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Chapter I 

INTRODUCTION 

Chapters II and III of this thesis are separate and complete 

manuscripts for submission to Crop Science. 
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ABSTRACT 

A higher capacity to accumulat~ abscisic acid (ABA) may promote 

higher photosynthetic water use efficiency (WUE) in wheat if stomatal 

closure occurs without a decrease in mesophyll capacity for 

photosynthesis. Gas exchange characteristics were compared in intact 

leaves of low-ABA and high-ABA spring wheat selections following a 

single application of ABA (Sxlo-5 M) or polyethylene glycol (-1.3 MPa). 

The latter was used to induce water deficits. Bulk-leaf ABA content was 

significantly higher in high-ABA selections than low-ABA selections 

under water stress. Photosynthetic capacity, determined by measuring 

net COz assimilation (A) as a function of leaf internal COz 

concentration (Ci), was significantly higher in low-ABA than high-ABA 

selections under well-watered or water-stressed conditions, and 

following ABA application. Stomatal conductance (gs) and photosynthetic 

capacity decreased following exogenous ABA or water stress treatments, 

and the magnitude of the reduction in A was similar for both ABA 

selection classes. Exogenous ABA treatment did not significantly 

increase WUE. In contrast, gs decreased more than A under water stress 

so that WUE increased, and high A was an expression of high WUE under 

water stress. The difference between ABA classes in WUE, however, was 

not significant. The lower A observed in high-ABA than low-ABA 

selections under water stress or with exogenously supplied ABA was 

attributed to lower photosynthetic capacity and a slightly greater 

(P<0.10) decrease in gs. These results suggested mesophyll capacity for 

photosynthesis largely determined WUE in these ABA selections. Aside 

from the reduction in gs, there was no indication that higher ABA 

accumulation further limited A under water stress. 
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Information on physiological limitations to photosynthesis under 

water stress is needed to improve photosynthetic water use efficiency 

(WUE) and drought stress resistance in wheat (Triticum aestivum L.). 

Stomatal conductance and mesophyll capacity for photosynthesis are two 

principal components in regulation of net COz assimilation rate (A), WUE 

(the amount of carbon assimilated compared to the amount of water 

transpired) and plant resistance to water stress (Farquhar and Sharkey, 

1982). Stomatal conductance is determined by stomatal frequency and the 

degree of stomatal closure, while mesophyll capacity is determined by 

the amount and activity of enzymes involved in COz assimilation 

(Sharkey, 1985; Bradford et al., 1983). If stomatal conductance 

declines and A remains relatively high the leaf internal COz 

concentration will decrease and a steeper COz gradient from ambient air 

to inside the leaf will result in increased WUE (Johnson et al., 1987a; 

Dubbe et al., 1978) 

It is generally accepted that stomatal closure under water stress 

is mediated by the phytohormone, abscisic acid (ABA) (Raschke, 1987). 

Increased synthesis of ABA occurs in response to leaf water stress 

(Cornish and Zeevaart, 1985), and increased bulk-leaf ABA content in 

wheat leaves is usually associated with decreased stomatal conductance 

under water stress (Nordin, 1976; Quarrie and Jones, 1979). Therefore, 

a high potential for ABA accumulation might promote higher WUE of wheat, 

providing stomatal conductance is the main limiting factor to A under 

water stress. This hypothesis is refuted if the reduction in A 

associated with leaf water deficits results from decreased mesophyll 

capacity for photosynthesis rather than a limitation imposed by stomata 
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alone (Sen Gupta and Berkowitz, 1987). 

Results of Dubhe et al. (1978) showed exogenously supplied ABA 

increased WUE in several crop plants, because reductions in 

transpiration were greater than reductions in A. In that study, stomata 

were more sensitive (they closed sooner) to increasing C02 concentration 

in plants supplied with ABA than in untreated plants. This response to 

exogenous ABA suggests ABA accumulation and subsequent stomatal closure 

might optimize WUE, especially under severe drought conditions (Dubbe et 

al., 1978). Similarly, exogenous applications of ABA to leaves of the 

flacca tomato mutant and its normal parent resulted in decreased 

stomatal conductance, while A and mesophyll capacity for photosynthesis 

were only marginally reduced (Bradford et al. 1983). However, recent 

evidence suggests ABA supplied through the transpiration stream of wheat 

decreased mesophyll capacity, in addition to causing stomatal closure 

(Raschke and Hedrich, 1985). The biochemical basis for ABA limitation 

to mesophyll capacity for photosynthesis is not completely understood, 

but the mechanism likely involves suppression of carboxylation of 

ribulose bisphosphate (RuBP) by the enzyme ribulose bisphosphate 

carboxylase-oxygenase (Rubisco) (Seeman and Sharkey, 1987; Fischer et 

al., 1986). 

Gas exchange experiments were conducted using spring wheat lines 

selected divergently for their capacity to accumulate ABA in detached 

and partially dehydrated leaves (Quarrie, 1981). Our objective was to 

determine the relationship between ABA accumulation potential and WUE 

under water stress. Exogenously supplied ABA was also used to verify 

reported effects of ABA on photosynthesis in intact leaves. The ABA 

supplied exogenously would be expected to be predominantly in the 
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apoplast, where ABA is thought to be active in mediating stomatal 

closure following stress-induced release from the mesophyll (the 

presumed site of ABA synthesis) (Cornish and Zeevaart, 1985; Cowan et 

al., 1978) Field studies comparing differences between these wheat 

selections in yield, water relations and crop water use efficiency under 

drought stress have been reported elsewhere (Innes et al., 1984; Quarrie 

and Lister, 1983; Quarrie, 1983). To our knowledge, there are no 

studies comparing the difference between low and high ABA wheat 

selections in leaf gas exchange characteristics and limitations to A 

under water stress. 
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MATERIALS AND METHODS 

Seed of 20 low-ABA and 20 high-ABA selections derived from a single 

cross between two hexaploid spring wheat lines differing twofold in 

bulk-leaf ABA accumulation potential, were obtained from the Insititute 

of Plant Science Research, Cambridge, UK. The 40 selections were shown 

to have heritable differences in ABA accumulation potential based on a 

detached leaf test (Quarrie, 1981). Plant material for this present 

study was selected based on a detached leaf test (S.A. Quarrrie, 

personal communication, 1986), and consisted of three low-ABA selections 

and four high-ABA selections. Average bulk-leaf ABA contents were 364 

and 750 ng g-1 fresh wt for the low-ABA and high-ABA selection classes, 

respectively, (unpublished data). Seeds were pregerminated and 

individually transplanted into 0.60 L pots containing a washed, coarse 

sand. Plants were grown in a growth chamber with day/night temperatures 

of 22/15°C (65/75% RH) and 14 h of light (600 µmol photons m-2 s-1 PAR 

at pot level) supplied by fluorescent and incandescent bulbs. Plants 

were watered every other day and fertilized weekly with 50% Hoagland's 

solution. Light-saturated (1800 µmol photons m-2 s-1) rates of steady

state gas exchange were measured on the most recent, fully expanded leaf 

blade of the main-stem. 

Experiment One 

To determine the effect of exogenously supplied ABA on net C02 

assimilation rate (A) of intact leaves, one low-ABA and one high-ABA 

selection were grown under well-watered conditions for 42 d. A 5xlo-5 M 

solution was prepared by dissolving 10.58 mg of racemic ABA (Cat. No. A-

1012, Sigma Chemicals, St. Louis, MO) in 2 ml methanol and diluting with 

distilled water to 2 L. The solution was adjusted to pH 6.0 with NaOH 
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and stored at 4°C in the dark. Treated plants were irrigated once with 

150 ml of the ABA solution, while control plants were irrigated with 

distilled water adjusted to pH 6.0. Gas exchange measurements were made 

24 h following treatment with ABA. The response of A to leaf internal 

C02 concentration (Ci) was measured to determine stomatal and 

nonstomatal limitations to A. Rates of A were determined on flag leaves 

at ambient C02 concentrations of 5, 40, 73, 123, 198, 330, 416, 513 and 

648 µL L-1, which gave a similar range of Ci values. To obtain the 

desired ambient C02 concentrations and relative humidity, dry (dew 

point= -15° C) gases of 770 and 0 µL C02 L-1 (210 µL 02 L-1) were mixed 

in a stirred, temperature and humidity controlled reaction chamber 

(cuvette) described by Johnson et al. (1987a). Leaves were measured at 

22°C leaf temperature and a dew point of 8°C (60% RH; VPD=l.5 kPa). 

Steady-state conditions at each of the 9 ambient C02 concentrations were 

usually attained within 30 min. Values for transpiration rate, stomatal 

conductance to water vapor (gs), A and Ci were calculated according to 

van Caemmerer and Farquhar (1981). WUE was calculated as the ratio of A 

to transpiration rate. Immediately following gas exchange measurements, 

leaf area (one surface) of the measured leaf was determined using a leaf 

area meter (LI-3000, Li-Car, Inc., Lincoln, NE). Leaf relative water 

content (RWC) was determined from a fully expanded leaf of another 

tiller on the same plant used for gas exchange. The leaf was excised 

and fresh, turgid (a minimum of 20 h rehydration in distilled water) and 

dry (70°C for 3 d) weights were determined for calculation of percent 

RWC. The stomatal limitation to A and in vivo carboxylation efficiency 

(CE, the initial slope of the linear portion) was calculated for each A 
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vs. Ci curve as outlined by Farquhar and Sharkey (1982). The first five 

points above the C02 compensation point (the Ci value where A=O) were 

used in calculating the initial slope. Measured values of C02 saturated 

A (Amax, the curve plateau) were also obtained from each A vs. Ci curve. 

Experimental design was a randomized complete block with four 

replications. One complete block of 4 plants were measured on each of 

four days. 

Bulk-leaf ABA content was measured on a center section (ca. 0.1 g 

fresh wt) from each lamina used for gas exchange. The leaf section was 

cut into square pieces (ca. 4.0 mm2) and transferred to a 10x75 mm 

disposable centrifuge tube. Tubes were cooled on dry ice, and stored at 

-70°C. An enzyme-linked immunosorbent assay (ELISA) was used for 

quantification of physiologically active, unconjugated ABA [2-cis(+)

ABA] in diluted leaf extracts (Idetek Inc., 1986). Standard solutions 

were prepared by dissolving racemic ABA in methanol and diluting with 

Tris-buffered saline (TBS: 25 mM Tris, 100 mM NaCl, 1 mM MgCl2, pH 7.5). 

