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PREFACE 

CD is generally recognized as a technique employed for elucidation of stereochemical 

configuration. This application of CD is dependent upon the ability to develop model 

systems upon which emphircal rules can be formulated At this time there is no 

comprehensive theory for assigning configurations and this deficient limits the 

effectiveness of CD as a structural probe. It is unfortunate that the historical application of 

CD is inhibiting the development of this technique as an analytical tool. The primary 

objective of this study is to demonstrate the advantages of employing CD detection for 

analysis of pharmaceutical and related substances. It is hoped that the investigations 

described in this work, combined with futw:e work in the area, will help to demonstrate that 

CD is a modern analytical detector with unique characteristics that are well suited to the 

analysis of pharmaceutical and clinical samples. 
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CHAPTER I 

INTRODUCTION 

Reliable analytical techniques are necessary tools in today's forensic, clinical, and 

pharmaceutical laboratories. The public's growing health consciousness has prompted the 

development of "shopping mall" cholesterol testing. The use of performance enhancing 

drugs and drugs of abuse by athletes has made drug testing a necessary part of most athletic 

events and programs. Unfortunately, abuse of drugs is not limited to the elite athlete. As 

of 1983, drug abuse cost more than thirty three million dollars in lost productivity alone 

(1). As a result, many companies require dfug screening of all new employees and of 

employees in key areas where safety is an issue. 

Drug screening is not new. Toxicologists have had to deal with such tests since 1968 

when opiate abuse during the Vietnam war prompted the military to start screening for such 

substances (2). However, the recent trend towards large scale health and drug screening 

requires the development of quick, simple, cost effective screening methods that are 

specific and accurate under all conditions, every time they are employed. The need for 

such techniques has prompted many new developments in analytical methods as applied to 

drug and biomolecule determinations. 

The needs of the pharmaceutical industry are also stimulating development of new 

methods for drug determination. The FDA requires a battery of tests in order to insure the 

safety and clinical efficacy of a drug. A pharmaceutical firm must submit a full description 

of the methods used in manufacturing the drug, including results that demonstrate the 

identity, strength, quality, and purity of the substance. This entails analysis of all starting 
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products, analytical monitoring of all the components during the manufacturing process, 

and quality control testing of the final dosage form before it is released for testing or 

marketing. The need for analytical determinations does not end here but continues into the 

field of the clinical chemist who is usually responsible for monitoring therapeutic agents 

during pharmacokinetic and toxicity studies, not only in the pharmaceutical lab but in 

hospital settings as well. Such determinations are difficult because of the complex sample 

matrices encountered, i.e. urine and blood serum. Such analyses must meet the same 

requirements dictated for the drug screening programs and thus represent a major challenge 

to the analytical chemist . 

Many analytical techniques are employed in phannaceutical determinations. All have 

relative advantages and disadvantages. Selection of a given method is usually based upon 

simplicity, sensitivity, and selectivity for the given analyte or analytes. Thermal analysis 

methods such as thermogravimetry, differential thermal analysis, and differential scanning 

calorimetry are used mainly to evaluate the thermal decompositon ofphannaceutical 

formulations, but they are also useful in the quantitation of impurities such as inorganics 

and volatile solvents. There have been some reports of qualitative identification of major 

components by thermal analysis, but little in the way of quantitation of such substances (3). 

Immunoassay techniques rely on the interaction of an antibody with a specific antigen­

labeled antigen pair. Detection is usually based on the radioactivity, fluorescence, or 

enzyme activity of the labeled antigen. Immunoassay kits are available commercially for a 

number of drugs. The primary advantage of such kits is their specificity for a given 

substance, however, cross-reactions with other molecules are not uncommon. A recent 

review by Smith and Joseph (4) is thorough and informative. 

Flow injection analysis (FIA) is also employed for pharmaceutical determinations. FIA 

involves the injection of a sample into a flowing, non-segmented stream of reagent or 

carrier liquid. Controlled mixing of the sample and carrier or reagent occurs before 

reaching the detector. UV -visible, fluorescence, phosphorescence, chemiluminiscence, 



electrochemical, and enzymatic detectors are commonly employed. The pharmaceutical 

applications of FIA have been reviewed by Calatayud (5). 

"Traditional" analytical methods still have a foothold in pharmaceutical analysis. 

Massart and co-workers (6) have discussed ways to improve multiple component 

pharmaceutical preparations by ultraviolet spectrophotometry. Electrochemical methods 

such as polarography (7, 8) and voltammetry (8) are capable of determining very small 

quantities of pharmaceutical substances in a variety of matrices, making them valuable 

techniques for trace analysis. However, the recent trend in almost any type of analytical 

determination is to couple these methods with some type of chromatography. The 

chromatographic step provides added selectivity by separating the components before they 

reach the detector. 
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Chromatographic techniques constitute the largest percentage of modern pharmaceutical 

analyses. Thin layer chromatography (TLC) is the oldest form of this technique. 

Technological advances in other forms of chromatography have made it obsolete as a 

quantitative tool, but it is still used as a screening tool for narcotics, local anaesthetics, 

hallucinogens, and amphetamines (9). Liquid chromatography (LC), coupled with UV, 

fluorescence, or electrochemical detectors has become the method of choice for most 

determinations. The applications of LC in drug analysis have been extensively reviewed 

elsewhere (9, 10, 11, 12). However, there are some technological advances that have 

widened the applicability ofLC even further. The development of pho~ode array 

detectors combined with computerized spectral comparison has increased the potential of 

HPLCIUV as a screening method (13). Other advances include the development of 

microbore columns (14), column switching techniques, and the development of LC/MS 

interfaces (15). 

The latter development is of importance because mass spectrometry (MS) is still the 

definitive technique for identification of drug substances. Because of technical 

incompatibilities between LC and MS, gas chromatography/MS (GC/MS) has been the 



more common analytical procedure. GC/MS is recommended by the National Institute of 

Drug Abuse when confirmation of positive results from other screens is needed (14). 

However, the development of LC/MS interfaces may lead to changes in this 

recommendation. GC/MS techniques used in pharmaceutical determinations are well 

documented and have been extensively reviewed (9, 10). 
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Another form of chromatography has been developed recently that would compliment 

both LC and GC techniques. Supercritical fluid chromatography (SFC) combines many of 

the advantages of GC and HPLC into one technique. SFC has proven to be useful in 

determinations of polar compounds that are difficult to do using GC and it is easier to 

interface SFC with MS than it is to interface HPLC. Other advantages and applications 

have been discussed by Games and co-workers (16). 

The growing sophistication in instrumental techniques has been paralleled by a growing 

understanding of how, why, and where drug substances work. This knowledge has 

generated a new type of analytical question which requires more specialized tools to 

answer. It has been known for many years that some pharmaceuticals are actually 

synthesized and dispensed as enantiomeric mixtures and that each enantiomer may have a 

different physiological effect because of differing metabolic pathways or pharmacokinetics. 

However, the relative enantiomer concentration in such drugs was not an issue until the late 

1970's when chiral stationary phases were developed for HPLC. Prior to this 

development, enantiomeric ratio determinations were not easily accomplished; consequently 

the Food and Drug Administration (FDA) did not require any information on enantiomeric 

concentration, pharmacokinetics, side effects, or clinical efficacy. However, in 1988 the 

FDA issued a set of guidelines covering the submission of New Drug Applications (NDA) 

which required that the structure and relative concentrations of both enantiomers be 

reported if both were present in the drug substance (17). 

The FDA guidelines encouraged the development of chiroptical techniques as detectors 

for HPLC. Traditionally, such techniques have been used to examine the stereochemistry 
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of substances. Recent applications of chiroptical detectors have focused on the same type 

of determinations. Yeung et. al. (18), and researchers at Jasco, Ltd. of Japan (19) have 

proposed the use of UV and circular dichroism (CD) detectors, connected in series, for 

following possible conformation changes in proteins during chromatographic separations. 

The UV detector is used for quantitation, while the CD is used for qualitative identification 

of the proteins and impurities. Meinard and co-workers (20) coupled UV detection with 

polarimetry, in order to identify enantiomers as they came off the column. The above 

examples constitute qualitative applications of chiroptical techniques. Little has been 

reported on the quantitation of chiral substances by such methods. However, Yeung et al. 

(21) has explored the quantitative applications of CD by using fluorescence detected CD as 

an HPLC detector with good results. 

Yeung, Meinard and the others have all acknowledged the relative selectivity that CD 

detectors possess. This selectivity is due to the structural requirements for CD activity, 

namely the presence of a chiral center and a: chromophore in close proximity to each other. 

Many pharmaceuticals possess the required structural components and are generally well 

suited to detection by CD. The inherent selectivity of CD in many cases is so great that a 

prior chromatographic separation step is unnecessary and because CD is an absorbance 

measurement, samples can be quantitatively determined using the same methods employed 

in normal UVspectrophotometry. CD therefore has merits as a stand-alone analytical 

technique for determination of pharmaceuticals and especially for determinations of 

enantiomeric concentration. 

The analytes and samples discussed in the following pages are representative of the 

analytical problems encountered by pharmaceutical and clinical laboratories. The resulting 

collection of determinations demonstrates a number of the advantages and a few of the 

possible applications of CD detection. Combining these investigations with past and future 

work should demonstrate that CD is a modem analytical detector with unique characteristics 

that make it well suited to the analysis of pharmaceutical and clinical samples. 



CHAPTER II 

lllSTORICAL AND TIIEORETICAL BACKGROUND 

OF CIRCULAR DICHROISM 

History 

Optical activity was frrstobserved over 175 years ago when the French astronomer 

Arago was investigating the interactions between quartz plates and polarized light (22, 23) 

by observing solar radiation through Iceland spar (24). One year later, in 1812, Biot 

demonstrated that the solutions of some orgflllic compounds also rotated a beam of 

polarized light (23, 25), thus proving that optical activity was not limited to crystalline 

substances. In 1817 Biot and Fresnel independently observed that the rotatory power of a 

substance increased as the wavelength decreased (22). This phenomenon is now 

recognized as optical rotatory dispersion (ORD). Another manifestation of optical activity 

was recognized in 1846 when Haedinger observed a difference in the absorption of left and 

right circularly polarized light in amethyst quartz crystals (22), a phenomenon now 

identified as circular dichroism (CD). 

The first clues to the physical basis of optical activity were provided by Louis Pasteur. 

In 1848 Pasteur discovered the hemihedrism of tartrate crystals (26). These isomorphic 

crystals exhibited tetrahedral facets that were oriented rightward or leftward with respect to 

the main crystal surfaces: Solutions of the separated crystals rotated a polarized light beam 

to the left or right depending on the orientation of the original tetrahedral facets. He 

concluded that the macroscopic asymmetry of the crystals was connected to the asymmetry 
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of the individual molecules. Based on this conclusion Pasteur suggested that molecules fit 

into two categories: those molecules that are superposable mirror images and those that are 

nonsuperposable mirror images (27). He believed that those molecules which were 

nonsuperposable mirror images would exhibit optical activity (23). 

Pasteur was the first to suggest that optical activity was caused by a dissymmetric 

grouping of atoms in a helical or tetrahedral configuration (27). It wasn't unti11874 that 

van't Hoff and Le Bel (28) independently proposed the existence of an asymmetric carbon 

atom. V an't Hoff correctly proposed a tetrahedral configuration while Le Bel suggested a 

square pyramid geometry. The introduction of this concept made it possible to associate 

the optical activity of a compound with a definite carbon atom in the molecule. It then 

became apparent that two dimensional formulae did not adequately describe an organic 

molecule, and studies of the three dimensional structure of molecules became necessary. 

Seventy-five years would pass before Djerassi and Blout would employ the same 

chiroptical methods that lead to this conclusion as tools in elucidating the stereochemistry of 

organic molecules (29, 30). 

Early investigations of chiroptical methods concentrated on discovering the physical 

causes and relationships of optical activity. Aime Cotton, another French physicist, used 

solutions of copper and chromium tartrates to investigate, in detail,both CD and ORD (22). 

He suggested that the CD curves of optically active compounds resulted from a difference 

in the absorbance of left and right circularly polarized light 

The first physical theory of optical activity was proposed by Drude in 1896. He 

postulated that the charged particles in a dissymmetric structure were constrained to move 

in a helical path (27) and that optical activity resulted from the interaction of electromagnetic 

radiation with this helical electronic motion. In 1916 Gray attempted to combine the 

geometrical models of van't Hoff and Le Bel with the physical model proposed by Drude 

(27). He considered the effect of a wave of plane polarized light on a hypothetical molecule 

consisting of a central atom with four different atoms bonded to it, each located at the 
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apices of a tetrahedron (24). This model, proposed independently by Gray and by Born 

and Oseen, used coupled oscillators and polarizabilities to describe optical activity (23, 24, 

27). A simplification of Born's theories was proposed by Kuhn in 1930. By working out 

a special case of Born's theory, Kuhn was able to represent rotatory power as a first-order 

effect rather than a third order effect (24). Two of Kuhn's contemporaries, Mitchell and 

Lowry, also studied the optical activity of organic compounds in hopes of understanding 

the basic theories involved in this phenomenon (23). 

Rosenfeld was the first to attempt a quantum mechanical approach to.interpret optical 

activity (22, 23). Rosenfeld's quantum theory was expanded by Condon et. al. and by 

Kirkwood (26). Condon considered the effect of a static asymmetric field of a molecule on 

an electron in an otherwise symmetric chromophore. Condon's model is known as the 

one-electron theory in order to distinguish his model from the earlier coupled oscillator 

theories. Kirkwood introduced the asymmetric dynamic coupling of electrons with the 

electronic transitions of other electrons (26). Starting in 1960, Tinco refmed and 

reformulated the quantum theory of optical activity by including both the static and dynamic 

coupling effects (26). Additional refinements are outlined and referenced by Crabbe (25) 

and Charney (26). 

All of the above quantum mechanical theories were based on perturbation theory. Most 

are considered to be semi-classical treatments because the electromagnetic field was treated 

classically rather then being quantized. Unfortunately, most of these theories required a 

number of simplifications and assumptions, thus limiting their practical application. As yet 

there is still no comprehensive theory that allows the predetermination of the sign and 

magnitude of molecular optical activity. 
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Theory 

An optically active substance is defined by IUPAC (31) as one which interacts 

differently with left and right circularly polarized light Two types of optically active media 

are recognized: the inherently dissymmetrical molecule and the inherently symmetrical, but 

asymmetrically perturbed molecule (22). The frrst group is characterized by the absence of 

a center or plane of symmetry in the molecule, such as in hexahelicene. The latter group 

requires the presence of a chrornophore in close proximity to an asymmetric (i.e. chiral) 

carbon atom. Enantiomers and diastereomers are typical of this class and constitute the 

type of optically active compounds discussed in subsequent chapters. 

The varied spectroscopic responses of optically active compounds can best be explained 

by first examining the form of the electromagnetic radiation employed. According to the 

transverse wave model, a monochromatic light beam consists of time dependent electric and 

magnetic fields oriented at right angles to each other and perpendicular to the direction of 

propagation. Figure 1 is a schematic representation of the electric field The associated 

magnetic field can be ignored during this discussion. 

The monochromatic light generally employed in most spectroscopic techniques consists 

of a number of electric fields vibrating in many different planes perpendicular to the 

direction of propagation, Figure 2a. Conversely, the linearly polarized light beam 

employed in chiroptical techniques has an electric field vibrating in only one direction, 

Figure 2b, and can be represented as the vector sum of the two circularly polarized 

components, Figure 3. The electric field vectors of the left and right circularly polarized 

components trace out a left-handed and right handed helix, respectively, as the wave 

propagates along a given axis. If the electric field vector is allowed to propagate in time, 

but not with distance, a counterclockwise or clockwise circle results as illustrated in Figure 

2c and d. 
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Figure 1. Transverse wave representation of the electric field associated with a 
monochromatic light beam. The arrows represent the magnitude of the oscillating electric 

field. The distance between cycles is related to the wavelength, A., of the radiation. 
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(a) (b) 

(c) (d) 

Figure 2. Polarization of monochromatic light beams: a) unpolarized light, 
b) linearly polarized light, c) left circularly polarized light, and d) right 
circularly polarized light. Direction of progagation is out of the page. 
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Figure 3. Direction of the electric field vectors 
emergingfrom a) an achiral medium and b) a 
chiral medium. P is the original plane of 
polarization, L and R are the left andright 
circularly polarized electric field vectors, E is 
the resultant electric field vector. 
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The circularly polarized electric field vectors L and R will exit an achiral media in phase . 

with each other, i.e. with the same frequency. The angles between each vector and the 

original plane of polarization are always equal (co= ro'), Figure 3a. The resultant linearly 

polarized field is in the same direction as the incident field. When circularly polarized 

beams interact with an optically active material, the emerging beams are out of phase with 

each other and their relative angles are different ( ro '# ro'). In this case the resultant field is 

still linearly polarized but is rotated from the original plane of polarization by an angle a, 

the optical rotation, as illustrated in Figure 3b. 

In 1825, Fresnel correctly suggested that the optical rotation resulted from differences in 

the refractive indices, 11. of the two circularly polarized beams (22). 

11L -11R '# 0 (1) 

Changes in the refractive index correspond to changes in the propagation velocity of the 

two circularly polarized components while passing through the medium. Materials for 

which equation 1 is true are said to be circularly birefringent. If 11L > 11R , the optical 

rotation is counterclockwise, i.e. negative, and substance is levorotatory. Conversely if 11L 

< TlR• the rotation is clockwise, i.e. positive, and the substance is dextrorotatory (22). 

