
A FAULT-ADAPTIVE POLE-PLACEMENT

ALGORITHM SUITED FOR COMPUTER

IMPLEMENTATION

By

MARK ALAN BREWER
I

Bachelor of Science in Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma
1983

Master of Science in Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma
1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

July, 1988

A FAULT-ADAPTIVE POLE-PLACEMENT

ALGORITHM SUITED FOR COMPUTER

IMPLEMENTATION

Thesis Approved:

Thesis Advisor

??ltUt;: . r Jk'P-'"

,/
/ / /"r .' , ,_ ,,,,

, (' Ir.

Dean of the Graduate College

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to numerous individuals who

contributed time, assistance, and encouragement throughout my graduate

program. In particular, I would like to thank Dr. Charles Bacon for

tremendous support and encouragement throughout my years at Oklahoma

State University. His assistance was invaluable. Thanks also goes to Dr.

Rao Yarlagadda, Dr. Martin Hagan and Dr. Marvin Keener for their time

and contributions. Their many suggestions and ideas were very beneficial.

Let me also acknowledge the generous research fellowship of Dow

Chemical. Their fellowship was extremely influential in providing the

opportunity and time for this research program. In addition to Dow

Chemical, I would like to thank numerous individuals at AT&T

Technologies, Inc. in Oklahoma City for their support and flexibility in

setting working hours. In particular, let me single out Bill Dickerson, Bob

Langmacher, Charlie Stapp, Sam Kysar, Connie Moore, and Bob Hering as

supervisors who allowed me the opportunity to complete my studies.

Many thanks are due my parents for making this time at school

possible. Their encouragement and assistance was extremely important.

Finally, let me thank my wife Beth who was willing to wait for a new

house. She gave up many hours while I worked on homework and research.

Her wonderful support held everything together .

.; i ~

.J.. - .L

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION TO THE FAULT-ADAPTIVE
CONTROL PROBLEM

Introduction
Preliminary Definitions ..
Failures in Control Systems.
Fault Tolerance Definitions.
Classical Controllability ..
Non-Minimal Control Systems.
Previous Work on Fault Tolerance .
Research Goal and Plan

II. ADAPTION TO FAILURES

III.

Adaptive Pole-Placement: A First
Approach

Adaptive Pole-Placement: A Second
Approach

Brogan's Pole-Placement Method .
Brogan's Method for Computer

Implementation
Rephrasing for Computer Implementation
Potential Solution Criteria

OPTIMIZING BROGAN'S METHOD FOR FAST
COMPUTER SOLUTION

Introduction
Brute Force Selection:

Random Selection .
Advantages
Disadvantages ..

Brute Force Selection:
Modified Random Selection.

Advantages ..
Disadvantages .

iv

1

1
3
4
7

10
12
13
16

17

17

20
21

28
30
33

35

35

37
37
38

39
41
42

Chapter Page

Ranked Selection: Condition
Evaluation . 42

Random Vector Approach
Phase One Singularity Test

Two Vector Dependency Test.
Phase One Test.
Advantages of Phase One Test.
Disadvantage of Phase One Test.

Phase One and Two Singularity Tests.
Advantages and Disadvantages.

Implementations, Comparisons, and
Recommendations.

Example Problem .
Generialization of Phase One

Test Effectiveness.
Time Evaluation of the Phase One Test

versus the Brute Force Method.
Summarizing the Phase One Test .

IV. FINDING A BETTER SOLUTION

Introduction .
Full Search Using the Phase One Test
False Negatives.
Application of Phase One Test.
A More Intelligent Search.
Choosing a Best Feedback Matrix.
Comparison to Brogan's Method.
Effects of Changing the F Matrix
Conclusions.

V. COMPUTER IMPLEMENTATION DETAILS

Introduction .
Calculating the Z Matrix
Calculating the X Matrix
Phase One Test .
Using the Phase One Test For

Fault Adaption .

VI. CONCLUSIONS AND FUTURE WORK

v

44
46
47
53
54

54
56
57

58
59

64

70
73

74

74
74
76
78
79
83
87
90
94

96

96
96
98
98

101

105

Chapter

Conclusions.
Future Work.

Regional Pole-Placement
Parallel Implementations.
Repositioning the Zero Vector Test.
Eliminating Redundant Vector Tests.
Tridiagonal Systems
Redundant Actuators

BIBLIOGRAPHY .

vi

Page

105
108
108
109
109
110
111
112
113

LIST OF TABLES

Table Page

I. CANDIDATES ATTEMPTED BY BRUTE FORCE
SELECTION. 60

II. BRUTE FORCE RESULTS FOR VARYING ZERO
DENSITY. . . . 61

I II. PHASE ONE TEST RESULTS: EXAMPLE PROBLEM. 62

IV. CANDIDATES ATTEMPTED AFTER PHASE ONE TEST. 63

V. COMPARISON OF BRUTE FORCE VS.
PHASE ONE TEST 63

VI. LARGE SCALE SIMULATION RUN:
100,000 SYSTEMS 67

VII. PHASE ONE TEST RESULTS: 100,000 SYSTEMS 68

VIII. PHASE ONE TEST SUMMARY 73

IX. FOUR STEPS OF THE PHASE ONE TEST 76

X. TEST CASE RESULTS. 89

vii

Figure

1.

2.

3.

4.

5.

6.

7 .

8.

9.

10.

LIST OF FIGURES

ADAPTIVE FEEDBACK CONFIGURATION.

PHASE ONE TEST OUTLINE

CALCULATION TIME VS. DIMENSION

X(O) VS. TIME.

X(O) VS. TIME.

PSUEDOCODE FOR CALCULATION OF Z.

STEP ONE: ZERO VECTOR TEST.

STEPS ONE AND TWO TESTS.

STEP FOUR: EQUAL VECTORS TEST

FAULT ADAPTING PROCEDURE

vi'ii

Page

9

55

72

92

93

97

99

100

101

103

CHAPTER I

INTRODUCTION TO THE FAULT-ADAPTIVE

CONTROL PROBLEM

Introduction

This research presents a new, fault-adaptive control strategy for linear

systems suitable for fast, on-line computer control schemes. The new

strategy is an extension of the well-known pole-placement method initially

developed by Brogan[11. Details of the computer implementation are

discussed and numerous examples are shown.

This chapter introduces the preliminary definitions, the various failure

modes that occur in linear systems, the associated ideas of controllability

and some previous work on fault-adaptive schemes.

Chapter II develops the problem of adapting to actuator failures in

control systems. Several approaches are explored and discussed. Brogan's

method is introduced and explained in detail. The advantages and

suitability of Brogan's approach for the fault-adaptive problem are explained.

Finally, Brogan's method is cast into a new form for purposes of this new

adaptive strategy.

Chapter III develops the adaptive strategy in detail for the problem of

1

2

finding a feedback solution as quickly as possible. Several possible control

approaches are introduced and considered. Their relative advantages and

disadvantages are explored, and examples of their use are presented.

Finally, a four-step method which gives excellent results at minimal

computer cost is chosen. The four-step test is compared against brute force

computer solutions through extensive computer simulations. Chapter III

closes by comparing the two methods and showing how the four-step method

results in significantly superior performance over a brute force computer

solution.

Chapter IV extends the results of Chapter III for the problem of

choosing a 'best' solution out of a solution space. In Chapter IV, two

different approachs are presented. The first approach uses the four-step test

developed in Chapter III to reduce the problem solution space by

approximately forty-four percent. A linear search through the remaining

space is then performed to determine the 'best' solution. The second

approach redefines the feedback matrix calculation procedure and then uses

a non-linear least squares algorithm to find a solution. It is shown that the

least-squares approach can generally find better solutions than the linear

search method.

Chapter V covers several details required for a successful computer

implementation of the fault-adaptive method outlined in this research.

Specific details for implementing the four-step test are covered. Chapter V

also explains the use of the four-step test in the overall fault-adaptive

solution.

Finally, Chapter VI summarizes the work and discusses possible

directions for future work. The last chapter also covers a few details that

were not addressed in earlier chapters.

Preliminary Definitions

This research deals with linear time-invariant systems described by

systems of differential equations of the form:

3

(1)

(2)

where x_ is the state vector, y_ is the output vector, u_ is the input vector, A is

the system matrix, B is the input mapping matrix, and C is the output

mapping matrix. For most discussions, C = I, where I is an identity matrix.

An important observation from equation (1) is that the columns of B

describe how each input signal is mapped into the state trajectory. Each

column represents a different actuator that can influence the system.

The word controller, or sometimes actuator, will be used to refer to

individual system inputs (u_)i.

Throughout this research, reference will be made to linear feedback of

4

the form:

u.=Fx.+w. (3)

where F is the feedback matrix and w. is the input vector to the closed-loop

system.

Failures in Control Systems

In a system with state or output feedback, the system failures that

can occur fall into three distinct types. A first type of failure that can occur

is in the plant dynamics. The open-loop model used to describe the system

is no longer valid. If a wing fails on an airplane, plant dynamics will

dramatically change and the original control laws are no longer valid. A

second type of fault occurs when a controller that influences a system fails,

but the original open-loop dynamics of the plant are not affected. An

example of this type of failure is the loss of a jet engine on an airliner. The

plant dynamics governing the plane's motion have not changed, but one

controller that influences the system dynamics has failed. A third type of

failure occurs when sensors used to determine plant states fail. An example

of this type of failure would be a failed altimeter in an airplane.

This research deals with the second type of failure. Specifically, failure

modes are considered when one or more controllers in a multiple controller

environment fail.

5

It will be assumed that if a controller fails it can be taken out of service

so that it exerts no influence on the system. This assumption corresponds to

zeroing out a column of B. Throughout the rest of this research, changes in

the B matrix will correspond to failures in controllers. It should be stressed,

however, that plant dynamics are not changing.

In other cases, consideration will be given to the problem where the

performance of the actuators is slowly varying over a long time period. This

problem can be handled by slowly varying the parameters of the B matrix

and then adapting to the new conditions.

Consider the following example of a system before and after an

actuator failure occurs. Given:

)'_ = x.

If the goal is to move the closed-loop pole positions to -2, -3, and -4, the

feedback matrix:

[

-0.3660
F = -3.5119

-0.0807

-1.1156

1.487 4

-1.4364

1.39441
-1.8593

-4.4545

can be used to move the poles to the desired locations I 11 . The resulting

(4)

(5)

closed-loop system matrix is given by:

[

-2.8779

A +BF= 0.18721
-0.08069

0.37184
-2.66755
-0.4364

6

-0.4648 l
-1.6655
-3.4545

(6)

If the characteristic equation is calculated, the resulting pole positions meet

the design goal.

f(A) = I >J +A +BF I = >-3 + 9 >-2 + 26 A + 24

f (\) = (\ + 2) (f- + 3) (\ + 4)

Under normal conditions, the calculated control law F will work exactly as

required. The resulting pole positions will be exactly where they were

intended to be positioned. However, consider what happens if the second

actuator fails and can no longer influence the system. Without any

adaptation to this failure, the system will be described by:

0.634 -1.1156
0.1873 -2.6676

-0.0807 -0.4363

1.3944 l
-1.6657
-3.4545

where B _2 is obtained from B by making all the entries in the second

(7)

(8)

(9)

7

column of B zero. The corresponding characteristic equation is:

f~ew(\. l = \.3 + 5.488 \.2 + 4.928 \. - 4.0957 (10)

when the characteristic equation is factored, the new pole positions are

clearly seen to be wrong:

fnew(\. l = (\. + 2) (\. - 0.512) (\. + 4 l (11)

Unless the system adapts to the loss of the actuator, the system will be

unstable.

If the control law calculation is repeated on this 'new' system, the

required pole positions can still be achieved by the following feedback matrix

F:

[

-39. 756

F= 0
23.648

15.567

0
-11.4866

-19~459 l
8.108

Fa ult-Tolerance Definitions

Two separate types of fa ult-tolerance can be considered. First, a

(12)

system could be defined as fault-tolerant if it remains controllable after the

failure of any single controller (u_)i. In other words, if a controller should

8

fail, the system will remain controllable in the reduced order (one column in

B will have zero entries) configuration. As shown later, this is equivalent to

having continued freedom to arbitrarily assign the closed-loop poles to any

desired location. The previous example represents this type of fault­

tolerance.

A second type of fault-tolerance could require only stability of the

system after the failure of any single controller (u_\. For this type, the

close-loop poles can only be placed in the stable region of the complex plane

but not placed at specific locations.

Clearly, the first type of fault-tolerance is more difficult to achieve than

the second type. Recall that a system can be stable yet not be fully

controllable. This research will concentrate on the first fault-tolerant

definition where the system remains controllable.

On the next page, Figure I represents a fault-adaptive configuration

where an ordinary system containing closed-loop feedback is augmented by

additional systems to achieve fault adaption. The additional details include

a fault detection/identification system followed by an fault-adaptive system.

The work of this research concentrates on the fault-adaptive processor which

calculates a new control law in the event of a system fault or change. The

new control law replaces the original feedback matrix F.

w

, -· · · i .: •.. • •• -: •··• · ... ·· ··• .· • -.: ~- ~~:- ~:: -: :: =--:~ ~--~:::· ·::-:·: =:-:~~-:= ::~::::: _____ ~;:·ro ~ r~ ~:\~:l--------1
I I I r······-···-·-·--···-·--::\.·: .. _' lden. I i
r . I [-;:, .. L ______ __ ·· · !

I i ! I -- -··· ·----·-· •. .. -·-····.-·····-- i

.... .,.... i I -,; L_.___ _ ___ _ I L--------- -- y r. -- ... -. -·-. -.. \ I
. .. I
r . '

r --- . ·" ' ,..,. 1 1--) I
l i '0 ~· f ~=- .

! i 1 ' r· ... -.......... ···-·-- , '
1 : I __ 1 I \..__ -1 A r:· .. ·'·t---·-··_J I

L______________ I

r· ... ·-·--.. ·-----.. --·--1
---- - - ·-- - ------! r.- i~ ·.,,,~~ · · ---

1 I
o I - - ·-- · ··- ~-- ·--- -----·'

l'.,
,':
•t '
!

