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CHAFTER I
THE RESEARCH PROBILLEM
Introduction

Virtually evervone in American Industrv today agrees
that consistent high guality is an essential ingredient., and
possibly the single most important pertormance measurs
associated with manufacturing.

Manufacturing processes may be split into two distinct
categories. The first is production of discrete components
such as electronic parts., avtomobiles, bolts and in gensral,
things which may be counted. Statistical process control
{SFCY i1s now being used extensively throughout these
industries extensively. Research results spanning
approximately &0 vears support this effort.

The second category, guite different from the first, is
continuous flow processing (production of chemicals,
petroleum products, synthetic rubber, etc.). Froduct from
such a process is observed as a continuwous stream measured
on a continuous scale such as pounds, gallons, tank cars,
and so on. The application of 5FC in the continuous f1low
processes 15 relatively. new. This effort has been seriously

pursued for only about five yvears. The SFC tools used so



freguently for discrete processes are virtually useless or
misleading for continuous processes.

In continuous flow processes, conventional computer
process control (CCPEY is used extensivelvy. Niﬁh CCrC.,
sensors are used to monitor inputs and outputs, suppliving
data to a process control computer at short intervals of
time. WVirtually all such data is aQtDcorreiated; that 1s,
the time series of data sampled has a high correlation from
one data value to the next. Every minor shi+t in a process
output measure is treated as having intrinsic value,
resulting in shifts being made to proceszs inputs as directed
thirough the use of a complex control model. A common rFesult
of CCPC has been trending or cycling and overcontrol
{overcompensation), resulting in a product that is
inconsistent.

On the contrary, SFC requires that independent datas he
used. As long as sample results are within prescribed
statistical bands, Calleﬁ control limits, process variations
are observed only as noise, and only when non—random
patterns are witnessed on a control chart, is action taken.
Therefore, there exists a serious incompatibility between
CCPC and SPC. Specifically, this is due to the emeraence of
overcontrol of a process as a result of using CCFC and the
lack of independence between sample observations., or the
existence of autocorrelated data.

This research presents the first appiication of

statistical process control within the realm of control



systems. Additionally, an evaluation of the guality {a

measure of the size of variation around a target value) of

h

control scheme utilizing various filtering methods is

pressnted.
Conventional Computer Frocess Control

Feedback Control is an important technigue used in
process control. It involves measwing a response
associated with the process output, comparing it to a target
value f{set point), and adiusting a final control element
ie.g. — control wvalwve) in an attempt to keep the output
variable equal to a given target value. The implementation
requires that the process output be sampled at discrete
points in time and the data collected be transmitted to the
computer for the appropriate action of the final control
element . Thus, the computer provides the decision making

for the control loop.

Froportional/Integral/Derivative Control

The difference between the observed process output over
time (c(t)) and the desired target wvalue (r{(t)) is known as
the error signal, e(t); therefore, the eguation that
describes the error signal is as follows:

elt) = ri{t) - cit)

It is the objective of any manufacturing process to

maintain this error signal at zero. This objective 1is

achieved by implementing a control scheme which aigorith-



mically evaluates the error ot the process and sends a
message/sdecision to the final control eslement. Consider the

following block diagram:

Frocess
Cantroller
+ e ———
rit) N =(t) Control mit) Final | ci{t)
> Scheme " Control +
- £{-) Element

where: r{t} Frocess Setpoint

ei{t) = Error Signal

mi{t) = Output of process
controller or input to
the final control element

cit) = Frocess Output

Figure 1-1. Block Diagram of an Automatically Controlled
Frocess

From Figure 1-1 above, we see that the relationship betueen
mi{t), the output of the controller, and the error signal 1s

as follows:

mit)

fir(t) — ot}

fleit))

I

This function +(-} can take on a variety of forms depending
on the response desired to a given process output

disturbance. There are three fundamental forms for f(-),



commonly known as controller actions., that are utilized
within industrv. They are referred to as: (see Coughanowr

and Foppel, 124653 Smith and Corripio, 19835)

(1) Proportional Controller (F)
(2) Froportional-Integral Controller (FI}

(3} Froportional-Integral-Derivative Controller (FID)

The first controller action, Froportional Controller, is

described by the following equation:

m(t) m + Eo(r{t) — c{t))

= m + Kee(t)

where: kc Controller Gain, Constant

Bias Value, the output from the
controller when the error is zero.

3
I

The primary disadvantage of the FProportional Controilier
is that once the system has reached steady state following a
disturbance to the system. an offset or steady state srraor
will exist.

In Drde} to combat the existence of the steady state
offset, a second action is introduced. Specifically. the
integral action is combined with the proportional action to
eliminate the steady state offset. The mathematical
relationship between the controller output and the error

signal for the PI controller is as follows:

Tx 'J

mi{t) = m + Kolr(t) — c(t)] + Ko [ Or(t) — cdit)Idt



= m + Feait) + Eo r e(tidt
Tx J

where: T = parameter associated with the integral action
of the controller {(preset and constant)

In so far as there exists a non—zero error signal, the
output of the controller will continue to change until the
steady state error is zero. The primary weakness of the FI
controller is that the combined proportional and inteagral
actions have no ability to anticipate where the process is
heading since the time rate of change of the error is not
known. Hence, the derivative action is added to the
mathematical relationship describing the output of the
controller. This relationship, constituting the FID
controller is shown below:

mit) = m + Keelt) + Ko [ e(t)dt + ke 7o deit)
T Jd dt

where: 7Tp = parameter assocliated with the derivative action
of the controller (preset and constant)

Filtering Alqorithms

Within the control loop of a given process, transient
variations may arise. Thgse variations may be caused by
noisy transmitters/receivers, unstable movement of the
output variable being monitored, noisy transmission (i.e. -
interference), etc. These variations are typically at a
much higher frequency than the variation of the process
itself. This high freguency variation is called noise.

Filters are introduced into the control loop i1in an

attempt to reject the noise component of the process output



signal; therefore, the cbjective of a fiiter is to accept
the "true" process signal and reject the noise. NMNoise
rejection requires the additional expense of signal
distortion (i.e. - Fhase Lag). I+ the noise component is
not rejected, excessive +inal control element activity wili
result.

The three standard types of filters that wiill be
utilized in this research will be: (1) The Exponential
Filter, (2) The Least Squares Filter, and (3} The Non—-Lin=ar

Exponential Filter.

Cascaded Control

In many control loops, the phase lag bestween an
input change and the corrected process output is too long.
The reasons for this excessive lag or sluggish operation of
the primary control loop is due to the large number of
components (each with their own laq) placed in series.
Consider the block diagram shown in Figure 1-Z.

The nbjeétive of the control loop is to maintain Te at
a aiven set point. In Figure 1-2, many components are
placed serially: therefore, the phase lag may be excessive.
T is the variable used to control To. I+ an additional
controller is placed in the loop to compare Tk to a set
point as determined by the primary control loop, we would
reduce the phase lag. Consider the modified blgck diagram

shown below in Figure 1-3.
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Figure 1-3. Cascaded Control Scheme

It was shown by Smith and Corripio (1985) that the



cascaded control scheme, as shown above in Figure 1-3, can
dramatically reduce process phase lag. Although this type
of control appears to be appealing, the secondarvy loop must

be faster than the primary loop (Smith and Corripio, 1785).
Control Charts for Continuous Frocesses

The samples collected from a continuous tvype process
must be based on a single observation, and the time between
successive observaticons/samples must be large enough to
support the assumption of independence between samples. The
techniqgues developed to control such processes are as

follows:

(1) Exponentially Weighted Moving Average Charts
(2) Moving Averaage and Moving Range Charts

{3) Individual and Moving Range Charts

The objective of the control chart as applied to a
continuous {(or discr=te) type process, is to statistically
evaluate the presently observed noise by making inference
about the process from a sample collected at a specific

point in time.

Exponentially Weighted Moving Averaags

The Exponentially Weighted Moving Average (EWMA) has



been classified as a method for establishing real time
dynamic control {(Hunter, 1986). When the EWMA is emploved
as a control chart technigue, it is assumed that the
individual observations are independent and normally
distributed.

The EWMA is a statistic with the characteristic that it
gives less weight to individual data as they get older. A
plotted point on an EWMA chart can be given a long memory or
a short memory {(depending on the age of the observations
included in thé EWMA) .

The EWMA may be viewed as a way to forscast the rnext
aobservation and may be graphed simultan=sously with data
appearing on an individuals chart. The EWMA equals the
present predicted value plus x times the present observed
error {(observed value minus the previous forecasted value!}
where x=[0,1]1. The smaller the vélue of % the greater the
influence of the historical data.

The control limits of the EWMA charts are based on the
same premise as other control charts. That is, the upper
and lower control limits are placed'at * Zrswma from the
process average. As in the appliication of the moving
average chart, if the current EWMA is greater than the UCL
or lower than the LCL, it is usually concluded that the
process 1s not in a state of statistical control and an

assignable cause exists.



Moaving Average and Moving Range

Moving averages are +tormed from a time series of
individual measurements by finding the arithmetic mean of
the first n consecutive values and subsequently dropping the
oldest value and adding the newest value to form each
successive mean. Once a maving averagé is determined, it is
plotted and compared tn»predetermined control iimits. The
control limits afe placed at * Zoexmar from the process
average. If the presently observed moving average is less
than the lower control limit (LCL} or agreater than the upper
control limit (UCL), it is usually concluded that ths
process is not in a state of statistical control, and a
special cause exists. The moving average chart provides the
user with the ability to draw inference regarding the
present process average.

The moving range chart is utilized concurrently with
the moving average chart. The moving range is determined by
calculating the range of the first n consecutive values fraom
a time series of individual measurements. The moving range,
like the moving average, is determined each time a new
observation is collected by including the newest observation
and dropping the oldest. The moving range is an estimate of
present process variation, and as new moving ranges are
determined, the user determines if there has been a
significant change in the process variation by comparing
each moving range to the predetermined upper and lower

control limits.



Individuals and FMoving Ranage

Individuals charts are hased on the same principle as
most all other control charts. Individual measuwrements are
plotted and compared to predetermined control limits. The
Uuct. and LCL are placed at * 3F¢ +rom the process average.
The moving range chart is emploved as previously described.
Additionally, the sensitivity of the Individuals chart to
shifts in the process average is improved by utilizing

various runs rules {(AT4T Technologie=s, 178%5F.
Summary of Research Objectives

Based on the preceding discussion, the obiective of

this research is as follows:

To apply statistical process control within the realm
of control systems and to evaluate the guality of =
control scheme when utilizing various S5FC and

conventional filtering methods.

This objective above is reached by achieving the

following subobjectives:

Subobiectives

1. By designing a set of statistical process control
tonls and procedures that are applicable as

filtering devices within a control loop.



By establishing a single loop control scheme (FPID)
with known parameters which represents a real
application. The use of a secondary loop or
cascaded scheme i1s considered and evaluated in the
research.
By developing analytic and simulation models for
the control scheme discussed in 2. with no process
noise included. The simulation is developed on
the main +frame caomputer utilizing FORTRAN.
By evaluating the gquality of the output of the
control system, discussed above in 2. and 3.,
utilizing the following conventional filtering
methods when noise is added to the system:

a. Exponential Filter

b. Least Sguares Filter

. Non-Linear Exponential Filter
The measure of pef%nrmance that is used in the
evaluation of guality is proportional to the
amount of variation of the cutput about a target
value.
By evaluating the guality of the output of the
control system, discussed above in Z. and 3.,
utilizing the previously described set of
statistical process control tools and procedures
as statistically based filtering methods when

noise is added to the system. The following list



represents the technigues from which the set
evalved:

a. Exponentially Weighted Moving Average
Charts

b. Moving Average/Moving Range Charts

C. Individuals/Moving Range Charts
The measure of performance that is used in the
evaluation of guality will be proportional to the
amount of variation of the output about a target
value.

d. BRased on the analyses in 4. and 5. above,

comparisons of the six filtering methods were

made.

Contribution

The combination of statistical process control
technigues and classical control systems theorvy represents
the foundation on which many vears of research mav result.
This study will be the first of its kind. Success+ul
completion will not onlyv meet the obiectives described in
the preceding section, but it will alsoc provide an excellent
indicator of the future direction. Additionally, the
evaluation of the improvement of guality as a function of
the filtering methods deploved is of primary interest to
American manufacturing.

In many respects, this research provides a starting
point from which Industrial Engineers may become

fundamentally involved in control systems theorv.



CHAPTER 11
LITERATURE REVIEW
Introduction

This chapter provides a review of the development of
research relevant to the objectives of this research.
Statistical Frocess Control (SFC) and Conventional Computer
Frocess Control (CCFPC) have evolved as intearal parts of
manufacturing. These two tools have evolved separatelvy,
with little, or no interaction. Due to the independent
development of these fields of research, little literature
exists which utilize 5PC within CCPC or visa versa.
Therefore, this chapter is divided into three main sections.

{1} Statistical Frocess Control

(2) Statistical Frocess Control of Continuous Frocesses

{3) Digital Signal Fruce§51ng/Filtering

Included in the first section will be a brief overview
of the history of statistical process control technigues.
Following that discussion, SFPC techniques utilized in
caontinuous processes will be highlighted. The concluding
section will provide a brief overview of the more common
filtering techniques utilized in the continuous process

industry.



Statistical Frocess Control

Statistical Process Control as used in this discussi:
refers to the use of statistical techniques as tools to
monitor the performances/variability given process. The
primary resource used today is the control chart. Walter
Shewart introduced the cancept of quality control chartE.:
1924 (Shewart, 1%24)}. Over the past sixty vears many
advances have evolved. Statistical process control provic
manufacturing with the ability to anticipate and/or ident:
process changes before adverse effects results (Eingham,
1957 .

Control charts are based on the premise that regardl:
of how well a process designed or maintained, a certain
amount of inherent or natural variability will always exic
(Montgomery, 1985). As discussed in the preceding chapter
the limits of a control chart are based on this natural
variability of a given process. Additionally, runs rules
have been developed or recommended to improve the control
charts ability to detect small shifts in the process aver:
{(see, Weiler, 13753).

The primary performance measure of the control chart-
abhility to detect changes in a process is called the Aver:
Run Length (ARL) or Mean Action Time (MAT). The ARL or M
is the average number of samples required to detect a giwve
shift in a.prncess. In #age {1955) and FPage (19462), ARL":
were considered for control charts utilizing one of +four

rules. Roberts (1758) proposes that if standard control
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chart tests are supplemented with another zone test, the
sensitivity to process changes is improved while the number
of type 1 errors increase. Weindling, Littauer, and Tiago
de Duveria (1270) determined the MA&T for XBAR charts using
runs rule and one point bevond control limits for out of
contral conditions. bWheeler (1783) attempted to determine
the power function {(inverse of the ARL)Y for the XEAR chart
using ATET rules while Chamh and Woodall (1787) developed a
method to determine exact ARL"s for Shewart control charts
using many different runs rules. It is shown that
supplementary runs rules cause the Shewart charts (xbar
charts) to be more sensitive to small shifts in the mean.
but they are not as sensitive as cumulative sum charts
(Champ and Woodall, 1987).

In a survey of 173 firms (Saniga and 5Shirland., 197?)'it
is shown that Shewhart®s original control chafts {the Xbar.
R. Sigma, p. ¢, and u charts), see Shewart (1731}, are most
frequently used by industry. The moving average chart is
the éecnnd most frequently used in industry., while the
individuals chart is one of the more frequently used control
chart techniques other than those originally listed in the

questionnaire.

Statistical Frocess Control of

Continuous Frocesses

The data obtained from well mixed vessels in a conting—



ous +low process is different than data collected +rom
discrete manufacturing processes. The data from continuous
flow processes are often interdependent resulting in
autucorrelat;d date (Brooks and Case,1987!. Statistical
process caontrol emerged as useful tools in the petroleum
industry {(Walter, 1935), the chemical industry {Bingham,
19573 Bingham. 17958), and the steel industry {(UOcccasione,
1936} . fizs SFC progressed in its application to the
continuous flow process additional tools were
utilized/devel oped.

Correlation analysis was used in a chemical process +for
changeover efficiency (Hinchen, 1936&6). Freund (1260}
recommended the use of acceptance control charts in
continuous flow processes. The use of exponentially
smoothed data in control charts is recommended by Wortham
(1972). Individuals and moving range charts are otten used
in continuous flow processes (Montgomery, 19835). Juran
(1274) recommends the use of moving average and ranges ftor
continuous processes.

The assumption of each control chart technigue is that
each sampled value is statistically independent.
Unfortunatelvy, Etatistical independence between sample data
points may or may not be valid. Vasilopoulos and Stambouiis
(19278 modify existing control limits to account for the
interdependence of sampled values; They assumed an
autoregressive process (AR(2)) and determine appropriate

limits. Additionally, samples can be spread far enough



apart in time such that one can reasonably assume
independence. Brooks and Case (1%87) provide a procedure
for checking data independence and three methods for dealing
with autocorreiated data (specifically, avoidance. compen-—
sation, and control limit adjustment).

it is shown in Neuvhardt (1987) that the effect of
correlated measurements within the subgroups of an XBAR

chart cause an increase the Type 1 error rate.

Control Charts

Exponentially Weighted Moving Averace (EWMA) Control
charts or geometrically moving average control charts have
emerged since the late fifties (see, Roberts, 1959; Muth,
19603 Freund, 1?26Z2; Roberts. 1966). Robinson and Ho (1978}
.present a numerical procedure for the tabulation of ARL'Ss
for the geometric moving average chart. Hunter (19861
points out that the EWMA can be thought of as a compromise
between thé-Shewhart XBAR chart and the cumulative sum
chart. Runs rules are not utilized since the EWMA provides
a formal use of historical data.

Crowder (1987) proposed the exact average run langths
and the standard deviation of the run lengths for the EWMA
chart assuming normal observations. The value obtained were
consistent with those obtained by Roberts (193%) and
Robinson and Ho (1978). Nag (1987) develops the control

limits and necessary factors for four control charts for
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EWMA s, Specitically, control charts +or sample means,
sample ranges, individual measurements, and moving ranges
were developed. MAT s for each chart are determined for
each chaft through the use of computer simulations. Each
are compared to the appropriate XBAR, R. Individuals., or
Moving Range Chart. It is concluded in Ng (1987) that the
MAT for the EWMA for individuals is better than the
individuwals chart and the EWMA for moving rances is better
than the moving range chart. Sweet (1984) presents
equations governing the construction of control charts for
both the mean and the standard deviation or variance of a

rocess using exponentially weighted averages.
B 0

Gibra (1973 states that the moving average andg
moving range charts are useful in situations where the time
reguired to measure a certain guality characteristic is so
great that repeated observations cannot be considered or the
observations become avallable at a rate so siow that i1s may
not be feasible or possible to form a rational subagroup.
The plaotted points are not independent. The use of the.
moving average has the effect of reducing the noise of the
system. Successive moving averages of n values have n-—1
values in common. Nelson (1983 concludes that the moving
averages are therefore positively correlated and the

correlation increases with n. A seguence of moving aver acss



will form an oscillatory series. Roberts (1959 generated

tabulated ARL"s for the moving average chart.

Individuals and Moving Range Charts

Individuals charts are useful when i1t is neither easy
nor desirable to form rational subgroups (Grant and Leaven-—
worth, 12843 PMontgomery, 1985). In Melson (1282), it is
stated that the moving range of two minimizes the infiation-—
ary effects on the wvariability caused by trends and pscilla-
tions that may be present, since it measures variations from
point to point irrespective of their average level. The
control chart for individuals provides the fastest fesdbaci
aof information and the assumption of normality is most
critical.

Crowder (1987) provides a numerical procedure for the
tabulation of the ARL for an individuals chart in cumbiﬁa~
tion with a moving range chart. Ng (1287), provides
simul ated data to determine the MAT. In both cases, runs
rules were not included. Champ and Woodall (1987) provide

ARL*’s for the XBAR chart including runs rules.
Digital Signal PFrocessing

Digital computers are increasingly being used to
perform varied signal processing functions originally
achieved with analog equipment. These appiications vary
from the simplest control systems {(as shown in Chapter 1)

and filtering technigques (as shown in the following



discussion) to complex control algorithms (i.e.-Adaptive
Control}) or complex filtering {(i.e.—kalman Filters), see
Astrém and Wittenmark (1984). The following discussion
provides a review of the basic principles in digital signal
processing.