The optical rotation, a, is directly proportional to the differences in the refractive 

indices: 

a= (n;b/A.)(TlL -11R)(1800/7t) 

where a is measured in degrees, b is the cell path length, A. is the wavelength of the 

incident radiation, and 11L and 11R are the indices of refraction for the left and right 

circularly polarized beams respectively. 1800/x converts radians to degrees. 

(2) 

A new quantity [a], the specific rotation, is introduced to normalize the concentration, 

making it useful for comparison purposes: 

[a] = CJ./c'b (3) 

where a is the optical rotation from equation 1, c' is the concentration in g/cm3 and b is the 

cell path length. 
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Equation 3 is useful for comparisons between similar molecules, but for drastically 

different molecules another quantity, the molar rotation [<I>] is preferred. In equation 4 the 

optical rotation has been normalized to molecular weight, making it possible to compare 

results on a mole for mole basis: 

[<I>] = [a]M/100 (4) 

where [a] is the specific rotation from equation 3 and M is the molecular weighting/mole. 

The division by 100 has no physical meaning but was introduced to keep the numbers 

small (31). The older literature often refers to [<I>] as the molecular rotation, however, 

IUPAC has ruled this terminology to be incorrect (31). 

Chiral media not only cause changes in the relative speed of the circularly polarized 

electric field vectors, but also cause these components to be absorbed to different extents as 

described by equation 5: 

M = AL - AR :¢: 0 (5) 

where AL and AR are the absorbances of the left and right circularly polarized components 

respectively. The absorbance of a substance in solution is related to the molar absorption 

coefficient, E, by the Beer-Lambert law: 

A=Ebc (6) 

where b is the cell path length, c is the analyte concentration in moles/L and E has the units 

of liters per mole centimeter, A is the measured absorbance and is unitless. Equation 5 can 

be rewritten in terms of e: 

A£ = EL - ER :#: 0 (7) 

where EL and ER are the molar absorption coefficients for the left and right circularly 

polarized beams respectively. The signed difference represented by equation 7 is defmed 

by IUPA C (31) as the CD of a substance. 

The differential absorbance of the two circularly polarized components changes the 

relative magnitude of their electric field vectors, L and R as pictured in Figure 4. The 

resultant electric field vector, E, no longer oscillates in a single plane, but traces out an 
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ellipse. Thus the emitted beam is both elliptically polarized and rotated by an angle a from 

the original plane of polarization because circular birefringence is also present It is 

important to note that circular birefringence and CD always occur simultaneously in chiral 

media, however, the CD becomes measurable only in regions of absorption bands, i.e. 

equation 7 although accurate for all wavelengths is nonzero only in regions of an 

absorption band (30). 

p E 

Figure 4. Production of elliptically polarized 
light in circular dichroism. P is the original 
direction of polarization, L and R are left and 
right circularly polarized light respectively, E 
is the resulting electric field which is now 
elliptically polarized. 



The eccentricity of the elliptically polarized light is characterized by the ellipticity, 'If, 

which is defined as the arctangent of the ratio of the minor axis of the ellipse, OA, to the 

major axis of the ellipse, OB, as pictured in Figure 4 and described as follows: 

16 

tan 'If= ONOB (8) 

Since both the eccentricity and the difference between the absorption coefficients are small, 

equation 8 can be quantitatively approximated (22) as 

'If= 1t(EL- ER){A. (9) 

where EL and ER are the molar absorption coefficients as defined in equation 7 and A. is the 

wavelength of the incident radiation. Note the similarity between this expression and 

equation 2 which uses Fresnel's definition of circular birefrigence (llL -llR -:#: 0). Ellipticity 

is characteristic of CD just as optical rotation is characteristic of circular birefrigence and 

therefore it is not suprising that there are analogous expressions for their measurements. 

The mathematical description of the specific ellipticity, ['If], is analogous to that for the 

specific rotation and is expressed as follows: 

('If] = \jf/c'b (10) 

where 'If is the measured ellipticity in degrees, c' is the concentration expressed as g/ml and 

b is the cell path length expressed in em. This quantity is useful for comparisons of 

molecules with similar molecular weights. 

Normalizing the ellipticity to molecular weight allows for comparisons between 

molecules on a mole for mole basis. The resulting molar ellipticity, [9], is analogous to the 

molar rotation used in defining circular birefrigence. The molar ellipticity is defmed as 

follows: 

[9] = ['lf]M/100 (11) 

where ['If] is the specific ellipticity from equation 10 and M is the molecular weight in 

g/mole. Since equations 4 and 11 are analogous, direct comparison between the magnitude 

of the rotation and the ellipticity for an individual molecule on a mole for mole basis is 
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possible. The molar ellipticity is also directly proportional to the difference between the 

absorption coefficients: 

[e] = 3300(eL - eR) (12) 

where the numerical constant is the net result of all the conversion factors. 

All of the commercial CD spectropolarimeters available today actually measure the 

absorbance difference rather than ellipticity, though the tenn ellipticity is still retained. 

Since CD is actually an absorbance measurement, the Beer-Lambert Law applies. In order 

to facilitate the quantitation of CD data, we have chosen a slightly different definition of the 

molar ellipticity, eM, that is more analogous to the the Beer-Lambert law. 

eM= '!1/Cb (13) 

Here 'I' is the measured ellipticity in degrees, c is the concentiation in moles/L and b is the 

cell path length in em. Because of this choice our values of molar ellipticity will be orders 

of magnitude different from those reported in the literature. 

The Relationship of Absorption to Circular Dichroism 

Circular dichroism as it has been described so far is a spectroscopic variation of normal 

absorption. Both phenomena are the result of the interaction of electrons with 

electromagnetic radiation. Absorption involves the interaction of electrons with unpolarized 

light and thus represents the more general case. This is discussed ftrst. 

Classical theory represents each valence electron as a small, hannonic oscillator. When 

an electromagnetic field of frequency u is introduced, the electrons are displaced from their 

equilibrium positions. But like a harmonic oscillator, these electrons return to their 

equilibrium states by a series of damped oscillations of frequency u0 , the natural frequency 

of the molecule. The displacement of electrons causes changes in the centers of the positive 

and negative charges resulting in an induced dipole moment. The resulting polarization is 

proportional to the amplitude of the electron movement and thus to the magnitude of the 



electric field. The dielectric constant of the material characterizes the relative ease with 

which this polarization is induced. 
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If u is remote from u0 , then the electron displacement and the resulting polarization are 

not large and are in phase with the sinusoidally varying electric field. In this case the 

energy gained by the electrons in one phase is returned to the light beam in the next The 

refractive index of the media can be related to both the velocity of the light beam (the 

exchange of energy slows down the beam) and the dielectric constant. The dielectric 

constant represents the molecular response of the substance while the refractive index 

represents the bulk response. Since the dielectric constant is propotional to the electric 

field, the refractive index is as well (23). 

An electron, however, is not a true harmonic oscillator but behaves more like a quasi­

elastically bound particle that exists in a discrete state characterized by a given energy. 

Transitions between levels can occur if symmetry considerations or changes in the electron 

spin do not prevent it, and if the incoming electromagnetic beam possesses the proper 

amount of energy to promote the electron to the next level. This energy requirement can be 

related to the frequency of the incident radiation by Planck's equation: 

Llli = hu (14) 

where AE is the energy between states, h is Planck's constant and u is the frequency of the 

incident radiation which must correspond to u0 if a transition is to occur. The application 

of equation 14 quantizes the energy levels. 

As u approaches u0 there is a strong probability that an electron will be promoted to an 

excited state, one that is long lived enough to allow dissipative processes to occur. The net 

result is a reduction in the intensity of the beam and a permanent absorption of energy 

occurs. In this region of the spectrum there are large changes in the polarization of the 

molecule and thus in the refractive index. In addition, the coefficient of absorption is no 

longer zero but takes on some fmite value. 
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So far only the induction of dipole transitions by the electric field has been discussed. 

The magnetic field associated with a light wave also induces dipole transitions, however 

these transitions in ordinary absorption produce negligable effects (26). In chiroptical 

phenomena the magnetic dipole transitions are important. Rotation has been shown to be a 

consequence of the combined effects of the electric and magnetic dipole moments which 

connect the ground and excited states. This conclusion results from quantum mechanical 

treatments that will not be covered here but are described in detail by Charny (26). 

Since the basic physical phen~mena of electronic transitions are common to both 

absorption and CD it is expected that many of the theoretical and experimental aspects of 

absorption apply to CD. For example, the most commonly encountered electronic 

transitions are cr -> cr*, cr -> 1t*, 1t -> 1t*, n -> cr*, and n -> 1t* (32, 33). Only the 

n -> 1t* and 1t -> 1t* transitions occur at convenient wavelength for absorption and CD 

measurement Such transitions are observed for carbonyl groups and conjugated systems, 

respectively (32). Since the transitions involved are common to both techniques, any 

parameters affecting the fmal excited state, such as temperature (33), pH, and solvent 

effects (32, 33) also affect CD spectra. 

Analysis of CD spectra for analytical determinations is no different from the 

corresponding analysis of absorption data. A Beer-Lambert law plot is used to construct a 

linear calibration curve, according to: 

A=ebc (15) 

where A is the measured absorbance, e is the molar absorptitivty, b is.the cell path length 

and c is the concentration in moles/L. All modem CD spectropolarimeters actually measure 

the difference in absorbance between the two circularly polarized components, as defined in 

equation 5. This is true even though the instrument is usually calibrated in terms of 

millidegrees in deference to historical precedent. Since CD is actually an absorbance 

measurement, equation 13 can be revised to an analogous form: 'If= 9Mbc. 
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This modification of the Beer-Lambert law is subject to all the possible deviations from 

linearity that affect equation 15. Equation 13 holds for dilute solutions only, since high 

analyte concentrations cause a reduction in the distance between absorbing species to such a 

point that a molecule can·affect the charge distribution of its neighbors (34). Other causes 

of nonlinearity in absorbance spectrophotometry such as nonzero intercepts, chemical 

equilibria (e.g. association, dissociation, and reaction of the absorbing species), 

polychromatic radiation, and stray light (35, 34) also affect the linearity of CD calibration 

plots. 

Even though there are a large number of similarities between absorption and CD 

techniques, CD does have some real advantages. The presence of a chiral center is crucial 

to CD activity. This added structural requirement imparts added selectivity to CD 

measurements. Any chemical species which possesses a chromophore would be detectable 

in absorbance measurements and could possibly interfere with the analysis. The presence 

of just a chromophore or just a chiral center· is not sufficient for CD activity and those 

molecules with either one or the other are eliminated as possible interferences. This added 

selectivity has been useful in determinations of pharmaceutical preparations where the 

presence of binders and dyes can make absorption data difficult to decipher. Another 

advantage CD possesses is the presence of not only positive Cotton bands, but negative 

ones as well. Often one undistinguished absorption band will result in a number of 

negative and positive Cotton bands that are easily identified and can be used in qualitative 

identifications. 

Comparison of Chiroptical Methods 

IUPAC has defmed chiroptical techniques as those "optical (spectroscopic) methods 

which can differentiate between two enantiomers" (31). This defmition is rather limiting, 

but is practical. Techniques normally classified as chiroptical include polarimetry, ORD, 
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and CD. Advances in instrument design has promoted studies on infrared CD, 

fluorescence CD, and Raman CD, but at the present time there are still a number of limiting 

factors that preclude widespread use of such techniques. Magneto CD and the Faraday 

effect (the inducement of circular birefringence by a magnetic field) are not classified as 

chiroptical phenomena by IUPAC (31). The following discussion will focus exclusively 

on polarimetry, ORD, and CD. 

In polarimetric measurements the optical rotation is measured at a single wavelength. 

The wavelength and temperature of the measurement are recorded as a subscript and 

superscript to a, respectively, and the solvent employed is also specified. Polarimetry was 

developed by Biot in 1840 (24 ), making it not only the oldest chiroptical technique but one 

of the oldest instrumental techniques in general. Early developments in optical systems, 

especially in prisms and polarizers, were attempts to improve the sensitivity of polarimetric . 

measurements. 

The development of the bunsen burner in 1866 provided early chemists with a 

monochromatic light source, the sodium flame (24, 30). Consequently the sodium D line, 

actually a doublet at 589.0 nm and 589.6 nm, has become the standard wavelength for 

polarimetric measurements. Development of the mercury vapor lamp in the late 1920's 

provided chemists with four additional wavelengths, 579.1, 577.0, 546.1, and 435.8 nm, 

for polarimetric studies. The green mercury line at 546.1 nm is usually favored because of 

its brightness and spectral purity. Today sodium and mercury vapor lamps are the most 

common sources used in polarimeters. Filters are generally used to isolate the desired 

wavelength. 

Prior to the development of modern instrumentation, polarimetry often provided the 

only structural information an organic chemist could obtain by instrumental methods. Even 

though the sodium D line lies in a region that is very insensitive to most colorless 

compounds, some structural information could be obtained because the sign and magnitude 

of the optical rotation is controlled by the same parameters that control the corresponding 



ORD curve (30). Early chemists also used polarimetric measurements in purity 

determinations, where the combination of optical rotation, refractive index, and melting 

point measurements were used to characterize a substance. 
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Polarimetry also found favor among analytical chemists. It was the method of choice 

for determinations of sugar in raw and refined forms. A specially modified polarimeter, the 

saccharimeter, was developed especially for such determinations (24). However analytical 

applications of polarimetry are complicated by the fact that the relationship between the 

measured optical rotation and the concentration of an analyte is not stricdy linear, thus the 

specific rotation is not always constant. Values of the specific rotation for very dilute 

solutions are often used, or one of the following relationships proposed by Biot can be 

employed (36): 

[a] = B + Cq (16) 

[a] = B + Cq + Dq2 

[a]= B + Cq/D+q 

where q is the percentage of solvent in the solution and B, C, and D are constants 

determined from several measurements taken at different concentrations. 

(17) 

(18) 

Polarimetry and ORD measure the same phenomenon, optical rotation, but ORD is 

generally measured over a broad wavelength region while polarimetric measurements are 

made at a few .discrete wavelengths. Consequently ORD curves contain more information. 

However, prior to the development of the photoelectric polarimeter in 1955 (23), ORD 

measurements were tedious and required a well trained staff. These difficulties coupled 

with the early development of the sodium flame made polarimetric data easier to obtain and 

it thus became the preferred technique. 

Substances without a chromophore pnxiuce a decrease in the magnitude of the optical 

rotation as the wavelength increases: 

a= .A/)..2 (19) 
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where A is a constant and A. is the wavelength of the incident radiation. The resulting ORD 

curves rise or fall monotonically with decreases in wavelength as shown in Figure 5a. 

These curves usually exhibit no inflection points or changes in sign and consequently are 

termed plain or normal ORD curves. If an optically active chromophore is present in the 

molecule, the optical rotation increases dramatically as the wavelength of the incident 

radiation approaches the absorption maximum of the chromophore. Just before the incident 

wavelength becomes equal to the absorption maximum, the magnitude of the optical 

rotation decreases rapidly, passing through zero rotation, until another inflection point is 

reached where the rotation again increases, but at a much slower rate. Figure 5b is an 

example of the resulting ORD spectrum, here a sigmoidal curve is superposed over the 

plain ORD curve. The plain curve in this type of spectra is referred to as the background 

rotation. Such behavior is classified as anomalous ORD. The positive and negative 

maxima are usually referred to as peak and trough extrema, respectively. The point where 

the anomalous curve changes sign is called the crossover point and usually corresponds to 

the absorption maximum of the chromophore. 

In wavelength regions far from the optically active absorption band, the background 

rotation is described by the Drude equation: 

a= I:ni = 1 A/(A.2- A.?) (20) 

where Ai represents the rotation constants, A. is the wavelength of measurement, and A.i 

represents the wavelengths of the optically active absorption bands. Equation 19 is an e~ly 

form of the Drude equation. Those molecules with no chromophores have ~ below 200 

nm. In this case A. is much larger than~ and equation 20 reduces to equation 19. For 

ORD curves with one absorption maxima the Drude equation can be simplified to a one 

term expression and can then be readily solved. For cases of two or more chromophores 

the equation becomes difficult to solve for the absorption maximum. Traditionally equation 

20 was used to locate absorption maxima that could not be observed directly because of 

instrumental limitations. Djerassi (30) has pointed out that the advent of modem 
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Figure 5. Typical chiroptical spectra: (a) plain ORD curves, (b) anomalous ORD curve 
with a single Cotton effect, and (c) CD curve with a single positive Cotton effect. 

~ 



instrumentation allows direct observation of the absorption maximum via ORD or simple 

UV-visible spectrophotometry, and thus the Drude equation has become an interesting 

artifact. 

25 

Since ORD is a spectral scan, it provides more information than a single polarimetric 

measurement does. ORD can distinguish between molecules with similar structures much 

more readily than can polarimetry because of differences in the anomalous regions of their 

spectra. Thus ORD is more useful in the analysis of unseparated mixtures than is 

polarimetry, and since the optical rotation in the region of the optically active absorption 

band is usually much larger than at the sodium D line, ORD possesses greater sensitivity. 

One of the major drawbacks to ORD is the presence of background rotation. Even for 

simple ORD spectra the background can make it difficult to establish the baseline since it is 

constantly changing. In some cases the continous background from chromophores which 

absorb in the far UV is so great that it can conceal the anomalous curve. 

Background rotation is not a problem in CD measurements since !lE. is significant only 

at wavelengths corresponding to an optically active absorption band The CD curve often 

possesses a shape very similar to its corresponding absorption curve, Figure 5c. The 

wavelength of the CD maximum is usually very close to that of the absorption maximum. 

However, due to the definition of !lE. (equation 7) the CD maximum is not always positive, 

but is actually a signed quantity. Therefore CD spectra can exhibit positive and negative 

maxima, positive and negative minima, and positive and negative inflection points. These 

spectral details arise from changes in EL with respect to ER as the absorption band is 

traversed and are very usefUl for qualitatively identifying an analyte. 