Leaf tissue was homogenized over ice using 1 ml 80% aqueous methanol (pH 

7.0, containing 100 mg L-1 BHT: butylated hydroxytoluene). Extraction 

was done in 4 ml 80% aqueous methanol for 24 h in the dark at 4°C. The 

homogenate was spun for 15 min at 9000xg to purify the extract. The 

supernatant (0.5 ml) was reduced to dryness under vacuum using a 

centrifuge concentrator and resuspended with TBS to give an appropriate 

dilution of leaf extract. Sample concentration was determined by 

comparison to a standard curve developed from triplicate assays of known 

ABA concentration. Bulk-leaf ABA content was reported as ng ABA g-1 

fresh wt. 
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Experiment Two 

The relationship between bulk-leaf ABA content and leaf gas 

exchange characteristics under water stress was determined in three low

ABA and three high-ABA selections. The six selections showed earliness 

in heading date under greenhouse conditions in Stillwater, OK. Plants 

were grown under well-watered conditions for 56 d. In water-stressed 

treatments, plants were irrigated with 150 ml of a polyethylene glycol 

(PEG, avg. MW=8000) solution 48 h prior to sampling. Osmotic potential 

of the PEG solution was -1.3 MPa based on psychrometeric determinations 

and based on previous results (J.J. Read, unpublished data), gs 

decreased by 50% following a 48 h stress period. The amount of PEG 

needed in water for a -1.3 MPa solution was calculated from a polynomial 

regression equation (Michel, 1983). The response of A to varying levels 

of Ci was measured on flag leaves. Dry gases of 0 and 918 µL C02 L-1 

were mixed in the cuvette to obtain ambient C02 concentrations of 5, 40, 

75, 126, 214, 340, 427, 540 and 655 µL L-1, which gave a range of Ci 

values. Measurement conditions were 24°C leaf temperature, and a dew 

point of 12°c (50% RH, VPD=l.7). Following gas exchange measurements, 

leaf area and bulk-leaf ABA content of the measured leaf were determined 

as previously described. For each ABA selection, two determinations of 

RWC were made; one from the measured leaf, and one from a fully expanded 

leaf of another tiller. Calculations of transpiration rate, A, gs, Ci 

and WUE at each ambient C02 concentration were made as previously 

described. Stomatal limitation to A, CE and Amax for each A vs. Ci 

response curve were also calculated as described. Experimental design 

was a randomized complete block with four replications. Plants within a 

well-watered or a water-stressed treatment were measured in a single 
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day, and the measurement order was randomized with respect to water 

treatment and ABA selections. Data were analyzed using analysis of 

variance and variation among ABA selections was partitioned into 

components representing ABA classes (low and high ABA accumulation) and 

selections within classes. 

Experiments Three and Four 

Two independent experiments (Exp. 3 and 4) were conducted to 

determine if differences in gas exchange characteristics between the ABA 

classes under water stress resulted from a difference in the degree of 

water stress or leaf age (plant maturity). Plant material consisted of 

the same six ABA selections as above. To obtain leaves of equal 

morphological age in both low-ABA and high-ABA classes it was necessary 

to establish seedlings of low-ABA selections 10 d earlier than the high

ABA selections. Water stress treatments were applied as previously 

described when main-stem penultimate leaves were fully expanded (Exp. 

3), and when main-stem flag leaves were fully expanded (Exp. 4). 

Penultimate leaves in Exp. 3 were measured 7 d earlier than the flag 

leaves in Exp. 4. Steady-state gas exchange measurements were made at 

an ambient C02 concentration of 340 µL L-1. Measurement conditions for 

leaf temperature and dew point were as described in Exp. 2. Following 

gas exchange measurements, leaf cutter psychrometers (Merrill Specialty, 

Logan, UT) were used to excise one 0.24 cm2 leaf disc from the center of 

the lamina used for gas exchange and two discs from a fully expanded 

leaf of another tiller. Psychrometer chambers were equilibrated for 2 h 

in a 30 °c water bath and wet bulb depression was determined using a 

microvolt meter (Wescor HP-115, Logan, UT). Microvolt readings from 
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individually calibrated psychrometers were used for calculation of leaf 

water potential (WP). Means of the three samples per plant were used in 

analysis of variance. The tiller leaf used to sample two leaf discs for 

water potential was used for RWC determination. Each experiment was 

designed as a randomized complete block with four replications. One 

complete block of 12 plants were measured on each of four days for each 

experiment. 
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RESULTS AND DISCUSSION 

Experiment One 

As expected, exogenously supplied ABA resulted in significantly 

higher bulk-leaf ABA content and decreased gs (Table 1). With the 

reduction in gs, there was a significant increase in RWC from 92% in 

control plants to 95% in ABA treated plants. Higher bulk-leaf ABA 

content was associated with a significant decrease in A at ambient COz, 

but the stomatal limitation to A and WUE was not significantly affected. 

The reduction in A was paralleled by decreased gs so that the stomatal 

limitation to A and WUE did not change. Similarly, Raschke and Hedrich 

(1985) found A and gs declined in synchrony and to the same degree after 

feeding ABA (10-5 M) through the transpiraton stream of detached wheat 

leaves, resulting in a small decrease in Ci. 

The significant drop in Ci, which was associated with decreased gs, 

suggests C02 supply to the mesophyll was a limitation to A (Sharkey, 

1985). However, the reduction in CE (inferred from the initial slope of 

the response curve) and C02 saturated A (Amax, measured A at Ci above 

340 µL L-1) suggested an additional limitation to A in plants fed ABA 

resulted from damage to the internal photosynthetic system. Fischer et 

al. (1986), observed that in addition to stomatal closure, ABA (10-4 M) 

fed to detached leaves of Xanthium strumarium L. limited A by decreasing 

CE and Amax. They found inhibition of A could not be reversed by 

adjusting Ci to the level that occurred before ABA application, thus 

leaves of ABA treated plants were unable to use the available C02. 

Although they were unable to fully explain the mechanism for ABA 

limitation to mesophyll photosynthesis in whole leaves, the pool size of 

RuBP did not decrease while 3-phosphoglycerate levels were reduced after 



reduced after ABA treatment suggesting inhibition of the carboxylation 

of RuBP by Rubisco. 
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In control plants, A at ambient COz was significantly higher in the 

low-ABA than the high-ABA selection, and this resulted in higher WUE 

(Table 1). The higher A of the low-ABA selection was associated with a 

slightly higher CE, while Amax was the same in both ABA selections 

(Fig. la). The ABA selections did not differ in WUE when ABA was fed 

exogenously to plants, but A remained lower in the high-ABA selection. 

The lower A in the high-ABA than the low-ABA selection after feeding 

with ABA could occur through decreased gs, thereby limiting COz supply 

to the mesophyll. However, because the difference between selections in 

Ci was not significant, non-stomatal factors (lower mesophyll capacity 

for photosynthesis) were probably involved in lower A of the high-ABA 

selection. This was supported by the lower CE and the lower Amax in the 

high-ABA selection when fed ABA (Fig lb); the difference in Amax was 

significant at P<0.10. Interpretation of these results using the model 

of Farquhar et al. (1980) suggests lower A in the high-ABA selection 

after exogenous ABA treatment may have resulted from decreased CE in 

association with the lower initial slope. The amount or activity of 

Rubisco has been shown to correlate with CE in bean (Phaseolus vulgaris 

L.) leaves (von Caemmerer and Farquhar, 1981). Lower Amax of the high

ABA selection suggests the capacity for RuBP regeneration was lower 

after exogenous ABA treatment. Decreased RuBP regeneration may occur at 

the same time Rubisco activity is decreased and is thought to depend 

among other things on the capacity for photosynthetic electron 

transport. Although there is evidence supporting the above 



interpretation (Sharkey, 1985), verification of the difference between 

ABA selections in limitations to mesophyll capacity for photosynthesis 

when fed ABA would require determination of biochemical factors 

involved. 

Experiment Two 
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When the response of A to Ci was measured in three low-ABA and 

three high-ABA selections under well-watered or water-stressed 

conditions, differences among selections within an ABA class were not 

significant (P>0.05) for any gas exchange parameter. Under well-watered 

conditions and at ambient COz, A and WUE were significantly higher in 

the low-ABA than the high-ABA class (Table 2). The higher A was 

associated with higher CE and Amax (Fig. 2a). There was no difference 

between ABA classes in gs under well-watered conditions, but Ci was 

significantly lower in the low-ABA class. For the same gs, higher 

mesophyll capacity for photosynthesis would result in a reduction in Ci 

and the steeper COz gradient from ambient air to inside the leaf would 

tend to increase A and WUE (Johnson et al., 1987a). 

PEG-induced water stress significantly (P<0.001) reduced RWC of the 

secondary stem leaf and the main stern leaf. There was no significant 

(P>0.30) difference between ABA classes (avg. RWC=80%, data not shown) 

in RWC of the measured, main stem leaf (inside the cuvette) , but RWC of 

the secondary stern leaf was lower in the high-ABA class than the low-ABA 

class (Table 2). The reduction in plant water status led to 

significantly (P<0.001) lower A at ambient COz. In contrast to 

exogenously supplied ABA, the reduction in gs in response to water 

stress was greater relative to the reduction in rnesophyll capacity for 

photosynthesis, so that stornatal limitation to A and WUE increased 
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significantly (P<0.01) under water stress. Nevertheless, Ci decreased 

11% in the low-ABA class and 15% in the high-ABA class while A decreased 

by ca. 43% in both ABA classes. Thus, nonstomatal factors (inhibition 

of mesophyll capacity for photosynthesis) were a dominant limitation to 

A under water stress. A number of factors involved in both the light 

and dark reactions of photosynthesis are involved in determing mesophyll 

capacity for photosyntheisis (Sharkey, 1985). 

As under well-watered conditions (Fig. 2a), higher A in the low-ABA 

class under water stress was associated with a significantly higher CE 

and Amax (Fig 2b). Bulk-leaf ABA content was the same in both ABA 

classes under well-watered conditions, but it was 50% higher in the 

high-ABA class than the low-ABA class under water stress (Table 2). 

Higher ABA accumulation in response to water stress was associated with 

a significantly lower gs, and the ABA class by water treatment 

interaction was significant (P<0.10) for gs. Although this stomatal 

response to bulk-leaf ABA content was anticipated, there was no evidence 

that higher ABA accumulation in the high-ABA class under water stress 

resulted in increased stomatal limitation to A. For stomatal limitation 

to increase substantially under water stress, gs must decline to a 

greater extent than mesophyll capacity for photosynthesis, so that Ci 

decreases, but the shape and magnitude of the A vs. Ci response curve 

remains fairly stable (Sharkey, 1985). Our results showed Ci and 

mesophyll capacity declined to a similar degree in both ABA classes so 

the difference between ABA classes in stomatal limitation to A did not 

change in response to water stress. Although Ci and WUE did not differ 

between ABA classes under water stress, WUE remained higher in the low-



ABA class in association with higher A and gs (Table 2). There was a 

negative correlation measured between Ci and WUE (r=-0.87*, sig. at 

P=0.05) suggesting low Ci is an expression of high WUE. 
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The higher A of the low-ABA class could result from stomatal 

factors, nonstomatal factors or a combination. We suspect that 

maintenance of higher A in low-ABA selections under water stress was to 

a large extent the result of positive coupling between gs and mesophyll 

capacity for photosynthesis. Wong et al. (1985), have shown that gs and 

A decreased to the same extent when mesophyll capacity for 

photosynthesis decreases in response to certain environmental stresses, 

including water deficit, such that Ci remains nearly constant. Their 

results suggest alterations in stomatal conductance in response to water 

stress are not completely independent of the mesophyll capacity for 

photosynthesis (Farquhar and Sharkey, 1982; Cowan et al., 1982). 

Although the precise mechanism for this physiological coupling is not 

completely understood, this coordinated response of gs and mesophyll 

capacity to water stress appears to explain why Ci remains fairly stable 

in wheat leaves with the decline in leaf water potential (Johnson et al. 

1987a). This positive coupling may also be involved with genotypic 

differences in A observed among wheat accessions (Johnson et al., 

1987b). Although Ci at ambient C02 did not remain constant, Ci 

decreased less than A or gs in response to water stress (Table 2). 

