
\ 

THE EFFECTS OF PASTEURELLA HAEMDLYTICA 

LIPOPOLYSACCHARIDE ON BOVINE PULMONARY 

ARTERY ENDOTHELIAL CELLS IN CELL 

CULTURE 

By 

DANIEL BlAKE PAULSEN 
II 

Bachelor of Science 
Kansas State University 

Manhattan, Kansas 
1975 

Doctor of Veterinary Medicine 
Kansas State University 

Manhattan, Kansas 
1977 

Master of Science 
Kansas State University 

Manhattan, Kansas 
1978 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1989 



j 

·. •, 

.. 

... J . ·~ 

!-

. .....-. . 

. . .. , 
·~· . . ·~ l .. ; •'. 4 < • 

. '· 

··:. ·' f 



THE EFFECTS OF PASTEURELLA HAEMDLYTICA 

LIPOPOLYSACCHARIDE ON BOVINE PULMONARY 

ARTERY ENDOTHELIAL CELLS IN CELL 

CULTURE 

Thesis Approved: 

Dean of Grlcitlate College 

ii 

1352146 



PREFACE 

I take this opportunity to express my sincere appreciation to all 

those who have aided me with my research. First, I thank my graduate 

committee, Dr. Roger Panciera, Dr. Anthony Confer, Dr. Derek Mosier, Dr. 

Kenneth Clinkenbeard, and Dr. Robert Fulton. Drs. Confer, Clinkenbeard, 

and Mosier were my primary sources of research ideas which were invalu

able. I appreciate Dr. Panciera's help, and I hope that I have learned 

from his non-nonsense, objective approach to problem-solving. I thank 

Dr. Fulton for his support at critical times. 

I appreciate all the technical help I have received, especially 

from Dr • Kathy Kocan, Rene Simons , Janet Durham, and Sharon 01 tj en. A 

special thanks is given to June Will is for rushing some thin sections 

through the electron microscopy laboratory at the last minute. I appre

ciate Sherl Holesko for her prompt attention to my typing needs. 

I thank my parents for the values they instilled in me and for 

relieving 1ne of responsibilities at Stafford which made possible the 

continuation of my education. 

I am indebted to my wife, Charlotte, for her physical, spiritual, 

emotional, and monetary support during my pursuit of higher education. I 

apologize to her and my children for any suffering they may have endured 

due to lack of my attention. 

This research was funded in part by grants No. 85-CRSR-2-2618 and 

86-CRSR-2-2880 from the U.S. Department of Agriculture. Additional fund-

iii 



ing came from the University Center for Energy Research, the University 

Center for Water Research, and the College of Veterinary Medicine. 

I thank my heavenly Father for the gift of a good mind. I hope that 

He is continually glorified through my life and accomplishments. 

iv 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION AND LITERATURE REVIEW. 

Introduction ••••• 
Endothelial Cells ••• 

Characterization .• 
Cell Culture ••• 
Normal Cell Function •• 
Functional Changes Induced by Various 

Stimuli . . . . . . . . . . 
Potential llnmunologic Functions • • • 
Endothelial Injury -In Vitro Studies . 
Pulmonary Vascular Injury in Experimental 

Disease and Pneumonic Pasteurellosis ••. 
En do toxin. . . . . . . . • . . . . • • . . . . . . 

Pulmonary Pathophysiologic Effects Due to 
Endotoxin • • • • • • • • • • • • • • . 

Pulmonary Structural Alterations Due to 
Endotoxin • • • • • • • • • • • • • 

Intrinsic Mediators of Endotoxemia •• 
Conclusion • • • 

II. THE DIRECT EFFECTS OF PASTEURELLA HAEMOLYTICA LIPOPOLY
SACCHARIDE ON BOVINE PULMONARY ENDOTHELIAL CELLS IN 
VITRO 

Introduction 
Materials and Methods. • • • • • ••• 

Lipopolysaccharide Preparation. • 
Endothelial Ce 11 s • • • • • 
Lactate Dehydrogenase (LDH) Leakage Assay • 
Chromium-Leakage Assay •• 
Cell-Detachment As say • • • 
Statistical Analyses •••••••• 
Scanning Electron Microscopy (EM) 

Results . . . . . . . . . . . . . . . 
Discussion •. 
Summary ••• 

III. PASTEURELLA HAEMOLYTICA LIPOPOLYSACCHARIDE-INDUCED 
ARACHIDONIC ACID-RELEASE FROM AND NEUTROPHIL ADHERENCE 

Page 

1 

1 
4 
4 
5 
6 

9 
11 
13 

16 
17 

18 

22 
24 
30 

31 
32 
32 
32 
33 
33 
34 
35 
35 
35 
40 
44 

TO BOVINE PULMONARY ARTERY ENDOTHELIAL CELLS. • • • • 46 

Introduction • • • • • • • • • • • •••• 46 

v 



Chapter· 

Materials and Methods .•• 
Lipopolysaccharide •• 
Endothelial Cells • 
Arachidonic Acid-Release Assay •• 
Neutrophil Isolation. • • • • ••. 
Neutrophil Adherence Assay •• 
Statistics •••••••••••••••••• 

Results . ........•... 
Arachidonic Acid-Release. • • 
Neutrophil-Adherence Ass.ays • 

Discussion . . . . . . . . . . . 

IV. PASTEURELLA HAEMOLYTICA LIPO.FOLYSACCHARIDE-INDUCED 
CYTOTOXICITY IN BOVINE PUlMONARY ARTERY ENDOTHELIAL 
MONOLAYERS: INHIBITION BY INDOMETACIN • 

v. 

Introduction • • • . • 
Materials and Methods. . • ••• 

Endothelial Cells 
Lipopolysaccharide. . • • • • 
Lactate Dehydrogenase (LDH)-Leakage • 
Inhibitors ••••••••.••••••• 
Phase Contrast Microscopy ••••••••• 
Scanning Electron Microscopy ••••• 
Transmission Electron Microscopy •• 

Results. . . . . . . . . . . . 
LDH-Leakage • • • • • • • • • • • • • • • 
Phase Contrast Microscopy • • • • • • 
Scanning Electron Microscopy •••••• 
Transmission Electron Microscopy ••• 

Discussion ••••• 

SUMMARY AND CONCLUSIONS • 

BIBLIOGRAPHY • • • 

vi 

Page 

47 
47 
48 
49 
50 
51 
52 
52 
52 
54 
55 

60 

60 
61 
61 
62 
62 
63 
64 
64 
65 
65 
65 
67 
69 
74 
81 

86 

90 



LIST OF TABLES 

Table 

I. LDH-Leakage from Cultured Bovine Endothelial Cells 
Following Exposure to Pasteurella haemolytica LPS. 

II. Comparison of 51cr- and LDH-Leakage from Cultured 
Bovine Endothelial Cells Following LPS Exposure. 

III. 3H-Arachidonic Acid-Release from Endothelial Cells 
Following Exposure to ~ haemolytica Lipopoly-

Page 

36 

36 

saccharide • • . • • • • • • • • • • • • • • • • • • • • 53 

IV. 

v. 

VI. 

Dose-Response of ~ haemolytica LPS-Induced 3H
Arachidonic Acid-Release From Endothelial Cells. 

Inhibition of LPS-Induced Neutrophil Adherence to 
B PAE C. • • • • • • • • . • • • • • • • • • • • 

Effects of Inhibitory Chemicals on the LPS-Induced 
Leakage of LDH From BPAEC. • • • • • • • 

VII. Inhibition of LPS-Induced LDH-Leakage From Bovine 
Pulmonary Artery Endothelial Cells by Indomethacin 

vii 

54 

57 

66 

67 



LIST OF FIGURES 

Figure Page 

1. Normal Endothelial Monolayers with Rounded Cell Morphology 
and Pitted Surfaces • • • • • • • • • • • • • • • • • • • • 38 

2. Normal Endothelial Cell Surface with Large (up to 
2 um diameter) and Small (0.1 to 0.2 um diameter) 
Depressions • • •• 

3. Endothelial Monolayer After a 1 Hour Exposure to 1 ug 

4. 

of LPS/ml . . . . . . . . ....•.•.. 

Rarefied Area on the Surface of Endothelial Cell After 
a 1 Hour Exposure to 1 ug of LPS/ml •••••••. 

5. Endothelial Monolayer After a 2 Hour Exposure to 1 ug 

38 

39 

39 

of LPS/ml • • • • • • • • • • • • • • • • 41 

6. Endothelial Cell Surface After a 2 Hour Exposure to 
1 ug of LPS/ml. • • • • • • • • • • • • • • • 41 

7. P. haemolytica LPS-Induced Increase in Optical Density 
at 570 nm Wavelength Caused by Adherent Neutrophils 
Stained with Rose Bengal. • • • • • • • • • • • • 56 

8. Phase Contrast Photomicrographs of BPAEC Monolayers 
After Exposure to ~ haemolytica LPS. • • • • • • • • • • • 68 

9. Phase Contrast Photomicrographs of BPAEC Monolayers 
After Exposure to LPS Demonstrating the Protective 
Effect of Indomethacin. • • • • • • • • • • • • 

10. Scanning Electron Micrograph of Control BPAEC Monolayer 
Comprised of Polygonal Cells with Mounded Surface and 
Perinuclear Pits or Pores • • • ••• 

11. Scanning Electron Micrograph of BPAEC After 2 Hours 
Exposure to P. haemol;¥:tica LPS. . . . . . . . . 

12. Scanning Electron Micrograph of BPAEC After 8 Hours 
Exposure to P. haemol;¥:tica LPS. . . . . . . . . 

13. Scanning Electron Micrograph of Indomethacin-Treated 

70 

71 

. . . 72 

. . . 72 

BPAEC After 2 Hours Exposure toP. haemolytica LPS. • • • • 73 

viii 



Figure 

14. 

15. 

16. 

1 7. 

1 8. 

1 9. 

20. 

Scanning Electron Micrograph of Indomethacin-Treated 
BPAEC After 8 Hours Expo sure to LPS • • • • •• 

Transmission Electron Micrograph of Normal BPAEC 
Monolayer . . . . . . . . . . . . . . . . 

Tran smis sian Electron Micrograph of BPAEC After 1 Hour 
Exposure to LPS . . . . . . . . . . . . . 

Transmission Electron Micrograph of BPAEC After 2 Hours 
Exposure to LPS . . . . . . . . . . . . . 

Transmission Electron Micrograph of BPAEC After 4 Hours 
Expo sure to LPS . . . . . . . . . . . . . 

Transmission Electron Micrograph of BPAEC After 4 Hours 
Exposure to LPS . . . . . . . . . . . . . 

Transmission Electron Micrograph of Indomethacin-
Treated BPAEC After 2 Hours Exposure to LPS . . . . . 

ix 

Page 

73 

75 

76 

78 

79 

80 

. . . 82 



CHAPrER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

Bovine pneumonic pasteurellosis, commonly called shipping fever, is 

a severe respiratory disease which primarily affects young, stressed 

cattle. It remains a major source of economic loss to the cattle indus

try despite extensive efforts to control it by the producers, animal 

health industry, and veterinary profession (Jensen, 1968; Church and 

Radostits, 1981). 

Pneumonic pasteurellosis has a multifactorial etiology which 

includes physical stressors such as transport, commingling, surgeries, 

and nutrition, and viral infections such as infectious bovine rhino

tracheitis, parainfluenza-3 (PI-3), bovine viral diarrhea, and bovine 

respiratory syncytial virus (Rosenquist, 1984; Wikse, 1985). The most 

severe disease and loss result from a bacterial pneumonia which may be 

either primary or secondary. The most common cause is Pasteurella haemo

lytica Al (Schiefer et al., 1978). 

The pathogenesis of pneumonic pasteurellosis is incompletely under

stood. Pasteurella haemolytica is believed to be carried in low numbers 

in the nasal passages of normal cattle. Following the stress of trans

port, commingling, or respiratory viral infection, a marked increase in 

nasal colonization commonly occurs (Frank and Smith, 1983; Frank et al., 

1986). Recently, fimbriae have been demonstrated on P. haemolytica and 
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have a potential but uncertain role in bacterial adherence to nasal 

mucosa (Morek et al., 1988). Grey and Thomson (1971) demonstrated P. 

haemolytica organisms in aerosol droplets within tracheal air of calves 

with detectable colonization of the nasal cavities. These droplets were 

of sufficiently small size (~5 microns) to bypass mucociliary clearance 

and be deposited in the lung. Therefore, infective droplets have been 

considered to be the major mechanism of bacterial deposition in the lung 

following nasal colonization. 

Inhaled organisms are rapidly cleared from the lungs of normal 

calves (Lillie and Thomson, 1972). Therefore, it is likely that success

ful infection of the lung requires that pulmonary clearance be compro

mised. Lopez et al. (1976) demonstrated defective pulmonary clearance of 

!..:_ haemolytica in calves following PI-3 viral infection. Gilka et al. 

(1974a) demonstrated defective pulmonary clearance caused by pulmonary 

edema and inconsistently by hydrocortisone, but not following PI-3 viral 

infection. However, in the latter instance the PI-3 virus-infected 

calves had significant pre-existing antibody to P. haemolytica that may 

have enhanced clearance. 

Pulmonary alveolar macrophages (PAM) are the pr1mary means of 

bacterial clearance from the alveoli and respiratory bronchioles (Gold

stein et al., 1974). Reduced pulmonary clearance is, therefore, most 

likely the result of impaired PAM function. Several studies have demon

strated decreased phagocytosis, impaired intracellular killing, and 

other alterations in PAM function resulting from viral infection~ 

(Forman and Babiuk, 1982; Hesse and Toth, 1983; Trigo et al. 1985). 

Physical stressors which have been associated with pneumonic pasteure 1-

losis cause increased plasma cortisol concentration; glucocorticoids 
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reduce phagocytic and bactericidal capabilities of macrophages and also 

inhibit antibody responses, selected neutrophil functions, and lympho

cyte responses (reviewed in Roth, 1984). 

Recently, considerable attention has been directed toward mecha

nisms by which~ haemolytica can impair lung defense mechanisms. 

Pasteurella haemolytica excretes a leukotoxin which is toxic to bovine 

leukocytes and to PAM. It also impairs phagocytosis and production of 

leukocyte chemotactic factors by the PAM (Markham and Wilkie, 1980; 

Markham et al., 1982). Leukocytes exposed to P. haemolytica culture 

super nates manifested an initial increase in chemiluminescence, ind icat

ing phagocytic stimulation, followed by a rapid cessation of activity. 

These effects were caused by a heat-labile factor believed to be leuko

toxin (Richards and Renshaw, 1986). Fimbriae and an extensive glyco

calyx, demonstrable on~ haemolytica from experimentally infected 

calves, have been proposed to be another potential inhibitory factor in 

pulmonary clearance through inhibition of phagocytosis (Morek et al., 

1988). Additionally, 1 ipopolysaccharide (LPS), comnonly called endo

toxin, caused pulmonary edema and markedly reduced pulmonary clearance 

of !:.:_ haemolytica in calves (Gilka et al., 1974a). In vitro experiments 

with P. haemolytica LPS demonstrated alterations in selected bovine 

leukocyte functions including reduced phagocytic activity in polymorpho

nuclear leukocytes at certain LPS doses (Confer and Simons, 1986). Endo

toxemia caused variable effects on PAMs in other species. In the dog 

reduced PAM adherence, increased hydrogen peroxide production, reduced 

bacterial phagocytosis, and reduced bacterial killing were seen. In the 

rat there was enhanced PAM adherence, reduced chemotactic response, and 

increased hydrogen peroxide, neutrophil chemotactic factor, and inter-
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leukin-1 (IL-l) production without apparent effect on bacterial phagocy

tosis (Jacobs et al., 1986; Christman et al., 1988). 

The lesions of pnemnonic pasteurellosis are those of an acute, 

fibrinous pleuropnetnnonia and include serofibrinous exudation into the 

alveoli, alveolar septal edema, microvascular thrombosis, hemorrhage, 

and inflammatory cellular infiltration followed by extensive alveolar 

necrosis (Schiefer et al., 1978; Allan et al., 1985). These lesions 

strongly implicate vascular damage as an early event in the disease 

because: (1) the loss of large plasma proteins, such as fibrinogen, and 

hemorrhage would require a loss of vascular integrity; and (2) exposure 

of the subendothelial matrix is a major mechanism of microvascular 

thrombosis via activation of the intrinsic clotting mechanism and stimu

lation of platelet adherence (Jensen et al., 1976; Slauson and Cooper, 

1982; Breider et al., 1987). The proposed mechanisms of vascular damage 

in pnemnonic pasteurellosis include direct damage due to ~ haemolytica 

toxins, especially LPS, and secondary damage due to the inflammatory 

response (Breider et al., 1988). 

Endothelial Cells 

Characterization 

Endothelial cells (EC) line the ltnnens of the entire circulatory 

system including the lymphatic channels. They are of mesodermal origin, 

form a single layer of flattened, polygonal cells, and are of three 

types, continuous, fenestrated, and EC of high endothelial venules. 

