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ABSTRACT

Mathematical relationships are developed for binary diffusion
to show: (1) Fick's second law should be applied only to systems which
have constant partial molal volumes, (2) the equivalence of the mutual
diffusion coefficients in the center of moles and center of volume sys-
tems, and (3) Darken's equations can be derived without the restriction
of constant or equal partial m;)lal volumes. Itis shown that Fick's
diffusion equation can be used to obtain binary diffusion coefficients
from experimental data for either the volume or mole reference frame
as long as the specific volume of the mixture follows a linear law over
the concentration range employed.

Mutual and self diffusion coefficients were obtained for the
liquid cadmium-lead system over the entire composition range at 623 K.
The capillary reservoir techuaique was used employing Pb-210 and Cd-
115m as tracers. The self diffusivities were found to be in agreement
with data reported previously by Mirshamsi. Both isotopes were used
to study the effect of overall concentration on the mutual diffusion coeffi-
cient. Several improvements in the capillary reservoir technique,
which were necessary before mutual diffusivities could be obtained

using this method, are described.
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DIFFUSION IN LIQUID METALS
CHAPTER I
INTRODUCTION

Diffusion in single phase binary solutions is considered in this
work; no attempt is made to treat solutions containing more than two
components. Three types of diffusion coefficients exist for a binary
system: (1) mutual - DAB and Dy ,, intrinsic - D, and Dy and self -
Dj; and DE . Almost without exception the two mutual diffusivities must
be equal, i.e., either component of a binary can be designated as com-
ponent A. However, each component in a binary solution has a self
and an intrinsic diffusivity. In general all three types are functions of
concentration, temperature and pressure.

The mutual diffusivity gives an indication of the rate at which
composition gradients are dissipated. The self diffusivity is a mobility
and therefore a measure of the ability of molecules or atoms to move
through the solution. The intrinsic diffusivity is defined with reference
to Darken's (7’ inert markers and is used as a mathematical crutch in
relating the self diffusivities to the mutual diffusivity. Robinson (20)
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points out that when an intrinsic diffusivity is defined relative to a mass
or volume fixed reference frame it is a simple function of the mutual
diffusion coefficient and not a separate entity.

Darken (7) proposed the following equation to relate the self and

mutual diffusivities,

% * dlna
Dyp= (XD + XgDp) 3nx - (1)

This equation was developed for metallic solids and the existing data
seem to substantiate its validity., Nothing in the derivation of Darken's
equation limits it to solids, and it has been applied to organic liquid sys-
tems. The results indicate that the equation is valid for ideal solutions
but not for nonideal systems, No previous test of the relationship has
been made for liquid metals.

Rathbun (19) has proposed an empirical equation similar to
Darken's which he claims is valid for orgaric liquids containing one

associating component,

S
dlna . (2)

dln X

o o)
DAB + (XADB + XBDA)

Di and DOB are constants and are evaluated at the extremes of concen-
tration, The exponent on the thermodynamic factor takes a value of 0.6
for systems deviating positively from Raoult's law and 0. 3 for systems
with negative deviation. The equation has been checked for several sys-

tems and was found to predict the data within experimental error.



Cullinan (6) uses a modification of the absolute rate theory

based on Eyring's {11) hole model to derive the following equation,

%R, o XA qina
- (D° n
o
DX and DB are the same constants as employed by Rathbun. Vigners

(22) has applied this equation to most of the diffusion data available with
very promising results. It successfully predicts the data for nonasso-
ciating systems, including nonideal orga.nic liquids and metallic solids,
but fails for associating systems.

Because of the approximate nature of these equations they can-
not be extended to different systems unless substantiated by data. Liguid
metal systems are examples. The difficulty associated with taking these
data have discouraged intensive investigation, but the increasing impor-
tance and use of liquid metals now demands greater efforts along these
lines.

The method employed in this work to obtain diffusion data was
the capiilary-reservoir technique (1), utilizing radioactive isotopes as
tracers. In this method, self diffusivities are determined by measuring
the decrease in radioactivity of a capillary after it has been allowed to
diffuse into a reservoir of the same composition but containing no radio-
active atoms. Mutual diffusivities are determined by measuring the
change of radioactivity of a capillary that has been allowed to diffuse

into a reservoir of a different concentration. In this case, both the



capillary and the reservoir contain radioactive matter with the ratio of
the active atoms being the same as the ratio of the concentrations.

The self and mutual diffusion coefficients were determined for
the liquid cadmium-lead system at 350°C. Mirshamsi (18) previously
determined the coefficients for this solution for a range of temperatures
that bracketed 3500C. His self diffusion measurements are valid and
have been verified by this study. . But, in measuring the mutual diffu-
sivity he erred in that radioactive atoms were not included in the reser-
voir., Since the deviation from Darken's equation of Mirshamsi's final
data was similar to many organic systems, only experimental data
could prove or disprove his method of determining the mutual diffusion
coefficient.

The theoretical goal of this research was, of course, to de-
velop the theory of diffusion and subsequently of the liquid state. The
fruits were (1) a better understanding of Fick's second law by showing
it to be an ideal solution law and (2) the removal of the restriction of
constant or equal partial molal volumes from Darken's equation.

The experimental goals consisted mainly of measuring diffu-
sion coefficients for a liquid metal system and determining the limita-
tions of the capillary-reservoir technique in measuring mutual diffu-
sivities in the mid-composition range. Also a check of Mirshamsi's

method was needed. All these goals have been fulfilled and are discussed

in Chapters IV and V.~



CHAPTER I

THEORY

Fick's Laws

In 1855 Adolph Fick (10) laid down the basis for the study of

atomic transport of matter. Two diffusion laws are attributed to him.,

His first law is the definition of a diffusion coefficient,

\IA:-DABVCA, (4)

and states that the flux of component A (or B) is proportional to the nega-

tive of the concentration gradient. Consideration of unsteady state diffu-

sion leads to Fick's second law,

3Ca

el Vs(DABvc_A) {5a)

and

3Cq

Tl V-« (DgAVCg)- (5b)

When utilizing Equations 5a and 5b it is most important to keep
in mind that they are only mass balances or continuity equations and, as

such, their proportionality constants, DAB and Dg s, are in general not
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equal. But, for general application, binary diffusion coefficients must
be interchang.eable, i. e., DAB must equal Dy 4. The experimentalist

is then compelled to choose the conditions under which diffusion coeffi-
cients are obtained such that the coefficients will be equal.

The equality of the diffusivities in Equations 5a and 5b is now
assumed, leaving only one coefficient, DAB' First, the thermodynamic
restrictions of this assumption will be examined and tlen the practical
applications will be discussed. Throughout this work every equation
may be assumed to be at constant temperature and pressure unless other-
wise noteé. | The following fundamental equations are used in the develop-

ment (see Appendix B for derivations):

V=X, V, +XVg, (6)
CV_=1=C,V, +C.V,, (7)
C, = CX,, Cp = CXg, (8)
V,VC, +V_VC_ =0, (9)

_ 2T
VC, = C°Vg VX,, (10)



and

vXpg - (11)

Multiplication of Equation 5a by v A @and Equation 5b by VB’

addition and utilization of Equation 9 gives

VAV * (DA.BVCA.) + VBV ¢ (DABVCB) = 0, (12)

which upon expansion is

= 2 = 2 — =
Dypg(VyV Cyp+ VgV Cplt+ VDpp " (V,VCy + VpVCp) = 0. (13)

The second term above is zero from Equation 9 so

- 2 - 2
V,9°Cy tVyvCB = 0, (14)

This is expanded to give

v-(VAch+VBch)-ch-va-ch-va=0. (15)

Because of Equation 9, the first term of Equation 15 is zero, and

VCy ' YVpA+ VCq* VVg = 0. (16)

By substituting for C; from Equation 8 and expanding, Equation
16 is transformed to

c(va' VVA+VXB° VVB)+ vC - (XAVVA+XBVVB): 0. (17)

The second term is zero because of Equation 9 and, with VXp = - VXB,
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VXA' v(VA-VB)=0. (18)

Now the argument is made that either the vectors are orthogonal or
v(-\-fA - VB) = 0 for this condition to hold. They cannot be orthogonal
because the partial molal volumes are functions of the mole fraction,
hence the gradient of (-\—/'A - \_/'B) is zero.

Equation 6 is differentiated with respect to X, to yield

Ve = v .y 3V, < 3Vy 09)
=2V, -V o +|X, =2 +Xg —|. 1
3, A~ 'B'\"A§X, 3%,

The last term of Equation 19 is zero and the rest, when substituted into

Equation 18, gives

3V
dXp
Thus it is argued that
oV
—m
vsy— =0 (21)
XA
and, upon integration,
Vo= kX, + k. (22)
Comparison of Equations 6 and 22 leads to
K=V, - Vg {23)
and



and the conclusion is reached that the partial molal volumes must be
constant in any application of Fick's second law. In Appendix B it is
shown that any solution having constant partial molal volumes (no change
of volume on mixing) for all temperature and pressure is an ideal solu-

tion. Therefore, Fick's second law is an ideal solution diffusion equa-

tion.

