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CHAPTER I 

GENERAL REVIEW AND BASIC PRINCIPLES 

Introduction 

A) Historical Background 

Long-chain organic materials, commonly referred to as 

polymers, comprise a wide variety of physical properties, 

especially the electrical and the electro-active (1) aspects. 

From the highly conductive polyacetylene and the superconduc­

ting polysulfur nitride (SN)x; to the highly polar semicon­

ducting polyacene quinone radicals (7), exists a large group 

of synthesizable materials that might be tailored to the spe­

cific needs of electronics and space industries. 

What common features abound in a given category and what 

distinguish them from the rest, has been a subject of great 

concern and research interest for the past twenty five years 

or so. Numerous multi-disciplinary fields of science and eng­

ineering have contributed to this very fascinating and impor­

tant branch of chemical physics. 

The interest in organic solids dates back as far as 1906 

when Pocchetino (10) studied the photo-conducting properties 

of anthracene. In 1941 Szent-Gyorgi (11) claimed that biolo­

gical processes could be understood by studying organic chem-

1 



2 

ical structures having semi-conducting characteristics. 

Two years later, the collected works of R. Fuoss appeared 

in "The Chemistry Of Large Molecules" (12), a major treatise 

on polymers mainly devoted to the study of relaxation times 

distributions of polar polymers in dilute solution of non-

polar solvents. The works of Kirkwood & Fuoss (13-17) provid-

ed most of the material subject of the book. The following 

year, "Tables Of Dielectric Materials" was published by M. I. T; 

a three-volume compendium considered the first of its kind on 

the subject, and characterizing such polymers as: 

poly(ethylene), poly(styrene), poly(vinyl chloride) etc .. over 
10 

a wide frequency·range from 100 to 10 Hz.(18). 

In 1949 Fujishiro and Kotera (19) investigated the loss 

factor as a function of the (average) molecular weight of 

polymers and found that it decreased with increasing molec-

ular weight. Now since the degree of polymerization (D.P) is 

defined as the ratio of the molecular weight of a polymer to 

the molecular weight of the basic monomer unit, it follows 

that D.P may be regarded as a measure of the average or ef-

fective molecular length of the polymer molecule. Thus the 

above study provided one of the first correlation effects be-

tween loss and molecular length. A related work by Wurstlin 

(20) was done with poly(vinyl acetate) and he found that inc-

reasing the molecular weight, raises the temperature at which 

maximum absorption (loss) occurs. 

In the early fifties, Akamatsu and Inokuchi (21) studied 

the effect of pressure on the conductivity of iso-violanthr-
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one and found that compression lowers the activation energy 

of the polymer. By the late fifties, serious and concentrated 

efforts were being made to study and characterize polymers. 

Among the early pioneers, Many et al. (22) was the first 

to draw attention to the fact that in low molecular weight 

organic crystals, a quasi-linear relationship exists between 

the activation energy Ea and the logarithm of the pre-exponen­

tial factor appearing in the Arrhenius law governing the con­

ductivity : (r= croexp(-Ea/kT). Four years later, Eley (23,24) 

discovered similar correlation patterns in certain groups of 

polymers. The patterns separated distinctly into two groups; 

Those corresponding to highly insulating polymers displayed 

very well-defined linearity and a correlation coefficient of 

about unity, while the semi-conducting species showed a rath­

er erratic behaviour and very poor correlation. 

In the early sixties, things took on a full swing: 

An extensive review of polar and non-polar polymers ( both 

amorphous & crystalline) documented by A.J. Curtis of the 

National Bureau of Standards was published (25). It covered 

topics on the temperature dependence of relaxation and disper­

sion for such materials as poly-{ethylene, isobutylene, tetra-· 

fluoroethylene, vinyl acetate, vinyl ethers, vinyl chloride, 

esters, amidesJ, and rubber. The report centered around the 

works of Mikhailov & co-workers (26-30), Hoff, Robinson, and 

Willbourn (31), Nakajima, Saito, & Ishikawa (32,33), Gibbs & 

De Marzio (34), Reddish (35), and Kirkwood & Fuoss (13-17). 

Pohl & co-workers at Princeton (36-48), and others (49 -
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53), followed a systematic research program oriented towards 

the characterization and synthesis of some special class of 

materials, mainly those of the Poly(acene quinone) radical 

type (PAQR). Other chemical species considered were the poly 

(acetylenes), poly(benzimidazole), and pyropolymers. 

-11 
Conductivities ranging from 10 to 10 S/cm under various 

pressures were observed. Further studies of correlation ef-

fects followed in succession: Pohl & Chartoff (47), Pohl and 

Opp (43) investigated the dependence of the conductivity on 

the unpaired electron spins. Extensive study of the effects of 

pressure & temperature was done by Pohl, Rembaum & Henry (42). 

Pohl & Rosen (1) investigated the unusually high dielec-

tric constant of anthraquinone & pyromellitic dianhydride as 

well as the effects of D.C bias electric field on this para-

meter. They also studied the properties of metal-doped pyro-

polymers (44). Dielectric relaxation studies on (PAQR) poly-

mers were done by Pohl & Hartman (2,54), and by Pohl & Wyhof 

(55), while the conductivity dependence on pressure, tempera-

ture & electric field were explored by Pohl & Engleha:z:dt (3) 

and by Pohl (56). 

An empirical relationship between the dielectric constant 

and the D.C.electric field bias was determined and verified by 

Pohl & Wyhof (7). This and the previous advancements helped 

formulate a model theory for polymeric conduction and polar-

isation which became known as the Pohl-Pollak theory & model 

(1975-77), (8-9). Among the many predictions of the theory, 

was one that is unique to polymeric materials: the existence 
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of "cross-over" frequencies We for which the dielectric cons­

tant K increases with respect to the D.C. electric field bias 

(over a certain range of bias values) for frequencies above 

We, as contrasted to the normal decrease in K for frequencies 

below We. This prediction was observed by Pethig & Pohl (57) 

in '76 and by Vijayakumar and Pohl (58-59) in 1981-83. 

The effect of radiation on polymers has also been of great 

interest due to its defense oriented nature, and has been un­

der study since 1938. Notable works in this field include: 

Charlesby, Alexander, and Black (60-63); Bopp and Sisman (64); 

Fowler & Farmer (65-69); and Chapiro (70-72). 

As one might expect, polymers can be extremely suscepti­

ble to radiation (be it rays or particles), the reason being 

that a slight alteration in the chemical structure of a side 

group or a terminal group of atoms in the polymer chain, can 

mean a completely different material having different physi­

cal, chemical, and electrical properties. Irradiated polymer 

materials have been found to undergo either one or both of 

two types of change: they may cross-link to form an insoluble 

gel-type material, or undergo molecular degradation through 

chain scission to form substances of lower molecular weight. 

Finally, the possibility of super-conducting polymers 

having elevated transition temperatures has been an active 

research subject for many years. The first to propose such a 

possibility was W.A.Little in 1964 (73-75). Criteria for the 

existence of superconductivity in polymer systems have been 

sought by Cohen (76),who showed that a polymer must exhibit a 
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very large dielectric constant as one of four sufficient con­

ditions, the other three being a high carrier concentration, 

a large effective mass of carriers (polaron type), and a 

multi-valley energy band structure in momentum space. 

B) Present-Day Status of Dielectric Theory 

In recent years attention has been focused on the 

attempts towards a "grand unification" theory; the so-called 

"universality approach" for the treatment of dielectric phe­

nomena is being promoted by Jonscher (77), Cole (78), and 

others (79-81) as the "better" alternative to the understand­

ing of this subject . 

Jonscher and his proponents argue that because the 

dielectric response in solids displays a universal character 

regardless of the detailed microscopic structure of the par­

ticular material, ( namely the power law dependence of the 

de-polarization current 1 ), then a higher-order theory must 

be sought that would fit the data of any type material under 

any frequency range without having to resort to the existing 

"patchwork" theories which, in most cases, are not based on 

true physical grounds. A classic example of this is the dist­

ribution function for the relaxation times of materials exhi­

biting deviation (and almost all do) from the single relax­

ation Debye model (applicable to non-interacting dipoles or, 

charge carriers only.) 

1) i ( t ) tX t -S where O<s<l or l<s<2 
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Further, there are instances where many researchers have 

developed strong convictions about specific conduction mech-

nisms without sufficiently cut-proof evidence. For example, 

the power law relationship for the A.C. conductivity in amor-

phous semiconductors, glassy materials, and ionic solids, 

(which follows an w5 dependence where s ~ 0.8) has frequently 

been taken as proof for hopping electronic-only, conduction. 

This kind of practice was widespread in the 1960's when 

studies on amorphous semiconductors were popular. What seems 

1 to have eluded many is the fact that a hopping charge ( be 

it electronic or ionic) can give rise to dielectric behaviour 

similar to what one might expect from permanent dipoles. In 

fact, a hopping charge confined to hop between two preferred 

positions is indistinguishable from a permanent dipole; while 

the situation would be completely different if the charge is 

allowed to hop over several molecular sites or even rove over 

finite distances, as in the case of certain polymers. 

At present, the Dissado-Hill theory (79,80) has been 

successfully applied to polar materials employing an all-new 

universal approach based on a two-level double potential in-

teraction describing the energy of many individual systems 

within the dielectric medium. However, it has not been tested 

on polymeric systems, and the future awaits such an advance-

1) A noteworthy exception to this are the works of Dr. Herb 
Pohl who carried out Hall effect measurements in order to 
determine the sign of the charge carriers (3,82). 
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ment and what it might reveal about the nature of co-operative 

phenomena in polymeric solids. 

C) Statement of The Problem 

The present work is primarily intended to explore what-

ever channels are available for the enhancement and improve-

ment of dielectric quality, which will hopefully allow us to 

engineer polymers with specific electrical properties. 

Whether it is possible at least in principle, to match 

the dielectrical qualities of BaTi03 remains an open ques-

tion considering the host of theory that is needed from a 

multitude of scientific disciplines. However, as the present 

work shows there is ample evidence to make us believe that a 

polymeric equivalent to BaTi03 can be realized. 

In order to achieve our goal, we shall carry dielectric 

and conductivity measurements on some 10 samples under a var-

iety of macroscopic conditions: pressure, temperature, and 

electric field bias over a frequency range extending from D.C 

5 
(100 Hz.for K ) to 10 Hz. Information from the above data 

on other relevant quantities such as average molecular length, 

relaxation times, and activation energies will be obtained and 
I 

correlated to ~, K, molecular sructure, and method of synth-

esis. Conclusions and recommendations will be made regarding 

the prospects of optimization of the polymer characteristics. 
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1.1) Rudiments of Dielectric Theory 

A) Types of Polarisation and Dielectric Spectra 

As is well known, matter is not uniform in its dipole 

moment constituency. There are many varieties arising from 

differences in the molecular structure of a given material. 

Thus an ionic solid is expected to have a large contribution 

in its dielectric response from permanent dipoles, while a 

simple atomic substance will display most of its response from 

the induced dipoles formed by the outermost shell (valence) 

electrons. Moreover since each particular type of polarisation 

has its own characteristic natural frequency of oscillation 

(or relaxation) then in a given frequency regime, only those 

"aggregates" whose natural frequencies match or are close to 

the excitation frequency will contribute. 

Because of the relatively small masses of the charge car-

riers, inertial effects do not appear until short microwave 

frequencies (1012 ) are attained. This is because the mass 

impedance term "iwm" is much smaller than the elastance term 

"H/iw" (where H is "Hooke's law" constant of elasticity ) at 

low frequencies << \[Hi;. (c::: 1012 for atomic nuclei bound in 

16 crystals or macromolecules, to 10 for electrons bound in 

atoms). 

Consequently at low frequencies, a dielectric is expect-

ed to portray a behaviour similar to a damped spring system 

or a capacitive-resistive combination. In this regime, the 

frequencies at which maximum absorption of energy occurs are 
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precisely the inverse of the decay constant time(s) charac-

teristic of the system (also known as "relaxation" time(s)). 

It is for this reason that these frequencies of maximum 

absorption are usually referred to as "relaxation" spectra. 

Fig.l(a) shows the response of a typical dielectric mater-

20 
ial over the entire observable frequency range up to 10 Hz. 

At the extreme left of the diagram is the contribution from 

space-charge polarisation which exists in materials containing 

carriers that do not recombine at the electrodes, thereby be-

having like a macroscopic dipole which can only follow the 

field variation as long as the frequency is very low ( few 

cycles per second). A similar response also occurs in hetero-

geneous systems such as a two-layer capacitor, this is known 

as Maxwell-Wagner interfacial polarisation. 

Next comes the contribution of the so-called orientation-

al polarisation arising from permanent dipoles that may exist 

in ionic crystals having lattice defects; or polar molecules 

in gaseous and liquid substances. Generally speaking this type 

of polarisation is characterized by inelastic restoring forces 

with properties akin to those of viscosity in fluids. Thus en-

ergy is continuously dissipated in the system as heat, due to 

irreversible thermodynamic processes. Due to its great variety 

in size and type of structure, orientational polarisation has 

the widest spectrum of all the other kinds reaching as much as 

nine decades. 

11 
At frequencies above 10 Hz. resonances of atomic vibra-

tions start appearing. These are followed by resonances of the 



Fig.(l) -Spectral characteristics of the real and 

imaginary parts of the dielectric permittivity 

arbitrary scales), for: (a) Ordinary dielectric 

materials (including non-ekaconjugated polymer 

systems), and (b) Long-chain ekaconjugated poly­

mers. The polaron resonance in (b) is only spec­

ulative at this stage. 
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15 
valence electrons around 10 Hz. and ultimately by the reso-

nances of the "inner core" electrons at X-ray or (-ray 

frequencies. 

In contrast to the above, a typical polymer is expected 

to display a response similar to what is shown in Fig.l(b). 

Here, there exists a characteristic absorption at much lower 

frequencies than in ordinary-materials. Thus for example, a 

3 4 
ralaxation absorption may occur around 10 to 10 Hz. as com-

pared with 106 to 108 for conventional materials, while 

10 13 
resonance absorption may occur around 10 to 10 Hz. for the 

so-called "eka-conjugated" type polymers exhibiting polaronic 

conduction. 

For the time being let us dwell on some basic notions 

underlying the general principles of dielectric conduction 

and polarisation in matter. 



B) Relaxation Response of Dielectrics 

This type of response is best analyzed by considering 

first, the action of a D.C. electric field 

14 

E ( t) = EoU C t ) 1. 1. 1 

0 for t < 0 

where U(t) is the unit step function = 

+1 for t ~ 0 

When the above D.C field is applied to a dielectric medium 

the polarisation P does not become established to its final 

steady value instantaneously. This delayed response is due 

to the "sluggish" nature of the restoring forces making up 

the dipoles or acting between them in such a manner as to 

always counteract their tendency to align with the direction 

of the field. 

If Oro and 0 5 are the values of the electric displacement 

D at t = 0+, and t = 00 respectively, then the value of D at 

any instant > 0 may be written as : 

D ( t) = Doo + (Ds- Doo ).f(t) 

where f(t) is a "growth" function 

characterizing the manner in 

which D(t) approaches its equilib­

rium value. For the time being, 

specific forms of f(t) are not re­

levant to our discussion, and so 

they will not be detailed. We do 

require however, that f(t) sati-

1.1. 2 

J>(t) 

Ds 

Fig.(2) 
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fies the boundary conditions: 

f(t) = 0 for t < 0, and f(t) = 1 for t -->00 . Now D 

represents the "instantaneous" contribution to D(t) and can 

be physically traced to electronic effects; it usually gets 

-17 
established within 10 sec. 

From the definitions of the dielectric permittivity, we 

may write : 

0 00 = E00 E(t) and D s = E s E ( t) 1.1.3 

Here, the permittivity £ 5 represents the static value that 

is observed when one has waited a "long" time after the field 

has been switched on. We remark in this context that "long" 

time does not necessarily mean "infinite"; all that is implied 

is that t >> some characteristic time of the system. 

For a linear medium the response to any general excitation 

may be obtained from the above by the superposition principle. 

Thus for example, the response to a D.C. pulse such as the 

one shown in Fig.(3) may be E I ( t) Eo 

obtained by noting that E 1 (t) 

can be written as : 

~------~~------~~t 
0 

E 1 (t) = EoU(t-e) - EoU(t-e-de) e e+de 

= E, ( t) + E2 ( t) Fig. (3) 

Hence we may write D I ( t ) = o, ( t ) + D2 ( t) 

or D1 (t) =~E'(t) + <Es -fco)E, (t-9)f(t-e)- <Es -Eoo>. 

E2 <t-e-de)f(t-e-de). 
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Rearranging gives: 

D(t) = Eoo E(t) + ( f 5 - ( 00 )Eo cp (t-9)d9 1.1.4 

where~(t) is the derivative of U(t)f(t) for t > 0, and is 

necessarily a monotone decreasing function approaching zero 

as t -> 00 . 

It should be noted that although ~(t) is 00 at t = 0, we 

shall implicitly assume that the product ¢ (t-9)d9 remains 

finite as de--> 0, (t approaching e that is.) 

Following the same lines of thought, it is now an easy 

matter to generalize to the case of a train of pulses each 

having a duration de but "fired" at times eK , k = 1,2,3 ... 

and with amplitudes EoK etc .• For such an excitation, D may 

be written as: 

D ( t ) = EcoE ( t ) + 

Where E(t) = .,LEK(t) 
I< 

- E.., >2 Eo cj:> (t-e" )de, 

~< = el< ~ t 
1.1. 5 

1.1.6 

Finally since any continuous excitation may be broken up 

into an infinite sum of discrete pulses whose widths are--> 

arbitrarily small numbers, then by the Fundamental Theorem 

of integral calculus we have ~ 

D(t) =E.., E(t) + (E. - Eoo) JE(9) ¢> (t-9)d9 

-oo 
which can be rearranged through a change of variable into: 

D ( t) = f .. E ( t) + ( E s - €.., ) J ~: F ) ¢ (f) d f 1. 1. 7 

0 
The integral in eq.(l.l.7) is recognized as the convolution 

of E(t) with 9'<t). 
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As a simple application to eq.(l.1.7) we consider the case 

of a harmonic electric field: 

E(t) = Eoexp(iwt) 1.1.8 

we get for D(t) the integral: 00 

D ( t ) = Eo, E ( t ) + ( E s -€ "" ) foexp [ 1 w ( t - f ) ] c:f> ( r) d r 
0 

= B(t{€.., + C E5 - E..., J J=P< -twJ J <j> cf Jdj} 1.1.9 
0 

The quantity in braces is recognized as the permittivity of 

the system. It is generally a complex number indicating that 

D and E are not in phase. Thus we have : 
00 

E * = E 00 + c E s -E.., > Jexp c -1 w f > c:f> c f > d f 1.1.10 

* 0 E into real and imaginary parts according If we split 

to E* =E' -iE" , then we get: 
()() 

- €,.> = fc:p cf )cos (w 1 )d 1' 
0 

ell 

E: • ICEs -E.., J =J¢ cf JsinCwf Jdf 

0 

1.1.11 

1.1.12 

This shows that both ~' and €" are essentially the Fourier 

cosine and sine transforms of the same functionqb(u). 

Between eqs. (1.1.11 & 12) the function q, (f) may be elimi­

nated by inverting the Fourier transform from one and then 

substituting in the other yielding: 
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1.1.13 

Likewise 

E" = - ( 2w/'ff) du 1.1.14 

Eqs.(1.1.13-14) are known as the Kramers-Kronig relations 

They provide all the mathematical framework needed to study 

dielectric relaxation spectra. An important consequence of the 

* inter-relation between the real and imaginary parts of E is 

that a knowledge of either one over the entire frequency range 

guarantees knowledge of the other through eqs.(l.l.l3) & eq. 

(1.1.14). Moreover, an important physical insight is provided 

by observing that E' and E" are always related in the same 

manner irrespective of .what the form of the relaxation func­

tion qD</> might be. This is an extermely important hint in 

support of the "universality" notion in dielectric processes. 

In order to obtain explicit expressions forE' and E" we 

need to propose a specific, physically acceptable form for 

the function GP (t). This topic will be covered in the next 

section in conjunction with the Debye equations. 
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C) The Debye Equations and Cole-Cole Plots 

In most mechano-electrical systems the dissipative term 

can be shown to be proportional to the velocity of the mass 

involved (neutral or charged), be it frictional or radiation 

damping. For a spring-damper combination having an elastic 

constant H and damping constant b, the equation of motion is 

H.x + b.dx/dt = F(t) 1.1.15 

where F(t) is the impressed force. The case of a unit-step 

excitation F(t) = FoU(t) gives by eq.(l.l.lS), with x(O) = 0 

x(t) = (Fo/H).{ 1- exp[-t/"7:'1} 1.1.16 

where 4r= b/H is a characteristic time constant. 

The quantity f(t) = 1 - exp(-t/T) is identifiable as 

the "growth" function introduced in the beginning of sec.l.lB 

as it satisfies the requirements at t = 0 and t = oo . It fol-

lows that the relaxation function of the system is: 

¢ < t) = < 1/-z:- ) exp £ -t/r l 1 .1. 17 

Eq.(l.l.lS) describes equally well the motion of a point 

charge experiencing damping due to visco-elastic forces in 

the material. Thus setting F(t) = q.E(t) and writing the pol-

arization P as Nq.x(t) where N is the number of dipoles q.x 

per unit volume, we find again: 

H.P + b.dP/dt 2. = N.q .E(t) 1.1.18 
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Thus P is also governed by the same relaxation function 

as given in eq(1.1.17). Finally since D = EoE + P, it follows 

that Dis also governed by eq.(1.1.17) and so is the dielec­

* tric permittivity E in eq(1.1.10). Substituting from (1.1.17) 

into eq(1.1.10) gives: 
QtO 

f. 'If - E .. = ( E s -E 00 ) ( liT ) fxp ( -i w r -f /1: ) d 1 
* 0 

( E - ECIO) I ( E s - E()O) = 1/ ( 1 + i w ~ ) 

Solving for the real and imaginery parts we arrive at: 

I 

E 

II 
E 

= E oo + 

1 + <wr>2. 

(w 'r) 

= ( Es - Eco> -----------

1 + (w'Z"")2. 

1.1.19 

1.1. 20 

1.1. 21 

1.1. 22 

The above are called the Debye equations. Debye first ob-

tained them in connection with his "Polar Molecules" theory 

of liquids (83) in 1929. He arrived at his results simply by 

solving eq.(l.l.18) in which E(t) was a harmonic excitation 

without resorting to t.he kind of elaborations we had. 
I b 

Fig.(4) shows a plot of E. & E as function of frequency. 
II 

We note that the point at which € reaches its maximum value 

is precisely 1/r , thus systems having short relaxation times 

will display higher-frequency absorption spectra. 

A useful way of presenting the Debye equations is by means 



I 
w 

N 

Fig. (4) 

rn rn en ,.:n::t 
8 ° '-' ro tD 

II II U1 t-t C"" 
rtPJ'-' 

~-A-tntD)<(I) 
• 3 PJ 
U1 rt 

t-rj.-. 

00 
)::I 

21 

U1 



22 

of the Argand diagram. As may be noted from eq.(l.1.21 & 22) 

I 
they represent the parametric equations of a circle in the E 

II 
- E plane. Simple algebra shows that the circle is centered 

Ll L E L'l/ = 0 at ~ = <~s + co)/2 and c:: 1 with a radius of: 

<Es -E~)/2, see Fig.(5). These results may also be 

obtained by noting that in the complex plane, the vectors: 

1 

y = --------- and V = 1 - Y = ( i w'Z"' ) Y 

1 + iw?" 

vary in the lower half plane (as w goes from 0 to oO ) 1 in such 

a way that they remain orthogonal to each other, and such that 

Y + V = 1, which means that the vertex at their intersection 

describes a circle whose equation may be determined from the 

condition: 

(recall that Y.V = 0) etc ... 

E." 0 

f,WT' 

The € 11 (E.') representation 

shown in Fig.(5) is known as the 

Cole-Cole plot (84). Only the 

upper (positive) portion of the 

circle has physical meaning as 

it cor res ponds to positive € 11 • 

F1g.(5) 

{ Es - EO) = 1} 
The advantage of this plot is 

that it provides a practical 

way of determining the extreme values of E.' and E" from rela-

tively fewer data points than what might be needed using the 

more conventional plots of Fig.(4). 
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We remark at this stage that the loss term E 11 does not 

include the contribution of the free charge (ohmic) conduc­

tivity. This contribution can be appreciable in materials 

containing high concentrations of free charge carriers where 

~ can be large. The point to keep in mind is that the loss 

which is measured experimentally includes the contribution of 

~ , and therefore has to be modified accordingly should the 

need arise in the analysis of the results, (refer to Sec.2.1). 

Some further comments on the Debye model are in order at 

this point. First, only a handful of materials actually obey 

the simplified picture presented above. These are mostly the 

anhydrous alcohol groups, and dilute solutions of symmetrical 

polar molecules (such as chlorobenzene) in non-polar solvents 

(e.g. benzene, alkanes, •• ). In reality most materials show a 

deviation from the Debye model in two ways: The E 11 ( ~ ') plot 

may not be a full semi-circle but an arc of a circle, in which 

case the maximum value of E11 would be less than <Es - E00)/2. 

Secondly the actual plot may be a skewed arc with out any axis 

of symmetry.These deviations are attributed to an over simpli­

fication inherent in the Debye model which is based on an 

ideal non-interacting set of dipoles all having the same relax­

ation time and sharing identical surroundings. 

More realistic models take account of the above by in­

voking a distribution of relaxation times, which corresponds 

physically to the realization that dipoles in a given mater­

ial can be of different kinds as well as possessing multiple 

axes of symmetry none of which are aligned with their perma-
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nent dipole moment u. This results in unequal components of 

(u) along these axes causing the molecule to experience un-

equal torques in the presence of an external electric field 

and hence result in different alignment times. 

If we break the polarization P into several contributions 

P1 , P2 , etc •• ,each relaxing with characteristic time 71, 

I • • I the dielectric permittivity becomes: 

E * = E~ + E.t + E 2 + 

where tr = ( €sr - €tP )/( 1 + iw'Zt-

then it follows that the most general case of a continuous 

distribution of relaxations takes the form: 

1.1. 23 

From here on it becomes a matter of finding a suitable 

function R(~) that best fits the data on a given material. 

However, because of the mathematical complexity that may arise 

in practice, other, more direct methods of approach have been 

proposed. For example Cole & Cole suggested using an empirical 

fit of the form: 

€.* = Eoo + 

1 + 
1-h 

< 1wr > 

1.1. 24 

This is only suitable for data that forms arcs of a per-

feet circle ,with the parameter h characterizing the degree 

of the flattening from the ideal semi-circle shape . 
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In order to account for skewed arcs, Davison & Cole (85) 

proposed a somewhat different form to the above: 

1.1. 25 

where p is a parameter taking values between zero and one. 

Historically, eq.(l.l.25) was used to fit the data of Glycerol 

at -50 C. Further techniques relating to the methods of deter-

mining E8 ,E~from Cole-Cole plots will be taken up in chapters 

two and four. 

D) Resonance Absorption and The Dispersion 

Relations 

As the frequency of the impressed electric field goes up 

10 
beyond 10 Hz. the masses of the charges can no longer be 

ignored. In the classical approach a typical equation taking 

into account inertial effect has the form: 

+ 2 d. dX/dt + = f 1.1. 26 

where f is the impressed force per unit mass. For instance, 

if E' is the local value of the externally applied electric 

field then f = eE'/m where "e" is the charge carried by the 

particle of mass "m". The simplest possible form of E' is that 

given by the Masotti approximation E' = E + EoP/3, however 

due to its limited applicability we shall restrict ourselves 

to E' = E. Now from P = NeX (where N is the no. of dipoles 
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per unit volume) we see that P also satisfies eq.(l.l.26) in 

which the right-hand term is given by (Ne1 /m)E. 

This means that for the case of a harmonic electric field: 

E = Eo.exp(iwt) the polarization is given by: 

P = Po. exp ( i wt + tp ) 1.1. 27 

where (Ne~/ m )Eo 

Po. exp (if{> ) = ----------------------- 1.1. 28 

2 2 
w0 - w + 2 i d w 

From the above, one deduces the dielectric "constant" to be 

2 ( Ne /E0 m ) 

* K = 1 + -------------------------
2 

w -
0 

2ioe. w 

1.1. 29 

In general a given material may contain a variety of dipoles 

having different masses, elastic constants, and damping fac-

tors. Thus, the most general form of eq.(l.l.29) would be: 

* K = 1 1.1. 30 

Eq(l.l.30) is the general dispersion formula of classical 

physics. It explains why the index of refraction depends on 

the frequency of light, as well as why certain wavelengths 
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are more readily absorbed than others. Although a quantum me-

chanical treatment is required to explain the anomalies that 

do arise in practice, the above description can be considered 

generally adequate for presenting the main ideas. 

For values of w around a given resonance WO\"' I eq(1.1.30} 

can be re-written as: 

B 

* K = A + ---------------- 1.1.31 

Aw + i oty 

where A & B are constants independent of frequency, and A w 

* is w~- w. The real and imaginary parts of K are sketched 

in Fig.(6). Note that as we pass through the resonance, the 

value of K' swings from a mximum of A + B/2 ot.l" at Wcr- o<.r to a 

minimum of A- B/20Lr-at w0 y-+clr. while K" reaches its peak 

value of B/tXl' at w0 r • The bandwidth of the resonance is BW = 

2cLrand can be used to characterize the system. 
12 

The sketches in Fig.(6) correspond to A= 10, B = 4Xl0 , and 

..J2r 22 
1:A- = 9. 5X10 

++++++++++++++++++++ 
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The real and imaginary parts of the dielectric 

constant K* given by eq.(l.l.31), drawn to scale. 
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1.2) General Exposition of Polymer Characteristics 

It has been found by Pohl and co-workers (2,7,54) that 

polymers may be classified according to their type of conju­

gation (alternation between double and single bonds): those 

with long-range electronic orbital delocalization are called 

eka-conjugated and are supposed to have, ideally, a perfect 

interlinking between the atomic pi-orbitals along the chain; 

while those suffering from defects, molecular or otherwise, 

are called rubi-conjugated, and generally, have a broken se­

quence of atomic pi-orbital delocalization which usually sup­

presses or hinders carrier transport and other electronic 

processes along the chain. 

