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PREFACE 

The Frog Embryo Teratogenesis Ascay-Xenopus (FETAX) is an in 

vitro bioassay designed to determine the potential teratogenic risk a 

compound or mixture poses to developing organisms. The system utilizes 

embryos of the South African clawed frog, Xenopus laevis, in 96 

hour exposures to a solution of toxicant and evaluates malformation, 

mortality, and growth endpoints in order to determine the teratogenic 

risk of the compound. For this test system to be routinely used for 

assessing the developmental toxicity of chemical agents it must be 

standardized and validated. This work was conducted to increase 

acceptance of FETAX by refining and validating the assay and applying 

it to a variety of situations. It is hoped that the studies presented 

here will encourage scientists in both biomedical and environmental 

toxicology to use FETAX as a screening test for developmental 

toxicants. 

The three studies encompassing this research involved developing a 

defined medium for use in the assay, validating FETAX by comparing the 

toxicity and teratogenicity of several compounds in Xenopus embryos 

with that reported in mammalian tests, and evaluating metal 

contaminated sediments for developmental toxicity using both frog and 

fathead minnow embryos. A report on the results of each of the three 

studies has been accepted for publication. Chapter II has been 

published in the Journal of Applied Toxicology (Volume 7, pages 
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237-244, 1987); Chapter III was published in Teratology (Volume 35, 

pages 221-227, 1987); Chapter IV was scheduled for publication in the 

December, 1987 edition of Environmental Toxicology and Chemistry. 

Each of these chapters is presented in the format of the respective 

journal. 

This work could not have been done without the help of many people 

and I am grateful to all who assisted. Dr. John A. Bantle served as my 

major adviser. Dr. S.L. Burks, Dr. Calvin Beames, and Dr. David 

Francko served as advisery committee members. Dr. Lester Rolf and Dr. 

Ronald McNew also provided assistance with part of this work. The 

contributions of each of these faculty members is appreciated. 

Several students and technicians assisted in the performance of 

this research, including: Melanie Hopper, Debbie Newell, Doug Fort, and 

Steve Bell. The students and staff of the Water Quality Research 

Laboratory, directed by Dr. Burks, were also of great assistance. 

Special thanks are extended to Elaine Stebler, Curt McCormick, and 

Sarah Kimball. 

The work was supported by grant funding made available to Dr. 

Bantle by the University Center for Water Research at Oklahoma State 

University and the March of Dimes Birth Defects Foundation. The 

University Center f6r Water Research also provided support for this 

work through their Presidential Fellowship program in water resources. 

The assistance of Dean Durham and the UCWR staff is very much 

appreciated. 
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CHAPTER I 

INTRODUCTION 

Background 

Teratology is the study of abnormal structural development. 

During animal development, precisely regulated processes give rise to a 

complete multicellular organism. Many situations or events, such as 

exposure to chemical agents, may disrupt these normal processes leading 

to malformation. The effects of these chemicals may occur at 

concentrations far below that which induces general cytotoxicity, 

increasing the chance an exposed organism will be alive and malformed. 

The testing of chemical agents, especially drugs, for teratogenic 

hazard has been a focal point of teratological research ever •ince the 

1960's, when limb-reduction malformations in newborn children were 

correlated to the use of thalidodmide by pregnant women (Wilson, 1977). 

New compounds that are developed each year need to be specifically 

tested for potential teratogenicity to prevent similar occurences. 

Presently, teratogenesis testing involves the use of small mammals 

such as rats, mice, hamsters, or rabbits but primates may be used as 

well. These procedures are time-consuming and expensive and have 

become overtaxed by the increasing number of chemicals that need to be 

tested (Kimmel et al., 1982). To help reduce these problems many 

alternative test systems have been developed that may prove useful in 

prioritizing compounds for further mammalian testing (Best and Morita, 
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1982; Bournias-Vardiabasis and Teplitz, 1982; Fantel, 1982; Greenburg, 

1982; Jelinek, 1982; Johnson et al., 1982; Kochhar, 1982; Sadler et 

al., 1982; Schuler et al., 1982; and Dumont et al., 1983). One or more 

of these assays may eventually be used to directly predict the 

embryotoxic hazards an agent poses to humans (Kimmel et al., 1982). 

One system is the Frog Embryo Teratogenesis Assay-Xenopus 

(FETAX), developed by J.N. Dumont and T.W. Schultz at the Oak Ridge 

National Laboratory (Dumont et al., 1983). This assay utilizes embryos 

of the South African clawed frog, Xenopus laevis, to determine the 

relative teratogenic risk of a test compound or environmental 

contaminant. Several studies have indicated that FETAX is useful as an 

assay for detecting compounds or mixtures that may cause abnormal 

structural development (Browne and Dumont, 1979; Dumont and Schultz, 

1980; Davis et al., 1981; Courchesne and Bantle, 1985; Sabourin et al., 

1985; and Schultz et al., 1985). 

The overall objective of this dissertation research was to couple 

the development and validation of FETAX as a standard teratogenesis 

test with additional applications for aquatic toxicology research. To 

do this three areas of investigation were emphasized: refinement, 

validation, and applications for use. 

Refinement 

Reducing sources of variation in FETAX may ultimately determine 

the value of this system as a standard test method. By developing 

specific procedures to reduce variation and by standardizing the test 

protocol data comparison and interpretation can be facilitated •. One 

way to reduce variation was to develop a defined medium to be used by 

all FETAX researchers. This would provide a greater degree of quality 
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control necessary in standardized testing protocols. 

Several reconstituted water formulae were tested and the most 

promising was selected for further tests with validation compounds. 

This allowed a determination to be made on the use of the new solution 

as the standard medium for FETAX researchers. It was necessary to 

develop this solution early in the research program so that later 

research would benefit from the increased quality control. 

Validation 

Validation studies were needed to demonstrate that FETAX result 

were similar to the results of established mammalian tests (Kimmel et 

al., 1982; Smith et al., 1983). As many as 100 compounds may need to 

be tested to fully validate the assay. Validation of FETAX using one 

set of test chemicals has been partially completed (T.D. Sabourin, 

personal communication). In this research, further testing was 

conducted within time and cost restraints to more fully validate FETAX. 

Test compounds were chosen from several lists (Smith et al, 1983; 

Seidenberg et al., 1986; and Shepard, 1986) and included known human 

teratogens. Completed validation should demonstrate that FETAX is a 

system of choice for rapidly determining potential teratogenic hazards. 

The testing of validation compounds represents only a small portion 

of chemicals presently in use and does not consider the effects of 

compound interactions. Therefore, an additional method of validation 

was conducted based on two teratogenic interactions studies performed 

using mammalian systems (Ritter et al., 1982; Nakatsuka et al., 1983). 

In these studies a pattern of teratogenic potentiation (a more than 

additive effect) was apparent when methylxanthines were coadministered 

with inhibitors of DNA, protein, and nucleic acid synthesis. 
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Demonstration of a similar pattern of potentiation in Xenopus embryos 

would further validate the assay. Compound interactions can be tested 

more rapidly and economically using FETAX. Therefore, successful 

completion of this study would help increase acceptance of FETAX as a 

model system for studying the toxic and teratogenic effects of multiple 

compounds on developing organisms. 

Applications 

An important factor for eventual acceptance and use of FETAX will 

be the variety of practical situations to which it can be applied. 

Previous research has indicated that FETAX can be adapted to test water 

samples from contaminated sites in the environment (Dumont et al., 

1983; Dawson et al., 1985). Aqueous extracts of metal-contaminated 

sediment were tested using FETAX to further demonstrate the value and 

utility of the assay for environmental testing. The extraction 

procedure used was designed to enable researchers to determine the 

potential developmental toxicity that might be observed if metals were 

leached from aquatic sediments (McCormick, 1985). This study included 

testing of fathead minnow embryos as well to help demonstrate that the 

responses of Xenopus embryos were similar to those of other aquatic 

vertebrates. This would increase acceptance of Xenopus as a test 

organism for aquatic toxicology research and increase the use of FETAX. 

It was hoped that the study would clearly demonstrate that a 

malformation endpoint can provide-~aluable information to aquatic 

toxicologists, by assessing toxicant hazards during embryonic 

development. Early-life stages are a sensitive point in the life-cycle 

of aquatic organisms (Holcombe et al., 1982; Birge et al., 1985). A 

specific malformation endpoint is not presently used in most testing of 
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environmental samples. 

By not limiting this research to test compound validation, more was 

accomplished toward the primary goal of increasing the acceptance of 

FETAX as a standard test procedure. In focusing on these areas of 

refinement, validation, and applications of FETiL~, the assay may become 

more widely used for determining developmental hazards in biomedical 

and environmental research. 
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CHAPTER II 

DEVELOPMENT OF A RECONSTITUTED WATER MEDIUM AND 

PRELIMINARY VALIDATION OF THE FROG EMBRYO 

TERATOGENESIS ASSAY-XENOPUS (FETAX) 

Abstract 

A reconstituted water medium was developed for use in the Frog 

Embryo Teratogenesis Assay-Xenopus (FETAX). FETAX solution was then 

tested on three compounds with known mammalian teratogenicity (ethanol, 

caffeine, and 5-fluorouracil) as was a non-teratogen (saccharin). The 

results obtained were then compared with results from tests on these 

compounds in two other media that had previously been used in the 

assay. Saccharin was not teratogenic. Ethanol and caffeine were weak 

and mode.rate teratogens, respectively. 5-fluorouracil was a strong 

teratogen. The results compare favorably with those obtained in 

mammalian studies. The amount of growth inhibition in embryos in the 

96 h tests was positively correlated with the degree of teratogenicity 

of the compound. Final validation of FETAX will allow it to be used to 

screen and rank compounds for further testing and as a tool for 

studying the basic mechanisms of teratogenesis. 

9 
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Introduction 

Embryos of the South African clawed frog, Xenopus laevis, 

have been used to determine the toxic and teratogenic effects of; 

fungicides and herbicides, 1 chemicals, 2 heavy metals, 3 and 

4 complex effluents. Similar studies by other researchers have made 

use of Xenopus and other amphibians. The Frog Embryo Teratogenesis 

Assay-Xenopus (FETAX) was developed by Dumont et a1. 5 and is 

presently being validated as a screening test to determine the 

teratogenic risk of chemical agents and polluted waters. 

Recent work in this laboratory has shown that the system has great 

potential for detecting the teratogenicity of individual compounds 6 

and complex mixtures. 7 Studies such as these are vital to the 

acceptance of FETAX as an acceptable method of teratogenic risk 

assessment. Successful validation of FETAX should allow the screening 

test to be used alone or in conjunction with other in vitro assay 

systems to rank compounds for further testing in mammals. Nationwide 

use of FETAX would allow for the establishment of a large data base, 

which may ultimately allow it to be used directly to predict the 

teratogenic risk of a compound or mixture to a variety of organisms, 

including humans. 

To gain acceptance, FETAX must be properly devised so that both 

intra- and interlaboratory variation is minimal. It has been common in 

aquatic toxicity bioassays for the water used as a diluent to vary 

greatly between labs, thereby making results difficult to interpret. 8 

Due to this variation, the use of dechlorinated tap water in FETAX 

would be acceptable only for continuous-flow experiments. 8 ' 9 

Therefore, we set out to dev~lop a reconstituted water formula that 
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would allow for proper Xenopus embryo development and at the same 

time reduce the variation associated with an undefined medium. 

