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CHAPTER I 

INTRODUCTION TO THE FAULT-ADAPTIVE 

CONTROL PROBLEM 

Introduction 

This research presents a new, fault-adaptive control strategy for linear 

systems suitable for fast, on-line computer control schemes. The new 

strategy is an extension of the well-known pole-placement method initially 

developed by Brogan[ 11. Details of the computer implementation are 

discussed and numerous examples are shown. 

This chapter introduces the preliminary definitions, the various failure 

modes that occur in linear systems, the associated ideas of controllability 

and some previous work on fault-adaptive schemes. 

Chapter II develops the problem of adapting to actuator failures in 

control systems. Several approaches are explored and discussed. Brogan's 

method is introduced and explained in detail. The advantages and 

suitability of Brogan's approach for the fault-adaptive problem are explained. 

Finally, Brogan's method is cast into a new form for purposes of this new 

adaptive strategy. 

Chapter III develops the adaptive strategy in detail for the problem of 

1 
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finding a feedback solution as quickly as possible. Several possible control 

approaches are introduced and considered. Their relative advantages and 

disadvantages are explored, and examples of their use are presented. 

Finally, a four-step method which gives excellent results at minimal 

computer cost is chosen. The four-step test is compared against brute force 

computer solutions through extensive computer simulations. Chapter III 

closes by comparing the two methods and showing how the four-step method 

results in significantly superior performance over a brute force computer 

solution. 

Chapter IV extends the results of Chapter III for the problem of 

choosing a 'best' solution out of a solution space. In Chapter IV, two 

different approachs are presented. The first approach uses the four-step test 

developed in Chapter III to reduce the problem solution space by 

approximately forty-four percent. A linear search through the remaining 

space is then performed to determine the 'best' solution. The second 

approach redefines the feedback matrix calculation procedure and then uses 

a non-linear least squares algorithm to find a solution. It is shown that the 

least-squares approach can generally find better solutions than the linear 

search method. 

Chapter V covers several details required for a successful computer 

implementation of the fault-adaptive method outlined in this research. 

Specific details for implementing the four-step test are covered. Chapter V 



also explains the use of the four-step test in the overall fault-adaptive 

solution. 

Finally, Chapter VI summarizes the work and discusses possible 

directions for future work. The last chapter also covers a few details that 

were not addressed in earlier chapters. 

Preliminary Definitions 

This research deals with linear time-invariant systems described by 

systems of differential equations of the form: 

3 

(1) 

(2) 

where x_ is the state vector, y_ is the output vector, u_ is the input vector, A is 

the system matrix, B is the input mapping matrix, and C is the output 

mapping matrix. For most discussions, C = I, where I is an identity matrix. 

An important observation from equation ( 1) is that the columns of B 

describe how each input signal is mapped into the state trajectory. Each 

column represents a different actuator that can influence the system. 

The word controller, or sometimes actuator, will be used to refer to 

individual system inputs (u_)i. 

Throughout this research, reference will be made to linear feedback of 
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the form: 

u.=Fx.+w. (3) 

where F is the feedback matrix and w. is the input vector to the closed-loop 

system. 

Failures in Control Systems 

In a system with state or output feedback, the system failures that 

can occur fall into three distinct types. A first type of failure that can occur 

is in the plant dynamics. The open-loop model used to describe the system 

is no longer valid. If a wing fails on an airplane, plant dynamics will 

dramatically change and the original control laws are no longer valid. A 

second type of fault occurs when a controller that influences a system fails, 

but the original open-loop dynamics of the plant are not affected. An 

example of this type of failure is the loss of a jet engine on an airliner. The 

plant dynamics governing the plane's motion have not changed, but one 

controller that influences the system dynamics has failed. A third type of 

failure occurs when sensors used to determine plant states fail. An example 

of this type of failure would be a failed altimeter in an airplane. 

This research deals with the second type of failure. Specifically, failure 

modes are considered when one or more controllers in a multiple controller 

environment fail. 
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It will be assumed that if a controller fails it can be taken out of service 

so that it exerts no influence on the system. This assumption corresponds to 

zeroing out a column of B. Throughout the rest of this research, changes in 

the B matrix will correspond to failures in controllers. It should be stressed, 

however, that plant dynamics are not changing. 

In other cases, consideration will be given to the problem where the 

performance of the actuators is slowly varying over a long time period. This 

problem can be handled by slowly varying the parameters of the B matrix 

and then adapting to the new conditions. 

Consider the following example of a system before and after an 

actuator failure occurs. Given: 

)'_ = x. 

If the goal is to move the closed-loop pole positions to -2, -3, and -4, the 

feedback matrix: 

[

-0.3660 
F = -3.5119 

-0.0807 

-1.1156 

1.487 4 

-1.4364 

1.39441 
-1.8593 

-4.4545 

can be used to move the poles to the desired locations I 11 . The resulting 

(4) 

(5) 



closed-loop system matrix is given by: 

[ 

-2.8779 

A +BF= 0.18721 
-0.08069 

0.37184 
-2.66755 
-0.4364 

6 

-0.4648 l 
-1.6655 
-3.4545 

(6) 

If the characteristic equation is calculated, the resulting pole positions meet 

the design goal. 

f( A ) = I >J +A +BF I = >-3 + 9 >-2 + 26 A + 24 

f ( \ ) = ( \ + 2 ) ( f- + 3 ) ( \ + 4 ) 

Under normal conditions, the calculated control law F will work exactly as 

required. The resulting pole positions will be exactly where they were 

intended to be positioned. However, consider what happens if the second 

actuator fails and can no longer influence the system. Without any 

adaptation to this failure, the system will be described by: 

0.634 -1.1156 
0.1873 -2.6676 

-0.0807 -0.4363 

1.3944 l 
-1.6657 
-3.4545 

where B _2 is obtained from B by making all the entries in the second 

(7) 

(8) 

(9) 



7 

column of B zero. The corresponding characteristic equation is: 

f~ew( \. l = \.3 + 5.488 \.2 + 4.928 \. - 4.0957 (10) 

when the characteristic equation is factored, the new pole positions are 

clearly seen to be wrong: 

fnew( \. l = ( \. + 2 ) ( \. - 0.512 ) ( \. + 4 l (11) 

Unless the system adapts to the loss of the actuator, the system will be 

unstable. 

If the control law calculation is repeated on this 'new' system, the 

required pole positions can still be achieved by the following feedback matrix 

F: 

[

-39. 756 

F= 0 
23.648 

15.567 

0 
-11.4866 

-19~459 l 
8.108 

Fa ult-Tolerance Definitions 

Two separate types of fa ult-tolerance can be considered. First, a 

(12) 

system could be defined as fault-tolerant if it remains controllable after the 

failure of any single controller (u_ )i. In other words, if a controller should 
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fail, the system will remain controllable in the reduced order (one column in 

B will have zero entries) configuration. As shown later, this is equivalent to 

having continued freedom to arbitrarily assign the closed-loop poles to any 

desired location. The previous example represents this type of fault­

tolerance. 

A second type of fault-tolerance could require only stability of the 

system after the failure of any single controller (u_\. For this type, the 

close-loop poles can only be placed in the stable region of the complex plane 

but not placed at specific locations. 

Clearly, the first type of fault-tolerance is more difficult to achieve than 

the second type. Recall that a system can be stable yet not be fully 

controllable. This research will concentrate on the first fault-tolerant 

definition where the system remains controllable. 

On the next page, Figure I represents a fault-adaptive configuration 

where an ordinary system containing closed-loop feedback is augmented by 

additional systems to achieve fault adaption. The additional details include 

a fault detection/identification system followed by an fault-adaptive system. 

The work of this research concentrates on the fault-adaptive processor which 

calculates a new control law in the event of a system fault or change. The 

new control law replaces the original feedback matrix F. 
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Classical Controllability 

Recall that a system is controllable if the system state can be moved 

from any arbitrary state to any other state in a finite amount of time. 

Gilbert's Criterion offers the best insight into the physics of controllabilityf2 1. 

His criterion states that if a system of the form (1) is transformed by the 

linear transformation: 

(13) 

where M is the modal matrix of the A matrix and: 

A*= M- 1AM 

B*=M- 1B 

Then, if A* is diagonal and if each row of B* has a non-zero element, the 

system is controllable. For example: 

Clearly, each state variable can be controlled because there are inputs to 

each row of the A matrix. 

(14) 

(15) 

(16) 
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While Gilbert's Criterion is a simple explanation of controllability, it 

turns out that it is not the most efficient means of determining the 

controllability of the system. It is not efficient to evaluate the modal matrix 

because it requires solving for eigenvalues, eigenvectors, and eventually the 

inverse of M. 

A more efficient means of determining the controllability of a system is 

Kalman's test for controllabilityl:3l f4l. This test states simply that if a 

system is described by the form ( 1), where rank( A) is n and the 

controllability matrix P is formed as: 

(17) 

Then, the system is controllable if, and only if, the rank of P is n. If the 

rank is less than n, then there are not enough linearly-independent inputs to 

influence the future states of the system. 

If the dimension of P is small, a quick test to determine if rank( P J is 

equal to n is given by: 

det ( P pT ) =f 0 (18) 

A further point about controllability was stated by WonhamlGI. He 

proved that the pair ( A,B) as in equation (1) is controllable if, and only if, 



for every choice of the desired eigenvalues, there is a matrix F, in equation 

(3), such that the closed-loop system defined by an A matrix, a B matrix 

and a feedback matrix F (A,B,F), has the desired eigenvalues. In other 

words, controllability is equivalent to the property that the closed-loop 

transfer matrix: 

12 

T ( s ) = C [ sl - ( A +BF lf 1 B (19) 

can be assigned an arbitrary set of poles by a suitable choice of the feedback 

matrix F. 

Non-Minimal Control System 

At this point, the earlier example problem and the previous discussion 

on controllability can be tied together to make an important observation 

about a system that is fault-adaptive. Any system that can adapt to an 

actuator fault must alternatively be described as being controllable when 

any single actuator is removed from the system. In the example problem, 

when one actuator was removed there was still another means to control the 

system using the remaining actuators. A further point is that a system can 

be described as fault-adaptive when any single actuator is removed, or any 

two actuators, or any three, etc. Such a means can be used to describe the 

degree to which a system is fault-adaptive. 



If a system has the characteristics described above and the required 

pole-placement control specifications do not offer any criteria for selecting 

between the available feedback alternatives, the control problem will be 

under-determined because there will be more than one control means to 

achieve the required pole positions. 

Previous Work on Fault-Tolerance 

There are several papers in the literature exploring various issues of 

the fault-adaptive problem. The following section will summarize some 

relevant works. 
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Raza and Silverthorn address the fault-tolerant control problem using 

an L 2 scheme and achieve good results on a flight control system (5J. Their 

work differs from this research in two regards. First, they vary the B 

matrix by applying different combinations of controllers as opposed to 

changing the feedback matrix F. Second, the optimization problem that 

they address is to minimize change in control signal variation as opposed to 

minimizing pole movement. They change combinations of controllers as 

needed. As a result of their approach, they are not able to maintain exact 

pole locations. 

Alos 171 addresses the problem of designing the system to be stable such 

that if an actuator fault occurs, the system will maintain stability without 

any changes in feedback. He argues effectively that even if a fault-adaptive 

scheme is available, the system should remain stable during the time it 



takes an adaption mechanism to detect and react to the fault. This work 

does not address the question of how to adapt to a failure after one has 

occurred. 
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A third relevant paper is by Pearson and Staatsf8 l. Their analysis is 

similar to Alos in that they define classes of plants that will be robust to 

arbitrary perturbations in problem data or controller parameters. Like the 

previous paper, this one does not address adaption after the detection of a 

fault. 

Another significant paper is by Ackermannf9 l. This paper presents a 

design method that determines state or output feedback which will result in 

stability despite variations in plant parameters, sensor failures, and 

quantization effects in the controller. Ackermann defines a parameter space 

P that consists of the allowable feedback parameters that will result in a 

closed-loop system with eigenvalues in a specified region of the eigenvalue 

plane. He then shows how to calculate P and how to design a system that 

is robust to the above failures. He states, however, that his technique does 

not apply well to the multi-input problem due to too many design 

parameters. Further, he states that the problem of actuator faults is still 

open. 