Results suggested gs is slightly more sensitive in high-ABA than 

low-ABA selections when ABA is fed exogenously or synthesized in 

response to water stress. There was also a slightly greater increase in 

WUE in the high-ABA than the low-ABA class in response to water stress 

(Table 2). It is possible that lower RWC in the high-ABA class caused 
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gs to decrease more than mesophyll capacity for photosynthesis. 

However, lower gs cannot fully account for the increased WUE since the 

magnitude of the difference between ABA classes in stomatal limitation 

to A was similar under well-watered or water-stressed conditions. The 

magnitude of the decline in CE was smaller in the high-ABA class than 

the low-ABA class in response to water stress (interaction sig. at 

P<0.10), which could account for the slightly greater increase in WUE in 

response to water stress in the high-ABA class than the low-ABA class 

(19% vs. 5%, respectively, sig. at P<0.15). Similarly, a significantly 

(P<0.05) greater increase in WUE under water stress was observed in 

penultimate leaves of the high-ABA class than the low-ABA class in Exp. 

3, but as in Exp. 2 the difference between ABA classes in WUE was not 

significant (Table 3). 

Experiments Three and Four 

When gas exchange was measured at ambient COz in flag and 

penultimate leaves of comparable morphological age in each ABA class, 

WUE was significantly higher in the low-ABA than the high-ABA class 

under well-watered conditions (Table 3). Higher WUE was associated with 

significantly lower Ci and lower gs· In flag leaves of the low-ABA 

class, the decreased supply of COz to the mesophyll did not limit A so 

that A was significantly higher than the high-ABA class. WUE remained 

higher in the low-ABA than the high-class for the same value of gs under 

water stress. 

Results were generally consistent with those observed when leaf age 

differed by 10 d. The only apparent affect of matching morphological 

age was the lack of a significantly lower A and gs in the high-ABA than 
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the low-ABA class under water-stressed conditions (Table 3). In 

contrast to Exp. 2, there was no indication that the inability of high

ABA selections to use the available COz was due to a greater degree of 

water stress. The reduction in WP paralleled the decrease in RWC, and 

WP was higher in the high-ABA than the low-ABA class under well-watered 

or water-stressed conditions. The decline in RWC was greater in flag 

leaves of the low-ABA than the high-ABA class, but this did not greatly 

change the difference between ABA classes in WP. These results support 

our contention that higher A under water stress in low-ABA selections is 

a result of the maintenance of a positive coupling between stomatal 

conductance and mesophyll capacity for photosynthesis. 



20 

SUMMARY 

A difference between ABA selections in stomatal sensitivity to 

exogenously supplied or endogenously synthesized ABA was observed. 

Overall, higher bulk-leaf ABA content in response to a PEG-induced water 

deficit resulted in greater reductions in gs than A, so that WUE 

increased. In penultimate leaves of equal morphologicl age, the 

increase in WUE was greater in the high-ABA than the low-ABA class in 

response to water stress. Further studies with these ABA selections are 

needed, perhaps with whole plants, to confirm or deny that higher ABA 

accumulation potential is associated with a moderately greater increase 

in WUE under drought stress. 

Measurements of bulk-leaf ABA content following a 48 h water 

stress period should represent the amount of ABA in equilibrium with 

synthesis and degradation (Raschke, 1987; Cornish and Zeevaart, 1985), 

and does not indicate the location of ABA in the leaf. Therefore, a 

more precise determination of the relationship between lower gs and the 

capacity to accumulate ABA under water stress would require measurements 

of the relative concentrations of ABA in the apoplast and symplast 

compartments (Radin and Hendrix, 1988; Cornish and Zeevaart, 1985). 
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Table 1. Gas exchange characteristics, initial slope, stomatal limitation, and bulk-leaf ABA measured in 
main stem flag leaves of a low-ABA and a high-ABA spring wheat selection fed 5xlo-5 M ABA through the 
transpiration stream of well-watered plants. Secondary stem flag leaves were used for relative water 
content (RWC) determination. 

Treatment ABA 
I . . 1§ or selec-

A:j: § nit1a Stomatal ABA 
comparisoi:i tion Amax gs Ci WUE slope limitation RWC content 

µmol m-2 s-1 mol m-2 s-1 µL L-1 A/Ci % % ng/g fwt 

No ABA Low 23.6 32.4 0.38 222 4.53 0.125 25.5 93.2 60 
High 19.7 28.0 0.39 238 4.05 0.095 23.1 91.5 46 

t NS NS NS 'le t NS NS NS 

+ ABA Low 18.6 25.3 0.27 210 4.79 0.108 24.9 95.8 335 
High 10.8 15.9 0.16 214 4.44 0.060 29.6 95.2 424 

* t 'le NS NS *'le NS NS NS 

No ABA vs. + ABA 'lo"t 'le* ** ')'( NS 'i:'lc NS "i':'I: ;':'!: 

t,*,** Difference between ABA selections significant by the F test at P<0.10, P<0.05 and P<0.01, 
respectively. NS = not significant. 

:j: Measured at an ambient C02 concentration of 330 µL L-1; A, leaf C02 assimilation ; gs, stomatal 
conductance to H20 vapor; Ci, internal C02 concentration; WUE, water use efficiency, mmol C02 mo1-l 
H20· 

§ Amax refers to C02 saturated A (at Ci above 330 µL L-1), while initial slope refers to the linear 
portion (five points) above the compensation point of the A vs. Ci response curve in Fig. 1. 

N 
V1 



Table 2. Gas exchange characteristics, initial slope, stomatal limitation and bulk-leaf ABA measured in 
main stem flag leaves of three low-ABA and three high-ABA spring wheat selections under well-watered and 
water-stressed conditions. Secondary stem flag leaves were used for relative water content (RWC) 
determination. 

Treatment 

Watered 

Stressed 

ABA 
class 

Low 
High 

Low 
High 

A:f: § 
Amax 

µmol m-2 s-1 

31.6 45.4 
25.7 35.4 

'1:-!c 'lo'c 

18.4 26.1 
14.7 20.2 

>'de "lc'i: 

gs Ci 

mol m-2 s-1 µL L-1 

0.57 241 
0.59 259 

NS ** 

0.27 215 
0.22 221 

'le NS 

WUE 

4.23 
3.36 

'lc'lc 

4.44 
4.02 

NS 

I . . 1§ nit1a 
slope 

A/Ci 

0.156 
0.119 

'Ide 

0.108 
0.086 

* 

Stomatal 
limitation 

% 

21.9t 
18.3 

"lc'lc 

29.5 
26.4 

NS 

RWC 

% 

95.6 
95.8 

NS 

85. gt 
78.5 

";'( 

respectively. 

ABA 
content 

ng/g fwt 

52 
71 
NS 

268 
392 

"le·!: 

NS = not *,**'Difference between ABA classes significant by the F test at P<0.05 and P<0.01, 
t significant. 
+ Within a water treatment, differences among selections within an ABA class are significant at P<0.05. 
r Measured at an ambient C02 concentration of 340 µL L-1; A, leaf C02 assimilation; gs, stomatal 

conductance to H20 vapor; Ci, internal C02 concentration; WUE, water use efficiency, mmol C02 mo1-l 
§ H20. 

Amax refers to C02 saturated A (at Ci above 340 µL L-1), while initial slope refers to the linear 
portion (five points) above the compensation point of the A vs. Ci response curve in Fig. 2. 

N 
(J\ 
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Table 3. Gas exchange characteristics, relative water content (RWC) and 
water potential measured in penultimate leaves and flag leaves of three 
low-ABA and three high-ABA spring wheat selections under well-watered 
and water-stressed conditions. 

ABA Water 
Treatment class A§ gs Ci WUE RWC potential 

µmol m-2 s-1 mol m-2 s-1 µL L-1 % MP a 

Penultimate leaf 

Watered Low 29.5 0.41 213t 4. 79 t 93.1 -1. 02 
High 30.1 0.46 226 4.28 93.3 .:0.16 

NS * -;'c'lc *'': NS * 
Stressed Low 19.2 0.21 181 5.90 85.3 -1.56 

High 19.2 0.22 185 5.78 84.0 -1.25 
NS NS NS NS NS -;*: 

Flag leaf 

Watered Low 31.6 t 0.39 t 20of 5. 32 :j: 94.lt -1. 67 
High 29.7 0.43 218 4.51 92.6 -1.43 

* ";'( *-le "'t'c·;'c NS ",'( 

Stressed Low 16. 8 :j: 0.15 149 7.15 78.7 -2.85 
High 16.1 0.17 172 6.24 83.7 -2.41 

NS NS ">'<* -;'c·;'c ,.,,., 'f:.-1:. 

";'( *"'' • Difference between ABA classes significant by the F test at P<0.05 
and P<0.01, respectively. NS = not significant. 

t Within an experiment, the water treatment x ABA class interaction 
t is significant at P<0.05. 

Within a water treatment, differences among selections within an 
ABA class are significant at P<0.05. 

§ Measured at an ambient C02 concentration of 340 µL L-1; A, leaf C02 
assimilation; gs, stomatal conductance to H20 vapor; Ci, internal 
C02 concentration; WUE, water use efficiency, mmol C02 mo1-l H20. 
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FIGURE LEGENDS 

Fig. 1. Assimilation of C02 (A) as a function of internal C02 

concentration (Ci) in flag leaves of a low-ABA and a high-ABA spring 

wheat selection measured under (a) well-watered conditions and (b) 24 h 

following an exogenously supplied ABA (Sxlo-5 M) treatment. Arrows 

indicate the A and Ci values at an ambient C02 concentration of 330 µL 

L-1. Leaves were measured at 1800 µmol photons m-2 s-1, 24°C leaf 

temperature and 210 mL 02 L-1 air. 

Fig. 2._ Average assimilation of C02 (A) as a function of average 

internal C02 concentration (Ci) in flag leaves of three low-ABA and 

three high-ABA spring wheat selections measured under (a) well-watered 

and (b) water-stressed conditions. Arrows indicate the A and Ci values 

at an ambient C02 concentration of 340 µL L-1. Leaves were measured at 

1800 µmol photons m-2 s-1, 24°C leaf temperature and 210 mL 02 L-1 air. 
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ABSTRACT 

Based on its role in stomata! closure under drought stress, the 

phytohormone, abscisic acid (ABA), might be useful as a tool for 

selecting wheat (Triticum aestivum L.) genotypes with improved drought 

resistance. Spring wheat lines selected divergently for low and high 

dehydration-induced ABA accumulation were studied in the field to 

determine if ABA accumulation potential is related to photosynthetic 

water use efficiency (WUE), stable carbon isotope discrimination ( ~) 

and grain yield. Plants were grown in well-watered and drought-
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stressed regimes under a rain shelter. Measurements of net C02 

assimilation rate (A), bulk-leaf ABA content, water potential (WP), and 

relative water content (RWC) were made on fully expanded leaves of 2 

low-ABA and 2 high-ABA selections in 1987 and 1988. Aboveground 

biomass, grain yield, yield components and ~ in kernels were determined 

at maturity. ABA classes did not differ in A, WP or grain yield, 

although yield components differed significantly. The low-ABA class 

tended to have higher WUE than the high-ABA class in association with 

lower stomatal conductance and higher biomass. In 1988, ~ was lower 

(P<0.06) in the low-ABA class than the high-ABA class under drought 

stress. Biomass, grain yield, harvest index and ~ in kernels were also 

determined in 20 low-ABA and 20 high-ABA selections in 1988. Biomass 

and grain yield of the low-ABA class were higher, but harvest index was 

lower compared to the high-ABA class. Biomass decreased more under 

drought stress in the low-ABA class than the high-ABA class. Drought 

resulted in lower ~. but the average difference between ABA classes in 

was not significant in either the watered or stressed regimes. The 

importance of stomatal control in determining grain yield was evidenced 
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by positive correlations of ~ with grain yield, but was not evident in 

gas exchange measurements. Within each ABA class, variation in grain 

yield, biomass, harvest index and ~ among selections was significant, 

and ranking of selections was consistent across water regimes. 

