the sequence q(i). In the example given previously, the 



first reflection coefficient can be calculated as follows: 

e+ O(n) = e. O(n) = x(n) = (1, 2, 3, 4, 5) 

Using equation (4.5), this implies that 

w(i) = (1, 2, 3, 4, 2, 3, 4, 5) 

and q(i) = (2, 3/2, 4/3, 5/4, 1/2, 2/3, 3/4, 4/5) 

46 

The next step in the algorithm is sorting of the q(i) into ascending order; this 

yields the sequence 

q(i)sorted = (1 /2, 2/3, 3/4, 4/5, 5/4, 4/3, 3/2, 2) 

and w(i)reordered = (2, 3, 4, 5, 4, 3, 2, 1) 

where each of the w(i) are merely reordered to match its corresponding q(i) 

value. 

The next step in the procedure is to accumulate a partial sum of the 

sorted w(i) until this partial sum becomes greater than or equal to one half of 

the complete sum, which is 24 in this example. Finally, the solution can be 

found as the q(i) corresponding to the w(i) which satisfied the criterion above. 

If there are an even number of points, Denoel and Solvay prescribe taking the 

solution corresponding to the first partial sum equalling or exceeding the one

half sum limit. The table below gives the solution. 
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q(i)sorted w(i )reordered L w(i) sum/2 = 12 

1/2 2 2 

2/3 3 5 

3/4 4 9 

4/5 5 14 ~ solution= 4/5 

5/4 4 18 

4/3 3 21 

3/2 2 23 

2 1 24 

The weighted median procedure for finding the L1 solution to the Burg 

algorithm is not efficient because of the sorting operations required, as Denoel 

and Solvay admit; they claim that by restricting the problem to finite precision 

arithmetic, fast sorting algorithms can be used to speed up the process 

significantly. A more fundamental problem is that the solution can only be 

found for P=1 (by Denoel and Solvay) or p=2 (by Burg); in this thesis, the Burg 

algorithm will be generalized to the LP case, where p can take on any value in 

the range 1 ::;;p::;;3 and convergence to a solution is assured (Byrd and Pyne, 

1979). 

Use of the approach to solution of the L2 case for the LP case yields the 

following: 

. N r~1 ·-1 ·-1 
1
p 

1 
·-1 ·-1 

1
p1 

E~=~~e~ (i)+k~~ (i-1) + e~ (i-1)+k~~ (i) J 
I=L (4.6) 

(forward error) (backward error) 

where, like the L2 case, L equals two. 

An attempt to solve these equations in the same manner as the L2 case 

leads to the following messy expressions because of the absolute values 

inside the brackets: 
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aEi+1 N 
p ~ p-1 
~ = 0 = £...J [ lan + ki+1bn I lbnl SGN(an +ki+1bn)] 

J+ 1 n=L (forward part) 

+ [1bn+k1. 1a lp-11a I SGN(bn+k. 1an)] 
+ n n J+ (backward part) (4.7) 

where the an and the bn are e)(n) and e)(n-1 ), respectively. 

No clear solution technique has emerged for this form; the original Epi+1 

can be cast as an IRLS problem, however, making possible an iterative 

solution. The IRLS technique (Yarlagadda, et a/, 1985) allows efficient 

calculation of a p-normed scalar predictor for a vector equation Xa=~. If the 

backward error term is rewritten after a change of variables, the p-normed 

error at the j+ 1 th stage becomes: 

. 1 N ~, . . lp I . . lp) 
E~ = L ~ e~(n) + ki+1e:(n-1) + e:(n-1) + ki+1e~(n) 

n=L (4.8) 

If we write out the terms, a structure becomes evident; consider the following 

expansion: 

(4.9) 
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Minimization of this quantity is equivalent to finding the Lp solution to the 

system 

or 

e~(N-1) 

e~(L) 

e~(N) 

e~(L-1) 

(4.1 0) 

( 4.11) 

in the p-normed sense, where Q. is the backward error vector and f is the 

forward error vector. Naturally, this overdetermined system can be solved in 

any number of ways, including minimum p-norm. As a check, the L2 solution 

would be k1 = -(.Q.tQ. + .{tf)-1 (.Q.t! + ttQ.) which, since the quantities inside the 

parenthesis are scalars, is clearly the same form as equation (4.1 ). 

Consider the following example; if the sequence given previously (1, 2, 

3, 4, 5) is cast as a covariance problem, the solution to the first order 

covariance L2 problem is a=4/3 which yields an unstable filter. The L2 Burg 

algorithm yields a reflection coefficient of k1=-0.9524, as given earlier, which is 

a stable filter. The LP Burg algorithm for the first stage would be 
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1 2 
2 3 
3 4 
4 

k1 =-
5 

2 1 
3 2 
4 3 
5 4 (4.12) 

which for p=1 yields k1=-0.8. The recursion can be used to calculate the next 

error vector from the previous error and the reflection coefficient. 

1.0 1.0 
-0.6 1.2 

b.= -0.4 != 1.4 
-0.2 1.6 
0.0 1.8 (4.13) 

It has been found during this investigation that the L1 solution may be 

considerably different from the L2 solution and that this affects the spectral 

properties of the model, as will be shown in Chapter VI. 

Stability of the Lp solution can be described in terms of the error vectors f 

and Q.; if we consider the partition in equation (4.11 }, the p-normed solution at 

each step of the IRLS algorithm will be of the form: 

ki+1 =-[.b.' w 1!2 + 1'w2f]"' [ 12W 1 1'w2l[~] 
(4.14} 

where W1 and W2 are diagonal weighting matrices as defined in equation 

(3.11 }. Since ki+1 is a scalar, this expression can be rewritten as: 

-[o.wd +fw2o.] 
ki+ 1 = [12' w 1ll. + t'w2t] 

(4.15) 
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If w1 = w2 = I, the identity matrix, this expression is the same form as 

equation (2.18); stability is assured by the same argument that holds for the L2 

case. For the more general case, consider equation (4.11 ); for the first 

iteration of the IRLS algorithm, it follows from the L2 stability argument that the 

next value of ki+1 must be less than one in absolute value, if the initial starting 

point is +1 or -1. Thus, the absolute value of ki+1 must decrease if it is chosen 

initially to be the marginally stable solution - ki+ 1 must then be bounded 

by [-1' + 1 ]. 

The generalized Burg algorithm is a powerful extension to the L2 

method; it may even be possible to use other weighting functions to optimize 

with respect to other objective functions. 

During development and testing of the Lp Burg algorithm, an important 

computational issue arose. As is well known, the L1 solution always exists but 

may not be unique (Yarlagadda, eta/, 1985). In fact, for an even number of 

points, there will usually be an infinity of solutions (Denoel and Solvay, 1985), 

which will always be the case for the Burg algorithm. Since this family of 

solutions may span a considerable range in the solution space, care must be 

taken to assure that a given LP model will yield a synthesis filter which will give 

acceptable speech quality. An initial solution of kio = 0 was used in 

preliminary experiments to save computation; this resulted in solutions which 

were too small to adequately capture the formant structure. Similarly, setting 

the initial kio = 1, which should pick solutions closer to the unit circle in the Z

plane, made the synthesis filter overly resonant and, again, sound quality 

suffered. It was found, as suggested by Yarlagadda, eta/ (1985), that the L2 

solution is the "best" starting point for the IRLS algorithm. The LP Burg 
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algorithm converges rapidly for a wide range of values of p and model sizes. 

It offers a powerful extension to existing lattice techniques. 



CHAPTERV 

OPTIMAL ADAPTIVE Lp MODELS FOR SPEECH 

As discussed in Chapter II, a p-normed model may offer greater 

statistical efficiency for speech since the L2 (least squares) model is the 

maximum likelihood estimator only if the residual is Gaussian, which is 

generally .!l.Q1 the case. The family of p-Gaussian distributions encompasses a 

wide variety of common distributions, including Laplacian (p=1 ), Gaussian 

(p=2), and uniform (p->oo). A p-normed model is the maximum likelihood 

estimator for the corresponding p-Gaussian distribution. The Lp model can be 

calculated efficiently using the residual steepest descent algorithm. Since the 

distribution of the residuals determines the maximum likelihood estimator for a 

given signal, the most obvious starting point for an analysis of speech is an 

investigation of the residual sequence. 

The process of deconvolution is an attempt to remove information that is 

linearly predictable from a weighted sum of previous samples; the residuals 

from this process should then be nearly uncorrelated. The inverse filter used 

m 1 
H(z) = 1- :Laiz-

i=1 (5.1) 

to generate the residuals is often called a "whitening filter" for this reason, 

since white noise is by definition uncorrelated, resulting in a nearly flat 

spectrum (Rabiner and Schafer, 1978, p. 422). The fact that deconvolution 

may give uncorrelated residuals, however, tells nothing about the distribution 

of them - the pdf cannot be inferred from the correlation coefficient. 
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Experimental results will be used to indicate possibilities for a pdf and to 

provide a rationale for a p-Gaussian basis for a speech coding model. 

Speech is traditionally divided into two types, voiced and unvoiced, with 

the understanding that some sounds in speech have both voiced and 

unvoiced properties. Consider the segment of speech given in Figure 13; this 

is the sound Ia/ from the word "add" as spoken by a female speaker. If this 

segment is analyzed by a least squares algorithm to yield a sixth order model 

and the residual sequence is generated, the sequence given in Figure 14 

results. Note the prominent glottal pulses and what is apparently noise 

between the pulses; if we calculate the histogram of this sequence, the plot in 

Figure 15 results. The assumption that was made in Chapter II was that 

speech, especially voiced speech, is more Laplacian than Gaussian. For an 

L1 model to be the maximum likelihood estimator for it, the residual must also 

be Laplacian, which is a long-tailed distribution containing a significant 

number of outliers. Techniques to test the distribution will be discussed 

shortly. 

An issue mentioned by Denoel and Solvay {1985) is the use of the L1 

residual for pitch estimation of voiced speech. Since the L1 estimator is 

"robust," i.e., it rejects impulsive behavior, the glottal pulses are more strongly 

evident in the residuals. 

To see how voiced speech compares with unvoiced speech, consider 

the unvoiced segment of speech given in Figure 16, which is the Its/ sound 

from the word "cats". In the same fashion as before, the residual from a sixth 

order model was generated and is shown in Figure 17, which shows that the 

noiselike characteristics of unvoiced speech yield a noiselike residual. The 
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histogram of this segment is given in Figure 18, which shows a fairly compact 

distribution with a few outliers, some of which may be significant. 