Regional differences in EC morphology are most apparent in the endothel

ial junctions. Junctions in the continuous type of endothelium vary from 

that of the arterioles, which have a continuous network of tight june-
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tions surrounded by large gap (communicating) junctions, to that of the 

capillaries and venules, which have no gap junctions. The fenestrated 

type is found in several visceral organs (reviewed ~n Thorgeirsson and 

Robertson, 1978; Ryan and Ryan, 1982). Endothelium of high endothelial 

venules, is more cuboidal to columnar and is involved in the lymphocyte 

emigration into secondary lymphoid organs and chronic inflammatory sites 

(Harlan, 1985). Experimental evidence indicates that these EC direct 

lymphocyte homing by specific cell surface molecules, "vascular addres

sins" (Streeter et al., 1988). Capillary EC tend to be more attenuated 

than arterial EC with the periphery of many cells having a thickness of 

less than 0.1 um. Plasmalemmal vesicles are also characteristic features 

of EC. They are found in higher density in capillaries and many communi

cate with the luminal cell surface thereby greatly increasing the 

sur face area (Ryan and Ryan, 1982). 

Cell Culture 

Much of the recent advancement in the understanding of EC function 

has resulted from the development of EC culture methods. Jaffe et al. 

(1973a) and Gimbrone et al. ( 1974) were instrumental in the development 

of techniques for EC isolation, culture, and identification from human 

umbilical vein endothelium. Later, Booyse et al. (1974) developed the 

techniques for isolation and culture of bovine aortic EC. Subsequently, 

these techniques were adapted to the isolation of bovine pulmonary 

artery EC (Ryan et al., 1978). Further refinements in techniques have 

resulted in the isolation of bovine pulmonary artery EC without the use 

of enzymes and the ability to clone individual EC (Ryan et al., 1980; 

Gajdusek and Schwartz, 1982). Clotting Factor VIII antigen, which is 
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normally present in EC, is used as an identifying marker. It can be 

demonstrated by indirect immunofluorescent microscopy and is shared only 

by platelets and megakaryocytes (Jaffe et al., 1973b; Thorgeirsson and 

Robertson, 1978). 

Normal Cell Functions 

Endothelial cells were once considered to be relatively inert and 

to primarily function as a semipermeable, nonthrombogenic physical 

barrier between the blood and the underlying tissues. Increasingly, 

evidence indicates that EC have a wide range of metabolic activities 

which are normally anti thrombogenic (Fishman, 1982). Endothelial cells 

respond to a variety of stimuli by specific alterations in function, 

metabolism, and structure which may profoundly affect the pathogenesis 

and outcome of a disease process. These responses include increases and 

decreases in normal functional activities, the induction of new func

tions, and de novo synthesis of molecules (Cotran, 1987). 

The normal functional activities of the endothelium include the 

transport of solutes, the metabolism or clearance of blood-borne prod

ucts, and the production of various bioactive products. The transport 

mechanisms of EC are poorly understood. Physiological data predicts a 

two-pore model for the transport of solutes with pore radii of 50-80 and 

200-250 angstroms (Taylor and Granger, 1983). Plasmalerrmal vesicles and 

transendothelial channels are most commonly purported to be responsible 

for solute transport in continuous endothelium such as in the lung. 

There is considerable experimental evidence to both support and deny the 

occurrence of vesicular transport (Simionescu et al., 1982; Shea and 

Raskova, 1983; Bundgaard, 1983). Transendothelial channels have been 
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demonstrated and may represent a fusion of luminal and abluminal 

vesicles (Simionescu et al., 1982). However, these channels have not 

been demonstrated conclusively in the lung and their density may be 

inadequate to account for the normal volume of pulmonary transendothe

lial solute transport (Gil, 1983). The pulmonary endothelium is selec

tively permeable to anionic proteins Which is compatible with the posi

tive charges lining the walls of both vesicles and transendothelial 

channels (Simionescu, 1982; Taylor and Granger, 1983). In contrast to 

vesicular or channel transport, water is apparently transported across 

the entire surface of the EC. The effects of disease on endothelial 

transport have not been reported, but evidence indicates that endothe

lial vesicles do not play a determining role in pulmonary edema (Chinard 

and DeFouw, 1983). 

The pulmonary endothelium occupies a unique niche in the circula

tory system because the entire blood volume has intimate exposure to it 

prior to entering the systemic circulation. Therefore, the pulmonary 

endothelium can regulate the entry of numerous hormones and mediators 

into the systemic circulation. Much experimentation has studied simply 

the removal of products during pulmonary circulation, so the relative 

regulatory contribution of EC versus circulating and fixed leukocytes 

and platelets in the pulmonary circulation is often unknown. Endothelial 

cells effectively remove serotonin and partially remove norepinephrine 

from pulmonary circulation by an active transport mechanism (Nicholas et 

al., 1974). Other biogenic amines, histamine and epinephrine, are not 

processed (reviewed in Ryan and Ryan, 1982). Prostaglandins (PG) of the 

E and F series and thromboxane A2 are cleared during pulmonary passage, 

but prostaglandins of the A and B series and prostacyclin are not 
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cleared. Endothelial cells account for the uptake of PGE and PGF 10 but 

not for their metabolism (Ryan and Ryan, 1982). Isolated, perfused rat 

lung metabolized the leukotrienes, LTC 4 to LTD4 and LTE4 , whereas LTB 4 

was not metabolized (Harper et al., 1984). The adenine nucleotides are 

efficiently degraded and removed from the pulmonary circulation by 

dephosphorylation accomplished by phosphatases located along the plasma

lemmal vesicles. Adenosine is then removed by EC in an energy-requiring 

process (reviewed in Ryan and Ryan, 1982). 

Several hormones are also removed or metabolized in the pulmonary 

microcirculation. Aldosterone is removed from circulation (Sulza et al., 

1983). Cortisol and cortisone are removed, and cortisone is converted to 

cortisol, some of which is returned to the circulation (Nicholas and 

Kim, 1975). Bradykinin is inactivated by pulmonary EC. Angiotensin I is 

converted to angiotensin II by angiotensin-converting enzyme, the latter 

located along the luminal surface of the pulmonary endothelium (Ryan and 

Ryan, 1982). 

Normal endothelium also actively prevents thrombosis. The EC remove 

PGF 10 , thromboxane A2 , adenine nucleotides, serotonin, bradykinin, and 

angiotensin I, all of which promote platelet aggregation (Thorgeirsson 

and Robertson, 1978). Heparan sulfate proteoglycans on the surface of EC 

inhibit the conversion of prothrombin to thrombin (Buonassisi and 

Colburn, 1982). Endothelial cells synthesize and release several plas

minogen activators that are active in fibrinolysis (Levin and Loskutoff, 

1982). Heparin-like molecules, antithrombin III, and thrombomodulin are 

a 1 so anticoagulant endothelial sur face molecules (Stern et al., 1985). 

In addition, EC also continuously release prostacyclin, a potent inhibi

tor of platelet aggregation (Ryan and Ryan, 1982). Conversely, EC 
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normally synthesize several procoagulant factors including Factor VIII 

antigen, von Willebrand factor, Factor V, and tissue factor (Jaffe et 

al., 1973b; Brox et al., 1984; Stern et al., 1985). 

Endothelial cells have been shown to normally synthesize and secrete 

a variety of additional substances, These include a complex surface 

glycocalyx, several components of basement membrane, a vasodilator known 

as endotheliu~derived relaxing factor, and the C3 complement component 

(Luft, 1966; Jaffe et al., 1976; Warren et al., 1987; Vanhoutte, 1988). 

Functional Changes Induced by Various Stimuli 

Endothelial cells respond to a variety of stimuli by functional 

changes. These include selective inhibition or amplification of normal 

baseline metabolic functions or the de novo expression of normally 

undetectable ones. The concurrent stimulation of several functional and 

structural changes in EC is a process known as endothelial activation. 

Several stimuli cause an increase in procoagulant factors to be 

produced by the EC. Colucci et al. (1983) have demonstrated increased 

production and cell-surface expression of tissue factor in human umbili

cal vein EC following exposure to endotoxin. Also, thrombin, IL-l and 

tumor necrosis factor (TNF) cause increased tissue factor activity in 

cultured EC (Brox et al., 1984; Bevilacqua et al., 1986). Stimuli such 

as thrombin or histamine cause increased release of von Willebrand 

factor (de Groot et al., 1984; Hamilton and Sims, 1987). An inhibitor of 

tissue plasminogen activator which would inhibit clot lysis, is released 

in vivo and in cultured EC following exposure to IL-l or endotoxin 

(Emeis and Kovistra, 1986). Tumor necrosis factor causes similar effects 

in cultured EC (Cotran, 1987). Physical trauma to endothelial monolayers 
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promotes platelet adherence and aggregation (Grabowski, 1987). Platelet 

activating factor, a strong stimulator of platelet adherence and aggre-

gation, is released after exposure of EC to IL-l, TNF, thrombin, hista-

mine, bradykinin, LTC4 or LTD4 , vasopressin, angiotensin II, or von 

Willebrand factor (reviewed in Zimmerman et al., 1987). 

In addition to an increased release of procoagulant factors, several 

stimuli also cause a decrease in the normal anticoagulant products of 

EC. Interleukin-,.1 and TNF decrease endothelial surface thrombomodul in, 

thereby markedly inhibiting the anticoagulant effects of protein S and 

protein C (Naworth and Stern, 1986; Naworth et al., 1986; Esmon, 1987). 

In addition to increased secretion of an inhibitor of tissue plasminogen 

activator, IL-l and thrombin cause decreased endothelial secretion of 

tissue plasminogen activator (Levin and Loskutoff, 1982; Bevilacqua et 

al., 1986b). 

In contrast to the above effects, a number of the same stimuli 

cause increased prostacyclin synthesis and release from EC. These 

stimuli include IL-l, TNF, thrombin, histamine, bradykinin, ADP, ATP, 

phospholipase C, and endotoxin (Lollar and Owen, 1980; Rossi et al., 

1985; Meyrick, 1986; Resink, 1987; de Nucci, 1988). Prostacyclin is a 

potent inhibitor of platelet aggregation and considered to be one of the 

major anticoagulant effectors secreted by EC (reviewed in Wallis and 

Harlan, 1986). However, in activated EC, the overall balance of the 

functional alterations is tipped towards coagulation. Interleukin-1 

causes fibrin deposition on the surface of apparently intact endothelitml 

in vivo in the rabbit (Naworth and Stern, 1986). Similar fibrin clot 

formation on the surface of cultured EC is caused by endotoxin exposure 

(Stern et al., 1985). 
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Other substances which are released by appropriately stimulated EC 

include endothelium-derived relaxing factor. This factor, which Palmer 

et al. (1987) showed to be nitric oxide, is released from EC stimulated 

with bradykinin, vasopressin, ADP, ATP, arachidonic acid, or phospho-

1 ipase C (de Nucci et al., 1988). Endothelium-derived relaxing factor 

acts synergistically with prostacycl in to inhibit platelet aggregation 

(Radomski et al., 1987). Additionally, EC stimulated by treatment with 

phorbol myristate acetate or by phagocytosis of fixed platelets, 1 ipid 

particles, or polystyrene microspheres have markedly increased release 

of reactive oxygen metabolites which could enhance local inflammatory 

reactions (Dorog et al., 1988). 

Potential Immunologic Functions 

Endothelial cells are also capable of a wide range of functional 

changes that indicate their participation in inmune reactions. Under 

normal culture conditions, EC express major histocompatibility complex 

class I antigens (Pober and Gimbrone, 1982). The cytokines, gan:ma-inter

feron and TNF, cause increased expression of class I antigen and are 

synergistic. Interferon alpha and beta also stimulate increased class I 

antigen expression on EC, but they are not synergistic with gamma-inter

feron (Zapierre et al., 1988). Further, EC express class II major histo

compatibility complex antigens when stimulated by gamma- interferon. 

Other cytokines have not demonstrated this effect, and alpha and beta 

interferon strongly inhibit the gamma-interferon induction of class II 

antigens (Pober et al., 1983; Zapierre et al., 1988). Endothelial cells 

have the ability to phagocytize bacteria and other particles, and phago

cytosis stimulates the production of reactive oxygen metabolites (Vann 
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and Procter, 1987; Dorog et al., 1988). The above observations indicate 

that EC have the necessary mechanisms whereby they can process and 

present antigen in an immunologic reaction. 

In addition to the major histocompatibility complex antigens, EC 

express an additional lymphocyte binding molecule, ICAM-1. The expres

sion of ICAM-1 is markedly increased by IL-l, TNF, and gamma-interferon 

(Pober et al., 1986). Endothelial cells stimulated by IL-l or TNF, but 

not gamma-interferon, express newly synthesized IL-l at their sur face. 

This could be important for activating T-lymphocytes bound to foreign 

antigen-major histocompatibility complex on the endothelial sur face 

(Kurt-Jones et al., 1987). Tumor necrosis factor and gamna-interferon 

also induce morphologic changes in EC causing them to become more plump 

and to have widened intercellular gaps (Stolpen et al., 1986). The 

preceding observations led Pober (1988) and colleagues to propose the 

following theory of EC participation in immune inflamnation. The rele

vant T-cell s react with appropriately presented foreign antigen and 

subsequently release lymphotoxin (TNF) and gamma-interferon. These then 

activate local venular EC causing increased class I and class II antigen 

expression. The activated EC becomes an antigen presenting-cell and 

binds T-cells specific for the eliciting antigen and, via signals such 

as membrane IL-l, stimulate increased T-cell cytokine release causing 

amplification of the effect. Simultaneously, increased ICAM-1 expression 

prcmotes adhesion of additional nonspecific lymphocytes and monocytes. 

Morphologic changes in EC facilitate extravasation of inflammatory cells 

and may contribute to leakage of macromolecules into the perivascular 

tissue. 
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Endothelial Injury~ In Vitro Studies 

Several biologically relevant substances are directly cytotoxic to 

cultured EC. Bacterial LPS from Escherichia coli and Salmonella ..!£.· 

causes marked bovine EC detachment and increased chromium-leakage, an 

indicator of cell lysis. These effects were not seen in EC from humans, 

goats, or dogs or in bovine aortic smooth muscle cells (Harlan et al., 

1983). E. coli LPS also causes increased nuclear pyknosis and lactate 

dehydrogenase (LDH)-leakage from BPAEC (Meyrick et al., 1986). E. coli 

LPS and lipid A, but not the 1 ipid A-related compound, 1 ipid X (2, 3 

diacyl-gl ucosamine-l-P04 ), induce morpho logic changes, cell-detachment, 

and LDH-leakage from bovine aortic EC. The morphologic changes include 

loss of confluency with a majority of the cells having bleb-like struc

tures over most of their sur face. In addition, the cells contain large 

vacuoles, dense bodies, and pyknotic nuclei (Gartner et al., 1988). 

Other sub stances that cause direct injury to EC as determined by detach

ment and/or the release of large internal markers include hydrogen 

peroxide, hyperoxia, phagocytosis of Staphylococcus aureus, and sulfhy

dryl amino acids (probably mediated by hydrogen peroxide) (Wall et al., 

1980; Bowman et al, 1983; Chopra et al., 1987; Vann and Procter, 1987). 

Several substances damage EC monolayers grown on gel-coated poly

carbonate filters causing an increased permeability to water or large 

molecules. !..:_ coli LPS causes an increased penneability of BPAEC mono

layers to rad iolabeled album in and an increased hydraulic conductance 

(Meyrick et al., 1986). Htnnan endothelial monolayer penneability to 

rad iolabeled album in is also increased by thrombin and hyperoxia (Del 

Vecchio et al., 1987; Phillips et al,. 1977). 

In vitro, EC cytotoxic effects are either caused or augmented by 
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inflammatory cells. Several studies have suggested that adherence of 

neutrophile to EC is important in the initiation of endothelial injury 

(Sacks et al., 1978). Neutrophile have been stimulated to adhere to EC 

by mnnerous chemotactic factors including CSa, formyl-methionyl-leucyl

phenyal anine, and LTB4 ( Gimbrone et al., 1984; Tonnesen et al., 1984) • 

Phorbol diesters, LPS, IL-l, and TNF also promote neutrophil adhesion to 

human EC by effects that are independent for both cell types (Gamble et 

al., 1985; Schleimer and Rutledge, 1986). Subsequent experiments demon

strated that neutrophil adhesion is dependent on the CDw18 complex on 

neutrophil s and an induceable sur face molecule of EC called "endothe

lial-leukocyte adhesion molecule-1" (ELAM-1) (Pohlman et al., 1986; 

Bevilacqua et al., 1987). 

Under certain conditions, neutrophil s cause cytotoxic effects in 

EC. Neutrophil s stimulated by phorbol esters, chemotactic pep tides, or 

C5a produce cytotoxic changes in human EC. These changes are markedly 

enhanced by low concentrations of LPS (1-10 ng/ml) or by preincubation 

of the EC with IL-l or TNF (Smedley et al., 1986; Varani et al., 1988). 

The LPS-enhanced cytolysis is not inhibited by oxygen radical scaven

gers, occurs with neutrophile which do not produce hydrogen peroxide, 

but is inhibited by specific elastase inhibitors (Smedley et al., 1986). 