In the experimental determination of diffusion coefficients the
solution must be ideal or the concentration interval must be small enough
for the specific volume to obey a linear law (Equation 22)., Two mathe-
matical solutions to Fick's second law are used to demonstrate difficul -
ties that may arise when using experimental data. The first is the one
used in this work and is found by applying the Laplace transform tech-
nique to the following equation (see Appendix B for solution),

3Ca

2

and then integrating the results over the volume of the system to get

Cg-C g @ ~((2n+l) 7
———cf <L -5z L _¢ (———ZL Dast (26
o m“ n=o (2n+1)2

The first criticism of the above solution is that the diffusivity
was assumed to be a constant. The best possible results would be an
average over the concentration interval.

The second case to be considered is the Boltzmann-Matano
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(4, 17) solution to Equation 5a, which yields (see Appendix B for deriva-

tion) "
C
A
1l gz : f
D oS- — -z dC (27)
AB C 2t 9C noJ A >
P YA ACa Cy

In this CaseD’AB' is determined as a function of concentration, andis
therefore mc;re reaiistic than the first solution.

Now, consider the worst possible example of non-ideality in
the chaﬁge of volume on mixing, i.e., the partial molal volume of one
of the c.omponents, VB’ being negative at one extreme of the concentra-
tion, going through zero and then back to pure component specific volume
at the other extreme. In this case diffusion will occur against the con-
centration gradient when the gradient is expressed in units of moles or
mass per unit volume (diffusion does not occur against the mole fraction
gradient) and Equation 26 will not allow this, i.e., it blows up for com-
ponent A. On the other hand, the Boltzmann-Matano solution will give
a diffusivity for component A with a discontinuity at the concentration
where the partial molal volume of B is zero, being positive infinity on
one side and negative infinity on the other side. The diffusion coeffi-
cient determined from data on component B has no discontinuity and
behaves much as is expected in both the solutions to Fick's second law.
All this trouble arises from the fact that the original equation is a mass
balance applicable in situations where ideal solution laws are obeyed.

Negative partial molal volumes and uphill diffusion are discussed more
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thoroughly in Appendix E,

No matter how small the concentration intervals in the above
case, the results are the same. Use of Equation 25 requires that (1) the
concentration interval be small enough so no appreciable error is intro-
duced due to the assumption of constant diffusivity, (2) the concentration
interval be small enough that the specific volume of the mixture follows
a linear law and (3) neither of the partial molal volumes goes to zero.
The Boltzmann-Matano solution requires that restrictions 2 and 3 be
obeyed. The applicability of Fick's second law, then, depends both upon

the method of measurement and the system under investigation.

Frames of Reference

In order to write mass balances or continuity equations for both
components in a binary system and have the two diffusion coetfficients
equal, it is necessary to account for all fluxes present. Kirkwood (16)
and Bird (3) present excellent discussions of frames of reference and
counting methods, The diffusional flux takes a form dependent upon the

reference frame chosen. The diffusional velocity is defined as
uf = u - u’, (28)

where uli' is the diffusional velocity of species i relative to the reference,
u, is the velocity of i relative to a stationary coordinate and u’ is the

velocity of the reference frame., The total flux is then

(29)
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and the diffusional flux is
I r _ T
;= Ciui = Ni - Ciu . (30)

For the center of moles reference frame m is substituted for

r in Equation 28, 29 and 30. Also, the following equations are valid,

o™ = Xpup + Xpup, (31)
.m m _
jpo tig=0 (32)
CP o N, +Ng = C C 33)
Cu =Nyt Ng=Cpup + Cpup, (

and the diffusion coefficient is defined by

m

er=CDABvXA. (34)

Combination of the total flux and the diffusional flux gives

_.m
Ny =g

m \
- CAu . {35)
it is of interest to determine the relationship between the diffu-

m
sion coefficient of the center of moles reference frame, DAB’ and Fick's

diffusivity, D AB" The continuity equations take the form

i - _y.N (36)
at A
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and

(37)

" Multiplication of Equation 36 by \ A and 37 by VB’ summation and appli-

cation of Equation 9 gives
VAV'NA+ Vg Ve Ng = 0. (38)

At this point the partial molal volumes are assumed constant and Equa -

tion 38 is integrated over the total volume of the system,

f(v-T/‘ANA+ v-"'fBNB)dy=o. (39)
v

Utilization of Green's Theorem allows the volume integral in Equation

39 to be transformed to the surface integral,

f(NAVA+ NB'\'rB) - dS = 0. (40)

~

If Equation 40 is to be valid for all limits, then -~

Substitution of Equation 30 into Equation 35 gives

m

Jp = XgNpy - XpNg, (42)

and, by Equation 41, Ng is eliminated yielding



N, =CVgip (43)

or

Np = - VRC?Digp 7 X4, (44)
Equation 10 will simplify this to
_ I
N, =-Dpp VG, (45)

The flux in Fick's first law is the total flux so

Jo=N, = -Dyp¥Cy, (46)
and by comparing Equations 45 and 46, it is seen that
m
DAB = DAB . (47)

Thus, with the assumption of constant partial molal volumes,
the diffusivity in the center of moles reference frame is equal to Fick's
diffusivity. The result was expected since Fick's second law is an ide-
alized law.

The center of volume reference frame has a velocity defined
by

- -
and a diffusion coefficient defined by

Vo v
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From Equation 30 it can be seen that the total flux has the form

N, = iy * Cpu. (50)

When Equation 48 is substituted into Equation 50, the result is

Vo X7
JA-NA-CAVANA-CBVBNB, (51)

which, with the aid of Equation 7, reduces to
jp = CgVgNa - CAVENg. (52)

Tquation 41 is not limited to any reference frame since NA and NB repre-
sent the total flux relative to a fixed coordinate system; the only limita-
tion is the constancy of the partial molal volumes. This assumption is
again made and Equation 4l is applied to Equation 52. With Equation 8

this result reduces to

in =Ny (53)

Similarly it can be shown that

=N_. (54)

Equations 53 and 54 can be equated to Fick's first law with the
result that

D' _=D,._. (55)

The mass balances from the center of moles and center of volume
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reference frames reduce to Fick's second law for ideal solutions, and
all three diffusion coefficients are equal.

The next area of interest is the relationship between the diffu-
sivities from the center of moles and center of volume reference frames
when the partial molal volumes are not constant. Equation 35 and the
companion expression for component B are substituted for NA and Ng

in Equation 51 to yield
Jh = - Cpu™ - CpV AR+ CAV pu™ - CpAVgiE + CoCaVEu™, (56)
or

v = .m - .m m =oom = m
jp = CgVpip - CpVRip - Cpu + C4(CaVau™ + CgVgu '), (57)

but, since the last term is + CAum,

Vo .m 5 [n
i = CBVBJA - CAVBJB . (58)

Substitution for the diffusional fluxes (jX, jrz and jrgl) yields
v = m =
which reduces to
DY _vc =DM V.clvx (60)
AB A AB 'B A’

Equation 10 is applied to the right side of the above expression giving

v I
DpapV€C, =DapvCy (61)
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or

pvY_ =D (62)

AB AB*

The expanded continuity equations from the systems under con-

sideration take the form

oC
and
9Cp \4 v

Although the reference velocities and the resulting time dependent equa-
tions are different both Equations 63 and 64 are valid mass balances and
either may be used, Again it is pointed out that Fick's second law is an
ideal solution law and should be used with care experimentally and should

never be used as the basis for general theoretical developments.

Self Diffusion

Darken (7) defined fluxes relative to inert markers such that

intrinsic diffusivities are given by
jA=CA(uA-u)=-DAVCA (65)
and

jg = Cglug -~ u) = - DgvCyqg (66)
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and the fluxes relative to fixed coordinates are

and

NB + CBu, (68)

= JB
where u is used to denote the velocity of the markers. From these defi-

nitons and Fick's second law, a relationship was obtained between the

binary and intrinsic diffusion coefficients,

Then, with the assumption that the driving force for diffusion
is the negative gradient of the chemical potential, Darken derived the re-
lationship between intrinsic and self diffusivities. Combination of these

with Equation 69 gave

% alnaA

A) m;: . (70)

%

In deriving both Equation 69 and 70, Darken assumed that the
total concentration was constant. This assumption requires the partial
molal volumes to be constant and equal, Hartley and Crank (13) derived
an expression relating the intrinsic diffusivities to DXB which reduces
to Equation 70 when the potential is assumed to be the Gibbs chemical

potential. Carman and Stein {5) point out that the equation, when derived

in this manner, has the restriction only of constant partial molal volumes.
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Darken's equation is derived below without any restriction on
the partial molal volumes, The center of volume reference frame is
used along with the fluxes described by Darken in Equations 65-68. Equa-

tions 67 and 68 are substituted into Equation 48 to yield
u¥= Vpja + (VACp + VCpMu + Vgjp, (71)
or, utilizing Equation 7,
u’ - Vpja - Vpig = v. (72)

This is substituted into Equation 67 and the result is equated to N, from

Equation 50. Upon collection of terms,
v = = T e T
jA=jA+CA(VANA+VBNB-uv)-VACA_]A-VBbBJB. (73)

Note that the term in parentheses is zero by Equation 48, Now, substi-

tuting for the fluxes jX, jA and jg, and applying Equation 7.

v

Dap

Division by V CA and application of Equation 9 simplifies the expression

to
v — —_

D,p = VgCgD4 + V,CuDR. (75)

With the assumption that the force per atom is (-l/No)(VaA),

the flux may be written as

.o L
JA"NO

B,ACAVGA. (76)
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This flux is then equated to the flux defining the intrinsic diffusivities,

Equation 49 and

B,C
_ TAYA _—
D,VC, = - VG, . (77)
Division by VCA yields
b .2a% 3Ga
s - , (78)
and for component B
Dg = s % (79)
Ng aCB

The above expressions for the intrinsic diffusivities are substituted into
Equation 75 and

v BC8BaCa s | V,CaCxBp g
o oCa o B

Using the definition of the thermodynamic activity
aC—il = RTalnai. (81)

the Einstein relationship (8)

sk %
D, =kTB;, (82)
£
and the agsumption that Bi = B,, the above expression becomes
dlng — dlna
A — B, (83)
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Utilizing Equations 10 and 11 and the fact that

alnaA _ alnaB

- ’ (84)
3lnX, olnXg
Equation 83 is transformed to
v, X ¥ Olnap
DAB = ‘XADB + XBDA.) m. (85)

The assumptions made in deriving Equation 85 are now reviewed:

1. Constant temperature and pressure

Z. ji = - DiVCi
.1 =
3. = e B,C; v G;

4, The fluxes in assumption 2 and 3 are equal

5. D; =kTB].
Nothing is apparent in these assumptions limiting the application of Dar-
ken's equation to one physical state as apposed to another {liquid, solid,
or gas). Also the equation is phenomenclogical and, therefore, not

limited to a mechanism or model.