Regression analysis indicated low-ABA selections had a twofold higher 

grain yield per unit increase in L:. than high-ABA selections under 

drought stress. In conclusion, low-ABA selections were more productive 

than high-ABA selections under well-watered or drought-stressed 

conditions. 
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Identification of physiological factors involved in drought stress 

resistance is needed to improve the adapatation of wheat (Triticum 

aestivum L.) to the Southern Great Plains. Selection for lower stomatal 

conductance under water-limited conditions has been suggested as one 

method to improve drought resistance (Jones, 1979; Sinclair et al., 

1984). In wheat leaves, endogenous levels of the phytohormone abscisic 

acid (ABA) increase and stomatal conductance decreases with increasing 

water str~ss (Wright, 1977; Quarrie and Jones, 1979). This suggests 

stomatal closure in response to leaf water stress is mediated by ABA. 

This regulatory function of ABA is well documented (Raschke, 1987). 

Stomatal closure may limit water and carbon dioxide exchange in the 

leaf, but yield reduction of wheat might be minimized by reduced tissue 

dehydration and conservation of soil moisture needed during grain 

filling. 

Reductions in net COz assimilation rate (A) associated with leaf 

water deficits appear to be associated with decreased mesophyll capacity 

for photosynthesis rather than a stomatal limitation alone (Kaiser, 

1987). Consequently, if mesophyll capacity for photosynthesis is not a 

major limitation to A under drought stress, higher ABA accumulation and 

subsequent stomatal closure could increase photosynthetic water use 

efficiency (WUE, the amount of carbon assimilated compared to the amount 

of water transpired) (Farquhar and Sharkey, 1982; Krieg. 1983). 

However, recent evidence suggests exogenously supplied ABA reduces A by 

decreasing mesophyll capacity for photosynthesis along with its effect 

on stomatal closure (Raschke and Hedrich, 1985). The biochemical basis 

of ABA limitation to photosynthesis in the mesophyll is still poorly 

understood (Fischer et al., 1986; Seeman and Sharkey, 1987). 
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Determining if ABA actually improves drought resistance or WUE of wheat 

has been hampered by the lack of genetically related materials varying 

in ABA accumulation, and by the difficulty of measuring WUE in a large 

number of field-grown plants. 

Differences in dehydration-induced ABA accumulation were reported 

in spring wheat genotypes from diverse geographical origins (Quarrie and 

Jones, 1979). Low-ABA lines tended to have higher yields associated 

with higher leaf water potential under well-watered or drought-stressed 

conditions, but the relationship of ABA accumulation to stomatal 

conductance and drought resistance was variable (for a review, see 

Quarrie, 1983). To estimate this relationship with finer resolution, 

lines derived from a single cross were selected divergently for their 

capacity to accumulate ABA (Quarrie, 1981). High-ABA selections had 

higher WUE (expressed as the amount of grain yield per cumulative amount 

of water used) than low-ABA selections when water was withheld for four 

weeks preceeding anthesis (Innes, et al. 1984). Higher water use 

efficiency was attributed to a combination of slightly lower stomatal 

conductance and smaller leaves. 

Carbon isotope discrimination (Li.), which is determined from 

measurements of the ratio of 13c to 12c in plant material, has been used 

to assess genotypic variation in WUE. In the greenhouse, Li. was 

negatively correlated with WUE, and ~ more clearly distinguishd WUE 

differences among three winter wheat genotypes when water was most 

limiting growth than under well-watered conditions (Farquhar and 

Richards, 1984). Grain yield and aboveground biomass of winter wheats 

were positively correlated with ~ under non-limiting water conditions 
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at two locations in Australia (Condon et al., 1987). The relationships 

were similar at the two locations suggesting the expression of /:;:. may be 

under genetic control. In C3 plants, the relationships between WUE, 

grain yield and ~ depend on the observation that ribulose bisphosphate 

carboxylase-oxygenase (Rubisco) discriminates against the heavier stable 

carbon isotope, 13c, in favor of 12c during photosynthesis (O'Leary, 

1988). There are also minor discriminations accompanying C02 diffusion 

into the leaf, but due primarily to Rubisco discrimination against 13c, 

plant material becomes enriched in 12c relative to the air. Farquhar et 

al. (1982), proposed ~ integrates stomata! and photosynthetic behavior 

over the development of the tissue analyzed because the level of 13c 

discrimination by Rubisco decreases as the leaf internal C02 

concentration (Ci) decreases, thereby lowering ~ . Evidence to support 

this theory has been documented in gas exchange studies (Brugnoli et 

al., 1988). Since WUE tends to increase with decreasing Ci, 

.measurements of ~ provide an indirect method of assessing WUE. 

However, differences in mesophyll capacity for photosynthesis and 

stomata! conductance as well as phenological differences and the timing 

and duration of drought stress may complicate this interpretation 

(Farquhar and Richards, 1984; Kirchhoff et al., 1989). 

Higher ABA accumulation may result in greater stomata! closure 

under drought stress, which would lower Ci and increase WUE (and by 

inference, lower the value of ~ ). This would occur if ABA-mediated 

stomata! closure reduces transpiration rate proportionally more than the 

decrease in A. However, if ABA decreases mesophyll capacity for 

photosynthesis and stomata! closure is only a reflection of that 

inhibition, the result is no increase in WUE (that is, ~ may remain 
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unchanged in response to drought stress). Estimates of Ci and WUE from 

leaf gas exchange measurements will accurately describe processes 

occurring over a short time period. However, processes affected by 

drought stress as well as stomatal closure and inhibition of vegetative 

growth may be influenced by high levels of ABA (Quarrie, 1983). For 

example, ABA applied to well-watered spring wheat plants caused 

reductions in leaf growth, epidermal cell size, number of stomata per 

leaf and spikelets per spike (Quarrie and Jones, 1979). Therefore, the 

integrative capability of ~ may provide a more long-term indication of 

the effects of ABA accumulation on stomatal and photosynthetic processes 

than would leaf gas exchange measurements made at several growth stages. 

This research was conducted to determine if wheat lines selected 

divergently for dehydration-induced ABA accumulation differed in leaf 

water relations, WUE, ~ of kernels, aboveground biomass, and grain 

yield under drought stress. 
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MATERIALS AND METHODS 

Experimental materials were 20 low-ABA and 20 high-ABA lines 

selected divergently from a cross between two, hexaploid spring wheat 

lines differing widely in ABA accumulation potential. The 40 selections 

were shown to have heritable differences in ABA accumulation potential 

based on a detached leaf test (Quarrie, 1981). Within each ABA 

selection class, two maturity groups (early and late) and two height 

groups (short and tall) were identified. We conducted a detached leaf 

test using six low-ABA and six high-ABA selections to verify the results 

of Quarrie (1985, personal conununication). Methods used were as 

described by Quarrie (1981). The experiment was completely randomized 

with two replications. Bulk-leaf ABA content was determined using an 

enzyme-linked inununosorbant assay (ELISA) described below. 

Field experiments were conducted over two years (1987 and 1988) at 

the Agronomy Research Station in Stillwater, OK. Soil type was Kirkland 

silt loam (a fine, mixed, thermic Udertic Paleustoll). Nitrogen was 

applied as diammonium phosphate (50 kg N ha-1) prior to planting. 

During the g~owing season malathion (0,0-dimethyl dithiophosphate of 

diethyl mercaptosuccinate) and bayleton [1-(4-chlorophenoxy) -

3,3dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone] were tank mixed and 

applied as required to control aphids and powdery mildew, respectively. 

Experiment One 

Plant materials consisted of four, early maturing selections, two 

initially selected for low-ABA accumulation potential and two for high 

ABA accumulation potential. One tall-statured selection and one short

statured selection were included within each ABA class. Seedlings with 

two to three leaves were transplanted from a greenhouse to the field on 
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13 March 1987 and on 11 March 1988 (day 72 ~nd 70, respectively of the 

year). The four ABA selections were arranged in a randomized complete 

block design with six replications for each of two water regimes. Ten 

plants per ABA selection were spaced 0.10 m apart within 0.9 m rows; 

spaced 0.3 m apart. The spring wheat cultivar, Ciano was used in a one

row border between rows within replications and between water regimes. 

The entire plot area was contained within a rain shelter described by 

Schonfeld et al., 1988. The well-watered regime was hand irrigated 

weekly with a sprinkler. The drought-stressed regime was initially 

irrigated to establish the transplants (usually 2 to 3 d), but water was 

withheld for the remainder of the growing season. 

Pre-harvest data were collected during midday (1100 to 1400 h) on 

identical sampling dates for both well-watered and drought-stressed 

regimes. The first set of samples were taken at stem extension and the 

last set at physiological maturity. Leaves of a single, interior plant 

in each row were measured at 7-d intervals in 1987 and at 14-d intervals 

in 1988, totaling 5 sampling dates in 1987 and 4 sampling dates in 1988. 

Measurements of transpiration, net C02 assimilation rate (A), and 

stomatal conductance to water vapor (gs) were made at a light intensity 

above 800 µmol m-2 s-1 on the youngest, fully expanded leaf blade on the 

main stem. In 1987 the Li-Cor 6000 photosynthesis system was used while 

in 1988 the model 6200 system was used (Li-Cor, Inc., Lincoln, NE). 

Leaves were placed into a 330 mL chamber, which was clamped shut when 

the microclimate was in equilibrium with ambient conditions. A typical 

measurement required 20 s during which time vapor pressure was fairly 

constant. Leaf internal C02 concentration (Ci) was calculated using the 
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starting ambient COz concentration for each observation, typically 340 

µmol mo1-l. Leaf water use efficiency (WUE) was calculated as the ratio 

of A to transpiration. Immediately following gas exchange measurements, 

the section of leaf inside the chamber was transferred to a 10x75 mm 

plastic test tube on dry ice. Total area (one surface) of the leaf was 

determined using a leaf area meter (LI-3000, Li-Cor, Inc., Lincoln, NE). 

A center secton of the leaf (ca. 0.1 g fresh wt) was cut into square 

pieces (ca. 4.0 mm2,), transferred to an opaque, plastic test tube and 

0 
stored at -70 C for quantification of bulk-leaf ABA content. While 

sampling in the field, leaf cutter psychrometers (Merrill Specialty 

Inc., Logan, UT) were used to determine water potential (WP), and its 

components, solute potential (SP) and turgor potential (TP), from a 

fully expanded leaf of another tiller on the same plant used for gas 

exchange measurements. Leaf relative water content (RWC) was determined 

from the leaf sampled for WP. Methods for estimating WP, SP, TP, and 

RWC were as described by Schonfeld, et al. (1988). 