Trace amounts of LPS enhances chemoattractant-induced secretion of 

elastase by neutrophil s (Fittsch~n et al., 1988). Additionally, Harlan 

et al. (1985) demonstrated that stimulated neutrophile damaged EC by a 

mechanism independent of oxygen radicals. This contrasts with earlier 

studies which indicated that neutrophil s kill EC by hydrogen peroxide or 

oxygen radicals (Sacks et al., 1978; Martin, 1984). 

Leukocyte migration through an intact endothelial layer has often 
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been proposed to contribute to increased vascular permeability (Wittels 

et al., 1974). However, complement-stimulated neutrophil migration and 

lymphokine-st imulated lymphocyte migration across bovine pulmonary arte

rial intimal explants do not increase permeability. Lymphokine-stimu

lated neutrophil transmigration does cause increased permeability sug

gesting that the nature of the chemoattractant and the leukocyte type 

are both important in stimulating increased permeability (Meyrick et 

al., 1987). 

Interleukin-2-activation of human lymphocytes causes increased 

adherence to and lysis of both human and bovine EC. This effect is not 

isolated to a specific lymphocyte type since it occurs in large granular 

and small agranular lymphocytes along with CD4+ and CDS+ T-cells and 

non-T subpopulations (Damle et al., 1987). 

Recent work by Suttorp and colleagues (1985a, 1985b) demonstrated 

that the pore-forming bacterial toxins, staphylococcal a-toxin and 

Pseudomonas aeruginosa cytotoxin, insert into EC and cause a potassium 

efflux and a calcium influx. The pores produced were of a specific size 

being permeable to sucrose but not to inulin or dextran. Both toxins 

stimulated arachidonic acid metabolism which resulted in increased 

prostacyclin production. However, lysis of EC was not seen. More recent 

experiments demonstrated similar effects with ~ coli hemolysin (Seeger 

and Suttorp, 1987). Clinkenbeard et al. (1989a, 1989b) demonstrated that 

~ haemolytica leukotoxin affects bovine lymphoma cells causing potas

S1Um efflux and calcium influx. A functional pore diameter slightly less 

than that of sucrose was demonstrated. Similarities between leukotoxin 

and the aforementioned bacterial pore-forming toxins warrant further 

investigation into its possible effects on EC. 
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Most of the experimental data pertaining to vascular injury and 

relevant to this study has been derived from animal models of the adult 

respiratory distress syndrome in humans. Since many of these models 

involve either direct endotoxin infusion or the putative mediators of 

endotoxemia, they will be discussed later. Included here will be the 

observations and experimental production of vascular lesions in pneu

monic pasteurellosis. 

Vascular lesions have often been cited in descriptions of the path

ology of naturally occurring pneumonic pasteurellosis. Tweed and Eding

ton (1930) described blood and lymph vessels being filled with a coagu

lated material. Graham (1953) reported histological findings indicating 

that shipping fever pneumonia began with a severe congestion of the lung 

followed by hemorrhage and a fibrinous exudation into the alveoli. Blood 

vessel thrombosis was reported in about one-half of these cases. Blood 

clots and thrombosis of pulmonary venules and arterioles along with 

thrombosis of alveolar septal capillaries have been associated with 

areas of infarction, hemorrhage, and inflammatory cellular infiltration 

in pneumonic pasteurellosis (Jensen et al., 1976; Scheiffer et al., 

1978). 

Experimental pneumonia produced by intratracheal or aerosol exposure 

P. haemolytica causes sequential vascular-related changes. As early as 4 

hours post-exposure, a mild alveolar edema was seen (Gilka et al., 

1974a). Fibrinous exudation into the alveoli with moderate neutrophil 

infiltration was reported 6 to 18 hours post-exposure (Friend et al., 

1977; Breider et al., 1988). Allan et al. (1985) reported alveolar 
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flooding edema with inflanmatory cells or extensive networks of fibrin 

and intra-alveolar hemorrhage caused by disrupted, hyperemic alveolar 

capillaries by 2 days post-exposure. By 6 days post-exposure, focal 

necrosis Which contained thrombosed blood vessels was common. A purulent 

vasculitis affected a few blood vessels. 

The importance of neutrophils in the pathogenesis of~ haemolytica 

vascular lesions has been examined. Slocombe et al. (1985) found that 1-

to 3-..reek-old calves inocula ted intratracheally with P. haemolytica 

developed severe lesions of fibrinous pneu:nonia, whereas neutrophil

depleted calves developed only infrequent alveolar lesions consisting of 

edema, hemorrhage, and a few neutrophils. In contrast, Breider et al. 

(1988) found in 130 - 230 kg calves that While lesions in neutrophil

depleted calves were less severe, lesions indicative of vascular damage 

were extensive. The lesions included interlobular and intra-alveolar 

edema with diffuse alveolar hemorrhage, exudation of fibrin, and occa

sional small arterial thrombosis. 

Endotoxin 

Endotoxin is a biologically active substance that is a component of 

the gram-negative bacterial cell wall. It consists primarily of LPS with 

associated protein complexes. LPS contains a hydrophobic lipid portion, 

termed 1 ipid A, which ~s covalently bound to the central acidic hetero

oligosaccharide core. The core is bound to a hydrophilic heteropolysac

charide chain containing the specific repeating 0-antigen units. Most of 

the toxic effects of endotoxin are caused by the lipid A portion of the 

LPS molecule. LPS has an affinity for a variety of cell membrane compo

nents including phospholipids, glycoproteins, and glycosphingol ipids. 
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Most of the membrane interactions of LPS described to date involve non

specific insertions of the hydrophobic portion of the molecule into the 

membrane phospholipids. A few specific membrane interactions have been 

described and a lipoglycoprotein receptor has been identified on human 

red blood cells (Springer et al, 1974). Few of the biochemical mecha

nisms of endotoxin activity have been adequately established, and 

specific interactions have not been described in EC. Animal species and 

strain, bacterial species and strain, and method of endotoxin isolation 

and purification can affect the responses to endotoxin. Therefore, many 

apparently contradictory results exist in the literature. The biological 

actions of endotoxin are myriad with virtually every organ system being 

affected in the endotoxemic animal (reviewed in Morrison and Ulevitch, 

1978; Bradley, 1979; Haeffner-Cavaillon et al, 1985; Morrison, 1985). 

Because of the immensity of the literature dealing with endotoxins, this 

review will primarily include the pulmonary effects of endotoxin and 

putative mediators of those effects. 

Pulmonary Pathophysiologic Effects Due~ 

Endotoxin 

The pathophysiology of the pulmonary responses to endotoxemia have 

been studied most extensively in the sheep. Intravenous 125I-labeled ~ 

coli LPS is rapidly cleared from the circulation and predominantly 

localized in the lung. In sheep, the half-life of LPS in the circulation 

was 2.38 minutes with 77.6% of the recovered dose in the lung. In 

contrast, in the rat the hal f-1 ife and pulmonary recovery were 12. 39 

minutes and 2.02% respectively. The rat is highly resistant to the 

pulmonary effects of endotoxin. The high degree of pulmonary localiza-
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tion 1n the sheep was attributed to uptake by the pulmonary intravascu

lar macrophages, but uptake by the pulmonary endothelimn could not be 

ruled out (Warner et al., 1988). Similarly, in calves, over 50% of the 

injected radioactivity of 51cr-labeled Pseudomonas LPS remained in the 

lungs 3 and 6 days after injection. 51cr-labeled LPS was 90% cleared 

from the blood in 1 minute and 99% cleared in 3 minutes (Maxie et al., 

1974a). Similar results were obtained with 3H-labeled LPS although 

clearance from circulation was slower (75% at 1 minute, 80% by 3 

minutes) and tissue retention was less (Maxie et al., 1974b). 

Intravenous injections of lethal doses of .,!h coli LPS in unanesthe

tized sheep causes progressive changes consisting of early persistently 

increased pulmonary resistance with decreased dynamic compliance 

followed by pulmonary edema, respiratory failure, and death (Esbenshade 

et al., 1982). Brigham et al. (1979) described a biphasic pulmonary 

reaction to LPS consisting of an early phase of pulmonary hypertension 

followed by a long late phase of increased pulmonary vase ular permeab il

ity. This biphasic response has been consistently reported and the 

separation of the phases is useful 1n terms of functional and structural 

changes and pathogenetic mechanisms. 

Intravenous infusion of a single dose of! coli LPS into sheep 

(0. 25 - 2 ug LPS/kg body weight) causes a 3- to 4-fold increase in 

pulmonary arterial pressure that peaks between 30 minutes and 1 hour 

post-infusion, but remains elevated above baseline for several hours. 

Concurrent with the increased pressure is a marked increase in protein

poor pulmonary lymph flow resulting in a marked increase in lung lymph 

protein clearance (Brigham et al., 1979; Deml ing et al., 1981; Snapper 

et al., 1983a). The increased lymph flow and protein clearance exceeded 
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that which could be attributed to increased microvascular pressure 

(Brigham et al., 1979). 

Lung mechanics are also markedly altered during the hypertensive 

phase of endotoxemia in the sheep. Dynamic 1 ung compliance markedly 

decreases, lung resistance to airflow markedly increases, and the alveo

lar-to-arterial oxygen gradient markedly increases (Esbenshade et al., 

1982; Snapper et al., 1983a). The functional residual capacity decreases 

(Esbenshade et al., 1982) . 

Temporally coincident with the hypertensive phase is a marked 

decrease in circulating leukocytes. This is primarily due to a decrease 

in neutrophile, but mononuclear cells also decrease significantly 

(Snapper et al., 1983b; Warner et al., 1988). A marked hypoxemia also 

accompanies the first phase of endotoxemia (Esbenshade et al., 1982). 

The permeability phase begins 2 to 4 hours post-infusion and is 

heralded by a steadily increasing pulmonary lymph protein clearance. 

This is characterized by a markedly increased lung lymph flow (5 to 6 

times baseline) with an increasing lung lymph to plasma protein concen

tration ratio (Brigham et al., 1979; Demling et al., 1981; Esbenshade et 

al., 1982 ). The magnitude of these changes indicates a marked increase 

in vascular permeability. Molecular sieving of proteins less than 100 

angstroms molecular radius occurs but the molecular radius of lost 

proteins is increased (Brigham et al., 1979). The lymph to plasma 

protein concentration ratio remains at or slightly above baseline but 

less than 1: 1 indicating that the vascular membrane is not freely perme

able to proteins and the vascular permeability is not due to gross 

vascular defects (Brigham et al, 1979; Demling et al., 1981). Pulmonary 
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arterial pressure remains mildly elevated to near normal during the 

permeability phase (Demling et al., 1981; Esbenshade et al., 1982). 

The decrease ~n dynamic lung compliance and increase in lung resis

tance to airflow is moderate during the early permeab i1 ity phase, but 

deteriorates as pulmonary edema develops pre-terminally (Esbenshade et 

a 1., 1982). Functional residual capacity improves early but drops 

precipitously as pulmonary edema develops (Esbenshade et al., 1982; 

Snapper et al., 1983a). The hypoxemia and increased alveolar to arterial 

oxygen-gradient persists throughout the permeab i1 ity phase with sub

lethal doses of LPS (Snapper et al., 1983a). 

Other functional changes accompany the permeability phase of endo

toxemia. The airway responsiveness to an inhaled bronchoconstrictor 

(histamine) increases (Hutchinson et al., 1983). Pulmonary vasoconstric

tion in response to hypoxia is significantly reduced (Hutchinson et al., 

1985). Demling et al. (1980) demonstrated an increase in lymph lysosomal 

enzymes that correlated well with increased vascular permeability. 

Plasma lysosomal enzymes increased, but correlated poorly with vascular 

permeability. They also demonstrated that 24 hours after a sublethal 

dose of LPS, measured parameters were essentially normal with the excep

tion of a moderate leukocytosis. 

Continuous administration of low doses (9 - 24 ng kg-1 hr-1) of ~ 

coli LPS to sheep causes a hyperdynamic state with increased cardiac 

output, decreased peripheral resistance, and mild elevations in pulmo

nary artery pressure. In contrast, the larger single dose of endotoxin 

described above results in a hypodynamic state with decreased cardiac 

output and marked pulmonary artery hypertension. Lung lymph flow also 

increases in the continuous low dose model and is similar to that seen 
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in the permeability phase of the single infusion model. Neutropenia at 

1.5 hours followed by neutrophilia at 4-24 hours is similar to that in 

the single dose model (Traber et al., 1988). Repeated doses of 0. 5 ug 

LPS/kg 3 times a week for 10 to 14 weeks results in a chronic, persis

tent pulmonary hypertension (more than 50% above baseline). Pulmonary 

vasoreactivity to hypoxia and a PGH 2 analog are also decreased (Meyrick 

and Brigham, 1986) • 

Studies of endotoxemia in calves are few. 01 son and Brown ( 1985) 

reported that calves exposed to 4 ug of !.:. coli LPS/kg/hour for 5 hours 

had changes similar to those described in the sheep models. The pulmo

nary artery pressure and pulmonary vascular resistance were markedly 

elevated within 30 minutes and remained elevated for the 5 hour test. 

The cardiac index was markedly depressed throughout the endotoxemia. The 

alveolar-to-arterial oxygen gradient was markedly elevated by 30 minutes 

but returned to normal after 1.5 hours (cf. sheep). Neutrophil, lympho

cyte, and platelet counts were markedly depressed throughout the study. 

Lung extravascular thermal volume, an indicator of extravascular lung 

water, was increased after 2 hours exposure. Margolis et al. (1987) 

demonstrated similar changes in pulmonary arterial pressure and cardiac 

output in calves infused with ~ coli endotoxin. They also demonstrated 

that plasma thrcmboxane increased from 30 to 60 minutes post-infusion 

and prostacyclin increased after 3 hours. 

Pulmonary Structural Alterations~~ Endotoxin 

Meyrick and Brigham (1983) examined the histologic changes in 

sequential peripheral lung biopsies of open-chested, anesthetized sheep 

following a single infusion of ~ coli LPS (1. 25 ug/kg infused over 30 
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minutes). Fifteen minutes following the start of endotoxin infusion, a 

3-fold increase in neutrophils was seen in capillaries and small vessels 

with about equal numbers of lymphocytes. Disgorged neutrophil-specific 

and azurophilic granules were found in the capillary lumen. By 30 

minutes, some granulocyte disruption was accompanied by more numerous 

free specific granules. There was mild interstitial edema. Transendo

thelial-migrating neutrophils were seen in the pulmonary capillaries of 

some but not all sheep. By 1 hour, the changes seen at 30 minutes were 

more severe. Additionally, some EC were more electron dense than normal 

and had increased pinocytotic vesicles. Infrequently capillary lt.nnens 

contained fibrin. Type I pnernnocytes were occasionally sloughed leaving 

areas of expo sed alveolar basement membrane. Lymphatics were dilated. 

From 2 to 4 hours, the ultrastructural appearance of the lung was simi

lar to that seen at 1 hour. In addition, foci of capillary disruption 

were seen, and the endothelium of small veins and arteries had returned 

to normal. Occasionally intracapillary monocytes had phagocytosed red 

cells and cellular debris. 

Warner et al. (1988) described the ultrastructural changes follow

ing a bolus injection of 125I-labeled E. coli in sheep (0. 8 ug/kg). 

Within 10 minutes after injection, they described vascular congestion 

with increased platelets and sur face structural changes in pulmonary 

intravascular macrophages, platelet phagocytosis, and platelet adher

ence. These changes in the intravascular macrophages were considered to 

be evidence of activation. By 60 minutes, many capillaries were occluded 

with neutrophil s, plate lets, and fibrin. Severe EC injury and intersti

tial edema were described. 
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Intrinsic Mediators of Endotoxemia 

Tumor Necrosis Factor (Cachectin). Tumor necrosis factor (TNF) 1s 

synthesized and secreted by macrophages after stimulation by endotoxin. 

TNF may be detected in the circulation of rabbits within 1 hour after 

endotoxin administration (Beutler et al., 1985a,b). The role of TNF in 

mediating endotoxic effects 1s indicated by experiments which showed 

that mice are protected from the lethal effects of endotoxemia by 

specific polyclonal antibodies to TNF (Beutler et al., 1985c). Similar

ly, passive immunization of baboons with neutralizing monoclonal anti

body to TNF protects them from septic shock (Tracey et al., 1987). 

Recombinant htman cachectin produces signs similar to endotoxic shock 

when injected into rats in biologically relevant amounts (Tracey et al., 

1986). Recombinant TNF also causes pulmonary edema and increased vascu

lar permeability in guinea pigs which is indistinguishable from that of 

endotoxin (Stephens et a1., 1988). 