The problem studied in this research could also be classified under the 

broad heading of adaptive control. However, most of the adaptive control 

literature concerns deterministic autoregressive moving average (DARMAl 
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models and not linear multivariable models. Of the works on the 

multivariable problem, Elliot and Wolovich have done extensive studyllOJ ll t J. 

Their full multivariable adaptive approach provides for variations in the 

plant dynamics as well as controller response and, as such, they are 

addressing a different problem than the one presented in this research. 

Their approach also has a restricted control structure and is better geared 

towards small variations in system parameters as opposed to catastrophic 

events such as controller failures. 

A final reference that addresses the relevance of this research is a 

report found in the April 1987 issue of IEEE Transactions on Automatic 

Control 11 ~ 1 • This report was compiled by approximately fifty prominent 

individuals in the controls field and summarizes the current status of 

controls research, future directions for research, and issues still to be 

resolved. This report states: 

A more general class of control systems which adapt to 
significant changes in their environment is the class of fault­
tolerant control systems. In this class of problems we admit 
that one or more key components of the physical feedback 
system will fail and that this failure can have significant 
impact on stability or performance. At the simplest level we 
can think of sensor and/or actuator failures, while at a more 
complex level we can think of other system failures, e.g., 
partial structural damage to an aircraft due to a mid-air 
collision or weapon damage. The idea is to design the control 
system so as to retain stability and lose performance in a 
gracefully degraded manner. It may be necessary to 
reconfigure the control system following the detection of such 
failures. Such reconfiguration may be as simple as reading a 
new set of control gains from a precomputed table or as 



complex as complete redesigning of the control system in 
real-time. A challenging problem for control theory is to take 
into account advances in computer technology and to 
stimulate the development of real-time and concurrent 
systems which allow the implementation of such control 
strategies in hardware form. 

What we lack at present is a set of prescriptive methodologies 
that can be used to design fault-tolerant feedback control 
systems. 

Research Goal and Plan 

The goals of this research are to achieve the following: 

1. Develop and test an adaptive pole-placement algorithm specifically 

designed to adapt to actuator failures. 
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i. The algorithm will provide a quick means to recalculate a control 

law in situations where one or more actuators are changing. 

11. The algorithm will maintain the same pole locations after 

adaption. 

ni. The algorithm can be used to allow for penalties associated with 

the use of various actuators and adapt to minimize the use of 

'expensive' actuators. 

1v. The algorithm is suitable for rapid on-line computer calculations. 

2. Design principles governing use and implementation of the adaptive 

pole-placement algorithm will be specified. These principles will enable 

the user to implement a fault-adaptive system as described. 



CHAPTER II 

ADAPTION TO FAILURES 

Adaptive Pole-Placement: A First Approach 

Once the various controllability issues are examined, the question of 

how to adapt to controller failures needs to be explored. For the sake of the 

following discussion, assume that a given control structure has been 

developed through any of several strategies. Examples include optimal 

control, pole-placement, and frequency response techniques. The result of 

the control design is a linear feedback law of the form given in equation (3). 

form: 

Once F has been calculated, the completely specified system has the 

i =Ax: +Bu_ 

y_ = Cx. 

u_=Fx.+w_ 

(20) 

(21) 

(22) 

with each matrix known. At this point, recall that the use of the feedback 

can be viewed as a vehicle to move the open-loop poles of system (A, B) to 

new locations under the new system (A, B, Fl. One possible reason for 

moving the poles is to move them from the right half to the left half of the 

17 



complex plane in order to stabilize system response. However, no matter 

what reason is used, whether pole-placement or not, the problem can be 

viewed as having moved the poles from one location to another. 

18 

Based on the above discussion, assume that new pole positions were 

selected to be optimal in some sense, and that the goal is to maintain those 

pole positions in the presence of controller failures. 

The problem can be stated as needing to develop an adaptive pole­

placement algorithm that will hold the poles of a system at certain locations 

despite variations in the B matrix. 

Consider the matrices: 

S = (n x n) transformation matrix 

G = (n x n) eigenvalue goal matrix 

where G is a diagonal matrix with target or goal eigenvalues on the main 

diagonal and zeros elsewhere. The pole-placement problem can now be 

stated as follows: 



Find the feedback matrix F which satisfies: 

G = s- 1 (A+ BF) S 

where the transformation matrix S diagonalizes the closed-loop system 

matrix A-tBF. The required feedback matrix can be solved in the least-

squares sense as: 

19 

(23) 

(24) 

providing (Bt B )- 1 exists. Unfortunately, this development is flawed since 

equation (24) has two unknowns (8 and F). The matrix S depends on the 

value of F and hence Fis not unique. Furthermore, the solution in (24) is a 

least-squares solution and other constraints may have to be satisfied before 

we can say the eigenvalues are located correctly. 

The pole-placement problem has received considerable attention 

through the years and yet, it has remained a surprisingly difficult issue. 

Numerous papers have been written discussing the calculation of a feedback 

matri..x F to move the poles to new locations IJ:lJ Ill ll 4
J [l!'il. 
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Adaptive Pole-Placement: A Second Approach 

From a pole-placement perspective, consider what happens when a 

failure occurs. The B matrix changes from B to some new input mapping 

matrix B*. Unless the feedback matrix F changes or adapts to the new B* 

the poles will move to new, incorrect locations. Clearly, if (A+ BF) and (A+ 

B*F*) have the same characteristic polynomial, the system after the failure 

with F* as a feedback matrix will have identical closed-loop poles as the 

original system. These results will be obtained if: 

BF=B*F* (25) 

or if we solve the problem in a least-squares sense with the same remarks 

as earlier: 

(26) 

However, if ( B*t B* J- 1 does not exist F* cannot be found from (26). 

In fact, the requirement that BF before the failure equals B*F* after the 

failure is too stringent. (A+ BFJ can be 'similar' to (A+ B*F*l and not 

exactly equal. Similar matrices have the same characteristic polynomials 

and thus the same roots which is our goal. 

In the case where (26) cannot be used, a different method to obtain F* 



is needed. The goal of this research is to develop a new adaptive pole­

placement algorithm to solve this problem. 

Brogan's Pole-Placement Method 

21 

The general problem of pole-placement can be considered from several 

different perspectives ranging from transfer function techniques to state­

variable techniques. The most promising approach for the problem 

considered in this research appears to be Brogan's transfer matrix 

approachf 1 l. His work results in a series of linear equations which can be 

solved for the feedback parameters in the F matrix. Also, his approach has 

the added advantage of allowing the B matrix to be removed from a crucial 

matrix inversion. This last feature is perfect for an on-line routine because 

the inversion can be performed off-line in advance. His approach is 

presented below with a slight modification in the notation used in his paper. 

Given a system defined by equations t20-22), the closed-loop 

characteristic equation can be written as: 

S (A) = I \In - A - BF I = 0 

which can be rewritten as: 

(27) 
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S(\) =I (>Jn -A) [1n -(>Jn -A )-1BF JI =0 (28) 

= ~(\) I [1n - <l>(\)BF] I = 0 (29) 

where In is an identity matrix of dimension n and 

~(\) - I >J -A I 

and 

<l>(\) = ( >J -A )-1 

The overall problem is to choose Fin (29) such that then specified 

eigenvalues A; corresponding to the closed-loop poles are the roots of ( 29). 

Reexpress (29) as: 

Si\)=~(\) I [1,. - F<l>OJB ] I= 0 

by using the matrix identity: 

(30) 

(31) 
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(32) 

In Brogan's approach, the required equality in (31) is achieved by 

setting the determinant equal to zero for each target eigenvalue. Recall 

from linear algebra that a sufficient condition for the determinant to be zero 

is for any row or column to be zero. For Brogan's approach, set a column 

equal to zero for each target eigenvalue. 

Given the jth column of Ir as e; where e; is a column vector with in the 

jth entry equal to one and zeros elsewhere: 

(33) 

with the jth column being ~J· Then Ai is a root of S(A) if Fis selected to 

satisfy: 

since this forces column j of the determinant in (31J to zero. Therefore: 

F~·(A·) - e· ) ! - ) 

(34) 

(35) 

Now find an equation of the form (35) for each target eigenvalue. Together, 



then distinct equations will allow the determination of F. 

Consider the example problem from Chapter I repeated below for 

convenience: 

calculate ( >J - A )- 1 as: 

1 
0 0 

\-1 

1 1 
¢(\) = -- 0 

(\-1)2 \-1 

1 1 1 
(\-1):1 (\-1)2 \-1 

now to place the poles at -2, -3 and -4: 

r

-.333333 0 
~(-2) = .111111 -.333333 

.037037 .111111 

r

-.333333 -.333333 
-.555555 .111111 

.185185 -.037037 

- 33~3331 

-.33°33331 
-.222222 

24 

(36) 

(37) 

(38) 

(39) 



likewise: 

W(-3) = [-~~~~5 -~~~~5 
.109375 -.015625 

[

-.2 
W(-4) = -.36 

.072 

-.2 

.04 

-.008 
0 l -2 

-.16 

25 

0 l -.25 

-.1875 

(40) 

(41) 

According to Brogan's Method set a column in the determinant equal to 

zero for each \. Therefore, try column one for the -2 eigenvector, column 

two for -3 and column three for -4. Evaluate (35) for each eigenvector: 

[

-.333333 l [1 l 
F -.555555 = 0 , for \ = -2 

.185185 0 

(42) 

[ 
-.25 l [o l F .0625 = 1 , 

-.015625 0 
for \ = -3 (43) 

(44) 



Solve these three equations ( 42-44) simultaneously and find: 

r

-.366 

F = -3.5119 
-.0807 

-1.1156 

1.487 4 
-1.4364 

This value of F was shown in Chapter I. 

1.3944 l 
-1.8593 
-4.4545 
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(45) 

Brogan goes on to show that if the \ are distinct, there will always be 

n linearly independent vectors \Jli(\i) to solve for F. Refer to Broganfll and 

Brogan' lfiJ for additional details. 

Let us make one more observation before continuing. Since the three 

equations (42-44) must be solved simultaneously, write one equation to solve 

as: 

or 

or 

r

-.333333 

F -.555555 
.185185 

-.25 

.0625 
-.15625 

0 l -2 
-.16 

I (46) 

(47) 
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(48) 

Since an implied inversion is required, the columns chosen in \JI(\) must be 

linearly independent for F to exist. 

For notational purposes, define: 

(49) 

and 

(50) 

therefore solve an equation of the form: 

F =g c- 1 (51) 

to find the feedback matrix F. 

It is possible for the ¢1:\J equation to result in nonfinite values when 

goal eigenvalues are substituted into the equation. Brogan's original paper 

addresses this problem and shows how it can be handled. The infinite value 

problem does not affect this research so it will not be addressed further here. 
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The presence of more feedback parameters than states provides for the 

possibility of choosing feedback to satisfy some criterion. Brogan's work does 

not address any form of optimization. Clearly, in our example problem, 

different columns could have been chosen to solve for F. 

The freedom in choosing vectors in this problem highlights the under­

determined nature of the stated problem. 

Brogan's Method for Computer Implementation 

By considering Brogan's algorithm from a computer implementation 

point of view, recognize that the algorithm offers several key advantages 

that make it ideal for a computer implementation. First, the algorithm 

offers the possibility of solving the characteristic equation off-line prior to 

run-time. This ability to take as much computation as possible out of a 

time-sensitive iteration loop is very important. In fact, any work that can 

be pushed forward into the off-line, preexecution time is clearly 

advantageous. 

The second computer implementation point, which is really an 

expansion of the first point, is that off-line work can be done one time as 

opposed to every time the B matri.x changes. This clearly is a desirable 

attribute of a fast, fault-adaptive computer algorithm. 