CHAPTER III

EXPERIMENTAL EQUIPMENT AND PROCEDURE

Diffusion Equipment

The diffusion equipment consisted of a constant temperature
bath, diffusion cell, vacuum system and hydrogen gas system. Essen-
tially the same equipment was used previously by Mirshamsi (18) and
has been described in detail in his thesis; therefore only a brief descrip-
tion is given here.

Houghton's Draw Temp 275, contained in an eight inch diam- -
eter by fifteen inch deep stainless steel pot, was used as the heat trans-
fer medium in the constant temperature bath. The primary heat source
was a Nichrome wire heater around the outside of the pot. The temper-
ature control was achieved with a Bayley Precision Temperature Con-
troller connected to a 250 watt coiled immersion heater inside the pot.
The temperature was sensed by a chromel-alumel thermocouple cali-
brated against a platinum resistance thermometer. The thermocouple
potential was measured on a Leeds and Northrup No. 8662 potentiometer.
Temperature variation during any diffusion run was less than 0. 1°C.

The diffusion cell consisted of a 2-1/4 inch diameter pyrex

22
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tube approximately 18 inches long. The tube was sealed at one end and
a Dresser coupling was attached to the open end. A flange was welded
to the top of the coupling and a flat plate was screw pressed against the
flange. A Viton O-ring formed a vacuum tight seal between the top
plate and the flange. The capillary support rod and a thermocouple well
passed through O-ring seals attached to the tep plate. The gas inlet
and outlet were 1/4-inch copper tubes soldered into the top plate. The
melted alloy was contained inside the pyrex tube in a graphite crucible.
Two synchronous motors were attached to the top of the capillary sup-
port rod--one for vertical positioning and the other for rotating the
capillaries. Rotation was necessary to keep the concentration at the
mouth of the capillaries at the reservoir concentration.

Either a Welch Duo Seal or a Cenco Hyvac vacuum pump was
used to evacuate the cell. An excessive amount of timme was required
to reduce the pressure below 50 microns because rubber tubing was
used in part of the system. However, a pressure of 50 microns was
sufficiently low to fill the capillaries.

Welding grade hydrogen was used to maintain a reducing atmos-
phere in the cell. Prior to being introduced to the cell the hydrogen
was passed through a Deoxo catalitic reactor to remove the cxygen and
then through a calcium sulfate dryer to remove the water formed in the
reactor. A critical hydrogen flow rate existed below which oxides

formed and the flow rate was maintained above this value. The critical
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rate was determined by placing a piece of lead in the cell and observing
it as the temperature was raised. At very low flow rates the lead oxi-
dized and exhibited the characteristic bluish color. The flow rate was

then increased until the lead regained its metallic luster.

Capillaries

Two types of capillaries were used in this study--glass and
graphite, Precision bore pyrex tubing purchased from Corning Glass
was used for the first 48 capillaries. The glass was cut into lengths of
approximately one inch and one end was sealed with the inside bottom
surface being nearly flat. The open end of each capillary was ground
flat and then polished until it appeared smooth under a low power micro-
scope. During grinding and polishing the capillaries were mounted in
a plastic block to insure that the axis was normal to the surface. All
glass capillaries had an inside diameter of 2 + . 0025mm with an outside
diameter of roughly 4 mm, The length of the capiliaries was measured
to the nearest thousandth of an inch with a depth gauge.

The two types of holders used for the glass capillaries are
shown in Figure l. Type A were used initially, but the top portion of
the alloy solidified first and voids were created when the bottom portion
solidified. Upon reheating the voids usually disappeared but on occasion
they remained the same size or even expanded pushing some of the mol-
ten alloy out of the capillary. The type B holder allowed the alloy to

solidify more uniformly and did, in fact, decrease the incidence of voids.
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Holders for Glass Capillaries

Figure 1.
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In determining the mutual diffusion coefficient the count rate of
the reservoir must be known accurately. To ascertain this, capillaries
were filled from the reservoir and the count rate determined:. . The values
obtained were useless unless the original capillary and the one used for
the reservoir were the same length, which was generally not the casa.
Therefore, the count rate per unit length was used. This method was
still not satisfactory because the individual capillaries gave different
count rates per unit length. That the counts per unit length were not
constant for a given concentration was thought to be due tothe following:
1) the capillary walls did not have uniform thickness and the count rate
is proportional to amount of material between the source and the detec-
tor, 2) the capillaries were not always filled to the same level, 3) the
amount of glass melted during the sealing of one end of the capillaries
varied thus varying the vertical positioning in the scintillation crystal,
and 4) end effects arising from the capillaries being open at one end
and covered at the other end.

The second reason above was eliminated by smoothing the top
of each capillary after filling and after the diffusion run. When the
capillaries were removed from the molten reservoir a bead of liquid
metal protruded above the mouth of the capillary. In the pastit had
been the practice to shake the capillary holder thus knocking the beads
off. This was a random process with the final liquid level being quite

often either too low or too high. Therefore, a stainless steel device



27
(Figure 2), attached to the thermocouple well, was moved horizontally
across the capillary mouth shearing the liquid at a constant level. The
reproducibility of the count rate was improved considerably by the
smoothing operation but was still not satisfactory, Finally the glass
capillaries were discarded and graphite capillaries used.

The graphite capillaries are illustrated in Figure 2 along with
the smoothing device. Three holes were drilled and then reamed to
5/64~inch at 120° separation near the edge of a roughly one inch long by
3/4-inch diameter graphite cylinder. Another shorter cylinder was
pressed against the bottom to act as a seal., After the holes were filled
in the same manner as the glass capillaries, the device was taken apart
and the alloy removed for counting, The alloy was reinserted into the
graphite tor the diffusion run and removed again for the final count.
This method was used for the remaining portion of the data and was
found to be more reproducable than the glass capillary method.

Occasionally, when the capillaries were removed from the
reservoir, the liquid level in one or more of the capillaries was below
its mouth. This phenomenon occurred with both types of capillaries
but was more prominent for the graphite. It was found that if the capil-
laries were removed rapidly this did not occur as often., Therefore,
at the end of a diffusion run, the vertical positioning motor was discon-
nected and the capillaries raised by hand, When a capillary was not

full after a run, it was discarded and the data was not reported. This
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problem illustrates one of the basic shortcomings of the capillary reser-

voir technique--mixing effects upon entry to and exit from the reservoir,

Isotopes

The radioactive lead was received as the nitrate in a nitric acid
solution. It was diluted with inactive lead nitrate and then treated with
sodium carbonate to precipitate lead carbonate. This was dissolved in
a solution of fluoboric acid containing excess boric acid. A small amount
of animal glue was added and the active lead was electroplated from the
solution onto the walls of a lead crucible. The crucible and a lead anode
were cast from the high purity lead used throughout the experiment. The
lead concentration in the solution remained at a constant level and the
gross effect was a transfer of lead from the anode to the cathode.

The radioactive cadmium was also received as the nitrate in a
nitric acid solution, diluted with the inactive nitrate and precipitated as
the carbonate. The cadmium carbonate was then treated with sulfuric
acid and electropiated on a high purity cadmium crucible from the cad-
mium sulfate solution. The above procedures are outlined by Gray (12).

The isotope counting equipment consisted of a Tracerlab model
P-20CW scintillation detector, a Tracerlab RLI-4 pulse height analyzer,
and either aNuclear- Chicago model 183B or model 181A scaling unit,

The counting equipment was kept in a special counting room where the
temperature variations were less than the limits set by the manufacturer.

The count rate varied roughly from 1, 000 to 50, 000 counts per minute.
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The total counts for each sample varied from 50, 000 to 1, 000, 000.