In contrast, TNF is a doubtful mediator of endotoxin-induced neutro

phil emigration in the rabbit dermal model. Repeated endotoxin injec

tions into the same site results in tachyphylaxis. IL-l stimulates 

cross-tachyphylaxis to endotoxin-induced neutrophil emigration, but TNF 

does not (Cybulsky et al., 1988a). Additionally, only when IL-l and TNF 

are co-injected is the cellular infiltrate comparable to that induced by 

endotoxin (Movat et al., 1987). However, TNF induces IL-l production in 

the rabbit in vivo and in macrophages and EC in vitro (Dinarello et al., 

1986; Libby et al., 1986). TNF also mediates several additional 

responses which cause neutrophil adherence to EC and intravascular 

hypercoagulability (see Endothelium). 
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Interleukin-1. Endotoxin is a potent inducer of IL-l synthesis and 

secretion by primarily mononuclear phagocytes. A similar effect has been 

seen in neutrophils, EC, and smooth muscle cells (reviewed by Cybulsky 

et al., 1988b). Compelling evidence implicates IL-l as the principal 

mediator of endotoxin-induced neutrophil emigration into the rabbit 

dermis. Endotoxin, synthetic lipid A and IL-l are essentially equipotent 

in inducing neutrophil emigration ( Cybulsky et al., 1988a). Endotoxin 

and IL-l exceed the potency of TNF in inducing neutrophil emigration by 

several orders of magnitude (Cybulsky et al., 1988a, Wankowicz et al., 

1988). The kinetics of endotoxin- and IL-l-induced neutrophil emigration 

are similar. IL-l-induced emigration is first detectable 30 minutes 

after injection, peaks at about 1. 5 hours, and declines to a low level 

by 3. 5 hours. The endotoxin-induced emigration follows a nearly identi

cal pattern but is delayed 30 minutes in initiation and in the peak 

response. Presumably, the 30 minute delay in initiation of the IL-l

induced response is the time required for endothelial expression of 

neutrophil adhesion molecules, whereas the additional 30 minutes 

required for the endotoxin-induced effect is the time required for endo

toxin-induced IL-l secretion to occur (Cybulsky et al., 1988a). Finally, 

IL-l and endotoxin exhibit cross-tachyphylaxis, whereas TNF and neutro

phil chemoattractants do not (Cybulsky et al., 1988a). 

Like TNF, recombinant IL-l induced pulmonary lesions similar to 

those produced by endotoxin (Goldblum et al., 1988). Partially purified 

native IL-l can be substituted for the preparative and/ or provoking dose 

of endotoxin in the local Shwartzman-reaction (Becket al., 1986). How

ever, sub sequent studies using recombinant cytoki nes demonstrated that 

IL-l and TNF are both required and act synergistically for preparation 
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of the Shwart zman-like reaction (Movat et al., 1987). Submaximal doses 

of IL-l and TNF also synergize in neutrophil emigration in the rabbit 

dermal model (Wankowicz et al., 1988). Because endotoxin 1.s a potent 

inducer of both TNF and IL-l synthesis, it 1.s likely that these two 

cytokines act synergistically or additively in mediating many of the 

effects of endotoxin. 

Complement. The lipid A portion of LPS can directly activate the 

classical complement pathway and the polysaccharide and heterool igosac

charide portions can activate the alternate pathway (reviewed in Morri

son and Ulevitch, 1978). However, the results of in vivo experiments are 

unclear and often contradictory concerning the role of complement in 

mediating endotoxemia. For example, From et al. (1970) demonstrated an 

abrogation of the initial (2-5 minutes) endotoxin-induced hypotensive 

effect in complement-depleted dogs with no effect on the subsequent 

progressive hypotension and mortality. Garner et al. (1974) demonstrated 

no hypotensive effect and complete protection from endotoxic lethality 

in complement-depleted dogs. May et al. (1972) found that complement

depleted or C4-deficient guinea pigs had an accelerated mortality due to 

endotoxin. Sub sequent studies have failed to resolve these apparent 

conflicts (reviewed in Fine, 1985). In sheep, infusion of complement

activated plasma results in neutrophil sequestration in the pulmonary 

circulation and a biphasic physiologic response. However, the initial 

pulmonary hypertension and leukopenia occur and resolve much faster than 

that induced by endotoxin. Likewise, the increase in lung permeability 

is less pronounced, and within 2 hours the complement-induced lesions 

have resolved (Meyrick and Brigham, 1984). 
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Arachidonic Acid Metabolites. Endotoxin infusion into sheep caused 

increased concentrations of both the cyclooxygenase and lipoxygenase 

products of arachidonic acid metabolism with consistently higher concen

trations in the pulmonary lymph than in the plasma (reviewed in Brigham, 

1985). Apparently, thromboxane A2 is the mediator of the early pulmonary 

hypertension following bolus injection of endotoxin. Inhibitors of 

cyclooxygenase and thromboxane synthesis effectively inhibit the throm

boxane A2 release after endotoxin injection in sheep and calves and 

prevent the pulmonary hypertension but not the later increase in vascu

lar permeability (Winn et al., 1983; Margolis et al., 1987). The release 

of prostacyclin is temporally correlated with the increase in vascular 

permeab i1 ity, but direct cause and effect relationships are not estab

lished (Brigham, 1985). Prostacyclin infusion decreases the lung lymph 

flow in sheep during endotoxemia, and this decrease is associated with 

decreased pulmonary artery pressure (Smith et al., 1982). Prostacyclin 

infusion also reduces platelet aggregation and the release of throm

boxane ~ in the thrombin-induced vascular injury model in sheep (Malik 

et al., 1985). These mechanisms may be involved in the prostacyclin

induced attenuation of lymph flow in endotoxemia and could indicate that 

prostacyclin release during endotoxemia is a protective mechanism. PGE 2 

and PGF2a are also released into the pulmonary circulation during endo

toxemia. Both have pulmonary vasoconstrictor properties that result in 

increased microvascular hydrostatic pressure, but do not increase vascu

lar permeability to protein. Therefore, their mediator effects in endo

toxemia are uncertain (reviewed in Malik et al., 1985). 

The role of lipoxygenase products of arachidonic acid metabolism in 

mediating endotoxin effects is also uncertain. 5-HETE- and 12-HETE-
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release into the plasma and lung lymph correlate with increased permea

bility, but no cause and effect relationship has been established (Brig

ham, 1985). LTB4 infusion into sheep causes a transient increase in 

pulmonary artery pressure and lung lymph flow with an associated marked 

neutrophil sequestration in the lungs (Malik et al., 1985). LTC 4 and 

LTD4 cause a transient pulmonary hypertension which is inhibited by 

thromboxane synthestase inhibitors (Malik et al., 1985). Lipoxygenase 

inhibitors decrease the vascular permeability due to arachidonic acid 

injection in isolated rabbit lungs, but bolus injection of leukotrienes 

do not cause increased permeability, Therefore, a cause and effect rela

tionship could not be established (Seeger et al., 1987). 

Platelet Activating Factor. Platelet activating factor (PAF) can be 

detected in the circulation of rats in less than 10 minutes after endo

toxin injection. Injection of PAF mimics t~e early hypotensive effect of 

endotoxin in the rat. However, PAF-induced effects occur in 30 seconds, 

whereas endotoxin-induced effects require 2-3 minutes. This delay is 

considered to be the time required for PAF secretion. A PAF antagonist 

is capable of reversing endotoxin-induced hypotension (Doebber et al., 

1985). 

Platelet activating factor is secreted by EC 1n response to IL-l, 

thrombin, and leukotrienes. It was postulated that this may be an impor

tant mediating factor in many types of vascular injury primarily through 

the effect of PAF on leukocytes and platelets (Zimmerman et al., 1987). 

These experiments provide preliminary evidence that PAF may be a media

tor of several endotoxin-induced effects. 

Neutrophils. Injection of a single bolus of endotoxin into sheep 
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causes a rapid decline in circulating neutrophile and a 3-fold increase 

in peripheral lung neutrophil s increasing to a 6-fo ld increase by 4 

hours after injection (Meyrick and Brigham, 1983). Lung lymph lysosomal 

enzymes, most likely from sequestered leukocytes, are elevated in the 

early phase of endotoxemia, persist throughout the permeability phase, 

and correlate to lung lymph flow (Demling et al., 1981). Neutrophil 

depletion markedly reduces endotoxin-induced alterations of airway 

mechanics and vascular permeability (Hinson et al., 1983; Heflin and 

Brigham, 1981). However, the endotoxin-induced increases in vascular 

permeability in neutrophil-depleted sheep remain significant. In vitro 

observations indicate that endotoxin has direct injurious effects on 

endothelium which are enhanced by neutrophils. Therefore, though neutro

phils intensify the lung injury due to endotoxin, they are not the sole 

mediators of the response (Brigham and Meyrick, 1984). Additionally, 

zymosan-activated plasma causes vascular sequestration of neutrophils 

similar to that induced by endotoxin, but the magnitude and duration of 

effects are much less Ofeyrick and Brigham, 1984). 

Endotoxin effects on neutrophile may enhance their damaging effects 

in the pulmonary vasculature. Pretreatment of neutrophile with LPS (10 

ng/ml) causes them to release much greater quantities of superoxide 

anion, myeloperoxidase, and lysozyme than untreated neutrophils when 

subsequently exposed to immtme complexes or chemoattractants. (Guthrie 

and Johnston, 1982). Similarly, pretreatment of neutrophils with LPS 

enhances chemoattractant-induced elastase secretion (Fittscher et al., 

1988). Release of pro teases and superoxides causes endothelial damage in 

vitro (see Endothelium) and likely mediates the neutrophil-induced 

vascular damage. 
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Conclusion 

Bacterial endotoxin produces pronounced pulmonary vascular effects 

in small ruminants and calves. The similarity of the hemodynamic effects 

and vascular lesions seen with experimental pneumonic pasteurellosis to 

those of endotoxemia have led to numerous implications of the importance 

of endotoxin in pneumonic pasteurellosis. The reported use of P. haemo

lytica endotoxin in any lung injury model is extremely rare. The action 

of endotoxin on the pulmonary vasculature combines direct effects with 

the complex interactions of multiple, intrinsic mediators. Bovine pulmo

nary artery EC have been used as an in vitro model to more specifically 

study some of the mechanisms of endotoxin-induced vascular injury in a 

less complex setting, and many of the findings have subsequently been 

confirmed or supported in vivo. 

This research attempts to define potential pathogenic mechanisms of 

vascular injury in bovine pneumonic pasteurellosis. It will test the 

hypo thesis that !.:_ haemolytica LPS is a factor in the pathogenesis of 

the vascular lesions of pneumonic pasteurellosis. Cultured bovine pulmo

nary artery EC will be the test model. The objectives of the research 

are to examine the effects of P. haemolytica LPS on BPAEC by assays of 

cytotoxicity as well as morphologic and functional alterations in the 

EC. 



CHAPTER II 

THE DIRECT EFFECTS OF PASTEURELLA HAEMOLYTICA 

LIPOPOLYSACCHARIDE ON BOVINE PULMONARY 

ENDOTHELIAL CELLS IN VITRO 

Introduction 

Bovine pneumonic pasteurellosis (shipping fever) is a disease of 

major economic importance to the cattle industry (Jensen, 1968). The 

etiology is complex and involves the interaction of stress with viral 

and bacterial infections (Jericho, 1979; Rehmtulla and Thomson, 1981; 

Yates, 1982). Pasteurella haemolytica biotype A, serotype 1 causes the 

severe, fibrinous pleuropneumonia that is responsible for the high 

mortality and economic loss (Schiefer et al., 1978; Frank, 1979; 

Rehmtulla and Thomson, 198l).[The pneumonic lesions include early pulmo-

nary edema, extensive serofibrinous exudation into the alveoli, and 

neutrophil sequestration and emigration (Gil ka et al., 1974b; Allan et 

al., 1985). The disease spreads aggressively throughout the lungs and 

results in widespread necrosis with vascular and lymphatic thrombosi~ 

(Schiefer et al., 1978; Jericho, 1979)] 

In pneumonic pasteurellosis, the early appearance of pulmonary edema 

followed by fibrinous exudation indicates that vascular damage is an 

important pathogenetic factor (Gil ka et al., 1974b). Endotoxin [ bacte-

rial lipopolysaccharide (LPS)] has been implicated as a potential factor 

in causing this vascular damage (Slocombe et al., 1984; Allan et al., 
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1985; Breider et al., 1988). Experimentally, intravenous infusion of 

endotoxin caused increased vascular permeab i1 ity in sheep ( Meyrick and 

Brigham, 1983). In vitro, the LPS of Escherichia coli and Salmonella 

typhosa were directly toxic to bovine pulmonary arterial endothelial 

cells (BPAEC) (Harlan et al., 1983; Meyrick et al., 1986). 

This study was designed to examine the direct effects of LPS puri-

fied from~ haemolytica Al on cultured BPAEC. These effects were evalu-

a ted by measuring several indicators of cell injury or lysis and by 

morphologic examination. 

Materials and Methods 

Lipopolysaccharide Preparation 

Pasteurella haemolytica Al LPS was prepared by phenol-water extrac-

tion (Wesphal and Jann, 1965; Confer and Simons, 1986). The resulting 

LPS at a concentration of 5.2 mg/ml (dry weight) contained 168 ug of 2-

keto, 3-deoxyoctanate/ml, and had 6.8 x 105 EU/ml (130 EU/ug) of endo-

toxin activity as determined by a chromogenic Limulus amebocyte assay.a 

Endothelial Cells 

Monolayer cultures of BPAECb were maintained in 75 cm2 tissue 

culture flasks in Medium 199 with Earle's saltsc containing 4.35 g 

NaHCo 3/l, 10-S M thymidine, c 50 ug gentamicinc/ml, 5 ug fungizonec/ml, 

0.2 M glutamine,c and 10% heat-inactivated fetal bovine 

aWhittaker MA Bioproducts, Inc., Walkersville, MD. 
bccl-209, American Type Culture Collection, Rockville, MD. 
cGibco Laboratories, Inc., Grand Island, NY. 
dHyclone Laboratories, Logan, UT. 

serum 
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(Complete medium). Cell cultures were incubated at 3 7 C in 5% co2 , and 

medium was changed twice weekly. For each experiment, BPAEC were trans

ferred to 24-well tissue culture platese at a concentration of 3.5 x 104 

cells per well and grown to confluence (6-7 days). Cultures were used at 

passages 16 through 19. 

Lactate Dehydrogenase (LDH) Leakage Assay 

The complete medium was removed from confluent monolayers of BPAEC 

in 24-well plates and replaced with 500 ul of REMI 1640 mediumc/well 

containing 10% FBS and from 0. 001 to 10 ug of LPS/ml, no LPS (negative 

control), or 1% Triton X-100 (positive control). Each treatment was 

tested in triplicate or quadruplicate. The plates were incubated at 37C 

in 5% co2 for 0.5 to 24 hours. At the predetermined times, the medium 

was removed and centrifuged for 5 minutes at 290 xg. Fifty ul of the 

supernatant were assayed for LDH activity using a spectrophotometric 

methodf,g (Clinkenbeard et al., 1989). Percent LDH-leakage was calcu-

lated by the following formula: 

LDH activity (IU/L) 
in supernatants of: 

Chromium-Leakage Assay 

(test medium-control medium) 
(1% Triton medium-control medium) 

X 100 

BPAEC monolayers in 24-well plates were labeled with 51crh by incu-

bation for 1 hour at 37 C in complete medium containing 50 uCi of activ

ity of 51cr/ml. Following a triple rinse in phosphate-buffered saline 

eNunclon lliltidish, A/S Nunc, Kamstrup, Denmark. 
fLD-L, Sigma Diagnostics, St. Louis, MO. 
gSystem 5 Analyzer, Gilford Instrument Laboratories, Inc., Oberlin, OH. 
hiCN Radiochemicals, Irvine, CA. 
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solution (PBSS), the wells received 500 ul of complete medium containing 

0, 0.1, or 10 ug of LPS/ml or 1% Triton X-100. The plates were incubated 

at 37C for 1 to 24 hours. Each treatment was tested in triplicate. At 

the predetermined times, the medium was removed and centrifuged at 290 

xg for 5 minutes. Counts per minute (cpm) were determined for 200 ul of 

each supernatant using an automated gamma counteri. Percent 51cr-leakage 

was calculated by the same formula as that used for percent LDH-leakage 

using cpm in medium supernatants rather than LDH activity. 

Cell-Detachment Assay· 

Complete medium was removed from confluent mono1ayers of BPAEC in 

24-well plates and replaced with 1.0 ml of complete medium containing 

from 0. 001 to 10 ug of LPS/ml or no LPS. After an 18 hour incubation at 

37C in 5% co2 , the medium was removed. The wells were rinsed in PBSS 

until free cells were not seen by light microscopy. The remaining cells 

were released by incubation in 0.05% trypsin and 0.53% EDTA until 

release was complete as determined by 1 ight microscopy. Total volume in 

each well was brought up to 1.0 ml with PBSS containing 10% FBS to halt 

the trypsin activity. The cell suspensions were agitated and counted 

directly without dilution using a hemacytometer. In a separate experi-

ment, the monolayers were exposed to 1 ug of LPS/ml for periods of 0. 5 

to 8 hours and examined by the same method. Percent detachment was 

calculated by the following formula: 

(number of cells in control well - number of cells remainin ) 
(number of cells in control wells 

iGamma 5500, Beckman Instruments, Inc., Fullerton, CA. 

X 100 
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Statistical Analyses 

Means and standard errors of the means (SEM) were calculated. The 

samples were tested for equal variances using the F-test. Experimental 

means were compared to control means using appropriate Student's t tests 

(Steele and Torrie, 1980). Results were considered significant at p < 

o. 05. 

