EXTENDED STUDIES OF THE PHOTOCHEMICAL
 4,4-DIPHENYL-2-CYCLOHEXEN-1-ONE
 REARRANGEMENT

By
VICKI LYNN T/AYLOR
Bachelor of Science
Southwestern Oklahoma State University
Weatherford, Oklahoma

1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University in partial fulfillment of the Degree of
DOCTOR OF PHILOSOPHY
December, 1989

$$
\begin{aligned}
& \text { Thesis } \\
& 1989 D \\
& 1246 e \\
& \text { cop.2 }
\end{aligned}
$$

EXTENDED STUDIES OF THE PHOTOCHEMICAL
 4,4-DIPHENYL-2-CYCLOHEXEN-1-ONE
 REARRANGEMENT

Thesis Approved:

PREFACE

The synthesis and photochemistry of four cyclic unsaturated systems, structurally related to 4,4-diphenyl-2-cyclohexen-1-one (1) is described. These include the 4,4diphenylcyclohexenone analogs, 10,10 -dimethylspiro[anthracene- $9(10 H), 1$ '-[2]cyclohexen]-4'-one (14) , 10',11'-dihydrospiro[2-cyclohexene-1,5'-[5H]dibenzo[a,d]cyclohepten]-4-one (18), 4,4a,5,6-tetrahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (4), and cis-4,4-diphenyl-2-cyclohepten-1-one (11). Spirocyclohexenones 14 and 18 were studied to evaluate the possibility of altering the stereochemical outcome of the photochemical 4,4-diphenyl-2-cyclohexen-1-one rearrangement. The naphthalenone 4 and cycloheptenone 11 were investigated to determine if an extended π-system or a medium ring enone would exhibit similar reactivity to that observed for the parent compound 1. These studies have provided additional information regarding the mechanism, energetics and general requirements for photochemical aryl migration.

ACKNOWLEDGEMENTS

I wish to express sincere appreciation to my dear friend and research advisor, Dr. Richard Bunce, whose guidance, sound advice and genuine interest, has made this work possible. He has given generously of his time and energy in preparing me for a career in science and I am deeply grateful. Appreciation is also extended to my committee members, Dr. Elizabeth Holt, Dr. Warren Ford and Dr. George Odell. An extra special thanks to Dr. Holt for her crystallography assistance throughout the course of the work and also for her invaluable advice. I can only hope to emulate her professionalism and common-sense approach to problem solving. Gratitude is extended to Dr. Darrell Berlin and Dr. Chris Adams for their helpful suggestions and also for the use of Dr. Adams' HPLC. Special thanks is in order for Stan Sigle, Norm Perreira, and Paul West for their technical assistance. I am especially thankful for those in the research group, Chris Peeples, Kelly Sprankle and Jimmy Sullivan, who have made this endeavor enjoyable. Their help, friendship, and stimulating discussions have made my days in PS 449 similar to a walk on the "Far Side." Thanks goes to Dr. Stan Zisman, who has given me much personal and professional advice throughout these graduate years.

Special thanks are due to the bag lady (TWH) for helping me to never lose sight of my priorities. To Craig Jones, who has been my constant source of motivation and emotional support, I give him my love and appreciation. Most importantly, I thank the dear Lord, for providing the strength to endure and the ability to succeed.

I gratefully acknowledge those who have provided financial support, the Oklahoma State University Center for Water Research, Women in Energy Research and the McAlester Scottish Rites Fellowship.

Finally, I wish to dedicate this thesis to my family, my parents Freddie and Gwendola Taylor, and my sisters, Pamela Hamons and Lisa Willis. Their unconditional love, encouragement, and support was essential in attaining this goal.

TABLE OF CONTENTS

Chapter Page
I. HISTORICAL BACKGROUND: α, β-ENONE PHOTOREARRANGEMENTS 14
Introduction 14
Aryl Migration 14
Type A Rearrangements 31
Aryl Migration vs. Type A 38
Cis-Trans Isomerization 49
Photodimerization 51
Photoreduction 52
Norrish Type II. 56
Norrish Type I 57
Intramolecular [2+2] Cycloaddition. 60
Deconjugation 62
[1,3]-Sigmatropic Rearrangements. 63
II. THE PHOTOCHEMISTRY OF ONE- AND TWO-CARBON ORTHO- ORTHO PHENYL-BRIDGED 4,4-DIPHENYL-2-CYCLOHEX- EN-1-ONES 69
Introduction 69
Results 73
Synthesis of the Photochemical Substrates. 73
Exploratory Photochemistry and Structure Elucidation of the Products 75
Reaction Profiles and the Behavior of the Photoproducts 88
Mechanistic and Interpretive Discussion 95
Experimental 107
10,10-Dimethyl-9(10H)-anthracenone (12) 107
9,10-Dihydro-10,10-dimethylspiro[anthracene- 9',2-oxirane] (39) 108
9,10-Dihydro-10,10-dimethylanthracene- 9-carboxaldehyde (13) 109
10,10-Dimethylspiro[anthracene-9(10H), 1'-[2]- cyclohexen]-4'-one (14) 109
Exploratory Direct Photolysis of 10,10-Dimethylspiro- [anthracene-9(10H), 1'-[2]cyclohexen]-4'-one (14) 111
10,11-Dihydrospiro[5H-dibenzo[a,d]cycloheptene- 5',2-oxirane] (16) 111
10,11-Dihydro-5H-dibenzo[a,d]cycloheptene- 5-carboxaldehyde (17) 112
ChapterPage
10',11'-Dihydrospiro[2-cyclohexene-1,5'-[5H]dibenzo- [a, d]cyclohepten]-4-one (18). 112
Exploratory Direct Photolysis of 10 ',11'-Dihydro- spiro[2-cyclohexene-1,5'-[5H]dibenzo[a,d]cyclo- hepten]-4-one (18) 113
A. In tert-Butanol 113
B. In Benzene 115
Single Crystal X-Ray Structure Determination of (\pm)-4,4a,9,10-Tetrahydrotribenzo[a,c,e]cyclo- octen-2(3H)-one (19) 116
Single Crystal X-ray Structure Determination of (\pm)- ($3 \mathrm{a} S^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta$)-2,3,8,9,13b,13c-hexahydro- $1 H$-dibenzo[a,e]cyclopenta[1,3]cyclopropa[1,2-c]- cycloocten-1-one (20) 117
General Procedure for Lithium-Liquid Ammonia Reductions 119
General Procedure: Reaction Profiles 120
Control Experiment. Photostability of the Photoproducts 120
${ }^{1}$ H-HMR Shift Reagent Experiment 121
4-Bromo-1-cyclopentene (24) 121
5-(3-cyclopentenyl)-5-hydroxy-10,11-dihydro-(5H)- dibenzo $[a, d]$ cycloheptene (27) 123
5-(3-Cyclopenten-1-ylidene)-10,11-dihydro-(5H)- dibenzo $[a, d]$ cycloheptene (28) 123
3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5- ylidene)cyclopentanol (29) 124
10,11-Dihydro-(5H)-dibenzo[a,d]cycloheptene (40) 125
3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)- 2-cyclopenten-1-one (36) 125
Attempted Photochemical and Chemical Deconjugation of 36 126
Acknowledgements 127
III. PHOTOCHEMISTRY OF (\pm)-4,4a,5,6-TETRAHYDRO-4a-METHYL- 6,6-DIPHENYL-2(3H)-NAPHTHALENONE, A RIGID LINEAR DIENONE 128
Introduction 128
Results 129
Synthesis of the Photoreactant 129
Exploratory Photochemistry and Structure Elucidation of the Products 130
Reaction Profiles and the Behavior of the Photoproducts 136
Mechanistic and Interpretative Discussion 141
Experimental 145
6-Methyl-4,4-diphenyl-2-cyclohexen-1-one (5) 146
2-Methyl-4,4-diphenylcyclohexanone (6) 146
4,4a,5,6,7,8-Hexahydro-4a-methyl-6,6-diphenyl-2(3H)- naphthalenone (7) 147
Chapter Page
4,4a,5,6-Tetrahydro-4a-methyl-6,6-diphenyl- 2(3H)-naphthalenone (4) 148
Exploratory Direct Photolysis of 4,4a,5,6-Tetrahydro- 4a-Methyl-6,6-diphenyl-2(3H)-naphthalenone (4) 148
A. In tert-Butanol. 149
B. In Benzene 149
Single Crystal X-ray Structure Determination of (\pm)- ($1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta$)-1a,4,5,5a,6,6a-hexahydro-5a- methyl-1,6a-diphenylcycloprop $[a$]indene- 3(1 H)-one (8) 150
Single Crystal X-Ray Structure Determination of (\pm)- (1 $\alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha$)-1a,4,5,5a,6,6a-hexahydro-5a- methyl-1,6a-diphenylcycloprop[a]indene- 3(1H)-one (9) 151
Reaction Profiles 153
Control Experiment. Photostability of the Photoproducts 154
Acid-Catalyzed Reactions of the Photoproducts 154
Wavelength Dependency Experiments 154
Irradiation using a Rayonet Reactor 155
Irradiation using a Shutter 155
Light Intensity Experiment 156
Acknowledgements 156
IV. THE PHOTOCHEMISTRY OF CIS-4,4-DIPHENYL-2-CYCLO- HEPTEN-1-ONE 157
Introduction 157
Results 159
Synthesis of the Photoreactant. 159
Exploratory Photochemistry and Structure Elucidation of the Products 162
Discussion and Mechanistic Interpretation 170
Experimental 176
4,4-Diphenyl-2-cyclohexenone (5) 176
4,4-Diphenylcyclohexanone (6) 177
4,4-Diphenylcycloheptanone (7) 177
4,4-Diphenyl-2-cyclohepten-1-one (11) 178
Exploratory Direct Photolysis of 4,4-Diphenyl-2-cyclo- hepten-1-one (11) 180
A. In tert-Butanol 180
B. In Benzene 181
Single Crystal X-ray Structure Determination of ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta$, 10a $\alpha, 10 \mathrm{~b} \alpha$)-dodecahydro-5,5,6,6-tetra- phenylcyclobuta[1,2:3,4]dicycloheptene-1,10-dione (18) and (\pm)-($5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$-dodecahydro- 5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicyclo- heptene-1,10-dione (19) 181
Control Experiment. Photostability of the Photoproducts 182
${ }^{1}$ H-HMR Shift Reagent Experiment 184
3-Methoxy-4,4-diphenylcycloheptanone (24) 184
Chapter Page
trans-2-Deuterio-3-methoxy-4,4-diphenyl- cycloheptanone (26) 184
4,4-Diphenyl-2-(phenylseleno)cycloheptanone (13) 185
Attempted Phenylselenoxide Elimination of 4,4-Diphenyl-
2-(phenylseleno)cycloheptanone 186
4,4-Diphenyl-2-(phenylthio)cycloheptanone (15) 187
4,4-Diphenyl-2-(phenylsulfinyl)cycloheptanone (17) 188
Attempted Phenylsulfoxide Elimination of 4,4-Diphenyl- 2-(phenylsulfinyl)cycloheptanone 189
Acknowledgements 189
REFERENCES 190
APPENDIXES 199
APPENDIX A - TABLES OF CRYSTALLOGRAPHIC DATA FOR (\pm)-4,4a,9,10-TETRAHYDROTRIBENZO- [a,c,e]CYCLOOCTEN-2(3H)-ONE (19) AND (\pm)-($3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta$)-2,3, $8,9,13 \mathrm{~b}, 13 \mathrm{c}-$ HEXAHYDRO-1H-DIBENZO[a, e]CYCLO- PENTA[1,3]CYCLOPROPA[1,2-c]CYCLO- OCTEN-1-ONE (20) 199
APPENDIX B - TABLES OF CRYSTALLOGRAPHIC DATA FOR (\pm)-($1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-\mathrm{HEXAHYDRO}$ - 5a-METHYL-1,6a-DIPHENYLCYCLOPROP- [a]INDEN-3(1H)-ONE (8) AND (\pm)- ($1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha$)-1a,4,5,5a,6,6a-HEXAHYDRO- 5a-METHYL-1,6a-DIPHENYLCYCLOPROP- [a]INDEN-3(1H)-ONE (9) 208
APPENDIX C - TABLES OF CRYSTALLOGRAPHIC DATA FOR ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha$)-DODECAHYDRO-5,5,6,6- TETRAPHENYLCYCLOBUTA[1,2:3,4]- DICYCLOHEPTENE-1,10-DIONE (18) AND (\pm)-($5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$-DODECAHYDRO- 5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]- DICYCLOHEPTENE-1,10-DIONE (19) 219

LIST OF TABLES

Table Page

1. Activation Energies, Enthalpies and Entropies 20
2. Slopes and Initial Proton Shifts for 22 87
3. Crystal Data for 19 and 20 118
4. Crystal Data for $\mathbf{8}$ and $\mathbf{9}$ 152
5. Slopes and Initial Proton Shifts for $\mathbf{1 8}$ and 19 167
6. Crystal Data for 18 and 19 183

LIST OF FIGURES

Figure Page

1. Synthesis of the Photochemical Reactants 74
2. ORTEP Diagram for Photoproduct 19 76
3. HETCOR of the $46-28 \mathrm{ppm}$ Region for 20 78
4. COSY of the $\delta 3.8-1.8$ Region of 20 79
5. ORTEP Diagram for 20 79
6. HETCOR of the $46-22 \mathrm{ppm}$ Region for 21 82
7. COSY of the $\delta 3.6-1.4$ Region for 21 83
8. $\mathrm{Li} / \mathrm{NH}_{3}$ Reductions of 20 and 21 83
9. Effect of $\mathrm{Eu}(\mathrm{fod})_{3}$ on 22. Clarification of the Aliphatic Proton Region for 22 86
10. Chemical Shift vs Moles Shift Reagent for the Aliphatic Protons of 22 86
11. Proposed Synthetic Route to 22 88
12. Photochemistry of Compound 18 89
13. Reaction Profile for Irradiation of 18 in tert-Butanol 90
14. Reaction Profile for Irradiation of 21 in tert-Butanol 91
15. Reaction Profile for Irradiation of $\mathbf{2 0}$ in tert-Butanol 92
16. Reaction Profile for Irradiation of $\mathbf{1 8}$ in Benzene 93
17. Reaction Profile for Irradiation of 21 in Benzene 93
18. Reaction Profile for Irradiation of 20 in Benzene 94
19. Reaction Profile for Irradiation of $\mathbf{1 8}$ in Cyclohexane 95
20. Aryl Migration Pathways for Photochemical Conversion of $\mathbf{1 8}$ 96
Figure Page
21. Incomplete Type A Reaction from $\mathbf{1 8}$ 99
22. Mechanistic Summary of Photoisomerization Reactions 101
23. Attempt to Establish Reaction Pathway for Formation of 22 102
24. Factors Influencing Photoreactivity of 5 105
25. Photochemistry of 4,4-Diphenyl-2-cyclohexen-1-one (1) 128
26. Synthesis of Photochemical Substrate 4 130
27. HETCOR of the $52-26 \mathrm{ppm}$ Region for $\mathbf{8}$ 133
28. COSY of the δ 3.4-0.8 Region for 8 134
29. HETCOR of the $54-26 \mathrm{ppm}$ Region for 9 134
30. COSY of the $\delta 3.2-1.2$ Region for 9 135
31. ORTEP Diagram for Photoproduct 8 135
32. ORTEP Diagram for Photoproduct 9 136
33. Photochemistry of 4 137
34. Reaction Profile for Irradiation of 4 138
35. Reaction Profile for Irradiation of $\mathbf{8}$ and 9 through Pyrexa 138
36. Mechanistic Summary of the Photorearrangement of 4^{a} 141
37. Acid-Catalyzed Conversion of $\mathbf{8}$ to $\mathbf{4}$ 145
38. Photochemistry of 4,4-Diphenyl-2-cyclohexen-1-one (1) 157
39. Synthesis of Photochemical Substrate 159
40. Phenylselenation-Elimination Sequence for 7 160
41. Phenylsulfinylation-Elimination of 7 161
42. 3-D Drawing of the Trans-Syn-Trans Head-to-Head Dimer 18.The 3-D Drawing Lacks the Thermal Ellipsoids Illustrated in the ORTEP Drawing 164
43. 3-D Drawing of the Trans-Anti-Trans Head-to-Head Dimer 19.The 3-D Drawing Lacks the Thermal Ellipsoids Illustrated in the ORTEP Drawing 164
44. Chemical Shift vs. Moles Shift Reagent for Cyclobutane Protons of 18 and 19 167
Figure Page
45. Photochemical Summary for 11 166
46. Reactivity of the Trans Enones Generated From 20 and 11 168
47. Photoinduced Addition of Methanol to $\mathbf{1 1}$ and 20 169
48. Proposed Mechanism for Formation of 18 and 19 from 11. 171
49. Formation of Trans-Fused Dimers From Pyramidal Diradicals 172
50. Photochemical [2+2] Addition Mechanism for 11 174

CHAPTER I

HISTORICAL BACKGROUND: α, β-ENONE PHOTOREARRANGEMENTS

Introduction

This chapter presents an overview of the photochemical behavior of cyclic α, β unsaturated ketones. Attention has been focused on the unimolecular rearrangements of five, six, and seven-membered cyclic 4,4-disubstituted α, β-unsaturated enones and linearly conjugated dienone systems. Common rearrangements (aryl migration and Type A) as well as competing photoreactions (inter- and intramolecular cycloadditions, reduction, deconjugation, and [1,3]-sigmatropic shifts) have been discussed in terms of mechanism, reaction efficiency and electronics. Specific examples have been included to illustrate these processes.

Aryl Migration

Photorearrangements of 4,4-diarylcyclohexenones to bicyclo[3.1.0]hexanones have been studied extensively. ${ }^{1-16}$ One of the first reported examples of the aryl migration reaction was that of Zimmerman and coworkers on 4,4-diphenyl-2-cyclohexen-1-one (1). ${ }^{1}$ Irradiation of 1 resulted in the formation of three photoproducts, trans- and cis-5,6-diphenylbicyclo[3.1.0]hexanone (2) and (3), and 3,4-diphenyl-2-cyclohexen-1one (4). The formation of the bicyclohexenones was kinetically stereoselective, the trans isomer 2 was formed in preference to the cis isomer 3, in a ratio of 140:1 at low conversions. The mechanism proposed for the transformation has received much

attention and is relatively well understood 1,2 Triplet sensitization and quenching studies indicate the aryl migration reaction proceeds through a $\mathrm{n}-\pi^{*}$ triplet state ($69 \mathrm{kcal} / \mathrm{mol}$).

The enone undergoes initial ($n-\pi^{*}$) electronic excitation and intersystem crossing to the triplet. A C-4 aryl group then migrates to the odd electron center at the β-carbon of the excited enone. It has been suggested that it is the pseudo axial phenyl that migrates since its π system is in the proper orientation for overlap with the enone π system. Electron

demotion and three ring formation by either a concerted or stepwise process then generates the bicyclohexenones. Demotion to the ground state prior to complete migration has been suggested by analogy with the nonphotochemically generated zwitterion intermediate observed for related dienone and bicyclic ketone rearrangements. ${ }^{17,18}$ Formation of the enone 4 results from hydride migration from $\mathrm{C}-3$ to $\mathrm{C}-4$ in species 7a.

The nature of the excited state species (radical or dipolar) and the sequence in which demotion and migration occurred for the enone system has spawned much discussion. ${ }^{1,2}$ Chapman proposed a "polar state concept" to describe the mechanisms of enone photorearrangements. ${ }^{19} \mathrm{He}$ suggested the involvement of a dipolar species 7 a , without specifying whether the proposed dipolar intermediate was an excited state or a ground state species distinct from starting material. To test the "polar state concept" in the aryl migration mechanism, migratory studies of 4-p-cyanophenyl-4-phenyl- and 4-p-methoxyphenyl-4-phenylcyclohexenones were carried out by Zimmerman and coworkers. ${ }^{3,4}$ These studies revealed a preference for cyanophenyl and anisyl group migration over phenyl migration. This suggested that a dipolar intermediate was not a good representation of the excited state intermediate but that the β-carbon of the excited state exhibited odd electron character. This study also indicated that demotion to ground state could not precede the rate limiting stage of the reaction because a dipolar intermediate would be generated upon demotion and reversal in the selectivity would result.

Preference for the trans diphenyl isomer was originally ascribed to a concerted process with inversion of configuration at C-4 of the enone. ${ }^{2}$ This concerted process is illustrated below. When the $\mathrm{C}-4$ phenyl migrates to $\mathrm{C}-3$, an incipient orbital is developed at C-4. Rotation about the C-4-C-5 and C-1-C-2 bonds of the bridged intermediate in a distotatory fashion, allows cyclopropyl bond formation between this incipent orbital at C4 and the C-2 orbital. This concerted orbital interaction leads exclusively to the trans product. The diradical stepwise process is thought to lead to the cis isomer. Recently, an

2
alternative rationale for the trans stereoselectivity was proposed involving preferential closure of the diradical species $7 \mathrm{~b} .{ }^{5-11}$ The open diradical resulting after migration can form a three-membered ring by overlap of either the bottom-bottom C-2-C-4 orbitals to form the cis isomer 3 or top-top C-2-C-4 orbital overlap to form the trans isomer 2. The bottom-bottom overlap is thought to be energetically unfavorable since the migrated phenyl at C-3 is in an incipient transoid conformation and must twist past the delocalized and thus fixed phenyl at C-4 to form the cis product.

Extended irradiation of 4,4-diphenylcyclohexenone afforded a 43:57 photostationary mixture of the trans:cis isomers. ${ }^{2}$ Independent irradiations of the photoproducts 2 and 3, revealed a photochemical trans to cis interconversion. This accounted for the increasing proportion of the cis isomer seen upon extended irradiation of 1.9,10 Two different mechanisms were envisaged for the isomerization, pathway A
and pathway B . In pathway A , fission of the external three ring bond a of the trans isomer, followed by rotation and reclosure would give the cis isomer. Alternatively, in pathway B , the internal three ring bond b is cleaved, followed by reclosure of the bottombottom C-2-C-4 orbitals to generate the cis isomer. Both pathways (A and B) were mechanistically reasonable in that the $n-\pi^{*}$ excited state would expect to weaken an adjacent bond. Since the two pathways have different stereochemical implications, differentiation of the two pathways was easily accomplished. By starting with one

enantiomer of the trans bicyclohexanone, two cis enantiomers of product were possible. Depending on which cis enantiomer was produced, one could tell which pathway was followed. Irradiation of the optically active trans-bicyclic ketone 8 gave the cis bicyclic ketone 9, in which the C-5 configuration was retained. Additionally, no loss of optical activity was observed for recovered 8. Therefore it was concluded that the trans to cis
conversion proceeded exclusively by pathway A. Irradiation of the cis isomer 9 resulted in 86% conversion to trans ketone 8 by pathway A, in which the configuration at C-5 was retained, and 14% inversion of stereochemistry at C-5 to give 10 by pathway B. This preference for pathway A was attributed to the near parallel alignment of the antibonding carbonyl π orbital and the sigma orbitals of bond a.

Further mechanistic studies of 4,4-diphenylcyclohexenone 1 were completed by Zimmerman and coworkers ${ }^{11,12}$ to determine if any activation barriers existed in the aryl migration reaction. In order to determine if any did exist, it was necessary to first determine if there was a wavelength or temperature dependence on the reaction. From these studies, it was concluded that the reaction was not wavelength dependent but a temperature dependence was observed. A $50^{\circ} \mathrm{C}$ temperature increase led to a 16 -fold increase in the rate of rearrangement and a 2-fold increase in the triplet decay rate. From these results it was concluded that there was a small energy barrier ($c a .10 \mathrm{kcal} / \mathrm{mol}$) that must be overcome for rearrangement. This requirement was reasonable due to the fact that the electronics of the migrating phenyl ring are disrupted. Therefore, despite the fact the reaction occurs from an excited state, there is loss of energy which occurs upon phenyl bridging. Results of the temperature experiment were applied to the Eyring equation, and this indicated that the production of the trans isomer was not only energetically preferred but also entropically favored (Table 1). The author reasoned that the less positive activation entropy for formation of the cis isomer was due to the fact that it derived from an open diradical while the trans proceeded from the concerted pathway. In the open diradical, the odd electron at $\mathrm{C}-4$ would be stabilized by the $\mathrm{C}-4$ phenyl group, therefore conformationally restricting this group and making ΔS more negative.

The photochemical aryl migration reaction is thought to be totally analogous to the di- π-methane rearrangement, except that the enone rearrangements proceed in the $n-\pi^{*}$ state, while for the hydrocarbon systems, the $\pi-\pi^{*}$ state is utilized. ${ }^{13}$ It is interesting to note that the photorearrangement of the hydrocarbon analog 12 , which proceeds

TABLE 1

ACTIVATION ENERGIES, ENTHALPIES
 AND ENTROPIES ${ }^{\text {a }}$

Compound	$\Delta \mathrm{E}_{\mathrm{a}}$	$\Delta \mathrm{H}^{\ddagger}$	$\Delta \mathrm{S}^{\ddagger}$
Trans - (2)	10.53	9.86	6.95
Cis - (3)	11.27	10.70	-0.65

aResults from two temperatures only

through a di- π-methane reaction also yields predominantly the trans diphenyl product over the cis product even though this is a singlet (concerted) and not a triplet reaction.

The photochemistry of a number of other 4,4-diarylcyclohexenones were studied by Zimmerman and coworkers. ${ }^{14,15}$ It was of interest to investigate 4,4-dibiphenyl(15), 4,4-di(α-naphthyl)- (19) and 4,4-di(β-naphthyl)-2-cyclohexen-1-one (22) in order to determine the effect of having a chromophore at C-4 that had a triplet energy approximately equal to or lower than that of the enone chromophore ($69 \mathrm{kcal} / \mathrm{mol}$). ${ }^{14,15}$ 4,4-Di(α-naphthyl) and 4,4-di(β-naphthyl) substituents had triplet energies of approximately $60 \mathrm{kcal} / \mathrm{mol}$ and therefore could conceivably act as triplet quenchers. The biphenyl substituent had a triplet energy of approximately $69 \mathrm{kcal} / \mathrm{mol}$ and could act only as a weak quencher. Photolysis studies of these system indicated that the aryl migration

reaction was not inhibited by the presence of biphenyl, or naphthyl substituents. Irradiation of the 4,4-dibiphenyl system 15 yielded trans- and cis-5,6-dibiphenylbicyclo[3.1.0]hexanones (16) and (17), and 3,4-dibiphenylcyclohexen-1-one (18). Direct irradiation of 4,4-di(α-naphthyl)cyclohexen-1-one (19) led to two products, trans-5,6di(α-naphthyl)bicyclo[3.1.0]hexanone (20) and 3,4-di(α-naphthyl)-2-cyclohexen-1-one

$\alpha-N=\alpha-$ naphthyl
(21). Photolysis of 4,4-di(β-naphthyl)-2-cyclohexen-1-one (22) also led to two photoproducts, trans- and cis-5,6-biphenylbicyclo[3.1.0]hexanones (23) and (24). As in the previously reported 4,4-diphenylcyclohexanone studies, the trans isomer was kinetically preferred over the cis and enone photoproducts. The absence of the cis product in the α-naphthyl photolysis was thought to be due to the severe naphthyl-

naphthyl steric interactions encountered in the intermediate diradical and not due to the small steric differences seen between the cis and trans products. During the migration one α-naphthyl group must twist past the rotationally fixed C-4 α-naphthyl for bottombottom C-2-C-4 overlap and cis product formation. This aryl-aryl interaction is magnified in the α-naphthyl case and, thus, the rearrangement becomes very stereoselective. With the β-naphthyl substituents, the rings are angled away from each other, in the half-migrated species and, thus, the interaction is not as severe.

The observed aryl rearrangements of $\mathbf{1 5}, \mathbf{1 9}$, and 22 are thought to proceed by initial excitation localized in the enone end of the molecule. This is due to the high singlet energies, $90-99 \mathrm{kcal} / \mathrm{mol}$, for the biphenyl and naphthyl substituents as compared with 74 $\mathrm{kcal} / \mathrm{mol}$ for the enone moiety. ${ }^{14,15}$ Intersystem crossing to the enone triplet would then be followed by rapid energy transfer to the naphthyl chromophore (exothermic energy transfer, $\mathrm{E}_{\mathrm{T}}($ enone $)=69 \mathrm{kcal} / \mathrm{mol}, \mathrm{E}_{\mathrm{T}}$ (naphthyl $\left.)=60 \mathrm{kcal} / \mathrm{mol}\right)$. This is also supported by sensitization and quenching studies. These reactions of biphenyl- and naphthylsubstituted enones are, therefore, better described as di- π-methane reactions since the reaction involves the $C=C \pi$ bond of the enone moiety and the π system of a $C-4$ aryl group.

Quantum efficiencies for the 4,4-disubstituted α - and β-naphthyl and biphenyl reactions were found to be 11,8 and 8 times more efficient then the parent 4,4-diphenyl-
cyclohexenone reaction with the rate of radiationless decay being 2 times slower. This increase in efficiency was attributed to the increase in conjugating ability of the aromatic group at C-4. Delocalization of the odd electron density in the bridged species should be best for a migrating α-naphthyl substituent and worst for a phenyl. The facility of aryl group migrations follows in the order of α-naphthyl $>\beta$-naphthyl- biphenyl $>$ phenyl. This increase in conjugating ability is reasonable on the basis of the bridged structures 25, 26 and 27, by either counting resonance structures or by simple Hückel MO calculations.

25

26

27

Intramolecular migratory aptitudes in the aryl migration reaction have also been explored. ${ }^{6}$ The photochemistry of 4- α-naphthyl-4- β-naphthyl-2-cyclohexen-1-one (28) was studied and found to afford trans and cis isomers of $5-\alpha-6-\beta-$ and $5-\beta-6-\alpha-$ naphthylbicyclo[3.1.0]hexanone (29-32) as well as 3- β-naphthyl-4- α-naphthyl-2-cyclohexen-1-one (33). The trans isomers were preferred for both the $6-\alpha$ - and $6-\beta-$ naphthyl cases over the cis and enone systems. It was surprising to find that intramolecular competition between the α - and β-naphthyl groups led to a ratio of 48:52 slightly in favor of the β-naphthyl migration, since the α-naphthyl substituent should

28

$\alpha-N=\alpha-$ naphthyl
$\beta-\mathrm{N}=\beta$-naphthyl

better stabilize the odd electron density at $\mathrm{C}-3$. The slight preference for β-naphthyl migration was thought to derive from conformational effects.

Zimmerman and coworkers ${ }^{7}$ have also studied the photochemistry of 4,4diphenylcyclohexenones bearing a C-6 substituent in order to evaluate the effect of having a substituent at the end of a chain capable of quenching the enone rearrangement. It was thought that the quencher side chain might also intercept triplet energy from an external sensitizer. The C-6 substiuents under study were β-naphthylbutyl, β-naphthylmethyl and p-biphenylmethyl groups. Also 4,4-diphenylcyclohexenones having C-6 methyl and propyl substituents were used as controls. Irradiation of the enones $\mathbf{3 4 - 3 8}$ led to the formation of two photoproducts in each case, corresponding to C-3 epimers of trans-5,6diphenylbicyclo[3.1.0]hexanones 39-48. In all of these systems, the 3-endo product was formed in kinetic preference to the 3-exo isomer. This observed stereoselectivity was rationalized on the basis of steric interactions in the bridged phenyl intermediate. There are two basic conformations possible for each exo and endo C-6 substituted

$34 R=\beta$-naphthylbutyl $\quad 39$
$35 R=\beta$-naphthylmthyl 40
$36 R=p$-biphenylylmethyl 41
37 R = methyl 42
38 R = propyl 43
endo:exo ratio
1.7
1.8
1.4
3.8
1.6
diradical. Steric interactions between the migrating phenyl and the C-6 substituent in the exo precursors, 49 and 50, are unfavorable. The half-migrated endo conformer 51, however, has the C-6 substituent placed away from the phenyl rings and is therefore energetically preferred. Exclusive endo isomer production also indicated that the rate determining stage of the rearrangement must come near or prior to half migration since the less stable endo isomer is formed preferentially.

19-Endo

49

19-Exo
$10 \times y$ gen $=\oplus$)
50

19-E×O
51

Quantum yields for C-6-substituted 4,4-diphenylcyclohexenones were found to be dependent on the separation between the naphthyl chromophore and the enone moiety.
naphthylbutyl enone had direct quantum yields within experimental error of those reported for the unsubstituted 4,4-diphenylcyclohexenone while the β-naphthylmethyl enone reaction efficiency was quite depressed ($\Phi_{\text {naphthylmethyl }}=.0059 v s \Phi_{\text {phenyl }}=$.043). This markedly diminished quantum yield was thought to be due to the short-range exchange mechanism necessary for triplet energy transfer. The naphthylmethyl substituent is close enough to the enone moiety to quench the excited triplet and, thus, lower the quantum yield. The β-naphthylbutyl substituent is too far away from the enone moiety for short-range transfer to occur and therefore, no effect on quantum yield was observed. The biphenylmethyl substituent, despite being within range to quench the enone triplet, has a triplet energy very near that of the enone moiety and, thus, acted only as a very weak quencher $\left(\Phi_{\text {biphenylmethyl }}=.033\right.$ vs Φ phenyl $\left.=.043\right)$. Both of the

energy transfer
34

energy transfer
35
naphthyl substituted enones were found to intercept and quench external sensitizer triplets. The β-naphthylmethyl system intercepted $\geq 75 \%$ of the sensitizer triplets while the β-naphthylbutyl system quenched only 50% of the external triplets. This indicated that in the β-naphthylbutyl system there was equal probability that the sensitizer triplet would collide with the β-naphthylbutyl chromophore as it would the enone system. In the β-naphthylmethyl case, where the separation between the chromophore and the enone is smaller, it was difficult for sensitizer triplets to approach the enone without also being
near the naphthyl group as well. Therefore, a larger number of triplet sensitizers were quenched for 35.

A recent study was initiated to explore the possibility of altering the stereochemical outcome of the aryl migration reaction seen in 4,4-diphenylcyclohexenone. ${ }^{16}$ It was thought that by placing a carbon-carbon bridge between the ortho positions of the two C-4 phenyl groups which migrate apart during trans isomer formation, the stereochemistry could be controlled by varying the length of the bridge. Two systems were studied - spirofluorenyl cyclohexenone 52 and spirodibenzocyclooctenyl cyclohexenone 55 - corresponding to systems with a zero and a three-carbon bridge. Irradiation of 52 resulted in the formation of the cis diphenyl bridged system 53 and the β, γ-unsaturated enone 54. Extended irradiation showed that 53 rearranges to 54 which was photostable. Irradiation of 55 showed normal aryl migration, yielding the kinetically preferred trans diphenyl system 56 and the cis isomer 57. Upon extended irradiation, it was noted that the cis isomer was formed at the expense of the trans isomer. The diversion from the normal migration course seen in the irradiation of $\mathbf{5 2}$ has been attributed to the fact that the zero-carbon bridge is too short to span the distance between the two ortho positions in the trans system, therefore yielding the cis bicyclic and the $\beta, \gamma-$ enone products instead. The length and flexibility of the three-carbon bridged system allows formation of the trans and cis isomers.

Aryl migration reaction studies have recently been reported for the linearly conjugated enone 58 and trienone analog $63 .{ }^{8}$ Low conversion irradiation of 58 resulted in the production of two tricyclic photoproducts 59 and 60 with products 61 and 62 formed as secondary products and seen only at higher conversion irradiations. The

58

(27\%)

61
(37\%)

60
(16\%)

62
(13\%)
observed kinetic stereoselectivity favoring the anti conformation with respect to the angular C-4a hydrogen and the cyclopropyl ring in 59 is due to the steric hindrance encountered in the bridged intermediate. Steric interactions are greater when the phenyl bridge is syn to the angular C-4a hydrogen than when the phenyl bridge is syn to the $\mathrm{C}-5$ endo methylene group, thus leading to the kinetically preferred product 59. Independent irradiation of the primary photoproducts 59 and 60 resulted in photoisomerization of the trans isomer 59 to only 61 and trans isomer 60 to only 62. This indicated that only pathway A was followed since the stereochemistry about C-6 would not be retained if pathway B was followed.

62

The trienone 63 was found to be stable upon direct and sensitized irradiation. ${ }^{8}$ The lack of reactivity is thought to derive from an excess in phenyl bridging energy (provided by MNDO-CI calculations) which is not compensated by the slightly longer triplet lifetime. Therefore, two factors are competing -- the rate of phenyl migration and the rate of radiationless decay, the latter prevailing. Additionally, the energy of the trienone triplet is lower as a result of the extended π system. Therefore the energy required to disturb the phenyl aromaticity upon bridging may not be as readily available as in the higher energy triplets of the monocyclic enone and bicyclic dienone systems.

63

A mechanistically analogous rearrangement to the aryl migration reaction was 64 ($\lambda=254 \mathrm{~nm}$) in dioxane to 50% conversion gave a mixture of the 6 -endo propenyl ketone 65 (major product), the 6-exo propenyl ketone 66 and the dienone 67. Cis-trans isomerization of the starting material was found to compete with the rearrangement. A cyclization reaction similar to that reported for 68 was not observed for 64.20 The fact that the propenyl group points away from the enone system in 64 is thought to contribute to the lack of hydrogen abstraction and cyclization.

Type A Rearrangements

4,4-Dialkylated cyclohexenones have been reported to undergo photorearrangements to 6,6-disubstituted bicyclo[3.1.0]hexanones (lumiketones). This subject has been reviewed extensively. ${ }^{13}$ One of the first examples of this type of photorearrangement was reported by Gardner, in which 4-cholesten-3-one (70) stereospecifically photoisomerizes to the lumiketone $71 .{ }^{21}$ Shortly thereafter, Chapman reported the photochemical rearrangement of 4,4-dimethylcyclohexenone 72 and testosterone derivatives 75-78 in tert-butanol to the lumiketones 76-79 and ring contracted

70

71

3-substituted cyclopentenones 77-80. ${ }^{22}$ From these pioneering studies, the photochemistry of a number of 4,4-dialkylated enones were investigated in order to obtain additional information regarding the lumiketone rearrangement.

75-R = OAc
$78-\mathbf{R}=\mathbf{H}$
81-R = OAc
$H=(D)$

73

76
79
82

77
80
83

Initially it was concluded that aryl or dialkyl substitution at the C-4 position of cyclohexenones was a necessary but not a sufficient structural condition for occurrence of the lumiketone rearrangement since 2,4,4-trimethyl- and 3,4,4-trimethylcyclohexenones did not afford lumiketones upon irradiation. ${ }^{13,23}$ Later studies by Schuster and coworkers ${ }^{24}$ determined that both enones indeed produced lumiketones upon irradiation. These results indicated that alkyl substitution on the enone double bond did not inhibit the rearrangement but only lowered the quantum yields relative to those reported for 4,4dimethylcyclohexenone. The failure of the earlier report to detect rearrangement was
attributed to the poor analytical techniques available. In tert-butanol the most common photoreaction observed for cyclic α, β-unsaturated ketones lacking the 4,4-dialkylation is dimerization. ${ }^{13}$

In general, the lumiketone rearrangement has been found to be a very stereospecific reaction. For example, the photorearrangement of both deuterotestosterone acetate 81 and phenanthrenone 84 occurred with inversion of configuration at the C-10 center (steroid numbering) to afford only the lumiketone stereoisomers. ${ }^{25,26}$ These results ruled out the possibility of a planar achiral intermediate since this would lead to racemization. It was felt that steric constraints imposed by the $\mathrm{A}-\mathrm{B}$ ring fusion in steroidal systems would direct the stereochemical course of the reaction. The angular $\mathrm{C}-10$ methyl would direct $\mathrm{C}-1-\mathrm{C}-5$ bonding to the rear face since it would be energetically unfavorable for the $\mathrm{C}-1$ containing chain to pass the methyl substituent for front face bonding. Whether the stereospecific rearrangement proceeded by a concerted or stepwise mechanism was not clear since the imposing steric constraints would allow a stepwise mechanism via 85 to be feasible. Therefore, the optically active monocyclic 4,4disubstituted cyclohexenone 86 was studied in order to determine the stereochemical

course of the reaction since steric constraints were minimized in this system. ${ }^{27}$ Irradiation of 86 led to the formation of the lumiketones 87 and 88 . These lumiketones were formed stereospecifically with inversion of configuration at C-4; no isomerization of recovered starting enone was observed. From these results, a diradical intermediate analogous to 85 was excluded and a concerted mechanism was proposed. ${ }^{27,28}$ The lumiketone reaction can be described as a $\left[\pi 2_{a}+\sigma 2_{a}\right]$ cycloaddition. The C-3-C-5 bond is formed by antarafacial overlap of the excited π system and the back lobe of the C-4-C-5 σ bond. This occurs simultaneously with C-2-C-4 bond formation to give the inverted center at C-4.

The production of optically active cyclopentenone 89 is consistent with the concerted mechanism, i.e. simultaneous ring contraction and migration of a hydrogen atom from $\mathrm{C}-3$ to $\mathrm{C}-4$, leading to inversion of configuration at $\mathrm{C}-4$. Control irradiation of 87 was found to produce 90 and racemic 91. A stepwise process is thought to intervene in the production of secondary photoproducts. This racemization occurs by C-1-C-6 bond cleavage, followed by either rotation and reclosure to give 90 or rotation and hydrogen atom migration to give 91.

The 4,4-disubstituted cyclohexenone lumiketone rearrangement is analogous to the photorearrangement reported by Zimmerman on 4,4-diphenyl-2,5-cyclohexadienone 92.29 Sensitization and quenching studies indicated that both the enone and dienone rearrangements (known as Type A rearrangements) proceeded from the triplet excited state. ${ }^{13,29}$ The configuration of the excited state is still a matter of some controversy but has been reported to proceed via the $\pi-\pi^{*}$ triplet state in polar solvents. ${ }^{24}$ The major differences between the enone and dienone Type A rearrangements is the efficiency of the reaction. The dienone rearrangements have been found to proceed with quantum efficiencies ranging from 0.8-1.0 while the 4,4-dialkylated enones have quantum efficiencies of only $0.0065-0.0077 .2,13$ Involvement of the second double bond is thought to be the reason for the high quantum efficiencies reported for the 2,5-dienone system. ${ }^{2}$ The second double bond provides additional stabilization to the excited system by π overlap with the β carbon radical center. Type A rearrangements of dialkylated cyclohexenones are also less efficient than aryl migration reactions of 4,4-diarylcyclohexenones. The qualitative order of reaction efficiencies is therefore Type A dienone > aryl migration $>$ Type A enone rearrangement. ${ }^{2}$

The low quantum yields observed for Type A enone rearrangements have been rationalized by competitive pathways available to the twisted cyclohexenone triplet. ${ }^{13,30-}$ 32 Until recently, the reactive excited state species for α, β-unsaturated cyclohexenones was described as a planar enone triplet generated by intersystem crossing of the singlet
with unit efficiency $\left(\Phi_{\text {direct }}=\Phi_{\text {sensitized }}\right) \cdot{ }^{13}$ Recently, it has been suggested that the planar enone triplet relaxes around the enone double bond to give a twisted enone triplet. ${ }^{30-32}$ A transient observed in direct laser enone photolysis studies has been assigned to a twisted enone triplet. ${ }^{13,30-32}$ This triplet has the ideal geometry for radiationless decay from T_{1} directly to $\mathrm{S}_{0} \cdot{ }^{13,33-34}$ Therefore, in the Type A enone reaction, return to starting material is the major reaction pathway while lumiketone formation is a minor pathway, thus accounting for the low quantum yields observed. Schuster ${ }^{35}$ believes the twisted triplet is essential for Type A rearrangements and feels this is evidenced by the lack of lumiketone rearrangement in 93 and lower quantum yields seen for other $C=C$ substituted enones. In 93 , the constrained $C=C$ system inhibits twisting of the enone triplet and, thus, photoreduction occurs instead.

Pienta ${ }^{32}$ and Schuster ${ }^{30,31}$ have found that the twisted triplet transients, detected by laser flash photolysis of a series of enones, were not quenched by cyclohexadiene. This would suggest that this triplet is not responsible for aryl migration rearrangements since these diaryl systems are quenched by cyclohexadiene. The short lifetime of the twisted triplet may account for the lack of triplet quenching.

Zimmerman proposed a stereospecific diradical mechanism for the Type A enone rearrangement. ${ }^{30}$ Scission of the C-4-C-5 bond is envisioned to give the diradical species 96 in which the radical center at C-5 does not become completely free but rather remains associated with the developing ethylenic group at C-3-C-4. Since neither C-4 nor C-5 achieves a flat geometry and rotation around C-5-C-6 as well as C-3-C-4 is restricted, a stereospecific rearrangement can occur.

96

Chapman suggested a dipolar intermediate versus a diradical species for the Type A enone photorearrangement, could account for both the lumiketone and the 3-cyclopentenone photoproducts. ${ }^{19}$ Schuster and Brizzolara tested this "polar state concept" versus a diradical process by studying the photochemistry of 10-hydroxyoctalone 97.35 They felt that if any diradical species were involved, they would see some explusion of the hydroxymethyl radical and, thus, competition between radical fragmentation and rearrangement. Irradiation of 97 in chloroform, toluene or cumene afforded the lumiketone 98 along with ketones 99 and 100, generated from a competing radical fragmentation pathway. The formation of formaldehyde, methanol and ethylene glycol by solvent H -abstraction and coupling indicated the intermediacy of a diradical species and not a dipolar intermediate. Later studies suggested that these products might have derived from an excited state protonated enone species. ${ }^{36}$

Aryl Migration vs. Type A

Intramolecular competition between the aryl migration and the Type A enone rearrangement was presented in the photochemical study of 4-phenyl-4-methylcyclo-hexen-1-one (101). ${ }^{37}$ In aprotic, nonpolar solvents, irradiation of 101 yielded 5-methyl-endo-6-phenylbicyclo[3.1.0]hexan-2-one (102) and 4-methyl-3-phenylcyclo-hexen-1-one (103). Both photoproducts derived from the aryl migration reaction. In protic polar solvents, irradiation of 101 afforded predominantly Type A rearrangement products 104 and 105, as well as photoproducts 102,103 and 106. The observed solvent dependence on reaction pathway was rationalized by a change in the character of the lowest-lying triplet $\left(n-\pi^{*}\right.$ or $\left.\pi-\pi^{*}\right) .13,38$ The aryl migration reaction is thought to proceed via the $n-\pi^{*}$ triplet while Type A enone rearrangements occur from the $\pi-\pi^{*}$ triplet state. It has been reported that the $n-\pi^{*}$ and $\pi-\pi^{*}$ triplet levels of cyclohexenones are close together and a change in solvent may bring about inversion of these two states. Increasing the solvent polarity and hydrogen bonding ability may result in stabilization of

in nonpolar solvents - 102-103 in polar solvents - 102-106

the $\pi-\pi^{*}$ state versus the $n-\pi^{*}$ state, thus lowering its energy. Therefore in protic polar solvents, products from the $\pi-\pi^{*}$ state (Type A) are produced at the expense of the products from the $n-\pi^{*}$ state (aryl migration). Additionally, quenching experiments have shown that photoproducts $\mathbf{1 0 2}$ and $\mathbf{1 0 4}$ are quenched differently by naphthalene suggesting these products arise by two non-equilibrating triplets, i.e. $\pi-\pi^{*}$ and $n-\pi^{*}$.

