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CHAPTER I 

INTRODUCTION 

Perspective 

In partitioning N individuals to be clustered into k 

appropriate groups for a set of p-dimensional multivariate 

data, one may wish to find the best procedure to predict the 

number of distinct groups, K. If the number of groups is 

known a priori, discriminant analysis provides a solution to 

the problem of how well N individuals are classified into 

their own groups. Principal component analysis is a method 

of projecting points in multi-dimensional space into a space 

of fewer dimensions so that the maximum amount of 

information is retained. 

Cluster analysis differs from these analyses and is a 

more primitive technique in which no assumptions are made 

concerning the number of groups or the group structure. If 

a very large body of data can be reduced to a relatively 

compact description, it may become the basis for further 

statistical research. Therefore, there is a need to 

organize or reorganize the data in search of a natural 

organizational structure. 

Cluster analysis has developed in many diverse fields 
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including biology, psychiatry, ecology, psychology, 

sociology, engineering, and econometrics. In addition, some 

of the relevant fesearch in cluster analysis is being 

published in the computer science and statistical journals, 

and a unifying framework for the development of the 

theoretical aspects of cluster analysis might be found 

among the statistical methods. Anderberg (1973) gives a 

more complete and organized listing with discussion of these 

points. 

Because statistics is a body of methods purporting to 

make sense out of data, cluster analysis belongs among the 

descriptive statistical methods. As a descriptive method, 

cluster analysis possesses two noteworthy characteristics. 

First, it is an exploratory technique to be used in the 

initial stages of research which, hopefully, will 

precipitate hypotheses for further research. Second, it has 

as its goal, simplification through organization by 

revealing structure and relations in the data. 

However, the number of problems associated with cluster 

analysis is bewildering because each of the several 

clustering methods can produce quite different groupings for 

the same data. The most common problem facing an 

investigator with a set of objects he would like to examine 

by clustering procedures is the choice of which procedure to 

use from the several clustering procedures. 

DuBien (1976) gives a comparison of various 

agglomerative hierarchical clustering algorithms using 
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Rand's (1969, 1971) C statistic, and DuBien and Warde (1982) 

present the distribution of the C statistic. Also, DuBien 

and Warde (1987) offer an empirical investigation of the 

effect of correlated variables on the "retrieval" ability of 

a particular class of agglomerative clustering methods. In 

this paper, we are concerned with the problem of predicting 

the number of clusters in a given set of data when using 

only agglomerative hierarchical clustering methods. We will 

further examine the use of Rand's C as a comparative 

statistic. 

A Discu~sion on Basic Concepts and 

Definitions in Cluster Analysis 

The definitional problems associated with cluster 

analysis can be partially resolved by a mathematical 

approach. Using DuBien's (1976) notation to formalize the 

presentation, a general, set-theoretic framework will be 

established for cluster analysis. 

In any field of application, the primitive concepts of 

cluster analysis are based on the elements to be clustered. 

They are referred to as data points and a cluster is an 

operationally determined collection of data points. Each 

data point shall be represented by a p x 1 vector, X., 
l. 

where 

X. 
l. 

= •.• ,X. ]' 
l.p 

The components~ x .. of X. will be termed variables. The set 
l. J l. 

of all elements to be clustered shall be called the object 



space and symbolized by X. Letting N be the number of data 

points, then the object space X might be 

Obviously, the object space is embedded in·Euclidean 

p-space. Thus, if E represents Euclidean p-space, then p 

X ~ E . 
p Letting XN represent the data matrix, where N is ,p 

the number of data points and p is the number of variables 

satisfying N ~ p, then 

X N,p 

where x .. represents the value of the measurement of the 
1J 

j-th variable on the i-th objects. 

Having laid a set-theoretic foundation for discussing 

cluster analysis concepts, mathematical definitions for a 

cluster and a clustering can be given. 

Definition 1.1. A cluster, Yk' is any nonempty subset of 

the object space. Symbolically, Yk ~ X means that if 

X. e Yk' then X .. e X. 
1 1· 

Thus, a cluster is simply a collection of data points. The 

4 

number of data points contained in a cluster shall be termed 

the size of the cluster. 

Definition 1.2. A clustering, Y, is any partition of the 

object space. Symbolically, Y = [Y1 , Y2 , .... , YK] is a 



partition of X, if the following three conditions hold: 

(i) For every Yk E Y, Yk # 0. 

(ii) If Yk E Y, Ym E Y, and Yk # Ym' k t m, 

then yk n ym = 0. 

K 
(iii) u yk = x. 

k=1 

Hence, a clustering is simply a special kind of collection 

of clusters. 

A clustering of N data points can consist of k = 1, 2, 

. . . ' N clusters. The number of clusters contained in a 

clustering shall be termed the size of the clustering. If 

clustering Y contains K clusters, then YK denotes a 

clustering of size K, where K = 1, 2, .•. , N. The set of 

all possible clusterings of size K for an object space 

containing N data points will specify a population of 

clusterings as given in definition 1.3. 

Definition 1.3. Let N be the number of data points. Two 

5 

important populations of clusterings are defined as follows: 

(i) An [N,K]-population of clusterings or an [N,K]-

population is defined to be the set of all 

possible clusterings of size K for X; 

(ii) An [N]-population of clusterings or an [N]-

population is defined to be the set of all 

possible clusterings of X. 

For convenience, y[N,K] shall be used to designate a 

clustering from the [N,K]-population. Thus, an [N]-

population of clusterings may be obtained by merging the [N, 
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K]-populations for all K = 1, 2, .... , N. 

In general terms, a clustering method consists of a 

a criterion and a technique in which the criterion assigns a 

numerical value to each clustering and the technique selects 

a subset of the set of all possible clusterings over which 

the criterion is optimized (providing only a local optimum). 

A problem is to classify the many clustering methods into a 

small number of different types. Noteworthy attempts at 

classifying and reviewing clustering methods appear in 

Sneath and Sakal (1973), Cormack (1971), Anderberg (1973), 

Everitt (1974), and DuBien (1976). However, no standard 

terminology has emerged for designating an entire family of 

similar clustering methods. Apparently, "hierarchical 

clustering scheme (HCS)" by Johnson (1967), "agglomerative 

hierarchical" given by Anderberg (1973) and Everitt (1974), 

"sequential, agglomerative, hierarchical" given by Norton 

(1975), and "sequential, agglomerative, hierarchic, 

nonoverlapping (SAHN)" given by Sneath and Sakal (1973) are 

all descriptors for the same class of clustering methods. 

This previously described class of clustering methods will 

be of primary importance in this paper, and these clustering 

methods shall be referred to simply as agglomerative 

clustering methods as used by DuBien (1976). 

Agglomerative clustering methods are some of the oldest 

and most frequently used clustering methods. The method may 

be characterized as proceeding sequentially by joining pairs 

of clusters. It starts with the partition which consists of 



7 

each data point as a single cluster and proceeds until there 

is one cluster containing all data points. The investigator 

must decide at which stage in the analysis he wishes to stop 

because all agglomerative clustering procedures ultimately 

reduce the data to a single cluster. An important concept 

in the definition of an agglomerative clustering method is 

an hierarchy. 

Assuming that there are N data points, formal 

definitions for an hierarchy and for agglomerative 

clustering methods are given as definitions 1.4 and 1.5, 

respectively. 

Definition 1.4. A hierarchy, H, on the object space is an 

ordinal sequence of nested clusterings. Symbolically, 

N N-1 
H : y ' y ' 

2 
••••• t y ' 

YN c yN-1 c 2 1 where ....... c Y c y. 

One useful visualization of a hierarchy is a tree-like 

diagram which is often called a dendrogram in cluster 

analysis applications. In summary, a hierarchy on the 

object space is a nested collection of clusterings (each 

consisting of a set of clusters) which may be aptly depicted 

by a dendrogram. 

Definition 1.5. An agglomerative clustering method is any 

clustering method, M, which produces a hierarchy on the 

object space subject to the following constraints: 

(i) YN is the initial clustering; 

(ii) Clustering YK- 1 , K ~ N, is obtained from 

clustering YK by joining the two closest clusters 



in clustering YK; i.e., if Y. , Y. E YK 
], J 

and they are deemed closest, then Y. U Y. E YK-l. 
], J 

Thus, the application of an agglomerative clustering method 

to N data points results in a special kind of hierarchy, 

thereby imposing an hierarchical structure on the object 

space. 

8 

Based on the definitions given above, the resolution of 

a clustering problem by the application of an agglomerative 

clustering method to a data set can be described by the 

triple (X, H, M). When a clustering method consists of a 

criterion and a technique, the agglomerative clustering 

method, M, may be more specifically viewed as consisting of 

a measure of similarity or dissimilarity (usually a measure 

of distance) and an algorithm (usually a form of linkage). 

The measure of similarity or dissimilarity explicates 

"close'', initially; and the algorithm reevaluates the 

"closeness" of clusters after each join. As a further 

limitation, the agglomerative clustering methods of 

particular interest in this paper may be denoted by the pair 

(measure of distance, clustering algorithm). 

At this point, the application of an agglomerative 

clustering method to a set of data requires that a measure 

of distance, d, be imposed on the object space, X. Hence, 

the properties and some examples of distance measures will 

be established, and then agglomerative clustering algorithms 

will be formalized in chapter III. 
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A Discussion of Distance Functions 

used in Cluster Analysis 

In very general terms, a measure of distance, d, on 

some arbitrary set, S, is a real-valued function on S * S. 

In particular, some of the relevant properties which a 

measure of distance may possess will be given with respect 

to the object space, X. However, these properties may apply 

to an arbitrarily defined measure of distance on any set. 

Letting d .. denote the distance between data points X. and 
1J 1 

X., the properties for a measure of distance are described 
J 

in definitions 1.6, 1.7, and 1.8. 

Definition 1.6. A semi-metric on the object space, X, is a 

function, 

d: X * X ~ R, 

such that the following two properties hold for every pair 

of data points, X. and X. in X: 
1 J 

(i) d is a strictly positive function, i.e., 

d .. <: 0, 
1J 

and d . . = 0 i f f X . = X . ; 
1J 1 J 

(ii) d is a symmetric function, i.e., 

d .. = d ..• 
1J J 1 

Definition 1.7. A metric on the object space, X, is a semi-

metric d such that the following third property also holds 

for every Xi' Xj, and Xk in X: 

(iii) d satisfies the triangle inequality, i.e., 



Definition 1.8. An ultrametric (Johnson, 1967) on the 

object space, X, is a metric d such that the following 

fourth property also holds for every X., X., and Xk in X: 
l. J 

(iv) d satisfies the ultrametric inequality, i.e., 

dik ~ max {dij' djk}. 

10 

The ultrametric inequality is a stronger property than 

the triangle inequality. Thus, if the ultramet;r:-ic 

inequality holds for a measure of distance on X, then the 

triangle inequality necessarily holds for that measure of 

distance on X. It is also worth noting that an ultrametric 

measure of distance is invariant to all monotonic 

transformations of d. A metric measure of distance, 

however, is not, in general, invariant to monotonic 

transformations of the measure of distance because the 

triangle inequality is not preserved under all monotonic 

transformations of d. It should be noted that for the 

derivation presented in this study, only a semi-metric 

measure of distance is required as a basis for the initial 

distance matrix. 

A well-known family of distance measures for which the 

metric properties hold is the family of Minkowski metrics. 

The m-th member of the family of Minkowski metrics will be 

designated by ~ . Recalling that X. is a p-component vector, m l. 

if x. denotes the v-th component of data point X. and x. 
l.V l. JV 

denotes the v-th component of data point X., then the m-th 
J 

Minkowski metric between data points X. and X. is computed 
l. J 

by the following formula: 



p 

-t (X., X.) 
m 1 J = [.I·' 

1tJ 

x. 
1V 

where m ~ 1. 

Euclidean distance is a member of the family of Minkowski 

metrics, namely, -t2 . However, squared Euclidean distance 

(in common use with some agglomerative clustering 
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algorithms) is only a semi-metric measure of distance, since 

the triangle inequality is not preserved under the operation 

of squaring distances. 

From this brief background on measures of distance, the 

general formulation for agglomerative clustering algorithms 

given by Lance and Williams (1966) can be presented in a 

notation consistent with the present development. First, 

however, with respect to an agglomerative clustering method, 

some subtle distinctions concerning the set on which d is a 

measure of distance are needed. In the application of an 

agglomerative clustering method to a set of data, the 

distance between each pair of data points, X. and X., is 
1 J 

initially computed using some measure of distance, d, which 

is at least a semi-metric. Since d is at least a semi-

metric, the resultant set of distances may be denoted by 

D = {d .. l i < j, i = 1, 2, .• , N-1, j = 2, 3, .. , N}. 
1J 

A convenient device for displaying D is the distance matrix 

DN,N' where only the N(N-1)/2 upper triangular elements of 

DN,N are necessary. Therefore, d is a measure of distance 

on X. Also, the set of single-point clusters, YN, 

corresponds to X. Consequently, d is also a measure of 



distance on YN, where an element of YN is a cluster, Y., 
l. 

corresponding to data point X. • 
l. 

Hence, the process of 

clustering a set of data by means of an agglomerative 
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clustering method is initiated by viewing the measure of 

distance on X as a measure of distance on YN; and, thereby, 

D becomes the set of all distances between pairs of clusters 

. yN 
l.n • As it is known, the results of clustering procedures 

depend on a metric among the pairs of objects. For the 

purpose of this study, the squared Euclidean distance, which 

is commonly used in agglomerative clustering methods, is 

considered as a measure of distance. 

The role of the agglomerative clustering algorithm is 

to sequentially impose a measure of distance on each 

clustering, YK, K = 1, 2, ... , N-1, in the hierarchy such 

that the measure of distance imposed on YK is functionally 

K+1 related to the measure of distance imposed on Y . In this 

K sense, d is not the same measure of distance on Y and on 

YK+1 ( . 
l. • e • ' on two clusterings of different sizes). In 

fact, even when d is initially a metric, for some clustering 

in the hierarchy, d may not even be semi-metric, and this 

anomalous situation is well illustrated by DuBien (1976). 

To clarify the notation, since YK, K = 1, 2, •.. , N, is 

a set of clusters, a measure of distance may be imposed on 

YK, and d .. shall now be used to denote the distance between 
l.J 

cluster Y. and cluster Y., where Y., Y. E YK, K = 1, 2, 
l. J l. J 

. . . ' 
N. This is not inconsistent since in the case of YN, X. and 

l. 

Y. correspond. Thus, the distance between data points is a 
l. 



special case of the distance between clusters, and this 

distance between data points will be used to initiate a 

recursive algorithm for the recomputation of distance 

between clusters after each joining of two clusters. As a 

further simplification of.the notation, if two clusters, 

Y.' ]. 

(Y. 
]. 

K Y. E Y , join at distance 
J 

d .. to form a new cluster 
l.J 

U Y.) where ( Y. U Y.) 
J ]. J 

K-1 
E Y , then Y(ij) will denote 

the new cluster; i.e., 

13 

and d .. shall be termed the joining distance for clustering 
l.J 

K-1 Y . It should be noted that the joining distance, d .. , is 
l.J 

always the smallest distance remaining in the set of all 

distances between clusters in clustering YK. 

Further delineation of the particular agglomerative 

clustering methods of interest will be given in Chapter III. 

Scope of This Study 

Although cluster analysis has been widely used to 

create empirical classifications, the number of problems 

associated with cluster analysis, given a "real'' set of 

data, is still enormous. These problems can be summarized 

as follows: 

1. How should the variables be scaled ? 

2. Which distance measure should be used ? 

3. What clustering method should be used ? 

4. How should the number of clusters, K, be specified 

or determined ? 
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Because of these problems, there are a large number of 

clustering methods which produce quite different results 

depending on which variable and which distance measures 

are used. A brief discussion of the first three problems 

can be found in DuBien (1976). 

The problem of determining the correct number of 

clusters, K, is the main objective of this study. Attention 

is focused on the use of Rand's (1971) C statistic in 

conjunction with some agglomerative hierarchical clustering 

algorithms in predicting the number of clusters within the 

given set of data. 

Because operational clustering methods search a subset 

of Y[N] or Y[N,Kl, which is usually defined as all of a 

certain type of rearrangement of a specific initial 

clustering, it is of interest to examine the behavior of the 

similarity measure in some of these situations. Ideally, 

this study will illustrate the remark made by Gordon (1981): 

If the results of several different classification 
procedures agree closely, then one has more 
confidence in the reality of any group structure 
which is indicated. 

A review of cluster analysis literature related to the 

problem of determining the number of clusters present in the 

data is given in Chapter II. 

Chapter III contains the formulations of the nine 

agglomerative hierarchical clustering algorithms chosen for 

this study. 

Because the comparative study presented in this paper 



is limited to agglomerative hierarchical clustering 

procedures of the form (measure of distance, clustering 

algorithm), Chapter IV presents formulations of the 

comparative statistic used in Chapter V and summarizes a 

rationale for the use of the comparative statistic to 

predict the number of clusters present in the given object 

space, where agglomerative hierarchical clustering 

procedures are applied under the specific assumptions. 

Also, the mean and variance of the comparative statistic 

will be provided. 
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In Chapter V, the design of the comparative study for 

multi~ariate normal samples is presented while an empirical 

investigation of the effects of correlated variables and 

distance between population mean vectors on the "retrieval'' 

ability of agglomerative clustering methods and the 

"agreement" between the pairs of them are discussed by 

examining the behavior of the comparative statistic. In 

addition, this investigation may provide useful information 

about the properties of different clustering methods. 

In Chapter VI, the use of Ck is investigated for 

multivariate log-normal samples and a discussion on the 

results will be presented. 



CHAPTER II 

A LITERATURE REVIEW ON DETERMINING 

THE NUMBER OF CLUSTERS 

General Reflection 

An extensive number of clustering techniques have been 

developed for determining the number of clusters in a given 

set of data. These techniques themselves can be classified 

roughly into four general groups: hypothesis testing 

methods, optimization methods, mode or density estimation 

methods, and agglomerative clustering methods. First, 

however, a general review of the literature which is deemed 

to give significant contributions on the development of 

techniques in cluster analysis is given. 

Cormack (1971), Anderberg (1973), Sneath and Sokal 

(1973), Everitt (1974), Duran and Odell (1974), Hartigan 

(1975), and Peck (1983) provide a comprehensive general 

review of clustering methods, including a classification of 

methods into broad general types and discussions of measures 

of similarity (or dissimilarity), clustering algorithms, 

clustering criteria, and clustering techniques. Despite the 

numerous attacks on the problem for determining the most 

probable number of clusters for a given set of data, it must 

16 
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be said that no completely satisfactory solution is 

available in the realm of cluster analysis. 

Mrachek (1972) and Norton (1975) necessarily make 

valuable contributions to the theoretical development of 

cluster analysis, and both of them are at least partially 

concerned with the problem of testing for the presence of 

structure in data. 

DuBien (1976) provides a comparative study of 

agglomerative clustering methods which will guide the 

matching of clustering method with type of cluster 

generated. DuBien and Warde (1979) present an algebraic 

analysis of agglomerative clustering methods, which results 

in a graphic portrayal of these methods and a classification 

scheme for these methods based on the degree of distortion 

perpetrated on the object space by the methods in each 

group. Then DuBien and Warde (1982) derive some 

distributional results concerning a comparative statistic, 

Rand's (1971) C statistic. Further, DuBien and Warde (1987) 

present an empirical investigation of the effect of 

correlated variables on the ''retrieval" ability of a 

particular class of agglomerative clustering methods. 

However, critical comparisons of the recovery 

characteristics of the c~iterions have not been fully 

conducted until Milligan (1981), and Milligan and Cooper 

(1985). Milligan (1981,·p187) mentioned: 

It seems that the trend in the clustering 
literature has been for authors to continue to 
introduce new statistics while providing little 
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comparative information. 

Hence, Milligan (1981) studied how to determine whether any 

criterion could indicate whether a given partition of the 

data recovered a significant portion of the true cluster 

structure or whether any structure exists at all. Further, 

Milligan and Cooper (1985) evaluated 30 stopping rules 

already in the clustering literature for determining the 

number of clusters on artificial data sets which contain 

either 2, 3, 4, or 5 distinct nonoverlapping clusters. 

In this study the principal interest is to investigate 

the use of a comparative statistic for predicting the 

correct number of clusters, k, when applying specified 

agglomerative clustering algorithms to a given set of data. 

An extensive review of the literature is focused on the 

problem of determining the number of clusters within a given 

set of data. 

Publications related to Hypothesis 

Testing Methods 

The journal articles by Wolfe (1970), Sneath (1977), 

Binder (1978), Lee (1979), Everitt (1981), and McLachlan 

(1987) are grouped in this category. 

