A LISSERTATION
SUBiITPED TC THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCROR OF PHILOSOPHY

8-RINGS In wINImAL vaps

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to Professor Arthur Bernhart for his constant aid and encouragement in the period during which the work of this thesis was done, and for his valuable suggestions relating to its preparation. I also wish to thank the nembers of the committee for their gracious assistance and constructive criticisms.

TABLE OF CONTENTS

Chapter Page
I. intrududion. I
II. THE FOUR-COLOR PROBLELI 3
III. THE PROBLELA OF THE 8-RING 8
IV. THE SOLUTION OF THE B-RING 29
V. THE ALGEBRAIC CASE 34
VI. CONCLUSIONS 36
LIST OF REPERENCES 39
APPENDIX I 41
APPENDIX II 49
APPENDIX III 53
APPE:IDIX IV 58
APPENDIX V 62

CHADPER I

INTRODUOTION

For a long time it was known to geographers that maps of an area djvided into political subdivisions could be colored without usins nore than four distinct colors and that, for some naps, no smaller number of colors would be suficicient. The coloring of maps is normally restricted to choosing the colors in such a way that any two regions wnich touch along an edse have different colors. Moebius [9], in 1840, apparently was the first important mathenatician to recognize the problem. Later, in 1850, Dekorgan [7][10] considered the four-color problem in his classes, and Cayley [8] gave it wide publicity when he proposed it in 1878 to the London Matheruatical Society.

A "Solution" by Kempe [14] was published in 1879, but ten years later Heawood [12] pointed out a hiatus in Kempe's logic, and since 1890 many papers have been jublished, yet the problem remains unsolved. Heawood salvaged the results of Kempe which were not invalidated by his logical oversight and was able to prove that, for coloring any map on a sphere, four colors may be necessary, and five are alwars sufficient.

It is a rather remarkable fact that, for surfaces of genus p, where $l \leq p \leq 6$, the corresponding problem has been completely solved,
and for $p>6$ an appropriate method of solution is available. The color problem has been solved, therefore, for all surfaces except the simplest where $\mathrm{p}=0$.

Various investigators have sought to bring a solution nearer by translating this problem into a new but equivalent form. These efforts are partially successiul in that they supgest supplementary lines of inquiry, such as the problem of three-coloring the edges [16], twocoloring the vertices [13][17], or the consideration of linkages and graphs [15][18], but none of these equivalent problems has succeeded in surnounting the essential difficulty.

An effort to establish theorems on coloring of maps in λ colors was made by Birkhoff and Lewis [6][4], but none of their λ-color theorens have yielded any new results for $\lambda=4$.

OHAPTER IT

THE FOUR-COLOR PROSLE:

A seneral mep may be considered as an arbitrary subdivision of the surface of a sphere into a finite number of mutually distinct regions. Further, since deformations do not affect the coloring provided the same regions are adjacent, it is convenient to consider the regions of a map as spherical polygons, and we shall employ this terminology.

The study of simple naps invites the "four-color conjecture" that "for any subdivision of the sphere into a finite number of nonoverlapoing regions, it is always possible to mark each region with one of the numbers $1,2,3,4$ in such a way that no two regions adjacent along a conmon edge receive the same number." The four-color problem is either to prove or disprove this conjecture.

Before presenting the orisinal results of this thesis, it is necessary to define the terus commonly used in this field and to sketch the principal results obtained by other worisers.

Definjition 2.1: A map is colorable if it con be colored in four or fewer colors.

Definition 2.2: The concept of regularity is defined as follows:
(a) A region is regular if it is simply connected.
(b) An edge is regular if it separates two distinct regions and joins two distinct vertices.
(c) A vertex where three distinct regions meet is regular.
(d) A map is regular if it has at least three regions and all of its regions, edges and vertices are regular.

Definition 2.3: If the coloring of a map can be made to depend on the coloring of a map with fewer regions, then the map is said to be reducible. Any region or collection of regions whose occurrence in the map renders it reducible is called a reducible conifguration.

Definition 2.4: A map is minimal if it is not colorable, but every map of fewer regions is colorable.

If the four-color conjecture is true, minimal maps do not exjst. If five colors are sometimes necessary, then there is a non-empty class of minimal maps which have sone common characteristics.

The initial theorens of Kempe deal with regularity.
Theorem 2.5: If more than three edses meet at any vertex of a map, then the map is reducible.

Corollary 2.6: Each vertex of a minimal map is regular.
Theorem 2.7: If any combination of one, two, or three regions is multiply connected, then the map is reducible.

Corollary 2.8: In a minimal map each region is simply connected, two adjacent regions have only one edge in comaon, and the edges of three mutually adjacent regions meet in a common vertex.

Corollary 2.9: Each region of a minimal map is resular and is adjacent to more than three neighboring regions.

Corollary 2.10: In a minimal map each edge is regular.
Corollary 2.11: Every minimal map is regular.

As a consequence of this last corollary, it is no restriction to consider only regular maps. For these, Heawood [12] obtains a simple result from Euler's polyhedral relation.

Thearem 2.12: The average number of sides, \bar{n}, for the polygons on a regular map is $6-\frac{12}{N}$, where N is the number of regions of the map. In order to exclude quadrilaterals from minimal maps, Kempe [14] introduced the notion of chains.

Derinition 2.13: A (1,2) chain of regions is a set of regions obtained by starting with a region colored 1 , adding to it every region colored 2 that touches it, then adding every region colored 1 that touches any region colored 2, and so on.

The definitions of chains using other pairs of colors are analogous.

Theorem 2.14: (Kempe) If a map contains any resion of 1, 2, 3, or 4 sides, then the map is reducible.

Corollary 2.15: A minimal map has no polygons with fewer than five sides.

Corollary 2.16: (Kempe) Every regular map with no polygons of less than five sides contains at least twelve pentagons.

Corollary 2.17: (Bernhart) Excluding twelve pentagons, on a minimal map the average number of sides for its $N-12$ other regions is exactly six.

This observation puts no limit on the number of hexagons in a minimal map, but the occurrence of polygons of more than six sides implies additional pentagons.

Mathematicians have been unable to push the study of reducible
polygons much beyond this point. However, each time another reducible configuration is found, new restrictions are imposed on how many polygons of various kinds may occur on a minimal map. As the number of known restrictions on a five-color map increases, one must, in drawing such a map, use progressively more regions. Such bounds on the number of regions give a rough idea of the complexity of five-color maps but do not characterize their structure. Work which has given structural insight has proceeded mainly along two lines. First, Birkhoff [5] considered rings as a natural generalization of single regions, and, second, Franklin [11] considered particular configurations and what must be added to make them reducible. The synthetic investigations of Franklin and Winn [19][20] have contributed a large number of reducible configurations. However, the current list of clusters of regions which reduce is admittedly incomplete, and the prospect of significantly extending the known results synthetically seems poor.

The analysis of rings provides a systematic program for studying all clusters of regions fron simple polygons to complex geometric configurations. Each successive step in the analytical program helps to further characterize minimal maps and has for its goal the actual construction of a minimal map, which will then serve as a counter-example to the four-color conjecture. If the accumulated properties of minimal maps become mutually contradictory, then the four-color conjecture is true. In either eventuality, the analytical program will lead to a solution.

Definition 2.18: A proper ring of n regions, called an n-ring, is a cycle of n distinct regions, each adjacent to the regions which
precede and succeed it in cyclic order but to no other resions of the cycle, dividing the rest of the map into two non-empty sides.

The regions which are adjacent to any polygon always constitute an n-ring, but an n-ring may have more than one inside region. Wany of the arguments which show that certain $n-g o n s$ are reducible apply equally well to the reduction of n-rings. Therefore, in the search for reducible configurations it is a matter of economy to study rings and to consider the special case of a single inside reyion only when the general argument is incomplete.

The solution of n-rings for a given value of n means finding which known structures (regarded as inside) are reducible. Kempe's theorem 2.14 may be readily extended to the conclusion that any n-ring is reducible if $n<5$. Birkhoff [5] gave the complete solution for a 5 -ring and initiated the study of 6-rings. Bernhart [2] has completed the solution of the b-ring by a method which may be extended to a ring of any order. His analysis of the 7-ring was presented at the regional neeting of the American Mathematical Society held at jorman, Oklahoma on November 24, 1951, but has not been published.

CHAPTER III

THE PROBLEM OF THE 8-RING

The purpose of this thesis is to solve the 8 -ring for minimal maps. In this chapter, three types of criteria are set up which each solution must satisfy. These criteria are Kempe equalities (E), primary inequalities (P), and secondary inequalities (S).

It is desirable to define some additional terms used in this chapter.

Definition 3.1: An n-ring is said to be orthogonal if the set of colorinzs for the n-ring and its inside and the set of colorings for the n-ring and its outside have no common coloring scheme on the n-ring.

Proposition 3.2: An n-ring on a minimal map is orthogonal.
Proof: Choose any n-ring on a minimal map. Let the ring be R, the inside N^{\prime} and the outside $\mathrm{K}^{\prime \prime}$. Shrink M^{\prime} to a point, and color $\mathrm{R}+$ ii'; this can be done with some set of colorings, A, on the $n-r i n g$, since the modified map is colorable. Now restore \mathbb{N}^{\prime}, and shrink $\mathbb{M}^{\prime \prime}$ to a point. This new modified map can be colored with another set of colorings, B, on the n-ring. The intersection of A and B is empty. Otherwise, assume a coloring X in both A and B. This imnlies $\mathbb{N}^{\prime}+R$ and $W^{\prime \prime}+R$ are colored compatibly with X on the n-ring; therefore, $\mathbb{M}^{1}+\mathbb{M}^{\prime \prime}+\mathrm{R}$ is colored. But this is impossible, for the map is minimal.

Definition 3.3: The regions inside an B-ring are called peripheral if they contact a region of the ring along an edge.

Definition 3.4: An inside region is called interior if it is not peripheral.

In this thesis only 8-rings entirely composed of peripheral regions are examined. This ajpears to be a natural restriction, since 3-rings with h interior resions are certainly reducible for $h=1,2$, 3。 This result was obtained by a systematic elimination of each possibility. Birkhoff [5] was the first to find that the introduction of a small number of interior regions to a b-ring caused the map to become reducible. Bernhart in a much more extensive consideration of n-rings, $6 \leq n \leq 9$, in which there are h interior regions, has been unable to find a smallest h for any of these rings such that the resulting configuration is not reducible. Since there is apparently no way to yauge the critical value of h at which an $\delta-r i n g$ with h interior regions will not necessarily contain a reducible configuration, only 8 -rings with peripheral reyions and no interior regions are considered here. There are thirty-two known 8-rings which do not contain any reducible n-ring configurations with $n<8$.

An aboreviated notation is customary for listing these rings. The symbol $6-5 \times 5(5) 5$, for example, means a hexagon bounded in cyclic succession by a pentagon, a region with an arbitrary number of sides, and then two more pentagons. The sequence $5(5) 5$ indicates that a cap pentagon, enclosed in parentheses, forms a vertex with the polygons between which it is placed but does not sontact the initial hexagon. The symbol $8 \mathrm{Ri}, i \equiv 1, \cdots, 32$, will be used to denote the individual

B-rings, as indicated in the following list.