Today the trend in industry is toward the implemen-—
tation of control functions usinag digital computers. &
common characteristic of these installation is that the
control calculations are performed at regular intervals of
time T, the sample time. A recommended rule of thumb, Smith
and Corripio (1985), is that the sample time should be +rom
one—tenth to one—twentieth of the effective process time
constant. When the sample time is of this order, its effect
can be taken into consideration by adding one—-half of the
sample time to the process dead time.

The presence of disturbance in a process is the
principle reason for using contraol. Astrdm and Wittenmark
{1984) categorize disturbances into two tvpes: Deterministic
and Stochastic. Disturbances may convey important
information about the process or may be the result of random
or deterministic noise introduced at some point within a
aiven system. It is the purpose of the digital filter to
eliminate the noise. Exxon (1977) classifies noise into
three typeé: (1) random (2) exponentially correlated (3}
periodic noise. It is recommended that the sampling periocd
be approximately one—half the period of the noise. There

are three basic filters as recommended by Exxon (15777 in



Erae

aiding 1n the attenuation of nolise. Specifically, thess
digital filters are the exponential filters, linear ieast
squares ftilters, and non—-linear least sguares.

The euzponential filter (Exxon, 1%77; Stephanopoulos,
1984) is expressed by the following recursive relationship:

Y = FY¥m—y + (1-FYi,

where: ¥ Filtered DOutput at Sample n

]

Y e tnfiltered Cutput at Sample n

F

il

Filter Constant.
Essentially., the exponential filter is a first order iag
process. As F increases, more attenuation results at the
expense of increased lag (Takahashi, Rabins., and Auslilander
(19723 .

The least squares filter (Exxon, 1277) is sxpressed by

the following recursive relationship:

i
¥ = b Bi Xa—i1+2
i=1
where: ¥ = Filtered Output
Am—a+1 = Raw Data Foint
B, = Constant Coefficients
N = Number of Raw WValues Used

The least squares filter has very good noise reduction at
high freguencies but can result in overshooting and
undershooting the true prnceés signal at low frequencies,
(Exxon, 1977).

The nonlinear exponential filter is expressed by the

following recursive relationship:



Yo = Yr—y + [min <1,l_z_kx_._1 11 X
R
where: Yo = Filtered VYalue at time n
Dha = En = Yn-
R = Filter Farameter

¢ = Standard Deviations of Sampled MNoise Signal
The nonlinear exponential filter works well in situations
where the noise is predictable and works poorly in condi-
tions where noise is erratic (Exxon, 1§77).

In addition to the previously described standard
filters, common filters such as lawfpass, high—-pass. band-
rejection filters described in textbooks (i.e.-Stanlev,
1975) can be used to attenuate periodic noilse.

Even with the filtering methods employed above,
classical process control (i.e.-FID) assumes that the
incoming information contains intrinsic information. That
is, action is taken on every point (filtered or unfiltered)
which deviates from a target (Brooks, 198&6). At Froctor and
Gamble, classical controllers are used when noise is not a

problem or can be adequately filtered (Maurath., 198X).
Summary

This chapter presents a survey of the literature on
problems, contributions, and needs relative to the
objectives of this research. This survey demonstrates that
research interests exist in the fields of Statisticai
Frocess Control and Conventional Computer Frocess Controi.

Many SFC technigques have been developed for continuous +low



processes, but none have been applied within the framework
of a feedback control system in an attempt to reject the

natural variation existing in a continuous flow process.
This survey indicates a need for the folliowing:

1. To evaluate the applicability of control charts
for continuous flow type pfccesses within a
feedback control loop in an attempt to reject the
natural variation of a process.

Z. To compare tﬁe performance of the contrai charts
with the performance of standard filtering
technigues.

3. To hypothesize the potential usefulness of 5FC
technigues within the entire realm of control

svstems theorvy.



CHAFTER III

THE DETERMIMATION OF THE

AVERAGE RUN LENGTHS
Introduction

The primary performance measure of a control chart’s
ability to detect changes in a process is the Average Run
Length {(ARL) or Mean Action Time (MAT). The ARL or MAT is
the average number of subaroups required to detect a given
change in a process. In Fage (1953) and Fage (1962), ARL s
are considered ftor control charts utilizing one of four
rules. Roberts {(1958) proposes that i+ standard control
chart tests are supplemented with another zone test, the
sensitivity to process changes is improved while the number
of type 1 errors increase. Weindling, Littauwer, and Tiaao
de Oliveira (17970) determine the MAT for XBAR charts usinag a
runs rule and one point bevond control limits for out of
control conditions. Wheeler (1983) attempts to deﬁermine
the power function (inverse of the ARL) for the XBAR chart
using AT&T rules, while Champ and Woodall (1987) develop a
method to determine exact ARL s for éhewhart control charts
using many different runs rules. It is shown that
supplementary runs rules cause the Shewhart charts (XEBAR

charts) to be more sensitive to small shifts in the mean.



The data obtained from well mixed vessels in a
continuous flow process is different than data collected
from discrete manufacturing. The data from continuous fiow
processes are2 often interdependent, resulting in
autocorrelated data (Brooks and Case, 1987). The use of
exponentially smoothed data in control charts is recommended
by Wortham (1272)3; therefore the exponentially weioghted
moving average (EWMA) chart is often found applied to
cantinuous processes. Individuals and moving range {(IMR?
charts are often used in continuous flow processes
(Montgomery, 1985). Juran (1974) recommends the use of
moving average and moving range (MAMR) charts for continuous
processes.

The assumption of each control chart technique is that
each sampled value is statistically independent.
Unfortunately, statistical independence between all sampled
data points may or may not be valid for a given coﬁtinunus
tvype process. For the purposes of the research to foilow,
independence of sampled data points is assumed.

In statistical process control, the premise on which
the CDntEDI charts are developed is the same for all charts.
Specifically, as long as subgroup results are random and
within prescribed statistical bands, called control limits,
process variations are assumed to be noise or the naturail
variation of the process, and only when non-random patterns
are witnessed or a point +falls oputside control limits. is

action taken. Conventional computer process control (CCFC)



on the other hand assumes that all data points have
intrinsic value. That is, every minor shift in a procescs
ocutput measure is treated as having value which often
results in trending or over control. Therefore, there
exists a serious incompatibility between CCFC and SFC.

The following discussion represents the svaluation of
control charts commonly utilized in the statistical control
of continuous prncésses when subjected to various
disturbances in the process mean. The process disturbances
that will be considered are unit step and linear trend
disturbances; both of these disturbances are common in
continuous type processes. The ARL is determined for
different charts (or chart combinations) for given

disturbances using a computer simulation.

Froceses Disturbance

It is assumed that the process variation is normal iv
distributed with mean, p, and standard deviation, o. At
time O, the process is subjected to a shift in the process
mean, and the maagnitude of this shift is ko. Therefore, the
model describing the process at time t is:

Yity = {(p + ko) + =,

where: 1. (p + ko) =
2. £ ™M NG, 02)

New process mean
The ARL (to be determined later) represents the average

number of subgroups required to detect a shift in the pro-

cess average of magnitude ko,



l.inear Trend Disturbances

As stated previously, it is assumed that the process
variation is normally distributed with mean, v, and standard
deviation, . At time O, the process average begins to
incréase in magnitude of ko units every sampling periocd.
Therefore, the model that describes the process after time
zero is as tollows:

¥Y{t) = (p + kTe) + =
where: 1. (p + kTo) = New process mean

at the Tth sample
2. £ ™ N(O,03)

Exponentially Weighted Moving

Average Charts

The exponentially weighted moving average (EWMA) has
been classified as a method for establishing real time
dynamic control (Hunter, 1986). Like the previously
discussed charts, it is assumed that the individual
observations are independent and normally distributed. The
EWMA may be viewed as a way to forecast the next
observation. The EWMA equals the present predicted valus
plus x times the present observed error (ocbserved value
minus the previous forecasted wvalue) where oa=[0,11. The
smaller the value of o the agreater the influence of the
historical data.

The control limits of the EWMA charts are based on the
same premise as other control charts. The upper and iower

control limits are placed as follows:
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As is the case for the MA and MR charts., it is usuaily
concluded the the process is nmf in a state of statistical
control if the current EWMA is agreater than the upper
control 1limit or less than the lower control limit. Runs
rules are not applicable since the current EWMA takes into
account historical information, thereby rendering each

plotted point not independent from other plotted points.
Moving Average and Moving Range Charts

Moving averages are formed from a time series of
individual measurements by finding the arithmetic mean of
the first n consecutive values and subsequently droppinag the
oldest value and adding the newest value to form each
successive man. Once a moving average is determined, it is
plotted and compared to predetermined control limits. The

control limits are placed as follows:

Upper Control Limit = p + Zo/d0
Center Line = p
Lower Control Limit = p - 3r/40

where: n is the number of samples in a
subgroup

I+ the presently observed moving average (MA) is less
than the lower control limit or greater than the upper
control limit, it is usually concluded that the process is
not in a state of statistical control., and a special cause

exists. The moving range chart is utilized concurrently



with the moving average chart. The movino range is
determined by calculating the range of the first n
consecutive values from a time series of individual
measurements. The moving range (MR), like the moving
average, is determined each time a new observation is
collected by including the newest observation and dropping
the oldest. The upper and lower control limits for the
moving range chart are placed at *3eme from the averaoges MR.
In Nelson (1982), it is stated that the moving ranae of two
minimized the inflationary effects on the variability caused
by trends and oscillations that may be present, and in
Nelson (1983), it 1s concluded that the moving averages are
positively correlated and the correlation increases as n
increases. Therefore, for the purposes of this research.

subgroups of size two (N=2) will be used for the

determination of the MA and MK.
Individuals and Moving Range Charts

Individuals charts are based on the zame principle as
most all other control charts. Individual measurements are
plotted and compared to predetermined control limits. The

upper and lower control limits are places as follows:

Upper Control Limit = p + 3r
Center Line = p
Lower Control Limit = p - 3r

The sensitivity of the Individuals chart to changes 1n
the process 1is improved by utilizing various runs rules o

the determination of out of control conditions. One of the



most common set of runs rules are those recommended by ATET
Technologies {(1983). These are as follows:
(1) A single point falls outside of the 3¢ limits.
(2) Two out of three successive points fall betwesn
+2¢ and bevond from the process average ar
between -Z¢ and beyvond from the process averages
{(3) Four out of five successive points fall between
+lv and beyond from the process average or
between —1¢ and bevond from the process average
{4) Eight successive points fall on a given side of
the center line
The simulation to follow utilizes the above described

rules +or the individuals chart. The moving range chart of

subgroup size two is utilized as previously described.
Results

The ARLs were determined for each control chart or
control chart combination for a given chanage in the process
average (shift or linear trend) for different values of k.
With the exception of the EWMA chart subjected to unit step
increase in the process average, all ARLs were determined by
a computer simulation. Each simulation is the result of
1G,000 trials, wheré each trial represents the number of
samples collected until a process change is detected with a

—-r

given control chart. Tables 3-1, 3-2, and -3 below provide

the ARLs faor the EWMA chart, MAMR combination and the IMR
combination, respectively, when the prncess‘mean 1s
subjected to a unit step increase {(of magnitude kal}. The
ARLs listed in Table 3-1 for the EWMA chart are

representative of the theoretical results as presented in

Crowder ((1987).



Tables Z—-4, 3-3, and 3—-& present the ARLs when the
process average is subjected to a linear trend. These
results are based on the same type of simulation as
previously described for the EWMA chart. the HMAMR
combination and the IMR combination, respectivelv. As
described previously, the increase in the process average
between successive samples is constant at ke each sample.
The listings of the programs used to determine the ARLs in

Tables 3-2, 3-3, 3-4, 3-5, and 3-4& are included in Appendix

A.
TABLE 3-1
ARLs FOR EXFONENTIALLY WEIGHTED MOVING AVERAGE CHART
— UNIT STEF DISTUREANCE (FROM CROWDER (1287):

—————————— k — Number of ¢ 1ncrease 1n process mean—————————-—
X Q.00 Q.25 Q.50 1.00 2.00 .00 4, Q0
0.10 842.15 144.74 37.41 11.38 4.47 2.05 2.30
Q.25 S02.90 171.09 48.45 11.15 I.62 2.2 1.73
Q.50 3R7.56 208.54 75.35 15.74 Z.47 1.87 1.31
Q.75 374.350 245.76 110.95 25.64 4.15 1.79 1.20

1.00 F70.40 - 281.15 155.22 Z.89 &. 30 2.00 1.19




TABLE 3-2

ARLs FOR MOVING AVERAGE AND MOVING RANGE CHART COMBINATION
— UNIT STEF DISTUREBANCE (BRASED ON COMFUTER SIMULATIONS?

————————— k. — Number of ¢ increase in process mean——————————

Q.0 a.1 0.2 0.3 Q.4 0.3 1.00 2,00 3.00 4,0

Resulting ARLs.

29.27 96.17 20.25 B2.27 71.93 60.74 20.70 Z.77 1.91 1.37

TABLE 3-3

ARLs FOR INDIVIDUALS USING ATET RUNS RULES AND MOVING RANGE
CHART COMBINATION - UNIT STEF DISTURBANCE
({RASED ON COMFUTER SIMULATIONS)

Q.0 0.1 0.2 0.3 Q.4 0.5 1.00 2,00 .00 4,00

Resultinag ARLSs,

59.258 55.34 47.85% 3B.78B 30.64 24.405 .17 .18 1.75 22




TABLE 3-4

ARLs FOR EXFOMENTIALLY WEIGHTED MOVING AVERABE CHART -
LINEAR TREND DISTURBANCE {(BASED ON
COMPUTER SIMULATIONS)

X 0.0 .1 0.2 0.3 Q.4 0.5 1,00 2.00 F.00 4,00

0.20 567.37 13.23 B.63 6.76 53.72 3.03 3.40 2.31 1.98 1.84
Q.40 415.956 13.78 B.481 46.58 5.43 4.73 F.09 2.07 1.77 1.41
0.60 380.93 14.94 9.11 6.84 S.61 4.80 3.03 1.97 1.62 1.24
0.80 3I70.71 16.45 9.89 7.34 5.95 5.07 3.10 1.95 1.53 (.18
1.00 3Z468.42 18.40 11.64 B.11 6,55 5.53 3.28 1.96 1.50 1.16

ARLs FOR MOVING AVERAGE AND MOVING RANGE CHART COMBIMATICON
— LINEAR TREND DISTURBANCE (EASED ON COMFUTER SIMULATIONS)

—————— k — Number of ¢ increase/sample in process mean—————-—

Q.0 0.1 0.2 Q.3 .4 Q.5 1.00 Z.00 3.00 4.00

Resulting ARLs,

@P.27 14.89 .32 6.99 5.72 4.89 3.06 2.05 1.75 1.38B




TABLE Z-6

ARLs FOR IMDIVIDUALS USING AT%T RUNS RULES AND MOVING RANGE
CHART COMBINATION - LINEAR TREND DISTURBANCE (EBASED ON
COMPUTER SIMULATIONS)

0.0 0.1 0.2 0.3 0.4 0.5 1.00 2.00 Z.00 4,00

Resulting ARLs,

S9.26 11.77 7.93 H6.30 5.34 4.6B Z.27 .09 2.88B 1.43

Summary

As indicated in the tables for ARLs for different
control charts subjected to various disturbances in the
process average. the ARL is dependent upon the type and
magnitude of disturbance. It is noted that the IMR
combination provides the greatest amount of strenagth in
detecting both unit step disturbances and linear trend
disturbances. But it is essential that the ATAT runs rules
be utilized in order that this strength might be utilized.

It is observed that in the situation where no chanage 1in
the process average has cccurred, the IMR cnmbinatimﬁ wiil
result in the largest number of false alarms. Furthermore,
the perfarmance of the MAMR combination is better than its
EWMA counterpart for small unit step disturbances in the
process average regardless of the value of o, Once larger
unit step shifts are encountered, the EWMA chart is

preferred if small o values are utilized.



I+ linear trends are encountered. the EWMA chart would
be preferred over its MAMR combination counterpart as long

as small ® values are used.



CHAFTER IV

THE MODEL

Introduction

1f a chemical reaction occurs in a svystem. the number
of moles of an individual component will increase if it is a
product of the reaction or decrease if it 1s a reactant.
The component continuity equation for the jith chemical

species of the system savs

Flow of moles of jth — [(flow of moles of ith

component into system component out of system

+ [rate of formation of moles of jth|l = [time rate of change
component from chemical reaction of 3th component

inside svystem
The units of this equation are moles of j per unit time.

One component continuity equation for sach component
can be written +for each component in the svstem. I+ there
are J components there are J component continuity equations
for any one system. However, there 1s one total mass- .
balance equation, and these J component balances are not ail
independent, since the sum of all the moles times their
respective molecular weights =gquals the total mass.

In the model developed in the following discussion,

there is a component A that reacts irreversibly and at a

specific reaction rate k to form a product, component E.



This reaction occurs in a continuous stirred-tank reactor

(C3TR) .
Fhysical Description of the Model

Consider a tank of a perfectliy mixed liguid in which a
chemical reaction takes place in the liguid in the tank.
This system is a CSTR (continuous stirred—tank reactor) as

shown in Figure 4-1.

Fo
Po ‘

Cao
Cs0
|4
p F
Cq P
Cs C,

Cs

Figure 4-1. CSTR

A component A reacts irreversibly and at a specific
reaction rate k to form a product., component H.

k

I
v
m

Let the concentration of component A in the inflowing or
feed stream be Coao imoles of AFFES) and in the reactor Ca.
Assuming a simple first—order reaction, the rate of

consumption of reactant A per unit volume will be directly
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proportional to the instantaneocus concentration of A in the
tank. Filling in the terms of the previously described

continuity equation for a component balance on reactant A,

Flow of 4 into system = Folrno (Ft=/zec: (mpnles 4/+t7)
Flow of A out of svstem = Fla (ft=s/gec) (mples 4/+t%)
Rate of formation of A from reaction = —-YkCa
(+E3) {1l/zec) (moles A/+LT)
Time rate of change of A inside tank = d_(VCal
dt
Combining,

d _{¥YCal) = Folao — FCa - VkCA
dt
The units of this component continuity equation are
moles of A/sec. The leftt—-hand side of the equation 1s the
dynamic term. The first two terms on the right—hand side
are known as the convective (due to bulk flow) terms. The
last term . is the generation {(due to di+fusion) term. &Since
the system is a mixture of two components, A and B. another
component continuity equation for component E could be
written as,
d_(YCem) = Folmo — FCm + ¥YkCe
dt
The system sketched below in Figurev4—2 is_a simple
extension of the CSTR considered previously. Froduct B 21s
produced and reactant A is consumed in each of the three
perfectly mixed reactors by a ftirst-order reaction occurring
in the liguid. The temperatures and volumes of the three
tanks can be different, but both the temperatures and the

liquid volumes are assumed to be constant {isothermal and



constant holdup). Density is assumed constant throughout

the system.

Fy F Fy Fy
= v, V, e
ky ks ks
Cao Cai Ca2 Cas

Figure 4-2. Series of CSTR s

I¥ the volume and density {(p) of each tank are con-—
stant, the total mass in each tank is constant. Thus the
total mass balance equation for the first reactor is.

dipV,) = pFo — pF. = O
dt

or

where F is defined as the throughput (ft¥/seci. For a more
in—depth discussion of mass balance eguations, see either
Coughanowr and Koppel (1265) or Luyben (1973).

The amounts of reactant A and product B in each tank
are to be monitored., so component continuity equations are

needed. However, since the system is binary (only two



components, A and B) and the total masz of material in each
tank is known. only one component continuity equation is
reguired. Either B or A can be used. I+ A is arbitrarily
chosen, the equations describing the dynamic changes in the
amounts of reactant A in each tank are {(with units moles of
Al/sec):

d (VCQ;) = F(CAO - Eg:) - V1k1DA1

dt

d_tVCaz) = Fi{Car — Caz=) — Vzkzilaz {4—1)
dt
dt

The specific reaction rates k. are given by the

Arrhenius equation {(see Luyben, 1273) below.

R

Ko = e E/RTA n=1i,2,

where: n = Stage hNumber

If the temperatures in the reactors are different, the ks
are different.

The volumes Vﬁ can be pulled out of the time derivative
because they are constant. The flows are all egual to F but
can vary with time. An enerqgy equation is not required
bécause an isothermal operation has been assumed.

