By

BOBBY NEAL WINTERS
Bachelor of Science East Certral State Uriversity Ada, Oklahoma 1983
Master of Science Oklahoma State Uriversity Stillwater, Oklahama 1985

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 1989

$$
\begin{aligned}
& \text { Thosis } \\
& 19890 \\
& \text { wis8p } \\
& \text { cop.2 }
\end{aligned}
$$

PROPER PLANES IN WHITEHEAD
 MANIFOLDS OF FINITE GENUS AT INFINITY

Thesis Approved:

ACKNDWLEDGEMENTS

I would like to begin by saying that I have had more than my share of help as I have made my journey through life. I was lucky enough to be born to the loving parents G. C. "Cliff" and Dra Winters who always taught the impontance of education and encouraged my bookish pursuits. I was lucky enough to have an intelligent older brother, Jerry, who was always providing some stimulating diversion.

Upon entering school, I was fortunate emough to be urder the tutelage of the caring teachers of McLish Public Schools. In elementary school, I was taught by Bob Tolliver that, "Math does not lie." Later in high school I had the extraordimary gaad luck to have Hoyt Sloan as a geometry teacher. It was in Mr. Sloan's geometry class that I learmed of proof, the power of "Exact geometric reasonimg;" and that one does not have to be good at addition to enjoy mathematics.

At East Central University, Mr. K. R. Brady taok me under his wing and was the first person to suggest that, perhaps, I should go to graduate school. It was Dr. T. R. Hamlett at ECU who introduced me to the joys of oniginal research and went well out of his way to help me
along. I was also taught a great deal of basic mathematics by Burt Burns, Phillip Briggs, Phil Almes, and the late Derrell Terrel who was my urndergraduate adviser.

I was first convinced to attend Oklahoma State University by John Jobe to whom I shall always be grateful. At OSU I met Paul Duvall who was the adviser for my masters degree and did me the great favor of matching me with my thesis advisor Robert Myers.

It is to Robert Myers that I owe my greatest academic debt for his superhuman patience and knowledge. Thanks, J. R.

I would also like to thank the members of my committee which has at various times included Paul Duvall, Bemy Evans, Joel K. Haack, Bruce Crauder, and John Chandler.

Dale Alspach and John Wolfe have gone a great deal out of their way in helping me with my word processor and therefore are due much gratitude. Dr. Paul Young and David Patocka (promounced pa-tah-ska) have helped me by being leg-men (and friends) in Stillwater. Much gratitude is also do to Michael Chmistian for helping me blow off steam occasionally.

I have had the good forture to sperd academic year 1988-89 at the University of Texas at Austin. I would like to take this oppontunity to thank the mathematics
department at UT for making me feel welcome in "Texas Style." Special thanks are due to Gary Hamrick and Cameron Gordon.

While working on my doctorate I have been supported financially by the McAlester Scottish Rites Graduate Fellowship and by the Robert Glemm Rapp Endowed Fellowship as well as by a research assistantship funded by the National Science Foundation.

Lastly and most greatly, I would like to thank my wife, Jean, and my daughter Lora. Jean has given me the love and support in this erdeavor without which I would have surely failed. Lona has, without realizing it to be sure, changed my entirely self-centered perspective of life, and the final results of this have yet to be seer.

I dedicate this work to the memory of my father.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. EXHAUSTING SEQUENCES AND PROPERLY EMBEDDED 2-MANIFOLDS 7
III. CONSTRUCTING STRONGLY ESSENTIAL 2-MANIFOLDS. 19
IV. SOME PROPERTIES OF COMPACT $2-M A N I F O L D S$ 29
V. SOME PROPERTIES DF COMPACT SEIFERT PAIRS 44
VI. ENGULFING NONCOMPACT 2-MANIFOLDS OF ZERO ELLER CHARACTERISTIC 60
VII. SOME PROPERTIES DF NONCOMPACT SEIFERT PAIRS. 76
VIII. WEAKLY CHARACTERISTIC SEQUENCES. 92
IX. WHITEHEAD MANIFOLDS OF FINITE GENUS 100
X. NONTRIVIAL PLANES AND NEARNODES. 127
XI. THE HANGAR THEDREM 142
XII. EXAMPLES 150
BIBLIDGRAPHY. 168
APPENDIX. 170

LIST OF FIGURES

Figure Page

1. The 3-manifald pair (M, OVLEN') 171
2. The 3-manifold pair (M, OVLON') with the
arc α indicated. 172
3. The 3-manifold pair $\left\langle M^{7}, T^{\prime} \cup T\right\rangle$ 1734. The pieces of M obtained by splitting along
$F_{1} \mathrm{LF}_{2}$ 174
4. The manifold W_{n} as it is embedded in W_{n+1} 175
5. The manifold pair $\left(M, T_{o} U T_{1}\right)$ with curve pairs(Q_{0}, m_{0}) and ($Q_{1} ; m_{0}$) indicated. 176
6. The 2 -manifold $A_{1} \operatorname{LA}_{2} L A_{3}$ in the 3-manifold

7. The 3-manifold obtained by splitting M along A_{1}. 178
8. The 3-manifolds M_{o} and M_{1} obtained by splitting along $A_{1} \operatorname{LA}_{2} \mathrm{LA}_{3}$ with important surfaces indicated. 179
9. The 3 -manifold V_{n} embedded in V_{n+1} with the curve pair (λ_{n}, μ_{n}) indicated180
10. The 3 -manifold X_{n} embedded in X_{n+1} 181
11. The 3 -manifold U_{n} embedded in U_{n+1} 182

LIST OF SYMBOLS


```
Interior (see page 8)
Irreducible pair (see pages 9, 44)
lclb(F,G;S) (see page 34)
Least common lower bound (see page 34)
Marifold pair (see pages 9,44)
Nearnode with v faces (see pages 3; 138)
Nice exhaustion (see page B2)
Nontrivial (see pages 2, 96)
Nomcompact pair (see page 9)
Parallel (see page 9)
Perfectly embedded (see page 46)
Proper (see pages 2,7)
Proper embedding (see page 7)
Property A (see page 157)
R2
Seifert pair (see page 45)
5'-pair (see page 45)
Spans (see page 9)
Strongly essential (see page 10)
Strongly perfectly embedded (see page 76)
System of disks for (C, %) (see page 138)
T-invariant lower bound (see page 39)
Weak characteristic pair (see page 87)
Weakly characteristic sequence (see page 96)
We11-embedded (see page 45)
Whitehead marifold (see page 100)
```

X-pair (see page 44)
X-shell (see page 45)

CHAPTER I

INTRODUCTION

It is not an exaggeration to state that one of the most fruitful methods in the study of 3 -manifolds has been to study embeddings of surfaces in 3-manifolds. Results obtained from the study of incompressible surfaces and Heegaard surfaces as well as the ubiquitous use of the loop theorem bear witmess to this especially in the case of compact 3 -manifolds. Orie often uses special surfaces in order to split a 3-manifold into pieces that are in some sense less complicated than the original manifold. Some notable examples of this are:
(1) The factorization of a compact 3-manifold into prime factors by Kneser (a version of which may be found in [6]);
(2) The splitting of a Haken 3 -manifold M into pieces which are either simple or Seifert fibered by Jaco-Shalen [7] and Johammon [9].

Both of these examples are nice since in each case the pieces are unique; case (2) is especially nice simce the pieces are unique upto an ambient isotopy of M. Orse can obtain a proof in either (1) or (2) by splitting the manifold along a maximal set of special surfaces
(2-spheres in (1) and tori in (2)) and analyzing the pieces.

In this tradition, I propose to make a study of nomcompact surfaces in noncompact 3 -manifolds. In particular, I plan to restrict my attention to planes embedded in 3 -manifolds so that they are proper (that is, meet every compact set compactly) in the ambient 3-manifold and montrivial (that is, bound no proper submanifold homeomorphic to $R^{2} \times[0, \infty)$). It is my aim to prove that a "sufficiently nice" moncompact 3 -manifold V can be split into pieces in a way analogous to example (2) above. To make this more precise, I meed to define some terms.

When V is a noncompact 3 -manifold, we often find it convenient to write it as a union of compact
 n 30. (The notation int $\left(V_{n+1}\right)$ denotes the interion of V_{n+i} in the space $\left.V_{n}\right)$ We say that $\left\{V_{n}\right\}$ is an exhaustimn sequence for V. Ore can defime special properties of V in terms of an exhausting sequence. Some examples are: (a) If Fr $\left(V_{n}\right)$ is incompressible in V for $n \geq 0_{\text {, }}$ we say that V is end-irreducible.
(b) If $F r\left(V_{r}\right)$ is incompressible in cl(V-V $)$ for $n \geq 0$, we say that V is eventually end-irreducible.
(c) If g is a nommegative integer and for nia Fr. $\left(V_{n}\right)$ is a cormected, closed surface such that the genus (Fr $\left.\left(V_{n}\right)\right) \leq g$, ther we say that V is of finite genus at infinity; if g is the least such number, we say that V is of gemus g.

By taking V_{0} to be empty, we can see that if V is end-irreducible, then V is eventually end-irreducible. E. M. Brown has shown in [1] that a comected, open 3-manifold m of finite genus $k\rangle$ at infinity having just one end ard finitely gemerated first homology is eventually end-irreducible.

Suppase that N is a nomcompact 3 -manifold with an exhausting sequence $\left\{\mathrm{C}_{n}\right\}$ such that C_{n} is a 3 -cell and
 where $D_{n, i}$ Gint $\left(D_{n+1, i}\right)$ for $n \geq 0$ and $1 \leq i \leq \nu$. Then we say that N is a mearnode with v faces. We say that a nomcompact 3 -manifald V is \mathbb{R}^{2}-irreducible provided V is irreducible and each montrivial, proper plame in V is parallel to a plane in $\mathcal{O N}$.

It is my aim to prove:

Main Thearem. Let V be a contractible, oper, irreducible 3-manifold with finite genus $g \leq 2$ at infinity. Then V can be split into a finite number of pieces each of which is
either a nearnode or \mathbb{R}^{2}-irreducible. Furthermore, these pieces are unique up to ambient isotopy.

In order to prove the above theorem, we introduce the idea of the "characteristic pair of an end" in aralogy to the characteristic pair for sufficiently large, irreducible manifolds given in [7]. Dre makes extensive use of the Characteristic Pair Theorem proved in [7] in developing this idea.

In chapters II and III the idea of a strongly essential 2 -manifold is introduced. Conditions ane found for putting a strongly essential 2 -manifold into "normal" form with respect to an exhausting sequence and recovering a strongly essential 2 -marifold from a 2-manifold in normal form.

In chapter IV some lemmas are proven about compact 2-manifolds which will be used later in complexity arguments while in chapter V some properties of seifert pairs are introduced that will be of use in chapter VI. Chapter VI is used to contruct a noncompact seifert pair which engulfs strongly essential copies of $5^{1} \times 5^{1}, S^{1} \times I$, $S^{1} \times \mathbb{R}$, and $S^{1} \times[0, \infty)$. In chapter VII, further properties of moncompact seifert pairs are developed.

In chapter VIII, the engulfing seifert pair of chapter VI is exterded to a seifert pair which engulfs all "nicely embedded" seifert paims. In chapter IX, some
properties of this seifert pair are imvestigated for Whitehead manifalds, and in particular, Whitehead manifolds of finite genus at infinity.

Mary of the previous results are brought together in chapter X to prove properties of montrivial plames in noncompact 3 -manifalds. The class of 3 -marifolds known as neamriades is defined at this point.

In chapter XI, the Main Theorem is proved, and chapter XII provides some examples. The reader who is daunted by the length of this work may be best served by reading the chapters in reverse order.

The following lemma is lemma 3.4 of $[15]$ and is referred to quite frequently in the sequel. I reproduce it here for the corvenience of the reader.

Lemma I. L. Let F be a compact 2 -manifold which is neither a e-sphere mor a projective plane. Let M be an orientable I-burdle over F and let \tilde{F} be the associated ∂-bundle. Let G be a E-manifold in M such that each component of G is either a disk which intersects cl(OM- \mathfrak{F}) in two vertical arcs or an incompressible annulus whose boundary in contained in \tilde{F} but is mot parallel into \tilde{F}. Then there is an isotopy which makes G vertical. In the case that M is a product burnde, this isotopy may be taken to be constant on one component of \tilde{F}.

Praof:

Waldhauser only proves this for orientable F; however, the canscientious reader will find little difficulty in extending the methods of [15].

All 3-manifolds will be assumed to be orientable unless specificly stated to the contrary.

EMBEDDED 2-MANIFOLDS

```
    In that which follows, we will let the notation
#(X) dersote the number of components of }X\mathrm{ , where }X\mathrm{ is a
topological space that is understood from context.
    If f:X XY is a contimuous map such that f-1(C) is a
compact subset of }X\mathrm{ whemever }C\mathrm{ is a compact subset of }Y\mathrm{ ,
ther we say that f is a proper map. If X is a subset of
Y and the inclusion map X }->Y\mathrm{ is proper, then we say that
X is proper in Y.
    Let F be a }2\mathrm{ -manifold and let }M\mathrm{ be a 3-manifold.
Suppose that f:F-->M is a proper map such that
    (a) f is a homeomorphism onto f(F),
    (b) f(F-OF) is contained in M-AM,
    (c) f(FF) is contaimed in OM, and
    (d) the surface f(F) meets OM transversely in M.
Then we say that f is a proper embeddinn. If F is
contaimed in W and f is inclusion, then we say that F is
properly embedded in M.
Let }X\mathrm{ and }Y\mathrm{ be topological spaces with Y&X. Ther
```

the notation $\operatorname{Fr}(Y ; X)$ will denote the frontier of Y in X. When the ambient space X is clear, this will be demated simply by Fr(Y). We will use the symbal int (Y) to denote the topological interior of the space Y in X. Note that $\operatorname{int}(Y)=Y-F r(Y)$. We will let cl(Y) be the closure of the space Y in X.

Let W be a noncompact 3 -manifold. Suppose that $\left\{W_{n}\right.$: $n=0, \ldots, \infty\}$ is a set of compact 3 -dimensional submanifolds of W such that W_{r} is contained in int $\left(W_{n+1}\right)$, Fr $\left(W_{n}\right)$ is properly embedded in W, and $W=U_{n} W_{n}$ - We write $\left\{W_{n}\right\}$ in place of $\left\{W_{n}: r_{1}=0, \ldots, \infty_{0}\right\}$ and say that $\left\{W_{n}\right\}$ is an exhaustimg sequerice for W.

If W is a nomcompact 3 -manifold with an exhausting sequernce $\left\{W_{r}\right\}$ such that $F r\left(W_{r}\right)$ is incompressible in W for $n \geq 0$, then we say that W is end-imreducible.

Suppose that μ and λ are integens with $\mu>\lambda$ and suppose that W is a moncompact 3 -marifold with a specified exhausting sequence $\left\{C_{n}{ }^{3}\right.$. We then write $C[\mu, \lambda]=c 1\left(C_{\mu}-C_{\lambda}\right)$. For convenience put $\Delta C_{n}=C[r, n-1]$ for ni1. We shall follow the convention that $\Delta C_{o}=C_{0}=[[0,-1]$. By further abuse of rotation, we will let $C\left[\alpha_{,} n\right]=c 1\left(W-C_{n}\right)$. Dbserve that $\operatorname{Fr}\left(C_{m}\right)=c l\left(\partial C_{n}-\delta W\right)$. In cases where ∂W is compact and contained in C_{o} we will let $\operatorname{Fr}\left(\mathrm{C}_{-1}\right)=$ OW for the sake of converience. (The
author realizes that this is repugnant since C_{-1} does not exist.) If F is a commected 2 -manifold that is properly embedded in $C[\lambda, \mu]$ and is such that $\operatorname{FHFr}\left(\mathrm{C}_{\lambda}\right)$ and $\operatorname{FrFr}\left(C_{\mu}\right)$ are both nonempty, then we say that F spans $[[\lambda, \mu]$.

Let W be a 3-manifold, let T be a 2 -manifold in O . and let F be a connected 2 -manifold that is properly embedded in W. We say that F is parallel in W to a surface in T provided either
(a) F is empty and there is a product FXI embedded in W with $F x \neq I=F L F$, where F^{\prime} is a component of T, or
(b) F is nonempty and there is a product $F \times I$ embedded in W with Fxa equal to F and ($F \times \neq 1$) U(Fxi) contained in T.

Let W be a 3 -manifold and let T be a 2 -manifold that is proper in $\mathcal{W} W$. Then (W, T) is a 3 -manifold pair. If W is irreducible and T is incompressible, then we say (as in [7]) that (W, T) is an irreducible pair. We say that (W,T) is a compact (moncompact) pair provided that W is compact (noncompact). In the sequel, T will always be assumed to be compact.

Let (W, T) be a 3 -manifold pair. Let F be a
commected 2 -manifold that is proper in w with $F F \in T$. We say that F is essential in (W, T) provided F is incompressible in W and F is not parallel in (W,T) to a e-manifold in T. We say that F is stronnly essential in (W, T) provided that F is essential in (W, T) and there is a compact subset C of W such that F camot be isotoped to be disjoint from C. Note that if F is commected and essential and A is nomempty, then F is strongly esserntial.

If F is a 2 -manifold that is proper in W, then we say that F is essential (stronqly essential) in (W, T) provided each comporient of F is essential (strongly essential) in (W,T).

Let W be a momcompact n-manifold and let φ be a positive integer. We say that W has φ ends provided that there exists a compact subset M of W such that if N is any compact subset of W with MoN, then $c l(W-N)$ has φ moncompact components.

Lemma II. 1. Suppose that W is a noncompact 3-manifold with exhausting sequence $\left\{W_{n}\right\}$. Suppose that F is a 2-manifold which is homeomorphic to either $s^{\mathbf{1}} \times[0, \infty)$ or $S^{1} x R$ and is properly embedded in $W_{\text {. }}$ Suppose that F_{0} is an anmulus in F with each component of σ o noncontract-
ible in F and $O F_{0^{-}}$Suppose that F_{o} Cint $\left(W_{n}\right)$. Let F_{1} be an ammulus in F such that $F W_{n}$ Gint $\left(F_{i}\right)$ and each component of $\boldsymbol{F F}_{1}$ is moncontractble in F. If $m>n$, F_{1} cint $\left(W_{m}\right)$ and if A is a component of $c l\left(F-F_{0}\right)$, then exactly one component C of ArW[m,n] spans $W[m, n]$. Proaf:

Since A is nomcompact and $F_{0} W_{n}$, there is a component C of AగW[m, m] which spans $W[m, n]$. We claim that C is the orly such component of ArW[m, n]. Note that $\operatorname{CHFr}\left(W_{n}\right)$ Cint $\left(F_{1}\right)$ and that $\operatorname{CHFr}\left(W_{m}\right)$ is contained in (F-F ${ }_{i}$) MA. Therefore, C must contain the single compoment of F_{1} M. This completes the proaf.

Lemma II.Z. Let W be a cormected, orientable, roncompact 3 -marifold which is irmeducible and end-irreducible. Let T be a compact 2 -manifold in $O W$. Let $\left\{W_{n}\right\}$ be an exhausting sequence for W such that
(1) T is contained in W_{0};
(2) W_{n} is commected for $n \geq 0$;
(3) Fr(W_{r}) is incompressible in W for nı0.

Let F be an incompressible 2 -manifold in with afcT which is properly embedded in W. Also suppose that each component of F is homeomorphic to $S^{1} x I$, $S^{1} \times S^{1}$, $S^{1} \times[0, \infty)$, or $S^{1} \times R$. Then F is ambient isotopic to a
surface F^{\prime} such that F^{\prime} (Fr $\left(W_{n}\right)$ consists of simple closed curves that are noncontractible in both F, and $F r\left(W_{n}\right)$ for all $n \geq 0$.

Proof:
As in (4.2) of [3] and (2.4) of [1], we may assume that F is transverse to $F r\left(W_{n}\right)$ for all $n \geq 0$. Let $\left\{F_{n}{ }^{3}\right.$ be an exhausting sequence for F such that for $n \geq 0$ each component of F_{n} is an annulus or a torus, each component of $F[a, n]$ is either noncompact or closed, and F is contained in $F_{0^{-}}$Note that F_{o} contains each amulus component of F.

Put $n(\theta)=0$. Since F is properly embedded in W, we may assume that $F{ }_{F} W_{0}$ is contained in int $\left(F_{0}\right)$. Chaose $n(1)>0$ so that F_{0} cint $\left(W_{n(1)}\right)$.

Suppose that, for $k \geq 1$, $n(0)$ (. . . ($n(k)$ have been chosen. We may assume that
(II.2.1)

$$
\operatorname{FrW}_{n(k)} \operatorname{Cint}\left(F_{k}\right) .
$$

Choose $n(k+1)>n(k)$ so that
(11.2.2)

$$
F_{k} C_{i n t}\left(W_{n(k+1)}\right) .
$$

Note that by choice of exhausting sequence $\left\{\mathrm{F}_{\mathrm{n}}{ }^{3}\right.$ and
(II.Z.Z) any compact component of F meets $F r\left(W_{n}(k)\right.$) for at most one value of k.

Let p be a positive even integer. We construct an isotopy of W that is fixed off int $(W[m(p+1), n(p-1)])$. Suppose that J is a simple closed curve component of FFFr $\left(W_{r, p}\right)$ which is contractible on either F or Fr($W_{n(p)}$). Since both F and $F_{r}\left(W_{n(p)}\right)$ are incompressible in W, we may assume that there is a disk D in F with $\partial D=J$ and $\operatorname{DFFr}\left(W_{M}(p)\right)=O D$. Since $F_{r}\left(W_{r(p)}\right)$ is incompressible in $W_{\text {, }}$ there is a disk D^{\prime} in $\operatorname{Fr}\left(W_{n}(p)\right.$) with $\partial D^{\prime}=\sigma D$. Since W is irreducible, there is a 3-cell B in W with $\theta B=D L D$. We can use B to isotop F and reduce \# (FRFr $\left(W_{n}(p)\right)$. To show that this isotopy is fixed off of the set $\operatorname{int}(W[n(p+1), n(p-1)])$, it suffices to show that $B E_{i n t}(W[n(p+1), n(p-1)])$. Since $\operatorname{Fr}(W[n(p+1), n(p-1)]$ is incompressible in $W_{\text {, }}$ it suffices to show that the set $\operatorname{DHFr}(W[r(p+1), n(p-1)])$ is empty.

To get a contradiction, suppose that the set

DRFr $\left.\left(W_{r(p-1}\right)\right) \neq 0$. Since $\operatorname{DFFr}\left(W_{n(p-1)}\right) C_{i n t}\left(F_{p-1}\right)$ and since $\partial D \subset F_{r}\left(W_{r(p)}\right) \subset F-F_{p-1}$, D must contain a component L of F_{p-1}. Since L is momcontractible in D, this is absurd. That DRFr $\left(W_{r}(p+1)\right)=\varnothing$ may be proved similarly.

Note that this isotopy preserves \{II.E. 1) and (II.E.E). Therefore, we may repeat this process at most


```
is nomcontractible in both F and Fr(W
    We may similarly construct an isotopy of W fixed
off int (W (W,1) so that each compoment of FrFr(W
nomcontractible on both F and Fr (Wm(a)).
    Since these isotopies are "paimwise disjoint," we
have constructed an isotopy of F in W so that
```

(II.2.3) for ever p each compament of FFFr($W_{n}(p)$ is
montrival in both F arnd $F r\left(W_{n}(p)\right.$,
and so that (II.E.1) and (II.E.2) hold.
For evers $p \mathbf{2 0}$, let $H_{p}: W \times I \rightarrow W$ be an isotapy with
$H_{p}(x, 0)=x$ which is fixed off int $(W[n(p+2), n(p)])$ and
such that
(II.2.4) \#($H_{p}(F, 1) \cap\left(\operatorname{LKFr}\left(W_{i}\right) \ln (p)(i(n(p+1)\})\right)$
is minimal. We claim that each compomert of
$H_{p}(F, 1) \operatorname{Mr}\left(W_{i}\right)$ is momcontractible on both $H_{p}(F, 1)$ and
Fr(W_{i}) for $n(p) \leq i \leq n(p+1)$. To get a contradiction,
suppose that there is a disk D in F with DrFr $\left(W_{i}\right)=O D$ for
same $n(p)\left(i\left\langle n(p+1) . \quad\right.\right.$ Then there is a disk D ' iri Fr $\left(W_{i}\right)$
with $\partial D^{\prime}=\partial D$. As before, it suffices to show that

DFFr(W[n(p+e), $n(p)])$ is empty to show that we can reduce (II. ᄅ. 4) by an isotopy fixed of int(W[n(p+E), n(p)]). By (II.R.3) we are dome.

By piecing together these isotopies, we are dome.
lemma II.3. Let W be a commected, orientable, nomcompact 3 -manifold which is imreducible and end-immeducible. Let T be a (possibly empty) compact 2-manifold in ∂W. Suppose that $\left\{W_{n}\right\}$ is an exhausting sequence for W such that for nia
(1) Tcint $\left(W_{0}\right)$:
(己) Fr $\left(W_{n}\right)$ is incompressible in W :
(3) W_{r} is commected.

Suppose that F is a \mathbb{Z}-manifold in W with ofct which is strongly essential in (W,T). Also suppose that each component of F is homeomorphic to $S^{1} \times I, S^{1} \times S^{1}, S^{1} \times[0, \infty)$, or $S^{1} \times R$. Then F is ambient isotopic to a E-manifold F^{\prime} such that for $n \geq 0$ each component of F^{\prime} nown is an amulus or torus. Furthermore, each armulus component of $F^{\prime} \Pi^{\prime} \Delta W_{n}$ is essential in $\left(\Delta W_{r}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$.

Praof:

By lemma II.e, we may assume that for nin F is transverse to $\operatorname{Fr}\left(W_{n}\right)$ and each compoment of $F F_{F r}\left(W_{n}\right)$ is moncontractible on both F and $F r\left(W_{m}\right)$. Therefore each

```
component of FR|W\mp@subsup{W}{n}{}}\mathrm{ is either an ammulus or a torus.
    Let {Fr,} be an exhausting sequence for F such that
for n\0 FEint ( }\mp@subsup{F}{n}{}\mathrm{ ), each component of F Fn
torus or an ammulus whose core is noncontractible on F,
each component of F[ [a,n] is noncompact or closed, and if
F' is a component of F, then F' }\mp@subsup{F}{F}{
    Put }n(\Omega)=0. We may assume that FrNo Cint (Fo).
Choose n(1)>n(0) so that Focint (W}\mp@subsup{F}{0}{\prime}(1))\mathrm{ and so that if F,
is a component of F with F' }\mp@subsup{F}{N}{\prime
isotoped to be disjoint from Wh(1).
    Suppose that, for k\underline{1,}\mathrm{ a sequence of integers}
n(0)<... (n(k) has been chosen. We may assume that
```

(II. 3.1)
$F_{T} W_{n(k)}$ Cint $\left(F_{k}\right)$.
Choose $n(k+1)>n(k)$ so that
(II.3.2)

$$
F_{k} C i n t\left(W_{n}(k+1)\right) .
$$

Since F is proper anly finitely many components of F meet $W_{n(k)}$, so we may assume
(II.3.3) if F^{\prime} is a component of F with $F^{\prime} \mathrm{HW}_{n}(k) \neq 0$, then F^{\prime} camnat be isotoped to be disjoint from

```
W
```

Let p be an integer for the form $3 k+2$ where $k \geq 0$ is an integer. We will construct an isotopy of W[n(p+1), $n(p-2)]$ which is fixed off int (W[n(p+1), n(p-e)]. Suppose that A is an ammlus compoment of $F\left(W_{n(p)}\right.$ which is parallel in $W_{n(p)}$ into $F_{r}\left(W_{r r}(p)\right)=W e c l a i m$ that $A F_{r}\left(W_{r}(p-2)\right)=\wp_{0}$

Suppose that ArFr $\left(W_{n}(p-e)\right) \neq 0$. Let F be the component of F which contains A. Let $F_{p-1}=F_{p-1} F^{3}$. Then F_{p-1}^{\prime} is commected. Simce $F_{p-1} C_{i n t}\left(W_{n}(p)\right)$ and AACFr $\left(W_{n(p)}\right), F_{p-1}$ must be contained in int (A). In particular, A is the only component of $F^{\prime} \mathrm{HW}_{n}(p)$ which meets $W_{r(p-1)}$ (Since A is parallel into $\operatorname{Fr}\left(W_{r r}(p)\right.$, F^{\prime} can be isotoped to be disjoint from $W_{n(p-1)}$. But this contradicts (II.3.3).

Let $A x I$ be the product between A and $F r\left(W_{r}(p)\right)$. Isotop F by pushing along $A x I$. This reduces \# (FRFr $\left(W_{M}(p)\right)$). This isotopy may be made to be fixed off int $(W[n(p+1), n(p-2)])$ if $A x I C i n t(W[n(p+1), n(p-2)])$. This follows since $\operatorname{Fr}(W[n(p+1), n(p-2)])$ is incompressible and disjoint from ALFr($W_{n}(p)$. This isotopy preserves (II. 3. 1) and does mot introduce any components of $F \boldsymbol{T} W_{n(p)}$ which meet $W_{n(p-1)}$ -

Suppose that A is a component of $F \Pi W[\infty, n(p)]$ which is parallel in $W[\infty, n(p)]$ into $F r\left(W_{n}(p)\right)$. We claim that $\operatorname{ACFr}\left(W_{n}(p+1)\right)=0$. Now $\quad O A=\operatorname{ACFr}\left(W_{n}(p)\right)$ Cirt $\left(F_{p}\right)$ and ArFr $\left(W_{M}(p)\right)=F-F_{p}$. Let F, be the component of F which contains A. Then cl(F'-Fp) A and is compact which contradicts that each component of $F[\infty, p]$ must be nomcompact. So we must comclude that $\operatorname{ArFr}\left(W_{n}(p+1)\right)=\varnothing$.

Let $A x I$ be the praduct in $W[\infty, n(p)]$ between A and Fr($W_{m(p)}$). Use $A x I$ to isotop F and reduce \# (FIFr $\left(W_{r}(p)\right)$. As before, this isotopy can be made to be fixed off int $(W[m(p+1) ; n(p-2)])$.

By piecing these isotopies together, we may assume that if A is an anmulus component of FrW[n(3k+5), n(3k+2)], then A is essential in $(W[n(3 k+5), n(3 k+2)], F r(W[n(3 k+5), m(3 k+2)])$. And if A is an amulus component of $F W_{n}(\mathcal{P}$, then A is essential in $\left(w_{n}(E), \operatorname{Fr}\left(W_{n}(E)\right)\right)$.

By performing an isatopy fixed off int(W[n(3k+5), $n(3 k+2)]$ so that $\#\left(F \cap\left[\cap K F r\left(W_{i}\right) \mid 3 k+2<i(3 k+5\}\right]\right)$ is minimal for $k \geq 0$ and an isotopy fixed off int $\left(W_{n}(2)\right.$ so that \# (FRKFr(W_{i}) |i(n(2)\}) is minimal, we are done.

CHAPTER III

CONSTRUCTING STRONGLY ESSENTIAL 2-MANIFDLDS

Lemma III.1. Let W be a commected 3 -manifold which is irreducible and end-irreducible. Let F be a compact

2-manifold in $D W$. Let T be a commected, closed 2-manifold that is essential in (W,F). Then T is strongly essential iff there is mo proper map $f: T x\left[0_{,}, \infty\right) \rightarrow W$ such that
(a) f is an embedding;
(b) $f(T x 日)=T$.

Proof:

If there is a proper map $f: T x\left[B_{,}, \infty\right) \rightarrow$ - W that satisfies (a) and (b), then we may construct an isotopy to move T off any compact subset of W.

Now suppose that T is not strongly essential. Let
$\left\{W_{n}\right\}$ be an exhausting sequence for W such that $\operatorname{Fr}\left(W_{n}\right)$ is incompressible in W for $n \geq \theta_{n} W_{n}$ is commected for $n \geq \theta_{\text {, }}$ each component of $W\left[\alpha_{1}, n\right]$ is momoompact for $n \geq \theta_{\text {, }}$ and TCint (W_{0}). We claim that T is parallel to a comporiert of $F r\left(W_{n}\right)$ for each $n \geq 0$. Assume that $n \geq 0$. Let $H_{n}=T x I \rightarrow W$ be an isotopy of T in W such that $H_{n}(T, 0)=T$ and $H_{r}(T, 1) \Gamma W_{n}=\varnothing$. Let $T_{n}=H_{n}(T, 1)$. Then T and T_{n} are
homotopic in W. Since Tcint $\left(W_{o}\right)$, TMT', is empty. Therefore, since both T and T_{n} are incompressible, we may apply proposition 5.4 of $[15]$ to obtain that T and Th are parallel in W. Let $T_{n} \times I$ be a product which is properly embedded in W so that $T_{n}^{\prime} \times 0=T_{n}$ and $T_{n}^{\prime} \times 1=T$. Since $T W_{n}$ and $T_{n}{ }_{n} W_{n}$ is empty, there is a component T_{n} of Fr $\left(W_{n}\right)$ which is contaimed in $T_{n}^{\prime} \times I$. Since T_{n} is incompressible in $T_{n}^{\prime} x I$, there is a product Q_{n} of $T_{n}^{\prime} \times I$ such that $\operatorname{Fr}\left(Q_{r}\right)=T_{n} T_{n}$

We claim that T separates W. To get a
cortradiction, suppose that there is a simple closed curve J in V which meets T in precisely one point. Simce T can be isotoped off of any compact subset of $W_{\text {, }}$ T must have an iritersection number of zero with J which is a contradiction. Let V be a closure of the component of W-T wich contains infinitely many of the T_{n} - There is a sequence of integers $n(B)\left(n(1)\right.$ (... such that $Q_{n}(k)$ is contained in V for $k \geq 0$. Since $\left.\operatorname{Fr}^{(} W_{r(k)}\right)$ and Fr $\left(Q_{n(k+1)}\right)$ are incompressible in W, we may apply lemma II.7.1 of $[7]$ to see that

$$
\left(c 1\left(Q_{n(k+1)}-Q_{n(k)}\right), \operatorname{Fr}\left(c 1\left(Q_{n(k+1)}-Q_{n(k)}\right)\right)\right.
$$

is homeomorphic as a pair to $T x[k+1, k+2]$ for $k \geq 0$. Let $h: Q_{r,}(\theta) \rightarrow T \times[Q, 1]$ be a homeomorphism. Observe the h may be extended a level at a time to to a homeomorphism from
V to $T x[0 ; \infty)$ ．Therefore，we are dome．

Lemma III．E．Let W be a 3 －manifold．Suppose that F is incompressible in W ．If $h: F x I-\rightarrow W$ if a continuous function such that h IFx日 is am embedding，then $h_{*}: \pi_{1}(F \times I) \rightarrow \pi_{1}(W)$ is monic．

Proof：

Let $i: F x 日 \rightarrow \rightarrow F x I$ and $k: F \rightarrow \rightarrow W$ be inclusion maps．Then
k（h｜Fx日）＝hi．Hence，$k_{*}(h \mid F x 日)_{*}=h_{*} i_{*} \quad$ Since i_{*} is an
isomorphism，
（III．E．1）
$h_{*}=k_{*}(h \mid F \times Q)_{*}\left(i_{*}\right)^{-1}$ ．Simce the
factors of the right hard side of the equal sign in （III．2．1）are monic，h_{*} is monic．

Lemma III．3．Let W be a conmected，irreducible， noncompact，end－imreducible 3 －manifold．Let T be a compact 2 －manifold in ow．Let F be an embedding of $S^{\mathbf{1}} \times \mathbb{R}$ which is proper and essential in W ．Then F is strongly essential in（ W, T ）iff there is mo proper map $f: F x[0, \infty)-\rightarrow W$ such that
（a）fis an embedding；
（b）$f(F x(b)=F$ ．

Proof：

Suppose that there is a proper map f which satifies
(a) and (b). Define $h_{n}: F x I \rightarrow W$ by $h_{n}(x, t)=f(x, n t)$. Then h_{n} is a proper isotopy for nil. Furthermore, since f is proper, $h_{n}(F x 1)$ misses any fixed compact set for m>>0. Suppose that F is not strongly essential. Then for ary compact subset C of W there is an isotopy $h_{c}: W \times I \rightarrow W$ such that $h_{c}\left(F \times(B)=F\right.$ and $h_{c}(F \times 1)$ does not intersect C. By lemma II.e, we may assume that there is an exhausting sequence $\left\{W_{r}\right\}$ for W such that $F r\left(W_{r}\right)$ is incompressible in W and F FFr $\left(W_{n}\right)$ consists of simple closed curves that are moncontractible on both F and $F r\left(W_{r}\right)$ for $n \geq 0$. We claim that F separates W. To get a contradiction, suppose that there is a simple closed curve J in W which meets F at precisely ome point. This implies that F has a Z_{2} intersection number of one with J. By hypothesis we may perform an isotopy of F so that F mo longer intersects J. This implies that F has a Z_{2} intersection number of zero with J. We have, therefore, produced a contradiction.

