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CHAPTER I
INTRODUCTION

Penetration testing involves pushing or driving a steel cone and
rods into the subsurface profile and monitoring the resistance to
penetration mobilized by the soil. Penetration testing represents a
significant and integral part of in situ tests performed for geotech-
nical engineering purposes. In response to the variety of problems
and soil conditions, engineers have developed numerous types of pene-
tration test equipment and methods. The simplest way to classify the
different methods is by the method of tip advancement. The most pre-
valent types of penetration tests that have evolved over the years are
the dynamic and quasi-static penetrometer tests (1). A commonly used
dynamic penetration test in the United States and throughout the world
is the Standard Penetration Test {(SPT), ASTM D 1586-84 (2). The Cone
Penetration Test (CPT) as prescribed in ASTM D 3441-86 (3) 1is the
accepted quasi-static penetration test in the United States.

The CPT method has variously been called the Static Penetration
Test, Quasi-Static Penetration Test, Dutch Cone Test, Dutch Sounding
Test, and Dutch Deep Sounding Test. The term quasi-static refers to
the method and the rate of tip advancement--hydraulic or mechanical

jacking at a rate of 1 to 2 cm/sec.



The Cone Penetration Test as defined in AASHTO D 3441-86 is a
test method that covers the determination of end bearing and side
friction, the components of penetration resistance which are developed
during the steady, slow penetration of a rod into the soil. This test
method includes the use of both cone and friction-cone penetrometers
of both the mechanical and electrical types. These are the most
widely used types of cone penetrometers. Various other options in
recent years have been added to produce piezometric, thermal conduc-
tivity, nuclear, seismic acoustic, and permeability cones. Most nota-
ble of the newer cone options is the piezocone; however, there are
currently no American test standards for these cone variations.

The objective of this research is to evaluate possible relation-

ships between the cone penetration test (CPT) of the mechanical cone

type and typical alluvial clay soils of northeastern Oklahoma. 1In
particular, this research will consider the following: the adapta-
bility, in general, of the mechanical cone penetration fest (MCPT) in
Oklahoma soils and geologic formations, development of localized cor-
relations between soil classification and cone data, evaluation of
1ithological and stratigraphical interpretations of cone resistance
diagrams, development of SPT-N value and cone resistance relation-
ships, evaluation of potential correlation between soil shear strength
and consolidation properties with cone data, and finally review

results of some case histories.



CHAPTER 11

LITERATURE REVIEW

Mechanical Cone Development

Historical Review

The idea of determining soil parameters by pushing rods into the
ground is a very old one. The method developed by Co]1in in France in
1846 used a Vicat-type needle of 1 mm in diameter and weighing 1 kg to
estimate the cohesion of different types of clay of various consis-
‘tency (4). From that date until 1932, numerous variations in the cone
penetration method were developed 1in Europe, especially in Sweden,
Norway, and the Netherlands. In 1917, for example, the Swedish Rail-
roads standardized a method of sounding which is stiil in use today.
It consisted of pushing a metal rod, 19 mm in diameter, with loads of
5, 15, 25, 50, 75, and 100 kg. When refusal was encountered with a
load of 100 kg, the rods were rotated, either manually or by machine,
in order to advance the rods further. Sanglerat (4) gives an exten-
sive accounting of the early development stages of the mechanical cone
penetrometer,

Between 1932-1937, Barentsen (5) in the Netherlands, while asso-
ciated with N. V. Goudsche Machinefabriek, developed and patented a

sleeve-type apparatus--the first quasi-static cone penetrometer in a



form recogmizab]e today (see Appendix A). 1Initially, the apparatus
consisted &f a simple cone where the load on the cone was measured as
it was advanced ahead of outer tubes. Then the total load was mea-
sured as the cone and outer tubes were advanced together. Following
the development of this simple cone, Vermeiden (6) of the Delft Soil
Mechanics Laboratory designed a mantle cone in 1948 (see Appendix A)
to prevent soil particles from entering the space between the cone and
the push rods. Accuracy in penetration resistance was immensely im-
proved over that of the simple cone described in Appendix A. Similar
ideas on the improvement of Barentsen's simple cone were made by
Plantema (7) using a slightly different cone configuration at about
the same time. A friction sleeve to measure Tocal skin friction over
a short length above the cone was introduced by Begemann (8) in Indo-
-nesia in 1953, At that time, Begemann's research was being conducted
on thrée variants of what was called the "adhesion jacket cone" to
determine the most effective location of adhesion jacket relative to
the cone tip (see Figure 1). Further refinements continued by
Machinefabriek of Gouda, Netherlands, in conjunction with the Soil
Mechanics Laboratory of the Technical University at Delft in the
Netherlands, in developing what was now termed the "friction" jacket
cone. The mechanical cone development culminated with the improve-
ments by Machinefabriek to conform with Begemann's 1965 recommendation
(9) (see Appendix B). The Hogentogler & Co., Inc. (10) reports that
Machinefabriek started supplying mechanical cones that met the speci-
fication NEN:3680 of the Delft Ground mechanics (LGM) of Holland in
1976. Due fo this new specification, the shape of thelmant1e in the

friction-sleeve cone was changed to conform to the Dutch mantle cone.
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There have been numerous mechanical cones developed and used by
many countries throughout the world, Sanglerat (4) presents a compre-
hensive review of cone penetrometer testing and various cone develop-
ments throughout the world. However, when one considers the more
recent cone development, it is the Dutch apparatus manufactured by
Machinefabriek and -patented in the Netherlands by the Soil Mechanics
Laboratory df Nelft that are the most widely used and popular mechan-
ical cone penetrometers. Its use has spread worldwide., Schmertmann
(11) s credited with introducing the MCPT into the United States in
the middle 1960s.

Beginning with the work of Geuze in 1948, as noted by Sanglerat
(4), the electric cone development has shadowed that of the mechanical
cone, The electrical cone came into more general use in the late
1960s. Only Timited discussion will be addressed to the electric cone

in this research study.

Role of the Cone Penetration Test

The CPT has three main applications:
1. Determine the soil profile and identify soils present
2. Interpolate ground conditions between control boreholes
3. Evaluate the engineering properties of the soils and to assess
bearing capacity and settlement.
Its value must be seen within the framework of the overall geotechni-
cal investigation., The role of the CPT is one of enhanced definition
of site conditions.
The qualitative use of the CPT in the first two roles is of tre-

mendous value and has been described by numerous researchers and



practitioners (4, 11, 12). The CPT is the only investigative tech-
nique that provides an accurate continuous or virtually continuous
profile of soil stratification. By performing a number of cone pene-
tration tests (soundings) over a site, a picture can be obtained of
the uniformity of soil conditions. Based on that information, a de-
tailed soil exploration program can then be designed, including samp-
ling of specific critical layers and possib]y’other in situ testing.
The identification of soils is achieved by means of empirical correla-
tion between soil type and the ratio of the local side friction to
cone resistance (skin friction ratio) considered in relation to the
cone resistance,

With regard to the third application, the assessment of engi-
neering properties 1is more complicated in view of the many soil para-
meters that determine the cone resistance. However, much success has
been achieved with the correlation of the CPT and some important soil
parameters such as undrained shear strength of clay (11, 12). Assess-
ment of engineering properties of soils has been based on empirical
correlations. The important soil engineering parameters are: angle
of internal friction and deformation characteristics in cohesionless
soils, and undrained shear strength and modulus in cohesive soils.
Practical applications of the CPT include the assessment of ultimate
bearing capacity and settlement of footings and piles (11, 12).
Again, these are based on empirical correlation with the CPT.

The use of mechanical cone penetration testing in light of these
three applications has great potential for cost and time savings.
Robertson (13) reviewed the perceived applicability of the major types

of in situ test methods, which includes the mechanical cone penetro-



meter (see Table I), It is evident from Table I that the mechanical
cone penetrometer can make a significant contribution to a geotech-
nical study.

Test Standardization

Standardization of test procedures for CPT has been an on-going
process. Two of the currently used test standards for cone penetra-
tion testing are the European Recommended Standard (ERS) and the
American Society of Testing of Materials ASTM D 3441-86 (see Appen-
dices A and B, respectively).

Efforts to standardize methods of penetration testing date back
to the 4th Conference of the International Society of Soil Mechanics
and Foundation Engineering (ISSMFE) in London in 1957. At that time
an ISSMFE subcommittee on static and dynamic penetration testing meth-
ods was established to study the various test methods with the intent
of achieving standardization. Recommendations from this subcommittee
led to the publication of the European Recommended Standard (ERS) in
1977, Of significance, this standard recommended what is called the
standard tip geometry as shown in Figure 1 of Appendix A. The ERS
recognized the continued use of mechanical cones and allowed the use
of nonstandard cones as referenced in Section 10. It is further
required by ERS that a deviation from the standard tip geometry and
test procedure should be stated when presenting CPT results. The
ISSMFE is continuing to work on an internationally acceptable refer-
ence test,

The ASTM N 3441 standard was teﬁtative]y adopted in 1975 and
approved as a test standard in 1979. The current standard was reap-

proved in 1986 as ASTM D 3441-86 (see Appendix B). O0f significance,
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this test sstandard allows the use of both cone and friction-cone
penetromete}s of both the mechanical and electrical type and acknow-
ledges that test results will differ depending on which devices and
procedures are used. Mechanical cones, herein, generally refer to the
Dutch mantle and Begemann friction sleeve cones shown, respectively,
in Figures 1 and 2, Appendix B,

There has been interest by some groups to bring the ASTM standard
in 1ine with the recommended European Standard (14). The main argument
is that ASTM in effect recognizes two separate standards. Several
investigatioﬁs (1, 15, 16) have recognized that the mechanical cone
penetrometers will continue to have a significant usefullness because
of their relative ruggedness, simplicity, and initial cost--very much

similar to the continued use of the Standard Penetration Test, ASTM D

1586-84.