Solvent effects have also been reported in a number of Type A enone and aryl migration rearrangements. ${ }^{2,13}$ The yields of lumiketone in the Type A enone rearrangement are usually optimized in tert-butanol with side reactions (dimerizations, reduction and deconjugation) enhanced in 2-propanol, toluene, pyridine and benzene. Zimmerman reported a 16 -fold increase in the production of 3,4-diphenylcyclohexenone 4 upon irradiation of 4,4-diphenylcyclohexenone 1 in tert-butanol versus benzene. ${ }^{2}$ This effect has been attributed to either inversion of two close-lying triplets or to the possibility of hydrogen bonding at the enone oxygen in the excited state, enhancing hydride migration over cyclopropyl formation.

The absence of any Type A rearrangement products from 4,4-diphenylcyclo-
hexenone provoked interest in a more thorough study of 4-phenyl substituted enones. ${ }^{39,40}$ The photochemistry of 4,5-diphenyl-2-cyclohexen-1-one (107) was studied since both aryl migration and Type A enone rearrangements were possible. 39 It was thought that the 5 -phenyl substituent would enhance the Type A rearrangement by facilitating breakage of the C-4-C-5 σ bond due to its ability to stabilize the odd electron density at C-5 of species $\mathbf{1 1 0}$. Photolysis of 107 in 95% ethanol led to a single stereoisomer 108. Irradiation of 107 in tert-butanol also afforded 108 along with a minor product, 2-(cis-styryl)-3-phenylcyclobutanone 109. It was not initially apparent whether $\mathbf{1 0 8}$ derived from aryl migration or from Type A rearrangement since both

in 95\% ethanol - 108
in \mathbf{t}-BuOH - 108-109
pathways led to the same product. However, the skeletal changes (interchange of C-3 and C-4) that occur only in the Type A enone rearrangement did permit determination of the reaction pathway. ${ }^{13} \mathrm{C}$ labeling of $\mathrm{C}-3$ in 107 , followed by irradiation, degradation of photoproduct 108 and assay of the degradation fragments revealed that the Type A rearrangement predominated over the aryl migration reaction by 70:1. Several reasons are advanced to explain the preference for Type A rearrangement in 4,5-diphenylcyclohexenone 107 while 4,4-diphenylcyclohexenone 1 chooses the aryl migration pathway:

1) In the aryl migration reaction, once phenyl migration occurs, an odd electron center is generated at $\mathrm{C}-4$. This center is localized in 111 while it is delocalized by the non-migrating phenyl in 1.
2) If you assume there is a greater van der Waals phenyl-phenyl interaction between geminal phenyls than vicinal ones, there would be a greater relief of this interaction in the phenyl migration of 1 than in 107.
3) It has been suggested that the axial phenyl migrates (better orbital overlap with enone system) in the the aryl migration reaction. In the 4,5 diphenyl system 107, the phenyls are most certainly trans equatorial and in poor alignment for migration. In 1 , one phenyl is necessarily axial and can easily migrate.
4) Phenyl delocalization of the odd-electron center at C-5 generated in the Type A reaction is possible in 107 and not in 1.

The formation of 109 is thought to proceed by homolytic fission of the C-4-C-5 bond of $\mathbf{1 0 7}$ followed by cyclobutane ring formation. It is possible that the odd electron
at C-5 is not completely free but "bicycles" from C-4 to C-3 to C-2 and then bonds. Cyclobutanone photoproducts of this type have not been reported in Type A rearrangements of 4,4-dialkylcyclohexenones.

The photochemistry of 4,4,5-triphenyl-2-cyclohexen-1-one (113) was studied to gain further insight into the differences in photoreactivity between 4,4- and 4,5-diphenylcyclohexenones..41 The triphenyl system had features that enhanced both the Type A and aryl migration reaction. Irradiation of $\mathbf{1 1 3}$ in tert-butanol resulted in the formation of four photoproducts, three derived from aryl migration 114-116, and one 117, by a mechanism involving C-4-C-5 bond fission. The lack of cis diphenyl photoproducts supports Zimmerman's earliest theory of C-2-C-4 bonding concerted with aryl migration, resulting in production of only the trans diphenyl isomers. The formation of only the cis-

3,4,5-triphenyl enone system 116 is thought to be a result of incomplete C-2-C-4 bonding in 118 since this bonding leads to a strained trans-trans system 119 in which the C-4-C-6 phenyls are forced together. It was concluded that because the aryl migration route was preferred for 113 , the enone 107 may not have undergone the aryl migration reaction because of lack of $\mathrm{C}-4$ stabilization in the migrated diradical 111.

> C-2-C-4
> bonding

119

The vinylcyclobutanones isolated as minor photoproducts in the photolysis of 107 and 113 sparked an investigation into the photochemistry of two other 5-aryl substituted cyclohexenones, 4,5,5-triphenyl-2-cyclohexen-1-one (120) and 4-methyl-5,5-diphenyl-2-cyclohexen-1-one (129). ${ }^{5}$ The 5,5-diphenyl substituents were expected to further stabilize the radical center generated upon homolytic fission of the C-4-C-5
bond such that cyclobutane formation would be enhanced. Direct irradiation of $\mathbf{1 2 0}$ led to the formation of four photoproducts, 3,5,5-triphenyl-2-cyclohexen-1-one (121), exo-4,4,6-triphenylbicyclo[3.1.0]hexanone (122), and the cis and trans-2-styryl cyclobutanones (123) and (124). Labeling studies were completed in order to determine

which pathway, Type A or aryl migration led to 123. Irradiation of deuterium labeled 4,5,5-triphenylcyclohexenone 125 led to the formation of bicyclic ketone 126, in which the C-6 bore only hydrogen, this product resulting from a phenyl migration pathway. It was of special interest to note that in the 4,5,5-triphenylcyclohexenone photolysis, none of the endo phenyl products were observed but instead the exo isomer was produced. In all previously reported cases of the aryl migration reaction, preference for the endo isomer was observed. This exception has been rationalized by the severe C-4-C-6 phenyl-phenyl

steric interaction that would be seen in the endo product 128.

128

Irradiation of 129 afforded only trans-propenylcyclobutanone 130 in excellent yield ($93-97 \%$). The spectral data suggested the cyclobutanone 130 -- this structure was later confirmed by degradation to the known 3,3-diphenylcyclobutan-1-one 131. The degradation sequence involved ozonolysis of 130 to generate the β-ketoaldehyde, followed by oxidation to the acid and then loss of carbon dioxide to give 3,3diphenylcyclobutanone 131.

Three possible mechanisms were reasonable for the cyclobutane formation seen in irradiations of $\mathbf{1 2 0}$ and 129. Path 1 involves fission of the C-4-C-5 bond to generate a 1,4 diradical that undergoes a C-1-C-6 bond fragmentation to give the ketene intermediate and 1,1-diphenylethylene, followed by [2+2] cycloaddition. Path 2 involves fission of
the C-4-C-5 bond followed by attack of the diphenyl radical center on C-2. Path 3 involves a concerted [1,3]-sigmatropic rearrangement. Trapping experiments irradiating in ethanol or benzene containing cyclohexylamine failed to yield esters or amides and, thus, ruled out the ketene mechanism. A concerted [1,3]-sigmatropic rearrangement was ruled out when the photolysis of optically active 129 led to a completely racemic mixture of cyclobutanone 130. Therefore, path 2, appears to be the process responsible for cyclobutanone formation.

123-124

In the photolysis of the 5-phenyl substituted enones 107,113 and 120 , the yield of cyclobutanone formation reached only as high as $0.3,10$ and 20%. The low yields observed were attributed to the tendency for the C-4 aryl group to migrate in preference to cyclobutanone formation. Additionally, cyclobutanone formation appears to occur only
in those cases where the ethylvinyloxy diradical is sufficiently stabilized. Despite the lower cyclobutanone yield obtained for $\mathbf{1 2 0}$ relative to 129 , the rate of cyclobutanone formation was faster in the triphenyl system than in the methyldiphenyl system. This rate increase was thought to be due to either the relief of vicinal phenyl-phenyl steric repulsions upon scission of the C-4-C-5 bond or to the available $\mathrm{C}-4$ phenyl conjugation of the π system in 132 derived from 120.

Interest in 4,4-disubstituted cyclohexanone photorearrangements led to investigations into the photochemistry of 4,4-disubstituted cyclopentenones. ${ }^{42-43}$ The photochemistry of 4,4-diphenyl- and 4-methyl-4-phenyl-2-cyclopenten-1-ones (135 and 137, respectively) were studied. ${ }^{42}$ Direct irradiation of both systems in tert-butanol, led to the almost quantitative production of the 3,4-disubstituted pentenoic esters 136 and 138. It was suggested that the rearrangement of 135 and 137 involved a ketene

$$
\begin{aligned}
135 \cdot R & =\mathbf{P h}, \mathrm{Ar}=\mathbf{P h} \\
137 \cdot \mathrm{R} & =\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph} \\
143 \cdot \mathrm{R} & =\mathrm{Me}, \mathrm{Ar}=p \text {-anisyl, } \\
* & ={ }^{14} \mathrm{C}
\end{aligned}
$$

$$
136-\mathbf{R}=\mathbf{P h}, \mathbf{A r}=\mathbf{P h}
$$

$$
138-\mathbf{R}=\mathbf{M e}, \mathbf{A r}=\mathbf{P h}
$$

144-R $=\mathbf{M e}, A r=p$-anisyl, * $={ }^{14} \mathrm{C}$
intermediate based on the products derived from reactions run in alcohol solvents and its observed IR absorption. The proposed mechanism involved migration of a C-4 phenyl to the C-3 electron center of the excited enone. Concerted or stepwise C-1-C-5 bond opening generated the ketene intermediate, which underwent addition of alcohol solvents to afford the esters 136 and 138. The possibility for production of the ketene
intermediate via the housone 139 was considered, despite the fact that this intermediate could not be detected during room temperature irradiations. Low temperature $\left(-140^{\circ} \mathrm{C}\right)$ irradiations were completed on both 135 and 137 in an attempt to determine if initial aryl migration occurred to generate the strained housone intermediate 139. The housone system could be produced by C-2-C-4 bonding in either 140 or 141. Ring opening of the housone would then generate the ketene and alcohol addition would afford the esters 136 and 138. IR monitoring of the low temperature photolysis indicated a reaction intermediate that was tentively assigned to a housone structure 139. Despite this observation, evidence for the completed aryl migration mechanism prior to fragmentation for room temperature irradiations is still in question. Direct fragmentation of the bridged or diradical species $\mathbf{1 4 0}$ or $\mathbf{1 4 1}$ to generate the ketene may also intervene at low

temperature. Attempts to independently synthesize the housone system nonphotochemically were unsuccessful, leading only to production of the ester photoproducts.

The photorearrangement of 4-p-anisyl-4-phenylcyclopentenone 143 has been found to generate the ester 144 by the mechanism described above. 44 The mechanism is supported by deuterium labeling studies of the C-5 methylene which indicate that the labeled methylene appears as the terminal methylene in the product. Generation of the ketene 142 via a housone intermediate, can not be excluded from the data presented. ${ }^{45}$

Cis-Trans Isomerization

Cis-trans photoisomerization has been observed as a competitive photoreaction of cyclic α, β-unsaturated ketones. Photochemical isomerization of cis-2-cyclohepten-1-one (145), cis-2-cycloocten-1-one (146), and cis-2-cyclononen-1-one (147), to their trans isomers has been reported. ${ }^{46-51}$ For these systems, isomerization occurred with exclusion of all other photochemical reactions. Further work has shown that dimerization and addition products were, in fact, ground state reactions of the highly reactive trans enones. ${ }^{50,51}$ It was initially thought that cis-trans photoisomerizations occurred via the triplet excited state but triplet quenching of enones $\mathbf{1 4 5}$ and 146 was unsuccessful. ${ }^{46}$ It was later realized that the reactive excited state triplet of these enones underwent cis-trans isomerization faster than intermolecular energy transfer to dienes, thus showing negative results upon quenching. ${ }^{13}$ Other flexible ring enones have been reported to exhibit cistrans photoisomerization. The cis isomers of benzocycloheptenones, 2,6-cycloheptadienones, 2,4-cyclooctadienone and benzazepinediones were all reported to undergo photoisomerization to their trans counterparts, followed by dimerization and cycloaddition processes. ${ }^{52-53}$

Cis-trans isomerization reactions of 2-cyclohexenones are rare. Recently, the photocycloaddition of deuterated methanol to Pummerer's ketone 148 indicated the intermediacy of a trans cyclohexenone species. ${ }^{54}$ The author suggested that the syn addition occurs to either an excited state species or to an intermediate in which the $\mathrm{C}=\mathrm{C}$ is twisted more than $90^{\circ} \mathrm{C}$, as shown in 149. Other authors have demonstrated the trans addition of electron-rich alkenes to Δ^{6}-testosterone (151). 55 Irradiation of 151, leads exclusively to the trans $[2+2]$ cycloaddition product. 55 The formation of the sterically strained trans-fused cycloadduct has been rationalized in terms of addition of the alkene to

149

150

an excited twisted enone moiety.
Recent flash photolysis studies on cis-2-cyclohepten-1-one (145) and 1acetylcyclohexene (153) have indicated the presence of two transients, one long-lived and one short-lived species. ${ }^{13,56,57}$ The long-lived transient was identified as the ground state trans enone, based on the spectral relationships to trans cycloheptene. The shortlived transient was tentively assigned to the relaxed twisted triplet excited of the state enone.

Photodimerization

Dimerizations of 2-cyclohexen-1-one (154) and 2-cyclopenten-1-one (155) to produce a mixture of syn and anti head-to-head and head-to-tail dimers have been known for some time. ${ }^{46,58-60}$ 2-Cyclobutan-1-one (156) does not undergo photodimerization but instead undergoes electrocyclic ring opening reactions to afford ketenes. ${ }^{61}$ Dimerization is the principal photoreaction for a number of 2- and 3-substituted cyclopentenones and cyclohexenones as well as substituted octalones. $23,62,63$ Studies of the cyclohexenone dimerization have implicated the involvement of a $\pi-\pi^{*}$ triplet species with charge-transfer character. 60 Other ring sytems have not been studied as thoroughly.

The regiochemistry and stereoselectivity of the dimerization reaction have been controlled in a variety of enone systems by choosing appropriate substituents and reaction
conditions. ${ }^{64}$ For example, irradiation of isophorone and cyclopentenone in the presence of copper (I) salts has been found to increase the production of the head-to-head relative to the head-to-tail dimers. ${ }^{65}$ This increase is thought to be due to the fact that copper (I) can complex with the electron pair of the enone oxygen to generate a $2: 1$ enone-copper complex. The complex then acts as a template for reaction, holding the two enones in position for dimerization.

Photoreduction

Photoreduction of α, β cyclic enones has been reported to occur concurrently with enone photorearrangements. ${ }^{13}$ These photoreductions can occur by hydrogen abstraction from solvent, from a second molecule of substrate, or from intramolecular hydrogen abstraction. ${ }^{13}$ Hydrogen abstraction from solvent is thought to be a radical process. 66 The effectiveness of solvent in causing photoreduction is directly related to its hydrogendonor ability and thus its C-H bond dissociation energy. 66 The yields of photoreduction products are found to be highest in 2-propanol, chloroform and cyclohexane, somewhat lower in pyridine and benzene and lowest in tert-butanol. ${ }^{13}$ Considering the stability of benzene, this solvent ordering is surprising. This observed reactivity was thought to be due to an initially formed enone-benzene complex, but this is still disputed. ${ }^{67}$ Systems that are prone to rearrange, i.e. cyclic 4,4-disubstituted cyclic α, β-unsaturated ketones, usually do not undergo photoreduction in tert-butanol. ${ }^{13}$ An exception to this is the photorearrangement of 4,4-dimethyl-2-cyclopenten-1-one (157). 68 Irradiation of 157 in tert-butanol affords 2-tert-butoxy-4,4-dimethylcyclopentanone (158).

There are two general photoreduction reactions for enones: a) Reduction to give pinacols or secondary alcohols; b) Reduction of the enone double bond to yield the saturated ketone with introduction of a double bond at a remote center. ${ }^{13}$ The reaction course seems to depend on structural factors and reaction conditions. ${ }^{69}$ Pinacols and secondary alcohols are thought to arise from initial hydrogen abstraction by the carbonyl
oxygen, followed by coupling of the resulting ketyl radical with another ketyl radical or solvent derived radical. The production of saturated ketones is thought to proceed by either of three mechanisms that have not been distinguished experimentally:
A) Initial abstraction of a solvent hydrogen by C_{β}, followed by transfer of a second hydrogen atom to C_{α}.
B) Initial hydrogen abstraction by C_{α} followed by a second hydrogen transfer to C_{β}.
C) Hydrogen abstraction by the carbonyl oxygen, followed by second hydrogen atom transfer to C_{β} and tautomerization.

Several authors have suggested that photoreductions of enones involving initial hydrogen transfer to C_{β} occur via the triplet $\pi-\pi^{*}$ state whereas initial transfer to the carbonyl oxygen involves the triplet $n-\pi^{*}$ state. ${ }^{70}$ It is thought that saturated ketones are most likely produced via mechanism A by analogy with the accepted mechanism for intramolecular hydrogen transfer of systems that have side chains in a position for hydrogen abstraction. ${ }^{13}$ The mechanism for intramolecular hydrogen transfer is illustrated in the photolysis of enone 159. The excited enone undergoes initial 1,5 hydrogen transfer to the C_{β} via a six-membered cyclic transition state to generate the diradical 160 , followed by second hydrogen transfer to C_{α} to afford $\mathbf{1 6 1 - 1 6 2}$, or cyclization to afford 163. 68,71 In systems that can only undergo 1,5 hydrogen transfer to C_{α}, as in the enone 164, it is reported that exclusive 1,6 hydrogen transfer to the $C \beta$ occurs instead, via a seven-membered cyclic transition state. ${ }^{68}$ The 1,6 hydrogen transfer being less efficient than the 1,5 transfer. Agosta and coworkers have demonstrated that steric or entropic factors have little effect on determining whether 1,5 or 1,6 transfer occurs. 72 The authors studied the photochemistry of enone 166 where hydrogen transfer can occur equally to either C_{α} or C_{β}. Deuterium labeling studies indicated exclusive initial hydrogen transfer to $C \beta$ upon irradiation, suggesting that electronic factors in the excited state control the specificity.

There have been reports of a few exceptions to the initial $\mathrm{C}_{\boldsymbol{\beta}}$ hydrogen transfer mechanism. ${ }^{73,74}$ Irradiation of enones $\mathbf{1 7 0}$ and $\mathbf{1 7 2}$ afforded $\mathbf{1 7 1}$ and 174, respectively, both deriving from initial intramolecular hydrogen transfer to C_{α}. In both systems, it appears that the α position may be closer to the abstracted proton then the β position due to the geometry of the molecule. Therefore initial abstraction occurs at C_{α} to give the observed products.

A sufficient pattern of reactivity has not been established for the photoreduction of cyclic enones and, therefore, a prediction of whether reduction or dimerization will occur in a particular system is difficult to make. Factors such as degree of substitution, availability of hydrogen and reaction conditions should be considered. For example, the
flexibility of the ring attached to the cyclopentenone moiety $\mathbf{1 7 5 - 1 7 8}$ is considered to be the feature in determining whether intramolecular hydrogen transfer or dimerization occurs. 75

175-n=3
176-n $=4$
$177-n=5$
$178 \cdot n=6$

Norrish Type II

The Norrish Type II reaction, which involves intramolecular abstraction of a γ hydrogen from a side chain of an enone by the carbonyl oxygen, has been reported for cyclic α, β-unsaturated ketones. $62,76,77$ An example of this reaction is seen in the photochemistry of 6-propyl-2-cyclohexen-1-one (179). Irradiation of 179 in tertbutanol yielded four photoproducts 181-184.77 Two of these products, 182 and 183 are thought to arise by a Norrish Type II mechanism. Internal hydrogen transfer of the γ proton to the carbonyl oxygen generates the diradical 180 , which then cyclizes to either the carbonyl carbon to give $\mathbf{1 8 2}$ or to C_{β} to give 183. Although it has been suggested
that this reaction occurs via a triplet state by analogy with other enone photoreactions, cyclic ketones often undergo Norrish Type II reaction via the singlet manifold. ${ }^{13,77}$

Norrish Type I

Cyclic and acylic ketones undergo cleavage of the bond between the α-carbon and the carbonyl carbon to generate a pair of radicals that can either react to form unsaturated aldehydes or ketenes. ${ }^{13,78}$ This α-cleavage, called a Norrish Type I reaction, has been described for a few α-substituted cyclic α, β-unsaturated enones. ${ }^{79,80}$ The photochemical reactions of the hydroxyenones 185 and 187, resulted in the formation of small amounts of lactones 186 and 188. ${ }^{79,80}$ These lactones were thought to derive from a Norrish type I reaction. The C-1-C-6 bond in 185 and the C-1-C-5 bond in 187 were cleaved to generate the hydroxy-stabilized diradical, followed by cyclization to the ketene and lactonization. It was concluded from sensitization and quenching studies that these reactions were occurring from singlet excited states. ${ }^{79,80}$ This conclusion along with the fact that the lactones were formed in very low yields indicated that the α-cleavage

reactions of enones were occurring at the expense of intersystem crossing rather than from competition with the typical enone reaction. ${ }^{13}$

It was initially believed that the poor efficiency of Type A rearrangements was due to the energy wasting α-cleavage process. ${ }^{81}$ In an attempt to determine if this was in fact the case, the photochemistry of the $4,4,6,6$-tetramethyl-2-cyclohexen-1-one (189) was studied by Schuster. ${ }^{81}$ The doubly substituted α carbon of the enone 189 was thought to enhance α-cleavage due to the added stabilization of the diradical intermediate produced upon C-1-C-6 cleavage. Irradiation of 189 resulted in only Type A reaction, with no products attibutable to a Norrish Type I reaction. The author believed the reason the Norrish Type I reaction was observed in the 6 and 5-hydroxy systems 185 and 187 and not in $\mathbf{1 8 9}$ derived from hydrogen bonding between the α-hydroxy and the carbonyl which provided stabilization as well as rigidity to the excited state species. ${ }^{79}$

The photochemistry of many other 5-substituted cyclopentenones has been reported to proceed by the Norrish Type I reaction. ${ }^{82,83}$ Irradiation of cyclopentenones 190-192 led to the production of esters 193-195. Initial cleavage of the C-1-C-5 bond
followed by cyclization generated the cyclopropyl-substituted ketene 196. The intermediacy of the ketene 196 was confirmed by its IR absorption which disappeared upon treatment with methanol. The authors were reluctant to conclude on the results of sensitization and quenching experiments, which suggested that the reaction occurred via the triplet state. This was because phosphoresence and fluorescence studies indicated that the energy gap between the singlet and triplet states for these systems was only 1-2 $\mathrm{kcal} / \mathrm{mol}$.

The fact that 5-alkyl substituted cyclopentenones do undergo α-cleavage while 6alkyl substituted cyclohexenones do not, has been the subject of extensive discussion. ${ }^{13}$ It has been suggested that the $n-\pi^{*}$ singlet and triplet energies for typical α, β-cyclohexenones are not high enough to provide the energy required for C-1-C-6 cleavage while for cyclopentenones, the excited state energies are high enough for C-1-C-5 α-cleavage. ${ }^{8} 4$

6,6-Disubstituted-2,4-cyclohexadienones preferrably undergo α-cleavage to form diene ketenes. 85,86 These reactions appear to originate from a singlet state upon direct irradiation. The production of bicyclohexanones through a Type A rearrangement from these systems occurs with more highly substituted dienones. 85,86 The reaction conditions, in particular the nature of solvent, also tend to determine which path (Type A
or Norrish Type I) the 6,6-disubstitued 2,4-dienone will follow. 85,86 For example, irradiation of 197 in methanol leads to production of the Norrish Type I product, ketene 198. ${ }^{85,86}$ In trifluorethanol, irradiation of 197 leads instead to the highly stereoselective Type A rearrangement to afford the bicyclohexanone 199. No ketene intermediates were detected. This dependance on substitution and reaction conditions is also seen for several other tetra- and penta-methylated 2,4-cyclohexadienones. ${ }^{87,88}$

Intramolecular [2+2] Cycloaddition

The $[2+2]$ cycloaddition reactions of α, β-unsaturated ketones has been thoroughly reviewed. ${ }^{64}$ Intramolecular [2+2] photoreactions of cyclic α, β-enones possessing olefin- or allene-containing side chains have also been reported. 89-92 The proposed mechanism for the intramolecular reaction involves initial $n-\pi^{*}$ excitation of the enone followed by intersystem crossing to either the $n-\pi^{*}$ or $\pi-\pi^{*}$ triplet state. A shortlived complex between the ground state olefin and the excited state enone (an exciplex) is then formed, followed by collapse to 1,4-diradicals that can cyclize. ${ }^{64,89}$ Direct biradical formation without exciplex formation may also be the case in some systems. In the absence of special constraints, initial 1,5-addition of the triplet enone and olefin to form a diradical possessing a five-membered ring is favored ("rule of five"). ${ }^{64,89}$ If it is not possible to form the preferred five-membered ring, a six-ring will form. An example of

the "rule of five", is illustrated in the photolysis of enones 200 and 202 to their [2+2] cycloadducts. ${ }^{89}$ In the irradiation of 200 , initial bond formation occurs between C-2-C3^{\prime} or C-3-C-4', whereas in 201, C-3-C-4' bonding occurs initially. This observed regioselectivity agrees well with the preference for five-membered ring formation.

Intramolecular [2+2] cycloadditions have been reported for a large number of substituted cycloalkenones. ${ }^{90-92}$ Substrates substituted at C-4 with olefin- or allenecontaining sidechains have been found to undergo intramolecular [$2+2$] reactions in preference to normal enone rearrangement (Type A or aryl migration). Irradiation of enones 204 and 206 to tricyclic ketones are examples of this preference. ${ }^{90,91}$

In cyclic enone systems of seven carbons or larger, [2+2] photocycloadditions are usually unsuccessful. This is because these systems usually undergo cis-trans isomerization in preference to the $[2+2]$ photoreaction. 64,93 Scheffer 94 and Heathcock ${ }^{95}$ have reported the $[2+2]$ photocycloaddition of the ten-membered ring enones 208 and 211. These systems are heavily biased because of the conformation of the cyclodecane ring and should be noted as an exception.

2,4-Cycloheptadienones have been reported to undergo the intramolecular [2+2] reaction. ${ }^{96,97}$ Irradiation of dienones 213-214 in cyclohexane, results in the formation of the [2+2] cycloadducts 215-216. However, when the cycloheptadienone 213-214 irradiations were carried out in acidic solvents, the norbornenone systems 218-219 were

formed at the expense of the fused bicyclic products 215-216. The norbornenone products are thought to derive from rearrangement of the dipolar species 217. As the substitution on the 2,4-cycloheptadienone system increases additional isomers resulting from C-6-C-7 cleavage followed by ring contraction are observed.

Another interesting case of the intramolecular [2+2] cyclization reaction is seen in the photochemical studies of 5-arylmethyl-3-phenylcyclopentenones. ${ }^{98}$ These systems are found to involve an aromatic double bond in the cyclization process. An example of this is seen in the irradiation of 5-(α-naphthylmethyl)-3-phenyl-2-cyclo-penten-1-one 220. Irradiation of 220 afforded the benzo-fused product 221, which derived from the $[2+2]$ cycloaddition of a naphthyl double bond and the enone π system.

220

221

Deconjugation

Rearrangements of cyclic α, β-unsaturated ketones to β, γ-unsaturated ketones has been reported to occur in competition with rearrangement and dimerization in systems containing one or more γ-hydrogens. ${ }^{23}$ It is difficult to predict when deconjugation will occur, since no pattern of reactivity has been found. 13

The deconjugation mechanism has been examined most thoroughly in the photochemical study of $\Delta^{1,9}-10$-methyl-2-octalone (222). ${ }^{26,99}$ From this study, it was proposed that an intermolecular hydrogen transfer reaction occurs between an excited
octalone triplet and an octalone ground state molecule to generate the pair of radicals 226 and 227. A second hydrogen transfer then occurs to regenerate the enone 222 and the β, γ-unsaturated compound 223. From sensitization and quenching studies, the reaction appears to proceed from a triplet state, the nature of which ($n-\pi^{*}$ or $\pi-\pi^{*}$) is still unclear. ${ }^{13}$

223

[1,3]-Sigmatropic Rearrangements

The most well-known example of the $[1,3]$-sigmatropic rearrangement is seen in the photoisomerization of verbenone 228 to chrysanthanone 229. ${ }^{100}$ The mechanism proposed for the rearrangement is illustrated below. It was initially suggested that the reaction proceeded by a stepwise process. This was later confirmed by the photochemical
study of the deuterated system 232 which afforded the $1: 1$ mixture of $\mathbf{2 3 3}: 234$. The stepwise process was thought to proceed though the diradical $\mathbf{2 3 0}$ or the ketene 231. Since α, β-enones do not usually undergo α-cleavage, the ketene is probably formed from the diradical.

228-H
232-(D)

229-H
233-(D)

234 - (D)

235

231

Other examples of [1,3]-sigmatropic photorearrangements have been seen in the photorearrangement of bicyclic enones. ${ }^{13,102-104}$ It has been reported that the sigmatropic reaction of $\mathbf{2 3 6}$ proceeds through a nonconcerted diradical mechanism to afford 237 and 238 in a 1:1 ratio. ${ }^{102}$ Irradiation of the similar bicyclic system 239, leads to the tetrahydrobenzoic ester 242. ${ }^{103}$ An initial photoisomerization by a concerted [1,3]-sigmatropic mechanism to generate the cyclopropanone 240 is supported by the observed stereoselectivity of the reaction. The cyclopropanone then reacts with methanol or methoxide followed by a thermal ring opening reaction to give 242 .

Several other photorearrangements of bicyclic ketones to cyclopropanes via a [1,3]-sigmatropic shift have been reported from low temperature matrix isolation experiments. ${ }^{105,106}$ For example, irradiation of 243 in a glass at $-190^{\circ} \mathrm{C}$ affords the cyclopropanone 244. ${ }^{105}$ Whether these cyclopropanes observed at low temperature are intermediates in room temperature reactions has been discussed. ${ }^{106}$

Cycloalkenones containing γ-dialkoxymethyl groups as in $\mathbf{2 4 5}$, are also known to undergo 1,3-sigmatropic shifts upon $\pi-\pi^{*}(\lambda=254 \mathrm{~nm})$ irradiation. ${ }^{13,107}$ Photolysis of 245 results in the formation of two products, 246 and 247 . The α-dialkoxymethylcyclohexanone system 246, is produced by sigmatropic rearrangement of a dialkoxymethyl substituent from $\mathrm{C}_{\boldsymbol{\gamma}}$ to C_{α}. Compound 237 results from abstraction of an alkoxymethyl proton by C_{α} followed by cyclization of the ether radical to C_{β}. Normal $\mathrm{n}-\pi^{*}(\lambda>290 \mathrm{~nm})$ excitation of γ-dialkoxymethyl substituted cycloalkenones usually affords the Type A enone rearrangement or deconjugation products. ${ }^{107}$

CHAPTER II

THE PHOTOCHEMISTRY OF ONE- AND TWOCARBON ORTHO-ORTHO PHENYL-BRIDGED 4,4-DIPHENYL-2-CYCLOHEXEN-1-ONES

Introduction

The photorearrangement of 4,4-diphenyl-2-cyclohexen-1-one has been the subject of much attention. Numerous studies have focused on the mechanism, multiplicity, migratory apptitudes and reaction rates for the rearrangement. ${ }^{1-4,9-11,39,41}$ It was initially reported that irradiation of 4,4-diphenyl-2-cyclohexen-1-one (1) led to the formation of three products, the trans- and cis-5,6-diphenylbicyclo[3.1.0]hexan-2-ones (2) and (3), and a minor product, 3,4-diphenyl-2-cyclohexen-1-one (4). ${ }^{1}$ The reaction involved γ to β aryl migration followed by either three-ring formation to give the trans and cis products, or hydride migration to give the enone. The ring closure was very stereoselective, affording the trans and cis products in a ratio of 140:1 at low conversion.

Since this initial study, a series of aryl migration reactions of 4,4-diaryl-2cyclohexenone systems have been reported and with few exceptions, the trans isomer has been observed in kinetic preference over the cis and enone products. $5-8,14,15$ It has been of particular interest in our research group to explore the possibility of altering the stereochemical outcome of the 4,4-diphenylcyclohexenone rearrangement. ${ }^{16}$ In an attempt to exert stereocontrol over this photoreaction, the ortho positions of the two C-4 phenyl groups that normally migrate apart during the reaction course, were linked by means of an alkyl chain. It was initially proposed that the stereoselectivity of the photoreaction would be a function of the length of this chain. By decreasing the length of the bridging chain, the C-4 phenyl substituents would be inhibited from migrating apart and the normally favored trans diphenyl product would not be preferred. In an effort to establish the limits of this stereochemical control, the photochemistry of the spirofluorenone and spirodibenzooctenone systems, (5 and 8, respectively), corresponding to the ortho-ortho linkages of zero- and three-carbons, were investigated. ${ }^{16}$ It was reported that irradiation of 5 , resulted in the formation of the cis diphenyl system 6 and the β, γ-enone 7. Extended irradiation led to photoisomerization of 6 to the photostable 7. Irradiation of the three-carbon bridged analog 8, afforded the trans and cis diphenyl systems 9 and 10, in a ratio of $115: 1$ at low conversion. Interconversion (trans $\rightarrow \mathrm{cis}$) occurred upon extended irradiation to yield a predominance of the cis isomer. The mechanism proposed for production of the trans and cis isomers paralleled that of the parent 4,4-diphenylcyclohexenone system. ${ }^{1,2,9,10}$ The excited enone ${ }^{3}\left(n-\pi^{*}\right)$ undergoes phenyl migration, electron demotion and three-ring closure to generate the bicyclohexanones by either a concerted or stepwise process. Preferential formation of the less stable trans isomer, observed in the three-carbon bridged photoreaction, was attributed to a concerted reaction pathway governed by orbital overlap. An alternative rationale for the trans isomer preference, previously reported in non-bridged 4,4-diaryl systems, involves complete migration to the open C-2-C-4 diradical followed by preferential trans closure. ${ }^{5-8}$

8

Preference for the trans closure was due to the fact that formation of the cis product requires that the two phenyl rings twist past one another at a stage where the $\mathrm{C}-4$ phenyl is rotationally fixed by delocalization. In the bridged system, however, the three-carbon connector serves to hold the phenyl rings away from each other, thereby relieving any steric bias disfavoring one mode of diradical closure.

The β, γ-enone, seen upon irradiation of 5 , was thought to derive from both primary and secondary photoreactions, by an incomplete Type A mechanism. ${ }^{16}$ Initial electronic excitation and intersystem crossing of the enone $\mathbf{5}$, followed by ring contraction and C-3-C-2 hydrogen migration yielded 7. Photoisomerization of 6 to 7,
resulted from external cyclopropyl bond cleavage followed by phenyl migration to the resulting radical center and $\mathrm{C}-9^{\prime}-\mathrm{C}-2$ hydrogen migration.

It was concluded from these studies that by decreasing the number of carbons in the ortho-ortho phenyl linkage from three to zero, a change in the stereochemical outcome of the aryl migration reaction was observed. The absence of the trans isomer in the photoreaction of 5 was attributed to the strain imposed by the zero-carbon linkage when having to span the distance between the trans oriented phenyl rings. Production of the cis oriented phenyl product 6 was therefore enhanced, as well as the less efficient Type A process. Strain exerted by the zero-carbon bridge suppressed phenyl migration and permitted the Type A process to give the β, γ-enone. In the three-carbon bridged system, the longer carbon-carbon connector permitted formation of the trans isomer and, thus, normal aryl migration resulted.

As a continuation of the photochemical studies of ortho-ortho phenyl-bridged systems, the photochemical behavior of 10,10-dimethylspiro[anthracene-9(10H), 1'-[2]cyclohexen]-4'-one (14) and 10',11'-dihydrospiro[2-cyclohexene-1,5'-[5H]-dibenzo[a,d]cyclohepten]-4-one (18), corresponding to the one and two-carbon bridged systems, was explored. It was initially anticipated that the one-carbon bridged system would exhibit either aryl migration giving an overall preference for the cis and enone diphenyl products, or diversion from the normal aryl migration course. Molecular models suggested that formation of the trans diphenyl product from 14 was possible but should be inhibited due to the strain imposed by the one carbon bridge. The cis and enone products, should, therefore, be preferred. We expected that the two carbon bridged system would also exhibit some diversion from the normal reaction course. The two carbon bridge should impose strain on the migrating phenyl, therefore inhibiting trans isomer production and enhancing cis and enone formation. Furthermore, a combination of both the added strain from the one- and two-carbon ortho-ortho linkage, along with the strain already present in bicyclic[3.1.0] systems, could increase production of the more
stable α, β-enone system. Finally, the constraint imposed by the one- and two-carbon linkages might also lead to products not derived from the aryl migration reaction.

If results from the photoreaction of the one and two-carbon bridged systems indicate a kinetic preference for the less stable trans diphenyl systems, this would suggest that the product determining stage of the reaction comes early in the reaction pathway. ${ }^{7}$ Preference for the highly strained trans isomer, would also provide additional evidence for a concerted reaction pathway governed by orbital overlap. ${ }^{16}$ On the other hand, the more stable cis product should arise from a stepwise mechanism.

Results

Synthesis of the Photochemical Substrates. The synthesis of the photoreactants is outlined in Figure 1. 10,10-Dimethylspiro[anthracene-9(10H), 1^{\prime} -[2]cyclohexen]-4'-one (14) was prepared from the commercially available anthrone (11). Treatment of the lithium salt of 11 with methyl iodide, according to the method of Curtin and coworkers, ${ }^{108}$ yielded the dimethyl ketone 12. Epoxidation using dimethyl sulfonium methylide, followed by acid-catalyzed rearrangement, afforded the homologous aldehyde 13. ${ }^{109}$ Michael addition-aldol annulation of this aldehyde with methyl vinyl ketone, gave the desired enone 14, in a 5.1% overall yield. ${ }^{110}$ The twocarbon bridged substrate 18 was prepared from commercially available dibenzosuberone (15). The known epoxide (16) and aldehyde (17) were prepared as above according to the procedure of Ackermann and coworkers. ${ }^{109}$ Spiroannulation of the aldehyde with methyl vinyl ketone yielded $10^{\prime}, 11^{\prime}$-dihydrospiro[2-cyclohexene-1,5'-[5H]dibenzo[a,d]-cyclohepten]-4-one ($\mathbf{1 8}$), in a 10.3% overall yield. The poor overall yields for 14 and 18 were due largely to the 8.0 and 14.0% yields obtained in the spiroannulation step. This may have resulted from hindered approach of methyl vinyl ketone to the aldehyde anions derived from 13 and 17. Additionally, decarbonylation appeared to be a
competitive process in the spiroannulation step for $\mathbf{1 8}$ since dibenzosuberane was isolated from the reaction mixture. ${ }^{111}$

15

Exploratory Photochemistry and Structure Elucidation of the

 Photoproducts. The photochemical reactions were carried out using conditions comparable to those reported for 4,4-diphenyl-2-cyclohexen-1-one. ${ }^{1}$ Direct irradiation of a $10^{-3} \mathrm{M}$ solution of 14 in degassed tert-butanol through Pyrex using a $450-\mathrm{W}$ medium pressure Hanovia immersion apparatus led to the formation of six photoproducts at 15% conversion and fourteen photoproducts at 90% conversion. Isolation and characterization of the photoproducts was not attempted, since no apparent preference for any one product was observed. The poor selectivity observed was thought to be a result of competitive reactions such as alkyl migration of the $\mathrm{C}-10$ methyl substituents or radical fragmentation reactions involving the $\mathrm{C}-10$ doubly benzylic center.Irradiation of a $10^{-3} \mathrm{M}$ solution of $\mathbf{1 8}$ in degassed tert-butanol through Pyrex using a $450-\mathrm{W}$ medium pressure Hanovia immersion apparatus to 95% conversion resulted in the formation of four photoproducts. Three of the photoproducts, 19 (48\%), $20(9 \%)$, and 21 (16%), were isolated and purified from the reaction mixture by preparative thin layer chromatography on silica gel. The low yield (7% by GC) and apparent instability of $\mathbf{2 2}$ to these prolonged slightly acidic conditions (25 elutions, 18 h) did not allow for isolation under these conditions. Since the yield of 22 was improved to 22% when the irradiation was carried out in benzene, this procedure was used to generate sufficient quantities of $\mathbf{2 2}$ for isolation and characterization. Compound 22 was separated and purified from the other photoproducts by direct phase HPLC on a silica Dynamax-60A Prep column (Dynamax No. \#83-121-C) using 85:15 hexane:ethyl acetate. This yielded 19 (53\%), 20 (2\%), 21 (3\%), and 22 (10\%).

The elemental analysis and mass spectral data for all four photoproducts 19-22 indicated that they were isomeric with starting material. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the major product 19 showed broadened peaks indicating the presence of a conformationally mobile system. Dibenzocyclooctene ring systems have been reported to exist in flexible conformations and broadening of NMR signals for this ring system have
been observed. ${ }^{112-114}$ Low temperature ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR experiments were required to resolve these signals. ${ }^{114}$ Low temperature ${ }^{13} \mathrm{C}$ NMR data $\left(-40^{\circ} \mathrm{C}\right)$ showed only five aliphatic carbons and a carbonyl carbon signal at $\delta 199.2$, suggesting an α, β-unsaturated cyclohexenyl ketone. The low temperature ${ }^{1} \mathrm{H}$ NMR $\left(-40^{\circ} \mathrm{C}\right)$ showed a single vinyl absorption ($\delta 6.05, \mathrm{~s}, 1 \mathrm{H}$) and the IR indicated a typical six-ring α, β-enone $\mathrm{C}=\mathrm{O}$ absorption ($1675 \mathrm{~cm}^{-1}$). The spectral data were consistent with a proposed 3,4-diphenyl cyclohexenone system 19 , and confirmed by X-ray analysis to be $(\pm)-4,4 \mathrm{a}, 9,10-$ tetrahydrotribenzo[a,c,e]cycloocten-2(3H)-one. The ORTEP drawing of 19 is given in Figure 2.

Figure 2. ORTEP Diagram for Photoproduct 19

The high field proton NMR for photoproduct 20 was found to be very complex and defied unambiguous interpretation. Compound 20 was, therefore, subjected to a
variety of 2-D NMR experiments. The data resulting from the DEPT, HETCOR and COSY allowed initial assignment of 20 to the cis-diphenyl system. ${ }^{13} \mathrm{C}$ NMR data indicated seven aliphatic carbons, and a DEPT experiment confirmed one quaternary, two methine and four methylene carbons. The HETCOR experiment provided carbon-proton NMR correlations and is illustrated in Figure 3. The trans-oriented cyclopropyl protons ($\mathrm{H}-13 \mathrm{c}$ and $\mathrm{H}-13 \mathrm{~b}$) were assigned from the HETCOR to the doublets at $\delta 2.89$ and 2.55 and the coupling ($\mathrm{J}=3.0 \mathrm{~Hz}$) was suggestive of a cis-diphenyl stereochemistry about the

20
cyclopropyl ring. A $3.0-4.5 \mathrm{~Hz}$ coupling constant is characteristic for trans-oriented cyclopropyl protons and has been encountered previously in cis-diphenyl [3.1.0]bicyclic systems. $7,16,115$ A COSY experiment allowed for proton-proton correlations (Figure 4). The protons on the bridge carbons (C-8 and C-9) were assumed to correspond to the farthest downfield aliphatic signals. This assumption was based on comparisons of the NMR spectra obtained from other systems that contain a two-carbon ortho-ortho phenyl bridge as well as comparison of the NMR obtained from the non-bridged cis-diphenyl [3.1.0] system 3. From the COSY experiment, these downfield signals ($\delta 3.60$ and 3.02) were found to show strong short-range coupling, indicating a vicinal arrangement.

Short-range coupling of the multiplets at $\delta 2.71\left(1 \mathrm{H}, \mathrm{H}-3_{\mathrm{exo}}\right), 2.42(2 \mathrm{H}, \mathrm{H}-2)$ and 2.22 ($1 \mathrm{H}, \mathrm{H}-3_{\text {endo }}$) indicated that these corresponded to the adjacent α and β methylene protons (H-2 and H-3, respectively). The HETCOR experiment indicated that the protons represented by the $\delta 2.71$ and 2.22 multiplets, ($\mathrm{H}-3_{\text {exo }}$ and $\mathrm{H}-3_{\text {endo }}$) respectively, were on the same methylene carbon. This methylene carbon (C-3) was further upfield than the carbon signal corresponding to the $\delta 2.42(\mathrm{H}-2)$ absorption. This indicated that the α and β proton assignments ($\mathrm{H}-2$ and $\mathrm{H}-3$) were correct. Deshielding of one of these protons ($\mathrm{H}-3_{\mathrm{exo}}$) suggested that it may possess an edge-on orientation relative to the $\mathrm{C}-4$ phenyl ring. The IR $\mathrm{C}=\mathrm{O}$ absorption ($1722 \mathrm{~cm}^{-1}$) along with the ${ }^{13} \mathrm{C}$ carbonyl signal at $\delta 213.3$ provided additional evidence for a five-ring cyclopropyl-conjugated carbonyl. The structure of 20 was confirmed by X-ray structure analysis to be (\pm)(3aS*,13b $\alpha, 13 \mathrm{c} \beta$)-2,3,8,9,13b,13c-hexahydro-1H-dibenzo[a,e]cyclopenta[1,3]-cyclopropa[1,2-c]cycloocten-1-one. The ORTEP drawing is shown in Figure 5.

Figure 3. HETCOR of the $46-28 \mathrm{ppm}$ Region for 20

Figure 4. COSY of the $\delta 3.8-1.8$ Region of 20

Figure 5. ORTEP Diagram for 20

The spectral data for compound 21 was very similar to that observed for 20 . The ${ }^{13} \mathrm{C}$ NMR data showed seven aliphatic and twelve aromatic carbon signals, along with a carbonyl signal ($\delta 214.7$) consistent with a cyclopropyl-conjugated five-ring carbonyl. As in $\mathbf{2 0}$, the high field NMR for $\mathbf{2 1}$ was very complex and interpretation was inconclusive. It was, therefore, necessary to obtain 2-D NMR information. DEPT, HETCOR, and COSY experiments provided evidence for the trans-diphenyl system 21. These are illustrated in Figures 6 and 7. The DEPT experiment allowed assignment of the carbon multiplicities. The seven aliphatic carbon signals corresponded to one quaternary, two methines and four methylenes. From the HETCOR data, carbon-proton correlations were determined. The methine carbons ($\mathrm{C}-13 \mathrm{c}$ and $\mathrm{C}-13 \mathrm{~b}$) were assigned to the proton doublets at $\delta 2.81$ and 2.64. The 9.5 Hz methine-methine coupling was consistent with cis-oriented cyclopropyl protons (i.e. trans-oriented phenyls) in accord with literature values of $9.5-10 \mathrm{~Hz} .7,16,115$ The COSY experiment provided proton-proton correlations. From the COSY, the proton signal at $\delta 2.30$, was found to be coupled to the methine proton signal ($\mathrm{H}-13 \mathrm{c}$) at $\delta 2.81$. This signal ($\delta 2.30$) was assigned to the $\mathrm{H}-\mathrm{e}_{\text {exo }}$. The

21
observed coupling between the $\mathrm{H}-13 \mathrm{c}$ and the $\mathrm{H}-2_{\text {exo }}$ signals was thought to be due to the fact that the bridged system was very rigid and allowed for a strong W-coupling. ${ }^{116}$ Strong coupling of the $\mathrm{H}-2$ exo signal and the complex signal centered at $\delta 2.01(3 \mathrm{H})$ was observed from the COSY. This suggested that this complex corresponded to the other α proton ($\mathrm{H}-2_{\text {endo }}$) as well as the β-protons (H-3). Shielding of endo α-protons (as in H $2_{\text {endo }}$) relative to exo α-protons (as in $\mathrm{H}-2_{\text {exo }}$) has been previously observed in transdiphenyl [3.1.0] systems. ${ }^{7}$ These observations have been attributed to the fact that the endo-proton pokes into the π cloud of the C-13b-substituted phenyl and is thus, shielded. Assignment of the protons on the two-carbon bridge (C-8 and C-9) was made to the remaining downfield coupled aliphatic signals. This assignment was again based on NMR comparisons of similar systems. From the 1-D proton NMR spectrum, it was noted that one of the aromatic signals appeared slightly upfield from the other aromatic signals. This may be the result of the ortho proton (H-13) of the endo phenyl ring sitting near the shielding cone of the carbonyl. The spectral data obtained were consistent with the proposed trans-diphenyl system 21.