A third point concerns the final matrix equation that appears in 

Brogan's algorithm. In that final equation, Brogan states that a user can 
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choose any combination of columns that results in a nonsingular matrix to 

solve for the feedback matrix F. The key advantage, from a computer 

perspective, is that Brogan's algorithm guarantees that as long as the 

resulting matrix is nonsingular, the matrix equation can be solved for F. No 

additional testing or analysis is necessary and a solution is guaranteed. 

A fourth point concerns the use of Brogan's method for our stated 

problem of adapting to actuator faults. If actuator faults are modeled by 

zeroing columns in B, then when the fault occurs the corresponding columns 

in ¢( f..)B can be removed. This has the effect of reducing our solution space 

to a smaller problem, but the same algorithm can be reapplied to calculate a 

new feedback matrix F if the failed actuator affects system performance. 

The last point affecting this research is that Brogan's algorithm states 

that any linearly-independent combination of columns will result in a 

solution. This suggests it might be possible to use some additional criterion 

to determine which of several possible solutions would be advantageous 

under certain conditions. For example, if the use of one actuator in a given 

system was overly expensive, and if there were four combinations of columns 

that lead to feasible solutions, then perhaps one combination might use the 

expensive actuator much less than the other three combinations. If the 

choosing of an optimal combination could be included in a computer 

implementation, then there is a clear improvement over the original 

algorithm in addition to the adaption improvement. 
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Rephrasing for Computer Implementation 

Consider the following example problem: 

(52) 

then 

1 1 
0 

>-+2 ( \+2)'2 

¢(\) = 0 
1 

0 (53) 
\+2 

0 0 
1 

\-4 

Examination of Brogan's algorithm shows that for each target pole position 

it is possible to have more than one column to choose from for the needed 

nonsingular matrix G. Let us take advantage of this multi-column 

possibility by including all possibilities in a format suited for this problem. 

Let us create a new matrix called Z. This new Z matrix will be a 

partitioned matrix with the number of partitions equaling the system 

dimension n. Each partition will be populated with columns that are taken 

by substituting the desired closed-loop pole positions into the ¢(\) matrix 

above. For example, if the closed-loop pole positions are to be moved to -5, -4 
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and -3; the first partition will be the entries where -5 is substituted, the 

second -4, etc. The resulting Z matrix is given as: 

-1 1 
0 

-1 1 
0 -1 1 0 -

3 9 2 4 

Z= 0 
-1 

0 0 
-1 

0 0 -1 0 (54) -
3 2 

0 0 
-1 

0 0 
-1 

0 0 
-1 

- - -
9 8 7 

Now post-multiply each partition of the Z matrix by B and form a new 

matrix X. 

1 
0 

1 
0 1 0 -

9 4 

X =ZB = -1 
0 

-1 
0 -1 0 (55) - -

3 2 

0 
-1 

0 
-1 

0 
-1 - - -

9 8 7 

At this point, it should be pointed out that if an actuator (column of Bl, 

should fail and need to be zeroed, then the corresponding column in each 

partition of X can be zeroed. It is not necessary to re-invert a matrix, or 

re-multiply matrices or make any other calculations. It is this key point 

that makes Brogan's approach, when cast into this new form, ideal for an 

adaptive computer implementation. This final X matrix has been our goal 

to solve the system on a computer. 
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Recall from Brogan's method Equation (51): 

F =g c- 1 (56) 

where: 

g r x n matrix with columns from I 

G n x n nonsingular matrix chosen from X 

F Feedback matrix to be evaluated 

The G matrix in (56) is a matrix formed by taking one column from each 

partition in X. To calculate a feedback matrix F, choose columns from X to 

create G. The only requirement is that the resulting G matrix must be 

nonsingular. 

As mentioned earlier, Brogan's method does not address the selection 

of columns. In his approach, he simply states that one should pick columns. 

For this research, the selection of columns to achieve a feasible solution and 

finally an optimal solution according to some selected criterion will be 

considered. 

The freedom to pick columns from X increases the complexity of the 

pole-placement problem. There might be more than one combination of 

columns which would work for a given set of desired pole locations. 
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Let us consider the number of combinations of columns that might 

exist. If a system is nth dimensional, then there will be n partitions in the 

X and Z matricies. If the B matrix has a column rank of r, then each 

partition in the X matrix could have as many as r columns. Therefore, since 

we need to choose once column from each partition, there are rn possible 

combinations. Let us define the number of possible combinations as: 

Brogan's algorithm guarantees that if the G matrix is invertible, the 

resulting F will produce the desired pole positions. 

Potential Solution Criteria 

(57) 

Any solution of ( 56) for the feedback matrix F will be called a 'feasible 

solution.' It is important now to determine what is going to be called a 

'valid' solution. Two criterion for choosing a solution come to mind. The 

first criterion is to minimize the time to find any feasible solution. For an 

adaptive control scheme, our goal might be to find a feasible solution as 

quickly as possible. The second solution criterion is to minimize the time to 

find an optimal solution, in some sense, out of the entire set of feasible 

solutions. This type of solution might be necessary if the use of some 

actuators in the system was expensive and minimization of the overall cost 

of controlling the system was needed. 



For this research, both types of solutions will be considered valid and 

will be examined. The following two chapters address each of these two 

solution criteria. 
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CHAPTER III 

OPTIMIZING BROGAN'S METHOD FOR 

FOR FAST COMPUTER SOLUTIONS 

Introduction 

In a highly failure-sensitive system where it is essential to minimize 

system downtime, a legitimate control criteria could be to minimize the time 

necessary to find an alternative feasible control scheme. An example of such 

a system would be an aircraft flight control system. In this case, there 

might be several redundant means to reconfigure the control system and 

maintain acceptable performance. An algorithm to quickly identify an 

alternative control scheme could be applied. 

Given that our goal in a real-time control system is to simply find any 

feasible solution in minimum time, the following list of alternatives will be 

considered: 

35 
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1. Brute Force Selection: Random Selection 

2. Brute Force Selection: Modified Random Selection 

3. Ranked Selection: Condition Evaluation 

4. Phase One Singularity Test 

5. Phases One and Two Singularity Tests 

Recall, from the last chapter, that the G matrix must be nonsingular to 

solve for F. As a result, a nonsingular matrix must be built from X to have 

a feasible solution. The first two approaches toward finding a feasible 

solution involve a form of random trial and error. In each case, a 

combination of columns from the X matrix is tried until a combination which 

will result in a nonsingular matrix for inversion is found. The third 

approach requires the condition number of a possible matrix to be evaluated. 

If the condition number is below a certain user definable level, then that 

combination of columns is inverted. The fourth approach involves a test to 

determine if the columns of the possible matrix are of rank n. This fourth 

test has the advantage of requiring no multiplies or divides; however, it can 

not guarantee one hundred percent accuracy. The fifth approach continues 

where the fourth test ends and can guarantee one hundred percent 

accuracy. However, the fifth test requires on the order of n :i 

multiplies/divides to complete per matrix. 

Each of these five solution approaches are presented in detail in the 
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following pages. It will be found that the fourth approach offers the best 

solution of the five candidates. It can provide extremely good results with a 

minimum of computer work. 

Throughout the rest of this thesis, the work requirements of an 

algorithm will be measured by the number of multiplies and divides in the 

algorithm. This measure of an algorithm's requirements is the traditional 

measure used throughout the literature. It is also based on the practical 

consideration that multiplies and divides on a computer generally require 

many more computer operations than additions or indexing operations. 

Brute Force Selection: Random Selection 

It was shown in the previous chapter that there are w = rn possible 

sets of solutions that might yield a feasible solution in the problem as we 

have formulated it. The simplest solution approach which comes to mind is 

to throw infinite computer resources at the problem and solve each possible 

solution set for a feedback matrix F which will result in the correct pole 

positions. If during solution of the problem the G matrix is shown to be 

singular, then continue to the next combination of columns from the X 

matrix. 

Advantages 

This approach has several advantages. First, it is a conceptually 

simple approach to finding a solution as it is necessary only to solve 
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equation (56) for the feedback matri.x Fusing a row reduction method. The 

second advantage is that it requires no additional work or preprocessing to 

determine if the solution is feasible. 

Disadvantages 

There are, unfortunately, several disadvantages to the Brute Force 

approach. As is well known, inverting a matrix is an expensive operation 

numerically. Recall from elementary numerical analysis that as many as 

~ n :> multiplies/divides can occur before it is known whether or not the 

matrix is singular. In this case it might be necessary to invert w matrices 

once each. Furthermore, since w is a function of n, the worst case cost of 

the Brute Force approach in the problem as defined could run as high as 

It is apparent that the search for a feasible solution will probably end 

before every candidate is examined. However, if it is necessary to guarantee 

a fast solution, then the worst-case cost identified above must be considered. 

A second problem with this approach is the random nature the w 

matrix equations are being solved. Clearly, it might be advantageous to 

analyze the equation for feasibility before solving for F. Some form of 

ranking might then suggest an order to attempt to solve the equations. 

In general, a random solution of equation (56) should be avoided 

whenever possible. A better solution than the Brute Force method is 



necessary. 

Brute Force Selection: Modified Random Selection 

Due to the inherent structure of our X matrix, recognize that 

corresponding columns in each partition will tend to be correlated. This is 

due to the numerical values in those columns having been calculated from 

the same ¢( \) column. As a result, perhaps the likelihood of forming a 

matrix with dependent vectors can be reduced if combinations using 

corresponding columns are avoided. 
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For example, consider a third-order system that has three separate 

actuators and thus three columns in B. When the X matrix is formed, the 

result will be a three partition matrix with three columns in each partition. 

The following figure lists a possible binary search strategy that would choose 

the first column in each partition on the first attempt with succeeding 

candidates chosen in a binary manner. 
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1 1 1 
1 1 2 
1 1 3 
1 2 1 
1 2 2 
1 2 3 
1 3 1 
1 3 2 
1 3 3 

2 1 1 
2 1 2 
2 1 3 
2 2 1 
2 2 2 
2 2 3 
2 3 1 
2 3 2 
2 3 3 

3 1 1 
3 1 2 
3 1 3 
3 2 1 
3 2 2 
3 2 3 
3 3 1 
3 3 2 
3 3 3 

However, if the modified approach of attempting 'off column' entries is used, 

then the following search pattern, one of several possible, might be used: 
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1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1 

1 1 2 
1 1 3 
1 2 1 
2 1 1 
3 1 1 
1 3 1 

1 2 2 
2 1 2 
2 2 1 
2 2 3 
2 3 2 
3 2 2 

1 3 3 
2 3 3 
3 1 3 
3 2 3 
3 3 1 
3 3 2 

1 1 1 
2 2 2 
3 3 3 

Clearly, the last three choices are the most likely to produce a singular G 

and are tested only if all others fail. 

Advantages 

If the binary search strategy and the modified search strategy are 



42 

implemented on a computer under simulated conditions, the modified search 

strategy does generally find a feasible solution faster. In numerous 

simulations, the modified search strategy resulted in a feasible solution on 

the first attempt approximately eighty percent of the time. Unfortunately, 

the performance improvement is not significant enough to end our search for 

a better approach. However, the modified approach requires little additional 

overhead over the straight Brute Force approach and might be suitable for 

some situations. 

An analysis of the modified approach does point out that the search 

strategy used to find a feasible candidate G matrix can impact on the 

algorithm's performance. This important point will be revisited later. 

Disadvantages 

The disadvantages of this approach are the same as for the Brute 

Force approach. 

Ranked Selection: Condition Evaluation 

If the type of solution desired is 'any feasible solution,' then a 

preprocessing step might be able to order the candidates according to their 

likelihood of resulting in a feasible solution. If such a ranking process were 

effective, only one equation would need to be solved. An approach that 

comes to mind involves estimating the condition number of the given 

candidate G matrix for each equation. Based on the calculated condition 
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numbers, the inversion process could begin by starting with the equation 

that is most likely to yield a satisfactory solution, or the first matrix with an 

acceptable condition number. 