An ELISA technique was used for quantification of physiologically 

active, unconjugated abscisic acid [2-cis(+)-ABA] in diluted leaf 

extracts (Idetek, Inc., 1986). Standard solutions were prepared by 

dissolving the racemic form of ABA (Cat. #A-1012, Sigma Chemicals, St. 

Louis, MO) in methanol and diluting with Tris-buffered saline (TBS: 25 

mM Tris, 100 mM NaCl, 1 mM MgCl2, pH 7.5). Leaf tissue contained in a 

plastic test tube was homogenized over ice using 1 ml 80% aqueous 

methanol (pH 7.0, containing 100 mg L-1 BHT: butylated hydroxytoluene) 

0 
and extracted with 4 ml 80% aqueous methanol in the dark at 4 C for 24 

h. The homogenate was spun for 15 min at 9000xg to purify the extract. 

The supernatant (0.5 ml) was reduced to dryness under vacuum using a 
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centrifuge concentrator and resuspended with TBS to give an appropriate 

dilution of leaf extract. Sample concentration was determined by 

comparison to a standard curve developed from triplicate assays of known 

ABA concentration. Bulk-leaf ABA content was reported as ng ABA g-1 

fresh weight. 

At maturity, four interior plants in each row were cut at the soil 

surface, bagged separately and dried at S0°C for 5 d. Total aboveground 

biomass, number of emerged spikes, number of fertile spikes, number of 

kernels spike-1, dry 'wt kerne1-l and grain yield plant-1 wer~ measured. 

Harvest index was expressed as the ratio of grain yield to aboveground 

biomass. Means of the four plants in each replication were used for 

analysis of variance. Anthesis dates were estimated as day 121, 1987 

and day 117, 1988. Harvest date was day 167 in both 1987 and 1988. 

For carbon isotope determinations, kernels from the four plants were 

combined and dried 70°C for 72 h to a constant weight. Samples were 

ground to a powder using a Cyclone Mill (UDY Corp., Ft. Collins, CO) and 

placed into individual vials. A 0.05 g subsample was used to measure 

stable carbon isotopic composition by mass spectrometry under the 

direction of G.D. Farquhar, Research School of Biological Sciences, 

Australia National University, Canberra, Australia. Kernel 13c 

discrimination ( ~ ) was calculated assuming an isotopic composition of 

the ambient air relative to a Pee Dee Belemnite standard of -8.00 parts 

per thousand. (Farquhar and Richards, 1984). 

Experiment Two 

The complete set of 20 low-ABA and 20 high-ABA selections were 

transplanted on 14 March (day 73) 1988 inside the rain shelter. 
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Selections were randomized in three replications for each of two water 

regimes. Experimental design, water regimes and plant and row spacing 

were the same as in Exp. 1, except each row within a replication 

contained five plants per ABA selection and there were no alternating 

border rows of Ciano. Each water regime was fully bordered with three 

rows of Ciano. Between 1100 and 1400 h on day 124 and 139, water 

relations of well-watered and drought-stressed plants were determined 

from the same 12 ABA selections used in the detached leaf test, 

described above. A fully expanded leaf of a single, interior plant in 

each row was used for determination of WP, SP, TP and RWC as described 

above. At maturity, three interior plants per row were cut at the soil 

surface, bagged and dried. Total aboveground biomass, grain yield and 

harvest index were measured and expressed as the average of three 

plants. Kernels from the three plants in each replication were combined 

for determination of stable carbon isotopic composition and ~ as 

described above. The means of three replications were used in 

regression analyses of grain yield vs. ~ under well-watered or drought

stressed regimes. Anthesis dates were estimated as day 125 and 131, and 

harvest dates were day 166 and 169, for plants in drought-stressed and 

well-watered regimes, respectively. 
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RESULTS AND DISCUSSION 

Experiment One 

Average bulk-leaf ABA content was 347 and 849 ng g-1 fresh wt in 

detached leaves of the two low-ABA and two high-ABA selections, 

respectively. This difference was highly significant (P<0.001) (data 

not presented). Nondehydrated leaves contained 40 ng g-1 fresh wt, 

which is relatively close to field measurements (Table 1). Our results 

concerning detached leaves using ELISA were comparable to other 

measurements of bulk-leaf ABA content using physicochemical techniques 

(Quarrie and Lister, 1983; Quarrie, 1985, personal communication). 

Attached leaves from drought-stressed plants in the field (Table 1) 

accumulated much less ABA than in the detached leaf test. Differences 

between selections within an ABA class were not significant (P>0.05) on 

any sampling day. Leaves of the low-ABA class had ABA contents that 

were equal to or at times higher than leaves of the high-ABA class. 

Thus, it was only in detached leaves from well-watered plants that high

ABA selections had higher bulk-leaf ABA contents than low-ABA 

selections. However, selection for low-ABA accumulation potential based 

on the detached leaf test resulted in wheat lines which generally 

yielded more grain, produced more dry matter and had longer development 

time under well-watered or drought-stressed regimes (Tables 5 and 7). 

Quarrie and Lister (1983) reported leaves of field-grown plants had a 

reduced potential to accumulate ABA in a detached leaf test; bulk-leaf 

ABA content was only 50% higher in high-ABA than low-ABA selections. 

Because ABA is released from mesophyll cells and redistributed in the 

leaf under water stress, bulk-leaf ABA content is determined by rates of 

synthesis and degradation (Cornish and Zeevaart, 1985; Raschke, 1987). 



Greater export of ABA from leaves of high-ABA than low-ABA selections 

was suggested to explain the smaller difference between ABA classes 

observed in attached than detached leaves (Innes et al., 1984). 
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The decline in WP and RWC was greater under drought stress than 

under well~watered conditions, but the magnitude of the decreases were 

similar in 1987 and 1988 (Table 2). In both ABA classes, there was a 

greater reduction in WP in response to drought stress on day 130 in 1988 

than on other days, and this was associated with a relatively large 

bulk-leaf ABA content. Cool, cloudy conditions on day 148 in 1987 

caused a recovery in midday WP of drought-stressed plants. The low-ABA 

class maintained a higher RWC than the high-ABA class in 1988 on day 117 

and 130 in the watered or stressed regime, but on other days, RWC did 

not differ significantly between ABA classes. 

Reductions in A under drought stress were significant (P<0.01) at 

grain filling. Because water regimes were not replicated, tests 

involving water regimes are approximate based on the reps within water 

regime effect as an error term. No significant differences (P>0.05) 

between ABA classes in A were observed at any growth stage in either 

water regime (Table 3). In both years under drought stress, WUE of the 

low-ABA class was higher than the high-ABA class at heading. In 1988, 

this higher WUE was associated with lower stomatal conductance and Ci. 

The low-ABA class tended to have higher WUE than the high-ABA class and 

lower Ci was associated with lower stomatal conductance. Our results 

are contrast with Innes et al. (1984), who found low-ABA slections had 

consistently higher stomatal conductance and lower crop WUE (ca. 8%) 

than high-ABA selections; these traits were expressed most clearly under 
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water-limited conditions. 

'A greater decline in ~ with drought stress was observed in 1988 

than in 1981 (Table 4). The gas exchange measurements also found a 

greater increase in WUE in response to drought stress in 1988 than 1987, 

which was most evident at grain filling (Table 3). Only in the drought

stressed regime in 1988 was ~ significantly (P<0.06) lower in the low

ABA class than the high-ABA class, suggesting lower Ci (and by 

inference, higher WUE) of low-ABA selections. Although, differences 

between ABA classes in Ci and WUE were often significant (Table 3), this 

was apparently not associated with ~ in kernels. However, the 

significantly lower values of Ci in the stressed low-ABA selections in 

1988 was consistent with the smaller value of ~ in those selections, 

and a lack of difference in ~ between selections in 1987 was consistent 

with the lack of variation in Ci in that year. Kirchhoff et al. (1989), 

reported WUE based on gas exchange measurements was similar for two 

cowpea (Vigna unguiculata L.) genotypes under two contrasting water 

regimes, but the genotypes differed significantly in ~ measured in 

leaves. They showed that the inherent difference between genotypes in 

isotopic discrimination associated with carboxylase enzymes could not 

explain genotypic differences in ~ . We were also unable to clearly 

relate gas exchange measurements concerning genotypic differences in WUE 

to ~ values. 

Agronomic data for 1987 and 1988 were pooled over years since only 

the magnitude of the differences between ABA classes changed between 

years. Averaged over years, biomass, grain yield and spikes plant-1 

decreased while kernel weight and harvest index increased under drought 

stress. Differences between ABA classes were generally consistent 
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between water regimes (P>0.30). Grain yield did not differ between ABA 

classes in either the watered or stressed regime, and yield reductions 

under stress were attributed to reductions in spikes plant-1 (Table 5). 

Kernel weight and harvest index were significantly (P<0.01) higher, 

while kernels spike-1 and biomass were significantly lower in the high

ABA class than the low-ABA class. Thus, kernels spike-1 appeared quite 

important to grain yield. Except for grain yield, the yield component 

analyses are comparable to those from the complete set of 40 ABA 

selections grown under a rain shelter at Cambridge, U.K. (Innes et al., 

1984). In that study, surviving tillers of high-ABA selections under 

drought stress contained fewer but larger kernels than low-ABA 

selections. In contrast, they reported high-ABA selections had 

significantly higher (5%) grain yield, and slightly higher (ca. 1%) 

biomass and harvest index than low-ABA selections under full irrigation 

or late drought treatments. 

Experiment Two 

Drought stress resulted in lower WP, but this was not associated 

with a marked reduction in RWC (Table 6). On day 124, WP and TP were 

significantly higher in the low-ABA class than the high-ABA class in the 

drought-stressed regime. 

Harvest index was not affected by drought stress, but it was 

significantly higher in the high-ABA class than the low-ABA class in the 

well-watered or drought-stressed regime (Table 7). Although biomass 

decreased more in the low-ABA class than the high-ABA class under 

drought stress, the low-ABA class maintained a significantly higher 

biomass and grain yield in the watered or stressed regime. This 
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suggests that even though A of single leaves was equal for both ABA 

classes (Table 3), A for whole plants (larger plants with more leaf 

area) may be greater in low-ABA selections than high-ABA selections. 

Stomatal conductance was usually lower in low-ABA selections than high

ABA selections, but this may not be a limitation to grain yield under 

drought stress providing photosynthetic rate or rate of leaf area 

development is higher. Jones (1977) reported stomatal conductance 

measured 7 to 14 d preceeding anthesis was negatively correlated 

(P<0.05) with grain yield of spring wheat in irrigated or drought

stressed regimes. 