Equipment

CPT Apparatus: The mechanical cone penetration test apparatus
generally consists of a thrust machine and a reaction system (rig) and
a penetrometer with measuring and recording equipment.

Machines available generally have a thrust in the range of 2-3/4
to 20 tons. They are discussed under three categories: light, medium,
and heavy. A light rig is used in the exploration of weak soil layers
and generally is one rated up to a capacity of 2-3/4 tons. Penetration
is limited to a short distance into medium-dense sands or stiff clays.
They are ofﬂen light, portable, and hand operated through a chain
drive (see Fipure 2). A medium size rig is one rated to a capacity of

11 tons, and reasonable penetration can be obtained in stiff clays and
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medium-dens§ sands for depths up to 65 feet. They can be mounted on a
trailer with screw anchors or in a specially designed truck or tractor
ballasted with sufficient weight or with screw anchors, Penetration
is usually achieved by a hydraulic jacking system (see Figure 3). A
heavy rig is one that has capacity up to 20 tons, which is considered
a maximum practicable 1imit to avoid buckling of the rods. They are
generally mounted on a heavily ballasted truck within an enclosed area
but can also be trailor-mounted (see Figures 4 and 5). They are used
for all deep penetration into sands and clays. The power for penetra-
tion is usually obtained from a hydraulic clamping device.

A very popular, economical, and extremely useful cone penetro-
meter is the mechanical cone conversion package (see Figure 6). This
package converts a standard drill rig quickly and easily into a cone
penetration thrust machine. The conversion package consists of mantle
and friction sleeve cones, one meter length sounding rods, a hydraulic
load cell (11 or 20 tons), gauges, and accessories and spare parts.
The conversion kit allows the cone penetrometer testing and boring
program to be performed jointly. The hydraulic load cell is connected
to the drive head of the drill unit. The downward force of the drill
unit provides the penetrating force for cone testing. Manufacturers
of these conversion packages recommend a minimum of 10,000 pounds pull
down force. 'The greater the drill unit's down-force and the heavier
the drill, tﬁe greater the depth of penetration capability. Drnevich
(17) presenté details on converting a conventional drilling rig for
cone penetration testing. Appendix C (Figure 7) presents a a typical

schematic of a drill rig conversion.



Figure 3.

Hogentogler Model No. E5401
Dutch Cone Penetrometer,
11-Ton Capacity (10)
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Figure 6. Hogentogler Model No. E5701 Dutch
Cone Conversion Package (10)
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The A$TM makes no stringent requirement on the thrust machine
other thanithat the machine shall provide a continuous stroke prefer-
ably over a distance of one push rod length. Advancement of the tip
must also be at a constant rate.

The standard push rod is made of high tensile steel and has a
length of one meter. ASTM requires the rods to be smooth and have
flush fitting joints. The diameter of standard inner rods is speci-
fied as between 0,5 and 1.0 mm less than the internal diameter of the
push rods, and it is usually made of polished steel so as to reduce
friction between the push rod and inner rod. To increase the depth of
penetration and not reduce any differences between the resistance com-
ponents, a special rod called a "friction reducer" is introduced into
the string of push rods. The friction reducer is a rod (usually a
short section of rod) which has an enlarged diameter or special pro-
jection. A friction reducer that has been found to be very effective
in clayey soils is shown in Figure 7 (4). One that has been found to
work well in sandy soils is the "cam friction reducer" shown in Figure
8 (18). AST™M D 3441-86 allows the use of such rods in the push rod
string no closer than 1.3 feet above the base of the mantle mechanical
cone or 1.0 feet above the top of the friction sleeve for the friction
sleeve cone mechanical cone., Nominal dimensions for push rods used in
mechanical cone testing are given in Figure 9.

Penetrometer Tips: Penetrometers are of two main types, mechan-
ical and electrical. They can further be subdivided into those for
measurement Qf cone resistance only and those for measurement of both
cone resistaqce and local side friction. In mechanical penetrometers,

|
the forces required to mobilize cone resistance and local side fric-



Figure 7.

@z 36
]
! E
&
I
955 T3 ;
g))) > 5 8
2| 50
£
= E
/ij: s
o ' ~
i
R

Spacer-Ring Connection to Reduce the
Effects of Side Friction (4).

18



p B9
| i
¢ 150 r
cam ' S_
8 00
—N
~-
b
b - g
72}
2
h # 200
¢%9 :
—_-l\ : ol
‘ -8
: o
: 359
- —s friction f ’
:_-_4 v sleeve o] ;
|§ &
% 4 p 210
ARw’ |
] H :
: |
]
A
A i
A
A I
- 5§ M
o] AN+ mantie
- N
~
N
3 ‘
§ .
N
IS 5
cone ;3 l

Figure 8.

cam

3000

weided
seam

2

Begemann Friction Sleeve Penetrometer Tip (1)

and Cam Friction Reducer (

2,

18)

89

19



20

{c) Inner

{b) Push rod

{a} Push rod with

rod

friction
reducer

Penetrometer Rods (12)

Figure 9.



21

tion are épp]ied to the tip through the interaction of push rods and
inner rods1and measured at the surface. With electric penetrometers,
penetration is achieved by the application of force to the push rods.
Forces are measured by electrical resistance strain gauges built into
the tip, and measurements are transmitted to the surface through an
electrical cable. Dimensions and specifications of the mechanical and
electrical cones (tips) are given in ASTM 3441-86.

Similarities in the basic dimensions between mechanical and elec-
trical cones are the following: the cone tip has a 60° point angle, a
projected cone surface area of 10 cm2, cone base diameter of 35,7 mm,
and a friction-sleeve surface area of 150 cm?. Differences are the
tip geometry and method of operation as discussed in Appendix B. Rol
(19) conducted research comparing cone resistance in sand with three
CPT-tips, two of which were the standard electric cone and mechanical
friction-sleeve of the Begemann type. Results indicate that differ-
ences do exist and can be attributed mainly to friction between push
rods and inner rods of mechanical cones. Differing cone geometrics

also affect cone resistance and interpretation in normally and over-

consolidated clays; however, there are other factors involved (12).

CPT Procedure

Extent of CPT Use: Early use of the mechanical cone was applied
to extensive studies of soft or weak soils in Holland and Belgium (4).
Application of the mechanical CPT has spread from principally recent
alluvial norha]]y consolidated clays and sands to overconsolidated
alluvial c]ais and sands, residual clays, and older geologic forma-

tions. The mechanical cone is not used generally for rock explora-
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tion, although very soft and/or weathered rock have been investigated.
Searle (26), for example, has studied the interpretation of the
mechanical cone in chalk (carbonate siltstone). Schmertmann (11)
indicates as a rough guide to the penetration 1imit 1is that 10-ton
equipment can just penetrate a 5-foot layer of Standard Penetration
Test (SPT) N = 100 sand at a depth of 25 feet. Ramage and Williams
(21) report that, depending upon the machine used, the CPT is re-
stricted to material with a SPT hlowcount of Tess than 70 to 90 blows
per foot. The CPT is rather restricted in penetrating gravel. Ramage
and Williams also indicate that the ability of the mechanical cone to
penetrate is limited to material that contains less than 45 percent of
1/2-inch or smaller gravel. Based on this literature review, it does
appear that the applicability of the mechanical cone test has increas-
ed substantially in the material types now being investigated as com-
pared to its original use in Holland,

Operation of Equipment: Detailed operational procedure for the
mechanical cone is presented in Appendices A, B, and C. Basically,
the procedural steps as outlined by de Ruiter (15) for the mantle and
friction-sleeve mechanical cones are as follows:

Mantle Cone:

(a) The cone can be advanced 7 cm by means of the inner rods and

a representative cone resistance value is recorded for that
interval,

b) After advancing the cone, the outer rods are generally

pushed down 20 c¢m, over the last 12 cm of which cone and
rods move together, The procedure is then repeated so that

intkrmittent readings are obtained at intervals of 20 cm.



23

Friction-Sleeve Cone:

a) fhe outer rods are kept stationary. The ‘inner rods are
sushed down and advance the cone 4 cm, In that interval the
cone resistance is recorded,

b) The inner rods are advanced another 4 cm. The cone engages
the friction sleeve and they move down together, The
cbmbined value of cone resistance and friction on the sleeve
is recorded,

c¢) The outer rods are pushed down 20 cm along the friction
sleeve over the last 16 cm and the cone over the last 12
cm. Subsequently, the procedure can be repeated.

Schematically, these steps are shown in Figures 1 and 2 of Appendix C.
They are often referred to as the 20 cm steps. The ASTM specification
‘requires that the measuring interval shall not ordinarily exceed 8
inches (20 cm). With the mechanical cone, the step can be completed
in a 10 cm interval for more clarity with little or no loss in preci-
sion in the cone or friction resistances (18). For the mechanical
cone, the operation is termed discontinuous due to the telescoping
penetration of the cone by the inner rods followed by the friction
sleeve moved by the push rods to close the step. This operation
results in the measurement of the cone resistance first, followed by
the combined friction and cone. The local friction is taken as the
difference between the combined cone and friction resistance and the
preceding cone resistance measurement. In contrast to the mechanical
cone, the electric cone tip and friction resistances are measured
continuous]y.i The term continuously more correctly means that the

|
resistances are recorded simultaneously at intervals as specified in
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the ASTM standard. For light penetrometer rigs the mechanical cone is
advanced by hand operation of a chain drive; in the medium and heavy
penetrometer rigs penetration is obtained by the use of a hydraulic
ram,

Recording Results: Options for recording and processing mechan-
ical cone data are shown schematically in Figure 10. With most
mechanical penetrometers, readings are taken from a hydraulic pressure
gage and recorded manually. Details and specifications for typical
hydraulic pressure gauges are given in Appendix C. A typical field
record sheet is shown in Figure 8 of Appendix C. From the field
record sheet, data processing and plotting can be done manually (Path
Al, Figure 10) or by computer (Path A2, Figure 10). However, with
some mechanical cone penetrometers, the loads transmitted by the rods
are measured electrically and fed into a signal amplifier/conditioner
unit (Path B, Figure 10). They can then be plotted on an analogue
chart recorder for subsequent digitizing and computer processing in
the office (Path Bl, Figure 10), or treated in the same way as signals
from an electric penetrometer (Path B2, Figure 10). Schmertmann (22)
reports that friction-ratios measured by the above systems when plot-
ted show insignificant differences with perhaps electronically deter-
mined ratios more consistent. A typical plotting format that aids in
the interpretation of the mechanical cone is given in Figure 11,
Units for the cone and friction resistance are reported in tons or kPa
per unit area with depth in feet or meters as per ASTM D 3441-86.

