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CHAPTER I 

INTRODUCTION 

Corn and sorghum grain are the most often utilized cereal grains 

in feedlot diets. Corn is the preferred grain, but sorghum grain is 

used extensively in some regions, because sorghum grain can be grown 

successfully under a wider range of dryland and irrigation conditions 

than corn. However, sorghum grain is more variable in quality (protein 

and starch content) than corn, partially because of environmental 

influences (Wall and Ross, 1970), but also because of varietal and 

hybrid differences (Miller et al., 1962). Consequently, predictability 

of growth rates and efficiency of feed utilization may be reduced when 

NRC (1984) energy values for sorghum grain are used. Variation in 

cattle performance associated with different sorghum grain hybrids or 

varieties (Mccollough et al., 1972; Maxson et al., 1973) may partially 

be due to differences in digestibility (McCollough and Brent, 1972). 

Corn and sorghum grain are very similar in composition (Rooney and 

Pflugfelder, 1986), yet corn has generally supported greater rates of 

gain than sorghum grain (Mccollough et al., 1972). Attempts to 

identify sorghum grain endosperm types with improved digestive 

qualities have indicated grain with floury (Miller et al., 1972) or 

waxy (Hibberd et al., 1982a,b) endosperm are superior to normal 

endosperm. Unfortunately, grains with floury endosperm are of limited 

commercial usefulness because of low density and test weight (Sullins 
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and Rooney, 1974), while grain with waxy endosperm has been slow in 

development because of reduced yield potential (Roo~ey and Pflugfelder, 

1986). Recently, Brethour (1987) compared sorghum grain with a pure 

yellow endosperm to corn, noting no difference in rate and efficiency 

of gain in beef steers. However, Goldy et al. (1987) reported no 

advantage in growth rate or efficiency of gain in steers fed homozygous 

yellow endosperm sorghum hybrid compared to heterozygous yellow 

endosperm sorghum hybrids differing in seed coat color. Moreover, corn 

resulted in a statistically similar rate and efficiency of gain, but 

numerically gains with corn were 8% greater than yellow and 11% greater 

than hetero-yellow endosperm sorghum grain hybrids. 

Sorghum grain breeders have suggested that hybrids of differing 

genetic backgrounds should differ with respect to digestibility of 

starch and protein. Additionally, currently available sorghum grain 

hybrids have not been compared to corn. Because sorghum grain 

varieties differ in site and extent of digestion (Streeter et al., 

1989a) one may expect differences among hybrids. Endosperm 

characteristics of sorghum hybrids may alter ruminal fermentation and 

intestinal digestion; hence, altering the efficiency of energy 

utilization (Black, 1971). The extent to which different sorghum grain 

hybrids compare to corn and each other and alter site and extent of 

digestion is virtually unknown. The objective of these studies was to 

quantify the differences between corn and currently available sorghum 

-grain hybrids in chemical composition, in the extent of starch 

digestion in the rumen and in the small and large intestines and in the 

extent of grain protein escape to the small intestine in beef cattle. 

To accomplish our objectives, three experiments were conducted. The 
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first compared four sorghum grain hybrids, representing a homozygous 

yellow endosperm grain, two heterozygous yellow endosperm grains 

differing in seed coat color and a homozygous white endosperm grain, to 

corn to quantify differences in site and extent of starch and protein 

digestion in beef steers. The second trial compared six genetically 

unique sorghum grain hybrids, representing two homozygous yellow 

endosperm grains, two heterozygous yellow endosperm grains with a red 

seed coat and two heterozygous yellow endosperm grains with a white 

seed coat to identify differences in site and extent of starch and 

protein digestion in beef steers. The third experiment concentrated on 

physical and chemical differences between eight divergent sorghum grain 

hybrids and corn. 
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CHAPTER II 

LITERATURE 'REVIEW 

Factors Affecting Corn and Sorghum 

Grain Digestibility 

Corn and sorghum grain are very similar in chemical composition 

(Rooney and Pflugfelder, 1986) yet, corn has generally supported 

greater rates of gain than sorghum grain (McCollough et al., 1972). 

Recently, Brethour (1987) compared sorghum grain with a homozygous 

yellow endosperm to corn noting no difference in rate or efficiency of 

gain in beef steers. Goldy et al. (1987) observed no advantage in 

growth rate or efficiency for steers fed homozygous yellow endosperm 

compared to heterozygous yellow endosperm sorghum grain hybrids. 

Moreover, corn resulted in a similar rate and efficiency of gain. 

Numerically, however, gains with corn were 8% greater than pure yellow 

and 11% greater than hetero-yellow endosperm sorghum grain hybrids. 

Mccollough and Brent (1972) and Schake et al. (1976) suggest that 

sorghum grain is 5 to 10% less digestible than corn. Barley may also 

have greater feeding value for cattle than sorghum grain (Saba et al., 

1964). Spicer et al. (1986) concluded that corn and barley had 

slightly greater total tract starch digestibility than sorghum grain. 

Ruminal starch digestion was greater for corn (83.7%) and barley 

(87.7%) than for sorghum grain (75.2%) of unknown background. Total 

tract N digestibility was much greater for corn and barley compared to 
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sorghum grain. Waldo {1973) noted slightly greater ruminal starch 

digestibility for corn than sorghum starch. Less variation in ruminal 

corn starch digestion was noted than for ruminal sorghum grain starch 

digestion. Sorghum varieties, however, do exist that have a higher 

digestibility than corn {Samford et al., 1970; Miller et al., 1972). 

Sorghum grain usually has a much greater proportion of endosperm 

as peripheral cells than corn {Rooney and Miller, 1982). Because 

sorghum grain peripheral endosperm cells have a high protein content 

and resist both physical and enzymatic degradation {Rooney and 

Pflugfelder, 1986), one would expect sorghum grains with more 

peripheral endosperm to be less digestible and sorghum to be less 

digestible than corn. Tanksley and Knabe (1984) have found the protein 

of yellow endosperm sorghum to be 5% less digestible than corn protein 

in swine. Rooney and Riggs (1971) and Wagner (1984) have postulated a 

relationship between starch recovery from wet milling and ruminal 

starch digestibility. Perhaps a similar relationship exists within the 

small intestine, and to a lesser extent, the large intestine. Low 

starch yields from wet milling of sorghum grain may be caused by the 

density of the peripheral endosperm layer (Watson et al., 1955). 

Wagner (1984) reported differences in wet milling properties among 

sorghum grain varieties related to the proportion of peripheral 

endosperm. The proteins in corneous endosperm are composed of protein 

bodies (kafirin) and a continuous protein matrix (glutelin). Corneous 

endosperm (measured by hardness) in sorghum grain is the result of 

protein content, the continuity of the peripheral protein matrix 

(Rooney and Miller, 1982) and hybrid (Hoseney, et al., 1974). 

Differences among sorghum hybrids ruminal, pre-cecal and intestinal 
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starch digestibility are likely the result of differences in the amount 

of peripheral endosperm and continuity of protein matrix as indirectly 

indicated by geometric mean diameter (GMO) and particle size 

distribution. Additionally, intermolecular cross links are found in 

some sorghum prolamine protein fractions that decrease the 

extractability, but more importantly, digestibility of both the protein 

and starch granules embedded in matrix protein. Differences between 

corn and sorghum hybrid starch and protein digestibility may also be 

related to protein matrix in the peripheral endosperm. While the 

composition of corn and sorghum endosperm (protein and starch) is 

similar, protein of sorghum is more difficult to extract using 

classical solvent extraction techniques than corn and other cereals 

(Wall and Paulis, 1978). Additionally, separation of starch and 

protein by wet milling is more difficult in sorghum than corn with the 

resulting starch generally contains more protein than commercial corn 

starch (Rooney and Pflugfelder, 1986). 

Mccollough and Brent (1972) have shown that endosperm type is 

related to digestibility of sorghum grain. Within eight sorghum 

hybrids tested, grains with white endosperm tended to have lower 

digestibilities than those with yellow endosperm. One bird resistant 

hybrid included in the study had greatly reduced crude protein and dry 

matter digestibilities. Rooney and Pflugfelder {1986), in a recent 

review, noted that hetero-yellow sorghum grain was of higher feeding 

value than sorghum grain with a non-yellow endosperm. Hibberd et al. 

(1985) and Streeter et al. (1989b), however, were unable to determine 

differences in total tract starch digestibility among sorghum grain 

hybrids and varieties, respectively. But ruminal starch digestion was 
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greater for a hetero-yellow hybrid than other non-yellow endosperm 

hybrids in the study reported by Hibberd et al. (1985). Differences 

between corn and sorghum grain types may reflect differences in the 

proportion and continuity of peripheral endosperm and protein matrix 

(Rooney and Pflugfelder, 1986). Miller et al. (1972) found the percent 

floury endosperm influenced sorghum grain digestibility. Sorghum 

varieties with greater than 753 floury endosperm had higher nylon bag 

dry matter digestibility than those with less than 403 floury 

endosperm. Grains with a brown (bird resistant) or a purple seed coat 

tended to have lower digestibilities regardless of floury endosperm 

content. However, grain with floury endosperm generally has a low 

density and test weight limiting its commercial usefulness (Sullins and 

Rooney, 1974). Sorghum grain digestibility is decreased as berries 

become harder (Samford et al., 1970). Berries become harder as the 

proportion of soft floury endosperm declines. Therefore, factors 

related to hardness indirectly estimate the ratio of peripheral to 

floury endosperm. Decreasing moisture, berry size and soil fertility 

may increase berry hardness. The primary seed characteristic related 

to seed hardness; however, is endosperm type. Berries with floury 

endosperm are softer than berries with normal or waxy endosperm 

(Sullins and Rooney, 1974). 

Sorghum varieties with waxy endosperm have higher in vitro dry 

matter disappearance (IVDMD; Hibberd et al., l982a,b; Streeter et al., 

1989a) and in vivo starch digestibility than varieties with normal 

endosperm (Nishimutta et al., 1969; Streeter et al., 1989b). Waxy 

starch may be more available due to the branched nature of amylopectin 

(French, 1973), or increased starch granule accessibility due to 
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greater solubility of peripheral endosperm matrix protein, less 

amorphous protein matrix and less peripheral endosperm (Sullins and 

Rooney, 1974; Lichtenwalner et al., 1978). Seckinger and Wolf (1973) 

suggest protein encapsulation of starch granules limits sorghum starch 

digestibility. Higher protein sorghum grains are also given lower 

energy values by the beef cattle NRC (1984). The protein matrix 

surrounding the starch granule is extremely dense and insoluble in the 

peripheral endosperm of sorghum grain. Information is currently not 

available on more recent sorghum grain hybrids concerning the 

relationship of protein and energy. NRC (1984) energy values for 

sorghum grains are, therefore, in need of investigation. 

Bird resistant (BR) sorghum varieties contain condensed tannins 

that give the grain an astringent taste reducing palatability and 

digestibility (Saba et al., 1972). Muindi et al.(1981) treated BR 

sorghum high in tannin with magadi soda to remove condensed tannins (40 

to 57%) and noted increased· in vitro OM, starch and CP digestion. 

However, soda treatment did not result in levels equal to low tannin 

non-BR sorghum grain and low tannin grains were not influenced by soda 

treatment. This indicates that factors other than tannin influence 

digestion in vitro. Studies using rats reported by Muindi and Thomke 

(1981) are in agreement with in vitro experiments. On the other hand, 

BR types with waxy endosperm have greater IVDMD than BR types with 

normal endosperm (Hibberd et al., l982a,b). Other factors associated 

with the BR characteristic may influence OM and CP digestion and need 

further investigation. 

Inheritance of Yellow Endosperm in 

· Sorghum Grain Hybrids 
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Sorghum grain may have two different endosperm colors due to the 

presents or absents of carotenoid pigments. Grain with a yellow 

endosperm may be more digestible than that with a white endosperm. The 

inheritance of yellow endosperm is not clearly understood but is 

thought to involve four alleles. Presumably, heterozygous yellow 

hybrids may have either a third or two thirds yellow endosperm. 

Differences in the digestibility of heterozygous yellow grains 

partially may result from varying proportions of yellow endosperm. The 

seed coat color of heterozygous yellow endosperm grains is not involved 

with the proportion of yellow endosperm. Hence, cream hybrids 

(heterozygous yellow endosperm, white seed coat) do not contain a 

greater proportion of yellow endosperm than hetero-yellow (heterozygous 

yellow endosperm, red seed coat) hybrids, even though the cream grains 

physically appear to be more like a pure yellow hybrid (homozygous 

yellow endosperm, yellow seed coat) than a hetero-yellow. 

Factors Affecting Site and Extent of 

Starch and Protein Digestion 

The need for more efficient production hls forced the beef cattle 

industry to shift from forage to concentrate feeding. Grain 

processing, feeding regimes and feed additives have been developed to 

further enhance the efficiency of production by increasing the 

availability and utilization of the cereal grain .portion of rations. A 

great deal of research has been conducted to determine the effect of 

altering the site of cereal grain starch and protein digestion on total 

tract utilization. Interest in the effect of starch digestion in the 
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small intestine on animal performance has been great. Theoretical 

calculations with concentrates fed to non-ruminant lambs demonstrate 

the potential for more efficient production due to reduced energy loss 

from methane (Black, 1971). 

The small intestine has a relatively large capacity to digest 

starch; however, a ceiling has been suggested. Waldo (1973) suggested 

an upper limit of 7.7 g of starch or 8.6 g glucose per kilogram of 

metabolic body weight (kg body wt· 75). Escape of starch from ruminal 

fermentation may play an important role in meeting the glucose 

requirements of high producing animals (Armstrong and Smithard, 1979). 

Greater glucose absorption from the small intestine should allow 

propionic acid and glucogenic amino acids produced in the rumen to be 

utilized for functions other than gluconeogenesis (Sutton, 1971). 

However, Orskov (1986) suggests that exogenous glucose metabolism by 

the liver may be a possible constraint limiting dietary starch 

utilization in ruminants. Net portal glucose flux has been reported to 

be to the gut with high concentrate diets that should have resulted in 

substantial glucose absorption from the small intestine (Huntington et 

al., 1981; Huntington, 1984). Additionally, glucose and starch 

infusion into the small intestine by Huntington and Reynolds (1985) 

resulted in only 65% of infused glucose and 35% of infused starch being 

recovered in the portal blood. Net flux of glucose to the gut with 

high concentrate diets may reflect gut utilization; however, lymph flow 

has not been monitored. Glucose may be metabolized to lipid within the 

intestine. Rust (1983) infused glucose into the abomasum or provided 

an equal amount of glucose in the diet in a 165-d lamb feeding study. 

Empty body energy retention for lambs fed glucose was only 52% of that 
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observed with abomasal infusion. However, 87% of the increased energy 

retention could be accounted for by lipid deposition around the 

intestines and in the omentum. 

The level of starch intake and rate of passage play an important 

role in determining the amount of starch reaching both the small and 

large intestines. Karr et al. (1966) reported increasing starch 

intake, achieved by reducing alfalfa levels fed to steers from 1002 to 

2684 g/d, increased starch recovery at the abomasum (357 to 982 g/d). 

Similar increases in starch reaching the ileum (26 to 358 g/day) and 

feces (12 to 62 g/day) were noted. DeGregorio et al. (1982) found a 

similar increase in starch reaching the small and large intestines of 

lambs as corn level in the diet increased with a constant OM intake. 

Differences in rates of passage of particles from the rumen have been 

suggested as the cause of increasing starch escape with higher starch 

intakes by Orskov et al. (1969); however, Weller and Gray (1953) have 

suggested that as much as 80% of dietary starch may move with the fluid 

phase. 

Starch escape from the rumen and starch fermentation in the large 

intestine may substantially change the N and essential amino acid 

status of an animal. Increasing starch flow to the small intestine 

reduces the amount of energy available for microbial protein synthesis 

(Orskov, 1977). Decreased microbial protein synthesis, caused by 

reduced energy availability, could result in less protein flowing to 

the abomasum, (Orskov et al., 1969; Sutton, 1971; Waldo, 1973). More 

importantly, reduced microbial protein synthesis could decrease the 

supply of essential amino acids presented to the small intestine for 

absorption (Black, 1971). Zinn and Owens (1983b) reported increasing 

11 



feed intake of a 63% dry rolled corn diet resulted in an increased flow 

of nitrogen (N), non-NH3 nitrogen (NAN), microbial N and feed N to the 

small intestine. Perhaps increasing feed intake results in enhanced 

efficiency of microbial protein production (Zinn and Owens, l982b). 

Interestingly, in the same study ruminal starch digestion increased 

with feed intake (79.6 to 91 .0%). 

Fermentation of starch in the large intestine may result in the 

excretion of microbial protein in the feces (Orskov et al., 1969; 

Armstrong and Smithard, 1979). Orskov (1982) reported total N excreted 

in the feces to be greater than that passing the terminal ileum when 

starch was infused into and fermented within the large intestine. The 

most efficient use of starch and protein by the ruminant occurs when 

degradation occurs prior to the cecum. 

Factors Affecting Ruminal Starch 

and Protein Fermentation 

Level of feed intake, starch intake and method of processing are 

factors that alter ruminal starch and protein digestion. Dietary 

factors probably exert their influence by altering the ruminal 

environment (pH, ammonia concentration, particulate passage rate and 

liquid dilution rate). The level of feed intake and source of roughage 

may cloud many estimates of ruminal starch digestion. Decreased 

ruminal starch digestion was noted by Galyean et al. (1979) as intake 

was increased from l (94.5%) to 2 (89.6%) times maintenance. Roughage 

was supplied by cottonseed hulls and dehydrated alfalfa (50:50). 

Liquid dilution rate and outflow rate from the rumen increased with OM 

intake. Weller and Gray (1953) suggest that 85 to 93% of ingested 
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starch resides in the liquid phase of the rumen. Therefore, liquid 

dilution rate should be inversely related to ruminal starch 

digestibility. Zinn and Owens (1980) noted a decrease in ruminal 

starch digestion as intake was increased from 1.5 (79.1%) to 2.0 

(62.3%) % of body weight. However, starch digestion in the rumen 

increased as OM intake increased from 1.2 (79.6%) to 2.1 (91.0%) 

percent of body weight in studies conducted by Zinn and Owens (1983a). 

Cottonseed hulls were utilized as the sole roughage source and may not 

have stimulated rumination to the extent of a more course (larger 

particle size) roughage source. Less rumination would reduce salivary 

flow; thereby, lowering ruminal pH and possibly increasing starch 

digestion in the rumen (Goetsch et al., 1983). However, one would 

expect greater starch digestion to occur when ruminal buffering 

capacity is maximized by greater salivary flow. Zinn and Owens (1982a) 

reported ruminal N digestion decreased with greater OM intake. A 

similar depression in ruminal protein digestion was reported by Zinn 

and Owens (1980). Feed N digestibility in the rumen may be reduced due 

to more rapid liquid dilution rate or particulate passage rate as OM 

intake is increased. Changes in ruminal pH, resulting from variation 

in salivary flow, may also alter feed protein solubility and 

digestibility within the rumen. Likewise, changes in particulate 

passage rate and (or) ruminal pH may adversely affect ruminal microbes 

ability to degrade feed N. Alterations in pH may increase the time 

required for microbes to attach to feed particles (lag time), while 

greater particulate passage rate would reduce time allowed for ruminal 

digestion. 
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Processing of cereal grains increases ruminal starch digestion 

more than other factors. Galyean et al. (1976) compared starch 

digestion in steers fed corn rations processed by dry rolling, steam 

flaking, high moisture harvesting followed by grinding (HMG) and high 

moisture harvesting with propionic acid treatment (HMA) prior to 

ensiling. Ground high moisture harvested corn had the greatest ruminal 

starch digestibility (89.3%) followed by steam flaked (82.9%), dry 

rolled (77.8%) and HMA (62.8%). McNeill et al. (1971) compared dry 

rolled (42.2%), steam flaked (82.3%), reconstituted (66.2%) and 

micronized (43.4%) sorghum grain with steam flaking increasing ruminal 

starch digestion more than other processing techniques. Hibberd et al. 

(1985) reported greater ruminal starch digestion with reconstituted 

sorghum grain compared to dry rolled grain. Enhanced ruminal starch 

digestibility for high moisture processing may result from extensive 

solubilization of peripheral endosperm matrix protein or hydration of 

the protein matrix resulting in smaller particles less affected by 

encapsulation of starch within the protein component. Steam flaking 

probably increases ruminal starch digestion by gelatinization of starch 

granules (Galyean et al., 1976). 

Several researchers have investigated the effects of level of 

roughage on starch digestion. Karr et al. (1966) reported starch 

digestion in the rumen decreased by 15.2% as the level of ground corn 

increased in the diet. Other researchers, using different roughage 

sources, have reported no or small depressions in starch digestion as 

the level of roughage was reduced in the diet (Cole et al., l976a; 

Russell et al., 1981). Zinn and Owens (1980), utilized prairie hay as 

a roughage source and noted an 18% increase in ruminal starch 
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digestibility as the roughage level was increased from 20 to 40% of the 

diet OM. Increasing roughage levels should cause a greater ruminal 

liquid dilution rate. Small particles could be carried out of the 

rumen with ruminal liquid (Weller and Gray, 1953; Van Soest, 1982). 

Association of starch particles with the solid or liquid phase of the 

rumen may depend on roughage source and grain particle size. Roughages 

that cause more rumination and, salivary flow to the rumen resulting in 

greater ruminal pH may decrease ruminal starch digestion. Goetsch et 

al. (1983) infused base intraruminally, noting increased fiber 

digestion and decreased starch digestion in the rumen as ruminal pH was 

raised from 5.8 to 6.2. Additionally increased salivary flow may 

increase liquid dilution rate and the rate starch flows out of the 

rumen (Froetschel et al., 1989). Limited work has been conducted to 

evaluate the effects of different roughage sources on ruminal starch 

digestion. Goetsch et al. (1984) investigated the effect of roughage 

sources for dry rolled sorghum diets. Starch digestion in the rumen 

tended to be higher when cottonseed hulls were the roughage or when no 

roughage was provided (100% sorghum). Particulate passage rate was 

negatively correlated (r= -.55) to ruminal starch digestion and was 

greatest for alfalfa (4.1%/h). Liquid dilution rate (%/h) was also 

greatest with alfalfa (8.0). Goetsch and Owens (1984) compared 7% 

cottonseed hulls with 14 and 21% whole shelled corn in dry rolled 

sorghum grain diets fed to steers. Ruminal starch digestion was 

greatest for rations containing 21% whole shelled corn (79.6%) followed 

by 7% cottonseed hulls (75.4%) and 14% whole shelled corn (70.0%). 

Further study is needed to determine the interactions of roughage 

source, starch source and ruminal parameters. Perhaps future research 
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should concentrate on the effects of a single roughage source at a 

constant level with decreasing roughage particle size. 

Sorghum variety greatly influences ruminal digestion. Varietal 

differences in starch digestion have been indicated in vitro (Hibberd 

et al., l982b; Streeter et al., 1989a) and in vivo (Hibberd et al., 

1985; Streeter et al., 1989b). Continued research into varietal 

differences with sorghum may yield information useful in the selection 

of more digestible varieties. 

The protein supply to the rumen is interrelated to the microbes 

ability to utilize energy. Many of the same factors that affect starch 

digestion and passage from the rumen also influence ruminal protein 

degradation and escape. Ammonia, derived from feed protein or NPN, is 

the main N source used in bacterial protein synthesis. Ruminal ammonia 

levels can greatly affect ruminal digestion (Mehrez and Orskov 1976). 

