INTERPRETATION OF THE DISCONTINUOUS MECHANICAL

CONE PENETRATION TEST IN NORTHEASTERN

*

.

OKLAHOMA ALLUVIAL SOILS

By

JAMES B. NEVELS, JR., P.E.

Bachelor of Science University of Oklahoma Norman, Oklahoma 1967

Master of Science University of Oklahoma Norman, Oklahoma 1977

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1989

INTERPRETATION OF THE DISCONTINUOUS MECHANICAL CONE PENETRATION TEST IN NORTHEASTERN OKLAHOMA ALLUVIAL SOILS

Thesis Approved:

0 Thesis Adviser n Dean of the Graduate College

To my mother Agatha Nevels for her love and encouragement and To my professor and adviser Dr. Joakim Laguros University of Oklahoma for his teaching, inspiration, guidance,

and friendship

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation and gratitude to Dr. D. R. Snethen, Thesis Adviser and Chairman of the Advisory Committee for his invaluable counsel, guidance, encouragement, and friendship during this research program.

The author is grateful to Drs. P. G. Manke, Mete Oner, and D. G. Kent for their excellent instruction, advice, and interest during this research study.

Sincere appreciation is extended to Messrs. John Clack, Joe Davis, and Miss Deborah Nutter of the Oklahoma Department of Transportation, Materials Division, for assistance in data reduction; and to Miss Alana Rose for initial typing and collating this research.

The author expresses his gratitude to the Oklahoma Department of Transportation for financial support and assistance throughout his Ph.D. program.

The author is exceptionally grateful to his wife, Sherry Ann, for her love and patience during this study; and to his daughter, Rachel, and son, James, for their understanding.

iii

TABLE OF CONTENTS

Chapte	r	Page
I.	INTRODUCTION	1
II.	LITERATURE REVIEW	3
	Mechanical Cone Development	3
	Historical Review Role of the Cone Penetration Test Test Standardization Equipment CPT Procedure CPT Soil Classification SPT-CPT Correlation Estimation of Undrained Shear Strength Compressibility of Clay, Oversonsolid- ation Ratio, Sensitivity	3 6 8 10 21 31 35 37 43
III.	RESEARCH PROGRAM	47
	Introduction CPT Test Equipment and Procedure Test Sites Testing Program	47 47 48 54
IV.	PRESENTATION OF RESULTS	61
	Introduction Boring Logs and Physical Properties In Situ Tests	61 61 61
۷.	ANALYSIS AND DISCUSSION OF RESULTS	93
	Introduction Soil Classification With CPT CPT Correlation With Atterberg Limits and Clay Consistency	93 95 125
	Cone Resistance Comparison Between Different Cone Tips SPT-CPT Correlation	132 133

Chapter

Correlation of CPT and Undrained Shear Strength	140
VI. CONCLUSIONS AND RECOMMENDATIONS	147
ConclusionsRecommendations	147 151
REFERENCES	152
APPENDIX A - EUROPEAN RECOMMENDED STANDARD, 1977	157
APPENDIX B - ASTM D 3441-86 SPECIFICATIONS	164
APPENDIX C - EXCERPTS FROM HOGENTOGLER OPERATION PROCEDURES MANUAL	168
APPENDIX D - BORING LOGS AND PHYSICAL PROPERTY DATA	195
APPENDIX E - CPT DATA	217
APPENDIX F - COMPARATIVE CPT DATA	243
APPENDIX G - CONE RESISTANCE COMPARISON BETWEEN DUTCH MANTLE AND FRICTION SLEEVE MECHANICAL CONES	265
APPENDIX H - CONE RESISTANCE COMPARISON BETWEEN FRICTION SLEEVE MECHANICAL CONE AND ELECTRICAL CONE	269

Page

LIST OF TABLES

Table		Page
Ι.	In Situ Test Methods and Their Perceived Applicability, 1986	9
II.	Friction RatiosSoil Type	36
III.	SPT "N" Resistance and Unconfined Com- pressive Strength in Clayey Soils	38
IV.	Some Variables That Influence N _k	42
۷.	Number of In Situ Test Locations	55
VI.	Undrained Shear Strength Based on PMT Data From Wagoner and Tulsa Sites	69
VII.	Summary for q _c Mantle/q _c Friction	78
VIII.	Summary for q _c Friction/q _c Electric	79
IX.	Overconsolidation Ratio Versus Depth for Boring T1 at Tulsa Site	80
Χ.	Summary of Unconsolidated Undrained (UU) Triaxial Test Data	83
XI.	Detailed Boring Log Description (ASTM D 2488-84) for W2, Wagoner Site	92
XII.	Comparison of Direct Application of the Begemann Classification Scheme and Logged Boring Description for CPT No. 13/Boring No. 2, Wagoner Site	100
XIII.	Comparison of Direct Application of the Searle Classification Scheme and Log- ged Boring Description for CPT No. 13/ Boring No. 2, Wagoner Site	104

LIST OF FIGURES

Figu	re	Page
1.	Three Types of the New Friction Jacket-Cone	5
2.	Hogentogler Model No. E5301 Hand-Operated 2.75-Ton Dutch Cone Penetrometer	11
3.	Hogentogler Model No. E5401 Dutch Cone Penetrometer, 11-Ton Capacity	13
4.	Special Sounding Truck	14
5.	Hogentogler Model No. E5501 Dutch Cone Penetrometer, 20-Ton Capacity, Trailer Mounted	15
6.	Hogentogler Model No. E5701 Dutch Cone Conversion Package	16
7.	Spacer-Ring Connection to Reduce the Effects of Side Friction	18
8.	Begemann Friction Sleeve Penetrometer Tip and Cam Friction Reducer	19
9.	Penetrometer Rods	20
10.	Possible Arrangements for Recording and Processing CPT Data	25
11.	Penetrometer Tests With Friction Measurement	26
12.	Readings of Resistance in 10 cm Measuring Steps	29
13.	Graph Showing Relationship Between Cone Resis- tance, Local Friction, and Soil Type	32
14.	Guide for Estimating Soil Type From Dutch Friction-Cone Ratio	33

Г	÷	2		n	0
Г	I.	У	u		e

•

	Friction-Sleeve Penetrometer	34
16.	Variation of q_c/N Ratio With Mean Grain Size	39
17.	Fissure Patterns in Overconsolidated Clays Related to Scale of Cone Penetrometer Tip	44
18.	Effect of Sample Size on Undrained Shear Strength of London Clay	45
19.	Mechanical and Electrical Cones	49
20.	Rods and Friction Reducer	50
21.	Hydraulic Load Cell and Gauges	51
22.	CME Model 75 Drill Rig	52
23.	Test Site Locations	53
24.	Plan Layout of SPT and CPT Locations at Wagoner Site	57
25.	Plan Layout of CPT Locations Used for Cone Resistance Comparison and PMT Locations at Wagoner Site	58
26.	Plan Layout of SPT, CPT, and PMT Locations at Tulsa Site	59
27.	Boring W2 at Wagoner Site	62
28.	Boring T1 at Tulsa Site	63
29.	Boring R1 at Roland Site	64
30.	Cone Resistance Versus Depth, W22 Wagoner Site	66
31.	Local Friction, W22 Wagoner Site	67
32.	Friction Ratio, W22 Wagoner Site	68
33.	Volume Versus Pressure at Depth of 8.1 Feet Near SPT 1 at Wagoner Site	70
34.	Composite SPT "N" Resistance Versus Depth, Wagoner Site	72

15. Identification of Soils Using the Dutch Mechanical

,	
Figure	

Ρ	a	q	e

35.	Variation of Cone Resistance With Depth at Wagoner Site	73
36.	Variation of Local Friction With Depth at Wagoner Site	74
37.	Cone Resistance Versus Depth, Tulsa Site	75
38.	Comparison of Cone Resistance Between CPT 5 and 6 at Tulsa Site	76
39.	Electric Cone Data for W201	77
40.	Consolidation Test, Tulsa Site	82
41.	UU Triaxial Test Data	84
42.	Secondary Clay Structure, Fissures, Sam- ple 8A at Boring W4, Wagoner Site	85
43.	Secondary Clay Structure, Fissures, Sam- ple 8B at Boring W4, Wagoner Site	86
44.	Secondary Clay Structure, Fissures and Slickenside, Sample 8C at Boring W4, Wagoner Site	87
45.	Secondary Clay Structure, Slickenside, Sample 8D at Boring W4, Wagoner Site	88
46.	Secondary Clay Structure, Fissures, Sam- ple 8E at Boring W4, Wagoner Site	89
47.	Secondary Clay Structure, Slickenside, Sample Depth 13-15 Feet at Boring W4, Wagoner Site	90
48.	Secondary Clay Structure, Blocky, Sample 8H at Boring W4, Wagoner Site	91
49.	Variation of Cone Resistance With Soil Type in Descending Order	96
50.	Cone Resistance Versus Soil Type	97
51.	Local Friction Versus Soil Type	98
52.	Friction Ratio Versus Soil Type	99
53.	Log of Cone Resistance Versus Log of Friction Ratio for CH Soils	108

Figure Page Log of Cone Resistance Versus Log of 54. Friction Ratio for CL Soils 109 55. Histogram for Cone Resistance of Lean Clay From All Sites 111 Histogram for Local Friction of 56. Lean Clay From All Sites 112 57. Histogram for Friction Ratio of Lean Clay From All Sites 113 Histogram for Cone Resistance of 58. Fat Clay From All Sites 114 59. Histogram for Local Friction of Fat Clay From All Site 115 60. Histogram for Friction Ratio of 116 Fat Clay From All Sites Cumulative Frequency Diagram for Friction 61. 117 Ratio of Fat Clay From All Sites Cumulative Frequency Diagram for Friction 62. Ratio of Fat Clay From All Sites Plotted on Normal Probability Paper 118 Histogram for Cone Resistance of Lean Clay 63. From Wagoner Site 119 64. Histogram for Local Friction of Lean Clay 120 From Wagoner Site Histogram for Friction Ratio of Lean Clay 65. From Wagoner Site 121 Histogram for Cone Resistance of Fat Clay 66. From Wagoner Site 122 67. Histogram of Local Friction for Fat Clay From Wagoner Site 123 Histogram for Friction Ratio of Fat Clay 68. From Wagoner Site 124 69. Relationship Between Cone Resistance and Local Friction for Lean Clay Data From All Sites 126

Figure

70.	Relationship Between Cone Resistance and Local Friction for Fat Clay Data From All Sites	127
71.	Relationship Between Cone Resistance and Local Friction for All Wagoner Lean Clay Data	128
72.	Relationship Between Cone Resistance and Local Friction for All Wagoner Fat Clay Data	129
73.	Cone Resistance Versus Liquidity Index for Wagoner Lean and Fat Clays	130
74.	Cone Resistance Versus Clay Consistency Based on SPT Correlation From Table 3	131
75.	Histogram for q _C /N of Lean and Fat Clay From All Sites	134
76.	Histogram for q _c /N of Lean and Fat Clay From Wagoner	135
77.	Histogram for q _c /N of Wagoner Lean Clay	136
78.	Histogram for q _c /N of Wagoner Fat Clay	137
79.	Cumulative Frequency Diagram for q _c /N of Wagoner Lean Clay	138
80.	Cumulative Frequency Diagram for q _c /N of Wagoner Lean Clay	139
81.	Relationship Between Cone Resistance and SPT N Value for Wagoner Lean and Fat Clay	141
82.	Relationship Between Cone Resistance and SPT N Value for Wagoner Lean Clay	142
83.	Relationship Between Cone Resistance and SPT N Value for Wagoner Fat Clay	143
84.	Relationship Between Undrained Shear Strength and Cone Resistance	145
85.	Relationship Between Undrained Shear Strength and Cone Resistance, All Data	146

CHAPTER I

INTRODUCTION

Penetration testing involves pushing or driving a steel cone and rods into the subsurface profile and monitoring the resistance to penetration mobilized by the soil. Penetration testing represents a significant and integral part of in situ tests performed for geotechnical engineering purposes. In response to the variety of problems and soil conditions, engineers have developed numerous types of penetration test equipment and methods. The simplest way to classify the different methods is by the method of tip advancement. The most prevalent types of penetration tests that have evolved over the years are the dynamic and quasi-static penetrometer tests (1). A commonly used dynamic penetration test in the United States and throughout the world is the Standard Penetration Test (SPT), ASTM D 1586-84 (2). The Cone Penetration Test (CPT) as prescribed in ASTM D 3441-86 (3) is the accepted quasi-static penetration test in the United States.

The CPT method has variously been called the Static Penetration Test, Quasi-Static Penetration Test, Dutch Cone Test, Dutch Sounding Test, and Dutch Deep Sounding Test. The term quasi-static refers to the method and the rate of tip advancement--hydraulic or mechanical jacking at a rate of 1 to 2 cm/sec.

The Cone Penetration Test as defined in AASHTO D 3441-86 is a test method that covers the determination of end bearing and side friction, the components of penetration resistance which are developed during the steady, slow penetration of a rod into the soil. This test method includes the use of both cone and friction-cone penetrometers of both the mechanical and electrical types. These are the most widely used types of cone penetrometers. Various other options in recent years have been added to produce piezometric, thermal conductivity, nuclear, seismic acoustic, and permeability cones. Most notable of the newer cone options is the piezocone; however, there are currently no American test standards for these cone variations.

The objective of this research is to evaluate possible relationships between the cone penetration test (CPT) of the <u>mechanical cone</u> <u>type</u> and typical alluvial clay soils of northeastern Oklahoma. In particular, this research will consider the following: the adaptability, in general, of the mechanical cone penetration test (MCPT) in Oklahoma soils and geologic formations, development of localized correlations between soil classification and cone data, evaluation of lithological and stratigraphical interpretations of cone resistance diagrams, development of SPT-N value and cone resistance relationships, evaluation of potential correlation between soil shear strength and consolidation properties with cone data, and finally review results of some case histories.

CHAPTER II

LITERATURE REVIEW

Mechanical Cone Development

Historical Review

ł

The idea of determining soil parameters by pushing rods into the ground is a very old one. The method developed by Collin in France in 1846 used a Vicat-type needle of 1 mm in diameter and weighing 1 kg to estimate the cohesion of different types of clay of various consistency (4). From that date until 1932, numerous variations in the cone penetration method were developed in Europe, especially in Sweden, Norway, and the Netherlands. In 1917, for example, the Swedish Railroads standardized a method of sounding which is still in use today. It consisted of pushing a metal rod, 19 mm in diameter, with loads of 5, 15, 25, 50, 75, and 100 kg. When refusal was encountered with a load of 100 kg, the rods were rotated, either manually or by machine, in order to advance the rods further. Sanglerat (4) gives an extensive accounting of the early development stages of the mechanical cone penetrometer.

Between 1932-1937, Barentsen (5) in the Netherlands, while associated with N. V. Goudsche Machinefabriek, developed and patented a sleeve-type apparatus--the first quasi-static cone penetrometer in a

form recognizable today (see Appendix A). Initially, the apparatus consisted of a simple cone where the load on the cone was measured as it was advanced ahead of outer tubes. Then the total load was measured as the cone and outer tubes were advanced together. Following the development of this simple cone, Vermeiden (6) of the Delft Soil Mechanics Laboratory designed a mantle cone in 1948 (see Appendix A) to prevent soil particles from entering the space between the cone and the push rods. Accuracy in penetration resistance was immensely improved over that of the simple cone described in Appendix A. Similar ideas on the improvement of Barentsen's simple cone were made by Plantema (7) using a slightly different cone configuration at about the same time. A friction sleeve to measure local skin friction over a short length above the cone was introduced by Begemann (8) in Indonesia in 1953. At that time, Begemann's research was being conducted on three variants of what was called the "adhesion jacket cone" to determine the most effective location of adhesion jacket relative to the cone tip (see Figure 1). Further refinements continued by Machinefabriek of Gouda, Netherlands, in conjunction with the Soil Mechanics Laboratory of the Technical University at Delft in the Netherlands, in developing what was now termed the "friction" jacket The mechanical cone development culminated with the improvecone. ments by Machinefabriek to conform with Begemann's 1965 recommendation (9) (see Appendix B). The Hogentogler & Co., Inc. (10) reports that Machinefabriek started supplying mechanical cones that met the specification NEN 3680 of the Delft Ground mechanics (LGM) of Holland in Due to this new specification, the shape of the mantle in the 1976. friction-sleeve cone was changed to conform to the Dutch mantle cone.

-

Figure 1. Three Types of the New Friction Jacket-Cone (8).

,

.

There have been numerous mechanical cones developed and used by many countries throughout the world. Sanglerat (4) presents a comprehensive review of cone penetrometer testing and various cone developments throughout the world. However, when one considers the more recent cone development, it is the Dutch apparatus manufactured by Machinefabriek and patented in the Netherlands by the Soil Mechanics Laboratory of Delft that are the most widely used and popular mechanical cone penetrometers. Its use has spread worldwide. Schmertmann (11) is credited with introducing the MCPT into the United States in the middle 1960s.

Beginning with the work of Geuze in 1948, as noted by Sanglerat (4), the electric cone development has shadowed that of the mechanical cone. The electrical cone came into more general use in the late 1960s. Only limited discussion will be addressed to the electric cone in this research study.

Role of the Cone Penetration Test

The CPT has three main applications:

- 1. Determine the soil profile and identify soils present
- 2. Interpolate ground conditions between control boreholes
- Evaluate the engineering properties of the soils and to assess bearing capacity and settlement.

Its value must be seen within the framework of the overall geotechnical investigation. The role of the CPT is one of enhanced definition of site conditions.

The qualitative use of the CPT in the first two roles is of tremendous value and has been described by numerous researchers and practitioners (4, 11, 12). The CPT is the only investigative technique that provides an accurate continuous or virtually continuous profile of soil stratification. By performing a number of cone penetration tests (soundings) over a site, a picture can be obtained of the uniformity of soil conditions. Based on that information, a detailed soil exploration program can then be designed, including sampling of specific critical layers and possibly other in situ testing. The identification of soils is achieved by means of empirical correlation between soil type and the ratio of the local side friction to cone resistance (skin friction ratio) considered in relation to the cone resistance.

With regard to the third application, the assessment of engineering properties is more complicated in view of the many soil parameters that determine the cone resistance. However, much success has been achieved with the correlation of the CPT and some important soil parameters such as undrained shear strength of clay (11, 12). Assessment of engineering properties of soils has been based on empirical correlations. The important soil engineering parameters are: angle of internal friction and deformation characteristics in cohesionless soils, and undrained shear strength and modulus in cohesive soils. Practical applications of the CPT include the assessment of ultimate bearing capacity and settlement of footings and piles (11, 12). Again, these are based on empirical correlation with the CPT.

The use of mechanical cone penetration testing in light of these three applications has great potential for cost and time savings. Robertson (13) reviewed the perceived applicability of the major types of in situ test methods, which includes the mechanical cone penetrometer (see Table I). It is evident from Table I that the mechanical cone penetrometer can make a significant contribution to a geotechnical study.

Test Standardization

Standardization of test procedures for CPT has been an on-going process. Two of the currently used test standards for cone penetration testing are the European Recommended Standard (ERS) and the American Society of Testing of Materials ASTM D 3441-86 (see Appendices A and B, respectively).

Efforts to standardize methods of penetration testing date back to the 4th Conference of the International Society of Soil Mechanics and Foundation Engineering (ISSMFE) in London in 1957. At that time an ISSMFE subcommittee on static and dynamic penetration testing methods was established to study the various test methods with the intent of achieving standardization. Recommendations from this subcommittee led to the publication of the European Recommended Standard (ERS) in 1977. Of significance, this standard recommended what is called the standard tip geometry as shown in Figure 1 of Appendix A. The ERS recognized the continued use of mechanical cones and allowed the use of nonstandard cones as referenced in Section 10. It is further required by ERS that a deviation from the standard tip geometry and test procedure should be stated when presenting CPT results. The ISSMFE is continuing to work on an internationally acceptable reference test.

The ASTM D 3441 standard was tentatively adopted in 1975 and approved as a test standard in 1979. The current standard was reapproved in 1986 as ASTM D 3441-86 (see Appendix B). Of significance,

TABLE I

IN SITU TEST METHODS AND THEIR PERCEIVED APPLICABILITY, 1986 (13)

		Geotechnical information											C	Groun	d con	dition	S	_		
Test method	Soul type	Prutile	Piezonetric pressure (ม)	Angle of friction (\$)	Undrained shear strength (S.)	Density (D,)	Compressibility (m, C_i)	Rate of consolidation (C., C_h)	Perneability (4)	Modulus: shear and Young's (G, E)	(n) score (Au)	Stress history (OCR)	Stress-strain curve	Hard rock	Soft rock till, etc.	Gravel	Sand	Sili	Clay	Peatorganics
Dynamuc cone (DCPT)	С	В	_	С	С	в	_	_	_	С			с	_	С	В	A	8	8	8
Static cone: Mechanical Electronic friction (CPT) Electronic piezo/friction (CPTU) Electronic piezo/friction (CPTU)	B B B	A A A A	— — — —	8 8 8 8	C C B B	B B B	C C C C C C	— — A A		C B B B	с с с с с	С С В В	— В В		C C C C C C		A A A	A A A A	A A A A	A A A A
Electronic seismic/piezo/friction (SCPTU) Acoustic probe Flat plate dilatometer (DMT) Field vane shear (VST) Standard penetration test (SPT) Resistivity probe Electronic conductivity probe Total stress cell K ₀ stepped blade Screw plate Borehole permeability Hydraulic fracture Borehole shear Prebored pressuremeter (PMT) Push-in pressuremeter (PMT) Full-displacement pressuremeter	ABBCABA - CC CBA	ABACBBB C CBB	< _∪ < < B		BCBACCC B CBB	BCC BAA HB HOC		A CBC CA	B C A C B	ACB BCB A CAA	Blaclicascialco	ലവങ്ങന് പ്രത്തേയം പ്രവേദനം പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത്തിന് പ്രത	B B I I C I B I I CC				AAA AAA BAACBBB	A A A B B A A C A A A B B B A		AABCABABABCCBB
(FDPMT) Self-boring pressuremeter (SBPMT)	C B	8 8	B A	C A	8 8	C B	C B	A A	8 8	A A	C A	C A	C A	-	 - c		A B	A	A A	A
Self-boring devices: K ₀ meter Lateral penetrometer Shear vane Plate test Seismic cross/downhole/surface Nuclear probes Plate load tests	B B B B B B C I C	B B B B C C		B C B C	B A B	B B A B	B B B	1 1 0 1 1 0	1110110	B A A A	A C C B C C	A C B A B	1 c c c m				8 8 8 8 8 8		A A A A A B A	A A A B A A A

Note: A = high applicability, B = moderate applicability, C = limited applicability, - = not applicable.

this test standard allows the use of both cone and friction-cone penetrometers of both the mechanical and electrical type and acknowledges that test results will differ depending on which devices and procedures are used. Mechanical cones, herein, generally refer to the Dutch mantle and Begemann friction sleeve cones shown, respectively, in Figures 1 and 2, Appendix B.

There has been interest by some groups to bring the ASTM standard in line with the recommended European Standard (14). The main argument is that ASTM in effect recognizes two separate standards. Several investigations (1, 15, 16) have recognized that the mechanical cone penetrometers will continue to have a significant usefullness because of their relative ruggedness, simplicity, and initial cost--very much similar to the continued use of the Standard Penetration Test, ASTM D 1586-84.

Equipment

CPT Apparatus: The mechanical cone penetration test apparatus generally consists of a thrust machine and a reaction system (rig) and a penetrometer with measuring and recording equipment.

Machines available generally have a thrust in the range of 2-3/4 to 20 tons. They are discussed under three categories: light, medium, and heavy. A light rig is used in the exploration of weak soil layers and generally is one rated up to a capacity of 2-3/4 tons. Penetration is limited to a short distance into medium-dense sands or stiff clays. They are often light, portable, and hand operated through a chain drive (see Figure 2). A medium size rig is one rated to a capacity of 11 tons, and reasonable penetration can be obtained in stiff clays and

Figure 2. Hogentogler Model No. E5301 Hand-Operated 2.75-Ton Dutch Cone Penetrometer (10)

medium-dense sands for depths up to 65 feet. They can be mounted on a trailer with screw anchors or in a specially designed truck or tractor ballasted with sufficient weight or with screw anchors. Penetration is usually achieved by a hydraulic jacking system (see Figure 3). A heavy rig is one that has capacity up to 20 tons, which is considered a maximum practicable limit to avoid buckling of the rods. They are generally mounted on a heavily ballasted truck within an enclosed area but can also be trailor-mounted (see Figures 4 and 5). They are used for all deep penetration into sands and clays. The power for penetration is usually obtained from a hydraulic clamping device.

A very popular, economical, and extremely useful cone penetrometer is the mechanical cone conversion package (see Figure 6). This package converts a standard drill rig guickly and easily into a cone penetration thrust machine. The conversion package consists of mantle and friction sleeve cones, one meter length sounding rods, a hydraulic load cell (11 or 20 tons), gauges, and accessories and spare parts. The conversion kit allows the cone penetrometer testing and boring program to be performed jointly. The hydraulic load cell is connected to the drive head of the drill unit. The downward force of the drill unit provides the penetrating force for cone testing. Manufacturers of these conversion packages recommend a minimum of 10,000 pounds pull down force. 'The greater the drill unit's down-force and the heavier the drill, the greater the depth of penetration capability. Drnevich (17) presents details on converting a conventional drilling rig for cone penetration testing. Appendix C (Figure 7) presents a a typical schematic of a drill rig conversion.

Figure 3. Hogentogler Model No. E5401 Dutch Cone Penetrometer, 11-Ton Capacity (10)

Figure 4. Special Sounding Truck (10)

Figure 5. Hogentogler Model No. E5501 Dutch Cone Penetrometer, 20-Ton Capacity, Trailer Mounted (10)

Figure 6. Hogentogler Model No. E5701 Dutch Cone Conversion Package (10)

The ASTM makes no stringent requirement on the thrust machine other than that the machine shall provide a continuous stroke preferably over a distance of one push rod length. Advancement of the tip must also be at a constant rate.

The standard push rod is made of high tensile steel and has a length of one meter. ASTM requires the rods to be smooth and have flush fitting joints. The diameter of standard inner rods is specified as between 0.5 and 1.0 mm less than the internal diameter of the push rods, and it is usually made of polished steel so as to reduce friction between the push rod and inner rod. To increase the depth of penetration and not reduce any differences between the resistance components, a special rod called a "friction reducer" is introduced into the string of push rods. The friction reducer is a rod (usually a short section of rod) which has an enlarged diameter or special pro-A friction reducer that has been found to be very effective jection. in clayey soils is shown in Figure 7 (4). One that has been found to work well in sandy soils is the "cam friction reducer" shown in Figure ASTM D 3441-86 allows the use of such rods in the push rod 8 (18). string no closer than 1.3 feet above the base of the mantle mechanical cone or 1.0 feet above the top of the friction sleeve for the friction sleeve cone mechanical cone. Nominal dimensions for push rods used in mechanical cone testing are given in Figure 9.

Penetrometer Tips: Penetrometers are of two main types, mechanical and electrical. They can further be subdivided into those for measurement of cone resistance only and those for measurement of both cone resistance and local side friction. In mechanical penetrometers, the forces required to mobilize cone resistance and local side fric-

•

Figure 7. Spacer-Ring Connection to Reduce the Effects of Side Friction (4).

Figure 8. Begemann Friction Sleeve Penetrometer Tip (1) and Cam Friction Reducer (2, 18)

.

tion are applied to the tip through the interaction of push rods and inner rods and measured at the surface. With electric penetrometers, penetration is achieved by the application of force to the push rods. Forces are measured by electrical resistance strain gauges built into the tip, and measurements are transmitted to the surface through an electrical cable. Dimensions and specifications of the mechanical and electrical cones (tips) are given in ASTM 3441-86.

Similarities in the basic dimensions between mechanical and electrical cones are the following: the cone tip has a 60° point angle, a projected cone surface area of 10 cm², cone base diameter of 35.7 mm, and a friction-sleeve surface area of 150 cm². Differences are the tip geometry and method of operation as discussed in Appendix B. Rol (19) conducted research comparing cone resistance in sand with three CPT-tips, two of which were the standard electric cone and mechanical friction-sleeve of the Begemann type. Results indicate that differences do exist and can be attributed mainly to friction between push rods and inner rods of mechanical cones. Differing cone geometrics also affect cone resistance and interpretation in normally and overconsolidated clays; however, there are other factors involved (12).

CPT Procedure

Extent of CPT Use: Early use of the mechanical cone was applied to extensive studies of soft or weak soils in Holland and Belgium (4). Application of the mechanical CPT has spread from principally recent alluvial normally consolidated clays and sands to overconsolidated alluvial clays and sands, residual clays, and older geologic formations. The mechanical cone is not used generally for rock explora-

tion, although very soft and/or weathered rock have been investigated. Searle (20), for example, has studied the interpretation of the mechanical cone in chalk (carbonate siltstone). Schmertmann (11) indicates as a rough quide to the penetration limit is that 10-ton equipment can just penetrate a 5-foot layer of Standard Penetration Test (SPT) N = 100 sand at a depth of 25 feet. Ramage and Williams (21) report that, depending upon the machine used, the CPT is restricted to material with a SPT blowcount of less than 70 to 90 blows per foot. The CPT is rather restricted in penetrating gravel. Ramage and Williams also indicate that the ability of the mechanical cone to penetrate is limited to material that contains less than 45 percent of 1/2-inch or smaller gravel. Based on this literature review, it does appear that the applicability of the mechanical cone test has increased substantially in the material types now being investigated as compared to its original use in Holland.

Operation of Equipment: Detailed operational procedure for the mechanical cone is presented in Appendices A, B, and C. Basically, the procedural steps as outlined by de Ruiter (15) for the mantle and friction-sleeve mechanical cones are as follows:

Mantle Cone:

- (a) The cone can be advanced 7 cm by means of the inner rods and a representative cone resistance value is recorded for that interval.
- b) After advancing the cone, the outer rods are generally pushed down 20 cm, over the last 12 cm of which cone and rods move together. The procedure is then repeated so that intermittent readings are obtained at intervals of 20 cm.

Friction-Sleeve Cone:

- a) The outer rods are kept stationary. The inner rods are pushed down and advance the cone 4 cm. In that interval the cone resistance is recorded.
- b) The inner rods are advanced another 4 cm. The cone engages the friction sleeve and they move down together. The combined value of cone resistance and friction on the sleeve is recorded.
- c) The outer rods are pushed down 20 cm along the friction sleeve over the last 16 cm and the cone over the last 12 cm. Subsequently, the procedure can be repeated.

Schematically, these steps are shown in Figures 1 and 2 of Appendix C. They are often referred to as the 20 cm steps. The ASTM specification requires that the measuring interval shall not ordinarily exceed 8 inches (20 cm). With the mechanical cone, the step can be completed in a 10 cm interval for more clarity with little or no loss in precision in the cone or friction resistances (18). For the mechanical cone, the operation is termed discontinuous due to the telescoping penetration of the cone by the inner rods followed by the friction sleeve moved by the push rods to close the step. This operation results in the measurement of the cone resistance first, followed by the combined friction and cone. The local friction is taken as the difference between the combined cone and friction resistance and the preceding cone resistance measurement. In contrast to the mechanical cone, the electric cone tip and friction resistances are measured continuously. The term continuously more correctly means that the resistances are recorded simultaneously at intervals as specified in
the ASTM standard. For light penetrometer rigs the mechanical cone is advanced by hand operation of a chain drive; in the medium and heavy penetrometer rigs penetration is obtained by the use of a hydraulic ram.

Recording Results: Options for recording and processing mechanical cone data are shown schematically in Figure 10. With most mechanical penetrometers, readings are taken from a hydraulic pressure gage and recorded manually. Details and specifications for typical hydraulic pressure gauges are given in Appendix C. A typical field record sheet is shown in Figure 8 of Appendix C. From the field record sheet, data processing and plotting can be done manually (Path A1, Figure 10) or by computer (Path A2, Figure 10). However, with some mechanical cone penetrometers, the loads transmitted by the rods are measured electrically and fed into a signal amplifier/conditioner unit (Path B, Figure 10). They can then be plotted on an analogue chart recorder for subsequent digitizing and computer processing in the office (Path B1, Figure 10), or treated in the same way as signals from an electric penetrometer (Path B2, Figure 10). Schmertmann (22)reports that friction-ratios measured by the above systems when plotted show insignificant differences with perhaps electronically determined ratios more consistent. A typical plotting format that aids in the interpretation of the mechanical cone is given in Figure 11. Units for the cone and friction resistance are reported in tons or kPa per unit area with depth in feet or meters as per ASTM D 3441-86.

Accuracy and Calibration: The major factors that affect the accuracy of the mechanical cone include the following:

Figure 10. Possible Arrangements for Recording and Processing CPT Data (12)

A. MECHANICAL CONE , DISCONTINUOUS READINGSB. ELECTRIC CONE , CONTINUOUSLY RECORDED

Figure 11. Penetrometer Tests With Friction Measurement (15)

Rate of penetration Inner rod friction Weight of inner rod Jamming Wear of cone dimensions Distance between cone and friction sleeve Drift of tip

Research indicates that the cone resistance tends to increase with the penetration rate for both clays and sands (12, 23). Small variations in the speed relative to the standard rate of 2 cm/sec have no significant influence on cone resistance. ASTM D 3441 standard which allows a variation of ± 25 percent appears fully acceptable (23). Inner rod friction is a much discussed topic in mechanical cone testing. Care must be taken that the inner rods are free of soil particles and corrosion and lubricated before insertion into the push A procedure for estimating the inner rod friction in a homorods. geneous is presented in Figure 9 of Appendix C. Additional inner rod friction develops due to penetrating hard layers and at great depths, because of elastic compression, causes shortening of the inner rod This elastic compression further shortens and eliminates the (15).free stroke for the cone measurement. Appendix C, Figures C1 and C2, contains a procedure for compensation of elastic compression rod shortening. Meigh (12) suggests the mechanical cone should not be used for depths greater than 20 m in order to avoid inner rod friction. Van den Berg (16) reports some manufacturers are now producing a highly polished surface on inner rods and the inner surface of the push rods which they claim virtually eliminates inner rod friction.

For improved accuracy at low cone resistance values, a correction of the cone data is required to account for the accumulated weight of the inner rod from the cone tip to the topmost rod. For very soft clays, Schmertmann (1) indicates the practice of using aluminum inner rods. Soil particles between sliding surfaces or bending of the tip may jam the mechanism during many extensions and collapses of the telescoping mechanical tip. The sounding has to be stopped as soon as uncorrectable jamming occurs.

Measurements become less accurate if the dimensions of the cone depart appreciably from the ASTM D 3441-86 standard due to wear or by damage. Of particular importance is the surface roughness of the cone and the friction sleeve. Parez (24) and Durgunoglu and Mitchell (25) have conducted research showing the effect of shape and base roughness of the cone tip upon penetration resistances.

In the case of the friction sleeve cone, the frictional resistance applies to the soil at some distance above the soil in which the cone resistance was obtained at the same time. When comparing the cone resistance with friction resistance and/or friction ratio, the proper vertical distance must be considered between the base of the cone and mid-height of the friction sleeve. For example, Figure 12 clearly shows that the local friction resistance measured in the third step has to be compared with the cone resistance in the first step. Depret (18), in his research on the influence of the measuring step in mechanical penetration tests, points out the importance of proper comparison. Drift of the sounding rods and cone tip can cause bending of the rods, resulting in friction development between the inner and outer rods. Drift of the rods from the vertical occurs in very deep

Figure 12. Readings of Resistance in 10 cm Measuring Steps (18)

soundings and when passing through or alongside obstructions such as boulders, soil concretions, thin rock layers, and inclined dense strata. For penetration depths exceeding about 40 feet, the tip will probably drift away from a vertical alignment (3).

The traditional method of measuring cone resistance is rather simple, but it does require a double string of rods which can introduce a number of errors. However, if used in a careful and competent manner, and if attention is paid to specification detail and calibration, the method can be fully adequate. Experience of a great number of investigators over many years has shown that reliable results are obtained provided that tests are executed with proper care (15).

A comparison of the difference in the values of the cone and friction resistances between those measured with the mechanical and those measured with the electrical penetrometers is to be expected for two reasons: first is the influence of the penetrometer shape; second is the difference in the method of advancement of the cone (15). However, de Ruiter (15) and Van den Berg (16) can find no systematic difference between the cone resistance values from the mechanical and electrical penetrometers, as noted in Figure 11. In contrast to the cone resistance, marked differences are found in the magnitude of the friction resistance as measured with the Begemann mechanical penetrometer and with the electric penetrometer. A comparison of the two friction graphs in Figure 11 indicates that on average the friction resistance of the electric cone is only about half of the mechanical cone. Numerous other comparisons found the same approximate ratio (26, 27). The large difference in friction can be explained mainly by the end resistance on the lower edge of the friction sleeve. In clays this will be of minor importance, but in cohesionless soils it may affect the result appreciably.

CPT Soil Classification

Soil classification from CPT data has been traditionally obtained from the magnitude of cone resistance and more specifically from their friction ratio (the ratio of local side friction to cone resistance, f_s/q_c).

A soil classification scheme using mechanical cones was first formulated by Begemann (9). Begemann developed his scheme from approximately 250 comparative friction cone penetration soundings and accompanying borings which cone resistance is compared to local side friction (see Figure 13). The graph with lines that relate to the percentage of soil particles less than 16 μ is the basic figure. Figure 13 shows the names of soil types used by the Delft Soil Mechanics Laboratory on the basic graph. Schmertmann (11) extended Begemann's work to include an interpretation of density or stiffness (see Figure 14) in terms of cone resistance and friction ratio. Searle (20) included the results of further field measurements and expanded the Begemann and Schmertmann charts (see Figure 15). This approach differed from the previous ones in that soil type was directly related to friction ratio.

The basis for soil classification by a cone penetrometer is the analogy that it models a driven pile. The ratio of skin friction to tip resistance has been found to be approximately 5 percent for clay and 1 percent for sand. This analogy is applied to a cone penetrometer and termed the friction ratio. The friction ratio (FR) is a

Figure 13. Graph Showing Relationship Between Cone Resistance, Local Friction, and Soil Type (9)

Ł

mann Mechanical Tip) (11)

characteristic of the soil type but can vary depending on the cone configuration used (4). In general, it has been found that the higher the FR, the greater the percentage of fines in the soil--particularly cohesive fines. As reported by Sanglerat (4), extensive correlation between various investigators has led to general acceptance of friction ratios for different soil types (see Table II).

Most investigators (4, 11, 12) point out that the above listed classification schemes are guidelines and recommend deriving correlations based on local conditions by direct comparison with one or more test borings, preferably by continuous sampling.

Cone resistance responds to soil changes with 5 to 10 diameters above and below the cone, the distance increasing with increasing stiffness. This leads to some inaccuracies in locating soil interfaces as noted earlier. Very thin layers can be missed. A thin layer of sand within a clay stratum may not be detected if it is less than 4 inches thick and a clay layer within sand may not be detected if it is less than 6 to 8 inches thick. However, the accuracy of CPT logging is considered better than conventional boring and sampling (5 foot interval sampling).

SPT-CPT Correlation

Because of the extensive use of the standard penetration test (SPT) in the United states, it is of interest to develop a correlation between the SPT blow count (N-values) and the cone resistance. Sanglerat (4) discusses these correlations in detail. The correlations generally take the form:

TABLE II	
----------	--

FRICTION RATIOS--SOIL TYPE (4)

$$q_{c} = nN \tag{1}$$

where n varies from 2 for clays to 10 for sands. Schmertmann (28) presented some theoretical correlation between SPT and cone sounding data and indicated a decreasing q_c/N ratio with increasing cohesiveness of the soil. He also has found that the ratios of (N_{06-12} in· $/N_{12-18}$ in.) correlate well with the FR. Further research by Schmertmann resulted in the development of an equation giving the N value as a function of cone resistance (q_c) and friction ratio (FR) that is applicable in any type of soil. This equation can be formulated as follows:

$$N (SPT) = (A + B \times FR \%) q_{C'}$$
 (2)

where A and B are constants.

Begemann, as reported by Schmertmann (29), has found closer correlation between local friction (f_s) and SPT resistance N, than between cone resistance, q_c and N. For insensitive clay, the q_c/N ratio is potentially very useful to correlate between clay consistency and estimated undrained shear strength from local correlations with N or from generalized correlations. The correlations in Table III by Terzaghi and Peck were reported by Sanglerat (4). In more recent research Robertson and Campanella (30) show that q_c/N ratios are a function of the mean grain size (D_{50}) (see Figure 16). Here again, one can see that q_c/N is generally low for clays and higher for sands.

