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8-RINGS IN MINTiAT MAPS
CHAPTER I
T TRODUCTION

For a long time it was known to geozrapners that maps of an area
divided into political subdivisions could be colored without using more
than four distinct colors and that, for some maps, no smaller number of
colors would be sufticisnt. The coloring of macs is normally restricted
to choosing the colors in such a way that any two regious wnich touch
along an edge have different colors. Noebius [9] , in 1840, apparently
was the first important mathematician to recognize the problem. Later,
in 1850, Dediorgzan [7J[10] considersd the four-color problem in his
classes, and Cayley [8]) gave it wide publicity when he proposed it in
1873 to the London Mathematical Society.

A "soluticn®" by Kempe [lhj was published in 1879, but ten years
later Heawood [12] pointed out a hiatus in Kempe's logic, and since 1890
many papers have been published, yet the problem remains unsolved.
Heawood salvaged the results of Kempe which were not invalidated by his
logical oversight and was able to prove that, for coloring any map on a
sphere, four colors may be necessary, and five are always sufficient.

It is a rather remarkable fact that, for surfaces of zenus p,

where 1 < p < 6, the corresponding problem has been completely solved,
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and for p > 6 an approsriate method of solution is available. The color
problem has been solved, therefore, for all surfaces except the simpiest
where p = 0O,

Various investizators have sought to bring a solution nearer by
translating this problem into a new but equivalent form. These efforts
are partially successiul in that they suggest suoplementary lines of
inguiry, such as the problem of three-coloring the edges [16] , two-
coloring the vertices [13][17] , or the consideration of linkages and
graphs [15](18] , but none of these equivalent problems has succeeded in
surmounting the essential difficulty.

An effort to establish theorems on coloring of maps in A colors
was made by Birkhoff and Lewis [6]L4] , but none of their A -color

theorems have yielded any new results for A = L.



CHAPTER IT
[HE FOUR-COLCR FRC3LEW

A jeneral map may be considered as an artitrery subdivision of
the surface of a sphere into a finite number of mutually distinct regions,
Further, since delormations do not affect the coloring provided the same
recions are adjacent, it is convenient to consider the regions of a wap
as spherical polyzons, and we shall employ this terminology.

The study of simple maps invites the "four-color conjecture"
that "for any subdivision of the sphere into a finite number of non-
overlapping regions, it is zlways possible to mark each region with one
of the numbers 1, 2, 3, L in such a way that no two regzions adjacent
alonz a common edge receive the same number," The four-color problem is
either to prove or disprove this conjecture,

Before presenting the original results of this thesis, it is
necessary to deline the terws commonly usef in this [ield and to sketch
the principal results obtained by other workers.,

Definition 2,1: A map is colorable if it can be colored in four

or fewer colors,

Definition 2.2: The concept of regularity is defined as follows:

(a) A region is regular if it is simply connected.
(b) An edge is regular if it separates two distinct regions and

joins two distinct vertices.
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(c) A vertex where three distinct regions meet is regular.
(d) A map is regular if it has at least three regions and all

of its regions, edges and vertices are regular.

Definition 2.3: If the coloring of z map can be made to depend
on the coloring of a map with fewer regions, then the map is said to be
reducitle. Any region or collection of regions whose occurrence in the

map renders it reducible is called a reducible configuration.

Definition 2.4: A map is minimal if it is not colorable, but

every map of fewer regions is colorable.

If the four-color conjecture is true, minimal maps do not exist,
If five colors are soumetimes necessary, then there is & non-empty class
of minimal maps which have some common characteristics,

The initial theorems of Kempe deal with regularity.

Theorem 2.5: If more than three edges meet at any vertex of a
map, tnen the map is reducible.

Corollary 2.6: Each vertex of a minimal map is rezular.

Theorem 2,7: If any combinaticn of one, two, or three regions
is multiply connected, then the mep is reducible.

Corollary 2.8: In a minimal map each region is simply connected,

two adjacent rezions have only one edge in common, and the edzes of three
mutually adjacent regions meet in a common vertex,

Corollary 2.9: Each region of & minimal map is regular and is

adjacent to more than three neighboring regions.

Corollary 2.10: In a minimal map each edge is regular,

Corollary 2.1l: Every minimal map is regular.
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As a consequence of this last corollary, it is no restriction to
consider only regular maps. For these, Heawood [12] obtains a simple
result from Euler's polyhedral relation,

Theorem 2.12: The average number of sides, n, for the polygons

2 :
on a regular map is 6 - %r , where N is the number of regions of the mapJ

In order to exclude quadrilaterals from minimal maps, Kempe [lh]

introduced the notion of chains.

Definition 2.13: A (1,2) chain of rezions is a set of regions

obtained by starting with a region colored 1, adding to it every region
colored 2 that touches it, then adding every regioa colored 1 that
touches any region colored 2, and so on.

The definitions of chains using other pairs of colors are
analogous.

Theorem 2.1k: (Kempe) If a map contains any region of 1, 2, 3,
or L sides, then the map is reducible.

Corollary 2.15: A minimal map has no polygons with fewer than

five sides.

Corollary 2.16: (Kempe) Every regular map with no polygons of

less than five sides contains at least twelve pentagons.

Corollary 2.17: (Bernhart) BExcluding twelve pentagons, on a

minimal map the avera:ze number of sides for its N - 12 other regions is
exactly six.

This observation puts no limit on the number of hexagons in a
minimal map, but the occurrence of polygons of more than six sides

implies additional pentagons.

{
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__Mathematicians have been unable to push the study of reducible |
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.polygons much beyond this point. However, each time another reducible
configuration is found, new restrictions are imposed on how many polygons
of various kinds may occur on a minimal map. As the number of known
restrictions on a five-color map increases, one must, in drawing such a
map, use progressively more regions. Such bounds on the number of regiong
give a rough idea of the complexity of five-color maps but do not
characterize their structure. Work which has given structural insight

has proceeded mainly along two lines, First, Birkhoff [ 5] considered
rings as a natural generalization of single regions, and, second,

Franklin [ 11] considered particular configurations and what must be added
to make them reducible. The synthetic investigations of Franklin and

Vinn [19][20] have contributed a large number of reducible configurations.

i

However, the current list of clusters of regicns which reduce is admitted}
ly incomplete, and the prospect of significantly extending the known
results synthetically seems poor.

The analysis of rings provides a systematic program for studying |
all clusters of regions from simple polygons to complex geometric con-
figurations. Each successive step in the analytical’program helps to
further characterize minimal maps and has for its goal the actual con-

struction of a minimal map, which will then serve as a counter-example

to the four-color conjecture. If the accumulated properties of minimal

maps become mutually contradictory, then the four-color conjecture is
true. In either eventuality, the analytical program will lead to a

solution.

!

i

. |

Definition 2,18: A proper ring of n regions, called an n-ring, ]

is a cycle of n.distinct regions,..each adjacentaioﬁtheuregions.whichAw__J
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precede and succeed it in cyclic order but to nc other regions of the
cycle, dividing the rest of the map into two non-empty sides,

The regions which are adjacent to any polygon alweys constitute
an n-ring, but an n-ring may have more than one inside region, liany of
the arzuments which show that certain n-gons are reducible apply equally
well to the reduction of n-rings. Therefore, in the search for reducible
configurations it is a maﬁﬁer of economy to study rings and to consider
the special case of a single inside region only when the general argument
is incomplete,

The solution of n-rings for a given value of n means finding ‘
which known structures (fegarded as inside) are reducible, Kempé‘s
theorem 2,1l may be readily extended to the conclusion that any n-ring
is reducible if n < 5. Birkhoff[ 5] gave the complete solution for a
S5-ring and initiated the study of 6-rings. Bernhart [2] has completed
the solution of the 6-ring by a method which may be extended to a ring ;
of any order, His analysis of the 7-ring was presented at the regional
meeting of the American Mathematical Society held at worman, Oklahoma on

November 2L, 1951, but has not been published,




CHAPTER IIT
THE PROBLEM OF THE 8-RING

The purpose of this thesis is to solve the 8-ring for minimal
maps, In this chapter, three types of criteria are set up which each

solution must satisfy. These criteria are Kempe equalities (E), primary|

inequalities (P), and secondary inequalities (S).

It is desirable to define some additional terms used in this

chapter,

Definition 3,1: An n-ring is said to be orthogonal if the set of

colorings for the n-ring and its inside and the set of colorings for the
n-ring and its outside have no common coloring scheme on the n-ring,

Proposition 3.,2: An n-ring on a minimel map is orthogonal.

Proof: Choose any n~ring on a minimal map. Let the ring be R,

the inside M' and the outside M", Shrink M! to a point, and color R+

ii"; this can be done with some set of colorings, A, on the n-ring, since:

the modified map is colorable, Now restore M', and shrink M" to a point

This new modified map can be colored with another set of colorings, B,

——— >

on the n-ring., The intersection of A and B is empty. Otherwise, assume|

1

a coloring X in both A and B, This implies AX' + R and k" + R are colored

compatibly with X on the n-ring; therefore, M! + M" + R is colored, Buti

this is impossible, for the map is minimal, !
i
|
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Definition 3.3: The regions inside an 8-ring are called peri-~

pheral if they contact a region of the ring along an edge.