Assignment of 21 to the trans-diphenyl system was confirmed by lithium-liquid ammonia degradation. The degradation scheme is depicted in Figure 8. Structure elucidation of cyclopropyl ketones by lithium-liquid ammonia reductive cleavage of carbonyl conjugated three-ring bonds has been previously reported. ${ }^{14}$ In contrast to lithium-liquid ammonia reductions of non-phenyl bridged [3.1.0] bicyclic systems, where both external cyclopropyl bonds (bonds a and c) and the internal cyclopropyl bond (bond b) were cleaved, lithium-liquid ammonia reduction of tricyclic compounds 6,9 and 10 cleaved only the external cyclopropyl bond (bond a). ${ }^{16}$ This selective cleavage was thought to be due to strain exerted by the phenyl-phenyl connector on the external bond. ${ }^{16}$ This ortho-ortho connector also makes the cyclopropyl system more rigid, allowing the orbitals of the external three-ring bond to lock into better alignment with the carbonyl π system that will contain the odd-electron of the radical anion.

The only difference in structure between the cis and trans systems (20 and 21) is the stereochemistry about $\mathrm{C}-13 \mathrm{~b}$. Reduction of these compounds with lithium-liquid ammonia would destroy this asymmetric center and produce the common degradation product 23. Since the stereochemistry of C-13b in 20 was already established by X-ray analysis, production of the common product from reduction of 20 and 21, would confirm the stereochemistry and, thus, structure for 21. Reduction under these conditions did, indeed, yield the spiroadduct $\mathbf{2 3}$ confirming the two related structures. Structural assignment of 23 was made based on its spectral data (IR, Low Temp ${ }^{1} \mathrm{H}$ NMR and ${ }^{13}$ C NMR) along with spectral comparison of the lithium-liquid ammonia products obtained from reduction of 6,9 and 10 previously reported. ${ }^{16}$ These observations, taken together, established 21 to be (\pm)-($\left.3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \alpha\right)-2,3,8,9,13 \mathrm{~b}, 13 \mathrm{c}-$ hexahydro-1H-dibenzo[a,e]cyclopenta[1,3]cyclopropa[1,2-c]cycloocten-1-one.

Figure 6. HETCOR of the 46-22 ppm Region for 21

Figure 7. COSY of the $\delta 3.6-1.4$ Region for 21

21

20

23

Figure 8. $\mathrm{Li} / \mathrm{NH}_{3}$ Reductions of $\mathbf{2 0}$ and $\mathbf{2 1}$

The identity of the fourth photoproduct 22 was determined from its spectral data to be 3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)cyclopentanone. ${ }^{13} \mathrm{C}$ NMR data revealed only five aliphatic signals, all corresponding to methylene carbons. The proton NMR showed no vinyl absorptions, and two complex multiplets corresponding to four and six protons. These overlapping proton signals made it necessary to run a proton shift reagent experiment. ${ }^{117}$ The shifted spectrum ($10 \mathrm{mg} \mathrm{Eu}(\mathrm{fod}) 3$) showed an $A B$ doublet $(2 \mathrm{H})$, two multiplets (2 H each), an AB multiplet $(2 \mathrm{H})$, and a multiplet $(2 \mathrm{H})$ (Figure 9). The chemical shifts $v s \mathrm{Eu}(\mathrm{fod})_{3}$ concentration were plotted and the least squares lines were extrapolated to zero concentration to obtain the initial resonance positions of these protons (Figure 10). ${ }^{117}$ The slopes of the least squares lines $(\Delta \mathrm{m})$ were determined and are tabulated along with the initial shifts (IS) in Table 2.117,118 These slopes $(\Delta \mathrm{m})$ have been reported to be directly proportional to the reciprocal of the lanthanide-proton distances, i.e. as the distance decreases, $\Delta \mathrm{m}$ increases. ${ }^{118,119}$ Therefore, the slopes determined from the shift reagent experiments indicated that the AB doublet (centered at $\left.\delta 4.54,10 \mathrm{mg} \mathrm{Eu}(\mathrm{fod})_{3}, 2 \mathrm{H}\right)$ and the multiplet $(\delta 3.49,10 \mathrm{mg}$ $\left.\mathrm{Eu}(\mathrm{fod})_{3}, 2 \mathrm{H}\right)$ corresponded to protons very near the lanthanide ion and, thus, the carbonyl group. [Note: It is presumed that the lanthanide shift reagent coordinates with the ketone carbonyl.] Selective proton decoupling experiments on the shifted spectrum in

conjunction with the shift reagent data ($\Delta \mathrm{m}, \mathrm{IS}$) allowed for assignment of these signals. ${ }^{117,119}$ The AB doublet was found to be coupled only to itself, indicating the isolated methylene at $\mathrm{C}-2$. The two protons attached to $\mathrm{C}-2$ are nonequivalent because the two-carbon ortho-ortho phenyl bridge does not allow for a completely planar aromatic system. Therefore the two protons see different magnetic environments and appear as an AB doublet. Additionally, the large coupling constant for the AB doublet, $\mathrm{J}=21 \mathrm{~Hz}$, obtained from the unshifted spectrum has been noted for other geminal methylene protons. 121 Decoupling of the multiplet at $\delta 3.49(\Delta \mathrm{~m}=0.93)$ revealed coupling to the AB multiplet centered at $\delta 3.33$. These two signals were, therefore, assigned from this observation and the large $\Delta \mathrm{m}$ for the $\delta 3.49$ signal, to the α and β methylene protons on C-5 and C-4 of the cyclopentenone ring. Irradiation of the multiplet at $\delta 3.47$ simplified the signal at $\delta 2.99$. This observed coupling, along with the small slopes ($\Delta \mathrm{m}=0.165$, 0.086) indicated that these signals corresponded to the two-carbon ortho-ortho phenyl bridge protons on $\mathrm{C}-10$ and $\mathrm{C}-11$. Finally, the IR $\mathrm{C}=\mathrm{O}$ absorption ($1715 \mathrm{~cm}^{-1}$), the ${ }^{13} \mathrm{C}$ carbonyl signal at $\delta 209.8$ and the UV data provided additional support for a nonconjugated carbonyl. Thus, the final photoproduct was assigned the β, γ-enone structure 22.

Compound 22 was stable to $0^{\circ} \mathrm{C}$ but was observed to decompose after 24 h at room temperature. This room temperature instability made it difficult for unequivocal assignment by chemical means or X-ray structure analysis. Attempts at independent synthesis of 22, by a variety of synthetic methods, proved unsuccessful. Despite these setbacks, a synthetic route developed in this work, served to establish a novel and new approach to an important series of antidepressant drug analogs. This route is illustrated in Figure 11. The impetus for this unconventional approach to the alcohol 27, was the poor yield ($<5 \%$) obtained in the Grignard reaction of 4-bromomagnesio-1-cyclopentene and dibenzosuberone (15), coupled with the difficulty in preparing 4-bromocyclopentene (24). Therefore, the method involving ring closure of the di-Grignard ${ }^{122} \mathbf{2 5}$ on ethyl 3-

Figure 9. Effect of $\mathrm{Eu}(\mathrm{fod})_{3}$ on 22. Clarification of the Aliphatic Proton Region for 22

Figure 10. Chemical Shift vs Moles Shift Reagent for the Aliphatic Protons of 22

TABLE 2
SLOPES AND INITIAL PROTON SHIFTS FOR 22

Proton	Slope ($\Delta \mathrm{m})$	Initial Proton Shift, (IS, $\delta)$
H-2a	0.973	3.84
H-2b	0.981	3.64
H-5a-H-5b	0.931	3.19
H-10a-H-10b	0.165	3.34
H-4a	0.345	3.06
H-4b	0.363	2.99
H-11a-H-11b	0.086	2.92

cyclopentenecarboxylate ${ }^{123}$ (26) was proposed and attempted. This reaction, without optimization, proceeded in 40% yield to generate the alcohol 27. Future work will focus on using this method to synthesize heteroatom systems incorporating the dibenzocycloheptene ring system. Related systems have been shown to exhibit significant antidepressant activity, i.e. amitriptyline- HCl , protriptyline- HCl . 124,125

All four photoproducts appear to be the result of primary and secondary photoreactions. Control irradiations of $\mathbf{2 0}$ and 21 in benzene and tert-butanol indicated that trans to cis and cis to trans interconversion was occurring in addition to rearrangement to the photostable enone 19. Compound 22 was also formed upon independent irradiation of $\mathbf{2 0}$ and 21, but it was not clear whether this was the result of photoisomerization of $\mathbf{2 0}, 21$ or both. The percent conversion of 22 was as great as 16% when the irradiations of 20 and 21 were carried out in benzene. However, when

25
26

Figure 11. Proposed Synthetic Route to 22
the irradiations of $\mathbf{2 0}$ and $\mathbf{2 1}$ were run in tert-butanol, less than 10% of $\mathbf{2 2}$ was produced. Some return to spiro compound $18(<2 \%)$ was observed for both 20 and 21 when the reactions were carried out in tert-butanol. Independent irradiation of 22 indicated no photoisomerization. This compound appeared to be photoinert for 3 h , at which time photodecomposition began to occur. The photochemistry of $\mathbf{1 8}$ is summarized in Figure 12.

Reaction Profiles and The Behavior of The Photoproducts. The reaction profile for irradiation of $\mathbf{1 8}$ in tert-butanol is depicted in Figure 13. From this, it can be seen that the enone system 19 , was clearly the major product of the reaction.

Figure 12. Photochemistry of Compound 18

Figure 13. Reaction Profile for Irradiation of $\mathbf{1 8}$ in tert-Butanol

Production of the trans and enone products, 19 and 21, was rapid and nearly linear at low conversion. The cis and β, γ-enone products, 20 and 22, were formed to a lesser extent and at a much slower rate. The β, γ-enone appeared to be a very minor photoproduct, formed in only 5% at 90% conversion of starting material. Compounds 20 and 22 were detected at 6% conversion, where 0.3% each of 20 and 22 could be reproducibly detected. The large stereoselectivity for trans isomer formation reported previously for the non-bridged 4,4-diphenyl enone system appeared to be lost in the twocarbon bridged system. $1,2,9,10$ In this bridged system, the earliest detected ratio of trans:cis isomers was $c a .10: 1$. In the later stages of the reaction, the cis isomer appeared to be formed as a result of secondary photoreaction of the trans. This isomerization was
verified in the independent irradiation of the trans isomer 21 (Figure 14). This trans to cis conversion appeared to be more energetically favored than the cis to trans isomerization. This can be seen from the reaction profile for the control irradiation of $\mathbf{2 0}$ (Figure 15). Rearrangement to the enone 19, was observed in irradiations of both 20 and 21 , leading to the conclusion that 19 was both a primary and secondary photoproduct. Independent irradiations of 20 and 21 were also observed to give 22. The formation of the β, γ-enone 22 was too slow to account for all of this product produced at low conversions of 18 . This would suggest that 22 was the result of both primary and secondary photoreactions. Whether the α, β - or β, γ-enones, 19 and 22 , were formed from reaction of both 20 and 21 was unclear since the latter two compounds interconvert photochemically. Control irradiations of 19 and 22 indicated that both photoproducts were photoinert to these irradiation conditions.

Figure 14. Reaction Profile for Irradiation of 21 in tert-Butanol.

Figure 15. Reaction Profile for Irradiation of 20 in tert-Butanol.

The reaction profile for irradiation of 18 in benzene is presented in Figure 16. Irradiation of 18 in this solvent, kinetically produced the trans isomer over the enones 19 and 22 and the cis product 20. The α, β-enone 19 was again the photodynamic product. The β, γ-enone 22 was formed in 17% at 90% conversion of starting material, and in as high as 22% during the course of reaction. Under these conditions, 22 was no longer a minor product with respect to the trans and cis systems. As the reaction proceeded, it appeared that the β, γ-enone was formed at the expense of the cis and trans isomer. This was confirmed by control irradiations of both 21 and 20 (Figure 17 and 18). Again, it was not clear whether 22 was formed from 20, 21 or both. In benzene, trans to cis interconvert with a strong preference for the cis. Superimposed on this isomerization process was the conversion of both trans and cis to the enone 19. The spiro compound 18, was not observed in the photoreaction of 20 or 21 in benzene as it was in the tertbutanol irradiations.

Figure 16. Reaction Profile for Irradiation of $\mathbf{1 8}$ in Benzene

Figure 17. Reaction Profile for Irradiation of 21 in Benzene.

Figure 18. Reaction Profile for Irradiation of 20 in Benzene.

Preference for trans isomer formation can be clearly seen in the reaction profile for the irradiation of 18 in cyclohexane (Figure 19). The trans isomer was the major product to 90% conversion of starting material and both the trans and cis isomers were produced in preference to the α, β-enone 19. Secondary photoreaction of the trans isomer was apparent by the disappearance of 21 and the increase in 19, 20 and 22 at a stage when the spiro compound was essentially 100% reacted. Formation of the β, γ-enone 22 was also enhanced in this solvent, comprising 15% of the reaction mixture at 90% conversion of starting material.

Figure 19. Reaction Profile for Irradiation of $\mathbf{1 8}$ in Cyclohexane.

Mechanistic and Interpretive Discussion. The rearrangement of the twocarbon bridged system 18, presumably proceeds in a manner similar to that observed for the zero- and three-carbon bridged systems previously reported. ${ }^{16}$ The enone, undergoes initial $n-\pi^{*}$ electronic excitation followed by intersystem crossing to the triplet (Figure 20). Rearrangement of the triplet by phenyl migration then proceeds through either a concerted or a stepwise mechanism. Concerted migration and $\mathrm{C}-2-\mathrm{C}-4$ three-ring closure would generate the trans system 21. Complete migration to the diradical 31 in the stepwise mechanism, followed by C-2-C-4 bonding would generate either the cis or trans isomer. From this diradical, overlap of the p-orbitals at $\mathrm{C}-2$ and $\mathrm{C}-4$ from above the plane of the paper (top-top) generates the cis system. Overlap of the C-2 and C-4 orbitals

19

31

20

* $\left.\right|^{*}=\cdot /$ or +1 .

Figure 20. Aryl Migration Pathways for Photochemical Conversion of 18.
from behind the plane of the paper (bottom-bottom) would give the trans system. It has been noted that closure to give the trans system (bottom-bottom) is preferred for the nonbridged 4,4-diphenylcyclohexenone systems. ${ }^{5-8}$ This was ascribed to the requirement that for closure to give the cis isomer, the C-3 and C-4 phenyls, which are initially in a transoid orientation, must twist past each other at a stage when the $\mathrm{C}-4$ delocalized phenyl is restricted from rotation. This twisting is considered energetically unfavorable. Closure of the bottom-bottom lobes of the p-orbitals on C-2 and C-4 to give the trans isomer is energetically preferred since the phenyl rings are already in a transoid conformation and do not pass one another upon closure. In the two-bridged system, preferential trans
isomer formation from the diradical 31, should not be observed. This is due to the fact that the two-carbon connector serves to fix the two phenyl rings in an almost orthogonal arrangement. This allows for the production of both cis and trans products since the phenyls are already twisted away from each other prior to closure. Without any steric bias, closure of the diradical should occur to form the most thermodynamically stable system. The cis system would appear to be the more stable of the two [3.1.0] isomers by analogy with the trans and cis three-carbon bridged systems, 9 and 10. ${ }^{16}$ In the threecarbon analog, the difference in product stability was indicated by the change in the $\mathrm{C}-1$ -

9 or 10

C-2-C-3 angle in the cis system as compared to the trans. It was previously reported that the C-1-C-2-C-3 angle of 114° observed for 9 , is opened to 121° in 10.6^{16} This would suggest that the C-2-C-3 bond of the trans system is more strained than the corresponding bond in the cis molecule. The strain in the two-carbon analog 21 , should be even more significant than that observed in 9 , since the carbon-carbon connector must span the same distance between ortho phenyl positions as does the three-carbon system, but must do so with one less carbon. Additional strain in the trans system relative to the cis isomer is also evidenced by the efficient trans to cis conversion; the reverse reaction occurs to only a small extent. Therefore, the cis isomer should be more stable and, thus, formed preferentially from C-2-C-4 closure of the diradical $\mathbf{3 1}$ in the stepwise process.

It is proposed that the enone 19, derives from a hydride migration process (Figure 20). ${ }^{2}$ This process involves complete phenyl migration to the diradical 31, followed by electron demotion to the zwitterion intermediate 31. 1,2-Hydride migration from C-3 to C-4 then occurs to generate the enone 19. Production of $\mathbf{1 9}$, through a concerted pathway would require coplanarity of the σ bond of the migrating hydride and the incipent carbocation at C-4. ${ }^{126}$ This preferred orbital alignment is not indicated from molecular models and, thus, reaction through a stepwise process is suggested.

While there is ample precedent for 1,2-hydride shifts, 1,2-hydrogen atom migrations have not been reported. ${ }^{127}$ It is therefore reasonable to assume that the 1,2migration occurs from the dipolar intermediate 31 and not from the diradical species. Additionally, independent generation of the proposed zwitterion intermediates (for similar diaryl dienone and bicyclohexanone systems) under nonphotochemical conditions yielded the same photorearrangement products. ${ }^{17,18}$

The minor product is thought to be the result of an incomplete Type A process (Figure 21). ${ }^{16}$ Type A photorearrangements have been been reported for a number of 4,4-dialkylated cyclohexenones. ${ }^{13}$ This process involves migration of the C-4-C-5 bond followed by C-2-C-4 bond formation to generate a 6,6-disubstituted lumiketone (i.e. 33). ${ }^{13}$ In the incomplete Type A process, the C-4-C-5 bond migrates as before but, instead of C-2-C-4 bond formation, hydrogen migration occurs from C-3 to C-2 to generate the β, γ isomer 22. The Type A rearrangement has been reported to be a concerted process. ${ }^{13,27,28}$ The incomplete reaction, on the other hand, would be expected to occur through a stepwise mechanism since poor alignment of the $\mathrm{C}-3$ hydrogen and the C-4-C-5 orbitals would discourage a concerted process. This mechanism is summarized in Figure 21.

Type A reactivity has been observed in 4-phenyl substituted systems while the incomplete Type A process has not. ${ }^{38,39}$ It is not intuitively obvious why the incomplete Type A reaction was observed in preference to the Type A process in the two-carbon

33 (NOT OBSERVED)
Type A

Figure 21. Incomplete Type A Reaction from 18.
bridged system as well as in the zero-carbon bridged analog. It was initially suggested that the very stabilized doubly benzylic Type A intermediates generated in these bridged systems, may have longer triplet lifetimes. These longer-lived triplets would then allow for a slower 1,2-migration and more of the incomplete process. However, if this were the case, incomplete Type A reactivity would be observed in systems such as 4-methyl-4phenylcyclohexenone and 4,5-diphenylcyclohexenone that have been reported to undergo Type A reaction. 38,39 Both of these 4 -aryl substituted systems are capable of generating stabilized intermediates upon ring contraction in the Type A process. 38,39 This would
suggest that the incomplete process observed in the bridged cyclohexenones may be the result of steric hindrance which would prohibit approach of the C-2 carbon to the doubly benzylic radical center. Further studies of sterically congested 4,4-dialkylated cyclohexanone systems may provide information regarding this question. It is also possible that the increased lability of the external three-ring bond in the Type A product may cause it to react as fast as it is formed, preventing observation or isolation. A greater understanding of the factors that enhance the incomplete Type A process would allow for development of a novel route to β, γ-enones.

The mechanism for trans and cis isomerizations (Figure 22) involves initial electronic excitation and intersystem crossing, followed by three-ring bond cleavage. $9,10,16$ Cleavage of the external bond (bond a) of 21, followed by rotation about bond c and reclosure would generate the cis isomer 20. Alternatively, opening of the internal bond (bond b) of 21, followed by top-top C-2-C-4 orbital overlap would generate the cis system. Preference for external three-ring bond cleavage has been reported previously and attributed to the greater overlap between the carbonyl π^{*} orbital and the orbitals comprising the external cyclopropyl ring bond (bond a). ${ }^{2,9,23,128}$ The two-carbon bridge should help to align these orbitals even better by locking the external cyclopropyl bond and the π^{*} orbital into a nearly parallel arrangement (see structures 21a and 21b). ${ }^{16}$ In the isomerization of 20 and 21 to the enone 19 and the spiro compound

$21 a$

21b

21

34

22
$* / *=\cdot /$ or $+/$ -

$\begin{array}{l}\text { incomplete } \\ \text { Type A }\end{array}$

18

Figure 22. Mechanistic Summary of Photoisomerization Reactions

18, fission of the internal cyclopropyl bond (bond b) must occur (Figure 22). Once bond b is cleaved, electron demotion and hydride migration from $\mathrm{C}-3$ to $\mathrm{C}-4$ produces the $\alpha, \beta-$ enone 19. Fission of the internal cyclopropyl bond (bond b), followed by bond e migration would give the spiro compound 18.

Rearrangement of the cis and or trans isomer to the β, γ-enone 22 , is thought to arise from intermediate 34, generated from external ring bond (bond a) cleavage (see Figure 23). Migration of the bond d in 34 to the radical center, followed by hydrogen migration from $\mathrm{C}-13 \mathrm{~b}-\mathrm{C}-2$, would afford the β, γ system 22. Internal three-ring bond cleavage to give 35 , followed by migration of bond e and then incomplete Type A reaction may also intervene (see Figure 22). The absence of any spiro compound 18 in the control irradiations of 20 or 21 in benzene and cyclohexane, where the β, γ-enone is

34

32

22

Figure 23. Attempt to Establish Reaction Pathway for Formation of 22.
formed to a larger extent, would seem to indicate that this bond e migration-incomplete Type A process is not the major pathway for β, γ-enone formation.

The conjugated isomer 3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptenyl)-2-cyclopenten-1-one 36, was synthesized and photolyzed in an attempt to independently synthesize the β, γ-enone 22 and also to provide additional information regarding the reaction pathway for formation of 22 (Figure 23). One would initially expect that the photochemical reactions of $\mathbf{3 6 , 2 0}$ and 21 would proceed through a common intermediate. Therefore, one might expect 22 to be observed upon irradiation of 36 . This, however, was not the case. Despite this observation, information regarding the indentity of the excited state intermediate could not be concluded because of the differences in energy barriers, rates of intersystem crossing, multiplicities and energy states for conversion that would result from starting with different reactants (36, 20, 21).

The enhanced formation of the α, β-enone product in tert-butanol is of much interest. Few cases of predominant enone formation have been reported for 4,4diarylcyclohexenone systems.6,15 Of the cases reported, the 4,4-diaryl substituents have been bulky groups (i.e. di- α-napthyl), and the enhanced enone formation has been rationalized by the severe aryl-aryl steric interaction observed upon three-ring closure of the open diradical. ${ }^{15}$ Although this seems reasonable for the cases reported, steric interactions do not appear to be a factor in the preferential α, β-enone formation observed in the two-carbon bridged system. Reference to molecular models suggests that this preference is the result of the difficulties encountered in cyclopropyl bond formation. In the two carbon bridged system, the C-2-C-4 orbitals may be forced out of alignment in what would appear to be the lowest energy conformation. The two carbon connector enforces rigidity in the system, making it very difficult to acquire the proper alignment for C-2-C-4 overlap. Therefore, cyclopropyl bond formation is much slower, allowing the hydride migration (α, β-enone formation) and incomplete Type A processes (β, γ-enone formation) to become competitive.

Enone products are not observed in the three-carbon bridged system because the additional carbon in the phenyl-phenyl connector enables flexibility and allows C-2-C-4 alignment to be attained. Therefore, the normal aryl migration process is observed. Although, this flexibility and orbital alignment is observed in the nonbridged 4,4diphenylcyclohexenone system 1 , the α, β-enone 4 is observed as a minor product. This likely results from interaction of the cis diphenyl groups in the open diradical generated from 1, allowing the hydride migration to become a competitive process. This interaction is relieved in the three-carbon bridged system since the bridging alkyl chain serves to hold the phenyl rings away from each other upon three-ring closure.

As in the two-carbon bridged system, the zero-carbon analog is extremely rigid, making it difficult to acquire the proper alignment for top-top C-2-C-4 overlap required for closure to the cis diphenyl product. Bottom-bottom overlap of these carbons, needed to close the trans diphenyl product, is geometrically forbidden. Therefore, the hydride migration and incomplete Type A processes become competitive with cyclopropyl bond formation. A combination of factors may then make the Type A process more competitive than the hydride migration. These factors are as follows:

1) Upon incomplete Type A reaction of $\mathbf{5}$, the intermediate 37 is generated (Figure 24). This intermediate is much more stabilized than the Type A intermediate 32 (see Figure 23) formed in the two-carbon system due to the planar system in 37 allowing for complete delocalization.
2) The aryl migration pathways require bridging of the $\mathrm{C}-4$ phenyl to the $\mathrm{C}-3$ odd electron center. In substrate 5, this results in the formation of an extremely strained 6-3-5 ring system 38, which would tend to inhibit this process (Figure 24).

The combination of having a very stabilized Type A intermediate coupled with the inhibited phenyl migration, may make the incomplete Type A process preferred over
hydride migration, resulting in predominant formation of the β, γ-enone 7 . In the twocarbon bridged system, the Type A process, although competitive with the hydride

Figure 24. Factors Influencing Photoreactivity of 5.
migration (as seen by production of the β, γ-enone 22), is not preferred over hydride migration. This altered selectivity may be due to the reduced strain in the half-migrated intermediate 30 (a 6-3-7 ring system, see Figure 20) relative to 37.

Solvent effects have been noted in the photochemistry of 4,4-disubstituted cyclohexenones. ${ }^{2,13,38}$ These effects include changes in the quantum efficiency and product distribution. In 4,4-diphenylcyclohexenone, a change in the solvent polarity
from benzene to tert-butanol was reported to enhance the production of the 3,4disubstituted enone 4. ${ }^{2}$ The ratio of trans to cis isomer, $\mathbf{2}$ and $\mathbf{3}$, was essentially unchanged but the proportion of the enone 4 was increased by 16 -fold. ${ }^{2}$ In 4,4disubstituted systems that undergo both Type A and aryl migration reactions, it has been reported that the Type $\mathrm{A}^{3}\left(\pi-\pi^{*}\right)$ reaction is enhanced in polar, protic solvents while the aryl migration ${ }^{3}\left(\mathrm{n}-\pi^{*}\right)$ is enhanced in nonpolar solvents. 13,38 These observations have been attributed to an inversion of the two close lying $n-\pi^{*}$ and $\pi-\pi^{*}$ triplets.2,13,38 The more polar $\pi-\pi^{*}$ state is stabilized by the polar (alcohol) solvents as evidenced by the red shift of $\lambda_{\text {max }}$ in these solvents. 129 In the two-carbon bridged system 18, a change from tert-butanol to benzene and cyclohexane led to an increase in the incomplete Type A product 22 and a decrease in the trans:cis ratio. This would imply that the β, γ-enone 22 derives from reaction of a $3 \mathrm{n}-\pi^{*}$ state rather than $3 \pi-\pi^{*}$ state as previously reported for Type A reactions. ${ }^{24}$ This increase in β, γ-enone formation may be due to the change in the electronic environment about the carbonyl oxygen. Hydrogen bonding at the carbonyl oxygen is increased in tert-butanol and may somehow make the incomplete Type A reaction less efficient. This would be a plausible explanation for why the α, β-enone product 19 is both kinetically and thermodynamically preferred in tert-butanol and only thermodynamically preferred in benzene and cyclohexane. Hydrogen bonding at the excited state carbonyl oxygen should make hydride migration more efficient relative to cyclopropyl ring formation. ${ }^{2}$

In summary, the present work has shown that carbon bridging of the phenyl substituents that normally migrate apart in the aryl migration reaction does alter the stereoselectivity as well as the reaction mechanism. The length of the connecting bridge determines which reaction pathway is followed. Future work in this area will explore the use of ortho-ortho connectors that could be easily removed following the photochemical rearrangement, such as heteroatom containing bridges.

Experimental

Melting points were obtained on a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were recorded with a PE-681 instrument and are referenced to polystyrene. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were measured as solutions in CDCl_{3} at 300 MHz and 75 MHz , respectively, on a Varian XL-300 superconducting FT instrument, unless indicated otherwise; chemical shifts are reported in δ units relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. UV spectra were recorded in absolute ethanol using a Varian DMS-200 spectrophotometer. Mass spectra were recorded at 70 eV on a VG ZAB-2SE or a VG TS-250 instrument. Elemental analyses ($\pm 0.4 \%$) were performed by Galbraith Laboratories, Knoxville, TN.

All reactions were run under an atmosphere of dry nitrogen. Solvents used in photochemical runs were purified in the following manner: tert-butanol was distilled from CaH_{2}; benzene was sequentially washed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x}), 5 \% \mathrm{KMnO}_{4}$ in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x})$, and 10% aqueous KOH , then dried over anhydrous MgSO_{4} and distilled from CaH_{2}. All photochemical reactions were degassed with dry, oxygenfree nitrogen for 1 h prior to and during irradiation. Column chromatography was performed on silica gel (Grace, grade 62, 60-200 mesh) mixed with Sylvania 2282 phosphor and slurry packed into Vycor columns such that band elution could be monitored with a hand-held UV lamp. Preparative thick layer chromatography (PTLC) was performed on Analtech (No. 02015) preparative silica gel uniplates with fluorescent indicator. Reactions were monitored and kinetic measurements were made on a capillary GC (Varian 3400) with FI detection on a $6 \mathrm{~m} \mathrm{X} 0.1 \mathrm{~mm} \mathrm{SE}-30$ column programmed between $100-300^{\circ} \mathrm{C}$.

10,10-Dimethyl-9(10H)-anthracenone (12). The procedure of Curtin and coworkers ${ }^{108}$ was used. The lithium salt of anthrone was prepared by reacting 36.5 $\mathrm{g}(0.19 \mathrm{~mol})$ of anthrone (11) in 400 mL of toluene with a suspension of lithium methoxide prepared from 2.8 g (0.40 g -atom) of lithium metal in 42 mL of methanol.

After 15 min , the solution was gently heated with a steady stream of nitrogen to remove the toluene and methanol. When the salt became dry it was transferred into a bomb reactor containing $150 \mathrm{~mL}(342 \mathrm{~g}, 2.41 \mathrm{~mol})$ of methyl iodide and 1 mL of tert-butanol. The bomb was sealed, flushed with nitrogen and heated at $150^{\circ} \mathrm{C}$ for 60 h . Once cooled, the excess methyl iodide was recovered by distillation, the residue was digested in ether and washed with Claisen's alkali (350 g KOH and 250 g distilled water, diluted to 1 L volume with absolute methanol). The ether layer was dried over anhydrous MgSO_{4} and concentrated in vacuo to give a yellow solid. Filtration through a $25 \mathrm{~cm} \times 5 \mathrm{~cm}$ alumina column using hot Skelly-B yielded $29.5 \mathrm{~g}(0.13 \mathrm{~mol}, 70 \%)$ of 10,10 -dimethyl-9(10H)anthracenone (12) as a white solid, $\mathrm{mp} .97-98^{\circ} \mathrm{C}$, lit. $108 \mathrm{mp} .96 .5-98^{\circ} \mathrm{C}$. The spectral data were: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1662,1603,1390,1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.37(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=1.5,7.9 \mathrm{~Hz}), 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}) $\delta 183.8,150.5,133.4,130.0,127.4,126.7,126.6,37.8$, 32.9 .

9,10-Dihydro-10,10-dimethylspiro[anthracene-9',2-oxirane]

The general procedure described by Ackermann and coworkers ${ }^{109}$ was employed. To a suspension of 2.88 g ($0.06 \mathrm{~mol}, 50 \%$ dispersion) of oil-free sodium hydride in 150 mL of dry DMSO was added $8.56 \mathrm{~g}(38.5 \mathrm{mmol})$ of 10,10 -dimethyl- $9(10 \mathrm{H})$-anthracenone (12). The mixture was stirred to effect solution of the ketone and then 12.0 g (59.0 mmol) of trimethylsulfonium iodide was added slowly. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 3.5 h , then poured into 800 mL of ice water containing NaCl , extracted with benzene, washed with water (8 x), saturated aqueous $\mathrm{NaCl}(1 \mathrm{x})$, water (3x) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo yielded a light yellow solid. Recrystallization from ether afforded $8.43 \mathrm{~g}(35.7 \mathrm{mmol}, 93 \%)$ of 9,10 -dihydro-10,10-dimethyl-spiro[anthracene-9',2-oxirane] (39) as a pale yellow solid, mp. $49-51^{\circ} \mathrm{C}$. This compound decomposes after a few days at RT. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right)$ 2990, 1390, 1365, $1045 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.56$ (dd, $2 \mathrm{H}, \mathrm{J}=1.0$,
7.9 Hz), $7.42(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=1.6,7.3 \mathrm{~Hz}$), 7.35-7.25 (cplx, 4 H), 3.18 ($\mathrm{s}, 2 \mathrm{H}), 1.91(\mathrm{~s}$, 3 H), 1.42 (s, 3 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.6,134.6,127.8,126.5$, 123.9, 122.2, 63.2, 55.4, 38.9, 35.2, 25.7; MS, m/e (\%) 236 (22), 221 (51), 207 (95), 192 (100), 178 (37); HRMS, exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}$ m/e 236.1201, found m / e 236.1213.

9,10-Dihydro-10,10-dimethylanthracene-9-carboxaldehyde

(13). The general procedure of Ackermann and coworkers ${ }^{109}$ was followed. To a stirred solution of $8.0 \mathrm{~g}(33.9 \mathrm{~mol})$ of 9,10-dihydro-10,10-dimethylspiro[anthracene-9',2oxirane] (39) in 188 mL methylene chloride was added dropwise $2.00 \mathrm{~mL}(2.32 \mathrm{~g}, 16.3$ mmol) of boron trifluoride etherate. The solution was stirred at $23^{\circ} \mathrm{C}$ and monitored by GC; the reaction was complete in 2.5 h . The reaction mixture was washed successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 x)$, water (8 x), saturated aqueous NaCl (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow solid was recrystallized from ether to give $7.76 \mathrm{~g}(32.9 \mathrm{mmol}, 97 \%)$ of 9,10 -dihydro-10,10-dimethylanthracene-9-carboxaldehyde (13) as a pale yellow solid, $\mathrm{mp} .50-52^{\circ} \mathrm{C}$. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right) 2985,2800,2700,1723,1390,1365 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.28(\mathrm{~m}, 6$ H), $4.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 196.7,144.3,129.1,128.3,127.7,127.4,126.6,58.8,38.4,36.7,30.7$; MS, m/e (\%) 236 (0.5), 207 (100), 193 (20), 192 (89), 191 (25), 189 (12), 178 (20); HRMS, exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O} m / e$ 236.1201, found $m / e ~ 236.1201$.

10,10-Dimethylspiro[anthracene-9(10H), $\mathbf{1}^{\prime}$-[2]cyclohexen]-4'-one

(14). The method described by Plieninger and coworkers ${ }^{110}$ for the preparation of spiro[2-cyclohexene-1,9'-fluoren]-4-one was used. To a solution of potassium tertbutoxide prepared from 0.13 g (0.003 g -atom) of potassium in 2.0 mL of tert-butanol was added a $25-\mathrm{mL}$ benzene solution of $5.8 \mathrm{~g}(24.6 \mathrm{mmol})$ of 9,10 -dihydro-10,10-dimethylanthracene-9-carboxaldehyde (13) dropwise via syringe. After stirring 10 min ,
$2.05 \mathrm{~mL}(1.73 \mathrm{~g}, 24.7 \mathrm{mmol})$ of methyl vinyl ketone was added dropwise and the reaction was stirred at $23^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and poured into 1 M NaOH at $0^{\circ} \mathrm{C}$ and ether extracted. The combined organic layers were washed with $1 M \mathrm{NaOH}$ (until no enol reaction with FeCl_{3} was seen), water, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting orange-brown oil was dissolved in 50 mL of benzene containing piperidinium acetate generated from 0.96 mL of piperidine and 0.56 mL of acetic acid. An additional 0.24 mL of acetic acid was added and the resulting solution was refluxed with a Dean-Stark trap for 8 h . The solution was concentrated in vacuo, then dissolved in ether and washed with $1 M \mathrm{HCl}$, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and water. The ether layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting yellow-brown oil was column chromatographed on a $60 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with increasing concentrations of ether in hexane. The compounds eluted as follows: 1% ether in hexane, 0.82 g (3.69 $\mathrm{mmol}, 15 \%$) of 10,10 -dimethylanthrone (12); 1.5% ether in hexane, 0.58 g (2.46 $\mathrm{mmol}, 10 \%$) of starting material $13 ; 4.0 \%$ ether in hexane, an $80 / 20$ mixture of the desired product 14 and an unknown impurity. The mixture was recrystallized from ether in hexane (3 x) to give a pale yellow solid. Compound 14 was still slightly impure so a final purification was carried out using three $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates eluted with 2.5% ether in hexane (7 x). One band was scraped from the plates to give 0.57 (1.97 mmol, 8\%) of 10,10-dimethyl-spiro[anthracene-9(10H),1'-[2]cyclohexen]-4'-one (14) as a white solid, $\mathrm{mp} .95-96^{\circ} \mathrm{C}$. The spectral data for 14 were: IR $\left(\mathrm{CHCl}_{3}\right) 3000$, 1680, 1498, $1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~m}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}), 6.49(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}), 2.46(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz})$, $2.22(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 199.8$, $154.6,143.2,136.6,130.4,127.8,127.6,127.5,127.3,127.3,127.2,127.1,126.3$, 44.7, 42.4, 38.1, 36.4, 33.98, 31.7; UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 320$ (72), 239 (11642), 211 (22234); MS, m/e (\%) 288 (13), 274 (22), 273 (100), 246 (17), 245 (84), 216 (13),

202 (21); HRMS, exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}$ m/e 288.1514, found $m / e 288.1508$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}$; C, 87.45; H, 6.99. Found: C, 87.33; H, 6.85 .

Exploratory Direct Photolysis of 10,10-Dimethylspiro[anthracene9(10H), $\mathbf{1}^{\prime}$-[2]cyclohexen]-4'-one (14). The general procedure described by Zimmerman ${ }^{1}$ for the photolysis of 4,4-diphenyl-2-cyclohexenone was followed. A solution of $100 \mathrm{mg}(0.35 \mathrm{mmol})$ of 10,10-dimethylspiro[anthracene- $9(10 \mathrm{H}), 1$ '-[2]cyclohexen]-4'-one (14) in 320 mL of degassed tert-butanol in a Kreil flask (Ace no. 6963) was irradiated through Pyrex using a 450-W medium pressure Hanovia immersion apparatus. The reaction was stopped at 90% conversion of starting material as determined by GC. At 15% conversion of starting material, 6 photoproducts were observed. At 90% conversion of starting material, 14 photoproducts were observed. Isolation of the photoproducts was not attempted.

10,11-Dihydrospiro[5H-dibenzo[a,d]cycloheptene-5',2-oxirane]

(16). The epoxide was prepared according to the procedure described by Ackermann and coworkers. ${ }^{109}$ To a suspension of $9.56 \mathrm{~g}(0.24 \mathrm{~mol}, 60 \%$ dispersion $)$ of oil-free sodium hydride in 600 mL of dry DMSO was added $32.2 \mathrm{~g}(0.15 \mathrm{~mol})$ of dibenzosuberone (15). The mixture was stirred to effect solution of the ketone and then 48 g $(0.23 \mathrm{~mol})$ of trimethylsulfonium iodide was added slowly and stirred at $23^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was poured into 1 L of ice water containing NaCl and extracted with benzene. The extract was washed with water (6x), saturated aqueous NaCl (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a yellow solid Recrystallization of the crude product from absolute ethanol afforded $29.5 \mathrm{~g}(0.13 \mathrm{~mol}$, 86%) of 10,11 -dihydrospiro[5H-dibenzo-[a,d]cycloheptene-5',2-oxirane] (16) as a pale yellow solid, $\mathrm{mp} .76-78^{\circ} \mathrm{C}$, lit. ${ }^{109} \mathrm{mp} .76-78^{\circ} \mathrm{C}$. The spectral data were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 2925, 1305, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.09$ (cplx, 6 H), $3.44(\mathrm{~m}, 2 \mathrm{H}), 3.16-2.96(\mathrm{cplx}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 138.7,138.5,128.9$, 127.7, 126.2, 124.1, 59.3, 58.4, 32.6; MS m/e (\%) 222 (11), 221 (19), 193 (100), 178
(29), 165 (14), 115 (27); HRMS, exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ m/e 222.1045, found m/e 222.1044.

10,11-Dihydro-5H-dibenzo[a,d]cycloheptene-5-carboxaldehyde

(17). The aldehyde was prepared by the method of Ackermann and coworkers. ${ }^{109}$ To a stirred solution of 28.0 g (0.13 mol) of 10,11-dihydrospiro[5H-dibenzo[a,d]cyclo-heptene-5',2-oxirane] (16) in 700 mL of methylene chloride was added dropwise 7.52 $\mathrm{mL}(8.7 \mathrm{~g}, 0.06 \mathrm{~mol})$ of boron trifluoride etherate. The solution was then stirred at $23^{\circ} \mathrm{C}$ and monitored by TLC; the reaction was complete in 2.5 h . The solution was washed successively with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 x)$, water (8 x), saturated aqueous NaCl (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting yellow solid was recrystallized from ether to give $24.1 \mathrm{~g}(0.11 \mathrm{~mol}, 86 \%)$ of 10,11 -dihydro- 5 H -dibenzo[a,d]cycloheptene-5-carboxaldehyde (17) as a pale yellow solid, $m p .77-78^{\circ} \mathrm{C}$, lit. ${ }^{109} \mathrm{mp} .77-78^{\circ} \mathrm{C}$. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right) 2920,2815,1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.13(\mathrm{cplx}, 8 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~A}$ of ABm , $2 \mathrm{H}), 2.88$ (B of $\mathrm{ABm}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 199.5,140.3,133.8,131.6$, 130.4, 128.0, 126.5, 67.7, 32.6; MS, m/e (\%) 222 (25), 194 (30), 193 (100), 178 (39), 165 (13); HRMS, exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O} m / e 222.1045$, found m / e 222.1044.

10',11'-Dihydrospiro[2-cyclohexene-1,5'-[5H]dibenzo[a,d]cyclo-hepten]-4-one (18). To a $25-\mathrm{mL}$ benzene solution of 5.6 g (0.025 mol) of $10,11-$ dihydro-5H-dibenzo[a,d]cycloheptene-5-carboxaldehyde (17) and $4.2 \mathrm{~mL}(3.5 \mathrm{~g}, 0.05$ mol) of methyl vinyl ketone was added dropwise during 45 min a solution of potassium tert-butoxide prepared from 0.24 g (. 006 g -atom) of potassium in 4.0 mL of dry tertbutanol. The solution was stirred at $23^{\circ} \mathrm{C}$ for 36 h , diluted with ether, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, water and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting dark brown viscous oil was purified by column chromatography on an $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted
with increasing concentrations of ether in hexane. The compounds eluted as follows: 0% ether in hexane, dibenzosuberane $40 ; 1 \%$ ether in hexane, dibenzosuberone $15 ; 3 \%$ ether in hexane, starting material 17; 6\% ether in hexane, 10',11'-dihydrospiro[2-cyclo-hexene-1,5'-[5H]dibenzo[a,d]cyclohepten]-4-one (18). Decolorization of 18 with activated charcoal followed by recrystallization twice from ether yielded 0.96 g (3.5 $\mathrm{mmol}, 14 \%$) of 18 as a white solid, $\mathrm{mp} .109-110^{\circ} \mathrm{C}$. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right) 2950,2878,1690,1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=3.6$, $7.2 \mathrm{~Hz}), 7.26-7.15(\mathrm{cplx}, 7 \mathrm{H}), 6.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{~Hz}), 3.38(\mathrm{~A}$ of $\mathrm{ABm}, 2 \mathrm{H})$, 3.00 (B of ABm, 2 H), $2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\right.$), $2.13\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 199.7,158.2,142.0,140.5,130.9,130.5,128.6,127.2,126.2,52.3$, 40.9, 35.8, 34.8; UV (abs. EtOH) $\lambda_{\max }$ (ع) 322 (69), 224 (13776); MS, m/e (\%) 274 (100), 246 (79), 245 (38), 217 (54), 215 (40), 202 (54), HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O} m / e 274.1358$, found $m / e 274.1358$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O} ; \mathrm{C}, 87.55$; H, 6.62. Found: C, 87.42; H, 6.72 .

Exploratory Direct Photolysis of 10 ',11'-Dihydrospiro[2-cyclohex-ene-1,5'-[5H]dibenzo[a, d]cyclohepten]-4-one (18).
A. In tert-Butanol: The general procedure described by Zimmerman ${ }^{1}$ for the photolysis of 4,4-diphenyl-2-cyclohexen-1-one was followed. A solution of 1.00 g (3.65 mmol) of $10^{\prime}, 11^{\prime}$-dihydrospiro[2-cyclohexene-1,5'-[5H]dibenzo[a,d]cyclohepten]-4-one (18) in 1.2 L of degassed tert-butanol in a Kreil flask (Ace no. 6963) was irradiated through Pyrex using a 450-W medium pressure Hanovia immersion apparatus. The reaction was stopped after 95% conversion of starting material (by GC) and concentrated under vacuum. The earliest detected product ratio was seen at 11% conversion of 18 , which corresponded to a 12.0:1.1:16.5:1.0 ratio of 21:20:19:22. The crude residue was purified on nine, $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates eluted with 2.5% ether in hexane (25x). Five bands were separated from the plates but only four of the bands were one component bands. From the fastest moving band was isolated 0.16 g
$16 \%)$ of $(\pm)-\left(3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \alpha\right)-2,3,8,9,13 \mathrm{~b}, 13 \mathrm{c}$-hexahydro- $1 H$-dibenzo[a,e]cyclo-penta[1,3]cyclopropa[1,2-c]cycloocten-1-one (21) as a white solid, mp. $108-110^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 2940,2855,1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, 7.25-7.15 (cplx, 6 H), $7.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.21-3.05(\mathrm{cplx}, 3 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H})$, $2.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 2.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.92(\mathrm{cplx}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 214.7$ (C), 145.6 (C), 144.6 (C), 142.8 (C), 134.3 (C), $131.2(\mathrm{CH}), 130.3(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 44.8(\mathrm{C}), 39.9(\mathrm{CH}), 38.2(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 34.6$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right) ; \mathrm{UV}(\mathrm{abs} . \mathrm{EtOH}) \lambda_{\max }(\varepsilon) 321$ (69), 211 (18639); MS, m/e (\%) 274 (88), 246 (34), 232 (34), 217 (100), 215 (52), 202 (39), 115 (39); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O} m / e 274.1358$, found $m / e 274.1344$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$: C, 87.55; H, 6.62. Found: C, 87.16; H, 6.88 .