Estimation of Undrained Shear Strength

An early application of the cone penetration test was in the evaluation of undrained shear strength (c_u) of clays (31). The esti-

TΑ	ΒL	Е	Ι	Ι	Ι

SPT "N" RESISTANCE AND UNCONFINED COMPRESSIVE STRENGTH IN CLAYEY SOILS

N	Consistency	Unconfined Compressive Strength in Clayey Soils (q _u in tsf)		
2	Very Soft	0.25		
2-4	Soft	0.25-0.50		
4-8	Medium Soft	0.5-1.0		
8-15	Stiff	1.0-2.0		
15-30	Very Stiff	2.0-4.0		
0 v er 30	Hard	4.0-8.0		

e

į

Figure 16. Variation of q_C/N Ratio With Mean Grain Size (30)

mation of the undrained shear strength in clays using mechanical cones is based on the classical bearing capacity equation

$$q_{u} = cN_{c} + \alpha DN_{q} + \frac{1}{2} \alpha BN_{\alpha}$$
(3)

where c equals cohesion of the soil; B equals the width of the footing; D equals depth of embedment of footing; α equals density of soil; and N_c, N_q, N are dimensionless coefficients. From Equation (3) for frictionless soil ($\phi = 0$) the equation reduces to

$$q_{\rm u} = cN_{\rm c} + \alpha D \tag{4}$$

For the mechanical cone resistance (q_c) and undrained shear strength (s_{μ}) of a cohesive soil, Equation (4) can be rewritten as

$$q_{c} = c_{\mu} N_{k} + \alpha Z$$
 (5)

where αZ is the total vertical stress, and N_k is the cone factor analogous to the bearing capacity factor, N_c . In terms of undrained strength, Equation (5) is then

$$c_{u} = \frac{q_{c} - \alpha z}{N_{k}}$$
(6)

Due to the difficulty of measuring piezometric levels in clays, many researchers (32, 33, 34) neglect αz , thereby giving a much simplified formula for undrained shear strength as

$$c_{u} = \frac{q_{c}}{N_{k}}$$
(7)

However, N_k is not a constant. Some of the main factors affecting N_k according to Meigh (12) are as follows:

- 1. Method and reliability of measurement of c_{μ}
- 2. Shape of the penetrometer

- 3. Rate of penetration
- 4. Strength anisotropy
- 5. Macrofabric of the clay and its stiffness ratio (the ratio of shear nodules to undrained shear strength)

Schmertmann (11) also presents additional variables that can affect N_k (see Table IV).

The N_k for overconsolidated clays is distinctly higher than N_k for normally consolidated clays, and it is generally higher when \boldsymbol{q}_{c} is measured with the mantle or friction-sleeve cone rather than with the electric cone as referenced in Appendix B. Except for some highly sensitive clays, the cone factor, N_k , is higher than the theoretical value of N_c (usually taken as 9) for both normally and overconsolidated clays (12). This is partly the result of skin friction acting on the mantle (which varies with sensitivity of clay) and partly because pore pressure buildup is smaller with the intermittent action of the mechanical penetrometer than with the continuous action of the electric penetrometer. Meigh (12) indicates further that except for some highly sensitive clays, N_k is higher than the theoretical value of N_r because the CPT rate of shearing is approximately 100 times faster than in a field vane or a laboratory compression test. Briaud (35) presents some evidence of the effect of the rate of loading on the undrained shear strength and how it affects the cone resistance, ${\bf q}_{\rm c}.$

For normally consolidated clays, Meigh (12) reports an average N_k of 17.5 with most of the results falling in the range of 15 to 21. Sanglerat (4) reports N_k to be between 15 and 18. For overconsolidated clays the macrofabric (secondary clay structure, i.e., fissures, slickensides) has a marked effect on the cone factor, N_k , making

TΑ	BL	Ε	Ĩ٧

SOME VARIABLES THAT INFLUENCE ${\rm N}_{\rm K}$ (11)

•

Variable	Approx. N _c Factor Potential	Direction	Notes
 Changing the test method for obtain- ing reference s_u 	2 to 3	Better sampling, thinner vanes, use of s _{uPMT} all <u>decrease</u> N _c	See Eq. (4)
2. Clay stiffness ratio = G/s _u	3.0	Increases with increasing stiff-	Vesic (1972)
3. Ratio increasing/ decreasing modu- lus (E ⁺ /E ⁻) at peak s _u	3.0	Decreases with decreasing ratio	Ladanyi (1967)
 4. Effective fric- tion, tan∳ 	2 to 3	Increases with increasing ϕ	Janbu (1974)
5. K _o or OCR	3.0	<u>Increases</u> with increasing K _o or OCR	Janbu (1974)
6. Shape of pene- trometer tip	2.0	Clay adhesion on mantle of mechan- ical tips <u>in-</u> creases N _c	Example in Amar et al. (1975, Fig- ure 2)
	1.5	Reduced diameter above cone can decrease N _c in very sensitive clays	Schmertmann (1972b)
7. Rate of pene- tration	1.2	Increasing rate <u>increases</u> N _C	Viscous, no pore pres- sure effects
8. Method of penetra- tion	1.2	Continuous (electri penetration <u>decreas</u> to incremental (mec because of higher p	cal tips) <u>es</u> N _c compared hanical tips) ore pressures

interpretation of shear strength more difficult and uncertain than in normally consolidated clays. Marsland and Quaterman (36) present in their research three fissure and/or discontinuity patterns (see Figure 17). As observed in this figure, for case (a), the cone resistance reflects the effect of fissures on the strength of the clay mass. For case (b), the cone resistance only partly reflects the effect of fissures. Case (c) indicates widely spaced fissures. In other research, Marsland (37) further shows the influence of fissures by comparing vane shear test results with various sized triaxial specimens (see Figure 18). Other researchers (38, 39) indicate good correlation between q_c and pressuremeter results. The N_k range reported by Meigh (12) for stiff fissured overconsolidated clays is 27±3. Sanglerat (4) shows N_k values ranging from 22 to 26 for stiff clays.

Compressibility of Clay, Overconsolid-

ation Ratio, Sensitivity

The conventional cone penetrometer, measuring q_c and f_s , does not lend itself to reliable estimates of clay compressibility. Only indirect methods have been developed by Schmertmann (11) and Sanglerat (4). Schmertmann's approach is based on estimating the overconsolidation ratio (OCR) to predict clay compressibility. In Sanglerat's approach, an empirical relationship was developed mainly for the mantle cone between the coefficient of constrained modulus (m_v) and tip resistance (q_c) to estimate clay compressibility.

Some recent research by Tavenas and Leroueil (40) and by Mayne (41) used the cone penetration test to index the in-situ overconsolidation ratio which affects clay settlement predictions. Schmertmann

Figure 17. Fissure Patterns in Overconsolidated Clays Related to Scale of Cone Penetrometer Tip (36)

Strength of London Clay (37)

(11) and Robertson and Campenella (31) report correlations between clay sensitivity and FR and ${\rm q}_{\rm C}{\, \cdot\,}$

•

CHAPTER III

RESEARCH PROGRAM

Introduction

As indicated, the purpose of this research is to characterize typical Eastern Oklahoma alluvial soils and develop localized relationships between mechanical cone penetrometer parameters, q_c and f_s, and the following: soil classification, SPT, undrained shear strength, and clay compressibility through the estimate of OCR. There is need for conducting research of this nature in order to expand the data base on the merits and limitations of the mechanical cone penetro-This equipment is simple in operation and has significant meter. practical use in many geotechnical engineering applications under various geologic conditions. Cone penetrometer equipment and methods have become increasingly more sophisticated (15, 30, 31). However, it is believed that a proper perspective of the increased technological advances in the cone penetrometer should be one of enhancement and not total replacement of the mechanical cone with more advanced types.

CPT Test Equipment and Procedure

The cone equipment used in this research was the mantle and friction-sleeve mechanical (Model No. E5705) and the electric cone

(Model No. 57035) supplied by the Hogentogler & Co., Inc. The friction-sleeve used has the tapered mantle conforming to the LGM specification NEN 3680 which was referenced earlier. The hydraulic system of a CME 75 conventional drilling rig was used along with the necessary conversion kit to advance the cones. A cam friction reducer was used in all soundings. Recording of q_c and f_s was done by manually reading hydraulic pressure gauges (direct reading of tip force in Newtons). The actual equipment--cones, rods, and friction reducer, hydraulic load cell and gauges, and CME 75 rig--used in this research are shown in Figures 19, 20, 21, and 22, respectively.

The cone equipment and procedure followed ASTM D 3441-86. Careful attention was paid to Section 6 of ASTM D 3441-86 at all sounding locations.

Test Sites

The test sites for this research were selected to study typical alluvial clays formed on broad floodplains in the northeastern quarter of Oklahoma. Generally, the streams and rivers in this region are low gradient tributaries of the Arkansas River. Typically, these alluvial clays are found to occur to depths of 50 feet. They are highly plastic, desiccated, firm to stiff clays that tend to become soft and nonstructed with depth. Three sites were mapped according to the USDA Soil Conservation Service as Osage soil series, one as a Lela, and one as a Waynoka soil series (see Figure 23). The sites are named for the closest community within the vicinity (see Figure 23 for general locations).

Figure 21. Hydraulic Load Cell and Gauges

5 Roland

Testing Program

The testing program involved cone penetrometer testing and correlation at all sites with special in-depth study at the Wagoner and Tulsa site locations. The testing program included field sampling, in situ testing, tests for index and engineering properties, and an analysis of the typical macro-structure for these alluvial clays.

Field Sampling: At each site, continuous SPT borings were made according to ASTM D 1586-84 test specification. An exception to the test specification that was applied to all SPT borings was the use of a 2-inch O.D. split spoon sampler without a liner. A CME automatic hammer system was used at all SPT borings to insure more consistent Nresistance values. At the Wagoner site, two additional borings were made by continuously pushing, respectively, 5-inch 0.D. and 3-inch 0.D. thin-walled sample tubes according to ASTM D 1587-83 specification. Also at the Wagoner site the CME continuous tube sample system (2-5/8-inch thick-walled tube) was used to take continuous, disturbed samples with depth in a companion testing boring near each SPT bor-This was done to carefully log the structure of the alluvial ing. soils. At the Tulsa site, two additional borings were made by pushing a 3-inch 0.D. thin-walled sample tube taking samples at two foot intervals with depth, according to ASTM D 1587-83 specification.

In Situ Test: The in situ tests performed include the cone penetrometer test (CPT), standard penetration test (SPT), and the Menard pressuremeter test (PMT). Table V indicates at each site the total number of CPT soundings, SPT borings, and test borings for PMT. Plan layouts indicating the location of all field sampling and in situ

Test Site No.	Location	CPT (Mechanical)	CPT (Electrical)	SPT	PMT
1	Wagoner	14	3	6	4
2	Tulsa	2	1	2	2
3	Collins- ville	2		2	
4	Bixby	1		1	
5	Roland	1		1	

NUMBER	0F	IN	SITU	TEST	LOCATIONS
	•		• • • •		

TABLE V

tests for the Wagoner and Tulsa sites are presented in Figures 24, 25, and 26, respectively. The location of SPT borings and mechanical CPT soundings are noted on the boring logs.

The CPT soundings were made at all sites adjacent to completed test borings according to ASTM D 3441-86 test procedure. Additionally, three mechanical Dutch mantle and four electric cone soundings were made according to ASTM D 3441-86 test procedure at the Wagoner and Tulsa sites for comparison with the mechanical friction sleeve cone. The SPT "N" resistance values were as noted earlier conducted continuously according to ASTM D 1586-84 at all sites. The Menard pressuremeter test (PMT) was made at four borings at the Wagoner and Tulsa sites to measure the in situ undrained shear strength. The test was conducted at three-foot intervals in each boring according to ASTM D 4719-87. To insure as precise a measurement of undrained shear strength as possible, the borings were made with a hand auger.

Test for Engineering Properties: Atterberg Limits (LL, PL) were conducted according to ASTM D 4318-84 specification. All specimens were seasoned 24 hours before running tests. Particle size analysis of all samples was made according to ASTM D 422-63 (Reapproved 1972) specification. A measure of the consistency of these alluvial soils is represented by the liquidity index (42) and by correlation with the SPT "N" resistance values (see Table III). One-dimensional consolidation tests were conducted according to ASTM D 2435-80 specification to quantify the typical stress history of these alluvial clays. Correlation of the undrained shear strength based on laboratory tests with total cone resistance values from CPT soundings was made by undrained unconsolidated (IU) triaxial tests. Tests were performed on

Test site layout referenced to CPT Locations.

Mean Blevation 522.25 feet with maximum differential between SPT and CPT of 0.85 feet.

60 Scale -

Figure 24. Plan Layout of SPT and CPT (Friction Sleeve) Locations at Wagoner Site.

58

.

1

۰,

Figure 26. Plan Layout of SPT, CPT, and PMT Locations at Tulsa Site
1.4-inch diameter specimens according to ASTM D 2850-87 specification. Tests were also conducted on single 2.8-inch diameter specimens in a multi-stage loading (43).

Clay Structure Analysis: Detailed field and laboratory observations were made on all samples for structure according to ASTM D 2488-84. In addition, typical structural patterns were photographed with depth on partially air-dried samples.

CHAPTER IV

PRESENTATION OF RESULTS

Introduction

The results of the testing program are presented in this chapter. These results cover boring log and physical property data, in situ tests, tests for engineering properties, and clay structure documentation. The results present collective and site specific data.

Boring Logs and Physical Properties

Boring logs and physical property data for these alluvial soils are tabulated in Tables D1 through D12 (see Appendix D). Typical boring log and physical property data are shown graphically in Figures 27, 28, and 29.

In Situ Tests

The in situ tests performed at these sites were the Standard Penetration Test (SPT), mechanical and electric cone penetrometer tests (CPT), and the Menard pressuremeter test (PMT).

SPT: The SPT data are presented in Tables D1 through D12 (see Appendix D). The SPT "N" resistance value is tabulated in these tables at the end of the test depth.

Figure 27. Boring W2 at Wagoner Site

Figure 29. Boring R1 at Roland Site

CPT: The CPT data are tabulated in Tables E1 through E12 (see Appendix E). Typical graphical presentation of these data is presented for sounding W22 at the Wagoner site in Figures 30, 31, and 32.

PMT: Undrained shear strength based on PMT test data is given in Table VI. A typical graphical presentation of a typical PMT test parameter is shown in Figures 33a, b, and c.

Comparative Data: The variation in the SPT "N" resistance value for all SPT borings at the Wagoner site is given in a composite "N" versus depth profile in Figure 34. Variations in the cone resistance and local friction with depth at the Wagoner site is shown in Figures 35 and 36. Additional comparative cone data indicating the relative uniformity of the subsoil at the Wagoner site are presented in Tables F1 through F7 (see Appendix F). A comparison made between the cone resistance of the Dutch mantle and the friction sleeve mechanical cones for lean and fat clays at the Wagoner and Tulsa sites is presented in Tables G1 through G3 (see Appendix G). Typical graphical presentations of the cone resistance comparison are shown in Figures 37 and 38 for the Tulsa site. A comparison of the cone resistance between the friction sleeve mechanical cone and electrical cone for the Wagoner and Tulsa sites is given in Tables H1 through H4 (see Appendix H). Graphically, the electric cone data are shown in Figure 39 for W201 at the Wagoner site. A summary of these q_r ratios is presented in Tables VII and VIII, respectively.

The stress history, specifically the overconsolidation ratio (OCR) typical of these alluvial clays, is shown in Table IX with depth for boring, T1 at the Tulsa site (see also Figure 28). A typical consolidation test showing the calculation for the preconsolidation pres-

.

Friction Rotin, S

Figure 32. Friction Ratio (FR), W22 Wagoner Site

				ΤA	BLE	VI					
UNDRAINED	SHEAR	STRENGTH	BASED	ON	PMT	DATA	FROM	WAGONER	AND	TULSA	SITES

	Sample	Depth	a _c	PL	Po	Su	N _k a	Nkb
Location	No.	(ft)	(tsf)	(tsf) (tsf)	(tsf) (tsf)	(1) (2)	(1) (2)	(1) (2)
Wagoner, SPT No. 1	1	2.1	36.0	3.33	0.20	0.50 0.77	71.8 46.6	72.0 46.8
Wagoner, SPT No. 1	2	5.1	27.2	3.75	0.20	0.57 1.16	47.4 23.3	47.7 23.4
Wagoner, SPT No. 1	3	8.1	20.9	4.05	0.33	0.60 1.00	34.3 20.6	34.8 20.9
Wagoner, SPT No. 2	1	2.1	11.0	2.40	0.33	0.33 0.68	33.0 16.0	33.3 16.2
Wagoner, SPT No. 2	2	5.0	14.6	3.25	0.30	0.48 0.90	30.0 16.0	30.4 16.2
Wagoner, SPT No. 2	3	8.0	17.8	4.15	0.28	0.62 1.24	28.2 14.1	28.5 14.3
Wagoner, SPT No. 2	4	11.0	20.4	5.13	0.43	0.76 1.64	26.3 12.2	26.7 12.4
Wagoner, SPT No. 2	5	13.8	20.4	5,50	0.78	0.76 1.83	26.2 10.9	26.7 11.1
Wagoner, SPT No. 2	6	16.7	21.4	5.88	0.79	0.82 1.58	25.4 13.2	26.1 13.5
Tulsa. SPT No. 1	1	3.7	18.8	4.30	0.60	0.60 1.23	31.0 15.1	31.3 15.2
Tulsa, SPT No. 2	2	6.8	17.8	5.01	0.80	0.68 1.28	25.6 13.6	26.2 13.9
Tulsa, SPT No. 3	3	9.8	24.0	7.16	1.10	0.98 1.59 Averages	$\frac{23.9}{33.6}$ $\frac{14.7}{18.0}$	$\frac{24.5}{34.0}$ $\frac{15.1}{18.3}$

Notes: S_u (1)--Undrained shear strength based on PMT limiting pressure.

 S_u (2)--Undrained shear strength based on Gibson and Anderson (44).

 ${}^{a}N_{k}$ (1)--Factor based on using S_{u} (1) in Equation (6).

(2)--Factor based on using S_u (2) in Equation (6).

 ${}^{b}N_{k}$ (1)--Factor based on using S_{u} (1) in Equation (7).

(2)--Factor based on using S_{u} (2) in Equation (7).

a) Limiting Pressure Method of Estimating
S_u is based on P_o and P (Taken from plots of V-P and Inverse V-P).

b) Gibson and Anderson Method of Estimating S_u plots $p-\log_e \Delta v/v$ from the Plastic Phase. S_u found as the slope of the line (7).

Figure 33. Volume Versus Pressure at Depth of 8.1 Feet Near SPT 1 at Wagoner Site.

SPT 'N' Resistance

Figure 34. Composite SPT "N" Resistance Versus Depth, Wagoner Site

Figure 35. Variation of Cone Resistance With Depth at Wagoner Site

Figure 36. Variation of Local Friction With Depth at Wagoner Site

Cone Resistance (q_c), N/cm^2

Depth, Feet

Figure 38. Comparison of Cone Resistance Between CPT 5 and 6 at Tulsa Site

Figure 39. Electric Cone Data for W201

From	Fo	r CH Soils		Fo	r CL Soils	
Table	Range	Average	Std. Dev.	Range	Average	Std. Dev.
8-A	1.7222-0.8333	1.1535	0.2516	2.3000-0.8462	1.2510	0.4274
8 - B	1.4000-0.8750	1.1194	1.1194	1.9000-0.8750	1.1189	0.3275
8-C	1.2400-0.7500	1.0862 1.1197	0.1363	3.7692-0.8400	$\frac{1.2473}{1.2057}$	0.5019

SUMMARY FOR q_c MANTLE/q_c FRICTION

TABLE VII

From	Fo	r CH Soils		For CL Soils				
Table	Range	Average	Std. Dev.	Range	Average	Std. Dev.		
8-D	3.7778-1.0952	1.9917	0.7059	2.3000-1.3000	1.6377	0.3189		
8 - E	2.4444-1.1000	1.5969	0.3241	2.2500-0.5926	1.2043	0.5013		
8 - F	3.1667-1.1111	1.4668	0.4621	1.6111-1.1250	1.3628	0.1845		
8-6	1.7857-1.1250	$\frac{1.3253}{1.5959}$	0.1961	2.3846-0.3059	$\frac{1.2542}{1.3648}$	0.4402		

SUMMARY FOR q_c FRICTION/q_c ELECTRIC

TABLE VIII

ı.

TABLE IX

OVERCONSOLIDATION RATIO VERSUS DEPTH FOR BORING T1 AT TULSA SITE

Sample No.	Depth (ft)	Ywet (pcf)	σίνο	σþ	OCR
2A	1.1	119.9	0.07	3.6	51.40
5A2	1.3		0.08	3.1	38.75
5C1	7.3		0.45	3.7	8.20
2B	9.3	125.1	0.58	3.9	672
5D3	13.2		0.80	2.9	3.62
2C	13.7	126.6	0.82	3.3	3.79
5E1	17.1	.	0.93	3.5	3.76
2E	21.2	128.8	1.06	3.6	3.40
2F	25.9	128.4	1.22	3.2	2.62
5G1	27.2		1.26	3.5	2.78
5H1	32.1		1.42	3.1	2.18
2H	35.6	126.1	1.53	3.4	2.22
513	37.7		1.60	2.9	1.81

sure, P'_0 , is presented in Figure 40 for the Tulsa site. A summary of the unconsolidated undrained (UU) triaxial tests for the Wagoner and Roland sites is given in Table X. A typical UU triaxial test is presented in Figure 41.

The clay structure of test samples was documented in photographs shown in Figures 42 through 48. The samples were allowed to air dry and photographs show secondary structure development during the drying process. Also presented in Table XI is the detailed log description for the fat clay in boring W2 at the Wagoner site typical of these alluvial clays indicating the type and depth of secondary structure.

Figure 40. Consolidation Test, Tulsa Site.

TABLE	X
	~ ^

	Sample	Type o	f UU ^a	Depth	Wet Unit	Su	٩ _c	Ν	lk ^b
Location	No.	Triaxia	l Test	(ft)	Weight (pcf)	(tsf)	(tsf)	(1)	(2)
Wagoner	308	MS (2.	8 in.)	2.0	113.5	0.82	18.8	22.9	22.8
- 11	309	MS	u ,	2.8	115.7	1.40	20.9	14.9	14.8
H	341	MS	31	4.0	116.6	0.28	25.1	89.6	88.8
н	342	MS	11	6.0	122.1	0.41	16.7	40.7	39.9
81	314	MS	H	6.8	121.9	0.52	15.7	30.2	29.4
38	315	MS	н	7.6	118.9	0.28	15.7	56.1	54.5
11	317	MS	11	8.8	125.9	0.38	16.7	43.9	42.6
н	320	MS	11	10.8	125.3	0.64	18.8	29.4	28.4
11	321	MS	H	11.6	124.7	0.63	18.3	29.0	27.9
						Aver	age N _k	39.6	38.8
Wagoner	323	ASTM (1	.4 in.)	12.8	123.6	0.28	21.4	76.4	73.7
ัน	324	ASTM	11	13.6	124.4	0.42	19.8	47.1	45.2
11	326	ASTM	H .	14.8	125.6	0.34	21.4	62.9	60.3
Roland	1E	ASTM	11	25.2	122.6	0.20	25.1	125.5	117.8
11	1EEE	ASTM	11	26.5	137.3	0.33	20.4	61.8	56.6
н	1F	ASTM	11	30.7	130.3	0.20	6.3	31.5	21.5
11	10	ASTM	H	15.8	105.6	0.26	18.8	72.3	69.1
						Aver	age N _k	68.2	63.5

SUMMARY OF UNCONSOLIDATED UNDRAINED (UU) TRIAXIAL TEST DATA

^aMS--Multi-stage UU triaxial (43); ASTM--ASTM D2850-87.

^b(1) N_k =
$$\frac{q_c}{S_u}$$
; (2) N_k = $\frac{q_c - \frac{\gamma h}{2000}}{S_u}$.

.

Figure 42. Secondary Clay Structure, Fissures, Sample 8A at Boring W4, Wagoner Site

Figure 43. Secondary Clay Structure, Fissures, Sample 8B at Boring W4, Wagoner Site

Figure 44. Secondary Clay Structure, Fissures and Slickenside, Sample 8C at Boring W4, Wagoner Site

Figure 45. Secondary Clay Structure, Slickenside, Sample 8D at Boring W4, Wagoner Site

Figure 46. Secondary Clay Structure, Fissures, Sample 8E at Boring W4, Wagoner Site

Figure 47. Secondary Clay Structure, Slickenside, Sample Depth 13-15 Feet at Boring W4, Wagoner Site

Figure 48. Secondary Clay Structure, Blocky, Sample 8H at Boring W4, Wagoner Site

TABLE XI

DETAILED BORING LOG DESCRIPTION (ASTM D 2488-84) FOR W2, WAGONER SITE

Depth (ft)	Description
0.0-3.7	Fat Clay, very dark gray (10YR3/1) mottled with dark yellowish brown (10YR3/6) maximum par- ticle size 3/8 inch subrounded chert gravel, trace of gravel, approximately 3% in the top 0.0-0.4 feet, approximately 2% sand predominately fine, 98% highly plastic fines, dry to moist, medium stiff to soft, blocky with black (10YR2/1) iron concretions and roots, no HCL reaction, alluvial clay (CH).
3.7-6.3	Fat Clay, mottled very dark gray (10YR3/1), very dark grayish brown (10YR3/2) and with few specks dark yellowish brown (10YR3/6), maximum particle size, coarse sand size, approximate- ly 2% sand predominately fine, 98% highly plastic fines, moist with wet joints, soft, blocky with black (10YR2/1) iron concretions and roots, no HCL reaction, alluvial clay (CH).
6.3-9.7	Fat Clay, mottled dark gray (10YR4/1), dark grayish brown (10YR4/2), and dark yellowish brown (10YR3/6), maximum particle size 3/8 inch subrounded chert gravel, trace of gravel, approximately 2% at 7.5-8.2 and 8.9-9.2 feet, approximately 5% sand, 95% highly plastic fines, moist with wet joints, soft to medium stiff, blocky with few black (10YR2/1) iron and pale brown (10YR6/3) calcium carbonate concretions and some decayed roots and slickensides, no HCL reaction in clay matrix, strong reaction in calcium carbonate concretions, alluvial clay (CH).
9.7-16.4	Fat Clay, mottled dark gray (10YR4/1) brown (10YR4/3) and dark yellowish brown (10YR4/6), maximum particle size, coarse size, approximately 2% sand predominately fine size, 98% highly plastic fines, moist with wet joints, medium stiff, blocky with slickensides, with few black (10YR2/1) iron and soft pale brown (10YR6/3) calcium carbonate concretions, no HCL reaction in clay matrix, strong reaction in clay matrix, strong reaction in calcium carbonate concretions, alluvial clay (CH).
16.8-17.8	Fat Clay, mottled gray (10YR5/4) dark gray (10YR4/1) and brown (10YR4/3) same as in 9.7-16.4 feet. Note: Colors into the clay below.
17.8-18.5	Fat Clay, mottled light gray (5YR6/1), brown (10YR5/3) and dark yellowish brown (10YR4/6) same as in 9.7-16.4 feet.

CHAPTER V

ANALYSIS AND DISCUSSION OF RESULTS

Introduction

The purpose of this research was to add to the knowledge concerned with interpretation of the mechanical cone penetration test data by studying potential correlations with the basic cone parameters, cone resistance (q_c) and local friction (f_s) , and engineering parameters of northeastern Oklahoma alluvial soils. The alluvial soil sites chosen were representative of soils that have experienced stability and settlement problems due to highway embankment loads. The selection of the mechanical cone for use in this research study as opposed to other more advanced cone types was due to the simplicity of equipment and operation. In addition, it is felt that Oklahoma alluvial soil types preclude the use of more sophisticated cones such as the piezocone.

The major emphasis was placed on the evaluation of cone parameters of the clay soils found at these sites. There is limited inference to other soil types due to the small number of sampling sites. The correlations and analysis include the following:

1. Soil classification using the CPT

a. A comparison between coarse and fine grain soils.

- b. Applicability of the Begemann, Schmertmann, and Searle classification schemes.
- c. A comparison of cone resistance, local friction, and friction ratio for the lean and fat clays studied.
- Correlation of CPT with Atterberg limits and clay consistency.
- Comparison of the friction sleeve cone, Dutch mantle cone, and electric cone.
- 4. Correlation between the SPT "N" value and CPT " q_c " value for lean and fat clays in the study area.
- 5. Correlation of the CPT cone factor ${\rm N}_{\rm k}$ and undrained shear strength, ${\rm s}_{\rm u}.$
 - a. Analysis using small diameter UU triaxial data and large diameter multi-stage triaxial data.
 - b. Analysis using pressuremeter test data (PMT).
 - c. Analysis using backcalculated undrained shear strength from embankment slope failures.

The analysis of the data for these correlations was based on comparing all cone resistance and local friction values for each soil type as logged in the companion test borings and averaged cone resistance and local friction within a test or sample length. For the case of q_c/N ratio comparison, the cone resistance values were averaged over the length of the SPT test. Also in the shear strength-cone resistance analysis, the cone resistance was averaged over the laboratory test sample length or length of the PMT test probe.

Appendix F presents the cone data as compiled in the field and shows the adjustments made to correlate cone resistance and local friction at the same depth interval. Analysis and graphical presentation of all data were accomplished by an IBM main frame computer through a statistically oriented program language called SAS and SAS graph.

Soil Classification With CPT

A comparison between coarse and fine grained soils for this study is presented in Figures 49, 50, 51, and 52. Figure 49 presents cone resistance in descending order for Unified Soil Classification System soil types. This confirms material presented in the literature, that in general, coarse grained soils have substantially higher cone resistances than fine grained soils. Lower friction ratios for coarse grained soils as compared to fine grained soils are also reported in the literature. Figure 52 indicates this general trend for the soils in this research study.

The Begemann, Schmertmann, and Searle CPT soil classification schemes were applied to all test borings and corresponding mechanical cone soundings (reference Appendices D and E, respectively). Poor agreement was found in all cases in the direct application of both the Begemann and Schmertmann soil classification schemes. For example, note the contrasts in Table XII for the Begemann classification scheme as compared to actual logged data. The Searle classification scheme, however, appears somewhat more consistent as compared to actual logged boring descriptions (see Table XIII). The Searle classification method does delineate between coarse grained and fine grained soils around a friction ratio of 2.4 (see Figures 53 and 54).

Figure 49. Variation of Cone Resistance With Soil Type (Unified Soil Classification) in Descending Order

Figure 52. Friction Ratio Versus Soil Type (Unified Soil Classification)

TABLE XII

COMPARISON OF DIRECT APPLICATION OF THE BEGEMANN CLASSIFICATION SCHEME AND LOGGED BORING DESCRIPTION FOR CPT NO. 13/BORING NO. 2, WAGONER SITE

Depth (ft)	Boring Log	Cone Resistance (q _c , kg/cm)	Local Friction (f _s , kg/cm ²)	Soil Classification
0.33	<u></u>	16	0.000	
0.66		18	0.067	(plots above chart)
0.98		16	0.267	Sand + $10\% < 16$ µ
1.31		12	1.067	(plots below chart)
1.64	Fat Clay	11	1.267	(¹ " ")
1.97	to 18.5	10	0.933	(^H ^H ^H ⁾
2.30	··· - •·	11	0.933	(` " " ")
2.62		14	0.733	Clay (95% < 16 µ)
2.95		14	0.600	Clay $(75\% < 16\mu)$
3.28		13	0.533	Clay (70% < 16 µ)
3.61		13	0.467	Clay (55% < 16 µ)
3.94		10	0.533	Clay $(95\% < 16\mu)$
4.27		11	0.600	Clav (97% < 16 u)
4.59		11	0.467	Clay (80% < 16 µ)
4.92		14	0.267	Sand + $15\% < 16$ μ
5.25		14	0.400	Loam + 50% < 16 u
5.58		15	0.200	Fine Sand + 0% < 16 μ
5.91		15	0.400	Sand + $40\% < 16$ u
6.23		14	0.400	Loam 50% < 16 µ
6.56		15	0.467	Loam $50\% < 16$ µ
6.80		14	0.533	Clay (68% < 16 µ)
7.22		16	0.533	Loam + 54% < 16 μ
7.55		16	0.600	Clay (65% < 16 µ)
7.87		16	0.600	Clay (65% < 16 µ)
8.20		18	0.467	Sand + $35\% < 16 \mu$
8.53		17	0.400	Sand + 35% < 16 u

Depth (ft)	Boring Log	Cone Resistance	Local Friction	Soil Classification
(1 C)	Boi Thy Log		('s, kg/cm)	
8.86		18	0.600	Clay (55% < 16 μ
9.19		19	0.467	Sand + $20\% < 16 \mu$
9.51		18	0.600	Clay (55% < 16 µ)
9.84		18	0.600	Clay $(55\% < 16\mu)$
10.17		18	0.667	Sand + $24\% < 16$ m
10.50		19	0.733	Sand + 27% < 16 µ
10.83		19	0.733	Sand + 27% < 16 µ
11.15		20	0.667	Sand + 15% < 16 μ
11.48		21	0.600	Sand + 7% < 16 µ
11.81		20	0.667	Sand + 15% < 16 µ
12.14		22	0.667	Sand + $40\% < 16$ μ
12.47		23	0.600	Sand + 30% < 16 µ
12.80		22	0.667	Sand + $40\% < 16$ µ
13.12		23	0.667	Sand + 30% < 16 H
13.45		22	0.533	Sand + 22% < 16 µ
13.78		20	0.600	Sand + 45% < 16 u
14.11		19	0.667	Clay (70% < 16 µ
14.44		20	0.533	Sand + 37% < 16 µ
14.76		19	0.600	Loam + 52% < 16 μ
15.09		20	0.533	Sand + 37% < 16 µ
15.42		19	0.667	Clay (70% < 16 µ)
15.75		21	0.467	Sand + 17% < 16 µ
16.08		20	0.600	Sand + 45% < 16 u
16.40		20	0.667	Sand + 15% < 16 µ
16.73		21	0.600	Sand + 7% < 16 μ
17.06		22	0.533	Sand + 22% < 16 µ
17.39		21	0.667	Sand + 45% < 16 μ
17.72		22	1.000	Clay (75% < 16 u)
18.04		28	0.867	Sand + 47% < 16 u)

TABLE XII (Continued)

Depth		Cone Resistance	Local Frictjon	· · · · · · · · · · · · · · · · · · ·
(ft)	Boring Log	(q _c , kg/cm)	(f _s , kg/cm ²)	Soil Classification
18.37		28	0.933	Loam + $50\% < 16 \mu$
18.70	Lean Clay	28	0.933	Loam + $50\% < 16$ u
19.03	5	23	0.533	Sand + $17\% < 16$ µ
19.36		15	0.667	Sand + 35% < 16 µ
19.68		22	0.600	Sand + $35\% < 16$ 11
20.01		24	0.333	Fine Sand + 0% < 16 μ
20.34		19	0.400	Sand + $20\% < 16$ u
20.67		17	0.400	Sand + 35% < 16 µ
21.00		13	0.600	Clay (85% < 16 µ
21.33		15	0.267	Fine Sand + 0% < 16 μ
21.65		17	0.333	Sand + 14% < 16 µ
21.98		20	0.333	Sand + 4% < 16 μ
22.31		19	0.333	Sand + 10% < 16 n
22.64		17	0.467	Sand + 42% < 16 µ
22.97		16	0.333	Sand + 25% < 16 μ
23.29	Lean Clay	11	0.533	Clay (95% < 16 11)
23.62	w/Sand	11	0.867	(plots below chart)
23.95	Lean Clay	22	0.267	(plots above chart)
24.28	L .	10	1.200	(plots below chart)
24.61	Lean Clay	9	0.400	Clay $(95\% < 16 \mu)$
24.93	w/Sand	18	0.133	(plots above chart)
25.26		11	0.800	(plots below chart)
25.59	Sandy Lean Clay	31	0.467	Fine Sand 0% < 16 μ
25.92	Lean Clay	28	0.000	
26.25	·	17	0.733	Clay (80% < 16 µ)
26.57		25	0.667	Sand + 32% < 16 µ
26.90	Silty Sand	20	3.200	(plots below charts)
27.23	Sandy Silty	21	2.933	(plots below charts)
27.56	Clay	30	1.467	Clay $(85\% < 16 \mu)$

TABLE XII (Continued)

Depth (ft)	Boring Log	Cone Resistance (q _c , kg/cm)	Local Friction (f _s , kg/cm ²)	Soil Classification
27.89		32	2,667	(plots below charts)
28.22	Silty Clay-	58	2.267	Clay (80% < 16 µ)
28.54	ey Sand	57	0.200	(plots above charts)
28.87	Silty Sand	32	1.667	Clay (90% < 16 u)
29.20	Sandy Silty	60	1.667	Sand + 37% < 16 y
29.53	Clay	104	4.400	$Clay + 70\% < 16 \mu$
29.86	Silty Sand	180	4.667	Sand + $30\% < 16$ μ
30.18	Silty Sand	230	0.000	
30.51	w/Gravel	125	3.000	Sand + 20% < 16 11
30.84		144	1.067	(plots above charts)
31.17	Silty Sand	104	3.733	Loam + 53% < 16 µ
31.50	w/Gravel	82	1.867	Sand + 21% < 16 u
31.82		160	4.667	Sand + 40% < 16 µ
32.15		190	2.000	(plots above charts)
32.48	Poorly Grad-	200	2.667	Coarse Sand w/Gravel + 0% < 16 μ
32.81	ed Sand w/	220	4.000	Sand + 4% < 16 µ
33.14	Gravel	240	4.000	Sand + 2% < 16 u
33.46	Silty Sand	200	2.000	(plots above charts)
33.79	w/Gravel	150	3.333	Sand + 15% < 16 μ
34.12	Clayey Sand	170	2.667	Sand + 1% < 16 µ
34.45	w/Gravel	150	3.333	Sand + 15% < 16 µ
34.78		70	5.333	(plots below charts)
35.10		180	6.000	Sand + $48\% < 16 \mu$
35.43		104	3.067	Sand + 40% < 16 и
35.76	Shale	300	10.667	(LF > 6.0)
36.09		380	8.000	(LF > 6.0)

. TABLE XII (Continued)

TABLE XIII

COMPARISON OF DIRECT APPLICATION OF THE SEARLE CLASSIFICATION SCHEME AND LOGGED BORING DESCRIPTION FOR CPT NO. 13/BORING NO. 2, WAGONER SITE

Depth (ft)	Boring Log	Cone Resistance (q _c , MPa)	Local Friction (f _s , kg/cm ²)	Soil Classification
0.33	Fat Clay to	1.6	0,00	
0.66	18.5	1.8	0.37	Very Sensitive Soils
0.98		1.6	1.67	Loose F.M.C. Sand
131		1.2	8.89	Firm Heavy Clay
1.64		1.1	11.52	แ เริง คั
1.97		1.0	9.33	AN 11 11
2.30		1.1	8.48	18 68 99
2.62		1.4	5.24	Firm Clayey Silt
2.95		1.4	4.29	Med. Dense Clayey Sandy Silt
3.28		1.3	4.10	и и й и и
3.61		1.3	3.59	56 81 11 11
3.94	,	1.0	5.33	Soft Clayey Silt
4.27		1.1	5.45	Firm Clavey Silt
4.59		1.1	4.24	Loose Clavey Sandy Silt
4,92		1.4	1.90	Loose Silty Sand
5.25		1.4	2.86	Loose Clayey Silty Sand
5.58		1.5	1.33	Loose F.M.C. Sand
5,91		1.5	2.67	Loose Clayey Silty Sand
6.23	2	1.4	2.86	n n n n
6.56		1.5	3.11	18 26 18 18
6.89		1.4	3.81	Med. Dense Clavev Sandy Silt
7.22		1.6	3.33	
7.55		1.6	3.75	11 II II II II
7.87		1.6	3.75	п н н н
8.20		1.8	2,59	Loose Clavey Silty Sand
8.53		1.7	2.35	

Depth (ft)	Boring Log	Cone Resistance (q _c , MPa)	Local Friction (f _s , kg/cm ²)		Soil	Classif	icatio	n
8.86		1.8	3.33	Med.	Dense	Clayey	Sandy	Silt
9.19		1.9	2.46	Loos	e Clay	ey Silty	y Sand	
9.51		1.8	3.33	Med.	Dense	Clayey	Sandy	Silt
9.84		1.8	3.33	н	11	ⁿ	н	11
10.17		1.8	3.70	IT	11	н	H	11
10.50		1.9	3.86	11	11	11	11	11
10.83		1.9	3.86	11	Ħ	11	11	н
11.15		2.0	3.33	н	EI -	11	11	н
11.48		2.1	2.86	Med.	Dense	Clayey	Silty	Sand
11.81		2.0	3.33	Med.	Dense	Clayey	Sandy	Silt
12.14		2.2	3.03	Med.	Dense	Clayey	Silty	Sand
12.47		2.3	2.61	11	11	ับ	ม	11
12.80		2.2	3.03	11	u	11	11	11
13.12		2.3	2.90	11	11	11	11	п
12.45		2.2	2.42	11	u	11	11	11
13.78		2.0	3.00	14	18	11	11	11
14.11		1.9	3.51	Med.	Dense	Clayey	Sandy	Silt
14.44		2.0	2.67	Med.	Dense	Clayey	Silty	Sand
14.76		1.9	3.16	16	11	ĩ	ทั	11
15.09		2.0	2.67	\$2	11	н	н	н
15.42		1.9	3.51	H	н	11	88	11
15.75		2.1	2.22	Med.	Dense	Silty	Sand	
16.08		2.0	3.00	Med.	Dense	Clavev	Silty	Sand
16.40		2.0	3.33	Med.	Dense	Clavey	Sandy	Silt
16.73	Fat Clav	2.1	2.86	Med.	Dense	Clavev	Silty	Sand
17.06		2.2	2.42	n	11	11	11	11
17.39		2.1	3.17	11	11	11	н	11
17.72		2.2	4,55	Firm	Clave	v Silt		
18.04		2.8	3.10	Med.	Dense	Clayey	Silty	Sand

TABLE XIII (Continued)

Depth (ft)	Boring Log	Cone Resistance (q _c , MPa)	Local Friction (f _s , kg/cm ²)	Soil Classification
18.37		2.8	3.33	Med. Dense Clayey Sandy Silt
18.70	Lean Clay	2.8	3.33	11 18 18 18 18
19.03		2.3	2.32	Med. Dense Clayey Silty Sand
19.36		1.5	4.44	Firm Clayey Silt
19.68		2.2	2.73	Med. Dense Clayey Silty Sand
20.01		2.4	1.39	Loose F.M.C. Sand
20.34		1.9	2.11	Loose Silty Sand
20.67		1.7	2.35	Loose Clayey Silty Sand
21.00		1.3	4.62	Firm Clayey Silt
21.33		1.5	1.78	Loose Silty Sand
21.65		1.7	1.96	89 BI 11
21.98		2.0	1.67	Loose F.M.C. Sand
22.31		1.9	1.75	Loose Silty Sand
22.64		1.7	2.75	Loose Clayey Silty Sand
22.97		1.6	2.08	Loose Silty Sand
23.29	Lean Clay	1.1	4.85	Soft Clayey Silt
23.62	w/Sand	1.1	7.88	Firm Silty Clay
23,95	Lean Clay	2.2	1.21	Loose Gravelly Sand
24.28		1.0	12.00	Firm Heavy Clay6
24.61	Lean Clay	0.9	4.44	Soft Clayey Silt
24.93	w/Sand	1.8	0.74	Very Loose Sandy Gravel
25.26		1.1	7.27	Firm Silty Clay
25.59	Sandy Lean	3.1	1.51	Loose F.M.C. Sand
25.92	Clay	2.8	0.00	13 88 68
26.25	Lean Clay	1.7	4.31	Firm Clayey Silt
26.57	-	2.5	2.67	Med.Dense Clayey Silty Sand
26.90	Silty Sand	2.0	16.00	Very Stiff Peaty Clay
27.23	Sandy Silty	2.1	13.97	11 11 11 18
27.56	Clay	3.0	4.89	Stiff Clayey Silt

TABLE XIII (Continued)

Depth (ft)	Roring Log	Cone Resistance (q _c , MPa)	Local Friction (f _s , kg/cm ²)	Soil Classification
2789		3.2	8.33	Very Stiff Silty Clay
28.22	Silty Clayey	5.8	3.91	Med. Dense Clayey Sandy Silt
28.54	Sand	5.7	0.35	Loose Gravel
28.87	Silty Sand	3.2	5.21	Stiff Clayey Silt
29.20	Sandy Silty	6.0	2.78	Med. Dense Clayey Silty Sand
29.53	Clay	10.4	4.23	Dense Clayey Sandy Silt
29.86	Silty Sand	18.0	2.59	Dense Clayey Silty Sand
30.18	Silty Sand	23.0	0.00	
30.51	w/Gravel	12.5	2.40	Dense Clayey Silty Sand
30.84		14.4	0.74	Med. Dense Sandy Gravel
31.17	Silty Sand	10.4	3.59	Dense Clayey Sandy Silt
31,50	w/Gravel	8.2	2.28	Med. Dense Silty Sand
31.82		16.0	2.92	Dense Clayey Silty Sand
32.15		19.0	1.05	Med. Dense Gravelly Sand
32.48	Poorly Grad-	20.0	1.33	Dense F.M.C. Sand
32.81	ed Sand w/	22.0	1.82	Dense Silty Sand
33.14	Gravel	24.0	1.67	Dense F.M.C. Sand
33.46	Silty Sand	20.0	1.00	Med. Dense Gravelly Sand
33.79	w/Gravel	15.0	2.22	Dense Silty Sand
34.12	Clavey Sand	17.0	1.57	Dense F.M.C. Sand
34.45	w/Gravel	15.0	2.22	Dense Silty Sand
34.78		7.0	7.62	Hard Silty Clay
35.10		18.0	3.33	Dense Clavey Sandy Silt
35.43		10.4	2,95	Dense Clavey Silty Sand
35.76	Shale	30.0	3,56	Very Dense Clavey Sandy Silt
36.09		38.0	2.11	Very Dense Silty Sand

TABLE XIII (Continued)

Figure 53. Log of Cone Resistance Versus Log of Friction Ratio for CH Soils

A comparison of the histograms of cone resistance, local friction, and friction ratios for all lean and fat clay data indicates the mean and standard deviation (see Figures 55 through 60). All clay data appear to follow a normal distribution based on plotting percent cumulative frequency from the histogram data of Figures 55 through 60 on normal probability paper. Figures 61 and 62 present a percent cumulative frequency versus friction ratio diagrams for all fat clay data, as an example. All other histogram data showed similar results. The friction ratios for lean and fat clay, from all sites were found to be the following:

Clay	Mean	Standard	Deviation
Lean	x = 3.5	σ =	±6.1
Fat	x = 4.6	σ =	±2.4

A similar comparison was made by the use of histograms of cone resistance, local friction, and friction ratios for all lean and fat clay at the Wagoner site (see Figures 63 through 68). The data again appear to follow a normal distribution based on plotting percent cumulative frequency from the histogram data of Figures 63 through 68 on normal probability paper. The friction ratios for all lean and fat clay at this specific site were found to be the following:

<u>Clay</u>	Mean	Standard Deviation
Lean	x = 2.9	$\sigma = 2.0$
Fat	x = 4.5	$\sigma = 1.9$

The friction ratios reported here for these fissured lean and fat clays are somewhat lower than reported by Sanglerat (reference Table II) and considerably lower than indicated by Searle's chart (reference Figure 15). Results found in this study tend to agree with the fric-

Figure 55. Histogram for Cone Resistance of Lean Clay From All Sites

Figure 57. Histogram for Friction Ratio of Lean Clay From All Sites.