This report describes the development of a reconstituted water 

formula for use in FETAX, which we have named FETAX solution. This 

medium allows for excellent development of Xenopus embryos and 

consistently resulted in lower percentages of malformation and 

mortality and increased rates of development and growth of control 

embryos over those we had tested in dechlorinated tap water or modified 

Amphibian Ringers. FETAX solution was then used as the diluent water 

for tests on four compounds previously tested in the other media. The 

results of these comparison tests on a non-teratogen (saccharin), two 

weak teratogens (ethanol and caffeine), and a strong teratogen 

10 (5-fluorouracil), are presented here as well. The results not only 

support the use of FETAX solution but serve as a preliminary report on 

the validation procedure outlined by Smith et a1. 10 for in vitro 

teratogenesis assay validation. 
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Materials and Methods 

The Xenopus adults were obtained from Xenopus I (Ann Arbor, 

MI) and maintained in glass aquaria and/or fiberglass raceways in 

dechlorinated tap water. This water was filtered through activated 

carbon and aerated for 48 h prior to use. It was periodically tested 

to ensure that the pH, dissolved oxygen content, hardness, and content 

of heavy metals and total organic carbon were at acceptable levels. 6 

Adult frogs were fed beef liver and lung supplemented with liquid 

vitamins (Polyvisol). 

Several reconstituted water formulae were tested to determine if 

normal Xenopus embryo growth and development took place. From 

initial tests one formula (FETAX solution) was selected for further 

testing and for comparison with results from tests using dechlorinated 

tap water or modified Amphibian Ringers. FETAX solution is composed of 

625 mg NaCl, 96 mg NaHC0 3 , 30 mg KCl, 15 mg CaC1 2 , 60 mg 

Caso 4 "2H 2 o, and 75 mg Mgso 4 per 1 of deionized, distilled 

water. The pH was 7.9 after mixing and gentle aeration. No additional 

buffer was required to maintain the pH at 7.6 to 7.9. Modified 

Amphibian Ringers contained 1300 mg of NaCl and 30 mg each of KCl, 

CaC1 2 , and Mgso4 per 1 of deionized, distilled water. One-half ml 

of 300 mM Hepes was required to maintain a pH of 7.2 to 7.4 after 

adjustment. 

Breeding tanks and all glassware were washed in dilute HCl, rinsed, 

washed in dilute NaOH, and then rinsed thoroughly in deionized water. 

The tanks were filled with the water medium to be used in the test and 

aerated for a short time before introducing the animals. 

To induce mating, the male and female received 500 and 1000 IU, 

respectively, of human chorionic gonadotropin (Sigma, St. Louis, MO.) 
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via injection into the dorsal lymph sac. Amplexus normally ensued 

within 2 to 6 h and the deposition of eggs took place from 9 to 12 h 

after injection. 

Following breeding the adults and fecal material were removed from 

the tank and the embryos collected in 60 mm plastic Petri dishes. The 

jelly coating surrounding the embryos was removed by gentle swirling 

for 3 to 4 m in a 2% w/v cysteine solution, prepared in the appropriate 

medium. The pH of the cysteine solution was adjusted to 8.1 with NaOH. 

Following the removal of t:he j,=1J,~at, abnormally cleaving 

embryos and necrotic eggs were removed from the collection of embryos. 

A second selection ensured that only normally developing embryos (at 

blastula) were used in the tests. For each test concentration two sets 

of 20 embryos each were placed in plastic Petri dishes containing a 

total of 8 ml of solution. At least four sets of 20 embryos were used 

as controls for each test. The control solutions contained 8 ml of the 

specific medium. The dishes were covered to minimize evaporation. 

Four compounds were tested in FETAX solution for comparison with 

results obtained in the other media. These compounds: saccharin, 

ethanol, caffeine, and 5-fluorouracil, were tested at least twice each 

in dechlorinated tap water and at least once in modified Amphibian 

Ringers, except saccharin which was not tested in the latter. 

All test compounds used in this study were obtained from Sigma. 

The embryos were maintained in the test dishes at 23-24C for 96 h. 

At 24, 48, and 72 h the solutions were changed. Appropriate dilutions 

were made from freshly prepared stock solutions. At the time of daily 

test solution changes, dead embryos were removed and the number dead 

recorded. Determination of gross structural malformations and 

mortality were made using a dissecting microscope. All embryos were 



14 

scored by the same individual. 11 Death at 24 (stages 26,27) and 48 

h (stages 37-39) was determined by skin pigmentation, structural 

integrity, and irritability of the embryos, while at 72 (stage 42) and 

96 h (stage 46) the absence of a heartbeat in the transparent embryos 

was also used as an indicator of death. In addition the number of 

surviving malformed embryos was determined for each dish and the stage 

of development of the embryos at each concentration noted. 

Structural anomalies typically scored as malformations included 

head and eye irregularities, lack of or improper gut coiling, skeletal 

and heart defects, pericardia!, fin, and head edema, and blistering. 

At 96 h, dead embryos were removed from the dishes and the 

surviving embryos were fixed in formalin (0.5 to 0.75% w/v). The 

numbers of dead and malformed embryos were then noted and recorded. 

Malformed embryos that died prior to 96 h were not included in the 

number malformed. Embryos surviving to fixation were then individually 

measured (head-tail length) using a Radio Shack digitizer and model 

16 microcomputer. 

Dose-response bioassays, evaluated according to 

Litchfield-Wilcoxon, 12 were used to determine the EC50 (malformation) 

and LC50 values for the test compounds. The 96 h EC50 (malformation) 

is the concentration at which 50% of the embryos were malformed at 96 

h. Similarly, the 96 h LC50 is the concentration that produces 50%· 

lethality in the test at 96 h. Division of the 96 h LC50 by the 96 h 

EC50 (malformation) for a test resulted in a Teratogenicity Index (TI) 

value that was useful in estimating the teratogenic risk associated 

with a compound. 5 A compound with a TI of (1.3 was tentatively 

called a non-teratogen. Compounds with TI values of 1.3 to 2.0, 2.0 to 

3.0, and )3.0 were designated as weak, moderate, and strong teratogens, 
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respectively. The final determination of the teratogenicity of a 

compound included the types and severity of malformations and the 

percent embryo mortality at the lowest concentration where 100% of the 

surviving embryos were malformed. The t-test for grouped 

observations12 was used to analyze for a significant reduction in 

growth, at p(O.OS, in order to obtain the minimum concentration to 

inhibit growth (MCIG) for each test. 
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Results 

The results of initial tests on several reconstituted formulae 

indicated that further testing of one formula (now called FETAX 

solution) was desirable. For brevity only data for FETAX solution is 

presented here, with comparison to control and experimental results 

from tests with the previously used media. After preparation and 

gentle aeration FETAX solution had the following water quality 

parameters. The dissolved oxygen content was 7.0 to 7.2 mg/1, the 

specific conductivity varied from 1600 to 1620 S, and the hardness 

was 112 to 120, expressed as mg/1 of Caco3 • 

Table I compares results for control embryos used in FETAX 

experiments over a two-year period. Statistical analysis using the 

t-test for grouped observations showed a significant (p(O.OS) increase 

in mean length of control embryos in FETAX solution over those in the 

other media. Untreated embryos in FETAX solution typically developed 

to stage 46 at 96 h (the time of fixation) while these embryos in the 

other media normally developed only to stage 45 at 96 h. Although the 

results were not statistically significanti the average control 

mortality and malformation percentages were lower in FETAX solution. 

Table II shows the results for the media tests on saccharin. In 

all tests the TI was approximately 1.0. The 96 h ECSO (malformation) 

and LCSO in both media were from 18 to 21 mg/ml concentration. Figure 

1A represents the dose-response curve for saccharin in FETAX solution. 

The malformations included slight to moderate edema in the pericardial 

region and the dorsal fin, slight tail kinking, and loose or improper 

gut coiling. These malformations were the same in both media and were 

minor in severity. The lowest concentration at which 100% of the 

survivors were malformed always occurred where at least 70% of the test 
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embryos were dead. The minimum concentration to inhibit growth 

(MCIG) of the embryos varied from 12.0 to 17.0 mg/ml. At 20.0 mg/ml 

growth was inhibited by 9 to 15% in dechlorinated tap water and by 13% 

in FETAX solution, when compared to mean control lengths (Figure 2A). 

Results from tests on ethanol in all three media are shown in Table 

II. The TI values for all tests were between 1.3 and 1.9. The 96 h 

ECSO (malformation) range was from 1.0 to 1.2% ethanol (v/v). The 

range for the 96 h LCSO was 1.4 to 2.0%. The dose-response curve for 

ethanol, in FETAX solution, appears in Figure lB. The malformations 

were edema, tail kinking, and loose and improper gut coiling. These 

malformations were slight to moderate at the 96 h ECSO (malformation) 

concentrations and more severe above the 96 h LCSO values. All embryos 

were malformed at concentrations where more than 50% of the embryos 

were dead. The MCIG range was from 0.6 to 1.0% ethanol. At 1.4% 

concentration the growth of embryos was inhibited by 10 and 13% in 

dechlorinated tap water, by 10 and 15% in modified Amphibian Ringers, 

and by 15% in FETAX solution (Figure 2B). 

Caffeine was also tested in all three media and the results are 

shown in Table II. Teratogenicity Index values varied from 1.8 to 2.4 

in the tests. The EC50 (malformation) and LC50 values at 96 h ranged 

from 0.11-0.15 and 0.25-0.30 mg/ml, respectively. The dose-response 

curve for caffeine is shown in Figure 1C. The malformations included 

edema in the head, pericardia!, and fin regions, blistering, tail 

kinking, and improper gut coiling. These malformations were severe at 

all concentrations above 0.175 mg/ml. On all occasions malformations 

in 100% of the survivors first occurred at 0.20 to 0.22 mg/ml caffeine. 

These concentrations were always below the 96 h LC50 value for that 

test. The MCIG ranged from 0.04 to 0.10 mg/ml. At 0.2 mg/ml the 
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growth inhibition when compared to controls was 13 and 22% in 

dechlorinated tap water, 22% in modified Amphibian Ringers, and 13% in 

FETAX solution (Figure 2C). 

Tests on 5-fluorouracil resulted in TI values from about 10 to 12 

(Table II). The 96 h ECSO (malformation) and LCSO concentrations were 

from 0.12-0.14 and 1.22-1.62 mg/ml, respectively. Figure 1D shows the 

dose-response curve for this compound. Severe kinking, absence of or 

improper gut coiling, and severe head and eye abnormalities 

(micropthalmia, microencephaly, and anencephaly) were the typical 

malformations noted. The malformations were severe at concentrations 

near the 96 h ECSO (malformation) values. All surviving embryos were 

malformed at 0.2 mg/ml. This was much lower than the 96 h LCSO values. 