Wolfe (1970) presents a likelihood ratio criterion to 

test the hypothesis of k clusters against k-1 clusters. The 

process is modeled after the traditional Wilks' likelihood 

ratio (1938) criterion and is based on the assumption of 

multivariate normality. However, Binder (1978) has shown 
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that this test statistic is not asymptotically distributed 

as chi-square. Further, Everitt (1981) performed a Monte 

Carlo analysis of Wolfe's procedure in a mixture of normal 

distributions and found that Wolfe's formula for the degrees 

of freedom for the test appeared to be valid only for the 

cases where the sample size is about ten times larger than 

the number of dimensions. Also, McLachlan (1987) examined 

bootstrapping (Efron, 1982) the likelihood ratio statistic 

for testing the number of clusters k = 1 under the null 

hypothesis H versus k = 2 under the alternative hypothesis 
0 

H , and found that Wolfe's approximation may not be 
a 

applicable in the unequal variance case. 

Sneath (1977) describes a method for testing the 

distinctness of two clusters in Euclidean space based on a 

measure of overlap. It is assumed that the clusters are 

roughly hyperspherical multivariate normal. Then the 

suggested statistic measures the separation between clusters 

and not the overlap, and has a noncentral t-distribution 

under the null hypothesis. The test statistic, t , is w 

compared to a critical score obtained from a noncentral 

t-distribution. The hypothesis of one cluster is rejected 

if t exceeds the critical score. 
w 

The ratio of the determinant of the total sum of 

squares and cross product matrix to the determinant of the 

pooled within group sum of squares matrix maximized over all 
I T I 

possible partitions of the objects into k clusters, 
I w 
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was proposed by Friedman and Rubin (1967). Engleman and 

Hartigan (1969) derived a table of percentage points of a 

test for the presence of clusters in data, but their test 

for the presence of structure is limited to the univariate 

case. Norton (1975) comments that this test procedure is 

most appropriate for use with divisive algorithms which 

divide the observations into two groups in such a way as to 

maximize the ratio of between-group sum of squares to 

within-group sum of squares. In practice, use of this is 

limited since tables of percentage points have been 

generated for only a very limited number of sample 

sizes. Also Norton (1975) suggests the generalization of 

the above procedure to 3, 4, ... , N-1 cluster alternatives. 

However, these tests cannot be used yet because there are no 

percentage points available. 

Lee (1979) generalized Engleman and Hartigan's work to 

the multivariate case. Criteria are considered for testing 

the hypothesis that the observations are a random sample 

from one multinormal population versus the alternative that 

the observations arise from two multinormal populations with 

different means and common variance-covariance matrix. For 

higher dimensions an approximation to the sampling 

distribution is also provided. 

Publications related to 

Optimization Methods 

It is advantageous to use available prior information 
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to develop a criterion that when optimized produces a 

clustering with desirable properties. 

A familiar objective function applicable in cluster 

analysis is the within-group sum of squares matrix (W) and 

the between group sum of squares matrix (B) with respect to 

the total sum of squares matrix (T). These are, 
k 

and 

B = n. (X. - X)(X. - X) , L - ' 
i=1 l. l. l. 

(Xl.'J'- X.)(X .. - X.) l. l.J l. 

k n. 
l. 

T = B + W = \' \ (X .. ...: 
i~1j"1 l.J 

X)(X .. - X) 
l.J 

k 

where k is the number of groups and \ n. = N. 
i~1 l. 

It seems 

natural to regard the optimal grouping of N objects into 

k clusters as that for which W is minimized or B is 

maximized. This criterion reflects a desire to find some 

minimum variance spherical clusters, and generally 

optimization methods in cluster analysis consider the 

functional relation among these sum of squares and 

crossproduct matrices. The trace(W) criterion is one of the 

popular indices (Edwards and Cavalli-Sforza, 1965; Friedman 

and Rubin, 1967) used to determine the number of clusters by 

using the maximum difference scores since the criterion 

increases monotonically with solutions containing fewer 

clusters. However, a problem with the min{trace(W)} 

criterion is that the clusters produced are constrained to 

being hyper-spherical; in cases where the real clusters in 
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the data are of some other shape this may produce misleading 

solutions. Also, this method is transformation dependent as 

noted by Everitt (1979). 

Galinski and Harabasz (1974) suggest the variance ratio 

criterion (VRC), {trace(B)/(k-1)}/{trace(W)/(N-k)}, where N 

and k are the total number of items and the number of 

clusters in the solution, respectively. Then the best 

number of groups in the data is indicated by an absolute or 

local maximum of the VRC. Similarly, the use of min( IWI ), 

max{trace(W- 1B)}, and log{max(ITI/IWI )} for determining the 

number of clusters in the data was suggested by Friedman and 

Rubin (1967), and several further studies on similar methods 

have been conducted by Marriott (1971), Scott and Symons 

(1971), and Symons (1981). 

Ratkowsky and Lance (1978) introduce a criterion, 

C I k' 5 , where the value for Cis equal to the average of 

the ratios of (SSB/SST) obtained from each dimension in the 

data, where SSB is the between group sum of squares and SST 

is the total sum of squares. Then the optimal number of 

groups is determined where this criterion presents its 

maximum value. However, they say that this criterion tends 

always to produce a small number of groups. Hill (1980) 

modifies this criterion, but recognizes that the 

modification has serious weaknesses in that his new 

criterion, c, can continue to increase until it has split 

the cluster into its individual units. Ratkowsky (1984) 

proposes a new approach that uses the average similarity of 
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an individual with the members of its group. The similarity 

coefficient must give values that lie between 0.0 and 1.0. 

Then the optimum number of groups, k, is found if the 

criterion is maximum. However, this criterion sometimes 

produces a value less than the value obtained when N 

individuals are split into N singleton groups. 

Krzanowski and Lai (1988) suggest a new criterion for 

determining the number of groups in a data set by using 

sum-of-squares clustering after observing the behavior of 

both Marriott's (1971) and their new criterions based on 

within-group sum-of-squares objective function trace (W). 

Then they give cautionary comment that their criterion 

should not be expected to yield optimum results if the use 

of the sum-of-squares objective function for a particular 

set of data is inappropriate. Moreover multiple local 

maxima of a criterion can occur frequently. 

Publications related to Mode or 

Density Estimation Methods 

From the reasoning that modes occur in the density, f, 

where points congregate, the number of modes of f, and 

therefore the number of clusters in the sample, can be 

estimated using this approach. 

Wishart (1969) developed a method, hierarchical mode 

analysis, for moderate size data sets and outlined its 

proposed extension for large data sets. The procedure is to 

first detect whether the data is multi-modal. For the 



24 

univariate case one would construct a histogram and 

temporarily remove the low frequency (saddle) regions. Then 

a cluster can be associated with each modal region and the 

data falling in the saddle region can be assigned to their 

nearest mode. From each point on the projection, one tests 

whether n or more other objects lie within a distance 

threshold, R, which is determined by the user. Then the 

objects in a sphere are considered "dense", and "dense" 

objects are clustered together. The method of cluster 

analysis developed by Ling (1973) is similar to Wishart's 

mode analysis algorithm, but his method operates on the 

ranks of the distances instead of the distances themselves. 

Silverman (1981) uses a kernel estimate of the density 

function for window width h based on univariate observations 

x1 , ... , XN' where the window width h controls the visual 

smoothness of the resulting density. Choices of the 

parameter h, and a method of choosing the window width when 

estimating a density is discussed by Silverman (1978). When 

h increases from 1 to N, the density estimate becomes 

smoother or less bumpy. Therefore, if the data are strongly 

bimodal, a large value of h will be needed to obtain a 

unimodal estimate. 

Similarily, Wong and Schaack (1982) develop a procedure 

in univariate data by using the k-th nearest neighbor 

clustering algorithm (Wong and Lane, 1981) to provide a plot 

of the "estimated number of modes" against h by assuming 

that the clusters correspond to modes of the population 
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density function. The plot is a nonincreasing step function 

in h. It is expected that when the number of modes reaches 

the true number in the sample the plot will be is stable 

over a large range of values of h. Otherwise, the smallest 

value of h yields k modes in the plot. 

Further, Wong (1985) develops nonparametric procedures 

that are useful for testing the multimodality of f, where 

the clustered data are sampled from some general univariate 

distribution F with density function f. The test statistics 

based on Wong and Lane's (1981) k-th nearest neighbor 

clustering algorithm are proposed for testing multimodality 

by using a modified bootstrap method (Efron, 1982) to 

determine the number of clusters. Large values of criterion 

will reject the null hypothesis that the underlying density 

f has at most k modes, and suggest that f has more than k 

modes. 

Publications related to Agglomerative 

Clustering Methods 

Agglomerative clustering methods are perhaps the most 

popular of all the multitude of clustering methods, and the 

literature on them is enormous. Regardless of the method 

selected, the results may be displayed by a contour map or 

by a tree (dendrogram), a two dimensional graphical 

representation of the fusions or divisions of clusters at 

each successive level of the procedure. If the number of 

clusters is known, then the scientist uses the appropriate 
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stage of the algorithm to indicate which observations have 

been grouped together. If the number of clusters is 

unknown, then the number of clusters for the best 

representation of the data is determined subjectively. 

Some discussion and various applications of agglomerative 

clustering methods with stopping rules may be found in Lance 

and Williams (1967), Johnson (1967), and Baker and Hubert 

(1975), In general, the ideas presented in these articles 

are based on the measure of similarity between the clusters. 

Since it is possible to measure the similarity between 

the clusters, the dendrogram may be drawn to scale to reflect 

the similarity between clusters that are grouped at a given 

level. A partition of a sample of N objects into k clusters 

is found by cutting the dendrogram at the (N-k+1)-th level. 

Intuitively, if the similarity between objects clustered 

together at a given level is high, then one could conclude 

that the clustering is natural. 

Lance and Williams (1967) have developed a formula 

which will compute the distance, d(ij)k' between group k 

and group (iUj) for many of the common linkage methods. This 

will be discussed in the next chapter, and the formula is 

given in equation (3.1). The number of clusters is taken to 

be k when the distance for k-1 is much smaller then it is 

for k clusters. However, their results have not been 

clearly interpreted by the lack of objective criteria. 

Baker and Hubert (1975) discussed the problem of 

estimating a true partition at a certain level of hierarchy 



by using the Goodman and Kruskal (1954) gamma coefficient. 

The maximum value across the hierarchy levels was used to 

indicate the correct hierarchy level. 
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Edelbrock (1979) suggested using the statistic kappa 

(Cohen, 1960) to assess the accuracy of clustering solution. 

The values of kappa range from -1.0 to 1.0, with larger 

values indicating larger agreement between the obtained 

clusters and the populations. In his study, the largest 

decrease of the value was generally observed from level k+1 

to level k, where all elements had to be assessed. This 

result was also confirmed by Scheibler and Schneide (1985). 

Rand (1971), and Fowlkes and Mallows (1983) developed 

two different measures, C and Bk' respectively, based on the 

proportion of object pairs from the same populations that 

are grouped together in the resultant clusterings for the 

agglomerative clustering algorithms. These statistics range 

from 0.0 and 1.0. Since these measures depend on similarity 

between two different clusterings generated by two different 

clustering algorithms performed on the same set of data, the 

values of measures would be 1.0 if the two clusterings 

correspond completely. Hence it could be thought that the 

number of clusters is k if the value of the similarity 

measure is close to 1.0. 

Since the objective of this study is to investigate the 

use of the Rand's measure, C, on determining the number of 

clusters for a given set of data, more discussions about 

these two measures will be given later in Chapter IV. 



CHAPTER III 

AGGLOMERATIVE CLUSTERING ALGORITHM 

The (~, rr) Family of Agglomerative 

Clustering Algorithms 

From Chapter I, the resolution of a clustering problem 

by the application of an agglomerative clustering method to 

a data set can be described by the triple (X, H, M). The 

object space, X, and the clustering method, M, are elements 

of the parameter space which require specification, and the 

hierarchy, H, is the resultant sequence of clusterings for 

the specified pair (X, M). X is es~entially specified by N, 

the number of data points, and p, the dimension of the 

Euclidean space in which the object space is embedded. Thus 

the specification of the clustering methods, M, is required 

for the application of an agglomerative clustering method to 

a set of data points. Since the clustering method, M, is 

specified by the pair (measure of distance, clustering 

algori~hm), all conclusions concerning the resultant 

hierarchy are dependent on these initial specifications. 

The necessity of specifying both parameters (measure of 

distance, clustering algorithm) places a serious restriction 

on the generalizations which may be made from an empirical, 

28 
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comparative investigation of agglomerative clustering 

methods. It is also possible that there is an interaction 

between the measure of distance and the clustering 

algorithm. At least, both members of the pair defining the 

agglomerative clustering method contribute to the process 

which produces the dendrogram, and varying either member of 

this pair may produce a different sequence of clusterings 

for a particular data set. 

Using the notation in Chapter I, the general linear 

combinatorial strategy originally presented by Lance and 

Williams (1967) is given as Equation (3.1). For any 

clustering Yk in the hierarchy, if the distances dij' dik' 

and d.k between pairs of clusters Y., Y. and Yk are obtained 
J l. J 

from some source (e.g., recursively from clustering yK+ 1 , K 

t N), then the distance between the new cluster Y(ij) and 

any other cluster Yk E YK can be computed from the following 

formula: 

( 3. 1 ) 

where d .. denotes the distance between the clusters Y. and 
l.J l. 

Y. with n. and n. elements, respectively, which have been 
J l. J 

combined to form a new cluster Y(ij)' and ai' aj, ~' and n 

are specified parameters defining the particular member of 

the family of agglomerative clustering algorithms. 

Beginning with the initial distance matrix, D, obtained by 

imposing don X, equation (3.1) is applied recursively to 

obtain each clustering in the hierarchy. Equation (3.1) 
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defines a four parameter family of agglomerative clustering 

algorithms, which contains an infinite number of distinct 

algorithms. Examples of some popular and widely used 

agglomerative clustering algorithms based on the choice of 

the parameters«.,«., ~' and n are given in table 1. 
~ J 

As shown in table 1, equation (3.1) characterizes a 

particular agglomerative clustering algorithm for the 

choices of the parameter quadruples (a., «., ~~ rr), 
~ J 

Technically, the flexible strategies given in table 1 are 

specific examples of the flexible strategy, and the first 

set in the flexible strategy is the "best" flexible strategy 

TABLE 1 

PARAMETER VALUES, (a., a., ~~ rr), FOR SEVERAL 
~ J 

AGGLOMERATIVE CLUSTERING ALGORITHMS 

Parameter Values 

Algorithm 0:. a. ~ 
~ J 

Single Linkage 0.5 0.5 0.0 

Complete Linkage 0.5 0.5 0.0 

Unweighted Average Linkage 0.5 0.5 0.0 

Flexible Strategy [ 0.625 0.625 -0.25 

0.75 0.75 -0.5 

Median 0.5 0.5 -0.25 
n. n. 

Weighted Average Linkage ~ 0.0 n.+ n. n.+ n. 
~ J ~ J n. n. 

Centroid Linkage ~ 
-(X . lX . 

n.+ n. n.+ n. ~ J 
~ J ~ J 

JT 

-0.5 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
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according to Lance and Williams (1967). However, two quite 

different hierarchies may be derived from the same set of 

data, if two different agglomerative clustering algorithms 

are specified. Lance and Williams (1966) mentioned that the 

extent of clustering is not an inherent property of data, 

but rather a property of the user's desires about the shape 

of the clusters, which can be determined by varying the 

parameters. This implies that the application of an 

agglomerative clustering method to a given set of data might 

distort the result of the clustering procedure with respect 

to the properties of the sequence of distances, d(ij)k' 

DuBien (1976) has explored the properties of the 

sequence of distances, d(ij)k' by placing a suitable set of 

constraints on the parameters given in equation (3.1) and 

deriving a two parameter family of agglomerative clustering 

algorithms from the four parameter family. It should be 

noted that the motivation for the two parameter family was 

the Lance and Williams' (1966) flexible strategy. 

Letting 

a. =a. =a, 
1 J 

a. +a. + ~ = 1, 
1 1 

some members of the four parameter family of agglomerative 

clustering algorithms can be represented by a two parameter 

sub-family, (~, rr), of agglomerative clustering algorithms. 

However, all algorithms in the four parameter set are not 

reduced to two parameter algorithms; e.g., weighted average 

and centroid linkages both have a. ~a., in general. 
1 J 



Without loss of generality, it will be assumed that 

d .. < d. k < d 'k . 
l.J l. J 

Then the two constraints used to define the two parameter 

family imply that 

<X. =<X, = 
l. J 

and equation (3.1) becomes 

Since dij < dik < djk' then 

1 - {3 
2 
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1 - {3 + 2rr 1 - {3 - 2n + {3 
d(ij)k = 2 djk + 2 dik dij ( 3 . 2 ) 

Thus, equation (3.2) characterizes a sub-family of 

agglomerative clustering algorithms which shall be referred 

to as the ({3, rr) family, and each member of this sub-family 

shall be referred to as a ({3, rr) algorithm. Thus, a 

suitable set of constraints is necessary to make it possible 

to represent each member of the ({3, rr) family of 

agglomerative clustering algorithms as a point in the ({3, n) 

Cartesian coordinate plane. 

It is worth noting that single linkage (or nearest-

neighbor), unweighted average linkage, complete linkage (or 

furthest-neighbor), and one of the family of flexible 

strategies given by Lance and Williams (1967) are members of 

the ({3, rr) family of agglomerative clustering algorithms, 

name 1 y , ( 0 . 0 , -0 . 5 ) , ( 0 . 0 , 0 . 0 ) , ( 0 . 0 , 0 . 5 ) , and ( - 0 . 2 5 , 

0.0), respectively. The flexible strategy is actually a one 

parameter sub-family of agglomerative clustering algorithms 
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which may be derived from equation (3.1) by placing the 

following set of constraints on the four parameters (a., a., 
l J 

~' rr): 

a. + a. + ~ = 1 ; 
l J 

a. = 0: • ; 
l J 

~ < 1 ; 

rr = 0. 

As a consequence, equation (3.1) becomes 

( 3 . 3 ) 

where ~ < 1 . 

Hence, equation (3.3) characterizes a sub-family of 

agglomerative clustering algorithms which is only dependent 

on the choice of the parameter ~. Consequently, the 

flexible strategy could be referred to as the ~ family of 

agglomerative clustering algorithms, and each member of this 

sub-family could be referred to as a ~ algorithm. It is 

obvious that the ~ family is embedded in the (~, n) family 

of agglomerative clustering algorithms. A brief empirical 

study for the flexible strategy was presented by Lance and 

Williams (1967). 

Classification of the (~,rr) Family of 

Agglomerative Clustering Algorithms 

At this point, it seems relevant to present the 

properties of the sequence of distances, d(ij)k' as a means 

to exploring the amount of distortion which might result 



from the application of an agglomerative clustering method 

to a set of data (DuBien and Warde, 1979). If 

D~p,n)= {d(ij)k at (~, n) I dij < dik < djk}' 

then the essential properties to consider for (~, IT) 
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algorithms are given by definitions 3.1, 3.2, 3.3, and 3.4. 

Definition 3.1. A (~, rr) algorithm is monotone increasing 

iff 

Definition 3.2. A (P, rr) algorithm is space-conserving 

iff 

Definition 3.3. A (~, rr) algorithm is space-contracting 

iff the g.l.b. (greatest lower bound) 

Definition 3.4. A (~, rr) algorithm is space-dilating 

iff the l.u.b. (least upper bound) 

Some further terminology related to the definitions is 

proposed to facilitate the classification of a (p, rr) 

* algorithm based on the range of D(~,rr)' If a (~, rr) 

algorithm is not monotone increasing, then it shall be 

termed an extreme-space-contracting algorithm. If the range 

* of D(~,rr) is such that the associated (~, rr) algorithm might 

be either space-contracting or space-dilating, then the (~, 

rr) algorithm shall be termed a space-contract-dilating 

algorithm. 

Although the terms space-conserving, space-contracting, 

and space-dilating were first given by Lance and Williams 

(1967), their characterizations of these concepts were only 
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intuitive in nature; and thus, their intuitive definitions 

for these concepts failed to yield a complete classification 

for the ~ family of agglomerative clustering algorithms 

based on the amount of distortion perpetrated on the object 

space by each ~ algorithm. 

According to Lance and Williams (1967), a space-

conserving algorithm preserves the spatial properties 

inherent in the original set of distances, and an algorithm 

which is not space-conserving is referred to as a space-

distorting algorithm. They consider two different types of 

space-distorting algorithms, namely space-contracting and 

space-dilating algorithms. Intuitively, the application of 

a space-contracting algorithm to a set of distances implies 

that the new cluster moves closer to the old cluster upon 

formation. The application of a space-dilating algorithm to 

a set of distances implies that the new cluster moves 

further away from the old cluster upon formation. Thus, to 

make these intuitive concepts originated by Lance and 

Williams applicable to the problem of matching agglomerative 

clustering algorithms with the type of clusters generated, 

definitions 3.1, 3.2, 3.3, and 3.4 are tendered as 

mathematically rigorous interpretations for space-

conserving, space-contracting, and space-dilating 

algorithms, respectively. Based on these definitions, the 

classification of the (~, n) family of agglomerative 

clustering algorithms and the investigation of the 

* properties of D(~,rr) over various regions of the (~, rr) 
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plane are entirely presented by DuBien (1976), and DuBien 

and Warde (1979). 