Figure 59. Histogram for Local Friction of Fat Clay From All Sites

Figure 62. Cumulative Frequency Diagram for Friction Ratio of Fat Clay From All Sites Plotted on Normal Probability Paper

Figure 63. Histogram for Cone Resistance of Lean Clay From Wagoner Site

Figure 66. Histogram for Cone Resistance of Fat Clay From Wagoner Site

Figure 67. Histogram of Local Friction for Fat Clay From Wagoner Site

Figure 68. Histogram for Friction Ratio of Fat Clay From Wagoner Site

tion ratios reported by Cancelli (34) for overconsolidated alluvial clays.

Begemann's research (9) indicated that the slope of an arithmetic plot of cone resistance versus local friction remains approximately constant with soil type. The results in the form of a regression line and equation from a method of least squares analysis of lean and fat clay from all sites and the Wagoner site are given in Figures 69 through 72. It can be observed that the slopes from these regression lines do not correspond to the slope of clay soils indicated in the Begemann's soil classification scheme. This would help explain the poor correlation indicated in Table XII.

CPT Correlation With Atterberg Limits and Clay Consistency

An attempt was made to correlate the cone resistance with the Atterberg limits (LL and PL) and clay consistency as referenced by the liquidity index (L_I). There has been some research indicating linear relationships between cone resistance and relative consistency which is the reciprocal of the liquidity index (45). Liquidity index has replaced the older term, relative consistency, as a measure of clay consistency. However, only a vague trend was noted; see typical relationship in Figure 73 for the cone resistance versus liquidity index for Wagoner lean and fat clays. No correlations were believed possible without a more sophisticated statistical analysis. An indication of some possible general relationship between the cone parameters and clay consistency is shown in Figure 74. This figure relates cone

Figure 69. Relationship Between Cone Resistance (q_C) and Local Friction (f_S) for Lean Clay Data From All Sites

Figure 70. Relationship Between Cone Resistance (q_c) and Local Friction (f_s) for Fat Clay Data From All Sites

Figure 73. Cone Resistance Versus Liquidity Index for Wagoner Lean and Fat Clays

Figure 74. Cone Resistance Versus Clay Consistency Based on SPT Correlation From Table 3
resistance local friction and friction ratio to clay consistency as defined through correlation with the SPT (see Table III).

Cone Resistance Comparison Between

Different Cone Tips

A correlation was made between cone resistance measured by the Dutch mantle cone and friction sleeve mechanical cone, and between the friction sleeve mechanical cone and the electric cone for lean and fat clays. Results are given in the form of q_c ratios in which the value of q_c (electric) is taken as unity (see Tables VII and VIII). The ratios indicate that the cone resistances are nearly the same for the Dutch mantle and friction sleeve mechanical cone:

$$\frac{q_c}{q_c}$$
 mantle
 $\frac{q_c}{q_c}$ friction sleeve = 1.11, Average for CH soils

and

$$\frac{q_c}{q_c}$$
 mantle
 $\frac{1}{q_c}$ friction sleeve = 1.21, Average for CL soils

The significance of the Dutch mantle and friction sleeve comparison is that the effect of clay filling the space between the point of the penetrometer and the friction sleeve is of minor importance for the clays in this study which is in agreement with previously reported literature. Results from the ratio of the friction sleeve mechanical cone to the electric cone are as follows:

$$\frac{q_c}{q_c}$$
 friction sleeve
 $\frac{1.5959}{q_c}$ Average for CH soils

and

$$\frac{q_c}{q_c}$$
 friction sleeve = 1.3648, Average for CL soils

These ratios indicate that friction sleeve cone resistance is larger than the electric cone resistance by a range of 36 to 60 percent. These cone ratios are attributed to the additional friction and bearing between the point of the penetrometer and the friction sleeve as compared with the cylindrical, straight shaft electric cone (see Appendix B).

SPT-CPT Correlation

Relationships between the cone resistance and SPT "N" resistance are presented in the form of histograms of q_c/N ratios which also indicate the mean and standard deviation. These comparisons are shown in Figures 75 through 78. Results indicate that the q_c/N ratio data follow a normal distribution based on plotting percent cumulative frequency from the histogram data of Figures 75 through 78 on normal paper. Figures 79 and 80 present percent cumulative frequency versus q_c/N diagrams for lean clay at Wagoner site. The q_c/N ratios for the clays studied were found to be the following:

Туре	Mean	Standard Deviation	
All lean and fat clay	$\bar{x} = 6.3$	$\sigma = 6.5$	
All Wagoner clay	$\bar{x} = 5.8$	$\sigma = 5.4$	
All lean clay, Wagoner	$\bar{x} = 6.9$	$\sigma = 5.2$	
All fat clay, Wagoner	$\bar{x} = 3.5$	$\sigma = 1.7$	

These data indicate ranges of q_c/N that were somewhat higher than is generally reported in the literature; however, peak q_c/N ratios from histograms were similar to those reported.

Figure 76. Histogram for q_C/N of Lean and Fat Clay From Wagoner

Figure 78. Histogram for q_C/N of Wagoner Fat Clay

CUMULATIVE FREQUENCY	20 - 10 -	
		q _c /N, Tsf

.

Correlations between cone resistance (q_c) and SPT-N-value were further investigated by linear comparisons for lean and fat clays at the Wagoner site. Figures 81, 82, and 83 indicate the results in the form of a regression line and equation from a method of least squares analysis of lean and fat clay from the Wagoner site.

Correlation of CPT and Undrained Shear Strength

A study of the relationship of undrained shear strength (s_u) and cone resistance (q_c) has traditionally involved the determination of the N_k factor from Equations (6) and/or (7). The development of the N_k factor depends upon a reference method for estimating in situ shear strength. The methods of estimating in situ shear strength used in this research include the following methods:

- UU triaxial compression tests using 1.4 and 2.8 diameter specimens.
- 2. In situ PMT based on (a) limiting pressure derived from the pressuremeter test data and appropriate PMT correlation factor, N_p ; and (b) the Gibson and Anderson method (44) by plotting p $\log_e \Delta V/V$ PMT data and estimating s_u from the slope of the tangent portion of the p $\log_e \Delta V/V$ curve.
- 3. Backcalculation of s_u from two embankment foundation soil slope failure case histories investigated by the author (46).

The UU triaxial test results from Table X show the influence of the secondary structure and disturbance on these clays in the difference in s_u . The s_u determined by 2.8-inch diameter UU triaxial test specimen was on average lower than that determined by 1.4-inch diameter UU triaxial test specimens. The resulting average N_k from Equa-

Figure 82. Relationship Between Cone Resistance (q_c) and SPT N Value for Wagoner Lean Clay

tions (6) and (7) for the larger 2.8-inch diameter test specimens is closer to the values reported in the literature for fissured clays than the average N_k for 1.4-inch test specimens. Also indicated in Table X is that Equations (6) and (7) show essentially the same N_k values.

The s_u estimated from pressuremeter tests with depth indicate similar N_k values to those obtained from 2.8-inch diameter UU triaxial test specimens (see Table VI). However, Marsland and Randolph (47) point out that s_u determined by the Gibson and Anderson method overestimates s_u for stiff fissured clays. They recommend using the limiting pressure approach and an appropriate PMT N_p correlation factor in the s_u equation (see Table VI). The value of N_p correlated with large plate bearing tests and applicable to fissured clays is 6.2. Substituting s_u (PMT) based on limiting pressure into Equation (7) gives values of N_k that are compatible with those reported in the literature (see Table VI). A plot of undrained shear strength (s_u) and cone resistance (q_c) shows the variation in N_k with regard to the reference s_u used (see Figures 84 and 85). It appears that the wide scatter is influenced by inappropriate reference s_u .

Backcalculated undrained shear strength from two failed slopes was used to estimate the s_u based on a ϕ = o approach for arriving at an average mobilized shear strength along the slippage plane. Extensive details were applied to define a failure surface for embankment /foundation slope failures at the Wagoner and Roland sites. Backcalculated shear strength from these slides was used to estimate the N_k from Equations (6) and (7). Results indicate an N_k = 34 for the Wagoner slide and NB_k = 42 for the Roland slide.

Figure 84. Relationship Between Undrained Shear Strength and Cone Resistance

Figure 85. Relationship Between Undrained Shear Strength and Cone Resistance, All Data

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this investigation were to determine possible relationships between the cone penetration test results and typical engineering parameters for alluvial soils. Basic considerations were correlations between CPT data and soil classification, relationships with CPT data and Atterberg limits and clay consistency, a comparison of CPT tip geometry with regard to cone resistance, development of a q_C/N ratio for lean and fat clays, and development of relationships between undrained shear strength and cone resistance.

Conclusions

The results of the testing program and analysis of data obtained indicate the following conclusions:

1. Sufficient data were analyzed to characterize the alluvial soils as, typically, highly plastic desiccated firm to stiff clay that tends to become soft and nonstructed with depth. The stress history as indicated by the OCR from Table IX is typical of the alluvial clays with depth. All clays were found to have a secondary structure consisting of cracks, joints, fissures, and slickensides. The depth of the secondary structure influence decreases, slowing with depth.

- The direct application of the Begemann and Schmertmann CPT 2. soil classification schemes gives generally inconsistent log descriptions when compared to detailed boring logs. However, they can gualitatively separate fine and coarse grained soils. The Searle classification appears to be most suitable for the study area soils. An examination of Figures 53 and 54 shows a tendency to fall to the left side with respect of the vertical limits traced on the chart for clay soils. This means that the measured values of the local friction are relatively low in comparison with cone resistance. Also, the fact that these clays are overconsolidated, which results in less possible deformation, can increase cone resistance without any appreciable increase of the local friction. The friction ratios for lean and fat clays tend to match those reported in the literature. The dispersion of the data within one standard deviation is fairly well defined. The data for lean and fat clays appear to follow a normal distribution. For a 95 percent confidence level, the friction ratios have a narrow range. This suggests that the friction ratios for lean and fat clays overlap. This is evident also by Figures 53 and 54.
- 3. A correlation between CPT cone resistance and Atterberg limits and clay consistency was not possible with this sample population. The dispersion of the data was considered the reason for a lack of correlation; however, there were some vague trends suggested in some of the CPT-SPT boring and sampling combinations.

- 4. A comparison of cone resistance measured by different cone types supports expected trends. The Dutch mantle and friction sleeve cones gave essentially the same cone resistance. Internal friction of the inner rods nor that associated with friction sleeve did not appear to be significant. The friction sleeve and electric cone comparison followed the trend reported in the literature but by a higher percentage.
- The relationship between CPT and SPT, based on the mean and 5. standard deviations in this study, indicate higher q_c/N ratios for lean and fat clays than reported in the litera-However, peak values of q_c/N are nearly identical. ture. Some moderately good linear correlations were found between cone resistance and N resistance (reference Figures 81, 82, and 83). Comparison between local friction and SPT N resistance showed no significant correlation. These findings appear to contradict Begemann's conclusion (29) in that he showed the correlation to be much better between local friction and SPT N resistance. One might conclude that CPT cone resistance is more proportional during driving to the end resistance of the SPT sampler. Note that the horizontally projected area of the SPT sampler equals 10.7 cm^2 --nearly the same as the 10.0 cm^2 of the CPT cone. The linear correlation between cone resistance and SPT N resistance would appear attributable to the preconsolidation state of the soils which results in less possible deformation as noted in item 2.

- 6. A relationship between CPT cone resistance and undrained shear strength, N_k factor, was found to be influenced by the following:
 - a. Sample size, based on the 1.4- and 2.8-inch diameter comparisons, affects the estimate of N_k. The 1.4-inch size sample size does take into account secondary clay structure.
 - b. The scale effect of these clays' secondary structure relative to the size of the cone resistance was estimated to range between scales (a), (b), and (c) of Figure 17. The (a) scale could be observed in the upper four feet of the soil profile (B-horizon). The (b) scale was predominately found in the majority of the soil profile. Below approximately 18 to 20 feet the scale was found to transition from (b) to (c) scale. These observations were based on intensive logging detail.
 - c. Estimated N_k values based on Equations (6) and (7) were essentially the same, based on results shown in Tables VI and X.
 - d. The N_k factor for the Wagoner site based on 2.8-inch diameter triaxial test specimens averaged 39. The N_k factor based on PMT averaged 34. By using backcalculated undrained shear strength data from a slope failure at the Wagoner site, the N_k factor was estimated at 34. These N_k values are slightly higher than what has been reported in the literature (12). However, based on three separate approaches, the N_k values fall into a narrow range.

e. The clay stiffness and structure within the top 4.0 to 5.0 feet apparently influenced these average N_k values. However, neglecting the top three N_k values (Equation 2) did not significantly lower the N_k average.

Recommendations

- The data base should be expanded to refine the correlations for more northeastern quarter alluvial clays that have the physical property and engineering characteristics of the study area soils.
- There appears to be a significant impact of preconsolidation on the cone parameters. In any future studies, correlation of OCR with cone parameter should be investigated.
- With a larger data base more sophisticated statistical procedures may in future studies indicate relationships between cone parameters and Atterberg limits and clay consistency.
- 4. The correlation between N_k and undrained shear strength should be further studied to delineate ranges for fissured clays.

REFERENCES

- (1) Schmertmann, J. H. "Measurement of In Situ Shear Strength." <u>Proc., Conf. on In Situ Measurement of Soil Properties.</u> Raleigh, NC, June 1975, pp. 57-138.
- (2) <u>Standard Method for Penetration Test and Split-Barrel Sampling</u> <u>of Soils</u>. ASTM D 1586-84. Vol. 04.08. Philadelphia: <u>American Society for Testing and Materials</u>, 1988.
- (3) <u>Standard Test Method for Deep, Quasi-Static, Cone and Friction-Cone Penetration Test of Soil.</u> ASTM D 3441-86. Vol. 04.08. Philadelphia: American Society for Testing and Materials, 1988.
- (4) Sanglerat, G. <u>The Penetrometer and Soil Exploration</u>. Amsterdam: Elsevier Publishing Co., 1972.
- (5) Barentsen, P. "Short Description of a Field Testing Method With a Cone Shaped Sounding Apparatus." <u>Proc., 1st Int. Conf.</u> <u>on Soil Mechanics and Foundation Engineering</u>. Vol. 2. Harvard University, Boston, MA, 1936, pp. 7-10.
- (6) Vermeiden, J. "Improved Soundings Apparatus, As Developed in Holland Since 1936." <u>Proc., 2nd Int. Conf. on Soil</u> <u>Mechanics and Foundation Engineering</u>. Vol. 1. Amsterdam, 1948, pp. 280-287.
- (7) Plantema, I. G. "Construction and Method of Working of a New Deep-Sounding Apparatus." <u>Proc., 2nd. Int. Conf. on Soil</u> <u>Mechanics and Foundation Engineering</u>. Vol. 1. Amsterdam, 1948, pp. 277-279.
- (8) Begemann, H. K. "Improved Method for Determining Resistance to Adhesion by Sounding Through a Loose Sleeve Placed Behind the Cone." <u>Proc., 3rd Int. Conf. on Soil Mechanics and</u> Foundation Engineering. Vol. 1. Zurich, 1953, pp. 213-217.
- (9) Begemann, H. K. "The Friction Jacket Cone as an Aid in Determining the Soil Profile." <u>Proc., 6th Int. Conf. on Soil</u> <u>Mechanics and Foundation Engineering</u>. Vol. 1. Montreal, 1965, pp. 17-20.
- (10) Hogentogler & Co., Inc., P.O. Box 370, Gaithersburg, MD.

- (12) Meigh, A. C. <u>Cone Penetration Testing, Methods and Interpre-</u> tation. London: Butterworths, 1987.
- (13) Robertson, P. K. "In Situ Testing and Its Application to Foundation Engineering." <u>Soil Mechanics</u>. Series No. 91. University of British Columbia, Vancouver, B.C., 1985.
- (14) Shields, D. H. "Should ASTM Adopt the European Standard?" <u>Symposium on Cone Penetrometer Testing and Experience.</u> Geotechnical Division, ASCE. St. Louis, MO, 1981, pp. 383-393.
- (15) de Ruiter, J. "Electric Penetrometer for Site Investigations." Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM2 (February 1971), pp. 457-472.
- (16) Van den Berg, A. P. "Latest Developments in Cone Penetrometers and Other Soil Testing Equipment." <u>Proc., 2nd European</u> <u>Symposium on Penetration Testing</u>. Vol. 2. Amsterdam, 1982, pp. 447-455.
- (17) Drnevich, V. P. "Use of Conventional Boring Rigs for Cone Penetration Testing." <u>Proc., 1st European Symposium on Pene-</u> tration Testing. Vol. 2.1. Stockholm, 1974, pp. 125-128.
- (18) Depret, M. U. A. "Influence of the Measuring Step in Discontinuous Mechanical Penetration Tests." <u>Proc., 2nd. European</u> <u>Symposium on Penetration Testing</u>. Vol. 2. Amsterdam, 1982, pp. 551-555.
- (19) Rol, A. H. "Comparative Study on Cone Resistance Measured With Types of CPT Tips." <u>Proc., 2nd European Symposium on Pene-</u> <u>tration Testing</u>. Vol. 2. Amsterdam, 1982, pp. 813-819.
- (20) Searle, I. W. "The Interpretation of Begemann Friction Jacket Cone Results to Give Soil Types and Design Parameters." <u>Proc., 7th European Conf. on Soil Mechanics and Foundation</u> <u>Engineering. Vol. 2. Brighton, England, 1979, pp. 265-</u> 270.
- (21) Ramage, J., and S. S. Williams, Jr. <u>Sensing Systems for Measur-ing Mechanical Properties in Ground Masses: Vol. 4, Static Penetrometer</u>. Report No. FHWA/RD-81/112. Washington, D.C.: Office of Research, Federal Highway Administration, October 1982.

- (22) Schmertmann, J. H. <u>Dutch Friction-Cone Penetration Exploration</u> of Research Area at Field 5. Contract Report No. S-69-4. Eglin Air Force Base, Florida; and U.S.A.E. Waterways Experiment Station, Vicksburg, MS, 1969.
- (23) de Ruiter, J. "The Static Cone Penetration Test, State of the Art." <u>Proc., 2nd. European Symposium on Penetration Test-</u> ing. Vol. 2. Amsterdam, 1982, pp. 389-405.
- (24) Parez, L. A. "Static Penetrometer: The Importance of the Skin Friction Associated With the Point Resistance." Proc., 1st European Symposium on Penetration Testing. Vol. 2.2. Stockholm, 1974, pp. 293-299.
- (25) Durgunoglu, H. T., and J. K. Mitchell. "Static Penetration Resistance of Soils." <u>Proc., Conf. on In Situ Measurement</u> of Soil Properties. Vol 1. Raleigh, N.C., June 1975, pp. 151-188.
- (26) Smits, J. V. "Cone Penetration Tests in Dry Sand." <u>Proc. 2nd.</u> <u>European Symposium on Penetration Testing</u>. Vol. 2. Amsterdam, 1982, pp. 877-881.
- (27) Krajicek, P. V. E., and J. Kruizinga. "CPT's, An Excellent Aid to Determine Soil Parameters and Deviations in the Soil Profile of the Proposed Motorway-River Crossing Near Amsterdam." <u>Proc. 2nd. European Symposium on Penetration</u> Testing. Vol 2. Amsterdam, 1982, pp. 651-654.
- (28) Schmertmann, J. H. "Discussion to DeMell's SOA paper, The Standard Penetration Test." <u>Proc., 4th PanAm Conf. of Soil</u> <u>Mechanics and Foundation Engineering</u>. Vol. III. Puerto Rico, 1971, pp. 90-98.
- (29) Schmertmann, J. H. "CPT to Help Understand SPT." <u>Proc., 1st,</u> <u>European Symposium on Penetration Testing</u>. Vol. 2.1. Stockholm, 1974, p. 146.
- (30) Robertson, P. K., and R. G. Campanella. "Interpretation of Cone Penetration Tests: Part I, Sand." <u>Canadian Geotechnical</u> <u>Journal</u>, Vol. 20, No. 4 (1983), pp. 718-733.
- (31) Robertson, P. K., and R. G. Campenella. "Interpretation of Cone Penetration Tests: Part II, Clay." <u>Canadian Geotechnical</u> <u>Journal</u>, Vol. 20, No. 4 (1983), pp. 734-745.
- (32) Drnevich, V. P., C. T. Gorman, and T. C. Hopkins. "Shear Strength of Cohesive Soils and Friction Sleeve Resistance." <u>Proc., 1st European Symposium on Penetration Testing</u>. Vol. 2.2. Stockholm, 1974, pp. 129-132.

- (33) Cancelli, A., R. Guadagnini, and M. Pellegrini. "Friction-Cone Penetration Testing in Alluvial Clays." Proc., 2nd European Symposium on Penetration Testing. Vol. 2. Amsterdam, 1982, pp. 513-518.
- (34) Cancelli, A. "Penetration Tests on Cohesive Soils in Northern Italy." Proc., Intl. Symposium on Soil and Rock Investigations by In Situ Testing. Vol. 2. Paris, 1983, pp. 241-245.
- (35) Briaud, J., and E. Garland. "Loading Rate Method for Pile Response in Clay." ASCE, Journal of Geotechnical Engineering, Vol. 3, No. 3 (March 1985), pp. 319-335.
- (36) Marsland, A., and R. S. Quaterman. "Factors Affecting the Measurements and Interpretation of Quasi-Static Penetration Tests in Clays." <u>Proc., 2nd. European Symposium on Pene-</u> tration Testing. Vol. 2. Amsterdam, 1982, pp. 697-702.
- (37) Marsland, A. "Discussion, Session 4." Proc., 7th European Conf. on Soil Mechanics and Foundation Engineering. Vol. 4. Brighton, England, 1979, pp. 137-139.
- (38) Dayal, U. "Determination of Shear Strength and Soil Modulus from CPT and Other In Situ Tests." <u>Proc., 2nd. European</u> <u>Symposium on Penetration Testing</u>. Vol. 2. Amsterdam, 1982, pp. 529-534.
- (39) Ramaswamy, S. D., I. U. Daulan, and Z. Hasan. "Pressuremeter Correlations With Standard Penetration and Cone Penetration Tests." <u>Proc., 1st European Symposium on Penetration Test-</u> ing. Vol. 2.1. Amsterdam, 1974, pp. 137-142.
- (40) Tavenas, F., and Leroueil, S. "Clay Behavior and the Selection of Design Parameters." <u>Proc., 7th European Conf. on Soil</u> <u>Mechanics.</u> Vol. 2. Brighton, England, 1979, pp. 281-291.
- (41) Mayne, P. W. "CPT Indexing of In Situ OCR in Clays. "Proc., <u>Conf. on Use of In Situ Testing in Geotechnical Engineer-</u> ing, ASCE. New York, 1986, pp. 780-793.
- (42) Terzaghi, Karl, and Ralph B. Peck. <u>Soil Mechanics in Engineer-</u> ing Practice. New York: John Wiley and Sons, Inc., 1967.
- (43) Haliburton, T. Allan, and Robert M. MacDonald. <u>Shear Strength</u> <u>Testing</u>. Tech. Pub. No. 27. School of Civil Engineering, Oklahoma State University, Stillwater, Oklahoma, 1980.
- (44) Gibson, R. E., and W. F. Anderson. "In-Situ Measurement of Soil Properties With the Pressuremeter." <u>Civil Engineering and</u> <u>Public Works Review</u>, Vol. 56 (1961), pp. 615-618.

- (45) Melzer, K. J. "Use of the WES Cone Penetrometer in Cohesive Soils." Proc., 1st European Symposium on Penetration Testing. Vol. 21. Amsterdam, 1974, pp. 263-268.
- (46) Nevels, J. Foundation Investigation. Report No. 20023. Oklahoma City: Oklahoma Department of Transportation, Materials Division, 1987.
- (47) Marsland, A., and J. Randolph. "In Situ Testing." <u>Geotech-</u> nique, Vol. 27 (1984), pp. 440-458.

.

APPENDIX A

EUROPEAN RECOMMENDED STANDARD, 1977

Report of the Subcommittee of Standardization

. of Penetration Testing in Europe

9th INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND FOUNDATION ENGINEERING, 1977

 APPENDIX
 APPENDIX
 0.1

 FUNCTIONED STANDARD FOR THE CORE PL 1...

 CONTENTS
 2.00%

 TOTORING
 2.00%

 TOTORING

 MEMOLIA
 10.1 Benefactorial constraint of the state and wentimestrain of the state and wentimestrain of the state of

2.6

Ħ

billy were they logar the marked for emany mercent for the restance of the softhe gaue remaining distribution of the softhe gaue remaining distribution of the rest of the gaue restance of the marked rest of the softhe softhe softhe restance in the softhe softhe softhe softhe softhe rest of the softhe rest of the softhe softhe softhe softhe rest of the softhe softh

•

Sensing devices.

6.4 The seals between the different el-search of ponetrear the part of bar regularly inspected to destructure that quui-regularly rouse to assais are obscheme to determine if boil particias are present.

cff test is not performed to close to estating correntation or the protectometer tests. For cff tests with entended per-tests in the best in the estended per-then 2) best ad alareter form underse and then 2) best ad alareter form the per-pervised by performed (ff tests)

The thrust machine is to be erected to co-tain a thrust site the strengt site and vertical as target.eable. The maximum acceptuale devi-ation of the thrust strengton from the ver-tical is 24. The axis of the publicod must controle with the finus direction.

Versicality

2

5.5 Where the signals of the measuring devices buill into the punsity conserver its are transmitted to the surface by an alactric cash: its hould be continuous, and conse-quently prethymead through the punn-roda.

The sensing device should be designed to measure the cone resistance utchout being fillenced by a possible eltentricity of Card resistance.

3.5 Frittion steeve (Fig. 10)

The Signetr of the friction siewe is to be mainterund and the surver retrained in spriston, may so large as it is to large it currance of all the surver retrained a currance of all the surver states the urface serve of the friction siewe much the surver of the friction siewe much the surver of the friction siewe much the surver of the friction siewe much surver with the surver and si over all the surver of the friction surver surver surver and siewe much over all the surver and siewed sith over all the friction size and seven that and sith the surver and size to the friction size and size to the friction size and seven and size to the friction size and seven and seven and projection larger the order parts of the providence set to the seven of the providence the context is the structure and seven the friction size of the providence the context is the other part of the seven the friction the seven and seven the seven the seven of the providence the context is the seven of the seven the context is the seven the seven of the seven the context is the seven the seven of the seven the context is the seven the seven of the seven the context is the seven the seven the seven of the seven the context is the seven the

Push rads. 5 (

The push rods are acrewed or attached cognine to Dair spanis are not other and to form a rigid-jointed series with a continu-ous straight still the deviation from the still should not streed at 11 for the five tover punners of the string and 51 if or tover punners. The manner in with in Fig. "Seviation" is determined is shown in Fig. "

When messuring the total friction with push-rods thair diameter over the total length shall be 36 mm with a tolerance of <u>e</u>l mm.

52 *)These deviations corresponds in case as even curvature to a deflexion of es in length

The standard tasting ornedure is that of continuous prestrating transits the ensurmments are and with all cleants of the prestrements in we the same rest of pon-ertation.

4.5 Mate of penetration. The rate of penetration is the rate of the downward moreant of the stream of the taken penetrometer under considention at the taken the force on that statent is ansaured. The rate of penetration is 2 exter with a totatenet of 20 foretration is 2 exter with a totatenet of 20 foretration is 2 extern i. 8.5 Measurement of the depth. The depths are to be measured with an accu-tray of at lease 10 cm. Their fito account all possible sources of error (paramittes) frictions across of the second age accurs, eccentrially of the land ending accurs, can account the land of the land second second second accurs between a second second second between a second second second between a following states: A continuum reading is recommended. In no case shall the interval between the read-ings to more than 20 cm. 5. PRECISION OF THE NEASUNEMENTS readings. s.* Incervel of

6.6 Electric penetrometer tips should be temperates compared. If the solit beared after attracting the tip is to large that the conditions of acturery as defined that he conditions of acturery as the theory as a series of longer set, the test should be discerted.

55 of the manured value 15 of the maximum value of the range.

The precision must be verified in the lab-ortcory or in the field taking inte account all possible disturbing influences.

PRECAUTIONS, CHECKS AND VERIFICATIONS 4

should bace

included, it in above the

If a friction reducer is be located at least 1:00 of the cone.

5.9 Friction reducer.

TESTING PECCESURE

STANCARD

Continuous testirg.

τ., ,

6.1. Modere the CFT is made, the straight-ment of the ynubracy particulary of the lower fries reads of the straight, sus to be lower fries reads of the straight and the constant a subset of the straight. The straight is straight if a straight-mention is straight if, and subserving restricted is unsular while it is reastring. The would be discreted.

Ę 6.2 Regular Inspections are to be rade wear (of the cone and friction sieeve).

5 it is also necessary to ensek that

1

1.1. When manuscript are being used, they have up has requilibrated at land every i prove and type of momenter have manife to destitiat units, and with the own call-teration, revisable to the the anomator used in the regular intervals the anomator used in the rest and use the character distinct the reserve anomator. Ouides should be previded for the part of the push-roads pretrucing shore the sail and for the push-road length in water in order to prevent buckling. fegular checks on the site with an appropriate field contrel univ are recommended. 6.7 The friction sleeve transducer suit operate in such a way that only their operate, and not normal stresses, are re-corded. 7.2 The calibration of load calls ar proving rings should be verified at least every 3 months. 7. CALIBRATION

3

8. SPECIAL PEATURES

1.1 hun-red puldes

order to obtain more precise infermation Inclinometers. **8**.2 £

on the drift of the push-roots into the soil, inclinitienters may be built into the pen-strometer tip.

The dates and reference numbers of the callebration certificates for the seasure-ing devices.

-

7-3 need of such information desends on the soll conditions and increases with increas-ing depth of the taic.

8.3 Push rods with smuller diameters.

In order to decrease the skin friction on the Toda, use the sease of the pubmords with a mailter diameter than the of the pan-etrater tip. The distance between the mailter diameter pubmords and the cone base bhould as at least 1000 ms.

9. REPORTING OF RESULTS

9.1 The following information shall be reported on the graphs of the measurements:

.

In order to state that the penetromater extension to provide any completely in even graps shall be acred with the steps shall be acred with the fifter this letter will be added on of fifter this letter will be added on of the following letter will be added on of system of measurement:

M = mechanical E = electric M = hydrauilic

The date of the test and the name of the firm.
 The identification number of the CFT test and the location of the alts.
 The desta from which a friction reducer, or passived with a friction data the number number of depint is which the limitred have been extend once the number of a name in the state instruction have been extended into the number of the again seen planed into the solid have again seen planed into the

Any abnormal interruption from the normal procedure of the CFT test. ÷

6. Observations and by the operator such an soil type, sounds from the extension rods, indications of stones, disturbances, etc.

~

Data concerning the existence and thick-mess of full, or sustance and daph of an excavation, and level of the CPT test with respect to the original or arti-ficial soil surface.

9.2 Besides the information indicated in Fact. 9.1, the internal files should also sention: 1. The identification number of the pen-

The identification number of the pen-strometer tip uped.
 The new of the operator in charge of the 2 The new bit: performed the rest.

2

3.3 The folloaing stars are recommended for the presentation of it negating. Depth state: 1 unit length (recturery) for year seliciance dc: the state unit ingth for year seliciance dc: the state unit length for icell gene friction fs. the state unit length forth pentation force q. the state unit length for State. So iong as the above mentioned relationarios Detremin the scalas along the wortscal and Detrofial aats are respected, the scalas tern be conson arbitrarily in such a way that standard stated Bheets can ce used.

Fig. 4 An example of the presentation of test results free a CPT test.

For every investigation which is carried out. a class task plan statios drawn, winh clear estermine points in order that the localized of the penditmenter tests are accurately oldete. 5 L SITA DIAN

Also when wade in oprjunction with borings the time sequences are to be indicated of the geriormance of the borings and CPT tests

9.5 States for increasion and anothone of under para 9.1 it is recommended fit the classifier of the rest is given. In addition, cation of the rest is given. In addition, and the given: the following information studie by given:

3) and after structing the punctuals for conditions of the punc-roda and the penetroster tips.
(c) The apple of the punc-structure structure of the pon-structure structure of the pon-structure of the pen-structure.

(d) Whether or not the testhole has been backfilled, and if so by which method

LO. DIVENGENCES PROM THE STANDAND Mechanimed

10.1 Jeneral.

A general and very important specification is that all interpretes for the free-placing Standard are to be described er-placing the standard are to be described er-is order to subsitify these remeras the name are specia difined in parts. 10.5 can be desc.

1).2 Divergences only related to the dimen-sions and the shape of the cone.

13.2.1 Diameter of the base of the cone.

In order to be able to prestrate desper in strate. In order to be able to prestrate desper to a strate. In order to be able to initiate to the strate of the able to depend to prestrate of the able to depend to the strate of the able to depend to come with light disations and to depend to able to the strate of the able to abl

ld.2.2 Aper angle of the cone.

To decrement he possibility of damage, an apen angle of 90° can be used.

IQ.2.3 Tolerances.

All colerances specified for the Rec-ownenced Standard, are to be adapted in direct proportion to the diameter.

10.2.4 Symbols.

Tetts performed with a diverging come cannot be concerned siters is an oney di-cer fore test siters diversi and and an and tert concerned to the Standard manual tertion of the site indication b i and a giving the values of the diverging charac-tertions of the some.

10.) Divergances only related to the lo-cation or disensions of the friction sleeve

[3.3.4.1 If the fraction sleeve, contrarily to the Accomendate Standard, in our placed immediately move the base of in or place surman distance (h) between that base, and the lower the of the fraction theoremoust of the surm of the fraction should be three than the chamber of the base.

10.3.2 Surface of the gleeve.

When Jaing a cone Maying a buse diameter of 15.7 mm, but with a friction areave of fingth other than the Arcomended Standard then the surface area of the sieve shall from the surface drea of the sieve shall from the surface tran 150 cm², and not smaller

When waing a cons with a base diameter dif-term first the Recommend Eithunder, the surface areas of the sizeer should be adjusted pase of the come.

10.3.3 Symbols.

Tests performed with a diverging friction allows of count on every and the surver 2. If allow edder a new state and the surver for Allowed States at 1. W but followed by the indication: and 1. W but followed by the indication: and of states at 1 witht of the rest of the states at 1

10.4 Discontinuous testing with frees cons penetrometer tips.

10.4.1 With a free cone penetrometer tip, ather continuous of discontinuous testing 1. Possibla. The manner in which the testing performed movids be described in the renner and on the test graphs.

10.4.2 Discontinuous testing.

In these case of distributions desting, in these case of distributions due to the struct matrix a known to pract of pen-relation of the free const the parts of restant of the free const the parts of the penetratic case of the said case of the said of the penetratic due to the thrunt matrixer. They out correlated want said the print-

when testing discontinuously the minimum

16

Doverant to be indicated on the core of on the friction blocks is think the algebrand of the cone liser note + para ...

-11-

" 5 Table of traditional penetroneter tion

1 :10

The pertermenter tube actually in Jas in treest countries and durating from the treestended Standard, are giver balow. They are indicated by a new, and a paped in pro-are and addi to persit approvisions when refering to the and in the test grades.

2.5.1 Mechanical peretrometer tip - note 5 para. 11.

- The Duscn thmile core ponetromator by a final starve panetrom-ter up final starve panetrom-ter 12.5.4 multi-core panetrom-ter 110/12.5.4 multi-core 1111.10/12.5.4 multi-core panetrometer 110 (112.3) for the panetrometer 110 (112
- - 1 30
- 2 34
 - - Electric cone penetroseter tip. 2 5 61
 - 1.13
- The Delft electric penetrometer tip (14. 102.) The Delft friction aleves electric penetrometer tip (14. 11) The Degeo friction aleves electric penetrometer tip (14. 11) 2.13 3
- Hydraulic penetrometer tip. 13 5.5
- The Parts hydraulat penetramiter tup (Fig. 12) hydraulat hiere hydraulat De Parts (Fig.12) aleve hydraulat penetramiter tup (Pig. 126) **
 - 11 6 Precision of the mesurements.