The three first—order, nonlinear, ordinary differential
equations aiven above are the mathematical model of the
system. The parameters that must be known are Vi, Vo, V=,
ki, k=, and kx=. The variables that must be specified before
these equations can be solved are F and Cao. "Specified”

does not mean that they must be constant. They can be time-



variable, but they must be known or given functions of time.
The initial conditions of the three concentrations must alzo
be known.

The system as de+fined by the differentizal equations
above represent the model upon which the research to follow
is based. I+ the throughput, F, is constant and the volumes
and temperatures are the same in all thiree tanks, eguations
(4—-1) can be written as.

dt

{(1/7) Dpo

il

dCa=z + (k + 1/7) Ca=x
dt

(1/7) Caa (4—213

]

dCa= + (k + 1771 Cas=

(1/7) Ca=

where T V/iF

There is only one forcing function or input variable
into the system, Caoc. The differential eguations in {(4-2)

above can be rewritten as,

dbaz = (177} {(Caoc — Cai1? — kCaa
dt

dCaz = (1/7) (Car — Caz) — kCa= (d-—33
dt

dCax = (1/7) (Caz — Ca=) — kCa=
dt

The above described system is controlled by a conventional
feedback control system utilizing proportional/integral/
derivative (FID) control. PID controllers are used in
processes with long time constants. Typical of thece

processes are temperature and concentration loops (see Smith
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and Corripio, 1985). THE specific tuning criterion will be
based on a decay ratio of one—fourth where the decay ratio
is the ratio of the amplitudes of two successive
oscillations. Ziegler and Nichols (1942) provide formulas
+or the determination of the tuning parameters of the FID
controlier once the ultimate gain and frequency are known.
The block diagram of the system is shown below in Figure
4-3. The feedback controller and the system are

incorporated into the block diaaram.

Cao
Controller Tank 1 Tank 2 Tank =

€
Cax== + E Caa Caz Ca=

Figure 4-3. Block Diagram Representation of Modeil

The set of sgquations that define the process are as follows,



dCas = (1/7) (Cac — Cai? — kCaa
dt
dCaz = (1/7T) (Cas — Ca=) — kCaz
dt
dCax = (1/7) (Caz — Ca=? — kCax
dt
(4—4)
Cao = Cabp + Cam
Cam = 0.8 + Ko(E + L [ Edt + vodE)
Ty J dt
E = Caz""% - Ca=

Determination of Tuning Farameters

From the eqguations in (4-4) and known parameters of the
process, the required tuning parameters for the FID control-
ler may be determined utilizing the ultimate gain and
frequency and the Ziegler and Michols tuning formulas (see
Ziegler and Nichols, 1742). Taking the Laplace transforma-—
tion of each of the equations, the block diagram and
transfer functions are determined and are shown in Figure

4~-4 and equations (4-5) below, respectively.

CQD

Controller Tank 1 Tank 2 Tank

Cax==t + E Cam T Cao Caz Ca= Ca=

+
| Gc ;U " B1 H G2 G

Figure 4—4. Block Diagram Representation of Model.,
Laplace Domain



wheres,

Ge(s) = Kl + 1/(7T35) + Tps)
{43}
Gy (8) = Bz(s) = Gxi{s) = /7
s + 1i/7 + k

Utilizing Block Diagram Algebra,

( ................. 177 ) =
Camizl = stlsrtk)
Cants} 1 + Ke(l+1l/(rs)i+Tvps) [ £ =

s+1/7v+k

The resulting characteristic equation is,

1 + K._-_(1+1/('Tzs)+'rpsi(~ i77 )3 (4—-4}

To determine the ultimate gain and frequency, the
characteristic equation (4-5) is set equai to zero, the
derivative and integral actions are removed. and direct
substitution {(s=jwu. Kc=Keu! 15 used. The resulting
equation is as follows,

.

= —IWGTTT —WAT(3T24+ZETS) + JWLVSITHSKRT=+ZK=E7S) + | + Jkv
+ IkRy2 4+ gTTT 4 ko, = O

Combining the imaginary parts

“WuTTF + W (3T + bkTE + 3k=TT) = O
Cambining the real parts

“W,= {372 + 3kT™) + 1 + 3kt + ZTk=ET=2 + K372 + Koo, = U
Assuming v=2 min and k=0.3 min~?* and solving.

Wwoa = 4% Rad/min

a4

Feu

The ultimate periocd {(as required by the Ziegler—-Nichols
tuning formulas) 1is,.

Ta = Z2W/wa = 3.627598728 min



The tuning parameters are set by the formulas described by
Ziegler and MNichols i{see Ziegler and Nichols, 1242). The
following calculations provide the values at which the

controller will be set for this model,

Controller Gain = Ko = Keouw/l1.7 = 37.647
Integral Time = 71 = Tu/2 = 1.814 min/repeat
Derivative Time = vp = T./8 = 0,453 min

Analytical Solution to a

Unit Step Disturbance

With the known parameters of the controller and the
system itself and the type of disturbance applied toc the
process, it is possible to determine the analytical soclution

to the problem. For the problem, the following values are

assumed,

T = 1.814

Te = 0.453

Ke = 37.647

T = 2.0

kK = 0.5

Cap = O.6u(t) where u(t) =[1' for tz0
0 for t4{0

Utilizing the block diagram of Figure 4-4 and block diagram

algebra, the resulting process transfer function is

Caxis) = g, 125
Capis) s + IsT + S.131761357s= +5.709875s + 2.594173705




Given that the Laplace transformation of Cap is 0.&/s, the

response in the Laplace domain is,

Casi(s) = Q. 075

5% +35% + 5.131761375s= + 3.708875s + 2.5941570S

The roots of the denominator are,

Fia = —1.0694687
r= = —1.1228866
F= = —0.4038B2239 + j1.4132065
ra = —0.4038223%7 - 11.4132065

Thus using partial fraction expansion., the eguivalent

expression for Cax in the Laplace domain is,

Cax(s) = _Q.975363535.. — _0.5584346251 -
s + 1.0694687 s + 1.12288B66

= (Q.0084563642 — 10.006567656 + Q.0084635642 + j0.00485467656

48

)

s + 0.4038B2237 — jl1.4132065 s + 0.40382239 + jl.4132065

Taking the inverse Laplace transformation,
Casit) - Cas, mm =

0.575363535e—1 - cevasnre _ () 5584346251e—1- 1ZRe868e _
. —@—©-40ZB223%+ (2 (0. 008463642) cos (1. 4132065t) -
2(~0.006567656)sin (1. 4132065t))

where: Cas,.me 15 the steadv state response of Cax(t)

This function is plotted over time in Figure 4-5 below.
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TIME (MINUTES)

Figure 4-5. Response of Three Serial CS5TR s, Unit Step
Disturbance

Numerical Model

In this research, the analysis i1s not based on a system
in which it is reasonable to assume that all signals/
measurements are collected with no ervor. Therefore, it is
necessary to construct a simulation of the entire process.
The simulation of the differential equations is performed
using fourth order Runga Kutta integration (for a cnmpleté
explanation of Runga Kutta see Hultguist (1988) or Jaluria

(1988). The validation of the numerical simulation is

based on the comparison of the analytical solution



e

determined in the previous section and the results of the
numerical simulation.

Frior to the comparison, it is important to recognize
the analvtical solution presented in the previous section is
based upon the use of perturbation variables. That is, the
resulting sclution is the departure from the steady-state
values over time. It is necessary to determine the
appropriate steady state condition so that the appropriate
initial conditions are determined. The steady state
conditions are determined by starting the numerical
simulation with no input disturbance and allowing the entire
process to stabilize. These resulting values are best
presented by viewing each of the dynamic variables over
time. These plots are shown below in Figure 4.6. From
Figure 4-6 it is easy to recognize the steady state

conditions +or each of the dynamic variables. Specificallvy,

Cam,ws = 0.8
EA:],,-- = 0.4
an,-- = Q.2

G.1

CAS - W



OUTPUT

QO 000006

AAAALAAAAAALAAAROAAAAALAADAALAA

-0.2 -

—0.4

T L B Laa LAnas e e e e —

0 1t 2 3 4 5 6 7 8 92 10 11 12 13 14 15 16 17 18 19 20

TIME (MINUTES)
CA1 °

a CAM + CA2 A CA3

Figure 4-4. Determination of Steady State Conditions

Utilizing the steady state values of the dynamic
variables as determined above as initial conditions. the
numerical simulation will provide a response identical to
that of the analvtical solution. The results are plotted

with the analytical solution in Figure 4-7 below.
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Fiqure 4-7. 6Analytical Response and Numerical Simulation of
the Output of Three Serial CS5TR s

Summary

Rased on these results, it was determined that the
numerical solution was correctly modeling the process. The
intent of this part of the work is not to provide numerical
results for a problem that can be solved anaiytically, but
to provide a benchmark on which the following research may
be based. At this point, it is no longer assumed that a
perfect signal is available for monitoring the process.
Specifically, noisy conditions will exist henceforth, and

various filtering devices will be utilized in an attempt to



reject/attenuate the noise component of the input signal to

the controller.



CHAFTER V

THE SYSTEM

Introduction

The following discussion presents the implementation of
the model as discussed in the preceding chapter. The
numerical system previously developed is utilized and is
augmented by adding features such as 1) uncertainty in the
feedback loop, 2) various filtering algorithms, and
3) various process input disturbances of various magnitudes.
This chapter provides insight regarding the type of the
noise found in the control loop. the filtering algorithms
usaed {(which attempt to reject or attenuate the noise
component of the signal), the tvpe of the input disturbance
found in the process, the measures of performance to be used
in the analysis, the construction of the computer system
used to model the plant, and a brief description of the

validation of the computer system.

The hNoise

The noise in the plant is assumed to be found in the
feedback control loop. This assumption is based on the fact

that in many of the noisy conditions existing in feedback

_,
it
».
-



control schemes, the existence of uncertainty in the signal
stem from a noisy transmitter or measurement error (see
Exxon 1977}. The noise, N, is assumed to be normally
distributed with mean zero and variance, o2 or represented
symbolically as shown below in (5-13).
Noise of the
Feedback = MNa ~ N{O,0=) {9—-1)
Control Loop

It is further assumed that the variance of the noise is

known and is used to implement the random component of the

signal in the feedback control loop.
Filtering Algorithms

The filtering algorithms used in this research are the
exponential (EXF) +ilter, least squares (L5) filter,
nonlinear exponential (ML) filter, moving average and moving
range (MAMR) filter, individuals and moving range (IMR)
filter, and exponentially weighted moving average (EWMA)
filter. Each of the filtering algorithms are described
below along with any special requirements for their

implementation in a'filtering application.

The exponential filter {(Exxon, 19773 Stephanopoulos,

1984) is éxpressed by the following recursive relationship:



Yo =FYn—-1 + {(1-F)X. (5-2)

where: Y, Filtered Output at Sample n

Xm

tnfiltered Output at Sample n

n
i

Filter Constant, [O,11

The expaonential filter is a first order lag process.
As F increases, more attenuation results at the expense of
increased lag. For the pQrpnses aof this research. the
values aof F will bé Q.0 and 0.38. This range between the F
values will provide a sufficient range =such that the
difference due to different P values will be observed i+ it

exists at all.

The least squares filter (Exxon, 1977) as expressed by

the following relationship:

where: Yo = Filtered Output
Ka—1+1 = Raw Data Point
B. = Constant Coefficients (Exxon, 1277}
M = Number of Raw Values Used

The least squares filter has very good noise reduction at
hiah frequencies but can result in overshooting and

undershooting the true process signal at low frequencies.



The values of N that are used for this research are 3 and
1?. This range between the N values will provide a
sufficient range such that the difference due to different N

values will he observed if it exists at all.

The nonlinear exponential filter is expressed by the

following recursive relationship:

Yo = Yp—1 + [min c1,|4«;g,.l::|Ax,. (5—4)
R
where: Yo = Filtered VYalue at time n

AX.—. = Xm — Y.—.—-;

Py
il

Filter Farameter

o
]

Standard Deviation of the Noise Signai

The nonlinear exponential filter works well in éituatinns
where the noise 1s predictable and works poorly in
conditions where noise is erratic (Exxon, 1977). The values
of R that are used for this research are 4 and 7. This
range between the R values will provide a sufficient range
such that the difference due to different R values will be

observed if it exists at all.

The assumption of each of the statistical process

control (SFC) filters, the EWMA, MAMR, and IMR filters, is



puts}

that each sampled value is statistically independent.
Unfortunately, statistical independence between sampled data
points will not be valid unless sufficient time has passed
such that independence can be reasonably assumed. In Brooks
and Case (1987), it is noted that a good general rule is to
ensure sampling intervals of at least twice the response
time of the process. The response time of the process 1s
the sum of the effective time cdnstant and dead time of the
process. |

The plant to be modeled ié a fourth order system. in
Smith and Corripio (1985, it>is shown that a higher order
system may be approximated by a first order process plus
dead time (FOPDT). Their procedure reguires that we
determine the point in time at which the open loop response
meets 28.3 and &3.2 per cent of the final steady state
response. The tiﬁes are known as t, and t=, respectively.
The values of t, and tz are 1.830753 and 3.2577 minutes.

respectively. Figure 5S—-1 shows the relationship between

t. and t= and the open loop response of the process.
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Figure 3—1. Three Serial CS5TR°s, Open Loop System
Determination of the Response Time

Following the procedure as outline in Smith and

Corripio (1985), the following relationships are known:

-

Effective Time Constant = v = 3/2 {(t= - t.)

2
i

2.11 minutes

Dead Time = to & t= — T "1.15 minutes



The resulting FOPDT approximation in the Laplace domain is,

Gi{s) & L 125e—1-19=/(2.11s + 1).

Applying a unit step forcing function to the open loop

plant, the resulting output in the Laplace domain is,
Casropan(s) & 120 21-28=(]l/5 - 1/(s + 1/2.111).

Takinga the inverse Laplace transformation,
Cassopentit) & J128u(t-1.15)[1 - g~¢t—2.182/2.121]

where: uix) =11 Ffor u 2 O
Q0 else.

The theoretical resﬁonse of the open loop system to the same

unit step forcing function is,

Cax,openit) = .1253(t) - (£2/2 + t + 1)e ™).

The approximate FOPDT and theoretical responses are shown

below in Figure (5-2).
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Figure S-2. Three Serial C5TR" s, Open Loop Svstem
Theoretical Solution verses FOFDT

With the above determined analysis, it was assumed that
the sampling interval between two independent samples was
6.3 minutes. This is derived from the fact that Z{i{r + tg)
is approximately 6.5 minutes. |

The statistically based filters used were the EWMA
filter, MAMR filter, and the IMR filter. Their applications

are similar to their application as control charts when used



to control a process. The primary difference in their
applications is the determination as to when the process has
returned to a state of statistical control following an out
of control condition. The statistically based filters
behave as follows:

{1) Collect the sampled output every 6.5 minutes

(2} Determine i+ an out of control condition is
indicated.

(3D If an out of control condition is identified. the
current measured output of the process is fed to
the controller.

(4) I+ the current data indicate that the process is
in a state of statistical control, the current set
point of the plant is returned to the controller.

These four rules are used for all three statistically based

filters.

The Expnnentiallvbweiqhted Moving Average Filter. The
exponentially weighted movino average (EWMA) filter is
similar to the application of the EWMA control chart to a
process. The EWMA is a statistic with the characteristic
that it gives less weight to individual data as they get
older. A plotted point of the output of an EWMA filter can
be given a long memory or a short memory. Each EWMA is the
present predicted value plus x times the present observed
error {(cobserved value minus the previous forecasted value}
where x=[0,1]1. The smaller the value of x the agreater thg
influence of the historical data. The values of « that are
used for this research are 0.2 and 1.0. As was the case for

the exponential filter, the wide selection of o will provide



sufficient range for which results will be aobserved.
Additionally, it is interesting to note that the EWMA filter
with « set equal to one is equivalent to an individuals
filter with only rule one of the ATYT rules employed.

‘The control limits of the EWMA filter are based on the
same premise as control charts. That is. the upper and
laower control limits (UCL and LCL, respectively) are placed
at * 30zwma from the process average. The resulting

formulas are as shown in Ng (1987) and below.

UCLewma = SET FOINT + Iod@&/ (2—&)
(S—-5)
LCLewma = SET FOINT - 3odx/ (Z-)

0.1

where: SET POINT

r = Standard Deviation of the noise
introduced in the feedback control loop
% = Weighting factor for the EWMA filter

The desired process average is the set point of the process,
which is assumed to be 0.1 for the process used in this
research. If the current EWMA is greater than the UCL or
less than the LCL, it is concluded the the process is not in
a state of statistical control (5058C) and the current
unfiltered output of the plant shoula be fed to the
controller (which includes the noise encountered in the
feedback loop). As discussed in rule (4) above, if the
current EWMA is within the control limits., the current set
point for the process output is sent to the controller for a

duration of 6.5 minutes (as determined above).



The Moving Average and Movinog Range Filter. The moving
average and moving range (MAMR) filter is implemented
precisely as the moving average and moving range control
chart as discussed in Chapter 1. The control limits are
placed at *3oxpam from the process set point for the moving
average (MA) portion of the filter. The moving range (MR)
is an estimate of the process variations therefore, its
control limits are a function of the process variation.
Since the process variation is known (simply the variation
implemented in the feedback loop) aﬁd sample sizes of two
have been recommended for moving range charts, {(Nelson,
1982), the control limits can be predetermined for the
moving average and moving range portions of the MAMR filter.
The calculations are precisely those given in Montgomery

(1995) and are shown below.

UCLma = SET POINT + 3o/Jd2

LCLma = SET FDINT — 3o/d2

(S5—-6)
UCLmm = (d= + Sd=ir
LCLmm = O
where: SET POINT = 0.1
r = Standard ﬁeviation of the noise

introduced in the feedback control loop

d=,d=x = Constants {(see Montgomery, 1985)

If the current MA or MR aré‘greater than the
appropriate UCL or lower than the appropriate LCL, it is
concliuded the the process is not in a state of statistical

control and the current unfiltered ocutput of the plant



should be fed to the controller (which includes the noise
encountered in the feedback loop). 6As discussed in rule 4)
above, if the current MA or MR are within their respective
control limits, the current set point for the process output
is sent to the controller for a duration of &.5 minutes (as

determined abovel.

The Individuals and Moving Range Filter. Individuals

and moving range filters (IMR). are based on the same
principle as the individuals and moving range charts for
statistical process control. The UCL and LCL are placed at
*3r from the process set point for the individuals (I}
portion of the IMR filter, and the UCL and LCL for the
moving range (MR) portion of the IMR filter are placed as
described in the control limit calculations for the MR
portion of MAMR filter. The resulting formulas are shown in

Montgomery (1985) and below.

UCLy = SET FOINT + 3o
LCLy = S5ET FOINT - Zr
(S-7)
UCLme = (d= + 3d=)vw
LELHR =
where: SET POINT = 0.1
r = Standard Deviation of the noise

introduced in the feedback control loop

d=,d= = Constants (see Montgomery. 19835)

The out of control and in control conditions for the MR

portion of the IMR filter are interpreted as the MA or MR



portions of the MAMR filter. The sensitivity of the
individuals portion of the IMR filter is improved by
utilizing the AT4T runs rules. These rules are listed in
Western Electric Co. Inc. (1985) and below.
{1) A single point falls outside of the 3¢ limits.
(23 Two out of three successive points fail between
+20 and beyond from the process average or
between —-Zo and beyond from the process average
(3) Four out of five successive points fall between
+1e and beyond from the process average or
between -l¢ and beyond from the process average
{4) Eight successive points fall on a given side of
the center line
As described above, if at any sample an out of control

(00C) condition is signaled, the current unfiltered output

is sent to the controller.

Due to the time requiréd to reasonably assume indepen—
dence between samples for each of the statistically based
filters, prefiltering is employed in an attempt to reduce
the time lag required to detect a change in the process
using the statistically based filters. Data i1s sampled at
each instant in time, and the technique emploved is simply
an individuals chart with control limits placed at * four
process standard deviations.  The control limits ar= placed
at four standard deviations so that the number of false
alarms willlnnt be Eﬁﬁessive. Rule number one of the ATZT

rules is utilized to estimate the present state of the



process. The stream of data collected is autocorrelated,
but it is known that the presence of autocorrelation in data
requires that the spread of the control limits of the
control chart being used to control the process be reduced
{Brooks and Case, 1787). Additionally., larger chanaes in
the process are required to have the same probability of
being detected as the situations where oniy independent data
are being detected.