Accuracy and Calibration: The major factors that affect the

accuracy of the mechanical cone include the following:
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Rate of penetration

Inner rod friction

Weight of inner rod

Jamming

Wear of cone dimensions

Distance between cone and friction sleeve

Drift of tip

Research indicates that the cone resistance tends to increase
with the penetration rate for both clays and sands (12, 23). Small
variations in the speed relative to the standard rate of 2 cm/sec have
no significant influence on cone resistance. ASTM D 3441 standard
which allows a variation of 25 percent appears fully acceptable
(23). Inner rod friction is a much discussed topic in mechanical cone
testing. Care must be taken that the inner rods are free of soil par-
ticles and corrosion and lubricated before insertion into the push
rods. A procedure for estimating the 1inner rod friction in a homo-
geneous is presented in Figure 9 of Appendix C. Additional inner rod
friction develops due to penetrating hard layers and at great depths,
because of elastic compression, causes shortening of the inner rod
(15). This elastic compression further shortens and eliminates the
free stroke for the cone measurement., Appendix C, Figures Cl1 and C2,
contains a procedure for compensation of elastic compression rod
shortening. Meigh (12) suggests the mechanical cone should not be
used for depths greater than 20 m in order to avoid inner rod fric-
tion. Van dqn Berg (16) reports some manufacturers are now producing
a highly polished surface on inner rods and the inner surface of the

push rods which they claim virtually eliminates inner rod friction.
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For improved accuracy at low cone resistance values, a correction
of the cone data is required to account for the accumulated weight of
the inner rod from the cone tip to the topmost rod. For very soft
clays, Schmertmann (1) indicates the practice of using aluminum inner
rods. Soil particles between sliding surfaces or bending of the tip
may jam the mechanism during many extensions and collapses of the
telescoping mechanical tip. The sounding has to be stopped as soon as
uncorrectable jamming occurs.

Measurements become less accurate if the dimensions of the cone
depart appreciably from the ASTM D 3441-86 standard due to wear or by
damage. Of particular importance is the surface roughness of the cone
and the friction sleeve. Parez (24) and Durgunoglu and Mitchell (25)
have conducted research showing the effect of shape .and base roughness
of the cone tip upon penetration resistances.

In the case of the friction sleeve cone, the frictional resis-
tance applies to the soil at some distance above the soil in which the
cone resistance was obtained at the same time. When comparing the
cone resistance with friction resistance and/or friction ratio, the
proper vertical distance must be considered between the base of the
cone and mid-height of the friction sleeve. For examp1e, Figure 12
clearly éhows that the local friction resistance measured in the third
step has to be compared with the cone resistance in the first step.
Depret (18), in his research on the influence of the measuring step in
mechanical penetration tests, points out the importance of proper
comparison, Drift of the sounding rods and cone tip can cause bending
of the rods, resulting in friction development between the inner and

outer rods. Drift of the rods from the vertical occurs in very deep
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soundings and when passing through or alongside obstructions such as
boulders, soil concretions, thin rock Tlayers, and inclined dense
strata. For penetration depths exceeding about 40 feet, the tip will
probably drift away from a vertical alignment (3).

The traditional method of measuring cone resistance 1is rather
simple, but it does require a double string of rods which can intro-
duce a number of errors., However, if used in a careful and competent
manner, and if attention is paid to specification detail and calibra-
tion, the method can be fully adequate. Experience of a great number
of investigators over many years has shown that reliable results are
obtained provided that tests are executed with proper care (15).

A comparison of the difference in the values of the cone and
friction resistances between those measured with the mechanical and
those measured with the electrical penetrometers is to be expected for
two reasons: first is the influence of the penetrometer shape; second
is the difference in the method of advancement of the cone (15).
However, de Ruiter (15) and Van den Berg (16) can find no systematic
difference between the cone resistance values from the mechanical and
electrical penetrometers, as noted in Figure 11. In contrast to the
cone resistance, marked differences are found in the magnitude of the
friction resistance as measured with the Begemann mechanical
penetrometer and with the electric penetrometer. A comparison of the
two friction graphs 1in Figure 11 indicates that on average the
friction resistance of the electric cone is only about half of the
mechanical cdne. Numerous other comparisons found the same approxi-
mate ratio (ZE, 27). The large difference in friction can be explain-

ed mainly by the end resistance on the lower edge of the friction
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sleeve. In clays this will be of minor importance, but in cohesionless

soils it may affect the result appreciably.

CPT Soil Classification

Soil classification from CPT data has been traditionally obtained
from the magnitude of cone resistance and more specifically from their
friction ratio (the ratio of local side friction to cone resistance,
fs/qc)'

A soil classification scheme using mechanical cones was first
formulated by Begemann (9). Begemann developed his scheme from
approximately 250 comparative friction cone penetration soundings and
accompanying borings which cone resistance is compared to local side
friction (see Figure 13). The graph with lines that relate to the
percentage of soil particles less than 16 u is the basic figure.
Figure 13 shows the names of soil types used by the Delft Soil
Mechanics Laboratory on the basic graph. Schmertmann (11) extended
Begemann's work to include an interpretation of density or stiffness
(see Figure 14) in terms of cone resistance and friction ratio.
Searle (20) included the results of further field measurements and
expanded the Begemann and Schmertmann charts (see Fiqure 15). This
approaéh differed from the previous ones in that soil type was
directly related to friction ratio.

The basis for soil classification by a cone penetrometer is the
analogy that it models a driven pile. The ratio of skin friction to
tip resistance has been found to be approximately 5 percent for clay
and 1 percent for sand. This analogy is applied to a cone penetro-

meter and termed the friction ratio. The friction ratio (FR) is a
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characteristic of the soil type but can vary depending on the cone
configuration used (4). In general, it has been found that the higher
the FR, the greater the percentage of finés in the soil--particularly
cohesive fines., As reported by Sanglerat (4), extensive correlation
between various investigators has led to general acceptance of fric-
tion ratios for different soil types (see Table II).

Most investigators (4, 11, 12) point out that the above listed
classification schemes are guidelines and recommend deriving corre-
lations based on Tlocal conditions by direct comparison with one or
more test borings, preferably by continuous sampling.

Cone resistance responds to soil changes with 5 to 10 diameters
above and below the cone, the distance increasing with increasing
stiffness. This leads to some inaccuracies in locating soil inter-
faces as noted earlier. Very thin layers can be missed. A thin layer
of sand within a clay stratum may not be detected if it is less than 4
inches thick and a clay layer within sand may not be detected if it is
less than 6 to 8 inches thick. However, the accuracy of CPT logging
is considered better than conventional boring and sampling (5 foot

interval sampling).

SPT-CPT Correlation

Because of the extensive use of the standard penetration test
(SPT) in the United states, it is of interest to develop a correlation
between the SPT blow count (N-values) and the cone resistance. Sang-
lerat (4) discusses these correlations in detail. The correlations

generally take the form:



TABLE I1I
FRICTION RATIOS--SOIL TYPE (4)

FR Soil Type
0.0-0.5% Ordinarily indicates soft rock, shells, or
Toose gravel
0.5-2.0% Ordinarily indicates sands or gravels
2.0-5,0% Clay-sand mixtures and silts
>5.0% Clays
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q. = nN (1)

where n varies from 2 for clays to 10 for sands. Schmertmann (28)
presented some theoretical correlation between SPT and cone sounding

data and indicated a decreasing qC/N ratio with increasing cohesive-

ness of the soil. He also has found that the ratios of (N06-12

in/N12_18 in.) correlate well with the FR, Further research by

Schmertmann resulted in the development of an equation giving the N
value as a function of cone resistance (qc) and friction ratio (FR)
that is applicable in any type of soil. This equation can be formul-
ated as follows:

N (SPT) = (A + B x FR %) q.: (2)
where A and B are constants,

Begemann, as reported by Schmertmann (29), has found closer
correlation between local friction (fs) and SPT resistance N, than
between cone resistance, q. and N, For insensitive clay, the q./N
ratio is potentially very useful to correlate between clay consistency
and estimated undrained shear strength from local correlations with N
or from generalized correlations. The correlations in Table III by
Terzaghi and Peck were reported by Sanglerat (4). In more recent
research Robertson and Campanella (30) show that qC/N ratios are a
function of the mean grain sijze (DSO) (see Figure 16). Here again,

one can see that q./N is generally low for clays and higher for sands.