As a result, DuBien and Warde (1979) recommend the use 

of space-conserving and space-dilating (~, n) algorithms in 

conjunction with some measure of distance for clustering 

data set for which it is "semi-reasonable" to assume at 

least an interval scale of measurement for the variables 

comprising each data point. Space-dilating (~, n) 

algorithms should assist in picking up small distances 

between clusters of data points. Obviously, extreme-

space-contracting (~, n) algorithms should not be used as 

clustering algorithms, and space-contract-dilating 

algorithms are too dependent on the relative magnitudes of 

d .. , d.k' and d.k to be of general use as clustering 
1J 1 J 

algorithms. Space-contracting (~, n) algorithms should 

tend to minimize the distances between clusters of data 

points; and hence, some of these algorithms should be useful 

in indicating the existence of large distances between 

clusters of data points and might also be useful in 

identifying outliers in multivariate data. 

On the basis of the rationale behind the choice of 

agglomerative clustering algorithms discussed by DuBien 

(1976) and DuBien and Warde (1979), only nine agglomerative 

clustering algorithms are chosen for the present study. The 

(~, n) values which define these nine agglomerative 

clustering algorithms are conveniently delineated in three 

groups of three algorithms as follows: 
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( 1 ) (3 = 0.0 with TC = -0.5, 0. 0' 0. 5; 

( 2 ) f3 = -0.25 with TC = -0.25, 0. 0' 0. 5; 

( 3 ) (3 = -0.5 with TC = 0. 0' 0. 2 5' 0.75. 

Figure 1 shows a classification of the ( {3 ' rc) family of 

nine agglomerative clustering algorithms. It should be 

noted that single linkage, (0.0, -.5), is·the only space­

contracting algorithm in this study; average linkage, (0.0, 

0.0), is the only space-conserving algorithm; and all of the 

other algorithms in the study are space-dilating algorithms 

as shown in DuBien and Warde (1979). 

Since the primary objective of this present study is to 

investigate the use of a comparative statistic, Rand's 

(1969, 1971) C statistic, for predicting the correct number 

of clusters by applying agglomerative clustering procedures 

in a given set of ·data, a discussion related to this 

comparative statistic employed will be presented in the 

following chapter. 
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Figure 1. A Classification of the (~, n) family of 
Agglomerative Clustering Algorithms. 
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CHAPTER IV 

USE OF A COMPARATIVE STATISTIC TO 

PREDICT THE NUMBER OF CLUSTER 

A Comparative Statistic 

The primary objective of this thesis is to investigate 

the use of a comparative statistic to predict the number of 

clusters in the object space. This will be achieved using a 

comparative statistic between the outcomes of different 

algorithms applied to the same data. The behavior of this 

comparative statistic will be used to determine the 

appropriate number of clusters. 

Rand's (1969, 1971) C statistic is a very general and 

versatile statistic which may be used to compare clustering 

methods based on how they partition the object space. 

Further, C measures the similarity between two clusterings 

when clusterings from an [N,K]-population of clusterings are 

produced by applying two different clustering methods to the 

same object space. 

Rand (1971) makes the following three reasonable 

assumptions concerning the nature of a general clustering 

problem as a rationale for the development of the C 

statistic: 
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First, clustering is discrete in the sense that 
every point is unequivocably assigned to a 
specific cluster. Second, clusters are defined 
just as much by those points which they do not 
contain as by those points which they do contain. 
Third, all points are of equal importance in the 
determination of clusterings. 

Thus, Rand (1971) points out that a basic unit of 

comparison between two clusterings is how pairs of points 

are clustered. 

To facilitate the definition of the C statistic, 

definition 4.1 concerning the similar assignment of point-

pairs is given. 
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Definition 4.1. Given an object space X consisting of N data 

points, x1, x2' XN' and two clusterings of X, Y = [Y1 , 

, YK ], then a similar 
2 

assignment in clusterings Y and Y' of a pair of data points, 

X. and X., results if and only if either of the following 
1 J 

two conditions holds: 

(i) There exist k and g such that X., X. E Yk and 
1 J 

X., X. E Y'; 
1 J g 

(ii) There exist k and g such that Xi E Yk, Y~, and 

xj f/. Yk' Y~. 

Basically, if the elements of an individual point-pair are 

placed together in a cluster in each of two clusterings, or 

if they are assigned to different clusters in both 

clusterings, then a similar assignment of the point-pair has 

been made in the two clusterings. In essence, the C 

statistic gives a normalized count of the number of similar 

assignments of point-pairs between two clusterings as 
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designated in definition 4.2. 

Definition 4.2. Given an object space X consisting of N data 

points, x1 , x2 , ... , XN' and two clusterings of X, Y = [Y 1 , 

.... ' •••• , YK_ ], 
2 

then the C 

statistic between Y and Y' is defined as follows: 

1:: m .. 

i<t 
l.J 

C(Y, Y') = 
~ J 

( 4. 1 ) 

where i = 1 ' 2' ••• t N-1, j = 2 ' 3' ••• t N, i < j and 

[ 
1 ' if there is a similar assignment of 

m .. = X. and X. in Y and Y', 
l.J l. J 

0' otherwise. 

Hence, C is a measure of similarity on the set of all 

possible clusterings of X. Rand (1971) also gives a 

computational form for the C statistic, which is related to 

an incidence matrix concept. If the clusters within each 

clustering are arbitrarily numbered and n .. represents the 
l.J 

number of data points which are simultaneously in the i-th 

cluster of Y and the j-th cluster of Y', then 

C(Y, Y') = 

( 4. 2 ) 

In this formulation, C(Y, Y') = 1 when the arbitrarily 

numbered clusters within each clustering correspond 

completely. Conceptually, C(Y, Y') = 1 when K = 1 or K = N 

without justification, where K is the number of clusters for 

a given set of data. Thus, if two different clustering 
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algorithms are applied to the same set of data and the 

clusters within each clustering are similar, the values of 

C(Y, Y') might be close to 1. Also, C(Y, Y') = 0 when the 

two clusterings have no similarities. 

The C statistic has the following three fundamental 

properties as noted by Rand (1969, 1971): 

1. C is a measure of similarity with 0 ~ C ~ 1, 

2. 1 - C is a measure of distance, being a metric on 

the set of all possible clusterings of X, 

3. C is a random variable. 

It should be noted that Rand (1969) provides a proof of the 

fact that 1 - C is a metric on Y in his thesis, where Y 

represents the set of all possible clusterings of X. 

Another formulation of Rand's C statistic is worth 

noting. According to Anderberg (1973), the C statistic is 

equivalent to the simple matching coefficient. The simple 

matching coefficient, which was originally introduced to 

numerical taxonomy by Sakal and Michener (1958), is a binary 

measure of association based on 2*2 contingency tables. To 

demonstrate the equivalent relationship between Rand's C 

statistic and the simple matching coefficient, a particular 

form of the simple matching coefficient will be developed. 

The simple matching coefficient may be used to assess 

the amount of agreement between any two binary vectors of 

the same length, where a binary vector is defined in 

definition 4.3. 

Definition 4.3. A vector V = (v1 , v 2 , • ••• , v ) is a 
n 
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binary vector if and only if for each i = 1, 2, ... , n, 

v. = 1 or v. = 0. 
l. l. 

To compute the simple matching coefficient, it is necessary 

to define a match between two binary vectors as defined in 

definition 4.4. 

Definition 4.4. A match between the corresponding components 

of two binary vectors, U = (u1 , u 2 , •••. ,un) and V = (v 1 , 

••.• , v ) , occurs if 
n 

and only if u. = v .• 
l. l. 

If the number of matches between two binary vectors of 

length n is denoted by m, then a definition for the simple 

matching coefficient is given by definition 4.5. 

Definition 4.5. The simple matching coefficient between two 

binary vectors, U and V, of length n is given by 

T(U, V) = m 
n 

where m is the number of matches between the two binary 

( 4. 3) 

vectors. Thus, the simple matching coefficient represents a 

normalized count of the number of matches between two binary 

vectors. 

If a clustering can be represented as a binary vector, 

then a simple matching coefficient between clusterings can 

be computed. A binary representation of a clustering can be 

obtained by constructing a binary vector, U, consisting of 

n = ( ~ ) components, where each component of U indicates 

whether a pair of data points are together or apart in the 

clustering. Letting X be an object space consisting of N 

data points, then a more precise formulization of a binary 

representation of a clustering is given in definition 4.6. 
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Definition 4.6. The binary vector, U = (u12 , u 13 , · .. , u 1n' 

••• ' u . . t lJ . . . ' u 1 ), is a binary representation of a n- ,n 

clustering, Y = (Y 1 , Y2 , , .. , Yk) if and only if for all i = 

1 ' 2 ' . . . , 

m .. 
lJ 

N-1, j = 2, 3, . . . ' N, i < j, 

if there is a cluster Yk E Y such that 

otherwise. 

X. ' X. E yk' 
l J 

Therefore, if U is a binary representation of clustering Y, 

V is a binary representation of clustering Y' and m is the 

number of matches between two binary vectors of ~ength n, 

then 

T(U, V) = m 
n 

m = TIT 
·~. m .. 

= '(d" = C(Y, Y'). 

Consequently, Rand's (1969, 1971) C statistic is equivalent 

to the simple matching coefficient. 

As noted previously, C possesses a probability 

distribution since C is a random variable under certain 

assumptions. However, as Rand (1969) notes, the 

distribution of C is complicated. Logically, part of the 

complication with respect to the distribution of C concerns 

the choice of the space on which initial distributional 

assumptions should be placed. Conceptually, X is a subset 

of Euclidean p-space with cardinality N for an [N]-

population of clusterings; a clustering method maps X into 

Y[N]; and 

[0, 1]. 
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In studies by DuBien (1976), and DuBien and Warde 

(1982) on Rand's C statistic and its distribution under 

certain assumptions, a Stirling numbers of the second kind 

has been used. Stirling numbers of the second kind may be 

computed by the following formula: 

j N 
S(N,K) 

1 K = - E K !j=O ( ~ ) (-1) (K- j) , ( 4. 4) 

where K = 1, 2, ... , N. 

Since Stirling numbers of the second kind are closely 

associated with the counting of clusterings, some results 

from Duran and Odell (1974) concerning these numbers are 

presented. By definition, 

S(N,O) = 0; 

and 

S ( N , N +.t) = 0 , if .t > o. 

A recursive relationship which is fundamental to the 

counting of clusterings is given as follows: 

S(N+1,K) = K S(N,K) + S(N,K-1). ( 4. 5) 

For an [N,K]-population, the following fundamental results 

concerning clusterings and their binary representations 

facilitate the derivation of the distribution for C 

statistic. 

(1) The total number of binary representations in an 

[N,K]-population corresponds to Q = S(N,K); 

(2) The frequency of 1's on the (ij)-th component of 

the binary representations in the [N,K]-population 

is a constant for all i = 1, 2, ..• , N-1, j = 2, 3, 
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. . . ' N, i < j, and this constant is denoted by 

Q1 = S(N-1 ,K); 

(3) The frequency of pairs of 1's on the (ij)-th and 

(st)-th components of the binary representations 

in the [N,K]-population is a constant for all 

i, s = 1, 2, ••. I N-1, j, t = 2, 3, ••. , N, i < j, 

s < t, and i ¢ s or j ¢ t, and this constant is 

denoted by Q11 = S(N-2,K). 

The fundamental results establish the fact that Q1 and 

Q11 are constants for all components and pairs of 

components, respectively, of the binary representations of 

the clusterings in an [N,K]-population. Thus, the following 

additional notation for [N,K]-populations follows directly 

from the fundamental results: 

( i ) Qo = Q - Q1 (the frequency of 0' s) ; 
Q1 

( ii) f1 = (relative frequency of 1's ) ; Q 

(iii) fo 
Qo 

(relative frequency of 0 j s) ; = Q 

(iv) Q10 = Q01 = Q1 - Q11 (frequency of a 1-0 pair); 

( v) Qoo = Qo - Q01 (frequency of pairs of 0' s) . 

Further, two fundamental assumptions are assumed throughout 

the derivations: 

(1) The clusterings Y, in an [N,K]-population of 

clusterings have a discrete uniform probability 

distribution; that is, for all Y[N,Kl, 

P{ choosing any particular Y[N,K]} = --t-' 
(2) The two clusterings Y and Y', with binary 

representations U and V, respectively, are 



47 

selected randomly with replacement from an 

[N,K]-population of clusterings. 

Consequently, if (Y, Y') represents an ordered pair of 

clusterings from an [N,K]-population, then under these 

assumptions, 

P{choosing any particular ordered pair (Y, Y' )} = 

Then, the mean and variance for the similarity between two 

clusterings drawn at random with replacement from an [N,K]-

population of clusterings are given in (4.6) and (4.7), 

respectively. These are, 

E(C) = f 2 + f 2 = 1 0 

and 

VAR(C) = 

where p 2 

( 4. 6 ) 

{p - [E(C)] 2 }, 
2 

( 4. 7 ) 

These results also hold for [N]-populations of clusterings 

with slightly different values for Q, Q1 , and Q11 as shown 

in DuBien and Warde (1982). 

Since [N]-populations are obtained by merging all of 

the [N,K]-populations forK= 1, 2, •.. , N, then Q, Q1 , and 

Q11 are obtained by adding the Stirling numbers of the 

second kind on K. Hence, for an [N]-population of 

clusterings, 

Q = L 
N 

N 
= L S(N,K); 

K=1 

N-1 
= L: S(N-l,K); 

K=1 
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N-2 
Q11 = LN-2 = L S(N-2,K). 

K=1 

Given these new values for Q, Q1 , and Q11 , the previously 

derived formulas in (4.6), and (4.7) will hold for the mean 

and variance of C when the clusterings are randomly chosen 

with replacement from an [N]-population of clusterings. 

Thus, the mean and variance of Rand's (1971) C statistic 

depend only on an appropriate set of the Stirling numbers of 

the second kind. 

For the purpose of this study, the examination of the 

behavior of the similarity measure, C, for changing k is of 

interest in some situations. Thus, C will be represented as 

Ck(Y, Y'), which is the similarity measure between one 

clustering Y and another clustering Y' having the same 

number of clusters, k, resulting from different 

agglomerative clustering procedures applied to the same set 

of N data points, where k = 1, 2, 3, ... , N. Also, it may 

be considered that the number of objects in each clusters 

within clusterings, Y andY', are different. However, the 

same number of clusters within two different types of 

clusterings generated by applying nine agglomerative 

clustering algorithms to a given set of data is assumed in 

this study. 

Other Measures of Similarity 

Several researchers have developed measures of 

similarity between hierarchical clusterings, Anderberg 



(1973), and Hubert and Levin (1976) proposed measures that 

are functions of the incidence matrix, [ n .. ] . 
l.J 

In these 

measures, either they use one number to summarize the 

similarity between two hierarchical clusterings or they 
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compare the clusterings for some fixed number of partitions. 

Fowlkes and Mallows (1983) introduced the Bk statistic 

and tried to investigate the use of a sequence of measures, 

Bk' as the basis for a plotting procedure where k = 2, 3, 

, .. , N-1 and N is the number of objects. Further, they 

derived the mean and variance of Bk, under the assumption 

that the margins of the incidence matrix, [n .. ], are fixed. 
l.J 

Based on this formulation and by using the incidence matrix, 

[n .. ], the Bk is calculated for each value of k, where k = 
l.J 

2, 3, 4, . . . ' N-1. That is, 

Bk 
Tk 

= Q ]1/2 [Pk k 

where 
k k 2 

Tk = 2: 2: n .. - :N, 
i j l.J 

k k . 2 
pk = I: I: nij) - N, 

i j 

k k 
2 

Qk = 2: 2: n .. ) - N, 
j i l.J 

and N is the number of objects. The quantity n. . is the 
l.J 

number of objects in common between the i-th cluster in one 

clustering and j-th cluster in the other clustering, where 

i, j = 1, 2, 3, . . . . ' k and k = 2, 3, ... , N-1. Then, 

various properties of Bk have been investigated by means of 



a series of Monte Carlo experiments. 

They show that the Bk statistic has the following 

properties : 

1. For each k, 0 ~ Bk ~ 1; 

2. Bk = 1, if [ n .. ] has exactly k nonempty cells, 
~J 

which happens when the k clusters within each 

clustering correspond completely; 

3. Bk = 0, if each n .. = 
1J 

0 or 1, so that every pair 

of objects that appear in the same cluster in one 

clustering are assigned to different clusters in 

other clustering; If k = N, [n .. ] is a permutation 
1J 

matrix, and Bk is indeterminate, which is 

different from Rand's Ck. 

Further, Bk has a probability distribution since it is 

considered to be a random variable under certain 

assumptions. 

In their derivation of the mean and variance of Bk' 

Fowlkes and Mallows (1983) assumed that the margins of the 

incidence matrix, [ n .. ] ' namely, (n . ' n . ) were fixed. 
1J . J 1. 

Then, the mean and variance for the Bk are; 

1 
[P Q ]1/2 

E(Bk) 
k k = 2 ( ~ J 

Var(Bk) 1 
( 1 + 

2 pk Qk 
= m (N - 2) pk Qk 
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where 

+ _1_ 
2 

' k 

(Pk - 2 - 4 

(N - 2) 

pk 
-) (Qk - 2 - 4 
pk 

(N - 3) 

pk = L n. ( n. 
i=1 l.. l.. 

- 1) (n. - 2), 
l. • 

k 
Qk = L n . ( n . - 1 ) ( n . - 2 ) . 

j=l ·J ·J ·J 

Thus, the mean and variance of Bk depend only on the given 

assumptions, the fixed margins of the incidence matrix, 

[n .. ]. However, this assumption is only valid if the two 
l.J 

clusterings are unrelated to each other. 
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Further, they defined the limits E(Bk) ± 2(VAR(Bk)} 112 

and pointed out the defined.limits give only an approximate 

indication of the significance of the similarity between two 

hierarchical clusterings, since successive values of Bk are 

correlated and the distribution of Bk is not normal. 

On the other hand, Morey and Agresti (1984) suggested 

using the Rand statistic adjusted with respect to chance 

agreement for a pairing. They noted that the Rand's (1971) 

Ck can produce fairly large values even for randomly paired 

sets of partitions, since Ck does not take into account 

chance agreement. The adjustment factor, N , developed by 
c 

Morey and Agresti (1984) gives the adjusted Rand statistic. 

The adjusted Rand statistic is given in the following form; 

N - N s c 

where 



N ( N ) 1 <2: 2 
2: 

2 + L n~ . = - n. + n . ) s 2 2 l.. • J . . l.J \. i j l.,J 
and 

2: 
2 2 n. n . j 

( N ) 1 2 2 . i,j l. • 
N = - -2- <2: n. + 2: n . ) + c 2 l. • • J 2 i j n 

The properties of the adjusted Rand statistic could be 

summarized as follows: 

1. For each k, -1.0 ~ Ak ~ 1.0; 

2. Ak = 1.0, if the clusters within each clustering 

corresponds completely; 

3. Ak = 0.0, if Ns = Nc (i.e., for chance agreement). 

Moreover, Ak < 0.0 when agreement of the clusters within 

each clusterings is less than that expected by chance. If 

Ak > 0.0, it represents the proportion of the maximum 

possible difference obt~ined between the probability of 

agreement and the probability of chance agreement. Note 

that the design of the adjustment factor is based on the 
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logic of computing expected cell counts in a chi-square test 

for independence. 

However, the components of a binary representation are 

not independent in terms of matches, since a clustering is a 

special type of structure as shown by DuBien and Warde 

(1982). 

Rationale for the use of Ck to predict 

the number of clusters 

The difficulty of determining the number of clusters in 
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a set of data has been noted by many authors, including 

Friedman and Rubin (1967), Marriot (1971), Sneath and Sakal 

(1973), Hubert and Levin (1976), Ratkowsky and Lance (1978), 

Ratkowsky (1983), and Krzanowski and Lai (1988). They 

attempted to derive formal tests by optimizing some 

clustering criterions for determining the appropriate number 

of groups within clusterings. 

An early attempt at its solution was made by Thorndike 

(1953), who plotted the average within-cluster distance 

against the number of groups. He suggests that a sudden 

marked flattening of the curve at any point indicates a 

distinctively "correct" value for k, since such a point will 

occur when the number of groups uniquely corresponds to the 

configuration of points and there is relatively little gain 

from further increase in k. Unfortunately, the derived 

curves by using artificial data provide little support for 

this intuitive notion. 

In general, a plot of the criterion value against the 

number of clusters indicate the correct number to consider 

by showing a sharp increase (or decrease, depending on the 

criterion applied), at the correct number of clusters. 

However, the procedure has been found to be unsatisfactory, 

since the decision as to whether such plots contain the 

necessary "sharp step" is likely to be exceedingly 

subjective in practice (Everitt, 1979). 