The only random variation in the process is the noise
that is encountered in the feedback control loop; therefore,

the control limits are determined as follows:

UCL: = SET POINT + 3o
(3-8)
LCL: = SET FOINT - 3o

where: SET POINT
T

0.1
Standard Deviation of the noise
introduced in the feedback control loop.

The research in the following chapters include the
analysis for the situations in which the statistical process®
control filters are used alone and the situation in which
the prefiltering precedes the use of the statistical
filters. The information shown in Table 5-1 below
represeﬁts the logic used to determine the filtered output
when‘both the prefilter and the statistical filters are

used.
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TABLE S5-1

FILTERING LOGIC EMPLOYED WHEN BOTH FREFILTERING AND
STATISTICAL PROCESS CONTROL FILTERING ARE USED

Device
Individuals BStatistical Filtered Output
Prefilter Filter
s05C s0sC Set Foint
505C aoc Random Signal
ooc 508C Random Signal
ooc poc Random Signal

Additionally, once an 00C condition is detected for the
individual prefilter, the process is not sampled until ten
minutes later. This amount of time allows enough time +or

~ the FID control to react to a large change in the process.

The Input Disturbance

The input disturbances common to continuocus type
processes are varied in nature. Some of the more common
types of disturbances are unit steps of various magnitudes,
unlimited ramp functions of various slopes, and sinusoidal
functions. Additionally, the set point can be changed
during the operation of a control loop, and these set point
changes are typically a unit step function.

The research that follows considers only input
disturbances and does not investigate the impact of set
point changes. This is based on the fact that the tuning

criteria used in setting the constants on the controller



action are based on the guarter decay ratio and are not
recommended for processes that are subjected to changes in
set point (see Smith and Corripio, 1985). Additionally, the
analysis in the following chapters is based on unit sfep and
unlimited ramp function distwrbances to the process. The
computer system can be modified to offer other types of
disturbances, but due to the great amounts of computer time
to run the simulations, an exhaustive analysis can not be
reasonably obtained. Furthermore, it is recognized that the
intent of this research is to evaluate the potential
applicability of the new statistically based filtering

devices.
Measures of Performance

In addition to the tuning criterion based on the
quarter decay ratio, some researchers have used another
performance criterion which results in optimum solutions
which are unigue. 0One of the more popular relationships in
the Integral of the Absolute Value of the Error (IAE), see

Smith and Corripio (1985), and this formula is shown below.

I’ j2it) |dt (S—7)
<o

CURRENT INPUT TO
where: e(t) = SET POINT - THE CONTROLLER FROM
' THE FEEDEACE LOOP

It is this relationship that will become the measure of

performance in the analysis of the use of the various



filtering devices within the control scheme as outlined in
Chapter IV. Since the system to be modeled in this research
is stochastic, multiple runs must be made to evaluate the
performance of a given filter. Additionally, it is desired
to know the area of error over time, but in the context of
this problem error must be redefined. It is known how the
plant will respond to a given disturbance i+ the output of
the plant is fed back to the controller with noc randomness
employed (see the theoretical or numerical results described
in Chapter 4). But, the ability of the plant to meet the
theoretical results when randomness is emploved is not
known. Therefore, the error of interest is the absolute
difference between the observed output and the theoretical
output, and since the analysis must be based on multiple
observations, an average of this error is of interest.
Integrating this new absolute average error over time

results in the following relationship,

(o]

-LZ I(Dbserved Output)y—(Theoretical Dutput)!fn]dt (S5—10)

o E N

where: i The ith Observation

n = The Number of Observations/Runs



Using the variables as illustrated in Chapter 1V, squation

{5—10) results in the following relationship,

Integral of =-Lx lcns(t)i—cnsTH(t}‘fant (5—-11:
the Average = IAARE = o = :
Absolute Error

where: i The ith Observation

n The Number of UObservations/Runs

Castn = The Theorestical Response

The final IARE is dependent upon the magnitude of the
gerrors and the length of time for which the plant was run.
Since the integral is dynamic with time, the integral will
be determined for a finite time period for multiple runs in
an attempt to determine the performance of the plant when
subjected to various filtering devices with respect to the
error seen for different runs.

Additionally, plots of the average output of the piant
under known conditions when a given filtering device is used
will be made to provide additional information regarding the

performance of the plant.
The Computer System

The computer system is described in the flow chart

shown below in Figure 53—3.
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Az discussed in Chapter 4, the simulation of the
differential equation that describe the completed process is
made using forth order Runga Kutta technigues (for a
complete explanation of Runga Kutta see Hultgquist (1988) or
Jaluria (1988)). Additionally, since the Runga Kutta
techniques are simply an integration routine, the technigues
are applicable to the determination of the IAAE. The
choices of filters employed are based on the filters
discussed throughout this work. The filtering and Runaa
Futta algorithms are placed in subroutines following the
main prrogram.

The listing of the program developed for the unit step
disturbance is included in Appendix B. The program was
developed in FORTRAN and implemented on the IBM 3460. The
use of the main frame was required due to the amount of time
required to run the dynamic simulation of the process
préviously described. For example, approximately three and
one—half minutes of central processing unit time were
required to simulate the process for &0 minutes for 1060
replications. The system is simply modified to change the

tvype of input disturbance.
Validation of the Computer System

This section represents a brief description of the
process by which the computer system was validated. A
discussion is presented for some of major validation steps

emploved.



The first validation step was to validate the numerical
results (with no noise implemented) with the known
analyvtical response of the system. This is discussed in its
entirety in Chapter IV. Additionally, each filtering device
was run twice using the same random number stream. This
measure insures that all variables were being reset between
subsequent runs. Furthermore, all flags and process signals
were listed for each filtering devices during a short
simulation of one run for each filtering device. Some of

the process signals are shown below in Figure S5—4.
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Fiqure S5-4. Example of a Validation Run
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Looking at all of the variables in the process insures that
the logic designed in the system was beihg correctly
emploved and that the responses {(with noise included)
appeared reasonable when compared to the noilseless system
response. Figure 5—4 represents the process response when
subjected to a unit step disturbance of magnitude 0.2 and
EWMA filtering. Throughout the development of the system,
data were maintained for wvalidation runs so that each
augmented system could be validated to its predecessor.

Since the response of the system is not known when
noise is induced in the feedback control loop, wvalidation
could not be made with certainty. However, the final
results {(as shown in the following chapters) appear
reasonable for each of the filtering devices emploved.
Multiple runs were made to estimate the amount of

variability between runs.



CHAFTER VI
RESULTS
Introduction

The results collected of the simulation of the chemical
reactor described in Chapter IV using the computer svstem
described in Chapter V follow. The chemical reactor is
simulated using a given filtering device. Specifically., the
filtering devices modeled are the exponential filter with
parameter P, the least squares filter with parameter N, the
nonlinear exponential filter with parameter R, the
exponentially weighted moving average filter with parameter
%, the moving average and moving range filter. the
individuals and moving range filter, the exponentially
weighted moving average filter with parameter o and the
individuals prefilter, the moving average and moving ranage
filter with the individuals prefilter, and the individuals
and moving range filter with the individuals prefilter. in
what follows, the results of simulations of the chemical
reactor utilizing each of the +iltering devices when the
chemical reactor is subjected to various input disturbances
are given. In all Tables and Figures, CAD is the same as

Cap as previously described.



TE
Conventional Filters

The conventional filters are the exponential filter
with parameter F, EXF(F), the least squares filter with
parameter M, LS5{(N), and the nonlinear exponential filter
with parameter R, NL(R). As discussed in Chapter V. this
research uses values of 0.0 and Q.8 for F, 3 and 17 for N,
and 4 and 7 for R. The chemical reactor is simulated with
a given filtering device {(with a known parameter value) and
type of disturbance for 100 replications of sixty minutes of
plant operation time. The types of input disturbances for
CAD utilized‘in the research were the unit step of
magnitudes 0.0, 0.12, and 0.2 for the values of CAD. and
ramp functions with the slope of 0.12 and 0.2 for the values
of CAD. The disturbance is not introduced until five minutes
have elapsed allowing the process sufficient time to reach a
stable condition. The standard deviation of the noise
introduced in the feedback control loop is 0.005, and the
parameters of the reactor and FID controller are as

described in Chapter IV.

Table 6-1 below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the situation in which there is no input
disturbance introduced to the system. Two runs were made

utilizing each of the conventional filters described above.



IAAE;

TABLE 6-1

UNIT STEF DISTURBANCE:; CAD=0.0, t:35.0

~
o

Filtering Device

EXF(Q.0)

EXF{0.8) LS {3 LE(1%) NL (42

NL (7}

Run 1 0.0193&6

Run 2 0.01947

AVE 0.01942

0.02017 0.01924 0.01926 0.02083
Q.013263 0.01902 0.0192F 0.02125

0.019920 0.0121F 0.01925 0.02104

0.02179

Q.0215

0.02168

The average outputs of the chemical reaﬁtur using the

EXF(0.0Q), EXP(0.8), LS5{Z), LS{19), NL{4), and the NL(7}

filters are shown below in Figures &6-1A, &-1R, &—-1C,

6—-1E, and 6-1F,

respectively.
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Table &-2 below presents the integral of the ave%age
absoiute error {(IAAE) of two runs of the simulation
described above for the unit step input disturbance of
magnitude 0.12. Two runs were made utilizing each af the

conventional filters described above.



IAAE

TABLE 6-2

: UNIT STEF DISTUREBANCE; CAD=0.12, T:x5.0

Filtering Device

EXP (0.

0) EXFP(0.8) L&) L5(19)

NL (4) NL{7)

Run 1 0.0193

Run 2 0.0193

AVE 0.0124

2 0.01976 0.01909 0.01744
8 0.0195%9 0.01880 0.019461

S 0.019268 0.01895 0.01953

J0.02099 0.02161

0.0208868 0.02154

0.02092 0.02157

The ave

EXP(0.0), EX

filters are shown below in Figures 6-2A,

6—2E, and &-

rage outputs of the chemical reactor using the

P(0.B), LS(3), LS(19), NL(4),

2F, respectively.

and the NL(7)

&-2B, &-2C, &-2D.
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Table 6-3 below ﬁresents the integral of the average
absolute error (IAAE) of two runs of the simulation |
described above for the unit step input disturbance o+
magnitude 0.20. Two runs were made utilizing each of the

conventional filters described above.



TABLE 6-3

IARE:; UNIT STEFP DISTURBANCE: CAD=0.20, Tx5.0
Filtering Device
EXFP{(0.0) EXP{0.8) L5(3) LS5(19) NL (4) NL{7)
Run 1 0.01927 0.01991 0.01955 0.01907 0.02098 0.02163
Run 2 0.01205 0.02005 Q.0190F 0,.01949 0.02124 0.02147

AVE 0.019216 0.01998 0.01929 0.01928 0.02111

0.02155

The average outputs of the chemical reactor using the

EXP(0.0), EXP(0.8), LS(3), LS(19), NL(4), and the NL(?)

filters are shown below in Figures &-3A, 6-3B. 6-3C, &-ZD,

6&6—-3E, and 6-3F, respectivély.
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Table &6—4 below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the ramp input disturbance of slope

0.12. Two runs were made utilizing each of the conventional

filters described above.



TABLE &6—4

IAAE; RAMP DISTURBANCE: CAD=0.12{(T-5.0), Tx5.4

Filtering Device

EXF(0.0) EXF{0.8) LS(3) LS(19) NL (4) ML 17D

Run 1 0.01938 Q.01975 0.01953 0.01972 0.0209% 0.02176

159

L

P

Run 2 0.01918 Q.01993  0.01925 0.012928 0.02104 0.0

AVE 0.01928 0.01984 0©0.0193%2 0.01950 0.02101 0Q.02167

The average outputs of the chemical reactor using the
EXF(0.0), EXP(D.8), LS(3), LE(19), NL{(4), and the MNL{7)
filters are shown below in Figures &6-4A, 6—4B,., 5—-4C, 6-4D,

&—-4E, and &6-4F, respectively.
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Table 6-5 below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the ramp input disturbance of slope
0.20. Two runs were made utilizing each of the conventional

filters described above.
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TABLE &6-5

IAAE:; RAMP DISTURBANCE:; CAD=0.20(T-5.0), Tz8.0

Filtering Device

EXF(<0.0) EXP(0.B) LS(3) LS {19 NL {4} NL (73

Run 1 0.019264 0.01988 0.01727 0.019645 0.02133 0.02133

Run 2 0.01983 0.019%0 0.01%0% 0.01%446 0.02134 0.021F1

-
]

AVE 03.01955 0.01989 0.01218 0.01956 0.02143% 0.02162

The average output of the chemical reactor using the
EXF(0.0), EXF(Q.8), L5(3), LB{1%), NL{(4), and the NL{7)
filters are shown below in Figures 6-5A, &-5H, &-5C, &-9D,

6-5E, and 6-5F, respectively.
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Statistical Frocess Control Filters

The statistical process control (SPC) filters are the
exponentially weighted moving average filter with parameter
%, EWMA(x), the moving average and moving range filter,
MAMR, and the individuals and moving range filter, IMR. As
discussed in Chapter V, this research uses values of 0.2 and
1.0 for ®%. The chemical reactor is simulated with a éiven
filtering device (with a known parameter wvalue) and type of
disturbance for 100 replications of sixty minutes of plant
operation time. The types of input disturbances for CAD
utilized in the research were the unit step of magnitudes
0.0, 0.12, and 0.2 for the values of CAD, and ramp functions

with the slope of 0.12 and 0.2 for the values of CAD. The



o C.j:

disturbance is not introduced until five minutes have
elapsed allowing the reactor sufficient time to reach a
stable condition. The standard deviation of the noise
introduced in the feedback control loop is 0.0035, and the
parameters of the reactor and FID controller are as
described in Chapter IV.

Table 6—& below presents the integral of the average
absolute efrnr ({IAAE) of two runs of the simulation
described above for the situation in which there is no
disturbance introduced to the system. Two runs were méde

utilizing each of the statistical filters described above.

TABLE &6-6

IAAE; UNIT STEP DISTURBANCE: CAD=0.0, T:5.0

Filtering Device

EWMA (0. 2) EWMA(1.0) MAMR IMR
Run 1 0.0 0.00032 0.00281 Q. 00093
Run 2 0.0 0.00039 0.00310 Q.00108
AVE .0 Q. 000346 0. 00295 0.00100

The average output of the chemical reactor using the
EWMA{O.2), EWMA(1.0), MAMR., and IMR filters are shown below

in Figures &-6A, &—-&6B, 6—-&6C, and &6-4D, respectively.
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Table &~7 below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the unit step input disturbance of
magnitude 0.12. Two runs were made utilizing each of the

statistical filters described above.

TABLE 6-7

IAAE; UNIT STEF DISTURBANCE; CAD=0.12, Tz35.0

Filtering Device

EWMA (0. 2) EWMA(1.0) MAMR IMK
Run 1 0.25884 0.25878 0.20287 Q.17397
Run 2 0.25519 0.25952 0. 19288 0.15121
AVE Q.25702 0.23915 0.19787 G. 16259

The average output of the chemical reactor using the
EWMA{D.2), EWMA{1.0), MAMR, and IMR filters are shown below

in Figqures 6-7A, &6-7B, 6-7C, and &6-7D, respectivelv.

il
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Table 6-8 below presents the integral of the average
absolute error (IAARE) of two runs of the simulation
described above for the unit step input disturbance of
magnitude 0.20. Two runs were made utilizing each of the

statistical filters described above.

TABLE &-8

IAAE; UNIT STEFP DISTURBANCE; CAD=0.20, T:i3.0

Filtering Device

EWMA (0. 2) EWMA (1.0} MAMR IMR
Run 1 0.24171 0.23196 0.17054 Q. 17097
Run 2 0.26882 0.208292 0.18761 Q. 16330
AVE 0.2464527 0.253244 0.18%07 Q.167153

The average output of the chemical reactor is using the
EWMACD.2), EWMA(L1.O0), MAMR, and IMR filters are shown below

in Figures &-8A, 6-8R, 6-8C, and 4-8D, respectively.



AVERAGE BUTPUT (NSM=100)

AVERAGE QUTPUT (NSii=100)

106

Q.09

o TIME (MINUTES)
vm + RUN 1 o RUN 2

Figure 6—-8A. Average Output; CAD=0.20 ,tzS;
Filter=EWMA(OD.2)

\ ZBan a2 L g A 2 AN Zn o an an o 2m o o ™ TV Ty vy - Tvvr-r

[} s 1"° s 20 25 30 35 40 45 50 S5 6Q

TIME (MINUTES)
O  THEORENCAL + RUN 1 6 RUNZ

Figure 6-8B. Average Output; CAD=0.20, tz5;
: Filter=EWMA(1.0)



AVERAGE QUTPUT (NStMw=100)

AVERAGE QUTPUT (NSiMe100)

17

R o o B A I o o A E e o T —————
o s o T 20 as 30 3s 40 as 80 55 sa
TIME (MINUTES)
O  THEDRENCAL + RUNY ¢ RmRUN2

Figure 6-8C. Average Output; CAD=0.20, t:z35;
Filter=MAMR

Y o 2 e —
o ) 10 15 0 25 30 38 40 48 S0 58 8
TIME (MINUTES)
=} THEORENCAL + RUN 1 < RUN 2

Figure 6-8D. Average Output:; CAD=0.20, t:235;
Filter=IMR



10

Table &6-% below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the ramp input disturbance of slope
G.12. Two runs were made utilizing each of the statistical

filters described above.

TABLE &6-9

IAAE: RAMP DISTURBANCE:; CAD=0.12(7-5.0), T:i5.0

Filtering Device

EWMA (O, 2) EWMA(1.0) MAMR IMK
Run 1 0.3283 1.217352 0.99529 Q. 30083
Run 2 0.33589 1.21351 0.28480 0.31617
AVE 0.33214 1.21552 0.99104 Q.30881

The average output of the chemical reactor using the
EWMA(O.2), EWMA(1.0), MAMR, and IMR filters are shown below

in Figures &6-%A, &6—-9H, 6—-9C, and &6-9D, respectively.
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Table 6-10 below presents the inteaqral of the average
absolute error (IAAE) of two runs of the simulation
described above for the ramp input disturbance of slope
Q0.20. TwoD runs were made utilizing each of the statistical

filters described above.

TABLE 6—-10

IAAE: RAMFP DISTURBANCE:; CAD=0.20(T-5.0), Tz5.0

Filtering Device

EWMA (0. 2) EWMA (1.0} MAMR IMR
Run 1 0.518467 2.02332 1.50764 0.50Z249
Run 2 0.51876 2.02108 1.83169 0.5188%
AVE 0.51872 2.02220 1.51366 0.51119

The average output of the chemical reactor using the
EWMACD.2), EWMA(1.0), MAMR, and IMR filters are shown below

in Figures &-10A, &-10H, 6-10C, and 6—-10D, respectively.
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Statistical Process Control Filters with

Individuals Prefiltering

The statistical process control (SPC) filters are the
exponentially weighted moving average filter with parameter
%, EWMA{x), the moving average and moving range filter with
parameter, MAMR, and the individuals and moving range
filter, IMR, and in each case the individuals prefilter,
IFRE, is employed. As discussed in Chapter V, this research
uses values of 0.2 and 1.0 for x for the EWMA(x) filter.
The chemical reactor is simulated utilizing a given
filtering device (with a known parameter value) and type of
disturbance for 100 replications of sixty minutes of plant
operation time. The types of input disturbances for CAD
utilized in the research were the unit step of magnitudes
0.0, 0.12, and 0.2 for the values of CAD, and ramp functions
with the slope of 0.12 and 0.2 for the values of CAD. The
disturbance is not introduced until five minutes have
elapsed allowing the reactor sufficient time to reach a
stable condition. The standard deviation of the noise
introduced in the feedback control loop is 0.005, and the
parameters of the reactor and FID controller are as
described in Chapter IV.