Scanning Electron Microscopy (EM) 

BPAEC monolayers were grown to confluence on coverslips within 24-

well plates and exposed to 1 ug of LPS/ml in RPM! 1640 medium. At 2, 4, 

8, and 24 hours, the monolayers were fixed in situ with 2.5% glutaralde-

hyde for one hour. The fixed cells were coated by the osmium-thiocarbo-

hydrazide procedure of Malik and Wilson (1975), dehydrated in serial 

ethanol rinses, and critical-point dried by ethanol-co2 solvent 

exchange.j The coverslips were mounted on aluminum stubs and viewed with 

a scanning electron microscopek with the specimen til ted at a 45 degree 

angle to the electron beam. 

Results 

Exposure of BPAEC monolayers to ~ haemolytica LPS caused a dose-

and time-dependent release of LDH (Table I). Significant LDH-leakage 

first became detectable after 4 hours exposure to LPS concentrations of 

0. 1 ug/ml or greater. The percent-release increased throughout the 24-

hour test period and also was de tee table with an LPS concentration of 

jSamdri Pvt 3 Critical Point Dryer, Tousimis Research Corp., Rockville, 
MD. 

kJSM 35-U, Jeol Ltd., Tokyo, Japan. 
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TABLE I 

LDH-LEAKAGE FROM CULTURED BOVINE ENDOTHELIAL 
CELLS FOLL<MING EXPOSURE TO PASTEURELLA 

HAEMOLYTICA LPS 

Percent LDH-Leaka~eb 
Concentrationa 2 hours 4 hours 8 hours 24 hours 

o. 001 0 (2) 0 (2) 1 ± 1 (2) 21 ± 21 (2) 
0.01 1 :!: 1 (3) 3 + 1 (3) 12 ± 5 (3 )C 29 :!: 15 (3 )C 

0.1 0 (3) 4 :!: 2 (3 )c 25 + 6 (3 )d 38 + 11 (3) d 
1.0 0 (3) 8 ± 2 (4 )d 31 :!: 4 (4 )d 66 ± 16 (4) d 
10.0 1 + 1 (3) 9 + 2 (4 )C 33 ± 3 (4 )d 57 ± 1 (4)d 

:~;~:!~sed as the mean ± SEM. 
Parentheses =Number of experiments. 
cSignificant leakage (p < 0.05) in more than one-half of experiments 

(i.e., 2 of 3 or 3 of 4). 
dsignificant leakage ( p < 0. 05) in all experiments. 
LDH = Lac tate dehydrogenase. 
LPS = Lipopolysaccharide. 

TABLE II 

CCMPARISON OF 5lcr- AND LDH-LEAKAGE FROM CULTURED 
BOVINE ENDOTHELIAL CELLS FOLLCMING LPS EXPOSURE 

LPS Percent Leaka~eb 
Concentrationa 2 hours 4 hours 24 hours 

51cr-leakage o. 1 ND 
10.0 0 (2) 

LDH-leakage o. 1 0 (3) 
10.0 1 ± 1 (3) 

aug/ml. 
bExpressed as the percent leakage ± SEM. 
Parentheses =Number of experiments. 
LDH = Lac tate dehydrogenase. 
LPS = Lipopolysaccharide. 

10 
15 

4 
9 

± 10 (2) 59 ± 6 (2) 

± 14 (2) 61 ± 18 (2) 

± 2 (3) 38 :!: 11 (3) 
+ 2 (4) 57 + 11 (4) 

36 
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0.01 ug/ml at 8 and 24 hours. The maximal dose-response occurred at 1 

and 10 ug/ml with no significant differences between the two doses. Mean 

positive control values were 102 (±3) IU /L and mean negative control 

values were 33 (±2) IU/L which were within the linear limits of the test 

(data not shown). 

Leakage of 51 cr from BPAEC monolayers following exposure to P. 

haemolytica LPS followed a dose- and time-dependent pattern similar to 

that for LDH-leakage (Table II). Significant 51 cr-leakage was first 

detectable following 4 hours of exposure and reached a value of 61% 

(±18) at 24 hours with an LPS concentration of 10 ug/ml. Significant 

differences were not detected between percent 51 cr-leakage and percent 

LDH-leakage at any time or dose tested. 

Cell-detachment was not detectable following 18 hours exposure to 

LPS at 0.001 ug/ml or 0.01 ug/ml, but was 29% (:!;4) at 0.1 ug/ml, 81% 

(±2) at 1 ug/ml, and 89% (±2) at 10 ug/ml. In a separate experiment, 

exposure to 1 ug of LPS/ml caused no significant release by 1 hour, 23% 

(±3) by 2 hours, 85% (±4) by 4 hours, and 95% (±2) by 8 hours. 

Examination of normal BPAEC monolayers by scanning EM revealed a 

mounded surface morphology. Numerous distinct fissures were present 

along the cell junctions because of shrinkage during fixation and 

processing (Figure 1). The surface of each endothelial cell had several 

large depressions (up to 2 urn in diameter) and numerous small depres

sions (0. 1 to 0.2 urn in diameter) (Figure 2). After 1 hour of LPS 

exposure, many of the cells contained foci of rarefaction that had 

rounded, raised margins and mildly depressed centers (Figures 3, 4). The 

numbers of large depressions similar to those seen in normal cells were 

normal to decreased. After 2 hours of LPS exposure, cells had retracted 



Figure 1. Normal endothelial monolayers with 
rounded cell morphology and pitted 
surfaces. The sharp fissures along 
cell junctions are processing 
artifacts. x940 

Figure 2. Normal endothelial cells surface with 
large (up to 2 urn diameter) and small 
(0. 1 to 0.2 urn diameter) depressions. 
x9400 
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Figure 3. Endothelial monolayer after a 1 hour 
exposure to 1 ug of LPS/ml. 
Morphologic changes consist of 
appearance of rarefied areas 
(arrow) and a decrease in large 
surface pits. x940 

Figure 4. Rarefied area on the surface of 
endothelial cell after a 1 
hour exposure to 1 ug of LPS/ml. 
Note raised, rounded margin 
(arrow). x9400 

w 
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and had fine cytoplasmic projections· stre.aming from their edges along 

the sur face of the glass (Figure 5). Mild to marked cytoplasmic blebb ing 

and ruffling of the cell surface was most pronounced along, but not 

limited to the edges of the cells (Figure 6). Many cell surfaces had 

grape cluster-like appearance caused by retraction and bleb formation. 

The changes observed at 4 hours were similar to, but much more extensive 

than those seen at 2 hours; most of the cells had detached. By 8 hours, 

cell detachment was essentially complete. 

Discussion 

Pasteurella haemolytica LPS caused severe dose- and time-dependent 

damage to BPAEC monolayers. Following 2 hours of exposure to LPS, there 

were marked morphologic changes consisting of cell-retraction and 

surface bleb formation along with significant cell-detachment. However, 

51cr- and LDH-leakage was not detectable at this time. Detachment appar

ently preceded the formation of membrane defects which allowed the 

release of large internal molecules. In our study, LDH- and 51 cr-leakage 

were equivalent indicators of severe membrane damage. Determination of 

LDH-leakage was simpler, yielded more consistent results, and avoided 

radiation hazards; therefore, LDH-leakage was the method of choice for 

these experiments. 

Our results were similar to those previously described in which 

BPAEC were exposed in vitro to LPS from other bacteria (Harlan et al., 

1983; Meyrick et al., 1986). Whereas direct cytotoxic effects of LPS 

have been demonstrated in bovine endothelial cells (EC) in vitro, the EC 

of the human, goat, and canine were resistant to LPS cytotoxicity 

(Harlan et al., 1983). These findings suggest that endotoxin may be a 



Figure 5. Endothelial monolayer after a 2 hour 
exposure to 1 ug of LPS/ml. Cell 
retraction is marked. Several cells 
are rounded with severe bleb 
formation (arrows). K940 

Figure 6. Endothelial cell surface after a 2 hour 
exposure to 1 ug of LPS/ml. Bleb 
formation is most pronounced along 
the edge and surface is ruffled. Fine 
cytoplasmic projections are streaming 
from the edge along the surface of 
the glass. x5400 

~ ..... 
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more important factor in causing vascular lesions in gram negative 

infections in the bovine than in several other species. 

A recent study demonstrated that the lesions of bovine pneumonic 

pasteurellosis were caused by both neutrophil-independent and -dependent 

mechanisms ( Bre ider et al., 1988). Endotoxin is potentially involved in 

both mechanisms. Endotoxin-mediated, neutrophil-independent mechanisms 

could arise through the endotoxin-mediated release of interleukin-1 (IL

l) and tumor necrosis factor (TNF) from monocytes and macrophages 

(Cybulsky et al., 1988). Both IL-l and TNF activate EC, which in turn 

promote local hypercoagulabil ity of the blood by expressing an overall 

increase in procoagulant and decrease in anticoagulant activities 

(Bevilacqua et al., 1985; Bevilacqua et al., 1986; Cotran, 1987). Endo

toxin may also amplify this local response by pranoting the synthesis 

and release of additional IL-l by the EC (Libby et al., 1986). The 

demonstrated direct toxic effects of P. haemolytica LPS for bovine EC 

would enhance vascular damage, platelet adhesion, leakage of serum 

proteins into the alveoli, and activation of the intrinsic clotting 

mechanism (Slauson and Cooper, 1982). These mechanisms may be important 

in inducing the thranbosis and fibrinous exudation seen in pneumonic 

pasteurellosis. 

Arachidonic acid metabolites are also likely mediators of some of 

the pulmonary vascular effects of endotoxin. Thranboxane A2 causes an 

early increase in pulmonary arterial pressure and lung lymph flow in 

experimental endotoxemia (Casey et al., 1982; Brigham , 1985; Malik et 

al., 1985). However, this effect is transient and may have little 

influence on the outcome of endotoxemia (Casey et al., 1982; Margolis et 

al., 1987). An increase in plasma and lung lymph levels of prostacyclin 
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is associated with a later and more prolonged decrease in pulmonary 

arterial pressure and increased lung lymph flow and protein clearance 

(Gunther et al., 1982; Malik et al., 1985; Ogletree et al., 1986). Endo

thelial cells are considered to be the major source of prostacyclin, and 

release is stimulated by both endotoxin and IL-l (Malik et al., 1985; 

Rossi et al., 1985; Meyrick 1986). The lipoxygenation products, 5- and 

12-hydroxyeicosatetraenoic acid (5- and 12-HETE) and leukotrienes (LT) 

have been implicated as mediators of the vascular permeability associ

ated with endotoxemia (Brigham, 1985; Ogletree et al., 1986). Experimen

tal pneumonic pasteurellosis in newborn calves induced hemodynamic 

alterations similar to those caused by endotoxemia, especially those 

associated with prostacyclin and 5- and 12-HETE, which further empha

sizes their potential importance in the disease (Alnoor et al., 1986). 

However, the cause and effect relationship between arachidonic acid 

metabolites and endotoxin-induced vascular damage remain unclear. 

Endotoxin also may be important in neutrophil-dependent mechanisms 

of damage to the bovine lung. Endotoxin-induced IL-l and TNF release 

could promote leukocyte adhesion to EC through expression of specific 

leukocyte-adhesion proteins on the surface of EC (Bevilacqua et al., 

1985; Gamble et al., 1985; Bevilacqua et al., 1987). Also IL-l acts as a 

chemotactic factor for neutrophils (Sander et al., 1984). Additionally, 

endotoxin acts directly on neutrophils to promote vascular adhesion 

(Haslett et al., 1987). Various 1 ipoxygenase products of arachidonic 

acid metabolism, especially LTB4, are potent chemotaxins and probably 

contribute to the neutrophil-dependent effects (Malik et al., 1985). 

Although~ haemolytica LPS is not directly toxic to bovine leukocytes, 

it can enhance certain leukocyte functions (Confer and Simons, 1986). 
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Therefore, the direct effects and the mediation of the effects of endo

toxin by IL-l, TNF, and arachidonic acid metabolites may be important 

factors in both neutrophil-dependent and -independent mechanisms. 

In conclusion, ~ haemolytica AI LPS is capable of causing direct 

damage to bovine pulmonary arterial EC in vitro. This strongly implies a 

potential role for endotoxin in the pathogenesis of vascular lesions in 

pnetunonic pasteurellosis. This is not the only potential mechanism for 

the action of LPS in producing lesions in the disease, nor is LPS the 

only factor produced by ~ haemolytica that ~s likely to play an impor-

tant role. Continued research into other mechanisms and interactions 

involved in pneumonic pasteurellosis are needed to further elucidate its 

pathogenesis and to devise logical approaches for its prevention and 

treatment. 

Summary 

Bovine pulmonary artery EC in cell culture were exposed to LPS 

purified from~ haemolytica serotype AI. This resulted in severe 

membrane damage which caused a time- and dose-dependent leakage of 

lactate dehydrogenase that was first detected 4 hours after exposure and 

reached a maximum of 67% after 24 hours exposure to 1 ug of LPS/ml. Mean 

release of 51cr followed a similar pattern and reached a maximum of 61% 

following 24 hours exposure to 10 ug of LPS/ml. Morphologically, EC 

responded to LPS by marked cell membrane retraction, the formation of 

numerous cytoplasmic blebs, and ruffling of the cell membrane. Sub

sequently, the cells became rounded and detached. Cell-detachment 

reached a mean of 95% following 8 hours exposure to I ug of LPS/ml. 

These studies demonstrate that P. haemolytica LPS is capable of causing 
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direct damage to BPAEC which may be important 1n the pathogenesis of 

bovine pneumonic pasteurellosis. 



CHAPTER III 

PASTEURELLA HAEMOLYTICA LIPOPOLYSACCHARIDE-INDUCED 

ARACHIDONIC ACID-RELEASE FROM AND NEUTROPHIL 

ADHERENCE TO BOVINE PULMONARY ARTERY 

ENDOTHELIAL CELLS 

Introduction 

Bovine pneumonic pasteurellosis is a disease having major economic 

impact on the North American cattle feeding industry (Jensen, 1968). The 

lesions of bovine pneumonic pasteurellosis, most commonly caused by 

Pasteurella haemolytica A1, indicate that vascular damage is an impor-

tant early event in the pathogenesis of the disease. These lesions 

include alveolar edema, serofibrinous exudation into the alveoli, hemor-

rhage, microvascular thrombosis, and endothelial cell (EC) swelling 

(Jensen et al., 1976; Breider et al., 1988). Endotoxin, or bacterial 

lipopolysaccharide (LPS), has frequently been cited as a potential 

causative factor of the vascular damage (Jensen et al., 1976; Slocombe 

et al., 1984; Allan et al., 1985; Breider et al., 1988). 

There is little direct evidence for the involvement of endotoxin in 

pneumonic pasteurellosis. However, indirect evidence is sufficient to 

warrant investigation. In sheep, Escherichia coli LPS causes pulmonary 

vascular lesions which are similar to, but less severe than, the early 

lesions of pneumonic pasteurellosis (Meyrick and Brigham, 1983; Warner 

et al., 1988). ~coli endotoxemia in calves causes similar effects to 

46 
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those seen in the sheep relative to hemodynamics and lung mechanics with 

evidence of pulmonary permeability edema (Olson and Brown, 1985). Exper

imental !i. haemolytica pneumonia in newborn calves also causes hypox

emia, neutropenia, and decreased vascular response to hypoxia, which are 

similar to those in the sheep endotoxin model (Hutchinson et al., 1985; 

Alnoor et al., 1986). However, differences exist including decreases in 

pulmonary artery pressure and pulmonary vascular resistance in the calf 

pneumonia versus increases in the endotoxemic sheep (Esbenshade et al., 

1982; Alnoor et al., 1986). Intravenously administered ~ haemolytica 

LPS causes increased plasma levels of the arachidonic acid (AA) metabo

lites, thromboxane B2, 6-keto-prostaglandin F10 , and prostaglandin F20 , 

in sheep similar to that seen with !.:_ coli LPS (Demling et al., 1981; 

Emau et al., 1984) 

In our laboratory, the effects of LPS extracted from ~ haemolytica 

Al have been examined using bovine pulmonary artery endothelial cells 

(BPAEC) in cell culture. We found direct LPS-induced toxicity resulting 

in cell detachment, severe morphologic alterations, and evidence of cell 

lysis (Chapter II). The study reported herein was designed to investi

gate~ haemolytica LPS-induced functional alterations in BPAEC by 

effects on neutrophil adherence and AA-release. These alterations may be 

indicative of endothelial activation, an important event in the inflam

matory response (Cotran, 1987), which may amplify or mediate the vascu

lar damage of pneumonic pasteurellosis. 

Materials and Methods 

Lipopolysaccharide 

Lipopolysaccharide was extracted from P. haemolytica Al by a hot 



48 

phenol-water method (Westphal and Jann, 1965; Confer and Simons, 1986). 

The resulting LPS contained 32.3 ug of 2-keto,3-deoxyoctanate/mg dry 

weight and had an endotoxin activity of 1.3 x 105 EU/mg as determined by 

a chromogenic Limulus amebocyte lysate assay.a Protein content was less 

than 0. 1 ug/ ml. 