Satter and Slyter (1974) reported a minimum of 5 mg of NH3-N/dl for 

maximal microbial N production in forage-based diets. Weakley (1983) 

suggested higher values may be needed to obtain maximum ruminal OM 

digestion (5 to 10 mg/dl). Still higher values have been reported in 

sheep for maximal OM digestion (Mehrez and Orskov, 1976). Much lower 

ruminal NH3-N concentrations (I to 3 mg/dl) are commonly noted with 

feedlot type diets (high concentrate). Lower ruminal NH3-N levels may 

result from rapid utilization of NH3-N due to readily available energy 

from starch. Additionally low ruminal NH3-N concentrations may not be 

representative of the NH3-N levels in the micro-environment surrounding 

grain particles (Czerkawski, 1986). To date, studies have not 

investigated the effects of increasing ruminal NH3-N levels on OM 

digestion or efficiency of microbial protein production in high 
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concentrate diets. One would expect increased OM digestion with 

greater NH3-N availability based on information obtained with forage

based diets. 

Ruminal pH has many effects on ruminal digestion, some of which 

have been previously mentioned. Solubility of protein in the rumen are 

altered by ruminal pH (Waldo and Goering, 1979). Reduced protein 

solubility has been suggested to be the main factor limiting protein 

degradation in the rumen. However, numerous attempts to equate protein 

solubility in mineral buffers to ruminal protein degradation have met 

with limited success (Wohlt et al., 1973; Waldo and Goering, 1979). 

Mahadevan et al. (1980) proposed that solubility by itself does a poor 

job of explaining ruminal differences; however, protein structural 

characteristics that may influence solubility appear to play an 

important role in limiting protein degradation. The source of dietary 

protein is related to ruminal degradation and escape through 

differences in solubility, cross linking and structure of the protein 

(Orskov et al., 1971; Hume, 1974; Hembrey et al., 1975; Arambel and 

Coon, 1981). 

Low ruminal pH (< 6.0) has been shown, in vitro, to reduce 

microbial protease and deaminase activities (Erfle et al., 1982). 

Processing of grains may also alter protein solubility through 

denaturation or pH changes resulting from ensiling. Reduced protein 

solubility and digestibility is a particular problem at intermediate 

grain storage moisture levels (22 to 26%) When grain is properly 

processed, protein utilization may be enhanced due to protein factors 

such as solubility and hydration (McNeill et al., 1975) and non-protein 
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factors such as ruminal dilution rate (Potter et al., 1971; Prigge et 

al., 1978; Aguirre et al., 1984). 

Ruminal protein digestion is also influenced by levels of protein 

and feed intake. Zinn and Owens (1981) observed a 52% increase in 

ruminal bypass of feed N as feed intake was increased from 1.6 to 2.2% 

of body weight. Increasing feed intake resulted in a curvilinear 

increase in ruminal escape of feed N, with the greatest increase 

occurring between 1.8 and 2.0% of body weight. Greater escape with DM 

intake supports the use of protein solubility as a measure of ruminal 

protein digestion, because as OM intake increases, ruminal dilution 

rate should increase, reducing the time allowed for N digestion (Zinn 

and Owens, l983a). Linear responses of N reaching the duodenum to 

increasing feed intake (Zinn and Owens, 1983a) and protein level 

(laughren and Young, 1979) also have been reported. 

Roughage level influences N digestion possibly by altering ruminal 

retention time or pH. Generally ruminal digestion of natural protein 

is greater when animals are fed a high roughage than fed a high 

concentrate diet (Zinn and Owens, l983b). Ganev et al. (1979) reported 

disappearance of protein from nylon bags suspended in the rumen of 

sheep to be greater when dried grass was fed compared to whole barley 

diets. Chyme outflow rate also was greatest when sheep received dried 

grass and increased with feed intake. 

Cole et al. (l976b) suggests increasing roughage level causes 

greater N recycling to the rumen resulting from greater salivary flow. 

Extensive N recycling causes greater amounts of N to flow to the 

duodenum (Nolan et al., 1973). Often total N flow to the duodenum 

exceeds N intake when high concentrate diets are fed. The rate of 

18 



diffusion of endogenous urea into the rumen is the result of the 

concentration of plasma urea and ruminal ammonia. The rate of ammonia 

utilization by ruminal microbes is a function of bacterial growth rate 

and is greatly influenced by ruminal OM digestibility. Clearance of 

urea to the rumen may be enhanced in both sheep and cattle by the 

addition of grain to the diet (Kennedy and Milligan, 1980). Grain 

addition to the diet may increase N diffusion into the rumen because 

rapid ammonia utilization accompanied by starch fermentation should 

lower ruminal ammonia levels increasing the concentration gradient 

between blood plasma and the rumen. 

Barry and· Manley (1984) have reported increased N recycling 

associated with depressed ruminal OM digestion caused by tannins in 

forages. Hibberd et al. (1985) reported N reaching the duodenum 

exceeded N intake when BR sorghum diets were fed to steers; however, 

corrected ruminal OM digestion was not depressed. The relationship 

between depressed OM fermentation associated with high tannin 

feedstuffs and increased N flow to the duodenum in cattle is in need of 

investigation. Mehansho et al. (1983) reported that feeding high 

tannin sorghum grain to rats resulted in a dramatic change in the 

parotid salivary gland. After 3 d of feeding BR grain to rats, their 

parotid glands ~ad enlarged three fold, and a group of praline-rich 

proteins (PRP) in the saliva had increased about 12 fold. Hagerman and 

Butler (1981) reported that praline concentration was the protein 

characteristic having the greatest correlation with tannin affinity. 

The PRP from rat and human saliva contain 25 to 45% praline. Salivary 

PRP have a very high affinity for condensed tannins and are thought to 

protect against the anti-nutritional effects of dietary tannin 
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(Mehansho et al., 1987). When rats are fed high tannin sorghum grain, 

weight loss is observed for about 3 d followed by an initiation of 

weight gain coincident with maximal PRP synthesis (Asquith et al., 

1985). The size of the parotid gland and the production of PRP is 

greater in ruminant animals which naturally consume a large portion of 

their diet as browse, high in tannin (Robbins et al., 1987). Although 

unknown, cattle may have the capacity to adapt to high condensed tannin 

levels by dramatically increasing the production of PRP. Proline-rich 

protein production and elevated salivary flow could explain greater 

chyme flow through the duodenum, increased N flow from the rumen and 

greater ruminal starch digestion for bird resistant sorghum grain 

reported by Hibberd et al. (1985) and Streeter et al. (1989a). 

Starch and protein supply to the rumen may alter the composition 

of bacteria. Ruminal bacteria under N limiting conditions can 

accumulate intracellular polysaccharides (McAllen and Smith, 1974). 

Data obtained by McAllen and Smith (1976, 1977) indicate that starch 

diets lead to prolonged periods of bacterial polysaccharide 

accumulation compared to diets containing greater amounts of soluble 

sugar when N is limiting. Results obtained by Bergen et al. (1968) 

suggest that bacterial protein composition, amino acid composition and 

digestibility are not affected by diet. Further study is needed to 

determine the effects of bacterial polysaccharide accumulation on the 

efficiency of microbial ·protein synthesis in the rumen and starch 

digestion in the small intestine. A portion of the observed, lower 

than expected digestion of cereal grain starch in the small intestine 

may be due to bacterial polysaccharides or glycoproteins. 
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Intestinal Starch and Protein Digestion 

Starch digestion in the intestines is influenced by many of the 

same factors influencing ruminal digestion. Levels of OM and starch 

intake and grain processing may have the greatest effects on digestion. 

Increases in the rate of passage through the intestines could decrease 

the time allowed for digestion in a manner similar to ruminal 

digestion. However, the rate of chyme movement through the small 

intestine is generally less variable than observed for the rumen (Owens 

et al., 1986). Sorghum grain variety tends to alter digestion in the 

small intestine in a manner similar to ruminal observations. 

Ruminal starch digestion is decreased as OM and starch intake is 

elevated; consequently, the amount of starch flowing to the small 

intestine increases (Karr et al., 1966; Nicholson and Sutton, 1969; 

Galyean et al., 1979; Zinn and Owens, 1980; Russell et al., 1981). 

Owens et a). (1986), in a recent review, concluded that the 

digestibility of starch in the small intestine (%of intake) increases 

with greater starch flow to the small intestine, if ruminal escape of 

readily degradable starch is increased. Additionally, no ceiling to 

starch digestion in the small intestine was detected. Therefore, it 

would appear that enzyme levels did not limit starch digestion in the 

studies reviewed. Enhancing enzyme activity may still be beneficial to 

starch digestion within the small intestine. Factors, such as rapid 

passage rate and large particle size (Kim and Owens, 1985) that could 

limit starch digestion in the small intestine may be partially 

alleviated by greater amylase concentration or activity. Harbers and 

Davis (1974) reported that pancreatic amylase could diffuse through 

only one layer of grain cell wall to digest underlying starch granules. 
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Greater amylase concentration would increase the rate of amylase 

diffusion into grain particles. 

Amylase, maltase and isomaltase have been implicated by Armstrong 

and Smithard (1979) as enzymes potentially limiting starch digestion in 

the small intestine of ruminants. Concentrate feeding may reduce the 

pH of the small intestine to a suboptimal level for amylase activity, 

or an inadequate amount of amylase maybe secreted into the small 

intestine (Armstrong and Smithard, 1979). Recent work conducted by 

Remillard and Johnson (1984) suggests that starch hydrolysis in the 

small intestine of feedlot cattle is not limited by insufficient 

amylase secretion or depressed chyme pH. However, secretion of 

pancreatic amylase varies with animal age and diet composition 

(Siddons, 1968). Starch hydrolysis is most rapid when amylase is 

associated with intestinal mucosa (Owens et al., 1986); therefore, 

suboptimal intestinal pH and abrasive digesta may affect starch 

digestion in the small intestine by adversely altering the intestinal 

mucosa. Total starch intake can influence enzyme production and 

excretion. Pancreatic amylase activity from steers fed high 

concentrate diets was 140% that of pancreatic tissue from similar 

steers grazing wheat pasture as reported by Clary et al. (1969). 

Russell et al. (1981) reported that the percentage starch in the diet 

also influenced pancreatic amylase activity. Thus, as cattle are 

maintained on high concentrate diets for longer periods of time, 

amylase activity may increase. Therefore, although feedlot step-up 

programs have been traditionally viewed as a method of slowly allowing 

microbial adaptation to high concentrate diets, important enzymatic 

changes in the small intestine also likely occur. Such an adaptive 
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response has been suggested in non-ruminants (Johnson et al., 1977). 

In rats, increased production of amylase was only possible when the 

diet contained high quality protein (Johnson et al., 1977). Hence, 

greater escape of low quality grain protein from ruminal degradation 

may adversely affect essential amino acid flow to the small intestine, 

subsequently, amylase activity and starch digestion within the small 

intestine may be limited. Whether essential amino acid flow to the 

small intestine is inadequate for enzyme synthesis or some other factor 

related to starch digestion, such as glucose absorptive sites, is 

unclear. However, in some trials with ruminants (Rust et al., 1979; 

Veira and Macleod, 1980), additional dietary protein has increased 

total tract digestion of starch. A portion of the increase in total 

tract starch digestibility may be due to elevated ruminal ammonia level 

enhancement of ruminal starch digestibility. 

When OM or starch intake is .increased, fermentation in the large 

intestine becomes an important consideration (Karr et al., 1966; 

Russell et al., 1981; DeGregorio et al.,1982). Early studies 

attempting to quantify intestinal digestion of starch did not 

distinguish between digestion in the small and large intestines. Work 

conducted by Hibberd et al. (1985) has shown that the large intestine 

may compensate for poor starch digestion in the rumen and small 

intestine. The large intestine appears to have great variation in its 

ability to digest starch; however, little work has been conducted 

looking directly at starch digestion in the large intestine. Galyean 

et al. (1979) observed the amount of starch in the feces increased as 

feed intake increased. Starch digestion in the large intestine, 

expressed as a percent of entry, decreased 20% as feed intake increased 
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from 1.5 to 2.0% of body weight in a study by Zinn and Owens (1980). 

Grams of starch excreted in the feces also increased (10.6 to 63.0 g) 

as feed intake increased. 

Orskov et al. (1970) infused starch into the large intestine of 

sheep and suggested that the large intestine has a limited capacity to 

digest starch. Starch in excess of 138 g/d (8.7 g/kg metabolic body 

weight) reaching the large intestine appeared in the feces. Karr et 

al. (1966) working with cattle reported starch disappearance in the 

large intestine to be 4.3 g/kg metabolic body weight with 83% of starch 

flowing to the cecum digested. Streeter et al. (1989a) reported a 

range of 3.3 to 6.7 g of starch/kg of metabolic weight digested in the 

large intestine; however, the digestibility of starch in the large 

intestine did not vary among diverse sorghum grain varieties (51.9%). 

Goetsch and Owens (1984) infused soluble starch into the ileum of 

steers and noted an increase in hindgut passage rate, suggesting less 

time allowed for fermentation to occur as more starch reached the 

cecum. Orskov et al. (1970) suggested a limited capacity for starch 

fermentation in the large intestine. However, the digestibility of 

starch in the large intestine appears to be related to the amount of 

starch flowing to the large intestine and N availability within the 

large intestine. 

Nitrogen absorption from or ~iffusion into the large intestine is 

dependent on the amount of starch available for fermentation, much like 

N recycling to the rumen. Total tract apparent N digestibility may be 

depressed by starch fermentation in the large intestine, due to 

microbial trapping of undegraded enzymes from the small intestine, of 

undegraded feed and microbial N and of urea-N recycled from blood 
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plasma to the large intestine (Orskov, 1982). Fecal N excretion is 

increased by ileal starch infusion (Orskov et al., 1970; Goetsch and 

Owens, 1984). However, starch infused into the ileum has not passed 

through the digestive tract and should be more easily fermented, with a 

larger proportion potentially degradable, than residual feed starch 

reaching the cecum. When Mason et al. (1977) infused gelatin into the 

cecum, to provide excess N, blood urea levels were elevated, presumably 

from N diffusion out of the large intestine. Therefore, although 

fermentation in the large intestine results in a loss of N in the form 

of bacterial N, the majority of increased N excretion appears to be 

derived from the non-essential N pool. So, if N were not utilized to 

support microbial growth in the large intestine, N would be excreted as 

urea in the urine (Mason et al., 1977). Although, starch digestion 

prior to.the cecum is desirable, fermentation in the large intestine 

does result in the capture of VFA from starch that otherwise would be 

excreted. 

Effective grain processing methods make starch more susceptible to 

ruminal and small intestinal digestion; however, because ruminal 

fermentation occurs prior to the small intestine reduced amounts of 

starch generally reach the small intestine (Cole et al., l976a; Galyean 

et al.; 1976; Hibberd et al., 1985; Hinman and Johnson, 1974a,b; 

McNeill et al., 1971; Osman et al., 1970). McNeill et al. (1971) 

reported postruminal sorghum starch digestion was enhanced by steam 

flaking (98.4%), reconstitution (98.4) and micronization (95.0) over 

dry grinding (94.4). Although the above study did not distinguish 

between the large and small intestines, ruminal data would indicate 

that the capacity of the small intestine was probably not exceeded; 
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therefore, processing should decrease the amount of starch entering in 

the large intestine. Owens et al. (1986), in reviewing recent studies, 

concluded that grain processing increases starch digestion in the rumen 

and small intestine. However, because processed grain passes through 

the rumen first, ruminal starch diQestion may be enhanced more than 

starch digestion in the small intestine. 

The effect of grain processing on starch digestion in the large 

intestine has received only limited study. Hibberd et al. (1985) 

reported increased starch digestion in the rumen and small intestine 

for reconstituted compared to dry rolled sorghum grain, while starch 

fermentation in the large intestine was slightly decreased due to 

reconstitution. Reduced digestion in the large intestine with 

extensive grain processing likely results from extensive digestion 

prior to the cecum limiting starch available for fermentation. 

Additionally, residual starch reaching the large intestine may be more 

heavily encapsulated in protein and comprised of more limit dextrins 

than less extensively digested (processed) starch. 

The digestion of N in the small intestine appears to be very 

constant considering the supply of N consists of three diverse protein 

supplies (microbial, residual feed and endogenous N). Zinn and Owens 

(1982a) reported small intestinal N digestion to be closely grouped 

around 69% (± 3%). Hibberd et al. (1985) reported that sorghum grain 

variety altered N disappearance in the small intestine and 

reconstitution of sorghum grain increased N disappearance in the small 

intestine. 

Zinn and Owens (1982b) summarized several studies involving pure 

bacterial cultures and ruminal isolates, suggesting a wide range of 
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apparent postruminal bacterial N digestibility due to large intestinal 

fermentation associated with diet type and feed intake. Potter et al. 

(1971} demonstrated that true post ruminal digestion of total N in 

steers fed processed sorghum grain differed very little, even though 

the origin (microbial versus feed} of N differed greatly between 

processing methods. The protein source in concentrate diets may 

influence N digestion in the small intestine (Zinn and Owens, 1983b). 

Zinn and Owens (1981, l983a) demonstrated that increasing feed intake 

from 1.2 to 2.2% of body weight linearly increased N disappearance in 

the small intestine. Increases associated with feed and starch intakes 

may be caused by faster ruminal turnover resulting in greater amounts 

of soluble, readily degradable protein reaching the small intestine. 

Nitrogen Flow to the Duodenum 

and Microbial Efficiency 

Microbial protein constitutes an extremely important source of N 

reaching the small intestine. From 40 to 803 of the available protein 

reaching the duodenum comes from microbial protein (Owens and Bergen, 

1983}. Nitrogen flow may be affected by such factors as level of feed 

intake, roughage to concentrate ratio, and physical form of the ration. 

Factors associated with alterations in N flow and(or) efficiency of 

microbial protein production may also influence ruminal liquid dilution 

rate. 

Feed intake increases result in greater total N flow to the small 

intestine. Zinn and Owens (1983a} reported a 59% increase in total N 

flow to the small intestine as feed intake increased from 1.2 to 2.1 % 

of body weight. Similarly, feed N escaping ruminal degradation 
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increased 38% and microbial N reaching the duodenum increased 48%. 

Effects of increasing feed intake may be the direct result of an 

increased amount of substrate available to the ruminal microbes and an 

increased ruminal liquid dilution rate (Zinn and Owens, 1980; Bergen et 

al . , 1982) . 

Level of roughage may also greatly influence N flow and efficiency 

of microbial protein production through changes in salivary flow and 

ruminal liquid dilution rate. Cole et al. (1976b) noted a substantial 

increase in N reaching the small intestine (70.3 vs 126.3 g/day) as 

roughage level increased (0% to 21%). At higher roughage levels (14 to 

21%), N reaching the small intestine exceeded N intake by 18.3% and 

7.6%, respectively, indicating greater N recycling caused by an 

increase in salivary flow (Cole et al., l976b). Microbial N reaching 

the duodenum tended to increase with roughage; however, as a percent of 

total N reaching the small intestine, little difference existed between 

treatments. Faster ruminal liquid dilution rates, which may result 

from increased salivation with higher roughage diets, have been shown 

by Issacson et al. (1975) to enhance the efficiency of microbial 

protein production in vitro. Froetschel et al. (1989) noted a linear 

increase in the efficiency of microbial protein synthesis when salivary 

flow was artificially stimulated in cattle. Weakley (1983) 

demonstrated that the efficiency of microbial protein production in 

vivo increases with roughage level. 

The physical form of the diet alters N flow and efficiency of 

microbial protein production. Cole et al. (1976b) reported greater 

total N flow through the abomasum for dry rolled corn versus steam 

flaked corn. All protein fractions showed an increase (non-ammonia N, 
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18%; microbial N, 14%; feed bypass N, 21%). A 34% increase in 

efficiency of microbial protein synthesis was observed for dry rolled 

corn over steam flaked corn diets. Cole et al. (1976b) suggested 

rations that should have more rapid fermentation rates (steam flaked 

corn and lower roughage rations) may have lower microbial protein 

synthesis per unit of dry matter fermented. Zinn et al. (1981) 

suggested a large portion of energy from highly fermentable feeds 

normally used for protein synthesis may be diverted to produce 

microbial polysaccharides for storage thereby reducing the efficiency 

of microbial protein synthesis. Increases in total N reaching the 

duodenum have been associated with reconstituted sorghum grain (Hibberd 

et al., 1985) and ground high moisture harvested corn (Prigge et al., 

1976), when compared to their respective dry rolled counterparts. 

Hibberd et al. (1985) reported increased chyme flow associated with 

reconstitution suggesting that ruminal liquid diluti~n rate may have 

been increased. Prig~e et al. (1978) reported that steam flaked and 

ground high moisture corn had a greater microbial efficiency than dry 

rolled corn. Acid treatment of high moisture corn further enhanced the 

efficiency of microbial protein production above that observed for 

ground high moisture corn (Prigge et al., 1978). Streeter et al. 

(1989f) reported a linear increase in the efficiency of microbial 

protein production when high moisture sorghum levels increased and dry 

rolled corn decreased in the diet. Moreover, duodenal chyme flow and 

ruminal pH increased with the addition of high moisture sorghum. 

Increasing ruminal liquid dilution rate reduces the maintenance 

requirements of the microbes; thereby, increasing the efficiency of 

microbial protein production (Bergen and Yokoyama, 1977). Chemical and 
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physical factors that alter ruminal turnover rate should, therefore, be 

useful in increasing the efficiency of microbial protein synthesis. 

Cole et al. (1976b) noted a 36% increase in microbial efficiency as 

dilution rate increased from 2.8 to 5.0 %/h. Maintenance may also be 

affected by the presence of growth inhibiting substances (Bergen and 

Yokoyama, 1977) such as condensed tannins (Benson et al., 1984). 

Solid retention time has also been implicated as a potentially 

important factor affecting the efficiency of microbial protein 

production in vitro (Crawford, et al., 1980). No significant effect of 

liquid dilution rate was observed by Crawford et al. (1980); however, 

decreasing solid retention time increased the efficiency of microbial 

protein synthesis. In vivo, one would expect passage of bacteria from 

the rumen to be related to the rate of solid flow because 50% or more 

·of ruminal bacteria are attached to feed particles. However, as liquid 

dilution rate increases solids are likely carried out of the rumen more 

rapidly. Further study is needed to determine the importance of 

particulate passage rate on the efficiency of microbial protein 

synthesis and N flow to the duodenum. 

Use of Cannulated Animals 

Information from intestinally cannulated animals has improved the 

understanding of site and extent of digestion of starch, protein and 

fiber. Re-entrant intestinal cannula, such as described by Ash (1962), 

have been used widely because they permit total collection of digesta. 

Total digesta collection helps prevent non-representative sampling 

errors; however, a properly placed, open T-shaped cannula (a vertical 

plane being optimal) also should enable researchers to collect 
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representative digesta samples (MacRae and Wilson, 1977; McGilliard, 

1982). Non-representative samples of digesta may result from formation 

of a pocket of intestine allowing digesta to pool and separate. 

Deterioration of the intestine around the fistula causes pocket 

development. Pockets can form with either re-entrant or closed T

shaped cannula. 

T-type cannulae offer several advantages over re-entrant cannulae. 

During re-entrant cannulation, the intestine must be transected. Such 

transection reduces or alters intestinal motility (Wenham and Wyburn, 

1980). Most re-entrant cannulae externalize digesta flow through a 

relatively non-elastic tube. Lack of elasticity and natural propulsion 

of digesta in the external tube may restrict digesta flow and result in 

intestinal blockage. Increased resistance to flow may increase the 

rate of intestinal deterioration and the potential for pool formation 

(McGilliard, 1982). Intestinal blockage is particularly evident with 

high fiber diets (Ash, 1962). Another important limitation of re

entrant intestinal cannulae is the exposure of the external portion of 

the cannula to physical or mechanical disturbance during animal 

activity. Mechanical trauma of the cannula undoubtedly increases scar 

tissue development and reduces muscular and intestinal integrity around 

the fistula (McGilliard, 1982). 