Let W^{\prime} and $W^{\prime \prime}$ be the clasures of the components of W^{-F} Let $W_{n}^{\prime}=W_{n} \Gamma W^{\prime}$ and let $W_{n}^{\prime \prime}=W_{n} \Gamma W^{\prime \prime}$. Ther $\left\{W_{n}^{3}\right.$ and $\left\{W_{n}^{\prime \prime}\right\}$ exhaust W^{\prime} and $W^{\prime \prime}$, respectively. Since FfFr $\left(W_{n}\right)$ consists of curves which are nomcontractible in both F and $\operatorname{Fr}\left(W_{r}\right)$ and simce $F_{r}\left(W_{n}\right)$ is incompressible in $W_{\text {s }}$ Fr $\left(W_{n}^{\prime}\right)$ and $F r\left(W_{n}^{\prime \prime}\right)$ are incompressible in W^{\prime} and $W^{\prime \prime}$,
respectively. Therefore, W^{\prime} and $W^{\prime \prime}$ are both end-imreducible. Simce $W^{\prime \prime}$ and $W^{\prime \prime}$ are each commected, for each $n \geq 0$ we may choose a component v_{n} of W_{n} and a component $V_{n}^{\prime \prime}$ of $W_{n}^{\prime \prime}$ such that $\left\{V_{n}^{\prime}\right\}$ exhausts W^{\prime} and $\left\{V_{n}^{\prime \prime}\right\}$ exhausts ${ }^{\prime \prime}$ ".

Fix nig. There is an isotopy $h: W x I \rightarrow W$ such that $h\left(F x(1)=F\right.$ and $h(F x i) W_{n}$ is empty. Let A be a compact conmected 2 -manifold in F such that $A x I$ contains $h^{-1}\left(W_{n}\right)$. Let N be a regular meighborhood of $h(A x I)$. By the Isotopy Extension Theorem (see 4.24 of [12]), there is an isotopy $g: W x I-\rightarrow W$ such that $g(w, t)=w$ for w in cl(W-N) and t in I and $g|A x I=h| A x I$. Choose $m\rangle n$ so that N Nint $\left(W_{m}\right)$. Let T be the component of $F W_{m}$ which contains A. Then $g(T \times I) E W_{m}$ and $g(\partial T x I)=\nabla T$. Let $T_{0}=g(T x 日)=T$ and $l_{\text {et }} T_{1}$ be a 2 -manifold that is parallel in W_{m} to $(T \times 1)$ such that $\partial T_{1}=\partial T_{0}$ and $T_{o} \Pi_{1}$ consists of pairwise disjoint simple closed curves. Now isotop T_{1} in $W_{m}-\left(V_{n}^{\prime} V_{n}^{\prime \prime}\right)$ with ∂T_{i} fixed so that $\#\left(T_{o} \Pi_{i}\right)$ is minimal. By proposition 5.4 of [15], there is a surface G contained in T_{0} and an embedding $G x I \rightarrow W_{m}$ such that Gxo is contained in T_{0} and ($\left.\partial G x I\right) U(G x 1)$ is contained in T_{1}. We claim that we may assume that $G x I$ contains either V_{n}^{\prime} or $V_{n}^{\prime \prime}$ - First suppose that
 V_{n} and $V_{n}^{\prime \prime}$ meet T_{0} on opposite sides, ane of V_{n} or V_{n} must be contained in GxI. Now suppose that \# (int (T T_{0}) Mint ($\left.T_{i}\right)$) > B. If neither V_{n} mor $V_{n}^{\prime \prime}$ is contaimed in GxI, we may isotop T_{1} in W_{m} and reduce \# ($T_{0} \Pi_{1}$).

Let $V_{n}=G x I$. By taking a subsequence, we may assume that $\left\{V_{n}{ }^{3}\right.$ exhausts V, where V is one of W^{\prime} or $W^{\prime \prime}$. Simce $\left(V_{n+1}, V_{n}\right)$ is homeomorphic as a pair to

$$
\left(\left(V_{n+1} \Gamma F\right) \times[0, n+E],\left(V_{n} \Gamma F\right) \times[0, n+1]\right)
$$

for $n \geq 0$, it follows that V is homeomorphic to $F \times[0, \infty)$.

Lemma III.4. Suppose that W is a nomcompact 3-manifold which has an exhausting sequence $\left\{W_{n}{ }^{\mathbf{\}}}\right.$. Let T be a compact 2 -manifold in ∂W. Suppose that F is a commected 2-manifold which is properly embedded in W, and suppase that for each $n \geq 0, F \cap \Delta W_{n}$ comsists of a collection of pairwise disjoint armuli that are properly embedded im ($\left.\Delta W_{n}, T\right)$. Then
(a) if F is compact and F is romempty, then F is an ammulus:
(b) if F is clased, then F is a torus or a Klein
bottle;
(c) if F is noncompact and F is nonempty, then F is homeomorphic to $5^{1} \times[0, \infty)$;
(d) if F is open, then F is homeamorphic to $S^{1} \times \mathbb{R}$.

In cases (a), (c), and (d), F is incompressible.
Furthermore, if W is orientable and irreducible, if each armulus of $F \cap \Delta W_{n}$ is essential in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ for $n \geq 0$, and if $F r\left(W_{n}\right)$ is incompressible in W for $n \geq 0$, then F is strongly essential in (W, T).

Proof:
Suppose that A and A^{\prime} are components of $F n \Delta W_{n}$ and F $\cap \Delta W_{m}$, respectively, where n and m are not necessarily distinct, but A and A, are distinct. Let us assume that nfin; then ARA' is either empty or consists of the boundary components that A and A, have in common. Let a $=U_{n} a_{n}$, where for each integer $n \geq a_{n}$ is the set of components of $F \cap \Delta W_{n}$ -

It is easy to prove parts (a)-(d) of the conclusion.

Observe that in cases (a), (c), and (d), any oriented component of $L K \nexists A: A \in Q\}$ represents a generator of $\pi_{1}(F)$.

We will first show that F is incompressible in W. Suppose that D is a disk in W with $D C F=O D$. In cases (a), (c), and (d), θ is either contractible in F or is isotopic in F to a generator of $\pi_{1}(F)$; in these cases,
assume that $\partial D C_{i n t}\left(\Delta W_{n}\right)$ for some $n \geq 0$. We may suppose that D is transverse to $\operatorname{Fr}\left(W_{n}\right)$ for $n \geq 0$ and that \# (Dn($\left.\left.H_{h} F r\left(W_{n}\right)\right)\right)$ has the fewest compoments of any disk D which satisfies the above. Since \# (Dn(U, Fr (W_{n}))) is minimal and $\operatorname{Fr}\left(W_{n}\right)$ is incompressible in W for all n, we may deduce that $D \cap\left(U_{n} F r\left(W_{n}\right)\right)$ contains no simple closed curves. So in cases (a), (c), and (d) we are dome. Now we assume that for each $n \geq 0$ each comporient of Fn ΔW_{n} is essential in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$. We will now endeavor to show that $D \cap\left(U_{h} F r\left(W_{n}\right)\right)$ contains no arcs. Suppose that α is an arc of $D \cap\left(U_{n} F r\left(W_{n}\right)\right)$. Without loss of gemerality, we may assume that α is an arc of DRFr $\left(W_{n}\right)$ for some fixed n and that there is an arc β in DD and a disk $D^{\prime \prime}$ in D such that $\alpha \cap \beta=\partial \alpha=\partial \beta, \partial D^{\prime}=\alpha \cup \beta$, and int ($\left.D^{\prime}\right) \cap\left(U_{n} F r\left(W_{n}\right)\right)$ is empty. By choice of $\alpha_{\text {, }}$ the arc β must be properly embedded in a component A of ΔW_{m} where m is either n or $n+1$. We claim that if β is a separating arc of A, then it is possible to reduce \# (DM(U, $\left.\left.F r\left(W_{k}\right)\right)\right)$. Suppose that $D^{\prime \prime}$ is the disk separated off of A by β. Then we can use $D^{\prime \prime}$ to push β through Fr $\left(W_{n}\right)$. This remaves arcs from $D \cap\left(U_{k} F r\left(W_{k}\right)\right)$ but perhaps introduces simple clased curves which can be removed.

So we may assume that β is a sparming arc of A.

There is an embedded product $D^{\prime} \times[-1,1]$ in ΔW_{m} such that ZD' $\times[-1,1]=\left(D^{\prime} \times[-1,1]\right) \cap\left(A L F r\left(W_{n}\right)\right)$ and $D^{\prime} \times Q=D^{\prime}$; we may assume that $N=\left(D^{\prime} \times[-1,1]\right) \Gamma A$ is a regular neighborhood of β in A. Let E be equal to cl($A-N$). Then E is a disk and EU(D' $x \neq[-1,1])$ is a disk in ΔW_{m} whose boundary is contained in $\operatorname{Fr}\left(W_{n}\right)$. Since $\mathrm{Fr}_{\mathrm{n}}\left(\mathrm{W}_{n}\right)$ is incompressible in W, there is a disk E^{\prime} in $F r\left(W_{n}\right)$ that shares its boundary with $E \cup\left(D^{\prime} x \partial[-1,1]\right) . S o E \cdot L E U\left(D^{\prime} \times \partial[-1,1]\right)$ is a $2-s p h e r e$ which must, since W is irreducible, bound a 3-cell B in W. Since $\operatorname{Fr}\left(\Delta W_{m}\right)$ is incompressible in W, B must be contained in ΔW_{m}.

We claim that $\left(D^{\prime} \times[-1,1]\right)\left(B=\left(D^{\prime} \times[-1,1]\right)\right.$ nes.
Otherwise, $D^{\prime} \times[-1,1] \subset B$ which implies that A is contained in B ; this contradicts that A is incompressible in ΔW_{m}. Hence, note that $B \cup\left\{D^{\prime} \times[-1,1]\right)$ is either a solid torus or a solid klein bottle since $B \cap\left(D^{\prime} x[-1,1]\right)$ can be shown to be equal to $D^{\prime} x \neq[-1,1]$. But $B \cup\left(D^{\prime} \times[-1,1]\right)$ must be a solid torus since W is orientable. This solid torus is a product with A at one end since D^{\prime} is a \boldsymbol{Z} compressing disk for A. Consequently A is not essential in $\left(\Delta W_{m}, F r\left(\Delta W_{m}\right)\right)$ and that is a contradiction. So we may assume that D is contained in ΔW_{m} for some m. Thus $D D$ bounds a disk in $F \cap \Delta W_{m}$ since each component of $F \cap \Delta W_{m}$ is incompressible.

Suppose that F is parallel to a surface in T. Then
there is an embedding $f: F \rightarrow \rightarrow$ such that $f(F x(0)=F$ and $f(F \times 1)$ is contained in ∂W. Let $S=f^{-1}\left(U_{n} F r\left(W_{n}\right)\right)$. Then S is incompressible and properly embedded in FxI. Since $f(F x 1)$ does not intersect $H_{h} F r\left(W_{n}\right)$, each component of S is parallel in FxI to a surface in FxQ. Let $S^{\prime \prime}$ be a component of S that is immermost in FxI. Then there is

 contained in $\operatorname{Fr}\left(W_{n}\right)$ for some n and fg[(S' $\left.\left.\times \partial I\right) U\left(S^{\prime} \times 1\right)\right]$ is a comporent of $F \mathrm{FH}_{\mathrm{m}}$ for $m=n$ or $n+1$. Now fg(S'xI) must be contained in ΔW_{m} and so fg[(S'xOI)U(S'x1)] is not essential in $\left(\Delta W_{m} ; \operatorname{Fr}\left(\Delta W_{m}\right)\right.$) which is a contradiction. If there is no proper embedding f:Fx[0, ω) \rightarrow - with $f(F x \theta)=F$, then we are done by lemma III. 3. To get a contradiction, suppose that $F x[0, \infty)$ is proper in W with $F x Q=F$. Choose n so that $F r\left(W_{n}\right)$ TF is nomempty. Then $\operatorname{Fr}\left(W_{n}\right) \cap(F x[Q, \infty)$ is a compact incompressible Z-manifold that is properly embedded in $F x[0, \infty)$. Let 5 be a component of $\operatorname{Fr}\left(W_{n}\right) \cap(F x[Q, \infty))$. Then 5 is armulus which is parallel into F. $B y$ choosing S innermost in $F x[0, \infty)$, we may assume that S is a component of $F \cap \Delta W_{n}$ for some n. This is a contradiction.

CHAPTER IV

SOME PROPERTIES DF COMPACT

2-MANIFOLDS

Lemma IV.1. Let S be a compact, orientable 2 -manifold
and suppose that J is a simple closed curve that is
montrivial in S. Suppose that $K_{1}, \ldots . . K_{n}$ is a collection
of pairwise disjoint simple closed curves which are
nomeontractible in 5. If J meets $U_{i} K_{i}$ transversely, if
$J \cap\left(U_{i} K_{i}\right)$ is nonempty, and if J can be isotoped to miss
is an arc in J and α is an arc in K_{i} for some i.
Proof:
We may assume that J IKK ${ }_{0}$ \% 0 . Since J may be isotoped
to be disjoint from K_{0}, there is a map f: $S^{1}-\rightarrow 5$ such that
$f\left(S^{1} \times 0\right.$ is an embedding, $f\left(S^{1} \times(A)=J, f\left(S^{1} \times 1\right) \Gamma K_{0}=D_{\text {, }}\right.$ and
such that f is is in general position with respect to
$K_{0}{ }^{\prime}$ Now $f^{-1}\left(K_{o}\right)$ consists of arcs and simple closed
curves. Since K_{0} is montrivial in $S_{\text {, }}$ we may modify f
off $S^{1} \times \partial I$ so that each simple closed curve of $f^{-1}\left(K_{0}\right)$ is

noncontractible in $S^{1} \times I$.

Since $J \Gamma K_{0} \neq \varnothing$, there is an arc component $\tilde{\alpha}$ of $f^{-1}\left(K_{0}\right)$. Since $f\left(S^{1} \times 1\right) \Gamma K_{0}=\varnothing_{;} \tilde{\alpha}$ must be a separating arc of $S^{1} \times I$. Let \tilde{D} be the disk separated off $S^{1} \times I$ by $\tilde{\alpha}$. Let $\tilde{\beta}=\tilde{D} \cap\left(S^{1} x(\Omega)\right.$. Put $\beta=f(\tilde{\beta})$ and $\alpha=f(\tilde{\alpha})$. Then β is an arc in J since $f 15^{1} \times 0$ is an embedding, and α is an arc in K_{0} since $\alpha \cap J=f\left(\tilde{\sim} \cap\left(S^{1} x(a)\right)=\partial \beta\right.$. Now $\alpha \cup \beta$ is contractible in s. Therefore α Lls bounds a disk D in S and we are done.

Suppose that S is a compact 2 -manifold and suppose that F is a compact 2 -manifold contained in int(s). We say that F is hard in S provided the inclusion induced $\operatorname{map} \Pi_{1}\left(F^{\prime}\right) \rightarrow \Pi_{1}(S)$ is monic and nontrivial for each component F ' of S. 'This implies that F ' is not a disk and that no component of $\mathrm{cl}(S-F$) is a disk.) By convention, we will insist that the empty set be hard in 5.

Lemma IV.2. Suppose that S is a compact, orientable inot necessarily comected) 2-manifold. Suppose that $\left\{\mathrm{G}_{\mathrm{n}}{ }^{\mathbf{3}}\right.$ is a sequence of compact 2 -manifolds in S such that
(a) G_{n} ©int $\left(G_{n+1}\right)$ for $n \geq 1$,
(b) G_{n} is hard in 5 , and
(c) if A and A^{\prime} are components of G_{n} which are annuli, then the core of A is not parallel to a the core of A^{\prime} in S.

Then there is an N such that G_{n} is a regular neighborhood of G_{N} for all m $\quad \mathrm{N}+1$.

Furthermore, if (a) is replaced by
(a') G_{n+1} ($i n t\left(G_{n}\right)$ for $n \geq 1$, then there is an N such that G_{N} is a regular meighborhood of G_{n} for all $n \leq N+1$. Proaf:

Note that

(IV.2.1a)
(IV.2.1.b)

$$
\begin{gathered}
x\left(G_{n+1}\right)=x\left(G_{n}\right)+x\left(c 1\left(G_{n+1}-G_{n}\right)\right) \text { and } \\
x(S)=x\left(G_{n}\right)+x\left(c 1\left(S-G_{n}\right)\right.
\end{gathered}
$$

for nil. By part (b) of the hypothesis

(IV.2. 3a)
(IV.2.3b)

$$
\begin{gathered}
x\left(G_{n+1}\right) \leqq x\left(G_{n}\right) \text { and } \\
x(5) \leqq x\left(G_{n}\right)
\end{gathered}
$$

for $n \geq 1 . \quad$ Therefore, for $n\rangle>1, \chi\left(G_{n}\right)$ is constant simce it is bounded below by (IV.2. 3b) and nonincreasing by (IV.2. 3a). We may deduce from (IV.2. 1a) that $x\left(c 1\left(G_{n+1}-G_{n}\right)\right)=0$ for $\left.n\right\rangle>1$. Since S is compact, no component of $c l\left(G_{n+1}-G_{n}\right)$ is closed for $\left.\left.n\right\rangle\right) 1$. By condition (b) of the hypothesis and the fact that s is orientable, each component of $c l\left(G_{r+1}-G_{m}\right)$ is an amulus for m>>1. Ey condition (c) of the hypothesis, no component of $c l\left(G_{n+1}-G_{n}\right)$ is a component of G_{r+1} for n>>1. $S a$, for $n>1, G_{n+1}$ is a regular neighborhoad of $\mathbf{G}_{\mathbf{r}}$. If we replace condition (a) by (a’), then
(IV.2.4)

$$
x\left(G_{n}\right)=x\left(G_{n+1}\right)+x\left(c 1\left(G_{n}-G_{n+1}\right)\right.
$$

for $n \geq 1$. And
(IV.2.5)

$$
x\left(c 1\left(G_{m}-G_{r+1}\right)\right) \leq 0
$$

for nil. This leads to
(IV.2.6)

$$
x\left(G_{n}\right) \leqq x\left(G_{n+1}\right)
$$

for rivi. But by condition (b) G_{n} contains mo disks or

2-spheres and since S is orientable G_{n} contains no projective plame. So
(IV.E.7)

$$
x\left(G_{m}\right) \leq \theta
$$

for all M. Therefore, the sequence $\left(\mathcal{X}\left(G_{n}\right) \mid n \geq 1\right\}$ is bounded above and nondecreasing and, accordingly, is eventually constant. The rest of the proof follows as before.

Definition IV. 3. Suppose that S is a compact, orientable e-manifold. Let F and G be compact e-manifolds that ane hard in S. Suppose that H is a compact 2 -marifold such that
(a) H is isotopic in S into F and H is isotopic in Sinto G;
(b) if A and A^{\prime} are distinct components of H and A is an amulus, then the core of A is mot parallel in S to a component of $2 A^{\prime}$;
(c) H is hard in 5 ;
(d) if J is ar moncontratible simple closed curve in S that is isotopic by separate isotopies in 5 into F and G, then J is isotopic in S into H.

Then we say that H is a common lower bound of F and G in S. We abbreviate this by writing H is acib(F,G;S).

If in addition to conditions (a)-(d) H satisfies condition
(e) if H^{\prime} is aclb(F,G;S), then H is isotopic in S into H^{\prime},
then we say that H is the least common lower bound of F and G in $S . \quad$ In lemma IV. 6 we will justify our use of the definite article in the preciding sentence.) In this last case we write $H=1 c l b(F, G ; S)$.

Lemma IV.4- Let 5 be a compact orientable 2 -manifold. Let F and G be compact E-manifolds in S which are hard in 5 . Then there exists a common lower bound of F and G in S.

Proaf:
We may assume that \mathcal{F} is transverse to σG and that \# ($\because=\Pi \theta G)$ is minimal. Let $H_{o}=F \cap G . \quad$ Then H_{o} is a compact 2-manifold which satisfies condition (a) of definition IV. 3.

Suppose that J is a simple closed curve that satisfies the hypothesis of condition (d) of definition IV. 3. We may assume that J is contained in int (F). Let us isotop J in $S-F F$ so that \# (JMOG) is minimal.

We claim that JחOG is empty. Suppose that Jnog is nomempty in onder to get a contradiction. Then by lemma IV. 1 there is a disk D in 5 with $\partial D=\alpha l_{\beta}$ where α and β are arcs in J and $O G$, respectively. We may assume that
 to reduce \#(Jח月ß) by an isotopy of J in S-FF. So we must assume that DNAF is nonempty. Since F is hard in S, no component of F is contained in D. So F F $n=0$ is
 be a component of FrD. Then γ is an arc with zrof. There is a disk D^{\prime} in D with $2 D^{\prime}=\gamma \cup \delta$, where δ is an arc in B^{\prime} We may use D ' to push $\mathrm{through} \delta$ and reduce \# (FFnag) which is a contradiction. So we must conclude that $J \cap \varnothing G=\varnothing$.

So either J is contained in H_{o} or J is contained in int (F-G).
(IV.4.1) Let us assume that J is not isotopic in S into $\mathrm{H}_{0^{-}}$

Since J is isotopic into G, J must be parallel to a component K of G G. Let A be an annulus in S with \#A=JLK.

We claim that k neF $=5$. To get a contradiction, assume that Knafoø. Then there is an arc component α of FRA. Since J is contained in int (F), α must be a separating arc of A. Let D be the disk separated off A by α. We can isotop along D and reduce \#(FFnOG) which is a contradiction.

We claim that A contains a component K, of $\mathcal{F F}$. To

```
get a contradiction, suppose that A contains no
component of FF. Then since J is contained in F, A is
contained in F. So K must be contained in F. In fact,
there must be a regular neighborhood N of K in G which
is contained in F. Then N is contained in FrG=Ho- But
J is isotopic into N and this gives us a contradiction
of (IV.4.1).
We may now draw the conclusion
(IV.4.e) if \(J\) is isotopic in \(S\) into \(F\) and \(G\) but is not isatopic into \(H_{0}\), then \(J\) is parallel in 5 to a component of \(\mathcal{F}\) and \(J\) is parallel in \(S\) to a component of \(\mathcal{G}\).
```

```
Let g={[J] Isuch that J is a simple closed curve which
satisfies the hypothesis of {IV.4.2)}, where [J] denotes
the isotopy class of J in S. By (IV.4.2) we may choose a
set I such that I contains exactly one simple closed
curve from each isotopy class of { and such that if J
and J' are distinct elements of }H\mathrm{ , then such that
JMJ'=\emptyset. And if JEJ, then JTH
cardinality of \mathscr{F}\mathrm{ , and therefore F, is at most}
minf#(F),#(\sigmaG)}. For each JEI, let NJ be a regular
neighborhood of J which misses }\mp@subsup{H}{0}{\prime}\mathrm{ ( We may assume that
N
```

Put $H_{1}=H_{0} U\left[\mathrm{UKN}_{5} \mid \mathrm{J} \in \mathrm{IT}\right\}$]. Then by (IV.4.2) H_{1} satisfies (a) and (d).

By removing the "redundant" annular components of H_{1} we may obtain an H_{2} which satisfies (a), (b), and (d) of definition IV. 3.

Let $T=$ UKCIC is a component of H_{2} with $\pi_{1}(C) \rightarrow \Pi_{1}(S)$ trivialf. Put $\mathrm{H}_{3}=\mathrm{H}_{2}-\mathrm{T}$. Then H_{3} satisfies (a), (b), and (d) and $\pi_{1}(C) \rightarrow \pi_{1}(5)$ is nontrivial for each component C of $\mathrm{H}_{3}{ }^{-}$

Suppase that C is a component of H_{3} where $\Pi_{1}(C) \rightarrow \Pi_{1}(S)$ fails to be monic. Then there is a component λ of x which bounds a disk D in S. Since $\pi_{1}\left(C^{\prime}\right) \rightarrow \Pi_{1}(S)$ is nontrivial for each component C, of H_{3}, D contains no component C, of H_{3} Since F (respectively G) is hard in S, ZDOF (respectively $\sigma D \subset G$) implies that DCF (respectively DOG). So $H_{3} L D$ satisfies (a), (b), and (d) af definition IV. 3. By adding all such disks to H_{3} to obtain H_{4}, we see that H_{4} satisfies (a), (b), (c), and (d). :

Lemma IV.5. Let S be a compact orientable e-manifold. Let F and G be compact 2 -manifolds in S which are hard in S. Suppose that H and H^{\prime} are common lower bounds for
F and G in S. Then a common lower bound of H and H^{\prime} in S is a common lower bourd for F and G in S.

Proof:

Let $H^{\prime \prime}$ be a clb(F,G;S). Suppose that J is a noncontracible simple closed curve that is isotopic in S into F and G. So J is isotopic in S into H and H^{\prime}. Therefore J is isotopic into $H^{\prime \prime}$.

Lemma IV.G. Suppose that S is a compact, oriertable 2-manifold. Suppose that F and G are compact 2-manifolds which are hard in 5. Then there is a 2-manifold H which is a least common lower bound for F and G in 5 . Furthermore H is unique up to an ambient isotopy of S, i.e. $H=1 \mathrm{Cl}(\mathrm{F}, \mathrm{G} ; \mathrm{S})$.

Proof:
We will apply Zonn's Lemma.
Let $\left[T_{1}\right]$ and $\left[T_{2}\right]$ be the isotopy classes of

2-manifolds in 5 . We define the notation \geq by saying $\left[T_{2}\right] \geq\left[T_{1}\right]$ iff there is a $T_{1} \in\left[T_{1}\right]$ and $T_{2} \in\left[T_{2}\right]$ such that T_{1} Cint $\left(T_{2}\right)$.

Suppase that for $v \geq 0 H_{v}$ is a clb(F,G;S). Ard
suppose that $\left[H_{0}\right] \underline{\sum}\left[H_{1}\right] \underline{z} \ldots$. Then we may assume that for $v \geq 0$ that $H_{\nu+1} \operatorname{Cint}\left(H_{v}\right)$. So by lemma IV. 2 there is an N such that H_{ν} is a regular neighborhood of H_{N} in S for v) N. Therefore, $\left[H_{v}\right]=\left[H_{N}\right]$ for $v \underline{Z N}$. By Zorn's Lemma,
there is an H which is a clb(F,G;S) such that if H^{\prime} is a Clb(F,G;S) and $[H] \geq\left[H^{\prime}\right]$, then $[H]=\left[H^{\prime}\right]$.

Suppose that H^{\prime} is a clb(F,G;S) such that if $H^{\prime \prime}$ is a clb(F,G;S) and $\left[H^{\prime}\right] \geq\left[H^{\prime \prime}\right]$, then $\left[H^{\prime}\right]=\left[H^{\prime \prime}\right]$. We claim that $\left[H^{\prime}\right]=[H]$. Let L be a $\mathrm{Clb}^{\prime}\left(\mathrm{H}_{3} \mathrm{H}^{\prime} ; 5\right)$. Then by lemma
 Therefore $[H]=[L]=\left[H^{\prime}\right]$.

Definition IV.7. Suppose that $p: \tilde{F} \rightarrow \rightarrow F$ is a commected 2-fold covering, where F is a commected, compact 2-manifold and let $T: \tilde{F} \rightarrow \underset{F}{ }$ be the covering translation. Suppose that there is a compact \mathcal{Z}-manifold G contained in \tilde{F} which is hand in \tilde{F}. Suppose H is a compact

2-manifold contained in \tilde{F} such that
(a) H is hard in \tilde{F},
(b) if A and A^{\prime} are distinct components of H and A is an annulus, then the core of A is not parallel in S to a component of $O A^{\prime}$.
(c) H is isotopic in \tilde{F} into $G_{\text {, }}$
(d) $\mathrm{H}=\mathrm{TH}$, and
(e) if J is an noricontractible simple closed curve in \tilde{F} such that $J \Pi T J=\varnothing$ and $J U_{T} J$ is isotopic in \tilde{F} into $G_{\text {, }}$ then J is isotopic into H.

Then we say that H is a T-invariant lower bound for G.

We abbreviate this by writing H is an ilb(G;T).

Lemma IV. B. Suppose that $p: \tilde{F} \rightarrow \rightarrow F$ is a commected e-fold covering, where F is a commected, compact 2 -manifold and \tilde{F} is meither a torus mor a klein bottle. Let $T: \tilde{F} \rightarrow \rightarrow \tilde{F}$ be the covering translation. Suppose that there is a compact 2 -manifold G contained in \tilde{F} which is hard in \tilde{F}. Then there is a T-invariart lower bound for G. Proof:

Put $H=1 \mathrm{clb}(G, T G ; \tilde{F})$. We claim that H is an
ilb(G; T). Conditions (a), (b), and (c) follow quickly from definition IV. 3. Suppose that J is a simple closed curve which satisfies the hypothesis of (IV. 7 (e)). Suppose that $L: \tilde{F}_{X} I \rightarrow-\tilde{F}^{*}$ is an isotopy of the identity with $L(J L / J, 1)$ G. Then $L(J, 1)$ is contained in G and TL(Txid) (J, 1) \subset (TG. So J must be isotopic into H. It remains for us to isotop H in \tilde{F} so that $T H=H$. We will first show that $T H$ is isotopic in \tilde{F} to H. Since T(TH) is equal to H, it suffices to show that th is a clb(G, TG; $\tilde{F})$ suppose that J is a moncontractible simple closed curve which is isotopic in \tilde{F} into G and is isotopic in \tilde{F} into TG. It suffices to show that J is isotopic in \tilde{F} into $T H$. There are isotopies K, L: $\tilde{F} \times I \rightarrow \rightarrow \tilde{F}$
of the identity with $K(J, 1) \mathbb{G}$ and $L(J, 1) \subset$ G. Dbserve that $T K(T x i d)(T J, 1) \subset T G$ and $T L(T x i d)(T J, 1) \square G . \quad$ So by $T J$ is isotopic in \tilde{F} into H. Let $Q: \tilde{F} \times I \rightarrow \underset{F}{ }$ be an isotopy of the identity with $Q(T J, 1) d H$. Then $\tau Q(\tau x i d)(J, 1)=\tau H_{\text {. }}$ That is, J is isotopic in \tilde{F} into \mathbb{H}.

Let ρ be a riemarmian metric for \tilde{F} such that $\underset{F}{ } \mathfrak{F}$ smooth and convex and so that τ is an isometry of ($\tilde{F}, \rho)$. Then a shortest length representative exists for each nontrivial element of of $\pi_{i}(\tilde{F})$.

For each component J of $O H$, let $\lambda(J)$ be the shortest length representative in the free homotopy class of J. Then by theorem 2. 1 of $[5] \lambda(J)$ is a simple closed curve, and by conollary 3.4 of the same source if J and J are components of $O H_{\text {, }}$ then either $\lambda(J)=\lambda\left(J^{\prime \prime}\right)$ or $\lambda(J) \cap \lambda\left(J^{\prime}\right)=\varnothing_{\text {. }}$

Let $s=\{\lambda(J) \mid J$ is a component of $\partial H\}$. Since $\lambda(J)$ is homotopic to $J_{,} T \lambda(J)$ is homotopic to $T J$ for each component J of $A H_{\text {. Since }} \boldsymbol{H}$ is isotopic in \hat{F} to $H_{,}$TJ is homotopic to some component J ' of A. So $\tau \lambda(J)$ is homotopic to J ". Since T is an isometry of ($\tilde{F}, \rho)$, $\tau \lambda(J)$ is shartest length. Therefore, $T \lambda(J)=\lambda(J)$. So τ induces a permutation of s.

If Les and thene are distimet components J and J of $A H$ with $\lambda(J)=\lambda\left(J^{\prime}\right)=L$, we say that L is bad. Let $B=\{L E S \| L$ is bad\}. Note that if $L E B$ and J and J ' are
distinct components of ∂H with $\lambda(J)=\lambda(J)=L$, then there is an amulus $A(L)$ with $\partial A(L)=J U J$. Since \tilde{F} is meither a torus mor a klein bottle, $A(L)$ is the unique such ammulus.

By part (b) of definition IV. 3, there are exactly two compoments J of $O H$ with $\lambda(J)$ for each $L E B$ For each LEB such that $\mathcal{L L} \mathcal{L}_{\mathrm{L}}=\varnothing_{\text {, }}$ let N_{L} be a regular neighborhoad of L such that $N_{L} \Gamma K=\varnothing$ for each $K \in S-\{L\}$ and such that $N_{L} \operatorname{HiN}_{L}=0$. For each LEB such that $T L=L$, let N_{L} be a regular meighborhood of L such that $N_{L} T K=\varnothing$ for $K \in e_{S}-\{L\}$ and $N_{L}=T N_{L}$ Ey being careful, we may assume that $N_{L} \mathrm{~N}_{K}=\varnothing$ for distinct K, LEB.

For each LEB, let λ^{\prime} (L) ard $\lambda^{\prime \prime}(L)$ be distinct components of ∂_{L} " Let $B^{\prime}=\left\{\lambda^{\prime}(L) \mid L E B\right\}$ and let
 companents of $O H$. Then there is a ome-to-ane correspondence $\varphi: 民-\rightarrow$ such that $\varphi(J)=\lambda(J)$ whenever $\lambda(J)=8$ and such that $\varphi(J)$ is a unique choice of $\lambda^{\prime}(\lambda(J))$ and $\lambda^{\prime \prime}(\lambda(J))$ when $\lambda(J) E B$ Observe that $\varphi(J)$ is
 isotopic in \tilde{F} to $O H$. So we may as well assume that $A H=$ L

We now claim that $H=\pi H_{\text {. }}$ To get an contradiction, suppose that H_{o} is a component of H such that tho is not

compoment of $H_{\text {. }}$ Therefore, $\boldsymbol{T H}_{0}$ must be a component of cl($\mathfrak{F}-H)$. Since $T H$ is isotopic to H and simce no ammlus component A of H has its cone parallel to a comporient of $\theta(H-A)$, there exists an amulus component H_{1} of H such that H_{i} and T_{0} share at least one boundary component. Since \tilde{F} is not a tonus or a klein bottle, H_{1} and $T H_{0}$ share at most one boundary component. But this contradicts (IV. 3 (b)). This ends our proof.