I .
· ·· ··---··--~

I ,
i
I
I

I I

.. _ __ _________ __! Adaptive ! .. .
Feedback Control j Processor ,- "·' .. ;-

.______. _____ ___ _I

l\ \~ CJ r·) + ; '1 P c E::. t=::i c~ h -.... t' '< r: o n f ·1 c1 L · re + i n .-·1
I . .J .. . I' ·- I ' . .,, r ,. -./ .,.. \.). ,,. r . '-~ ':..1 ,j ' _..I ~ I ~ I

<:D

10

Classical Controllability

Recall that a system is controllable if the system state can be moved

from any arbitrary state to any other state in a finite amount of time.

Gilbert's Criterion offers the best insight into the physics of controllabilityf2 1.

His criterion states that if a system of the form (1) is transformed by the

linear transformation:

(13)

where M is the modal matrix of the A matrix and:

A*= M- 1AM

B*=M- 1B

Then, if A* is diagonal and if each row of B* has a non-zero element, the

system is controllable. For example:

Clearly, each state variable can be controlled because there are inputs to

each row of the A matrix.

(14)

(15)

(16)

11

While Gilbert's Criterion is a simple explanation of controllability, it

turns out that it is not the most efficient means of determining the

controllability of the system. It is not efficient to evaluate the modal matrix

because it requires solving for eigenvalues, eigenvectors, and eventually the

inverse of M.

A more efficient means of determining the controllability of a system is

Kalman's test for controllabilityl:3l f4l. This test states simply that if a

system is described by the form (1), where rank(A) is n and the

controllability matrix P is formed as:

(17)

Then, the system is controllable if, and only if, the rank of P is n. If the

rank is less than n, then there are not enough linearly-independent inputs to

influence the future states of the system.

If the dimension of P is small, a quick test to determine if rank(P J is

equal to n is given by:

det (P pT) =f 0 (18)

A further point about controllability was stated by WonhamlGI. He

proved that the pair (A,B) as in equation (1) is controllable if, and only if,

for every choice of the desired eigenvalues, there is a matrix F, in equation

(3), such that the closed-loop system defined by an A matrix, a B matrix

and a feedback matrix F (A,B,F), has the desired eigenvalues. In other

words, controllability is equivalent to the property that the closed-loop

transfer matrix:

12

T (s) = C [sl - (A +BF lf 1 B (19)

can be assigned an arbitrary set of poles by a suitable choice of the feedback

matrix F.

Non-Minimal Control System

At this point, the earlier example problem and the previous discussion

on controllability can be tied together to make an important observation

about a system that is fault-adaptive. Any system that can adapt to an

actuator fault must alternatively be described as being controllable when

any single actuator is removed from the system. In the example problem,

when one actuator was removed there was still another means to control the

system using the remaining actuators. A further point is that a system can

be described as fault-adaptive when any single actuator is removed, or any

two actuators, or any three, etc. Such a means can be used to describe the

degree to which a system is fault-adaptive.

If a system has the characteristics described above and the required

pole-placement control specifications do not offer any criteria for selecting

between the available feedback alternatives, the control problem will be

under-determined because there will be more than one control means to

achieve the required pole positions.

Previous Work on Fault-Tolerance

There are several papers in the literature exploring various issues of

the fault-adaptive problem. The following section will summarize some

relevant works.

13

Raza and Silverthorn address the fault-tolerant control problem using

an L 2 scheme and achieve good results on a flight control system (5J. Their

work differs from this research in two regards. First, they vary the B

matrix by applying different combinations of controllers as opposed to

changing the feedback matrix F. Second, the optimization problem that

they address is to minimize change in control signal variation as opposed to

minimizing pole movement. They change combinations of controllers as

needed. As a result of their approach, they are not able to maintain exact

pole locations.

Alos 171 addresses the problem of designing the system to be stable such

that if an actuator fault occurs, the system will maintain stability without

any changes in feedback. He argues effectively that even if a fault-adaptive

scheme is available, the system should remain stable during the time it

takes an adaption mechanism to detect and react to the fault. This work

does not address the question of how to adapt to a failure after one has

occurred.

14

A third relevant paper is by Pearson and Staatsf8 l. Their analysis is

similar to Alos in that they define classes of plants that will be robust to

arbitrary perturbations in problem data or controller parameters. Like the

previous paper, this one does not address adaption after the detection of a

fault.

Another significant paper is by Ackermannf9 l. This paper presents a

design method that determines state or output feedback which will result in

stability despite variations in plant parameters, sensor failures, and

quantization effects in the controller. Ackermann defines a parameter space

P that consists of the allowable feedback parameters that will result in a

closed-loop system with eigenvalues in a specified region of the eigenvalue

plane. He then shows how to calculate P and how to design a system that

is robust to the above failures. He states, however, that his technique does

not apply well to the multi-input problem due to too many design

parameters. Further, he states that the problem of actuator faults is still

open.

The problem studied in this research could also be classified under the

broad heading of adaptive control. However, most of the adaptive control

literature concerns deterministic autoregressive moving average (DARMAl

15

models and not linear multivariable models. Of the works on the

multivariable problem, Elliot and Wolovich have done extensive studyllOJ ll t J.

Their full multivariable adaptive approach provides for variations in the

plant dynamics as well as controller response and, as such, they are

addressing a different problem than the one presented in this research.

Their approach also has a restricted control structure and is better geared

towards small variations in system parameters as opposed to catastrophic

events such as controller failures.

A final reference that addresses the relevance of this research is a

report found in the April 1987 issue of IEEE Transactions on Automatic

Control 11 ~ 1 • This report was compiled by approximately fifty prominent

individuals in the controls field and summarizes the current status of

controls research, future directions for research, and issues still to be

resolved. This report states:

A more general class of control systems which adapt to
significant changes in their environment is the class of fault­
tolerant control systems. In this class of problems we admit
that one or more key components of the physical feedback
system will fail and that this failure can have significant
impact on stability or performance. At the simplest level we
can think of sensor and/or actuator failures, while at a more
complex level we can think of other system failures, e.g.,
partial structural damage to an aircraft due to a mid-air
collision or weapon damage. The idea is to design the control
system so as to retain stability and lose performance in a
gracefully degraded manner. It may be necessary to
reconfigure the control system following the detection of such
failures. Such reconfiguration may be as simple as reading a
new set of control gains from a precomputed table or as

complex as complete redesigning of the control system in
real-time. A challenging problem for control theory is to take
into account advances in computer technology and to
stimulate the development of real-time and concurrent
systems which allow the implementation of such control
strategies in hardware form.

What we lack at present is a set of prescriptive methodologies
that can be used to design fault-tolerant feedback control
systems.

Research Goal and Plan

The goals of this research are to achieve the following:

1. Develop and test an adaptive pole-placement algorithm specifically

designed to adapt to actuator failures.

16

i. The algorithm will provide a quick means to recalculate a control

law in situations where one or more actuators are changing.

11. The algorithm will maintain the same pole locations after

adaption.

ni. The algorithm can be used to allow for penalties associated with

the use of various actuators and adapt to minimize the use of

'expensive' actuators.

1v. The algorithm is suitable for rapid on-line computer calculations.

2. Design principles governing use and implementation of the adaptive

pole-placement algorithm will be specified. These principles will enable

the user to implement a fault-adaptive system as described.

CHAPTER II

ADAPTION TO FAILURES

Adaptive Pole-Placement: A First Approach

Once the various controllability issues are examined, the question of

how to adapt to controller failures needs to be explored. For the sake of the

following discussion, assume that a given control structure has been

developed through any of several strategies. Examples include optimal

control, pole-placement, and frequency response techniques. The result of

the control design is a linear feedback law of the form given in equation (3).

form:

Once F has been calculated, the completely specified system has the

i =Ax: +Bu_

y_ = Cx.

u_=Fx.+w_

(20)

(21)

(22)

with each matrix known. At this point, recall that the use of the feedback

can be viewed as a vehicle to move the open-loop poles of system (A, B) to

new locations under the new system (A, B, Fl. One possible reason for

moving the poles is to move them from the right half to the left half of the

17

complex plane in order to stabilize system response. However, no matter

what reason is used, whether pole-placement or not, the problem can be

viewed as having moved the poles from one location to another.

18

Based on the above discussion, assume that new pole positions were

selected to be optimal in some sense, and that the goal is to maintain those

pole positions in the presence of controller failures.

The problem can be stated as needing to develop an adaptive pole­

placement algorithm that will hold the poles of a system at certain locations

despite variations in the B matrix.

Consider the matrices:

S = (n x n) transformation matrix

G = (n x n) eigenvalue goal matrix

where G is a diagonal matrix with target or goal eigenvalues on the main

diagonal and zeros elsewhere. The pole-placement problem can now be

stated as follows:

Find the feedback matrix F which satisfies:

G = s- 1 (A+ BF) S

where the transformation matrix S diagonalizes the closed-loop system

matrix A-tBF. The required feedback matrix can be solved in the least-

squares sense as:

19

(23)

(24)

providing (Bt B)- 1 exists. Unfortunately, this development is flawed since

equation (24) has two unknowns (8 and F). The matrix S depends on the

value of F and hence Fis not unique. Furthermore, the solution in (24) is a

least-squares solution and other constraints may have to be satisfied before

we can say the eigenvalues are located correctly.

The pole-placement problem has received considerable attention

through the years and yet, it has remained a surprisingly difficult issue.

Numerous papers have been written discussing the calculation of a feedback

matri..x F to move the poles to new locations IJ:lJ Ill ll 4
J [l!'il.

20

Adaptive Pole-Placement: A Second Approach

From a pole-placement perspective, consider what happens when a

failure occurs. The B matrix changes from B to some new input mapping

matrix B*. Unless the feedback matrix F changes or adapts to the new B*

the poles will move to new, incorrect locations. Clearly, if (A+ BF) and (A+

B*F*) have the same characteristic polynomial, the system after the failure

with F* as a feedback matrix will have identical closed-loop poles as the

original system. These results will be obtained if:

BF=B*F* (25)

or if we solve the problem in a least-squares sense with the same remarks

as earlier:

(26)

However, if (B*t B* J- 1 does not exist F* cannot be found from (26).

In fact, the requirement that BF before the failure equals B*F* after the

failure is too stringent. (A+ BFJ can be 'similar' to (A+ B*F*l and not

exactly equal. Similar matrices have the same characteristic polynomials

and thus the same roots which is our goal.

In the case where (26) cannot be used, a different method to obtain F*

is needed. The goal of this research is to develop a new adaptive pole­

placement algorithm to solve this problem.

Brogan's Pole-Placement Method

21

The general problem of pole-placement can be considered from several

different perspectives ranging from transfer function techniques to state­

variable techniques. The most promising approach for the problem

considered in this research appears to be Brogan's transfer matrix

approachf 1 l. His work results in a series of linear equations which can be

solved for the feedback parameters in the F matrix. Also, his approach has

the added advantage of allowing the B matrix to be removed from a crucial

matrix inversion. This last feature is perfect for an on-line routine because

the inversion can be performed off-line in advance. His approach is

presented below with a slight modification in the notation used in his paper.

Given a system defined by equations t20-22), the closed-loop

characteristic equation can be written as:

S (A) = I \In - A - BF I = 0

which can be rewritten as:

(27)

22

S(\) =I (>Jn -A) [1n -(>Jn -A)-1BF JI =0 (28)

= ~(\) I [1n - <l>(\)BF] I = 0 (29)

where In is an identity matrix of dimension n and

~(\) - I >J -A I

and

<l>(\) = (>J -A)-1

The overall problem is to choose Fin (29) such that then specified

eigenvalues A; corresponding to the closed-loop poles are the roots of (29).

Reexpress (29) as:

Si\)=~(\) I [1,. - F<l>OJB] I= 0

by using the matrix identity:

(30)

(31)

23

(32)

In Brogan's approach, the required equality in (31) is achieved by

setting the determinant equal to zero for each target eigenvalue. Recall

from linear algebra that a sufficient condition for the determinant to be zero

is for any row or column to be zero. For Brogan's approach, set a column

equal to zero for each target eigenvalue.

Given the jth column of Ir as e; where e; is a column vector with in the

jth entry equal to one and zeros elsewhere:

(33)

with the jth column being ~J· Then Ai is a root of S(A) if Fis selected to

satisfy:

since this forces column j of the determinant in (31J to zero. Therefore:

F~·(A·) - e·) ! -)

(34)

(35)

Now find an equation of the form (35) for each target eigenvalue. Together,

then distinct equations will allow the determination of F.

Consider the example problem from Chapter I repeated below for

convenience:

calculate (>J - A)- 1 as:

1
0 0

\-1

1 1
¢(\) = -- 0

(\-1)2 \-1

1 1 1
(\-1):1 (\-1)2 \-1

now to place the poles at -2, -3 and -4:

r

-.333333 0
~(-2) = .111111 -.333333

.037037 .111111

r

-.333333 -.333333
-.555555 .111111

.185185 -.037037

- 33~3331

-.33°33331
-.222222

24

(36)

(37)

(38)

(39)

likewise:

W(-3) = [-~~~~5 -~~~~5
.109375 -.015625

[

-.2
W(-4) = -.36

.072

-.2

.04

-.008
0 l -2

-.16

25

0 l -.25

-.1875

(40)

(41)

According to Brogan's Method set a column in the determinant equal to

zero for each \. Therefore, try column one for the -2 eigenvector, column

two for -3 and column three for -4. Evaluate (35) for each eigenvector:

[

-.333333 l [1 l
F -.555555 = 0 , for \ = -2

.185185 0

(42)

[
-.25 l [o l F .0625 = 1 ,

-.015625 0
for \ = -3 (43)

(44)

Solve these three equations (42-44) simultaneously and find:

r

-.366

F = -3.5119
-.0807

-1.1156

1.487 4
-1.4364

This value of F was shown in Chapter I.