Komarek (1981) developed a rigid, closed T-shaped cannula that 

allowed total digesta collection without externalization of digesta 

flow or transection of the intestine. However, a lateral incision in 

the intestine of a minimum of 57 mm was required for cannula insertion. 

Although a lateral incision is less likely to alter motility than 

transection, a smaller incision should reduce the probability of 
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disrupting motility. Additionally, a boot around the cannulated 

intestine is needed to prevent digesta from flowing around the cannula. 

Insertion of this boot requires separation of the mesentery from the 

intestine potentially disrupting nervous innervation and blood flow to 

the cannulated area. Digesta flow around the boot surrounding the 

cannula may result in non-representative digesta sampling, formation of 

a separation pool in the intestine and cannula failure (McGilliard, 

1982). 

T-shaped intestinal cannulae that do not allow total digesta 

collection ideally allow collection of representative digesta samples 

based on the physical principles of fluid flow (MacRae and Wilson, 

1977). Various materials have been used in construction of open T-type 

cannulae; prevention of mechanical damage to the intestine and 

subsequent formation of separation pools have been the primary concerns 

(McGilliard, 1982). Tygon tubing glued with cyclohexanone and molded 

Plastisol have been used for cannula construction because of their 

flexibility. Flexibility of construction materials reduces the risk of 

mechanical damage to the gastrointestinal tract and development of scar 

tissue around the fistula resulting from physical irritation. However, 

T-type cannulae are not easily removed from the fistula and replacement 

of the cannula can cause mechanical damage to intestinal tissue and the 

development of scar tissue. Additionally, the flexible nature of the 

flanges of the one piece cannula may irritate the intestinal wall 

around the fistula. 
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CHAPTER III 

A DOUBLE L INTESTINAL CANNULA FOR CATTLEl 

Streeter, M.N., Wagner, D.G., Hibberd, C.A., Owens, F.N. and 

Mccollum, F.T. 

Animal Science Department, Oklahoma State University 

Stillwater 74078-0425 

ABSTRACT 

A double L-shaped intestinal cannula was designed in an attempt to 

overcome some of the problems observed with other types of cannulae. 

The cannula was constructed from cyclopolyvinyl chloride water pipe and 

fittings. Despite rigid construction, connecting split cannula pieces 

with elastic castration bands provided some flexibility and permitted 

easy installation and removal. Mechanical disturbance to the cannula 

was reduced by exposing only a short cone shaped barrel to the exterior 

of the body surface. 

(Key words: Cannula; Intestine; Cyclopolyvinyl Chloride; Ruminants) 

Introduction 

Information from intestinally cannulated animals has improved the 

understanding of site and extent of digestion of starch, protein and 

1Journal Article No. 5549 of the Agric. Exp .. Sta., Oklahoma State Univ. 
Stillwater. 
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fiber. Re-entrant intestinal cannula, such as that described by Ash 

(1962), have been used widely because they permit total collection of 

digesta. Total digesta collection helps prevent non-representative 

sampling errors; however, a properly placed open T-shaped cannula (a 

vertical plane being optimal) also should enable researchers to collect 

representative digesta samples (MacRae and Wilson, 1977; McGilliard, 

1982). Non-representative samples of digesta may result from 

deterioration of the intestine around the fistula which results in the 

formation of a pocket of intestine allowing digesta to pool and 

separate. Pockets can form with either re-entrant or closed T-shaped 

cannula. 

T-type cannulae offer several advantages over re-entrant cannulae. 

During re-entrant cannulation, the intestine must be transected. Such 

transection reduces or alters intestinal motility (Wenham and Wyburn, 

1980). Most re-entrant cannulae externalize digesta flow through a 

relatively non-elastic tube. Lack of elasticity and natural propulsion 

of digesta in the external tube may restrict digesta flow and result in 

intestinal blockage. Increased resistance to flow may increase the 

rate of intestinal deterioration and the potential for pool formation 

(McGilliard, 1982). Intestinal blockage is particularly evident with 

high fiber diets (Ash, 1962). Another important limitation of re

entrant intestinal cannulae is the exposure of the external portion of 

the cannula to physical or mechanical disturbance during animal 

activity. Mechanical trauma of the cannula undoubtedly increases scar 

tissue development and reduces muscular and intestinal integrity around 

the fistula (McGilliard, 1982). 
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Komarek (1981) developed a rigid, closed T-shaped cannula that 

allowed total digesta collection without externalization of digesta 

flow or transection of the intestine. However, a lateral incision in 

the intestine of a minimum of 57 mm was required for cannula insertion. 

Although a lateral incision is less likely to alter motility than 

transection, a smaller incision should reduce the probability 

disrupting motility. Additionally, a boot around the cannulated 

intestine is needed to prevent digesta from flowing around the cannula. 

Insertion of this boot requires separation of the mesentery from the 

intestine potentially disrupting nervous innervation and blood flow to 

the cannulated area. Digesta flow around the boot surrounding the 

cannula may cause non-representative digesta sampling, formation of a 

separation pool in the intestine and cannula failure (McGilliard, 

1982). 

T-shaped intestinal cannulae that do not allow total digesta 

collection ideally allow collection of representative digesta samples 

based on the physical principles of fluid flow (MacRae and Wilson, 

1977). Various materials have been used in construction of open T-type 

cannulae; prevention of mechanical damage to the intestine and 

subsequent formation of separation pools have been the primary concerns 

(McGilliard, 1982). Tygon tubing glued with cyclohexanone and molded 

Plastisol have been used for cannula construction because of their 

flexibility. Flexibility of construction materials reduces the risk of 

mechanical damage to the gastrointestinal tract and development of scar 

tissue around the fistula resulting from physical irritation. However, 

T-type cannulae are not easily removed from the fistula and replacement 

of the cannula can cause mechanical damage to intestinal tissue and the 
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development of scar tissue. Additionally, the flexible nature of the 

flanges of the one piece cannula may irritate the intestinal wall 

around the fistula. Hence, a new open double L-shaped intestinal 

cannula based on the esophageal plug initially described by Walker et 

al. (1985) was designed to eliminate some of these disadvantages. 

Materials and Methods 

The double L-type intestinal cannula was constructed from 19 mm 

(3/4 in.) cyclopolyvinyl chloride (CPVC) pipe and fittings. The 

materials required for cannula construction were 1-19 mm o.d. (3/4 in.) 

tee; 1-19 mm o.d. (3/4 in.) coupler cut into 4 pieces each 5 mm long; 

130 mm of 19 mm o.d. (3/4 in.) CPVC pipe cut into sections 38, 38 and 

51 mm long; CPVC glue; 2 elastic castration bands; 1-19 mm i.d. (3/4 

in.) ballcock washer; 1-63.5 (2 1/2 in.) x 7 mm {1/4 in.) bolt and jam 

nut; 60 mm of vacuum tubing; 1-25 o.d. (1 in.) x 7 mm i.d. (1/4 in.) 

fender washer and 1-14 o.d. (1/2 in.) x 7 mm i.d. (1/4 in.) standard 

flat washer. The pipe and fitting are standard nominal measurements of 

schedule 40 CPVC. · 

Construction of the cannula (Figure 1) is begun by gluing a 38 mm 

piece of 19 mm pipe (c) into each arm of the tee (a) and a 51 mm piece 

(d) into the base. Next a 5 mm section of coupler (b) is glued over 

the tip of the pipe (d) with the coupler and the end of the pipe being 

flush. Glue is allowed to cure for 12 hours or overnight. This T

shaped cannula is then cut into two halves by cutting the arms of the 

tee in half on a plane perpendicular to the base and cutting the barrel 

on a plane perpendicular to the long axis of the arms (Figure 1). 
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Next, edges must be smoothed to the form shown in Figure 2. The 

ridges created by the intersection of the tee and the pipe are removed 

with a bench grinder equipped with a wire wheel. The flange is shaped 

by grinding with an emery wheel on a bench grinder. The flanges should 

be 25 to 31 mm in length after shaping is complete. The bottom edges 

of the flanges should be sloped upward toward the barrel of the cannula 

where the two L-shaped pieces of the sidearms will join. Sloping the 

base of the flanges simplifies insertion of cannulae during surgery and 

replacement after surgery. Shaping of the flanges also allows one to 

minimize the size of the lateral incision (<20mm) in the intestine 

during surgery; this compares with a much larger incision for cannulae 

described by Komarek (1981) or Hecker (1974). After the basic shape is 

obtained, each piece is sanded with coarse (No. 40) and subsequently 

with fine (No. 150) sandpaper until all rough edges are smooth. Ridges 

on the flanges created by the tee may still be visible, but they should 

be smooth. Finally, the tips of the flanges are heated utilizing a 

Bunsen burner and rolled under slightly to prevent them from irritating 

the intestine. The heated area must be sanded again with fine sand 

paper to remove any bubbles in the CPVC caused by heating. The L

shaped cannula pieces are complete when all edges exposed to the body 

surfaces are smooth. The L-shaped pieces are held together, after 

surgical placement in the intestine, by two elastic castration bands 

placed near the coupler. The elastic bands provide some flexibility to 

prevent serious physical damage to the intestinal tract in the event of 

a mechanical trauma to the cannula. 

The stopper used to close the cannula when collections are not 

being made is formed by sequentially placing on the 63.5 mm bolt the 
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fender washer, 60 mm of vacuum tubing, a standard flat washer and jam 

nut (Figure 2). The nut is tightened so that the plug fits snugly in 

the cannula. Threads at the end of the bolt are macerated with a 

hammer to prevent removal of the nut. The length of the stopper is 

extremely important. The bolt used in the construction of the cannula 

plug should be 13 mm longer than the piece of CPVC pipe used to form 

the barrel of the cannula. If the stopper is not as long as the barrel 

of the cannula, the cannula will leak because of the two piece cannula 

design. However, when the stopper is of the correct length, leakage 

has been slight or non-existent. The tapered rubber ballcock washer is 

placed over the exteriorized barrel of the cannula. The rubber washer 

should fit snugly between the body and the elastic castration bands to 

hold the cannula securely in place (Figure 3). 

Results and Discussion 

Animals recovered from surgery rapidly even when both duodenal and 

ileal cannulae were inserted. Development of scar tissue was greatly 

reduced compared to that noted for cattle previously outfitted with 

open T-type cannulae constructed of Tygon tubing. After healing of the 

area, the barrels of the cannulae were exteriorized from the body to 

the same magnitude as was observed shortly after surgery, indicating 

that development of scar tissue was minimal. These cannulae remained 

much cleaner throughout their use than did Tygon type cannulae with 

very minimal leakage of digesta and exudate of leucocytes. Perhaps 

this is the result of less irritation to the intestinal tract, or the 

fact that material used in construction of the cannula was less 

biologically reactive than Tygon tubing (McGilliard, 1982). Steers 
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were easily maintained and sampled; they survived and grew normally for 

the duration of the trials (2.5 years). During sampling of digesta, 

collection was simplified by the placing a 19 mm (3/4 in.) polyvinyl 

chloride (PVC) elbow over the end of the cannula barrel to direct 

digesta flow into a collection bottle. 

The intestinal cannula described was used for cattle weighing 

approxim~tely 230 kg. The length of the cannula barrel may need to be 

increased to accommodate ihe added thickness of the body wall of larger 

or more mature animals. The cannula design offers several advantages 

over other types. The cannula and accompanying ballcock washer 

resulted in a close fitting, cone shaped, external profile to minimize 

the probability of external mechanical trauma. 
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Figure 1. Illustration of the Intestinal Cannula for Cattle after Gluing and Cutting to Form 
Double L-shape (a = 19-mm CPVC tee, b= 1 /4 of a 19-mm CPVC coupler, 
c = 38 mm section of 19-mm CPVC pipe, d = 51 mm section of 19-mm CPVC pipe). 

Stopper Cannula 

l 
54mm d d 

1--17mm-4 

i----43mm -----1 

Figure 2. Illustration of a Properly Shaped and Sanded Double L Cannula and Stopper. 
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Figure 3. Illustration of a Completed Double L-shaped Cannula. 



CHAPTER IV 

COMPARISON OF CORN WITH FOUR SORGHUM GRAIN HYBRIDS: 

SITE AND EXTENT OF DIGESTION IN STEERSl,2 

M.N. Streeter, D.G. Wagner, C.A. Hibberd and F.N. Owens 

ABSTRACT 

Four sorghum hybrids (yellow, cream, hetero-yellow and red and 

corn grain were dry rolled and fed in an 85% grain diet to Angus

Hereford steers (241 kg) equipped with permanent ruminal and duodenal 

and ileal double L type intestinal cannulae to compare the effects of 

grain source on site and extent of digestion. Yellow (yel) has a 

homozygous yellow endosperm, with a yellow seed coat, whereas, cream 

and hetero-yellow (het-yel) have a heterozygous yellow endosperm with 

white and red seed coats, respectively. Red has a homozygous white 

endosperm with a red seed coat. Diets were fed at 2% of body weight 

(OM basis) in a 5 X 5 Latin square. Total tract starch digestibility 

(%)was greater (P<.05) for corn (92.5) than for red (84.3), yel (84.3) 

and het-yel (82.9), but not greater than (P>.10) cream (87.9). Ruminal 

starch digestibility (%) was greater (P<.10) for corn (85.8) than for 

lJournal Article No. of the Agric. Exp. Sta., Oklahoma State 

University, Stillwater. 

2The assistance of Or. Dave Buchanan with statistical analysis is 

greatly appreciated. 
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the mean of all sorghum hybrids (69.1). Pre-cecal starch digestibility 

(%)was greater (P<.05) for corn (90.6) than het-yel (76.2), red (74.8) 

and yel (74.1). Quantitatively, slightly more dietary starch was 

digested in the small intestine from het-yel (11.0), red (10.4), and 

cream (9.8) than from corn (5.1) or yel (4.6). Ruminal escape of grain 

N (%) was greater (P<.10) for red (79.9) than het-yel (69.2), cream 

(66.5) and yel (66.1), while the value for corn (53.6) was less than 

(P<.10) the average of all sorghum hybrids. Pre-cecal non-NH3 N (NAN) 

digestibility and total tract NAN digestibility were not altered 

{P>.10) by grain source. Hybrid of sorghum altered site and extent of 

starch digestion and ruminal escape of grain N in cattle and in the 

rolled form had predicted feed efficiencies at 81 to 93% of rolled corn 

grain. 

(Key Words: Sorghum Grain, Corn, Starch, Protein, Digestion, Beef 

Steers.) 

Introduction 

Corn and sorghum grain are commonly fed in feedlot diets. Sorghum 

grain requires less water to grow and can be grown successfully under a 

wider variety of conditions than corn. However, sorghum grain is more 

variable in quality than corn, due to because of environmental 

influences (Wall and Ross, 1970), but also potential varietal and 

hybrid differences {Miller et al., 1962). Variation in cattle 

performance associated with different sorghum grain hybrids or 

varieties (McCollough et al., 1972; Maxson et al., 1973) may be due 

partially to differences in digestibility {Mccollough and Brent, 1972). 

Comparing sorghum grain with a pure yellow endosperm to corn, Brethour 
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(1987) noted no differences in rate and efficiency of gain by beef 

steers. Goldy et al. (1987) reported no statistical advantage in 

growth rate or efficiency of gain by steers fed a homozygous yellow 

endosperm sorghum hybrid compared to those fed heterozygous yellow 

endosperm sorghum hybrid differing in seed coat color. Nevertheless, 

ADG by steers were 8% lower with a homozygous yellow and 11% lower with 

a hetero-yellow endosperm sorghum grain than with corn. 

Differences in site and extent of digestion have been noted with 

pureline sorghum grain varieties (Streeter et al., 1989b); therefore, 

one might expect differences among various hybrids (Norris and Rooney 

1970). Endosperm characteristics and ruminal fermentation and 

intestinal digestion may differ among sorghum grain hybrids (Black, 

1971). The objective of this study was to quantify the differences 

between four sorghum grain hybrids and corn in chemical composition, in 

extent of starch digestion within the rumen, the small and large 

intestines, and in extent of grain protein escape to the small 

intestine in beef cattle. 

Materials and Methods 

Yellow (Paymaster 1096 Y), cream (PAG 575), hetero-yellow (PAG 

5572) and red (PAG 4433)3 sorghum grain hybrids were grown under 

dryland conditions during the summer of 1986 in southeastern Kansas. 

Corn was purchased commercially. Yellow (yel) has a homozygous yellow 

endosperm with a yellow seed coat. Cream has a heterozygous yellow 

endosperm with a white seed coat. Hetero-yellow (het-yel) has a 

3sorghum grain seed donated by the Cargil Corporation is greatly 

appreciated. 

44 



heterozygous yellow endosperm with a red seed coat. Red has a 

homozygous white endosperm with a red seed coat (Table 1). 

Laboratory Trial 

Grain and diet samples were ground through a 1-mm screen prior to 

chemical analysis and through a .4-mm screen prior to starch analysis. 

Dry matter, CP, OM (AOAC, 1975), starch as alpha-linked glucose (MacRae 

and Armstrong, 1968, modified by the use of a glucose determination 

kit4), and ADF (Goering and Van Soest, 1970) content were determined. 

Grains additionally were analyzed for pepsin5 insoluble nitrogen (PIN; 

Goering and Van Soest, 1970} and sodium chloride soluble nitrogen 

(NaCl-N; Waldo and Goering, 1979}. Berry size of sorghum grain hybrids 

was determined by weighing 100 pre-dried berries selected randomly; 

their volume was determined by measuring the volume of toluene 

displaced by 100 dry berries. Density was calculated by dividing the 

dry mass of 100 berries by the volume displaced. Geometric mean 

diameter (GMO) of dry rolled grain particles was determined by the 

procedure of Ensor et al. (1970}. Relative distribution of particles 

among sieves and GMO have been used as indirect determinations of 

hardness (corneousness) of wheat (Obuchowski and Bushuk, 1980) and of 

sorghum grain (Pomeranz, 1986). 

Animal Trial 

Five Angus-Hereford steers (241 kg ± 6.2} were surgically fitted, 

while under local anesthesia, with permanent ruminal and double L 

4Glucose oxidase, Sigma Chemical Co., St. Louis, Mo., USA. 

5sigma Chemical Co., St. Louis, Mo., USA.; EC 2.4.23.l 
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duodenal (4 cm distal to the pylorus) and ileal (20 cm cranial to the 

ileo-cecal junction) cannulae (Streeter et al., 1989d). Steers were 

fed diets containing one of the four sorghum grain hybrids or corn 

{Table 2) at 2% (DM basis) of body weight in a 5x5 Latin square. Feed 

intake was lower than usually noted in a feedlot or production 

situation (ad libitum), but consistently higher intakes were difficult 

to maintain under our experimental conditions. Diets were formulated 

to meet NRC (1984) requirements for CP, Ca and P for medium framed 

steer calves gaining .6 kg/d. Urea was used as the sole source of 

supplemental N, and cottonseed hulls (which at 4.1% N, provided 

approximately 2.6% total dietary N) were used as the roughage source so 

that feed N reaching the duodenum would be primarily of grain origin 

(approximately 90.0%). Liquid molasses was included at 3% of diet DM 

(containing approximately 2.0% of total dietary N) to reduce dust. 

Chromic oxide (.20% of diet DM) was used as an indigestible marker. 

Experimental periods lasted 14 d, with d 1 through 11 for diet 

adaptation and 12 through 14 for feed, digesta and fecal sampling. 

Steers were fed equal portions of feed at 0800, 1400 and 2000. Steers 

were pulse dosed with 1 g of ytterbium (Yb) in the form of Yb-labeled . 
grain {Teeter et al., 1984) and 1 g of cobalt (Co) in the form of 

Co·EDTA (Uden et al., 1980) at 0800 on d 12 of each period. Digesta 

samples were collected at 1200, 1800 and 2400 on d 12, 0600, 1500 and 

2100 on d 13 and 0300 and 0900 on d 14. This schedule allowed 

collected samples to represent every third h of a 24-h period. Digesta 

(250 ml duodenal and 250 ml ileal fluid/sample) and fecal grab samples, 

after pH determination, were composited across time and d within steer 

and stored at 2° C until the end of each period. An additional, 150 ml 
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of duodenal fluid was obtained at each sampling time, immediately dried 

at 55° C for 48 h in a forced-air oven and ground through a 1-mm screen 

for later Yb and Co analysis. For ammonia determination, ruminal fluid 

for ammonia (NH3-N) determination was collected at 1500 and 2100 on d 

13 and 0300 and 0900 on d 14. Ruminal fluid samples were strained 

through four layers of cheesecloth and acidified (5 ml of 20% H2so4 per 

100 ml of fluid) immediately following determination of pH. Subsamples 

of ruminal, duodenal and ileal fluids and feces were obtained and 

stored at -20° C. 

At 1400 on d 14 of periods 2, 3, 4 and 5 two liters of ruminal 

fluid was collected and strained through four layers of cheesecloth 

into collection flasks surrounded by ice for each steer to estimate 

microbial N, purine N, and OM. Within each period, equal volumes of 

ruminal fluid from each of the five steer were composited (Streeter et 

al., 1989f). Bacteria were isolated from composite ruminal fluid 

samples 1 d after collection by differential centrifugation (Weakley, 

1983), frozen (-20° C), lyophilized and ground with a mortar and pestle 

prior to analysis. 

Feed, digesta and fecal samples were lyophilized prior to grinding 

through a 1-mm screen for chemical analysis. Feed, duodenal, ileal and 

fecal .samples were analyzed for chromic oxide (Fenton and Fenton, 1979) 

in addition to all components used in the laboratory trial except PIN 

and NaCl-N. Oigesta and bacterial samples also were analyzed for 

purine N (RNA basis; Zinn and Owens, 1986). Ruminal NH3-N was 

determined by the procedure of Brodrick and Kang (1980). Ammonia-N was 

extracted (30 ml of .1 N HCl/g DM for 24 h) from dried digesta and 
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fecal samples and measured in the resulting supernatant as described 

for ruminal fluid by Brodrick and Kang (1980). 

Partial digestion coefficients and amounts of different components 

presented to and disappearing from segments of the digestive tract were 

calculated from chromic oxide concentrations and intakes. Chyme flows 

were calculated as chromic oxide intake (g/d) multiplied by the 

fractional chromic oxide concentration. Microbial N reaching the 

duodenum was c~lculated as duodenal purine N divided by the mean ratio 

(18.37 ± .582) of purine N (RNA basis to total N in isolated microbes 

for the trial. Feed N (plus endogenous N) reaching the duodenum was 

calculated as duodenal N minus NH3-N and microbial N. Organic matter 

reaching the duodenum was corrected for microbial OM based on means 

determined for microbial ash (19.9%) and CP (35.0%). True ruminal OM 

disappearance was used to calculate the efficiency of microbial protein 

synthesis (g microbial CP/kg OM truly fermented in the rumen). 

Particulate passage rate (%/h) and ruminal liquid dilution rate (%/h) 

were estimated by the slope of the regression of the natural logarithm 

of Yb and Co concentrations in duodenal OM, respectively, against time. 

Samples obtained at 4, 10 and 16 h were determined to be on the up

slope; hence, they were not included in regression analysis. 