Procedure

The metals used in this study were Cominco's 59 grade (99.999%
purity). Prior to use the lead was cleaned with a 1:3 solution of 30% hy-
drogen peroxide and acetic acid. The cadmium was cleaned with a 10%
solution of nitric acid. After cleaning, the metals were rinsed several
times with distilled water and allowed to dry. The proper amounts of
each were then weighed to the nearest 0. 059 and placed in the graphite
crucible. The diffusion cell was assembled as usual except a graphite
cylinder was substituted for the capillary holder at the bottom of the
capillary support rod. This cylinder was used as a stirrer by:lowering
and raising it through the melted alloy. A minimum of six hours, with
intermittent stirring, was allowed to insure complete mixing after every
change of concentration. The cell was then allowed to cool, the graphite
cylinder replaced by the capillaries, and the cell reassembled,

The cell was evacuated and checked for leaks. Then it was
filled with hydrogen and the hydrogen flow rate adjusted to the proper
level. The apparatus was then suspended for about 20 minutes with the
bottom of the pyrex tube just above the level of the Draw Temp 275.

This was done to preheat the pyrex tube thereby eliminating the possi-
bility of breakage due to thermal stresses when it was lowered into the
bath. The cell and bath were so constructed that the heat transfer me-

dium level was about six inches above the top of the alloy in the reservoir,
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After the metal had melted, the capillary holder was lowered
until the liquid metal level was just below the open end of the capillaries,
When the temperature of the capillaries rose above the melting point of
the alloy, the cell was evacuated and the capillaries immersed in the
melt, The cell was repressurized with hydrogen forcing the molten al-
loy into the capillaries. This operation was conducted at a temperature
just above the liquidus to minimize evaporation losses during evacua-
tion. The capillaries were left submerged in the melt until the tempera-
ture had risen to that at which the diffusion run would be made. When
they were raised out of the liquid metal, the bead protruding from the
top of each capillarly was skimmed off and the cell was removed from
the furnace to cool.

The capillaries were removed from the cell and placed in
small glass tubes for counting. Each time a set of capillaries was
counted a standard sample of the same isotope and the background were
also counted. The samples were then returned to the capillary holder
and the cell reassembled. Again the same procedure was followed:
evacuate, check for leaks, pressurize with hydrogen, warm up, and
lower into the salt bath., As soon as the reservoir had melted, the
capillary holder was lowered until the reservoir liquid level was just
below the open ends of the capillaries., This ppsition was maintained
until the reservoir reached thermal equilibrium with the bath, i.e.,

the tempera’re ceased to change with time. Usually about 3 hours
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were required to reach this temperature.

One of the synchronous motors was used to lower the capillaries
into the melt until the open ends were at least one half inch below the
liquid level. The other motor was used to rotate the capillaries at two
revolution: per minute. At the end of the desired diffusion time, the
rotation was stopped, the capillaries raised until the open ends were
above the liquid level, and the beads were skimmed off. The capillaries
were left in this position for several hours to allow for homogenization
of the alloy in the sample. If this were not done, the final count rate did

not reflect the final average concentration.



CHAPTER IV
EXPERIMENTAL RESULTS

The following quantities were measured for the cadmium-lead
system: (a) self diffusion coefficient of lead in pure lead at 400°C, (b)
self diffusion coefficient of lead as a function of concentration at 350°C,
(c) self diffusion coefficient of cadmium as a function of concentration
at 350°C, (d) mutual diffusivity as a function of concentration at 350°C
using both Cd-115m and Pb-210 as tracers, (e) self diffusivities of cad-
mium and lead at 70, 0 mass % €d and 350°C as a function of concentra-
tion interval and (f) mutual diffusivity at 70. 0 mass % Cd and 350°C as
a function of co;lcentration interval using both Pb-210 and Cd-i15m as

tracers.

Self Diffusion

The self diffusion coefficient of lead in pure lead was mea-
sured at 400°C to give a direct comparison with Mirshamsi's (18) data.
These values are given in Table 1 and Table F -1, The remainder of
Mirshamsi's data presented here are not actual data but were calcu-

lated from his smoothed curves.

33
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TABLE I

SELF DIFFUSION OF LEAD AT 400°C

D x10° - cmz/sec

This Work Mirshamsi
2.12 2.39
2.44 2,34
2.97 2.56
2.12 2.03
2.34 2.14
2.35 2,31
2.12 2.15
2.46 2. 40
2.40

Avg, 2,37 2,29

The lead self diffusion data are listed in Table F-2 and average
values are given in Table 2. Figure 3 is a comparison of the new data
Mirshamsi's. The cadmium self diffusion data are listed in Table F-3
and average values are given in Table 2, Figure 4 gives a comparison

of these data with Mirshamsi's.

Mutual Diffusion

Mutual diffusivities were very difficult to obtain. The data are
listed in Table F -4 for Pb-210 tracer and Table F'-5 for Cd-115m tracer.
Only the values for dilute solutions of each component (0-50 mass %)
are presented here; the rest of the data are discussed in the last section
of this chapter. A compilation of the data is given in Table 2 and shown

in Figures 5 and 6, The values reported at XCd = 0. 81 include both the
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4, 02 and 8. 00 mass % Cd concentration intervals.

TABLE II

DIFFUSION DATA FOR THE CADMIUM-LEAD SYSTEM AT 350°C

——— ——
——

DABXIO5 DAB xlO5
D’i';bxls’)s D,}(‘:dxlO5 Cd Tracer Pb Tracer

Xca cm?/sec cmZ/sec cmz/sec cmZ/sec

.196 2.47

.198 2,08

. 314 1. 19

. 367 2,76

472 2.34

. 486 .92

. 577 .49

. 652 .34

. 653 . 61

. 811 2,38 2,71 1,22
1.000 2,42

In Figure 5 comparisons of the data with Darken's equation (7)
and Rathbun's equation (19) are given. A compilation of the data used to
calculate these curves is given in Table 3. Figure 6 is a comparison

of the data with Cullinan's equation (6).

Concentration Intervals

The self diffusion data for lead and cadmium as a function of
concentration interval are given in Tables 4 and F-6 and Tables 5 and
F -7 respectively. Both sets of data are illustrated in Figure 7, These

data were obtained to determine the validity of Mirshamsi's method of
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measuring the mutual diffusivity, He used Pb-210 to measure D,p at
67. 02 mass % Cd and got a value of 1. 77 x 10"5 cmzlsec. From Table 4
it can be seen that D;b decreased from a value of 2. 38 x 10'5 for zero
interval to 1. 95 x 10”2 cm2/sec for an 8% interval at '%0. 0 mass % Cd.
Also note from Table 5 that had Mirshamsi used Cd-115m as a tracer he
would have found the value of DAB to b2z approximately 2.29 x 10“5 cmZ/

sec for a 8% interval.

TABLE IIi

COMPILATION OF DATA; AVERAGE VALUES
FROM FIGURES 3, 4 and C-2

(Rathbun) (Darken)

5

5 0.6 p,ox10° Dygx10°

% 5 b .
DCdxlo prxlo dlna dlna

Xcq cmz/sec cztn?f'/sec dlnX dinX cmz/sec cmz/sec

0.0 2,00 1.91 1. 00 1. 00 2.00 2,00
0.1 2.39 2,14 0.78 .87 .74 1. 84
0.2 2. 64 2,32 0. 58 .72 1. 44 1. 49
0.3 2.79 2,45 0. 4l .55 1.10 1.10

0.4 2.88 2,52 0.28 . 47 .94 17
0.5 2.91 2,56 0.20 .38 .76 .55
0.6 2,88 2.55 0.16 .33 . 66 .43
0.7 2.83 2,49 0.17 .35 .70 .44
0.8 2,73 2.39 0.23 .o 4l .82 . 57
0.9 2,62 2,24 0.50 . 66 1.32 1.14

L0 2, 47 2,01 1. 00 1. 00 2.01 2,01

An attempt was made to ascertain the effect of concentration

interval on the mutual diffusion coefficient, The data for Pb-210 tracer
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are given in Tables 6 and F-8 and illustrated in Figure 7. The data for
Cd-115m tracer are given in Table F-9 and are discussed in the next

section of this chapter.

TABLE IV

LEAD SELF DIFFUSION--FUNCTION OF
CONCENTRATION INTERVAL

s

v

Cadmium Concentration - mass percent D;EXIOS
Capillary Reservoir Interval cm®/sec
70.0 70,0 0. 00 2,38
68,0 72.0 4,02 2,25
66. 0 74,0 8.00 1.95
63.9 76.1 12, 28 2,12
60.0 80,0 20, 04 2.59

TABLE V

CADMIUM SELF DIFFUSION--FUNCTION OF
CONCENTRATION INTERVAL

Cadmium Concentration - mass percent D?;gxlOS
Capillary Reservoir Interval cm®/sec
70.0 70.0 0 2,71
68.0 72.0 3.98 2,63
66.0 74,0 7.95 2.29
64. 2 75. 8 11, 62 2,36

59.9 80. 0 19.96 2.17
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TABLE VI

MUTUAL DIFFUSION--FUNCTION OF CONCENTRATION
INTERVAL; Pb-210 TRACER

Cadmium Concentration - mass percent DaB xlO5

Capillary Reservoir Interval cm?/sec

68.0 72.0 4,02 1. 44
66.0 74.0 8. 00 1. 09
63.9 76.1 12,28 1. 81

Experimental Errors

Errors in the diffusion coefficients arises from the measure-
ment of the following physical quantities: (a) time, (b) length of the capil-
laries, (c) temperature and (d) concentration.

All diffusion runs were started and stopped on the minute, plus
or minus about 5 seconds. Therefore an error of + 10 seconds or + 0. 05%
is expected. The length of the capillaries was measured to + 0, 001 inch.
For a one inch capillary this introduces an error of + 0.1%. No detec-
table change in the temperature occurred during the entire experiment
so the error due to temperature measurement is negligible.