1.3944 l
-1.8593
-4.4545

26

(45)

Brogan goes on to show that if the \ are distinct, there will always be

n linearly independent vectors \Jli(\i) to solve for F. Refer to Broganfll and

Brogan' lfiJ for additional details.

Let us make one more observation before continuing. Since the three

equations (42-44) must be solved simultaneously, write one equation to solve

as:

or

or

r

-.333333

F -.555555
.185185

-.25

.0625
-.15625

0 l -2
-.16

I (46)

(47)

27

(48)

Since an implied inversion is required, the columns chosen in \JI(\) must be

linearly independent for F to exist.

For notational purposes, define:

(49)

and

(50)

therefore solve an equation of the form:

F =g c- 1 (51)

to find the feedback matrix F.

It is possible for the ¢1:\J equation to result in nonfinite values when

goal eigenvalues are substituted into the equation. Brogan's original paper

addresses this problem and shows how it can be handled. The infinite value

problem does not affect this research so it will not be addressed further here.

28

The presence of more feedback parameters than states provides for the

possibility of choosing feedback to satisfy some criterion. Brogan's work does

not address any form of optimization. Clearly, in our example problem,

different columns could have been chosen to solve for F.

The freedom in choosing vectors in this problem highlights the under­

determined nature of the stated problem.

Brogan's Method for Computer Implementation

By considering Brogan's algorithm from a computer implementation

point of view, recognize that the algorithm offers several key advantages

that make it ideal for a computer implementation. First, the algorithm

offers the possibility of solving the characteristic equation off-line prior to

run-time. This ability to take as much computation as possible out of a

time-sensitive iteration loop is very important. In fact, any work that can

be pushed forward into the off-line, preexecution time is clearly

advantageous.

The second computer implementation point, which is really an

expansion of the first point, is that off-line work can be done one time as

opposed to every time the B matri.x changes. This clearly is a desirable

attribute of a fast, fault-adaptive computer algorithm.

A third point concerns the final matrix equation that appears in

Brogan's algorithm. In that final equation, Brogan states that a user can

29

choose any combination of columns that results in a nonsingular matrix to

solve for the feedback matrix F. The key advantage, from a computer

perspective, is that Brogan's algorithm guarantees that as long as the

resulting matrix is nonsingular, the matrix equation can be solved for F. No

additional testing or analysis is necessary and a solution is guaranteed.

A fourth point concerns the use of Brogan's method for our stated

problem of adapting to actuator faults. If actuator faults are modeled by

zeroing columns in B, then when the fault occurs the corresponding columns

in ¢(f..)B can be removed. This has the effect of reducing our solution space

to a smaller problem, but the same algorithm can be reapplied to calculate a

new feedback matrix F if the failed actuator affects system performance.

The last point affecting this research is that Brogan's algorithm states

that any linearly-independent combination of columns will result in a

solution. This suggests it might be possible to use some additional criterion

to determine which of several possible solutions would be advantageous

under certain conditions. For example, if the use of one actuator in a given

system was overly expensive, and if there were four combinations of columns

that lead to feasible solutions, then perhaps one combination might use the

expensive actuator much less than the other three combinations. If the

choosing of an optimal combination could be included in a computer

implementation, then there is a clear improvement over the original

algorithm in addition to the adaption improvement.

30

Rephrasing for Computer Implementation

Consider the following example problem:

(52)

then

1 1
0

>-+2 (\+2)'2

¢(\) = 0
1

0 (53)
\+2

0 0
1

\-4

Examination of Brogan's algorithm shows that for each target pole position

it is possible to have more than one column to choose from for the needed

nonsingular matrix G. Let us take advantage of this multi-column

possibility by including all possibilities in a format suited for this problem.

Let us create a new matrix called Z. This new Z matrix will be a

partitioned matrix with the number of partitions equaling the system

dimension n. Each partition will be populated with columns that are taken

by substituting the desired closed-loop pole positions into the ¢(\) matrix

above. For example, if the closed-loop pole positions are to be moved to -5, -4

31

and -3; the first partition will be the entries where -5 is substituted, the

second -4, etc. The resulting Z matrix is given as:

-1 1
0

-1 1
0 -1 1 0 -

3 9 2 4

Z= 0
-1

0 0
-1

0 0 -1 0 (54) -
3 2

0 0
-1

0 0
-1

0 0
-1

- - -
9 8 7

Now post-multiply each partition of the Z matrix by B and form a new

matrix X.

1
0

1
0 1 0 -

9 4

X =ZB = -1
0

-1
0 -1 0 (55) - -

3 2

0
-1

0
-1

0
-1 - - -

9 8 7

At this point, it should be pointed out that if an actuator (column of Bl,

should fail and need to be zeroed, then the corresponding column in each

partition of X can be zeroed. It is not necessary to re-invert a matrix, or

re-multiply matrices or make any other calculations. It is this key point

that makes Brogan's approach, when cast into this new form, ideal for an

adaptive computer implementation. This final X matrix has been our goal

to solve the system on a computer.

32

Recall from Brogan's method Equation (51):

F =g c- 1 (56)

where:

g r x n matrix with columns from I

G n x n nonsingular matrix chosen from X

F Feedback matrix to be evaluated

The G matrix in (56) is a matrix formed by taking one column from each

partition in X. To calculate a feedback matrix F, choose columns from X to

create G. The only requirement is that the resulting G matrix must be

nonsingular.

As mentioned earlier, Brogan's method does not address the selection

of columns. In his approach, he simply states that one should pick columns.

For this research, the selection of columns to achieve a feasible solution and

finally an optimal solution according to some selected criterion will be

considered.

The freedom to pick columns from X increases the complexity of the

pole-placement problem. There might be more than one combination of

columns which would work for a given set of desired pole locations.

33

Let us consider the number of combinations of columns that might

exist. If a system is nth dimensional, then there will be n partitions in the

X and Z matricies. If the B matrix has a column rank of r, then each

partition in the X matrix could have as many as r columns. Therefore, since

we need to choose once column from each partition, there are rn possible

combinations. Let us define the number of possible combinations as:

Brogan's algorithm guarantees that if the G matrix is invertible, the

resulting F will produce the desired pole positions.

Potential Solution Criteria

(57)

Any solution of (56) for the feedback matrix F will be called a 'feasible

solution.' It is important now to determine what is going to be called a

'valid' solution. Two criterion for choosing a solution come to mind. The

first criterion is to minimize the time to find any feasible solution. For an

adaptive control scheme, our goal might be to find a feasible solution as

quickly as possible. The second solution criterion is to minimize the time to

find an optimal solution, in some sense, out of the entire set of feasible

solutions. This type of solution might be necessary if the use of some

actuators in the system was expensive and minimization of the overall cost

of controlling the system was needed.

For this research, both types of solutions will be considered valid and

will be examined. The following two chapters address each of these two

solution criteria.

34

CHAPTER III

OPTIMIZING BROGAN'S METHOD FOR

FOR FAST COMPUTER SOLUTIONS

Introduction

In a highly failure-sensitive system where it is essential to minimize

system downtime, a legitimate control criteria could be to minimize the time

necessary to find an alternative feasible control scheme. An example of such

a system would be an aircraft flight control system. In this case, there

might be several redundant means to reconfigure the control system and

maintain acceptable performance. An algorithm to quickly identify an

alternative control scheme could be applied.

Given that our goal in a real-time control system is to simply find any

feasible solution in minimum time, the following list of alternatives will be

considered:

35

36

1. Brute Force Selection: Random Selection

2. Brute Force Selection: Modified Random Selection

3. Ranked Selection: Condition Evaluation

4. Phase One Singularity Test

5. Phases One and Two Singularity Tests

Recall, from the last chapter, that the G matrix must be nonsingular to

solve for F. As a result, a nonsingular matrix must be built from X to have

a feasible solution. The first two approaches toward finding a feasible

solution involve a form of random trial and error. In each case, a

combination of columns from the X matrix is tried until a combination which

will result in a nonsingular matrix for inversion is found. The third

approach requires the condition number of a possible matrix to be evaluated.

If the condition number is below a certain user definable level, then that

combination of columns is inverted. The fourth approach involves a test to

determine if the columns of the possible matrix are of rank n. This fourth

test has the advantage of requiring no multiplies or divides; however, it can

not guarantee one hundred percent accuracy. The fifth approach continues

where the fourth test ends and can guarantee one hundred percent

accuracy. However, the fifth test requires on the order of n :i

multiplies/divides to complete per matrix.

Each of these five solution approaches are presented in detail in the

37

following pages. It will be found that the fourth approach offers the best

solution of the five candidates. It can provide extremely good results with a

minimum of computer work.

Throughout the rest of this thesis, the work requirements of an

algorithm will be measured by the number of multiplies and divides in the

algorithm. This measure of an algorithm's requirements is the traditional

measure used throughout the literature. It is also based on the practical

consideration that multiplies and divides on a computer generally require

many more computer operations than additions or indexing operations.

Brute Force Selection: Random Selection

It was shown in the previous chapter that there are w = rn possible

sets of solutions that might yield a feasible solution in the problem as we

have formulated it. The simplest solution approach which comes to mind is

to throw infinite computer resources at the problem and solve each possible

solution set for a feedback matrix F which will result in the correct pole

positions. If during solution of the problem the G matrix is shown to be

singular, then continue to the next combination of columns from the X

matrix.

Advantages

This approach has several advantages. First, it is a conceptually

simple approach to finding a solution as it is necessary only to solve

38

equation (56) for the feedback matri.x Fusing a row reduction method. The

second advantage is that it requires no additional work or preprocessing to

determine if the solution is feasible.

Disadvantages

There are, unfortunately, several disadvantages to the Brute Force

approach. As is well known, inverting a matrix is an expensive operation

numerically. Recall from elementary numerical analysis that as many as

~ n :> multiplies/divides can occur before it is known whether or not the

matrix is singular. In this case it might be necessary to invert w matrices

once each. Furthermore, since w is a function of n, the worst case cost of

the Brute Force approach in the problem as defined could run as high as

It is apparent that the search for a feasible solution will probably end

before every candidate is examined. However, if it is necessary to guarantee

a fast solution, then the worst-case cost identified above must be considered.

A second problem with this approach is the random nature the w

matrix equations are being solved. Clearly, it might be advantageous to

analyze the equation for feasibility before solving for F. Some form of

ranking might then suggest an order to attempt to solve the equations.

In general, a random solution of equation (56) should be avoided

whenever possible. A better solution than the Brute Force method is

necessary.

Brute Force Selection: Modified Random Selection

Due to the inherent structure of our X matrix, recognize that

corresponding columns in each partition will tend to be correlated. This is

due to the numerical values in those columns having been calculated from

the same ¢(\) column. As a result, perhaps the likelihood of forming a

matrix with dependent vectors can be reduced if combinations using

corresponding columns are avoided.

39

For example, consider a third-order system that has three separate

actuators and thus three columns in B. When the X matrix is formed, the

result will be a three partition matrix with three columns in each partition.

The following figure lists a possible binary search strategy that would choose

the first column in each partition on the first attempt with succeeding

candidates chosen in a binary manner.

40

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3

2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 3 1
2 3 2
2 3 3

3 1 1
3 1 2
3 1 3
3 2 1
3 2 2
3 2 3
3 3 1
3 3 2
3 3 3

However, if the modified approach of attempting 'off column' entries is used,

then the following search pattern, one of several possible, might be used:

41

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

1 1 2
1 1 3
1 2 1
2 1 1
3 1 1
1 3 1

1 2 2
2 1 2
2 2 1
2 2 3
2 3 2
3 2 2

1 3 3
2 3 3
3 1 3
3 2 3
3 3 1
3 3 2

1 1 1
2 2 2
3 3 3

Clearly, the last three choices are the most likely to produce a singular G

and are tested only if all others fail.

Advantages

If the binary search strategy and the modified search strategy are

42

implemented on a computer under simulated conditions, the modified search

strategy does generally find a feasible solution faster. In numerous

simulations, the modified search strategy resulted in a feasible solution on

the first attempt approximately eighty percent of the time. Unfortunately,

the performance improvement is not significant enough to end our search for

a better approach. However, the modified approach requires little additional

overhead over the straight Brute Force approach and might be suitable for

some situations.

An analysis of the modified approach does point out that the search

strategy used to find a feasible candidate G matrix can impact on the

algorithm's performance. This important point will be revisited later.

Disadvantages

The disadvantages of this approach are the same as for the Brute

Force approach.

Ranked Selection: Condition Evaluation

If the type of solution desired is 'any feasible solution,' then a

preprocessing step might be able to order the candidates according to their

likelihood of resulting in a feasible solution. If such a ranking process were

effective, only one equation would need to be solved. An approach that

comes to mind involves estimating the condition number of the given

candidate G matrix for each equation. Based on the calculated condition

43

numbers, the inversion process could begin by starting with the equation

that is most likely to yield a satisfactory solution, or the first matrix with an

acceptable condition number.

The following condition number material is included because the

condition of a matrix is an often used measure of how close a matrix is to

being singular. As such, the feasibility of using this measure should be

evaluated to see if it has potential in our adapting problem. In the end, it

will be found that a better approach is available.

Numerous sources develop the theory behind evaluating the condition

number of a matrixfl 7l fl HJ. Therefore, this work will not present the theory

behind condition numbers except where shown to be useful in the following

pages.

Recall that the condition number of a matrix is defined as:

condiA) = 11 A 11 11 A- 1 11 (58)

where I I A I I represents a norm of the matrix A. Generally, the following

norm is used because of its simplicity:

11 AX I Ix
I I A I I x = max I I x I I x

(59)

44

n I I = max 2-.: a··
1 :Si :=:;n }= 1 tJ

(60l

=Maximum Row Sum

Throughout the rest of this development, I I A I I will mean I I A I I x.

Unfortunately, to calculate the cond(A) exactly, A -I must first be

calculated. As a result, approximation techniques are generally used

instead of the definition directly.