CHAPTER V

SOME PROPERTIES OF COMPACT

SEIFERT PAIRS

Then author's main reference on the subject of seifert pairs has been [7]. The authors s view is slightly more general simce he is interested in momcompact manifolds. However, we will not apply the noncompact case uritil chapter VI. We shall attempt to mimic the notation and terminology found in [7].

Let M be a 3 -manifold and let F be a compact 2-manifold in $O M$. We say that (M, F) is a 3-manifald pair. In the case that M is compact, we say that (M,F) is a compact 3 -marifold pair. When M is irreducible and F is incompressible in M, we say that (M,F) is an irreducible 3-manifold pair.

Let X be a commected 1 -manifold.

Suppase that X is not homeomomphic to S^{1}. A 3-manifold pair (S, S) is said to be an X-pair if there exists a homeomorphism h of s onto the total space of an X-bundle over a 2-manifold with compact components such that $h(g)$ is the associated ∂x-bundle. (This differs from
[7] which considers only the case $X=1$.)
We say that (\mathcal{S}, \mathscr{F}) is an \mathbf{S}^{1}-pair if there is a homeomorphism h of s onto the total space of a not necessarily compact) Seifert fibered space such that $h(y)$ is a saturated subset of $h(s)$. (This differs from [7] where ($(\mathbb{S}, \mathscr{Y}$) is required to be compact.)

A 3-manifold pair $(\mathbb{S}, \mathscr{y})$ is said to be a Seifert pair if for each component (σ, τ) of $(\mathcal{S}, \mathscr{Y})$ there is a connected 1-manifold X such that (σ, τ) is an X-pair.

Let X be a comected 1-manifold. We say that the 3-manifold pair ($(5, g)$ is an X-shell provided (5,9 is homeomorphic to ($\left.S^{1} x I x X, S^{1} x I x \partial X\right)$.

If (W, T) and (V, S) are 3 -manifold pairs with WCV and $T C S$, then we may write $(W, T) \subset(V, S)$ to facilitate exposition.

Let (W, T) be a 3-manifold pair. Suppose that (V, S) is a 3 -manifold pair contained in (W, T). Let $\hat{U}=c l(W-V)$ and let $\hat{R}=c 1(\partial W-S)$. Put $(U, R)=L K(u, r) \mid(u, r)$ is a component of (\hat{U}, \hat{R}) and r is contained in $T 3$. Then we say that (U, R) is the complementary pair to (V, S) in (W, T).

Let (M, F) be a 3 -manifold pair such that M is proper in W and $F r(M)$ meets OW transversely. We say that (M, F) is well-embedded in W provided $F r(M)$ is incompressible in W and MnOW=F.

Let (W, T) be a 3-marifold pair. Let (Σ, $\overline{\text { S }}$) be a Seifert pair contained in (W, T) and let (Λ, Ψ) be the complementary pair to ($\Sigma, \bar{\Phi})$ in (W,T). We say that (Σ, \boldsymbol{Z}) is perfectly embedded in (W,T) provided
(i) (Σ, $\overline{\text { S }}$ is well-embedded in $W_{\text {; }}$
(ii) each component of $\operatorname{Fr}(\Sigma)$ is essential in (W,T);
(iii) if (σ, φ) is a component of (Σ, Φ) which is an X-shell for X which is homeomorphic to either I or $S^{\mathbf{1}}$, then there is no component (λ, Ψ) of ($\Lambda, \Psi)$ which is homeomorphic to $(\sigma, \varphi\rangle$ and meets both $\{\sigma, \varphi\rangle$ and $\left(\Sigma-\sigma_{g} \bar{\Phi}-\varphi\right)$.

Suppose that (M, F) is a compact, irreducible 3-manifold pair. In [7] it is proved that there exists a a compact seifert pair (Q, H) which is perfectly embedded in (M, F) and is such that if A is a compact e-manifold each component of which is an ammlus or a torus and if A is essential in (M, F), then A is isotopic in (M, F) into (Q, H). If (Q, H) is "maximal" with respect to the above properties, it is unique up to ambient isotopy, and it is called the characteristic pair of (M, F); in this case, we will write char $(M, F)=(Q, H)$ in the sequel.

Lemma V.1. Let F be a cornected, compact, orientable E-marifold. Consider FxI. Suppose that for $i=0,1 T_{i}$ is a compact $2-m a n i f o l d$ that is hard in Fxi. Let p:FxI \rightarrow F be the natural projection. If A is an amulus which is essential in (FxI,FxӘI) and $\neq A$ is isotopic in (FxI,FxəI) into $T_{0} U_{1}$, then A is isatopic in (FxI,FxəI) into 1clb(p(To), $\left.P\left(T_{1}\right) ; F\right) \times I$.

Praaf:

Since A is essertial in (FxI,FxəI), by lemma I. 1 we may assume that there is a simple clased curve J contaimed in F with A=JxI. Since OA is isotopic into $T_{0} \mathrm{UT}_{1}$, Jxi is isotopic in Fxi into T_{i} for $\mathrm{i}=0,1$. Consequently, J is isotopic in F into lclb(p($\left.\left.T_{0}\right), p\left(T_{1}\right) ; F\right)$. This implies that A is isotopic into

Lemma $V_{-} \mathcal{Z}$. Let F be a compact 2 -manifold, let M be a twisted I-burdle over F, and let \tilde{F} be the assaciated ∂I-burdle. Let $p: M-\rightarrow F$ be the natural projection and let T be the covering translation associated with $p \boldsymbol{I F}$. Suppose that \tilde{F} is onientable and is not a 2 -sphere, a disk, or a torus. Suppose that G is a compact 2 -marifold in \tilde{F} that is hard in \mathfrak{F}. Let $H=i l b(G ; T)$. If A is an
amoulus which is essential in (M, \tilde{F}) and A is isotopic in \tilde{F} into G, then A is isotopic in (M, \tilde{F}) to a saturated armulus of $p^{-1} p(H)$.

Proof:

Since A is essential in (M, \tilde{F}), we may, by lemma I. 1 , assume that A is saturated with respect to p. Say that J is a companent of ∂. Then $\partial A=J U T J$, where $\tau: \tilde{F}-\rightarrow \tilde{F}$ is the covering translation associated to p / \tilde{F}. Then $J \Pi T J=\varnothing$ and JUTJ is isotopic in \tilde{F} to momcontractible simple clased curves in G. So we may assume that J is isotopic in \tilde{F} into H .

We will first assume that JTH is empty. Then $\quad J \Gamma H$
will be empty since H is equal to TH. By lemma 2. 4 of [2] there is an ammulus \tilde{B} in $c l(\tilde{F}-H)$ such that $\approx \tilde{B}=J L K$, where K is a component of $O H$. We claim that it can be assumed that $\tilde{B} \cap \tau \tilde{B}$ is empty. Since $\tau J \cap(H U J)$ is empty, then either $T J$ is contaimed in int(\tilde{B}) or $T J$ is contained in $\tilde{F}-(H L \tilde{B})$.

Let us finst assume that $T J$ is contained in int (\mathbf{B}). Then there is an annulus \bar{B} in $\tilde{B}-J$ such that $\sigma \tilde{B}=T J L K$. Qbserve that $\partial(\tau \tilde{B})=J \cup T K$. Say $T K=K$. Then $\tau \tilde{B}=\tilde{B}$ or \tilde{F} is a torus or \tilde{F} is a klein bottle since $\partial \tau \tilde{B}{ }^{\prime}=\tilde{B}^{2}$. So by hypothesis $\tau \tilde{B} \cdot=\tilde{B}$. But then $\tilde{B} \cdot=\widetilde{\boldsymbol{B}}$ which implies that

T $\mathbb{B} \tilde{B}^{\tilde{B}}$, and leads us to the contradiction that $\tilde{B}=\tau \tilde{B}=\tilde{B}$. Now say that $T K \neq \mathbb{K}$. Since H is invaniant under T, TK is a component of A. Therefore, tK is not contained in int (\tilde{B} '), and $\tau \tilde{B}$, is contained in cl($\tilde{F}-H)$. So either

 contradiction. So $\boldsymbol{T B}^{\mathbf{B}} \boldsymbol{\Gamma B}^{\prime}$ is empty. So in this case by taking $\tilde{B}=\tilde{B}$ ') we may assume that $\tilde{B} \cap \boldsymbol{\sim} \tilde{B}$ is empty.

Let us now assume that $T J$ is contained in $\tilde{F}-(H L \tilde{B})$. Then there is an ammulus $\tau \tilde{B}$ in $c l(\tilde{F}-H)$ such that
 contained in int ($\tau \tilde{B}$), then we reach a contradiction as in the case above. So we may assume that $\tau \tilde{B} \tilde{B}$ is empty.

Let $B=p(\tilde{B}) . \quad$ Since $\tilde{B} \cap \tau \tilde{B}$ is empty, B is an ammulus, and p^{-1} (B) is homeomorphic to BxI. Therefore, we may use $P^{-1}(B)$ to perform an isotopy of M which takes A to a saturated anmulus of $p^{-1} p(H)$.

Now let us assume that JTH is not empty. It can be assumed that J meets $O H$ transversally. Since J is isotopic to a curve in int (H), by lemma VI. 1 there is a disk D such that $\partial D=\alpha U \beta$, where α is an arc in $O H$ and β is an arc in J. We may assume that int (D) ח(JUAH) is empty. We claim that ODחヲ(rD) is empty. Note that τ is contained in $A H$ and that $T \beta$ is contained in TJ. So
$\Rightarrow D \cap T(\partial D)=(\alpha \cap \tau \alpha) \cup(\beta \cap \tau \alpha) \cup(\alpha \cap \tau \beta) \cup(\beta \cap \tau \beta)$ is equal to $\alpha \cap \tau \alpha$. To get a contradiction, suppose that $\alpha \Pi$ in is not empty. Note that D is contained in H iff $T D$ is contained in H. Since $\tau \beta$ is comected and

$$
\tau \beta \cap \approx D=(\tau \beta \cap \alpha) U(\tau \beta \cap \beta)=\tau \beta \cap \alpha=\partial \tau \beta,
$$

this implies that $\tau \beta$ is contained in $D-\alpha$, and this implies that either $T D$ is contained $D-\alpha$ or \tilde{F} is a e-sphere. Since G is hard in \tilde{F}, \tilde{F} is not a e-sphere. So $\boldsymbol{T D}$ is contained in $\mathrm{D}-\mathrm{c}_{\text {. }}$ Therefore τ has a fixed point by the Brouwer fixed point theorem which is a contradiction. So $\alpha \| \tau \alpha$ is empty, and therefore $\partial D \cap(\tau D)$ is empty.

Since $\partial \mathrm{D} \cap \mathrm{O}(\mathrm{TD})$ is empty, there are only three possibilities: one of D and $T D$ contains the other, \tilde{F} is homeomorphic to $S^{\mathbf{2}}$, or D O rD is empty. The first would imply that τ has a fixed point which is a contradiction. The second possibility contradicts the fact that G is hard in \tilde{F}. So $D \cap T D$ is empty. Therefore $p(D)$ is a disk, and $p^{-1} p(D)$ is homeomorphic to DxI. We can therefore use $p^{-1} p(D)$ to isotop A in M to a saturated annulus which meets $p^{-1} p(\mathcal{H})$ in fewer components. Thus we can assume that JniH is empty and we have reduced to the previous case.

Lemma V.3. Suppose that M is a an irreducible 3-manifold. Suppose that N is a connected 3 -manifold such that each component of $2 N$ is a torus. Suppose that N is contained in M in such a way that NnOM is a compact 2-manifold that is incompressible in M and $\operatorname{Fr}(N)$ meets OM transversely. Let V be a regular neighborhoad in N of some components of NחEM. If $\mathrm{Fr}(\mathrm{N})$ is incompressible in M, then either $\operatorname{Fr}(c l(N-V))$ is incompressible in M or cl $(N-V)$ is a solid torus.

Proof:
Let $N^{\prime}=c l(N-V)$. Suppose that there is a component F of $\operatorname{Fr}\left(N^{\prime}\right)$ which is compressible in M. Then there is a disk D in M such that $D C F=\partial D$ and $Z D$ is noncontractible in F. We may assume that $D(F r(N$ ') is contained in F. Hence either D is contained in cl(M-N') or D is contained in N.

To get a contradiction, suppose that D is contained in cl(M-N). Let $A=V \operatorname{Fr}(N)$. Then A is a disjaint union of annuli that are incompressible in cl(M-N'). We may assume that D meets A transversally and that \#(DRA) is minimal.

Suppose that \#(DクA) \#0. Let α be a component of DCA. Since A is incompressible and since \#(DCA) is minimal, α is not a simple closed curve. So α must be
ar arc. Since ∂D is cortained in F, α must be a separating arc for a component A_{o} of $A_{\text {. }}$ Let E be the unique disk separated off A_{o} by c_{0} We may assume that there is a disk D^{\prime} in D such that D^{\prime} MA= α. Let $\beta=D^{\prime}$ MF and let $\gamma=E \Pi F$. Simce \# (DMA) is minimal, the simple closed curve fuY is momcontractible in F. But by pushing d'LE off A_{o}, we obtain a disk which contradicts the minimality of D. Therefore we may assume that $\#(D \cap A)=0$. So either D is contained in V or D is contained in cl(M-N). In either case we can use D to construct a compressing disk for A which is a contradiction simce Fr(N) is incompressible.

We may now assume that D is contained in ${ }^{\prime}$ '. Since each component of $Z N$ is a torus, each component of ON^{\prime} must be a torus, and therefore the component T of an' which contains F must be a torus. Let U be a regular neighbortioad of D in N^{\prime}. Let $N^{\prime \prime}=c 1\left(N^{\prime}-U\right)$ and let S be the compoment of $\mathrm{ON}^{\prime \prime}$ which meets U. Then S is a 2-sphere which must bound a 3-cell in M by the irreducibility of M. To show that N is a solid torus, it suffices to show that $B=N "$. Suppose that $B=N^{\prime}$. Then U is contained in B. Since $\operatorname{Fr}(N)$ is incompressible in M, HDN must be monempty. This implies that V must be contained in B as well. But this contradicts the fact that the map $\Pi_{1}\left(V^{\prime}\right) \rightarrow \pi_{1}(M)$ is nontrivial for each

```
compoment }V\mathrm{ ' of V. So }B=N\primeN and therefore N' is a solid
tomus.
```

Lemma V.4. Suppose that (M,F) is an irreducible,
compact 3-manifold pair such that F contains no tori and
suppose that $(N, G)=c h a r(M, F)$ is the characteristic pair
of (M,F). Suppose that R is a compact 2 -manifold that is
hard in F. Then there is a Seifert pair
$(Q, H)=c h a r(M, F ; R)$ such that
(a) (Q, H) is contaimed in (N, G);
(b) H is isotopic into R;
(c) if A is an anmulus or a torus which is
essential in (M, F) and $O A$ is isotopic into R, then A is
isotopic in (M, F) into (Q, H);
(d) no component (Q^{3}, H^{\prime}) of (Q, H) which is
homeomorphic as a pair to ($\left.S^{1} \times I \times I, S^{1} \times I \times \partial I\right)$ is isotopic
in (M, F) into a component of ($Q-Q^{\prime}, H-H^{\prime}$);
(e) (Q, H) is well-embedded in (M, F);
(f) each component of $F r(Q)$ is essential in (M,F).
Proaf:

Let (N^{\prime}, G^{\prime}) be a component of (N, G). Consider the following set of operations on (N’, \mathbf{G}^{\prime}).
(V.4.1) Suppose that (N^{\prime}, G^{\prime}) contains no 르-manifold A satisfying the hypothesis of part (c) from above. Replace (N ', G ') by the empty pair.
(V.4.E) Suppose that (N', G') is an S^{1}-pair and is mot covered by (V.4.1). Let V be a fibered regular meighborhoad of the components of G ' which are not isotopic into R. Sirsce mo compoment of F is a torus, V is a disjoint union of a finite number of solid tori. Put ($\left.N^{\prime \prime}, G^{\prime \prime}\right)$ equal to (cl(N'-V), Gי חel (N'-V)) and replace (N^{\prime}, G^{\prime}) by ($N^{\prime \prime}, G^{\prime \prime}$). Nate that if A is a compact 2-manifold that satisfies the hypothesis of part (c) and is contained in (N^{\prime}, G^{\prime}), then A is isotopic into ($N^{\prime \prime}, G^{\prime \prime}$) since V can be isotoped small erough to miss A after af has been isotoped into R.

Suppose that K is a component of $\mathrm{Fr}^{\prime}\left(\mathrm{N}^{\prime \prime}\right)$. Then by
lemma V. 3 either K is ircompressible or ($N^{\prime \prime}, G^{\prime \prime}$) is
homeomorphic as a pair to $\left(S^{1} \times D^{2}, \varnothing\right)$. Therefore, we may apply (V.4.1) and assume K must be incompressible. It is not difficult to see that K must also be essential in (M,F) since otherwise some component of Fr(N') would be forced to be parallel into F and that would contradict the fact that (N, G) is perfectly embedded in (M, F). (V.4.3) Suppose that (N*, G') is a product I-pair which is mot considered by any previous case. We make the identification $\left(N^{\prime}, G^{\prime}\right)=(X x I ; X x \partial I)$ where X is a compact, commected 2 -manifold. Let $p: X \times I \rightarrow X$ be the natural projection. Put $G_{0}^{\prime \prime}=1 c l b(X \times Q, R ; F)$ ard put
$G_{1}^{\prime \prime}=1 \mathrm{clb}(X \times 1, R ; F)$. Let $N^{\prime \prime}=1 \mathrm{clb}\left(p\left(G_{0}^{\prime \prime}\right) ; p\left(G_{1}^{\prime \prime}\right) ; X\right) \times I$ and let
 a compact e-manifold that satisfies the hypothesis of part (c) and is contained in (N), G'), then by lemma V. 1 (A, , A) is isotopic in (M,F) into ($N^{\prime \prime}, G^{\prime \prime}$).

Suppose that K is a component of $\operatorname{Fr}\left(N^{\prime \prime}\right)$. Then K is isotopic to a verticle amulus in $X \times I$. So K is incompressible in $X x I$ and therefore in M. It follows similarly that K is essential in (M,F).
(V.4.4) Suppase that (N’, G') is a twisted I-pair
that is covered by mo previous case. Say that \hat{G}, is the compact commected 2 -manifold over which N is an I-bundle, $p: N^{\prime} \rightarrow \rightarrow \hat{G}$, is the natural projectiong and T:G'- $\mathbf{G G}^{\prime}$ is the covering translation of $\mathrm{P} / \mathrm{G}^{\prime}$. Let $G_{0}^{\prime}=1 \mathrm{clb}\left(G^{\prime}, R ; F\right)$ and assume G_{o}, to be contained in G^{\prime}.
 (N", G"). Note that if A is a compact 2 -manifold that satisfies the hypothesis of part (c) and is contained in (N', G^{\prime}), then by lemma $V . Z(A, Z A)$ is isotopic in (M, F) irto ($\mathbf{N P}^{\prime \prime}$ G").

Suppose that K is a compoment of $\operatorname{Fr}\left(N^{\prime \prime}\right)$. Then K is isotopic to a 2 -manifold which is saturated with respect to p. Therefore K is imcompressible in N, and therefore in M. It follows similarly that K is essential in (M,F).

Let (Q, H) be the 3 -manifold pair obtained from (N, G) by performing the above operations. (V.4.5) If (Q', H') is a component of (Q,H) which is homeomorphic as a pair to $\left(S^{1} \times I \times I, S^{1} \times I \times \partial I\right)$ and is isotopic in (M, F) into ($Q-Q^{\prime}, H-H^{\prime}$), then delete (Q^{\prime}, H^{\prime}) from (Q, H), but retain the label (Q, H) for the result. It is easy to see that (Q, H) still satisfies (a), (b), and (c).

It is clear that (Q, H) satisfies (a), (b), (c), (d), (e), and (f) of the conclusion.

Lemma V.5. Let (M, F) be an irreducible, compact 3-manifold pair. Suppose that (Q, H) is a Seifert pair in (M, F) such that
(1) (Q, H) is well-embedded in (M, F);
(2) no component of $\operatorname{Fr}(Q)$ is parallel into F.

Then there is a Seifert pair ($\hat{Q}, \hat{H})$ such that
(a) (\hat{Q}, \hat{H}) contains (Q, H);
(b) (\hat{Q}, \hat{H}) is well-embedded in (M, F);
(c) no component of $\operatorname{Fr}(\hat{Q})$ is parallel into F;
(d) the union of the components of (Q, H) which are not s^{1}-pairs is precisely equal to the union of the components of (\hat{Q}, \hat{H}) which are not S^{1}-pairs.
(e) if A is an amular component of $c l(F-\hat{H})$, then at most one component of $O A$ is contained in an annular component of \hat{H}.

Proaf:
Suppase that A is a component of $\mathrm{cl}(\mathrm{F}-\mathrm{H})$ which is an annulus. Say that J_{a} and J_{1} are the simple closed curves that are the components of 2 . For $i=0,1$, let $\left(Q_{i}, H_{i}\right)$ be the component of (Q, H) such that J_{i} is a component of $\boldsymbol{H H}_{i}$ - Suppose that the component of H_{i} that contains J_{i} is an armulus for $i=0,1$. Let V be a regular neighborhood of A in $c l(M-Q)$. Then V is a solid torus which meets $\operatorname{Fr}\left(Q_{1}\right) \operatorname{Lr}\left(Q_{2}\right)$ in two anmuli for $i=0,1$. Then $Q_{0} \mathbb{Q R}_{1} L N$ has a natural Seifert fibering-

Let K be the component of $\operatorname{Fr}\left(Q_{0} L Q_{1}(N)\right.$ which meets V. Then K is either an anmulus or a torus. If there is a product $K x I$ such that $K x \theta=K$ and (Kxi)U(OKxI) is contained in F, then let $\tilde{Q}=Q_{0} L_{1}$ UNU(KxI) and let $\tilde{H}=\tilde{Q} / F$ so that (Q̃LQ, H̃LH) satisfies (a), (b), (c), and (d). So we may assume that K is not parallel into F.

If K is an annulus, then K is incompressible in M.
So we may assume that K is a torus. If K is
compressible, we may apply lemma $V .3$ by putting
$N=c l(M-Q)$ to show that K must bound a solid torus U.

Now $\tilde{\mathbb{Q}}=\mathbb{Q}_{0} \mathrm{LQ}_{1}$ LNUU admits a natural Seifert fibering. Let
 (d). This process reduces either \#(Q) or \#(cl(M-Q). By repeating the procedures described above, we eventually obtain a pair ($\hat{Q}, \hat{H})$ which satisfies conditions (a)-\{e).

Lemma V.G. Suppose that (M, F) is an irreducible, compact 3-manifold pair such that no component of F is a torus. Say that (Q, H) is a Seifert pair that is well-embedded in (M, F). Let R be a 2 -manifold contained in F that is the union of H with a finite set of pairwise disjoint annuli nome of which meets H and each of which is incompressible in M. Then there is a Seifert pair $(\hat{Q}, \hat{H})=g d e(Q, H ; R)$ contained in (M, F) such that
(a) (Q, H) is contained in (\hat{Q}, \hat{H});
(b) the union of components of (Q, H) which are not S^{1}-pairs is precisely equal to the urion of components of (\hat{Q}, \hat{H}) which are not S^{1}-pairs;
(c) if A is an annulus which is essential in (M,F) and contained in (int(Q), int(H)), and if the isotopy class in F of one component J of $A A$ has members which
are contained in two different components of R, then there is an s^{i}-pair comporent $\{\hat{Q}, \hat{H}\rangle$ of (\hat{Q}, \hat{H}) such that (A, \not, A) is isotopic in (M, F) into (\hat{Q}, \hat{H});
(d) mo two components of \hat{H} which are anmuli have cores which are parallel in F.

Proaf:

Suppose that there is an ammulus A in M which satisfies the hypothesis of (c), but there is mo S^{1}-pair component (Q^{\prime}, H^{\prime}) such that ($A, O A$) is isotopic in (M, F) into (Q^{\prime}, H^{\prime}) = Let ($Q^{\prime \prime}, H^{\prime \prime}$) be the component of (Q, H) which contains A. Since a component of AA is isotopic in F into two different compoments of $R_{\text {, }}$ proposition 5.4 of [15] gives us that A must be parallel in $Q^{\prime \prime}$ to a compoment of Fr(Q"). Let (\tilde{Q}, \tilde{H}) be a 3 -marifold pair embedded in (M-Q,F-H) which is homeomorphic as a pair to $\left(S^{1} \times I \times I, S^{1} \times I \times \partial I\right)$ in such a way that $S^{1} \times I \times Q$ is parallel in M to A. Note that (Q̃นQ, $\tilde{H} \cup H$) satisfies (a) and (b). Since this process meed be done at most once for each componert of $F r(Q)$ after a firite number of repetitions of this process, we obtain a pair ($\hat{Q}, \hat{H})$ which satisfies (a)-(c). By applying lemma $V .5$ we may assume that (\hat{Q}, \hat{H}) also satisfies (d).

CHAPTER VI

ENGULFING NONCOMPACT 2-MANIFOLDS

OF ZERD EULER CHARACTERISTIC

```
Let \(W\) be a momcompact, orientable, irreducible 3-manifold with a compact 2 -manifold \(T\) contained in \(O W\) which is incompressible in W. We say that the exhausting sequence \(\left\{W_{n}\right\}\) for \(W\) is goad with respect to ( \(W, T\) ) provided
(1) Fr( \(W_{n}\) ) is incompressible in \(W\) for \(n \geq 0\),
(2) no component of \(F r\left(W_{m}\right)\) is a torus, a 2 -sphere, or a disk for \(n \geq 0\), and
(3) TEint ( \(W_{0}\) ).
If there is an exhausting sequence for \(w\) which is good with respect to \((W, T)\), we say that ( \(W, T\) ) is good. Observe that if ( \(W, T\) ) is a good 3 -manifold pair, then \(W\) is end-irreducible.
We will follow the convention that \(\operatorname{Fr}\left(W_{-1}\right)=T\) and that \(\operatorname{Fr}\left(\Delta W_{0}\right)=\operatorname{TLFr}\left(W_{0}\right)\).
```

Lemma VI_1. Let W be a nomcompact, orientable,
irreducible 3 -marifold and let T be a compact 2 -manifold contaimed in δW which is imcompressible in W. Suppase that $\langle W, T\rangle$ is goad with goad exhausting sequemce $\left\{W_{n}\right\}$ for W. Suppose that $\left\{G_{n} \mid n \geq 0\right\}$ is a set of 2 -manifolds ordered by the monnegative integers such that G_{n} is compact, hard in $\operatorname{Fr}\left(\Delta W_{n}\right)$ for $n \geq Q_{\text {, }}$ and contained in H_{n} where $\left(Q_{n}, H_{n}\right)=\operatorname{char}\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ for $n \geq Q_{\text {. Then }}$. There is a set of Seifert pains $\rho\left\{G_{n} \mid m_{n}\right\}=\left\{\left(M_{n} ; F_{n}\right) \mid n \geq 0\right\}$ such that for $n \geq 0$
(a) $\left(M_{n}, F_{n}\right)$ is well embedded in $\left(\Delta W_{r}, F r\left(\Delta W_{n}\right)\right)$;
(b) each component of $\operatorname{Fr}\left(M_{n}\right)$ is essential in
$\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right) ;$
(c) $F_{m} \operatorname{FFr}_{n}\left(W_{n}\right)$ is isotopic in $F_{r}\left(W_{n}\right)$ into both $G_{n} \operatorname{Fr}\left(W_{n}\right)$ and $G_{n+1} \Gamma F_{r}\left(W_{n}\right)$, and $F_{n+1} \operatorname{Fr}\left(W_{n}\right)$ is isotopic in Fr $\left(W_{r}\right)$ into both $G_{r} \operatorname{Fr}\left(W_{r}\right)$ and $G_{n+i} \operatorname{Fr}\left(W_{r}\right)$;
(d) if A is an amulus or a torus and is essential in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$, and if $O A$ is isotopic in Fr $\left(\Delta W_{n}\right)$ into both G_{n} and $\left\{G_{r-1} \operatorname{FFr}\left(W_{n-1}\right)\right) U\left(G_{n+1} \operatorname{Fr}\left(W_{r}\right)\right)$ or TU\{G $\operatorname{FFr}_{1}\left(W_{0}\right)$ for $n \geq 1$ or $n=B_{4}$ respectively, then A is isotopic in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ into $\left(M_{n}, F_{n}\right)$;
(e) F_{n} is hard in $\operatorname{Fr}\left(\Delta W_{n}\right)$.

Pracif:

Let $R_{0}=\left(G_{0} I T\right) \cup\left(G_{1}\right.$ FFr $\left.\left(W_{0}\right)\right)$. Naw put

$$
\left(M_{0}, F_{0}\right)=\operatorname{char}\left(\Delta W_{0}, F r\left(\Delta W_{0}\right) ; R_{0}\right) .
$$

For $n \geq 1$, let $R_{n}=\left(G_{n-1} \operatorname{Fr}\left(W_{n-1}\right)\right) U\left(G_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)$. Now put

$$
\left(M_{n}, F_{n}\right)=\operatorname{char}\left(\Delta \omega_{n}, \operatorname{Fr}\left(\Delta \omega_{n}\right) ; R_{n}\right) .
$$

By lemma $V .4$, (M_{n}, F_{n}) satisfies conditions (a)-\{e) of the conclusion for n 20 .

Lemma VI.E. Let W be a noncompact, orientable, irreducible 3 -manifold and let T be a compact 2 -manifold contained in JW which is incompressible in W. Suppose that (W, T) is gaod with goad exhausting sequence $\left\{W_{n}\right.$. Say that $\left\{\left(M_{n}, F_{n}\right)\right.$ In $\left.\geq 0\right\}$ is a set of Seifert pairs ordered by the nonnegative integers such that for $n \geq 0$
(1) ($\left.M_{n}, F_{n}\right)$ is well embedded in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$;
(2) each component of $\operatorname{Fr}\left(M_{n}\right)$ is essential in
$\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right) ;$
(3) the union of the components of $F_{n} F_{F r}\left(W_{n}\right)$ which are not annuli is isotopic in $F r\left(W_{n}\right)$ to the union of components of $F_{n+1} \operatorname{Fr}\left(W_{n}\right)$ which are not annuli.

Then there there is a set $\forall\left\{\left(M_{n}, F_{n}\right) \mid n \geq 0\right\}=$ $\left\{\left(N_{n}, G_{n}\right) \mid n \geq 0\right\}$ of Seifert pairs ondered by the nomegative
integers such that for $n \geq 0$
(a) $\left(N_{n}, G_{n}\right)$ is well embedded in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$;
(b) each component of $\operatorname{Fr}\left(\mathrm{N}_{n}\right)$ is essential in
$\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right) ;$
(c) $\left(N_{n}, G_{n}\right)$ contains $\left(M_{n}, F_{n}\right)$;
(d) the union of the components of $\left(N_{n}, G_{n}\right)$ which
are not 5^{1}-pairs is precisely equal to the union of the
components of (M_{n}, F_{n}) which are not s^{1}-pairs;
(e) if A_{n} is an annulus which is essential in
($\Delta W_{n}, F r\left(\Delta W_{n}\right)$) and contained in $\left(M_{n}, F_{n}\right)$, and if there are disjaint simple clased curves in
($F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) U\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)$ which are isotopic in Fr($\left.\Delta W_{n}\right)$ to a component of ∂A_{n} but are not parallel in ($F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) \cup\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)$, then there is an S^{1}-pair component $\left(N_{n}, G_{n}^{\prime}\right)$ of $\left(N_{n}, G_{n}\right)$ such that A_{n} is isotopic in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ into ($\left.N_{n}, G_{n}^{\prime}\right)$;
(f) no two components of G_{n} which are ammli have cores which are parallel in Fr($\left.\Delta W_{n}\right)$.

Proof:
Let

$$
\left(N_{0}, G_{0}\right)=\operatorname{gde}\left(M_{0}, F_{0} ;\left(T F_{0}\right) \cup\left(F^{2}\left(W_{0}\right) \Gamma F_{1}\right)\right),
$$

and for $n \geq 1$ let

$$
\left(N_{n} ; G_{n}\right)=g d e\left(m_{n} ; F_{n} ;\left(F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) U\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right) .\right.\right.
$$

Then for $n \geq 0\left(N_{n}, G_{n}\right\rangle$ satisfies $(a)-(f)$ by lemma $V .6$.

Lemma VI. 3. Let W be a roncompact, orientable,
irreducible 3 -manifold and let T be a compact 2 -manifold contained in $O W$ which is incompressible in W. Suppose that (W, T) is good with good exhausting sequence $\left\{W_{n}{ }^{3}\right.$. Suppose that A is a 2 -manifold in W such that $A \Pi T=A \cap O W=O A, A \Pi \Delta W_{n}$ is compact for $n \geq 0$, and each component A_{n} of $A \cap \Delta W_{n}$ is an arrulus or a torus and is essential in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ for $n \geq 0$. Then there is a set [($\left.M_{n}, F_{n}\right)$ $\left.\mid n \geq 0\right\}$ of Seifert pains ordered by the mornegative integers such that for m ≥ 0
(a) $\left\langle M_{n}, F_{n}\right)$ is well embedded in $\left\langle\Delta W_{n} ; \operatorname{Fr}^{\prime}\left(\Delta W_{n}\right)\right\rangle$;
(b) each component of $F r\left(M_{M}\right)$ is essential in
$\left(\Delta W_{n}, F r\left(\Delta W_{r}\right)\right) ;$
(c) if A_{n} is a component of $A W_{n}$, then A_{n} is
isotopic in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ into $\left(M_{n}, F_{n}\right)$;
(d) F_{n} is hard in Fr $\left(\Delta W_{n}\right)$;
(e) the union of components of F_{n} FFr (W_{r}) which are
not annuli are isotopic in $\operatorname{Fr}\left(W_{n}\right)$ to the union of components of $\mathrm{F}_{\mathrm{n}+1} \boldsymbol{\operatorname { F r }}\left(\mathrm{~W}_{\mathrm{n}}\right)$ which are not annuli;
(f) if A_{n} is an anmulus which is essential in ($\Delta W_{n}, F r\left(\Delta W_{n}\right)$) and contained in $\left(M_{n}, F_{n}\right)$, and if there are disjaint simple closed curves in ($F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) U\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)$ which are isotopic in Fr $\left(\Delta W_{n}\right)$ to a component of ∂A_{n} but are not parallel in $\left(F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) \cup\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)\right.$, then there is an s^{1}-pair component (M_{n}, F_{n}) of (M_{n}, F_{n}) such that A_{n} is isotopic in $\left(\Delta W_{n}, F_{r}\left(\Delta W_{n}\right)\right)$ into $\left(M_{n}, F_{n}^{\prime}\right)$;
(g) no two components of F_{n} which are anmuli have cores which are parallel in $\mathrm{Fr}\left(\Delta \mathrm{W}_{\mathrm{n}}\right)$.

Proaf:
For an set $\left\{\left(N_{n}, G_{n}\right)\right.$ In $\left.\geq 0\right\}$ of 3 -manifold pairs ordered by the nomegative integers, define $\varphi\left(\left\{N_{n}, G_{n}\right) \mid n \geq 0\right\}$ to be the ordered set $\left\{G_{n} \mid n \geq 0\right\}$ of e-manifolds, and when $k \geq 0$ define $\left.\mu_{k} f\left(N_{n}, G_{n}\right) \mid n \geq 0\right\}$ to be the $\mathbf{3 - m a n i f o l d}$ pair $\left(N_{k}, \mathbf{G}_{k}\right)$. For an ordered set of 2-manifolds $\left\{G_{n} \mid n \geq 0\right\}$ and $k \geq 0$ define $\eta_{k}\left\{G_{n} \mid n \geq 0\right\}$ to be equal to G_{k}.