Endothelial Cells 

Bovine pulmonary artery endothelial cells were obtained commercial

lyb or isolated using a modification of previously described techniques 

(Ryan et al., 1980). Briefly, pulmonary arteries were obtained from 

calves at a local abattoir. They were suspended in cold phosphate 

buffered saline solution (PBSS) containing gentamycin ( 100 ug/ml) and 

transported on ice. The arteries were washed 3 times then suspended in 

PBSS with gentamycin for 1 hour at 4C. After rewarming the solution and 

arteries in a 37C water bath, the arteries were slit open and the 

luminal surface 1 ightly scraped once with a sterile scalpel blade. The 

cells were suspended in Medium 199 with Earl's salts and bicarbonatec 

containing thymidinec (l0-5 M), getamincinc (50 ug/ml), fugizonec (5 

ug/ml), glutaminec (0.2 M), and 10% conditioned medium (complete medium) 

with 20% heat-inactivated fetal bovine serum (FBS). d The ce 11 s were 

pelleted at 1000 xg, 10 minutes, 4C. They were resuspended in complete 

medium with 20% FBS and transferred to a 25 cm2 tissue culture flask. 

After 2 days incubation at 37C, 5% co2 , the cells were harvested with 

aWhittaker MA Bioproducts, Inc., Walkersville, MD. 
bATCC, CCl-209, American Type Culture Collection, Rockville, MD. 
cGibco Laboratories, Inc., Grand Island, NY. 
dHyclone Laboratories, Logan, UT. 
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trypsin/EDTA, counted, and transferred to 96-well tissue culture platese 

at a concentration of about 5 cells/well. Pure cultures of BPAEC were 

chosen based on the typical cobblestone morphology and later verified by 

positive indirect immunofluorescent staining for Factor VIII-related 

antigen.e The EC were grown in progressively larger tissue culture 

plates up to 75 cm2 tissue culture flasks (usually requiring 3 

passages). The concentration of FBS subsequently was reduced to 15% then 

10% on successive passages. 

Monolayers of both lines of BPAEC were maintained in 75 cm2 tissue 

culture flasks in complete medium with 10% FBS. All cultures were 

incubated at 37C in 5% co2 and medium was changed twice weekly. The 

commercial cell-line was used at passages 17 through 20. The primary 

cell-line was used at passages 7 and 8. 

Arachidonic Acid-Release Assay 

Confluent monolayers of BPAEC in 24-well platesf were labeled with 

3H-arachidonic acid (AA)g by the addition of 0.2 uCi AA/well in 1 ml of 

complete medium with 10% FBS and incubation at 3 7C in 5% co2 for 48 

hours (Suttorp et al., 1985b). The radiolabeled monolayers were washed 3 

times in medium 199. Complete medium with 10% FBS with or without 

inhibitors was added (400 ul/well) and incubated for 15 minutes at 37C. 

The inhibitors included hydrocortisoneh (1 mg/ml) and indomethacinh (5 

uM to 5mMi). Four ul of a 100-fold concentration of LPS were added to 

eBehring Diagnostics, La Jolla, CA. 
fNunclon, A/S Nunc, Kamstrup, Denmark. 
gNew England Nuclear, Boston, MA. 
~Sigma LD-L, Sigma Diagnostics, St. Louis, MO. 
1 In complete media at 37C, 5 mM indomethacin is a saturated solution 

and, therefore, the molarity is approximate. 
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each well. Baseline controls received no LPS. The treated monolayers 

were incubated at 37C in 5% co2 for up to 8 hours. Following incubation, 

the medium was removed and centrifuged in a microcentrifugej for 2 

minutes at 10,000 rpm. A scintillation fluork was added to 300 ul of the 

supernatant and counts per minute ( cpm) of radioactivity were deter

mined.1 

Neutrophil Isolation 

Neutrophil s were isolated from fresh, citra ted bovine blood by 

differential sedimentation and hypotonic lysis (Clinkenbeard et al., in 

press). The blood was centrifuged at 700 xg, 20C for 45 minutes. The 

plasma and huffy coat were removed and discarded. Hank's balanced salt 

solution without calcimn, magnesimn, and bicarbonate (HBSS )c was added 

[1: 1 (vol:vol)] to the remaining packed cells. A 2:1 (vol:vol) quantity 

of lysing buffer (7.4 ml of 0. 2 M NaH 2Po4 , 19.0 ml of 0. 2 M Na 2HP04 , 

373.6 ml water, pH 7.2) was added to the packed cells in HBSS, gently 

agitated, and centrifuged at 700 xg, 20C, 15 minutes. The pellet was 

resuspended in 3 ml HBSS. Six ml of lysing buffer were added with gentle 

agitation. Three ml of a restorative buffer (2. 7% NaCl in lysing buffer) 

were added, and the cells were pelleted at 700 xg, 20C, 15 minutes. The 

cells were resuspended in 1 ml HBSS or 1 ml RPMI 1640c, counted, diluted 

to 10 7 cells/ml, and held at room temperature for use later the same day 

(2-3 hours). A differential count was performed to assess purity. This 

procedure consistently yielded over 90% neutrophils. 

jSurspin, Model 7040, Helena Laboratories, Beaumont, TX. 
kEcolite, ICN Biomedicals Inc., Irvine, CA. 
1Tri-Carb 300, Packard Instrument Co., Laguna Hills, CA. 
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Neutrophil Adherence Assay 

Neutrophil adherence to BPAEC was assessed by the rose bengal stain 

method (Gamble and Vadas, 1988). Briefly, 104 BPAEC/well were placed in 

96-well, flat-bottom dishesf and grown for 24 hours establishing a sub

confluent monolayer. The media was removed from selected wells and 

replaced with 200 ul of inhibitors in medium 199 with 5% FBS. Inhibitors 

were also added to aliquots of neutrophils and the BPAEC and neutrophils 

were incubated for 15 minutes at 37C. Inhibitors used included cyclohex

imideh (10 ug/ml), actinomycin oh (10 ug/ml), and polymyxin Bh (10 

ug/ml). After incubation, the media was removed from each well and 

replaced with 200 ul of medium 199 with 5% FBS or the same containing 

various doses of LPS with or without inhibitors. Concurrently, various 

doses of LPS were added to appropriate aliquots of neutrophils in HBSS. 

Neutrophils and BPAEC -were incubated for 1 or 2 hours at 37C. Neutro

phils were centrifuged for 5 minutes, 2,000 rpmj, and resuspended in 

medium 199 with 5% FBS. To each well of BPAEC, 5 x 10 5 neutrophils were 

added and coincubated for 30 minutes, 37C. Media and nonadherent neutro

phils were removed and each well was rinsed once in medium 199 with 5% 

FBS. Rose bengal stainh (100 ul, 0.25% in PBSS) was added to each well 

at room temperature for 5 minutes. All wells were washed 3 times in PBSS 

and examined with a light microscope for a visual estimate of adherence. 

Fifty percent ethanol in PBSS (200 ul/well) was added and gently 

agitated at room temperature for 30 minutes. Optical density at 570 nm 

wavelength (oo570) was determined with an ELISA reader.m Results were 

reported as increased optical density (oo570 test - oo 570 of wells 

mEIA Reader, EL307, Bio-Tek Instruments, Inc., Burlington, VT. 
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containing BPAEC only). The inhibition index was calculated by the 

following formula: 

(OD OD ) 
(1 - T - C ) X 100 

(o~ - ODe) 

where ODT is the optical density reading of the individual inhibitor 

test, ODe is the mean optical density of the unstimulated control, and 

OD1 is the mean optical density of the LPS-stimulated neutrophil adher-

ence without the inhibitor. Since this assay was not quantitative, the 

number obtained was relative to, but not identical to, the percent 

inhibition of LPS-induced neutrophil adherence resulting from the effect 

of the inhibitor. 

Statistics 

The arachidonic acid-release experimental data were analyzed for 

unequal variance by the F-test. The means were compared by the appropri-

ate Student's t test. The neutrophil adherence data were analyzed by the 

least significant difference test; only pre-planned comparisons were 

considered (Steele and Torrie, 1980). Results were considered signifi-

cant if P i 0.05. 

Results 

Arachidonic Acid-Release 

Labeling of BPAEC monolayers with 0.2 mei of 3H-M per well for 48 

hours resulted in 75 + 1.5% incorporation of the radioactivity. Release 

of radioactivity from the labeled monolayers after exposure to P. haemo-

lytica LPS was time- and LPS dose-dependent (Tables III and IV). Release 



Test 

LPSh 

Indomethacinc 

Hydrocortisoned 

Control 

TABLE III 

3H-ARACHIDONIC ACID-RELEASE FROM ENDOTHELIAL 
CELLS FOLLOWING EXPOSURE TOP. HAEMOLYTICA 

LIPOPOLYSACCHARIDE 

1 houra 2 houra 4 houra 

2009 + 279 (12) 4408 ± 386 (12)e 6292 ± 432 (13)e 

1 772 ± 1 76 (10) 2629 ± 285 (10)f 3057 ± 523 (9 )f 

1832 ± 191 (8) 3953 ± 493 (8 )e 7369 ± 964 (9 )e 

1437 + 149 (13) 2612 ± 198 (13) 2612 ± 305 (13) 

aResults are expressed in mean counts per minute± SEM (n). 
b~ haemolytica LPS 0.1 ug/ml. 
cindomethacin, 5 mM, with 0.1 ug LPS/ml. 
dHydrocortisone, 1 mg/ml, with 0.1 ug LPS/ml. 
esignificant release compared to baseline (p < 0.05). 
fsignificant inhibition of release compared to LPS (p < 0.05). 
LPS = lipopolysaccharide. 

8 houra 

11865 ± 948 (13)e 

6220 ± 835 (9)f 

9119 ± 958 (8)e 

5085 ± 305 (11) 

VI 
w 



TABLE IV 

DOSE-RESPONSE OF P. HAEMDLYTICA LPS-INDUCED 
3H-ARACHIDONIC ACID-RELEASE FROM 

ENDOTHELIAL CELLS 

Dose 
( ug LPS/ml) 4 hoursa 8 hoursa 

10 8501 .:!: 109 (4)b 9803 .:!: 2685 

1 8252 + 368 (4) b 9000 .:!: 1257 

0.1 8229 + 147 (4 )b 9588 + 937 

o. 01 5880 + 404 (4) 6685 + 545 

0.001 5029 + 139 (4) 5500 .:!: 579 

0 4825 + 243 (3) 4517 .:!: 760 

(3) 

(5 )b 

(7)b 

(6) b 

(5) 

(4) 

aResul ts are expressed as mean counts per minute + 
SEM (n). 

bsignificant release compared to control. 
LPS = Lipopolysaccharide. 

54 

was consistently elevated after one-hour exposure to 0.1 ug LPS/ml, 

averaging 1.4 times the baseline, and increased to 2.3 times the base-

line after 8 hours. Significant release was detectable with a LPS dose 

of 0.01 ug/ml and was maximal with a dose of 0.1 ug/ml. The 3H-AA

release was inhibited by 5 mM indomethacini but not by hydrocortisone (1 

mg/ml). Also, indomethacin doses of 500 uM to 5 uM were ineffective in 

inhibiting release (data not shown). 

Neutrophil-Adherence Assays 

Neutrophil-adherence to BPAEC subconfluent monolayers was increased 
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after exposure of either cell type or both to~ haemolytica LPS (Figure 

7). Neutrophile were generally more sensitive than BPAEC to LPS-induced 

neutrophil-adherence. The minimum dose causing increased adherence was 

0.1 ug LPS/ml on neutrophile (4 of 5 experiments) and 1 ug LPS/ml on 

BPAEC (4 of 5 experiments). Treatment of both cell types resulted in 

increased adherence over treatment of either cell type individually (3 

of 4 experiments). Essentially no difference in LPS dose-response was 

seen by increasing the LPS exposure time from 1 to 2 hours, and no 

difference in dose-response was seen between the conmercial BPAEC-1 ine 

and the cell-line established in this laboratory. 

The effects of various inhibitors on the LPS-induced neutrophil

adherence to BPAEC are shown (Table V). Treatment of either neutrophile 

or BPAEC with either polymyxin B, cycloheximide, or actinomycin D 

markedly inhibited neutrophil adherence to BPAEC. 

Discussion 

!:_ haemolytica LPS caused a time- and dose-dependent release of 

radioactivity from BPAEC which had incorporated ~-AA. This suggests 

LPS-induced EC activation with the release of AA metabolites, such as 

prostaglandins, thromboxanes, or 1 ipoxygenase products, or damage to 

BPAEC resulting in the release of unaltered AA. The release was inhib

ited by 5 mM indomethacini but not inhibited by 5 - 500 uM indomethacin 

or 1 mg hydrocortisone/ml. 

Previous experiments examining the effects of thrombin on EC indi

cated that the release of radioactivity from EC which had incorporated 

tritiated AA was highly correlated to prostaglandin-release (Lollar and 

Owen, 1980). However, under altered conditions, i.e., in the presence of 
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Figure 7. ~haemolytica LPS-induced 
increase in optical density 
at 570 nm wavelength caused 
by adherent neutrophils 
stained with Rose Bengal. 
A. Endothelial cell-line 

established in our labora
tory. LPS treatment time 
was 2 hours. 

B. Commercial endothelial 
cell-line. LPS treatment 
time was 1 hour. 

*Significant difference from 
control, p < 0. 05. 
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Cell-Type 
Treated 

Neutrophil 

BPAEC 

TABLE V 

INHIBITION OF LPS-INDUCED NEUTROPHIL 
ADHERENCE TO BPAEC 

Inhibition Indexa 
Cycloheximide Actinomycin D Polymyxin B 

(10 ug/ml) (10 ug/ml) ( 10 ug/ml) 

93 + 20 106 + 17 72 + 16 

132 ± 16 94 + 17 60 ± 12 

aExpressed as mean inhibition index + standard error 
of the mean, n=16. 

LPS =Lipopolysaccharide. 
BPAEC = Bovine pulmonary art.ery endothelial cells. 
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0.1% albumin, up to 90% of the AA was released unaltered. The release of 

prostaglandins, but not AA, was inhibited by 20 uM indomethacin. In 

contrast, the release of AA-radioactivity from EC exposed to Pseudomonas 

aeruginosa cytotoxin in the presence of albumin was highly correlated to 

prostacycl in-release (Suttorp et al., 1985). Further studies of the 

thrombin-induced release of arachidonate from EC defined three enzymes, 

phospholipase A2, a triglyceride lipase, and phospholipase C, which were 

involved in the release. Arachidonate was subsequently liberated from 

the cells either unchanged or as an AA-metabolite, predominantly prosta-

cyclin (Thomas et al., 1986). 

In this experiment, the failure of hydrocortisone to inhibit AA-

release indicated that the release did not involve phospholipase A2 

(Blackwell et al., 1978). Furthermore, failure of 5 uM indomethacin to 

inhibit the AA-release indicated that the released product was not a 
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cyclooxygenase metabolite (Moncada et al., 1976). Together, these find

~ngs would be inconsistent with a prostaglandin-release, but would indi

cate the release of AA by another mechanism. This mechanism may involve 

either activation of one of the aforementioned enzymes or a direct LPS

cell membrane interaction. We have previously shown that LPS causes 

severe damage to the BPAEC membrane resulting in the release of lactate 

dehydrogenase (Chapter II). The inhibition of AA-release by 5 uM indo

methacin~ was most likely independent of cyclooxygenase inhibition. 

Comparable concentrations of indomethacin have had stabilizing effects 

on red blood cell membranes and lysosomal membranes, and similar effects 

may be responsible for the inhibition reported herein (Brown et al., 

1971; Ignaro, 1971). 

Pasteurella haemolytica LPS also stimulated neutrophil-adherence to 

EC by independent effects on both cell types. The effect was dose

dependent and required protein synthesis and mRNA transcription in both 

cell types. Inhibition by polymyxin B indicated that the increased 

adherence was caused by the lipid A portion of the LPS molecule. 

Neutrophile are probably important in the pathogenesis of pneumonic 

pasteurellosis. Vase ul ar sequestration of neutrophil s was a prominent 

early event in experimental disease (Slocombe et al., 1984). Additional

ly, neutrophil-depletion of calves resulted in either moderate or marked 

decrease in the severity of pulmonary lesions in experimental pneumonic 

pasteurellosis (Slocombe et al., 1985; Breider et al., 1988). Similarly, 

neutrophil-depletion resulted ~n an attenuation of the vascular perme

ability seen in endotoxemia in sheep (Heflin and Brigham, 1981). In 

vitro experiments with human EC revealed that an induceable surface 

molecule, ELAM-1, was responsible for neutrophil adherence. Expression 
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of ELAM-1 was induced by ~ coli LPS and various cytokines and was 

inhibited by actinomycin D and cycloheximide (Bevilacqua et al., 1985; 

Bevilacqua et al., 1987). Neutrophil adhesion to human EC also occurred 

when neutrophil s were stimulated by !!._ coli LPS, complement fragments, 

or tumor necrosis factor, but these neutrophil-dependent effects were 

not inhibited by cycloheximide or actinomycin D (Tonnesen et al., 1984; 

Gamble et al., 1985; Haslett et al., 1987). A mechanism involving the 

C:OW18 complex on the neutrophil was demonstrated in LPS-induced neutro

phil adherence to human EC (Pohlman et al., 1986). Therefore, the data 

reported herein suggests a similar mechanism involved in the EC-mediated 

neutrophil adherence induced by ~ haemolytica LPS acting on BPAEC as 

that induced by ~ coli LPS acting on the human EC. However, the neutro

phil-mediated adherence may involve different mechanisms requiring de 

novo protein synthesis in the bovine neutrophil. 