The above two types are also very different in their 

spectra, electrical properties, and chemical activity. 

Unless otherwise noted, it will be implicitly assumed that 

all polymers under study are of the eka-conjugated type. 

Electro-active, nomadically (54) polarizable polymers 

exhibit remarkably different characteristics than most conve­

ntional materials. These features may be summarized in terms 

of the effects of few macroscopic parameters on the dielectric 

constant K , the loss factor tan(6 ), and the conductivity~ 

(D.C. and A.C.). 

It has been observed (1-3,7) that: 1) Ln(~) increases approx­

imately linearly with the square root of the applied pressure 

P, as does Ln(K). 2) Both ~ and K strongly increase with 

temperature according to- exp(-Ea /k8 T). 
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where Ea is an activation energy and k8 is Boltzmann's cons­

tant. 3) The D.C. conductivity increases exponentially with 

the D.C. electric field bias E. 4) There exist frequencies 

We above which the dielectric constant K increases with the 

E-field bias (over some range of bias values) instead of de-

creasing as it always does at lower frequencies. The value of 

We determines the range of E-field interval over which the re-

versal takes place. The lowest possible frequency We for which 

this happens is referred to as the "cross-over" frequency of 

the system. 5) Eka-conjugated polymers exhibit unusually long 
-3 -4 

relaxation times of the order of 10 to 10 sec. (52,53) as 

compared to those of regular materials which are of the order 
-6 -7 

of 10 to 10 sec. Detailed account of the above features will 

be explored in secs.(1.3) & (1.4) • 

For the moment, however, we just wish to point out that the 

aforementioned properties are rather unique to polymeric 

solids on account of their physical and chemical structure. 

Besides this, polymers offer the widest range in their 

electrical/ dielectric character of all known semi-conducting 

materials, as a result of special doping and synthesis. 

Recent work on poly(acetylene) has shown that conductivities 

as high as 1.2X10 3 S/cm are attainable (86), while tetracya-

noquinodimethane (TCNQ) salts can be made to exhibit both don-

or and acceptor properties depending on whether the dopant is 

a metal or non-metal ions (87). 



1.3) Dynamic Aspects of Hyper-Electronic Conduction 

and Polarisation 

A) Introduction 
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In conventional solids and other materials, polarization 

is brought about by one or more of the following mechanisms: 

1) The alignment of permanent dipoles under the influence 

of an external electric field (orientational polarization). 

2) The creation of dipoles due to the action of an exter­

nal electric field (induced polarization); this latter type 

can be electronic as well as atomic in nature. 

3) Space-charge polarization due to trapping of charge 

carriers at the interface separating the material and the 

electrode. 

When it comes to polymer materials, the above mentioned 

mechanisms are practically negligible compared to other phe­

nomena pertaining to polymers; besides, none of them can ex­

plain the unusually high dielectric constant, the low-field 

saturation of the polarization, and the many other effects 

reviewed in sec.(l.2). Since existing evidence indicates that 

these effects are usually of electronic origin rather than 

protonic, Pohl et al.(l,2,37) introduced the term "hyper-elec­

tronic" to emphasize the concept of charge carrier delocaliza­

tion as being a primary cause behind this phenomena that is 

practically unique to polymeric solids. 

In 1975 H. Pohl and M. Pollak (8) proposed a model based 

on the so called "Domain Theory" whose essence is that in a 
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polymeric substance there exists an appreciable number of 

dissociated charge pairs arising as thermally or field gene­

rated excitons 1 , with each member of the pair existing on se-

parate molecules. These carriers are able to rove along a one 

dimensional molecular "spine" over great distances of the or-

0 
der of thousands A, thereby giving rise to huge dipole moments 

several hundred to thousand times larger than those of induced 

electronic origin. The theory suggests a "polaronic" - type 2 

motion along the molecular spine, and a "hopping" motion be-

tween consecutive chains. Of course, the availability of long 

molecular domains, along which, delocalized charges can move 

unobstructedly, is a crucial assumption of the theory. 

There is ample evidence however, to support this presumption 

for numerous types of polymers notably the (PAQR) group as 

revealed by E.S.R studies, mobility measurements, and other 

dielectric behaviour (1-3,7). 

1) A (Wannier) exciton is a loosely coupled electron-hole 
pair, in which the electron has been lifted to an orbital 
above the ground state (88-90). 

2) In ionic crystals or charge-complex polymers, an electron 
trapped on a lattice site can become surrounded by other 
negative ions which due to repulsion, give rise to lattice 
distortion. As the electron travels, the distortion follows 
it, thereby creating the illusion of a more massive particle 
- the polaron. 
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We have mentioned earlier that the roving charges arise 

as excitons. These are of two kinds: Inter-molecular (Matt) 

excitons, and intra-molecular (Frenkel) excitons 

For this topic of study, Matt excitons are the more domi-

nant kind. In this type of polarisation, the dissociated 

charge pairs have each of their members lying on different 

0 
molecules separated by thousands of A (weak binding case). 

The term "nomadic polarization" has been introduced by Pohl 

et al.(54) to describe the effortless motion with which the 

charges move along the main "spine" of the molecule, as con-

trasted with the more difficult motion across the "gap" sep-

arating two given molecules. 

Thermally-activated "hopping" between molecular chains 

has been shown to predict with relative success the experi-

mentally observed data on "H.E.P" as affected by pressure, 

temperature, E-field, and frequency (1-3,7,41,42). 

B) Statistics of Matt Excitons 

As far as their statistical behaviour is concerned, 

Matt excitons may be treated as electron-hole pairs. It is 

well known from solid state theory (Kittel (91) ), regarding 

the statistics of electrons and holes that the Fermi level 

is given by: 

u = (1/2)Eg + (3/4)k8 T.ln[Mh /Me 1 1. 3.1 

where Eg is the energy gap separating the valence and the 
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conduction bands, Mh and Me refer to the masses of hole and 

electron respectively, ks is Boltzmann's constant, and T is 

the absolute temperature. 

Because of the shallow energy bands in polymers, it will be 

assumed that for these excitons, Mh and Me are equal, and so 

u is just Eg/2. Further, the energy gap Eg may be identified 

with the dissociation energy W ( the energy needed to over­

come the electron-hole affinity in a given domain (molecule) 

minus the ionization energy). 

Following Fermi-Dirac statistics we may therefore write 

for the number of occupied (single particle) exciton states 

at temp. T and dissociation energy W: 

Z(W) 

N(W) = ---------------------- 1.3.2 

exp[-(u-W)/ksTl + 1 

where Z(W) is the number of states available at energy W . 

With u=(1/2)W it follows that the probability of occupation 

of a state with given energy level W (namely N(W)/Z(W) ) is 

given by : 

1 

P(W) = --------------------- 1.3.3 

exp[W/2ksT1 + 1 

************************** 
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C) Form of The Effective (Internal) Potential 

Acting on a Charge Carrier 

It has been shown by Wyhof (92) that the dependence of 

the static dielectric constant K on the action of an external 

D.C. electric field can be described by an empirical formula 

of the form: 

Ko/K = 1 + (E/Eh) 1. 3. 4 

where Ko is the value of K at zero electric field, Eh is the 

value of E when K drops to half its value at zero field, Ko. 

It is important to observe that in the above relation E is 

just the magnitude of the electric field. 

In a naive picture we may imagine an elementary dipole 

being formed by the displacement of a charge carrier "e" a -. distance x from its equilibrium position under the action of 

-the external field E 1 thereby giving rise to an elementary 

dipole moment ex. Let us remark here that if is positive 

then e end -x will both have the same sign, while if 
.... 
E is 

negative, e and 
.... 
x will have opposite signs. -We denote by E' the internal electric field acting on 

a charge carrier as a result of the neighboring molecular ... 
forces, and without loss of generality we may assume E' to 

be a function of the displacement ~. 

Under equilibrium conditions the resultant forces acting 

on the charge "e" will be zero and so we may write: 

... - - -eE ' ( x ) + eE = 0 or E'(x) =- E 1. 3. 5 
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is the number of elementary dipoles per unit volume. 

Further, we have from the definition of the dielectric 

constant: - -P = E0 ( K -1 ) • E 1. 3. 6 - ... We may now express E' (x) purely as a function of x and a 

few parameters, as follows: 

First, to avoid confusion let us rewrite E which appears in 

eq.(1.3.4) as lEI to emphasize that it stands for absolute 
.... 

value of the component of E , the symbols E and x will be 

retained for the components of these vectors along the unit -x-axis vector i . 
... ... ... ._... 

Thus E = Ei and x =xi etc .• Next, we solve 

forK from eq.(1.3.4) and substitute in (1.3.6) to get: 

Ko.Eh - -Nex = [(----------) 1 l E 1. 3. 7 

lEI + Eh 

From here on we must consider two separate cases: 

... 
1) When E is in the positive x-direction, lEI = E, and 

we obtain: (neglecting "1" in comparison with Ko, which is 

reasonable for long-chain polymers) 

Eh. ( N. ex) 

E = ----------------- E > 0 1.3.8 

Ko.Eh - N.ex 

With E' = - E, we get for the corresponding internal 

potential : 



37 

;) V' Eh. ( N. ex) 

----- = - E' = ----------------- 1.3.9 

Ko.Eh - N.ex 

This may be integrated to give 

V' = + Eh.( lxl + Lo.ln(l- lxi/Lo) 1 1. 3.10 

depending on whether e is (-) or (+) respectively. Lo is 

given by : 

Ko.Eh 

Lo = ----------- 1.3.11 

N. te I 

and may be considered a characteristic "half-length" of the 

polymer molecule . 

2) When E is in the negative x - direction, lEI = - E 

and so eq.(1.3.7) becomes : 

Eh. (Nex) 

E = --------------- E < 0 1.3.12 

Ko.Eh + N.ex 

again we find that V' is given by eq.(l.3.10) 

The physical significance of Lo may be further appreci­

ated if one considers the case for which E is along the 

positive x - axis: 

WithE> 0 and ex> 0 eq.(1.3.8) implies Ko.Eh- N.ex > 0 
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or: x < Ko.Eh/Ne assuming "e" to be (+). 

hence x < Lo. 

~ 

Similarly, if E is along the negative x -axis then x is 

necessarily negative since ex< 0. In this case eq.(l.3.12) 

gives: 

Ko.Eh + N.ex > 0 or -x < Ko.Eh/Ne that is to say: 

lxl < Ko.Eh/Ne ===> lxl < Lo 

Thus x is always bounded by Lo. Identical conclusions 

may be drawn if we had assumed a negative charge. Consequently 

Lo can be regarded as the extent to which the restoring field 

E' acts, and which in turn, may be identified with the exten-

sion of the molecular chain on both sides of the origin in 

Fig.(7). 

Under equilibrium conditions, the total potential which 

the charge carrier finds itself in, will be the sum of what 

is given by eq.(l.3.10) and the external field potential Vo. 

(Vo =-Ex ), thus: 

Vtot =-Ex± Eh.( lxl + Lo .ln[ 1- lxi/Lo 1 ) 1.3.13 

This function is sketched for E = 0.25 Eh, lEh, and 4Eh 

respectively in Figs.(8 -10), for negative "e". 

It should be noted that the foregoing treatment was some-

what over-simplified since we completely neglected the effect 

of the local value of the external field. In reality,it's 

Eloc that acts on a charge carrier displacing it a distance 
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x and so the balance equation at equilibrium between E' and 

the external field should have been written as : 

- -E' + Eloc = 0 1. 3.14 

In general Eloc can be very difficult to calculate, therefore 

we will just be content with the simplification Eloc = E. 

We also remark that eqs.(l.3.8) & (1.3.12) are unaffected 

by either choice we make, however eq.(1.3.13) would be modi-

fied in a local-field approach • 

'P-E. 

(-) e 

(+) 

1blym-er Molecule 

Fig.(7) 
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D) Low-Field Saturation Effect in Nomadic 

Polarisation 

Let's consider a polymer chain made of "n" basic units 

(mers), each having length "a6' giving a total length Lo = na0 

for the molecular chain. 

According to the hypothesis of polaronic type conduction 

it is legitimate to assume that the wave function of a given 

charge carrier is localized on a given unit site. This is va-

lid if the molecules have narrow bands (about O.leV or less) 

In the absence of an external electric field, all sites 

are equally likely to be occupied with probability fs = 1/n 

for any site "s". In this simplified picture the number of 

sites per monomer is taken to be unity. 

When an external electric field is applied, the energy 

levels available to the charge carriers are changed and so 

are the occupation probabilities. From classical statistical 

mechanics the probability to occupy a state with energy level 

U is - exp [ -U/ka T 1 where U is measured relative to the ground 

state. Now when an electric field is switched on, it creates 

an energy level (-p.E) relative to the initial "ground" state, 

-p being the induced dipole moment created by the displacement 
~ 

of the charge carrier a distance x from the equilibrium, ... 
namely ex. It follows that the probability of the occupation 

of a site "s" is: 

--+- --fs = fo.exp[+p.E/kBT] = fo.exp[+ex.E/ksT1 1. 3 .15 

Where fo is a normalization constant. Worth noting from 



44 
..... 

eq.(1.3.15) is the fact that fs is greater when pis in the 

. ..... 
direction of the electric field and 1s much smaller when p 

..... 
is opposite to E. 

For our purposes we shall consider the site coordinate 

x to be a continuous variable s, this is reasonable for long 

polymer chains of a thousand units or more. Thus we let fs 

-> f(s). 

The constant fo is determined from the normalization 

condition : 

1 = 
fo/2 fo 

-Lo/2 

Which gives : 

exp[+eEs/k5 TJ ds 

fo = ( '7 ) /Lo. sinh ( 1 ) , where "1 = eELo/2k13 T 1.3.16 

For a molecule with a single charge carrier "e", the linear 

charge density is A= ef(s). This means that at a given 

site position s, there is an elemental charge Ads giving 

rise to an elemental, induced, dipole moment ef(s).sds. 

Hence the average induced dipole moment of the molecule is: 

eLo 1 

<p> = [ coth ( 1 ) 1.3.17 

2 

We note again, that for (1.3.17) to be strictly correct 

the electric field appearing in it must be considered to be 

the local field Eloc. However for the purpose of illustrating 
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the basic concepts involved,we shall adhere to the simplified 

picture chosen here. For details on local field theories the 

interested reader is referred to the literature (93-95). We 

remark briefly in this context that the usual way of approach 

is to regard "E" in eq.(l.3.17) as the local field, compute 

the differential polarizability dd= d<p>/dE (if large fields 

are being used), or the tangential polarizability ~t = <p>/E, 

(if the fields are small), and then try to evaluate the sum of 

all the polarizabilities over a unit volume, taking into ac­

count the random orientations of the molecules as well as the 

fact that the field E is not constant any more but varies from 

one molecule to the next. Due to the complexity of the proced­

ure, Pollak (96) has introduced a so-called "mean field" theo­

ry in which the contribution from each polarizable center is 

found by averaging the induced polarization field over the 

volume of the polarizable center (a whole molecule in this 

case). The method requires computational help, and gives rise 

to divergencies unless a limitation on the "distance" variable 

is imposed. In any case, graphical plots of the approximate 

expressions show that the actual shape of the polarization is 

not really that much different from the "Langevin" form, but 

the absolute magnitude can be off by as much as 20% (especial­

ly at large electric fields}. 

In order to get the polarization P we need to know N the 

number of equivalent sites (charge centers) per unit volume 

This is obtained as follows: In the presence of an electric 

field, a given molecule will have "n" distinct, non - degen-
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erate sites available for occupation. This means that the 

volume associated with a given state (site) at energy level 

W is that of the molecule itself. 

If we imagine the polymer molecule to be made up of "n" 

cylindrical blocks each of diameter "2a 0 ", then the volume 

of the whole molecule will be 

Zo = 3 n. iT a 0 1.3.18 

so the number of available sites per unit volume at energy 

level W is 

No = 1/Zo = 1/n.1T a 0 3 = 1/ALo 1. 3 .19 

where A is the cross-sectional area rra;. It follows from 

eq(1.3.3) and (1.3.19) that the number of occupied sites per 

unit volume at energy level W is: 

No 

N(W) = --------------------- 1. 3. 20 

Consequently the polarization P may now be written as: 

(e/2A) [coth("]) 1/ ( "1 ) ] 
P = <p>.N(W) = ------------------------------- 1.3.21 

exp[W/2k 8 TJ + 1 

In the above derivation we assumed that all the polymer 

molecules are aligned along the same axis as that of the elec-

tric field, and that they all have the same length Lo. The 

statistics for the real situation where, a distribution of 

molecular lengths and random orientations arises, can be ex-

tremely involved since not all sites corresponding to the 
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same energy level occupy the same (relative) position along 

the molecular spine. For the time being, however, we will not 

consider the effect of length distribution; as for the dist-

ribution of orientations one can suppose that for low field 

strengths, the molecular orientations are completely random 

and each direction is equally probable. Thus by averaging 

the molecular number N over a solid angle of 4~ steradians 

we obtain a factor of (1/3). 

Hence eq.(1.3.21) becomes 

( e/2A) [ coth ( 'Yt ) 1/ ( '1 ) J 

p = 1.3.22 

3 ( exp[W/2k8 TJ + 1 ) 

At low fields , eELo/2k8 T is << 1 , coth(1']) - l/1( -

L(~), reduces to ~/3, (obtained by taking the limit when L(~) 

is in integral form), so that eq.(l.3.22) becomes: 

eLo eELo 1 

p = (-----)(--------)(--------------------) 1.3.23 

Zo 36k8 T exp[W/2k8 TJ + 1 

From this one obtains the dielectric constant K 

2 
(eLo) /(36k8 T. EoZo) 

K = 1 + ---------------------------- 1.3.24 

exp[W/2k 8 TJ + 1 

It is seen from the above, that K is practically a constant 

independent of the field intensity E, as long as the condi-
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tion: leiELo << 2k 8 T holds. Equation (1.3.22) is plotted as a 

function of the parameter~ for W = 0.5 eV & 0.05 eV at two 

different temperatures: 300°K, 500°K, in Figs.(11-12). Note 

the saturation effect implied by the Langevin function: 

L(x) = coth(x) 1/x 1. 3. 25 

which appears in the numerator of (1.3.22). As seen from the 

plots, saturation starts only around a few thousand volts/em. 

A full expression forK from eq.(l.3.22) may also be 

developed using the relation E0 (K - 1) E = ~, we have 

{No(eLo)2 /12 Ec,k 8 T} 

K = 1 + --------------------·------- 1.3.26 

(exp[W/2k8 Tl + 1) ~ 

It should be pointed out that the foregoing analysis, and 

especially eq.(l.3.22) and (1.3.26) are valid only at very 

low frequencies ( <100Hz.), and strictly speaking, should 

only be considered to hold under static conditions . 

~lots of eq.(l.3.26) are shown in Figs.(l3-14) for the 

same parameters values listed after eq.(l.3.24). 

We should point out that although the curves in Figs.(ll-

14) always display the "knee" bend at the same value of ~ , 

they do correspond to different values of electric field by 

virtue of eq.(l.3.16), assuming the length "Lo" is the same. 

Further, the shape of these plots is not affected by the temp-

erature T (they merely become rescaled as T varies), however, 

the influence of W grows less and less as T increases. 

The quantities (e/6A) 
2. 

in eq.(l.3.22), and No(eLo) /12fokeT in 

eq.(l.3.26) are taken to be unity in the plots (Figs.11-14). 
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1.4) The Pohl-Pollak Theory and Model 

In 1975 Pohl and Pollak (8) proposed a model for A.C. 

conduction in long chain eka-conjugated polymers using a lad-

der-type RC network Fig.(15). 

-- -- --4---f 

E'fl-t 

Fig. (15) 

The RC values and those of the voltages are chosen to simul-

ate the proposed physical model of the polymer chain namely 

a linear aggregate of n basic units "mers" along which a 

charge carrier moves from site to site by means of thermally 

activated hopping (polaron type motion), while the transport 

between macromolecules is assumed to be much more difficult. 

The model is based on the well-known Boltzmann equation 

relating the rate of change of probability of finding a car-

rier on a given site j to the transition rates between near-

est neighbors, namely 

1. 4.1 

where PKs is the rate of transition from k ---> s and is as­

sumed to be frequency independent, and such that for zero DC 

bias p · · = p ·J,f-1 i,i+f . Moreover in the presence of a uniform ex-

ternal D.C. field, the Phf+t are all equal to each other in 

view of the assumed regularity of the polymer molecule. 
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According to Miller & Abrahams (97) the impedance repre-

sentation of the Boltzmann equation takes the form : 

2. .... -Rj =KaTie .(pfi + pfi+t) 1.4.2 - ~ where p = p1:l+1 and p = Pl..i-1 , the voltages Ef are all equal 

and given by E.a0 where E is the externally applied field 

(strictly, must be considered to be the local value) which 

could be simultaneously A.C.& D.C.and "a0 " is the length of 

the monomer unit. Pohl & Pollak suggest a solution in terms 

the normal modes of the impedance matrix relating the loop 

currents I;to the generator voltages. 

In order to faithfully represent the voltage values at 

the end points and for negative coordinates, semi-periodic 

boundary conditions are invoked by replacing the finite mac-

romolecule by an infinite one along which the field is given 

by: 

E • J = E .a0 for (2m-l)n > j > 2mn 

Ei = 0 for j = mn 1. 4. 3 

Ej = -E.a for 2mn > j > (2m+l)n 

Where m takes integral values from - C1' to + ~ . 

The actual physical current density J is related to the ave-

rage polarization <P> by : J = d<P>/dt where <P> is 

given by (1/3)N.p, "N" being the number of dipoles per unit 

volume, and p is the dipole moment of a single macromolecule. 

We have 

p = 2;l qi>i+1 = Cia • ~j q j./+1 
J' ~: 

Hence J = (1/3)N.a~ j.qi,l+t , which by Kirchhoff's 
/' 
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rules becomes : 

J = (1/3)N.a0L}. ( Ii+t - If ) 
.:/' 

= ( 1/3) N. a 0 L Ij 
J' 

(since Io = In = 0) 1. 4. 4 

Next the loop currents Ij are calculated by solving the 

matrix equation E = Z.I in a representation where z is dia-

gonal, in which case the currents I will be simply the eig-

envectors of Z etc .. For brevity we shall only give the main 

results. For the case of zero bias and small amplitude A.C. 

field, the impedance network has identical elements given by 

2 
R = nka T/2p0 e C = ea/nk8 T for all sites j 

and the current density is related to the electric field E 
2 

by ( w 7; ) + i w Toe 

J = (2n/3)(Ne~trr'R).E~l/~')(---------------) 1.4.5 
2. 

ol= f,3,S- ·· 1 + ( W 1;) 
I 

From which the real part of the conductivity c- (w) is 

obtained as Re(J/E): 

t1"" 1(w) = ( 2nNea! 13rr'R) 2 
0L=t.3,5 ... 

2 
[1 + (W~) 

1. 4. 6 

Eq.(1.4.6) contains, in principle, all the relevant inform­

ation On the system, SinCe cr*: iW{if 1 and. the real and imag­

* inary parts of E are connected through the Kramers-Kronig 

relations eq.(1.1.13 & 14). Fig.(16) shows a plot of eq(l.4.6) 

for two values of RC, where 'lot= RC/2%, t= 1- cos (1foC/n). 

The main implication of eq.(1.4.6) is the existence of an 

infinite number of relaxation times. However, only the ()(.. = 1 

mode contributes the most (89% of the total), which, as will 

be apparent later, is to the disadvantage of the theory. 
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The general case where a D.C. bias is present can be treat-

ed similarly keeping in mind that the probabi 1 i ties f; are no 

longer equal nor are the transition rates p and p. The algebra 

is rather cumbersome and will not be discussed. The results 

are given as follows: 

a- ' ( w) 
2. 2 2. n 11 

= (Ne J;&ao n/611 k~ T){coth(?'f/4) .A + tanh( d4) .B} ·• 1.4.7 

where ol2 ( (w'lb() 2 + iw?;) 1 

A , B ~--~-;---;-~-----------:---
ot odd., [ 11 + o(. 1 • [ 1 + ( w 'lOi ) 1 
-eve-n 

1. 4. 8 

and ~ = n I ( oL2 + 112 ) • p0 1T 1.4.9 

with "1 = ?'f 121T and p0 = p. exp(-~/K13 T) 1. 4.10 

In this case it is observed that the relaxation times are 

shifted (decreased) in the presence of a D.C. bias. But more 

important, however, is the fact that the d = 1 mode no more 

dominates the dispersion spectrum; in fact the largest cont-

ribution now comes from the mode for which: 
2 -2 2 2 

(d/dol) (o( /( 'Yl. +d.. ) 1 = 0 => cl = "7 /21T 

The physical meaning of this is that the effective length 

of the molecule is decreased by the application of the D.C. 

field. 

Similarly the dielectric constant is given by : 

1. 2 4 .,., 
K' = (Ne Lo /6~ k9T)•{coth(~/4).G + tanh(~/4).H}·l 1. 4.11 

where L ci.-2. 
= ---------------------------

-.1 2 3 2 
ot oJJ., £1'! +ol. J • (1 + (w~) 1 
eve-n 

G I H 1.4.12 

One important consequence of eq.( 1. 4 .11 & 12) is the predict ion 
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that after a certain frequency We, K' starts increasing with 

the electric field bias over a certain range of field values 

as can be obsereved from the plots of eq.(l.4.11) as function 

of frequency in Figs.(l7-18). 

As seen from the plots the frequency We is not unique and 

depends on the range of the E-field bias used. However, it's 

evident from the graphs that a minimum frequency exists, and 

is called the "cross-over" frequency. Below that frequency, K' 

always decreases with E-field bias for any field value, but 

above it there will be range of values for which K' increases. 

Although it is a formidable task to try to determine the 

frequency We analytically it is evident from the graphs that 

it exists. Physically speaking, as the frequency is raised 

higher and higher, the polarization P would require stronger 

D.C. bias to achieve the same state of saturation as what can 

be attained at lower frequency (and hence lower fields). 

Despite its success in explaining relaxation times and 

electric field bias effects, the Pohl-Pollak theory has some 

serious drawbacks the most important of which is the fact 
I 

that the exponent in the power law for the increase of er 
with frequency always has a fixed value that cannot be relat­

ed in any way to the polymer characteristics. Besides, the 

value of the exponent is > 1 (see Fig.l6 ) whereas, in actual­

ly observed systems the value of the exponent is < 0.7 

and varies from one species to the next. In addition to the 

above, the theory completely neglects the effects of D.C con­

duction which can be appreciable in some cases. 
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The dielectric constant as a function of the frequency for 
different D.C. electric field biases. The cross-over point 
depends on the pair of electric field values considered. 
Fig.(l8) shows detail of the cross-over region. The factor 
N(eLo)~/6n~kgT is taken to be 1000. 
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CHAPTER II 

EXPERIMENTAL TECHNIQUES AND PROCEDURES, 

ERROR ANALYSIS 

2.1) Representation of Dielectrics by Equivalent 

Impedance 

We consider a parallel plate capacitor whose plate sep­

aration "s" is << fl. , {where A is the plate area) so that 

within the error allowance of our measurements, the capaci-

tance in air (vaccuo) is appropriately given by: 

Co = fc,A/s 2 .1.1 

Next we fill the space between the plates with a dielectric 

* material having permittivity E and conductivity~ defined by 

and J = cr E + dD/a t 2 .1. 2 

where E is the instantaneous electric field across the capa-

citor plates (within the dielectric), and J is the total 

current density. In general D is not in phase with E (refer 

to sec. (1.1), and so E* is a complex number E' - iE". This 

also implies that J and E are not in phase with each other 

by virtue of the polarisation current term o Did t. Thus we 

are naturally led to the concept of the complex conductivity 

defined by : 

61 
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J = a-'* E 2 .1. 3 

Using this definition and eq.(2.1.2) we obtain: ( for the 

case when E = Eo.exp(iwt) 

cr* = tr + iw e* = cr I + io-" 

where :cr I = cr + we II ,(T'" = wE I 

2 .1. 4 

2 .1. 5 

Now for a perfectly insulating material ccr = 0 ), we have: 

J = iwE*E , hence in order to preserve the mathematical 

symmetry in the general case when CT'is ~ 0, we introduce 

a "fictitious" permittivity E1 such that 

Comparison with eq.(2.1.3) yields 

* . a- = 1wE1 or E1 =cr"/w- ia- 1 /w = E 1 - itr 1 /w 

That e1 is more than a mere mathematical convenience 

2 .1. 7 

may be realized by noting that since it relates two directly 

observable quantities J and E, then it must itself be an ob-

servable quantity. We may convert eq.(2.1.3) into a relation 

between the total current I and the voltage V by setting I 

= J.A = J.(EoA/s).(S/Eo) = J.Co.(s/~) and using eq.(2.1.6) 

gives 

2.1.8 

where Z = l/(iwCo.E1/E0 ), which has the standard form 1/iwC 

if we identify <Et/E0 ).Co as the capacitance C in the pres-

ence of the dielectric. The fact that C is a complex number 

indicates that the dielectric is not ideal but has losses of 

several kinds, including the loss from the free-charge con­

* duction. We may define a "complex" dielectric constant K by 

* K = C/Co, whose physical significance is seen as follows: 
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If we let K* = K I - iK II 2 .1. 9 

then 1/Z . * = lWK .Co = iw(K'-iK").Co 

=> 1/Z = iwK'Co + wK"Co c p 2 0 1. 10 

This is equivalent to a lumped 

impedance network (Fig.19) made 
JI.AAAAAAA 
YVYY"Y 

G 
up of an ideal capacitor Cp (no 

losses) in parallel with a con-

ductance G, the values of which Fig. (19) 

are given by 

Cp = K'Co and G = wK"Co 2 .1.11 

Likewise, eq.(2.1.10) may be equally represented by a series 

equivalent network whose values are given by: 

Rs = RPD 2 /(1 + D2 ) d C D/ R C (1 + D2 ) an s = w = p 2.1.12 

where : Rp = 1/G 1 and D = 1/wRpCp 2 .1.13 

It can be shown (using the parallel equivalent represen-

tation), that over a quarter cycle, the ratio of the energy 

dissipated in the system to the energy stored in it is given 

by :(n/2)/wRpCp. For this reason the quantity 1/wRpCp =Dis 

called the loss factor; and often referred to as the "loss 

tangent", since D = k"/k' is simply the tangent of the angle 

that Z makes with the imaginary axis. We remark that the 

above result is independent of the particular representation 

used. Indeed, for the series case, the quarter-cycle energy 

ratio is (n/2)wRsCs, which by virtue of eq.(2.1.12) is iden-

tical to the parallel case. Consequently "D" is an "invariant" 
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of the series - to - parallel transformation . 