Definition 3.,4: An inside region is called interior if it is

\

|

|
not peripheral. :

In this thesis only 8-~rings entirely composed of peripheral- ;
regions are examined. This ajpears to be a natural restriction, since |
3-rings with h interior rezions are certainly reducible for h = 1, 2, 3,;
This result was obtained by a systematic elimination of each possibility;
Birkhoff[:Sj was the first to find that the introduction of a small
number of interior rezions to a 6-ring caused the map to become reducible
2ernhart in a much more extensive consideration of n-rings, 6 <n<9,
in which there are h intericr regions, has been unable to find a smallest
h for any of these rings such that the resulting configuration is not
reducible, Since there is apparently no way to gauge the critical value
of h at which an 3-ring with h interior regions will not necessarily
contain a reducible configuration, only 8-rings with peripheral regions
and no interior regions are considered here, There are thirty-two known
8-rings which do not contain any reducible n-ring configurations with
n < 8.
An abbreviated notation is customary for listing these rings.

The symbol 6-5x5(5)5, for example, means a hexagon bounded in cyclic
succession by a pentagon, a region with an arbitrary number of sides,
‘and then two more pentagons. The sequence 5(5)5 indicates that a cap
pentagon, enclosed in parentheses, forms a vertex with the polygons

between which it is placed but does not contact the initial hexagon.

The_symbol 8Ri, i =1, **°*, 32, will be used to denote the individual |
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B-rings, as indicated in the following list, ST

Five of the thirty-two 8-rings are known to be reducible.

BRL : B-xxxxxxxx 8R17: 6-5(5)5x5(5)5x (Winn) ;
8R2 : 855555555 (Birkhofl) BRIB: 6-5(55)Sxwxx
BR3 : T7-5xxxxxx 8R19: 5-755xx |
8RL : 7-55xxxxx 8R20: 5-5755x
8RS : 7-555:000x BR21: 5-656xx
8R6 : 7-5555xxx (Winn) 8R22: 5-5566x
8R7 : 6-b6xxxxx 8R23: 5-6556x :
8RB : 6-65xxxx 8R2L: 5-5665x (Winn) g
8R9 + 6-655xxx 8R25: 5-6x5xx ;‘
8R10: 6-565xxx  (Bernhart) 8R26: 5-55xbx !
8R11: 6-5x5xxx 8R27: 5-56x5x ;
BRIZ: 6-5xx5xx 8R28: x-5555 }
8R13: 6-55x5x 8R29: x-x(5)555x q
8R1L: 6-55x55x 8R30: x-x55(5)55x E
8R15: 6-5(5)5x5xx 8R31: x-x5(5)555x ’
8R16: 6-5(5)5x55x BR32: x-x5(5)55(5)5x |
E
!

Birkhoff [ 5) recuced 8R2 when he proved that an arbitrary region ccu- |
pletely surrounded by pentagons was reducible. Later, Chojnachi [261 :
was able to prove that the 9-ring formed by an octagon and five consecu—i
tive pentagons is reducible. Although 8R2 has an interior octagon, it g
was included in the 1list because it was the first known reducible 8-ringj

The rings 8R6, 8R17, and 8R2L were reduced by Winn [193[20) by demanding |

‘a particular coloring constraint and systematically eliminating all

logical possibilities. . The ring 8R10 was proved reducible by Bernhartﬁ],
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but he was unable to find any other reducible 8-rings.

Using the criteria set up in this chapter, each of the remaining
twenty-seven 3-rings has been analyzed to determine whether it is re-
ducible or irreducible with respect to these criteria,

We first consider all of the different colorings of the eight
regions of an 8-ring. To do this, a canonical form of coloring is used,
If we number the colors 1, 2, 3, and L, it is noticed that the two
coloring schemes of an 8-ring obtained by assigning the four colors to
the eight regions in the order 1231.2143 and in the order L31L.3421 are
essentially equivalent, involving merely a permutation of colors., To
avoid such duplication, the canonical color scheme starts with color 1,
uses color 2 for the next color in cyclic succession, introduces color 3
when a third color first appears, and uses color L only when 1, 2, and 3
have already occurred,

Theorem 3.5: If S, is the number of canonical ways in which an
+ 38

n-ring may be colored, then § = 2S -1, for n > 3,

n-1 n—2

Proof: Let 4, B, C be three consecutive regions of a ring of
n > 3 regions.

Case 1: Let n be odde Suppose A and C are colored differently.
Consider the even (n-l)-ring from C to A obtained by deleting B, This
can be colored in Sn—l ways., 1f B 1s re-inserted after A, it can be
colored in two ways, unless the (n-l)~ring is two-colored, In this
exceptional case, B can have only the color 3 assigned to it, and the
n-ring can be colored in 25 , - 1 ways, Now suppose A and C are colored

alike., Consider the odd (n-2)-ring obtained when B is deleted and A and

C are made to coincide, This (n-2)-ring can be colored in S, o ways.
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Since it is a ring with an odd numoer of regions, it cannot be two-
colored., Therefore, if A and C are separated and B re-inserted, B can
be colored in three ways. Therefore, the n-ring can be colored in 3Sn-2
additional ways. Hence, the theorem follows when n is odd.

Case 2: Let n be even, Then there are ZSn_l ways of coloring
A and C differently but only 38n—2 ~ 1L ways if A and C are alike. The
argument parallels the case when n is odd, but the exceptional case of
two-coloring occurs only where (n-2) is even. Hence, the theorem also
holas for a even, and, therefore, for all n > 3.

It is easy to verify that S3 =1 and Sh = |} by actually forming
all canonical colorings, and, therefore, S5 = 10, 86 = 31, S7 = 91 and
Sg = 27h.

These 274 colorings are identified in two ways: first, by a
number corresponding to their numerical order and, second, by a letter
and number identifying the coloring with specific rotary groups. These
groups are obtained by picking any coloring and rotating it around the
‘8-ring in a counterclockwise direction. This generates a set of color-
ings. To generate a second set, pick any element not in the first set,
and repeat tnis process. There are forty-one of these groups of color-
ings that fell into niane general classifications. These classes, with
examples, are listed below.

Class 1: (There are seven of this class.)

AlS —» B15 — C15 — D15~ E15—» F15 —» G15—> H15 —*Al5

Class 2: (There are seven of this class.)

H15 — G%15 —» F15 — Ex15 —» D15 —> C%15 —> B%15 —» Ax15—> Hxl5
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Class 3: (There are ten of this class,)
K2 12 -> M2 » N2 — N2 = M2 &> L%2 = Kx2 => K2
Class L: (There are six of this class,)
Ol - P4 > QL -» RL > Sk — Rxb » Qib > Pl — 0L
Class 5: (There are five of this class.)
U6 = V6 = Vb - Usxb —» U6
Class 6: (There are two of this class.)
X31-» ¥Y31-> Z31-» Y+31-> X31
Class 7: (There is one of this class,)
T33 » T3:33 » T33
Class 8: (There is one of this class,)
1150 —» J150 = I150
Class 9: (There are two of this class.)
Wl—> Wl
Here the star-notation means inverse, (i, e. K#2 is the inverse
of K2.), and, therefore, Class 1 and Class 2 are related. A complete

list of these colorings, with both identification systems, is given in

dppeadix I,

The Kempe Equalities (E)
In developing the Kempe equalities, it is convenient to consider
a L-ring and a 6-ring, as well as an 8-ring. Let R, R, Ry Rh represent
the regions of a L-ring in counterclockwise rotation, and assign odd
colors (i. e, 1 or 3) to Ry and Ry, and even colors (i. e, 2 or L) to Ry
and Rb' On the L-ring itself the odd and even colors will occur alter-

inately. If there exists a (1,3) chain through the inside, connecting Ry
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and R,, we will say that R; and R3 are oddly ceonnected., If this 1s the

39
case, then R2 and Rh are not evenly connected. Therefore, for the same
inside coloring, both (1,3) and (2,L4) chains cannot exist simultaneously.
Theorem 3.6: On & rezular mep, ii, containing an inside colorable
L-ring, Ry By R3 Rh s elther a (1,3) chain connects Ry Ry, or a (2,4) |
chair connects R, Rh'
Proof: Since I is regular, it is possible to orient the edges
in the following way. If an edge lies between an odd-colored region and
an even-colored region, it is oriented so that the even-colored region is
always on the right. If it happens that the edge lies between two even-.
colored or two odd-colored regions, it is not oriented. At every vertex,

one of two color conditions exists: two odds and one even, or two evens

and one odd. |

Even Odd i

0dd Odd Even Even

Hence, it follows that at each vertex, one edge "enters", another edge
"leaves", while the third edge is not oriented. From this, it is seen
that these psths never terminate. Consider, now, a quadrilateral, with
vertices labeled a, b, ¢, d counterclockwise, If Rl lies along the edge:
between d and a, then the edges between ring regions "enter® at a and c
and "leave" at b and d. There are two possible cases.