Statistical Analysis 

The model describing data from the laboratory trial included grain 

source and duplicate. The model describing data from the animal trial 

included period, animal and grain source. Differences between least 

squares means were determined by protected least significant difference 

(Steel and Torrie, 1980). 
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Results and Discussion 

Laboratory Trial 

Starch content of grain DM (Table 3) tended to be greatest for red 

(79.6%) and lowest for corn (72.2) and het-yel (72.9) , with yel (78.7) 

and cream (78.3) being intermediate. Red (10.4%) contained more 

(P<.05) CP than cream (9.7), het-yel (9.6) and yel (9.5), while corn 

(10.0) was intermediate (P>.05). Variation in CP content among sorghum 

may result from genetic (Hibberd et al., 1982a,b) and environmental 

effects (Wall and Ross, 1970). Corn and yel contained more (P<.10) 

NaCl-N than het-yel. Small differences (P>.10) in PIN content between 

corn and sorghum hybrids were observed, with an average PIN of 12.2% of 

N in CP. Previously, differences in NaCl-N have been reported for waxy 

versus normal endosperm types (Lichtenwalner et al., 1978; Streeter et 

al., 1989a) or non-bird resistant versus bird resistant types (Hibberd 

et al., 1985). Differences in PIN have been inversely related to 

digestibility in comparison of waxy versus normal endosperm (Streeter 

et al., 1989a) or bird resistant and non-bird resistant types (Hibberd 

et al., 1985) though some ADF-N disappears during transit through the 

ruminant gut (Zinn and Owens, 1982; Nakamura et al., 1989). 

Berry size (g/100 berries) was greater (P<.05) for het-yel (2.53) 

than for the other grains, while red (2.27) and yel (2.22) had larger 

(P<.05) berries than cream (1.98). Berry volume (µl/berry) was greater 

(P<.10) for het-yel (20.5) than for yel (18.0) or cream (15.5), but not 

different (P>.10) from red (19.0). Red and yel berries occupied 

greater (P<.10) volume than cream. Because berry volume increased with 

berry weight no differences in density were observed; mean density was 
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1.24 g/ml. Similar densities may preclude differences in starch 

content. Larger berry size and volume would be expected to result in 

smaller grain particles when grains are rolled with the same roller 

setting if grains do not differ in the amount of corneous endosperm or 

hardness. Nevertheless, geometric mean diameter (GMO) of rolled grain 

particles did not reflect either berry size or volume. Corn (4,692 µm) 

had a greater (P<.10) GMO of particles than all sorghum hybrids due to 

a wider roller spacing to accommodate the much larger corn kernel (lOx 

larger than sorghum). However, within sorghum hybrids, het-yel (1,275 

µm) had a larger (P<.10) GMO of particles than cream (928 µm) and red 

(982 µm). Yellow (1,110 µm) was greater (P<.10) than cream but not 

different (P>.10) from het-yel or red. Cream, which had the smallest 

berry size and volume, resulted in the smallest particle size, while 

het-yel, which had the largest berry size and volume, resulted in the 

largest particle size among sorghum hybrids. The relationship between 

berry size and volume and resulting particle size may reflect 

differences in the amount of peripheral endosperm of the sorghum 

hybrids (Pomeranz, 1986). 

The distribution of sorghum particles presumably reflects 

potential differences in the amount of peripheral endosperm among 

grains. Het-yel had more (P<.10) particles > 2,828 µm than other 

sorghum grains, but less than (P<.10) corn. Red had more (P>.10) 

particles > 2,828 µm in size than did cream, but yel was not different 

from red or cream (P>.10). The most important differences occurred 

with 1,414 and 707 µm sized particles. Het-yel (79.8%) and yel (75.8%) 

had a larger proportion (P<.10) of 1,414 µm particles than cream 

(65.23) and red (64.0%), while all sorghum hybrids were greater (P<.10) 
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than corn. Differences noted for 707 µm particles were the opposite of 

those observed for 1,414 µm particles. Red (15.2%) and cream (13.0%) 

had a greater (P<.05) proportion of 707 µm particles than yel (9.3%) 

and het-yel (7.3%), with all sorghum hybrids being greater than (P<.05) 

corn (.2%). The 17? µm particle fraction should be very rich in 

starch. Cream (11.9%) and red (10.6%) had more 177 µm particles 

(P<.05) than het-yel (3.8%) or corn (.2%), with yel (7.0%) not 

different from cream or het-yel (P>.10), but greater (P<.10) than corn. 

Sorghum usually has a much greater proportion of endosperm as 

peripheral cells than corn (Rooney and Miller, 1982). Sorghum grain 

peripheral endosperm cells have a high protein content and resist both 

physical and enzymatic degradation (Rooney and Pflugfelder, 1986). One 

might expect sorghum grains with more peripheral endosperm cells to 

result in larger mean particle size. A larger proportion of 2,828 and 

1,414 µm particles likely reflect more peripheral endosperm which might 

result in lower digestibility. A higher proportion of 707 and 177 µm 

particles should indicate a higher proportion of floury endosperm, high 

in starch and low in protein. The 707 and 177 µm particles should be 

highly digestible because protein encapsulation of the starch granules 

should be low and this should represent floury rather than corneous 

endosperm of the grain. 

Animal Trial 

Total tract OM digestibility was highly correlated (r=.93; P<.001) 

to total tract starch digestibility; therefore, only total starch 

digestibility will be discussed (Table 4). Total tract starch 

digestibility was greater (P<.05) for corn (92.5%) than for yel 
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(84.3%), red (84.3%) and het-yel (82.9%), while cream (87.9%) was 

intermediate (P>.10). Spicer et al. (1986) also noted total tract 

starch digestibility was somewhat greater for corn than sorghum grain. 

In contrast, Brown et al. (1968) observed no difference in NFE 

digestibility between corn and sorghum grain. Waldo (1973), 

summarizing 51 comparisons of corn, sorghum grain and barley, reported 

no difference in total tract starch digestibility among these grain 

types. However, McCollough and Brent (1972) compared eight sorghum 

hybrids to three corn hybrids and noted that the greatest NFE 

digestibility was for corn (86.5%) and the lowest was for a hetero

yellow sorghum grain (71.3%). Rooney and Pflugfelder (1986) reported 

that hetero-yellow sorghum grain had a higher feeding value than a non

yellow endosperm grain. Hibberd et al. (1985) noted no significant 

differences in total tract starch digestibility among three sorghum 

grain hybrids including a bird resistant, and Streeter et al. (1989b) 

detected no differences among several pureline sorghum varieties. A 

negative correlation iri our study between non-urea feed N intake 

(approximately 90% grain N) and total tract starch digestibility (r=

.66; P<.05) may indicate that protein encapsulation of starch granules 

reduced starch availability, particularly for sorghum grains. 

Total tract NAN digestibility averaged 58.2% and did not differ 

(P>.10) among corn or sorghum grain hybrid. Streeter et al. (1989f) 

reported that NAN digestibility decreased as high moisture sorghum 

replaced corn in a feedlot diet. Rooney and Pflugfelder (1986) 

suggested that corn protein is more digestible than sorghum protein in 

the total tract. Mccollough and Brent (1972) observed lower CP 

digestibility for sorghum hybrids compared to corn, but the variation 
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among diverse sorghum types was small when bird resistant grains were 

ignored. Recently, large differences in NAN digestibility among four 

pureline sorghum varieties (Streeter et al., 1989b) and three hybrids 

(Hibberd et al., 1985) have been reported. 

Ruminal Digestion. Chyme flow (liters/d) past the duodenum was 

greater (P<.05) for corn (48.2) than for red (38.8) and cream (37.5) 

(Table 5). Differences in particulate passage rate (%/h) were not 

observed even though corn particles were much larger than sorghum 

particles. However, differences in ruminal liquid dilution rate (LOR, 

%/h) were detected; LOR tended to be correlated with particulate 

passage rate (r=.68; P<.05), but not to duodenal chyme flow (r=.40; 

P=.18). Corn and het-yel resulted in greater (P<.10) LOR than other 

sorghum hybrids, with yel greater than (P<.10) cream. Increased chyme 

flow and LOR for corn may reflect stimulation of mastication and 

salivation by larger mean particle size (Oltjen et al., 1967). 

Differences in chyme flow from corn vs high moisture sorghum grain 

diets have been reported by Streeter et al. (1989f)but, in contrast to 

this study, replacing corn in that study by high moisture sorghum 

caused chyme flow to decrease .. Previous studies have concentrated on 

the interaction of a few common sorghum types (red and hetero-yellow) 

and reconstitution (Hibberd et al., 1985) or diverse pureline varieties 

not commonly produced (Streeter et al., 1989b). In those studies, 

chyme flow differences also have been observed (Hibberd et al., 1985; 

Streeter et al., 1989b) but differences tended to be related to the 

bird resistant characteristic. None of the hybrids in this trial were 

bird resistant. 
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Variation in starch intake among diets was small (172 g/d), but 

starch flow to the duodenum differed by 657 g. Starch reaching the 

duodenum (r=.96; P<.001) and ruminal digestion of starch (r=.96; 

P<.001) were highly correlated with true OM digestion and comprised 

about 67% of OM; therefore, OM will not be discussed. Ruminal starch 

disappearance (g/d) was greater (P<.05) for corn (2,695) than for 

sorghum hybrids (2,199). Ruminal starch digestibility (%) reflected 

ruminal starch disappearance with corn (85.8) being greater than 

(P<.10) cream (73.3), yel (70.7), het-yel (66.9) and red (65.4). 

Spicer et al. (1986) observed that sorghum grain starch (75.2%) was 

less digestible in the rumen than either corn (83.7%) or barley starch 

(87.7%). Waldo (1973) noted that ruminal starch digestibility was 

slightly greater for corn than for sorghum. However, less variation 

was noted in ruminal starch digestion with corn than sorghum. Streeter 

et al. (1989f) observed no difference in ruminal starch digestibility 

between dry rolled corn and high moisture harvested sorghum. 

Presumably, high moisture harvesting enhanced digestibility of sorghum 

starch and reduced differences between grains. Hibberd et al. (1985) 

reported greater ruminal starch digestibility for a hetero-yellow than 

for a red sorghum grain hybrid. Ruminal starch digestibility (%of 

total digestion) was not affected (P>.10) by corn or sorghum grain 

hybrid, averaging 83.6%. However, in the current study, the rumen 

tended to (P>.10) be a more important site for starch digestion for 

corn (92.8% of total tract digestion) than for sorghum hybrids (81.4). 

Non-NH3 N flow past the duodenum averaged 104 g/d and was not 

affected by diet, but source of this N differed. Microbial N flow at 

the duodenum tended (P>.10) to be greater for corn (66.1) than for 
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sorghum grain hybrids (53.4 g/d). Feed plus endogenous N flowing past 

the duodenum was greater (P<.05) for red than for other hybrids and 

corn. Het-yel, cream and yel had greater (P<.05) feed N flow to the 

small intestine than did corn. Feed N digestibility (%) and escape 

from ruminal fermentation tended to reflect feed N flow. The greatest 

ruminal feed N digestibility was observed (P<.05) for corn than for 

sorghum hybrids, with yel, cream and het-yel greater than (P<.05) red. 

Grain N escape of ruminal degradation was lower (P<.10) for corn 

(53.6%) than for sorghum grain hybrids; within sorghum types, red 

(79.9) was greater than (P<.10) het-yel (69.2), cream (66.5) and yel 

(66.1). Flow of NAN to the duodenum consistently exceeded N intake. 

Spicer et al. (1986) noted no difference in NAN flow into the abomasum 

between sorghum grain, corn and barley with NAN flow being greater than 

N intake for all grains. They found that origin of NAN was affected by 

grain type, with N being less extensively digested in the rumen from 

sorghum (27%) than from corn (40.6%) or barley (69.3%). Zinn and Owens 

(1983a) reported 70.6% of corn N escaped ruminal degradation and in 

another report (Zinn and Owens, 1983b) that 58 to 73% of corn N escaped 

ruminal degradation at a DMI of 1.9% of body weight. Hibberd et al. 

(1985) reported no effect of sorghum grain hybrid on ruminal escape of 

feed N. Large differences in feed N digestion and escape were noted by 

Streeter et al. (1989b) for bird resistant sorghum types, but not for 

endosperm type or color. 

Endosperm starch and protein adhere more tightly in sorghum than 

corn. Interaction of endosperm protein and starch components could 

reduce ruminal digestibility or alter the site of starch digestion 

among sorghum grain hybrids (Rooney and Pflugfelder, 1986). 
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Additionally, diffusion of ruminal fluid into the protein matrix in the 

peripheral endosperm of sorghum may be retarded (Sullins and Rooney, 

1974). Increased escape of sorghum protein from ruminal degradation 

could affect starch digestion in the small intestine. In our study, 

escape of feed protein fro.m rumi na l degradation was weakly but 

positively correlated to small intestinal starch digestibility (r=.34; 

P=.25). Protein encapsulation of starch may have limited digestion of 

starch in the small intestine. Russell et al. (1981) reported that 

high corn intakes increased pancreatic amylase activity in steers. 

However, at least in rats, increased secretion of amylase appears to be 

achieved only when diets are adequate in both quantity and quality of 

protein (Johnson et al., 1977). Amylase activity in the small 

intestine could be reduced if an insufficient supply of essential amino 

acids for enzyme synthesis is available for absorption from the small 

intestine; hence, starch digestion may be reduced. Added dietary 

protein (soybean meal) has improved total tract starch digestion (Rust 

et al., 1979; Veira and Macleod, 1980). 

The true efficiency of microbial protein production (g microbial 

protein /kg OM truly fermented in the rumen) was not affected (P>.10) 

by diet, but tended to be greater for het~yel (20.1) and red (21.3) 

than for corn (18.2), yel (18.3) and cream (18.5) and was correlated 

negatively to true ruminal OM digestibility (r=-.62; P<.05). Microbial 

protein yield and true ruminal OM digestion also tended to be lower for 

red and het-yel than for corn, cream and yel. Spicer et al. (1986) 

reported no effect of grain type on efficiency of microbial protein 

synthesis. Streeter et al. (1989b) noted no effect of pureline sorghum 

grain variety on the efficiency of microbial protein production even 
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though a high tannin variety was included. However, Hibberd et al. 

(1985) observed differences in the efficiency of microbial protein 

production between three sorghum grain hybrids, including one high 

tannin type. 

Pre-Cecal Digestion. Starch flow to the cecum (r=.95; P<.001) and 

pre-cecal starch digestibility (r=.96; P<.001) were strongly correlated 

to OM flow and digestibility, respectively; hence, the discussion will 

be limited to starch (Table 6). Yel (808 g/d), red (782) and het-yel 

(749) had greater (P<.05) starch flow into the cecum than did corn 

(292). Pre-cecal starch digestibility (%) was greater (P<.05) for corn 

(90.6) than het-yel (76.2), red (74.8) and yel (74.1). Pre-cecal 

starch digestibility (%of total tract digestion) was greater (P<.05) 

for corn (97.9) than red (88.2) and yel (88.0). Streeter et al. 

(1989b) reported previously that pre-cecal starch digestion was greater 

for varieties with waxy endosperm than those with normal endosperm. 

Differences noted herein between corn and certain sorghum grain types 

may reflect differences in the concentration and continuity of the 

peripheral endosperm and protein matrix (Rooney and Pflugfelder, 1986). 

Non-NH3 N entering the cecum was greater (P<.05) for red (46.0 

g/d) than for all other diets (avg. 37.0 g/d). Although still grown by 

grain producers, red (white endosperm) may be more representative of 

the sorghum grain produced in the late 1960's and 1970's with a heavier 

seed coat and more protein matrix and peripheral endosperm than in the 

other sorghum hybrids. The greater NAN flow into the cecum and ruminal 

escape of red sorghum N compared to other diets supports this 

assumption. Flow of NAN to the cecum suggests that protein from yel, 

cream and het-yel has only slightly less pre-cecal digestibility than 
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protein from corn. However, the origin of protein flowing to the cecum 

was not determined. Grain protein may be less digestible than 

microbial protein (Neudoerffer et al., 1971). Perhaps less of the 

protein flowing to the cecum came from corn than sorghum grain diets. 

Corn or sorghum grain hybrid had no affect on (P>.10) pre-cecal NAN 

digestibility (%of intake or% of total tract digestion); however, 

digestibility (%) tended to reflect differences in NAN flow to the 

cecum. Hibberd et al. (1985) noted no differences among three sorghum 

grain hybrids on NAN flow to the cecum or pre-cecal digestion. 

Differences have been noted, however, in NAN flow to the cecum and in 

pre-cecal digestion among pureline sorghum grain varieties (Streeter et 

al., 1989b), with major differences being noted due to the bird 

resistant characteristic. 

Digestion in the Intestine. Differences in digestibility in the 

small intestine were small, but trends were interesting (Table 7). 

Starch disappearance (g/d) from the small intestine tended to be 

greater for cream (294), red (311) and het-yel (312) than for corn 

(145) and yel (110). Because corn had much less starch flowing to the 

small intestine than sorghum grain hybrids, the corn starch would be 

expected to contain a greater proportion of less digestible peripheral 

endosperm than sorghum hybrids did; however, corn starch tended to be 

more digestible in the small intestine than was sorghum grain starch. 

Starch flow to the small intestine was correlated positively to starch 

disappearance in the small intestine (r=.69; P<.01). This compares 

with a correlation of .77 reported by Owens et al. (1986) which 

suggests that starch digestion in the small intestine is not limited by 

animal factors. 
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Pre-cecal NAN digestibility (%) was correlated positively to 

starch digestibility(%) in the small intestine (r=.65; P<.05). This 

supports the suggestion of Sullins and Rooney (1974) and Harbers and 

Davis (1974) that the protein matrix of the peripheral endosperm of 

sorghum may have limited starch availability within the small 

intestine. Nevertheless, on a weight basis the small intestine tended 

to be (P>.10) a more important site of starch digestion for sorghum 

grain (cream, het-yel and red) than for corn. However, the importance 

of a 160 g/d increase in starch disappearance from the small intestine 

for certain sorghum grains compared to corn is difficult to determine, 

because total tract starch disappearance was still 232 g/d greater for 

corn than the average of the sorghum hybrids. Differences in starch 

disappearance would have favored corn to an even greater extent if 

compensatory starch fermentation of sorghum grain in the large 

intestine (Table 8) were ignored. If energetic efficiency were 20% 

greater for starch digestion in the small intestine than in the rumen 

(Owens et al., 1986), the decreased total tract digestion would still 

place sorghum grain at a disadvantage to corn. 

Owens et al. (1986) developed a regression equation relating 

ruminal starch digestibility and starch digestibility in the small 

intestine (%of intake) to gain to feed ratio (G:F). This equation 

(G:F=.159*ruminal starch digestibility+ .227*starch digestion in the 

small intestine; r2=.60, SEy.x=.006) was combined with flow data from 

individual animals in this trial to estimate G:F for corn and sorghum 

grain hybrids (Figure 4). Based on this equation, corn (.147) resulted 

in greater (P<.10) estimated G:F than het-yel (.125), red (.125) and 

yel (.119), but not greater (P>.10) than cream (.137). When G:F from 
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sorghum hybrids was expressed relative (%) to corn, cream was 93.2% of 

corn, while het-yel and red were 85.0%, and yel was 81.0% of corn. 

More extensive processing than rolling might reduce the difference 

between corn and various sorghum grain hybrids. 

Differences in NAN disappearance (g/d) and digestibility (%of 

flow) within the small intestine among grain sources were small 

(P>.10); NAN disappearance averaged 62.4% of duodenal flow. Tanksley 

and Knabe (1984) reported that protein from yellow endosperm sorghum 

was 5% less digestible than corn protein in swine. Digestibility of 

NAN in the small intestine (%of total tract digestion) was not 

affected by grain and averaged 116.6%. NAN digestibilities greater 

than 100% are the result of urea-N recycling to and utilization within 

the rumen and the large intestine (Kennedy and Milligan, 1980). 

Differences in disappearance and digestibility of OM, starch and 

NAN in the large intestine reflected compensatory starch fermentation; 

microbial N and OM loss in the feces tended to increase with starch 

disappearance and to be greater for red and yel than for corn, cream 

and het-yel (Table 8). Disappearance of starch in the large intestine 

was correlated positively to starch flow to the cecum (r=.80; P<.01). 

This suggests that fermentation in the large intestine increased with 

starch output; however, a moderate positive correlation between NAN 

flow to the cecum and starch disappearance from the large intestine 

(r=.48; P<.10) may indicate that the endosperm protein matrix no longer 

limited starch availability. Starch disappearance in the large 

intestine also was correlated negatively to fecal pH (r= -.70; P<.01). 

However, the simple linear regression between starch disappearance in 

the large intestine and fecal pH in our study was described by the 
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equation: starch disappearance g/d=-212.2*fecal pH+ 1341.7 (r2=.34; 

SEy.x=58.4). 

Rooney and Riggs (1971) and Wagner (1984) have postulated a 

relationship between starch recovery from wet milling and ruminal 

starch digestibility. Perhaps a similar relationship exists within the 

small intestine and possibly the large intestine. Low starch yields 

from wet milling of sorghum grain may be a result of the thick 

peripheral endosperm layer (Watson et al., 1955). Wagner (1984) 

reported that differences in wet milling properties among sorghum grain 

varieties were related to the proportion of peripheral endosperm. 

Proteins in corneous endosperm of sorghum grain are composed of protein 

bodies (kafirin) and a continuous protein matrix (glutelin). Corneous 

endosperm (measured by hardness) is the result of the protein content, 

the continuity of the peripheral protein matrix (Rooney and Miller, 

1982) and the hybrid (Hoseney et al., 1974). Differences in ruminal, 

pre-cecal and intestinal starch digestibility among sorghum hybrids 

likely are influenced by differences in the amount of peripheral 

endosperm and the continuity of protein matrix as indirectly indicated 

by the particle size distribution and GMO. Differences in starch and 

protein digestibility between corn and various sorghum hybrid also may 

be related to the protein matrix in the peripheral endosperm. 

Additionally, intermolecular cross links are found in some sorghum 

prolamine protein fractions that decrease protein extractability; 

nutritionally, crosslinking may decrease digestibility of both the 

protein fraction and the starch granules embedded in matrix protein. 

Protein is more difficult to extract by classical solvent extraction 

techniques from sorghum than from corn and other cereals (Wall and 
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Paulis, 1978). Additionally, separation of starch and protein by wet 

milling is more difficult in sorghum than in corn and the isolated 

starch generally contains more protein (Wagner, 1984; Rooney and 

Pflugfelder, 1986). 

In summary, sorghum protein from the various hybrids generally was 

less digestible than that of corn, but starch was affected less. 

Although corn numerically was drastically more digestible than sorghum 

grain at all sites of the digestive tract except the large intestine, 

the cream hybrid was statistically not different from corn at most 

locations. Predicted feed efficiency was numerically (8%), but not 

statistically, greater for corn than cream. Yel, which was expected to 

be the most digestible (starch and N) sorghum hybrid and to be 

competitive with corn was less digestible than cream. Whether other 

homozygous yellow endosperm sorghum grains also would be less 

digestible than corn is uncertain. Perhaps the yellow hybrid utilized 

in our study would be more digestible if grown in a different 

environment. Differences between het-yel and cream were large, perhaps 

being influenced by seed coat color and structure or genetic origin of 

the yellow endosperm. Red was less digestible than other sorghum 

hybrids at most locations; however, differences were smaller and more 

variable than expected. Further study is needed to quantify 

differences between various homozygous and heterozygous yellow 

endosperm sorghum grain hybrids. 
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Sorghum 
Hybrid 

Yell ow 

Cream 

Hetero-yellow 

Red 

TABLE 1 

DESCRIPTIVE CHARACTERISTICS OF 
SORGHUM GRAIN HYBRIDS 

Seed Coat Endosperm 
Color Color 

yell ow homozygous yellow 

white heterozygous yellow 

red heterozygous yellow 

red homozygous white 
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Endosperm Cross 

yellow x yellow 

white x yell ow 

white x yellow 

white x white 



TABLE 2 

INGREDIENT COMPOSITION OF EXPERIMENTAL DIETS 

Ingredient 

Grain 
Cottonseed hulls 
Molasses 
Supplement 

Urea 
Dicalcium phosphate 
Calcium carbonate 
Potassium chloride 
Sodium sulfate 
Trace mineralized salt 
Chromic oxide 
Vitamin A premixa 

a2200 IU/kg. 