A second band proved to be a mixture of 19 and 22. Rechromatography of the mixture on one $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates was unsuccessful. Compound 22 appeared to be unstable under these prolonged slightly acidic conditions.

The third band yielded $0.02 \mathrm{~g}(0.07 \mathrm{mmol}, 2 \%)$ of 18.
The fourth band yielded $0.09 \mathrm{~g}(0.33 \mathrm{mmol}, 9 \%)$ of $(\pm)-\left(3 \mathrm{a} S^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta\right)-$ 2,3,8,9,13b,13c-hexahydro-1H-dibenzo[a,e]cyclopenta[1,3]cyclopropa[1,2-c]cyclo-octen-1-one (20) as a white solid. Recrystallization from absolute ethanol in chloroform afforded an analytical sample: mp. $123-125^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2938,1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta 7.08-6.94$ (cplx, 8 H), 3.68-3.53 (cplx, 2 H), 3.02 (m, 2 H), 2.89 (d, $1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1$ H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 213.3$ (C), 140.3 (C), 139.4 (C), 138.1 (C), 135.4 (C), $130.5(\mathrm{CH}), 129.7(\mathrm{CH}), 129.4(\mathrm{CH}), 129.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 43.1(\mathrm{C}), 40.7(\mathrm{CH}), 36.2(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 31.9$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right) ; \mathrm{UV}\left(\right.$ abs. EtOH) $\lambda_{\max }$ (ع) 261 (195), 215 (13442); MS, m/e 274 (77), 246 (41), 232 (34), 217 (100), 215 (53), 218 (37), 202 (39), 115 (34); HRMS,
exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ m/e 274.1358, found $m / e 274.1344$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 87.55 ; \mathrm{H}, 6.62$. Found: C, 87.15; H, 6.77.

The fifth band afforded $0.48 \mathrm{~g}(1.75 \mathrm{mmol}, 48 \%)$ of $(\pm)-4,4 \mathrm{a}, 9,10$-tetrahydro-tribenzo[a,c,e]cycloocten-2(3H)-one (19) as a white solid. Recrystallization from ether afforded an analytical sample: mp. $125-127^{\circ} \mathrm{C} ;$ IR $\left(\mathrm{CHCl}_{3}\right) 2960,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$, major conformer) $\delta 7.17-6.91(\mathrm{cplx}, 8 \mathrm{H}), 6.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8$ Hz), $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.70(\mathrm{cplx}, 4 \mathrm{H}), 2.39(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}\right.$, major conformer) $\delta 199.2,169.3,140.1,138.5$, $138.3,136.2,130.1,129.7,129.5,127.8,127.3,127.3,126.7,126.5,125.5,49.7$, 38.0, 35.9, 32.4, 28.7; UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 265$ (sh, 7333), 229 (14419); MS, $m / e(\%) 274$ (100), 232 (20), 217 (53), 215 (30), 202 (28); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O} m / e 274.1358$, found $m / e 274.1344$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 87.55$; H, 6.62. Found: C, 87.60; H, 6.81.
B. In Benzene: A solution of 1.0 g (3.65 mmol) of 18 in 1.2 L degassed purified benzene was photolyzed using conditions identical to those described above. The rearrangement was stopped after 98% conversion of starting material (by GC) and concentrated under vacuum. The earliest detected product ratio was seen after 5% conversion of $\mathbf{1 8}$, which corresponded to a $6.6: 1.0: 5.5: 1.2$ ratio of $\mathbf{2 1 : 2 0 : 1 9 : 2 2}$. The residue was passed through a 5.0 cm silica gel plug with 8% ether in hexane to remove any polymeric material and then concentrated in vacuo. The resulting yellow oil was purified by HPLC on a Waters 590 programmable HPLC, using a silica gel Dynamax60A (No. 83-121-C) prep column eluted with 85:15 hexane:ethyl acetate. At a flow rate of $10 \mathrm{~mL} / \mathrm{min}, 250 \mu \mathrm{~L}$ injections containing 60 mg of the product mixture could be separated; a total of 12 injections were made. The first eluted band afforded $0.02 \mathrm{~g}(0.07$ $\mathrm{mmol}, 2 \%$) of the trans ketone 21 . The second and third band coeluted. The fourth band yielded $0.10 \mathrm{~g}(0.36 \mathrm{mmol}, 10 \%)$ of 3-(10-11-dihydro-5H-dibenzo[a,d]cyclohepten-5ylidene)cyclopentanone (22) as a colorless oil. The fifth band yielded $0.03 \mathrm{~g}(0.11$
mmol, 3\%) of the cis ketone 20. The sixth band afforded $0.53 \mathrm{~g}(1.93 \mathrm{mmol}, 53 \%)$ of the enone 19. The spectral data for 22 were: IR $\left(\mathrm{CHCl}_{3}\right) 2930,2840,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{HMz}, \mathrm{CDCl}_{3}$) δ 7.05-6.92 (cplx, 8 H), 3.39-3.13 (cplx, 4 H), 3.94-2.74 (cplx, 6 H); ${ }^{13} \mathrm{C}\left(100 \mathrm{HMz}, \mathrm{CDCl}_{3}\right) \delta$ 209.8, 142.0, 141.2, 138.3, 138.1, 135.7, $132.6,129.7,129.5,127.1,127.0,126.0,125.9,45.1,39.2,33.7,33.6,31.8 ;$ UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 325$ (187), 295 (280), 219 (10879); MS, m/e (\%) 275 (22), 274 (100), 232 (32), 217 (53), 216 (39), 215 (27); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ m / e 274.1358, found m / e 274.1353. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 87.55 ; \mathrm{H}, 6.62$. Found: C, 87.13; H, 6.63.

Single Crystal X-Ray Structure Determination of (\pm)-4,4a,9,10-Tetrahydrotribenzo[a,c,e]cycloocten-2(3H)-one (19). A crystal of 19 was mounted on a Syntex P3 automated diffractometer. Unit cell dimensions (Table 3) were determined by least squares refinement of the best angular positions for 15 independent reflections ($2 \theta>15^{\circ}$) during normal alignment procedures using molybdenum radiation ($\lambda=0.71069 \AA$). Data (1933 independent points after removal of space group forbidden and redundant data) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of 1.2° below $\mathrm{K} \alpha_{1}$ and 1.2° above $\mathrm{K} \alpha_{2}$ to a maximum 2θ value of 45°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured every 97 reflections. As the intensities of these reflections showed less than 6% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects. After removal of redundant and space forbidden data, observed reflections [1272, I > 3.0 $\sigma(\mathrm{I})$] were used for solution of carbon and oxygen positions of the structure by direct methods. ${ }^{130}$ Refinement ${ }^{131}$ of scale factor, positional and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. A difference Fourier synthesis did not allow location of all hydrogen positions, therefore all hydrogen positions were calculated using a $\mathrm{C}-\mathrm{H}$
distance of $0.97 \AA$ and appropriate geometry. All hydrogen atoms were included in the final refinement with isotropic thermal parameters but their positional and thermal parameters were held fixed. A difference Fourier revealed no electron density of interpretable level. Scattering factors were taken from Cromer and Mann. ${ }^{132}$

The final cycle of refinement [function minimized $\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$] leading to a final agreement factor, $R=4.8 \%\left[R=\left(\Sigma| | F_{0}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|\right) \times 100\right]$. In the final stages of refinement, a weight of $1 / \sigma(\mathrm{F})^{2}$ was used, $\mathrm{R}_{\mathrm{W}}=6.3 \%$. Appendix A , Tables 7-9 lists bond angles and distances, positional parameters, and final anisotropic thermal parameters for 18.

Single Crystal X-ray Structure Determination of (\pm)$\left(3 \mathrm{a} S^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta\right.$)-2,3,8,9,13b,13c-hexahydro-1H-dibenzo[a,e]cyclo-penta[1,3]cyclopropa[1,2-c]cycloocten-1-one (20). A crystal of 20 was mounted on a Syntex P3 automated diffractometer. Unit cell dimensions (Table 3) were determined by least squares refinement of the best angular positions for 15 independent reflections ($2 \theta>15^{\circ}$) during normal alignment procedures using molybdenum radiation ($\lambda=0.71069 \AA$). Data (2020 independent points after removal of space group forbidden and redundant data) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of 1.2° below $K \alpha_{1}$ and 1.2° above $K \alpha_{2}$ to a maximum 2θ value of 45°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections. As the intensities of these reflections showed less than 5% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects. Observed reflections [923, I>3.0 $>(\mathrm{I}$] $]$ were used for solution of carbon and oxygen positions of the structure by direct methods using MULTAN80. ${ }^{130}$ Refinement ${ }^{131}$ of scale factor, positional and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. The positions of the hydrogen atoms were located from a difference Fourier synthesis and were included

TABLE 3
CRYSTAL DATA FOR 19 AND 20

	19 (enone)	20 (cis)
formula	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$
MWT	274.4	274.4
a, \AA	$13.576(6)$	$6.820(4)$
b, \AA	$11.232(5)$	$8.492(3)$
c, \AA	$9.786(5)$	$14.059(10)$
α, deg	90.0	$90.40(4)$
β, deg	$99.66(4)$	$88.86(5)$
γ, deg	90.0	$110.87(4)$
$\mathrm{V}, \AA \AA^{3}$	$1471.0(12)$	$760.7(7)$
$\mathrm{F}(000)$	584	292
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.693	1.006
$\lambda(\mathrm{MoK} \alpha), \AA$	0.71069	0.71069
D calcd, g cm		
		1.239

(with hydrogen positional and thermal parameters fixed) in the final cycles of refinement [function minimized, $\Sigma\left(\left|F_{0}\right|-\left|F_{\mathrm{C}}\right|\right)^{2}$] leading to a final agreement factor, $\mathrm{R}=8.1 \%[\mathrm{R}=(\Sigma \mid$
$\left.\left.\left|F_{0}\right|-\left|F_{c}\right||/ \Sigma| F_{0} \mid\right) \times 100\right]$. Scattering factors were taken from Cromer and Mann. ${ }^{132}$ In the final stages of refinement, a weight of $1 / \sigma(\mathrm{F})^{2}$ was used. Appendix A, Tables 10-12 lists bond angles and distances, positional parameters, and final anisotropic thermal parameters for 20.

General Procedure for Lithium-Liquid Ammonia Reductions. To 20 mg (2.88 mmol) of freshly cut lithium wire was added 40 mL of liquid ammonia (distilled from Li) at $-78^{\circ} \mathrm{C}$. To the resulting dark blue solution was added $110 \mathrm{mg}(0.40 \mathrm{mmol})$ of photoproduct ($\mathbf{2 0}$ or 21) in 4 mL of dry tetrahydrofuran all at once. The solution was still dark blue upon addition and remained blue after stirring for 1 h at $-78^{\circ} \mathrm{C}$.

Approximately 200 mg of solid ammonium chloride was added slowly and the ammonia was evaporated on a stream of dry nitrogen. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the solution was ether extracted. The combined ether extracts were washed with water, saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The oil was purified by PTLC. The following results were obtained.

Reduction of 21 afforded a pale yellow oil which was purified on one $20 \mathrm{~cm} \times 20$ cm silica gel PTLC plate eluted with 2.5% ether in hexane (6 x). The fastest moving of two bands yielded $5^{\prime}, 6^{\prime}, 11^{\prime}, 12^{\prime}$-tetrahydrospiro(cyclopentane-1,5'-dibenzo[a,e]cyclo-octen)-3-one (23). Compound 23 was crystallized from ether in hexane to afford 33 mg ($0.12 \mathrm{mmol}, 30 \%$) of a white solid, $\mathrm{mp} .94-96^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2922,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3},-30^{\circ} \mathrm{C}\right) \delta 7.12-6.89(\mathrm{cplx}, 6 \mathrm{H}), 6.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 3.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}$), 3.09-2.88 (cplx, 3 H), $2.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 2.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 17.6 Hz), 2.41-2.32 (cplx, 2 H), $2.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3},-30^{\circ} \mathrm{C}\right) \delta 220.0$, $141.8,138.7,138.4,137.7,131.1,130.2,128.6,126.8,126.4,126.2,126.0,126.0$, $54.6,50.0,47.2,36.3,36.2,35.6,33.5 ;$ UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 326$ (86), 211 (41520); MS, m/e (\%) 276 (54), 207 (27), 133 (19), 129 (42), 113 (38), 105 (100);

HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$ m/e 276.1514, found $m / e 276,1503$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 86.91 ; \mathrm{H}, 7.30$. Found: C, 86.70; H, 7.34.

The second band yielded $47 \mathrm{mg}(0.17 \mathrm{mmol}, 43 \%)$ of starting material 21.
Reduction of $\mathbf{2 0}$ afforded a pale yellow oil that was purified on one $20 \mathrm{~cm} \times 20$ cm silica gel PTLC plate eluted with 2.5% ether in hexane (12x). The fastest moving of two bands yielded $52 \mathrm{mg}(0.19 \mathrm{mmol}, 47 \%)$ of 20. The second yielded compound 23. Rerystallization from ether in hexane afforded $23 \mathrm{mg}(0.08 \mathrm{mmol}, 21 \%)$ of the spiro cyclopentanone 23. The reduction product was identical by TLC, GC, $\mathrm{mp}, \mathrm{IR},{ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, MS, and elemental analysis with material isolated from the reduction of 23.

General Procedure: Reaction Profiles. Solutions of $100 \mathrm{mg}(0.36 \mathrm{mmol})$ samples of 18 in both 305 mL of degassed anhydrous tert-butanol and 305 mL of degassed purified benzene and $50 \mathrm{mg}(0.18 \mathrm{mmol})$ samples of $19,20,21$ and 22 in both 160 mL of degassed tert-butanol and 160 mL of degassed purified benzene were irradiated as above in the Hanovia apparatus. The reaction was monitored by GC analysis of 0.2 mL concentrated aliquots. Compound 18 was irradiated at $5-\mathrm{min}$ intervals for the first hour, $10-\mathrm{min}$ intervals for the next 3 h and at $20-\mathrm{min}$ intervals thereafter for a total photolysis time of 6.5 h . Compounds $\mathbf{1 9}, 20,21$ and 22 were irradiated at $15-\mathrm{min}$ intervals for the first hour, $30-\mathrm{min}$ intervals for the next 3 h , and at $60-\mathrm{min}$ intervals thereafter for total photolysis times ranging from 4.5-7.0 h . The samples were found to be stable to the GC conditions. Peak areas were determined from electronic integration of the peaks relative to internal benzophenone standard.

Control Experiment. Photostability of the Photoproducts. In a typical control run, 0.18 mmol of the photoproduct was photolyzed as a 0.001 M solution in tert-butanol and in benzene using conditions identical to those described above. The reactions were monitored by GC as above; the individual compounds were found to be stable to these thermal conditions. For the irradiation of 21 in tert-butanol, the earliest
detected product ratio was seen at 30% conversion of 21 , which corresponded to a 73.7:26.7:1.0:1.0 ratio of $\mathbf{2 0 : 1 9 : 2 2 : 1 8}$. In benzene, the earliest detected product ratio was seen at 20% conversion of 21 , which corresponded to a 9.7:4.7:1.0 ratio of 20:19:22. Irradiation of $\mathbf{2 0}$ in tert-butanol yielded an earliest detected product ratio of 1.2:66.7:1.3:1 0 of $\mathbf{2 1 : 1 9 : 2 2 : 1 8}$ at 21% conversion of $\mathbf{2 0}$. In benzene, the earliest detected product ratio was seen at 5% conversion of 20 , which corresponded to a 1.4:3.3:1.0 ratio of 21:19:22. Compounds 19 and 22 were found to be photochemically inert to irradiation in both tert-butanol and benzene with decomposition of 22 occurring after 3 h .
${ }^{1} \mathbf{H}-H M R$ Shift Reagent Experiment. In a typical run, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded with increasing concentrations of shift reagent. To a 0.07 M solution of the photoproduct 22 in CDCl_{3} was added $5 \mathrm{mg}(0.005 \mathrm{mmol})$ quantities of the solid shift reagent Resolve- $\mathrm{Al} \mathrm{EuFOD}^{\mathrm{TM}}\left(\mathrm{Eu}(\mathrm{fod})_{3}\right)$. After each 5 mg addition the NMR was taken. This sequential 5 mg addition was continued until a total of $60 \mathrm{mg}(0.058 \mathrm{mmol})$ of shift reagent had been added. The response curve is shown in Figure 10 of Chapter 2 along with a table of the slopes $(\Delta \mathrm{m})$ and the initial proton resonances (IS) in Table 2.

4-Bromo-1-cyclopentene (24). The procedure of Rice and Bartlett ${ }^{133,134}$ was followed. [Note: This procedure has been reported to be hazardous, see ref.-134.] A $175 \mathrm{~g}(2.66 \mathrm{~mol})$ sample of freshly cracked cyclopentadiene was dissolved in 125 mL of petroleum ether and cooled to $-30^{\circ} \mathrm{C}$ using a $\mathrm{CCl}_{4} /$ dry ice bath. A solution of 427 g (2.66 mol) of bromine dissolved in 225 mL of petroleum ether was added slowly during 2 h , keeping the temperature below $-30^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was poured into a 1 L Erlenmeyer, cooled to $-78^{\circ} \mathrm{C}$ and the solvent was decanted. The residue was dissolved in $c a .700 \mathrm{~mL}$ ether and reduced immediately with lithium aluminum hydride.

To a $0^{\circ} \mathrm{C}$ solution of $44 \mathrm{~g}(1.3 \mathrm{~mol})$ of lithium aluminum hydride in 565 mL of ether was added the dibromide solution during 2 h . The reaction mixture was stirred at
$23^{\circ} \mathrm{C}$ for 12 h and then refluxed for 34 h . Once cooled, the mixture was filtered through Celite ${ }^{\circledR}$ keeping the filter flask under ice. The filtrate was poured onto ice, the organic layer was separated and dried over CaCl_{2} and the ether was removed by vacuum distillation. The crude residue was distilled at reduced pressure to yield $20 \mathrm{~g}(0.13 \mathrm{~mol}$, 5.1%) of 4-bromo-1-cyclopentene (24); bp. $40-42^{\circ} \mathrm{C}(35 \mathrm{~mm} \mathrm{Hg})$, lit . ${ }^{133} \mathrm{bp} 43^{\circ} \mathrm{C}(35$ $\mathrm{mm} \mathrm{Hg})$. The spectral data were: IR $3038,1590,1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 5.77 (s, 2 H), 4.59 (septet, $1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$), 2.97 (dd, $2 \mathrm{H}, \mathrm{J}=6.8,17.2 \mathrm{~Hz}$), 2.78 (dd, $2 \mathrm{H}, \mathrm{J}=2.8,16.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 128.5,48.4,44.7$.

5-(3-cyclopentenyl)-5-hydroxy-10,11-dihydro-(5H)-dibenzo[a,d]-

cycloheptene (27). A modification of the method of Praefeke and Weichsel ${ }^{135}$ was employed. To $0.52 \mathrm{~g}(0.021 \mathrm{~mol})$ of activated magnesium in 5 mL of ether was added one-third of a solution of $3.0 \mathrm{~g}(0.02 \mathrm{~mol})$ of 4-bromo-1-cyclopentene (24) in 25 mL of ether. A few drops of 1,2 dibromoethane was added to initiate reaction, and the remaining alkyl halide solution was added and refluxed with heat for 1 h . The reaction mixture showed a positive Gillman test ${ }^{136}$ at this time. The mixture was cooled to $23^{\circ} \mathrm{C}$ and a solution of $4.16 \mathrm{~g}(0.02 \mathrm{~mol})$ of dibenzosuberone (15) in 30 mL of ether was dripped in slowly. Once all the ketone was added, the mixture was refluxed for 45 min . The solution was poured into cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The organic layer was then washed with saturated aqueous NaHSO_{4} and saturated aqueous NaCl , dried over anhydrous MgSO_{4} and concentrated in vacuo. The crude residue was purified by column chromatography on a $60 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ silica gel column slurry packed in hexane and eluted with increasing concentrations of ether in hexane. The compounds eluted as follows: 0% ether in hexane, dibenzosuberane $40 ; 1 \%$ ether in hexane, dibenzosuberone 15; 1.5% ether in hexane, $0.14 \mathrm{~g}(0.51 \mathrm{mmol}, 2.5 \%)$ of 5 -(3-cyclopentenyl)-5-hydroxy-10,11-dihydro-(5H)-dibenzo[a,d]cycloheptene (27); 4\% ether in hexane, $1.19 \mathrm{~g}(5.2 \mathrm{mmol}, 26 \%)$ of (5 H)-dibenzo[a,d]cyclohepten-5-ol (41). Compound 27 was isolated as a colorless oil. The spectral data for 27 were: IR 3520,
$2930,1600,1490,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=1.9,7.5 \mathrm{~Hz})$, 7.21-7.06 (cplx, 6 H), 5.63 (s, 2 H), 3.70 (quintet, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$), 3.52 (A of ABm , $2 \mathrm{H}), 2.98$ (B of ABm, 2 H), 2.33 (A of ABm, 2 H), 2.21 ($\mathrm{s}, 1 \mathrm{H}$), 1.95 (B of $\mathrm{ABm}, 2$ H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 144.5,137.4,130.7,130.2,127.1,126.1,125.8,78.9$, 46.7, 33.9, 33.7; MS, FAB/DP, Nitrobenzyl alcohol matrix, $[\mathrm{M}+\mathrm{H}]+277.2201$.

Compound 41 was isolated as a white solid, $90-92^{\circ} \mathrm{C}$, lit. $137 \mathrm{mp} .91-93^{\circ} \mathrm{C}$. The spectral data for 41 were: $\mathbb{R}\left(\mathrm{CHCl}_{3}\right) 3420,1490,1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 6 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,138.8,130.1,127.9,127.0$, 126.1, 76.4, 32.3.

5-(3-cyclopentenyl)-5-hydroxy-10,11-dihydro-(5H)-dibenzo[a,d]-

 cycloheptene (27). To the Grignard reagent prepared from 5 g (0.02 mol) of 1,2-bis-(2-chlorophenyl)ethane ${ }^{122}(\mathbf{2 5})$ and $1.2 \mathrm{~g}(0.05 \mathrm{~mol})$ of magnesium powder in 20 mL of tetrahydrofuran was added $2.8 \mathrm{~g}(0.02 \mathrm{~mol})$ of ethyl-3-cyclopentenecarboxylate ${ }^{123}$ (26) in 5 mL of tetrahydrofuran. The reaction mixture was stirred for 1 h at $23^{\circ} \mathrm{C}$ then refluxed for 3 h . The solution was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The ether extracts were washed with water (3x), saturated aqueous NaCl (1x) and dried over anhydrous MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on a $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with ether in hexane. The compounds eluted as follows: 0% ether in hexane, diphenylethane; 1.5% ether in hexane, 2.10 g ($7.6 \mathrm{mmol}, 38 \%$) of 5-(4-cyclopentenyl)-5-hydroxy-10,11-dihydro-($5 H$)-dibenzo[a,d]cycloheptene (27) as a colorless oil. The spectral data matched those reported above.5-(3-Cyclopenten-1-ylidene)-10,11-dihydro-(5H)-dibenzo[a,d]cycloheptene (28). To a $0^{\circ} \mathrm{C}$ solution of $0.4 \mathrm{~g}(1.45 \mathrm{mmol})$ of 5-(3-cyclopentenyl)-5-hydroxy-10,11-dihydro-(5H)-dibenzo[a,d]cycloheptene (27) in 13.2 mL of pyridine was added $2.6 \mathrm{~mL}(4.27 \mathrm{~g}, 0.028 \mathrm{~mol})$ of phosphorous oxychloride. The mixture was
stirred for 15 min at $0^{\circ} \mathrm{C}$ and then heated to an oil-bath temperature of $85^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was cooled to $23^{\circ} \mathrm{C}$, poured onto ice and extracted with ether. The combined ether extracts were washed with 1 M HCl , water, saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was chromatographed on two $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates eluted with hexane (9x). The fastest moving band yielded 0.33 g ($1.28 \mathrm{mmol}, 88 \%$) of 5-(3-cyclopenten-1-ylidene)-10,11-dihydro-($5 H$)-dibenzo[a,d]cycloheptene (28) as a colorless oil. The spectral data were: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.29$ (m, 2 H), $7.13(\mathrm{~m}, 6 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 141.5,139.1,137.7,134.8,129.7,129.1,129.0,128.5,126.8,125.6$, 38.6, 32.6.

3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)cyclo-

 pentanol (29). The general procedure of Brown and coworkers ${ }^{138}$ was followed. To 3.64 mL of a 0.5 M solution of $9-\mathrm{BBN}$ in tetrahydrofuran was added a solution of 0.47 g (1.82 mmol) of 5-[3-cyclopenten-1-ylidene]-10,11-dihydro-(5 H)-dibenzo[a,d]cycloheptene (28) in 9 mL of tetrahydrofuran dropwise with stirring. The reaction mixture was allowed to stir for 3.5 h at $23^{\circ} \mathrm{C}$ at which time a mixture of 1.1 mL of ethanol and 0.36 mL of 6 M NaOH were added. To this solution was added 0.73 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ very slowly. The solution was heated to $50^{\circ} \mathrm{C}$ for 1 h and then diluted with water. The solution was saturated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, extracted with ether and the extract washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo yielded a yellow oil. The crude alcohol was chromatographed on two $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates, eluted with 2% ether in hexane (5 x). The first band yielded starting material (28), the second band afforded an impure sample of compound 29. The second band was therefore rechromatographed on two $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates eluted with 8% ether in hexane (11x). From the second band was isolated 0.25 g ($0.91 \mathrm{mmol}, 49.7 \%$) of 3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)cyclo-pentanol (29) as a colorless oil. The spectral data were: IR $3400,1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.25-7.10 (cplx, 8H), $4.45(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (m, 2 H), 2.55 (m, 1 H), 2.47-2.10 (cplx, 2 H), 1.99 (m, 1 H), 1.82-1.64 (cplx, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 141.8,139.9,138.0,129.2,129.1,128.9,128.8,128.6,126.8$, $126.7,125.6,125.5,125.5,125.4,72.9,42.1,34.7,32.7,32.5,28.8$.

10,11-Dihydro-(5H)-dibenzo[a,d]cycloheptene (40). The procedure of Leonard and Gagneux ${ }^{139}$ was followed. To a solution of $23 \mathrm{~g}(0.11 \mathrm{~mol})$ of dibenzosuberone (15) in 450 mL of 95% ethanol was added 23 g (1.0 g -atom) of sodium metal during 30 min , maintaining the solution at reflux. Once the addition was complete, the mixture was cooled and then poured into $c a .500 \mathrm{~mL}$ of ice-water. The solution was extracted with ether, the organic phase dried over anhydrous MgSO_{4} and concentrated in vacuo. Filtration through a $25 \mathrm{~cm} \times 5 \mathrm{~cm}$ alumina packed column with hot Skelly-B yielded 14.1 ($0.07 \mathrm{~mol}, 66 \%$) of 10,11-dihydro-(5 H)-dibenzo[a,d]cycloheptene (40) as a white solid, $74-76^{\circ} \mathrm{C}$, lit. ${ }^{139} \mathrm{mp} .72-75^{\circ} \mathrm{C}$. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right) 2940$, $1500,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.16-7.06(\mathrm{cplx}, 8 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 4$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 139.2,138.9,129.5,128.9,126.5,126.0,40.9,32.4$.

3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-2-

cyclopenten-1-one (36). To a $0^{\circ} \mathrm{C}$ solution of $1.55 \mathrm{~g}(8.0 \mathrm{mmol})$ of 10,11 -dihydro(5 H)-dibenzo[a,d]cycloheptene (40) in 10 mL tetrahydrofuran was added 5.7 mL of a 1.4 Mn -BuLi solution in hexane dropwise during 30 min . The resulting orange solution was stirred 15 min at $0^{\circ} \mathrm{C}$ and then $1.0 \mathrm{~mL}(1.05 \mathrm{~g}, 8.4 \mathrm{mmol})$ of 3-ethoxy-2-cyclopenten-1-one in 3 mL of tetrahydrofuran was added dropwise during 5 min . The solution turned darker orange upon addition. The reaction mixture was stirred 1 h at $23^{\circ} \mathrm{C}$, poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ether extracted. The combined organic extracts were washed with water, saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude material was purified by column chromatography on a $60 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with
increasing concentration of ether in hexane. The compounds eluted as follows: 0% ether in hexane, $0.85 \mathrm{~g}(4.4 \mathrm{mmol}, 54 \%)$ of $40 ; 1 \%$ ether in hexane, $0.06 \mathrm{~g}(0.14 \mathrm{mmol}$, 1.8%) of the pinacol dimer of dibenzosuberone (42); 10% ether in hexane, 0.72 g (2.64 $\mathrm{mmol}, 33 \%$) of 3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-2-cyclopenten-1one (36). Compound 42 was isolated as a white solid, mp. 282-284 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 3440, 2870, $1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~m}$, $4 \mathrm{H}), 6.45(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=1.3,7.6 \mathrm{~Hz}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~A}$ of ABm, 4 H$), 2.94(\mathrm{~B}$ of $\mathrm{ABm}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \cdot \delta 139.3,139.2,131.9,130.0,126.3,125.1,60.7$, 33.9.

Compound 36 was recrystallization from ether to give a pale yellow solid, mp . $112-114^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 2920,1695,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.19-7.09$ (cplx, 8 H), $5.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~A}$ of $\mathrm{ABm}, 2 \mathrm{H}), 2.77(\mathrm{~B}$ of $\mathrm{ABm}, 2 \mathrm{H}$), 2.34-2.26 (cplx, 4 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 208.7,185.0,139.3,137.3$, $131.0,130.6,130.3,127.5,126.1,58.1,35.5,32.0,30.2 ;$ MS, $m / e(\%) 274$ (35), 193 (49), 192 (25), 191 (100), 178 (121), 115 (17); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ $m / e 274.1358$, found $m / e 274.1354$.

Attempted Photochemical and Chemical Deconjugation of 36. The general procedure of Ringold and Malhotra ${ }^{140}$ was followed. To a $-78^{\circ} \mathrm{C}$ solution of $0.012 \mathrm{~mL}(8.7 \mathrm{mg}, 0.08 \mathrm{mmol})$ of disopropylamine in 15 mL of tetrahydrofuran was added 0.07 mL of a 1.3 M solution of $n-\mathrm{BuLi}$ in hexane. The lithium diisopropylamine was allowed to stir 20 min and a solution of $24.3 \mathrm{mg}(0.09 \mathrm{mmol})$ of 3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-2-cyclopenten-1-one (36) in 2.5 mL tetrahydrofuran was added dropwise at $-78^{\circ} \mathrm{C}$. The enolate was stirred $15 \mathrm{~min}, 0.015 \mathrm{~mL}(0.016 \mathrm{~g}, 0.09$ mmol) of HMPA was added and stirring was continued for 5 min . The reaction was then quenched with 2.5 mL of 10% aqueous acetic acid at $-78^{\circ} \mathrm{C}$. The mixture was poured into saturated aqueous NaHCO_{3} and ether extracted. The organic layer was washed with
water, saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow oil proved to be starting material 36.

Photochemical attempts at deconjugation were carried out using the conditions described by Shiloff and Hunter ${ }^{141}$ for the deconjugation of isophorone, as well as the method of Taylor ${ }^{142}$ for the deconjugation of 3-diphenylmethyl-2-cyclohexen-1-one. Solutions of 100 mg (0.36 mmol) samples of 36 in 305 mL of degassed ethyl acetate and 305 mL of tert-butanol were irradiated through Pyrex using a $450-\mathrm{W}$ medium pressure Hanovia immersion apparatus. Both irradiations led to a $85: 15$ photostationary mixture of 36 and an unknown product 43. Attempts at isolation of 43 were unsuccessful.

Acknowledgements. Support of this work by the Research Corporation is greatly appreciated. V. L. T. is grateful to the Dr. Christopher Adams (Oklahoma State University) for the use of his HPLC.

CHAPTER III

PHOTOCHEMISTRY OF (\pm)-4,4a,5,6-TETRAHYDRO-4a-METHYL-6,6-DIPHENYL-2(3H)-NAPHTHALENONE, A RIGID LINEAR DIENONE

Introduction

One branch of our work has focused on extending studies of the photochemical 4,4-diaryl-2-cyclohexen-1-one rearrangement. The parent reaction, depicted in Figure 25 , was first described ${ }^{143}$ in 1964 and has been thoroughly studied. 1,2,9-11 Low conversion photolysis of 1 at $300-340 \mathrm{~nm}\left(\mathrm{n} \rightarrow \pi^{*}\right)$, leads to the formation of the trans- and cis-5,6-diphenylbicyclo[3.1.0]hexan-2-ones (2 t and 2c, respectively) in a ratio of ca. 140:1 as well as a small amount of 3,4-diphenyl-2-cyclohexen-1-one (3). Throughout our efforts in this area, this pioneering study has served as a benchmark for comparison of product structures, reaction stereoselectivity and mechanistic interpretation. We report, here, the synthesis and photochemistry of 4,4a,5,6-tetrahydro-4a-methyl-6,6-diphenyl$2(3 H)$-naphthalenone (4), an analog of compound 1 having an extended π system.

Figure 25. Photochemistry of 4,4-Diphenyl-2-cyclohexen-1-one (1).

Our initial objective was to determine whether the rearrangement would proceed in the extended dienone system. If reaction occurred, the degree of stereoselectivity in the phenyl migration and the effect of the angular methyl on the product stereochemistry were important questions. The methyl group was incorporated into our substrate to preclude aromatization, help control the regiochemistry of double bond introduction and prevent migration of the double bond to the β, γ position during irradiation. Finally, with the extended conjugation, it was hoped that further information would be gleaned regarding the energy requirements of the reaction.

Earlier investigations of linear dienone photochemistry ${ }^{144,145}$ have shown several characteristic reaction modes depending upon the structure of the substrate. Acyclic 2,4pentadienone derivatives are generally observed to undergo cis-trans isomerization reactions. Linear homoannular cyclohexadienones rearrange to bicyclohexenones or to diene ketenes which further react with alcohol solvents. Finally, heteroannular dienones normally do not show any notable unimolecular photoreactivity but, instead, dimerize or enter into reactions with added olefins. The lone exception to this is found in steroidal dienones where intramolecular reactions have been observed when radical-stabilizing functionality (e.g. ethers and alkenes) is present on the angular carbon bound to C-10. These reactions involve hydrogen abstraction by the α-carbon of the excited enone followed by cyclization at the β-enone carbon. In the current substrate, phenyls are positioned such that phenyl migration can occur. Thus, we expected a priori that some normal enone rearrangement would be observed.

Results

Synthesis of the Photoreactant. The synthesis of the photosubstrate used in this study is outlined in Figure 26. The methylated enone 5 was prepared according to the general procedure of Zimmerman and coworkers ${ }^{143}$ for the synthesis of the unsubstituted enone. Hydrogenation of this compound ${ }^{146}$ followed by Robinson annulation
yielded the fused enone 7. Finally, oxidation of 7 with chloranil in tert-butanol ${ }^{147}$ gave the desired 4,4a,5,6-tetrahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (4). The overall yield for the sequence was 8.2%.

5

6

7

4

Figure 26. Synthesis of Photochemical Substrate 4

Exploratory Photochemistry and Structure Elucidation of the

Products. The photochemical reactions were carried out using conditions comparable to those reported for 4,4-diphenyl-2-cyclohexen-1-one. ${ }^{1}$ Irradiation of a $10^{-3} \mathrm{M}$ solution of 4 in degassed tert-butanol through a Pyrex filter using a 450-W medium pressure Hanovia immersion apparatus led to the formation of two photoproducts, 8 and 9 . NMR, IR and UV indicated that both products were α, β-unsaturated cyclohexenyl ketones. Comparison of the high field ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the compounds showed a
strong resemblance to the [3.1.0] bicyclic products isolated from the photolysis of 4,4-diphenyl-2-cyclohexen-1-one with the major product 8 resembling the isomer having trans oriented phenyls. Most notable were the coupling constants for the cis-oriented methine protons ($\mathrm{J}_{\mathrm{cis}}=9.7 \mathrm{~Hz}$) on the three-ring of the trans diphenyl isomer $\mathbf{8}$ and for the trans-oriented protons ($\mathrm{J}_{\mathrm{trans}}=3.4 \mathrm{~Hz}$) on the cyclopropyl of the cis diphenyl isomer 9. ${ }^{7}$ These coupling constants also compared well with those encountered in our previous work. ${ }^{16}$

Due the complex nature of the high field ${ }^{1} \mathrm{H}$ NMR spectrum, both 8 and 9 were subjected to 2-D NMR experiments (DEPT, HETCOR, COSY), in an attempt to unequivocally assign the structures (Figures 27-30). The results of the 2-D NMR experiments were consistent with the proposed trans and cis diphenyl systems 8 and 9 . For both 8 and 9, the DEPT experiment indicated the eight aliphatic carbon signals observed in the 1-D carbon spectra, corresponded to two quaternary, two methines, three methylenes and one methyl. The HETCOR correlated these carbon multiplicities to the proton signals (Figures 27 and 29). The methine carbons in 8 (C-7 and C-8) were assigned to the farthest downfield aliphatic signals, an AB doublet at $\delta 2.89$ and 3.18. For 9, the methine protons (C-7 and C-8) were assigned to the separated doublets centered at $\delta 3.06$ and 2.31. The C-5 methylene protons in both $\mathbf{8}$ and 9 were assigned to upfield AB doublets, ($\delta 2.11$ and 1.92 for $8, \delta 2.32$ and 2.12 for 9), based on the large geminal coupling and typical AB pattern for the isolated methylene. ${ }^{121}$ The COSY experiment indicated coupling of one of these C-5 protons in 8 and both of the C-5 protons in 9 to the corresponding methyl protons ($\delta 1.33$, s in $\mathbf{8}$ and $\delta 1.39, \sin 9$, assigned by HETCOR). These couplings would seem to be the result of a Warrangement between the C-5 proton(s) and the methyl protons. ${ }^{116}$ It has been reported that generally, W-couplings fall in the range of $0.1-0.5 \mathrm{~Hz}$ and are less than the observed line width in the 1-D spectrum. ${ }^{116}$ These couplings, however can be detected as cross peaks in COSY experiments. ${ }^{116}$ The farthest downfield of the remaining aliphatic signals
for 8 and 9 , were assigned to the $\mathrm{C}-3$ protons based on the position of these protons with respect to the carbonyl. The COSY indicated that these signals were coupled to the proton signals at $\delta 1.50(1 \mathrm{H})$ and $0.98(1 \mathrm{H})$ for 8 , and the signal at $\delta 1.97(2 \mathrm{H})$ for 9 , corresponding to the $\mathrm{C}-4$ protons.

The orientation of the three-ring relative to the angular methyl was established by a series of spectroscopic observations. In a ${ }^{1} \mathrm{H}$ NOE difference experiment, ${ }^{148}$ irradiation of H_{8} in 8 led to an 11.6% enhancement in the signal intensity of H_{1} and a 6.4% enhancement in the signal for H_{7}. In 9 , similar irradiation of H_{8} resulted in a signal enhancement of 13.3% for H_{1} but only 3.0% for H_{7}. Irradiation of the angular methyl group, on the other hand, showed no enhancement of the H_{7} signal as one would expect from a syn cis isomer. A syn trans isomer was ruled out due to the absence of an upfield methyl signal which would have resulted from shielding by the endo phenyl. ${ }^{7}$ The shielding effect of the aromatic ring was most strongly exerted on the α proton at C 4. The signal for $\mathrm{H}_{4 \alpha}$ was observed as a doublet of triplets at $\delta 0.98$ which is consistent with the anti trans diphenyl structure. In 9, the cis phenyl rings have a perpendicular orientation relative to one another causing shielding of one set of ortho protons to $\delta 6.78$.

8

9

Finally, the structures of the two photoproducts were confirmed by single crystal X-ray structure determinations which clearly show the stereochemical relationships of the
phenyls and the orientation of the three-ring relative to the angular methyl. The ORTEP diagrams for $(\pm)-(1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}$-hexahydro-5a-methyl-1,6adiphenylcycloprop $[a$]inden-3(1H)-one (8) (molecule A of the two molecules contained in the acentric unit cell) and (\pm)-($1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}$-hexahydro-5a-methyl-1,6a-diphenylcycloprop[a]inden-3(1H)-one (9) are given in Figures 31 and 32, respectively.

Figure 27. HETCOR of the $52-26 \mathrm{ppm}$ Region for 8.

Figure 28. COSY of the δ 3.4-0.8 Region for 8.

Figure 29. HETCOR of the $54-26 \mathrm{ppm}$ Region for 9 .

Figure 30. COSY of the δ 3.2-1.2 Region for 9.

Figure 31. ORTEP Diagram for Photoproduct 8

Figure 32. ORTEP Diagram for Photoproduct 9

Compound 8, the trans diphenyl product, was produced rapidly and appeared initially to be the only photoproduct but, at conversions greater than 30.5%, the cis diphenyl compound 9 was also observed. With longer irradiation times, it became clear that some of compound $\mathbf{9}$ was formed at the expense of $\mathbf{8}$. Independent irradiations of $\mathbf{8}$ and 9 resulted in interconversion of the two isomers with some return to $\mathbf{4}$ occurring from 8. The photochemistry of compound $\mathbf{4}$ is summarized in Figure 33.

Reaction Profiles and the Behavior of the Photoproducts. Figure 34 depicts the reaction profile for the irradiation of compound 4 performed as described above. Aliquots were removed every $30-90 \mathrm{~s}$ without interrupting the photolysis and the reaction was essentially complete (97% conversion) in 5.5 min . At this point, 83% of the product was compound 8. Photoproduct 9 was not observed until 30.5% conversion

Figure 33. Photochemistry of 4
where 0.3% could be reproducibly detected by GC. Due to this detection limit, it was not possible to unequivocally ascribe the production of 9 to a primary photoprocess. Nevertheless, the 30.2:0.3 mixture of 8:9 at this stage of the reaction corresponds to a ca. 100:1 ratio of trans:cis--very comparable to the $140: 1$ ratio reported for the parent case. ${ }^{2,9}$

Extended irradiation of 4 resulted in conversion to a photostationary mixture composed of a 76:23:1 ratio of trans:cis:dienone (8:9:4). This equilibrium mixture was obtained after 20 min and remained unchanged even after 6 h . A similar mixture was also formed after irradiation of either $\mathbf{8}$ or 9 for 30 min . In this latter reaction, a small amount (ca. 1.5%) of the dienone 4 was detected as an intermediate in the reaction of the trans but not in the reaction of the cis. Similar reactivity has been reported in the photochemistry of 1,9 though in the current reaction, a phenyl-migrated dienone product (e.g. 10) could not be detected $(<0.3 \%)$. A separate plot (Figure 34) shows the reaction profile for the conversion of both 8 and 9 to the photostationary mixture. Based upon the observed rates of formation, it is clear that $\mathbf{8}$ is a primary photoproduct but the secondary interconversion of $\mathbf{8}$ and 9 makes it more difficult to comment with certainty on the origin

Figure 34. Reaction Profile for Irradiation of 4

${ }^{\mathrm{a}} c a .1 \%$ of 4 was present after 25 min and remained at 360 min.
Figure 35. Reaction Profile for Irradiation of 8 and 9 through Pyrexa
of 9. From our observations, it is clear that 9 arises from a secondary process but concrete evidence that it is a primary photoproduct remains elusive.

10

An interesting observation was made when the reaction was carried out as a series of short irradiations ($<30 \mathrm{~s}$). Under these conditions, in the Hanovia apparatus with a Pyrex filter, compound 8 was the only product of the reaction, even after 90% conversion (25 min). The source of this increased stereoselectivity was intriguing and must derive from a wavelength or a light intensity effect. Several experiments were, therefore, devised to probe these possibilities.

With short irradiation times, the lamp never comes to full power. Thus, light impinging on the sample is greatly reduced and the spectral output of the lamp more closely resembles that of a low pressure mercury source (mostly 254 nm light with some low-intensity longer wavelengths). ${ }^{149}$ These conditions could not be reproduced exactly using other means but, in a simulation, irradiating through Pyrex with a Rayonet reactor at 254 nm , no cis isomer formation was detected until 73% conversion (8:9, ca. 190:1). Additional experiments to evaluate this wavelength dependency were done using a series of filter solutions: (A) $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{VO}_{3}$ in $5 \% \mathrm{NaOH}$ (cutoff 335 nm), (B) $0.1 \mathrm{M} \mathrm{BiCl}_{3}$ in $2 M \mathrm{HCl}$ (cutoff 366 nm), and (C) $0.15 M_{\mathrm{FeCl}_{3}}$ in $1 M \mathrm{HCl}$ (cutoff 445 nm). With the sodium vanadate filter, both isomers were formed as expected in a ratio similar to that
observed on extended irradiation through Pyrex. Irradiation through the bismuth chloride solution, however, gave a more stereoselective reaction (8:9, ca. 160:1), most likely owing to the decreased absorption of light by the photoproducts at this wavelength. Using the ferric chloride filter, no reaction was observed since none of the reactants absorb at this wavelength. These findings support a wavelength dependency in the current reaction.

Since light intensity effects have precedent in ketone photochemistry, ${ }^{150}$ it was also necessary to evaluate this parameter. As a simple test, the distance between the light source and the dienone solution was increased from 1 cm to 40 cm . This reduced the light entering the sample since illuminating power varies inversely with the square of the distance from the source. ${ }^{151}$ Additionally, light reaching the reaction vessel was attenuated by air and dust as well as by reflection at the Pyrex surfaces between the source and the reaction mixture. Under these conditions, the reaction, though slower, yielded approximately the same ratio of products at all conversions. Thus, light intensity appears to have little effect on the course of the reaction.

One further interesting observation was made regarding the stability of the photoproducts. Upon prolonged exposure of the product enone $\mathbf{8}$ to CDCl_{3} (sealed NMR tube, 1 month, $0^{\circ} \mathrm{C}$, no light), a quantitative reversion back to the starting dienone occurred. This was attributed to catalysis by traces of HCl normally found in

8

4
this NMR solvent. ${ }^{152}$ A control experiment treating 8 with dilute $\mathrm{HCl}(0.4 \mathrm{~mL}$ of $1 M$ aqueous HCl) in THF (2 mL) further supported this hypothesis. The cis isomer 9, while stable in CDCl_{3}, did react slowly under stronger acid conditions to give up to 20% of a single unidentified product ($96-120 \mathrm{~h}$).

Mechanistic and Interpretative Discussion. The photochemistry of 4 closely parallels that observed in the parent 4,4-diphenyl-2-cyclohexen-1-one. 1,2,9 Reaction via the triplet manifold is assumed based upon previous photochemical studies of cyclohexenones. Excitation of the dienone moiety followed by intersystem crossing to the triplet would give an intermediate analogous to that proposed for the simple enone (Figure 36). Bridging of the odd electron center at C-7 in 11 to a C-6 phenyl ring

13
$a_{*}=\%$ or $+/-$
Figure 36. Mechanistic Summary of the Photorearrangement of 4^{a}
followed by concerted rearomatization-three-ring formation would give the observed product 8. The rigidity of the fused ring structure permits orbital alignment similar to that found in the parent system such that normal concerted phenyl migration may occur. An alternative mechanism ${ }^{5-8}$ would involve stepwise rearomatization of the bridged intermediate $\mathbf{1 2}$ to give a phenyl-migrated diradical having an odd electron center at C-6. Closure of this species with minimization of phenyl-phenyl steric interference would then give the observed product 8.