The evrors introduced in measuring the concentration arise
from the following: (1) weighing the metals to make up the alloys, (2)
capillaries not being exactly full, and (3) actual counting of the isotope

activity, The estimated error in weighing the sample is + 0.1% and
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for the counting process + 0. 5% or less. The error introduced be-
cause the capillaries were not always filled to the same level is not
known but is estimated to be less than + 1. 0%.

The error in Q, %— , is larger than the error in the concen-

C,-C
tration ratio, __f_(_:z , and is dependent upon the magnitude of this ratio.
o~ “r

For a + 1% error in the ratio, Q will have a + 7. 96% error when the ratio
value is 0.8 and a + 2. 02% error when it is 0. 50.

An example will now be used to demonstrate the errors in the
diffusion coefficient for a + 1. 0% error in the concentration. Assume
that alloys are made up such that a capillary of component A has a count
rate of 100, 000 cpm for pure A, 50, 000 cpm for 50% A and zero for zero
A, Now assume, for self diffusion Cr = 0, For 70% A the ratio of the

concentrations could be

C¢ - Cr _ 35,000+ 350
C,-C,  70,000% 700

= 0,500+ ., 0L,

£

In this case the ratio has a + 2% error and Q has an error of + 4%. If
the diffusion time had been shorter and the ratio larger the error would
be larger.

Now for the same solution, consider mutual diffusion where
the initial concentration is 85%, the reservoir concentration is 75% and

the final concentration is 80%. Then, for a +1% error,

;- Cr _ 80,000+ 800 - 75,000 + 750

C,-C, 85,000+ 850 - 75, 000 + 750
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= 2,000+ 1550 _ ¢ 500+ .279,
10, 000 + 1600 -

and the error in the ratio is + 44%. The resulting error is Q and subse-
quently D) 5 is much larger than 44%.

For mutual diffusion in the low concentration range the errors
are smaller. Let the initial concentration be 15%, the reservoir be 5%
and the final be 10%, and

Cs - Cr 10,000+ 100 - 5, 000 4+ 50
Co - Cx 15,000 + 150 - 5, 000 + 50

_ 5,000 150
10, 000 + 200

= 0.500 + . 0245,

The error in the ratio for this case is + 4. 9% and the error in Qis
+ 9.15%.

As can be seen from the above analysis, mutual diffusivities
can be measured in the low composition range; however, the expected
error is still high. In the concentrated composition range mutual dif-
fusivities cannot be measured. An attempt was made to measure mu-
tual diffusivities in the concentrated range and, as expected, the results
varied to such an extent that the relative worth factor to be assigned

is zero. These values are reported in Tables F-4, F-5 and F-9.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The conclusions reached as a result of this research are:

1. The self diffusivities agree with existing data.

2, Mirshamsi's method for measuring the mutual diffusivity
is incorrect.

3. With further refinement the capillary reservoir technique
could be used to measure mutual diffusivities in dilute solu-
tions, but extension to concentrated solutions would be diffi-
cult,

4. The data have sufficient scatter so that a valid check of
existing theories is impossible.

It is recommended that either a new method be found for mea-

suring the concentrations (other than isotope tracers) or a completely

new method be devised for measuring mutual diffusion coefficients.
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APPENDIX A

NOMENCLATURE

activity

activity of component i

component of a binary solution

component of a binary solution

mobility of component i, velocity per unit force
mobility of radioactive i

total concentration, moles per unit volume of solution
concentration of component i, moles of i per unit volume
of solution .

average concentration of A, defined by Equation B-36
concentration of A, defined by Equation B-43

final concentration

initial concentration

initial concentration

reservoir concentration

mutual diffusivity with subscript omitted

intrinsic diffusivity of i, defined by Equations 65 and 66

A-l



self diffusivity of i
Fick's mutual diffusion coefficient
mutual diffusivity relative to the center of moles

mutual diffusivity relative to the center of volume

mutual diffusivity evacuated at X A 0

|
o

mutual diffusivity evacuated at Xp =
dimensionless time, D’c/L2
fugacity of component i in solution

fugacity of pure i

Faraday constant

a function

Laplace transform cf g

specific Gibbs free energy of pure i

partial molal Gibbs free energy of i

specific or partial molal enthalpy at zero pressure
specific enthalpy of pure i

flux of i relative to inert markers, defined by Equétions 65
and 66

flux of component i from Fick's first law

flux of i relative to center of moles

flux of i relative to r

flux of 1 relative to the center of volume

constant



(o]

w

2=
1
w

constant

constant

Boltzmann constant

length

moles of i

flux of i relative to fixed coordinates
Avagadro constant

variable in Laplace transform
pressure

dimensionless concentration, CA/Co
transform of Q

gas constant

constant, defined in Equation 2
surface

specific entropy of pure i
partial molal entropy of i

time variable

temperature

velocity of inert marker
velocity

velocity of center moles
velocity of reference frame r

velocity of center of volume



A-4

ul.l‘ - diffusional velocity of i relative to r
U - dimensionless distance, z/L
\' - volume
Vo - specific volume of mixture
V. - specific volume of pure i
Tfi - partial molal volume of i
w - same as (-p)l/Z, see Equation B-20
w - mass percent
i - mole fraction component i
z - distance variable

Greek letters

Y - activity coefficient of i, a;/X;



APPENDIX B

MATHEMATICAL DERIVATIONS

Derivation of Equations 9-11

The following relationships

V_ =XV, + XpVp, (B-1)
v C=1 (B-2)

dC = dC, + dCp, (B-3)
dC, = CdX, + X, dC, (B-4)

and the Gibbs-Duhem relation,

(XAdVA+ Xp dVB)T, p°= 0 (B-5)

are used in the development.
The result of multiplying Equation B-5 by the total concentra-
tion, C, is

(CAdVA+ CB dVB> T, P = 0. (B-Sa)

When Equation B-1 is multiplied by C and differentiated,

B-1



B-2

(CpdVy + CgdVp + V4 dCy + V5 dCR)T, P (B-6)
The first two terms are zerc by Equation B-5a and

which is Equation 9.

Equation B-3 is substituted into B-4 to yield
dCp = CdXA + XA dCp + XpdCRB (B-7)
or, upon simplification,

Xp dC, = CdX, + X, dCp. (B-8)

Equation 9 can be used to eliminate dCB from the above relationship,

and

XAVaA
XpdC, = CdXp -

dCA T’ P: (B"9)
Vs

which, upon rearrangement, becomes

((xAvA - XBVB) ch) T,p = (VBC dXA)T’ p- (B-10)

Equations B-1 and B-2 are applied to the above relation to yield Equa-

tion 10

= 2

As was noted in Chapter II, the subscripts T and P were omitted to sim-

plify the presentation. Equation 1l is derived in exactly the same manner



B-3

except the subscripts, A and B, are reversed,

Solution to Fick's Second Liaw

In the capillary reserveir technique for measuring diffusion
coefficients, the gross effect is a transfer of mass either into or out of
a capillary of length L and constant cross section. The physical quanti-
ties measured in an experiment are (1) capillary length, (2) time, (3)
initial concentration in the capillary, (4) final concentration in the capil-
lary, and (5) the reservoir concentration. (The reservoir is at least
500 times larger than the capillary thus insuring that the reservoir con-
centration does not change appreciably during one run.) It will be as-
sumed that diffusion occurs at constant temperature and pressure, and
that other effects (electrical, magnetic, chemical reactions, etc.) are
absent. With the further assumption that diffusion is unidirectional and
the diffusivity is constant, Fick's second law may be written in the form

2
C C
aA_Da A.

= (B-11)
3t N

Component A is indicated in this development, but the results are appli-
cable to either component.
The initial and boundary conditions are:

1. the initial concentration in the capillary is Cq, or

Cpa=C, -L<z<0 t<0

2, after diffusion starts, the concentration at the open end of
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the capillary is that of the reservoir, Cy, or

1}
o

CA:CI‘ Z

t>0

3. the capillary is sufficiently long to insure that the gradient

at the closed end is always zero, or

oaCA
0z

=0 z=-L

The following dimensionless variables,

C
Q:——é’, U:_?_
Co L

)

are used to reduce Fick's second law to

3 | e
3E 3y

all t.

E

The corresponding boundary conditions are

Q=K U<o
where
K= oT
Co
and

(e}

9Q -9 U-=1

v

Dt
L2

?