Case 1: The path entering at a leaves at b, and the path enter- %

ing at.c.leaves.at . be



B, = =

!

at é leaves at b.

Case 1 implies an odd chain connecting Rl and RB, since the
regions to the left of the path constitute a (1,3) chain. Similarly,
Case 2 implies a (2,L) chain connecting R, and R,. It is crucial for

2 L

this proof that all vertices are regular.

n
Mmcmm&tMn%zz:%J%q,rz%lb@'",&zn,md%

r=2

Proof: Since the edges between the regions of the ring are

an oriented edge entering the inside of the ring and call this edge 1.

Number the other oriented edges from 2 to n in a counterclockwise

Case 2: The path entering at a leaves at d, and the path enterin

Theorem 3.7: If Jn is the number of different ways the regions of
a ring with n oriented edges between the ring regions may be connected

1

oriented, these edges alternately enter and leave around the ring. Pick

e e (Y

|
i
\

direction around the ring starting with 1. Pick an oriented edge leaving
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the inside of the rinz, say the rth edge, and Jjoin edge 1 and edge r‘by d

chain. This divides the oriented edzes into two sets, one of which |

I
|

contains r-2 edzes, and the other contains n-r edges. The set of r-2 ‘
edges may be connected in Jr—2 ways, whiie the set of n-r edges can be !
|

connected in J ways. Hence for every r, there are J_ ,J ways of |
n-r r-2 n-r |

i

making chain connections, and the theorem follows. i
1

By the use of standard mathematical procedures, theorem 3.7 may |

be expressed in a closed form. f

Definition 3.,8: The elementary frequency of a coloring schemne, AJ

is the number of ways in which the inside of an n-ring can be colored

with the coloring scheme A on the n-ring.

1
|
|
!
Definition 3.9: An isotopic frequency of a coloring scheme, A, ig

ihe number of ways in which the inside of an n-ring can be colored, unden
the conditions that the scheme A is on the n-ring and a given set of
ichains connecting the regions of the ring exists,

‘ For each possible set of chains joining the regions of an n-ring
§there is an isotopic frequency for every coloring scheme of the n-ring.
Some, or all, of these isotopic frequencies may be zero, and each element
:ary frequency is the sum of all its isotopic frequencies.

‘ The L-ring can be colored in four different ways:

é A ;1212
f | B : 1214
; C : 1232
§ D : 1234

The letters A, B, C, D will represent not only the coloring

;s_g__}__l_eme but also the coloring frequency for that scheme. The elementary
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frequenéy, &, of coloring the L-ring and its inside regions may be
written
A =AY + A",
where A' is the isotopic frequency when a (1,3) chain exists, and A" is

the isotopic frequency when a (2,4) chain exists, Hence,

A =AY ¥ A"
B =3B!+ B ;
C=0Ct+ 0"
D = D! + D",

These lead to equations among the elementary frequencies,

Theorem 3.10: If A, B, C, D are the elementary coloring frequen—!
cies for a L-ring, then 4 + D = B + C, g

Proof: Suppose an inside structure for the L-ring permitting a
(1,3) chain and a coloring A'. Interchanze the colors 2 and L4 in the R),
‘even chain, Since Ry and R), are not connected in the same (2,L4) chain,
‘this yields a coloring B!, Therefore, each A' coloring corresponds to a

‘31 coloring, and the correspondence is one-to-one. In this fashion the

following equations are obtained:

At = B! ;
A" = Cn
Dt = Q' ;
D" = 8" ,

Adding, we get,

]

(A" + A") + (D' + D") (BY + B") + (Cr+C")

It follows that

A+D=B+C
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We will call this relation among elementary coloring frequencies
a Kempe equality, since it is implied oy Kempe'!s argument, although such
equalities first appear explicitly in Birkhofif-Lewis {6].
Li-rings do not occur on a minimal map, but the analysis may be
extended to an 8-ring, which may occur, GConsider an 8-ring, Rl R2 R3 Rh
R5 R6 R7

the Ri in the order listed above, This ring coloring scheme involves an

RS’ taken counterclockwise, and a coloring, C58: 1231,4213, of

odd-even-odd-even pattern that is grouped as 1 - 2 - 31 - L2 - 13, 1In
each of the four groupings, select one representative; for instance, in

1
the odd grouping, R Rg Ry = 131, choose R = Rys From the even grouping,

- 2 _
R, =2, let B° = Ry

and from the last grouping, RSRé = }j2, select Rh = RS' The Ri, i=1, 2,

From the odd grouping, R3 Rh = 31, pick RS = R3,

3, b, are the selected representatives from the Ryy 1 =1, ooo, 8, and
the l-ring isotope argument applies to R*, i =1, 2, 3, L. In the L-ring
there was exactly one way of having an odd-even-odd-even arrangement of
colors and, hence, only one equation, However, in the 8-ring there are
C(8,L) = 70 ways of having such an arrangement, and a method of color
matrices was devised by Bernhart as a concise and easily extended device
for tabulating these equations, In the L-ring, with colorings A, B, C,

D, one may arrange the colorings in a square array, Mij: i, j=1, 2, as

follows:
1 1 1 3
A C
2 2 1-2-1-2 1-2-3-2
B C
2 4 1=2-1=4 1-2-3-L
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In the first row Ry = R);; in the second row Ry # R); in the first
column Rl = R3, and in the second column Rl # R3, Hence, to each row and
column there is associated an isotopic frequency, and the fregquency of
each element is the sum of its row and column isotopic frequencies, In
exactly the same way, the 2x2 color matrix may be constructed for the

coloring 1231,4213,

1 3 1 1
c58 N38

2 b | 1-2-31-k2-13 1-2-13-42-13
c56 c36

2 2 | 1-2-31-24-13 1-2-13-24-13

The numbers outside the boxes indicate the colors in the rep-
resentative positions RL R3 for the colums and R2 Ru for the rows, The
other ring colors are determined by the four representative colors
according to the odd-even pattern., This analysis provides a 2x2 matrix
for every coloring with an odd-even-odd-even pattern, However, it is
not necessary to set up individually all 70 of these color matrices, for,
by cyclic counterclockwise rotation of the colors about the 8-ring, each
matrix will generate seven others., As a result, there are only ten of
these generating matrices, as listed in Appendix II,

On the L-ring there is only this one pattern, but for the 8-ring,
there are two others, First, the pattern of three odd groupings alter-
nating with three even groupings of colorings, as in N#2: le2=131-2-1-2-
and, secondly, the pattern of four odd groupings alternating with four
even groupings, as in Wl: l-2-l-2-l-2-1-2-., Since, in the first instance,

there are six of these groupings, pick six representatives rl = Ry »
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6’

five different possible ways to connect the regions Ri, with odd (1,3) j

R? = R, B = R, =g, B = R, RO = Rg. By theorem 3.7 there are |
chains and even (2,4) chains, This means the elementary coloring fre-
guencies are each the sum of five isotopic frequencies, The isotopes,
with regions connected by the same chain inclosed in the parentheses,

are as follows:

1, Column isotope: (rR1R3RS).

2., Row isotope: (RthRé)o

3. Third isotope:  (RI®R3) and (RZRL),
L. Fourth isotope: (RIR®) and (R%RY).
5. Fifth isotope:  (RPR®) and (RRP).,

Using the same device as before, it is possible to arrange the sixteen

elements in a LxL color matrix, as follows:

111 131 113 133
; N2
222 1-2-151-2-1-2
r 1-2-151-z-1-2
22k
2L
2042

‘The element, i3 for example, is in the third row, marked 2 4 L , and in.

‘the second celumn, marked 1 3 1, and is 1 23xx A 1 é , where the

elements x are determined by the odd-even pattern of N:2, and are 1, 3 |

in that order. This coloring is B¥15. In this manner each element in

gthe N#2 Lxly color matrix may be computed, The isotopes belonging to 5333
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element may be deteramined by their defining chains., The isotcpes are
tabulated below, where 1, 2, 3, L identify row isotoves; 5, 6, 7, 8
column isotopes; 9, 10, 11, 12 thirds; 13, 14, 15, 1¢ fourths and 17, 18;

1

19, 20 fifths,

1-5-2 1-6-10 1-7-5 1-6=10
13-17 1:-19 1L=-19 1g-17
2-5-11 2612 2-i-11 2o5=12
13-18 12220 14=20 14-15
3-5-9 3-5-10 3-7= 3-8-10
15-13 15-20 16-20 16-18
|
LeS-11 | Lebel2 L=7-11 | 04=8-12 i
15-17 15-19 16-19 1617
;

It is noted that each matrix element has five isotopes, and each

[O)

isotope occurs in four elements, Therefore, in a LxL color matrix, ther
“are twenty different isotopes,

Definition 3.11: A spoor-diagonal in an S-by-S color matrix

consists of a set of S matrix elemenis, no two of which contain the same

isotope.