In conclusion, the problem of measuring the parameters 

of a given dielectric has been reduced to that of measuring 

any general R-C type impedance. This topic will be taken up 

in the next section . 
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2.2) Methods of Impedance Measurements at 

Intermediate Frequencies 

A) Introduction 

. 8 -1 
At frequenc1es between 10 to 10 s the most commonly 

used methods are those employing resonant circuits, or those 

making use of impedance bridges. Although each method offers 

certain virtues not found in the other, it is best to employ 

either one interchangeably depending on what is dictated by 

a given specific situation. For example, resonant circuits 

can be more accurate than bridges in the frequency regime over 

1 MHz especially when low-loss materials are under study. The 

reason is due to the fact that at these frequencies it becomes 

increasingly difficult to account for the inductive effects 

and capacitive coupling between the various elements making up 

the bridge, thereby resulting in considerable and unnecessary 

error. 

In order not to delve into areas beyond our immediate 

scope of interest the reader is referred to the literature on 

bridges and resonant systems. A particularly outstanding re-

view by W.E. Vaughan appears in "Dielectric l?roperties and 

Molecular Behaviour" ed. T.M Sugden, Van Nostrand & Co. London 

1969, p.l08; other excellent treatments are given by Scaife 

(95) 1 and Boyd (98). For our purposes, we shall focus the 

attention on the specific type of bridge used in our own 

measurements, with detail. 
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B) The Schering Impedance Bridge 

The measurements presented in this work were done 

using a General Radio model 716-e Schering bridge and guard 

circuit. This type of bridge is considered ideal for the fre­

quency range (100-500K) Hz. and is especially suitable for 

high voltage work. A schematic diagram of a Schering - type 

bridge (without the guard circuit) is shown in Fig.(20). 

The bridge is operated in 

the "direct mode", whereby 

the unknown impedance Zx is 

balanced internally by the 

use of a pair of precision 

air capacitances CN and CA 

which have been calibrated 

to give the values of the 

series equivalent network 

for Zx at balance. Fig.(20) 

eN is calibrated to give exs directly while eA gives the 

loss factor wRxsCxs. The precision resistors RA and Rs are 

varied through a range selector dial in order to balance the 

bridge at higher loss values. By solving the basic balancing 

condition of the bridge namely: 

ZA.zx = z8 .zN 

we get: exs = (RA/R8 )eN and Rxs = (eAICN)Re 

from which the loss tangent Dx is given by : 

2.2.1 

2.2.2 

2.2.3 

Thus Cxs is proportional to eN while Ox is proportional to eA 
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The range of capacitance for CN is from 100 to 1050 pf. 

in divisions of 0.20 pf, but can be read to within an accu­

racy of 0.10 pf. The range of the loss factor dial is from 

about 0.0001 to 0.55, which at 1 KHz. and 150 pf. for Cx5 , 

corresponds to a range of resistance from about 10* M.Ohms 

to 2.50 M.Ohms (parallel equivalents). Because of the partic­

ular way in which the bridge is built, there are additional 

correction factors involved. For Dx > 0.01, the true value 

for Cxs is given by 

ctr = Cxs. (1 - 0.026Dx. (f/fo)) 2.2.4 

where f is the operating frequency and fo is the "selector 

dial" frequency which is adjustable in decade steps from 0.1 

to 100 KHz. The bridge will have optimal sensitiviy when the 

selector dial value fo is closest to the actual operating 

frequency f. 

Similarly when Dx is > 0.1, its true value is given by: 

D = Dx.(l- 0.026Dx.(f/fo)) 2.2.5 

The above corrections are intrinsic to the bridge and 

have to be carried consistently. Even so, there may be other 

calibrations needed to insure maximum accuracy. In our case 

we found that the loss dial of the bridge is skewed by about 

20% for values of Dx ~ 0.035, and by about 5% for Dx > 0.035 

even after taking eq.(2.2.5) into account. For this reason 

the "D" appearing in eq.(2.2.5) will be referred to as the 

"nominal" D, while the real (correct) D will be the one called 

the true D, and denoted by Dtr . This will be discussed with 

more detail in sec.(2.5B) and Appendix (A) 
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C) Effects of The Leads and Sample Holder 

In practice, the specimen to be measured is contained 

in a special cell or sample holder Fig.(21), which in turn is 

connected to the bridge via a coaxial cable.The sample holder 

consists of two parts: a main body whose structure and geom-

etry are fixed, and a detach-

able module consisting of two 

plates designed to hold the 

polymer sample between them. 

This means that the impedance 

values read off the bridge 

include the contribution of 

the cable(s) as well as the 

sample holder. In order to 

account for this, one first 

"C 

"CQ) -·-n:s..s::: 
;:,(I) 

C!J 

Q) 
C') 

0~ ....... 
lXI 

--:; 

Fig.(21) 

CM,DM 
Sample 
Holder/Module 

balances the bridge with the cable and the main body of the 

sample holder attached to it but without the module containing 

the specimen. We let CL , DL be the dial readings parallel 

equivalents) of the balanced bridge, after having done all the 

necessary corrections etc .. Now since the cable (leads), the 

main body of the sample holder, and the module are physically 

in parallel with each other, then the bridge readings (paral-

lel equivalents) when the module is attached; namely CT , DT 

will be related to the initial set of values by : 

2. 2. 6 

2.2.7 

where CM is the capacitance of the module when filled with 



69 

the dielectric material to be measured, and DM is the loss 

factor of that material. In practice the cable/sample holder 

losses DL are negligible and of the order of 0.0005, so they 

can be neglected when dealing with high-loss materials whose 

DM is > 1 (provided CM is comparable to CL ) . But when low­

loss (insulating) materials are being measured it is imper­

ative to retain all terms in eq.(2.2.7). The air value Co of 

the capacitance of the module is usually calculated from the 

geometry of the plates and their separation (as determined 

by the thickness of the specimen used). Consequently we have 

from which the dielectric constant of the material is found 

using the definition: K' = CM /Co ( see eq. (2.1.11) ) . 

D) The Guard Circuit 

In a real-life situation, the grounded terminal of the 

bridge may not be at earth's potential; thus there exists a 

virtual (stray) capacitance to earth from the "high" terminal 

electrode holding the sample as well as from the "low" elect­

rode. These capacitances combine in series, and their equiva­

lent, Ce, appears in parallel with the specimen module. This 

may cause appreciable fluctuations in the readings since the 

capacitance Ce is a function of the surroundings. In order 

to circumvent this problem, the module containing the sample 

is enclosed within a shield whose potential can be controlled. 
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By bringing the potential of the shield to that of the 

ground electrode, the "high" terminal will always "see" the 

same identical surrounding and thereby more stable and repro-

ducible readings are assured. To see how this is accomplished 

we consider a three-terminal bridge system shown schematically 

in Fig.(22). This is called a 1 

guarded bridge system. Suppose 

that a third point G is creat-

ed with respect to the termi-

nal module and is electrically 

insulated from either one of 

its electrodes. Point G is con-

nected to point 3 as shown. The 
Q) 

bridge is balanced if points -; ·----, ...-----------
0 

1,2, & G are at the same paten- ::E 
{! 

tial. Simple algebra shows that Fig.(22) 

balance is achieved if either one of the following conditions 

holds: 

A/B = N/P = S/T or A/B = N/P = F/H 2.2.9 

Thus by varying the impedances until a minimum is observed 

in the detector, we can be assured that the potential of the 

"guard" G is the same as that of the "ground" electrode. 

The guard circuit employed in the experiments is a General 

Radio model 716-P4 system. Detailed layout of the complete 

guard and bridge systems is shown in Fig.(23). In practice 

the guarded bridge system is balanced iteratively in three-

step cycles: First the "coupling" resistance F is varied un-
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Schering Bridge With Guard Circuit Attachment And The 
Equivalent Schematic Of The Guarded Sample Holder. 

Fig.(23) 
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til a minimum is reached, then the guard impedance S is var­

ied in both its parts, and finally the bridge capacitances are 

varied till a minimum is reached. This process is repeated 

over and over until no further reduction in the signal is ob­

served. The procedure is lengthy, laborious and requires be­

tween 3 to 5 iteration rounds to obtain a good balance. 
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2.3) D.C. Measurements 

In this section we discuss the problems involved in the 

study of the DC response of a given material. Since DC obser-

vations are an integral part of the correlation analysis no 

study would be complete without them. We shall be concerned 

only with the measurement techniques for the (ohmic) conduc-

tivity. Techniques relating to the static dielectric constant 

measurements will not be discussed in this work due to our 

having to delete this topic from our program for lack of time 

and funding. Those interested are referred to the appropriate 

sources (99-102). 

Measurement of The Ohmic Conductivity 

Since highly insulating materials require appreciable 

voltage across them in order to produce measurable currents 

and since the conductivity of the materials under study are 

known to change drastically with high voltages, it is anti-

cipated that we shall be dealing with small currents of the 

-8 order of 10 amperes in order not to exceed the voltage lim-

its beyond which begins to depend strongly on the electric 

field. According to the model discussed in chap. one, a given 

voltage is "safe" if the corresponding electric field does 

not exceed 400 V/cm. For a sample of 20 mil thickness, this 

translates into a max. of 20 Volts. However, in order to get 

a good working range with samples that might be as thin as 10 

mils, we elected to use a half-way value of 10 Volts for most 
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of the samples. Only a couple required some 30 Volts across 

them for a measurable current. 

A standard set-up for conductivity measurements is shown 

in Fig.(24). The p-ammeter is in series with the sample and 

the 10 V source is a regulated power supply. The resistance 

of the ammeter can be as high as 100 M ohms depending on the 

sensitivity scale being used, 

and as such, must be accounted 

for in the results. This calls 

for an accurate calibration of 

the p-ammeter at each setting 

(see Appendix A). If Rg is the 

resistance of the ammeter at a 

given setting, the resistance Fig.(24) 

of the sample is given by: 

Rx = V/I - Rg where V = 10 Volts 2.3.1 

The conductivity is then computed from knowledge of the sam-

ple geometry according to o- = (d/A•Rx) 2.3.2 

where "d" is thickness and "A" the cross-sectional area. 

In practice the sample holder itself may have "leakage" re­

sistance comparable to that of the material tested and so it 

must be accounted for in the results. This "background" con­

duction can be estimated by taking a reading of the current 

without any material in the sample holder. This yields a re­

sistance Rb . Now the value of Rx appearing in (2.3.1) is in 

reality the parallel equivalent of Rb and the true sample re­

sistance Rs, therefore we get for the correct sample resist-



ance Rs 

and 

Rs = RbRx/(Rb - Rx) 

o- (true) = d/(A•Rs) 
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2. 3. 3 

2. 3. 4 

Usually the above correction is necessary only in extremely 

insulating materials, and for our situation it was only need-

ed on two occasions as our sample holder has a practically 

12 
infinite leakage resistance ( better than 10 ohms ) . 
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2.4) Measurements Under Varied Macroscopic 

Conditions 

A) Pressure Dependence 

To observe the dielectric parameters as a function of 

pressure the powdered material is placed in a constraining 

ring made out of teflon, and is pressed between two carbor-

andum/steel anvils as illustrated 
Press Platen 

in Fig.(25).The outer cylindrical 
Top Plate 

..... ~ Cushions 

Ex tens ion 
Cylinder 

I ((Hoe' 
Anvil 

shell is present for reasons of 

safety, and to help prevent lat-

eral slippage of the anvils. 

Electrical contact to the sample 

Cl) 

~ is provided through the anvils 
co 
Q) 

themselves via a pair of leads at ...J 

the top and the bottom as shown. -0 Anvil ... 
Brass Cushion c. 
~ A 1.5-ton Pasedena Hydraulics mod-

el 7-4664 press was used to pro- Base Plate 
• I I / 1/ /1 1// 

vide pressures up to 3.5 Kbars. Press Platen 

In order to insure proper molding Fig. (25) 

of the formed pellet, the sample has to be compressed two or 

three times to about 2.4 Kbars before any readings can be 

taken. Measurements must be made from low pressure upwards and 

not the reverse. Data for both D.C. and A.C. measurements 

should be taken concurrently and in the shortest possible time 

to obtain good reproducibility. The pressure has to be moni-

tored continuously since the press valves relax over extended 
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periods causing erroneous pressure readings, particularly in 

polymers having large coefficients of variation. 

Furthermore, since humidity can be a very critical factor in 

affecting polymer properties (103-105), and since in our case 

it was not possible to enclose the whole press in a moisture 

free environment, we had to take our data on dry days, which 

according to The Weather Bureau, should have a relative humi­

dity below 65% . 

Most of the polymers in this study were easily pelletable 

and did not fracture while being removed from the press. 

The only exceptions were LD-52B and LD-106 which were very 

brittle, and presented great difficulty in obtaining a full 

circular pellet. 

B) Temperature Dependence: The Constant 

Pressure Cell 

The principle of the constant-pressure sample holder 

has been discussed by Hottman and Pohl (106). Their idea is 

based on the famous C - section clamp developed by Chester & 

Jones (107) shown in Fig.(26). 

We present here a somewhat different treatment than either 

of the above references in order to bring out the more subtle 

points of the theory, and to help assess how far off the sys­

tem is from being ideal. 

For simplicity, we shall assume that the expansion takes 

place along the longitudinal direction only. By choice, metal 

B has a greater expansion coefficient than metal A. From the 
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figure we see that as the A-side 

expands "outwards" at a rate ()( 
I 

the B-side expands "inwards" at 1 A 

a larger rate J3 . So by a pro- j_ ·-

per choice of the parameters, 

we should be able to keep the 

gap size constant or allow it 

to acquire a pre-determined size 

(if the specimen to be held in Fig. (26) 

the gap is also known to expand appreciably). After the exp-

ansion, the gap size S 1 becomes S' such that: 

S' + (1+f3 ).(Ll + L2) = (1+ot).(S + L1 + L2) 2.4.1 

or 

s I = ( 1 + ()1. ) s + ( 0( - p ) . ( L1 + L2) 2.4.2 

Without loss of generality, we may suppose that the specimen 

in the gap also expands to a new sized' = (1 + r ).d (where 

initially d = S ). Hence if there is to be no differential 

pressure on the sample as a result of the expansions we must 

have 

S' = d' = (1 + (> S 1 which by eq.(2.4.2) translates 

into: 

CrJ..-l).S = CJ3-cX).L , where L = Ll + L2 2. 4. 3 

In practice it is the length L that is chosen to suit the 

gap size in accordance with eq.(2.4.3) and not the other way 

around. More sophisticated clamps provide "variable L" modi-

fication to accommodate different gap sizes. Since typical 

values of L/S are of the order of 100 , then for ( f << ~ ), 
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the above theory will work only if ~ and pare in very close 

proximity with a difference of no more than 0.01. This strin-

gent demand is not met by most pure metals, and so the only 

way around this is to use different alloys of the same metal 

with highly controlled percentages. In the case when ( is as 

large as ~ 1 or extremely close to it, it is better to use 

the same metal all around; that is: take ~ = P 
The above conditions can be very hard to realize in prac-

tice, and also very costly. So we had to settle for a chamber 

whose design is well within our means. The shortcut contemp-

lated in this regard is backed by the fact that for most fa­
-6 

miliar metals ~ is of the order of 10 /°K , and so the rel-

ative % change in the gap size for a homogeneous clamp (for 

which~= p ), will be about 0.0001%. The real fractional 

change will be even smaller, since the specimen itself may 

expand slightly and help close the gap. 

Consequently with our relatively wide margin of error 

the above approximation should be very adequate without any 

fear of yielding erroneous results. It should be pointed out 

however, that at temperatures above 75°C our chamber did not 

accommodate the fast expansion rate of the compressed-powder 

pellets, which showed about 10% change in thickness, result 

ing in excessive squeezing of the sample. Because of this we 

decided to limit our operating temperatures to those between 

liquid air and room temperature, for most of the samples, as 

there was no apparent squeezing effects within this range. 

For our particular needs we had to design a chamber that 
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will not only accommodate temperature measurements, but also 

the D.C. electric field case as well; and at the same time 

provides guard-shielded measurements for maximum protection 

against fluctuations. These demands are met in the design of 

the special chamber shown in Fig.(27). 

The inner insulation lining (I) is made of a special 

glass-filled phenol acrylic substance, which is capable of 

withstanding over 20000 volts/em, and has a high-temperature 

capabilty up to 350°C. This material also has other ideal 

features such as a low loss factor, and an ability to endure 

repeated mechanical stresses without becoming brittle at low 

temperatures. It is also very resistant to moisture. 

A copper-constantan thermocouple (E) is located on the 

side of the bottom anvil (X) to monitor the temperature eff­

ectively. Four, equally spaced windows (not shown), are cut 

in the inner lining to help increase the heat transfer and 

insure a uniform distribution of temperature throughout the 

chamber body. This is needed since neither electrode has any 

metallic contact with the main guard shield body (G) around 

which the heater wire (F) is wrapped. The movable plate elec­

trode (A) is attached to the "advancement" screw (B) by means 

of a shoe-mount type accessory (0) which allows its easy re­

moval or installation. The shoe is precisely machined to the 

size of the mount to prevent any displacement along the ver­

tical direction (which can be crucial at large D.C. elctric 

fields), while at the same time it allows for a smooth rota­

tion of the plate around the vertical axis, which is essential 
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in preventing shear while the plates are being tightened onto 

the sample (P). The heater is made from an 8-mil diameter 

tungsten wire, having a total resistance of about 11 ohms. 

The wire is wrapped around the guard shield chamber as shown. 

The heater current is provided by a 35 volt D.C. power supply 

and a 10 - Ohm I 5 amperes rheostat. For a long service life 

of the heater it is recommended to cast the wire in an epoxy 

having a wide temperature range. The bottom anvil ( ground 

electrode) (X) is electrically connected to the ground shield 

(R) via a screw (H) at the bottom end. Two steel screws (N) 

provide a tight clamp around the shaft of the main "advance­

ment" screw (B). The portion where this clamp presses is left 

unthreaded. The top (cap) section (Q) of the guard shield (G) 

is attached to the main (bottom) part by means of three spe­

cial heat resistant plastic screws (M). An insulating washer 

(Z) that fits like a collar around the thread mount holding 

(B) keeps the guard electrically insulated from the "hot" 

electrode (A). Detachable gold pins (C) and (T,U,V) provide 

the necessary electrical connections to the outside. 

The chamber rests on a special hard teflon seat (J) eq­

uipped with vents (K) to provide efficient venting of gases 

into or out of the chamber's Pyrex glass enclosure (S). This 

enclosure allows us to control the environment of the sample 

for either a nitrogen bath or a vacuum surrounding. The top 

portion of the guard shield (G) has three circular windows 

(not shown) for rapid venting and heat transfer. A teflon pad 

(Y) insulates the guard (G) from the ground housing (R). 
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C) Measurements Under D.C. Electric Field 

For observing the ohmic conductivity under large D.C. 

electric field, the circuit arrangement used is the same as 

the one shown in Fig.(24) except that an ammeter or a milli­

ammeter is substituted to accommodate the larger currents. 

Because of the special cell design there is no effect of 

pressure from the electrostatic force created by the high volt 

age (which can be as much as 15 PSI at 20,000 V/cm). The high 

voltage regulated power supply is a North-East Scientific Co. 

model RE 1602 with a continuous range of 300 V. to 1,500 V. 

A 250-K.Ohm potentiometer is used to obtain low voltages be­

low 300 V. 

When it comes to A.C. measurements there are two circuit 

arrangements to provide high D.C. voltage on the sample with 

out interfering with the bridge operation. These are sketched 

in Fig.(28 a & b). Configuration "a" has the advantage of pro­

viding higher D.C. voltage without having to worry about the 

bridge elements since the whole bias circuit is external to 

the bridge. Its main drawbacks however, are that both plates 

of the sample holder are "floating" with respect to D.C which 

makes it difficult to eliminate fluctuations using the guard 

circuit. Further it is very difficult to account for the shunt 

ing effect of the power supply when calculating the sample 

capacitance and loss, since its parameters fluctuate with the 

57 cycle line voltage conditions. Attempting to reduce the 

fluctuations by using a value for Rl >> Rs will only create 
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more problems since Rs depends critically on the voltage ac­

ross it, which means that the true voltage across the sample 

cannot be known because the charging current in the loop sat­

isfies a non-linear equation. In fact the only way to be sure 

of what the voltage across the sample is, is to keep Rl << Rs. 

Thus to avoid potentially serious problems we elected to 

use configuration "b". This arrangement eliminates all the 

problems associated with circuit "a" since the power supply 

appears in parallel with the A.C. source and therefore has no 

bearing whatsoever on the condition of balance. The only lim­

itation is that we are restricted in the high voltage to no 

more than 900 volts so as not to surpass the bridge ratings. 

The blocking capacitor c 8 is chosen to be large enough 

that it is effectively an A.C. short even at 10 cycles. It is 

actually a set of three capacitors in series each of which is 

rated to withstand 600 volts, so that the series combination 

can carry as much as 1,200 V. 
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2.5) Some Graphical Techniques, Error Analysis and 

Reproducibility of Measurements 

A) Graphical Methods Relating to The Extraction 

of E " From The K" - Data 

It was mentioned earlier, (Sec.(l.l C)) that the analysis 

of experimental results on ( '(w) and E "(w) cannot be done 

unless the value of ~ has been accounted for. According to 

Sec.(2.1) the imaginary part of the permittivity E1 defined 

in eq.(2.1.6) is given by: -EoK" (since K*=E1/€o= K'- iK"). 
I II 

Thus by eq. ( 2 . 1 . 7) , E0 K" = (j /w = € + a- /w :: Y 2.5.1 

Thus a Cole-Cole plot of the experimentally determined (Y) 

will look as in Fig.(29) (based on a simple Debye model). 

It is clear that the larger the ohmic conductivity, the 

larger is the departure from the circular shape. 

y 
I 

a(/ 
/ 

--+-~--------~--------~~-W--=_0 ____ E' 
E:oo E.s 

Fig.(29) 
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Now according to eq. (1.1.22) 1 f 0 K" may be approximated 

suitably over the w- domain as follows: 

For w~ << 1 I 
y :::::: O'lw 2.5.2 

w7: >> 1 I 
y X ( €s - €00 > lw r 2.5.3 

w7: ,.._ 
~ 1 I y~ ( 1 I 2 ) . ( E s - f 00 ) w 2:' +fTT 2. 5. 4 

If we denote by I I I I and III the respectively defined regions 

then we may write for the corresponding values of EoK" 

log(YI) = logc::r"- log w ( region I ) 2. 5. 5 

1 o g ( Y I I ) = 1 o g [ ( E s - E~) I T J - 1 o g w (region II) 2. 5. 6 

It follows (treating YI 1 YII as legitimate functions for all 

w ) that: 

log(YII) = log[ CEs -E00)17: J + log(YI) - log cr 

' ' ' " 
> " -tJ) " 0 
-1 

z 

" " ' 
" " " ' ' 

w= lr.J!> 

Fig.(3o) 

Log (W) 
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or Z: log(YII)- log(YI) = log[(E5 -Eool/o-?'l 2.5.7 

Eq.{2.5.7) gives us a versatile tool in the manipulation 

of experimental data: Since Z is determinable from the graph 

in Fig.{30) as the vertical shift between YI and YII in region 

I 1 "];'can be obtained from the inverse frequency at maximum Y 

( = YIII). 

It follows that (2.5.7) provides a direct link between 

the ·ohmic conductivity a- and the dielectric range <Es - Eoo) • 

Thus if cr is known from D.C. measurement 1 { ~s - ECIO) may be 

readily computed. This is a much easier alternative to the 

Cole-Cole plots, which requires a much wider frequency range 

In fact if E"{w) is known over the "entire" spectrum, we can 

make use of eq.{1.1.13) to calculate 
00 

E"(O) L: t t :: ~~~; 5 o ge : 

Es - Eoo = (2/TTl J€''(v) d(log v) 
0 

The integral on the right-hand side of eq.(2.5.8) is 

2.5.8 

nothing but the area under the graph of E "(w) plotted versus 

log{w). Thus by numerical integration, the area A can be ob-

tained and we get : 

€ 5 - €C'O = ( 2/1T) .A 2.5.9 

Of course the validity of (2.5.9) rests on how extensive our 

knowledge of ("(w) is. Polymers in general, display a broad 

loss peak and more often the maximum of E "(w) is very flat 

and barely noticeable, which means that if eq{2.5.9) is to be 

of any use, E"(w) has to be known over 12 decades of frequen-

cy. This in itself can be a formidable task! 
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B) Getting a Hand on Errors 

1) Sources of Systematic Errors. These types of errors 

may be traced to three major contributions: 

a) Accuracy of the impedance bridge dials. b) Stability and 

control of the environment surrounding the mounted sample. 

c) Non-ideal geometry and finiteness of the sample size. 

Relating to the first issue, it has been found that the par­

ticular bridge in use showed a systematic difference in its 

"loss factor" dial readings when compared against a standard 

set of precision resistors which had been precisely measured 

(to within 0.1%) using a Hewlett-Packard model HP-3468A digi­

tal multimeter. The calibration of the loss dial was carried 

out under guarded shielding conditions including a special 

guarded box for the standard resistors. This kept the error 

in the capacitance readings at a minimal value of about 0.5%. 

Otherwise, stray capacitance created by the variation in the 

resistors' geometry and the number of elements present in the 

box holder may cause as much as a 10% increase in the capaci­

tance values especially at the higher end of the "loss-dial". 

The results of the loss-dial calibration are given in 

appendix (A) along with the graphs and the computer programs 

used to obtain them. The calibration's standard estimate of 

the error is very precise and is between (1-2)% . 

The calibration was done for eight different frequencies 

ranging from 100 Hz.- 100 KHz. 



As far as the environmental surroundings of the sam~le 

are concerned, they may be divided into two parts: 

bl) Making contact with the sample. 

b2) Effects of the atmospheric conditions. 
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In (bl), the initial arrangement was to clam~ the pressed 

pellet between the plates of the capacitor module at a mini­

mal constant pressure of 2 to 3 PSI using a special spring 

mechanism of known stiffness. However the above set-up did 

not provide a means to "lock'' the movable plate of the module 

in a specific desirable position; a demand which can be very 

crucial when working at high D.C. bias voltages. For exam~le 

at 20,000 V/cm. the pressure arising from the attractive cou­

lomb force between the ~lates is ~ 15 PSI, which could produce 

some error (as much as. 50% ) in the D.C. conductivity values. 

Due to this and other reasons connected with part (b2), the 

spring-type clamping device was abandoned and a new chamber/ 

sample holder was designed with the above considerations in 

mind. 

The module of the new chamber has been described in sec. 

(2.4)/ Fig.(27). It suffices to mention here that the mova­

ble plate of the capacitance module was held in position by 

employing a shoe-mount at the end terminal of the main "ad­

vancement" screw (B), upon which the movable plate rides. 

Contact pressure with the sample is set at a fixed value by 

referencing it to the pressure created by a pre-determined 

standard weight, employing D.C.- type current measurements 

similar to those described in sec.(2.3). 
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The advancement screw was locked in place at the correct 

pressure via two tiny screws (N) that were fitted to the col­

lar piece mount holding the shaft of the advancement screw. 

Great care being exercised to avoid the possibility of elect­

rical shorts. 

Due to practical considerations the background capacitance 

was measured in the absence of the module's mQvable plate (A). 

This caused the "hot" pin (main advancement screw shaft) to 

intercept a wider solid angle at the position of the ground 

(fixed) plate, over what it would if the movable plate was in 

place. The error involved although very small, was accounted 

for by comparing measurements on standard materials having low 

dielectric constant (such as teflon and plexiglas), with their 

accepted literature values. The correction factor so obtained 

was found to be (0.81 ± 0.2) pf. 

(b2) Early in the program it was observed that the humidity 

of the atmosphere as well as its ionic content, had an appre­

ciable effect on the loss-factor data. This observation has 

been well documented by numerous authors particularly in re­

lation to polymer materials (103-105). 

Because of this, it was decided to place the whole chamber 

system containing the guard shield and the module, in a spe­

cially designed vacuum enclosure as in Fig.(27). This helped 

stabilize the readings and greatly improved the reproducibi­

lity of the data. Of course, since the main body of the Sche­

ring Bridge could not be accommodated into a vacuum housing 

due to a variety of reasons, we had to take into considera-
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tion the fluctuation in its open-terminal readings on a daily 

and sometimes on an hourly basis. The corrections were refle­

cted as adjustments in the Y - intercepts of the loss - dial 

calibration graphs (Appendix A) 

Coming to the third source of error, we note that this 

issue relates mostly to the dielectric constant and the D.C 

conductivity of the material. It's completely irrelevant as 

far as the loss factor is concerned, since the latter is an 

intrinsic property of the material, and is not dependent on 

the sample geometry. 

Perhaps the greatest error contribution of geometrical 

origin comes from the non-uniformity in the thickness of the 

specimen causing wedge-like gaps to exist between it and the 

capacitor plates. In our case, the pressed, disc-shaped pel­

lets showed a bulging effect around the central region of 

about 0.5 to 1.5 mils thicker than at the edges for a typical 

sample thickness of 20-30 mils. According to appendix (B) 

the error in the dielectric constant resulting from such an 

imperfection relative to the ideal situation when the di­

electric fills the whole space ), is in the range of (8-15)% 

depending on what the dielectric constant is. 

The pressure while forming the pellets was limited to 1,200 

PSI in order to prevent the cusping of the anvil heads and 

thereby reduce the chance of formation of a central bulge. 

Geometrical imperfections presented yet a more serious 

error in the D.C. conductivity measurements where in some 

cases the surface irregularity prevented us from determining 
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what the true area of contact was, thereby resulting in a 

less-than-average reproducibility. In order to combat this 

problem, we had to grind the powdered polymers into ultra­

fine particles. It should be pointed out, however, that rep­

roducing the grain size to the same degree each time is an 

impossible task, but we kept the grinding time length fixed, 

figuring that it affects the grain fineness proportionally. 