Let the notation ρ be as in lemma VI. 1. Define $\left.E_{0}=\operatorname{PrFr}\left(\Delta W_{n}\right) \ln \geq 0\right\}$. By lemma VI. 1 the 3 -marifold pair
$\mu_{n} G_{0}$ satisfies conditions (a)-(d) of the conclusion for $n \geq 0$. For $k \geq 0$ define $G_{k+1}=\rho 4 \mathcal{E}_{k}$ recursively. So by lemma VI. 1 and induction, $\mu_{n} e_{k}$ satisfies conditions (a)-(d) of the conclusion.

Fix $n \geq 0$. For $k \geq 0$, define U_{k} to be equal to the union of components of ($\eta_{n}\left(\operatorname{qe}_{k}\right) \operatorname{Fr}\left(W_{n}\right)$ which are not amuli and define L_{k} to be the union of components of ($\eta_{r+1}{ }^{\left(P E g_{k}\right.}$) which are not annuli. By part (c) of lemma VI. 1, U_{k+1} is isotopic in $F r\left(W_{n}\right)$ into L_{k}, and L_{k} is isotopic in $\operatorname{Fr}\left(W_{n}\right)$ into U_{k-1} for $k \geq 1$. Without loss of generality, we may assume that L_{k-1} ©int (U_{k}) and U_{K} Cint $\left(L_{k+1}\right)$ for $n \geq 1$. By lemma IV. 2 , there is an integer $\nu(m)$ such that L_{k} is isotopic in $F r\left(W_{n}\right)$ to U_{k} for all $k \underline{\geq} v(n)$. We may assume that $v(n) \leq v(n+1)$ for $n \geq 0$.

Now for $n \geq 0$, define $\left(N_{n}, G_{n}\right)=\mu_{n} \mathcal{E}_{\nu(n)}$. So by chaice of $v(n)$, the union of the components of $G_{n} \Pi F_{r}\left(W_{n}\right)$ which are not annuli is isotopic in $\mathrm{Fr}\left(\mathrm{W}_{\mathrm{n}}\right)$ to the union of components of $G_{n+1} \operatorname{FFr}\left(W_{n}\right)$ which are not annuli. So (N_{n}, G_{n}) satisfies condition (a)-(e) of the conclusion. Let $H_{o}=\left\{\left(N_{n}, G_{n}\right)\right.$ in 20$\}$. Let the notation γ be as in 1emma VI.2. For $k \geq 0$ define $\psi_{k+1}=\gamma H_{k}$ - Using parts (c) and (d) of lemma VI. 2 , we can deduce that the union of the arnuli of η_{n} φ / ψ_{k} is contained in the union of the
annuli of $\eta_{n} \varphi \psi_{k+1}$ for $k \geq 0$, and by part (f) of that lemma we can see that for $k \geq 0$ no two anmular components of
 $\operatorname{Fr}\left(\Delta W_{n}\right)$ is compact, there is an integer $\lambda(n)$ such that η_{n} ب侟 is isotopic in Fr $\left(\Delta W_{n}\right)$ to $\eta_{n} \varphi \psi_{\lambda}(n)$ for $k \geqq \lambda(n)$. Choose $\left(M_{n}, F_{n}\right)=\eta_{n} \varphi H_{\lambda}(n)$ for $n \geq 0_{\text {. }}$. By lemma VI. 2 and induction, $\left(M_{n}, F_{n}\right)$ satisfies conditions $(a)-(g)$ of the conclusion.

Lemma VI.4. Let W be a noncompact, orientable, irreducible 3-manifold and let T be a compact 2 -manifold contained in 2 W which is incompressible in W. Suppose that (W, T) is good with good exhausting sequence $\left\{W_{n}{ }^{3}\right.$. Say that A is a 2 -manifold that is proper in W and suppose that for $n \geq 0$ each component of AnkW is either an anmulus or a torus that is essential in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ Let Σ be a 3-manifold in W with Σ now contained in T. Put $M_{n}=\Sigma \Pi \Delta W_{n}$ and $F_{n}=M_{n} \operatorname{Fr}\left(\Delta W_{n}\right)$ for $n \geq \theta_{\text {. }}$ Suppose that
(1) M_{n} is compact for $n \geq 0$;
(2) $F_{n} \operatorname{Fr}\left(W_{n}\right)=F_{n+1} \operatorname{Rr}\left(W_{n}\right)$ for $n \geq 0$;
(3) (M_{n}, F_{n}) is a Seifert pair that is
well-embedded in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ for $n \geq \theta_{\text {; }}$
(4) if $\left(M_{n}, F_{n}^{\prime}\right)$ is a comporient of $\left(M_{n}, F_{n}\right)$ that is
not an 5^{1}-pair, then each component of Fr(M) is
essential in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ for $n \geq a_{\text {; }}$
(5) each compoment A_{n} of $A \Pi \Delta W_{n}$ is isotopic in
$\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta w_{n}\right)\right)$ into $\left(M_{n}, F_{n}\right) ;$
(6) if A_{n} is an ammlus which is essential in
($\left.\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ and contained $i n\left(M_{n}, F_{n}\right)$, and if there are disjoint simple closed curves in
($F_{n-1} \operatorname{FFr}\left(W_{n-1}\right) U\left(F_{n+1} \operatorname{MFr}\left(W_{n}\right)\right)$ which are isotopic in Fr $\left(\Delta W_{n}\right)$ to a component of ∂_{n} but are not parallel in ($F_{n-1} \operatorname{FFr}\left(W_{n-1}\right) U\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)$, then there is an S^{1}-pair compoment ($\left.M_{n}, F_{n}\right)$ of (M_{n}, F_{n}) such that A_{n} is isotopic in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$ into $\left\langle M_{n}, F_{n}\right\rangle ;$
(7) no two anmuli of F_{m} have cores which are parallel in $\operatorname{Fr}\left(\Delta W_{n}\right)$.

Then
(a) Σ is proper in W;
(b) A is isotopic in W into Σ;
(c) if Π is a component of $\Sigma_{\text {, }}$ then
(i) Π is Seifert fibered,
(ii) Π is an X-bundle over a compact, commected 2 -manifold, where X is I, $[0, \infty)$, or R,
or
(iii) there is a commected 2 -manifold \tilde{F} in Π such that each component of $\sigma(\Pi ; \tilde{F})$ is a twisted I-burdle over a compact connected 2 -manifold and \tilde{F} is the associated OI-bundle.
(iv) Π is an F-bundle over S^{1}, where F is a commected, compact 2 -manifold.

Proof:
Observe that $\left.\Sigma W_{k}=L K M_{n} 10 \leq n \leq k\right\}$. By condition (1),
M_{M} is compact for $n \geq 0$ and $50 \Sigma W_{k}$ is compact.

Therefore, (a) is proved.

For $n \geq 0$, let U_{n} be a regular meighborhood of Fr $\left(W_{n}\right)$
in W such that $A \amalg_{n}$ is a collection of disjoint ammuli each of which meets Fr(W_{m}) transversally in a single simple clased curve and such that $\left(U_{n} \cap \Sigma \operatorname{Fr}\left(U_{m}\right) \Pi \Sigma\right)$ is a product I-pair. Let $\Delta \hat{W}_{n}=c 1\left(\Delta W_{r}-\left(U_{n-1} U_{m}\right)\right)$. Let $\hat{M}_{n}=m_{n} r_{\Delta \hat{W}_{n}}$ and let $\hat{F}_{n}=\hat{M}_{m} \operatorname{Fr}\left(\Delta \hat{W}_{n}\right)$. By condition (S) of the hypothesis, $A \cap \Delta \hat{W}_{r}$ is isotopic in $\left(\Delta \hat{W}_{r}, F r\left(\Delta \hat{W}_{n}\right)\right.$) into $\left(\hat{M}_{n}, \hat{F}_{n}\right)$. So we have an isotopy defined on LK $\left.\Delta \hat{W}_{n} \mid n \geq 0\right\}$ such that $\left.A \cap\left(L \mathcal{A} \hat{W}_{n} \mid n \geq 0\right\}\right)$ is contained in LKM, $\left.\hat{M}_{n} \geq 0\right\}$. We may extend this isotopy to $\left.L K U_{n} \mid m \geq 0\right\}$. We are dome if
each ammulus A_{n}^{\prime} of $A U_{n}$ is isotopic rel ∂A_{n} in $\left(U_{n}, F r\left(U_{n}\right)\right)$ into ($\left.\Sigma U_{n}, \Sigma \Gamma F_{n}\left(U_{n}\right)\right)$ for all nig. We will perform isotopies to make this situation occur. Suppose that A_{n}^{\prime} is a comporsent of $A U_{n}$ such that A_{n}^{\prime} is not isotopic rel (OA) in $\left(U_{n}, F r\left(U_{n}\right)\right)$ into ΣU_{n} - Then there is a component \hat{A}_{r} of $A \|_{\Delta \hat{W}_{r}}$ and a component \hat{A}_{r+1} of ArßN \hat{W}_{r+1} which satisfy the hypothesis of (6). So there are S^{1}-pair components $\left(\hat{M}_{n}, \hat{F}_{n}\right)$ and $\left(\hat{M}_{n+1}, \hat{F}_{n+1}\right)$ of $\left(\hat{M}_{n}, \hat{F}_{n}\right)$ and $\left(\hat{M}_{n+1}, \hat{F}_{n+1}\right)$, respectively, such that \hat{A}_{n} is isotopic into $\left(\hat{M}_{n}, \hat{F}_{n}\right), \hat{A}_{n+1}$ is isotopic into $\left(\hat{M}_{n+1}, \hat{F}_{n+1}\right)$, and there are anmular components B_{n} and B_{n+1} of \hat{F}_{n} and \hat{F}_{n+1} respectively such that A_{n}^{\prime} is isotopic in Fr($\left.U_{n}\right)$ into $B_{n} U_{n+1}$ (By condition (7), there is a component V of $\Sigma \Gamma U_{n}$ with $\operatorname{VFFr}\left(U_{n}\right)=B_{n} U_{n+1} B_{n}$ Isotop A_{n}^{\prime} in $\left(U_{n}, F r\left(U_{n}\right)\right)$ so that A_{n}^{\prime} is contaimed in $V_{\text {. }}$ We may do this for each such component A_{n}^{\prime} of $A U_{n}$ for all nis. Now extend this isotopy of $\left.L_{n} \mid n \geq 0\right\}$ to an isotopy of W. By performing one final isotopy of LK $\Delta \hat{W}_{n}\{n \geq 0\}$ that is fixed on LKFr $\left\{U_{n}\right)$ In $\left.\geq 0\right\}$ and pushes each component \hat{A}_{n} of $A \cap \Delta \hat{h}_{n}$ into $\left(M_{n} ; F_{n}\right)$ for all $n \geq \theta_{\text {, }}$ we have verified (b).

Let Π be a compoment of Σ Let m be a component
of $\sum_{R O W}$ and let $F_{p}^{\prime}=M_{p} \operatorname{FFr}_{p}\left(\Delta W_{p}\right)$. If $\left(M_{p}, F_{p}\right)$ is an
5^{1}-pair, it follows that Π must be Seifert fibered since it is the union of Seifert fibered spaces which meet along saturated armuli. So we may assume that (M; ${ }^{\prime} \boldsymbol{F P}_{p}$) is an I-pair that is rot an s^{1}-pair. We construct a graph Γ corresponding to $I \Pi$ in the following way. For each nıo and each component M_{n} of M_{n} which is contained in $\Pi_{\text {, }}$ choose a point $v\left(M_{n}\right)$ Eint $\left(M_{n}\right)$ to be a vertex. For each $n \geq 0$ and each component E_{n} of $M_{n} M_{M_{n+1}}$ where M_{n} and M_{n+1} are components of $\Sigma \Pi \Delta W_{n}$ and $\Sigma \Pi \Delta W_{n+1}$, respectively, let $e\left(M_{n}, M_{n+1}, E_{n}\right)$ be an arc in $M_{n} L_{M_{n+1}}$ which pierces E_{n} at precisely one point. These $v(\ldots)$'s and e(_,_,_s will be the vertices and edges of Γ; respectively. Observe that any vertex v of Γ has index less than or equal to two. So Γ is either a singleton or a 1 -manifold. If Γ is a singleton, then one of the desired conclusions follows. So we may assume that Γ is homeomorphic to one of the following: $I, S^{1},[0, \infty)$, and R. If Γ is homeomorphic to S^{1}, then Π is an F-bundle over s^{1} for some compact, comected 2 -manifold F. Hence Π is Seifert fibered. Similarly, it is clear that if Γ is homeomorphic to R, then Π is homeomorphic to $F \times R$ for
some compact, connected 2 -manifold F.

Now suppose that Γ is homeomomphic to $[0, \infty)$. In this case each vertex of Γ except for $\partial \Gamma$ comresponds to a product. So if ∂r corresponds to a product, Π is homeomorphic to $F x[0, \infty)$ for some compact, conrected 2-manifold F; otherwise, Π must be a twisted R-bundle over a compact, commected 2 -manifold.

We may now suppase that Γ is homeomarphic to the clased unit interval I. Let a and b be the points of ər. If both a and b correspond to products, that Π is homeomorphic to FxI for some compact, connected 2-manifold F. If a corresponds to a product and b comresponds to a twisted bundle, then Π is a twisted I-bundle. So we may assume that both a and b correspond to twisted I-bundles. Since Γ is homeomorphic to I, there is an edge E contained in Γ. So there is a compact, commected $2-m a n i f o l d \tilde{F}$ contaimed in Π such that $\sigma(\Pi, \tilde{F})$ consists of two components each of which comresponding to a unique component of $\sigma\left(\Gamma_{\mathbf{Y}} \tilde{F}\right)$. By a previous case, this implies that Π fits (ciii).

Theorem VI-S. Let W be a noncompact, orientable, irreducible 3-marifold and let T be a compact 2 -manifold contained in OW which is incompressible in W. Suppose that (W, T) is good with good exhausting sequence $\left\{W_{n}\right\}$.

Then there exists a 3 -manifold Σ such that
(a) Σ is proper in W and Σ nowct;
(b) if A is a 2 -manifold whose components are homeomorphic to elements of the set
$\left\{S^{1} \times I, S^{1} \times 5^{1}, S^{1} \times[0, \infty), S^{1} \times R\right\}$ and which is proper, properly embedded, and strongly essential in $W_{\text {, }}$ then A is isatopic in W into $E ;$
(c) if Π is a component of Σ then either
(i) Π is seifert fibered or
(ii) Π is an X-bundle over a compact

2-manifold where X is I, $[0, \infty)$ or R;
(d) if Π is a component of Σ that is not Seifert fibered and K is a component of Fr(Σ), then K is strongly essential in W.

Proof:

Suppose that A is a 2 -manifold which satisfies the hypathesis of (b). Then by part (4) and lemma II. 3, we may assume that for $n \geq 0$ a component A_{n} of Arisw W_{n} is either an anmulus which is essential in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right.$) or a torus which is essential in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right)$. By lemma 5. 3 there is an ondered set $\left(M_{m}, F_{m}\right)$ |n \geqq of of Seifert pairs such that for $n \geq 0$
(VI.5.1) (Mr, F_{n}) is well embedded in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$; (VI.5.2) each comporent of $\mathrm{Fr}_{\text {(}}\left(\mathrm{M}_{\mathrm{r}}\right)$ is essential in
$\left(\Delta W_{r} ; \operatorname{Fr}\left(\Delta W_{n}\right)\right) ;$
(VI.5.3) if A_{n} is a component of $A H_{n} W_{n}$ then A_{n} is isotopic in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$ into $\left(M_{n}, F_{n}\right)$;
(VI. 5.5$) F_{n}$ is hard in $\operatorname{Fr}\left(\Delta W_{n}\right)$;
(VI. 5.6) the union of components of $F_{n} \operatorname{FFr}^{\prime}\left(W_{n}\right)$ which are not armuli are isotopic in $\operatorname{Fr}\left(W_{n}\right)$ to the union of components of $F_{n+1} \operatorname{Fr}\left(W_{n}\right)$ which are not anmuli;
(VI.5.7) if A_{n} is an anmulus which is essential in ($\Delta W_{n}, F r\left(\Delta W_{n}\right)$) and contained in $\left(M_{n}, F_{n}\right)$, and if there are disjoint simple closed curves in $\left(F_{n-1} \operatorname{FFr}\left(W_{n-1}\right) U\left\langle F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right)\right.$ which are isotopic in Fr $\left(\Delta W_{n}\right)$ to a component of A_{n} but are not parallel in $\left\{F_{n-1} \operatorname{Fr}\left(W_{n-1}\right) \cup\left(F_{n+1} \operatorname{Fr}\left(W_{n}\right)\right\rangle\right.$, then there is an S^{1}-pair component (M_{n}, F_{n}^{\prime}) of (M_{n}, F_{n}) such that A_{n} is isotopic in $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{r}\right)\right)$ into $\left(M_{n}, F_{n}^{\prime}\right) ;$
(VI.5.8) no two compoments of F_{n} which are ammli have cores which are parallel in Fr $\left(\Delta W_{n}\right)$.

By an isotopy of $\left.\operatorname{LKM}_{2 k} \mid k \geq 0\right\}$, we may assume that for $n \geq 0$ the union of monamular components of $F_{n} \Gamma\left(W_{n}\right)$ is actually equal to the union of momanmular components of $F_{n+1} \operatorname{Fr}\left(W_{n}\right)$, and if an ammulus B of F_{n} is isotopic in Fr(W_{n}) to ammulus B^{\prime} of F_{n+1}, then $B=B^{\prime}$. If B is an
annular component of $F_{n} \operatorname{FFr}^{\left(W_{n}\right)}$ which is not isotopic in Fr($\left.W_{n}\right)$ to an armular component of $F_{n+1} \operatorname{Fr}\left(W_{n}\right)$, then modify $\left(M_{n}, F_{n}\right)$ by removirg the interior of a regular neighborhood of B in M_{n}. Let $\left.\hat{\Sigma}=L K M_{n} \mid n \geq a\right\}$. Then by conditions (VI. S. 1-8) $\widehat{\Sigma}$ satisfies the hypothesis of lemma VI.4. Let $\widehat{\Pi}$ be a component of $\hat{\Sigma}$ that $i s$ neither seifert fibered nor a product. Then $\hat{\Pi} \Pi \omega W=\varnothing$. So $\hat{\Pi}$ is either an S^{1}-burdle over F or an F-bundle over 5^{1}, where F is a compact, commected 2 -manifold. Let $\Pi=c h a r(\hat{\Pi}, \boldsymbol{\Pi})$. Then Π is Seifert fibered ard any essential torus isotopic into $\hat{\Pi}$ is isotopic irto $\Pi_{\text {. }}$ Replace all such $\hat{\Pi}$ by the corresponding Π in this way to obtain Σ Note that Σ satisfies (a)-(c).

By part (d) of lemma III.4, Σ satisfies (d).

CHAPTER VII

SOME PROPERTIES OF NONCOMPACT

SEIFERT PAIRS

Let ($W_{5} T$) be a 3-marifold pair. Let ($\Sigma_{\mathbf{q}} \boldsymbol{\Phi}$) be a Seifert pair contained in (W, T) and let (Λ, Ψ) be the complementary pair to ($\Sigma, \boldsymbol{\Phi})$ in (W, T). We say that (Σ, \boldsymbol{T}) is strongly perfectly embedded in (W, T) provided
(i) (Σ, $\boldsymbol{\Phi}$) is perfectly embedded (W, T); (ii) each component of $\operatorname{Fr}(\Sigma)$ is strongly essential in (W, T);

Lemma VII.1. Suppose that W is a moncompact Seifert fibered manifold. Then W is irreducible. Praof:

Let 5 be a e-sphere that is contained in W. We wish to show that 5 bounds a 3-cell in W. This will follow if there exists an exhausting sequence $\left.W_{n}\right\}$ for W such that W_{n} is irreducible for $n \geq 0$. Let F be the orbit manifold for W and let $p: W-\rightarrow F$ be the associated quotient map. Let $\left\{F_{n}\right\}$ be ars exhausting sequernce for F, and for each $n \geq 0$ put $W_{m}=p^{-1}\left(F_{n}\right)$. Then $\left\{W_{n}\right\}$ is an exhausting
sequence for $W_{\text {, }}$ and each W_{n} is Seifert fibered and compact for $n \geq 0$. Now ∂W_{n} is nonempty for $n \geq 0$, and so in particular, no W_{n} is homeomorphic to either $s^{2} \times S^{1}$ or $p^{3} \#^{2} p^{3}$. Therefore, by lemma VI. 7 of [8], W_{n} is irreducible for nion.

Lemma VII.2. Let W be a connected, nomcompact Seifert fibered manifold that is not homeomorphic to $\mathbb{R}^{\mathbf{2}} \times 5^{\mathbf{1}}$.

Then there is an exhausting sequence $\left.W_{n}\right\}^{3}$ for W such that W_{n} is saturated with respect to the given fibering of W and $F r\left(W_{n}\right)$ is incompressible in W for all nig. In particular, W is end-irreducible.

Proaf:

Let F be the orbit manifold for W and let $p: W \rightarrow F$ be the quotient map. Suppose first that F is homeomorphic to R^{2}. Let $\left\{F_{n^{\prime}}\right.$ be an exhausting sequence of disks for F. For each nim put $W_{n}=p^{-1}\left(F_{n}\right)$. Since W is not homeomorphic to $R^{2} \times S^{1}$, W has at least two exceptional fibers J_{1} and J_{2}. We may assume that F_{o} contains $p\left(J_{2}\right) \cup p\left(J_{2}\right)=$ Therefore, $F r\left(W_{n}\right)$ is incompressible in W_{n} for niz. Suppose that D is a disk that is properly embedded in $W[\infty, n]$ such that $O D$ is momcontractible in

Lemma VII. 3. Suppose that (W, T) is a nomcompact X-pair for some commected 1 -manifold X with OW is romempty. (Note X is not the closed unit interval.) Suppose that A is a 2 -manifold whose compoments ane copies of $S^{\mathbf{1}} \times \mathbf{S}^{\mathbf{1}}$, $S^{1} \times I, S^{1} \times[O, \infty)$, and $S^{1} \times R$. Assume further that A is strongly essential in (W, T). (a) If (W, T) is homeomorphic to (Fx[0, ω), FxQ) for some compact, commected 2 -manifold F which is meither s^{2} mor $\mathrm{RP}^{\mathbf{2}}$, then each component A^{\prime} of A is homeomonphic to $S^{1} x[0, \infty)$ and A
is isotopic rel $\#$ to a 2 -manifold which is saturated in the product structure of $F x[a, \infty)$. (b) If (W, T) is either an R-pair or a $[0, \infty)$-pair, then A is saturated in the bundle structure of W. (c) If (W, T) is an s^{1}-pair and if F is an orbit manifold for W and $p: W \rightarrow F$ is the quotient map, then A is saturated in some seifert fibration of W. Furthermore, if (W, T) is not homeomorphic to $\left(S^{1} \times S^{1} \times[\theta, \infty), S^{1} \times S^{1} \times \theta\right)$, then A is isotopic in (W, T) to a 2 -manifold which is saturated with respect to p.

Proof:
Let us first consider case (a). In this case, $\{F \times[a, n] \mid n \geq 1\}$ is an exhausting sequence for W. Let A^{\prime} be a component of A.

Suppose that A^{\prime} is either a torus or an annulus.
Then we may choose n large enough so that A^{\prime} is contained in $F x[0, n]$. If A^{\prime} is an annulus, the $A^{\prime \prime}$ is contained in
 corollary 3.2 of [15]. So we may assume that A ' is a torus. By corollary 3.2 of [15], we may isotop A, in W so as to no longer meet $F x[0, n]$. Since n may be as large as we please, A^{\prime} is not strongly essential, and we have a contradiction.

Suppose that A^{\prime} is homeomorphic to $S^{\mathbf{1}} \times R$. By lemma II. 3 , we may assume for $n \geq 1$ that each component A_{n} of
$A^{\prime} \operatorname{M}(F x[0, n])$ is an annulus which is essential in
(Fx[0, $n], F x\{0, n\})$. But since $A \cap(F x \theta)=D_{9} \quad \partial A_{n}$ Fxn. So we may obtain a contradiction of the essentiality of A_{n} by an application of corollary 3.2 of [15].

We have thus far proved that each comporent of A is homeomorphic to $S^{1} \times[0, \infty)$. Since A is proper in $F \times[0, \infty)$, there is a compactification of $F x[0, \infty)$ to $F x[0,1]$ in which A compactifies to a 2 -manifold \hat{A} such that each compoment of \hat{A} is an annulus. By lemma 1.1 , there is an isotopy rel $\partial A \cap(F x \theta)$ of $F x[0,1]$ scuh that \hat{A} is saturated in $F x[0,1]$. By mestricting this isotopy to $F x[0, \infty)$, we have isotoped A rel OA to a saturated 2 -manifold. Let us now comsider case (b). There is an exhausting sequence $\left\{W_{n}\right\}$ for W such that W_{n} is an I-bundle over some compact, connected 2 -manifold F and Fr(W_{n}) is the corresponding ∂I-bundle and such that (W[$\left.\omega, n], F r\left(W_{n}\right)\right\rangle$ is homeamorphic to $F r\left(W_{n}\right) \times\left[0_{,}, \infty\right)$. By lemma II. 3, we may assume that $A \Pi W[\infty, 1]$ is strongly essential in $\left(W\left[\omega_{1} 1\right], F r\left(W_{1}\right)\right)$ and $A W_{1}$ is essential in $\left(W_{1}, \operatorname{TLFr}\left(W_{1}\right)\right)$. By part (a), ATW[0,1$]$ may be isotoped rel $\partial(A \Gamma W[\alpha, 1])$ to be saturated in W[a,1]. By lemma 1 . 1, we may isotop $A W_{1}$ rel of to be saturated in W_{1}. This finishes the proof of part (b).

Finally, let us consider case (c). By case (a), we
may assume that $(W, T) \neq\left(S^{1} \times S^{1} \times[0, \infty), S^{1} \times S^{1} \times 0\right)$. By lemma VII. 2 , there is an exhausting sequence $\left\{W_{n}\right\}$ for W which is saturated with respect to p and such that $F r\left(W_{n}\right)$ is incompressible in W for n 20 . By lemma II. 3, we may assume that each component A_{n} of ArNW is either an anmulus which is essential in $\left\langle\Delta W_{n}, F r\left(\Delta W_{n}\right)\right\rangle$ or a torus which is incompressible in ΔW_{n} -

Since (W, T) is not homeomorphic to $\left(S^{1} \times S^{1} \times[0, \infty), S^{1} \times S^{1} \times(0)\right.$, we may by taking a sub sequence of $\left\{W_{n}\right\}$ if necessary assume that $\left(W_{0}, T L F r\left(W_{0}\right)\right.$) is not homeomorphic to $\left(S^{1} \times S^{1} \times I, S^{1} \times S^{1} \times 2 I\right)$.

By VI. 18 of [B], orly three seifert fibered space with boundary have seifert fibration which are not unique up to ambient isotopy: $D^{2} \times S^{1}, S^{1} \times S^{1} \times I$, and a twisted I-bundle over the klein bottle. Observe that TLFM(W_{0}) has at least two components. So if W_{0} is a solid tomus or a twisted I-burdle over the klein bottle, each compoment of TLFr $\left(W_{0}\right)$ must be an ammulus which is saturated with respect to p.

By VI. 19 of [8], we may assume that if $q: W_{0}^{-\rightarrow q\left(W_{0}\right)}$ is a quotient map for some seifert fibration of W_{o} such that T is saturated with respect q, then q is isotopic to plWo Comsequently, by VI. 34 of [B], ATW, is
isotopic in (W_{0}, TLFr $\left(W_{0}\right)$) to a 2 -manifold which is saturated with respect to p / W_{0}. So we may isotop $O A$ in TLFr $\left\langle W_{o}\right.$) to regular fibers of p :

Suppose that for $0 \leq k \leq m-1$ ArFr $\left(W_{k}\right)$ is isotopic to a set of fibers of $p: W \rightarrow-F$. Let J be a component of ArFr $\left(W_{r}\right)$. Then J is a component of OAn for some annulus component A_{n} of $A \Pi \Delta W_{n}$: Suppose that $\partial A_{n}-J$ is contained in $F r\left(W_{n-i}\right)$. By the induction hypothesis, $\quad A_{n}-J$ is isotopic to a fiber and so by VI. 25 of [B] A_{n} is isotopic to a 2 -manifold which is saturated with respect to plown* So J is isotopic to a fiber of p. Now suppose that $\mathcal{A A}_{n}$ is contained in $F r\left(W_{n}\right)$. Then ΔW_{n} is homeomorphic to $S^{1} \times S^{1} x I$ only if each component of Fr(W_{n}) is an armulus which is saturated with respect to $p \| \Delta W_{n}$. So we may isotop An $\left(U_{n} F r\left(W_{n}\right)\right)$ in $U_{n} F r\left\{W_{n}\right\rangle$ to a set of fibers of p:W-HF.

By VI. 25 we may isotop AחAW W_{n} to a 2 -marifold which is saturated with respect to p by an isotopy which is fixed on Fr $\left(\Delta W_{n}\right)$. This ends the proof.

We say that $\left\{X_{n}\right\}$ is a nice exhaustion for a nomcompact connected 2 -manifold X provided
(i) X_{n} is commected for $n \geq 0$;
(ii) $F r\left(X_{n}\right)$ is nomcontractible in $X[\infty, 0]$ for $n \geq 0 ;$
(iii) no component of $X[\infty, 0]$ is compact;
(iv) if α is an arc of Fr $\left(X_{n}\right)$, then each
component of ∂x is contaimed in a noncompact component of $\partial \mathrm{X}$.

Lemmas VII.4-6 are obtaimed by extending the proofs found in chapter VI of [8].

Lemma VII.4. Let M and N be connected, nomcompact Seifert fibered manifolds and let $f: M \rightarrow-N$ be a homeomorphism. Suppose that SM $^{\boldsymbol{m}}$. Suppose that for some fiber T in $B M, f(T)$ is a fiber in $\mathcal{O N}^{\prime N}$. Then f is isotopic (rel T) to a fiber-preserving homeomorphism.

Proof:
Let S and T be the orbit manifolds of M and N, respectively. Let $\mu: M \rightarrow S$ and $v: N \rightarrow T$ be the induced quotient maps.

Let $\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ be nice exhaustions for S and T, respectively. Let $C_{n}=\mu^{-1}\left(S_{n}\right)$ and $D_{n}=\nu^{-1}\left(T_{n}\right)$ for $n \geq 0$. By taking subsequences, we may assume that $f\left(F_{r}\left(C_{n}\right)\right.$) is contained in ΔD_{n+1}, that T is contained in C_{o} and that $f\left(F r\left(C_{n}\right)\right)$ is incompressible in ΔD_{n+1}. Let F be a component of $f\left(\operatorname{Fr}^{\prime}\left(C_{n}\right)\right.$). Then F is either an armulus or
a tonus. In the case that F is a torus, we may assume that F is saturated with respect to $v \| \Delta D_{n+1}$ because ΔD_{n+1} has boundary. In the case that F is an amulus, we may assume that F is saturated since \mathcal{F} is isotopic to a union of regular fibers by part (iv) of the definition of nice exhaustion. This may be extended to an isotopy of f so that $f\left(F_{r}\left(C_{n}\right)\right.$) is saturated with respect to v for every $n \geq 0$. Hernce $f\left(C_{n}\right)$ is saturated with respect to v for every $n \geq 0$.

By VI. 19 of [B], there is an isotopy of ficn to a fiber preserving homeomorphism for each nı0. In particular, there is an isotopy of f(Fr($\left.C_{n}\right)$ to a fiber preserving homeomorphism for each riz0. So let us assume that flUKFr(C_{r}) In \leq of is fiber preserving. By applying VI. 19 of [B] to fl化 for $n \geq Q_{\text {, }}$ we see that f is isotopic to a fiber preserving homeomorphism.

Lemma VII. S. Let f:M-TN be a homeomorphism, where N is a conmected, noncompact Seifert fibered manifold which has norempty boundary. Suppose that M is not homemorphic to $S^{1} \times S^{1} \times[0, \infty)$. Let T be a component of am. Them up to ambient isotopy of M there is a unique simple closed curve in T which is mapped by f to a fiber of N. Proaf:

Fingt consider the case that T is moncompact. Then T is homeomorphic to $S^{\mathbf{1}} \times R_{3}$ and the conclusion follows because every moncontractible simple close curve in T is isotopic to $S^{1} \times 0$.

Now suppose that T is compact. Let $\mu: M \rightarrow S$ be the quotient map, where S is orbit manifold associated to M. Let $\left\{\xi_{n}\right\}$ be a nice exhaustion of S. Let $C_{n}=\mu^{-1}\left(S_{n}\right)$. We may assume that T is contaimed in C_{o} Simce M is not homeomorphic to $S^{1} \times S^{1} x\left[0 ; \infty\right.$, we may assume that C_{o} is not homeomorphic to $S^{1} x S^{1} \times I$. Since T is compact and therefore contained in $C_{o^{\prime}} T$ must be a componert of $O C_{o^{\prime}}$ Since M is noncompact, $\operatorname{Fr}\left(C_{o}\right)$ is nomempty and disjoint from T. Themefore C_{0} has at least two components. So we may assume that C_{o} is not homeomorphic to $D^{2} \times S^{1}$ or a twisted I-burdle over the klein bottle. Comsequently, by a lemma VI. 2 of $[8]$ upto an ambient isotopy of C os there is a unique simple clased curve in T which is mapped to a fiber. This isotopy may be extended to M.

Lemma VII.G. Let M and N be commected nomcompact Seifert fibered manifolds, and let $f: M-\rightarrow N$ be a homeomorphism. Suppose that M has nonempty boundany and is not homeomorphic to $5^{1} \times S^{1} \times[0, \infty)$. Then f is isotopic to a
fiber preserving homeomorphism.

Proof:

If follows from lemma VII. 5 that, up to ambient isotopy of M, there is a unique fiber T in om that maps to a fiber $f(T)$ of N. Therefore, by lemma VII. 5 , f is isotopic to a fiber preserving homeomorphism.

Definition VII.7. Let W be a noncompact, irreducible, end-irreducible 3-manifold and let T be a compact R-manifold contained in OW that is incompressible in W. Suppose that (Σ 亚) is a Seifert pair that is contained in (W, T) and that (Λ, Ψ) is its complementary pair in (W,T). Suppose that ($\Sigma, \bar{\sigma})$ and ($\left.\Omega_{,} \Psi\right)$ satisfy the following conditions
(a) $\langle\Sigma, \bar{\sigma}\rangle$ is strangly perfectly embedded in (W, T);
(b) if ($\lambda_{,} \Psi$) is a compoment of ($\Lambda_{g} \Psi$) which is an X-pair for some comected 1 -manifold X, then ($\lambda_{,} \Psi$) is a Y-shell for some commected 1 -manifold Y;
(c) if (λ, Ψ) is a compomert of (Λ, Ψ) which is an X-shell for some $X=\operatorname{Son}^{1}$, then exactly one component of $F r(\lambda)$ is contaimed in an 5^{1}-pair;
(d) if (λ, Ψ) is a component of (Λ, Ψ) which is an $S^{1}-$ shell and if $\left(\sigma_{1}, \varphi_{1}\right)$ and $\left(\sigma_{2}, \varphi_{2}\right)$ (which are possibly equal) are the components of $(\Sigma \boldsymbol{\Sigma} \boldsymbol{T})$ which meet $(\lambda, \boldsymbol{\psi})$, then $\left(\sigma_{1} \mathcal{L \sigma}_{2} L \lambda_{1} \varphi_{1} \mathcal{U} \varphi_{2}\right)$ cannot be fibered as an s^{1}-pair;
(e) every 2 -manifold that is proper, strongly
essential in (W, T), and whose components are copies of $S^{1} \times S^{1}, S^{1} \times I, S^{1} \times[0, \infty)$, and $S^{1} \times R$ is isotopic in (W, T) into (Σ, $\boldsymbol{\Phi}$).