8RI : 8-xxxxxxxx
8R2 : 8-55555555 (Birkhoff)
8R3:7-5xxxxxx
8 RL : 7-55xxxxx
8R5 : 7-555xxxx
8R6 : 7-55555xxx (Winn)
8R7 : 6-6xxxxx
8R8: 6-65xxxx
8R9 : 6-655xxx
8R10: 6-565xxx (Bernhart)
8RII: $6-5 \times 5 \mathrm{xxx}$
8RI2: 6-5xx5xx
8RI3: 6-55x5x
8R14: 6-55x55x
8R15: 6-5(5)5x5xx
8R16: 6-5(5)5x55x

8R17: 6-5(5)5x5(5)5x (Winn)
8RI8: 6-5(55)5xxxx
8R19: 5-755xx
8R20: 5-5755x
8R21: 5-656xx
8R22: 5-5566x
8R23: 5-6556x
8R24: 5-5665x
8R25: 5-6x5xx
8R26: 5-55x6x
8R27: 5-56x5x
8R28: $x-5555$
8R29: $\mathrm{x}-\mathrm{x}(5) 555 \mathrm{x}$
8R30: $\mathrm{x}-\mathrm{x} 55(5) 55 \mathrm{x}$
8R31: $x-x 5(5) 555 x$
8R32: $x-x 5(5) 55(5) 5 x$

Five of the thirty-two 8-rings are known to be reducible. Birkhoff [5] reauced 8R2 when he proved that an arbitrary region conpletely surrounded by pentagons was reducible. Later, Chojnachi [20] was able to prove that the 9 -ring formed by an octagon and fjve consecutive pentagons is reducible. Although 8 R 2 has an interior octagon, it was included in the list because it was the first known reducible 8-ring. The rings $8 \mathrm{R} 6,8 \mathrm{R} 17$, and 8 R 24 were reduced by Winn [19] [20] by demanding a particular coloring constraint and systematically eliminating all Iogical possibilities. The ring 8 RIO was proved reducible by Bernhart [1],
but he was unable to find any other reducible 8 -rings.
Using the criteria set up in this chapter, each of the remaining twenty-seven 3-rings has been analyzed to determine whether it is reducible or irreducible with respect to these criteria.

We first consider all of the different colorings of the eight regions of an 8-ring. To do this, a canonical form of coloring is used. If we number the colors $1,2,3$, and 4 , it is noticed that the two coloring schemes of an 8-ring obtained by assigning the four colors to the eight regions in the order 1231.2143 and in the order 4314.3421 are essentially equivalent, involving merely a permutation of colors. To avoid such duplication, the canonical color scheme starts with color l, uses color 2 for the next color in cyclic succession, introduces color 3 when a third color first appears, and uses color 4 only when 1, 2, and 3 have already occurred.

Theorem 3.5: If S_{n} is the number of canonical ways in which an n-ring may be colored, then $\mathrm{S}_{\mathrm{n}}=2 \mathrm{~S}_{\mathrm{n}-1}+3 \mathrm{~S}_{\mathrm{n}-2}-1$, for $\mathrm{n}>3$.

Proof: Let A, B, C be three consecutive regions of a ring of $n>3$ regions.

Case 1: Let n be odd. Suppose A and C are colored differently. Consider the even ($n-1$)-ring from C to A obtained by deleting B. This can be colored in S_{n-1} ways. If B is re-inserted after A, it can be colored in two ways, unless the ($\mathrm{n}-1$)rring is two-colored. In this exceptional case, B can have only the color 3 assigned to it, and the n-ring can be colored in $2 \mathrm{~S}_{\mathrm{n}-1}$ - 1 ways. Now suppose A and C are colored alike. Consider the odd ($n-2$)-ring obtained when B is deleted and A and C are made to coincide. This ($n-2$)-ring can be colored in S_{n-2} ways.

Since it is a ring with an odd numer of atgions, it cannot be twocolored. Therefore, if A and C are separated and B re-inserted, B can be colored in three ways. Therefore, the n-ring can be colored in $3 S_{n-2}$ additional ways. Hence, the theorem follows when n is odd.

Case 2: Let n be even. Then there are $2 S_{n-1}$ ways of coloring A and C differently but only $3 S_{n-2}-1$ ways if A and C are alike. The argument parallels the case when n is odd, but the exceptional case of two-coloring occurs only where ($n-2$) is even. Hence, the theorem also holas for n even, and, therefore, for all $n>3$.

It is easy to verify that $S_{3}=1$ and $S_{4}=4$ by actually forming all canonical colorings, and, therefore, $S_{5}=10, S_{6}=31, S_{7}=91$ and $S_{8}=274$.

These 274 colorings are identified in two ways: first, by a number corresponding to their numerical order and, second, by a letter and number identifying the coloring with specific rotary groups. These groups are obtained by picking any coloring and rotating it around the 8 -ring in a counterclockwise direction. This generates a set of colorings. To generate a second set, pick any element not in the first set, and repeat this process. There are forty-one of these groups of colorings that fall into niae general classifications. These classes, with examples, are listed below.

Class 1: (There are seven of this class.)
$\mathrm{Al5} \rightarrow \mathrm{Bl5} \rightarrow \mathrm{Cl5} \rightarrow \mathrm{DI5} \rightarrow \mathrm{El5} \rightarrow \mathrm{~F} 15 \rightarrow \mathrm{G15} \rightarrow \mathrm{H} 15 \rightarrow \mathrm{Al5}$
Class 2: (There are seven of this class.)
$\mathrm{H} * 15 \rightarrow \mathrm{G} * 15 \rightarrow \mathrm{~F} * 15 \rightarrow \mathrm{E} \times 15 \rightarrow \mathrm{D} * 15 \rightarrow \mathrm{C} * 15 \rightarrow \mathrm{~B} * 15 \rightarrow \mathrm{~A} \div 15 \rightarrow \mathrm{H} * 15$

Class 3：（There are ten of this class．）
$\mathrm{K} 2 \rightarrow \mathrm{~L} 2 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} 2 \rightarrow \mathrm{~N} * 2 \rightarrow \mathrm{M} * 2 \rightarrow \mathrm{~L} * 2 \rightarrow \mathrm{~K} * 2 \rightarrow \mathrm{~K} 2$
Class 4：（There are six of this class。）
$\mathrm{OL}_{4} \rightarrow \mathrm{PL} \rightarrow \mathrm{QL} \rightarrow \mathrm{RL} \rightarrow \mathrm{SL} \rightarrow \mathrm{R} * 4 \rightarrow \mathrm{Q} * 4 \rightarrow \mathrm{P} \because 4 \rightarrow \mathrm{O}_{4}$
Class 5：（There are five of this class．）
U6 \rightarrow V6 $\rightarrow \mathrm{V} \div 6 \rightarrow \mathrm{U} \div 6 \rightarrow \mathrm{U} 6$
Class 6：（There are two of this class．）
$\mathrm{XBI} \rightarrow \mathrm{Y} 31 \rightarrow \mathrm{Z3I} \rightarrow \mathrm{Y} * 31 \rightarrow \mathrm{X3I}$
Class 7：（There is one of this class．）
$\mathrm{T} 33 \rightarrow \mathrm{~T} \div 33 \rightarrow \mathrm{~T} 33$
Class 8：（There is one of this class．）
I150 \rightarrow J150 \rightarrow I150
Class 9：（There are two of this class。）
WI \rightarrow WI
Here the star－notation means inverse，（i．e．$K * 2$ is the inverse of K2．），and，therefore，Class 1 and Class 2 are related．A complete list of these colorings，with both identification systems，is given in Appendix I．

The Kempe Equalities（E）
In developing the Kempe equalities，it is convenient to consider a L－ring and a 6－ring，as well as an 8－ring。 Let $R_{1} R_{2} R_{3} R_{4}$ represent the regions of a 4 －ring in counterclockwise rotation，and assign odd colors（i．e． 1 or 3）to R_{1} and R_{3} ，and even colors（i．e． 2 or 4）to R_{2} and R_{4} ．On the 4 －ring itself the odd and even colors will occur alter－ nately．If there exists a $(1,3)$ chain through the inside，connecting R_{1}
and R_{3}, we will say that R_{1} and R_{3} are oddly connected. If this is the case, then R_{2} and R_{L} are not evenly connected. Therefore, for the same inside coloring, both $(1,3)$ and $(2,4)$ chains cannot exist simultaneously.

Theorem 3.6: On a resular map, in, containing an inside colorable L-ring, $R_{1} R_{2} R_{3} R_{4}$, either a (1,3) chain connects $R_{1} R_{3}$, or a $(2,4)$ chain connects $R_{2} R_{4}$.

Proof: Since li is regular, it is possible to orient the edges in the following way. If an edge lies between an odd-colored region and an even-colored region, it is oriented so that the even-colored region is always on the right. If it happens that the edje lies between two evencolored or two odd-colored regions, it is not oriented. At every vertex; one of two color conditions exists: two odds and one even, or two evens and one odd.

Hence, it follows that at each vertex, one edge "enters", another edge "leaves", while the third edge is not oriented. From this, it is seen that these paths never terminate. Consider, now, a quadrilateral, with vertices labeled a, b, c, d counterclockwise. If R_{1} lies along the edge between d and a, then the edges between ring regions "enter" at a and c and "leave" at b and d. There are two possible cases.

Case 1: The path entering at a leaves at b, and the path entering at c leaves at b.

Case 2: The path entering at a leaves at d, and the path entering at c leaves at b.

Case 1 implies an odd chain connecting R_{1} and R_{3}, since the regions to the left of the path constitute a (1,3) chain. Similarly, Case 2 implies a $(2,4)$ chain connecting R_{2} and R_{4}. It is crucial for this proof that all vertices are regular.

Theorem 3.7: If J_{n} is the number of different ways the regions of a ring with n oriented edges between the ring regions may be connected with chains, then $J_{n}=\sum_{r=2}^{n} J_{r-2} J_{n-r}, r=2,4,6, \cdots, 2 k=n$, and $J_{0} \equiv 1$.

Proof: Since the edges between the regions of the ring are oriented, these edges alternately enter and leave around the ring. Pick an oriented edge entering the inside of the ring and call this edge 1. Number the other oriented edges from 2 to n in a counterclockwise direction around the ring starting with 1 . Pick an oriented edge leaving
the inside of the ring, say the rth edge, and join edge l and edge r by a chain. This divides the oriented edges into two sets, one of which contains r-2 edges, and the other contains n-r edges. The set of r-2 edges may be connected in J_{r-2} ways, while the set of $n-r$ edges can be connected in J_{n-r} ways. Hence for every r, there are $J_{r-2} J_{n-r}$ ways of making chain connections, and the theorem follows.

By the use of standard mathematical procedures, theorem 3.7 may be expressed in a closed form.

Definition 3.8: The elementary frequency of a coloring schere, A, is the number of ways in which the inside of an n-ring can be colored with the coloring scheme A on the n-ring.

Definition 3.9: An isotopic frequency of a coloring scheme, A, is the number of ways in which the inside of an n-ring can be colored, under the conditions that the scheme A is on the n-ring and a given set of chains connecting the regions of the ring exists.

For each possible set of chains joining the regions of an n-ring there is an isotopic frequency for every coloring scheme of the n-ring. Some, or all, of these isotopic frequencies may be zero, and each elementary frequency is the sum of all its isotopic frequencies.

The 4 -ring can be colored in four different ways:
A : 1212
B : 1214
C: 1232
D : 1234
The letters A, B, C, D will represent not only the coloring scheme but also the coloring frequency for that scheme. The elementary

Prequency, A, of coloring the $4-r i n g$ and its inside regions may be written

$$
A=A^{\prime}+A^{\prime \prime}
$$

where A^{\prime} is the isotopic frequency when a $(1,3)$ chain exists, and $A^{\prime \prime}$ is the isotopic frequency when a $(2,4)$ chain exists。 Hence,

$$
\begin{aligned}
& A=A^{\prime}+A^{\prime \prime} ; \\
& B=B^{\prime}+B^{\prime \prime} ; \\
& C=C^{\prime}+C^{\prime \prime} ; \\
& D=D^{\prime}+D^{\prime \prime} ;
\end{aligned}
$$

These lead to equations among the elementary frequencies.
Theorem 3.10: If A, B, C, D are the elementary coloring frequencies for a 4 -ring, then $A+D=B+C$.

