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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Virtually everyone in American Industry today agrees 

that consistent high quality is an essential ingredient. and 

possibly the single most important performance measure 

associated with manufacturing. 

Manufacturing processes may be split into two distinct 

categories. The first is production of discre~e components 

such as electronic parts~ automobiles, bolts and in general~ 

things which may be counted. Statistical process control 

CSPC) is now being used extensively throughout these 

industries extensively. Research results spanning 

approximately 60 years support this effort. 

The second category~ quite different from the first, is 

continuous flow processing (production of chemicals, 

petroleum products, synthetic rubber, etc.). Product from 

such a process is observed as a continuous stream measured 

on a continuous scale such as pounds, gallons, tank cars, 

and so on. The application of SPC in the continuous flow 

processes is relatively-new. This effort has been seriously 

pursued for only about five years. 

I 
~ 

The SPC tools used so 



frequently for discrete processes are virtually useless or 

misleading for continuous processes. 

In continuous flow processes~ conventional computer 

process control <CCPC> is used extensively. With CCPC~ 

sensors are u~ed to monitor inputs and outputs, supplying 

data to a process control co~puter at short intervals of 

time. Virtually all such data is autocorrelated; that is. 

the time series of data sampled has a high correlation from 

one data value to the next. Every minor shift in a process 

output measure is treated as having intrinsic value~ 

resulting in shifts being made to process inputs as directed 

through the use of a complex control model. A common result 

of CCPC has been trending or cycling and overcontrol 

(overcompensation)~ resulting in a product that is 

inconsistent. 

On the contrary, SPC requires that independent data be 

used. As long as sample results are within prescribed 

statistical bands, called control limits~ process variations 

are observed only as noise~ and only when non-random 

patterns are witnessed on a control chart, is action taken. 

Therefore, there exists a serious incompatibility between 

CCPC and SPC. Specifically, this is due to the emergence o+ 

overcontrol of a process as a result of using CCPC and the 

lack of independence between sample observations~ or the 

existence of autocorrelated data. 

This research presents the first application of 

statistical process control within the realm of control 



systems. Additionally~ an evaluation of the quality Ca 

measure of the size of variation around a target value) of a 

control scheme utilizing various filtering methods is 

presented. 

Conventional Computer Process Control 

Feedback Control is an important technique used in 

process control. It involves measuring a response 

associated with the process output~ comparing it to a target 

value <set point>, and adjusting a final control element 

(e.g. - control valve) in an attempt to keep the output 

variable equal to a given target value. The implementation 

requires that the process output be sampled at discrete 

points in time and the data collected be transmitted to the 

computer for the appropriate action of the final control 

element. Thus~ the computer provides the decision ~aking 

for the control loop. 

The difference between the observed process output over 

time (c(t)) and the desired target value CrCt)) is known as 

the error signal~ eCt>; therefore~ the equation that 

describes the error signal is as follows: 

eCt) =ret> - c<t> 

It is the objective of any manufactur~ng process to 

maintain this error signal at zero. This objective is 

achieved by implementing a control sch~me which algorith-



mically evaluates the error of the orocess and sends a 

messaqe/decision to the final control element. Consider the 

following block d1agram: 

Process 
Controller 

+ 
r (t) e(t) Control m<t> Final ! c ( t) 

Scheme Control 
- f (. ) ! Element 

where: r(t) = Process Setpoint 
e(t) = Error Signal 
m(t) = Output of process 

controller or input to 
the final control element 

Figure 1-1. 

c(t) = Process Output 

Block Diagram of an Automatically Controlled 
Process 

From Figure 1-1 above~ we see that the relationship between 

m(t). the output of the controller. and the error signal 1s 

as follows: 

m(t) = f(r(t)- c(t)) 

= f(e(t)) 

This function f(·) can take on a variety of forms depending 

on the response desired to a given process output 

disturbance. There are three fundamental forms for f(·), 



commonly known as controller actions. that are utilized 

within industry. They are referred to as: (see Coughanowr 

and Koppel~ 1965; Smith and Corripio. 1985) 

(1) Proportional Controller CPJ 

(2) Proportional-Integral Controller CPil 

C3) Proportional-Integral-Derivative Controller CPID) 

The first controller action~ Proportional Controller. is 

described by the following equation: 

m(t) = m + Kc<rCt) - c(t)) 

where: Kc = Controller Gain, Constant 

m = Bias Value, the output from the 
controller when the error is zero. 

The primary disadvantage of the Proportional Controller 

is that once the system has reached steady state follow1ng a 

disturbance to the system~ an offset or steady state error 

will exist. 

In order to combat the existence of the steady state 

offset, a second action is introduced. Specifically~ the 

integral action is combined with the proportional action to 

eliminate the steady state offset. The mathematical 

relationship between the controller output and the error 

signal for the PI controller is as follows: 

m<t> = m + Kc[r(t) - c(t)J + t~ f [r(t) - c\t)Jdt 
Tx J 



= m + l<c:e(t) + b.s:. r e(t)dt 
'rx J 

where: 'rx = parameter associated with the integral action 
of the controller \preset and constant) 

In so far as there exists a non-zero error signal, the 

output of the controller will continue to change until the 

steady state error is zero. The primary weakness of the PI 

controller is that the combined proportional and integral 

actions have no ability to anticipate where the process is 

heading since the time rate of change of the error is not 

known. Hence~ the derivative action is added to the 

mathematical relationship describing the output of the 

controller. This relationship~ constituting the PID 

controller is shown below: 

m < t) = m + l<c::e ( t) + ~;s: 

'1"-t. J e ( t ) d t + I< c: '\" c cl.§! ... tt .. t. 
rjt 

where: 'l"c = parameter associated with the derivative action 
of the controller (preset and constant) 

f..JJJ;_~E.r.:J .. n9 ...... £!Jg_g_r.:..t:!;.h.m2. 

Within the control loop of a given process, transient 

variations may arise. These variations may be caused by 

noisy transmitters/receivers, unstable movement of the 

output variable being monitored~ noisy transmission (i.e. 

interference), etc. These variations are typically at a 

much higher frequency than the variation of the process 

itself. This high frequency variation is called noise. 

Filters are introduced into the control loop in an 

attempt to reject the noise component of the process output 



signal; therefore~ the objective of a filter is to accept 

the "true" process signal and reject the noise. Noise 

rejection requires the additional expense of signal 

distortion (i.e. -Phase Lag). If the noise component is 

not rejected~ excessive final control element activity will 

result. 

The three standard types of filters that will be 

utilized in this research will be: (1) The E}~ponential 

Filter, (2) The Least Squares Filter, and C3) The Non-Linear 

Exponential Filter. 

In many control loops, the phase lag between an 

input change and the corre~ted process output is too long. 

The reasons for this excessive lag or sluggish operation of 

th~ primary control loop is due to the large number of 

components <each with their own lag) placed in series. 

Consider the block diagram shown in Figure 1-? 

The objective of the control loop is to maintain To at 

a given set point. In Figure 1-2~ many components are 

placed serially; therefore, the phase lag may be excessive. 

TH is the variable used to control To. If an additional 

controller is placed in the loop to compare TH to a set 

point as determined by the primary control loop~ we would 

reduce the phase lag. Consider the modified block diagram 

shown below in Figure 1-3. 



Set Point 

'------------ilrransili tter d,._· ------------

Receiver ! 

Figure 1-2. Block Diagram of a Typical Feedback Control 
Loop 

Set 

Secondarv 
Transmitter; 
Receiver 

Pril!arv 
'------------1 Transmitter j 

Recetver 

IJn[DntrDlled 
Variable 

+ 

Figure 1-3. Cascaded Control Scheme 

It was shown by Smith and Corripio (1985) that the 



cascaded control scheme. as shown above in Figure 1-3, can 

dramatically reduce process phase lag. Although this type 

of control appears to be appealing, the secondary loop must 

be faster than the primary loop <Smith and Corripio, 1985). 

Control Charts for Continuous Processes 

The samples collected from a continuous type process 

must be based on a single observation~ and the time between 

successive observations/samples must be large enough to 

support the assumption of independence between samples. The 

techniques developed to control such processes are as 

follows: 

<1> Exponentially Weighted Moving Average Charts 

<2> Moving Average and Moving Range Charts 

(3) Individual and Moving Range Charts 

The objective of the control chart as applied to a 

continuous (or discrete) type process. is to statistically 

evaluate the presently observed noise by making inference 

about the process from a sample collected at a specific 

point in time. 

The Exponentially Weighted Moving Average CEWMA> has 



been classified as a method for establishing real time 

dynamic control <Hunter~ 1986}. When the EWMA is employed 

as a control chart technique~ it is assumed that the 

individual observations are independent and normally 

distributed. 

l0 

The EWMA is a statistic with the characteristic that it 

gives less weight to individual data as they get older. A 

plotted point on an EWMA chart can be given a long memory or 

a short memory (depending on the age of the observations 

included in the EWMA>. 

The EWMA may be viewed as a way to forecast the next 

observation and may be graphed simultaneously with data 

appearing on an individuals chart. The EWMA equals the 

present predicted value plus a times the present observed 

error (observed value minus the previous forecasted value) 

where a=[O~lJ. The smaller the value of a the greater the 

influence of the historical data. 

The control limits of the EWMA charts are based on the 

same prem~se as other control charts. That is, the upper 

and lower control limits are placed at ± 3wEwMA from the 

process average. As in the application of the moving 

average chart~ if the current EWMA is greater than the UCL 

or lower than the LCL~ it is usually concluded that the 

process is not in a state of statistical control and an 

assignable cause exists. 
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Moving ave~ages a~e fo~med f~om a time se~ies of 

individual measu~ements by finding the a~ithmetic mean of 

the fi~st n consecutive values and subsequently d~opping the 

oldest value and adding the newest value to fo~m each 

successive mean. Once a moving ave~age is dete~mined, it is 

plotted and compa~ed to p~edete~mined cont~ol limits. The 

cont~ol limits a~e placed at ± 3~xeAR f~om the p~ocess 

ave~ age. If the p~esently obse~ved moving ave~age is less 

than the lowe~ cont~ol limit <LCLJ o~ g~eate~ than the uppe~ 

cont~ol limit <UCL), it is usually concluded that the 

p~ocess is not in a state of statistical cont~ol, and a 

special cause exists. The moving ave~age cha~t p~ovides the 

use~ with the ability to d~aw infe~ence ~ega~ding the 

p~esent p~ocess ave~age. 

The moving ~ange cha~t is utilized concu~~entlv with 

the moving ave~age cha~t. The moving ~ange is dete~mined by 

calculating the ~ange of the fi~st n consecutive values from 

a time series of individual measu~ements. The moving ~ange, 

like the moving ave~age, is dete~mined each time a new 

obse~vation is collected by including the newest obse~vat1on 

and d~opping the oldest. The moving ~ange is an estimate of 

present process variation, and as new moving ~anges a~e 

determined, the user determines if there has been a 

significant change in the process va~iation by comparing 

each moving ~ange to the p~edetermined uppe~ and lower 

cont~ol limits. 
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Individuals charts are based on the same principle as 

most all other control charts. Individual measurements are 

plotted and compared to predetermined control limits. The 

UCL and LCL are placed at ± 3~ from .the process average. 

The moving range chart is employed as previously described. 

Additionally~ the sensitivity of the Individuals chart to 

shifts in the process average is improved by utilizing 

various runs rules (AT&T Technologies~ 1985). 

Summary of Research Objectives 

Based on the preceding discussion~ the objective of 

this research is as follows: 

OI:;IJ ... ~.£ti V!E._ 

To apply statistical process control within the realm 

of control systems and to evaluate the quality of a 

control scheme when utilizing various SPC and 

conventional filtering methods. 

This objective above is reached by achieving the 

following subobjectives: 

Sub9bje~t~.Ve.§. 

1. By designing a set of statistical process control 

tools and procedures that are applicable as 

filtering devices within a control loop. 



2. By establishing a single loop control scheme <PID) 

with known parameters which represents a real 

application. The use of a secondary loop or 

cascaded scheme is considered and evaluated in the 

research. 

3. By developing analytic and simulation models for 

the control scheme discussed in 2. with no process 

noise included. The simulation is developed on 

the main frame computer utilizing FORTRAN. 

4. By evaluating the quality of the output of the 

control system, discussed above in 2. and 3., 

utilizing the following conventional filtering 

methods when noise is added to the system: 

a. Exponential Filter 

b. Least Squares Filter 

c. Non-Linear Exponential Filter 

The measure of performance that is used in the 

evaluation of quality is proportional to the 

amount of variation of the output about a target 

value. 

5. By evaluating the quality of the output of the 

control system, discussed above in 2. and 

utilizing the previously described set of 

statistical process control tools and procedures 

as statistically based filtering methods when 

noise is added to the system. The following list 



represents the techniques from which the set 

evolved: 

a. Exponentially Weighted Moving Average 
Charts 

b. Moving Average/Moving Range Charts 

c. Individuals/Moving Range Charts 

The measure of performance that is used in the 

14 

evaluation of quality will be proportional to the 

amount of variation of the output about a target 

value. 

6. Based on the analyses in 4. and 5. above~ 

comparisons of the six filtering methods were 

made. 

Contribution 

The combination of statistical process control 

techniques and classical control systems theory represents 

the foundation on which many years of research mav result. 

This study will be the first of its kind. Successful 

completion will not only meet the objectives described in 

the preceding section~ but it will also provide an excellent 

indicator of the future direction. Additionally, the 

evaluation of the improvement of quality as a function of 

the filtering methods deployed is of primary interest to 

American manufacturing. 

In many respects~ this research provides a starting 

point from which Industrial Engineers may become 

fundamentally involved in control systems theory. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter provides a review of the development of 

research relevant to the objectives of this research. 

Statistical Process Control <SPC) and Conventional Computer 

Process Control <CCPC> have evolved as integral parts of 

manufacturing. These two tools have evolved separately. 

with little, or no interaction. Due to the independent 

development of these fields of research, little literature 

exists which utilize SPC within CCPC or visa versa. 

Therefore, this chapter is divided into three main sectxons. 

<1> Statistical Process Control 

(2) Statistical Process Control of Continuous Processes 

(3) Digital Signal Processing/Filtering 

Included in the first section will be a brief overview 

of the history of statistical process control techniques. 

Following that discussion, SPC techniques utilized in 

continuous processes will be highlighted. The concluding 

section will provide a brief overview of the more common 

filtering techniques utilized in the coritinuous process 

industry. 

15 



Statistical Process Control 

Statistical Process Control as used in this discussi£ 

refers to the use of statistical techniques as tools to 

monitor the performance/variability given process. The 

primary resource used today is the control chart. Walter 

Shewart introduced the concept of quality control charts 

1924 <Shewart~ 1926). 

advances have evolved. 

Over the past sixty years many 

Statistical process control provic 5 

manufacturing with the ability to anticipate and/or ident: v 

process changes before adverse effects results <Bingham. 

1957). 

Control charts are based on the premise that regardlt 5 

of how well a process designed or maintained~ a certain 

amount of inherent or natural variability will always exi~ 

<Montgomery~ 1985). As discussed in the preceding chapter 

the limits of a control· chart are based on this natural 

variability of a given process. Additionally~ runs rules 

have been developed or recommended to improve the control 

charts ability to detect small shifts in the process averc 2 

<see~ Weiler, 1953). 

The primary performance measure of the control chart· 

ability to detect changes in a process is called the Aver~ ~ 

Run Length <ARL) or Mean Action Time <MAT>. The ARL or 1"1f. 

is the average number of samples required to detect a givE 

shift in a process. In Page <1955) and Page (1962)~ ARL"E 

were considered for control charts utilizing one of four 

rules. Roberts <1958) proposes that if standard control 
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chart tests are supplemented with another zone test. the 

sensitivity to process changes is improved while the number 

of type I errors increase. Weindling, Littauer, and Tiago 

de Ouveria <1970) determined the MAT for XBAR charts usinq 

runs rule and one point beyond control limits for out of 

control conditions. Wheeler \1983) attempted to determine 

the power function <inverse of the ARL> for the XBAR chart 

using AT&T rules while Champ and Woodall (19871 developed a 

method to determine exact ARL's for Shewart control charts 

using many different runs rules. It is shown that 

supplementary runs rules cause the Shewart charts <xbar 

charts) to be more sensitive to small shifts in the mean. 

but they are not as sensitive as cumulative sum charts 

<Champ and Woodall. 1987). 

In a survey of 173 firms <Saniga and Shirland~ 1977) ...... 
1 L 

is shown that Shewhart's original control charts (the Xbar. 

R~ Sigma~ p, c, and u charts)~ see Shewart \1931), are most 

frequently used by industry. The moving average chart is 

the second most frequently used in industry~ while the 

individuals chart is one of the more frequently used control 

chart techniques other than those originally listed in the 

questionnaire. 

Statistical Process Control of 

Continuous Processes 

The data obtained from well mixed vessels in a continu-



ous flow process is different than data collected from 

discrete manufacturing processes. The data from continuous 

flow processes are often interdependent resulting in 

autocorrelated date <Brooks and Case,1987J. Statistical 

process control emerged as useful tools in the petroleum 

industry <Walter~ 1955)~ the chemical industry (Bingham. 

1957; Bingham, 1958), and the steel tndustry (Occcasione, 

1956). As SPC progressed in its application to the 

continuous flow process additional tools were 

utilized/developed. 

Correlation analysis was used in a chemical orocess for 

changeover efficiency (Hinchen, 1956}. Freund \ 1960) 

recommended the use of acceptance control charts in 

continuous flow processes. The use of exponentially 

smoothed data in control charts is recommended by Wortham 

<1972). Individuals and moving range charts are often used 

in continuous flow processes <Montgomery, 1985). Juran 

(1974) recommends the use of moving average and ranges for 

continuous processes. 

The assumption of each control chart technique is that 

each sampled value is statistically independent. 

Unfortunately, statistical independence between samole data 

points may or may not be valid. Vasilopoulos and Stamboults 

<1978> modify existing control limits to account for the 

interdependence of sampled values. They assumed an 

autoregressive process <AR(2)) and determine appropriate 

limits. Additionally, samples can be spread far enough 



apart in time such that one can reasonably assume 

independence. Brooks and Case (1987> provide a procedure 

for checking data independence and three methods for dealtng 

with autocorrelated data <specifically, avoidance, compen

sation~ and control limit adjustment). 

It is shown in Neuhardt <1987J that the effect of 

correlated measurements within the subgroups of an XBAR 

chart cause an increase the Tvpe I error rate. 

E;.~ . .P.9..D..~.!J..t..! .. §;ll_J_Y._ ... W§.! . .! .. 9.h.tg~:;L .. M9Y.!.D9 .... 6.Y~.r.:.~.9.~. 
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Exponentially Weighted Moving Average <EWMA> Control 

charts or geometrically movtng average control charts have 

emerged since the late fifties <see~ Roberts~ 1959; Muth, 

1960; Freund, 1962; Roberts. 1966). Robtnson and Ho (1978) 

present a numerical procedure for the tabulation of ARL"s 

for the geometric moving average chart. Huntet- ~ 1986j 

points out that the EWMA can be thought of as a compromise 

between the Shewhart XBAR chart and the cumulative sum 

chart. Runs rules are not utilized since the EWMA provides 

a formal use of historical data. 

Crowder <1987) proposed the exact average run lengths 

and the standard deviation of the run lengths for the EWMA 

chart assuming normal observations. The value obtained were 

consistent with those obtained by Roberts <1?59) and 

Robinson and Ho (1978>. Ng <1987) develops the control 

limits and necessary factors for four control charts for 



EWI"lA's. Specifically~ control charts for sample means. 

sample ranges, individual measurements~ and moving ranges 

were developed. MAT's for each chart are determined for 

each chart through the use of computer simulations. Each 

are compared to the appropriate XBAR, R, Individuals, or 

Moving Range Chart. It is concluded in Ng (1987) that the 

MAT for the EWMA for individuals is better than the 

individuals chart and the EWMA for moving ranges is better 

than the moving range chart. Sweet (1986) presents 

equations governing the construction of control charts for 

both the mean and the standard deviation or var1ance of a 

process using exponentially weighted averages. 

Gibra <1975) states that the moving average and 

moving range charts are useful in situations where the time 

required to measure a certain quality characteristic is so 

great that repeated observations cannot be considered or the 

observations become available at a rate so slow that is may 

not be feasible or possible to form a rational subgroup. 

The plotted points are not independent. The use of the 

moving average has the effect of reducing the noise of the 

system. Successive moving averages of n values have n-1 

values in common. Nelson <1983) concludes that the moving 

averages are therefore positively correlated and the 

correlation increases with n. A sequence of moving averages 



will fo~m an oscillato~y se~ies. Robe~ts (1959) gene~ateo 

tabulated ARL's for the moving ave~age cha~t. 
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Individuals charts are useful when it is ne1the~ easy 

no~ desi~able to form rational subgroups <Grant and Leaven-

worth, 1980; Montgomery~ 1985). In Nelson (19821, it is 

stated that the moving range of two minimizes the inflation

ary effects on the variability caused by trends and oscilla

tions that may be present, since it measures variations f~om 

point to point irrespective of their average level. The 

control cha~t for individuals provides the fastest feedback 

of information and the assumption of normality is most 

critical. 

Crowder C1987> p~ovides a numerical procedure for the 

tabulation of the ARL for an individuals chart in combina-

tion with a moving range chart. Ng \1987>, provides 

simulated data to determine the MAT. In both cases, runs 

rules were not included. Champ and Woodall <1987) p~ovide 

ARL's for the XBAR chart including runs rules. 