The powder was crushed inside a paper folder using the same 

steel block weight each time. 

The effect of coarse-grain and fine-grain sizes on the 

conductivity (D.C. to 100 K.Hz), and the dielectric constant 

is shown in tables (3.2-3.4), and the corresponding graphs 

in Figs.(32-38} for LD-105, 104, and 97. 

The area of the sample (which may not necessarily be that of 

electrical contact ) was always measured with a high degree 

of precision (to within 0.5%) and therefore paused no major 

problem as such, since it was accounted for within the error 

analysis computations. 

The effects of the edge corrections due to the finite 

size of the capacitor plates has been studied by Wintle and 

Kurylowicz (108), who showed that for a typical aspect ratio 

(plate's dimension I plate separation) of 10 there is about 

14% relative error. However, the above does not apply to the 

case of guarded electrodes since in that situation the lines 

of force from the exterior faces of the capacitor plates do 

not meet due to their diversion by the guard electrode. 
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Finally, when taking readings as function of pressure 

while the sample is between the press anvils, one must corr­

ect for the change in the sample thickness as the pressure 

increases. Observations on the sample thickness at the highest 

gauge pressure used (namely 1200 PSI), revealed very small co­

mpression, no more than 8% of the original thickness at zero 

pressure. However, in order to be on the safe side, an error 

analysis was made to see how much the difference between a 

corrected reading and an uncorrected one would influence the 

values of K and ~, assuming as much as 10% relative compres­

sion in the sample thickness at 1200 PSI. The thickness as a 

function of the lower pressure values being scaled linearly. 

The results indicate that only the high pressure readings are 

important; with K showing 8% relative deviation while ~ was 

off by~ 7% for the polymer LD-105 at 700 PSI. Consequently 

for the sake of consistency, we elected to incorporate the 

correction at all pressure values so as to reduce our chance 

of propagating undesirable errors. 
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2) Sources of Random Errors. There are three main sources 

of random errors: 

a) The electronic hum (60 cycle line signal); and 

the S/N ratio as the bridge approaches balance. 

b) Random fluctuations in the background character­

istics of the bridge due to changes in the sur­

oundings: temperature, humidity & ionic content. 

c) The D.C. electrometer readings for the measure­

ment of current. 

The first problem was taken care of rather remarkably by 

using two highly selective, low-noise tuned amplifiers with a 

total gain better than 140 dB. The sensitivity so obtained, 

allowed us to detect variations around the minimum values as 

small as 0.05 pf in the capacitance and to within (1-10)% in 

the loss factor dial depending on the frequency being used. 

The worst cases being at the 100-200 Hz. range; improving as 

we go up in frequency. The tuned amplifiers were: a P.A.R 

model 113 and General Radio model 1232A. 

As for the random fluctuations in the bridge character­

istics, the cable from the bridge to the chamber, being the 

main contributor: of error, was double-shielded, with the in­

ner shield acting as the "guard" electrode. This insured a 

great deal of stability against electrical surges and random 

changes in the capacitance between the "hot" lead and ground. 

Nevertheless, the bridge characteristics (open-terminal read­

ings) were monitored on a daily basis (and sometimes between 

hours during the humid summer days) prior to the start of 
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taking data. 

It is to be noted that the open-terminal capacitance 

readings showed no observable fluctuations after the double-

shielded cable was installed, but the loss-dial showed meas-

urable shifts between dry days and damp ones; this, however 

paused no problem as it was monitored regularly. 

Finally, the D.C. current measurements were read accu-

rately to one part in 100 (apart from fluctuations resulting 

from from changes in the contact pressuze), which amounted to 

a net relative error of (1.5-3)% in the sample conductance. 

This, as noted, represents the smallest error possible from 

the instrument, and in practice, errors as much as 10% due to 

the other sources mentioned can be expected. 

The internal resistance Rg of the D.C electrometer was 

also calibrated against the same precision set of resistors 

used in the bridge loss dial calibration to optimize our accu-

racy. The results of these calibrations are given in Appendix 

(A) part ( 2 ) . 

A summary of the main sources of error for each of the 

three basic quantities observed is given in table (2.1): 

K is the dielectric constant, DM is the loss factor, c; is 

the D.C conductivity. The total conductivity ~~ , being pro-

portional to the product of K and DM, is not listed, but it 

should be clear that any errors in K and DM will propagate 

I 
on to cr . 



TABLE (2.1) 

SUMMARY OF THE MAIN SOURCES OF ERRORS AFFECTING 
A GIVEN QUANTITY 

Observable I Error Sources And Description 

K : Bridge Dials (Reading & Calibration), Surroun-

dings, Background Fluctuations, And Geometry. 

OM Bridge Dials At Low Values, Background Flue-

tuations, And Surroundings. 
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~ DC Electrometer Calibration, Scale Fluctuations 

Geometry, And surroundings. 

C) Reproducibility of A.C. (Bridge) Measurements 

on Standard Materials 

We present in this section the results of measurements 

conducted on poly(tetrafluoroethylene) and poly(methyl metha-

crylate), commercially known as teflon and plexiglas, at 1KHz. 

under vacuum using our specially designed guarded chamber & 

sample holder. 

The data, taken on several different occasions, weeks or 

months apart, and always using the same sample of each mater-

ial, are shown in table (2.2), and the corresponding results 

are in table (2.3). It is evident that the reproducibility 

is well within the error quoted from the literature values 



98 

(109,110). The error in the powdered polymer samples can be 

of course, considerably larger since these materials are much 

more sensitive to the numerous factors discussed before. 

TABLE (2.2) 

DATA FOR THE DIELECTRIC CONSTANT AND LOSS IN TEFLON 
AND PLEXIGLAS UNDER ROOM CONDITIONS, AT 1 KHz. 

MATERIAL DATE ex Dx CL I DL 

TEFLON 7/11/86 141.5 I -0.0045 133.4 I 0.014 

II 7/20/86 141.9 0.019 133.8 0.015 I I 

II 7/28/86 142.5 0.017 134.4 0.037 

II 9/05/86 133.7 0.0055 125.4 0.028 I I 

II 9/12/86 134.1 0.24 125.8 0.27 I 

II 9/25/86 155.3 -0.004 146.9 0.015 I I 

II 10/4/86 133.7 -0.002 125.6 0.02 I 

PLEXIGLAS 7/25/86 139.8 I 0.22 134.1 I 0.038 

II 7/28/86 139.5 0.26 134.4 0.055 I I 

II 9/10/86 131.6 0.47 125.7 0.17 I 

II 9/12/86 131.8 0.53 125.8 0.27 I I 

II 9/25/86 152.5 0.17 146.9 0.015 I I 

II 10/7/86 132.0 0.19 125.6 0.025 I I 

* The underlined numbers are estimates from interpolation. 
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between scale divisions. The variations in the lead capaci­

tance values were deliberately created, by attaching extra 

cables to the "load" terminals of the bridge, in order to 

insure that the final results are statistically independent 

of the background readings. (CL,DL) are the capacitance and 

loss dial readings when the chamber is attached to the bridge 

without the module that carries the material, they are refer­

red to as the "background". (Cx,Dx) are the same set of read­

ings but with the module carrying the sample attached. 

The geometrical factors for the two samples are: 

t/A = 10/1.227 

t/A = 22.7/1.227 

(mil/cm2) 

(mil/cm2) 

for teflon 

for plexiglas 

Where t is the thickness and A is the area . 

The literature (109,110) values for the dielectric 

constant and loss of teflon and plexiglas at 1 KHz. are 

2.01 < K < 2.1 , and 2E-5 < DM < 4E-4 (Teflon) 

3.2 < K < 3.4 , and 0.05 < DM < 0.06 (Plexiglas) 



TABLE (2.3) 

DIELECTRIC CONSTANT AND LOSS OF TEFLON AND PLEXIGLAS 
AS DETERMINED FROM THE DATA OF TABLE (2.2) 

MATERIAL K DM 

TEFLON 2.13 5.9E-04 

" 2.05 7.1E-04 

" 2.13 8.9E-04 

" 2.08 6.4E-04 

II 2.08 2.5E-04 

II 2.15 5.8E-04 

II 2.08 5.2E-04 

Ave. 2. 1 GE-04 

Std. Dev. + 0.03 i 2E-04 

PLEXIGLAS 3.45 0.041 

II 3.16 0.044 

II 3.40 0.038 

II 3.64 0.043 

" 3.58 0.047 

" 3.58 0.052 

Ave. 3. 5 0.044 

Std. Dev. ±0.2 ±0.005 
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CHAPTER III 

PRESENTATION OF THE EXPERIMENTAL RESULTS 

3.1) Exposition of The Polymers Studied in 

This Research 

Poly-acene quinone radical (PAQR) polymers are prepared 

from aromatic hydrocarbons or their derivatives by their cat­

alyzed condensation with aromatic anhydrides using catalysts 

such as ZnC12 at temperatures ranging from about 200 - 450 ~ 

(111). 

The specific aromatic compounds used include pyrene, anth­

racene, quinone, anthrone, acridine, violanthrone, etc .. After 

the reaction is completed the products are kept in the heat 

bath for an extended time period, as much as 30 hours to in­

sure that most of the product has polymerized. 

The by-products of the reaction are removed by extraction 

with HCl, ethyl alcohol, and methyl alcohol. 

Typical composition by weight of PAQR polymers is about 

65%-85% carbon, 5% hydrogen, plus other elements present in 

the starting materials, including small amounts of ZnC12. 

Reliable analyses are difficult to obtain because of diffi­

culty in attaining complete combustion of the samples. Also 

it is often difficult to produce identical specimens starting 

101 
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from the same ingredients, because of the heterogeneous pre­

paration conditions. 

Most of the specimens we dealt with showed excellent 

moldability, and were pressed into pellets when subjected to 

a modest pressure of 2.5 Kbars. However in a couple cases the 

polymer did not mold and retained its sand-like characteris­

tic. This made it quite difficult to handle especially when 

measuring the sample's dimensions. 

Table (3.1) lists the various polymers under their code 

name as well as the monomer unit from which they are derived. 

Information relevant to their method of synthesis is given in 

the right-hand column. Fig.(31) shows the molecular structure 

of the various monomers as well as their dimensions. 
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TABLE (3.1) 

IDENTIFICATION OF THE POLYMERS BY THEIR CODE NAME 

CODE # 

LD-105 

LD-104 

LD-97 

LD-95 

LD-94 

LD-14A 

LD-6A 

LD-54 

LD-52B 

LD-106 

BASIC MONOMER UNIT 

Violanthrone I PMA I ZnCl2(solution), 306 °C & 

15 h. Mole Ratio 1 : 1 : 6 

Violanthrone I PMA I ZnCl2 (solution), 310 °C & 

15 h. Mole Ratio 1 : 1 : 2 

Violanthrone I PMA I ZnCl 2 (solution), 307°C & 

15 h. Mole Ratio 1 : 1 : 2 

Anthracene I PMA I ZnCl2. (solution), 

15 h. Mole Ratio 1 : 1 : 2 

Pyrene I PMA I ZnC1 2 (solution), 

15 h. Mole Ratio 1 : 1 : 2 

307 °c 

Anthrone I Polyphosphoric acid , 140°C & 25h 

19.42 g, 300 g, 

2-Chloro Anthraquinone ITetrabromo PAIZnCl2 

Mole Ratio 1 : 1 2 , At 4 4 0 °C & 15 h 

Violanthrone I PMA I AlC13 ,Mole Ratio 1:1:1 

At 210°C in Nitrobenzene, 15 h. 

& 

Violanthrone ITetrachloro PA I AlC1 3 (solution) 

At 210°C & (7) h. Mole Ratio 1 : 1 : 2 

Violanthrone I PMA I AlC1 3 (solution), 210 °C & 

( 7) h. Mole Ratio 1 : 1 : 2 
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3.2) The Results of Measurements 

Introduction 

In the following sections we present our experimental 

findings on the polymer samples under three different macro-

scopic conditions: pressure, temperature, and D.C electric 

field bias, plus a frequency dependence study under room con-

ditions. There are essentially two basic quantities of inter-

est being studied: The dielectric constant and the (total) 

I 
conductivity a- ( w) de£ ined by Re ( J /E) . Here J is the total 

current density in the medium. It is made up of an ohmic con-

tribution JA~ and a polarisation current term Jp. By their 

very definition, Jp -> 0 when w = 0, while J!l -> J 0 .c. 

at zero frequency. It should be noted that for polymer sys-

terns Jn may become frequency - dependent at frequencies as 

low as 107 or 108 (see chap.4), and so in practice there 

is no way to identify the frequency - dependent terms making 

up J(w). For this reason it has become customary to lump the 

frequency - dependent parts in a single term, called the A.C. 

current density JAC. All quantities related to it will be 

labeled in the same way ( OAc is Re ( JAc /E etc ... ) 

Thus we write : 

J ( w) = Joe + JAc 3.2.1 

with the understanding that JAc may contain ohmic contribu-

tions above certain frequencies, and such that it -> 0 at 

w = 0. The loss factor of the material generally decreases 

with frequency at high frequencies, but usually displays a 
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rather erratic behaviour at lower frequencies. For this rea-

son the loss factor will not be displayed graphically, but 

only tabulated in most of the cases. We remark that the loss 

factor reported in the tables includes the effect of the D.C. 

conductivity I that is: DM = cr' I €oWK1• This differs from the 

loss factor for a perfectly insulating material (CT = 0), by 

I 
the term cr; EoWK. The D.C conductivity is tabulated as the 

I 
va 1 ue of tr ( w) at w = 0 . 

As it turned out, the D.C. conductivity of the polymers 

is a negligible part of the total conductivity even at fre-

quencies as low as 100 Hz. This means that for all practical 

purposes, the total conductivity at non-zero frequencies may 

be taken equal to the A.C. conductivity for these polymers, 

and the experimental loss factor DM may be considered approx. 

equal to tan(6) = K"/K' a K"/K . We shall start by presen-

ting the frequency response under room conditions. 

A) Frequency Response at Room Temperature 

Throughout this section and the ones that follow (except 

for section (B) ), the contact pressure on the sample was 

maintained at ~27 PSI (0.065 K.bars) according to the proced-

ures described in chap.(2). 

The dielectric constant, the (total) conductivity, and 

the loss factor are tabulated in tables (3.2 - 3.11) and the 

resulting graphs are shown in Figs.(32- 52). The plots dis-

play at least two independent measurements done on pellets 

from the same polymer,and prepared from powder of the "same" 
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degree of fineness. In several cases, coarse-grained speci­

mens were also included and the corresponding results were 

shown for the purpose of comparisons. The loss factor is not 

plotted. 

Coarse-grained specimens consistently yielded lower con­

ductivity and lower loss at all frequencies (including D.C.) 

for all the cases observed, this supports the speculation 

that coarse-grained pellets contain sizable voids due to poor 

packing, resulting in poorer conduction and lower loss. Also, 

for the same grade powder, certain polymers reproduced better 

than others, with LD-95 being the best while LD-105 and LD-97 

among the worst. Finally since the discrepancy in some cases 

is greater than what could be accounted for on the basis of 

the error analysis of sec(2.5B) it is believed that the large 

fluctuations at lower frequencies are mainly due to possible 

inhomogeneity in the polymer: either due to structural differ­

ences (e.g. a wide distribution of molecular lengths), or im­

purity content. The evidence stems from the fact that while 

the D.C. conductivities of the different trials ( of a given 

polymer ) are fairly close to each other, the loss factor and 

hence the dielectric constant, are not. Moreover the various 

data points are not randomly distributed but follow a syste­

matic pattern whereby for a given pair of samples, the obser­

ved values of K are always either smaller or larger (below a 

given frequency) in one sample than in the other, and tending 

to a common value at higher frequencies - an indication that 

not all the samples from a given polymer share the same dis­

tribution of relaxation times - which suggests that the poly-
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mers have a non-uniform distribution of lengths and a variety 

of cross-links. The above also explains why some trials "seem" 

to agree better at say, 1 KHz, rather than at another frequen-

cy. It is simply because that frequency may not always be the 

"cross-over" point for these samples. 

Unless otherwise noted, and throughout secs.(3.2A-D) all 

samples are prepared from fine-grain powder. The conductivi­

ties listed are given in (ohm - cm)-1 • The maximum experimen-

tal and computational error on all the values given in tbls. 

(3.2-3.41) is between (8-12)%, except those polymers whose 

loss factor is below 0.20 (at frequencies < 500 Hz), these 

carry an error between (15-22)% over that range of frequen-

cies due to the low sensitivity of the system at the "low -

end" of the loss dial. 
I 

The graphs display the A.C. conductivity which is ~- ~ 

where, of course, ~ is just ODe , the ohmic conductivity at 

zero frequency. The total conductivity at 
I 

other parameter "x" will be denoted by ~ 

zero value of some 

(i.e. a;'= o-'l) lx.o 
while the D.C conductivity at x = 0 will be written as a.; 

Occasionally, cr and ope are used interchangeably. 

Logarithms to base 10 of any quantity "£", are written as: 

"log(£)". The natural logarithm of a given quantity "X" is 

written "loge(X)". In cases where the results on different 

samples are fairly close, only an average is reported for 

the parameters defining the linear fit. Throughout this chap-

ter, "room conditions" will be understood to mean: room temp-

erature and an "ambient" pressure of 27 PSI. 



m 
0 ..... TABLE (3.2) 

FREQUENCY RESPONSE OF LD-105 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 1 1.5 2 3.5 10 100 

Sample 1-----------------------------------------------------------

I 
It c CT I 3. 7E-8 4.2E-6 --- --- 7.5E-6 1.2E-5 4.3E-5 

K I -- 61 --- --- 37 27 11.5 

DM I -- 1.3 --- --- 1.1 0.75 0.67 

fl: s I 
cr 11.1E-7 --- 8.8E-6 7.4E-6 1.3E-5 1.7E-5 5.0E-5 

K I -- --- 76 77 38 26 11.7 

DM I -- --- 1.4 0.86 1.8 1.1 0.77 

It Q 
I 

CT" 19. 7E-8 --- 9.4E-6 7.6E-6 1.1E-5 1.3E-5 4.6E-5 

K I -- --- 52 56 33 22 11.6 

DM I -- --- 2.2 1.2 1.8 1.1 0.71 

cont'd 

~1 : Total Conductivity, K : Dielectric Constant, DM : Loss Factor 

# C is pressed out of coarse - grained powder 



0 ,.... ,.... 

fl: J 

fl: K 

fl: L 

fl: N 

, 
a- 11.1E-7 

K I --

DM I --
I 

tT 11.2E-7 

K I --

DM I --

I 
·fr I 9 . 6E- 8 

K I --

DM I --
I a- 19.5E-8 

K I ---

DM I --

---

---

---

---

---

---

---

---

---

---

---

---

TABLE (3.2) Cont'd 

--- --- 1. 4E-5 1. 7E~5 5.0E-5 

--- --- 37 26 11.9 

--- --- 1.9 1.2 0.75 

--- --- 1.3E-5 1.8E-5 6.3E-5 

--- --- 43 35 14.1 

--- --- 1.6 0.92 0.81 

--- --- 9. 5E·-6 1.1E-5 4.5E-5 

--- --- 23 21 11.4 

--- --- 2.1 0.91 0.71 

--- --- , 1. 3E-5 1.2E-5 3.5E-5 

--- --- 32 18 9.7 

--- --- 2.1 1.2 0.65 

cont'd 
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I 

# G <J" ll.lE-7 

K I --

DM I --
, 

# H tT 19. 6E-8 

K I --

DM I --

I 
Ave. cr I 1. OE-7 

K I --

DM I --

St.dev. 
I 

cr I±0.1E-7 

K I --

DM I --

---

---

---

---

---

---

---

---

---

---

---

---

TABLE (3.2) Cont'd 

--- --- l.lE-5 1. 3E-5 4.1E-5 

--- --- 24 20 9.5 

--- --- 2.4 1.2 0.77 

--- --- l.OE-5 1. 2E-5 4.4E-5 

--- --- 24 20 11.2 

--- --- 2.2 1.1 0.71 

8.7E-6 7.0E-6 1.2E-5 1. 4E-5 4.7E-5 

64 65 32 24 11.4 

1.7 0.97 2.0 1.1 0.73 

±0.5E-6 ±0.2E-6 ±0.1E-5 ±0.3E-5 +0.8E-5 

.±12 .±10 +7 +5 ±1. 3 

.±0.4 ±0.2 .±0.3 +0.05 +0.05 
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LD-105 
A.C. Cndtv. 

0 --> #C (Coarse) + --} Ave. Of 8 Samples 
(Fine) 

~=aX + b 

-45 
m 
0 -48 
~ 

-51 

a={(8.5±B.83) 
(0.4±B.B5) 

For #C & Ave. 
Respectively 

-b= (7 ± 8.1) 
-b= (6 ± 8.2) 

35 49 45 50 
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1.0 ..... ..... TABLE (3.3) 

FREQUENCY RESPONSE OF LD-104 UNDER ROOM CONDITIONS 

<------ f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample I--------------------------------------------------------------

I 
# A fT 11. 5E-9 8.6E-8 1. 4E-7 2.2E-7 4 .·lE-7 1. OE-6 1.9E-6 5.6E-6 

K I -- 34 20 18 15 12 9.1 5.8 

DM I -- 0.45 0.62 0.44 0.48 0.45 0.38 0.17 
I 

tt G tT 11. 7E-9 2.6E-7 3.4E-7 5.4E-7 8.8E-7 2.0E-6 3.6E-6 9.8E-6 

K I -- 53 46 31 23 14 10 6.5 

DM I -- 0.88 0.65 0.63 0.67 0.71 0.64 0.27 
, 

# H cr 11. 6E-9 1.6E-7 2.2E-7 4.4E-7 8.1E-7 1. 9E-6 3.7E-6 9.5E-6 

K I -- 51 45 28 24 14 9.7 5.9 

DM I -- 0.55 0.43 0.57 0.59 0.72 0.68 0.29 

# A is pressed out of coarse - grained powder 
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- .J -=:. r •.. l\ • , LD-104 
.... -. .-····jtll 
H • ··-· I! ·-· Ill .. I} ll .. / .. 

• .. r::r - r::r ... 

-~~ ·- ._ 

U1 -60 

0 
•. I = - 1:•:1 + b· _, d .•• 

I .• Jher·e: 
a=(0.63,B.55,8.62) 
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0 ~A, + ~G, ¢ =9H 
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TABLE (3.4) 

FREQUENCY RESPONSE OF LD-97 UNDER ROOM CONDITIONS 

<------ f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample I--------------------------------------------------------------

It A o 11. 6E-9 2.2E-7 2.6E-7 4.2E-7 6.3E-7 l.SE-6 2.5E-6 7.7E-6 

K I -- 50 39 32 28 21 18 15 

DM I -- 0.78 0.59 0.47 0.41 0.35 0.25 0.09 

# So 13.2E-9 3.4E-7 4.1E-7 7.0E-7 1. OE-6 2.8E-6 4.8E-6 1.4E-5 

K I -- 72 59 36 32 20 13 7.9 

DM I -- 0.84 0.62 0.69 0.58 0.71 0.65 0.32 

It T o I3.4E-9 4.0E-7 4.7E-7 6.9E-7 9.1E-7 1.9E-6 3.3E-6 9.1E-6 

K I -- 46 34 23 20 14 9.9 6.4 

DM I -- 1.6 1.2 1.1 0.81 0.71 0.61 0.25 

# A is pressed out of coarse grained powder 
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TABLE (3.5) 

FREQUENCY RESPONSE OF LD-95 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample!--------------------------------------------------------------
I 

# A a- I 3. 4E-9 3.4E-7 4.6E-7 6.8E-7 1. OE-6 1. 7E-6 2.5E-6 6.2E-6 

K I -- 54 36 24 18 11 7.9 5.3 

DM I -- 1.1 1.2 1.0 1.0 0.81 0.56 0.21 
I 

# B a' I 3. 7E-9 3.6E-7 4.3E-7 7.2E-7 1.0E-6 1.7E-6 3.1E-6 6.7E-6 

K I -- 52 38 22 18 11 8.1 5.3 

DM I -- 1.3 1.0 1.2 1.0 0.85 0.68 0.22 
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TABLE (3.6) 

FREQUENCY RESPONSE OF LD-94 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample I--------------------------------------------------------------
, 

It A tr 11. 8E-8 -- 8.4E-7 1. 3E-6 2.7E-6 4.0E-6 5.3E-6 1. 8E-5 

K I -- -- 80 64 31 19 15 6.8 

DM I -- -- 0.96 0.74 1.6 1.1 0.64 0.48 

I 
# B tT I 2 . 5E- 8 -- 2.1E-6 2.5E-6 2.8E-6 4.3E-6 5.5E-6 1. 7E-5 

K I -- -- 36 30 25 17 13 6.2 

DM I -- -- 5.2 3.0 2.0 1.3 0.77 0.52 

#A is pressed out of coarse grained powder 
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TABLE (3.7) 

FREQUENCY RESPONSE OF LD-14A UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample!--------------------------------------------------------------
I n E ~ 19.0E-10 1.6E-7 2.2E-7 4.2E-7 5.8E-7 1.1E-6 1.5E-6 3.3E-6 

K I -- 46 28 18 13 8.5 6.2 5.6 

DM I -- 0.63 0.70 0.83 0.78 0.67 0.42 0.11 
I n V ~ 16.8E-10 1.0E-7 1.5E-7 2.9E-7 5.1E-7 8.0E-7 1.1E-6 2.8E-6 

K I -- 71 24 14 11 7.1 5.6 5.0 

DM I -- 0.26 0.54 0.71 0.82 0.57 0.34 0.10 
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Fig. ( 44 ) 
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TABLE (3.8) 

FREQUENCY RESPONSE OF LD-6A UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample!--------------------------------------------------------------
I 

# F cr'I5.6E-9 5.1E-7 5.8E-7 7.9E-7 8.9E-7 1. 7E-6 2.9E-6 1.3E-5 

K I -- 37 24 20 20 16 13 8.2 

DM I -- 2.5 2.2 1.4 0.82 0.55 0.41 0.29 
I 

It G a- I 6. 4E-9 7.5E-7 7.2E-7 8.7E-7 1.1E-6 1. 9E-6 3.4E-6 1. 5E-5 

K I -- 83 37 27 22 17 14 8.0 

DM I -- 1.7 1.8 1.2 0.92 0.58 0.45 0.33 
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TABLE (3.9) 

FREQUENCY RESPONSE OF LD-54 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample --------------------------------------------------------------
I 

#A CT I 7. 3E-13 2.0E-9 5.1E-9 3.7E-9 2.0E-8 2.2E-8 4.9E-8 3.3E-7 

K I -- 8.1 5.8 5.3 4.7 5.0 4.9 4.8 

DM I -- 0.045 0.078 0.025 0.075 0.022 0.018 0.012 

ltB cr1 19. 5E-13 -- 6.4E-9 4.7E-9 2.1E-8 3.0E-8 3.0E-8 2.8E-7 

K I -- -- 6.0 5.6 5.2 5.2 5.1 5.2 

DM I -- -- 0.097 0.030 0.072 0.030 0.010 0.010 
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Ul -72 
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-b = < 9. B±B. 2) 
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TABLE (3.10) 

FREQUENCY RESPONSE OF LD-528 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample --------------------------------------------------------------

#A o I5.2E-12 3.2E-9 6.5E-9 1.1E-8 1.7E-8 3.5E-8 7.0E-8 4.4E-7 

K I --- 10.2 6.4 5.4 5.3 5.1 5.0 4.9 

DM I --- 0.057 0.093 0.077 0.056 0.035 0.025 0.016 

#H o 15.4E-12 .86E-9 3.7E-9 1.5E-8 2.0E-8 7.2E-8 1.5E-7 1.1E-6 

K I --- 8.2 6.3 6.5 5.8 5.7 5.5 5.4 

DM I --- 0.019 0.052 0.086 0.051 0.065 0.050 0.035 
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TABLE ( 3 .11) 

FREQUENCY RESPONSE OF LD-106 UNDER ROOM CONDITIONS 

<=== f (KHz) ===> 

0 0.1 0.2 0.5 1 3.5 10 100 

Sample --------------------------------------------------------------
/ 

ftC CT 11. OE-10 1. 9E-8 3.9E-8 1.9E-8 9.1E-8 1. 9E-7 3.2E-7 1. 3E-6 

K I -- 11.4 9.5 8.1 7.5 6.7 6.3 5.8 

DM I -- 0.31 0.38 0.082 0.22 0.15 0.089 0.039 
I 

#E CT 12.3E-10 2.1E-8 3.7E-8 1.8E-8 1.3E-7 2.7E-7 4.7E-7 1.9E-6 

K I -- 11.1 8.5 7.3 6.1 5.1 4.5 4.0 

DM I -- 0.35 0.39 0.090 0.38 0.28 0.19 0.087 
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B) The Effects of Pressure on Polymer 

Characteristics 

The polymer species under study showed quite a diversity 

in their characteristics when subjected to pressure. Only a 

few displayed the "normal" pattern, namely, the logarithmic 

increase of the conductivity and dielectric constant in pro-

portion to the square-root of the pressure. In most cases it 

I 
was found that both CT and the D.C. conductivity t:r, rather 

than their logarithm, displayed a better linear fit with P, 

or the square-root of P. Similarly, "K'' instead of Loge(K), 

showed an approximate linear increase with P or ~ in most 

cases. The only exception was (LD-14A) where "K" actually 

decreased with ~. It is also noted that the higher the 

frequency, the greater the "saturation" pressure becomes. 

The fact that "K" decreases with .J'P for LD-14A shows 

that for this particular polymer the loss factor DM increas­

i/2 
es at a higher rate than the usual P - law. 

I 
Tables (3.12)-(3.21) summarize the dependence of K, er 

DM, and cr on the applied pressure. The piezo-capacitive and 

piezo-conductive coefficients are evaluated off the graphs 

in Figs.(53)-(88). The units of these coefficients are some-

times omitted for lack of space. The symbols "a" and "b" are 

defined through the linear fit equation: y = ax + b in all 

cases. For brevity, the abbreviation "Cndtv." is sometimes 

used in place of the full word "Conductivity". Unless other-

wise noted, all measurements in this section were taken at 

room temperature. 
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Due to the limited range of the Schering bridge loss-factor 

dial, several polymers had to be observed at 10 KHz. and 100 

KHz. 