When Lesting diverges from the Accommended Standard two classes of precision are de-fined

the normal precision class are section the lower precision class. The pre-tion outside moduly on the worth the standard of the following asian the allower of the following asian the standard the mainteen with the

In all such cases the class of precision of the tests shall be indicated in the report and on the test graphs.

-111-Permetration can be increased by "Ye as of static dynamic permetrosecers and also by the use of permetrometers squipped with Preboring (solis) T. HAM 3 13.7 Static dynamic constrometers and pre-boring come penetrometers. ł Fig. 5 The Dutce mutile cone penetrometer tip. IL ----

It wust be clearly indicated in the report and by the seri graphs when buch equiprent has been used;

10.8 Precautions, checks and verifications

10.8.1 Mechanical protrometers.

10.8.1.1 Putn-rod:

There should not be "W protruding edity on the inside of the push-rods at "L. Core connection between the rods (Fig. 19);

10.8.1.2 Inner rods

The diameter of the surer rods 1-411 be 0.5 to 1 m less than the sint-small diameter of the publiceds. The lumber rods must side very seally through the numberods The ends of the inner rols anould the exactly as right angles to the will of the rod and be machine folded to a proof s. "Ate

;

----Taken a -

.

Fig. 11. The Degete friction sieve electric pen-ernmeter tip. Symmet. 22.

ä Fig. 13 There shared and he any production con-the screw connections between Die resis. The Fodd must not serve together of be Joined in any way static given them and and distant angree of freedom is not them bonn distant angree of freedom is not the bonn towns is the serve and the friether and the serve is and that the constant is not publi-room, and that the constant is not publi-tions resonants with the bonn and the time resonant is not bonn and of the public for a bonn and the resonant and the resonant is not bonn of the public for a bonn and the resonant and the resonant is not bonn for the public for a bonn and the resonant. The resonant is not the resonant of the resonant.

11. EXPLANATORY NOTES AND COMMENTS

The denominations "continuous" and "discon-clustors penetrettor for serify are not cluster correct, and the denomination "penetration testing with sfatistations building, and non-statistaneous maching of core and built non-statistaneous maching of core and built non-statistaneous maching of core and built non-tistations "continuous" and "discon inseri-nations" "continuous" and "discon inseri-nations" continuous" and "discon inseri-nations" continuous" and "discon inseri-nations" continuous" and "discon inseri-ation" and "discon inseria" an Mote 1: Definitions 2.1 The demominations "continuo tinuous" pemetres:...

£

ratio Mr, being the ratio of the Hots 2: Definitions 2.15 The friction ratio Mf. be

Lisai side friction fs to the core resistance distribution of the core resistance distribution of the core resistance of the core of the part but friction from the core of the part but the resto of the restored of the but the resto friction from one. This is the resto friction from one of the friction one. The resto friction from one of the friction one of the friction of the friction one of the friction one of the friction of the friction of the friction one of the friction one of the friction of the friction one of the friction of the friction one of the f

"det): The friction alseve).5 The raughness 14 defined as the sen devi-ation 27 the real surface of a body fron in anisonaliant. The roughness 13 expressed in misconeter (ue).

Mcte 6: 10.5.1 Mt

of the simple come special p to to be taken against soil of sliding weethatism and affer ance. After attracting the pen nee. After attracting the pen pertain that the come adds, in restain that the come adds. relati In the case of the alophy externation to the alophy erection the aldoing sett ins resistance. After an origination that origination that origination that outh

APPENDIX B

ASTM D 3441-86 SPECIFICATIONS

Standard Test Method for Deep, Quesi-Static, Cone and Friction-Cone Penetration Tests of Soll

الله مستعمل داختها رضود اما (نمز المواسعا () (ند) معاضله متعاملتها، القاصلي قد تسويلها مشتعه عام معار موضع مقتمات با ما تعالم الاستعمال ما معار الان الما معاض ما المعالية والمعالما مؤسف قد يعار با لما المواسع م موضوع مواسع الما الما الما معالمات المواسع معاد الد الما محملة ما معالية والمواسعة

1

1.1 This use method covers the deterministion of end saming and such are developed during search sides pres-report of a parallel red into out. This method is sometimes report of a parallel red into out. This method is sometimes references and the abbreviated as the "OFT" is the restriction of the source core preservourset as the "OFT". The search of the source of the source core preservourset as the "OFT" of the source of the source core preservourset as the "OFT" of the source of the source core preservourset as the "OFT" of the source into the source of the preservourset and the source of the parallel the preservourset and the source of parameter construction. Of the source of the preservourset and the source of preservourset. The based does not include the detail of preservence construction. Of the source of the source of preservence construction. Of the source of the source of the preservence construction. Of the source of the source of the source of preservence construction. The source of the source of the source of preservence construction. Of the source of the source

Were $1-\Gamma k$ Enternand Standard for the CPT was a the of right constraint dates to there as F_{12}), in their reference on operation which date CPTs way be constant.

1.1. Substancial exerciseration of the type described in the event of the meditive and exerciseration of the practicent periods of the practice component periods of the practice of the practice component periods a component of the reaction of the practice of the practice of the practice of the practice of the reaction of the reac

į

2.1 case-date case-datend point of the preservative to, uses which the case-barrage measures deviced. A final set of the form of a statistical tool with a consult point despend for preservating systems of preservation reasoning the celd barrang con-point and pair point despend.

user to previntions developed by allo conc. equal to the concentration developed by all borutosatily concentrations developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and previous developed by all borutosatily concentrations are also and allocations are applicable of an enviroable for an enviroable of the analysis of the concentration enviroable are also and allocations are also and allocation are also allocation are als

2.14 Automote consistent wires of present uses generations of our location when using a perco presentation.
2.15 Automote due build willing or other wai produced for advancing the presentationer of to the regis rock and for advancing the presentationer of to the regis rock and for advancing the presentationer of to the regis rock and the advancing the presentationer of to the regis

Significance and Use
 This was servined supplies data on the engineering program of not second to help with the damps and cos-program.

ş

1 3

COLLAPSED EXTENDED PL. 1 Example of a Management Comp Personner The Ocean Manage Comp

COLLAPSED Land Matter Care Party

2

place and does of the results f is types of soil is out information bods, but prior i the sol is the sol is the sol 241 smemon of early 3.2 This test a obtain sol with the method method from

Imea O

4

Tation or experience may preclude the med for borings 1. Engeneration corrections that we may be approximately a series of the series of dense method with before the accurate by series of dense accuracy, with the forget of acut involved Engineers aukaly, retro on log-14. Most engineers with off-hore eigeners aukaly retro on log-14. Most engineers with off-hore eigeners aukaly for on log-tion of the sex incredus stundale for off-hore super-tion of the sex incredus stundale for off-hore super-form of the sex incredus stundale for off-hore super-form of the sex incredus stundale for off-hore super-tion of the sex incredus stundale for off-hore super-tion of the sex incredus stundale for off-hore super-tion of the sex incredus stundale for off-hore super-station of the sex incredus stundale for off

A. Appendic

4.1 General

4.1 United and the core shall have a 60° (±51°) point and and a base damaneter of 1600 ± 0010 ± 0100 ± 00 ± 0000 textuining in a propercisi areas of 151 m⁻¹10 cm⁻¹. The pass of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall have a radius field with viru. [3] empiri-tion of the core shall be reader to the shall be core in the shall be read to the structure of the presence field with viru. [3] or virus the beam of the structure of the presence field with the shall be be read to the structure of the structure of the structure of the the structure of the structure of the structure of the beam of the structure of the

4.1.2. Fritton Store: Jurnay the same consult damages (0.024/a) - 0000 mit + 0.01 = 0.0 mitmus the base damages of the constrines 4.1.1. No other part of the presentances of the identification of the presentance of the presentances of the total present total the 2.12 mit / 1.10 cm⁻¹, 2.2 % Total and the 2.12 mit / 1.10 cm⁻¹, 2.2 % Total and the 2.12 mit / 1.10 cm⁻¹, 2.2 % Total and the 2.12 mit forces along and have and have and have an entry and forces along and have and have and have a section and forces along and have and have and have a section and forces along and have and have and have a section and present that and have and have been existent as present and the section of the base requested to advance the present dama the damages of the base requested to advance the present damages of the base requested to advance the present damages of the base of the conse for a length of al mit 1.1 Å (0.4 m) above the lay of the factores makes and damages. The base is the section of the factores makes and damages. The base is the constant constant wave base base of the constant section of the factores makes. For the section and section of the factores makes and damages. The base is a structure of total wave a constant metal damages and the section of the factores makes. For the section and section of the factores makes and damages. The base is a structure of total wave a constant metal damages.

Nors 3.—Special and preferably redunded, university pured in the diffusion convenients to amount the acco special special of all the results special special

4.2. Mechanical Printing 4.2.1. The stidling march proctoopenic up must all

achanum securary is a machanical allow a downward montanest of the

cone in relation to the push rods of at least 1.2 in. (30.5 mm)

NITE 4-AL CERTAIN COMMISSIONS OF depth and up remainders) the classic compression of the inter rods may exceed the downward stroke that the thrust machine cas apply to the inter rods relative to the push rods in this class, the tip will not extend and the thrust residings will run classically to the end of the machine stroke and then jump abruptly when the thrust machine makes consuct with the push rods.

4.2.2 Mechanical penetrometer up design shall include protection against soil entering the sliding mechanism and affecting the reastance componential (see 4 2.3 and Note 5)

42.3 Cone Penetrometr -Figure 1 shows the design and action of one mechanical cone penetrometer up. A mantle of reduced diameter is anached above the cone to minimute

possible sou contamination of the sliding mechanism. Note 5-An unknown amount of side friction may develop along

the and be sucluded in the cone remainse 4.2.4 Friction-Cone Penetrometer-Figure 2 shows the de-

sign and action of one telescoping mechanical friction-cone penetrometer up. The lower part of the up. including a mantle to which the cone attaches, advances first until the flange engages the friction sleeve and then both advance.

NITE 6- The shoulder at the lower end of the friction slorve encoun-

ters end-bearing reasonnee. In sands as much as two thords of the sleeve resistance may consist of bearing on this shoulder' (gnore this effect in soft to medium clave

4.2.5 Measuring Equipment-Measure the penetration resistanceis) at the surface by a suitable device such as a hydraulic or electric load cell or proving ring.

4.3 Electric Penetrometers 431 Cone Penetrometer-Figure 3 shows one design for an electric-cone penetrometer up. The cone resistance is measured by means of a force transducer attached to the cone. An electric cable or other suitable system transmits the transducer signals to a data recording system. Electric-cone penetrometers shall permit continuous advance and recording over each push rod-length interval.

432 Friction-Cone Penetrometer-The bottom of the friction sleeve shall not be more than 0.4 m. (10 mm) above the base of the cone. The same requirements as 4.3.1 apply. Figure 4 shows one design for an electric friction-cone penetrometer up.

4.1.1 Other Penetrometers-Electric penetrometers may include other transducer measurements as well as, or instead of, the friction sleeve rocasurement. Common ones are incli-

nometers to assist with the alignment control of the up tate

-

PIG: 5 Annotated Charl Record of the Pressure Changes in the Hydroutic Lead Cell Measuring Thrust on Tee of the Inner Redu During an Example Extension of the Mechanical Friction-Cone Penetrometer Te

412

33 and prezometers to provide additional data on soil straspraphy and behavior

4.4 Thrust Machine - This machine shall provide a coninuous stroke, preferably over a distance areater than one ush rod length. The machine must advance the penetromeer tip at a constant rate while the magnitude of the thrust equired fluctuates (see 5.1.2).

Note 7-Day providence searchast shally report a threat capa-sicy of at last 3 ions (45 kN). Most moders mechanism we hydraubo enous wells 10 to 20-ton 190 to 180-kN) threat cambelety.

4.5 Reaction Equipment --- The proper performance of the

satic-thrust machine requires a stable, static reaction. Note 8-The type of reaction provided may affect the pene rustancess measured, particularly in the surface or near-surface layers

Procedure

51 General

107/51

5.1.1 Set up the thrust machine for a thrust direction as

iear vertical as practical 11.2 Role of Penetration-Maintain a rate of denth pentration of 2 to 4 ft/min (10 to 20 mm/s) ±25% when

btaining resistance data. Other rates of penetration may be and between texts.

Nors 9-The rate of 2 fi/min 110 wate/st provides the same the Norm w— The first of 2 m/bits 110 mms/s) provides the base the periador seek to med property the measure or values where amy the estatement fraction-core prescriptioners. The rate of 4 m/sms (20 mms/s) mustable for the major reasons reaction recours a first read or using the enhanced core personners mad provided for the efficient operation releases personners the support and and any operation operation of the efficient operation releases personners the support and and any operation operation.

re 10-Rates of penetration either slower or famer than the ranand rate may be used for special concumulations, such as pore pressure

measurements. This is permissible provided the rate actually used and the reason for the deviations is noted on the test record.

Norte 11-Pore pressures generated alload of and around the pre-stag core or friction cone prestrongeter tip cks have an important trata agi c effect on the g, and l, values measured. Performer ups with providence ups such effects and to provide additional data about the strategraphy and commercial properties of the scale processed

5.2 Mechanical Penetrometers

5.2.1 Cone Penetrometer-(1) Advance penetrometer tip to the required test depth by applying sufficient thrust on the push rods, and (2) Apply sufficient thrust on the inner rods to extend the penetrometer tip (see Fig. 1). Obtain the cone resustance at a specific munt (see 5.2.3) during the downward movement of the inner rods relative to the stationary push rods. Repeat step (1). Apply sufficient thrust on the push rods to collapse the extended up and advance it to a new test depth. By continually repeating this two-step cycle, obtain cone resistance data at increments of depth. This increment shall not ordinarily exceed \$ in. (203 mm).

5.2.2 Friction-Cone Penetrometer-Use this penetrometer as described in §2.1 but obtain two resistances during the step (2) extension of the up (see Figs. 2 and 5). First obtain the cone resistance during the initial phase of the extension. When the lower part of the up engages and pulls down the foction sleeve obtain a second measurement of the total resistance of the cone plus the sleeve. Subtraction pyes the sleeve resistance.

Nore 12—Because of noi lavering, the cone remetance may change during the additional downward movement of the top repaired in obtain the fraction memorement. Nore 13—The noi fraction along the sherve pous as additional over-

burden load on the soil above the cone and may increase some run

თ m

D 3441

prove their measured during the initial phase of the rip extension by an journown, but probably small amount, ignore this effect.

§ 2.3. Recording Data—To obtain reproducible cone-restinance test data, or cone and friction-resistance test data when song a inclusion-core tip, record only those thrust readings that occur at a well-defined point during the downward movement of the top of the inner rods in relation to the top of the other song as relation compression of inner rods use. Note 41, this point ordinaris should be at not test inab 10 in (25 mm) apparent relative movement of the inner rods. Then using the friction-cone penetrometer, this point will be use thefore the cone engages the friction solve events.

Note: t4-Figure 5 shows one example of how the thrust in the -vdmule lend cell can vary during the extension of the friction-cone (i). Note the jump in gage pressure when the cone engages the sleeve.

 6 2.3.1 Obtain the cone plus friction-resistance reading as some as possible after the jump to as to minimize the error discribed in Fig. 5. Unless using continuous recording as in Fig. 5, the operator should not record a cone plus friction resistance of the supports the cone resistance is changing abmouth or error actions.

5 3 Electric Penetrometers

531 If using continuous electric cable, prethread it hrough the push rods

 6 3.2 Record the initial reading(s) with the penetrometer up hanging freely in air or in water, out of direct sunlight, and after an initial, short penetration, test hole so that the tip temperature is at soil temperature.

5.3.3 Record the cone resistance, or cone resistance and incluon resistance, continuously with depth or note them at seterivals of depth not exceeding 8 in (203 mm).

 $^{\rm C3.4}$ At the end of a sounding, obtain a final set of readings as in 5.3.2 and check them against the initial set. Discard the sounding, and repair or replace the tip if this check is not susfactory for the accuracy desired for the resistance componential.

6. Special Techniques and Precautions

A 1. Reduction of Friction time Puth Rodt—The purpose of this factors reduction is to increase the penetrometer depth capability and not to reduce any differences between resistance components determined by mechanical and electric nors is noted in 13. To accomplish the faction reduction, introduce a special of which an enlarged diameter or special projections called a "factor reduce", toto the stining of push rods or between the push rods and the up. Another allowable method to reduce friction is to use push rods with a diameter resist beam that of the tip. In accordance with 4.14 any such projections changes in dumeter must begin no closer than 10.8 (0.3 mil from the base of the cone or the top of the factors facer. For other cones (see Note 2) use no closer than 8 diameter.

Nore: 15-Nos-reschated inchaques to reduce friction, such as the use of dealing mud above the tip, are also allowable

6.2 Prevenuon of Rod Bending Above Surface—Use a tubular rod guide, at the base of the thrust machine, of sufficient length to prevent significant bending of the push rods between the machine and the ground surface

write 16-Special setuctions, such as when working through water

413

will require a special system of claims support to restrict adequately the huckling of the oush rods

b) Dritt of Tip—For penetration depths exceeding about 40 ft (12 m), the tip will probably dinft away from a vertical alignment Occasionaliv, senous dinfting occurs, even at less depth. Reduce dinfting by using push rods that are initially straight and by making sure that the initial cone penetration into soil does not involve unwanted, initial lateral thrust. Passing through or alongsder an obtiruction such as boulders, soil concretions, thin rock lavers, or inclined dense lavers may deflect the up and induce dinfting. Note any indications is deflect the up and induce dinfting. Note any indications is detering such obstructions and be after for possible subsequent improper tip operation as a sign of senious dinfting.

Note 17—Electric penetrometer ups may also incorporate an inclinometer to monitor drift and provide a warning when it becomes excessive

5.4.18 ear of Tip—Penetration into abrasive soils eventualls wears down or scours the penetrometer up. Discard ups, or parts thereof, whose wear changes their geometric or surface roughness so they no longer meet the requirements of 4.1 Permit more scratches.

6.5 Distance Between Cone and Friction Siere — The friction resistance of the sieve applies to the soil at some distance above the soil in which the core resistance was obtained at the same time. When comparing these resistances for the soil at a specified depth, for example when computing friction ratios or when plotting these data on graphs, take proper account of the vertical distance between the base of the cone and the midheight of the friction sieve.

6.6 Interruptions-The engineer may have to interrupt the normal advance of a static penetration test for purposes such as removing the penetrometer and drilling through layers or obstructions too strong to penetrate statically. If the penetrometer is designed to be driven dynamically without damage to its subsequent static performance (those illustrated herein in Figs 1 to 4 are not so designed), the engineer may drive past such lavers or obstructions. Delays of over 10 min due to personnel or equipment problems shall be considered an interruption. Continuing the static penetration test after an interniption is permitted provided this additional testing remains in conformance with this standard. Obtain further resistance component data only after the up passes through the engineer's estimate of the disturbed zone resulting from the nature and death of the internation. As an alternative readings may be continued without first making the additional tip penetration and the disturbed zone evaluated from these data. Then disregard data within the disturbed zone.

Norm: 18-Historroption of the prezione towning after a push allows the engineer to examine the dissipation of positive or negative excess pore water pressure

68 Mechanical Penetrometers

۰

6.8.1 Inner Rod Friction—Soil particles and convoion can increase the fraction between inner roda and push rods, posibly resulting in significant errors in the measurement of the ressuance componentis). Clean and lubricate the inner rods 6.8.2 Height of Inner Rodg—For imposed accuracy at flow values of cone resistance, correct the thrust data to include the accumulated weight of the inner rods from the tip to the topmost rod.

6.8.3 Jamming—Soil particles between sliding surfaces or bending of the tip may jam the mechanism during the many estensions and collapses of the telescoping mechanical tip Stop the sounding as soon as uncorrectable jamming occurs of 9. Electric Penetromers

6.9.1. *Hater Seal* --- Provide adequate waterproofing for the electric transducer. Make periodic checks to assure that no water has passed the seals.

Note 19—some steps; to sever despit are not comparated for individual end are effects and require is adhering on the several despite mining the net end area of the cose under hidrottane presare also requires a hidrosale calabrasion measurement. The to manufacture can usually upper here calabrasion correction contains. Their importane increases a the voil houg issend become state?

7. Report

¹ 1 Graph of Cone Resistance a — Every report of a cone or friction-cone sounding shall include a graph of the vanation of cone resistance tin units of tons or kPa) with depth in feet or metres). Successive cone-resistance test values from the mechanical cone and finction-cone penetrometers, usually determined at equal increments of depth and piotied at the depth corresponding to the depth of the measurement, may be connected with straight lines as an approximation for a continuous arabh.

2 Friction-Cone Penetrometer

7.2.1 Graph of Friction Resistance 1,---In addition to the graph of cone resistance (7.1) the report may include an adjacent or superported graph of friction resistance or finction ratio, or both, with depth. Use the same depth scale as in ~1 (see 6.5).

2.2 Graph of Friction Ratio Re-If the report includes up

The standard is bulker to evalues at every long by the responsible technical calibrative and must be re-every five reserved and of the reserved and the reserve

The definition is backed to review of party and by the intermedial lipshings extended on the definition of the statement of t

D 3441

soil descriptions estimated from the friction-cone penetrimeter data, include a graph of the variation of friction ratio with depth. Place this graph datasets to the graph for cone resistance, using the same depth scale (see 6.5) $^{-3}$ *Precome Penetromer—*In addition to the 7.1 and

2 report outries the interview and autom to the 7.1 and 2 report requirements, as precore sourching shall include a parallel graph, to the same depth scale, of measured porwater pressure during the penetration versus depth. Eaces port water pressure versus time plots may also be constructed at those depths where the petocone sounding is interrupted (see Note 1).

² 4 General—The operator shall record his name, the name and location of the job, date of sounding, sounding number, location coordinates, and soil and water surfacelevations (if available). The report shall also include a nose as to the type of penetrometer tip used, the type of threin machine, tip and thruit calibration information, or both anszero-drift noted, the method used to provide the reaction force. If a friction reducer was used, the method of tip advancement, the method of recording, the condition of the rods and tip after withdrawai, and any special difficulties or other observations concerning the performance of the equipment.

5 Deviations from Standard—The report shall state that the test procedures were in accordance with this Test Method D 3441. Describe completely any deviations from this test method.

8. Precision and Blas

8.1 Because of the many variables involved and the lack of a superior standard, engineers have no direct data to determine the basis of this method. Judging from its observed reproducibility in approximately uniform soil deposits, plus the q, and t, measurement effects of special equipment and operator care, persons familiar with this method estimate its precision as follows:

8 1 1 Mechanical Tips-Standard deviation of 10 % in g and 20 % in f.

8.1.2 Electric Tips-Standard deviation of 5.5 in q, and 10.5 in f.

Note 20- These data may not match similar data from mechanica upsine (3)
APPENDIX C

EXCERPTS FROM HOGENTOGLER OPERATION

PROCEDURES MANUAL

OPERATION PROCEDURES FOR THE DUTCH CONE PENETROMETER CONVERSION KIT

I. INTRODUCTION:

The Dutch Cone Penetrometer or quasistatic cone penetrometer is a device for obtaining in-situ subsurface data in a variety of soils. Useful design data can be obtained in most types of soil the equipment can penetrate. The chief advantage of the Dutch Cone Penetrometer is its ability to retrieve large quantities of useful data at an economical cost.

A few specific applications for the Dutch Cone Penetrometer are:

1. Determination of the uniformity and continuity of soil deposits; i.e.,

stratigraphy.

- 2. Definition of soil type; e.g., sand, clayey silt, etc.
- 3. Obtaining in-situ engineering soil parameters.
- 4. Design of pile foundations.

5. Compaction control where soils are compacted by a variety of methods.

The following procedures are applicable to the operation of the Dutch Cone Penetrometer Conversion Kit sold by Hogentogier and Company. The procedures are also applicable to the trailer and skid mounted penetrometers sold by Hogentogier and Co. with the exception of the operation of their hydraulic loading systems: reference should be made to the respective operators' handbooks for proper use of these other types of penetrometer systems.

The Dutch Cone Penetration Test consists of the measurement of the resistance to penetration of a hardened steel device of standard dimensions as it is forced into the subsurface at a fixed, predetermined rate.

All penetrometer tests should be conducted in accordance with ASTM D 3441-75T "Deep Quasi-Static Cone and Friction-Cone Penetration Tests of Soil." A copy of this specification is contained in Appendix A.

IL. CONVERSION EQUIPMENT AND ITS FUNCTION:

The conversion kit converts a standard core or auger drill quickly and easily to a Dutch Cone Penetrometer tester. To perform the penetrometer conversion the following pieces of equipment are supplied with the Dutch Cone Penetrometer Conversion Kit:

2 - mantle cones

2 - friction jacket cones

25 - one meter sounding tubes and rods

- 1 11 ton hydraulic load cell and gauges
- 1 pulling device
- 1 75 mm inner rod extension
- 2 15 mm inner rod extensions
- 1 continuous sounding ring
- 1 depth indicator gauge
- 1 friction reducing section of sounding tube
- 2 spare gauges
- 1 carrying case

Note: A mounting bracket is used to attach the load cell to the drill rig. The

bracket is fabricated by the customer because its configuration depends on the customer's

drill rig model.

The above components are interchangeable with those components found on the trailer

1

and skid mounted 11 ton Dutch Cone Penetrometer rigs.

The functions of each piece of equipment is as follows:

A. Hydraulic Load Cell

The 11 ton hydraulic load cell contains two gauges; a low range measuring 0-100 kgf/sq cm and the high range measuring 0-600 kgf/sq cm. The low pressure gauge is protected against overload by an automatic shut off. Any reading over 80 kgf/sq cm is read on the high pressure gauge. The area of the load cell piston is 20 cm². The pressures read on the gauges in kgf/cm², when multiplied by 20 cm², represent the downthrust in kgf being applied.

B. Mantle Cone

The mantle cone is a cone shaped device which is pushed into the subsurface a total stroke of 7 cm during which a resistance to its penctration is read on the load cell gauges. The cone consists of a 60 degree (apex angle) cone with a projected end area of 10 sq cm. The cone resistance is defined as the downthrust divided by the end area. Figure 1 shows the sequence of operation and the calculations necessary to determine cone resistance.

C. Friction Jacket Cone

The friction jacket cone is a mantle cone as described above with the addition of a cylindrical jacket of 150 sq cm surface area mounted above the cone. A value of cone resistance to penetration and a value of local friction of the soil on the jacket is obtained at each test. The test procedure is similar to the one for the mantle cone, except that the resistance for the first 3.5 cm of stroke is provided by the cone point alone. Subsequently the cone engages the friction jacket and drags it along; the resistance during the

last 3.5 cm of stroke is the combined cone resistance and jacket friction resistance. The local friction is obtained by subtracting the cone resistance from the combined resistance, and dividing by the surface area of 150 sq cm. Figure 2 shows the sequence of operation and the calculations required to obtain the cone resistance and the local friction values.

D. Sounding Tube and Inner Rod

The sounding tubes are connected to the mantle cone or friction jacket cone and are used to push the cone into the subsurface. Each sounding tube is one meter in length with a 36 mm O.D. by 16 mm I.D. and weighs 6.65 kg. Also, each sounding tube contains a 15 mm diameter rod (inner rod) which fits into the 16 mm I.D. hole of the sounding tube. The rod weight is 1.40 kg. The inner rod is used to advance the cone or cone and friction jacket during the performance of the test.

E. Friction Reducing Section

The friction reducing section is a length of sounding tube (having the same diameters) with the addition of an enlarged area at the top of the section. The purpose of the enlarged area is to ream the hole made by the cone. The enlarged hole reduces the soil friction on the sounding tubes, which allows the cone to penetrate to deeper depths. Figure 3 shows a sketch of a friction reducing section and how it should be mounted to the cone.

F. Pulling Device

3

4

The pulling device is used to extract the sounding tubes and cone when the sounding is completed. The device consists of a head which fits into the same mounting bracket hole as the load cell occupies. A tube extractor fits into the head and is threaded into the sounding tubes (see Figure B3, parts

FOR EXTENSION OF INNER RODS UNDER EXTREME CONE RESISTANCE DEPTH RATIOS SEE FIGURE C 2 IN APPENDIX C

SCHEMATIC ILLUSTRATION OF INCREMENTAL SOUNDING WITH MANTLE CONE

FOR OPERATING INSTRUCTIONS SEE CHAPTERS IVAND V

CONE RESISTANCE IN kgf/sq.cm. * READING ON THE PRESSURE GAUGE-MULTIPLIED BY 20/10,OR 2.

FOR EXTENSION OF INNER RODS UNDER EXTREME CONE RESISTANCE-DEPTH RATIOS SEE FIGURE CI IN APPENDIX C.

FIGURE I

17]

В

CONTINUOUS SOUNDING WITH JACKET CONE 1. FIT CONTINUOUS SOUNDING RING TO THE MEASURING DEVICE.

- 2. EXTEND PRESSURE ROD BY MEANS OF THE EXTENDING ROD.(75 mm). 3. ADVANCE CONE INTO GROUND AT FIXED
- RATE AND OBSERVE GAUGE READINGS AT INTERVALS, SUCH AS 20 cm.

Number 18 and 19, Appendix B). The hydraulic system of the drill is used to extract the sounding tubes.

G. Continuous Sounding Ring Plate

The continuous sounding ring plate is attached to the bottom of the load cell (See Figure B3). The ring is used when continuous sounding using the mantle cone is desired (See Section V). Continuous sounding is a procedure whereby cone resistance is observed periodically as the cone is pushed into the soil without interruption.

H. 75 mm Inner Rod Extension

Continuous sounding with the mantle cone requires the use of a 75 mm long by 15 mm diameter inner rod extension which is used in conjunction with the continuous sounding ring (described above). The purpose of the rod extension is to extend the inner rod (See D above) so it contacts the actuating mechanism of the load cell.

I. 15 mm Inner Rod Extension

Under extreme cone resistance the inner rods are subjected to forces which will cause them to shorten elastically. The 15 mm rod extensions are used to compensate for the elastic shortening (See Appendix C). Alternatively, a single overlength sounding rod may be used for the same purpose.

J. Depth Indicator Gauge

5

The depth indicator gauge is a 1⁺ meter long slender rod containing depth indicating grooves machined into it every 10 cm. A heavy base is also provided to keep the gauge from tipping over. The gauge is located next to the sounding tubes so the operator can visually determine how far the sounding tubes should be pushed into the subsurface between tests (test is normally performed every

FIGURE 3

NO SCALE

FIGURE 5

FRONT VIEW OF CONVERSION ASSY

NOTE PRESSURE GAUGES NOT SHOWN

SIDE VIEW OF CONVERSION ASSY

FIC E 6

20 cm).

III. EQUIPMENT MOUNTING AND CALIBRATION

The conversion is performed by mounting a bracket (customer fabricated) to the rear of the drill head, onto which the 11 ton hydraulic load cell is attached. The hydraulic ram system on the drill rig is then utilized to push the Dutch Cone Penetrometer into the subsurface. Mounting of the conversion package on a sliding base drill is illustrated in Figures 4, 5 and 6. Figures 5 and 6 illustrates the method of attachment of the load cell to the mounting bracket. Brackets mounting through the drill spindle are used on drills not containing a sliding base.

Generally, the bracket is left mounted permanently on drills with sliding bases whereas on non-sliding base drill rigs the bracket will have to be removed each time the operation is changed from penetrometer testing to drilling. Assistance in the design and fabrication of a bracket to fit each customer's drill rig is provided by Hogentogler and Company.

Figure 4 also illustrates a sounding tube guide (also fabricated by the customer). The purpose of the sounding tube guide is to prevent the sounding tubes from buckling. This is particularly important on drill rigs which are elevated considerably above the ground surface; i.e., all terrain vehicles. The guide should be 3 to 4 inches in length and contain a center hole with a diameter of 1-5/8 inch minimum. On auger drills the sounding tube guide can be attached to the auger guide mount.

Generally, the greater the pulldown force and the heavier the drill, the greater will be the penetration capability of the penetrometer into the subsurface strata. In order for the drill-mounted conversion kit to have adequate penetration capability, the drill should have a minimum pulldown force of 10,000 pounds. The drill and drill carrier should also have

enough weight to resist the upward reaction force of the hydraulic rams on the penetrometer without lifting the drill rig off its leveling jacks. This resisting weight of the drill and carrier should equal or exceed the pulldown force of the drill (minimum 10,000 pounds). Where the weight of the drill and carrier is not sufficient to resist the total pulldown force of the drill, various methods have been employed to supplement this lack of weight. The most popular are:

- 1. Add extra weights to the drill rig
- 2. Anchoring the drill rig to a string of augers drilled into the subsurface
- Anchoring the drill rig to a one or two flight, large diameter (8 12 inch) auger which is placed in the subsurface

The most effective of the above methods is the third one. Such an auger can be fabricated from a piece of drill rod (Aw or Nw) to which is welded 1/4 inch plate steel to form the auger flights. Anchoring augers are available from Hogentogler and Company. To utilize the anchor it is first turned into the subsurface by the drill after which the drill is moved over the anchor and the anchor attached to the drill by a chain or cable. The amount of resistance against the upward force of the penetrometer, added to the drill rig is a function of the size of the anchor, its depth and the type of soil it is placed into.

To properly control the rate of penetration of the cone and friction jacket during testing (2 cm/sec or up to 1 inch per sec) the drill feed rate will have to be adjusted. One method of calibrating the feed rate to determine the adjusted setting is illustrated in Figure 7 for a hydraulic feed system. Figure 7 contains a graph of the hydraulic feed cylinder pressure versus the setting of a flow control valve placed in the hydraulic line (to the feed cylinder). A hydraulic cylinder feed pressure sufficiently high to overcome the anticipated soil resistance is selected. Then the flow control valve is adjusted to admit fluid to the cylinder at a rate which will result in a penetration rate of 2 cm/sec. Most late model

7

FEED RATE CALIBRATION

drills are equipped with flow control valves containing numbered valve opening settings. Other calibration methods will have to be devised for each type and make of drill. A fortunate aspect of ASTM D 3441-75T is that it allows a \pm 25% variation in the rate of cone penetration which will enable the crude feed rate calibration to meet the specification. The desired 2 cm/sec rate of penetration corresponds to 1 inch/sec at the upper limit of tolerance.

IV. PREPARATION FOR SOUNDING

In preparation to the start of sounding the following steps should be followed:

1. Attach the load cell to the conversion bracket as illustrated in Figure 4 through 6 and as discussed in Section 111 above.

- 2. Level the drill rig both side to side and front to back.
- 3. Run the load cell to its highest position above the ground surface.

4. Connect the friction reducing section with its inner rod to the mantle cone or friction jacket cone as illustrated in Figure 3A.

5. Connect additional sounding tubes with their inner rods to the friction reducing section and cone so the total length approximately equals the distance between the load cell and the ground surface (Step 3). Check to see that the inner rods and all moving parts of the mantle cone or friction jacket cone move easily. Hand tightening (shoulder to shoulder) of the sounding tubes is all that is required if the threads are kept clean and oiled.

6. Slip the sounding tube guide over the sounding tubes.

7. Stand the sounding tubes, friction reducing section, cone and sounding tube guide vertically below the load cell.

в

9

8. Connect the sounding tube guide to its mount on the drill.

 Lower the load cell onto the top of the sounding tubes until the top sounding tube fits snugly into the bottom of the load cell.

10. Using a two foot carpenter's level or plumb bob on a string suspended from the load cell, plumb the sounding tubes, friction reducing section and cone. Plumb in two directions; perpendicular to centerline of drill and parallel to centerline of drill.

Measure the length of the extended mantle cone or extended friction jacket cone (from cone tip to connection with the friction reducing section). Also with the friction jacket cone extended measure the distance from the cone tip to the center of the friction jacket. Record these lengths for later use in data reduction in order to know the exact depth at which each test was performed.
Using the drill's hydraulic feed system, push the mantle cone or friction jacket cone into the soil until the connection of the cone and friction reducing section is at the ground surface.

13. If desired, place the depth indicator gauge rod next to the sounding tubes by pushing it into the soil. The top of the rod should be in alignment with the top of the friction reducing section. An alternative to the use of the depth indicator gauge is to mark the sounding tube and friction reducing section every 20 cm with chalk.

14. Place the control lever on the load'cell in the short slot (located on the left side). The drill head may have to be raised slightly to relieve load on the sounding tubes in order to allow the lever to be moved.

15. Complete the blanks at the top of the field data form (Figure 8) and place other information requested in Section 6.3 of ASTM D 3441 under "remarks". Also note whether the test is continuous or incremental if the mantle cone is

being used.

V. TEST PROCEDURES:

Two testing procedures will be presented in this section. They are:

- A. Continuous sounding
- B. Incremental sounding

The continuous sounding procedure is only applicable to the mantle cone. The continuous sounding procedure presented below is not in accordance with ASTM D-3441 but is a procedure used successfully in Europe and is useful when sounding with the mantle cone. The procedure outlined below for incremental sounding follows ASTM D-3441.

- A. <u>Continuous Sounding</u> The following steps are performed after completion of Step 15, Section IV.
 - 1. Raise the hydraulic load cell off the sounding tubes.
 - 2. Attach the continuous sounding ring plate to the bottom of the load cell
 - as shown in Figure 3.

3. Disconnect a section of sounding tube and insert the 75 mm inner rod extender. Reconnect the sounding tube.

4. Lower the hydraulic load cell down and insert the extended inner rod into the center hole of the continuous sounding ring. Move the control lever on the long slot (on the right side).

5. Continue to lower the load cell until the sounding tube engages the

continuous sounding ring.

 Recheck the plumbness of the sounding tubes as set forth in Step 10, Section IV.

7. Using the feed rate calibration chart developed in Section II, select the proper setting of the flow control valve.

3. Start the pushing of the sounding tubes and record the gauge reading at every 20 cm mark on the sounding tube or depth indicator gauge. Monitor the feed pressure and adjust the flow control valve as needed (calibration chart) to obtain the 2 cm/sec penetration rate. In lieu of the calibration chart, a stop watch may be used to time the penetration of each 20 cm increment of sounding tube. This will allow adjustment of the feed rate (2 cm/sec) so that each 20 cm increment of sounding tube requires 10 seconds to penetrate into the subsurface. Record each gauge reading in column 2 of the field data form (Figure 8). Also record the depth of the cone in column 1. Note, the depth recorded in column 1 should be the length of the sounding tubes in the soil (at the point of testing) plus the length of the extended mantle cone. Alternatively, the length of the cone may be accounted for later in data reduction.

9. Add sounding tubes (with inner rods) as required. Mark the sounding tube every 20 cm if applicable. Proceed with testing to desired depth.

B. Incremental Sounding - The following steps are performed after completion of Step 15, Section IV.

 Check to see that the control lever on the load cell is in the small slot (on the left).

2. Push the sounding tubes into the subsurface to the first 20 cm mark.

3. Raise the load cell slightly and simultaneously shift the lever on the load cell to the large slot on the right. This will allow the inner rod to be pushed, extending the mantle cone (or cone and friction jacket).

4. Using the feed rate calibration chart (developed as set forth in Section III), select the proper setting of the flow control valve. Feed pressure will have

11

Load Cell Gauges

.

Old Gauges - Kgf/cm² New Gauges - 1000 N

The old gauges were confusing for two reasons. First, a kilogram (Kg) is a unit of mass, not force. Therefor, the 'T' subscript (Kg) was used, since force is what is really desired. Secondly, that pressure reading of Kg1/cm² was a measurement of oll pressure in the load cell, not cone pressure at the tip or sleeve.

The new gauges are calibrated in units of force, newtons (N), and are also calibrated to give a direct reading of tip force. For example, a reading of 34.000 N means a force of 34.000 N is applied. Multiplying by 20 is no longer necassary. To get tip pressure or friction sleeve pressure in N/cm², simply divide by the tip area (10 cm^2) or friction sleeve area (150 cm^2) respectively.

It is recommended that newtons be used to log cone data. A sample log sheet is provided on the back.

However, to continue using Kgf/cm² tip pressure is really quite simple.