Then we say that $(\Sigma, \overline{\$})$ is a weak characteristic pair of (W, T).

Lemma VII. . Let W be a noncompact, irreducible, end-irreducible 3-manifold and let T be a compact 2-manifold contained in ZW that is incompressible in W. Suppose that (Σ, \bar{T}) is a weak characteristic pair of (W, T). If (Π, Q) is a Seifert pair in (W, T) such that each component of $F r(I)$ is strongly essential in (W, T), then (Π, Ω) is isotopic in (W, T) into ($\Sigma, \bar{\Phi}$).

Proof:
By condition (5), we may assume that Fr(II) is contained in irst(E) and Fr(I) is contained in 更. We may assume that there is a componerit (π, ω) of (Π, Q) that contains a component (λ, Ψ) of (Λ, Ψ). Now (π, ω is an X-pair for some commected 1 -manifold X. By lemma VII. 3 as well as more classical results, we may assume that Fr(λ) is saturated in the X-pair structure of (π, ω). So (λ, Ψ) is ar X-pair. By condition (2), (λ, ψ) is a Y-shell for some commected 1 -manifold Y.

For each component K of Fr(IT), let G_{k} be the
component of $\Pi \Pi \Sigma$ which contains K. It may be that
($\left.Q_{K}, Q_{K} I T\right)$ is a Z-shell for some commected 1 -manifald Z. In this case, use Q_{k} to isotop K to $F r\left(Q_{K}\right)-K$. Then use the component $\left(\lambda^{\prime}, \Psi^{7}\right)$ of $\left(\Lambda_{,} \Psi\right)$ which contains $F r\left(Q_{K}\right)-K$ to isotop K so that (π, ω) no longer contains $\left(\lambda, \lambda^{\prime}, \psi^{\prime}\right)$. If this process is infinite, we may construct a product $K x[0, \infty)$ with $K=K x 0$ which is proper in W simce it is the union of components of Λ and Σ So since K is strongly essential in (W, T), this process eventually terminates. Do this for each component of Fr(II). Since the tracks of the indicated isotopies are disjoint, we may assume that $\left\{Q_{K}, Q_{K} \Pi T\right)$ is not a Z-shell for any comected 1-manifold Z.

Let $\left(\sigma_{1}, \varphi_{1}\right)$ and $\left(\sigma_{2}, \varphi_{2}\right)$ be (possibly coincident) components of ($\Sigma, \boldsymbol{\Phi})$ which meet (λ, ψ). We may assume that $\left(\sigma_{i} \Pi r_{i} \varphi_{i} \Pi_{N}\right)$ is an X_{i}-pair, where $\left(\sigma_{i}, \varphi_{i}\right)$ is an X_{i}-pair. By the preceding paragraph, $\left\{\sigma_{i} \cap \pi_{,} \varphi_{i} \cap \omega\right)$ is a Z-shell for some commected 1 -manifold Z only if σ_{i} is contaimed in n. Therefores we may assume that $X=X_{1}=X_{2}$ Now (λ, Ψ) is a Y-shell for some commected 1 -manifold Y. Suppose $Y=S^{1}$. Since $\left\{\sigma_{i} \Pi \pi_{9} \varphi_{i} \Pi \pi\right)$ has a unique fibering for $i=1,2$ by 1 emma VII. $\sigma_{,}\left(\sigma_{1} U \sigma_{2} U \lambda_{2} \varphi_{1} U \varphi_{2}\right)$ is an S^{1}-pair and this contradicts condition (4). So suppose that
$Y \neq A^{1}$. Then the fact that $X_{1}=X_{2}$ contradicts condition (3). Therefore, (λ, ψ) cannot be contained in (π, ω). This ends the proof.

Lemma VII.9. Let W be a noncompact 3 -manifold and let T be a compact 2 -manifold in OW which is incompressible in W. Suppose that (W, T) is good. Then a weak characteristic pair exists for (W, T).

Proof:
By theorem VI. 5 there is a Seifert pair ($\hat{\Sigma}$, 金) in (W, T) which satisfies condition (5) of lemma VII. 7 such that if $\langle\hat{\sigma}, \hat{\varphi}\rangle$ is a component of $(\hat{\Sigma}, \hat{\mathbf{S}})$ that is not an s^{1}-pair, then each component of $\mathrm{Fr}(\hat{\sigma})$ is strongly essential in (W, T) and $(\hat{\sigma}, \hat{\varphi})$ contains a strongly essential $S^{1} \times S^{1}, S^{1} \times I, S^{1} \times[0, \infty)$ or $S^{1} \times R$. Say that a component K of $\operatorname{Fr}(\Sigma)$ is not strongly essential in (W, T). Let $(\hat{\sigma}, \hat{\psi})$ be be the component of ($\hat{\Sigma}, \hat{\boldsymbol{T}}$) that contains K . Then $(\hat{\sigma}, \hat{\varphi})$ is an s^{1}-pair. If there is a product pair (K×I, ($K \times I) U(K \times 1)$) contained in (W, T) with $K \times \Omega=K$, then
 attaching (KxI,(OKxI)U(Kx1)). If there is a product $K \times[\theta, \infty)$ with $K \times \theta=K$, then $\left(\hat{\sigma} \cup(K x[\theta, \infty), \hat{\varphi})\right.$ is an s^{1}-pair; modify $(\hat{\Sigma}, \hat{\omega})$ by attaching $(K \times[0, \infty), \varnothing)$. Perform these
operations globally to obtain a Seifert pair ($\Sigma_{\text {(}} \mathbf{S}$) such that each compoment of Fr(F$) \mathrm{is}$ strongly essential in (W,T). (This follows from lemma III. 1 and theorem III.3.)

Let (Λ, Ψ) be the complementary pair to (Σ, Φ. Suppose that these are distinct compoments (σ, φ) and $\left(\sigma^{7}, \varphi^{9}\right)$ and (Σ, Φ) and a component (λ, ψ) of $\left(\Lambda_{,} \Psi\right)$ such that (λ, ψ) and (σ, φ) are X-shells and (σ, φ) and $\left(\sigma^{\varphi}, \varphi,\right)$ each contain one component of Fr(λ). Modify (Σ. $\overline{\text { Th }}$ (ard
 applying this operation globally, we obtain a seifert pair that is strongly perfectly embedded in $\left(W_{\mathbf{F}} T\right.$).

Now suppose that there is a component (λ, ψ) of (Λ, () that is an X-pair for some corrected 1 -manifold X. If (λ, φ) is a Y-shell for some Y, no operation is performed. Suppose that (λ, Ψ) is not a Y-shell for any Y. Then $\left(\lambda_{\boldsymbol{\prime}} \Psi\right.$) has a unique fiber structure. Let W be a saturated regular neighborhood of Fr(λ) in λ. Let $\sigma_{\lambda}=c 1(\lambda-N)$ and let $\varphi_{\lambda}=\sigma_{\lambda} \Gamma i t$. Now modify (Σ, Φ by attaching $\left(\sigma_{\lambda}, \varphi_{\lambda}\right.$). The net induced change in ($\Lambda_{,} \Psi$) will be in removing (λ, ψ) and attaching (N,N/T). Applying this globally results in complementary pairs ($\Lambda_{\text {g }} \Phi$) and (इ, 面) which satisfies conditions (1) and (2) of lemma VII. 7.

Now suppose that (λ, Ψ) is a compoment of ($\Lambda_{,} \Psi$) that is a Y-shell for some conmected 1 -manifold Y. Let
$\left(\sigma_{1}, \varphi_{1}\right)$ and $\left(\sigma_{2}, \varphi_{2}\right)$ be the components of（ $\Sigma, ~$ 更）that meet Fr（ λ ）．（It may be that $(\sigma, \varphi)=(\sigma, \varphi)$ ．）If meither $\left(\sigma_{1}, \varphi_{1}\right)$ nor $\left(\sigma_{2}, \varphi_{2}\right)$ is an $S^{1}-p a i r$, the $\left(\sigma_{1} \cup \sigma_{2} \cup \lambda_{2} \varphi_{1} \cup \varphi \varphi_{2} \cup 4 \psi\right)$ is an X－pair for some $X=\boldsymbol{N}^{\mathbf{1}}$ ；in this case，modify（ Σ ，更） by attaching (λ, ψ) and make the corresponding adjustment to（ $\left.\Lambda_{,} \Psi\right)$ ．If both $\left(\sigma_{1}, \varphi_{1}\right)$ and $\left(\sigma_{2}, \varphi_{2}\right)$ are S^{1}－pairs and
 attaching (λ, Ψ) and modify (λ, Ψ) as required．Applying these operations globally，we obtain（ Σ, \boldsymbol{S} ）and（ $\Lambda_{\text {，}} \boldsymbol{\Psi}$ ）
 （ Σ 更）also satisfies（5）．We are dome by applying lemma VII．7．E

CHAPTER VIII

WEAKLY CHARACTERISTIC SERUENCES

Lemma VIII_1. Suppose that $\langle W, T\rangle$ is a commected S^{1}-pair, W is noncompact and T is compact. Let F be a compact, where conmected 2 -manifold in $(W, c l(O W-T)$) that is incompressible in W. If F is no parallel in W to a 2-manifold in cl(OW-T), then F is an amulus or torus. In fact F is isotopic in (W, T) to a saturated annulus or torus.

Proof:
Suppose that S is the orbit manifold for W and that $p: W \rightarrow \rightarrow$ is the associated quotient map. Let $\left\{S_{n}\right\}$ be an exhausting sequence for 5 and put $W_{n}=p^{-1}\left(S_{n}\right)$ for each n!0. By taking a subsequence of $\left\{W_{n}\right\}^{\prime}$, we may assume that F is contained in W_{o}. Since FRFr(W_{o}) is empty, (p|F) is mot a covering map onto S_{0} Since F is not parallel intocl(OW-T), it follows from VI. 34 of [B] that F is an ammulus or torus which is isotopic to a saturated anmulus or torus.

Lemma VIII_E. Suppose that (W, T) is a commected X-pair
that is not an S^{1}-pair, where W is noncompact and T is compact. Let F be a compact, connected 2 -manifold in ($W, c l(\partial W-T)$) which is incompressible in W. If F is not parallel in W to a 2 -manifold in $C l(O W-T)$, then F is isotopic in (W, T) to a 2 -manifold which is transverse to the X-burdie structure of W.

Proof:
There exists an exhausting sequerce $\left\{W_{n}{ }^{3}\right.$ for W such that W_{0} is an I-bundle and $\left(\Delta W_{n}, \operatorname{Fr}\left(\Delta W_{n}\right)\right.$) is homeomorphic to (Fr(W_{0}) $\left.x I, F r\left(W_{0}\right) x \partial I\right)$ for $n \geq 1$. By taking a subsequence, we may assume that F is contained in W_{0} Hence, by II.7.1 of [7] F is isotopic in W_{0} to a 2-manifold that is transverse to the I-bundle structure of W_{o} This isotopy may be extended to an isotopy of W.

Lemma VIII. 3. Suppose that (W, T) is a goad 3-manifold pair. And suppose that $\mathrm{fW}_{\mathrm{n}}{ }^{\mathbf{3}}$ is a good exhausting sequence for W. Let (Π, Ω) be a Seifert pair in (W, T) such that Fr(II) is strongly essential in (W, T). Then there is an isotopy $H: W x I \rightarrow W$ with $H(x, \theta)=x$ for all $x \in W$ such that $\left(H(\pi, 1) \pi W[\infty, p], H(\pi, 1) \pi F r\left(W_{p}\right)\right)$ is a Seifert pair in $\left(W[\infty, p], \operatorname{Fr}\left(W_{p}\right)\right), \operatorname{Fr}(H(\pi, 1) \Gamma W[\infty, p] ; W[\infty, p])$ is strongly essential in $\left(W\left[\omega_{,} p\right], F r\left(W_{p}\right)\right.$), and no component of

Fr(H(H, 1)) $\cap \Delta W_{p}$ is parallel in ΔW_{p} to a R-manifold in Fr $\left(\Delta W_{p}\right)$ for $p \geq 0$.

Proof:

By lemma II. 3, we may perform an isotopy of Fr(II) in (W,T) so that $\left.\operatorname{Fr}(\Pi) \operatorname{HFr}^{(} W_{p}\right)$ consist of simple closed curves that are imcompressible in both Fr(I) ard Fr(W_{p}) for all pio and such that mo component of $\operatorname{Fr}(\Pi) \Pi \Delta N$ is parallel in ΔW_{p} to a e-manifold in Fr $\left(\Delta W_{p}\right)$ for any $p \geq 0$. Consequently, each component of $F r\left(W_{p}\right)$ กII is incompressible in $I I$ for $p \geq 0$ and no compornent of $F r\left(W_{p}\right)$ nII is parallel in Π to a 2 -manifold incl(Fr(I)-Q). If ($\Pi_{,}$Q) is an S^{1}-pair, lemma VIII. 1 gives us that Π Fri (W_{p}) is saturated in $\Pi_{\text {, }}$ so ($\Pi \Pi W\left[\omega_{,} p\right], \Pi \Pi F r\left(W_{p}\right)$) is an S^{1}-pair. If (Π, Q) is not an S^{1}-pair, then lemma VIII. 2 gives us that Π IFrr $\left(W_{p}\right)$ is transverse to the bundle structure of Π. We may assume that (MIW[$\omega, p], \Pi \Pi F r\left(W_{p}\right)$) is a Seifert pair for all pio. Since each component of Fr(I) is strongly essential in (W, T) and mo compoment of $F r(\Pi) \Pi \Delta W_{n}$ is parallel in ΔW_{n} to a 2 -manifold in $F r\left(\Delta W_{n}\right)$ for any $n \geq a_{\text {, }}$ we may comclude that $F r(\Pi) \Gamma W[\infty, p]$ is strongly essential in $\left(W\left[\omega_{,} p\right], F r\left(W_{p}\right)\right)$ for all $p \geq 0$.

Let V be an onientable, imreducible, noncompact

3-manifold. We say that V is eventually good provided there is a compact 3 -manifold v_{0} in V such that (cl(V-V),Fr(Vo)) is a good 3-manifold pair.

Definition VIII.4. Suppose that V is an eventually good 3-manifold. Let v_{0} be a compact 3 -manifold in V such that $\operatorname{Fr}\left(v_{0}\right)$ is incompressible in $c l\left(v-v_{0}\right)$ and (cl $\left.\left(V-V_{0}\right), F r\left(V_{0}\right)\right)$ is good. Let $\left\{V_{n} \mid n \geq 0\right\}$ be an exhausting sequence for V such that $\left\{c 1\left(V_{n}-V_{0}\right)\right.$ In $\left.\geq 1\right\}$ is a good exhausting sequence for (cl(V-V),Fr(V)). Suppose for $q \geq 0$ there is a Seifert pair ($\Sigma_{q}, \boldsymbol{E}_{q}$) such that
(a) (Σ_{q}, \bar{T}_{q}) is a weak characteristic pair of $\left(V[\infty, q], \operatorname{Fr}\left(V_{q}\right)\right) ;$
(b) if (Π, Q) is a Seifert pair in (V[$\alpha, q]$, $\operatorname{Fr}\left(V_{q}\right)$) such that $\operatorname{Fr}(\Pi)$ is strongly essential in (V[$\alpha, q], \operatorname{Fr}\left(V_{q}\right)$, then (Π, Ω) is isotopic in (V[$\alpha, q], \operatorname{Fr}\left(V_{q}\right)$) into (\sum_{q}, Φ_{q});
(c) for $p \geq q \geq 0, \operatorname{Fr}\left(\Sigma_{q}\right) \Pi \Delta V_{p}$ is composed of ammuli and tori which are not parallel into 2-manifolds in Fr $\left(\Delta N_{p}\right)$;
(d) for $p \leqslant q,\left(\Sigma_{q} \cap N[\infty, p], \Sigma_{q} \cap F_{i}\left(V_{p}\right)\right.$) is a strong Seifert pair such that $\operatorname{Fr}\left(\Sigma_{q} \Gamma N\left[\alpha_{;} p\right] ; V[\omega, p]\right)$ is strongly essential in (V[$\left.\alpha, p], \operatorname{Fr}\left(V_{p}\right)\right)$;
(e) for $p \mathbb{Z} q$, ($\Sigma_{q} \Gamma N\left[\alpha_{,} p\right], \Sigma_{q} \Gamma F r\left(V_{p}\right)$) is isotopic in
(V[$\infty, p], F r\left(V_{p}\right)$) a saturated submanifold of $\left(\operatorname{int}\left(\Sigma_{p}\right), \operatorname{int}\left(\bar{T}_{p}\right)\right)$.

Then we say that $\left\{\left(\Sigma_{q}, \bar{T}_{q}\right) \mid q \geq 0\right\}$ is a weakly characteristic sequence for $\left(V,\left\{V_{q}{ }^{3}\right)\right.$.

Let W be a noncompact 3 -manifold. Suppose that P is a plane that is proper in W. We say that p is montrivial if there is no proper embedding $f: \mathbb{R}^{\mathbf{2}} \times[0, \omega)-\rightarrow \omega$ with $f\left(R^{2} \times(\theta)=P\right.$.

Lemma VIII.5. Suppose that V is an eventually good 3-manifold. Let V_{0} be a compact 3 -manifold in V such that $\operatorname{Fr}\left(V_{0}\right)$ is incompressible in cl(V-Vo) and $\left(c l\left(V-V_{0}\right), F r\left(V_{0}\right)\right)$ is good. Let $\left\{V_{n} \mid n \geq 0\right\}$ be an exhaustimg sequence for V such that $\left\{c 1\left(V_{n}-V_{o}\right) \mid n \geq 1\right\}$ is a good exhausting sequence for $\left(c l\left(V-V_{0}\right), F r\left(V_{0}\right)\right)$. Then there exists a weakly characteristic seifert sequence for $\left(V,\left[V_{n}\right\}\right)$

Furthermore, if is a finite set of pairwise disjoint planes that are essential and proper in V, then there is an m such that for each pep the noncompact component A_{p} of $\operatorname{PIN}\left[\omega_{3} m\right]$ is an incompressible copy of $S^{1} \times[0, \infty)$ and an isotopy $H: V \times I \rightarrow V$ fixed on V_{m} with
$H(x, B)=x$ for all $x \in V$ and $H\left(L P-V_{m}, 1\right)$ contained in \sum_{m}. Proof:

We proceed inductively. By lemma VII. 9, there exists a seifert pair ($\left.\Sigma_{0}, \bar{T}_{0}\right)$ which satisfies (a) of VIII. 4 and therefore (b) of VIII. 4 by lemma VII. B. By lemma VIII. 3, we may assume that ($\Sigma_{0} \boldsymbol{T}_{0}$) satisfies (c) and (d) of VIII.4. By lemma VII. 9, there exists a seifert pair ($\left.\Sigma_{1}, \Phi_{1}\right)$ which satisfies (a) of VIII. 4 and therefore (b) of VIII. 4 by lemma VII. B. Since $\left\langle\Sigma_{1}, \mathbb{F}_{1}\right.$) satisfies (b) of VIII.4, we may assume that $\left(\Sigma_{0} \Pi N\left[\omega_{3} 1\right], \Sigma_{0} \operatorname{Fr}\left(V_{1}\right)\right)$ is contained in $\left(\Sigma_{1}, \bar{T}_{1}\right)$ by performing the reverse of the given isotopy. Since ($\Sigma_{0}, \mathbb{T}_{0}$) satisfies (a) of VIII. 4 , we may isotop $\operatorname{Fr}\left(\Sigma_{1} ; V[\infty, 1]\right)$ in $V[\infty, 1]$ without moving $\operatorname{Fr}\left(\Sigma_{0} ; V[\infty, 1]\right)$ so that ($\Sigma_{1}, \mathbf{F}_{1}$) satisfies (c) of VIII. 4 as well as (a) and (b) of VIII.4. By repeating this inductively, we have verified (a)-(e) of definition VIII.4.

Now suppose that P is a finite set of pairwise disjoint plames that are essential and proper in V. Choose mil to be large emough so that for each pep only one component of $V[m, 0] \Gamma P$ spans $V[m ; 0]$ and such that if D is a disk in P with PrN ${ }_{m}$ contained in D, then $O D$ is not homotopic in $V[\infty, m]$ to a point.

Choose n) m so that (UP) $T N_{m}$ is contained in int $\left(V_{n}\right)$.

Isotop (LP) by an isotopy fixed on $V\left[\omega_{3} n\right]$ so that \# ((U) $\mathrm{HFr}_{\mathrm{H}}\left(V_{m}\right)$) is minimal. The choice of m implies that \#(PRFr $\left.\left(V_{m}\right)\right) \geq 1$ for every Pep. Suppose that J is a component of (UP) TF. There is a Pep and a disk EDP with $J=$ EE. By the minimality of \# (UP) TF) and the irreducibility of $V\left[\omega_{3}, 0\right]$, we may conclude that ERNo is nomempty. By the fact that a component of ETN [m, 0] spans $V[m, 0]$ and the choice of m, we may deduce that any two distinct components of PrFr $\left(V_{m}\right)$ are parallel in P. For each Pep, let A_{p} be the nomcompact component of PIN[∞, m. Then for each Pep, A_{p} of PIN $[\infty, m]$ is homeomorphic to $s^{1} \times[0, \infty)$.

To see that A_{p} is incompressible in V[$\left.\infty_{m}\right]$, suppose that D is a disk in $V\left[\omega_{1} m\right]$ with $D \Pi A_{p}=O D$ and θD noncontractible in A_{p}. Now there is a disk D ' in P with OD'= OD. Note that PrN_{m} is contained in D^{\prime}. So $2 D^{\prime}$ is not homotopic in $V[\infty, m]$ to a point. But this contradicts that fact that ${\partial D^{\prime}=}_{\prime}=\partial D$ and D is contaimed in $V[\infty, m]$.

Since A_{p} is incompressible in V[m,m] for each Pep;

Ap is strongly essential in $\left(V\left[\omega_{0} m\right], \operatorname{Fr}\left(V_{m}\right)\right)$ for each
Pep. Therefore there is an isotopy $H: V[a, m] \times I \rightarrow V[\infty, m]$ with $H(x, \theta)=x$ for each $x \in V\left[\infty_{1} m\right]$ such that $H\left(L_{p}, 1\right) \in \Sigma_{m^{*}}$

We may extend this to an isotopy $\hat{H}: V \times I \rightarrow V$ which is fixed off a regular neighborhood of $V[a, m]$.

CHAPTER IX

WHITEHEAD MANIFOLDS OF

FINITE GENUS

Let V be an immeducible, contractible, open 3-manifold. Then we say that V is a Whitehead marifold.

Lemma IX.1. Suppose that V is a Whitehead marifold with finite genus $g \geq 2$ at infinity Let V_{a} be a compact 3-manifold in V such that $F r\left(V_{o}\right)$ is incompressible in cl(V-V V_{0}, Fr(V_{0}) has gerius g, and every torus in cl(V-Vo) bounds a compact 3 -manifold in cl(V-Vo). Let (Π, Ω) be a commeted, moncompact S^{1}-pair with $\Omega \neq \varnothing$ and incompressible in cl(V-V V_{0} which is proper in (cl(V-Vo), Fr(Vo)) and such that any component of Fr(I) which is not a torus is incompressible in cl(V-Vo). Then there is an $\mathbf{S}^{\mathbf{1}}$-pair ($\hat{\Pi}, \hat{\Omega})$ which contains (Π, Ω), is proper in $\left(c 1\left(V-V_{0}\right), F r\left(V_{0}\right)\right)$, and is such that Fr(冎) is strongly essential in (cl(V-Vo), Fr($\left.\left.V_{0}\right)\right)$; in particular, $\bar{\Pi}$ is the union of Π with some comp nents of cl(cl(V-V $)-\Pi)_{0}$. In
addition if T is a torus in $F r(I T)$, then either T is essential in (cl(V-V), V_{0}) or T bounds a solid torus in cl $\left(v-v_{0}\right)$.

Praof:
Suppose that T is a component of Fr(II) which fails to be strongly essential in (cl(v-Vo, Fr($\left.\left.V_{0}\right)\right)$. Then T is not homeomorphic to $S^{1} x[0, \infty)$ since in that case one could not isotop T to be disjoint from Fr(V). With the above case eliminated, we will now proceed to show that in the remaining situations
(IX.1.1) there is a component W of $c l\left(V-V_{0}\right)$-int (I) with $W \Pi \pi=T$ and $\left(\Pi L W, S U\left(W H F r\left(V_{o}\right)\right)\right)$ an S^{1}-pair.

Suppose that T is homeomorphic to $S^{1} \times R$. Then by lemma III. 3 the closure W of one component of cl $\left(V-V_{0}\right)-T$ is homeomarphic $S^{1} \times \mathbb{R} \times[0, \infty)$. Since Ω is not empty, Π is not contained in W. So W is a component of cl(V-V V_{0}-int (I) which satisfies (IX.1.1).

Suppose that T is an amulus. Then there is a product $T \times I$ in $c l\left(V-V_{0}\right)$ such that $T \times Q=T$ and ($\left.T \times 1\right) U(\partial T \times I)$ is contained in $\mathrm{Fr}_{\mathrm{K}} \mathrm{V}_{0}$). Since $\mathrm{T} \times \mathrm{I}$ is compact and Π is noncompact and proper, $T \times I$ is a component of cl(V-V $)_{o}$-int(I). Put $W=T x I$. Then W satisfies (IX.1.1).

Suppose that T is a torus. We claim that T is compressible. To get a contradiction, we assume that T is incompressible. Since T is not strongly essential, either T is parallel to a 2-manifold in Fr(V) or, by lemma III. 1, there is a properly embedded $T_{x}[0, \infty)$ in cl $\left(V-V_{0}\right)$ with $T \times Q=T$. Since $F r\left(V_{0}\right)$ has genus at least Z, T cannot be parallel in cl $\left(V-V_{0}\right)$ to a 2 -manifold in Fr $\left(V_{0}\right)$. Since v is of genus at least 2 , there is a compact 3-manifold X in V such that TUN $_{0}$ is contained in int (X) and ∂X has genus g and is incompressible in cl($\left.V-V_{0}\right)$. Since $T_{x}[0, \infty)$ is proper in $c l\left(V-V_{0}\right), T \times[0, \infty)$ must contain $\partial \mathrm{X}$. Now $\partial \mathrm{X}$ must be incompressible in $T x\left[(\infty, \infty)\right.$, and therefore $₹ x$ must be parallel to $T \times \theta_{\text {in }}$ $T x[0, \infty)$. This contradicts the fact that the genus of ∂x is at least 2 . Therefore, T must be compressible in cl(v-vo $)$

By choice of V_{0}, there is a compact 3 -manifold W in cl $\left(V-V_{0}\right)$ with $T=O W$. Since Π is proper and noncompact, $\Pi \Pi W=T$. Let D be a disk in cl $\left(v-V_{0}\right)$ with $D \Pi T=\varnothing D$ and aD nontrivial in T. Since all non-torus components of Fr(II) are incompressible, we may assume that $D \operatorname{FFr}(\Pi)=0 D$. We claim that D is contained in W. Assume that D is contained in Π in order to get a contradictior. Let Dx[-1,1] be a regular neighbortood of D in Π with Dx日=D.

Let A be the annulus $c l(T-(\partial D x[-1,1]))$. Then
(Dx\{-1,1\})UA is a 2-sphere which, by lemma VII.1, bourids a 3-cel1 B in IT. Simce $B \cap(D x[-1,1])=D x\{-1,1\}$, B camot contain Dx日. Therefore, $\Pi=B U(D x[-1,1])$ which contradicts the fact that Π is nomcompact. Therefore, D must be contained in W.

Let $D x[-1,1]$ be a regular neighborhaad of D in W let A be the amulus $c l\left(T-\left(\partial D_{x}[-1,1]\right)\right.$. Then AU(Dx\{-1, 1\}) is a e-sphere which bounds a 3-cell B in cl(V-Vo). Since $\theta=1\left(V-V_{0}\right) \neq D_{0}$ B must be cantained in W. Since B does mot contain $D x 日, W=B U(D x[-1,1])$.

Therefore, since V is orientable, W must be a solid torus. Since Q is incompressible in cl(V-V) no fiber of Π is trivial in $\pi_{1}\left(c l\left(V-V_{0}\right)\right)$. So no fiber of T bounds a disk in W. So W satisfies (IX. 1. 1).

Lemma IX. ㄹ. Suppose that V is a Whitehead manifold finite gernus $g \leq 2$ at infinity. Let $\left\{V_{n}\right\}$ be an exhausting sequence for V such that for $n \geq 0$
(1) V_{r} is commected;
(2) Fr $\left(V_{n}\right)$ is comnected;
(3) Fr(Vn) is incompressible in V[ω_{1}, 0$]$;
(4) genus $\left(\operatorname{Fr}\left(V_{n}\right)\right)=9$;
(5) $V[\infty, n]$ is commected. Let $\left\{\left(\Sigma_{n}, \Phi_{n}\right) \mid n \underline{0}\right\}$ be a
weakly characteristic sequence for $\left(V,\left(V_{n}\right)\right.$ ．For each $n \geq 0$, let $\left(\tilde{\Sigma}_{n}, \tilde{⿳ ㇒ ⿻ ⿱ 一 ⿱ 日 一 丨 一 口 刂}^{n}\right)=\left\{(\Pi, Q) \mid(\Pi, Q)\right.$ is a noncompact S^{1}－pair component of $\left\{\Sigma_{n}, \Phi_{n}\right\}$ with $\left.Q \neq \theta\right\}$ ．If $\left.\left.n\right\rangle\right\rangle \theta$ and $\left.\left.p\right\rangle\right\} n$ ，then no compoment of $c l\left(F_{r}\left(V_{p}\right)-\tilde{\Sigma}_{n}\right)$ is an anmulus． Praof：

Since V is contractible and has genus at least P at infinity，for $n \gg$ every torus T in V［a，$n]$ bounds a compact 3 －manifold M_{T} in $V[a, n]$ from this point in the proof we will assume n to be at least this large．

Choose p large erough so that each armulus of Fr（ Σ_{n} ）is contained in int（ V_{p} ）．Suppose that there is a component A of cl（Fr（ $\left.\left.V_{p}\right)-\sum_{n}\right)$ which is an anmulus．

Let $\left(\Pi_{1}, \Omega_{1}\right)$ and $\left(\Pi_{2}, \Omega_{2}\right)$ be the components of （ $\tilde{\Sigma}_{n}, \tilde{⿳ ㇒}_{n}$ ）which contain the compornents of OA ．（It may be that $\left(\Pi_{1}, Q_{1}\right)=\left(\Pi_{2}, \Omega_{2}\right)$ ．$)$ Let N be a regular neighborhaod of A in $c 1\left(V\left[\infty_{n} n\right]-\tilde{\Sigma}_{n}\right)$ such that $N F_{F r}\left(\tilde{\Sigma}_{n}\right)$ is a regular neighborhoad of $\Rightarrow A$ in $\operatorname{Fr}\left(\tilde{\Sigma}_{n}\right)$ ．By lemma VIII． 1 and part （4）of the hypothesis on $\left\{V_{n}\right\}$ ，each component of Fr（ $\left.V_{p}\right) \cap_{\Sigma_{n}}^{\tilde{n_{n}^{\prime}}}$ is an armulus which is isotopic in $\tilde{\Sigma}_{n}$ to a saturated annulus．So OA is isotopic in Fr（ $\left.\tilde{\Sigma}_{n}\right)$ to a union of two fibers in $\tilde{\Sigma}_{n}$ ．Therefore，the fibering of
$\Pi_{1} \cup \Pi_{2}$ extends to $\Pi_{1} \cup \Pi_{2}$ LN. So $\left(\Pi_{1} \cup \Pi_{2} \cup N_{2} \Omega_{1} \cup \Omega_{2}\right)$ is a noncompact S^{1}-pair. By lemma $I X .1$, there is an S^{1}-pair ($\left.\Pi_{,} \Omega\right)$ containing $\left(\Pi_{1} \cup \Pi_{2} L N_{2} \Omega_{1} \cup \Omega_{2}\right)$ such that Fr(Π) is strongly essential in $\left(V[\infty, n], F r\left(V_{n}\right)\right) ;$ in addition if T
 solid torus in V[$\alpha, n]$.

By lemma VII.7, there is an isotopy
$H: V[\infty, n] x I \rightarrow \rightarrow V[\infty, n]$ with $H(x, \theta)=x$ for all $x \in V[\infty, n]$ such that $H(\Pi, 1)$ is contaimed in int $\left(\Sigma_{n}\right)$.

Let us first assume that a component of ∂A is contained in a compact component F of $\operatorname{Fr}\left(\Sigma_{n}\right)$. Then F is a torus which must bound a compact 3 -manifold M in
$V[\infty, n]$. Since A is contained in $c l\left(V[a, n]-\sum_{n}\right)$, A must be contained in M. Therefore, $O A$ is contained in $F=B M$, and $\Pi_{1}=\Pi_{2}$ Let A^{\prime} and $A^{\prime \prime}$ be the amuli in F with $O A^{\prime}=A A^{\prime \prime}=A$. Let $T^{\prime \prime}$ and $T^{\prime \prime}$ be the components of $F r\left(\Pi_{1}(W)\right.$ which meet A^{\prime} and $A^{\prime \prime}$, respectively. Then T ' and $T^{\prime \prime}$ are tori which are isotopic in V[$\infty, n]$ to $A^{\prime} \cup \mathcal{A}$ and $A^{\prime \prime} \cup A$, respectively. We claim that both T, and T " are compressible. To get a cortradiction, suppose that one of these tori, say T^{\prime}, is incompressible. Then A^{\prime} LA is incompressible. Simce M is compact, since $H(\Pi, 1)$ is nomeompact and proper, and since $H(\Pi, 1) \Gamma F=\varnothing_{\text {, }}$ it follows that $H\left(\Pi_{,}, 1\right)$ is contained in $V[a, n]-M$. So by proposition
5.4 [15] there is a product ($A^{\prime}(A) \times I$ such that ($\left.A^{\prime} \cup A\right) \times\left(A=A^{\prime} \cup A\right.$ and $\left(A^{\prime} L A\right) \times 1=H\left(A^{\prime} \cup A, 1\right)$. Since $H\left(A^{\prime} \cup A, 1\right)$ is contained in $V[\infty, n]-M, \quad\left(A^{\prime} L A\right) \times I$ must contain $O M$. So $A^{\prime \prime}$ is an imcompressible 2 -manifold in (A' LA)xI with OA" contained in ($A^{\prime} \cup A$) \times. S. Since $V[\infty, n]$ is noncompact, $A^{\prime \prime}$ must be parallel in (A^{\prime} LA) xI to A. However, this would imply that, for some $m>n$, a component of $A r \Delta V_{m}$ is is parallel to a 2 -manifold in $\operatorname{Fr}\left(\Delta V_{m}\right)$ which contradicts part (c) of definition VIII.4. So we must assume that both T" and T" are compressible.

By lemma $I X .1, T^{\prime}$ and $T^{\prime \prime}$ bound solid tori $U^{\prime \prime}$ ard $U^{\prime \prime}$, respectively, in $V[\infty, n]$. Now both $U^{\prime \prime}$ and $U^{\prime \prime}$ meet F in an armulus which is saturated in Π_{1}. Since M=U'UUN $\mathcal{U N}_{\text {G }}$ it follows that $\left(\Pi_{1} L M, \Omega\right)$ is an 5^{1}-pair. Therefore, we have contradicted part (d) of definition VII. 7 via part (a) of definition VIII. 4.