The MCIG was approximately 0.1 mg/ml. The results of the first test 

in dechlorinated tap water are included in Table 2 for comparative 

purposes. In this test the lowest concentration tested was 0.2 mg/ml, 

all these embryos were malformed. At 0.2 mg/ml growth was inhibited by 

10 and 17% in dechlorinated tap water, by 21% in modified Amphibian 

Ringers, and by 10% in FETAX solution. At 0.7 mg/ml growth inhibition 

was always greater than 40% (Figure 2D). 



19 

Discussion 

Although the percentages of control malformation and mortality in 

FETAX solution were lower than in the other media, the_ difference was 

not statistically significant. It is apparent, however, that FETAX 

solution is superior to the other media for other reasons. Advantages 

of FETAX solution over dechlorinated tap water include the significant 

increase in growth of the controls, the more rapid rate of development, 

and that it is a defined medium. Dechlorinated tap water may contain 

substances that could interact with the test compound, positively or 

negatively. However, we have seen no evidence of this in the present 

test scheme. 

The advantages of FETAX solution over modified Amphibian Ringers 

are the better growth and development rates in the controls, that no 

additional buffer is needed, and the lower percentage of edema in 

controls. This edema accounted for the higher malformation percentage 

and standard error of the mean in controls tested in the modified 

Ringers solution (Table I). This was the main reason we did not like 

this solution as a defined medium for the assay. The growth inhibition 

plots (Figure 2) show that there was some slightvariation in growth in 

the different media. The mean head-tail length was slightly smaller in 

the modified Ringers but no consistent pattern was detected between 

dechlorinated tap water and FETAX solution. 

In this study the criteria used for determining the teratogenicity 

of a compound incorporated information on the severity and extent of 

the malformations, the Teratogenicity Index (TI), and the percent 

embryo mortality at the lowest concentrations where all surviving 

embryos were malformed. The TI was proposed by Dumont et a1. 5 as a 

potential measure of teratogenic risk assessment. The use of a ratio 
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such as this in in vitro teratogenesis test systems has been 

discussed. 10 The TI is similar to the therapuetic index in 

pharmacology that is used as a relative measure of the margin of safety 

for the use of a drug in comparison to other drugs. 13 The 

Teratogenicity Index is not as useful as other ratios which employ both 

adult and developmental testing endpoints. 10 , 14 

The TI values for the compounds tested represent the degree of 

separation between the malformation and mortality curves (Figure lA-D). 

This is directly useful for determining the teratogenic risk of a 

compound. For example, there was a large separation of the 

malformation and mortality curves for 5-fluorouracil (Figure lD) 

indicatingteratogenic effects were observed at far lower concentrations 

than embryo lethality. At the lowest concentrations where most or all 

of the surviving embryos were malformed there was little if any 

mortality. The risk of being alive and malformed at these 

concentrations was very high. By comparison, the malformation and 

mortality curves for saccharin (Figure lA) covered the same 

concentrations and crossed-over. This indicated the chance of being 

alive and malformed was equal to or less than the chance of being dead. 

The degree of teratogenic risk indicated by the TI can not be used 

alone to determine if a compound is a teratogen or not. Courchesne and 

Bantle 6 tested actinomycin D on Xenopus embryos and observed a 

cross-over of the malformation and mortality curves similar to that 

noted for saccharin in this study. A calculated TI for actinomycin D 

would have been (1, indicating a lower risk teratogen. However, the 

malformations induced in embryos exposed to this compound were so 

severe that it was considered teratogenic. 6 Complete testing of the 

compounds suggested by Smith et a1. 10 should establish the validity 
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of the criteria used in FETAX for determining the teratogenicity of a 

compound. Additional methods of analyzing the data to determine 

compound teratogenicity are being evaluated to improve on the present 

scheme. 

All tests of a compound produced similar types and severity of 

malformations and similar TI values .in each medium. For saccharin the 

TI always fell in the range of values (1.3, that for non-teratogens. 

The malformations were minor in nature and 100% of the tadpoles were 

malformed only at concentrations where 70% or more of the test embryos 

were dead. The cross-over of the malformation and mortality curves for 

this compound, shown in Figure 1A, indicated it was toxic in this 

range. In addition the concentration required to produce harmful 

effects was very high (15 mg/ml). Our conclusion was that saccharin 

was not a teratogen to the embryos under our conditions of testing. 

10 This concurs with its designation by Smith et al. who suggested 

inclusion of saccharin as a negative teratogen for in vitro 

teratogenesis assay validation. 

The tests on ethanol produced TI values in the range from 1.3 to 

2.0, the range for a weak teratogen. The dose-response curve for 

ethanol (Figure 1B) showed a slight separation of the malformation and 

mortality curves. This was used as an indication the compound had some 

teratogenic risk. The increased severity of malformations at higher 

concentrations and the occurence of malformations in 100% of the 

embryos just above the 96 h LCSO value, in all tests, added support to 

the TI designation that ethanol was a weak teratogen. Ethanol was 

listed as a weak teratogen by Smith et a1. 10 

We have concluded that caffeine has moderate teratogenicity in 

Xenopus. The TI fell, variously, in the ranges from 1.3-2.0 and 
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2.0-3.0. In three of the four tests the TI was in the latter range, 

indicating that caffeine was a moderate teratogen. There was clearly a 

larger separation of the malformation and mortality curves for caffeine 

(Figure 1C) (along their entire lengths) than for ethanol (Figure 1B). 

Using the additional information on the severity of the malformations, 

especially kinking and blistering, at concentrations just above the 96 

h ECSO (malformation) but below the 96 h LCSO concentrations and the 

occurrence of malformations in all surviving tadpoles below the 96 h 

LCSO for each replicate, our conclusion that caffeine was a moderate 

teratogen, in Xenopus, is supported. This conclusion does not 

specifically agree with its designation by Smith et a1. 10 as a weak 

teratogen, in mammals. However, both conclusions indicate the 

potential teratogenicity of caffeine. 

The large separation of the malformation and mortality curves 

(Figure 1D), the severity of malformations, the degree of separation 

between the lowest point where all tadpoles were malformed (0.2 mg/ml) 

and the 96 h LCSO values (1.22-1.62 mg/ml) in conjunction with the TI 

values from 10 to 12 (Table 2) indicated that 5-fluorouracil was a 

strong teratogen. This conclusion is in agreement with Smith et 

al.10 

The malformations observed in Xenopus embryos due to exposure to 

the four compounds tested were similar to those seen in mammals. A 

disadvantage ofthe 96 h FETAX test is the inability to detect limb and 

digital defects. However, the skeletal kinking observed in the embryos 

may bear some relationship to skeletal limb defects seen in mammalian 

tests. The term skeletal kinking is used to differentiate from kinking 

due to muscular contraction occasionally observed in Xenopus 

tadpoles. Tests with saccharin in rats showed no malformations above 
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15 
control levels. In this study minor malformations, especially 

edema and gut miscoiling, were observed. These abnormalities were 

probably a result of the toxic effects exerted on the embryos at the 

very high concentrations used. Ethanol produced skeletal, 

cardiovascular, head, and eye defects in mice. 16 Early exposure to 

ethanol in Xenopus embryos resulted in craniofacial abnormalities 

17 typical of those seen in Fetal Alcohol Syndrome, while skeletal 

kinking and edema were the predominant malformations observed in this 

study. The malformations in Xenopus embryos due to caffeine exposure 

were severe skeletal kinking, edema, and gut miscoiling. Similarly, 

prolonged caffeine administration in rats resulted in a high incidence 

of generalized edema in addition to visceral and skeletal 

abnormalities 18 and limb defects have been noted. 19 Exposure of 

Xenopus embryos to 5-fluorouracil resulted in severe kinking, gut 

miscoiling, and reduced size of the head, eye, and brain. The 

malformations observed in mice, due to exposure to this compound, were 

head, tail, and limb defects. 20 Exposure of hamsters to 

5-fluorouracil induced tail, limb, palate, gut, eye, and brain 

lf . F 1 h 1 · · d 21 ma ormat1ons. eta growt was a so 1mpa1re • 

Growth inhibition appeared to be a very sensitive endpoint that may 

be used to aid in determining the degree of teratogenicity of a 

compound. Figure 2 is a comparison plot of the growth inhibition for 

each test compound, in each medium tested. The MCIG for saccharin (in 

FETAX solution) was 17.0 mg/ml or 92.5% of its 96 h LC50. The MCIG for 

ethanol (1.0%), caffeine (0.1 mg/ml), and 5-fluorouracil (0.12 mg/ml) 

(in FETAX solution) were 69.4%, 38.9%, and 7.4% of the respective 96 h 

LC50 values. As the teratogenicity of the compound increased the rate 

' 
of growth inhibition and the total reduction in length increased. __ , _ _; 
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Although data from many more compounds is needed, this method of 

growth comparison may prove useful in the final determination of the 

degree of teratogenicity associated with a compound. 

Smith et a1. 10 have suggested using compounds from the National 

Toxicology Program (NTP) repository. Because of limited supplies of 

certain NTP compounds and the limited objectives of this study we used 

test compounds purchased from Sigma. 

The variation seen in results for the 4-5 replicate tests on each 

compound can, for the most part, be attributed to variation; due to the 

water medium used, in the actual stock and expected exposure 

concentrations from test to test (and day to day), and in the genetics 

of offspring from separate breedings (especially for the MCIG). 

Reducing variations such as these for both intra- and interlaboratory 

comparisons is important to the utility of any such test system. We 

have addressed the water medium variation in this study. The next step 

is to test FETAX solution, and the assay itself, for interlaboratory 

reproducibility. 

FETAX has broad applicability as an in vitro teratogenesis 

screening assay. It can be used for testing pure compounds6 •22 and 

1 . 5 • 1 d . i 1 h 1 . comp ex m1xtures to eterm1ne potent a arm, not on y to aquat1c 

organisms but mammals (eventually including humans) as well. For now 

FETAX is immediately useful as a r~pid assay to screen and rank samples 

for further mammalian testing. Following complete validation, FETAX 

should enable standardization of information on the teratogenicity of a 

variety of agents and the mechanisms involved in the process. These 

can be done in a rapid and cost-effective manner. 
~'-'''''"-"....,."'M"<, 

Our conclusion for this study is that FETAX solution appears to be 

an excellent medium for use in teratogenic assays. While results of 
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experiments on the four test compounds can not be interpreted as a 

validation of the assay, it does provide incentive and encouragement 

for continued validation efforts of FETAX. 
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Table I. Comparison of FETAX Test Media on Control Embryo Development and Growth.a 

Medium 

Tap Water f 

Control Embryosb 

(n) 

Amphibian Ringers 

FETAX solution 

1480 

560 

2000 

Mortalityc 

(%) 

3.8+0.7 

4 .6+1.4 

2.3+0.9 

a Grouped observations were compared by t-test. 

d Survivors Malformed 

(%) 

3.3+0.6 

7 .1+2.0 

2.7+0.5 

b 

c 

Total number of control embryos tested in the medium from Jan. 84 to Jan. 86. 

The mean control mortality percentage + standard error of the mean. 

e Mean Length 

(mm) 

8 .84+0 .08 

8.92+0.15 

9 .52+0 .11 g 

d 

e 

f 

g 

The mean percentage of surviving malformed control embryos ± standard error of the mean. 