Estimation of Undrained Shear Strength

An early application of the cone penetration test was in the

evaluation of undrained shear strength (c,) of clays (31). The esti-



TABLE TII

SPT "N" RESISTANCE AND UNCONFINED COMPRESSIVE
STRENGTH IN CLAYEY SOILS

Unconfined Compressive
Strength in Clayey Soils

N Consistency (qy in tsf)
2 Very Soft 0.25
2-4 Soft 0.25-0.50
4-8 Medium Soft 0.5-1.0
8-15 Stiff 1.0-2.0
15-30 Very Stiff 2.0-4.0
Over 30 Hard 4,0-8.0
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mation of the undrained shear strength in clays using mechanical cones
is based on the classical bearing capacity equation

- 1
qu = CNC + DNq + 5 BNa (3)

where ¢ equals cohesion of the soil; B equals the width of the foot-
ing; D equals depth of embedment of footing; « equals density of soil;
and NC,Nq, N are dimensionless coefficients. From Equation (3) for
frictionless soil (¢ = 0) the equation reduces to

q, = cN. + oD (4)

For the mechanical cone resistance (qc) and undrained shear strength

(su) of a cohesive soil, Equation (4) can be rewritten as

qC = Cu Nk + ol (5)

where ol is the total vertical stress, and N is the cone factor

analogous to the bearing capacity factor, N In terms of undrained

C'

strength, Equation (5) is then
C = (6)

Due to the difficulty of measuring piezometric levels in clays, many
researchers (32, 33, 34) neglect oz, thereby giving a much simplified

formula for undrained shear strength as

c, = e (7)
k
However, N, 1s not a constant. Some of the main factors affecting Ny
according to Meigh (12) are as follows:
1. Method and reliability of measurement of y

2. Shape of the penetrometer
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3. Réte of penetration

4, Strength anisotropy

5. Macrofabric of the clay and its stiffness ratio (the ratio of

shear nodules to undrained shear strength)
Schmertmann (11) also presents additional variables that can affect Ny
(see Table IV).

The N for overconsolidated clays is distinctly higher than N
for normally consolidated clays, and it is generally higher when e is
measured with the mantle or friction-sleeve cone rather than with the
electric cone as referenced in Appendix B. Except for some highly
sensitive clays, the cone factor, Nk, is higher than the theoretical
value of N/ (usually taken as 9) for both normally and overconsolidat-
ed clays (12). This is partly the result of skin friction acting on
the mantle (which varies with sensitivity of clay) and partly because
pore pressure buildup is smaller with the intermittent action of the
mechanical penetrometer than with the continuous action of the elec-
tric penetrometer. Meigh (12) indicates further that except for some
highly sensitive clays, Ny is higher than the theoretical value of N
because the CPT rate of shearing 1is approximately 100 times faster
than in a field vane or a laboratory compression test. Briaud (35)
presents some evidence of the effect of the rate of loading on the
undrained shear strength and how it affects the cone resistance, q..

For normhlly consolidated clays, Meigh (12) reports an average Ny
of 17.5 with most of the results falling in the range of 15 to 21.
Sanglerat (4f reports N, to be between 15 and 18. For overconsoli-
dated clays the macrofabric (secondary clay structure, i.e., fissures,

slickensides) has a marked effect on the cone factor, Nes making



TABLE 1V

SOME VARIABLES THAT INFLUENCE Nk (11)
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Approx. N.
. Factor
Variable Potential Direction Notes
1. Changing the test 2to3 Better sampling, See Eq. (4)
method for obtain- thinner vanes,
ing reference s use of SUPMT all
decrease c
2. Clay stiffness 3.0 Increases with Vesic
ratio = G/s increasing stiff- (1972)
ness
3. Ratio increasing/ 3.0 Decreases with Ladanyi
decreasing modu- decreasing ratio (1967)
Tus (E*/E™) at
peak s,
4, Effective fric- 2 to 3 Increases with Janbu
tion, tan¢ increasing ¢ (1974)
5. Ko OF OCR 3.0 Increases with Janbu
increasing Ko (1974)
or OCR ‘
6. Shape of pene- 2.0 Clay adhesion on Example in
trometer tip mantle of mechan- Amar et al.
ical tips in- (1975, Fig-
creases N, ure 2)

1.5 Reduced diameter Schmertmann
above cone can (1972b)
decrease N. in
very sensi%ive
clays

7. Rate of pene- 1.2 Increasing rate Viscous, no
tration increases Ne pore pres-
sure effects
8. Method of 1,2 Continuous (electrical tips)
penetra- penetration decreases N. compared
tion to incremental (mechanical tips)

because of higher pore pressures
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interpretation of shear strength more difficult and uncertain than in
normally consolidated clays. Marsland and Quaterman (36) present in
their research three fissure and/or discontinuity patterns (see Figure
17). As observed in this fiqure, for case (a), the cone resistance
reflects the effect of fissures on the strength of the clay mass. For
case (b), the cone resistance only partly reflects the effect of fis-
sures. Case (c) indicates widely spaced fissures. In other research,
Marsland (37) further shows the influence of fissures by comparing
vane shear test results with various sized triaxial specimens (see
Figure 18). Other researchers (38, 39) indicate good correlation
between q. and pressuremeter results. The N, range reported by Meigh
(12) for stiff fissured overconsolidated clays is 27+3. Sanglerat (4)

shows Nk values ranging from 22 to 26 for stiff clays.

Compressibility of Clay, Overconsolid-

ation Ratio, Sensitivity

The conventional cone penetrometer, measuring de and fs, does not
lend jtself to reliable estimates of clay compressibility. Only in-
direct methods have been developed by Schmertmann (11) and Sanglerat
(4). Schmertmann's approach is based on estimating the overconsoli-
dation ratio (OCR) to predict clay compressibility. In Sanglerat's
approach, an empirical relationship was developed mainly for the

mantle cone between the coefficient of constrained modulus (m and

v)
tip resistance (qc) to estimate clay compressibility.

Some recent research by Tavenas and lLeroueil (40) and by Mayne
(41) used the cone penetration test to index the in-situ overconsol-

idation ratio which affects clay settlement predictions. Schmertmann
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Figure 17. Fissure Patterns in Overconsolidated
Clays Related to Scale of Cone

Penetrometer Tip (36)
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(11) and Robertson and Campenella (31) report correlations between

clay sensitivity and FR and q..



CHAPTER III
RESEARCH PROGRAM
Introduction

As indicated, the purpose of this research is to characterize
typical Eastern Oklahoma alluvial soils and develop localized rela-
tionships between mechanical cone penetrometer parameters, q. and fg,
and the following: soil classification, SPT, undrained shear strength,
and clay compressibility through the estimate of OCR. There 1is need
for conducting research of this nature in order to expand the data
base on the merits and Tlimitations of the mechanical cone penetro-
meter, This equipment 1is simple 1in operation and has significant
practical use 1in many geotechnical engineering applications under
various geologic conditions. Cone penetrometer equipment and methods
have become increasingly more sophisticated (15, 30, 31). However, it
is believed that a proper perspective of the increased technological
advances in the cone penetrometer should be one_of enhancement and not

total replacement of the mechanical cone with more advanced types.
CPT Test Equipment and Procedure

The cone equipment used in this research was the mantlie and

friction-sleeve mechanical (Model No. E5705) and the electric cone
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(Model No. 57035) supplied by the Hogentogler & Co., Inc. The
friction-sleeve used has the tapered mantle conforming to the LGM
specification NEN 3680 which was referenced earlier, The hydraulic
system of a CME 75 conventional drilling rig was used along with the
necessary conversion kit to advance the cones. A cam friction reducer
was used in all soundings. Recording of g. and f, was done by manu-
ally reading hydraulic pressure gauges (direct reading of tip force in
Newtons). The actual equipment--cones, rods, and friction reducer,
hydraulic load cell and gauges, and CME 75 rig--used in this research
are shown in Figures 19, 20, 21, and 22, respectively.

The cone equipment and procedure followed ASTM D 3441-86. Care-
ful attention was paid to Section 6 of ASTM D 3441-86 at all sounding

locations.
Test Sites

The test sites for this research were selected to study typical
alluvial clays formed on broad floodplains in the northeastern quarter
of Oklahoma. Generally, the streams and rivers in this region are low
gradient tributaries of the Arkansas River. Typically, these alluvial
clays are found to occur to depths of 50 feet. They are highly plas-
tic, desiccated, firm to stiff clays that tend to become soft and non-
structed with depth. Three sites were mapped according to the USDA
Soil Conservation Service as Osage soil serigs, one as a Lela, and one
as a Waynoka soil series (see Figure 23). The sites are named for the
closest community within the vicinity (see Figure 23 for general loca-

tions).



Figure 19.

Mechanical and Electrical

Cones
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Rods and Friction Reducer

Figure 20.



Figure 21.

Hydraulic Load Cell and Gauges
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Figure 22.

CME Model 75 Drill Rig
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Testing Program

The testing program involved cone penetrometer testing and corre-
lation at all sites with special in-depth study at the Wagoner and
Tulsa site locations. The testing program included field sampling, in
situ testing, tests for index and engineering properties, and an anal-
ysis of the typical macro-structure for these alluvial clays.

Field Sampling: At each site, continuous SPT borings were made
according to ASTM D 1586-84 test specification. An exception to the
test specification that was applied to all SPT borings was the use of
a 2-inch O.b. split spoon sampler without a Tiner. A CME automatic
hammer system was used at all SPT borings to insure more consistent N-
resistance values. At the Wagoner site, two additional borings were
made by continuously pushing, respectively, 5-inch 0,D. and 3-inch
0.D. thin-walled sample tubes according to ASTM D 1587-83 specifica-
tion. Also at the Wagoner site the CME continuous tube sample system
(2-5/8-inch thick-walled tube) was used to take continuous, disturbed
samples with depth in a companion testing boring near each SPT bor-
ing. This was done to carefully log the structure of the alluvial
soils. At the Tulsa site, two additional borings were made by pushing
a 3-inch 0.D. thin-walled sample tube taking samples at two foot
intervals with depth, according to ASTM D 1587-83 specification,

In Situ Test: The in situ tests performed include the cone pene-
trometer test (CPT), standard penetration test (SPT), and the Menard
pressuremeter test (PMT), Tab1e'V indicates at each site the total
number of CPT‘soundings, SPT borings, and test borings for PMT. Plan

layouts 1indicating the 1location of all field sampling and in situ



TABLE V

NUMBER OF IN SITU TEST LOCATIONS
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Test Site CPT CPT
No. Location (Mechanical) (Electrical) SPT PMT
1 Wagoner 14 3 6 4
2 Tulsa 2 1 2 2
3 Collins- 2 2
ville
4 Bixby 1 1
5 Roland 1 1
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tests for the Wagoner and Tulsa sites are presented in Figures 24, 25,
and 26, re%pective1y. The location of SPT borings and mechanical CPT
soundings are noted on the boring logs.