The following condition number material is included because the 

condition of a matrix is an often used measure of how close a matrix is to 

being singular. As such, the feasibility of using this measure should be 

evaluated to see if it has potential in our adapting problem. In the end, it 

will be found that a better approach is available. 

Numerous sources develop the theory behind evaluating the condition 

number of a matrixfl 7l fl HJ. Therefore, this work will not present the theory 

behind condition numbers except where shown to be useful in the following 

pages. 

Recall that the condition number of a matrix is defined as: 

condiA) = 11 A 11 11 A- 1 11 (58) 

where I I A I I represents a norm of the matrix A. Generally, the following 

norm is used because of its simplicity: 

11 AX I Ix 
I I A I I x = max I I x I I x 

(59) 
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n I I = max 2-.: a·· 
1 :Si :=:;n }= 1 tJ 

(60l 

=Maximum Row Sum 

Throughout the rest of this development, I I A I I will mean I I A I I x. 

Unfortunately, to calculate the cond(A) exactly, A -I must first be 

calculated. As a result, approximation techniques are generally used 

instead of the definition directly. 

Random Vector Approach 

The condition number approach considered here begins with the Ax. = b_ 

and A being invertible, then: 

(61) 

and 

ll.x:l/<llA-1 II llilll (62) 

or 
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11 ~ 11 < 11 A-1 11 
I I 12 I I 

(63) 

Therefore, let us choose k arbitrary b. vectors, solve for~. and then evaluate: 

I I A -1 I I > max I I x (p) I I 
- 191sk I I b(p l I I 

(64) 

from our set of arbitrary b.. The overall condition number can then be 

approximated as: 

conc[(A l > 11 A I I * max I I x(p 1 11 
191sk 11 b(pl 11 

In review, this approximation approach requires the following steps: 

1. Calculate I I A I I· 
2. Choose k arbitrary b. vectors. 

3. Solve for k ,;r vectors. 

4. Calculate max 11 x(p) \ \ 
ISJ;Sk blp) 

5. Approximatecond(A) as: cond(A) > 11A11 *max 11x(p)11 
I SP Sk I I b (p ) I I 

This approach can be easily implemented as a computer algorithm. 

(65) 

However, this technique requires many multiplies/divides per candidate G 



matrix. Specifically, to solve the first system composed of an arbitrary b. 

vector and the A matrix using a triangular factorization approach such as 

LU Decomposition it is necessary to perform: 

O(n 3 ) multiplies/divides 

in the initial factorization phase followed by: 

kO(n 2 ) multiplies/divides 
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in the solving phase or O(n 2 ) for each of the k arbitrary b. vectors. The 

amount of work necessary for this condition number evaluation seems a bit 

excessive for our requirement of a fast, on-line, adapting algorithm. As a 

result, the condition number material will be put aside for now to determine 

if another technique might result in less work. 

Phase One Singularity Test 

At this point, a completely different approach will be considered in 

determining a combination of vectors (columns) from X that will result in a 

feasible solution to our matrix equation. In general, there are two 

approaches that can be followed in the analysis of a problem. One approach 

would be to determine an exact deterministic answer to the given question 

by using an algorithm that yields conclusive results. Our Brute Force 
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method discussed in prior sections is such an approach because it involves 

attempting solutions to determine if the candidate matrix was singular. A 

second approach that can be taken is to analyze the problem to yield an 

answer in a probabilistic sense. Such an approach might involve the use of 

heuristics or simplier algorithms that are less expensive to use. For 

example, if a simple test could be applied to determine that a given 

candidate matrix was nonsingular with ninety-five percent probability, then 

that information might be useful for our fault-adaptive problem. For this 

Phase One Test, the second approach will be adopted. 

In the following pages, several elementary linear algebra properties will 

be examined to find a series of tests for computer implementation. The tests 

being sought must be simple and well suited for fast implementation on a 

digital computer. In the end, a five step test will be developed to evaluate 

whether a given candidate G matrix is singular. The first four tests will 

prove to be inexpensive to implement and will achieve excellent results. 

Two Vector Dependency Test 

Recall from elementary matrix theory that a nonsingular matrix A of 

dimension n has exactly n linearly independent rows and n linearly 

independent columns. That is: 
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n = Rank(A) 

Thus, if an inexpensive means can be found to determine the rank of a 

candidate G matrix, the singularity of the matrix can be determined without 

. . 
an invers10n. 

Let us begin this approach by developing sufficiency tests to determine 

if two vectors are linearly dependent. This two vector test will be applied 

against combinations of column vectors in our candidate G matrix. Recall 

from elementary linear algebra that if: 

s ~ { ll 1 ' "-2' . . . ll,, } (66) 

is a set of vectors and if a vector equation is created as: 

(67) 

the vectors l2 1 , l2 2 , . . . r.,1 are linearly independent if, and only if, the only 

solution to equation (67) is: 
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(68) 

The vectors are linearly dependent otherwise. 

Consider the two vectors u 1 and 122 then: 

(69) 

is the required vector equation as in (67). First, recognize that the vectors 

u 1 and 12 2 cannot be zero vectors because the corresponding ki could then 

assume any value which violates the required condition for independence. 

Therefore: 

ll 1 =I= Q_ (70) 

The first step in our two vector test for dependency is a test to determine if 

either vector is a zero vector. Such a test is extremely simple to implement 

on a computer and thus it meets the computer criteria. 

For the second step, the vector equation ( 69) can be rewritten without 

loss of generality as: 
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(71) 

b u_ 1 = - 12.2 (72) 

Now consider each entry (row) in the vectors separately. In this case: 

b· I = 1, 2, · · · n (73) 

Now for equation ( 73) to be true with b =I= 0 then all the bi must be equal. 

(74) 

If any two bi are not equal, then the vectors are independent. 

If after making and passing the tests for zero vectors, and if one entry 

of either vector is zero while the corresponding entry in the other vector is 

not zero, equation ( 73) will have no finite solution. There is no finite value 

by which to multiply the first vector to equal the second vector for that given 

entry. Therefore, the two vectors are independent. This test will be used to 

stop dependency testing because it is known that the vectors are 

independent. This test to examine corresponding entries in vectors for their 

zero content will be step two of our testing. 
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The second step also meets the criteria of being easy to implement on a 

computer. 

So far in our development, an algorithm has been created that looks at 

zero content of the candidate G matrix to determine if given pairs of vectors 

in the matrix are linearly dependent. The specified approach made no 

attempt to determine if two vectors were linear multiples of each other 

beyond the examination of zero placement. Let us begin to determine if the 

two vectors are multiples of each other. Consider the following two vectors: 

0 0 

0 0 

0 0 
.x: = a y_ = b 

(75) 

0 0 

0 0 

In this case, if a and b are non-zero, the two vectors will be linearly 

dependent because they are multiples of each other. The dependency can be 

identified without performing any multiplies/divides by counting the number 

of times a pair of nonzero entries appear in the same row. If the count is 

one, then the two vectors are linear multiples of each other. Realize that 

this testing method must follow the first two tests in order to be valid. 

This step of counting the entries that have nonzero elements will be a 

third step in the test being developed. 
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The first three steps are based on pure linear algebra principles and 

they can easily be implemented on a digital computer. By applying these 

three steps against a large sample of candidate matrices approximately 

twenty-one percent of the time the tests would suggest that a candidate G 

matrix is nonsingular, when in fact it is singular. These twenty-one percent 

false positives still result in excessive waste. Another step is needed. 

Upon examination of the false positives that are occurring, a noticeable 

characteristic can be identified. In many cases, there are two or more 

column vectors that are exactly equal. If this were a pure linear algebra 

problem with candidate matrices that were purely random, such duplication 

would not be expected. However, this is a specific control problem that is 

being based on the platform established in Brogan's Method. Therefore, 

something in that method is resulting in an increase in duplicate column 

vectors. It is this additional characteristic specific to our problem that will 

provide us with the vital fourth step. Later in this chapter, the cause of the 

duplicate vectors will be discussed. 

The fourth step will check to see if two vectors that have passed the 

previous three steps are equal. In this case, the first vector can be 

multiplied times one to equal the second vector. This simple test can be 

executed by subtracting corresponding entries and determining if the 

difference is zero for each pair of entries in the vectors. If the difference is 

zero for each entry, then the vectors are equal and the G ma tri.x will be 



singular. The application of this last step effectively reduced the level of 

false positives to three percent as shown in numerous simulation studies 

shown later. 
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The four-part test gives us a simple sufficiency test to determine if two 

vectors are linearly dependent. While the test does examine the necessary 

conditions for the vectors to be linearly independent, it is not sufficient to 

guarantee that the vectors are linearly independent. An additional 

generalized test to determine if the vectors are multiplies of each other is 

required to determine if the vectors are linearly independent. This further 

test will be discussed later. 

Phase One Test 

The two vector test can be used for evaluating vector dependencies in 

our problem by applying it against each combination of column vectors in our 

candidate G matrix. If, at any point in our application of this test, two 

vectors are found to be linearly dependent it will be known that the 

candidate G matrix is singular because the column rank is not equal to the 

dimension of the matrix G. The application of this two vector test against 

all the column vectors in our matrix will be called the Phase One Test 

throughout the rest of this discussion. 
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Advantages of Phase One Test 

The principle advantage of the Phase One Test is that it requires no 

multiplies/divides to determine its answer. The only operations that are 

necessary are compares, indexing and additions/subtractions. This lack of 

multiplies and divides can result in a very fast approach to determining if a 

given G matrix might be feasible. Since our goal in this section is to 

minimize the amount of time necessary to find a feasible solution, then this 

test looks promising. 

Disadvantage of Phase One Test 

The only disadvantage to this test is that if a given matrix should pass 

the Phase One Test it is still not guaranteed to be nonsingular although the 

percentage of false positives is less than three percent. It is still necessary 

to execute the inversion, or another test, to achieve certain results. 

However, from a probabilistic point of view, this test will rule out many 

non-feasible solutions very quickly. Later, under simulated conditions the 

test will be shown to yield extremely good predictions of candidate feasibility. 

On the following page, Figure 2 outlines the Phase One Test as described in 

the previous pages. 
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Phase One and Two Singularity Tests 

This last test to determine if a given candidate G matrix is 

nonsingular will guarantee an accurate answer. Unfortunately, the price of 

this guaranteed answer is considerable computer work. 

Recall from the end of the development on the Phase One Test that to 

provide necessary and sufficient proof that the given vectors are linearly 

independent, it was necessary to test the vectors to determine if they were 

linear multiples of each other. To verify this last condition, begin with 

equation (73) which is repeated here for convenience: 

b· L = 1, 2, · · · n (76) 

Recall from above that all the bi must be equal in order for the two vectors 

to be linearly dependent. This last test will simply solve equation ( 76) for 

each value of bi. If the bi are all equal, then the two vectors are linear 

multiples of each other and thus linearly dependent. If any of the bi differ, 

then the two vectors are linearly independent. 

This last test completes the necessary and sufficient conditions to state 

that the two vectors are linearly independent. This last step in the testing 

procedure will be called the Phase Two Test. 

Let us analyze the Phase Two Test to determine how many 
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multiply/divide operations are required to completely analyze a given 

candidate G matrix. For each combination of two vectors there will be: 

n Divides Per Two Vectors 

To examine all the combinations of columns will require test runs against: 

n! (77) 
2! ( n -2 )! 

combinations of vectors. Therefore, the number of required divides is: 

!!:.._* n! 
2 ( n -2 )! 

(78) 

This calculated number of divides assumes that the matrix is not 

shown to be singular before all the divides are done. However, as a worst 

case, consider the number identified here. 

Advantages and Disadvantai;es 

This application of the Phase Two Test is a very expensive test to 

assure that there are no false positives. The advantage of this approach, 

when coupled with the Phase One Test, is that it guarantees the resulting 

matrix will be nonsingular and yield a feasible solution. The disadvantage is 
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that many expensive computer operations will be spent to reach that 

'guaranteed' answer. In fact, the work spent in the Phase Two Test is 

comperable to solving the problem directly. Recall that the front-end of a 

matrix inversion is approximately a ~ n 3 operation. The Phase Two test is 

approximately a ~ n 3 operation. Therefore, the ratio of multiplies/divides 

between the two alternatives is: 

1 'j -n· 
3 n 3 

work ratio 
testing 2 (79) ,.., ---
solving 

,.., 
2 n 3 1 -n3 

3 

Since the testing process is comparable to the solving process, it does not 

make sense to use the testing procedure. 