Random Vector Approach

The condition number approach considered here begins with the Ax. = b_

and A being invertible, then:

(61)

and

ll.x:l/<llA-1 II llilll (62)

or

45

11 ~ 11 < 11 A-1 11
I I 12 I I

(63)

Therefore, let us choose k arbitrary b. vectors, solve for~. and then evaluate:

I I A -1 I I > max I I x (p) I I
- 191sk I I b(p l I I

(64)

from our set of arbitrary b.. The overall condition number can then be

approximated as:

conc[(A l > 11 A I I * max I I x(p 1 11
191sk 11 b(pl 11

In review, this approximation approach requires the following steps:

1. Calculate I I A I I·
2. Choose k arbitrary b. vectors.

3. Solve for k ,;r vectors.

4. Calculate max 11 x(p) \ \
ISJ;Sk blp)

5. Approximatecond(A) as: cond(A) > 11A11 *max 11x(p)11
I SP Sk I I b (p) I I

This approach can be easily implemented as a computer algorithm.

(65)

However, this technique requires many multiplies/divides per candidate G

matrix. Specifically, to solve the first system composed of an arbitrary b.

vector and the A matrix using a triangular factorization approach such as

LU Decomposition it is necessary to perform:

O(n 3) multiplies/divides

in the initial factorization phase followed by:

kO(n 2) multiplies/divides

46

in the solving phase or O(n 2) for each of the k arbitrary b. vectors. The

amount of work necessary for this condition number evaluation seems a bit

excessive for our requirement of a fast, on-line, adapting algorithm. As a

result, the condition number material will be put aside for now to determine

if another technique might result in less work.

Phase One Singularity Test

At this point, a completely different approach will be considered in

determining a combination of vectors (columns) from X that will result in a

feasible solution to our matrix equation. In general, there are two

approaches that can be followed in the analysis of a problem. One approach

would be to determine an exact deterministic answer to the given question

by using an algorithm that yields conclusive results. Our Brute Force

47

method discussed in prior sections is such an approach because it involves

attempting solutions to determine if the candidate matrix was singular. A

second approach that can be taken is to analyze the problem to yield an

answer in a probabilistic sense. Such an approach might involve the use of

heuristics or simplier algorithms that are less expensive to use. For

example, if a simple test could be applied to determine that a given

candidate matrix was nonsingular with ninety-five percent probability, then

that information might be useful for our fault-adaptive problem. For this

Phase One Test, the second approach will be adopted.

In the following pages, several elementary linear algebra properties will

be examined to find a series of tests for computer implementation. The tests

being sought must be simple and well suited for fast implementation on a

digital computer. In the end, a five step test will be developed to evaluate

whether a given candidate G matrix is singular. The first four tests will

prove to be inexpensive to implement and will achieve excellent results.

Two Vector Dependency Test

Recall from elementary matrix theory that a nonsingular matrix A of

dimension n has exactly n linearly independent rows and n linearly

independent columns. That is:

48

n = Rank(A)

Thus, if an inexpensive means can be found to determine the rank of a

candidate G matrix, the singularity of the matrix can be determined without

. .
an invers10n.

Let us begin this approach by developing sufficiency tests to determine

if two vectors are linearly dependent. This two vector test will be applied

against combinations of column vectors in our candidate G matrix. Recall

from elementary linear algebra that if:

s ~ { ll 1 ' "-2' . . . ll,, } (66)

is a set of vectors and if a vector equation is created as:

(67)

the vectors l2 1 , l2 2 , . . . r.,1 are linearly independent if, and only if, the only

solution to equation (67) is:

49

(68)

The vectors are linearly dependent otherwise.

Consider the two vectors u 1 and 122 then:

(69)

is the required vector equation as in (67). First, recognize that the vectors

u 1 and 12 2 cannot be zero vectors because the corresponding ki could then

assume any value which violates the required condition for independence.

Therefore:

ll 1 =I= Q_ (70)

The first step in our two vector test for dependency is a test to determine if

either vector is a zero vector. Such a test is extremely simple to implement

on a computer and thus it meets the computer criteria.

For the second step, the vector equation (69) can be rewritten without

loss of generality as:

50

(71)

b u_ 1 = - 12.2 (72)

Now consider each entry (row) in the vectors separately. In this case:

b· I = 1, 2, · · · n (73)

Now for equation (73) to be true with b =I= 0 then all the bi must be equal.

(74)

If any two bi are not equal, then the vectors are independent.

If after making and passing the tests for zero vectors, and if one entry

of either vector is zero while the corresponding entry in the other vector is

not zero, equation (73) will have no finite solution. There is no finite value

by which to multiply the first vector to equal the second vector for that given

entry. Therefore, the two vectors are independent. This test will be used to

stop dependency testing because it is known that the vectors are

independent. This test to examine corresponding entries in vectors for their

zero content will be step two of our testing.

51

The second step also meets the criteria of being easy to implement on a

computer.

So far in our development, an algorithm has been created that looks at

zero content of the candidate G matrix to determine if given pairs of vectors

in the matrix are linearly dependent. The specified approach made no

attempt to determine if two vectors were linear multiples of each other

beyond the examination of zero placement. Let us begin to determine if the

two vectors are multiples of each other. Consider the following two vectors:

0 0

0 0

0 0
.x: = a y_ = b

(75)

0 0

0 0

In this case, if a and b are non-zero, the two vectors will be linearly

dependent because they are multiples of each other. The dependency can be

identified without performing any multiplies/divides by counting the number

of times a pair of nonzero entries appear in the same row. If the count is

one, then the two vectors are linear multiples of each other. Realize that

this testing method must follow the first two tests in order to be valid.

This step of counting the entries that have nonzero elements will be a

third step in the test being developed.

52

The first three steps are based on pure linear algebra principles and

they can easily be implemented on a digital computer. By applying these

three steps against a large sample of candidate matrices approximately

twenty-one percent of the time the tests would suggest that a candidate G

matrix is nonsingular, when in fact it is singular. These twenty-one percent

false positives still result in excessive waste. Another step is needed.

Upon examination of the false positives that are occurring, a noticeable

characteristic can be identified. In many cases, there are two or more

column vectors that are exactly equal. If this were a pure linear algebra

problem with candidate matrices that were purely random, such duplication

would not be expected. However, this is a specific control problem that is

being based on the platform established in Brogan's Method. Therefore,

something in that method is resulting in an increase in duplicate column

vectors. It is this additional characteristic specific to our problem that will

provide us with the vital fourth step. Later in this chapter, the cause of the

duplicate vectors will be discussed.

The fourth step will check to see if two vectors that have passed the

previous three steps are equal. In this case, the first vector can be

multiplied times one to equal the second vector. This simple test can be

executed by subtracting corresponding entries and determining if the

difference is zero for each pair of entries in the vectors. If the difference is

zero for each entry, then the vectors are equal and the G ma tri.x will be

singular. The application of this last step effectively reduced the level of

false positives to three percent as shown in numerous simulation studies

shown later.

53

The four-part test gives us a simple sufficiency test to determine if two

vectors are linearly dependent. While the test does examine the necessary

conditions for the vectors to be linearly independent, it is not sufficient to

guarantee that the vectors are linearly independent. An additional

generalized test to determine if the vectors are multiplies of each other is

required to determine if the vectors are linearly independent. This further

test will be discussed later.

Phase One Test

The two vector test can be used for evaluating vector dependencies in

our problem by applying it against each combination of column vectors in our

candidate G matrix. If, at any point in our application of this test, two

vectors are found to be linearly dependent it will be known that the

candidate G matrix is singular because the column rank is not equal to the

dimension of the matrix G. The application of this two vector test against

all the column vectors in our matrix will be called the Phase One Test

throughout the rest of this discussion.

54

Advantages of Phase One Test

The principle advantage of the Phase One Test is that it requires no

multiplies/divides to determine its answer. The only operations that are

necessary are compares, indexing and additions/subtractions. This lack of

multiplies and divides can result in a very fast approach to determining if a

given G matrix might be feasible. Since our goal in this section is to

minimize the amount of time necessary to find a feasible solution, then this

test looks promising.

Disadvantage of Phase One Test

The only disadvantage to this test is that if a given matrix should pass

the Phase One Test it is still not guaranteed to be nonsingular although the

percentage of false positives is less than three percent. It is still necessary

to execute the inversion, or another test, to achieve certain results.

However, from a probabilistic point of view, this test will rule out many

non-feasible solutions very quickly. Later, under simulated conditions the

test will be shown to yield extremely good predictions of candidate feasibility.

On the following page, Figure 2 outlines the Phase One Test as described in

the previous pages.

found

Count
equals I

--,
I a Y-""' __ C! V

-,.- I

I est
L-·--·---------·---·- -· ---- .. ---·---- -·-·------ .. ---~-·- -- ---· _______ j

\;h' none found

-------·-·----··-------r -- - --------- ·-··· -- ---·- --

none found

Count
r

OT
-·,": ., ____ ,_ ·---··--·-----~----·--

t-Jements Test
----- ~-·-···-- --·---T·----·-··----· -------· ··- ··-···-··-------'

--:',; Count 0-lot Equa! ;;

four.d :
- -.·:.~----

- I 1i • l -r- r ---- -~---- [-_a u a 1 \/ e c: to rs 1 e st

~ '1 r< l. r; \I 1\/ \....,; '-.: : ;\

2.

------------------- -------·-·~---- ---·· ---· ---··-··-

,., '

~r1ose

no ri e found

- ______ ;

.... ,.,..,s
' J'-·

;

!\)or:sing0ior Ccrrdi--·
' I _......,, r!T Cl

\.......(·· .. /.I._ ~J

~ / ' ,

l'/~ (J t 'l ><

r·. -r- .L
! ;r,p :: PS· .. "--' ; : '-" '-' -

55

56

Phase One and Two Singularity Tests

This last test to determine if a given candidate G matrix is

nonsingular will guarantee an accurate answer. Unfortunately, the price of

this guaranteed answer is considerable computer work.

Recall from the end of the development on the Phase One Test that to

provide necessary and sufficient proof that the given vectors are linearly

independent, it was necessary to test the vectors to determine if they were

linear multiples of each other. To verify this last condition, begin with

equation (73) which is repeated here for convenience:

b· L = 1, 2, · · · n (76)

Recall from above that all the bi must be equal in order for the two vectors

to be linearly dependent. This last test will simply solve equation (76) for

each value of bi. If the bi are all equal, then the two vectors are linear

multiples of each other and thus linearly dependent. If any of the bi differ,

then the two vectors are linearly independent.

This last test completes the necessary and sufficient conditions to state

that the two vectors are linearly independent. This last step in the testing

procedure will be called the Phase Two Test.

Let us analyze the Phase Two Test to determine how many

57

multiply/divide operations are required to completely analyze a given

candidate G matrix. For each combination of two vectors there will be:

n Divides Per Two Vectors

To examine all the combinations of columns will require test runs against:

n! (77)
2! (n -2)!

combinations of vectors. Therefore, the number of required divides is:

!!:.._* n!
2 (n -2)!

(78)

This calculated number of divides assumes that the matrix is not

shown to be singular before all the divides are done. However, as a worst

case, consider the number identified here.

Advantages and Disadvantai;es

This application of the Phase Two Test is a very expensive test to

assure that there are no false positives. The advantage of this approach,

when coupled with the Phase One Test, is that it guarantees the resulting

matrix will be nonsingular and yield a feasible solution. The disadvantage is

58

that many expensive computer operations will be spent to reach that

'guaranteed' answer. In fact, the work spent in the Phase Two Test is

comperable to solving the problem directly. Recall that the front-end of a

matrix inversion is approximately a ~ n 3 operation. The Phase Two test is

approximately a ~ n 3 operation. Therefore, the ratio of multiplies/divides

between the two alternatives is:

1 'j -n·
3 n 3

work ratio
testing 2 (79) ,.., ---
solving

,..,
2 n 3 1 -n3

3

Since the testing process is comparable to the solving process, it does not

make sense to use the testing procedure.

Implementations, Comparisons and Recommendations

In previous sections, several different means to find a feasible solution

to the control problem have been examined. In this section, the Brute Force

approach and the Phase One Test will be implemented under simulated

conditions. Such simulations will provide us insight as to when the various

approaches will or will not work. Furthermore, these results might suggest

additional approaches or combinations of approaches which would yield

greater improvement.

59

Example Problem

Let us begin by considering an example problem. Later, generalization

will be considered. Let A be:

Let us populate a 3x3 B matrix in a random nature as follows:

1. Let each entry in the B matrix be independent of the other entries.

2. Let each entry equal zero with probability p.

3. Let each entry equal a random number between -20 and 20 with
probability 1-p.

These assumptions on the entries of the B matrix are reasonable in that

each column of the B matrix represents the input from a separate actuator.

Consequently, there are generally no predeterminable correlations between

these separate actuators. Exceptions to these assumptions can occur when

redundant actuators are present and in some network problems where order

in the B matrix can appear. The redundant actuator situation will be

discussed later.

For the rest of this development, p will be referred to as the zero

density of the matrix. Let us then calculate the X matrix for each

60

successive B matrix and also select columns from X for our candidate G

matrix in the random nature described in the Brute Force section.

If three thousand different B matrices, three columns wide, are used in

a simulation run where p = 0.3 the results are shown in Table I.

TABLE I

CANDIDATES ATTEMPTED BY
BRUTE FORCE SELECTION

Candidates Atternoted Occurrences Percentatie
1 2135 71.2
2 570 19.0
3 80 2.7
5 121 4.0

14 22 0.7
15 30 1.0
18 15 0.5
27 27 0.9

total 3000 100.0

Table I shows that of the 3000 different B matrices, 2135 times the

Brute Force method yields a feasible solution with the first candidate. In

570 of the 3000 cases, two candidates were examined to produce a single

feasible solution, etc.

Since this is a third-order system, it is known that approximately ~ n °

or 9 multiplies/ divides are needed for the first reduction. This number is

based on row reduction and the number of operations necessary to evaluate

61

singularity. Consequently, 2135 attempts required 9 multiplies, 570

attempts required 18 multiplies, etc.