Finally, an example of a voiced fricative segment of speech is given in 

Figure 19, which shows the /z/ sound from the word "thieves" as spoken by a 

male speaker. In this case, the residual given by Figure 20 shows the 

periodicity one would expect of a voiced sound but without the glottal 

excitation as in the case of voiced speech. The distribution, which is given in 

Figure 21, exhibits properties of both voiced and unvoiced speech, as would 

be expected. 

Starting frame· 6 Number of frames· 4 

A 
lf 

~ \ \ \ ~ ~ It 
"' 

lot, ~ '1 .. ~ v 

Figure 13: Speech Waveform: /a/ from "add" 
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Starting frame· 6 Number of frames: 4 

~ I ~ ~ ~ I~ ~ ~ ~ 

Ill P ~ IIi I~ ~ '\ \ l rill' II,.~ ~ 
)l k ~ 

Figure 14: Residual for /a/ 
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Figure 15: Histogram of Residual for Ia/ 
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Starting frame: 11 Number of frames: 3 

Figure 19: Speech Waveform: Its/ from "cats" 

Starting frame: 11 Number of frames: 3 

· Figure 17: Residual for /ts/ 
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23.69 

20.22 

16.75 

13.28 

9.81 

6.34 

2.88 

-0.59 

-4.06 

-7.53 

-11.00 
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Figure 18: Histogram of Residual for Its! 

Starting frame: 21 Number of frames: 4 

Figure 19: Speech Waveform: /z/ from "thieves" 
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Starting frame: 21 Number of frames: 4 

Figure 20: Residual for /z/ 
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Figure 21: Histogram of Residual for /z/ 
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These experimental results, while not quantitative in nature, do indicate 

that an assumption of Gaussian residuals for speech is not valid; speech 

residuals appear to deviate significantly from Gaussian. This will be further 

verified shortly. 

The p-Gaussian family of distributions encompasses a wide variety of 

useful distributions, as has been mentioned. An optimum value of pis desired 

that is derived from some measure of how non-Gaussian the residual 

sequence is. While a traditional statistical procedure such as the chi-squared 

test could be used, it is not particularly powerful as a test for normality, nor 

does it give any indication of which p-Gaussian distribution would be more 

suitable if the normality test fails. Other tests such as Kolmogorov-Srriirnoff 

could also be used but offer no obvious mapping to an optimal p. 

What is needed is a distribution independent measure of the dispersion 

of the residuals. Such a measure is the kurtosis, which is defined as (Oikin, 

eta/, 1980, p. 152): 

12:: 4 -N (X-J.Lx) M4 
k4= --

( )
2 - {M~2 

~L (X-J.Lx) 2 
(5.2) 

which is, in words, the fourth moment divided by the second moment squared. 

Kurtosis has been used to measure the deviation from Gaussian· in 

applications ranging from general detection theory (Miller and Thomas, 1972) 

to noise generated by ice in sonar signals (Dwyer, 1982, pp. 79-90), to 

general undersea noise (Machell and Penrod, 1982; Wilson and Powell, 

1982). Kurtosis is a measure of the "peakedness" of a distribution and is 
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particularly useful when dealing with a symmetric, unimodal distribution 

(Croxton, 1953, p. 101 ). The Gaussian distribution, N(O, 1 ), is often used as a 

reference and can easily be shown to have a kurtosis of three, since its 

variance is one and its fourth moment is three. Many texts in statistics refer to 

a related term, the coefficient of excess, which is simply the kurtosis minus 

three (Patel, eta/, 1976, p. 5). The Gaussian distribution is called mesokurtic; 

distributions which have a narrower modal portion and higher tails are called 

leptokurtic and are characterized by a kurtosis greater than three, while 

broader, lower-tailed distributions are called platykurtic and have a kurtosis 

less than three (Croxton, 1953, p. 101 ). Figure 22 gives an example of 

leptokurtic, mesokurtic and platykurtic distributions. The kurtosis of most 

common distributions have been calculated (see Patel, eta/, 1976); some 

examples of the kurtosis values for distributions of interest are 

Uniform: 

Laplace 

(Patel,et a/, 1976, p. 36) 

(Patel,eta/, 1976, p. 34) 

This agrees with the qualitative assessment made prevoiusly that the Laplace 

distribution has higher (or longer) tails than does the Gaussian distribution. It 

should be noted that statistical testing of a Gaussian vs. non-Gaussian 

hypothesis is possible and that confidence intervals for such a hypothesis test 

have been tabulated for various values of N, the number of samples (Croxton, 

1953, p. 342). 

Verification of the assumption that kurtosis is a suitable measure of the 

distribution of speech must come experimentally, since speech is non

stationary. The three segments of speech described earlier were analyzed 
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using a conventional least squares algorithm, and the residual was 

generated. Following this, the kurtosis of the 128 samples prior to and 

including a given point was calculated. This sequence was written to disk and 

plotted. Figures 23, 24, and 25 show the kurtosis of the residual for the 

speech segments given in Figures 13, 16, and 19, respectively. As these 

figures show, the kurtosis varies widely and is generally nowhere near three, 

failing the 99% confidence interval test (2.24<->4.24) for 125 samples from a 

Gaussian distribution in many places. The nominal Gaussian value of three is 

given by the horizontal reference line in the figures. Thus, speech residuals 

are not generally Gaussian and a p-normed model would offer the flexibility of 

an adaptive model that is closer to the maximum likelihood estimator of 

speech, perhaps improving the formant structure of synthesized speech. 
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Figure 22: Kurtosis as Related to PDF Shape 
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Starting frame: 6 Number of frames: 4 

/"--~----
I'"' - - -

Figure 23: Kurtosis of Residual for /a/ 
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frame: 11 Number of frames: 2 

Figure 24: Kurtosis of Residual for Its/ 
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Starting frame· 21 Number of frames· 4 

Figure 25: Kurtosis of Residual for /z/ 

To test the intelligibility of LP models in speech coding, the government 

standard LPC-1 0 algorithm has been used. LPC-1 0 is a linear predictive 

coding analysis/synthesis system that uses a tenth order model, computed 

using the covariance method, to achieve a 2400 bits/second output rate. 

Figure 26 shows a block diagram of the transmitter portion of LPC-1 0 (after 

Tremain, 1982), which is the portion of the system of most interest here. 

Conversion of LPC-1 0 to use an Lp solution merely involves modification of 

two blocks in the system: matrix load (loads the X matrix andy_ vector) and 

matrix solution (uses the Cholesky decomposition to solve for the a vector, 

then converts these to reflection coefficients for coding). A special subroutine, 

called SOLVOPTP, replaces the load and invert modules to compute the LP 

model and convert the predictor coefficients to reflections coefficients using 
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the "stepup" procedure (Markel and Gray, 1976, p. 151 ).The block diagram of 

the modified system is given in Figure 27, where the highlighted blocks are 

the additions. Instability of the model, if it occurs, is treated by use of the 

previous frame's reflection coefficients. No chan~es were made in the 

receiver portion of the algorithm. 
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Figure 26: Block Diagram of LPC-10 Transmitter 
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Figure 27: Block Diagram of Optimal p LPC-10 Transmitter 
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The value of p used is derived from a linear mapping of the kurtosis of 

the residual, where the mapping is performed as follows: 

Kurtosis p value used 

0 ~ k4 ~ 6 p = 3 - [ki3] 

k4 >6 p=1 

K4 cannot be less than 0 

Using SOLVOPTP, the LPC-1 0 program was run for a variety of speech 

segments. While the reader obviously cannot hear the resulting synthesized 

speech, it is instructive to plot the optimal values of p used for each frame of 

speech in LPC-1 0. Figure 28 shows the kurtosis, while Figure 29 shows the 

p-value used as a function of frame number for the sentence, "Thieves who 

rob friends deserve jail." Note that the kurtosis is always greater than three 

(3.187, actually) for the entire sentence, indicating that, in this case, the 

residual distribution is always more long-tailed than Gaussian. 
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O~~~HH~~H**H~~~HHHH~~~H*#H~~HHHH~~*H~ 

1 1 1 2 1 31 41 51 61 71 81 9 1 

Figure 28: Kurtosis of Frames: "Thieves who rob friends deserve jail" 
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"Thieves who rob friends deserve jail" 
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0.5~*H~~~H*~~~**~~~H*~~~H**H~~~~~~~ 

1 11 21 31 41 51 61 71 81 91 

Figure 29: Optimal p-value used for ''thieves" sentence 



CHAPTER VI 

SPECTRAL ESTIMATION OF SPEECH USING Lp MODELS 

As mentioned in Chapter I, the linear predictive coefficients can be 

viewed as a filter with a transfer function of: 

P(z)=--G __ 

1- f,ai£i 
i=1 (6.1) 

If the magnitude of P(z) is plotted as a function of frequency by setting z=eico 

(where a sampling rate of one Hertz can be assumed without loss of 

generality), then an estimate of the "true" spectrum of x(n) results (Makhoul, 

1975). Spectral estimation of speech is important for formant and pitch 

estimation and gives great insight into the performance of a speech model. 

Much work has been done in spectral estimation of speech (Markel and Gray, 

1976; ltakura and Saito, 1970; Atal and Hanauer, 1971) and even in Lp 

spectral models (Schroeder, 1985; Schroeder and Yarlagadda). It is the 

intent here to analyze and compare both the covariance derived Lp spectra 

and the Burg derived Lp spectra in "clean" and noisy environments. 

The first series of spectral plots was generated using the covariance 

formulation of the Lp linear prediction problem; the figures given are 3-D plots 

of P(eico) as a function of frequency and time of 128 sample frames from the 

word "cats", as shown in Figure 30. 

72 



73 

Figure p value 

31 -0.1 

32 0.5 

33 1.0 (Least absolute value solution) 

34 1.5 

35 2.0 (Least squares solution) 

36 3.0 

Next, using the Lp Burg algorithm, the following figures were 

generated from the same word. 

Figure p value 

37 -0.1 

38 0.5 

39 1.0 

40 1.5 

41 2.0 ('normal' Burg solution) 

42 3.0 

Using the weighted median algorithm from Denoel and Solvay 

(1985), the same spectrum versus time plot was generated in Figure 43; it is 

interesting to note that the LP algorithm, when started at the L2 solution, 

appears to preserve the formants more effectively. 

Finally, performance in noise was evaluated. The Burg and 

covariance techniques were both used with noisy speech to test the noise 

immunity of the estimator. A uniformly distributed noise source was added to 

the speech data, which were 12-bit quantized ([-2048,2047]); the approximate 
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signal-to-noise ratio was 20 dB, which was calculated by taking ten times the 

logarithm of the ratio of maximum speech power (assuming a sinusoid of 

maximum amplitude) to the noise power. In addition, an impulse train with a 

period of 16 ms and amplitude of 64 was added to the signal. Using this 

corrupted speech, the following figures were generated. 