Proof: Suppose an inside structure for the 4 -ring permitting a (1,3) chain and a coloring A'. Interchange the colors 2 and 4 in the P_{4} even chain. Since R_{2} and R_{4} are not connected in the same $(2,4)$ chain, this yields a coloring B'. Therefore, each A' coloring corresponds to a 31 coloring, and the correspondence is one-to-one. In this fashion the following equations are obtained:

$$
\begin{aligned}
& A^{\prime}=B^{\prime} ; \\
& A^{\prime \prime}=C^{\prime \prime} ; \\
& D^{\prime}=C^{\prime} ; \\
& D^{\prime \prime}=B^{\prime \prime} .
\end{aligned}
$$

Adding, we get,

$$
\left(A^{\prime}+A^{\prime \prime}\right)+\left(D^{\prime}+D^{\prime \prime}\right)=\left(B^{\prime}+B^{\prime \prime}\right)+\left(C^{\prime}+C^{\prime \prime}\right)
$$

It follows that

$$
A+D=B+C
$$

We will call this relation among elementary coloring frequencies a Kempe equality, since it is implied by Kempe's argument, although such equalities first appear explicitly in Birkhofi-Lewis [6].

4-rings do not occur on a minimal map, but the analysis may be extended to an 8-ring, which may occur. Consider an 8-ring, $R_{1} R_{2} R_{3} R_{4}$ $R_{5} R_{6}, R_{7} R_{8}$, taken counterclockwise, and a coloring, 058 : 1231.4213, of the R_{i} in the order listed above. This ring coloring scheme involves an odd-even-odd-even pattern that is grouped as 1-2-31-42-13. In each of the four groupings, select one representative; for instance, in the odd grouping, $R_{7} R_{8} R_{1}=131$, choose $R^{l}=R_{1}$. From the even grouping, $R_{2}=2$, let $R^{2}=R_{2}$. From the odd grouping, $R_{3} R_{4}=31$, pick $R^{3}=R_{3}$, and from the last grouping, $R_{5} R_{6}=42$, select $R^{4}=R_{5}$. The R^{i}, $i=1,2$, 3, 4, are the selected representatives from the $R_{i}, i=1, \cdots, 8$, and the 4 -ring isotope argument applies to $R^{i}, i=1,2,3,4$. In the 4 -ring there was exactly one way of having an odd-even-odd-even arrangement of colors and, hence, only one equation. However, in the 8-ring there are $C(3,4)=70$ ways of having such an arrangement, and a method of color matrices was devised by Bernhart as a concise and easily extended device for tabulating these equations. In the 4 -ring, with colorings A, B, C, D, one may arrange the colorings in a square array, $M_{i j}$, $i, j=1,2$, as follows:

In the first row $R_{2}=R_{4}$; in the second row $R_{2} \neq R_{4}$; in the first column $R_{1}=R_{3}$, and in the second column $R_{1} \neq R_{3}$. Hence, to each row and column there is associated an isotopic frequency, and the frequency of each element is the sum of its row and column isotopic frequencies. In exactly the same way, the $2 x 2$ color matrix may be constructed for the coloring 1231.4213.

The numbers outside the boxes indicate the colors in the representative positions $R^{1} R^{3}$ for the columns and $R^{2} R^{4}$ for the rows. The other ring colors are determined by the four representative colors according to the oddeeven pattern. This analysis provides a $2 x 2$ matrix for every coloring with an odd-even-odd-even pattern. However, it is not necessary to set up individually all 70 of these color matrices, for, by cyclic counterclockwise rotation of the colors about the 8 -ring, each matrix will generate seven others. As a result, there are only ten of these generating matrices, as listed in Appendix II.

On the 4 -ring there is only this one pattern, but for the 8 -ring, there are two others. First, the pattern of three odd groupings alternating with three even groupings of colorings, as in $\mathrm{N} * 2: 1-2-131-2-1-2-$ and, secondly, the pattern of four odd groupings alternating with four even groupings, as in Wl: 1-2-1-2-1-2-1-2-. Since, in the first instance, there are six of these groupings, pick six representatives $R^{l}=R_{1}$,
$R^{2}=R_{2}, R^{3}=R_{3}, R^{4}=R_{6}, R^{5}=R_{7}, R^{6}=R_{8}$. By theorem 3.7 there are five different possible ways to connect the resions R^{i}, with odd $(1,3)$ chains and even $(2,4)$ chains. This means the elementary coloring frequencies are each the sum of five isotopic frequencies. The isotopes, with regions connected by the same chain inclosed in the parentheses, are as follows:

1. Column isotope: $\left(R^{1} R^{3} R^{5}\right)$.
2. Row isotope: $\left(R^{2} R^{4} R^{6}\right)$ 。
3. Third isotope: $\left(R^{1} R^{3}\right)$ and $\left(R^{2} R^{4}\right)$ 。
4. Fourth isotope: $\left(R^{1} R^{5}\right)$ and $\left(R^{2} R^{4}\right)$.
5. Fifth isotope: $\left(R^{3} R^{5}\right)$ and $\left(R^{2} R^{6}\right)$.

Using the same device as before, it is possible to arrange the sixteen elements in a 4×4 color matrix, as follows:

	111	131	113	133
222	$\begin{aligned} & W \div 2 \\ & 1-2-131-2-1-2 \end{aligned}$			
224				
244				
242				

The element, 32 for example, is in the third row, marked $\underline{2} \underline{4} \underline{4}$, and in the second column, marked 131 , and is $1 \underline{2} 3 \times \times \underline{4} \underline{4}$, where the elements x are deternined by the odd-even pattern of $N * 2$, and are 1, 3 in that order. This coloring is $B \times 15$. In this manner each element in the $N * 2$ L 44 color matrix may be computed. The isotopes belonging to each
element may be determined by their defining chains. The isotopes are tabulated below, where 1, 2, 3, 4 identify row isotopes; 5, 6, 7, 8 column isotopes; 9, 10, 11, 12 thirds; 13, 14, 15, 16 fourths and 17, 18, 19, 20 fifths.

$\begin{aligned} & 1-5-9 \\ & 13-17 \end{aligned}$	$\begin{aligned} & 1-6-10 \\ & 13-19 \end{aligned}$	$\begin{aligned} & 1-7-9 \\ & 14-19 \end{aligned}$	$\frac{1-5-10}{14-17}$
$\begin{aligned} & 2-5-11 \\ & 13-18 \end{aligned}$	$\begin{aligned} & 2-6-12 \\ & 13-20 \end{aligned}$	$\begin{aligned} & 2-1-7.1 \\ & 14-20 \end{aligned}$	$\begin{aligned} & 2-12 \\ & 14-13 \end{aligned}$
$\begin{aligned} & 3-5-9 \\ & 15-18 \end{aligned}$	$\begin{aligned} & 3-5-10 \\ & 15-20 \end{aligned}$	$\begin{aligned} & 3-7-9 \\ & 16-20 \end{aligned}$	$\begin{aligned} & 3-8-10 \\ & 16-19 \end{aligned}$
$\begin{aligned} & 4-5-11 \\ & 15-17 \end{aligned}$	$\begin{aligned} & 4-6-12 \\ & 15-19 \end{aligned}$	$\begin{aligned} & 4-7-11 \\ & 16-19 \end{aligned}$	$\begin{aligned} & 4-8-12 \\ & 16-17 \end{aligned}$

It is noted that each matrix element has five isotopes, and each isotope occurs in four eleinents. Therefore, in a 4×4 color matrix, there are twenty different isotopes.

Definition 3.11: A spoor-diagonal in an S-by-S color matrix consists of a set of S matrix elements, no two of which contain the same isotope.

Thus, in a $2 x 2$ color matrix, for the 4 -ring, A, D form one spoordiagonal, B, C another. In the 4×4 color matrix, there are eight of these spoor-diagonals, and they are identified in the following matrix by the numbers one through eight.

$1-2$	$3-4$	$5-6$	$1-8$
$5-7$	$6-8$	$2-3$	$1-4$
$3-8$	$1-5$	$4-7$	$2-6$
$4-6$	$2-7$	$1-8$	$3-5$

Proposition 3.12: The sum of the elements in each of the spoordiagonals is the same, being the sum of each of the different isotopic frequencies in the matrix.

Proof: An S-by-S color matrix has S^{2} elements, and each element has associated with it t isotopes. But each isotope occurs in S elenents, so that of all the $S^{2} t$ isotopes only $S t$ are independent。 By definition, the elements of a spoor-diagonal have no isotopes in common; so their St elements are distinct and must contain every isotope in the matrix just once.

By equating the sums of the eight spoor-diagonals, each 4×4 color matrix yields seven equations ainong the sixteen elementary frequencies. There are exactly $C(8,6)=28$ of these color matrices associated with an 8-ring, but there are only four generating matrices. These are given in Appendix II. The remaining twenty-four of the 4×4 color matrices are obtained by a cyclic rotation of the elements of these generators.

In the case of an alternating pattern of four odd colorings and four even colorings, consider Wl: 1-2-1-2-1-2-1-2-, where $R^{i}=R_{i}, i=1$, 2, \cdots, 8. In this case, using theorem 3.7, there are fourteen different possible ways to connect the various regions with odd (1,3) and even $(2,4)$ chains. These possible connections are given in the following list.

2. Colurnn isotope: $\left(r^{2} R^{4} R^{6} R^{8}\right)$.
3. Third isotope: $\left(R^{1} R^{3} R^{5}\right)$ and $\left(R^{6} R^{8}\right)$.
4. Fourth isotope: $\left(R^{4} R^{6} R^{8}\right)$ and $\left(R^{1} R^{3}\right)$.
5. Fifth isotope: $\left(R^{2} R^{4} R^{3}\right)$ and $\left(R^{1} R^{7}\right)$.
6. Sixth isotope: $\left(R^{3} R^{5} R^{7}\right)$ and $\left(R^{2} R^{8}\right)$.
7. Seventh isotope: ($\left.R^{1} R^{3} R^{7}\right)$ and $\left(R^{4} R^{6}\right)$.
8. Eighth isotope: $\left(R^{2} R^{4} R^{8}\right)$ and $\left(R^{5} R^{7}\right)$.
9. Ninth isotope: $\left(R^{1} R^{3}\right) ;\left(R^{5} R^{7}\right)$ and $\left(R^{4} R^{8}\right)$.
10. Tenth isotope: $\left(R^{2} R^{4}\right) ;\left(R^{6} R^{8}\right)$ and $\left(R^{1} R^{5}\right)$.
11. Eleventh isotoce: $\ldots \ldots \ldots \ldots\left(R^{1} R^{7}\right) ;\left(R^{3} R^{5}\right)$ and $\left(R^{2} R^{6}\right)$.
12. Twelth isotope : $\left(R^{2} R^{3}\right) ;\left(R^{4} R^{6}\right)$ and $\left(R^{3} R^{7}\right)$.
13. Phirteenth isotope: $\left(R^{1} R^{5} R^{7}\right)$ and $\left(R^{2} R^{4}\right)$.
14. Fourteenth isotope: $\ldots \ldots \ldots \ldots\left(R^{2} R^{6} R^{8}\right)$ and $\left(R^{3} R^{5}\right)$.
It is now possible to construct an 8×8 color matrix. A scheme for arranging its sixty-four elenents is as follows:

	2222	2424	2244	2442	2224	2242	2422	2444
1111	WI							
1313								
1133								
1331								
1333								
1311								
1131								
1113								

The isotopes of each element in an 8×8 color matrix can readily be determined from their defining chain connections. From proposition 3.12, there are 112 different isotopes, each element of the matrix being the
sum of fourteen isotopes. The eighty spoor-diagonals are listed in Appendix III.