The presence of the angular methyl in substrate 4 introduces the possibility of products having a syn or anti relationship between the three-ring and this group. It was expected intuitively that the methyl would exert a steric effect favoring the formation of the anti product. Experimentally, this was found to be the case and only two products were observed from the reaction, even after extended irradiation times. Additionally, the methyl served to preclude complications resulting from aromatization and double bond migration.

The apparent induction period for initiation of the reaction (see Figure 34) can be attributed to the wavelength variation which occurs during lamp warm-up. ${ }^{149}$ Repeating the reaction in the same apparatus fitted with a shutter permitted the lamp to attain full power prior to irradiation of the substrate. Under these conditions, products were produced immediately but the ratio of trans to cis at the earliest point of detection remained $c a$. 100:1. Thus, the question of whether the cis isomer is a primary photoproduct remains unresolved.

Though the present study has shown that the photochemistry of the dienone 4 bears considerable similarity to that of $\mathbf{1}$, a difference is found in the composition of the photostationary mixture. While 1 shows a 43:57 trans:cis ratio in the photostationary state, 9,10 dienone 4 and photoproducts 8 and 9 all lead to approximately the same 76:23:1 mixture of trans:cis:dienone. Thus, the kinetic (trans) product is also the most stable product in this case. Reference to molecular models and to the X-ray data show
that there is no apparent steric bias favoring the trans over the cis stereochemistry in the final product. Thus, the preponderance of trans product likely reflects orbital overlap effects (concerted mechanism) or steric control in the phenyl-migrated diradical (stepwise mechanism).

The preference for production of the trans product at low conversions suggests that the current reaction closely approximates that observed for 1 . This seems reasonable since the skeletal rigidity of the system should permit orbital alignment comparable to that found in the parent system if the rearrangement is concerted. Additionally, if the stepwise mechanism is operating, steric interactions during the phenyl migration process would be roughly similar in both molecules. The 100:1 ratio of trans:cis products at low conversion compares well with the parent system and, in all probability, constitutes a lower limit considering the increased photolability of the γ-cyclopropyl enone products from 4 (relative to the less conjugated systems derived from 1) and our inability to detect smaller amounts of the products at the initial stages of the reaction.

It seems reasonable that the mechanisms by which 8 and 9 interconvert also parallel those observed in the the parent compound 1. These are summarized in Figure 36. Excitation and intersystem crossing of the enone chromophore to give 13 would be followed by fission of the external three-ring bond (bond a), rotation about bond c and reclosure to give the cis isomer. Alternatively, opening of the internal cyclopropyl bond (bond b) would generate an intermediate which could reclose to give either trans or cis. The minor pathway leading back to the starting dienone can be envisioned from the intermediate obtained from fission of the internal three-ring bond (bond b). Regeneration of the dienone would then occur with migration of the $\mathrm{C}-7$ phenyl back to $\mathrm{C}-6$ by a reversal of the bridging process.

Interestingly, the reaction proceeds normally despite the decreased energy requirements for excitation of 4 . Based on a simple comparison of the $\lambda_{\max }$ of the
$\mathrm{n} \rightarrow \pi^{*}$ band in 1 and 4 , the dienone $\left(\lambda_{\max }\left(\mathrm{n} \rightarrow \pi^{*}\right)=345 \mathrm{~nm}\right)$ requires less energy for excitation than the simple enone $\left(\lambda_{\max }\left(\mathrm{n} \rightarrow \pi^{*}\right)=320 \mathrm{~nm}\right)$. Further extension of the π system might be expected to eventually afford a substrate reactive to light in the visible range. Recent studies by Zimmerman and Lamers, ${ }^{8}$ however, have demonstrated that a linear trienone related to our system is photochemically inert.

Previous studies ${ }^{2,38}$ have revealed significant solvent polarity effects in the photochemistry of 4,4-disubstituted cyclohexenones. For the parent case 1, solvent polarity (benzene $v s$. tert-butanol) had little effect on the trans:cis ratio of the bicyclic products but the more polar tert-butanol gave a 16 -fold increase in the production of phenyl-migrated enone (3) as well as an overall increase in quantum efficiency for the disappearance of the enone. These observations were attributed to a possible inversion of close-lying $n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ triplets brought on by stabilization of the more polar $\pi \rightarrow \pi^{*}$ state by the alcohol solvent. In the current study, photolyses were run in both benzene and tert-butanol in an attempt to evaluate solvent effects in the extended system. As in the parent case, no significant change in trans:cis product ratio was observed; additionally, a phenyl-migrated enone $\mathbf{1 0}$ was not observed in either solvent.

The acid catalyzed conversion of the trans photoproduct to the starting dienone is the first case of such a reverse process. ${ }^{153}$ This reaction presumably proceeds by protonation of the enone carbonyl by traces of HCl in the $\mathrm{CDCl}_{3} 152$ to give the enol cyclopropylcarbinyl carbocation 14 followed by three-ring opening to give the phenylstabilized carbocation 15. Regeneration of the dienone system with concomitant phenyl migration and loss of the proton would then regenerate 4 (Figure 37). This quantitative reversion of $\mathbf{8}$ back to $\mathbf{4}$ under mild acid conditions suggests that the current reaction represents a photoendothermic process where a considerable portion of the irradiating energy is stored in the carbon framework of the product.

Figure 37. Acid-Catalyzed Conversion of 8 to 4.

Experimental Section

Melting points were obtained on a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were recorded with a PE-681 instrument and are referenced to polystyrene. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were measured as solutions in CDCl_{3} at 300 MHz and 75 MHz , respectively, on a Varian XL-300 superconducting FT instrument; chemical shifts are reported in δ units relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. UV spectra were recorded in absolute ethanol using a Varian DMS-200 spectrophotometer. Mass spectra were recorded at 70 eV on a VG ZAB-2SE or a VG TS-250 instrument. Elemental analyses $(\pm 0.4 \%)$ were performed by Galbraith Laboratories, Knoxville, TN. All reactions were run under an atmosphere of dry nitrogen. Solvents used in photochemical runs were purified in the following manner: tert-butanol was distilled from CaH_{2}; benzene was sequentially washed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x}), 5 \% \mathrm{KMnO}_{4}$ in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 x)$, and 10% aqueous KOH , then dried over anhydrous MgSO_{4} and distilled from CaH_{2}.

All photochemical reactions were degassed with dry, oxygen-free nitrogen for 1 h prior to and during irradiation. Column chromatography was performed on silica gel (Grace, grade 62, 60-200 mesh) mixed with Sylvania 2282 phosphor and slurry packed
into Vycor columns such that band elution could be monitored with a hand-held UV lamp. Preparative thick layer chromatography (PTLC) was performed on Analtech (No. 02015) preparative silica gel uniplates with fluorescent indicator. Reactions were monitored and kinetic measurements were made on a capillary GC (Varian 3400) with FI detection on a 0.1 mm X $6 \mathrm{~m} \mathrm{SE}-30$ column programmed between $100-300^{\circ} \mathrm{C}$.

6-Methyl-4,4-diphenyl-2-cyclohexen-1-one (5). The general procedure of Zimmerman ${ }^{143}$ was used. To a $0^{\circ} \mathrm{C}$ solution of $8.9 \mathrm{~g}(45.4 \mathrm{mmol})$ of diphenylacetaldehyde and $6.7 \mathrm{~g}(79.8 \mathrm{mmol})$ of isopropenyl methyl ketone ${ }^{154}$ in 70 mL of ether was added a $4.95-\mathrm{mL}$ ethanol solution of $0.83 \mathrm{~g}(14.8 \mathrm{mmol})$ of potassium hydroxide dropwise during 45 min . The mixture was stirred at $23^{\circ} \mathrm{C}$ for 6 h , then poured onto ice and 25 mL of benzene was added to dissolve the yellow solid. The mixture was neutralized with 1 M HCl to a pH of 7 and the aqueous layer was ether extracted. The organic extracts were combined, washed with saturated NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow oil was crystallized from absolute ethanol to yield $7.67 \mathrm{~g}(29.0 \mathrm{mmol}, 65 \%)$ of 6-methyl-4,4-diphenyl-2-cyclo-hexen-1-one as a white solid, mp. $96-98^{\circ} \mathrm{C}$. The spectral data were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3065$, $1680,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.18(\mathrm{cplx}, 11 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1$ $\mathrm{Hz}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $201.7,155.5,148.1,143.8,129.0,128.9,128.8,128.3,128.0,127.5,127.3,127.0$, 50.3, 44.8, 38.7, 15.1; MS, m/e (\%) 262 (M+, 26), 234 (18), 206 (100), 191 (24), 165 (14), 115 (17), 77 (10); HRMS, exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$ m/e 262.1357, found m/e 262.1358.

2-Methyl-4,4-diphenylcyclohexanone (6). The general procedure of Bordwell ${ }^{146}$ was used. A 150 mL acetic acid solution of $11.8 \mathrm{~g}(45.0 \mathrm{mmol})$ of 5 containing 0.5 g of $10 \% \mathrm{Pd} / \mathrm{C}$ was shaken under 60 psi of H_{2} in a Parr apparatus at $25^{\circ} \mathrm{C}$ for $8 \mathrm{~h}\left(\mathrm{H}_{2}\right.$ uptake, 12 psi$)$. The crude reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solution was concentrated under vacuum. The residue was taken up in ether and the
solution was washed with NaHCO_{3}, water and saturated NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow solid was recrystallized twice from absolute ethanol to yield $10.0 \mathrm{~g}(38.0 \mathrm{mmol}, 84 \%)$ of 2-methyl-4,4-diphenylcyclohexanone as a white solid, $102-103^{\circ} \mathrm{C}$, lit. $.^{7} \mathrm{mp} .102-103^{\circ} \mathrm{C}$. The spectal data were: IR (CHCl_{3}) $3095,3060,1720,1600,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=7.5 \mathrm{~Hz}), 7.41(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.33-7.12$ (complex, 6 H), $2.95(\mathrm{~m}, 2 \mathrm{H}), 2.65-$ 2.30 (complex, 4 H), $2.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}\right.$), $1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta 212.5,148.7,143.5,128.9,128.7,128.3,127.3,126.7,126.5,126.0$, $46.4,45.8,41.5,38.7,37.3,14.5 ;$ MS m/e (\%) 264 (46), 207 (32), 193 (48), 180 (100), 165 (28), 115 (24), 91 (26); HRMS, exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ m/e 264.1514, found $m / e 264.1514$.

4,4a,5,6,7,8-Hexahydro-4a-methyl-6,6-diphenyl-2(3H)-

naphthalenone (7). To a $60-\mathrm{mL}$ benzene solution of 6.0 g (23.0 mmol) of 6 was added 10 mL of a 2.37 M solution of potassium tert-butoxide (23.7 mmol). The mixture was stirred for 1 h and $3.22 \mathrm{~g}(3.82 \mathrm{~mL}, 46 \mathrm{mmol})$ of methyl vinyl ketone was added dropwise. The reaction was stirred for 48 h at $23^{\circ} \mathrm{C}$ then diluted with ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and saturated NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The dark brown viscous oil was purified by column chromatography on an $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with increasing concentrations of ether in hexane. The compounds eluted as follows: 2% ether in hexane, $1.97 \mathrm{~g}(7.46 \mathrm{mmol}, 32.4 \%)$ of $\mathbf{6 ;} 7.5 \%$ ether in hexane, $2.18 \mathrm{~g}(6.90$ mmol, 30\%) of 4,4a,5,6,7,8-hexahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (7) as a white solid, $\mathrm{mp} .179-180^{\circ} \mathrm{C}$. The spectral data for 7 were: IR $\left(\mathrm{CHCl}_{3}\right) 3060$, 2840, 1670, 1625, $1600 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.32(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.21(\mathrm{~m}, 6 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.01-2.78(\mathrm{cplx}, 3 \mathrm{H})$, 2.49-2.22 (cplx, $4 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 199.4,169.8,150.5,144.9$, $128.4,128.2,127.3,125.9,125.7,125.6,123.8,50.3,45.0,38.9,36.8,36.7,33.5$,
30.3, 23.5; UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 327$ (50.3), 227 (20353) 208 (20174); MS, m/e (\%) 316 (81), 225 (21), 193 (56), 184 (47), 180 (100), 165 (36), 115 (33), 91 (53), 77
(23); HRMS, exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O} \mathrm{m} / \mathrm{e} 316.1827$, found $\mathrm{m} / \mathrm{e} 316.1827$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}:$ C, $86.66 ; \mathrm{H}, 7.59$. Found: C, $86.98 ; \mathrm{H}, 7.79$.

4,4a,5,6-Tetrahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (4). The procedure of Agnello and Laubach ${ }^{147}$ was used. A stirred mixture of 0.20 g (0.63 mmol) of 7 and 0.90 g (3.67 mmol) of chloranil in 20 mL of tert-butanol was heated at reflux for 3 h . The crude reaction was filtered and concentrated in vacuo. The residue was dissolved in chloroform and washed with water (3x), $5 \% \mathrm{NaOH}$ (1x), washed again with water until reappearance of yellow color, saturated NaCl , then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was separated on a $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ PTLC plate eluted with 20% ether in hexane (6 x). The fastest eluting band yielded $0.1 \mathrm{~g}(0.32 \mathrm{mmol}, 50 \%)$ of 4,4a,5,6-tetrahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (4) as a white solid, mp. 147-149 ${ }^{\circ} \mathrm{C}$. The slower eluting band yielded $0.03 \mathrm{~g}(0.09 \mathrm{mmol}, 15 \%)$ of 7 , recovered starting material. The spectral data were: IR $\left(\mathrm{CHCl}_{3}\right) 1660,1630,1610,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.44-7.34 (cplx, 4H), $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 6.43(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~A}$ of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.45$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{~B}$ of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}), 2.01-1.80(\mathrm{cplx}, 2 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.6,161.1,148.8,145.7,143.3,128.4,128.3,128.0,127.2$, $126.9,126.5,126.3,124.1,49.0,48.9,37.5,34.3,33.8,23.6$; UV (abs. EtOH) $\lambda_{\max }$ (ع) 337 (500), 287 (24199) 209 (19068); MS, m/e (\%) 314 (100), 299 (8), 286 (17), 257 (19), 243 (23), 210 (20), 195 (19), 165 (27), 115 (15), 91 (22), 77 (10); HRMS, exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O} m / e 314.1670$, found $m / e ~ 314.1670$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 87.90 ; \mathrm{H}, 7.01$. Found: C, 88.09; H, 7.16.

Exploratory Direct Photolysis of 4,4a,5,6-Tetrahydro-4a-methyl-6,6-diphenyl-2(3H)-naphthalenone (4).
A. In tert-Butanol: The general procedure described by Zimmerman ${ }^{1}$ for the photolysis of 4,4-diphenyl-2-cyclohexenone was followed. A solution of $100 \mathrm{mg}(0.32$ mmol) of 4 in 320 mL of degassed tert-butanol in a Kreil flask (Ace no. 6963) was irradiated through Pyrex using a 450-W medium pressure Hanovia immersion apparatus. The rearrangement was followed by GC and the source was turned off at $c a .98 \%$ conversion, concentrated under vacuum and purified on a $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plate eluted with 8% ether in hexane (10x). The fastest moving of three bands yielded 70 $\mathrm{mg}(0.22 \mathrm{mmol}, 69.7 \%)$ of $(\pm)-(1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}$-hexahydro-5a-methyl-1,6a-diphenylcycloprop[a]-inden-3(1H)-one (8) as a white solid. Recrystallization from CHCl_{3} ether/hexane afforded an analytical sample: $\mathrm{mp} .133-134^{\circ} \mathrm{C}$; $\mathbb{I R}\left(\mathrm{CHCl}_{3}\right) 3060$, 2865, 2830, 1658, $1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.20$ (complex, 6 H), $6.08(\mathrm{~s}, 1 \mathrm{H}), 3.18$ (A of ABd, $1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$), 2.89 (B of ABd, 1 H , $\mathrm{J}=9.6 \mathrm{~Hz}$), 2.39 (ddd, $1 \mathrm{H}, \mathrm{J}=19.0,13.6,5.6 \mathrm{~Hz}), 2.17(\mathrm{dd}, 1 \mathrm{H}, 19.0,5.6 \mathrm{~Hz})$, 2.11 (A of ABd, $1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}$), 1.92 (B of ABd, $1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}$), $1.50(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=12.9,5.6 \mathrm{~Hz}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=13.2,5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 198.6$ (C), 176.8 (C), 144.1 (C), 135.1 (C), 131.1 (CH), 128.7 (CH), 128.4 (CH), $127.0(\mathrm{CH}), 126.8(\mathrm{CH}), 126.5(\mathrm{CH}), 124.2(\mathrm{CH}), 124.2(\mathrm{CH}), 49.8(\mathrm{C}), 44.1\left(\mathrm{CH}_{2}\right)$, $43.0(\mathrm{C}), 40.7(\mathrm{CH}), 36.4(\mathrm{CH}), 33.6\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{3}\right) ; \mathrm{UV}(\mathrm{abs}$. EtOH) $\lambda_{\text {max }}(\varepsilon) 325$ (549), 258 (14381) 207 (20881); MS, m/e (\%) 314 (M ${ }^{+}, 100$), 257 (19), 195 (27), 165 (33), 91 (31); HRMS, exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ m/e 314.1670, found m / e 314.1671. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 87.90 ; \mathrm{H}, 7.01$. Found: C, 87.72; H, 7.13.

The second band yielded $12 \mathrm{mg}(0.04 \mathrm{mmol}, 11.9 \%)$ of $(\pm)-(1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-$ 1a,4,5,5a,6,6a-hexahydro-5a-methyl-1,6a-diphenylcycloprop[a]inden-3(1H)-one (9) as a white solid. Recrystallization from CHCl_{3} /ether/hexane afforded an analytical sample: mp. 212-214 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1660,1605,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25-7.00$ (complex, 8H), $6.79(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=7.8,2.1 \mathrm{~Hz}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.4$
$\mathrm{Hz}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~A}$ of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}), 2.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=3.4 \mathrm{~Hz}$), $2.12(\mathrm{~B}$ of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 198.9(\mathrm{C}), 178.2(\mathrm{C}), 138.8(\mathrm{C}), 137.1(\mathrm{C}), 129.3(\mathrm{CH}), 128.3(\mathrm{CH})$, $127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.6(\mathrm{CH}), 126.0(\mathrm{CH}), 122.0(\mathrm{CH}), 53.3\left(\mathrm{CH}_{2}\right), 48.9(\mathrm{C})$, $46.5(\mathrm{CH}), 45.6(\mathrm{C}), 36.9(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right)$; UV (abs. $\mathrm{EtOH}) \lambda_{\max }(\varepsilon) 325$ (463), 260 (7991) 203 (12898); MS, m/e (\%) 314 (100), 286 (18), 258 (23), 243 (30), 203 (38), 167 (41), 115 (22), 91 (36), 77(13); HRMS, exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ m/e 314.1670, found m / e 314.1670. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$: C, 87.90; H, 7.01. Found: C, 87.69; H, 6.97.

A third band, overlapping with 9 , proved to be unreacted starting material.
B. In Benzene: A solution of $100 \mathrm{mg}(0.32 \mathrm{mmol})$ of 4 in 320 mL degassed purified benzene was photolyzed using conditions identical to those described above. After 3.5 min , there was observed a 36.0:0.40:63.6 ratio of 8:9:4, which corresponded to a $c a .90: 1$ ratio of 8:9. After 11 min a photostationary state was reached having a 75:24:1 ratio of 8:9:4. The products:reactant ratios were all within 10% of those observed in the photolysis reaction of 4 in tert-butanol.

Single Crystal X-ray Structure Determination of (\pm)$(1 \alpha, 1 a \beta, 5 a \beta, 6 a \beta)-1 a, 4,5,5 a, 6,6 a-h e x a h y d r o-5 a-m e t h y l-1,6 a-d i p h e n y l-$ cycloprop[a]-inden-3(1H)-one (8). A crystal of 8 was mounted on a Syntex P3 automated diffractometer. Unit cell dimensions (Table 4) were determined by least squares refinement of the best angular positions for 15 independent reflections ($2 \theta>15^{\circ}$) during normal alignment procedures using molybdenum radiation $(\lambda=0.71069 \AA)$. Data (3096 independent points after removal of space group forbidden and redundant data) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of 1.2° below $\mathrm{K} \alpha_{1}$ and 1.2° above $\mathrm{K} \alpha_{2}$ to a maximum 2θ value of 45°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every

97 reflections. As the intensities of these reflections showed less than 5\% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects. Observed reflections [2265, I > 3.0 0 (I)] were used for solution of carbon and oxygen positions of the structure by direct methods using SHELX86. ${ }^{155}$ Refinement ${ }^{131}$ of scale factor, positional and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. The positions of the hydrogen atoms were located from a difference Fourier synthesis and were included (with hydrogen positional and thermal parameters fixed) in the final cycles of refinement [function minimized, $\Sigma\left(\left|\mathrm{F}_{0}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$] leading to a final agreement factor, $\mathrm{R}=6.1 \%[\mathrm{R}=(\Sigma \mid$ $\left.\left|F_{0}\right|-\left|F_{c}\right||/ \Sigma| F_{0} \mid\right) x$ 100]. Scattering factors were taken from Cromer and Mann. ${ }^{132}$ In the final stages of refinement, a weight of $1 / \sigma(\mathrm{F})^{2}$ was used. $\mathrm{R}_{\mathrm{w}}=7.7 \%$.

The unit cell contains two molecules of the trans isomer which display enantiomeric chiralities at $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-5$ but which are packed in the accentric cell in a manner which does not involve a crystallographic symmetry element. Appendix B, Tables 13-16 lists bonds angles and distances, positional parameters, and final anisotropic thermal parameters for 8.

Single Crystal X-Ray Structure Determination of (\pm)$(1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}$-hexahydro-5a-methyl-1,6a-diphenyl-cycloprop[a]inden-3(1H)-one (9). A crystal of 9 was mounted on a Syntex P3 automated diffractometer. Unit cell dimensions (Table 4) were determined by least squares refinement of the best angular positions for 15 independent reflections ($2 \theta>15^{\circ}$) during normal alignment procedures using molybdenum radiation $(\lambda=0.71069 \AA$). Data (2237 independent points after removal of space group forbidden and redundant data) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of 1.2° below $K \alpha_{1}$ and 1.2° above $K \alpha_{2}$ to a maximum 2θ value of 45°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured every 97

TABLE 4
CRYSTAL DATA FOR 8 and 9

	$\mathbf{8}$ (trans)	$\mathbf{9}$ (cis)
formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$
MWT	314.2	314.2
a, \AA	$9.194(3)$	$12.639(5)$
b, \AA	$10.567(6)$	$5.680(2)$
c, \AA	$9.867(5)$	$23.835(8)$
α, deg	$106.74(4)$	90.0
β, deg	$101.68(3)$	$90.25(3)$
γ, deg	$99.56(4)$	90.0
$\mathrm{~V}, \AA \AA^{3}$	$872.8(7)$	$1711.0(10)$
$\mathrm{F}(000)$	336	672
$\mu(\mathrm{MoK} \alpha)$, cm ${ }^{-1}$	0.663	0.677
$\lambda(\mathrm{MoK} \alpha), \AA$	0.71069	0.71069
$\mathrm{D}_{\text {calcd }}, \mathrm{g}$ cm ${ }^{-3}$	1.196	1.220
Z	2	4
obsd refl	2265	1367
$\mathrm{R} / \mathrm{R}_{\mathrm{w}}, \%$	$6.1 / 7.7$	$5.5 / 7.2$
space group	P 1	$\mathrm{P} 2{ }_{1} / \mathrm{c}$
goodness of fit	0.38	0.33

reflections. As the intensities of these reflections showed less than 5% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects. Observed reflections [1367, I>3.0 $\mathbf{\sigma}(\mathrm{I})$] were used for solution of carbon and oxygen positions of the structure by direct methods using MULTAN80. ${ }^{130}$ Refinement ${ }^{131}$ of scale factor, positional and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. The positions of all hydrogen atoms, except those associated with the methyl group (C-11), were calculated and included (with hydrogen and positional and thermal parameters held fixed) in three cycles of least squares refinement. A difference Fourier synthesis then allowed location of the three hydrogens of C-11. All hydrogen parameters were included but constrained in the final cycle of refinement [function minimized, $\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$] leading to a final agreement factor, $\mathrm{R}=5.5 \%\left[\mathrm{R}=\left(\Sigma| | \mathrm{F}_{0}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|\right) \times 100\right]$. Scattering factors were taken from Cromer and Mann. ${ }^{132}$ In the final stages of refinement, a weight of $1 / \sigma(\mathrm{F})^{2}$ was used. $\mathrm{R}_{\mathrm{w}}=7.2 \%$. Appendix B , Tables $17-19$ lists bond angles and distances, positional parameters, and final anisotropic thermal parameters for 9.

Reaction Profiles. Solutions of $100 \mathrm{mg}(0.32 \mathrm{mmol})$ of 4 in 320 mL of tertbutanol, $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathbf{8}$ in 160 mL of tert-butanol and $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of 9 in 160 mL of tert-butanol were irradiated as before in the Hanovia apparatus. The reactions were monitored by GC analysis of 0.2 mL aliquots removed by syringe from the reaction mixture. Compound 4 was irradiated at $0.5-\mathrm{min}$ intervals for the first 6 min and at 1-min intervals thereafter for a total time of 20 min . Compounds 8 and 9 were irradiated at $5-\mathrm{min}$ intervals for the first 40 min and at $40-\mathrm{min}$ intervals thereafter for a total time of 6 h . The samples were injected onto a $0.25 \mathrm{~mm} \mathrm{X} 6 \mathrm{~m} \mathrm{SE}-30$ column, temperature programmed between $150-300^{\circ} \mathrm{C}$; the individual compounds were found to be stable to these thermal conditions. Peak areas were determined from electronic integration of the peaks relative to internal benzophenone standard.

Control Experiment. Photostability of the Photoproducts. In a typical control run, 0.29 mmol of the photoproduct was photolyzed as a 0.001 M solution in tertbutanol using conditions identical to those described for the exploratory irradiations. The reactions were monitored by GC as above; the individual compounds were found to be stable to these thermal conditions. After 30 min , compound 8 had reached a photostationary state having a 76:23:1 ratio of 8:9:4 which remained unchanged even after 6 h . Irradiation of 9 yielded a 76:24 ratio of $\mathbf{8 : 9}$ after 30 min with no formation of 4; this ratio remained constant after 6 h .

Acid-Catalyzed Reactions of the Photoproducts. A sealed sample of $\mathbf{8}$ ($25 \mathrm{mg}, 0.08 \mathrm{mmol}$) dissolved in $0.75 \mathrm{~mL} \mathrm{CDCl}_{3}$ for 1 month in the dark was transformed to 4 in quantitative yield. A sealed sample of $9(25 \mathrm{mg}, 0.08 \mathrm{mmol})$ dissolved in 0.75 mL of CDCl_{3} for 1 month in the dark was found to be stable under these conditions. In a typical control run, $10 \mathrm{mg}(0.03 \mathrm{mmol})$ samples of $\mathbf{8}$ and 9 were treated with 2 mL of THF containing 0.4 mL of 1.0 M HCl and allowed to stir at $23^{\circ} \mathrm{C}$ in the dark under N_{2}. After $2 \mathrm{~d}, 8$ had undergone 80% conversion (by GC) back to 4 . After $4 \mathrm{~d}, 9$ had undergone 20% conversion (by GC) to an unidentified compound; this conversion was not increased upon extended reaction.

Wavelength Dependency Experiments. The photoreaction of 4 was run in tert-butanol using the following filter solutions: $\mathrm{A}: 0.1 \mathrm{M} \mathrm{NaVO} 3$ in $5 \% \mathrm{NaOH}$ (cutoff 335 nm); B: $0.1 \mathrm{M} \mathrm{BiCl}_{3}$ in 2.0 M HCl (cutoff 366 nm); and $\mathrm{C}: 0.15 \mathrm{M} \mathrm{FeCl}_{3}$ in 1.0 $M \mathrm{HCl}$ (cutoff 445 nm). The reactions using the filter solutions were monitored by GC as above. The reaction using filter solution A was followed by removing aliquots at 0.5min intervals for the first 6 min and at 1-min intervals for a total time of 20 min . The cis photoproduct was not observed until 38% conversion of 4 , where 0.39% of the cis isomer was detected. This corresponds to a ca. $100: 1$ ratio of $\mathbf{8 : 9}$. After 11 min , there was obtained a 76:23:1 equilibrium ratio of 8:9:4. The reaction using filter solution B was followed by removing aliquots at $1-\mathrm{min}$ intervals for the first $10 \mathrm{~min}, 2-\mathrm{min}$ intervals
for the next 30 min , and 4-min intervals for an additional 80 min . The earliest detected ratio (49% conversion) of $\mathbf{8 : 9 : 4}$ was 48.7:0.3:51 which corresponds to an $\mathbf{8 : 9}$ ratio of $c a .160: 1$. Extended irradiation of 4 resulted in a photostationary mixture composed of a 79:20:1 ratio of 8:9:4. No reaction was seen using filter solution C, even after a 6 h photolysis time.

Irradiation using a Rayonet Reactor. The photochemical reaction of 4 (80 $\mathrm{mg}, 0.25 \mathrm{mmol}$) in 260 mL tert-butanol was run in a $500-\mathrm{mL}$ Pyrex round bottom flask using a Rayonet reactor (254 nm lamps). The reaction was monitored by GC as above and aliquots were removed at $2-\mathrm{min}$ intervals for the first 20 min and at $4-\mathrm{min}$ intervals thereafter for a total time of 2 h . After 24 min , a 73.0:0.4:26.6 ratio of 8:9:4 was detected. This corresponds to $c a .180: 1$ ratio of 8:9. At 95% conversion, there was observed an $88: 5$ ratio of $\mathbf{8 : 9}$ with 2% of an unknown product. After photolyzing 92 min there was observed a 73:24:1 ratio of 8:9:4 with 2% of an unknown product.

Irradiation using a Shutter. A solution of $50 \mathrm{mg}(0.15 \mathrm{mmol})$ of 4 in 160 mL of tert-butanol was irradiated using a Hanovia apparatus fitted with an opaque cylindrical shutter between the Pyrex filter and the immersion well cooling jacket. The shutter fit snugly into a multilayered piece of aluminum foil which prevented light from passing out the bottom of the well. The lamp was turned on for 3 min . with the shutter in place to enable the lamp to warm up. Once the source was at full power, the shutter was removed and the solution was photolyzed as before. The reaction was monitored by GC; aliquots were taken at $0.5-\mathrm{min}$ intervals for the first 6 min and at $1.0-\mathrm{min}$ intervals thereafter, for a total photolysis time of 20 min . The earliest detected ratio of products and reactant was seen after 1 min . There was observed a 39.6:0.4:60.0 ratio of 8:9:4, which corresponds to $c a .100: 1$ ratio of 8:9. Though the production of 9 appeared to be somewhat slower, the previously encountered photostationary state of 76:23:1 (8:9:4) was reached after 10 min .

Light Intensity Experiment. The photochemical reaction of 4 ($40 \mathrm{mg}, 0.13$ mmol) in 130 mL tert-butanol was run in a $250-\mathrm{mL}$ Pyrex flask positioned 40 cm from the Pyrex-filtered 450-W light source. The reaction was monitored by GC, aliquots were removed at 1-min intervals for the first 40 min and at 3-min intervals for an additional 80 min . The earliest detected ratio, 36.0:0.4:63.6 of 8:9:4 occurred after 20 min . This corresponds to $c a .100: 1$ ratio. Upon extended irradiation (2 h), the equilibrium (8:9:4) ratio of 76:23:1 was observed.

Acknowledgements. Support of this work by the Research Corporation is greatly appreciated. V. L. T. is grateful to the Department of Chemistry at Southwestern Oklahoma State University (Weatherford, OK) for the use of their Rayonet reactor.

CHAPTER IV

THE PHOTOCHEMISTRY OF CIS-4,4-DI-
 PHENYL-2-CYCLOHEPTEN-1-ONE

Introduction

The photochemical γ to β aryl rearrangement of 4,4-diphenyl-2-cyclohexen-1-one (1) to give the bicyclo[3.1.0]hexanones, (2) and (3), and the 3,4-diphenyl enone (4) has been of considerable interest (Figure 38). $1,2,9-11$ The general scope of this aryl rearrangement reaction has been presented in the photochemical studies of 4-aryl substituted cyclohexenones, 3-7,14-16,39-41 aryl-substituted 2,4-cyclohexadienones, 8,114 as well as 4-aryl substituted cyclopentenones. ${ }^{42-45}$ In view of the generality of the reaction in five and six-ring systems, the photochemistry of cis-4,4-diphenyl-2-cyclohepten-1-one (11) was investigated to determine if comparable photochemistry would occur in a seven-ring system.

Figure 38. Photochemistry of 4,4-Diphenyl-2-cyclohexen-1-one (1).

Earlier photochemical studies of medium (7-9) ring α, β-enones have focused on unsubstituted systems, in an attempt to determine if photochemical [2+2] cycloadditions would occur. ${ }^{46-49,53,156,157}$ It has been reported that in these α, β-enone systems, photochemical [$2+2$] reaction is not observed but instead cis-trans photoisomerization occurs to generate the ground state trans enone. These highly reactive species then undergo thermal $[2+2]$ cycloadditions to generate head-to-head and head-to-tail dimers. In these unsubstituted systems, the intermolecular photoreaction (photochemical [2+2]) could not compete with the intramolecular photochemical process (cis-trans isomerization). In our substrate, however, the phenyls are positioned such that two intramolecular photochemical processes are possible, aryl migration and cis-trans isomerization. It was, therefore, initially expected that some aryl migration would occur. If aryl migration occurred, stable cis and trans diphenylbicyclo[4.1.0]heptanones would result. The trans diphenyl [3.1.0] system, which is generally reported in aryl migration reactions as the kinetically preferred product, may however, not predominate in the seven-ring system..$^{1-8,14-16}$ Preference for the trans isomer has previously been attributed to a concerted reaction pathway governed by orbital overlap. ${ }^{1,2,16}$ In the larger cyclic enone, the more flexible ring may enforce poor alignment of the reactive orbitals and, thus, inhibit the concerted process and trans isomer formation.

Furthermore, we hoped this study would reveal additional information regarding the nature of the reactive excited state species for cyclic enones. It has recently been proposed that photochemical rearrangements of cyclic enones involve the intermediacy of a twisted enone triplet. ${ }^{13,30-32,56,57}$ The planar enone triplet generated by initial photoexcitation and intersystem crossing, undergoes twisting to give a relaxed triplet species. If this proposed triplet is, in fact, the reactive intermediate, the larger ring system, which should readily accommodate excited state twisting, should exhibit some enhanced reactivity.

Results

Synthesis of the Photoreactant. The synthesis of cis-4,4-diphenyl-2-cyclohepten-1-one (11) is illustrated in Figure 39. The diphenyl enone 5 was prepared according to the synthesis of Zimmerman and coworkers. ${ }^{143}$ Hydrogenation of 5 afforded the known cyclohexanone $\mathbf{6}$ in 95% yield. ${ }^{146}$ Ring expansion of $\mathbf{6}$ by reaction with diazomethane gave 4,4-diphenylcyclohepten-1-one (7) in 58% yield along with 20% of the epoxide 8.158 Bromination of $7\left(\mathrm{LDA}, \mathrm{Br}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right)$ generated both the α and α^{\prime}-bromo regioisomers 9 and 10. ${ }^{159}$ Dehydrobromination of the mixture by reaction with LiBr and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ in refluxing dimethylformamide then afforded the isomeric diphenyl enones 11 and 12. Chromatography of the mixture on silica gel, yielded pure samples of both the desired starting material 11 and the 5,5-diphenyl enone 12 in 20\% and 34% yield, respectively. The isomeric enones 11 and $\mathbf{1 2}$ were easily differentiated by ${ }^{1}$ H NMR. In particular, the C-3 alkene proton was observed as a doublet of triplets (coupled to both the $\mathrm{C}-2$ alkene proton and the $\mathrm{C}-4$ protons) in $\mathbf{1 2}$, while in $\mathbf{1 1}$ this proton corresponded to a doublet (coupled to only the C-2 alkene proton).

Figure 39. Synthesis of Photochemical Substrate

Despite the low yield obtained from the bromination-dehydrobromination sequence, this method proved superior to both selenation- and sulfonylation-elimination reactions for introduction of the C-2-C-3 double bond to 7.160-162 These other methods should, however, be noted for the anomalous yet interesting results that were observed. The selenation-elimination sequence is illustrated in Figure 40. Selenation of the sevenring ketone 7 with phenyl selenenyl bromide afforded, after chromatography, the α - and α^{\prime}-selenides 13 and 14 in 34% and 0.24% yield, respectively. 160 Surprisingly, oxidation-elimination of the α-selenide 13 with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in pyridine lead to the 5,5diphenyl enone 12.160 Only trace amounts of the expected enone $\mathbf{1 1}$ were produced from the reaction. In addition, oxidation-elimination of the α^{\prime}-selenide 14 also generated the 5,5-diphenyl enone 12. The unexpected result observed in the selenoxide elimination of $\mathbf{1 3}$ can be rationalized by a 1,3-phenylseleno migration prior to elimination. Basecatalyzed 1,3-sigmatropic rearrangements of the phenylseleno group have been reported for various α-alkylated- α-phenylselenoketones. ${ }^{163,164}$ It has been observed that steric

7

13

13

12

14

14

Figure 40. Phenylselenation-Elimination Sequence for 7
crowding at or around the α-phenylseleno group accelerates the α to α^{\prime} rearrangement. 163,164 An alternate suggestion 163,164 that the 1,3-migration is driven by the production of a more stabilized enolate seems less probable in the current reaction.

The sulfenylation-elimination sequence is depicted in Figure 41. Reaction of the lithium enolate of 7 with diphenyl disulfide generated the α '- and α-phenylsulfenyl ketones 15 and 16. ${ }^{161,162}$ Isolation of the minor phenylsulfenyl product 15, followed by oxidation with MCPBA, yielded the sulfoxide 17. ${ }^{161,162}$ Thermolysis of 17 in toluene afforded only 17% of the desired enone 11 with the α-phenylsulfenylide 15 being produced in 77% (GC yield). ${ }^{161,162}$ This apparent reduction of the phenylsulfoxide substituent, though of little utility, has not previously been reported.

Some comment is necessary concerning the regioselectivity of addition to the lithium enolates derived from 7, by bromine, diphenyl disulfide, and phenylselenenyl bromide. Preferential reaction occurs at C-2 using phenylselenenyl bromide while

Figure 41. Phenylsulfinylation-Elimination of 7.
substitution occurs preferentially to the $\mathrm{C}-7$ enolate using bromine and diphenyl disulfide. This suggests that enolization toward C-2 is kinetically preferred since phenylselenenyl bromide is expected to be the better electrophile and should, thus, react faster than the other reagents. This preference is most intriguing and not well understood.

Exploratory Photochemistry and Structure Elucidation of the

 Products. The photochemical reactions were carried out using conditions comparable to those reported for 4,4-diphenyl-2-cyclohexen-1-one. ${ }^{1}$ Irradiation of a $10^{-3} \mathrm{M}$ solution of 11 in degassed tert-butanol through a Pyrex filter using a $450-\mathrm{W}$ medium pressure Hanovia immersion apparatus led to a rapid disappearance of $11(\sim 30 \mathrm{~min}$, monitored by TLC) and formation of two products, 18 and 19. The products, 18 (35%) and 19 (15%) were isolated and purified by preparative thin layer chromatography on silica gel. Both products were stable to silica gel as indicated by ${ }^{1} \mathrm{H}$ NMR taken before and after the separation. The long retention times and lack of resolution on the GC programmed from $150-300^{\circ} \mathrm{C}$ suggested that both products were high molecular weight compounds. This was confirmed by MS, which indicated that both products were isomeric dimers of $\mathbf{1 1}$. The NMR, \mathbb{R} and UV also supported dimeric product structures. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the major dimer 18 exhibited peak broadening and was, therefore, subjected to low temperature NMR experiments. The NMR spectra was not resolved at low temperature $\left(-40^{\circ} \mathrm{C}\right)$ but did resolve at $+50^{\circ} \mathrm{C}$. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(+50^{\circ}\right)$ indicated a high degree of symmetry in the structure. The ${ }^{1} \mathrm{H}$ NMR indicated only seven different aliphatic proton signals, six of these signals corresponding to two protons each (12 total) with the farthest upfield signal corresponding to four protons. The ${ }^{13} \mathrm{C}$ NMR showed only six aliphatic signals.The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(+23^{\circ} \mathrm{C}\right)$ for 19 were very similar to the high temperature spectra obtained for 18 . The ${ }^{1} \mathrm{H}$ NMR showed seven aliphatic proton signals and the ${ }^{13} \mathrm{C}$ NMR showed six aliphatic resonances. Although, the NMR spectra
for 19 did not exhibit peak broadening, high temperature NMR's were obtained for comparative purposes. The NMR's for 19 taken at $40^{\circ} \mathrm{C}$ were nearly identical to the room temperature spectra.

It was initially realized that from 11, there were a total of twelve cyclobutane (head-to-tail and head-to-head) dimers possible. Based on steric arguments and symmetry considerations six of these dimers could be excluded as possibilities. Molecular models suggested that the large steric interactions between the two C-4 diphenyl substituents would preclude the formation of the head-to-head and head-to-tail dimers with cis-syn-cis geometry about the cyclobutane ring. In addition, the unsymmetrical head-to-tail and head-to-head trans-anti-cis and trans-syn-cis dimers would be eliminated as possible structures for 18 and 19, since these dimers would show twelve aliphatic carbon signals in the ${ }^{13} \mathrm{C}$ NMR versus the six that were observed. Therefore, six total head-to-tail and head-to-head (trans-anti-trans and cis-anti-cis and trans-syn-trans) dimers were reasonable possibilities for 18 and 19. Although, shift reagent studies would provide additional information regarding the stereochemistry about the cyclobutane ring (due to the syn and anti orientation of the carbonyls with respect to the cyclobutane protons), the regiochemistry (head-to-head or head-to-tail) was not apparent. Therefore, it was necessary to submit both isomers 18 and 19 for X-ray structure determination. The single crystal X-ray analysis revealed the structure of 18 to be ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha$)-dodecahydro-5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicyclo-heptene-1,10-dione and 19 to be (\pm)-($5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$-dodecahydro-5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicycloheptene-1,10-dione. The 3-D drawings clearly illustrate the stereochemistry about the cyclobutane ring to be trans-syn-trans for 18 and trans-anti-trans for 19 (Figures 42 and 43). Interesting structural features were noted in the X-ray analysis. In particular, the C-5a-C-5b cyclobutane bond is increased from 1.58 \AA in 19 to $1.61 \AA$ in 18 and the C-5-C-5a-C-5b angle is opened up from 127.4° in 19 to 140.4° in 18. These differences are understandable since the phenyl-phenyl steric
interactions of the syn-oriented phenyl groups in 19 may be relieved by opening the angle and lengthening the bond between these substituents.

Figure 42. 3-D Drawing of the Trans-Syn-Trans Head-to-Head Dimer 18. The 3-D Drawing Lacks the Thermal Ellipsoids Illustrated in the ORTEP Drawing.

Figure 43. 3-D Drawing of the Trans-Anti-Trans Head-to-Head Dimer 19. The 3-D Drawing Lacks the Thermal Ellipsoids Illustrated in the ORTEP Drawing.

It is interesting to note the results of the proton NMR shift reagent experiments which were found to be consistent with the stereochemistry observed from X-ray analysis. ${ }^{165}$ In the trans-syn-trans system 18, the syn-oriented carbonyl substituents are in a syn arrangement with the β-cyclobutyl protons ($\mathrm{H}-5 \mathrm{a}$ and $\mathrm{H}-5 \mathrm{~b}$) and in an anti arrangement with the α-cyclobutyl protons (H-10a and H-10b). Therefore, upon complexation of the carbonyl groups with shift reagent, assuming distance-dependent correlations, the β-cyclobutyl proton signal should exhibit a larger chemical shift than the α-cyclobutyl proton signal. ${ }^{117-119,166}$ The magnitude of the β-cyclobutyl proton shift should be relatively small since the syn carbonyls are directed away from these protons. With increasing concentrations of shift reagent, the α-cyclobutyl protons, assigned to the farthest downfield aliphatic signal, and the β-cyclobutyl proton signal should move closer and closer together. The results of the shift reagent experiment are given in Figure 44 and Table 5. The slopes obtained from the response curve (Figure 44) for 19 showed the β cyclobutyl protons to be shifted farther than the α-cyclobutyl protons. ${ }^{118,119}$ The response curve also shows the decrease in separation for these signals with added shift reagent.

18

19

In the trans-anti-trans system 19, both the α - and β-cyclobutyl protons ($\mathrm{H}-10 \mathrm{a}$ and $\mathrm{H}-10 \mathrm{~b}$ and $\mathrm{H}-5 \mathrm{a}$ and $\mathrm{H}-5 \mathrm{~b}$) are in a syn arrangement with one anti-oriented carbonyl
group. The α-cyclobutyl protons are in an edge on orientation with the syn carbonyl groups while the β-cyclobutyl protons are directed away from the syn carbonyl groups. Therefore, the α-cyclobutyl protons appear to be closer to the carbonyl complexation sights. Upon addition of shift reagent the α-cyclobutyl proton signal should then experience a larger shift than the β-cyclobutyl proton signal. 117,118 With increasing concentrations of shift reagent, these signals should begin to separate. The results of the shift reagent study on the minor product 19 indicated the trans-anti-trans geometry about the cyclobutane ring (Figure 44 and Table 5). The slopes obtained from the response curve showed the larger α-cyclobutyl proton shift with respect to the β-cyclobutyl protons and increasing separation between these signals. ${ }^{117,118}$

The summary of the photochemistry for $\mathbf{1 1}$ is depicted in Figure 45. Control irradiations of 18 and 19 showed no photoisomerization between the two.

11

18

19

Figure 45. Photochemical Summary for 11.

Having established the products formed upon irradiation of 11, it was then of interest to examine the mechanism for formation of the two dimers 18 and 19. It has been reported that the photolysis of cis-2-cyclohepten-1-one (20) results in isomerization

Figure 44. Chemical Shift vs. Moles Shift Reagent for Cyclobutane Protons of 18 and 19.

Table 5
SLOPES AND INITIAL PROTON SHIFTS FOR 18 and 19

Compound	Proton	Slope ($\Delta \mathrm{m}$)	Initial Proton Shift, (IS, δ)
18	H10a-10b	1.763	4.43
18	H5a-5b	2.567	3.39
19	H-10a-10b	3.615	4.13
19	$H-5 a-5 b$	1.981	3.26

to the trans-2-cyclohepten-1-one (21). This highly reactive species then undergoes dark reactions such as $[2+2]$ dimerizations and additions (Figure 46). ${ }^{48,49}$ Low temperature infrared studies of 20 have confirmed the formation of the trans species as well as the thermal reactions. 48,49 Trans cyclic ketones generated from irradiation of corresponding

Figure 46. Reactivity of the Trans Enones Generated From 20 and 11.
large ring cis enones have also been trapped by ground state addition reactions with dienes and nucleophiles. ${ }^{50-52}$ For example, photoinduced additions of methanol- d_{1} to 20 have been reported to lead to the mono deuterated trans-3-methoxy-1-cycloheptanone (25). .51 This result was attributed to a syn addition of methanol- d_{1} to the highly strained double bond of 21 (Figure 47). ${ }^{51}$

$25 \mathrm{R}=\mathrm{H}$
$26 \mathrm{R}=\mathrm{Ph}$
Figure 47. Photoinduced Addition of Methanol to 11 and 20.