The average mean lengths of the control embryo replicates + standard error of the mean. 

Dechlorinated. 

Value significantly different from the others at p(0.05. 



Table II. Results of media tests on four in vitro teratogenesis assay validation compounds. 

Compound 

Medium-Test II 

96h EC50a 

(malformation) 

(95% Confidence Limits) 

A. Saccharin (mg/ml) 

Dechlorinated 20.71 

Tap Water - Ill (N.A.) 

Dechlorinated 18.12 

Tap Water - 112 (17.4-18.9) 

Dechlorinated 18.05 

Tap \/a ter - 113 (17.8-18.3) 

FE TAX 19.34 

Solution - Ill (18.7-20.0) 

B. Ethanol (% concentration) 

Dechlorinated 

Tap Water - Ill 

1.09 

( 1.00-1.16) 

96h LC50a Tib MCIGc 

(95% Confidence Limits) 

21.09 1.02 12.0 

(18.9-23.5) 

18.32 1.01 N.A. 

(17 .8-18 .8) 

17.94 0.99 17.0 

(17.6-18.3) 

18.37 0.95 17.0 

(18.0-18.8) 

1.45 1.33 1.0 

( 1. 20-1. 7 0) 



Table II cont. 

Dechlorinated 1.20 1.75 1.46 0.6 

Tap Water - 112 (1.06-1.36) (1.51-2.02) 

Amphibian 1.06 1.99 1.88 0.6 

Ringers - Ill (0.94-1.19) (1.91-2.09) 

Amphibian 1.04 1.78 1.71 0.6 

Ringers - 112 (0.98-1.10) (1.74-1.81) 

FE TAX 1.01 1.44 1.43 1.0 

Solution - Ill (0.95-1.09) (1.20-1. 71) 

c. Caffeine (mg/ml) 

Dechlorinated 0.146 0.297 2.03 0.075 

Tap Water - Ill (0.07-0.30) (0.26-0.32) 

Dechlorinated 0.152 0.276 1.83 0.040 

Tap Water - /12 (0.14-0.16) (0.25-0.30) 

Amphibian 0.107 0.252 2.36 0.080 

Ringers - Ill (0.10-0.12) (0.22-0.29) 

FE TAX 0.128 0.257 2.01 0.100 

Solution - Ill (0.12-0.14) (0.21-0.31) 



Table II cont. --
D. 5-fluorouracil (mg/ml) 

Dechlorinated N.A. 1.47 N.A. N.A. 

Tap Water - Ill (1.29-1.66) 

Dechlorinated 0.120 1.22 10.17 0.0875 

Tap Water - 112 (O.ll-0.13) (1.07-1.39) 

Amphibian 0.124 1.26 10.16 0.090 

Ringers - Ill (0.12-0.13) (1.17-1.36) 

FE TAX 0.137 1.62 11.82 0.120 

Solution - Ill (0.12-0.16) ( 1.56-1.68) 

a Statistical analysis using the Litchfield-Wilcoxon dose-response test. 

b Teratogenicity Index= 96h LC50/96h EC50 (malformation). 

c MCIG - Minimum Concentration to Inhibit Growth; analyzed by the t-test for grouped 

observations (p(0.05). 

N.A. not available. 
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Figure Legends 

Figure 1. Dose-response curves for Xenopus embryo malformation ( Q) 

and mortality (D) after 96 hours of exposure to A. saccharin (mg/ml), 

B. ethanol (%concentration), c. caffeine (mg/ml), and D. 

5-fluorouracil (mg/ml), in FETAX solution. 

Figure 2. Representative growth curves for Xenopus embryos after 96 

hours of exposure to: A. saccharin, B. ethanol, C. caffeine, D. 

5-fluorouracil; prepared in dechlorinated tap water (()),modified 

Amphibian Ringers ( • ) , or FETAX solution ( D). 
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CHAPTER III 

COADMINISTRATION OF METHYLXANTHINES AND INHIBITOR 

COHPOUNDS POTENTIATES TERATOGENICITY 

IN XENOPUS EMBRYOS 

Abstract 

Inhibitors of DNA synthesis (hydroxyurea and cytosine arabinoside), 

protein synthesis (cycloheximide and emetine), and nucleic acid 

synthesis (5-fluorouracil) were administered with each of three 

methylxanthines (caffeine, theophylline, and theobromine) to determine 

if teratogenic effects could be potentiated in Xenopus laevis 

embryos. The animals were exposed for 96 hours to methylxanthine and 

inhibitor concentrations that alone, produced low percentages of 

malformations. 

Coadministration of caffeine or theophylline with each inhibitor 

greatly increased the incidence of malformed embryos. Similar 

potentiation was induced when theobromine and the protein synthesis 

inhibitors were tested. A lesser potentiative response was produced 

when theobromine and the nucleic acid synthesis inhibitor were 

administered together. Teratogenic potentiation did not occur when 

theobromine was administered in conjunction with the DNA synthesis 

inhibitors. Growth reduction in the treatments proved to be the most 

sensitive indicator of the potentiative effects. 

This study had two significant findings: the teratogenicity of the 

36 
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protein synthesis inhibitors was greatly increased upon 

coadministration with each methylxanthine, even though they are 

typically not very teratogenic by themselves, and coadministration of 

the DNA synthesis inhibitors with theobromine did not result in 

teratogenic potentiation. Additionally, this study serves as one 

method of validating the Frog Embryo Teratogenesis Assay-Xenopus 

(FETAX), since the results obtained concur with results from similar 

mammalian studies. 



38 

Introduction 

Amphibian embryos have been employed by a number of investigators 

to evaluate the teratogenic and toxic potential of a variety of 

chemicals and agents (Dial, '76; Greenhouse, '76; Birge et al., '85). 

A frog embryo teratology screen ("FE TAX") has been developed (Dumont et 

al., '83) and tested in several laboratories (Courchesne and Bantle, 

'85; Dawson et al., '85; Sabourin et al., '85). As a part of the 

validation procedure for this assay, we investigated the phenomenon of 

teratogenic potentiation between two ag~nts in Xenopus embryos. 

Three methylxanthines (caffeine, theophylline, and theobromine) were 

selected and their interactions with inhibitors of DNA (hydroxyurea, 

cytosine arabinoside), protein (cycloheximide, emetine), and nucleic 

acid synthesis (5-fluorouracil) studied. Earlier studies in in 

vivo mammalian systems (Ritter et al., '82; Nakatsuka et al., '83) 

had indicated potentiation with two of these xanthines (caffeine and 

theophylline but not theobromine). 
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Materials and Methods 

The Xenopus adults were obtained from Xenopus I (Ann Arbor, 

MI) and maintained in glass aquaria and/or fiberglass raceways in 

dechlorinated tap water. This water was filtered through activated 

carbon and aerated for 48 hours prior to use. The water was 

periodically tested to ensure that the pH, dissolved oxygen content, 

hardness, and content of heavy metals and total organic carbon were at 

acceptable levels (Courchesne and Bantle, '85). Adult frogs were fed 

beef liver and lung supplemented with baby vitamins (Polyvisol). 

Breeding tanks (and all glassware used in this study) were washed 

in dilute HCl, rinsed, washed in dilute NaOH, and then rinsed 

thoroughly in deionized water. The tanks were filled with FETAX 

Solution (Dawson and Bantle, 1987) and aerated for a short time before 

introducing the animals. FETAX Solution is composed of 625 mg NaCl, 96 

mg NaHco 3 , 30 mg KCl, 15 mg cac1 2 , 60 mg Caso 4 "2H 2o, and 75 

mg Mgso4 per liter of deionized distilled water. 

To induce mating, the male and female received 500 and 1000 IU, 

respectively, of human chorionic gonadotropin (Sigma, St. Louis, MO.) 

via injection into the dorsal lymph sac. Amplexus normally ensued 

within two to six hours and the deposition of eggs took place from nine 

to twelve hours after injection. 

Following breeding the adults and fecal material were removed from 

the tank and the embryos collected in 60 mm plastic Petri dishes. The 

jelly coating surrounding the embryos was removed by gentle swirling 

for three to four minutes in a 2% w/v cysteine solution, prepared in 

FETAX Solution. The pH of the cysteine solution was adjusted to 8.1 

with NaOH. After removal of the jelly coat, abnormally cleaving 



40 

embryos and necrotic eggs were removed from the collection of 

embryos. A second selection ensured that only normally developing 

embryos (at blastula) were used in the tests. 

Preliminary tests were conducted to determine the best 

concentration of caffeine and each inhibitor to use in the experiments. 

The concentrations of theophylline and theobromine used were equimolar 

to caffeine. For each separate clutch of embryos four sets of 20 

embryos each were placed in plastic Petri dishes containing 8 ml of 

FETAX Solution, as controls. Controls for each methylxanthine and 

inhibitor compound were set up in a similar manner, as were the 

methylxanthine and inhibitor mixtures. All dishes contained a total of 

8 ml of the appropriate solution(s), which had been diluted from stocks 

prepared in FETAX Solution. The dishes were covered to minimize 

evaporation. Two separate experiments were performed on each inhibitor 

compound. 

All test compounds used in this study were obtained from Sigma. 

The embryos were maintained in the test dishes at 23-24°C for 96 

hours. At 24, 48, and 72 hours the solutions were changed. 

Appropriate dilutions were made from freshly prepared stock solutions. 

At the time of daily solution changes dead embryos were removed and the 

number dead recorded. Death at 24 (stages 26,27) (Nieuwkoop and Faber, 

'75) and 48 hours (stages 37-39) was determined by skin pigmentation, 

structural integrity, and irritability of the embryos, while at 72 

(stage 42) and 96 hours (stage 46) the absence of a heartbeat (visible) 

was also used as an indicator of death. In addition the number of 

surviving malformed embryos was determined for each dish and the stage 

of development of the embryos noted. Structural anomalies typically 

scored as malformations included head and eye irregularities, absence 
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of or improper gut coiling, skeletal and heart defects, pericardial, 

fin, and head edema, and blistering. 

At 96 hours, dead embryos were removed from the dishes and the 

surviving embryos were fixed in formalin (0.5 to 0.75%). The numbers 

of dead and malformed embryos were then determined. Malformed embryos 

that died prior to fixation were not included in the number malformed. 

Embryos surviving to fixation were then individually measured 

(head-tail length) using a Radio Shack digitizer and model 16 

microcomputer. 

Analysis of variance and the Student-Newman-Keuls range test were 

used to analyze for statistical significance at p<0.05 and p<0.001 

(Steel and Torrie, '80). The analysis was conducted by comparing mean 

malformation and mortality percentages and mean growth lengths between 

treatments, for the tests with each inhibitor. 