Having only eight spoor-diagonals in the 4×4 color matrix, it is possible to re-arrange the elements into a Hiagic square in which the four rows and four columns have the same sum. [3] This property, however, cannot be obtained in an 8×8 color matrix with its eighty spoor-diagonals.

Each $2 x 2$ matrix yields one equality; each $4 x 4$ matrix yields seven, and the 8×8 matrix yields 79 , for a cumuletive total of 245 equalities, not necessarily independent. These 245 equalities, anong 274 frequencies, have been arranged in the convenient format of color matrices. Each frequency occurs in, at most, three color matrices. If the frequencies represent the known colorings of the inside of an 3 -ring, all of the equalities are automatically satisfied. If the frequencies correspond to the complementary outside the equations, impose conditions wich must be satisfied by 274 unknown, but non-negative, integers. The equations among isotopic frequencies imply the spoor equations, but not conversely. For, consider a 4×4 color matrix where $\mathbb{M}_{i j}=1$, $i=j$ and $M_{i j}=0$, $i \neq j$, and each spoor has the value 1 , so that the spoor relations are satisfied. However, these elements cannot be expressed as a sum of non-negative isotopic frequencies. When either side of an 8 -ring is said to satisfy the Kempe equalities (E), it means both spoor and isotopic relations hold. For the inside, a geometrically known configuration, both sets of conditions are automatically satisfied. When the 274 unknown color frequencies for the outside are computed, each outside coloring frequency must vanish if the inside is colorable with that coloring scheme, since the whole map is, by definition, not colorable. The remaining unknowns
nust have only such values that they satisfy both the isotopic and spoor relationships.

The Primary Inequalities
A second set, (P) of criteria may be established for minimal
maps. Let R be an $n-r i n g$ on a minimal map, M, and let M^{\prime} represent the set of inside regions of R, and $M^{\prime \prime}$ the set of outsiue regions. Modify ii to $\mathrm{P}^{\prime \prime}$ by allowing non-consecutive ring regions, R_{i}, to merge, or become neighbors, in all possible ways through \mathbb{M}^{1}, in such a manner that \mathbb{M}^{1} is annihilated. This map, P", is now colorable. But any coloring for P" is a coloring for $M^{\prime \prime}$ and R 。 If $M^{\prime \prime}$ had been annihilated instead of M^{11}, in the same fashion, then the colorings for the reduced map, P^{\prime}, are colorings for \mathbb{E}^{\prime} and $R_{\text {. }}$ Each way in which a merger of the R_{i} can be effected through either M^{\prime} or $\mathrm{N}^{\prime \prime}$ is called a primary constraint, and the subset of the 274 color schemes satisfying one such constraint is called a primary. Each primary constraint (P) yields a primary set of colorings $X_{i}, i=1, \cdots, m$, where, if we also let X_{i} stand for the corresponding color freguency,

$$
\sum_{I}^{m} x_{i}>0
$$

Both the inside MI and the outside $\mathrm{M}^{\prime \prime}$ of R mast be colorable in such a way that among the color schemes satisfying each primary constraint at least one M^{\prime} frequency is positive, and at least one $\mathbb{N}^{\prime \prime}$ frequency is positive. However, since M is not colorable, the set of colorings of M and $\mathbf{N A}^{\prime \prime}$ do not contain any elements in common. For an 8 -ring there are 56 different types of primary constraints. By cyclic rotation of each of
these 56 types, 398 primaries are obtained applicable to the 8 -ring. The 56 types are listed in Appendix IV. For clarity, an example of a primary is included here.

Example 3.13: Given an 8-ring, R_{i}, $\mathrm{i}=1, \cdots, 8$, consider the constraint $R_{1}=R_{3}=R_{5}$ and $R_{6} \neq R_{8} \cdot$

A quick run-down of the 274 colorings for the 8 -ring yields the following primary: K2, P4, K2, L7, L9, Q4, T33, U34, A36, L38, U*6, K $\because 7$, $\mathrm{G} \times 24, \mathrm{~L} 22$, N7, $V \div 34, F \div 36, B 24$ 。

The Secondary Inequalities
The third set of criteria are the secondary constraints (S) which are a generalization of the primary constraints. Instead of annihilating the inside N^{\prime}, constraints are placed on the alternating ring regions, R_{i}, but the inside is subdivided into polygons of five, six and seven sides in every possible way. Any modification which introduced a confijuration known to be reducible was excluded. Since the number of regions involved in the modified map may be as many as occurred in the original map, it is necessary to indicate how many regions are used.

Definition 3.14: The index, I, of the inside \mathbb{M}^{1}, of an n-ring,
R, is the number of inside regions. Accordingly, the number of refions in both R and W^{\prime} is originally $n+I$. The index, I ', after a secondary modification, is $I^{\prime}=N^{\prime}-n$, where I^{\prime} is the number of regions which replace $W^{\prime}+R$.

The constraint argunent fails unless the moditied map has fewer regions than the minimal map. Therefore, unless $I^{\prime}<I$, the secondary constraint is not applicable. If $I^{\prime}=I$, there is still the possibility of reduction, for Bernhart [2] has show that certain re-arrangements of regions will cause a map to become reducible. Hence, for each map, the set of secondary inequalities of oroper index, $I^{\prime} \leq I$, must be examined. In the 8-ring, there are 69 different schemes for the composition of these secondary constraints. Fy cyclic rotation of these 69 schemes, 537 secondaries are obtained. The 69 schemes are listed in Appendix V. An example of a secondary is given here.

Example 3.15: Given an 8 -ring, $R_{i}, i=1, \ldots, 8$, let $R_{1}=R_{4}$ and $R_{1}, R_{5}, R_{6}, R_{7}, R_{8}$ surround a single pentagon.

Here the index, I', is zero. One ring region was deleted and the modified inside has one region. A check of all 274 colorings yields thirty colorings which satisfy the constraint. These colorings are as follows: $\mathrm{P} * 12, \mathrm{P} \div 13, \mathrm{~V} 53, \mathrm{~V} 54, \mathrm{~S} 12, \mathrm{R} * 12, \mathrm{Q} \div 12, \mathrm{~S} 13, \mathrm{~B} \div 17, \mathrm{E} 17,012, \mathrm{~K} \neq 8$,
 $B \div 58, \mathrm{E} 24, \mathrm{R} \div 13, \mathrm{~B} \div 56, \mathrm{~A} \div 17$.

It is now possible to de.ine an irreducible n-ring.
Definition 3.16: An orthogonal n-ring satisfying all (1) Kempe equalities (E), (2) primary constraints (P), and (3) secondary constraints (S) of proper index is said to be irreducible.

When only part of these criteria are satisfied, we nay speak of E-irreducibility, P-irreducibility, and S-irreducibility. Thus, Bernhart had found that several 8-rings were E-irreducible. The complete system of prinaries, (P), and of secondaries, (S), are computed for the first time in this research. It is conceivable that an ortnogonal ring might satisfy conditions (E), (P), and (S) and yet be recucible by some further criteria, not formulated to date.

Hence, the problem of the 8 -ring is to determine which of the twenty-seven 8-ring configurations, if any, are irreducible in the sense defined.

CHAPTER IV

THE SOLUTION OF THE 8-RING

The 1,130 requirements that an irreducible map containing an 8-ring must satisfy have been set up in Chapter III. The satisfaction of these requirements falls into two phases: one, solving the Kempe equations, two, checking the primary and secondary inequalities. In the search for these irreducible maps, the methods used in each phase are quite different and will be discussed separately.

The Kempe Equalities
In order to solve the Kempe equations, it was first necessary to prepare for each map to be tested a complete set of 99 associated color matrices for the 8-ring. Each 8-ring was drawn and, taking full advantage of symmetries, colorability of its inside was determined, Assigning in turn each of the canonical colorings to the 3-ring, each inside frequency was found by manually testing every possible coloring of all the inside regions of the configuration. The symmetry and isotopic requirements provided a check on the manual accuracy. For example, if the 8ring configuration had an axis of symmetry from R_{1} to R_{5}, then if $K 2$ would yield a coloring frequency two, a counterclockwise rotation of K2 would give a coloring L2 whose inverse, $\mathrm{L} * 2$, also colors the conifiguration in two ways. The isotopic argument may be illustrated with a 2×2 color
matrix. Whenever three elementary frequencies are known, the fourth mayl be computed. Similar argunents were employed with the larger matrices. After all the inside frequencies were obtained manually they were recorded in the color matrices, and each matrix was checked to see that all isotopic requirements were satisfied. This phase of the work is called the inside coloring of the map.

Since no inside coloring may color the outside, by hypothesis, each coloring scheme with positive inside frequency was assigned the outside value zero。 Occasionally this initial set of zeros, combined with isotopic arguments, induced additional zeros not required by orthogonality.

As an example, consider a 2×2 color matrix, $M_{i j}$, where the inside colorings are listed below.

2	1
1	0

The outside frequencies $\mathrm{k}_{11}, \mathrm{~N}_{12}$, and i_{21} iust vanish, by orthogonality, but isotopic arguments force the fourth outside frequency liz2 to be zero also. A more complex example is found in the 8×8 color matrix. If the elements of a row are all inside colorable but one, and if the outside frequency of its column isotope is also zero, tnen it has zero outside frequency. This follows, since every isotope, excluding column isotopes, has more than one element in each row.

After the outside zeros are filled in, it is necessary to determine if there is a possible assignment of parameters to the remaining elements in such a way that the Kempe conditions are satisfied. This is best done by choosing as initial parameters the isotopic frequencies of
the $8 x 8$ color matrix which are not necessarily zero. This automatically satisfies all the equations of the 8×8 color matrix, and places numerous demands on the other matrices. Again, as with the inside coloring, the isotopic arguments are used to complete the outside coloring. In many cases a solution is obtained without introducing any new parameters. In some cases, however, the coloring of the elements in the $4 x 4$ matrices is not uniquely determined, and additional parameters are necessary. Since every element in the $2 x 2$ matrices appears also in a $4 x 4$ or the 8×8 matrix, it was never necessary to assign a parametric value to any $2 x 2$ isotope.

For all 27 maps considered, it was possible to satisfy the Kempe relations with from one to sixteen independent parameters. As a result, all 27 maps are E-irreducible.

Primary and Secondary Inequalities
To satisfy the constraints, a machine process was used involving the I. B. M. card assorter. (I. B. in. O82) This was done due to the great number of checks necessary and to insure accuracy.

This I. B. M. machine sorts cards on which there are eighty columns, numbered one through eighty, and ten rows, numbered zero through nine. The two adjustments on the machine allow one to pick any column for examination and request the machine to select, in that column, any one or more of the rows that may have been punched and to remove those cards from the machine.

This problem was set up in the following way to utilize this machine, The canonical colorings were listed in their numerical order
running from 1 to 274. The digit in the unit's place was selected as the row, and the other digits determined the column. Since there was no zero column, those numbers of only one digit were placed in column twentyeight.

Example 4.1:

Coloring 176	column 17, row 6.
Coloring 25	column 2, row 5.
Coloring 3	column 28, row 3.

In this fashion each coloring had assigned to it a unique position on the I. B. M card.

Each primary and secondary were then coded with these numbers and punched on separate I. B. M. cards. Two colors of cards were used, white for the 398 primaries and blue for the 537 secondaries. This yielded 935 cards, one for each inequality, to be checked against each of 27 maps.

For each outside to be tested, a master sheet was prepared. The frequencies were arranged in a table of ten rows and twenty-eight colums corresponding to those on the I. B. in. card. All of the non-zero elements for each map were coded and written into these master sheets. For example, the only table places vacant for an outside coloring were those that were zero.

Then for each master sheet, it is possible to pick any column and ask the machine to throw out all cards that have a punch in any position that corresponds to a position marked on the master sheet. This process is continued until either the cards are all removed, or some are left after all twenty-eight columns are examined. In the first case, the map has satisfied all of the criteria for irreducibility, (P) and (S), and-
in the second, the map is reducible and, therefore, colorable.
Each of the 27 maps were so examined, and all were found to be irreducible.