In conclusion, this study provides additional evidence of the 

potential involvement of LPS in the pathogenesis of pneumonic pasteurel

losis. Neutrophil adherence could be essential for the neutrophil infil

tration seen in pneumonic pasteurellosis and P. haemo1ytica LPS was 

capable of causing adherence in vitro by independent effects on both 

cell types. Arachidonic acid release from BPAEC, whether it indicates 

the release of AA metabolites or, more likely, the release via other 

mechanisms, was also induced by~ haemolytica LPS. Both of these find

ings may indicate EC activation which would have greater ramifications 

in the inflammatory and immune responses of pneumonic pasteurellosis. 

Further research is needed to verify endothelial activation by~ haemo

lytica LPS and its relevance to pneumonic pasteurellosis. 



CHAPTER IV 

PASTEURELLA HAEMOLYTICA LIPOPOLYSACCHARIDE

INDUCED CYI'OTOXIC ITY IN BOVINE PULMONARY 

ARTERY ENDOTHELIAL MONOLA YERS: 

INHIBITION BY INDOMETHACIN 

Introduction 

Pneumonic pasteurellosis (shipping fever) is a severe respiratory 

disease of young cattle. The etiology is multifactorial and includes 

physical stressors as well as viral and bacterial infections. The most 

conmon and severe disease results from pneumonia caused by Pasteurella 

haemolytica Al (Schiefer et al., 1978; Wikse, 1985). The lesions of 

pneumonic pasteurellosis, which include serofibrinous exudation, hemor

rhage, microvascular thrombosis, and endothelial cell (EC) swelling, 

indicate that vascular damage is an important pathogenetic factor 

(Jensen et al., 1976; Breider et al., 1988). 

Endotoxin, or bacterial lipopolysaccharide (LPS), is often cited as 

a potential causative factor of the vascular damage of pneumonic 

pasteurellosis (Jensen et al., 1976; Slocombe et al., 1984; Breider et 

al., 1988). There is little direct evidence for LPS's pathogenic role in 

pneumonic pasteurellosis. However, intravascular Escherichia coli LPS 

causes pulmonary vascular lesions in sheep similar to, but less severe 

than, those of pneumonic pasteurellosis (Meyrick and Brigham, 1983). 

Changes in lung mechanics and hemodynamics in calves given intravenous 

60 
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~ coli LPS are sufficiently similar to those changes in sheep to indi-

cate that .!:_ coli LPS may cause similar lesions in both species (Olson 

and Brown, 1985). Also, LPS from~ haemolytica and~ coli cause simi-

lar increases in plasma prostanoid s and serotonin when administered 

intravenously in sheep (Emau et al., 1984; Brigham, 1985). Therefore, 

indirect evidence justifies the investigation of LPS in pneumonic 

pasteurellosis. 

We have shown that P. haemolytica LPS induces direct toxic effects 

in bovine pulmonary artery endothelial cells (BPAEC). The indicators of 

toxicity included cell detachment, morphologic alterations, and release 

of large internal molecules indicating cell membrane damage (Chapter 

II). The study reported herein was designed to further evaluate the LPS-

induced morphologic alterations in BPAEC and to determine if the cyto-

toxic effects could be inhibited, thereby suggesting potential mecha-

nisms of LPS-induced BPAEC cytotoxicity. 

Materials and Methods 

Endothelial Cells 

Monolayer cultures of BPAECa were maintained in 75 cm 2 tissue 

culture flasks in Medium 199 with Earle's saltsa containing 4.35 g 

NaHCo 3/l, 10-S M thymidine,b 50 ug gentamicinb/m1, 5 ug fungizoneb/ml, 

and 0. 2 M glutamine,b with 10% conditioned media and 10% heat-inacti-

v a ted fetal bovine serum ( FBS) c (Complete medium) • Ce 11 cultures were 

incubated at 37 C in 5% co2 , and medium was changed twice weekly. Mono-

aCCl-209, American Type Culture Collection, Rockville, MD. 
bGibco Laboratories, Inc., Grand Island, NY. 
CHyclone Laboratories, Logan, ur. 
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layers of BPAEC were grown in 24-well platesd for the lactate dehydro-

genase-leakage and transmission electron microscopy experiments and were 

grown in 25 cm 2 tissue culture flasks for phase-contrast light micros-

copy. Cell cultures used for scanning electron microscopy were grown on 

7 nm diameter coversl ips which were rendered pyrogen- free by dry heat 

(200C, 4 hours) and placed in 24-well plates. 

Lipopolysaccharide 

Lipopolysaccharide was extracted from ~ haemolytica A1 by a hot 

phenol-water method (Westphal and Jann, 1965; Confer and Simons, 1986). 

The resulting LPS contained 32. 3 ug of 2-keto, 3-deoxyoctanate/mg dry 

weight and had an endotoxin activity of 1.3 x 105 EU/mg as determined by 

a chromogenic Limulus amebocyte lysate assay.e Protein content was less 

than 0. 1 ug/ml. 

Lactate Dehydrogenase (LDH)-Leakage 

Confluent BPAEC monolayers were pulse-treated with LPS and selected 

monolayers were either pulse or continuously treated with inhibitors 

according to the following protocol. All cultures were grown to conflu-

ency in 24-well plates. The monolayers were washed once with RPMI with

out phenol red,b containing 5% FBS (RPMI/F). Each well received 500 ul 

RR-II/F with or without inhibitors. The plates were incubated for 30 

minutes (37C, 5% co2 ). The medium was removed and each well received 500 

ul of the same medium (RR-II/F with or without inhibitors respectively) 

which, with exception of the control wells, also contained 1 ug of 

dNunclon Multidish, A/S Nunc, Kamstrup, Denmark. 
eWhittaker MA Bioproducts, Inc., Walkersville, MD. 
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LPS/ml. After an additional 30 minutes incubation (37C, 5% co 2), all 

wells were washed 3 times and 500 ul of medium was replaced in each 

well. The wash and replacement medium consisted of RPMI/F with or with-

out inhibitors. Incubation was continued at 37C in 5% co2 • After incu

bation, the medium was removed, centrifuged, and the supernatant tested 

for LDH-activity by a spectrophotometric method as previously described 

(Chapter II). Statistical analysis of results was per formed on pre-

planned comparisons by Student's t tests (Steele and Torrie, 1980). 

Results are reported as mean± standard error of the mean. 

Inhibitors 

Several chemicals were examined for inhibitory effects on the P. 

haemolytica LPS-induced LDH-leakage frcm BPAEC. The protein synthesis 

inhibitor, cycloheximidef (10 ug/ml); the mRNA transcription inhibitor, 

actinomycin Df (4 ug/ml); the cytoskeletal inhibitors, cytochalasin Bf 

(3 ug/ml) and colchicinef (1 uM); the acid vesicle inhibitors, chloro

quinef (0.2 mM) and ammonium chloridef (10 mM); the energy inhibitor, 2-

deoxyglucosef (50 mM) with sodium azidef (5 mM); hydrocortisonef (1 

mg/ml); indomethacin£ (5-5000 uM); and polymyxin Bf (10 ug/ml) were 

used. Percent inhibition was determined by the formula: 

(1 - I-C) * 100 
L-c 

in which I is the LDH-leakage (IU/L) from BPAEC exposed to inhibitor and 

LPS, L is the LDH-leakage from BPAEC exposed to LPS, and C is the 

control LDH-leakage from BPAEC exposed to neither LPS nor inhibitor. 

fsigma Chemical Co., St. Louis, MO. 
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Phase Contrast Microscopy 

An inverted phase contrast micro scopeg was prewarmed in a 37C 5% 

co2 incubator. Confluent monolayers of BPAEC in 25 cm2 tissue culture 

flasks were washed once in complete medium, and the medium was replaced 

with 4 ml of complete medium containing 1 ug of LPS/ml. A field suitable 

for viewing was selected, and a time equals zero photomicrograph was 

taken. The cell culture was left undisturbed at 37C in 5% co2 and photo

micrographs were taken at on-half hour intervals .h Indomethacin-treated 

monolayers were preincubated with 5 mM indomethacini in complete medium 

for 15 minutes, 37C, 5% co2 • Sufficient LPS was added to make the medium 

1 ug of LPS/ml and photomicrographs were taken as before. 

Scanning Electron Microscopy 

Confluent BPAEC mono layers were grown on 7 mn diameter coversl ips 

in 24-well plates. All wells were rinsed in complete medium. Selected 

wells were exposed to 5 mM indomethacinh in complete medium for 15 

minutes at 37C in 5% co2 with the remaining wells receiving complete 

medium only. After incubation, LPS was added with swirling to the appro-

priate wells to give a final concentration of 1 ug of LPS/ml. Incubation 

was at 37C in 5% co2 for 1, 2, 4, and 8 hours. The monolayers were fixed 

in situ for 1 hour in 2.5% glutaraldehyde and were dehydrated in serial 

ethanol rinses. The coverslips were removed then critical point dried by 

ethanol-C02 solvent exchangej, mounted on aluminum studs, and sputter-

gCK2, Olympus Optical Co., LTD, Tokyo, Japan. 
~PM-10AD 16mm-cine, Olympus Optical Co., LTD, Tokyo, Japan. 
1 In complete medium at 37C, 5 mM indomethacin is a saturated solution 
. and, therefore, the molarity is approximate. 
Jsamdri Pvt3 Critical Point Dryer, Tousimis Research Corp, Rockville, MD. 
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coated with gold-palladium.k The specimens were examined with a scanning 

electron microscope 1 with the specimen til ted at a 45 degree angle to 

the electron beam. 

Transmission Electron Microscopy 

Confluent BPAEC monolayers were washed once then 5 mM indomethacinL 

in complete medium was placed in selected wells with the remainder 

receiving complete medium only. The monolayers were incubated for 15 

minutes at 37C in 5% co2 • LPS (1 ug/ml) was added to wells with and 

without indomethacin. Incubation was at 37C in 5% co2 for predetermined 

time periods minus 5 minutes. The monolayers were removed by scraping 

with a rubber policeman, suspended in their original medium, and trans-

ferred to 1. 5 ml microcentrifuge tubes. The cells were pelleted in a 

microcentrifugem at 2000 rpm for 5 minutes. The supernatant was removed 

and the cell pellets were fixed in 1% osmium tetroxide in cacodylate 

buffer for 1 hour. The pellets were rinsed in cacodylate buffer, dehy-

drated through serial alcohol rinses and propylene oxide, then embedded 

in DER.n Sections were stained with uranyl acetate and lead citrate and 

examined with a transmission electron microscope. 0 

Results 

LDH-Leakage 

The effects on LPS-induced LDH-leakage was examined Ln the presence 

kHummer II, Technics Inc., Alexandria, VA. 
1JSM 35-U, Jeol Ltd., Tokyo, Japan. 
msurspin, Model 7040, Helena Laboratories, Beaumont, TX. 
nElectron Microscopy Sciences, Fort Washington, PA. 
0 Jeol 100CXII, Jeol LTD, Tokyo, Japan. 
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of several inhibitory substances (Table VI). Inhibition of LDH-leakage 

was demonstrated in the presence of polymyxin B (10 ug/ml) and indometh-

acin (5 mM). Further experiments determined that a concentration of 

indomethacin of 500 uM or greater was required to inhibit the LPS-

induced LDH-leakage from BPAEC (Table VII). 

TABLE VI 

THE EFFECTS OF INHIBITORY CHEMICALS ON THE 
LPS-INDUCED LEAKAGE OF LDH FROM BPAECa 

LDH-Leakage (IU /L) 

Inhibitor 

Cycloheximide (10 ug/ml) 
Actinomycin D (4 ug/ml) 
Cytochalasin B (3 ug/ml) 
Colchicine (1 uM) 
Chloroquine (0.2 mM) 
Ammonium Chloride (10 mM) 
2-Deoxyglucose (50 mM) with 

Sodium Azide 
Hydrocortisone (1 mg/ml) 
Indomethacin (5 mM) 
Polymyxin B (10 ug/ml) 

Continuous b 

25.9 
26. 1 
24.9 
24.6 
40.0d 
22.0 

23.8 
24.2 

NAe 
12.5 

26.5 
24.9 
22.4 
23.3 
27.6 
24.0 

29. 7 
26.1 
14.7 
12.6 

aResults are from one of three replicates. All were 
pulse-exposed to LPS (1 ug/ml) for 30 minutes, then 
LDH-leakage determined after 6 hours. LPS resulted 
in LDH-leakage of 24.8 ± 0.5 (n=3). Control release 
was 14. 5 + 0. 2 ( n=3) • 

binhibitor r~ained in medium for 6-hour duration. 
cinhibitor was removed 30 minutes after LPS-exposure. 
dincreased LDH-leakage was caused by 0.2 mM chloroquine 

alone. 
es mM indomethacin interfered with test assay. 



TABLE VII 

INHIBITION OF LPS-INDUCED LDH-LEAKAGE FROM 
BOVINE PULMONARY ARTERY ENDOTHELIAL 

CELLS BY INDOMETHACIN 

Indomethacin Percent Inhibitiona 
Concentration 

( um) Continuousb Pulsec 

soood NAe 89 + 6f 

500 88 + 3f 65 + uf 

50 8 + 6 0 

5 0 10 + 6 

aExpressed as mean percent inhibition ± standard 
error (n=4). LPS concentration was 1 ug/ml. 

bindomethacin remained for duration of incuba
tion, 6 hours. 

cindomethacin was removed 30 minutes after LPS 
exposure (see Materials and Methods). 

dsaturated at 37C, molarity is approximate. 
eSOOO uM indomethacin in assay supernatant inter

fered with LDH assay. 
fsignificant difference from control, p < 0. 05. 

Phase Contrast Microscopy 
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By phase-contrast light microscopy BPAEC retraction and detachment 

was seen within 1.5 hours after exposure to LPS and became progressively 

greater through 16 hours. Sequential photomicrographs revealed that the 

retraction and detachment occurred rapidly with the cells appearing 

essentially normal then retracted and out of the plane of focus one-half 

hour later (Figure 8). Cell detachment resulted in severe defects in the 

integrity of the monolayer leaving large gaps between adjacent cells. 



Figure 8. Phase contrast photomicrographs of BPAEC 
monolayers after exposure to P. haemo
lytica LPS. 

A. After 1 hour. 
B. After 1.5 hours. 
Arrows denote cells which are apparent

ly normal (A) and severely retracted 
with blebs 0.5 hours later (B). 

Original magnification 200x. 
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Indomethacin treatment markedly reduced but did not completely halt cell 

detachment (Figure 9). In LPS- and indomethacin-treated BPAEC, cell 

detachment initially occurred 5 hours after LPS-exposure and was moder

ate by 16 hours after exposure. In contrast to the LPS-treated cells, 

the indomethacin- and LPS-treated cells appeared to spread and undermine 

the detaching cell, and the monolayer integrity was preserved for 10-12 

hours after LPS-exposure. 

Scanning Electron Microscopy 

By scanning electron microscopy, the normal endothelial monolayer 

was formed by polygonal to angular cells with a mounded surface. The 

nucleus was surrounded by a zone of large membrane pits or pores. The 

periphery of the cell was thin and flat and tightly adjoined neighboring 

cells with occasional, small gaps along the junctions (Figure 10). After 

1 hour of exposure to LPS, the junctional gaps were more frequent and 

enlarged. Occasional cells had numerous, small blebs over their 

surfaces. After 2 hours of LPS-exposure, contracted cells which had 

severe, large, membrane bleb formation were common. These retracting 

cells left large defects in the monolayer integrity. Adjacent cells 

often appeared essentially normal (Figure 11). Similar changes affected 

more cells with time resulting in retraction with membrane bleb forma

tion then detachment. By 8 hours after LPS-exposure, detachment was 

marked (Figure 12). 

Indomethacin pretreatment resulted in a marked reduction of the 

LPS-induced effects. After 2 hours of LPS-exposure, the indomethacin

treated mono layers were indistinguishable from controls (Figure 13). 

Between 4 and 8 hours after exposure mild morphologic changes were seen 



Figure 9. Phase contrast photomicrographs of BPAEC monolayers 
after exposure to LPS demonstrating the protective 
effect of indomethacin. 

A. LPS-treated BPAEC at 0 hours. 
B. LPS-treated BPAEC after 8 hours. 
C. Indomethacin- and LPS-treated BPAEC at 0 hours. 
D. Indomethacin- and LPS-treated BPAEC at 8 hours. 

Note marked inhibition of cell retraction 
with preservation of the monolayer integrity. 