Digital Signal Processing 

Digital computers are increasingly being used to 

perform varied signal processing functions originally 

achieved with analog equipment. These applications vary 

from the simplest control systems (as shown in Chaoter 1) 

and filtering techniques <as shown in the followinq 



d1scussionJ to complex control algorithms (i.e.-Adaptive 

Control) or complex filtering Ci.e.-kalman Filters>. see 

AstrOm and Wittenmark (1984). The following discussion 

provides a review of the basic principles in digital signal 

processing. 

Today the trend in industry is toward the implemen

tation of control functions using digital computers. A 

common characteristic of these installation is that the 

control calculations are performed at regular intervals of 

time T. the sample time. A recommended rule of thumb. Smith 

and Corripio <1985)• is that the sample time should be from 

one-tenth to one-twentieth of the effective process time 

constant. When the sample time is of this order. its effect 

can be taken into consideration by adding one-half of the 

sample time to the process dead time. 

The presence of disturbance in a process is the 

principle reason for using control. AstrOm and Wittenmark 

<1984) categorize disturbances into two types: Determin1st1c 

and Stochastic. Disturbances may convey important 

information about the process or may be the result of random 

or deterministic noise introduced at some point within a 

given system. It is the purpose of the digital filter to 

eliminate the noise. Exxon <1977) classifies noise into 

three types: (l) random <2) exponentially correlated (3) 

periodic noise. It is recommended that the sampling period 

be approximately one-half the period of the noise. There 

are three basic filters as recommended by Exxon (1977) in 
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aiding in the attenuation of noise. Specifically. these 

digital filters are the exponential filters. linear least 

squares filters~ and non-linear least squares. 

The exponential filter <Exxon~ 1977= Stephanopoulos, 

1984) is expressed by the following recursive relationsh1p: 

+ <1-PJX" 

where: Yn = Filtered Output at Sample n 

Yn = Unfiltered Output at Sample n 

P = Filter Constant. 

Essentially, the exponential filter is a first order laq 

process. As P increases. more attenuation results at the 

expense of increased lag <Takahashi, Rabins. and Auslander 

(1972)). 

The least squares filter <Exxon, 1977) is expressed bv 

the following recursive relationship: 

where: 

N 
Yn = E B~ Xn-~+1 

i=l 

Yn = Filtered Output 

Xn-~-1.= Raw Data Point 

B~ = Constant Coefficients 

N = Number of Raw Values Used 

The least squares filter has very good noise reduction at 

high frequencies but can result in overshooting and 

undershooting the true process signal at low frequencies. 

<Exxon, 1977l. 

The nonlinear exponential filter is expressed by the 

following recursive relationship: 



+ [min (1 ,~.6~; I) J f::..X., 

where: Yn = Filtered Val4e at time n 

R = Filter Parameter 

~ = Standard Deviations of Sampled Noise Signal 

The nonlinear exponential filter works well in situations 

where the noise is predictable and works poorly 1n condi

tions where noise is erratic CExxon~ 1977). 

In addition to the previously described standard 

filters, common filters such as low-pass~ hlgh-oass~ band

rejection filters described in textbooks (i.e.-Stanley, 

1975) can be used to attenuate periodic no1se. 

Even with the filtering methods employed above, 

classical process control <i.e.-PID) assumes that the 

incoming information contains intrinsic information. That 

is~ action is taken on every point (filtered or unfiltered) 

which deviates from a target (Brooks, 1986). At Proctc•r and 

Gamble, classical controllers are used when noise is not a 

problem or can be adequately filtered <Maurath. 198X). 

Summary 

This chapter presents a survey of the literature on 

problems, contributions, and needs relative to the 

objectives of this research. This survey demonstrates that 

research interests exist in the fields of Statistical 

Process Control and Conventional Computer Process Control. 

Many SPC techniques have been developed for cont1nuous flow 



processes~ but none have been applied within the framework 

of a feedback control system in an attempt to reject the 

natural variation existing in a continuous flow process. 

This survev indicates a need for the followinq: 

1. To evaluate the applicability of control charts 

for continuous flow type processes w1thin a 

feedback control loop in an attempt to reject the 

natural variation of a process. 

2. To compare the performance of the control charts 

with the performance of standard filtering 

techniques. 

3. To hypothesize the potential usefulness of SPC 

techniques within the entire realm of control 

systems theory. 



CHAPTER III 

THE DETERMINATION OF THE 

AVERAGE RUN LENGTHS 

Introduction 

The primary performance measure of a control chart's 

ability to detect changes in a process is the Average Run 

L.ength CARL> or Mean Action Time <MAT>. The ARL or MAT is 

the average number of subgroups required to detect a given 

change in a process. In Page C1955> and Page <1962>, ARL's 

are considered for control charts utilizing one of four 

rules. Roberts <1958) proposes that if standard control 

chart tests are supplemented with another zone test~ the 

sensitivity to process changes is improved while the number 

of type I errors increase. Weindling~ Littauer. and Tiago 

de Oliveira (1970) determine the MAT for XBAR charts using a 

runs rule and one point beyond control limits for out of 

control conditions. Wheeler <1983) attempts to determine 

the power function (inverse of the ARL> for the XBAR chart 

using AT&T rules, while Champ and Woodall (1987) develop a 

method to determine exact ARL~s for Shewhart control charts 

using many different runs ruLes. It is shown that 

supplementary runs rules cause the Shewhart charts <XBAR 

charts) to be more sensitive to small shifts in the mean. 



The data obtained from well m1xed vessels 1n a 

continuous flow process is different than data collected 

.,::. / 

from discrete manufacturing. The data from continuous flow 

processes are often interdependent, resulting in 

autocorrelated data <Brooks and Case~ 1987). The use of 

exponentially smoothed data in control charts is recommended 

by Wortham <1972); there_fore the exponentially weighted 

moving average CEWMA> chart is often found applied to 

continuous processes. Individuals and moving range CIMR> 

charts are often used in continuous flow processes 

(Montgomery~ 1985). Juran (1974) recommends the use of 

moving average and moving range CMAMR) charts for continuous 

processes. 

The assumption of each control chart technique is that 

each sampled value is statistically independent. 

Unfortunately~ statistical independence between all sampled 

data points may or may not be valid for a given continuous 

type process. For the purposes of the research to follow. 

independence of sampled data points is assumed. 

In statistical process control, the premise on which 

the control charts are developed is the same for all charts. 

Specifically, as long as subgroup results are random and 

within prescribed statistical bands~ called control limits, 

process variations are assumed to be noise or the natural 

variation of the process, and only when non-random patterns 

are witnessed or a point falls outside control limits. is 

action taken. Conventional computer process control CCCPCl 



on the other hand assumes that all data po1nts have 

intrinsic value. That is. everv minor shift in a process 

output measure is treated as having value which often 

results in trend1ng or over control. Therefore. there 

ex1sts a serious incompatibility between CCPC and SPC. 

rhe following discussion represents the evaluation of 

control charts commonly utilized in the statistical control 

of continuous processes when subjected to various 

disturbances in the process mean. The process disturbances 

that will be considered are unit step and linear trend 

disturbances; both of these disturbances are common 1n 

continuous type processes. The ARL is determined for 

different charts <or chart combinations) for given 

disturbances using a computer simulation. 

Process Disturbance 

It is assumed that the process variation is normallv 

distributed with mean, ~. and standard deviation~ ~. At 

time o. the process is subjected to a shift in the process 

mean~ and the magnitude of this shift is k~. Therefore~ the 

model describing the process at time t is: 

Y<t> = (.!J + k~) + E~ 

where: 1. <v + ku) = New process mean 
2. E "' N<O~u.:z) 

The ARL <to be determined later> represents the average 

number of subgroups required to detect a shift in the pro-

cess average of magnitude k~. 
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As stated previously~ it is assumed that the process 

variation is normally distributed with mean~ v~ and standard 

deviation~ 1r. At time o, the process average begins to 

increase in magnitude of k~r units every sampling period. 

Therefore, the model that describes the process after time 

zero is as follows: 

Y<t> = <1-• + kT~r> + E 

where: 1. (~ + kT~r> = New process mean 
at the Tth sample 

Exponentially Weighted Moving 

Average Charts 

The exponentially weighted moving average (EWMA) has 

been classified as a method for establishing real time 

dynamic control <Hunter~ 1986). Like the previously 

discussed charts~ it is assumed that the individual 

observations are independent and normally distributed. The 

EWMA may be viewed as a way to forecast the next 

observation. The EWMA equals the present predicted value 

plus o: times the present observed error (observed value 

minus the previous forecasted value) where o:=[O~l]. The 

smaller the value of o: the greater the influence of the 

historical data. 

The control limits of the EWMA charts are based on the 

same premise as other control charts. The upper and lower 

control limits are placed as follows: 



Upper Control Limit=~+ 3~ J(a;(2-a>J 
Center Line = p 

Lower Control Limit = ~ 

As is the case for the MA and MR charts. it is usually 

concluded the the process is not in a state of statistical 

control if the current EWMA is greater than the upper 

control limit or less than the lower control limit. Runs 

rules are not applicable since the current EWMA takes into 

account historical information~ thereby rendering each 

plotted point not independent from other plotted points. 

Moving Average and Moving Range Charts 

Moving averages are formed from a time series of 

individual measurements by finding the arithmetic mean of 

the first n consecutive values and subsequently dropping the 

oldest value and adding the newest value to form each 

successive man. Once a moving average is determined, it is 

plotted 

control 

and compared to predetermined control limits. 

1 imi ts are placed as follows: 

Upper Control Limit = J-1 + 3~/..Jn 

Center Line = ~· 
Lower Control Limit = J-1 3~/..ffi' 

where: n is the number of samples in a 
subgroup 

The 

If the presently observed moving average <MA> is less 

than the lower control limit or greater than the upper 

control limit, it is usually concluded that the process is 

not in a state of statistical control. and a special cause 

exists. The moving range chart is utilized concurrently 



with the moving average chart. The moving range is 

determined by calculating the range of the first n 

consecutive values from a time series of individual 

measurements. The moving range <MR>, like the moving 

average~ is determined each time a new observation is 

collected by including the newest observation and dropping 

the oldest. The upper and lower control limits for the 

moving range chart are placed at ±3~MR from the average MR. 

In Nelson <1982)~ it is stated that the moving range of two 

minimized the inflationary effects on the variability caused 

by trends and oscillations that may be present, and in 

Nelson (1983), it is concluded that the moving averages are 

positively correlated and the correlation increases as n 

increases. Therefore~ for the purposes of this research. 

subgroups of size two (n=2) will be used for the 

determination of the MA and MR. 

Individuals and Moving Range Charts 

Individuals charts are based on the same principle as 

most all other control charts. Individual measurements are 

plotted and compared to predetermined control limits. The 

upper and lower control limits are places as follows: 

Upper Control Limit = ~ + 3~ 
Center Line = J..1 

Lower Control Limit = J..1 3u 

The sensitivity of the Individuals chart to changes 1n 

the process is improved by utilizing various runs rules for 

the determination of out of control conditions. One of the 



most common set of runs rules are those recommended by AT&T 

Technologies <1985). These are as follows: 

(1) A single point falls outside of the -.::00" limits. 
(2) Two out of three successive points fall between 

+20" and beyond from the process average or 
between -20" and beyond from the process average 

(3) Four out of five successive points fall between 
+10" and beyond from the process average or 
between -10" and beyond from the process average 

(4) Eight successive points fall on a given side of 
the center line 

The simulation to follow utilizes the above described 

rules for the individuals chart. The moving range chart of 

subgroup size two is utilized as previously described. 

Results 

The ARLs were determined for each control chart or 

control chart combination for a given change in the process 

average (shift or linear trend) for different values of k. 

With the exception of the EWMA chart subjected to unit step 

increase in the process average, all ARLs were determined by 

a computer simulation. Each simulation is the result of 

10,000 trials, where each trial represents the number of 

samples collected until a process change is detected with a 

given control chart. Tables 3-1~ 3-2, and 3-3 below provide 

the ARLs for the EWMA chart. MAMR combination and the IMR 

combination, respectively, when the process mean is 

subjected to a unit step increase (of magnitude kv). The 

ARLs listed in Table 3-1 for the EWMA chart are 

representative of the theoretical results as presented in 

Ct-owder < 1987). 



Tables 3-4. 3-5. and 3-6 present the ARLs when the 

process average is subjected to a linear trend. These 

results are based on the same type of simulation as 

previously described for the EWMA chart. the MAMR 

combination and the IMR combination, respectively. As 

described previously, the increase in the process average 

between successive samples is constant at k~ each sample. 

The listings of the programs used to. determine the ARLs in 

Tables 3~2, 3-3, 3-4, 3-5, and 3-6 are included in Appendix 

A. 

TABLE 3-1 

ARLs FOR EXPONENTIALLY .WEIGHTED NOVING AVERAGE CHART 
-UNIT STEP DISTURBANCE <FROM CROWDER (1987)) 

----------k - Number of v increase in process mean----------

•:X 0.00 0.25 0.50 

0.10 842.15 144.74 37.41 
0.25 502.90 171.09 48.45 
0.50 397.56 208.54 75.35 
0.75 374.50 245.76 110.95 
1.00 370.40 281. 15 155.22 

1. 00 2.00 

11.38 4.67 
11.15 3.62 
15.74 3.47 
25.64 4. 15 
43.89 6.30 

3.00 

3. (15 

2.26 
1.87 
1. 79 
2.00 

4. (H) 

2 . . 3(~ 
1. 73 
1. 31 
1. 20 
1. 19 



TABLE 3-2 

ARLs FOR MOVING AVERAGE AND MOVING RANGE CHART COMBINATION 
- UNIT STEP DISTURBANCE <BASED ON COMPUTER SIMULATIONS) 

---------k - Number of ~ increase in process mean----------

0.0 0.1 0.2 0.3 0.4 0.5 1.00 2.00 3.00 4.00 

Resulting ARLs, 

99.27 96.17 90.25 82.27 71.95 60.74 20.70 3.77 1.91 1.37 

TABLE 3-3 

ARLs FOR INDIVIDUALS USING AT&T RUNS RULES AND MOVING RANGE 
CHART COMBINATION - UNIT STEP DISTURBANCE 

<BASED ON COMPUTER SIMULATIONS> 

----------k - Number of ~ increase in process mean----------

0.0 0.1 0.2 (l. 3 0.4 0.5 1.00 2.00 3.00 4.00 

Resulting ARLs, 

59.26 55.34 47.85 38.78 30.64 24.05 9.17 3.18 1. 75 



TABLE 3-4 

ARLs FOR EXPONENTIALLY WEIGHTED MOVING AVERAGE CHART -
LINEAR TREND DISTURBANCE <BASED ON 

COMPUTER SIMULATIONS> 

------k - Number or ~ increase/sample in process mean-------

•X 0.0 0.1 0.2 0.3 0.4 0.5 1.00 2.00 3.00 4.00 

0.20 567.37 13.23 8.63 6.76 5.72 5. ()3 3.40 2.31 1.98 1.84 
0.40 415.96 13.78 8.61 6.58 5.43 4.73 3.09 2.07 1. 77 1. 41 
0.60 380.93 14.94 9.11 6.84 5.61 4.80 3.03 1.97 1. 62 1.24 
0.80 370.71 16.45 9.89 7.34 5.95 5.07 3.10 1.95 1.53 1. i8 
1.00 368.42 18.40 11.64 8.11 6.53 5.53 3.28 1.96 1. 50 1.16 

TABLE 3-5 

ARLs FOR MOVING AVERAGE AND MOVING RANGE CHART COMBINATION 
- LINEAR TREND DISTURBANCE <BASED ON COMPUTER S I MULAT I 01'-JS) 

------k - Number of ~ increase/sample in process mean-------

0.0 0.1 0.2 0.3 0.4 0.5 1.00 2.00 3.00 4.00 

Resulting ARLs~ 

99.27 14.89 9.32 6.99 5.72 4.89 3.06 2.05 1.75 1.38 



TABLE 3-6 

ARLs FOR INDIVIDUALS USING AT&T RUNS RULES AND MOVING RANGE 
CHART COMBINATION - LINEAR TREND DISTURBANCE <BASED ON 

COMPUTER SIMULATIONS) 

------k - Number of u increase/sample in process mean-------

0.0 0.1 <). 2 0.3 0.4 0.5 1.00 2.00 3.00 4.00 

Resulting ARLs~ 

59.26 11.77 7.93 6.30 5.34 4.68 3.27 3.09 2.58 1.43 

Summary 

As indicated in the tables for ARLs for different 

control charts subjected to various disturbances in the 

process average~ the ARL is dependent upon the type and 

magnitude of di~turbance. It is noted that the IMR 

combination provides the greatest amount of strength in 

detecting both unit step disturbances and linear trend 

disturbances. But it is essential that the AT&T runs rules 

be utilized in order that this strength might be utilized. 

It is observed that in the situation where no change in 

the process average has occurred~ the IMR combination will 

result in the largest number of false alarms. Furthermore~ 

the performance of the MAMR combination is better than its 

EWMA counterpart for small unit step disturbances in the 

process average regardless of the value of a. Once larger 

unit step shifts are encountered, the EWMA chart is 

preferred if small a values are utilized. 
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If linear trends are encountered. the EWMA chart would 

be preferred over its MAMR combination counterpart as long 

as small a values are used. 



CHAPTER IV 

THE MODEL 

Introduction 

If a chemical reaction occurs in a system. the number 

of moles of an individual component will increase if it is a 

product of the reaction or decrease if it is a reactant. 

The component continuity equation for the jth chemical 

species of the system says 

/Flow of moles of jth ) ~low of moles of jth ) 
\component into system ~omponent out of system_ 

+~rate of formation of moles of jth) = (time rate of change) 
component from chemical react1on of Jth component 

inside system 

The units of this equation are moles of j per unit time. 

One component continuity equation for each component 

can be written for each component in the system. If there 

are J components there are J component continuity equat1ons 

for any one system. However~ there 1s one total mass-

balance equation, and these J component balances are not all 

independent~ since the sum of all the moles times their 

respective molecular weights equals the total mass. 

In the model developed in the following discussion. 

there is a component A that reacts irreversibly and at a 

specific reaction rate k to form a product~ component B. 

38 



This reaction occurs in a continuous stirred-tank reactor 

\CSTR). 

Physical Description of the Model 

Consider a tank of a perfectly mixed liquid in which a 

chemical reaction takes place in the liquid in the tank. 

This system is a CSTR (continuous stirred-tank reactor) as 

shown in Figure 4-1. 

Fo 

l Po 
C;~o 
Cso 

v 
p F 

C;~ p 
Cs C;~ 

Cs 

Figure 4-1. CSTR 

A component A reacts irreversibly and at a specific 

reaction rate k to form a product. component B. 

k 
A B 

Let the concentration of component A in the inflowing or 

feed stream be CAo \moles of Aift 3 J and in the reactor c..,.. 

Assuming a simple first-order reaction. the rate of 

consumption of reactant A per unit volume will be directly 



proportional to the instantaneous concentration of A in the 

tank. Filling in the terms of the previously described 

continuity equation for a component balance on reactant A. 

Flow of A into system 
Flow of A out of system 
Rate of formation of A 

Time rate of change of 

Combining~ 

= FoCAo (ft 3 /sec) (moles 
= FC..,.. (ft 3 /sec) (moles 

from reaction.= -VkC"" 
( f t 3 ) < 1/ sec ) 

A inside tank = 9 ..... tY-.C..e1. 
dt 

Q ...... JYG..A).. = F oCAo - FC..,.. - VkC"" 
dt 

A/-ft 3 ) 

Aift 3 ) 

(moles A/ft 3 .! 

The units of this component continuity equation are 

moles of A/sec. The left-hand side of the equation 1s the 

dynamic term. The first two terms on the right-hand side 

are known as the convective (due to bulk flow) terms. The 

last term.is the generation <due to diffusion) term. Since 

the system is a mixture of two components, A and B. another 

component continuity equation for component B could be 

written as, 

9. .. _.tY..GJttL = F oCeo - FCe + V~::Ce 
dt 

The system sketched below in Figure 4-2 is a simple 

extension of the CSTR considered previously. Product B 1s 

produced and reactant A is consumed in each of the three 

perfectly mixed reactors by a first-order reaction occurr1ng 

in the liquid. The temperatures and volumes of the three 

tanks can be different, but both the temperatures and the 

liquid volumes are assumed to be constant (isothermal and 



constant holdup). Density is assumed constant throughout 

the system. 

Fo v, F, Fz Fl 
Vz Vl 

kl kz kl 

c ... o c,., c,.2 CAl 

Figure 4-2. Series of CSTR~s 

If the volume and density (p) -of each tank are con-

stant~ the total mass in each tank is constant. Thus the 

total mass balance equation for the first reactor is.-

QJ . .P.\?..:~.J.. = pF o - pF 1 = 0 
dt 

or 

F1 = Fo 

Likewise total mass balances on tanks 2 and 0 give 

where F is defined as the throughput (ft3 /sec). For a mor-e 

in-depth discussion of mass balance equations, see either 

Coughanowr and Koppel (1965) or Luyben <1973). 

The amounts of reactant A and product B in each tank 

are to be monitored. so component cont1nu1ty equations are 

needed. However, since the system is binary (only two 



components~ A and B) and the total mass of material 1n each 

tank is known~ only one component continuity equation is 

required. Either B or A can be used. If A is arbitrarily 

chosen, the equations describing the dynamic changes in the 

amounts of reactant A in each tank are Cwith units moles of 

A/sec>: 

d <VC ) = ................... _ ........ e.;~, ... - .. 
dt 

Q .. __ J.Y.~.e:ot.!. .. = F (CA1 - CA:z) - V2k2CA2 
dt 

Q ...... J .. Y..~.A.:;::!;L = F <CA2 - CA::!<) - V'3k3CA3 
dt 

(4-1) 

The specific reaction rates kn are g1ven by the 

Arrhenius equation <see Luyben, 1973) below. 

n=1~2~3 

where: n = Stage Number 

If the temperatures in the reactors are different~ the k's 

are different. 