Some additional information, relative to the independent parameters, was also obtained.

Defjnition 4.2: An independent parameter is called essential
if the map reduces whenever the parameter is zero.
In order to determine which parameters were essential, additional master sheets were prepared for each parameter tested. Each parameter in turn was supposed zero, shortenins the list of positive outside frequencies. For each of these revised lists, a machine comparison was nade with all the primaries and secondaries. In many instances, it was found that, although the map was irreducible, some of its parameters could not be removed without reducing the map. This supplementary work was done only on a limited number of the maps, since, in most cases, the map had either a single parameter or so many in combination that no test seemed necessary.

In general the maps with simplest inside structures had the more complicated outside solutions, and vice versa. The parametric study furnished the only known examples of frequencies which are P-reducible but S-irreducible.

THE ALGEBRAIC CASE

Birkhoff [5] , in solving the 5-ring, was able to prove that only one solution existed, namely the geometrically known case of an inside pentagon. In his work on the 6-ring, he attempted to prove that no other solution to the Derape conditions existed other than those found for his geometric 6-rings. However, he was able to satisfy these relations algebraically for both sides of a 6-ring with an entirely different, but consistent, set of frequencies. Every attempt to assign a geometric structure yielding these color frequencies failed, leaving an open question: Are they drawable? Birkhoff conjectured that these "algebraic" solutions were the key to the four-color problem. Bernhart [2] found three algebraic 6-rings and proved his list was complete. For the 7-ring Bernhart found, besides the geometric cases, some 140 algebraic cases. These were discovered by a consideration of all possible ways to satisfy the Kempe equalities (E) of a 7 -ring. Apparently the number of algebraic n-rings increases rapidly for increasing n, and, for the 8 -ring, several thousand of these algebraic cases are procurable. It is not the purpose of this thesis to exhaust these non-geometric possibilities but rather to acknowledge the existence of such cases by presenting one instance.

Such an example is readily obtained by starting with Bernhart's algebraic solution, 6R4, which has an axis of symmetry from R_{2} to $R_{5} \cdot \ldots$

Althourh this coniguration is undrawable, it is bounded by a b-ring whose colorability is known. Resions R_{4} and R_{6} are transferred from the bounding ring to the inside so that an 8-ring is formed. Each annexed region is given four edzes other than its contact with the peripheral regions of 6R4. These annexed rejions will be called pseudo-pentagons. The resultant 8 -ring is undrawable, since an integral part of it is the algebraic case 6RL4.

Each admissible coloring of 6R4 assigns colors to the attached pseudo-pentagons as well as the four other regions of the 6-ring which become part of the new 8-ring. By considering all possible ways in which the remaining four regions of the 8 -ring may be colored, a set of colorings on the 8 -ring is obtained, consistent with the colorability of that side of the 8-ring containing the original 6R4 inside. As in the case of geometric structures, a coloring for the 8-ring outside was also obtained. This yielded two orthogonal sets of coloring frequencies which were found to be irreducible.

This example demonstrates the existence of algebraic irreducible 8-rinss.

CHAPTER VI

CONCLUSIONS

Although this thesis has not proved or disproved the four-color conjecture, it offers a solution to the 8 -ring. Thirty-two 8 -rings were examined. Five of these are reducible, although only 8 Rl0 had to be tested by all the criteria (E) for a minimal map before its reducibility was discovered. It was surprising that the remaining twenty-seven 8 -rings uniformly satisfied criteria (E), (P) and (S). Before completing the research, one would have expected a progressive sieve: some (E)-reducible, others (E)-irreducible but (P)-reducible, a remnant (E), (P) and (S)irreducible. It is also remarkable that the irreducible rings not only satisfied the secondary constraints of proper index but those with greater index as well. On watching the machine sorting of the white and blue cards, it seemed that the blue cards representing (S) criteria were satisfied more readily than the white (P) cards. This seems to justify their name "secondary", for they may prove to be logical consequences of the criteria (E) and (P). The only objective evidence for this conjecture is found in the testing of rings where certain parameters were artificially set equal to zero. Some of these cases were (P)-reducible but (S)-irreducible. Others were (E)-irreducible but (P)-reducible. It was disappointing that the (S) criteria failed to knock out any cases that passed the (P) test. Hewever, the unexpected sterility of the (S) constraints
may justify the onission of any tertiary constraints such as could be set up by using reducible configurations in the modified maps. We do not know that the (S) criteria are superfluous, for they may prove useful in the study of algebraic 8-rings.

Although another reducible 8 -ring would have been welcomed by the exponents of the synthetic method, the importance of finding irreducible configurations should not be underestimated. It takes only one contradiction to show reducibility; while irreducibility guarantees that thousands of conditions have been simultaneously satisfied. Irreducible sets of regions form the building units essential for the construction of a minimal map. The more of these structures we know, the closer we are to the ultimate solution of the four-color problem.

Through this research on the 8 -ring, and from pertinent literature, several interesting but unanswered questions on the four-color problem are suggested. Although not within the scope of this thesis, they indicate directions in which this work might be extended.

In the study of rings with interior regions, how many interior regions must necessarily be added to an 8 -ring to make it irreducible? Can a general theory of interior regions be developed for n-rings?

Due to the large numbers involved, the study of algebraic 8-rings or geometric 9-rings becomes laborious. Is it possible to characterize algebraic 8 -rings so that machine processes may be used?

Again, is it possible to obtain a theory of algebraic n-rings Which will oredict the number of such structures for any n, or yield a method of geometric construction of such a structure if one exists?

Bernhart [2] proved that if an edge is conjugated on a minimal

LIST OF REFERENCES

1. A. Bernhart, Another reducible edge configuration, American Journal of Mathematics, Vol. 70 (1948), pp. 144-146.
2. A. Bernhart, Six rinjs in minimal five-color maps, American Journal of Mathematics, Vol. 69 (1947), pp. 391-412.
3. A. Bernhart, Irreducible rings in minimal five-color maps, International Congress of Mathematicians, Vol. 1 (1950), p. 521.
4. G. D. Birkhoff, A determinant formia for the number of ways of coloring a map, Annals of liathematics, Vol. 14 (1912), pp. 42-46.
5. G. D. Birkhoff, The reducibility of maps, American Journal of Mathematics, Vol. 35 (1913), pp. 115-128.
6. G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, American Nathematical Society Transactions, Vol. 60 (1946), pp. 355-450.
7. H. R. Brahana, The four-color problem, American Nathematical iNonthly, Vol. 30 (1923), pp. 234-243.
8. A. Cayley, On the coloring of maps, Proceedings of the London Mathematical Society, Vol. 9 (1878), p. 148.
9. R. Courant and H. Robbins, What is inathematics, Oxford University Press, New York, 194.
10. A. Errera, Une contribution au probleme des quatre couleurs, Bulletin de la Société Mathématique de France, Vol. 53 (1925), pp. 42-55.
11. P. Pranklin, The map coloring problem, American Journal of Mathematics, Vol. 44 (1922), pp. 225-236.
12. P. J. Heawood, Map color theorem, Quarterly Journal of Pure and Applied Mathematics, Vol. 24 (1890), pp. 332-338.
13. P. J. Heawood, on the four-color map theorem, Quarterly Journal of Pure and Applied Matheineics, Vol. 29 (1898), pp. 270-285.

40

14. A. B. Kempe, On the geographical problem of four colors, American Journal of Mathematics, Vol. 2 (1879), pp. 193-200.
15. J. Petersen, Die theorie der resulären graphs, Acta wathematica, Vol. 15 (1891), pp. 193-220.
lo. P. G. Tait, On the coloring of maps, Proceedings oi the Royal Society of Edinourgh, Vol. 10 (1880), pp. 501-503.
16. O. Veblen, An application of nodular equations in analysjs situs, Annals of Mathematics, Vol. $14(1912-13)$, pp. 86-94.
17. Hassler Whitney, A theorem on graphs, Annals of Mathematics, Vol. 32 (1931), pp. 378-390.
18. C. E. Winn, A case of coloration in the four-color problen, Anerican Journal of ifathematics, Vol. 59 (1937), pp. 515-528.
19. C. E. Winn, On certain reductions in the four-color problem, Journal of mathematics and Physics, Vol. 16 (1938), pp. 159-171.

APPENDIX I: 8-RING COLOR SOHEMES

Group	Wumerical	Color	Group	Wunerical	Color
Order	Order	Scheme	Order	Order	Scheme
Al5．	15.	． 12123134	$\mathrm{A} \div 15$ ．	213．．．．	． 12324343
Al7．	17．．．．．．．．	． 12123143	$A \div 17$ ．	152．．．．	．12314343
A 24.	4.	12123243	$A * 24$.	132.	12313434
A36．．	35．．．．．．．	． 12131234	$A * 36$ ．	254	12342434
A50．．	50．．．．．．．	． 12131424	A $* 50$ ．	89.	12134うこう
A56．．	56．．．．．．．	． 12132134	$A * 56$ ．	． $247 . .$.	． 12342343
A58．	53．．．．．．	． 12132143	A＊58．	227．．．．	． 12341343
B15．	4.	． 12132342	B $* 15$ ．	128.	12313414
317.	71．．．．．．	． 12132432	$B \times 17$ 。	108．．	． 12312414
B24．	1．．．	． 12131432	$3 * 24$－	250	12342414
B36．．	165．．．．．	． 12321342	3×36 。	223.	． 12341314
350．．	．198．．．．	．12324142	$B \div 50$ ．	168．．．．	． 12321413
356．．	．104．．．．	． 12312342	$3 \div 56$ 。	148.	． 12314314
B58．	111．．．．	． 12312432	3×58 ．	141.	． 12314214
015.	． 126.	． 12313412	0×15	． 248.	． 12342412
C17．	145．．．．．	．12314312	C \quad 27	． 241.	． 12342312
C24．	207.	． 12324312	C＊24．	221.	． 12341312
036．	．67．．	． 12132413	$0 * 36$	． 219.	． 12341242
050.	． 88.	． 12134314	C -50	．124．．．．	． 12313242
056.	．107．．．．．	． 12312413	C $\div 56$ 。	． $239 . .$.	． 12342142
058.	．140．．．．．	． 12314213	C＊58．	．237．．．	． 12342132
D15．	．208．．．．．	． 123243.13	D $\because 15$.	．77．．．	．1213！． $24 ?$
D17．．	．242．．．．．．．	． 12342313	D -17.	． $75 . .$.	． 12134132
D24．	68．．．．．．．．	．12132414	D $\times 24$.	． $82 . . .$.	． 12134232

Group	Numerical	Color	Group	Funerical	Color
Order	Order	Scheme	Order	Order	Schene
D36...	. 142.	. 12314232	$\mathrm{D} \times 36$.	. $31 .$.	. 12134214
D50..	.26ó.....	. 12343242	D $* 50$.	61..	12132314
D56.	. 149.	. 12314323	D $\because 56$.	74.	12134124
D58.	. 224.	.12341323	D $* 58$.	73.	.12134123
E15.	10....	. 22132424	$E \times 15$ 。	29.	12123424
E17.	.110....	. 12312424	E $\times 17$.	28.....	12123423
E24.	14.	.12314242	$E * 24$	26.	12123413
E35.	. 215	. 12341213	E*36.	.196...	12324132
E50..	. $162 . . .$.	. 12321314	E*50.	212....	. 12324342
E56.	235...	12342123	E*56.	94.	12324123
E58.	236.	12342124	E $\because 58$	70.	12321423
F15.	.137....	. 12314142	F*15	188.	12323413
F17.	.138....	.12314143	F $\times 17$	179.	12323143
F 24.	229....	. 12341413	F*24	178.	12323142
F30.	232.....	. 12341424	$\mathrm{F} * 36$	49.	12131423
F50.	55......	. 12132343	$\mathrm{F} * 5$ ()	52.	12131434
F56..	.134......	.12314124	F*56.	129....	12313423
F58.	136.... .	. 12314134	F*58.	125...	12313243
G15.	269.....	. 12343413	$\mathrm{G} \times 15$.	1.17...	12313142
G17.	271.....	.12343423	G* 17.	11.4	. 12313124
G24.	272.....	. 12343424	G*24	43......	. 12131324
G36.	258.....	. 12343134	6*36.	159.....	. 12321243
G50..	131.	12313432	$G \times 50$.	202.......	. 12324214
G56..	260.	12343143	G*56.	98.....	. 12312143