On the other hand, hierarchical clustering procedures 

have no clear indicators for the number of clusters. If 
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some indication of the correct number is required, an 

examination of the dendrogram or tree diagram for large 

changes between fusions would be useful. However, distinct 

clustering methods often produce quite different 

clusterings, even though they are applied to the same set of 

data depending on the structure within data. This implies 

that examination of the dendrograms or tree diagram given by 

agglomerative hierarchical clust~ring methods is not always 

helpful and may lead to misleading conclusions. 

In their study, Fowlkes and Mallows (1983) suggest 

useful and interpretable methods for exploring the number of 

groups and comparing the results of clustering algorithms by 

using a similarity measure. The measure, Bk' and the plots, 

(k, Bk)' can be readily computed and displayed. They 

indicate that in comparing the original clustering of 

mixture data with the clustering of perturbed data, the lk, 

Bk) plots tend to peak at the k which is equal to the true 

number of clusters. This stimulates the consideration of a 

similar technique applying Rand's Ck for predicting the 

number of clusters present in a given set of data. 

The two measures of similarity (Rand's (1971) Ck and 

Fowlkes and Mallows' (1982) Bk) between two hierarchical 
. 

clusterings are somewhat similar in construction. They both 

depend on the incidence matrix, [n .. ]. Also, it is worth 
1J 

noting that Ck and Bk range from zero to one for every k. 

These similarity measures are equal to one when the k 

clusters in each clustering correspond completely or when k 
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= 1, and equal to zero when every pair of objects that 

appear in the same cluster in an initial clustering obtained 

by using an agglomerative clustering method are assigned to 

completely different clusters when another agglomerative 

clustering algorithm is used. However, Ck = 1 while Bk is 

indeterminate when k = N. In summary, both measures of 

similarity, Bk and Ck, have the following properties: 

1. They depend on the matching rna trix, [ n .. ] ; 
l.J 

2. They lie between 0.0 and 1.0; 

3. They are 1.0 if the k clusters within each 

clustering correspond completely (except at k = N); 

4. They are 0.0 if every pair of objects that appear 

in the same cluster in one clustering are assigned 

to different clusters in another clustering. 

At this point, it is of interest to examine the behavior of 

the measure Ck for every k in some situations to predict the 

number of clusters for the given object space. 

For the purpose of this study, three observations 

concerning the Ck statistic will suffice: 

1. The closer Ck is to 1.0, the more similar are the 

two clusterings; 

then Y andY' are more similar than Y andY"; 

3. If Ck(Y, Y') ~ Ck_ 1 (Y, Y') and 

Ck(Y, Y') > Ck+ 1 (Y, Y' ), then Ck is the local 

maximum for given k for the two clusterings. 

It is known that two distinct clustering methods often 
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produce two quite different clusterings from the same set of 

data, depending on the structure within the data. However, 

if the results of several different clustering procedures 

agree closely, then one may have more confidence in the 

reality of the common group structure which is indicated for 

the given set of data. In this sense, an investigation of 

the use of a comparative statistic in conjunction with 

several agglomerative clustering algorithms might provide 

useful information on determining the number of clusters 

within a given set of data. This will be accomplished by 

investigating the behavior of Ck, which is a similarity 

measure between the resultant clusterings produced by 

agglomerative clustering algorithms. Also, this study will 

provide useful information about the properties of different 

agglomerative clustering procedures by observing the effect 

of controlled structural parameters. The design of a 

comparative study will be discussed in the following 

chapter. 



CHAPTER V 

DESIGN OF A COMPARATIVE STUDY AND RESULTS 

FROM MULTIVARIATE NORMAL SAMPLES 

Parameter Choice 

The design of this comparative study follows that 

suggested by DuBien (1976) and is augmented to investigate 

the use of a comparative statistic in determining the number 

of clusters present within the given object space. 

A clustering method is purported to be a functional 

mechanism for finding or retrieving the "natural'' structure 

within data. Hence, the degree to which a clustering method 

"retrieves" the known structure within generated data is an 

important characteristic of the clustering method. 

Moreover, if two different clustering methods are applied to 

the same set of data, the degree to which the two retrieved 

structures correspond to each other through their resultant 

clusterings is another characteristic to be considered in 

this comparative study. This characteristic could be 

thought of as the "agreement" between two clustering methods 

for any specific number of clusters for given set of data. 

To quantify the "retrieval" ability of a clustering 

method and the "agreement" between the two clustering 

57 



58 

methods, N data points are generated from K well-separated 

populations. Let Y represent the "true" structure of the 

data. Let Y' and Y" denote the two different clusterings 

which result from applying two different clustering methods 

to the same N data points • Then Ck(Y, Y' ), k = 2, 3, .. , K, 

••. , N-1, is a measure of the "retrieval" ability of the 

clustering method to the true structure generated, while 

Ck(Y', Y"), k = 2, 3, .•• , K, .. ;, N-1, is a measure of the 

"agreement" between the two clustering methods through their 

resultant clusterings (subject to the random variation in 

the generated data). 

Further, "noise" in terms of the performance of a 

clustering method might be explained as interference with 

the ability of the clustering method to "retrieve" the true 

structure present in the data. The simulation of a 

particular type of "noise" by means of changing the 

correlation between variables embodies the essence of the 

idea in DuBien (1976), and DuBien and Warde (1987). For 

bivariate data, DuBien and Warde (1987, p. 1443) remark: 

If P represents the population correlation between 
the two variables within a single population of data 
points, then the level of "noise" existent in this 
population to obscure the clustering of data points 
from this population into the same cluster is 
quantified by specification of a value for p. Thus, 
a specification of p ~ 0.0 implies that each variable 
within the single population of data points is semi­
informative rather than completely informative or 
completely uninformative. It should also be noted 
that increasing p, p ~ 0, for an otherwise fixed 
population of data points causes the data points 
within this population to be systematically shifted 
from an approximately circular configuration to a 
more elliptical configuration. 
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In their study of the effect of increasing p, p ~ 0, on 

the "retrieval" ability of several agglomerative clustering 

methods, DuBien and Warde (1987) find out that the 

correlated variables affect the "retrieval" ability of 

different agglomerative clustering methods differently. 

They recommend three (~, n) algorithms, the flexible 

strategy at (-0.25, 0.0), (-0.25, 0.25), or (-0.25, 0.5) for 

finding the unknown structure present in many data sets 

regardless of the amount of noise and the relative sizes of 

the clusters present in the data. 

As an extension of DuBien and Warde's study, the effect 

of changing p, P ~ 0.0, on the "agreement" between the two 

clustering methods is investigated in this present study. 

If the results of several different clustering procedures 

agree closely, then we may have more confidence in the 

reality of any cluster structure which is indicated. Based 

on the "agreement" between the two clustering methods, we 

might be able to predict the number of clusters present in 

the data. 

For convenience, the important consideration in any 

extensive, systematic comparison of clustering methods shall 

be termed structural parameters; a structural parameter is 

any variable which controls some aspect of the structure of 

the data. The data set of structural parameters for a 

comparative study of clustering methods should consist of 

all variable features within data which might affect the 

resultant clusterings. Some of the possible structural 



parameters which require controlled change to make a 

comparative study "dynamic" are defined as follows: 

1. N, the number of data points in X; 

2. p, the number of variables defining each data 

points; i.e. , the dimensionality of the Euclidean 

p-space in which X is embedded; 

3 . K, the number of populations from which the data 

points are generated; 

4. The types of population or the probability 

distribution from which each of the K populations 

of data points are generated; 

5 • J.lk' k = 1 ' 2 ' . . . ' K, the mean vectors for each 

population of data points; 

6. L:k, k = 1 ' 2' ... ' K, the variance-covariance 

structure for each population of data points; 

7. 0,' i = 1, 2, 
~ 

. . . ' ( ~ ) , the distance between 

each pair of population mean vectors; 

8. The relative location of the population mean 

vectors or the spatial configuration of the 

population mean vectors; 

9. The split or nk' k = 1, 2, . . . ' K, the number of 

data points generated from each population of data 

points. 
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In any comparative study of clustering methods, some of 

the structural parameters in the set of possible structural 

parameters remain fixed. Then a few of the structural 

parameters of special interest may be extensively studied 
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over a range of meaningful settings for a fixed set of 

clustering methods. Since the primary objective of this 

comparative study is to investigate the use of the suggested 

comparative statistic, Ck' in determining the number of 

clusters within the populations of data points, several 

structural parameters should be considered for meaningful 

interpretations of the results of the comparative study and 

application to clustering methods. Therefore, the 

particular structural parameters of interest for the 

comparative study of nine agglomerative clustering methods 

are specified, and the fixed variable settings for these 

structural parameters are outlined in the next section. 

A Discussion on the Design of 

the Comparative Study 

In terms of the design of the comparative study, it is 

necessary to specify the setting for each of the fixed 

structural parameters and the range of settings for each of 

the structural parameters. For the purpose of this study, 

the probability distribution for each of the K populations 

of data points generated was fixed to be multivariate normal 

(MVN) with the same variance-covariance matrix. MVN vectors 

were generated from a population having a mean vector of 

zero with any specified positive definite, symmetric 

variance-covariance matrix. The subroutine GGNSM from the 

IMSL (International Mathematical and Statistical Library) 

catalogued programs was used to generate data. 
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In this study, the number of data points, the number of 

variables per data point and the number of MVN populations 

of data points in X were fixed at the following values: 

1) • N = 60; 

2). p=2; 

3). K=3. 

The choice of N = 60 was arbitrary. The choice of p = 2 was 

necessary to simplify the design of the comparative study 

and to enhance the interpretability of the results from the 

comparative study. One rationale for choosing K = 3 is to 

maintain the information content of the variables within a 

population of data points, and it is important to choose 

K > P• The choice K = 3 was also related to the choice of a 

potentially interesting spatial configuration for the 

population mean vectors. 

To facilitate the controlled change of the structural 

parameters 8., i= 1, 2, 
l. 

. . . ' ( ~ ) , it was well suited to 

quantify the distance between population mean vectors by a 

single structural parameter, 8.; i.e., 
l. 

V 8. = 8 for i = 
l. 1 ' 2' . . . ' 

The number of populations, K, was fixed at three and 

the representation of the distance between the population 

mean vectors by a single structural parameter implies that 

the population mean vectors are equally spaced in the plane. 

Consequently, the spatial configuration for the population 

mean vectors was automatically fixed so that the three 

population mean vectors were always placed at the vertices 
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of an equilateral triangle. It should be noted that the 

specification of a value for distance, o, in conjunction 

with the equilateral triangle configuration for the 

population mean vectors is sufficient with respect to 

locating the population vectors in Euclidean two-space since 

the actual location of the equilateral triangle in the plane 

does not affect the performance of an agglomerative 

clustering method. Therefore, N, p, K, the generating 

probability distribution, and the spatial configuration of 

the population mean vectors remained fixed at the previously 

mentioned settings throughout the comparative study. 

The three structural parameters subject to controlled 

variation in the comparative study were p, o, and split. 

The settings for the structural parameter o, the distances 

between the mean vectors, were set at o = 4.0, and 6.0. It 

has been demonstrated by other investigator (e.g., Everitt, 

1974) that some clustering methods opt for equal sized 

clusters. Thus, a limited investigation of the robustness 

of nine agglomerative clustering methods to unequal sized 

clusters was attempted by contrasting the equal sized 

cluster setting for split, 20-20-20, with an unequal sized 

cluster setting for split, 30-20-10. 

The variance-covariance structure for bivariate normal 

(BVN) populations of data points was one of interest in the 

comparative study. Since Everitt (1974) has demonstrated 

that some clustering methods opt for circular clusters, the 

structural parameter of interest in the variance-covariance 



structure was p. Thus the data points forming the object 

space X were generated from three similar BVN populations 

with a specified value of p and unit variances; i.e., 

~ k = 1, 2, 3, Ek 1.0 

p 

where p = 0.0, 0.4, and 0.8. 
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Consequently, the effect of correlated variables on the 

"retrieval" ability of the nine clustering methods and the 

"agreement" between two clustering algorithms consisting of 

a pair could be investigated by fixing all structural 

parameters except p which is systematically varied across 

its range of settings. 

In Figure 2, the actual population mean vectors used in 

this study are portrayed for o = 4.0 and the equilateral 

triangle spatial configuration of population mean vectors. 

When the identity matrix is assumed for the variance­

covariance matrix, E, the three circles represent the 20 

contours for each of BVN populations. Data points generated 

from this structural framework which, because of random 

variation, fall in the overlapping regions of the three 

circles are likely to be clustered with data points 

generated from a different BVN population than the one from 

which they were generated. This observation, of course, 

illustrates only one of the possible reasons that a 

clustering method fails to "retrieve'' the exact structure as 

generated or two clustering algorithms consisting of a pair 

fail to agree through their resultant clusterings. 



(2.0, 2/3 ) 

( 0 . 0 ' 0 . 0 ) (4.0, 0.0) 

Figure 2. An Example of the Structural Framework 
Developed for BVN 
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A brief summary of data structure for the comparative 

study of agglomerative clustering methods may be outlined as 

follows: 

Xi BVN ( ~k' E ) 

where: i = 1, 2, • • • t 60 with split into the K = 3 

populations of either 20-20-20 or 30-20-10; 

~k' k= 1, 2, 3, is constrained by an 

equilateral triangle spatial configuration 

and 8 = 4.0, 6.0; 

p ], p = 0.0, 0.4, and 0.8. 
1.0 

For this comparative study, the measure of distance was 

fixed to be squared Euclidean distance based on the claim 

by DuBien (1976) that the measure of distance is not as 

important in determining the resultant clusterings as the 

algorithm. The agglomerative clustering algorithms chosen 

for the comparative study were discussed by DuBien (1976); 

however, only nine agglomerative clustering algorithms are 

chosen in this study as explained in Chapter III. 

For each setting of the triple (p, 8, split), the 

following sequence of steps was utilized to generate values 

of Ck' k = 2, 3, , , , , K, •.. , N-1. 

1. An object space X of data points is generated 

for the complete set of structural parameters; 

2. The squared Euclidean distance between each pair of 

data points in X is computed and stored in standard 
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lower triangular matrix order by rows as the vector 

D; 

3. Each of the nine (~, n) agglomerative clustering 

algorithms is applied to D to produce a hierarchy, 

H , where a = 1, 2, •••• , 9; a 

4. For each of the nine agglomerative clustering 

algorithms, the k-cluster clusterings (Y') and 
a 

(Y") fork= 2, 3, ... , K, ... , N-1 are generated 
a 

from hierarchy H ; 
a 

5. Each of the k-cluster clusterings fork= 2, 3, 

• • •' K, ... , N-1, a = ' ' (y ' ·)a, 1 2 ... ' 9, is 

compared by means of the Ck(Y, Y') statistic to the 

true clustering Y of size three, which clustered 

together all data points generated from the given 

population of data points; 

6. Both k-cluster clusterings, (Y' )a, (Y")a, a= 1, 2, 

•.. , 9, are compared by means of the Ck(Y', Y") 

statistic, where k = 2, 3, ... , K, ... , N-1; 

7. By means of the above sequence of steps, a value 

Ck(Y, Y') is computed for each algorithm, and Ck(Y', 

Y") is computed for each pair of 36 the possible 

pairs of agglomerative clustering algorithms in each 

replication for all k = 2, 3, •.. , K, ... , N-1; 

8. Then, the above sequence of steps is ·replicated 100 

times for each setting of the triple (P, o, split) 

for all k = 2, 3, ... , K, ... , N-1; 

9. Ck' the sample mean, and Sc, the sample standard 



deviation of Ck values, k = 2, 3, .•. , N-1, are 

obtained for the 100 replications; 

10. The % of the replications which satisfy the 

conditions, 

68 

for a known number of clusters, K, i.e., the number 

of times that Ck is a local maximum at given k, 

where k = 2, 3, ... , K, ..• , N-1, is obtained for 

nine agglomerative clustering algorithms and all 

possible pairs of them; 

11. %, the sample mean, and S%, the sample standard 

error of % values across all settings of the 

structural parameters (p, o, split) for nine 

algorithms and possible pairs of them. 

Consequently, for each setting of the structural 

parameters, (p, o, split), the% resulting from 100 

replications quantifies the "retrieval" ability of a 

clustering method, and the "agreement" between two 

clustering methods consisting of a pair. Specifically, the 

%obtained by Ck(Y, Y') for each of the nine agglomerative 

clustering algorithms quantif}es how well a clustering 

algorithm retrieves the known structure. The % calculated 

by Ck(Y', Y") for possible pairs of clustering algorithms 

quantifies how well two algorithms in each pair agree to 

each other through their resultant clusterings giving a 

local maximum at k = 3. At this point, the % calculated by 
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Ck(Y', Y'') will be defined as %s which is the number of 

times that two clustering algorithms estimate the number of 

clusters correctly. 

Thus, the triple (Ck' S , %) provides information on 
c 

how well the comparative statistic, Ck' retrieves the "true" 

structure generated. The triple (Ck' S , % ), resulting from c s 

100 replications provides a method for investigating the use 

of the comparative statistic when specific pairs of the nine 

agglomerative clustering methods are applied simultaneously 

for particular settings of the structural parameters. In 

addition, (i, Si) and (is, Si ) provide information on how 
s 

well the ck "retrieves" the true structure and "estimates" 

the specified number of clusters, respectively, across all 

settings of the structural parameters. 

At this point, the behavior of·Ck is observed for 3*2*2 

settings of (p, 6, split) on the ( ~ ) possible pairs of the 

nine agglomerative clustering algorithms. Then the pairs of 

clustering algorithms for specific settings of structural 

parameters will be chosen for further study as follows: 

1. If the value of Ck is close to 1.0 at k = 3 where 

the values of ck are considerably smaller for k ¢ 3, 

2. If a local maximum at k = 3 occurs frequently. 

The results from the comparative study on the BVN 

population of data points are discussed in the following 

section. 



Discussion of Results from Multivariate 

Normal Samples 
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Tables 2-10 in the Appendix give the results from the 

comparative study for the use of the comparative statistics, 

Ck, in predicting the number of clusters for BVN samples by 

applying nine agglomerative clustering algorithms. 

In these tables, the results are computed over 100 

replications for each setting of the structural parameters 

(p, o, split) and for the nine agglomerative clustering 

algorithms formed with squared Euclidean distance. An 

observed % will be interpreted as the "retrieval'' ability of 

will be the nine agglomerative clustering methods. And a % 
s 

interpreted as the "agreement" between two different 

clustering methods. An observed difference or similarity 

among the nine clustering methods will be discussed in terms 

of the algorithms defined by (~, rr), Also, it should be 

noted that the results from the comparative study are not 

independent of the structural settings, (p, &, split), which 

were specified in the previous sections. Thus, all results 

from the comparative study will be discussed in terms of 

changes in the structural parameters (p, o, split) and the 

ordered pair (~, rr), To enhance the interpretation of the 

results from the comparative study, figures 4-9 in the 

appendix portray the various behaviors of the comparative 

statistics, Ck, k = 2, 3, •. , 10, for the nine agglomerative 

clustering algorithms. Tables 2-10 and figures 4-7 given in 



the appendix will be discussed in detail. 

In tables 2-10, the % and % represent the number of 
s 

times that a local maximum occurs at k = 3 over 100 

replications. The performance of Ck is considered to be 

good with clustering algorithms when the % and % of local 
s 
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maxima are high and stable· across the settings (p, 8, split) 

of the structural parameters. If any criterion is required, 

the hypothesis that a difference exists between %'s obtained 

for the nine agglomerative clustering algorithms, and 

between %~s obtained for the ( ~ ) possible pairs of 

clusterings algorithms can be tested. 

Let %[A] and %[B] be % values produced by algorithm A 

and B, respectively. Since %[A] and %[B] are the numbers 

of times that a local maximum occurs at k = 3 over 100 

replications, %[A] and %[B] follow a binomial probability 

distribution, with parameters pa and pb' respectively. For 

1\ 
large samples the point estimator of (pa- pb), namely (pa-

~b)' is approximately normally distributed, with a mean of 

(pa - pb) and a standard deviation of 

Then 

A A 
(pa - pb) - (pa - pb} 

z = (} A A 
(pa-pb) 

possesses a standard normal distribution. Hence z can be 

employed as a test statistic to test 



when suitable approximations are used for pa and pb' which 

appear in a(.A A )' For this study, the maximum allowable 
pa-pb 

standard deviation when pa = pb = p = 0.5 is used to test 

at the significance level a = 0.1. A one-tailed test will 

be employed, because if a difference exists, we wish to 

A A 
Pa - Pb > 

Thus we will reject H at a = 0.1 if 
0 

z /2 pq 
ex n = 1 • 2 8 /--'-0-'-~-'-5-
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and conclude there exists a difference between pa and pb; 

i.e., there is sufficient evidence to indicate that %[A] is 

higher than %[B], For the difference between %'s, namely s 

(p[a,b] - P[a' ,b']) for the comparison of the results from 

the ( ~ ) pairs of agglomerative clustering algorithms, the 

same statistical test is applied. 