By calculating the average multiplies that were necessary for each new

B matrix the Brute Force Method required:

17 .6 Multiplies per Successful Solution

By repeating this analysis for different values of p, the results shown in

Table II are obtained. In Table II, the '% Wasted' column refers to the

number of times an row reduction is attempted that does not lead to a

feasible solution.

TABLE II

BRUTE FORCE RESULTS FOR
VARYING ZERO DENSITY

Zero Density Average Multiplies o/o Wasted
0.3 17.6 48.9
0.4 21.3 57.7
0.7 77.9 88.4

The results in Table II are not surprising. As the zero density

increases, more of the columns will tend to be dependent, and the Brute

Force approach must look at more and more candidate matrices to find a

feasible solution.

62

Given that the previous results are based on a Brute Force approach,

consider what would happen if the Phase One Test was applied before

attempting the row reductions. Table III presents the results when the zero

density equals 0.3.

TABLE III

PHASE ONE TEST RESULTS
EXAMPLE PROBLEM

Occurrences Predicted Result Actual Result Percentas:re
1078 Not Feasible Not Feasible 35.9

127 Feasible Not Feasible 4.2
1795 Feasible Feasible 59.8

0 Not Feasible Feasible 0
3000

For this example problem, the Phase One Test correctly ruled out 36r.k

of the candidate matrices. Furthermore, the test resulted in no false

negatives and only 4r.k false positives. Overall, the test was correct 95. 7r.k

of the time. Let us apply this predictive accuracy back against the Brute

Force approach. Consider another test run where the row reductions will

not be executed unless the candidate matrix passes the Phase One Test.

Again, this test is for a zero density of 0.3 and the results are shown in

Table IV.

The number of first time successes has increased from 71 r.k to 98r.k.

Previously, almost 50<,lr of our CPU time was wasted on candidate matrices

TABLE IV

CANDIDATES ATTEMPTED AFTER
PHASE ONE TEST

Candidates Attempted Occurrences Percentage
0 26 0.9
1 2930 97.7
2 44 1.5

that were not going to work, now the number has been cut back to 0.6<k'.

Note that Table IV is the 'after' table associated with Table I.

63

Let us summarize the comparison between the Brute Force Approach

and the Phase One Test followed by row reductions in Table V.

TABLE V

COMPARISON OF BRUTE FORCE VS.
PHASE ONE TEST

BF POT ideal
Avg. Multiplies 17.6 9.05 9

'fr Wasted Inversions 48.9 0.6 0
Total Runs 3000 3000 -

Clearly the addition of the simple Phase One Test before attempting a

solution can save a significant amount of CPU time in this example problem.

64

Generalization of Phase One Test Effectiveness

At this point, it must be asked if it is possible to generalize the results

of the example problem. The question centers on the ability to derive a

closed-form expression for the effectiveness of the Phase One Test versus a

Brute Force selection approach. Let us now consider what factors influence

the effectiveness of the test. The first factor to consider is duplicate target

eigenvalues. Recall that the X matrix is a partitioned matrix formed by

concatenating ¢(\) B matrices from each target eigenvalue \. As a result,

the same column in each partition is formed from the same column in¢(\).

If a matrix has partitions that are the same, then the fourth step of the

Phase One Test will detect the duplicate vectors. Consider the following

problem where A is defined as:

A= l ~2 ~2 ~31
0 -3 -4

and the target eigenvalues of -4, -4 and -10 are chosen. Then

l-5

z = ~
0 .333
0 .333

-1 -1.333

-.5
0

0

0 .333 -.125 -.0222

0 .333 0 -.0952
-1 -1.333 0 -.4762

. 003961

.01587
-.1587

Clearly the first two partitions are correlated because they are exact

65

duplicates. If our algorithm is building a candidate G matrix, it would find

that all the combinations which have the corresponding columns in the first

two partitions will result in non-feasible solutions. Therefore, the algorithm

effectiveness is influenced by the presence of duplicate target eigenvalues.

A second factor influencing the performance of the Phase One Test is

the structure of the <J>(\) matrix itself. As another example, consider the

following ¢(\) matrix:

¢(\) =

1
>--+1

1

0

1

(\ + 1)2 \ + 1

No matter what target eigenvalues are chosen, the second columns of each

partition will be multiples of each other and thus the vectors will be

dependent. In this case, step three of the Phase One Test will detect the

dependency and eliminate the corresponding candidate G matrix. Thus, the

effectiveness of the algorithm is a function of the structure of the ¢(\)

matrix which is a function of the structure and the values in the system

matrix A.

Unfortunately, the structural mapping between the A matrix and the

¢(A) matrix is through an inversion that complicates the derivation of any

closed-form expressions.

66

A third influencing factor is the strategy used to select vectors from

each partition. In most of this work, a simple binary search strategy has

been used; however, as discussed earlier, the modified random search might

be more efficient. In any case, different strategies will influence the

performance of the Brute Force approach as well as the Phase One Test.

How to account for variations in strategies in a closed-form solution is a

difficult question.

The entries in the B matrix provide a fourth influencing factor that

further clouds the effectiveness issue because strategically-placed zero

entries can influence candidate feasibilities. As mentioned earlier, the Phase

One Test greatly depends on zeros and zero placements. Accurate and

meaningful accounting of zero placement in the B matrix and its influence

on algorithm performance appears to be a difficult goal.

Due to these complicating factors, it does not appear feasible to

evaluate the effectiveness of our algorithm against the Brute Force approach

in a closed-form, deterministic fashion.

However, three arguments for the general use of this approach and for

its effectiveness can be made. First, it makes intuitive sense that such a

preprocessing step should be effective in reducing the amount of work

otherwise necessary. It is known that the solution process is an expensive

operation to run on a computer in that it requires 0(n :i) multiplies/divides to

perform. If a preprocessing step that requires no multiplies/divides to

67

eliminate some candidate matrices that would otherwise be inverted can be

used, then such a step should be advantageous.

A second argument for use of this test is that the preprocessing step is

based on fundamental linear algebraic principles. There is no guesswork

involved. By application of these principles, candidate matrices are ruled out

in a mathematical manner.

The third argument supporting use of the Phase One Test can be found

in the results of extensive Monte Carlo simulations that evaluate

effectiveness of the algorithm against thousands of potential systems. Let

us run the Brute Force approach against 100,000 separate A and B pairs to

determine the performance of the algorithm. By randomly populating an A

matrix, a B matrix and a vector containing the target eigenvalues the test

can be repeated many times. The results of such a simulation run on a

third order system are shown in Table VI.

TABLE VI

LARGE SCALE SIMULATION RUN
100,000 SYSTEMS

Brute Force Phase One Test
M ultiolies 3,137 616 1 169.190

Mults/Matrix 31.4 11.7
Unnecessary Inversions 248,624 29,910

<fr Feasible First Time 66.6 94.6

68

The key observation from this simulation run is that the Brute Force

approach required 8.31 times more unnecessary inversions per matrix. This

large number is attributable to the Brute Force approach searching the

entire solution space looking for a solution when there were no feasible

solutions at all. The Phase One Test in those cases might try zero, one or a

few candidates and avoid testing the entire solution space. The reduction in

unnecessary inversions should prove significant if higher order systems are

considered.

Before leaving this section, let us determine how often the Phase One

Test is giving us the correct answer. Once again, let us simulate many

example problems and calculate the experimental success rate. The results

are shown in Table VII.

TABLE VII

PHASE ONE TEST RESULTS: 100,000 SYSTEMS

Occurrences Predicted Result Actual Result Percentage
44.676 Not Feasible Not Feasible 44.7

2,815 Feasible Not Feasible 2.8
52.509 Feasible Feasible 52.5

0 Not Feasible Feasible 0

Several points should be discussed in the closing of this section. First, from

our large-scale simulation runs, 97<fr accuracy is achieved with the

69

implementation of a simple four-step algorithm. This result is surprisingly

good for such simple tests. The key to this success is the fourth test which

takes advantage of a particular characteristic in Brogan's algorithm that

was discussed earlier.

A second point concerns the elimination of candidates which would

yield singular solutions. Our simulations reveal that use of the Phase One

Test eliminates 44. 7% of the candidate matrices that otherwise would be

considered.

The third important point is that there are no false negatives. This

factor is extremely important because no feasible candidates should be ruled

out accidentally. This point will be further developed in the next chapter.

From our simulations, a fourth significant point is found. When the

Phase One Test is used, the first candidate matrix is feasible 94.6% of the

time as opposed 66.69(of the time in the random approach. This is

important when trying to find any feasible solution in a minimum amount of

time which was the goal of this chapter. The fifth chapter will draw the

Phase One Test together with Brogan's algorithm and apply the results to

the fault-adaptive problem. The sixth chapter will summarize the

performance of our new approach.

There is one final point worth mentioning. As the simulations reveal,

there are appro:x.imately three percent of the candidates that pass the Phase

One Test yet still are singular. Upon examination of those candidates, it is

70

found there are no easily identifiable visual clues left in those matrices to

suggest that they are singular. In other words, our four steps manage to

extract all the easy clues which suggest that a matrix is singular. The clues

of zero vectors, duplicate vectors, or single non-zero vectors are all detected

by our tests. This result is appealing.

Time Evaluation of the Phase One Test
versus the Brute Force Method

In the previous sections, the comparisons between the Phase One Test

and the Brute Force Method have been by an analysis of the multiply/divide

operations necessary to arrive at an answer. As mentioned earlier, the

multiply count is the generally used way of measuring the work in an

algorithm. However, with faster and faster computers and the trend to

using math coprocessors, it is also necessary to evaluate the algorithms in a

time sense. Clearly, if the Phase One Test used many, many more indexing

and comparison operations to eliminate the multiply operations, then it

might actually take longer to run on a computer. Such a characteristic

would make the Phase One Test unacceptable.

The chart shown on the following page is the result of computer

simulations of example problems of system dimension three through ten.

For each different system dimension, two hundred example problems were

tested using the Phase One Test and the Brute Force Method. The

simulations were run on an AT&T 3B15n1 computer with a math

71

Tiil coprocessor. The compiler was the standard UNIX System V C compiler.

While two hundred simulation runs each is not sufficient to draw any

concrete conclusions, it is enough to see the resulting trend. As can be seen,

the Phase One Test ran in less time in each of the simulation runs. In fact,

when the Phase One Test is used prior to attempting the required row

reductions, the solution time is less than half of the time required for the

Brute Force Approach. This results agrees well with the results of Table V

where the Phase One Test is shown to reduce the required multiplies in half.

Careful inspection of the results also suggests that use of the Phase One

Test allows a problem of one dimension greater to be solved with the same

computer resources.

QJ

u
L
0
LL

QJ
...µ
:J
L

CD

0
0
0
CD

-W
lf)

Q)

f-

Q)

c
0

Q)

(j)

ru
.c
Q_

~

0
0
0
I'--

0
0
0
CD

0
0
0
m

0
0
0
"!

c
0
(/}

.c
(l.)

E
CJ

""'· en
E
(l.)

-+-'
(/)
>,

(/)

0
0
N

0
0
0
01

0
0
0
(\.1

tili&j
.. ··1

·····- -

0
0
0
~

-·;:',

~
:_~

: ._,~

!
:~

0

m

{'---.

LO

72

,--
L__

0
VJ
c
CD
,--

>-
~~

0

(fl

>
c\ .l,.I

c c 0 ' •rl "--

{fl
~ ' '--
u
E

-r--t
c

~.
L~

(-' .J

E -~-'
Ci) 0

..µ
{f) -;
_...

(' lG '~./

0
(' ' ___..)

CJ

73

Therefore, the various simulations used in this research suggest that

the Phase One Test can greatly reduce the number of multiplies needed to

solve for the feedback matrix F and the Phase One Test can solve the

problem in less time.

Summarizing the Phase One Test

To close this chapter, the Phase One Test is summarized in the

following table:

TABLE VIII

PHASE ONE TEST SUMMARY

Ste.u Descri.ution Add/Sub Mult/Div
One Zero Vector Tests no no
Two Zero/Non-Zero Element Test no no

Three Count of Non-Zero Elements Test no no
Four Eaual Vectors Test ves no

The Add/Sub column indicates the need for floating point additions or

multipys and the Mult/Div column indicates the need for floating point

multiplies and divides.

CHAPTER IV

FINDING A BETTER SOLUTION

Introduction

The previous chapter addressed the question of trying to find any

feasible solution as quickly as possible. This chapter addresses the question

of finding a 'best' solution out of many feasible solutions in a minimum

amount of time.

Two approachs will be considered. The first approach is to search

through the feasible solution set of Brogan's formulation using the Phase

One Test followed by cost evaluation of feasible candidates and finally

solution selection. The second approach is to use a more intelligent search

strategy to find a solution using a non-linear least squares algorithm on a

different form of the feedback problem. While the first approach is a simple

solution to the problem for some cases, the second approach will generally

find better solutions.

Full Search Using the Phase One Test

When finding an optimal solution to a given control problem, it is

necessary to be able to prove that any other possible combination of

actuators in the given problem leads either to a non-feasible solution or a

74

75

solution costing more than the calculated optimal solution. In that case, it

becomes necessary for us to examine, in some sense, every possible

combination of actuators. If certain combinations of actuators can be

identified as leading to non-feasible solutions, then the expense of finding an

optimal solution can be reduced by avoiding the cost calculation for those

combinations.

In previous discussions, it was determined that there were w possible

combinations of matrices that could yield feasible solutions to equation (51).

Let us consider those w possible solutions as our entire solution space.

W = Solution Space

Let us define a subset of W called Q that consists of those matrices in W

that will actually yield feasible solutions to the matrix equation (51).

Feasible Set QcW

If the set Q can be distinquished from the set W where Q is smaller than W

then our problem has been reduced from the entire solution space to a

smaller feasible solution space. Furthermore, if it can be guaranteed that

the set of solutions in the space W - Q are not feasible and that the i th

combination in Q is the optimal solution over the space Q, then it can be

stated that the i th solution is the optimal solution overall.