The CPT soundings were made at all sites adjacent to-comp1eted
test borings according to ASTM D 3441-86 test procedure. Additionally,
three mechanical Dutch mantle and four electric cone soundings were
made according to ASTM D 3441-86 test procedure at the Wagoner and
Tulsa sites for comparison with the mechanical friction sleeve cone.
The SPT "N" resistance values were as noted earlier conducted contin-
uously according to ASTM N 1586-84 at all sites. The Menard pressure-
meter test (PMT) was made at four borings at the Wagoner and Tulsa
sites to measure the in situ undrained shear strength. The test was
conducted at three-foot intervals in each boring according to ASTM D
4719-87. To dinsure as precise a measurement of undrained shear
strength as possible, the borings were made with a hand auger.

Test for Engineering Properties: Atterberg Limits (LL, PL) were
conducted according to ASTM D 4318-84 specification. All specimens
were seasoned 24 hours before running tests. Particle size analysis
of all samples was made according to ASTM D 422-63 (Reapproved 1972)
specification. A measure of the consistency of these alluvial soils
is represented by the liquidity index (42) and by correlation with the
SPT "N" resistance values (see Table III). One-dimensional consolid-
ation tests were conducted according to ASTM D 2435-80 specification
to quantify the typical stress history of these alluvial clays. Cor-
relation of zthe undrained shear strength based on 1laboratory tests
with total éone resistance values from CPT soundings was made by

undrained uncbnso]idated (UY) triaxial tests. Tests were performed on
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1.4-inch diameter specimens according to ASTM D 2850-87 specification.
Tests were also conducted on single 2.8-inch diameter specimens in a
multi-stage loading (43).

Clay Structure Analysis: Detailed field and 1laboratory obser-
vations were made on all samples for structure according to ASTM D
2488-84, In addition, typical structural patterns were photographed

with depth on partially air-dried samples.



CHAPTER IV
PRESENTATION OF RESULTS
Introduction

The results of the testing program are presented in this chapter.
These results cover boring log and physical property data, in situ
tests, tests for engineering properties, and clay structure documen-

tation. The results present collective and site specific data.
Boring Logs and Physical Properties

Boring logs and physical property data for these alluvial soils
are tabulated in Tables D1 through D12 (see Appendix D). Typical bor-
ing log and physical property dataare shown graphically in Figures 27,

28, and 29,
In Situ Tests

The in situ tests performed at these sites were the Standard
Penetration Test (SPT), mechanical and electric cone penetrometer
tests (CPT), and the Menard pressuremeter test {PMT).

SPT: The SPT data are presented in Tables D1 through D12 (see
Appendix D). The SPT “N" resistance value is tabulated in these

tahbles at the end of the test depth.
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CPT: The CPT data are tabulated in Tables E1 through E12 (see
Appendix E). Typical graphical presentation of these data is present-
ed for sounding W22 at the Wagoner site in Figures 30, 31, and 32.

PMT: Undrained shear strength based on PMT test data is given in
Table VI. A typical graphical presentation of a typical PMT test
parameter is shown in Figures 33a, b, and c.

Comparative Data: The variation in the SPT "N" resistance value
for all SPT borings at the Wagoner éite'is given in a composite "N"
versus depth profile in Figure 34. Variations in the cone resistance
and local friction with depth at the Wagoner site is shown in Figures
35 and 36. Additional comparative cone data indicating the relative
uniformity of the suhsoil at the Wagoner site are presented in Tables
F1 through F7 (see Appendix F). A comparison made between the cone
resistance of the Dutch mantle and the friction sleeve mechanical
cones for lean and fat clays at the Wagoner and Tulsa sites is pre-
sented in Tables Gl through G3 (see Appendix G). Typical graphical
presentations of the cone resistance comparison are shown in Figures
37 and 38 for the Tulsa site. A comparison of the cone resistance
between the friction sleeve mechanical cone and electrical cone for
the Wagoner and Tulsa sites is given in Tables Hl1 through H4 (see
Appendix H). Graphically, the electric cone data are shown in Figure
39 for W201 at the Wagoner site. A summary of these qc ratios is
presented in Tables VII and VIII, respectively.

The stress history, specifically the overconsolidation ratio
(OCR) typical of these alluvial clays, is shown in Table IX with depth
for boring, Tl at the Tulsa site (see also Figure 28). A typical con-

solidation test showing the calculation for the preconsolidation pres-
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TABLE VI
UNDRAINED SHEAR STRENGTH BASED ON PMT DATA FROM WAGONER AND TULSA SITES

Sample Depth ac PL Po Su N @ Nkb
Location No. (ft) (tsf) (tsf) (tsf) (1) (2) (1) (2) (1) (2)
Wagoner, SPT No. 1 1 2.1 36.0 3.33 0.20 0.50 0.77 71.8 46.6 72.0 46.8
Wagoner, SPT No. 1 2 5.1 27.2 3.75 0.20 0.57 1.16 47.4 23,3 47,7 23.4
Wagoner, SPT No. 1 3 8.1 20.9 4,05 0.33 0.60 1.00 34,3 20.6 34.8 20.9
Wagoner, SPT No. 2 1 2.1 11.0 2.40 0.33 0.33 0.68 33.0 16.0 33.3 16.2
Wagoner, SPT No. 2 2 5.0 14.6 3.25 0.30 0.48 0.90 30.0 16.0 30.4 16.2
Wagoner, SPT No. 2 3 8.0 17.8 4,15 0.28 0.62 1.24 28.2 14.1 28.5 14.3
Wagoner, SPT No. 2 4 11.0 20.4 5.13 0.43 0.76 1.64 26,3 12.2 26.7 12.4
Wagoner, SPT No. 2 5 13.8 20.4 5.50 0.78 0.76 1.83 26.2 10.9 26.7 11.1
Wagoner, SPT No. 2 6 16.7 21.4 5.88 0.79 0.82 1.58 25.4 13,2 26,1 13.5
Tulsa, SPT No. 1 1 3.7 18.8 4,30 0.60 0.60 1.23 31.0 15.1 31.3 15.2
Tulsa, SPT No. 2 2 6.8 17.8 5.01 0.80 0.68 1.28 25.6 13.6 26.2 13.9
Tulsa, SPT No. 3 3 9.8 24.0 7.16 1.10 0.98 1.59 23.9 14.7 24.5 15.1

Averages 33.6 18.0 34.0 18.3

Notes: S, (1)--Undrained shear strength based on PMT Timiting pressure.
Su (2)--Undrained shear strength based on Gibson and Anderson (44).
(1) in Equation (6).
(2) in Equation (6).
ka (1)--Factor based on using S, (1) in Equation (7).
(2)--Factor based on using S, (2) in Equation (7).

N, (1)--Factor based on using S

(2)--Factor based on using S,
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TABLE VII

SUMMARY FOR qc MANTLE/qC FRICTION

From For CH Soils For CL Soils
Table Range Average Std. Dev. Range Average Std. Dev.
8-A 1.7222-0.8333 1.1535 0.2516 2.3000-0.8462 1.2510 0.4274
8-B 1.4000-0.8750 1.1194 1.1194 1.9000-0.8750 1.,1189 0.3275
8-C 1.2400-0.7500 1.0862 0.1363 3.7692-0.8400 1.2473 0.5019
1.1197 1.2057

8L



TABLE VIII

SUMMARY FOR 9c FRICTION/qC ELECTRIC

From For CH Soils For CL Soils
Table Range Average Std. Dev. Range Average Std. Dev.
8-D 3.7778-1.0952 1.9917 0.7059 2.3000-1.3000 1.6377 0.3189
8-E 2.4444-1.1000 1.5969 0.3241 2.2500-0.5926 1.2043 0.5013
8-F 3.1667-1.1111 1.4668 0.4621 1.6111-1.1250 1.3628 0.1845
8-6G 1.7857-1,1250 1.3253 0.1961 2.3846-0.3059 1.2542 0.4402
1.5959 1.3648

6L
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TABLE IX

OVERCONSOLIDATION RATIO VERSUS DEPTH
FOR BORING T1 AT TULSA SITE

Sample Depth Ywet . .

No. (ft) (pcf) . Svo 9p OCR

2A 1.1 119.9 - 0.07 3.6 51.40
5A2 1.3 0.08 3.1 38.75
5C1 7.3 0.45 3.7 8.20
28 9.3 125.1 0.58 3.9 6 72
503 13.2 0.80 2.9 3.62
2C 13.7 126.6 0.82 3.3 3.79
5E1 17.1 0.93 3.5 3.76
2E - 21.2 128.8 1.06 3.6 3.40
2F 25.9 128.4 1.22 3.2 2.62
5G1 27.2 1.26 3.5 2.78
bH1 32.1 1.42 3.1 2.18
2H 35.6 126.1 1.53 3.4 2,22

513 37.7 1.60 2.9 1.81
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sure, P'O, is presented in Figure 40 for the Tulsa site. A summary of
the unconsolidated undrained (UU) triaxial tests for the Wagoner and
Roland sites is given 1in Table X. A typical UU triaxial test is
presented in Figure 41.