Example: Old gauge reads 25Kgf/cm² 25Kgf/cm² x 20cm² (piston ares) + 10cm² (tip area) = 50 Kgf/cm² Example: New gauge reads 5000 N

5000 N ÷ 10 N/Kg(• + 10 cm² (tip area) = 50 Kgf/cm²

approximation within the accuracy of the gauges

DUTCH CONE PENETROMETER Fuld Data Form F

								Dere
· •••				··			_	Tesi Ne
				- Rema			-	
Fait Pricedu Rate of Fe Rost rest e	ee red 2:m nerv 10 c	rlet ar no m m'ai spyrae	ore then 3 8-mches	R/14C				
	- (Curve Fa Crime Reside	Friction lance L	R = Res F = Local F ~/ R ==	613n(8 n(110m			
Ceart	ç	1.4			- 50	۲ Ru u f		e in April 1997
ā	• 			1	*/["			Sectore Rate
		÷i						-
							-	
							=	
							+ • †	+
							- - -	
						i i	+ - +	
				+			T	

The friction value is computed by dividing the faces friction bothe cone resistance measured 20 cm above the scalifiction during the premove test

									Fi	gure 8						
				DUTO	CHI CONE P Field Da	ENETROME ta Form	TER	!								
								Dete								
									•							
oject							-	1621	110 _							
ocation _							-									
rsted by: .			· · · · · ·		ke:											
Rate of F Run test	ire: 'eed: 2cm/s every 20 cm	ec or no m i or approx.	ee than L i B inches	n/sec												
	C = Ce CR = Weigh	one F Cone Resist t of inner re	Friction ance Li al =0.14 K	R - Resi F - Local Fi g/cm²/rod l	stance riction length	•										
Depth	c	F+C	F	CR	LF	Friction	1	ь.	1	F	netic	on Re	rsista	nce		_
	Salem 2	Ke/cm ²	3 3	() # 2 Xe/cm ²	(x 0.133 Ke/cm2	Ratio*					Con	e Res	istan	ce		
<u>1</u> ,	D	D	٢	0	0	<u>,</u> ,	1		- <u>+</u> i		Fri	ction	Rati	ö		
				L	Ļ			\downarrow	$\downarrow \downarrow$	\square		1				Ľ
		 		ļ	ļ			+	\downarrow		4_	1				ļ
								+-	\downarrow		4		<u> </u>	1		-
								+	+-+			.	Ļ	I		į.
		ļ					ł	+	\downarrow		+	+		 		-
				ļ	i			+	++			+				
							l =	+	++	-	+	+	<u> </u>		$\left - \right $	
							ł .	+-	+	+-	+	+	ł	-	\vdash	-
								+-	╄╌┼		+					-
CHE CO	MDUTAT	TON IN	OLUM	5 IS NO	LONGER	NECESSAI	~	+-	++		+			-		
AS A	LL GAUG	ES ARE	NOW DI	RECT R	EADING.		۳ w	+	1-1	-	1	1				-
PLE	SE DIS	REGAR	THIS	COMPUT	ATION.		6	1			1	1	1			
								I			1					
					•											_
											1_	1				
								1	\square		1	 				
								1	$\downarrow \downarrow$		↓	_				_
								+	$\downarrow \downarrow$	_	+	<u> </u>	 			
								+	\downarrow	-	╞					
								+	$\left \right $	_	╂					
								+	┥┥	_+-	+	-				
								+	++		+					
								+	╋╌╋		+-	1-				
							j	1_		_	1	L				

local friction during the previous test.

to be estimated initially and the flow control valve adjusted after the initial test and thereafter as the feed pressure changes during the pushing of the cone and friction sleeve. A better method of selecting the proper feed rate (2 cm/sec) is during the pushing of the sounding tubes. The proper feed rate is selected as set forth under Step 8 of the continuous sounding procedure (above).

.

5. At the calibrated rate of penetration, push the inner rod taking reading on the gauges at:

Mantle Cone - After approximately 1 inch of relative movement of inner rod. Read gauge and record in column 2 of the field data form. (Figure 8) Friction Jacket Cone - The cone reading should be taken before the cone engages the friction sleeve which will be noted by a jump (increase) of the gauge reading. Record this first reading in column 2 of the field data form (Figure 8). After the cone engages the friction sleeve, obtain a reading on the gauges. This second reading represents the cone plus friction sleeve resistances. Record this reading in column 3 of the field data form (Figure 8). Also record in column 1 the depth (length of sounding tubes in the soil at the time of the test plus the average length of the extended friction jacket cone) at which the cone and friction jacket gauge readings were obtained. Alternatively, the length of the extended friction jacket cone may be accounted for later in data reduction. In non-homogeneous soil deposits or for more refined data the exact depths of the cone and friction jacket will have to be recorded in column 1. The exact depths are the length of sounding tubes in the soil at the time of the test plus:

181

12

.

.

1. Length of friction jacket cone extended

2. Length to center of extended friction jacket

Note:

Readings should be taken on the 0-100 kgf/sq cm gauge up to 80 kgf/sq cm. Readings over 80 kgf/sq cm should be made from the high pressure gauge (0-600 kgf/sq cm).

6. When the full stroke of the inner rod has been reached, the gauge readings will increase substantially because the entire string of sounding tubes is being forced into the ground. At his point stop penetration of the inner rods and raise the load cell an amount sufficient to shift the lever on the load cell to the small slot on the left. The sounding tubes can now be pushed to the next 20 cm mark. During the pushing of the sounding tubes to the next test depth, the cone or cone and friction sleeve are automatically collapsed in preparation for the next test.

7. When the full down stroke of the drill has been reached, raise the load cell sufficiently to connect another sounding tube and inner rod. Lower the load cell, (mark rod every 20 cm if applicable) and proceed with the test.

8. Repeat Steps 4 through 7 until the desired depth of sounding has been reached.

VI. CONCLUSION OF TEST

As soon as possible after the conclusion of the test, the sounding tubes should be extracted. Failure to extract the sounding tubes immediately may result in skin friction "set-up" along the tubes' surfaces which could prevent extraction. The following steps to conclude the test should be followed:

1. Raise the hydraulic load cell off the sounding tubes and remove the load cell from its bracket (Figure 4 and 6).

 Secure the extractor head in the mounting bracket hole previously occupied by the load cell. Figure B3 part Number 19, of Appendix B shows the extractor head.
Place the tube extractor (Figure B3 part Number 18, Appendix B) into the extractor head. The threaded end of the tube extractor will be threaded into the top sounding tube.
A rod wiper or old piece of tire can be slipped over the top of sounding tubes and fixed in place. This will clean the exterior of the sounding tubes during extraction.
Lower the extractor head and tube extractor sufficiently to allow the extractor to be threaded into the top sounding tube.

6. Using the drill's hydraulic system raise the extractor head, tube extractor and sounding tubes sufficiently to allow removal of the sounding tube section. Care should be used when unthreading and removing the sounding tube so that the inner rod does not fall out onto the operator and cause injury, or onto the soil. Also a pipe vise or other device may have to be fastened to the sounding tubes remaining in the soil so that they do not slip down into the sounding hole where they could not be retrieved.

Repeat Steps 4 and 5 until all the sounding tubes and the cone have been extracted.
Remove the extractor head and tube extractor.

9. It is good practice to clean the sounding tubes of exterior dirt and to remove and wipe clean the inner rods when not being used almost daily. Lightly oil the inner rod before reinserting into the sounding tube. A spray lubricant is ideal for use on the inner rods. Clean and dry thoroughly, and inspect the mantle cone or friction jacket cone for worn parts or any binding of the moving parts. Replace all worn parts and lubricate all internal moving parts of the mantle cone or friction jacket cone. See

14

Figures B4, B5 and B6, Appendix B, for views and part's names of the mantle cone and friction jacket cone.

VII. CALCULATIONS AND REPORTING

Figure 8 is a copy of a self explanatory field data form. By progressing from column 1 to 7 and following the calculations at the top of each column the cone resistance, local friction and friction ratio are computed. Further brief explanations of the calculations will be given below.

The data collected during the field operations include gauge readings for the cone, and cone plus friction jacket, resistances. This data is placed in columns 2 and 3 of Figure 8, respectively and is in the units of kilograms force per square contimeter (kgf/sq cm). If a mantle cone is used, data is entered in column 2 only.

The area of the measuring plunger in the hydraulic load cell is 20 square centimeters. The area of the cone is 10 square centimeters. Thus to compute the pressure on the cone, multiply the gauge reading pressure (column 2) by two (20/10) to yield the cone pressure (column 5) in kilograms per square centimeter (kgf/sq cm).

When a friction jacket cone is used, a gauge value will also be obtained for the combined cone plus the friction jacket resistance (column 3). To determine the gauge reading for the friction jacket only, subtract the cone gauge reading (column 2) from the gauge reading obtained for the cone plus friction jacket (column 3). This value is recorded in column 4 of Figure 8. Since the measuring plunger in the hydraulic load cell is 20 square centimeters, the total force (kgf) required to move the friction jacket is obtained by multiplying the gauge reading for the friction jacket yields the local friction in kilograms per square centimeter area of the friction jacket yields the local friction in kilograms per square centimeter (kgf/sq cm). The above computations are combined into the factor 0.133 which is multiplied by column 4 to obtain the local friction value in column 6 of Figure 8. Another

important computation is the ratio of the cone resistance (column 5) to the local friction (column 6), which is referred to as the friction ratio (column 7). Remember that the friction ratio must be determined from values of cone resistance and local friction measured at the same depth in the soil stratum.

Superimposed plots of the cone resistance, local friction and friction ratio versus depth should be included in the final reporting of the field data. Figure 8 provides a graph for these plots although a more refined graph may be required for further office analysis. For non-homogenous soil deposits it will probably be necessary to use exact depths for the cone and friction jacket rather than using an average depth for both readings. (See Section V, incremental Sounding) This is particularly important in computing the friction ratio for non-homogenous soils. For an accurate friction ratio in non-homogenous soil deposits, the cone resistance and local friction values should be as close to the same depth as possible. VIII. SPECIAL PROCEDURES

The following special procedures are applicable under unusual circumstances and are not generally required:

A. Drift of the sounding tubes may become a problem in very deep soundings and when passing through or alongside of obstructions such as boulders, soil concretions, thin rock layers and inclined dense strata. Drift of the sounding tubes results in bending of the tubes and the development of friction between the inner wall of the sounding tube and the inner rod. The magnitude of this inner wall friction could have a significant effect on the gauge readings obtained for cone resistance and local friction values. Generally drift of the sounding tubes should be minimized but if circumstance dictate otherwise and the sounding cannot be terminated and reinitiated, Figure 9 should be consulted to determine the magnitude of the inner rod friction.

16

CHECKING OF ROD FRICTION (IN HOMOGENEOUS LAYERS)

(CONTINUOUS SOUNDING) (INCREMENTAL SOUNDING)

TO DETERMINE THE MAGNITUDE OF THE INNER ROD FRICTION f IN A HOMOGENEOUS SOIL, PERFORM THE FOLLOWING STEPS:

- I. DETERMINE THE CONE RESISTANCE (GAUGE READINGS) BY BOTH THE CONTINUOUS AND INCREMENTAL SOUNDING METHODS (SECTION 亚)
- 2. THIS WILL YIELD GAUGE READINGS OF A AND (A+f) RESPECTIVELY
- 3. TO FIND f; f=(A+f)-(A)
- 4. CORRECT ANY SUSPECTED VALUE OF GAUGE READINGS OBTAINED BY INCREMENTAL SOUNDING.

B. A sounding should not be performed any closer than the zone of influence of an unbackfilled uncased boring.C. If penetration tests are to be performed below such subsurface obstructions as

very dense sand and hardpan, the obstructions will have to be bored through. Hollow stem augers work extremely well in these circumstances, particularly if the surrounding material needs to be cased in order to keep the bore hole open. When the obstruction has been drilled through by the hollow stem auger, the penetrometer testing can then proceed through the center of the hollow stem auger. Generally, in deep borings some form of rod support will have to be provided inside the hollow stem augers to avoid buckling of the sounding tubes.

Data from the penetrometer should not be used until it is out of the disturbed zone of the auger. This distance should be three boring diameters as a minimum below the bottom of the auger.

D. As the force on the inner rod increases due to increasing cone resistance, or cone and friction jacket resistance, the inner rods tend to shorten (Hooke's Law). At a point depending on the force on the rods and their length, a piece (15 mm long) of inner rod will have to be added to compensate for the rod shortening. Appendix C, Figures C1 and C2 contains calibration charts for determining the length of inner rod to add for the mantle and friction jacket cone, respectively. Appendix C also contains information on the use of Figures C1 and C2.

IX. MAINTENANCE

17

Periodic maintenance which should be performed on the Dutch Cone is as follows:

A. Wear and scour of the penetrometer tip and friction sleeve will occur. These components should be replaced when the geometry and surface roughness

FIGURE 9

no longer meet the requirement of Section 3.1 of ASTM D 3441-75T (Appendix A).

B. The mantle cone and friction jacket cone should be cleaned, dried and oiled after each sounding. All moving parts should move freely.

C. The cut-off pressure at which the 0-100 kgf/sq cm gauge should no longer register and the 0-600 kgf/sq cm gauge should be read is approximately 80 kgf/sq cm. Adjusting screw 7 (Figure B1, Appendix B) regulates this cut-off pressure. This cut-off pressure should be adjusted as required.

D. After each test all sounding tubes should be cleaned and checked for straightness and fractures (around threads). Replace any sounding tubes which are bent or fractured. Keep the threads cleaned and well oiled so threading and unthreading can be performed easily.

E. Keep the inner rods clean and lubricated. A spray lubricant applied once a day will assure relatively frictionless movement of the inner rods.

F. The off level in the hydraulic load cell should be checked periodically. To make this check:

1. Place lever C, (See Figure 10) in the left hand slot.

2. Exert a force on the load cell by pushing the penetrometer and sounding tubes into the soil.

3. During the force exertion, measure the distance that lever C moves upward. This distance should be no more than 10 millimeters. If this distance is more than 10 millimeters, add oil to the cell.

Oil is added to the cell by:

1. Release all pressure on the load cell.

2. Unscrew fill plug B (See Figure 10 or screw 3, Figure B3, Appendix B).

18

19

3. Push down the plunger, using the 3 mm pin provided (until it stops).

4. Open vent A to allow trapped air to escape.

5. Fill the cell with oil of grade _____ through plug B.

6. Close vent A and plug B when the cell is full.

OIL LEVEL CHECK

FIGURE IO

APPENDIX B

Detailed Diagrams and Parts Lists

•

FIGURE B2

I UNION SLEEVE 2. CONE ROD 3. FRICTION SLEEVE 150 cm² 4. CONE ROD 5. CONE SLEEVE 6 . RIM WASHER 7 . CONE 10 cm

1

Inner Rod Extensions

FIGURE B5

Instruction For Use of

Figures C1 and C2

Increasing cone resistance results in the shortening of the inner rods. To compensate for this shortening, 15 mm lengthening rods are added to the inner rods. To determine the number of lengthening rods which must be used, the force on the inner rods must be found. To determine the rod force it is necessary to obtain the gauge pressure readings for the cone (mantle cone) or cone plus friction jacket (friction jacket cone). These are the values recorded in columns 2 and 3, respectively on Figure 8. To convert the gauge pressure readings to tons:

> Rod force A x 20 (tons) 1000

> > A = Gauge pressure as defined above for the mantle cone or friction

jacket cone, whichever is used (kg/cm²)

To determine the added length of inner rod required, find the zone on Figure C1 or C2 where the intersect of the rod force (ton) and length of rod (m) falls. The figures are: Mantle cone = See Figure C1

Friction jacket cone = See Figure C2

Figures are used as follows:

Area A - penetration is made without lengthening rod

Area B - penetration is made using one 15 mm piece of lengthening rod

Area C - penetration is made using two 15 mm pieces of lengthening rods

TECHNICAL SPECIFICATION - OPERATING AND MAINTENANCE INSTRUCTIONS

.

TECHNICAL SPECIFICATION:

Load cell with gauges

Area of the measuring plunger: 20 sq cm

Measuring range of the low pressure gauge 0 - 100 kgf/sq cm

Measuring range of the high pressure gauge 0 - 600 kgf/sq cm

The low pressure gauge is protected from overload by an automatic shut-off valve which

begins operating at about 80 kgf/sq cm.

Readings on the low pressure gauge over '80 kgf/sq cm are therefore not exact.

Weight of the pressure sleeve: 1,65 kg

Weight of the pressure hammer + handle: 0-40 kg

If very accurate measurements are needed in soil with very low cone resistance, please

contact us for information on aluminum push rods and/or more sensitive equipment.

Sounding gear

A) Jacket cone; max. admissible load 7.000 kgf

weight of jacket and rod: 0.4 kg

cone base area: 10 sq cm

apex angle: 60⁰

stroke: 70 mm

B) Friction jacket cone max. admissible load: 7,000 kgf

weight of friction mantle + rod: 0.8 kg

cone base area: 10 sq cm

APPENDIX D

Technical Specifications

	apex angle: 60 ⁰	Your spare parts order can be correctly carried out only if you quote all of the following references: No. of the Machine		
	stroke of cone: 35 mm	Page Number Part Number	PARTS LIST	
	stroke of cone plus mantle: 35 mm	Fur No.	Dant No	Dupomanation
	total stroke: 70 mm	11 5 . 19.	rait no.	Methoda -
	and the set of the state of the set of the s	51	2	Union nut
	SUFINCE OF TRICTION JACKET: 150 BQ CM		3	Valve
C)	Friction reducing section tube		ł	O-ring
	• • • • • • • • • • • • • • • • • • • •		4a -	Bolt
D)	Sounding tubes:			Spring cup
			7	Spring cup bolt
	seamless: # 36/16 mm x 1000 mm long		×	()-ring
	unisht. 6 65 kg		9	House
	weigns: 0.00 Kg		11	Union bolt
F١	Inner rode:		14	Union bolt
.,			15	Ring
	🖸 15 mm x 1000 mm long		16	Bolt
		B2	1	Pressure 100 kgf/cm ²
	weight: 1.40 Kg		2	Pressure 600 kgf/cm ²
		83	1	Collar bolt
			2	Union nuts
			3	Sealing nipple
			1	Usitring
			a c	Usitring Usion bolt
			7	Cupper weeker
				Physer
			10	Plungercasing
			12	Pressure sleeve
			13	Pressure rod
			14	Pressure casing
			15	Pressure plate
	,		16	Lever
			17	Ring for continuous sounding
			18	Tube extractor
			19	Extractor nead
		· D4	1	Cone rod
			-	Core sleeve
			3	Spring washer
			5	Cone (10 sg cm ²)
			12	Friction reducing section tube
			13	Sounding tube
			14	Inner rod

APPENDIX D

.

BORING LOGS AND PHYSICAL PROPERTY DATA

TABLE	D1,	WAGONER,	BORING	Н1	
-------	-----	----------	--------	----	--

,

.

OBS	SAMPLENO	DEPTH	LOG	ж	LL	PI	N04	N010	N040	N0200	USC	LI	N/OEPTH
1	14	0.0-0.5	FAT CLAY	15.0	53	31	(100)	¥98	96	89.2	сн	-0.226	
2	18	0.5-1.0	FF 11	24.5	66	40		100	99	97.1	4	-0.038	
3	10	1.0-1.7	0 0	30.1	67	40		100	100	98.5		0.078	7/1.5
4	10	1.7-2.4	13 11	31.9	72	46		100	100	98.7	н	0.128	
5	1E	2.4-3.1		33.8	73	45		100	100	98.8		0.129	3/3.0
6	1F	3.1-3.8	11 H	31.8	71	44		100	99	97.7		0.109	
7	1G	3.8-4.1		29.1	66	41		100	100	97.9	64	0.100	
8	1H	4.1-4.8	12 14	28.1	58	35		100	99	96.9		0.146	
9	11	4.8-5.5	28 IL	32.8	74	48		100	99	98.1	11	0,142	
10	1J	5.5-6.2	F1 E1	30.9	75	49		100	99	98.1		0.100	4/6.0
11	1K	6.2-6.9	17 18	29.6	69	45		100	99	99.0	н	0.124	
12	1L	6.9-7.6	24 29	30.1	71	47		100	100	98.5		0.130	7/7.5
13	1M	7.6-8.3		30.5	67	43		100	100	98.3	15	0.151	
14	1N	8.3-9.1	19 13	29.5	68	44		100	99	97.9	11	0.125	6/9.0
15	10	9.1-9.8		30.9	66	42		100	. 99	98.1	••	0.164	
16	1P	9.08-10.5	47 74	30.5	68	45		100	99	98.3	н	0.167	6/10.5
17	19	10.5-11.2	39 48	35.4	65	42		100	99	98.3	**	0.295	
18	1R	11.2-11.9	11 11	34.0	63	39		100	99	98.1	н	0.256	6/12.0
19	1S	11.9-12.6	11 11	34.5	66	43		100	100	98.5	11	0.267	
20	17	12.6-13.3		38.4	64	41		100	100	98.3	**	0.376	6/13.5
21	10	13.3-14.0	41 64	35.8	64	42		100	99	98.5	**	0.329	
22	1V	14.0-14.3		27.7	59	35		100	99	97.5	н	0.106	
23	1W	14.3-15.0	64 64	25.5	61	38		100	99	97.3		0.066	7/15.0
24	1X	15.0-15.7	58 AF	27.4	62	39		100	99	97.7		0.113	
25	17	15.7-16.4	62 EE	26.0	63	39		100	99	98.5		0.051	5/16.5
26	1Z	16.4-17.1	64 32	26.2	62	40		100	99	97.1	**	0.105	
27	144	17.1-17.8	83 F3	25.9	55	35		100	100	94.2	**	0.169	8/18.0
28	188	17.8-18.5	14 13	24.8	55	34		100	100	96.3	**	0.112	
29	100	18.5-19.2	и н	25.7	62	38		100	99	97.6		0.045	
30	100	19.2-19.6		30.7	52	31		100	100	91.3	**	0.313	9/19.5
31	1EE	19.6-20.3	LEAN CLAY	26.6	45	26		100	100	94.9	CL	0.292	
32	1FF	20.3-21.0	a 11	24.1	40	21		100	100	89.0		0.243	8/21.0
33	lGG	21.0-21.7	o u	25.9	37	-19		100	100	94.3		0.416	
34	1нн	21.7-22.4	LEAN CLAY WITH SAND	25.5	32	15		100	100	82.7	**	0.567	4/22.5
35	111	22.4-22.7	20 40 EB 60	23.3	31	15		100	100	80.9		0.487	
36	1,1,1	22.7-23.2		26.7	28	- 11		100	100	74.0		0.882	
37	1KK	23.2-23.4		25.4	24	8		100	100	73.7		1.175	
38	166	23.4-24.1	M M M M	22.4	29	12		100	100	79.1		0.450	3/24.0
39	1MM	24.1-24.7	a 14 14 14	27.5	28	11		100	100	76.3	"	0.955	
40	1NN	.24.7-25.4	69 13 48 4F	28.7	29	13		100	100	79.1	н	0.208	0/25.5
41	100	25.4-26.1	SANDY SILTY CLAY	27.2	23	6		100	100	67.5	CL-ML	1.700	
42	100	26.1-26.8	11 11 14	24.0	24	7		100	100	62.1	CL-ML	1.000	0/27.0
43	100	26.8-27.5	LEAN CLAY WITH SAND	26.9	25	8		100	100	71.9	CL	1.238	
44	1RR	27.5-28.2	SANDY SILTY CLAY	27.0	23	5		100	100	65.0	CL-ML	1.800	7/28.5
45	1SS	28.2-28.9	67 IF 12	25.4	23	5		100	100	60.0	CL-ML	1.400	
46	177	28.9-29.7	POORLY GRADED SAND	23.5	NP	NP	[99]	¥99	95	11.6	SP-SM		9/30.0
47			WITH SILT						•				
48	100	29.7-30.4	88 66 68 88	22.2	NP	NP	[99]	*98	96	8.3	u		
49	177	30.4-31.1	99 14 17 19	23.4	NP	NP	(99)	*97	92	10.4	**		
50	188	31.1-31.6	SILTY SAND	14.8	NP	NP		100	99	12.5	SM		14/31.5
51	1XX	31.6-31.9	86 12	16.4	NP	NP	(91)	*88	83	12.1			
52	1177	31.9-33.0	SITLY SAND WITH		NP	NP	(74)	*67	60	12.4	SM	·	13/33.0
54	11₩	33.0-34.5	IT IT IT IT		NP	NP	(50)	*38	32	14.9		•	7/34.5

TABLE D1, WAGONER, BORING W1 (CONTINUED)

-

OBS	SAMPLENO	DEPTH	LOG	н	LL	PI	N04	N010	N040	N0200	USC	LI	N/DEPTH
55 56 57	11X 11XX	34.5-35.0 35.0-36.5	SILTY SAND SILTY SAND WITH GRAVEL		NP NP	NP NP	(57)	100 *46	95 37	12.3 13.6	н 15	•	11/36.5
58 59	11 ZZ	36.5-37.2	LEAN CLAY WITH SAND (SHALE)		38	12		100	95	82.4	CL	:	

.

.

۲

•

			•	_									
OBS	SAMPLEND	DEPTH	LÓG	н	LL	ΡI	N04	NO10	N040	NO200	USC	LI	N/DEPTH
,	24	0 0-0 4	EAT CLAY	16 7	67	Z 1	(97)	×04	94	80 0	CH.	-0.275	
2	28	0.0-0.4	N II	29 3	70	44	(77)	100	100	99 4	0	-0.235	
ž	20	1 0-1 6	17 21	27.5	70	42		100	100	98 5		0.079	7/1 5
2	20	1 6-2 3	a 4	22.2	72	46		100	100	98 9	11	0.151	// 1.5
5	2F	2.3-3.0	es 14	30.4	68	44		100	100	98.1		0 145	4/3 n
5	25	20 - 27		31 5	71	47		100		96.8		0.149	4/3.0
7	26	3 7-4 2	61 AL	31.8	80	54		100	100	98.5	16	0 107	6/6 E
Á	28	6 2-6 9	18 SI	31.3	75	50		100	100	98 5		0 126	-/
ă	21	4.9-5.6	64 61	29 8	66	43		100	- 44	98 3		0 159	
10	2.1	5.6-6.3	17 LL	25 4	59	29		100	áá	97 2	14	0.130	616 0
11	2K	6.3-6.9	44 82	24.5	58	38		100	99	97 9	н	0.138	4/0.0
12	21	6.9-7.5	14 H	25.7	60	38		100	99	96 9		0.110	5/7 F
13	28	7 5-8.2	sa 11	27 6	65	43	1991	*98	97	95 6	н .	0.170	3/1.3
14	2N	8 2-8.9	48 11	27 3	62	29		100	áá	97 6		0.130	7/9 0
15	20	8.9-9.2	14 13	30 0	66	42	(99)	#97	95	97 7		0.110	// 9.0
16	28	9.2-9.7	13 13	26 2	61	40		100	69	97 3		0.143	
17	20	9.7-10.4		25 4	55	34		100	áá	97 7		0.120	6/10 E
18	28	10.4-11.1	11 U	26.8	63	41		100	100	99 n		0.127	0/10.5
19	25	11.1-11.8	14 11	26 6	63	41		100	100	99.7		0.117	7/12 0
20	21	11.8-12.5		26 6	66	41		100	- 99	98 1	н	0.112	//12.0
21	211	12 5-13 2	z# z#	26 7	47	40		100	100	08 7		0.000	0 /1 7 F
22	20	17 2-17 9	11 11	26 9	45	47		100	100	70.7 Gg 7		0.095	8/15.5
27	24	13 9-14 6	11 H	24 1	44	44		100	100	97 9		0.170	
24	24	16 6-15 0	9K 9K	26 0	67	77		100	100	00 7		0.139	8/15 0
25	22	15 0-15 7	41 11	24.0	55	22		100	100	70.5 00 E		0.074	0/15.0
26	27	15.0-15.7	t4 #*	24.5	55	27		100	100	97.5		0.075	0/1/ E
27	244	16 6-17 1	CI 14	27.5	50	74		100	100	97.5		0.147	0/10.5
20	200	17 1-17 8	53 14	22.5	52	27	(100)	*00	04	90.0		0.105	11/10 0
20	200	17 8-18 5	11 14	27 1	52	22	(99)	200	70	92.2		0.109	11/18.0
20	200	18 5-18 2	LEAN CLAY	22.1	67	20	(77)	100	00	72.2	<u></u>	0.128	12/10 5
71	200	10.3-17.2		21 0	67	27		100	100	73.7		0.141	12/19.5
72	255	19.2-19.9	81 01	20.5	45	17		100	100	90.1		0.045	
77	200	20 2-20 9		10.5	60	21		100	100	87 8	**	0.000	10 (21 0
22	200	20.2-20.9	в и	22 5	70	20		100	100	07.7		0.055	10/21.0
75	277	20.7-21.0	64 14	22.2	77	10		100	100	73.0	н	0.225	
74	211	22 7-27 0	и и	22.0	76	14		100	100	72.4		0.265	/ /00 F
20	200	22.3-23.0	LEAN CLAY WITH SAND	26.5	77	14		100	100	03.5		0.281	4/22.5
70	21	23.0-23.7	LEAN CLAY HIT SAND	23.1	22	14		100	100	01.7		0.544	7 /0/ 0
20	200	23.7-24.0		23.4	24	11		100	100	71.7		0.400	3724.0
37	2010	24.U-24.I	44 12	21.7	20	10		100	100	05.0		0.627	
40	200	24.1-24.5	LEAN CLAY WITH CAND	22.5	26	11		100	100	05.4		0.250	
41	200	24.3-23.0	I I I I I	22.7	20	11		100	100	01.2		0.700	
42	200	25.0-25.4	CANDY LEAN CLAY	23.0	21	<u>+</u>		100	100	61.2		0.709	1.05 5
45	200	25.4-25.5	SANDT LEAN CLAT	27.2	21	17		100	100	02.0		1.886	1/25.5
44	266	25.5-20.2		20.7	27	10		100	100	07.0		0.900	
43	233	20.2-20.0	CTLTY CAND	20.1	27	10		100	100	92.9		1.510	
40	211	26.8-26.9	SILIT SANU	28.2	NP	NP		100	100	47.2	SM		
4/	200	20.9-27.6	SANUT SILIT LLAY	29.1	24	5		100	100	60,0	CL-ML	1.850	2/27.3
48	277	27.6-28.0		29.6	26	4		100	100	64.2		1.514	
49	2200	28.0-28.7	SILLY CLAYET SAND	24.7	22	5		100	100	45.6	SC-SM	1.540	6/28.8
50	ZXX	28.7-29.0	SILLY SAND	29.0	NP	NP		100	100	44.Z	SM		
51	211	29.0-29.7	SANDY SILTY CLAY	25.1	23	6		100	100	59.6	CL-ML	1.350	
52	ZZZ	29.7-30.1	SILLY SAND	26.2	NP	NP		100	100	28.0	SM	•	5/30.3
53	220	30.1-31.8	SILTY SAND WITH		NP	NP	1581	*47	38	13.1	**	•	16/31.8
54			GRAVEL						•	•		•	

TABLE D2, WAGONER, BORING W2

,

.

OBS	SAMPLENO	DEPTH	LOG		ж	LL	PI	N04-	N010	N040	N0200	USC	LI	N/DEPTH
55 56 57	22V 22VV	31.8-32.3 32.3-33.3	SILTY SAND POORLY GRAD	WITH GRAV DED SAND	/EL	NP NP	NP NP	(57) (60)	*44 *48	34 35	22.8 1.9	" SP-SM	•	17/33.3
58 59	22H	33.3-34.0	SILTY SAND GRAVEL	Тнітн		NP	NP	(63)	*52	4i	14.3	SM	•	
6D 61	22MM	34.0-34.8	CLAYEY SANI GRAVEL	о мітн	•	19	7	(77)	¥68	57	21.3	SC		17/34.8
62 63	22X 22XX	34.8-35.5 35.5-36.3	LEAN CLAY	(SHALE)		28 40	10 15	(B2)	*75 100	68 98	40.7 87.2	" CL	:	32/36.3

•

ſ

.

-

TABLE D2, WAGONER, BORING W2 (CONTINUED)

•

OBS	SAMPLENO	DEPTH	LOG	ж	LL	PI	NO4	N010	N040	N0200	USC	LI	N/DEPTH
1	34	0.0-0.3	FAT CLAY	15.7	52	27		100	100	95 9	СH	-0 366	
2	38	0.3-0.8	10 01	24.8	59	33		100	100	97 7		-0.036	
3	30	0.8-1.5		29.5	61	36		100	100	97.9		0 125	8/1 5
4	30	1.5-2.2		30.0	60	36		100	100	97.7		0 167	0/1.5
Ś	3F	2.2-2.9		30.1	62	37		100	100	97 9		0 165	4/3 0
6	35	2.9-3.6	LEAN CLAY	27.0	47	26		100	98	95 1	C1	0 231	0/3.0
7	36	3.6-4.0		25.2	42	22		100	97	96 1		0 274	
Ŕ	38	4.0-4.7	FAT CLAY	26.4	51	31		100	100	95 3	CH	0.230	7/4 5
9	37	4.7-5.4	14 17	25.2	54	34		100	99	96 9		0.153	174.5
10	3.1	5.4-6.1	н н	25.8	59	39		100	áá	97 3		0 149	7/6 0
11	3K	6.1-6.8	н и	25.8	56	35		100	99	97 1		0 177	//0.0
12	31	6.8-7.5		27.2	56	35		100	99.	97 3	н	0.137	9/7 E
12	3 M	7 5-8.2	11 11	28.4	58	36		100	óó	97 7		0 107	7/7.5
14	3N	8 2-8.9	11 11	26.0	56	35		100	áó	97 3	••	0.172	9/9 0
15	30	8.9-9.2	н н ¹	26.5	57	35		100	99	96 9		0.145	8/9.0
16	30	9 7 9 9	11 11	26 7	62	20		100	100	97 7		0.127	
17	20	9 9-10 6		26 2	62	τá.		100	100	97 7		0.075	7/10 E
10	70	10 4-11 3	18 84	26.2	62	20		100	100	77.7		0.056	//10.5
10	70	10.0-11.5 11 2-12 0	11 11	25.3	40	70		100	100	90.0	**	0.065	0/12 0
20	27	12.0 - 12.0	11 11	26 9	40	28		100	100	07 0		0.08/	9/12.0
21	21	12.0-12.7		25 2	42	70		100	100	97.9		0.076	- /17 F
21	30	17 6-16 1		20.2	45	67		100	100	77.7		0.056	9/13.5
22	2V 7W	16 1-16 7	07 H	24.1	E0	72		100	100	77.7		0.040	
23	70	14.1-14.5		24.0	57	27		100	100	77.7		0.070	
24	20	14.3-15.0	н и	24.0	57	27		100	77	97.1		0.076	9/15.0
25	27	15.0-15.7		29.9	57	24		100	79	2/.1		0.089	10/1/ -
20	52	15./ 10.4		24.1	50	31	(00)	100	77	70./		0.084	10/16.5
27	388	10.4-17.1		24.4	5/	20	1991	100	. 98	74.6		0.094	
28	386	17.1-17.8		24.0	54	22		100	100	96.5		0.091	11/18.0
29	300	17.0-10.5		23.2	50	20		100	44	91.9		0.107	
30	300	18.5-19.2	LEAN CLAY	25.0	49	28		100		88.8	CL .	0.071	
51	355	19.2-19.5	LEAN CLAY MITH SAND	19.7	40	22		100	100	82.3		0.077	11/19.5
32	365	19.5-20.2		21.2	30	19		100		79.7		0.221	
53	SGG	20.2-20.9		20.1	34	17		100	100	/9./		0.182	8/21.0
54	388	20.9-21.6	SANUY LEAN CLAY	22.1	27	11		100	100	70.1		0.555	
35	311	21.6-22.3	LEAN CLAY WITH SAND	23.1	28	12		100	100	78.8	u	0.592	4/22.5
36	300	22.3-23.0		24.8	28	11		100	100	75.1	"	0.709	
37	3KK	23.0-23.4		22.2	28	11		100	100	78.0		0.473	
38	3LL	23.4-23.8		22.4	2B	13		100	100	78.3		0.569	
39	3MM	23.8-24.0		22.9	30	13		100	100	82.3		0.454	3/24.0
40	3NN	24.0-24.5	SANDY LEAN CLAY	, 23.2	25	9		100	100	67.0		0.800	
41	300	24.5-25.3	SILT WITH SAND	32.7	NP	NP		100	100	79.4	ML		2/25.5
42	3PP	25.3-25.8	SANDY SILTY CLAY	24.5	23	7		100	100	61.0	CL-ML	1.214	
43	300	25.8-26.2	SILTY SAND	31.6	N۲	NP		100	100	32.5	SM		
44	3RR	26.2-27.0	SANDY LEAN CLAY	29.7	25	8		100	100	69.4	CL	1.588	3/27.0
45	355	27.0-27.4	SANDY SILTY CLAY	25.7	20	4		100	100	49.4	CL-ML	2.425	
46	3TT	27.4-28.1	SILTY SAND	24.4	NP	NP		100	100	40.6	SM		
47	รมย	28.1-28.7	0 0	24.6	NP	NP		100	100	31.8			2/28.5
48	377	28.7-29.1		24.4	NP	NP	(80)	*89	89	27.6			
49	3WW	29.1-29.8	POORLY GRADED SAND	22.4	NP	NP		100	100	10.2	SP-SM		3/30.0
50			WITH SILT					-50			0. 011	•	2, 20.0
51	388	29.8-30 5		20.6	NP	NP		100	97	6.6		•	
52	200	30 5-31 2		20.1	ND	ND		100	95	5 6		•	
52	377	31 2-31 5	STITY SAND	19 4	ND	ND	1991	¥98	91	18.8	SM	•	17/71 =
55	3-1	Z1 E_Z1 0	U U	14 2	ND	ND	(94)	201	90	19 4	JII U	·	12/21.2
24	2-1	77.3-21.4		10.2	116	116	(-0)	~ 71	00	TO'O		•	

TABLE D3, WAGONER, BORING H3

,

.

				•		•							
OBS	SAMPLENO	DEPTH	LOG	н	΄ μι	PI	N04	N010	N040	N0200	usc	LI	N/DEPTH
55	3-2	31.9-32.4	SILTY SAND	14.6	NP	NP	(95)	* 93	78	25.8			
56	3-3	32.4-32.9	и и	14.3	NP	NP	(58)	*50	46	16.4			20/33.0
57	3-4	32.9-33.5	POORLY GRADED GRAVEL	12.5	NP	NP	(53)	¥46	37	9.8	GP-GM		-
58			WITH SILT AND SAND										
59	33HH	33.5-34.5	SILT WITH GRAVEL		NP	NP	(62)	*53	42	16.3	SM		20/34.5
60	33X	34.5-35.4	CLAYEY SAND WITH		25	9	(71)	*61	50	25.8	sc		
61			WITH GRAVEL										
62	33XX	35.4-36.0	CLAYEY SAND		42	17	(95)	*93	71	38.4	**		25/36.0
63	33Y	36.0-36.8	LEAN CLAY WITH SAND		35	13	(95)	¥94	84	71.7	CL		
64			(SHALE)										

۰,

.