Those wavelength regions which correspond to optically active absorption bands 

produce both CD curves and anomalous ORD curves. Such curves are called Cotton 

effects after the French physicist Aime Cotton who carried out the early investigations of 

both phenomena. In ORD if the peak occurs at a longer wavelength than the trough, the 

anomalous curve is termed a positive Cotton effect. If the trough precedes the peak, it is a 



negative Cotton effect. A similar convention holds for CD curves, positive signals are 

termed positive Cotton effects, and vise versa. Multiple Cotton effects are possible for 

those analytes with more than one optically active absorption band (31). 
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Anomalous ORD and CD curves contain the same information since both phenomena 

result from electronic transitions. Because of their common source there is a mathematical 

relationship between the two referred to as the Kronig-Kramers transform. Knowledge of 

the CD curve over a given spectral region allows the corresponding ORD spectrum to be 

calculated and vice versa (27). 

[ <I> (A.)l = 2/TC fo 00[9 (A.')l ('A.'/A. 2 - A.'2) dA.' 

[9 (A)]= -2/TC fooo£<1> (A.')] (A.'2fA.2- A.'2) dA.' 

(21) 

(22) 

The resulting correlations are generally semi-quantitative and must be calculated for each 

individual transition. 

CD has many analytical advantages over ORD. CD curves tend to be simpler in form 

than ORD curves, especially when multiple·transitions are involved. This simplicity 

combined with the absence of background rotation makes CD data easier to analyze. 

Quantitation of mixtures is less complicated because signals occur only at wavelengths 

corresponding to the absorption bands of the individual molecules. The baseline outside 

these regions is well defmed. Weak Cotton effects and overlapping absorption bands are 

best seen in CD spectra, again because background rotation is absent. 

CD activity does require the presence of a chromophore in close proximity to the chiral 

center. ORD and polarimetry are less restrictive. They require only the presence of a chiral 

center. However, there are ways to induce CD activity in those analytes that either lack the 

chiral center or the chromophore. ~-cyclodextrin (discussed in Chapter VII) is a chiral 

molecule known to complex with substrates that possess a phenyl or naphthyl ring, thus 

inducing the necessary chirality needed for CD activity. Chromophores can be introduced 

to chiral molecules by employing a variety of colorimetric reactions: a practice already 

commonly used in simple UV-visible absorption spectrophotometry. 
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Another basis for comparison of polarimetry and CD is the growing interest in 

chiroptical detectors in liquid chromatography (LC). Yeung and coworkers have developed 

laser based polarimetric and CD detectors for LC (21, 37). Stopped-flow CD detectors 

have been developed by Jasco, Inc. (19) and by Westwood, Games, and Sheen (38). 

Polarimetric detectors are ideal if total separation of a mixture is possible. Polarimeters 

are relatively inexpensive to purchase and to operate and will respond to absorbing and 

nonabsorbing analytes equally well. This detector has two useful modes of operation: 1) 

the direct mode where the rotation caused by an analyte is measured (37), and 2) the 

indirect mode where the change in the rotation of the background for an optically active 

solvent is measured (39). The second mode can be employed in the analysis of achiral 

analytes. 

The LC detectors mentioned above were used for stopped-flow analyses (19, 38) and 

measured short spectral scans in order to gain structural information as well as to identify 

the LC peaks. Spectral CD scans are far mere useful than single wavelength data. 

Employing CD detectors with only single wavelength capability reduces this detector to no 

more than an expensive polarimeter with a more limited range of applications because 

nonabsorbing chiral analytes are invisible. However, for those mixtures which can not be 

separated, the capability of CD to differentiate compounds would be useful. But coupling 

CD to HPLC is not necessary in determinations of many complex mixtures. CD has been 

shown to be capable of identifying and quantitating a number of analytes in complex 

mixtures and matrices without a prior chromatographic separation step. Such applications 

have recently been reviewed by Purdie (40) .. 

Development of on-the-fly fully scanning CD detectors is difficult due to source stability 

problems (39) and other instrumental parameters. These technical problems could be 

overcome if sufficient demand warranted further investigation and development. 



CHAPTER III 

INSTRUMENTATION 

Introduction 

All CD and UV spectra were measured by a model J-500A automatic recording 

spectropolarimeter produced by Japan Spectroscopic Co., Ltd. (JASCO). The light source 

is a 450 watt xenon arc lamp which requires water cooling. Boil off from a liquid nitrogen 

cylinder is used to purge the monochromator and sample chambers. Nitrogen purging is 

necessary because the ozone generated by tl}.e xenon lamp can damage the optical system. 

The UV spectra were obtained by switching to the Hf setting on the instrument. 

Initially data acquisition was handled by the JASCO DP-500 data processor. CD 

spectra were output to a chart recorder and the signal heights were measured manually. 

Recently, the data processor was replaced by a JASCO model IF-500-2 interface which 

allowed the J-500A to be coupled to an IDM-AT computer clone. CD signals were then 

measured digitally by the computer and CD spectra were printed on a Hewlett-Packard 

7475A graphics plotter. The data presented in Chapters N, V, VI, and VII were obtained 

using the DP-500, while data in Chapter VIII were acquired using the new computer 

system. 

The instrument was calibrated daily with a 0.025% (W N) solution of androsterone in 

dioxane as suggested by JASCO (41). Instrument parameters, such as sensitivity and 

number of repeats to be signal averaged, were optimized in order to obtain the best possible 
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spectra in a reasonable amount of time. Optimum conditions for each analysis are specified 

in the corresponding chapter. 

A Sartorius 2703 analytical balance (Brinkman Instruments, Inc.) was used for sample 

weights of greater than 10 mg. Weights less than 10 mg were measured on a Cahn RG 

Electrobalance (Cahn Instrument, Co.). 

Principles of Measurement 

CD signals can be measured in two different ways. The first involves direct 

measurement of the eccentricity of the elliptically polarized transmitted light beam, the 

second measures the absorption difference between the left and right circularly polarized 

transmitted beams, M. All commercially available CD spectropolarimeters, including the 

J-500A, use the latter type of measurement. 

Direct measurement of M is difficult. If Beer's Law is substituted into equation 7, the 

source of the difficulty becomes more obvious . 

.1£ = EL- ER = (1/bc) log (4>R/c!>r_) (23) 

Where b is the cell path length, c is the analyte concentration in moles/L, and 4>R. and cl>r_ 

represent the radiant power (flux) of the right and left circularly polarized beams after 

passage through the sample. Measurement of 4>R. and cl>r_ will result in a value for .1£, 

however, the ratio of ~/c!>r_ is almost unity. The small difference between these two fluxes 

makes accurate measurement of .1£ difficult (.1£ is usually on the order of lQ-2 to lQ-3 

while e can be on the order of 1Q3 to 1Q5). 

JASCO engineers have overcome this limitation by choosing to measure two other 

fluxes: 

<I> A= l/2(4>R. + cl>r_) 

and 

s = ( 4>R - cl>r_) 

(24) 

(25) 
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where cpA is the average radiant power after passage through the sample and S is the 

difference in the radiant power of the left and right circularly polarized light. <P A produces a 

direct signal at the photomultiplier tube, while S produces an alternating signal. 

Substitution of equations 24 and 25 into equation 23 yields the following approximation: 

~e a (1/bc )(S/cp A) (26) 

If E A andEs represent the photomultiplier output voltages corresponding to cpA and S 

respectively, equation 26 can be rewritten as: 

~a (1/bc)(Es!EA) (27) 

where Es << E A . Comparison of the relative magnitudes of these two voltages provides 

an accurate measurement of the CD signal. 

Description of the J-500A Optical System 

The optical system of a CD spectropolarimeter is very similar to that of a conventional 

UV-visible spectrophotometer. However, the need for monochromatic circularly polarized 

light in CD measurements requires more complex and diverse optical components. 

Figure 6 is a schematic representation of the J-500A optical system. A spherical mirror, 

M 1, focuses the light beam on to the entrance slit S 1. S 1 marks the entrance of the first of 

two monochromators, the second is marked by slit S2. The need to keep stray radiation at 

a minimum makes the double monochromator a crucial part of the J-500A design. 

Prisms Pl and P2 serve a dual purpose. Both are made from crystal quartz and have 

different axial directions with respect to each other. This allows them to function as 

birefringence polarizers in addition to acting as dispersion elements. The ordinary ray 

emerging from P2 is monochromatic and linearly polarized. Lens L is used to focus this 

beam onto the filter F which filters out any remaining unpolarized light. EOM is the 

electro-optic modulator which produces the circularly polarized light. In the J-500A a 

Pockels cell is employed. Application of an electric field to the Pockels cell crystal causes a 



change in the refractive index and propagation velocity for the resulting ordinary and 

extraordinary beams. These beams are linearly polarized and are perpendicular to each 

other, but are out of phase. When the phase difference is a quarter wavelength ('lt/2} or 
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any uneven number of quarter wavelengths, the resulting light beam is circularly polarized. 

The direction of polarization is changed by changing the direction of the electric field. The 

Pockels cell alternately produces left and right circularly polarized light at a frequency of 50 

kHz. Mter interaction with the sample, the photomultiplier tube receives the transmitted 

beams and electronically recombines them as described above. 
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MO, Ml, M2, M3, M4, M5: spherical mirrors 
LS: light source 
Sl, S2, S3: slits 
Pl: first prism (horizontal axis) 
P2: second prism (vertical axis) 
L: lens 
F: filter 

EOM: electro-optical modulator (Pockels cell) 
SC: sample cell 

PMT: photomultiplier tube 

PMT 

Figure 6. Optical system for the J-500A spectropolarimeter (adapted from reference 41). 
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CHAPTERN 

DETERMINATION OF (3-LACI'AM ANTIBIOTICS 

Introduction 

The first ~-lactam antibiotics, the penicillins, were discovered in 1928. Nearly thirty 

years was to pass before their analogs, the cephalosporins, were introduced. The ability of 

~-lactam antibiotics to interfere with cell wall production in bacteria has made them the 

second most widely prescribed class of drugs for treating bacterial infections ( 42). 

Because of the widespread use of ~-lactams,, analytical determinations of these compounds 

in pharmaceutical and biological samples is important. Early analysis methods included 

turbidimetric assay, iodometric titration, colorimetric reactions, and thin-layer 

chromatography (43, 44). A recent review (45) includes variations on these older 

techniques in addition to the more modern techniques such as polarography, reverse phase 

HPLC, flow injection analysis, and mass spectrometry. 

Detection of ~-lactam antibiotics by CD is not new. Most early CD work (46-49) 

concentrated on elucidating structural features of the (3-lactam ring. However, Rasmussen 

and Higuchi (50) did determine the penicillin content by m~asuring changes in the specific 

rotation and in the CD signal after the addition of penicillinase. CD was reported to be the 

method of choice, but was limited by the UV absorption at 231 nm. We have characterized 

the CD spectra of nine penicillins and three cephalosporins dissolved in aqueous pH 5.4 

buffer. No enzymatic reaction was necessary, nor was there any interference due to 

excessive UV absorption at 231 nm. 
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Experimental 

The (3-lactams amoxicillin, ampicillin, cloxacillin, dicloxacillin, methicillin, nafcillin, 

oxacillin (Bristol Myers), cephalexin, cephalothin, and cephapirin (Bristol Myers and 

Sigma Chemical Co.) or their sodium salts were obtained for study. The potassium salts of 

penicillin V (Pen-V) and penicillin G (Sigma Chemical Co.) were also obtained. All were 

used without further purification. Pen-V tablets (250 mg) (Parke Davis) were obtained 

from a local pharmacy. A sample of flltered and arbitrarily diluted Pen-V fermentation 

broth was furnished by Eli-Lilly, Inc. Lactose (Fisher), starch, (Mallinckrodt), and 

caffeine hydrobromide (Matheson Coleman and Bell) were used in the preparation of in­

house mixtures. The pH 5.4, 7.6, and 9.2 buffers were obtained from Micro Essential 

Laboratory and prepared as specified on the label. The CD spectra of the 13-lactams in pH 

5.4puffer exhibited the best signal quality. The spectra obtained from samples in pH 7.6 

and 9.2 buffers showed considerably more .noise. 

The penicillin content in the laboratory samples was varied from approximately 7% to 

70% by weight. Varying proportions of lactose, starch, or caffeine were added and the 

preparations mixed thoroughly. These additives are typical of those present in 

pharmaceutical preparations. Lactose and starch are chiral but are nonabsorbing, while 

caffeine is not chiral but does absorb UV radiation. None should affect the actual 

quantitation of the CD data, but their presence may affect the signal quality, thus affecting 

the precision of the determinations. Starch was also chosen because of its insolubility in 

the aqueous buffer chosen for sample extraction. Centrifugation was required to remove 

insoluble matter remaining after extraction of commercial preparations. Starch was added 

to laboratory mixtures to test for possible adsorption of the analyte on insoluble materials 

that are present in the commercial preparations. 

Pen-V tablets were first powdered by shaking in a Wig-L-Bug for approximately two 

minutes. Three samples of approximately 4 mg were chosen at random from each tablet. 
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These samples were extracted with 25 mL of pH 5.4 buffer solution, centrifuged, and the 

CD spectrum was then measured. The fermentation broth was first defrosted, 50 ~ 

aliquots were taken and diluted to 10 mL with buffer. The CD spectrum was run directly. 

Results and Discussion 

The basic structures of the penicillin and the cephalosporin homologues are shown in 

Figure 7. The identities of the R and R 1 substituents, as listed in Table I, distinguish the 

individuallactams. 

PENICILLINS 

COOK 

R-CONHLt)R1 

s 
CEPHALOSPORINS 

Figure 7. Molecular structures of the penicillins and the cephalosporins. 

The 13-lactam ring is the active chromophore in these compounds. It is responsible for 

the UV absorption occurring in the 320-220nm region, Figure 8. The CD spectra, Figure 

9, were recorded over the same spectral region. A comparison of the UV and CD reveals 

that the CD is more useful in analytical determinations because there are no defmite 

absorption bands with discrete maxima in the UV spectra. All nine penicillins produced a 

strong positive Cotton band maximizing at 230 ± 2 nm, Figure 9a. The three 

cephalosporins exhibited two Cotton bands, the first a positive maximum at 260 ± 2 nm 



TABLE I 

MOLECULAR STRUCfURES AND MOLAR EILIPTICITIES FOR 
PENICilLINS AND CEPHALOSPORINS 

Name 

amoxicillin 2-amino(p-hydroxyphenyl)- +398 (230) 

ampicillin 2-amino-2-phenyl- +431 (230) 

cloxacillin 3-(o-chlorophenyl)-Z- +333 (230) 

did oxacillin 3-(2,6-dichlorophenyl)-Z- +323 (230) 

methicillin 2,6-dimethoxyphenyl- +265 (230) 

nafcillin 2-ethoxynaphthaleny 1- +237 (230) 

oxacillin 3-phenyl-Z- +482 (230) 

Pen-G benzyl- +394 (230) 

Pen-V benzoxy- +363 (230) 
cephalexin 2-amino-2-phenyl- -CH3 +395 (260) 

-632 (230) 

cephalothin 2-(2-thienyl)- -CH20COCH3 +452 (260) 

-600 (230) 

cephapirin 2-( 4-pyridylthio )- -CH20COCH3 +501 (260) 

-674 (230) 

• The symbol Z is used to represent: T--v;;; 
N'~_/ 

0 
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Figure 8. UV absorption curves for (a) Pen-Vat 1.4 x lQ-4 M and (b) 
cephalothin at 1.3 x 10-4M in pH 5.4 buffer. 
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Figure 9. CD spectra for (a) Pen-V and (b) cephalothin in pH 5.4 buffer. 
Same concentrations as in Figure 8. 
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associated with the 1t -> 1t* transition. The second maximum at 230 ± 2 nm is negative 

and separated from the first by a cross over point of zero ellipticity at 243 run, Figure 9b. 

Discrimination among analogs of a group (i.e., penicillin or cephalosporin) is not possible 

since the only spectral difference present is the magnitude of the molar ellipticities, 9M, 

Table I. The molar ellipticities for ampicillin, amoxicillin, Pen-V, and cephalothin were 

obtained from calibration curves. The molar ellipticities reported for the other compounds 

were calculated from the maxima at only one concentration in order to obtain a rough idea 

of the relative intensities. 

A summary of the in-house and commerciallactam mixtures studied is presented in 

Table TI. Samples S l-S6 are in-house laboratory blinds. The addition of caffeine, a strong 

absorber, decreased the SIN ratio in the resulting spectra, but presented no other difficulties 

during the determinations. Both lactose and starch possess chiral centers, but only the 

lactose is soluble in the aqueous buffer system. Those mixtures containing the soluble 

additive exhibited excellent correspondence· between the theoretical and measured values. 

However, there is a decrease in correspondence for those samples containing the insoluble 

additive, indicating the possibility of analyte adsorption on the undissolved starch. Even 

so, reproducibility was good, within ±0.5% for most of the samples. The mixture 

containing the caffeine exhibited a much larger standard deviation (±2%). This decrease in 

precision is probably linked to the decrease in the SIN ratio. 

Determination of Pen-V in tablet form was a straightforward procedure, but the 

reproducibility was poorer than that obseiVed with the in-house mixtures. This should not 

be surprising since the tablets are prepared from aliquots taken from a much larger and less 

uniform sample. The reported Pen V content, 63.3 ± 0.9% (Table TI), was normalized to 

total sample weight, making it possible to directly compare the results from all analyzed 

tablets. 