Low-ABA and high-ABA classes did not differ in average .6. under 

well-watered or drought-stressed regimes (Table 7). However, variation 

among selections within each ABA class for biomass, grain yield, harvest 

index and .6. was significant (P<0.001). Within each low-ABA and high

ABA class, the water regime by ABA selection interactions were not 

significant for any trait (P>0.10). Gas exchange measurements would 

indicate the low-ABA class should have a lower .6. than the high-ABA 

class because WUE was usually higher, but this was not the case. Thus, 

there was no evidence that wheat lines selected for high ABA 

accumulation had higher WUE under drought stress than those selected for 

low ABA accumulation, providing .6. and WUE are closely linked in 

accordance with the theory of Farquhar et al.(1982). In support of this 

theory, .6. in leaves of pot-grown wheat decreased the most in plants 

which produced the most dry matter per unit of water transpired 

(Farquhar and Richards, 1984). They also reported .6. was lower in 

kernels than in leaves, but .6. values of the two materials were highly 

correlated. 
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Positive correlations were measured between harvest index and ~ 

( **) ( •'•*) in both watered r=0.80 and stressed regimes r=0.77" , but slopes 

of low-ABA and high-ABA selections were not significantly different 

within each water regime (P>0.50). Positive correlations were also 

measured among individual selections for the grain yield vs. ~ 

( ** ) relationship in both the watered r=0.66 , sig at P=0.01 or stressed 

(r=0.87**) regimes (Fig. 1). Large differences in grain yield plant-1 

were associated with relatively small changes in ~ . A shift in the 

regression line toward lower ~ values in response to drought stress was 

associated with decreased grain yields. This suggests Ci (integrated 

over the grain filling period) decreased under drought ~tress, with a 

concomitant increase in WUE, that is, a greater degree of stomatal 

closure was exhibited by the droughted plants in order to maintain a 

yield level comparable to well-watered plants. This is supported from 

gas exchange measurements, which showed WUE was significantly (P<0.01) 

higher at grain filling in 1988 for plants under drought stress than 

under well-watered conditions (Table 3). Martin and Thorstenson (1988), 

found !:::.. and total dry matter of three Lycopersicon species grown 

outdoors in containers declined with decreasing soil moisture, and~ in 

leaves was negatively correlated with season-long WUE (g dry matter 

produced per kg water applied) at high (100%) and intermediate (50%) 

soil moisture levels, but not at a low (25%) moisture level. They also 

reported WUE based on gas exchange measurements increased with 

decreasing soil moisture, but gas exchange measurements of WUE were not 

correlated with season-long WUE of the three Lycopersicon species. 

Within each ABA class, there was no significant (P>0.30) difference 
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between slopes in watered or stressed regimes for the grain yield vs. ~ 

relationship. Only in the stressed regime did the slope and intercept 

of this relationship differ significantly (P<0.05) between low-ABA and 

high-ABA selections (Fig. 2). Regression equations predicted a twofold 

greater increase in grain yield among the low-ABA selections than the 

high-ABA selections for an equivalent increase in ~ under drought 

stress. In wheat grown under non-limiting water conditions, Condon et 

al. (1987) reported positive correlations of aboveground biomass and 

grain yield with !:::.. , which they suggested indicates the importance of 

stomatal conductance in determining both biological yield and grain 

yield. Stomatal conductance and Ci were usually lower in the low-ABA 

than high-ABA selections, while differences between ABA classes in A 

were not significant in the watered or stressed regimes (Table 3). 

This suggests factors in addition to stomatal conductance were involved 

in the relationship between grain yield and !:::.. • At a yield level of 

2.0 g plant-1 or above, low-ABA selections have lower fl values (and by 

inference higher WUE and lower Ci) than high-ABA selections, while at 

grain yields below this the reverse situation is evident. Since grain 

yields were higher than 2.0 g plant-1 in Exp 1. there may be some 

association between leaf gas exchange measurements, which showed lower 

Ci among low-ABA selections under drought stress, and the grain yield 

vs. '3.. relationship in Fig 2. 

Grain yield of low-ABA selections could also be higher than high

ABA selections if leaf mesophyll capacity for photosynthesis is higher. 

For the same relative stomatal conductance, higher mesophyll capacity 

for photosynthesis would result in a lower Ci, and the steeper C02 

gradient from ambient air to inside leaf would tend to raise A and WUE 
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(Farquhar and Sharkey, 1982). Condon et al. (1987) explained on a 

theoretical basis that such a situation would result in negative 

correlations between A and ~ , and could potentially lead to a negative 

correlation between biomass and ~ . A weak negative correlation was 

measured between biomass and ~ in the watered regime (r=-0.39*, sig. at 

P=0.05), but was not significant (r=-0.21) in the stressed regime. This 

suggests selection for low ~ among these ABA selections may not 

necessarily lead to lower biomass, at least under well-watered 

conditions. 
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SUMMARY 

In conclusion, based on measurements of leaf gas exchange and ~ in 

kernels, higher ABA accumulation potential was not associated with 

higher WUE. Greater yield stability in high-ABA selections than low-ABA 

selections was evident from a smaller decrease in average biomass and 

from a smaller decrease in grain yield per unit decrease in ~ under 

drought stress. Yield stability might be of adaptive value to wheat 

grown in a drought-prone enviroment, but low-ABA selections had higher 

aboveground biomass and grain yields than high-ABA selections, and this 

was associated with higher WUE. There was considerable variation among 

the genetically related ABA wheat selections in aboveground biomass, 

grain yield and ~ , but the ranking of ABA selections for these traits 

was consistent across water regimes. This suggests that the expression 

of ~ might be a useful tool in selecting for the optimum combination of 

high grain yield and high WUE among these low and high ABA accumulating 

wheat selections. 

ACKNOWLEDGEMENTS 

The authors wish to thank D.M. Ferris and S.R. Elmenhorst for their 

excellent technical assistance. Thanks are also extended to K.T. Rubick 

and G.D. Farquhar for conducting analyses of carbon isotope composition. 



52 

REFERENCES 

Brugnoli, E., K.T. Rubick, S. van Caenunerer, S.C. Wong and G.D. 

Farquhar. 1988. Correlation between the carbon isotope discrimination 

in leaf starch and sugars of C3 plants and the ratio of intercellular 

and atmospheric partial pressures of carbon dioxide. Plant Physiol. 

88:1418-1424., 

Condon, A.G., R.A. Richards and G.D. Farquhar. 1987. Carbon isotope 

discrimination is positively correlated with grain yield and dry matter 

production in field-grown wheat. Crop Sci. 27:996-1001. 

Cornish, K. and J.A.D. Zeevaart. 1985. Movement of abscisic acid into 

the apoplast in respsonse to water stress in Xanthium strumarium L. 

Plant Physiol. 78:623-626. 

Farquhar, G.D. and R.A. Richards. 1984. Isotopic composition of plant 

carbon correlates with water-use efficiency of wheat genotypes. Aust. 

J. Plant Physiol. 11:539-552. 

------------- , M.H. O'Leary and J.A. Berry. 1982. On the relationship 

between carbon isotope discrimination and the intercellular carbon 

dioxide concentration in leaves. Aust. J. Plant Physiol. 9:121-137. 

------------- and T.D. Sharkey. 1982. Stomatal conductance and 

photosynthesis. Ann. Rev. Plant Physiol. 33:317-345. 

Fischer, E., K. Raschke and M. Stitt. 1986. Effects of abscisic acid 

on photosynthesis in whole leaves: changes in C02 assimilation, levels 

of carbon-reduction cycle intermediates, and activity of ribulose-1,5-

bisphosphate carboxylase. Planta 169:536-545. 



Idetek Inc. 1986. Phytodetek™ monoclonal antibody plate preparation 

and immunoassay procedure. Product Bulletin 3/86 MS0-027. San Bruno, 

CA. Phytodetek. 2 pp. 

53 

Innnes, P., R.D. Blackwell and S.A. Quarrie. 1984. Some effects of 

genetic variation in drought-induced abscisic acid accumulation on the 

yield and water use of spring wheat. J. Agric. Sci. Camb. 102:341-351. 

Jones, H.G. 1979. Stomatal behavior and breeding for drought 

resistance, p. 408-428. In, H. Mussell and R.C. Staples (ed.), Stress 

Physiology in Crop Plants, Wiley Interscience, New York, NY. 

1977. Aspects of the water relation~ of spring wheat 

(Triticum aestivum L.) in response to induced drought. J. Agric. Sci. 

Camb. 88:267-282. 

Kaiser, W.M. 1987. Effects of water deficits on photosynthetic 

capacity. Physiol. Plant. 71:142-149. 

Krieg, D.R. 1983. Photosynthetic activity during stress. Agric. Water 

Manage. 7:249-263. 

Kirchhoff, W.R., A.E. Hall and W.W. Thomson. 1989. Gas exchange, 

carbon isotope discrimination, and chloroplast ultrastructure of a 

chlorophyll-deficient mutant of cowpea. Crop Sci. 29:109-115. 

Martin, B. and Thorstenson, Y.R. 1988. Stable carbon isotope 

composition (ol3c), water use efficiency, and biomass productivity of 

Lycopersicon esculentum, Lycopersicon pennelli, and the F1 hybrid. 

Plant Physiol. 88:213-217. 



O'Leary, M.H. 1988. Carbon isotopes and photosynthesis. BioScience 

38(5):328-336. 

54 

Quarrie, S.A. 1983. Genetic differences in abscisic acid physiology, 

p. 365-419. In, F.T. Addicott (ed.), Abscisic Acid, Praeger Publishers, 

New York, NY. 

------------ and P.G. Lister. 1983. Characterization of spring wheat 

genotypes differing in drought-induced abscisic acid accumulation 

I:Drought-stressed abscisic acitl production. J. Exp. Bot. 34:1260-1270. 

------------ 1981. Genetic variability and heritability of drought

induced abscisic acid accumulation in spring wheat. Plant Cell and Env. 

4:147-151. 

------------ and H.G. Jones. 1979. Genotypic variation in leaf water 

potential, stomatal conductance and abscisic acid concentration in 

spring wheat subjected to artificial drought stress. Ann. Bot. 44:32-

332. 

Raschke, K. 1987. Action of abscisic acid on guard cells, pp. 253-281. 

In, E. Zeiger, G.D. Farquhar and I.R. Cowan (ed.), Stomatal Function 

Stanford Univ. Press, Stanford, CA. 

----------- and R. Hedrich. 1985. Simultaneous and independent effects 

of abscisic acid on stomata and the photosynthetic apparatus in whole 

leaves. Planta 163:105-118. 

Schmidt, J.W. 1983. Drought resistance and wheat breeding. Agric. 

Water Manage. 7:181-194. 



55 

Schonfeld, M.A., R.C. Johnson, B.F. Carver and D.W. Mornhinweg. 1988. 

Water relations in winter wheat as drought resistance indicators. Crop 

Sci. 28:526-531. 

Seeman, J.R. and T.D. Sharkey. 1987. The effect of abscisic acid and 

other inhibitors on photosynthetic capacity and the biochemistry of C02 

assimilation. Plant Physiol. 84:696-700. 

Sinclair, T.R., C.B. Tanner and J.M. Bennett. 1984. Water-use 

efficiency in crop production. BioScience 34(1):36-40. 

Wright, S.T.C. 1977. The relationship between leaf water potential (~ 

leaf) and the levels of abscisic acid and ethylene in excised wheat 

leaves. Planta 134:183-189. 



Table 1. Bulk-leaf ABA content in attached leaves of two low-ABA and 
two high-ABA spring wheat selections under two contrasting water 
regimes in Exp. 1. 