Group	Numerical	Color	Group	Numerical	Color
Order	Order	Scherne	Order	Order	Scheme
958..	.267.... .	. 12343243	$G \div 58$.	.96.......	. 12312134
H15.	.191..	. 12323424	$\mathrm{H} \times 15$	63......	. 12132324
H17.	. 175.	. 12323124	$\mathrm{H} \times 17$.251..	. 12342423
H2L.	.177.	. 12323134	H 224	206....	. 12324243
430.	2014..	. 123212324	$\ddot{3} \times 30$	123	. 12313234
H50.	.201.	. 12324213	H $\times 50$.	257.....	. 12343132
H56.	211...	. 12324324	- 2×50	103.	. 12312324
H58.	164.	. 12321324	H $* 58$	245.	. 12342324
1150.	150...	. 12314324	Self I		
J150.	240	. 12342143	Self I		
K2.	2	. 12121213	$K \check{\sim} 2$ 。	183.....	. 12323232
K7. .	. 185.	. 12323242	$K * 7$	11.	. 12131314
K8.	181.	. 12323213	$K * 8$.	115......	. 12313132
K9.	186.	. 12323243	$K * 9$.	116.....	. 12313134
Kll.	182.	. 12323214	$K \times 11$	273....	. 12343432
K22.	22.	. 12123234	$K * 22$	193.....	. 12323434
K38.	157..	. 12321234	$\mathrm{K} \div 38$	255.....	. 12343234
K69..	121.....	. 12313214	$K \div 69$	253...	. 12342432
K76.	255.	. 12343123	$K \div 76$	133.... .	. 12314123
K83.	256.....	. 12343124	$K \div 83$	231.....	. 12341423
L2.	3......	. 12121232	L*2.	40......	. 12131313
L7.	7	. 12121314	L*7.	205.....	. 12324242
L8.	3. 12121323	L \because 8.	62........	. 12132323
L9...	9...... 12121324	L $\% 9$.	252......	. 12342424

Group	Numerical	Color	Group	Wunerical	Color
Order	Order	Scheme	Order	Order	Scheme
L12．	． 11	． 12121343	L $\times 11$.	．92．．	． 12134343
L22．	44.	． 12131342	L $\because 22$.	． $270 . .$.	． 12343414
L38．	． 38.	． 12131243	$L \div 38$.	．234．．．．	． 12341434
I59．	．156．．．．	． 12321343	L 69.	．78．．	． 12134143
276.	．195	．1232412i4	L＊70́。	．109．	．12312423
L83．	197	． 12324134	L $\because 83$	． 145.	． 12314243
		．12121312	21\％ 2 。	． 153.	． 12321212
M7．	23.	． 12123242	i＊$* 7$	． 48.	． 12131414
148.	14.	． 12123132	i＊8．	161.	． 12321313
	16	． 12123142	1\％9．	． 222.	.12341313
Vill．	30.	12123432	W\％11．	．159．．．．．	． 12321414
122.	187	12323412	4＊22．	．228。	．12341412
H38．	172.	12321432	m 43.	．215．	． 12341214
W69．	59．．	12132423	泟敉9。	．171．．．．．	． 1232.1424
476.	，	12134134	W76	．105．．．．	． 12312343
： 83.	83.	． 12134234	$14 \% 83$	112	． 12312434
N2．	18.	12123212	N＊2。	32．．．．．．	． 12131212
N7．	16.	12131412	N+7.	200．．．．	． 12324212
iv8．	59.	12132312	$N \because 8$.	．119．．．．	． 12313212
	66.	12132412	15 59.	139．．．．	． 12314212
N11．	36.	12134312	$N * 11$.	．261．．．．．．	． 12343212
N22．	27.	12123414	$N * 22$ 。	34．．．．．．	． 12134242
N38．	80．．．．．．	12134213	N，$* 38$.	217．．．	． 12341232
N69．	135．．．．．．	12314132	15：69．	252．．．．．．	12343213

Group	Numerical	Color	Group	Numerical	Color
Order	Order	Scheme	Order	Order	Scheme
N76．．．	．246．．．．．．．	． 12342342	$\mathrm{N} \div 76$.	．101．．．．	． 12312314
N83．	．226．．．．．．．	． 12341342	$N * 83$ 。	． $243 . .$.	． 12342314
04．．	．184．．．．．．．	． 12323234	Self I		
012.	．113．．．．．．．	． 12313123	Self		
013．．．	．118．．．．．．．．	．12s 2 S143	Seif in		
019.	．42．．．．．．．．	． 12131323	Self I		
020.	． $45 \ldots$	． 12131343	Self		
072.	． 72.	． 12132434	Self I		
P4．	．	． 12121234	P $\because 4$.	274．．．．．	． 12343434
Pl2．	．174．．．．．	． 12323123	$\mathrm{P} \times 12$	93．．．．．	12312123
Pl3．	190．．．．．．．．	． 12323423	$\mathrm{P} \times 13$	94．．	12312124
P19．	．176．．．．	． 12323132	$\mathrm{P} * 19$	．154．．．．．	12321213
P20．	．192．．．．．	． 12323432	$\mathrm{P} * 20$	155.	12321214
P72．	．151．	． 12314342	$\mathrm{P} * 72$	．209．．．．．	． 12324314
Q4．	．10．	． 12121342	Q 2×4	．230．．．．．	．12341414
Q12．	．12．．．．．．	． 12123123	$Q \times 12$	．102．．．．	． 12312323
Q13．	．13．0．．．．．	． 12123124	Q 2×13	．244．0．．．	． 12342323
Q19．	．19．．．．．．．	． 12123213	$Q \times 19$ 。	．122．．．．．	． 12313232
Q20．	．20．．．．．．	． 12123214	$Q * 20$.	． 264.	． 12343232
Q72．．	．249．．．．．．．	． 12342413	$Q \times 72$ 。	．259．．．．．	． 12343142
R4．．	．25．．．．．	． 12123412	R 3 为	．214．．．．	． 12341212
R12．	． 55.	． 12132132	R＊12．	．100．．．．．．	． 12312313
R13．．．	．57．．．．．．．．．	． 12132142	$\mathrm{R} \times 13$.	．147．．．．．．	． 12314313
R19．．．	． 35.	． 12131232	R\％19．	．60．．．．．．．	.12132313

| Group
 Order | Numerical
 Order | Color
 Scheme | Group
 Order | Numerical
 Order |
| :--- | :--- | :--- | :--- | :--- | | Color |
| :--- |
| Scheme |

APPENDIX II: 8-RING GENERATING COLOR WATRICES

Eight-by-Eight Color Matrix

W	T33	v6	U $\div 6$	K2	2	i丁 $* 2$	L*2
$T \times 33$	W218	U $* 85$	v85	K38	038	$\mathrm{N} \div 38$	L*38
$V * 6$	U85	X3I	Y31	K22	[121	$N * 22$	L F 11
U6	V_{*} * 85	$Y \div 31$	231	Kıl	M22	N $\because 211$	$\underline{L} \times 22$
$\mathrm{K} * 2$	$K * 38$	K $\times 22$	K \% II	04	P20	$Q * 20$	P*4
M H 2	iin*38	Li\%II	I\% $* 22$	$P * 20$	S20	$R * 4$	Q 24
N2	N38	N22	N11	Q20	R4	S4	$R * 20$
L2	L38	L1]	L22	P 4	Q4	R20	020

Four-by-Four Color inatrices

$K 2$	$K 8$	$P * 29$	$Q 19$
$U 34$	$N * 69$	$E 36$	$D * 36$
$L 7$	$F \div 15$	$B * 50$	$E * 24$
$n * 7$	$G 15$	$F 24$	050

$P 4$	$G * 36$	$K 9$	$A 24$
$L 9$	$E * 58$	$P 13$	$E * 17$
$A 36$	$M 143$	958	$2 \div 33$
$G * 24$	$K * 83$	$G 17$	$R * 72$

$L 8$	$\mathrm{U} \div 53$	$\mathrm{Pl2}$	Q 12
L 11	L 69	$\mathrm{~F} \div 17$	$\mathrm{Al7}$
A 50	D 58	K 76	$\mathrm{D} \div 56$
$\mathrm{~F} \div 50$	$\mathrm{~A} \div 58$	O 56	I 76

Q13	$\mathrm{U} \div 54$	$\mathrm{E} \div 56$	$\mathrm{E} \times 15$
$\mathrm{U54}$	$\mathrm{Q} \div 13$	E 56	E 15
A 55	$\dot{4} \div 15$	S 72	X 31
$A 56$	$A \div 56$	J 150	072