The volumes Vn can be pulled out of the time derivative 

because they are constant. The flows are all equal to F but 

can vary with time. An energy equation is not required 

because an isothermal operation has been assumed. 

The three first-order, nonlinear, ordinary differential 

equations given above are the mathematical model of the 

system. 

The variables that must be specified before 

these equations can be solved are F and CAo• "Specified" 

does not mean that they must be constant. They can be time-
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variable, but they must be known or g1ven functions of t1me. 

The initial conditions of the three concentrations must also 

be known. 

The system as defined by the differential equations 

above represent the model uoon which the research to follow 

is based. If the throughput, F, is constant and the volumes 

and temperatures are the same in all three tanks, equations 

(4-1) can be written as, 

Q.~e .. :t. + ( k + 1 IT) C.., t = ( 1 I,-) C..,o 
dt 

r:t..l::::e:;;;:. + < k + 11,- > c..,2 = < 11,- > c.., 1 

dt 

r:t..t:;.A;;:~;. + < k + 1 /,-) c..,::s = < 1 ;,-> c..,2 
dt 

where T = V/F 

(4-:2J 

There is only one forcing function or input variable 

into the system, C..,o. The differential eQuations in (4-2) 

above can be rewritten as. 

ci.G.A.;t. = ( 1 /1·) (C..,o - C..,t) - kC.r:u 
dt 

Q.G.e:;;;: = ( 1 /'1") <C..,1 - C..,2) - kC..,2 
dt 

c!!;e,;;,.;. = ( 1/ T) ( c..,2 - C..,:;s) - kC..,:;s 
dt 

The above described system 1s controlled by a conventional 

feedback control system utilizing proportional/integral/ 

derivative <PID> control. PID controllers are used in 

processes with long time constants. Typical of these 

processes are temperature and concentration loops <see Smith 



and Corripio~ 1985). The specific tuning cr1terion will be 

based on a decay ratio of one-fourth where the decay ratio 

is the ratio of the amplitudes of two success1ve 

oscillations. Ziegler and Nichols <1942> provide formulas 

for the determination of the tuning parameters of the PID 

controller once the ultimate gain and frequency are known. 

The block diagram of the system is shown below in Figure 

4-3. The feedback controller and the system are 

incorporated into the block diagram. 

Controller Tank 1 Tank 2 Tank 3 

+ E 

Figure 4-3. Block Diagram Representation of Model 

The set of equations that define the process are as follows. 



~.G..A .. \ .. = (1/'T') (C..,.o - c .... 1) - I<:C..,.1 
dt 

dC .,. ........... A .... = (1/'T') (CA1 - C..,.:z) - kC..,.:z 
dt 

9..~.A.~ = (1/'1"") <C..,.:z - c..,.:-3> - kCA3 
dt 

(4-4) 
CAo = c .... o + CAM 

c..,.M = 0.8 + l<c::<E + !.. ..... r Edt + 'T'oq,J;,) 
'T'x J dt 

Determination of Tuning Parameters 

From the equations in <4-4> and known parameters of the 

process, the required tuning parameters for the PID control-

ler may be determined utilizing the ultimate gain and 

frequency and the Ziegler and Nichols tuning formulas \see 

Ziegler and Nichols, 1942). Taking the Laplace transforma-

tion of each of the equations, the block diagram and 

transfer functions are determined and are shown in Figure 

4-4 and equations <4-5) below, respectively. 

CAD 

Controller Tank 1 Tank 2 Tank 

C..,.::s••-t:. + E 

Figure 4-4. 

C..,.o c...,1 C..,.:z 

6c 61 62 G3 

Block Diagram Representation of Mod~l~ 
Laplace Domain 

3 

CA::s 



where~ 

G 1 ( s) = G2 ( s) = 8:::5 \ s) = .. 1 /.T.. 
S + 1/T + k 

Utilizing Block Diagram Algebra~ 

l,:;;.e:;,; ... ~§J .. = 
C...,n(S) 

(4-5) 

The resulting characteristic equation is. 

1 + Kc<l+l/(TzS)+ToS) 
( 1/T ) s ~--·-"'"'"'"-······ '''''"···-....... ,_ 
s+l/T+k 

(4-6) 

To determine the ultimate gain and frequency. the 

characteristic equation <4-6) is set equal to zero, the 

derivative and integral actions are removed. and direct 

substitution (s=jw._.~ Kc=Keul is used. fhe r-esulting 

equation is as follows, 

= -jw._. 3 T3 -w .... ~(3T2+3kT3 ) + jwu(3T+6kT~+3k~T~) + 1 + 3kT + 

+ 3k2 T 2 + k 3 T 3 + Kcu = 0 

Combining the imaginary parts 

Comb1ning the real parts 

Assuming T=2 min and k=0.5 min-£ and solvinq. 

w._. = ~ Rad/min 

l<c::u = 64 

The ultimate period (as r-equired by the Zieqler-Nichols 

tuning formulas) is. 

T .... = 2n/w._. = 3.627598728 min 



The tuning parameters are set by the formulas described by 

Ziegler and Nichols <see Ziegler and Nichols, 1942). The 

fallowing calculations provide the values at which the 

controller will be set for this model, 

Controller Gain = Kc = Kcu/1.7 = 37.647 

Integral Time = 'T:a: = Tu/2 = 1.814 min/repeat 

Derivative Time = 'Tc = Tu/8 = 0.453 min 

Analytical Solution to a 

Unit Step Disturbance 

With the known parameters of the controller and the 

system itself and the type of disturbance applied to the 

process, it is possible to determine the analytical solution 

to the problem. For the problem, the following values are 

assumed, 

'T:a: = 1.814 

'Tc = 0.453 

Kc: = 37.647 

'T = 2.0 

k = 0.5 

c .... c = 0.6u(t) where u<t> 
= (~ for t>..O 

for t<O 

Utilizing the block diagram of Figure 4-4 and block diagram 

algebra, the resulting process transfer function is 

C..A.~ . .t?. .. l = ·-·--······-··--··-····-· ·····-·····-····-----·· -·-·······---··--Q-~ .. 1.;?.~? ····--- , ___ ..... -.. ........... ""'"""" """"" -··· .... _ ... ---··· -·· . 
C...,c(s) s 4 + 3s~ + 5.131761357s 2 +5.705875s + 2.59419705 



Given that the Laplace transformation of CAo is 0.6/s, the 

response in the Laplace domain is~ 

CA::s ( s) = --·-----····-·--... -... - .... - ............. - ............... - ........... Q .. ~ .. 9.7.;;! .................... _ ............................. - ............. _ ................................................................... .. 
s 4 +3s3 + 5.131761375s2 + 5.705875s + 2.59419705 

The roots of the denominator are, 

r1 = -1.0694687 

r2 = -1.1228866 

r::s = -0.40382239 + j1.4132065 

r .... = -0.40382239 j1.4132065 

Thus using partial fraction expansion~ the equivalent 

expression for CA::s in the Laplace domain is. 

CA::s ( s ) = ...... 9 .. ~_:;:;!7.;!.:;:,¢.!,;;.;,~1..::;! ....... 
s + 1.0694687 

_9_. 5~~-:1.:;.;;.9..~_:;;!_L .. 
s + 1.1228866 

< Q.~ .. 92.§.1~-~.9.1.~ .... ...::._.i9...~ ... 9 ... Q.9.~.9.Z .. ~~.9. + 9~_9Q.§.19.~P..1.g ..... ~ ....... i9...~ .. 9..Q¢t~~7~~.~-.... > 
s + 0.40382239- j1.4132065 s + 0.40382239 + j1.4132065 

Taking the inverse Laplace transformation, 

0.575363535e- 1 • 06946a 7 t- 0.558436251e- 1 • 122SSbbt 

-e-o.4o::sa2239t(2(0.008463642)cos(1.4132065t) -

2(-0.006567656)sin<1.4132065t)) 

where: CA::s ••• is the steadv state response of c .... ::s<t) 

This function is plbtted over time in Figure 4-5 below. 
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10 

In this research, the analysis is not based on a system 

in which it is reasonable to assume that all signals/ 

measurements are collected with no error. Therefore. it is 

necessary to construct a simulation of the entire process. 

The simulation of the differential equations is performed 

using fourth order Runga l<utta integration (for a complete 

explanation of Runga Kutta see Hultquist (1988) or Jaluria 

(1988)). The validation of the numerical simulation is 

based on the comparison of the analytical solution 



determined in the previous section and the results of the 

numerical simulation. 

Prior to the comparison~ it is important to recognize 

the analytical solution presented in the previous section is 

based upon the use of perturbation variables. That is~ the 

resulting solution is the departure from the steady-state 

values over time. It is necessary to determine the 

appropriate steady state condition so that the appropriate 

initial conditions are determined. The steady state 

conditions are determined by starting the numerical 

simulation with no input disturbance and allowing the entire 

process to stabilize. These resulting values are best 

presented by viewing each of the dynamic variables over 

time. These plots are shown below in Figure 4.6. From 

Figure 4-6 it is easy to recognize the steady state 

conditions for each of the dynamic variables. Specifically~ 

CAM·-- = 0.8 

c .... 1.-- = 0.4 

CA2 ___ = 0.2 

c .... ::s.-- = 0.1 
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Figure 4-6. Determination of Steady State Conditlons 

Utilizing the steady state values of the dynamic 

variables as determined above as initial conditions~ the 

numerical simulation will provide a response identical to 

that of the analytical solution. The results are plotted 

with the analytical solution in Figure 4-7 below. 
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Summary 

Based on these results, it was determined that the 

numerical solution was correctly modeling the process. The 

intent of this part of the work is not to provide numerical 

results for a problem that can be solved analytically~ but 

to provide a benchmark on which the following research may 

be based. At this point, it is no longer assumed that a 

perfect signal is available for monitoring the process. 

Specifically, noisy conditions will exist henceforth, and 

various filtering devices will be utilized in an attempt to 



reject/attenuate the noise component of the input s1gnal to 

the controller. 



CHAPTER V 

THE SYSTEM 

Introduction 

The following discussion presents the implementation of 

the model as discussed in the preceding chapter. The 

numerical system previously developed is utilized and is 

augmented by adding features such as ll uncertainty in the 

feedback loop~ 2> various filtering algorithms~ and 

3) various process input disturbances of various magnitudes. 

This chapter provides insight regarding the type of the 

noise found in the control loop, the filtering algorithms 

used (which attempt to reject or attenuate the noise 

component of the signal), the type of the input disturbance 

found in the process, the measures of performance to be used 

in the analysis, the construction of the computer system 

used to model the plant~ and a brief description of the 

validation of the computer system. 

The Noise 

The noise in the plant is assumed to be found in the 

feedback control loop. This assumption is based on the fact 

that in many of the noisy conditions existing in feedback 
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control schemes, the existence of uncertainty in the signal 

stem from a noisy transmitter or measurement error <see 

Exxon 1977). The noise, N, is assumed to be normally 

distributed with mean zero and variance, ~2 or represented 

symbolically as shown below in (5-l). 

Noise of the 
Feedback = N. - NC0,~2 ) (5-1) 
Control Loop 

It is further assumed that the variance of the noise is 

known and is used to implement the random component of the 

signal in the feedback control loop. 

Filtering Algorithms 

The filtering algorithms used in this research are the 

exponential <EXP> filter, least squares <LS) filter, 

nonlinear exponential <NL) filter, moving average and moving 

range CMAMR> filter, individuals and moving range CIMR) 

filter, and exponentially weighted moving average \EWMA) 

filter. Each of the filtering algorithms are described 

below along with any special requirements for their 

implementation in a filtering application. 

The exponential filter <Exxon, 1977; Stephanopoulos, 

1984) is expressed by the fallowing recursive relationship: 



(5-2) 

where: Y~ = Filtered Output at Sample n 

Xn = Unfiltered Output at Sample n 

P =Filter Constant, [0,1] 

The exponential filter is a first order lag process. 

As P increases, more attenuation results at the expense of 

increased lag. For the purposes of this research~ the 

values of P will be 0.0 and 0.8. This range between the P 

values will provide a sufficient range such that the 

difference due to different P values will be observed if it 

exists at all. 

The least squares filter (Exxon, 1977) as expressed by 

the following relationship: 

where: 

N 
Y.-. = I: B:t X.-.-:t.+1 

i=l 

Y.-. = Filtered Output 

X.-.-:1.+1 = Raw Data Point 

(5-3) 

B:1. = Constant Coefficients <Exxon, 1977) 

N = Number of Raw Values Used 

The least squares filter has very good noise reduction at 

high frequencies but can result in overshooting and 

undershooting the true process signal at low frequencies. 



The values of N that are used for this research are 3 and 

19. This range between the N values will provide a 

sufficient range such that the difference due to different N 

values will be observed if it exists at all. 

The nonlinear exponential filter is expressed by the 

following recursive relationship: 

where: Yn = Filtered Value at time n 

.ca.Xn = Xn - Yn-1 

R = Filter Parameter 

(5-4) 

~ = Standard Deviation of the Noise Signal 

The nonlinear exponential filter works well in situations 

where the noise is predictable and works poorly in 

conditions where noise is erratic <Exxon, 1977). 

of R that are used for this research are 4 and 7. 

The values 

This 

range between the R values will provide a sufficient range 

such that the difference due to different R values will be 

observed if it exists at all. 

The assumption of each of the statistical process 

control <SPC> filters, the EWMA, MAMR, and IMR filters~ is 
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that each sampled value is statistically independent. 

Unfortunately~ statistical independence between sampled data 

points will not be valid unless sufficient time has passed 

such that independence can be reasonably assumed. In Brooks 

and Case <1987)~ it is noted that a good general rule is to 

ensure sampling intervals of at least twice the response 

time of the process. The response time of the process 1s 

the sum of the effective time constant and dead time of the 

process. 

The plant to be modeled is a fourth order system. In 

Smith and Corripio (1985}, it is shown that a higher order 

system may be approximated by a first order process plus 

dead time <FOPDT>. Their procedure requires that we 

determine the point in time at which the open loop response 

meets 28.3 and 63.2 per cent of the final steady state 

response. The times are known as t1 and t2, respectively. 

The values of t1 and t2 are 1.85075 and 3.2577 minutes, 

respectively. Figure 5-l shows the relationship between 

t1 and t2 and the open loop response of the process. 



2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75 15 

Figure 5-l. 

TIWE (WINUlES) 
+ . 6.32*DELCA3 <> .283*DELCA3 

Three Serial CSTR's, Open Loop System 
Determination of the Response Time 

Following the procedure as outline in Smith and 

Corripio <1985>, the following relationships are known: 

Effective Time Constant=~ = 3/2 <t2- t1J = 2.11 minutes 

Dead Time = · 1. 15 minutes 



The resulting FOPDT approximation in the Laplace domain is~ 

G<s> 

Applying a unit step forcing function to the open loop 

plant~ the resulting output in the Laplace domain is, 

Taking the inverse Laplace transformation~ 

where: u(x) =rl 
Lo 

for x l 0 
else. 

The theoretical response of the open loop system to the same 

unit step forcing function is, 

The approximate FOPDT and theoretical responses are shown 

below in Figure <5-2). 
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Theoretical Solution verses FOPDT 

With the above determined analysis, it was assumed that 

the sampling interval between two independent samples was 

6.5 minutes. This is derived from the fact that 2(T + t-> 

is approximately 6.5 minutes. 

The statistically based filters used were the EWMA 

filter, MAMR filter, and the IMR filter. Their applications 

are similar to their application as control charts when used 



to control a process. The primary difference in their 

applications is the determination as to when the process has 

returned to a state of statistical control following an out 

of control condition. The statistically based filters 

behave as follows: 

<1> Collect the sampled output every 6.5 minutes 

(2) Determine if an out of control condition is 
indicated. 

\3) If an out of control condition is identified~ the 
current measured output of the process is fed to 
the controller. 

(4) If the current data indicate that the process is 
in a state of statistical control~ the current set 
point of the plant is returned to the controller. 

These four rules are used for all three statistically based 

filters. 

exponentially weighted moving average <EWMA) filter is 

similar to the application of the EWMA control chart to a 

process. The EWMA is a statistic with the characteristic 

that it gives less weight to individual data as they get 

older. A plotted point of the output of an EWMA filter can 

be given a long memory or a short memory. Each EWMA is the 

present predicted value plus a times the present observed 

error (observed value minus the previous forecasted value) 

where a=[0~1J. The smaller the value of a the greater the 

influence of the historical data. The values of a that are 

used for this research are 0.2 and 1.0. As was the case for 

the exponential filter, the wide selection of a will provide 
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sufficient range for which results will be observed. 

Additionally, it is interesting to note that the EWMA filter 

with a set equal to one is equivalent to an individuals 

filter with only rule one of the AT&T rules employed. 

The control limits of the EWMA filter are based on the 

same premise as control charts. That is, the upper and 

lower control limits <UCL and LCL, respectively> are placed 

at ± 3~EwMA from the process average. The resulting 

formulas are as shown in Ng <1987) and below. 

UCLEwMA =SET POINT+ 3~~a/(2 a) 
<5-5) 

LCLEWMA = SET POINT 

where: SET POINT= 0.1 

~ = Standard Deviation of the noise 
introduced in the feedback control loop 

a = Weighting factor for the EWMA filter 

The desired process average is the set point of the process, 

which is assumed to be 0.1 for the process used in this 

research. If the current EWMA is greater than the UCL or 

less than the LCL, it is concluded the the process is not in 

a state of statistical control <SOSC> and the current 

unfiltered output of the plant should be fed to the 

controller (which includes the noise encountered in the 

feedback loop). As discussed in rule <4> above, if the 

current EWMA is within the control limits, the current set 

point for the process output is sent to the controller for a 

duration of 6.5 minutes (as determined above>. 
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I.o~_l'1f!Y..!.!J_q .... f.i.Y...~r ~.9.~···--·~nJt .... J.!QY...!.D.9 .... J3 .. ~.D.9.~----f..!.l.t,.~.r.: .• The moving 

average and moving range <MAMR) filter is implemented 

precisely as the moving average and moving range control 

chart as discussed in Chapter I. The control limits are 

placed at ±3~xsA~ from the process set point for the moving 

average <MA> portion of the filter. The moving range <MR> 

is an estimate of the process variation; therefore, its 

control limits are a function of the process variation. 

Since the process variation is known (simply the variation 

implemented in the feedback loop) and sample sizes of two 

have been recommended for moving range charts, <Nelson, 

1982), the control limits can be predetermined for the 

moving average and moving range portions of the MAMR filter. 

The calculations are precisely those given in Montgomery 

(1985> and are shown below. 

where: 

UCLMA = SET POINT + 3~/..fL 

LCLMA = SET POINT 3~/,!'L 
(5-6) 

UCLMA = (d:z + 3d;s)~ 

LCLM~ = 0 

SET POINT = 0.1 

~ = Standard Deviation of the noise 
introduced in the feedback control loop 

dz,d~ = Constants (see Montgomery, 1985) 

If the current MA or MR are greater than the 

appropriate UCL or lower than the appropriate LCL, it is 

concluded the the process is not in a state of statistical 

control and the current unfiltered output of the plant 



should be fed to the controller (which includes the noise 

encountered in the feedback loop>. As discussed in rule (4) 

above, if the current MA or MR are within their respective 

control limits, the current set point for the process output 

is sent to the controller for a duration of 6.5 minutes Cas 

determined above). 

Ib~ ... _ln_9.! .. Y..! .. 9.4.~.tE.L.~.o..9._ . ..M.9..YJ:.D..g .. _.R.~.0..9.~ ...... E!.! .. t..~r. .. · Individuals 

and moving range filters <IMR). are based on the same 

principle as the individuals and moving range charts for 

statistical process control. The UCL and LCL are placed at 

±3u from the process set point for the individuals (!) 

portion of the IMR filter, and the UCL and LCL for the 

moving range <MR> portion of the IMR filter are placed as 

described in the control limit calculations for the MR 

portion of MAMR filter. The resulting formulas are shown in 

Montgomery <1985) and below. 

where: 

UCL:r = SET POINT + 3u 

LCL:r = SET POINT 30'" 
(5-7) 

UCLMI'Ot = (d2 + 3d:::s)U 

LCLMR = 0 

SET POINT = 0.1 

u = Standard Deviation of the noise 
introduced in the feedback control loop 

d2,d:::s = Constants (see Montgomery, 1985) 

The out of control and in control conditions for the MR 

portion of the IMR filter are interpreted as the MA or MR 



portions of the MAMR filter. The sensitivity of the 

individuals portion of the IMR filter is improved bv 

uti 1 i zing the AT8< T runs rules. These rules are 1 i sted in 

Western Electric Co. Inc. (1985) and below. 

\1) A single point falls outside of the 3u limits. 

<2> Two out of three successive points fall between 
+2v and beyond from the process average or 
between -2~ and beyond from the process average 

(3) Four out of five successive points fall between 
+1~ and beyond from the process average or 
between -1~ and beyond from the process average 

(4) Eight successive points fall on a given side of 
the center line 

As described above, if at any sample an out of control 

(00C) condition is signaled, the current unfiltered output 

is sent to the controller. 

Due to the time required to reasonably assume indepen-

dence between samples for each of the statistically based 

filters, prefiltering is employed in an attempt to reduce 

the time lag required to detect a change in the process 

using the statistically based filters. Data is sampled at 

each instant in time, and the technique employed is simply 

an individuals chart with control limits placed at ± four 

process standard deviations.· The control limits are placed 

at four standard deviations so that the number of false 

alarms will not be excessive. Rule number one of the AT&T 

rules is utilized to estimate the present state of the 
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process. The stream of data collected is autocorrelated, 

but it is known that the presence of autocorrelation in data 

requires that the spread of the control limits of the 

control chart being used to control the process be reduced 

<Brooks and Case~ 1987). Additionally, larger changes in 

the process are required to have the same probability of 

being detected as the situations where only independent data 

are being detected. 