Table 6—11 below presents the integral of the average
absolute error (IAAE? of two runs of the simulation

described above for the situation in which there is no input



disturbance. Two runs were made utilizing each of the

statistical filters and prefilter combinations as described

above.
TABLE &-11
IAAE; UNIT STEF DISTURBANCE; CAD=0.0, T:S5.0
Filtering Combination
EWMA(O.2) EWMA(1.0) MAMR IMR
IFRE IFRE IFRE IFRE
Run 1 0.01140 0.01241 0.01251 0.008%91
Run 2 Q.01287 0.01228 0.012E1 0.00872
AVEG 0.01214 0.01235 0.01241 0.00882

The average output of the chemical reactor using the
EWMA{0.2) /IPRE, EWMA(1.0)/IPRE, MAMR/IPRE., and IMR/IFRE
filters/prefilter combinations are shown below in Figures

6&-11A, 6-11R, 6-11C, and 6-11D, respectively.
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Table 6—-12 below presents the integral of the average
absolute error (IAAE) of two runs of the simulation
described above for the unit step input disturbance of
magnitude 0.12. Two runs were made utilizing each of the

statistical filters and prefilter combinations as described

above.
TABLE 6—-12
IAAE; UNIT STEP DISTURBANCE; CAD=0.12, Tz5.0
Filtering Combination

EWMA (0. 2) EWMA(1.0) MAMR IMR

IPRE iIPRE IFRE IFRE
Run 1 0.04845 0.05002 0.05030 0. Q4973
Run 2 0.05071 0.04938 0.04793 0.04744
AVE 0.04958 0.04970 0.04212 0.04859

The average output of the chemical reactor using the
EWMA(0.2) /IFRE, EWMA(1.0)/IPRE, MAMR/IFRE. and IMR/IPRE
filters/prefilter combinations are shown below in Figures

6-12A, 6-12B, 6-12C, and &—-12D, respectively.
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Table 6—13% below presents the integral of the averaage

absolute error (IAAE) of two runs of the simulation

described above for the unit step input disturbance of

magnitude 0.20.

Two runs were made utilizing sach of the

statistical filters and prefilter combinations as described

above.
TABLE &6—-13
IAAE; UNIT STEP DISTURBANCE; CAD=0.20, Tz5.0
Filtering Combination

EWMA(O.2) EWMA(1.0) MAMR IMR

IPRE IFRE IFRE IFRE
Run 1 0.04570 0.04519 0.04587 . 04388
Run 2 Q. 044695 0.0Q4883 0.04732 G.04473
AVE 0.048633 0.044671 0. 044685 0.04431

The average output of the chemical reactor using the

EWMA (0. 2) /IFRE, ENMQ(i.O)/IPRE, MAMR/IFRE, and IMR/IFRE

filters/prefilter combinations are shown below in Figures

6-13A,

6—-13R, 6—-13C, and 6—-13D, respectively.
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Table 6-14 below presents the integral of the average
absolute error (IAAE) of two rums of the simulation
described above for a ramp input disturbance of slope 0.1Z.
Two runs were made utilizing each of the statistical filters

and prefilter combinations as described above.

TABLE 6-14

IAAE; RAMP DISTURBANCE; CAD=0.12(T-5.0), T:z5.0

Filtering Combinatiaon

EWMA (0. 2) EWMA(l.O) MAMR IMR

IPRE IFRE IFRE IFRE
Run 1 0.05497 O. 06060 0.06117 0.0473=1
Run 2 0.05528 0.06253 0.05954 Q.04773
AvE 0.0353513 0.06157 0.046038 0.04752

The average output of the chemical reactor is using the
EWMA(0.2) /IFPRE, EWMA(1.0)/IFRE, MAMR/IPRE, and IMR/IFRE
filters/prefilter combinations are shown below in Figures

o—14a, 6—-14B, 6—-14C, and 614D, respectively.
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Table &—15 below presents the integral of the average
absolute error (IAAE) of two runs of the simulations
described above for a ramp input disturbance of siope 0.20.
Two runs were made utilizing each of the statistical filters

and prefilter combinations as described above.

TABLE &6—-15

IAAE; RAMP DISTURBANCE; CAD=0.20(T-5.4Y, Tz5.0

v a
Filtering Combination :
EWMA (0. 2) EWMA(1.0) MAMR IMR
IFRE IFRE IPRE IFRE
Run 1 0.03704 0.04639 0.04195 0. 03495
Run 2 0.03718 0.04771 0.04241  G.03200
AVGE 0.03711 G.04705 0.04218. 0.03348

The average output of the chemical reactor using the
EWMA(O.2)/IFRE, EWMA(L.0) FIPRE, MAMR/IFRE, and IMR/IFRE
filtersiprefilter combinations are shown belgw in Figures

6—-154, &6-15R, 6—-13C, and 6-13D,. respectively.
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CHAFTER VII
SUMMARY
Intreduction

This Chapter represents the discussion of the resulits
presented in the Chapter VI and the direction of future
research in this field. This research Has provided an
indication of the compatibility between statistical process
control and classical control systems technigues and their
potential to complement each other when used in the same
control situation. Even though the preceding research is
based on an uniqgue process;-general cunciusinns can be made

regarding the combination of the two fields.
Conclusions

Chapter VI presents the informatinn around which the
following discussion is based. The objective of this
research is to apply statistical process control (SFC)
within the realm of control svystems and to evaluate the
quality of a control scheme utilizing various statistical
process control and conventional filtering methods. The
application of statistical process control within the reaim

of control systems is achieved by applying SPC as filtering
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devices within the feedback control loop as demonstrated in
Chapter V and VI.

The conventional filters used are the exponential
filter, the least squares filter, and the non-—-linear
exponential filter, and the SFC filtering technigues are the
exponentially weighted moving average filter, the moving
average and moving range filter, and the individuals and
moving range filter. Additionally, individuals prefiltering
is used in conijunction with the SFC filtering techniques in
an attempt to reduce the time lag required to detect a
change in the process when using only SFC filtering
technigues.

A computer system is developed which models three
serial continuous stirred-tank reactors (CSTRs) where
conventional prnpnrtinnal/;ptegralfderivative (FID) control
is emploved utilizing the Ziegler and Nichols (1242) tuning
formulas based on a decay ratio of one fourth. Random noise
is introduced within the feedback control loop, and it is
the goal of the filtering device emploved within the
feedback control loop to remove or attenuate the noise. The
ideal output of the filter would be the true output of the
process. The desired theoretical response of the system or
the desired targeted output of the system is the response of
the system to a known input disturbance in which no noise is
introduced within the feedback control loop.

The“amount of variation of the ocutput about the target

value is measured by observing the average output of the



process over time. FPlots for each filtering device are
shown in Chapter &. Additionally, a measure of performance
is developed in Chapter 5 which is similar to the Integral
of the Absolute Value of the Error (IAE) used in control
theory research (Smith and Corripio (1985)). The measure of
performance developed is the Integral of the Average
Absolute Error (IARE), and this value is shown in Chapter &

for each filtering device employed.

Figures &6-1(A-F), 6-2{(A-F), 6-3(A-F)., 6-4{A-F), and
6—-53{A-F) represent the average response of the system using
the conventional filters when a unit step disturbance of
magnitude 0.0, unit step disturbance of magnitude 0.12, unit
step distwbance of magnitude 0.20, ramp disturbance of
slope 0.12, and ramp disturbance of slope 0.20 are applied
to the system, respectively. Tables &6-1, 6-2, &-3, &-4, and
6-5 provide the IARE for a unit step disturbance of
magnitude 0.0, unit step disturbance of magnitude 0.12, unit
step disturbance of magnitude 0.20, ramp disturbance o+
slope 0.12., and ramp distuwbance of slope 0.20,
respectively, when conventional filtering devices are used.

As shown in Table 6-1, the performance of the
conventional filtering devices is close to the same for the
conventional filters when no disturbance i1s applied to the
system. It is interesting to note that the exponential

filter with parameter F set equal to zero is equivalent to
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doing no filtering to the signal being transmitted through
the feedback control loop. A slight improvement in
performance may be achieved by utilizing the least sqﬁares
filter, with the exponential filter following ciosely
behind. The non—-linear exponential filter provides the
poorest performance of the conventional filters when no
disturbance is applied to the process. As the parameters of
the conventional filtering devices change, there is only a
small change in the resulting IAAEs. This result is due to
the fact that the system modeled is slow. If the process
was faster, the resulting differences would be more
pronounced.

The plots of the average outputs while utilizing
various filtering devices when no disturbance is applied to
the system (see Figures 6-1(A-F)) indicate that little
observable difference can be distinguished as the parameters
of a given filter are changed or the type filtering is
changed. This result is indicative of the fact that this
process is very slow to changes in the system.

As medium to large unit step disturbances are
introduced to the system when conventional filtering devices
are used, the resulting randomness of the output svstem is
hidden by the change of output due to the disturbance. By
observing the resulting IAAEs (see Tables 6-2 and 6-3%), the
improvement of the least squares filter over the exponentisl
filter becomes less pronounced due to the tendency of the

least squares filter to overshoot the true process signal



(Exxon, 1977). The non—linear exponential filter provides
the poorest performance. As is the case when no disturbance
is introduced to the system, the effect of changing the
parameters of a given filtering dewvice appear to have littie
impact on the resulting IAREs. The plots of the average
output while utilizing various filtering devices when medium
to large disturbances are applied to the svstem (see Figures
6-2(A-F) and &-3{A-F)) indicate that little observable
difference can be distinguished as the parameters of a given
filter are changed or the type filtering is changed. The
resulting randomness of the average output of the svstem is
hidden by the change of output due to the magnitude of the
disturbance.

The tables of 6-4 and 46-5 provide an indication that
there exists no measurable difference in the calculated
IAAEs when either the exponential filter or the least square
filter is used, and the process is disturbed with a ramp
disturbance. The non-linear exponential filter offers the
poorest performance of the conventional filters.

Figures 6—-4{(A-F) and &6-5{(A-F) indicate that little
observable difference can be distinguished as the parameter
of a given ?ilter is changed or the type filtering is
changed. The resulting randomness of the average output of
the system is hidden by the change of output due to the ramp
disturbance. The PID control of the system appears to be
close to the desired theoretical response which results in a

slight offset of the output.



Figures &-6{(A-F), &6-7{(A-F), &6-B(A-F)}, &-F(A-F), and
6-10{A-F) represent the average response of the process when
utilizing the statistical process control (SFC) filters when
a unit step disturbance of magnitude 0.0, unit step
disturbance of magnitude G.12, unit step disturbance of
magnitude 0.20, ramp disturbance of slope 0.12, and ramp
disturbance of slope 0.20, respectively. Tables 6-6, &7,
&6—-8, H-F, and 6-10 provide the IAAE for a unit step
disturbance of magnitude 0.0, unit step disturbance ot
magnitude 0.12, unit step disturbance of magnitude 0.20,
ramp disturbance of slope 0.12, and ramp disturbance of
slope 0.20, respectively, when S5FC filters are employed.

As observed in Table 46-6, the IAAEs for the SPC filters
are improved over conventional filters of Table 6-1. This
result is as expected due to the design of statistical
process control. Statistical process control is designed
such that the Type I errors are controlled. Thereftore, when
the process is running in a 505C, the controller input is
zero, since there is no random error passed to the process.
When random error is passed to the controller, additional
variation of the process output will result. The EWMA chart
with a=0.25 has an average run length (ARL) of 502.9
(Crowder, 1287) when the process average is unchanged which
indicates that very few false alarms, if any at all. would

be sxpected for these simulations. Therefore, the average



response is very near the set point, and this is the case as
shown in Figure &-6A.

The ARL for the MAMR chart is 92.27 (see Table 3-2),
and the ARL for IMR chart is 59.2&6 (see Table 3-3).
Therefore., an increasing number of false alarms would result
from the change from an EWMA filter with «=0.2 to an MAMR
filter or an IMR filter. This observation would result in
the random signal being fed to the controller more often
resulting in a more variable average output. This can be
seen in either Figure &-46C or 46—-46D. When x=1.0 for the
EWMA filter, the resulting filter is simply an individuals
filter with rule 1 of the AT%T rules {(see Chapter 3 or
Chapter 5) employed. The ARL for the individuals chart when
the process average is left unchanged is 370.40 (Crowder,
1987). Therefore, the number of false alarms is more than
the EWMA chart with «=0.2 and less than the MAMR or IMR
chart. Therefore, the average output of a process using
EWMA filtering with x=1.0 would appear smoother than the
average output of a system using either MAMR or IMR
filtering. This is shown in Figure &-6H.

Based on the observations above., the SPC filters would
be preferred over the conventional filters. This statement
assumes that no disturbance has been introduced to the
process.

Once the process is subjected te a disturbance, the
conventional filters perform better than the 5PC filters,

as shown by comparing the resulting IAREs from Tables &6-7.



&—-8, 6-F, and 6-10 to &2, 6-3, 6—-4, and 6-5, respectivelvy.
This is due to the time lag required by the SPC filters to
detect a process change. The conventional filters respond
quicker since all changes {(random or deterministic process
disturbances) are reacted upon immediately. Therefore, if
given the situation that a process disturbance has occuwrred,
the conventional filters would be preferred over the SPC
filters based on the value of the IAREs. These results can
be verified by Qiewing figures &-7{(A-D), &6-8(&H-D), &6-F{(A-D),
and 6-10(A-D) by noting the deviation from the average
output to the theoretical output {(or target). This large
difference stems from the time required for the SFC +filter
to detect the process disturbance. The input disturbance is
passed through three first order lags before it can be
detected at the output of the process, which results in a
large time delay before the disturbance is detected by the
SPC filters. Additionally, if the disturbance is not
detected at the first sample, it is 6.5 minutes until the
next sample will be :ullected. This-results in additional
time delay in the detection of the process disturbance.

The EWMA filter with «=1 results with an average offset
in the average output (see Figure &-7B). The offset is
reduced when « is reduced to 0.2 {(Figure 4-7A) and
practically eliminated when the IMR filter is emplovyed
(Figure &-7D). Since additional .historical information is
being included at each sample (i.e., as o is reduced, more

historical intormation is included; or as runs rules are



employed, more historical information is included), the
probability of detecting small shifts is improved (see
Tables 3-1, 3-2, and 3-3).

It is interesting to note that in the application of
SFC filters alone the resulting response of the process
behaves much like an Dpen.lnnp system due to the time
required to detect the disturbance immediately following the
disturbance. The average output of the process is
approaching the steady state, open loop response when
subjected to an unit step disturbance for all four SFC
filters (see Figures &6-7(A-D) and 6-8(A-D)) by the time that
the second sample is collected (t=13.0 minutes).

When the process disturbance is a ramp disturbance, the
resulting IAAEs show that the conventional filters are
preferred over the SFC filters (see Tables 6-9 and 6—10).
The average outputs of the EWMA filter with «=1.0 and the
MAMR filter are cyclic (see Figures &-9B, &-9C, 6—10H, and
&6—-10C). This result stems from the inability of either the
EWMA Ffilter with ao=1 {(which is an individuals filter with
only rule 1 of the AT&T rules emploved) or ;he MAaMR chart to
detect trends in the process output. On the other hand,
both the EWMA filter with o=0.2 and the IMR filter can more
quickly detect trends (see Figures &-9A, 6-9D, &6—-10A, and 66—
10D). Therefore., if an SPC filter is used, the EWMA filter
with a small x or the IMR filter will provide protection
against offsets or cyclic behavior of the average output of

the process.



Figures 6-11{(4-F), 6-12{(A-F), &-13(A-F}, 6-14{(A-F), and
4-15(A-F) represent the average response of the process
utilizing the 5PC filters in conjunction with the
individuals prefiltering when the process is disturbed with
a unit step disturbance of magnitude 0.0, a unit step
disturbance of magnitude 0.12, a unit step disturbance of
magnitude 0.20, a ramp disturﬁanCE'uf slope .12, and a ramp
disturbance of slope 0.20, respectively. Tables &6-11, 6-132,
&—13, 6-14, and 6—15 provide the IAAE for a unit step
disturbance of magnitude 0.0, unit step disturbance of
magnitude 0.12, unit step disturbance of magnitude 0.20,
ramp disturbance of slope 0.12, and ramp disturbance of
slope 0.20, respectively, when SFC filters are used in
conjunction wifh individuals prefiltering.

When the process utilizing SFC filtering and
individuals prefiltering is subjected to no input
disturbance, the resulting IAAEs are less than the IAAREs
obtained while using conventional filtering {(contrast Tables
6—1 and &—-11) and greater than the resulting IAREs when
using SPC filters alone (contrast Tables &6—-6 and &6-11).
These results are based on the fact that an increased number
of false alarms are made when the individuals prefiltering
is added to the SPC filters which results in a more variable
average output than the average output observed when 5PC

filters are used alone (compare Figures 6—-11(A-D) to Figures
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&—5(A-D)). The resulting output, however, is not as
variable as the average output when conventional filtering
is used {compare Figures 6—-11{(A-D) to Figures &-1(A-D)}.

Once an input disturbance is introduced to the svystem,
the individuals prefiltering provides a guicker response to
the disturbance than when SFC filters are used alone, since
the data are collected more often. The resulting IAARESs
listed in Tables &-12, 613, 6-14, and 6-15 indicate an
improvement over the situations in which SPC +filtering is
used alone (see Tables &-7, &-8, 69, and &-10). The
improvement made, however, does not make the results better
than the results collected when conventional filtering
technigues are Qsed {(see Tables &;2, &%, &4, and 6-9).
When SFC filtering technigues are used in conjunction with
individuals prefiltering, the resulting IARE is on the order
of 1.75 to 2.5 times as large (based on best and worse case
results of IMR filtering with individuals prefilteringl.
Therefore, when 5FC filters are used in conjunction with
individuals prefiltering. the resulting laaes are more
competitive but not better than the resulting IAAEs achieved
when conventional filtering is used.

The average output of the process using 5FC filtering
with individuals prefiltering is similar to the results
achieved with SFC filtering alone. By comparing Figures
6&—-12(A-DY and &6-1F(A-D) to &6-7(A-D) and &—-B(A-D),
respectively, it is easily recognized that the improvement

in the IAAREs is due to the improved response time to



detecting the process disturbance. Additionally, the offset
behavior of the EWMA filter with large alphas and HMAMK
filters is eliminated due to the use of the individuals
prefilter, since the data are more often collected and the
number of opportunities to detect slight changes in the

' process are increased.

When SFC filters are used in conjunction with
individuals prefiltering and the process input is subjected
to a ramp disturbance, a cyclic behavior results (see
Figures 6—-14(A-D) and 6-15{(A-D)). This result is based on
the overpaweriﬁq impact of the individuals prefilter, since
data are collected so often. The disturbance is detected
quickly, and once the disturbance is detected, the logic of
the individuals prefilter requires that 10 minutes must pass
before the process will beAgampled again. At that point,
the PID control has returned tﬁe process nutpﬁt close to
desired set point, and the individuals prefilter doss not
immediately detect the continued ramp disturbance. This
condition continues until sufficient time has passed such
that the change in the process input is large enough to be
detected. The overall impact of these filtering
combinations is a cyclic behavior which has a period of 10
minutes plus the incremental amount of time required to make
subsequent detections of the process disturbance.

In conclusion, when SFC filters are used in combination
with individuals prefiltering, the resulting I1AAEs are

larger than the IAAEs that would have been achieved if
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conventional filtering had been utilized. This statement 1is
based on assumption that the process is disturbed. If no
disturbance is in the process, smaller IAAEs are achieved
when either SPC filtering is used alone or SFPC filtering is

used in conjunction with individuals brefiltering.
Future Research

Even though the results of this research are not
cnmpletely in favor of SPC filtering over the conventional
filtering technigues, the potential for research in the
field is very good. For example, all of the parameters of
the SFC filtering techniques have been set at single values.
Improved performance may be achievedvif the control limits
of the SPC filters are reduced to values less than three
standard deviations. Additionally, the use of SFC filters
in conjunction with conventional filters could be evaluated.

The measures of performance used in this research are
based on the amount of variability of the average response
about the response of the system when no noise is introduced
into the feedback control loop. There is the potential of
considering economic tradeoffs betweeﬁ false alarms and the
time lag required to detect and correct a process change.

Additionally, future work should include the analysis
of results utilizing optimal control type designs. 0One of
the more popular optimal design methods is the use of the
Kalman Filter (see fAstrom and Wittenmark, 1984). The kalman

filter minimizes the wvariance of the estimation error



assuming the noise is Baussian. Successful application of
SFC filters implies that they must perform as well as or
better than conventional filtering devices and the optimal
design technigues.

The clearest problem of the SFC filters is their
inability to respond quickly. In general, when correctly
applied, a cascaded system makes the overall loop more
stable and faster responding {(see Smith and Corripio, 19835).
The cascaded system has been introduced in Chapter 1 but not
fully develﬁped within the realm of fhis research. It 1s
strongly indicated throuwgh this research that if the
response time of the 5PC filters could be improved, the
resulting IAAEs would also improve. A cascaded control
scheme would appear to achieve favorable results. A
possible implementation of cascaded control is shown in

Figure 7-1 below.