Two-by-Two Color Natrices

X143	W218
I150	2143

220	$H 50$
$D \div 50$	$Q 72$

APPENDIX III: $8 x 8$ SPOOR-DIAGONALS

1. W1, W218, X31, 231, P4, R4, R*K4, P*4
2. W1, W218, Y $\because 31, Y 31,04, Q 4, S 4, Q * 4$
3. W1, $\mathrm{K} * 38, \mathrm{X} 31, \mathrm{~L} 22, \mathrm{~K} 38, \mathrm{R} 4, \mathrm{R} * 4, \mathrm{~L} * 22$
4. WI, $K * 38, \mathrm{Y} * 31, \mathrm{~K} * 22, \mathrm{~K} 22, \mathrm{Q} 4, \mathrm{~S} 4, \mathrm{~L} * 38$
5. WI, $\mathrm{H} * 38, \mathrm{~K} * 22, \mathrm{Z} 31, \mathrm{P} 4, \mathrm{R} 4, \mathrm{~N} \div 22, \mathrm{~L} \div 38$
6. WI, $\mathrm{N} \div 38$, $\mathrm{N} 22, \mathrm{Y} 31, \mathrm{OL}, \mathrm{Q} 4, \mathrm{~N} \div 38, \mathrm{~L} \div 22$
7. WI, N38, X31, W $\because 22, \mathrm{PL}, \mathrm{K} 22, \mathrm{~N} \div 38$, P $\because 4$
8. WI, $N 38, \mathrm{Y} \because 31, \mathrm{~L} 22,04, \mathrm{H} 38, \mathrm{~N} \div 22, \mathrm{Q} \div 4$
9. WI, L38, K*22, Y31, K38, K22, $\mathrm{S} 4, \mathrm{Q} * 4$
10. W1, L38, N22, Z31, K22, H 38 , R $\because 4$, P $\mathrm{F} \mathrm{K}_{4}$
11. $T * 33, T 33, X 31,231, Q 20, S 20, Q * 20,020$
12. $T * 33, T 33, Y * 31, Y 31, P * 20, P 20, R * 20, R 20$
13. $K * 2, T 33$, $\because \div 21, \mathrm{Z} 31, \mathrm{Q} 20, \mathrm{M} 38, \mathrm{~N} * 22,020$
14. $K \div 2, T 33, \mathrm{~L} 11, \mathrm{Y} 31, \mathrm{P} \because 20$, $\mathrm{K} 22, \mathrm{~N} \because 38, \mathrm{R} \because 20$
15. $\mathrm{M} * 2, \mathrm{~T} 33, \mathrm{X} 31, \mathrm{~N} 11, \mathrm{~K} 38, \mathrm{M} 22, \mathrm{Q} * 20,020$
16. $\mathrm{i} 4 * 2, \mathrm{~T} 33, \mathrm{Y} * 31, \mathrm{~K} * 11, \mathrm{~K} 22, \mathrm{~N} / 38, \mathrm{R} 20, \mathrm{R} * 20$
17. N2, T33, M\%11, Y31, K38, P20, R20, $\mathrm{L} \div 22$
18. N2, T33, L11, Z31, K22, S2O, $Q * 20, \mathrm{~L} * 38$
19. L2, T33, X31, $K * 11, \mathrm{Q} 20, \mathrm{~S} 20, \mathrm{Q} \div 20, \mathrm{~L} \div 38$
20. L2, T33, $\mathrm{Y} \div 31, \mathrm{~N} 11, \mathrm{P} * 20, \mathrm{P} 20, \mathrm{~N} \div 22, \mathrm{~L} \div 38$
21. $V * 6, V * 85, V 6, V 85, Q 20, Q 4, Q * 20, Q * 4$
22. $V_{* 6}, \mathrm{M} \div 38, \mathrm{~V}$, N11, K11, $\mathrm{Q} 4, \mathrm{Q} \div 20, \mathrm{~L} * 38$
23. $V * 6, I 38, V 6, K * 11, Q 20, N 38, N * 11, Q * 4$
24. U6, U85, V6, V85, P4, P20, R*4, R*20
25. U6, $\mathrm{M} * 38$, $V 6, \mathrm{~K} \div 11, \mathrm{P} 4$, 沮1, $\mathrm{N} \div 38, \mathrm{R} \div 20$
26. U6, L38, V6, N11, K38, P20, R*4, L*11
27. $K * 2, ~ U 85, ~ V 6, L 22, K 11, N 38, R * 4, R * 20$
28. $K * 2, ~ \nabla * 85, V 6, H * 22, Q 20, Q 4, N * 38, L * 11$
29. N2, U85, V6, $\mathrm{M} * 22, \mathrm{P} 4, \mathrm{P} 20, \mathrm{~N} * 11, \mathrm{~L} * 38$
30. N2, $V * 85, \mathrm{~V}, \mathrm{~L} 22, \mathrm{~K} 38, \mathrm{~N} 1 \mathrm{ll}, \mathrm{Q} * 20, \mathrm{Q} * 4$
31. $V * 6, V * 85, U * 85, U * 6, P * 20, R 4, R 20, P * 4$
32. $V * 6, K \div 38, L 11, U * 6, P * 20, R 4, \mathrm{H} * 11, L * 38$

33. U6, U85, U\#85, U $\because 6,04$, S20, SL, 020
34. U6, $K * 38$, K $K * 11, \mathrm{U} \div 6, \mathrm{~K} 38, \mathrm{k} 11, \mathrm{S4}, 020$
35. U6, N38, LIl, U $\because * 6, ~ \mathrm{~L}, \mathrm{~S} 20, \mathrm{~N} * 38, \mathrm{~L} * 11$
36. $\mathrm{N} \because 22$, U85, N22, U*6, O4, M38, N*11, 020
37. $\mathrm{H} * 2, \mathrm{~V} * 85, \mathrm{~K} \geqslant 22, \mathrm{U} * 6, \mathrm{~K} 38$, $\mathrm{R} 4, \mathrm{R} 20, \mathrm{~L} * 11$
38. L2, U85, K $\because 22$, U*5, K11, S20, S4, L $\because 38$
39. L2, V*85, N22, U $\because 6, \mathrm{P} * 20, \mathrm{M} 11, \mathrm{~N} * 38, \mathrm{P} * 4$
40. $T * 33,4 * 38, N 22,231, K 2,41, Q * 20,020$
41. $\mathrm{T} * 33, \mathrm{~N} 38, \mathrm{Y} * 31, \mathrm{~N} * 22, \mathrm{~K} 2, \mathrm{P} 20, \mathrm{R} 20, \mathrm{~L} * 11$
42. $V * 6, ~ M * 38, U * 85, K * 11, K 2, R 4, R 20, L * 22$
43. V*6, N38, LIl, V85, K2, M22, Q*20, Q*4
44. K*2, W218, L11, Z31, K2, RL, R 24 , $\mathrm{L} * 11$
45. K $\because 2, \mathrm{U} 85, \mathrm{U} * 85, \mathrm{M} * 22, \mathrm{~K} 2, \mathrm{w} 22, \mathrm{~S} 4,020$
46. $K * 2, N 38, L 11, i * * 22, K 2, N 22, N * 38, L * 11$
47. L2, W218, Y $\because 31$, K $K 11, \mathrm{~K} 2, \mathrm{M1}, \mathrm{SL}, \mathrm{Q} * 4$
48. L2, U85, N22, V85, K2, P20, R $* 4$, $\mathrm{L} * 22$
49. L2, $M * 38$, N22, $K * 11, \mathrm{~K} 2, \mathrm{~N} 11, \mathrm{~N} \div 38$, L $* 22$
50. $T * 33, K * 38, X 31, N \neq 22, Q 20, N 2, N * 11,020$

51. U6, $K * 38$, LII, V85, K22, K2, $R \neq 4, R * 20$
52. U6, $14 * 38, \mathrm{U} * 85, \mathrm{~N} 11,04, \mathrm{M} 2, \mathrm{~N} * 22,020$
53. N2, W218, L11, Y31, OL, N $\because 11, \mathrm{M} 2, Q \div 4$
54. N2, $V \div 85, \mathrm{U} \div 85, \mathrm{~W} \div 22, \mathrm{~K} 22, \mathrm{M} 2, \mathrm{R} 20, \mathrm{P} * 4$
55. N2, $\mathrm{K} * 38, \mathrm{~L} 11, \mathrm{~N} * 22, \mathrm{~K} 22, \mathrm{M} 2, \mathrm{~N} * 11, \mathrm{~L} * 38$
56. L2, W218, X31, N11, K11, M2, R
57. L2, $\mathrm{V} \div 85, \mathrm{~K} * 22, \mathrm{~V} 85, \mathrm{Q} 20, \mathrm{~L} 2, \mathrm{~N} * 22, \mathrm{Q} * 4$
58. $\mathrm{L} 2, \mathrm{~N} \div 38$, $\mathrm{K} \because 22$, N11, K11, $\mathrm{M} 2, \mathrm{~N} \div 22, \mathrm{~L} \div 38$
59. $T * 33, \mathrm{~K} * 38, \mathrm{Y} * 31, \mathrm{~L} 22, \mathrm{P} \div 20$, $\mathrm{W} / \mathrm{ll}, \mathrm{N} * 2, \mathrm{R} * 20$
60. $\mathrm{T} * 33, \mathrm{~L} 38, \mathrm{~K} * 22, \mathrm{Z} 31, \mathrm{Q} 20, \mathrm{~S} 20, \mathrm{~N} * 2, \mathrm{~L} * 11$
61. $V \div 6, K * 38$, $\mathrm{V} * 11, \mathrm{~V} 55, \mathrm{Q} 20, \mathrm{~N} * 2, \mathrm{Q} 4, \mathrm{~L} * 22$
62. $V \div 6, \mathrm{~L} 38, \mathrm{U} \div 85, \mathrm{~N} 11, \mathrm{P} \div 20$, $\mathrm{W} 22, \mathrm{~N} \div 2, \mathrm{P} \div 4$
63. $M_{n}=2, W 218, Y * 31, N 11,04, Q 4, N \div 2, L \div 11$
64. $\mathrm{M} * 2, \mathrm{U} 85, \mathrm{~K} * 22, \mathrm{~V} 85, \mathrm{P} 4, \mathrm{~N} 22, \mathrm{~N} * 2, \mathrm{R} * 20$
65. $\mathrm{M} * 2, \mathrm{~L} 38, \mathrm{~K} * 22, \mathrm{~N} 11, \mathrm{~K} 38, \mathrm{M} 22, \mathrm{~N} * 2, \mathrm{~L} * 11$
66. $\mathrm{N} 2, \mathrm{~W} 218$, $\mathrm{M} * 11, \mathrm{Z} 31, \mathrm{P} 4, \mathrm{M} 11, \mathrm{~N} * 2, \mathrm{P} * 4$
67. $\mathrm{N} 2, \mathrm{U} 85, \mathrm{U} \because 85, \mathrm{~L} 22, \mathrm{O}, \mathrm{S} 20, \mathrm{~N} \div 2, \mathrm{~L} * 22$

68. $\mathrm{T} \because 33, \mathrm{~N} 38, \mathrm{X} 31, \mathrm{~L} 22, \mathrm{~K} 11, \mathrm{~S} 20, \mathrm{Q} \div 20, \mathrm{~L} \div 2$
69. $\mathrm{T} * 33, \mathrm{~L} 38, \mathrm{~N} 22, \mathrm{Y} 31, \mathrm{P} \div 20, \mathrm{P} 20, \mathrm{~N} \div 11, \mathrm{~L} \div 2$
70. U6, N38, M*11, V85, P4, P20, N $* 22$, $\mathrm{L} * 2$
71. U6, L38, U $\because 685, \mathrm{~K} \ldots 11, \mathrm{~K} 22, \mathrm{~S} 20$, $\mathrm{S} 4, \mathrm{~L} * 2$
72. $\mathrm{K} * 2, \mathrm{~W} 218$, $\mathrm{M} * 11, \mathrm{Y} 31, \mathrm{~K} 11, \mathrm{Q} 4, \mathrm{~S} 4, \mathrm{~L} \div 2$
73. $K * 2, V * 85, \mathrm{U} * 85, \mathrm{~L} 22, \mathrm{P} * 20, \mathrm{R} 4, \mathrm{~N} * 22, \mathrm{~L} * 2$
74. $K * 2, N 38, N * 11, L 22, K 11, N 38, N * 22, L * 2$
75. $\mathrm{M} * 2$, $\mathrm{W} 218, \mathrm{X} 31, \mathrm{~K} * 11, \mathrm{P} 4, \mathrm{RL}, \mathrm{N} * 11, \mathrm{~L} * 2$
76. $\mathrm{M} * 2, \mathrm{~V} * 85, \mathrm{~N} 22, \mathrm{~V} 85, \mathrm{~K} 22, \mathrm{Q} 4, \mathrm{Q} * 20, \mathrm{~L} * 2$ 80. $\mathrm{M} * 2, \mathrm{~L} 38, \mathrm{~N} 22, \mathrm{~K} * 11, \mathrm{~K} 22, \mathrm{~N} 38, \mathrm{~N} * 11, \mathrm{~L} * 2$