The determination of Pen-V in the fermentation broth presented no difficulties even in 

the presence of such a complex matrix. The composition of the broth as reported by Lilly 



Mixture 

S1 

S2 

S3 

S4 

S5 

S6 

PC1 

PC2 

PC3 

PC4 

Tablet 

Fermentation 
Broth 

TABLE IT 

DETERMINATIONS OF IN-HOUSE AND COMMERCIAL 
lACfAM MIXTURES 

Lactam Additive Theoretical Measured 
Percent Percent 

Pen-V lactose 23.9 23.6 

Pen-V lactose 40.5 39.5 

Pen-V caffeine 72.3 72.2 

Pen-V starch 7.1 6.3 

Pen-V starch 29.6 28.2 

Pen-V starch 63.5 63.8 

Pen-V lactose 1.28 1.53 
Cephalothin 0.63 0.65 

Pen-V lactose 2.22 2.53 
Cephalothin 4.79 4.74 

Pen-V caffeine 6.47 7.19 
Cephalothin 5.58 5.46 

Pen-V lactose 3.50 4.11 
Cephalothin 1.80 1.68 

Pen-V ? (250 mg) 63.3 ±0.9 
(249.0 ± 41.4 mg) 

Pen-V see text (7.94 +0.1 mg) (8.07 ± 0.12 mg) 
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was 7.94 mg/mL Pen-V and less than 0.1 mg/mLp-hydroxy-Pen-V (as the potassium 

salts), 1.01 mg/mL phenoxyacetic acid and 0.12 mg/mLp-phenoxyacetic acid (as the 

sodium salts), inorganic salts of alkali and alkaline-earth metals plus ammonium and trace 

amounts of heavy metal cations, and various unknown organic compounds typically found 

in fermentation broths. The organism and several large proteins were removed in the 

filtration performed by Ely-Lilly. From this information the only CD active components 

present were the two penicillins. The presence of the other components caused little 

distortion in the resulting CD spectrum, however, there was a slight asymmetry in the short 

wavelength end of the band as compared to the standard There was little loss in the SIN 

quality. The reported Pen-V content, 8.07 mg/mL, is actually representative of the total 

penicillin content calculated as if the signal were produced solely by Pen-V. We have 

assumed that the eM for p-hydroxy-Pen-V and for Pen-V are the same. Since the reported 

value is within 1% of the theoretical value, the assumption is acceptable. Another source of 

deviation resulted from the process of freezing and defrosting the broth. When the frozen 

broth is defrosted, some of the remaining cells burst, releasing their cellular fluid thus 

diluting the original sample. Initial samples were only slightly affected by this process, but 

later samples showed significant decreases in Pen V content. An independent analysis 

performed by Lilly on the same batch of frozen broth yielded a similar result 

Samples PC1-PC4, Table II, are in-house mixtures of Pen-V and cephalothin. 

Determinations of the relative concentrations were performed without a separation step. 

Quantitation of the cephalosporin was straightforward when it was present in large excess 

because it was essentially the only contributor to the positive band at 260 nm, Figure 9. 

For the other mixtures determination was accomplished by employing a simple curve fitting 

program in which weighted contributions from the standard curves were added in order to 

simulate the experimental curve (51). Agreement between theoretical and calculated values 

is good, Table IT. 
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This work is a further endorsement of the analytical capabilities of CD in the direct 

determination of pharmaceuticals. Assuming that alllactams could be extracted by the same 

procedure, the relative time taken for detection by CD is very short. Further time savings 

could be achieved by automation. In addition, the developed procedure requires no 

derivatization or separation steps, nor does it require the addition of an internal standard. 



CHAPTERV 

DETERMINATION OF RAUWOlFIA 

SERPENTINA ALKALOIDS 

Introduction 

Rauwolfia serpentina is a plant native to subtropical regions of India. The ancient 

Indians used this plant to treat snake bite and dysentery (52). In 1933, Chopra, Guptia, 

and Mukherjee reported that R. serpentina extracts possessed hypotensive activity (52). 

However, it wasn't until1952 that Bein and coworkers (52) isolated reserpine from the 

root of the plant. Reserpine is the alkaloid responsible for the antihypertensive and sedative 

activity of the extract. 

In addition to reserpine, R. serpentina contains as many as 22 other alkaloids. Two of 

these, rescinnamine and deserpidine, also possess antihypertensive activity (52, 53). 

Reserpine, rescinnamine, and deserpidine are all used to treat mild to moderate 

hypertension (54). A pharmaceutical formulation of raw R. serpentina root is also available 

and is employed in cases of mild hypertension (55). 

HPLC has been used to detennine the relative concentrations of the alkaloids present in 

multi-component pharmaceutical formulations (56) and in R. serpentina root extracts (57). 

In contrast to the above HPLC procedures, most other reported assays determine only the 

reserpine and/or the rescinnamine concentration. Results are generally reported as total 

reserpine or total reserpine group alkaloids. Fluorometric (58, 59) and electrochemical (60) 

detection is often employed, both as stand alone techniques and as detectors for LC 
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methods (61, 62). GC (63) and GLC (64) have also been used. Many of the above 

methods require derivatization steps during sample preparation to eliminate interferences. 
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The CD spectra for four indole alkaloids present in R. serpentina have been 

characterized and calibration curves obtained for reserpine, rescinnamine, and ajmaline 

were used in the quantitative analysis of laboratory mixtures. Analytical determinations of 

reserpine in a few pharmaceutical preparations are also reported. 

Experimental 

The indole alkaloids, reserpine, rescinnamine, ajmaline, all as free base,( Sigma 

Chemical Co.), yohimbine hydrochloride (Aldrich Chemical Co.), and the diuretic 

substances furosemide and hydrochlorothiazide (Sigma Chemical Co.) were obtained and 

used without further purification. A standard of R. serpentina root was obtained from the 

United States Pharmacopeia! Convention (USP) and was used without further purification. 

Reserpine tablets (0.25 mg) (Serpasil®, Ciba), and 50 mg R. serpentina tablets 

(Raudixin®, Squibb) were obtained from a local pharmacy. All solvents and other 

reagents used in the extraction procedures were of analytical grade quality. 

In-house binary and tertiary mixtures of ajmaline, reserpine, and rescinnamine were 

prepared from chloroform stock solutions. The content of each alkaloid was varied from 

approximately 10 to 90% by weight for the binary mixtures and from 10 to 70% for the 

tertiary mixtures. Laboratory mixtures of hydrochlorothiazide and reserpine were prepared 

from solid standard material. The resulting chloroform solution was agitated for 45 

minutes and centrifuged to remove any remaining hydrochlorothiazide which is only 

partially soluble in the chosen solvent Weights were chosen to approximate a 

commercially available dosage form, Serpasil-Esdrix #1®, which contains both 

substances. 
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Individual reserpine tablets were reduced to a fme powder by shaking in a Wig-L-Bug. 

The powder was extracted with chloroform and the resulting solution agitated for 45 

minutes. Centrifugation was required to reduce the amount of suspended particulate 

matter. 

Entire R. serpentina tablets and 50 mg aliquots ofUSP root powder were extracted 

according to the procedure described by Cieri (57), but with the following modifications. 

The volume of H2S04 was reduced from 60 to 25 mL and the volume of CHC13 used in 

each extraction step was reduced from 30 to 10 mL. Pooled CHC13 extracts from the 

Raudixin® tablets were washed with one 10 mL portion of0.1 N NaOH to remove 

interferences due to dyes used in the tablet coating (58). The CHCl3 fraction was 

evaporated under air to a volume of approximately 5 mL. Anhydrous CaC12 was added to 

remove any remaining moisture. The CHCl3 was decanted and combined with CHC13 

washings of the CaCl2. The sample was diluted to a final volume of 10 mL. The 

extraction procedure was carried out under reduced lighting to avoid photooxidation (65). 

Results and Discussion 

The molecular structures of the four CD active indole alkaloids investigated are given in 

Figure 10. All four exhibit absorption bands in the 300-210 nm range. Since CD activity 

occurs only in the vicinity of an absorption band, CD spectra were obtained for the 370-

240 nm region. A distinctive CD spectrum was observed for each alkaloid, Figure 11. 

The spectrum of reserpine consists of a single negative Co~ton band while the spectrum of 

yohimbine hydrochloride shows a single positive .band. The spectra for ajmaline and 

rescinnamine are more complex having two and three Cotton bands, respectively. Table ITI 

details the molar ellipticities for each compound at the corresponding wavelength maxima. 

The determination of reserpine in Serpasil® tablets was straightforward. The results 

from six tablets yielded an average reserpine content of 0.249 ± 0.034 mg/tablet, compared 
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Figure 10. Molecular structures of the indole alkaloids (a) ajmaline, (b) yohimbine, 
(c) reserpine and (d) rescinnamine. 
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TABLE ill 

MOLAR ELLIPTICITIES FOR 11IE INDOLE ALKALOIDS OF 
RAUWOLFIA SERPENTINA 

Indole Alkaloid 

ajmaline 

rescinnamine 

reserpine 

yohimbine hydrochloride 

8Ma (nm) 
(deg/Mcm) 

-70 (298) 
+394 (255) 

+57 (322) 
-131 (297) 
-153 (274) 
-262 (266) 

+62 (269) 

a All molar ellipticities for chloroform solutions. 

with a labeled content of 0.250 mg/tablet, Table IV. 
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Diuretics are often prescribed in conjunction with antihypertensives, and often both 

medications are combined in a single formulation. The diuretics, hydrochlorothiazide and 

furosemide, absorb in the UV but are achiral, so are not CD active. The presence of either 

diuretic did not interfere with the determination of reserpine. The calculated reserpine 

content of a hydrochlorothiazide/reserpine laboratory mixture RH1 compared well with the 

theoretical content, Table IV. 

A more complex extraction procedure was needed for the determination of reserpine 

present in the root material due to the large number of other alkaloids present. It had been 

demonstrated (6) that ajmaline, yohimbine, along with other alkaloids remain in the H2S04 

fraction, while reserpine and rescinnamine transfer to the CHCI3 fraction. Analysis ofUSP 



TABLEN 

DETERMINATION OF RESERPINE IN LABORATORY 
AND COMMERCIAL MIXWRES 

Mixture Content Theoretical Measured 
Quantity Quantity 

Serpasil® Reserpine 0.250 mgltablet 0.249 ± 0.034 mgltablet 

USP Reserpine 0.15-0.20% 0.165 ± 0.002% 
R. serpentina Rescinnamine NA NA 
(root) 

Raudixin® Reserpine 0.15-20% 0.164 ± 0.017% 
Rescinnamine NA NA 

RH1 Reserpine 0.142 mg 0.137 mg 
Hydrochloro- 24.6 mg NA 
thiazide 

root standard and Raudixin® tablets yielded a reserpine content well within the reported 

analytical range, Table N. 
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The positive Cotton band at 322 nm typical for rescinnamine was not present in the 

spectra for the root extracts. Any contribution to the total signal from rescinnamine at 297 · 

or 27 4 nm was concealed by the very large reserpine signal. Reserpine is present in such 

large excess and has such a large ~ value, that the rescinnamine contribution to the total 

signal height is negligible. This made direct determination of rescinnamine in either the 

USP samples or the Raudixin® tablets impossible. 

The limits on the detectability of the minor components in a mixture can be estimated 

from the study of laboratory mixtures. This was done for mixtures of 
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reserpine/rescinnamine, reserpine/ajmaline and reserpine/rescinnamine/ajmaline. A simple 

curve fitting program (51) was used to analyze the experimental data. The program 

simulates the experimental curve by adding weighted contributions from the standard 

curves. The results obtained from this procedure are recorded in Table V. In an effort to 

present the data for the many mixtures investigated both efficiently and succinctly, they 

have been collected under broad ranges of composition (column 3) and the cumlative 

average errors and median errors are listed as single figures in columns 4 and 5. 

Mixture 

RC 6-10 

RA 1-5 

RCA 1-9 

TABLEV 

DETERMINATIONS OF INDOLE ALKALOIDS IN 
LABORATORY MIX1URES 

Indole Theoretical Average 
Alkaloid Percentage Error 

reserpine 9.8- 88.4% 15.7% 
rescinnamine 11.6- 90.2% 5.4% 

reserpine 9.9 -90.0% 20.5% 
ajmaline 10.0- 90.1% 7.8% 

reserpine 9.0- 69.9% 62.1% 
rescinnamine 10.0- 70.0% 18.0% 

ajmaline 15.1- 64.8% 21.7% 

Median 
Error 

2.8% 
4.7% 

4.2% 
5.3% 

30.6% 
13.6% 
20.5% 

Relative errors are generally lowest for those components present in the largest amounts 

and are largest in the opposite situation. The average and median errors include both of 

these cases. The median errors are all lower than the corresponding average errors, 
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indicating that a few mixtures in each set have especially large errors. The best results were 

obtained from the 7 5%/25% reserpine/ajmaline or reserpine/rescinnamine binary mixtures. 

Calculated compositions for those mixtures had a relative error of approximately 0.8%. 

Poor results were obtained for those mixtures in which reserpine was the minor 

component. For example, a reserpine content of 10% yielded an experimental result of 

2.5% (a 75% error) for both binary mixtures. The corresponding ajmaline or rescinnamine 

content was approximately 97.5% (a relative error of9% when compared with the 

theoretical value of 90% ). The 90%/10%, 50%/50%, and 2S%n5% reserpine/ajmaline or 

reserpine/rescinnamine mixtures exhibited errors as large as 20% in the estimations of the 

minor component. While error in the estimation of the major component did not exceed 

6%. 

Correspondence between the theoretical percent and calculated percent for the tertiary 

mixtures was not as good as that for the binary mixtures. Again, the largest errors were 

associated with mixtures containing 10% reserpine. The best correspondence was obtained 

for those mixtures where one alkaloid was present in large excess (approximately 70%). In 

both the binary and tertiary mixtures, rescinnamine has the best correspondence between 

measured and theoretical percent. Examination of Figure 12 reveals that the rescinnamine 

peak at 322 nm is not greatly affected by the presence of the other two alkaloids. So 

rescinnamine can be more easily quantitated even at lower concentrations. Ajmaline has a 

large molar ellipticity, which promotes good correspondence even at low concentrations. 

Reserpine has neither of these advantages and consequently has the poorest correspondence 

in all three mixtures. At low concentrations the reserpine signal is dwarfed by the signals 

of the other two alkaloids making accurate quantitation difficult. 

This work is another example of the utility of CD in the determination of 

pharmaceutically important substances. CD detection allowed the extraction procedure to 

be simplified, resulting in reduced analysis time. Determinations did not require 

derivatization of the analyte or the addition of internal standards. 
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CHAPTER VI 

DETERMlNATION OF WATER SOLUBLE VITAMINS 

Introduction 

Vitamin C (L-ascorbic acid), vitamin B2 (riboflavin), and vitamin B12 (cyanocobalamin) 

are classified as water soluble vitamins. These molecules function as coenzymes or 

oxidation inhibiting agents in metabolic pathways. Their role in biochemical processes 

makes them essential nutrients, best obtained from foodstuffs. However, a large number 

of commercially prepared vitamin supplem~nts are available. The proliferation of such 

preparations and the vitamin fortification of deficient foodstuffs has prompted the search 

for an accurate and efficient quality control procedure. Present USP procedures (66) rely 

on titrimetric (for ascorbic acid), spectrophotometric (for cyanocobalamin), and fluorimetric 

(for riboflavin) techniques. These procedures often require extensive sample preparation to 

eliminate the interferences commonly found in the complex matrices of pharmaceutical 

formulations and foodstuffs. 

Other spectrophotometric and polarographic methods developed for these determinations 

have been reviewed by Hashmi ( 67). The preparation and determination of L-ascorbic acid 

samples have been summarized in a variety of sources (68-70) and determinations of 

B12.by colorimetric, electrochemical, radioassay, microbiological assay, and enzymatic 

assay techniques have been reviewed by Kirschbaum (71). 

Potentiometric (72), flow injection analysis (73), and a number of spectrophotometric 

(7 4-77) techniques were recently described for the determination of ascorbic acid 
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Fluorescence detection (78) is still preferred in the determination of riboflavin, though 

Perez-Ruiz (79) does describe a spectrophotometrically monitored photoreduction of B2 

that can be used in analytical determinations. Radioassay and microbiological assays for 
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B l2 are rapidly being replaced with HPLC techniques (80). HPLC has become 

increasingly more important in determinations of vitamins, especially in the simultaneous 

determinations of individual components of multivitamin mixtures (81, 82). Fluorimetric 

detection is most commonly used for determinations of riboflavin (83, 84), while 

electrochemical and spectrophotometric methods are widely employed for determinations of 
• 

ascorbic acid (85). Further applications of HPLC in determinations of vitamins have been 

reviewed elsewhere (86, 87). 

A number of problems are associated with HPLC methodology. Typical problems 

include incompatibility between columns and stabilizing compounds, co-elution of 

coll)pounds, and the need for dual detector systems to measure the widely disparate 

concentrations of vitamins in multicomponent preparations. CD detection circumvents 

some of these problems. It is more selective than UV, and the common stabilizers are not 

CD active so they are not a problem. CD detection of vitamins has been explored in the 

past Firth et. al. (88) characterized the CD spectra of vitamin B12 and its derivatives. The 

primary objective of the study was the correlation of spectral changes with the different 

conformations of such compounds. Yeung and coworkers (89) explored the use of 

fluorescence-detected CD to analytically determine riboflavin, but no real samples were 

analyzed. 