Figure 

44 

45 

46 

47 

p value 

2.0 

2.0 

1.0 

1.0 

Comments 

Covariance 

Burg 

Covariance 

Burg 

A rather surprising result is that the L1 Burg algorithm appears to 

perform poorly in noise; it is speculated that the latitude afforded each of the 

reflection coefficients at each stage of the algorithm allows the poles of the 

model P(z) to slip too near the unit circle. Further research is needed to 

observe the pole locations as the noise level is varied. It may be necessary to 

further constrain the solution as the LP Burg algorithm iterates to prevent the 

poles from "slipping". As Markel (1987) noted, the fact that the Burg algorithm 

is only constrained locally (at each stage) rather than being a global 

optimization, some artifacts or problems may creep in. Other than this, the LP 

models form the covariance technique performed well in the presence of 

noise. In fact, for the uniform noise used here, one would expect the L2 

estimator to perform at least as well as the L1 model but the formants seem to 

be slightly more pronounced in the figures, indicating that the robustness of 
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the L1 estimator is quite powerful in rejecting noise. As a final basis of 

comparison, the spectra from two different methods were plotted on the same 

figure. As shown in Figure 48, the L2 covariance model is shown on the same 

axis as the L1 covariance model. Figure 49 shows the L2 Burg and L1 Burg 

model spectra. As these figures show, the difference between these models is 

not dramatic, but in the case of speech coding in a realistic noisy environment, 

the differences may become more apparent. 
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Starting frame: 1 Number of frames: 12 

Word: "Cats" (no noise) 

Figure 30: Speech Waveform :"Cats" 
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Figure 31: Spectral Surface, Covariance Model, "Cats", p=-0.1 
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Figure 32: Spectral Surface, Covariance Model, "Cats", p=0.5 
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Figure'33: Spectral Surface, Covariance Model, "Cats", P=1.0 
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Figure 34: Spectral Surface, Coyariance Model, "Cats", P=1 .5 
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Figure 35: Spectral Surface, Covariance Model, "Cats", P=2.0 
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Figure 36: Spectral Surface, Covariance Model, "Cats", p=3.0 
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Figure 37: Spectral Surface, Burg Model, "Cats", P=-0.1 
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Figure 38: Spectral Surface, Burg Model, "Cats", p=0.5 
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Figure 39: Spectral Surface, Burg Model, "Cats", p=1.0 
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Figure 40: Spectral Surface, Burg Model, "Cats", P=1.5 
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Figure 41 : Spectral Surface, Burg Model, "Cats", P=2.0 
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Figure 42: Spectral Surface, Burg Model, "Cats", p=3.0 
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Figure 43: Spectral Surface, Weighted median (L1 ) Model, "Cats" 
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Figure 44: Spectral Surface,20 dB SNR,Covariance Modei,"Cats",p=2 
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Figure 45: Spectral Surface, 20 dB SNR, Burg Modei,"Cats", p=2 
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Figure 46: Spectral Surface, 20 dB SNR, Covariance Modei,"Cats", p=1 
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Figure 47: Spectral Surface, 20 dB SNR, Burg Modei,"Cats", p=1 
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Figure 49: Comparison of L2 Burg and L1 Burg Spectra 



CHAPTER VII 

MARKOV CHAINS IN SPEECH RECOGNITION 

Pattern Recognition Concepts 

To properly discuss sequential pattern recognition as applied to speech 

recognition, a review of some background material is in order. This section will 

summarize relevant pattern recognition concepts and speech recognition 

research and will touch briefly on cochlear (inner ear) modeling. The key point 

here is that "classical" pattern recognition techniques need stationary features 

to function properly but speech and many other signals are not stationary; a 

technique that can parameterize time variations of the signal may be more 

appropriate. 

Statistical pattern recognition techniques are based on the assumption 

that classification can be based on probabalistic measures and that these 

probabilities can be derived (Duda and Hart, 1973, p. 1 0). One of the most 

popular techniques for statistical pattern recognition is the Bayesian decision 

rule under the assumption of a Gaussian (normal) distribution. This decision 

rule can be described as follows: 

Given, as an example, measurements made from two processes ro1 and 

co2. Bayes' rule says that (Duda and Hart, 1973, p. 11 ): 

P(roj!X) = P(x!roj)P(coj) I P(x) 
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j = 1,2 (7.1) 
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Where: 

P(rojiX) means the probability of class roj given an 

observation x (a posteriori probability) 

P(xlroj) is the probability density function for x conditioned 

on class roj 

P(roj) is the a priori probability of class Wj 

P(x) = P(xlro1 )P(ro1) + P(xlro2)P(ro2) for two class case 

It can be shown (Duda and Hart, p. 17) that the decision that minimizes 

the probability of error, assuming a zero-one loss function, is given by: 

If P(~lroi)P(roi) > P(~lroj)P(roj) for all i * j, choose~ e roi. Choose~ e roj 

otherwise. 

Rearranging this, a decision function can be derived based on the ratio 

of the likelihood functions (again assuming a zero-one loss function): 

If dij(~) > 1, choose class roi. Otherwise choose class roj. (i * j) 
Figure 50 illustrates this concept in the one dimensional case. 

(7.2) 



p(xlwi)p{wi) 
dij(x)= 

p{xjwj)p(wj) 

p(x) 
dij{X)<1 

p(xjwj)p(wj) 

dij{X)=1 

dij(X}> 1 

p{xjwi)p(wi} 

Figure 50: Minimum Probability of Error Decision Function 
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If the conditional densities are assumed to be multivariate Gaussian, 

then they will be of the form 

(1) t -1 
1 - - (x-m·' C· (x-m·) P(ro.) = e 2 --11 I --1 

I (21t)n/21Ci11/2 
(7.3) 

where Ci is the covariance matrix and mi is the mean vector for 

the class. 

Substituting this expression into the decision function and taking the 

natural logarithm, the minimum probability of error decision function di for M 

classes is (Tau and Gonzalez, 1974, p. 120): 
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di(~) = ln{P(roi)}- fn/2) ln{2n}- (1/2) ln{ICil}- (1/2)[(~-mi)T Ci-1 (~-.DJ.i)] 

i = 1 ,2, ... M (7.4) 

The overall decision surface is derived by resolving all pairwise 

dichotomies; for instance, d12(x) = d1(x)- d2(x). In general, (M)(M+1)/2 such 

dichotomies must be resolved during the classification process (Tou and 

Gonzalez, p. 43). Since the decision function is taken pairwise here, terms that 

do not depend on i can be dropped; thus the term (n/2) ln{2n} can be 

discarded. 

The decision function di is a hyperquadric in n-space, where n is the 

dimension of the vector x and C has arbitrary entries (although recall that a 

covariance matrix is always symmetric and positive definite for p(x)#O). In the 

two class case, n=2 so the desision function will either be a line, parabola, 

circle, ellipse or hyperbola. The special case of a linear (hyperplane) decision 

function occurs if the covariance matrices for all classes are equal because 

terms not depending on i can be dropped. In an even more special case, if the 

matrices are equal and diagonal, then the decision hyperplane lies 

perpendicular to the line connecting the cluster centroids (means). Finally, if 

all matrices are equal, diagonal, and each entry has the same value (C = cr21, 

l=identity matrix), then the decision hyperplane lies on the perpendicular 

bisector of the line connecting the centroids. Figure 51 shows the decision 

function and equiprobability contours for two of the cases described above. 

Not all feature sets are normally distributed, however; other common 

distributions that are used in speech processing are the gamma and 

Laplacian densities. The gamma distribution is consirered to be a better 
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approximation to the amplitude distribution of speech (Paez and Glisson, 

1972). 

X2 

Class 1 

Class 2 

Ci arbitrary 

...__--------~~-;;;;~X1 

d12 

X2 + -
Class 1 Class 2 

Ci equal for all classes 
(variances equal as well) 

~------------------------------------~X1 

Figure 51: Decision Surfaces for Gaussian Distributions 

The previous discussion implicitly assumes that the measurements are 

from a stationary process, although stabilization techniques have been used 
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with some signals to allow these functions to be used. In general, however, 

measurements of a non-stationary signal such as speech will yield 

time-varying features. (Stationarity will be defined here as wide sense or 

second order - the mean and covariance of a process are independent of 

time.) To handle this problem, a promising technique has received increased 

attention in recent years: sequential classification (Jelinek, 1976, Kaneko and 

Dixon, 1983, Kazakos, 1978). To illustrate the concept, consider Figure 52; a 

non-stationary signal can generally be considered stationary if analyzed over 

a sufficiently short time interval, which makes estimation of the mean and 

variance measurements meaningful. A sequential technique would somehow 

attempt to match the locus of the feature cluster (over time) to some reference 

locus. Thus the inclusion of time as a component of the feature vector 

increases the dimensionality of the pattern space by one, in a sense; but no 

assumption can generally be made about the probability distribution of the 

time component of the vector. Other problems arise which make extension of 

the previously described techniques impractical: 1) How can the features be 

computed? You generally can only measure a single vector at each point in 

time, so cluster means and moments are impractical to compute at each 

instant. 2) How can time similarity be measured? The non-stationary 

properties of the signal often lead to a distortion of the time axis from one 

observation to the next. For example, two different speakers might utter the 

same word at different rates, both the entire word as well as individual 

phonetic units within it. 
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Feeture 2 
(~ 1,~2,0) 

Feeture 

~1 vs.time 

Time (~ 1,~2,k) 

Figure 52: Variation of a feature Cluster Over Time 

There are at least two ways to approach the problem: syntactical and 

statistical. Syntactical techniques attempt to parse the time variation into a set 

of primitive elements. Signal recognition is performed by analyzing the 

"sentence" formed from the primitive "alphabet" based on some underlying 

"grammar" or syntax. An example of how this might work is shown in Figure 

53. 
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C: {constant} U: {up} 0: {down} 

c u D c c c c D D c c 

"Sentence" 

u 

/"" C - C D -C - Cv---'~ 

Parsing tree "'D 

" D-C-C 

Figure 53: Syntactical Pattern Recognition 

As noted by Tou and Gonzalez (1974, p. 340), a purely syntactical 

approach is often not suited for a sequential algorithm. Most signals have 

some statistical uncertainty in them; the locus shown in Figure 52 may in fact 

be a probabalistic function rather than a deterministic one. The technique 

introduced by ltakura (1975) was among the first to attempt to match an 

unknown locus (derived from linear prediction coefficients taken over time) to 
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a reference locus. The algorithm yields an optimal solution under a constraint 

on the "warping" of the unknown locus (Levinson, 1985). ltakura chose the 

allowable "warping" (called the continuity condition) to correspond to a linear 

mapping with a slope between 1/2 and 2. Dynamic programming techniques 

can then be used at each observation interval to pick the most likely value of 

the "true" measurement, taking into account the reference measurement at 

that time. The metric - Levinson (1985) calls it a "distortion function" because it 

is not a true norm since it does not always obey the triangle inequality - is 

based on the log of the ratio of an autocorrelation weighted vector distance. 