APPENDIX IV: PRIMARY CONSTRAINTS

1. $R_{1}=R_{3}=R_{5}=R_{7}$.
2. $R_{1}=R_{3}=R_{5} ; R_{6}=R_{8}$.
3. $R_{1}=R_{3}=R_{5} ; R_{6} \neq R_{8}$.
4. $R_{1}=R_{3}=R_{5} ; R_{5} \neq R_{7}$.
5. $R_{1}=R_{3}=R_{6}$.
6. $R_{I}=R_{3} ; R_{4}=R_{8} ; R_{5}=R_{7}$.
7. $R_{1}=R_{3} ; R_{4}=R_{8} ; R_{5} \neq R_{7}$.
8. $R_{1}=R_{3} ; R_{4}=R_{8} ; R_{6} \neq R_{8}$.
9. $R_{1}=R_{3} ; R_{5}=R_{7} ; R_{4} \neq R_{8}$.
10. $R_{1}=R_{3} ; R_{3} \neq R_{5} ; R_{5}=R_{7}$.
11. $R_{1}=R_{3} ; R_{4}=R_{6} ; R_{6} \neq R_{8}$.
12. $R_{1}=R_{3} ; R_{4}=R_{6} ; R_{1} \neq R_{7}$.
13. $R_{1}=R_{3} ; R_{4}=R_{7}$.
14. $R_{1}=R_{3} ; R_{5}=R_{8}$.
15. $R_{1}=R_{4} ; R_{5}=R_{8}$.
16. $R_{1}=R_{5} ; R_{1} \neq R_{3} ; R_{5} \neq R_{7}$.
17. $R_{1}=R_{5} ; R_{2} \neq R_{4} ; R_{5} \neq R_{7}$.
18. $R_{1}=R_{5} ; R_{2} \neq R_{4} ; R_{6} \neq R_{8}$.
19. $R_{1}=R_{4} ; R_{1} \neq R_{7} ; R_{4} \neq R_{6}$ 。
20. $R_{1}=R_{4} ; R_{4} \neq R_{6} ; R_{6} \neq R_{8}$.
21. $R_{1}=R_{4} ; R_{1} \neq R_{7} ; R_{5} \neq R_{7}$.
22. $R_{1}=R_{4} ; R_{5} \neq R_{7} ; R_{5} \neq R_{8}$.
23. $R_{1}=R_{4} ; R_{5} \neq R_{8} ; R_{6} \neq R_{8}$.
24. $R_{1}=R_{3} ; R_{3} \neq R_{5} ; R_{3} \neq R_{6} ; R_{3} \neq R_{7}$.
25. $R_{1}=R_{3} ; R_{3} \neq R_{5} ; R_{3} \neq R_{7} ; R_{5} \neq R_{7}$ 。
26. $R_{1}=R_{3} ; R_{3} \neq R_{5} ; R_{3} \neq R_{6} ; R_{6} \neq R_{8}$.
27. $R_{1}=R_{3} ; R_{3} \neq R_{6} ; R_{3} \neq R_{7} ; R_{4} \neq R_{6}$.
28. $R_{1}=R_{3} ; R_{6} \neq R_{3} ; R_{6} \neq R_{4} ; R_{6} \neq R_{8}$.
29. $R_{1}=R_{3} ; R_{5} \neq R_{3} ; R_{5} \neq R_{7} ; R_{5} \neq R_{8}$.
30. $R_{1}=R_{3} ; R_{5} \neq R_{3} ; R_{5} \neq R_{8} ; R_{6} \neq R_{8}$.

3I. $R_{1}=R_{3} ; R_{7} \neq R_{3} ; R_{7} \neq R_{4} ; R_{7} \neq R_{5}$.
32. $R_{1}=R_{3} ; R_{7}=R_{3} ; R_{7} \neq R_{4} ; R_{4} \neq R_{6}$.
33. $R_{1}=R_{3} ; R_{4} \neq R_{6} ; R_{4} \neq R_{7} ; R_{4} \neq R_{8}$.
34. $R_{1}=R_{3} ; R_{4} \neq R_{8} ; R_{5} \neq R_{7} ; R_{5} \neq R_{8}$.
35. $R_{1}=R_{3} ; R_{4} \neq R_{6} ; R_{L} \neq R_{8} ; R_{6} \neq R_{8}$.
36. $R_{1}=R_{3} ; R_{8} \neq R_{4} ; R_{8} \neq R_{5} ; R_{8} \neq R_{6}$.
37. $R_{1}=R_{3} ; R_{4} \neq R_{7} ; R_{4} \neq R_{8} ; R_{5} \neq R_{7}$.
38. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1}=R_{5} ; R_{I} \neq R_{6} ; R_{1} \neq R_{7}$.
39. $R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{1} \neq R_{6} ; R_{1} \neq R_{7} ; R_{2} \neq R_{4}$.
40. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{1} \neq R_{6} ; R_{6} \neq R_{9}$.
41. $R_{1} \neq R_{3} ; R_{1} \neq R_{5} ; R_{1} \neq R_{6} ; R_{1} \neq R_{7} ; R_{3} \neq R_{5}$.
42. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{1} \neq R_{7} ; R_{5} \neq R_{7}$.
43. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{6} ; R_{1} \neq R_{7} ; R_{4} \neq R_{6}$.

山的 $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{5} \neq R_{7} ; R_{5} \neq R_{8}$.
45. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{8} \neq R_{5} ; R_{8} \neq R_{6}$.
46. $\mathrm{R}_{1} \neq \mathrm{R}_{4} ; \mathrm{R}_{1} \neq \mathrm{R}_{5} ; \mathrm{R}_{1} \neq \mathrm{R}_{6} ; \mathrm{R}_{2} \neq \mathrm{R}_{4} ; \mathrm{R}_{6} \neq \mathrm{R}_{8}$.
47. $R_{1} \neq R_{5} ; R_{1} \neq R_{6} ; R_{1} \neq R_{7} ; R_{5} \neq R_{2} ; R_{5} \neq R_{3}$.
48. $\mathrm{R}_{1} \neq \mathrm{R}_{5} ; \mathrm{R}_{1} \neq \mathrm{R}_{6} ; \mathrm{R}_{1} \neq \mathrm{R}_{7} ; \mathrm{R}_{2} \neq \mathrm{R}_{4} ; \mathrm{R}_{2} \neq \mathrm{R}_{5}$.
49. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{6} ; R_{6} \neq R_{4} ; R_{6} \neq R_{8}$.
50. $R_{1} \neq R_{3} ; R_{1} \neq R_{4} ; R_{1} \neq R_{7} ; R_{7} \neq R_{4} ; R_{7} \neq R_{5}$.
51. $R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{1} \neq R_{7} ; R_{2} \neq R_{4} ; R_{5} \neq R_{7}$.
52. $R_{1} \neq R_{3} ; R_{1} \neq R_{5} ; R_{1} \neq R_{7} ; R_{5} \neq R_{3} ; R_{5} \neq R_{7}$.
53. $R_{1} \neq R_{3} ; R_{1} \neq R_{6} ; R_{1} \neq R_{7} ; R_{6} \neq R_{3} ; R_{6} \neq R_{4}$.
54. $R_{1} \neq R_{3} ; R_{1} \neq R_{5} ; R_{1} \neq R_{6} ; R_{3} \neq R_{5} ; R_{6} \neq R_{8}$.
55. $R_{1} \neq R_{4} ; R_{1} \neq R_{5} ; R_{4} \neq R_{2} ; R_{8} \neq R_{5} ; R_{8} \neq R_{6}$.
56. $R_{2} \neq R_{5} ; R_{2} \neq R_{6} ; R_{6} \neq R_{8} ; R_{2} \neq R_{4} ; R_{2} \neq R_{5}$.

APPENDIX V: SECONDARY CONSTRAINTS

1. $R_{2}=R_{4}$.
2. $R_{1}=R_{3} ; 6 R I$.
3. $R_{1}=R_{3} ; 6 R 2 a$.
4. $R_{1}=R_{3} ; 6 R 2 b$.
5. $R_{1}=R_{3} ; 6 R 2 c$.
6. $\mathrm{R}_{1}=\mathrm{R}_{3} ; 6 \mathrm{R} 3 \mathrm{a}$.
7. $R_{1}=R_{3} ; 6 R 3 b$.
8. $R_{1}=R_{3} ; R_{3} \neq R_{5}$.
9. $R_{1}=R_{3} ; R_{4} \neq R_{6}$.
10. $R_{1}=R_{3} ; R_{5} \neq R_{7}$.
11. $R_{1}=R_{3} ; R_{6} \neq R_{8}$.
12. $R_{1}=R_{3} ; R_{1} \neq R_{7}$.
13. $R_{1}=R_{3} ; R_{8} \neq R_{4}$.
14. $R_{1} \neq R_{5}$.
15. $\mathrm{R}_{1} \neq \mathrm{R}_{7}$; 7RI.
16. $R_{1} \neq R_{7}$; 7R2a.
17. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{~b}$.
18. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{c}$ 。
19. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{~d}$.
20. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{e}$.
21. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{f}$.
22. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 2 \mathrm{~g}$ -
23. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{a}$.
24. $\mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{~b}$.
25. $R_{1} \neq R_{7} ; 7 R 3 c$.

$$
\begin{aligned}
& \text { 26. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{~d} \cdot \\
& \text { 27. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{e} \cdot \\
& \text { 28. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{f} \cdot \\
& \text { 29. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 3 \mathrm{~g} \cdot \\
& \text { 30. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{RL} \mathrm{a} \cdot \\
& \text { 31. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{RL} \mathrm{~b} \cdot \\
& \text { 32. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 4 \mathrm{c} \cdot \\
& \text { 33. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 4 \mathrm{~d} \cdot \\
& \text { 34. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 4 \mathrm{e} \cdot \\
& \text { 35. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 4 \mathrm{f} \cdot \\
& \text { 36. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 4 \mathrm{~g} \cdot \\
& \text { 37. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{a} \cdot \\
& \text { 38. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{~b} \cdot \\
& \text { 39. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{c} \cdot \\
& \text { 40. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{~d} \cdot \\
& \text { 41. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{e} \cdot \\
& \text { 42. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{f} \cdot \\
& \text { 43. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 \mathrm{~g} \cdot \\
& \text { 44. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 5 a \cdot \\
& \text { 45. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{~b} \cdot \\
& \text { 46. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{c} \cdot \\
& \text { 47. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{~d} \cdot \\
& \text { 48. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{e} \cdot \\
& \text { 49. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{f} \cdot \\
& \text { 50. } \mathrm{R}_{1} \neq \mathrm{R}_{7} ; 7 \mathrm{R} 6 \mathrm{~g} \cdot
\end{aligned}
$$

51. $\mathrm{R}_{1} \neq \mathrm{R}_{3} ; \mathrm{R}_{3} \neq \mathrm{R}_{5} ; 6 \mathrm{RI}$.
52. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; 6 R 2 a$.
53. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; 6 R 2 b$.
54. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; 6 R 2 c$ 。
55. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; 6 R 3 a$.
56. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; 5 R 3 b$.
57. $R_{1} \neq R_{3} ; R_{4} \neq R_{6} ; 6 R 1$.
58. $R_{1} \neq R_{3} ; R_{4} \neq R_{6} ; 6 R 2 a$.
59. $R_{1} \neq R_{3} ; R_{4} \neq R_{6} ; 6 R 2 b$.
60. $R_{1} \neq R_{3} ; R_{L} \neq R_{6} ; 6 R 2 c$.
61. $\mathrm{R}_{1} \neq \mathrm{R}_{3} ; \mathrm{R}_{4} \neq \mathrm{R}_{6} ; 6 \mathrm{R} 3 \mathrm{a}$ 。
62. $R_{1} \neq R_{3} ; R_{4} \neq R_{6} ; 6 R 3 b$.
63. $R_{1} \neq R_{3} ; R_{5} \neq R_{7} ; 6 R 1$.
64. $R_{1} \neq R_{3} ; R_{5} \neq R_{7} ; 6 R 2 a$.
65. $\mathrm{R}_{1} \neq \mathrm{R}_{3} ; \mathrm{R}_{5} \neq \mathrm{R}_{7} ; 6 \mathrm{R} 2 \mathrm{~b}$.
66. $R_{1} \neq R_{3} ; R_{5} \neq R_{7} ; 6 R 2 c$.
67. $R_{1} \neq R_{3} ; R_{5} \neq R_{7} ; 6 R 3$.
68. $\mathrm{R}_{1} \neq \mathrm{R}_{3} ; \mathrm{R}_{3} \neq \mathrm{R}_{5} ; \mathrm{R}_{6} \neq \mathrm{R}_{8}$.
69. $R_{1} \neq R_{3} ; R_{3} \neq R_{5} ; R_{5} \neq R_{7}$.