Implementations, Comparisons and Recommendations 

In previous sections, several different means to find a feasible solution 

to the control problem have been examined. In this section, the Brute Force 

approach and the Phase One Test will be implemented under simulated 

conditions. Such simulations will provide us insight as to when the various 

approaches will or will not work. Furthermore, these results might suggest 

additional approaches or combinations of approaches which would yield 

greater improvement. 
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Example Problem 

Let us begin by considering an example problem. Later, generalization 

will be considered. Let A be: 

Let us populate a 3x3 B matrix in a random nature as follows: 

1. Let each entry in the B matrix be independent of the other entries. 

2. Let each entry equal zero with probability p. 

3. Let each entry equal a random number between -20 and 20 with 
probability 1-p. 

These assumptions on the entries of the B matrix are reasonable in that 

each column of the B matrix represents the input from a separate actuator. 

Consequently, there are generally no predeterminable correlations between 

these separate actuators. Exceptions to these assumptions can occur when 

redundant actuators are present and in some network problems where order 

in the B matrix can appear. The redundant actuator situation will be 

discussed later. 

For the rest of this development, p will be referred to as the zero 

density of the matrix. Let us then calculate the X matrix for each 
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successive B matrix and also select columns from X for our candidate G 

matrix in the random nature described in the Brute Force section. 

If three thousand different B matrices, three columns wide, are used in 

a simulation run where p = 0.3 the results are shown in Table I. 

TABLE I 

CANDIDATES ATTEMPTED BY 
BRUTE FORCE SELECTION 

Candidates Atternoted Occurrences Percentatie 
1 2135 71.2 
2 570 19.0 
3 80 2.7 
5 121 4.0 

14 22 0.7 
15 30 1.0 
18 15 0.5 
27 27 0.9 

total 3000 100.0 

Table I shows that of the 3000 different B matrices, 2135 times the 

Brute Force method yields a feasible solution with the first candidate. In 

570 of the 3000 cases, two candidates were examined to produce a single 

feasible solution, etc. 

Since this is a third-order system, it is known that approximately ~ n ° 

or 9 multiplies/ divides are needed for the first reduction. This number is 

based on row reduction and the number of operations necessary to evaluate 
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singularity. Consequently, 2135 attempts required 9 multiplies, 570 

attempts required 18 multiplies, etc. 

By calculating the average multiplies that were necessary for each new 

B matrix the Brute Force Method required: 

17 .6 Multiplies per Successful Solution 

By repeating this analysis for different values of p, the results shown in 

Table II are obtained. In Table II, the '% Wasted' column refers to the 

number of times an row reduction is attempted that does not lead to a 

feasible solution. 

TABLE II 

BRUTE FORCE RESULTS FOR 
VARYING ZERO DENSITY 

Zero Density Average Multiplies o/o Wasted 
0.3 17.6 48.9 
0.4 21.3 57.7 
0.7 77.9 88.4 

The results in Table II are not surprising. As the zero density 

increases, more of the columns will tend to be dependent, and the Brute 

Force approach must look at more and more candidate matrices to find a 

feasible solution. 
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Given that the previous results are based on a Brute Force approach, 

consider what would happen if the Phase One Test was applied before 

attempting the row reductions. Table III presents the results when the zero 

density equals 0.3. 

TABLE III 

PHASE ONE TEST RESULTS 
EXAMPLE PROBLEM 

Occurrences Predicted Result Actual Result Percentas:re 
1078 Not Feasible Not Feasible 35.9 

127 Feasible Not Feasible 4.2 
1795 Feasible Feasible 59.8 

0 Not Feasible Feasible 0 
3000 

For this example problem, the Phase One Test correctly ruled out 36r.k 

of the candidate matrices. Furthermore, the test resulted in no false 

negatives and only 4r.k false positives. Overall, the test was correct 95. 7r.k 

of the time. Let us apply this predictive accuracy back against the Brute 

Force approach. Consider another test run where the row reductions will 

not be executed unless the candidate matrix passes the Phase One Test. 

Again, this test is for a zero density of 0.3 and the results are shown in 

Table IV. 

The number of first time successes has increased from 71 r.k to 98r.k. 

Previously, almost 50<,lr of our CPU time was wasted on candidate matrices 



TABLE IV 

CANDIDATES ATTEMPTED AFTER 
PHASE ONE TEST 

Candidates Attempted Occurrences Percentage 
0 26 0.9 
1 2930 97.7 
2 44 1.5 

that were not going to work, now the number has been cut back to 0.6<k'. 

Note that Table IV is the 'after' table associated with Table I. 
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Let us summarize the comparison between the Brute Force Approach 

and the Phase One Test followed by row reductions in Table V. 

TABLE V 

COMPARISON OF BRUTE FORCE VS. 
PHASE ONE TEST 

BF POT ideal 
Avg. Multiplies 17.6 9.05 9 

'fr Wasted Inversions 48.9 0.6 0 
Total Runs 3000 3000 -

Clearly the addition of the simple Phase One Test before attempting a 

solution can save a significant amount of CPU time in this example problem. 
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Generalization of Phase One Test Effectiveness 

At this point, it must be asked if it is possible to generalize the results 

of the example problem. The question centers on the ability to derive a 

closed-form expression for the effectiveness of the Phase One Test versus a 

Brute Force selection approach. Let us now consider what factors influence 

the effectiveness of the test. The first factor to consider is duplicate target 

eigenvalues. Recall that the X matrix is a partitioned matrix formed by 

concatenating ¢( \) B matrices from each target eigenvalue \. As a result, 

the same column in each partition is formed from the same column in¢(\). 

If a matrix has partitions that are the same, then the fourth step of the 

Phase One Test will detect the duplicate vectors. Consider the following 

problem where A is defined as: 

A= l ~2 ~2 ~31 
0 -3 -4 

and the target eigenvalues of -4, -4 and -10 are chosen. Then 

l-5 

z = ~ 
0 .333 
0 .333 

-1 -1.333 

-.5 
0 

0 

0 .333 -.125 -.0222 

0 .333 0 -.0952 
-1 -1.333 0 -.4762 

. 003961 

.01587 
-.1587 

Clearly the first two partitions are correlated because they are exact 
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duplicates. If our algorithm is building a candidate G matrix, it would find 

that all the combinations which have the corresponding columns in the first 

two partitions will result in non-feasible solutions. Therefore, the algorithm 

effectiveness is influenced by the presence of duplicate target eigenvalues. 

A second factor influencing the performance of the Phase One Test is 

the structure of the <J>(\) matrix itself. As another example, consider the 

following ¢( \) matrix: 

¢( \) = 

1 
>--+1 

1 

0 

1 

(\ + 1)2 \ + 1 

No matter what target eigenvalues are chosen, the second columns of each 

partition will be multiples of each other and thus the vectors will be 

dependent. In this case, step three of the Phase One Test will detect the 

dependency and eliminate the corresponding candidate G matrix. Thus, the 

effectiveness of the algorithm is a function of the structure of the ¢( \) 

matrix which is a function of the structure and the values in the system 

matrix A. 

Unfortunately, the structural mapping between the A matrix and the 

¢(A) matrix is through an inversion that complicates the derivation of any 

closed-form expressions. 
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A third influencing factor is the strategy used to select vectors from 

each partition. In most of this work, a simple binary search strategy has 

been used; however, as discussed earlier, the modified random search might 

be more efficient. In any case, different strategies will influence the 

performance of the Brute Force approach as well as the Phase One Test. 

How to account for variations in strategies in a closed-form solution is a 

difficult question. 

The entries in the B matrix provide a fourth influencing factor that 

further clouds the effectiveness issue because strategically-placed zero 

entries can influence candidate feasibilities. As mentioned earlier, the Phase 

One Test greatly depends on zeros and zero placements. Accurate and 

meaningful accounting of zero placement in the B matrix and its influence 

on algorithm performance appears to be a difficult goal. 

Due to these complicating factors, it does not appear feasible to 

evaluate the effectiveness of our algorithm against the Brute Force approach 

in a closed-form, deterministic fashion. 

However, three arguments for the general use of this approach and for 

its effectiveness can be made. First, it makes intuitive sense that such a 

preprocessing step should be effective in reducing the amount of work 

otherwise necessary. It is known that the solution process is an expensive 

operation to run on a computer in that it requires 0(n :i) multiplies/divides to 

perform. If a preprocessing step that requires no multiplies/divides to 
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eliminate some candidate matrices that would otherwise be inverted can be 

used, then such a step should be advantageous. 

A second argument for use of this test is that the preprocessing step is 

based on fundamental linear algebraic principles. There is no guesswork 

involved. By application of these principles, candidate matrices are ruled out 

in a mathematical manner. 

The third argument supporting use of the Phase One Test can be found 

in the results of extensive Monte Carlo simulations that evaluate 

effectiveness of the algorithm against thousands of potential systems. Let 

us run the Brute Force approach against 100,000 separate A and B pairs to 

determine the performance of the algorithm. By randomly populating an A 

matrix, a B matrix and a vector containing the target eigenvalues the test 

can be repeated many times. The results of such a simulation run on a 

third order system are shown in Table VI. 

TABLE VI 

LARGE SCALE SIMULATION RUN 
100,000 SYSTEMS 

Brute Force Phase One Test 
# M ultiolies 3,137 616 1 169.190 

Mults/Matrix 31.4 11.7 
Unnecessary Inversions 248,624 29,910 

<fr Feasible First Time 66.6 94.6 
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The key observation from this simulation run is that the Brute Force 

approach required 8.31 times more unnecessary inversions per matrix. This 

large number is attributable to the Brute Force approach searching the 

entire solution space looking for a solution when there were no feasible 

solutions at all. The Phase One Test in those cases might try zero, one or a 

few candidates and avoid testing the entire solution space. The reduction in 

unnecessary inversions should prove significant if higher order systems are 

considered. 

Before leaving this section, let us determine how often the Phase One 

Test is giving us the correct answer. Once again, let us simulate many 

example problems and calculate the experimental success rate. The results 

are shown in Table VII. 

TABLE VII 

PHASE ONE TEST RESULTS: 100,000 SYSTEMS 

Occurrences Predicted Result Actual Result Percentage 
44.676 Not Feasible Not Feasible 44.7 

2,815 Feasible Not Feasible 2.8 
52.509 Feasible Feasible 52.5 

0 Not Feasible Feasible 0 

Several points should be discussed in the closing of this section. First, from 

our large-scale simulation runs, 97<fr accuracy is achieved with the 
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implementation of a simple four-step algorithm. This result is surprisingly 

good for such simple tests. The key to this success is the fourth test which 

takes advantage of a particular characteristic in Brogan's algorithm that 

was discussed earlier. 

A second point concerns the elimination of candidates which would 

yield singular solutions. Our simulations reveal that use of the Phase One 

Test eliminates 44. 7% of the candidate matrices that otherwise would be 

considered. 

The third important point is that there are no false negatives. This 

factor is extremely important because no feasible candidates should be ruled 

out accidentally. This point will be further developed in the next chapter. 

From our simulations, a fourth significant point is found. When the 

Phase One Test is used, the first candidate matrix is feasible 94.6% of the 

time as opposed 66.69( of the time in the random approach. This is 

important when trying to find any feasible solution in a minimum amount of 

time which was the goal of this chapter. The fifth chapter will draw the 

Phase One Test together with Brogan's algorithm and apply the results to 

the fault-adaptive problem. The sixth chapter will summarize the 

performance of our new approach. 