In the following work the CD spectra of ascorbic acid, riboflavin, and cyanocobalamin 

are characterized and the data used for the analytical determinations of these vitamins in 

commercial vitamin preparations. Seven common components of fruits and fruit juices are 

also characterized and are used to evaluate the composition and the vitamin C content of 

liquid and solid food samples. 
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Experimental 

The three water soluble vitamins C (Aldrich Chemical Co.), B2 and B12 (Sigma 

Chemical Co.) were used without further purification, as were the following compounds: 

L-dehydroascorbic acid, L-ascorbic acid-6-palmitate (Aldrich Chemical Co.), D-isoascorbic 

acid (D-ascorbic acid), L-malic acid, (-)-quinic acid, and (-)-shikimic acid (Sigma Chemical 

Co.) commonly associated with vitamin C food products. Marquee™ Vitamin C 

(distributed by Fleming Co.), Nature Made Vitamin B2, Nature Made Vitamin B12 (Nature 

Made Nutritional Products), One-A-Day® Maximum Formula multivitamin (Miles 

Laboratories, Inc.) Regal-Natall mg +Iron multivitamin (Regal Labs, Inc.), Thera-vites 

M multivitamin (Natural Wealth), and Nature Made Stress B-complex multivitamin (Nature 

Made Nutritional Products) tablets were obtained from a local pharmacy. Minute Maid® 

orange juice concentrate, Welch's® cranberry juice concentrate, TV grapefruit juice 

concentrate, TV apple juice concentrate, Gerber® apple juice, Sunsweet® prune juice, 

unsweetened cherry Kool-Aid® drink mix, green peppers, and apples were obtained from 

a local grocery. 

All vitamin C standard solutions, extracts of samples, and possible interferences were 

prepared using a solution of 5.5 x lQ-5 M EDTA (Aldrich Chemical Co.) in a 5.4 pH buffer 

(Micro Essential Laboratories). Addition of EDT A (90) retards the oxidation of ascorbic 

acid to dehydroascorbic acid (91) long enough to allow linear calibration curves to be 

obtained A pH of 5.4 produced the best SIN ratio and the largest CD signal. 

0.5-2 mL volumes of the cranberry, grapefruit, prune, apple, and orange juice samples 

were diluted to 10 mL with EDTA-5.4 buffer solution. Pulp was removed from the orange 

juice by centrifugation at low rpm. For analysis of the apples and green peppers, weighed 

slices were liquefied in a blender, extracted with 25 mL ofEDTA-5.4 buffer, and 

centrifuged to reduce the amount of suspended particulate matter. 0.05 g portions of Kool 
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Aid® were dissolved in 25 mL of the EDTA solution. The food extracts and Kool Aid® 

solutions were diluted by a factor of ten before CD spectra were measured. 

All tablets analyzed for vitamin C content were frrst powdered by grinding in a mortar. 

Powdered forms of the Marquee vitamin C tablet, the One-A-Day multivitamin tablet, and 

the Thera-vites M multivitamin tablet were extracted with 50 mL ofEDTA-5.4 buffer 

solution. Volumes of 1 to 3 mL were further diluted to a final volume of 10 mL. The red 

outer coating of the Thera-Vites M tablet was removed in the crushing process because the 

dyes in the coating decreased the signal to noise ratio making quantitation difficult. A 

second set of One-A-Day tablets was crushed and three tablets were mixed together. The 

resulting solid mixture was divided into 2 to 5 mg portions and extracted into 10 mL of 

EDTA solution. The same procedure was followed for the Regal-Natal multivitamins, 

except that only one tablet was sampled at a time. All solutions were agitated for 10 to 15 

minutes and centrifuged before fmal dilution and measurement 

Solutions of the B2 and B 12 standards and samples were prepared using a 4.8 buffer 

(Micro Essential Laboratories). A pH of 4.8 was chosen because B 12 is most stable in the 

4.5 to 5.0 pH range (92). The B2 and B12 vitamin tablets were crushed in a mortar. 

Powdered B12 tablets were extracted with 10 mL of 4.8 buffer solution and agitated for 15 

minutes under reduced lighting conditions to avoid decomposition ( 67). Samples were 

centrifuged before CD spectra were obtained. The powdered B2 tablets were extracted 

with 100 mL of 4.8 buffer, agitated for approximately 15 minutes, and centrifuged. 

Volumes of 1 to 3 mL were diluted to a final volume of 10 mL and the CD spectra 

measured. 

Nature Made Stress tablets were powdered as before and divided into 0.2 g portions. 

Each portion was extracted with 25 mL of 4.8 buffer for thirty minutes followed by 

centrifugation to remove any insoluble material. Volumes of 2 to 3 mL were then diluted to 

a final volume of 10 mL with 4.8 buffer and the CD spectrum obtained in order to 

determine the B2 content Determination of vitamin C content on the other hand required 



only 0.01 mL of the initial solution which was diluted to a final volume of 10 mL with 

EDTA buffer solution. 

Results and Discussion 

The molecular structures of the three water soluble vitamins are shown in Figure 13. 
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The a-~ unsaturated ketone in ascorbic acid limits its absorption to the shorter wavelength 

regions, 310 run to below 210 nm, and thus is transparent at longer wavelengths. Vitamin 

B2 and B12 are both highly conjugated systems and the absorption bands lie in the visible 

region of the spectrum, 500 to 310 nm and 580 to 310 run respectively. At concentrations 

commonly found in commercial preparations, neither of the B vitamins exhibited a 

measurable CD signal below 300 nm. The CD spectra were measured for the wavelength 

regions as given above, Figure 14. Each vitamin has a unique spectrum allowing for easy 

qualitative identification. The maxima of the Cotton bands and the corresponding molar 

ellipticities are listed in Table VI. 

The CD spectrum for vitamin B2 is especially interesting. CD activity is usually 

strongest whenever the chiral center and the chromophore are adjacent to each other. If 

there is one or more atoms between the chiral center and the chromophore, CD activity 

becomes significantly less likely. In vitamin B2 the five carbon sugar moiety which 

possesses the chiral center is separated from the conjugated ring system by two atoms, a 

carbon and a nitrogen. Normally such systems are not CD active, however, the acidic pH 

of the solvent might protonate the nitrogen connected to the sugar and the associated 

rigidity of the ring system could prevent inversion at the nitrogen atom. Under these 

conditions, the nitrogen would be chiral. Its location in the tertiary ring system would thus 

fulfill the requirements for CD activity. 

The determination of vitamin B2 in tablet form was straightforward. The average 

vitamin content of six Nature Made B2 tablets was 23.7 ± 1.7 mg/tablet. Agreement 
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TABLE VI 

MOLARELLIPTICITIES OF THE WA'IERSOLUBLE VITAMINS 

Vitamin Solvent SM (nm) 
(deg/Mcm) 

B12 4.8 buffer -117 (500) 
+437 (430) 
-587 (363) 

B2 4.8 buffer -11 (440) 
+32 (342) 

c EDTAin5.4buffer -3 (285) 
+105 (251) 

between calculated and labeled content, 25 mg/tablet, is good, Table VII. Normalizing the 

B2 content to tablet weight allowed direct comparison of the results all of the analyzed 

tablets. · The same normalization procedure was used for all of the commercial preparations 

discussed below and in Table VII. 

Analysis of four Nature Made B12 tablets yielded an average B12 content of 0.36 ± 0.02 

mg/tablet, which does not correlate well with the labeled content of 0.25 mg/tablet. 

Analysis of four additional tablets taken six months later yielded a similar result, Table VII. 

The second set of data were obtained and analyzed using the new computer system in order 

to eliminate any human error or bias. Comparison of the CD spectra for the standard and 

samples revealed no anomalous features; the curves matched exactly, Figure 15. In 

addition, the CD spectrum pictured in Figure 15 matches the CD spectrum of 
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TABLE VII 

VITAMIN CONTENT OF PHARMACEUTICAL PREPARATIONS 

Sample Labeled Calculated Calculated 
Content Content Content 

(mgltablet) (mgltablet) (% of tablet) 

Nature Made 
VitaminB2 25 23.7± 1.7 4.8 ± 0.32 

Nature Made 
VitaminB12 0.25 0.36 ± 0.028 0.07 ± 0.003 

0.36 ± 0.02b 0.07 ± 0.002 

Marquee™ 
VitaminC 250 243±8 72.2 ± 3 

One-A-Day® 
Multivitamin 

VitaminC 60 63.9 ± 9.5 5.5 ± 0.8 

Thera-vites M 
Multivitamins 

VitaminC 120 108.4 ± 12 13.7 ± 1.3 

Regal-Natal 
Multivitamins 

VitaminC 90 79.7 ± 18 4.9 ± 1.2 

Nature Made 
Stress Tablets 

VitaminB2 15 16.8 ± 0.9 1.5 ± 0.8 
VitaminB12 0.12 NA NA 
VitaminC 600 591 ± 20 52.7 ± 1.7 

a Average content of samples from June 23, 1988. 
bAverage content of samples from January 2, 1989. 
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cyanocobalamin recorded by Firth and coworkers (88). The presence of other CD active 

B 12 derivatives can be eliminated. The CD spectra of dicyanocobinamide, 

vinylcyanocobinamide, aquocobalamin, hydroxocobalamin, selenocyanatocobalamin, and 

ethylcobalamin have also been characterized by Firth. All of these compounds possess CD 

spectra that are markedly different from that of cyanocobalamin. The positioning and 

intensity of the Cotton bands observed for these analogs is such that if one were present in 

the sample it would visibly distort the B12 spectrum. 

Tentative confirmation of the CD determination was obtained from an independent UV­

visible absorption measurement of the sample against the standard. A result of 0.40 

mg/tablet was obtained. However, the presence of other absorbers can not be ruled out, 

especially since the absorption curves for the standard and sample do not overlap at the 365 

nm maximum but do at the 550 nm maximum, Figure 16. 

One source of error that could account for anywhere from 7 to 36% of the difference 

between the measured and labeled values is ·the extent of water of crystallization. When 

B 12 is recrystallized from water, the resulting crystal may contain as many as 22 moles of 

water per mole of B12 (71). The actual amount present depends on the recrystallization 

solvent and drying procedures used. These conditions are not known for the either the 

sample or the standard. Thermal analysis would be necessary in order to determine if there 

was a difference in the water content Remaining differences may be due to lot variations 

or to deliberate overloading of the B 12 tablets in order to prolong shelf life. 

Determination of the vitamin C content in a sample can be a difficult process. In 

solution, L-ascorbic acid is oxidized to L-dehydroascorbic acid which is then converted to 

2,3-diketogulonic acid ( 68), Figure 17. The rate of oxidation is proportional to the oxygen 

concentration and is catalyzed by metal ions (91). The oxidation process limits the accurate 

measurement of the ascorbic acid signal because the signal decreases too rapidly to allow 

time for the number of repeat scans needed to optimize the S/N. Dehydroascorbic acid 
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Figure 18. CD spectra of (a) L-dehydroascorbic acid (1.18 x lQ-3 M), (b) 
D-isoascorbic acid (1.18 x lQ-4 M), (c) L-malic acid (2.91 x 1Q-4 M), 
(d)(-)-quinic acid (1.06 x lQ-5 M), and (e) (-)-shikimic acid (5.47 x lQ-5 
M). 
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exhibits a much cleaner signal than ascorbic acid, Figure 18a, and also possesses a larger 

linear calibration range. Initial attempts to detennine L-ascorbic acid content by quantitative 

conversion to dehydroascorbic acid by reaction with norit (93) or quinone (94) resulted in 

incomplete conversion and such noisy signals that measurement was impossible. 

Addition of EDTA to ascorbic acid solutions halts the oxidation process for over three 

hours. Once the ascorbic acid was stabilized, quantitation of vitamin C in tablet form was 

straightforward. Fourteen samples taken from four different Marquee TM Vitamin C tablets 

yielded an L-ascorbic acid content of 243 ± 8 mg/tablet. Agreement between labeled and 

calculated content was good, Table VII. 

Quantitation of vitamin C in commercial multivitamin tablets was complicated by the 

presence of iron which catalyzes the oxidation process (82). The calculated and labeled 

ascorbic acid contents of three different multivitamin tablets are listed in Table vn. 
Correlations between measured and theoretical values are poor. The percent difference 

between measured and labeled content ranges from 7% for the One-A-Day® tablets to 11% 

for the Regal-Natal tablets. The increase in percent difference parallels the increase in iron 

content. One-A-Day® tablets contain 18 mg of iron, Thera-vites M contain 27 mg and the 

Regal-Natal contain 65 mg of iron. Increasing the EDTA concentration by a factor of 

twenty did not affect the results. Other stabilizers, such as metaphosphoric acid and oxalic 

acid (87) might yield better results. Another possibility is to physically remove the iron by 

forming an insoluble complex. Lam and coworkers (82) used cupferron to complex the 

iron, but reported that their method did not work on all multivitamin preparations. 

If iron is not present in the multivitamin preparation, determination of the vitamin C 

content is straightforward. The analysis of Nature Made Stress tablets yielded an ascorbic 

acid content of 591 ± 20 mg./tablet compared to a labeled content of 600 mg./tablets, Table 

Vll. The Stress tablets contain a number of other water soluble and fat soluble vitamins, 

but no iron. The percent difference between calculated and theoretical values is 1.4%, 

much less than the error reported for any of the multivitamin tablets with iron. 
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The Nature Made Stress tablets were also analyzed for vitamin B2 and B12 content. 

Determination of both should be possible by measuring the net CD signal of the mixture 

and using a curve fitting program (51) to determine the relative concentrations of each. 

Analysis of samples taken from three tablets yielded a B2 content of 16.8 ± 0.9 mg. 

Correlation between measured and labeled content is fair, Table VII. The determination of 

the B12 content was not possible. The typical B12 Cotton bands were not present in the 

spectrum of the extract The labeled content is 0.12 mg/tablet, half the amount present in 

the Nature Made Vitamin B12 tablets. The volume used in the extraction of the Stress 

tablets is two and a half times that used in the Vitamin B 12 tablets. It is possible that at this 

level the B2 Cotton band at 342 nm hides the B 12 band at 363 nm. However, due to the 

sign and magnitude of the B12 Cotton band, it should have caused a reduction in the B2 

signal resulting in a lower calculated content. A more likely explanation is the possibility 

tha~ B12 was decomposed due to the presence of ascorbic acid, thiamine, and niacinamide 

(71 ). The literature reports significant losses of B 12 in tablets and capsules after storage of 

only one year at room temperature (71). 

The possibility of spectral interference from the vitamin C can be ruled out As stated 

earlier, vitamin C is transparent in the wavelength regions used to quantitate both B 

vitamins. The B vitamins did not interfere with the determination of vitamin C discussed 

above because of the small quantities present Higher concentrations of the B vitamins 

might present some minor interference, but this could be accounted for by employing a 

curve fitting routine. 

Vitamin C is found in abundance in nature, especially in fruits and vegetables. B2 is 

more common in grains and B12 is found predominantly in animal tissues. The analysis of 

such samples is often difficult because of the complexity of the matrices involved. The 

small quantities of vitamin B2 and B12 present in such samples makes analysis even more 

difficult. However, the vitamin C content of many fruits and vegetables is such that it may 



TABLE VIII 

VITAMIN C CONTENT OF FRUITS, FRUIT JUICES, AND VEGA TABLES 

Sample 

KoolAid® 

TV grapefruit juice 

Minute Maid® 
orange juice 

~elch's cranberry 
JUice 

TV apple juice 

Gerber apple juice 
babies 

pregnant 
women 

Sunsweet prune 
juice 

apple 

green pepper 

Labeled 
Content8 

48 mg/package 

NA 

288 mg/package 

NA 

120 mg/package 

42 mg/package 

96 mg/package 

6 mg/package 

NA 

NA 

Measured 
Content 

42.3 ± 3.0 mg/package 

273.9 ± 11.4 mg/package 

272.5 ± 3.5 mg/package 

404.6 ± 43 mg/package 

72 mg/package 

100.4 ± 3.6 mg/package 

NA 

8.9 ± 0.5 mg/slice 
(0.02% by weight) 

17.4 ± .5 mg/slice 
(0.04% by weight) 
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aLabeled content calculations based on a U.S. RDA of 60 mg (95), except for the 
Gerber apple juice. 

NA: not available 
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be quantitated by using only a simple extraction step. Kool Aid® unsweetened drink mix 

was extracted with EDTA-5.4 buffer solution and yielded a content of 42.3 ± 3.0 

mg/package. This is in fairly good agreement with the labeled value of 48 mg!package, 

TableVill. 

The determination of L-ascorbic acid in TV grapefruit juice frozen concentrate and in 

green peppers was equally straightforward. The CD spectrum for the green pepper extract 

is shown in Figure 19. The CD for the grapefruit juice is similar but much noisier. The 

vitamin C content of the green pepper was determined to be 0.04% by weight The actual 

weight is reported in Table vm. No standard value can be reported for comparison since 

vitamin content is known to vary in crops from different regions, climates, and seasons. 

No nutritional information was provided for the grapefruit juice to compare with the 

measured ascorbic acid content of 273.9 ± 11.4 mg/package. 
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Figure 19. CD spectrum of green pepper extract 
(Extracted with EDTA-5.4 buffer solution). 
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The detennination of vitamin C in other fruit juices was complicated by the presence of 

other CD active components. L-dehydroascorbic acid, D-isoascorbic acid, L-malic acid,(­

)-quinic acid, and (-)-shikimic acid in variable amounts may be present in fruits and their 

juices. The molecular structures are shown in Figure 17. CD spectra for the standards in 

aqueous buffer are shown in Figure 18 and the molar ellipticities are given in Table IX. 