Thus, in a 2x2 color matrix, for the L-ring, 4, D form one spoor
"diagonal, B, C another., In the LxL color matrix, there are eight of
these spoor-diagonals, and they are identified in the following matrix

1 |
. by the numbers one throush eight,

1-2 3-L 5= (-8

5-7 6-8 2-3 1-1

3-8 1-5 L=7 226

- oolhb )l 2-7 | 1-8 35 S




H
{
i
|

1

matrix just once.

L A, Sixth iS0LOPE: eesssreseseenosss(RIR2RT) and (R%RE),

22

Proposition 3.12: The sum of the elements in each of the spoor-
i

diagonals is the same, being the sum of each of the different isotopic
frequencies in the matrix,

Proof: An S-by-S color matrix has 82 elements, and each element
has associated with it t isotopes, But each isotope occurs in S
elements, so that of all the 5%t isotopes only St are independeﬁtoy By

definition, the elements of a spoor-diagonal have no isotopes in common;

so their St elements are distinct and must contain every isotope in the

By equating the sums of the eight spoor-diagonals, each Lxl color
matrix yields seven equations among the sixteen elementary frequencies,
There are exactly C(8,6) = 28 of these color matrices associated with an
8-ring, but there are only four generating matrices, These are given in
Appendix II, The remaining twenty-four of the LxL cclor matrices are
obtained by a cyclic rotation of the elements of these generators.

In the case of an alternating pattern of four odd colorings and
four even colorings, consider Wl: 1-2-1-2-1-2-1-2-, where Rl = Ry, 1 =1,
2, ***, 8. In this case, using theorem 3.7, there are fourteen different
possible ways to connect the various regions with odd (1,3) and even
(2,4) chains., These possible connections are given in the following list,

1. Row isotope: ...................(R1R3R5R7).

2, Column isotope: ................(RERhRéRB).

3. Third isotope: .................(R1R3R5) and (R6R8).

L. Fourth isotope: ...............O(RhR628) and (R1R3).

5, Fifth iSotODE: seeveeseessesnses (R2RERD) and (RIRT),
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B 7. Seventh iSotope: veeeeen... eeveo(RYMR3RT) ana (RhRé). |
By Eighth 1SOLOPE: seseeeevnnonsnn (2% ana (RORT). é
9. Ninth iSOLOPE: seseesses. veeeee (BRYR3) 5 (RPRT) and (RMRD).
10, Tenth is0tope: eeececvcnnanren ..(Rth) ; (R6R8) and (RlRS). %
11. Eleventh isotop€: vevvuveuvennn ..(R1R7) ; (R3R5) and (R2R6). %
12, TWelth 1S0LOPE: wesereeernannens =%8%) ; @4%) ana &R7). §
13. Thirteenth iSOtOPE: +eeevr... oo (R1RORTY ana (%8N, |
1. Fourteenth isotope: vevevv.... ..(R2R6R8) and (R3R5).

It is now possible to construct an 8x8 color matrix. A scheme
for arranging its sixty-four elemsnts is as follows:

2222 2L2l 224l 2ul2 222l 22442 2L22 2Ll !

1111 wl

1313

1133

1331

1333

1311

1131

1113

The isotopes of each element in an 8x8 color mairix can readily
be determined from their defining chain connections. From proposition 3.ﬁ2,

there are 112 different isotopes, each element of the matrix being the i
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éhm of fourteen isotopes. The eighty spoor-dizgonals are listed ih 7;

Appendix III. :
1

Having only eisht spoor-diagonals in the Lxli color matrix, it is|

!
possible to re-arrange the elements into a wmagic square in which the four

l

rows and four columns have the same sum. [3] This property, however, !

cannot be obtained in an 8x8 color matrix with its eighty spoor-diagonalé.
Each 2x2 matrix yields one eguality; each Lxl matrix yields seven,

and the 8x8 matrix yields 79, for a cumulstive total of 2L5 equalities, |

i
not necessarily independent. These 245 equalities, among 274 frequencie%,
have oeen arranged in the convenient format of color matrices. Each |
‘frequency occurs in, at most, three color matrices. If the frequencies
represent the known colorings of the inside of en 8-ring, &ll of the !
equalities are automatically satisfied. If the frequencies correspond
to the complementary outside the equations, impose conditions which must

:be satisfied by 27L unknown, but non-negative, integers. The equations

among isotopic frequencies imply the spoor equations, but not conversely.

For, consider a lxl color matrix where Myjj=1,1i=Jand Mﬁj =0, i#3}
and each spoor has the value 1, so that the spoor relations are satisfied.
However, these elements cannot be expressed as a sum of non-negative
isotopic frequencies. When either side of an 8-ring is said to satisfy
the Kempe equalities (E), it means both spoor and isotopic relations
hold. For the inside, a geometrically known configuration, both sets

of conditions are automatically satisfied. When the 27L unknown color ;

frequencies for the outside are computed, each outside coloring frequencf

must vanish if the inside is colorable with that coloring scheme, since

‘the whole map is, by definition, not_colorable., The remaining unknowns |
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nust have only such values that they satisfy both the isotopic and spoor{

relationships. i

The Primary Inequalities
A second set, (P) of criteria may be éstablished for minimal

maps. Let R be an n-ring on a minimal map, M, and let M! represent the ’
set of inside regions of R, and k" the set of outside regions. Nodify ;
N to P" by allowing non-consecutive ring regions, R;, to merge, or become
neighbors, in all possible ways through M!', in such a manner that M!' is
annihilated. This map, P", is now colorable, But any colcring for P"
is a coloring for M" and R. If M" had been annihilated instead of N', in
the same fashion, then the colorings for the reduced map, P!, are
:colorjngs for M! and R. Each way in which a merger of the R; can be
‘effected through either M! or M" is called a primary constraint, and
:the subset of the 274 color schemes satisfying one such constraint is

called a primary., Each primary constraint (P) yields a primary set of

‘colorings ) i=1, °**, m, where, if we also let X; stand for the

corresponding color freguency,

n
in>0¢
1

Both the inside M! and the outside M" of R must be colorable in
such a way that among the color schemes satisfying each primary constraiqt
at least one M! frequency is positive, and at least one U" frequency is |
positive, However, since M is not colorable, the set of colorings of M'

and M" do not contain any elements in common, For an 8-ring there are

56 different types of primary constraints, By cyclic rotation of each of
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these 56 types, 393 orimaries are obtained épplicable to the S-finé;ﬂwTﬂé
56 types are listed in Appendix IV. For clarity, an example of a primarﬁ
is included here. i

Example 3.13: Given an 8-ring, Ry, 1 =1, *-*+, 8, consider the

constraint Ry = Ry = RS and Ry £ g

RS‘I ‘ [

T T U1

R,

A& quick run-down of the 27, colorings for the 8-ring yields the following
primary: X2, P, M2, L7, L9, QL, T33, U3k, A36, L38, Uxb, Kx7, Gx2lL, L22,

N7, V=3L, F36, B2L.

The Secondary Inequalities
The third set of criteria are the secondary constraints (S)
which are a generalization of the primary constraints., Instead of an-
‘nihilating the inside M', constraints are placed on the zlternating ring

regions, R., but the inside is subdivided into polygons of five, six and

1)
seven sides in every possible way. Any modification which introduced a
configuration known to be reducible was excluded, Since the number of

regions involved in the modified map may be as many as occurred in the

original map, it is necessary to indicate how many regions are used.

Definition 3.1L: The index, I, of the inside M', of an n-ring,
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r"—""""" B T L - - - B i -~ . .
R, is the number of inside regions. Accordingly, the number ol rezions

in both R and M! is originally n + I. The index, I!', after a secondary

modification, is I' = N' - n, where N' is the number of regions which

replace ' + R.

The constraint argument fails unless the modiried map has fewer

&egions than the minimal map. Therefore, unless I!' < I, the secondary
|
bonstraint is not applicable. If I' = I, there is still the possibility

|
|

bf reduction, for Bernhart [2] has shown that certain re-arrangements
%f regions will cause a map to become reducible. Hence, for each map,
%he set of secondary inequalities of oroper index, I' < I, must be

examined. In the 8-ring, there are 69 different schemes for the composi-
tion of these secondary constraints. 3y cyclic rotation of these 69
schemes, 537 secondaries are obtained. The 69 schemes are listed in

Appendix V. &n example of a secondary is given here.

Example 3.15: Given an 8-ring, Ri’ 1=1, ove, 8, let Ry = Rh

surround a2 single pentagon.

8

'

and Ry Ry Re, By R

Here the index, I!', is zero. One ring region was deleted and the
modified inside has one region. A check of all 274 colorings yields

thirty colorings which satisfy the constraint. These colorings are as

follows: Pxl2, P¥l3, V53, VSk, 512, R#l2, Q#l2, S13, Bwl7, El7, 012, Ki8,



28
K9, 013, Nx8, Vx53, Qul9, VsSl, Bxl5, Aw2l, F55, FS8, F15, F17, 9, |
B%58, E2L, R¥13, Bx56, Asl7. [
It is now possible to deline an irreducible n-ring.