All quantities are presented to two significant figures, 

except in some cases where it was deemed necessary to retain 

three digits in order to make appear the fineness of the var­

iations in certain slowly varying quantities. In general the 

third figure is not significant and should only be regarded 

as a convenience in graphical fitting. 

The pressure guage readings were corrected for the shift 

in the zero-point, due to the weight of the upper anvil and 

the backing plate. The correction was to add 0.0405 K.Bars 

to all pressure readings. 
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TABLE (3.12) 

THE EFFECTS OF PRESSURE ON LD-105 AT 100 KHz. 

-'-= 1/2 
<===v~RESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------
I 

K : a-1 1.4 1.5 1.7 1.8 2.7 4.0 6.3 9.7 

K I 13.3 13.2 13.2 13.0 14.4 14.7 14.6 12.8 

DM I 1.8 2.0 2.3 2.5 3.4 4.9 7.7 13.6 

tT I 8.5 9. 3 11 15 21 33 54 88 115 

-------1-------------------------------------------------------------
/ 

L : tTl 1.6 1.7 1.8 2.2 2.8 4.0 6.2 

K I 13.9 13.7 13.6 13.0 13.1 14.3 15.0 

DM I 2.1 2.2 2. 4 3.1 3.9 5.0 7.4 

0'"'1 8.7 11 12 15 20 31 52 79 107 

Two Samples (K) And (L) Are Shown For Verifying The Reproducibility 

~ 

Of The Measurements. All Values Of tT Are (X1E-4), While Those Of 

CT' Are ( X1E-7) . 
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TABLE (3.13) 

THE EFFECTS OF PRESSURE ON LD-104 AT 1 KHz . 

• r.= 1/2 
<===v~RESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------
I 

G: CTI 0.97 1.4 2.2 3.3 4.4 6.0 7.8 

K 25 27 29 29 30 32 33 

DM 0.70 0.94 1.3 2.1 2.6 3.4 4.6 

CT 2.9 5.0 7.0 14 16 28 43 56 68 

-------1-------------------------------------------------------------
I 

H: trl 0.83 1.1 2.0 3.7 5.3 7.3 

K I 21 24 30 32 34 36 

cont'd 
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TABLE (3.13) Cont'd 

DM I 0.72 0.80 1.2 2.1 2.8 3.7 

trl 1.5 2.7 7.8 13 22 38 50 63 78 

-------1-------------------------------------------------------------

H : o-./ I 7.0 7.2 7.7 8.7 9.8 12 14 16 17 

K I 13.3 13.3 13.4 13.8 14.7 16 18 19 20 

DM I 0.95 0.98 1. 03 1.13 1.2 1.3 1.4 1.5 1.5 

The Listings For Sample (H) At The Bottom (3rd Section) Were 

/ 
Taken At 10KHz. All Values of CT Are (X1E-6), While Those Of 

cr (DC) Are (X1E-9). 
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TABLE (3.14) 

THE EFFECTS OF PRESSURE ON LD-97 AT 10 KHz. 
AND 100 KHz. RESPECTIVELY 

.~ 1n <===vPRESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------
I 

s : trl 1.5 1.6 1.8 2.1 2.6 3.2 3.8 4.2 4.4 

K I 23.6 23.7 23.9 25.3 27.0 28.5 29.7 31.0 30.4 

DM I 1.17 1. 23 1.4 1.5 1.7 2.0 2.3 2.4 2.6 

U"l 4.1 5.0 5.3 7.5 8.5 12 15 18 18 

-------1-------------------------------------------------------------
I 

T : cr I 1.1 1.3 1.4 2.0 2.6 3.4 4.1 4.6 4.6 

K I 20. 5 22.6 22.8 24.5 27.2 31.0 32.4 33.6 32.6 

cont'd 



co 
II) ,... 

TABLE (3.14) Cont'd 

DM 0.94 1.1 1.1 1.5 1.7 1.9 2.3 2.5 2.6 

cr 2.5 3.6 4.2 6.9 8.4 13 16 19 19 

, 
4.3 4. 4 4.7 5.2 6.0 6.8 7.8 8.4 8.4 s : <T I 

K I 10.1 10.2 10.4 10.8 11.6 12.5 13.5 13.9 13.9 

DM I 0.76 0.78 0.81 0.86 0.93 0.99 1. 03 1.08 1. 08 

-------1-------------------------------------------------------------

T : 
I 

rrl 3.25 3.34 3.70 5.1 6.1 7.2 8.5 9. 1 

K I 9.50 9.80 10.3 11.2 12.1 13.5 14.8 15.3 

DM I 0.62 0.61 0.65 0.81 0.90 0.96 1. 03 1. 07 

Two Samples S and T Are Shown To Verify Reproducibility. All 

Values Of ~'are (X1E-5), While Those Of~ Are (XlE-8). 
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TABLE (3.15) 

THE EFFECTS OF PRESSURE ON LD-95 AT 10 KHz. 

-~ 1/2 <===vPRESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------
I 

B : t:rl 3.8 5.5 6.7 8.2 9.8 13 18 27 42 

K I 6.2 7.0 8.1 9.1 11 13 17 20 23 

DM I 1.1 1.4 1.5 1.6 1.6 1.8 2.0 2.5 3.2 

crl 1.2 2.1 2.9 3. 4 5.4 8.1 13 19 25 

I 
All Values Of t:r Are (X1E-6), While Those Of t:r Are (X1E-8). 
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TABLE (3.17) 

THE EFFECTS OF PRESSURE ON LD-14A AT 1 KHz. 

-~ 1~ <===vPRESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 l. 25 1.49 

-------1-------------------------------------------------------------
I v : cr 1 2.8 6.8 8.4 10.9 13.9 16.5 22 28 36 

K I 10.6 10.6 10.6 10.2 9.8 9. 4 9.0 8. 5 7.7 

DM I 0.47 1.15 1.4 1.9 2.5 3.2 4.4 5.9 8.5 

crl 0.33 1.07 2.8 6.0 11.3 13.7 19 26 33 

-------1-------------------------------------------------------------
H : 

I 
trl 7.9 

K I 12.5 

8.8 

12.1 

9.8 10.6 

12.0 11.8 

13.5 19 31 35 47 

11.5 11.0 10.5 9.5 8.5 

cont'd 
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TABLE (3.17) Cont'd 

DM I 1.1 1.3 1.5 1.6 2.1 3.3 5.4 6.7 10 

cr I 1.7 2.4 3.1 5.7 8.7 13.7 21 32 41 

-------1-------------------------------------------------------------
I 

F : CTI 5.5 7.0 7.9 11.0 13.3 21 28 38 48 

K I 12.3 12.4 13.0 12.8 12.9 12.7 11.8 11.4 10.9 

DM I 0.80 1.1 1.1 1. 55 1. 85 2.9 4.3 5.9 7.9 

0"'1 1.0 1.4 3.0 5.8 8.2 13.7 20 33 43 

Three Different Samples Are Observed For Verifying The Reprod-

ucibility. Note The Curious Decrease Of The Dielectric Constant 

I 
With Pressure. All Values Of cr Are (XlE-7), While Those Of~ Are 

(XlE-9). 
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TABLE (3.18) 

THE EFFECTS OF PRESSURE ON LD-6A AT 10 KHz . 

• r.:. 1/2 <===vPRESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------
" D : CTI 0.69 0.94 1.1 1.4 2.0 3.0 4.8 6.8 9.1 

K I 15.5 16.0 16.5 17.8 19.6 21.5 22.0 23.0 22.0 

DM I 0.80 1.05 1.2 1.4 1.9 2.5 3.9 5.3 7.4 

a' I 1. 24 2.60 4.1 8.0 13.7 24 38 60 76 

, 
All Values Of tT Are (X1E-5), While Those Of a" Are (X1E-8). 
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TABLE (3.19) 

THE EFFECTS OF PRESSURE ON LD-54 AT 1 KHz . 

• r.=. 1/2 <===vPRESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-------------------------------------------------------------

B : 0"''1 1.3 1.2 1.14 1.2 1. 55 1.8 2.1 2.4 2.6 

K I 4.2 4.5 4.7 4.7 5.0 5.2 5.6 5.7 5.7 

OM I 0.05 0.05 0.04 0.05 0.06 0.06 0.07 0.08 0.08 

t:rl 0.59 0.83 1.0 1.5 2.2 3.25 4.44 6.1 6.2 

, 
All Values Of 0"' Are (X1E-8), While Those Of 0"' Are (X1E-12). 
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TABLE (3.20) 

THE EFFECTS OF PRESSURE ON LD-528 AT 1 KHz . 

• ~ 1/2 
<===v~RESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1.49 

-------1-----------~-------------------------------------------------
I 

H : o-1 2.0 2.9 2.9 3.4 3.6 4.0 4.7 5.1 5.7 

K I 6.0 6.8 6.8 7.4 7.6 7.8 8.3 8.7 8.8 

DM I 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.12 

tr'l 4.9 5.1 5.4 6.0 6.7 8.2 9.97 12.5 14.6 

/ 
All Values Of tr Are ( X1E-8), While Those Of a- Are ( XlE-12). 
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TABLE (3.21) 

THE EFFECTS OF PRESSURE ON LD-106 AT 1 KHz. 

<===~RESSURE (K.Bars) ===> 

Sample I 0.23 0.27 0.31 0.39 0.51 0.69 0.96 1.25 1. 49 

-------1-------------------------------------------------------------
I 

E : c:rl 4.25 4.45 4.77 6.22 7.56 10.5 14.8 18.2 17.9 

K I 16.4 16.5 16.6 18~0 20.5 22.4 25.6 26.0 25.1 

DM I 0.47 0.48 0.52 0.62 0.67 0.85 1. 04 1.25 1. 28 

a' I 0.44 0.38 0.57 1. 47 1.96 2.87 4.13 5.80 6.43 

/ 
All Values Of tr Are ( X1E-7), While Those Of tr Are ( X1E-9). 
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C) The Effects Of Temperature On The Polymers, 

Activation Energy Study 

Most polymers in this study were observed between -170 °C 

and room temperature. This provided us with the widest range 

of temperatures possible. Temperatures above room temperature 

did not prove to be useful for a variety of reasons, the most 

important of which was the irreversible increase in the thick-

ness of the compressed pellet, creating excess differential 

pressure on the sample and thereby altering the true conduc-

tivity values. There was also evidence that higher tempera-

tures (above 75°C) produced irreversible change in the room 

temperature conductivity values. 

Nevertheless we did include one observation on LD-105 #G at 

100 KHz. where temperatures up to 75°C were used. This par-

ticular case seemed impervious to the above problems, inclu-

ding the D.C. conductivity study. Another instance involved 

sample LD-54 #V where a 50°C Temperature was used in order to 

obtain a wider range as it was not feasible to carry measure-

ments at -170°C for this particular polymer. 

Tables (3.22)-(3.31) show the dependence of the four basic 
I 

quantities~' K, DM, and ~(DC), on the temperature at one 

or two frequencies. Both conductivities displayed the usual 

""exp(-Ea/kaT) law, Ea being an activation energy which can 

be slightly temperature-dependent. All Ea - values obtained 

I 
from the plots of Loge ( C7"' ) or Loge ( cr ) versus 1/kB T, dis play-

ed excellent reproducibility in all cases considered - an 

indication that whatever was behind the unaccountable varia-
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tions in some of the frequency and pressure dependent results, 

does not seem to play an active role with respect to the temp­

erature. This supports the hypothesis that both the length dis 

tribution and impurity concentration differences are the main 

causes of the apparent discrepancies. It will be seen in chap. 

(4) that the activation energy Ea does not involve these par­

ticular quantities. 

For the sake of simplification, the Boltzmann constant ka 

is written as "k" in the graphs depicting the 1/kaT dependence 

All measurements in this section were done under the "ambient" 

pressure conditions described in sec.(3.2A). 
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TABLE (3.22) 

THE TEMPERATURE DEPENDENCE OF LD-105 

<=== TEMPERATURE oc ===> 

Sample I 75 50 25 10 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------------
I 

G : CTI 10.2 6.8 4.6 3.3 1.6 0.75 0.41 0.18 0.07 0.03 

K I 16.7 14.4 10.8 8.5 5.4 4. 4 3.9 3.7 3.7 3.4 

DM I 1.1 0.85 0.77 0.70 0.54 0.31 0.19 0.09 0.04 0.02 

CTI 69.3 38.7 10.8 7.52 1. 74 0.54 0.13 0.06 .002 1E-4 

-------1------------------------------------------------------------
I 

C : tT I 

K I 

1.2 0.94 0.40 0.22 0.11 0.05 .007 3E-4 

24.0 22.0 16.2 11.8 7.45 4.7 3.9 3.4 

cont'd 
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TABLE (3.22) Cont'd 

DM I 3.1 1.8 1.3 0.94 0.75 1.2 0.35 0.02 

-------1------------------------------------------------------------

T=O °C T=-55 °C 

L : o--/1 -- -- 4. 2 2.5 1.3 0.61 0.34 0.19 0.06 

K I -- -- 10.4 7.2 5.1 4.1 3.6 3.5 3.3 

DM I -- -- 0.73 0.64 0.45 0.27 0.17 0.10 0.03 

a' I -- -- 8.1 2.2 1.2 0.21 0.08 0.02 .001 

Sample #G Was Observed At 100 KHz And 3.5 KHz Respectively. 

I 
Sample #L Was Observed At 100 KHz Only. All Values Of ~ Are 

(X1E-5), Those Of o- (DC) Are (X1E-8). 
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0.02 

7E-5 
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TABLE {3.23) 

THE TEMPERATURE DEPENDENCE OF LD-104 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1-------------------------------------------------------
~ 

G : a: I 29.4 12.5 3.77 1. 68 0.79 0.32 0.11 0.12 

K I 9.1 6.4 4.2 3.8 3.6 3.4 3.2 3.3 

DM I 0.58 0.35 0.16 0.08 0.04 0.02 6E-3 6E-3 

trl 15.5 7.8 0.90 0.16 .037 .011 .0087 .0074 

--------1-------------------------------------------------------
H : 

~ 

a: I 31.7 12.9 4.80 1. 70 0.69 0.35 0.10 0.12 

K I 8.8 6.3 4.9 4.3 4.0 3.9 3.8 3.8 

DM I 0.65 0.37 0.18 0.07 0.03 0.02 5E-3 5E-3 

CT I 16.3 9.6 1.0 0.20 0.04 .011 .0078 .0052 

Observed At 10 KHz. For Two Samples G And H. All Values 

I 
Of or Are {X1E-7), Those Of~ (DC) Are {X1E-10). 
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TABLE (3.24) 

THE TEMPERATURE DEPENDENCE OF L0-97 

<=== TEMPERATURE°C ==~> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1-------------------------------------------------------
I s . a' I 46.2 24.1 7.47 2.87 1.02 0.76 0.14 0.19 . 

K I 13.9 8.83 6.03 5.2 4.7 4.5 4.2 4.3 

DM I 0.59 0.49 0.22 0.10 .038 .030 .024 .008 

CTI 30.7 21.4 2.30 0.45 .069 .025 .017 .011 

-------1-------------------------------------------------------
/ 

T : cr I 36. 7 15.1 5.42 1. 71 0.90 0.45 0.14 0.13 

K 10.2 6.98 5.45 4.7 4. 4 4.3 4.1 3.9 

DM 0.65 0.39 0.18 .065 .037 .019 6E-3 6E-3 

cont'd 
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TABLE (3.24) Cont'd 

cr 1 43.9 11.4 1.59 0.28 .059 .020 .013 .012 

--------1-------------------------------------------------------

s : I 
trl 12.0 7.40 2.3 0.80 0.35 0.17 .011 5E-3 

K I 32.2 19.0 9.2 6.7 5.6 5.3 4.8 4.4 

DM I 0.67 0.70 0.45 0.21 0.11 .058 .0043 .0020 

--------1-------------------------------------------------------

T : 
I 

crt 8.94 5.62 1. 95 0.57 0.23 .095 .023 .0074 

K I 22.0 13.7 8.2 6.0 5.3 4.9 4.6 3.9 

DM I 0.73 0.74 0.43 0.17 .078 .035 .009 .0034 

Observed Respectively At 10 KHz. And 1 KHz. For Each Of 

/ 
Two Samples (S), And (T). All Values Of~ Are (XlE-7), 

Those Of CT (DC) Are (X1E-10). 
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TABLE ( 3. 2 5) 

THE TEMPERATURE DEPENDENCE OF LD-95 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------
I 

B : tTl 24.0 12.6 5.97 1. 97 1. 05 0.63 0.13 .073 

K I 7.85 5.70 4.70 4.00 3.96 3.82 3.60 3.68 

DM I 0.55 0.40 0.23 .088 .048 .030 .007 .004 

tTl 36.2 13.2 3.92 0.70 0.15 .064 .030 .021 

-------1------------------------------------------------------
I 

B : CTI 8.94 5.05 2.09 0.74 0.43 0.18 .037 .024 

K I 17.0 11.0 7.74 5.55 4.77 4.53 4.10 3.82 

DM I 0.95 0.83 0.48 0.24 0.16 0.07 .016 .011 

Observed At 10 KHz. And 1 KHz. Respectively. All Values 

" Of tT Are ( X1E-7), Those Of cr (DC) Are ( X1E-10). 
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N TABLE (3.26) 

THE TEMPERATURE DEPENDENCE OF LD-94 

<=== TEMPERATURE °C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------
, 

s : tTl 55.2 40.0 19.3 8.50 4.70 1. 98 0.55 0.14 

K I 13.1 9.54 6.82 4.94 4.27 4.00 3.72 3.65 

OM I 0.76 0.75 0.51 0.31 0.20 .089 .027 .007 

a- I 24.1 11.9 3.40 0.71 0.24 .074 .0064 .0017 

-------1------------------------------------------------------

s : 
, 

cr 1 28.1 14.3 6.71 3.15 1. 43 0.80 0.19 

K I 25.3 18.6 14.0 8.85 6.74 5.20 4.42 

DM I 2.00 1. 38 0.86 0.64 0.38 0.28 .077 

Observed At 10 KHz And 1 KHz Respectively. All Values 
I 

Of or Are (X1E-7), Those Of~ (DC) Are (X1E-9). 
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THE TEMPERATURE DEPENDENCE OF LD-14A 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------
/ v : trl 11.3 5.70 3.22 1. 45 1. 04 0.59 0.24 

K I 5.65 5.11 4.70 4.40 4.23 4.16 4.10 

DM I 0.36 0.20 0.12 .059 .044 .025 .010 

rTI 5.97 1. 87 0.63 0.16 .045 .018 .010 

-------1------------------------------------------------------
I 

v : a' I 4.23 2.18 1. 02 0.48 0.23 0.16 .054 

K I 10.4 8.26 6.57 5.68 5.12 4.89 4.62 

DM I 0.73 0.47 0.28 0.15 .079 .058 .021 

Observed At 10 KHz.And 1 KHz.Respectively. All Values 

/ 
Of~ Are (X1E-7), Those Of cr (DC) Are (X1E-10). 
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TABLE {3.28) 

THE TEMPERATURE DEPENDENCE OF LD-6A 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------
/ 

F : rrl 8.43 5.83 3.52 2.30 1. 70 1. 22 0.55 0.18 

K I 18.7 16.7 13.7 10.5 8.3 6.7 5.3 4.3 

DM I 0.81 0.63 0.46 0.40 0.37 0.33 0.19 .076 

t:rl 49.2 26.1 9.24 3.63 1. 35 0.49 .067 .014 

/ 
Observed At 1 KHz. All Values Of cr Are (X1E-7), Those 

Of a' (DC) Are (X1E-10). 
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TABLE (3.29) 

THE TEMPERATURE DEPENDENCE OF LD-54 

<=== TEMPERATURE°C ===> 

Sample I 50 25 0 -25 -50 -75 -95 -125 

-------1------------------------------------------------------
I v : tTl 6.68 2.48 1. 35 0.65 0.57 0.58 0.57 0.40 

K I 8.1 6.3 6.2 5.7 5.3 5.2 4.97 4.47 

DM I 0.15 0.07 0.04 0.02 .019 .020 .021 .016 

a"' I 67.4 5.30 3.28 3.00 2.72 2.44 2.15 1. 61 

I 
Observed At 1 KHz. All Values Of a- Are (X1E-8), Those 

Of~ (DC) Are (XlE-13). 
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TABLE (3.30) 

THE TEMPERATURE DEPENDENCE OF LD-528 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -90 -125 -170 

-------1---------------------------------------------------~--
/ 

H : cr 1 33.1 14.3 9.43 7.16 -- 6.47 5.05 

K I 6. 58 5.85 5.41 5.07 -- 4.77 4.52 

DM I .090 .044 .032 .025 -- .024 .020 

frl 5.41 4.45 3.39 2.67 -- 2.10 1. 29 

. I 
Observed At 1 KHz. All Values Of CT' Are (X1E-9), Those 

Of~ (DC) Are (X1E-12). 
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C\1 TABLE (3.31) 

THE TEMPERATURE DEPENDENCE OF LD-106 

<=== TEMPERATURE°C ===> 

Sample I 25 0 -25 -50 -75 -95 -125 -170 

-------1------------------------------------------------------

c : 0""1 I 20.3 9.50 3.47 0.92 0.54 0.25 0.11 

K I 11.5 7.98 6.88 5.74 5.25 4. 9 5 4.54 

DM I 0.32 0.20 .090 .028 .018 9E-3 4E-3 

-------1------------------------------------------------------

H : 
I 

CTI 12.6 5.23 2.41 0.81 0.45 0.37 0.20 0.18 

K I 8.02 6.12 5.02 4.70 4.40 4.24 4. 07 3.85 

DM I 0.28 0.15 .086 .030 .018 .016 9E-3 .0085 

tT I 38.7 7.00 3.80 3.50 3.50 3.72 3.50 3.28 

Observed For Two Samples C And H At 1 KHz. All Values 
I 

Of a" Are ( X1E-8), Those Of tT (DC) Are ( X1E-12) . 
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D) The Effect of The D.C. Electric Field Bias on 

The Conductive and Dielectric Properties 

228 

This section examines the behaviour of polymers when 

subjected to a D.C. electric field bias under room conditions 

described in Sec.(3.2A). The A.C. quantities were observed at 

1 KHz. except for LD-105 which was observed at 3.5 KHz. due to 

technical reasons. In some cases the DC. electric field had 

little or no effect on the A.C. characteristics. In most cases 

the A.C. quantities showed a rather mild dependence, the loss 

factor displaying the greatest relative increase with· the D.C. 

electric field bias, followed by K which decreased slowly with 

the bias, and finally by the AC. conductivity which either in­

creased or decreased slightly depending on the way in which DM 

and K varied. 

The DC conductivity displayed the anticipated exponential 

dependence: rr =<To [ exp<"/+>- 1 111'/+' originally discovered by 

Rosen & Pohl (1) through an empirical fit of their data. Our 

results showed perfect agreement with this formula which, can 

also be used to infer the average characteristic length of the 

eka-conjugation region (identifiable as the average molecular 

length) as follows: The equation: 

Q = [exp(x) - 11/x 3. 2. 2 

where Q = tr /0'(, and x is given by eELo/2k 8 T ;; A.E, ( E being 

the D.C. electric field bias, "e" is the absolute elctronic 

charge, and La is the average molecular length), is plotted as 

a function of E. The value of E for which Q = exp(1) -1 = 1.718 
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corresponds to E = 1/A. So by locating this value of E on the 

graph, Lo can be calculated from: 

A = eLo/2k8 T 3.2.3 

This, however, is a rather simplified way for determining the 

length Lo since it is usually difficult to obtain an accurate 

fit for a curved line especially when the data contains appre­

ciable error. To enhance the reliability of our results we de­

veloped a modified version of the above in which an iteration 

procedure was followed. This yielded highly improved and more 

self-consistent results. 

Our method makes use of the fact that according to (3.2.2) 

log 9 (Q.E + 1/A) = A.E - log 9 (A) 3. 2. 4 

So by plotting the left-hand side of eq.(3.2.4) versus E, the 

value of A can be read off the graph either from the slope or 

from the intercept (as -log9 (A)). There is one catch, however 

to this scheme: the value of A i.s not known to begin with, so 

the left-hand side of eq.(3.2.4) cannot be used directly. 

This problem immediately suggests a solution by an iteration 

precedure, whereby an initial value of "A" is inserted in the 

L.H.S of (3.2.4), (most likely the "rough" value calculated 

from the Rosen-Pohl procedure). As it turned out, only two to 

three iterations at most were necessary to obtain good conver­

gence. The value of A shown in Figs.(110) - (142) is the ave­

rage value between the one obtained from the slope, and the 

value obtained from "-log 9 (A)" in the last iteration. 

The molecular lengths based on these values of A are given 

in table (3.42b). 
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TABLE (3.32) 

D.C. ELECTRIC FIELD EFFECT ON LD-105 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .050 0.57 1.12 2.24 2.94 3.83 4.57 5.58 

-------1------------------------------------------------------

G : a- I 1.09 1.19 1. 20 1. 34 1. 45 1.64 2.03 3.30 
I 

c:r I 1.09 1.31 1. 39 1. 52 1. 62 1. 80 2.11 

K 23.9 15.2 14.0 12.0 11.2 9.41 10.8 

DM 2.35 4.42 5.09 6.50 7.45 9.82 10.0 

cont'd 
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TABLE (3.32) Cont'd 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

I .114 0.61 1.19 2.38 3.13 4.04 4.85 6.50 

-------1------------------------------------------------------

H : c::r I 0 . 9 3 1. 11 

I 
CT I 1.03 1.22 

K 23.7 16.4 

OM 2.25 3.82 

1.18 

1. 30 

15.7 

4.23 

1. 25 1. 39 1.63 1. 96 2.34 

1. 40 1. 55 

16.4 14.2 

4.47 5.61 

Observed For Two Samples G And H At 3.5 KHz. All Values 

/ 
Of~ Are (X1E-7), Those Of o- Are (X1E-5). 
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TABLE (3.33) 

D.C. ELECTRIC FIELD EFFECT ON LD-104 

<=== DC ELECTRIC FIELD BIAS ===> 
( 1000 V/cm) 

Sample I .150 0.88 1. 74 3.70 5.54 7.33 9.16 12.7 

-------1----------------------------------------------~-------

G: a-11.74 3.42 4.11 5.25 6.65 8.50 10.3 16.5 
/ 

0'""1 8.46 8.74 9.40 11.4 14.7 16.2 

K 23.4 23.3 22.7 21.8 21.7 21.2 

OM 0.65 0.67 0.75 0.94 1. 21 1. 37 

cont'd 
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TABLE (3.33) Cont'd 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm} 

I .158 0.95 1. 89 4.00 5.97 7.90 9. 8 4 13.6 

-------1------------------------------------------------------
H : c:r I 1. 50 3.00 3.40 4.84 5.90 8.90 10.5 17.0 

I 
c:rl 7.64 7.75 7.77 8.12 9.11 9.80 

K I 19.0 18.4 18.1 17.9 18.7 18.9 

DM I 0.72 0.76 0.77 0.82 0.87 0.93 

Observed For Two Samples G and H At 1 KHz. All Values 

Of ~Are (X1E-9), Those Of 
I 

fT Are ( X1E-7) . 
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TABLE (3.34) 

D.C. ELECTRIC FIELD EFFECT ON LD-97 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .116 0. 82 1. 72 3.46 5.07 6.77 8.35 11.5 

-------1------------------------------------------------------
s : crl 3.05 7.12 8.68 13.0 16.1 17.0 20.9 27.6 

/ 
cr1 1.19 1. 38 1. 47 1.83 2.05 2.60 

K I 32.7 29.3 27.3 26.7 26.3 27.3 

OM I 0.65 0.85 0.97 1. 23 1. 40 1. 72 

cont'd 
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C\1 

TABLE (3.34) Cont'd 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

I .114 0.81 1. 68 3.49 5.22 6.78 11.6 

-------1------------------------------------------------------
T : 0""1 3.29 4.64 5.31 7.55 13.6 16.5 --

I 
.896 1. 01 1. 34 1. 72 2.09 cr' 

K I 21.4 19.4 18.4 19.6 19.7 

DM I 0.75 0.94 1. 31 1. 58 1. 91 

Observed For Two Samples S And T At 1 KHz. All Values 
/ 

Of o- Are (X1E-9), Those Of ~ Are (X1E-6). 
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TABLE (3.35) 

D.C. ELECTRIC FIELD EFFECT ON LD-95 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .101 0.72 1. 44 3.08 4.58 6.11 7.63 10.7 13.7 

-------1------------------------------------------------------
R : CTI 3.47 4.21 4.47 4.78 5.13 5.53 5. 91 

/ 
CTI 8.94 8.86 8.89 9.29 9.33 9.37 9.40 

K I 16.3 15.7 15.4 14.9 14.8 14.7 14.6 

DM I .987 1. 01 1. 04 1.12 1.13 1.15 1.16 

Observed At 1 KHz. All Values Of ~ Are (X1E-9), 

I 
Those Of~ Are (X1E-7). 
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TABLE (3.36) 

D.C. ELECTRIC FIELD EFFECT ON LD-94 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .122 0.84 1. 65 3.31 4.74 6.26 8.47 11.8 15.2 

-------1------------------------------------------------------

s : o-1 2.41 3.09 3.12 3.44 3.55 4.03 4.60 5.06 6.56 
/ 

tTl 5.53 5.44 5.55 5.75 5.80 5.87 6.03 6.37 

K I 13.1 12.9 12.5 12.3 12.2 12.1 12.1 12.1 

DM I 0.76 0.76 0.80 0.84 0.85 0.87 0.90 0.95 

Observed At 10 KHz. All Values Of ~ Are (X1E-8), 

Those Of 
/ o- Are ( XlE-6) . 
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TABLE {3.37) 

D.C. ELECTRIC FIELD EFFECT ON LD-14A 

<=== DC ELECTRIC FIELD BIAS ===> 
{1000 V/cm) 

Sample I .127 0.89 1.79 3.58 5.09 7.14 8.93 12.5 16.0 

-------1--------------------------------------------·----------
v: crl 5.8o 5.88 6.47 7.35 8.84 8.98 10.5 14.8 22.1 

/ cr 1 4.23 4.29 4.28 4.46 4.51 

K I 10.4 9.80 9.67 9.56 9.35 

DM I 0.79 0.79 0.80 0.84 0.87 

Observed At 1 KHz. All Values Of o- Are (X1E-10), 

I 
Those Of o- Are ( XlE-7) . 
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TABLE (3.38) 

D.C. ELECTRIC FIELD EFFECT ON LD-6A 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .070 0.52 1.03 2.70 3.08 4.10 5.12 7.15 9.17 

-------1------------------------------------------------------

F : a-1 5.57 5.73 6.12 7.06 7.58 8.30 9.02 10.6 12.1 

/ 
o-1 8.63 9.21 9.95 11.2 12.7 14.0 14.1 14.7 

K I 18.9 17.6 17.3 16.9 16.2 16.2 16.1 14.2 

DM I 0.82 0.94 1. 03 1.19 1. 40 1. 55 1.57 1.86 

Observed At 1 KHz. All Values Of cr Are (X1E-9), 

Those Of / a- Are ( X1E-7) . 
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TABLE (3.39) 

D.C. ELECTRIC FIELD EFFECT ON LD-54 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .186 0.81 1. 48 2.65 5.18 6.90 18.57 11.8 18.5 

-------1------------------------------------------------------
v : crl 0.47 0.83 1. 40 2.14 4.79 4.80 5.19 5.93 7.26 

I 
a-1 1.95 1. 98 2.04 2.04 2.05 2.08 2.09 2.12 2.13 

K I 4.89 4.70 4.70 4.67 4.64 4.64 4.60 4.60 4.60 

DM I .072 .075 .078 .078 .079 .080 .082 .083 .083 

Observed At 1 KHz. All Values Of~ Are (X1E-12), 

I 
Those Of cr Are ( X1E-8) . 
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TABLE (3.40) 

D.C. ELECTRIC FIELD EFFECT ON LD-52B 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .200 1. 99 3.89 6.72 10.0 12.5 17.3 22.2 

-------1------------------------------------------------------

H : o-1 5.41 8.52 9.85 11.2 14.3 16.4 21.2 21.5 

o-"1 3.38 2.07 1. 83 1. 83 2.22 2.26 2.26 2.29 

K I 6.32 5.11 5.03 5.03 5.03 4.98 4.98 4.94 

DM I .096 .073 .065 .065 .080 .082 .082 .084 

Observed At 1 KHz. All Values Of CT Are ( XlE-12), 

Those Of 
/ 

CT Are ( XlE-8) . 
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TABLE (3.41) 

D.C. ELECTRIC FIELD EFFECT ON LD-106 

<=== DC ELECTRIC FIELD BIAS ===> 
(1000 V/cm) 

Sample I .132 .605 3.36 6.82 9.05 11.9 16.7 21.4 

-------1------------------------------------------------------
H : a-1 .307 1.11 1. 60 1. 98 2.19 2.27 3.37 5.24 

I cr1 1.65 1.68 1. 69 1. 69 1. 69 1. 64 1. 64 1. 62 

K I 9.24 8.55 8.50 8.46 8.46 8.43 8.30 8.30 

DM I 0.32 0.35 0.36 0.36 0.36 0.35 0.36 0.36 

Observed At 1 KHz. All Values Of cr Are ( X1E-10), 

Those Of / cr Are ( XlE-7) . 
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3.3) Summary of The Main Experimental Results 

We give in this section a brief recapitulation of our 

findings in a tabulated form. The quantities given in table 

(3.42a) are 1) The value of the exponent in the relation: 

OAcoCw 8 where w is the frequency. 2) The piezo-conductive 

and the piezo-capacitive coefficients "C1" and "C2" evaluated 

from the slopes of the graphical plots in Sec.(3.2B). 