In accord with previous studies of seven-ring enones, it was proposed that the dimers 18 and 19 were also the result of a thermal [2+2] reaction of the strained trans enone 23. In support of the proposed mechanism, irradiation of 11 in methanol- d_{1} was found to lead to the trans-methoxy cycloheptenone system 26 (Figure 47). The assignment of 26 to the trans structure was based on proton NMR coupling constants. It has been reported that for 3-methoxy cyclic ketones, the coupling constants of $\mathrm{H}-3$ with the trans and cis protons $\mathrm{H}-2 \mathrm{t}$ and $\mathrm{H}-2 \mathrm{c}$ are quite different $(\mathrm{H}-3-\mathrm{H}-2 \mathrm{t}>\mathrm{H}-3-\mathrm{H}-2 \mathrm{c}) .51,167$ For example, double irradiation experiments (to eliminate the $\mathrm{H}-4$ coupling with $\mathrm{H}-3$) on 3-methoxy-1-cycloheptenone 22 showed the $\mathrm{H}-3-\mathrm{H}-2$ t coupling to be 6.5 Hz while the $\mathrm{H}-3-\mathrm{H}-2 \mathrm{c}$ coupling was only $4.0 \mathrm{~Hz} .{ }^{51}$ The deuterated trans analog 25 showed only the larger coupling. ${ }^{51}$ Irradiation of 11 in methanol resulted in formation of 3-methoxy-1cycloheptanone 24 . In 24 , the coupling constants of $\mathrm{H}-3$ with the $\mathrm{H}-2 \mathrm{t}$ and $\mathrm{H}-2 \mathrm{c}$ were
6.1 and 1.7 Hz , respectively. The product obtained from irradiation of 11 in methanold_{1} showed only the larger coupling, consistent with the trans system 26.

Discussion and Mechanistic Interpretation. The mechanism for the irradiation of cis-4,4-diphenyl-2-cyclohepten-1-one 11 is thought to parallel that reported for cis-2-cycloheptenone, ${ }^{48,49}$ cis-2-cyclooctenone ${ }^{47}$ and cis-2-cyclononenone ${ }^{50}$ (Figure 48). It is proposed that the enone undergoes initial electronic excitation into the $n-\pi^{*}$ band followed by intersystem crossing to either the $n-\pi^{*}$ or $\pi-\pi^{*}$ triplet state. The resulting planar enone triplet then undergoes a twisting motion about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond until a critical geometry is reached, followed by radiationless transition to the ground state trans enone. ${ }^{168}$ This twisting is the favored process since rotation about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond minimizes the mutual repulsive interactions of the π and π^{*} electrons. 50 The twisted triplet possesses the ideal geometry for radiationless decay directly to ground state and it would appear that because of this, exclusive cis-trans isomerization occurs over the intramolecular aryl migration. ${ }^{13}$ The ground state trans enone 23 is highly strained and very reactive and therefore undergoes thermal $[2+2]$ cycloadditions. Thermal $[2+2]$ cycloadditions have been reported to occur by a stepwise mechanism involving a diradical intermediate. ${ }^{169}$ It has been suggested that any stabilizing effect on the diradical would be an important factor in determining the regiochemistry. ${ }^{169}$ Since the more stable diradical is also thought to lead to product, ${ }^{170}$ the initial step should involve combination of two enone double bonds and formation of the diradicals 27 and 28, which is stabilized by the adjacent carbonyl systems. ${ }^{157}$ The diradical precursors to the head-to-tail dimers are of only intermediate stability and if produced should not lead to product. Closure of the 1,4 -diradicals 27 and 28 would then give 18 and 19. Combination of two trans double bonds or a trans and a cis double bond would lead to the same products if we assume the diradical formed is nearly planar or slightly pyramidal with a low barrier to inversion. ${ }^{171}$ Formation of the more strained trans-fused dimers may indicate the
combination of two trans double bonds to generate slightly pyramidal diradicals (Figure 49). Closure of the diradicals to trans product then occurs much faster than inversion and closure.

Figure 48. Proposed Mechanism for Formation of 18 and 19 from 11.

In theory, concerted thermal $[2+2]$ cycloadditions can proceed in a symmetry allowed fashion by $\left(\pi^{2}{ }_{\mathrm{s}}+\pi^{2} \mathrm{a}\right.$) process. ${ }^{172}$ Examples of concerted thermal [2+2] reactions have been presented, generally in systems where approach of the interacting orbitals is not sterically hindered and the angle strain is minimal. ${ }^{173,174}$ If the thermal dimerization were to proceed in a concerted fashion, a ground state trans enone 23 must react with a ground state cis enone 11 , in order to obtain the stereochemistry observed in 18. In the concerted thermal process, three of the four carbon atoms responsible for the

23

18

19

Figure 49. Formation of Trans-Fused Dimers From Pyramidal Diradicals.
cyclobutane ring will show retention of configuration and one will be inverted. ${ }^{169}$ concerted thermal $[2+2]$ reaction of two ground state trans enones would lead to a product with the trans-syn-cis geometry. The concerted trans-cis addition process to give 18 does seem likely since at any given time the majority of ground state molecules will be cis enones and thus the highly reactive ground state trans species has a greater chance of colliding with one of these cis molecules.

trans-anti-trans

Ground state reaction of the highly strained trans enone 23 is also thought to account for the observed reactivity of 11 in methanol- $\mathrm{d}_{1} .50,51$ The photoinduced addition is thought to involve two discrete steps, in accord with previously reported low temperature studies of several medium ring α, β-enones. The first step involves photoisomerization of $\mathbf{1 1}$ to the trans isomer 23 and the second step is the thermal addition of methanol- d_{1} to this ground state trans species. The trans double bond even though less conjugated with the carbonyl system than the cis enone, should be more polarized by strain. ${ }^{51}$ Therefore the carbonyl group withdraws electron density effectively from C_{β}, encouraging regiospecific attack at this sight. Deuterium transfer to the resulting dipolar intermediate then occurs to the unblocked face, accounting for the observed stereochemistry (see Figure 47). ${ }^{51}$

Thermal $[2+2]$ reactions of the ground state trans enones have been established as the mechanism responsible for dimer formation in medium ring enones. Unless the phenyls in 11 exert some influence on the reactivity, there is no evidence to the contrary. However, there is always the remote possibility that the dimers 18 and 19 are a result of a photochemical $[2+2]$ reaction (Figure 50). This photochemical reaction has been reported to be responsible for the $[2+2]$ dimers observed for small ring α, β-enones. ${ }^{46,64}$ It has been reported that in photochemical $[2+2]$ cycloadditions the mechanism involves an initial $n-\pi^{*}$ excitation of the enone followed by intersystem to the $n-\pi^{*}$ or $\pi-\pi^{*}$ triplet state. $64,89,170,175$ Corey has proposed that a π-complex between an excited state enone and a ground state enone is then formed. ${ }^{176}$ The oriented π-complex then proceeds through a triplet 1,4-diradical, followed by spin inversion and closure to afford the cyclobutane products. The π-complex is thought to be the species largely responsible for determining the regiochemical outcome of the reaction. $64,170,175$ Orientational preferences in the π-complex derive largely from charge distribution in the excited triplet state. ${ }^{64,170,175}$ In the excited state enone species, C_{β} is thought to be somewhat more negative relative to $\mathrm{C} \alpha$ in contrast to the ground state species. ${ }^{64}$ Therefore, in the 4,4-
11

29

30

18

19

Figure 50. Photochemical [2+2] Addition Mechanism for 11.
diphenyl cycloheptenone system 11, dipolar interaction between the triplet enone and a ground state enone would afford the π-complex with a head-to-head orientation. Collapse of the π-complex should then lead to the 1,4-triplet diradicals 29 and 30, followed by conversion to the singlet and ring closure. ${ }^{170}$ The formation of the trans ring-fused products is not an obvious expectation from the π-complex. However, it is understandable if the π-complex possesses a highly twisted double bond. ${ }^{170}$ Trans closure of the diradicals formed from this π-complex would be kinetically preferred over bond rotation and closure. Direct diradical formation, bypassing π-complex formation has also been suggested to lead to the [2+2] adducts. ${ }^{64,89}$

The regiochemistry of photochemical $[2+2]$ cycloadditions has been reported to depend on solvent polarity $.46,64$ There is generally a marked increase in the amount of head-to-head dimers in polar solvents as compared to nonpolar solvents. This can be
attributed to the fact that the more polar dimer is favored in the more polar solvent. ${ }^{46}$ In the 4,4-diphenyl system 11, a change in solvent from tert-butanol to benzene caused no change in the ratio of products or production of any head-to-tail adducts.

It was not initially expected that the head-to-head dimers, 18 and 19, would prevail over the head-to-tail systems. One would expect phenyl-phenyl steric interactions to influence the course of the reaction, thus leading to a head-to-tail orientation in the products. The formation of the trans-fused head-to-head dimers is thus surprising. The lack of any apparent negative interactions in the head-to-tail dimers would suggest the possibility of positive interactions between the phenyl substituents in the head-to-head system. Additional studies of non-aromatic sterically hindered α, β-cycloheptenones would need to completed before any conclusions can be drawn.

Despite the lack of aryl migration products in the seven-ring enone system, this work has provided a definitive structural assignment of the cyclobutane dimers. Generally, the structure of the cyclodimers produced from thermal $[2+2]$ reactions are assigned on the basis of spectral data or chemical proof and are, therefore, subject to error. $53,156,157,169$ One of the major problems associated with assigning the stereochemistry about the cyclobutane ring based on NMR vicinal couplings, is that these coupling constants have been shown to be sensitive to substituent and strain effects. ${ }^{177-}$ 179 The use of chemical proofs for stereochemical assignment about the cyclobutane ring, generally involves degradation to known cyclobutane products. $156,157,169$ These not only assume no epimerization but also no error in original assignments of the known cyclobutane products. The crystal structures of 18 and 19 have, therefore, provided an unequivocal assignment of the stereochemistry about the cyclobutane ring.

In conclusion, the utility of the aryl migration processes seems to be limited to small ring cyclic enones and may only be possible for medium ring α, β-enones that are constrained from cis-trans isomerization.

Experimental

Melting points were obtained on a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were recorded with a PE-681 instrument and are referenced to polystyrene. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were measured as solutions in CDCl_{3} at 300 MHz and 75 MHz , respectively, on a Varian XL-300 superconducting FT instrument; chemical shifts are reported in δ units relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. UV spectra were recorded in absolute ethanol using a Varian DMS-200 spectrophotometer. Mass spectra were recorded at 70 eV on a VG ZAB-2SE or a VG TS-250 instrument. Elemental analyses ($\pm 0.4 \%$) were performed by Galbraith Laboratories, Knoxville, TN.

All reactions were run under an atmosphere of dry nitrogen. Solvents used in photochemical runs were purified in the following manner: tert-butanol was distilled from CaH_{2}; benzene was sequentially washed with concentrated concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x})$, $5 \% \mathrm{KMnO}_{4}$ in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x})$, and 10% aqueous KOH , then dried over anhydrous MgSO_{4} and distilled from CaH_{2}. All photochemical reactions were degassed with dry, oxygen-free nitrogen for 1 h prior to and during irradiation. Column chromatography was performed on silica gel (Grace, grade 62, 60-200 mesh) mixed with Sylvania 2282 phosphor and slurry packed into Vycor columns such that band elution could be monitored with a hand-held UV lamp. Preparative thick layer chromatography (PTLC) was performed on Analtech (No. 02015) preparative silica gel uniplates with fluorescent indicator. Reactions were monitored on a capillary GC (Varian 3400) with FI detection on a $6 \mathrm{~mm} \mathrm{X} 0.1 \mathrm{~m} \mathrm{SE}-30$ column programmed between $100-300^{\circ} \mathrm{C}$.

4,4-Diphenyl-2-cyclohexenone (5). The procedure of Zimmerman ${ }^{143}$ was used. To a $0^{\circ} \mathrm{C}$ solution of $25 \mathrm{~g}(0.13 \mathrm{~mol})$ of diphenylacetaldehyde and 10.6 mL $(8.92 \mathrm{~g}, 0.13 \mathrm{~mol}$) of methyl vinyl ketone in 187 mL of ether was added a $14-\mathrm{mL}$ (95%) ethanol solution of $2.32 \mathrm{~g}(0.041 \mathrm{~mol})$ of potassium hydroxide during 70 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 45 min , then poured onto ice. Benzene was
added to dissolve the yellow solid. The mixture was neutralized to a pH of 7 with $1 M$ HCl and the aqueous layer was ether extracted. The organic extracts were combined, washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting gummy residue was crystallized and recrystallized from 95\% ethanol to give $20 \mathrm{~g}(0.08 \mathrm{~mol}, 62.5 \%)$ of 4,4-diphenyl-2-cyclohexenone (5) as a white
 $1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.21(\mathrm{cplx}, 11 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz})$, $2.69(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 2.40(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 198.9$, $156.2,145.3,128.9,128.8,128.5,127.6,126.8,49.2,35.8,34.9$.

4,4-Diphenylcyclohexanone (6). The general procedure of Bordwell ${ }^{146}$ was used. A 125 mL acetic acid solution of 20 g (0.08 mol) of 4,4-diphenyl-2-cyclohexenone (5) containing 0.5 g of $10 \% \mathrm{Pd} / \mathrm{C}$ was shaken under 60 psi of H_{2} in a Parr apparatus at $25^{\circ} \mathrm{C}$ for $12 \mathrm{~h}\left(\mathrm{H}_{2}\right.$ uptake, 20 psi$)$. The crude reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solution was concentrated under vacuum. The residue was taken up in a 1:1 ether:chloroform solution and washed with saturated aqueous NaHCO_{3}, water and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow solid was recrystallized once from absolute ethanol to yield $19.25 \mathrm{~g}(0.077 \mathrm{~mol}, 95 \%)$ of 4,4-diphenylcyclohexanone (6) as a white solid, 142$143^{\circ} \mathrm{C}$, lit. ${ }^{146} \mathrm{mp} .140-142^{\circ} \mathrm{C}$. The spectral data were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2950,1707,1600$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz})$, $2.44(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 211.0,145.8,128.6,126.7,126.3$, 45.5, 38.6, 36.4 .

4,4-Diphenylcycloheptanone (7). The general procedure of Carnmalm and coworkers ${ }^{158}$ was followed. To a stirred two phase mixture of 480 mL of ether and 240 mL of $33 \% \mathrm{NaOH}$ was added $14.4 \mathrm{~g}(0.14 \mathrm{~mol})$ of nitrosomethylurea ${ }^{180}$ in small portions. Once addition was complete and the bubbling had ceased, the mixture was cooled to $-78^{\circ} \mathrm{C}$. The yellow ethereal layer of diazomethane was decanted and added
slowly with stirring to 12 g (0.048 mol) of 4,4-diphenylcyclohexanone (6) in 200 mL of ethanol at $23^{\circ} \mathrm{C}$. After $0.5 \mathrm{~h}, 50 \mathrm{~mL}$ of dioxane was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h . To the resulting pale yellow solution was added acetic acid dropwise until all the unreacted diazomethane had decomposed. The organic solvents were removed under vacuum and the aqueous layer was extracted with ether. The combined ether extracts were washed with water, saturated aqueous NaHCO_{3}, saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting pale yellow solid was purified by column chromatography on two $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel columns eluted with increasing concentrations of ether in hexane. The compounds eluted as follows: 2.5% ether in hexane, 2.53 g ($9.6 \mathrm{mmol}, 20 \%$) of 6,6-diphenyl-1-oxaspiro[2.5]octane (8); 3% ether in hexane, $0.84 \mathrm{~g}(3.4 \mathrm{mmol}, 7 \%)$ of $6,7.4 \mathrm{~g}(28.0 \mathrm{mmol}$, 58%) of 4,4-diphenylcycloheptanone (7) as a white solid. The spectral data for 7 were: mp. $101-102^{\circ} \mathrm{C}$, lit. ${ }^{158} \mathrm{mp} .101-102^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 2935,1700,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~m}, 6 \mathrm{H}), 2.51(\mathrm{~m}, 6 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (quintet, $2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 214.3,147.3,128.3,127.2,126.0,50.0$, 43.2, 40.9, 39.6, 34.1, 19.8.

The spectral data for 8 were: $\mathrm{mp} .128-129^{\circ} \mathrm{C} ; \mathbb{R}\left(\mathrm{CHCl}_{3}\right) 2940,2865,1600$, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 2.59$ ($\mathrm{s}, 2 \mathrm{H}$), $2.49(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}$), $1.84(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=7.0,14.0 \mathrm{~Hz}$), $1.50(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=$ $5.0,14.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 148.2,145.7,128.4,128.3,127.3,126.7$, $125.8,125.7,58.5,54.1,45.5,34.7,30.0$.

4,4-Diphenyl-2-cyclohepten-1-one (11). The general procedure of Stotter and Hill ${ }^{159}$ was followed. To a $-78^{\circ} \mathrm{C}$ solution of $2.8 \mathrm{~mL}(2.02 \mathrm{~g}, 0.02 \mathrm{~mol})$ of diisopropylamine in 25 mL THF was added 14.3 mL of a 1.4 M solution of $n-\mathrm{BuLi}$ in hexane. The lithium diisopropylamine was allowed to stir for 20 min and a solution of 5.0 g (0.019 mol) of 4,4-diphenylcycloheptanone (7) in 50 mL of THF was added. The enolate was stirred for 20 min at $-78^{\circ} \mathrm{C}$ and a $15-\mathrm{mL}$ methylene chloride solution of 1.3
$\mathrm{mL}(4.04 \mathrm{~g}, 0.025 \mathrm{~mol})$ of bromine was added dropwise. There was an immediate decolorization of the bromine solution upon addition. The mixture was stirred for 5 min , added to cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ether extracted. The organic layer was washed quickly with $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and then saturated aqueous NaCl . The solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield a yellow oil. The ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of the crude mixture showed a $2: 3$ ratio (4.52, dd, $1 \mathrm{H}, \mathrm{J}=3.1,11.8 \mathrm{~Hz}$ and 4.34 , dd, $1 \mathrm{H}, \mathrm{J}=5.1,8.9 \mathrm{~Hz}$) of 2-bromo-4,4-diphenylcycloheptanone : 2-bromo-5,5-diphenylcycloheptanone. Gas chromatography of the crude mixture showed two peaks, one corresponding to 7 (ca. 28%), and the second peak with a longer retention time corresponding to the two bromides (ca. 72\%). The crude mixture, thus obtained, and $3.0 \mathrm{~g}(0.04 \mathrm{~mol})$ of $\mathrm{Li}_{2} \mathrm{CO}_{3}$, $3.5 \mathrm{~g}(0.04 \mathrm{~mol})$ of LiBr , and 50 mL of DMF were heated to $123^{\circ} \mathrm{C}$ for 48 h . The mixture was taken up in ether, washed with water, saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting brown oil was purified by column chromatography on an $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with increasing concentrations of ether in hexane. Fractions $(250 \mathrm{~mL})$ were collected The compounds eluted as follows: 1% ether in hexane, fractions $1-2$, nil; 2% ether in hexane, fractions 3-4, nil; 3.5% ether in hexane, fractions 5-6, unreacted bromide, fraction 7, nil; 4.5% ether in hexane, fractions 8-10, 4,4-diphenyl-2-cyclohepten-1-one (11) and a small amount of 5,5-diphenyl-2-cyclohepten-1-one (12), fractions 11-17, $1.68 \mathrm{~g}(6.4 \mathrm{mmol}, 34 \%)$ of $\mathbf{1 2}$, fraction 18 , nil; 5% ether in hexane, fractions $19-23$, $.05 \mathrm{~g}(4.0 \mathrm{mmol}, 21 \%)$ of 7 . Fractions $8-10$ were combined and purified on five 20 cm $x 20 \mathrm{~cm}$ silica gel PTLC plates eluting with 5% ethyl acetate in hexane (5x). The fastest moving band yielded compound 11. Decolorization of 11 using activated charcoal and crystallization from ether yielded $0.99 \mathrm{~g}(3.8 \mathrm{mmol}, 20 \%)$ of 11 as a white solid, mp. $58-60^{\circ} \mathrm{C}$. The spectral data for 11 were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2948,1670,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \operatorname{7.31-7.17}(\mathrm{cplx}, 10 \mathrm{H}), 6.69(\mathrm{~A}$ of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=12.7 \mathrm{~Hz}), 6.12(\mathrm{~B}$
of $\mathrm{ABd}, 1 \mathrm{H}, \mathrm{J}=12.7 \mathrm{~Hz}$), $2.57(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$), 1.71 (quintet, $2 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 203.5,150.8,146.2,130.2,128.3,128.1,127.9,127.7,126.5$, 55.7, 43.7, 38.8, 18.5; UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 323$ (107), 230 (10250); MS, m/e (\%) 262 (36), 234 (37), 206 (100), 191 (33), 128 (30), 91 (72); HRMS, exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$ m/e 262.1357, found m / e 262.1360. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$: C, 86.98; H, 6.92. Found: C, 86.60; H, 7.10.

The spectral data for 12 were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2940,1665,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.12(\mathrm{cplx}, 6 \mathrm{H}), 6.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.2,12.1 \mathrm{~Hz})$, $6.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 3.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $(\mathrm{CDCl} 3) ~ \delta 203.7,148.4,143.1,133.1,128.4,127.0,126.2,50.4,41.6,40.2,33.1$; MS, m/e (\%) 262 (41), 204 (46), 193 (55), 165 (43), 115 (66), 95 (100), 91 (55); HRMS, exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O} m / e$ 262.1357, found $m / e 262.1356$.

Exploratory Direct Photolysis of 4,4-Diphenyl-2-cyclohepten-1-one

 (11). A. In tert-Butanol: The procedure described by Zimmerman ${ }^{1}$ for the photolysis of 4,4-diphenyl-2-cyclohexenone was followed. A solution of $100 \mathrm{mg}(0.38$ mmol) of 4,4-diphenyl-2-cyclohepten-1-one (11) in 305 mL of degassed tert-butanol in a Kreil flask (Ace no. 6963) was irradiated through Pyrex using a $450-\mathrm{W}$ medium pressure Hanovia immersion apparatus. The reaction was followed by TLC analysis of concentrated aliquots taken at 10 min intervals for a total photolysis time of 30 min . The solution was concentrated in vacuo and the crude residue purified on a $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plate eluted once with 50% ether in hexane. The fastest moving of three bands yielded 10 mg ($0.04 \mathrm{mmol}, 10 \%$) of $\mathbf{1 1}$. The second band yielded $30 \mathrm{mg}(0.06$ $\mathrm{mmol}, 15 \%)$ of $(\pm)-(5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$-dodecahydro-5,5,6,6-tetraphenylcyclobuta-[1,2:3,4]dicycloheptene-1,10-dione (19) as a white solid, mp. 231-233 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $2920,1700,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right) \delta 7.28(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~m}, 6 \mathrm{H})$, $6.89(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.79(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 4.03(\mathrm{~A}$ of $\mathrm{ABm}, 2 \mathrm{H}), 3.15(\mathrm{~B}$ of $\mathrm{ABm}, 2 \mathrm{H}$), $2.66(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.0,14.5 \mathrm{~Hz}$), $2.46(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.0$,$14.5 \mathrm{~Hz}), 1.70(\mathrm{~A}$ of $\mathrm{ABm}, 2 \mathrm{H}), 1.58(\mathrm{~B}$ of $\mathrm{ABm}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right) \delta$ $210.0,146.6,143.9,129.6,129.1,128.2,127.3,126.4,125.9,53.2,48.1,43.6$, 43.1, 43.0, 18.5; UV (abs. EtOH) $\lambda_{\max }$ (ع) 260 (888), 216 (7595); MS, m/e (\%) 524 (100), 506 (45), 313 (29), 206 (88), 193 (86), 167 (38), 91 (36); HRMS, exact mass calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~m} / e 524.2715$, found $m / e 524.2713$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2}$: C, 86.98; H, 6.92. Found: C, 87.06; H, 7.11.

The third band yielded $70 \mathrm{mg}(0.13 \mathrm{mmol}, 35 \%)$ of $(5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha)-$ dodecahydro-5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicycloheptene-1,10-dione (18) as a white solid, $\mathrm{mp} .260-263^{\circ} \mathrm{C}$; $\mathrm{R}\left(\mathrm{CHCl}_{3}\right) 2935,1705,1690,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}\right) \delta 7.06(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{~m}, 8 \mathrm{H}), 6.43(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.45(\mathrm{~A}$ of $\mathrm{ABm}, 2 \mathrm{H}$), 3.42 (B of $\mathrm{ABm}, 2 \mathrm{H}$), 2.98 (dt, $2 \mathrm{H}, \mathrm{J}=8.8,18.0 \mathrm{~Hz}$), 2.64 (ddd, $2 \mathrm{H}, \mathrm{J}$ $=2.2,8.8,14.6 \mathrm{~Hz}$), 2.51 (ddd, $2 \mathrm{H}, \mathrm{J}=4.9,6.4,18.0 \mathrm{~Hz}$), $1.94(\mathrm{ddd}, 2 \mathrm{H}, \mathrm{J}=2.2$, $8.8,14.6 \mathrm{~Hz}), 1.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}\right) \delta 211.5,147.5,142.2$, $129.9,128.5,128.2,127.5,126.5,126.3,55.5,52.0,47.4,43.9,40.8,18.6$; UV (abs. EtOH) $\lambda_{\max }(\varepsilon) 260$ (749), 214 (12985); MS, m/e (\%) 524 (20), 206 (100), 194 (63), 167 (34), 115 (46), 91 (57); HRMS, exact mass calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~m} / \mathrm{e}$ 524.2715, found m / e 524.2712. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2}: \mathrm{C}, 86.98 ; \mathrm{H}, 6.92$. Found: C, 87.00; H, 6.97.
B. In Benzene: A solution of $100 \mathrm{mg}(0.38 \mathrm{mmol})$ of 11 in 305 mL degassed purified benzene was photolyzed using conditions identical to those described above. The reaction time and isolated products:reactant ratios were all within 5% of those observed in the photolysis reaction of $\mathbf{1 1}$ in tert-butanol.

Single Crystal X-ray Structure Determination of (5a $\beta, 5 \mathrm{~b} \beta$, 10a α, $10 \mathrm{~b} \alpha)$-dodecahydro-5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicyclo-heptene-1,10-dione (18) and (\pm)-(5a $\beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$-dodecahydro-5,5,6,6-tetraphenylcyclobuta[1,2:3,4]dicycloheptene-1,10-dione (19). Single crystals of $\mathbf{1 8}$ and 19 were mounted on a Syntex P3 automated diffractometer.

Unit cell dimensions (Table 6) were determined by least squares refinement of the best angular positions for 15 independent reflections ($2 \theta>15^{\circ}$) during normal alignment procedures using molybdenum radiation $(\lambda=0.71069 \AA$). Data (3612 for 18,3685 for 19 independent points after removal of space group forbidden for 18 and redundant data for 18 and 19) were collected at room temperature using a variable scan rate, a $\theta-2 \theta$ scan mode and a scan width of 1.2° below $\mathrm{K} \alpha_{1}$ and 1.2° above $\mathrm{K} \alpha_{2}$ to a maximum 2θ value of 45°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections. As the intensities of these reflections showed less than 5\% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization and background effects. Observed reflections [2119 for 18, 2481 for $19, \mathrm{I}>3.0 \sigma(\mathrm{I})$] were used for solution of carbon and oxygen positions of the structure by direct methods using MULTAN80. ${ }^{129}$ Refinement ${ }^{130}$ of scale factor, positional and anisotropic thermal parameters for all non-hydrogen atoms was carried out to convergence. The positions of the hydrogen atoms were located from a difference Fourier synthesis and were included (with hydrogen positional and thermal parameters fixed) in the final cycles of refinement [function minimized, $\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$] leading to a final agreement factor, $\mathrm{R}=5.8 \%$ for $18,5.3 \%$ for $19\left[\mathrm{R}=\left(\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right| / / \Sigma\right| \mathrm{F}_{\mathrm{o}} \mid\right) \mathrm{x}\right.$ 100]. Scattering factors were taken from Cromer and Mann. ${ }^{131}$ In the final stages of refinement, a weight of $1 / \sigma(\mathrm{F})^{2}$ was used. $\mathrm{R}_{\mathrm{w}}=7.3 \%$ for 18 and 6.9% for 19 . Appendix C, Tables 20-24 lists bond angles and distances, positional parameters, and final anisotropic thermal parameters for 18 and 19..

Control Experiment. Photostability of the Photoproducts. In a typical control run, 0.04 mmol of the photoproduct was photolyzed as a $10^{-4} \mathrm{M}$ solution in cyclohexane using conditions identical to those described for the exploratory irradiations. The reactions were monitored by TLC of concentrated aliquots taken at 15 min intervals for the first hour and 1 h intervals thereafter for a total photolysis time of 5 h .

TABLE 6

CRYSTAL DATA FOR 18 AND 19

	18 (trans-syn-trans)	19 (trans-anti-trans)
formula	$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{2}$
MWT	524.7	524.7
a, \AA	9.629(2)	10.463(4)
b, \AA	28.903(6)	10.598(5)
c, \AA	10.433(6)	14.874(6)
$\alpha, \operatorname{deg}$	90.0	71.93(3)
β, deg	108.50(3)	102.45(3)
$\gamma, \operatorname{deg}$	90.0	111.32(3)
V, \AA^{3}	2753(2)	1450.7(10)
F(000)	1120	560
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.710	0.674
$\lambda(\mathrm{MoK} \alpha), \AA$	0.71069	0.71069
$\mathrm{D}_{\text {calcd, }} \mathrm{g} \mathrm{cm}^{-3}$	1.266	1.201
Z	4	2
Ind. refl. meas.	3612	3685
obsd refl	2119	2481
Octants meas.	$\pm \mathrm{h},+\mathrm{k},+1$	$\pm \mathrm{h},+\mathrm{k}, \pm 1$
$\mathrm{R} / \mathrm{R}_{\mathrm{w}}, \%$	5.8/7.3	5.3/6.9
space group	P21/c	P1
goodness of fit	0.32	0.34

No photoisomerization was seen upon irradiation of either 18 or 19, but decomposition of both photoproducts began to occur after 3 h .
$\mathbf{1}^{\mathbf{H}}$-HMR Shift Reagent Experiment. In a typical run, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at $50^{\circ} \mathrm{C}$ with increasing concentrations of shift reagent. To a 0.02 M solution of the product ($\mathbf{1 8}$ and 19) in CDCl_{3} was added $2 \mathrm{mg}(0.002 \mathrm{mmol})$ quantities of the solid shift reagent Resolve- $\mathrm{Al} \mathrm{EuFOD}^{\mathrm{TM}}\left(\mathrm{Eu}(\mathrm{fod})_{3}\right)$. After each 2 mg addition the NMR was taken. Sequential 2 mg additions were continued until a total of 12 mg (0.012 mmol) of shift reagent had been added. The response curve is shown in Figure 44 of Chapter 4 along with a table of the slopes ($\Delta \mathrm{m}$) and the initial proton resonances (IS) in Table 5.

3-Methoxy-4,4-diphenylcycloheptanone (24). A solution of 21.4 mg (0.082 mmol) of 4,4-diphenyl-2-cycloheptenone (11) in 8.0 mL of degassed Photorex ${ }^{\circledR}$ grade methanol was irradiated through Pyrex using a 450-W medium pressure immersion apparatus. The reaction was stopped after 1 h and concentrated under vacuum. The crude residue was purified on one, $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plate eluted with 30% ether in hexane (2 x). The fastest moving of two bands yielded $6.4 \mathrm{mg}(0.025 \mathrm{mmol}$, 30%) of 11 . The second band yielded $12.6 \mathrm{mg}(0.043 \mathrm{mmol}, 52 \%)$ of 3 -methoxy-4,4diphenylcycloheptanone (24) as a colorless oil. The spectral data for 24 were: IR $\left(\mathrm{CHCl}_{3}\right) 2930,1700,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.29-7.12 (cplx, 9 H$), 7.07$ (m, 1 H), $4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.7,6.2 \mathrm{~Hz}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz})$, 2.69-2.48 (cplx, 2 H), 2.47-2.31 (cplx, 2 H), 1.79 (m, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $211.8,147.0,144.9,128.6,127.9,127.7,127.6,126.2,125.8,81.5,57.6,54.3$, 43.3, 33.9, 19.6; MS, m/e (\%) 294 (38), 236 (28), 180 (100), 165 (23), 103 (31); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$ m/e 294.1620, found m / e 294.1624.
trans-2-Deuterio-3-methoxy-4,4-diphenylcycloheptanone (26). A solution of 21.4 mg (0.082 mmol) of 4,4-diphenyl-2-cycloheptenone (11) in 8.0 mL of degassed methanol- d_{1} was irradiated through Pyrex using a 450-W medium pressure
immersion apparatus. The reaction was stopped after 1 h and concentrated under vacuum. The crude residue was purified on one, $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plate eluted with 30% ether in hexane (2 x). The fastest moving of two bands yielded 7.30 mg ($0.028 \mathrm{mmol}, 34 \%$) of 11 . The second band yielded 10.4 mg ($0.035 \mathrm{mmol}, 43 \%$) of trans-2-deuterio-3-methoxy-4,4-diphenylcycloheptanone (26) as a colorless oil. The NMR spectra of the crude and purified product were identical. The spectral data for 26 were: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2925,2855,1700,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.21$ (cplx, 9 H), $7.14(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 6.6 Hz), 2.76-2.60 (cplx, 2 H), 2.59-2.37 (cplx, 2 H), 1.86 (m, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 211.8,147.0,144.9,128.6,127.8,127.8,127.6,126.3,125.8,81.6$, 57.7, 54.3, 43.3, 33.9, 19.6; MS, m/e (\%) 295 (34), 236 (27), 180 (100), 165 (24), 113 (27); HRMS, exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{DO} m / e 295.1682$, found m/e 295.1715.

4,4-Diphenyl-2-(phenylseleno)cycloheptanone (13). The general procedure of Reich and coworkers ${ }^{160}$ was followed. To a $-78^{\circ} \mathrm{C}$ solution of 1.40 mL $(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ of diisopropylamine in 15 mL of THF was added 7.95 mL of a 1.26 M solution of $n-\mathrm{BuLi}$ in hexane. The lithium diisopropylamine was allowed to stir 20 min and a solution of 2.62 g (9.9 mmol) of 4,4-diphenylcycloheptanone (7) in 20 mL THF was added slowly at $-78^{\circ} \mathrm{C}$. The enolate was stirred 20 min and phenylselenenyl bromide, prepared by treating $1.56 \mathrm{~g}(5.0 \mathrm{mmol})$ diphenyl diselenide in 10 mL THF with 0.26 mL ($0.81 \mathrm{~g}, 5.0 \mathrm{mmol}$) of bromine, was added dropwise. There was immediate decolorization of the phenylselenenyl bromide solution upon addition. The mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$, poured into cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ether extracted. The organic layer was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting yellow oil was purified by column chromatography on a $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with increasing concentrations of ether in hexane. Fractions (250 mL) were collected. The compounds eluted as follows: 0% ether in hexane, fractions $1-3,0.41 \mathrm{~g}(1.3 \mathrm{mmol})$
diphenyl diselenide, fractions 4-5, nil; 5.0\% ether in hexane, fractions 6-10, crude 4,4-diphenyl-2-(phenylseleno)cycloheptanone (13), fraction $11,0.01 \mathrm{~g}(.024 \mathrm{mmol}, 0.24 \%)$ of 5,5-diphenyl-2-(phenylseleno)cycloheptanone (14), fractions $12-13$, nil; 5.5% ether in hexane, fractions $14-17,0.89 \mathrm{~g}(3.4 \mathrm{mmol}, 34 \%)$ of 7. The combined fractions $6-10$ crystallized upon standing in ether to yield 1.58 g ($3.8 \mathrm{mmol}, 38 \%$) of 13 as a pale yellow solid, $\mathrm{mp} 118-120^{\circ} \mathrm{C}$. The spectral data for 13 were: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 2940,1693$, $1600,1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.09(\mathrm{cplx}, 12 \mathrm{H}), 6.99$ ($\mathrm{m}, 2 \mathrm{H}$), 3.88 (dd, $1 \mathrm{H}, \mathrm{J}=5.6,10.8 \mathrm{~Hz}$), 2.93 (ddd, $1 \mathrm{H}, \mathrm{J}=1.6,12.5,25.0 \mathrm{~Hz}$), 2.79-2.70 (cplx, 2 H), 2.43 (dd, $1 \mathrm{H}, \mathrm{J}=8.2,12.6 \mathrm{~Hz}$), 2.25-2.02 (cplx, 3 H), 1.71 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 208.9,149.3,144.7,135.1,135.1,129.1,128.6$, $128.4,128.3,128.2,127.8,126.6,126.0,51.7,49.8,37.6,36.7,36.7,25.5$; MS, $m / e(\%) 420(56), 193$ (28), 167 (24), 129 (26), 115 (38), 91 (100), 77 (27); HRMS, exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OSe} m / e 420.0053$, found $m / e 420.0070$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OSe}: \mathrm{C}, 71.43 ; \mathrm{H}, 5.76$. Found: C, $71.55 ; \mathrm{H}, 5.62$.

The spectral data for 14 were: $\mathrm{mp} 197-199^{\circ} \mathrm{C} ; \mathbb{R}\left(\mathrm{CHCl}_{3}\right) 2875,1692,1602$, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 40^{\circ} \mathrm{C}\right) \delta 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.13(\mathrm{cplx}, 9 \mathrm{H})$, $7.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50(\mathrm{~m}, 5 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 206.8,137.7,129.5,128.9,128.4,128.2,127.3,126.1,67.4,49.3,37.6$, 37.2, 34.9, 29.5; MS, m/e (\%) 420 (31), 314 (28), 261 (100), 233 (34), 115 (37), 91 (84), 77 (37); HRMS, exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OSe} m / e 420.0053$, found m / e 420.0170.

Attempted Phenylselenoxide Elimination of 4,4-Diphenyl-2-

 (phenylseleno)cycloheptanone. The general procedure of Reich and coworkers ${ }^{160}$ was followed. To a cold (ice-salt bath) solution of $0.4 \mathrm{~g}(0.95 \mathrm{mmol})$ of 4,4-diphenyl-2(phenylseleno)cycloheptanone (13) in 12 mL of methylene chloride containing 0.15 mL pyridine was slowly added $0.29 \mathrm{~g}(2.5 \mathrm{mmol})$ of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in 0.25 mL of water.During addition the temperature was maintained between $30-35^{\circ} \mathrm{C}$. The reaction mixture
was stirred vigorously under ice-salt bath conditions for 20 min and then allowed to warm to $23^{\circ} \mathrm{C}$ and stir for an additional 20 min . The solution became a dark orange color upon warming to $23^{\circ} \mathrm{C}$. Methylene chloride was added and the crude mixture was washed once with 7% aqueous NaHCO_{3} solution. The aqueous layer was washed with methylene chloride and the combined organic layers were washed with 10% aqueous HCl , saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting dark orange oil was intially chromatographed on two $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates, eluting with 5\% ether in hexane (9x). One broad band was isolated and purified on two $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel PTLC plates, eluting with 5% ether in hexane (9 x). The fastest moving of two bands yielded 8.0 mg ($0.03 \mathrm{mmol}, 3.2 \%$) of 4,4-diphenyl-2-cyclohepten-1-one (11). The second band yielded 0.14 g ($0.53 \mathrm{mmol}, 56 \%$) of 5,5-diphenyl-2-cyclohepten-1-one (12) as the major product of the reaction. The spectral data matched those reported above.

Elimination of 14 using conditions identical to those described above led to 5,5-diphenyl-2-cyclohepten-1-one (12) as the only product of the reaction.

4,4-Diphenyl-2-(phenylthio)cycloheptanone (15). The general procedure of Trost and coworkers ${ }^{161}$ was followed. To a $-78^{\circ} \mathrm{C}$ solution of 1.08 mL ($0.78 \mathrm{~g}, 7.7 \mathrm{mmol}$) of diisopropylamine in 15 mL of THF was added 4.88 mL of a 1.6 M solution of $n-\mathrm{BuLi}$ in hexane. The lithium diisopropylamine was allowed to stir 20 \min and a solution of 2.0 g (7.6 mmol) of 4,4-diphenylcycloheptanone (7) in 25 mL THF was added slowly at $-78^{\circ} \mathrm{C}$. The enolate was stirred 20 min and $1.32 \mathrm{~mL}(1.36 \mathrm{~g}$, 7.6 mmol) of HMPA was added and stirred 10 min . To this solution was added 1.66 g (7.6 mmol) of diphenyl disulfide in 15 mL THF. The mixture was stirred for 45 min at $78^{\circ} \mathrm{C}$, warmed to RT , poured into cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and ether extracted. The organic layer was washed with 1 MHCl , saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting yellow oil was purified by column chromatography on a $80 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ slurry packed silica gel column eluted with
increasing the concentrations of ether in hexane. Fractions $(250 \mathrm{~mL})$ were collected. The compounds eluted as follows: 0% ether in hexane, fractions 1-2, diphenyl disulfide, fractions 3-4, nil; 3.0% ether in hexane, fractions 5-8, crude 4,4-diphenyl-2(phenylthio)cycloheptanone (15), fraction 9, mixture of 15 and 5,5-diphenyl-2(phenylthio)cycloheptanone (16), fractions $10-15,0.54 \mathrm{~g}$ ($1.44 \mathrm{mmol}, 19 \%$) of $\mathbf{1 6}$; 4.0% ether in hexane, fractions $16-19,1.10 \mathrm{~g}(4.17 \mathrm{mmol}, 55 \%)$ of 7 . Crystallization of the combined fractions 5-8 from ether in hexane yielded $0.28 \mathrm{~g}(0.75 \mathrm{mmol}, 10 \%)$ of 15 as a white solid, $\mathrm{mp} .123-125^{\circ} \mathrm{C}$. The spectral data for 15 were: IR (CHCl_{3}) 2945, $1700,1600,1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.10(\mathrm{cplx}, 10 \mathrm{H})$, 7.05 (m, 2 H), 3.82 (dd, $1 \mathrm{H}, \mathrm{J}=5.7,10.3 \mathrm{~Hz}$), 2.99 (ddd, $1 \mathrm{H}, \mathrm{J}=1.5,12.2,24.8$ $\mathrm{Hz}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 208.2,149.1,145.2,133.4,132.2,129.0,128.9,128.8,128.6,128.3,127.8$, 127.7, 126.7, 126.3, 126.1, 57.0, 49.8, 36.7, 25.4; MS, m/e (\%) 372 (100), 163 (60), 223 (53), 151 (99), 113 (95), 91 (90); HRMS, exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OS}$ m/e 372.1548 , found $m / e 372.1549$.

The spectral data for 16 were: $\mathbb{R}\left(\mathrm{CHCl}_{3}\right) 2948,1705,1600,1583 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.11(\mathrm{cplx}, 9 \mathrm{H}), 7.05(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=1.5,7.2$ Hz), 6.95 (m, 2 H), 3.99 (dd, $1 \mathrm{H}, \mathrm{J}=2.6,11.9 \mathrm{~Hz}$), $2.94(\mathrm{dd}, 1 \mathrm{H}, 2.6,14.8 \mathrm{~Hz}$), 2.82-2.66 (cplx, 2 H), 2.49-2.40 (cplx, 2 H), 2.08 (cplx, 3 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 208.2, 150.6, 152.7, 133.8, 133.2, 129.0, 128.6, 128.1, 128.1, 126.4, 126.2, 126.0, 55.5, 50.0, 42.2, 41.2, 39.7, 20.1; MS, m/e (\%) 372 (91), 201 (35), 162 (73), 151 (79), 133 (48), 113 (100), 101 (43), 70 (52); HRMS, exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OS}$ $m / e 372.1548$, found $m / e 372.1548$.

4,4-Diphenyl-2-(phenylsulfinyl)cycloheptanone (17). The general procedure of Trost and coworkers ${ }^{161}$ was followed. To a $-78^{\circ} \mathrm{C}$ solution of $0.66 \mathrm{~g}(1.77$ mmol) of 4,4-diphenyl-2-(phenylthio)cycloheptanone (15) in 36 mL of methylene chloride was added a $12-\mathrm{mL}$ methylene chloride solution of $0.61 \mathrm{~g}(1.77 \mathrm{mmol})$ of $50-$
55% MCPBA dropwise over a 5 min period. The reaction mixture was monitored by TLC and complete after 15 min . The cold solution was poured into 100 mL of 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with ether. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 x)$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under vacuum yielded 0.69 g ($1.77 \mathrm{mmol}, 100 \%$) of 4,4-diphenyl-2-(phenylsulfinyl)cycloheptanone (17) as a white foam: IR $1715,1600,1495,1040 \mathrm{~cm}^{-1}$. The crude sulfoxide was utilized directly in the elimination step.

Attempted Phenylsulfoxide Elimination of 4,4-Diphenyl-2-

 (phenylsulfinyl)cycloheptanone. The general procedure of Trost and coworkers ${ }^{161}$ was used. The crude sulfoxide 4,4-diphenyl-2-(phenylthio)cycloheptanone (17) $(0.1 \mathrm{~g}, 0.26 \mathrm{mmol})$ in 10 mL toluene was heated to $100^{\circ} \mathrm{C}$ for 4 h . The reaction was followed by GC and TLC and indicated production of 11 ($c a .17 \%$) and 15 (ca. 77\%).The reaction was also attempted in which $0.1 \mathrm{~g}(0.26 \mathrm{mmol})$ of 17 in 10 mL carbon tetrachloride was heated to $50^{\circ} \mathrm{C}$ for 24 h . The reaction was monitored by TLC and GC, both indicating no reaction. The thermolysis was also carried out in both solvent systems described above in the presence of added solid calcium carbonate but similar results were obtained.

Acknowledgements. Support of this work by the Research Corporation is greatly appreciated.