Definition 3.16: An orthogonal n-ring satisfying all (1) Kempe

equalities (E), (2) primary constraints (P), and (3) secondary constrainés
(S) of proper index is said to be irreducible. !

When only part of these criteria are satisfied, we may speak of |
E-irreducibility, P-irreducibility, and S-irreducibility. Thus, Bernharé
had found that several 8-rings were E~irreducible. The complete system |
of primaries, (P), and of secondaries, (S), are computed for the first
ftime in this research. It is conceivable that an ortnogonal ring might
satisfy conditions (E), (P), and (S) and yet be reducible by some
further criteria, not formulated to date.

Hence, the problem of the 8-ring is to determine which of the

‘twenty-seven 8-ring configurations, if any, are irreducible in the sense

.defined.




CHAPTER IV

THE SOLUTION OF THE 8-RING

b The 1,180 requirements that an irreducible map containing an
8-ring must satisfy have been set up in Chapter III; The satisfaction
of these requirements falls into two phases: one, solving the Kempe
equations, two, checking the orimary and secondary inequalities. In the
|

|
{
!
search for these irreducible maps, the methods used in each phase are !
|
l

quite different and will be discussed separately.

The Kempe Equalities
In order to solve the Kempe equations, it was first necessary to
prepare for each map to be tested a complete set of 99 associated color

matrices for the 8-ring. Each 8-ring was drawn and, taking full advant-

age of symmetries, colorability of its inside was determined, Assigning,
i

in turn each of the canonical colorings to the S8-ring, each inside fre=-
quency was found by manually testing every possible coloring of all the i

inside regions of the configuration. The symmetry and isotopic require-|

ments provided a check on the manual accuracy., For example, if the 8-

ring configuration had an axis of symmetry from Ry to R5’ then if K2 i
i
would yield a coloring frequency two, a counterclockwise rotation of K2 |
I {
|
would give a coloring L2 whose inverse, L2, also colors the configuratidn
: |
{

{
P
1
SU—|

:in two ways. The isotopic argument may be illustrated with a 2x2 color

29
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matrix, Whenever three elementary frequencies are known, the fourth mayj

he computed., Similar arguments were employed with the larger matrices.

After &@ll the inside frequencies were obtained manually they weré
recorded in the color matrices, and each matrix was checked to see that
all isotopic requirements were satisfied, This phase of the work is
I

called the inside coloring of the map. {

Since no inside‘coloring may color the outside, by hypothesis,
each coloring scheme with positive inside frequency was assigned the
outside value zero, OQOccasionally this initial set of zeros, combined
with isotopic arguments, induced additional zeros not required by
‘orthogonality.,

As an example, consider a 2x2 color matrix, Mij’ where the insidf

‘colorings are listed below.

2 1

1 0

%The outside frequencies Mjj, Njp, and lpy must vanish, by orthozonality,
‘but isotopic arguments force the fourth outside frequency lipp to be zero
also. A more complex example is found in the 8x8 color matrix. If the
‘elements of a row are all inside colorable but one, and if the outside
;frequency of its column isotope is also zero, tnen it has zero outside
ifrequency. This follows, since every isotope, excluding column isotopes,
?has more than one element in each row,

After the outside zeros are filled in, it is necessary to deter-

mine if there is a possible assignment of parameters to the remaining

elements in such a way that the Kempe conditions are satisfied, This is

|
!
!
|
]
|
i
|
i

best_done by choosing..as_initial parameters the isotopic freguencies of -
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the 8x8 color matrix which are not necessarily zero. This automatically;
satisfies all the equations of the 8x8 color matrix, and places numerous .
demands on the other matrices, Again, as with the inside coloring, the |
isotopic arguments are used to complete the outside coloring., In many
cases a solution is obtained without introducing any new parameters., In;
some cases, however, the coloring of the elements in the Lxl matrices is
not uniquely determined, and additional parameters are necessary, Since‘
every element in the 2x2 matrices appears also in a Lxl or the 8x
matrix, it was never necessary to assign & parametric value to any 2x2

isotope.

For all 27 maps considered, it was possible to satisfy the Kempei

relations with from one to sixteen independent parameters, As a result,s
all 27 maps are E-irreducible. !
Primary and Secondary Inequalities

To satisfy the constraints, a machine process was used imrolving(1

the I. B. M. card assorter. (I. B. ki, 082) This was done due to the ;
!

great number of checks necessary and to insure accuracy. 1
This I. B. M, machine sorts cards on which there are eighty %
columns, numbered one through eighty, and ten rows, numbered zero througA

nine., The two adjustments on the machine allow one to pick any column |
for examination and request the machine to select, in that column, any i
one or more of the rows that may have been punched and to remove those ‘
cards from the machine,

This problem was set up in the following way to utilize this

machine, The canonical colorings were listed in their numerical order
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running from 1 to 27h. The digit in the unit's place was selected as the
row, and the other digits determined the column. Since there was no zero
column, those numbers of only one dizit were placed in column twenty-

eighto

Example L.1:

Coloring 176 column 17, row 6.
Coloring 25 column 2, row 5,
Coloring 3 column 28, row 3.

In this fashion each coloring had assigned to it a unique position on
the I. B. M card.

EBach primary and secondary were then coded with these numbers and
punched on separate I. B. M. cards. Two colors of cards were used, white
for the 398 primaries and blue for the 537 secondaries. This yielded 935
cards, one for each inequality, to be checked against each of 27 maps.

For each outside to be tested, a master sheet was prepared. The
ffrequencies were arranged in a table of ten rows and twenty-eight columns
corresponding to those on the I. B. M. card. All of the non-zero elements
vfor each map were coded and written into these master sheets. For exam-
ple, the only table places vacant for an outside coloring were those thaf
ﬁmre zero,
| Then for each master sheet, it is possible to pick any column and
?ask the machine to throw out all cards that have a punch in any position
?that corresponds to a position marked on the master sheet. This process
is continued until either the cards are all removed, or some are left

;after all twenty-eight columns are examined. In the first case, the map

has satisfied all of the_criteria for irreducibility, (P)_and (S),-and




33
iﬁhfhe Second, the'map is reducible «nd, tnerefore, colorable. i
Each of the 27 maps were so examined, and all were found to be
irreducible,

Some additional information, relative to the independent para-

neters, was also obtained.

Definition L.2: An independent parameter is called essential

Ef the mep reduces whenever the parameter is zero.

In order to determine which parsmeters were essential, additional
i

w

Laster sheets were prepared for each parameter tested. Each parameter
in turn was supposed zero, shorteningz the list of positive cutside fre-
quencies. For each of these revised lists, a machine comparison was
made with all the primaries and secondaries. In many instances, it was |
found that, although the map was irreducible, some of its parameters
could not be removed without reducing the map. This supplementary work
was done only on a limited number of the maps, since, in most cases, the
map had either a single parameter or so many in combination that no test
seemed necessary.

In general the maps with simplest inside structures had the more
complicated outside solutions, and vice versa. The parametric study
furnished the only known examples of frequencies which are P-reducible

but S-irreducible.




|
CHAPTER V |
|
THE ALGEBRAIC CASE 1'
|

Birkhoff [SJ , in solving the 5-ring, was able to prove that'onlj
one solution existed, namely the geometrically known case of an inside %
pentagon. In his work on the 6-ring, he attempted to prove that no otheé
solution to the Dempe conditions existed other than those found for his ;
geometric 6-rings. However, he was able to satisfy these relations al-
gebraically for both sides of a 6-ring with an entirely different, but f
consistent, set of frequencies. Every attempt to assign a geometric i
structure yielding these color frequencies failed, leaving an open ;
:question: Are they drawable? Birkhoff conjectured that these "algebraic%
‘solutions were the key to the four-color problem. Bernhart [2] found j
three algebraic 6-rings and proved his list was complete. For the 7-rin§
Bernhart found, besides the geometric cases, some 1L0O algebraic cases. |
These were discovered by a consideration of 21l possible ways to satisfy§
‘the Kempe equalities (E) of a 7-ring. Apparently the number of algebraié
n-rings increases rapidly for increasing n, and, for the 8-ring, several
thousand of these algebraic cases are procurable. It is not the purpose?
of this thesis to exhaust these non-geometric possibilities but rather
‘to acknowledge the existence of such cases by presenting one instance.

Such an example is readily obtained by starting with Bernhart's

algebraic solution, 6RL, which has an axis of symmetry from Ry to Rg . _|

34
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Although this configuration is undrawable, it is bounded by a 6-ring
wnose colorability is known, Regions Rh and R6 are transferred from ithe:
bounding ring to the inside so that an 8-ring is formed. Each annexed
region is given four edzes other than its contact with the peripheral
regions of 6RL. These annexed resions will be called pseudo-pentagons.
The resultent 8-ring is undrawable, since an integral part of it is the
algebraic case 6RL.