There is one final point worth mentioning. As the simulations reveal, 

there are appro:x.imately three percent of the candidates that pass the Phase 

One Test yet still are singular. Upon examination of those candidates, it is 
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found there are no easily identifiable visual clues left in those matrices to 

suggest that they are singular. In other words, our four steps manage to 

extract all the easy clues which suggest that a matrix is singular. The clues 

of zero vectors, duplicate vectors, or single non-zero vectors are all detected 

by our tests. This result is appealing. 

Time Evaluation of the Phase One Test 
versus the Brute Force Method 

In the previous sections, the comparisons between the Phase One Test 

and the Brute Force Method have been by an analysis of the multiply/divide 

operations necessary to arrive at an answer. As mentioned earlier, the 

multiply count is the generally used way of measuring the work in an 

algorithm. However, with faster and faster computers and the trend to 

using math coprocessors, it is also necessary to evaluate the algorithms in a 

time sense. Clearly, if the Phase One Test used many, many more indexing 

and comparison operations to eliminate the multiply operations, then it 

might actually take longer to run on a computer. Such a characteristic 

would make the Phase One Test unacceptable. 

The chart shown on the following page is the result of computer 

simulations of example problems of system dimension three through ten. 

For each different system dimension, two hundred example problems were 

tested using the Phase One Test and the Brute Force Method. The 

simulations were run on an AT&T 3B15n1 computer with a math 
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Tiil coprocessor. The compiler was the standard UNIX System V C compiler. 

While two hundred simulation runs each is not sufficient to draw any 

concrete conclusions, it is enough to see the resulting trend. As can be seen, 

the Phase One Test ran in less time in each of the simulation runs. In fact, 

when the Phase One Test is used prior to attempting the required row 

reductions, the solution time is less than half of the time required for the 

Brute Force Approach. This results agrees well with the results of Table V 

where the Phase One Test is shown to reduce the required multiplies in half. 

Careful inspection of the results also suggests that use of the Phase One 

Test allows a problem of one dimension greater to be solved with the same 

computer resources. 
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Therefore, the various simulations used in this research suggest that 

the Phase One Test can greatly reduce the number of multiplies needed to 

solve for the feedback matrix F and the Phase One Test can solve the 

problem in less time. 

Summarizing the Phase One Test 

To close this chapter, the Phase One Test is summarized in the 

following table: 

TABLE VIII 

PHASE ONE TEST SUMMARY 

Ste.u Descri.ution Add/Sub Mult/Div 
One Zero Vector Tests no no 
Two Zero/Non-Zero Element Test no no 

Three Count of Non-Zero Elements Test no no 
Four Eaual Vectors Test ves no 

The Add/Sub column indicates the need for floating point additions or 

multipys and the Mult/Div column indicates the need for floating point 

multiplies and divides. 



CHAPTER IV 

FINDING A BETTER SOLUTION 

Introduction 

The previous chapter addressed the question of trying to find any 

feasible solution as quickly as possible. This chapter addresses the question 

of finding a 'best' solution out of many feasible solutions in a minimum 

amount of time. 

Two approachs will be considered. The first approach is to search 

through the feasible solution set of Brogan's formulation using the Phase 

One Test followed by cost evaluation of feasible candidates and finally 

solution selection. The second approach is to use a more intelligent search 

strategy to find a solution using a non-linear least squares algorithm on a 

different form of the feedback problem. While the first approach is a simple 

solution to the problem for some cases, the second approach will generally 

find better solutions. 

Full Search Using the Phase One Test 

When finding an optimal solution to a given control problem, it is 

necessary to be able to prove that any other possible combination of 

actuators in the given problem leads either to a non-feasible solution or a 
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solution costing more than the calculated optimal solution. In that case, it 

becomes necessary for us to examine, in some sense, every possible 

combination of actuators. If certain combinations of actuators can be 

identified as leading to non-feasible solutions, then the expense of finding an 

optimal solution can be reduced by avoiding the cost calculation for those 

combinations. 

In previous discussions, it was determined that there were w possible 

combinations of matrices that could yield feasible solutions to equation (51). 

Let us consider those w possible solutions as our entire solution space. 

W = Solution Space 

Let us define a subset of W called Q that consists of those matrices in W 

that will actually yield feasible solutions to the matrix equation ( 51). 

Feasible Set QcW 

If the set Q can be distinquished from the set W where Q is smaller than W 

then our problem has been reduced from the entire solution space to a 

smaller feasible solution space. Furthermore, if it can be guaranteed that 

the set of solutions in the space W - Q are not feasible and that the i th 

combination in Q is the optimal solution over the space Q, then it can be 

stated that the i th solution is the optimal solution overall. 
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Keep in mind that the work necessary to identify the feasible solution 

space Q must be less than the work necessary to rule out the solutions in W 

- Q as non-feasible by other methods available. 

The effectiveness of the Phase One Test at detecting the candidates in 

the W - Q space will be evaluated in the following pages. 

False Negatives 

In the preceding section, it was stated it was essential to guarantee 

that all the candidates in the W - Q space are singular. In this section, the 

four steps in the Phase One Test will be examined for such a requirement. 

Table IX summarizes the four steps taken in the Phase One Test. 

TABLE IX 

FOUR STEPS OF THE PHASE ONE TEST 

Step Description 
One Zero Vector Tests 
Two Zero/Non-Zero Element Test 

Three Count of Non-Zero Elements Test 
Four Eaual Vectors Test 

The first step in the test checks the vectors to determine if either 

vector is a zero vector. In the previous chapter, it was shown that if either 

vector was a zero vector, the two vectors are not linearly independent. The 

zero vector test provides a sufficient test to state that the corresponding 
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candidate G matrix is singular. As a result, there can be no false negatives 

from this test. 

The zero/non-zero element test checks whether an entry in one vector 

is zero while the corresponding entry in the other vector is non-zero. In the 

previous chapter, it was shown that if such a condition was spotted, then 

the vectors must be linearly independent. This test is sufficient to 

guarantee that the two vectors are linearly independent. It does not rule 

out any pairs of vectors as being dependent and, as such, will generate no 

false negatives. 

The third test counts that number of non-zero element in the vectors 

and provides a sufficiency test to state that the vectors are linearly 

dependent. The previous chapter showed that if only two non-zero entries 

were in the vectors and that if they were at the same locations, the vectors 

were linear multiples of each other. This test cannot generate a false 

negative because if it detects the condition it is seeking, then that condition 

is sufficient to guarantee dependency. 

The equal vectors test checks to see if the two vectors are exactly 

equal. If it detects this condition, then that is sufficient information to 

declare the vectors linearly dependent because they are multiples of each 

other. Since this test will succeed only when the vectors are equal, and that 

equality guarantees dependency, there can be no false negatives from the 

fourth step of the Phase One Test. 
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In summary, the four-step Phase One Test can generate no false 

negatives. It will never rule out a candidate matrix that is nonsingular. 

This characteristic was demonstrated by the simulation runs in Chapter III. 

Therefore, it can be stated that any candidate G matrix that fails the Phase 

One Test is not in the feasible solution space for the control problem. Such 

non-feasible candidates are in the non-feasible solution space W - Q and do 

not need to be considered in any optimality test. 

Application of Phase One Test 

From the previous chapter, it was demonstrated in numerous 

simulation tests that an application of the Phase One Test before a solution 

attempt would accurately rule out about forty-four percent of the possible 

candidate ma trices. 

Ruled Out ~ .44rn candidates 

Consequently, before any optimality evaluation begins, nearly half of the 

solution space can be eliminated. It is guaranteed that none of the 

candidates that have been eliminated are actually feasible. In effect, an 

application of the Phase One Test can accurately and quickly identify most 

of the candidates in the W - Q space. 

Since most cost functions will involve a multiply of the ;r vector, then at 

least n multiplies will be required per evaluation. As a result, using the 
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Phase One Test, we can avoid: 

A voided multiplies z . 44nr n 

without performing any multiplies in the process. 

It turns out that an application of the Phase One Test has greater 

impact on this problem than the problem of the previous chapter. In the 

previous chapter, either method might find a feasible solution on the first 

attempt and then quit. In this case, examination of all the possible solutions 

is required. The Phase One Test allows us to rule out many of the 

candidates that would otherwise need to be evaluated to assure optimality. 

Optimality tests can be applied against the remaining candidates to find the 

optimal feedback matrix. 

If an applicable objective function is chosen for optimization, the Phase 

One Test can be used to reduce the number of candidates that require 

objective function evaluation. If the control problem is an optimal control 

problem that can be cast into a form suitable for pole-placement using 

Brogan's Method, then use of the Phase One Test reduces the amount of 

work necessary to find the optimal solution. 

A More Intelligent Search 

In Chapter II, the feedback problem was stated in equation (27) as: 
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6.'(\) =I \Jn -A -BF I= 0 (80) 

After some development, the problem was restated in equation ( 31) in the 

following form: 

.6.'(\) = 2.(\) \ [1r - F<f>(\)B ] I = 0 (81) 

In this equation, Brogan set columns inside the determinant equal to zero to 

force the expression to zero for given eigenvalues. In Brogan's writings on 

his procedure, he points out that other means could be used to force the 

determinant equal to zero, but that he would zero columns for convenience. 

As an alternative and in general, consider the following equation where 

multiples of column vectors will be summed together to equal zero. 

[I,. - F<f>(A)B ] K = il (82) 

After some rearranging: 

F<f>(AlBK = K (83) 

If this is done for each target eigenvalue, the resulting expression can be 
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written as: 

<f>(\lB~J= [K1K2 ··· ~J (84) 

The problem of finding a feedback matrix F can now be stated as choosing K 

values and then solving for F. Notice that each K vector is a column vector 

with the number of rows equal to the number of columns in B. The number 

of K vectors is equal to the order of the system. In the rest of this chapter, 

the individual entries in the K vectors and F matrix will be referred to with 

lower case letters. 

Stating the problem in this manner generalizes the work of Brogan. In 

his approach, he limits each K vector to all zeros except for one entry 

containing a one. This approach highlights the fact that there are 

potentially many more feedback matrices F that will result in the correct 

closed-loop response. 

The following example problem should demonstrate the new freedom 

available with Equation (84). A second order system described below will be 

used. 

(85) 
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The target eigenvalues for this system will be .\1 = -3 and .\2 = -5. First, 

calculate the associated <i>(.\)B terms then write the problem in the form of 

Equation (84). 

[ [
-.3333 .1111 l 

F 0 .1667 Ki [
-.2000 .0500 l l [ ] o .1250 K2 = Kl K2 

Now if Brogan's method were being used, we might choose: 

and then F is found as: 

[ 
.1111 -.2000 ]- [ o 

0
1] 

F -.1667 0.000 - 1 

- [-5.00 -3.33 l 
F - 0.00 -6.00 

(86) 

(87) 

(88) 

(89) 

If this feedback matrix is used, the resulting closed-loop system will have 

eigenvalues at the desired locations. From this example problem, it can be 

seen that if different values for the K vectors were chosen the resulting 

feedback matrix would be altered. 
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There is a catch to using this approach just as in Brogan's method. 

Namely, the <!>(\ )B matrix must be nonsingular. There is not one hundred 

percent freedom in choosing the K values. 

The problem formulation in (84) is similar to a form found in Fahmy 

and O'Reillyf 191. 

Choosing a Best Feedback Matrix 

If it is necessary in a given problem to find a 'best' solution, then 

clearly one would prefer to choose from as many alternatives as possible to 

find a 'best' solution. The generalization of the previous section was done to 

give us additional freedom and choices in choosing the feedback matrix F. 

For the sake of this research, let the control goal be to minimize the 

control effort required to achieve the closed-loop feedback requirements. 

Namely, let us define an objective function to minimize the control signal LL 

defined in Equation (3). 

LL = F:r_ + w. (90) 

Since at this point, we have no control over the input signal w._ it will be 

ignored. Furthermore let us consider the remaining term in a minimum 

energy fashion. Therefore, let us modify the objective function as follows: 
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Minimize (Fx..lt (Fx..l 

or 

Now with one more observation the final objective function will be stated. 