The only random variation in the process is the noise 

that is encountered in the feedback control loop; therefore. 

the control limits are determined as follows: 

UCLx = SET POINT + 3~ 
(5-8) 

LCLx = SET POINT 3~ 

where: SET POINT= 0.1 
~ = Standard Deviation of the noise 

introduced in the feedback control loop. 

The research in the following chapters include the 

analysis for the situations in which the statistical process· 

control filters are used alone and the situation in which 

the prefiltering precedes the use of the statistical 

filters. The information shown in Table 5-1 below 

represents the logic used to determine the filtered output 

when both the prefilter and the statistical filters are 

used. 



TABLE 5-l 

FILTERING LOGIC EMPLOYED WHEN BOTH PREFILTERING AND 
STATISTICAL PROCESS CONTROL FILTERING ARE USED 

Device 
Individuals Statistical 
Prefilter 

sosc 
sosc 
ooc 
ooc 

Filter 

sosc 
ooc 
sosc 
ooc 

Filtered Output 

Set Paint 
Random Signal 
Random Signal 
Random Signal 

Additionally~ once an OOC condition is detected for the 

individual prefilter~ the process is not sampled until ten 

minutes later. This amount of time allows enough time for 

the PID control to react to a large change in the process. 

The Input Disturbance 

The input disturbances common to continuous type 

processes are varied in nature. Some of the more common 

types of disturbances are unit steps of various magnitudes, 

unlimited ramp functions of various slopes, and sinusoidal 

functions. Additionally, the set point can be changed 

during the operation of a control loop, and these set point 

changes are typically a unit step function. 

The research that follows considers only input 

disturbances and does not investigate the impact of set 

point changes. This is based on the fact that the tuning 

criteria used in setting the constants on the controller 
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action are based on the quarter decay ratio and are not 

recommended for processes that are subjected to changes in 

set point <see Smith and Corripio, 1985). Additionally, the 

analysis in the following chapters is based on unit step and 

unlimited ramp function disturbances to the process. The 

computer system can be modified to offer other types of 

disturbances, but due to the great amounts of computer time 

to run the simulations, an exhaustive analysis can not be 

reasonably obtained. Furthermore, it is recognized that the 

intent of this research is to evaluate the potential 

applicability of the new statistically based filtering 

devices. 

Measures of Performance 

In addition to the tuning criterion based on the 

quarter decay ratio, some researchers have used another 

performance criterion which results in optimum solutions 

which are unique. One of the more popular relationships in 

the Integral of the Absolute Value of the Error <IAE>, see 

Smith and Corripio <1985>, and this formula is shown below. 

J: 1e<t> ldt (5-9) 

CURRENT INPUT TO 
where: e<t> = SET POINT - THE CONTROLLER FROM 

THE FEEDBACK LOOP 

It is this relationship that will become the measure of 

performance in the analysis of the use of the various 
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filtering devices within the control scheme as outlined in 

Chapter IV. Since the system to be modeled in this research 

is stochastic~ multiple runs must be made to evaluate the 

performance of a given filter. Additionally~ it is desired 

to know the area of error over time~ but in the context of 

this problem error must be redefined. It is known how the 

plant will respond to a given disturbance if the output of 

the plant is fed back to the controller with no randomness 

employed (see the theoretical or numerical results described 

in Chapter 4). But, the ability of the plant to meet the 

theoretical results when randomness is employed is not 

known. Therefore, the error of interest is the absolute 

difference between the observed output and the theoretical 

output, and since the analysis must be based on multiple 

observations~ an average of this error is of interest. 

Integrating this new absolute average error over time 

results in the following relationship, 

n 

J-[I 1 <Observed Output>~-<Theoretical Output) llnJdt 
0 £-1 

(5-10) 

where: i = The ith Observation 

n = The Number of Observations/Runs 



Using the variables as illustrated in Chapter IV, equation 

<5-10> results in the following relationship, 

" Integral of 
the Average = IAAE = J-[I-lCA~(t)~-cA~TH(t) lfnJdt (5-11) 

0 ~ . 

Absolute Error 

where: i = The ith Observation 

n = The Number of Observations/Runs 

cA~TH = The Theoretical Response 

The final IAAE is dependent upon the magnitude of the 

errors and the length of time for which the plant was run. 

Since the integral is dynamic with time, the integral will 

be determined for a finite time period for multiple runs in 

an attempt to determine the performance of the plant when 

subjecte~ to various filtering devices with respect to the 

error seen for different runs. 

Additionally, plots of the average output of the plant 

under known conditions when a given filtering device is used 

will be made to provide additional information regarding the 

performance of the plant. 

The Computer System 

The computer system is described in the flow chart 

shown below in Figure 5-3. 
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Figure 5-3. The Flow Chart of the Computer System 
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As discussed in Chapter 4~ the simulation of the 

differential equation that describe the completed process is 

made using forth order Runga Kutta techniques (for a 

complete explanation of Runga Kutta see Hultquist <1988) or 

Jaluria (1988)). Additionally, since the Runga Kutta 

techniques are simply an integration routine~ the techniques 

are applicable to the determination of the IAAE. The 

choices of filters employed are based on the filters 

discussed throughout this work. The filtering and Runga 

Kutta algorithms are placed in subroutines following the 

main program. 

The listing of the program developed for the unit step 

disturbance is included in Appendix B. The program was 

developed in FORTRAN and implemented on the IBM 360. The 

use of the main frame was required due to the amount of time 

required to run the dynamic simulation of the process 

previously described. For example~ approximately three and 

one-half minutes of central processing unit time were 

required to simulate the process for 60 minutes ~or 100 

replications. The system is simply modified to change the 

type of input disturbance. 

Validation of the Computer System 

This section represents a brief description of the 

process by which the computer system was validated. A 

discussion is presented for some of major validation steps 

employed. 



The first validation step was to validate the numer1cal 

results <with no noise implemented) with the known 

analytical response of the system. This is discussed in its 

entirety in Chapter IV. Additionally, each filtering device 

was run twice using the same random number stream. This 

measure insures that all variables were being reset between 

subsequent runs. Furthermore, all flags and process signals 

were listed for each filtering devices during a short 

simulation of one run for each filtering device. Some of 

the process signals are shown below in Figure 5-4. 
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Figure 5-4. Example of a Validation Run 
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Looking at all of the variables in the process insures that 

the logic designed in the system was being correctly 

employed and that the responses (with noise included) 

appeared reasonable when compared to the noiseless system 

response. Figure 5-4 represents the process response when 

subjected to a unit step disturbance of magnitude 0.2 and 

EWMA filtering. Throughout the development of the system~ 

data were maintained for validation runs so that each 

augmented system could be validated to its predecessor. 

Since the response of the system is not known when 

noise is induced in the feedback control loop~ validation 

could not be made with certainty. However~ the final 

results (as shown in the following chapters) appear 

reasonable for each of the filtering devices employed. 

Multiple runs were made to estimate the amount of 

variability between runs. 



CHAPTER VI 

RESULTS 

Introduction 

The results collected of the simulation of the chemical 

reactor described in Chapter IV using the computer system 

described in Chapter V follow. The chemical reactor is 

simulated using a given filtering device. Specifically~ the 

filtering devices modeled are the exponential filter with 

parameter P~ the least squares filter with parameter N~ the 

nonlinear exponential filter with parameter R~ the 

exponentially weighted moving average filter with parameter 

~, the moving average and moving range filter~ the 

individuals and moving range filter, the exponentially 

weighted moving average filter with parameter « and the 

individuals prefilter~ the moving average and moving range 

filter with the individuals prefilter~ and the individuals 

and moving range filter with the individuals prefilter. In 

what follows~ the results of simulations of the chemical 

reactor utilizing each of the filtering devices when the 

chemical reactor is subjected to various input disturbances 

are given. In all Tables and Figures, CAD is the same as 

CAo as previously described. 

I I 



Conventional Filters 

The conventional filters are the exponential filter 

with parameter P~ EXPCPJ, the least squares filter with 

parameter N, LS<N>, and the nonlinear exponential filter 

with parameter R, NL(R). As discussed in Chapter V, this 

research uses values of 0.0 and 0.8 for P, 3 and 19 for N, 

and 4 and 7 for R. The chemical reactor is simulated with 

/8 

a given filtering device (with a known parameter value) and 

type of disturbance for 100 replications of sixty minutes of 

plant operation time. The types of input disturbances for 

CAD utilized in the research were the unit step of 

magnitudes 0.0~ 0.12~ and 0.2 for the values of CAD, and 

ramp functions with the slope of 0.12 and 0.2 for the values 

of CAD. The disturbance is not introduced until five minutes 

have elapsed allowing the process sufficient time to reach a 

stable condition. The standard deviation of the noise 

introduced in the feedback control loop is 0.005, and the 

parameters of the reactor and PID controller are as 

described in Chapter IV. 

Table 6-1 below presents the integral of the average 

absolute error <IAAE) of two runs of the simulation 

described above for the situation in which there is no input 

disturbance introduced to the system. Two runs were made 

utilizing each of the conventional filters described above. 



TABLE 6-1 

IAAE; UNIT STEP DISTURBANCE; CAD=O.O~ t!5.0 

Filtering Device 

EXPCO.O) EXPCO.B> LSC3> LS < 19) NL(4) NL(7) 

Run 1 0.01936 0.02017 0.01924 0.01926 0.02083 0.02179 

Run 2 0.01947 0.01963 0.01902 0.01923 0.02125 0.02158 

AVG 0.01942 0.01990 0.01913 0.01925 0.02104 0.02168 

The average outputs of the chemical reactor using the 

EXP<O.O), EXP<O.B>, LS<3), LS<19)~ NLC4), and the NL(7) 

filters are shown below in Figures 6-1A, 6-1B, 6-1C, 6-lD, 

6-lE, and 6-lF, respectively. 
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Table 6-2 below presents the integral of the average 

absolute error <IAAE> of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.12. Two runs were made utilizing each of the 

conventional filters described above. 
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TABLE 6-2 

IAAE; UNIT STEP DISTURBANCE; CAD=0.12~ T~5.0 

Filtering Device 

EXP<O.O) EXP<0.8> LS(3) LS ( 19) NL(4) NL (7) 

Run 1 0.01952 0.01976 0.01909 0.01944 0.02099 0.02161 

Run 2 0.01938 0.01959 0.01880 0.01961 0.02086 0.02154 

AVG 0.01945 0.01968 0.01895 0.01953 0.02092 0.02157 

The average outputs of the chemical reactor using the 

EXP<O.O>, EXP<O.B>, LS<3>, LS<19>, NL<4>, and the NL<7> 

filters are shown below in Figures 6-2A, 6-2B~ 6-2C~ 6-2D~ 

6-2E, and 6-2F, respectively. 
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Table 6-3 below presents the integral of the average 

absolute error <IAAE) of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.20. Two runs were made utilizing each of the 

conventional filters described above. 



TABLE 6-3 

IAAE; UNIT STEP DISTURBANCE; CAD=0.20, T~5.0 

Filtering Device 

EXP(O.O> EXP<0.8> LS(3) LS <19) NL(4) NL<7) 

Run 1 0.01927 0.01991 0.01955 0.01907 0.02098 0.02163 

Run 2 0.01905 0.02005 0.01903 0.01949 0.02124 0.02147 

AVG 0.01916 0.01998 0.01929 0.01928 0.02111 0.02155 

The average outputs of the chemical reactor using the 

EXP<O.O>, EXP<0.8>, LS<3), LS<19>, NL<4>, and the NL<7> 

filters are shown below in Figures 6-3A, 6-3B~ 6-3C, 6-3D, 

6-3E, and 6-3F, respectively. 
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Table 6-4 below presents the integral of the average 

absolute error CIAAE> of two runs of the simulation 

described above for the ramp input disturbance of slope 

0.12. Two runs were made utilizing each of the conventional 

filters described above. 



TABLE 6-4 

IAAE; RAMP DISTURBANCE; CAD=0.12CT-5.0), T~5.0 

Filtering Device 

EXP<O.O> EXPCO.B> LSC3J LS <19> NLC4) NL(7) 

Run 1 0.01938 0.01975 0.01953 0.01972 0.02099 0.02176 

Run 2 0.01918 0.01993 0.01925 0.01928 0.02104 0.02159 

AVG 0.01928 0.01984 0.01939 0.01950 0.02101 0.02167 

The average outputs of the chemical reactor using the 

EXP<O.O>, EXPCO.B>, LS<3>, LSC19), NLC4>, and the NL<7> 

filters are shown below in Figures 6-4A, 6-4B, 6-4C, 6-4D~ 

6-4E, and 6-4F, respectively. 

8' 
i 
il 
~ 

i 
I 

0.1. 

0.17-

0.1&-

0.15 

0.14-

0.1.3 -

0.12-

0.11 -

0.1 

0.09-

o.oe-

0.07 
0 a 10 15 20 25 30 35 45 50 55 

a ~E11CAL 
TN£ (WNITES) 

+ RUN 1 0 RUN2 

Figure 6-4A. Average Output; CAD=0.12<t-5.0), t~5; 

Filter=EXP<O.O> 



~ ... 
I 

I ...... 

I 
I 

8' 
i 

I ...... 

I 
I 

0.18 

0.17-

0.1&-

0.15-

0.14-

0.13-

0.12-

0.11 -

0.1 

o.a. 

o.oa-

0.07 
0 5 10 

Figure 6-4B. 

0.18 

0.17-

0.1&-

0.15-

0.14-

0.13-

0.12-

0.11 -

0.1 

0.0.-

o.oa-

0.07 
0 5 10 

. . 
15 30 3!1 

..,...E (WII\AitD) 
+ ftUN 1 

Average Output; CAD=0.12(t-5.0), t~5; 
Filter=EXP<O.B> 

15 40 !10 

0 THEOftE'IlCAL I'IIUN2 

Figure 6-4C. Average Output; CAD=0.12(t-5.0)~ t~5; 
Filter=LS(3) 

110 



8' 
i 

l 
I 
I 

8' 
i 

I ...., 

~ 
0 

i 

0.18 

0.17-

0.15-

0.15-

0.14-

0.1:1 -

0.12-

0.11 -

0.1 

0.09 -

o.oe-

0.07 
0 5 10 15 %0 25 30 35 

TIWE (WNm:S) 
c ~ + ftUN 1 

Figure 6-4D. 

0.18 

0.17-

0.15-

0.15-

0.14-

0.13-

0.12-

0.11 -

0.1 

0.09 -

o.oe-

0.07 
0 5 10 

Average Output; CAD=0.12<t-5.0)~ tl5; 
Fi 1 ter=LS < 19) 

15 30 55 

TIWI: (WNITE!t) 
c 1HE.OAE11CAL + RUN 1 RUN2 

Figure 6-4E. Average Output; CAD=0.12(t-5.0)~ tl5; 
Filter=NL<4> 

60 

60 



8' 
i 
I 
!. 

i 
I 

0.18 

0.17-

0.1 li -

0.15-

0.14-

0.13-

0.12-

0.11 -

0.1 

O.Ott-

a.oa-

0.07 
a 5 10 15 20 25 30 50 

TIWE (WINLI1'E8) 
D "flotUJftEliCAL + ~UN1 0 RUN 2 

Figure 6-4F. Average Output; CAD=0.12(t-5.0)~ t.;::5; 
Filter=NL<7> 

Table 6-5 below presents the integral of the average 

absolute error <IAAE) of two runs of the simulation 

described above for the ramp input disturbance of slope 

0.20. Two runs were made utilizing each of the conventional 

filters described above. 



TABLE 6-5 

IAAE; RAMP DISTURBANCE; CAD=0.20<T-5.0), Tl5.0 

Filtering Device 

EXP<O.O) EXP<O.B> LS(3) LS < 19) NL(4) NL(7) 

Run 1 0.01926 0.01988 0.01927 0.01965 0.02133 0.02133 

Run 2 0.01983 0.01990 0.01909 0.01946 0.02154 0.02191 

AVG 0.01955 0.01989 0.01918 0.01956 0.02143 0.02162 

The average output of the chemical reactor using the 

EXP<O.O), EXP<0.8>, LSC3>, LS(19), NL(4), and the NL(7) 

filters are shown below in Figures 6-5A, 6-5B, 6-5C, 6-5D, 

6-5E, and 6-SF, respectively. 
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Statistical Process Control Filters 

&0 

The statistical process control <SPC> filters are the 

98 

exponentially weighted moving average filter with parameter 

~, EWMA<a>, the moving average and moving range filter, 

MAMR, and the individuals.and moving range filter, IMR. As 

discussed in Chapter V, this research uses values of 0.2 and 

1. 0 for a. The chemical reactor is simulated with a given 

filtering device <with a known parameter value> and type of 

disturbance for 100 replications of sixty minutes of plant 

operation time. The types of input disturbances for CAD 

utilized in the research were the unit step of magnitudes 

0.0, 0.12, and 0.2 for the values of CAD, and ramp functions 

with the slope of 0.12 and 0.2 for the values of CAD. The 



disturbance is not introduced until five minutes have 

elapsed allowing the reactor sufficient time to reach a 

stable condition. The standard deviation of the noise 

introduced in the feedback control loop is 0.005~ and the 

parameters of the reactor and PID controller are as 

described in Chapter IV. 

Table 6-6 below presents the integral of the average 

absolute error CIAAE> of two runs of the simulation 

described above for the situation in which there is no 

disturbance introduced to the system. Two runs were made 

utilizing each of the statistical filters described above. 

TABLE 6-6 

IAAE; UNIT STEP DISTURBANCE; CAD=O.O~ T;::.5.0 

Filtering Device 

EWMA <0. 2) EWMA < 1. 0) MAMR IMR 

Run 1 0.0 0.00032 0.00281 0.00093 

Run 2 0.0 0.00039 0.00310 0.00108 

AVG 0.0 0.00036 0.00295 0.00100 

The average output of the chemical reactor using the 

EWMA(0.2)~ EWMA<l.O), MAMR, and IMR filters are shown below 

in Figures 6-6A~ 6-6B~ 6-6C, and 6-6D, respectively. 
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Table 6-7 below presents the integral of the average 

absolute error <IAAE> of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.12. Two runs were made utilizing each of the 

statistical filters described above. 

TABLE 6-7 

IAAE; UNIT STEP DISTURBANCE; CAD=0.12, T~5.0 

Filtering Device 

EWMA<0.2> EWMA< 1. 0) MAMR IMR 

----··----.. ·---·-·---·-··-·---·----·-· .. -·-···-----·--·····-····--·-···--·-·······-··-·····-················-········· .. -···········-

Run 1 0.25884 0.25878 0.20287 0.17397 

Run 2 0.25519 0.25952 0.19288 0.15121 

AVG 0.25702 0.-:25915 0.19787 0.16259 

The average output of the chemical reactor using the 

EWMA<0.2>, EWMA<l.O>, MAMR, and IMR filters are shown below 

in Figures 6-7A, 6-7B, 6-7C, and 6-7D, respectively. 
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Table 6-8 below presents the integral of the average 

absolute error <IAAE> of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.20. Two runs were made utilizing each of the 

statistical filters described above. 

TABLE 6-8 

IAAE; UNIT STEP DISTURBANCE; CAD=0.20, T~5.0 

Filtering Device 

EWMA <0. 2) EWMA < 1. O> MAMR IMR 

Run 1 0.26171 0.25196 0.19054 0.17097 

Run 2 0.26882 0.25292 0.18761 0.16330 

AVG 0.26527 0.25244 0.18907 0.16713 

The average output of the chemical reactor is using the 

EWMA<0.2), EWMA<1.0), MAMR, and IMR filters are shown below 

in Figures 6-BA, 6-BB, 6-8C, and 6-BD, respectively. 
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Table 6-9 below presents the integral of the average 

absolute error <IAAE> of two runs of the simulation 

described above for the ramp input disturbance of slope 

0.12. Two runs were made utilizing each of the statistical 

filters described above. 

TABLE 6-9 

IAAE; RAMP DISTURBANCE; CAD=0.12CT-5.0)~ Tl5.0 

Filtering Device 

EWMA <0. 2> EWMA < 1. 0) MAMR IMR 

Run 1 0.32838 1.21752 0.99529 0.30085 

Run 2 0.33589 1. 21351 0.98680 0.31617 

AVG 0.33214 1._;21552 0.99104 0.30851 

The average output of the chemical reactor using the 

EWMAC0.2), EWMA<1.0>, MAMR, ~nd IMR filters are shown below 

in Figures 6-9A, 6-9B, 6-9C, and 6-9D, respectively. 
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Table 6-10 below p~esents the integ~al of the average 

absolute erro~ <IAAE> of two runs of the simulation 

described above fo~ the ramp input disturbance of slope 

0.20. Two runs were made utilizing each of the statistical 

filters desc~ibed above. 

TABLE 6-10 

IAAE; RAMP DISTURBANCE; .CAD=O. 20 <T-5. O> ~ T2:.5. 0 

Filtering Device 

EWMA<0.2> EWMA ( 1. 0) MAMR IMR 

Run 1 0.51867 2.02332 1. 50764 0.50349 

Run 2 0.51876 2.02108 1.53169 0.51889 

AVG 0.51872 2.()2220 1.51966 0.51119 

The average output of the chemical ~eactor using the 

EWMA<0.2>, EWMA<1.0), MAMR, and IMR filters are shown below 

in Figures 6-lOA, 6-lOB, 6-10C, and 6-10D, ~espectively. 
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Statistical P~ocess Cont~ol Filte~s with 

Individuals P~efilte~ing 
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The statistical p~ocess cont~ol <SPC> filte~s a~e the 

exponentially weighted moving average filter with parameter 

~, EWMAC~l, the moving ave~age and moving range filter with 

parameter, MAMR, and the individuals and moving ~ange 

filter, IMR, and in each case the individuals prefilte~, 

IPRE, is employed. As discussed in Chapter V, this research 

uses values of 0.2 and 1.0 for « for the EWMA<«> filter. 