% of OM 

85.0 
8.0 
3.0 

1. 20 
.44 
.93 
.57 
.36 
.25 
.20 
.05 
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TABLE 3 

CHEMICAL COMPOSITION OF FOUR SORGHUM HYBRIDS 
AND CORN: GRAIN AND COMPLETE 

MIXED FEEDS (OM BASIS) 

Hetero-
Item Corn Yell ow Cream Yell ow 

Grain 
10.oab 9.5b 9.7b 9.6b CP, % 

Starch, % 72.2 78.7 78.3 72.9 
ADF, % 7.7 7.3 9.6 9.0 
NaCl soluble nitrogen, 

% of total N 30.9x 30.8x 27.6XY 21.4z 
Pepsin insoluble nitrogen, 

% of total N 12.4 11.1 12.5 12.2 
Berry size, 

2.22b l.98c 2.53a g/100 berries 
Berry volume, 

18.0Y 15.5z 20.5X µl/berry 
Density, g/ml 1.24 1.28 1.24 

Feed 
12.6b 12.5b 12.6b CP, % 12.lc 

Starch, % 64.7 65.1 62.6 66.4 
ADF, % 5.4 5.6 6.5 5.7 

Red SEe 

10.4a .18 
79.6 2.65 
8.5 1. 49 

26.5Y 1. 26 

12.8 .45 

2.27b .038 

19.0XY . 71 
1. 20 .032 

13.5a .13 
65.2 2.26 
5.6 .35 

Particle size distribution --------------------%-------------------b b b b 5,657 µm, % 76.0a .2 .2 .2 .2 .38 
2,828 µm, % 22.0W 3.4YZ l.8z 7 .1 x 4.6Y .74 
1,414 µm, % l.4z 75-.8~ 65.2Y 79.8~ 64.0X 3.58 

707 µm, % .2c 9.3 13.0a 7.3 15.2a .81 
354 µm, % .1 4.3 7.8 1.8 5.6 1. 98 
177 µm, % .2z 7.0xy ll.9x 3.8YZ 10.6x 2.04 

Geometric mean 
diameter(GMD), µm 4,692w lllOXY 928z 1275x 982YZ 57.2 

abcMeans in the same row with different superscripts differ 
(P<.05). 

eTwo observations/mean for grain and five observations/mean for 
feed. 

wxyzMeans in the same row with different superscripts differ 
(P<.10). 
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TABLE 4 

COMPARISON OF TOTAL TRACT DIGESTION OF 
FOUR SORGHUM GRAIN HYBRIDS WITH CORN 

Hetero-
Item Corn Ye 11 ow Cream Yell ow Red 

Fecal output, kg/d 4,685Y 5,869x 5,3ooXY 6,070x 6,258x 
Fecal pH 5.84 5.07 5.32 5.16 5.30 
Feces, g/d 

l,168b l,494a l,284ab l,525a l,496a OM 
Starch 232z 488XY 355YZ 541X 491XY 
Total N 36.8z 41.4YZ 40.oYZ 41. 9Y 47 .1 x 
Non-NH3 N 36.oz 41.0YZ 39,7YZ 41.5Y 46.7x 

Total tract digestibility, % 
67.3YZ 72.0XY 66.6~ 67.3YZ OM 74.7x 

Starch 92.5a 84.3b 87.9ab 82.9 84.3b 
Total N 60.2 57.7 58.8 57.2 54.7 
Non-NH3 N 61.0 58.1 59.1 57.6 55.1 

Total Tract Disappearance* g/d 
3,34lxy 3,083~ 3,085~ OM 3,460 3,107YZ 

Starch 2,900a 2,659b 2,687b 2,673 2,653 
N 57.0 56.4 57.3 56.1 56.8 
Non-NH3 N 57.8 56.8 57.6 56.5 57.2 

abcMeans in the same row with different superscripts differ 
( P<. 05). 

xyzMeans in the same row with different superscripts differ 
(P<.10). 
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SE 

399.0 
.184 

98.7 
71. 2 
2.02 
2.00 

2.12 
2.28 
2 .18 
2.15 

100.7 
71. 2 
2.48 
2.45 



TABLE 5 

COMPARISON OF RUMINAL DIGESTION OF FOUR 
SORGHUM GRAIN HYBRIDS WITH CORN 

Item Corn Yell ow Cream 

Intake, g/d 
OM 
Starch 
Total feed N 
Non-urea feed N 

Ruminal pH 

4,629 
3, 132 

93.a 
67.1 
5.97 

Ruminal NH3 N, mg/dl 
Duodenal cflyme 

7.60 

pH 2.36 
flow, liters/d 4a.2a 

4,601 
3,147 

97.7 
71.1 
s.a6 

10.02 

2.3ab 
43.6a 

Particulate rate of passage, 
%/h 4.05 4.01 

Liquid dilution rate, 
%/h 5.lOX 4.24Y 

Entering the duodenum, g/d 
Total OM l,a55Y 2,4ooY 
Microbial OM 942 765 
Non microbial OM 924Yb l,636x 
Starch 437 9laa 
Total N 104 104 
Non-NH3 N 101 100 

~!~~0~1al N ~~:~c ~~:~b 

4,625 
3,042 

97.3 
70.5 
5.a3 
7.al 

2.4g 
37.5 

3.96 

2,315XY 
775 

l,540xb 
a13a 
104 
101 
54.4b 
46.a 

Hetero-
Yell ow Red 

4,60a 
3,214 

9a.o 
71.3 
5.94 
9.45 

4,5a2 
3,144 

103.9 
77 .3 
5.92 
a.36 

2.49b· 
42.0a 

2.35 
3a.a 

4.31 

2,612x 
754 

l,asax 
l,06la 

105 
102 
52.9b 
49.3 

3.69 

4.04YZ 

2,792Y 
752 

2,040X 
l,094a 

11a 
115 
52.a 
61. 9a 

Ruminal disappearance, ~/d b 2, 230b 2' 153b 2,osob 
Starch 2,695 2,229 

Ruminal digestibility, % 
OM (true) ao.ox 
Starch as.ax 
Total feed N 61.9a 
Non-urea feed N 46.4x 

64.3YZ 
10.1t; 
52.0 
33.9Y 

66.9Y 
73.3b 
52.0 
33.SY 

59.6YZ 
66.9b 
49.7 
30.aY 

55.7z 
65.4Y 
40.6c 
20.1z 

Ruminal escape 
of feed N, % 53.6z 66.lY 66.SY 69.2Y 79.9x 

True efficiency of microbial protein production, g MP/kg OM 
truly fermented la.2 la.3 la.5 20.l 21.3 

Ru~~~~~i~~~~~~~b6~itlo7~4gf to~:~a~bact9~~j~5tio~9,3b a3.6b 
Starch 92.a a3.3 a3.6 ao.7 77.a 

abcMeans in the same row with different superscripts differ 
(P<.05). 

xyzMeans in the same row _with different superscripts differ 
(P<.10). 

SE 

.071 
1. 745 

.073 
2.62 

.563 

.2ao 

197.6 
76.0 

205.9 
149.3 

7.0 
6.a 
5.34 
2.59 

149.6 

4.43 
4.64 
2.6a 
3.72 

3.72 

2.00 

5.70 
4.63 
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TABLE 6 

COMPARISON OF PRE-CECAL DIGESTION OF FOUR 
SORGHUM GRAIN HYBRIDS WITH CORN 

Hetero-
Item Corn Yellow Cream Yell ow Red 

Leaving ileum, g/d 
Chyme, liters 10.4 
OM 1,191~ 
Starch 292 
Total N 35.4~ 
Non-NH3 N 34.8 

11.0 
l,868a 

aoaa 
b 40.4b 

39.9 

9 7 
l,426oc 

s19ab 
b 36.Sb 

36.2 

10.~ 
l,689au 

749a 
b 37.6b 

36.9 
Pre-cecal digestibiltty, % 

OM 74.2x 59.7~ 68.aXY 62.9YZ 
Starch 90.6a 74.1 82.5ab 76.2b 
Total N 61.8 58.7 62.1 61.6 
Non-NH3 N 62.4 59.3 62.6 62.2 

Pre-cecal digestibility, % of total tract digestion 
OM 99.3x 88.4z 95.4x 94.2xz 
Starch 97.0a 88.0b 93,4ab 91.7ab 
Total N 103.5 102.0 106.2 107.8 
Non-NH3 N 103.2 102.2 106.5 108.2 

11.~ 
l,828au 

782a 
46.5a 
46.0a 

59.9~ 
74.8 
55.3 
55.8 

88.5~ 
88.2 

101.4 
101. 7 

abcMeans in the same row with different superscripts differ 
( P<. 05). 

xyzMeans in the same row with different superscripts differ 
(P<.10). 

SE 

.87 
142.2 
113 .3 

1. 98 
1.95 

3.08 
3.67 
2.17 
2.13 

2.72 
2.79 
2.04 
2.06 
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TABLE 7 

COMPARISON OF DIGESTION OF FOUR SORGHUM 
GRAIN HYBRIDS WITH CORN IN THE 

SMALL INTESTINE 

Hetero-
Item Corn Yell ow Cream Yellow Red SE 

Disappearance in the small intestine, g/d 
OM 675 532 888 923 964 193.7 
Starch 145 110 294 312 311 139.8 
Total N 68.9 63.2 67.2 67.7 71.3 5.85 
Non-NH3 N 66.4 60.5 65.0 65.2 68.7 5. 77 

Digestibility in the small intestine: 
% of entry 

OM 37.2 19.2 35 .1 34.7 32.1 6.87 
Starch 39.7 12.0 25.1 28.8 24.6 14.75 
Total N 65.9 60.0 64.0 64.2 60 .1 1.88 
Non-NH3 N 65.4 59.8 63.5 63.7 59.5 1. 95 

% of intake 
OM 14.6 11.4 18.6 19.7 20.6 4.22 
Starch 4.8 3.4 9.2 9.3 9.5 4.46 
Total N 74.5 64.9 68.7 69.0 68.4 6.08 
Non-NH3 N 71.8 62.1 66.4 66.5 65.9 6.01 

% of total tract digestion 
OM 20.0 18.0 25.4 29.9 29.7 6.45 
Starch 5 .1 4.6 9.8 11. 0 10.4 5.32 
Total N 133.l . 114. 4 117 .1 120.9 124.9 12.55 
Non-NH3 N 126.3 108.6 112. 5 115.8 119.6 11.96 



Item 

Disappearance in 
OM 
Starch 
Non-NH3 N 

Digestib1l ity in 
% of entry 

OM 
Starch 
Non-NH3 N 

% of intake 
OM 
Starch 

TABLE 8 

COMPARISON OF DIGESTION OF FOUR SORGHUM 
GRAIN HYBRIDS WITH CORN IN THE 

LARGE INTESTINE 

Hetero-
Corn Yellow Cream Yell ow 

the large intestine, g/d 
23z 374x 142yz 164yz 
60b 320a 163ab 208ab 
-1.1 -1.1 -3.4 -4.5 

the large intestine: 

1. 7z 20.0x 9.7yz 9.0yz 
22.8 38.8 31.5 29.8 
-2.1YZ -3.6YZ -9.0XY -12.4x 

.5z 8. lx 3. lyz 3.7xyz 
l.9b 10.2a 5.4ab 6.6 ab 

Non-NH3 N -1.4 -1. 2 -3.6 -4.7 
3 of total tract digestion 

OM .7y ll.6x 4.6y 5.8xy 
Starch 2. lb 12.0a 6.6ab 8.3ab 
Non-NH3 N -3.2 -2.2 -6.5 -8.2 

abcMeans in the same row with different superscripts 

Red 

33lxy 
29la 

- .8 

17.7xy 
36.6 
-l.8z 

7.4xy 
9.5a 
- . 7 

11. 4x 
l l.8a 
-1. 7 

di ff er 
(P<.05~. 

x ZMeans in the same row with different superscripts differ 
(P<.10). 

70 

SE 

82.6 
70.5 
1.18 

4.00 
8.70 
2. 77 

1. 81 
2.27 
1.14 

2.72 
2.79 
2.06 
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CHAPTER V 

THE EFFECT OF SORGHUM GRAIN HYBRID AND CORN 

ON STARCH AND DRY MATTER 

DIGESTION IN VITROl 

M.N. Streeter, D.G. Wagner, C.A. Hibberd, F.N. Owens, 

E.D. Mitchell, Jr. and J.W. Oltjen 

Departments of Animal Science and Biochemistry, Oklahoma State 

University, Stillwater, OK USA 74078-0425 

ABSTRACT 

Studies of ruminal dry matter disappearance in vitro (IVDMD) and 

gas production in vitro (GP), involving amyloglucosidase and yeast, 

were conducted to compare eight divergent current sorghum grain hybrids 

and corn. Chemical and physical characteristics of the grains also 

were described. Sorghums included two yellow (Yl and Y2), two cream 

(Cl and C2), two hetero-yellow (HYl and HY2), one red (R) and one bird 

resistant (BR) hybrids. Corn (29.7%) contained more (P<0.05) sodium 

chloride soluble nitrogen (NaCl-N) than other grains except Yl (26.7%). 

BR contained more pepsin insoluble nitrogen and less NaCl-N, and had 

smaller berries of greater density (P<0.05) than other grains. BR 

lJournal Article No. of the Oklahoma Agriculture Experiment 

Station. 
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(26.9%) had lower (P<0.05) and corn (51.8%) had greater (P<0.05) IVDMD 

than other sorghum hybrids. Yellow hybrids were I.9% more digestible 

than cream hybrids and 6.2% more digestible than hetero-yellow hybrids. 

YI (42.2), Y2 (42.2), Cl (42.0) and HYl (4I.9) had greater (P<0.05) 

IVDMD than HY2 (37.2), with C2 (40.8) being intermediate (P>0.05). BR 

and HYl had greater (P<0.05) and corn (253.3) had less (P<0.05) I2-hour 

GP than other grains. The estimated first order rate constant for 

starch digestion was highest (P<0.05) for BR and lowest (P<0.05) for 

corn. The rate of starch degradation among sorghum hybrids of common 

endosperm and seed coat color differed, with C2, HYl and YI tending to 

have a greater rate of GP than R, while HY2, Cl and Y2 tended to have a 

lower rate of GP than R. When hybrids with a yellow endosperm were 

averaged within endosperm and seed coat color, no advantage was noted 

for homozygous or heterozygous yellow endosperm. However, sorghum 

grain with a yellow endosperm (homozygous or heterozygous) tended to 

have greater starch availability than R, and parental varieties altered 

starch availability within endosperm types. 

Introduction 

Corn and sorghum grain are widely used in the feedlot industry. 

World wide, sorghum is the third most prevalent grain. Sorghum often 

is discriminated against by cattle feeders because of variable quality 

and lower efficiency compared to corn (McCollough et al., I972). 

Although little information exists, Rooney and Pflugfelder (I986) 

suggested sorghum grain with a yellow endosperm may be more digestible 

than sorghum with a non-yellow endosperm. Goldy et al. (I988) noted 

slightly lower gains with yellow endosperm sorghum than corn, but 
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Brethour (1987) observed better feed utilization for a homozygous 

yellow endosperm sorghum grain than for corn. While untested, sorghum 

breeders generally believe that hybrids created from different parental 

varieties should differ in digestibility, even though hybrids may have 

a common endosperm and(or) seed coat color. 

The relationships between endosperm type and color and physical 

and chemical characteristics and digestibility in sorghum is unclear. 

Endosperm type and color may alter ruminal fermentation and starch 

availability. The objective of the study, therefore, was to evaluate 

differences between eight sorghum grain hybrids and corn in physical 

and chemical structure, ruminal dry matter disappearance in vitro 

(IVDMD) and enzymatic starch availability in vitro (GP). 

Materials and Methods 

Eight genetically unique sorghum grain hybrids were grown under 

· dryland conditions in southeast Kansas, USA during the summer of 1986. 

Corn was purchased commercially. Descriptive characteristics of the 

sorghum grains are denoted in Table 9. Sorghum hybrids included two 

pure yellow (Yl and Y2; homozygous yellow endosperm, yellow seed coat), 

two cream (Cl and C2; heterozygous yellow endosperm, white seed coat), 

two hetero-yellow (HYI and HY2; heterozygous yellow endosperm, red seed 

coat), one red (R; homozygous white endosperm, red seed coat) and one 

brown high tannin bird resistant (BR; homozygous white endosperm, brown 

seed coat) sorghum grains. 

Grains were characterized by the average weight of 100 randomly 

selected berries, the average volume of toluene displaced by 100 

berries and the resulting density. Grains were ground through a .4-mm 
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screen before chemical characterization. Crude protein was determined 

by the Kjeldahl procedure (AOAC, 1975), and starch was measured as 

alpha-linked glucose polymers (MacRae and Armstrong, 1968). Condensed 

tannin was determined by the vanillin-HCl procedure (Burns, 1971) as 

modified by Price et al. (1978) and is reported in catechin 

equivalents/gram of dry matter (CE). Grain samples were further 

analyzed for pepsin insoluble nitrogen (PIN, Goering and Van Soest, 

1970) and sodium chloride soluble nitrogen (NaCl-N; Waldo and Goering, 

1979). 

Dry matter disappearance in vitro (IVDMD) was determined using 

grain samples previously ground through a 1-mm screen. Ruminal fluid 

was obtained from a steer consuming a high grain diet, strained twice 

through four layers of cheesecloth and mixed with pre-warmed 

McDougall's buffer (McDougall, 1948). Thirty milliliters of inoculant 

(22 ml buffer:8 ml ruminal fluid) were placed in pre-weighed 50 ml 

centrifuge tubes containing 0.4 g of grain dry matter. After an 18-h 

incubation at 39° C, tubes were centrifuged, decanted and dried for 48 

h in an oven at 60° C. 

Gas production in vitro (GP; Sandstedt et al., 1962) of the grains 

was measured to estimate differences in starch availability to 

enzymatic degradation. Grains (0.4 g) were incubated (39° C) for 24 h 

with commercial baker's yeast (0.5 g) and an amyloglucosidase (Sigma 

Chemical Co., from Rhizopus mold, E.C. 3.2.1.3) solution (10 ml, 0.1% 

W/V) in a 20 ml culture tube (Hibberd et al., 1982a). GP was measured 

by displacement of the plunger of a gas tight syringe. Measurements 

were recorded hourly for 8 h and at 10, 12 and 24 h. Data were 

analyzed to determine differences in extent of starch digestion by 
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measuring the total gas produced at 6 (GP6), 8 (GP8), 10 (GPlO), 12 

(GP12) and 24 (GP24) h, expressed as ml of C02/g of grain starch. The 

rate of starch disappearance (k1) was estimated by fitting the single 

pool kinetic model described by Streeter et al. (1989a) to our GP 

curves. Rates of gas production were described by the model, co2 (ml/g 

starch) = CF*(l-e(kl*t)), where CF is a factor to convert g of starch 

to ml of co2 and kl is the estimated first order rate constant of 

starch disappearance. Theoretical conversion of starch to co2 (315.9), 

assuming ethanol fermentation by bakers yeast, was approached in this 

study (309.4 ± 3.95). However, when the theoretical conversion was 

utilized the residual sum of squares was increased; hence, kl and CF 

were estimated for each grain within each of four runs, utilizing the 

iterative non-linear procedure of SAS (1988). 

Statistical Analysis 

Data from IVDMD and GP can be described by the following model: 

Yijk = µ + Ri + Gj + Eijk' where Yijk is 18-h IVDMD, GP or kl, R is the 

run and G is the grain source. Random errors, Eijk' were specific to 

each observation. The componentsµ, Ri, and Gj were treated as fixed 

effects of all records of run i and grain j. Random errors, Eijk' were 

specific to each observation. Estimated differences among least 

squares means were detected using protected least significant 

differences (Steel and Torrie, 1980). 

Results and Discussion 

Chemical Composition 
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Sorghum grain endosperm and seed coat color did not consistently 

influence starch content {Table 10). Sorghum grains Yl, Rand Cl 

contained more starch (P<0.05) than HYl, BR and corn, with C2, HY2 and 

Y2 (P>0.05) being intermediate. Crude protein (CP) ranged from 10.5% 

(Y2) to 9.5% (Yl). Grains Y2, R, HY2 and corn contained more CP 

(P<0.05) than Yl, with other grains being intermediate. NaCl-N ranged 

from 29.7% of N for corn to 13.0% for BR. Corn and Yl (26.7%) 

contained a greater (P<0.05) proportion of NaCl-N than HYl (19.6%), 

with BR (13.0%) being lower (P<0.05) than other grains. Although other 

chemical constituents were not consistently altered by sorghum type, BR 

contained more PIN (P<0.05) than other grains. Condensed tannin 

present in BR probably bind grain protein reducing pepsin 

digestibility. Hibberd et al. (1982a) and Streeter et al. (1989a) 

reported more PIN for BR sorghum grains. Red also tended to contain 

more PIN than grains with a yellow endosperm {Yl, Y2, Cl, C2, HYl and 

HY2) and corn being statistically greater (P<0.05) only for C2. Rooney 

and Pflugfelder (1986) reported sorghum grain to have slightly greater 

starch and N and less ether extract than corn. Hibberd et al. (1982a) 

reported wide variation in N and starch content among nine sorghum 

grain varieties as well as differences in the same varieties grown in 

different years. Wall and Paulis (1970) suggested N and starch content 

of sorghum grain may be dramatically influenced by rainfall, 

environmental temperature and environmental-hybrid interactions. 

Phvsical Characteristics 

Hybrids C2 (2.61) and HYl (2.53) had larger (P<0.05) berries 

(g/100 berries) than other sorghum grain. Red (2.27), Yl (2.22), HY2 
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(2.18) and Y2 (2.13) had larger (P<0.05) berries than C2 {l.98) and BR 

(1.64). Berry volume tended to reflect berry size (r=.80; P<0.05), 

with HYl (20.5 µl), C2 (20.0) and R (19.0) having larger berries 

(P<0.05) than Y2 (16.5), Cl (15.5) and BR 12.0). Other sorghum grain 

hybrids had intermediate (P<0.05) berry volume. Berry density was 

greater (P<0.05) for BR (1.38 g/ml) and C2 (1.32) than for R (l.20), 

with others being intermediate. Density of sorghum types was less 

variable than berry size and volume and may reflect relatively small 

differences in starch and N content. Greater density may reflect more 

peripheral and less floury endosperm. Scanning electron microscopy 

(SEM) conducted by Hoseney et al. (1974) has indicated that floury 

endosperm contains large inter-granular air spaces, while peripheral 

endosperm has a tightly packed granular alignment with no air spaces 

between starch granules. Large berries have previously been thought to 

be more digestible than small berries, perhaps because they may be 

easier to process consistently rather than due to inherent 

characteristics of a given sorghum hybrid and had been thought to 

contain more starch and less protein than smaller berries (Hibberd, 

1982). Yet in our study starch content was negatively correlated to 

berry size (r=-0.86; P<0.01) and volume (r=0.83; P<0.05) but positively 

correlated to density (r=0.73; P<0.05) while %N was positively 

correlated to berry volume (r=0.66; P<0.10). Berry size (r=0.27; 

P<0.40) and density (r=-0.58; P<0.15) were only weakly correlated to N 

content. These data should not be interpreted to mean that within a 

hybrid, where less variation in peripheral and floury endosperm content 

might be expected, larger berries would necessarily contain less starch 

and more protein than smaller berries. 
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Dry Matter Disappearance In Vitro 

IVDMD was lower {P<0.05) for BR {26.93%) and greater {P<0.05) for 

corn {51.83) than for other sorghum grain hybrids. Among remaining 

sorghum types, R {43.94), YI {42.19), Y2 {42.16), Cl {41.95) and HYI 

{41.89) were more {P<0.05) digestible than HY2 {37.18), with C2 (40.81) 

being intermediate. Hibberd et al. {1982a) reported that corn had a 

greater IVDMD than pureline sorghum grain types with a normal 

endosperm. Pureline BR sorghum types with a normal endosperm have been 

noted to be less digestible in vitro than other sorghum types {Hibberd 

et al., 1982a; Streeter et al., 1989a). Sorghum hybrids with a 

homozygous yellow endosperm {YI and Y2) were 1.9% more digestible than 

cream hybrids {Cl and C2) and 6.2% more digestible than hetero-yellow 

hybrids {HYI and HY2). Rooney and Pflugfelder {1986) noted sorghum 

with a yellow endosperm was more digestible than grain with a non

yellow endosperm; however, in our study R {homozygous white endosperm) 

tended to have a greater IVDMD than hybrids with a yellow endosperm. 