76

Keep in mind that the work necessary to identify the feasible solution

space Q must be less than the work necessary to rule out the solutions in W

- Q as non-feasible by other methods available.

The effectiveness of the Phase One Test at detecting the candidates in

the W - Q space will be evaluated in the following pages.

False Negatives

In the preceding section, it was stated it was essential to guarantee

that all the candidates in the W - Q space are singular. In this section, the

four steps in the Phase One Test will be examined for such a requirement.

Table IX summarizes the four steps taken in the Phase One Test.

TABLE IX

FOUR STEPS OF THE PHASE ONE TEST

Step Description
One Zero Vector Tests
Two Zero/Non-Zero Element Test

Three Count of Non-Zero Elements Test
Four Eaual Vectors Test

The first step in the test checks the vectors to determine if either

vector is a zero vector. In the previous chapter, it was shown that if either

vector was a zero vector, the two vectors are not linearly independent. The

zero vector test provides a sufficient test to state that the corresponding

77

candidate G matrix is singular. As a result, there can be no false negatives

from this test.

The zero/non-zero element test checks whether an entry in one vector

is zero while the corresponding entry in the other vector is non-zero. In the

previous chapter, it was shown that if such a condition was spotted, then

the vectors must be linearly independent. This test is sufficient to

guarantee that the two vectors are linearly independent. It does not rule

out any pairs of vectors as being dependent and, as such, will generate no

false negatives.

The third test counts that number of non-zero element in the vectors

and provides a sufficiency test to state that the vectors are linearly

dependent. The previous chapter showed that if only two non-zero entries

were in the vectors and that if they were at the same locations, the vectors

were linear multiples of each other. This test cannot generate a false

negative because if it detects the condition it is seeking, then that condition

is sufficient to guarantee dependency.

The equal vectors test checks to see if the two vectors are exactly

equal. If it detects this condition, then that is sufficient information to

declare the vectors linearly dependent because they are multiples of each

other. Since this test will succeed only when the vectors are equal, and that

equality guarantees dependency, there can be no false negatives from the

fourth step of the Phase One Test.

78

In summary, the four-step Phase One Test can generate no false

negatives. It will never rule out a candidate matrix that is nonsingular.

This characteristic was demonstrated by the simulation runs in Chapter III.

Therefore, it can be stated that any candidate G matrix that fails the Phase

One Test is not in the feasible solution space for the control problem. Such

non-feasible candidates are in the non-feasible solution space W - Q and do

not need to be considered in any optimality test.

Application of Phase One Test

From the previous chapter, it was demonstrated in numerous

simulation tests that an application of the Phase One Test before a solution

attempt would accurately rule out about forty-four percent of the possible

candidate ma trices.

Ruled Out ~ .44rn candidates

Consequently, before any optimality evaluation begins, nearly half of the

solution space can be eliminated. It is guaranteed that none of the

candidates that have been eliminated are actually feasible. In effect, an

application of the Phase One Test can accurately and quickly identify most

of the candidates in the W - Q space.

Since most cost functions will involve a multiply of the ;r vector, then at

least n multiplies will be required per evaluation. As a result, using the

79

Phase One Test, we can avoid:

A voided multiplies z . 44nr n

without performing any multiplies in the process.

It turns out that an application of the Phase One Test has greater

impact on this problem than the problem of the previous chapter. In the

previous chapter, either method might find a feasible solution on the first

attempt and then quit. In this case, examination of all the possible solutions

is required. The Phase One Test allows us to rule out many of the

candidates that would otherwise need to be evaluated to assure optimality.

Optimality tests can be applied against the remaining candidates to find the

optimal feedback matrix.

If an applicable objective function is chosen for optimization, the Phase

One Test can be used to reduce the number of candidates that require

objective function evaluation. If the control problem is an optimal control

problem that can be cast into a form suitable for pole-placement using

Brogan's Method, then use of the Phase One Test reduces the amount of

work necessary to find the optimal solution.

A More Intelligent Search

In Chapter II, the feedback problem was stated in equation (27) as:

80

6.'(\) =I \Jn -A -BF I= 0 (80)

After some development, the problem was restated in equation (31) in the

following form:

.6.'(\) = 2.(\) \ [1r - F<f>(\)B] I = 0 (81)

In this equation, Brogan set columns inside the determinant equal to zero to

force the expression to zero for given eigenvalues. In Brogan's writings on

his procedure, he points out that other means could be used to force the

determinant equal to zero, but that he would zero columns for convenience.

As an alternative and in general, consider the following equation where

multiples of column vectors will be summed together to equal zero.

[I,. - F<f>(A)B] K = il (82)

After some rearranging:

F<f>(AlBK = K (83)

If this is done for each target eigenvalue, the resulting expression can be

81

written as:

<f>(\lB~J= [K1K2 ··· ~J (84)

The problem of finding a feedback matrix F can now be stated as choosing K

values and then solving for F. Notice that each K vector is a column vector

with the number of rows equal to the number of columns in B. The number

of K vectors is equal to the order of the system. In the rest of this chapter,

the individual entries in the K vectors and F matrix will be referred to with

lower case letters.

Stating the problem in this manner generalizes the work of Brogan. In

his approach, he limits each K vector to all zeros except for one entry

containing a one. This approach highlights the fact that there are

potentially many more feedback matrices F that will result in the correct

closed-loop response.

The following example problem should demonstrate the new freedom

available with Equation (84). A second order system described below will be

used.

(85)

82

The target eigenvalues for this system will be .\1 = -3 and .\2 = -5. First,

calculate the associated <i>(.\)B terms then write the problem in the form of

Equation (84).

[[
-.3333 .1111 l

F 0 .1667 Ki [
-.2000 .0500 l l [] o .1250 K2 = Kl K2

Now if Brogan's method were being used, we might choose:

and then F is found as:

[
.1111 -.2000]- [o

0
1]

F -.1667 0.000 - 1

- [-5.00 -3.33 l
F - 0.00 -6.00

(86)

(87)

(88)

(89)

If this feedback matrix is used, the resulting closed-loop system will have

eigenvalues at the desired locations. From this example problem, it can be

seen that if different values for the K vectors were chosen the resulting

feedback matrix would be altered.

83

There is a catch to using this approach just as in Brogan's method.

Namely, the <!>(\)B matrix must be nonsingular. There is not one hundred

percent freedom in choosing the K values.

The problem formulation in (84) is similar to a form found in Fahmy

and O'Reillyf 191.

Choosing a Best Feedback Matrix

If it is necessary in a given problem to find a 'best' solution, then

clearly one would prefer to choose from as many alternatives as possible to

find a 'best' solution. The generalization of the previous section was done to

give us additional freedom and choices in choosing the feedback matrix F.

For the sake of this research, let the control goal be to minimize the

control effort required to achieve the closed-loop feedback requirements.

Namely, let us define an objective function to minimize the control signal LL

defined in Equation (3).

LL = F:r_ + w. (90)

Since at this point, we have no control over the input signal w._ it will be

ignored. Furthermore let us consider the remaining term in a minimum

energy fashion. Therefore, let us modify the objective function as follows:

84

Minimize (Fx..lt (Fx..l

or

Now with one more observation the final objective function will be stated.

Notice that if F was a vector, then the inner two terms would be an inner

product. With that spirit in mind, let us define our final objective function

as:

Minimize 2= fr; (91)
l<i<r
IS}Sn

In short, the objective to be achieved is to minimize the square of the

individual terms in the feedback matrix F. The difficult part is choosing the

k terms that result in an F matrix with minimal characteristics. If the

example problem considered earlier is solved in terms of k the resulting

equations are:

f11(-.3333k1 + .llllk2) - .1667k2f12 =k1

f21(-.3333k1 + .llllk2) - .1667k2f22 =k2

f 11 (-.2k :3 + . 02k 4) - .125k 4{ 12 = k :3

f 21 (-.2k :3 + . 02k 4) - .125k 4{ 22 = k 4

85

(92)

(93)

(94)

(95)

As can clearly be seen, the resulting four equations for the terms in the F

matrix are nonlinear functions of the k terms. This nonlinearity complicates

the problem of finding k terms that result in minimal f terms.

Upon further examination of this problem, it can be seen that we have

a sum of squares objective function to minimize, where the terms to

minimize lD are non-linear functions of other terms (kl. This type of

problem is referred to as a non-linear least squares problem, and there are

several numerical techniques available for solving these problems r2o 1. For

the problem here, the method of Levenberg-Marquardt will be used.

Without going into the details of this algorithm, it can be stated that the

algorithm alternates between a steepest descent approach and a Gauss-

N ewton approach depending on run-time conditions. Furthermore, the

algorithm is guaranteed to converge since the steepest descent part of the

algorithm will always move in a minimizing direction until it can't find a

lower point.

If the objective function is evaluated for the first example problem

discussed earlier, then the cost is found to be:

Unoptimized Cost = 72.1

However, if we apply the Levenberg-Marquardt algorithm to the problem

and let it find the K vectors and the resulting F matrix the solution is:

- [. 8226 1.229 l
K - 1.053 .265

- [-5.29 0.53 l
F - -.327 -5.71

Optimized Cost = 60. 7

86

Application of this algorithm finds a solution that results in a fifteen percent

reduction in the value of the objective function. In some applications, such a

reduction could be significant.

An important point to realize is that the reduced cost solution was

found away from the Brogan's method solution. If constrained to using only

Brogan's method, such a cost reduction would not have been possible. Of

the four possible Brogan's method solutions for this problem, the best results

are shown in the example problem above. If one had been unfortunate

enough to choose the following K vector:

the cost without optimization would be 177 .25! Application of the

Levenberg-Marquardt method would result in a sixty-six percent

improvement.

Comparison to Brogan's Method

87

The freedom to choose K vectors without Brogan's restriction can result

in better solutions in some cases. The problem in the previous section is an

example. At this point, let us consider three additional problems for a total

of four problem to see what effect this new approach has on reducing the

feedback cost. For each problem, we will evaluate the objective function

described above and a new function which gives more of a physical

interpretation of feedback cost.

The new cost function evaluated will be to sum the absolute value of

each row vector in the feedback matrix F. Such a sum gives more of a

physical interpretation since it represents gains instead of squared gains.

This second merit function will not be used to select the F matrix, but only

after one is chosen will it be evaluated. The function defined precisely is:

R = 2= I fij I
l<i<r
is.;sn

88

(96)

The first problem considered in detail is the example problem described

earlier in this chapter. The second problem is found in Fahmy and

O'Reillyr 19 l and is described as:

A = l ~2 ~ ~ 1 B = l ~ ~ 1 K = [~ ~ ~ l (97l
-2 -1 0 0 0

Target Eigenvalues: -1, -1, -2

The third problem for consideration is found in Broganf 161 in chapters 12 and

16. This model describes the lateral flight dynamics of an aircraft:

10 0 -10 0 20 2.8

0 -.7 9 0 0 -3.13
A= 0 -1 -.7 0 B= 0 0

1 0 0 0 0 0

K ~ [~ ~ ~ ~] 1981

Target Eigenvalues: -2, -5, -8 and -10

Finally, a fourth problem will be taken from Broganf 161. It is described as:

89

r
-2 1 0 l r 0 0 1 K = [

0
1 o

1
o
1
l

A = ~ ~2 ~ B = ~ ~ (99l

Target Eigenvalues: -2, -3, -4

For each of these four systems, the two cost functions are evaluated

under initial conditions and after the optimization algorithm is applied. The

results are shown in the following table.

TABLE X

TEST CASE RESULTS

Brogan Brogan Optimized Optimized
Problem Cost A Cost R Cost A Cost R

1 72.11 14.33 60.69 11.86
2 26.79 10 26.76 9.92
3 66.11 12.16 13.87 6.26
4 49 11 49 11

As can be seen from these four example problems, when the control problem

is stated in this manner and the Levenberg-Marquardt algorithm is applied,

the results can be significantly better than a simple application of Brogan's

method. In the third problem, the least-squares algorithm resulted in a

eighty percent reduction in the first objective function and fourth-nine

percent reduction in the second objective function.

90

Since the Levenberg-Marquardt algorithm only moves in directions of lower

cost, it will never leave a point if it is already at a minimum. Therefore, use

of this technique will never result in worse performance than the initial

guess. In the case of the fourth problem in the table, the initial guess was

the 'best' solution.

Effects of Changing the F Matrb::

Throughout this research, the primary interest has been in

maintaining pole/eigenvalue locations after actuator failure. In Chapter III

and this chapter, it has been assumed that any feedback matrb:: that results

in the target eigenvalues was acceptable. However, it should be pointed out

that the complete system response will be altered as different feedback

matrices F are used. An important question to ask is whether or not there

are any negative side effects to using the optimization scheme described in

this chapter.

In the work of Broganfl 61 and in the work of Fahmy and O'Reillyfl9J

the reason for the change is discussed. Both sources prove through different

means that the eigenvectors are being changed as the K vectors are changed

and as a result as F changes. Since the complete response of a system is a

function of both the eigenvalues which do not change as F changes and the

eigenvectors which do change the net effect is a change in complete system

response.

91

Figures 4. and 5. provide some insight into the changes that occur

when the F matrix is altered. Figure 4. is a plot of the x(Q) state variable in

the first example problem in response to [1 0]t initial conditions. One line

describes the response in the worst case Brogan selection described earlier

while the other line describes the response to the least-squares selection.

The response is clearly different when the two different F matrices are used

in the closed-loop system.

92

I ,,.__

c 0
c 0 -+-' 0 +-'

+J :.:J {""'. ~.-
() - '~'
Q) 0 c :-i
Q)

(./)

0 ,-.,
(/)

..__,

E u c ::J
0 E -----01 i--l
0 +-' 0
\._ Q..

m 0 -+-'

c

··-·---·· -·· --·

'1 ,,
i·l CD
;~ 1-:-
l i c
'J
11

L() ;4 ,--·
....-

'1 (/) i
-j ...__

i
,, ;:.

-1

J _,,,,,.-·
I ..--..