The chemical reactor is simulated utilizing a given 

filtering device <with a known parameter value) and type of 

disturbance for 100 replications of sixty minutes of plant 

operation time. The types of input disturbances for CAD 

utilized in the research were the unit step of magnitudes 

0.0, 0.12, and 0.2 for the-values of CAD, and ramp functions 

with the slope of 0.12 and 0.2 for the values of CAD. The 

disturbance is not introduced until five minutes have 

elapsed allowing the reactor sufficient time to reach a 

stable condition. The standard deviation of the noise 

introduced in the feedback control loop is 0.005, and the 

pa~ameters of the reactor and PID controller are as 

described in Chapter IV. 

Table 6-11 below presents the integral of the average 

absolute error <IAAE> of two runs of the simulation 

described above for the situation in which there is no input 



:i.:l5 

disturbance. Two runs were made utilizing each of the 

statistical filters and prefilter combinations as described 

above. 

TABLE 6-11 

IAAE; UNIT STEP DISTURBANCE; CAD=O.O~ T2:.5.0 

Run 1 

Run 2 

AVG 

EWMA<0.2> 
IPRE 

0.01140 

0.01287 

0.01214 

--·--·---

Filtering Combination 

EWMA ( 1. 0) 
IPRE 

0.01241 

0.01228 

0.01235 

MAMR 
IPRE 

0.01251 

0.01231 

0.01241 

It-1R 
IF'RE 

0.00891 

0.00872 

0.00882 

The average output of the chemical reactor using the 

EWMAC0.2)/IPRE~ EWMA<l.Ol/IPRE, MAMR/IPRE, and IMR/IPRE 

filters/prefilter combinations are shown below in Figures 

6-llA, 6-11B~ 6-11C, and 6-110~ respectively. 
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Table 6-12 below presents the integral of the average 

absolute error <IAAE) of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.12. Two runs were made utilizing each of the 

statistical filters and prefilter combinations as described 

above. 

TABLE 6-12 

I AAE; UNIT STEP DISTURBANCE; CAD=O. 12, L: 5. 0 

Run 1 

Run 2 

AVG 

EWMA <0. 2) 
IPRE 

0.04845 

0.05071 

0.04958 

Filtering Combination 

EWMA < 1. 0) 
IPRE 

0.05002 

0.04938 

0.04970 

MAMR 
IPRE 

0.05030 

0.04793 

0.04912 

It1R 
IPRE 

0.04973 

0.04744 

0.04859 

The average output of the chemical reactor using the 

EWMA<0.2)/IPRE, EWMA<l.OJ/IPRE, MAMR/IPRE, and IMR/IPRE 

filters/prefilter combinations are shown below in Figures 

6-12A, 6-12B, 6-12C, and 6-120, respectively. 
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Table 6-13 below presents the integral of the average 

absolute error <IAAE) of two runs of the simulation 

described above for the unit step input disturbance of 

magnitude 0.20. Two runs were made utilizing each of the 

statistical filters and prefilter combinations as described 

above. 

TABLE 6-13 

IAAE; UNIT STEP DISTURBANCE; CAD=0.20~ T~5.0 

Run 1 

Run 2 

AVG 

EWMA<0.2> 
IPRE 

0.04570 

0.04695 

0.04633 

Filtering Combination 

EWMA < 1. 0) 
IPRE 

0.04519 

0.04863 

0.04691 

MAMR 
IPRE 

0.04587 

0.04782 

0.04685 

IMR 
IPRE 

0.04388 

0.04473 

0.04431 

The average output of the chemical reactor using the 

EWMAC0.2)/IPRE, EWMA<1.0)/IPRE, MAMR/IPRE, and IMR/IPRE 

filters/prefilter combinations are shown below in Figures 

6-13A, 6-13B, 6-13C, and 6-130, respectively. 
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Table 6-14 below presents the integral of the average 

absolute error CIAAE) of two runs of the simulation 

described above for a ramp input disturbance of slope 0.12. 

Two runs were made utilizing each of the statistical filters 

and prefilter combinations as described above. 

TABLE 6-14 

IAAE; RAMP DISTURBANCE; CAD=0.12CT-5.0)~ T~5.0 

Run 1 

Run 2 

AVG 

EWMAC0.2> 
!PRE 

0.05497 

0.05528 

0.05513 

Filtering Combination 

EWMAC1.0) 
!PRE 

0._96060 

0.06253 

0.06157 

MAMR 
IPRE 

0.06117 

0.05954 

0.06036 

IMR 
!PRE 

0.04731 

0.04773 

0.04752 

The average output of the chemical reactor is using the 

EWMAC0.2)/IPRE, EWMA<1.0)/IPRE, MAMR/IPRE, and IMR/IP~E 

filters/prefilter combinations are shown below in Figures 

6-14A, 6-14B~ 6-14C, and 6-140, respectively. 
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Table 6-15 below presents the integral o~ the average 

absolute error <IAAE> of two runs of the simulations 

described above for a ramp input disturbance of slope 0.20. 

Two runs were made utilizing each of the statistical filters 

and prefilter combinations as described above. 

TABLE 6-15 

I AAE; RAMP DISTURBANCE; CAD=O. 20 (T -5~;''~"r, T £.5. 0 

Run 1 

Run 2 

AVG 

EWMA(0.2) 
IPRE 

0.03704 

0.03718 

0.03711 

Filtering Combination 

EWMA < 1. 0) 
IPRE 

0.04639 

0.04771 

0.04705 

MAMR 
IPRE 

0.04195 

0.04241 

0.04218 

IMR 
IPRE 

0.03495 

0.03200 

0.03348 

The average output of the chemical reactor using the 

EWMA<0.2)/IPRE, EWMAC1.0)/IPRE, MAMR/IPRE, and IMR/IPRE 

filters/prefilter combinations are shown b~ in Figures 

6-15A, 6-15B, 6-15C, and 6-150, respectively. 
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CHAPTER VII 

SUMMARY 

Introduction 

This Chapter represents the discussion of the results 

presented in the Chapter VI and the direction of future 

research in this field. This research has provided an 

indication of the compatibility between statistical process 

control and classical control systems techniques and their 

potential to complement each other when used in the same 

control situation. Even though the preceding research is 

-based on an unique process, general conclusions can be made 

regarding the combination of the two fields. 

Conclusions 

Chapter VI presents the information around which the 

following discussion is based. The objective of this 

research is to apply statistical process control <SPC> 

within the realm of control systems and to evaluate the 

quality of a control scheme utilizing various statistical 

process control and conventional filtering methods. The 

application of statistical process control within the realm 

of control systems is achieved by applying SPC as filtering 
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devices within the feedback control loop as demonstrated in 

Chapter V and VI. 

The conventional filters used are the exponential 

filter~ the least squares filter, and the non-linear 

exponential filter, and the SPC filtering techniques are the 

exponentially weighted moving average filter~ the moving 

average and moving range filter, and the individuals and 

moving range filter. Additionally, individuals prefiltering 

is used in conJunction with the SPC filtering techniques in 

an attempt to reduce the time lag required to detect a 

change in the process when using only SPC filtering 

techniques. 

A computer system is developed which models three 

serial continuous stirred-tank reactors <CSTRs> where 

conventional proportional/i~tegral/derivative <PID> control 

is employed utilizing the Ziegler and Nichols (1942) tuning 

formulas based on a decay ratio of one fourth. Random noise 

is introduced within the feedback control loop, and it is 

the goal of the filtering device employed within the 

feedback control loop to remove or attenuate the noise. The 

ideal output of the filter would be the true output of the 

process. The desired theoretical response of the system or 

the desired targeted output of the system is the response of 

the system to a known input disturbance in which no noise is 

introduced within the feedback control loop. 

The amount of variation of the output about the target 

value is measured by observing the average output of the 



process over time. 

shown in Chapter 6. 

Plots for each filtering device are 

Additionally, a measure of performance 

is developed in Chapter 5 which is similar to the Integral 

of the Absolute Value of the Error <IAE) used in control 

theory research <Smith and Corripio (1985)). The measure of 

performance developed is the Integral of the Average 

Absolute Error <IAAE>, and this value is shown in Chapter 6 

for each filtering device employed. 

Figures 6-l<A-F>, 6-2<A-F>, 6-3(A-F>, 6-4(A-F>, and 

6-5(A-F> represent the average response of the system using 

the conventional filters when a unit step disturbance of 

magnitude 0.0, unit step disturbance of magnitude 0.12, unit 

step disturbance of magnitu9e 0.20, ramp disturbance of 

slope 0.12, and ramp disturbance of slope 0.20 are applied 

to the system, respectively. Tables 6-1, 6-2, 6-3, 6-4, and 

6-5 provide the IAAE for a unit step disturbance of 

magnitude 0.0, unit step disturbance of magnitude 0.12, unit 

step disturbance of magnitude 0.20, ramp disturbance of 

slope 0.12, and ramp disturbance of slope 0.20, 

respectively, when conventional filtering devices are used. 

As shown in Table 6-1, the performance of the 

conventional filtering devices is close to the same for the 

conventional filters when no disturbance is applied to the 

system. It is interesting to note that the exponential 

filter with parameter P set equal to zero is equivalent to 
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doing no filtering to the signal being transmitted through 

the feedback control loop. A slight improvement in 

performance may be achieved by utilizing the least squares 

filter, with the exponential filter following closely 

behind. The non-linear exponential filter provides the 

poorest performance of the conventional filters when no 

disturbance is applied to the process. As the parameters of 

the conventional filtering devices change, there is only a 

small change in the resulting IAAEs. This result is due to 

the fact that the system modeled is slow. If the process 

was faster, the resulting differences would be more 

pronounced. 

The plots of the average outputs while utilizing 

various filtering devices when no disturbance is applied to 

the system <see Figures 6-lCA-F>> indicate that little 

observable difference can be distinguished as the parameters 

of a given filter are changed or the type filtering is 

changed. This result is indicative of the fact that this 

process is very slow to changes in the system. 

As medium to large unit step disturbances are 

introduced to the system when conventional filtering devices 

are used, the resulting randomness of the output system is 

hidden by the change of output due to the disturbance. By 

observing the resulting IAAEs (see Tables 6-2 and 6-3>, the 

improvement of the least squares filter over the exponential 

filter becomes less pronounced due to the tendency of the 

least squares filter to _overshoot the true process signal 



<Exxon~ 1977). The non-linear exponential filter provides 

the poorest performance. As is the case when no disturbance 

is introduced to the system, the effect of changing the 

parameters of a given filtering device appear to have little 

impact on the resulting IAAEs. The plots of the average 

output while utilizing various filtering devices when medium 

to large disturbances are applied to the system <see Figures 

6-2(A-F> and 6-3(A-F>> indicate that little observable 

difference can be distinguished as the parameters of a given 

filter are changed or the type filtering is changed. The 

resulting randomness of the average output of the system is 

hidden by the change of output due to the magnitude of the 

disturbance. 

The tables of 6-4 and 6-5 provide an indication that 

there exists no measurable~ifference in the calculated 

IAAEs when either the exponential filter or the least square 

filter is used, and the process is disturbed with a ramp 

disturbance. The non-linear exponential filter offers the 

poorest performance of the conventional filters. 

Figures 6-4<A-F> and 6-5<A-F> indicate that little 

observable difference can be distinguished as the parameter 

of a given filter is changed or the type filtering is 

changed. The resulting randomness of the average output of 

the system is hidden by the change of output due to the ramp 

disturbance. The PID control of the system appears to be 

close to the desired theoretical response which results in a 

slight offset of the output. 



l S5 

Figures 6-6\A-F>, 6-7(A-F), 6-B<A-F>, 6-9<A-F>, and 

6-10<A-F> represent the average response of the process when 

utilizing the statistical process control <SPC> filters when 

a unit step disturbance of magnitude 0.0~ unit step 

disturbance of magnitude 0.12, unit step disturbance of 

magnitude 0.20, ramp disturbance of slope 0.12, and ramp 

disturbance of slope 0.20, respectively. Tables 6-6, 6-7, 

6-8, 6-9, and 6-10 provide the IAAE for a unit step 

disturbance of magnitude 0.0, unit step disturbance of 

magnitude 0.12, unit step disturbance of magnitude 0.20~ 

ramp disturbance of slope 0.12, and ramp disturbance of 

slope 0.20, respectively, when SPC filters are employed. 

As observed in Table 6-6, the IAAEs for the SPC filters 

are improved over conventional filters of Table 6-1. This 

result is as expected due to the design of statistical 

process control. Statistical process control is designed 

such that the Type I errors are controlled. Therefore, when 

the process is running in a SOSC, the controller input is 

zero, since there is no random error passed to the process. 

When random error is passed to the controller, additional 

variation of the process output will result. The EWMA chart 

with a=0.25 has an average run length (ARL) of 502.9 

<Crowder, 1987) when the process average is unchanged which 

indicates that very few false alarms, if any at all, would 

be expected for these simulations. Therefore, the average 
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response is very near the set point~ and this is the case as 

shown in Figure 6-6A. 

The ARL for the MAMR chart is 99.27 <see Table 3-2)~ 

and the ARL for IMR chart is 59.26 (see Table 3-3). 

Therefore, an increasing number of false alarms would result 

from the change from an EWMA filter with a=0.2 to an MAMR 

filter or an IMR filter. This observation would result in 

the random signal being fed to the controller more often 

resulting in a more variable average output. This can be 

seen in either Figure 6-6C or 6-6D. When a=l.O for the 

EWMA filter~ the resulting filter is simply an individuals 

filter with rule 1 of the AT&T rules (see Chapter 3 or 

Chapter 5) employed. The ARL for the individuals chart when 

the process average is left unchanged is 370.40 <Crowder~ 

1987). Therefore, the numb~r of false alarms is more than 

the EWMA chart with a=0.2 and less than the MAMR or IMR 

chart. Therefore, the average output of a process using 

EWMA filtering with a=l.O would appear smoother than the 

average output of a system using either MAMR or IMR 

filtering. This is shown in Figure 6-6B. 

Based 'on the observations above, the SPC f i 1 ters waul d 

be preferred over the conventional filters. This statement 

assumes that no disturbance has been introduced to the 

process. 

Once the process is subjected to a disturbance, the 

conventional filters perform better than the SPC filters~ 

as shown by compa~ing the resulting IAAEs from Tables 6-7~ 
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6-B, 6-9, and 6-10 to 6-2, 6-3, 6-4, and 6-5, respectively. 

This is due to the time lag required by the SPC filters to 

detect a process change. The conventional filters respond 

quicker since all changes \random or deterministic process 

disturbances) are reacted upon immediately. Therefore, if 

given the situation that a process disturbance has occurred, 

the conventional filters would be preferred over the SPC 

filters based on the value of the IAAEs. These results can 

be verified by viewing figures 6-7<A-D>, 6-B<A-Dl, 6-9(A-D), 

and 6-10CA-D> by noting the deviation from the average 

output to the theoretical output <or target>. This large 

difference stems from the time required for the SPC filter 

to detect the process disturbance. The input disturbance is 

passed through three first order lags before it can be 

detected at the output of t~e process, which results in a 

large time delay before the disturbance is detected by the 

SPC filters. Additionally, if the disturbance is not 

detected at the first sample, it is 6.5 minutes until the 

next sample will be collected. This results in additional 

time delay in the detection of the process disturbance. 

The EWMA filter with ~=1 results with an average offset 

in the average output (see Figure 6-7B>. The offset is 

reduced when ~ is reduced to 0.2 <Figure 6-7A) and 

practically eliminated when the IMR filter is employed 

<Figure 6-70). Since additional .historical information is 

being included at each sample (i.e., as~ is reduced, more 

historical information is included; or as runs rules are 



employed, more historical information is included), the 

probability of detecting small shifts is improved <see 

Tables 3-1, 3-2, and 3-3). 

It is interesting to note that in the application of 

SPC filters alone the resuiting response of the process 

behaves much like an open loop system due to the time 

required to detect the disturbance immediately following the 

disturbance. The average output of the process is 

approaching the steady state, open loop response when 

subjected to an unit step disturbance for all four SPC 

filters (see Figures 6-7(A-D> and 6-B<A-D)) by the time that 

the second sample is collected <t=13.0 minutes). 

When the process disturbance is a ramp disturbance, the 

resulting IAAEs show that the conventional filters are 

preferred over the SPC filt~rs <see Tables 6-9 and 6-10>. 

The average outputs of the EWMA filter with a=1.0 and the 

MAMR filter are cyclic (see Figures 6-9B, 6-9C, 6-lOB~ and 

6-10C>. This result stems from the inability of either the 

EWMA filter with a=1 (which is an individuals filter with 

only rule 1 of the AT&T rules employed) or the MAMR chart to 

detect trends in the process output. On the other hand, 

both the EWMA filter with a=0.2 and the IMR filter can more 

quickly detect trends (see Figures 6-9A, 6-9D, 6-lOA, and 6-

100). Therefore~ if an SPC filter is used, the EWMA filter 

with a small a or the IMR filter will provide protection 

against offsets or cyclic behavior of the average output of 

the process. 



Figures 6-11CA-F>~ 6-12<A-F>~ 6-13(A-F>, 6-14<A-F>, and 

6-15<A-F) represent the average response of the process 

utilizing the SPC filters in conjunction with the 

individuals prefiltering when the process is disturbed with 

a unit step disturbance of magnitude 0.0~ a unit step 

disturbance of magnitude 0.12, a unit step disturbance of 

magnitude 0.20, a ramp disturbance of slope 0.12, and a ramp 

disturbance of sldpe 0.20, respectively. Tables 6-11, 6-12, 

6-13~ 6-14, and 6-15 provide the IAAE for a unit step 

disturbance of magnitude 0.0, unit step disturbance of 

magnitude 0.12~ unit step disturbance of magnitude 0.20, 

ramp disturbance of slope 0.12, and ramp disturbance of 

-
slope 0.20, respectively, when SPC filters are used in 

conjunction with individuals prefiltering. 

When the process utilizing SPC filtering and 

individuals prefiltering is subjected to no input 

disturbance~ the resulting IAAEs are less than the IAAEs 

obtained while using conventional filtering (contrast Tables 

6-1 and 6-11> and greater than the resulting IAAEs when 

using SPC filters alone (contrast Tables 6-6 and 6-11). 

These results are based on the 4act that an increased number 

of false alarms are made when the individuals prefiltering 

is added to the SPC filters which results in a more variable 

average output than the average output observed when SPC 

filters are used alone <compare Figures 6-11CA-D> to Figures 



6-6CA-D>>. The resulting output, however, is not as 

variable as the average output when conventional filtering 

is used <compare Figures 6-ll(A-D) to Figures 6-l(A-D>>. 

Once an input disturbance is introduced to the system~ 

the individuals prefiltering provides a quicker response to 

the disturbance than when SPC filters are used alone, since 

the data are collected more often. The resulting IAAEs 

listed in Tables 6-12, 6-13, 6-14~ and 6-15 indicate an 

improvement over the situations in which SPC filtering is 

used alone (see Tables 6-7, 6-8, 6-9, and 6-10). The 

improvement made, however, does not make the results better 

than the results collected when conventional filtering 

techniques are used <see Tables 6-2, 6-3, 6-4. and 6-5>. 

When SPC filtering techniques are used in conjunction with 

individuals prefiltering, the resulting IAAE is on the order 

of 1.75 to 2.5 times as large (based on best and worse case 

results of IMR filtering with individuals prefiltering). 

Therefore, when SPC filters are used in conjunction with 

individuals prefiltering, the resulting Iaaes are more 

competitive but not better than the resulting IAAEs achieved 

when conventional filtering is used. 

The average output of the process using SPC filtering 

with individuals prefiltering is similar to the results 

achieved with SPC filtering alone. By comparing Figures 

6-12CA-D> and 6-13CA-D) to 6-7CA-D> and 6-SCA-D>, 

respectively, it is easily recognized that the improvement 

in the IAAEs is due to the improved response time to 
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detecting the process disturbance. Additionally, the offset 

behavior of the EWMA filter with large alphas and MAMR 

filters is eliminated due to the use of the individuals 

prefilter, since the data are more often collected and the 

number of opportunities to detect slight changes in the 

process are increased. 

When SPC filters are used in conjunction with 

individuals prefiltering and the process input is subjected 

to a ramp disturbance, a cyclic behavior results (see 

Figures 6-14(A-D) and 6-15<A-0)). This result is based on 

the overpowering impact of the individuals prefilter, since 

data are collected so often. The disturbance is detected 

quickly, and once the disturbance is detected, the logic of 

the individuals prefilter requires that 10 minutes must pass 

before the process will be ~ampled again. At that point, 

the PID control has returned the process output close to 

desired set point, and the individuals prefilter does not 

immediately detect the continued ramp disturbance. This 

condition continues until sufficient time has passed such 

that the change in the process input is large enough to be 

detected. The overall impact of these filtering 

combinations is a cyclic behavior which has a period of 10 

minutes plus the incremental amount of time required to make 

subsequent detections of the process disturbance. 

In conclusion, when SPC filters are used in combination 

with individuals prefiltering, the resulting IAAEs are 

larger than the IAAEs that would have been achieved if 
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conventional filtering had been utilized. This statement is 

based on assumption that the process is disturbed. If no 

disturbance is in the process~ smaller IAAEs are achieved 

when either SPC filtering is used alone or SPC filtering is 

used in conjunction with individuals prefiltering. 

Future Research 

Even though the results of this research are not 

completely in favor of SPC filtering over the conventional 

filtering techniques~ the potential for research in the 

field is very good. For example~ all of the parameters of 

the SPC filtering techniques have been set at single values. 