The clay structure of test samples was documented in photographs
shown in Figures 42 through 48. The samples were allowed to air dry
and photographs show secondary structure development during the drying
process. Also presented in Table XI 1is the detailed log description
for the fat clay in boring W2 at the Wagoner site typical of these

alluvial clays indicating the type and depth of secondary structure.
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TABLE X

SUMMARY OF UNCONSOLIDATED UNDRAINED (UU) TRIAXIAL TEST DATA

Sample Type of UU2 NDepth Wet Unit Su Ac Nkb

Location No. Triaxial Test (ft) Weight (pcf) (tsf) (tsf) (1) (2)
Wagoner 308 MS (2.8 in.) 2.0 113.5 0.82 18.8 22.9 22.8
" 309 MS " 2.8 115.7 1.40 20.9 14.9 14.8

" 341 MS " 4.0 116.6 0.28 ?25.1 89.6 88.8

" 342 MS " 6.0 122.1 0.41 16.7 40.7 39.9

" 314 MS " 6.8 121.9 0.52 15.7 30.2 29.4

" 315 MS " 7.6 118.9 0.28 15.7 56.1 54,5

" 317 MS " 8.8 125.9 0.38 16.7 43.9 42 .6

" 320 MS " 10.8 125.3 0.64 18.8 29.4 28.4

" 321 MS " 11.6 124.7 0.63 18.3 29.0 27.9
Average N 39.6 38.8

Wagoner 323 ASTM (1.4 in.,) 12.8 123.6 0.28 21.4 76.4 73.7
" 324 ASTM " 13.6 124.4 0.42 19.8 47 .1 45,2

" 326 ASTM " 14.8 125.6 0.34 21.4 62.9 60.3
Roland 1E ASTM " 25.2 122.6 0.20 25.1 125.5 117.8
" 1EEE ASTM " 26.5 137.3 0.33 20.4 61.8 56.6

" 1F ASTM " 30.7 130.3 0.20 6.3 31.5 21.5

" 1C ASTM " 15.8 105.6 0.26 18.8 72.3 69.1
Average Ny 68.2 63.5

AMS--Multi-stage UU triaxial (43);

b

= C.
(1)Nk—ss
u

Feo

(2) Nk =

ASTM--ASTM D2850-87.

€8



Shear Stress, psf

Sample No. 341, Reference Table 10

30
Su = 489.6 + 364.5 (tan 11.5) = 563.7 psf
Cc = 450 psf
L.
20 4 = 11°

50

Norman Stress, psf

Figure 41. UU Triaxial Test Data
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Figure 42.

Secondary Clay Structure, Fissures,
Sample 8A at Boring W4, Wagoner
Site
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Figure 43.

Secondary Clay Structure, Fissures,
Sample 8B at Boring W4, Wagoner
Site

86



Figure 44,

Secondary Clay Structure, Fissures
and Slickenside, Sample 8C at
Boring W4, Wagoner Site
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Figure 45.

Secondary Clay Structure, Slickenside,
Sample 8D at Boring W4, Wagoner Site
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Secondary Clay Structure, Fissures,

Figure 46.

Sample 8E at Boring W4, Wagoner

Site



Figure 47.

Secondary Clay Structure, Slickenside,
Sample Depth 13-15 Feet at Boring W4,
Wagoner Site
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Figure 48.

Secondary Clay Structure, Blocky,
Sample 8H at Boring W4, Wagoner
Site
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TABLE XI

DETAILED BORING LOG DESCRIPTION (ASTM D 2488-84) FOR W2, WAGONER SITE

Nepth (ft)

Description

0.0-3.7

3.7-6.3

6.3-9.7

9.7-16.4

16,8-17.8

17.8-18.5

Fat Clay, very dark gray (10YR3/1) mottled with dark yellowish brown (10YR3/6) maximum par-
ticle size 3/8 inch subrounded chert gravel, trace of gravel, approximately 3% in the top
0.0-0.4 feet, approximately 2% sand predominately fine, 98% highly plastic fines, dry to
moist, medium stiff to soft, blocky with black (10YR2/1) iron concretions and roots, no HCL
reaction, alluvial clay (CH). '

Fat Clay, mottled very dark gray (10YR3/1), very dark grayish brown (10YR3/2) and with few
specks dark yellowish brown (10YR3/6), maximum particle size, coarse sand size, approximate-
ly 2% sand predominately fine, 98% highly plastic fines, moist with wet joints, soft, blocky
with black (10YR2/1) iron concretions and roots, no HCL reaction, alluvial clay (CH).

Fat Clay, mottled dark gray (10YR4/1), dark grayish brown (10YR4/2), and dark yellowish
brown (10YR3/6), maximum particle size 3/8 inch subrounded chert gravel, trace of gravel,
approximately 2% at 7.5-8.2 and 8.9-9.2 feet, approximately 5% sand, 95% highly plastic
fines, moist with wet joints, soft to medium stiff, blocky with few black (10YR2/1) iron and
pale brown (10YR6/3) calcium carbonate concretions and some decayed roots and slickensides,
no HCL reaction in clay matrix, strong reaction in calcium carbonate concretions, alluvial
clay (CH).

Fat Clay, mottled dark gray (10YR4/1) brown (10YR4/3) and dark yellowish brown (10YR4/6),
maximum particle size, coarse size, approximately 2% sand predominately fine size, 98%
highly plastic fines, moist with wet joints, medium stiff, blocky with slickensides, with
few black (10YR2/1) iron and soft pale brown (10YR6/3) calcium carbonate concretions, no HCL
reaction in clay matrix, strong reaction in clay matrix, strong reaction in calcium
carbonate concretions, alluvial clay (CH).

Fat Clay, mottled gray (10YR5/4) dark gray (10YR4/1) and brown (10YR4/3) same as in 9.7-16.4
feet, Note: Colors into the clay below.

Fat Clay, mottled 1ight gray (5YR6/1), brown (10YR5/3) and dark yellowish brown (10YR4/6)
same as in 9,7-16.4 feet,

¢6



CHAPTER V
ANALYSIS AND DISCUSSION OF RESULTS
Introduction

The purpose of this research was to add to the knowledge con-
cerned with interpretation of the mechanical cone penetration test
data by studying potential correlations with the basic cone para-
meters, cone resistance (qc) and local friction (f), and engineering
parameters of northeastern Oklahoma alluvial soils. The alluvial soil
sites chosen were representative of soils that have experienced sta-
bility and settlement problems due to highway embankment loads. The
selection of the mechanical cone for use in this research study as
opposed to other more advanced cone tybes was due to the simplicity of
equipment and operation. In addition, it is felt that Oklahoma allu-
vial soil types preclude the use of more sophisticated cones such as
the piezocone.

The major emphasis was placed on the evaluation of cone para-
meters of the clay soils found at these sites. There is limited
inference to other soil types due to the small number of sampling
sites. The correlations and analysis include the following:

1. Soil classification using the CPT

a. A comparison between coarse and fine grain soils.
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b. Applicability of the Begemann, Schmertmann, and Searle
classification schemes.

c. A comparison of cone resistance, local friction, and
friction ratio for the lean and fat clays studied.

2. Correlation of CPT with Atterberg 1limits and clay consis-

tency.

3. Comparison of the friction sleeve cone, Dutch mantle cone,

and electric cone,

4, Correlation between the SPT "N" value and CPT "q." value for

1eén and fat clays in the study area.

5. Correlation of the CPT cone factor N, and undrained shear

strength, Su*

2. Analysis using small diameter UU triaxial data and large
diameter multi-stage triaxial data.

b. Analysis using pressuremeter test data (PMT).

c. Analysis wusing backcalculated undrained shear strength
from embankment slope failures.

The analysis of the data for these correlations was based on com-
paring all cone resistance and 1local friction values for each soil
type as logged in the companion test borings and averaged cone resis-
tance and Tlocal friction within a test or sample length, For the case
of qC/N ratio comparison, the cone resistance values were averaged
over the length of the SPT test. Also in the shear strength-cone
resistance analysis, the cone resistance was averaged over the labora-
tory test sample length or length of the PMT test probe.

Appendix F presents the cone data as compiled in the field and

shows the adjustments made to correlate cone resistance and local
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friction at the same depth interval. Analysis and graphical presen-
tation of all data were accomplished by an IBM main frame computer
through a statistically oriented program language called SAS and SAS

graph.
Soil Classification With CPT

A comparison between coarse and fine grained soils for this study
is presented in Figures 49, 50, 51, and 52. Figure 49 presents cone
resistance in descending order for Unified Soil Classification System
soil types.— This confirms material presented in the literature, that
in general, coarse grained soils have substantially higher cone resis-
tances than fine grained soils. Lower friction ratios for coarse
grained soils as compared to fine grained soils are also reported in
the literature. Figure 52 indicates this general trend for the soils
in this research study.

The Begemann, Schmertmann, and Searle CPT soil classification
schemes were applied to all test borings and corresponding mechanical
cone soundings (reference Appendices D and E, respectively). Poor
agreement was found in all cases in the direct application of both the
Begemann and Schmertmann soil classification schemes. For example,
note the contrasts in Table XII for the Begemann classification scheme
as compared to actual logged data. The Searle classification scheme,
however, appears somewhat more consistent as compared to actual logged
boring descriptions (see Table XIII). The Searle classification method
does delineate between coarse grained and fine grained soils around a

friction ratio of 2.4 (see Figures 53 and 54).
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NOTE: SC-SM on Figures 50, 51 and
52 represent the summation of
all coarse grained soils.
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Figure 50.

Cone Resistance Versus Soil Type
(Unified Soil Classification)
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Figure 51.

Local Friction Versus Soil Type
(Unified Soil Classification)

98



99

CH

CL

CL-ML

Friction Ratio Versus Soil Type
(Unified Soil Classification)

NS/ AAAANNAANANANANAZ VNV VANV \7\/ WA\ N\ N\ \\ NS\ AN/
IR HELR RN
bR
R o As

” o~ - o

(1IN30¥3d) OI11vY NOILIIYA

SC-SM ML
SOIL TYPE (UNIFIED SOIL CLASSIFICATION)

Figure 52.