CAD
C1 c2 Ti T2 T3

CAx==t 4+ E CAM, CAM= CAo CAx Ch= CA=
where: T1 = Tank 1

T2 = Tank 2

TZ = Tank 3

C1 = Primary Controller

CZ = Secondary Controller

Figure 7—1. Fotential Implementation of Cascaded Control
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For the implementation of cascaded control both
controllers would need to be tuned based on the analvtical
characteristics of the system, and the research to study the
performance of the system would require that a new computer
system be develnﬁed. SFC +ilters could be employved on both
the primary and secondary loops.

Additional work could be completed using other types of
disturbances such as limited ramps, sinuscids, trianguiar,
and other periodic functions. Additionally, the performance
of the control loop is dependent uwpon the magnitude of the
noise. Research relating the magnitude of the noise to the
control scheme®s ability to correct the process could be

achieved.
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AFFENDIX A

LISTING OF FROGRAMS USED TO DETERMINE

AVERAGE RUN LENGTHS



FAUL1IZ2Z26A JOB (112246, 123-12-3127) ,7JRE’ ,CLASS=4,TIME=(5%,0).,
7/ MESGECLASS=X,MOTIFY=X%

/S APASSEWORD 7777

/¥ JOBRPARM ROOM=N

JXROUTE PRINT LOCAL

// EXEC FORTVCLG

//FORT.SYSIN DD X

THIS FPROGRAM IS DESIGNED TO DETERMINE THE ARL/MAT
FOR THE EWMA CHART WHEN THE PROCESS IS DISTURBED WITH
EITHER A UNIT STEP DISTURBANCE OR LINMEAR TREMD

ooono

DOURLE PRECISION DSEED, SUM,MAT

REAL NUM,LCL . NMEAN, MEAN, K

READ Xx,MEAN,S5TD,N

PRINT X, 0ORIGINAL PROCESS MEAN T L MEAN
PRINT %, 0ORIGINAL PROCESS STANDARD DEVIATION 7 ,.87TD
PRINT %, THE # OF TRIALS T.N

THE ALPHA VALUE

oon

ALFHA=0.0
DSEED=804646%7.
FRIMT X

LOOF TO RUN SIMULATIONS FOR
VARIDUS ALFHAS

ooon

DO 400 I1=1,5
kK=-0.1
ALPHA=ALPHA+O. 2

THE DETERMINATION OF CONTROL LIMITS

o0on

C=ALPHA/ (Z.-ALFHA
=58RT (C)
E=Z%5STDxD
UCL=MEAN+E
LCL=MEAN-E

DO 500 IZ=1,14

DIFFERENT SHIFTS IN THE MEAN

aoo

IF (K.BE.1.0) k=K+0.5
IF ((K.LT.1.0).AND. (K.GE.O0.5)) KE=K+0.25
IF (K.LT.0.5} E=k+0.1

SUM=0.0

LOOF FOR EACH RUN DOF A SIMULATION

aooan

po 200 I=1,N
EWMA=MEAN
SHIFT=K%5TD
NUM=0



S0 Z=G6NGF (DSEED) XSTD+MEAN+SHIFT
c
C = E¥8TD FOR UNIT STEF
C

SHIFT=EHIFT+KX5TD
EWMA=ALFHAXZ+ (1-ALFPHA) XEWMA

C
C TEST FOR STATISTICAL CONTROL
c
IF ((EWMA.BE.LCL).AND. (EWMA.LE.UCL)) THEN
C .
C COUNT DF SAMPLES
C
NUM=NUM+1
GO TO S0
ELSE
NUM=NUM+1
C
C SUM TOTAL OF ALARMS
»
SUM=SUM+NUM
ENDIF
200 CONTINUE
X=N
C
C CALCULATION OF THE ARL/MAT
C
MAT=SUM/N
WRITE (6,300) ALFPHA,K.MAT
Z00 FORMAT (1X,°THE WEIGHTING FACTOR = °,F10.2/
% 1X,.°K STD DEV INC IN MEAN EA SAMFLE = °.F10.Z2/
$ 1X, "MAT = *,F10.4//)

500 CONTINUE

400 CONTINUE
STOP
END

//60.5YS STOF
END

//G0O.SYN DD X

50, 10, 10000

/7



1o

SAUL12264 JOB (11226,123-12-312%), 7 JRE" ,CLASS=4, TIME=(30,0),
/7 MSBCLASS=X,NOTIFY=X%

/¥PASSWORD 72777

S xJOBRPARM ROOM=N

FXROUTE FPRINT LOCAL

/¢4 EXEC FORTVCLG

f/FORT.SYSIN DD X

e
C THIS FROGRAM IS DESIGMED TO DETERMINE THE ARL/MAT
C FOR THE MAMR CHART COMBINATION WHEN THE PROCESS IS
C DISTURBED WITH EITHER A UNIT STEF OR LINEAR TRENMD
£  DISTURBANCE
C
DOURLE FRECISION DSEED, SUM, MAT
REAL NUM,LCLX.MEAN,K
READ ¥,MEAN,S5TD.N
FRINT X, ORIGINAL FROCESS MEAN T . MEAN
PRINT X, 0ORIGINAL FPROCESS STANMDARD DEVIATION °,S8TD
FRINT %, THE # OF TRIALS N
PRINT X%
DSEED=8B0&64497.
C
C DETERMINE THE CONTROL LIMITS
c
E=(3%5TD) /GART (2.0)
UCL X=MEAN+E
LCLX=MEAN-E
UCLR=(1.128+3% (.853) ) Xx5TD
K=-0.1
C -
C LDOFP FOR DIFFERENT SIZE SHIFTS
c
DO 500 I2=1,14
IF {(K.GE.1.0) K=K+0.3
IF ((K.LT.1.0).AND. (K.BE.0.3)) K=EK+0.25
IF (RK.LT.0.5) K=k+0.1
5UM=0.0
DO 200 I=1,N
X=MEAN
SHIFT=KXSTD
NUM=0
50 Z=GGNEF (DSEED) ¥STD+MEAN+SHIFT
C
c = KX¥5TD FOR UNIT STEF
C
C
C DETERMINATION OF CURRENT MA AND R
C
XBAR=(Z+X) /2
R=ABS (Z-X)
=z
SHIFT=8HIFT+KX5TD
c

C DETERMIME IF FROCESS IS IN CONTROL



IF ((XBAR.GE.LCLX).AND. (XBAR.LE.UCLX) .AND. (R.LE.UCLR)}

$THEN
NUM=NUM+1
G0 TO S0
ELSE
NUM=NUM+1
c
C COUNT OF TOTAL ALARMS
C
SUM=5UM-+NUM
ENDIF
200 CONTINUE
X=N
C
C DETERMINE THE MAT/ARL
c
MAT=5UM/X
WRITE (6,300) K,.MAT
300 FORMAT (1X, K STD DEV INC IN MEAN EA SAMFLE = °.F10.Z2/
ES 1¥,°MAT = °,F10.4//)
500 CONTINUE
STOF
END

//G0.SYSIN DD X
50,10, 10000
/7



FAU11226A JOB (11226,123-12-3123), 7JRE’ ,CLASE=4, TIME=(53%,0},
/74 MSGCLASS=X,.NOTIFY=X

/¥FASSWORD 27727

/¥ JOBPARM ROOM=N

/XROUTE FPRINT LOCAL

// EXEC FORTVCLEG

F/FORT.B5YSIN DD X

c

c
c
e
C

aoon onon

oaon

THIS PROGRAM IS DESIGMED TD DETERMINE THE ARL/MAT
FOR THE IMR CONTROL CHART COMBINATION WHEN THE FROCESS
I5 SURJECTED TO A UNIT STEF OR LINEAR TREND DISTURBANCE

DIMENSION XBAR(2)
INTEGER UFRUN(8) , DNRUN (B

INTEGER :
$RUNL , TOTRUN, TUPRUN, TDNRUN, RULE , AROVE , BELDW, COLUNT
INTEGER FLAG1,FLAGZ,FLAGS, FLAGY,FLAGC

REAL MEAN,K

DOUBLE PRECISION DSEED,MAT

DSEED=8064697.

READ *,MEAN,STD.N

FPRINT %, 0ORIGINAL FROCESS MEAN 7« MEAN
PRINT x, "ORIGINAL FROCESS STANDARD DEVIATION °,STD
PRINT Xx,°THE NUMBER OF TRIALS TWN

DETERMINE THE APPROFRIATE ZONES FOR THE I CHART WHEN
THE AT&T RUNS RULES ARE USED

UP1SIG=MEAN+STD
UFZ5IG=MEAN+2XS5TD
UFSSI6=MEAN+IZX5TD
DN1SI1G=MEAN-STD
DNZSIG=MEAN-2X5TD
DNESIG=MEAN-3%¥5TD

DETERMINE THE CONTROL LIMITS FOR THE MR CHART

UCLR=(1.128+3%.853) XSTD
NSIMS=0
TOTRUN=0

K=—0.1

DD 1 Ii=1,14

LOOF TO DETERMINE THE SHIFT TO BE STUDIED

IF(K.GE.1.0Q) K=k+0.5
IF((K.LT.1.0).AND. (K. GE.0.3)) EKE=k+0.25
IF(H.LT.0.8) K=K+0.1

NSIMS=0

TOTRUN=0

1000 SHIFT=KXS5TD

COUNT= 1000 SHIFT=KX5TD
FLAG1=0
FLAGZ=0



2000 DO 2050

FLAGZ=0

FLAG4=0

FLAGC=0

1=1,7

XBAR (1) =GGNEF (DSEED) *STD+MEAN+SHIFT

ol

c
c = KXETD FOR UNIT STEF
C
IF{(I.LE.1) R=ABS(XBAR{I)-MEAN)
IF(I.GT.1) R=ABS{(XBAR{I)-XBAR{I-1))
c
C~ CHECK MR CHART FOR CONTROL STATUS
c
IF(R.GT.UCLR) THEN
COUNT=COUNT+I-1
5070 7000
ENDIF
SHIFT=GHIFT+KXx5TD
UFRUN(I)}=0
C
C THE FOLLOWING LOGIC IS5 THE CODING NECESSARY TO EMPLOY
C THE AT%T RUNS RULES. IT IS THE SAME AS THE CODING
C INCLUDED IN AFFENDIX B FOR THE SUBROUTINE FOR IMR
C FILTERING
C
DNRUN(I)=0Q
IF(XBAR(I).GT.UF15IGY UPRUN{I)=1
IF(XBAR(I).LT.DN1ISIG)Y DNRUN{I)=1
2050 CONTINUE

IF(XBAR (1) .GT.UP35I16.0R. XBAR (1) .LT.DNZSIG)
FLAG1=1
G0TO 7000
ENDIF
COUNT=COUNT+1
IF(XBAR(Z) .GT. UPESIG.0R. XBAR (Z) . LT.DNZEIG)
IF(XBAR(2) .GT.UP25IG.AND. XBAR (1) . GT. UPZ5IG)
IF(XBAR (2} .LT.DN26IG.AND. XBAR (1) . LT.DNZ5IG)
IF(FLAGL1.EG.1.0R.FLAGZ.ER. 1) GOTO 7000
COUNT=COUNT+1
IF(XBAR(3) .GT.UF3S8IG.0R. XBAR(3) . LT. DN3EIG)
IF(XBAR(Z) . GT.UF2SIG.AND. XBAR (2} . GT . UP2SIG)
IF(XBAR(3) .LT.DNZEIG. AND. XBAR (2) . LT.DNZEIG)
IF{XBAR(3) .BT.UFZEIG.AND. XBAR (1) .GT. UFPZ5IG)
IF(XEAR(3) . LT.DN2SIG. AND. XBAR (1) .LT.DN2ZEIGE)
IF(FLAG1.EG.1.0R.FLAGZ.ER. 1) GOTO 7000
COUNT=COUNT+1
IF(XBRAR(4) .GT.UP3SIG.0OR. XEAR (4) . LT. DN2SIG)
IF(XBAR{(4) .GT.UF25I6.AND. XBAR (3) . GT. UF2516G)
IF (XBAR{4) .LT.DN2EIG.AND. XBAR (37 . LT. DN2Z5IG?
IF{XBAR(4) .GT.UF25IG. AND. XBAR(2) .6T. UFP251G6G)
IF{XBAR(4) .LT.DMN2SIG. AND. XBAR (2) . LT. DN2SIG)
TUFRUN=UPRUN (1) +UFRUN (2) +UFRUN (3) +UFRUN{4)
TDNRUN=DNRUN (1) +DNRUN (2) +DNRUN (3) +DNRUN (4)
IF({TUFRUN.GE. 4.0R. TDNRUN.GE. 4) FLAGS=1

THEN

FLAGLI=1
FLAGZ=1
FLAGZ=1

FLAGi=1
FLAGZ=1
FLAGZ=
FLAGZ=1
FLAGZ=1

FLAG1=1
FLAGZ=
FLAGZ=1
FLAGZ=1
FLABZ=1



o0on

aoann

FLAGC=FLAG1+FLAGZ2+FLAGS

IF(FLABGC.GT.Q) GOTO 7000

COUNT=COUNT+1

IF(XBAR(D) .GT.UFP3SIG. OR. XBAR(S) .LT.DN3EIG) FLAG1=1
IF(XBAR () .GT.UPZE5IG.AND. XBAR (4) . GT.UFPZEIG) FLAGZ=1
IF{(XBAR(S).LT.DN25IG.AND. {BAR{4) .LT.DN25IG) FLAGZ=1
IF(XBAR(S) .GT.UPZSIG.AND. XBAR(3) .GT. UF2EIG) FLAGZ=1
IF(XBAR (D) .LT.DN28IG.AND. XBAR (3) . LT.DN251IG) FLAGE=1
TUFPRUN=UFRUN ( 1) +UFRUN (2) +UPRUN (3) +UPRUN { 4) +UFRUN (5)
TDNRUN=DNRUN { 1) +DNRUN (2) +DNRUN (3) +DNRUN (4) +DNRUN (3)
IF(TUPRUN.GE. 4.0R. TONRUN.GE. 4> FLAGS=1
FLAGC=FLAG1+FLAGZ+FLAG3

IF{FLAGC.GT.0) GOTO 7000

COUNT=COUNT+1

IF(XBAR(6) .BT. UP3SIG. OR. XBAR(6) .LT.DNISIG) FLAGI=1
IF(XBAR (&) . GT.UPZ5I6G.AND. XBAR (3) .GT.UFZEIG) FLARBZ=1
IF(XBAR(S) .LT.DN2EIG. AND. XBAR (D) . LT.DNZE5IG!) FLAGZE=1
IF(XBAR (46) .GT.UF25IG.AND. XBAR (4) .GT.UPZEIG) FLAGZ2=1
IF{XBAR(6) . LT.DN2SIG.AND. XBAR (4 .LT.DN25IG) FLAGZE=1
TUPRUN=UFPRUN (2) +UFRUN (3) +UFRUN (4) +UPRUN (5) +UFRUN (&)
TENMRUN=DNRUN (2 +DNRUN (Z) +DNRUN (4 ) + DNRUN (5) +DNRUN (&)
IF{TUFRUN.GE. 4.0R. TDNRUN.GE. 4) FLAB3=1
FLAGC=FLAG1+FLAGZ+FLAGS

IF(FLAGC.GT.0Q) GOTO 7000

COUNT=COUNT+1

IF(XBAR(7) .GT.UP38IG6.0R. XBAR(7) .LT.DN35IG) FLAGLI=1
IF(XBAR{7) .GT.UP25IG.AND. XBAR (4) .GT. UPZEIG) FLABGZ=
IF(XBAR(7) .LT.DN2516. AND. XBAR (6 . LT.DN2EIG) FLAGZ=1
IF(XBAR(7) .GT.UFP25I6G.AND. XBAR (D) .BT.UPZSIG) FLAGZ=1
IF{XBAR(7).LT.DNZEIG. AND. XBAR (D) .LT.DN2EIG) FLAGZ2=1
TUFPRUN=UPRURN (3} +UFRUN (4) +UPRUN {(5) +UPRUN (&) +UPRUN (7}
TDNRUM=DNRUN (3) +DNRUN (4) +DNRUN (5) +DNRUN (5 +DNRUN{7)
IF(TUPRUN.GE.4.0R. TDNRUN.GE. 4) FLAGZE=1
FLAGC=FLAGI1+FLAG2+FLAGS

IF(FLAGC.GT.0) GOTO 7000

COUNT=COUNT+1

ABAR (8)=GGENGF (DSEED) XSTD+MEAN+SHIFT

=K¥8TD FOR UNIT STEF

SHIFT=SHIFT+KXSTD

CHECK CURRENT DATA FOINT FOR CONTROL STATUS

R=AES (XBAR (B) —XBAR (7))}

IF(R.GT.UCLR) GOTO 7000
UFRUN{8) =0
DNRUN(8) =0

IF(XBAR(B) .GT.UF1S5IG) UFRUN{B)=1

IF(XBAR{B) .LT.DN1SIG) DNRUN(B)=1

IF(XBAR(B) .GT.UF35IG.OR. XBAR{(B) . LT.DNZEIG) FLAGRL=1
IF(XBAR(8) .GT.UFZEIG. AND. XBAR (7) .GT. UP25I6) FLAGZ=1
IF(XBAR{(B).LT.DN25IG.AND. XBAR{7) .LT.DN28IGY FLAGZ=1
IF(XBAR(8) .GT.UFZ5IG.AND. XBAR (6) .GT.UP25IG) FLAGZ=1



IF(XBAR(B) .LT.DN2SIG. AND. XBAR (&) .LT.DN2SIG) FLAG2=1
TUFRUN=UPRUN (4) +UPRUN (5) +UFRUN (&) +UPRUN (7 +UPRLUN ()
TDNRUN=DNRUN (4) +DNRUN (5) +DNRUN (&) +DNRUN (7 ) +DNRUN (8)
IF (TUPRUN.BE. 4.0R. TDNRUN.GE. 4) FLAB3=1
ABOVE=0
BELOW=0
DO 4000 K1=1,8
IF (XBAR (K1) .GT.MEAN) AEOVE=AEOVE+1
IF (XBAR (K1) .LT.MEAN) BELOW=BELOW+1
4000 CONTINUE
IF {ABOVE.ER. 8. OR.BELOW.ER.8) FLAG4=1
FLAGC=FLAG1+FLAG2+FLAGI+FLAG4
IF(FLAGC.GT.0Q) GOTO 7000
S0GO COUNT=COUNT+1
DO 4000 L=1,7
M=L+1
XBAR (L) =XBAR (M)
UPRUN (L) =UPRLUN (M)
DNRUN (L ) =DNRUN (M)
6000 CONT INUE
GOTO 3000

COUNT THE TOTAL OF ALARMS

nann

7000 RUNL=COUNT+1
TOTRUN=TOTRUN+RUNL
NSIMS=NSIMS+1
IF (NSIMS.LT.N) GOTO 1000

c
€ DETERMINE THE MAT/ARL
C
8000 MAT=FLOAT (TOTRUN) /FLOAT (NSIMS)
c
C PRINT RESULTS
C
WRITE (6,3000) K.MAT
2000 FORMAT (1X, kK STD DEV INC IN MEAN EA SAMFLE = 7 ,FI10.2Z/
] 1X,"MAT = " .F10.4//)
1 CONTINUE
STOF
END

//G0.SYSIN DD %
50,10, 10000
/7
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//U12522A JOB (12522, 123-12-3123),"JRE’,CLASS=4, TIME=(120,0),
// MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=x

/XFASSWORD 7?7?77

/%JOBPARM ROOM=N, FORMS=2972, COPIES=001,LINECT=88

/X¥ROUTE PRINT LOCAL

// EXEC FORTVCLG, GOREGN=5000K

//FORT.SYSIN DD x

THIS FROGRAM IS DESIGNED TO MODEL THE DYNAMICS OF

THREE SERIAL CSTR’S. THE PROGRAM IS DEVELOPED 80 THAT
VARIOUS TYPES OF NOISE, INPUT DISTURBANCES, AND FILTERING
TECHNIQUES CAN BE MODELLED