(B-12)

(B-13)

(B-14)

(B-15)

The Laplace transform technique is then applied with respect
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to dimensionless time, E, where the transform of a function g is given

by ©

g = fe"-PEg dE, (B-16)
0

This result is integrated by parts yielding

a“Q

49 - p5-1 (B-17)
dU

The second and third boundary conditions transform to

0-2 U=0 allE (B-18)
P
and
9 .5 uy=1 Eso. (B-19)
du
Letting
wl=z-p (B-20)
a solution of Equation B-17 is
1
Q= AsinwU + BcoswU+'I;. (B-21)

Application of Equation B-18 at U = 0 gives

Q=§-=B+—l— (B-22)
P P
or
p -2t (B-23)

Application of Equation B-19 at U =1 gives
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]
o~

dQ :
—Q =0=wAcosw - wBsinw
dU ] =1
or
sinw
A= .
COsSW

Substitution of these values into Equation B-21 gives

K-1 {sinw sinwU
p \ cosw

\ 1
Q= + coswU) + ?

or, reducing to the lowest common denominator,

Ksinw sinwU + Kcosw coswU - sinw sinwU
pcosw

Q=

cosw - sinw sinwU
pcosw

+

The inversion formula for Laplace transformer is
Yyt ie
2miQ = ePEQ ap
Ytie

or, by the theorem of residues,

Q = Z Residues

(B-24)

(B-25)

(B-26)

(B-27)

(B-28)

(B-29)

The residues are found by evaluating the integrand of Equation B-28 at

the pnles

and

cosw = 0,

(B-30)

(B-31)



Atp =0, w=0and
R = K, (B-32)

The condition of cosw = 0 restricts w to

2n+l
w = n2+ m n=00123,... (B-33)

and, using L' Hospitals rule, the residue becomes

(K-1)sin intl oy ( 2n+l Tr)ZQ
= = 2 T2 (B-34)
cosw =0 - _ 2ntl ©
2

n=0,1:2,3:- o o

Then by summing the residues and substituting for the dimen-~
sionless variables, the solution of Fick's second law for the capillary

reservoir technique becomes

. _( 2ol n)?-pt
C =c.+(c.-cai=z L_. 2L sip 0tz (5 _35)
A r ° "7 n=0 Z2Zn+l 2L

To make this solution usable it is integrated over the volume

of the capillary; note that the final concentration measured is the average

concentration, EA’ and
L

~ 1
CA ZVfﬂ'rZCAdZ. (B-36)
0

Integration of Equation B-35 yields



L 2n+l_,2
2 o (ZElm)pe
1 4 ® mr 2L . (2ntl)mrz
Ca=Cr*% (Co - C,) Ffr?:o 20+l © s 2L dz
0 (B-37)
or
= 2ntl . 2
C,h,-C @ 1 - Dt
A r 8 5 R (B-38)
C0 - Cr WZ n=0 (2n+1)2
To facilitate the use of the above equation, Walls (23) has tabu-
Ca- C,
lated values of Q and oo He assumed values of Q ranging from
o~ Vvr

0. .to 0.3600 in increments of 0. 0001 and cal culated the ratio of the
concentrations. To apply Walls' results the concentration ratio is cal-
culated from the data, the value of Q is determined from the table, and

the diffusivity is calculated from

2
p= &
t

. (B-39)

The Boltzmann-Matano solution to Fick's second law will now
be derived. This solution was presented by Boltzmann (4) and first
used by Matano (17). The diffusion coefficient is not assumed constant

and Fick's law takes the form

3CA _ 3 3CH
3t 2=z Pap 57 |- (B-40)

The system under consideration consicsts of two regions which are to be

- connected at the beginning of the diffusion period. The initial conditions
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are: CA = Cy for z < 0 and Cp = C_{) for z < 0, The boundary conditions
are: CA = C, for all t at one end of the diffusion couple and CA = Cy for
rall t at the other end.
A new variable, y, is introduced which is a function of time and
distance,

-1/2
y=zt @ . (B-41)

Substitution of this variable into Equation B-40 reduces it to the ordinary

differential equation

dC dC
Y _A._d |p,. A (B-42)
2 dy dy dy
The above may be integrated once to yield
Ca
D - dC (B-43)
ABJC" ~ (ch yata "
e— " C
where Cx is any concentration between C, and C,.

When the diffusion run is over the concentration profile (pene-
tration curve) is determined for the entire length of the system and this
data is used to solve for the diffusivity as a function of concentration.

Since time is now a constant, Equation B-43 can be transformed to

"

A

" zdC,. (B-44)
Ci f A

s
(o)

C
"1 {dz
QD )CA." 2t (ch)

In order to implement the above result, the distance coordinate must

be shifted such that the z = 0 plane is defined by
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!
o

C
'[-de = 0. (B-45)

Co
This is done by adjusting the zero plane until the positive and negative
portions of the integral cancel each other, The diffusion coefficient is
then found by determining the slope of the penetration curve and the value
of the integral as functions of concentration. More complete descrip-
tions of the Boltzmann-Matano method are given by Jost (15), Shewmon

(21) and most modern metallurgy texts which deal with diffusion.

Ideal Solutions

In Chapter II Fick's second law was shown to be applicable to
systems for which the specific volume follows a linear law, i.e., no
change of volume on mixing. Consideration of Fick's second law as a
generalized diffusion equation applicable at any temperature, pressure
and composition allows its restriction to be stated as:

Fick's second law is theoretically restricted to systems for which
there is no change of volume on mixing for all temperature, pres-
sure and composition. However, it may be applied, at a given
temperature and pressure, to concentration intervals over which
the specific volume of the solution is approximated by a linear

law.

Stated mathematically this assumption, in the mocst general sense, is

V.=V; forall T, P, X,. (B-46)

The thermodynamic restrictions of the above condition will now be
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investigated.

At constant composition the specific and partial molal Gibbs

free energy are defined by

d.g‘i = - §idT + V;dP (B-47)
and

dG, = - 5, dT + V. dP. (B-48)

The defining relationships for the fugacities are

(in)T, X = (RT dlnif.i) T, X (B-49)

and

(dGi)T’ X = (RT dlnfi)T, X (B-50)

Restriction of Equations B-47 and B-48 to constant temperature and

substitution into Equations B-49 and B-50 leads to

‘ 1

and
-— 1 -—

(dlnfi>r’ X = (EI‘ \A dP)T’ X (B-52)
Subtraction of these results gives

B 1

dln— ={g7 (V. - V.)dP . (B-53)
L, x  \RT TV x

This is integrated from P = 0 where
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to some pressure, P, and

i
5, _ P
f dl i . (V. - V.)dP (B-54)
n——- = S A s = 4 . -
. fi|r,x  RT i~ VildPr x

i P=0

The right side is zero by Equation B-46 and the left side integrated to

i
In7- = InX; (B-55)
£;
or

The above result is the Lewis and Randall fugacity rule and is the basic
definition of an ideal solution.

Since Equation B-56 is applicable at all temperatures it may
be differentiated with respect to temperature at constant pressure and

composition to get

ldln-f-i\ [dins )
. -1
\ a1 }P,x'k aT }P,X : (B-57)
The relationships
— * —
dlnF H. -
- e (B-58)

and
N ..
fems) _wl-n .
= o i i B-
\ dT /P,X RTZ ( ?)

are substituted into Equation B-57 and
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I—_Il = Hl' (B-60)

Thus, the restriction that the change of volume on mixing is
zero for all temperature, pressure and composition implies an ideal
solution and the statement that Fick's second law is an ideal solution

law is justified.



APPENDIX C
THERMODYNAMIC DATA

Elliott and Chipman (9) determined the electrode potential,
with cadmium as the mor;a electropositive component, for the cadmium-
lead binary system from 400°C to 6000C. Their data were extrapolated
to 350°C and were used in this work. The relationship between the

Gibbs free energy and the electrode potential, E, is given by

0Gey = RTlnag = - 2FE (C-1)

where F is the Faraday constant.
From the extrapolated data the values of ln y were calculated
by

a 2 -
1nyCd=ln(3<)Cd=—§TIb-lnX (C-2)

Cd’

These results were plotted versus (1 - XCd)Z and are shown in Figure
C-1. From the derivatives of this curve the thermodynamic factor was
calculated by

dlnar, dln yog
~— =1-X~.,X

— —_— C-3)
cd XPb (

The results are shown in Figure C-2.

C-l
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Figure C-1. Elliott and Chipman's Thermodynamic Data;
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APPENDIX D
ISOTOPE ANALYSIS

The lead 210 was purchased from the Radiochemical Centre,
Amersham, Buckinghamshire, England, as lead nitrate in 2, 5N nitric
acid. Pb-210 does not have a characteristic gamma spectrum because
it and its decay products give many low energy gamma rays. The gam-
ma spectrum was obtained to determine if any impurities were present.
This spectrum is given in Figure D-1, and, as can be seen, no impuri-
ties were detected.

The cadmium 115m was purchased from the Union Carbide Cor-
poration, Nuclear Division, Oak Ridge National Laboratory as cadmium
nitrate in 0. 84N nitric acid. Previously Mirshamsi (18) experienced
considerable trouble with cadmium isotopes from Oak Ridge. Some of
his shiprnents contained a considerable amount of silver 110m. The
gamma spectrum of the Cd-115m u§ed in this work is given in Figure
D-2, and has the same energ? peaks as the spectrum given by Heath (14).
No impurities were detected.

The gamma spectra were run on an automated gamma spectrum
analyzer at the University of Oklahoma Reactor Laboratory under thé di-

rection of Dr. A, E, Wilson,
D-1
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APPENDIX E
NEGATIVE PARTIAL MOLAL VOLUMES

The partial molal volume of component i in a mixture is de-

fined as

V. = [=— . E-1
' (aNi)N, P, N; (E-1)

When a small amount of component B is added to a mixture of A and B
and the final volume is less than the original volume of the mixture, com-
ponent B has a negative partial molal volume, i.e., the right side of
Equation E-1 is negative. Several systems (2, 23) have been reported
where the partial molal volume of one component is negative over a por-
tion of the composition range. The characteristics of such a binary sys-
tem will be used in this section to demonstrate the need for utilization
of the proper diffusion equations.