Formally, the metric is (Levinson, 1985) 

p(x,y.) = Log (s.R.s;) 
ayRy9y 

where: x andy_ are data segments 

(7.5) 

ax is a p-th order linear predictive coefficient (LPC) vector derived 

from x 
ay is a p-th order LPC vector derived from y_ 

Rx is the autocorrelation matrix of x 
Ry is the autocorrelation matrix of y_ 

This function p can be used to assign transition weights in a dynamic 

programming treillis, as will be seen when dynamic programming is examined 

in detail later. 

Figure 54 shows a diagram of the dynamic time warping process under 

the 1/2 ::;; slope ::;; 2 constraint. The two vectors are forced to be equal at the 
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endpoints, yielding a parallelogram with slopes corresponding to the 

constraints as the boundary of the allowed warping process. In terms of the 

original time locus, this diagram describes how much the individual 

measurements can be "stretched and pulled" (linearly) to make it line up with 

a reference. 

Figure 54: Dynamic Programming 

Speech Recognition 

A logical topic to examine next is the application of the pattern 

recognition techniques previously described to speech recognition.The field of 

automatic speech recognition (ASR) dates back at least to the early 1950's 

(Davis, 1952 cited by Flanagan et a/, 1980). Rather than embark on a 

comprehensive history of the field, an attempt will be made to review here the 
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most recent techniques in the field of sequential classification, with the intent 

of identifying the "incremental" research areas alluded to earlier. 

The most intensive speech recognition study was funded by the 

Defense Advanced Research Projects Agency (DARPA) in late 1971; after 

nearly 200 person-years of research (Flanagan et a/, 1980), the study 

culminated with a demonstration of four systems in late 1976 (Klatt, 1977). 

Two systems were built by Carnegie-Mellon University (CMU); one was built 

by Bolt, Beranek, and Newman and the other was built by Systems 

Development Corp. The only system that met the DARPA study goals of 

1 000-word vocabulary from multiple speakers with less than ten percent error 

was the CMU Harpy system. Harpy used a dynamic time warping algorithm to 

compute the match between the incoming speech signal and the "acoustic 

segment" (phoneme or syllable level) templates. Once the segments were 

identified, they were analyzed by a syntax-directed search algorithm. In a 

sense, a model of allowed phoneme transitions was built during training 

which allowed the search algorithm to determine the most likely sequence of 

phonemes, which in turn determined the most likely word (after Baker [1975]). 

The most likely sequence was determined using a "best-few beam search" 

technique that has its roots in artificial intelligence and semantical network 

theory; Harpy used 15,000 states in its allowed transition network, making the 

search task a formidable one. Figure 55 shows a block diagram of the Harpy 

system. 
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Figure 55: Block Diagram of Harpy System 

Bell Laboratories (now AT&T Bell Laboratories) used the work of Baker 

(1975), Portiz (1982) and others to exend the concept of sequential models for 

recognition (Rabiner eta/, 1983). Their approach to isolated word recognition 

used a statistical measure of similarity instead of the syntax-directed search of 

Harpy. This means the Bell system depends more on a probabalistic model for 

speech than does the CMU system. Both employ a linear predictive 

(autoregressive) spectral estimator, but the Bell system uses a technique 

called vector quantization (VQ) to reduce the dimensionality of the LPG vector. 

If each coefficient is k bits wide and there are M coefficients, a matrix model 

would require (2Mk) 2 entries, which is prohibitive. The VQ algorithm 
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compresses the vector dimension down to a manageable size by constructing 

a small "codebook" and assigning values to the entries in it. The algorithm 

assigns values to the codebook entries according to a distance preserving 

scheme (an L2 metric), which optimizes the dispersion of the codebook entries 

as best it can to preserve the distance which existed in M-space. As the word 

is spoken, the compressed vector will trace out the locus of the spectrum (after 

a fashion) over time, yielding the time frequency locus that is desired. Bell 

Lab's parametric representation of this variation is called Hidden Markov 

Modeling (HMM); it will be described in detail later in this chapter. Bell has 

achived results from the HMM that are only as good as existing isolated word 

recognition systems but throughput is about 17 times that of dynamic time 

warping based systems (Rabiner eta/, 1983). 

Before proceeding to a discussion of sequential models, an aside is in 

order. Both the dynamic time warping and the hidden Markov modeling 

techniques use LPC as the spectral pre-processor. Zue (1985) has observed 

that: 

For the most part, current speech recognition 
strategies are based on a spectral representation of 
the speech signal that borrows heavily from models 
of speech production. Such models are very useful 
for characterizing the signal and for helping to 
identify the basic acoustic attributes that are 
important for phonetic identity .... Such models are 
also clearly appropriate in analysis/synthesis 
systems, where the goal is to produce as accurate a 
reconstruction as possible of the measured signal. 
Often, the form of spectral representation that is used 
for synthesis is assumed also to be appropriate for 
recognition. Yet the two tasks are really quite 
different, and there is no reason to believe that what 
works for synthesis is suitable for recognition. 
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These are words to ponder, especially since automated speech 

recognition systems perform so poorly compared to their human counterparts. 

While no claim can be made for modeling the human cognitive process as a 

probabalistic function of a Markov chain (although it can be argued that it is as 

good as any), it certainly seems reasonable that a recognition system based 

on a model of the ear's function would work at least as well as one using LPC 

derived features. 

Overview of Cochlear Modeling 

Modeling the function of the ear, particularly the transducer function of 

the inner ear or cochlea, is a difficult task, and has been studied for over 50 

years (Zwislocki, 1980). Jont Allen (1985) summarized the current state of the 

art in his comprehensive paper in the ASSP Magazine, where he describes 

the currently accepted models for sound perception, particularly the cochlea. 

The cochlea, which acts as a complex mechanical to electrical transducer, has 

been the focus of the bulk of research in perception, since it is the critical link 

in the perceptual chain. 

A simplified physical model of the ear is shown in Figure 56 (from Zweig 

eta/, 1976); sound enters the ear and travels down the auditory canal where 

it vibrates the eardrum (tympanic membrane) which transmits the vibrations to 

the cochlea via the small bones of the inner ear, called the ossicles 

(commonly known as the hammer, anvil, and stirrup). The stapes (stirrup) 
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couples the vibrations into the fluid (perilymph) of the spiral-shaped cochlea, 

which sets up a traveling wave in the fluid (Zweig eta/, 1976). As the wave 

propagates through the cochlea, hair cells (cilia) on the basilar membrane are 

switched "on" and "off". Surprisingly enough, this is usually modeled as a half

wave rectifier or zero crossing detector (Lyon, 1982; Allen, 1985; Pfeiffer eta/, 

1972). Allen's complete model is a transmission line model of the 

acoustic/mechanical properties of the auditory canal, eardrum, ossicles, and 

scala vestibuli combined with a transduction model (rectifier or zero crossing 

detector). This model, especially if the transmission line is two or three 

dimensional, has yielded reasonable experimental confirmation, including 

"capture effect" due to non-linear (limiting) amplitude response (Allen, 1985). 

Computationally, the model involves 1500 to 2000 bandpass filters of 

logarithmic spacing over the normal auditory range, with a zero crossing 

counter on the output of each - a formidable, if not prohibitive, scheme for a 

speech recognition system. A speech recognizer would not need the full 

bandwidth but research is needed to determine the number and 

characteristics of the filters that would perform effectively. To the author's 

knowledge, no extensive study has been made of this problem, although Zue 

(1985) alludes to a Ph.D. dissertation (by Seneff at MIT) which has analyzed 

the hair cell firing process to yield an "improved" spectral model during 

speech excitation. Application of this model to automatic speech recognition 

has apparently not been attempted, however. 
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Semicircular canals 
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"nerve" output 

zc: Zero crossing counter 

Figure 56: Cochlear Modeling 

So reasonable cochlear models exist and are beginning to find their 

way into speech recognition studies; this brings us back to the original 

problem - speech recognition using sequential models. The next topic to be 

addressed will be properties of Markov chains, which will lay the groundwork 

for analysis of the Viterbi algorithm, which is a way of testing Markov 

processes for similarity. Some experiments in speech recognition follows this; 

finally, some areas for future research will be examined. 
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Properties of Markov Chains 

To better understand the properties of sequential techniques, a more 

thorough analysis of the underlying theory must be undertaken. In particular, 

properties of stochasitc processes called Markov chains will be examined. A 

first-order Markov chain is a discrete sequence of random variables so that for 

any n, Xn+1 (the "state" of the process at time n+1) is conditionally 

independent of X0, ... ,Xn_1 given Xn (Qinlar, 1975). More formally: 

P{ Xn+1 = j I Xo, ... ,Xn} = P{ Xn+1 = j I Xn} (7.6) 

for all j from a countably finite state space. 

Which is to say that the next state is independent of all past states if the 

current state is known. A first order Markov process can also be shown to be a 

first order autoregressive process (Papoulis, 1965, p. 537). Note that no 

probability density is implicit in this definition. 

One would be temped to believe that this property would have limited 

usefulness, since many phenomena are conditionally dependent on more 

history than just the previous value. Higher order Markov processes can be 

defined but are rarely discussed. Why? An m-level (number of states), k-order 

(past dependency) Markov chain can always be rewritten as a first order one 

with mk states for a finite state space (Kazakos, 1982). Consider an example 

of a two state (binary) Markov chain of order two - each bit depends both on 

the previous one and the one before that. It could be rewritten as a first order 

chain with four states, where each state represents not a single bit but two bits. 

This rewriting rule is widely used in digital communications systems (Viterbi, 

1967; Forney, 1973; Hayes, 1975; Jelinek, 1969) 
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A useful way to visualize a Markov process is with a signal flow graph, 

which can also be called a state transition diagram. Figure 57 shows the flow 

graph of a Markov process, where the numbers on the branches indicate the 

probability of going from one state to another or staying in the same state. 