42 

Results 

Eighty embryos were treated as experimental controls for each 

clutch of embryos. Similar methylxanthine control treatments were 

established for each breeding. Mortality and malformation percentages 

for the experimental and methylxanthine controls may overlap to some 

degree between inhibitor compounds, depending on the number of 

inhibitors tested on each clutch. Specific experimental and 

methylxanthine control results for the tests with each inhibitor are 

presented in Tables III-VII. In the study a total of 560 embryos were 

treated as controls. Five of these died (0.9%) and 13 of the survivors 

were malformed (2.3%). The malformations were limited to pericardia! 

and dorsal fin edema with the exception that two also had skeletal 

kinking. Caffeine at 0.08 mg/ml exposure concentration and 

theophylline and theobromine at 0.075 mg/ml (equimolar to caffeine) 

were used as the methylxanthines in all of the experiments. Each 

methylxanthine alone was tested on a total of 560 embryos as well. The 

mortality percentages for the methylxanthine control treatments, in the 

order presented above, were 1.6%, 2.3%, and 3.6%. The malformation 

percentages for the surviving embryos were 8.0%, 7.3%, and 4.1%, 

respectively. Throughout the study the malformations observed in each 

of the methylxanthine control treatments were limited to edema in the 

pericardium and dorsal fin and, occasionally, slight skeletal kinking. 

The results of the coadministration of each methylxanthine and 

hydroxyurea on Xenopus embryo development, survival, and growth after 

96 hours of exposure are presented in Table III. The average replicate 

malformation percentage in the embryos treated with 0.3 mg/ml of 

hydroxyurea, a DNA synthesis inhibitor, was 20.6%. None of the embryos 
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in this treatment died. The malformations observed were slight to 

moderate skeletal kinking and occasional fin edema and improper gut 

coiling. When caffeine or theophylline was coadministered with 

hydroxyurea, at the appropriate concentrations, a significant increase 

in both mortality (p(0.05) and malformation (p(O.OOl) percentages was 

observed over that seen for the hydroxyurea treatment alone. Caffeine 

and hydroxyurea together produced 6.9% death in the embryos and 89.0% 

of the survivors were malformed. Theophylline in combination with 

hydroxyurea resulted in death in 8.1% of the embryos while 50.6% of the 

survivors were malformed. No additional types of malformations were 

noted, but the severity of the edema and kinking was judged to be 

greater, overall. Theobromine coadministered with hydroxyurea resulted 

in death in 3.1% of th~ embryos and 25.2% of the survivors were 

malformed. There was no statistical difference in these percentages 

from those obtained for hydroxyurea alone. No enhancement of the 

skeletal kinking was observed when theobromine was coadministered with 

hydroxyurea but the degree of edema was variable. Throughout the 

study, the mean head-tail length (growth) of the embryos appeared to be 

the most sensitive indicator of treatment effects. 

The results of tests on the interaction of the DNA synthesis 

inhibitor cytosine arabinoside with each methylxanthine are shown in 

Table IV. There was no significant difference in mortality in any of 

the treatments. Cytosine arabinoside alone, at 0.6 mg/ml, produced 

malformations in 23.6% of the survivors. The malformations were 

limited to edema and skeletal kinking, ventrally, at the tip of the 

tail. As with hydroxyurea, coadministration of caffeine or 

theophylline with this inhibitor produced a statistically significant 
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(p<O.OOl) increase in the average replicate malformation percentage. 

In this case the malformation percentages for these two 

coadministration treatments were approximately the same, with 77.6% of 

the surviving embryos in the caffeine and cytosine arabinoside 

treatment malformed and 76.0% of the survivors in the theophylline and 

inhibitor treatment malformed. In both of these treatments the typical 

malformations observed were edema and a bowing of the tail with the 

ventral tail flexure at the tip. The embryos were judged to be more 

severely malformed due to the additional bowing in the tail. A second 

theobromine concentration was included in the tests with this 

inhibitor, in order to determine whether a higher concentration of 

theobromine would result in potentiation of the teratogenic effects. 

This concentration (0.12 mg/ml) produced 5.6% death and 11.1% of the 

surviving embryos were malformed. These values were slightly higher 

than occurred in the lower theobromine concentration (Table IV) but 

they were not statistically different. At both concentrations of 

theobromine in combination with cytosine arabinoside the percentages of 

the malformations (30.4% and 34.1% respectively) were approximately the 

sum of the malformation percentages for the respective theobromine and 

cytosine arabinoside treatments alone. These percentages were not 

statistically different from the malformation percentage for cytosine 

arabinoside alone at p<O.OOl. However, t.he malformation percentage for 

the higher theobromine concentration with the inhibitor was 

statistically different from that for cytosine arabinoside alone at 

p<O.OS. The malformations observed in the coadministration treatments 

of theobromine and cytosine arabinoside were typical of those seen in 

cytosine arabinoside alone. 
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The results of the interaction of the nucleic acid synthesis 

inhibitor 5-fluorouracil (5-FU) and each methylxanthine are shown in 

Table v. The mortality percentages for the treatments were not 

statistically different. The percentage of malformed survivors in 5-FU 

alone, at 0.08 mg/ml, was 24.1%. Skeletal kinking and improper gut 

coiling were typically observed, while pericardia! and fin edema were 

occasionally noted. Coadministration of caffeine or theophylline with 

5-FU produced malformations in 85.7% and 87.8% of the survivors, 

respectively. In addition to more severe skeletal kinking, improper 

eye development was noted. Theobromine in combination with 5-FU also 

produced a statistically significant (p<O.OOl) increase in the 

percentage of malformed survivors (42.5%) compared to that obtained for 

5-FU alone. The skeletal kinking was judged to be only slightly more 

severe and only a few of the malformed embryos had the eye defect. 

Cycloheximide, a protein synthesis inhibitor, was also tested with 

each methylxanthine and these results are presented in Table VI. There 

was a statistical difference in mortality percentage between some of 

the treatments. Cycloheximide at a concentration of 0.04 ug/ml, 

resulted in malformations in 18.4% of the survivors. Slight kinking, 

edema, and necrosis of a portion of the dorsal fin were noted in these 

embryos. Coadministration of each methylxanthine with this inhibitor 

resulted in a statistically significant increase (p<O.OOl) in the 

average replicate malformation percentage. The malformation 

percentages were 80.7%, 69.6%, and 70.6% for cycloheximide administered 

with caffeine, theophylline, or theobromine, respectively. The kinking 

and edema were only slightly more severe but blistering in the dorsal 
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fin was observed in the area where the necrosis was noted in 

malformed embryos in cycloheximide alone. 

A second protein synthesis inhibitor, emetine, was also 

coadministered with the methylxanthines. The results are shown in 

Table VII. Emetine alone, at 0.7 ug/ml, produced malformations in 

28.9% of the survivors. The malformations included slight lateral 

kinking of the tail, predominantly to the left, and occasional 

blistering along the edge of the eyes. When emetine was coadministered 

with caffeine, theophylline, or theobromine the percentage of malformed 

survivors, 81.4%, 87.5%, and 81.7% respectively, was increased 

significantly (p<O.OOl). In all three cases the tail kinking was of 

the same relative order of severity and was similar to that observed in 

emetine alone. Nearly all of the malformed survivors in the 

coadministration treatments had the blistering around the eyes, of 

varying severity. As with cycloheximide, the malformation percentages 

between the coadministration treatments were the same statistically. 
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Discussion 

The results of this study showed that coadministration of 

caffeine or theophylline with each of the inhibitor compounds resulted 

in potentiation of the teratogenic effect. Coadministration of 

theobromine and the protein synthesis inhibitors (cycloheximide, 

emetine) or 5-fluorouracil (5-FU) also resulted in teratogenic 

potentiation. In contrast only an additive effect was observed between 

theobromine and the inhibitors of DNA synthesis (hydroxyurea, cytosine 

arabinoside). We failed to note potentiation of cytosine arabinoside 

teratogenicity even when the dose of theobromine was raised from 0.075 

to 0.12 mg/ml. A lack of potentiation between theobromine and 

mitomycin C (a DNA synthesis inhibitor) has been reported by Nakatsuka 

et al. ('83) in mice. Mitomycin C teratogenicity was potentiated by 

both caffeine and theophylline (Nakatsuka et al., '83). Ritter et al. 

('82) demonstrated that coadministration of caffeine with hydroxyurea, 

cycloheximide, and emetine resulted in potentiation of embryo toxicity 

in rats. 

In all treatments where potentiation took place the types of 

malformations in the combined treatments were typical of those noted 

with the inhibitors alone. The increased number of eye malformations 

observed when a methylxanthine was administered with emetine or 5-FU 

indicated that the teratogenicity of the inhibitors was potentiated by 

the action of the methylxanthines since none of the methylxanthines 

alone typically produced eye malformations. Dose-response tests on 

emetine and 5-FU alone have demonstrated a high incidence of eye 

malformations (unpublished observations). 
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The results of statistical comparisons of growth data from the 

tests produced the most sensitive indicator of the treatment effects 

(Tables III-VII). In general, growth was inhibited most in the 

treatments where teratogenic potentiation occurred. Emetine was an 

exception in the tests since embryos exposed to this inhibitor alone 

had a mean head-tail length equal to that of the controls (Table VII). 

Methylxanthine and emetine treatment only slightly reduced head-tail 

length. 

The goal of this study was to determine whether the teratogenic 

effects of DNA, protein, and nucleic acid synthesis inhibitors could be 

potentiated in Xenopus embryos upon coadministration with 

methylxanthines. By demonstrating that such potentiation did occur, as 

it had in mammals, the study helps to validate the use of FETAX as an 

in vitro teratogenesis assay. This study has also demonstrated 

that FETAX could be used to study the structure-activity relationships 

of a family of compounds with respect to teratogenicity and that it has 

utility as a basic research tool for studying teratogenic processes. 

Our emphasis was on validation, therefore we did not attempt 

experiments that would elucidate the molecular nature of these effects. 

Future studies can be performed that may help to determine the 

mechanisms involved in this type of potentiation and to determine why 

theobromine does not potentiate the teratogenicity of DNA synthesis 

inhibitors. 
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Table III. Effects of hydroxyurea and methylxanthines alone and1in combination 
on Xenopus embryo development and growth at 96 hours • 

Treatment 

Controls 

Hydroxyurea (Hyd) 

Caffeine (Caf) 
Caf & Hyd 

Theophylline (Tp) 
Tp & Hyd 

Theobromine (Tb) 
Tb & Hyd 

No. of2 
embryos 

160 

160 

160 
160 

160 
160 

160 
160 

mean length 3 No. dead 
(mm) (%) 

9.46-I-O.lla 0 (O)g 

9.25+0.13 b 0 (O)g 

c 0 (O)g 9 .09+0 .ll d* 
8.30+0.09 ll (6.9)h 

c 0 (O)g 9 .05_±0 .10 e* 
8.64+0.14 13 (8.1)h 

b 4 (2.5)g,h 9.30_±0.09f* 
8.86+0.15 5 (3.1)g,h 

Concentrations: Hyd = 0.3 mg/ml; Caf = 0.08 mg/ml; Tp & Tb 
1Analysis of variance and Student-Newman-Keuls range test. 

No. of survivo4s 
malformed (%) 

-

1 (0.6)i 

33 (20.6)j 

13 (8.1)i 
132 (89.0)k 

i 
12 (7.5)1 
74 (50.6) 

i 7 (4.5). 
39 (25.2)] 

0.07 5 mg/ml. 