Day of the yr 1987 Day of the yr 1988 
Water ABA -------------------- ------------------
regime class 114 121 135 117 130 

---------- ng ABA g-1 fresh wt ----------

Watered Low 27 52 54 64 64 
High 19 40 60 35 61 

NS )'( NS )'r, NS 

Stressed Low 48 64 107 59 133 
High 37 57 85 45 125 

NS NS * NS NS 

')~ Difference between ABA classes significant by the F test at P<0.05. 
NS = not significant. 
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Table 2. Leaf water potential (WP) and relative water content (RWC) 
of two low-ABA and two high-ABA spring wheat selections under two 
contrasting water regimes in 1987 and 1988. 

Day of 
the yr 

114 

121 

128 

135 

148 

117 

130 

145 

ABA 
class 

Low 
High 

Low 
High 

Low 
High 

Low 
High 

Low 
High 

Low 
High 

Low 
High 

Low 
High 

Well-watered 

WP RWC 

MP a 

-0. 86a~~ 
-0.87a 

-l.27a 
-1. 30a 

-l.19a 
-1. 29a 

-l.73a 
-1. 82a 

-l.13a 
-l.16a 

-0.52a 
-0.45a 

-0.83a 
-0.85a 

-1. lla 
-1. 05a 

% 

89.3a 
89.5a 

90.0a 
88.5a 

93.6a 
94.2a 

85.9a 
85.Sa 

85.0a 
85.Sa 

92. la 
87.3b 

91.Sa 
87.7b 

85.6a 
84.5a 

1987 

1988 

Drought-stressed 

WP RWC 

MP a 

-0.96a 
-1. 02a 

-1. 58a 
-1. 68a 

-1. 48a 
-1. 34a 

-2.27a 
-2.02a 

-1. 70a 
-l.57a 

-0.75a 
-0. 77a 

-1. 69a 
-l.87a 

-l.72at 
-1. 66a 

% 

89.3a 
91.2a 

84.Sa 
84.6a 

88.2a 
85.9a 

77 .Oa 
77 .6a 

72. Sa 
80.6a 

87.4at 
84.5b 

79.2a 
73.Sb 

78.Sa 
77 .4a 

'i': Within a sampling day, column means followed by the same letter are 
not significantly different at P=0.05. 

t Difference between ABA selections within an ABA class are 
significant at P<0.05. 
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Table 3. Gas exchange characteristics of two low-ABA and two high-ABA spring wheat selections 
at three growth stages in 1987 and 1988 under two contrasting water regimes. 

Water 
regime 

ABA 
class 

A§ 

1987 
gs 

1988 1987 
Ci WUE 

1988 1987 1988 1987 1988 

(µmol m-2 s-1) (mol m-2 s-1) ( µmol moi-1) (µmol mmol-1) 

Watered 

Stressed 

Watered 

Stressed 

Watered 

Stressed 

Low 
High 
Low 
High 

Low 
High 
Low 
High 

Low 
High 
Low 
High 

Heading (Day of the year 114, 1987 and 104, 1988) 

15.3at 
18.0a 
15.9a 
15.7a 

19.2a1> 
18. 9af 
20.3a 
19.0a 

0.31a 
0.41a 
0.25a 
0.29a 

·o.40a 
0.42:t 
0.33b 
0.40a 

208a 
220a 
190a 
210a 

233a 
246af 
213b 
242a 

Anthesis (Day of the year 121, 1987 and 117, 1988) 

12.7a 
14.8a 
14.2a 
14.5a 

13.6a 
12.6a 
13. 7a 
13.5a 

0.23bt 
0.32a 
0.24a 
0.27a 

0.24a 
0.25a 
0.18a 
0.22a 

194a 
214a 
200a 
194a 

223} 
238a 
194b 
222a 

Grain filling (Day of the year 135, 1987 and 130, 1988) 

ll.3a 
11.9a 

7.7a 
8.3a 

15.5a 
16.7a 
8.9a 
9.7a 

0.25a 
0.26a 
0.16a 
0.16a 

0.35b 
0.49a 
0.13a 
0.15a 

219a 
221a 
22la 
206a 

226b 
243a 
188a 
196a 

2.37a 
2.24a 
2.63a 
2.32b 

2.27af 
2.07b 
2.29a 
2.20a 

1.58a 
1.55a 
1.30a 
l.28a 

* Within a water regime, column means followed by the same letter are not significantly 
different at P=0.05. 

t Except for A at heading in 1987, the water regime x ABA class interactions are not 
significant at P>0.05. 

2.69a 
2. 29af 
2.86a 
2.21b 

2.28a 
l.85b 
2.58a 
2.00b 

l.18a 
l.05b 
1.48a 
1.39a 

t Difference between ABA selections within an ABA class is significant at P<0.05. 
§ A, C02 assimilation rate; gs, stomata! conductance to H10; Ci, internal C02 concentration; 

WUE, leaf water use efficiency expressed as the ratio of A to transpiration. l/l 
00 



Table 4. Kernel carbon isotope discrimination of two low
ABA and two high-ABA spring wheat selections in 1987 and 
1988 under two contrasting water regimes. 

Water 
regime 

Watered 

Stressed 

ABA 
class 

Low 
High 

Low 
High 

Carbon isotope discrimination 

1987 

----Di. x 103 

17. 77 
17.64 

NS 

17.28 
17.18 

NS 

1988 

17.33 
17.19 

NS 

15.98 
16.47 

t 

t Difference between ABA classes significant by the F test 
at P<0.10. NS= not significant. 
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Table 5. Aboveground biomass, grain yield, yield components and harvest 
index of two low-ABA and two high-ABA spring wheat selections under two 
contrasting water regimes averaged over two years. 

Water ABA Grain Spikes Kernels Kernel Harvest 
regime class Biomass yield /plant /spike weight index 

-- g plant-1 no. ------ mg 

Watered Low 13.02 3.58 5.8 31.1 20.2 0.28 
High 9.98 3.28 5.2 26.3 23.6 0.33 

** NS * -;'(* *";': 'i':'i': 

Stressed Low 7.61 2.58 3.7 32.1 21.1 0.33 
High 6.02 2.38 3.5 25.3 26.8 0.40 

')''* NS NS ** ')':* ..,':"'/: 

-;': !':)'( Difference between ABA classes significant by the F test at , 
P<0.05 and P<0.01, respectively. NS = not significant. 



Table 6. Leaf water potential (WP) and relative water content (RWC) 
of 20 low-ABA and 20 high-ABA spring wheat selections under two 
contrasting water regimes. 

Day of 
the yr 

124 

139 

ABA 
class 

Low 
High 

Low 
High 

Well-watered 
--------------

WP RWC 

MP a % 

-0.66a ,•: nd 
-0.74a nd 

-1. 28a 82.9at 
- l.12a 82.2a 

Drought-stressed 
------------------

WP RWC 

MP a % 

-0.83a nd 
-l.06b nd 

-1. 76a 82. la 
-1. 8la 79.6a 

"i': Within a sampling day, column means followed by the same 
letter are not significantly different at P=0.05. nd= no 
data. 

t Differences among ABA selections within an ABA class are 
significant at P<0.05. 
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Table 7. Aboveground biomass, grain yield, harvest index, and kernel 
carbon isotope discrimination of 20 low-ABA and 20 high-ABA spring 
wheat selections under two contrasting water regimes. 

Water ABA Grain Harvest Carbon isotope 
regime class Biomass yield index discrimination 

--- g plant-1 -- ~x 103 

Watered Low 13.76f 2.66 0.20 17.21 
High 8.54 2.21 0.28 17.21 

** ;':,': ,'<* NS 

Stressed Low 10.30 2.01 0.20 15.99 
High 7.01 1. 74 0.26 16.04 

,.,* t -1<* NS 

t,** Difference between ABA classes significant by the F test at 
+ P<0.10 and P<0.01, respectively. NS= not significant. 
T Water regime x ABA class interaction significant at P<0.01. 
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FIGURE LEGENDS 

Fig. 1. Relationship between grain yield and kernel carbon isotope 

discrimination for 20 low-ABA and 20 high-ABA spring wheat selections. 

Slopes and intercepts for the well-watered regime (r=0.66**, P=0.01) and 

drought-stressed regime (r=O.ss**) are not significantly different at 

P>0.20. 

Fig. 2. Relationship between grain yield and kernel carbon isotope 

discrimination for 20 low-ABA and 20 high-ABA spring wheat selections 

under a drought-stressed regime. Slopes and intercepts for low-ABA 

*~ ~* selections (r=0.89 n, P=0.01) and high-ABA selections (r=0.62' ) are 

significantly different at P<0.05. 
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Table 1. Bulk-leaf ABA content in detached and attached 
leaves of six low-ABA and six high-ABA spring wheat 
selections. 

ABA 
class 

I.D. 
no. 

Low 606 
626 
635 
610 
617 
629 

High 637 
622 
613 
605 
625 
636 

LSD(0.05) 

Low-ABA class mean 
High-ABA class mean 

LSD(0.05) 

Bulk-leaf ABA contentl 
Detached Attached 

-- ng g-1 fresh wt --

2791/ 112t 
311 101 
346 118 
348 129 
357 118 
621 . 99 

499 123 
724 120 
815 281 
827 166 
884 102 
871 186 

547 84 

377 113 
770 163 

224 ** 34 "'Jc"/: 

-;'c* Indicates significant difference by the F test at P<0.01. 
II Differences among selections within an ABA class are not 

significant at P>0.15. 
t Differences among selections within an ABA class are 

significant at P<0.05. 
1 Detached leaves, partially dehydrated to 90% initial 

fresh wt and incubated in the dark at 20°c for 6 h; 
attached leaves, same leaves as those measured in 
Appendix Table 2. 
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Table 2. Gas exchange characteristics, relative water content (RWC), water potential and 
turgor potential measured in leaves of six low-ABA and six high-ABA spring wheat selections 
under well-watered and water-stressed conditions. 

ABA Water Turgor 
Treatment class Al gsc Ci WUE RWC potential potential 

µmol m-2 s-1 mol m-2 s-1 µL L-1 % ------- MPa ------

Watered Low 26.6 0.211 199 4.37 95.1 -0.71 1.15 
High 28.0 0.245 212 4.00 95.1 -0.92 1.04 

NS ** *** ,'de* NS * NS 

Stressed Low 15.6 0.098 162 5.55t 89.2 -1.17 0.74t 
High 20.2 0.135 171 5.28 89.3 -1.37 0.67 

*** -;'c-;'c* *** "i'<-;'c'lc NS ;'c* NS 

~ ** ~~* "• •"" Difference between ABA classes significant by the F test at P<0.05, P<0.01 and 
P<0.001, respectively. NS = not significant. 

t Differences among selections within an ABA class are significant at P<0.05. 
1 Measured at an ambient C02 concentration of 340 µL L-1; A, leaf C02 assimilation; gsc• 

stomatal conductance to C02; Ci, internal C02 concentration; WUE, water use 
efficiency, mmol C02 mol Hzo-1. 
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Table 3. Leaf water potential, water potential components 
(solute and turgor potential) and relative water content of 
low-ABA and high-ABA wheat selections in a well-watered 
regime in 1987 and 1988. 