DESCRIFTION OF VARIABLES

ARRAY OF ALPHAS FOR EWMA FILTERING

CURRENT ALPHA BEING USED IN THE EWMA FILTERING

BETA ARRAY FOR LS FILTERING

OUTPUT OF TANK 1

OUTPUT OF TANK 2

OQUTPUT OF TANK 3

ACTUAL OUTPUT OF THE PROCESS

SUM OF THE OUTPUTS AT A GIVEN POINT IN TIME

SETPOINT OF THE OUPUT OF THE PLANT

SUM OF THE SQUARED OUTPUTS AT A GIVEN POINT IN TIME

ANALYTICAL OUTPUT, NO NOISE

INPUT DISTURBANCE

INPUT DISTURBANCE, THE ARRAY OF POSSIBLE DISTUREBANCES

OUFUT OF THE CONTROLLER

CONTROLLER OUTPUT + INPUT DISTURBANCE

TIME INCREMENT

SEED OF THE RANDOM NUMBER GENERATOR

INTEGRAL OF (OUTPUT-SETPOINT) OVER TIME

AVERAGE ABSOLUTE ERROR AT A GIVEN POINT IN TIME

ABSOLUTE AVERAGE ERROR AT A GIVEN POINT IN TIME

CURRENT FILTERED OUTPUT OF THE PLANT

COUNTER OF DELTA TIME INCREMENTS

FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST FASS
TO THE EWMA FILTER

FLAG DESIGNATING THE TYPE OF FILTERING TO BE USED

FLAG DESIGNATING THE CURRENT STATISTICAL CONTROL OF THE
STATISTICAL FILTER TO BE USED

FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST FASS
TO THE IMR FILTER

FLAG DESIGNATING THE CURRENT STATISTICAL CONTROL OF THE
I CHART PREFILTER

FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST FASS
TO THE ICHART PREFILTER

FLAG DESIGNATING WHETHER OR NOT I CHART PREFILTERING IS
TO BE USED

FLAG DESIGNATING WHETHER THIS IS THE FIRST PASS OF THE
LS FILTER

FLAG DESIGNATING WHETHER OR NOT THIS 18 THE FIRST PASS

c

C MAIN PROGRAM
c

c

c

c

c

c

c

c

c Al

c ALPHA
c B

c CAL

c CA2

c CAZ

c CAZA

c CA3S

c CAZSET
c CA38aD
c CAZT

c CAD

c CADD

c CAM

c CAMO

c DELTA
c DSEED
c ERINT
cC ERR1

c ERR2

c FCAZ

c I1

c IEXPFG
c

c IFIL

c IFLG

c

c IMRFLG
c

c I10CC

c

c IPFIL
c

c IPFIL
c

c LSFLAG
c

c MAFLG
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anon

o0 ooono

N

N1
NCOUNT
NSIM
P

P1

R

R1
RCAZ
SDEST

STD

STDCAJZ
TAU
TAUD
TAUI
TCONST
TIME
TRESP

TSTOF
Xt
XKC
XKIJ
z

2

KRKK KKK

IMPLI
DIMEN
$B(15,
$P1(5)
COoMMO
DATA
DATA
DATA
DATA
DATA

SET THE
ITIME

SET FILT

IFIL=0,N
IFIL=

TOGGLE Pl
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TO THE MAMR FILTER

CURRENT N OF THE LS FILTERING

ARRAY OF N’S FOR LS FILTERING

NUMEER OF DELTA TIMES IN EACH TSTOP

NUMEBER ' OF SIMULATIONS OF THE PLANT OF LENGTH TSTOP

CURRENT P OF THE EXPONENTIAL FILTERING

ARRAY OF P*S FOR EXPONENTIAL FILTERING

CURRENT R OF THE NL EXP FILTERING

ARRAY OF R’S FOR NL EXPONENTIAL FILTERING

CURRENT OUTPUT OF PLANT WITH NOISE INCLUDED

ESTIMATE OF THE STD DEV OF THE OUTPUT OF THE PLANT AT
A GIVEN POINT IN TIME

ESTIMATED STANDARD DEVIATION OF THE NOISE INDUCED IN THE
FEEDBACK LOOP

STANDARD DEVIATION OF THE OQUPUT OF THE PLANT

TIME CONSTANT OF ONE TANK

DERIVATIVE TIME

INTEGRAL TIME

EFFECTIVE PROCESS REACTION TIME OF THE PLANT

TIME

ESTIMATED RESPONSE TIME OF THE PLANT ASSUMING A VERY
LARGE INPUT DISTURBANCE

DURATION OF A SINGEL SIMULATIO

GAIN OF ONE TANK .

CONTROLLER GAIN

COEFFICIENTS OF THE RUNGA KUTTA INTEGRATION

CURRENT DISTANCE OF CLS USED IN THE ICHART PREFILTERING

ARRAY OF CL DISTANCES FOR I CHART PREFILTERING

XXKMAIN ROUTINEXXKXXKXXX

CIT DOUBLEPRECISION(A-H,0-2)

SION CA3T(50000),CASS (50000) ,CA3ISED (50000,

19) , ERR1 (50000) , ERR2 (50000) , CA3A (50000) , CADD(10) ,
AN1(3),R1(2),A1(5),Z2(D)

N XKC,TAUI,CAD, TAU, XK, CAM, TAUD, CAMO, B, 10CC, IFLG, FCAS
P1/0.0,0.2,0.4,0.6,0.8/

N1/3,11,19/

R1/4.0,7.0/

A1/0.2,0.4,0.6,0.8,1.0/

22/3.0,3.5,4.0/

INCREMENTS OF TIME IN WHICH OUTPUT IS DESIRED
=200

ERING TYPES

0 FILT)1,EXP;2,LS;3,NLEXP; 4, EWMAL S, MAMR) &, IMR
0

REFILTERINGy IPFIL=0,NO3i,YES
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anon

c
c

VA

SET

SET

IPFIL=0

READ %, TAUI, TAU, XK, XKC, TSTOP, TAUD,NSIM
READ %, ((B(I,J),I=1,19),J=1,19)
DSEED=8064697.

CADD (1) =0, 0000

CADD (2) =0, 0037

CADD(3)=0,0111

CADD (4) =0, 0185

CADD (5)=0.0

CADD (&) =0, 12

CADD(7)=0.2

CADD(8)=1.2

LIDATION SUBROUTINE

DO 2002 IF=1,7
IFIL=IF-1

DO LOOPS FOR VARIOUS FILTERING PARAMETERS
DO 2001 Ji14=1,28
DO LOOFS FOR VARIOUS INPUT DISTURBANCES

READ X, IFIL,IPFIL,J1
J=5

P=0.0

N=0

R=0.0

ALFPHA=0..0

CAD=0.0

ANALYTICAL SOLUTION WITH NO NOISE USING RUNGA KUTTA

100
c

IFLG=7

I1=1

LEFLAG=0

DELTA=0.005
NCOUNT=TSTOF/DELTA + 1
CA1=0.4

CAZ=0.2

CAZ=0.1

FC=CA3

TIME=0.0

ERINT=0.0

CAMO=0.8

CAZT(I1)=CATZ
IF(TIME.GE.S5.0) CAD=CADD(J)

CALL THE INTEGRATING SUBROUTINE

CALL F(TIME,CA1,CA2,CA3,ERINT,XK11,XK12,XK13,XK14)
CALL F(TIME+DELTA/2,CA1+DELTA/2%XK11,CA2+DELTA/2X%XK12,
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$CI+DELTA/2%XK13,ERINT+DELTA/2%XK14, XK21, XK22, XK23, XK24)
CALL F(TIME+DELTA/2,CA1+DELTA/2xXK21,CA2+DELTA/2%xXK22,

$CAZ+DELTA/2%XK23Z, ERINT+DELTA/2XXK24, XK31, XK32, XK33, XK34)
CALL F(TIME+DELTA,CA1+DELTAXXK31,CA2+DELTAXXK32,

$CAT+DELTAXXKI3I, ERINT+DELTAXXK34, XK41, XK42, XK43, XK44)
TIME=TIME+DELTA

c
C DETERMINE THE CURRENT PROCESS RESPONSES

c

o000 aooon

ooon

aoo

CA1=CA1+DELTA/6. 0% (XK11+2XXK21+2XXKI1+XK41)
CA2=CA2+DELTA/6. 0% (XK12+2XXK22+2XXK32+XK42)
CAZ=CAZI+DELTA/b6. OX (XK13+2XXK23+2XXKI3+XK43)
ERINT=ERINT+DELTA/6.0X (XK14+2XXK24+2%XXK34+XK44)
I1=I1+1

CA3T(I1)=CA3

IF(TIME.GE.TSBTOP) GO TO 1000

GO TO 100

1000 CONINUE

REAL SYSTEM SIMULATION WITH NOISE USING RUNGA KUTTA

X=NSIM

SET GENERAL VARIABLES

8TD=0.005
STDCA3=STD
CA3SET=0. 1
TCONST=6.5
WRITE (6,0)
FORMAT (1X, *UNIT STEP DISTURBANCE®)
IF(IFIL.EQ.0) THEN N
WRITE (b, 1)
FORMAT (1X, ’NO FILTERING?®)

SET CONSTANTS FOR EXPONENTIAL FILTERING

IF(IFIL.EQ.1) THEN
P=P1(J1)
WRITE(6,2) P
FORMAT (1X, *EXPONENTIAL FILTERING®,1X,"P=",F4,2)

SET CONSTANTS FOR LEAST SQUARES FILTERING

LSFLAG=0
IF(IFIL.EQ.2) THEN
N=N1(J1)
WRITE(&,3) N
FORMAT (1X, *LEAST SAUARES FILTERING®,1X,"N=",I14)



c
C SET
c

C SET

C SET

200

$
c
C DO
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CONSTANTS FOR NONLINEAR EXPONENTIAL FILTERING

IF(IFIL.ER.3) THEN

R=R1(J1)

WRITE(6,4) R

FORMAT (1X,*NL EXPONENTIAL FILTERING®,1X,’R=’,F4,2)
ELSE
ENDIF

CONSTANTS FOR PREFILTERING

I0CC=0
J2=3
I=72(J2)
IFRE=0
TRESP=10.0
IF(IPFIL.EQ.1) THEN
WRITE(6,5) Z
FORMAT(1X,"1 CHART PREFILTERINBG",1X"ZI=",F4,2)
ELSE
ENDIF

CONSTANTS FOR EWMA FILTERING

IEXFFG=0"
IF(IFIL.EQ.4) THEN
ALPHA=A1(J1)
WRITE(4,6) ALPHA
FORMAT (1X,"EWMA FILTERING”, 1X,”ALPHA=",kF4.2)

ELSE
ENDIF
CONSTANTS FOR MAMR FILTERING
MAFLG=0
IF(IFIL.EQ.S) THEN

WRITE(b6,7)

FORMAT (1X, "MAMR FILTERING’)
ELSE
ENDIF
CONSTANTS FOR IMR FILTERING
IMRFLG=0
IF(IFIL.ER.&) THEN

WRITE(6,8)

FORMAT (1X,’ IMR FILTERING")
ELSE
ENDIF

WRIT (&,200) 8TD, TAU, XK, TAUI, XKC, TAUD
FORMAT(1X,’8TD=’,F&6.3,” TAU=’,F4.1," XK=’,F4.1," TAUI=",
F7.3," XKC=",F7.3,” TAUD=",F7.3)

LOOP FOR DIFFERENT SETUPS
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c
C ADD NOISE

c

o000 oooaooago

aooon

INTIALIZE SUMS FOR ESTIMATED AVERAGES, STANDARD
DEVIATIONS AND ERROR TERMS FOR EACH SIMULATION
GIVEN STD OF THE NOISE IS KNOWN

800

400

DO 800 I4=1,NCOUNT
ERR1(I4)=0.0
ERR2(I14)=0.0
CA35(14)=0.0
CA3SAD(I14)=0.0

DO 3000 N2=1,NSIM
LSFLAG=0

10CC=0

IEXPFG=0

IPRE=0O

MAFLG=0

IMRFLG=0

CAD=0.0

I1=1

I=-1

CA1=0.4

CAZ2=0.2

CA3=0.1

FCA3=A3

FC=CAZ

IFLG=7
ERR1(I1)=ERR1(I1)+DARS((CA3-CA3T(I1))/X)
CA3S(I1)=CA38(I1)+CA3
CAISAD(I1)=CA3IBAD(I1)+CA3XXx2.0
TIME=0.0

ERINT=0.0

CAMO=0.8

RCAZ=GGNGF (DSEED) ¥8TD
RCAZ=RCAI+CA3
IF(TIME.GE.5.0) CAD=CADD(J)

FILTER THE OUTPUT

NO FILTERING

IF(IFIL.ER.O) FCA3=RCA3

PREFILTER

IF(IPFIL.ER.1) THEN

ELSE
ENDIF

EXP FILTERING

IF(IFIL.ER@.1) THEN

CALL PREFIL(TIME, 1PRE, 10CC,STDCA3,CA3SET, TRESP,RCAS, Z)
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CALL EXP(P,RCA3,FCA3J)
ELSE
ENDIF

LS FILTERING

IF(IFIL.EQ@.2) THEN
CALL LS(N,LSFLAG,RCA3)

ELSE

ENDIF

NL FILTERING

IF(IFIL.E@.3) THEN

CALL NLEXP(R,STDCA3,RCA3,FCA3)
ELSE
ENDIF

EWMA FILTERING

IF(IFIL.EQR.4) THEN
CALL EWMA(TIME, TCONST, ALPHA, STDCA3, 10CC, IFLG, IEXPFG,
$CA3ISET,RCAZ, FCA3)
ELSE
ENDIF

MAMR FILTERING

IF(IFIL.ER.5) THEN

CALL MAMR(TIME, TCONST,8TDCAJ, 10CC, IFLG, MAFLG, CASBET, RCA3, FCAJ)
ELSE .
ENDIF

IMR FILTERING

IF(IFIL.EQ.6) THEN

CALL IMR(TIME, TCONST,STDCA3, I0CC, IFLG, IMRFLG,CA3ISET,RCA3, FCAJ)
ELSE

ENDIF

DER=(FCA3-FC) /DELTA

IF(IFLGE®.0.AND.IOCC.ER@.0) DER=0Q

FC=FCA3

CALL THE INTEGRATING SUBROUTINE

CALL F2(TIME,CA1,CA2,CA3,ERINT, XK11,XK12, XK13,XK14,DER)

CALL F2(TIME+DELTA/2,CA1+DELTA/2%xXK11,CA2+DELTA/2%XXK12,
$CAS+DELTA/2%XK13,ERINT+DELTA/2xXK14, XK21, XK22, XK23, XK24, DER)
CALL F2(TIME+DELTA/2,CA1+DELTA/2%xXK21,CA2+DELTA/2XXK22,
$CAZ+DELTA/2%XK23, ERINT+DELTA/2XXK24, XK31, XK32, XK33, XK34, DER)
CALL F2(TIME+DELTA,CA1+DELTAXXK31,CAZ2+DELTAXXK32,
$CA3+DELTAXXK33, ERINT+DELTAXXK34, XK41, XK42, XK43, XK44, DER)

INCREMENT TIME
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TIME=TIME+DELTA

DETERMINE THE INTEGRALS

CA1=CA1+ELTA/6.0X (XK11+2xXK21+2XXKI1+XK41)
CAZ=CAZ+DELTA/&4. 0K (XK12+2XXK22+2¥XK32+XK42)
CA3=CAT+DELTA/6. 0Kk (XK13+2XXK2I+2XXK3II+XK43)
ERINT=ERINT+DELTA/6.0% (XK1 4+2XXK24+2XXK34+XK44)
Il=I1+1

TOTAL STATISTICS (FOR ERRORS, AVERAGES, AND 8TD DEV OF CAX
AT EACH TIME T)

ERR1 (I1)=ERR1 (I11)+DABS ((CA3S-CAIT(I1))/X)
CA3S(I1)=CA3IS(I1)+CA3
CAZBAD(I1)=CA3ISAD(I1)+CA3IXX2
IF(TIME.GE.TSTOP) GO TO 3000

GO TO 400

CONTINUE

BDEST=0.0

WRITE (4, 300) CAD,NSIM

FORMAT (1X, ' ¥XXx CAD = *,FB.5," NSIM =*,16)
PRINT ,*  TIME CA3T CA3A 8DE ERR1
$ERR2’

DETERMINE AVERAGE CA3 AND THE ABSOLUTE VALUE OF THE
AVERAGE ERROR AT EACH TIME T

00
600

=

500

650

DO 350 I3=1,NCOUNT

CASA(IZ) =CA3S(I3) /X

ERR2 (I13)=DABSE (CA3A(IZ)-CAIT (I13))

DO S00 13=1,NCOUNT,ITIME

TIME=(I3-1)XDELTA -

IF(NSIM.LE.1) GO TO 900

ZD=CA3SED (I3)-CA3S(I3) xx2/X"

IF(ZD.LE.0.0Q) GO TO 900

SDEST=(ZD/ (X-1)) XX0.3

WRITE (4, 4600) TIME,CA3T(13),CA3A(13),SDEST,ERRL(I3),ERR2(IX)
FORMAT(1X,F5.1,5X,5F10.5)

CONTINUE

TIME=0.0

ERR1IN=0.0

ERR2IN=0,0

1S5=1

CALL F1(TIME,ERR1(I5),ERR2(I5),XK11,XK12)

CALL F1(TIME+DELTA/2,ERR1 (I5)+DELTA/2xXK11,ERR2(IS) +
$DELTA/2%XK12, XK21, XK22)

CALL F1(TIME+DELTA/2,ERR1 (I5)+DELTA/2%XK21,ERR2(IS5) +
SDELTA/2XXK22, XK31, XK32)

CALL F1(TIME+DELTA,ERR1 (I15)+DELTAXXK31,ERR2(I35)+DELTAXXK3Z,
$XK41, XK42)

TIME=TIME+DELTA

IS=15+1

ERR1IN=ERR1 IN+DELTA/&6.0% (XK1 14+2XXK21+2XXKI1+XK41)
ERR2IN=ERR2IN+DELTA/&6. 0Kk (XK12+2XXK22+2%XXK32+XK42)
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I113=113+1

IF(TIME.GE.T8TOP) GO TO 675

GO TO &S0
675 WRITE(6,680) ERRIIN
680 FORMAT(1X,’THE INTEGRAL OF THE AVERAGE OF ABS ERROR =",

$F10.5)

2000 CONTINUE
2001 CONTINUE

2002 CONTINUE
STOP
END
c
C SUBROUTINE FOR RUNGA KUTTA INTEGRATION
c

SUBROUTINE F(X,CA1,CA2,CASZ, ERINT, XK1, XK2, XK3, XK4)
IMPLICIT DOUBLEPRECISIO(A-H,0-2)

DIMENSION B(19,19)

COMMON XKC, TAUI, CAD, TAU, XK, CAM, TAUD, CAMO, B, 10CC, IFLB, FCAS
DER=CA2/TAU~- (1/TAU+XK) XCA3 '
CAM=CAMO+XKCX (0. 1-CAS+ERINT/TAUI-DERXTAUD)

CAO=CAD+CAM

XK1=CAQ/TAU- (1/TAU+XK) XCA1

XK2=CA1/TAU- (1/TAU+XK) XCAZ

XKI=DER
XK4=0,1~CA3
END
c
C SUBROUTINE FOR EXPONENTIAL FILTERING
c
SUBROUTINE EXP(P,RCA3J,FCA3)
IMPLICIT DOUBLEPRECISION(A-H,0-2)
FCAZ=PXFCAJ3+(1.0~P) XRCAZ
END
c
C SUBROUTINE FOR LEAST SQUARES FILTERING
c

SUEROUTINE LS (N,LSFLAB,RCA3)
IMPLICIT DOUBLEPRECISION(A~H,0-Z)
DIMENSION B(1919),CA3(50)
COMMON XKC, TAUI,CAD, TAU, XK, CAM, TAUD, CAMO, B, 10CC, IFLG, FCA3
IF(LSFLAB.GE.1) GO TO 2001
DO 2002 110=1,N

2002 CAZ(110)=FCA3
LSFLAG=1

2001 DO 2003 Iiim=1,N-1

2003 CAZ(I11)=CA3(I11+1)
CAZ (N) =RCAZ
FCA3=0.0
DO 2004 I12=1,N

2004 FCAZ=FCAS+B(I12,N)XCA3(N-I12+1)
END

c

C SUBROUTINE FOR NONLINEAR EXPONENTIAL FILTERING

c

SUBROUTINE NLEXP (R, STDCA3,RCA3,FCA3)
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FCAZ=FCA3+MIN(1.0,ABS ({RCA3-FCA3) / (RXSTDCA3J) ) ) X (RCAI-FCA3J)

END
c
C SUBROUTINE FOR EWMA FILTERING
c
SUBROUTINE EWMA(TIME, TCONST, ALHA, BTDCA3, I0CC, IFLG, IEXPFG, CAISET,
$RCAZ,FCA3)
IMPLICIT DOUEBLEPRECISION(A-H,0-2)
DOUEBLE PRECISION LCL
c
C DETERMINE IF THIS IS THE FIRST TIME TO FILTER. IF 850, DETERMINE
C CONTROL LIMITS FOR THE EWMA CHART
c
IF (IEXPFB.GE.1) GOTO 4000
IFLG=0
IEXPFG=1
C=ALPHA/ (2. 0-ALPHA)
D=DSERT (C)
E=XXSTDCA3IXD
UCL=CAISET+E
LCL=CAZSET-E
EWMAZ=CA3SET
GOTO 4020
c
C DETERMINE IF SUFFICIENT TIME HAS PASBSED SUCH THAT IT IS REASONABLE
C TO ASSUME INDEPENDENCE BETWEEN SAMPLED DATA POINTS
c

4000 IF(TIME.LT.TSET-0.00) GOTO 4010
4020 EWMAZ=ALPHAXRCA3+(1-ALPHA) XEWMA2

TSET=TIME+TCONST

IF ( (EWMAZ.BE.LCL) . AND. (EWMA2.LE.UCL)) THEN

THEREFORE, THE FILTERED OUTPUT WILL

C .
C EWMA CHART IS IN CONTROL3 THEREFORE, THE FILTERED OUTPUT WILL BE
C THE CENTER LINE OF THE EWMA CHART (OR CA3SET)
c
IFLG=0
GOTO 4010
ELSE
c
C EWMA CHART 1S OUT OF CONTROLj
C BE THE CURRENT RCA3
c
IFLG=1
ENDIF

4010 IF(IOCC.E®.1.AND.IFLG.ER.1)
IF(IDOCC.E@.0.AND. IFLG.ER. 1)
IF(IOCC.E®.1.AND. IFLG.ER.0)
IF(IDCC.EQ.0.AND. IFLG.EG. Q)
END

SUBROUTINE FOR MAMR FILTERING

aon

FCA3=RCAJI
FCA3=RCAZ
FCA3I=RCAZ
FCAI=CAJISET

SUBROUTINE MAMR(TIME, TCONST,BTDCAS, IOCC, IFLG, MAFLG, CASBET,

SRCAS, FCA3)

IMPLICIT DOUBLEPRECISION(A-H,0-2)
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5000 IF(TIME.LT.TBET-0.001)
5020 TSET=TIME+TCONST

aoooon

oaoo0oon

DOUBLE PRECISION LCLX

DETERMINE IF THIS WILL BE THE FIRST FILTERED OUTPUT.