Table (3.42b) lists: 1) The activation energies for both D.C. 

and A.C. conduction as reported in Sec.(3.2C). 2) The average 

molecular lengths as obtained through the procedure outlined 
/ 

in Sec.(3.2D). 3) The four basic quantities K, cr, DM, and cr 

under room conditions and 1 KHz. (except for LD-105 which was 

observed at 1.5 KHz.) 

For cases where the quantities corresponding to different 

samples of the same polymer are close to each other, only an 

average is quoted. Otherwise the distinct values are listed 

for each sample. A.C.quantities observed at frequencies other 

than 1 KHz. are preceded by a number corresponding to that 

frequency in KHz. 

The units for the Cl and C2 coefficients can be different 

depending on whether the most linear data fit is logarithmic 

or plain, or whether a square-root is involved. Consequently 

the units are not given in table (3.42a), but can be inferred 

from the information supplied with each particular case. For 

example when the "comments" column reads "log" it means that 

the particular number was obtained from the slope of log8 (cr) 
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VerSUS n 1 (the plOtS being always VerSUS ..rP ) • 

The abbreviation "pln" stands for "plain", meaning that the 

particular quantity was plotted as is, without any transform­

ation. Similarly the Vsign means the square-root of that 

quantity was plotted. 

The activation energies are in (eV), while the average 

0 
molecular length La is in A. The total computational and ex-

0 
perimental error in Lo ranges from about 15 - 75 A. 

Unless otherwise noted in the table, the frequency for both 

Cl and C2 in any given observation is the same. When nothing 

is mentioned in the left-hand side of the D.C. column for Cl, 

it means that the comment is the same as in the A.C. column, 

(apart from the frequency). 

Finally table (3.43) compares the values of the conductivi-

ties as obtained from the zero-pressure intercepts of the 

pressure plots against the same quantities determined experi-

mentally at 27 PSI and room conditions. It is seen that, in 

about half the cases the "intercept" values are higher than 

the corresponding values at 27 PSI, (contrary to what is exp-

ected). This however, is mainly due to the fact that the 

pressure plots are not very linear around the low pressure 

region, which makes the value of the extrapolation to zero 

pressure become somewhat higher as the actual curve follows 

a different path to the one taken by the extrapolation line. 

In any case, the discrepancies are rather small and should 

not be regarded as infringing on the certainty of the experi-

mentally determined values. 
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TABLE (3.42a) 

TABULATED SUMMARY OF THE MAIN EXPERIMENTAL RESULTS 

POLYMER I s I COMMENT I C1 I COMMENT' C2 

--------·-----· --------- A.C--------- D.C ----·------------------

LD-105 0.40 log (100)2.05 2.8 log 0.15 

-104 0.58 log (G,H) 7.6 8.7 log 2.7 (H) 

(G) -- p1n 10.8E-6 5.7E-8 

(H) -- pln 14.5E-6 I 5.7E-8 

(G,H) -- log (10)1.15 --- pln 5.5 

-97(S) 0.57 log (100)1.05 pln 1. 34E-7 log 0.42 

pln (10)3.7E-5 -- pln 9.1 

( T) I 0. 4 7 11 og (100)2.40 pln 1.94E-7 log 0.62 

pln (10)4.3E-5 -- pln 21.7 

cont'd 



0) ,..... 
C'll 

TABLE (3.42a) Cont'd 

-95 0.43 lv"""" (10)2.9E-3 I 2.8E-4 lpln 12.9 

-94(A) 0.48 

<B> o.34 I r (10)7.2E-3 I 6.6E-4 pln 17 

-14A 10.46 llog 1. 35 1r 1. 27E-4 pln -(2.8±0.70) 

-6A 10.45 l..r (10)5.3E-3 I 5.90E-4 (pln 13.5 

-54 10.65 lpln 1. 2E-8 5.3E-12 pln 1.7 

-52B 10.83 lpln 2.1E-8 ..,.. 1.27E-6 r 0.24 

-106 10.67 lpln 1.4E-6 S.OE-9 pln 13.6 

* Only coefficients belonging to the same kind of plot may be 
compared with each other. 
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TABLE (3.42b) 

TABULATED SUMMARY OF THE MAIN EXPERIMENTAL RESULTS 

/ 

::~::::_ 1 ---A.c--::--o.c--~--~: __ l __ :_l __ :: __ l ___ ~ ___ l ___ :: ____ 
LD-105 (100)0.12 I 0.23 I 1260 I 64 I 1. 7 I 8.7E-6 I 1. OE-7 

-104 (10)0.17 I 0.29 I 1180 I 24 I 0.64 I 8.5E-7 I 1. 7E-9 

-97(S) (10)0.14 I 0.29 I 1114 I 32 I 0.58 I 1. OE-6 I 3.2E-9 

( T) (10)0.14 I 0.30 I 1470 I 20 I 0. 81 I 9 .1E-7 I 3.4E-9 

(S or T) 0.17 

-95 I (10)0.13 I 0.25 I 670 I 18 I 1. o I 1. OE-6 I 3.6E-9 

0.14 
I I I I I I 

cont'd 
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-94 

-14A 

-6A 

-54 

-528 

-106(C) 

(H) 

I (10)0.12 I 
0.12 

I (10)0.12 
I 

0.15 

0.08 

0.21 

0.11/0.02 

0.22/.085 

0.17/0.02 

TABLE (3.42b) Cont'd 

0.21 I 430 I 28 I 1.8 I 2.8E-6 I 2.2E-8 

0.25 I 700 112 I o. 80 I 5.5E-7 I 7.9E-10 

0.17 -- 21 0.8 7 1. OE-6 6.0E-9 

0.45 -- 5.0 0.074 2.1E-8 8.4E-13 

0.055 490 5.5 0.054 1 .8E-8 5.3E-12 

-- -- 6·8 0.30 1. 1 E-7 1.7E-10 

0.30 620 



TABLE (3.43) 

COMPARISON OF THE CONDUCTIVITY VALUES AT "ZERO" PRESSURE 
AS OBTAINED FROM GRAPHICAL EXTRAPOLATION WITH 

THOSE DETERMINED EXPERIMENTALLY 

/ " POLYMER a' cr cr 0' 

282 

-------- From Intercept ----- --Experimental At 27 PSI-

LD-105 (100)9.3E-5 4.8E-7 (100)5.4E-5 1.0E-7 

* 

* 

-104 1.2E-7 5.5E-10 8.4E-7 1.7E-9 

(10)5.6E-6 3.7E-6 

-97 (100)2.5E-5 1. 6E-8 (100)1.2E-5 3.3E-9 

(10)4.5E-6 (10)4.1E-6 

-95 (10)2.5E-6 7.2E-9 (10)3.1E-6 3.6E-9 

-94 (10)9.7E-6 6.3E-8 (10)5.5E-6 2.2E-8 

-14A 6.8E-7 2.9E-10 S.SE-7 7.9E-10 

-6A {10)2.8E-6 1.6E-9 {10)3.2E-6 G.OE-9 

-54 8.8E-9 S.SE-13 2.1E-8 8.4E-13 

-52B 2.6E-8 3.8E-12 1.8E-8 5.3E-12 

-106 5.2E-8 9.4E-11 1 .1 E-7 1.7E-10 

* The experimental values obtained from a different 
sample to the one used in the pressure plots. 



CHAPTER IV 

ANALYSIS AND DISCUSSION OF THE EXPERIMENTAL DATA 

DEVELOPING SOME REALISTIC VIEWS ON 

ELECTRONIC CONDUCTION 

Introduction 

This chapter is made up of two main parts, the first is 

devoted to a theoretical study based on a modified model that 

takes into account ohmic conduction as an integral part of the 

conduction process, while the second half deals with the inter­

pretation of the experimental results in light of this model. 

The study is aimed at understanding the behaviour of polymers 

with respect to frequency, temperature, and D.C electric field 

bias. It will not attempt to incorporate a model or theory for 

the effects of pressure, as this was not within the scope of 

our study, but was experimentally observed in order to provide 

us with information about the piezo-capacitive and piezo-con­

ductive coefficients. Pressure theories based on the concept 

of "overlap" between adjacent rr- orbitals ( which leads to a 

decrease in the activation energy ) have been only partially 

successful in explaining the increase of conductivity with the 

pressure (112-114). Their applicability is mainly limited to 

low-molecular weight organic materials such as ferrocene, the 

logarithim of whose conductivity shows a linear increase with 

283 
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the pressure per unit change in volume (115). 

To date, there are no established theories that could 

account for the effects of pressure on po1ymers,but the basic 

trend followed is to attribute the increase in conductivity 

to an increase in the mobility of the charge carriers due to 

their greater ability to jump between regions of polyconju-

gation. Studies on pyrolyzed polyacrylonitrile (116) confirm 

the aforementioned hypothesis. 

4.1) The Hopping Model And Ohmic Conduction 

A) Introduction 

In most solids (amorphous or crystalline), it has been 

a generally accepted notion that the ohmic conductivity based 

on Drude's theory of metallic conduction is frequency indepen-

dent up to 1013 or 1014 -1 sec. This is because the relaxation 

times of the scattering process are quite short of the order 

of (10-13 sec.). 

However if a hopping process is involved in the bulk 

transport of charge between molecules (where an electron, has 

to surmount a potential energy barrier), then it becomes cer-

tain that the ohmic conductivity will become frequency - dep-

7 9 -1 
endent at much lower frequencies, possibly around 10 -10 sec. 

as a consequence of the long relaxation times characteristic 

of the hopping process across the potential energy barrier 

separating two molecules. 
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The conduction process in polymeric materials may be 

divided into two stages : one involving the motion of the 

charge carrier within the molecule (eka-conjugation region) 

and the other involving the motion between adjacent molecules. 

It has long been debated whether the inter-molecular conduc-

tion is mediated by the same type of charge carriers as the 

intra-molecular conduction. So far, the experimental evidence 

has not been conclusive, but most observations on A.C and D.C 

quantities hint at the plausibility of different type of car-

riers for each of the two stages. 

Primarily, the evidence comes from the fact that the total 

conductivity (ohmic + polarisation) at a given frequency, is 

generally several orders of magnitude larger than the D.C. 

conductivity (117-123). Secondly, there is only little or no 

correlation between the D.C and the A.C components, at least 

2 8 
within the intermediate-to-high frequency range (10 - 10 Hz), 

(124). Finally, the dependence on the temperature is weaker 

in the A.C case than the D.C (125-128). Our own results agree 

very well with the above trends. We shall presently see that 

by working with an appropriate model which does not compro-

mise ohmic conduction in favour of polarisation conduction, 

a new light will be shed on the complicated process underly-

ing the electronic transport in polymer structures. 

Before we delve into this subject, we shall need a brief 

exposition of a few concepts borrowed from organic solids. 
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B) Hopping Model Versus The Band Model 

While in the case of inorganic semiconductors charge trans­

port takes place via the strong electron interaction created 

by the overlap of atomic orbitals, this kind of scheme is gen­

erally not favourable in organic solids due to the relatively 

weak molecular bonding (Van Der Waals type) and the small over­

lap and exchange orbitals.Thus the ultimate mode of transport 

is heavily dependent on: 1) How much energy is required to 

ionize a molecule or atom within an aggregate. 

2) Whether the electron affinity is determined by the immedi­

ate molecular group or by the polymer molecule as a whole . 

3) The type of motion the charge will follow once it becomes 

freed· 

Let us first note that while none of the models proposed 

is capable of explaining all the observed data on electrical 

transport, the evidence suggests that choosing a particular 

model that works is heavily dependent on the relative energies 

involved in the interaction hamiltonian. The band theory of 

solids is built around three basic assumptions: 

1) The legitimacy of one-electron states in a periodic poten­

tial. 2) The neglect of multiplet structure on individual 

atoms. 3) The treatment of the electron-phonon interaction as 

a perturbation in comparison with the electron-electron term. 

It is precisely this last assumption that renders the band 

model to be an inadequate description in most cases. Ioffe 

(129), has pointed out that systems with carrier mobilities 

less than 100 cm2/V-sec. and a mean free path smaller than 
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that of thermal electrons, the electron-lattice interaction 

will be so large that a band description is generally unac­

ceptable. 

In the case of inorganic crystalline solids, the electron 

exchange interaction is much stronger than the electron-phonon 

term. In metals and covalent solids the overlap integral is of 

the order of 1 ev, while the phonon energy is 0.01 eV (k8 T = 

0.025 eV at room temperature). On the other hand, the overlap 

integral for organic materials (which may also vary from site 

to site within the solid) is about 0.01-0.1 eV, while the el­

ectron-phonon term is not different from the crystalline case; 

which in effect, makes the electron-phonon interaction equally 

dominant and thereby default the applicability of perturbation 

theory. 

Systematic calculations of the energy band structure of 

anthracene were done by Le Blanc (130) using LCAO methods (he 

places the bandwidth Bat 0.56k5 T). His findings were later 

amended and modified by Thaxton (131), Katz (132), and Silbey 

(133), but with not much difference. The conclusion is that 

the electron-phonon interaction tends to produce narrower band 

widths which, at the small values quoted, do not allow for the 

conservation of the phonon energy and wavevector. 

Simple arguments based on the uncertainty principle show 

that for the band model to hold, the mean free path must be 

greater than the lattice constant ( if such a concept can be 

defined at least locally ); and according to Glarum (134) the 

bandwidth B should be greater than the acoustic waves phonon . 
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energy (Debye frequency). 

In long-chain polymers, if we take the molecular length 

for a "lattice constant", calculations in one dimension will 

show that the energy bandwidth is of the order of 0.03-0.003 
0 

eV for molecular lengths between 100-1000 A. However, with 

such a large lattice constant the first condition would not 

apply except, perhaps, at very low temperatures. Thus, the 

choice of whether a band model is a more appropriate descrip-

tion than a hopping model should ultimately be decided with 

respect to the temperature range over which the observations 

are made. 

In short, systems for which the mobility is low are best 

described in terms of a hopping picture, while in other cases, 

the effect of temperature on the relative magnitudes of the 

phonon vibrations, the electron-phonon coupling, and the elec 

tron exchange term will determine whether a coherent band 

model should be more favourable ( or less than a random 

hopping process. 

C) The Anderson Localization Theorem 

Despite the absence of structural periodicity in amorphous 

substances, certain concepts related to crystalline solids 

can still be usefully employed. The most important of these 

are the density of states, and the energy bands. However the 

material may no longer possess a Fermi surface since the Bloch 

wavevector will not in general be a good quantum number. 

This usually happens when the electron scattering by atomic 
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centers is strong ( k-Ak) => klo:l, where 1 is the mean 

free path. As the interaction gets stronger a new phenomena 

which is absent in crystalline solids, occurs: The single -

particle states become confined around the individual wells 

falling off with distance like exp(-ba:R) where 1ib01 = {2mWo , 

with Wo being the energy of the single particle state and R 

is the radial distance. What's more important, is that there 

is no mixing between states: if a state belonging to a given 

energy level is localized, then all states corresponding to 

that energy will be localized too. Jff(c) 
Thus the density of states breaks up 

into regions of localization (shaded} 

separated by regions of non-localiza-

tion Fig.(l43). This of course, is 

possible since the allowed energies 

are strictly discrete. 

Non Localized 

tc' c 
Fig.(l43) 

The energy separating the different regions is called the 

mobility edge. Its position relative to the Fermi level(*) and 

determination is of central importance in the theory of non-

crystalline solids, and plays a crucial role in the transport 

characteristics of the material. The above phenomena was first 

discovered by Anderson (135) in 1958. The Anderson localiza-

tion theorem may be considered as a key concept upon which all 

hopping models are based and its application to polymeric 

materials will be explored in the next sections. 

(*) Defined in the usual way as in crystalline solids. 
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4.2) A Model For Polymers 

A) Basic Assumptions And Postulates 

This model is based on the ideas of Frolich (136) concern-

ing a point charge dipole confined to hop between two states 

with the difference that instead of a single dipole we now 

have a multitude of them obeying a rate-determining probabil-

istic process based on the Boltzmann equation in which the 

number of particles at a given site depends on the number of 

particles at the two "nearest neighbors" adjacent sites (as-

suming that particle hopping is between nearest neighbours 

only) . 

We shall consider the polymer molecule to consist of S 

"square-well" potentials corresponding to a uniform potential 

energy height Ul, each of width "a 0 " equal to the monomer unit 

length, so that the molecular length is Lo = a 0 .S 

At the end terminals of the molecule the potential ener-

gy barrier height Uo is assumed to be >> Ul, but not infinite, 

(Fig.(144)), which is realistic of a finite non-zero D.C. 

conductivity. 

Uo 
-~---­i---

-------

Fig. (144} 

s 
A 

2 
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Charge carriers in the form of excitons or small-mass 

polarons hop along the molecular spine from one site to the 

next with probabilities (per unit time) that depend on the 

energy difference between the two states. It will be assumed 

that the system is quasi one-dimensional meaning that in the 

two dimensions transverse to the molecular spine very little 

hopping takes place. That is the electron wave-vector's com­

ponents along the transverse directions are too small to af­

fect transverse hopping, but large enough to allow for the 

existence of a density of states. 

According to the studies of Mott & Davies (137) it is 

legitimate to assume only nearest neighbor hopping since the 

"electron" states are Anderson-localized. Furthermore, the 

Bloch states of an electron in the above described lattice 

may be written as : 

1J} k = exp ( ik. Rn) c;f ( r-Rn) 4. 2 .1 

where ¢. are spherically symmetric "S" functions. 

The corresponding energies are given by (137): 

Ek = Wo - 2Io.exp(-bCICR) .cos(k.a) 4.2.2 

where b« = c42mWo)/~ ,and Io is the energy integral which de­

pends on the type of the well being used. Thus the density of 

states is confined to a bandwidth B of C::: 4Io.exp(-br,tR) around 

Wo and grows narrower and narrower as the loca~ization becomes 

stronger. The value of Io, ( Slater (138) ) is typically of 

the order of 0.001 to 0.05 eV. and without loss of generality 
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it will be assumed that B is large enough to accommodate many 

quantum states yet small compared to Wo that the probability 

of occupation of the states may be assumed not to depend on 

their energy, but always equal to that corresponding to the 

state belonging to energy level Wo. 

Next, we shall set up the dynamical equations governing 

the hopping of particles between sites within the molecule 

and across adjacent molecules, assuming for the time being, 

that the probabilities per unit time of jumping from site to 

site are known. 

To this end we consider three adjacent sites 1, 2 & 3. 

We let Nk be the instantaneous number of particles on site k 

then according to the basic assumptions we have: 

dN2/dt = -(P21 + P23)N2 + Pl2N1 + P32N3 4.2.3 

where Pjk is the probability per unit time of jumping from 

site j to site k. In the case of variable range hopping where 

distant neighbors are involved the above equation takes the 

general form : 

dNj/dt = -.2'(Pjk)Nj +L:'PkjNk 
K K 

4.2.4 

This is recognized as Boltzmann's equation governing the rate 

of transport of particles across cellular membranes by dif-

fusion. For the case of nearest neighbors "k" takes only two 

values "j-1" & "j+1" giving back eq.(4.2.3) 

dNj/dt= -(Pj,j-1 + Pj,j+l)Nj + Pj-l,jNj-1 + Pj+1,jNj+1 4.2.5 

The above is a system of S coupled linear differential equa-
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tiona whose analytical solution can be formidable even for 

as few as 3 sites. In sec.(l.4) we have seen that a series 

solution is possible by invoking boundary conditions at the 

extremeties of the molecular domains akin to those encount­

ered in crystals i.e. by imagining the macromolecule to be a 

closed loop so that its right and left endpoints are one and 

the same. In the Pohl-Pollak theory, the assumption of zero 

ohmic conduction allowed for a series solution using imped­

ance network methods. However this approach will not work if 

the ohmic currents are incorporated in the theory. 

In order to simplify the problem to a manageable level 

we shall assume that the hopping between sites within a poly­

mer molecule occurs with relative ease compared to the more 

difficult hopping across adjacent molecules. In mathematical 

terms : Pjk >> PSl or PlS for all j ,k ~ 1 and S . 

As a consequence of this, the charge carriers within the mo­

lecular domain can be legitimately assumed to respond rather 

instantaneously to the action of an applied electric field . 

Thus when a D.C electric field. is switched on at time t = 0, 

the charge carriers will re-distribute themselves instantly 

on all sites ( except "S" and "1" ), according to the static 

distribution discussed in sec.(l.3D). Consequently we need 

only to worry about the temporal dependence of the number of 

charges on sites "S" and "1". This leads to a pair of first 

order coupled linear differential equations which will be 

solved in the following sections. 
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B) An Eigenvalue Problem 

To simplify notation we shall denote (see Fig.l44) site 

"S" by "A", and site "1" by "B", site "S-1 11 by "D" and site 

"2" by "E". The probabilities per unit time PSl and PlS for 

transitions across the barrier will be denoted by "a" and "b" 

respectively, while PS,S-1 and P12 will be denoted by "a"' 

and "b'"· 

Thus eq.(4.2.5) becomes 

dNA/dt =-(a+ a')NA + bNB +FA 4. 2. 6 

where FA = PDA.ND and is independent of the time (by our pre-

vious assumption). Similarly: 

dNB/dt =aNA- ( b + b')NB + FB 4.2.7 

with FB = PEB.NE, and is also constant independent of time. 

In the absence of electric field the terms "a" and "b" 

are equal, and also "a'" will be equal to "b'"· That is, the 

"left" and "right" become indistinguishable when E -> 0 

For the calculation of these transition probabilities refer 

to appendix (D). Eqs.(4.2.6-7) may be cast in matrix form: 

dN/dt = <n )N + F 4. 2. 8 

where <n > is given by . . 
- ( a+a' ) b 

n 4.2.9 

a -(b+b') 



In a diagonal representation, eq.(4.2.8) is readily 

solved according to : 

N 1 A = C 1 lexp C A1 t) + 

N 1 B = C 1 2exp ( /h t) + 
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where the C 1 s are constants etc .. , and A 1 ,A 2 are the 

eigenvalues of (!l), and are integration constants 

The true number of particles is now found by transforming 

back to the original basis giving the following 

NA = Clexp ( A1 t) + C2exp ( A2 t) 
+ NSA} 

+ NSB 

4.2.10 

The coefficients C ,D ,and NS are best determined from the 

initial conditions, and the requirement that dNA/dt, dNB/dt 

as obtained from eq.(4.2.10) conform to eq.(4.2.6-7). 

The eigenvalues are determined by solving the secular 

equation : 

A2 +A (a+a'+b+b 1 ) + (ab 1 +a 1 b+a 1 b 1 ) = 0 4.2.11 

The results ,after considerable algebra , are 

--{ (a+a') 
-A1,2 

( b+b I ) 

+ ab/[(a+a 1 )-(b+b 1 )] 

4.2.12 

ab/[(a+a 1 )-(b+b')] 

Where the above is only valid for non-zero electric field 

i.e. as long as a-b ~ 0 and a'-b' ~ 0 . Also the condition 

4ab << [ (a+a 1 )- (btb 1 ) 12 4.2.13 
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has been assumed to hold. This is legitimate on account of 

the relative magnitudes of a, a', and b, b' (consult appendix 

D). Finally upon inserting the explicit values of a, b, a'·· 

from appendix (D), we obtain: 

a. ( 1 + exp (-~") + exp ( W-) I [ 1 + exp <"t(> 1 ) - f 
4.2.14 

h' I 1 + exp (-. 1 ) + exp ( W+) I [ 1 + exp ( ~) 1 +( 

where f = -abl[ (a+a' )-(b+b') J 

= a. exp [- ( Ulk 8 T + ~>] /tanh (~/2) 4.2.15 

and 
I 

W± = Ulk8 T ± }\ 4.2.16 

Further simplification of eq.(4.2.14) may be obtained by 

inserting the value of "a" as determined from appendix (D). 

Next we define two characteristic times '2"'1 and l'2 

= 1lw1 I = 11w2 

where wl = - A 1 and w2 = - A 2 4.2.17 

Then we rewrite eq.(4.2.10) as : 

NA = Clexp(-wlt) + C2exp(-w2t) + NSA 

4.2.18 

NB = Dlexp(-wlt) + C2exp(-w2t) + NSB 

At t=O when the electric field is zero the following initial 

conditions must hold: 

NA(O) = NB(O) = No (this value is determined later). 

Also at any other time > 0 we must have : 

dNAidt and dNBidt as obtained from eq.(4.2.18) conform 
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to eq. ( 4 . 2 • 6-7 ) . This yields the following sets of equations 

wlCl = ( a+a 1 ) Cl - bDl 

w2C2 = (a+a 1 )C2 - bD2 

4.2.19 

wlDl = (b+b 1 )Dl - aCl 

w2D2 = (b+b 1 )02 - aC2 

Also 

FA = (a+a 1 )NSA bNSB 

FB = (b+b' )NSB aNSA 

It should be noted that eqs.(4.2.19) are self-consistent by 

virtue of the fact that the w's satisfy the secular equation 

(4.2.11) . 

Finally making use of eq.(4.2.12-13) we have 

Dl = ( f /b)Cl , D2 = (-a/ f ) C2 4.2.20 

Which, when combined with the initial conditions yield: 

Cl + C2 = No - NSA _ ql 

4.2.21 

(_f/b)Cl (a/ { )C2 = No - NSB _ q2 

Whose solution is 

Cl = ql + ( ff /a) q2 

Dl = <f!b)ql 

C2 = - ( r /a )q2 4. 2. 22 

02 = q2 - ( f /b) ql 4. 2. 2 3 

Where again, the approximation f 2 << ab has been used. 

We are now in a position to calculate the ohmic current 

across the gap, as well as the polarisation currents within 

the molecules. This will be taken up in the next section. 
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4.3) Calculation Of The Currents 

A) The D.C. Response 

We begin this section by calculating the ohmic and 

the polarisation currents under the influence of a D.C. elec-

tric field switched on at time t = 0, and in the positive x-

direction. Using the results of sec.(4.2B), the D.C. current 

across the gap may be written as follows: 

The net number of particles flowing across the gap is equal 

to the number flowing to the right (out of site A) less the 

number flowing to the left (out of site B). Also if we assume 

a common cross-sectional area of <na~), where 2a0 is the cross-

sectional diameter of a single polymer molecule aligned with 

the field, then the net flux across the barrier is : 

I 2 [ a. NA ( t) - a. exp ( -l'\) . N8 ( t) l /1Ta0 

where "a" is the probability per unit time of jump from site 

A to site B. The electric current density is "e" times the 

above, thus: 

Jn. ( t) = { NA ( t) - exp ( -1(> . N8 ( t) ) • ( ea/1Ta! ) 4.3.1 

By making use of eqs.(4.2.22-23), the current density may be 

written in a more instructive form as follows: 

Jn. ( t) = ( h1 exp ( -t/-r1) 
1 
+ h2 exp ( -t/z-2) + h ~:o ) ( ea/na~ ) 

where: h1 = ql ( 1 - f e-ll;b) + q2 Cf /a) 

with: 

, , 
h2 = ql(f/b)e-lf q2(e-1} + f;a) 

I 
= NsA - Nseexp(-~) 

4.3.2 

4. 3. 3 
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I 

f Ia = exp[-(W+)]/tanhC~'l2> and f /b = e"~.cf/a) 4. 3. 4 

So that: h1 = ql(l - ff/a) + q2(f/a) } I 

h2 = ql(f/a) - q2(;7] + f;a) 4. 3. 5 

At time t = 0+ the ohmic current density is: 

-~' 2 
Jn. ( 0) = [ ( ql - q2. e ) + h t:.. J • ( ea/na0 ) 

I I 

= (<No - NsA) - (No - Nss )e-1J + (NsA - Nsse-l'))). (ea/na!) 
I _.,., 2 

J.n ( 0) = No ( 1 - e ) . ( ea/na0 ) 4. 3. 6 

Worth noting is the fact that h1 + h~ is< 0 (refer to eq. 