Note that the probability of making a state transition depends only on the 

current state, as indicated in the expression above. In this example, the 

system can only be in one of four states at any instant and can only change 

states at discrete time intervals (it can also remain in the current state, of 

course - if there is a non-zero probability ). The transition probabilities can be 

written in matrix form as follows: 

P= 

p11 p12 p13 p14 
p21 p22 p23 p24 
p31 p32 p33 p34 
p41 p42 p43 p44 

0.3 0.7 0.0 0.0 
0.45 0.1 0.45 0.0 
0.0 0.45 0.1 0.45 
0.0 0.0 0. 7 0.3 

where Pii is the probability of a transition from state i to state j. 

Time varying transition matrices can be defined, although the literature 

describes only the invariant case since, it is assumed, a time varying process 

can be described as a series of time invariant processes if the analysis 

interval is sufficiently short. 
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Figure 57: Signal Flow Graph for Example 
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1 

The matrix P is called a stochastic or Markov matrix because it satisfies 

the following conditions in a k-state chain (Qinlar, 1975): 

P··> 0 IJ-

k 

L Pij = 1 

j=1 

for all i ~ 1 , j ::; k 

tor all i ~ 1 , j ::; k 

(7.7) 

(7.8) 

The states in a Markov chain can be described in terms of their transition 

properties. The primary classifications are (Kemeny and Snell, 1960, p. 35): 
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1. Ergodic (or irreducible) - any state or group of states in the 

chain that can be reached from any other state, either directly or through other 

states. An irreducible chain of only one state is called absorbing; the process 

can never leave it. Another special case of an ergodic process is called~ 

or periodic. The process moves through a set of states in a definite order, 

revisiting each with period 8. Figure 58 gives a diagram of the properties of 

ergodic chains. 

Ergodic chain 

p11 p12 0 

p21 0 p23 

0 p32 p33 

Figure 58: Example of an Ergodic Chain 

2. Transient - a state or group of states that can only be visited 

once. When a process leaves a transient state, it never returns. Figure 59 

illustrates this property. 
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Non-ergodic chain 

p11 p12 0 

0 0 1 

0 0 1 

Figure 59: Example of Transient States 

These classifications of the states allow some further properties to be 

derived, such as the limiting probabilities of ergodic states (the limiting 

probability of a transient state is zero). 

Let 1I be some distribution vector over the finite space which has k 

states and let .n.o be the initial distribution of the states. The probability 

distribution of the states at time n will be (Kemeny and Snell, 1960, p. 33): 

lin = lin-1 P or lin = lio pn (7.9) 

(most authors define 1I as a row vector) 

As an example, consider the transition matrix given earlier in Figure 57. 

If the process begins in state two, then lio = ( 0 1 0 0 ). In other words, the 

probability of being in state two is one, and all other probabilities are zero 

(since the probabilities must sum to one). The probability distribution for 

various values of n are then: 
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n 1tn(1) 1tn(2) 1tn(3) 1tn(4) 
0 0.00000 1.00000 0.00000 0.00000 
1 0.45000 0.10000 0.45000 0.00000 

2 0.18000 0.52750 0.09000 0.20250 

3 0.29137 0.21925 0.38812 0.10125 

4 0.18608 0.40054 0.20835 0.20503 

5 0.23607 0.26406 0.34460 0.15527 

6 0.18965 0.34672 0.26198 0.20165 

7 0.21292 0.28532 0.32338 0.17838 

8 0.19227 0.32310 0.28560 0.19904 

9 0.20307 0.29542 0.31328 0.18823 

10 0.19386 0.31267 0.29603 0.19744 

11 0.19886 0.30018 0.30851 0.19245 

12 0.19474 0.30805 0.30064 0.19657 

13 0.19704 0.30241 0.30628 0.19426 

14 0.19520 0.30600 0.30270 0.19611 

15 0.19626 0.30345 0.30524 0.19504 
16 0.19543 0.30509 0.30361 0.19587 
17 0.19592 0.30393 0.30476 0.19539 
18 0.19555 0.30468 0.30402 0.19576 

19 0.19577 0.30416 0.30454 0.19554 

Note that the probability vector converges to some final value; for an 

ergodic chain, this limiting probability, denoted by K. is independent of the 

starting state of the system. In other words, the probability of being in a specific 

state after a long time does not depend on the initial state vector of an ergodic 

process. 

The matrix P can always be subdivided (after suitable permutations) into 

the following general block form (Kemeny and Snell, 1960, p. 44): 



from: 

P= 

where: 

ergodic transient to: 
• • • 

S : 0 ergodic 
• • ................... -~ .......................... ... 

R :, Q • transient 
I 
I 
I 

S is the set of ergodic states. 

R causes transitions from transient (Q) to ergodic (S) states. 

Q is the set of transient states. 
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(7.1 0) 

0 is a zero matrix (since the process cannot leave the ergodic 

states). 

As the matrix P is raised to successively higher powers, the probability 

of being in a set of ergodic states approaches one. It should be noted in 

passing that the matrix S may consist of several ergodic subchains and that 

the subchain the process is "captured" in as n becomes large depends on the 

initial probability distribution Zko· For an ergodic chain or subchain, the limiting 

probability can be found by solving the following system of equations: 

zt. = zt. P and zt.1 = 1 (1 is a vector of ones) (7.11) 

where one of the equations in the first expression can be discarded 

since the system of equations is not of full rank (Qinlar, 1975, p. 154). 
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For the example given previously, solving for the limiting probability 21 

yields: 

21 = ( 9/46 7/23 7/23 9/46) = ( 0.1957 0.3043 0.3043 0.1957 ). 

There are many other interesting properties of Markov chains. One area 

that has, until very recently, received little attention since its early development 

(to the author's knowledge) is systems analysis of Markov chains using what 

we now call state variable techniques. The original work was done by at least 

three researchers at MIT during the late 1950's (Sittler, 1956; Huggins, 1957; 

Howard, 1960) and has been recently mentioned by Mullis and Steiglitz 

(1972) and Hershey and Yarlagadda(1986). The concept closely follows 

modern linear system theory: given the transition matrix P and the initial 

probability vector lio = ( 7t0(1) 7t0(2) 7t0(3) .... ), the probability at time n given 

previously in equation (7.9) (modified to reflect n+ 1 ), 

lkn+1 = 2ln p (7.12) 

can be treated as a standard state variable equation where there is 

assumed to be no input to the system other than the initial state Eo· Note that 

E.n is a row vector so this expression is not entirely in standard state variable 

form- using pT and rearranging the equation would fix this. We shall continue 

to use the row vector form to be consistent with the statistical literature. 

Taking the Z transform of the above and solving for E.(z) yields: 

Z ( E.(Z) -EO ) = ll(Z) P 

.E(Z) [ zl - P ] = z EO 

E(Z) = z EO [ zl - P ]-1 

(I is the identity matrix) 

(7.13) 

(7.14) 

(7.15) 
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Howard ( 1960) proceeds with the analysis to yield the impulse 

response; we shall do the same here, using the example given previously. 

The transform matrix can be computed efficiently using the technique 

described by Frame (1964), which is succinctly summarized by Hershey and 

Yarlagadda (1986). The algorithm can be derived from the Cayley-Hamilton 

theorem (Brogan, 1974) which gives a technique for computing the inverse of 

a matrix (and its characteristic equation, of course) recursively. Briefly, the 

procedure is as follows: 

For a matrix A, the scalar coefficients dk in the characteristic polynomial 

m 

and the matrix coefficients Bk in 

m-1 

are related by: 

dk = -1/k trace[ABk_1] 

(d0 = 1) 

(80 =I) 

k = 1 ,2, ... ,m 

k = 1 ,2, ... ,m 

(this can be used as a check) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

where the operations and entries are over the real field and m is the 

dimension of the row (or column) space of A. 
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Using this algorithm on the example matrix given earlier yields the 

following results: 

mZ>= zxo 

z3-0.5Z 2-0.448Z+0.89 

0.45Z2-0.18Z-0.128 

0.2022-0.061 

0.142 

0.7Z 2-0.28Z-0.2 

z3-0.7Z 2-0.165Z+O.oas 

o.4sz2..o.27Z+0.04 

0.315Z-0.095 

0.315Z-0.095 

0.45Z 2-0.27Z+0.04 

0.142 

0.202Z-0.061 

z3-0.7Z 2..o.165Z+0.086 0.45Z 2-0.18Z-0.128 

o.n2-o.2az-o.2 z3-o.sz 2-o.448Z+o.oag 

(Z - 1) (Z - 0.675) (Z + 0.15) (Z - 0.625) 

Note that the numerator of .11(Z) is usually a single row of the 

matrix since the initial state vector almost always has probability one for a 

single entry; the diagonal terms will be displayed here, however. 

If the frequency response of the diagonal terms of x(Z) is computed, the 

spectra can be displayed as shown in Figure 60. 

Ei0 . 

42. 

25. 

1. 

-10.~--~--~~---r--~--~~r-~---r--~----
0.0 0.1 0.2 0.3 0.'1 0.5 0.Ei 0.1 0.B 0.9 1.0 

Figure 60: Frequency response of diagonal terms of x(z) 
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The denominator is, in general, factorable for ergodic chains and one 

root will always be at Z=1. Howard (1960, p. 1 0) states that the inverse 

transform of 1I(Z) will be of the form: 

m-1 n 

+ L,ai Ti 
i=1 

n = 0,1, .... (7.20) 

where the first matrix on the right of the equal sign is comprised of row 

vectors of the limiting probability (each row sums to one). Note that this matrix 

is merely the residue from the pole at 2=1, which always exists for a stochastic 

matrix. The <Xi term is the i-th eigenvalue of the characteristic equation (other 

than the eigenvalue at one) and the Ti term is a matrix of the partial fraction 

residues for the given eigenvalue. The rows of this matrix sum to zero. For a 

completely ergodic process, the expression above can be expressed as: 

and 

Hn = S + Tn' 

where: 

(7.21) 

S is a stochastic matrix of limiting probabilities as defined above 

T n' is the sum of the transient matrices, also called differential 

matrices, which tend to zero as n becomes large. 
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Thus, the process can be viewed as a steady state response S which is 

perturbed by a transient response T n'· The steady state response yields the 

zero frequency response in the spectrum while the transient terms cause the 

general spectral shape in Figure 60. This property is also discussed in Mullis 

and Steiglitz (1972). 

What is the physical interpretation of the frequency and impulse 

responses (if any)? Huggins (1957) gives an example of a random telegraph 

signal and, using the spectral representation of the Markov matrix, derives the 

autocorrelation of the process. More research is needed to fully explore the 

relationship between the autocorrelation function, the Markov process 

spectrum and the transition matrix. 