Perhaps yellow endosperm hybrids have greater enzymatic starch 

digestibility in the small intestine which should result in more 

efficient gains {Black, 1971). 

Gas Production In Vitro 

Total GP at 6 {r=0.63; P<0.01), 8 (r=.074; P<0.01), 10 {r=0.80; 

P<0.01) and 12 {r=0.74; P<0.01) h was highly correlated to gas 

production at 24 h but, the ranking of grains differed some between 6, 

8, 10, 12 and 24 h {Table 12). Hence, the discussion will include 6 

(GP6), 12 (GP12) and 24 {GP24) h values. GP6 was greater {P<0.05) for 

BR (236.0 ml co2/g of starch) and less {P<0.05) for corn (178.5) than 
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for other grains, and Yl, C2 and HY! were greater (P<0.05) than HY2, 

Cl and Yl. GP12 was greater for C2 (282.5) than (P<0.05) HY2 (271.1), 

with Yl, Y2 and Cl intermediate. After 12 h of incubation, sorghums 

with a yellow endosperm averaged 1.9% more co2 than R and 10% more than 

corn. Individual hybrids were even more superior to R and corn. GP24 

differences were small, with HYl (315.1) and BR (308.7) greater 

(P<0.05) than Cl (294.0), R (293.5) and corn (292.9). Other than HYl 

homozygous or heterozygous yellow endosperm sorghum tended to be 

intermediate between BR and R. Hibberd et al. (1982b) studied isolated 

starch from several pureline sorghum and corn varieties. Starch from 

corn produced less gas and starch from BR sorghum produced more gas 

than several normal endosperm varieties. Although total tract starch 

digestibility was reduced, Streeter et al. (1989b) reported greater 

ruminal starch digestibility for two BR sorghum varieties than two non

BR varieties. 

Sorghum grain usually has been reported to have a much greater 

proportion of peripheral endosperm cells than corn (Rooney and 

Pflugfelder, 1986). Because peripheral endosperm cells normally have a 

high protein content and resist both physical and enzymatic degradation 

(Rooney and Pflugfelder, 1986), one would expect sorghum grain to be 

less digestible than corn; moreover, sorghum grains which contain more 

peripheral endosperm should be less.digestible than those with less 

peripheral endosperm. However, our GP results suggest that starch from 

sorghum grain, when ground through a .4-mm screen, may be more 

available to enzymatic degradation than is corn starch. Our IVDMD 

data, on the other hand suggested corn to be somewhat more digestible. 

Differences noted herein between IVDMD and GP may be influenced by 
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differences in grain particle size. The smaller screen used to grind 

grain for measuring GP may increa~e the surface area sufficiently to 

reduce potential limitations on starch digestion caused by protein 

encapsulation. 

Leach and Schoch (1961) have suggested that starch in sorghum is 

hydrolyzed by bacterial alpha amylase to a greater extent than in corn. 

If starch granules in sorghum are hydrated more rapidly than in corn, 

more rapid diffusion of starch degrading enzymes into the starch 

granule may occur. Leach and Schoch (1961) hypothesized that starch 

granules which have a greater susceptibility to alpha amylase may 

contain pores or a coarse sponge-like structure, with openings of 

sufficient size to reduce stearic hindrance of enzymatic attack. 

Changes noted in the rank order of the grains with time indicate 

alterations in the rate of co2 production over time. To address this 

concern, percent change in GP between 6, 8, 10, 12 and 24 h was 

calculated from least squares means. In an attempt to simplify 

results, Yl and Y2 were combined (Y). Likewise Cl and C2 (C) and HYl 

and HY2 (HY) were averaged. BR tended to have a smaller and corn a 

larger change in GP between time intervals than did other grains. 

Moreover, sorghums with a yellow endosperm (Y, HY and C) tended to have 

larger changes in GP than R. These results indicate that BR sorghum 

grain is digested at a faster rate early in the incubation period and 

at a slower rate later than are other grains. While corn displayed the 

reverse pattern. Sorghum hybrids with a yellow endosperm (Yl, Y2, HYl, 

HY2, Cl and C2) appeared to be degraded more like corn than BR, while R 

was intermediate between BR and the yellow hybrids. The potential 

importance of differential rates of starch hydration and degradation 
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may be related to differences in site and extent of starch digestion 

and ultimately the efficiency of energy utilization by ruminants 

(Black, 1971). Therefore, comparisons of GP among sorghum hybrids and 

corn may provide valuable information about the rate and(or) extent of 

starch availability to enzymatic attack. 

Rate Constants for GP 

Rate constants (kl) were strongly correlated to total GP at 1 

(r=0.64; P<0.01), 2 (r=0.60; P<0.01) and 3 h (r=0.55; P<0.01). The 

strength of the correlation of kl and GP decreased with time, 

eventually becoming negative at 24 h (r=-0.33; P<.11). A decreasing 

correlation between kl and GP over time may indicate that factors other 

than the rate of enzymatic glucose release limit GP. 

The CF was strongly correlated to GP at 24 (r=0.98; P<0.01), 12 

(r=0.80; P<0.01), 10 (r=0.84; P<0.01 and 8 h (r=0.76; P<0.01). The 

strength of the correlation increased with time, perhaps because as 

more starch is degraded and utilized for co2, GP should more closely 

approach or equal the theoretical CF (315.9). If, however, starch is 

utilized for yeast growth the CF should be lower than the theoretical 

value, but still highly related to GP24. 

The CF for HYl (327.7) was greater (P<0.05) than for other grains 

and above the theoretical value, which may indicate that starch was 

underestimated. The CF for Y2 (314.0) and BR (313.6) were greater than 

(P<0.05) for corn (299.3), with C2 (310.6), Yl (306.3), HY2 (305.2) and 

R (302.8) being intermediate (P>0.05). Variation among CF for grains 

may indicate differences in the efficiency of yeast fermentation or in 

estimation of starch supplied to the system. 
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Estimates of kl (Table 12) ranged from 0.156 (corn) to .228 %/h 

(BR), with BR resulting in a greater (P<0.05) and corn resulting in a 

lower (P<0.05) kl than other grains. Yl (0.199) and C2 (0.197) had a 

greater (P<0.05) kl than HY2 (0.183), Cl (0.182), HYl (.174) and Y2 

(0.170), while R (0:1920) was intermediate; however, HY2 and Cl were 

greater than (P<0.05) Y2. Streeter et al. (1989a) noted that two 

pureline BR varieties, one normal and waxy endosperm, had greater rates 

of starch degradation than a non-BR normal endosperm variety. Perhaps, 

BR sorghum grains are degraded at a faster rate due to denaturation by 

condensed tannin of a portion of the protein matrix that encapsulates 

the starch granules in the peripheral endosperm. Generally, condensed 

tannins are viewed as inhibitory to digestive enzymes (Tagari et al., 

1969; Mcleod, 1974); however, condensed tannins can have a stimulatory 

effect on tryptic digestion (Mole and Waterman, 1982). It is unclear 

if condensed tannin could have a similar stimulatory effect on 

amyloglucosidase. 

Protein digestibility may play an important role in starch 

degradation in vitro and in vivo. Seckinger and Wolf (1973), based on 

SEM, suggested protein encapsulation of starch granules in sorghum may 

limit starch degradation. The encapsulation of starch granule by 

protein matrix appears to be related to the amount of peripheral 

endosperm. Hoseney et al. (1974) observed a continuous protein matrix 

encapsulating the starch granules in the peripheral endosperm, with a 

less continuous matrix existing in the floury endosperm. Additionally, 

starch granules in the floury endosperm of sorghum grain appeared to be 

covered with a thin layer of protein which is not present in corn. 

Tanksly and Knabe (1984) reviewed several swine studies concluding that 
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the protein in sorghum grains with a yellow endosperm was 53 less 

digestible than that in corn. Rooney and Riggs (1971) postulated a 

relationship between starch recovery during wet milling, limited by the 

peripheral endosperm layer (Watson et al., 1955), and ruminal starch 

digestibility. A similar relationship may explain differences observed 

among our sorghum hybrids. Norris and Rooney (1970) reported the 

peripheral endosperm content of sorghum grain hybrids was intermediate 

between that observed for the parental varieties. Therefore, 

difference between hybrids with a common endosperm and(or) seed coat 

color may result from variation in the peripheral endosperm content 

originating from the parental varieties of a hybrid. 
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Grain 
Source 

YI and Y2 
Cl and C2 
HYI and HY2 
R 
BR 

TABLE 9 

DESCRIPTIVE CHARACTERISTICS OF 
SORGHUM GRAIN HYBRIDS 

Seed Coat Endosperm Endosperm 
Color Color Cross 

yellow yell ow yell ow x yell ow 
white yellow white x yell ow 
red yellow white x yellow 
red white white x white 
brown white white x white 

Testa 
Layera 

absent 
absent 
absent 
absent 
present 

a Presence of testa layer indicative of high tannin content and 
bird resistance. 
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TABLE 10 

CHEMICAL COMPOSITION OF SORGHUM GRAIN HYBRIDS 
AND CORN (DRY MATTER BASIS) 

Crude 
Item Starch protein NaCl-NV PINw Tanninx AOFY 

Grain 
lo.obc 12.4~c b Corn 72.6e 29.7\ 0.0\ 7.7 

Yl 79.9~ d 9.5d 26.7~ 12.8b o.oob 8.5 
Y2 76.1 ~ 10.5ad 23.2bc 12.5bc o.oob 6.9 
Cl 78.4a 9.7cd 23.6bc 12.5 c o.oob 9.6 
C2 77 .4abc 9.7cd 22.0 c 10.8~ 0.07b 6 .1 
HYl 74,4cde 9.6c 19.65c 12.2bc 0.08b 9.0 
HY2 76 .8abcd 10.3ab 22.3b 11. 5b c o.oab 11. 2 
R 79.8~ 10.4ab 23.6/ 12.8 0.02 8.5 
BR 74.0 e 9.7cd 13.0 24.6a 1.03a 13.9 

SEZ 1.06 0.13 1.54 0.60 0.093 1. 70 

abcdeMeans in the same column with different superscripts di ff er 
(P<0.05). 

Vsodium chloride soluble protein, % of crude protein. 
wPepsin insoluble nitrogen, % of crude protein nitrogen. -
Xcatechin equivalents/g dry matter. 
YAcid detergent fiber. . 
Zstandard error based on 2 observations per mean. 



TABLE 11 

PHYSICAL CHARACTERISTICS OF 
SORGHUM GRAIN HYBRIDS 

Berry size Berry volume Density 
Item g/100 berries µl/berry g/ml 

Grain 
2.22bc Ia.obc l.24bc YI 

Y2 2.13~ 16.scd l.29abc 
Cl 1. 98 is.sd l.28abc 
C2 2.6la 20.oa l.32ab 
HY! 2.52~ 20.5~ l.24bc 
HY2 2 .1ab c 17.5 ~ 1. 25bc 
R 2.27 19.0a l.20c 
BR l.64e 12.0e l.38a 

SEX 0.038 0.59 0.031 

abcdeMeans in the same column with different superscripts differ 
(P<0.05). 

Xstandard error based on 2 observations per mean. 
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Item 

Grain 
Corn 
Yl 
Y2 
Cl 
C2 
HYl 
HY2 
R 
BR 

SE2 

TABLE 12 

DRY MATTER DISAPPE~RANCE AND GAS PRODUCTION 
IN VITRO OF SORGHUM GRAIN 

18 h 
IVDMD 

51.83~ 
42.19b 
42 .16b 
41. 95b 
40.81bc 
41.89 
37 .18~ 

~~:~jd 
1.324 

HYBRIDS AND CORN 

GP, ml gas/g of grain starch 
6 h 10 h 12 h 24 h 

178.5~ 
213.0d 
200.0d 
200.7b 
212.5b 
210.6 d 
203.2~ 
208.1 c 
236.0a 

2.49 

237.3ed 
268.l~d 
262.ld . 
260.9b 
270.4 ~ 
277.5~ 
259.8 d 
263.$c 
283.7a 

3.10 

253.3~ 292.9~ 
279.1 c 299.5 c 
275.7b~d 303.9abc 
272.2~ 294.0cb 
282.5 304.8a c 
290.6~ 315.l~ 
271.1 d 298.3 c 
273.3c 293.5cb 
291.0a 308.7a 

2. 71 4.22 

kl, %/hY 

0.141~ 
0.186/ 
0 .168 d 
0.169b 
0. l 90b 
0 .186 / 
0.171 d 
0. l 77c 
o.224a 

3.95 0.0042 

abcdeMeans in the same column with different superscripts differ 
(P<0.05). 

xEstimated factor to convert g of starch to ml of co2. 
YEstimated first order rate constant for starch digestion. 
Zstandard error based on three observations per mean for IVDMD and 

four observations per mean for GP. 
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CHAPTER VII 

THE EFFECT OF PURE YELLOW AND HETERO-YELLOW 

ENDOSPERM SORGHUM GRAIN HYBRIDS ON 

SITE AND EXTENT OF DIGESTIONI,2 

M.N. Streeter, D.G. Wagner, C.A. Hibberd and F.N. Owens 

ABSTRACT 

To compare the effect of two yellow (YI and Y2), two cream (Cl and 

C2) and two hetero-yellow (HYI and HY2) sorghum grain hybrids on site 

and extent of digestion, sorghum grain was dry rolled and fed in an 81% 

grain diet to Angus-Hereford steers (342 kg) equipped with ruminal, 

duodenal and ileal double L type intestinal cannulae. Yellow grains 

had a homozygous yellow endosperm and a yellow seed coat, cream and 

hetero-yellow grains had a heterozygous yellow endosperm, with a white 

and red seed coat, respectively. Diets were fed at 1.85% of body 

weight (DM basis) in a 6x6 Latin square. Total tract OM digestibility 

(%) was greater (P<.10) for HY2 (71.4) and C2 (69.8) than for Cl 

(64.9), Y2 (62.8) and HYI (62.6), but was not different (P>.10) from Yl 

(67.9%). Total tract starch digestibility was correlated (r=.80; 

P<.001) to OM digestibility. Total tract non-ammonia nitrogen (NAN) 

digestibility (%)was greater (P<.05) for HY2 (67.8) and C2 (67.0) than 

·!Journal Article No. of the Agric. Exp. Sta., Oklahoma State 
University, Stillwater. 

2The assistance of Dr. Dave Buchanan with statistical analysis is 
greatly appreciated. 
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for Cl (62.0), Y2 (59.8) and HYl (55.6), but was not different (P>.10) 

from Yl (64.8). Ruminal starch digestion was negatively correlated 

(r=-.46; P<.08) to feed N flow to the duodenum. When ruminal starch 

digestion was expressed as a percent of total digestion, Y2 (95.3) was 

greater (P<.10) than Yl (83.6), C2 (81.2) and Cl (79.0), but was not 

different from HY2 (90.7) or HYl (90.5). Greater (P<.10) escape of 

feed N from ruminal degradation (%) was noted for HYl (68.3) and Y2 

(59.6) than for C2 (50.1) and HY2 (46.2), with Cl (58.0) and Yl (57.9) 

not different from C2 or Y2. Pre-cecal starch digestibility averaged 

76.2% and was more strongly correlated to ruminal starch digestibility 

(r=.69; P<.01) than to starch digestion in the small intestine (r=.41; 

P=.12). Microbial N flow to the duodenum was strongly correlated 

(r=.88; P<.01), while feed N flow to the duodenum was weakly correlated 

(r=.17; P=.52) to fractional NAN digestibility in the small intestine. 

Hybrids differed in site and extent of NAN digestion but, no clear 

advantage was observed for homozygous versus heterozygous yellow 

endosperm. 

(Key Words: Yellow Endosperm, Sorghum Grain, Starch, Protein, 

Digestion, Beef Steers.) 

Introduction 

Sorghum grain is a common cereal grain in feedlot diets. However, 

sorghum grain generally has a lower feeding value than corn (NRC, 1984) 

and is more variable in quality than corn, partially because of 

environmental influences (Wall and Ross, 1970) but also potentially due 

to varietal (Miller et al., 1962) and hybrid differences (Norris and 

Rooney, 1970). Variation noted in cattle performance associated with 
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different sorghum grain hybrids or varieties (Mccollough et al., 1972; 

Maxson et al., 1973; Goldy et al., 1987) may partially be due to 

differences in digestibility (Mccollough and Brent, 1972). 

Differences in site and extent of digestion have been noted with 

pureline sorghum grain varieties (Streeter et al., 1989b); therefore, 

one might expect differences among various hybrids (Norris and Rooney 

1970). Endosperm characteristics and ruminal and intestinal digestion 

may differ among sorghum grain hybrids altering efficiency of energy 

and nitrogen utilization (Black, 1971). The extent to which homozygous 

and heterozygous yellow endosperm sorghum grain hybrids may differ in 

site and extent of digestion is unclear. The objective of this study 

was to quantify the differences which may exist between sorghum grain 

hybrids with homozygous and heterozygous yellow endosperm in chemical 

composition, extent of starch digestion in the rumen and in the small 

and large intestines and extent of grain protein escape to the small 

intestine in beef cattle. 

Materials and Methods 

Six genetically unique hybrid sorghum grains representing two 

yellow (YI and Y2; Paymaster 1096 Y and Dekalb 41Y), two cream (Cl and 

C2; PAG 575 and Funks G-550) and two hetero-yellow (HYI and HY2; PAG 

5572 and Funks G-522DR) 3 sorghum grain hybrids were grown under dryland 

conditions during the summer of 1986 in southeast Kansas. Hybrids 

within common endosperm type and seed coat color were of different 

genetic background. Rainfall totaled 38 cm and was evenly distributed 

3sorghum grain seed donated by Cargil, Funk's and Dekalb is 
greatly appreciated. 
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throughout the growing season. Yellow hybrids had a homozygous yellow 

endosperm with a yellow seed coat. Cream hybrids had a heterozygous 

yellow endosperm with a white seed coat. Hetero-yellow types had a 

heterozygous yellow endosperm with a red seed coat (Table 13). 

Laboratory Trial 

Grain and diet samples were ground through a 1-mm screen prior to 

chemical analysis and through a .4-mm screen prior to starch analysis. 

Dry matter, CP, OM (AOAC, 1975) and starch as alpha-linked glucose 

(MacRae and Armstrong, 1968, modified by the use of a glucose 

determination kit4) content were determined. Grains were additionally 

analyzed for pepsin5 insoluble nitrogen (PIN; Goering and Van Soest, 

1970) and sodium chloride soluble nitrogen (NaCl-N; Waldo and Goering, 

1979). Berry size of sorghum grain hybrids was measured by weighing 

100 randomly selected pre-dried berries. The volume of individual 

sorghum berries was determined by measuring the volume of toluene 

displaced by 100 pre-dried berries. Density was calculated by dividing 

the mass of 100 berries by the volume displaced. The geometric mean 

diameter of dry rolled grain particles was determined by the procedure 

of Ensor et al. (1970). Relative distribution of particles among 

sieves and geometric mean particle size were used as an indirect 

measure of hardness or corneousness of sorghum grain (Pomeranz, 1986). 

Steer Trial 

4Glucose oxidase; Sigma Chemical Co., St. Louis, Mo., USA. 
5sigma Chemical Co., St. Louis, Mo., USA.; EC 2.4.23.1 
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Six Angus-Hereford steers (352 kg ± 8.6) were surgically fitted, 

while under local anesthesia, with permanent ruminal and double L type 

duodenal (4 cm distal to the pylorus) and ileal (20 cm cranial to the 

ileo-cecal junction) cannulae (Streeter et al., 1989d). Steers were 

fed diets (Table 14) at 1.85% (OM basis) of individual body weight in a 

6x6 Latin square. Feed intake was lower than usually noted in a 

feedlot or production situation (ad libitum), but consistently higher 

intakes are difficult or impossible to maintain when steers are 

individually penned and fed under these experimental conditions. Diets 

were formulated to meet NRC (1984) requirements for CP, Ca and P for 

medium-framed steer calves gaining .7 kg/d. Urea was used as the sole 

source of supplemental N, and cottonseed hulls (containing 

approximately 4.3% total dietary N) were used as the roughage source so 

that feed N reaching the duodenum would be primarily of grain origin 

(approximately 97.7%). Molasses was included at 3% of diet OM 

(containing approximately 2.2% of total dietary N) to control dust. 

Chromic oxide (.20% of diet OM) was used as an indigestible marker. 

Experimental periods lasted 10 d, with d 1 through 7 for diet 

adaptation and 8 through 10 for feed, digesta and fecal sampling. 

Steers were fed equal portions four times daily. Steers were pulse 

dosed with 1 g of ytterbium (Yb) in the form of Yb-labeled grain 

(Teeter et al., 1984) and 1 g of cobalt (Co) in the form of Co·EDTA 

(Uden et al., 1980) on d 8 at 0800 h. Digesta samples were collected 

at 1200, 1800 and 2400 h on d 8, 0600, 1500 and 2100 h on d 9 and 0300 

and 0900 h on d 10. This schedule allowed samples to be collected 

every 3 h in a 24-h period. Digesta (250 ml duodenal and 250 ml ileal 

fluid at each time) and fecal grab samples, after pH determination, 
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were composited across time and d within steer for each period and 

stored at 2° C until the end of each period. Additionally, 150 ml of 

duodenal fluid was obtained at each time, immediately dried at 55° C 

for 48 h in a forced air oven and ground through a 1-mm screen prior to 

Yb and Co analysis. Ruminal fluid for ammonia (NH3-N) determination 

was collected at 1500 and 2100 h on d 9 and 0300 and 0900 h on d 10. 

Ruminal fluid samples were strained through four layers of cheesecloth 

and acidified (5 ml of 20% H2so4 per 100 ml of fluid) immediately 

following determination of pH. Aliquots of ruminal, duodenal and ileal 

fluids and feces were obtained and stored at -20° C at the end of each 

period. 

Ruminal fluid used to estimate microbial N, purine N, and OM was 

strained through four layers of cheesecloth into collection flasks 

surrounded by ice for each steer on d 10 of periods 2, 3, 4, and 6 at 

1400 h. Equal volumes of ruminal fluid from each steer were composited 

within period (Streeter et al., 1989f). Bacteria were isolated from 

composite ruminal fluid samples 1 d after collection by differential 

centrifugation (Weakley, 1983), frozen (-20° C), lyophilized and ground 

with a mortar and pestle prior to analysis. 