TABLE D4, WAGONER, BORING W4

OBS	SAMPLENO	DEPTH	LOG	н	LL	PI	NO4	NO10	N040	N0200	USC	LI	N/DEPTH
1	4A	0.0-0.3	FAT CLAY	19.3	67	43		100	99	97.9	СН	-0.109	
2	48	0.3-0.7		23.1	62	37		100	100	98.3		-0.051	
3	4C	0.7-1.4		32.7	67	41		100	100	97.7	**	0.163	4/1.5
4	40	1.4-2.1	ELASTIC SILT	30.5	66	30		100	100	97.7	MH	-0.183	
5	4E	2.1~2.8	FAT CLAY	27.1	58	36		100	99	96.4	СН	0.142	4/3.0
6	4F	2.8-3.5	16 H	29.5	63	41		100	99	97.0	**	0.183	
7	4G	3.5-4.2		29.5	66	46		100	. 99	97.1		0.206	
8	48	4.2-4.7	11 11	28.1	60	38		100	99	97.7		0.161	4/4.5
9	4I	4.7-5.1		27.3	62	41 [.]		100	99	97.5		0.154	
10	4.1	5.1-5.5	11 47	27.6	62	40		100	. 99	97.1	11	0.140	
11	4K	5.5-6.2		29.4	64	41		100	100	98.7	••	0.156	5/6.0
12	4L	6.2-6.9		29.7	67	-44		100	99	98.1		0.152	
13	4M	6.9-7.6		25.9	65	42		100	99	97.3	"	0.069	5/7.5
14	4N	7.6-8.3		27.5	68	46		100	98	96.9		0.120	
15	40	8.3-9.0		26.9	63	41		100	99	97.7		0.120	7/9.0
16	49	9.0-9.7		26.8	61	38		100	98	96.8		0.100	
17	49	9.7-10.0		26.1	61	40		100	99	97.7		D.128	
18	4R	10.0-10.7		26.6	58	- 38		100	99	96.8		0.174	8/10.5
19	45	10.7-11.4		26.6	62	40		100		98.5		0.115	
20	9T	11.4-12.1		26.5	62	40		100	100	98.3		0.108	7/12.0
21	40	12.1-12.8		25.7	61	39		100	100	98.3		0.095	
22	4V	12.8-13.5		26.4	62	40		100	99	97.9		0.110	8/13.5
23	4M	13.5-13.9		26.0	61	39		100	99	96.6		0.103	
24	4X	13.9-14.6		24.8	57	36		100	99	97.9		0.050	
25	44	14.6-15.2		25.6	5/	35		100	99	95.8		0.103	8/15.0
26	42	15.2-15.9		27.1	57	57		100	98	94.9		0.138	
27	444	15.9-16.6		27.4	50	33		100	98	95.3		0.133	3/16.5
28	488	16.6-17.5		27.9	55	32		100	99	96.4		0.179	
.29	466	17.5-17.6	11 11 11 11	20.7	50	20	(00)	100	99	96.9		0.163	
20	400	17.0-10.5	FAT CLAY WITTH CAND	25.2	50	70	(77)	100	200	75.1 06 (0.094	10/18.0
22	466	10.3-17.0	FAT CLAT HITH SAND	22.0	50	21		100	100	04.4		0.120	0/10 F
77	400	19.0-19.7	FAT CLAT	20.1	55	21		100	70	75.7		0.055	8/19.5
74	466	20 1-20 5	LEAN CLAY	27.3	44	29	(99)	*00	77	90.0	C1	0.045	
75	400	20.1-20.3	LEAN ULAT	22.7	40	20	(77)	100	7/	95 1	UL	0,168	6 (2) 0
74	411	21 2-21 0	u u	20.0	45	25		100	70	00.7		0.167	4/21.0
37	455	21 9-22 6		29 4	45	27		100	100	91 E		0.300	2/22 2
78	411	22 4-22 2		26 7	47	25		100	100	91.5		0.762	2/22.2
39	400	23 3-24 0		27 7	42	23		100	100	90 î	••	0.378	2/24 0
4ó	4NN	24.0-24.5	LEAN CLAY WITH SAND	23.2	30	13		100	100	82.5		0.570	27 24.0
41	400	24 5-25 1		24.3	26	10		100	100	80 6		0.830	
42	400	25 1-25 8		29.7	25	8		100	100	81 2		1 588	1/25 5
43	400	25.8-26.2	LEAN CLAY	31.0	27	10		100	100	98.3	u	1.400	1/23.5
44	4RR	26.2-26.5	LEAN CLAY WITH SAND3	. 9	28	10		100	100	84.8	**	1,290	
45	455	26.5-26.7		29.5	28	10		100	100	71.2		1,150	
46	411	26.7-27.1	STLTY CLAY	27.1	22	4		100	100	88.1	CL-MI	2 275	3/27 0
47	400	27.1-27.5	SANDY SILT	25.8	20	3		100	100	57.4	ML	2.933	_, _, ., ,
48	477	27.5-28.2	SILTY SAND	21.6	NP	ŇΡ		100	100	31.1	SM		9/28.5
49	4 M M	28.2-28.9		23.3	NP	NP		100	100	39.5			
50	4XX	28.9-29.6	и и	21.8	NP	NP		100	100	17.8			
51	4YY	29.6-30.0	n n	23.3	NP	NP		100	- 99	15.4			49/30.0
52	4ZZ	30.0-30.4	0 0	23.5	NP	NP	[99]	*97	93	18.8	н		
53	44G	30.4-31.2	SILTY SAND WITH		NP	NP	(50)	*40	29	13.6			
54			GRAVEL										
												-	

TABLE D4, WAGONER, BORING W4 (CONTINUED)

OBS	SAMPLENO	DEPTH	LOG			м	LL	PI	N04	N010	N040	N0200	USC	LI	N/DEPTH
55	44GG	31.2-32.0	SILTY	SAND	WITH	GRAVEL	NP	NP	(51)	*41	30	13.7			45/32.0
56	44H	32.0-32.8	.,			13	NP	NP	(76)	¥66	52	17.4	**		
57	44HH	32.8-33.5		*1		"	NP	NP	(64)	*57	44	16.5	"		19/33.5
58	44I	33.5-34.0	ų	84		**	NP	NP	(69)	*58	44	10.6	41		
59	44II	34.0-35.0	*1	3.9	11	•1	16	2	(82)	¥71	54	19.1	*1		20/35.0
60	44J	35.0-35.4	CLAYE	Y SAN	ם		35	14	(81)	*76	63	39.6	SC		
61	44JJ	35.4-36.5	LEAN 0	CLAY I	HITH :	SAND	36	11		100	94	72.2	CL		
62			(SHALI	E)							•				

,
TABLE D5, WAGONER, BORING W5

08S	SAMPLENO	DEPTH	LOG	м	LL	Ρİ	N04	N010	N040	N0200	USC	LI	N/DEPTH
1	5A	0.0-0.4	FAT CLAY	17.6	57	32		100	99	97.5	СН	-0.231	
2	5B	0.4-1.1	15 44	31.6	64	37		100	99	97.5		0.124	
3	5C	1.1-1.8	11 11	30.7	63	40		100	99	97.1		0.193	8/1.5
4	50	1.8-2.5	ан	23.9	54	33		100	98	95.7	н	0.088	
5	5E	2.5-2.9	11 11	25.4	57	35		100	98	96.4	f 1	0.097	5/3.0
6	5F	2.9-3.6	н н	27.8	60	39		100	99	97.5	11	0.174	
7	5G	3.6-4.3	14 84	26.7	60	38		100	99	97.7	**	0.124	5/4.5
8	5H	4.3-5.0	ar 18	25.8	57	36		100	98	96.4	**	0.133	27 112
9	51	5.0-5.7	11 11	27.3	63	41		100	99	97.5		0.129	7/6.0
10	5J	5.7-6.4	11 +>	27.1	68	46		100	100	98.3	**	0.111	
11	5K	6.4-6.9	31 17	26.8	57	38		100	99	90.3		0.205	
12	5L	6.9-7.6	33 FA	27.7	64	42		100	99	97.3	14	0.136	6/7 5
13	5M	7.6-8.1	m 1)	27.6	65	38		100	99	98.3	39	0.016	0/ / .5
14	5N	8.1-8.8	36 36	27.1	63	40		100	98	97.0	12	0.103	7/9.0
15	50	8.8-9.5	E4 24	26.8	67	42		100	99	98.3	**	0.043	
16	5P	9.5-10.2	E2 14	27.4	63	40		100	99	98.3	**	0.110	
17	50	10.2-10.9	P4 P3	26.7	66	43		100	99	98.5		0.086	6/10 5
18	5R	10.9-11.6	41 N	26.5	66	44		100	100	98.7		0.102	0. 10.0
19	5S	11.6-12.1	17 14	26.3	64	41		100	100	98.7		0.080	7/12.0
20	5T	12.1-12.7	11 H	26.8	66	43		100	100	98.7	**	0.088	
21	5U	12.7-13.3	18 AL	26.4	63	41		100	98	98.1	14	0.107	8/13 5
22	57	13.3-13.9	6 7 38	27.0	62	39		100	99	97.3	24	0.102	0/15.5
23	5₩	13.9-14.5	(* 33	26.2	56	33		100	98	94.8	••	0.097	
24	5X	14.5-15.1		26.0	55	32		100	98	95.2	**	0.094	9/15.0
25	5Y	15.1-15.7	10 II	26.7	56	33		100	98	95.8		0.112	// 15.0
26	5Z	15.7-16.4		25.2	55	33		100	98	96.0	11	0.097	10/16.5
27	544	16.4-17.1		23.7	53	30		100	99	96.7		0.023	10/ 10/2
28	588	17.1-17.8	1) H	24.4	54	31		100	99	96.3	**	0.045	12/18.0
29	500	17.8-18.5	38 38	24.6	54	32		100	99	93.2		0.081	
30	500	18.5-19.1	LEAN CLAY	25.5	49	29	(99)	*99	97	90.2	CL	0.190	
31	5E E	19.1-19.6	11 11	23.7	42	24	(99)	¥99	98	86.9	ū-	0.238	13/19.5
32	SFF	19.6-20.1	st 83	25.9	40	22		100	99	86.4	•1	0.359	
33	5GG	20.1-20.6	LEAN CLAY WITH SAND	23.9	38	19	(99)	*99	97	81.8	**	0.258	
34	548	20.6-21.3		22.5	35	17	(99)	*99	98	81.8	11	0.265	7/21.0
35	511	21.3-22.0	LEAN CLAY	25.9	35	16		100	99	93.8		0.431	
36	5JJ	22.0-22.6	LEAN CLAY WITH SAND	26.4	38	19		100	100	73.3	**	0.389	5/22.5
37	5KK	22.6-23.0		22.6	31	13		100	100	72.4		0.354	27 2272
38	SLL .	23.0-23.3	SANDY LEAN CLAY	22.4	25	7		100	100	68.4		0.629	
39	5MM	23.3-23.7	LEAN CLAY WITH SAND	25.1	28	11		100	100	77.5	**	0.736	
40	5NN	23.7-24.1	H H H .H	27.3	28	11	(97)	*97	97	73.7		0.936	3/24.0
41	500	24.1-24.5	SANDY SILT	26.5	19	2		100	100	47.3	ML	4.750	
42	5PP	24.5-25.1	SILTY CLAY WITH SAND	25.6	25	7		100	100	74.1	CL-ML	1.086	
43	599	25.1-25.4	SANDY SILTY CLAY	28.0	23	5	(96)	*96	96	59.0		2.000	1/25.5
44	5RR	25.4-25.9	SANDY LEAN CLAY	26.1	26	9		100	100	70.9	CL	1.011	
45	555	55.9-26.5	SANDY SILT	27.4	21	2		100	100	60.1	ML	4,200	
46	5TT	26.5-27.D	SILTY SAND	25.1	NP	NP		100	98	24.2	SM		3/27.0
47	500	27.0-27.6	SANDY SILTY CLAY	21.8	23	6		100	100	58.7	CL-ML	0.800	
48	577	27.6-28.1	POORLY GRADED SAND	21.9	NP	NP		100	99	7.2	SP-SM		7/28.5
49			WITH STIT								<u>.</u> . оп	•	
50	5555	28.1-29.0	STLTY SAND		NP	NP		100	99	26.5	SM	•	
51	55T	29.0-29.5	CLAYEY SAND		20	8	(92)	¥91	88	39.7	SC	•	
52	SSTT	29.5-30 3	STITY SAND		NP	NP	(99)	*97	85	18.7	SM	•	8/30 5
53	550	30.3-31.5			NP	NP	(97)	*94	86	16.4		•	0.00.0
54	5500	31.5-32.0	14 11		NP	NP	1741	*67	61	14.1		÷	20/32.0
								-				-	

204

TABLE	D5,	HAGONER,	BORING	₩5	(CONTINUED)
TABLE	DS,	WAGONER,	BORING	₩5	(CONTINUED)

OBS	SAMPLENO	DEPTH	LOG	М	LL	PI	N04	N010	N040	N0200	USC	LI	N/DEPTH
55 56	55W	32.0-33.5	SILTY SAND WITH GRAVEL		NP	NP	(56)	*50	42	14.0		·	6/33.5
57 58	55Y 55X	33.5-35.0 35.0-35.6	CLAYEY SAND WITH		NP 26	NP 8	(53) (62)	*45 *54	32 42	13.0 21.2	" SC	:	3/35.0
59 6D	55XX	35.6-35.9	GRAVEL LEAN CLAY (SHALE)		50	22		100	9 8	94.0	CL	:	

•

TABLE D6, WAGONER, BORING W6

OBS	SAMPLEND	DEPTH	LOG	H,	LL	PI	N04	N010	NQ40	N0200	USC	LI	N/DEPTH
1	6A	0.0-0.4	FAT CLAY	20.8	61	38		100	99	96.3	сн	-0.058	
2	6B	0.4-1.1		29.1	66	37		100	100	98.9		0.003	
3	6C	11.1-1.8		34.8	65	36		100	100	99.4		0.161	12/1 5
4	6D	1.8-2.5		32.9	67	41		100	100	98.9	и	0 168	
5	6E	2.5-3.2		31.8	72	48		100	100	98.7	14	0 163	3/3 0
6	6F	3.2-3.9	H H	25.9	61	40		100	100	97 3		0.105	3/3.0
7	66	3 9-4 4		25 4	59	29		100	100	94.7		0.125	7// 5
é	64	4 4-4 A		25 9	Ēź	ÃÉ.		100	00	70.3		0.158	//4.5
	41	4.9-5 5	н н	25.7	40	70		100	77	77.7		0.151	
ιń	41	F F_4 2		27.7	40	40		100	77	77.1		0.118	
11	44	5.5-6.2		27.5	27	40		100	99	97.5		0.183	8/6.0
11	ON ()	6.2~0.7	14 51	25.0	65	42		100	99	97.9		0.095	
12	OL (M	0.9-7.0		25.9	60	45		100	99	97.7		0.109	7/7.5
13	671	7.6-8.3		25.8	60	39		100	99	97.3		0.123	
14	6N	8.3-8.9		26.0	61	40		100	99	96.6	•1	0.125	7/9.0
15	60	8.9-9.5		27.3	66	44		100	99	97.4	"	0.120	
16	6P	9.5-10.2		27.7	65	43		100	99	97.9	11	0.133	
17	6Q	10.2-10.9		28.7	69	46		100	100	98.5	**	0.119	7/10.5
18	6R	10.9-11.6		25.8	58	39		100	100	98.3	**	0.174	
19	65	11.6-12.3	· · ·	25.7	66	44		100	99	98.3	••	0.084	7/12.0
20	6T	12.3-13.0	0 0	26.9	59	39		100	100	98.5		0.177	
21	6U	13.0-13.7	*1 16	28.8	61	39		100	100	98.3		0 174	7/17 5
22	6V	13.7-14.2	11 H	33.8	62	41		100	100	99 2		0 215	11 23.0
23	68	14.2-14.7	H D	28 8	61	40		100	100	98 7		0.215	7/15 0
24	6X	14.7-15.4	LEAN CLAY	26.8	22	16		100	100	98 5	C1	0.175	//15.0
25	6V	15 4-16 1	FAT CLAY	25 9	59	37		100	100	00.5	<u><u> </u></u>	0.015	
24	47	14 1-14 9		25.1	ĒÓ	70		100	100	77.2	un un	0.105	
20	644	16.1-10.0		25.1	50	77		100	100	70.0		0.154	//16.5
21	CAA (DD	10.0-1/.5		25.2	27	22		100	100	96.9		-0.024	
20	000	17.5-10.2		24.7	50	20		100	99	90.5		0.136	8/18.0
29	611	18.2-18.9		24.0	50	20		100	99	96.5		0.111	
30	600	18.9-19.5		23.1	52	22		100	99	94.8		0.124	6/19.5
31	6EE	19.5-20.2	LEAN CLAY	22.4	49	30		100	99	90.7	CL	0.113	
32	6FF	20.2-20.9		26.6	44	26		100	99	86.6		0.100	13/21.0
33	6GG	20.9-21.6		22.1	43	25		100	100	91.0	**	0.164	
34	6HH	21.6-22.3	· · · ·	22.3	40	22		100	100	89.1	н	0.195	
35	6II	22.3-22.7	LEAN CLAY WITH SAND	22.3	34	16		100	100	84.0		0.269	8/22.5
36	6JJ	22.7-23.3		25.5	38	19		100	100	77.4	**	0.342	
37	6KK	23.3-23.8		22.1	31	15		100	100	84.5		0.407	
38	6LL	23.8-24.1	SANDY LEAN CLAY	24.3	23	8		100	100	57.1	**	1.163	5/24.0
39	6MM	24.1-24.8	SILTY SAND	22.5	NP	NP		100	100	19.7	SM		
40	6NN	24.8-25.5	SANDY SILT	23.9	NP	NP		100	100	50.2	MI		3/25 5
41	600	25.5-26.2	SANDY LEAN CLAY	25.5	25	9		100	100	68 6	Cī.	1 054	57 25 . 5
42	600	26 2-26 4	FAT CLAY WITH SAND	22 9	61	á1		100	100	84 1		0.071	
47	400	26 6-26 7	LEAN CLAY WITH SAND	20 0	24	<u> </u>		100	100	90 4	C1	1 777	
66	400	26.7-27.1	LEAN CLAY	29.5	20	17		100	100	00.0		1.333	2/27 0
44	655	20.7-27.1	CANOV CTLT	20.5	50	12		100	100	94.7 77 F	141	0.885	2727.0
73	033	27.1-27.0	SANUT SILI	24.4	NP	NP		100	100	03.5	nL Al		
46	611	27.6-28.1	CANNY CLAT MITH SAND	25.0	25	8		100	100	/0.9	CL	1.075	
47	600	20.1-28.6	JANUT SILI	24.5	NP	NP		100	100	60.7	ri L	· ·	
48	6VV	28.6-29.0	LEAN CLAY	21.4	26	7		100	100	85.5	CL	0.343	3/28.9
49	66T	29.0-29.5	SILTY SAND		NP	NP		100	100	Z1.1	SM	•	
50	66TT	29.5-30.4	IT 14		NP	NP		100	100	35.6			3/30.4
51	66U	30.4-31.2	** **		NP	NP	(100)	*98	96	32.1			
52	9999	31.2-31.9			NP	NP	(59)	*47	40	14.9			56/31.9
53	άeV	31.9-23.6			NP	NP	(60)	*51	38	13.5			- / -
54	00VV	32.6-33.4	SILTY CLAYEY		23	4	(70)	*58	48	25.9	SC-SM		24/33.4

	TABLE D)6,	WAGONER,	BORING	W6	(CONTINUED)
--	---------	-----	----------	--------	----	-------------

. -

OBS	SAMPLENO	DEPTH	LOG	м	LL	PÍ	N04	N010	N040	N0200	USC	LI	N/DEPTH
55 56	66M	33.4-34.9	SILTY SAND WITH GRAVEL		ŅP	NP	(70)	*63	49	17.9	SM	÷	19/34.9
57 58	66X	34.9-35.5	SILTY CLAYEY SAND WITH GRAVEL		19	5	(79)	¥71	57	19.0	SC-SM	÷	
59 60	66XX	35.5-36.4	SANDY LEAN CLAY WITH GRAVEL		31	21	(91)	*86	86	67.4	CL	:	13/36.4
61 62	66Y	36.4-36.8	SILTY SAND WITH Gravel		NP	NP	(75)	¥62	58	42.7	SM	:	
63 64	66YY 66YYY	36.8-37.2 37.2-37.9	LEAN CLAY (SHALE) CLAYEY SAND (SANDY		34 33	10 13	(92)	100 *90	98 87	88.1 48.5	CL SC	:	
65			SHALEJ						•	•		•	

WATER LEVEL AT 24 HOURS: 2.6 FEET

TABLE	D7,	TULSA,	BORING	Τ1

OBS	SAMPLENO	DEPTH	LOG	H	LL	PI	N04	NO10	N040	N0200	USC	LI	N/DEPTH
1	16A	D.0-0.2	LEAN CLAY WITH SAND	24.1	34	18		100	98	81.2	CL	0.44	
2	1644	200.8	LEAN CLAY	19.2	37	21		100	100	88.9		0.14	
3	16444	0.8-1.5		15.5	31	11		100	100	91.1	н	-0.25	6/1 5
4	168	1.5-2.2		17.6	39	28		100	100	97.8		-0.05	0/1.5
5	1688	2.2-3.0		18.9	37	18		100	100	97 5	**	-0.05	4/ 7 0
6	160	30 -3.6	FAT CLAY	26 2	51	28		100	100	96.0	CH	0.00	0/3.0
7	1400	3 4-4 5	N OLAI	26 1	54	76		100	100	70.0	<u>ц</u> п 11	0.11	B.44. E
	1600	5.0-4.9 6 E-E 2		24.1	50	22		100	100	70.7		0.09	8/4.5
ŝ	1400	5 2-6 0		20.7	54	20		100	77	94.7		0.18	
	1600	5.2-0.0		23.0	50	20		100	99	91.0		0.13	//6.0
10	165	6.0-6.0		22.4	51	24		100	98	93.8		0.15	
11	IGEE	6.8-7.5		23.2	52	34		100	100	95.0		0.09	9/7.5
12	161	7.5-8.3		24.7	50	22		100	100	95.4		0.24	
13	1666	8.3-9.0		22.2	52	34		100	100	93.9		0.12	109.0
14	16G	9.0-9.7		24.3	50	33		100	99	95.5		0.21	
15	16GG	9.7-10.5		25.0	58	39		100	100	96.5		0.15	10/10.5
16	16H	10.5-11.1		23.9	51	32	(97)	¥97	96	91.9		0.16	
17	16HH	11.1-12.0	пи	22.8	50	32		100	99	93.4		0.16	10/12.0
18	161	12.0-12.8	LEAN CLAY	23.2	47	30		100	99	92.1	CL	0.20	
19	16II	12.8-13.5	ни	22.3	45	27		100	99	92.2		0.15	1013.5
20	16J	13.5-14.3		19.3	39	23		100	99	89.0		0.13	
21	16JJ	14.3-15.0	LEAN CLAY WITH SAND	19.1	41	25		100	99	83.7	••	0.12	9/15.0
22	16K	15.0-15.7	LEAN CLAY	19.7	43	27		100	100	89.4		0.15	
23	16KK	15.7-16.5		21.5	46	28		100	100	89.9		0.14	10/16.5
24	16L	16.5-17.4	LEAN CLAY WITH SAND	19.4	40	24		100	100	79.5	**	0.13	10. 10.3
25	16LL	17.4-18.0		19.2	33	19		100	100	71.6	16	0.26	9/18.0
26	16M	18.0-18.8		18.7	38	23		100	97	79.7		0.17	// 10/10
27	16MM	18.8-19.5		18.6	38	20		100	99	84.5	н	0.05	10/19 5
28	16N	19.5-20.3		19.1	37	21		100	100	84.0		0 14	107 17.5
29	16NN	20 3-21.0		23.3	37	21		100	- 99	82.3		0.14	9/21 0
žó	140	21 0-21 9		19 2	35	21		100	<u>.</u>	87 6		0.35	<i>77</i> E1.0
31	1400	21 9-22 5	LEAN CLAY	19 7	37	21		100	éé	85 3		0.24	9/27 E
77	140	22 5-22 2		21 3	40	24		100	óó	87 2		0.17	0/22.9
77	1400	27 2-24 0		20 3	20	27		100	60	87 8		0.31	0/2/ 0
76	160	23.2-24.0		21 5	67	34		100	00	07.0		0.17	9724.0
75	100	24.0-24.0		20 1	40	27		100	97	84.8		0.25	
20	1000	24.0-23.3	LEAN CLAY WITH CAND	10.1	75	20		100	100	84.7		0.15	11/25.5
20	108	25.5-20.5	LEAN CLAT MITH SAND	27.0	22	20		100	100	04.7		0.25	a (a 7 a
31	LOKK	20.3-27.0		23.0	27	20		100	100	90.7		0.30	8/2/.0
38	165	27.0-27.6		22.7	21	21		100	99	89.8		0.33	
39	1655	27.6-28.5		22.2	35	19		100	99	89.3		0.32	//28.5
40	161	28.5-29.2		21.0	37	20		100	99	91.6		0.20	_
41	1677	29.2-30.0		22.3	35	19		100	. 99	87.0		0.32	9/30.0
42	160	30.0-30.8	н в	22.6	44	28		100	100	87.2		0.25	
43	1600	30.8-31.5		22.2	35	19		100	99	89.8	н	0.32	7/31.5
44	16V	31.5-32.3	LEAN CLAY WITH SAND	21.6	31	16		100	100	78.3	"	0.44	
45	16VV	32.3-33.0	64 26 18 25	22.6	32	16		100	100	78.0	н	0.44	6/33.0
46	16W	33.0-33.5	SANDY LEAN CLAY	21.7	26	12		100	100	63.0		0.67	
47	1600	33.5-33.9	0 U N	20.9	23	9		100	100	50.4		0.89	
48	16000	33.9-34.5		20.9	28	13		100	100	65.9		0.46	6/34.5
49	16X	34.5-35.0	н н н	23.1	28	13		100	100	69.9	11	0.62	
50	16XX	35.0-36.0		24.4	26	5		100	100	65.1		1.40	4/36.0
51	16Y	36.0-36.8		23.9	25	11		100	100	60.2		0.01	
52	1677	36.8-37.5	LEAN CLAY WITH SAND	27.0	32	16		100	100	74.2		0.9	0/37 5
53	167	37.5-38.3		29.5	33	17		100	100	78.8	**	0.82	
54	1477	78 7-79 0		29 0	34	17		100	100	82 0	**	0.02	0/30 0
34	TOTE	0.7.0		67.7	74	±1		100	100	02.0		0.70	0/37.0

208

-

TABLE D7, TULSA, BORING T1 (CONTINUED)

.

OBS	SAMPLENO	DEPTH	LOG	н	LL	ΡI	N04	N010	N040	N0200	USC	LI	N/DEPTH
55	16-1	39.0-39.7	13 19 17 13	29.8	29	13		100	100	77.1	16	1.08	
56	16-11	39.7-40.5	SANDY LEAN CLAY	25.1	24	10		100	100	63.5	- 4	1.10	0/40.5
57	16-2	40.5-41.3	SILTY CLAYEY SAND	28.0	20	5		100	100	43.9	SC-SM	2.60	
58	16-22	41.3-42.1	14 II II	23.3	19	6		100	100	38.5		1.67	
59	16-22	42.1-42.6	13 14 14	25.5	19	5		100	100	40.7	11	2.40	0/42.6
60	16-3	42.6-43.4	SANDY LEAN CLAY	26.8	26	11		100	100	58.7	CL	1.09	
61	16-33	43.4-44.1	14 11 11	29.5	26	11		100	100	61.2		1.36	1/44.1
62	16-4	44.1-44.6	SILTY SANO	25.3	19	3		100	100	36.3	SM	3.00	
63	16-44	44.6-45.1	SANDY LEAN CLAY	31.0	36	16		100	98	69.4	CI	0.74	
64	16-44	45.1-45.6	STITY SAND	21.2	17	1		100	86	29.2	SM	5.00	6/45 6
65	16-5	45.6-46.4	11 11	19.6	20	2		100	80	32.4		1.00	0, 1910
66 67	16-55	46.4-47.1	SILTY SAND WITH	19.0	20	2P	(80)	*69	60	27.2	**	0.50	13/47.1
68 4 9	16-6	47.1-47.7	SILTY CLAYEY SAND	17.4	21	5	(82)	*65	57	31.2	SC-SM	0.20	
70	16-66	47.7-48.6	LEAN CLAY	12.1	29	11		100	99	94.8	CL	-0.55	99/48.6

TABLE D8, TULSA, BORING T2

			TAPEL	,		00/12/1	0 12						
08S	SAMPLENO	DEPTH	LOG	ж	LL	PI	N04	NO10	N040	N0200	USC	LI	N/OEPTH'
1	17A	0.0-0.5	LEAN CLAY	9.7	40	23	(99)	*98	96	87.2	CL		
2	17AA	0.5-0.7	CLAYEY GRAVEL	3.2	39	21	(35)	*28	27	26.5	GC		
3	17444	0.7-1.2	LEAN CLAY	12.0	38	20		100	97	87.8	ĊĹ		
4	17-4A	1.2-1.5	LEAN CLAY WITH SAND	15.1	32	14		100	98	75.0	н,		17/1.5
5	17B	1.5-2.4	и н н н	18.4	33	16	(93)	*92	90	71.6			
6	1788	2.4-3.0	LEAN CLAY	28.8	41	23		100	99	93.6	**		10/3.0
7	170	3.0-3.7	11 11	24.4	49	29		100	99	96.3			
à	1700	3.7-4.5	FAT CLAY	31.2	54	33		100	99	97.5	СН		3/4.5
, 9	170	4.5-5.2	42 EB	25.1	53	34		100	99	95.4	19		
ιó	1700	5.2-6.0	н а	28.7	52	34		100	98	94.4	н	•	676 0
îĭ	175	6.0-6.7	ы п	22.0	53	36		100	99	94.8		·	0/0.0
12	1755	6.7-7.5	84 3R	28.7	54	36		100	99	93.8	41	·	7/7 5
13	176	7.5-8.2	11 HL '	22.8	52	35		100	99	95.2	**	·	
14	1755	8.2-9.0	44 34	27.2	51	33		100	98	93.0		•	7/9 0
15	176	9.0-9.7	LEAN CLAY	20.7	49	22		100	99	94.8	C1	·	<i></i>
16	1766	9.7-10.5	FAT CLAY	32.8	53	34		100		94.6	сн	·	7/10 F
17	178	10 5-11.2	8 0	23.1	54	35		100		95 0		·	// 10.5
18	1788	11.2-12.0	12 H	24.2	56	38		100	99	96.5	н	·	7/12 0
19	171	12.0-12.7	15 37	22.5	57	35		100	99	96.5	11	·	<i>// 12.0</i>
20	1711	12.7~13.5	11 12	21 0	50	32		100	99	97.7		·	8/17 5
21	171	13 5-14 2	LEAN CLAY	21 7	44	26		100	99	97 7	C1	•	0/15.5
22	1711	16 2-15 0	H H	24 6	45	28		100		92 A		•	10/15 0
27	170	15 0-15 7	14 es	17.8	48	31		100		90.8	4	•	10/15.0
24	1788	15 7-16 5	11 H	22.8	68	30		100	100	91 6	**	•	14714 E
25	171	16 5-17 2	11 H	19 7	46	29		100	100	88 7		•	14/10.5
24	1711	17 2-18 0	LEAN CLAY WITH SAND	18 5	75	20		100	100	73.9	**	•	9/19 0
27	176	18 0-18 7		18.6	37	18		100	100	75 5		·	// 10.0
28	1 7 MM	18 7-19 5		18 9	37	22		100	100	80.3		•	7/19 5
20	17N	19 5-20 2	14 11 44 11	18 7		27		100	100	84 5	"	•	1/17.5
žó	1 750	20 2-21 0		25.7	74	19		100	100	82 7		•	7/21 0
71	170	21 0-21 7	LEAN CLAY	20.7	77	21		100	99	02.5 05 5		•	//21.0
72	1700	21.0-21.7	LEAN CLAY WITH SAND	18 0	74	19		100	100	80 0		•	7/22 5
77	1700	22.7-22.3	LEAN CLAY	21 1	70	27		100	100	84.7		•	1122.5
20	1700	27 2-26 0		20 7	79	26		100	100	97 4		·	E /24 0
24	170	26 0-26 7		21 9	70	22		100	100	07.0		·	5/24.0
35	1700	24.0-24.7	34 13	27.0	37	20		100	77	94 2		•	7/25 5
50	170	24./-25.5		20.0	20	10		100	77	00.2		·	1125.5
3/	176	23.3-20.2	I FAN CLAY WITTH CAND	20.9	20	10		100	77	00.7		•	F /07 0
- 58	1788	20.2-2/.0	LEAN LLAT MITH SAND	51.5	- 24	1H		100	99	04.4			5777.0

. WATER LEVEL AT 24 HOURS: 12.7 FEET

TABLE D9, COLLINSVILLE, BORING C1

OBS	SAMPLENO	DEPTH	LOG	м	LL	PI	N04	NO10	N040	N0200	USC	LI	N/DEPTH
1	14	0.0-0.5	FAT CLAY	16.4	60	34		100	100	96.3	СН		
2	144	0.5-1.1	11 11	16.3	50	28		100	100	93.9	**		
3	1444	1.1-1.5	11 U	36.1	56	32		100	100	95.0			14/1.5
4	1B	1.5-2.2	FE 10	23.0	50	29	(99)	¥99	99	88.1	**		
5	1BB	2.2-3.0		36.4	57	36		100	100	88.1	**		4/3.0
6	10	3.0-3.7	FAT CLAY WITH SAND	23.6	61	42	(100)	*99	98	82.7	11		
7	100	3.7-4.5		30.5	57	39		100	99	80.4	**		5/4.5
8	10	4.5-5.2	SANDY LEAN CLAY	18.7	42	26		100	99	63.0	CL		
9	100	5.2-6.0		24.9	34	20		100	100	55.2			7/6.0
10	1E	6.0-6.7	84 EI 48	17.5	32	18		100	100	53.2		-	
11	165	6.7-7.0	CLAYEY SAND	18.5	24	9		100	100	49.4	SC	-	
12	1EEE	7.0-7.5	68 11		23	8	(100)	¥99	99	45.2		-	3/7.5
13	1F	7.5-8.0	a n		24	9	(92)	*88	86	43.5			
14	1FF	8.0-8.5	SILTY CLAYEY SAND		22	7	(93)	*90	89	37.2	SC-SM		
15	1FFF	8.5-9.0	CLAYEY SAND		23	8	(88)	*84	80	37.1	SC		5/9.0
16	16	9.0-9.6	SILTY CLAYEY SAND		22	7	(72)	*65	60	29.6	SC-SM	•	_, , , , ,
18	166	9.6-10.3	SILTY SAND WITH		21	2	(74)	*69	61	27.6	SM	:	
20	1666	10 3-10.5	STITY CLAYEY SAND		21	5	(91)	¥79	69	33.4	SC-SH	•	23/10 5
21	14	10.5-10.7	H H H		22	5	1651	#63	60	43.0	"	•	237 10.3
22	1 111	10 7-11 4	LEAN CLAY		3/8	16		100	96	87 7	C 1	•	
23	1 ннн	11.4-11.6	LEAN CLAY INFATHERED		33	14		100	95	70.5		·	10. 20.10
24			SHALE)									:	R 3 3/16"

1

WATER TABLE AT 24 HOURS: 7.3 FEET

•

TABLE DIO	COLLINSVILLE,	BORING C2
-----------	---------------	-----------

			14022	010, 0	orer in		-,	10 02					
OBS	SAMPLENO	DEPTH	LOG	ж	LL	PI	NO4	NO10	N040	N0200	USC	LI	N/DEPTH
1	2A	0.0-0.7	LEAN CLAY	14.0	47	24		100	100	97.1	CL		
2	2AA	0.7-1.5	II II	29.8	49	25		100	100	97.1			8/1.5
3	2B	1.5-2.2	10 11	18.5	45	24		100	100	97.7	**		
4	2BB	2.2-3.0		33.9	45	26		100	100	96.1			11/3.0
5	2C	3.0-3.9		11.0	31	12		100	100	90.6	"		
6	200	3.9-4.5	14 14	27.3	32	14		100	100	92.4			13/4.5
7	2D	4.5-5.0	en 96	19.7	33	16		100	100	87.2	**		
8	500	5.0-5.2		15.6	43	24		100	100	96.0			
9	20DD	5.2-6.0	и и	34.6	38	18		100	99	95.9			10/6.0
10	2E	6.0-6.7	14 41	18.6	44	25		100	99	94.6			
11	2E E	6.7-7.5	** **	27.5	47	27		100	99	94.4	**		10/7.5
12	2F	7.5-8.2	FAT CLAY	25.1	53	32		100	99	94.5	СН		_
13	2FF	8.2-9.0		38.4	51	32		100	99	93.9			10/9.0
14	2G	9.0~9.7	GRAVELLY FAT CLAY	29.2	58	38	(78)	*59	58	56.1			
15			WITH SAND							•			
16	2GG	9.7-10.5	FAT CLAY	32.6	54	35		100	99	94.9			9/10.5
17	2H	10.5-11.2	66 II	22.9	52	33		100	99	95.6	н	÷	//
18	2HH	11.2-12.0	LEAN CLAY	32.0	41	24		100	98	95.4	CL		9/10.5
19	21	12.0-12.7	14 11	23.8	42	24		100	99	94.8	0		
20	211	12-7-13.5	н н	31.9	38	24		100	99	94.6		÷	4/13.5
21	2J	13.5-14.2	AU 10	27.7	36	19		100	100	93.8			
22	2JJ	14.2-15.0	êz 14	31.9	3B	20		100	99	95.4			3/15.0
23	ZK	15.0-15.7	ti li	24.9	34	16		100	100	94.0			5, 15.0
24	2KK	15.7-16.5	нч	32.4	34	16		100	99	92.8	н		0/16.5
25	2L	16.5-17.2		26.0	35	16		100	100	96.7			
26	ZLL	17.2-18.0		33.6	41	23		100	100	96.2			0/18.0
27	2M	18.0-18.7		40.2	42	24		100	100	97.7			
28	2MM	18.7-19.1	11 14	28.9	41	24		100	100	95.9			
29	2MMM	19.1-19.5		28.6	31	13		100	99	89.9		÷	0/19.5
30	2N	19.5-20.2	и н	25.9	30	12		100	100	91.0			
31	2NN	20.2-21.0		27.9	28	10		100	100	91.8			1/21.0
32	20	21.0-21.7		26.6	30	11	(99)	*93	92	87.3	ы	÷	
33	200	21.7-22.5	41 11	28.9	29	10		100	100	92.2		÷	1/22 5
34	2P	22.5-23.2	LEAN CLAY WITH SAND	28.5	27	10		100	100	78.1	н		
35	2PP	23.2-24.0	LEAN CLAY	28.0	28	11		100	99	88.1	н.	÷	0/24 0
36	20	24.0-24.8	LEAN CLAY WITH SAND	25.5	26	9		100	100	77.1			0, 2110
37	200	24.8-25.5		29.5	29	13		100	100	80.5		•	1/25 5
38	2R	25.5-26.1	н и и п	32.9	28	12		100	100	74.4	14	•	1, 19.9
39	2 R R	26.1-26.4		27.6	27	īī		100	100	78.9		•	
40	2RRR	26.4-27.0	LEAN CLAY	30.6	32	15		100	100	91.8	••	•	0/27 0
41	25	27.0-27.7	LEAN CLAY WITH SAND	31.8	28	11		100	100	79 4		·	0/2/.0
42	255	27.7-28.5		30.9	28	10		100	100	77 9		•	0/28 5
43	2T	28 5-29 2	SANDY LEAN CLAY	25 3	25	Â		100	100	68 6		·	0/20.5
44	211	29 2-30 0	LEAN CLAY WITH SAND	32 2	26	ä		100	100	77 8		•	1/70 0
45	211	30 0-30 7		30 1	29	íı		100	100	82 6		•	1/50.0
44	21111	30 7-31 5		20.1	28	<u>.</u>		100	100	78 0		•	0/71 5
47	21/	31 5-32 2	SANDY LEAN CLAY	26 6	24	10		100	100	42 0	н	·	0/51.5
48	21/1/	22 2-22 0	LEAN CLAY WITH SAND	77 0	24	11		100	100	71 0		•	0/77 0
40	24	32,2-33.0	I P N II	20 6	20	12		100	100	75.9		•	0/35.0
50	266	22 6-22 0	STITY SAND	20 1	20			100	100	27 7	CM	•	
51	200	ZZ 9_Z4 4	N H	20 2	ND	ND		100	97	20 6	50	•	
51	2000	76 6-76 0	CANDY LEAN CLAY	20 4	25	10		100	100	44.0	<u></u>	•	2 /7 / 0
54	24	34.4-34.9	SANUT LEAN LLAT	28.0	25	10	(04)	100	100	60.9	CL CH	·	2/54.9
50	<u>60</u>	34.7-33./	CLAVEY CAND	21.0	20	4	(96)	*80	65	41.2	SU-SM	•	
54	288	33./-30.4	LLATEY SANU	18.4	25	8	(87)	*/5	68	45.8	SC		5/36.4

TABLE DIO, COLLINSVILLE, BORING C2 (CONTINUED)

OBS	SAMPLENO	DEPTH	LOG	ж	LL	PI	N04	NO10	N040	N0200	usc	LI	N/DEPTH'
55	2Y	36.4-37.2	SANDY LEAN CLAY	23.8	26	9	(100)	*99	97	66.9	CL		
56	277	37.2-37.9	LEAN CLAY WITH SAND	22.6	29	12		100	99	71.5			3/37.9
57	27	37.9-38.5	SANDY LEAN CLAY	21.4	28	10	197)	*94	92	64.7			
58	277	38.5-39.2	SANDY SILTY CLAY	22.4	22	6		100	100	56.5	CL-ML		
59	2777	39.2-40.0	n n 0	24.0	24	7		100	92	66.9			4/40.0
60	2-1	40.0-4D.3		24.4	22	5		100	100	57.1			
61	2-11	40.8-41.5	SILTY SAND	26.2	NP	NP		100	100	36.3	SM		9/41.5
62	2-2	41.5-42.1	SANDY SILT	22.1	19	3		100	99	52.0	ML		<i>,,</i> , , , , , , , , , , , , , , , , , ,
63	2-22	42.1-42.5	SILTY SAND	20.4	NP	NP		100	99	35.2	SM		
64	2-222	42.5-43.0	SILTY SAND WITH	12.8	NP	NP	(76)	*66	62	18.4			35/43.0
65			GRAVEL										55, 1510
66	2-3	43.0-43.7		13.4	NP	NP	(68)	*54	38	19.4	14		
67	2-33	43.7-44.5		13.0	NP	NP	(85)	*81	65	24.1			74/44.5
68	2-4	44.5-45.3	SILTY GRAVEL WITH	14.6	NP	NP	(53)	*40	36	22.1	GM		
69	-	. –	SAND										
70	2-44	45.3-46.D	SILTY SAND	15.9	NP	NP	(60)	*45	39	17.9	SM		27/46.0
71	2-5	46.0-46.4	u - u	13.0	NP	NP	(65)	*51	38	29.1			2
72	2-55	46.4-47.5	LEAN CLAY (SHALE)	15.7	31	9		100	96	89.9	CL		42/47 5
73	2-6	47.5-48.2	······································	10.5	32	12	(100)	*99	96	88.9	<u>.</u> -		5, 38, 50
74									•	•		•	R 2 1/8"

LOCATION: N.H. 1/4, N.E. 1/4, N.E. 1/4, SEC 15, T 22 N,R 14 E ROGERS COUNTY

WATER LEVEL AT 24 HOURS: 17.8 FEET

TABLE D11, BIXBY, BORING B1

OBS	SAMPLENO	DEPTH	LOG	н	LL	ΡI	N04	N010	N040	N0200	USC	LI	N/DEPTH'
1	5A	0.0-0.8	LEAN CLAY		2B	8		100	100	87.4	CL		
2	544	0.8-1.5	SANDY LEAN CLAY		32	16		100	100	61.8	14		6/1.5
3	58	1.5-2.1	LEAN CLAY WITH SAND		26	. 9		100	100	73.4			
4	588	2.1~3.0	SILTY CLAY WITH SAND		23	5		100	100	79.3	CL-HL		2/3.0
5	5C	3.0-3.6	SANDY SILT		22	2		100	100	68.0	ML		
6	500	3.6-4.5	SANDY SILTY CLAY		23	4		100	.100	67.9	CL-HL		2/4.5
7	50	4.5-4.8	SILTY CLAY WITH SAND		23	5		100	100	81.0			
8	500	4.8-5.5	LEAN CLAY WITH SAND		30	14		100	100	80.2	CL		
9	5000	5.5-6.0	<u> </u>		32	15		100	100	77.1	ū T		0/6.0
10	5E	6.0-6.6	SANDY LEAN CLAY		31	15		100	100	61.8	61	•	
11	5EE	6.6-7.4	LEAN CLAY WITH SAND		30	15		100	100	74.0		•	0/7 5
12	5F	7.4-8.3	SANDY LEAN CLAY		28	13		100	100	65.8	. 0	•	0777.2
13	SFF	8.3-9.0			28	14		100	100	63.2	15	•	3/9 0
14	5G	9.0-9.7	4 9 9		29	14		100	100	61.8	· ••	•	37 7.0
15	5GG	9.7-10.4			27	13		100	99	56.1		•	6/10 5
16	5H	10.4-11.1			28	13		100	100	59.9		•	
17	5HH	11.1-12.0			27	12		100	100	60.1	**		5/12 0
18	51	12.0-12.8			28	13		100	99	60.1			J/ 12.0
19	511	12.8-13.5			29	13		100	100	65.8			0/13 5
20	5.1	13.5-14.2	LEAN CLAY WITH SAND		29	13		100	100	70.6			07 23.5
21	5.1.1	14.2-15.0			31	15		100	100	77.8			0/15 0
22	5K	15.0-15.8			30	15		100	100	70.2			07 2010
23	566	15.8-16.5			35	20		100	98	76.9		•	0/16 5
24	5L	16.5-17.2	SANDY LEAN CLAY		30	15		100	100	64.9			0/ 2015
25	511	17.2-18.0	SILTY CLAYEY SAND		22	4		100	100	45.3	SC-SM		5/18.0
26	5H	18.0-18.8	SANDY LEAN CLAY		27	12		100	100	56.9	CI	•	5/ 10/0
27	5MM	18.8-19.5			24	10		100	98	57.5		•	3/19 5
28	5N	19.5-20.1			37	21		100	96	68.8		•	37 1 7 . 3
29	5NN	20.1-20.4	LEAN CLAY		46	26	(100)	#99	96	86.5		·	
λή	5NNN	20.4-20.8	LEAN CLAY WITH SAND		40	19	1991	*96	91	76.2		•	
21	ENAM	20 8-21 0	SANDY LEAN CLAY		6.2	23		100	100	68 2		•	9/21 0
72	212444	20.0-21.0	(WEATHERED SHALE)					100	100	00,2		·	77 64.0
33	50	21.0-21.4	и и и (п и)		35	16		100	99	94.3		:	50R1 1/4"

LOCATION: N.H. 1/4, S.H. 1/4, S.E. 1/4, SEC 9, T 17 N,R 13 E TULSA COUNTY

WATER LEVEL AT 24 HOURS: 14.1 FEET

.