IF 80, THE

CONTROL LIMITS FOR THE MA AND MR CHARTS MUST BE DETERMINED

IF (MAFLG.GE.1) GOTO S000
IFLG=0

MAFLG=1
E=(3XxSTDCA3) /BART (2.0)
UCLX=CAJSET+E

LCLX=CA3SET-E

UCLR=(1.128+3%0.853) XSTDCA3

X1=CA3SET
BOTO 5020

Z1=RCA3
XB=(Z1+X1)/2.0
R=DABS(Z1-X1)
X1=2Z1

IF((XB.GE.LCLX).AND.(XB.LE.UCLX)-AND.(R;LE.UCLR))

THE MAMR CHARTS ARE IN CONTROL;j

B80T0O 5010

THEN

THEREFORE THE FILTERED QUTPUT

IS THE CENTER LINE OF THE MA CHART (CA3ISET)

IFLG=0
GOTO 5010
ELSE

THE MAMR CHARTS ARE NOT IN CONTROLj

IS THE CURRENT RCA3

IFLG=1
ENDIF

5010 IF(IOCC.EQ@.1.AND.IFLG.EQ.1)

0o0on

oO0oon

IF(IOCC.EQ.0.AND. IFLG.EQ. 1)
IF(IOCC.EQ. 1.AND. IFLG.ER. Q)
IF(I0CC.EQ@.0.AND. IFLG.EG.O)
END

THEREFORE THE FILTERED OUTPUT

FCA3I=RCAJI
FCA3=RCAZ
FCA3=RCAJ
FCA3=CAISET

SUBOUTINE FOR IMR FILTERING USING AT&T RULES FOR OCC CONDITIONS

SUBROUTINE IMR(TIME, TCONST,STDCAS, 10CC, IFLG, IMRFLG, CA3EET,

#RCAZ,FCA3)
DIMENSION XBAR(8)
INTEGER UPRUN (8) , DNRUN(8)

INTEBER RUNL, TOTRUN, TUPRUN, TDNRUN, ABOVE, BELOW
INTEGER FLAG1,FLAG2,FLAGI,FLAG4,FLAGC

DETERMINE IF THIS I8 FIRST TIME TO FILTER.

IF S0, DETERMINE UCL

AND LCL FOR ICHART AND UCL FOR MR CHART BASED ON KNOWN FARAMETERS

"IF(IMRFLG.GE. 1)
IFLG=0
IMRFLG=1

60 TO 6000
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UP1S1G=CAISET+STDCA3
UP2SIG=CAZISET+2XSTDCA3
UP3S1G=CAISET+3XSTDCA3
DN1SIG=CAZSET~-BTDAZ
DN28IG=CAISET-2XSTDCAJ
DNISIG=CAISET-3I*STDCA3
UCLR=(1.128+3%0.853) xSTDCA3
X=CA3BET
DO 6010 I10=1,8
UFPRUN(I10)=0.0
DNRUN(I10)=0.0

c

C CHECK MOST CURRENT 8 POINT8 FOR STATISTICAL CONTROL

c

6010 XBAR(I10)=CA3BET
GOTO 6020

DO NOT ATTEMPT TO FILTER IF DATA INDEFENDENCE CANNOT BE
REASONBLY ASSUMED

ooo0oo

6000 IF(TIME.LT.TSET-0.001) GBOTO 6030
DETERMINE NEXT SAMPLE POINT FOR FILTERING
6020 TSET=TCONST+TIME

DO THE IMR FILTERING USING AT&T RUNS RULE

o000 _ o000

XBAR (B8)=RCAJ
FLAG1=0
FLAGZ=0
FLAGI=0
FLAG3=0
FLAG4=0
FLAGC=0
e
C CHECK RANGES AND DETERMINE THE NUMBER OF POINTS QUALIFYING IN THE
C COUNT FOR 4/35 RULE
c
2000 DO 2030 1I1i=1,8
IF(I11.LE.1) R=ABS(XBAR(I11)-X)
IF(I11.6T.1) R=ABS(XBAR(I11)-XBAR(I1i-1))
UFRUN(I11)=0
DNRUN(I11)=0
IF(R.GT.UCLR) GOTO 7000
IF(XBAR(I11).6T.UP1SIG) UPRUN(I11)=1i
IF(XBAR(I11).LT.DN1SIG) DNRUN(I11)={
2050 CONTINUE )

c
C CHECK RULE 1, OLDEST DATA POINT
c
IF(XBAR(1) .BT.UP3SIG.0R. XBAR(1) .LT.DN3SIB) THEN
FLAGL=1
GOTO 7000

ENDIF
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CHECK RULE 1 FOR XBAR(2) AND RULE 2 FOR BARS(1,2)

IF (XBAR(2) .GT.UP3SIG.0R. XBAR(2) .LT.DN3ZSIG) FLAB1=1
IF(XBAR(2) .GT.UP2SIG.AND. XBAR(1) .GT.UP2SIG) FLAGZ2=1
IF(XBAR(2) .LT.DN28I1G.AND. XBAR(1) .LT.DN2SIG) FLAG2=1
IF (FLAG1.ER.1.0R.FLAG2.ER. 1) GOTO 7000

CHECK RULE 1 FOR XBAR(3) AND RULE 2 FOR XBARB(1,3;2,3)

IF(XBAR(3) .GT.UP3SIG.0R. XBAR(3) .LT.DN3ISIG) FLAGL=1
IF (XBAR(3) .BT.UP2SIG. AND. XBAR(2) .GT.UP28SIB) FLAG2=1
IF (XBAR(3) .LT.DN25IG. AND. XBAR(2) .LT.DN2SIG) FLAG2=1
IF (XBAR(3) .GT.UP2S16.AND. XBAR(1) .GT.UP2SIG) FLABZ2=1
IF(XBAR(3) ,LT.D25I6B.AND.XBAR(1) .LT.DN2SIG) FLAG2=1
IF(FLAG1.EQ.1.0R.FLAG2.EQ. 1) BGOTO 7000

CHECK RULE 1 FOR XBAR(4), RULE 2 FOR XBARS(2,43;3,4) AND RULE 3 FOR
XBARS (1,2, 3, %4) :

IF(XBAR(4) .BT.UF38IG.0R. XBAR(4) .LT.DN3ISIG) FLAGLi=1
IF (XBAR(4) .GT.UP2S1G.AND. XBAR(3) .GT.UP28IG) FLAG2=1
IF (XBAR(4) .LT.DN2SIG.AND. XBAR (3) .LT.DN28IGB) FLAG2=1
IF (XBAR(4) .GT.UP2SIG.AND. XBAR(2) .GT.UP25IB) FLAGZ=1
IF(XBAR(4) .LT.DN2SIG. AND. XBAR (2) .LT.DN28IG) FLAG2=1
TUPRUN=UPRUN (1) +UPRUN (2) +UPRUN (3) +UPRUN (4)
TDNRUN=DNRUN (1) +DNRUN (2) +DNRUN (3) +DNRUN (4)

IF (TUFPRUN.GE. 4.0R. TDNRUN.GE. 4) FLAG3=1
FLABC=FLAG1+FLAG2+FLAG3 : ‘

IF(FLABC.GBT.0) GOTQ 7000

CHECK RULE 1 FOR XBAR(S), RULE 2 FOR XBARS(3,5;4,5) AND RULE I FOR
XBARS(1,2,3, 4, %3) -

IF (XBAR(S) .GT.UF3ISIG.0R. XBAR(S) .LT.DNISIG) FLAGL=1
IF (XBAR(S) .GT.UP2S1G. AND. XBAR (4) . GT.UP28IG) FLAGZ2=1
IF (XBAR(S) .LT.DN2SIG. AND. XBAR (4) .LT.DN2SIG) FLAG2=1
IF (XBAR(S) .GT.UP2SIG.AND. XBAR(3) .GT.UP2SIB) FLAGZ2=1
IF (XBAR(S) .LT.DNZ2SIG. AND. XBAR(3) .LT.DN2SIG) FLAGZ2=1
TUFRUN=UPRUN (1) +UPRUN (2) +UPRUN (3) +UPRUN (4) +UPRUN (3)
TDNRUN=DNRUN (1) +DNRUN (2) +DNRUN (3) +DNRUN (4) +DNRUN (3}
IF (TUPRUN,GE.4.0R. TDNRUN.GE. 4) FLAG3I=1
FLAGC=FLAG1+FLAG2+FLAG3

IF(FLAGC.GT.0) BGOTO 7000

CHECK RULE 1 FOR XBAR(&), RULE 2 FOR XBARS(4,46)5,56) AND RULE 3 FOR
XBARS (2,3, 4,5, %6)

IF(XBAR(4) .BT.UP3ISIG.OR. XBAR(6) .LT.DNISIG) FLAGL=1
IF (XBAR (&) .GT.UF2SIG.AND. XBAR(3) .GT.UP2SIB) FLAGZ=1
IF (XBAR(6) .LT.DN251G. AND. XBAR(T) .LT.DN2SIG) FLAG2=1
IF (XBAR (6) .GT.UP2S168.AND. XBAR(4) .GT.UP2SIG) FLAG2=1
IF (XBAR(6). LT.DN25IG. AND. XBAR(4) .LT.DN2SIG) FLAG2=1
TUPRUN=UPRUN (2) +UPRUN (3) +UPRUN (4) +UPRUN (5) +UPRUN (&)
TDNRUN=DNRUN (2) +DNRUN (3) +DNRUN (4) +DNRUN (5) +DNRUN (&)
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IF(TUPRUN.GE.4.0R. TDNRUN.GE. 4) FLAG3=1
FLAGC=FLAG1+FLAG2+FLAG3
IF(FLAGC.GT.0) 6GOTO 7000

CHECK RULE 1 FOR XBAR(7), RULE 2 FOR XBARS(S5,7;6,7) AND RULE 3 FOR
XBARS (3, 4,5, 6,%7)

IF (XBAR(7) .GT.UP3SIG.0R. XBAR(7) .LT.DN3ISIG) FLAG1=1
IF (XBAR(7) .GT.UP251G. AND. XBAR(6) .GT.UP281IG) FLAGZ=1
IF(XBAR(7) .LT.DN2SIG.AND. XBAR (&) .LT.DN2SIG) FLAGZ2=1
IF (XBAR(7) .GT.UP2SIG.AND. XBAR(S) .GT.UP281I6) FLAG2=1
IF(XBAR(7) .LT.DN2SIG. AND.XBAR(S) .LT.DN2EIG) FLAG2=1
TUPRUN=UFRUN (3) +UPRUN (4) +UFRUN (5) +UFRUN (&) +UPRUN (7)
TDNRUN=DNRUN (3) +DNRUN (4) +DNRUN (5) +DNRUN (&) +DNRUN (7)
IF (TUFRUN.GE.4.0R. TDNRUN.GE.4) FLAG3=1
FLAGC=FLAG1+FLAG2+FLAG3

IF (FLAGC.GT.0) GOTO 7000

CHECK RULE 1 FOR XBAR(8), RULE 2 FOR XBARS(4,837,8), RULE I FOR
XBARS(3,4,5,6,7,%8) AND RULE 4 FOR ALL XBARS

IF (XBAR(8) .6T.UP3516G.0R. XBAR(B) .LT.DN3ISIG) FLAG1=1
IF(XBAR(8) .GT.UP25IG. AND. XBAR(7) .GT.UP2SIG) FLAG2=1
IF (XBAR(B) ,LT,.DN25S1G.AND. XBAR(7) .LT.DN2SIG) FLAG2=1
IF(XBAR(8) .BT.UP251G.AND. XBAR (&) .GT.UP2SIG) FLAG2=1
IF (XBAR(B) .L.T.DN2SIG.AND. XBAR (&) .LT.DN2BIG) FLAG2=1
TUPRUN=UPRUN (4) +UPRUN (5) +UPRUN (&) +UPRUN (7) +UPRUN (8)
TDNRUN=DNRUN (4) +DNRUN (5) +DNRUN (&) +DNRUN (7) +DNRUN (8)
IF (TUPRUN.GE.4.0R. TDNUN.GE. 4) FLAG3=1

CHECKING FOR RULE 4

AROVE=0 -

BELOW=0

DO 4000 Ki1=1,8

IF (XBAR (K1) .GT.CAJSET) ABOVE=ABOVE+1
IF(XBAR(K1) .LT.CA3SET) BELOW=BELOW+1
IF (ABROVE.GE.B.OR.BELOW.GE.8) FLAG4=1
FLAGC=FLAG1+FLAG2+FLAG3I+FLAG4
IF(FLAGC.GT.0) GOTO 7000

THIS POINT, NO OCC CONDITION- IS FOUND; THEREFDRE,THE FILTERED

OUTPUT IS SIMPLY THE CENTER LINE OF THE I CHART (OR CA3JSET)

IFLG=0
X=XBAR(1)
DO 6001 L=1,7

SHIFT THE STACK OF XBARS TO PREPARE FOR NEXT ANALYSIS

XEBAR (L) =XBAR(L+1)
CONTINUE
GOTO 6030

C 0OO0C CONDITION WAS FOUND3 THEREFORE, THE FILTERED OUTFUT WILL EE



C THE AVERAGE OF THE XBAR’S HELD IN THE XBAR ARRAY

c

c

C BHIFT THE STACK OF XBARS TO FPREPARE FOR NEXT ANALYSIS

c

7000 ZBAR=0.0

IFLG=1
DO 7001 K2=1,8

7001 ZBAR=XBAR(K2)+ZBAR

ZBAR=ZBAR/B
X=XBAR (1)

DO 7002 Li=1,7
XBAR (L1)=XBAR(L1+1)

7002 CONTINUE
6030 IF(IOCC.E@.1.AND.IFLB.ER.1) FCA3=RCA3

c

IF(IOCC.EQ.O0.AND. IFLG.ER.1) FCA3=RCA3
IF(IOCC.EQ.1.AND. IFLG.ER.0) FCA3I=RCA3
IF(IOCC.EQ.Q.AND.IFLG.EQ@.QO) FCA3I=CA3SET
END

C SECOND RUNGA KUTTA INTEGRATION ROUTINE

c

c

SUBROUTINE F1(X,ERR1,ERR2, XK1, XK2)
IMPLICIT DOUBLEPRECISION(A-H,0-2)
XK1=ERR1

XK2=ERR2

END

C SUBROUTINE FOR ICHART PREFILTERING

c

ooaon

SUBROUTINE' PREFIL(TIME, IPRE, I0CC, STDCAZ,CA3ISET, TRESF,

$RCA3, Z)
IMPLICIT DOUBLEPRECISION(A~H,0-Z)
DOUBLE PRECISION LCLI
IF(IFPRE.ER.0) THEN
10CC=0
IPRE=1
T=0.0
UCLI=CAZSET+Z%8TDCAZ
LCLI=CA3SET-Zx*STDCA3
ELSE
ENDIF
IF(TIME.LT.T~-0.001) GO 7O 15
IF(RCAZ.GT.UCLI.OR.RCA3.LT.LCLI) THEN
I10CC=1
T=TIME+TRESP
ELSE
10CC=0
ENDIF
END

THIRD RUNGA KUTTA ROUTINE FOR SYSTEM WHEN USING
FILTERED FEEDBACK

SUBROUTINE F2(X,CA1,CA2,CA3,ERINT,XKl,XKZ,XK3.XK4.DER)
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IMFLICIT DOUBLEPRECISION(A-H,0-Z)
DIMENSION B(19,19)

COMMON XKC, TAUI,CAD, TAU, XK, CAM, TAUD, CAMO, B, IOCC, IFLG, FCA3

CAM=CAMO+XKC% (0. 1-FCA3+ERINT/TAUI-DERXTAUD)
CAO=CAD+CAM

XK1=CA0/TAU-(1/TAU+XK) XCA1
XK2=CAl/TAU-(1/TAU+XK) ¥CA2
XKZ=CA2/TAU-(1/TAU+XK) XCA3

XK4=0.1-FCA3

END
c
c END OF SYSTEM
c

//%0.FTO6F001 DD DSN=U1222A.FINAL1.0UTLIST,DISP=(0OLD,KEEF),
//G0.FTOLFOQO1 DD DSN=U12522A.CD00.0UTLIST,DISP=(NEW,CATLG),
// UNIT=8TORAGE, SPACE=(9044, (60,60),RLSE),

7/ DCB=(RECFM=FBA, LRECL=133, BLKSIZE=9044)

//G0.SYSIN DD X

1.814,2.0,0.5,37.647,60.0,0.453, 100

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0.0.0,0,0,0,0.0.0,0.,0,0,0,0,0,0,0,0

0.83333,0. 3333, -0.16666,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0.6,0.4,0.2,0.0,-0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0.46428,0.35714,0.25,0.14285,0.03571,-0.07142,-0. 17857
0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0
0.37777,0.31111,0.24444,0.17777,0.11111,0.04444,-0.02222
~0. 08888, -0. 15555, 0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0.31818,0.27272,0.22727,0.18181,0. 13636, 0, 0909, 0. 04545,0.0
-0.04545, -0. 0909, ~0. 13636,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0.,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0.24166,0.21666,0.19166,0, 16666,0.14166,0.11666,0.09166,0, 0666
0.04166,0.01666,-0.00833, -0. 03333, -0. 05833, -0. 08333, -0. 10833
0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0.19473,0.17894,.16315,0,14734,0.13157,0.11578,0.1,0.08421
0.06842,0,05263,0.03684, 0. 02105, 0. 00526, -0.01052, -0, 02631
-0.04210, -0, 05789, 0. 07368, 0. 08947

1,0,1

1,0,1

1,0,5

1,0,5

2,0,1

2.0,1

2,0,3

2,0,3

3,0,1

3,0,1
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