REFERENCES

1. Zimmerman, H. E.; Wilson, J. W. J. Am. Chem. Soc. 1964, 86, 4036-4042.
2. Zimmerman, H. E.; Hancock, K. G. J. Am. Chem. Soc. 1968, 90, 3749-3760.
3. Zimmerman, H. E.; Lewin, N. J. Am. Chem. Soc. 1969, 91, 879-886.
4. Zimmerman, H. E.; Rieke, R. D.; Scheffer, J. R. J. Am. Chem. Soc. 1967, 89, 2033-2047.
5. Zimmerman, H. E.; Solomon, R. D. J. Am. Chem. Soc. 1986, 108, 6276-6289.
6. Zimmerman, H. E.; St. Clair, J. D. J. Org. Chem. 1989, 54, 2125-2137.
7. Zimmerman, H. E.; Weber, A. M. J. Am Chem. Soc. 1989, 111, 995-1007.
8. Zimmerman, H. E.; Lamers, P. H. J. Org. Chem., in press.
9. Zimmerman, H. E.; Hancock, K. G., Licke; G. C. J. Am. Chem. Soc. 1968, 90, 4892-4911.
10. Zimmerman, H. E. Tetrahedron, 1974, 30, 1617-1628.
11. Zimmerman, H. E.; Elser, W. R. J. Am. Chem. Soc. 1969, 91, 887-896.
12. Cowan, D. O.; Drisko, R. L. "Elements of Organic Photochemistry", Plenum Press: New York, NY, 1976, pp. 324-328.
13. Schuster, D. I. in "Rearrangements in Ground and Excited States," Vol 3. DeMayo, P., Ed. Academic Press: New York , NY, 1980, pp. 167-280.
14. Zimmerman, H. E.; Xu, J.-H.; King, R. K.; Caufield, C. E. J. Am. Chem. Soc. 1985, 107, 7724-7732 and references cited therein.
15. Zimmerman, H. E.; Caufield, C. E.; King, R. K.; J. Am. Chem. Soc. 1985, 107, 7732-7744.
16. Bunce, R. A.; Holt. E. M. J. Org. Chem. 1987, 52, 1549-1554.
17. Zimmerman, H. E.; Dopp, E.; Huyffer, P. S. J. Am. Chem. Soc. 1966, 88, 5352-5353.
18. Zimmerman, H. E.; Epling, G. A. J. Am. Chem. Soc. 1972, 94, 7806-7811.
19. Chapman, O. L. Adv. Photochem. 1963, 1, 323-420.
20. Nobs, R.; Burger, U.; Schaffner, K. Helv. Chim Acta. 1977, 60, 1607-1628.
21. Gardner, P. D.; Shoulders, B. A.; Kwie, W. W. J. Am. Chem. Soc. 1962, 84, 2268-2269.
22. Chapman, O. L.; Rettig, T. A.; Griswold, A. A.; Dutton, A. I.; Fitton, P. Tetrahedron Lett. 1963, 2049-2055.
23. Dauben, W. G.; Shaffer, G. W.; Vietmeyer, N. D. J. Org. Chem. 1968, 33, 4060-4069.
24. Schuster, D. I.; Rao, J. M. J. Org. Chem. 1981, 46, 1515-1521.
25. Chapman, O. L.; Sieja, J. B.; Welstead Jr., W. J. J. Am. Chem. Soc. 1966, 88, 161-162.
26. Bellus, D.; Kearns, D. R.; Schaffner, K. Helv. Chim. Acta. 1969, 52, 971-1009.
27. Schuster, D. I.; Brown, R. H.; Resnick, B. M. J. Am. Chem. Soc. 1978, 100, 4504-4512.
28. Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry , Part A: Structure and Mechanisms," 2nd Ed, Plenum Press: New York, NY, 1984, 583-616.
29. Zimmerman, H. E. Adv. Photochem. 1963, 1, 183-208.
30. Schuster, D. I.; Bonneau, R.; Dunn, D. A.; Rao, J. M.; Jassot-Dubien, J. J. Am. Chem. Soc. 1984, 106, 2706-2707.
31. Schuster, D. I.; Resnick, B. M. J. Am. Chem. Soc. 1970, 92, 7502-7503.
32. Pienta, N. J. J. Am. Chem. Soc. 1984, 106, 2704-2705.
33. Michl, J. Mol. Photochem. 1972, 4, 243-255.
34. Michl, J. Mol. Photochem. 1972, 4, 257-286.
35. Schuster, D. I.; Hussain, S. J. Am. Chem. Soc. 1980, 102, 406-410.
36. Schuster, D. I.; Brizzoalra, D. F. Chem. Commun. 1967, 1158-1160.
37. Cornell, D. G.; Filipescu, N. J. Org. Chem. 1977, 42, 3331-3336.
38. Dauben, W. G.; Spitzer, W. A.; Kellogg, M. S. J. Am. Chem. Soc. 1971, 93, 3674-3677.
39. Zimmerman, H. E.; Sam, D. J. J. Am. Chem. Soc. 1966, 88, 4905-4914.
40. Zimmerman, H. E.; Sam, D. J. J. Am. Chem. Soc. 1966, 88, 4114-4116.
41. Zimmerman, H. E.; Morse, R. L. J. Am. Chem. Soc. 1968, 90, 954-966.
42. Zimmerman, H. E.; Little, R. D. J. Am. Chem. Soc. 1974, 96, 4623-4630.
43. Zimmerman, H. E.; Little, R. D. J. Chem. Soc., Chem. Comm., 1972, 698-700.
44. Wolff, S.; Agosta, W. C. J. Chem. Soc., Chem. Commun. 1972, 226-227.
45. Agosta, W. C.; Smith, A. B. J. Am. Chem. Soc. 1971, 93, 5513-5519.
46. Eaton, P. E. Acc. Chem. Res. 1968, 1, 50-57.
47. Eaton, P. E. J. Am. Chem. Soc. 1964, 86, 2087-2088.
48. Corey, E. J.; Tada, M.; Lemahieu, R.; Libit, L. J. Am. Chem. Soc. 1965, 87 2051-2052.
49. Eaton, P. E.; Lin, K. J. Am. Chem. Soc. 1965, 87, 2052-2054.
50. Noyori, R.; Kato, M. Bull. Chem. Soc. Jpn. 1974, 47, 1460-1466.
51. Hart, H.; Dunkelblum, E. J. Am. Chem. Soc. 1978, 100, 5141-5147.
52. Ghosh, S.; Roy, S. S.; Saha, G. Tetrahedron, 1988, 44, 6235-6240.
53. Puar, M. S.; Vogt, B. R. Tetrahedron, 1978, 34, 2887-2890.
54. Matsuura, T.; Ogura, K. Bull. Chem. Soc. Jpn. 1967, 40, 945-950.
55. Schuster, D. I.; Dunn, D. A. J. Photochem. 1988, 28, 413-418.
56. Bonneau, R. J. Org. Chem. 1980, 102, 3816-3822.
57. Goldfarb, T. J. Photochem. 1978, 8, 29-38.
58. Lam, E. Y. Y.; Valentine, D.; Hammond, G. S. J. Am. Chem. Soc. 1967, 89, 3482-3487.
59. Eaton, P. E.; Hurt, W. S. J. Am Chem. Soc., 1966, 88, 5038-5039.
60. Wagner, P. J.; Bucheck, D. J. J. Am. Chem. Soc. 1969, 91, 5090-5097.
61. Baldwin, J. E.; McDaniel, M. C. J. Am Chem. Soc. 1968, 90, 6118-6124.
62. Horspool, W. M. in "Photochemistry, Specialist Periodical Report," Vol. 11, Chemical Society: London, 1981, pp. 301-363.
63. Horspool, W. M. in "Photochemistry, Specialist Periodical Report," Vol. 6, Chemical Society: London, 1975, pp. 348-399.
64. Baldwin, S. W. Organic Photochem. 1981, 5, 123-220.
65. Fox, M. A.; Cardona, R.; Ranade, A. C. J. Org. Chem. 1985, 50, 5016-5018.
66. Trotman-Dickenson, A. F. Adv. Free Radical Chem. 1965, 1, 1-38.
67. Schuster, D. I.; Brizzolara, D. F. J. Am. Chem. Soc. 1970, 92, 4357-4365.
68. Wolff, S.; Schreiber, W. L.; Smith, A. B.; Agosta, W. C. J. Am. Chem. Soc. 1972, 94, 7797-7806.
69. Schuster, D. I.; Nunez, I. M.; Chan, C. B. Tetrahedron Lett. 1981, 22, 11871190.
70. Schuster, D. I.; Chan, A. C. J. Am Chem. Soc. 1986, 108, 4561-4567.
71. Wolff, S.; Agosta, W. C. J. Am. Chem. Soc. 1977, 99, 5984-5991.
72. Byrne, B.; Wilson II., C. A.; Wolff, S.; Agosta, W. C. J. Chem. Soc., Perkin Trans I 1978, 1550-1560.
73. Kobayashi, T.; Kurono, M.; Sato, H.; Nakanishi, K. J. Am. Chem. Soc. 1972, 94, 2863-2865.
74. Horspool, W. M. in "Photochemistry, Specialist Periodical Report," Vol. 9, Chemical Society: London, 1978, pp. 279-335.
75. Tobe, Y.; Kimura, K.; Odaira, Y. J. Org. Chem. 1978, 43, 3776-3778.
76. Wagner, P. J. Acc. Chem. Res. 1971, 4, 168-177.
77. Smith III, A. B.; Agosta, W. C. J. Org. Chem. 1972, 37, 1259-1262.
78. Cowan, D. O.; Drisko, R. L. "Elements of Organic Photochemistry", Plenum Press: New York, NY, 1976, pp. 135-205.
79. Jeffares, M.; McMurry, T. B. H. J. Chem. Soc., Chem. Commun. 1976, 793794.
80. Gowda, G.; McMurry, T. B. H. J. Chem. Soc., Perkin Trans I 1979, 274-275.
81. Schuster, D. I. Pure Appl. Chem. 1975, 41, 601-633.
82. Agosta, W. C.; Smith III, A. B. J. Am. Chem. Soc. 1971, 93, 5513-5519.
83. Benham, J. Tetrahedron Lett. 1969, 4517-4520.
84. Koch, T. H.; Sluski, R. J.; Mosley, R. H. J. Am. Chem. Soc. 1973, 95, 39573963.
85. Quinkert, G. Photochem, Photobiol. 1968, 7, 783-790.
86. Quinkert, G. Pure Appl. Chem. 1973, 33, 285-316.
87. Griffiths, J.; Hart, H. J. Am. Chem. Soc. 1968, 90, 3297-3298.
88. Griffiths, J.; Hart, H. J. Am. Chem. Soc. 1968, 90, 5296-5298.
89. Oppolzer, W. Acc. Chem. Res. 1982, 15, 135-141 and references cited therein.
90. Dauben, W. G.; Shapiro, G. Tetrahedron Lett. 1985, 26, 989-992.
91. Dauben, W. G.; Shapiro, G.; Luders, L. Tetrahedron Lett. 1985, 26, 1429-1432.
92. Dauben, W. G.; Rocco, V. P.; Shapiro, G. J. Org. Chem. 1985, 50, 3155-60.
93. Pirrung, M. C.; Webster, N. J. G. J. Org. Chem. 1987, 52, 3603-3613.
94. Scheffer, J. R.; Boire, B. A. Tetrahedron Lett. 1969, 4005-4008.
95. Heathcock, C. H.; Badger, R. A. J. Org. Chem. 1972, 37, 234-238.

96 Schuster, D. I.; Tainsky, M. A. Mol. Photochem. 1972, 4, 437-445.
97. Hart, H. Pure Appl. Chem. 1973, 33, 247-267.
98. Clements, M. T. M.; McMurry, T. B. H. Can. J. Chem. 1987, 65, 1810-1813.
99. Margaretha, P.; Schaffner, K. Helv. Chim. Acta. 1973, 56, 2884-2888.
100. Erman, W. F. J. Am. Chem. Soc. 1967, 89, 3828-3841.
101. Schaffer, G. W.; Pesaro, M. J. Org. Chem. 1974, 39, 2489-2492.
102. Cargill, R. L.; Gimarc, B. M.; Pond, D. M.; King, T. Y.; Sears, A. B.; Willcott, M. R. J. Am. Chem. Soc. 1970, 92, 3809-3810.
103. Cargill, R. L.; Sears, A. B.; Boehm, J.; Willcott, M. R. J. Am. Chem. Soc. 1973, 95, 4346-4355.
104. Cargill, R. L.; Pect, N. P.; Pond, D. M.; Bundy, W. A.; Sears, A. B. J. Org. Chem. 1980, 45, 3999-4001.
105. Barber, L. L.; Chapman, O. L.; Lassila, J. D. J. Am. Chem. Soc. 1969, 91, 3664-3665.
106. Chapman, O. L.; Clardy, J. D.; McDowell, T. L.; Wright, H. E. J. Am. Chem. Soc. 1973, 95, 5086-5087.
107. Gloor, J.; Schaffner, K.; Jeger, O. Helv. Chim. Acta. 1974, 57, 1815-1845.
108. Curtin, D. Y.; Tuites, R. C.; Dybvig, D. H. J. Org. Chem. 1960, 25, 155-158.
109. Ackermann, K.; Chapuis, J.; Horning, D. E.; Lacasse, G.; Muchowski, J. M. Can. J. Chem. 1969, 47, 4327-4333.
110. Plieninger, H.; Ege, G.; Ullah, M. I. Chem. Ber. 1963, 96, 1610-1617.
111. March, J. "Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd Ed.", J. Wiley and Sons: New York, NY, 1985, pp. 655-656.
112. Renaud, R. N.; Bovenkamp, J. W.; Fraser, R. R.; Roustan, J.-L. A. Can. J. Chem. 1977, 55, 3456-3463.
113. Renaud, R. N.; Bovenkamp, J. W. Can. J. Chem. 1977, 55, 650-655.
114. Elhadi, F. E.; Ollis, D. W.; Stoddart, J. F. Angew. Chem. Int. Ed. Engl. 1976, 15, 224-225.
115. Bunce, R. A.; Taylor, V. L.; Holt, E. M. J. Org. Chem. in press.
116. Derome, A. E. in "Modern NMR Techniques for Chemistry Research," Oxford: New York, NY, 1987, p. 194.
117. Sievers, R. E.; Kime, K. A. Adrichimica Acta. 1977, 10, 54-62 and references cited therein.
118. Hofer, O. in "Topics in Stereochemistry," Vol. 9, Eliel, E. L.; Allinger, N. L. Eds., Wiley Interscience: New York, NY, 1976, pp. 111-198.
119. Adembri, G.; Anselmi, C.; Lampariello, L. R.; Scotton, M.; Sega, A. J. Chem. Soc., Perkin Trans II 1985, 1297-1298.
120. Servé, P.; Rondeau, R. E.; Rosenberg, H. M. J. Heterocyclic Chem. 1972, 9, 721-723.
121. a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds," 4th Ed. J. Wiley and Sons: New York, NY, pp. 208210. b) Paudler, W. W. "Nuclear Magnetic Resonance, General Concepts and Applications," J. Wiley and Sons: New York, NY, 1987, pp. 149-151. c) Lambert, J. B.; Shurvell, H. F.; Verbit, L.; Cooks, R. G.; Stout, G. H. "Organic Structural Analysis," Macmillan: New York, NY, 1976, pp. 60-61.
122. a) Murdock, K. C.; Angier, R. B. J. Org. Chem. 1962, 27, 2395-2398. b) Schmid, G. H.; Wokoff, A. W. J. Org. Chem. 1967, 32, 254.
123. Letsinger, R. L.; Skoof, I. H. J. Am. Chem. Soc. 1955, 77, 5176-5177.
124. Lednicer, D.; Mitscher, L. A. "The Organic Chemistry of Drug Synthesis," J. Wiley and Sons: New York, NY a) Vol. 1, 1977, pp. 149-152. b) Vol. 2, 1980, pp. 221-226. c) Vol. 3, 1984, pp. 77-78.
125. Physician's Desk Reference, 42nd Ed., Medical Economics Co.: Oradell, NJ, 1988, pp. 2173-2174.
126. Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry , Part A: Structure and Mechanisms," 2nd Edition, Plenum Press: New York, NY, 1984, p. 299.
127. March, J. "Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd Ed.", J. Wiley and Sons: New York, NY, 1985, p. 955.
128. Dauben, W. G.; Schutte, L.; Shaffer, G. W.; Gagosian, R. B. J. Am. Chem. Soc. 1973, 95, 468-471.
129. Brealey, G. J.; Kasha, M. J. Am. Chem. Soc. 1955, 77, 4462-4468.
130. Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; DeClerq, J. P.; Woolfson, M. M., University of York, England, 1980.
131. Stewart, J. M., Ed., The X-ray System-Version of 1980, Technical Rpt TR446 of the Computer Center, University of Maryland, College Park, MD.
132. Cromer, D. T.; Mann, I. B. Acta. Cryst. 1968, A24, 321.
133. Bartlett, P. O.; Rice, M. R. J. Org. Chem. 1963, 3351-3353.
134. The production of 4-bromocyclopentene by the method of Bartlett and Rice is reported to be hazardous; see: Johnson, C. R.; Keiser, J. E. Tetrahedron Lett. 1964, 3327-3328.
135. Praefcke, K.; Weichsel, C. Liebigs Ann. Chem. 1980, 1604-1619.
136. Vogel, A. "Vogel's Textbook of Practical Organic Chemistry," 4th Ed., Revised by Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R., Longman: New York, NY, 1978, pp. 340-341.
137. Aldrich Chemical Company, Inc. Catalog, 1988, p 469.
138. Brown, H. C.; Knights, E. F.; Scouten, C. G. J. Am. Chem. Soc. 1974, 96, 7765-7770.
139. Leonard, F.; Gagneux, A. U.S. Patent 3,287,409, 1966; C.A. 1967, 66, P37702u.
140. Ringold, H. J.; Malhotra, S. K. Tetrahedron Lett. 1962, 669-672.
141. Shiloff, J. D.; Hunter, N. R. Can. J. Chem. 1979, 57, 3301-3303.
142. Unpublished work by Taylor, V. L. showed that irradiation of 3-diphenylmethyl-2-cyclohexen-1-one in tert-butanol afforded the unconjugated isomer, 3diphenylmethylene cyclohexanone.
143. Zimmerman, H. E.; Keese, R.; Nasielski, J.; Swenton, J. S. J. Am. Chem. Soc. 1966, 88, 4895-4904.
144. (a) Horspool, W. M. Photochemistry, 1973, 4, 513-577. (b) idem., ibid. 1974, 5, 345-407. (c) idem., ibid. 1976, 7, 246-299. (d) idem., ibid. 1977, 8, 262313. (e) idem., ibid. 1979, 10, 298-357. (f) idem., ibid. 1980, 11, 301-361.
145. Schaffner, K.; Demuth, M. in "Rearrangements in Ground and Excited States," Vol. 3, deMayo, P., Ed. Academic Press: New York, 1980, 281-348.
146. Bordwell, F. G.; Wellman, K. M. J. Am. Chem. Soc. 1963, 28, 2544-2550.
147. Agnello, E. J.; Laubach, G. D. J. Am. Chem. Soc. 1960, 82, 4293-4299.
148. (a) Bell, R. A.; Saunders, J. K. in "Topics in Stereochemistry," Vol. 7, Eliel E. L.; Allinger, N. L. Eds., Wiley Interscience: New York, NY, 1973, Ch. 1. (b) Croasmun, W. R.; Carlson, R. M. K in "Two Dimensional NMR Spectroscopy: Applications for Chemists and Biochemists," Croasmun W. R.; Carlson, R. M. K., Eds., VCH Publishers: New York, NY, 1987, Ch. 7. (c) Martin, G. E.; Zektzer,
A. S. "Two-Dimensional NMR Methods for Establishing Molecular Connectivity: A Chemist's Guide to Experiment Selection, Performance, and Interpretation," VCH Publishers: New York, NY, 1988, Ch. 6 and 7.
149. Phillips, R. "Sources and Applications of Ultraviolet Radiation," Academic Press: New York, NY, 1983, pp. 227-230, 247-249.
150. Schuster, D. I.; Barile, G. C.; Liu, K.-C. J. Am. Chem. Soc. 1975, 97, 44414443.
151. Giancoli, D. C. "Physics: Principles with Applications," Prentice-Hall: Englewood Cliffs, NJ, 1980, pp. 292-293.
152. Sohár, P. "Nuclear Magnetic Resonance Spectroscopy," Vol. I, CRC Press: Boca Raton, FL, 1983, Ch. 2, p. 160.
153. The trans- and cis-5,6-diphenylbicyclo[3.1.0]hexan-2-one photoproducts from 4,4-diphenyl-2-cyclohexen-1-one (1) were observed to be stable in CDCl_{3} and in THF containing dilute HCl .
154. Cook, K. L.; Waring, A. J. J. Chem. Soc., Perkin Trans. 1 1973, 529-537.
155. Sheldrick, G. Institut für Anorganische Chemie der Universität Gottingen, 1986.
156. Cantrell, R. S.; Solomon, J. S. J. Am. Chem. Soc. 1970, 92, 4656-4663.
157. Lange, G. L.; Neidert, E. Can. J. Chem. 1973, 51, 2207-2214.
158. Carnmalm, B.; Johansson, L.; Renyi, A. L.; Ross, S. B.; Ögren, S.-O. Acta. Pharm. Suec. 1978, 15, 181-187.
159. Stotter, P. L.; Hill, K. A. J. Org. Chem. 1973, 38, 2576-2578.
160. Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 54345447.
161. Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 48874902.
162. Trost, B. M. Acc. Chem. Res. 1978, 11, 453-461.
163. Liotta, D.; Saindane, M. ; Brothers, D. J. Org. Chem. 1982, 47, 1600-1602.
164. Liotta, D. Acc. Chem. Res. 1984, 17, 28-34.
165. Samitov, Y. Y.; Bikeev, S. S. Org. Mag. Res. 1975, 7, 467-469.
166. Fraser, R. R.; Capoor, R. Can. J. Chem. 1983, 61, 2616-2620.
167. Dunkelblum, E.; Hart, H. J. Org. Chem., 1977, 42, 3958-3960.
168. Turro, N. J. "Modern Molecular Photochemistry," Benjamin/Cummings: Menlo Park, CA, 1978, p. 474.
169. Padwa, A.; Koehn, W.; Masaracchia, J.; Osborn, C. L.; Trecker, D. J. J. Am. Chem. Soc. 1971, 93, 3633-3638.
170. Turro, N. J. "Modern Molecular Photochemistry," Benjamin/Cummings: Menlo Park, CA, 1978, pp. 460-462.
171. Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry , Part A: Structure and Mechanisms," 2nd Edition, Plenum Press: New York, NY, 1984, pp. 637638.
172. Woodward, R. B.; Hoffman, R. "The Conservation of Orbital Symmetry," Verlag Chemie Academic Press: Weinheim, Germany, 1971, pp. 65-77.
173. Kraft, K.; Kotzenburg, G. Tetrahedron Lett., 1967, 4357-4362, 4723-4728.
174. March, J. "Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd Ed.," J. Wiley and Sons: New York, NY, 1985, p. 761.
175. Weedon, A. C. in "Synthetic Organic Photochemistry," Horspool, W. M., Ed. Plenum Press: New York, NY, 1984, pp. 70-90.
176. Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc., 1964, 86, 5570-5884.
177. Bovey, F. A. "Nuclear Magnetic Resonance Spectroscopy," Academic Press: New York, NY, 1969, pp. 122, 138, 159.
178. Montaudo, G.; Caccames, S.; Librando, V. Org. Mag. Res. 1974, 6, 534-536.
179. Montaudo, G.; Caccames, S. J. Org. Chem. 1978, 38, 710-719.
180. Arndt, F. "Organic Syntheses" Coll. Vol. II, John Wiley and Sons: New York, NY, 1943, pp. 461-462.
169. Padwa, A.; Koehn, W.; Masaracchia, J.; Osborn, C. L.; Trecker, D. J. J. Am. Chem. Soc. 1971, 93, 3633-3638.
170. Turro, N. J. "Modern Molecular Photochemistry," Benjamin/Cummings: Menlo Park, CA, 1978, pp. 460-462.
171. Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry , Part A: Structure and Mechanisms," 2nd Edition, Plenum Press: New York, NY, 1984, pp. 637638.
172. Woodward, R. B.; Hoffman, R. "The Conservation of Orbital Symmetry," Verlag Chemie Academic Press: Weinheim, Germany, 1971, pp. 65-77.
173. Kraft, K.; Kotzenburg, G. Tetrahedron Lett., 1967, 4357-4362, 4723-4728.
174. March, J. "Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd Ed.," J. Wiley and Sons: New York, NY, 1985, p. 761.
175. Weedon, A. C. in "Synthetic Organic Photochemistry," Horspool, W. M., Ed. Plenum Press: New York, NY, 1984, pp. 70-90.
176. Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc., 1964, 86, 5570-5884.
177. Bovey, F. A. "Nuclear Magnetic Resonance Spectroscopy," Academic Press: New York, NY, 1969, pp. 122, 138, 159.
178. Montaudo, G.; Caccames, S.; Librando, V. Org. Mag. Res. 1974, 6, 534-536.
179. Montaudo, G.; Caccames, S. J. Org. Chem. 1978, 38, 710-719.
180. Arndt, F. "Organic Syntheses" Coll. Vol. II, John Wiley and Sons: New York, NY, 1943, pp. 461-462.
169. Padwa, A.; Koehn, W.; Masaracchia, J.; Osborn, C. L.; Trecker, D. J. J. Am. Chem. Soc. 1971, 93, 3633-3638.
170. Turro, N. J. "Modern Molecular Photochemistry," Benjamin/Cummings: Menlo Park, CA, 1978, pp. 460-462.
171. Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry , Part A: Structure and Mechanisms," 2nd Edition, Plenum Press: New York, NY, 1984, pp. 637638.
172. Woodward, R. B.; Hoffman, R. "The Conservation of Orbital Symmetry," Verlag Chemie Academic Press: Weinheim, Germany, 1971, pp. 65-77.
173. Kraft, K.; Kotzenburg, G. Tetrahedron Lett., 1967, 4357-4362, 4723-4728.
174. March, J. "Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd Ed.," J. Wiley and Sons: New York, NY, 1985, p. 761.
175. Weedon, A. C. in "Synthetic Organic Photochemistry," Horspool, W. M., Ed. Plenum Press: New York, NY, 1984, pp. 70-90.
176. Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc., 1964, 86, 5570-5884.
177. Bovey, F. A. "Nuclear Magnetic Resonance Spectroscopy," Academic Press: New York, NY, 1969, pp. 122, 138, 159.
178. Montaudo, G.; Caccames, S.; Librando, V. Org. Mag. Res. 1974, 6, 534-536.
179. Montaudo, G.; Caccames, S. J. Org. Chem. 1978, 38, 710-719.
180. Arndt, F. "Organic Syntheses" Coll. Vol. II, John Wiley and Sons: New York, NY, 1943, pp. 461-462.

TABLE 7 (Continued)

Atoms	Distance (\AA)	Angle $\left({ }^{\circ}\right)$
	$C 15-c 16-c 8$	$121.8(3)$
$c 11-c 17-c 18$	$122.1(4)$	
$c 17-c 18-c 19$	$119.7(4)$	
$c 18-c 19-c 20$	$120.0(4)$	
$c 19-c 20-c 12$	$121.0(3)$	

TABLE 8
POSITIONAL PARAMETERS FOR (\pm)-4,4a, $9,10-$ TETRAHYDRO-TRIBENZO[a,c,e]CYCLOOCTEN-2(3H)-ONE $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ (19)

Atom	X $(\operatorname{Sig}(\mathrm{X})$)		Y(Sig(Y)		Z $\mathbf{S i g}^{(\mathrm{Z}}$)	
01	0.68701	2)	-0.2043	3)	-0.18311	3)
Cl	0.73001	2)	0.03341	3)	0.05981	4)
C2	0.69481	3)	-0.0678	3)	-0.0010	4)
C3	0.71851	3)	-0.1092	4)	-0.1324	4)
C4	0.77901	3)	-0.0280	4)	-0.2064	4)
C5	0.85231	3)	0.04671	4)	-0.1078	4)
C6	0.79991	3)	0.11371	3)	-0.0068	4)
C7	0.8728 (2)	0.1880 (3)	0.09291	4)
C8	0.93181	3)	0.1397 (3)	0.2127 ($4)$
C9	0.91801	3)	0.01411	3)	0.2574 (4)
C10	0.84231	3)	$0.0034($	4)	0.3555 (4)
C11	0.74691	3)	0.0749 (3)	0.31721	4)
C12	0.69371	3)	0.08351	3)	0.1831 (4)
C13	0.8867 (3)	0.3062 (3)	0.0617 (4)
C14	$0.9551($	3)	0.3764 (4)	0.1428 (5)
C15	1.01301	3)	0.33031	4)	0.2590 (4)
C16	$1.0008($	3)	0.2126 (4)	0.2930 (4)
C17	0.70831	$3)$	0.1329 (4)	0.4225 (4)
C18	0.62001	4)	0.19391	4)	0.3978 (5)
C19	0.56501	3)	0.1962 (4)	0.2674 (5)
C20	0.60181	3)	0.1420 (3)	$0.1602($	4)
H2	0.65011	$0)$	-0.1185	0)	0.0462 (0)
H41	0.81401	0)	-0.0745	0)	-0.2683	0)
H42	0.73141	0)	0.02631	0)	-0.2671	0)
H51	0.90351	$0)$	-0.0062	0)	-0.0538	$0)$
H52	0.88961	0)	0.10231	0)	-0.1585	0)
H61	0.75631	0)	0.17661	0)	-0.0610	$0)$
H91	0.89581	0)	-0.0347	0)	0.1742 ($0)$
H92	0.98481	0)	-0.0172	0)	0.3015 (0)
H101	0.82321	0)	-0.0815	$0)$	0.3608 (0)
H102	$0.8759($	0)	0.02701	0)	0.4482 (0)
H13	0.84521	0)	0.33931	0)	-0.0229	$0)$
H14	0.96271	0)	0.4621 (0)	0.11701	0)
H15	1.06261	0)	0.3812 (0)	0.31921	0)
H16	$1.0431($	0)	0.1772 (0)	0.3765 (0)
H17	0.74761	$0)$	0.12751	0)	$0.5185($	0)
H18	$0.5951($	0)	0.2365 (c)	0.4748 (0)
H19	$0.4998($	0)	0.23931	0)	0.2486 (0)
H20	0.56281	$0)$	0.1437 (0)	0.0650 ($0)$

TABLE 9
ANISOTROPIC THERMAL PARAMETERS FOR (\pm)-4,4a, 9,10 -TETRAHYDROTRIBENZO[$a, c, e]$ CYCLOOCTEN-2($3 H$)-ONE $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ (19)

Atom	U11		U22		U33		U12		U13		U23	
01	941	2)	681	2)	561	1)	-61	1)	-111	1)	-9(1)
C1	391	2)	471	2)	361	2)	51	1)	31	1)	21	1)
C2	491	2)	451	2)	451	2)	-31	1)	31	1)	01	2)
C3	54 (2)	551	2)	411	2)	8 (2)	-5	2)	-8(2)
C_{4}	651	2)	751	3)	44 (2)	41	2)	111	2)	-11 1	2)
C5	53(2)	601	2)	471	2)	$1($	2)	161	2)	$1($	2)
C6	431	2)	481	2)	42 (2)	$2($	1)	5 (i)	$3($	1)
C7	361	2)	48 (2)	38(2)	41	1)	91	1)	-21	1)
C8	371	2)	431	2)	$51($	2)	51	1)	61	1)	-11	2)
c9	471	2)	$51($	2)	561	2)	71	1)	-1	2)	101	2)
C10	68(2)	611	2)	50 (2)	01	2)	$2($	2)	201	2)
C11	571	2)	461	2)	391	2)	-8(2)	131	2)	$1($	1)
C12	431	2)	411	2)	401	2)	-5	1)	$9($	1)	11	1)
C13	521	2)	451	2)	471	2)	4 (2)	121	1)	$5($	2)
C14	631	2)	451	2)	68(2)	-2	2)	231	2)	01	2)
C15	601	2)	521	2)	591	2)	-11(2)	91	2)	-11(2)
C16	461	2)	62 (2)	501	2)	4 (2)	-11	2)	-21	2)
C17	851	3)	581	2)	401	2)	-13(2)	161	2)	-1	2)
C18	931	3)	48 (2)	69(3)	-7	2)	461	3)	-10(2)
C19	571	2)	471	2)	861	3)	31	2)	291	2)	4	2)
C20	511	2)	52 (2)	54 (2)	$0($	2)	13(2)	$2($	2)

Anisotropic thermal parameters in the form:

$$
\begin{gathered}
\exp \left[-2 \pi^{2}\left(\mathrm{U}_{11} \mathrm{~h}^{2} \mathrm{a}^{* 2}+\mathrm{U}_{22} \mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{U}_{33^{1}}{ }^{2} \mathrm{c}^{* 2}+2 \mathrm{U}_{12} \mathrm{hka}^{*} \mathrm{~b}^{*}+\right.\right. \\
\left.\left.2 \mathrm{U}_{13} \mathrm{hla}^{*} \mathrm{c}^{*}+2 \mathrm{U}_{23} \mathrm{klb} \mathrm{~b}^{*}{ }^{*}\right)\right] \times 10^{3}
\end{gathered}
$$

TABLE 10

BOND ANGLES AND DISTANCES FOR (\pm)-($3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta$)-2,3,8,9,13b,13c-HEXAHYDRO-1 H-DIBENZO[a,e]CYCLOPENTA[1,3]CYCLO-PROPA[1,2-c]CYCLOOCTEN-1-ONE $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ (20)

Atoms	Distance (\AA)	Atoms	Angle (${ }^{\circ}$)
C1-C2	1.57(1)	C2-C1-C3	59.6(6)
C1-C3	1.52(1)	C2-C1-C9	116.6(9)
C1-C9	1.48(1)	C3-C1-C9	117.9(9)
C2-C3	1.53(1)	C1-C2-C3	58.7(6)
C2-C10	1.48(2)	C1-C2-C10	112.9(10)
C3-C4	1.48(2)	C3-C2-C10	107.8(8)
C3-C12	1.52(1)	C1-C3-C2	61.7(6)
C4-C5	1.40(1)	C1-C3-C4	120.4(8)
C4-C13	1.42(2)	C1-C3-C12	111.9(10)
C5-C6	1.51(2)	C2-C3-C4	121.1(9)
C5-C16	1.37(2)	C2-C3-C12	104.6(8)
C6-C7	1.53(1)	C4-C3-C12	121.8(8)
C7-C8	1.47(1)	C3-C4-C5	121.9(9)
C8-C9	1.43(2)	C3-C4-C13	120.3(8)
C8-C20	1.38(1)	C5-C4-C13	117.7(9)
C9-C17	1.38(1)	C4-C5-C6	120.7(9)
C10-O1	1.22(1)	C4-C5-C16	120.6(10)
C10-C11	1.48(2)	C6-C5-C16	118.7(9)
C11-C12	1.52(2)	C5-C6-C7	117.1(8)
C13-C14	1.38(2)	C6-C7-C8	120.0(9)
C14-C15	1.38(2)	C7-C8-C9	122.3(8)
C15-C16	1.42(2)	C7-C8-C20	120.8(8)
C17-C18	1.39(1)	C9-C8-C20	116.9(8)
C18-C19	1.38(2)	C8-C9-C1	117.8(8)
C19-C20	1.37(2)	C8-C9-C17	119.5(8)
		C1-C9- C 17	122.4(8)
		C2-C10-O1	125.6(11)
		C2-C10-C11	109.5(9)
		O1-C10-C11	124.9(12)
		C10-C11-C12	104.0(11)
		C11-C12-C3	108.2(8)
		C4- $\mathrm{C} 13-\mathrm{C} 14$	121.3(9)
		C13-C14-C15	120.3(11)

TABLE 10 (Continued)

Atoms	Distance (\AA)	Atoms	Angle (${ }^{\circ}$)
	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$118.8(10)$	
	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 5$	$121.3(9)$	
	$\mathrm{C} 9-\mathrm{C} 17-\mathrm{C} 18$	$121.8(10)$	
	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$118.1(10)$	
	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$120.6(10)$	
	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 8$	$123.0(9)$	

TABLE 11

POSITIONAL PARAMETERS FOR (\pm)-($\left.3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta\right)-2,3,8,9,13 \mathrm{~b}, 13 \mathrm{c}-$ HEXAHYDRO-1 H-DIBENZO[a,e]CYCLOPENTA[1,3]CYCLOPROPA-[1,2-c]CYCLOOCTEN-1-ONE $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ (20)

Atom	$\mathbf{X}(\operatorname{Sig}(\mathrm{X})$)	$\mathbf{Y}(\operatorname{Sig}(\mathrm{Y})$)	Z(Sig(Z))	
01	-0.0956(15)	0.2644 (11)	0.54651	6)
Cl	$0.0986(15)$	0.4110(12)	$0.3125($	6)
C2	0.0845 (14)	0.2862 (12)	0.3960 (6)
C3	0.0014 (15)	0.2218(13)	0.2971 (7)
C4	$0.1082(13)$	0.1344 (10)	$0.2353($	7)
C5	0.1277(15)	0.1594(11)	0.1367 (7)
C6	$0.0373(14)$	0.2768(12)	0.08931	6)
C7	0.1450(16)	0.4655(11)	0.10811	6)
C8	0.3276 (15)	$0.5253(10)$	0.17011	6)
C9	0.3096 (14)	0.5005 (10)	0.27101	6)
Cl0	-0.0986 (20)	$0.2611(13)$	$0.4598($	8)
Cll	-0.2890 (19)	0.2266 (17)	0.4023 (9)
Cl2	-0.2358(18)	0.1578(14)	0.3093 (8)
Cl3	0.1871 (15)	0.0152(12)	0.2746 (7)
C14	$0.2838(17)$	-0.0702 (12)	0.21791	9)
C15	$0.3083(17)$	-0.0397(12)	0.12141	9)
C16	0.2240(16)	0.0746 (11)	$0.0812($	7)
C17	0.4844 (18)	0.5719(13)	$0.3264($	7)
C18	0.6806(18)	0.6608(13)	0.2867 (9)
C19	0.6975 (18)	0.6787(12)	$0.1887($	9)
C20	0.5247(18)	0.6128(11)	0.13331	7)
H1	-0.0472	0.4722	0.3153	
H2	0.2872	0.3371	0.4057	
H13	0.1621	0.0000	0.3581	
H14	0.3691	-0.1558	0.2405	
H15	0.3420	-0.1169	0.0417	
H16	0.2134	0.0949	0.0000	
H17	0.4566	0.5440	0.4045	
H18	0.8339	0.7060	0.3330	
H19	0.8600	0.7417	0.1522	
H20	0.5600	0.6166	0.0397	
H61	0.0594	0.2782	0.0000	
H62	-0.1195	0.2490	0.1029	
H71	0.2205	0.5255	0.0359	
H72	0.0407	0.5543	0.1252	
H111	-0.4580	0.1372	0.4378	
H112	-0.2747	0.3800	0.3985	
H121	-0.3174	0.1708	0.2344	
H122	-0.3074	0.0172	0.2812	

TABLE 12

ANISOTROPIC THERMAL PARAMETERS FOR (\pm)-($3 \mathrm{a} R^{*}, 13 \mathrm{~b} \alpha, 13 \mathrm{c} \beta$)-2,3,8,9,13b,13c-HEXAHYDRO-1H-DIBENZO[a,e]CYCLOPENTA-[1,3]CYCLOPROPA[1,2-c]CYCLOOCTEN-1-ONE C20 $\mathrm{C}_{18} \mathrm{O}$ (20)

Atom	U11		U22		U33		U 12		U13		U23	
01	1621	8)	1551	8)	711	5)	721	6)	281	6)	311	5)
C1	73 (7)	651	7)	$51($	6)	301	6)	-4(5)	$15($	5)
C2	58(6)	77 (7)	50 (6)	191	5)	151	5)	20 (5)
C3	44 (6)	701	7)	62 (6)	15(5)	01	5)	171	5)
C4	44 (6)	43 (5)	64 (6)	$10($	4)	-8(5)	61	5)
C5	711	7)	44 (6)	67 (7)	16 (5)	-10(5)	$9($	5)
C6	62 (6)	64 (6)	64 (6)	24 (5)	-10(5)	$11($	5)
C7	861	8)	501	6)	61 (6)	21 (5)	-15(6)	$11($	5)
C8	63 (7)	38 (5)	61 (6)	25 (5)	-1(5)	13 (4)
C9	49(6)	451	5)	62 (6)	$22($	5)	-1	5)	$9($	5)
C10	111 (10)	751	7)	54 (7)	461	7)	-21	7)	141	6)
Cll	80(9)	1371	11)	84 (8)	391	8)	22 (7)	141	8)
Cl2	771	9)	88 (8)	931	8)	20 (6)	01	7)	$4($	6)
C13	611	6)	46 (5)	79(7)	71	5)	-16(6)	101	5)
Cl4	751	7)	42 (6)	113(9)	301	5)	-18(7)	31	6)
C15	82 (8)	49 (6)	1011	9)	$15($	6)	-11(7)	$0($	6)
C16	72 (7)	44 (6)	$78($	7)	141	6)	2 (6)	61	5)
C17	711	8)	611	6)	$69($	7)	$17($	6)	-18(6)	$11($	5)
C18	601	7)	54 (6)	131(11)	$8($	5)	-33(8)	-3(7)
C19	$77($	8)	59(7)	931	9)	131	6)	21 (7)	151	6)
C20	67 (7)	401	5)	$71($	7)	$11($	5)	01	6)	-2($5)$

Anisotropic thermal parameters in the form:

$$
\begin{gathered}
\exp \left[-2 \pi^{2}\left(\mathrm{U}_{11} \mathrm{~h}^{2} a^{* 2}+\mathrm{U}_{22} \mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{U}_{33} 1^{1^{2} c^{* 2}+2 \mathrm{U}_{12} \mathrm{hka}} \mathrm{~b}^{*}+\right.\right. \\
\left.\left.2 \mathrm{U}_{13} \dot{\mathrm{~h}}^{\mathrm{hla}} \mathrm{c}^{*}+2 \mathrm{U}_{23} \mathrm{klb}{ }^{*}{ }^{*}\right)\right] \times 10^{3}
\end{gathered}
$$

APPENDIX B

TABLES OF CRYSTALLOGRAPHIC DATA FOR (\pm)-($1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-$ 1a,4,5,5a,6,6a-HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLO-

PROP[a]INDEN-3(1H)-ONE (8) AND (\pm)-($1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-$ 1a,4,5,5a,6,6a-HEXAHYDRO-5a-METHYL-1,6a-DI-PHENYLCYCLOPROP[a]INDEN-3(1H)-ONE (9)

TABLE 13
DISTANCES FOR (\pm)-($1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-$ HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLOPROP[a]INDEN-3($1 H$)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (8)

Atoms	Molecule A Distance (\AA)	Molecule B Distance (\AA)
C1-C2	1.556(5)	1.537(9)
C1-C3	1.504(8)	1.519(9)
C1-C6	1.536(11)	1.535(11)
C1-C12	1.493(8)	1.464(8)
C2-C3	1.562(5)	1.527(10)
C2-C4	1.455(5)	1.484(10)
C3-C18	1.462(8)	1.485(8)
C4-C5	1.532 (10)	1.526(10)
C4-C7	1.321(9)	1.335(9)
C5-C6	1.546 (10)	1.544(10)
C5-C10	1.525(10)	1.493(9)
C5-C11	1.532(8)	1.540(8)
C7-C8	1.461(11)	1.425(12)
C8-01	1.210(9)	1.214(9)
C8-C9	1.515(12)	1.491(12)
C9-C10	1.499(11)	1.533(11)
C12-C13	1.382(11)	$1.396(11)$
C12-C17	$1.375(11)$	1.407(11)
C13-C14	1.385(10)	1.362(10)
C14-C15	1.343(14)	1.392(15)
C15-C16	1.390(15)	1.358(15)
C16-C17	1.372(11)	1.416(10)
C18-C19	1.422(10)	1.374(8)
C18-C23	1.368(8)	1.373(10)
C19' - C20	1.365(9)	1.388(9)
C20-C21	1.375(11)	1.377(13)
C21-C22	1.378(12)	1.359(12)
C22-C23	1.382(9)	1.388(9)

TABLE 14
ANGLES FOR (\pm)-($1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-$ HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLO-PROP[a]INDEN-3(1H)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (8)

Atoms	Molecule A Angle (${ }^{\circ}$)	Molecule B Angle (${ }^{\circ}$)
C2-C1-C3	61.4(4)	59.9(4)
C2-C1-C6	106.6(5)	105.0(5)
C2-C1-C12	121.6(4)	123.7(6)
C3-C1-C6	116.9(5)	114.3(5)
C3-C1-C12	119.0(6)	118.6(6)
C6-C1-C12	118.2(5)	120.5(6)
C1-C2-C3	57.7(5)	59.4(4)
C1-C2-C4	107.0(4)	108.0(6)
C3-C2-C4	118.2(3)	118.4(5)
C1-C3-C18	125.1(6)	126.0(6)
C2-C3-C18	124.5(5)	124.9(6)
C1-C3-C2	60.9(5)	60.6(4)
C2-C4-C5	108.6(5)	108.8(5)
C2-C4-C7	127.2(5)	128.8(7)
C5-C4-C7	124.0(7)	122.4(6)
C4-C5-C6	103.7(5)	102.5(6)
C4-C5-C10	109.1(5)	110.0(5)
C4-C5-C11	107.8(5)	106.9(5)
C6- C5-C10	115.2(6)	115.8(6)
C6-C5-C11	108.5(4)	107.4(4)
C10-C5-C11	111.9(6)	113.4(6)
C1-C6- C 5	104.9(6)	107.2(6)
C4-C7-C8	120.2(7)	121.8(7)
C7-C8-O1	121.3(8)	122.0(8)
C9-C8-O1	120.4(8)	119.7(8)
C7-C8-C9	118.2(6)	118.3(6)
C8-C9-C10	115.0(7)	114.8(7)
C9-C10-C5	111.0(6)	110.6(6)
C1-C12-C13	122.7(6)	120.2(6)
C1- $\mathrm{C} 12-\mathrm{C} 17$	120.5(7)	121.8(6)
C13-C12-C17	116.8(6)	117.9(6)
C12-C13-C14	120.6(8)	122.3(8)
C13-C14-C15	121.2(9)	119.2(8)
C14-C15-C16	119.8(7)	120.4(7)
C15-C16-C17	118.4(8)	120.3(9)

TABLE 14 (Continued)

Atoms	Molecule A Angle (${ }^{\circ}$)	Molecule B Angle (${ }^{\circ}$)
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$123.2(8)$	$119.3(8)$
$\mathrm{C} 3-\mathrm{C} 18-\mathrm{C} 19$	$119.6(5)$	$121.8(6)$
$\mathrm{C} 3-\mathrm{C} 18-\mathrm{C} 23$	$122.8(6)$	$120.4(5)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 23$	$117.3(5)$	$117.6(5)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$119.7(6)$	$120.6(7)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$122.0(8)$	$121.4(6)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$118.7(6)$	$117.9(6)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$119.8(6)$	$121.0(8)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 18$	$122.4(7)$	$121.5(6)$

TABLE 15
POSITIONAL PARAMETERS FOR (\pm)- $(1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-$ HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLOPROP[a]INDEN-3($1 H$)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (8)