Feed, digesta and fecal samples were lyophilized prior to grinding 

through a 1-mm screen before chemical analysis. Feed, duodenal, ileal 

and fecal samples were analyzed for chromic oxide (Fenton and Fenton, 

1979) in addition to all components used in the laboratory trial, 

except PIN and NaCl-N. Duodenal and bacterial samples also were 

analyzed for purine N (RNA basis; Zinn and Owens, 1986). Ruminal NH3-N 

was determined by the procedure of Brodrick and Kang (1980). Digesta 

and fecal NH3-N was determined as described by Streeter et al. (1989c). 
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Partial digestion coefficients and amounts of different components 

presented to and disappearing from segments of the digestive tract were 

calculated from chromic oxide concentrations and intakes. Chyme flows 

were calculated as chromic oxide intake (g/d) multiplied by the 

fractional chromic oxide concentration. Microbial N reaching the 

duodenum was calculated as duodenal purine N divided by the mean ratio 

(12.54 ±......395) of microbial purine N (RNA basis) to total N for the 

trial. Feed N (plus endogenous N) reaching the duodenum was calculated 

as duodenal N minus NH3-N and microbial N. Organic matter reaching the 

duodenum was corrected for microbial OM based on means determined for 

microbial ash (18.2%) and CP (29.6%). True ruminal OM disappearance 

was used to calculate the efficiency of microbial protein synthesis (g 

microbial N/kg OM truly fermented in the rumen). Particulate passage 

rate (%/h) and ruminal liquid dilution rate (%/h) were estimated by the 

slope of the regression of the natural logarithm of Yb and Co 

concentrations, respectively, against time. Samples determined to be 

on the up-slope of Yb and Co concentration curves were not included in 

the regression. 

Statistical Analysis 

The data from the laboratory trial were described by the following 

model: Yijk =µ+Di+ Gj + Eijk' where Yijk is the observed value of 

interest, Dis the duplicate sample and G is the grain. The components 

µ, Di and Gj were treated as fixed effects of all records of duplicate 

i and grain j. Random errors, Eijk' were specific to each observation. 

The data from the animal trial were described by the followed model: 

Yijkl =µ+Si+ Pj + Hk + Eijkl' where Yijkl is the observed value of 
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interest, S is steer, P is period and H is the sorghum grain hybrid. 

The componentsµ, Si, Pj and Hk were treated as fixed effects of all 

records of steer i, period j and hybrid k. Random errors, Eijkl' were 

specific to each observation. Differences between least squares means 

were detected by protected LSO (Steel and Torrie, 1980). 

Results and Discussion 

Laboratory Trial 

Sorghum grain hybrids were not different (P>.10) in CP content 

(Table 15). Starch conten€ was greater (P<.10) for Yl (79.9%) and Cl 

(78.4) than for HY2 (76.8), Y2 (76.1) and HYl (74.4), with Cl (78.4) 

and C2 (77.4) being intermediate (P>.10). NaCl-N content tended to be 

greater for Yl (26.7% of N) and lower for HYl (19.6) than other 

hybrids. Complete mixed feeds containing grains Yl, Y2, Cl, C2 and HYl 

had greater (P<.05) starch than HY2. Diets were formulated to be equal 

in CP; hence, no differences were expected. 

Physical characteristics of the grains (Table 15) varied 

considerably. Hybrids C2 (2.61 g/100 berries) and HYl (2.53) had 

greater (P<.05) berry size and Cl (1.98) had smaller berry size than 

did other sorghum hybrids. Berry volume (µl) was greater (P<.05) for 

HYl (20.5) and C2 (20.0) than for HY2 (17.5), Y2 (16.5) and Cl (15.5), 

with Yl (18.0) not different (P>.05) from ci, HY2 or Y2. Because berry 

size ·reflected berry volume. (r=.72; P<.10), no differences in berry 

density were noted. Geometric mean diameter (GMD) of dry rolled grain 

particles was not different (P>.10) among sorghum hybrids, although HY2 

(1,866 µm) tended to have a greater GMD than other hybrids. Particle 

size distribution differences were larger than expected based on GMO. 
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HY2 (44.08) had a larger proportion (P<.10) of 2,828 µm particles than 

other grains. Dry rolling of HYl (30.86) and Cl (30.62) resulted in 

more (P<.10) 2,828 µm particles than Cl (67.35), HYI (66.03) and HY2 

(52.82), but not more than Yl (74.20) or Y2 (73.29). All grains were 

greater than (P<.10) HY2. Differences in particle size distribution 

may reflect differences in hardness or amount of peripheral endosperm. 

Smaller differences were observed in this study than that of 

Streeter et al. (1989c), perhaps because grains were rolled to a larger 

GMO reducing the potential for differences in peripheral endosperm 

content to be indirectly reflected in particle size distribution 

(Pomeranz, 1986). However, if all grains had contained equal amounts 

of peripheral endosperm and were of similar OM content, larger berries 

(C2 and HY!) should have resulted in more small particles than other 

hybrids. This was true for C2, but not HYI; hence one might conclude 

that HY! contained more peripheral endosperm than C2 or contained more 

moisture at the time grains were dry rolled. The amount of peripheral 

endosperm is dependent upon total N content, continuity of matrix 

protein (Rooney and Pflugfelder, 1986) and hybrid (Hoseney et al., 

1974). Additionally, hybrids with the same endosperm and seed coat 

color may differ in the amount of peripheral endosperm due to different 

amounts in the parental varieties (Norris and Rooney, 1970). Because 

peripheral endosperm cells are resistant to both enzymatic and physical 

degradation (Rooney and Pflugfelder, 1986), one would expect sorghum 

types with more peripheral cells to result in larger particle size. 

Larger particles may reduce digestion of starch (Kim and Owens, 1985) 

and perhaps N due to less surface area for microbial and enzymatic 

attach. Larger particles, resulting from greater peripheral endosperm 
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content, also may reduce ruminal starch and protein degradation due to 

greater density (Hoseney et al., 1974), which may decrease retention 

time within the rumen compared to smaller, less dense particles 

(Faichney, 1986). Additionally, proteins in the peripheral endosperm 

may shroud starch granules (Seckinger and Wolf, 1973; Harbers and 

Davis, 1974, Hoseney et al., 1974) limiting microbial and enzymatic 

starch digestion. 

Steer Trial 

Differences in fecal output tended to reflect total tract OM 

digestibility (Table 16). Total tract OM digestibility (%) was greater 

(P<.10) for HY2 (71.4) and C2 (69.8) than for Cl (64.8), Y2 (62.8) and 

HYI (62.6), with YI (67.9) not different (P>.10) from C2, HY2 or Cl. 

Total tract starch digestibility was correlated (r=.80; P<.001) to 

total tract OM digestibility; however, differences in starch 

digestibility among sorghum hybrids were not noted (P>.10). Hibberd et 

al. (1985) and Streeter et al. (1989b) reported no differences in total 

tract starch digestibility among three sorghum grain hybrids and four 

pureline sorghum varieties, respectively. Streeter et al. (1989c) 

noted no difference in total tract starch digestibility of four diverse 

sorghum hybrids. However, Mccollough and Brent (1972) reported 

differences in total tract NFE digestibility among eight sorghum 

hybrids. Rooney and Pflugfelder (1986) suggested sorghum grain with a 

yellow endosperm is of higher "feeding value" than sorghum with a non

yellow endosperm. Streeter et al. (1989e) noted in vitro enzymatic 

starch availability tended to rank hybrids in a similar order to our 

estimates of total tract starch digestibility. 
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Total tract starch digestibility was positively correlated to 

ruminal starch digestibility (r=.76; P<.001), while being weakly 

correlated to starch digestibility in the small intestine (r=.10; 

P<.71) and large intestine (r=-.03; P<.91). This suggests that 

increased total tract starch digestion is obtained most readily by 

increasing ruminal starch digestion even though improved energetic 

efficiency may be obtained from digestion of starch in the small 

intestine (Black, 1971). 

Total tract non-NH3 N (NAN) digestibility (%) was greater (P<.05) 

for HY2 (58.2) and C2 (58.1) than for Cl (53.5), Y2 (51.8) and HYl 

(48.2), but not different (P>.10) from Yl (56.2). Yl was greater 

(P<.05) than Y2 and HYl, but not different (P>.10) from Cl. 

Differences in total tract NAN digestibility may be responsible for 

differences in total tract OM digestibility. Mccollough and Brent 

(1972) noted only slight variation in N digestibility among diverse 

sorghum hybrids when bird resistant types were ignored. Streeter et 

al. (1989b) reported large differences in total tract NAN digestibility 

of four divergent sorghum grain varieties; however, differences were 

due to bird resistance, not endosperm characteristics. In another 

study (Streeter et al., 1989c) no differences in total tract NAN 

digestibility were noted among four divergent sorghum grain hybrids and 

corn. 

Ruminal Digestion. Chyme flow (liters/d) was greater (P<.10) for 

Y2 (64.7) and HYl (63.8) than for Yl (55.7), C2 (55.3) and HY2 (51.6), 

with Cl (58.6) not different from Y2, HYl, Yl or C2 {Table 17). 

Elevated duodenal chyme flow has been reported for sorghum grains high 

in condensed tannin (Hibberd et al., 1985; Streeter et al., 19~9b) or 
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when sorghum was high moisture processed and blended with corn 

(Streeter et al., 1989f). Reasons for increased chyme flow noted among 

non-bird resistant sorghum hybrids with yellow endosperm are unclear. 

Differences in particulate passage rate (%/h) and ruminal liquid 

dilution rate (%/h) were not observed (P>.10). Particulate passage 

rate was not correlated (r=.08; P>.10) to duodenal chyme flow, while 

liquid dilution rate tended to be negatively correlated (r=-.40; P<.14) 

to chyme flow. 

Ruminal pH was not different (P>.10) due to sorghum grain hybrid, 

averaging 6.04. Additionally, ruminal NH3-N levels were not altered 

(P>.10) by hybrid, averaging 4.39 mg/dl. Satter and Slyter (1974) 

reported a minimum NH3-N level of 5 mg/dl for maximal microbial N 

production with forage-based diets. Weakley (1983) suggested higher 

values may be needed to obtain maximum ruminal OM digestion. Much 

lower ruminal NH3-N concentrations (1 to 3 mg/dl) are commonly noted 

with feedlot type diets. Lower ruminal NH3-N levels may result from 

rapid utilization of NH3-N due to readily available energy from starch. 

Additionally, low ruminal NH3-N concentrations may not be 

representative of NH3-N levels surrounding bacteria attached to feed 

particles (Czerkawski, 1986). 

Starch flowing to the duodenum (r=,91; P<.01) and ruminal starch 

digestibility (r=.91, P<.01) were highly correlated to flow and 

digestion of true OM; therefore, OM will not be discussed. Differences 

in starch flow to the duodenum and ruminal starch digestibility were 

small (P>.10). Starch digestibility(%) tended to be greater for HY2 

(76.4) and lower for Cl (64.9) than for other sorghum hybrids. 

Somewhat lower (353.6 g/d) starch intake for HY2 may have resulted in 
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the higher starch digestibility. Low ruminal NH3-N levels may have 

limited ruminal starch digestibility (Weakley, 1983); however, ruminal 

NH3-N was not correlated to ruminal starch digestion (r=-.08; P=.77). 

Previous reports have suggested significant differences, although 

small, in ruminal starch digestibility among several p~reline sorgh~m 

varieties (Streeter et al., 1989b) and several hybrids (Hibberd et al., 

1985; Streeter et al., 1989c). However, Waldo (1973) suggested large 

variation in ruminal starch digestibility of sorghum grain among 

literature reports. Perhaps the similarity of grain endosperm (color) 

in our study may explain the lack of large differences noted in ruminal 

starch digestibility among the grains tested. 

When ruminal starch digestion was expressed as a percent of total 

starch digestion, Y2 (95.3%) was greater (P<.10) than Yl (83.6), C2 

(81.2) and Cl (79.0), with HYl (90.5) and HY2 (90.7) not different 

(P>.10) from Y2 or Yl. The importance of the rumen as a site of 

sorghum grain starch digestion is further emphasized by the strong 

correlation between ruminal starch digestibility and total tract starch 

digestibility (r=.76; P<.001). This relationship may be of greater 

importance for sorghum grain than other cereal grains, because sorghum 

starch escaping ruminal digestion may be heavily encapsulated in a 

protein matrix that may limit intestinal starch digestion (Harbers and 

Davis, 1971; Sullins and Rooney, 1974). 

Non-NH3 N flowing to the duodenum (g/d) was greater (P<.10) for 

HYl (132.3) than for C2 (116.2), with Yl (120.0), Y2 (124.8) and Cl 

(125.4) not different (P>.10) from HYl or Cl. All sorghum grain 

hybrids had greater (P<.10) NAN flow to the small intestine than HY2 

(100.4). Although differences in feed N flowing to the small intestine 
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tended to reflect NAN flow, NAN flow was correlated more strongly 

(r=.79; P<.001) to microbial N flow than to feed N flow (r=.45; P<.10) 

to the duodenum. Microbial N flowing to the duodenum was not different 

(P>.10) due to hybrid and averaged 73.1 g/d. However, HYl (77.3) 

tended to be greater and HY2 (68.3) tended to be less than other 

hybrids. More (P<.10) HYl (58.3 g/d) feed N reached the duodenum than 

Yl (48.7), C2 (43.3 or HY2 (39.0) feed N, with Y2 (51.8) and Cl (49.6) 

not different from HYl, Yl or C2. Feed N digestibility within the 

rumen and escape of N from ruminal degradation reflected differences in 

feed N flow to the duodenum. HY2 (65.3) had greater (P<.10) feed N 

digestibility (%) than Yl (56.8), Cl (56.5), Y2 (55.2) and HYl (48.8), 

with C2 (62.6) not different (P>.10) from HY2, Yl or Cl. Conversely, 

feed N escape of ruminal degradation (%) was greater (P<.10) for HYl 

(68.3) than for Cl (58.0), YI (57.9), C2 (50.1) and HY2 (46.2), with Y2 

(59.6) not different (P>.10) from Cl and YI. Cl and YI were greater 

(P<.10) than HY2, but not different (P>.10) from C2. Hibberd et al. 

(1985) reported 69% of dry rolled sorghum grain N escaped ruminal 

degradation, while Theurer (1979) noted 58% of dry rolled sorghum grain 

N escaped ruminal degradation. 

The protein and starch fractions in sorghum grain adhere more 

tightly than in corn (Rooney and Pflugfelder), particularly in the 

peripheral endosperm. Therefore, Rooney and Riggs (1971) and Wagner 

(1984) have postulated a relationship between the peripheral endosperm 

content of sorghum grains and ruminal starch digestibility. 

Additionally, scanning electron microscopy observations by several 

workers (Seckinger and Wolf, 1973; Harbers and Davis, 1974; Hoseney et 

al., 1974; Sullins and Rooney 1974) indicate that protein barriers may 
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limit both microbial and enzymatic starch degradation. In our study 

daily feed N flow (g/d) to the duodenum was positively correlated to 

starch flow to the duodenum (r=.48; P<.06) and negatively correlated to 

ruminal starch digestibility (r=-.46; P<.08). Correlations supporting 

the hypothesis that protein encapsulation of starch granules limits 

starch digestibility have not been noted previously. Perhaps 

relationships in other reports involving specific hybrids or varieties 

of sorghum grain have not been observed because of bird resistant 

types, processing methods or corn included as dietary treatments. 

Efficiency of microbial protein production (g of microbial N/kg OM 

truly fermented) ranged from 18.8 (Cl) to 15.6 (HY2); however, 

differences in the efficiency of microbial protein production (MOEFF) 

were not noted (P>.10). Duodenal chyme flow was highly correlated 

(r=.76; P<.001) to MOEFF. Owens and Issacson (1977) noted that MOEFF 

can be enhanced by increasing liquid dilution rate in vitro. Recently, 

Froetschel et al. (1989) utilized slaframine to stimulate salivary flow 

and liquid dilution rate, noting a linear increase in MOEFF with 

increasing liquid dilution rate. In our study, MOEFF was only weakly 

correlated to liquid dilution rate (r=.34; P=.22) and particulate 

passage rate (r=-.12; P=.64). 

Pre-Cecal Digestion. Chyme flow past the ileum (Table 18) ranged 

from 16.l (Yl) to 12.3 (C2) and averaged 14.3 liters/d. Chyme flow was 

negatively correlated to ruminal (r=-.63; P<.05), pre-cecal (r=-.57; 

P<.05) and total tract (r=-.54; P<.05) starch digestibility. 

Correlations may result from low pre-cecal starch and OM digestibility, 

with chyme being comprised of total liquid and solid matter, but also 
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may indicate that the rate of chyme flow limits the extent of starch 

digestion. 

Starch flowing to the cecum (r=.96; P<.001) and pre-cecal starch 

digestibility (r=.94; P<.001) were highly correlated to OM; hence, only 

starch will be discussed. Cl (1165.2) tended (P>.10) to have greater 

starch flow to the cecum (g/d) than other sorghum hybrids. Pre-cecal 

starch digestibility was not different (P>.10) among sorghum hybrids, 

averaging 76.2%, but HYI (79.6) tended (P>.10) to have greater pre

cecal starch digestibility (%) than Cl (69.5), with other grains being 

intermediate. Streeter et al. (1989b) noted greater pre-cecal starch 

digestibility for sorghum grain varieties with a waxy compared to a 

normal endosperm; however, Hibberd et al. (1985) and Streeter et al. 

(1989c) noted no difference in pre-cecal starch digestibility among 

non-bird resistant sorghum hybrids with a normal endosperm. Pre-cecal 

starch digestibility (%of intake) was strongly correlated to (r=.69; 

P<.01) ruminal starch digestibility, while being less strongly 

correlated (r=.41; P=.12) to starch digestion within the small 

intestine. This indicates that the rumen accounts for the majority of 

pre-cecal starch digestion, yet grains tended to be ranked in the same 

order both in the rumen and in the small intestine. Pre-cecal starch 

digestibility may have been limited by protein encapsulation of starch 

granules (Rooney and Pflugfelder, 1986). Non-NH3 N (r=-.55; P<.05) and 

feed N flow (r=-.39; P=.14) to the duodenum tended to be negatively 

correlated to pre-cecal starch digestibility, while starch flow to the 

cecum tended to be positively correlated with NAN flow (r=.54; P<.05) 

and feed N flow (r=.39; P=.13) to the small intestine. The combination 

of NAN and feed N correlations with pre-cecal starch digestibility 
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suggests that protein encapsulation of starch granules reduced pre

cecal starch digestion in our study. Protein encapsulation of starch 

granules may inhibit the rate at which amylase contacts starch 

granules. When expressed as a percent of total starch digestion, pre

cecal starch digestibility was greater (P<.10) for Y2 (101.4), YI 

(95.3) and HYI (85.0) than for Cl (84.4), with C2 (91.4) and HY2 (91.2) 

not different (P>.10) from YI, HYI or Cl. Pre-cecal digestion of 

starch may be more efficient than fermentation in the large intestine. 

Flow of NAN to the cecum ranged from 48.8 (C2} to 58.2 (Cl), 

averaging 54.0 g/d. Pre-cecal NAN digestibility (%) was greater 

(P<.10) for C2 (57.8) than for HYI (50.2) and Cl (49.8), with YI (54.2) 

and Y2 (53.0) not different (P>.10) from C2, HYI or HY2 (55.2). 

Greater (P<.10) pre-cecal NAN d~gestibility was noted for HY2 than for 

CI. Hibberd et al. (1985) noted no difference in pre-cecal NAN 

digestibility among a hetero-yellow, a red and a bird resistant 

sorghum hybrid. Streeter et al. (1989b), however, noted greater pre

cecal NAN digestibility for two non-bird resistant sorghum grain 

varieties compared with two bird resistant types. 

Feed N flow to the duodenum was positively correlated to NAN flow 

to the cecum (r=.72: P<.01) and negatively correlated to pre-cecal NAN 

digestibility (r=-.66; P<.01). This may indicate that feed N, 

primarily of sorghum origin,_ is less digestible in the small intestine 

than microbial N. Neudoerffer et al. (1971) concluded that microbial 

protein was more digestible than protein in cereal grains. Extensive 

escape of poor quality feed N from ruminal digestion may reduce starch 

digestion in the small intestine, not only through protein shrouding of 

starch granules, but also by limiting the supply of essential amino 
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acids available for absorption and amylase synthesis. Johnson et al. 

(1977) suggested that panc'.eatic amylase concentrations can be enhanced 

in response to high starch diets only when an adequate supply of 

essential amino acids are fed to non-ruminants. Streeter et al. 

(1989c) hypothesized that protein quality could limit enzymatic starch 

digestion of sorghum grain. 

Digestion in the Intestine. Differences in the small intestine 

were small, but tended to reflect ruminal observations (Table 19). 

Starch disappearance from the small intestine ranged from 357.0 (Yl) to 

131.6 (HY2) and averaged 263.1 g/d. Starch digestibility in the small 

intestine (%of entry) was very low and not different (P>.10) among 

sorghum hybrids. However, Yl (25.4%) and C2 (25.2%) tended to have 

greater starch digestibility within the small intestine than Cl (5.6) 

and HY2 (4.6), with Y2 (16.9) and HYl (16.8) intermediate. When 

expressed as a percent of dietary starch intake, starch digestibility 

in the small intestine was extremely low for all sorghum hybrids, 

ranging from 3.1 to 9.9%. Owens et al. (1986) developed a regression 

equation allowing the estimation of gain to feed ratio (G:F) from 

starch digestibility in the rumen and small intestine (G:F=.159 x 

ruminal digestibility+ .227 x small intestinal starch digestibility; 

r2=.60; SEy.x=.006). Estimated G:F for HYl (.133) and Y2 (.132) tended 

to be greater than for Cl (.114), with other grains closer to HYl and 

Y2 than Cl (Figure 5). 

Starch flow (g/d) to the duodenum was weakly correlated (r=.33; 

P=.18) to starch disappearance from the small intestine. Owens et al. 

(1986) noted a correlation of .77 across several trials involving 

processed and dry rolled corn and sorghum grains. Owens et al. (1986) 
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suggested that the strong correlation between starch flow to the small 

intestine and disappearance of starch from the small intestine 

indicated that physiological factors probably did not limit the extent 

of starch digestion. A much weaker correlation was noted in our study. 

This may have resulted from protein shrouding of starch granules as 

previously stated, or increased chyme flow. In our study, starch 

disappearance (r=.53; P<.05) and starch digestibility as a percent of 

starch entry (r=.45; P<.07) or as a percent of starch intake (r=.56; 

P<.05) were positively correlated to duodenal chyme pH. A chyme pH 

below that optimal for amylase activity has been investigated as a 

factor reducing pancreatic amylase activity (Armstrong and Beaver, 

1969; Orskov et al., 1970) and starch digestion in the small intestine. 

However, Remillard and Johnson (1984) infused amylase into the jejunum 

with and without additional buffer, but failed to enhance starch 

digestion in the small intestine. Therefore, it is unclear if our 

correlation between duodenal chyme pH and digestion of starch in the 

small intestine is real or an artifact. 

Starch digestion in the small intestine (%of intake) tended to be 

negatively correlated (r=-.42; P<.10) to ruminal starch digestibility. 

Owens et al. (1986) noted a stronger negative correlation (r=-.75) 

between ruminal starch digestibility and starch digestion in the small 

intestine. A negative correlation may indicate that easily accessible 

starch is extensively degraded in the rumen; hence, starch flowing to 

the small intestine contains more limit dextrins or core starch than 

native grain starch presented to the rumen. Support for this 

hypothesis has been noted by Froetschel et al. (1989), where a linear 

decrease in ruminal starch digestion, resulting from increased liquid 
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dilution rate, linearly increased post-ruminal starch digestion. 