TABLE XII

COMPARISON OF DIRECT APPLICATION OF THE BEGEMANN CLASSIFICATION SCHEME AND LOGGED
BORING DESCRIPTION FOR CPT NO, 13/BORING NO. 2, WAGONER SITE

Depth Cone Resistance Local Frict}on

(ft) Boring Log (ac, kg/cm) (fgs kg/cm?) Soil Classification
0.33 16 0.000 -—-

0.66 18 0.067 --- (plots above chart)
0.98 16 0.267 Sand + 10% < 16 n

1.31 12 1.067 --~ (plots below chart)
1.64 Fat Clay 11 1.267 -—( " " ")
1.97 to 18.5 10 0.933 e " ")
2.30 11 0.933 -—( " " ")
2.62 14 0.733 Clay (95% < 16 u)

2.95 14 0.600 Clay (75% < 16 n)

3.78 13 0.533 Clay (70% < 16 u)

3.61 13 N.467 Clay (55% < 16 n)

3.94 10 0.533 Clay (95% < 16 n)

4,27 11 0.600 Clay (97% < 16 n)

4,59 11 0.467 Clay (80% < 16 u)

4,92 14 0,267 Sand + 15% < 16 n

5.25 14 0.400 Loam + 50% < 16 u

5.58 15 0.200 Fine Sand + 0% < 16 n
5.91 15 0.400 Sand + 40% < 16 u

6.23 14 0.400 Loam 50% < 16 1

6.56 15 0.467 Loam 50% < 16 n

6.80 14 0.533 Clay (68% < 16 n)

7.22 16 0.533 Loam + 54% < 16 y

7.55 16 0.600 Clay (65% < 16 u)

7.87 16 0.600 Clay (65% < 16 u)

8.20 18 0.467 Sand + 35% < 16 u

8.53 17 0.400 Sand + 35% < 16 n
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TABLE XII (Continued)

Nepth Cone Resistance Local Frict}on
(ft) Boring Log (qc)  kg/cm (fs, kg/cm%) Soil Classification
8.86 18 : 0.600 Clay (55% < 16
9.19 ' 19 0.467 Sand + 20% < 16
9.51 18 0.600 Clay (55% < 16 1)
9.84 18 0.600 Clay (55% < 16 u)
10.17 18 0.667 Sand + 24% < 16 n
10.50 19 0.733 Sand + 27% < 16 u
10.83 19 0.733 Sand + 27% < 16 n
11.15 20 0.667 Sand + 15% < 16
11.48 21 0.600 Sand + 7% < 16 n
11.81 20 0.667 Sand + 15% < 16 »
12.14 22 0.667 Sand + 40% < 16 u
12.47 23 0.600 Sand + 30% < 16
12.80 22 0.667 Sand + 40% < 16 w
13.12 23 N.667 Sand + 30% < 16 n
13.45 22 0.533 Sand + 22% < 16 n
13.78 20 0.600 ' Sand + 45% < 16 u
14.11 19 0.667 Clay (70% < 16 y
14.44 20 0.533 Sand + 37% < 16 n
14.76 19 0.600 Loam + 52% < 16 u
15.09 20 0.533 Sand + 37% < 16 ¢
15.42 19 0.667 Clay (70% < 16 u)
15.75 21 0.467 Sand + 17% < 16 y
16.08 20 0.600 Sand + 45% < 16 u
16.40 20 0.667 Sand + 15% < 16 n
16.73 21 0.600 Sand + 7% < 16 u
17.06 22 0.533 Sand + 22% < 16 p
17.39 21 0.667 Sand + 45% < 16 n
17.72 22 1.000 Clay (75% < 16 u)

18.04 28 0.867 Sand + 47% < 16 u)
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TABLE XIT (Continued)

Depth Cone Resistance Local Frict;on '

(ft) Boring Log (qcs kg/cm) (fgs kg/cm®) Soil Classification
18.37 28 0.933 Loam + 50% < 16 n
18.70 Lean Clay 28 0.933 Loam + 50% < 16 y
19.03 23 0.533 Sand + 17% < 16 n
19.36 15 0.667 Sand + 35% < 16 u
19.68 22 0.600 Sand + 35% < 16
20.01 24 0.333 Fine Sand + 0% < 16
20.34 19 0.400 Sand + 20% < 16 n
20.67 17 0.400 Sand + 35% < 16 u
21.00 13 0.600 Clay (85% < 16 n
21.33 15 0.267 Fine Sand + 0% < 16
21.65 17 0.333 Sand + 14% < 16 n
21.98 20 0.333 Sand + 4% < 16 q
22.31 19 0.333 Sand + 10% < 16 n
22.64 17 0.467 Sand + 42% < 16
22.97 16 0.333 Sand + 25% < 16
23.29 Lean Clay 11 0.533 Clay (95% < 16 )
23.62 w/Sand 11 0.867 --- (plots below chart)
23.95 Lean Clay 22 0.267 --- (plots above chart)
24,28 10 1.200 --- (plots below chart)
24.61 Lean Clay 9 0.400 Clay (95% < 16 y)
24.93 w/Sand 18 0.133 --- {plots above chart)
25.26 11 0.800 --- (plots below chart)
25.59 Sandy Lean Clay 31 0.467 Fine Sand 0% < 16 n
25.92 Lean Clay 28 0.000 -
26.25 17 0.733 Clay (80% < 16 u)
26.57 25 0.667 Sand + 32% < 16
26.90 Silty Sand 20 3.200 --- (plots below charts)
27.23 Sandy Silty 21 2.933 --- (plots below charts)
27.56 Clay 30 1.467 Clay (85% < 16 p)
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TABLE XII (Continued)

Depth Cone Resistance Local Frict%on
(ft) Boring Log (gc> kg/cm) (fgs kg/cm®) Soil Classification
27.89 32 2.667 --- (plots below charts)
28,22 Silty Clay- 58 2.267 Clay (80% < 16 n)
28.54 ey Sand 57 0.200 --- (plots above charts)
28.87 Silty Sand 32 1.667 Clay (90% < 16 u)
29.20 Sandy SiTty 60 1.667 Sand + 37% < 16 p
29.53 Cla 104 4.400 Clay + 70% < 16 n
29.86 Silty Sand 180 4,667 Sand + 30% < 16
30.18 Silty Sand 230 0.000 -—-
30.51 w/Gravel 125 3.000 Sand + 20% < 16 n
30.84 144 1.067 --- (plots above charts)
31.17 SiTty Sand 104 3.733 Loam + 53% < 16 u
31.50 w/Gravel 82 1.867 Sand + 21% < 16 y
31.82 160 4,667 Sand + 40% < 16 y
32.15 190 2.000 --- (plots above charts)
32.48 Poorly Grad- 200 2.667 Coarse Sand w/Gravel + 0% < 16 y
32.81 ed Sand w/ 220 4,000 Sand + 4% < 16 y
33.14 Gravel 240 4,000 Sand + 2% < 16 u
33.46 Silty Sand 200 2.000 --- (plots above charts)
33.79 w/Gravel 150 3.333 Sand + 15% < 16 y
34,12 Clayey Sand 170 2.667 Sand + 1% < 16 u
34.45 w/Gravel 150 3.333 Sand + 15% < 16 ¢
34,78 70 5.333 --- (plots below charts)
35.10 180 6.000 Sand + 48% < 16 n
35.43 104 3.067 Sand + 40% < 16 u
35.76 Shale 300 10.667 -== (LF > 6.0)
36.09 380 8.000 --- (LF > 6,0)
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TABLE XIII

COMPARISON OF DIRECT APPLICATION OF THE SEARLE CLASSIFICATION SCHEME AND LOGGED
BORING DESCRIPTION FOR CPT NO. 13/BORING NO. 2, WAGONER SITE

Depth Cone Resistance Local Friction

(ft) Boring Log (qc» MPa) ‘ (fgs kg/cmz) Soil Classification
n.33 Fat Clay to 1.6 0.00 -—-

0.66 18.5 1.8 0.37 VYery Sensitive Soils

0.98 1.6 1.67 Loose F.M.C. Sand

1.31 1.2 8.89 Firm Heavy Clay

1.64 1.1 11.52 " " "

1.97 1.0 9.33 " " "

2.30 1.1 8.48 " " "

2.62 1.4 5.24 Firm Clayey Silt

2.95 1.4 4,29 Med, Dense Clayey Sandy Silt
3.28 1.3 4.10 113 n " 1] 1]
3.61 1.3 3.59 H " n . H "
3.94 1.0 5.33 Soft Clayey Silt

4,27 1.1 5.45 Firm Clayey Silt

4.59 1.1 4,24 Loose Clayey Sandy Silt
4,92 1.4 1.90 Loose Silty Sand

5.25 1.4 2.86 Loose Clayey Silty Sand
5.58 1.5 1.33 Loose F.M.C. Sand

5.91 1.5 2.67 Loose Clayey Silty Sand
6.23 1.4 2.86 " " " "

6.56 1.5 3.11 " " " "

6.89 1.4 3.81 Med. Dense Clayey Sandy Silt
7.22 1.6 3.33 " " " " "
7.55 1.6 3.75 " " " " "
7.87 1.6 3.75 " " " " "
8.20 1.8 2.59 Loose Clayey Silty Sand
R.53 1.7 2.35 " " " "
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TABLE XIII (Continued)

Nepth Cone Resistance Local Frictijon

(ft) Boring Log (qc, MPa) (fgs kg/cmz) Soil Classification
8.86 1.8 3.33 Med. Dense Clayey Sandy
9.19 1.9 2.46 Loose Clayey Silty Sand
9,51 1.8 3.33 Med. Dense Clayey Sandy
9'84 1.8 3.33 1] u 1 "
10.17 1.8 3.70 11 un i "
10.50 1.9 3.86 " " " "
10.83 1.9 3.86 it H n "
11.15 2.0 3.33 " " u "
11.48 2.1 2.86 Med. Dense Clayey Silty
11.81 2.0 3.33 Med. Dense Clayey Sandy
12,14 2.2 3.03 Med. Dense Clayey Silty
12.47 2.3 2.61 " " " "
12.80 2.2 3.03 " n 11} "
13.12 2.3 2.90 " " " "
12.45 2.2 2.42 " " " "
13.78 2.0 3.00 1} " 1 "
14,11 1.9 3.51 Med. Dense Clayey Sandy
14,44 2.0 2.67 Med. Dense Clayey Silty
14,76 1.9 3.16 " " " "
15.09 2.0 2.67 " " " "
15.42 1.9 3.51 " " " "
15.75 2.1 2.22 Med. Dense Silty Sand
16.08 2.0 3.00 Med. Dense Clayey Silty
16.40 2.0 3.33 Med. Dense Clayey Sandy
16,73 Fat Clay 2.1 2.86 Med. Nense Clayey Silty
17.06 2.2 2.42 " " " !
17.39 2.1 3.17 " " " !
17.72 2.2 4,55 Firm Clayey Silt
18.04 2.8 3.10 Med. Dense Clayey Silty
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TABLE XIII (Continued)