Notice that if F was a vector, then the inner two terms would be an inner 

product. With that spirit in mind, let us define our final objective function 

as: 

Minimize 2= fr; (91) 
l<i<r 
IS}Sn 

In short, the objective to be achieved is to minimize the square of the 

individual terms in the feedback matrix F. The difficult part is choosing the 

k terms that result in an F matrix with minimal characteristics. If the 

example problem considered earlier is solved in terms of k the resulting 

equations are: 



f11(-.3333k1 + .llllk2) - .1667k2f12 =k1 

f21(-.3333k1 + .llllk2) - .1667k2f22 =k2 

f 11 (-.2k :3 + . 02k 4) - .125k 4{ 12 = k :3 

f 21 (-.2k :3 + . 02k 4) - .125k 4{ 22 = k 4 
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(92) 

(93) 

(94) 

(95) 

As can clearly be seen, the resulting four equations for the terms in the F 

matrix are nonlinear functions of the k terms. This nonlinearity complicates 

the problem of finding k terms that result in minimal f terms. 

Upon further examination of this problem, it can be seen that we have 

a sum of squares objective function to minimize, where the terms to 

minimize lD are non-linear functions of other terms (kl. This type of 

problem is referred to as a non-linear least squares problem, and there are 

several numerical techniques available for solving these problems r2o 1. For 

the problem here, the method of Levenberg-Marquardt will be used. 

Without going into the details of this algorithm, it can be stated that the 

algorithm alternates between a steepest descent approach and a Gauss-

N ewton approach depending on run-time conditions. Furthermore, the 

algorithm is guaranteed to converge since the steepest descent part of the 

algorithm will always move in a minimizing direction until it can't find a 

lower point. 

If the objective function is evaluated for the first example problem 

discussed earlier, then the cost is found to be: 



Unoptimized Cost = 72.1 

However, if we apply the Levenberg-Marquardt algorithm to the problem 

and let it find the K vectors and the resulting F matrix the solution is: 

- [. 8226 1.229 l 
K - 1.053 .265 

- [-5.29 0.53 l 
F - -.327 -5.71 

Optimized Cost = 60. 7 
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Application of this algorithm finds a solution that results in a fifteen percent 

reduction in the value of the objective function. In some applications, such a 

reduction could be significant. 

An important point to realize is that the reduced cost solution was 

found away from the Brogan's method solution. If constrained to using only 

Brogan's method, such a cost reduction would not have been possible. Of 

the four possible Brogan's method solutions for this problem, the best results 

are shown in the example problem above. If one had been unfortunate 

enough to choose the following K vector: 



the cost without optimization would be 177 .25! Application of the 

Levenberg-Marquardt method would result in a sixty-six percent 

improvement. 

Comparison to Brogan's Method 
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The freedom to choose K vectors without Brogan's restriction can result 

in better solutions in some cases. The problem in the previous section is an 

example. At this point, let us consider three additional problems for a total 

of four problem to see what effect this new approach has on reducing the 

feedback cost. For each problem, we will evaluate the objective function 

described above and a new function which gives more of a physical 

interpretation of feedback cost. 

The new cost function evaluated will be to sum the absolute value of 

each row vector in the feedback matrix F. Such a sum gives more of a 

physical interpretation since it represents gains instead of squared gains. 

This second merit function will not be used to select the F matrix, but only 

after one is chosen will it be evaluated. The function defined precisely is: 



R = 2= I fij I 
l<i<r 
is.;sn 
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(96) 

The first problem considered in detail is the example problem described 

earlier in this chapter. The second problem is found in Fahmy and 

O'Reillyr 19 l and is described as: 

A = l ~2 ~ ~ 1 B = l ~ ~ 1 K = [ ~ ~ ~ l (97l 
-2 -1 0 0 0 

Target Eigenvalues: -1, -1, -2 

The third problem for consideration is found in Broganf 161 in chapters 12 and 

16. This model describes the lateral flight dynamics of an aircraft: 

10 0 -10 0 20 2.8 

0 -.7 9 0 0 -3.13 
A= 0 -1 -.7 0 B= 0 0 

1 0 0 0 0 0 

K ~ [ ~ ~ ~ ~] 1981 

Target Eigenvalues: -2, -5, -8 and -10 

Finally, a fourth problem will be taken from Broganf 161. It is described as: 
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r
-2 1 0 l r 0 0 1 K = [ 

0
1 o

1 
o
1 
l 

A = ~ ~2 ~ B = ~ ~ (99l 

Target Eigenvalues: -2, -3, -4 

For each of these four systems, the two cost functions are evaluated 

under initial conditions and after the optimization algorithm is applied. The 

results are shown in the following table. 

TABLE X 

TEST CASE RESULTS 

Brogan Brogan Optimized Optimized 
Problem Cost A Cost R Cost A Cost R 

1 72.11 14.33 60.69 11.86 
2 26.79 10 26.76 9.92 
3 66.11 12.16 13.87 6.26 
4 49 11 49 11 

As can be seen from these four example problems, when the control problem 

is stated in this manner and the Levenberg-Marquardt algorithm is applied, 

the results can be significantly better than a simple application of Brogan's 

method. In the third problem, the least-squares algorithm resulted in a 

eighty percent reduction in the first objective function and fourth-nine 

percent reduction in the second objective function. 
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Since the Levenberg-Marquardt algorithm only moves in directions of lower 

cost, it will never leave a point if it is already at a minimum. Therefore, use 

of this technique will never result in worse performance than the initial 

guess. In the case of the fourth problem in the table, the initial guess was 

the 'best' solution. 

Effects of Changing the F Matrb:: 

Throughout this research, the primary interest has been in 

maintaining pole/eigenvalue locations after actuator failure. In Chapter III 

and this chapter, it has been assumed that any feedback matrb:: that results 

in the target eigenvalues was acceptable. However, it should be pointed out 

that the complete system response will be altered as different feedback 

matrices F are used. An important question to ask is whether or not there 

are any negative side effects to using the optimization scheme described in 

this chapter. 

In the work of Broganfl 61 and in the work of Fahmy and O'Reillyfl9J 

the reason for the change is discussed. Both sources prove through different 

means that the eigenvectors are being changed as the K vectors are changed 

and as a result as F changes. Since the complete response of a system is a 

function of both the eigenvalues which do not change as F changes and the 

eigenvectors which do change the net effect is a change in complete system 

response. 
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Figures 4. and 5. provide some insight into the changes that occur 

when the F matrix is altered. Figure 4. is a plot of the x(Q) state variable in 

the first example problem in response to [ 1 0 ]t initial conditions. One line 

describes the response in the worst case Brogan selection described earlier 

while the other line describes the response to the least-squares selection. 

The response is clearly different when the two different F matrices are used 

in the closed-loop system. 
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However, if the initial conditions are changed to point in the direction of one 

of the eigenvectors of the closed-loop system, then the response offers insight 

into the change that occurs when F is altered. Figure 5. reveals that when 

the initial conditions are chosen to correspond to the closed-loop eigenvectors, 

the response is identical. The eigenvector used in Figure 5. corresponds to 

the -5 eigenvalue in each case. 

The difference between Figure 4. and Figure 5. suggests that the initial 

conditions highlight different modes of the closed-loop system. An adequate 

comparison requires that a common ground be established to evaluate the 

response changes due to the changes in F. Once the comparison is made 

with fair initial conditions, the response is seen to be identical. 

Conclusions 

The two methods outlined in this chapter provide dramatically different 

approaches to finding a 'best' feedback solution. The first method using the 

Phase One Test provides a simplistic method for finding a suitable feedback 

matrix F. The advantages of this approach are that it is conceptually 

simple and easy to implement on a computer. The primary disadvantage to 

this approach is that a full coverage search strategy of this type can require 

enormous amounts of time when the order of the system is high. 

The non-linear least squares search strategy offers two significant 

advantages. First, the search strategy to find a solution is much more 

intelligent than a linear search using the Phase One Test. The Gauss-



95 

Newton characteristics of the algorithm can allow it in some cases to jump 

close to a solution in a few steps. The second advantage of this approach is 

that since the restrictions of Brogan's method are removed, better solutions 

can generally be found. The four example problems clearly demonstrated 

that significant performance improvements can be obtained. 

Unfortunately, the non-linear least squares search strategy has some 

disadvantages too. First, it requires an expensive to implement computer 

algorithm to run in real-time. The algorithm requires function derivatives to 

be determined at each point the algorithm moves. A second problem is that 

in some cases the solution convergence is slow. Recall that an ordinary 

Newton's method algorithm converges slowly when multiple zeros are 

present. The same characteristic can appear in the Levenberg-Marquardt 

method. 

Overall, the Phase One Test search and the non-linear least squares 

search provide two diverse alternatives to the problem of finding a 'best' 

feedback solution to a given control problem. 



CHAPTER V 

COMPUTER IMPLEMENT A TI ON DETAILS 

Introduction 

This chapter discusses numerous computer implementation details 

necessary to make the algorithms of the previous two chapters work. 

Specific computer details on calculating the Z and X matrices will be 

presented as well as details on implementing the Phase One Test. Example 

code will be used where appropriate. 

In addition to computer details, this chapter will present a flowchart 

outlining use of the Phase One Test in solving the control problem of 

Chapter III. 

Calculating the Z Matrix 

The principle difficulty of implementing Brogan's Algorithm on paper or 

on a computer is the apparent necessity to do a symbolic matrix inversion. 

The calculation of¢( \ ) appears to require an off-line symbolic inversion. 

Fortunately, this problem can be avoided. 

Let us calculate a separate ¢( \ ) for each \ in our problem. Then 

concatenate the various ¢( \ ) matrices together end-to-end to form the Z 

matrix. 
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If the problem is solved in this fashion, the Z matrix can be evaluated 

on the computer using numerical routines given the A matrix and the target 

eigenvalues Ai. The psuedocode of Figure 6 demonstrates the solution. 

for i = 1 to number_of_eigenvalues 
[ 
copy(A,ATMP) 

for j = 1 to DIM(A) 
ATMP[j] [j] -= pole[i]; 

for j = 1 to DIM(A) 
[ 
for k = 1 to DIM(A) 

ATMP [ j] [ k] * = -1. 0; 

invert(ATMP,tmp); 

for j = 1 to DIM(A) 
[ 
for k = 1 to DIM(A) 

Z[j] [k+DIM(A)*i] tmp [ j ] [ k] ; 

Figure 6. Psuedocode For Calculation of Z 

With the use of psuedocode in Figure 6, it becomes possible to randomly 

create A, B, and target eigenvalues for simulation purposes and not have to 

symbolically invert A each time. This outlined approach is implemented in a 

C function called prep() in the program included in the appendix. 



Calculating the X Matrix 

The calculation of the X matrix is achieved by multiplying each 

partition of the Z matrix times the B matrix. The resulting matrices are 

concatenated together to form the X matrix. 
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When the Phase One Test is implemented in a real environment where 

a fault detection system is updating actuator performance data and 

availability, the calculation of the X matrix can be optimized for cases when 

actuator performance is varying. In such cases, the X calculating 

procedure should only update the columns in X that are affected by changes 

in B. There is no need to recalculate the entire X matrix for every change 

in the B matrix. 

Phase One Test 

The most important part of the code in this work is the Phase One 

Test. The calculation of the Z matrix discussed above is not as crucial 

because it is executed one time, outside the loop. The calculation of the X 

matrix involves limited optimization opportunities since it involves a straight 

matrix multiplication; however, the Phase One Test will be executed inside 

the loop for each candidate G matrix. 

Figure 7 outlines the first step in the two vector tests discussed in 

Chapter III. The first vector is stored in column i th column of matrix d. 

The second vector is stored in the jth column of matrix x. 