However, the large intestine could have accounted for compensatory 

post-ruminal starch digestion (Hibberd et al., 1985; Streeter et al., 

1989b) noted by Froetschel et al. (1989). 

Difference in NAN disappearance (g/d), partial digestibility (%of 

entry) and digestibility (%of intake) in the small intestine were 

small (P>.10). When partial NAN digestibility was expressed as a 

percent of total NAN digestion, HYI (138.9) was greater (P<.10) than Cl 

(109.5), YI (107.4), C2 (102.8) and HY2 (79.6), with HY2 less (P<.10) 

than all hybrids except C2. Y2 (119.4) was not different ((P>.10) for 

HYI, Cl, Yl or C2. Values are greater than 100% because NAN flow to 

the duodenum exceeded N intake, indicating extensive N recycling to the 

rumen (Kennedy and Milligan, 1980). Values greater than 100% could 

also result from urea-N recycling to the large intestine. A strong 

positive correlation (r=.69; P<.01) was detected between microbial N 

flow to the duodenum and partial NAN digestibility in the small 

intestine, while a weak negative correlation (r=-.33; P=.21) was noted 

between feed N flow to the duodenum and partial NAN digestibility in 

the small intestine. Additionally, microbial N flow to the duodenum 

was more strongly correlated (r=.88; P<.001) and feed N flow to the 

duodenum much less strongly correlated (r=.17;P=.52) to NAN 

disappearance from the small intestine than observed for partial NAN 

digestibility. These correlations further support the concept that 

microbial N is more digestible in the small intestine than feed N. 

Perhaps a larger portion of NAN disappearing from the small intestine 

is of microbial origin than feed origin. 
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Differences in starch and NAN digestion in the large intestine 

were small (Table 20). The combination of starch, OM and NAN 

disappearance and partial digestibilities tended to be indicative of 

starch fermentation; however differences were less consistent than 

those observed by Hibberd et al. (1985) and Streeter et al. (1989b). 

Starch disappearance from the large intestine averaged 200 g/d, only 

slightly less than observed within the small intestine (263 g/d). 

In summary, sorghum grain hybrids differed in site and extent of 

starch and N digestion, with differences in N larger than for starch. 

Nitrogen digestion may have varied among sorghum hybrids because of 

different parental varieties. Because starch digestibility was 

generally positively correlated to N digestibility and starch granules 

may have been embedded in poorly digestible protein, larger differences 

in starch digestibility may be observed with greater DMI or increased 

particulate passage rate. 
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Sorghum 
hybrid 

Yl and Y2 

Cl and C2 

HYl and HY2 

TABLE 13 

DESCRIPTIVE CHARACTERISTICS OF 
SORGHUM GRAIN HYBRIDS 

Seed Coat Endosperm 
color color 

yellow homozygous yellow 

white heterozygous yellow 

red heterozygous yellow 
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Endosperm cross 

yell ow x yell ow 

white x yell ow 

white x yell ow 



TABLE 14 

INGREDIENT COMPOSITION OF EXPERIMENTAL DIETS 

Ingredient 

Grain 
Cottonseed hulls 
Molasses 
Supplement 

Urea 
Calcium carbonate 
Dicalcium phosphate 
Potassium chloride 
Sodium sulfate 
Trace mineralized salt 
Chromic oxide 
Vitamin A premixa 

a2200 IU/kg OM. 

% of OM 

81. 2 
12.0 
3.0 

1.0 
.93 
.44 
.57 
.36 
.25 
.20 
.05 
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TABLE 15 

CHEMICAL AND PHYSICAL CHARACTERISTICS OF 
SORGHUM GRAIN HYBRIDS AND COMPLETE 

MIXED FEEDS (DM BASIS) 

Item Yl Y2 Cl C2 HYl 

Grain 
CP 9.5 10.5 9.7 9.7 9.6 
Starch 79.9w 76.1YZ 78.4wx 77.4XY 74.4z 
ADF 7.3 6.9 9.6 6.1 9.0 
NaCl soluble nitrogen, 

% of total N 26.7 23.2 23.6 

12.5 

22.0 

10.8 

19.6 

12.2 
Pepsin insoluble nitrogen, 

% of total N 11.1 12.5 

HY2 SE 

10.3 .15 
76.8xy .69 
11.2 1.91 

22.3 1.57 

11.5 .57 
Berry size, 

g/100 berries 2.22b 2.13b l.98c 2.6la 2.52a 2.18b .030 
Berry volume, 

µl/berry 18.obc 16.5cd 15.5d 20.oab 20.5a 17.5cd .58 
Density, g/ml 1.24 1.29 1.28 1.32 1.24 1.25 .032 

Feed 
CP 11.3 11.5 11.5 11.4 11.4 ll.6b .15 
Starch 59.5a 59.8a 60.2a 59.4a 59.8a 55.2 .98 
ADF 13.6 12.0 12.6 13.l 12.6 12.1 .65 

Particle Size 
5,656 µm .3 .3 .1 .1 .2 .1 .07 
2,828 µm 22.9YZ 24,4YZ 30.6Y 16.5z 30.9Y 44.lx 4.28 
1,414 µm 74.2XY 73,3XY 67.4Y 81.9x 66.oY 52.8z 4.21 

707 µm 1.0 1.5 1.3 1.4 1.8 1.9 .32 
354 µm .4 .3 .2 .1 .4 .6 .17 
177 µm .4 .2 .3 .2 .6 .5 .13 

Geometric mean diameter (GMO), 
µm 1,670 1,654 1,712 1,566 1,702 1,866 54.1 

abcMeans in the same row with different superscripts differ 
(P<.05*. 

w YZMeans in the same row with different superscripts differ 
(P<.10). 
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TABLE 16 

EFFECT OF SORGHUM GRAIN HYBRID 
ON TOTAL TRACT DIGESTION 

Item Yl Y2 

Fecal output, 
kg/d 6.9Y 7.7xy 

Fecal pH 5,74YZ 6.02X 

Cl C2 

7.4xy 6.8Y 
5.78xyz 5.66z 

HYl 

8.0x 
5.92xy 

HY2 SE 

.40 

.104 
Feces, g/d 

OM l,966xyz 2,24lwx 2,102wxy l,84lyz 2,266w l,697z 119.6 
Starch 740.8 d 857.5 b 709.7b 622.ld 772.0 
Total N 50.9cd 56.7ab 54.6bc 49.0 d 61.la 
Non-NH3 N 50.3c 55.9a 53.8 c 48.5c 60.4a 

537.9d 99.65 
48. 9 d 1. 98 
48. 2 1. 98 

Total tract digestibility, % 
OM 67.9xy 62.8z 64.9YZ 

~~~~~hN ~~:~ab ~i:~cd ~~:~be 
Non-NH3 N 56.2ab 51.8cd 53,5bc 

Total tract disappearance, g/d 
OM 4092XY 3753Z 3887YZ 
Starch 3049 2894 3076 
N 64.lxy 59.oY 61.2Y 
Non-NH3 N 64.8xy 59,3YZ 62.oY 

69.8x 
83.4 
57.7a 
58.la 

4263x 
3166 

67.0X 
67.5x 

62.6z 
80. ld 
47.5d 
48.2 

3762z 
3068 

54.9z 
55.6z 

71.4x 
84.2 
57.6a 
58.2a 

4254X 
2891 

67. lx 
67.8x 

abcMeans in the same row with different superscripts differ 
(P<.05). 

xyzMeans in the same row with different superscripts differ 
( P< .10). 

1.88 
2.45 
1. 53 
1. 54 

121. 3 
116. 5 

2.23 
2.26 
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Item 

TABLE 17 

EFFECT OF SORGHUM GRAIN HYBRID 
ON RUMINAL DIGESTION 

YI Y2 Cl C2 HYI HY2 

Intake, g/d 
OM 
Starch 
Total N 
Non-urea N 

6,059 6,004 5,989 6,104 6,027 5,951 
3,790 3,752 3,786 3,789 3,794 3,428 

115.0 115.6 115.6 115.9 115.7 115.7 
85.8 86.8 86.8 86.7 86.6 87.2 

Ruminal pH 
Ruminal NH3 N, 

6.06 6.00 5.98 6.00 6.07 6.13 

mg/dl 4.89 6.02 4.31 3.86 3.82 3.45 
Particulate rate of passage, 

%/h 4.51 4.02 5.12 3.56 4.19 4.71 
Liquid dilution rate, 

%/h 3.94 3.85 4.62 4.36 4.60 4.21 
Duodenal 

chyme pH 2.51 2.55. 2.59 2.55 2.46 2.46 

SE 

10.7 
64.2 

.21 

.16 

.046 

.876 

.730 

.330 

.054 
Entering the duodenum, q/d 

Chyme, liters 55.7Y2 64.7x 58.6xy 55_3YZ 63.8x 51.6z 3.60 
Total OM 3,176 2,912 3,197 3,087 3,253 2,700 227.2 
Microbial OM 1,231 1,262 1,309 1,260 1,336 1,181 104.6 
Feed OM 1,945 1,651 1,888 1,827 1,916 1,519 198.5 
Starch 1,231 991 1,329 1,215 1,113 799 155.1 
Total N 124.oXY 128.9XY 129.5XY 120.2Y 136.lx 103.6z 6.86 
Non-NH3 N 120.oXY 124.8XY 125.4XY ll6.2Y 132.3x 100.4z 6.79 
Microbial N 71.2 73.0 75.8 72.9 77.3 68.3 6.05 
Feed N 48.7Y 51.8xy 49.6xy 43,3YZ 58.3x 39.0z 4.14 

Ruminal digestibility, % 
OM (true) 67.5 72.2 68.2 70.1 67.7 74.0 3.25 
Starch 67.1 73.1 64.9 67.7 69.9 76.4 4.09 
Feed N 

Total N 56.8xy 55.2YZ 56.5XY 62.6wx 48.8z 65.3w 3.26 
Non-urea N 42.lxy 40.4yz 42.oXY 49.9wx 31.7z 53.7w 4.32 

Ruminal escape 
of feed N, % 57_9xy 59.6wx 58.oXY 50.1Yz 68.3w 46.2z 4.32 

True efficiency of microbial protein production, g MP/kg OM 
truly fermented 17.5 16.7 18.8 17.2 18.7 15.6 1.74 

Ru~~~!1 0~igestibil66:7b3 ~f6~~~a1 1~~:~5ti~~o.1b 109.oab 104.ob 3.80 
Starch 83.6YZ 95_3x 79.oz 81.2Z 90.5xy 90.7XY 4.06 

abcMeans in the same row with different superscripts differ 
(P<.05). 

xyzMeans in the same row with different superscripts differ 
(P<.10). 
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TABLE 18 

EFFECT OF SORGHUM GRAIN HYBRID 
ON PRE-CECAL DIGESTION 

Item Yl 

Leaving ileum, g/d 
Chyme, 

liters 13.4 16.1 
OM 2,119 2,186 

Starch 874 761 
Total N 54.1 55.8 
Non-NH3 N 52.8 54.6 

Pre-cecal digestibility, % 

Y2 Cl 

15.6 
2,556 
1,165 

59.4 
58.2 

C2 

12.3 
2,078 

865 
49.6 
48.8 

OM 65.2 63.8 57.5 65.6 
Starch 77.0 77.9 69.5 76.4 
Total N 53.1 52.0 48.8 57.0 
Non-NH N 54.2XYZ 53.oXYZ 49.8z 57.8x 

Pre-cecai digestibility, % of total digestion 
OM 95.8xyz 101.9XY 87.7z 94.lYZ 
Starch 95.3xy 101.4x 84.4z 91.4yz 
Total N 95.7 102.0 92.7 99.6 

HYl 

15.4 
2,142 

782 
59.0 
58.0 

64.8 
79.6 
49.2 
50.2Yz 

Non-NH3 N 96.6YZ 102.7XY 93.4z 100.oXYZ 

103.3x 
95.oXY 

104.0 
104.7x 

HY2 

12.9 
1,949 

779 
52.9 
51. 9 

SE 

1.35 
189.1 
178.6 

2.83 
2.70 

66.9 2.94 
76.9 3.79 
54.4 2.24 
55.2xY 2.13 

93.8YZ 3.48 
91. 2YZ 4. 02 
93.8 3.38 
94.2z 3.24 

abcMeans in the same row with different superscripts differ 
( P<. 05). 

xyzMeans in the same row with different superscripts differ 
(P<.10). 
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TABLE 19 

EFFECT OF SORGHUM GRAIN HYBRID ON DIGESTION 
IN THE SMALL INTESTINE 

Item Yl Y2 Cl C2 HYl HY2 SE 

Disappearance in the small intestine, g/d 
OM 1,057 727 640 1,009 1, 110 751 166.1 
Starch 357.0 244.3 163.7 350.0 331.5 131.6 151.81 
Total N 70.0 73.1 70.2 70.4 78.8 54.6 5.88 
Non-NH3 N 67.2 70.2 67.2 67.4 76.0 52.2 5.89 

Digestib1l ity in the small intestine: 
% of entry 

OM 32.4 23.6 19.0 30.5 32.4 24.0 4.47 
Starch 25.4 16.9 5.6 25.2 16.8 4.6 13.44 
Total N 55.3 . 56. 4 54.1 58.2 57.8 52.8 2.44 
Non-NH3 N 54.9 55.8 53.5 57.6 57.2 52.0 2.49 

% of intake 
OM 18.0 12.4 11.0 16.3 19.0 12.6 2. 71 
Starch 9.9 7.3 4.6 8.7 9.7 3.1 4.08 
Total N 62.0 62.8 60.5 61.0 69.1 47.9 5.33 
Non-NH3 N 59.5 60.3 58.0 58.4 66.6 45.8 5.33 

% of total digestion 
OM 25.4 19.5 16.9 23.4 29.7 17.7 4.28 
Starch 11.8 8.7 5.4 10.1 4.6 4.5 4 .19 
Total N 113 .3Y 125.6xy 116.0Y 108. lyz 145. 8X 84.1 z 11.01 
Non-NH3 N 107.4Y 119.4xy 109.5Y 102.8YZ 138.9x 79.6z 10.91 



Item 

Disappearance 

TABLE 20 

EFFECT OF SORGHUM GRAIN HYBRID ON DIGESTION 
IN THE LARGE INTESTINE 

Yl Y2 Cl C2 HYl 

in the large intestine, g/d 

HY2 SE 

OM 152.6 43.7 454.1 236.5 2.1 252.2 '132.75 
Starch 133.5 -9.7 455.5 243.3 136.2 242.2 122.66 
Non-NH3 N 2.5 -1.3 4.3 .2 -2.4 3.8 2.01 

Digestibility in the large intestine: 
% of entry 

OM 6.3 2.7 15.2 9.1 -5.9 12.8 5.94 
Starch 1.4 - .1 36.8 18.2 -7.4 26.8 18.68 
Non-NH3 N 3.9 -3.2 7.0 - .1 -4.7 5.7 3.60 

% of intake 
OM 2.7 .6 7.4 4.2 - .1 4.4 2 .10 
Starch 3.8 -.5 11.8 7.0 3.8 7.3 3.21 
Non-NH3 N 2.0 -1. 2 3.6 .4 -2.0 3.0 1. 73 

% of total digestion 
OM 4.2 .8 12.3 5.9 .3 6.2 3.48 
Starch 4.7 -1.0 15.6 8.6 5.1 8.8 4 .14 
Non-NH3 N 3.4 -2.7 6.6 - .1 -4.7 5.8 3.24 

abcMeans in the same row wtth different superscripts differ 
(P<.05~. 

x ZMeans in the same row with different superscripts differ 
(P<.10). 
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CHAPTER VII 

SUMMARY 

Experiment 1 

A double L-shaped intestinal cannula was designed in an attempt to 

overcome some of the problems observed with other types of cannulae. 

The cannula was constructed from cyclopolyvinyl chloride water pipe and 

fittings. Despite rigid construction, connecting split cannula pieces 

with elastic castration bands provided some flexibility and permitted 

easy installation and removal. Mechanical disturbance to the cannula 

was reduced by exposing only a short cone shaped barrel to the exterior 

of the body surface. 

Experiment 2 

To compare the effect of sorghum grain hybrids and corn on site 

and extent of digestion, four current sorghum hybrids (yellow, cream, 

hetero-yellow and red and commercially purchased corn were dry rolled 

and fed in an 85% grain diet to Angus-Hereford steers (241 kg) equipped 

with permanent ruminal and duodenal and ileal double L type intestinal 

cannulae. Yellow (yel) has a homozygous yellow endosperm, with a 

yellow seed coat; whereas, cream and hetero-yellow (het-yel) have a 

heterozygous yellow endosperm with white and red seed coats, 

respectively. Red has a homozygous white endosperm with a red seed 
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coat. Diets were fed at 2% of body weight (OM basis) in a 5X5 Latin 

square. Total tract starch digestibility (%) was greater (P<.05) for 

corn (92.5) than for red (84.3), yel (84.3) and het-yel (82.9), but not 

greater than (P>.10) cream (87.9). Ruminal starch digestibility (%) 

was greater (P<.10) for corn (85.8) than for all sorghum hybrids 

(69.1). Pre-cecal starch digestibility(%) was greater (P<.05) for 

corn (90.6) than het-yel (76.2), red (74.8) and yel (74.1) but not 

different (P>.10) from cream (82.5). The small intestine tended to be 

a more important site of starch digestion (% of total tract digestion) 

for het-yel (11.0), red (10.4), and cream (9.8) than for corn (5.1) or 

yel (4.6). Ruminal escape of feed N (%)was greater (P<.10) for red 

(79.9) than het-yel (69.2), cream (66.5) and yel (66.1) while corn 

(53.6) was less than (P<.10) all sorghum hybrids. Pre-cecal non-NH3 N 

(NAN) digestibility and total tract NAN digestibility were not altered 

(P>.10) by sorghum grain hybrid and corn . Sorghum hybrid altered site 

and extent of starch digestion and ruminal escape of feed N in cattle. 

Corn was more digestible than all sorghum grain hybrids except cream. 

Experiment 3 

Studies of ruminal dry matter disappearance in vitro (IVDMD) and 

gas production in vitro (GP), involving amyloglucosidase and yeast, 

were conducted to compare eight divergent current sorghum grain hybrids 

and maize. Chemical and physical characteristics of the grains also 

were described. Sorghums included two yellow (Yl and Y2; homozygous 

yellow endosperm, with a yellow seed coat), two cream (Cl and C2; 

heterozygous yellow endosperm, with a white seed coat), two hetero

yellow (HYl and HY2; heterozygous yellow, with a red seed coat), one 
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red (R; homozygous white endosperm, with a red seed coat) and one bird 

resistant (BR; white endosperm, with a brown seed coat containing 

condensed tannin) hybrids. Maize (29.7%) contained more (P<0.05) 

sodium chloride soluble protein (NaCl-N) than other grains except Yl 

(26.7%). BR contained more pepsin insoluble nitrogen and less NaCl-N, 

and had smaller berries of greater density (P<0.05) than other grains. 

BR (26.9%) had lower (P<0.05) and maize (51.8%), had greater (P<0.05) 

IVDMD than other sorghum hybrids. Yellow hybrids were 1.9% more 

digestible than cream hybrids and 6.2% more digestible than hetero-

yel low hybrids. YI (42.2), Y2 (42.2), Cl (421.0) and HYI (41.9) had 

greater (P<0.05) IVDMD than HY2 (37.2), with C2 (40.8) being 

intermediate (P>0.05). BR and HYI had greater (P<0.05) and maize 

(253.3) had less (P<0.05) 12-hour GP than other grains. The estimated 

first order rate constant for starch digestion was highest (P<0.05) for 

BR and lowest (P<0.05) for maize. The rate of starch degradation among 

sorghum hybrids of common endosperm and seed coat color differed, with 

C2, HYI and YI tending to have a greater rate of GP than R, while HY2, 

Cl and Y2 tended to have a lower rate of GP than R. When hybrids with 

a yellow endosperm were averaged within endosperm and seed coat color 

no advantage was noted for homozygous or heterozygous yellow endosperm. 

However, sorghum grain with a yellow endosperm (homozygous or 

heterozygous) tended to have greater starch availability than R, and 

parental varieties altered starch availability within endosperm types. 

Experiment 4 

To compare the effect of two yellow (YI and Y2), two cream (Cl and 

C2) and two hetero-yellow (HYI and HY2) sorghum grain hybrids on site 
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and extent of digestion sorghum grain was dry rolled and fed in an 81% 

grain diet to Angus-Hereford steers (342 kg) equipped with ruminal, 

duodenal and ileal double L type intestinal cannulae. Yellow grains 

had a homozygous yellow endosperm and a yellow seed coat,cream and 

hetero-yellow grains had a heterozygous yellow endosperm, with a white 

and red seed coat, respectively. Diets were fed at 1.85% of body 

weight (OM basis) in a 6x6 Latin square. Total tract OM digestibility 

(%) was greater (P<.10) for HY2 (71.4) and C2 (69.8) than for Cl 

(64.9), Y2 (62.8) and HYl (62.6), but was not different (P>.10) from Yl 

(67.9%). Total tract starch digestibility was correlated (r=.80; 

P<.001) to OM digestibility. Total tract non-NH3 N (NAN) digestibility 

(%) was greater (P<.05) for HY2 (67.8) and C2 (67.0) than for Cl 

(62.0), Y2 (59.8) and HYl (55.6), but was not different (P>.10) from Yl 

(64.8). Ruminal starch digestion was negatively correlated (r=-.46; 

P<.08) to feed N flow to the duodenum. When ruminal starch digestion 

was expressed as a percent of total digestion, Y2 (95.3) was greater 

(P<.10) than Yl (83.6), C2 (81.2) and Cl (79.0), but was not different 

from HY2 (90.7) or HYl (90.5). Greater (P<.10) escape of feed N from 

ruminal degradation (%) was noted for HYl (68.3) and Y2 (59.6) than for 

C2 (50.1) and HY2 (46.2), with Cl (58.0) and Yl (57.9) not different 

from C2 or Y2. Pre-cecal starch digestibility averaged 76.2% and was 

more strongly correlated to ruminal starch digestibility (r=.69; P<.01) 

than to starch digestion in the small intestine (r=.41; P=.12). 

Microbial N flow to the duodenum was strongly correlated (r=.88; 

P<.01), while feed N flow to the duodenum was weakly correlated (r=.17; 

P=.52) to fractional NAN digestibility in the small intestine. Hybrids 
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differed in site and extent of NAN digestion but, no clear advantage 

was observed for homozygous versus heterozygous yellow endosperm. 

General Observations 

Experiments indicated that further research is needed to identify 

sorghum grain hybrids that have a feeding value comparable to corn. 

Sorghum hybrids with a yellow endosperm appear to be more digestible 

than hybrids with white endosperm; however, homozygous yellow endosperm 

was less digestible than heterozygous yellow endosperm in experiment 2. 

If sorghum hybrids with a homozygous yellow endosperm have an advantage 

over those with heterozygous yellow endosperm it would appear to be 

small based on results obtained in experiment 4. Perhaps higher feed 

intake would amplify the small differences in starch digestibility 

observed among hybrids in experiment 4. In vitro hybrids with yellow 

endosperm hybrids were more digestible than the single white endosperm 

hybrid included in the study. Reasons for much greater in vitro 

digestibility of some hybrids with yellow endosperm compared to others 

may be an important area for future research. 

Differences in parental varieties probably result in differences 

among hybrids. While we have attempted to quantify differences between 

hybrids, these differences may have been confounded with berry size. 

The impact berry size may have on sorghum grain digestibility is 

unknown. Perhaps future research should partition various berry sizes 

from a single sorghum grain hybrid and compare digestive qualities of 

berries of different size, but common genetic background and growing 

environment. 
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