Depth Cone Resistance Local Frict%on
(ft) Boring Log (qc» MPa) (fgs kg/cm®) Soil Classification
18,37 2.8 - 3.33 Med. Dense Clayey Sandy Silt
18.70 Lean Clay 2.8 3.33 " " " " "
19,03 2.3 2.32 Med. Dense Clayey Silty Sand
19.36 1.5 4,44 Firm Clayey Silt
19.68 2.2 2.73 Med. Dense Clayey Silty Sand
20.01 2.4 1.39 Loose F.M.C. Sand
20,34 1.9 2.11 Loose Silty Sand
20.67 1.7 2.35 Loose Clayey Silty Sand
21.00 1.3 4.62 Firm Clayey Silt
21.33 1.5 1.78 Loose Silty Sand
21.65 1.7 1.96 " " "
21,98 2.0 1.67 Loose F.M.C. Sand
22.31 1.9 1.75 Loose Silty Sand
22.64 1.7 2.75 Loose Clayey Silty Sand
22.97 1.6 2.08 Loose Silty Sand
23.29 l.ean Clay 1.1 4,85 Soft Clayey Silt
23.62 w/Sand 1.1 7.88 Firm Silty Clay
723.95 Lean Clay 2.7 1.21 Loose Gravelly Sand
24,28 1.0 12.00 Firm Heavy Clayb
24,61 Lean Clay 0.9 4,44 Soft Clayey Silt
24,93 w/Sand 1.8 0.74 Very Loose Sandy Gravel
25.26 1.1 7.27 Firm Silty Clay
25.59 Sandy Lean 3.1 1.51 Loose F.M.C. Sand
25.92 Clay 2.8 0.00 " " "
26.25 Lean Clay 1.7 4.31 Firm Clayey Silt
26,57 2.5 2.67 Med.NDense Clayey Silty Sand
26,90 Silty Sand 2.0 16.00 Very Stiff Peaty Clay
27.23 Sandy Silty 2.1 13,97 " " " !
27.56 Clay 3.0 4.89 Stiff Clayey Silt
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TABLE XIII (Continued)

Nepth Cone Resistance Local Frict;on

(ft) Roring Log (qc, MPa) (fs, kg/cmé) Soil Classification
27.89. 3.2 8.33 Very Stiff Silty Clay
28.22 Silty Clayey 5.8 3.91 Med. Dense Clayey Sandy Silt
78,54 Sand 5.7 0.35 Loose Gravel
28.87 Silty Sand 3.2 5.21 Stiff Clayey Silt
29,20 Sandy Silty 6.0 2.78 Med. Dense Clayey Silty Sand
29.53 Clay 10.4 4,23 Dense Clayey Sandy Silt
29,86 S1ity Sand 18.0 2.59 Dense Clayey Silty Sand
30.18 Silty Sand 23.0 0.00 -—
30.51 w/Gravel 12.5 2.40 Dense Clayey Silty Sand
30.84 14.4 0.74 Med. Dense Sandy Gravel
31.17 Silty Sand 10.4 3.59 Dense Clayey Sandy Silt
31.50 w/Gravel 8.2 2.28 Med. Dense Silty Sand
31.82 16.0 2.92 Dense Clayey Silty Sand
32.15 19.0 1.05 Med. Dense Gravelly Sand
32.48 Poorly Grad- 20.0 1.33 Dense F.M.C. Sand
32.81 ed Sand w/ 22.0 1.82 NDense Silty Sand
33.14 Gravel 24.0 1.67 Dense F.M.C. Sand
33.46 Silty Sand 20.0 1.00 Med. Dense Gravelly Sand
33.79 w/Gravel 15.0 2.22 Dense Silty Sand
34,12 Clayey Sand 17.0 1.57 Dense F.M.C. Sand
34,45 w/Gravel 15.0 2.22 Dense Silty Sand
34,78 7.0 7.62 Hard Silty Clay
35.10 18.0 3.33 Dense Clayey Sandy Silt
35.43 10.4 2.95 NDense Clayey Silty Sand
35,76 Shale 30.0 3.56 Very Dense Clayey Sandy Silt
36.09 38.0 2.11 Very Dense Silty Sand
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Figure 53. Log of Cone Resistance Versus Log of
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A comparison of the histograms of cone resistance, local fric-
tion, and friction ratios for all lean and fat clay data indicates the
mean and standard deviation (see Figures 55 through 60). All clay
data appear to follow a normal distribution based on plotting percent
cumulative frequency from the histogram data of Figures 55 through 60
on normal probability paper. Figures 61 and 62 present a percent
cumulative frequency versus friction ratio diagrams for all fat clay
data, as an example. All other histogram data showed similar results.
The friction ratios for lean and fat clay, from all sites were found

to be the following:

Clay Mean Standard Deviation
Lean x = 3,5 o= 36.1
Fat x = 4,6 o = +2.4

A similar comparison was made by the use of histograms of cone resis-
tance, local friction, and friction ratios for all lean and fat clay
at the Wagoner site (see Figures 63 through 68), The data again
appear to follow a normal distribution based on plotting percent
cumulative frequency from the histogram data of Figures 63 through 68
on normal probability paper. The friction ratios for all lean and fat

clay at this specific site were found to be the following:

Clay Mean Standard Deviation
Lean X = 2.9 | c=2,0
Fat x = 4.5 c=1.9

The friction ratios reported here for these fissured lean and fat
clays are somewhat lower than reported by Sanglerat (reference Table
II) and considerably lower than indicated by Searle's chart (reference

Figure 15). Results found in this study tend to agree with the fric-
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Figure 68. Histogram for Friction Ratio of Fat
Clay From Wagoner Site
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tion ratios reported by Cancelli (34) for overconsolidated alluvial
clays.

Begemann's research (9) indicated that the slope of an arithmetic
plot of cone resistance versus local friction remains approximately
constant with soil type. The results in the form of a regression line
and equation from a method of least squares analysis of lean and fat
clay from all sites and the Wagoner site are given in Figures 69
through 72. It can be observed that the slopes from these regression
lines do not correspond to the slope of clay soils indicated in the
Begemann's soil classification scheme. This would help explain the

poor correlation 1ndicated in Table XII.

CPT Correlation With Atterberg Limits

and Clay Consistency

An attempt was made to correlate the cone resistance with the
Atterberg limits (LL and PL) and clay consistency as referenced by the
liquidity index (L;). There has been some research indicating linear
relationships between cone resistance and relative consistency which
is the reciprocal of the liquidity index (45). Liquidity index has
replaced the older term, relative consistency, as a measure of clay
consistency. However, only a vague trend was noted; see typical rela-
tionship in Figure 73 for the cone resistance versus liquidity index
for Wagoner lean and fat clays. No correlations were believed possi-
ble without a more sophisticated statistical analysis. An indication
of some possible general relationship between the cone parameters and

clay consistency 1is shown 1in Figure 74. This figure relates cone
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resistance local friction and friction ratio to clay consistency as

defined through correlation with the SPT (see Table III).

Cone Resistance Comparison Between

Different Cone Tips

A correlation was made between cone resistance measured by the
Dutch mantle cone and friction sleeve mechanical cone, and between the
friction sleeve mechanical cone and the electric cone for lean and fat
clays. Results are given in the form of q. ratios in which the value
of q. (electric) is taken as unity (see Tables VII and VIII). The
ratios indicate that the cone resistances are nearly the same for the
Dutch mantle and friction sleeve mechanical cone:

9e mantle

a0 Friction sTeeve 1.11, Average for CH soils

and

9. mantle
= 1,21, Average for CL soils

q. friction sleeve

The significance of the Dutch mantle and friction sleeve comparison is
that the effect of clay filling the space between the point of the
penetrometer and the friction sleeve is of minor importance for the
clays in this study which is in agreement with previously reported
literature. Results from the ratio of the friction sleeve mechanical
cone to the electric cone are as follows:

9. friction sleeve

q. electric = 1.5959, Average for CH soils
o

and



133

de friction sleeve

q_ electric = 1.3648, Average for CL soils
c

These ratios indicate that friction sleeve cone resistance is
larger than the electric cone resistance by a range of 36 to 60 per-
cent., These cone ratios are attributed to the additional friction and
bearing between the point of the penetrometer and the friction sleeve
as compared with the cylindrical, straight shaft electric cone (see

Appendix B).
SPT-CPT Correlation

Relationships between the cone resistance and SPT "N" resistance
are presented in the form of histograms of q./N ratios which also
indicate the mean and standard deviation. These comparisons are shown
in Figures 75 through 78. Results indicate that the q./N ratio data
follow a normal distribution based on plotting percent cumulative fre-
quency from the histogram data of Figures 75 through 78 on normal
paper. Figures 79 and 80 present percent cumulative frequency versus
qc/N diagrams for lean clay at Wagoner site. The qC/N ratios for the

clays studied were found to be the following:

Type , Mean Standard Deviation
A1l lean and fat clay X = 6.3 o= 6.5
A11 Wagoner clay x = 5.8 o =5.4
A11 lean clay, Wagoner X = 6.9 o= 5.2
A1l fat clay, Wagoner X = 3.5 o= 1.7

These data indicate ranges of q./N that were somewhat higher than is
generally reported in the literature; however, peak q./N ratios from

histograms were similar to those reported.
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