' I 0 0 l _ _,
-l

E
.......... _.~ ,

I ..--
I x·

i-- / '•

, J. , , ,_

i LO

/

,
l_j__

, ,
L-----· 0 ,,...

0 _j i.i ___ __j._ ·-··----.......__,.
x-- VJ cc i'-~ (() !..() ~ ~') C".l "-·- 0

0 0 0 0 0 0 0 0 0

,,--....
0_.....
x

c
i::: 0 c 0 !,_

0 -+---' 0 ::J -+-) u -- v Q) 0 ()
<l>

(/} c Q)
U1 E 0,.

./

c ::J u c
0 E Q) (Jl

0
0 01 !.-- 0..

m 0 ·-
-+---' u.J
c

-~

.. ··--·-····--- --·- .-.!
!

~
J
~
i
j
l

-· I 1,
j.

t
h
I·
I-I.

I ;
f -

I ~

11)

,,-

0
,,-

I

/ - 11)

/
/"

----:.--------- ~ 0
I ? L-- ; I

--·--L---- __ j - --- __ i ----- __ j ___ - __ l '"--- - ,, __ -~ .. -·-- .. L

..-- O'> co r-.... (() l[) "<;j- n N r- 0
0 0 0 0 0 0 0 0 0

93

Q)
c-
c ·--

L-
I

(/)

>
,--....
l-::>

Q)___,,,,
E ,~· ,,x.. . '
!-

94

However, if the initial conditions are changed to point in the direction of one

of the eigenvectors of the closed-loop system, then the response offers insight

into the change that occurs when F is altered. Figure 5. reveals that when

the initial conditions are chosen to correspond to the closed-loop eigenvectors,

the response is identical. The eigenvector used in Figure 5. corresponds to

the -5 eigenvalue in each case.

The difference between Figure 4. and Figure 5. suggests that the initial

conditions highlight different modes of the closed-loop system. An adequate

comparison requires that a common ground be established to evaluate the

response changes due to the changes in F. Once the comparison is made

with fair initial conditions, the response is seen to be identical.

Conclusions

The two methods outlined in this chapter provide dramatically different

approaches to finding a 'best' feedback solution. The first method using the

Phase One Test provides a simplistic method for finding a suitable feedback

matrix F. The advantages of this approach are that it is conceptually

simple and easy to implement on a computer. The primary disadvantage to

this approach is that a full coverage search strategy of this type can require

enormous amounts of time when the order of the system is high.

The non-linear least squares search strategy offers two significant

advantages. First, the search strategy to find a solution is much more

intelligent than a linear search using the Phase One Test. The Gauss-

95

Newton characteristics of the algorithm can allow it in some cases to jump

close to a solution in a few steps. The second advantage of this approach is

that since the restrictions of Brogan's method are removed, better solutions

can generally be found. The four example problems clearly demonstrated

that significant performance improvements can be obtained.

Unfortunately, the non-linear least squares search strategy has some

disadvantages too. First, it requires an expensive to implement computer

algorithm to run in real-time. The algorithm requires function derivatives to

be determined at each point the algorithm moves. A second problem is that

in some cases the solution convergence is slow. Recall that an ordinary

Newton's method algorithm converges slowly when multiple zeros are

present. The same characteristic can appear in the Levenberg-Marquardt

method.

Overall, the Phase One Test search and the non-linear least squares

search provide two diverse alternatives to the problem of finding a 'best'

feedback solution to a given control problem.

CHAPTER V

COMPUTER IMPLEMENT A TI ON DETAILS

Introduction

This chapter discusses numerous computer implementation details

necessary to make the algorithms of the previous two chapters work.

Specific computer details on calculating the Z and X matrices will be

presented as well as details on implementing the Phase One Test. Example

code will be used where appropriate.

In addition to computer details, this chapter will present a flowchart

outlining use of the Phase One Test in solving the control problem of

Chapter III.

Calculating the Z Matrix

The principle difficulty of implementing Brogan's Algorithm on paper or

on a computer is the apparent necessity to do a symbolic matrix inversion.

The calculation of¢(\) appears to require an off-line symbolic inversion.

Fortunately, this problem can be avoided.

Let us calculate a separate ¢(\) for each \ in our problem. Then

concatenate the various ¢(\) matrices together end-to-end to form the Z

matrix.

96

97

If the problem is solved in this fashion, the Z matrix can be evaluated

on the computer using numerical routines given the A matrix and the target

eigenvalues Ai. The psuedocode of Figure 6 demonstrates the solution.

for i = 1 to number_of_eigenvalues
[
copy(A,ATMP)

for j = 1 to DIM(A)
ATMP[j] [j] -= pole[i];

for j = 1 to DIM(A)
[
for k = 1 to DIM(A)

ATMP [j] [k] * = -1. 0;

invert(ATMP,tmp);

for j = 1 to DIM(A)
[
for k = 1 to DIM(A)

Z[j] [k+DIM(A)*i] tmp [j] [k] ;

Figure 6. Psuedocode For Calculation of Z

With the use of psuedocode in Figure 6, it becomes possible to randomly

create A, B, and target eigenvalues for simulation purposes and not have to

symbolically invert A each time. This outlined approach is implemented in a

C function called prep() in the program included in the appendix.

Calculating the X Matrix

The calculation of the X matrix is achieved by multiplying each

partition of the Z matrix times the B matrix. The resulting matrices are

concatenated together to form the X matrix.

98

When the Phase One Test is implemented in a real environment where

a fault detection system is updating actuator performance data and

availability, the calculation of the X matrix can be optimized for cases when

actuator performance is varying. In such cases, the X calculating

procedure should only update the columns in X that are affected by changes

in B. There is no need to recalculate the entire X matrix for every change

in the B matrix.

Phase One Test

The most important part of the code in this work is the Phase One

Test. The calculation of the Z matrix discussed above is not as crucial

because it is executed one time, outside the loop. The calculation of the X

matrix involves limited optimization opportunities since it involves a straight

matrix multiplication; however, the Phase One Test will be executed inside

the loop for each candidate G matrix.

Figure 7 outlines the first step in the two vector tests discussed in

Chapter III. The first vector is stored in column i th column of matrix d.

The second vector is stored in the jth column of matrix x.

TOL=le-6;
stat=FALSE;
for rn = 1 to DIM(A)

if (x [rn] [j] > TOL or x [rn] [j] < -TOL)
[
stat=TRUE; /*not a zero vector*/
break;
}

if(stat == FALSE)
return (-1);

stat=FALSE;
for rn = 1 to DIM(A)

/*zero vector*/

if(d[rn] [i] > TOL or d[rn] [i] < -TOL)
[
stat=TRUE; /*not a zero vector*/
break;

if(stat == FALSE)
return(-1); /*zero vector*/

Figure 7. Step One: Zero Vector Test

Notice from Figure 7 that the code completely checks one vector before

checking the second vector. In this manner, if the first vector is a zero

99

vector, the second vector will not even be examined. If both were tested in a

single loop, then twice the work is performed if either vector is a zero vector.

Figure 8 presents steps two and three in our testing procedure. This

part of the procedure is the most complicated. Notice the variable 'count'

100

which is incremented every time a row in each column has non-zero entries.

This count variable will be tested for the step three test.

TOL=le-6
count O;
for m = 1 to DIM(A)

l
if(d[m] [i] < TOL and d[m] [i] > -TOL)

[
if(x[m] [j] > TOL or x[m] [j] < -TOL)

return(O); /*independent*/
else

continue; /*0/0 case*/

else

if(x[m] [j] < TOL and x[m] [j] > -TOL)
return(O);

else

count++;
continue;

if(count <= 1)
return(-1);

/*independent*/

/*non-0/non-O case*/

/*dependent*/

Figure 8. Steps One and Two

Figure 9 outlines the fourth and final step used to compare two vectors. The

equal vectors test subtracts one vector entry from the other and then

compares the difference to zero.

for m = 1 to DIM(A)
[
s urn = d [rn] [i] - x [rn] [j] ;
if(sum < -TOL or sum > TOL)

[
return(O);
}

return (-1) ;

/*independent*/

/*dependent*/

Figure 9. Step Four: Equal Vectors Test

101

In this final step, notice that the routine will examine individual rows until

it finds a row where the two values are not equal. At that point, the routine

returns a passing value. If the routine proceeds through all the rows

without finding a row with differing values, the vectors are exactly equal

and thus dependent.

Three appendices are attached that include the complete Phase One

Test implemented in code, the main body of a simulation program, and a

series of matrix utility functions used throughout the project. The

simulations of this research were done in C.

Using the Phase One Test
For Fault Adaption

In Chapter III, a simple algorithm to estimate the singularity of a

given matrix was developed. In this section, the test will be used in the

original fault-adaptive problem.

102

Consider Figure 10, on the next page, which summarizes an adaption

approach for the problem of finding any feasible solution in minimum time.

The approach begins with a process that detects actuator faults or changes.

Throughout this paper, the detection of failures in systems has not been

addressed because there are several good techniques available for the fault

detection problem. However, to implement an adapting algorithm requires a

fault detection/identification process in the loop. The detection process must

quickly determine that a fault has occurred. The identification process must

specify where the fault has occurred and the new actuator characteristics

after the fault.

Shutdown

Shutdown

START

Calculate

Affected

X Columns

Phase One FAil

Test

Figure 10. Fault Adapting Procedure

103

Immediately after a fault has been detected and the new actuator

performance has been determined, the adaption process begins. The next

step in the process is to determine whether or not there are actuators

available after the fault. If none are available, the system is clearly not

controllable and a shutdown process, if one is available, must begin. If

actuators are available, the adapting process must first recalculate the

affected columns in X. This step involves a straightforward matrix

multiplication as outlined earlier.

104

Once a new X matrix has been determined, a selection process should

select a candidate G matrix for analysis. At this point, the search strategy

being implemented plays a role.

Once a candidate matrix has been chosen the Phase One Test is

applied against it. If the candidate fails the test, then another candidate is

selected. If no candidates pass the test, a shutdown procedure must begin

because there is no feasible way to maintain the chosen system

performance.

When a candidate passes the Phase One Test the value of Fis

calculated. If F exists, the process returns to the fault detection loop. From

the simulation runs presented earlier, this case will occur over ninety-seven

percent of the time. The remaining cases will require a new candidate

matrix to be selected.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusions

The goal of this research has been to develop a new adaptive pole­

placement algorithm specifically designed to adapt to controller changes.

Requirements on the new algorithm were that it needed to maintain pole

positions after actuator failure and that it needed to be well-suited for a fast

computer implementation. These goals were driven by the apparent lack of

work in this direction and by the stated need for such work in the April 1987

issue of Transactions on Automatic Controls[lZJ.

In summary, while several specific contributions are outlined in the

following paragraphs, it can be stated that the method developed in this

work meets the stated research goals. A new approach to adapting to

actuator faults is presented and shown to be efficient when implemented on

a computer. This new approach takes a well known pole-placement method

and extends it to solve the stated adaption problem. A simple four-step test

is created and used to greatly reduce the amount of work that would

otherwise be necessary in the evaluation of a feedback mechanism which

compensates for the failure. In short, this research has put together a new

tool for use in the fault-adaptive control problem.

This research has resulted in several significant contributions to the

105

106

fault-adaptive control problem. The first contribution concerns the means to

model actuator faults as changes in the B matrix. This means of modeling

the faults allows the adapting problem to be considered using traditional

control methods. The importance of this simple observation should not be

overlooked in that it was essential for the adapting algorithm of this

research to be developed.

The second major contribution from this work is the adapting

algorithm itself. A large amount of time was spent examining many

different control approachs before Brogan's algorithm was found to possess

several key characteristics. The ability to push the costly matrix inversion

step off-line ahead of the adaption loop makes Brogan's approach ideal for

the fault-adaptive problem specified. Furthermore, the characteristic of any

nonsingular G matrix resulting in a feasible feedback matrix F allows the

adapting algorithm to have a very clear goal of finding a nonsingular

matrix. A feasible solution is guaranteed if a nonsingular G matrix is

found. An additional plus is the advantage of not requiring any new matrix

multiplications or inversions if an actuator fails and is removed. These

characteristics of Brogan's algorithm make it ideal for the fault-adaptive

problem being addressed.

Once Brogan's algorithm was identified, it became necessary to cast

the algorithm into a form suited for computer implementation. Such a form

was developed and is now used in the resulting algorithm.

107

The task of finding a nonsingular candidate G matrix then became the

goal. Simple search strategies and numerous condition number techniques

were tried, but they either resulted in poor performance or required too much

work to arrive at an answer.

Finally, the fundamental principle of matrix rank coupled with a

problem formation characteristic in Brogan's method yielded a simple four­

step approach to determining the feasibility of a candidate matrix. This

four-step approach called the Phase One Test determines with

approximately ninety-seven percent probability whether or not a candidate G

matrix will result in a feasible solution. Furthermore, the Phase One Test

results in no false negatives and requires no expensive multiplies or divides.

An important additional characteristic of the algorithm is that it is

extremely well suited for implementation in a multiprocessor environment.

The problem can be broken into distinct tasks that can be executed in

parallel. Such a characteristic is ideal in a computer control environment

that has multiple processors available for use.

Once a method was in place for finding a feasible solution, two seperate

strategies where developed for finding a 'best' solution. One strategy used

the Phase One Test to reduce the problem solution space by almost half. A

linear search would then be used to determine the best solution of the

remaining feasible candidates. A second strategy expanded on Brogan's

development to cast the feedback problem in a more generalized form. A

108

non-linear least squares algorithm was then shown to find a 'best' solution

out of a much larger solution space than the first approach. The solution

found by the second method will generally result in a better solution than

the one found by the restricted first method.

Future Work

In this section, some extensions to the approach outlined in the

previous chapters will be considered. Some of the techniques will speed up

the Phase One Test while other techniques will attempt to reduce the

number of unnecessary inversions still further. Some of the approaches will

be minor ideas while others might be of significant use for particular classes

of problems.

This section will also include discussion on some important points that

were not covered earlier.