TABLE IX 

MOLARELL~cnnESOFOTHERCO~NENTSOF 
FRUIT JUICES 

Compound 9M(nm) 
(deg/Mcm) 

L-dehydroascorbic acid +69.1 (232) 

D-isoascorbic acid +134.5 (241) 
-99.8 (203) 

L-malic acid +71.4 (207) 

(-)-quinic acid +15.1 (203) 

(-)-shikimic acid -301.2 (206) 

The dehydroascorbic and isoascorbic acids could present the greatest problem in the 

extracts because the overlap with the ascorbic acid band is large. Dehydroascorbic acid is 

formed during the oxidation of ascorbic acid A reduction in the CD signal at 251 nm 
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and/or an increase in the signal height at 232 run would be noticed if it was present. In the 

EDTA stabilized solutions no evidence of any decrease or increase in the signal intensity 

with time was found. D-isoascorbic acid is commonly used as a cheap antioxidant, as is 

ascorbic acid-6-palmitate (68). The palmitate possesses no CD activity and will not 

interfere with the analysis. D-isoascorbic acid could present a problem in the analysis of 

the cheaper commercial fruit juices. Its presence in the samples discussed below can not be 

ruled out, but is probably unlikely due to the quality associated with the chosen brands. 

The Cotton bands at 340 and 235 run in the CD spectrum of Minute Maid® orange juice 

frozen concentrate, Figure 20, do not correspond to any of the interferences characterized 

in Figure 18. However, they did not interfere with the quantitation of vitamin C from the 

251 nm band. The resulting L-ascorbic acid content was found to be 272.5 ± 3.5 

mg/package, in good agreement with the labeled content of 288 mg/package, Table VIII. 
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Figure 20. CD spectrum of Minute Maid® orange juice 
in EDTA-5.4 buffer. 



71 

CD spectra of the Gerber® and TV brand apple juices and the fresh apple extract all 

have a Cotton band at 210 run, Figure 21, which can be assigned to L-malic acid (96). A 

simple curve fitting program (51) was used to quantitate the vitamin C and L-malic acid 

content of these samples. Of the total acid content measured from the spectrum, the ratio of 

L-malic acid to vitamin C varied from 98/l (TV apple juice); to 91/9 for the Gerber product 

and fresh apple extracts. The correlation between the L-malic and L-ascorbic acid ratios 

for the Gerber apple juice and the fresh apple extract suggest that the reported values in 

Table VTII may have some validity. This is difficult to deduce otherwise because of the 

lack of standard values. 

Welch's® cranberry juice concentrate also exhibited a band at 210 run. Literature 

sources report the presence of malic, quinic, and shikimic acids in cranberry juice (96). All 
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Figure 21. CD spectrum of Gerber® apple juice in 
EDTA-5.4 buffer. 
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of these components exhibit CD spectra in the 230 to 200 nm region, Figure 18. In 

addition, the presence of other natural pigments add considerably to the noise generated in 

the 240 to 220 nm region. Nevertheless a computer simulation suggested that the large 

noisy peak at 210 nm was due mainly to the presence of malic acid. This simulation 

suggested that 85% of the measured acid content was L-malic acid and 15% was L-ascorbic 

acid. 

Analysis of prune juice extracts proved to be impossible. The presence of strong 

absorbers resulted in a complete loss of signal integrity due to noise. The use of bonded 

phase extraction procedures might eliminate some of these interferences and could prove 

useful in reducing or even eliminating the interferences encountered in the above samples. 

This work is another example of the utility of CD in the analysis of complex samples. 

Sample preparation consisted of only a simple extraction step and no preconcentration or 

derivatization steps were required. 



CHAPI'ER VII 

INDUCITON OF CIRCULAR DICHROISM: DETERMINATION 

OF BENZODIAZEPIN-2-0NES 

Introduction 

CD activity requires the presence of both a chiral center and a chromophore. These dual 

requirements impart a degree of selectivity to CD which greatly reduces the number of 

interferences. But this inherent selectivi,ty also reduces the number of detectable analytes. 

Nevertheless it is possible to induce CD ac~vity by complexing an absorbing, but achiral 

molecule with a chiral, but nonabsorbing host. The resulting complex possesses both of 

the necessary structural features for CD activity. 

Structurally ordered media are the best hosts for inducing chirality into an otherwise 

achiral molecule. The ability of cholesteric liquid crystals (97) and the cyclodextrins (98) to 

induce chirality has been demonstrated, with the latter compounds producing the most 

promising results. ~-cyclodextrin has been used to induce chirality in phencyclidine (PCP) 

(99), and its analogs (100), barbiturates (101), and numerous other drugs (100, 102). The 

following discussion focuses on the induction of CD activity in the benzodiazepin-2-ones 

via complexation with ~-cyclodextrin. 

6-Cyclodextrin 

Cyclodextrins are cyclic oligosaccharides composed of from six to twelve D-( + )-
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glucopyranose units connected by a-(1,4)- linkages. The number of monosaccharide units 

is denoted by a Greek letter: a- for six, ~- for seven, y- for eight, etc.. The three smallest 

analogs are commercially available and are the most commonly used. 

The molecular structure of ~-cyclodextrin is shown in Figure 22. Structures for the 

other analogs differ only in the number of sugar monomers present in the macrocyclic 

structure. Schematically the cyclodextrins can be represented as truncated cones as shown 

in Figure 23. The larger opening is rimmed with the secondary hydroxy groups of the 

Figure 22. Molecular structure of ~-cyclodextrin. 



Figure 23. Truncated cone representation of ~-cylcodextrin­
benzodiazepin-2-one inclusion complex. 

glucose units, all rotated in a clockwise direction. The interior of the cavity contains no 

hydroxy groups and is relatively hydrophobic. This hydrophilic exterior/hydrophobic 

interior combination allows for inclusion complex formation between cyclodextrins and 
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such polar compounds as acids, amides, and some small ions. Highly apolar compounds 

such as aliphatic and aromatic hydrocarbons are complexed as well. 

The forces responsible for complex formation include hydrogen bonding interactions, 

Vander Waals forces, London dispersion forces, release of high energy water (i. e. release 

of water molecules held in the relatively hydrophobic cyclodextrin cavity), and relief of 

macrocyclic ring strain (101). The relative contribution of each of these binding forces is 

still not clear and probably varies with the structural properties of the guest molecule. 

However, it is generally recognized that water plays a key role in complex formation. 

Inclusion complexes form much more readily in water. The resulting complexes consist of 

a 1: 1 molar ratio of guest to host. In aqueous solutions, apolar substrates are favored 

during complex formation. 

The cavity sizes for the first three analogs are given in Table X. The smaller the 

cyclodextrin analog the better it complexes smaller molecules, and vice versa. ~-

cyclodextrin forms inclusion complexes with moderate sized organic molecules such as 
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phenyls, biphenyls, or naphthyls (103). These or closely related structures are common to 

many pharmaceuticals. Consequently, ~cyclodextrin has proven to be the most efficient 

agent in inducing CD activity and has found some utility as a HPLC stationary phase and 

mobile phase additive. 

13-cyclodextrin is transparent to UV -visible radiation over the wavelength range 

normally of interest in CD work so it does not adversely affect the SIN ratio. The smaller 

cyclodextrin analogs are quite water soluble and are stable at alkaline pHs. Acidic pH does 

promote acid catalyzed hydrolysis, but there are a number of ways to retard it and use the 

acidic pH range to its full advantage. 13-cyclodextrin is easier to use for quantitative work 

TABLE X 

CAVITY DIMENSIONS OF COMMERCIALLY AVAILABLE 
CYCLODEX1RINS 

Cyclodextrin Internal ~th Analog Diameter (A) ( ) 

a-cyclodextrin 4.5 6.7 

13-cyclodextrin -7.0 -7.0 

y-cyclodextrin -8.5 -7.0 

Adapted from reference 98 
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than the anisotropic cholesteric liquid crystalline phase material used in earlier studies (97). 

In addition to these advantages, J3-cyclodextrin is readily available and is relatively 

inexpensive. 

The Benzodiazepin-2-ones 

The benzodiazepines are commonly prescribed anti-anxiety agents. Other indications 

include some cases of insomnia and treatment of alcohol withdrawal. Determinations of 

benzodiazepins have been accomplished by UV spectrophotometry (104), fluorimetry 

(105), polarography (106), voltammetry (107), flow injection analysis (108, 109), HPLC 

(110, 111), and GC (112). GLC and HPLC separations and determinations have been 

reviewed by de Silva (113). These methods have associated advantages and 

disadvantages. In most cases derivatization and/or chromatographic separations are 

necessary to remove interferences common to phannaceutical and biological matrices. 

All of the benzodiazepin-2-ones possess a chromophore. Three of the analogs possess 

chiral centers, but are actually racemic mixtures in solution. The rest are achiral. The 

presence of a chromophore makes these compounds good candidates for CD induction by 

introducing optical activity via complexation with J3-cyclodextrin. 

The following study is a continuation of the characterization and thermodynamic studies 

completed earlier (114). CD spectra for ten benzodiazepin-2-ones/~-cyclodextrin 

complexes have been characterized and the fonnation constants calculated. The effect that · 

ring substitution has on complex formation and stability is discussed. In addition, the 

determination of the drugs in two different pharmaceutical preparations is discussed. 

Experimental 

The benzodiazepin-2-ones, clonazepam, delorazepam, diazepam, flurazepam, 



lorazepam. nitrazepam. nordiazepam. oxazepam. temazepam. and the dehydroderivative 

medazepam (all from Hoffmann-LaRoche or Sigma Chemical Co.) were used without 

further purification. (3-cyclodextrin was obtained from Eastman Kodak. 
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For the equilibrium studies, solutions were prepared by dissolving the drugs in 0.02 M 

sodium hydroxide and weighed increments of (3-cyclodextrin were added in such a way 

that the host ((3-cyclodextrin) was always in excess. Drug concentrations were typically 

less than lo-4 M because of the strong absorption by the aromatic chromophores. 

Saturation for (3-cyclodextrin at room temperature is approximately 3 x lQ-2 M. The sugar 

is stable in strong alkali for several hours, which is very long compared to the few minutes 

needed for data aquisition. 

The same solution conditions, namely 10-2M (3-cyclodextrin in 0.02 M sodium 

hydroxide, were selected for the extraction from the pharmaceutical products which were 

obtained from a local dispensary. The alkali was added to the sugar stock solution just 

prior to obtaining the spectrum. The produets used were tablets containing 5 mg of 

diazepam (Valium, Rugby) and capsules containing 30 mg of flurazepam (Dalmane, 

Mylan). Tablets were crushed and thoroughly mixed by shaking on a Wig-L-Bug for 2 

minutes; 20 mg portions were withdrawn for extraction into 10 or 25 mL aliquots of the 

alkaline (3-cyclodextrin stock solution. Undissolved solids were removed by 

centrifugation. Several extracts from several tablets were used in the determinations. 

Results and Discussion 

The general structural formula for the series of benzodiazepin-2-ones is shown in Figure 

24. The R groups for each analog, the values obtained for the complex formation constants 

K05, and the resultant molar ellipticities, 8os, at the major maxima in the 250-300 nm 

wavelength range are listed in Table XI. 
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The CD spectra for the complexes fonned with each of the analytes are shown in Figure 

25. These are markedly different from those obtained for the barbiturates (99), the 

tetracyclines (100), the penicillins or the cephalosporins (Chapter N), and some 

differences are observed between members of the group. Strong spectral similarities exist 

for lorazepam and oxazepam, each of which has a hydroxyl group at position R3, and 

between diazepam and flurazepam each of which has an alkyl substituent at position ~· 

The nitro substituents at R1 in clonazepam and nitrazepam contribute towards a totally new 

Cotton band of positive sign at longer wavelengths. The spectrum for the 13-

cyclodextrin/diazepam complex in strong acid (98) bears a stong resemblance to the 

spectrum in strong alkali, with the latter being more intense. 

Figure 24. General structure for the 
benzodiazepin-2-ones. ·The R groups 
are identified in Table XI. 



TABLE XI 

GENERAL STRUCTURE FOR TilE BENZODIAZEPIN-2-0NES AND 
FORMATIONCONSTANTS FOR 13-CYLCODEXTRIN­

BENZODIAZEPIN-2-0NE COMPLEXES 

Compound Rl R2 R3 Kos 

aonazepam N~ a H H 812 
Delorazepam a a H H 615 
Diazepam a H H CH3 208 
Flurazepam C1 F H CH2CH2NEt2 106 
Lorazepam C1 a OH H 928 
Nitrazepam N~ H H H 479 
Nordiazepam C1 H H H 133 
Oxazepam C1 H OH H 569 
Temazepam C1 H OH CH3 147 

Lorazepama a a OH H 96 

aResult is for the reaction with y-cyclodextrin. 
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9os 

100 
587 
218 
310 
639 

72 
1005 
751 
206 

246 

Complex formation between guest (drug) and host (~-cyclodextrin) generally results in 

a 1:1 complex, according to the equilibrium reaction 

Drug (D) + Sugar (S) "'--=~ Drug/Sugar Complex (DS) (28) 

The formation constant, K0 s. is defined as 

Kos = [DS] I [D] [S] (29) 

Analytical concentrations of the drug, Co, and sugar, Cs. under equilibrium conditions can 

be expressed as the sums of the molar concentrations of free drug, free sugar, and complex 

Co= [D] + [DS] (30) 
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Figure 25. Induced circular dichroism, spectrum [induced ellipticity 
(millidegrees) vs. wavlength (nm)] for the 1:1 complex formed between 
B-cyclodextrin and drug: A. clonazepam, B. delorazepam, C. diazepam, 
plus (a) spectrum for extract, D. flurazepam, plus (b) spectrum for 
extract, E. lorazepam,F. medazepam, G. nitrazepam, H. nordiazepam, I. 
oxazepam, and J. temazepam. 
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Cs = [S] + [DS] (31) 

and the experimental ellipticity, 'If, is equal to the sum of the terms for each CD active 

component: 

'I'= 90 [D] +90s [DS] (32) 

where 90 and 90 s are the molar ellipticity coefficients for free and complexed drug 

respectively for a one centimeter pathlength. For molecules which possess no CD activity, 

90 is zero and equation 32 reduces to 'If= 9os [DS]. Rearrangement and substitution of 

equations 30, 31, and 32 into equation 29 yields an expression for Kos in terms of 

ellipticity parameters. 

Kos = ('If/9os) I {(Co - 'If/9os) (Cs -'If/9os) (33) 

Equation 33 does not hold for cases where the drug is CD active and a more complex form 

results because equation 32 can not be simplified However, another derived equation 

att:ri,buted to Hildebrand ( 115) and used for UV -visible absorption data can be modified for 

use with CD data, equation 34. 

(b [D] [S] I 'II- 'l'o) = { ([D] + [S] - [DS]) I (9os - 90 )} + 

{ 1 I Kos (90 s - 9o)} (34) 

where b is the cell path length in centimeters, and 'I'D is the experimental ellipticity of the 

free drug. Solution requires a converging iterative procedure to calculate Kos and 9os· 

Iteration is initiated by assuming [DS] = 0 and the values for Kos and 90 s are refined by 

substituting new values for [DS] upon completion of each cycle in the iteration. The 

calculation is terminated when successive Kos and 90 s values are invarient. The iterative 

calculations were performed by a microprocessor. 

Determinations of the benzodiazepine components of the V ali urn and Dalmane tablets 

were straightforward The observed ellipticities for the samples are directly proportional to 

the concentration of the complexed form [DS]. Data analyses can be handled in two 

different ways. The first would require construction of a calibration curve, the slope of 

which is an conditional molar ellipticity which can be used to obtain the concentration of the 
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pure benzodiazepine. If the equilibrium constants for the diazepam and flurazepam are 

known, a second approach can be employed. This involves substituting 'Jf/9os for [DS] 

and solving equations 30, 31, and 34 by microcomputer. The latter method was chosen for 

convenience since the equilibrium constants had already been calculated. 

Analysis of the tablets yielded a content of 4.98 ± 0.08 mg of diazepam per V ali urn 

tablet and 29.3 ± 0.6 mg of flurazepam per Dalmane tablet. Both values are within ±2% of 

the prescription amounts. The reproducibility was better than ±0.2% for samples taken 

from an individual tablet There was no evidence for spectral interferences from other co­

extracted components which were either inherently CD active or had had CD activity 

induced by complexation with ~-cyclodextrin. This is apparent from the similarities 

between the CD spectra for the standards and the extracts shown in Figure 25. None of the 

other soluble or insoluble ingredients was identified. Because heats of reaction are 

relatively small, close temperature control is not necessary in the performance of the 

determination and the Kos values at 250C can be used for the ambient conditions (114). 

One obvious advantage of the present method over others is that a sophisticated separation 

procedure is not necessary, only a single centrifugation step was needed. While a single 

determination may take 20 minutes to complete, simultaneous multiple determinations can 

subsequently be done at a rate of ten per hour if a whole spectral scan is performed, and 

more frequently if data are taken at a single wavelength. 

The nine benzodiazepin-2-one analogs form an interesting set wherein substitutions for 

the four R groups and the accompanying changes in Kos and 90 s might be compared and 

used to indicate which part of the benzodiazepin-2-one structure is encompassed in the 

sugar molecule on the formation of the complex. All of the structural variations needed to 

completely interpret the stability dependence are not satisfied by choosing only nine 

representatives of the series. However, some patterns of complex formation can be 

recognized. 
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The Ons values found in the benzodiazepin-2-one/~cyclodextrin interaction are 

considerably larger than the values already reported for the barbiturate/J3-cyclodextrin 

associations (1 00). The lowest value of 72 observed for nitrazepam is a factor of three 

greater than the highest barbiturate value, namely 27 for hexobarbital. However, the wider 

range in Ons for the benzod.iazepin-2-ones suggests a stronger structural dependence. The 

range of values for Kns is not as broad but the stabilities are on the whole greater than 

those observed for the barbiturates. This is also true for the comparison of the results for 

diazepam in 0.1 M hydrochloric ~id (K0 s = 83; Ons = 151) (98) versus the present data. 