Original magnification 200x. 
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Figure 10. Scanning electron micrograph of 
control BPAEC monolayer 
comprised of polygonal cells 
with mounded surface and 
perinuclear pits or pores. 
Original magnification 940x. 
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Figure 11. Scanning electron micrograph of BPAEC 
after 2 hours exposure toP. haemo
lytica LPS. Essentially noniat 
monolayer is adjacent to cells 
which have severely retracted IIIith 
marked membrane bleb formation. 
Original magnific.'lt ion 940x. 

Figure 12. Scanning electron micrograph of BPAEC 
after 8 hours exposure toP. haemo
lytica LPS, Occasional cellS remain 
with variable degrees of alteration 
separated by expanses of empty 
glass. 
Original magnification 940x. 

....., 
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Figure 13. Scanning electron micrograph of indo
methacin-treated BPAEC after 2 
hours exposure to ~ haemolytica 
LPS. Indistinguishable from 
control. 
Original magnification 940x. 

Figure 14. Scanning electron micrograph of indo
methacin-treated BPAEC after 8 hours 
exposure to LPS. Note increased 
angularity of cells, some of which 
have raised apparently undermined 
edges (arrows). 
Original magnification 940x. 
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in the EC (Figure 14). Some of the cells became more stellate in appear

ance and cell processes lying between or overlying adjacent cells were 

prominent. The edges of some of the cells were rounded and raised with 

the adjacent cell undermining that edge. However, the monolayer integ

rity was preserved. 

Transmission Electron Microscopy 

By transmission electron microscopy, the normal BPAEC monolayer was 

a uniform population of cells which were polygonal to elongate depending 

on the plane of the cut (Figure 15). Membranes of adjacent cells were 

closely apposed and occasional areas of membrane interdigitation were 

seen. Plasmalemmal vesicles or caveolae were moderately abtm.dant along 

the cell junctions and cell surfaces. The cytoplasm was well supplied 

with mitochondria and rough endoplasmic reticulum (RER). Multivesicular 

bodies were common (5 or less/cell). Occasionally, autophagosomes with 

myelin figures were present. Nuclei were oval and centrally located and 

the nuclear membrane was usually, but not consistently, invaginated. 

After 30 minutes of exposure to~ haemolytica LPS, the majority of 

cells remained essentially normal; however, some exhibited extensive 

changes. These included moderately to severely swollen mitochondria, 

moderate dilatation of the RER, rarefied cytoplasm, and occasional 

karyolytic nuclei. 

After 1 hour of LPS exposure, the cellular changes were marked 

(Figure 16). All cells remained joined into a monolayer but had a mosaic 

pattern of alternating light, relatively normal, and dark cells. The 

1 ight cells were the predominant cell type and had extensively dilated 

RER and markedly swollen mitochondria. The cytoplasm was electron 



Figure 15. Transmission electron micrograph of normal 
BPAEC monolayer. All junctions are closely 
apposed with occasional interdigitations. 
Nuclei are smooth to multiply indented. 
Plasmalemma! vesicles are plentiful (arrow) 
and multivesicular bodies are common 
(arrowhead). 
Original magnification 4800x. 
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Figure 16. Transmission electron micrograph of BPAEC 
after 1 hour exposure to LPS. Note the 
alternating pattern of light and dark 
cells. Light cells have severely dilated 
RER (arrowheads) and karyolysis (arrow). 
Original magnification 2900x. 
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lucent. Nuclei were enlarged and karyolytic. The outer nuclear membrane 

was wavy resulting in irregular dilatations of the nuclear envelope. The 

cytoplasmic membrane had an irregular contour and contained many indis

tinct foci. The dark cells had dense, granular cytoplasm with multi

focally condensed intermediate filaments. The RER was minimally to mild

ly dilated. Mitochondria were relatively normal. The nuclei were 

crenated, but the nuclear membranes were distinct and normal. The cyto

plasmic membrane was distinct and predominantly smooth with occasional 

projections or outpocketings. · More normal cells were the minority and 

were characterized by sporadic mitochondrial swelling and dilated RER. 

After 2 hours of exposure to LPS, multifocal disruptions of the 

monolayer were common. Dilatations or gaps in cell junctions were 

pronounced (Figure 17). The dark cells were more numerous and many had 

become rounded with an indistinct membrane. Nuclear crenation was more 

severe. A few cells were completely detached from surrounding cells and 

exhibited extensive formation of membrane-bound blebs. Many of the blebs 

contained organelles. The centers of these cells were dense due to 

karyorrhectic and cytoplasmic debris. The light cells remained the pre

dominant cell type with changes similar to those described at 1 hour. 

Relatively normal cells were infrequent. 

After 4 hours of LPS exposure, the cell junctions were markedly 

compromised resulting in severe fragmentation of the mono layers (Figure 

18). Dark cells, which were unattached and had severe cytoplasmic bleb 

formation, were common (Figure 19). The cell membrane of the light cells 

were markedly irregular with pseudopodia, clefts, and membrane-bound 

blebs occurring frequently. 

Treatment of BPAEC with indomethacin inhibited some, but not all, 



Figure 17. Transmission electron micrograph of BPAEC 
after 2 hours exposure to LPS. Separa
tions of cell junctions are prominent 
(arrows). Marked mitochondrial swelling 
and dilatation of RER is seen with 
karyolysis. 
Original magnification 5800x. 
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Figure 18. Transmission electron micrograph of BPAEC 
after 4 hours exposure to LPS. Extreme 
distortion of the cell outline is due 
to marked cytoplasmic membrane irregu
larity. 
Original magnification 3600x. 
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Figure 19. Transmission electron micrograph of BPAEC 
after 4 hours exposure to LPS. The cell 
is detached from the monolayer and has 
marked formation of membrane-bound 
blebs, many of which contain recogniz
able organelles. Nuclear detail is 
completely lost. 
Original magnification 5800x. 
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of the LPS-induced changes (Figure 20). Dilatation of the RER, mitochon

drial swelling, and mitochondrial condensation were seen. However, the 

cytoplasmic membrane remained distinct with an even contour. All junc

tions remained tightly apposed. The nuclei and nuclear membrane remained 

normal after 4 hours LPS-exposure. Control BPAEC, treated with indometh

acin o~ly, contained a moderate decrease in the cytoplasmic electron 

density with occasional mild dilatation of the RER. The mitochondrial 

were normal. The changes were mild compared to those in BPAEC treated 

with both LPS and indomethacin. 

Discussion 

As in our previous studies, Pasteurella haemolytica LPS induced 

marked morphologic alterations and LDH-leakage in BPAEC (Chapter II). In 

the present study, a striking feature of LPS-induced cytotoxicity was 

that individual EC varied markedly in their susceptibility and response. 

As early as one-half hour after LPS-exposure, a few cells had marked 

changes observed by transmission electron microscopy, whereas after 16 

hours, a few normal appearing cells remained as determined by phase 

contrast microscopy. A typical morphologic reaction of BPAEC to P. 

haemolytica LPS might be summarized as follows. Within a few minutes to 

several hours after exposure to LPS, the EC reacts with dilatation of 

the RER and mitochondrial swelling. Soon after, separations form in the 

cell junctions. These progressively enlarge while the cell membrane 

becomes increasingly irregular in contour. At some critical point the 

cell contracts forming ntiilerous cytoplasmic membrane-bound blebs. The 

contraction leaves a large defect in the monolayer· and results in the 

cell detachment. 



Figure 20. Transmission electron micrograph of indo
methacin-treated BPAEC after 2 hours 
exposure to LPS. Nuclei are normal. 
The cell junctions are closely apposed. 
Mitochondrial swelling and dilatation 
of the RER are seen. 
Original magnification 3600x. 
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Variations 1n this sequence were seen. A prominent variation 

involved the formation of the dark cell with a condensed, granular cyto

plasm. A dark cell/1 ight cell phenomenon has been described that was 

attributed to alterations in cellular hydration, with excessive dehydra

tion yielding dark cells (reviewed in Ghadially, 1982). The alterations 

in hydration were attributed to fixation artifacts, the physiologic 

state of hydration at the time of fixation, or cellular pathology 

rendering the cell more susceptible to dehydration during tissue proces

sing. In the present experiments, the dark cells were likely pathologi

cal, because they were not present in control monolayers. The response 

of the nucleus was also quite variable. Karyorrhexis, nuclear crenation, 

and nuclear swelling with karyolysis were seen. However, the~ haemo

lytica LPS-induced morphologic alterations were nonspecific lesions of 

cellular degeneration and did not, of themselves, suggest specific 

mechanisms of LPS cytotoxicity. 

Indomethacin at high concentrations (500 uM or greater) inhibited 

LDH-leakage from BPAEC and also inhibited many of the morphological 

changes. The monolayer integrity of untreated BPAEC exposed to~ haemo

lytica LPS was compromised within 1. 5 hours with large defects where 

cells had retracted and detached. However, indomethacin-treated mono

layers retained closely apposed cell junctions with few gaps for up to 

12 hours after LPS-exposure. The major effects of indomethacin appeared 

to involve preservation of the nucleus and the cytoplasmic membrane and 

prevention of the cytoplasmic membrane bleb formation. Prevention of 

LDH-leakage also indicates preservation of cell membrane integrity 

(Chopra et al., 1987). Also, the dark cells were not seen in the indo

methacin-treated LPS-exposed BPAEC. However, swelling of the mitochon-
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dria and dilatation of the RER were similar in indomethacin-treated and 

-untreated, LPS-exposed BPAEC. 

The mechanism of the indomethacin inhibition of LPS-induced morpho

logic alterations and LDH-leakage in this study is uncertain. Indometha

cin apparently did not block LPS-binding because intracellular changes, 

i.e., dilatation of the RER and mitochondrial swelling, were similar in 

the indomethacin-treated and -untreated cells, and these changes were 

not attributable to a direct effect of indomethacin. Additionally, 

Schorer et al. (1985) found that 5 mM indomethacin did not inhibit E. 

coli LPS- or 1 ipid A-induced tissue factor production in EC further 

indicating that LPS-bind ing is not inhibited. Indomethacin is primarily 

used as an inhibitor of the cyclooxygenase pathway of arachidonic acid 

metabolism. However, the concentrations of indomethacin required in the 

present study were much higher than those described as required for 

specific cyclooxygenase inhibition (Moncada et al., 1976). Therefore, 

cyclooxygenase inhibition is not likely to be the primary mechanism 

involved in the present study. 

Indomethacin was reported to stabilize red blood cell membranes to 

hyperthermic lysis, and stabilization required concentrations similar to 

those reported herein (Brown et al., 1971). Morphologic evidence in the 

present study supports membrane stabilization as a mechanism, because 

membrane changes, both cytoplasmic and nuclear, were inhibited despite 

changes in organelles. The indomethacin-induced membrane changes, which 

required relatively high concentrations compared to cyclooxygenase

inhibition, may be due to lysosomal stabilization, protein stabiliza

tion, or inhibition of enzymes such as diglyceride lipase, phospholipase 

A2, or protein kinase (Grant et al., 1970; Iguarro, 1971; Catalan et 
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al., 1980; Franson et a1., 1980; Rittenhouse-Simmons, 1980). Additional

ly, indomethacin has a calcium-antagonistic effect in EC which inhibits 

cell-retraction (Northover, 1977). This may have prevented the LPS

induced retraction and possibly the bleb formation reported herein. 

Despite extensive effort, the mechanisms of LPS-induced toxicity 

are poorly understood. Past reports of LPS-induced cytotoxicity in BPAEC 

have demonstrated inhibition only with inhibitors of LPS-b ind ing, such 

as polymyxin B (Harlan et al., 1983). This report demonstrates that 

indomethacin inhibits the LPS-induced effects of the leakage of LDH, 

loss of monolayer integrity, and morphologic alterations in the cell 

membrane and nucleus of BPAEC. 

In conclusion, !.:_ haemo1ytica LPS induces morphologic alterations 

in BPAEC in cell culture which result in loss of monolayer integrity. If 

similar effects occur in vivo, they might be important factors in the 

exudation of fibrin and microvascular thrombosis seen in pneumonic 

pasteurellosis. Inhibition of some of the LPS-induced effects in BPAEC 

may provide clues for further investigation into the thus far elusive 

nature of LPS toxicity. 



CHAP:rER V 

SUMMARY AND CON::LUSIONS 

Fibrinous pneumonia caused by Pasteurella haemolytica AI ~s the 

most frequent and serious consequence of pneumonic pasteurellosis (ship

ping fever) of young cattle. The lesions indicate that vascular damage 

is an important, early event in the pathogenesis of pneumonic pasteurel

losis. Endotoxin [bacterial lipopolysaccharide (LPS )] has often been 

implicated as an important causative factor of the vascular damage. This 

research was designed to test the hypothesis that ~ haemolytica LPS is 

a factor in the pathogenesis of the vascular lesions of pneumonic 

pasteurellosis. The test model employed was bovine pulmonary artery 

endothelial cells (BPAEC) in cell culture. 

The results reported m this work demonstrate LPS-induced cytotox

icity in BPAEC. LPS resulted in time- and dose-dependent cell detachment 

and LDH- and 51cr-leakage. The leakage of LDH and 51 cr indicates cell 

membrane defects large enough to permit the loss of large internal mole

cules and is widely regarded as evidence of cell lysis. Morphologic 

studies demonstrated that LPS induced severe changes in BPAEC. Individ

ual cells were variable in their sensitivity to LPS, but, with some 

exceptions, followed a predictable series of morphologic changes. Swell

ing of the mitochondria and dilatation of the rough endoplasmic reticu

lum were followed by progressively enlarging gaps in the cell junctions. 

At some critical point, marked cell retraction with severe membrane bleb 
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formation was f'ollowed by detaclnnent. Arachidonic acid was also liber

ated from LPS-treated BPAEC in a time- and dose-dependent manner. This 

release probably was an index of cell membrane damage and not due to 

increased prostanoid synthesis. The LDH-leakage, morphologic altera

tions, and arachidonic acid-release were inhibited by indomethacin at a 

concentration of 0.5 to 5 mM. In addition, LPS induced increased neutro

phil adherence to BPAEC by independent effects on both cell-types. 

Increased adherence was prevented by treatment of either cell-type by 

inhibitors of mRNA transcription or protein synthesis. 

The findings reported herein provide direct evidence that LPS may 

be involved in the pathogenesis of the vascular lesions of pneumonic 

pasteurellosis. Endothelial cell swelling reported in experimental P. 

haemolytica pneumonia is compatible with the LPS-induced morphologic 

changes seen in BPAEC. Furthermore, retraction or sloughing of endothe

lial cells (EC) as herein reported could cause increased vascular perme

ability leading to pulmonary edema, the loss of large plasma proteins 

such as fibrinogen, and hemorrhage. Exposure of the basement membrane by 

such retraction or sloughing could result 1n platelet adherence, activa

tion of the intrinsic clotting mechanism, and intravascular thrombosis. 

All these effects have been reported in experimental and natural pneu

monic pasteurellosis and could be induced by a direct effect of LPS on 

pulmonary EC. 

Increased LPS-induced neutrophil-adherence to BPAEC has broad 

implications in the pathogenesis of pneumonic pasteurellosis. Obviously, 

neutrophil-adherence could be a key factor in the vascular sequestration 

and infiltration of neutrophils seen in ~ haemolytica pneumonia. Addi

tionally, increased neutrophil adherence, through an effect on EC which 
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requires de novo protein synthesis, is evidence of EC activation. Endo-

thelial activation may play a key role in the local inflammatory and 

immune responses through the promotion of local hypercoagulabil ity of 

the blood, the release of vasoactive substances and cytokines, the 

adherence and emigration of nonspecific inflanmatory cells, and the 

presentation of antigen with recruitment of antigen-specific lympho-

cytes. Endothelial activation has not yet been conclusively demonstrated 

in this model, but continued experimentation is anticipated. 

The indomethacin-inhibition of LDH-leakage, arachidonic acid-

release, and morphologic changes is the first reported inhibition of the 

cytotoxic effects of LPS in BPAEC that may involve a mechanism other 

than inhibition of binding. The morphologic evidence indicates that LPS 

binding occurs because LPS continues to induce many effects in cytoplas-

mic organelles in indomethacin-treated BPAEC, but the effects on the 

cell membrane and possibly the nuclear membrane are prevented. This J.s 

compatible with the reported effects of indomethacin resulting in 

membrane preservation and is supported by the prevention of LPS-induced 

arachidonic acid-release and LDH-leakage reported herein. Additionally, 

indomethacin may prevent LPS-induced BPAEC retraction by a calcium 

antagonistic effect as has been demonstrated in smooth muscle cells. 

These results do not indicate that indomethacin would be of value in 

treating bovine endotoxemia, since the concentration required for the 

described effects are unattainable in vivo. However, indomethacin may 

provide a useful tool for studying the mechanisms of LPS-toxicity. 

Finally, caution should be exercised against overinterpretation of 

the results of these studies because in vivo proof is yet to be demon-

strated. Nevertheless, these studies have provided evidence that LPS can 
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cause effects in EC which could be responsible for many of the vascular 

lesions of pneumonic pasteurellosis. 
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