Each admissible coloring of 6RL assigns colors to the attached
pseudo-pentazons as well as the four other regions of the 6-ring which
become part of the new 8-ring. By considering all possible ways in which
the remaining four regions of tﬁe 8-ring may be colored, a set of color—g
ings on the 8-ring is obtained, consistent with the colorability of thatg
side of the 8-ring containing the origzinal 6RL inside. 4s in the case |
of geometric structures, a coloring for the 8-ring outside was also ob-

tained. This yielded two orthogonal sets of coloring frequencies which

were found to be irreducible,

This example demonstrates the existence of algebraic irreducible

8-rinzs.




CHAPTER VI

CONCLUSIONS

Although this thesis has not pfoﬁed or dispr§ved the four-color
conjecture, it offers a solution to the 8-ring. Thirty-two 8-rings were
examined. Five of these are reducible, althougzh only 8R10 had to be test-
ed by all the criteria (E) for a minimal map before its reducibility wasi

discovered. It was surprisinz that the remaining twenty-seven 8-rings |
uniformly satisfied criteria (E), (P) and (S). Before completing the
research, one would have expected a progressive sieve: some (E)-reducible,
others (E)-irreducible but (P)-reducible, a remnant (E), (P) and (S)-
irreducible. It is also remarkable that the irreducible rings not only
satisfied the secondary constraints of proper index but those with great%
er index as well. On watching the machine sorting of the white and blue?

cards, it seemed that the blue cards representing (S) criteria were ;
satisfied more readily than the white (P) cards. This seems to justify

their name "secondary", for they may prove to be logical consequences of
the criteria (E) and (P). The only objective evidence for this conjectune
is found in the testing of rings where certain parameters were artificially

set equal to zero. Some of these cases were (P)-reducible but (S)-irre- |

ducible. Others were (E)-irreducible but (P)-reducible. It was disap-

pointing that the (S) criteria failed to knock out any cases that passed

Hewaverj—theﬂunexPectedmsterility*e£fthe-(s)ﬁeonstpaintS~J
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the—(P)best.
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may justify the omission of any tertiary coanstraints such as could be

set up by using reducible configurations in the modified maps. We do

|
i

not know that the (S) criteria are superfluous, for they may prove use-

ﬁul in the study of algebraic 8-rings. %
|
! Although another reducible 8-ring would have been welccmed by

the exponents of the synthetic method, the importance of finding irre-
ducible configurations should not be underestimated. It takes only one
fcontradiction to show reducibility; while irreducibility guarantees that -

ﬁhousands of conditions have been simultaneously satisfied. Irreduciblei

jsets of regions form the building units essential for the construction of
1

!

a minimal map. The more of these structures we know, the closer we are
| ;

fto the ultimete solution of the four-color problem.

! Through this research on the 8-ring, and from pertinent literatun

gseveral interesting but unanswered questions on the four-color problem
!are suggested. Although not within the scope of this thesis, they :
! \
findicate directions in which this work might be extended. }
; |
§ In the study of rings with interior regions, how many interior f

|

I

regions must necessarily be added to an 8-ring to make it irreducible?

ECan a general theory of interior regions be developed for n-rings? T
f Due to the largze numbers involved, the study of algebraic 8-ring$
: |
ior geometric 9-rings becomes laborious, Is it possible to characterize !
|

galgebraic 8-rings so that machine processes may be used?
|

Again, is it possible to obtain a theory of algebraic n-rings

gwhich will oredict the number of such structures for any n, or yield a

imethod of geometric construction of such a structure if one exists?

v . Bernhart [2] proved that if an edge is conjugated on a minimal
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APPENDIX I: 8-RING COLOR SCHEMES

L1




Group dumerical Color

Order Order Scheme

AlS.ivunnnn 150 iiiueeens 12123134
Al7¢eeevann 10enenconns 12123143
Alevinan, 74 T 12123243
A36.iuinn.. 3eeiiinnns ..1213123L
ASO.iiennnn 500sseacsans 1213142y
ASBueranins 56 einannanns 12132134
A58... v, 58 ereenannns 12132143
BlSeiennens Slheeiennnn, ..12132542
317eeeenns I 12132432
T ..12131432
B364seens o165 iuaninnn .12321342
B50ueessaes 198 ceeannens 12324142
B56uieseneslOlonens ve...12312342
B58ueesnns S & N 12312432
Cl5uenrreoslbuinnnnnn ...12313L12
Cl7eennns llbeaaa, 12314312
Coliverunnan 20T e eeunnnnns 12324312
C360uecnns Y 12132413
9110 JAP 88ciiiiannns 12134314
C56.00en S o) AN .12312413
CS8irunnnns 10eseiannnns 12314213
DlSesenenns 208.vi0innnnn 12324313
D17.. c.2b2. i 12302313

(027N ). P 12132L14

L2

Group Wumerical Color

Order Order Scheme

A€1S. . eee 2130iieininn. 12324343
A¥17e0vnns 1520, .12310L34L3
JE ) I 1320 ieennenns 12313L3Y4
A36..0nn. 713 TR 123L243L
Ax50.00eunns BY e rennannns 12130325
Ax5O, 0 0uns I T 12342343
A58t e e22Teiie i 12341343
B¥1l5.eueens 128, ieeieanns 1231341L
Bl eses I Kol TN 1231241h
B52Ueeereee25000encnnnns 12342L1h
Bit36.eeeans 223 ¢eeenaraeal234131L
Bit504¢eeseaslbBarieeinssn 12321413
Bit56esasaesllBareennnn, <1231431L
Bi584e0snes 1hleeeennanes 12314210
C¥1l5eeannn .2U8B, eee.el23h2412
CtlTuenens )T .12342312
) TT 22T 0essninnnn 12341312
Ci360unnnnns 219 e iuiannnns 12341242
C#50u0rnnas 12Ueeeeenanss 12313242
C580nnnnn 239 v iainnann 12342142
G588t eevad23Tunnensssss 12342132
D#15ceeeeesTTosenecannns 1213142
D¥17.00es ee75 e eneeanaeas 12134132

Di2heeeeceeB20cnnanes ve 121344232



L3

Group Numerical Color Group wumerical Color
Order Order Scheme Order Qrder Scheme
D3beeieinns Weeeiiainns 12314232 Di3b..... N I 12134214
D50, eeennns 268 0 eunnnnns 12343242 D#50uuansnn Olevecsnaans .12132314
D56eennnens LGeiiennnnns 12314323 D¥S6uuusn. 4 T 12134124
15,:7; TR ) IR 12341323 Di58eeeeea?30nnnn. ve..012134123
ElSeeueess e/Ociienecens o 121320420 E¥l5¢eesas. 900 escnnas olziz3i2y
El7.e..... J1100000nun «».12312424 E#l700seses28ivinnnnsnn .12123423
7.4 TS 11 e 12314242 ) T T 12123413
E3b...uu... 215 henennns 12341213 B3040 00alBuniinn.nn .12324132
1210 I 1620 0eiinnnns 12321314 E#500eeenen 212 erinnnnnn 12324342
ES6ueunnsas 235 iinnnnn ..12342123 E56..iuns B 1) T 12324123
ESBeeeneeee3bunnnnnnnns 1234212 ExS58.u.iunan 170ceennnnnas 12321423
F15....... R SR 1231412 F¥lSesainns 188.ciiinnnnn 12323L13
Fllevenenns 1380 ieuennnn 12314143 F#lleennnns 179 ceeeennss 12323143
F2hevsuenss 229 cennncans 12341413 0 TR I 4 PR .12323142
F3beennnnn. 2320 iiennnnnn 12341k2k F5360neeeediBunnnannn. .12131423
FS0ueennes S T 121323L3 F500.0nss - 2 ..1213143L
BT TR 3heieeenns. .12314124 P50 00 eseeal290uincas 0012313423
CF58uiae.n. 1360 iieannnn 12314134 F358e0ursss 1250 0iunnans .12313243
GlSesnansn 0269 iiiininnn 12343L13 G#lSeesnans LRI 12313142
B170eeeense2Tlonnneennadd23l3U23 G¥1740.nn.. 1heurn.ns .12313124
e 32) IRy b S ...123L3h2k o T T P 12131324
G36enneenn 258, 000enes .. 1234313L 05360 enann 1594 uese.en0a123212L3
G50ueseenns 130eieenannss 12313432 G500 ausnes 2020 ihnininn, 12324214

G5Beeeenene 26000ecccss «.12343143 G50 4 0s000e980seenennessl23121L3
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Group Numerical Color
Order Order Scheme
G58¢sacnans 1Y R ..12343243
H1Sesouasns 191eienennn. 12323424
H17everanas 1750 eneneas .12323124
H2buowesss I R ...1232313L
H30 e aoans 29 TR 12324234
H50esaoosss 710} PR 12324213
H56 e aenunas 22 12324324
H584eeennan Wb eeeunnnns 12321324
I1500ccuens 150ueceecanns 12314324
J1504evenn 3 1o 12342143
K24euavans I .12121213
KTeeeaonnas 185ceuusenns .12323242
KBuevuvonns e18leiieressel12323213
K9evareaaaslBbununnnn. .. 12323243
Kllevesonns 1820 00ennn ..12323214
K22uuueuss 22t 1212323Y
K38eeroenns 157 ceeecancs 12321234
K69 uusoaann 121..... ce..1231321L
K76eeeenss 025 it anaans 12343123
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L2ccevnasss P 12121232
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L8eeienanns Beeneerienns 12121323
LOeeesennas Ferirecenanns 12121324