-

TABLE D12, ROLAND, BORING R1

OBS	SAMPLENO	DEPTH	LOG	м	LL	PI	N04	N010	N040	N0200	USC	LI	N/DEPTH
1	3A	5.7-6.1	FAT CLAY	50.8	81	51		100	100	99.6	СН	0.41	
2	3AA	6.1-6.8	10 II	50.6	77	53		100	100	99.4	•	0.50	
3	3AAA	6.8-7.2		41.3	75	51		100	100	99.8	н	0.34	0/7.2
4	38	7.2-7.9	14 N	48.0	87	59		100	100	98.5		0.34	
Ś	388	7.9-8.7		42.5	82	54		100	100	99.6		0 27	2/8 7
6	30	8.7-9.2		41.6	81	54		100	100	98.7	н	0.27	2/0.7
7	300	9 2 9 7	0 U	42 5	87	59		100	100	99.4		0.27	
á	2000	9 7-10 2		43 7	73	46		100	100	97.0		0.25	7/10 0
	70	10 2-10 7		47 1	64	40		100	100	77.0		0.56	5/10.2
17	200	10.2-10.7		47.1	70	65		100	100	99.6		0.22	
10	500	10.7-11.2		43.3	70	20		100	100	99.8		0.13	
11	3000	11.2-11.7		45.4	91	60		100	100	99.4		0.24	3/11.7
12	3E	11.7-12.2		49.0	100	/5		100	100	99.6		0.32	
13	3EE	12.2-12.7		38.8	87	55		100	100	99.6		0.12	
14	3EEE	12.7-13.2	11 H	37.8	92	58		100	100	99.6		0.07	3/13.2
15	3F	13.2-13.7		39.6	88	59		100	100	99.8	н	0.18	
16	3FF	13.7-14.2		39.3	83	53		100	100	99.6		0.18	
17	3FFF	14.2-14.7		40.7	90	59		100	100	99.6		0.16	3/14.7
18	3G	14.7-15.4		45.1	87	56		100	100	99.3	••	0.69	
19	3GG	15.4-16.2		42.1	86	54		100	99	98.7	••	0.23	4/16.2
20	3H	16.2-16.7	a a	39.8	93	64		100	100	99.6		0 17	
21	388	16.7-17.2	14 TE	40.0	91	63		100	100	99.6		0 19	
22	3444	17 2-17 7	н н	43.4	98	70		100	100	99 3		0 22	7/17 7
22	27	17 7-17 9	44 14	47.9	ÁG	62		100	100	99 I		0.22	3/1/./
26	277	17 9-18 7	AC 14	47 7	77	48		100	100	00 Z		0.27	
27	7777	10 7-10 2		66 2	72	44		100	100	77.3		0.30	
24	71	10.7-10.7	н н	75.7	72	67		100	100	97.0		0.57	4/19.2
27	33	19.2-19.7	14 H	40.7	70	50		100	100	75.0		0.23	
2/	500	17.7-20.2		40.3	97	50		100	100	77.5		0.23	
20	5000	20.2-20.7		40.1	22	50		100	100	99.0		0.25	3/20.7
29		20.7-21.2		20.0	02	55	(100)	100	77	90.7		0.18	
50	SKK	21.2-21.7		20.4	90	65	(100)	*99	100	98.6		0.18	
21	SKKK	21.7-22.2		42.2	04	50		100	100	99.5		0.25	3/22.2
32	. 31	22.2-22.7		38.6	91	62		100	100	91.1		0.15	
55	SEL	22.7-25.2		56.5	84	/5		100	99	98.9		0.35	
34	3LLL	23.2-23.7		40.6	91	63		100	100	99.8		0.20	4/23.7
35	3M	23.7-24.2		41.6	93	66		100	100	99.7	•	0.22	
36	3MM	24.2-24.7		41.5	92	63		100	100	99.6		0.20	
37	311111	24.7-25.2		43.3	92	65		100	100	98.8		0.25	5/25.2
38	3N	25.2-25.7		45.9	98	68		100	100	100.0		0.23	
39	3NN	25.7-26.2		38.3	91	62		100	100	99.8		0.15	
40	3NNN	26.2-26.7		45.3	94	64		100	100	100.0		0.24	5/26.7
. 41	30	26.7-27.2	n 0	44.0	92	63		100	100	100.0		0.24	
42	300	27.2-27.7	n n	38.9	86	59		100	100	100.0		0.20	
43	3000	27.7-28.2		47.6	92	62		100	100	99.9		0.28	4/28.2
44	3P	28.2-28.7		47.4	89	61		100	100	99.8		0.32	
45	3PP	28.7-29.2	48 18	58.9	96	66		100	100	99.8		0.44	
46	3PPP	29.2-29.7	11 N	59.7	100	66		100	100	99.8		0.39	3/29 7
47	30	29.7-30.2	н н	62.8	90	59		100	100	100.0		0.54	
48	002	30.2-30.7		59.7	84	56		100	100	99.7		0.57	
40	0002	30 7-31 2		62 6	85	57		100	100	99.8		0.40	
50	20002	31 2-31 7		66 6	86	58		100	100	100.0	11	0.00	0/71 7
51	20	31 7-32 2		44 7	82	54	11001	*97	100	92 F		0.05	0/31./
51	700	72 2-72 7		52.7	54	74	(100)	100	100	76.5		0.72	
54	388	32.2-32.1		56.5	24	20		100	100	94.7 07.0		0.95	
55	3888	52.7-55.2		31.2	55	50	() 00 -	100	100	97.9		0.54	1/33.2
54	35	53.2-33.9		26.0	54	37	1100 }	*98	96	92.7		0.24	

.

TABLE	D12,	ROLAND,	BORING	R1	(CONTINUED)

OBS	SAMPLENO	DEPTH	LOG	н	LL	PI	N04	N010	N040	N02D0	USC	LĪ	N/DEPTH'
55 56	3SS 3T	33.9-34.7 34.7-35.4	LEAN CLAY	39.2 24.2	48 49	30 30	(100 100	100 100	98.1 97.7	CL	0.71	4/34.7
57 58 59	3TT 3U 3UU	35.4-36.2 36.2-36.7 36.7-37.2	FAT CLAY """ LEAN CLAY	27.7 32.2 25.3	51 50 44	33 30 27	(100)	100 100	95 100 97	89.6 96.4 90.2	CL	0.29 0.41 0.31	4/36.2
60 61 62	3UUU 3V	37.2-37.7 37.7-39.2	FAT CLAY POORLY GRADED SAND WITH SILT	51.5	70 NP	46 NP	(100)	100 *95	100 15	99.0 9.4	CH SP-SM	0.60	5/37.7 1/39.2

.

LOCATION: S.E. 1/4, S.M. 1/4, S.E. 1/4, SEC 19, T 11 N, R 27 E AND S.W. 1/4, S.E. 1/4, S.E. 1/4, SEC 19, T 11 N, R 27 E SEQUOYAH COUNTY

MATER LEVEL AT 24 HOURS: 6.3 FEET

•

.

.

APPENDIX E

CPT DATA

TABLE E1, WAGONER, BORING W1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	7	FAT CLAY	СН	2300	73.3	3.1870
2	7	FAT CLAY	СН	4000	126.7	3.1675
3	7	FAT CLAY	СН	4800	213.3	4.4437
4	7	FAT CLAY	СН	4000	193.3	4.8325
5	7	FAT CLAY	СН	3800	220.0	5,7895
6	7	FAT CLAY	СН	3500	260.0	7.4286
7	7	FAT CLAY	CH	3400	213.3	6.2735
8	7	FAT CLAY	CH	3300	266.7	8.0818
10	. 7	FAI CLAY	CH	3700	286.7	7.7486
10	1	FAT CLAY	CH	3800	306.7	8.0/11
12	7	FAT CLAT		5100	2/3.3	8.8161
17	7	FAT CLAT		2000	200.7	10 8000
14	7	FAT CLAT		Z100	240 0	9 7971
15	7	FAT CLAY	CH	2900	273 3	9 4241
16	7	FAT CLAY	CH ·	2300	253.3	11 0130
17	7	FAT CLAY	СH	2200	233.3	10.6045
18	7	FAT CLAY	СH	2100	180.0	8.5714
19	7	FAT CLAY	CH	2400	160.0	6.6667
20	7	FAT CLAY	СН	2200	126.7	5.7591
21	7	FAT CLAY	СН	2100	140.0	6.6667
22	7	FAT CLAY	СН	2400	146.7	6.1125
23	7	FAT CLAY	CH	2300	140.0	6.0870
24	<u> </u>	FAT CLAY	CH	2100	146.7	6.9857
25	<u>/</u>	FAI CLAY	CH	1900	140.0	7.3684
20	7	FAT CLAT		1700	146.7	8.6294
28	7	FAT CLAT		1900	140.7	0.0294 E 0270
20	7	FAT CLAT		1600	100.7	2 5000
30	7	FAT CLAY	СН	1900	40.0	2 1053
31	7	FAT CLAY	СН	1900	40.0	2,1053
32	7	FAT CLAY	CH	1900	53.3	2.8053
33	7	FAT CLAY	CH	1900	60.0	3.1579
34	7	FAT CLAY	СН	1900	73.3	3.8579
35	7	FAT CLAY	СН	1900	66.7	3.5105
36 .	7	FAT CLAY	CH	1900	66.7	3.5105
37	7	FAT CLAY	СН	2100	80.0	3.8095
38	7	FAT CLAY	СН	2000	93.3	4.6650
39	7	FAT CLAY	CH	2000	73.3	3.6650
40	<u>/</u>	FAT CLAY	CH	1900	73.3	3.8579
41	7	FAI ULAT		2200	6U.U 77 7	2.7273
42	7	FAT CLAT		2200	/5.5	2.2210
44	7	FAT CLAY	СН	2100	60.0	2.05/1
45	7	FAT CLAY	СН	2000	60.0	3,0000
46	7	FAT CLAY	СН	2100	60.0	2.8571
47	7	FAT CLAY	CH	2000	40.0	2.0000
48	7	FAT CLAY	СН	2100	60.0	2.8571
49	7	FAT CLAY	СН	2100	46.7	2.2238
50	7	FAT CLAY	СН	2000	53.3	2.6650
51	7	FAT CLAY	СН	2100	60.0	2.8571
52	7	FAT CLAY	CH	2100	66.7	3.1762
53	7	FAT CLAY	CH	2100	93.3	4.4429
54	/	FAT CLAY	СН	2100	73.3	3.4905

.

.

•

TABLE E1, WAGONER, BORING W1 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	7	FAT CLAY	СН	2400	80 O	Z ZZZZ Z
56	7	FAT CLAY	CH	2700	53 3	1 97407
57	7	FAT CLAY	CH	2500	57 7	2 13200
58	7	FAT CLAY	CH	2300	57 7	2 31739
59	7	FAT CLAY	CH	2400	66.7	2 77917
60	7	LEAN CLAY	CI	2400	80.0	2 22222
61	7	LEAN CLAY	cī .	2400	57 7	2 22083
62	7	LEAN CLAY	ĊĹ .	2400	66.7	2.77917
63	7	LEAN CLAY	Č.	2700	66.7	2.47037
64	7	LEAN CLAY	CĪ	2100	60 0	2 85714
65	7	LEAN CLAY	ČĹ	1800	73.3	4.07222
66	7	LEAN CLAY	CL.	1500	40.0	2.66667
67	7	LEAN CLAY W/SAND	ČĹ	1300	40.0	3.07692
68	7	LEAN CLAY W/SAND	ĊĹ	1400	46.7	3.33571
69	7	LEAN CLAY W/SAND	CL	1800	40.0	2.22222
70	7	LEAN CLAY W/SAND	CL	1300	26.7	2.05385
71	7	LEAN CLAY W/SAND	CL	1200	20.0	1.66667
72	7	LEAN CLAY W/SAND	CL	1500	33.3	2.22000
73	7	LEAN CLAY W/SAND	CL	1500	40.0	2.66667
74	7	LEAN CLAY W/SAND	CL.	1600	53.3	3.33125
75	7	LEAN CLAY W/SAND	CL	1900	26.7	1.40526
76	7	LEAN CLAY W/SAND	CL	2300	20.0	0.86957
77	7	LEAN CLAY W/SAND	CL	1700	26.7	1.57059
78	7	SANDY SILTY CLAY	CL-ML	1700	40.0	2.35294
79	7	SANDY SILTY CLAY	CL-ML	1800	60.0	3.33333
80	7	SANDY SILTY CLAY	CL-ML	1400	0.0	0.00000
81	. 7	SANDY SILTY CLAY	CL-ML	3200	153.3	4.79062
82	7	LEAN CLAY W/SAND	CL	1900	80.0	4.21053
83	7	LEAN CLAY W/SAND	CL	1700	13.3	0.78235
84	7	SANDY SILTY CLAY	CL-ML	3100	73.3	2.36452
85	7	SANDY SILTY CLAY	CL-ML	4500	126.7	2.81556
86	7	SANDY SILTY CLAY	CL-ML	4300	113.3	2.63488
87	7	SANDY SILTY CLAY	CL-ML	4000	66.7	1.66750
88	7	SANDY SILTY CLAY	CL-ML	6000	340.0	5.66667
89	7	SILTY SAND	SM	18000	500.0	2.77778
90	7	SILTY SAND	SM	18000	466.7	2.59278
91	7	SILTY SAND	SM	18000	366.7	2.03722

TABLE E2, WAGONER, BORING W2

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	8	FAT CLAY	СН	1600	26.7	1.66875
2	8	FAT CLAY	СН	1800	106.7	5.92778
3	8	FAT CLAY	СН	1600	126.7	7.91875
4	8	FAT CLAY	СН	1200	93.3	7.77500
5	8	FAT CLAY	СН	1100	93.3	8.48182
6	8	FAT CLAY	СН	1000	73.3	7.33000
7	8	FAT CLAY	СН	1100	60.0	5.45455
8	8	FAT CLAY	CH	1400	53.3	3.80714
9	8	FAT CLAY	CH	1400	46.7	3.33571
10	8	FAT CLAY	СН	1300	53.3	4.10000
11	8	FAT CLAY	CH	1300	60.0	4.61538
12	8	FAT CLAY	СН	1000	46.7	4.67000
13	8	FAT CLAY	СН	1100	26.7	2.42727
14	8	FAT CLAY	СН	1100	40.0	3,63636
15	8	FAT CLAY	СН	1400	20.0	1.42857
16	8	FAT CLAY	CH	1400	40.0	2.85714
17	`8	FAT CLAY	СН	1500	40.0	2.66667
18	8	FAT CLAY	СН	1500	46.7	3.11333
19	8	FAT CLAY	СН	1400	53.3	3.80714
20	8	FAT CLAY	CH	1500	53.3	3.55333
21	8	FAT CLAY	СН	1400	60.0	4.28571
22	8 .	FAT CLAY	СН	1600	60.0	3.75000
23	8	FAT CLAY	СН	1600	46.7	2.91875
24	8	FAT CLAY	СН	1600	40.0	2.50000
25	8	FAT CLAY	CH	1800	60.0	3.33333
26	8	FAT CLAY	СН	1700	46.7	2.74706
27	8	FAT CLAY	СН	1800	60.0	3.33333
28	8	FAT CLAY	СН	1900	60.0	3.15789
29	8	FAT CLAY	СН	1800	66.7	3.70556
30	8	FAT CLAY	СН	1800	73.3	4.07222
31	8	FAT CLAY	СН	1800	73.3	4.07222
32	8	FAT CLAY	СН	1900	66.7	3.51053
33	8	FAT CLAY	СН	1900	60.0	3.15789
34	8	FAT CLAY	СН	2000	66.7	3.33500
35	8	FAT CLAY	СН	2100	66.7	3.17619
36	8	FAT CLAY	СН	2000	60.0	3.00000
37	8	FAT CLAY	СН	2200	66.7	3.03182
38	8	FAT CLAY	СН	2300	66.7	2.90000
39	8	FAT CLAY	СН	2200	53.3	2.42273
40	8	FAT CLAY	СН	2300	60.0	2.60870
41	8	FAT CLAY	СН	2200	66.7	3.03182
42	8	FAT CLAY	СН	2000	53.3	2.66500
43	8	FAT CLAY	СН	1900	60.0	3.15789
44	8	FAT CLAY	CH	2000	53.3	2.66500
45	8	FAT CLAY	СН	1900	66.7	3.51053
46	8	FAT CLAY	CH	2000	46.7	2.33500
47	8	FAT CLAY	CH	1900	60.0	3.15789
48	8	FAT CLAY	CH	2100	66.7	3.17619
49	8	FAI CLAY	CH	2000	60.0	3.00000
50	8	FAT CLAY	CH	2000	53.3	2.66500
51	8	FAT CLAY	CH	2100	66.7	3.17619
52	8	FAT CLAY	CH	2200	100.0	4.54545
55	8	FAI CLAY	CH	2100	86.7	4.12857
54	8	FAT CLAY	СН	2200	93.3	4.24091

. ¢

,

TABLE E2, WAGONER, BORING W2 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	8	FAT CLAY	СН	2800	93.3	3.3321
56	8	FAT CLAY	СН	2800	53.3	1,9036
57	8	LEAN CLAY	CL	2800	66.7	2.3821
58	8	LEAN CLAY	CL	2300	60.0	2.6087
59	8	LEAN CLAY	CL	1500	33.3	2.2200
60	8	LEAN CLAY	CL	2200	40.0	1.8182
61	8	LEAN CLAY	CL	2400	40.0	1.6667
62	8	LEAN CLAY	CL	1900	60.0	3.1579
63	8	LEAN CLAY	CL	1700	26.7	1.5706
64	8	LEAN CLAY	CL	1300	33.3	2.5615
65	8	LEAN CLAY	CL	1500	33.3	2.2200
66	8	LEAN CLAY	CL	1700	33.3	1,9588
67	8	LEAN CLAY	CL	2000	46.7	2.3350
68	8	LEAN CLAY	CL	1900	33.3	1.7526
69	8	LEAN CLAY	CL	1700	53.3	3.1353
70	8	LEAN CLAY	CL	1600	86.7	5.4187
71	8	LEAN CLAY W/SAND	CL	1100	26.7	2.4273
72	8	LEAN CLAY W/SAND	CL	1100	120.0	10.9091
73	8	LEAN CLAY	CL	2200	40.0	1.8182
74	8	LEAN CLAY	CL	1000	13.3	1.3300
75	8	LEAN CLAY W/SAND	CL	900	80.0	8.8889
76	8	LEAN CLAY W/SAND	CL	1800	46.7	2.5944
77	8	LEAN CLAY W/SAND	CL	1100	0.0	0.0000
78	8	SANDY LEAN CLAY	CL	3100	73.3	2.3645
79	8	LEAN CLAY	CL	2800	66.7	2.3821
80	8	LEAN CLAY	CL	1700	320.0	18,8235
81	8	LEAN CLAY	CL	2500	293.3	11.7320
82	8	SILTY SAND	SM	2000	146.7	7.3350
83	8	SANDY SILTY CLAY	CL-ML	2100	266.7	12,7000
84	8	SANDY SILTY CLAY	CL-ML	3000	226.7	7.5567
85	8	SANDY SILTY CLAY	CL-ML	3200	20.0	0.6250
86	8	SILTY CLAY SAND	SC-SM	5800	166.7	2.8741
87	8	SILTY CLAY SAND	SC-SM	5700	166.7	2.9246
88	8	SILTY SAND	SM	3200	440.0	13.7500
89	8	SANDY SILT CLAY	CL-ML	6000	466.7	7.7783
90	8	SANDY SILT CLAY	CL-ML	10400	0.0	0.0000
91	8	SILTY SAND	SM	18000	300.0	1.6667
92	8	SILTY SAND W/GRAVE	SM	23000	106.7	0.4639
93	8	SILTY SAND W/GRAVE	SM	12500	373.3	2.9864
94	8	SILTY SAND W/GRAVE	SM	14400	186.7	1.2965
95	8	SILTY SAND W/GRAVE	SM	10400	466.7	4.4875
96	8	SILTY SAND W/GRAVE	SM	8200	200.0	2.4390
97	8	SILTY SAND W/GRAVE	SM	16000	266.7	1.6669
98	8	SILTY SAND W/GRAVE	SM	19000	400.0	2.1053
99	8	SILTYSANDW/GRAVEL	SM	20000	266.7	1.3335
100	8	SILTYSANDW/GRAVEL	SM	15000	333.3	2.2220
101	8	CLAYEYSANDW/GRAVEL	SC	17000	533.3	3.1371
102	8	CLAYEYSANDW/GRAVEL	SC	15000	600.0	4.0000
103	8	CLAYEYSANDW/GRAVEL	SC	7000	306.7	4.3814
104	8	CLAYEYSANDW/GRAVEL	SC	18000	1066.7	5.9261
105	8	CLAYEYSANDW/GRAVEL	SC	10400	800.0	7.6923

· -

TABLE E3, WAGONER, BORING W3

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	9	FAT CLAY	СН	2000	106.7	5.33500
2	9	FAT CLAY	CH	2400	146.7	6.11250
3	9	FAT CLAY	CH	2200	120.0	5.45455
4	9	FAT CLAY	CH	2200	166.7	7.57727
5	9	FAT CLAY	СН	2700	166.7	6.17407
6	9	FAT CLAY	СН	2300	160.0	6.95652
7	9	FAT CLAY	СН	2500	140.0	5.60000
8	9	FAT CLAY	СН	2800	146.7	5.23929
9	9	LEAN CLAY	CL	310 0	180.0	5.80645
10	9	LEAN CLAY	CL	2900	173.3	5.97586
11	9	LEAN CLAY	CL	2600	160.0	6.15385
12	9	LEAN CLAY	CL	2300	146.7	6.37826
15	9	FAT CLAY	СН	2000	166.7	8.33500
-14	9	FAT CLAY	CH	2000	40.0	2.00000
15	9	FAT CLAY	CH	1800	140.0	7.77778
10	. 9	FAI CLAY	CH	3800	133.3	3.50789
10	7	FAT CLAY		1800	126.7	7.03889
10	9	FAT CLAT		1/00	120.0	7.05882
20	9	FAT CLAT		1000	95.5	5.83125
21	9	FAT CLAT	СН	1500	00./ 77.7	5.78000
22	á	FAT CLAV	СН	1700	72.2	4.31170
23	ý ·	FAT CLAY	СН	1700	80 0	4.311/0
24	ģ	FAT CLAY	СН	1800	80.0	4.70500
25	ģ	FAT CLAY	СН	1700	60.0	3 52941
26	ģ	FAT CLAY	СН	1600	53.3	3,33125
27	9	FAT CLAY	СН	1600	60.0	3.75000
28	9	FAT CLAY	СН	1700	86.7	5,10000
29	9	FAT CLAY	CH	1600	93.3	5,83125
30	9	FAT CLAY	СН	1800	86.7	4.81667
31	9	FAT CLAY	СН	1900	60.0	3.15789
32	9	FAT CLAY	СН	2000	46.7	2.33500
33	9	FAT CLAY	CH	2300	60.0	2.60870
34	9	FAT CLAY	СН	2300	53.3	2.31739
35	9	FAT CLAY	СН	2100	53.3	2.53810
36	9	FAT CLAY	СН	2400	60.0	2.50000
37	9	FAT CLAY	СН	2500	66.7	2.66800
38	9	FAT CLAY	СН	2500	86.7	3.46800
39	9	FAT CLAY	СН	2500	66.7	2.66800
40	9	FAI CLAY	CH	2200	66.7	3.03182
41	9	FAT CLAY	CH	2200	66.7	3.03182
42	9	FAI CLAY	CH	2100	60.0	2.85714
45	9	FAI CLAY	CH	2000	80.0	4.00000
44	9	FAT CLAY		2200	60.0	2.72727
45	7	FAT CLAY		2500	66.7	2.90000
40	9	FAT CLAT		2500	80.0 77 7	3.20000
48	9	EAT CLAT		2300	12.2	2.95200
40	9	FAT CLAY		2200	55.5	2.31/39
50	9	FAT CLAT		2500	6U.U 44 7	2.000/0
51	9	FAT CLAT	CH	2200	80 0	2.00000
52	á	FAT CLAT	CH CH	2000	60.0 60.0	2,02020
57	ģ	FAT CLAY	СН	2200	86 7	3.00000
54	ģ	FAT CLAY	СН	2900	160.0	5.51724
	•		•		200.0	

TABLE E3, WAGONER, BORING E3 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	9	FAT CLAY	СН	3000	80.0	2.66667
56	9	FAT CLAY	СН	3500	86.7	2.47714
57	9	LEAN CLAY	CL	3300	86.7	2.62727
58	9	LEAN CLAY	CL	3500	86.7	2.47714
59	9	LEAN CLAY W/SAND	CL	3100	66.7	2.15161
60	9	LEAN CLAY W/SAND	CL	2800	66.7	2.38214
61	9	LEAN CLAY W/SAND	CL	2300	33.3	1.44783
62	9	LEAN CLAY W/SAND	CL	2100	53.3	2.53810
63	9	LEAN CLAY W/SAND	CL	2000	60.0	3.00000
64	9	SANDY LEAN CLAY	CL	1600	33.3	2.08125
65	9	SANDY LEAN CLAY	CL	1500	33.3	2.22000
66	9.	LEAN CLAY W/SAND	CL	1600	40.0	2.50000
67	9	LEAN CLAY W/SAND	CL	2000	40.0	2.00000
68	9	LEAN CLAY W/SAND	CL	2200	53.3	2.42273
69	9	LEAN CLAY W/SAND	CL	1900	33.3	1.75263
70	9	LEAN CLAY W/SAND	CL	1800	100.0	5.55556
71	9	LEAN CLAY W/SAND	CL	2000	0.0	0.00000
72	9	LEAN CLAY W/SAND	CL	2400	80.0	3.33333
73	9	LEAN CLAY W/SAND	CL	2400	26.7	1.11250
74	9	SANDY LEAN CLAY	CL	1200	113.3	9.44167
75	9	SILT	ML	2500	120.0	4.80000
76	9	SILT	ML	2300	46.7	2.03043
77	9	SILT	ML	1900	46.7	2.45789
78	9	SANDY SILTY CLAY	CL-ML	2600	160.0	6.15385
79	9	SILTY SAND	SM	3800	120.0	3.15789
80	9	SILTY SAND	SM	3900	106.7	2.73590
81	9	SANDY LEAN CLAY	CL	4200	120.0	2.85714
82	9	SANDY LEAN CLAY	CL	4300	66.7	1.55116
83	9	SANDY SILTY CLAY	CL-ML	4200	133.3	3.17381
84	9	SILTY SAND	SM	2 500	66.7	2.66800
85	9	SILTY SAND	SM	3500	133.3	3.80857
86	9	SILTY SAND	SM	4400	206.7	4.69773
87	9	SILTY SAND	SM	4100	280.0	6.82927
88	9	SILTY SAND	SM	8000	106.7	1.33375

1

.

~ 、

TABLE E4, WAGONER, BORING W4

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	14	FAT CLAY	СН	1000	0.0	0.0000
2	14	FAT CLAY	СН	2500	66.7	2.6680
3	14	FAT CLAY	CH	3000	133.3	4.4433
4	14	FAT CLAY	СH	2200	113.3	5.1500
5	14	FAT CLAY	СН	2000	133 3	6 6650
	14	FAT CLAY	CH	2000	120 0	4 0000
7	14	FAT CLAY	CH	2200	120.0	5.0000 5.6565
ģ	14	FAT CLAY		2200	166 7	2.4242
6	14	FAT CLAY		2200	140.7	6.0002
10	14	FAT CLAT	CH	2300	140.0	6.0070
10	14	FAT CLAY		2400	146.7	6.1125
11	14	FAT OLAY	CH	2500	160.0	6.4000
12	14	FAT CLAY	CH	2600	133.3	5.1269
15	14	FAI CLAY	СН	2400	133.3	5.5542
14	14	FAI CLAY	СН	2400	153.3	6.3875
15	14	FAT CLAY	СН	2000	146.7	7.3350
16	14	FAT CLAY	СН	1600	193.3	12.0812
17	14	FAT CLAY	СН	1400	120.0	8.5714
18	14	FAT CLAY	СН	1600	100.0	6.2500
19	14	FAT CLAY	СН	1400	106.7	7.6214
20	14	FAT CLAY	СН	1300	86.7	6.6692
21	14	FAT CLAY	СН	1400	106.7	7.6214
22	14	FAT CLAY	СН	1600	93.3	5.8312
23	14	FAT CLAY	CH	1600	100.0	6.2500
24	14	FAT CLAY	CH	1600	106.7	6.6687
25	14	FAT CLAY	СН	1600	113.3	7.0812
26	14	FAT CLAY	CH	1800	120.0	6.6667
27	14	FAT CLAY	CH	1700	106.7	6.2765
28	14	FAT CLAY	СН	1800	113.3	6.2944
29	14	FAT CLAY	СН	1800	100 0	5 5554
Ξń	14	FAT CLAY	СН	1700	117 7	6 6667
Z 1	14	FAT CLAY	CH	1900	117 7	E 0472
22	14	FAT CLAT		1900	07 7	5.7032
77	14	FAT CLAT		1000	73.3	5.1055
22 74	14	FAT CLAT		1700	75.5	5,1033
24	14	FAT CLAT		1700	100.0	5.0024
55 7/	14	FAT CLAT		2000	100.0	5.0000
50	14	FAT CLAY	CH	2000	113.3	5.6650
5/	14	FAI CLAY	СН	2100	100.0	4.7619
38	14	FAI CLAY	СН	1800	113.3	6.2944
39	14	FAT CLAY	СН	1800	100.0	5.5556
40	14	FAT CLAY	СН	2000	106.7	5.3350
41	14	FAT CLAY	СН	2100	113.3	5.3952
42	14	FAT CLAY	СН	2000	106.7	5.3350
43	14	FAT CLAY	СН	2100	106.7	5.0810
44	14	FAT CLAY	CH	2000	100.0	5.0000
45	14	FAT CLAY	СН	2000	80.0	4.0000
46	14	FAT CLAY	СН	2000	106.7	5.3350
47	14	FAT CLAY	СН	2000	100.0	5.0000
48	14	FAT CLAY	CH	2000	100.0	5.0000
49	14	FAT CLAY	CH	2200	120.0	5.4545
50	14	FAT CLAY	CH	2300	106.7	4,6391
51	14	FAT CLAY	CH	2400	120 0	5 0000
52	14	FAT CLAV	CH CH	2600	177 7	E 1940
52	14	FAT CLAT		2600	117 7	3.1207 4 7577
55	14	FAT CLAT		2000	104 7	4.35//
	7.4	TAT CLAT MZ SAND	υn	2000	100./	4.1028

TABLE E4, WAGONER, BORING W4 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	14	FAT CLAY W/SAND	СН	2600	93.3	3.5885
56	14	FAT CLAY	CH	2500	106.7	4,2680
57	14	FAT CLAY	СН	2400	80.0	3,3333
58	14	FAT CLAY	СН	2000	86.7	4.3350
59	14	LEAN CLAY	CL	1900	66.7	3,5105
60	14	LEAN CLAY	CL	1800	53.3	2.9611
61	14	LEAN CLAY	CL	1800	60.0	3.3333
62	14	LEAN CLAY	CL	1600	60.0	3,7500
63	14	LEAN CLAY	CL	1600	46.7	2,9187
64	14	LEAN CLAY	CL	1900	66.7	3.5105
65	14	LEAN CLAY	CL	2000	60.0	3.0000
66	14	LEAN CLAY	CL	1600	40.0	2.5000
67	14	LEAN CLAY	CL	1600	40.0	2.5000
68	14	LEAN CLAY	CL	1400	40.0	2.8571
69	14	LEAN CLAY	CL	1200	13.3	1.1083
70	14	LEAN CLAY	CL	800	26.7	3.3375
71	14	LEAN CLAY W/SAND	CL	1200	13.3	1.1083
72	14	LEAN CLAY W/SAND	CL	1000	80.0	8.0000
73	14	LEAN CLAY W/SAND	CL	1000	13.3	1.3300
74	14	LEAN CLAY W/SAND	CL	1000	26.7	2.6700
75	14	LEAN CLAY W/SAND	CL	1200	133.3	11.1083
76	14	LEAN CLAY W/SAND	CL	1800	53.3	2.9611
77	14	LEAN CLAY	CL	1200	26.7	2.2250
78	14	LEAN CLAY W/SAND	CL	1600	40.0	2.5000
79	14	LEAN CLAY W/SAND	CL	3200	93.3	2.9156
80	14	SILTY CLAY	CL-ML	3000	93.3	3.1100
81	14	SANDY SILT	ML	3800	120.0	3.1579
82	14	SILTY SAND	SM	4200	106.7	2.5405
83	14	SILTY SAND	SM	4800	360.0	7.5000
84	14	SILTY SAND	SM	6600	800.0	12,1212
85	14	SILTY SAND	SM	7800	1066.7	13.6756
86	14	SILTY SAND	SM	18000	1333.3	7.4072
87	14	SILTY SAND	SM	24000	666.7	2.7779

e

TABLE E5, WAGONER, BORING W5

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR	
1	10	FAT CLAY	СН	2900	120.0	4 13793	
2	- 10	FAT CLAY	CH	2200	126.7	5.75909	
3	10	FAT CLAY	ĊH	2100	93.3	4.44286	
4	10	FAT CLAY	СН	2100	160.0	7.61905	
5	10	FAT CLAY	СН	1800	106.7	5.92778	
6	10	FAT CLAY	СН	1600	120.0	7.50000	
7	10	FAT CLAY	СН	1600	86.7	5.41875	
8	10	FAT CLAY	СН	1600	93.3	5.83125	
9	10	FAT CLAY	СН	1600	86.7	5.41875	
10	10	FAT CLAY	СН	1600	86.7	5.41875	
11	10	FAT CLAY	СН	1500	80.0	5.33333	
12	10	FAT CLAY	СН	1700	106.7	6.27647	
13	10	FAT CLAY	CH	1800	86.7	4.81667	
14	10	FAT CLAY	СН	1700	80.0	4.70588	
15	10	FAI CLAY	CH	1600	73.3	4.58125	
10	10	FAI CLAY	CH	1600	66.7	4.16875	
18	10	FAT CLAT		1000	80.7	4.81667	
10	10	FAT CLAT		1900	80.7	4.56316	
20	10	FAT CLAT	CH	1900	80.0	4.44444	
21	10	FAT CLAY	CH	1900	73 2	7 95790	
22	10	FAT CLAY	СН	2000	60 0	3.09709	
23	10	FAT CLAY	CH	2000	53.3	2.66500	
24	10	FAT CLAY	СН	2200	66.7	3.03182	
25	10	FAT CLAY	CH	2100	66.7	3.17619	
26	10	FAT CLAY	СН	2100	66.7	3.17619	
27	10	FAT ĊLAY	СН	210 0	86.7	4.12857	
28	10	FAT CLAY	СН	2200	86.7	3.94091	
29	10	FAT CLAY	СН	2000	66.7	3.33500	
30	10	FAT CLAY	СН	2000	80.0	4.00000	
31	10	FAT CLAY	CH	2200	80.0	3.63636	
32	10	FAT CLAY	CH	2000	53.3	2.66500	
55	10	FAT CLAY	CH	2000	80.0	4.00000	
54	10	FAI CLAY	CH	2400	86.7	3.61250	
35	10	FAI CLAY	CH	2400	86.7	3.61250	
20	10	FAT CLAY		2500	80.0	3.20000	
70	10	FAT CLAT		2400	55.5	2.22005	
29	10	FAT CLAT	CH	2600	-+0.7 57 7	2 05000	
40	10	FAT CLAT	СН	2700	53.5	1 97607	
41	10	FAT CLAY	СН	2700	53.5	1 97607	
42	10	FAT CLAY	СН	2400	46.7	1.94583	
43	10	FAT CLAY	СH	2400	46.7	1.94583	
44	10	FAT CLAY	CH	2500	46.7	1.86800	
45	10	FAT CLAY	CH	2400	46.7	1.94583	
46	10	FAT CLAY	ĊH	2400	53.3	2.22083	
47	10	FAT CLAY	CH	2400	93.3	3.88750	
48	10	FAT CLAY	СН	2400	66.7	2.77917	
49	10	FAT CLAY	СН	2400	53.3	2.22083	
50	10	FAT CLAY	СН	3200	46.7	1.45937	
51	10	FAT CLAY	СН	3200	60.0	1.87500	
52	10	FAT CLAY	СН	3200	53.3	1.66562	
53	10	FAT CLAY	СН	3100	60.0	1.93548	
54	10	FAT CLAY	CH	3200	33.3	1.04062	

TABLE E5, WAGONER, BORING W5 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	10	FAT CLAY	СН	3200	80.0	2.50000
56	10	LEAN CLAY	CL	3100	60.0	1.93548
57	10	LEAN CLAY	CL	2600	60.0	2.30769
58	10	LEAN CLAY	CL	2500	80.0	3.20000
59	10	LEAN CLAY	CL	2300	73.3	3.18696
60	10	LEAN CLAY	CL	2000	46.7	2.33500
61	10	LEAN CLAY W/SAND	CL	2100	53.3	2.53810
62	10	LEAN CLAY W/SAND	CL	1800	53.3	2.96111
63	10	LEAN CLAY W/SAND	CL	1700	60.0	3.52941
64	10	LEAN CLAY W/SAND	CL	1700	33.3	1.95882
65	10	LEAN CLAY	CL	1800	46.7	2.59444
66	10	LEAN CLAY	CL	2200	40.0	1.81818
67	10	LEAN CLAY W/SAND	CL	1700	60.0	3.52 9 41
68	10	LEAN CLAY W/SAND	CL	1400	0.0	0.00000
69	- 10	LEAN CLAY W/SAND	CL	1500	26.7	1.78000
70	10	SANDY LEAN CLAY	CL	2000	13.3	0.66500
71	10	LEAN CLAY W/SAND	CL	1200	80.0	6.66667
72	10	LEAN CLAY W/SAND	CL	1400	0.0	0.00000
73	10	SANDY SILT	ML ·	1000	0.0	0.00000
74	10	SANDY SILT	ML	2400	53.3	2.22083
75	10	SILTY CLAY W/SAND	CL-ML	2500	13.3	0.53200
76	10	SILTY CLAY W/SAND	CL-ML	2400	26.7	1.11250
77	10	SANDY SILTY CLAY	CL-ML	2300	20.0	0.86957
78	10	SANDY LEAN CLAY	CL	1800	133.3	7.40556
79	10	SANDY SILT	ML	2100	160.0	7.61905
80	10	SANDY SILT	ML	1800	173.3	·9.62778
81	10	SILTY SAND	SM	6400	146.7	2.29219
82	10	SANDY SILTY CLAY	CL-ML	6600	226.7	3.43485
83	10	SANDY SILTY CLAY	CL-ML	8200	240.0	2.92683

TABLE E6, WAGONER, BORING W6

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	15	FAT CLAY	СН	600	0.0	0.00000
2	15	FAT CLAY	СН	1600	0.0	0.00000
3	15	FAT CLAY	СН	1700	53.3	3.13529
4	15	FAT CLAY	СН	1400	53.3	3.80714
5	15	FAT CLAY	СН	1200	80.0	6.66667
6	15	FAT CLAY	СН	1200	80.0	6.66667
7	15	FAT CLAY	СН	1000	26.7	2.67000
8	15	FAT CLAY	СН	1200	93.3	7.77500
9	15	FAT CLAY	СН	1200	66.7	5.55833
10	15	FAT CLAY	СН	1600	93.3	5.83125
11	15	FAT CLAY	СН	1800	100.0	5.55556
12	15	FAT CLAY	СН	1400	80.0	5.71429
13	15	FAT CLAY	СН	1500	86.7	5.78000
14	15	FAT CLAY	СН	1600	93.3	5.83125
15	15	FAT CLAY	СН	1600	93.3	5.83125
16	15	FAT CLAY	CH	1600	80.0	5.00000
17	15	FAT CLAY	СН	1600	86.7	5.41875
18	15	FAT CLAY	СН	1600	80.0	5.00000
19	15	FAT CLAY	СН	1600	93.3	5.83125
20	15	FAT CLAY	СН	1400	80.0	5.71429
21	15	FAT CLAY	СН	1400	86.7	6.19286
22	15	FAT CLAY	СН	1600	80.0	5.00000
23	15	FAT CLAY	СН	1600	100.0	6.25000
24	15	FAT CLAY	СН	1800	93.3	5.18333
25	15	FAT CLAY	СН	1600	100.0	6.25000
26	15	FAT CLAY	СН	1800	86.7	4.81667
27	15	FAT CLAY	СН	1600	93.3	5.83125
28	15	FAT CLAY	СН	1600	80.0	5.00000
29	15	FAT CLAY	СН	1600	80.0	5.00000
30	15	FAT CLAY	СН	1700	93.3	5.48824
31	15	FAT CLAY	СН	1700	93.3	5.48824
32	15	FAT CLAY	СН	1600	106.7	6.66875
33	15	FAT CLAY	СН	1600	106.7	6.66875
34	15	FAT CLAY	СН	1600	113.3	7.08125
35	15	FAT CLAY	СН	2000	113.3	5.66500
36	15	FAT CLAY	СН	2100	106.7	5.08095
37	15	FAT CLAY	СН	2200	113.3	5.15000
38	15	FAT CLAY	СН	2200	106.7	4.85000
39	15	FAT CLAY	СН	2000	106.7	5.33500
40	15	FAT CLAY	СН	2000	106.7	5.33500
41	15	FAT CLAY	СН	2000	106.7	5.33500
42	15	FAT CLAY	СН	2000	106.7	5.33500
43	15	FAT CLAY	СН	2200	113.3	5.15000
44	15	FAT CLAY	CH	2200	133.3	6.05909
45	15	FAT CLAY	CH	2300	126.7	5.50870
46	15	LEAN CLAY	CL	2200	106.7	4.85000
47	15	LEAN CLAY	CL	2300	126.7	5.50870
48	15	FAT CLAY	СН	2400	126.7	5.27917
49	15	FAT CLAY	СН	2300	106.7	4.63913
50	15	FAT CLAY	СН	2400	133.3	5.55417
51	15	FAT CLAY	СН	2400	113.3	4.72083
52	15	FAT CLAY	СН	2200	106.7	4.85000
53	15	FAT CLAY	СН	2300	133.3	5.79565
54	15	FAT CLAY	СН	2500	126.7	5.06800

TABLE E6, WAGONER, BORING W6 (CONTINUED)

.