(4.3.5), while hA is positive. This implies that J~(t) is a 

monotone increasing function starting from an initial value 

given by (4.3.6) to a final value of: 
I 

Jo.c. = [ NSA - NsB • e1'( ) ( ea/7Ta; ) 4.3.7 

as t approaches "infinity". 

The quantities NsA and Nss may be expressed in terms of 

the D.C.field using the static distribution of charge along 

the molecular length of th~ polymer according to the analysis 

of sec.(l.3D), we find: 

11 NsA = Nm. e ( 1 
-"1' 

- e )/2sinh("l) 

NsB 
-2'? 

= e .NSA 4.3.8 

Where Nm is the average number of charge carriers on a given 

polymer molecule, (Nm can be< 1 ), and~ = (eELo/2k 8 T). 

Hence we may write: 
I 

Jo.c. = Nm[ 1 - e-ll l . ( ea/1Ta~ ) 4.3.9 

Finally the expression for "a" from appendix ( D ) is insert-

ed in (4.3.9) to give: (assuming [l+exp<-1{>1 << exp(U/ksT) ) 

J 0.c. = Nm.(eC'8 /7Ta~).[ 1- exp(-~1) J 4.3.10 
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where C'e is [ ~h.exp(-bocR) l .exp(-U/kBT), (see Appendix D ) . 

Further, since / 
~ may be considered << 1 for all practical 

purposes, (recall that ~/is << ~ for: any value of electric 

field), then exp(x) ~ 1 + x , and consequently: 

4.3.11 

Thus the electric field dependence of the conductivity J/E is 

controlled by Nm, like in the Rosen-Pohl formula of sec.(3.2D) 

According to appendix ( C ), we may therefore write: 

4.3.12 

Where: -~R Ea = Eg/2 + U , and c 8 =~he • The (average) molec-

ular: volume being taken as <na!Lo), so that Nm = Nc.(na:Lo) 

and Nc is given by eq.(C.10). 

Eq.(4.3.12) predicts the observed behaviour of the D.C. 

conductivity with respect to electric field and temperature. 

It shows among other: things that the pre-exponential factor 

can be temperature-dependent, depending on how Ni·CB varies 

with temperature. This implies that in a logarithmic plot of 

eq.(4.3.12) versus (1/kBT), the slope of the resulting "stra-

ight" line is not always controlled by the value of Ea. 

Another important prediction of (4.3.12) is the fact that the 

activation energy Ea is really made up of two contributions: 

one coming from the energy gap between the top of the valence 

band and the bottom of the conduction band (this usually has 

a weak temperature-dependence), while the other comes from 
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the term (U) which is related to the height of the potential 

energy barrier Uo at the end of the molecule by: U = Uo - Ul, 

(see Appendix D). Note also that ODe becomes very small as 

Uo becomes larger and larger. Finally the expression in eq.(4. 

3.12) reveals the dependence of the conductivity on the phonon 

frequency as well as the probabilities of the transition. 

We remark at this stage that for D.C conduction there is 

no steady-state contribution from the polarisation current 

density Jp, the reason being that Jp exists only as a trans­

ient and tends to zero as t -->oo, as we shall see in the 

next section. The total current density during the transient 

time is J(t) = J~(t) + Jp(t). 

The implication of this is that these two currents are in 

"parallel" with each other rather than in "series", meaning 

that if we consider site "A" for example, as a node, then the 

rate of change dNA/dt is not equal to ~(t) - Jp(t) as may be 

easily verified from the differential equations and the fact 

that Jp(t) = dNA/dt - dN8 /dt. 
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B) The A.C. Response 

We shall first obtain the polarisation expression under 

D.C. electric field conditions as in part (A). From what has 

been explained already, the dipole moment of a single polymer 

molecule may be written as: 

Pm = P00 + (eLo/2). [ NA(t) - Ne(t) ] 4.3.13 

where La is the (average) length of the molecule, NA & Ns are 

the instantaneous number of charge carriers on sites "A", "B" 

and P00 is the static dipole moment associated with a molecule 

of length (La- 2a0 ). This is in accordance with the basic 

assumptions outlined in sec.(4.2A). Assuming all molecules to 

be aligned with the field, the total polarisation of the sys-

tern would be Pm/Zo where Zo is the molecular volume and is 

given by (na!)Lo. 

The quantities NA and Ne have been calculated in sec.(4.2 

B), we therefore have, similar to the procedure in eq.(4.3.3): 

NA - Ne = g 1 exp(-t/'Zj) + g2exp(-t/t'2) + g.o. 4.3.14 
I 

where: g, = ql(l - e"~ f/a) + q2 <{Ia) 
I 

g2 = q1(e"7 [;a) - q2(1 +/;a) 4.3.15 

gb. = NsA - Nse 

As before, at t = 0+ I the dipole moment is Poo, since 

g, + g2 + gA = o, and as t -> oo, the dipole moment reaches 

a final value of: Ps = P00 + (eLo/2)( NsA- Nss ). 4.3.16 

The term NsA - Nss is calculated as before to be: 
/ 

Nm ( 1 - e-"1 ) where 
/ '? = ( ea0 E/ksT) 4.3.17 

We note at this stage that since NsA and Nss are both linear 

with Nm, the D.C polarisation will follow the same electric 
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field dependence as the conductivity: i.e. it diverges rather 

than tends to the experimentally observed saturation limit. 

This supports the speculation that the charge carriers res-

ponsible for the polarisation cannot be the same as those 

mediating D.C. conduction. In view of this we shall assume 

that the charge carriers responsible for the polarisation 

cannot exist outside the polymer molecule, (i.e.they do not 

participate in D.C. ohmic conduction), and that their number 

density Np is different to that of the ohmic current carriers 

No, together with the possibility of a lower activation ener-

gy: thus we write: 

Np = Ni'.exp(-Ep/2keT) 4.3.18 

where Ni' ~ Ni (possibly greater), and Ep is smaller than 

Eg of the D.C. carriers. The above assumptions are strongly 

supported by the experimental facts that the A.C.conductivity 

is several orders of magnitude higher than the D.C. case, and 

that the A.C. activation energy is about one half that of the 

D.C.case. However, because this issue is highly debatable at 

the present and because our model is somewhat simplified, we 

shall not attempt to propose a specific D.C. electric field 

dependence for Np, the reason being that for A.C.conduction, 

small field amplitudes are used, and in this regard (4.3.16) 

may be considered legitimate in as much as Nrn will be indep--

endent of the electric field amplitude at small fields, while 
/ 

(1 - e-'7) becomes e: 1] 1 making Ps to vary linearly with E. 

Corning to the A.C.response of the system we note that 

it can be obtained by one of two methods: Since the response 
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to a unit-step function is known, the response to a harmonic 

excitation can be obtained by performing a Laplace transform 

on the D.C. response. However the mathematics is not trivial 

and requires contour integration. A more realistic method is 

to observe that a system with two relaxation times is equiva-

lent to a second order differential equation of the form: 

4.3.19 

where Y stands for either the ohmic current density, or the 

polarisation. In the first case, F is given by: h~·(ea/~a!>, 

which is simply OOc·E (for small fields), see eqs.(4.3.11-12) 

while in the second case, F is given by: Qp.E , where Qp = 

(eLo) Np/4k 8T (obtained from eq.(4.3.16) again assuming small 

fields). The above assumptions are legitimate for the case of 

A.C. studies where only a small-amplitude signal is used. 

Moreover the time-dependence of the relaxation times Tj and 22. 

through their electric field dependence has been ignored in 

view of the fact that for small amplitudes ( ~ << 1) the dep­

endence' of ?:1 and 22. on "E" is not strong, we have referring 

to eqs.(4.2.14) and eqs.(D.9- 0.15) in the appendix: 
, 

1171 = P' [exp(U/kaT)/(2+~) J/exp(U/ksT> 4.3.20 

= P'/(2+71~ 4.3.21 

Under the same assumptions we also find that 1/~2 is also 

given by (4.3.21). Therefore 
, 

( l1 + z;, ) = 2 ( 2 +~)/PI , and 

?:12"2= 4(1+~)/(P') 2 (neglecting terms of order '1' 2> 

The solution to {4.3.19) with F = Foexp(iwt) is: 
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Y = Fl[ 1 - w 2 T, Tz+ iw('Z/ + "Z2.) 1 4.3.22 

From which the real and imaginary parts for the amplitudes of 

Jfi and Jp = iwP are obtained. We find 

Re(J) = (a- [1 - w2.'4 2;1 + Qp.w 2 ( ?:t + '22J) .EID'" 4.3.23 

where: 02. = (1 - w'"Zf ~) 2 + w 2 ( zf + Tz )2 

For our purposes we may suppose w 2 ?:i 'l"'2. is < < 1 , since 

-7 9 
from (4.3.20-21) the value of <"C;l;) is"-'10 -10- s. 

Hence the total conductivity may be written as: 

/ cr 4.3.24 

The implications of eq.(4.3.24) are very much in agreement 

with the experimentally observed results: 
I o- increases with frequency from its D.C.value of a-: OQ~. 

to its "final" value of Qp l<?:t + ?:'2). The rate of increase 

actually depends on the values of the relaxation times lt;&L;2 

Moreover it is seen that the dominant term in (4.3.24) comes 

from the polarisation current and not from the ohmic current. 

The relative magnitudes of these two terms in the high -

frequency limit is given by: 

I cr I cr = ( Loi87Tao )( N i I IN i) exp ( Wt.lksT) I (Ca. [ Tt + Z'"'z] ) 

-bcxR 
where WA = u + (Eg - Ep)l2 , and CB = P 1 :::; J{h.e 

4.3.25 

ff -1 
- 10 s 

By inserting typical values of these parameters say: 

0 0 
La -:::::: 1000 A, a 0 ~ 1 A, Ep -=x Egl2 , U 0:: Eg ~ 10ksT, and 

( 7::-t + 'Z'"z ) 
-4 

~ 10 s ; we find: 
/ cr 1 cr ~ N i I IN i 4.3.26 

Thus ratio of the total conductivity to the D.C. conductivity 



306 

is on the order of the ratio of the polarisation charge car­

rier concentration to the ohmic charge carrier concentration. 

According to Vlasova(139,140), EPR and thermal emf studies 

on polypyridines and polyacrylonitrile at temperatures of 300 

°K - 370°K reveal that the concentration of free charge car­

riers ( ohmic, that is) is about one to two orders of magnit­

ude lower than that of the paramagnetic charge centers, which 

are believed to be the impurity sites where the donor and/or 

the acceptor complexes reside (141-143). It is therefore very 

plausible to assume that Ni'/Ni could be as much as 1000, or 

more, since a given charge complex site may contribute more 

than just one carrier. Of course the experimentally observed 

conductivities are in strong support of the above conjecture. 

The dielectric constant is likewise found to be: 

4.3.27 

which follows a Debye-type relaxation with a relaxation 

time of ( Zf + 22). The interesting thing to note is that as 

in the Pohl-Pollak model, K' is proportional to the square of 

the molecular length. 
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Before we begin to examine how well our simplified model 

fairs in accounting for the experimentally observed results, 

let us note that our model was based on many idealizations in 

order to keep the mathematics as simple as possible. Thus, at 

best, our model is meant to be a rough approximation for the 

purpose of illustrating the mechanisms behind the observed be­

haviour, and is in no way a true description of reality. Some 

important compromises were made among which: 

1) The assumption that all the potential energy barriers 

between molecules have the same height. This of course is not 

true. A more realistic expression can be obtained by assuming 

a Gaussian distribution, or even a uniform distribution over 

some range of energies (Frolich (144), Mott & Davis (145) ). 

This will give rise to a corresponding distribution of relax­

ation times since according to appendix ( D ) the relaxation 

times depend on the barrier height. 

2) The mathematics can be further complicated by assuming 

a variable-range hopping, in which the most probable hops are 

those for which the range R causes w"t"" to be 0:- 1 => 

boeR .::; ln( Jih/w) 4.4.1 

Mott & Davis (146) applied this for amorphous organic mater­

ials). However, to follow up on this scheme for the case of 

polymers requires the re-writing of the basic dynamical equ­

ations. For the sake of reference, Mott & Davis derived an ex-
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pression for the A.C conductivity in amorphous silicon based 

on the above assumptions, and found it to vary like: 

r- w{ln( Vph/w) }4 
1 which when plotted on a log-log scale 

does give a linear plot having a slope of about 0.8 if 1-{,h is 

taken to be rvlo12 s-1. 

3) Other refinements such as taking into account the pola­

ron effective mass, the location of the mobility edge with re­

spect to the Fermi level, and the compensation effects in the 

high impurity concentration systems, can enhance the accuracy 

of the theory. But the computational labour becomes extremely 

tedious. 

4) Finally, our model ignored intra-molecular motion, and 

concentrated only on inter-molecular conduction. Thus the re­

laxation times came out independent of the molecular length 

Lo. The implication of this is that it will not predict the 

observed behaviour of the loss factor under large D.C bias. 

For the very same reasons, our system is described by only 

two relaxation times as compared to the infinite set given in 

the Pohl-Pollak model. 

With the above in mind, we now assess how our model com-

pares with previously established theories in accounting for 

the experimental data. To start with, the frequency depend­

ence of the A.C. quantities follows a Debye-type behaviour 

according to eqs.(4.3.24 & 27). As seen from the theoretical 

plots in Fig.(l45) for the conductivity versus frequency, the 

slope is greater than the observed values which are in the 

range of (0.4-0.8). The reason for this is obvious: a single 
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relaxation time cannot account for slopes below one, because 

of the nature of the Debye curve. However by employing a su-

perposition of Debye-like functions corresponding to a series 

of relaxation times, each contributing a certain percentage , 

we find that it is possible to simulate the experimental data 

as Fig.(146) indicates. The greater the range of the super-

position, the smaller will be the slope of the resulting plot 

Similarly the dielectric constant plot (A) shown in Fig. 

(147) based on eq.(4.3.27) indicates a similar problem. Curve 

(B), however, which is made up of a superposition of two re-

laxation times is pretty close the observed shapes. The fact 
I 

that the observed exponent "s" in the relation : t:r d:. w5 is 

below one (actually lower than the (0.7-0.8) value character-

istic of low-molecular weight organic substances), has always 

been taken as an indication to the existence of a wide dis-

tribution of relaxation times (127). 

Next we look at conductivity as a function of the tempera-

ture as given by (4.3.12) and (4.3.24). Inspection of the ex-

perimental results of sec.(3.3C) show that range of variation 

of the D.C conductivity cannot be accounted for on the basis 

of the single form (A.x)exp(-B.x), where B is taken equal to 

the activation energy Ea as determined from the experimental 

plot, and "A" is chosen to fit the value of tT at the lowest 

value of x = 1/kT. Thus the function (A.x)exp(-B.x) does not 

reproduce the same "steepness" of the observed slopes, unless 

B is chosen greater than "Ea", in which case the fit loses its 

purpose. In order to achieve more flexibility in the slope 
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adjustment of the linear fit, we have to allow for some depen-

dence on "x" of both the pre-exponential factor "A", and the 

parameter "B". As the experimental evidence suggests, we know 

there is some very slow decrease of "Ea" with x, it is there-

fore reasonable to let "B" -> 13 B/(ln(x)) 1 where p is a 

parameter whose value ranges from 0 to 1 (inclusive). 

We shall also let "A" --> A/x« , where "a" is a real number 

positive, negative, or zero. This choice simulates the possi-

bility that in some systems, "Cs" and "Ni" (perhaps), of eq. 

(4.3.12) can be temperature-dependent. 

cr» cr» 
Fig. (148) shows how different choices for a and J3 can 

affect the slope as well as the range of the variation of the 

logarithmic plot. Values of (l < 1 and values of J3 > 0 

will tend to decrease the slope and the range of the plot, as 

in case (A) 1 while values of tX 1- 1 and those of , close to 

0 will result in much steeper slopes (case C). The plot in (B) 

corresponds to an intermediate set of values: a = 0.5, J3 = 0.5 

The striking thing about Fig.(148) is that all the plots look 

extremely linear despite the fact that the actual expression 

plotted is strictly not a straight line. The reason of course 

is due to the very small range over which "x" varies: from 38 

to 120. In any case the above observations should enable us to 

realize that even though a logarithmic plot may appear perf-

ectly linear, it does not necessarily correspond to a behav-

iour like A.exp(B.x), ( where A and Bare constants ) . In 

other words, logarithmic plots cannot be considered reliable 

enough to deduce the true functional form of a given quantity 
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because of their extreme insensitivity over the limited range 

of variation in "x". 

A major question that arises naturally, is whether the 

choice of the parametrs that reproduce a particular slope is 

unique. The answer, in general (i.e under un-restricted para-

meter variation), is obviously no. However once the parameters 

are confined to a specific range justified on physical grounds 

then the choice for the parameters becomes (almost) unique. 

For example, in the case of the D.C conductivity plot for LD-

105 G, any value of J3 > 0 would require values of a > 1 in 

order to produce the same slope of the plot in Fig.(89): For 

P = 0.1 we find a: = 1.35; however this implies that CaNi !X 

1.35 . varies like (kT) wh1ch may not reflect a physically accept-

able law. The choice f3 = 0 I gave a = 0. 45 I ( => CaNi::::::: 

(kTfA5 which is not unreasonable considering the short-cuts in 

our model). Next, since the A.C. conductivity in eq.(4.3.24) 

follows the same temperature dependence as the D.C case, the 

foregoing arguments apply. For illustration, we've reproduced 

a fit for LD-95 (B) at 1KHz. in Fig.(l50), using()(. = 1, and 

p = 0 . It is seen that the agreement is perfect. The fact 
I 

that for A.C conduction the intrinsic number density Ni varies 

with (kT) possibly differently than Ni does, is another indi-

cation supporting the hypothesis that A.C conduction is medi-

ated by a different type particle than in the D.C.case. 

Before closing we remark that the plots for the dielectric 

constant (vs. frequency) and the D.C conductivity (vs.temper-

ature) are self-consistent in the sense that for the 1.114E-4 
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value selected for the pre-exponential coefficient ( ==> Ni 

16 -3 
1.4x10 em. ), the value for the dielectric constant came out 

I 
to be around 88 (at DC) by chosing Ni 

19 
to be 0.5x10 

-3 
em., in 

good agreement with what has already been discussed in section 

( 4. 38). 

Finally there is no need to make theoretical plots for 

the electric field dependence, since the experimental curves 

have already been fitted to the theoretical plot of the Rosen-

Pohl formula and the agreement is excellent. 



FIGURE CAPTIONS 

Fig.(l45): Debye-type plots for the conductivity based on 

eq • ( 4 • 3 • 2 4 ) • 

Fig.(146): Effect of the superposition of three Debye-type 

functions using 60% of the curve corresponding 

to relaxation time r = 2E-3 s. I 25% of the one 

corresponding to 2E-4 s 1 and 15% of the 2E-5 & 

curve. Note the almost perfect linearity, and 

lowering of the slope value. 

Fig.(147): Dielectric constant for: (A) Single relaxation 

time of 2E-4 s . (B) SUperposition using 60% of 

the curve corresponding to 2E-3 s 1 and 30% of 

the 2E-5 s curve. 

Fig.(148): Effect of different values of the parameters a 

& p on the logarithmic .Plots for the D.C con­

ductivity: 

(A) a = 0.5 , p = 
. th 

1 ( => CaNi o( (k8 T) and 

Ea ct. 1/ loge ( 1/kB T) ) . 

CB> a = o.5 , ' 
fh = 0. 5 C => CBNi cl (kB T) and 

Ea oC 1/ V loge(l/kB T) ) . 

(c) a = 1 1 p = o .11 C => CaN i oC k:s T and 

Ea o(, 1/ ( loge(l/kB T) ]0 "11 
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4.5) Conclusion And Recommendations 

The previous sections have shown that electrical conduc­

tion and polarisation in polymeric materials can be fairly 

understood on the basis of a hopping model that ignores the 

intra-molecular motion, but at the same time takes into ac­

count the polarisation of the whole molecule. Certain bold 

assumptions were required to explain the drastic differences 

between the D.C and the A.C behaviour. These assumptions were 

legitimized on the basis of the findings of other authors in 

this field (117-128,139-141). 

As we saw in sec.(4.4), the two-site model is not very 

successful in the areas of frequency-domain analysis, however 

it does give us a clear picture as to what is really needed 

to construct a satisfactory model that will account for all 

the descripancies. In this regard we feel that the two-site 

model has served its purpose in the understanding of the phe­

nomena of hyper-electronic polarisation. 

This project was primarily undertaken to find means that 

will help in the synthesis of polymers having negligible loss. 

From what has been learned it seems that the very quantities 

that produce larger polarisation (namely Ni' and Lo) also give 

rise to a higher A.C conductivity and hence larger losses. It 

looks as though the dielectric constant and the conductivity 

do not "commute" in the sense that we cannot enhance one pro­

perty without destroying the better characteristics of the 

other. Although it does sound like a hopeless situation, there 

are other quantities that can affect the loss factor but are 
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not in the picture yet. To see what's involved let us write 

the expression for the loss factor DM based on the two-site 

model of sec.(4.2-3). We have according to eqs.(4.3.24 & 27) 

wr 
DM = (Qp/[Qp+ E0 l) --------------------------

1 + (Eo/[Qp+€0 ])(w7:)2 

4.5.1 

where 7: = 7:; + ?::2 . This is a Debye-type behaviour display-

1/2 
ing a "peak" at w = (1 + Qp/€ 0 ) 77: 4.5.2 

Consequently by restricting our operational frequency to the 

"left side" of the peak (i.e. for values of w << 11'1:' ), we 

can insure the highest dielectric quality possible since K is 

greatest in this region while DM is smallest. To be of any 

practical value, however, 7: must be small enough so that 1/?:: 

will be "pushed" farther out along the frequency axis so as 

to provide a wider operating range. In essence, this means 

that the probability P', (where P' = .t6h.exp(-boc:R) ), has to 

be maximized. Which in turn means that a higher phonon frequ-

ency is desirable, and a more extended wavefunction ( smaller 

b~) would be essential. 

Physically, this corresponds to lower impurity levels and 

more order in the lattice, also more "rigid" molecular side 

groups are needed that will exhibit higher natural frequen-

cies of vibration in order to increase Yph· 

An important piece of correlation is provided between the 

the total conductivity and the loss factor, by examining the 

results shown in table (4.1): 
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It is observed from the table and the corresponding 

plot in Fig.(151) that there is quite a strong correlation 

I 
between the ratio cr/cr and the loss factor DM: The greater 

the ratio of ~1 to ~, the lower will be the loss factor. 

Which again supports the hypothesis that the A.C. conduction 

is really a different type of conduction as compared to the 

conventional ohmic type which is expected to produce higher 

losses for larger values of the conductivity. 

TABLE (4.1) 

CORRELATION EFFECTS BETWEEN THE CONDUCTIVITY 
THE DIELECTRIC PARAMETERS 

I 
Polymer I DM I tr/a" I K Q 

--------- ------ ------- ----- ----------
LD-105 1. 70 87 64 38 

-104 0.64 500 24 38 

-97 0.70 290 26 38 

-95 1. 00 280 18 18 

-94 1. 80 130 28 16 

-14A 0.80 695 12 15 

-6A 0.87 170 21 24 

-54 0.074 25000 5 68 

-52B 0.054 35-00 5.5 102 

-106 0.30 670 6.8 23 

* Q is the "Quality Factor" , which is K/DM 
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In closing we mention that in order to obtain promising 

results in this field of polymers, many other channels of in­

vestigation have to be pursued concurrently. Thus in addition 

to dielectric studies, one must carry more extensive research 

in the areas of Hall effect and thermo-emf measurements, NMR 

and EPR spectroscopy, photo-conduction and ionization, also 

band theory studies for the case of crystalline structures. 

As to future recommendations regarding the dielectric 

studies, we note that a more controlled method for pre-fabri­

cating the polymer samples into thin solid discs instead of 

powdered samples, will help eliminate many of the reproduci­

bility problems we encountered. Moreover, extensive study of 

the effects of pressure must be carried to determine whether 

subjecting the polymer to high pressures does affect its molec­

ular cross-link character. This point is extremely crucial in 

ascertaining whether two pellets molded from the same powdered 

material can be regarded as identical systems. 

Finally, there are other areas of study that can provide 

vital information if carried successfully. These are: 

1) The dependence of the activation energy (D.C & A.C) on 

other parameters such as pressure, and D.C electric field. 

2) Investigating the same properties we studied at much 

lower temperatures, and a wider frequency range up to micro­

waves region. 

3) A thorough study of the dependence of the relaxation 

time(s) on temperature, D.C electric field, and pressure. An 

analysis of the various distributions employing time-of-flight 
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technique can be a powerful method in determining the Fourier 

components, and hence the relaxation time modes. 

4) Intensive correlation studies related to the chemical 

aspect of the polymers, such a systematic study of the effects 

of impurities, replacement of the side groups, and compensa­

tion effects between donors I acceptors ratios, can provide 

useful information to help optimize the features of a given 

species. 

5) Investigative study of a wide variety of monomers to 

select the best possible candidates that comply with what has 

been recommended for lowering the loss factor. This last point 

is perhaps the most basic of all the others, and we feel that 

it should be pursued first, or at least concurrently with (4). 

Despite the fact that our own undertaking was not supple­

mented by any of the above topics, we have managed to compile 

a good deal of very informative data which as we have seen, 

did show relatively good agreement with existing models. And 

although we have barely "scratched the surface" of this multi­

disciplinary field, we do believe our attempt was worthwhile. 
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APPENDIX (A) 

CALIBRATION PROCEDURES AND RESULTS 

1) Calibration Of The Schering Bridge Loss 

Factor Dial 

Let us consider a purely resistive element Rp whose value 

has been accurately determined, and with high precision (refer 

to part "2" ) . The resistor Rp is chosen from a material that 

obeys Drudes theory of ohmic conduction so that there is no 

need to worry about its frequency dependence over the range of 

frequencies we are interested in, namely ( 0.1 - 100 ) KHz. 

If (CL, DL) are the open-terminal readings of the bridge 

when balanced at frequency "w",we may think of the loss factor 

DL as arising from a fictitious resistor Ro across the bridge 

terminals, in parallel with the lead capacitance CL , Ro will 

be given by: 

A.1 

Consequently when the resistor Rp is connected to the 

bridge terminals the equivalent resistance across the bridge's 

terminals will be: 

Rx = RoRp/(Ro + Rp) A. 2 

This means that under ideal conditions (i.e. assuming Rp does 

not have any intrinsic capacitance of its own), the readings 

of the bridge dials (at balance) will become: (Cx,Dx) where: 
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Cx = CL and Dx = 1/(wCxRx) 

It follows from eq.(A.2 & 3) , that 

Dx.Cx = DL.CL + 1/(wRp) 

or : Dx = DL + Dm where Dm = 1/(wRpCL) 
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A.3 

A.4 

A.5 

Consequently, if the bridge dials are accurate, a plot of 

Dx versus Dm (corresponding to different values of Rp), should 

reveal a straight line having a slope of unity and an inter­

cept equal to DL. Otherwise, the dial readings have to be cor­

rected accordingly. We note that for the above reasoning to 

be valid, it is implicitly assumed that the capacitance dial 

readings are correct and true. For our system this was indeed 

the case: the capacitance dial was checked against standard 

air capacitors having better than 0.1% precision, and almost 

zero loss-factor (so as not to be dependent on the loss-dial 

reading no matter what its condition might be). The readings 

always came out to be within (0.2-0.5)% of the air standard 

values. Of course at higher losses the capacitance readings 

will have more error due to the inter-dependence between the 

loss-factor dial and the capacitance dial, especially if the 

loss-factor dial is already in error. 

In principle, the value of the "Y"-intercept in the plot 

of Dx versus Dm should agree with the (un-calibrated) open -

terminal reading DL. However, this is not the case, possibly 

due to an accumulation of errors from the calibration of the 

high-value resistors (in the range of (50 - lOOO)Mfi) which 

are used in the low-loss reading range. Whatever the case 

might be, the graphical plot is considered accurate enough 
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to give a reliable value of the intercept, since most of the 

graph points are from high-loss values (Dm >> DL ). We note 

that the value of DL as determined from the plot and from the 

open-terminals readings are really not that much different, 

for example at 100 Hz. DL = 0.043 from direct reading, while 

from the graphical plot DL = 0.03 . Yet we have to accept the 

intercept value of DL as the "true" (un-calibrated) value in 

order that the graphical analysis be self-consistent. Finally 

the true (corrected) value of DL , or any other nominal dial 

value, is obtained through the graphical plot: 

Dx(nominal) = a.Dm(true) + b A. 6 

Where "a" and "b" are determined from the graph. 

At frequencies higher than 100 Hz., it was found necessary 

to divide the range of Dx into "low" and "high" values, since 

the plots were not extremely linear but showed a consistently 

repeated pattern whereby the high values have slopes close to 

one, while the low values are about 20% greater. 

Figs.(152-163) show the calibration plots at the frequen­

cies indicated. The errors quoted reflect the uncertainties 

in both the computational linear fit and the uncertainties in 

reading the loss-dial divisions as well as the error estimates 

on the values of Rp (listed in part "2"). 