Now suppose that of is contaired in a single nomcompact component F of $F r\left(\Sigma_{n}\right)$. Then $\Pi_{1}=\Pi_{2}$ and F is homeomomphic to either $S^{1} x R$ or $S^{1} x[Q, \infty)$. Let A^{\prime} be the unique anmulus in F with $O A^{\prime}=O A$. Let T be the compoment of $\operatorname{Fr}\left(\Pi_{1} L N\right)$ which meets A^{\prime}. Then T is a torus which is isotopic in $V\left[\omega_{,} n\right]$ to ALA". By choice of $n, T=E M$ for some compact 3 -manifold M contained in V[$\infty, n]$. Let $F^{\prime}=c l(F-A) L A^{\prime}$. Then F^{\prime} is homeomorphic to F arsd is
incompressible in V[a,n]. Let T^{\prime} be a torus in M which is parallel in M to T. Now $H(\Pi, 1)$ is contained in $V[\infty, n]-M$ as before.

To get a contradiction, suppose that T is incompressible in V[$\left.\omega_{1}, n\right]$ So there is a product $T x[-1,1]$ such that $T \times 1=T$; $T \times \theta=T$, and $T \times(-1)=H(T, 1)$. Now simee $A^{\prime} c T$, it follows that $(T x[-1,1])$ TF is nonempty. We may assume that (Tx[-1,1]) TF is nomempty. Since F is proper and (Tx $\quad[-1,1]$) FF is empty, each component of (Tx[-1, 1]) TF is a clased 2 -manifold. But F contains mo closed e-manifolds. So T must be compressible.

Therefore, M must be a solid torus which is contained in ח. Let λ be a loop in M which genemates π_{1} (MLN). Since $H(\Pi, 1)$ is contained in $V[\infty, n]-m$, there is a map $f: S^{1} \times I \rightarrow \cup[\infty, n]$ such that $f\left(S^{1} \times(0)=\lambda\right.$ and $f\left(S^{1} \times 1\right)$ is contained in $V[\alpha, n]-M$. Therefore, either f^{-1} (F) on $f^{-1}\left(F^{\prime}\right)$ is ronempty. By symmetry, we may assume that $f^{-1}(F)$ is morempty. We may modify f so that f^{-1} (F) consists of simple closed curves that are nontrivial in in $S^{1} \times I$. Hence, there is a map g: $S^{1} \times I \rightarrow V[\alpha, n]$ such that $g\left(S^{1} x \theta\right)=\lambda, ~ g\left(S^{1} \times 1\right)$ is a nontrivial loop on F, and $g^{-1}(F)=S^{1} \times 1$. Since F is either $S^{1} x R$ or $S^{1} x[0, \infty)$, we may assume that $g\left(5^{1} \times 1\right)$ does not meet OR. We may modify g so that $g^{-1}\left(F^{\prime}\right)$ corsists of simple clased curves that
are montrivial in $S^{1} x I$. Hence, there is a map
$h: S^{1} \times I \rightarrow U[\infty, n]$ (which is perhaps equal to g) such that $h^{-1}\left(F L F^{9}\right)=S^{1} \times 1, h\left(S^{1} \times \theta\right)=\lambda$, and $h\left(S^{1} \times 1\right)$ is contained in either F or F^{\prime}. By symmetry, we may assume that $h\left(S^{1} \times 1\right)$ is contained in F^{\prime}. Note that we may assume that $h\left(S^{2} \times 1\right)$ is a loop in A^{\prime} mom and that $h\left(S^{2} x I\right)$ is contained in MLN. Let α^{\prime} be the gemerator of $\Pi_{1}\left(A^{\prime}\right)$. Then $\lambda= \pm u \alpha^{\prime}$ for some $\mu \geqq 1$. But $\alpha^{y}= \pm \mu \lambda$ for some $\mu \geqq 1$. Hence $\lambda= \pm \nu \mu \lambda$.

Therefore $|\nu \mu|=1 ;$ in particular; $|\nu|=1$. So A^{\prime} is parallel in V[$\left.\infty_{,} n\right]$ to A. This implies that for some m n a component of $A \cap \Delta V_{m}$ is parallel in ΔV_{m} to a Z-manifold in $\operatorname{Fr}\left(\Delta V_{m}\right)$ which contradicts part (c) of definition
VIII.4.

Now suppose that each component of $\neq A$ is contained in a different component of Fr $\left(\tilde{\Sigma}_{n}\right)$. Call these components F_{1} ard $F_{2^{\prime}}$ Suppose that F_{1} is homeomonphic to $5^{1} x$. Then there is a 3-manifold W that is the closure of a component of $V[\infty, n]-F_{i}$ which does not meet Fr $\left(V_{n}\right)$. So meither Π_{1} mor Π_{2} is contained in W since both Q_{1} and Q_{2} are nomempty. So A must be contained in W. But this implies that OACOWDF, which cortradicts oum assumption that F_{1} and F_{2} are distinct. Consequently,
each of F_{1} and F_{2} is homeomomphic to $S^{1} \times[0, \infty)$.
With this one case left to consider, let us assume that there are arbitrarily large values of p for which there exists an annulus component of cl $\left(F_{r}\left(V_{p}\right)-\tilde{\Sigma}_{n}\right)$. Simce there are only finitely many components Fr($\tilde{\Sigma}_{n}$) which are homeomorphic to $S^{1} \times[0, \infty)$, there is a sequence of integers $p(0)(p(1)<. .$. such that for $i \geq 0$ there exists an annulus compoment A_{i} of cl (Fr(V$\left.\left.\left.p_{i}\right)\right)-\tilde{\Sigma}_{n}\right)$ with F_{1} and F_{2} each containing a component of $\boldsymbol{A A}_{i}$ -

Let Λ be the component of cl(V[$\left.\alpha, n]-\tilde{\Sigma}_{n}\right)$ which meets $F_{1} L F_{2}$ and therefore contains $\left.L K A_{i} \mid i \geq 0\right\}$.

For $k=1,2$, let B_{k} be the armulus in F_{k} with $\theta B_{k}=F_{k} U\left(A_{0} \Gamma F_{k}\right)$. Put $O=A_{o} L B_{1} L B_{2}$. By applying proposition 5.4 of [15], it may be argued that there is a
 that either Or 1 is a component of $\operatorname{Fr}\left(\tilde{\Sigma}_{n}\right)$ or Cox is contained in $\operatorname{Fr}\left(V_{n}\right)$.

By taking a subsequence of $\{p(i) \mid i \geq 0\}$ if recessary, we may assume that $A_{i} \Gamma F_{k}$ lies between $O F_{k}$ and $A_{i+1}{ }_{i} F_{k}$ for $i \geq 0$ ard $k=1$, 2 . For $i \geq 0$ and $k=1$, 2, let C_{k}, i be the armulus in F_{k} with $\partial C_{k, i}=\left(A_{i} \Pi F_{k}\right) \cup\left(A_{i+1} \Gamma F_{k}\right)$. Let $T_{i}=A_{i} \cup_{i+1} L C_{1, i} L C_{2, i}$ for $i \geq \theta_{\text {. }} \quad$ Then T_{i} is a torus and
must bound a compact 3 -manifold M_{i} in $V\left[\alpha_{1} n\right]$ for $i \geq Q_{\text {. }}$

Note that $\left.\Lambda=(O K I) U\left[L K M_{i} \mid i \geq 0\right\}\right]$. Observe that either
M_{i} is ∂-irreducible or M_{i} is a solid torus. We may
argue as in previous cases that AM_{i} is not
incompressible in $V[\infty, n]$. We are therefore able to
comclude that Λ is seifert fibered. It follows that
$\Pi_{1} \cup \Pi_{2} U$ is seifert fiberable. This contradicts VIII.4(a) by contradicting VII. 7 (d).

After considering all cases, we may comclude that the ammius A canmot exist.

Lemma IX.3. Suppose that V is a Whitehead manifold with finite gemus $g \geq 2$ at infinity. Let $\left\{V_{n}\right\}^{2}$ be an exhausting sequence for v such that for $n \geq 0$
(1) V_{n} is commected;
(2) Fr(V) is commected;
(3) Fr($\left.V_{n}\right)$ is incompressible in V[0,0$]$;
(4) gernus $\left(\operatorname{Fr}\left(V_{n}\right)\right)=9$;
(5) V[$\infty, n]$ is commected.

Let $\left\{\left\{\sum_{n}, \Phi_{n}\right\} \mid n \geq 0\right\}$ be a weakly characteristic
sequence. If (Π, Ω) is a nomcompact S^{1}-pair component of $\left(\Sigma_{n}, \Phi_{n}\right)$, then
(a) for $n \gg \theta_{\text {, }} C \cap$ is homeomorphic to $S^{\mathbf{1}} \times R_{\text {, }}$ where C is the component of $c l(V-I)$ which contains V_{n};
(b) if $\Omega=0$, then I has at most $3 \underline{q}-3$ ends:
(c) there is an exhausting sequence [C $_{\boldsymbol{v}}{ }^{3}$ for Π such that

Proof:

To prove (a) by contradiction, suppose that there is a sequemce of inteqers $m(0)(n(1)(. .$. such that for $i \leq 0$, there exists a nomcompact s^{1}-pair component $\left(\Pi_{i}, \Omega_{i}\right)$ of ($\left.\Sigma_{n(i)}, \Phi_{n(i)}\right)$ with the property that ∂_{i} is a torus, where C_{i} is the component of $c l\left(V-\Pi_{i}\right)$ which contains $V_{n(i)}$ Since V is contractible, there is a compact 3-manifold B_{i} in V with $\not B_{i}=\boldsymbol{O C}_{i}$ for $i \geq \theta_{\text {. }}$ Since Π_{i} is proper and noncompact, B_{i} cannot contain Π_{i} for any $i ;$ therefore B_{i} must contain $V_{n(i)}$ for $i \geq 0$. By taking a subsequence, we may assume that $\left\{\mathrm{B}_{\mathrm{i}}{ }^{\boldsymbol{\}}}\right.$ is an exhausting sequence for V. But the gernus of ∂B_{i} is equal to 1 for
i 20. Then contradicts the fact that V has genus at least 2.

To prove (b) by contradiction, suppose that there is an S^{1}-pair comporent (Π, Ω) of $\left(\Sigma_{n} ; \boldsymbol{S}_{n}\right)$ which has more than $3 \underline{-}-3$ ends. Let K be a compact subset of Π such that $c 1(\Pi-K)$ has at least $3 \underline{g}-2$ noncompact component. Choose p to be large enough, in the sense of lemma $I X . E$, for cl $\left(F_{r}\left(V_{p}\right)-\Pi\right)$ to contain no ammuli and int $\left(V_{p}\right)$ to contain K. Then MFFr(Vp) is the disjoint union of at least $3 \underline{g}-2$ ammuli each of which is injective in Fru $\left(V_{p}\right)$ and mo two of which are parallel. But Friv) camot contain more than $3 \underline{-} \mathbf{3}$ pairwise disjoint nomparallel nontrivial simple closed curves, and so we have a cortradictiom.

To prove (c), let us take $\left[C^{\prime}\right\}$ to be a saturated exhausting sequence for Π. By taking a subsequence of
 $V[\infty, n]$. Sirice $g \geq 2$, we may assume that for $u \gg 0_{\text {, }}$ each tonus componerit T of $F_{r}\left\{C_{v}^{\prime} ; \Pi\right]$ bounds a compact 3-manifold M_{T} which is contained in V[∞, n]. Put
 Fr($C_{v}^{\prime} ; \Pi$) 3). Note that $C_{v}^{\prime \prime}$ is saturated in Π and that each component of $\operatorname{Fr}\left(C_{\nu}^{\prime \prime} ; \Pi\right.$) is an ammulus. It may be
that some component of $\operatorname{FFr}^{\prime}\left(C_{v}^{\prime \prime} ; \Pi\right)$ is contained in a torus component of $\operatorname{Fr}(\Pi ; V[\infty, n])$. By taking C_{v} to be a fibered regular neighborhood of $C_{v, \prime}^{\prime \prime}$ it will follow that each component $\operatorname{Fr}\left(C_{\nu} ; \Pi\right.$) is contained in a nomcompact compoment of $\operatorname{Fr}(\pi ; V[a, n])$.

Now let 5 be the orbit manifold for Π and let n: $\Pi \rightarrow \rightarrow 5$ be the associtated quotient map. To prove (d), it suffices to show that each simple closed curve in S separates. Suppose that J is a simple clased curve in S which does not separate. Then $\eta^{-1}(J)$ is a tomus in V which does mot separate. But this contradicts the fact that V is contractible.

Lemma IX.4. Let 5 be a closed, orientable, comected E-manifold of genus gi2. Suppose that $\left\{G_{k} \mid 1 \leq k \leq n\right\}$ is a set of compact 2 -manifolds such that
(a) G_{k} (int $\left(G_{k+1}\right)$ for $1 \leq k \leq n-1 ;$
(b) Gk is hard in S for $1 \leq k \leq n ;$
(c) if A and A^{\prime} are components of G_{k} which are ammuli, then the core of A is mot parallel in 5 to the core of A^{\prime} for $1 \leq k \leq m ;$
(d) G_{k+1} is not a regular neighborhood of G_{k} for
$1 \leqq k \leq m-1$.

Then $n \leq 6 g^{2}-7 g+3$. Proof:
(IX.4.1)

$$
x\left(G_{n}\right)=x\left(G_{1}\right)+\sum_{k=1}^{n-1} x\left(c 1\left(G_{k+1}-G_{k}\right)\right)
$$

and note that

$$
(I X .4 .2) \quad x(5) \leq x\left(G_{n}\right)
$$

By condition (b) we may deduce
(IX.4.3)

$$
x\left(c 1\left(G_{k+1}-G_{k}\right) \leq 0\right.
$$

for $1 \leq k \leq r-1$.
Condition (d) implies that if $X\left(c \mathrm{Cl}\left\{\mathrm{G}_{k+1}-\mathrm{G}_{k}\right)\right.$ is
equal to zero, the some component of G_{k+1} is an armulus which is not contained in G_{k}. Therefore if
x (cl $\left\{\mathbf{G}_{k+1}-\mathbf{G}_{k}\right)=0$ for $v \leqq k \leqq v+\mu-1$, then μ components of \mathbf{G}_{k+1} are arruli. By part (c) of the hypothesis, we must assume
(IX.4.4)
$\mu \leq 3 g-3$.

By part (a), $x\left(G_{1}\right) \leq Q_{\text {. Combining this with (IX.4. 1) }}$ (I)
we have
(IX.4.5)

$$
x\left(G_{n}\right) \leq \sum_{k=1}^{n-1} x\left(c 1\left(G_{k+1}-G_{k}\right)\right)
$$

By the division algorithm, put $(n-1)=m(3 g-2)+r$, where r(3g-2. Then (IX.4.2) gives us

$$
x\left(G_{n}\right) \leq-m
$$

which implies
(IX.4.7)

$$
(n-1) \leq(3 g-2)\left(1-x\left(G_{n}\right)\right) .
$$

By (IX.4.2) we may write

$$
\begin{equation*}
(n-1) \leq 6 g^{2}-7 g+2 \tag{IX.4.9}
\end{equation*}
$$

which leads to the desired conclusion.

Lemma IX. 5. Suppose that S and T are planar, connected, noncompact 2 -manifolds each having one end such that the inclusioin map $T \rightarrow$ is proper in S, and \mathcal{O} and ∂T each have exactly one noncompact component called K and L, respectively. Suppose that $\not \subset \cap Ə T=K R L$ and that KTL is compact with each component an arc. Then (a) cl(L-K) has exactly two noncompact components
called L_{1} and L_{2} each of which is homeomorphic to $[0, \infty)$;
(b) there exist comected 1 -manifolds K_{1} and K_{2} in K with $K_{1} \cap K_{2}=\varnothing$ and such that, for $i=1,2, O K_{i}=A_{i}$ and K_{i} is homeomorphic to $[0, \infty)$;
(c) cl(STT) has exactly two nomcompact components which we will call F_{1} and F_{2}, and $K_{i} L_{i}$ is the unique noncompact component of $\boldsymbol{F F}_{i}$ for $i=1$, $\mathbf{Z}_{\text {; }}$
(d) for any compact subset C, of S, there is a compact 2 -manifold C containing C such that
(i) Fr(C;S) is an arc α with K_{1} and K_{2} each containing one point of $\partial \infty$;
(ii) oflt is arr arc with L_{1} and L_{2} each containing one point of $\partial(c) /$
(iii) for $i=1, \mathcal{Z}^{\prime}, \operatorname{CHF}_{i}$ is an arc with K_{i} and L_{i} each containing one point of $\partial\left(\alpha \mathcal{F}_{i}\right)$.

Proof:
Since L has two erds and $K \Pi$ is compact, cl(L-K) has precisely two noncompact components, say L_{1} and L_{2}; each homeomorphic to $[0, \infty)$. This proves (a).

Now A_{1} LUA $_{2}$ separates K into precisely three components. Precisely two of these components have closures, say K_{1} and K_{2}, which are moncompact. Choose
notation so that $\not \mathcal{K}_{i}=\mathcal{A}_{i}$ for $i=1$, 2 . Note that $K_{1} \Gamma K_{2}=\varnothing$, and for $i=1,2, K_{i}$ is homeomorphic to $[0, \infty)$. This proves (b).

Since 5 is planar, $L_{1} L_{2}$ separates S into three comporients with closures F_{1}, F_{2}, and F_{3} - Choose notation so that F_{3} contains $L_{1} L_{2}$, and for $i=1, Z_{i} F_{i}$ contains only L_{i}. Then, for $i=1, Z_{,} K_{i} L_{i} i s$ the unique noncompact component of F_{i} since F_{i} గcl $\left(S-F_{i}\right)=L_{i}$.

Note that F_{3} contains T since T is commected. Therefore, for $i=1,2, F_{i}$ is a component of $c 1(S-T)$. Since F_{i} is noncompact for $i=1,2$, to prove (c) it suffices to show that any monompact component of cl(S—T) must contain either L_{1} or $L_{2^{*}}$ Suppose that N is a nomomopact component of $c 1(S-T)$. Since S is comected, N must contain a component J of $F r(T ; S)$. To get a contradiction, suppose that J is compact. Then J is either an arc or a simple closed curve.

Suppose that J is an arc. Then ∂J is contaired in K. Simce 5 is planar and has only one end, there is a compact 2 -manifold F in S with FRcl(S-F)=J. Since T is proper in S, F camot contain T. So F must contain N; but this is a contradiction since N is nomcompact and proper in 5.

Now suppose that J is a simple closed curve. Since

S is planar and has only ome end, there is a compact P-manifold F in S such that $F \cap \ln (5-F)=J$. Since T is proper in S, F cannot contain T. So F must contain N. But this is a contradiction as above.

From the above, we may conclude that N contains either L_{1} or L_{2}. So (c) is proved.

Let C^{\prime} be a compact subset of s. Then, for $i=1,2$, 3, F_{i} rc' is compact since F_{i} is proper in S. Since F_{i} is a plamar 2 -manifold with ome end and one nomcompact bourdary component for $i=1,2,3$, there $i s$ an arc α_{i} in F_{i} such that the component of $F_{i}-\alpha_{i}$ with compact closure contains $F_{i} \cap\left[C^{\prime} U(K \Pi L)\right]$. Furthermore, we may assume that L_{1} and L_{2} each contain a point of $\partial \alpha_{3}$, and for $i=1$, Z, K_{i} and L_{i} each contain a point of $\partial \alpha_{i}$. Without $10 s 5$ of gererality, we may assume that $\alpha_{1} \Gamma_{1}=\alpha_{3} \Gamma L_{1}$ and $\alpha_{2} \mathrm{ML}_{2}=\alpha_{3} \mathrm{RL}_{2}$. Now put $\alpha=\alpha_{1} \mathrm{Hax}_{2} \mathrm{Hax}_{3}{ }^{-}$

Observe that ∂a is contained in K. Since S is planar and has only one end, there is a compact 2-manifold C in S such that $C \cap n(S-C)=\alpha$ It is not difficult to see that C satisfies conditions (i), (ii), and (iii) of (d). It remains only to show that C ' is contained in C. Observe that CTK must contain LTK. Therefore, by choice of $\alpha_{i}, C F_{i}$ contains C' MF $_{i}$ for $i=1$, 2, 3. This ends the proaf.

Lemma IX. 6 , Let V be a Whitehead manifold finite genus G ≥ 2 at infinity. Let $\left\{V_{n}\right\}$ be an exhausting sequence for V such that for $n \geq 0$
(1) V_{n} is commected;
(己) $\operatorname{Fr}\left(V_{n}\right)$ is commected;
(3) Fr(V V_{n} is incompressible in V[0,0$]$;
(4) gemus $\left[F r\left(V_{n}\right)\right]=9 ;$ Let $\left\{\left(\Sigma_{n}\right.\right.$, ($)$ |nig\} be a weakly characteristic sequence for $\left(V,\left[V_{n}\right\}\right)$. For $n \geq 0$, put $\left(\hat{\Sigma}_{n}, \hat{\underline{T}}_{n}\right)=U K(\Pi, Q) \mid(\Pi, Q)$ is a nomcompact component of ($\left.\Sigma_{n}, \Phi_{n}\right)$ with $\left.Q \neq \varnothing\right\}$. Then for $\left.n\right\rangle>Q$ and for all m) m there are $q\rangle p>m$ and an isotopy $G: V[\infty, p] \times I \rightarrow V[\infty, p]$ such that
(a) $G(x, a)=x$ for every $x \varepsilon V[\infty, p]$;
(b) $G(x, t)=x$ for every $x \in F r\left(V_{p}\right)$;
(c) if $\sum_{m}=L K \Pi_{m} \mid \Pi_{m}$ is a noncompact component of
$\hat{\Sigma}_{m}\left\lceil N\left[\alpha_{,} p\right]\right\}$ and U is a regular neighborhoad of \sum_{n}, then
$G(x, t)=x$ for every $x \in\left[\omega_{1}, p\right] \backslash U ;$
(d) if Σ_{m} is defimed as in (c), then $G\left(\Sigma_{m} \Gamma N[\infty, q], 1\right)$ is contained in ${ }_{\text {En. }}$

Proof:

For $p, n \geq 0$, let $F_{n, p}=\widehat{\Sigma}_{n} \operatorname{FFr}_{n}\left(V_{p}\right) ;$ note that $F_{n_{i} p}=\varnothing$ for $p\left\{n\right.$. For $n \geq 0$, let $F_{n}=\left\{F_{n, p}\{p \geq 0\}\right.$. Then by definition
VIII. $4 F_{n, p}$ is contained in $F_{n+1, p}$ for pin+1. Given $m>n$, define $F_{m}\left\langle F_{m}\right.$ if $F_{m, p}$ is not a regular neighborhood in Friv ${ }_{p}$ of $F_{n, p}$ for $p \gg \theta_{\text {. }}$ We claim that any chain $F_{n(Q)}\left(F_{n(1)}\right.$ (... must be of finite length. To get a contradiction, suppose that there is an infinite squence of integers $n(0)\left(n(1)<.\right.$. with $F_{n(i)}\left(F_{n(i+1)}\right.$ for $i \leq 0$. Let an integer M be given. By lemma $I X .2$, there is an integer p such that no two annuli components of $\hat{\Sigma}_{n}(i)$ Fri(V $)$ have cores which are parallel for $0 \leqq i \leq M$. Now $F_{n(i+1), p}$ contains $F_{n(i), p}$ in its intenion but is mot a regular neighborhoad thereof. This contradicts 1 mma IX. 4 since M may be chosen to be greater than $6 g^{2}-7 g^{-2}$. Therefore, for $n \gg 0$ and $m>n$, there exist arbitrarily large values of p for which $\hat{\Sigma}_{m} \operatorname{FFr}\left(V_{p}\right)$ is isotopic in $\operatorname{Fr}\left(V_{p}\right)$ to $\hat{\Sigma}_{n} \operatorname{FFr}\left(V_{p}\right)$.

Hemceforth, though we may change the values of $n_{\text {; }}$ m, and p, we will always maintain the relation p m m and insist that $\widehat{\Sigma}_{m} \operatorname{FFr}^{\prime}\left(V_{p}\right)$ is a regular neighborhoad of $\hat{\Sigma}_{n} \operatorname{FFr}\left(V_{p}\right)$ in $\operatorname{Fr}\left(V_{p}\right)$. By 1 emma $I X .3$ and part (4) of the hypothesis, $\hat{\Sigma}_{v}$ has at most $3 g-3$ ends for $u>0$. So if v) $\rangle 0$ and $\mu>v_{q} \hat{\Sigma}_{v}$ must have the some number of ends as $\hat{\Sigma}_{\mu}$. We will assume that n is large enough for this to
happen. Choose p to be large emough for each roncompact component of $\widehat{\bar{\Sigma}} \cap N[\omega, p]$ and each noncompact component of $\hat{\Sigma}_{m}\left\lceil N\left[\omega_{,} p\right]\right.$ to have exactly one end. Since $\hat{\Sigma}_{n}$ and $\hat{\Sigma}_{m}$ each have the same finite number of ends and since $\widehat{\Sigma}_{n}\left\lceil N\left[c_{0} m\right]\right.$ is contained in $\hat{\Sigma}_{n}$, there is a one-to-one correspondence between the nomcompact compoments of $\hat{\Sigma}_{m}\left\lceil N\left[\alpha_{1} p\right]\right.$ and the nomcompact components of $\hat{\Sigma}_{n} \operatorname{FFr}_{\mathrm{F}}\left(V_{p}\right)$ with each noncompact component Π_{m} of $\widehat{K}_{m} \Pi N\left[\alpha_{n} p\right]$ containing a unique noncompact component Π_{n} of $\hat{\Sigma}_{n} \Gamma N[\infty, p]$.

Suppose that $\left(\Pi_{n}, \Pi_{n} \operatorname{TFr}_{n}\left(V_{p}\right)\right)$ is not an s^{1}-pair.

Then $\left(\Pi_{r}, \Pi_{n} \operatorname{HFr}_{\mathrm{F}}\left(V_{p}\right)\right)$ is a $[0, \infty)$-pair rather than an
 $[0, \infty)$-pair which is not ar S^{1}-pair, $\left(\Pi_{m} ; \Pi_{m} \operatorname{Fr}\left(V_{p}\right)\right.$ must be a $[0, \infty)$-pair. Since $\Pi_{m} \operatorname{FFr}\left(V_{p}\right)$ and $\Pi_{m} \Pi_{F r}\left(V_{p}\right)$ are commected and simce $\hat{\Sigma}_{m} \operatorname{FFr}\left(V_{p}\right)$ is a regular neighborhood

 must be a regular neighborhood of Π_{n} in v[a,p]. Say that U is a regular meighborhood of Π_{m} in $V[\infty, p]$. Then there is an isotopy G:V $[\infty, p] x I \rightarrow-\rightarrow r\left(V_{p}\right)$ which satisfies
(a) and (b), is fixed on $V[\infty, p]-U$, and is such that $G\left(\Pi_{m} r N\left[\alpha_{3} p+1\right], 1\right)$ is contained in $\Pi_{n-}=$

Now suppose that $\left(\Pi_{r}, \Pi_{n} \operatorname{rFr}\left(V_{p}\right)\right)$ is an $S^{1}-p a i r$.

Then each compoment of $\Pi_{n} \cap F_{r}\left(V_{p}\right)$ is an anmulus. Let A_{n} be a compoment of $\Pi_{m} \operatorname{Fr}\left(V_{p}\right)$; let A_{m} be the component of $\Pi_{m} \operatorname{FFr}_{\mathrm{p}}$) which contains A_{r} (Since $\hat{\Sigma}_{m} \operatorname{FFr}_{\mathrm{F}}\left(V_{p}\right)$ is a regular meighborhood of $\hat{\Sigma}_{n} \operatorname{FFr}\left(V_{p}\right)$, A_{m} must be an armulus. Therefore, $\left(\Pi_{m}, \Pi_{m} \operatorname{FFr}\left(V_{p}\right)\right)$ is an s^{1}-pair.
(IX.6.1) Suppose that T is a torus which is
incompressible in $\Pi_{m}-\hat{\Sigma}_{n}$. We claim that T is parallel in $V\left[\omega_{1} n\right]$ to a torus in $\hat{\Sigma}_{n}$ -

Let $\Pi=\Pi_{m} U\left[L K \sigma \mid \sigma\right.$ is a component of $\widehat{\Sigma}_{n} \Pi N[p, n]$ which meets $\Pi_{m}{ }^{3}$]. This Π is seifert fibered. Let $\delta=\Pi \Pi F r\left(V_{n}\right)$. By lemma IX. 1 , there is an s^{1}-pair ($\hat{\Pi}, \hat{\Omega}$) which contains (Π, Ω) and $i s$ such that $F r(\hat{\Pi})$ is strongly essential in $\left(V[\infty, n], F r\left(V_{n}\right)\right)$. By lemma VII. 7, there is an isotopy $H: V[\infty, n] \times I \rightarrow \cup[\infty, n]$ with $H(x,(n)=x$ for each $x \in V[\infty, n]$ and $H(\hat{\Pi}, 1)$ contained in $\hat{\Sigma}_{n}$ - Since T is contained in $\Pi_{m}-\hat{\Sigma}_{n}, T$ and $H(T, 1)$ are disjoint. Therefore, by proposition 5.4
of [15], there is a product $T x I$ in $V[a, n]$ with $T x Q=T$ and $T x 1=H(T, 1) . S o(I X .6 .1)$ is proved.

Let B be the orbit manifold for Π_{m} and let $\eta_{i} \Pi_{m} \rightarrow B$ be the quotient map. We may assume that Π_{n} is saturated with respect to n. By lemma $I X .3, B$ and $\eta\left(\Pi_{n}\right)$ are planar. Since Π_{m} and Π_{n} have one end, B and $n\left(\Pi_{n}\right)$ each have only one end. Hence, ∂B and $\partial \eta_{n} \Pi_{m}$) have unique noncompact components K and L, respectively. By part (c) of lemma $I X .3$, we see that $\forall A \cap \exists \eta_{m}$) $=K \Pi$. Since $\partial \Pi_{n} \cap \ni \Pi_{m}$ is contained in $F r\left(V_{p}\right)$, $K \Pi L$ is compact with each component an arc. Let F_{1} and F_{2} be the two noncompact comporments of $c 1\left(B-\eta\left(\Pi_{n}\right)\right)$ given by part (c) of lemma IX. 5. For $i=1$, 2 , put $L_{i}=F_{i}$ rL and $K_{i}=F_{i}$ rK.

Since η is a proper map, there is a set C in B such that $\eta^{-1}\left(C^{\prime}\right)$ contains all of the compact components of $\hat{\Sigma}_{n} \cap \Pi_{m}$ and all of the compact components of $c 1\left(\Pi_{m}-\Pi_{n}\right)$ which meet Fr(V_{p}). By part (d) of lemma IX. 5 , there is a compact 2 -manifold C in B which contains C such that Fr(C;B) is an arc α with K_{1} and K_{2} each containing one point of $\partial \alpha_{\text {. }}$ Furthermore, $\left.\alpha \Pi \eta_{n}\right)$ is an arc with L_{1} and L_{2} each containing a point of $\partial\left(\alpha \Pi \partial \eta\left(\Pi_{n}\right)\right)$, and for $i=1$, 2, coffi is an arc with L_{i} and K_{i} each containing a point of $\partial\left(\underset{\sim}{\operatorname{FF}}{ }_{i}\right)$.

For $i=1,2$, put $E_{i}=c l\left(F_{i}-C\right)$. $F i x$ i to be either
one on two. We claim that $\eta^{-1}\left(E_{i}\right)$ contains no incompressible tori. To get a contradiction, suppose that T is an incompressible torus in $n^{-i}\left(E_{i}\right)$. Then by (IX.6.1) there is a product $T \times I$ in V[$\alpha, n]$ with $T x Q=T$ and Tx1 contained in int $\left(\tilde{\Sigma}_{n}\right)$. Since $n^{-1}(C)$ contains all the compact components of $\hat{\Sigma}_{n} \cap \Pi_{m}$, $(T \times I)$ n $^{\prime} \eta^{-1}\left(E_{i}\right)$ is nomempty. Since each torus of $\partial \eta^{-1}\left(E_{i}\right)$ bounds a compact 3 -manifold in $V[a, n]$ and since $\hat{\Sigma}_{n}$ is nomcompact and proper, (TXI)MA nomempty for some comporient A of $\partial \eta^{-1}\left(E_{i}\right)$ which is homeomarphic to $S^{1} x$ R. Since ($T \times \partial I$) HA is empty, each component of (TxI) MA is a closed Z-manifold; but this is a contradiction since A contains no closed 2 -manifold. Therefore $\eta^{-1}\left(E_{i}\right)$ contains no incompressible torus for $i=1$, 2.

Since $\eta^{-1}\left(E_{i}\right)$ contains no incompressible torus, no component of $\partial \eta^{-1}\left(E_{i}\right)$ is a torus; hence, no component of ZE ${ }_{i}$ is a simple closed curve. Since F_{i} is planar and has exactly one end, E_{i} is planar and has exactly ome end. Since E_{i} has one end, since is planar, and since OE ${ }_{i}$ is monempty, E_{i} is homeomorphic to the halfplane.

Since $n^{-1}\left(E_{i}\right)$ contains no incompressible torus,
$\eta^{-1}\left(F_{i}\right)$ contains (at most) a finite number of exceptional fibers. Therefore, we may assume that $\boldsymbol{\eta}^{\boldsymbol{- 1}}$ (C) contains all of the exceptional fibers of $\eta^{-1}\left(F_{1} L F_{2}\right)$.

Therefore, $\left(\eta^{-1}\left(E_{i}\right), \eta^{-1}\left(E_{i}\right) \cap\left(\partial \Pi_{n} \cap \partial \Pi_{m}\right), \eta^{-1}\left(\alpha_{i}\right)\right)$ is homeamorphic to $\left(S^{1} \times[0, \infty) \times I, S^{1} \times[0, \infty) \times \theta I, S^{1} \times(0 \times I)\right.$ for $i=1$,
2.

Since F_{1} and F_{2} are the only noncompact components of $c l\left(B-\eta\left(\Pi_{n}\right)\right), \eta^{-1}\left(E_{1}\right)$ and $\eta^{-1}\left(E_{2}\right)$ are the only noncompact components of $\left.c l\left(\Pi_{m} \eta^{-1}(C)\right)-\left(\Pi_{m}-\eta^{-1}(c)\right)\right)$.

Let Q be a compact component of

$$
c 1\left(\left(\Pi_{m}-n^{-1}(C)\right)-\left(\Pi_{n}-n^{-1}(C)\right)\right)
$$

Since $n^{-1}(C)$ contains all of the compact components of cl ($\left.\Pi_{m}-\Pi_{n}\right)$ which meet $F r\left(V_{p}\right)$ each component of Fr(Qiv[$\alpha, p]$ is a torus. Simce Π_{m} is cormected, $\operatorname{Fr}(Q ; V[\infty, p]) \cap \Pi_{n}$ must contain a torus, say A. Then $A=a \|$ for some compact 3 -manifold M in V[a,p]. Since Π_{n} is proper, M must contain Q. By part (a) of lemma VIII.4, we can argue that M must contain a component T of Fr($\left.\Pi_{m} ; \cup\left[\omega_{,} p\right]\right)$. Since M is compact, we may argue using
(IX.6.1) that T must be parallel in M to $A M$. Since $O Q$ is incompressible, it follows that Q is homeomorphic to amxI.