TOL=le-6; 
stat=FALSE; 
for rn = 1 to DIM(A) 

if ( x [ rn] [ j] > TOL or x [ rn] [ j] < -TOL) 
[ 
stat=TRUE; /*not a zero vector*/ 
break; 
} 

if(stat == FALSE) 
return (-1); 

stat=FALSE; 
for rn = 1 to DIM(A) 

/*zero vector*/ 

if(d[rn] [i] > TOL or d[rn] [i] < -TOL) 
[ 
stat=TRUE; /*not a zero vector*/ 
break; 

if(stat == FALSE) 
return(-1); /*zero vector*/ 

Figure 7. Step One: Zero Vector Test 

Notice from Figure 7 that the code completely checks one vector before 

checking the second vector. In this manner, if the first vector is a zero 
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vector, the second vector will not even be examined. If both were tested in a 

single loop, then twice the work is performed if either vector is a zero vector. 

Figure 8 presents steps two and three in our testing procedure. This 

part of the procedure is the most complicated. Notice the variable 'count' 
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which is incremented every time a row in each column has non-zero entries. 

This count variable will be tested for the step three test. 

TOL=le-6 
count O; 
for m = 1 to DIM(A) 

l 
if(d[m] [i] < TOL and d[m] [i] > -TOL) 

[ 
if(x[m] [j] > TOL or x[m] [j] < -TOL) 

return(O); /*independent*/ 
else 

continue; /*0/0 case*/ 

else 

if(x[m] [j] < TOL and x[m] [j] > -TOL) 
return(O); 

else 

count++; 
continue; 

if(count <= 1) 
return(-1); 

/*independent*/ 

/*non-0/non-O case*/ 

/*dependent*/ 

Figure 8. Steps One and Two 

Figure 9 outlines the fourth and final step used to compare two vectors. The 

equal vectors test subtracts one vector entry from the other and then 

compares the difference to zero. 



for m = 1 to DIM(A) 
[ 
s urn = d [ rn] [ i] - x [ rn] [ j ] ; 
if(sum < -TOL or sum > TOL) 

[ 
return(O); 
} 

return ( -1) ; 

/*independent*/ 

/*dependent*/ 

Figure 9. Step Four: Equal Vectors Test 

101 

In this final step, notice that the routine will examine individual rows until 

it finds a row where the two values are not equal. At that point, the routine 

returns a passing value. If the routine proceeds through all the rows 

without finding a row with differing values, the vectors are exactly equal 

and thus dependent. 

Three appendices are attached that include the complete Phase One 

Test implemented in code, the main body of a simulation program, and a 

series of matrix utility functions used throughout the project. The 

simulations of this research were done in C. 

Using the Phase One Test 
For Fault Adaption 

In Chapter III, a simple algorithm to estimate the singularity of a 

given matrix was developed. In this section, the test will be used in the 

original fault-adaptive problem. 



102 

Consider Figure 10, on the next page, which summarizes an adaption 

approach for the problem of finding any feasible solution in minimum time. 

The approach begins with a process that detects actuator faults or changes. 

Throughout this paper, the detection of failures in systems has not been 

addressed because there are several good techniques available for the fault 

detection problem. However, to implement an adapting algorithm requires a 

fault detection/identification process in the loop. The detection process must 

quickly determine that a fault has occurred. The identification process must 

specify where the fault has occurred and the new actuator characteristics 

after the fault. 



Shutdown 

Shutdown 

START 

Calculate 

Affected 

X Columns 

Phase One FAil 

Test 

Figure 10. Fault Adapting Procedure 
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Immediately after a fault has been detected and the new actuator 

performance has been determined, the adaption process begins. The next 

step in the process is to determine whether or not there are actuators 

available after the fault. If none are available, the system is clearly not 

controllable and a shutdown process, if one is available, must begin. If 

actuators are available, the adapting process must first recalculate the 

affected columns in X. This step involves a straightforward matrix 

multiplication as outlined earlier. 
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Once a new X matrix has been determined, a selection process should 

select a candidate G matrix for analysis. At this point, the search strategy 

being implemented plays a role. 

Once a candidate matrix has been chosen the Phase One Test is 

applied against it. If the candidate fails the test, then another candidate is 

selected. If no candidates pass the test, a shutdown procedure must begin 

because there is no feasible way to maintain the chosen system 

performance. 

When a candidate passes the Phase One Test the value of Fis 

calculated. If F exists, the process returns to the fault detection loop. From 

the simulation runs presented earlier, this case will occur over ninety-seven 

percent of the time. The remaining cases will require a new candidate 

matrix to be selected. 



CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

The goal of this research has been to develop a new adaptive pole­

placement algorithm specifically designed to adapt to controller changes. 

Requirements on the new algorithm were that it needed to maintain pole 

positions after actuator failure and that it needed to be well-suited for a fast 

computer implementation. These goals were driven by the apparent lack of 

work in this direction and by the stated need for such work in the April 1987 

issue of Transactions on Automatic Controls[lZJ. 

In summary, while several specific contributions are outlined in the 

following paragraphs, it can be stated that the method developed in this 

work meets the stated research goals. A new approach to adapting to 

actuator faults is presented and shown to be efficient when implemented on 

a computer. This new approach takes a well known pole-placement method 

and extends it to solve the stated adaption problem. A simple four-step test 

is created and used to greatly reduce the amount of work that would 

otherwise be necessary in the evaluation of a feedback mechanism which 

compensates for the failure. In short, this research has put together a new 

tool for use in the fault-adaptive control problem. 

This research has resulted in several significant contributions to the 
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fault-adaptive control problem. The first contribution concerns the means to 

model actuator faults as changes in the B matrix. This means of modeling 

the faults allows the adapting problem to be considered using traditional 

control methods. The importance of this simple observation should not be 

overlooked in that it was essential for the adapting algorithm of this 

research to be developed. 

The second major contribution from this work is the adapting 

algorithm itself. A large amount of time was spent examining many 

different control approachs before Brogan's algorithm was found to possess 

several key characteristics. The ability to push the costly matrix inversion 

step off-line ahead of the adaption loop makes Brogan's approach ideal for 

the fault-adaptive problem specified. Furthermore, the characteristic of any 

nonsingular G matrix resulting in a feasible feedback matrix F allows the 

adapting algorithm to have a very clear goal of finding a nonsingular 

matrix. A feasible solution is guaranteed if a nonsingular G matrix is 

found. An additional plus is the advantage of not requiring any new matrix 

multiplications or inversions if an actuator fails and is removed. These 

characteristics of Brogan's algorithm make it ideal for the fault-adaptive 

problem being addressed. 

Once Brogan's algorithm was identified, it became necessary to cast 

the algorithm into a form suited for computer implementation. Such a form 

was developed and is now used in the resulting algorithm. 
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The task of finding a nonsingular candidate G matrix then became the 

goal. Simple search strategies and numerous condition number techniques 

were tried, but they either resulted in poor performance or required too much 

work to arrive at an answer. 

Finally, the fundamental principle of matrix rank coupled with a 

problem formation characteristic in Brogan's method yielded a simple four­

step approach to determining the feasibility of a candidate matrix. This 

four-step approach called the Phase One Test determines with 

approximately ninety-seven percent probability whether or not a candidate G 

matrix will result in a feasible solution. Furthermore, the Phase One Test 

results in no false negatives and requires no expensive multiplies or divides. 

An important additional characteristic of the algorithm is that it is 

extremely well suited for implementation in a multiprocessor environment. 

The problem can be broken into distinct tasks that can be executed in 

parallel. Such a characteristic is ideal in a computer control environment 

that has multiple processors available for use. 

Once a method was in place for finding a feasible solution, two seperate 

strategies where developed for finding a 'best' solution. One strategy used 

the Phase One Test to reduce the problem solution space by almost half. A 

linear search would then be used to determine the best solution of the 

remaining feasible candidates. A second strategy expanded on Brogan's 

development to cast the feedback problem in a more generalized form. A 
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non-linear least squares algorithm was then shown to find a 'best' solution 

out of a much larger solution space than the first approach. The solution 

found by the second method will generally result in a better solution than 

the one found by the restricted first method. 

Future Work 

In this section, some extensions to the approach outlined in the 

previous chapters will be considered. Some of the techniques will speed up 

the Phase One Test while other techniques will attempt to reduce the 

number of unnecessary inversions still further. Some of the approaches will 

be minor ideas while others might be of significant use for particular classes 

of problems. 

This section will also include discussion on some important points that 

were not covered earlier. 

Regional Pole-Placement 

The adaption method developed in this research deals with the problem 

of holding pole positions in required locations after actuator changes or 

failures. An interesting problem to be considered would be to relax the 

requirement that the poles remain fixed and let the poles move inside a 

specified region. For example, the design requirement could be relaxed to 

specify the pole positions inside an ellipse or left of a parabola. Such a 

specification would provide additional freedom in choosing a feedback 
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mechanism. A challenging problem would be to allow pole movement while 

still finding a feedback matrix F. 

Parallel Implementations 

As mentioned earlier, the method developed in this research is well­

suited for a multiprocessor environment. An important follow-up step to 

this research would be to implement the approach in a multiprocessor 

environment. A successful system would involve a fault 

detection/identification process coupled with the adaptive process. A 

complete implementation could explore the coupling issues between the 

detection phase and the adaptive phase. Furthermore, system shutdown 

questions could also be answered. Overall, a full parallel processing 

implementation could provide a complete start-to-end adaptive problem 

example. 

Repositioning the Zero Vector Test 

The first test in our two vector test was to detect the presence of zero 

vectors in the candidate G matrix. As the algorithm was implemented, that 

test was done at the vector test level and not one time on the entire matrix. 

If the zero vector tests were pulled out of the two vector test section and 

placed up front, then less work would be necessary to detect zero vectors. 

In the current implementation, tests for zero vectors are repeated 

against the same vectors more than once. Unnecessary tests are performed 



110 

when zero vectors exist but are positioned to be examined later. 

Eliminating Redundant Vector Tests 

In the Phase One Test, pairs of vectors are tested to determine if they 

are linearly dependent. If they fail the test, then another pair of vectors are 

tried until a pair fails the test or all the vectors pass the test and inversion 

begins. 

However, if the test fails and another combination of vectors are 

chosen to make up the candidate G matrix, the Phase One Test is reapplied 

to the new G matrix. As before, testing pairs of vectors for dependency will 

begin, in which case a previously tested pair might be tested again. 

However, it is clear that if the two vectors passed or failed the Phase One 

Test the first time, the result will be unchanged during a second test. 

Therefore, the Phase One Test could be modified as: 

1. As each pair of vectors is tested, store the result. 

2. If the same pair of vectors must be tested again, recall the result from 
the first test. 

3. If a change in a B matrix entry changes any vector that has a stored 
result, then clear the test results for the affected pairs. 

This addition to the Phase One Test does not change the algorithm but 

merely its implementation. However, more storage and additional logic will 

be required. 
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The modification described in this section will not result in a significant 

performance improvement since no multiplies are saved; however, the 

number of additions/subtractions and indexing operations will be reduced. 

This improvement is definitely appealing since redundant work is being 

eliminated. 

Tridiagonal Systems 

In our approach, a nonsingular matrix is being built. Since there is 

freedom to choose vectors from each partition of our described X matrix, it 

may be possible to choose vectors that yield a G matrix structure that is 

easy to solve numerically. One such structure is the tridiagonal structure 

where a matrix has non-zero elements on the main diagonal and then above 

the diagonal or below the diagonal, but not both. 

If the vectors chosen from X resulted in a tridiagonal G matrix, then a 

special algorithm, such as the one described in Pressr211
. could be used 

instead of the traditional, general purpose inversion/solution algorithm 

generally used. 

This approach is mentioned because it might be useful for some classes 

of problems. The necessary logic to build a tridiagonal matrix from X could 

be easily implemented. 
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Redundant Actuators 

In the simulation section of Chapter III the issue of redundant 

actuators appeared. At that time, redundancy was not considered in the 

simulation process. The case of redundant actuators should be considered as 

a special case in the fault-adaption problem. If it is known that a redundant 

means of control is ·available, that knowledge should be included in our 

controller/adapter design. An adaption algorithm should not be required to 

determine that the redundant actuator should replace a failed actuator 

without changing the feedback gains. If redundant actuators are available, 

they should replace the failed actuator automatically when a failure is 

detected. It is for this reason that redundant actuators have not been 

discussed in this paper. 
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