Consider a binary solution of components A and B having the
specific volume versus mole fraction relatior}_ship shown in Figure E-1,
(This binary solution is totally fictitious.) Inspection of the curve indi-
cates that VB is zero at X, = 0.9 and negative for 0.9 <X, <1,0.

It is now assumed that, whether the mixture is gas, liquid or

E-1



E-2
solid, diffusion data can be obtained similar to the penetration curve for
two semi-infinite solid rods. The initial conditions are shown in Figure

E-2,

XA=]..O XA=0.6

>
"
o

XB= 0.4

Z=0 Z =L Z = 2L

Figure E-2, Diffusion Couple

After diffusion has proceeded for a specified time the mole fraction of
A will be 1,0 at z = 0 and will decrease in a regular manner to a value
of 0.6 at 2L.. Similarly, Xg = 0 at 3 = 0 and 0. 4 at 2L obeying the rule
Xp + Xg = 1. The penetration curve, plotted aé mole fraction versus
distance, then could take the form shown in Figure E-3, From the
penetration curve in Figure E-3 and the specific volume data in Figure
E-1, the concentration versus distance relationship is determined and
illustrated in Figure E-4., A maximum exists at XA = 0.9 and diffusion
actually occurs against the concentration gradient of A.

Assuming that the interface defined by

f zdCy =0 (E-2)

could logically be located, the Boltzmann-Matano solution still gives
erroneous results. (See Appendix B for discussion of Boltzmann-Matano

i

method. ) Since



Ca
1 23z .
Co
0C,
and — =0atX, =09, DAB must go to infinity at that point, Fur-
oz

thermore, DAB will be minus infihity on one side of Xp = 0.9 and plus
infinity on the other side. It could be argued that the integral in Equa-
tion E-3 should be zero at XA = 0.9, but this leads té two coordinate
systems for the analysis,

The solution to Fick's second law used in this work, Equation
26, also fails since it restricts diffusion to the opposite direction of the
concentration gradient, Thus, it would predict that component A is
diffusing, in both directions, away from the point in space where Xp =
0.9.

The case of negative partial molal volumes is extreme but
does point out the need for care and forthought before applying

sion equation to experimental data.



70

]
L]

0

3

g

B0

~
(32}

g

0

i

g

d

10 //‘\TangentatXAzo.‘J 7
L/ -
/
O k 1 i ] 1 A 1 - L
0 0.2 0.4 0.6 0.8 Lo
Xa
Figure E-1. Specific Volume--Concentration Relationship for

a Hypothetical Binary Solution



.o

0.9

0. 6

Figure E-3,

z - Distance

Mole Fraction Penetration Curve

14

16

18

§-"



Cpx 103 - moles/cm3

16. 0

15,6

15,2

14. 8

14. 4

14. 0

13,8

Figure E-4,

8 10 12

z - Distance

Concentration Penetration Curve

9-d



-4

TABLE F-1

SELF DIFFUSION OF PURE LEAD AT 400°C

—
—_—

Capillary Liength Time Co - Cx Cs - Cr Cs - Cr D x 10°

number inches sec cpm cpm Co- Cr Q cmz/sec
1 .968 36000 5038 2992 . 5939 .1296 2.12
2 1. 000 36000 4959 2894 . 5836 .1362 2.44
3 . 985 36000 5031 2686 . 5339 .1707 2.97
4 .967 36000 4977 2978 . 5984 . 1267 2.12
5 . 997 36000 5086 2996 . 5912 .1313 2,34
6 1. 005 36000 5078 3015 . 5937 . 1297 2,35
7 . 953 36000 4635 2750 . 5928 .1302 2,12
8 . 950 36000 4718 2460 . 5596 . 1524 2. 46
9 . 993 36000 5061 2958 . 5846 .1356 2.40




TABLE F-2

SELF DIFFUSION OF LEAD

Capillary Cd mass Length Time Co - C» Cs -Cr Cf-C Dx 105
number percent inches sec cpm cpm Co - Cyr - Q cmZ/sec
16 1.7 1, 027 28800 1577. 8 1090. 8 . 6557 . 0931 2.24
17 11. 7 1. 034 28800 1616, 3 1010, 7 . 6253 .1103 2. 68
18 1,7 1. 036 28800 1658. 7 1007. 8 . 6076 .1209 2.95
19 11. 7 . 987 30600 1502.1 954, 6 . 6355 .1043 2.18
20 1.7 .932 30600 1450. 8 845, 9 . 5830 .1366 2.54
21 1. 7 . 969 30600 1573.9 980, 7 . 6231 . 1116 2,24
44 30.7 ..996 25200 1007. 8 654.1 . 6490 . 0967 2. 49
45 30.7 1, 007 25200 985.9 645, 2 . 6544 . 0938 2.43
46 30.7 . 987 25200 915. 6 625.1 . 6482 . 0972 2. 42
47 30.7 .982 25200 916. 7 634. 6 . 6923 . 0744 1. 84
48 30.7 1, 000 25200 898. 4 596. 0 . 6634 . 0889 2,27
49 30.7 1. 240 25200 112.0 771, 2 . 6935 . 0738 2.86
50 30.7 1,240 25200 1056. 8 768, 8 . 7275 . 0583 2.30
51 30.7 1,240 25200 1147, 9 847.8 . 7386 . 0537 2.11
221 70.0 1. 040 25920 25553, 8 17184, 2 . 6725 . 0842 2.27
222 70.0 1, 040 25920 25666.9 17099. 4 . 6662 . 0875 - 2.36

223 70,0 . 1, 040 25920 25976, 0 17007. 6 . 6547 . 0936 2.52

-4



TABLE F-3

SELF DIFFUSION OF CADMIUM

Capillary Cd mass Length Time Co-Cr Cg-Cr Cg-Cr D x 10°
number percent inches sec cpm cpm Co- Cr Q cm?/sec
52 100 1. 002 21600 9048, 2 6413, 8 .7088 . 0606 2. 07
53 100 1. 002 21600 9813.1 6492, 3 . 6616 . 0899 2.79
54 100 1. 002 21600 8803. 7 5759. 3 . 6542 . 0939 2.92
55 100 1. 002 30000  9682.5 6397. 0 . 6607 . 0004 2,02
56 100 1. 002 30000 9118, 3 5633, 2 . 6178 .1147 2,57
57 100 1. 002 30000  9399.6 6127. 2 . 6518 . 0952 2.13
122 70.0 1. 002 29940  7934.4 4696. 2 .5920 .1308 2.93
123 70. 0 1. 002 29940  7982.7 4948. 6 . 6199 .1135 2.54
124 70. 0 1. 002 29940  7867.6 4800, 8 . 6120 .1193 2. 67
153 23.9 1. 002 29520  455L.7 2829.8 . 6217 L1124 2.56
154 23.9 1. 002 29520 4710, 0 2655, 7 . 5649 .1487 3.38
155 23.9 1. 002 29520  4586.6 2924. 4 . 6376 .1031 2.34

R



TABLE F-4

MUTUAL DIFFUSION; Pb-210 TRACER

Capillary  Length  Time Co Ct Cy C¢ - Cyp D x 10°
number inches sec cpm cpm cpm o - Cr Q cmZ/sec
8.9 mass % Cd; capillary 6. 08% Cd; reservoir 11. 81% Cd
10 . 999 35880 1723 1613 1577 . 3039 <.36 <10
11 .. 979 35880 1805 1684 1577 . 4693 .220 3.83
12 . 980 35880 1810 1693 1577 . 5202 .1810 3.13
14 1, 045 43920 1845 1706 1577 . 7630 . 0441 .71
15 1, 053 43920 1733 1633 1577 . 3613 .3276 5.32
14. 6 mass % Cd; capillary 11, 81% Cd; reservoir 17, 44% Cd
24 1. 021 21600 1557. 2 1491, 6 1433, 7 . 4689 . 2223 6.92
25 . 979 21600 1554, 7 1500, 7 1431, 4 . 5615 . 1511 4,632
26 .963 21600 1533, 4 1485, 0 1411, 8 . 6023 .1243 3.44
28 . 936 29100 1502.5 1436, 4 1383, 3 . 4454 . 2431 4,72
29 . 967 23400 1470. 6 1414, 5 1409.4 . 5191 . 1819 4, 69
26.4 mass % Cd; capillary 22, 22% Cd; reservoir 30, 65% Cd
37 . 947 21600 1272 1067 990 .2730 <.36 <10
- 38 1, 047 21600 1193 1062 990 . 3547 . 3350 11, 61
39 . 966 21600 1223 1044 990 . 2361 <.36 <10
40 974 21600 1278 1154 990~ . 5694 . 1457 4,13
4] 975 21600 1271 1152 990 . 5730 .1432 4, 07
42 1. 036 21600 1260 1144 990 . 5704 . 1450 4, 65

v-d



TABLE F-~-4--Continued

Capillary  Length  Time Co Ct C, Cs - Cy D.x 10°
number inches sec cpm* cpm cpm* o- Cr Q cm?/sec
50. 6 mass % Cd; capillary 47. 03% Cd; reservoir 54.11% Cd
170 1. 040 23340 5294].1 51100. 5 4206Ah.1 . 8308 . 0225 .67
171 1. 040 23340 52888.9 51490.0 42115, 3 . 8702 . 0132 .39
172 1, 040 23340 53603.4 51490.0 41867. 3 . 8199 . 0255 .76
70. 0 mass % Cd; capillary 68. 00% Cd; servoir 72. 02% Cd
211 1. 040 43200 23263.8 22700.4 21540.8 . 6711 . 0850 1,37
212 : 1, 040 43200 23411. 3 22915.9 21973.8 . 6544 . 0933 1. 5T