2Two separate experiments, each with four replicates of twenty embryos. 
3Mean head-tail length of surviving embryos + standard error of the mean. 
4Average of the replicate percentages of surviving malformed embryos. 

a,b,c,d,e,fare significantly different from each other at p(0.05. 

g,hare significantly different from each other at p(0.05. 

i,j,k,lare significantly different from each other at p(0.001. 

* indicates significance from all other treatments at p(0.001. 



Table IV. Effects of cytosine arabinoside and methylxanthines alone and in1 
combination on Xenopus embryo development and growth at 96 hours • 

Treatment No. of2 
embryos 

mean length3 
(mm) 

No. dead 
(%) 

No. of survivo4s 
malformed (%) 

Controls 

Cytosine 
arabinoside (Ara-C) 

Caffeine (Caf) 
Caf & Ara-C 

Theophylline (Tp) 
Tp & Ara-C 

Theobromine (Tb) 
Tb & Ara-C 

160 

160 

160 
160 

160 
160 

160 
160 

Theobromine 0.12 (Tbx) 160 
Tbx & Ara-C 160 

9.36+0.08a 

9.12+0.08b,c 

d 8.93+0.06 
- e 8.47+0.09 

9 0 0 1+0 0 08 c, d 
- e 8.41+0.09 

b 
9.21:!:0.07d 
8 .88+0 .14 

9.02+0.08~,d 
8 .69+0 .10 

3 (1.9) 

3 (1.9) 

3 (1.9) 
4 (2.5) 

3 (1.9) 
5 (3.1) 

7 (4.4) 
6 (3.8) 

9 (5.6) 
2 (1.3) 

Concentrations: Ara-C = 0.6 mg/ml; Caf = 0.08 mg/ml; Tp & Tb 
1Analysis of variance and Student-Newman-Keuls range test. 

5 (3.1)g 

37 (23.6)h 

12 (7.7)~ 
121 (77.6) 1 

11 (6.9)~ 
118 (76 .0) 1 

6 (3.8)g 
47 (30.4)h 

17 (11. 1)~* 
56 (34.1) 

= 0.07 5 mg/ml. 

2Two separate experiments, each with four replicates of twenty embryos. 
3Mean head-tail length of surviving embryos + standard error of the mean. 
4Average of the replicate percentages of sur~iving malformed embryos. 

a,b,c,d,e,fare significantly different from each other at p(O.OOl. 

g,h,iare significantly different from each other at p(O.OOl. 

* indicates significance from Ara-C alone treatment at p(O.OS. 



Table V. Effects of 5-fluorouracil and methylxanthines alone fnd in combination 
on Xenopus embryo development and growth at 96 hours . 

No. of2 
3 No. dead Treatment mean length 

embryos (mm) (%) 

Controls 160 9.38+0.06 a* 1 (0.6) 

5-fluorouracil (5-Fu) 160 9.02+0.06 b 3 (1.9) -

Caffeine (Caf) 160 8.98.:!:_0.03~~c 3 (1.9) 
Caf & 5-Fu 160 8 .18+0 .10 6 (3.8) 

Theophylline (Tp) 160 e* 7 (4.4) 9 .13+0 .02f* 
Tp & 5-Fu 160 8.63+0.07 3 (1.9) 

-

Theobromine (Tb) 160 g* 5 (3.1) 9.29+0.05 
- c Tb & 5-Fu 160 8.93+0.07 0 (0) 

Concentrations: 5-Fu & Caf = 0.08 mg/ml; Tp & Tb = 0.075 mg/ml. 
1Analysis of variance and Student-Newman-Keuls range test. 

No. of survivo4s 
malformed (%) 

4 (2.5)h 

38 (24.l)i 

12 (7.7)~ 
132 (85.7)] 

h 12 (7.8). 
138 (87 .8)J 

7 (4.4)h 
68 (42.5)k 

2Two separate experiments, each with four replicates of twenty embryos. 
3Mean head-tail length of surviving embryos + standard error of the mean. 
4Average of the replicate percentages of sur~iving malformed embryos. 

a,b,c,d,e,f,gare significantly different from each other at p<O.OS. 

h,i,j,kare significantly different from each other at p(O.OOl. 

* indicates significance from all other treatments at p(O.OOl. 



Table VI. Effects of cycloheximide and methylxanthines alone ard in combination 
on Xenopus embryo development and growth at 96 hours • 

Treatment No. of2 
3 No. dead No. of survivo!s mean length 

embryos (mm) (%) malformed (%) 

Controls 160 9.38+0.06a 1 (0.6)i 4 (2.5l 

Cycloheximide (Cyh) 160 8.77+0.09 b* 3 (1.9)i 29 (18.4) 1 
-

Caffeine (Caf) 160 c* 3 i 12 (7.7l' 1 8.98::!:_0.03d* (1.9). . 
Caf & Cyh 160 8.35+0.05 12 (7.5)1,] 119 ( 80 0 7) m+ -
Theophylline (Tp) 160 e* 7 (4.4)i'~ 12 (7 .8)k,l 9.13+0.02f 
Tp & Cyh 160 8.62+0.06 7 (4.4)i,J 106 (69.6)m+ 

-
Theobromine (Tb) 160 9.29±_0.05~ 5 (3.l)~'j 7 (4.4)k 
Tb & Cyh 160 8.54+0.06 16 (10 .o)J 102 (70.6)m+ 

Concentrations: Cyh = 0.04 Mg/ml; Caf = 0.08 mglmll; Tp & Tb = 0.075 mg/ml. 
1Analysis of variance and Student-Newman-Keuls range test. 
2 Two separate experiments, each with four replicates of twenty embryos. 
3Mean head-tail length of surviving embryos + standard error of the mean. 
4Average of the replicate percentages of sur~iving malformed embryos. 

a,b,c,d,e,f,g,hare significantly different from each other at p(0.05. 

i,jare significantly different from each other at p(0.05. 

k,l,mare significantly different from each other at p(0.05. 

* indicates significance from all other treatments at p(O.OOl. 

+indicates significance from all treatments lacking this designation at p(O.OOl. 



Table VII. Effects of emetine and methylxanthines alone and in tombination 
on Xenopus embryo development and growth at 96 hours • 

Treatment 

Controls 

Emetine (Erne) 

Caffeine (Caf) 
Caf & Erne 

Theophylline (Tp) 
Tp & Erne 

Theobromine (Tb) 
Tb & Erne 

No. ofz 
embryos 

160 

160 

160 
160 

160 
160 

160 
160 

mean length 3 

(mm) 

9.93+0.17a 

9.97+0.21a 

9.47+0.20b,c 
- . c 9 .34+0 .17 

9.60+0.19b,d 
- c 9.33+0.21 

9.82+0.18a,e 
9.69+0.18d,e 

No. dead 
(%) 

No. of survivo4s 
malformed (%) 

-
3 (1.9) 6 (3.8/ 

4 (2.5) 45 (28.9)g 

4 (2.5) 
4 (2.5) 

f 16 (10.3)h 
127 (81.4) 

4 (2.5) 
8 (5.0) 

13 (8.3/ 
133 (87.5)h 

8 (5.0) 
12 (7.5) 

8 (5.1/ 
121 (81. 7)h 

Tb = 0.075 mg/ml. Concentrations: Erne = 0.7 pg/ml; Caf = 0.08 mg/ml; Tp & 
1Analysis of variance and Student-Newman-Keuls range test. 
2Two separate experiments, each with four replicates of twenty embryos. 
3 Mean head-tail length of surviving embryos + standard error of the mean. 
4Average of the replicate percentages of surviving malformed embryos. 
a b c d e . ' ' ' ' are sign1ficantly different from each other at p(0.05. 

f,g,hare significantly different from each other at p(O.OOl. 



CHAPTER IV 

EVALUATION OF THE DEVELOPMENTAL TOXICITY OF 

METAL-CONTAMINATED SEDIMENTS USING 

SHORT-TERM FATHEAD MINNOW AND 

FROG EMBRYO-LARVAL ASSAYS 

Abstract. 

The effects of metal-contaminated sediment extracts and a 

reference toxicant (zinc sulfate) were determined by examining the 

developmental morphology, growth, and mortality of exposed fathead 

minnow (Pimephales promelas) and frog (Xenopus laevis) embryos. 

Sediments from two contaminated stream sites were extracted with 

reconstituted culture water at various pH's for 24 h. Developmental 

toxicity tests were performed using the FETAX protocol. The results 

suggested Zn was the major developmental toxicant in the sediment 

extracts. The measured Zn concentration in the sediment extracts which 

caused 50% malformation (ECSO) of the fish embryos was 0.5 to 1.4 mg/L 

(normalized to 100 mg/L hardness). ECSO values for the reference 

toxicant tests were 0.6 and 0.8 mg/L Zn. The frog embryo ECSO for the 

extracts ranged from 2.2 to.3.6 mg/L Zn and was 3.6 mg/L Zn in the 

reference toxicant test. In 67% of the tests malformation was a more 

sensitive endpoint than growth inhibition. Mortality was the least 

sensitive endpoint, i.e., the LCSO in the reference toxicant tests were 

3.6 mg/L Zn for the fathead minnow and 34.5 mg/L for the frog. The 
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extraction procedure may be useful for determining potential toxicity 

in the event metals are leached from aquatic sediments due to dredging 

or acidification. 
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Introduction 

A major obstacle in evaluating the effects of aqueous 

contaminants has been the gap between the use of short-term lethal 

effects assays and assays that measure long-term chronic responses. 

Attempts to assess long-term effects without doing complete life cycle 

studies have focused on assays that measure effects on especially 

sensitive life processes such as reproduction and development. 

Therefore, examining gross terata during morphological development may 

help determine sublethal effects of contaminants [1]. 

Survival, growth, and reproduction responses of fathead minnows 

have been widely used for assaying contaminant effects [2-4] while 

inclusion of teratogenic effects has been a relatively recent 

development [1,5-6]. Frog embryos have been used for more than a 

decade to detect abnormal development caused by exposure to aqueous 

contaminants [7-9]. FETAX (Frog Embryo Teratogenesis Assay­

Xenopus) was developed to rapidly and inexpensively determine the 

deleterious effects of sublethal levels of contaminants upon animal 

development [9-12]. The assay includes malformation as a distinct 

measure of effect, separate from survival and growth endpoints. 

FETAX was used to detect heavy metal teratogens in water samples 

from Tar Creek, a stream in northeastern Oklahoma that had been 

contaminated by acidified mine-water surface seeps [12]. Heavy metals, 

especially Zn, accumulated in the sediments of Tar Creek and the Neosho 

River as a result of the contamination. McCormick developed a sediment 

extraction procedure with reconstituted water to permit bioassay 

evaluation of the release of harmful levels of metals from these 
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aquatic sediments prior to actual leaching that might occur during 

events such as hydraulic dredging or acidification [13]. 

In this study, metal-contaminated sediments were extracted in 

reconstituted water and the effects of the extracts and a reference 

toxicant (zinc sulfate) on morphological development, growth, and 

survival of fathead minnow and frog embryos were examined in order to 

evaluate the potential toxicity of the contaminated aquatic sediments. 
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Materials and Methods 

Composite sediment samples from two sites, Tar Creek (S5, T28N, 

R23E) and Neosho River (S26, T27N, R23E) in Ottawa County, Oklahoma, 

were prepared for extraction [13] in modified FETAX solution (MFS). 