Table 2 presents the results in terms of % for the 

comparison between the clusterings obtained by applying the 

nine agglomerative clustering algorithms and the population 

structure generated by 3*2*2 settings of the parameters (p, 

o, split). It should be noted that single linkage at (.0, 

-.5) produces a smaller % than the other algorithms when (p, 

o, split) is fixed, except for the case when p = .8 and o = 
4.0 with unequal sized clusters. However, single linkage is 

the only algorithm for which the number of local maxima at 

k = 3 increases if two variables are highly correlated for 8 
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= 4.0. Single linkage at (.0, -.5) performs better on the 

average for p = 0.8 than for any other values of p, as 

mentioned by DuBien and Warde (1987). In general, the 

retrieval abilities of all clustering algorithms except the 

algorithms lying along the line ~ = 0.0 are considered to be 

good for all settings of the structural parameters (P, 8, 

split) when the resultant clusterings are compared with the 

population structures generated. Specifically, the number 

of clusters with respect to the i across all settings (p, 8, 

split) is better predicted by employing the clustering 

algorithms defined by ~ ~ -.25 and n ~ 0.0 than any other 

clustering algorithms in (~, n) plane. 

At this point, the changes of p across the structural 

parameters (o, split) have little effect on predicting the 

number of clusters by using Ck with agglomerative clustering 

algorithms except single linkage. If the results are not 

significantly affected by the change in p, it is not 

necessary to observe the results for all settings of the 

correlation between the two variables. Therefore, the 

investigation on the behavior of Ck only for p = 0.0 will 

suffice for further study. 

Tables 3-4 present the retrieval information for the 

nine agglomerative clustering algorithms by changing k = 2, 

3, ... , 10, in the form of (Ck' Sc' %) for the two splits, 

20-20-20 and 30-20-10, with fixed P = 0.0, o = 4.0. These 

results are graphically displayed in figures 4-5 in terms of 

ck across the number of clusters, k = 2, 3, . . . ' 10, for the 
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nine agglomerative clustering algorithms. Regardless of the 

splits with fixed P = 0.0 and 0 = 4.0, the values Ck at k = 
3 are relatively large except for single linkage and thus 

the number of clusters is predicted correctly. 

Tables 5-6 and figures 6-7 present the results when the 

distances among mean vectors are 6.0 for p = 0.0 with splits 

20-20-20 and 30-20-10, respectively. All algorithms except 

for single linkage at (.0, -.5) predict the number of 

clusters correctly giving local maximum values of ck at k = 
3. It should be noted that the single linkage algorithm 

produces a uniformly larger S than the other algorithms. c 

Based on the results presented in tables 2-6 and 

figures 4-7, the use of the comparative statistic, Ck' is 

recommended in conjunction with the algorithms defined by 

~ ~ -.25 and n ~ 0.0 in the (~, rr) plane for all settings of 

the structural parameters (p, o, split). 

Tables 7-8 represent the "agreement" between two 

clustering algorithms in each pair of ( ~ ) possible pairs 

of the nine clustering algorithms relative to all settings 

(p, o, split) of the structural parameters. If the 

resultant clusterings produced by the pairs of agglomerative 

clustering algorithms are similar, we may have an indication 

of the natural grouping with any specific number of 

clusters, k = K, within the set of data. Based on 

comparison over the % of local maximum and the behavior of 
s 

Ck' some conclusions and recommendations may be made on the 

use of Ck. 



In Table 7, the% of local maxima at k = 3 increases s 
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as the correlation between the two variables increases from 

P = .0 to P = .8 when the clustering produced by the single 

linkage algorithm is compared with the clusterings produced 

by the other eight clustering algorithms for o = 4.0 and 

20-20-20 split. Elsewhere, the %'s of local maxima for all 
s 

( ~ ) pairs of clustering algorithms decrease, or at least 

remain constant as the correlation between the two variables 

increases. However, the % , which is the average of local 
s 

maxima across all ( ~ ) possible pairs of clustering 

algorithms, increases from 39.4 to 45.4 for the 20-20-20 

split while it decrease from 44.9 to 42.1 for the 30-20-10 

split as the correlation increases from p = 0.0 to 0.8 with 

the distances among mean vectors fixed at o = 4.0. Also, in 

table 8 the % decreases as the correlation increases 
s 

regardless of the splits when o = 6.0. 

As a general trend, the % 
s 

of local maxima decreases as 

noise in the data increases, if the single linkage algorithm 

is not considered. The use of Ck to predict the number of 

clusters for data with highly correlated variables by 

applying single linkage algorithm in conjunction with the 

clustering algorithms defined by ~ ~ -.25 and n ~ 0.0 is 

recommended. 

From now on, the single linkage algorithm will not be 

considered. We are interested in the general use of Ck 

rather than the extreme cases applying agglomerative 

clustering algorithms with squared Euclidean distance. 



At this point, it should be mentioned that the 

investigation of the behavior of Ck for all ( ~ ) possible 

pairs of agglomerative clustering algorithms is not 
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necessary. We will concentrate on a smaller set of pairs of 

clustering algorithms which will suffice for the purpose of 

this study. 

Since the patterns of the "agreement" between two 

clustering algorithms in each of the ( ~ ) pairs for each 

structural setting of the parameters (p, split) are similar 

for increasing distances among mean vectors from o = 4.0 to 

8 = 6.0, the distances among mean vectors will be fixed at 

o = 4.0. Also, the parameter p was used to simulate the 

effect of varying degrees of "noise" in the data on 

retrieval of the known structure; thus, the degree of 

information available in the data might be quantified by p, 

In fact, the% 's of local maxima for all pairs of 
s 

clustering algorithms decrease or remain stable on the 

average as the correlation increases for all settings (&, 

split), if single linkage at ( .0, -.5) is not considered. 

Since the effect of correlation on the agreement between the 

agglomerative clustering algorithms is known (DuBien, 1976, 

and DuBien and Warde, 1987), it is reasonable to focus on 

the use of Ck in predicting the number of clusters imposed 

on the data after fixing the correlation at P = 0.0. The 

five pairs of algorithms for which the % retrieval of the 

true population is reasonably high for both algorithms (from 

table 2) and the averages of the agreement were largest 
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(% ~ 48.2 from table 7) were subjectively chosen. In fact 
s 

the pairs of algorithms were mainly selected if 

p . . p > 1 . 2 8 ./1 0 • 5 
[(-.25, -.25),(-.5, .75)] - [A,B] , n 

where n = 600. Additionally, the pair ( . 0' . 5 ) vs . (-. 5, 

. 7 5) was subjectively chosen. These are, 

( 1 ) ( .o ' . 5 ) VS, (-. 5 ' . 2 5 ) ' 

( 2) (-. 25' -.25) VS, (-.25, . 5 ) I 

( 3 ) (-. 25' -.25) vs. (-. 5 I . 2 5 ) ' 

( 4 ) (-.25, -.25) vs. (-. 5 ' . 7 5 ) ' 

( 5 ) (-.25, . 0 ) vs. (-. 5 ' . 7 5 ) . 

Hence, the use of Ck in determining the number of clusters 

within the set of data is investigated for the five 

specified pairs of agglomerative clustering algorithms 

across the splits. The value of Ck is expected to be a 

local maximum at k = 3 if two clustering algorithms agree 

closely, since the structure of the clusters within the 

clusterings produced by each agglomerative clustering 

algorithm is expected to be very similar to the population 

structure. 

10, 

Tables 9-10 present the behavior of Ck' k = 2, 3, ... , 

in the form of (Ck' S , % ) with p = 0.0, o = 4.0, and 
c s 

two splits, 20-20-20 and 30-20-10 for the five specified 

pairs of algorithms. In addition, the agreement between 

two clustering algorithms for five pairs of algorithms is 

presented. To enhance the interpretation of the agreements, 

figures 8-9 portray the behavior of ck with respect to the 
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number of clusters, k = 2, 3, ... ' 10, for clusterings 

produced by the specified pairs of clustering algorithms. 

As shown in figures 8-9, the agreement between the resultant 

clusterings is not independent of the split. It should be 

noted that the 20-20-20 and the 30-20-10 splits were used to 

simulate data with equal sized cluster and unequal sized 

cluster, respectively. However, the size of the clusters is 

unknown in practice. With no prior information, the use of 

Ck is reasonable in conjunction with five pairs of 

agglomerative clustering algorithms chosen here regardless 

of the split. Specifically, it appears that the use of Ck 

with the pair (-.5, .75) vs. (.0, .5) is recommended to 

predict the number of clusters in the data set generated 

with o = 4.0, p = 0.0, irrespective of the split. In this 

case we might confirm that complete linkage at (.0, .5) is 

at least one algorithm that works better with circular 

clusters than with stringy clusters. 

The use of Ck with other pairs of clustering algorithms 

might be considered for the other settings of the structural 

parameters. With fixed o = 4.0, a general trend could be 

summarized as follows: 

1). The pairs of single linkage at (.0, -.5) with 

clustering algorithms defined with ~ ~ -.25 and 

n ~ .0 are recommended when p is close to 1.0 

regardless of the split; 

2). The pairs of algorithms (.0, .5) vs. (-.5, .75) and 

(-.25, -.25) vs. (-.5, .75) are better when P is 
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close to 0.0 for any split; 

3). The pairs of algorithms (-.25, .0) vs. (-.5, .75) 

or (-.25, -.25) vs. (-.5, .75) are better for 

equal sized cluster, while the pairs of algorithms 

(-.25, -.25) vs. (-.5, .25) or (-.25, -.25) vs. 

(-.5, .75) are better for unequal sized cluster 

with any p; 

4). The pair of algorithms (-.25, -.25) vs. (-.5, .75) 

is recommended for all settings of the structural 

parameters (p, split). 

When the distance among mean vectors, 6, increases from 4.0 

to 6.0, the agreement in clusterings increases across all 

settings of the structural parameters. However, the result 

is different from the result based on o = 4.0. That is, 

5). The pairs of single linkage at ( .0, -.5) with other 

clustering algorithms defined by ~ ~ 0.0 and 

n > 0.0 in the (~, n) plane are not worse than the 

other pairs of algorithms for all the other 

settings of the structural parameters; 

6). The pairs of average linkage at (.0, .0) with other 

algorithms defined by ~ ~ -.25 and n ~ .25 in the 

(~, n) plane, or complete linkage at (.0, .5) with 

(-.5, .75) perform better when P is close to 0.0 

regardless of the split; 

7). When the distance among mean vectors is large, the 

pairs of algorithms (.0, .0) vs. (-,5, .75) or 

(.0, .5) vs. (-.5, .75) are recommended across all 
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settings of the structural parameters. 

From the results obtained for o = 4.0 and 6.0, the use 

of Ck in conjunction with the pairs of (-.5, .75) with other 

clustering algorithms defined in the (~, rr) plane performs 

better in predicting the number of clusters than other pairs 

of clustering algorithms across all settings of the 

structural parameters. 

In the next chapter, the comparative study will be 

extended to the study on samples from multivariate lognormal 

distribution. 



CHAPTER VI 

EXTENSION TO MULTIVARIATE 

LOGNORMAL SAMPLES 

Fundamental Concepts 

In the previous chapter the use of Rand's Ck was 

investigated to predict the number of clusters for data 

generated from multivariate normal distribution. However, 

the application of techniques developed on multivariate 

normal distributions is often limited. 

In this chapter, the investigation of the use of Rand's 

Ck to determine the number of clusters by ·applying the 

agglomerative clustering algorithms chosen in the previous 

chapter is extended to a skewed distribution, the 

multivariate lognormal. At this point, it is necessary to 

obtain multivariate lognormal (MVN) data for the purpose of 

this study. Since a clustering method is used to find the 

natural structure present in data, the data structure 

generated should be reasonably well suited for the purpose 

of this study. The desire is to have multivariate lognormal 

data that has similar structure to that constructed for MVN 

in chapter V. 

Let X. be a random vector that follows N (0, ~) where 
1 p 
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The transformation 

X. J 
l.P 

. . . ' 
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and set 

, 
z. J • 

l.p 

Z . = m. exp (X. ) , ( 6. 1) 
l.P l. l.P 

is applied to obtain a lognormal variate Z. having 
l.P 

E(Z. ) = 
l.P 

VAR( Z. ) 
l.P 

1;. = 
l. 

m. 
l. 

= "'~ = l. 

exp( 

2 
a. 

l. 
2 ) , 

2 
m. 

l. 

2 2 exp ( <T. ) ( exp ( <T. ) - 1 ) , 
l. l. 

where m., m. > 0, is the median. 
l. l. 

* Then the correlation p . . between Z. and Z. with respect to 
l.J l. J 

the correlation p . . in the N ( 0, Z::) distribution is given by 
l.J p 

* p .. = 
l.J 1/2 

2 . 2 [ exp ( <T. ) - 1 ] [ exp (a . ) 
l. J 

1/2 

1] 

* Thus to obtain a specified correlation p . . between Z. and 
l.J l. 

Z., the corresponding correlation 
J 

p .. = 
l.J 

1 * 2 <T <T ln{1 + p, .[exp(<T.) 
• . l.J l. 
l. J 

P . . is 
l.J 

1 I 2 
2 

- 1] [exp(<T.) 
J 

1 I 2 

- 1) } 

It is possible that particular p. '. s violate I P . . 1 ::.; 1 or 
l.J l.J 

that the p. ~s give a matrix Z:: that is not positive definite 
l.J 

( Johnson , 1 9 8 7 ) . In this study, the correlation P~. is set 
l.J 

to 0.0. Instead of investigating the effect of correlation 

(or, noise) between the two variables, the angle, 8, used to 

set the spatial configuration of data points for each of the 

population median vectors was varied. In figure 3, the 

actual population median vectors and the angle, 6, to set 

the equilateral triangle spatial configuration of population 



(1 + o cos(e + 60°) 
1 + & sin(a + 60&) 

<1 + & cos(8}, 
1 + & sin(E-)) 

( 1 ' 1 ) 

(0, 0) 1 

Figure 3. An Example of the Structural Framework 
Developed for BVLN. 
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median vectors used in this study are portrayed for & = 4.0. 

Difference in angle by rotating the equilateral triangle 

would be interpreted in terms of "noise" in the data 

structure generated from MVLN distribution since the shape 

of the data structure generated depends on the median vectors 

which are also dependent on the degree of rotation. 

At this point,_ several structural parameters were 

considered for interpretation of the results of this study 

and applications of clustering methods. Some of the 

possible structural parameters on lognormal data are defined 

as follows: 

1. N, the number of data points in Z; 

2. p, the number of variables defining each data point; 

3. K, the number of populations from which the data 

points are generated; 

4. mk, k = 1, 2, . . . ' K, the median vectors for each 

population of data points; 

5 • 1pk, k = 1 , 2 , . . . , K, the variance-covariance 

structure for each population of data points; 

6. &, the distance between each pair of population 

median vectors; 

7. The relative location of the popula~ion median 

vectors; 

8. The split or nk' k = 1, 2, . . . ' K, the number of 

data points generated from each population of data 

points. 

Since a similar data structure to that which was used for 
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the multivariate normal data is desired, the number of data 

points, the number of variables per data point, the number 

of MVLN populations, and the size of each population were 

fixed to be the same as in the MVN study. Thus this study 

is limited to bivariate lognormal distribution (BVLN) which 

could be extended to multivariate lognormal distribution 

(MVLN). 

It should be mentioned that the mean vector, ~~ was 

considered to set the data points for each population with 

fixed median vector, m. However, a large number of the data 

points overlapped within the area below the fixed median 

vectors with skewed-right and long positive tail data 

regardless of €., where ~. > m. > 0. 
1 1 1 

Intuitively, the 

application of a clustering method was not reasonable even 

for large differences among the mean vectors. However, the 

use of the median vector to locate the data points for each 

population did not suffer from this problem. 

Moreover, 2 
the variance depends on the median when a is 

The variance of Z. increases rapidly as the median 
1 

fixed. 

increases. A large portion of the data points which were 

generated with a large median always overlapped with another 

population generated with a small median because of the 

large difference in the variances. Even if the distance 

among the median vectors set for the different populations 

was large, the same type of data structure was obtained. At 

this point, a reasonable data structure for an application 

of clustering methods could not be obtained without 



controlling the variance. The variance for a BVLN random 

variate Z. is lp 

~2 2 ( 2)( . 2 . 
11. 1. = m. exp a. exp (a. ) - 1 ) . 

l l l 

Let A.. be 1.0 where the median m. is specified for each 
l l 

population of data points. By solving the equation, 
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2 . 2 
a. + ln [ exp (a. ) - 1] + 2 ln ( m. ) = 0. 0, 

1 l l 
( 6. 2) 

a~ was obtained to generate BVN with specified variance and 
l 

hence a BVLN with variance 1.0 with specified median. Thus 

2 a. decreases rapidly as the median increases. 
l 

In addition, 

the shape of data structure generated for BVLN is close to 

normal (Johnson and Kotz, 1970) for any specified median if 

a~ is small, which in this study is a consequence of the 
l . 

choice of a large value for the median. Since the shapes of 

the distribution of the data points for each population 

differ from each other as a function of the median vectors, 

the size of the cluster (split) might effect the retrieval 

ability for unequal sized cluster. 

Hence BVLN vectors for each population were generated 

by applying the transformation (6.1) to BVN vectors obtained 

from a population having a mean vector of zero with 

specified variance-covariance matrix by calling subroutine 

GGNSM in IMSL. Generation of other BVLN vectors with the 

same variance-covariance matrix might be accomplished by 

solving the equation (6.2) for fixed constant value of the 

median vector. Since the number of data points in each 
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population effect the retrieval ability of clustering 

algorithms, the number of data points is designated for each 

population generated at the median vectors shown in figure 3 

as: 

1). n 1 at (1, 1), 

2). n 2 at (1 + o cos(e), 1 + o sin(8)), 

3). n 3 at (1 + o cos(e + 60), 1 + o sin(e + 60)), 

The data structure for the comparative study on the use 

of Ck in this chapter may be outlined as follows: 

Zi ~ BVLN(mk' ~), 

where Zi = [Zi 1 ' ZiZ' . . . ' z. ] 
l.P 

' i = 1, 2, I e I ' 

with split into the K = 3 populations of 

60, 

n 1-n2-n3 (i.e., 20-20-20, 30-20-10, 30-10-20, 

•.• , 10-20-30); 

mk' k = 1, 2, 3, is constrained by an equilateral 

triangle spatial configuration and the distance 

between each pair of population median vectors, 

0 = 4. 0' 6. 0; 

tp [ 1.0 o.o ] ; = 0.0 1.0 

e = 15°, 30°. 

Using the sequence of steps explained in the previous 

chapter, Rand's Ck was computed on the data from BVLN by 

applying the five pairs of the agglomerative clustering 

algorithms chosen in chapter V in conjunction with squared 

Euclidean distance for all possible settings of the 

structural parameters (e, o, split), The results from 
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bivariate lognormal samples will be discussed in the 

following section. 

Discussion on the Results from Multivariate 

Lognormal Samples 

Tables 11-12 and figures 10-11 in the Appendix are 

provided to show the behavior of Ck' k = 2, 3, . . . ' 10, in 

the form of the measured statistic {Ck, S , % ) for the 
c s 

specific settings (a = 15°, 6 = 4.0, split) of the 

structural parameters over 100 replications for the five 

pairs of agglomerative clustering algorithms chosen in the 

previous chapter. Tables 13-14 present the agreement 

( 9 l 
between two clustering algorithms in each pair of the l J 

2 -' 

possible pairs of the nine agglomerative clustering 

algorithms. Additionally, table 15 provides the % retrieval 

of true population for the nine algorithms across all 

settings (e, 6, split) of the structural parameters. 

As shown in table 11 and figure 10, Rand's Ck in 

conjunction with the specific pairs of agglomerative 

clustering algorithms is useful in predicting the number of 

clusters within the data generated from BVLN with a= 15°, 6 

= 4.0, and 20-20-20 split. The local maxima occur at k = 3 

in terms of ck for all pairs of algorithms except the pair 

(.0, .5) vs. (-.5, .75). Among the five pairs of 

algorithms, the use of Ck in conjunction with the pairs of 

algorithms (-.5, .75) vs. (-.25, .0) and (-.5, .75) vs. 

(-.25, -.25) are considered to be better than the others in 
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' predicting the number of clusters within data generated with 

the structural setting (15° 1 4.0, 20-20-20). Figure 10 

portrays the behavior of the values ck' k = 2, 3, ... ' 10, 

within clusterings produced by the five pairs of 

agglomerative clustering algorithms. 

Table 12 presents the behavior of Ck' k = 2, 3, ... , 

10, in the form of (Ck' Sc' %s) fore= 15° 1 & = 4.0, and 

30-20-10 split. The result is graphically displayed in 

figure 11 in terms of ck for the number of clusters within 

clusterings generated by the five pairs of agglomerative 

clustering algorithms. The result is similar to the result 

in table 11 and figure 10. The local maxima occur at k = 3 

for all combinations of algorithms defined in the (#, n) 

plane. However, the use of Ck in conjunction with the pairs 

of algorithms (-.5, .75) vs. (.0, .5) and (-.5, .75) vs. 

(-.25, -.25) are considered to be better than the others in 

predicting the number of clusters in data set generated with 

the setting (15°, 4.0, 30-20-10). For another settings of 

the splits the behavior of ck was observed for five pairs of 

algorithms; however, the local maximum of ck at k = 3 was 

obtained regardless of various combinations of the split. 