Atom	X (Sig(X))		$\mathrm{Y}(\operatorname{Sig}(\mathrm{Y})$		Z $(\operatorname{Sig}(\mathrm{Z})$	
01	-0.2024	7)	-0.4494	5)	0.47311	6)
019	$0.3072($	7)	0.01091	6)	0.0274	6)
Cl	-0.3217(7)	0.07181	6)	0.79651	7)
C2	-0.2659		0.0057		0.6601	
C3	-0.4249	7)	0.04211	6)	$0.6461($	7)
C4	-0.2582	6)	-0.1312	6)	0.65791	7)
C5	-0.2566	7)	-0.1399	6)	0.81051	6)
C6	-0.3480	7)	-0.0362	7)	$0.8707($	6)
C7	-0.2450	7)	-0.2314	7)	0.5480 (7)
C8	-0.2297	7)	-0.3611	7)	0.5670 (8)
c9	-0.2470	8)	-0.3823	7)	0.70891	9)
Clo	-0.3244	8)	-0.2866	7)	0.7956 (8)
C11	-0.0907	8)	-0.0889	8)	0.90491	8)
C12	-0.2538(7)	0.2164 (7)	0.8920 (7)
C13	-0.1530	9)	0.30521	7)	$0.8556($	8)
C14	-0.0947	10)	0.4391 (9)	0.9467 (10)
C15	-0.1330	11)	0.4861 (8)	1.0730 (9)
C16	-0.2363	11)	0.4004 (10)	1.11191	10)
C17	-0.2930	9)	0.2680 (8)	$1.0207($	9)
C18	-0.5721	7)	-0.0576	6)	0.5834 (7)
C19*	-. 68851	7)	-. 04721	7)	0.65861	7)
C20	-0.8299	8)	-0.1339	8)	$0.5952($	9)
C21	-0.8653	8)	-0.2304	8)	$0.4582($	9)
C22	-0.7544	8)	-0.2394 (7)	0.38301	8)
C23	-0.6101	8)	-0.1536	7)	0.4468 (7)
C19	0.20081	7)	0.36231	6)	0.57061	7)
C29	0.25931	7)	0.2342 (6)	0.51391	7)
C39	0.10511	7)	0.22321	6)	0.55051	7)
C49	0.2620 (6)	0.2152 (6)	0.35951	7)
C59	0.2489 (6)	0.34691	6)	0.3287 (7)
C69	0.16121	7)	0.41081	6)	0.43821	7)
C79	0.2747 (7)	0.10551	6)	$0.2582($	8)
C89	0.28051	7)	0.1054 (7)	0.1150 (8)
C99	0.2514 (9)	0.2254 (8)	0.07281	8)
C109	0.17261	8)	0.3161 (7)	$0.1702($	7)
C119	0.41201	8)	0.4384 (7)	$0.3782($	8)
C129	0.26231	7)	0.4609 (6)	0.71931	7)
C139	0.21701	9)	0.58331	8)	0.7569 (9)
C149	0.2718 (10)	0.6785 (8)	0.89351	10)
C159	0.37131	12)	$0.6508($	10)	1.0019 (10)
C169	0.4178 (10)	0.5327 (10)	0.97181	9)
C179	0.36431	9)	0.4348 (8)	$0.8292($	8)
C189	-0.0455	7)	0.15371	6)	0.44241	6)
C199	-0.0763	7)	$0.0201($	6)	0.35431	7)
C209	-0.2219(9)	-0.0460	7)	0.2636 (8)
C219	-0.3399	8)	0.01901	9)	0.2595 (8)
C229	-0.3094 (8)	0.15081	9)	0.3474 (9)

TABLE 15 (Continued)

Atom	$\mathbf{X}(\operatorname{Sig}(\mathrm{X})$)		$\mathrm{Y}(\mathrm{Sig}(\mathrm{Y})$		Z $(\operatorname{Sig}(\mathrm{Z})$	
C239	-0.1636	8)	0.21801	7)	0.43721	$8)$
H2	-0.1744		0.0725		0.6353	
H3	-0.4002		0.1400		0.6499	
H7	-0.2508		0.2300		0.4527	
H13	-0.1223		0.2618		0.7540	
H14	-0.0196		0.5009		0.9187	
H15	-0.0838		0.5771		1.1624	
H16	-0.2971		0.4600		1.1859	
H17	-0.3731		0.1982		1.0570	
H19*	-. 6592		0.0276		0.7668	
H20	-0.9238		-0.1400		0.6392	
H21	-0.9700		-0.2931		0.4115	
H22	-0.7875		-0.3206		0.2857	
H23	-0.5152		-0.1628		0.3891	
H29	0.3705		0.1977		0.5663	
H61	-0.3070		0.0122		0.9832	
H62	-0.4610		-0.0884		0.8544	
H79	0.2852		0.0200		0.2832	
H91	-0.1163		-0.3800		0.7296	
H92	-0.2698		-0.4800		0.6901	
HlOl	-0.3170		-0.3150		0.8841	
H102	-0.4527		-0.3151		0.7392	
H111	0.0000		-0.1408		0.8858	
H112	-0.0378		0.0000		0.9089	
H113	-0.0662		-0.0597		1.0168	
H139	0.1515		0.5800		0.6617	
H149	0.2024		0.7600		0.9513	
H159	0.4057		0.7172		1.1010	
H169	0.5066		0.5016		1.0428	
H179	0.4612		0.3773		0.7767	
H199	0.0206		-0.0262		0.3677	
H209	-0.2496		-0.1529		0.2019	
H219	-0.4437		-0.0473		0.1670	
H229	-0.4025		0.2030		0.3542	
H239	-0.1316		0.3222		0.4972	
H391	0.1213		0.2008		0.6455	
H591	0.4035		0.4983		0.3135	
H592	0.4658		0.4642		0.4792	
H593	0.4940		0.4172		0.3253	
H691	0.1884		0.5060		0.4612	
H692	0.0434		0.3938		0.3965	
H991	0.1983		0.2067		-0.0393	
H992	0.3628		0.2790		0.0793	
H1091	0.0536		0.2660		0.1478	
H1092	0.1673		0.3807		0.1130	

TABLE 16

ANISOTROPIC THERMAL PARAMETERS FOR $(\pm)-(1 \alpha, 1 \mathrm{a} \beta, 5 \mathrm{a} \beta, 6 \mathrm{a} \beta)-$ 1a,4,5,5a,6,6a-HEXAHYDRO-5a-METHYL-1,6a-DIPHENYL-

CYCLOPROP[a]INDEN-3(1H)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (8)

Atom	U11		U22		U33		U12		U13		U23	
01	971	4)	661	3)	961	3)	331	2)	411	3)	161	2)
019	981	4)	751	3)	801	3)	321	3)	371	3)	131	3)
Cl	501	3)	491	3)	521	3)	171	2)	231	2)	191	3)
C2	54 (3)	551	3)	481	3)	181	3)	24 (3)	251	3)
C3	561	3)	461	3)	501	3)	181	2)	211	3)	24 (3)
C4	351	3)	501	3)	491	3)	7 (2)	161	2)	211	3)
C5	38 (3)	551	3)	431	3)	8 (2)	9(2)	251	2)
C6	511	3)	601	3)	371	3)	171	3)	221	2)	191	2)
C7	45 (3)	581	4)	611	4)	191	3)	25 (3)	231	3)
C8	47 (3)	571	4)	581	4)	181	3)	161	3)	101	3)
C9	691	4)	501	3)	811	5)	271	3)	191	3)	281	3)
Cl0	631	4)	591	4)	611	4)	141	3)	201	3)	361	3)
Cll	45 (3)	731	4)	581	4)	151	3)	3 (3)	241	3)
Cl2	541	3)	571	3)	481	3)	221	3)	111	3)	221	3)
Cl3	841	5)	441	4)	661	4)	161	3)	141	3)	181	3)
C14	831	5)	731	5)	911	5)	111	4)	1 ($4)$	461	$4)$
C15	1011	6)	611	5)	701	5)	271	4)	-15	$4)$	-31	$4)$
C16	1011	6)	821	6)	791	5)	361	5)	251	$4)$	-2	$4)$
C17	72 (5)	771	5)	641	4)	181	$4)$	311	$4)$	4 ($4)$
C18	491	3)	521	3)	501	3)	251	3)	181	2)	291	3)
C19*	521	3)	641	4)	541	3)	231	3)	191	3)	191	3)
C20	401	3)	861	5)	861	5)	211	3)	271	3)	411	$4)$
C21	451	3)	681	4)	871	5)	111	3)	4 (3)	361	$4)$
C22	621	4)	451	4)	671	4)	8 (3)	2 (3)	161	3)
C23	521	4)	641	4)	561	3)	231	3)	151	3)	271	3)
C19	461	3)	441	3)	631	4)	201	2)	231	3)	211	3)
C29	511	3)	431	3)	561	3)	211	2)	191	3)	241	3)
C39	531	3)	471	3)	521	3)	181	3)	181	3)	231	3)
C49	341	3)	421	3)	551	3)	141	2)	171	2)	171	2)
C59	37 (3)	351	3)	571	3)	101	2)	181	2)	181	2)
C69	551	3)	441	3)	671	4)	261	3)	281	3)	281	3)
C79	471	3)	441	3)	731	4)	201	2)	191	3)	251	3)
C89	471	3)	591	4)	631	4)	151	3)	24 (3)	81	3)
C99	741	4)	571	4)	561	4)	121	3)	211	3)	181	3)
C109	621	4)	621	4)	591	4)	24 (3)	211	3)	331	3)
C119	481	3)	561	4)	651	4)	01	3)	151	3)	181	3)
C129	551	3)	371	3)	591	4)	51	2)	211	3)	121	3)
C139	791	5)	661	5)	671	4)	211	4)	231	$4)$	141	$4)$
C149	771	5)	681	5)	741	5)	111	4)	231	$4)$	0 ($4)$
Cl59	961	6)	701	6)	841	6)	-24 (5)	381	5)	01	$5)$
C169	891	6)	811	6)	681	5)	-2	5)	101	$4)$	211	$4)$
C179	74 (5)	701	4)	541	4)	101	4)	181	3)	251	3)
C189	481	3)	461	3)	441	3)	7 (2)	181	2)	211	2)
C199	571	4)	431	3)	511	3)	91	3)	201	3)	191	3)
C209	811	5)	561	4)	501	$4)$	-2	$4)$	231	3)	201	3)
C219	511	4)	981	6)	571	4)	3 (4)	151	3)	381	$4)$
C229	521	4)	761	5)	711	4)	231	3)	171	3)	361	4)
C239	48 ($4)$	661	4)	751	4)	201	3)	291	3)	281	3)

TABLE 17
BOND ANGLES AND DISTANCES FOR (\pm)-($1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-$ HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLOPROP[a]INDEN-3($1 H$)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (9)

Atoms	Distance (\AA)	Atoms	Angle (${ }^{\circ}$)
C1-C2	1.510(6)	C2-C1-C3	60.9(3)
C1-C3	1.513(6)	C2-C1-C6	106.3(3)
C1-C6	1.548(6)	C2-C1-C12	122.9(4)
C1-C12	1.497(6)	C3-C1-C6	112.4(4)
C2-C3	1.532(6)	C3-C1-C12	122.6(4)
C2-C4	1.478(6)	C6-C1-C12	119.0(4)
C3-C18	1.495(6)	C1-C2-C3	59.6(3)
C4-C5	1.517(6)	C1-C2-C4	108.7(4)
C4-C7	1.327(6)	C3-C2-C4	114.7(4)
C5-C6	1.546(6)	C1-C3-C2	59.4(3)
C5-C10	$1.534(7)$	C1-C3-C18	124.4(4)
C5-C11	1.541(7)	C2-C3-C18	120.4(4)
C7-C8	1.466(6)	C2-C4-C5	109.3(4)
C8-01	1.226(6)	C2-C4-C7	127.8(4)
C8-C9	1.505(8)	C5-C4-C7	123.0(4)
C9-C10	1.527(7)	C4-C5-C6	104.4(4)
C12-C13	1.381(7)	C4-C5-C10	108.7(4)
C13-C14	1.405(7)	C4-C5-C11	107.5(4)
C14-C15	1.385(8)	C6-C5-C10	114.5(4)
C15-C16	1.392(8)	C6-C5-C11	109.6(4)
C16-C17	1.376(7)	C10-C5-C11	111.7(4)
C17-C12	1.395(7)	C1-C6-C5	106.6(4)
C18-C19	1.390 (7)	C4-C7-C8	120.3(4)
C19-C20	1.396(7)	C7-C8-C9	118.5(4)
C20-C21	1.362(8)	C8-C9-C10	115.4(4)
C21-C22	1.382(7)	C9- C10-C5	110.6(4)
C22-C23	1.379(7)	C1-C12-C13	120.6(4)
C23-C18	1.383(7)	C1-C12-C17	121.6(4)
		C13-C12-C17	117.8(4)
		C12-C13-C14	121.8(5)
		C13-C14-C15	119.3(5)
		C14-C15-C16	119.2(5)
		C15-C16-C17	120.8(5)

TABLE 17 (Continued)

Atoms	Distance (\AA)	Atoms
	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$121.2(4)$
	$\mathrm{C} 3-\mathrm{C} 18-\mathrm{C} 19$	$117.5(4)$
	$\mathrm{C} 3-\mathrm{C} 18-\mathrm{C} 23$	$124.6(4)$
	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 23$	$117.8(4)$
	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$121.2(4)$
	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$19.3(5)$
	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$120.7(4)$
	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$119.6(5)$
	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 18$	$121.4(4)$

TABLE 18
POSITIONAL PARAMETERS FOR (\pm)- $(1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-1 \mathrm{a}, 4,5,5 \mathrm{a}, 6,6 \mathrm{a}-$ HEXAHYDRO-5a-METHYL-1,6a-DIPHENYLCYCLOPROP[a]INDEN-3($1 H$)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (9)

Atom	$\mathrm{X}(\mathrm{Sig}(\mathrm{X})$)		$\mathrm{Y}(\operatorname{Sig}(\mathrm{Y})$)		$\mathbf{Z}(\operatorname{Sig}(\mathrm{Z})$)	
01	0.51001	3)	0.31911	7)	-0.0782	1)
Cl	$0.8152($	3)	-0.0068	8)	0.09571	2)
C2	0.72681	3)	0.1681 (8)	0.08661	2)
C3	0.70871	3)	-0.0530	8)	0.1221 (2)
C4	0.68971	3)	0.1497 (8)	0.02781	2)
C5	0.76671	3)	-0.0001(9)	-0.0053	2)
C6	0.82731	4)	-0.1427	9)	0.03981	2)
C7	0.60361	4)	0.2446 (8)	$0.0052($	2)
C8	0.5768 (4)	0.20021	9)	-0.0537	2)
C9	0.6332 (4)	0.0046 (10)	-0.0839	2)
CIO	0.7040 (4)	-0.1505	9)	-0.0472	2)
Cll	0.84361	4)	0.1684	10)	-0.0352	2)
C12	0.9121 (3)	0.0482 (8)	0.12961	2)
C13	$0.9509($	4)	-0.1116	9)	$0.1682($	2)
Cl4	1.04421	4)	-0.0688(10)	0.1988 (2)
C15	1.09951	4)	0.1383 (11)	0.1898 (2)
C16	$1.0603($	4)	$0.3008($	9)	0.15131	2)
C17	0.9684 (4)	0.2569 (9)	0.1219 (2)
C18	0.68651	3)	-0.0327	9)	0.1835 (2)
C19	0.6250 (4)	-0.2075	9)	0.2079 (2)
C20	0.6000 (4)	-0.2011	10)	0.2649 (2)
C21	0.63551	4)	-0.0184(10)	0.2969 (2)
C22	$0.6959($	4)	0.1587	10)	0.27361	2)
C23	0.72111	4)	0.1499 (9)	0.21741	$2)$
H2	0.7291		0.3243		0.1052	
H3	0.6473		-0.1359		0.1048	
H7	0.5577		0.3469		0.0290	
H13	0.9117		-0.2567		0.1749	
H16	1.0992		0.4577		0.1463	
H17	0.9379		0.3740		0.0943	
H19	0.5975		-0.3382		0.1844	
H20	0.5559		-0.3297		0.2805	
H2I	0.6167		-0.0103		0.3370	
H22	0.7237		0.2838		0.2977	
H23	0.7620		0.2788		0.1997	
H61	0.9028		-0.1568		0.0298	
H62	0.7987		-0.3012		0.0432	
H91	0.6760		0.0627		-0.1143	
H92	0.5788		-0.1039		-0.1011	
H1Ol	0.7524		-0.2426		-0.0695	
H102	0.6595		-0.2618		-0.0254	
H111	0.8943		0.0770		-0.0532	
H112	0.8128		0.2939		-0.0617	
H113	0.8932		0.2602		-0.0036	

TABLE 19

ANISOTROPIC THERMAL PARAMETERS FOR (\pm)-($1 \alpha, 1 \mathrm{a} \alpha, 5 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)-$ 1a,4,5,5a,6,6a-HEXAHYDRO-5a-METHYL-1,6a-DIPHENYL-CYCLOPROP[a]INDEN-3(1H)-ONE $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}$ (9)

Atom	U11		U22		U33		U12		U13		U23	
01	591	2)	72 (2)	461	2)	151	2)	-13(1)	$4($	2)
Cl	331	2)	371	2)	361	2)	51	2)	$2($	2)	-3(2)
C2	40 (2)	33(2)	301	2)	61	2)	01	2)	-3(2)
C3	301	2)	47 (3)	341	2)	$1($	2)	-4	2)	01	2)
C4	351	2)	361	2)	301	2)	$2($	2)	01	2)	-2(2)
C5	$37($	2)	411	3)	331	2)	51	2)	71	2)	11	2)
C6	451	2)	411	3)	431	3)	101	2)	31	2)	-7(2)
C7	44 (2)	431	3)	28 (2)	$4($	2)	4	2)	01	2)
C8	451	3)	50 (3)	39(2)	3 (2)	01	2)	$5($	2)
C9	66(3)	64 (3)	38(3)	3 (3)	$1($	2)	-2(3)
C10	56(3)	48 (3)	351	2)	6 (2)	$2($	2)	-4	2)
Cl1	52(3)	52(3)	$54($	3)	$4($	2)	181	2)	-1(2)
C12	341	2)	391	3)	$34($	2)	$5($	2)	01	2)	-2(2)
C13	40 (2)	47 (3)	45 (3)	-1(2)	01	2)	11	2)
C14	41 (3)	64 (3)	51 (3)	$5($	3)	-4	2)	-2(2)
C15	47 (3)	631	4)	53(3)	$2($	3)	01	2)	-10(3)
C16	44 (3)	411	3)	72(3)	-91	2)	51	2)	-13(3)
C17	44 (2)	391	3)	$51($	$3)$	51	2)	-11	2)	$0($	2)
C18	301	2)	431	3)	321	2)	$0($	2)	-6)	2)	-2(2)
C19	42 (2)	40 (3)	411	3)	-51	2)	01	2)	-1(2)
C20	48 (3)	62 (4)	48 (3)	-5	2)	81	2)	161	3)
C21	$51($	3)	601	3)	32 (2)	$1($	3)	$3($	2)	01	2)
C22	51 (3)	54 (3)	40 (3)	-8(2)	01	2)	-9(2)
C23	43 (2)	46 (3)	391	2)	-5	2)	81	2)	01	$2)$

Anisotropic thermal parameters in the form:

$$
\begin{aligned}
& \exp \left[-2 \pi^{2}\left(\mathrm{U} 11 \mathrm{~h}^{2} a^{* 2}+\mathrm{U} 22 \mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{U} 331^{2} \mathrm{c}^{* 2}+2 \mathrm{U} 12 \mathrm{hka}{ }^{*} b^{*}+\right.\right. \\
& \left.2 \mathrm{U} 13 \mathrm{hla}{ }^{*} \mathrm{c}^{*}+2 \mathrm{U} 23 \mathrm{k} 1 \mathrm{~b}^{*} \mathrm{c}^{*} 0\right] \times 10^{3}
\end{aligned}
$$

APPENDIX C

TABLES OF CRYSTALLOGRAPHIC DATA FOR ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha$)-DODECA-HYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]DICYCLO-

HEPTENE-1,10-DIONE (18) AND (\pm)-($5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha$)-DODECAHYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA-
[1,2:3,4]DICYCLOHEPTENE-1,10-DIONE (19)

TABLE 20

BOND ANGLES AND DISTANCES FOR (5aß,5bß,10a $\alpha, 10 \mathrm{~b} \alpha$)-DODECA-HYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]DICYCLO-HEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (18) AND (\pm)-
 ($5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha$)-DODECAHYDRO-5,5,6,6-TETRA-PHENYLCYCLOBUTA[1,2:3,4]DICYCLO-HEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (19)

Atoms	Distance (\AA) 18	Distance (\AA) 19	Atoms	$\begin{gathered} \text { Angle }\left(0^{\circ}\right) \\ 18 \end{gathered}$	$\begin{gathered} \text { Angle }\left({ }^{\circ}\right) \\ 19 \end{gathered}$
C1-O1	1.221 (6)	1.211(5)	ClOb- Cl - Ol	123.0(5)	121.2(4)
$\mathrm{C} 1 \cdot \mathrm{C} 2$	1.513(9)	$1.507(7)$	C1Ob-Cl-C2	115.6(4)	117.2(4)
$\mathrm{Cl}-\mathrm{ClOb}$	1.491 (7)	$1.490(7)$	$\mathrm{Ol}-\mathrm{Cl} \cdot \mathrm{C} 2$	121.2(5)	121.6(5)
C2-C3	$1.524(8)$	$1.528(5)$	C1-C2-C3	117.6(5)	115.1(4)
C3-C4	$1.537(8)$	1.541(7)	C2-C3-C4	117.8(4)	115.1(3)
C4-C5	$1.565(7)$	$1.554(6)$	C3-C4-C5	118.2(5)	114.2(3)
C5-C5a	$1.568(6)$	1.581(4)	C4-C5-C5a	102.8(4)	107.2(3)
C5-C11	$1.533(7)$	1.541 (6)	C4-C5-C11	110.5(4)	107.5(3)
C5-C17	1.523(8)	$1.538(4)$	C4-C5-C17	105.6(4)	109.6(3)
C5a - C5b	$1.610(7)$	1.587(6)	C5a-C5- C11	114.2(4)	112.9(3)
C5a-C10b	$1.570(7)$	$1.566(5)$	C5a-C5- Cl 7	113.5(3)	109.6(2)
C5b-C6	$1.552(6)$	1.571 (5)	C11-C5-C17	109.6(4)	109.9(3)
C5b- Cl 10 a	$1.546(7)$	1.569(5)	C5-C5a- C5b	140.4(4)	127.4(3)
C6-C7	$1.553(7)$	1.563(5)	C5-C5a - C10b	111.9(3)	115.3(3)
C6-C23	$1.538(6)$	$1.538(6)$	C5b-C5a - C10b	85.7(4)	87.8(2)
C6-C29	$1.546(7)$	1.557(6)	C5a - C5b- C6	137.6(4)	127.3(3)
C7-C8	$1.536(7)$	$1.531(6)$	C5a - C5b- $\mathrm{C1O}$	90.1(3)	88.0(3)
C8-C9	$1.536(7)$	1.528(6)	C6-C5b-C10a	117.4(4)	115.4(3)
C9-C10	1.501(6)	$1.505(7)$	C5b-C6-C7	103.9(4)	106.8(2)
C10-O2	$1.211(7)$	1.214(5)	C5b-C6-C23	114.2(3)	113.2(4)
C10-C10a	$1.517(7)$	1.499(5)	C5b-C6-C29	112.2(4)	111.3(3)
C10a-C10b	$1.536(7)$	1.522(6)	C7-C6-C23	110.0(4)	107.9(3)
C11-C12	1.389(8)	1.400(5)	C7-C6-C29	107.0(3)	106.6(4)
C12-C13	$1.385(7)$	1.394(7)	C23-C6-C29	108.8(4)	110.7(3)
C13-C14	$1.391(7)$	1.383(7)	C6-C7-C8	115.5(5)	115.3(3)
C14-C15	1.359(9)	1.374(8)	C7-C8-C9	116.7(4)	114.6(4)
C15-C16	1.390 (8)	1.370 (8)	C8-C9- C10	116.6(4)	116.1(3)
C16-C11	$1.396(6)$	$1.401(6)$	C9- $\mathrm{Cl} 0-\mathrm{O} 2$	122.0(5)	122.0(4)
C17-C18	1.382(7)	1.388(6)	C9-C10-C10a	119.6(4)	116.6(3)
C18-C19	$1.395(9)$	1.393(5)	O2-C10- ClO	118.4(4)	121.3(4)
C19-C20	1.378(8)	1.363(6)	C10-C10a-C10b	119.7(4)	118.0(3)
C20.C21	1.350(10)	$1.379(7)$	C10-C10a-C5b	117.1(3)	117.8(4)
C21-C22	1.389(9)	$1.385(6)$	C5b-C10a-C10b	89.2(4)	90.0(2)
C22-C17	$1.396(7)$	$1.386(6)$	C10a - C10b-C5a	92.0(3)	90.5(2)

TABLE 20 (Continued)

Atoms	Distance (\AA) 18	Distance (\AA) 19	Atoms	$\begin{aligned} & \text { Angle }\left(0^{\circ}\right) \\ & 18 \end{aligned}$	$\begin{aligned} & \text { Angle }\left(^{\circ}\right) \\ & 19 \end{aligned}$
C23-C24	1.367(8)	1.408(7)	$\mathrm{ClO}-\mathrm{ClOb}-\mathrm{Cl}$	121.9(4)	119.2(3)
C24-C25	$1.401(7)$	$1.379(7)$	C5a-C10b-C1	107.8(4)	113.9(3)
C25-C26	1.375 (9)	$1.370(7)$	C5-C17-C18	120.6(4)	120.2(3)
C26-C27	1.374 (9)	$1.377(8)$	C5-C17-C22	121.8(4)	122.9(3)
C27-C28	1.396 (7)	$1.400(7)$	C18-C17-C22	117.5(5)	116.8(3)
C28-C23	1.402(7)	$1.396(5)$	C17-C18-C19	121.7(5)	121.7(4)
C29.-C30	$1.400(6)$	$1.382(5)$	C18-C19-C20	119.2(5)	120.4(4)
C30-C31	$1.365(8)$	$1.392(7)$	C19-C20-C21	120.0(6)	118.9(4)
C31-C32	$1.378(9)$	$1.386(7)$	C20-C21-C22	121.4(5)	120.7(4)
C32-C33	1.374 (8)	$1.380(6)$	C21-C22-C17	120.2(5)	121.4(4)
C33-C34	1.397 (8)	$1.380(7)$	C5-C11-C12	120.6(4)	121.4(3)
C34-C29	$1.371(8)$	$1.403(6)$	C5-C11-C16	122.3(5)	121.4(3)
			C12-C11-C16	117.0(4)	117.2(4)
			C11-C12-C13	121.6(4)	121.1(4)
			C12-C13-C14	119.9(5)	119.6(4)
			C13-C14-C15	119.7(4)	119.7(5)
			C14-C15-C16	120.2(4)	120.9(5)
			C15-C16-C11	121.6(5)	121.2(4)
			C6-C23-C24	123.5(4)	120.7(3)
			C6-C23-C28	118.3(4)	123.3(4)
			C24-C23-C28	118.2(4)	116.0(4)
			C23-C24-C25	121.5(5)	122.0(4)
			C24-C25-C26	119.9(6)	121.0(5)
			C25-C26-C27	119.6(5)	118.9(5)
			C26-C27-C28	120.6(5)	120.7(4)
			C27-C28-C23	120.2(5)	121.4(4)
			C6-C29-C30	117.4(5)	123.1(4)
			C6-C29-C34	124.3(4)	119.4(3)
			C30-C29-C34	118.3(5)	117.5(4)
			C29-C30-C31	121.0(5)	118.9(5)
			C30-C31-C32	120.4(5)	120.4(4)
			C31-C32-C33	119.6(5)	119.9(5)
			C32-C33-C34	120.0(5)	120.6(4)
			C33-C34-C29	120.7(4)	121.2(4)

TABLE 21
POSITIONAL PARAMETERS FOR ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha$)-DODECA-HYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]-DICYCLOHEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (18)

Atom	$\mathbf{X}(\operatorname{Sig}(\mathrm{X})$)		Y(Sig(Y)		Z $(\operatorname{Sig}(\mathrm{Z})$	
01	0.25791	5)	0.78851	1)	0.71241	5)
02	0.05481	5)	0.74571	2)	0.87371	4)
Cl	0.36491	6)	0.76411	2)	0.76291	5)
C2	0.51561	7)	0.77851	2)	0.76181	6)
C3	0.6437 (6)	0.74681	2)	0.83161	6)
C4	0.65061	5)	0.69951	2)	0.76681	5)
C5	0.5494 (5)	0.65991	2)	0.78811	5)
C5A	0.39211	5)	0.68061	2)	0.72481	4)
C5B	0.22261	5)	0.66571	2)	0.68631	$4)$
C6	0.13061	5)	0.62071	2)	0.6489 (5)
C7	-0.0231	5)	0.63511	2)	0.65351	6)
C8	-0.0885	5)	0.67871	$2)$	0.57211	5)
C9	-0.0387	6)	0.72541	2)	0.64131	5)
C10	0.07141	6)	0.72401	2)	0.78031	5)
Cl0A	0.2077 (5)	0.69441	2)	0.80631	5)
Cl0B	0.35541	5)	0.71741	2)	0.82001	5)
Cl1	0.5888 (5)	0.64771	2)	0.93851	5)
Cl2	0.49181	5)	0.62291	2)	0.98621	5)
Cl3	0.52961	6)	0.60841	2)	$1.1194($	5)
C14	0.66671	6)	0.61921	2)	$1.2092($	6)
C15	0.76291	6)	0.64401	2)	1.16561	6)
C16	0.72541	6)	0.65791	2)	1.03141	6)
Cl7	0.57961	5)	0.61841	2)	$0.7107($	5)
C18	0.52181	6)	0.61641	2)	0.57151	5)
Cl9	0.55071	6)	0.57931	2)	0.49801	6)
C20	0.64001	7)	0.54401	2)	0.56601	7)
C21	0.69901	7)	0.54561	2)	$0.7017($	7)
C22	0.66901	6)	0.58191	2)	0.77621	5)
C23	0.19061	5)	0.58001	2)	0.74581	5)
C24	0.14361	6)	0.56971	2)	0.85311	5)
C25	0.20291	6)	0.53261	2)	0.93961	6)
C26	0.3070 (6)	0.50471	2)	0.9145	6)
C27	$0.3554($	5)	0.51431	2)	0.8069 (5)
C28	0.2978 (5)	0.55161	2)	0.72161	5)
C29	0.11141	5)	0.6047 (2)	0.50291	5)
C30	0.03511	5)	0.56341	2)	0.45951	5)
C31	0.01281	6)	0.5471 ($2)$	0.33171	6)
C32	0.06361	6)	0.57141	2)	0.24211	5)
C33	0.1388 (6)	0.61211	2)	0.28251	5)
C34	0.16051	5)	0.62901	2)	0.41281	5)
H2 (1)	0.4923		0.7829		0.6479	
H2 (2)	0.5202		0.8143		0.8058	
H3 (1)	0.7309		0.7652		0.8180	
H3 (2)	0.6514		0.7431		0.9340	
H4 (1)	0.7601		0.6927		0.8009	
H4 (2)	0.6143		0.7028		0.6505	
H5A	0.4048		0.6966		0.6430	

TABLE 21 (Continued)

Atom	$\mathbf{X}(\operatorname{Sig}(\mathrm{X})$)	$\mathrm{Y}(\operatorname{Sig}(\mathrm{Y})$	Z(Sig(Z)
F:58	0.1719	0.6840	0.5972
H7 (1)	-0.0223	0.6405	0.7585
H7 (2)	-0.1117	0.6254	0.6365
H8 (1)	-0.2088	0.6804	0.5440
H8 (2)	-0.0783	0.6777	0.4742
H9(1)	-0.1255	0.7430	0.6576
H9(2)	0.0151	0.7465	0.5751
H10A	0.2201	0.6732	0.9016
H10B	0.4221	0.7172	0.9229
H12	0.3853	0.6169	0.9124
H13	0.4538	0.5861	1.1537
H14	0.6937	0.6012	1.3014
H15	0.8687	0.6460	1.2451
H16	0.8049	0.6776	0.9995
H18	0.4426	0.6410	0.5275
H19	0.4866	0.5771	0.3969
H20	0.6492	0.5179	0.4989
H21	0.7609	0.5183	0.7437
H22	0.7322	0.5811	0.8923
H24	0.0543	0.5862	0.8857
H25	0.1417	0.5179	1.0019
H26	0.3510	0.4786	0.9858
H27	0.4559	0.4973	0.7781
H28	0.3282	0.5594	0.6359
H30	0.0152	0.5419	0.5411
H31	-0.0418	0.5186	0.3028
H32	0.0510	0.5587	0.1409
H33	0.1507	0.6374	0.2185
H34	0.2198	0.6614	0.4581

TABLE 22

POSITIONAL PARAMETERS FOR $(\pm)-(5 \mathrm{a} \beta, 5 \mathrm{~b} \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)$ DODECA-HYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]-DICYCLOHEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (19)

Atom	X(Sig(X))	Y(Sig(Y)		Z $(\operatorname{Sig}(\mathrm{Z})$	
01	0.5446 (4)	0.33251	4)	0.05511	2)
02	0.6288(3)	0.58101	3)	0.24711	3)
Cl	$0.5380(4)$	0.2686 (4)	0.1379 (3)
C2	$0.5801(4)$	0.13851	4)	0.17831	3)
C3	0.4848 (4)	0.01951	4)	0.2462 (3)
C4	0.4706 (4)	0.05511	4)	0.3357 (3)
C5	$0.3405(4)$	0.0977	4)	0.3276 (2)
C5A	$0.3409(4)$	0.21931	4)	0.23341	2)
C5B	0.3043 (4)	0.35751	$4)$	0.21911	2)
C6	$0.1681(4)$	0.3897 (4)	0.16631	2)
C7	$0.2114(4)$	0.54831	4)	0.1123 (3)
C8	0.3051 (4)	0.64871	$4)$	0.1723 (3)
C9	0.4593 (4)	0.69061	4)	0.16491	3)
C10	$0.5202(4)$	0.57301	4)	$0.1961($	3)
Cl0A	0.4359 (4)	0.44161	4)	0.16571	2)
Cl0B	$0.4873(4)$	0.31551	4)	0.2042 (2)
Cll	$0.3497(4)$	0.1437 (4)	0.41811	2)
Cl2	$0.4572(4)$	0.25961	4)	0.43971	3)
C13	$0.4604(5)$	0.30571	5)	0.51851	3)
C14	$0.3576(6)$	0.23421	6)	0.57791	3)
C15	0.2553 (6)	0.11631	6)	0.56001	3)
C16	$0.2513(4)$	0.07071	5)	0.4825 (3)
C17	0.2097 (4)	-0.0285	4)	0.32071	2)
C18	$0.0840(4)$	-0.0079	4)	0.28031	3)
C19	-0.0377 (4)	-0.1198(4)	0.2772 (3)
C20	-0.0361 (5)	-0.2541	4)	0.31401	3)
C21	$0.0879(5)$	-0.2773	4)	0.35301	4)
C22	0.2088(4)	-0.1661(4)	0.3570 (3)
C23	$0.0921(4)$	0.3047 (4)	0.09251	3)
C24	$0.1554(4)$	0.32031	4)	0.01341	3)
C25	$0.0900(5)$	0.24541	5)	-0.0538	3)
C26	-0.0413 (6)	0.15291	5)	-0.0468	3)
C27	-0.1070 (5)	0.1344 (5)	0.02941	4)
C28	-0.0416 (4)	0.20991	4)	0.09801	3)
C29	$0.0696(4)$	0.36921	$4)$	0.23831	3)
C30	$0.0895(4)$	0.30591	4)	0.33431	$3)$
C31	$0.0014(5)$	0.29391	5)	0.39671	$3)$
C32	-0.1086 (4)	0.34621	5)	0.36371	3)
C33	-0.1298 (4)	0.40901	5)	0.2680 ($3)$
C34	-0.0437(4)	0.41921	$4)$	0.20591	$3)$
H2 (1)	0.6827	0.1567		0.2325	
H2 (2)	0.5871	0.1059		0.1228	
H3(1)	0.3809	-0.0190		0.2054	
H3 (2)	0.5153	-0.0647		0.2641	
H4(1)	0.4690	-0.0302		0.3965	
H4 (2)	0.5609	0.1289		0.3569	
H5A	0.2792	0.1684		0.1813	

TABLE 22 (Continued)

Atom	$\mathbf{X}(\operatorname{Sig}(\mathrm{X})$)	$\mathbf{Y}(\operatorname{Sig}(\mathrm{Y})$	Z Sig $^{(Z)}$	-
H5B	0.3223	0.3830	0.2833	
H7 (1)	0.1188	0.5771	0.0785	
H7 (2)	0.2624	0.5564	0.0524	
H8(1)	0.2754	0.6097	0.2481	
H8(2)	0.2768	0.7358	0.1578	
H9(1)	0.4776	0.7376	0.0939	
H9(2)	0.5225	0.7732	0.1988	
HIOA	0.4103	0.4549	0.0921	
H1OB	0.5558	0.3232	0.2753	
H12	0.5335	0.3182	0.3847	
H13	0.5499	0.3889	0.5418	
H14	0.3418	0.2625	0.6422	
H15	0.1685	0.0464	0.6161	
H16	0.1655	-0.0244	0.4608	
H18	0.0841	0.0965	0.2556	
H19	-0.1258	-0.0829	0.2394	
H20	-0.1289	-0.3429	0.3053	
H21	0.0896	-0.3854	0.3833	
H22	0.2983	-0.1802	0.3930	
H24	0.2486	0.4029	0.0000	
H25	0.1372	0.2567	-0.1170	
H26	-0.1083	0.0721	-0.0903	
H27	-0.2127	0.0593	0.0401	
H28	-0.0848	0.1857	0.1606	
H30	0.1792	0.2671	0.3638	
H31	0.0164	0.2391	0.4749	
H32	-0.1653	0.3503	0.4205	
H33	-0.2263	0.4397	0.2540	
H34	-0.0630	0.4661	0.1265	

TABLE 23
ANISOTROPIC THERMAL PARAMETERS FOR ($5 \mathrm{a} \beta, 5 \mathrm{~b} \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \alpha$)-DODECA-HYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]-DICYCLOHEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (18)

Atom	U11		U22		U33		U12		U13		U23	
01	781	3)	42 (2)	1341	4)	71	2)	251	2)	201	2)
02	961	3)	1011	3)	601	2)	441	2)	301	2)	-13(2)
Cl	641	3)	261	2)	49 (3)	$0($	2)	5	2)	-8(2)
C2	72 (4)	371	3)	62 (3)	-12(3)	20 (3)	-1(3)
C3	591	3)	44	3)	611	3)	-17(3)	20 (3)	-9(3)
C4	38(3)	401	3)	561	3)	-13(2)	131	2)	-13(2)
C5	34 (2)	401	3)	331	3)	-3(2)	$12($	2)	-6(2)
C5A	381	2)	24 (2)	351	2)	-7(2)	14 (2)	-4(2)
C5B	361	2)	28 (2)	27 (2)	$3($	2)	111	2)	$1($	2)
C6	311	2)	311	2)	321	2)	-11	2)	101	2)	$1($	2)
C7	251	2)	451	3)	601	3)	$0($	2)	16 (2)	$9($	2)
C8	42 (3)	501	3)	391	3)	71	2)	$8($	2)	$2($	2)
C9	49 (3)	401	3)	53 (3)	13 (2)	$19($	2)	8 (2)
C10	62(3)	401	3)	381	3)	4	2)	26 (2)	0 (2)
C10A	42 (2)	331	2)	311	2)	$4($	2)	17 (2)	-4	2)
CIOB	451	3)	28 (2)	371	3)	-2	2)	8 (2)	-5	$2)$
Cll	$34($	2)	$32($	3)	361	3)	$0($	2)	$8($	2)	-9(2)
Cl2	43 (3)	34 (3)	40 (3)	$1($	2)	$8($	2)	-5	2)
C13	63 (3)	381	3)	401	3)	31	2)	15 (2)	$2($	2)
C14	68 (4)	491	3)	42 (3)	17(3)	$4($	3)	$3($	2)
C15	491	3)	711	4)	40 (3)	211	3)	-2	2)	-11(3)
C16	411	3)	49(3)	551	3)	$1($	2)	12 (2)	-8(2)
C17	341	2)	39(3)	50 (3)	-11(2)	$17($	2)	-8(2)
C18	43 (3)	651	3)	48 (3)	-1	2)	201	2)	-12	3)
C19	58 (3)	771	4)	561	3)	-11(3)	20 (3)	-22(3)
C20	$71($	4)	61 (4)	831	5)	-17(3)	42 (3)	-31(3)
C21	74 (4)	44 (3)	82 (5)	$9($	3)	37 (3)	-5(3)
C22	551	3)	401	3)	571	3)	$0($	2)	23 (2)	$1($	2)
C23	32 (2)	28 (2)	351	2)	-2	2)	5 (2)	01	2)
C24	56(3)	371	3)	42 (3)	11	2)	20 (2)	$1($	2)
C25	601	3)	461	3)	$52($	3)	$3($	2)	24 (2)	$10($	$2)$
C26	$61($	3)	371	3)	501	3)	$0($	2)	6	2)	15 ($2)$
C27	44	3)	341	3)	53 (3)	-1	2)	$8($	2)	6	2)
C28	341	2)	361	3)	381	3)	-4	2)	$9($	2)	-1	2)
C29	301	2)	251	2)	411	3)	$1($	2)	8 (2)	0 (2)
C30	481	3)	331	3)	40 (3)	-3(2)	$1($	2)	0 (2)
C31	$61($	3)	371	3)	53 (3)	-7(2)	$1($	3)	-9(3)
C32	63 (3)	52(3)	411	3)	71	3)	$8($	2)	-14(3)
C33	63(3)	461	3)	361	3)	$0($	2)	171	2)	$1($	2)
C34	38(3)	381	3)	421	3)	-3(2)	101	$2)$	-2($2)$

Anisotropic thermal parameters in the format:
$\operatorname{expl}-2 \pi^{2}\left(U 11 h^{2} a^{* 2}+U 22 k^{2} b^{* 2}+U 33 I^{2} c^{* 2}+2 U 12 h k a^{*} b^{*}+2 U 13 h l a^{*} c^{*}+\right.$ $\left.2 \mathrm{U} 23 \mathrm{klb}{ }^{*} \mathrm{c}^{*}\right) \mid \times 10^{3}$

TABLE 24
ANISOTROPIC THERMAL PARAMETERS FOR (\pm)-(5aß,5b $\alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)-$ DODECAHYDRO-5,5,6,6-TETRAPHENYLCYCLOBUTA[1,2:3,4]-DICYCLOHEPTENE-1,10-DIONE $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{2}$ (19)

Atom	U11		U22		U33		U12		U13		U23	
01	1491	3)	841	2)	64(2)	651	2)	561	2)	$5($	1)
02	47 (1)	661	2)	127(2)	23(1)	-18(1)	-47(2)
Cl	48 (2)	$52($	2)	54(2)	171	2)	20 (2)	-9(2)
C2	651	3)	$53($	2)	69(3)	311	2)	201	2)	-16(2)
C3	60 (2)	431	2)	$54($	2)	27 (2)	51	2)	-13(2)
C4	431	2)	371	2)	411	2)	211	1)	-4	1)	-7	1)
C5	371	2)	351	2)	331	2)	18 (1)	11	1)	-4(1)
C5A	34 (2)	351	2)	32 (2)	$14($	1)	5 (1)	-91	1)
C5B	36 (2)	361	2)	311	2)	161	1)	3 (1)	-7	1)
C6	41 (2)	44 (2)	27 (1)	231	1)	$2($	1)	-51	1)
C7	491	2)	42 (2)	431	2)	24 (2)	$2($	1)	-31	1)
C8	601	2)	40 (2)	551	2)	291	2)	61	2)	-11(2)
C9	541	2)	341	2)	571	2)	$11($	1)	91	2)	-14(2)
C10	$39($	2)	43 (2)	53(2)	131	1)	$9($	1)	-11(2)
C10A	$37($	2)	34 (2)	$37($	2)	$11($	1)	71	1)	-8(1)
C10B	361	2)	371	2)	381	2)	$14($	1)	$9($	1)	-61	1)
C11	$52($	2)	451	2)	$32($	2)	311	2)	-51	1)	-8(1)
Cl2	66 (2)	451	2)	$37($	2)	28 (2)	-9(2)	-11(2)
C13	1031	3)	62 (3)	50 (2)	451	2)	-24	2)	-28(2)
C14	124 (4)	1081	4)	361	2)	781	3)	-4	2)	-21(2)
C15	$94($	3)	$104($	4)	371	2)	55(3)	$5($	2)	-13(2)
C16	651	2)	701	3)	331	2)	$31($	2)	5	2)	-11(2)
C17	42 (2)	411	2)	321	2)	$14($	1)	51	1)	-8(1)
C18	441	2)	42 (2)	45 (2)	12(1)	51	1)	-11(1)
C19	48 (2)	56 (2)	$52($	2)	111	2)	$3($	2)	-17(2)
C20	53 (3)	52 (2)	671	3)	-1(2)	15 (2)	-22(2)
C21	70 (3)	371	2)	100(4)	51	2)	9 (3)	-131	2)
C22	$55($	2)	391	2)	80 (3)	151	2)	-4	2)	-4	2)
C23	46 (2)	401	2)	41 (2)	28 (1)	-4	1)	-4 1	1)
C24	601	2)	$58($	2)	40 (2)	$22($	2)	-2	2)	-16(2)
C25	87(3)	801	3)	45 (2)	47 (3)	-11(2)	-27	2)
C26	81 (3)	651	3)	661	3)	391	3)	-211	2)	-31(2)
C27	591	3)	591	3)	771	3)	25 (2)	-191	2)	-25	2)
C28	54 (2)	52(2)	49(2)	23 (2)	-8(2)	-15(2)
C29	38 (2)	421	2)	481	2)	191	1)	51	1)	-12(1)
C30	49 (2)	571	2)	501	2)	231	2)	171	2)	-21	2)
C31	62 (3)	78 (3)	$61($	3)	261	2)	23 (2)	-7	2)
C32	50 (2)	721	3)	831	3)	$14($	2)	27 (2)	-29(2)
C33	361	2)	63 (3)	93(3)	201	2)	$8($	2)	-32(2)
C34	421	2)	521	2)	63 (2)	261	2)	$0($	2)	-17(2)

^nisotropic thermal parameters in the format:
$\exp \left[-2 \pi^{2}\left(U 11 h^{2} a^{2}{ }^{2}+U 22 k^{2} b^{* 2}+U 33 l^{2} c^{* 2}+2 U 12 h k a^{*} b^{*}+2 U 13 h l a^{*} c^{*}+\right.\right.$ $\left.\left.2 \mathrm{U} 23 \mathrm{klb}{ }^{*} \mathrm{c}^{*}\right)\right] \times 10^{3}$

VITA
Vicki L. Taylor
Candidate for the Degree of
Doctor of Philosophy

Thesis: EXTENDED STUDIES OF THE PHOTOCHEMICAL 4,4-DIPHENYL-2-CYCLOHEXEN-2-ONE REARRANGEMENT

Major Field: Chemistry
Biographical:
Personal Data: Birthdate: October 15, 1961 in San Jose, CA, the daughter of Freddie and Gwendola Taylor; Citizenship: U.S.

Education: Graduated from Harbor High School, Santa Cruz, California, in June 1979; received Bachelor of Science Degree in Chemistry from Southwestern Oklahoma State University at Weatherford in May 1985; completed requirements for Doctor of Philosophy degree at Oklahoma State University in December 1989.

Awards: McAlester Scottish Rite Scholarship, 1988-1989; Water Research Presidential Fellowship, 1987-1990; Summer Scholarship for Women in Energy Research, 1987; Outstanding Senior Chemist, 1985; John Cronin Scholarship, 1984; Analytical Chemistry Award, 1984.

Teaching Experience: Graduate Teaching Assistant, Freshman Chemistry, OSU, 1985-1986; Participated in the "Chemistry Can Be Fun" program, 1986, 1987; Laboratory Assistant, SWOSU, 1983-1985.

Other Research Experience: Summer Undergraduate Research Program, Summer 1985, U of Cincinnati, Cincinnati, OH 45221, Sponsor: Dr. Ed Deutsch, Research on the synthesis of radioactive technetium compounds to be used in medical research as tracers for CAT Scans; 3M Company, Weatherford, OK 73096, Photographic Films and Computer Diskettes Department.

Professional Societies and Leadership Roles: American Chemical Society; Phi Lambda Upsilon (Alumini Secretary, 1986-1987, Treasurer, 1987-1988); Industrial Arts Student Assoc. (Secretary); ACS Student Affiliates (Vice President); Volleyball Team (CJC); Tennis Team (SWOSU).