Choose q so that $\eta^{-1}(C)$ is contained in int $\left(V_{q-1}\right)$.
Then there is an isotopy $G: V[a, P] \times I \rightarrow-\mathcal{V}[a, p]$ which
satisfies (a) and (b), is fixed of $V[a, p]-U$, and is such
that $G\left(\Pi_{m}\lceil N[a, q], 1)\right.$ is contained in Π_{n} -
This ends the proof.

CHAPTER X

NONTRIVIAL PLANES AND NEARNODES

Lemma $X=1$. Let V be a connected, irreducible,
eventually end-irmeducible 3 -manifold which is not homeomorphic to R^{3}. Let $\left\{V_{n}\right\}^{3}$ be an exhausting sequence for V such that for $n \geq 0$
(1) V_{n} is commected;
(2) Fr $\left(V_{n}\right)$ is incompressible in V[$\left.\omega, 0\right]$;
(3) V $\left[\infty_{,}\right]$is irreducible. Let P be a finite collection of pairwise disjoint nontrivial plames in V. Then there is a collection of planes and an integer n(1) such that LP is ambient isotopic to Upi and each component of (L^{P}) $\cap \Delta V_{m}$ is an annulus and is not parallel into $\operatorname{Fr}\left(\Delta V_{m}\right)$ for $\left.m\right\rangle n(1)$.

Proof:

Simce Pis finite and since each Pep is nontrivial in V, we may choose $n(\theta) \geq 0$ so that $P_{n} N_{n}(\theta)$ is nonempty for Pep, and so that if E is a disk in Pep with $V_{n(Q)}$ MP contaimed in int (E), then $Z E$ is nontrivial in V[∞, 0]. Choose $n(1)) n(0)$ so that for each Pep there is a disk E_{p}
in int $\left(V_{n(1)}\right)$ with $V_{n(B)}$ cint (E_{p}). Hemce for each Pep precisely one component of $\operatorname{PrN}[m(1), n(0)]$ spans $V[n(1), n(0)]$.

Let $H: V x I \rightarrow V$ be an isotopy with $H(x, t)=x$ for each $(x, t) \in V_{n}(\theta) x I$. For each PeP, put $P^{\prime}=H(P, 1)$ and $P^{\prime}=\left\{P^{\prime} \mid P\right.$ Pf\}. Then $L P=H(L P, 1)$. Among all such isotopies, choose H so that \# ((LPM) MFr($\left.V_{n}(Q)\right)$ is minimal. Since H is fixed on $V_{n(0)}$, $P^{\prime \prime} N_{n}(\theta)$ is nomempty for each $P^{\prime} \in p$, and precisely one component $p^{\prime} \Gamma N[n(1), n(0)]$ spans $V[n(1), n(\theta)]$ for each $p^{\prime \prime}$. Suppose that J is a component of $\operatorname{Pr} \operatorname{Fr}\left(V_{n}(\theta)\right.$) for
some $P^{\prime \prime}$. Then there is a disk E in pr with $J=\sigma E$. We claim that $E N_{n}(0)$ is nomempty. Without lass of gemerality, we may assume that $\operatorname{irt}(E)$ MFr $\left(V_{r i}(Q)\right)=D_{\text {. }}$ By part (2) of the hypothesis, there is a disk E' in Fr($V_{r(1)}$) so that $Z E=$ EE. By conditions (3) and (1) there is a 3-cell B in V[$\infty, \mathrm{n}(0)]$ with $\theta B=E \cdot L E$. We can use B to isotop LF leaving $V_{n}(Q)$ fixed and reducing \# ((UFH) MFr(Vr(1))). This is a contradiction.

Therefore, E must meet $V_{n}(\theta)$ -
We may conclude from the above paragraph that any two components of perfr($\left.V_{n(1)}\right)$ are parallel in p for each p'ep. Therefore each component of (LP) TN[0 , n(1)]
is either an armulus or is homeamarphic to $5^{1} \times[0, \infty)$.
Suppose that A is a componert of (UP) TN[$n, n(1)]$.
To get a contradiction, suppose that D is a disk in
$V\left[\omega_{,} n(1)\right]$ with θD montrivial in A. Let D be the disk
in UP' with DD' $^{\prime}=8$. Note that D^{\prime} must contain the unique component of $p^{\prime \prime} \operatorname{TN}[n(1), n(0)]$ spans, where p^{\prime} is the member of with AcP'. So $V_{n(Q)}$ (int (D'). But this contradicts the choice of $r(\theta)$. Therefore A is incompressible in $V[a, n(1)]$.

We nay now apply lemma II. 3 to obtain the conclusion of our lemma.

Lemma X. 2 . Let V be an irreducible, corrected, eventually end-irreducible 3 -manifold that is not homeomorphic to \mathbb{R}^{3}. Suppose that there is a finite collection p of pairwise disjoint montrivial planes in V. Then there is an exhausting sequence $\left\langle V_{n}\right\}$ for V and a collection of pairwise disjaint planes pr with LP isotopic to Lpr such that for nim
(a) V_{n} is comnected;
(b) Fr(V_{n}) is incompressible in V[$\left.\alpha_{,},\right]_{\text {; }}$
(c) $P^{\prime \prime} \mathrm{NN}_{n}$ is a single disk such that $\partial\left\langle P^{\prime \prime} \mathrm{HN}_{n}\right.$) is nontrivial in $V[\infty, 0]$ for each $p^{\prime \prime}$.

Proaf:

Let $\left\{W_{n}\right\}$ be an exhausting sequernce for V such that, for $n \geq 0, W_{n}$ is cormected, $F r\left(W_{n}\right)$ is imcompressible in $W[\infty, 0]$, and $W[\infty, r]$ is irreducible. By lemma $X .1$ there is an isotopy $H: V x I \rightarrow V$ and an integer n(1)>0 such that H(UP, 1) $\mathrm{HWW}_{\mathrm{m}}$ comsists of ammuli which are incompressible in ΔW_{m} and not parallel in Δh_{m} into $\operatorname{Fr}\left(\Delta W_{m}\right)$ for $m>n(1)$. Define $h_{t}: V \rightarrow V$ by $h_{t}(x)=H(x, t)$, and define $G: V x I \rightarrow V$ by $G(x, t)=h_{1-1}^{-1}(x)$ for a11 $(x, t) E V x I$. Then each component of (UP) $\operatorname{CG}\left(\Delta W_{m}\right.$, 1) is an incompressible annulus which is not parallel into $\operatorname{Fr}\left(G\left(\Delta W_{m}, 1\right)\right)$ for $\left.m\right\rangle(1)$, and $\left\{G\left(W_{n}, 1\right)\right\}$ exhausts V.

By taking a subsequence of $\left\{G\left(W_{r,} ; 1\right)\right\}$, we may assume that each component of (LP) $\cap G\left(\Delta W_{n,}, 1\right)$ is an incompressible ammulus which is not parallel into Fr $\left\{G\left(\Delta W_{r,}, 1\right)\right)$ for $n \geq 0$, and we may assume that exactly one component of PRG $\left(\Delta W_{n}, 1\right)$ spans $G\left(\Delta W_{n}, 1\right)$ for each pep and nio.

For $n \geq 1$, let A_{n} be the union of components of (LP) $\operatorname{HG}\left(\Delta W_{r}, 1\right)$ whose boundary is contained in Fr $\left(W_{r}-1\right)$, and let U_{n} be the regular neighborhood of A_{n} in $G\left(\Delta W_{n}, 1\right) . \quad$ For $n \geq 1$ put $V_{n}=G\left(W_{n}, 1\right) U_{n+1}$. Then $\left\{V_{n}^{\prime}\right\}$ exhausts V.

Choose $n(\theta)>\theta$ so that $V_{n}(\theta)$ contains W_{0}. It may very well be that there exists a disk D in V ' $[\infty, 0]$ such that $\operatorname{DCFr}\left(V_{n}(\theta)\right)=\pi D$, and θD is nontrivial in Fr(Vr(a)). Choose such a D so that \#(Dח(LP)) is minimal. We claim that D \cap (LP) is empty. To get a contradiction, suppose that α is a component of D (LUP).

By the usual arguments, we may assume that α is not a simple closed curve. So suppose that α is an arc. Without lass of generality, we may assume that there is a disk D^{\prime} in D such that int ($\left.D^{\prime}\right) \cap(L P)=\varnothing$ and $O D=\alpha U P$, where β is an arc in ∂D with $\rho \cap(L P)=\partial \beta=\partial \alpha_{\text {. }}$ There is a
 (LP) TFr (V. $V_{n}(\theta)$). By the minimality of \#(Dח(LD)), YUs does not bound a disk in $\operatorname{Fr}\left(V_{n}(a)\right)$. So D'LD" is a compressing disk of $\operatorname{Fr}\left(V_{r n(0)}\right)$ with \#((D'LD") $\cap(L P))\left(\#\left(D / F r\left(V_{n(Q)}\right)\right)\right.$ which is a contradiction. So we may assume that Dn(LP) is empty.

Compress $\operatorname{Fr}\left(V_{n}(0)\right)$ in $W[\infty, 0]$ in the complement of
(LP). Repeat inductively to obtain an exhausting sequence $\left\{V_{n}^{\prime}\right.$ \} which satisfies (b) and (c). Since V is connected, we can pick a component V_{n} of V_{n} to get an exhaustion which satisfies (a), (b), and (c).

Lemma x. 3 . Let V be an eventually end-irreducible

Whitehead which is not homeomorphic to R^{3}. Suppose that there exist disjoint nontrivial planes P_{0} and P_{1} and a $\operatorname{map} f: \mathbb{R}^{2} \times I \longrightarrow V$ such that
(1) f is proper;
(2) $f \mid R^{2} x \partial I$ is an embedding which takes $R^{2} x\{j\}$ to P_{j} for $j=0,1$.

Ther P_{o} and P_{1} are parallel in $V_{\text {. }}$

Proof:
By lemma $X . Z_{\text {, }}$ there is ar exhausting sequence $\left\{V_{n}\right\}$
for V such that, for $n \geq 0$ and $j=1, Z_{i}$ Fr $\left(V_{n}\right)$ and P_{j} intersect transversally and $V_{n} \Gamma_{j}$ is a disk with $\theta\left(V_{m} P_{j}\right)$ montrivial in $V\left[a_{0}, 0\right]$. Since V is contractible, $V-\left(P_{0}-P_{1}\right)$ has three comporents with clasures $N_{0}{ }^{\prime} N_{1}$ and N. Choose motatiom 50 that $\operatorname{Fr}(N)=P_{o} P_{i}$ and $F_{r}\left(N_{j}\right)=P_{j}$ for $j=1,2$.

We wish to show that N is contained in $f\left(R^{2} \times I\right)$ and that NFFr $\left(V_{n}\right)$ is an ammus for $n \geq 1$. We will then combine these two facts to show that N is homeomomphic to $R^{2} x I$. If N is not contained in $f\left(R^{2} x I\right)$ we may assume that there is an $x \in N-f\left(R^{2} x I\right)$. This implies that there is an open set U in V such that $U Q N-f\left(R^{2} \times I\right)$.

Since f is proper, there is a disk D in R^{2} such
that $f\left(c 1\left(R^{2}-D\right) \times I\right)$ is contained in $V[\infty, 0]$. We may choose a subsequerice for $\left\{V_{n}\right\}^{3}$ such that $f(20 \times I)$ is contained in ΔV_{1}. Let $A=C 1\left(R^{2}-D\right)$ and let $g=f \mid A x I$. Then g: $\Lambda \times I \rightarrow \cup[\infty, 0]$.

Suppose that riz1. Without lass of gemerality, we may assume that x is contained in int $\left(V_{n}\right)$. Since f is transverse to $\operatorname{Fr}\left(V_{n}\right)$, there is a homotopy of frel $R^{2} x \partial I$ so that f is transverse to $\operatorname{Fr}\left(V_{r}\right)$ and so that x is still not contained in $f\left(R^{2} x I\right)$. Obsenve that g is also transverse to $\operatorname{Fr}\left(V_{n}\right)$. Since $V[\infty, 0]$ is irreducible and $\pi_{i}\{V[\infty, \infty]$ is infirite, $V[\infty, 0]$ is aspherical. Since Fr $\left(V_{n}\right)$ is incompressible in V[$\left.\infty, 0\right], \pi_{2}\left(V[\infty, 0]-F r\left(V_{n}\right)\right)$ and $\operatorname{ker}\left(\pi_{1}\left(\operatorname{Fr}\left(V_{r}\right) \rightarrow \pi_{1}(V[\infty, 0])\right)\right.$ are both trivial.

Therefore, there is a homotopy of g fixed on $\partial(\Lambda x I)$ so that $g^{-1}\left(\operatorname{Fr}\left(V_{n}\right)\right)$ is incompressible in AKI. We may exterd this homotopy to a homotopy of f so that x is still mot contained in $f\left(R^{2} \times I\right)$. We may assume that $g^{-1}\left(\operatorname{Fr}\left(V_{n}\right)\right)$ is equal to $f^{-1}\left(F^{\prime}\left(V_{r}\right)\right)$. Let A be a component of $g^{-1}\left(\operatorname{Fr}\left(V_{n}\right)\right)$. Then A is incompressible in AxI. It is mot difficult to see that A must be either a disk or ars ammulus simce $\pi_{i}(\Lambda x I)=Z$.

To get a contradiction, suppose that A is a disk. Then $g(O A)=P_{j} \operatorname{FFr}^{\prime}\left(V_{n}\right)$ for some j. This is a contradiction simce $P_{j} \operatorname{FFr}\left(V_{n}\right)$ is montrivial in V[$\left.\infty, 0\right]$ by our chaice of exhausting sequence. So A must be an arnulus. Since g $\| x \partial I$ is an embedding, $g^{-1}\left(F_{n}\left(V_{n}\right)\right) \cap(N x \partial I)$ contains exactly two simple closed curves. Therefore,
$A=n^{-1}\left(\operatorname{Fr}\left(V_{n}\right)\right)=f^{-1}\left(\operatorname{Fr}\left(V_{m}\right)\right)$.
For $k=0,1$, put $J_{k}=\operatorname{P}_{k} \operatorname{MFr}\left(V_{n}\right)$. Then f IA takes each component of $O A$ to a different component of $J_{0} \mathrm{~J}_{1}$. Therefore, by lemma 2.4 of [4] there is an armulus $A^{\prime \prime}$ in Fr(V_{n}) with $O A^{\prime}=J_{0} U_{1}$ 。

Since $A^{\prime} \cap\left(P_{0} L P_{1}\right)=A A^{\prime}$ and since A^{\prime} meets both P_{0} and P_{1}, A^{\prime} must be contained in $N_{\text {. }}$ For $i=0,1$, let $D_{i}=P_{i} M_{n}$ Let S be the 2 -spheme $D_{0} L D_{1}$ UA' and let C be the 3 -cell in V with $S=O C$. Since $\operatorname{Fr}\left(V_{n}\right)$ is incompressible in $V[\infty, 0], C$ must be contained in V_{n} - Since $C \Pi\left(P_{0} \Gamma P_{1}\right)=D_{0} D_{1}, C$ must equal $N T N_{r}$. Therefore, if N is not contained in $f\left(R^{2} x I\right)$, there is a paint x in C which is not contained in $f\left(R^{2} \times I\right)$. Now the relative homotopy classes D_{o} and D_{1} are equal in $\pi_{2}\left(V_{n} F F_{n}\left(V_{n}\right)\right)$, but one may calculate using the homotopy sequence of the pair that the relative homotopy classes of D_{o} and D_{1} are not
equal in $\pi_{2}\left(V_{n}-x_{3} \operatorname{Fr}\left(V_{n}\right)\right)$. For $i=0,1$, let E_{i} be the disk with boundary $A \cap\left(R^{2} x i\right)$. Then $E_{o} L E_{1} L A$ is a e-sphere in $R^{2} \times I$ which bounds a 3 -cell B in $R^{2} \times I$. Now $f(B)$ is contained in $V_{n}-x, f\left(E_{i}\right)=D_{i}$ for $i=0,1$, and $f(A)$ is contaimed in $\operatorname{Fr}\left(V_{n}\right)$. So the relative homotopy class of D_{0} must be equal to that of D_{1} in $\Pi_{2}\left(V-x_{9} F r\left(V_{r}\right)\right)$. This is a contradiction. So we may no assume that N is contained in $f\left(R^{2} \times I\right)$.

For $n \geq 1$, put $A_{n}=\operatorname{Fr}\left(V_{n}\right) \Gamma N$. Then

$$
\Rightarrow A_{n}=\left(P_{o} \operatorname{Fr}\left(V_{n}\right)\right) \cup\left(P_{1} \operatorname{Fr}\left(V_{n}\right)\right)
$$

Since $N_{o} \cap N_{1}=\varnothing_{;} \quad A_{n}$ must be the unique ammulus in Fr(V_{n}) which joins $\left(P_{o} \operatorname{FFr}^{\left(V_{n}\right)}\right)$ to $\left(P_{i} \operatorname{Fr}\left(V_{n}\right)\right)$ in $F_{r}\left(V_{n}\right)$.
 For nil, let $S_{n}=D_{0, n} L D_{1, n} \mathcal{L A}_{n}$ - Then S_{n} is a 2 -sphere in V_{n} for $n \geq 1$. Let C_{n} be the $3-c e l l$ in V with $S_{n}=2 C_{m}$. Then C_{n} must be contained in V_{n} simee $\operatorname{Fr}\left(V_{n}\right)$ is incompressible in $V\left[\omega_{9}, 0\right]$. Therefore $C_{n}=V_{n} \Pi N$ and $\left\{C_{n}{ }^{3}\right.$ exhausts $\mathrm{N}_{\text {. }}$

To be done, it suffices to show that $\left(\Delta C_{n}, F_{r}\left(\Delta C_{n}\right)\right.$) is homeomorphic as a pair to $\left(S^{1} \times I \times I, S^{1} \times I \times \partial I\right)$.

Let nize be given. It is easy to see that either ΔC_{n} is ∂ irreducible or that ΔC_{n} is a solid torus. To get a contradiction, suppase that ΔC_{n} is ∂-irreducible. Let T be a torus in ΔC_{n} that is parallel in ΔC_{n} to $\partial \Delta C_{n}$ Then T is incompressible in ΔC_{n-} Since Fr $\left(\Delta C_{n} ; \Delta V_{n}\right)$ is the union of two disjoint incompressible annuli, T is incompressible in ΔV_{n}. Therefore T must be incompressible in $V[\infty, 0]$. As before, we may perform a homotopy of g fixed on $\partial(\Lambda x I)$ so that $g^{-1}(T)$ is incompressible in AxI. Since T is contained in int (N), each component of $g^{-1}(T)$ is closed. Since $\pi_{1}(\Lambda x I)=Z_{\text {, }}$ AxI contains no closed incompressible 2 -manifolds. Therefore, $g^{-1}(T)$ must be empty. On the other hand, the homotopy of g fixed on $\partial(\Lambda x I)$ extends to a homotopy of f fixed on $R^{2} x \partial I$. So T must be contained in $f\left(R^{2} x I\right)$. Since nıE, T must be contained in $g(A x I)$. So be have a contradiction and must assume that ΔC_{n} is a solid torus. Let (λ, μ) be a longitude-meridian pair for $\partial \Delta C_{n}$ " Let α be the generator of $\pi_{1}\left(A_{n-1}\right)$. Then $\alpha=\lambda P_{\mu} q$ in $\pi_{1}\left(\Delta C_{n}\right)$ for some integers p and q. We will be done if we can show that $|p|=1$. Now $\pi_{1}\left(\Delta C_{n}\right)=\langle\lambda \mid-\rangle$. Since α is trivial in C_{n-1}, Van Kampen's Theorem gives us
$\Pi_{1}\left(C_{n}\right)=\langle\lambda \mid \lambda P=1\rangle$. Since C_{n} is a ball, $|p|=1$. This ends the proof.

Lemma X.4. Let P be an nontrivial plane in $R^{2} \times I$. Then P is parallel in $R^{\mathbf{2}} \mathbf{x} \mathbf{I}$ to each component of $\mathbf{R}^{\mathbf{2}} \mathbf{x} \partial \mathrm{I}$. Proof:

Let $\left[D_{n}\right\}$ be an exhausting sequence of disks for R^{2}.
Let $C_{n}=D_{n} \times I$ for $n \geq 0$. By lemma II. 3 , we may assume that for $n \geq 1$, each component of $P H_{N} C_{n}$ is an ammulus which is essential in ($\Delta C_{n}, F r\left(\Delta C_{n}\right)$), and precisely one of component of $P H_{n} C_{n}$ spans spans ΔC_{n}.

Since $\left\langle\Delta C_{n}, \operatorname{Fr}\left(C_{n}\right)\right.$) is homeomorphic to
$\left(S^{1} \times I \times I, S^{1} \times I \times \partial I\right)$, the only essential annulus in ($\Delta C_{n}, F r\left(\Delta C_{n}\right)$) spans ΔC_{n} for $n \geq 1$. So PrC_{n} is a disk for n⒈ Therefore splitting along P yeilds two copies of $R^{2} \times I$, and we are done.

Let N be a noncompact 3 -manifold which has an exhausting sequence $\mathrm{C}_{\mathrm{n}}{ }^{3}$ such that
(i) C_{n} is a 3-cell for $n \geq 0$, and
(ii) $C_{n} \cap C_{n+1}$ is a set of disks $\left\{D_{n, i} \mid n \geq 0,1 \leqq i \leqq v\right\}$ such that for $n \geq 0$ and $1 \leq i \leq \nu, D_{n, i}$ Cint $\left(D_{n+1, i}\right)$. Then we
say that N is a nearnode with v faces, that each component of 2 N is a face of N , that $\left\{\mathrm{C}_{\mathrm{n}}\right\}$ is a defining sequence for N, and that $\left[D_{n, i} \mid n \geq a_{,} 1 \leq i \leq v\right\}$ is the system of disks for (C $_{n}{ }^{3}$.

At this point we point out that it is not difficult to show that (by using the lamp cord trick, for instance) $\mathbb{R}^{\mathbf{2}} \times[0, \infty)$ is the unique nearnode with one face.

Lemma X. 5 . Let V be a noncompact 3 -manifold. Let N and N be nearnodes that are proper in V with $N{ }^{\prime} N$, a single plane P. Then NLN' is a nearnode.

Proof:
Let $\left\{C_{n}\right\}$ and $\left.\mathrm{CC}_{n}\right\}$ be defining sequences for N and $N \cdot$, respectively. Let $\left\{D_{n, i} \mid n \geq 0,1 \leq i \leq u\right\}$ and $\left\{D_{n, i}^{\prime} \mid n \leq \theta_{\text {, }}\right.$ $1 \leq i \leq v\}$ be the systems of disk for $\left\{C_{n}\right\}$ and $\left\{C_{n}\right\}$, respectively. By choosing subsequences of ${\left\{C_{n}\right\} \text { and }}^{\}}$ CC, ${ }^{3}{ }^{3}$, if necessary, we may assume that for $n \geq 0$ $D_{n, k}$ (int ($D_{n, k}$)) and $D_{n, k}$, Cint ($D_{n+1, k}$), where k and k,

Let $B_{n}=C_{n} L C_{n}$. Then B_{n} is a 3-cell and B_{n} nab $_{n+1}$ $\left.=\left\{D_{n, i} \mid i \neq 4\right\} \operatorname{lk} D_{n, i} \mid i \neq 1\right\}$. So NLN' is a nearnode.

Lemma X_{o}. Let N be a nearnode with v ? 2 faces. Let M
be a 3-manifold such that
(i) M is proper in N and
(ii) $\left.\quad A M=U K P_{i} \mid 1 \leq i \leq v\right\}$, where P_{i} is and nontrivial plane in N.

Then M is a nearnode.
Proof:
Let $\mathrm{fC}_{\mathrm{n}}{ }^{\text {子 }}$ be a defining sequence for N and let $\left\{D_{n, i} \mid n \geq 0,1 \leq i \leq v\right\}$ be the system of disks of $\left\{C_{n}\right\}$. By
 11.1, we may assume that $P_{i} \cap \Delta C_{n}$ consists of annuli that are essential in $\left(\Delta C_{n}, \operatorname{Fr}\left(\Delta C_{n}\right)\right)$, for $1 \leq i \leq \mu$ and $n \geq 1$, precisely one of which spans ΔC_{n}

Suppose that A is an anmulus that is essential in ($C[\infty, n], F r\left(C_{n}\right)$) for some $n \geq 0$. Let $U(A)$ be a regular neighborhood of A in $C\left[a_{1} n\right]$. Let $C_{n}^{\prime}=C_{n} U(A)$. Note that Fr (C_{n}) is a connected, compact, planar 2-manifold. Since A is incompressible in $C[\infty, 0]$, each curve of $A A$ is nontrivial in $\operatorname{Fr}\left(C_{n}\right)$.

Say that $O A=J_{1} U_{2}$, where J_{i} is a simple closed curve for $i=1,2$. Since $F r\left(C_{n}\right)$ is planar, $J_{1} U_{2}$ separates $\mathrm{Fr}_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{n}}\right)$ into three pieces with closures F_{1}, F_{2}, and F_{3} each of which is a planar 2-manifold.

We claim that at most two of F_{1}, F_{2}, and F_{3} contain
comparents of $\operatorname{Fr}\left(C_{n}\right)$. To get a contradiction, suppose that all three contain components of Fr(C_{n}). Let Δ_{1} and Δ_{2} be disjoint disks in C_{n} with $\partial \Delta_{i}=J_{i}$ for $i=1$, \mathcal{Z}. Then $\Delta_{1} U \Delta_{2}$ separates C_{n} into three components with closures $B_{1}, B_{2^{\prime}}$ and B_{3}. Now each B_{j} must contain some $D_{n, i(j)}$ for $j=1,2,3$. Choose motation so that $B_{1} \Pi_{3}=\Delta_{1}$ and $\mathrm{B}_{2} \mathrm{~TB}_{3}=\Delta_{2}$. There is an arc α in C_{n} which joins $D_{n, i(1)}$ to $D_{n, i(3)}$ and meets Δ_{1} in precisely one point. Let $S=A L A_{i} L_{2^{\circ}}$ Now S is a 2 -sphere in $N-C_{n}$ and so must bound a 3 -cell B in $N-C_{n}$ (However, since cong cortains precisely orse point we have a contradictions.

Let F_{1}, F_{2}, and F_{3} demate the closures of the components of $\operatorname{Fr}\left(C_{n}\right)-U(A)$. Choose notation so that F_{3} contains no component of $\operatorname{Fr}\left(C_{n}\right)$. Then F_{3} is an annulus. Let A_{1} and A_{2} be the components of Fr(U(A);C[$\infty, n])=$

Since A is incompressible in $C\left[c_{3} n\right]$, both F_{1} and F_{2} must contain components of $\operatorname{Fr}\left(C_{n}\right)$. Let $F=F_{1} L F_{2} L F_{3} L A_{1} L A_{2}=\quad$ Then either F is a cormected plamar e-manifold or has two compoments, namely $F_{1} \mathcal{L F}_{2} \operatorname{LA}_{1}$ and $F_{3} L A_{2}$ such that $F_{1} L F_{2} L A_{1}$ is a commected planar P-manifold. In the first case, Fr($\left.C_{n}^{\prime}\right)=F$; put $C_{n}^{\prime \prime}=C_{n}^{\prime}$ In the latter case, $F_{3} \operatorname{LA}_{2}$ is a torus which must bound a
compact 3-manifold K in $C[0, n]$; put $C_{n}^{n}=C_{n}^{\prime} L K$. Then
$\operatorname{Fr}\left(C_{n}^{\prime \prime}\right)=F_{1} L F_{2} L A_{1}$.
So C_{n} is contained in a 3-cell $C_{n}^{\prime \prime}$ such that $C_{n}^{\prime \prime}$ neN $=C_{n}$ naN and such that A is contained in int ($C_{n}^{\prime \prime}$).

We may repeat the above procedure for every
nonspanning component of $\left.U K P_{i} \mid 1 \leq i \leq \mu\right\} \pi N C_{n}$ and every $n \leq 1$ to obtain an exhausting sequence $\left\{\mathrm{C}_{n}^{\prime \prime}\right\}$ of N such that $P_{i} \cap C_{n}^{\prime \prime}$ is a single disk for $1 \leq i \leq \mu$. Let $M_{n}=M \cap C_{n}^{\prime \prime}$ for $n \leq 0$.

Then M_{n} is a 3-cell with M_{n} nam a disjoint union of a finite number of disks. Therefore M is a nearnode.

CHAPTER XI

THE HANGAR THEQREM

Definition XI. 1 Let W be a Whitehead manifold. Suppose that H is a proper submarifold of W such that
(a) each component of H is a mearnode with a finite number of faces, (b) mo compoment of $c 1(W-H)$ is a mearmode, and (c) if P is an essential proper plane in $V-H_{9}$ then pis parallel to a plame in H. Then we say that H is a hangar for W.

Lemma XI. 2 . Let W be an eventually end-imreducible Whitehead manifold. Suppose that H and $H^{\prime \prime}$ are hangars for W and suppose that the union of any finite collection of pairwise disjoint nontrivial proper plames in W is isotopic into H. Then H is ambient isotopic in W to H^{\prime}.

Praaf:

From the hypothesis, we may assume that $\mathrm{AH}^{\prime \prime}$ is contained in int (H). Let N^{\prime} be a component of H^{\prime}. We claim that N^{\prime} is contained in int (H).

To get a contradiction, suppose that $N^{\prime \prime}$ is not

```
contained in H. Then N' must contain some component M
of cl(W-H). By lemma X.6, this implies that M is a
nmarmode which contradicts the fact that H is a hangar
by being in conflict with pant (b) of the definition.
    Let }N\mathrm{ be a compoment of H. We claim that there is
a compoment N' of (H' which is contained in int(N) and
such that cl(N-N') is the disjoint union of copies of
R}\mp@subsup{R}{}{2}\timesI each of which commects a component of ON to a
component of ON'.
Let \(P\) be a component of \(O N\). Then by 1 emma \(X .3\) there is a product PxI which is proper in \(W\) such that PxG=P and Pxi is a component of \(\mathrm{ON}_{\mathrm{P}}\) for some component \(N_{p}\) of \(H^{\prime}\). We may assume by lemma \(X .4\) that (PxI) \(H^{\prime}=P^{\prime}=1\). Since no component of \(c 1(W-H)\) is a mearnode, PxI must be contained in M. Hence \(N_{p}\) is contaimed in N. At this point, we have proved that \(N\) contains a component of \(N\) p for each comporent \(p\) of \(Z N\).
We are dome if we show that \(N_{p}\) is the some for each
component \(P\) of \(O N\). Let \(N^{2}=L K N_{p} \mid P\) is a component of ON3. If \(N^{\prime}\), is not the same for each component \(P\) of \(Z N\), then there is a compoment \(M\) of cl(N-N') which is contained in int (N). Now \(M\) is a mearnode by lemma X. 6 which contradicts the fact that \(H^{\prime}\) is a hangar.
```

Theorem XI. 3. Let V be a Whitehead manifold of genus $g \leq 2$ at infinity. Then there is a hangar H for $V V$ such that
(a) H has a finite number of components;
(b) if P is a finite set of pairwise disjoint planes that are proper and essential in W, then $L P$ is isotopic into H ;
(c) if H^{\prime} is a hangar for V, then H^{\prime} is ambient isotopic to H .

Praaf:
Let $\left\{V_{n}\right\}$ be an exhausting sequence for V such that, whenever $n \geq 0$, Fr $\left(V_{n}\right)$ is incompressible in $V[\alpha, 0], V_{n}$ is comrected, Fr $\left(V_{n}\right)$ is connected and of genus g, and each torus in $V[\omega, n]$ bounds in $V[\infty, n]$.

Let $\left\{\left(\hat{\Sigma}_{n}, \hat{\mathbf{x}}_{n}\right)|n\rangle\right.$ Q\} be the sequence of seifert pairs defined in lemma IX.6. By lemma IX. 6 and taking a subsequence of $\left\{V_{n}{ }^{\}}\right.$by forgetting finitely many terms, we may assume that
(XI.3.1) for m) there are integers q 〉p>m and an isotopy G:V[$\alpha, p] \times I \rightarrow V[\infty, p]$ such that
(a) $G(x, \theta)=x$ for every $(x, t) \in[a, p] x I$;
(b) $G(x, t)=x$ for every (x, t) Er $\left(V_{n}\right) x I$;
(c) if $\Gamma_{m}=U K I I I$ is a noncompact component of $\hat{\Sigma}_{m}\left\lceil N\left[\infty_{,} p\right]^{3}\right.$ and U is a regular neighborhoad of \sum_{m}, then
$G(x, t)=x$ for every $(x, t) E(U[\infty, p]-U) x I ;$ (d) if \sum_{m} is as in (c), then $G\left(\sum_{m} \Gamma N[\infty, q], 1\right)$ is contained in $\hat{\Sigma}_{o}{ }^{\text {. }}$

By lemma $I X . E$ and the fact that $F r\left(V_{n}\right)$ is of genus g for all n, there is an r large erough so that each noncompact component Π of $\hat{\Sigma}_{o} \Pi N\left[\omega_{1}, r\right]$ has only one end. By lemmas IX. 3 and VIII. 2 either
 for some compact, commected 2 -manifold F or
(XI. 3. 3) $I T$ has an orbit manifold 5 which is planar, has only one end, and precisely one component of 05 is noncompact.

Let us first suppose that (XI. 3. ᄅ) holds. By abuse of notation, put $\Pi=F \times[0, \infty)$. Then $\partial \Pi=(F \times(\theta) U(\sigma F \times[0, \infty)$ and so $\pi_{1}(\partial \Pi)$ is finitely generated. Since $\partial \Pi$ is incompressible in Π and since $\Pi_{1}(\partial \Pi)$ is fimitely generated, by attaching a finite number of 2 -handles and 3 -handles in V, we may obtain a 3 -manifold $C(\Pi)$ from Π such that $\sigma(I I)$ is imcompressible in V. Simce V is simply corruected, irreducible, and open, each component of $\quad \subset(\Pi)$ is a plame.

We claim that F must be a planar 2 -manifold. To get a contradiction, suppose there exists a nonsepanting simple closed curve J in F. Then $J \times[0, \infty$ daes not separate Π. Let A be a regular neighborhaod of J in F. Then $A x[0, \infty)$ is a regular neighborhood of $J x\left[0, \infty\right.$ in Π_{0}. Now $\partial\left(A x[0, \infty)\right.$ is homeomorphic to $S^{\mathbf{1}} \times \mathrm{R}_{\mathrm{R}}$ By a little push, we may assume that $\partial(A x[0, \infty))$ is contaimed in int (C(I)). Since $\partial C(\Pi)$ is incompressible in V and simce V is simply commected, $C(\Pi)$ is simply connected. Therefore, there is a e-handle $D x I$ in $C(I)$ such that $\theta D \times \theta$ is a montrivial simple clased curve on $\partial(A x[\theta, \infty)$. Since $\partial(A x[0, \infty)$ is incompressible in $A x[0, \infty)$, (DxI) U(Ax[0, ∞) is homeamorphic to $\mathbb{R}^{2} \times I$. More to the point, each component of $\partial[(D x I) U(A x[(\infty))]$ is a proper plame which fails to separate V and this contradicts the fact that V is simply commected. So F must be a planar 2-manifold and therefore $C(\Pi)$ is a mearmode.