In addition, tables 13-14 provide the agreement for 

all possible ( ~ ) pairs of the nine agglomerative 

clustering algorithms in the form of % for all settings of 
s 

the structural parameters (e, &, split). As with the MVN 

data, the "agreement" between agglomerative clustering 

algorithms is greatly affected by the changes in distance 
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among median vectors. The angle (or, noise) that changes 

the shape of the distribution of the data points generated 

affects the agreement of different agglomerative clustering 

algorithms differently with respect to the splits. With 

fixed &, the agreement decreases as the angle increases from 

15° to 30° for the 20-20-20 split, while the agreement 

varies with changes in the angle, e, for all unequal sized 

clusters through all pairs of clustering algorithms defined 

in the (~, rr) plane. Thus, discussions of the results will 

be based on the effect of different splits ignoring the 

effect of angle differences. 

Based on the results presented in table 13, the general 

trend for o = 4.0 with MVLN data is summarized as follows: 

1). The pairs of single linkage at ( .0, -.5) with the 

other algorithms should not be used for samples 

from MVLN; 

2). The pairs of (-.5, .75) with clustering algorithms 

defined by ~ = -.25 in the (~, rr) plane perform 

better with equal sized cluster; 

3). The pairs of (.0, .5) with the algorithms (-.5, 

.75) and (-.5, .25) are better with the 30-20-10 

split; 

4). The pairs of (-.5, .75) with the algorithms (-.5, 

.0), (-.25, .0) and (-.25, .5), and (-.25, .0) vs. 

(-.5, .25) are better with the 20-10-30 split; 

5). The pairs of either (-.5, .75) vs. (-.25, .5) or 

(-.25, .0) vs. (-.25, .5) are better with the 
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20-30-10 split; 

6). The pairs of (.0, .5) with (-.5, .0) and (-.5, .25) 

or the pair (-.5, .75) vs. (-.25, -.25) are better 

with the 30-10-20 split; 

7). The pairs of (.0, .5) with clustering algorithms 

defined by ~ < -.25 and rr ~ 0.0, and the pair of 

(-.5, .75) vs. (-.25, .0) are reasonable for the 

10-20-30 split; 

8). The pairs of (.0, .5) with clustering algorithms 

defined by ~ ~ -.25 and rr > 0.0, and the pairs of 

algorithms (-.5, .75) vs. (-.25, .0), (-.5, .251 

vs. (-.25, -.25) and (-.5, .25) vs. (-.25, .5) are 

recommended for the 10-30-20 split; 

9). The pairs of (-.5, .75) with clusteiing algorithms 

defined by~= -.25 and rr ~ 0.0 are better on the 

average across all settings of the structural 

parameters. 

For fixed o = 6.0 in table 14, a brief discussion is given 

as follows: 

10). The pairs of (-.5, .75) with (.0, .5), (-.25, 

-.25), and (-.25, .0) perform better with equal 

sized clusters; 

11). For unequal sized clusters, the pairs of (-.5, 

. 7 5 ) with ( . 0 , . 0 ) , ( . 0 , . 5 ) and ( - . 2 5 , - . 2 5 ) 

cooperate well with Ck in predicting the number 

of clusters. 

In general, the use of Ck with the pairs consisting of (-.5, 
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.75) with other clustering algorithms defined in the (~, n) 

plane except for single linkage at (.0, -.5) are recommended 

for use in predicting the number of clusters within data 

generated for all settings of the structural parameters. 

Moreover, the retrieval ability of the true population 

structure for nine agglomerative clustering algorithms in 

table 15 is considered. As with the results in table 2 for 

MVN data, the use of Ck with clustering algorithms defined 

by ~ $ -.25 and n ~ 0.0 predict the number of clusters 

better than the other algorithms in the (~, n) plane. 

General discussions of the results based on MVN and 

MVLN data will be given in the next chapter. However, we 

observe that Ck performs better with the pairs consisting of 

(-.5, .75) with other clustering algorithms defined in the 

(~, rr) plane than with combinations among the well-known 

clustering algorithms; i.e., single linkage, average 

linkage, complete linkage, and flexible linkage. 



CHAPTER VII 

GENERAL CONCLUSIONS AND POSSIBLE EXTENSIONS 

The use of the comparative statistic, Ck, for 

predicting the number of clusters within a set of data 

applying agglomerative clustering algorithms is the 

objective of this research. This study was limited 

in its scope by controlling the structural parameters and 

choosing a finite number of agglomerative clustering 

methods. However, it is at least a basis for future 

comparative studies for determining the number of clusters 

by comparing the clusterings produced by clustering methods. 

Observations and discussions from the comparative study 

on the use of Ck were made with respect to the agglomerative 

clustering algorithms defined by (~, n) and the settings of 

the structural parameters (p, 6, split) for MVN data and (8, 

6, split) for MVLN data. Some general trends in the results 

were observable using the measured statistics % and (Ck, Sc' 

%) for the "retrieval" ability on the true population for 

the nine agglomerative clustering algorithms. While the 

measured statistics % and (Ck' S , % ) were specified for 
s c s 

the "agreement" between two clustering algorithms consisting 

of a pair for various structural parameters and in terms of 

93 
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(~, n) which define the agglomerative clustering algorithms 

using squared Euclidean distance. 

The values Ck are calculated by comparing the resultant 

clusterings produced by the nine agglomerative clustering 

algorithms with the population structure generated with 

specific settings of the structural parameters. The Ck has 

the local maximum if 

and at k = 3. 

In the context of the % from the comparative study, the % is 

the number of times that a local maximum with respect to Ck 

occurs at k = 3 over 100 replications. A good prediction of 

the number of clusters for the data structure generated is 

the one that has a high value of % and remains stable for 

various settings of the structural parameters. 

Let %[A] be a % value produced by algorithm A over n 

replications. Algorithm A will be termed "better" with 

respect to % than algorithm B iff 

V p (or, 9), %[A] > %[B], 

where the pair (o, split) is fixed. 

If any statistical criterion is required, the hypothesis 

that a difference exists between %'s can be t~sted. Since 

%[A] and %[B] are the number of times that a local maximum 

occurs at k = 3 over 100 replications, %[A] and %[B] follow 

a binomial probability distribution, with parameters p and 
a 

pb' respectively. For large samples the point estimator of 

1\ 1\ 
(pa- pb)' namely (pa- pb) is approximately normally 
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distributed with a mean of (pa - pb) and a standard 

deviation of 

Then 
1\ 1\ 

(pa - pb) - (pa - pb) 
z = (J 1\ 1\ 

(pa-pb) 

follows a standard normal distribution. Hence z can be used 

as a test statistic to test 

H : p = P 
o a b 

vs. ex= 0.1, 

and reject the null hypothesis in favor of the alternative 

hypothesis if 

In fact, a one-tailed test is employed to detect pa > pb' 

And pa = pb = .5 is used to obtain the maximum standard 

deviation, instead of using the best estimates of pa and pb 

to compute Thus, if 

where n is the number of replications, then the use of Ck 

with algorithm A is preferred in predicting the number of 

clusters to the use of Ck with algorithm B for the specified 

structural settings. With given settings for the structural 

parameters and a metric of Euclidean distance, some general 

observations with respect to the structural parameters and 

the agglomerative clustering algorithms with (~, n) will be 
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offered with respect to the % for MVN data. 

The single linkage algorithm, which is the only space­

contracting algorithm included in the comparative study, was 

different from all of the other algorithms with respect to % 

for all settings (p, 8, split) used in this study. As 

discussed by DuBien and Warde (1987), the single linkage 

algorithm was the worst algorithm. An exception was when p 

was close to 1.0 for the 30-20-10 split. However, the single 

linkage algorithm was the only algorithm for which high p 

had a marked effect on its performance even if the number of 

local maxima for p close to 0.5 is smaller than the others. 

The performance of the single linkage algorithm improves as 

P increases for fixed distance, 8, among mean vectors and 

fixed splits. The observations concerning single linkage 

algorithm imply that space-contracting algorithms are worse 

at "retrieving" the population structure than either space­

conserving or space-dilating algorithms when MVN data and 

squared Euclidean distance a~e employed. 

The average linkage algorithm which is the only space­

conserving algorithm, and the complete linkage algorithm 

which is one of the space-dilating algorithms, perform worse 

when p is close to 1.0 than when p is close to 0.0, 

regardless of the size of cluster (split) for fixed distance 

among mean vectors 8 • 

For any other agglomerative clustering algorithms 

except the algorithms with~ = 0.0 in the (~, n) plane, the 

number of clusters for the population structure generated 
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was well predicted by Ck for all settings of the structural 

parameters (p, o, split). 

The statistics (Ck, Sc' %) from the comparative study 

were investigated for the behavior of Ck for specified 

settings (p, 6, split). However, it was not necessary to 

observe the results for all possible settings of (p, &, 

split). The changes in p from 0.0 to 1.0 had little effect 

on the changes in the %'s of local maxima on the settings of 

(o, split) for the nine agglomerative clustering algorithms 

except for single linkage algorithm. Thus, only the 

observations concerning the behavior of Ck for p = 0.0 with 

various settings (o, split) of the structural parameters was 

provided in this study. 

For a setting of (o, split), Ck(A] shall denote a Ck 

value produced by algorithm A when the clustering is 

compared to the true population; S [A] shall denote an S c c 

value produced by algorithm B; %[A] shall denote a % value 

produced by algorithm A over 100 replications. In 

predicting the number of clusters, algorithm A will work 

better with respect to Ck' Sc, and % than algorithm B iff 

1). %[A] > %[B]; 

2). Ck[A] > Ck[B] and 

3 ck[AJ - ak_ 1 [AJ > ck[BJ - ak_ 1 [BJ 

and Ck[A] - ak+l[A] > Ck[B] - ak+l[B]; 

3). S [A] ~ S [B], 
c c 

where ak is the local maximum at k = 3 and 

(6, split) is fixed. 
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Thus, the performance of Ck in predicting the number of 

clusters by applying the agglomerative clustering algorithms 

was investigated with respect to the measured statistics 

(Ck, Sc' %) for all settings (o, split) with fixed p = 0.0 

for MVN data. 

At this point, the use of Ck in predicting the number 

of clusters was considered by comparing the clusterings 

produced by the nine agglomerative clustering algorithms. 

If the clusterings agree closely, we may have more 

confidence in predicting the number of clusters by observing 

the comparative statistics ck. The number of local maxima 

at k = 3 with respect to % was used to determine the 
s 

performance of Ck in conjunction with the possible pairs of 

clustering algorithms for the settings (p, o, split). In 

fact, the % is the agreement between two clustering 
s 

algorithms consisting of a pair. Hence in predicting the 

number of clusters by using Ck for the settings (p, o, 

split), the pair of clustering algorithms, A and B, that 

agree more closely with respect to % in terms of the 
s 

clusterings than the pair clustering algorithms, A' and B', 

were chosen for further study iff 

1).% [A,B] >% [A',B'], 
s s 

where % [A,B] is the % of local maxima obtained s s 

for paired algorithms A and B; 

2). %[A], %[B] are considered large for the settings 

(p, o, split). 

If any statistical criterion is required to test the 



difference between %~s, namely p[a,b] and p[a' ,b'] for the 

comparison of the results from the possible ( ~ J pairs of 

agglomerative clustering algorithms, the same statistical 

test explained previously can be applied. 
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A few general observations with respect to the settings 

(p, 8, split) can also be made. In general, as p increases, 

the %s of correctly predicting k = 3 by Ck increases across 

(p, 8, split); this observation is natural since the 

clusters become more distinct as the the population means 

move further apart. The changes in p give marked effects on 

the agreements among the clusterings produced by the 

clustering algorithms paired with the single linkage 

algorithm. Asp increases from 0.0 to 1.0 for all settings 

(8, split) of the structural parameters, the % increases 
s 

rapidly for the clustering algorithms paired with single 

linkage algorithm. However, the % decreases or at least 
s 

remains stable for the clustering algorithms paired with 

other algorithms when p increases from 0.0 to 1.0. 

Increasing 8 from 4.0 to 6.0 causes an increase in % for 
s 

all settings (p, split). The two different splits with 

respect to % have little effect on the prediction of the 
s 

number of clusters. Overall, p does not greatly affect the 

agreement between the agglomerative clustering algorithms 

with respect to % for the two splits with the effect 
s 

becoming less for increasing 8, whenever single linkage 

algorithm is not considered. 

For ( ~ ) possible pairs of agglomerative clustering 
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algorithms on the settings (p, o, split) with MVN and (e, o, 

split) with MVLN data, the number of clusters present is 

predicted better with respect to (Ck' S , % ) for the pair c s 

of agglomerative clustering algorithms, A and B, than the 

pair of clustering algorithms, A' and B', iff 

1 ) • % [A,B] > % [A',B']; s s 

2 ) . (\[A,B] > Ck[A' ,B'] and 

3 Ck[A,B] - Ck_ 1 [A,B] > Ck [A' , B' ] - Ck_ 1 [A',B'] 

Ck[A,B] - Ck+ 1 [A,B] > Ck[A' ,B'] - Ck+l[A',B']; 

3). S [A,B] :s; S [A' B'] 
C C I I 

where ck is the local maximum at k = 3 

and (p, o, split), (e, o, split) are fixed. 

In terms of % for the specific settings of the 
s 

and 

structural parameters, the number of clusters is relatively 

well predicted by using Ck with the pair of clustering 

algorithms defined by (-.5, .75) vs. ( .0, .5) for MVN data 

generated by the settings (0.0, 4.0, split). With MVLN data 

for settings (15°, 4.0, split), the use of Ck with the pair 

of algorithms (-.5, .75) vs. (-.25, .0) for the 20-20-20 

split and the pair of algorithms (-.5, .75) vs. (.0, .5) for 

the 30-20-10 split well predict the number of clusters 

giving a local maximum at k = 3. For the other specific 

settings of the structural parameters, the best pair of 

clustering algorithms might be found; i.e., the combinations 

of single linkage at (.0, -.5) with other algorithms defined 

by ~ s -.25, rr ~ 0.0 in the (~, rr) plane when p is close to 
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1.0, 8 = 4.0 and 20-20-20 split for MVN data. 

At this point, investigation on the general use of Ck 

with clustering algorithms when any prior information is 

unknown for given set of data was our objective. It was 

necessary to choose several pairs of clustering algorithms 

that cooperate with the comparative statistic, Ck' 

indicating the number of clusters k = 3 across all settings 

of the structural parameters. 

In general, the pairs with (-.5, .75) in the (~, n) 

plane performed better with respect to Ck than the other 

pairs of clustering algorithms across all settings of the 

structural parameters for both MVN and MVLN data. Also it 

was known that single linkage at (.0, -.5) was the worst 

algorithm with MVLN, while recommended only when P is close 

to 1.0 with MVN data. And the pair of algorithms (-.5, .75) 

vs. (-.5, .25) is not considered because of the poor 

agreement between them through all settings of the 

structural parameters with both MVN and MVLN data. 

Moreover, the pairs of algorithms (-.5, .75) with (-.25, .5) 

and (-.5, .0) in the (~, rr) plane cooperated with the Ck 

only for MVLN. Thus these pairs will not be considered for 

further investigation on the general use of Ck' 

Based on the % across all settings of the structural 
s 

parameters for all possible ( : ) pairs of clustering 

algorithms, only four pairs of algorithms are subjectively 

chosen from table 7-8 and table 13-14. The four pairs of 

algorithms are, 



(1) (-.5, .75) vs. (-.25, -.25), 

(2) (-.5, .75) vs. (-.25, .0), 

( 3) (-. 5' • 7 5) vs. ( . 0' . 0)' 

(4) (-.5, .75) vs. (.0, .5). 
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The results based on these four pairs of clustering 

algorithms are summarized in table 16. 

As shown in table 16, the use of ck with these four 

pairs of clustering algorithms defined in the ({3, n) plane 

predict the number of clusters present in MVN and MVLN data 

generated with all settings of the structural parameters 

reasonably well. Some pairs of clustering algorithms 

indicate the number of clusters better than the others for 

specific settings of the structural parameters. However, we 

could recommend the use of Ck in conjunction with the pairs 

of clustering algorithms in predicting the number of 

clusters within set of data as follows: 

1). With MVN data the pairs (-.5, .75) vs. (-.25, -.251 

or (-.5, .75) vs. (-.25, .0) are recommended to be 

used with Ck foro= 4.0, while the pairs (-.5, .75) 

vs. (.0, .0) or (-.5, .75) vs. (.0, .5) are 

reasonable for o = 6.0; 

· 2). With MVLN data the pairs (-.5, .75) vs (-.25, .0) 

or (-.5, .75) vs. ( .0, .5) are better for all 

settings of the structural parameters (8, split) 

foro= 4.0, while the pairs (-.5, .75) vs. ( .0, 

. 0) or (-. 5, . 75) vs. (. 0, . 5) are recommended for 

0 = 6.0. 
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Moreover, the % retrieval of the true population 

generated with the specific structural parameter for each 

clustering algorithm was considered from table 2 and table 

15 for MVN and MVLN data, respectively. If both algorithms 

combined as a pair have high retrieval abilities for the 

true population, we will consider the pair to be the best 

among four pairs of algorithms for both MVN and MVLN data. 

In this way the structure of clusterings produced by the 

pair of clustering algorithms is also similar to the data 

structure generated. Thus, we conclude from the results of 

the comparative study that:· 

3). The use of Ck in predicting the number of clusters 

is recommended with the pair of algorithms, (-.5, 

.75) vs. (-.25, .0), defined in the (~, n) plane 

~egardless of the characteristics of the given set 

of data. 

This confirms that the flexible strategy at (-.25, .Ol 

recommended by DuBien and .Warde (1987) is at least one 

algorithm for finding the unknown structure present in many 

data sets. Moreover, the pair of algorithms (-.5, .75) vs. 

(-.25, .0) generally performs better than any combinations 

of single, complete, and average linkage regardless of the 

degree of noise and the relative sizes of the clusters 

present in the data. 

There are a lot of possible extensions for the 

comparative study on the use of Ck by applying agglomerative 

clustering algorithms formed with squared Euclidean 
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distance. In future comparative study on the behaviors of 

ck with agglomerative clustering algorithms, at least a 

limited comparative investigation of the effect of 

correlated variables on the value of ck should be attempted 

when p <:: 3 with a large value of N. The study on the 

behavior of Ck for various changes in split (the size of 

cluster) may be desired. Also it should include a large 

number of replications at each setting of the structural 

parameters. The populations of data points could be 

generated from probability distributions other than MVN and 

MVLN probability distributions, but the choices of the MVN 

and MVLN data structures for each of the populations seem 

reasonable. However, it would be worth attempting a limited 

comparative investigation on the use of Ck with clustering 

algorithms when each of MVN and MVLN populations of data 

points presented in X and Z, respectively, has a different 

variance-covariance matrix. Moreover, it would be desirable 

to investigate the use of Ck with agglomerative clustering 

algorithms for the data from the mixture of different 

distributional forms in multivariate settings of variables. 

A great deal of flexibility in a limited extension of 

the comparative study on the use of Ck could be achieved by 

choosing different agglomerative clustering algorithms to 

pair with the agglomerative clustering algorithm (-.5, .75) 

defined in the (~, rr) plane. Since the use of Ck with the 

pairs of (-.5, .75) with other clustering algorithms 

predicted the number clusters fairly well. 



105 

In conclusion, it appears from all the evidence on its 

performance that the Ck statistic used in conjunction with 

specified agglomerative clustering algorithms with squared 

Euclidean distance is a useful comparative statistic on 

determining the number of clusters present in the data. 

However, the performance of Ck is dependent on the 

characteristics of the data, the choices of agglomerative 

clustering algorithms and distance measures. Therefore, the 

results on the use of Ck should be examined critically to 

make sure they are meaningful. 
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TABLE 2 

PERCENT RETRIEVAL OF TRUE POPULATION FOR 
ALL ALGORITHMS WITH MVN 

split 20-20-20 30-20-10 
% 

0 p .o .4 . 8 . 0 .4 .8 

4.0 13 9 36 19 14 62 25.5 
6.0 67 74 73 64 71 69 69.7 

4.0 63 68 59 72 65 50 62.8 
6.0 87 87 86 83 88 87 86.3 

4.0 72 73 56 76 "73 50 66.7 
6.0 93 92 91 91 94 90 91.8 

4.0 77 74 73 81 77 72 75.7 
6.0 96 94 92 . 95 95 88 93.3 

4.0 81 81 81 90 89 75 82.8 
6.0 98 99 98 96 96 93 96.7 

4.0 83 88 89 85 81 84 85.0 
6.0 93 94 98 96 97 95 95.5 

4.0 85 84 91 84 86 69 83.2 
6.0 100 98 97 96 97 95 97.2 

4.0 88 87 89 83 83 78 84.7 
6.0 100 100 100 96 99 97 98.7 

4.0 79 98 88 78 83 72 83.0 
6.0 99 100 99 95 95 95 97.2 

4.0 71.2 73.6 73.6 74.2 72.3 68.0 72.1 
6.0 92.6 93.1 92.7 90.2 92.4 89.9 91.8 
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s-
% 

8.26 
1. 54 

3.13 
0.71 

4.42 
0.60 

1. 36 
1. 20 

2.32 
0.88 

1. 24 
0.76 

3.03 
0.70 

1. 69 
0. 71 

3.71 
0.98 
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TABLE 3 

RETRIEVAL INFORMATION OF NINE ALGORITHMS VS. POPN. WITH 
0 = 4.0, p = o.o, AND 20-20-20 SPLIT FOR MVN 

k (J J [ 
. 0 ][ . 0 J [=·25] [-.25] [-.25] (-.5 J [-.5 J [-.51 
. 0 . 5 .25 .o .5 .o .25 .75.) 