Historical Notes 

The Markov chain was named after A. A. Markov, a Russian 

mathematician who wrote a series of papers around 1907 that outlined the 

basic theory ( from Qinlar [1975], p. 143 ) and applied his theory to a study of 

the pattern of vowels and consonants in Russian literature, the most famous 

being an analysis of Eugene Onegin (Markov, 1913, cited in <;inlar). Later the 

idea of predicting the next event based on conditional probabilities and the 

current event was used by Shannon (1950) to predict missing letters in normal 

English text, particularly Jefferson the Virginian by Dumas Malone, although 

Shannon did not specifically refer to Markov's work. The theory of Markov 

chains has been used in a multitude of areas since that time (see Billingsley 

[1960] for a comprehensive bibliography); the theory of Markov processes is 
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important in the development of the Kalman filter, although the process must 

also be Gaussian (Brown, 1983, Ch. 5). 

The derivation of the Z-transform and impulse response of the Markov 

chain given in this section differs from Howard (1960) because the operator Z 

was generally defined as a left shift in the late 1950's but is now defined as a 

right shift operator (for electrical engineers). Sittler (1956) did a significant 

amount of work in the area of systems analysis of Markov chains; his Ph.D 

dissertation at MIT was entitled "Analysis and Design of Simple Nonlinear 

Noise Filters" (Sittler, 1954). This work, while somewhat difficult to obtain, is 

quite readable and offers insight into a significant research area. 
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The Viterbi Algorithm 

So far, this report has addressed some background issues in 

pattern/speech recognition and has addressed some topics in Markov 

processes. What has not been examined is how one would perform a 

sequential classification based on a Markov model. To motivate the 

discussion, consider the following: The entries in the matrix P, (P)ii· describe 

the probability of state transitions and in particular the probability of the 

process going to state j given that the process is currently in state i. If a set of 

observations is made that is assumed to be from the same process, it should 

be constrained to the same transition probabilities if the process is ergodic. To 

determine the likelihood that this observed process came from the original 

process, one could examine all the possible transitions at each node in the 

original chain and condition them with the transitions in the observations. The 

objective would then be to find the most likely "path" that the combined 

process could have taken around the flow graph. While this explanation is 

admittedly imprecise, it emphasizes that the goal of sequential detection is to 

see if a given set of observations are from a known process. 

The Viterbi algorithm (VA) (Viterbi, 1967) is an efficient technique for 

calculating a likelihood measure; it is based on the dynamic programming 

algorithm pioneered by Bellman in the 1940's (see Bellman, 1957). The 

derivation given here is loosely taken from Forney (1973), which is a lucid and 

comprehensive review of the VA. 

The VA is a general solution to the maximum a posteriori (MAP) 

problem; it estimates the most likely probability of a finite state, discrete time 
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Markov process observed in memoryless noise. This problem is "formally 

identical to finding the shortest route through a certain graph" (Forney, 1973). 

This graph is a special representation of the state transition matrix called a 

trellis. Figure 61 shows what the trellis would look like for the example we 

have been using (note the similarity to the DTW graph in Figure 54). "Each 

node corresponds to a state of the process at a given time and each branch 

represents a transition to some new state at the next instant of time" (Forney, 

1973 - emphasis added). The trellis begins at state x0 and ends at state xk; in 

the example, x0 = xk but this is obviously not true in general. Branches are 

only drawn if the state transition matrix allows the process to go from one node 

to the other; in the example, the initial state (1) at k = 0 can only go to state 2 

or stay in state 1 at time k = 1. Thus, the trellis branches describe every 

possible sequence for the process that begins at x0 and ends at xk. Given a 

sequence of observations Z, each branch of the trellis can be assigned a 

"length" proportional to the probability of making that transition times the 

probability that the observation made a transition at that time, given that the 

observation was actually from the process. More formally, if X is a vector from 

the known process where X= ( x0 , ... ,xk), then : 

P( X , Z ) = P( X ) P( Z I X ) 

memoryless). 

(joint distribution is separable if 

(7.22) 

Because the process is Markov, the total probability depends only on 

the prior state or transition; thus: 

K-1 

P( X, Z) = IT P ( zk I xk+ 1 , xk ) (7.23) 
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where K is the number of observations. 

If we assign each branch (transition) the "length" 

A.( ~k) = - In P( Xk+ 1 I Xk ) - In P( Zk I ~k ) (7.24) 

where ~k = (Xk+1 , Xk) (a transition), then the total path length is given 

by: 

-In PO.L Z) = (from Forney [1973]). (7.25) 

The first term in the branch length depends on the node probabilities of 

the underlying process while the second depends on transitions in the 

observed sequence z. 

K= 0 1 2 3 4 5 6 7 8 9 

.45 

.45 

.7 

Figure 61: Trellis for Example 

What is desired is the shortest path through the trellis since the 

maximum probability corresponds to the minimum of - In P(•). From dynamic 

programming theory, it can be shown that this distance through the trellis can 

be computed recursively; as the trellis is traversed, the minimum distance path 
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to a given node must lie on one of the possible final solution paths. In other 

words, if you have to go through Guthrie to get to Oklahoma City, the shortest 

path to Oklahoma City must have the shortest path to Guthrie as a segment. If 

one imagines a number of intermediate stops, the shortest path from Stillwater 

to Oklahoma City, given that these intermediate stops must be made, will be 

the sum of the minimum distances between those stops. For the trellis, the 

minimum distance to a given node will only depend on the accumulated 

distance to the previous node and the transition probabilities at the current 

node; no other information needs to be kept. A formal definition of the 

algorithm and an example will help illustrate these concepts. 

VITERBI ALGORITHM 

M: number of states in chain 

k: time index 

K: number of observations 

r(Xk): accumulated distance to node xk, 1 ~ xk ~ M 

Z = (z0, ... ,zk) : observation vector 

Initial values 

k=O 

[( XQ) = 0 

[( i ) = oo , i '# XQ 

Recursion 

[( xk+1 , xk) = [( xk) + [-In P( xk+1 I xk) - In P( Zk I ~k)] (7.26) 

(this must be computed for all possible transitions xk = (xk+1 1 xk) ) 

[( xk+1 ) = Min{ [( xk+1 , xk)} (7.27) 

Xk (for each xk ) 
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repeat until k = K. 

The desired minimum distance solution is r( xK ). The path taken 

through the trellis can also be generated simultaneously but was omitted here. 

As an example, consider the Markov matrix used previously: 

and define 

0.3 0.7 0.0 0.0 
0.45 0.1 0.45 0.0 
0.0 0.45 0.1 0.45 
0.0 0.0 0.7 0.3 

00 1.204 0.357 00 

0.8 2.3 0.8 00 

00 0.8 2.3 0.8 
00 0.3571 .204 00 

Given an observed sequence Z = [ 1 2 3 4 4 3 2 2 1 ]T , the maximum 

likelihood distance can be calculated as follows : 

( y01 = 0 because z0 = 1) 

[ l 'Yo1 

~ 'Yo2 
[(xo) = oooo = 

'Yos 

'Yo4 ('Yki is the i-th node at time k ) 

Fork= 1, 

y11 =Min [ P'i1 + P'z1z2 + 'Yoi] j = 1 ,2,3,4 

=Min [ ( P'11 P'21 P'31 P'41 ) + P'12 + ( 0 oo oo oo)] 

( Z1=1 I Z2=2) 

=Min [ ( P'11 oo oo oo) + P'12 ] = P'11 + P'12 

= 1.204 +0.357 = 1.56 (note that the path taken was from 1 
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to 1 ) 

Continuing this process, the sequence of distances and trellis paths can 

be generated, yielding the final path and distance shown in Figure 62 

K= 0 1 2 3 4 5 6 7 8 9 

• • 
• • • • • • 

Gamma= • • • • • • • • 
m=1 0 1.56 2.31 4.31 5.47 7.03 7,78 11.28 12.03 14.44 

2 0. 71 2.72 3.47 5.87 6.18 8.18 10.43 12.44 13.6 
3 2.31 4.31 5.47 7.03 7.78 11.28 12.03 14.44 
4 3.91 6.32 6.62 8. 63 10.88 12.88 14.04 

Figure 62: Solution path and distances for example 

To see how this might be useful as a pattern recognition tool, consider 

changing a single entry in Z; for example, let Z=(1 2 3 4 4 3! 2 1 1 )T. Using 

the VA, the final distance will be infinity because a transition from state 4 to 

state 2 is not allowed in the transition matrix P. This brings up an interesting 

point, however- since the transition matrix is "trained" from a known process 

of necessarily finite length, a value can be calculated to be zero when the 

underlying process may allow such a transition. This problem has been 

studied by at least two groups (Jelinek, 1976; Levinson eta!, 1983) and the 

solution involves what are called reestimation formulas, generally 

implemented using the Baum-Welch or forward-backward (F-8) algorithm 
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(Baum eta/, 1970) although Jelinek (1976) states that the VA can be used in 

some cases. Use of the reestimation algorithm is "beyond the scope of this 

thesis". An easy fix to the problem as suggested by Rabiner, eta/ (1983) is to 

compute an initial estimate of the transition probabilities using a training 

sequence and to change all zero entries of the resulting matrix to some e > 0. 

An added benefit of this approach is that it avoids computation of In{ 0 }. 

A pattern recognition system block diagram using Markov modeling and 

a Viterbi classifier is given in Figure 63; it incorporates most of the techniques 

described to this point, although the modified reestimation formulas have not 

been implemented. It is this general approach that will be used in the 

following section to demonstrate a preliminary recognition system that uses 

the VA for maximum a posteriori classification. 

Training data .. .. Feature 
extractor 

Test data 
-----1•~1 Feature 

extractor 

Markov matrices D1J 

,, 
... Viterbi 

1-----t~ Algorithm 1---~ .... J Min I 
I I 

Figure 63: Recognition System Block Diagram 

.. 
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Use of the Viterbi algorithm on functions of Markov chains 

Given a combination of Markov modeling and sequential classification, 

· one final issue must be resolved before recognition studies can be attempted: 

feature extraction. While the bulk of the existing literature discusses use of 

LPC spectral models, other features could certainly be used. Three feature 

extraction strategies were examined for this thesis: time derived, reflection 

coefficient derived and log spectral model derived. 

Most researchers using Markov models constrain the state transitions so 

that the process can never return to a state once it leaves; the process is 

further constrained to only stay in the current state, move ahead one state, or 

move ahead two states. This is called a left to right or Sakis model (cited by 

Jelinek, 1976 ) and results in a Markov matrix that has entries only along the 

diagonal and the first two superdiagonals. The author has been unable to 

determine the theoretical justification for such a highly constrained model, 

although Jelinek (1975) shows that the constraints make the classification 

easier. No restrictions will be made on the state transition matrix in this study, 

however. 