Improved performance may be achieved if the control limits 

of the SPC filters are reduced to values less than three 

standard deviations. Additjonally~ the use of SPC filters 

in conjunction with conventional filters could be evaluated. 

The measures of performance used in this research are 

based on the amount of variability of the average response 

about the response of the system when no noise is introduced 

into the feedback control loop. There is the potential of 

considering economic tradeoffs between false alarms and the 

time lag required to detect and correct a process change. 

Additionally~ future work should include the analysis 

of results utilizing optimal control type designs. One of 

the more popular optimal design methods is the use of the 

Kalman Filter <see Astrom and Wittenmark~ 1984). The Kalman 

filter minimizes the variance of the estimation error 



assuming the noise is Gaussian. Successful application of 

SPC filters implies that they must perform as well as or 

better than conventional filtering devices and the optimal 

design techniques. 

The clearest problem of the SPC filters is their 

inability to respond quickly. In general, when correctly 

applied, a cascaded system makes the overall loop more 

stable and faster responding <see Smith and Corripio~ 1985). 

The cascaded system has been introduced in Chapter 1 but not 

fully developed within the realm of this research. It is 

strongly indicated through this research that if the 

response time of the SPC filters could be improved, the 

resulting IAAEs would also improve. A cascaded control 

scheme would appear to achieve favorable results. A 

possible implementation of cascaded control is shown in 

Figure 7-1 below. 

CAD 

Cl C2 Tl T2 T3 

CA::s••t. + E CAM1 CAM:z CAo CAz CA::5 

where: Tl = Tank 1 
T2 = Tank 2 
T3 = Tank ...,.. . ..;. 
C1 = Primary Controller 
C2 = Secondary Controller 

Figure 7-1. Potential Implementation of Cascaded Control 



For the implementation of cascaded control both 

controllers would need to be tuned based on the analytical 

characteristics of the system, and the research to study the 

performance of the system would require that a new computer 

system be developed. SPC filters could be employed on both 

the primary and secondary loops. 

Additional work could be completed using other types of 

disturbances such as limited ramps, sinusoids, triangular, 

and other periodic functions. Additionally, the performance 

of the control loop is dependent upon the magnitude of the 

noise. Research relating the magnitude of the noise to the 

control scheme~s ability to correct the process could be 

achieved. 
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APPENDIXES 



APPENDIX A 

LISTING OF PROGRAMS USED TO DETERMINE 

AVERAGE RUN LENGTHS 

l ~.:! 1 



//Ul1226A JOB <11226,123-12-3123>,'JRE',CLASS=4,TIME=<59~0). 

II MSGCLASS=X,NOTIFY=* 
!*PASSWORD ???? 
I*JOBPARM.ROOM=N 
/*ROUTE PRINT LOCAL 
II EXEC FORTVCLG 
//FORT.SYSIN DO * 
c 
c 
c 
c 
c 

c 

THIS PROGRAM IS DESIGNED TO DETERMINE THE ARL/MAT 
FOR THE EWMA CHART WHEN THE PROCESS IS DISTURBED WITH 
EITHER A UNIT STEP DISTURBANCE OR LINEAR TREND 

DOUBLE PRECISION DSEED,SUM,MAT 
REAL NUM,LCL,NMEAN,MEAN,K 
READ *,MEAN,STD,N 
PRINT *,'ORIGINAL PROCESS MEAN ',MEAN 
PRINT *,'ORIGINAL PROCESS STANDARD DEVIATION ',STD 
PRINT *,'THE# OF TRIALS '.N 

C THE ALPHA VALUE 
c 

c 

ALF'HA=O.O 
DSEED=8064697. 
PRINT * 

C LOOP TO RUN SIMULATIONS FOR 
C VARIOUS ALPHAS 
c 

c 

DO 400 I1=1,5 
K=-0.1 
ALPHA=ALPHA+0.2 

C THE DETERMINATION OF CONTROL LIMITS 
c 

c 

C=ALPHA/(2.-ALPHA) 
D=SQRT<C> 
E=3*STD*D 
UCL=MEAN+E 
LCL=MEAN-E 
DO 500 I2=1.14 

C DIFFERENT SHIFTS IN THE MEAN 
c 

c 

IF <K.GE.l.OJ K=K+0.5 
IF C(K.LT.1.0J.AND. <K.GE.0.5l) K=K+0.25 
IF <K.LT.0.5) K=K+O.l 

SUM=O.O 

C LOOP FOR EACH RUN OF A SIMULATION 
c 

DO 200 I=1,N 
EWMA=MEAN 
SHIFT=K*STD 
NUM=O 



50 Z=GGNQF(DSEED>¥STD+MEAN+SHIFT 
c 
C = K*STD FOR UNIT STEP 
c 

c 

SHIFT=SHIFT+K*STD 
EWMA=ALPHA*Z+(l-ALPHA>*EWMA 

C TEST FOR STATISTICAL CONTROL 
c 

IF <<EWMA.GE.LCL>.AND. <EWMA.LE.UCL>> THEN 
c 
C COUNT OF SAMPLES 
c 

c 

NUM=NUM+l 
GO TO 50 

ELSE 
NUM=NUM+1 

C SUM TOTAL OF ALARMS 
c 

c 

SUM=SUM+NUM 
END IF 

200 CONTINUE 
X=N 

C CALCULATION OF THE ARL/MAT 
c 

MAT=SUM/N 
WRITE <6,300) ALPHA,K.MAT 

300 FORMAT <lX,'THE WEIGHTING FACTOR= '•F10.2/ 
$ lX,~K STD DEV INC IN MEAN EA SAMPLE= '~F10.2/ 
$ 1X,'MAT = '•F10.41/) 

500 CONTINUE 
400 CONTINUE 

STOP 
END 

1/GO.SYS STOP 
END 

IIGO.SYN DO * 
50,10,10000 
II 



//U11226A JOB C11226~123-12-3123>."JRE•,cLASS=4~TIME=C30,0)~ 

II MSGCLASS=X,NOTIFY=* 
!*PASSWORD ???? 
I*JOBPARM ROOM=N 
!*ROUTE PRINT LOCAL 
II EXEC FORTVCLG 
//FORT.SYSIN DD * 
c 
c 
c 
c 
c 

THIS PROGRAM IS DESIGNED TO DETERMINE THE ARL/MAT 
FOR THE MAMR CHART COMBINATION WHEN THE PROCESS IS 
DISTURBED WITH EITHER A UNIT STEP OR LINEAR TREND 
DISTURBANCE 

c 

c 

DOUBLE PRECISION DSEED,SUM,MAT 
REAL NUM,LCLX.MEAN,K 
READ *,MEAN,STD,N 
PRINT *,.ORIGINAL PROCESS MEAN 
PRINT *•~ORIGINAL PROCESS STANDARD DEVIATION 
PRINT *•"THE ~OF TRIALS 
PRINT * 
DSEED=8064697. 

C DETERMINE THE CONTROL LIMITS 
c 

c 

E=<3*STD>ISQRT<2.0) 
UCLX=MEAN+E 
LCLX=MEAN-E 
UCLR=C1.128+3*C.853>>*STD 
K=-0.1 

C LOOP FOR DIFFERENT SIZE SHIFTS 
c 

c 

DO 500 12=1,14 
IF CK.GE.l.O> K=K+0.5 
IF C CK. LT. 1. 0). AND. <1<. GE. 0. 5)) K=K+O. 25 
IF CK.LT.0.5) K=K+O.l 

SUM=O.O 
DO 200 I=l.N 

X=MEAN 
SHIFT=K*STD 
NUM=O 

50 Z=GGNQF<DSEED>*STD+MEAN+SHIFT 

• ,l"'iEAN 
• ~ STD 
• • N 

C = K*STD FOR UNIT STEP 
c 
c 
C DETERMINATION OF CURRENT MA AND R 
c 

c 

XBAR=<Z+X)/2 
R=ABS <Z-X> 

X=Z 
SHIFT=SHIFT+K*STD 

C DETERMINE IF PROCESS IS IN CONTROL 



l t:::- ~:;,-

J, 'n•-''.,} 

c 
IF <<XBAR.GE.LCLX~.AND. <XBAR.LE.UCLX>.AND. (R.LE.UCLR>J 

$THEN 

c 

NUM=NUM+1 
GO TO 50 

ELSE 
NUM=NUM+1 

C COUNT OF TOTAL ALARMS 
c 

c 

SUM=SUM+NUM 
END IF 

200 CONTINUE 
X=N 

C DETERMINE THE MAT/ARL 
c 

MAT=SUM/X 
WRITE <6,300) K,MAT 

300 FORMAT C1X,'K STD DEV INC IN MEAN EA SAMPLE= ".F10.2/ 
$ lX,'MAT = '.F10.4//) 

500 CONTINUE 
STOP 
END 

//GO.SYSIN DD * 
50,10,10000 
II 



-
//U11226A JOB <11226.123-12-3123).'JRE'.CLASS=4.TIME=C59.0)• 
II MSGCLASS=X,NOTIFY=* 
/%PASSWORD ???? 
I*JOBPARM ROOM=N 
!*ROUTE PRINT LOCAL 
II EXEC FORTVCLG 
/IFORT.SYSIN DD * 
c 
c 
c 
c 
c 

c 

THIS PROGRAM IS DESIGNED TO DETERMINE THE ARLIMAT 
FOR THE IMR CONTROL CHART COMBINATION WHEN THE PROCESS 
IS SUBJECTED TO A UNIT STEP OR LINEAR TREND DISTURBANCE 

DIMENSION XBAR<B> 
INTEGER UPRUN<B>.DNRUN<B> 
INTEGER 

$RUNL,TOTRUN,TUPRUN,TDNRUN,RULE,ABOVE,BELOW,COUNT 
INTEGER FLAG1,FLAG2,FLAG3,FLAG4.FLAGC 
REAL MEAN,K 
DOUBLE PRECISION DSEED,MAT 
DSEED=8064697. 
READ *,MEAN,STD,N 
PRINT *•'ORIGINAL PROCESS MEAN ',MEAN 
PRINT *•'ORIGINAL PROCESS STANDARD DEVIATION ',STD 
PRINT *•'THE NUMBER OF TRIALS ',N 

C DETERMINE THE APPROPRIATE ZONES FOR THE I CHART WHEN 
C THE AT&T RUNS RULES ARE USED 
c 

c 

UPlSIG=MEAN+STD 
UP2SIG=MEAN+2t:STD 
UP3SIG=MEAN+3t:STD 
DNlSIG=MEAN-STD 
DN2SIG=MEAN-2*STD 
DN3SIG=MEAN-3*STD 

C DETERMINE THE CONTROL LIMITS FOR THE MR CHART 
c 

c 

UCLR=C1.128+3*.853>*STD 
NSIMS=O 
TOTRUN=O 

K=-0.1 
DO 1 I1=1,14 

C LOOP TO DETERMINE THE SHIFT TO BE STUDIED 
c 

IF(K.GE.1.0) K=K+0.5 
IFC<K.LT.1.0>.AND.lK.GE.0.5)) K=K+0.25 
IFCK.LT.0.5) K=K+O.l 

NSIMS=O 
TOTRUN=O 

1000 SHIFT=I<*STD 
COUNT= 1000 SHIFT=I-<*STD 
FLAGl=O 
FLAG2=0 



c 

FLAG3=0 
FLAG4=0 
FLAGC=O 

2000 DO 2050 I=1~7 

XBAR<I>=GGNQFCDSEED>*STD+MEAN+SHIFT 

1 ".:i/ 

C = K*STD FOR UNIT STEP 
c 

IFCI.LE.l) R=ABS<XBAR<I>-MEAN> 
IF< I. GT. 1) R=ABS ( XBAR (I) -XBAR <I-1)) 

c 
C' CHECK MR CHART FOR CONTROL STATUS 
c 

c 

IFCR.GT.UCLR> THEN 
COUNT=COUNT+I-1 
GOTO 7000 

END IF 
SHIFT=SHIFT+K*STD 
UPRUNCI)=O 

C THE FOLLOWING LOGIC IS THE CODING NECESSARY TO EMPLOY 
C THE AT&T RUNS RULES. IT IS THE SAME AS THE CODING 
C INCLUDED IN APPENDIX B FOR THE SUBROUTINE FOR IMR 
C FILTERING 
c 

DNRUNCI)=O 
IFCXBARCI).GT.UPlSIG> UPRUN<I>=l 
IF<XBAR<I>.LT.DNlSIG> DNRUNCI>=l 

2050 CONTINUE 
IFCXBARC1).GT.UP3SIG.OR.XBAR<l>.LT.DN3SIG) THEN 

FLAGl=l 
GOTO 7000 

END IF 
COUNT=COUNT+l 
IF<XBARC2).GT.UP3SIG.OR.XBARC2>.LT.DN3SIG> FLAG1=1 
IF<XBAR<2>.GT.UP2SIG.AND.XBAR<l>.GT.UP2SIG> FLAG2=1 
IFCXBARC2).LT.DN2SIG.AND.XBAR(l).LT.DN2SIG> FLAG2=1 
IF <FLAGl. EQ. 1. OR. FLAG2. EQ. U GOTO 7000 
COUNT=COUNT+l 
IFCXBAR<3>.GT.UP3SIG.OR.XBAR<3>.LT.DN3SIG> FLAG1=1 
IFCXBARC3>.GT.UP2SIG.AND.XBARC2>.GT.UP2SIGJ FLAG2=1 
IF<XBARC3>.LT.DN2SIG.AND.XBAR<2>.LT.DN2SIG) FLAG2=1 
IFCXBAR<3>.GT.UP2SIG.AND.XBARC1).GT.UP2SIGJ FLAG2=1 
IFCXBARC3>.LT.DN2SIG.AND.XBAR<1J.LT.DN2SIG> FLAG2=1 
IFCFLAG1.EQ.l.OR.FLAG2.EQ.1) GOTD 7000 
COUNT=COUNT+l 
IFCXBARC4l.GT.UP3SIG.OR.XBARC4>.LT.DN3SIG) FLAG1=1 
IFCXBAR<4>.GT.UP2SIG.AND.XBAR<3>.GT.UP2SIG> FLAG2=1 
IF<XBARC4>.LT.DN2SIG.AND.XBARC3).LT.DN2SIG) FLAG2=1 
IFCXBARC4>.GT.UP2SIG.AND.XBARC2>.GT.UP2SIG> FLAG2=1 
IFCXBAR<4>.LT.DN2SIG.AND.XBARC2).LT.DN2SIG) FLAG2=1 
TUPRUN=UPRUNC1)+UPRUNC2)+UPRUNC3)+UPRUNC4) 
TDNRUN=DNRUNC1>+DNRUNC2J+DNRUNC3)+DNRUNC4) 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4J FLAG3=1 



c 

FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC.GT.O> GOTO 7000 
COUNT=COUNT+l 
IF<XBARC5J.GT.UP3SIG.OR.XBAR<5>.LT.DN3SIG> FLAG1=1 
IFCXBAR<5>.GT.UP2SIG.AND.XBAR<4>.GT.UP2SIG> FLAG2=1 
IF<XBARC5J.LT.DN2SIG.AND.XBAR<4>.LT.DN2SIG) FLAG2=1 
IFCXBAR<5>.GT.UP2SIG.AND.XBARC3).GT.UP2SIG> FLAG2=1 
IF<XBAR<5>.LT.DN2SIG.AND.XBAR(3).LT.DN2SIG) FLAG2=1 
TUPRUN=UPRUNC1)+UPRUNC2>+UPRUN(3)+UPRUN<4>+UPRUN<5) 
TDNRUN=DNRUN<l>+DNRUNC2)+0NRUN(3)+0NRUN(4)+0NRUN(5) 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4> FLAG3=1 
FLAGC=FLAG1+FLAG2+FLAG3 
IFCFLAGC.GT.O> GOTO 7000 
COUNT=COUNT+l 
IF<XBARC6>.GT.UP3SIG.OR.XBAR<6>.LT.DN3SIG> FLAG1=1 
IF<XBAR<6>.GT.UP2SIG.AND.XBAR<5>.GT.UP2SIG> FLAG2=1 
IFCXBAR<6>.LT.DN2SIG.AND.XBAR<5>.LT.DN2SIG> FLAG2=1 
IF<XBAR<6J.GT.UP2SIG.AND.XBAR<4>.GT.UP2SIG> FLAG2=1 
IF<XBARC6J.LT.DN2SIG.AND.XBAR<4>.LT.DN2SIG) FLAG2=1 
TUPRUN=UPRUN<2>+UPRUN(3)+UPRUN<4>+UPRUN<5>+UPRUNC6) 
TDNRUN=DNRUN<2>+DNRUN<3J+DNRUN<4>+DNRUN<5>+DNRUN<6> 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4) FLAG3=1 
FLAGC=FLAG1+FLAG2+FLAG3 
IFCFLAGC.GT.O> GOTO 7000 
CDUNT=COUNT+l 
IF<XBAR<7>.GT.UP3SIG.OR.XBAR<7>.LT.DN3SIG) FLAGl=l 
IF<XBAR(7).GT.UP2SIG.AND.XBAR(6).GT.UP2SIG) FLAG2=1 
IFCXBAR<7>.LT.DN2SIG.AND.XBAR<6>.LT.DN2SIG> FLAG2=1 
IFCXBAR<7>.GT.UP2SIG.AND.XBAR<5>.GT.UP2SIG> FLAG2=1 
IFCXBAR<7J.LT.DN2SIG.AND.XBAR<5).LT.DN2SIG) FLAG2=1 
TUPRUN=UPRUNC3>+UPRUN(4)+UPRUNC5)+UPRUN(6)+UPRUN<7> 
TDNRUN=DNRUN<3>+DNRUN<4>+DNRUNC5)+DNRUN<6>+DNRUN(7) 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4> FLAG3=1 
FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC.GT.O) GOTO 7000 
COUNT=COUNT+1 

3000 XBAR<B>=GGNQFCDSEED>tSTD+MEAN+SHIFT 

C =K*STD FOR UNIT STEP 
c 

SHIFT=SHIFT+K*STD 
c 
C CHECK CURRENT DATA POINT FOR CONTROL STATUS 
c 

R=ABSCXBAR<S>-XBAR<?>> 
IFCR.GT.UCLR> GOTO 7000 

UPRUN<S>=O 
DNRUN<B>=O 
IF<XBARC8J.GT.UP1SIG) UPRUN<8>=1 
IF<XBAR<B>.LT.DN1SIG> DNRUN<B>=1 
IF<XBAR<B>.GT.UP3SIG.OR.XBAR<B>.LT.DN3SIG> FLAG1=1 
IF<XBARC8J.GT.UP2SIG.AND.XBAR<?>.GT.UP2SIG) FLAG2=1 
IFCXBARC8l.LT.DN2SIG.AND.XBAR~7>.LT.DN2SIG> FLAG2=1 
IF<XBAR<B>.GT.UP2SIG.AND.XBARC6J.GT.UP2SIG> FLAG2=1 



J <;:ir._1 

IF<XBAR<B>.LT.DN2SIG.AND.XBARC6).LT.DN2SIG> FLAG2=1 
TUPRUN=UPRUN<4>+UPRUN<5>+UPRUN<6>+UPRUN<7>+UPRUN<B> 
TDNRUN=DNRUN(4)+0NRUN<5>+DNRUN(6)+DNRUN<7>+DNRUN<B> 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4> FLAG3=1 

c 
c 

ABOVE=O 
BELOW=O 
DO 4000 Kl=l,B 

IF<XBAR<Kl>.GT.MEAN> ABOVE=ABOVE+l 
IF<XBARCKl>.LT.MEANl BELOW=BELOW+l 

4000 CONTINUE 
IF<ABOVE.EQ.B.OR.BELOW.EQ.B> FLAG4=1 
FLAGC=FLAG1+FLAG2+FLAG3+FLAG4 
IF CFLAGC. GT. O> GOTO 7000 

5000 COUNT=COUNT+l 
DO 6000 L=1,7 

M=L+l 
XBAR<L>=XBAR<M> 
UPRUN<L>=UPRUNCM> 
DNRUN<L>=DNRUN<M> 

6000 CONTINUE 
GOTO 3000 

C COUNT THE TOTAL OF ALARMS 
c 

c 

7000 RUNL=COUNT+1 
TOTRUN=TOTRUN+RUNL 
NSIMS=NSIMS+1 
IF<NSIMS.LT.N> GOTO 1000 

C DETERMINE THE MATIARL 
c 

8000 MAT=FLOAT<TOTRUN>IFLOAT<NSIMS> 
c 
C PRINT RESULTS 
c 

WRITE <6,9000) K,MAT 
9000 FORMAT <lX,~K STD DEV INC IN MEAN EA SAMPLE= ~,F10.21 

$ 1X."MAT = ~~F10.411) 
1 CONTINUE 

STOP 
END 

IIGO.SYSIN DD * 
50,10,10000 
II 



APPENDIX B 

LISTING OF PROGRAM USED TO IMPLEMENT 

AN UNIT STEP DISTURBANCE 
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//U12522A JOB (12522 1 123-12-3123l,'JRE',CLASS•4 1 TIME•<120,0l 1 

II MSGCLASS=X,MSGLEVEL•<l,ll,NOTIFY•* 
/*PASSWORD ???? 
I*JOBPARM ROOM=N, FORMS=2972, COPIES=O.Ol, LINECT•BB 
/*ROUTE PRINt LOCAL 
II EXEC FORTVCLG,GOREGN=5000K 
//FORT,SYSIN DO * 
c 
C MAIN PROGRAM 
c 
c 
c 
c 
c 
c 

THIS PROGRAM IS DESIGNED TO MODEL THE DYNAMICS OF 
THREE SERIAL CSTR'S, THE PROGRAM IS DEVELOPED SO THAT 
VARIOUS TYPES OF NOISE, INPUT DISTURBANCES, AND FILTERING 
TECHNIQUES CAI'II.,BE MODELLED 