2 ck .3869 .6614 .6866 .7026 .7188 .7107 .7249 .7222 .7049 

s .1345 .1131 .0813 .0606 .0431 .0551 .0359 .0380 .0565 c 

3 ck .4641 .8518 .8680 .8828 .8982 .8991 .8990 .8989 .8895 
s· .1734 .0949 .0852 .0711 .0535 .0551 .0552 .0517 .0610 c 

4 ck .5655 .8600 .8632 .8725 .8775 .8771 .8742 .8749 .8691 

s .1869 .0625 .0544 .0512 .0388 .0395 .0388 .0372 .0401 c 

-
5 ck .6444 .8507 .8471 .8520 .8506 .8489 .8417 .8416 .8378 

s .1896 .0465 .0415 .0374 .0326 .0323 .0318 .0294 .0300 
c 

6 ck .6908 .8325 .8270 .8282 .8242 .8216 .8155 .8149 .8131 

s .1756 .0392 .0331 .0333 .0278 .0265 .0249 .. 0243 .0243 c 

7 ck .7324 .8169 .8109 .8113 .8027 .7986 .7955 .7928 .7905 

s .1579 .0333 .0270 .0276 .0226 .0222 .0200 .0196 .0210 c 

8 ck .7518 .8028 .7966 .7952 .7882 .7830 .7815 .7784 .7777 

s .1484 .0274 .0222 .0252 .0179 .0178 .0156 .0158 .0162 c 

9 ck .7858 .7917 .7828 .7825 .7766 .7715 .7692 .7673 .7668 

s .1173 .0245 .0202 .0213 .0175 .0150 .0143 .0148 .0127 
c 

10 ck .7941 .7840 .7736 .7732 .7666 .7612 .7594 .7581 .7572 

s .0987 .0210 .0183 .0186 .0162 .0122 .0130 .0127 .0118 c 

% 13 63 72 77 81 83 85 88 79 
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Figure 4. Retrieval result of the nine algorithms for MVN with 
o = 4.0, p = .0 and 20-20-20 sp1it 

9 10 

!H~ [ [ 

5 1 

( - . -. ' ) 



k 

2 

3 

4 

5 

6 

7 

8 

9 

115 

TABLE 4 

RETRIEVAL INFORMATION OF NINE ALGORITHMS VS. POPN. WITH 
o = 4.0, P = 0.0, AND 30-20-10 SPLIT FOR MVN 

. 0 . 0 . 0 -.25 -.25 -.25 -.5 -.5 1-.5 
-.5 . 0 . 5 -.25 .o . 5 . 0 .25./ \. .75./ 

ck .4575 .7215 .7417 .7703 .8008 .8002 .8002 .7984 .7896 

s .1248 .1155 .1050 .0879 .0606 .0616 .0599 .0604 .0628 c 

ck .5439 .8744 .8838 .8898 .9098 .9059 .9016 .9032 .8840 

s .1707 .0925 .0907 .0725 .0559 .0554 .0589 .0543 .0756 c 

ck .6282 .8562 .8504 .8400 .8438 .8400 .8353 .8371 .8253 

s .1833 .0746 .0613 .0581 .0440 .0447 .0401 .0405 .0461 c 

ck .6953 .8247 .8184 .8080 .8022 .7934 .7893 .7904 .7857 

s .1751 .0630 .0470 .0425 .0326 .0315 .0271 .0274 .0289 c 

ck .7401 .8008 .7840 .7825 .7733 .7643 .7620 .7593 .7580 

s .1599 .0476 .0379 .0368 .0306 .0241 .0239 .0237 .0240 c 

ck .7706 .7823 .7657 .7607 .7563 .7467 .7424 .7411 .7396 

s .1417 .0417 .0323 .0294 .0289 .0232 .0203 .0186 .0190 c 

ck .7930 .7678 .7473 .7475 .7387 .7312 .7261 .7245 .7238 

s .1276 .0359 .0248 .0241 .0227 .0198 .0165 .0168 .0155 c 

ck .8042 .7524 .7338 .7340 .7252 .7185 .7143 .7139 .7100 

s .1138 .0305 .0220 .0209 .0190 .0159 .0142 .0142 .0126 c 

10 ck .8140 .7398 .7240 .7252 .7155 .7090 .7054 .7042 .7018 

s .0944 .0250 .0181 .0194 .0153 .0129 .0120 .0113 .0111 c 

% 19 72 76 81 90 85 84 83 78 
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TABLE 5 

RETRIEVAL INFORMATION OF NINE ALGORITHMS VSo POPNo WITH 
o = 6o0, p = OoO, AND 20-20-20 SPLIT FOR MVN 

0 0 oO oO -o25 -o25 [-. 25 -05 -o5 -o5 

-o5 0 0 0 5 -o25 0 0 0 5 oO o25 o75 

ck o7452 o7628 o7642 o7671 o7675 o7652 o7688 o7689 o7643 

s o1045 o0506 o0296 o0216 o0200 o0164 o0125 o0119 o0190 c 

ck o9267 o9864 o9858 o9869 .9894 .9853 .9894 o9898 o9833 

s .1166 o0324 .0271 o0245 .0189 .0251 .0180 .0192 o0260 c 

ck o9561 o9636 o9502 .9488 .9484 o9444 o9413 .9415 .9361 

s o0743 .0208 .0215 .0190 .0169 o0157 .0135 o0141 .0191 c 

ck .9677 o9286 .9096 .9084 .9060 .8991 .8930 .8946 .8903 

s .0322 .0247 .0241 .0206 .0197 .0153 .0116 .0110 .0156 c 

ck .9597 .8990 .8749 .8736 .8649 .8571 .8489 .8488 .8457 

s .0108 .0310 .0234 .0244 .0208 .0168 .0147 .0141 .0157 c 

ck .9456 .8727 .8479 .8457 .8391 .8317 .8265 .8246 .8223 

s .0134 .0311 .0219 .0215 .0193 .0152 .0107 .0113 .0108 c 

ck .9299 .8502 .8268 .8276 .8179 .8101 .8067 .8038 .8036 

s .0164 .0259 .0183 .0204 .0154 .0117 .0117 .0088 .0097 c 

ck .9147 .8315 .8097 .8112 .8021 .7947 .7898 .7886 .7871 

s .0192 .0222 .0158 .0188 .0138 .0113 .0104 .0090 .0091 c 

10 ck . 9003 . 8163 . 7965 . 7991 . 7892 . 7814 . 7780 . 7773 . 7748 

s .0209 .0201 .0151 .0172 .0126 .0099 .0085 .0077 .0078 c 

% 67 87 93 96 98 93 100 100 99 
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TABLE 6 

RETRIEVAL INFORMATION OF NINE ALGORITHMS VS. POPN. WITH 
o = 6.0, P = 0.0, AND 30-20-10 SPLIT FOR MVN 

. 0 . 0 . 0 -.25 -.25 -.25 -.5 -.5 -.5 

-.5 . 0 . 5 -.25 . 0 . 5 . 0 .25 . 7 5) 

ck .7309 .7945 .8187 .8416 .8690 .8680 .8730 .8737 .8612 

s .1318 .1028 .0814 .0716 .0306 .0326 .0297 .0257 .0371 c 

ck .9093 .9824 .9873 .9859 .9875 .9865 .9874 .9854 .9824 

s .1370 .0352 .0221 .0267 .0223 .0251 .0238 .0245 .0272 c 

ck .9560 .9452 .9240 .9133 .9010 .8937 .8874 .8846 .8837 

s .0869 .0450 .0378 .0411 .0304 .0284 .0236 .0223 .0278 c 

ck .9625 .9022 .8688 .8638 .8448 .8372 .8322 .8302 .8287 

s .0584 .0547 .0434 .0328 .0266 .0222 .0180 .0172 .0151 c 

ck .9538 .8598 .8324 .8302 .8082 .7958 .7931 .7895 .7875 

s .0501 .0477 ·. 0393 .0323 .0259 .0206 .0158 .0143 .0138 c 

ck .9433 .8284 .8053 .8018 .7817 .7754 .7699 .7664 .7654 

s .0419 .0381 .0331 .0281 .0195 .0170 .0121 .0110 .0101 c 

ck .9320 .8070 .7791 .7792 .7625 .7577 .7499 .7497 .7463 

s .0370 .0376 .0225 .0246 .0157 .0163 .0105 .0101 .0089 c 

ak .9228 .7880 .7600 .7628 .7469 .7405 .7348 .7330 .7310 

s .0257 .0347 .0207 .0197 .0151 .0129 .0100 .0093 .0077 c 

ck .9089 .7700 .7448 .7496 .7327 .7262 .7229 .7206 .7197 

s .0241 .0297 .0171 .0185 .0116 .0094 .0084 .0077 .0075 
c 

% 64 83 91 95 96 96 96 96 95 
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TABLE 7 

THE % ON LOCAL MAXIMUM FOR ALL POSSIBLE PAIRS OF 
s 

THE NINE ALGORITHMS WHEN o = 4o0 FOR MVN 

( f3 I split 20-20-20 30-20-10 
% rr) 

({3 rr) 0 0 0 4 0 8 0 0 0 4 0 8 s 

o 0 1 ( 0 0 , oO ) 14 25 39 22 12 35 24o5 
-o5 ) ( , 0 5 ) 20 22 44 25 24 34 28o2 

(-o25,-o25) 21 22 41 23 22 40 28o2 
( , 0 0 ) 23 24 63 34 25 44 35o5 
( , 0 5 ) 23 27 67 32 23 56 38o0 
(-o5 , 0 0 ) 23 27 63 32 29 48 37o0 
( , 0 2 5) 21 26 65 34 26 59 38o5 
( , 0 75) 23 27 60 29 25 47 35o2 

0 0, ( • 0 , 0 5 ) 38 38 34 42 43 29 37o3 
oO ) (- 0 25,-0 25) 28 29 33 47 33 32 33o7 

( , 0 0 ) 33 44 39 54 53 37 43o3 
( , 0 5 ) 46 48 47 54 52 40 47o8 
(-o5 , oO ) 42 46 40 54 54 40 46o0 
( , 0 25) 49 52 43 54 "53 43 49o0 
( • 0 75) 46 48 48 54 45 44 47o5 

0 0 , (- o 25 1- o 25) 39 34 36 48 47 35 39o8 
0 5 ) ( ' 0 0 ) 37 39 32 59 47 39 42o2 

( , 0 5 ) 42 56 38 57 55 40 48o0 
(- 0 5 , 0 0 ) 51 52 36 53 48 40 46o7 
( , 0 25) 47 54 35 54 49 43 47o0 
( o75) 58 51 35 60 48 37 48o2 

-o25, (- 0 25, 0 0 ) 38 31 41 45 40 36 38o5 
-o25) ( 

' 0 5 ) 50 48 50 55 51 49 50o5 
(-o5 ' oO ) 49 42 46 47 46 48 46o3 
( , 0 25) 51 49 46 53 53 56 51.3 
( ' 0 7 5 ) 57 54 51 53 51 53 53o2 

-o25, (- 0 25, 0 5 ) 48 49 50 51 44 45 47o8 
. 0 ) ( - . 5 

' 0 0 ) 41 35 37 31 38 38 36.7 
( ' . 25) 46 47 41 45 50 45 45.7 
( , • 7 5) 52 53 57 50 48 50 51.7 

-o25, ( - . 5 , .o ) 49 40 45 53 40 41 44o7 
0 5 ) ( , 0 25) 39 44 44 42 45 39 42o2 

( ' 0 7 5) 48 49 56 47 35 41 46.0 
-o5 , (- 0 5 , 0 25) 34 37 33 37 37 25 33o8 

• 0 ) ( ' 0 7 5 ) 47 44 50 44 46 45 46o0 
-.5 ' ( - 0 5 ' o75) 46 48 49 44 42 42 45o2 

0 2 5) 
% 

39o4 40.6 45o4 44o9 41.1 42o1 42o3 
s 
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s% 
s 

4o45 
3o73 
3o91 
6o40 
7o69 
6o28 
7o66 
6o09 
2 0 12 
2o80 
3o53 
2o01 
2o68 
2o02 
1. 45 
2o52 
3o90 
3o62 
2o87 
2o96 
4o25 
1. 95 
Oo99 
Oo99 
1. 43 
Oo91 
1.14 
1. 38 
1. 20 
1. 28 
2.20 
1. 08 
2o94 
1. 90 
Oo93 
1. 22 



TABLE 8 

THE % ON LOCAL MAXIMUM FOR ALL POSSIBLE PAIRS OF s 
THE NINE ALGORITHMS WHEN o = 6.0 FOR MVN 

( {3, split 20-20-20 30-20-10 
% TC) 

({3 TC) . 0 .4 . 8 .0 . 4 . 8 s 
' 

. 0' ( . 0 ' . 0 ) 54 58 66 49 52 53 55.3 

. 5 ) ( 
' . 5 ) 71 73 75 64 71 74 71.3 

(-.25,-.25) 71 63 68 64 64 60 65.0 
( 

' .o ) 75 73 70 70 67 78 72.2 
( ' . 5 ) 77 72 76 71 75 82 75.5 
( - . 5 ' .o ) 76 71 67 73 75 82 74.0 
( ' . 25) 78 74 76 72 77 85 77.0 
( 

' . 7 5 ) 75 76 76 69 73 75 74.0 
0 0' ( . 0 ' . 5 ) 61 54 52 65 64 61 59.5 
• 0 ) (-.25,-.25) 59 52 42 61 64 60 56.3 

( ' .o ) 63 64 53 80 70 72 67.0 
( 

' . 5 ) 80 75 66 80 80 76 76.2 
(-. 5 ' .o ) 72 70 58 86 75 78 73.2 
( ' . 25) 77 74 64 86 82 78 76.8 
( 

' 
. 7 5) 91 78 70 84 85 74 80.3 

. 0' (-.25,-.25) 64 57 54 72 59 61 61.2 

. 5 ) ( 
' .0 ) 66 53 52 72 56 66 60.8 

( ' . 5 ) 71 73 64 77 71 74 71.7 
(-.5 ' .o ) 65 64 64 73 72 77 69.2 
( ' . 2 5) 75 73 61 81 78 78 74.3 
( ' . 7 5) 80 81 77 83 78 73 78.7 

-.25, (-.25, . 0 ) 51 42 42 51 55 41 47.0 
-.25) ( 

' . 5 ) 75 67 60 75 71 66 69.0 
( - . 5 ' .o ) 53 51 48 70 70 60 58.7 
( ' . 25) 68 67 61 75 79 69 69.8 
( 

' 
. 7 5) 79 77 74 78 78 68 75.7 

-.25, (-. 25' . 5 ) 73 57 65 66 59 58 63.0 
.o ) (-.5 ' .0 ) 50 43 47 54 56 50 50.0 

~ ' . 25) 63 55 59 66 66 61 61.7 

' . 75) 78 75 69 74 76 65 72.8 
-.25, ( -. 5 ' . 0 ) 64 52 59 66 56 51 58.0 

. 5 ) ( 
' . 25) 56 48 46 54 52 51 51.2 

( ' .75) 71 67 64 68 59 59 64.7 
-. 5' (-.5 ' .25j 40 38 33 49 43 37 40.0 

. 0 ) ( 
~'- • 7 5) 70 65 64 76 70 58 67.2 

-. 5' (-. 5 ' . 75) 59 56 52 68 58 54 57.8 
. 25) 

% 
68.1 63.6 60.9 70.1 67.7 65.7 66.0 

s 
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s-
% s 

2.44 
1. 61 
1. 59 
1. 62 
1. 61 
2.07 
1. 83 
1.10 
2.17 
3.29 
3.76 
2.23 
3.80 
3.08 
3.17 
2.57 
3.37 
1. 78 
2.27 
2.89 
1. 43 
2.46 
2.38 
3.93 
2.59 
1. 69 
2.52 
1. 91 
1. 74 
1. 99 
2.52 
1. 51 
2.01 
2.25 
2.54 
2.29 



TABLE 9 

AGREEMENT OF FIVE PAIRED ALGORITHMS WITH o = 4.0, 
P = 0.0, AND 20-20-20 SPLIT FOR MVN 

Paired Clustering Algorithms 

[ .o ] [-·~5] [-. ~5] [-. ~5] [-: 65] ' . 5 -.25 -.25 -.25 

k (-t] (-T) (-t) [-t) (-t) 
2 ck .6689 .6548 .6831 .6470 .6718 

s .1809 .1815 .1915 .1783 .1878 c 

3 ck .8814 .8999 .9112 .8918 .9094 

s .1068 .0963 .0830 .0929 .0711 c 

4 ck .8743 .8992 .9043 .8886 .8912 

s .0594 .0602 .0542 .0493 .0513 
c 

5 ck .8746 .9038 .9047 .8861 .8899 

s .0459 .0486 .0457 .0457 .0432 c 

6 ck .8849 .9054 .9121 .8890 .9014 

s .0380 .0398 .0400 .0402 .0421 
c 

7 ck .8982 .9111 .9148 .8988 .9086 

s .0303 .0341 .0339 .0339 .0331 c 

8 ck .9097 .9228 .9272 .9102 .9206 

s .0247 .0289 .0284 .0271 .0260 
c 

9 ck .9195 .9307 .9351 .9193 .9289 

s .0218 . .0238 .0250 .0234 .0218 c 

10 ck .9284 .9394 .9425 .9297 .9392 

s .0197 .0220 .0199 .0210 .0200 c 

% 58 50 51 57 52 s 
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Figure 8. Retrieval result of five paired clustering algorithms with 
o = 4.0, p = .0 snd 20-20-20 sp.Ht for MVN 
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TABLE 10 

AGREEMENT OF FIVE PAIRED ALGORITHMS WITH o = 4.0, 
p = 0.0, AND 30-20-10 SPLIT FOR MVN 

Paired Clustering Algorithms 

.o -.25 -.25 -.25 -.25 
' ' ' ' ' . 5 \.-. 25 -. 25./ -. 25./ \. . 0 .J 

k [-:~J [-: :5] [-t] [-t] [-:~5] 
2 ck .7408 .8060 .7935 .8045 .8430 

s .1773 .1712 .1748 .1779 .1552 c 

3 ck .8840 .9115 .9060 .8873 .9057 

s .1079 .0831 .0852 .0972 .0886 c 

4 ck .8566 .8755 .8749 .8567 .8791 

s .0604 .0580 .0582 .0591 .0628 c 

5 ck .8574 .8737 .8827 .8572 .8804 

s .0418 .0593 .0520 .0491 .0472 c 

6 ck .8791 .8918 .8910 .8787 .8959 

s .0422 .0508 .0494 .0439 .0401 c 

7 ck .8918 .9082 .9133 .8968 .9064 

s .0338 .0419 .0401 .0375 .0329 c 

8 ck .9081 .9176 .9212 . 9058. .9191 

s .0301 .0331 .0332 .0308 .0282 c 

9 ck . 9.194 .9282 .9323 .9158 .9307 

s .0260 .0283 .0280 .0245 .0252 c 

10 ck .9282 .9345 .9394 .9246 .9392 

s .0215 .0244 .0258 .0217 .0214 c 

% 60 55 53 53 50 s 
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Figure 9. Retrieval result of :live paired clustering algorithms with 
o = 4.0, p = .0 and 80-20-10 split for MVN 
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TAVLE 11 

AGREEMENT OF FIVE PAIRED ALGORITHMS WITH 8 = 4.0, 
e = 15°, AND 20-20-20 SPLIT FOR MVLN 

Paired Clustering Algorithms 

( . 0 ) (-·~5] (-. ~5) (-. 251 (-T) ' . 5 -.25 -.25 -. 25) 

k [-t) [-T] [-t) [-t] [-t] 
2 ck .6836 .6641 .7054 .6698 .6938 

s .1847 .1842 .1980 .1830 .1877 
c 

3 ck .8659 .9053 .9183 .9012 .9196 

s .1198 .0865 .0867 .0842 .0719 c 

4 ck .8871 .9032 .9100 .8909 .9021 

s .0594 .0605 .0614 .0569 .0547 
c 

5 ck .8878 .9072 .9102 .8939 .9047 

s .0436 .0421 .0465 .0447 .0432 
c 

6 ck .9000 .9140 .9192 .9076 .9137 

s .0363 .0367 .0388 .0337 .0360 
c 

7 ck .9075 .9258 .9262 .9106 .9172 

s .0319 .0334 .0345 .0308 .0328 c 

8 ck .9137 .9293 .9291 .9164 .9222 

s .0283 ·• 0310 .0276 .0263 .0254 c 

9 ck .9209 .9331 .9371 .9238 .9303 

s .0215 .0263 . 0 2.7 9 .0228 .0231 
c 

10 ak .9275 .9389 .9410 .9301 .9383 

s .0214 .0238 .0247 .0197 .0187 c 

% 48 43 36 53 60 s 
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Figure 10. Retrieval result of the five paired clustering alguritbms with 
t5 = 4.0, e = 10.0 and 20- 20-20 sp1it for MVLN 
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TABLE 12 