This reconstituted water medium contained 400 mg NaCl, 96 mg NaHco3 , 

30 mg KCl, 15 mg CaC1 2 , 60 mg Caso 4 ·2H 2o, and 75 mg Mgso4 per 

liter of deionized distilled water. The pH of MFS was 7.9 with an 

average hardness and alkalinity of 106 and 72 mg/L Caco 3 , 

respectively. Preliminary tests indicated both fathead minnow and frog 

embryos could develop normally in this solution. 

Extraction was modified from the method of McCormick [13] with 

extractions performed at pH 4, 5, 6, or 7. For each extraction, 50 g 

of sediment was added to 1 liter of MFS and the pH was then adjusted to 

the d~sired level with acetic acid (pH 4, 5, and 6) or NaOH (pH 7). 

Extractions were performed separately on the sediment sample aliquots 

from each site, using a new aliquot of sediment at each pH. The 

extraction procedure was repeated a second time at pH 4, 5, or 6, using 

new sediment aliquots for each site and pH. Extractions at pH 7 were 

not repeated. The extractions were performed in polypropylene bottles 

for 24 h, using a rotating tumbler. At 1, 6, 16, and 24 h of 

extraction the pH was readjusted, if necessary. During extraction, the 

pH varied by no more than + 0.8, 0.6, 0.3, and 0.2 s.u. from the 

desired extraction pH at 1, 6, 16, and 24 h, respectively. An 

equipment malfunction necessitated stopping the first pH 5 and the pH 7 

extractions after 20 h. The suspended sediment material was allowed to 

settle for 24 h after extraction. The solutions ~;;rere then centrifuged 
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at 1475 x g for 10 min and the supernatants filtered (Whatman #1 

filter paper). All extraction filtrates were readjusted to pH 7 with 

NaOH prior to use in the developmental toxicity tests. Readjustment to 

pH 7 was necessary to avoid toxic effects due to low pH. At each pH, a 

sample of MFS alone was carried through the extraction procedure, to 

serve as a control. An aliquot of each pH readjusted extract and 

control solution was analyzed for nonfilterable metals concentration by 

atomic absorption [14]. 

A portion of one Neosho River sediment extract (pH 4) was passed 

twice over Chelex-100 (Bio-Rad) to remove divalent metal ions, to 

determine if metals were primarily responsible for the effects observed 

[12,15]. An extracted MFS sample was also chelated as a control. 

Animal culture and breeding procedures were as described for 

fathead minnows (Pimephales promelas) [16] and frogs (Xenopus 

laevis) [12]. Normally developing embryos at the gastrula (fathead 

minnow) or blastula (frog) stages were placed in various dilutions of 

the pH readjusted (7.0) extracts. These dilutions were based on the 

measured Zn concentration of each sample. The tests were conducted in 

covered plastic Petri dishes [12]. At each dilution, 10 to 20 fathead 

minnow embryos were tested in each of two dishes containing 10 ml of 

solution while 15 to 20 frog embryos were tested in each of two dishes 

containing 8 ml of solution [12]. Controls were tested in both MFS and 

extracted MFS. 

Static renewal tests were conducted for 6 d with fathead minnow 

embryos (to allow hatching to take place) and 4 d with frog embryos 

[9]. During the tests, pH, conductivity, and dissolved oxygen 

parameters were measured daily on each sample while hardness and 
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alkalinity were determined at the start and end of each test and on 

various other days. All tests were conducted at 22 to 24°C. Dead 

organisms were counted and removed at daily renewal. At the end of 

each test surviving larvae were fixed in formalin. Gross terata (eg. 

head, eye, gut, skeletal, and cardiovascular abnormalities and edema) 

were determined using a dissecting microscope. Malformed individuals 

that died prior to test termination were not included in the number 

malformed [9]. Head-tail length of the organisms was used as an index 

of growth [12]. 

Since previous work had implicated Zn as the suspect deleterious 

contaminant, zinc sulfate (Znso 4 "7H 20) was chosen as the 

reference toxicant to permit comparison of the observed effects of the 

sediment extracts with a known toxicant. Initial tests using frog 

embryos determined the response ranges to zinc sulfate. Full reference 

toxicant tests were conducted twice for the fish embryos and once for 

the frogs. As with the extract tests, the reference toxicant tests 

were conducted at pH 7. The test procedures were as described above 

with the stock Zn concentration determined by atomic absorption 

analysis. 

To facilitate ~omparison, the Zn concentration of each test 

dilution was normalized to 100 mg/L Caco3 hardness [17,18]. The 50% 

malformation and lethal concentrations [EC50(malformation) and LC50] 

were determined as mg/L Zn, using the TOXDAT Multi-method program [16]. 

In addition, the 50% effects concentrations for mortality and 

malformation in the reference toxicant tests were calculated using the 

Litchfield-Wilcoxon test [19]. The t-Test for grouped observations was 

used to determine the minimum concentration to inhibit growth (MCIG) in 
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each test (p=O.OS) [12]. All ECSO, LCSO, and MCIG values were 

determined after the Zn concentration of each dilution of the sediment 

extracts and reference toxicant had been normalized to 100 mg/L 

hardness. Therefore, all test results are presented in terms of 

normalized Zn concentration. Teratogenicity Index (TI) values were 

calculated for the reference toxicant tests [9]. 
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Results 

The measured Zn concentration in the undiluted sediment extract's 

ranged from 1.0 mg/L at pH 7 to 53.6 mg/L at pH 4 (Table VIII). Iron 

was the next most abundant metal detected in the extracts with a range 

from 2.1 to 13.0 mg/L. Trace levels of nickel, chromium, cadmium, 

arsenic, and selenium were detected in some extracts. No detectable 

quantities of lead or copper were found in any sample. Mean 

alkalinity and hardness values for the undiluted extract samples ranged 

from 62 to 1900 mg/L and 110 to 560 mg/L Caco3 , respectively. The 

dissolved oxygen content of the exposure solutions ranged from 6 to 8 

mg/L while the range for pH was 6.8 to 7.6 during the tests. 

The EC50(malformation) for fathead minnow embryo/larvae exposed to 

the sediment extracts ranged from 0.5 to 1.1 mg/L Zn (normalized 

concentrations), except for one pH 7 ~xtract with an EC50 of 1.4 mg/L 

Zn (Table IX). In two reference toxicant tests the EC50 values were 

0.6 and 0.8 mg/L Zn. The minimum concentration to inhibit growth 

(MCIG) for the extracts ranged from 0.4 to 1.6 mg/L Zn and were 0.6 and 

0.9 mg/L Zn in the reference toxicant tests. The 6 d LC50s for the pH 

4 and 5 extracts ranged from 1.5 to 2.2 mg/L Zn, however, 50% mortality 

was not obtained in the pH 6 and 7 extracts. The LC50 for the second 

reference toxicant test was 3.6 mg/L Zn, whereas the concentration 

range for the first test was not high enough to obtain an LC50. Control 

malformation was usually zero and never )10%. Mortality in the 

controls was always 5% or less. The concentration-response curves for 

malformation of fathead minnow embryos exposed to the sediment extracts 

and the reference toxicant (zinc sulfate) essentially overlapped. The 

concentration-response curves for the pH 5 extracts and the 
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reference toxicant appear in Figure 3. Curves for the other extracts 

were similar and are, therefore, not shown. 

The EC50 for frog embryos exposed to the sediment extracts ranged 

from 2.2 to 3.6 mg/L Zn and was 3.6 mg/L Zn for the reference toxicant 

test (Table IX). The MCIG was between 2.0 and 4.2 mg/L Zn for the 

extracts and was 4.2 mg/L Zn for the reference toxicant test. There 

was little or no mortality in the extracts after 4 d of exposure. The 

4 d LC50 for the reference toxicant test was 34.5 mg/L Zn. Control 

malformation and mortality was usually <5% and always <10%. The 

concentration-response curves for malformation of frog embryos exposed 

to the sediment extracts and the reference toxicant also essentially 

overlapped. The response curves for frog embryos exposed to the pH 5 

extracts and the reference toxicant appear in Figure 4. 

The malformation and mortality curves for the reference toxicant 

tests were in separate concentration ranges for both species (Fig.· 5). 

The Teratogenicity Index values [TI = LC50/EC50 (malformation)] were 

5.1 for fathead minnows and 9.6 for frogs. 

The types and severity of malformations observed in fathead minnow 

larvae were similar between the sediment extract and reference toxicant 

tests. The malformations were more severe with increasing Zn 

concentration. Below 0.5 mg/L Zn, abnormalities were mild kinking or 

edema which were also observed in some controls. Above 1 mg/L, gross 

malformations were observed: edema (gut, pericardial, and eye), 

kinking, fin abnormalities and blistering. At higher Zn concentrations 

the mouth was incompletely formed and hemorrhaging and cardiac 

abnormalities were noted. Some organisms did not hatch. All grossly 

malformed individuals were incapable of swimming normally, if at all. 
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Some premature hatching took place on days 3 and 4 at 1 to 4 mg/1 Zn. 

This did not appear to affect survival. Above 4 mg/1, membrane 

rupturing was often observed on days 1 and 2. These organisms appeared 

to be abnormal and soon died. 

The types and severity of malformations observed in frog larvae 

were also similar between the sediment extract and reference toxicant 

tests and the malformations were more severe with increasing Zn 

concentration. A noticeable increase in pericardia! edema and abnormal 

gut coiling occurred in frog embryos exposed to 2 to 5 mg/1 Zn. Above 

5 mg/1, skeletal kinking and edema in the dorsal fin were also 

observed. Above 8 mg/1 Zn, fin blistering and edema around the eyes 

were noted. There was also incomplete gut coiling, the mouth was 

improperly formed, and the size of the head, eye, and brain reduced. 

Above 20 mg/1 Zn, in the reference toxicant test, all tadpoles lacked 

proper pigmentation. Heart coiling was absent in some embryos. Facial 

and fin necrosis were noted in live tadpoles. Severely malformed 

organisms displayed a shaking movement, otherwise swimming behavior was 

absent. Animals that died appeared to be paralyzed before death. 

Thirty frog embryos that developed normally for 72 h in MFS were 

exposed to one extract from 72 to 96 h. All of these embryos had 

severe edema in the heart and gut regions at 96 h and gut coiling was 

halted. 

Fathead minnow and frog embryos showed no malformation or mortality 

above control levels after exposure to the chelated portion of an 

extract (Neosho River #1 pH 4). More than 99% of the zinc was removed 

by chelation, leaving an effective Zn concentration of 0.24 mg/1 

(normalized concentration) in the sample. When fathead minnow embryos 
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were exposed to the unchelated portion of this sample, all were dead 

at 48 h while all frog embryos were severely malformed by the end of 

the test. 
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Discussion 

The Teratogenicity Index (TI) values for the reference toxicant 

tests indicated Zn was teratogenic to the developing aquatic 

vertebrates [19]. The results suggested Zn was the major causative 

agent for the teratogenic effects observed in organisms exposed to the 

sediment extracts. Other metals present in the extracts may have 

interacted to affect developmental toxicity. Chelation, specific for 

divalent metal ions, removed )99% of the heavy metals and reduced 

malformation to control levels, therefore, organics were unlikely to 

have caused the malformations in the extract samples. 