C DESCRIPTION OF VARIABLES 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Al 
ALPHA 
B 
CAl 
CA2 
CA3 
CA3A 
CA3S 
CA3SET 
CA3SGID 
CA3T 
CAD 
CADD 
CAM 
CAMO 
DELTA 
DSEED 
ERINT 
ERRl 
ERR2 
FCA3 
I1 
IEXPFG 

IFIL 
IFLG 

IMRFLG 

IOCC 

IPFIL 

IPFIL 

LSFLAG 

MAFLG 

ARRAY OF ALPHAS FOR EWMA FILTERING 
CURRENT ALPHA BEING USED IN THE EWMA FILTERING 
BETA ARRAY FOR LS FILTERING 
OUTPUT OF TANK 1 
OUTPUT OF TANK 2 
OUTPUT OF TANK 3 
ACTUAL OUTPUT OF THE PROCESS 
SUM OF THE OUTPUTS AT A GIVEN POINT IN TIME 
SETPOINT OF THE OUPUT OF THE PLANT 
SUM OF THE SQUARED OUTPUTS AT A GIVEN POINT IN TIME 
ANALYTICAL OUTPUT, NO NOISE 
INPUT DISTURBANCE 
INPUT DISTURBANCE, THE ARRAY OF POSSIBLE DISTURBANCES 
OUPUT OF THE CONTROLLER 
CONTROLLER OUTPUT + INPUT DISTURBANCE 
TIME INCREMENT 
SEED OF THE RANDOM NUMBER GENERATOR 
INTEGRAL OF COUTPUT-SETPOINTl OVER TIME 
AVERAGE ABSOLUTE ERROR AT A GIVEN POINT IN TIME 
ABSOLUTE AVERAGE ERROR AT A GIVEN POINT IN TIME 
CURRENT FILTERED OUTPUT OF THE PLANT 
COUNTER OF DELTA TIME INCREMENTS 
FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST PASS 

TO THE EWMA FILTER 
FLAG DESIGNATING THE TYPE OF FILTERING TO BE USED 
FLAG DESIGNATING THE CURRENT STATISTICAL CONTROL OF THE 

STATISTICAL FILTER TO BE USED 
FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST PASS 

TO THE IMR FILTER 
FLAG DESIGNATING THE CURRENT STATISTICAL CONTROL OF THE 

I CHART PREFILTER 
FLAG DESIGNATING WHETHER OR NOT THIS IS THE FIRST PASS 

TO THE ICHART PREFILTER 
FLAG DESIGNATING WHETHER OR NOT I CHART PREFILTERING IS 

TO BE USED 
FLAG DESIGNATING 

LS FILTER 
FLAG DESIGNATING 

WHETHER THIS IS THE FIRST PASS OF THE 

WHETHER OR NOT THIS IS THE FIRST PASS 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

N 
N1 
NCOUNT 
NSIM 
p 
P1 
R 
R1 
RCA3 
SDEST 

STD 

STDCA3 
TAU 
TAUD 
TAUI 
TCONST 
TIME 
TRESP 

TSTOP 
XK 
XKC 
XKIJ 
z 
Z2 

TO THE MAMR FILTER 
CURRENT N OF THE LS FILTERING 
ARRAY OF N'S FOR LS FILTERING 
NUMBER OF DELTA TIMES IN EACH TSTOP 
NUMBER OF SIMULATIONS OF THE PLANT OF LENGTH TSTOP 
CURRENT P OF THE EXPONENTIAL FILTERING 
ARRAY OF P'S FOR EXPONENTIAL FILTERING 
CURRENT R OF THE NL EXP FILTERING 
ARRAY OF R'S FOR NL EXPONENTIAL FILTERING 
CURRENT OUTPUT OF PLANT WITH NOISE INCLUDED 
ESTIMATE OF THE STD DEV OF THE OUTPUT OF THE PLANT AT 

A GIVEN POINT IN TIME 
ESTIMATED STANDARD DEVIATION OF THE NOISE INDUCED IN THE 

FEEDBACK LOOP 
STANDARD DEVIATION OF THE OUPUT OF THE PLANT 
TIME CONSTANT OF ONE TANK 
DERIVATIVE TIME 
INTEGRAL TIME 
EFFECTIVE PROCESS REACTION TIME OF THE PLANT 
TIME 
ESTIMATED RESPONSE TIME OF THE PLANT ASSUMING A VERY 

LARGE INPUT DISTURBANCE 
DURATION OF A BINGEL SIMULATION 
GAIN OF ONE TANK 
CONTROLLER GAIN 
COEFFICIENTS OF THE RUNGA KUTTA INTEGRATION 
CURRENT DISTANCE OF CLS USED IN THE !CHART PREFILTERING 
ARRAY OF CL DISTANCES FOR I CHART PREFILTERING 

**********MAIN ROUTINE********* 

IMPLICIT DOUBLEPRECISION <A-H, 0-Z> 
DIMENSION CA3T<SOOOO>,CA3S<SOOOO>,CA3SQD(50000>, 

$8(19,19>,ERR1<50000>,ERR2<50000>,CA3A<SOOOO>,CADD(10l, 
$P1<5>,N1<3l,R1<2l,A1<S>,Z2<3> 

COMMON XKC,TAUI,CAD,TAU,XK,CAM,TAUD,CAMO,B,IOCC,IFLG,FCA3 
DATA P1/0.0,0.2,0.4,0.6,0.8/ 
DATA Nl/3,11,19/ 
DATA R114.0,.7.0/ 
DATA A1/0.2,0.4,0.6,0.8,1.0/ 
DATA Z2/3.0,3.5,4.0/ 

C SET THE INCREMENTS OF TIME IN WHICH OUTPUT IS DESIRED 
c 

c 
c 

ITIME=200 

C SET FILTERING TYPES 
C IFIL=O,NO FILTJ1,EXPJ2,LS;3,NLEXPJ4,EWMAJ5,MAMRJ6 0 IMR 
c 

IFIL=O 
c 
C TOGGLE PREFILTERING! IPFIL=O,NOJl,YES 
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c 

c 

IPFIL"'O 
READ *,TAUI,TAU,XK,XKC,TSTOP,TAUD,NSIM 
READ *• «B<I,Jl,I=1,19l,J•1,19) 
DSEED=8064697. 
CADD<ll=O,OOOO 
CADD<2l=0.0037 
CADD(3l 210,0111 
CADD<4l=0.0183 
CADD(:Sl=O.O 
CADD(6):s0,12 
CADD<7l=0.2 
CADD<8>=1.2 

C VALIDATION SUBROUTINE 
c 
C DO 2002 IF•1,7 
C IFIL=IF-1 
c 
c 
C SET DO LOOPS FOR VARIOUS FILTERING PARAMETERS 
c 

DO 2001 Jl4=1,28 
c 
C SET DO LOOPS FOR VARIOUS INPUT DISTURBANCES 
c 

c 

READ *,IFIL,IPFIL,J1 
J=:S 
P=O.O 
N=O 
R=O,O 
ALPHA=O;.O 
CAD•O.O 

C ANALYTICAL SOLUTION WITH NO NOISE USING RUNGA KUTTA 
c 

IFLG=7 
11=1 
LSFLAG=O 
DELTA=0,00:5 
NCOUNT~TSTOP/DELTA + 1 
CA1,.0.4 
CA2=0.2 
CA3=0. 1 
FC=CA3 
TIME=O. 0 
ERINT=O.O 
CAMO=O.B 
CA3T (I 1 l =CA3 

100 IF<TIME.GE.:S.O> CAD•CADD<Jl 
c 
C CALL THE INTEGRATING SUBROUTINE 
c 

CALL F<TIME,CA1,CA2,CA3,ERINT,XK11,XK12,XK13,XK14l 
CALL F<TIME+DELTA/2,CA1+DELTA/2*XK11,CA2+DELTAI2*XK12, 
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c 

$C3+DELTA/2*XK13,ERINT+DELTA/2*XK14,XK21,XK22,XK23,XK24) 
CALL F<TIME+DELTA/2,CA1+DELTA/2*XK21,CA2+DELTA/2*XK22, 

$CA3+DELTA/2*XK23,ERINT+DELTA/2*XK24,XK31,XK32,XK33,XK34) 
CALL F<TIME+DELTA,CA1+DELTA*XK31,CA2+DELTA*XK32, 

$CA3+DELTA*XK33,ERINT+DELTA*XK34,XK41,XK42,XK43,XK44l 
TIME .. TIME+DEL TA 

C DETERMINE THE CURRENT PROCESS RESPONSES 
c 

CA1=CA1+DELTA/6.0*<XK11+2*XK21+2*XK31+XK41) 
CA2=CA2+DELTA/6.0*<XK12+2*XK22+2*XK32+XK42) 
CA3=CA3+DELTA/6.0*<XK13+2*XK23+2*XK33+XK43) 
ERINT=ERINT+DELTA/6.0*<XK14+2*XK24+2*XK34+XK44> 
11=11+1 
CA3T(Ill=CA3 
IF<TIME.GE.TSTOP> GO TO 1000 
GO TO 100 

1000 CONINUE 
c 
C REAL SYSTEM SIMULATION WITH NOISE USING RUNGA KUTTA 
c 

X=NBIM 
c 
C SET GENERAL VARIABLES 
c 

c 
c 
c 

c 
c 
c 

BTD=0.005 
STDCA3=STD 
CA3SET=0.1 
TCONST=6.5 
WRITE (6, 0) 

0 FORMAT(lX,'UNIT STEP DISTURBANCE') 
IF<IFIL.EQ.Ol THEN 

SET 

2 

SET 

WRITE <6, 1> 
FORMAT<tX,'NO FILTERING') 

ELSE 
END IF 

CONSTANTS FOR EXPONENTIAL FILTERING 

IF<IFIL.EGI. 1> THEN 
P=Pl<Jl) 
WRITE (6, 2> p 
FORMAT<lX,'EXPONENTIAL FILTERING',1X,'P•',F4.2> 

ELSE 
END IF 

CONSTANTS FOR LEAST SQUARES FILTERING 

LSFLAG=O 
IF<IFIL.EQ.2) THEN 

N=N1 <Jl> 
WRITE <6, 3> N 

3 FORMAT<1X,'LEAST SQUARES FILTERING',1X,'N•',I4l 
ELSE 
END IF 
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c 
C SET CONSTANTS FOR NONLINEAR EXPONENTIAL FILTERING 
c 

c 

IFIIFIL.EQ.3l THEN 
R=Rl (Jll 
WRITE 16, 4l R 

4 FORMAT(1X,'NL EXPONENTIAL FILTERING',1X,'R•',F4.2l 
ELSE 
END IF 

C SET CONSTANTS FOR PREFILTERING 
c 

c 

IOCC 101 0 
J2=3 
Z=Z21J2l 
IPRE .. O 
TRESP=lO.O 
IF<IPFIL.EQ.l) THEN 

WRITE 16, 5> Z 
5 FORMATilX,'I CHART PREFILTERING',1X'Z•',F4.2l 

ELSE 
END IF 

C SET CONSTANTS FOR EWMA FILTERING 
c 

c 

IEXPFG=O 
IF I IFIL. EQ, 4) THEN 

ALPHA= A 1 I J 1> 
WRITE<6,6l ALPHA 

6 FORMAT<lX,'EWMA FILTERING',1X,'ALPHA•',F4.2l 
ELSE 
END IF 

C SET CONSTANTS FOR MAMR FILTERING 
c 

c 

MAFLG=O 
IF<IFIL.EQ.Sl THEN 

WRITE <6, 7l 
7 FORMAT<lX,'MAMR FILTERING'> 

ELSE 
END IF 

C SET CONSTANTS FOR IMR FILTERING 
c 

c 

IMRFLG 1010 
IF<IFIL.EQ.6l THEN 

WRITEI6,8l 
8 FORMAT<lX,'IMR FILTERING'> 

ELSE 
END IF 

WRIT<6,200l STD,TAU,XK,TAUI,XKC,TAUD 
200 FORMAT<1X,'STD~',F6.3,' TAU•',F4.1,' XKz',F4.1,' TAUI•', 

$F7.3,' XKC•',F7.3,' TAUD•',F7.3l 

C DO LOOP FOR DIFFERENT SETUPS 
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C INTIALIZE SUMS FOR ESTIMATED AVERAGES, STANDARD 
C DEVIATIONS AND ERROR TERMS FOR EACH SIMULATION 
C GIVEN STD OF THE NOISE IS KNOWN 
c 

c 

DO 800 I4=1,NCOUNT 
ERR1(I4l,.O.O 
ERR2(I4l=O.O 
CA3S<I4l=O.O 

800 CA3SQD(I4l=O.O 
DO 3000 N2~1,NSIM 
LSFLAG•O 
IOCC=O 
IEXPFG•O 
IPREaO 
MAFLG=O 
IMRFLG=O 
CAD=O.O 

I=-1 
CA1•0.4 
CA2=0.2 
CA3=0.1 
FCA3=A3 
FC=CA3 
IFLG=7 
ERR1<I1l~ERR1<I1l+DABS<<CA3-CA3T<I1))/Xl 

CA3S<I1)aCA3S<I1l+CA3 
CA3SQD<I1l=CA3SQD<I1l+CA3**2.0 
TIME=O. 0 
ERINT=O.O 
CAM0=0.8 

C ADD NOISE 
c 

c 

400 RCA3,.GGNQF<DSEEDl*STD 
RCA3•RCA3+CA3 
IF<TIME.GE.~.Ol CAD•CADD(Jl 

C FILTER THE OUTPUT 
c 
c 
C NO FILTERING 
c 

IF<IFIL.EQ.Ol FCA3,.RCA3 
c 
C PREFILTER 
c 

c 

IF <lPFIL. EQ. 1 l THEN 
CALL PREFIL(TIME,IPRE,IOCC,STDCA3,CA3SET,TRESP,RCA3,Zl 

ELSE 
END IF 

C EXP FILTERING 
c 

IF<IFIL.EQ.l) THEN 
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c 
c LS 
c 

c 
c NL 
c 

c 

CALL EXP<P,RCA3,FCA3> 
ELSE 
END IF 

FILTERING 

IF<IFIL.EGI,2) THEN 
CALL LS<N,LSFLAG,RCA3> 

ELSE 
END IF 

FILTERING 

IF<IFIL.EQ.3) THEN 
CALL NLEXP<R,STDCA3,RCA3,FCA3l 

ELSE 
END IF 

C EWMA FILTERING 
c 

c 

IF<IFIL.EQ.4) THEN 
CALL EWMA<TIME,TCONST,ALPHA,STDCA3,IOCC,IFLG,IEXPFG, 

$CA3SET,RCA3,FCA3> 
ELSE 
END IF 

C MAMR FILTERING 
c 

c 

IF ( IF I L , EGI, :5) THEN 
CALL MAMR<TIME,TCONST,STDCA3,IOCC,IFLG,MAFLG,CA36ET,RCA3,FCA3> 

ELSE 
END IF 

C IMR FILTERING 
c 

c 

IF< IFIL. EGI. 6> THEN 
CALL IMR<TIME,TCONST,STDCA3,IOCC,IFLG,IMRFLG,CA3SET,RCA3,FCA3) 

ELSE 
END IF 
DERa<FCA3-FCl/DELTA 
IF<IFLGEQ.O.AND.IOCC.EGI.Ol DER•O 
FC=FCA3 

C CALL THE INTEGRATING SUBROUTINE 
c 

c 

CALL F2<TIME,CA1,CA2,CA3,ERINT,XK11,XK12,XK13,XK14,DER> 
CALL F2<TIME+DELTA/2,CA1+DELTA/2*XK11,CA2+DELTA/2*XK12, 

$CA3+DELTA/2*XK13,ERINT+DELTA/2*XK14,XK21,XK22,XK23,XK24,DER> 
CALL F2<TIME+DELTA/2,CA1+DELTAI2*XK21,CA2+DELTA/2*XK22, 

$CA3+DELTA/2*XK23,ERINT+DELTA/2*XK24,XK31,XK32,XK33,XK34,DER> 
CALL F2<TIME+DELTA,CA1+DELTA*XK31,CA2+DELTA*XK32, 

$CA3+DELTA*XK33,ERINT+DELTA*XK34,XK41,XK42,XK43,XK44,DER> 

C INCREMENT TIME 
c 
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TIME•TIME+DELTA 
c 
C DETERMINE THE INTEGRALS 
c 

c 

CA1=CA1+ELTA/6,0*<XK11+2*XK21+2*XK31+XK41> 
CA2=CA2+DELTA/6.0*<XK12+2*XK22+2*XK32+XK42) 
CA3=CA3+DELTA/6.0*<XK13+2*XK23+2*XK33+XK43l 
ERINT=ERINT+DELTA/6,0*<XK14+2*XK24+2*XK34+XK44) 
I1•I1+1 

C TOTAL STATISTICS <FOR ERRORS, AVERAGES, AND STD DEV OF CA3 
C AT EACH TIME T> 
c 

ERR1<I1lcERR1<I1l+DABS<<CA3-CA3T(I1ll/X) 
CA3S(I1l•CA3S<I1l+CA3 
CA3SQD<I1l=CA3SQD(I1l+CA3**2 
IF<TIME.GE.TSTOP> GO TO 3000 
GO TO 400 

3000 CONTINUE 
SDEST~O.O 

WRITE<6,300l CAD,NSIM 
300 FORMAT(1X,'**** CAD • ',FB.5,' NSIM a',I6l 

PRINT *•' TIME CA3T CA3A SDE ERR1 
$ERR2' 

c 
C DETERMINE AVERAGE CA3 AND THE ABSOLUTE VALUE OF THE 
C AVERAGE ERROR AT EACH TIME T 
c 

DO 550 I3=1,NCOUNT 
CA3A(I3>=CA3S<I3l/X 

550 ERR2(I3l=DABS<CA3A<I3l-CA3T<I3ll 
DO 500 I3=1,NCOUNT,ITIME 
TIME=<I3-1l*DELTA 
IF<NSIM.LE.1l GO TO 900 
ZD=CA3SQD<I3l-CA3S<I3l**2/X 
IF<ZD.LE.O.Ol GO TO 900 
SDEST=<ZDI<X-1ll**0.5 

900 WRITE<6,600) TIME,CA3T<I3l,CA3A(I3>,SDEST,ERR1<I3l,ERR2<I3l 
600 FORMAT<1X,F5.1,5X,5F10.5l 
500 CONTINUE 

TIME=O.O 
ERR1IN=O.O 
ERR2IN=O.O 
15=1 

650 CALL F1<TIME,ERR1<I5l,ERR2<I5l,XK11,XK12l 
CAL~ F1<TIME+DELTA/2,ERR1(15)+DELTA/2*XK11,ERR2<15l+ 

$DELTA/2*XK12,XK21,XK22l 
CALL F1<TIME+DELTA/2,ERR1<I5l+DELTA/2*XK21,ERR2<I5l+ 

$DELTA/2*XK22,XK31,XK32l 
CALL F1<TIME+DELTA,ERR1(I5l+DELTA*XK31,ERR2<I5l+DELTA*XK32, 

$XK41,XK42) 
TIME=TIME+DELTA 
I5=I5+1 
ERR1IN=ERR1IN+DELTA/6.0*<XK11+2*XK21+2*XK31+XK41) 
ERR2IN=ERR2IN+DELTA/6.0*<XK12+2*XK22+2*XK32+XK42l 
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c 

I 13=113+1 
IF<TIME.GE.TSTOP> GO TO 67~ 
GO TO 650 

675 WRITE<6,660) ERR11N 
660 FORMAT<1X,'THE INTEGRA~ OF THE AVERAGE OF ABS ERROR 

$F10.5> 
2000 CONTINUE 
2001 CONTINUE 
2002 CONTINUE 

STOP 
END 

C SUBROUTINE FOR RUNGA KUTTA INTEGRATION 
c 

SUBROUTINE F<X,CA1,CA2,CA3,ERINT,XK1,XK2,XK3,XK4> 
IMPLICIT DOUBLEPRECISIO<A-H,O-Z> 
DIMENSION B<19,19) 

-· ' 

COMMON XKC,TAUI,CAD,TAU,XK,CAM,TAUD,CAMO,B,IOCC,IF~G,FCA3 
DERmCA2/TAU-(1/TAU+XKl*CA3 ' 
CAM•CAMO+XKC*<0.1-CA3+ERINT/TAUI-DER*TAUD> 
CAO•CAD+CAM 
XK1=CAO/TAU-(1/TAU+XK>*CA1 
XK2=CA1/TAU-<11TAU+XK>*CA2 
XK3=DER 
XK4=0.1-CA3 
END 

c 
C SUBROUTINE FOR EXPONENTIA~ FI~TERING 
c 

c 

SUBROUTINE EXP<P,RCA3,FCA3> 
IMPLICIT DOUBLEPRECISION <A-H, 0-Z> 
FCA3=P*FCA3+(1,0-Pl*RCA3 
END 

C SUBROUTINE FOR LEAST SQUARES FI~TERING 
c 

c 

SUBROUTINE LS<N,LSFLAG,RCA3> 
IMPLICIT DOUBLEPRECISION<A-H,O-Zl 
DIMENSION B<1919l,CA3<50l 
COMMON XKC,TAUI,CAD,TAU,XK,CAM,TAUD,CAMO,B,IOCC,IFLB,FCA3 
IF<LSFLAG.GE.ll GO TO 2001 
DO 2002 I10•1,N 