Group Numerical Color

Order QOrder Schene

G#58.. ..., L YA .12312134L
HlDeeennes X TR 12132324
H¥lT e unse e25leiiinnnns .12342423
H2leeennns 200 0eeincnns 12324243
R 3000 essas 123 eeeesanens 12313234
Hi50u e us Y P ..123043132
H¥50 0 e v anns 103 0eevnnenss 12312324
H3580ceenne U5 iiiiinnn .123L2324

Self Inverse

Self Inverse

Kx2.. ees183..00e

KtToveonnno Lleeeeonn.
K#Besvunns 115,00t
K#9easesseellauunsss
Killeeuuso 0273 eueens
K224 000eealP30ennn..
F#38auean ee25500iinne
Kib9uueans 25300 0unnn
KitTheueanns e133000een.
K#83eeeanne 23leiaenns
L32eeceesns 70 JO
Y S e205.000enns
LitBevennnn b24uvenn .
L#%9¢eeeeeeel5200nnns

..0012323232
..01213131h
...12313132
...12313134
...123430432
...12323434
...12343234

«..12131313
...123242042
...12132323

...12342k2L
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e d



.Group Nunmerical Color
Order Order Scheme

7 5 12121343
1224 eeevecoltleeenennnn. .12131342
L38eeeeeeee3Buininnnnn. ..12131243
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7 S eeveel2121312
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Mlleeewoesa30ueinnaesaal2123h32
22u e 18T .12323412
380000 1720000000000 12321432
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E76uueinann Toeernnnn. ..1213413k
‘m83........83 .......... .1213L4234
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Group Numerical Color
Order Order Scheme
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%24 eveoesadCoesnennseeeldl3l212
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Scheme

Numerical
Order

Group
Order
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P19 ososeeslBrooosessssl2323132
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P7240000es0150c0sassnsssl231h3h2
WheeorenreelOcnnnannes. 12121342
Q2i0eeeeeel2inannansssal2123123
@30rennenelduensonensosl212312)
Q19eeeeseeeldeasnnsessas12123213
Q200eeeeses20aunssnensaal212321l
Q720000eeee2lueanne. 012342013
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Rl2¢eaceses550eeranseaselll32132
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Rl9ceseeoee35eecanseeeesl2131232

L6
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Scheme

Numerical
Order

Group
Order
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Group Numerical Color
Order Order Scheme
R20.4ecvnn 3leeeeninnes .121312k2
R72....... 1300 eeainen .12313424
P & .12134212
S12.e0u0.s 9T eeteiininns 12312312
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Order Order Scheme
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Group Numerical Color
Order Order Scheme
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APPENDIX II: 8-RING GENERATING COLOR MATRICES
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50

Eight-by-Eight Color Matrix

Wl T33 | V6 U6 | K2 102 W2 | Lee2
T%33 |W218 | U«B85 | v85 | K38 |i38 | Nx38 | L:38
U6 | U85 |X31 |Y¥31 [K22 |[ill |N#22 |L:11
U6 V85 | Y31 {231 | K11 | M22 | N1l | L»22
K#2 | K338 | K22 | k%11 | OL P20 | @20 | P4
M2 | 53638 | M1l | 122 | P20 | S20 [Rxh | Quxh
N2 N38 |N22 ([N11 Q20 |RL Sk R:20
L2 |1L38 |111 |r22 P4 {Q4 |R20 [020
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Four-by~Four Color iiatrices

K2 | kK8 | P19 | QLo
Ush | W69 ! E36 | D36
L7 F:15 | B%50 | Ex2h
K7 | G15 | F2L | C50
L8 | Ux53 | P12 |Ql2
L11 | 169 | F=l7 | A7
A50 | D58 | K76 |D«56
F:50 | A%58 | 656 | 176

PL G306 | K9 a2l
9 Es58 | P13 | E#l17
A36 | rihk3 | 358 | 183
Gs2l | K83 | G17 | R%72
Q13 | UxSh | Ex56 | Ex15
USh | Qw13 | ES6 | E15
AlS | A%15 {872 |X31
AS6 | Ax56 | J150 | 072
]




Two-by-Two Color Matrices

X143 | w218 133  |U53 V5 L8 Q12 Q19
1150 | 2143 U3l |usk L7 L9 Q13 [Q20
Q20 | H50 169|176 L15 | Ke2 K22 |Hx2l
D=50 | Q72 U85 |1.83 A17 | A24 Hxl5 |H#l7
A36 456 138 | Fx58
138 | A58 336 | 756




APPENDIX III: 8x8 SPOOR-DIAGONALS
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18.
19.
20.
21.
22.
23.
2.
25.

5k
W1, w218, x31, 231, PL, RL, Rwh, PiL
W1, w218, y31, Y31, OkL, QL, Sk, QL
W1, K#38, X31, L22, K38, RL, Rsl, L322
W1, K#38, Y231, 22, K22, QL, Sk, Lx38
W1, 38, K%22, Z31, PL, RL, N#22, Lx38
W1, %38, N22, Y31, oL, Ql, N%38, Ls22
W1, N38, X31, ¥#22, PL, L2, Wx38, Pxk
W1, N38, Y31, L22, Ok, 38, Nx22, Quk
W1, L38, ¥%22, Y31, K38, W22, Sk, Qk
W1, L38, N22, Z31, K22, k38, Rsh, Pk
Ts33, T33, X31, 231, G20, S20, @=20, 020
T%33, T33, ¥%31, Y31, P#20, P20, R#20, R20
K2, T33, uxll, 231, Q20, M38, Nx22, 020
K2, T33, Lll, Y31, P%20, 122, Nx38, Rx20
2, T33, X31, N11, K38, M22, Q%20, 020
W2, T33, Y31, K¢ll, K22, 138, R20, Rx20
N2, T33, Mll, Y31, K38, P20, R20, Lx22
N2, T33, Lll, 231, K22, S20, Q«20, Lx38
L2, T33, X31, Kxll, Q20, S20, Qx20, L38
12, T33, Y=31, Nl11, P20, P20, Nx22, Lx38
V6, V%85, V6, V85, Q20, Ql, Qw20, Qsk
b, Mx38, V6, N11, K11, QL, Qu20, Lx38
Vx6, 138, V6, Kx1l, G20, N38, Ns1l, QL
ué, ugs, vé6, v85, PL, P20, Rk, Rx20

U6, Mw38, V6, K#ll, PL, i1l, N#38, Rx20




26,
27,
28.
29.
30.
31.
32,
33.
3L
35.
36.
37.
38.
39.
Lo.
L1,
L2.
L3.
Lk,
L.
Lé,
L7.
L8.
L9.
50.

55
U6, L38, V6, N11, K38, P20, Rsh, Lsll
Kx2, U85, V6, 122, K11, N38, R:l, Rx20
Kx2, V%85, V6, hx22, Q20, QL, N:38, L:xll
N2, U85, V6, Mx22, PL, P20, Nill, Lx38
N2, V=85, V6, L22, K38, M11l, Qx20, Qb
V%6, V%85, Ux85, U6, P20, RL, R20, Pk
V%6, K#38, L1l, Uxb, P20, RhL, Nxll, L::38
Vb, N38, ixll, Uxb, K11, M38, R20, Pl
U6, U85, U«BS, Uxb, Ok, S20, Sk, 020
U6, K38, lxll, Usb, K38, ¥11, Sk, 020
U6, N38, L1l, Uxb, oL, S20, N:x38, Lxll
M2, U85, N22, Uxb, OL, M38, N¥ll, 020
12, VB85, K22, Uxb, K38, RL, R20, L:ll
L2, U85, k%22, Uxb, K11, S20, Sk, Lx38
12, Vx85, N22, Uxb, P20, M1l, N«38, Pk
533, %38, N22, 231, K2, M1l, Q«20, 020
T#33, N38, Y31, Mx22, K2, P20, R20, Lxll
Vsb, W38, Ux85, Kxll, K2, RL, R20, Lx22
V%6, N38, L11, V85, K2, M22, Qu20, QL
K#2, W2l8, L1l, 231, K2, RL, Rxl, Lxll
K#2, U85, Ux85, 22, K2, K22, Sk, 020
K#2, N38, L1l, M#22, K2, M22, Nx38, Lxll
12, W218, ¥=31, K+11, K2, M1, SL, QL
L2, U85, N22, V85, K2, P20, Rxh, Lx22

L2, Mx38, N22, Kxll, K2, M11l, N38, Lx22




S1.
52.
53.
5L.
55.
56.
57
58.
59.
60.
61.
62.
63.
L.
65.
66.
67.
68.
69.
70.
71.
72.
73.
k.
75.