The fathead minnow embryo 6 d LCSO for the pH 4 and 5 extracts were 

somewhat lower than that for the reference toxicant test. This 

indicated that another factor in addition to Zn toxicity was involved. 

The additional toxicity may have been due to one or more of the other 

metals in these extracts, possibly nickel. In contrast, 50% mortality 

was not observed i~ three pH 6 extracts with measured Zn concentrations 

above the reference toxicant LCSO for fathead minnow embryos (3.6 mg/L 

Zn). This lack of expected mortality can be explained by the effective 

Zn concentration of less than 3 mg/L in these samples after 

normalization for hardness. Similarly, the lack of frog embryo 

mortality in the pH 4 extracts can be explained by the effective Zn 

concentration of less than 16 mg/L in the samples after normalization. 

In the frog embryo reference toxicant test there was no mortality at 16 

mg/L Zn. 

The types of malformations in both test species were similar and 

increased in severity as Zn increased. In 67% of the tests in which 

effects were observed, the ECSO(malformation) was lower than the 
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minimum concentration to inhibit growth (MCIG), demonstrating the 

sensitivity of the malformation endpoint. Gross terata were easily 

detected using a dissecting microscope. Some malformations were 

obvious to the unaided eye. 

Thirty normally developing frog larvae exposed at 72 h to an 

extract sample with 12.5 mg/L Zn were all severely malformed 24 h 

later. This demonstrated that even a brief exposure to Zn during 

organogenesis was detrimental to the developing aquatic vertebrates. 

The sensitivity of the results in this study compare favorably with 

previous work. For example, in a 10 month chronic study using adult 

fathead minnows, Brungs demonstrated that reproduction was inhibited at 

as low as 0.1 mg/L Zn (concentration normalized to 100 mg/L hardness 

for comparison) [2]. In the present study, the no observed effects 

concentrations (NOEC) for malformation of fathead minnow embryos was 

0.12 mg/L Zn in the reference toxicant tests. The lowest observed 

effects concentration (LOEC) for malformation was 0.43 mg/L Zn. 

Therefore, the LOEC in our short-term study approached the LOEC for the 

10 month life cycle study. 

Brungs exposed eggs spawned in control water to Zn, although there 

was no mention of malformations, reported fry mortality after 20 d 

ex~osure was 2 to 12% at 0.37 mg/L and 51 to 70% at 0.73 mg/L Zn 

(concentrations normalized to 100 mg/1 hardness)[2]. In the present 

study, 20% of the fathead minnow embryos were malformed after 6 d 

exposure to 0.58 mg/1 Zn while 48% were malformed at 0.76 mg/1 Zn. Fry 

survivability would be impaired if abnormal development inhibited 

feeding and/or swimming abilities. 
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The Teratogenicity Index (TI) is a relative measure of the 

separation of the malformation and mortality curves [9]. The TI values 

obtained for Zn in this study (5.1 and 9.6 for fish and frog embryos, 

respectively) were relatively high [Dawson and Bantle, in press]. This 

indicated that the lowest Zn concentration needed to cause mortality of 

the embryos was approximately 5 to 10 times greater than the lowest 

concentration needed to produce malformations. In contrast to Zn, the 

TI for Cd in frog embryos was 1.3 [10], indicative of a small 

separation of the malformation and mortality curves. In published Zn 

and Cd life cycle studies using fathead minnows, a similar pattern was 

apparent for the separation of the reproductive inhibition and 

mortality curves. For Zn, the lowest concentration necessary to cause 

mortality in adults was more than 10 times greater than the lowest 

concentration needed to inhibit reproduction [2]. For Cd, the lowest 

concentration necessary to cause mortality was less than 2 times 

greater than that needed to inhibit reproduction [3]. Further tests 

evaluating gross terata, reproductive inhibition, and mortality are 

needed to determine if there is a consistent relationship between these 

parameters. If so, the malformation endpoint and TI of FETAX used in 

this investigation may prove useful for rapidly determining sublethal 

effects levels of aqueous contaminants. 

The mechanism of Zn teratogenicity is presently unknown although 

the inhib{tion of DNA synthesis by excess Zn is the most likely 

explanation. Zinc is a cofactor for many enzymes such as DNA 

polymerase and thymidine kinase [20]. Due to this requirement, a 

slight increase in Zn concentration can stimulate DNA synthesis while a 

large deficiency or excess leads to an inhibition of DNA synthesis 
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[21]. DNA synthesis inhibitors have proven to be teratogenic in a 

variety of ani~als regardless of their mode of action [22-23]. Zinc 

deficiency is clearly teratogenic in mammals while Zn excess seems to 

be less teratogenic [24-25]. This may be due to the action of maternal 

liver and placental metallothioneins which prevent excess Zn from 

disrupting embryonic DNA synthesis. Oviparous aquatic organisms would 

not receive such protection and would likely be more sensitive to large 

excesses of Zn, causing abnormal development. In this study, the 

relatively large TI values and severity of the malformations in the Zn 

reference toxicant tests were consistent with previous FETAX studies in 

which known DNA synthesis inhibitors were tested [22]. Further tests 

are needed to more fully evaluate DNA synthesis inhibition as the 

mechanism for Zn teratogenicity. 

The potential toxicity of the sediments tested in this study 

related primarily to the effective Zn concentration in the extracts. 

Therefore, the acid-extraction technique for metal-contaminated aquatic 

sediments [13] appears to be useful for evaluating potential toxicity 

in the event metals are released from aquatic sediments due to dredging 

or acidification. 
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Table VIII. Metals content,a alkalinity, and hardness of the undiluted sample extracts. 

Sediment Extracts Zn Fe Ni Cr Cd As Se b b Alk. Hard. 

pH 7 extracts 

Tar Creek lfl 1.7 7.06 <O .13 0.010 (0.005 0.035 0.011 83 110 

Neosho River ltl 1.0 7.62 0.13 0.012 (0.005 0.025 0.010 62 151 

pH 6 extracts 

Tar Creek ltl 4.4 7.05 (0.13 0.007 (0.005 0.014 0.011 95 167 

Tar Creek lf2 4.6 5.24 (0.13 0.008 (0.005 (0.005 0.016 49 175 

Neosho River ttl 4.1 4.44 (0.13 (0.005 (0.005 (0.005 0.010 111 215 

Neosho River tf2 2.4 4.96 (0.13 0.008 (0.005 (0.005 0.016 95 205 

pH 5 extracts 

Tar Creek ttl 16.0 4.10 0.19 (0.005 (0.005 0.005 0.009 153 373 

Tar Creek lt2 16.2 2.07 0.20 (0.005 (0.005 (0.005 0.016 206 287 

Neosho River ttl 14.6 3.16 0.18 0.006 (0.005 0.005 0.013 239 354 

Neosho River tf2 12.0 4.95 0.16 (0.005 (0.005 (0.005 0.013 229 319 



Table VIII. cont. --
pH 4 extracts 

Tar Creek Ill 53.6 10.49 0.66 (0.005 0.025 0.010 0.029 1280 453 

Tar Creek 112 53.2 12.96 0.70 (0.005 0.029 0.012 0.049 1460 515 

Neosho River lil 48.3 5.02 0.58 (0.005 0.060 0.017 0.036 1700 510 

Neosho River 112 45.7 6.36 0.59 (0.005 0.036 0.017 0.042 1900 560 

Neosho River chelatedc 0.4 (0.05 (0.13 (0.005 <0.005 0.020 0.040 1490 182 

a Values are mg/L as determined by atomic absorption analysis. 

b Alk. -alkalinity, Hard. -hardness: Mean value of undiluted extracts, expressed as mg/L Caco3 • 

c Sample was passed over Chelex-100, a bound ion-exchange resin, to remove heavy metal ions. 



Table IX. Malformation, growth, and mortality responses of fish and frog embryos in the extract and 
zinc tests. 

FATHEAD MINNOW FROG 

Samples EC50a(95%CI) MCIGb LC50 (95%CI) EC50a(95%CI) MCIGb LC50 (95%CI) 

(mg/L Zn - normalized to 100 mg/L hardness) 

pH 7 extracts 

Tar Creek Ill 1.4 (+1.4) 1.6 c 

Neosho River Ill 

pH 6 extracts 

Tar Creek Ill 0.8 (+0.3) 1.1 --- --- 2.9 

Tar Creek 112 0.7 (±_0.3) 1.1 --- 2.8 (+0.2) 2.9 

Neosho River Ill 0.9 (±_0.4) 0.9 --- --- 2.0 

Neosho River 112 1.1 (+1.1) 0.8 

pH 5 extracts 

Tar Creek Ill 0.7 (+0.2) 1.2 1.6 (±_{) .6) 2.7 (±_0.5) 2.8 

Tar Creek 112 0.8 (+0.4) 1.4 2.2 (±_0.8) 3.3 (±_0.5) 2.4 

Neosho River Ill 0.6 (±_0.2) 1.1 1.3 (±_{). 7) 2.5 (±_0.5) 3.2 

Neosho River 112 0.5 (+0.4) 1.0 1.6 (±_{). 7) 2.5 (±_0.3) 2.3 



Table IX. cont. --
pH 4 extracts 

Tar Creek lfl 0.8 0.5 1.7 (+1.0) 3.2 (+1.0) 3.9 

Tar Creek 112 0 • 6 (_±(). 6) 1.4 1.5 (+1.5) 3.5 (_±1.0) 3.8 

Neosho River Ill 0.5 (+0.5) 0.4 2.1 (+1.2) 2.9 (+1.2) 3.4 

Neosho River 112 0.8 (+0.4) 1.2 2.1 (+1.0) 3.6 (_±0.7) 4.2 

Zinc --
Zinc Sulfate Ill 0.6 (+0.6) 0.9 --- 3.6 (+0.5) 4.2 34.5 (+1. 2) 

Zinc Sulfate 112 0.8 (_±{) .3) 0.6 3.6 (+0.9) 

a EC50 for malformation only, values are for 6 d tests for fathead minnow and 4 d tests for frog embryos. 

b Minimum concentration to inhibit growth (p=0.05). 

c --- indicates 50% effect not obtained or growth not inhibited. 
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Figure Legends 

Figure 3. Zinc concentration-response curves for malformation of 

fathead minnow embryos exposed for 6 d to Tar Creek and Neosho River 

sediments extracted at pH 5 (Exp #1 = first extract exposure, Exp #2 = 

second extract exposure) and the zinc sulfate reference toxicant. 

Tests were conducted at pH 7. 

Figure 4. Zinc concentration-response curves for malformation of frog 

embryos exposed for 4 d to Tar Creek and Neosho River sediments 

extracted at pH 5 (Exp #1 = first extract exposure, Exp #2 = second 

extract exposure) and the zinc sulfate reference toxicant. Tests were 

conducted at pH 7. 

Figure 5. Concentration-response curves for malformation and mortality 

of fathead minnow and frog embryos exposed for 6 and 4 d, respectively, 

to the zinc sulfate reference toxicant. Tests were conducted at pH 7. 
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