AGREEMENT OF FIVE PAIRED ALGORITHMS WITH o = 4.0, 
e = 15°, AND 30-20-10 SPLIT FOR MVLN 

Paired Clustering Algorithms 

. 0 -.25 -.25 -.25 -.25 
' ' ' , I 

. 5 -.25 -.25 -. 25_, .o .I 

k [-t] [-:;s] [-t] [-t] [-t] 
2 ck .6525 .7537 .7557 .7326 .8193 

s .1550 .1803 .1877 .1744 .1664 c 

3 ck .8789 .9172 .9198 .8945 .9118 

s .1084 .0841 .0808 .0953 .0854 
c 

4 ck .8691 .9048 .8995 .8768 .8921 

s .0674 .0643 .0617 .0646 .0623 
c 

5 ck .8635 .9052 .8925 .8692 .8853 

s .0466 .0516 .0528 .0477 .0503 c 

6 <\ .8666 .9029 .8979 .8761 .8926 

s .0414 .0428 .0448 .0427 .0468 c 

7 ck .8767 .9029 .8988 .8861 .9017 

s .0383 .0388 .0375 .0423 .0390 
c 

8 ck .8819 .9147 .9102 .8899 .9043 

s .0355 .0347 .0334 .0347 .0329 
c 

9 ck .8945 .9168 .9152 .8985 .9157 

s .0364 .0338 .0309 .0326 .0276 c 

10 ck .9130 .9252 .9229 .9118 .9290 

s .0314 .0320 .0284 .0295 .0252 
c 

% 57 49 46 51 44 
s 
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Figure 11. Retrieval result of the five paired clustering algmit.luns with 
o = 4.0, e = 10.0 and 80-20-10 split for MVLN 
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TABLE 13 

THE %9 ON LOCAL MAXIMUM FOR ALL POSSIBLE PAIRS OF 

THE NINE ALGORITHMS WHEN o = 4.0 WITH MVLN 

( {3 , split 20-20-20 30-20-10 20-10-30 20-30-10 
TC ) 

({3 rr) 
8 

15 30 15 30 15 30 15 30 , 
. 0 , ( . 0 , . 0 ) 20 17 20 15 17 14 26 25 

-.5 ) ( 
' . 5 ) 24 22 21 22 16 24 28 21 

(-.25,-.25) 24 27 19 20 19 24 34 32 
( , . 0 ) 27 20 30 27 26 30 34 33 
( , . 5 ) 22 26 32 30 25 27 36 37 
(-. 5 ' .o ) 27 21 31 31 34 31 38 37 
( , . 2 5 ) 23 22 30 35 31 30 37 37 
( ' . 7 5 ) 27 29 28 33 29 22 37 29 

. 0 ' ( .o ' . 5 ) 29 32 27 36 26 27 30 36 

. 0 ) (-. 25 '-. 25) 32 28 29 29 32 27 33 37 
( , .o ) 32 30 30 34 33 35 44 34 
( , . 5 ) 41 37 42 44 40 35 52 33 
( -. 5' . 0 ) 33 30 40 40 42 44 47 33 
( ' . 25) 34 35 41 45 46 44 47 37 
( 

' . 7 5) 39 43 48 48 45 44 51 38 
. 0 ' (-.25,-.25) 33 33 34 40 41 39 38 37 

. 5 ) ( 
' . 0 ) 34 31 44 41 36 46 36 35 

( , . 5 ) 38 41 49 46 47 47 44 49 
(-. 5 

' . 0 ) 37 37 51 48 47 44 43 42 
( ' . 25) 42 39 53 58 47 51 44 52 
( 

' 
. 7 5 ) 48 44 57 57 57 48 47 45 

-.25, (-.25, . 0 ) 32 26 28 32 34 30 32 27 
-.25) ( , . 5 ) 43 46 49 48 47 41 52 48 

(-. 5 ' . 0 ) 39 34 47 37 48 43 48 44 
( ' . 25) 36 41 46 50 50 52 53 50 
( • . 7 5) 53 52 51 50 47 52 52 46 

-.25, (-. 25' . 5 ) 43 53 38 41 51 45 59 53 
. 0 ) (-.5 

' 
.o ) 42 37 34 37 46 47 55 42 

( ' . 25) 35 45 40 46 52 54 51 53 
( • . 75) 60 53 44 54 57 56 51 49 

-.25, ( - . 5 ' . 0 ) 42 49 44 45 51 50 52 49 
. 5 ) ( 

' • 25) 45 42 43 43 50 48 51 52 
( • . 75} 56 46 50 51 53 62 61 56 

-.5 I (-. 5 ' . 25) 29 27 34 32 49 38 39 47 
. 0 ) ( 

' . 75) 52 52 51 42 57 55 52 48 
-.5 ' (-. 5 

' . 7 5) 53 46 39 49 46 51 44 56 
.25) 

% 
36.8 35.9 38.7 39.9 40.9 39.7 43.8 41.4 

s 
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TABLE 13 (Continued) 

( fJ' split 30-10-20 10-20-30 10-30-20 
% s% Tr ) 

(fJ_I rr) 
8 

15 30 15 30 15 30 s s 

• 0 ' ( . 0 ' . 0 ) 10 19 16 17 20 23 18.5 1.16 
-.5 ) ( I . 5 ) 10 19 28 25 34 32 23.3 1. 66 

(-.251-.25) 11 22 27 28 33 31 25.1 1. 74 
( ' . 0 ) 18 21 36 34 44 39 29.9 1. 98 
( I . 5 ) 18 27 43 39 45 47 32.4 2.39 
(-. 5 I . 0 ) 21 28 47 41 46 44 34.1 2.27 
( I . 25) 22 26 48 40 45 48 33.9 2.44 
( 

' . 7 5) 20 24 36 39 42 45 31.4 2.00 
. 0 ' 

( . 0 ' . 5 ) 30 21 29 34 28 30 29.6 1. 08 
. 0 ) (-.251-.25) 25 26 30 38 33 39 31.3 1.18 

( ' . 0 ) 36 31 39 40 40 46 36.0 1. 36 
( ' . 5 ) 45 36 46 47 44 43 41.8 1. 40 
( - • 51 . 0 ) 48 36 42 58 49 46 42.0 2.01 
( 

' . 25) 48 37 48 54 44 53 43.8 1. 68 
( . 75) 46 33 39 48 47 42 43.6 1. 33 

. 0 ' (-.251...;,25) 31 34 32 40 35 42 36.4 0.98 
. 5 ) ( ' .o ) 42 47 44 49 46 46 41.2 1. 53 

( ' . 5 ) 54 49 53 48 55 52 48.0 1. 28 
(-.5 I . 0 ) 53 51 54 53 53 56 47.8 1. 68 

~ ' .25) 51 55 58 53 57 56 51. 1 1. 61 
. 7 5) 50 48 53 53 57 54 51.3 1. 26 

-.25, (- • 251 .o ) 37 22 39 31 32 46 32.0 1. 58 
-.25) ( I . 5 ) 52 44 51 44 48 53 47.6 0.98 

(-.5 ' . 0 ) 44 40 43 50 46 47 43.6 1.24 
( I . 25) 48 47 46 52 50 56 48.4 1. 36 
( 

' . 75) 50 50 49 53 49 51 50.4 0.56 
-.25, (-.25, . 5 ) 43 40 48 45 48 53 47.1 1. 62 

. 0 ) (-. 5 ' .0 ) 40 31 50 50 41 48 42.9 1. 82 
( I . 25) 49 45 48 45 45 56 47.4 1. 52 
( • 75) 49 47 50 56 58 58 53.0 1. 28 

-.25, (-. 5 I • 0 ) 41 41 56 45 49 49 47.4 1.19 
. 5 ) ( I . 25) 38 37 49 42 50 55 46.1 1. 45 

( 
' . 7 5) 50 41 45 60 53 50 52.4 1. 65 

-.5 ' (-. 5 I . 25) 41 35 46 39 39 42 38.4 1. 75 
.o 1 ( -' • 7 5 ) 49 52 44 58 57 47 51.1 1. 28 

-.5 I (-. 5 ' . 7 5) 44 46 42 51 50 47 47.4 1. 22 
.25) 

% 
37.9 36.3 43.2 43.9 44.8 46.4 40.7 

s 
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TABLE 14 

THE % ON LOCAL MAXIMUM FOR ALL POSSIBLE PAIRS OF 
s 

THE NINE ALGORITHMS FORo = 6.0 WITH MVLN. 

{3, split 20-20-20 30-20-10 20-10-30 20-30-10 
1t ) 

({3, rr) 
e 

15 30 15 30 15 30 15 30 

. 0 ' ( .o ' . 0 ) 45 40 30 43 44 30 37 40 
-.5 ) ( 

' . 5 ) 51 43 41 50 50 47 43 56 
(-.25,-.25) 46 50 46 42 46 46 43 50 
( ' .0 ) 51 54 49 55 58 48 51 60 
( ' . 5 ) 53 52 53 61 58 52 56 64 
(-.5 ' .o ) 58 57 54 64 59 54 57 62 
( ' . 2 5 ) 59 55 57 65 62 55 60 66 
( . 7 5 ) 67 54 54 62 58 57 58 69 

.o ' ( . 0 ' . 5 ) 50 43 49 55 49 43 41 54 

. 0 ) (-. 25 '-. 25) 51 49 46 45 51 451 51 44 
( ' . 0 ) 66 49 64 51 67 551 65 61 
( ' . 5 ) 66 65 71 73 69 68 77 73 
( -. 5' .o ) 60 58 74 77 72 66 71 70 
( ' • 25) 64 67 77 78 79 72 71 69 
( . 7 5 ) 71 69 77 78 79 78 80 81 

.0 ' (-.25,-.25) 50 51 54 63 53 49 55 61 

. 5 ) ( , . 0 ) 53 47 63 59 64 49 51 68 
( ' . 5 ) 60 64 68 78 64 64 69 66 
(-. 5 

' 
. 0 ) 56 59 77 70 70 68 65 70 

( ' . 25) 65 67 80 77 76 76 69 69 
( 

'~ 
. 75) 73 74 76 82 77 77 76 80 

-.25, (-.25, . 0 ) 31 41 39 35 43 38 50 50 
-.25) ( ' . 5 ) 58 70 61 76 65 65 64 71 

(-.5 ' . 0 ) 47 53 57 64 61 56 57 63 
( ' • 2 5) 58 67 66 74 68 65 58 65 
( ' . 75) 73 73 72 84 74 72 75 78 

-.25, (-.25, . 5 ) 58 58 55 67 61 57 60 65 
. 0 ) (-. 5 , . 0 ) 37 38 48 62 59 45 54 55 

( ' . 25) 53 56 58 72 71 55 53 59 
( 

' . 75) 77 71 70 73 70 67 66 84 
-.25, (-. 5 ' . 0 ) 47 54 58 61 61 57 60 64 

. 5 ) ( ' • 25) 43 42 48 56 56 56 55 60 
( . 7 5) 68 61 61 61 70 65 60 69 

-.5 ' (-.5 ' . 25) 34 32 39 50 45 37 39 41 
.o ) { . 75) 74 60 61 67 70 61 63 71 

-.5 ' (-. 5 ' . 75) 62 53 51 59 65 53 61 70 
. 2 5) 

% 
56.5 55.4 58.4 63.6 62.3 56.9 58.9 63.8 

s 
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TABLE 14 (Continued) 

({3' split 30-10-20 10-20-30 10-30-20 
% s% 1T ) 

( f3' 1T) 
e 

15 30 15 30 15 30 s s 

. 0 ' ( . 0 ' .o ) 41 31 44 30 45 47 40.2 1. 60 
-.5 ) ( ' • 5 ) 45 45 50 47 59 66 50.4 1. 91 

(-.25,-.25) 46 53 46 46 58 63 50.1 1. 68 
( ' .o ) 54 53 58 48 64 69 57.4 2.03 
( 

' . 5 ) 58 52 58 52 68 73 60.3 2.16 
( - . 5 ' .o ) 61 56 59 54 68 74 62.6 1. 96 
( ' • 25) 60 66 62 55 71 72 63.9 1. 80 
( • • 7 5) 59 63 58 57 70 75 63.4 1. 88 

. 0 ' ( .o ' • 5 ) 44 41 49 43 47 59 48.2 1. 47 

.o ) (-.25,-.25) 39 48 51 45 51 51 48.6 1.19 
( ' .o ) 53 57 67 55 60 58 59.1 1. 64 
( ' • 5 ) 76 68 69 68 80 76 72.6 1. 31 
( -. 5' .o ) 71 71 72 66 81 80 71.7 1. 85 
( 

' . 25) 77 78 79 72 81 74 74.4 1. 40 
( ' . 7 5) 68 76 79 78 88 76 77.9 1. 69 

.o ' (-.25,-.25) 53 55 53 49 57 69 55.7 1. 50 
. 5 ) ( 

' .o ) 51 55 64 49 55 68 56.8 1. 80 
( ' . 5 ) 72 73 64 64 69 81 68.9 1. 51 
( - . 5 ' .o ) 76 74 70 68 71 78 70.3 1. 78 
( ' . 25) 82 78 76 76 73 80 74.5 1.40 
( • . 7 5) 75 80 77 77 77 77 77.6 0.75 

-.25, (-. 25' . 0 ) 37 39 43 38 49 48 41.7 1. 57 
-.25) ( 

' . 5 ) 72 57 65 65 68 75 67.2 1. 58 
(-. 5 ' . 0 ) 64 56 61 56 64 72 59.6 1. 60 
( 

' . 25) 72 68 68 65 72 73 67.6 1. 33 
( • . 7 5) 68 72 74 72 78 81 74.9 1.11 

-.25, (-.25, . 5 ) 63 56 61 57 63 65 60.9 0.98 
. 0 ) (-.5 ' . 0 ) 57 48 59 45 57 59 51.4 2.14 

( ' . 25) 70 61 71 55 63 68 61.7 1. 84 
( ' . 75) 69 68 70 67 75 76 71.9 1. 36 

-.25, (-.5 ' . 0 ) 58 52 61 57 63 65 59.4 1. 62 
• 5 ) ( ' .25) 55 51 56 56 55 56 53.8 1. 51 

( ' . 75) 64 62 70 65 68 67 65.2 1.18 
-.5 ' (-.5 ' . 25) 41 41 45 37 48 43 41.9 1. 56 

. 0 ) ( 
' . 75) 63 59 70 61 71 67 66.3 1. 50 

-.5 ' (-. 5 ' . 75) 60 55 65 53 63 58 60.6 1. 91 
. 25) 

% 
60.4 58.8 67.6 62.8 65.3 67.8 61.3 

s 



{3, rr) 

. 0 ' -.5 ) 

. 0 ' . 0 ) 

. 0 ' .5 ) 

-.25, 
-.25) 

-.25, 
.o ) 

-.25, 
. 5 ) 

-.5 ' . 0 ) 

-.5 ' . 2 5) 

-.5 ' . 75) 

% 

TABLE 15 

PERCENT RETRIEVAL OF TRUE POPULATION FOR ALL 
ALGORITHMS WITH MVLN 

split 20-20-20 30-20-10 20-10-30 20-30-10 

0 e 
15 30 15 30 15 30 15 30 

4.0 18 21 17 21 17 20 25 24 
6.0 48 50 43 43 47 41 53 45 

4.0 47 53 50 49 53 45 53 47 
6.0 76 72 75 75 77 72 77 72 

4.0 55 55 62 60 54 59 58 62 
6.0 79 78 84 84 80 71 83 86 

4.0 73 63 65 68 66 68 71 69 
6.0 84 82 80 83 80 77 83 80 

4.0 76 73 65 66 74 74 78 77 
6.0 93 89 80 82 87 78 84 90 

4.0 81 79 74 76 76 74 75 82 
6.0 89 87 86 89 89 84 87 92 

4.0 82 84 72 69 86 83 88 89 
6.0 93 94 86 90 90 89 90 98 

4.0 82 80 76 71 86 85 81 88 
6.0 94 98 88 91 95 92 90 95 

4.0 79 80 78 79 79 83 80 79 
6.0 96 91 86 81 93 90 94 95 

4.0 65.3 65.3 62.1 62.1 65.7 65.7 67.7 68.6 
6.0 83.6 82.3 78.7 79.8 82.0 77.1 82.3 83.7 
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TABLE 15 {Continued) 

split 30-10-20 10-20-30 10-30-20 
{31 TC) e % s% 

& 15 30 15 30 15 30 

.o I 4.0 15 22 23 22 27 34 21.9 1. 29 
-.5 ) 6.0 45 46 54 44 53 52 47.4 1.15 

.o I 4.0 56 35 53 57 58 57 50.9 1. 64 
. 0 ) 6.0 67 72 85 76 82 83 75.8 1. 31 

. 0 I 4.0 64 52 71 67 59 66 60.3 1. 45 
. 5 ) 6.0 82 79 79 86 83 91 81.8 1. 26 

-.251 4.0 61 59 68 68 66 73 67.0 1. 09 
-.25) 6.0 83 80 88 88 92 89 83.5 1. 14 

-.25, 4.0 73 61 78 82 74 82 73.8 1. 64 
. 0 ) 6.0 87 79 94 86 94 93 86.9 1. 50 

-.251 4.0 67 62 77 83 80 88 76.7 1. 75 
. 5 ) 6.0 86 82 96 91 95 95 89.1 1. 13 

-.5 I 4.0 77 71 84 87 85 89 81.9 1. 83 
. 0 ) 6.0 92 82 95 94 95 97 91.8 1.16 

-.5 ' 4.0 75 68 83 86 83 90 81.0 1. 72 
. 25) 6.0 88 88 98 93 95 95 92.9 0.92 

-.5 ' 4.0 75 68 73 79 75 85 78.0 1.12 
. 7 5 ) 6.0 82 87 96 94 97 92 91.0 1. 38 

4.0 62.6 55.3 67.8 70.1 67.4 73.8 65.7 
% 6.0 79.1 77.2 87.2 83.6 87.3 87.4 82.2 
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TABLE 16 

THE% ON LOCAL MAXIMUM FOR FOUR PAIRS OF (-.5, .75) s 
WITH OTHER ALGORITHMS FOR MVN AND MVLN 

split 20-20-20 30-20-10 % 
( f3 ' n) 

0 
p . 0 . 4 . 8 . 0 . 4 . 8 s s% 

s 

( . 0 ' .o ) 4.0 46 48 48 54 45 44 47.5 1. 45 
6.0 91 78 70 84 85 74 80.3 3.17 

( . 0 ' . 5 ) 4.0 58 51 35 60 48 37 48.2 4.25 
6.0 80 81 77 83 78 73 78.7 1. 43 

(-. 25 '-. 25) 4.0 57 54 51 53 51 53 53.2 0.91 
6.0 79 77 74 78 78 68 75.7 1. 69 

(-.25, .o ) 4.0 52 53 57 50 48 50 51. 7 1. 28 
6.0 78 75 69 74 76 65 72.8 1. 99 

split 20-20-20 30-20-10 20-10-30 20-30-10 
(f3, n) 

0 
e 

15 30 15 30 15 30 15 30 

( . 0 ' . 0 ) 4.0 39 43 48 48 45 44 51 38 
6.0 71 69 77 78 79 78 80 81 

( . 0 ' . 5 ) 4.0 48 44 57 57 57 48 47 45 
6.0 73 74 76 82 77 77 76 80 

(-.25,-.25) 4.0 53 52 51 50 47 52 52 56 
6.0 73 73 72 84 74 72 75 78 

(-.25, .0 ) 4.0 60 53 44 54 57 56 51 49 
6.0 77 71 70 73 70 67 66 84 

split 30-10-20 10-20-30 10-30-20 % So; 
( f3' 1T) 0 e 

15 30 15 30 15 30 s /0 

s 

( .o ' .0 ) 4.0 46 33 39 48 47 42 43.6 1. 33 
6.0 68 76 79 78 88 76 77.9 1. 69 

( .0 ' . 5 ) 4.0 50 48 53 53 57 54 51.3 1. 26 
6.0 75 80 77 77 77 77 77.6 0.75 

(-.25,-.25) 4.0 50 50 49 53 49 51 50.4 0.56 
6.0 68 72 74 72 78 81 74.9 1.11 

(-.25, . 0 ) 4.0 49 47 50 56 58 58 53.0 1. 28 
6.0 69 68 70 67 75 76 71.9 1. 36 
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