Time derived features 

This technique is a significant departure from the spectral models; it 

represents an attempt to statistically measure time variations of the signal. The 

algorithm takes a segment of the waveform of a specified length (with a 
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rectangular window) and calculates the maximum and minimum value over 

that interval. This amplitude range is divided into n intervals, where n is the 

desired number of states in the Markov chain. The waveform segment is then 

analyzed point by point and the amplitude state corresponding to the sample 

value is calculated. The current state and the previous state are treated as an 

ordered pair that is hashed into an n x n matrix -the current state is the row 

index and the previous state is the column index. The value of that location in 

the matrix is incremented by one and the routine moves to the next point ( see 

Figure 64a ). When the entire segment has been analyzed in this manner, the 

rows of the matrix are normalized so that their sum is one, making it a 

stochastic matrix that is an estimate of the transition probabilities. Figure 64b) 

shows how the time structure of a waveform affects the structure of the Markov 

matrix for this method. A series of Markov matrices will be stored for each 

word, where the analysis interval will be based on the assumption of the short 

term stationarity of the speech signal (approximately 15ms will be used here). 

Requantize the signal into n levels, then record the number 
of times the signal moves to a new state or stays in the same 
state. 

Figure 64a: Time based Feature Extraction 

4 

3 

2 

1 



125 

XX XX 0 0 ... 0 
0 XX XX 0 ... 0 
0 0 XX XX ... 0 

xxo oo ... xx 

xx =non-zero entry 

Figure 64b:Waveform Encoding Effects 

Recognition is performed by encoding an unknown waveform segment 

into a state sequence using the same analysis interval . The state sequence 

and the Markov matrices derived from the training data are passed to the 

Viterbi algorithm, which computes the minimum path length for each reference 

matrix. The smallest of these path lengths is chosen as the solution distance 

and the class corresponding to that reference matrix is chosen as the most 

likely class. 

Before proceeding, it should be stressed that this technique will work on 

time data in any form - not just the "raw" signal. One technique that dates back 

at least as far as 1967 is counting the number of zero crossings over some 

analysis interval (Reddy, 1967). This is equivalent to using a frequency 

discriminator on the signal which, in the case of speech signals, can be used 

to determine if the segment is voiced or unvoiced (Rabiner and Schafer, 1978, 

p. 128). For the test cases in this thesis, the Markov modei/VA will be used 

with zero crossing information as a feature. 
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Reflection coefficient derived features 

As mentioned previously, the most recent studies of Markov models for 

speech recognition use LPC spectral models as a basis. An equally valid way 

to encode the LPC model is to use the reflection coefficients (RC) that are 

naturally computed along with the LPC parameters in Levinson's recursion 

(Markel and Gray, 1976, p. 51). The advantage of using reflection coefficients 

is that they are always in the range [-1, 1 ], which would intuitively seem to 

make encoding easier. 

The LPC analysis is followed by a vector quantizer to reduce the 

dimensionality of the LPC vector (Bell Labs study [Rabiner eta/, 1983] based 

on the work of Portiz [1982] ). Vector quantization (VQ) is optimum in the 

sense that the distance between the output vectors is maximized under a 

transformation on the input vectors. The VQ technique is powerful but requires 

a great deal of computation during training and produces transformation 

equations that are data dependent (Juang et a/, 1982). It would seem that a 

choice should be considered between an optimal but data dependent 

technique and a suboptimal but data independent alternative. One such 

suboptimal approach, which will be used here, takes a vector of reflection 

coefficients derived from an LPC algorithm of order m and encodes it into an 

m bit word that represents the current state of the process (see Figure 65). 

This encoding is performed by observing the sign of the k-th coefficient (1 ~ k 

~ m ); if it is positive, 2k-1 is added to a summing variable, otherwise nothing is 

added. This encoded value will then be in the range [0 , 2k-1 ], which will be 

subdivided into n levels, where n is the number of states in the chain model, 
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and the matrix will be constructed ·as before. Likewise, the classifier operates 

by building an observation sequence from the unknown and then determines 

the class it was most likely to have come from using the VA. An important 

difference between the two techniques is that fewer samples are available for 

training using this approach; an analysis frame of 128 samples would 

generate 128 observations for use in building the time based model but only 

.Q.D.e. value for the LPC and spectral techniques. A half second utterance would 

only generate 31 observations (for 8kHz sampling frequency and 128 sample 

frame size), making confident parameter estimation difficult. 

Given the reflection coefficient vector RC: 
RC = ( rc1 rc2 rc3, rem ) 
The feature is calculated as follows: 

SUM:O 
DO i = 1 to i_max 

IF rc1 > 0 THEN SUM= SUM+ 2**(i-1) 
END DO 

The quantity SUM will be the feature value. 
Figure 65: Reflection coefficient feature extraction 

Spectral model derived features 

As mentioned earlier, there is merit in studying cochlear models for use 

in Markov chain models; to the author's knowledge, no results have been 

published in the literature in this area, although Zue (1985) hints that the area 

bears investigation. Unfortunately, "state of the art" cochlear modeling 

techniques are rather complex, as noted previously. For this thesis, a first step 

in that direction will be made by using a log amplitude- log spaced spectral 
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estimate; while the technique has some merit (Zue, 1985), it is not a 

particulary accurate model of the evoked response of the cochlea but it has 

been widely used, nevertheless. The technique is to perform a discrete 

Fourier transform over an analysis interval and generate a log frequency 

spacing of m total cells by summing bins together before taking the log of the 

spectral magnitude. The spacing of the summing interval will grow wider at 

higher frequencies, giving decreased resolution at those frequencies. This will 

yield a log amplitude - log frequency vector that must be encoded to yield an 

m bit number as with the other feature extraction techniques. The elegant 

approach, as with the reflection coefficient technique, would be to use vector 

quantization; instead we shall use an encoding strategy based on the average 

value across the vector. A feature value is generated by adding 2k-1 to a sum 

if the k-th component (1 :::;; k:::;; m) of the vector is larger than the average 

value. This sum can be scaled into one of the n levels for generation of the 

observation sequence (see Figure 66), yielding either a Markov matrix 

(training) or an input sequence to the VA (classification). 

This technique, like the RC algorithm given previously, is amplitude 

independent, which has its merits as well as its limitations - more work is 

needed to determine the suitability of these techniques as encoding schemes. 



x1 x2 x3 x4 x5 x5 x6 

Let J.1 = average (xi) 

SUM=O 
DOi= 1 toi_max 

IF Xi> J.l THEN SUM= SUM+ 2"'"'(i-1) 
END DO 

Magnitude of OFT 

Figure 66: Spectral Model Feature Extraction 

Summary of computer tools 
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Two speech sets were digitized for analysis and testing. A number of 

computer programs were written that create, display, analyze and classify 

Markov models derived from these data; they are: 

MKVXTR Generates a Markov matrix based on reflection coefficient, 

spectral model or block zero crossing (not discussed) features. One feature 

generated for each analysis frame. 

MKVTIM Generates time signal based Markov model. Signal may 

be preprocessed to allow variations on the time based technique. One matrix 
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is generated for each analysis frame 

MKVPRT Prints Markov model matrices. 

MKVPL T Plots signal flow graph of Markov matrix. 

MKVIMP Prints impulse response of Markov matrix. 

MKVXFN Plots frequency response of Markov process transfer 

function (diagonal terms only). 

MKVXFP Prints transfer function values. 

MKVATM Time signal classifier. Uses Viterbi algorithm to test a data 

file against a set of reference matrices. 

MKVCLS Block feature classifier (RC, log-log spectral model, etc.). 

DATA 

ONES.DAT The word "one" spoken ten times by the same speaker 

DIGITS.DAT The digits "one" through "ten" spoken by the same speaker 

Results 

Rather than inundate the reader with output, we will attempt to 

summarize three test cases here, leaving the mound of plots and tables for the 

appendices. The three test cases are actually variations of the same general 

problem - digit recognition. The first test case will use time derived features 

based on a zero crossing representation of the speech signal; the second will 

use reflection coefficient features; and the third will use the log-log spectral 

model. In the first case, the classifier will be trained on the word "five" and 

tested against the words "one" through "ten". In the second case, the classifier 

will be trained on the words "one", "two", and "three" and tested against all ten 
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words. The third case will be the same as the second except for the change of 

feature. While none of these tests is rigorous - testing a classifier against its 

training set only indicates gross robustness of the feature set - the tests do 

illustrate the relative merits of the approaches. 

Test case 1 - Time deriyed features 

For this test, the word "five" was analyzed after preprocessing by a zero 

crossing discriminator of width 32. The speech signal and the zero crossing 

signal for this word are shown in Figure 67 (as noted earlier, a rectangular 

window was used). If a frame size of 128 samples is chosen, the word is 

approximately 32 frames in length; for the time derived features, this results in 

32 Markov matrices. After some experimentation, a chain length of 8 was 

chosen for the model. Of the 32 matrices, the fifth was chosen (arbitrarily) for 

display. The values in the matrix are shown in Figure 68 while the signal flow 

graph, which displays the same information graphically, is given in Figure 69. 

From this diagram, states three and six are never visited at all, because when 

the signal is requantized to eight levels, those amplitude values do not occur. 

In Figure 70, these empty states translate into a zero level for the transfer 

function of those nodes. The other states show relatively uninteresting transfer 

functions, although the limiting probability of states one and two appear to be 

less than that of states four, five, and eight; from MKVIMP, these limiting values 

are:~= ( 0.01 0.033 0.0 0.243 0.291 0.0 0.265 0.159 ). 
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SECTOR 1, STARTING FRAME 280, 32 FRAMES, CONTEXT 128 
VALUES 
102+-----------------------------------------~------, 

-102~--~----+---~----+----+----+----r----+----r--__, 
BEG = 4.454 SEC MID = 4.720 SEC END = 4.975 SEC 

Figure 67: Time and Zero Crossing Signals- "FIVE" 

MARKOV TRANSITION MATRIX 
FILE NUMBER: 3022 
NUMBER OF STATES IN CHAIN: 8 
STARTING FRAME, NUMBER OF FRAMES USED:280, 32 
FRAME SIZE: 128 DATA SOURCE: TIME 
FRAME:284 

1 0.66667 0.33333 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.10000 0.70000 0.00000 0.20000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.02703 0.00000 0.81081 0.16216 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.13514 0.72973 0.00000 0.13514 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.14815 0.00000 0.66667 0.18519 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.30769 0.69231 

Figure 68: Markov Transition Matrix for "FIVE" 
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MARKOV CONNECTIVITY PLOT 
NUMBER OF STATES : 8 
FRAME SIZE : 128 
DATA SOURCE : TIME < 0> 

FILE NUMBER : 3022 
START,NUM FRAMES : 280 , 32 
THRESHOLD : 0 . 000000 
FRAME : S 

.&!Z3 

Figure 69: Signal flow Graph- "FIVE" (zero crossing) 

FREQUENCY RESPONSE OF MARKOU MATRIX 
File number : 3022 Frame number : 5 
Samples/frame : 128 se .e 
Data source : TIME 

se . 