One other stability comparison which can be made and which might have a bearing on the 

later discussion is that for lorazepam in the analogous complexation reaction with y­

cyclodextrin. When offered the larger central cavity of the gamma analog, the stability was 

observed to decrease by a factor of ten, Kns = 96. However, a decrease in stability of the . 

complex with increasing cavity size is to be expected. 

A general trend of increasing stability and decreasing induced ellipticity is observed 

relative to the values for the designated parent, nordiazepam. The differences in Kns and 

8ns for individual and paired substitutions relative to nordiazepam are listed in Table Xll. 

When the substituent changes are considered individually, the effects on Kns are greatest 

for R1, R2,and R3, while changes in~ exert little influence over the value of Kns· The 

effects of the paired substituent changes parallel those observed for single substituent 

changes. Substitutions at the R1/R2 and RVR3 sites dramatically increase the value of 

Kns· A substitution at the RYR4 site has little effect on the formation constant These 

results suggest that R1, R2 and R3 are all involved in complex formation, while~ is far 

removed from the interaction site. 

These observations can best be explained by examining the possible complexation sites 

on the benzodiazepin-2-one ring system. Numerous studies have indicated that a naphthyl 

or biphenyl ring systems best fit the J3-cyclodextrin cavity (116, 117). Phenyl groups are 

moderately complexed (117, 118), and the degree of complexation decreases with 
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increasing substitution (100, 102, 118). Thus the size and triple substitution of the seven 

membered diazo ring, B, should limit its inclusion in the sugar cavity. However, this still 

leaves two rings, A and C, as. possible inclusion sites. Inclusion of either site is possible, 

though it does not occur with equal probability. 

Inclusion of the C ring in the sugar cavity accounts for many of the trends observed in 

Table XIT. The common R2 substitutuent in this series is a hydrogen or chlorine atom 

(except for flmazepam). In studies of substituent effect on the retention of bisubstituted 

benzenes on ~-cyclodextrin stationary phases, Fujimura ( 118) and Shono ( 119) both report 

increased capacity factors, k', for those analytes possessing halogen substitution I. The 

increase in the degree of complexation is due to the increased hydrophobicity of the 

halogens. The addition of a nitro group to position R1 or a hydroxyl group to positions R3 

increases the degree of hydrogen bonding possible, thus also increasing the extent of 

complexation. These trends are also observed by Fujimura and Shono. 

The possibility of a second inclusion complex formed by inclusion of the A ring, rather 

than the C ring, is introduced in order to explain the effect of changing the ~ substituent, 

especially in temazepam where a simultaneous change in R3 also occurs. Introduction of a 

methyl group at~ would sterically hinder the inclusion of the A ring. Introduction of the 

triethyl amine group would also increase steric hindrance to a much larger degree. The 

changes in Kos support this interpretation, especially the decrease in stability noted for 

flurazepam. Fujimura (118) and Shono (119) also reported a decrease in complex stability 

when methyl groups were present. The second complexation site also explains the small 

increase in stability observed for temazepam .. The addition of the hydroxyl group should 

greatly increase the stability as is seen in delorazepam and lorazepam, however only a small 

1. Capacity factors should reflect the magnitude of the equilibrium constant since 
k'=KVsNM 
where Vs and VM are the volume of the stationary and mobile phase respectively. K is the 
distribution coefficient which can be related to the formation constant of the complex since it governs 
how much analyte is present in the stationary phase. 



TABLE XII 

CHANGES IN TilE FORMATION CONSTANT AND TilE MOLAR 
ELLIPTICITY WITII CHANGES IN TilE SUBSTITUENTS 

. OF TilE BENZODIAZEPIN-2-0NE RING SYSTEM 

Compound Rt R2 R3 ~Kos 

Nordiazepam a H H H 

Nitrazepam N~ - +346 
Delorazepam a +482 
Oxazepam OH +436 
Diazepam CH3 +75 

aonazepam N~ a +679 
Lorazepam a OH +795 
Temazepam OH CH3 +14 

Flurazepam F · CH2CH2NEt2 -27 

9os 

-933 
-418 
-254 
-787 

-905 
-366 
-799 

-787 

change is observed. If this hydroxyl group was removed from the site of interaction, its 

effect would be minimal. This is the situation if the A ring is the site of inclusion. 
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The small formation constant observed for the parent complex can also be explained 

using the same type of comparisons. Fujimura ( 118) reports a decrease in stability when 

amine groups are present The lack of hydrogen bonding and hydrophobic groups coupled 

with the presence of an amine function on the diazo ring would decrease the ability of either 

site to interact with the ~-cyclodextrin cavity. 

The structural subtleties of molecular association are never fully understood no matter 

how impartial is the attempt to choose model compounds. Apparent inconsistencies arise 

when comparisons are made between different guests, such as has occurred in this case 



between the barbiturates and the benzodiazepin-2-ones, which only serve to point up the 

limitations of our understanding of such interactions. Fujimura (118) and Shono (119) 

both used 20/80 methanoVwater mobile phases. Solvent effects can have a marked effect 

on capacity factors and equilibrium constants. Extrapolation from one system to another 

should be made with caution. The above discussion should be viewed as a preliminary 

attempt to describe the general mechanism of complexation and compares the results for 

solution and column equilibria. 
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Because of the growing utility of J}-cyclodextrin phases, an effort has been made to 

understand the mechanism of complexation. The fmal objective is to be able to predict 

which analytes will be separated using a given mobile phase. Because of the direct 

relationship between the equilibrium constants and the retention of an analyte on a column, 

CD detenninations of equilibrium values in different solvents might help predict elution 

order and optimum separation conditions without the need for trial and error runs on the 

HPLC. 



CHAPTER VIII 

DETERMINATIONS OF ENANTIOMERIC EXCESS 

Introduction 

Pasteur's discovery of optically active molecules was mentioned in Chapter II. His 

separation of enantiomeric tartrate crystals not only played a key role in the development of 

chiroptical theory and methods, but was also the first enantiomeric 11 determination II. For 

over a century, Pasteur's method of crystallization and manual separation was the only 

technique available for enantiomeric excess.determinations. The procedure is tedious and 

does not work for all stereoisomers. Consequently, determinations of enantiomeric excess 

in pharmaceutical or clinical samples were usually not performed, even though the 

significance of stereoisomerism in biological systems was generally recognized. 

Early attempts to determine the optical purity by using inclusion complex formation and 

GC techniques have been reviewed by Feibush and Grinberg (120). Melting range can be 

used to indicate whether a· sample consists of just one enantiomer or a racemic mixture, 

however, discrimination between or quantitation of the enantiomers is impossible. 

Recently Raman optical activity spectroscopy (121), and NMR with chirallanthanide shift 

reagents (122) have been utilized in optical purity determinations. These methods are ideal 

for detection of the differing stereochemical isomers, but quantitation can be difficult 

Separation of stereoisomers on chiral HPLC columns has been the most successful 

determination method to date. An extensive review of chiral separation techniques has 
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appeared recently (123). HPLC data are readily quantitated, but often suffer from 

incomplete separation of the enantiomers. 
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The recent development of techniques capable of detecting the different enantiomers has 

sparked a renewed interest in enantiomeric excess determinations, especially in the 

pharmaceutical industry. The differing physiological and toxicological effects ofracemates 

has been well documented. The development of analytical procedures for determination of 

enantiomeric excess has prompted the FDA to enact more rigid criteria for identifying and 

quantitating the enantiomeric concentrations and the pharmacological actions of the 

individual enantiomers (17). 

CD is an ideal detector for optical purity determinations because of its inherent ability to 

detect chiral molecules. The sign of the CD signal, or lack of a signal in a sample known to 

possess stereoisomers, can indicate which isomer is present in excess or the existence of a 

racemic mixture, respectively. Polarimetry and ORD possess the same capability, but lack 

the added selectivity of CD and are more likely to suffer interference problems (Chapter II). 

The inherent advantages of CD detection prompted a series of investigations into its utility 

in determining the enantiomeric excesses of mixtures. Three methods were explored: 

standard addition, UV -absorption/CO, and CD/CD. 

Enantiomeric Excess Determination by Standard Addition 

Introduction 

Standard addition is a common procedure in many analytical laboratories. Most 

introductory and some advanced texts covering quantitative chemical analysis include a 

description of this technique. Standard addition is generally employed when the sample 

matrix has some effect on the analytical signal and the matrix is too complex to duplicate in 

standard solutions. 
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The goal of optical purity determinations is to measure the analytical concentration of 

both stereoisomers. Initially standard addition procedures looked like a promising solution 

to this problem. If one of the enantiomers is treated as a matrix interference, standard 

addition of one of the isomers, preferably the one present in the lesser proportion, should 

produce a linear curve with ax-intercept corresponding to the concentration of that 

component. The concentration of the major component is the sum of the concentration at 

the x-intercept and the concentration calculated from the observed ellipticity, if any, of the 

CD maximum. Mixtures of D- and L-phenylethylamine were used to test this presumption. 

E;yx<rlmenta1 

D-(-)- and L-( + )-phenylethylamine as freebase were obtained from Sigma Chemical Co .. 

and were used without further purification. Stock solutions of approximately 1.5 x 10-1M 

D- or L-phenylethylamine were used to prepare the enantiomeric mixtures. The relative 

content of both isomers was varied from 0% to 100% . 0.1 to 1.0 mL volumes of the D or 

L stock solution were added to the 10 mL volumetric flasks containing 1 mL of the 

enantiomeric mixture before the final dilution with 1 M HCI. CD spectra were obtained and 

standard addition curves were constructed from the measured ellipticity at 275 nm. 

Results and Discussion 

The structure of the phenylethylamine enantiomers is given in Figure 26. CD spectra of 

both stereoisomers have been characterized previously (124). 

Standard additions of both the D and L forms were made for each prepared sample. 

Plots of measured ellipticity versus concentration of added enantiomer were constructed 

and the x-intercept (in concentration units) was compared with the total phenylethylamine 

concentration, the concentration of each enantiomer in a mixture, and the concentration of 
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the major isomer minus the concentration of the minor component (i. e. CEI - CMI)· The 

best correspondence was found between the x-intercept concentration and the last value 

(average percent difference of 11.0%, median percent difference of 6. 7% ). No correlation 

was found between the x-intercept concentration and the other concentrations. In this case, 

standard addition techniques failed to yield the desired result, namely the concentrations of 

both enantiomers. 

CH3 

I 
CH 
I 
NHz 

PHE~1HYLAMINE 

Figure 26. Molecular 
structure of Phenyl­
ethylamine. 

The failure of standard addition to solve this problem can be explained by reviewing the 

basic theory for both the analytical technique and CD measurement. The CD signal 

observed for an enantiomeric mixture is the sum of the signals from both isomers, 

'I'= So[D] + ~[L] 

where 'I' is the observed ellipticity, 80 and ~ are 'the molar ellipticities for the D and L 

isomers respectively, and [D] and [L] are the respective analytical concentrations of the 

isomers. For enantiomeric pairs, 

(35) 

(36) 



Substituting equation 36 into equation 35 gives, 

"'= ~([L]- [D]) 
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(37) 

The observed CD signal is therefore the difference in the analytical concentrations of the 

enantiomers. In order for standard addition to be successful, none of the analytical signals 

employed for a determination can be linear combinations (125, 126). Equation 37 shows 

that the observed ellipticity is a linear combination and thus standard addition procedures 

are ineffective in determining enantiomeric excess. 

Enantiomeric Excess Determination by UV Absorption and CD 

Introduction 

A second approach to enantiomeric excess determinations requires the performance of 

two independent experimental measurements. One of the measurements must focus on the 

chiroptical properties of the analytes. Boehm et al (127) were the first to apply this concept 

to enantiomeric excess determinations. An ultraviolet detector in series with an optical 

activity detector, a polarimeter, was employed for the determination of enantiomeric ratios 

in conventional HPLC separations. This combination eliminates the need for a chiral 

separation, but because a polarimeter is employed, all other chiral analytes must be 

separated in order to ensure accurate measurement. CD could replace the polarimeter, but if 

it is limited to single wavelength detection no improvement over polarimetry can be 

expected. The small elution volumes and low analyte concentrations typical of HPLC 

require that either the analyte possess a very large optical rotation (or ellipticity in the case 

of CD) or a laser based light source must be used to produce the required sensitivity. 

Nicotine is not a pharmaceutical compound, but it is of interest to the tobacco industry 

and to the medical community because of its relationship to cancer. The enantiomeric ratio 

of nicotine in the leaves used in cigarettes and smokeless tobacco may have pronounced 
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effects upon the type and extent of the physiological action and is an important parameter to 

know about commercial products. 

Armstrong and coworkers (128) have reported the enantiomeric resolution of nicotine 

on a reverse phase HPLC column by employing j3-cyclodextrin as a mobile phase additive. 

Baseline separation of the enantiomers is possible, but the retention time is extremely long, 

in excess four hours. The procedure is suitable but impractical for analysis of multiple 

samples. 

In this work the determination of the enantiomeric excess of spiked tobacco leaf 

extracts, the UV measurement has been retained. In order to avoid the problems of small 

elution volume and low analyte concentration, CD spectra were measured for samples of 

the unseparated mixtures which were on the order of a few milliliters. 

Experimental 

Samples of D- and L-nicotine standards (as free base) and of tobacco leaf extracts 

spiked with the unnatural D-isomer were provided by the R. J. Reynolds Co. 2-propanol 

was used to extract the alkaloid from the leaves and for dilution of the standards . The only 

sample preparation required was dilution of the leaf extracts. Approximately 0.2 to 0.4 mL 

of extract was diluted to a fmal volume of 10 mL with 2-propanol. CD spectra were 

obtained directly. Total nicotine concentrations of the leaf extracts were determined from 

the absorption of the eluting bands after HPLC separation and were were provided by 

Reynolds subsequent to the completion of the CD experiment. 

Results and Discussion 

CD spectra of the isomeric standards and of one leaf extract are shown in Figure 27. 

The spectrum for the L-isomer bears a strong resemblance to that for the isomer dissolved 
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in methanolic-KOH solutions and used in the detennination of nicotine in commercial 

forms of tobacco (129). 

Molar ellipticities (~) were determined from data taken at a number of wavelengths 

around the 272 nm maximum. These are compared in Table Xlli for the D- and L-forms. 

If the isomeric purities were precisely the same, these values would be equal in magnitude 

and opposite in sign at every wavelength. The observed discrepancies in the present 

figures are due to instrumental limitations and should not be construed to be an accurate 

measure of the purity difference. Such a conclusion might have some meaning if the 

discrepancy is significantly greater and consistently the same throughout the entire 

spectrum. Theoretically the ~ value for only one of the enantiomers is needed to calculate 

;;., -·-y ·--Q. ·­--~ 
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+ 

-6~_.--~~~_.--~~~~--~~~_.--~~~ 

235 255 275 

Wavelength 
295 315 

Figure 27. CD spectra of (a) L-nicotine standard, (b) D-nicotine 
standard, and (c) tobacco leaf extract (Table XIV, EXT3) in 
2-propanol. 



TABLEXITI 

MOLAR ELLIPTICITIES AS A FUNCTION OF WA VELENGTII FOR 
D- AND L-NICOTINE ENANTIOMERS 

Wavelength eL eo 
(A nm) (deg./Mcm) (deg./M em) 

269 -73.4 74.6 
270 -78.7 78.1 
271 -84.1 84.9 
272 -91.4 91.0 
273 -90.3 92.0 
274 -85.9 86.0 
275 -77.4 75.6 
276 -66.6 64.5 
277 -58.0 56.4 
278 -48.6 48.0 
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the enantiomeric excess, but it must be assumed that the figure is for a standard which is 

100% pure. The determination is only as good as the standard. This is true no matter what 

type of analytical procedure is employed. In the present case the enantiomeric excess has 

been calculated using both eo and ~ values on the one hand, and only the larger value on 

the other, which assumes that the larger value is more representative of 100% purity. 

Because the standards appear to be very si.milar in purity there is essentially no difference in 

the calculated results. The results of the enantiomeric excess determination obtained from 

only 9L are given in Table XN. 

The enantiomeric concentrations are calculated by expressing both the measured 

absorbance and ellipticity in terms of enantiomer concentration and solving the resulting set 



of equations. The measured absorbance, A, is proportional to the sum of the enantiomer 

concentrations, i.e. the total nicotine concentration, CT, 
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A= E[D] + E[L] = E([D] + [L]) = ECT (38) 

where E is the molar absorptivity, and [D] and [L] are the concentrations of the respective 

enantiomers. The experimental ellipticity, '\jf, on the other hand, is proportional to the 

difference in enantiomer concentrations, equation 37. Solving equations 37 and 38 

simultaneously yields the concentrations of both enantiomers present in the mixture. 

TABlE XIV 

ENANTIOMERIC EXCESS DATA FOR SPIKED TOBACCO MIXTURES 

Sample Concentration % L (theoretical) % D (theoretical) 
(mg/mL) 

EXT1 1.069 37.5 (36) 62.5 (64) 

EXT2 1.385 9.9 (10) 90.1 (90) 

EXTI 1.451 50.0 (50) 50.0 (50) 

EXT4 1.887 62.3 (65) 37.2 (37) 

EXT5 1.374 13.1 (10) 86.9 (90) 

EXT6 1.261 9.9 (10) 90.1 (90) 

The correspondence between calculated enantiomer concentration and theoretical 

concentration is excellent, Table XIV. The largest deviations are observed for the 
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concentrations of the stereoisomer present in lesser amounts (average percent difference of 

7.2%). Deviations between the calculated and theoretical values are much smaller for the 

component in large excess (average percent difference of 1. 7% ). Similar trends were 

observed for the two- and three-component Rauwolfia alkaloid mixtures (Chapter V). 