2002 CA3<I10l•FCA3 
LSFLAG'"1 

2001 DO 2003 I11•1,N-1 
2003 CA3<I11laCA3(I11+1> 

CA3<N>=RCA3 
FCA3=0.0 
DO 2004 I 12=1, N 

2004 FCA3=FCA3+B<I12,Nl*CA3<N-I12+1) 
END 

C SUBROUTINE FOR NON~INEAR EXPONENTIAL FILTERING 
c 

SUBROUTINE N~EXP<R,STDCA3,RCA3,FCA3l 
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FCA3=FCA3+MIN<1.0,ABS<<RCA3-FCA3li<R*STDCA3ll)*<RCA3-FCA3) 
END 

c 
C SUBROUTINE FOR EWMA FILTERING 
c 

c 

SUBROUTINE EWMA <TIME, TCONST, ALHA, STDCA3, IOCC, IFU3, IEXPFG, CA3SET, 
$RCA3,FCA3l 

IMPLICIT DOUBLEPRECISION<A-H,O-Z> 
DOUBLE PRECISION LCL 

C DETERMINE IF THIS IS THE FIRST TIME TO FILTER. IF SO, DETERMINE 
C CONTROL LIMITS FOR THE EWMA CHART 
c 

c 

IF <IEXPFG.GE,ll GOTO 4000 
IFLG=O 
IEXPFG•1 
C=ALPHA/(2.0-ALPHA> 
D=DSGIRT<C> 
Ea:3*STDCA3*D 
UCL=CA3S.ET+E 
LCL=CA3SET-E 
EWMA2=CA3SET 
GOTO 4020 

C DETERMINE IF SUFFICIENT TIME HAS PASSED SUCH THAT IT IS REASONABLE 
C TO ASSUME INDEPENDENCE BETWEEN SAMPLED DATA POINTS 
c 

c 

4000 IF<TIME.LT.TSET-0.00) GOTO 4010 
4020 EWMA2=ALPHA*RCA3+<1-ALPHA>*EWMA2 

TSET=TIME+TCONST 
IF<<EWMA2.GE.LCL>.AND. <EWMA2.LE.UCL>> THEN 

C EWMA CHART IS IN CONTROL! THEREFORE, THE FILTERED OUTPUT WILL BE 
C THE CENTER LINE OF THE EWMA CHART <DR CA3SET> 
c 

c 

IFLG=O 
GOTO 4010 

ELSE 

C EWMA CHART IS OUT OF CONTROL! THEREFORE, THE FILTERED OUTPUT WILL 
C BE THE CURRENT RCA3 
c 

c 

IFLG=1 
END IF 

4010 IF<IOCC.EQ.1.AND.IFLG.EGI.1) 
IF<IOCC.EGI.O.AND.IFLG.EQ.1) 
IF<IDCC.EGI,l.AND.IFLG.EQ.O) 
IF(IOCC.EGI.O.AND.IFLG.EQ.O) 
END 

FCA3•RCA3 
FCA3•RCA3 
FCA3•RCA3 
FCA3•CA3SET 

C SUBROUTINE FOR MAMR FILTERING 
c 

SUBROUTINE MAMR<TIME,TCONST,STDCA3,IOCC,IFLG,MAFLG,CA3SET, 
.RCA3,FCA3> 

IMPLICIT DOUBLEPRECISION<A-H,O-Zl 
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DOUBLE PRECISION LCLX 
c 
C DETERMINE IF THIS WILL BE THE FIRST FILTERED OUTPUT. IF SO, THE 
C CONTROL LIMITS FOR THE MA AND MR CHARTS MUST BE DETERMINED 
c 

IF<MAFLG.GE.ll GOTO SOOO 
IFLG=O 
MAFLG=l 
E~<3*STDCA3l/SQRT<2.0l 

UCLX=CA3SET+E 
LCLX .. CA3SET-E 
UCLR=<1.128+3*0,8~3>*STDCA3 
X1=CA3SET 
GOTO 5020 

5000 IF<TIME.LT.TSET-0.001) GDTO ~n1a 
5020 TSET•TIME+TCONST 

Z1=RCA3 
XB .. <Zl+Xll/2.0 
R=DABS ( Zl-X 1) 

Xl=Zl 
IF<<XB.GE.LCLXl.AND. <XB.LE.UCLXl.AND. (R.LE.UCLRll THEN 

c 
C THE MAMR CHARTS ARE IN CONTROLJ THEREFORE THE FILTERED OUTPUT 
C IS THE CENTER LINE OF THE MA CHART <CA3SETl 
c 

c 

IFLG=O 
GOTO !i010 

ELSE 

C THE MAMR CHARTS ARE NOT IN CONTROLJ THEREFORE THE FILTERED OUTPUT 
C IS THE CURRENT RCA3 
c 

c 

IFLG=l 
END IF 

5010 IF<IOCC.EQ.1.AND.IFLG.EQ.1l 
IF < I DCC. EQ. 0. AND. I FLG .• EQ •. 1l 
IF<IOCC.EQ.l.AND.IFLG.EQ.Ol 
IF<IOCC.EQ.O.AND.IFLG.EQ.O) 
END 

FCA3•RCA3 
FCA3•RCA3 
FCA3=RCA3 
FCA3=CA3SET 

C SUBOUTINE FOR IMR FILTERING USING AT~T RULES FOR OCC CONDITIONS 
c 

c 

SUBROUTINE IMR<TIME,TCONST,STDCA3,IOCC,IFLG,IMRFLG,CA3SET, 
IIIRCA3,FCA3) 

DIMENSION XBAR<B> 
INTEGE.R UPRUN (8), DNRUN <8> 
INTEGER RUNL,TOTRUN,TUPRUN,TDNRUN,ABOVE,BELOW 
INTEGER FLAG1,FLAG2,FLAG3,FLA64,FLAGC 

C DETERMINE IF THIS IS FIRST TIME TO FILTER. IF SO, DETERMINE UCL 
C AND LCL FOR ICHART AND UCL FOR MR CHART BASED ON KNOWN PARAMETERS 
c 

IF<IMRFLG.GE.ll GO TO 6000 
IFLG=O 
IMRFLG'"'l 
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c 

UP1SIGaCA3SET+STDCA3 
UP2SIG•CA3SET+2*STDCA3 
UP3SIG=CA3SET+3*STDCA3 
DN1SIG=CA3SET-BTDA3 
DN2SIG•CA3SET-2*STDCA3 
DN3SIG=CA3SET-3*STDCA3 
UCLR=<1.128+3*0.B53>*BTDCA3 
X .. CA3SET 
DO 6010 110•1,8 
UPRUN<IlO>•O.O 
DNRUN<I10l•O.O 

C CHECK MOST CURRENT B POINTS FOR STATISTICAL CONTROL 
c 

c 

6010 XBAR<IlO>•CA36ET 
GOTO 6020 

C DO NOT ATTEMPT TO FILTER IF DATA INDEPENDENCE CANNOT BE 
C REASONBLY ASSUMED 
c 

6000 IF<TIME.LT.TSET-0.001) GOTO 6030 
c 
C DETERMINE NEXT SAMPLE POINT FOR FILTERING 
c 

6020 TSET=TCONST+TIME 
c 
C DO THE IMR FILTERING USING AT&T RUNS RULE 
c 

c 

XBAR<8>.,RCA3 
FLAG1=0 
FLAG2=0 
FLAG3=0 
FLAG3=0 
FLAG4=0 
FLAGC=O 

C CHECK RANGES AND DETERMINE THE NUMBER OF POINTS QUALIFYING IN THE 
C COUNT FOR 4/5 RULE 
c. 

2000 DO 2050 111•1,8 
IF(l11.LE.1) R•ABS<XBAR(I11)-X) 
IF<I11.GT.1> R•ABS<XBAR<I11>-XBAR<I11-1)) 
UPRUN<I11) .. 0 
DNRUN<I11>•0 
IF<R.GT.UCLR> GOTO 7000 
IF<XBAR<I11).GT.UP1SIB> UPRUN<I11l•l 
IF<XBARCI11).LT.DN1SIG> DNRUN<I11)•1 

2050 CONTINUE 
c 
C CHECK RULE 1, OLDEST DATA POINT 
c 

IFCXBAR<l>.GT.UP3SIG.OR.XBAR<l>.LT.DN3SIG) THEN 
FLAG1=1 
GOTO 7000 

END IF 
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c 
C CHECK RULE 1 FOR XBARC2l AND RULE 2 FOR BARS<1,2l 
c 

c 

IFCXBARC2l.GT.UP3SIG.OR.XBARC2l.LT.DN3SIGl 
IF<XBARC2l.GT.UP2SIG.AND.XBARC1l.GT.UP2SIGl 
IFCXBARC2l.LT.DN2SIG.AND.XBARC1l.LT.DN2SIGl 
IF <FLAG1. EGl. 1. OR. FLAG2. EGl. 1l GOTO 7000 

FLAG1=1 
FLAG2 .. 1 
FLAG2"'1 

C CHECK RULE 1 FOR XBARC3l AND RULE 2 FOR XBARBC1,3J2,3l 
c 

c 

IFCXBARC3l.GT.UP3SIG.OR.XBARC3l.LT.DN3SIGl 
IFCXBAR(3l.GT.UP2SIG.AND.XBARC2l.GT.UP2SIGl 
IFCXBARC3l.LT.DN2SIG.AND.XBARC2l.LT.DN2SIGl 
IF< XBAR (3). GT. UP2SIG. AND. XBAR < 1l • GT. UP2SIGl 
IFCXBARC3l.LT.D2SIG.AND.XBAR(1l.LT.DN2SIGl 
IF<FLAG1.EQ.l.OR.FLAG2.EGl.1l GOTO 7000 

FLAG1"'1 
FLAG2a1 
FLAG2=1 
FLAG2=1 

FLAG2 .. 1 

C CHECK RULE 1 FOR XBARC4l, RULE 2 FOR XBARS<2,4J3,4) AND RULE 3 FOR 
C XBARSC1,2,3,&4l 
c 

c 
c 
c 
c 

c 

IFCXBARC4l.GT.UP3SIG.OR.XBARC4l.LT.DN3SIGl 
IF<XBAR<4l.GT.UP2SIG.ANO.XBARC3l.GT.UP2SIGl 
IFCXBARC4l.LT.DN2SIG.AND.XBARC3l.LT.DN2SIGl 
IFCXBAR<4l.GT.UP2SIG.AND.XBARC2l.GT.UP2SIGl 
IF<XBARC4l.LT.DN2SIG.AND.XBARC2l.LT.DN2SIGl 
TUPRUN=UPRUNC1l+UPRUN<2l+UPRUNC3l+UPRUNC4l 
TDNRUN=DNRUNC1l+DNRUNC2l+DNRUNC3l+DNRUN<4l 
IFCTUPRUN.GE.4.0R.TDNRUN.GE.4l FLAG3 .. 1 
FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC.GT.Ol GOTO 7000 

FLAG1=1 
FLA82=1 
FLAG2=1 
FLAG2 .. 1 
FLAG2=1 

CHECK RULE 1 FOR XBAR<~>, RULE~ FOR XBARSC3,SJ4 0 Sl AND RULE 3 FOR 
XBARS<1,2,3,4,&5l 

IF CXBAR C5l. GT. UP3SIG. OR. XBAR 15). LT. DN381Gl FLAG1=1 
IF<XBARC5l.GT.UP2SIG.AND.XBARC4l.GT.UP2SIG> FLAG2a1 
IF<XBARC5l.LT.DN2SIG.AND.XBAR(4l.LT.DN2S!Gl FLAG2=1 
IFCXBARC5l.GT.UP2SIG.AND.XBAR<3>.GT.UP2SIGl FLAG2=1 
IF<XBARC5l.LT.DN2SIG.AND.XBARC3l.LT.DN2SIG) FLAG2=1 
TUPRUN=UPRUNC1l+UPRUNC2l+UPRUNC3l+UPRUNC4l+UPRUNCS) 
TDNRUN=DNRUNC1l+DNRUNC2l+DNRUNC3l+DNRUNC4l+DNRUN(5) 
IF<TUPRUN.GE.4.0R.TDNRUN.GE.4l FLAG3•1 
FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC.GT.Ol GOTO 7000 

C CHECK RULE 1 FOR XBARC6l, RULE 2 FOR XBARSC4,6J5,6) AND RULE 3 FOR 
C XBARSC2,3,4,5,&6l 
c 

IF<XBARC6l.GT.UP3SIG.OR.XBARC6l.LT.DN381Gl FLAG1=1 
IFCXBARC6l.GT.UP2SIG.AND.XBAR<Sl.GT.UP2SIGl FLAG2=1 
IF<XBARC6l.LT.DN2SIG.AND.XBARC~l.LT.DN2SIGl FLAG2=1 
IFCXBARC6l.GT.UP2SIG.AND.XBARC4l.GT.UP2SIGl FLAG2•1 
IF<XBARC6l.LT.DN2SIG.AND.XBARC4l.LT.DN2SIGl FLAG2=1 
TUPRUN=UPRUNC2l+UPRUNC3l+UPRUNC4l+UPRUN<Sl+UPRUNC6l 
TDNRUN=DNRUNC2l+DNRUNC3l+DNRUNC4l+DNRUNC5l+DNRUNC6l 
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c 

IF<TUPRUN.GE.4.0R.TDNRUN.GE.4) FLAG3a1 
FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC,GT,O> GOTO 7000 

C CHECK RULE 1 FOR XBAR<7>, RULE 2 FOR XBARS<5,7;6,7) AND RULE 3 FOR 
C XBARS<3,4,5,6,~7> 
c 

c 

IF<XBAR<7>.GT.UP3SIG.OR.XBAR<7>.LT.DN3SIG> FLAG1=1 
IF!XBAR<7>.GT.UP2SIG.AND.XBAR(6>.GT,UP2SIG> FLAG2~1 

IF<XBAR<7>.LT.DN2SIG.AND.XBAR<6l.LT.DN2SIG> FLAG2=1 
IF<XBAR<7>,GT.UP2SIG.AND.XBAR<~>.GT.UP2SIG> FLAG2c1 
IF<XBAR<7>.LT.DN2SIG.AND.XBAR<~>.LT.DN2SIG> FLAG2=1 
TUPRUN=UPRUN!3>+UPRUN<4)+UPRUN<~>+UPRUN(6)+UPRUN<7> 

TDNRUN=DNRUN<3>+DNRUN<4>+DNRUN<~>+DNRUN<6>+DNRUN<7> 

IF<TUPRUN.GE.4.0R.TDNRUN.GE.4> FLAG3•1 
FLAGC=FLAG1+FLAG2+FLAG3 
IF<FLAGC,GT.O> GOTO 7000 

C CHECK RULE 1 FOR XBAR<B>, RULE 2 FOR XBARS<6,8;7,8), RULE 3 FOR 
C XBARS<3,4,S,6,7,~8> AND RULE 4 FOR ALL XBARS 
c 

c 

IF<XBAR<B>.GT.UP3SIG.OR.XBAR<B>.LT.DN3SIG> FLAG1=1 
IF<XBAR<B>.GT.UP2SIG.AND.XBAR!7),GT.UP29IG> FLAG2=1 
IF<XBAR(8l.LT.DN29IG.AND.XBAR(7).LT.DN2SIG> FLAG2~1 

IF<XBAR<B>.GT.UP2SIG.AND.XBARC6l.GT.UP2SIG> FLAG2=1 
IF<XBAR<B>.LT.DN2SIG.AND.XBARC6l.LT.DN2SIG> FLAG2=1 
TUPRUN=UPRUN<4>+UPRUN<S>+UPRUNC6l+UPRUNC7>+UPRUN<B> 
TDNRUN~DNRUNC4>+DNRUN<5>+DNRUN<6>+DNRUN<7>+DNRUN<8> 

IFCTUPRUN.GE.4.0R.TDNUN.GE.4> FLAG3•1 

C CHECKING FOR RULE 4 
c 

c 

ABOVE=O 
BELOW=O 
DO 4000 K1=1,8 
IFCXBAR!K1>.GT.CA3SET> ABOVE•ABOVE+l 

4000 IF<XBAR(K1>.LT.CA3SET> BELOW=BELOW+l 
IF<ABOVE.GE.B.OR.BELOW.GE.B> FLAG4•1 
FLAGC=FLAGl+FLAG2+FLAG3+FLAG4 
IF<FLAGC,GT.O> GOTO 7000 

C AT THIS POINT, NO DCC CONDITION· IS FOUND; THEREFORE, THE FILTERED 
C OUTPUT IS SIMPLY THE CENTER LINE OF THE I CHART <OR CA3SET> 
c 

c 

IFLG=O 
X=XBAR(l) 
DO 6001 L•1,7 

C SHIFT THE STACK OF XBARS TO PREPARE FOR NEXT ANALYSIS 
c 

c 

XBAR<L>~XBAR<L+l) 

6001 CONTINUE 
GOTO 6030 

C DOC CONDITION WAS FOUNDJ THEREFORE, THE FILTERED OUTPUT WILL BE 
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C THE AVERAGE OF THE XBAR'S HELD IN THE XBAR ARRAY 
c 

c 

7000 ZBAR=O.O 
IFLG=1 
DO 7001 1<2=1,8 

7001 ZBAR=XBAR<K2l+ZBAR 
ZBAR=ZBAR/8 
X=XBAR<1> 

C SHIFT THE STACK OF XBARS TO PREPARE FOR NEXT ANALYSIS 
c 

c 

DO 7002 L1=1, 7 
XBAR<L1l•XBAR<Lt+1l 

7002 CONTINUE 
6030 IF<IOCC.EQ.1.AND.IFLG.EQ,1) 

IF<IOCC.EQ,O.AND.IFLG.EQ.l) 
IF<lOCC.EQ.l.AND.IFLG.EQ.Ol 
IF<IOCC.EQ.O.AND.IFLG.EQ.Ol 
END 

FCA3=RCA3 
FCA3mRCA3 
FCA3=RCA3 
FCA3aCA3SE;T 

C SECOND RUNGA KUTTA INTEGRATION ROUTINE 
c 

c 

SUBROUTINE F1<X,ERR1,ERR2,XK1,XK2l 
IMPLICIT DOUBLEPRECISION<A-H,O-Zl 
XK1=ERR1 
x~:2=ERR2 
END 

C SUBROUTINE FOR ICHART PREFILTERING 
c 

SUBROUTINE· PREFIL<TIME,IPRE,IOCC,STDCA3,CA3SET,TRESP, 
$RCA3,Zl 

IMPLICIT DOUBLEPRECISION<A-H~-Zl 
DOUBLE PRECISION'LCLI 
IF<IPRE.EQ.Ol THEN 

IOCC=O 
IPRE=1 
T=O.O 
UCLI=CA3SET+Z*STDCA3 
LCLI=CA3SET-Z*STDCA3 

ELSE 
END IF 
IF<TIME.LT.T-0.001) GO TO 1~ 
IF<RCA3.GT.UCLI.OR.RCA3,LT.LCLI> THEN 

IOCC=1 
T=TIME+TRESP 

ELSE 
IOCC=O 

END IF 
15 END 

c 
C THIRD RUNGA KUTTA ROUTINE FOR SYSTEM WHEN USING 
C FILTERED FEEDBACK 
c 

SUBROUTINE F2<X,CA1,CA2,CA3,ERINT,XK1,XK2,XK3,XK4,DERl 
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c 

IMPLICIT DOUBLEPRECISION<A-H,O-Zl 
DIMENSION 8(19,19) 
COMMON XKC,TAUI,CAD,TAU,XK,CAM,TAUD,CAMO,B,IOCC,IFLG,FCA3 
CAM=CAMO+XKC*<O.l-FCA3+ERINTITAUI-DERHAUDl 
CAO=CAD+CAM 
XK1=CAOITAU-<11TAU+XK>*CA1 
XK2=CA11TAU-<11TAU+XK>*CA2 
XK3=CA21TAU-(11TAU+XKl*CA3 
XK4=0.1-FCA3 
END 

C END OF SYSTEM 
c 
II*O.FT06F001 DD DSN=U1222A.FINAL1.0UTLIST,DISP•<OLD,KEEP>, 
IIGO.FT06F001 DD DSN=U12522A.COOO.OUTLIST,DISPm<NEW,CATLG>, 
II UNIT=STORAGE,SPACE=<9044, (60,60l,RLSE>, 
II DCB=<RECFM=FBA,LRECL•133,BLKSIZE•9044l 
IIGO.SYSIN DO * 
1.814,2.o,o.5,37.647,6o.o,o.4~3,100 

o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
0.83333,0.3333,-0.16666,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o.6,0.4,o.2,o.o,-o.2,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
0.46428,0.35714,0.2S,0.14285,0.03571,-0.07142,-0.17857 
o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,,o 
0.37777,0.31111,0.24444,0.17777,0.11111,0.04444,-0.02222 
-o.o8888,-o.tssss,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
0.31818,0.27272,0.22727,0.18181,0.13636,0.0909,0.04545,0.0 
-o.o4s4s,-o.o9o9,-0.13636,o,o,o,o,Q,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o;o,o,o,o,o,o,o,o,o,o 
0.24166,0.21666,0.19166,0.16666,0.14166,0.11666,0.09166,0.0666 
0.04166,0.01666,-0.00833,-0.03333,-0.0S833,-0.08333,-0.10833 
o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,o 
0.19473,0.17894,.16315,0.14736,0.13157,0.11578,0.1,0.08421 
0.06842,0.05263,0.03684,0.02105,0.00526,-0.01052,-0.02631 
-0.04210,-0.0~789,-0.07368,-0.08947 

1 '0' 1 
1, o, 1 
1,0,5 
1, o, 5 
2, o, 1 
2, o, 1 
2,0,3 
2,0,3 
3, o, 1 
3,0,1 
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3,0,1 
3,0,2 
3,0,2 
4,0,1 
4,0,1 
4,0,5 
4,0,5 
5, o, 1 
S!IO!tl 
6,0,1 
6,0,1 
4, 1' 1 
4, 1' 1 
4, 1' 5 
4,1,:5 
5. 1' 1 
5, 1, 1 
6, 1' 1 
6, 1, 1 
II 
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