~z . 

Z5 . 
B 

'7 . 
NODE 

1 
e . e e . 1 e .z e .3 • · ~ e .s 8· 15 e .1 e .B e .g 1.e Cha i n haz B nod~z . 

Figure 70: Frequency Response- "FIVE" (zero crossing) 
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Using the time classifier, the 32 "phonetic units" (frames) of the word 

"one" were tested against the entire set of the digits "one" through "ten" (622 

frames at 128 samples/frame). Correct recognition of the digit should be 

indicated by a match with successively higher reference matrices; in other 

words, the classifier should count up through the reference sets as the correct 

word is analyzed. Words not corresponding to the reference set should show 

no such pattern (technically, this should be considered word spotting rather 

than digit recognition). Instead of printing 622 distance scores, we shall 

instead plot the class chosen by the classifier as a function of input frame 

number, which should indicate linear trends in the results. Figure 71 shows 

this recognition sequence, indicating that the algorithm correctly identified its 

training sequence, except for a very few frames, and rejected the other digits. 

This indicates that the algorithm has promise but the reader is cautioned that 

this test is not rigorous and further testing is needed. 

Figure 71: Recognition Sequence for Example 
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Test case 2 - Reflection coefficient features 

As mentioned before, this test will train on the words "one", "two", and 

"three" from the set of digits, then test against against the same set, using the 

reflection coefficient method described previously. As an example of the 

difference in the structure of the matrices, consider Figures 72 and 73 which 

show the flow graph and transfer function, respectively, of the word "one". For 

these frame based features (few matrices instead of many), the plot of 

recognizer performance is not as useful; instead, these preliminary results can 

be summarized by a confusion matrix to show how well the set of reference 

matrices scored against the training set, which is given in Figure 74. 

Obviously, this is not a rigorous test, but it does indicate the consistency of the 

procedure since no classification procedure can work if it cannot recognize its 

own reference set. 



HARKOU CONNECTIVITY PLOT 
NUMBER OF STATES : 5 
FRAME SIZE : 128 
DATA SOURCE : REFL ( 10) 

Forw•rd 
~ 

FILE NUMBER : 3024 
START I NUM FRAMES : 1 I 
THRESHOLD : 0 . 000000 
FRAME : 1 

Figure 72: Signal Flow Graph- "ONE" (Reflection coefficient) 

FREQUENCY RESPONSE OF MARKOV MATRIX 
File number : 3021 Fra•e number : 1 
Samples/frame : 128 
Data source : AEFL 

151 . 

'IZ . 

Z5 . 

7 . 

l . l 1 . 1 I . Z 1 . 3 l . 'l 1 . 5 l . li 1 . 7 I . B e . g 1.e 

7 . 5 

NODE 

Figure 73: Frequency Response- "ONE" (Reflection coefficient) 
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CONFUSION MATRIX (#OCCURRENCES) 

1 2 3 #obs 

1 23 35 

2 7 35 

3 
12 30 

4 28 
Size of AR model: 10 

5 35 Size of Markov matrix: 5 
Trellis length: 20 

6 15 Frame size: 128 samples at 8kHz 

7 35 

8 15 

9 30 

10 25 

Figure 74: Confusion Matrix- "ONE" (Reflection coefficient) 

Test case 3 - log-log spectral model features 

This test is identical to the previous except the log amplitude - log 

frequency spectral model (a crude cochlear model) is used. The flow graph is 

shown in Figure 75 and the transfer function is shown in Figure 76. Classifier 

performance was evaluated in the same fashion as before by testing the 

reference set against its own training data. In this case, given in Figure 77, 

performance was not as good - it is hypothesized that an improved cochlear 

model and better probability estimation. techniques would improve these 

results. 



MARKOU CONNECTIVITY PLOT 
NUMBER OF STATES : 5 
FRAME SIZE : 128 
DATA SOURCE : SPEC < 15) 

Forward 
~ 

9ac-kwcu·d 

$ 
a .3333 

FILE NUMBER : 3023 
START,NUM FRAMES : 1 , 
THRESHOLD : 0 . 000000 
FRAME : 1 

.li&li7 

Figure 75: Signal Flow Graph- "ONE" (Spectral Model) 

FREQUENCY RESPONSE OF MARKOU MATRIX 
F i le number : 3021 Frame number : 1 
Samples/frame : 128 
Data source : SPEC 
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3 

5 

1 . 1 l . 1 I . Z l . 3 l , q I . S I . Ei l . l I . B l . 5l 1 . 1 Chain haz 5 nod~z . 

Figure 76: Frequency Response- "ONE" (Spectral Model) 
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CONFUSION MATRIX (#OCCURRENCES) 

1 2 3 #obs 

1 27 4 35 

2 27 35 

3 3 8 30 
17 

4 2 28 

5 12 
Size of spectral model: 16 

35 Size of Markov matrix: 5 
Trellis length: 30 

6 15 Frame size: 128 samples at 8kHz 

7 12 35 

8 15 

9 3 30 

10 17 25 

Figure 75: Confusion Matrix -"ONE" (Spectral Model) 



CHAPTER VIII 

CONCLUSIONS AND AREAS FOR FUTURE RESEARCH 

This thesis has introduced a number of new and significant ideas in the 

areas of speech coding and recognition. In particular, new methods for linear 

predictive (autoregressive) coding of speech using a p-normed error criterion 

(Lp model) have been developed, as well as some experiments in speech 

recognition using Markov chains. 

One of the significant results in this thesis is an optimal, adaptive 

scheme for coding speech using an Lp model. The kurtosis, which is a 

measure of the "flatness" of a distribution, of the residual from a traditional 

autoregressive model is calculated for each frame of speech. This kurtosis is 

then used to map to the best p value; this optimal value of p is then used to 

compute the Lp model using the residual steepest descent algorithm. Here, 

the best value of p is determined by using the fact that the Lp model is the 

maximum likelihood estimator for the corresponding p-Gaussian distribution, 

a general class of pdf's. Specifically, a kurtosis measurement of six requires 

an L1 model (Laplacian residuals), a kurtosis of three requires an L2 model 

(Gaussian residuals) and a kurtosis below three requires a higher value of p

as the kurtosis nears 1.8, p is required to go to infinity, the limiting value for a 

uniform distribution (L.,.,) 

This optimal, adaptive scheme has been incorporated into the 

government standard vocoder algorithm, LPC-1 0. These modifications have a 

minimal impact on LPC-1 0 complexity but increase computation time by about 
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a factor of 3, although no efforts have been made to fine-tune the speed of the 

LP algorithms. 

Even though LP models are more likely to be unstable than the L2 model, 

no remedial measures were taken in LPC-1 0 other than the existing 

procedure of taking the parameters from the previous frame and using them 

again. 

Another method has been historically to calculate the LP model for p=1 

and p->oo: linear programming. While linear programming gives an exact 

answer, it has traditionally been too slow and consumed too much memory to 

be useful in practical problems, especially when high-speed performance is 

needed. The simplex method requires requires calculations that grow 

exponentially with the number of parameters while the technique used in this 

thesis, RSD, is only quadratic in the parameters. Newer implementations of 

linear programming have narrowed the gap but the RSD procedure still has 

the advantage of being able to calculate the more general LP model. 

Another significant result in this thesis is the LP Burg algorithm; it has all 

the traditional advantages of the L2 Burg method- stability, direct calculation 

of the reflection coefficients, etc. It too, can be used to generate models for 

speech synthesis. In addition, the Lp Burg method, which is based on the IRLS 

algorithm, will converge to a stable model for any p between one and three, 

although the L1 model may not be unique. 

Since the spectrum of speech is of great importance, the spectrum of the 

LP model was evaluated for both the covariance method and the newer Burg 

method. These algorithms were evaluated both on "clean" and noisy speech. 

The L1 estimator appears to preserve formants quite well; other values of p 

also seem to offer no great surprises. At fairly modest signal-to-noise ratios 
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(approximately 20dB), the Lp estimator, especially for p near one, seemed to 

have problems retaining the formant structure of speech for white noise. The 

robustness of the LP model for p near one should make it ideal for coding in 

environments that have a great deal of noise, especially impulsive noise. 

Finally, some experimental results were gathered using Markov models 

as an isolated word recognition technique. The uniqueness of the approach 

was in that the modles were not the so-called "hidden" Markov models but 

were explicit models that were derived directly from parametric data. Of 

particular promise is the use of a cochlear model for the pre-processing 

function of the model extraction process. 

There are a number of research areas that remain to be explored, such 

as: 

• How does Lp speech perform in listening tests? Would the diagnostic 

rhyme test (DRT) show improvements in intelligibility? 

• Are there other ways to constrain the LP model to be stable without use 

of the Burg algorithm? Will reflection of unstable poles to inside the unit circle 

harm intelligibility? 

• What desireable properties of the covariance or autocorrelation Lp 

solution are lost by using the Burg algorithm? In other words, what does the 

guarantee of stability cost? 

• Can procedures be used to speed up RSD to make it a practical 

alternative to Cholesky's method in real-time applications such as LPC-10? 

• In detection theory, can these results be applied to develop an 

optimum detector for signals in non-Gaussian noise? 

• Can the Lp Burg algorithm be expanded to two dimensions? 
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• Why does the Burg algorithm, as implemented here, appear to have 

problems when using values of p other than two in noisy signals? Is it 

inherent in the algorithm or can remedial measures be taken. 

• Would shaping of the noise or glottal pulses at the synthesizer to match 

the appropriate p-Gaussian density improve intelligibility? 

• Can Lp models be applied to other non-Gaussian signals, such as 

neural firings? 

• Are there alternatives to dynamic programming for classification of 

Markov processes? 

• Is there a relationship between Markov spectral models and 

maximization techniques such as dynamic programming? 

The traditional view has always been that Gaussian noise is a "good 

enough" first order approximation because better approximations made the 

analysis untenable. The p-Gaussian family of pdf's and their maximum 

likelihood estimators, the p-normed solutions to the linear prediction 

equations, offer a powerful extension to existing theory that should find 

application wherever non-Gaussian noise is found, which is, of course, 

everywhere. 
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