*These values are cpm per unit length for the glass capillaries (numbers 10-15 and 37-42)

g-d



TABLE F-5

MUTUAL DIFFUSION; Cd-115m TRACER

—
———

Capillary Time Co Cst Cr C¢ - Cyr D x10°
number sec cpm cpm cpm Co- Cyr Q cmz/sec
11.9 mass % Cd; capillary 7.85% Cd; reservoir 15.96% Cd
140 30360 3576, 7 1994, 5 2945, 4 . 6952 . 0730 1. 61
142 30360 1593, 2 2051, 9 2976, 2 . 6683 . 0864 1.91
143 25800 1546, 4 1960. 7 2936.1 . 7019 . 0698 1. 82
145 25800 1538, 4 2068, 5 3022.5 . 6428 . 1002 2, 61
146 25800 1555, 2 2039,3 2956. 5 . 6545 . 0938 2,44
19.9 mass % Cd; capillary 15. 96% Cd; reservoir 23,92% Cd
147 23340 2945, 4 3255, 6 4551, 7 . 8069 . 0293 . 843
149 23340 2976, 2 3379. 2 4586, 6 . 7498 . 0492 1, 415
151 24120 3022.5 3412.0 4710, 0 . 7692 . 0418 1.163
152 24120 2956. 5 3357.0 4586, 6 . 7543. . 0474 1, 319
33.9 mass % Cd; capillary 29. 51% Cd; reservoir 38.32% Cd
156 23280 5106, 3 5213, 3 6466. 5 . 9213 . 0049 . 141
157 23280 5214, 0 5681, 2 6640, 0 . 6724 . 0843 2,431
158 23280 4987. 3 5373.5 6393.7 . 7254 . 0592 1. 707
42, 5 mass % Cd; capillary 38.32% Cd; reservoir 46, 70% Cd
159 21900 6466, 5 6532, 6 7324.4 . 9230 . 0046 .14
160 21900 6640, 0 6718. 0 7581, 8 . 9172 . 0054 .17
161 21900 6393, 4 6598, 2 7340.5 . 7838 . 0367 1. 17

9-4



TABLE F-5-~Continued

P —
S

Capillary Time Co Ct Cr Ct - Cy D x10°

number sec cpm cpm cpm o~ Cr Q cmz/sec

50, 4 mass % Cd; capillary 46, 70% Cd; reservoir 54. 08% Cd

163 22080 7581. 8 7752.5 9006. 9 .8802 . 0113 .34
164 22080 7340, 5 7367.6 8802. 4 . 9815 . 0002 . 006 .
70. 0 mass % Cd; capillary 68, 02 % Cd; reservoir 71.99% Cd
116 21840 8743.8 8938, 2 8993. 4 . 2212 <.36 < 10
117 21840 8749, 7 9081, 2 9192. 2 . 2508 <.36 < 10
118 21840 8833.5 9003.1 9238, 7 . 5814 L1376 4. 40 -
120 25380 8972.8 9081, 2 9192, 2 . 5059 .1921 5.28 '




TABLE F-6

LEAD SELF DIFFUSION-FUNCTION OF CONCENTRATION INTERVAL

e

—— r—va

Capillary Time Co - C, Ctf - C, Cf-C D x10°
nurnber sec cpm cpm C, -Cr Q cmZ/sec

capillary 60, 0 mass % Cd; reservoir 80. 0% Cd; interval 20, 04% .-
181 28920 31683, 5 19960, 9 . 6300 .1075 2.59

capillary 63.9 mass % Cd; reservoir 76.1% Cd; interval 12, 28%

185 32880 27715, 8 17884, 6 . 6453 . 0988 - 2,10

186 32880 27832, 6 17286.1 . 6211 . 1128 2.39

187 32880 28017.1 18633, 8 . 6651 . 0881 1.87
capillary 66, 0 mass % Cd; reservoir 74. 0% Cd; interval 8, 00%

191 21600 24734, 7 18400, 2 . 7439 . 0515 1, 66

192 21600 24493, 7 16340, 6 . 6671 . 0870 2,81

194 21600 24986, 6 19163. 4 . 7669 . 0427 1, 38

capillary 68. 0 mass % Cd; reservoir 72. 0% Cd; interval 4, 02%
198 33000 22005, 8 14009, 2 . 6366 .1037 2.19
199 33000 22224,1 13949, 4 . 6277 .1089 2.30
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TABLE F-7

CADMIUM SELF DIFFUSION-FUNCTION OF CONCENTRATION INTERVAL

——e——
-~ —==—3

Capillary Time C, - Cy C¢ - Cy Ci - Cy D x 105
nurnber sec cpm cpm Co - C. Q cmz/sec
capillary 59.9 mass % Cd; reservoir 80, 0% Cd; interval 19.96%
58 21600 7517, 0 5196. 9 0. 6914 0, 0748 2.32
59 21600 6720, 4 4726, 7 0, 7033 0. 0691 2.15
60 21600 6867, 0 4882, 6 0, 7110 0. 0656 2, 04
capillary 64.2 mass % Cd; reservoir 75. 8% Cd; interval 11, 62%
76 21900 8384, 8 5794.5 -0, 6911 0. 0749 2.30
77 21900 8599, 3 5891, 9 0. 6852 0,0778 2,38
78 21900 8726.8 5977.6 0. 6850 0. 0779 2.39
capillary 66, 0 mass % Cd; reservoir 74. 0% Cd; interval 7.95%
88 31800 8953, 5 5621. 9 0. 6279 0.1087 2.29
89 31800 8856, 0 5696.9 0. 6433 0. 0999 2,11
90 31800 9209, 7 5701, 9 0. 6133 0.1174 2.48
capillary 68. 0 mass % Cd; reservoir 72. 0% Cd; interval 3.98%
110 26220 8923, 4 5491, 2 " 0,6154 0.1162 2.97
111 26220 8777.8 5634, 8 0. 6419 0.1007 2.58
112 26220 8954, 4 5529.8 0. 6176 0. 1149 2.94
113 26220 9269, 6 6123, 2 0. 6606 0. 0905 2,61
114 26220 9250,1 6333,2 0. 6847 0. 0781 2, 02
115 26220 9282. 7 6093, 4 0. 6564 0. 0927 2,67
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TABLE F-8

MUTUAL DIFFUSION-FUNCTION OF CONCENTRATION INTERVAL; Pb-210 TRACER

———

Capillary

—

Co (of C. Cs - C,
cpm cpm cpm Co - Cr

D x 10°
cmzlsec

capillary 66.0 mass % Cd; reservoir 74. 0%; interval 8. 00%

capillary 63,9 mass % Cd; reservoir 76.1%, interval 12.28%

26822. 0 25569. 5 20369. 6 . 8059
27153, 4 25683. 5 20198, 8 . 7886
27393, 0 25824,1 20649, 2 L7674
27881, 3 25192.1 19052.9 . 6954
28246, 4 25508, 4 19105, 8 . 7005

.90
1, 07
1. 29
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TABLE F-9

MUTUAL DIFFUSION-FUNCTION OF CONCENTRATION INTERVAL; Cd-115m TRACER

— ——

-

Capillary Time Co Cy C, Cs¢ - Cy D x 10°
number sec cpm cpm cpm C, - Cr Q cm?/sec
capillary 59.9 mass % Cd; reservoir 80.1% Cd; interval 20.12%
64 23400 8497.1 8895, 6 10102.9 . 7518 . 0484 1, 39
65 23400 8592,1 9071. 6 10253, 2 . 7113 . 0655 1,88
66 23400 8573. 0 8906.1 10340.9 . 8116 . 0279 D.80
67 21720 8652, 7 9356. 8 10102.9 . 5145 .1854 5,73
68 21720 8663,1 9698. 3 10253, 2 . 3490 . 3416 10. 56
69 21720 8683, 8 9530, 6 10340.9 . 4890 . 2056 6.35
capillary 64.2 mass % Cd; reservoir 75.8% Cd; interval 11, 65%
82 22500 8512,1 9125,.1 9686. 4 .4780 . 2147 6. 40
83 22500 8641, 6 9274, 7 9793.3 . 4503 .2386 7.12
84 22500 8417.5 8991. 5 9985, 9 . 6340 .1052 3.14
85 21600 8790. 7 9268, 8 9686, 4 .4774 . 2152 6. 69
86 21600 9105. 0 9666, 6 9793.3 . 1841 <.36 <10
87 21600 9092, 7 9511, 2 9985.9 . 5315 .1725 5.36
capillary 66.0 mass % Cd; reservoir 74. 0% Cd; interval 7.94%
94 23760 8459, 2 8504, 0 9674.5 . 9631 . 0011 . 003
95 23760 8399, 8 8796. 6 9771. 4 . 7118 . 0652 .19
97 26340 8653, 2. 9290, 4 9674, 6 . 3440 . 3474 9.20
98 26340 8947, 9 9413, 2 9771, 4 4350 . 2525 6. 69
99 26340 8781.1 9206. 3 9647.3 . 5091 . 1895 5. 02

1=