Regional Pole-Placement

The adaption method developed in this research deals with the problem

of holding pole positions in required locations after actuator changes or

failures. An interesting problem to be considered would be to relax the

requirement that the poles remain fixed and let the poles move inside a

specified region. For example, the design requirement could be relaxed to

specify the pole positions inside an ellipse or left of a parabola. Such a

specification would provide additional freedom in choosing a feedback

109

mechanism. A challenging problem would be to allow pole movement while

still finding a feedback matrix F.

Parallel Implementations

As mentioned earlier, the method developed in this research is well­

suited for a multiprocessor environment. An important follow-up step to

this research would be to implement the approach in a multiprocessor

environment. A successful system would involve a fault

detection/identification process coupled with the adaptive process. A

complete implementation could explore the coupling issues between the

detection phase and the adaptive phase. Furthermore, system shutdown

questions could also be answered. Overall, a full parallel processing

implementation could provide a complete start-to-end adaptive problem

example.

Repositioning the Zero Vector Test

The first test in our two vector test was to detect the presence of zero

vectors in the candidate G matrix. As the algorithm was implemented, that

test was done at the vector test level and not one time on the entire matrix.

If the zero vector tests were pulled out of the two vector test section and

placed up front, then less work would be necessary to detect zero vectors.

In the current implementation, tests for zero vectors are repeated

against the same vectors more than once. Unnecessary tests are performed

110

when zero vectors exist but are positioned to be examined later.

Eliminating Redundant Vector Tests

In the Phase One Test, pairs of vectors are tested to determine if they

are linearly dependent. If they fail the test, then another pair of vectors are

tried until a pair fails the test or all the vectors pass the test and inversion

begins.

However, if the test fails and another combination of vectors are

chosen to make up the candidate G matrix, the Phase One Test is reapplied

to the new G matrix. As before, testing pairs of vectors for dependency will

begin, in which case a previously tested pair might be tested again.

However, it is clear that if the two vectors passed or failed the Phase One

Test the first time, the result will be unchanged during a second test.

Therefore, the Phase One Test could be modified as:

1. As each pair of vectors is tested, store the result.

2. If the same pair of vectors must be tested again, recall the result from
the first test.

3. If a change in a B matrix entry changes any vector that has a stored
result, then clear the test results for the affected pairs.

This addition to the Phase One Test does not change the algorithm but

merely its implementation. However, more storage and additional logic will

be required.

111

The modification described in this section will not result in a significant

performance improvement since no multiplies are saved; however, the

number of additions/subtractions and indexing operations will be reduced.

This improvement is definitely appealing since redundant work is being

eliminated.

Tridiagonal Systems

In our approach, a nonsingular matrix is being built. Since there is

freedom to choose vectors from each partition of our described X matrix, it

may be possible to choose vectors that yield a G matrix structure that is

easy to solve numerically. One such structure is the tridiagonal structure

where a matrix has non-zero elements on the main diagonal and then above

the diagonal or below the diagonal, but not both.

If the vectors chosen from X resulted in a tridiagonal G matrix, then a

special algorithm, such as the one described in Pressr211
. could be used

instead of the traditional, general purpose inversion/solution algorithm

generally used.

This approach is mentioned because it might be useful for some classes

of problems. The necessary logic to build a tridiagonal matrix from X could

be easily implemented.

112

Redundant Actuators

In the simulation section of Chapter III the issue of redundant

actuators appeared. At that time, redundancy was not considered in the

simulation process. The case of redundant actuators should be considered as

a special case in the fault-adaption problem. If it is known that a redundant

means of control is ·available, that knowledge should be included in our

controller/adapter design. An adaption algorithm should not be required to

determine that the redundant actuator should replace a failed actuator

without changing the feedback gains. If redundant actuators are available,

they should replace the failed actuator automatically when a failure is

detected. It is for this reason that redundant actuators have not been

discussed in this paper.

BIBLIOGRAPHY

1. W. L. Brogan, "Applications of a Determinant Identity to Pole­
Placement and Observer Problems," IEEE Trans. on Automatic
Control, pp. 612-614, October 197 4.

2. D. Graupe, '1dentification of Systems," Robert F. Krieger, New York,
1972, pp. 20-23.

3. D. G. Luenberger, '1ntroduction to Dynamic Systems," John Wiley &
Sons, New York, 1979, pp. 276-285.

4. P. K. Sinha, ''Multivariable Control: An Introduction," Marcel Dekker
Inc., New York, 1984, pp. 159-164.

5. W. M. Wonham, "On Pole Assignment in Multi-Input Controllable
Linear Systems," IEEE Trans. on Automatic Control, Vol. AC-12, No.
6, pp. 60-665, December 1967.

6. S. J. Raza and J. T. Silverthorn, "Use of the Pseudo - Inverse for
Design of a Reconfigurable Flight Control System," American Inst. of
Aeronautics and Astronautics, pp. 349-356, 1985.

7. A. Alos, "Stabilization of a Class of Plants with Possible Loss of
Outputs or Actuator Failures," IEEE Trans. on Automatic Control, pp.
231-233, February 1983.

8. J. B. Pearson and P. W. Staats, Jr., ''Robust Controllers for Linear
Regulators," IEEE Trans. on Automatic Control, pp. 231-234, June
1974.

9. Juergen Ackermann, "Parameter Space Design of Robust Control
Systems," IEEE Trans. on Automatic Control, pp. 1058-1072,
December 1980.

10. H. Elliott and W. A. Wolovich, "A Parameter Adaptive Control
Structure for Linear Multivariable Systems," IEEE Trans. on
Automatic Control, pp. 340-352, April 1982.

11. H. Elliott, W. A. Wolovich, and Das, "Arbitrary Adaptive Pole
Placement for Linear Multivariable Systems," IEEE Trans. on
Automatic Control, pp. 221-228, March 1984.

12. "Challenges to Control: A Collective View," IEEE Trans. on Automatic
Control, pp. 275-285, April 1987.

13. B. Friedland, "Control System Design," McGraw-Hill Inc., New York,
1986, pp. 224-236.

14. M. Pachter, "An Explicit Pole-Assigning Feedback Formula," IEEE
Trans. on Automatic Control, pp. 263-265, April 1977.

113

114

15. J. O'Reilly, "Comments on 'An Explicit Pole-Assigning Feedback
Formula,"' IEEE Trans. on Automatic Control, pp. 1012-1013, October
1980.

16. W. Brogan, ''Modern Control Theory," Prentice-Hall Inc., New Jersey,
1985, pp. 401-403.

1 7. Samual Conte and Carl de Boor, "Elementary Numerical Analysis: An
Algorithmic Approach," McGraw-Hill Book Company, New York, 1980,
Third Edition, pp. 175-177.

18. J. King, '1ntroduction to Numerical Computation," McGraw-Hill Book
Company, New York, 1984, pp. 122-128.

19. M. M. Fahmy and J. O'Reilly, "On Eigenstructure Assignment in
Linear Multivariable Systems," IEEE Trans. on Automatic Control,
pp. 690-693, June 1982.

20. L. E. Scales, '1ntroduction to Non-Linear Optimization," Springer­
Verlag New York Inc., New York, 1985.

21. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,
"Numerical Recipes: The Art of Scientific Computing," Cambridge
University Press, Cambridge, 1986, pp. 40-41.

VITA

Mark A. Brewer

Candidate for the Degree of

Doctor of Philosophy

Thesis: A FAULT-ADAPTIVE POLE-PLACEMENT ALGORITHM
SUITED FOR COMPUTER IMPLEMENTATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Oklahoma City, Oklahoma, March 2, 1961,
the son of Richard H. and Ellen F. Brewer.

Education: Graduated from Putnam City High School, Oklahoma
City, Oklahoma, in May, 1979; received Bachelor of Science
Degree in Electrical Engineering from Oklahoma State
University at Stillwater in May, 1983; received Master of
Science Degree from Oklahoma State University; completed
requirements for the Doctor of Philosophy degree at Oklahoma
State University in July, 1988.

Professional Experience: Teaching Assistant, Department of
Electrical Engineering, Oklahoma State University, January
1983 to December 1984; Summer Research Assistant, AT&T
Bell Laboratories, Murray Hill, New Jersey, Summer 1983;
Development Engineer, AT&T Technologies, Inc., Oklahoma
City, Oklahoma, Summer 1984 to Present.

	Thesis-1988D-B847f_Page_001
	Thesis-1988D-B847f_Page_002
	Thesis-1988D-B847f_Page_003
	Thesis-1988D-B847f_Page_004
	Thesis-1988D-B847f_Page_005
	Thesis-1988D-B847f_Page_006
	Thesis-1988D-B847f_Page_007
	Thesis-1988D-B847f_Page_008
	Thesis-1988D-B847f_Page_009
	Thesis-1988D-B847f_Page_010
	Thesis-1988D-B847f_Page_011
	Thesis-1988D-B847f_Page_012
	Thesis-1988D-B847f_Page_013
	Thesis-1988D-B847f_Page_014
	Thesis-1988D-B847f_Page_015
	Thesis-1988D-B847f_Page_016
	Thesis-1988D-B847f_Page_017
	Thesis-1988D-B847f_Page_018
	Thesis-1988D-B847f_Page_019
	Thesis-1988D-B847f_Page_020
	Thesis-1988D-B847f_Page_021
	Thesis-1988D-B847f_Page_022
	Thesis-1988D-B847f_Page_023
	Thesis-1988D-B847f_Page_024
	Thesis-1988D-B847f_Page_025
	Thesis-1988D-B847f_Page_026
	Thesis-1988D-B847f_Page_027
	Thesis-1988D-B847f_Page_028
	Thesis-1988D-B847f_Page_029
	Thesis-1988D-B847f_Page_030
	Thesis-1988D-B847f_Page_031
	Thesis-1988D-B847f_Page_032
	Thesis-1988D-B847f_Page_033
	Thesis-1988D-B847f_Page_034
	Thesis-1988D-B847f_Page_035
	Thesis-1988D-B847f_Page_036
	Thesis-1988D-B847f_Page_037
	Thesis-1988D-B847f_Page_038
	Thesis-1988D-B847f_Page_039
	Thesis-1988D-B847f_Page_040
	Thesis-1988D-B847f_Page_041
	Thesis-1988D-B847f_Page_042
	Thesis-1988D-B847f_Page_043
	Thesis-1988D-B847f_Page_044
	Thesis-1988D-B847f_Page_045
	Thesis-1988D-B847f_Page_046
	Thesis-1988D-B847f_Page_047
	Thesis-1988D-B847f_Page_048
	Thesis-1988D-B847f_Page_049
	Thesis-1988D-B847f_Page_050
	Thesis-1988D-B847f_Page_051
	Thesis-1988D-B847f_Page_052
	Thesis-1988D-B847f_Page_053
	Thesis-1988D-B847f_Page_054
	Thesis-1988D-B847f_Page_055
	Thesis-1988D-B847f_Page_056
	Thesis-1988D-B847f_Page_057
	Thesis-1988D-B847f_Page_058
	Thesis-1988D-B847f_Page_059
	Thesis-1988D-B847f_Page_060
	Thesis-1988D-B847f_Page_061
	Thesis-1988D-B847f_Page_062
	Thesis-1988D-B847f_Page_063
	Thesis-1988D-B847f_Page_064
	Thesis-1988D-B847f_Page_065
	Thesis-1988D-B847f_Page_066
	Thesis-1988D-B847f_Page_067
	Thesis-1988D-B847f_Page_068
	Thesis-1988D-B847f_Page_069
	Thesis-1988D-B847f_Page_070
	Thesis-1988D-B847f_Page_071
	Thesis-1988D-B847f_Page_072
	Thesis-1988D-B847f_Page_073
	Thesis-1988D-B847f_Page_074
	Thesis-1988D-B847f_Page_075
	Thesis-1988D-B847f_Page_076
	Thesis-1988D-B847f_Page_077
	Thesis-1988D-B847f_Page_078
	Thesis-1988D-B847f_Page_079
	Thesis-1988D-B847f_Page_080
	Thesis-1988D-B847f_Page_081
	Thesis-1988D-B847f_Page_082
	Thesis-1988D-B847f_Page_083
	Thesis-1988D-B847f_Page_084
	Thesis-1988D-B847f_Page_085
	Thesis-1988D-B847f_Page_086
	Thesis-1988D-B847f_Page_087
	Thesis-1988D-B847f_Page_088
	Thesis-1988D-B847f_Page_089
	Thesis-1988D-B847f_Page_090
	Thesis-1988D-B847f_Page_091
	Thesis-1988D-B847f_Page_092
	Thesis-1988D-B847f_Page_093
	Thesis-1988D-B847f_Page_094
	Thesis-1988D-B847f_Page_095
	Thesis-1988D-B847f_Page_096
	Thesis-1988D-B847f_Page_097
	Thesis-1988D-B847f_Page_098
	Thesis-1988D-B847f_Page_099
	Thesis-1988D-B847f_Page_100
	Thesis-1988D-B847f_Page_101
	Thesis-1988D-B847f_Page_102
	Thesis-1988D-B847f_Page_103
	Thesis-1988D-B847f_Page_104
	Thesis-1988D-B847f_Page_105
	Thesis-1988D-B847f_Page_106
	Thesis-1988D-B847f_Page_107
	Thesis-1988D-B847f_Page_108
	Thesis-1988D-B847f_Page_109
	Thesis-1988D-B847f_Page_110
	Thesis-1988D-B847f_Page_111
	Thesis-1988D-B847f_Page_112
	Thesis-1988D-B847f_Page_113
	Thesis-1988D-B847f_Page_114
	Thesis-1988D-B847f_Page_115
	Thesis-1988D-B847f_Page_116
	Thesis-1988D-B847f_Page_117
	Thesis-1988D-B847f_Page_118
	Thesis-1988D-B847f_Page_119
	Thesis-1988D-B847f_Page_120
	Thesis-1988D-B847f_Page_122
	Thesis-1988D-B847f_Page_123
	Thesis-1988D-B847f_Page_124