Day 
of ABA 

year class 

114 Low 
High 

121 Low 
High 

128 Low 
High 

135 Low 
High 

148 Low 
High 

117 

130 

145 

Low 
High 
Low 
High 
Low 
High 

124 Low 
High 

138 Low 
High 

WP SP TP RWC 

--------- MPa ---------- % 

-0.86a~: 
-0.87a 
-1. 27at 
-1. 30a 
-1.19a 
-1. 29a 
-1. 73at 
-1. 82a 
-1.13at 
-1.16a 

-0.52a 
-0.45a 
-0.83a 
-0.85a 
-1. lla 
-1. 05a 

-0.66a 
-0.74a 
-1. 28a 
-1. 12a 

Exp.1, 1987 

-1.73at 
-1. 80a 
-2.00a 
-1. 90a 
-2.29a 
-2.00a 
-2.45a 
-2.42a 
-2.27a 
-2.23a 

Exp. 1, 1988 

-1.76at 
-1. 60a 
-1. 83a 
-1. 60a 
-2.31at 
-2.lOa 

Exp. 2, 1988 

-2.04a 
-2.02a 
-2.12a 
-2.17a 

0.86at 
0.93a 
0.76at 
0.59a 
1.12a 
0. 72b 
0.73a 
0.60a 
1.14a 
1.07a 

1.24a 
1.12a 
1.00a 
0.75b 
1.19a 
1.05a 

1. 37a 
1. 29a 
0.89a 
0.99a 

89.3a 
89.5a 
90.0a 
88.5a 
93.6a 
94.2a 
85.9a 
85.8a 
85.0a 
85.8a 

92.la 
87.3b 
91.8a 
87.7b 
85.6a 
84.5a 

nd 
nd 

82.9alf 
82.2a 

",'( 
Within a sampling day, column means followed by the same 
letter are not significantly different at P=0.05. 

If ,t Difference(s) between (among, in Experiment Two) ABA 
selections within an ABA class are significant at P<0.05 
and P<0.10, respectively. 

1 WP, water potential; SP, solute potential; TP, turgor 
potential; RWC, relative water content. 
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Table 4. Leaf water potential, water potenti~l components 
(solute and turgor potential) and relative water content of 
low-ABA and high-ABA wheat selections in a drought-stressed 
regime in 1987 and 1988. 

Day 
of ABA 

year class 

114 Low 
High 

121 Low 
High 

128 Low 
High 

135 Low 
High 

148 Low 
High 

117 Low 
High 

130 Low 
High 

145 Low 
High 

124 Low 
High 

138 Low 
High 

WP SP TP RWC 

-------- MP a ------- % 

Exp. 1, 1987 

-0.96a -1. 86a 
-1. 02a -1.75a 
-1. 58a -2.26a 
-1. 68a -2.15a 
-1. 48a -2.16a 
-1. 34a -2.02a 
-2.27a -2.49a 
-2.02a -2.34a 
-1. 70a -2.59a 
-1.57a -2.48a 

Exp. 1, 1988 

-0.75at -1. 95a 
-0. 77a -1. 92a 
-1. 69a -2.18a 
-1.87a -2.27a 
-1. naff -2.78b 
-1. 66a -2.46a 

Exp. 2, 1988 

-0.83a -2.09a 
-1.06b -2.10 
-1. 76a -2.45a 
-1. 81a -2.50a 

0.89a 
0.74a 
0.84a 
0.48a 
0.68a 
0.68a 
0.23a 
0.34a 
0.89a 
0.91a 

1.20a 
1.15a 
0.49a 
0.40a 
1. 07afl 
0.80a 

1.26all 
1.03b 
0.68a 
0.69a 

89.3a 
91.2a 
84.8a 
84.6a 
88.2a 
85.9a 
77.0a 
77 .6a 
72.8a 
80.6a 

87.4all 
84.5b 
79.2a 
73.8b 
78.8a 
77 .4a 

nd 
nd 

82. la 
79.6a 

'le Within a sampling day, column means followed by the same 
letter are not significantly different at P=0.05. 

11,t Difference(s) between (among, in Experiment Two) ABA 
selections within an ABA class are significant at P<0.05 
and P<0.10, respectively. 

1 WP, water potential; SP, solute potential; TP, turgor 
potential; RWC, relative water content. 
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Table 5. Aboveground biomass, grain yield, yield components, harvest index and carbon isotope 
discrimination of two low-ABA and two high-ABA spring wheat selections and the spring wheat 
cultivar, Ciano, under two contrasting water regimes averaged over 1987 and 1988.1 

Water 
regime 

Watered 

ABA 
class 

Low 
High 

Low vs. High 

Ciano 

Stressed Low 
High 

Low vs. High 

Ciano 

Water regime 

Biomass 
Grain 
yield 

--- g plant-1 ---

13.02 3.58 
9.98 3.28 

"le* NS 

11.84 3.83 

7.61 2.58 
6.02 2.38 * ... _ " NS 

7.91 2.98 

-;'c-lc t 

Total 
spikes 

Fertile 
spikes 

-- no plant-1 

6.3 5.9 
5.4 5.2 

*"' "i'c 

5.0 4.9 

4.1 3.7 
3.6 3.5 

"i'c* NS 

3.8 3.7 

t t 

Kernels/ 
spike 

no. 

31.1 
26.3 

,.,* 

37.3 

32.0 
25.3 

"'le-Jc 

37.0 

NS 

Kernel 
weight 

mg 

20.2 
23.6 

-le* 

21.4 

21.1 
26.8 

*'le 

20.8 

.,, 

Harvest carbon 
index disc. 

!::::.. x103 

0.28 17.55 
0.33 17.42 

"'* NS 

0.33 nd 

0.33 16.63 
0.40 16.82 

-;'c-/c NS 

0.37 nd 

'le ** 

t,*,** Difference between ABA classes significant by the F test at P<0.10, P<0.05 and P<0.01, 
respectively. NS = not significant. The check variety (Ciano) is presented for 
comparison (nd= no data). 

1 The year x ABA class interaction was significant at P<0.01 for harvest index, kernel 
weight and carbon isotope discrimination under stressed conditions. 
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Table 6. Aboveground biomass, grain yield, harvest index, and kernel 
carbon isotope discrimination of 20 low-ABA accumulating wheat 
selectio~s under two contrasting water regimes.1 

Maturity Well-watered Drought-stressed 
or ht. I.D. ------------------------ ------------------------
~lass number DM2 YLD HI KD DM YLD HI KD 

g plancl .6 x103 g plant-1 .6. x103 

Short 606 12.84 4.03 0.32 17.81 10.70 3.37 0.31 16.89 
II 607 14.41 5.00 0.35 17.56 10.78 3. 72 0.34 16.66 
II 608 17. 77 2.44 0.14 16.78 13.48 1.23 0.09 15.87 
II 609 12.18 3.04 0.26 17.44 12.58 3.51 0.28 16.63 
II 610 11.10 3.39 0.30 18.32 9.05 3.22 0.35 16.75 

Tall 631 13.97 4.94 0.36 18.12 9.76 3.53 0.36 16.63 
II 632 13.08 0.76 0.06 16.49 15.09 0.55 0.04 15.06 
II 633 18.84 2.36 0.13 16.79 13.34 1.95 0.14 15.79 
II 634 14.98 2.24 0.15 16.34 10.75 1.17 0.12 15.05 
" 635 12.56 2.44 0.21 17.42 8.21 1. 75 0.22 16.58 

Early 626 8.81 2.57 0.29 17.94 6.80 1.82 0.26 16.49 
II 627 19.40 1.57 0.08 16.10 12.54 1.66 0.13 15.34 
II 628 16.11 2.16 0.13 16.31 12.42 0.96 0.08 15.29 
" 629 12.39 3.48 0.28 17.68 10.61 3.50 0.32 16. 71 
" 630 9.93 2.46 0.25 17.31 9. 72 2.23 0.21 16.23 

Late 616 10.93 0.63 0.06 16.51 7.19 0.45 0.06 14.95 
II 617 11.34 3.33 0.30 18.04 8.82 2.82 0.32 16.54 
" 618 15.37 1.52 0.10 16.78 10.32 0.87 0.08 15.31 
" 619 14.60 1. 71 0.12 16.79 8.02 0.55 0.07 15.30 
II 620 14.56 3.18 0.22 17.65 5.46 1.35 0.24 15.75 

LSD (0.05) 4.28 1.27 0.08 0.61 4.19 1.40 0.08 0.67 

1 Values represent the average of three blocks with three plants sampled 
per block. 

2 DM=above-ground dry matter per plant, YLD=grain yield per plant, 
HI=harvest index, KD=kernel carbon isotbpe discrimination. 



Table 7. Aboveground biomass, grain yield, harvest index, and kernel 
carbon isotope discrimination of 20 high-ABA accumulating wheat 
selections under two contrasting water regimes.1 

Maturity 
or ht. I.D. 
class number 

Short 
II 

" 
" 
" 

Tall 
" 
" 
" 
" 

Early 
" 
II 

II 

II 

Late 
II 

II 

" 
" 

601 
602 
603 
604 
605 
636 
637 
638 
639 
640 
621 
622 
623 
624 
625 
611 
612 
613 
614 
615 

LSD (0.05) 

Well-watered 

DM2 YLD HI 

g plant-1 

8.24 
9.69 
6.87 
5.87 
8.33 
4.68 
6.33 
8.12 
9.87 
9.85 
7.25 

12.56 
8.60 
3.79 
6.82 
9.40 

12.99 
8.49 
8.34 

14.75 

2.21 
2.98 
2.30 
1.85 
3.34 
1.60 
1. 57 
1.55 
2.24 
2.40 
2.46 
3.04 
2.26 
1.22 
2.21 
2.94 
1.19 
2.32 
2.37 
2.16 

0.26 
0.31 
0.34 
0.32 
0.39 
0.34 
0.24 
0.19 
0.23 
0.24 
0.34 
0.26 
0.26 
0.32 
0.32 
0.31 
0.09 
0.27 
0.29 
0.15 

3.66 1.32t 0.09 

KD 

16.93 
17.31 
17.14 
17.09 
17.79 
17.28 
16.90 
17.15 
16. 71 
16.78 
17.81 
17.36 
17.68 
17.67 
17.43 
17.46 
16.25 
17.46 
17.34 
16.73 

0.74 

Drought-stressed 

DM YLD 

g plant-1 

5.27 
3.43 
3.63 
2.88 
6.83 
5.75 
5.51 
5.97 
8.71 

10.23 
9.70 
7.00 

11. 33 
7.38 
5.38 
8.48 

11.17 
6.22 
5.46 
9.95 

1. 47 
1.15 
o_.95 
1.20 
2.45 
1. 87 
1. 21 
0.63 
1.65 
1.43 
3.11 
2.24 
3.51 
2.39 
1.88 
2.53 
o. 73" 
1. 91 
1. 38 
1.13 

HI 

0.28 
0.33 
0.26 
0.42 
0.36 
0.31 
0.23 
0.10 
0.20 
0.19 
0.31 
0.31 
0.31 
0.32 
0.34 
0.29 
0.08 
0.31 
0.25 
0.09 

5.22 1.28 0.11 

KD 

16.12 
16.23 
15.55 
16.90 
16.38 
16.58 
15.83 
15.09 
15.82 
15.81 
16.47 
16.18 
16.67 
16.50 
16.58 
16.01 
14.55 
15. 77 
16.25 
15.47 

0.70 

73 

1 Values represent the average of three blocks with three plants sampled 
per block. 

2 DM=above-ground dry matter per plant, YLD=grain yield per plant, 
HI=harvest index, KD=kernel carbon isotope discrimination. 

t Differences among selections in YLD under well-watered conditions are 
not significant at P<0.05 by the F test. 
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