56
T%33, K38, X31, 22, Q20, M2, Nxll, 020
T#33, %38, Kx22, Y31, K11, &2, R20, R:20
U6, Kx38, L11, V85, K22, K2, Rk, R®20
U6, M«38, Ux85, N11, OL, M2, N#22, 020
N2, W218, L11l, Y31, OL, N#¥ll, M2, QL
N2, Vx85, U85, 22, K22, M2, R20, PxL
N2, K%38, L11, Mx22, K22, M2, Nxll, Lx38
L2, W218, X31, N11, K11, M2, Rxkh, P4
L2, V%85, Kx22, V85, Q20, M2, N®22, QL
L2, 38, K#22, N11, K11, M2, Nx22, Lx38
T33, K#38, Y#31, L22, P#20, ill, N2, Rx20
T:%33, L38, K22, Z31, Q20, S20, Nx2, Lxll
Vb, Kx38, ixll, V85, Q20, Nx2, Ql, Lx22
v#6, 138, UxB5, N11, P20, LR2, N2, Pl
M2, W218, Y#31, N11, OL, QL, Nx2, Lxll
M#2, U85, Kx22, V85, Pk, W22, Nx2, R:#20
M2, L38, K%22, N11, K38, M22, Nx2, L1l
N2, W218, M#ll, 231, PL, M11, Nx2, PxL
N2, U85, U85, L22, OL, S20, Nx2, L:x22
N2, Kx38, M#ll, 122, K38, Lll, M2, Lx22
T+33, N38, X31, L22, K11, S20, Q=20, L2
T#33, 138, N22, Y31, P%20, P20, Nxll, L2
U6, N38, M#ll, V85, PL, P20, N#22, L2
U6, 138, U#B85, Kxll, K22, S20, SkL, L2

K#2, W218, M¢ll, Y31, K11, Qu, Sk, L2
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76. K#2, V85, Ux85, L22, Px20, RL, Nx22, L2

77. K«2, N38, Mxll, L22, K11, M38, N:¢22, L2
78. Mx2, W218, X31, Ksll, PL, RL, Nx11l, Ls2
79. M2, V85, N22, VB85, K22, QL, Q%20, L:2

80. Mx2, L38, N22, Kxll, K22, 38, M«ll, L2




APPENDIX IV: PRIMARY CONSTRAINTS
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[OA NN A ¥ = w

~
.

it

; R

59
R5=R7.

1

RS; R6=R8¢

:RS; RS#RY .

Ré'

; R), = Bgs Ry =R,

. Rh = R8; Rg £ Ry

7 .

57 °8°

'R5=R80

; R5 £ R7

: . R
R, # R,

; Ry, # Ry

By # Ry
; Re £ Ry

; B) = Rg; R5 £ R7 .

; RS =Ry By # R8 .
; Ry £ Rg; Rg = Ry .
; Ry, = Rg; Ry # Rg
; R =R R # R, -
; Ry =R

; Rg £ Ry -

5 Rg # Ry
; RS # R7 .

; Ry # Rg; R, # R, -
'RB#R,?; R53£R7o




26. R § Ry # Rgs By # Ry Ré ¥'Ré .
27. Ry = Ry; Ry # Rgs By # Ry Rh # R6 .
35 Rg # B35 Rg # Ry 5 Ry # Ry
29. Ry = Ry; Re # R3; Re £ R7; RS £ Rg -
30. Ry = Ry; Rg # Ry; Rg £ Rg; Rg £ R8

28- Rl =R

31.R, =R,; R, #R,; R, #R,; R, # R_
s 7 3 i 4’ T 5

33
32. B = Ry; Ry = Ry; R7 £ R ; Rh # Ry
33. Ry = R35 Ry, # Rgs B # R7; Rh £ Ry
34. Ry = Ry Ry, £ Rgs Rg # R7; RS £ By

35. Ry = Ry; R, £ Rgs B # Rgs Ry £ Rg
36. R, = Rg; Ry # R); Rg # RS; Rg £ Rg
370 Ry = Ry5 Ry # R.s By # Rgs Ry # R,
38. Ry # Ry; Ry #R); Ry =Res By # Rg; Ry # Ry
39. Ry AR5 Ry #Rg3 Ry #Rg; Ry AR Ry £ R
Lo. Ry # Ry; Ry £ R, By £ Res Ry # Rgs Rg # Rq
L1. B, # Ry5 Ry £ Res By £ R, ; Ry # Ry R3 # Ry -
Le. R # R 5 Ry # Ry, By # RS, R, #R
L3. Ry #R ; Ry # Rys By # Rgs By # Rps By, # Rg
L. R, # Rys By # Rys By # RS,_RS # R Rg # Rg
L5. Ry # Ry; Ry # R Ry # Ry Rg £R_; Rg £ Rg
L. Ry AR, ; Ry # Res By # Rgs Ry # Ry; Rg # Rg
L7. By # Rgs Ry #Rgs Ry # R;s Rg # Rys Ry # Ry
L8. Ry # R_; Ry £R,; Ry # Rps By # Ry,; Ry # Rg
L9« Ry #Ry; Ry AR5 Ry # Res Rg # Ry Rg # Ry
50. Ry # Ry; Ry # R)5 Ry £ R;s R, £R ; R, # Re

i Ry £ R,




51.
52,
53.
Sk.
55.
sé.

Ry # Ry
Ry #Ry;
Ry # Ry;
R, # Ry;
Ry # R);

61
Ry #Rgs Ry # Ry Ry £ Ry
Ry # Rgs By # Ry5 Rg # Ry
Ry # Rgs By # Ryj Ry # Ry;
Ry # Rgs By # Bgj Ry # Rej
Ry #Rgs R #Ry5 Ry # R

Ry £ Rég Ry ;éﬂg; R, #R ;

RS £ R7 .
R5 £ R7 .
Rg £ RLl .
Rg # Ry -

R, £ RS .
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1. R =R .
2. By =Ry; 6R1 .

3. Ry = Ry; 6R2a .

Lh. Ry =Ry; 6R2D .

5. Ry = Ry; 6R2c .

6. Ry = R3; 6R3a .

7. Rl = R3; 6R3b .

8. R, = Rys Ry # R -

9. R = RB; Rh # Re -
10. Ry = Ry; Rg # Ry .
1 = Ry5 Ry £ Rg

12. R, = Rys Ry £ Ry

1
13. By = RB; Rg # R) .
1. Ry # Rg .

15. Ry # Ro3 TRL .

16. Ry # Ry; TR2a .
17. R # Ro; TR2b .
18. R, # R,; TR2c .
19. Ry # R,; TR2d .
20. Ry # Ry TR2e .
21. Ry # Ry TR2L .
22. Ry # Ry TR2g .
23. By # R,s TR3a .
2h. Ry # Ro; TR3b .

25. Ry # R7; TR3c .




27,
28.
29.
30.

31.

32,

33.
3kL.
35.
36.
37.
38.
39.
Lo.
1.
L2.
L3.
L.
L5.
L6.
L7.
L8.
L9.
50.

26. Ry # Rps

Ry £ Ry; TR3e

ol
7R3d L] A o

Ry # Ry; TR3L .

Ry £ Ro; TR3g
Ry £ Ros TRLb
Rl £ R7 ; TRLc

Rl;éR,{; TRLG .

Ry # Ro3 TRLe
Ry # Ry TRLSE
By # Rops TRLg

Ry £ Ry; 7R5a .

R, # R 7R5b
Ry # Ry TR5c
Ry # Ry 7R5d
Rl # R,{; TR5e
R, # Ry TRST
R, # R,; TRSg

Ry £ RY; TRba

R £ Ry TR6D .

Ry # Ry TR6¢
R, # R, TR6d
Ry # R,; TRGe
Ry # Ro; TR6E

Ry # Ry; TR6g




51,
52.
53.
Sk.
55.
56.
57.
58.
59.
60.
61.
62.
63.
6ls.
65.
66.
67.
68.
69.

Ry # Rq;
Ry # Ry;
R, # Ry;
Ry # Rq;
Ry # Ry;
Ry # Rg;
Ry # Ry;
Ry # Ry;
Ry # Ry;
Ry # Ry;
Ry # Ry;
Ry # Ry;
Ry # Ry;
Ry # Rqj
Ry # Ry;
R, #Ry;
Ry # Ry;
Ry # Ry;
Ry # R3;

65
Ry # Res
Ry # Rg;
Ry # Bg;
Ry # Rg;
Ry # Rg;
Ry # Res
Ry, # Ry;
R, # Rgs
Ry, # Rg;
R), # Rg;
Ry, # Rg;
R), # Rg;
Rg # Ry;
Rg # Ry
Rg # Rys
Rg # R
Ry # Ry
Ry # R
Ry # Rg;

6R1 .
6R2a .
6R2b .
6R2¢c o
6R3a .
6R3b .
6R1 .
6R2a .
6R2b .
6R2c ,
6R3a .
6R3b .
6R1 .
6R2a .
6R2b .
6RrR2c .
6R3 .

Rg # Rg +
Ry # Ry .