Now suppose that (XI. 3.3) holds. Since precisely ore compoment of $\partial 5$ is nomcompact, precisely one componerit of 2Π is moncompact. For each torus componet T of $\partial \Pi_{\text {, }}$ let M_{T} be the compact 3 -manifold in $V[\infty, n]$ with $\partial M_{T}=T$. Put $C^{\prime}(\Pi)=\Pi U\left[L K M_{T} \mid T\right.$ is a torus component of $刀 \Pi 1$]. Then αC^{\prime} (Π) is homeomorphic to $S^{1} \times R$. Simce ac' (I) separates and simce
$\operatorname{ker}\left(\pi_{1}\left(\partial C^{\prime}(\Pi)\right) \rightarrow \pi_{1}(V)\right)$ is montrivial, there is a disk D in M such that ∂D is montrivial on σC (II) and such that Dnec' (Π) = OD. To get a contradiction, suppose that D is contained in C (CH^{\prime}. Now O separates $Z C$ (I). Let A be the closure of one component of $2 c$ (Π)- 2 D . Then A is homeomorphic to $S^{1} x[0, \infty)$. So ALD is a proper plane in V. Since V is simply commected, ALD must separate V.

Therefore D must separate $C^{\prime}(\Pi)$. But this is a contradiction since C^{\prime} (II) has only one end.

Consequently, D must be contained in cl(V-C'(I)).
Let $D x I$ be a regular neighborhood of D in cl(V-C' (I)). Put $C(\Pi)=C^{\prime}(\Pi) U(D x I)$. Observe that $\mathcal{O}(\Pi)$ has two compoments each of which is a plame. We claim that $C(\Pi)$ is a nearmode. Recall that S is the orbit manifold of Π; let $p: \Pi \rightarrow S$ be the quotient map. Let $\left\{S_{n}{ }^{3}\right.$ be an exhausting sequence for S such that $F_{r}\left(S_{n} ; S\right)$ is an arc whose boundary is contained in the noncompact component of ∂S and such that $p^{-1}\left(S_{0}\right)$ contains $\partial D \times I$. Let T_{n} be the unique component of θ_{n} which meets Fr ($\left.S_{n} ; S\right)$ for $n \geq 0$. For $n \geq 0$ put $T_{n}=p^{-1}\left(T_{n}\right)$. Then each T_{n} is a torus.

$$
\text { By the irreducibility of } V, c l\left(T_{n}-(\partial D x I)\right) \cup(D x \partial I)
$$

bounds a 3-cell B_{n} for $n \geq 0$. It is not difficult to see that $\left\{B_{n}\right\}$ exhausts $C(\Pi)$. Note that each component of
B_{n} חEB $_{n+1}$ is a disk and that B_{n} חEB B_{n+1} has two components. Therefore, $C(I T)$ is a nearnode with two faces.

Since $\hat{\Sigma}_{0}$ has only a finite number of ends, $\hat{\Sigma}_{0}\lceil N[\infty, r]$ has only a finite number of componerits, say $\Pi_{1, \ldots}, \Pi_{\mu}$. We claim that the set $\left\{C\left(\Pi_{i}\right) \| 1 \leqq i \leqq \mu\right\}$ may be assumed to be pairwise disjoint. Recall that, for $1 \leqq i \leqq \mu_{,} C\left(\Pi_{i}\right)$ is obtained from Π_{i} by attaching e-handles to obtain say Π_{1} and by attaching a compact 3-manifold M_{T} such that $\delta M_{T}=T$ to each compact component T of $\partial \Pi_{i}$ Suppose that for $i \neq j, C\left(\Pi_{i}\right) \Gamma C\left(\Pi_{j}\right)$ is nomempty. Suppose that a 2 -handle which has been attached to Π_{i} meets $C\left(\Pi_{j}\right)$. Since each component of $\partial C\left(\Pi_{i}\right)$ is a plane, the core of $D \times I$ may be chosen to be disjoint from $C\left(\Pi_{j}\right)$. Suppose that M_{T} is a compact 3 -manifold in V which has been attached to a component T of $\partial \Pi_{i}$. Since Mnac $\left(\Pi_{j}\right)=\varnothing_{9}$ either $\operatorname{MnC}\left(\Pi_{j}\right)=\varnothing$ or $C\left(\Pi_{j}\right)$ oM. The former must hold since $C\left(\Pi_{j}\right)$ is proper in V. Therefore, we may assume that $C\left(\Pi_{i}\right) \Gamma C\left(\Pi_{j}\right)=\varnothing$ for $i \neq j$.

Let $H_{o}=\operatorname{LKC}\left\{\Pi_{i} \mid 1 \leqq i \leqq \mu\right\}$. Now H_{o} has only a finite number of components and $50 \mathrm{Cl}\left(\mathrm{V}-\mathrm{H}_{\mathrm{O}}\right)$ has only a finite number of components. Let $H=H_{0} U[L K M I M$ is a componert of $c 1\left(V-H_{o}\right)$ such that M is a neamodel]. Then each
component of H is a nearnode by lemma $X .5$. Since H_{o} has only a finite number of comporents, H has only a finite number of compoments.

We claim that H is a hangar. By construction, H
must satisfy (a) and (b) of the definition of hangar. To show that H satisfies part (c), let pe a finite set of pairwise disjoint planes that are essential and proper in V. By lemma VIII. 5 , there is an m>, a compact set $C \subset V$, and an $i s o t o p y ~ F: V x I \rightarrow V$ such that $F((L P)-C, 1)$ is contained in $\hat{\Sigma}_{m}$ " We may extend the isotopy G given in〈XI. 3. 1) to an isotopy $\hat{G}: V \times I \rightarrow V$. We may assume that, for some compact subset K of V, (LD)-K is contained in $\left.L K \Pi_{i} \mid 1 \leqq i \leqq \mu\right\}$ and therefore in H. Now \# (UP) חNOH) is finite. Let v be chosen so that int $\left(V_{v}\right)$ contains (LP) חAH. Isotop (LP) by an isotopy fixed off V_{v} so that \# ((LP) HeH) is minimal. Since V is irreducible, \# ((山) $\cap(H)=0$. So UP is contained in H. Therefore H satisfies condition (b) of the comclusion.

By lemma $X .3, H$ satisfies condition (c) of definition XI. 1.

CHAPTER XII

EXAMPLES

In this section, we will have accasion to refer to a number of figures in order to illustrate our examples. These figures will be found in an appendix.

The following lemma is taken from lemma 2.7 of Myers's [11].

Lemma XII. 1. (Myers) If W is a Whitehead manifold of genus one at infinity, then there is an exhausting sequence $\left\{W_{n}\right\}$ for W such that
(1) W_{n} is a solid torus for $n \geq 0 ;$
(2) Fr(W_{n}) is incompressible in W[a, 0] for niog
(3) there is no incompressible armulus A in ΔW_{n} which spans ΔW_{n} for $n \geq 1$.

The following proposition is originally due to Kimoshita [10].

Proposition XII.2. (Kinoshita) If W is a Whitehead manifold of genus one at infinity, then W contains mo
nontrivial planes. (That is W has an empty hangar.) Proof:

To get a contradiction, suppose that p is a montrivial plane in W. By lemma VIII. 5 and an isotopy, there must be an anmulus component of PriAN W_{n} However, by lemma XII. 1 , there is an exhausting sequence $\left\{W_{n}\right\}$ for W such that ΔW_{n} contains no incompressible spanning annuli for nil. We have reached our contradiction.

We will use the following lemma in two of the examples in the sequel.

Lemma XII. 3. Let U be a noncompact 3 -manifold with an exhausting sequence $\left\{C_{n}\right\}$. For $n \geq 0$, let $D_{n}=\partial C_{n} n \partial C_{n+1}$ Suppose that for $n \geq 0$
(1) C_{n} is irreducible;
(2) D_{n} is a single disk;
(3) $D_{n} \operatorname{Cint}\left(D_{n+1}\right)$.

Suppose that p is a montrivial plare in U with the nomeompact component A of PIC $\left[\alpha_{3} 0\right]$ homeomorphic to $S^{\frac{1}{1}} \mathbb{R}_{2}$ incompressible in $C[\infty, 0]$ and such that $A \cap \Delta C_{n}$ is an anmulus which is parallel in ΔC_{n} to $c l\left(D_{n}-D_{n-1}\right)$ for $n \geq 1$. Then P is parallel in u to $d u$. Proaf:

There is a regular neighborhood duxI of aU such
that $(Z U x I) C_{n}$ is a regular meighborhood of D_{n} in C_{n} for rim. It is not difficult to construct an isotopy of u which takes A into $\partial U x I$ since $A \Pi_{A} C_{n}$ is parallel in ΔC_{n} to cl $\left(D_{n}-D_{n-1}\right)$ for $n \geq 1$. Since C_{n} is irreducible for $n \geq 0$ and simce Fr\{ZUxI) is incompressible in U, we may isotop

Let $V^{\prime} \mathrm{CV}$ as indicated in figure 1. The following lemma is drawn from lemma 6. 1 of Myers's [12].

Lemma XII.4. (Myers) (M, OVLEN') is an irreducible 3-manifold pair which contains no essential arnuli or tori.

Let F be a cormected, compact planar 2 -marifold with three boundary components J_{1}, J_{2}, and J_{3} " Consider FxI. Let α_{0} be an anc in $F \times \frac{1}{2}$ which joins $J_{2} \times \frac{1}{2}$ to $J_{3} \times \frac{1}{2}$. Let U be a regular neighborhood of α_{o} in FxI. Let $G=c l(F x I)-U)$.

Lemma XII. 5. Let A be an anmulus in G and let J and K be the components of OA. Suppose that A is imcompressible in G and that J is contaimed in $F x \partial I$ and parallel in FxəI to a component of $J_{1} \times \partial I$. Then K is not contained in
($J_{2} \mathrm{UJ}_{3}$) $\times I$. Furthermore, if A is essential in ($\left.G_{\text {, }}(F x \neq I) \operatorname{Fr}(U)\right)$, then A is isatopic in G ta JxI.

Proaf:

Since J is parallel in Fxəl to a component of $J_{i} \times \partial I$ and since $J_{1} \times \partial I$ is imcompressible in $F x I_{\text {, }} A$ is incompressible in FxI.

To get a contradiction, suppose that K is contained in J_{i} for $i=2$ or 3. Simce A is imcompressible in FxI, K must be isotopic in $J_{i} \times I$ to $J_{i} \times \frac{1}{2}$. On the other hand since J_{1} is not freely homotopic in F to J_{i} for $i=2,3$, K is not isotopic in $J_{i} \times I$ to $J_{i} \times \frac{1}{2}$ for $i=2,3$. This is our contradiction.

Now suppose that A is essential in (G, (FxOI)UFr(U)). Since Arix ${ }_{0}=D_{\text {, }} A$ is essential in (FxI,FxOI). Therefore, by lemma I. 1, A is isotopic to JxI.

Let α be the arc in M from $O N$ to $O N$ indicated in figure 2. Let N be a regular meighborhood of α in M. Let E be a regular meighborhood of NON in \mathcal{W}. Put $A=c 1(E-N)$. Let $M^{\prime}=c 1(M-N)$. Let T be the component of cl(BNP $^{\prime \prime}-A$) which is contained in $O N$ and let $T^{\prime}=c l\left(M^{\prime}-A\right)-T$.

Lemma XII.E. A is incompressible in My.

Praof:
Suppose D is a disk in M with DrA=OD which is noncontractible in A. Let E be a disk in \mathcal{O} with $Z D=Z E$. Then cnOVCE' since $Z D$ is noncontractible in A. Note that DLE' bounds a 3-cell in M^{\prime} so \#(c〇П(DLE')) must
 contained in M. We must conclude that A is incompressible in M'

Lemma XII.7. (M',TLT') is an irreducible 3-manifold pair.

Proof:
Let S be a 2 -sphere in M^{\prime}. Since M is irreducible, there is a 3-cell B in M with $S=08$. We may assume that SחOM=ø. Since SaM', Sחax=ø. Since $\partial \propto C O M$ and since α is comected, $\alpha M^{\prime \prime}-B$. So B is contained in M'. Therefore, M ' is irreducible.

Let D be a disk in M^{\prime} with Dn(TUT')=OD. We may
assume that $O D$ is contained in $A M$. To get a
contradiction, assume that ∂D is noncontractible in TUT'. Since AM $^{\prime}$ is incompressible in M, θD must be contractible in MM. So we may assume that OD is parallel in TUT, to a component of AA. Since A is incompressible in M^{\prime}, this is a contradiction.

Lemma XII.B. If A^{\prime} is an annulus which is essential in
(M', TUT'), then A^{\prime} is parallel to A.

Proof:
Let J be a component of ∂A^{\prime}. We claim that J is parallel in TUT' to a component of ∂A; that is we claim that J is contractible in $O M$. To get a contradiction, suppose that J is moncotractible in $2 M$. Since M is O-imreducible, A^{\prime} is incompressible in M. By lemma XII.4, A^{\prime} is parallel in M into A_{M} Let Q be the required parallelism. Note that $\alpha \Gamma R=\varnothing$ since $\alpha \Gamma^{\prime}=\varnothing$ and α meets both \mathcal{O} and $\mathcal{O V}^{\prime}$. Therefore, Q is contaimed in M which contradicts the assumption that A^{\prime} is essential in (M), TUT').

Let F_{1} and F_{2} be the 2 -manifolds homeomorphic to disks with two holes in figure 3 which split Mr into \boldsymbol{R}^{\prime} and $R^{\prime \prime}$ as indicated in figures $4(a)$ and 4(b), respectively. Since M is \mathcal{O} imeducible, F_{i} is incompressible in M in and therefore M for $i=1,2$. Isotop A^{\prime} in (M', TUT") so that $A^{\prime \prime}$ is contained in $R^{\prime \prime}$ and so that $\#\left(A^{\prime} \cap\left(F_{1} L F_{2}\right)\right)$ is minimal. We claim that $A^{\prime} \operatorname{\Pi i}\left(F_{1} L F_{2}\right)=\varnothing$.

To get a contradiction, suppose that K is a component of $A^{\prime} \cap\left(F_{1} \mathcal{L F}_{2}\right)$. Then K is a simple clased curve simce $\partial A^{\prime} \mathcal{F F}_{i}=\varnothing$ for $i=1$, 2 . By the minimaliy of $\#\left(A^{\prime} \cap\left(F_{1} L F_{2}\right)\right)$, the incompressibility of $F_{1} L F_{2}$, and the imreducibilty of M, K is moncontractible on both $F_{1} \mathcal{F}_{2}$
and A^{\prime}. So we may assume that there is an annulus component $A^{\prime \prime}$ of $A^{\prime} \operatorname{RR"}^{\prime \prime}$ with $2 A^{\prime \prime=}=$ JLK. But by lemma XII. 5 this cannot happen. So $A^{\prime} \cap\left(F_{1} L F_{2}\right)=\varnothing$.

Since A^{\prime} is essential in (M^{\prime}, TUT'), A^{\prime} must be essential in (R", $\boldsymbol{R R}^{\prime \prime} \cap(T \cup T)$). Therefore, by lemma XII. 4 A^{\prime} is parallel to A.

Let $W=U\left\{W_{n}, n \geq 0\right\}$, where W_{n} is a solid torus embedded in W_{n+1} as shown in figure 5 for n n. Note that $\partial W_{n} \cap O W_{n+1}$ is a disk so ∂W is a plane.

Proposition XII.9. If P is a nontrivial plane in W, then P is parallel in W to ∂W.

Proaf:
By applying lemma VIII. 5
and forgetting finitely many
of the initial terms of $\left\{W_{n}\right\}^{\}}$, we may assume that the noncompact component A of PrW[$\alpha, 0]$ is homeomorphic to $S^{1} \times[0, \infty)$ and incompressible in $W[\infty, 0]$. By lemma II. 3, we may assume that for $n \geq 1$ each component of ΔW_{n} is an annulus which is essential in $\left(\Delta W_{n}, F r\left(\Delta W_{n}\right)\right)$. So by lemma XII. 8 each component of $A \cap \Delta W_{n}$ must be parallel to the annulus $c l\left(\left(\partial W_{n} \cap \partial W_{n+1}\right)-W_{n-1}\right)$ for $n \geq 1$. Since A has
only one end, AחAW has exactly one component.

Therefore, by lemma XII. 3, we are dome.

In the sequel, the definition of property A and lemma 11.10 have been taken from 53 of Myers's [12].

Let (M,F) be a compact, orientable 3-marifold pair. We say that (M,F) has property A if
(1) $\left(M_{3} F\right)$ and $(M, C l(Z M-F)$) are immeducible 3-manifold pairs;
(2) no component of F is a disk or a 2-sphere;
(3) every properly embedded disk D in M with DFF a single arc is bourdary parallel.

Now suppose that $M_{0} M_{0} \operatorname{LM}_{1}$, where M_{0} and M_{1} are compact orientable 3 -manifolds and $F=M_{o} \Pi_{1}=O M_{o} M_{1}$ is a compact 2 -manifold.

Lemma XII.10. (Myers) If (Mo;F) and (M,F) have property A, then M is imreducible and ∂-imreducible and F is incompressible and ∂-imcompressible.

Lemma XII.11. Let F be a compact, orientable Z-manifold which is neither a e-sphere nor a disk. Let M=FxI. Then ($M, F_{x} I$) and ($M, F x \partial I$) have property A.

Since F is not S^{2}, M is imreducible. Note that each component of $\mathcal{F x I}$ is an amulus and that mo component of $F x \partial I$ is a disk. Also mote that $\mathcal{F} x I$ and FxəI are incompressible in M.

Suppose that D is a disk in M with Dn(EFxI) a single arc. Then $D \cap\left(\not F_{x} I\right)$ must be a separating arc of $F_{x} I$ simce $\because D-(D \cap(\beta F x I)$ is commected. Hernce, by an ambient isotopy of M isotop DD is contaimed in FxOL. Therefore; D must be parallel into AM_{M} by corollary 3.2 of [15].

Now suppose that D is a disk in M with Dח(FxəI) a single arc. Therefore D n($\left.\boldsymbol{F F}_{x} \mathrm{I}\right)$ is a single arc. So by the preceding paragraph, D must be parallel irito $Z M$.

Lemma XII_12. Let D be a disk and let α be a compact 1-manifold in ∂D. Put $M=D \times S^{1}$ and $F=c o S^{1}$. Let n be the number of components of α. If E is a properly embedded disk in M such that \#(EMF) In-1, $^{(n)}$ then E is parallel into OM. Consequently, if $n z Z_{\text {, }}$ then (M,F) has property A. Proof:

Note that M is imreducible and that F and $c l(A M-F)$
are incompressible in M.
Since $\#(E \cap F) \leq n-1$, there is a comporient α_{o} of α such
that $E \cap\left(\alpha_{0} \times S^{1}\right)=5$. So σE is contained in the arnulus
$A=c l\left(\partial W-\left(\alpha_{0} x S^{1}\right)\right)$. Simce the core of A is parallel in $\quad \mathrm{m}$ to the core of $\alpha_{o} \times S^{1}$, A is incompressible in M.

Therefore, E is parallel into $A M$ simce M is irreducible.

Let M be the 3 -manifold in R^{3} shown in figure 6 .
 once-punctured torus for $i=0,1, T_{0} \Pi_{1}=\varnothing_{1}$, and $T_{i} \Gamma_{0}=O T_{i}$ for $i=0,1$. Let $T=T_{0} U_{1}$ "

Let A_{i} be the armulus indicated in figure 7 for $i=1,2,3$. Put $G=A_{1} \operatorname{LH}_{2} \operatorname{LA}_{3}{ }^{\circ}$

Lemma XII.13. Let M_{o} and M_{1} be the closures of the components of $M-\mathrm{C}$ Then
(a) (Mo, is homeomorphic as a pair to $\left(D^{2} \times S^{1}, \infty S^{1}\right)$, where α is a compact 1 -manifold in $O D^{2}$ with three companents;
(b) (M, (C) is homeomomphic as a pair to
(FxI, $F^{F} \times I$), where F is a compact planar 2 -manifold with two boundary components.

Proaf:

This may be seen most readily by splitting first along A_{1} as indicated in figure g and then along $A_{2} \operatorname{LA}_{3}$ as in figure 9.

Lemma XII.14. M is irreducible and \mathcal{Z}-irreducible and a is incompressible and $\boldsymbol{\partial}$-incompressible. Proof:

By lemmas XII. 11 and XII. 2 respectively, $\left\langle M_{0}, \mathrm{O}\right.$ and (M, (O) have property A. So by lemma XII. 10, we are dome.

Lemma XII. 15. If A is an anmulus which is essential in ($M_{2} T$) then A is isotopic in ($M_{7} T$) into ($M_{0} U_{1} L_{2} U_{1} L_{2}$), where the U_{i} and L_{i} are as indicated in figure 9. Proof: Isotop A in M so that \# (ACO) is minimal. We claim that Ana is empty. To get a contradiction, we assume that J is a component of Ana

In the case that J is a simple closed curve, the standard arguments give us that J is moncontracible in both A and a

In the case that J is an arc, the essentiality of A and G in (M, T) implies that J is a spanning anc of both A and G via lemma 2.1 of [12].

Note that the components of Ala are homeomonphic to one amother.

First suppose that J is an arc. Since a separates M, thene is a disk companent D of $A M_{0}$ which meets a in two arcs. By lemma XII. 12, D is parallel in to OM_{o} We are therefore able to reduce \# (ACO) by an isotopy which

Lemma XII. 16. Let A be an annulus which is essential in (Mor $\mathrm{H}_{1} \mathrm{LH}_{2} \mathrm{LL}_{1} \mathrm{LL}_{2}$). Then
(a) each component of $O A$ is contained in a different component of $U_{1} \mathrm{LH}_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}$;
(b) if the components of $O A$ are contained in
$U_{1} L_{1}$, then A is parallel to A_{0}

Proof:
Part (a) follows from corollary 3.2 of [15].
Part (b) follows from part (a) and lemma I. 1.

```
We shall now describe the construction of a rather interesting nomcompact 3 -manifold which is originally due to T. Tucker [14].
Let \(\left.V=L K V_{n} \mid n \geq 0\right\}\), where \(V_{n}\) is a solid torus and \(V_{n}\) is embedded in \(V_{n+1}\) as shown in figure 10 . Note that \(\boldsymbol{N}\) is a plame. Tucker showed that \(V-O V\) is homeomorphic to \(R^{3}\), but that \(V\) is not homeomorphic to \(R^{2} \times[0, \infty)\).
Proposition XII_17. If \(P\) is a nontrivial plame in int (V), then \(p\) is parallel in \(V\) to \(O\). Proof:
By lemma VIII.5, we may assume that the nomcompact component \(A\) of PIN \([\infty, 0]\) is homeamorphic to \(S^{1} \times[0, \infty)\), incompressible in \(V[\infty, 0]\) and therefore strongly essential in \(\left(V[a, 0], F r\left(V_{0}\right)\right)\). By lemma II. 3 , we may assume that each component of \(A \cap \Delta V_{n}\) is an armulus which is essertial in \(\left(\Delta V_{n}, F r\left(\Delta V_{n}\right)\right)\) for \(n \geq 1\).
For \(k \geq 1\), there is a homeomorphism of triads
```



``` are as in figure 6. Furthermore, if \(\left(Q_{0}, m_{0}\right)\) and \(\left(Q_{1}, m_{1}\right)\) are pairs of simple clased curves as indicated in figure 6 and \(\left\{\left(\lambda_{n} ; \mu_{n}\right) \mid r \geq 0\right\}\) is the sequence of curve paims indicated in figure 10 , then we may stipulate that
```

$h_{k}:\left(\lambda_{k}, \mu_{k}\right) \rightarrow\left(\ell_{1}, m_{1}\right)$ and $h_{k}\left(\lambda_{k-1}, \mu_{k-1}\right) \rightarrow\left(\ell_{0}, m_{0}\right)$. Note that ℓ_{0} is isotopic to the core of L_{2} and m_{1} is isotopic to the core of U_{2}. Let b_{0} and b_{1} be the cores of L_{1} and U_{1}, respectively. Then b_{i} is parallel in T_{i} to $\neq T_{i}$ Let $n \geq 2$ be giver. Let A_{n} be a component of $A \cap \Delta V_{n}$ Then A_{n} is essential in $\left(\Delta V_{n}, F r\left(\Delta V_{n}\right)\right)$. Suppose that J is a component of ∂A_{n} - By lemma $11.16, h_{k}(J)$ is isotopic in T to one of the simple clased curves
(XII.17.1) $b_{0}, 2_{0}, m_{1}$, or b_{1}.

Suppose that J is contained in $\operatorname{Fr}\left(V_{n}\right)$. Then there is an annulus component A_{n+1} of $A \cap \Delta V_{n+1}$ which is essential in $\left(\Delta V_{n+1}, \operatorname{Fr}\left(\Delta V_{n+1}\right)\right)$ with J a component of $A_{n+1^{-}}$By lemma XII. 16, $h_{n+1}(J)$ is isotopic to either b_{0} or θ_{0} Since $h_{n} h_{n+1}^{-1}\left(\ell_{0}\right)=Q_{1}$ which is not among the simple closed curves listed in (XII.17.1), $h_{n+1}(J)$ must be isotopic to b_{0}. Therefore, J must be parallel in V_{n} to $\operatorname{Fr}\left(V_{n}\right)$.

If J is contained in $\operatorname{Fr}\left(V_{n-1}\right)$, we may by reasoning as in the preceding paragraph show that J is parallel in $\operatorname{Fr}\left(V_{n-1}\right)$ to $\operatorname{Fr}\left(V_{n-1}\right)$.

Since A_{n} is essential in $\left(\Delta V_{n}, F r\left(\Delta V_{n}\right)\right)$, it follows by lemma XII. 16 that A_{n} must be parallel to cl($\left.\left(\underset{N}{ } \mathrm{nON}_{n+1}\right)-V_{n-1}\right)$. Consequently, by 1 emma XII. 3 , p must be parallel to ∂N.

Let B be a 3 -ball. Let $\left\{E_{i} \mid 1 \leqq i \leqq n\right\}$ be a set of pairwise disjoint disks which are contained in 28 with niz. Let Γ be a connected 1 -complex embedded in B which has at most one nommanifold point and such that or consists nz2 distinct points x_{1}, \ldots, x_{n} with x_{i} contained in E_{i} for $1 \leqq i \leqslant n$. Let N be a regular neighborhood of Γ in B such that N neBclkint $\left.\left(E_{i}\right) \mid 1 \leq i \leq n\right\}$. Let $\widehat{B}=c 1(B-N)$. For $1 \leqq i \leq n, \quad$ let $A_{i}=c l\left(E_{i}-N\right)$. Put $\left.G=L K A_{i} \mid 1 \leqq i \leqq n\right\}$.

Lemma XII.1B. $\langle\hat{B}, G$ has property A. Proof:

Since Γ is comected and meets $2 B$ and since B is irreducible, \widehat{B} is irreducible.

Suppose that D is a disk in B with $D M O=O D$ and nomcontractible in a Choose i so that αd is contained in E_{i}. There is a disk E in E_{i} with $\partial D=O E$. Since ∂D is momcontractible in $a_{\text {, }}$ int (E') contains x_{i} (Now DLE' bounds a 3-ball B^{\prime} in B. Since $n \geq 2$, there is a j such
that x_{j} is not contained in E'. Therefore, rrD;刀, since Γ is commected. Hence, D is not contained in \widehat{B}.

Let $B=\partial \hat{B}-\alpha$ Suppose that D is a disk in \widehat{B} with DMESED and noncontractible in 8

Suppose that $O D$ is contained in OB. Ther there is a disk E' in θB with $\partial E^{\prime}=\partial D$. Simce $O D$ is noncontractible in B, there exist i and j so that E, contains x_{i} and $\partial B-E$ contains x_{j}. Therefore DTV; $=$. So D is not contained in \widehat{B} which is a contradiction.

Now suppose that ∂D is contained in Fr(N). There
is a disk E^{\prime} in $O N$ so that $O^{\prime}=O D$. Since $O D$ is
moncontractible in B, there exist i and j such that x_{i} is contained in E^{\prime} and x_{j} is contained in ON-E'. Now DLE' bounds a 3 -ball B^{\prime} in B. Since DTH= \varnothing and $x_{i} \in E^{\prime}, \Gamma$ is contained in B^{\prime}. On the other hand, since x_{j} is contained in $O N-E$ ' Γ is not contained in B^{\prime}; hence we have achieved a contradiction. Therefore, we conclude that $c l(\hat{B}-\mathrm{O})$ is incompressible in $\hat{\mathrm{B}}$.

Suppose that D is a disk in \widehat{B} such that Dra is a single arcs say α Let $\beta=c 1(\theta D-\alpha)$. Observe that both points of \mathcal{F} are contained in the same component of \mathcal{O} Therefore, α is a separating arc of α So ad is

incompressible in \hat{B} and since \hat{B} is irreducible, D is parallel into $\hat{8}$. This ends the proof.

Example XII.19. Let $X=L K X_{n} \mid n \geq 01$, where X_{n} is a genus 3 handlebody and $x_{n}=x_{n+1}$ as shown in figure 11. For $n \geq 0$, let $\left(E_{n}, E_{n}^{\prime}, E_{n}^{\prime}\right.$) be the triad of disks in X_{n} shown in figure 11. Note that $\left(E_{n+1} \Pi x_{n}, E_{n+1}^{\prime} \Pi x_{n}, E_{n+1}^{\prime \prime} \Pi x_{n}\right)=\left(E_{n}, E_{n}, E_{n}^{\prime \prime}\right)$ for $n \geq 0$. For $n \geq 0$, let c_{n} be the unique 3-ball in x_{n} which is a closure of a component of $X_{n}-\left(E_{n} L_{n}^{\prime} \mathcal{E}_{n}^{\prime \prime}\right)$. Let $Y_{n}=c 1\left(X_{n}-C_{n}\right)$. Let $Z_{n}=c l\left(Y_{n}-Y_{n-1}\right)$ for $n \geq 1$. Note that by lemmas XII. 6, XII.7, and XII. 14 each component of $\left(Z_{n}, Z_{n} \cap C_{n}\right)$ has property A. By lemma XII. 18 (cl $\left.\left(C_{n}-C_{n-1}\right), Z_{n} C_{n}\right)$ has property A. Therefore by lemma

Let $C=L K C_{n}$ In $\left.\geq 0\right\}$. Then C is a nearnode. By propositions XII. 9 and XII. 17, C is a hangar for X. By theorem XI. 3 , if P is a nontrivial plane in X, then P is isotopic into C.

It is clear how to extend this example to manifolds of genus g at infinity.

Example XII.20. (Myers) Let $U=L K U_{n}\{n \geq 0\}$, where U_{n} is a genus 2 handlebody and U_{n} is embedded in U_{n+1} as shown in figure 12. According to Robert Myers, cl ($U_{m}-U_{n-1}$)
contains an armulus A_{n} which is unique upto ambient isotopy. Furthermore $A_{n} \operatorname{FFr}_{n}\left(U_{n-1}\right)$ separates Fr $\left\{U_{n-1}\right)$ and A_{n} Frr $\left(U_{n}\right)$ does mot separate Fr($\left.U_{n}\right)$. Therefore, by lemma VIII. 6,4 contains mo montrivial plames.

1. Brown, E.M., "Contractible 3-manifolds of firite genus at infinity," Trams. Amer. Math. Sac.s Vol. 245, November 1978, pp. 503-514.
2. Browry, E. M., M. S. Browry and C. D. Feustel, "On properly embedding planes in 3-manifolds," Trans. Amer- Math_ Sace, Vol. 55, Number 2, March 1976, pp. 461-464.
3. Brown, E. M., T. W. Tucker, "On proper homotopy theory for noncompact 3-manifolds," Trans. Amer. Math. Sac., Vol. 18B (1974), pp. 105-126.
4. Epstein, D. B. A., "Curves on 2-manifolds and isotopies," Acta Mathes 115 (1966), pp. 83-107.
5. Freedman, M. H., J. Hass, and P. Scott, "Closed geadesics on surfaces," Bull. London Math. Sac., Vol. 14 (1982), pp. 385-391.
6. Hempel, J., 3-Manifalds, Arm. of Math. Studies 86, Primceton University Press, Princetom, New Jersey, 1976.
7. Jaco, W. H. and P. B. Shaler, "Seifert fibered spaces in 3-marifolds," Mem. Amer. Math. Soc. Vol. 21, No. 20, September 1979.
8. Jaco, W. H., Lectures on 3-manifold Topolony, CBMS Regional conference Series in Mathematics, Number 43 (1980).
9. Johamsor, K., Homotopy Equivalemces of 3-manifolds with Boundary, Springer Lecture Nate 761 (1979).
10. Kimoshita, S., "On infinite Cyclic Actions on Contractible Open 3-manifolds and Strong Irreductibility," Springer Lecture Note 299, pp. 323-327.
11. Myers, R., "Contractible Open 3-manifolds which are not covering spaces," Topoloqy, vol. 27, no. 1 (1988), pp. 27-35.
12. Myers, R. "Simple knots in compact orientable 3-manifolds," Trans. Amer. Math. Sac., vol. 273, no. 1, September 1982, pp. 75-91.
13. Rourke, C. P. and B. J. Sanderson, Introduction to Piecewise Linear Topology, Springer-Verlag, 1982.
14. Tucker, T. W., "On the Fox-Artin sphere and surfaces in noncompact 3 -manifolds," Quart. I_ Math. Oxford 2, 28 (1977), pp. 243-254.
15. Waldhauser, F., "On irreducible 3-manifolds which are sufficiently large," Ann. Math., 87 (1968), pp. 56-88.

APPENDIX

Figure 1. The 3-manifold pair (M, $\partial V U \partial V^{\prime}$).

Figure 2. The 3-manifold pair (M, $\left.\partial V U^{\prime} V^{\prime}\right)$ with the arc α indicated.

Figure 3. The 3-manifold pair ($M^{\prime}, T^{\prime} U T$).

Figure 4. The pieces of M^{C} obtained by splitting along $\mathrm{F}_{1} \mathrm{UF}_{2}$.

Figure 5. The manifold W_{n} as it is embedded
in W_{n+1}

Figure 6. The manifold pair with the curve pairs (l_{0}, m_{0}) and $\left(l_{1}, m_{1}\right)$ indicated.

Figure 7. The 2-manifold $A_{1} U_{2} U A_{3}$ in the 3-manifold pair ($\mathrm{M}, \mathrm{T}_{\mathrm{o}} \mathrm{UT}_{1}$).

Figure 8. The 3-manifold obtained by splitting M along A_{1}.

M_{0}

Figure 9. The 3-manifolds M_{0} and M_{1} obtained by splitting along $\mathrm{A}_{1} \mathrm{UA}_{2} \mathrm{UA}_{3}$ with important

Figure 10. The 3-manifold V_{n} with the curve pair $\left(\lambda_{n}, \mu_{n}\right)$ indicated.

Figure 11. The 3 -manifold X_{n} embedded in X_{n+1}.

Figure 12. The 3-manifold U_{n} embedded in U_{n+1}.

VITA

Bobby Neal Winters
Candidate for the Degree of
Doctor of Philosophy

Thesis: PROPER PLANES IN WHITEHEAD MANIFOLDS DF FINITE GENUS AT INFINITY

Major Field: Mathematics

Biographical:

Persomal Data: Born in Adag Oklahoma, Detober 21, 1962, the son of G. C. and Ona Mae Winters. Married to Jean A. Pittman on Jamuary 4, 1986. Daughter Lora Katherime borm on February $\mathbf{B ,}_{\text {, }}$ 1988.

Education: Graduated from McLish High School,
Fittstown, OKlahoma, in May, 1980; received Bachelor of Science Degree in Mathematics from East Central University, in May 1983; received Master of Science Degree from Oklahoma State University, in May 1985; completed requirements for Doctor of Philosophy degree at Oklahoma State University in May, 1989.

Professional Experience: Teaching Assistant,
Departmant of Mathematics, Oklahoma State University, August 1983 to May 1986; Research Assistant, Department of Mathematics, Oklahoma State Uriversity, Jume 1986 to preserit.