Finally we note that all readings were taken under guarded 

circuit conditions. The resitors Rp themselves being housed in 

a special, guarded box holder whose capacitance with and with­

out the resistors Rp was carefully checked for any variation 



338 

before its value was included as part of the lead capacitance 

CL. A sample of the programs used in the processing of the raw 

data for calibration is given at the end of the appendix ( A 

for the 0.50 and the 1 KHz. cases. Also included is a sample 

of the 25 programs used in the processing of the measurements 

data under different macroscopic conditions. 

2) Determination Of The Resistors Rp Used In The Bridge 

Loss-Dial Calibration, And In The Calibration 

Of The Internal Resistance Rg Of 

The D.C. Electrometer 

All the resistors used in the calibration were chosen to 

be either the four-color ceramic or metal film types, or the 

sealed-in-glass ultra precision wire type. Resistors under the 

10 Mfi range were determined to within 0.1% using a Hewlett­

Packard model HP-3468A digital multimeter. Those above the 10 

Mnrange were determined to within (1-3)%. These resistors 

were then employed in the calibration of the internal resist­

ance Rg of the Keithly model 610-B DC electrometer at various 

settings of its "amperes" selection dial. The method consists 

of using a known voltage source in series with the electro­

meter and the pre-determined resistor Rp. From the reading of 

the current in the loop, the total resistance is computed and 

the internal resistance Rg is accounted for as the difference 

between the total and Rp. The results of these measurements 

are given in table (A.l) 
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TABLE (A.1) 

ELECTROMETER CALIBRATION 

Electrometer Setting Rg 

-------------------------------------------------
-11 

10 ( M.O. ) 100,700 ± 800 

-10 
10 10,800 ± 200 

-9 
10 995 + 12 

10-8 98.5 ± 1.5 

-7 
10 9.6 + 0.7 

10 
-6 

1. 02 ± 0.05 

10-5 (K.tl.) 97 ± 2 

-4 
10 9.98 ± 0.08 

-3 en> 10 995 ± 5 
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5 PF.~ I NT CHR$ ( 4) II F'F.::f:l: 1 II : F'F:~ I NT 
CHR$ C:9l"15L": PRINT "DIAL 

CALIBR. FOR GUARDED SCHERING 
BRIDGE AT 500 HZ. BY N. A. 

HI LAL II: PF.~ I NT CHF.~$ ( 4) II F·F.~#O 
II 

7 PRINT CHF.:$ (4) "PR#1 II: PF.~INT 

CHF.:$ ('3)"15L": F'F.:INT II D 
M DCX CPX 

XERR D XERR C 
": PP I NT CHF.~$ ( 4) II PF.:~* 

0" 
10 DIM CC25l~DC25l,PC25) 
20 FOR I = 1 TO 14 
30 READ CCil,DCI),R(l) 
35 DF = 0.05 * CD(!) + 0.099) · 
40 IF DF > 0.01 THEN 180 
50 CS == C C: I) 
60 DCX = DF 
70 CPX = cs I (1 + CDF A 2)) 
75 130TO 80 
77 CPX = cs I (1 + CDCX A 2)) 
80 CT = 200. 1. 
90 G = 1 I (6.29575 * RCil * 5 * 

(10 ''· - 4·)) 

'35 DM == G I CT 
110 CE = CPX - CT 
130 ERRC = CCE I CT) * 100 
150 PF.~INT CHR$ (4) "PF.::f:l:1": PF.~INT 

CHf:;;~$ (9) "14L": PF.~INT DM, DCX 
,CPX,PCERD,ERRC: PPINT CHR$ 
C4l"F'P:f:I:O" 

160 NEXT I 
170 GOTO 225 
180 CS = CCI) * C1 - 0.026 * 5 * 

DF) 
190 IF DF > 0.1 THEN 210 
200 130TO 60 
210 DCX = DF * (1 - 0.026 * 5 * 

DF) 
220 GOTO 77 
225 DATA 201,-0.047,856.75,200 

.5,-0.018,454.54,201.4,0.067 
5' ~?.:55. ·41 

230 DATA 201.7,0.11,203.41,201 
.5,0.178,153,201.8,0.32,101 

235 DATA 202,0.41,77.25,202.8, 
0.62,52,203.2,0.96,35.25 

237 DATA 206.7,1.73,20.365,213 
.8,4,10.25,235,6.44,5.265 

240 DATA 323.3,15.81,2.46,476, 
26.08,1.737 

2~i0 END 
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~) PRINT CHf":$ ( 4) II PF.:~* 1 " : PF.: I NT 
CHF.:$ C-:3)"15L": PF.:INT "DIAL 

CALIBR. FOR GUARDED SCHERING 
BRIDGE AT 1 KHZ. BY N. A. H 

ILAL": PRINT CHR$ C4) "PF.::f:I:O" 

7 PF.: I NT CHI=<!$ ( 4) II PF.::f:l: 1 11 : PF.: I NT 
CHF.:$ ('9) 11 15L": PF.:INT II D 

M DCX CF'X 
%ERR D %ERR C 
II: PF.:INT CHI:;::$ (4) 11 F'I:;:::f:1: 

011 

10 DIM CC23),DC23>,F.:C23) 
20 FOR I = 1 TO 23 
30 READ CCI),DCI>,RCI> 
35 DF = 0.01 :t. CDCI) + 0.15> 
40 IF DF > .01 THEN 180 
50 CS = C (I) 
60 DCX = 0.01 * DCI) 
70 CF'X = cs I (1 + CDF A 2)) 
75 GOTO 80 
77 CPX = cs I (1 + CDCX A 2)) 
80 CT :::: 200 
90 G = 1 I C6.29575 :t. RCI) :t. C10 

··'· - 3)) 

"35 OM = G I CT 
110 CE = CPX - CT 
130 ERRC = CCE I CT> * 100 
150 PRINT CHR$ (4)"PR:f:l:1": PRINT 

CHI:;::$ ( '3) II 14L II : PF.: I NT DM, DCX 
,CPX,PCERD,ERRC: PRINT CHR$ 
C4) 11 PR#O" 

160 NEXT I 
170 GOTD 22~5 

180 CS = CCI) * (1 - 0.026 :t. OF> 

190 IF OF> 0.1 THEN 210 
200 130TD 60 
210 DCX = 0.01 :t. DCI) * C1 - 0.0 

26 :t. DF) 
220 GOTCJ 77 
225 DATA 2()(). 1, -... 1.4·5, 38l .• 7, :;;~(H) 

.2,-.031,230.25,200.2,.11,17 
8.:25 

230 DATA 200.78,.25,153,200.8, 
.44,121.88,200.4,.54,101 

235 DATA 201,.82,77.25,200.6,1 
.34,52,200.95,1.82,41.25 

237 DATA 200.8,2.67,31.13,201. 
4,3.4,25,202.4,4.19,20.88 

- - - - - - -- -- _, - -
247 DATA 235.6,40.54,1.922,260 

• 35' 54.05' 1. ·=+7:2 
·.;;-~50 END 
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The following program was used to obtain the results of 

the frequency-response measurements from the raw data at 1 KHz 

corresponding to the different polymers and their multiple 

"trial" samples. There are some 25 other similar programs cor­

responding to different frequencies, pressures, temperatures 

and electric fields. 



5 PF.: I f\IT CHF.:$ ( 4) II PF.:t~ 1 II : PF.: I NT 
CHI:;;:$ (':3) "BON II : F'R I NT CHF.:$ 

(':n"17L 11 : F'F.:INT CHF.:$ (';n 11 70 
F.: II: PI;.: I NT II PAF.:At-IETEF.:S EVALUA 
TION AT 1 KHZ. UNDER F.:OOM CO 
NOS. OF TEMP. AND PRESSUF.:E 8 
Y N.A.HILAL@ 1987 ": PF.:INT 

CHF":$ ( 4) II F'R#O II 
7 PF::INT CHR$ (4) 11 PF.:#1. 11 : PI::::INT 

CHR$ ( '3) II 1 7L II : F'F.: I NT II 

K DM ACC 
KI 

(4) "PF.:#O" 
10 DIM CC32l,DC32),AC32>,THC32) 

,CLC32l,DLC32l,GC32) 
20 FOR I = 1 TO 12 
25 READ CCI),DCil,ACil,THCil,CL 

C I ) , DL C I ) , G C I ) 
30 CA = 8.854 ::t:: ACI) * 10 I CTHC 

I) ::1:: 2.54) 
35 CV = 8.854 :t. <1.22718 - ACI)) 

:t. 10 I C2.54 :t. THCill 
45 IF D<I> > 1 THEN 125 
50 CS =CCI) 
60 DT = 0.8333 :t. 0.01 :t. DCil + 0 

.00344 
62 DLC = 0.8333 * 0.01 :t. DLCI) + 

0.00344 
70 130TO 80 
75 DT = 1.0325 * DX + 1.0l3E - 3 
80 CP = cs I (1 + CDT A 2)) 
90 CM = CP - CLCI) - CV + 0.81 
100 K = CM I CA 
105 PDC = CP :t. DT - DLC :t. CLCI) 
107 Dt-1 -- PDC I CM 
110 GX - GCI) I C6283.2 :t. CA % C 

1E - 12)) 
114 KI - K :t. DM - GX 
115 ACC = C8.854E - 12) * 6283.2 

:*: K :*: DM 
117 SG = GCI) :t. THCI) :t. 2.54E -

:3 I A(I) 
120 GOTO 157 
125 CS =CCI) :t. C1 - .026 :t. DCI) 

* .01) 
130 IF DCI) > 10 THEN 150 
135 IF DCI) < 2.5 THEN 60 
140 DX = .01 :t. DCI) 
145 GOTO 75 
150 DX ~ DCI) ::J:: (1 - .026 * DCI) 

* .01) * .01 
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155 130TO 75 
157 p•;;: I NT CHF.:$ ( 4) II F'F.:# 1" : F'F.: I NT 

CHP$ ('3)"17L": Pf':INT I<,DM,A 
cc, ~:::r' 813: F'f:::I NT CHF.:$ ( 4) II F'F.: 
#0" 

170 NEXT I 
200 DATA 209.7,7.71,0.9574,29, 

188.45,-0.011,2.6364E-8 
205 DATA 248.7,23.85,0.9852,25 

,191.4,0.015,1.61E-7 
210 DATA 253.5,20.85,0.9852~25 

, 1·:31. 4, 0. 015, 1. 5E-7 
215 DATA 249.4,25.67,1.0387,27 

,191.4,0.015,1.8168E-7 
217 DATA 249.8,22.75,0.940124, 

26.5,191.4,0.015,1.9133E-7 
221 DATA 207.1,6.4,0.93314,24. 

5,188.5,0.02,1.35294E-8 
225 DATA 202.7,5.85,0.87965,26 

.5,188.5,0.02,0.6949E-8 
227 DATA 206,7.25,0.9244,26.8, 

188.5,0.02,1.3809E-8 
228 DATA 211.5,8.35,0.8659,18. 

7,188.5,0.02,1.38095E-8 
234 DATA 208.6,7.58,1.0207,40, 

188.5,0.02,6.12903E-8 
235 DATA 210.8,8.0,0.9032,40,1 

88.5,0.02,6.94915E-8 
240 DATA 213.1,10,0.97625,33,1 

88.5,0.02,8.86793E-8 
250 DATA 199.2,0.28,1.0207,16. 

1,188.9,0.018,1.2882E-11 
255 DATA 197.75,0.175,0.99353, 

18,188.4,-0.028,0.88747E-11 
257 DATA 196,0.16,0.97625,22,1 

88.4,-0.028,0.65719E-11 
260 DATA 200.3,0.41,0.95033,15 

.5,188.4,-0.028,1.15242E-11 
265 DATA 199.8,0.34,0.95033,15 

.2,188.4,-0.028,0.77199E-11 
270 DATA 201.4,0.49,0.95033,16 

,188.4,-0.028,0.90909E-11 
273 DATA 199.8,1.12,0.899204,1 

5.5,188.4,-0.02B,0.32344E-10 

275 DATA 202.7, 1. 78, 0. 8'3'3204, 1 
6.75,1~8.4,-0.028,0.33670E-1 
0 

280 DATA 312.4,33.55,0.914125, 
23,188.5,0.02,6.1290E-7 

::;::·:;~5 END 
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APPENDIX (B) 

CORRECTIONS DUE TO IMPERFECT GEOMETRY OF 

THE SAMPLE 

1) Case Of The Uniform Dielectric Slab That Does Not 

Fill The Whole Space Between The Plates 

Consider a parallel plate capacitor of plate area A and 

plate separation "s", and let "b" denote the thickness of the 

uniform dielectric slab having a dielectric constant K, but 

which does not fill the whole space. 

By choice: b ~ s , Fig.(164). 

From elementary electrostatics we 

find the capacitance of the system 

to be: 

C'= C/(1-A/s).[l+A·K/b] B.l 

where C is the capacitance when the 

dielectric material fills the whole 

space. If Co is the capacitance of 

the system in the absence of the 

dielectric (b = 0), then Co = C/K. 

s 

Fig.(164) 

The experimental dielectric constant that is measured is 

C'/Co, we shall denote this by K', so that : 

K I = K I ( 1- ~Is ) • [ 1 + .O.·K I b J 8.2 
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We shall introduce a new parameter q defined by q = 1 - 6. /s = 

b/s 1 so that eq.(B.2) becomes: 

K' = K/[ q + K(l-q) 8.3 

It is seen from the above expression that K' ~ K 1 since for 

any q we have: q + (1-q) = 1 1 hence q + K.(l-q) ~ 1 1 as 

K is ~ 1 always. For K = 10 and q = 0.96 , K' = 7.35 Thus 

there is 25% error caused by only 2% gap on each side between 

the plates and the dielectric. Obviously the amount of error 

depends on the actual value of K. The correct value of the di­

electric constant can be obtained if the proper value of q is 

known, by inverting eq.(B.3): 

K = q K'/[ 1- K'(l-q) 8.4 

Of course, the above description is a bit exaggerated for 

the sake of illustration. In a real situation the dielectric 

piece may look as shown in Fig.(165 a & b). These are called 

the central bulge and the wedge respectively, they have more 

complicated geometry, but the corrections can be obtained de­

spite the lengthy algebra. This is done in part (2). 
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2) Case Of Non-Uniform Dielectric Geometry 

Consider the situation shown in Fig.(165a), we shall use 

a series of approximations as follows: 

The capacitor in Fig.(165a) can be thought of as a series 

and parrallel combinations of the individual capacitors shown 

by the dotted lines. Thus for example, the total capacitance 

C' may be written as: 

C' = Cb + CwCm/(Cw+Cm) B.S 

The only sub-section whose capa-

citance is not known is Cw. So we 

first need to calculate that: 

If we divide the capacitor into 

thin slabs of thickness dx as shown 

in Fig.(165c), then we may write 

for a single slab: --- - ·· 

law of parallel combinations) Fig.(l65c) 

The areas A1 & A2 are given by: A1 = lc. (-ax + lc) I A2 = 

lc.(ax), where "-a" is the slope ( a = lc/tw) 1 lc being the 

.2. 
side length of the plate (lc = A) I and tw is the plate sep-

.2. 
aration. Also note that A1 + A2 = lc = A (as expexted) . 

Since 1/Cx is the infinitesimal quantity, we shall denote 

it by d(1/Cw), so .that an integration over "x" from 0 to tw 

will give us the inverse of the series equivalent combination 

of all the slabs, namely (1/Cw). 

Thus we have: 
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1/Cw f tw dx 

= -------------------~--

0 alc(f2 -E1>x +E1lc 

From which Cw = ale [ E2 - €. 1 l /loge ( E.2 I E1 B.7 

Of importance to note, is the fact that eq.(B.7)is symmetric 

in E1 and Ez, which. is expected of course on physical grounds. 

The above expression also has the correct limit as €. 1 --> E2 . 

This can be seen by setting E2 = E1 + b 1 then using the 

approximation: logJl + x) ~ x when x << 1. 

In a typical situation the plate area belonging to the 

central portion Cb is about 40% of the total. Hence we shall 

take the areas corresponding to the various sub-sections to be 

as follows: 

Ab = 0.4A , Aw = 0.3A (for each of the top and bottom 

portions), Am= 0.6A ( for the top and bottom portions combi-

ned, corresponding to a total capacitance Cm ). The various 

"plate separations" are similarly taken as follows: 

tb = t , tm = cJ. t 1 and 2. tw = ( 1 - ~ ) t 1 where the 

value of~ is to be determined on an individual basis for each 

particular case. 

Consequently we find for the total capacitance, (setting 

E, = € 0 , and E2 = € in eq. ( B. 7 ) ) : 

C' = Cb + 0.6(€ -E0 )(A/t)/[ (1-CX.)logJK) + a (K-1)/K l B.8 

where : Cb = 0. 4 E ( A/t) B.9 
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Again, the experimental value of the dielectric constant 

is K' = C'/Co where Co =EoA/t , so that the relationship be­

tween the experimentally measured "K" (namely K') and the real 

"K", is : 

K' = 0.4K + 0.6(K-l)/[(l-ot)loge(K)+ a(K-1)/K] B.lO 

We note the following limiting cases: When~--> 1 (which 

corresponds to the case when the dielectric fills the whole 

space), then K' --> K (as required). When K = 1 ( correspon­

ding to no dielectric at all ), then K' --> K = 1 . This may 

be seen by working out the proper limits, letting K = 1 + x 

where x is a small number -> 0 1 then using logJ.l+x) c:: x and 

performing the appropriate cancellations before letting x --> 

0 1 etc ... 

In a typical situation, t is ~27 mils, and t - 2.tw is 

.,...., 25.5 mils 1 which corresponds to ()( = 0. 9 4. Hence taking K = 

10 again in eq.( B.lO ) we find 

K' = 9.2 which is 0.92 K ==> 8% relative error. 

In general, the actual amount of error will depend on the 

value of K which is not known a priori. Hence it will bene­

cessary to solve eq.( B.lO ) forK in terms of the measured 

quantity K'. As seen from the above an analytical solution is 

not feasible and a graphical procedure must be used. Thus by 

plotting the function K'(K) versus Kover the range of K which 

is of interest, see Fig.(l66), we can locate the proper value 

of K by drawing a horizontal line at the specific value of K' 

and determining the abcissa of the intersection point. 

Finally, the "wedge" dielectric in Fig.(l65b) is treated 



363 

similarly, by dividing it into a wedge and a rectangle,then 

working out the equivalent combination. The result is : 

K' = (K-1)/[(1- o<.)loge(K) + d.(K-1)/K J B.11 

All previous comments remaining applicable. 

In conclusion, we believe that the error in the measured 

dielectric constant could not have been more than 10% at the 

worst since in most cases a was practically unity (no more 

than 0.5 mil difference could be detected in a typical disc 

thickness of 30 mils ( ==> OL = 0.98 ). The handful of cases 

where awas 0.95 or lower were corrected for accordingly by 

using the graphical technique discussed above. 
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APPENDIX (C) 

THEORETICAL BASIS OF THE ROSEN-POHL FORMULA 

FOR THE D.C. CONDUCTIVITY UNDER 

LARGE D.C. ELECTRIC FIELD 

We have seen in sec. ( 1. 3B) that the number density of 

thermally activated charge carriers available for D.C. conduc 

tion may be written as: 

No = Ni.exp(-Eg/2k9 T) C.l 

where Ni is the intrinsic number density (which may be temper­

ature dependent for some systems), and Eg can be thought of as 

an energy gap between the top of the "valence band" and the 

bottom of the "conduction band" in the sense discussed in sec. 

(1.38). 

When a D.C. electric field is switched on, the charge car­

riers will gain potential energy (if they are negative), and 

lose potential energy (if they are positive), see sec.(1.3C). 

In either case, this means that the effective energy gap that 

must be surmounted will be decreased by the amount of poten­

tial energy gained or lost. (Recall that "holes" act as free 

(positive) charge carriers in the valence band.) 

For electrons or holes, we therefore have: 

where 

Eg --> Eg - le.qD(x) I C.2 

cp (x) is the potential energy function at position 
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site (x) where the charge carrier is, (refer to eq.(l.3 .. 13)) 

and "e" is the charge of the carrier (negative or positive). 

Note also that cj::> (X) is positive for holes and negative for 

electrons over most of the range of "x", (refer to Fig.(lO)). 

Next we ask ourselves what is the most probable value for 

"x" ? The answer to this can be found as follows: 

Since the electron is most likely to be found at the position 

of maximum potential energy (minimum P.E. for holes), then it 

is very legitimate to use the value of ·~ at the position of 

extremum, found by setting the derivative of eq.(l.3.13) equal 

to zero. We get: 

Xo = - L 1 /(1 + Eh/E) ( for electrons ) C.3 

where L 1 is given by eq.(1.3.11), and is identified as one­

half the molecular length, which, we denote by Lo here. That 

is: L 1 = Lo/2. For holes, Xo --> + L 1 /( •• ) etc .. 

The value of ¢ ( Xo) is therefore: 

~ (Xo) = EL 1 /(1 + Eh/E) + Eh.( L 1 /(l + Eh/E) + 

L 1 .loge{(Eh/E)/(1 + Eh/E)} l C.4 

For small electric fields << Eh 1 and for large electric 

fields>> Eh, eq.( C.4 ) yields the same limit namely: 

c:j:;> ( Xo) ~ EL 1 ( - EL 1 for holes ) . C.5 

Hence we are justified in taking the magnitude of the energy 

gap in the presence of the electric field to be : 

Eg' = Eg - lei .EL 1 e.G 

Now let us go back to the expression in eq.(l.3.2): 
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Z ( w) 

N(w) = ----------------------
exp[(Eg-u)/keTJ + 1 

where u is the Fermi level, and Eg is the activation energy. 

In the presence of a D.C electric field, the argument of the 

exponential term becomes (using eq.(C.6) ): 

( ( Eg - I e I . EL' ) - u ) /kaT 

which, upon substituting u = Eg/2 , (refer to sec.(1.3.B) ) 

becomes: 

(Eg/2- lei.EL')/kaT = (Eg/2- lei .ELo/2)/kBT 

So that effectively, the population of the energy levels is 

now given by: 

Z ( w) 

N'(w) = -------------------------------- C.7 

exp[(Eg- lei .ELo)/2kBT] + 1 

Next we must account for the fact that not all the polymer 

molecules are oriented parallel to the field. If we assume a 

random distribution (which is legitimate for long-chain molec­

ules), then "Eg- lei .ELo" in eq.( C.7 ) will have to be re­

placed by: 

E(e) = Eg - e.ELo.cos(9) c.a 

where from now on "e" denotes the absolute value of the elec­

tronic charge, and "9" takes on all values from 0 to -rr/2. 

Finally we may assume that the number density for intrinsic 
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charge carriers is uniform (i.e. each·polymer molecule contri-

butes the same number of particles), this means that the con-

tribution to the intrinsic number density of the carriers gen­

erated by those molecules within a solid angle d!l is : 

dNi = Ni .d.Cl C.9 

Consequently, the number density for thermally, and field-

activated charge carriers is: 

Nc ~ J dNi.exp(-E(9)/2kBT) C.10 

Upon performing the integration between the proper limits on 

e , we obtain : n/2 

Nc = 2nNi.exp(-Eg/2kBT
0
)Jiexp[-eELo.cos(9)/2kaTlsin(9).d9 

or 

N c = 21TN o . [ ex p (~j - 1 l I ~ + C.11 

where l+ = eELo/2kBT· Eq.( C.l1 ) was first determined emperi­

cally by Rosen & Pohl (1), but their derivation did not justi-

fy the use of eq.( C.6 ), the reason for which we presented 

our own side of the argument. 



APPENDIX (D) 

CALCULATION OF THE TRANSITION PROBABILITIES 

Throughout this section all probabilities encountered are 

per unit time unless otherwise stated. For the sake of brevity 

the "per unit time" phrase is usually omitted unless there is 

reason for ambiguity. 

Let us consider hopping between two states "A" and "B" 

separated by a potential barrier represented by an intermed­

iate state "C" ,Fig.(167). 

The probability per unit time of hopping from "A" to "B" via 

"C" as an intermediate stage is derived as follows: 

The probability Pxy of hopping between two consecutive states 

"X" and "Y" is really the conditional probability that state 

"Y" gets occupied given that "X" 

is occupied; and we write it as 

P(YIX}. If P(X) and P(Y) are the 

probabilities of occupation of 

states "X" and "Y" then by its 

very definition: P(YIX) = 

P(Y)/P(X) , that is: P(YIX) is 

the probability of occupying "Y" 

per unit probability of occupying 

I 
D 

c 

I 
E 

B 

Fig.(167) 

"X". It follows from the above reasoning that the probability 
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of jumping from "X" to "Y", PXY should be proportional to the 

factor exp[-{Wy-Wx)/ksT1, where Wx and Wy are the energies of 

the states involved in the transition. The above assumes imp-

licitly that the energies are remote enough from the Fermi 

level to justify using the Maxwell-Boltzmann distribution in 

place of the Fermi-Dirac expression. 

Now the probability of jumping from "A", namely Pa, is 

equal to: 

Pa = PAC + PAD {since only nearest-neighbour hops are 

assumed). Similarly Pc = PCA +PCB. According to Mott & Davis 

{146), Px should be proportional to the phonon frequency and 

to a factor describing the degree of localization of the wave 

function around a given site. The reason being that for non-

crystalline solids it is assumed that the hopping is thermally 

activated, phonon-induced, and that it is field-assisted in 

the sense that a D.C. electric field bias would give the elec-

tron a preferable direction to follow after it scatters by a 

phonon. Thus Pa should be given by: 

Pa = ~hexp{-ba.R) D.l 

where Pph is the phonon frequency {typically ~ 1012 -1 s ) , and 

"bOt'" is a parameter depending on the energy of the state: 

n 
b~ = bo~ {Ec - Wa) D.2 

Ec being the mobility edge {sec.{4.1) ), and n is around 0.62 

boa. is a parameter of the order of the inverse distance bet-

ween scattering centers {sites). 

Since by assumption, the electron states involved in hopping 

are deep-lying states below the mobility edge {Ea << Ec) then 
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it is not difficult to see that all the Pa's are approximate-

ly the same. In other words the energies Wa are far removed 

from both the Fermi-level as well as the mobility edge on the 

scale of kaT. Typical density of states diagrams for amorphous 

semi-conductor materials (not necessarily polymers) might look 

something like the ones shown in Fig.(168). 

We may write explicitly, (suppressing the kBT factor): 

Pa = ka(exp[-(Uo-Wa)] + exp[-(Ul-Wa)]) 0.3 

Pc = kc(exp[-(Wa-Uo) 1 + exp[-(Wb-Uo) ]) 0.4 

The normalization constants ka and kc are detrmined from the 

above pair of equations. Hence it follows that: 

PAC= Pa.exp(-Wa).exp(-(Uo-Wa)/[ exp(-Uo) + exp(-U1) 

= Pa/[ 1 + exp(Uo-U1) 0.5 

Similarly PCB = Pc/[ 1 + exp(Wb-Wa) 0.6 

We leave it as an exercise in probability computing to 

show that the probability for the compounded process A --> C 

and C --> B is given by: 

PAB = PAC.PCB/(PAC + PCB) 0.7 

From which we obtain: 

PAB = Pa.Pc/{ Pa[l+exp(Wb-Wa)] + Pc[1+exp(Uo-U1)] } 0.8 

In the absence of electric field, Wa = Wb, and so PAB = PBA 

as they should for reasons of symmetry. Further since Uo-Ul _ 

U is >> 1, then we may neglect "1" in comparison to the expo-

nential term. Also we shall assume that Pa = Pc = P', also 
I 

setting (Wb-Wa)/kaT = -eE.lg/kBT = -"7 (where lg is the gap 

width separating two molecules, usually taken equal to "a 0 ") 



Fig.(168) CAPTIONS 

Four possible forms of the density of states~E)for 
amorphous semi-conductors, localized states are shown shaded. 

(After Le Comber & Mort (147), and Matt & Davis (137) p.211). 

a) Overlapping band tails proposed by Cohen et al.(148). 

This is considered unlikely to apply for materials that 

are transparent in the visible and infra-red regions. 

b) "Mobility Gap" in the region of the localized states cre­

ated by non-overlapping bands for which the Fermi level 

lies around the center of the gap, (Fritzsche (149). 

c) Introduction of impurity levels due to partially compens­

ated dopants (as in chalcogenides glasses ). 

d) Same as "c" but with donor and acceptor levels (D & A) 

split, (Gubanov (150). This results in the pinning of the 

Fermi energy l:F at a fixed value over a wide temperature 

range, if the "D" & "A" bands partially overlap. 

When the "D" & "A" bands are completely separate, the 

position of the Fermi energy does not have to be symmet­

rically located between the two bands, (Marshall & Owen 

(151) ). 
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we finally get: 
/ 

PAB = P'l[ 1 + expC-'YJ) + exp(UikaTl 0.9 
/ 

Note that~ is positive for positive charge and negative for 

negative charge. Likewise, it follows that PBA is just ·what 

PAB would be for a charge of the opposite sign. Therefore : 

/ 

PBA = P 'I [ 1 + exp ( 1 ) + exp ( UlkBT) 1 0.10 

I 
In as much asl1 I<< UlkaT for most electric field values 

(which is reasonable for electric fields below the voltage 

breakdown threshold), then it is easy to show that: 

/ 

PBA = P AB. exp ( -1 ) 0.11 

Which says that it is more difficult to jump against the field 

than with the field. The expressions for PAD and PBE are cal-

culated in a similar fashion: 

I I 
PAD = P 'I [ 1 + exp q) + exp ( -UikBT 1 = PBE. exp (- r; ) 0.12 

Also of interest are the "cross" relations linking PAB to PBE 
I 

and PBA to PAD, we find (using the assumption I? I<< UlkaT ) : 

I 

PBE = PAB.{ 1 + exp(UikBT)I[ exp(-r;) + 1]} 

I 
= PAB.exp(UikaT>I£ exp<-1 > + 1 

While : 

PAD 
I 

= PBA.{ 1 + exp(UikaT)I[ exp(~) 
I 

= PBA.exp(UikBT)I( exp( 'l) + 1 J 

+ 11 } 

0.13 

D.14 

The above expressions can be further 
I 

conditions such as: 1 << 1 << UlkBT, 

simplified under varied 
I 

and '7. < < 1 < < Ulk13T etc. 

These possibilities are explored in the text in chap.(4). 
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