The presence of other absorbers (129) required that the tobacco extracts be first 

separated by conventional HPLC before the total amount of nicotine in the samples could 

be determined. (The enantiomers co-elute from a conventional HPLC column.) Where 

other absorbing species are absent. total enantiomeric concentration would be obtained by a 

direct absorbance measurement The SIN quality of the CD signal would be adversely 

affected by other absorbers and if extreme some type of sample clean up would be 

necessary. The presence of other CD active analytes are also cause for concern, though 

chiral analytes which do not absorb are not a problem. In the above analysis, no other 

chiral analytes were present and visual inspection of the spectra was sufficient indication of 

whether one isomer was in excess or whether the sample was a racemic mixture. 

Interference from other CD active compounds would be seen as a distortion of the spectrum 

of the principle analyte. The integrity of the original spectrum of either isomer is 

maintained even in enantiomeric mixtures, Figure 27c, thus the presence of another CD 

active compound would be recognized. In the worst possible case, sample clean up would 

be required. Conventional HPLC is one option, however, solid phase extraction 

procedures are showing great promise as a sample clean up technique (130). Even in the 

worst cases of interference, enantiomeric separation is unnecessary. 

The combination of CD with absorption spectrophotometry, or other analytical 

techniques, provides a viable alternative to the often difficult problem of attaining complete 

enantiomeric separation. A word of caution is pertinent here in that the observed CD 

spectrum may be that for either a single analyte in low relative concentration, or for a 

mixture at a higher analytical concentration but with a small enantiomeric excess value. The 



dichotomy is easily resolved by calculating the total enantiomeric concentration from an 

appropriate alternative method. 

Enantiomeric Excess Detennination By CD 

Introduction 
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The lack of selectivity in UV absorption spectrophotometry might require additional 

steps in the sample preparation, steps which are not always necessary when CD detection is 

used. Analytical determinations of pen-V (Chapter IV), reserpine in R. serpentina root 

(Chapter V), L-cocaine in illicit drug samples (131 ), and nicotine in tobacco products ( 129) 

were accomplished using CD detection and required only a dilution step or a simple 

extraction procedure before determination. Employing only CD detection for the 

determination of enantiomeric excess would in many instances simplify sample 

preparations and reduce analysis times. 

The ability of ~cyclodextrin to induce CD activity into achiral analytes was 

demonstrated in Chapter Vll. ~-cyclodextrin can also induce CD activity into total or 

partial racemic mixtures (124) and permits enantiomeric separation when used as either a 

chiral stationary phase or mobile phase additive (132). These may seem to be unrelated 

capabilities, but in fact both phenomena result from the preferrential complexation between 

~-cyclodextrin and one of the enantiomers of a pair. 

The third technique for the determination of enantiomeric excess that has been used 

takes advantage of the difference in induced CD activities between the enantiomers and uses 

the resulting conditional ellipticity in place of absorbance as the second independent 

measurement The other independent measurement is taken from the CD spectrum of the 

analyte in an achiral solvent. Optical purities for a number of D- and L-cocaine 
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enantiomeric mixtures are detennined using this technique and some preliminary results for 

enantiomeric mixtures of pseudoephedrine are also reported 

Experimental 

D-cocaine as free base, L-cocaine hydrochloride (National Institute on Drug Abuse, 

Research Technology Branch), L-pseudoephedrine hydrochloride (Sigma Chemical Co.) 

and D-pseudoephedrine hydrochloride (BUIToughs Wellcome Co.) were obtained and used 

without further purification. Street samples of cocaine hydrochloride and samples of 

"crack" were obtained from the Forensic Laboratory of the Oklahoma City Police 

Department. 13-cyclodextrin was purchased from Eastman Kodak Co.. All solvents 

employed were of analytical grade quality·. 

CD spectra were obtained for D- and L-cocaine standards, for prepared laboratory 

mixtures, and for extracts of street samples of cocaine hydrochloride and "crack", first in 

0.1 M HCl and then in a solution of lQ-2 M J3-cyclodextrin (in 0.1 M HCl). Solutions 

were prepared. such that both solvents contained exactly equal quantities of standard or 

sample. The content of each enantiomer in the laboratory mixtures was varied from 0 to 

100%. 

D- and L-pseudoephedrine standards and laboratory mixtures were dissolved in 0.005 

M HCl or 1Q-2 M 13-cyclodextrin (in 0.005 M HCl). Each solvent contained identical 

quantities of the enantiomers. The D- and L-pseudoephedrine content of the laboratory 

mixtures was varied from 10 to 90%. 

Results and Discussion 

Molecular structures of the naturally occurring cocaine and pseudoephedrine 

stereoisomers are shown in Figure 28. The CD spectra for the uncomplexed enantiomers 
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are mirror images of each other, Figures 29(a), 30(a) and 31(a and b). Complexation with 

~-cyclodextrin causes a blue shift in the short wavelength band of the D-cocaine spectrum, 

Figure 30. By comparison the equivalent band in the CD spectrum of L-cocaine exhibits a 

smaller blue shift, but the sign of the CD signal is inverted as the L-cocaine concentration is 

increased, Figure 29. The corresponding changes in the wavelength maxima are recorded 

in Table XV. 

H 

L-COCAINE D-PSEUDOEPHEDRINE 

Figure 28. The molecular structures of the naturally occuring 
stereoisomers: L-cocaine and D-pseudoephedrine. 

The CD spectra of the complexed pseudoephedrine enantiomers undergo a slight red 

shift and decrease in intensity when compared to the spectra for the uncomplexed forms, 

Figure 31. The difference between the molar ellipticities for the complexed D- and L­

isomers is small, but readily measurable using the computer accessory, Table XV. 

Initial attempts at developing the second independent CD measurement were focused on 

calculating the formation constant for the cocainejp-cyclodextrin complex. The formation 

constant obtained for the L-cocaine complex, 491.5 ± 15, agrees with earlier results (133). 

Determination of the corresponding formation constant with equivalent accuracy for the D-
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Figure 29. CD spectra for L-cocaine in (a) 0.1 M HCl and (b) 10-2M 

P-cyclodextrin. 
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Figure 30. CD spectra forD-cocaine in (a) 0.1 M HCI and (b) lQ-2 M 

P-cyclodextrin. 
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Figure 31. CD spectra for (a) L-pseudoephedrine in 0.005 M HCL, (b) 
D-pseudoephedrine in 0.005 M HCI, (c) L-pseudoephedrine in 1.5 x 10-2 
Mj3-cyclodextrin and (d) D-pseudoephedrine in 1.5 x IQ-2 M 13-
cyclodextrin. 

TABLE XV 

MOLAR ELLIPTICITIES FOR 1HE UNCOMPLEXED AND COMPLEXED 
FORMS OF 1HE D- AND L-S1EREOISOMERS OF 

COCAINE AND PSEUDOEPHEDRINE 

Enantiomer Uncomplexed Complexed 

6M(nm) 6c(nm) 
(deg/Mcm) (deg/Mcm) 

L-cocaine -55.7 (246.0) + 72.8 (236.0) +54.7 (230.0) 

D-cocaine +49 .3 (246.0) +52.9 (236.0) +57 .1 (230.0) 

L-pseudoephedrine +2.3 (268.0) +2.2 (268.2) 

D-pseudoephedrine -2.4 (268.0) -1.6 (268.2) 
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cocaine complex was not possible. The small changes in the induced CD signal and the 

poor SIN quality of the signal precluded accurate measurement of the actual changes caused 

by complexation with J3-cyclodextrin. 

A second alternative was to measure the "conditional" molar ellipticity values (9c in 

Table XV) of the enantiomers in J3-cyclodextrin by preparing calibration curves of the 

experimental ellipticity versus the total drug concentration. The measured ellipticity, 'I'C• is 

equal to the sum of the induced CD signals of both enantiomers, 

'l'c =9cdL] + 9co[D] (39) 

where 9CL and 9co are the conditional molar ellipticities for the L- and D-isomers 

respectively. Equation 39 is used in place of the absorbance measurement represented by 

equation 38. The concentration of each isomer in the enantiomeric mixture is calculated by 

solving equations 37 and 39 simultaneously. 

Correspondence between prepared and measured enantiomeric concentrations for the 

laboratory mixtures was excellent, Table XVI. The largest errors were associated with the 

enantiomer present in the lesser amount (a percent error between prepared and measured of 

5.7%). Similar trends have been observed for multi-component alkaloid mixtures (Chapter 

V) and enantiomeric mixtures of nicotine (Table XIV). Accurate determination of the D­

isomer when it is the minor enantiomer are more difficult than the corresponding 

determination of the L-form. This is expected since the induced signal for the D-isomer is 

smaller than that for the L-isomer and the associated maximum has a smaller SIN ratio 

because of the extra absorbance at the shorter wavelengths. 

The data presented in Table XVI was measured from full spectral scans. Scanning just 

the maximum and a small portion of the baseline for each sample reduces analysis time 

dramatically, from one hour per sample to approximately 10 minutes. Correlation between 

prepared and measured percentages of the major enantiomer are still excellent (an average 

percent error of 2.8% ), however the error associated with the minor enantiomer increases 

(an average percent error of 8.8%). 
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For the street cocaine samples the total cocaine content as a percentage of the total 

weight as well as the enantiomeric ratio is obtained. There are no reference materials with 

which to compare the results for the street samples, however, total cocaine content was 

determined from absorbance measurements. Excellent agreement between the absorbance 

(84.6 ± 4.3%) and CD (86.4 ± 7.8%) measurements was obtained. There was no 

evidence to indicate the presence of D-cocaine in these samples. 

TABLE XVI 

DETERMINATION OF ENANTIOMERIC EXCESS IN 
D- AND L-COCAINE MIXTURES 

Sample %L (Theoretical) %D (Theoretical) 

LAB1 - (0) 101.1 (100) 
LAB2 15.5 (15.2) 84.5 (84.8) 
LAB3 28.7 (29.7) 71.3 (70.3) 
LAB4 51.1 (52.2) 48.9 (47.8) 
LAB5 60.3 (60.0) 39.7 (40.0) 
LAB6 79.6 (78.6) 20.4 (21.4) 
LAB7 96.8 (100) 3.2 (0) 

SPK1 19.4 (17.4) 80.7 (82.6) 
SPK2 40.5 (36.0) 59.6 (64.0) 
SPK3 56.7 (55.8) 43.4 (44.2) 
SPK4 78.5 (77.1) 21.6 (22.8) 
SPK5 98.9 (100) 1.1 (0) 
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Only one crack sample was investigated. CD measurement yielded a L-cocaine content 

of 91.5% by weight. Corresponding absorbance data was not obtained. The presence of 

D-cocaine was not evident in these samples. 

Street cocaine samples spiked with the unnatural D-isomer were also examined. A L­

cocaine content of 86.4% was assumed for the street samples based on the above CD data. 

D-cocaine content was determined directly from the weight added to each sample. 

Correlation between prepared and measured percent was excellent, Table XVI. 

A problem encountered during analysis of the street samples, but not in the analysis of 

laboratory mixtures which were prepared from the standard materials, is the lack of 

equivalent purity in the two cocaine standards indicated by the large differences in eo. 
Table XV. The chemical data sheet supplied with the D-isomer indicated good correlation 

between melting point and polarimetric measurements obtained by the supplier and those 

values reported in the literature. Independent polarimetric and absorption measurements of 

both enantiomers support the conclusion from the CD data that the D-cocaine standard is of 

lesser purity. While equation 36 applies for uncomplexed enantiomers, a similar 

assumption for the molar ellipticities of the complexed forms would not be valid. The 

additional uncertainity in e005 is expected to contribute more towards the errors in the 

calculated enantiomeric concentration, especially in cases of low D-cocaine content. Such 

observations have been reported for the laboratory mixtures. 

Laboratory mixtures of D- and L-pseudoephedrine were also analyzed for enantiomeric 

excess. Measured percentages are very close to the prepared values, Table XVII. Recent 

determinations have yielded correlations of better than ±2% for all enantiomeric ratios. 

Anaylsis of real samples is still in the preliminary stages, but initial results are promising 

(134). 

This work is another example of the versatility of CD as an analytical detector. CD 

detection eliminated the need to perform a chiral separation via HPLC thus reducing 

analysis time. Neither derivatization steps nor addition of internal standards was required. 



TABLEXVIT 

ENANTIOMERIC EXCESS DETERMINATION OF LABORATORY 
MIXTURES OF D- AND L-PSEUDOEPHEDRINE 

Sample 

EPH1 
EPH2 
EPH3 
EPH4 

%L (Theoretical) 

6 (10) 
39 (40) 
50 (50) 
74 (75) 

%D (Theoretical) 

94 (90) 
61 (60) 
50 (50) 
26 (25) 
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CHAP'IERIX 

CONCLUSION 

The primary goal of the investigations described in this work was to develop selective 

analytical procedures for the determination of phannaceuticals and related substances, 

without the need for chromatographic separation or extensive sample work up often 

required in a number of other analytical techniques. The successful determination of multi­

component samples such as the P-lactam antibiotics, the indole alkaloids of R. serpentina, 

and the water soluble vitamins C, B2, and B12 demonstrates how CD detection can 

simplify an analysis, thus reducing sample t,urn around time, a parameter extremely 

important in a phannaceutical or clinical quality control laboratory where large numbers of 

samples are processed on a routine basis. Recent work indicates that the use of a 

microcomputer to record and manipulate the analytical signal might help to further reduce 

the analysis time, as well as improve the accuracy and reproducibility attainable during 

analysis of multi-component mixtures, especially when determining the concentration of the 

minor constituents. Automation would also reduce analysis time. 

The successful application of CD detection to enantiomeric excess determinations 

another demonstration of the utility of this detector. Inherent selectivity for chiral 

molecules allows determinations to be accomplished after only a simple extraction step. 

Though present work has been limited to complexations using aqueous solutions of P-

cyclodextrin; chiral crown ethers, NMR shift reagents, and metal ion complexes, and as 

well as other solvents could be used to extend the applicability of this technique. Other 
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variables such as pH and temperature might also be manipulated in order to maximize the 

differences between the resulting CD spectra. 

Determination of enantiomeric excess via CD detection has definite advantages over the 

often preferred enantiomeric separation performed by chiral HPLC techniques. HPLC 

procedures often suffer from incomplete separations, band spreading, co-elution of other 

analytes, and long retention times. In addition, selecting the proper chiral stationary phase 

can be difficult and is often more art than science. CD studies of the changes in formation 

constants may prove to be useful in narrowing the possibilities and in choosing the proper 

solvent conditions. For example, the formation constants calculated for the cocaine 

enantiomers indicate that the D-cocaine/~cyclodextrin complex is of lower stability. D­

cocaine is also least retained by a ~-cyclodextrin stationary phase (135). This implies that it 

might be feasible to employ CD studies of complex formation under varying conditions to 

predetermine the proper conditions for an HPLC separation. This would reduce the 

number of trials needed on the HPLC, thus extending column life and conserving 

expensive HPLC grade solvents. In depth studies are required before any significant 

correlations can be made. 

CD detectors can also be interfaced directly with HPLC systems. Such a combination is 

useful for studying substances of natural orgin because of the associated chirality of these 

molecules. Generally CD detectors for HPLC applications are limited to one wavelength, 

which greatly reduces the potential of the detector. Full spectrum CD has much more 

utility, especially when baseline separation of chiral analytes is not possible. For situations 

were complete separation is not a problem, polarimeters are excellent detectors. They are 

less expensive both to purchase and maintain than· CD instrumentation and they can detect 

nonabsorbing chiral analytes that are invisible to the CD. In view of these considerations 

and the evidence that CD can be used as a stand alone detector without the need for HPLC 

separations, further efforts are probably better focused on developing procedures which 

would increase the number of analytes detectable by CD. 
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Induction of CD activity in achiral molecules by complexation with j3-cyclodextrin is 

one way to increase the number of detectable analytes and has been discussed in Chapter 

VI. However, the possibility of inducing CD activity in chiral molecules with no 

chromophore has been generally overlooked. Color induction is a standard tool in clinical 

chemistry when absorption is the method of choice and can be successfully applied to CD 

studies. Sterols, sterones, and the fat soluble vitamins D2, D3, and E have all exhibited 

induced CD activity upon color induction ( 136). Interferences are common in colorimetric 

techniques as applied to absorption measurements, however, in CD the produced colored 

species must meet the criteria for CD activity in order to be detected. Therefore, 

interferences typical in absorption measurements may only reduce the SIN in CD 

measurements. 

These proposed applications of CD detection would be useful in forensic, clinical, and 

pharmaceutical laboratories where chiral molecules are common subjects of interest HPLC 

and absorption spectrometry both in combination and individually have become the 

standard procedures in these areas in spite of the limitations associated with each. CD 

detection can circumvent many of these problems and provide information not presently 

easily attainable. For example, in the study of the pharmacokinetics of enantiomeric drugs. 

Presently such kinetics methods are handled by absorbance measurements which are 

insensitive to chiral subtleties present in most living systems. Enantiomers are metabolized 

differently or at different rates if they do follow the same metabolic pathway. Absorb~ce 

measurements provide an "average" kinetic profile that is in some cases markedly different 

from the profile of individual enantiomers. Using the techniques discussed in Chapter 

vm, it would be possible to follow the kinetics of each enantiomer. 

The development of the future applications of CD detection depends upon the outcome 

of more complete studies. The desirability of developing fast-scan capabilities or laser 

sources for CD work is contingent upon the acceptability and applicability of the proposed 

method. CD detection is by no means ideal for all situations, in some cases its very 
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selectivity excludes its use. In addition, CD methods are subject to one of the primary 

limitations of almost every analytical technique, the relative purity of the calibrating 

standard However, CD detection has some unique characteristics that would be invaluable 

in quality assurance testing in the pharmaceutical laboratory and for screening tests in 

clinical chemistry. 
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