.

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	15	FAT CLAY	СН	2200	126.7	5.75909
56	15	FAT CLAY	СН	2600	120.0	4.61538
57	15	FAT CLAY	СН	2600	146.7	5.64231
58	15	FAT CLAY	СН	2800	106.7	3.81071
59	15	FAT CLAY	СН	3000	106.7	3.55667
60	15	LEAN CLAY	CL	3200	120.0	3.75000
61	15	LEAN CLAY	CL	3200	106.7	3.33437
62	15	LEAN CLAY	CL	2800	100.0	3.57143
63	15	LEAN CLAY	CL	2900	106.7	3.67931
64	15	LEAN CLAY	CL	2900	46.7	1.61034
65	15	LEAN CLAY	CL	2400	80.0	3.33333
66	15	LEAN CLAY	CL	2300	53.3	2.31739
67	15	LEAN CLAY	CL	1800	80.0	4.44444
68	15	LEAN CLAY	CL	2000	53.3	2.66500
69	15	LEAN CLAY W/SAND	CL	2400	93.3	3.88750
70	15	LEAN CLAY W/SAND	CL	2400	53.3	2.22083
71	15	LEAN CLAY W/SAND	CL	2100	60.0	2.85714
72	15	LEAN CLAY W/SAND	CL	2400	40.0	1.66667
73	15	LEAN CLAY W/SAND	CL	2000	60.0	3.00000
74	15	SANDY LEAN CLAY	CL	1800	40.0	2.22222
75	15	SILTY SAND	SM	1500	53.3	3.55333
76	15	SILTY SAND	SM	1200	80.0	6.66667
77	15	SANDY SILT	ML	160 0	26.7	1.66875
78	15	SANDY SILT	ML	1600	40.0	2.50000
79	15	SANDY LEAN CLAY	CL	2000	26.7	1.33500
80	15	SANDY LEAN CLAY	CL	1600	0.0	0.00000
81	15	FAT CLAY W/SAND	СН	3800	40.0	1.05263
82	15	LEAN CLAY W/SAND	CL	2600	120. 0	4.61538
83	15	LEAN CLAY	CL	2600	0.0	0.00000
84 ·	15	SANDY SILT	ML	2400	120.0	5.00000
85	15	LEAN CLAY W/SAND	CL	3800	26.7	0.70263
86	15	LEAN CLAY W/SAND	CL	6400	146.7	2.29219
87	15	SANDY SILT	ML	6200	160.0	2.58065
88	15	LEAN CLAY	CL	5000	186.7	3.73400
89	15	LEAN CLAY	CL	4300	126.7	2.94651

TABLE E7, TULSA, BORING T1

1 3 LEAN CLAY CL 1800 13.3 0.7388 2 3 LEAN CLAY CL 2200 44.4 2.0181 3 3 LEAN CLAY CL 1900 66.7 3.5102 4 3 LEAN CLAY CL 1200 66.7 5.5583 6 3 LEAN CLAY CL 900 40.0 4.4444 7 3 LEAN CLAY CL 1800 66.7 5.5583 6 3 LEAN CLAY CL 1800 46.7 0.48375 8 3 LEAN CLAY CH 1800 66.7 3.70551 10 3 FAT CLAY CH 1800 93.3 5.16337 11 3 FAT CLAY CH 1800 93.3 5.1637 12 3 FAT CLAY CH 1800 93.3 5.1637 13 FAT CLAY CH 2800 133.3 4.7607 </th <th>1 3 LEAN CLAY CL 1800 13.3 0.73889 2 3 LEAN CLAY CL 2200 44.4 2.01818 3 3 LEAN CLAY CL 1900 66.7 3.51053 4 3 LEAN CLAY CL 1600 73.3 4.58125 5 3 LEAN CLAY CL 900 40.0 4.46444 7 3 LEAN CLAY CL 1400 13.3 0.795000 9 3 FAT CLAY CH 1800 66.7 4.16875 10 3 FAT CLAY CH 1800 66.7 4.16875 11 3 FAT CLAY CH 1800 66.7 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 130.3</th> <th>OBS</th> <th>LOCATION</th> <th>SOIL TYPE</th> <th>USC</th> <th>CR</th> <th>LF</th> <th>FR</th>	1 3 LEAN CLAY CL 1800 13.3 0.73889 2 3 LEAN CLAY CL 2200 44.4 2.01818 3 3 LEAN CLAY CL 1900 66.7 3.51053 4 3 LEAN CLAY CL 1600 73.3 4.58125 5 3 LEAN CLAY CL 900 40.0 4.46444 7 3 LEAN CLAY CL 1400 13.3 0.795000 9 3 FAT CLAY CH 1800 66.7 4.16875 10 3 FAT CLAY CH 1800 66.7 4.16875 11 3 FAT CLAY CH 1800 66.7 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 130.3	OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
2 3 LEAN CLAY CL 2200 44.4 2.0181 3 3 LEAN CLAY CL 1900 66.7 3.5105 4 3 LEAN CLAY CL 1600 73.3 4.5121 5 3 LEAN CLAY CL 1200 66.7 5.5583 6 3 LEAN CLAY CL 800 6.7 0.83751 8 3 LEAN CLAY CL 1400 15.3 0.9500 9 3 FAT CLAY CH 1800 66.7 3.70551 10 3 FAT CLAY CH 1800 90.3 5.1833 11 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 93.3 5.6157 15 3 FAT CLAY CH 1800 93.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 133.3 4	2 3 LEAN CLAY CL 2200 44.4 2.01818 3 3 LEAN CLAY CL 1900 66.7 3.51053 4 3 LEAN CLAY CL 1600 73.5 4.51053 5 3 LEAN CLAY CL 1200 66.7 5.55833 6 3 LEAN CLAY CL 800 6.7 0.83750 8 3 LEAN CLAY CL 800 6.7 0.83750 9 3 FAT CLAY CH 1800 66.7 3.70556 11 3 FAT CLAY CH 1800 66.7 3.70556 12 3 FAT CLAY CH 1800 93.5 5.16333 14 3 FAT CLAY CH 1800 93.5 5.16333 15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3	1	3	LEAN CLAY	CL	1800	13.3	0.73889
3 3 LEAN CLAY CL 1900 66.7 3.5305 4 3 LEAN CLAY CL 1600 73.5 4.5812 5 3 LEAN CLAY CL 1600 66.7 5.5583 6 3 LEAN CLAY CL 900 40.0 4.4444 7 3 LEAN CLAY CL 1400 13.3 0.95001 9 3 FAT CLAY CH 1800 53.3 2.9611 10 3 FAT CLAY CH 1800 66.7 4.1687 11 3 FAT CLAY CH 1800 66.7 5.5555 13 3 FAT CLAY CH 1800 105.7 5.6157 14 3 FAT CLAY CH 1800 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 15 3 FAT CLAY CH 2800 140.0 <td< td=""><td>3 3 LEAN CLAY CL 1900 66.7 3.51053 4 3 LEAN CLAY CL 1600 73.3 4.58125 5 3 LEAN CLAY CL 1200 66.7 5.55833 6 3 LEAN CLAY CL 800 6.7 0.83750 8 3 LEAN CLAY CL 1400 13.3 0.95000 9 3 FAT CLAY CH 1800 66.7 3.70556 10 3 FAT CLAY CH 1800 100.0 5.55556 12 3 FAT CLAY CH 1800 95.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.61579 15 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2800 140.0</td><td>2</td><td>3</td><td>LEAN CLAY</td><td>CL</td><td>2200</td><td>44.4</td><td>2.01818</td></td<>	3 3 LEAN CLAY CL 1900 66.7 3.51053 4 3 LEAN CLAY CL 1600 73.3 4.58125 5 3 LEAN CLAY CL 1200 66.7 5.55833 6 3 LEAN CLAY CL 800 6.7 0.83750 8 3 LEAN CLAY CL 1400 13.3 0.95000 9 3 FAT CLAY CH 1800 66.7 3.70556 10 3 FAT CLAY CH 1800 100.0 5.55556 12 3 FAT CLAY CH 1800 95.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.61579 15 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2800 140.0	2	3	LEAN CLAY	CL	2200	44.4	2.01818
4 3 LEAN CLAY CL 1600 73.3 4.5812 5 3 LEAN CLAY CL 1200 66.7 5.5583 6 3 LEAN CLAY CL 900 40.0 4.4444 7 3 LEAN CLAY CL 1400 13.3 0.9500 9 3 FAT CLAY CH 1800 55.3 2.9611 10 3 FAT CLAY CH 1800 66.7 3.7055 11 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 133.3 4.7607 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 5.5541 19 3 FAT CLAY CH 2400 93.3 3	4 3 LEAN CLAY CL 1600 73:5 4:58125 5 3 LEAN CLAY CL 1200 66.7 5:5833 6 3 LEAN CLAY CL 900 40.0 4:4444 7 3 LEAN CLAY CL 800 6:7 0:83750 9 3 FAT CLAY CL 1400 13:3 0:9500 9 3 FAT CLAY CH 1800 66:7 4:16875 12 3 FAT CLAY CH 1800 100.0 5:5556 13 3 FAT CLAY CH 1800 100.0 5:5556 14 3 FAT CLAY CH 2800 133:3 4:76071 16 3 FAT CLAY CH 2800 133:3 4:56545 20 3 FAT CLAY CH 2800 133:3 5:55417 19 3 FAT CLAY CH 2800 133:3	3	3	LEAN CLAY	ČĪ	1900	66.7	3.51053
5 3 LEAN CLAY CL 1200 66.7 5.5583 6 3 LEAN CLAY CL 900 40.0 4.4444 7 3 LEAN CLAY CL 900 6.7 0.83751 8 3 LEAN CLAY CL 1400 15.3 0.9500 9 3 FAT CLAY CH 1800 66.7 3.70551 10 3 FAT CLAY CH 1800 66.7 3.70551 11 3 FAT CLAY CH 1800 66.7 3.70551 12 3 FAT CLAY CH 1800 103.3 4.76071 12 3 FAT CLAY CH 2800 133.3 4.76071 15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2400 133.3	5 1	4	3	LEAN CLAY	ČĪ.	1600	73 3	4 58125
6 3 LEAN CLAY CL 100 30.0 4.4444 7 3 LEAN CLAY CL 800 6.7 0.83751 8 3 LEAN CLAY CL 800 6.7 0.83751 9 3 FAT CLAY CH 1800 65.7 3.70551 10 3 FAT CLAY CH 1800 66.7 3.70551 11 3 FAT CLAY CH 1800 100.0 5.5551 13 3 FAT CLAY CH 1800 103.3 3.1833 14 3 FAT CLAY CH 1800 133.3 4.7607 15 3 FAT CLAY CH 2800 133.3 5.5541 16 3 FAT CLAY CH 2800 133.3 5.5541 19 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 200 3.3	5 LEAN CLAY CL 900 40.0 4.44444 7 3 LEAN CLAY CL 900 40.0 4.44444 7 3 LEAN CLAY CL 100 13.3 0.95000 9 3 FAT CLAY CH 1800 66.7 3.70556 10 3 FAT CLAY CH 1800 66.7 4.16875 12 3 FAT CLAY CH 1800 95.3 5.18333 14 3 FAT CLAY CH 1800 100.7 5.61579 15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 2800 133.3 5.554551	5	ž	LEAN CLAY	ČL ČL	1200	46 7	5 55977
7 3 LEAN CLAY CL 300 40.0 4.44444 8 3 LEAN CLAY CL 1400 13.3 0.9500 9 3 FAT CLAY CH 1800 53.3 2.9611 10 3 FAT CLAY CH 1800 66.7 3.7055 11 3 FAT CLAY CH 1800 66.7 3.7055 12 3 FAT CLAY CH 1800 10.0 5.5555 13 3 FAT CLAY CH 1800 10.0 5.5555 14 3 FAT CLAY CH 1800 13.3 4.7607 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 5.5541 19 3 FAT CLAY CH 2400 133.3 5.6542 21 3 FAT CLAY CH 2400 93.3 3.8875 22 3 FAT CLAY CH 2400 93.3	3 LEAR CLAY CL 900 6.7 0.83750 8 LEAN CLAY CL 1400 13.3 0.95000 9 3 FAT CLAY CH 1800 53.3 2.96111 10 3 FAT CLAY CH 1800 100.0 5.55556 11 3 FAT CLAY CH 1800 100.0 5.55556 13 3 FAT CLAY CH 1800 100.0 5.55556 13 3 FAT CLAY CH 1800 100.0 5.55556 14 3 FAT CLAY CH 1900 106.7 5.61579 15 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 18 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 200 130.0 4.54545		7			1200	60.7	0.00000 6.66666
8 3 LEAN CLAY CL 000 6.7 0.63/9500 9 3 FAT CLAY CH 1800 66.7 3.7055 11 3 FAT CLAY CH 1800 66.7 3.7055 12 3 FAT CLAY CH 1800 66.7 4.1687 12 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 133.3 4.7607 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 133.3 4.7607 18 3 FAT CLAY CH 200 130.0 4.5544 20 3 FAT CLAY CH 200 13.3 <th< td=""><td>7 3 LEAN CLAY CL 600 6.7 0.85730 9 3 FAT CLAY CH 1800 53.3 2.96111 10 3 FAT CLAY CH 1800 66.7 3.70556 11 3 FAT CLAY CH 1800 166.7 4.16875 12 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 130.0 5.055417 19 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 2800 130.0 4.54545 21 3 FAT CLAY CH 200 100.0 4.54545 22 3 FAT CLAY CH 200 86.7</td><td>7</td><td>7</td><td></td><td></td><td>900</td><td>40.0</td><td>4.44444</td></th<>	7 3 LEAN CLAY CL 600 6.7 0.85730 9 3 FAT CLAY CH 1800 53.3 2.96111 10 3 FAT CLAY CH 1800 66.7 3.70556 11 3 FAT CLAY CH 1800 166.7 4.16875 12 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 130.0 5.055417 19 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 2800 130.0 4.54545 21 3 FAT CLAY CH 200 100.0 4.54545 22 3 FAT CLAY CH 200 86.7	7	7			900	40.0	4.44444
0 3 LEAN CLAY CL 1400 13.3 0.9500 10 3 FAT CLAY CH 1800 66.7 3.7055 11 3 FAT CLAY CH 1800 66.7 4.1687 12 3 FAT CLAY CH 1800 66.7 4.1687 12 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2400 133.3 5.5541 19 3 FAT CLAY CH 2400 133.3 5.5542 20 3 FAT CLAY CH 2400 93.3 3.8875 21 3 FAT CLAY CH 2400 93.3	0 3 FAT CLAY CL 1400 13.3 0.79000 10 3 FAT CLAY CH 1800 53.3 2.96111 10 3 FAT CLAY CH 1800 66.7 3.70556 12 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 103.3 4.76071 14 3 FAT CLAY CH 2800 133.3 4.76071 15 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 18 3 FAT CLAY CH 2800 133.3 4.76071 19 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.7 3.94091 24 3 FAT CLAY CH 200 93.3	,	3			1600	17.7	0.65750
7 5 FAT CLAY CH 1800 55.3 2.9611 11 3 FAT CLAY CH 1600 66.7 3.70555 12 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2800 133.3 4.7607 19 3 FAT CLAY CH 2400 133.3 5.5541 21 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2400 93.3	7 3 FAT CLAY CH 1800 66.7 3.70556 11 3 FAT CLAY CH 1800 66.7 4.16875 12 3 FAT CLAY CH 1800 100.0 5.55556 13 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 106.7 5.61579 15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 200 100.0 4.54545 21 3 FAT CLAY CH 200 80.7 3.68750 22 3 FAT CLAY CH 200 80.7	0	5	LEAN ULAT		1400	12.2	0.95000
10 3 FAT CLAY CH 1800 66.7 3.7055 11 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 100.0 5.6157 14 3 FAT CLAY CH 1800 133.3 4.7607 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 133.3 4.7607 18 3 FAT CLAY CH 2800 133.3 5.5541 19 3 FAT CLAY CH 2200 100.0 4.5454 20 3 FAT CLAY CH 2200 80.0 3.6363 23 5 FAT CLAY CH 2200 86.7 3.7495 25 3 FAT CLAY CH 2400 93.3	10 3 FAT CLAY CH 1800 66.7 3.70556 12 3 FAT CLAY CH 1800 100.0 5.55556 13 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 133.3 4.76071 15 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2800 133.3 4.76071 19 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 80.0 3.63636 21 3 FAT CLAY CH 2200 80.7 3.709191 24 5 FAT CLAY CH 2400 93.3 3.88750 22 3 FAT CLAY CH 2400 86.		5	FAI ULAY	CH	1800	53.3	2.96111
11 3 FAT CLAY CH 1800 66.7 4.1687 12 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 93.3 5.1833 14 3 FAT CLAY CH 1800 93.3 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 133.3 5.5541 19 3 FAT CLAY CH 2400 133.3 5.6541 20 3 FAT CLAY CH 2000 100.0 4.5454 21 3 FAT CLAY CH 2000 80.7 3.6875 22 3 FAT CLAY CH 2000 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 73.3	11 3 FAT CLAY CH 1600 66.7 4.16875 12 3 FAT CLAY CH 1800 100.0 5.55556 13 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1900 106.7 5.61579 15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2400 133.3 5.65417 19 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.7 3.080750 22 3 FAT CLAY CH 2200 80.7 3.04091 24 3 FAT CLAY CH 2400 93.3 3.08750 26 3 FAT CLAY CH 2400 86	10	5	FAT CLAY	СН	1800	66.7	3.70556
12 3 FAT CLAY CH 1800 100.0 5.5555 13 3 FAT CLAY CH 1800 95.3 5.1833 14 3 FAT CLAY CH 1900 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2000 100.0 4.5454 20 3 FAT CLAY CH 2000 100.0 4.5454 21 3 FAT CLAY CH 2000 86.7 3.9409 22 3 FAT CLAY CH 2000 86.7 3.6425 22 3 FAT CLAY CH 2400 93.3 3.8875 24 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 86.7	12 3 FAT CLAY CH 1800 100.0 5.5555 14 3 FAT CLAY CH 1900 106.7 5.61579 15 3 FAT CLAY CH 1900 103.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 18 3 FAT CLAY CH 2800 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.7 3.636750 22 3 FAT CLAY CH 2200 86.7 3.76957 25 3 FAT CLAY CH 2400 93.3 3.636750 26 3 FAT CLAY CH 2400 86.7 3.76957 25 3 FAT CLAY CH 2400 8	11	5	FAT CLAY	СН	1600	66.7	4.16875
13 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 1900 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2400 133.3 4.7607 19 3 FAT CLAY CH 2400 133.3 5.5541 19 3 FAT CLAY CH 2400 133.3 5.6541 20 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2400 93.3 3.8875 22 3 FAT CLAY CH 200 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2400 73.3	13 3 FAT CLAY CH 1800 93.3 5.18333 14 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.63636 22 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2400 93.3 3.68750 25 3 FAT CLAY CH 2400 93.3 3.61250 27 3 FAT CLAY CH 2400 93.3	12	3 /	FAT CLAY	СН	1800	100.0	5.55556
14 3 FAT CLAY CH 1900 106.7 5.6157 15 3 FAT CLAY CH 2800 133.3 4.7607 16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2400 133.3 5.5541 19 3 FAT CLAY CH 2200 100.0 4.5454 20 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2200 80.0 3.63653 22 3 FAT CLAY CH 2200 80.0 3.63653 23 3 FAT CLAY CH 2200 80.7 3.9409 24 3 FAT CLAY CH 2400 93.3 3.88755 26 3 FAT CLAY CH 2400 93.3 3.73200 30 3 FAT CLAY CH 2500 93.3	14 3 FAT CLAY CH 1900 106.7 5.61579 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.63536 22 3 FAT CLAY CH 2200 80.0 3.63536 23 5 FAT CLAY CH 2200 80.7 3.68750 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2500 93.3	13	3	FAT CLAY	СН	1800	93.3	5.18333
15 3 FAT CLAY CH 2800 133.3 4.7607. 16 3 FAT CLAY CH 2800 133.3 4.7607. 17 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2800 140.0 5.0000 19 3 FAT CLAY CH 2200 100.0 4.5454 20 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2200 80.0 3.63635 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.0541 28 3 FAT CLAY CH 2400 80.7 3.5466 27 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7	15 3 FAT CLAY CH 2800 133.3 4.76071 16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 133.3 4.76071 19 3 FAT CLAY CH 2400 133.3 5.55417 20 3 FAT CLAY CH 2400 100.0 4.54545 21 3 FAT CLAY CH 2400 93.3 3.68750 22 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2300 86.7 3.94091 24 3 FAT CLAY CH 2400 93.3 3.88750 25 3 FAT CLAY CH 2400 86.7 3.61250 26 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2500 80.7 <td>14</td> <td>3</td> <td>FAT CLAY</td> <td>СН</td> <td>1900</td> <td>106.7</td> <td>5.61579</td>	14	3	FAT CLAY	СН	1900	106.7	5.61579
16 3 FAT CLAY CH 2800 133.3 4.7607 17 3 FAT CLAY CH 2800 140.0 5.00001 18 3 FAT CLAY CH 2400 133.3 4.7607 19 3 FAT CLAY CH 2200 100.0 4.5454 20 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2200 80.0 3.68675 22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2200 86.7 3.6425 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 80.3 3.6541 28 3 FAT CLAY CH 2600 86.7 3.3466 31 3 FAT CLAY CH 2500 93.3	16 3 FAT CLAY CH 2800 133.3 4.76071 17 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.63636 22 3 FAT CLAY CH 2200 80.7 3.76957 24 3 FAT CLAY CH 2400 93.3 3.88750 25 3 FAT CLAY CH 2400 86.7 3.76957 25 3 FAT CLAY CH 2400 86.7 3.61636 26 3 FAT CLAY CH 2400 86.7 3.61636 29 3 FAT CLAY CH 2500 80.7 3.33462 31 3 FAT CLAY CH 2600 86.7<	15	3	FAT CLAY	СН	2800	133.3	4.76071
17 3 FAT CLAY CH 2800 140.0 5.0000 18 3 FAT CLAY CH 2400 133.3 5.5541 19 3 FAT CLAY CH 2200 100.0 4.54544 20 3 FAT CLAY CH 2200 100.0 4.54544 21 3 FAT CLAY CH 2200 80.0 3.6363 22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 80.7 3.9409 24 3 FAT CLAY CH 2200 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 86.7 3.6363 29 3 FAT CLAY CH 2400 83.3 3.63643 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 86.7	17 3 FAT CLAY CH 2800 140.0 5.00000 18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.68750 22 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2400 80.3 .63636 29 3 FAT CLAY CH 2400 86.7 .33642 31 3 FAT CLAY CH 2500 93.3 .73200 32 3 FAT CLAY CH 2600 86.7 <td>16</td> <td>3</td> <td>FAT CLAY</td> <td>СН</td> <td>2800</td> <td>133.3</td> <td>4.76071</td>	16	3	FAT CLAY	СН	2 8 00	133.3	4.76071
18 3 FAT CLAY CH 2400 133.3 5.5541 19 3 FAT CLAY CH 2200 100.0 4.5454 20 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2200 100.0 4.5454 21 3 FAT CLAY CH 2400 93.3 3.8875 22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2200 86.7 3.6125 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 93.3 3.0541 28 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2500 86.7 <t< td=""><td>18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.68750 22 3 FAT CLAY CH 2200 86.7 3.76957 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.76957 25 3 FAT CLAY CH 2400 86.7 3.61250 26 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7</td><td>17</td><td>3</td><td>FAT CLAY</td><td>СН</td><td>2800</td><td>140.0</td><td>5.00000</td></t<>	18 3 FAT CLAY CH 2400 133.3 5.55417 19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2200 80.0 3.68750 22 3 FAT CLAY CH 2200 86.7 3.76957 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.76957 25 3 FAT CLAY CH 2400 86.7 3.61250 26 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7	17	3	FAT CLAY	СН	2800	140.0	5.00000
19 3 FAT CLAY CH 2200 100.0 4.54544 20 3 FAT CLAY CH 2200 100.0 4.54544 21 3 FAT CLAY CH 2200 100.0 4.54544 21 3 FAT CLAY CH 2200 80.0 3.6875 22 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.9409 24 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 93.3 3.6875 26 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 200 80.0 3.6363 29 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 <	19 3 FAT CLAY CH 2200 100.0 4.54545 20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2400 93.3 3.88750 22 3 FAT CLAY CH 2200 80.0 3.63536 23 3 FAT CLAY CH 2200 86.7 3.76957 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 73.3 3.05517 28 3 FAT CLAY CH 2000 86.7 3.34620 30 3 FAT CLAY CH 2500 93.3 3.73200 31 3 FAT CLAY CH 2500 86.7 3.3462 33 3 FAT CLAY CH 2500 86.7	18	3	FAT CLAY	СН	2400	133.3	5.55417
20 3 FAT CLAY CH 2200 100.0 4.54544 21 3 FAT CLAY CH 2400 93.3 3.8875 22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2500 80.0 3.6363 29 3 FAT CLAY CH 2500 80.0 3.6363 29 3 FAT CLAY CH 2500 86.7 3.3466 31 3 FAT CLAY CH 2500 86.7	20 3 FAT CLAY CH 2200 100.0 4.54545 21 3 FAT CLAY CH 2400 93.3 3.88750 22 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2200 86.7 3.76957 25 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.61250 26 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2400 86.7 3.63636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.3462 31 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2600 86.7	19	3	FAT CLAY	СН	2200	100.0	4.54545
21 3 FAT CLAY CH 2400 93.3 3.88750 22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.6125 27 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 86.7 3.33460 31 3 FAT CLAY CH 2600 86.7 3.46800 32 3 FAT CLAY CH 2600 93.3	21 3 FAT CLAY CH 2400 93.3 3.88750 22 3 FAT CLAY CH 2200 80.0 3.63636 23 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2300 86.7 3.76957 25 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2200 80.0 3.63636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.46800 34 3 FAT CLAY CH 2500 93.3 3.58846 35 3 FAT CLAY CH 2600 93.3	20	3	FAT CLAY	СН	2200	100.0	4.54545
22 3 FAT CLAY CH 2200 80.0 3.6363 23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.9409 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 3.3346 31 3 FAT CLAY CH 2600 86.7 3.3466 33 3 FAT CLAY CH 2600 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.	22 3 FAT CLAY CH 2200 80.0 3.63636 23 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2300 86.7 3.94091 24 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.05417 28 3 FAT CLAY CH 2400 80.7 3.61250 27 3 FAT CLAY CH 2400 93.3 3.05417 28 3 FAT CLAY CH 2400 93.3 3.65636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 96.7 3.34622 31 3 FAT CLAY CH 2500 86.7 3.34622 33 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2600 96.7	21	3	FAT CLAY	СН	2400	93.3	3.88750
23 3 FAT CLAY CH 2200 86.7 3.9409 24 3 FAT CLAY CH 2300 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2600 86.7 3.3466 31 3 FAT CLAY CH 2600 86.7 3.3466 32 3 FAT CLAY CH 2500 93.3 3.7320 32 3 FAT CLAY CH 2600 86.7 3.4680 33 5 FAT CLAY CH 2500 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.	23 3 FAT CLAY CH 2200 86.7 3.94091 24 3 FAT CLAY CH 2300 86.7 3.76957 25 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.65636 27 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2600 86.7 3.63636 29 3 FAT CLAY CH 2500 93.3 3.75200 30 3 FAT CLAY CH 2500 86.7 3.3462 31 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2600 93.3	22	3	FAT CLAY	СН	2200	80.0	3.63636
24 3 FAT CLAY CH 2300 86.7 3.7695 25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 3.3466 31 3 FAT CLAY CH 2600 86.7 3.3466 31 3 FAT CLAY CH 2600 86.7 3.3466 32 3 FAT CLAY CH 2600 86.7 3.3466 33 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.	24 3 FAT CLAY CH 2300 86.7 3.76957 25 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 93.3 3.88750 27 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2200 80.0 3.63636 29 3 FAT CLAY CH 2500 93.3 3.75200 30 3 FAT CLAY CH 2500 96.7 3.33462 31 3 FAT CLAY CH 2500 86.7 3.33462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 35 3 FAT CLAY CH 2500 86.7	23	3	FAT CLAY	СН	2200	86.7	3,94091
25 3 FAT CLAY CH 2400 93.3 3.8875 26 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2200 80.0 3.6363 30 3 FAT CLAY CH 2600 86.7 3.33460 31 3 FAT CLAY CH 2600 86.7 3.3460 32 3 FAT CLAY CH 2600 86.7 3.3460 33 3 FAT CLAY CH 2600 86.7 3.4680 34 3 FAT CLAY CH 2500 86.7 3.4680 36 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3	25 3 FAT CLAY CH 2400 93.3 3.88750 26 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2200 80.0 3.6636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 96.7 3.3462 31 3 FAT CLAY CH 2500 86.7 3.3462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2600 93.3	24	3	FAT CLAY	СН	2300	86.7	3.76957
26 3 FAT CLAY CH 2400 86.7 3.6125 27 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 3.346 31 3 FAT CLAY CH 2600 86.7 3.346 32 3 FAT CLAY CH 2600 86.7 3.346 33 3 FAT CLAY CH 2600 86.7 3.4680 34 3 FAT CLAY CH 2500 86.7 3.4680 35 3 FAT CLAY CH 2500 86.7 3.4680 35 3 FAT CLAY CH 2500 86.7 3.4680 36 3 FAT CLAY CH 2600 93.3 3.584	26 3 FAT CLAY CH 2400 86.7 3.61250 27 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2200 80.0 3.63636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 35 3 FAT CLAY CH 2500 86.7 3.46800 36 JEAN CLAY CL 2000 93.3 3.8875	25	3	FAT CLAY	CH	2400	93.3	3,88750
27 3 FAT CLAY CH 2400 73.3 3.0541 28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 3.3346 31 3 FAT CLAY CH 2600 86.7 3.3460 32 3 FAT CLAY CH 2600 86.7 3.3460 33 3 FAT CLAY CH 2600 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.8875 36 3 FAT CLAY CH 2600 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3	27 3 FAT CLAY CH 2400 73.3 3.05417 28 3 FAT CLAY CH 2200 80.0 3.63636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.33462 31 3 FAT CLAY CH 2600 86.7 3.3462 32 3 FAT CLAY CH 2600 86.7 3.3462 33 3 FAT CLAY CH 2600 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2500 86.7 3.46800 36 3 LEAN CLAY CL 2000 93.3 3.88750 37 3 LEAN CLAY CL 2000 60.7	26	3	FAT CLAY	СН	2400	86.7	3,61250
28 3 FAT CLAY CH 2200 80.0 3.6363 29 3 FAT CLAY CH 2500 93.3 3.7320 30 3 FAT CLAY CH 2600 86.7 3.3346 31 3 FAT CLAY CH 2600 86.7 3.3346 31 3 FAT CLAY CH 2600 86.7 3.3346 32 3 FAT CLAY CH 2600 86.7 3.3466 33 3 FAT CLAY CH 2600 86.7 3.3466 34 3 FAT CLAY CH 2600 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2500 86.7 3.4680 36 3 LEAN CLAY CL 2000 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3	28 3 FAT CLAY CH 2200 80.0 3.63636 29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.33462 31 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 86.7 3.3462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 200 93.3 3.88750 37 3 LEAN CLAY CL 200 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7	27	ž	FAT CLAY	СН	2400	73 3	3 05417
29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.33460 31 3 FAT CLAY CH 2600 86.7 3.33460 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 86.7 3.3460 33 3 FAT CLAY CH 2600 86.7 3.3460 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.6886 34 3 FAT CLAY CH 2600 93.3 3.6886 36 3 FAT CLAY CH 2600 93.3 3.68875 37 3 LEAN CLAY CL 2000 93.3 3.68875 38 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 1700 60.0	29 3 FAT CLAY CH 2500 93.3 3.73200 30 3 FAT CLAY CH 2600 86.7 3.33462 31 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2600 86.7 3.33462 33 3 FAT CLAY CH 2600 86.7 3.33462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2600 93.3 3.88750 37 3 LEAN CLAY CL 2000 93.3 3.88750 37 3 LEAN CLAY CL 2000 93.3 4.66500 38 3 LEAN CLAY CL 2000 60.0 <td>28</td> <td>ž</td> <td>FAT CLAY</td> <td>ČH</td> <td>2200</td> <td>80.0</td> <td>7 67676</td>	28	ž	FAT CLAY	ČH	2200	80.0	7 67676
1 1	20 3 FAT CLAY CH 2500 75.3 3.75200 31 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2500 93.3 3.73200 32 3 FAT CLAY CH 2600 86.7 3.33462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 LEAN CLAY CL 2000 93.3 3.58941 40 3 LEAN CLAY CL 1900 66.7 <td>29</td> <td>ž</td> <td>FAT CLAY</td> <td>CH CH</td> <td>2500</td> <td>97 Z</td> <td>Z 7Z200</td>	29	ž	FAT CLAY	CH CH	2500	97 Z	Z 7Z200
30 3 FAT CLAY CH 2500 66.7 3.5346 31 3 FAT CLAY CH 2500 93.3 3.7320 32 3 FAT CLAY CH 2600 86.7 3.3346 33 3 FAT CLAY CH 2500 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 36 3 FAT CLAY CH 2600 93.3 3.8875 37 3 LEAN CLAY CL 2200 73.3 3.3318 38 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 73.3 <	30 3 FAT CLAY CH 2600 36.7 3.33462 31 3 FAT CLAY CH 2600 86.7 3.33462 32 3 FAT CLAY CH 2600 86.7 3.33462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2600 93.3 3.58846 36 3 FAT CLAY CH 2600 93.3 3.58846 36 3 FAT CLAY CH 2600 93.3 3.588760 37 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.09000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 93.3<	20	ž	EAT CLAY		2400	93.3	7 77669
31 3 FAT CLAY CH 2600 73.3 3.7520 32 3 FAT CLAY CH 2600 86.7 3.3346 33 3 FAT CLAY CH 2500 86.7 3.3346 34 3 FAT CLAY CH 2500 86.7 3.4680 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 36 3 FAT CLAY CH 2400 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 1700 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 73.3 <	31 3 FAT CLAY CH 2500 75.3 3.75200 32 3 FAT CLAY CH 2600 86.7 3.33462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2500 86.7 3.46800 35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2600 93.3 3.88750 37 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2000 100.0	21	7	EAT CLAY		2500	07.7	7 77 200
33 3 FAT CLAY CH 2500 36.7 3.5340 34 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2600 93.3 3.5884 35 3 FAT CLAY CH 2500 86.7 3.4680 36 3 FAT CLAY CH 2500 86.7 3.4680 36 3 FAT CLAY CH 2400 93.3 3.8875 37 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 73.3 3.8578 43 JEAN CLAY CL 2000 100.0 5.0000	32 3 FAT CLAY CH 2500 66.7 3.53462 33 3 FAT CLAY CH 2500 86.7 3.46800 34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2600 93.3 3.88750 37 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3	72	7	EAT CLAY		2600	73.3	7 77449
355FAT CLAYCH2500 66.7 5.4680 343FAT CLAYCH 2600 93.3 3.5884 353FAT CLAYCH 2500 86.7 3.4680 363FAT CLAYCH 2500 86.7 3.4680 363FAT CLAYCH 2400 93.3 3.8875 373LEAN CLAYCL 2200 73.3 3.3318 383LEAN CLAYCL 2000 93.3 4.6650 393LEAN CLAYCL 1700 60.0 3.5294 403LEAN CLAYCL 1900 66.7 3.5105 423LEAN CLAYCL 1900 66.7 3.5105 423LEAN CLAYCL 1900 73.3 3.8578 433LEAN CLAYCL 2000 100.0 5.0000 443LEAN CLAYM/SANDCL 2000 100.0 5.0000 453LEAN CLAYCL 1900 93.3 4.9105 463LEAN CLAYCL 1900 93.3 4.9105 473LEAN CLAYCL 1800 53.3 2.9611 483LEAN CLAYCL 1800 53.3 2.9611	34 3 FAT CLAY CH 2500 56.7 5.46800 34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2400 93.3 3.58846 36 3 FAT CLAY CH 2400 93.3 3.88750 37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 LEAN CLAY CL 1900 73.3 3.85789 43 LEAN CLAY M/SAND CL 2000 100.0 5.00000 44 3 LEAN CLAY M/SAND CL 2000	77	5	FAT CLAY		2000	00.7	3,33402
34 3 5 $7AT$ $CLAY$ CH 2600 93.3 3.5884 35 3 FAT $CLAY$ CH 2500 86.7 3.4680 36 3 FAT $CLAY$ CH 2400 93.3 3.8875 37 3 $LEAN$ $CLAY$ CL 2200 73.3 3.3318 38 3 $LEAN$ $CLAY$ CL 2000 93.3 4.6650 39 3 $LEAN$ $CLAY$ CL 2000 60.0 3.5294 40 3 $LEAN$ $CLAY$ CL 1700 60.0 3.5294 40 3 $LEAN$ $CLAY$ CL 1900 66.7 3.5105 42 3 $LEAN$ $CLAY$ CL 1900 73.3 3.8578 43 3 $LEAN$ $CLAY$ CL 1900 73.3 3.8578 43 $4EAN$ $CLAY$ CL 2200 93.3 4.2409 44 3 $LEAN$ $CLAY$ 2200 100.0 5.0000 45 3 $LEAN$ $CLAY$ 2000 66.7 3.3350 46 3 $LEAN$ $CLAY$ CL 1900 93.3 4.9105 47 3 $LEAN$ $CLAY$ CL 1800 53.3 2.9611 48 3 $LEAN$ $CLAY$ CL 1800 53.3 2.9611	34 3 FAT CLAY CH 2600 93.3 3.58846 35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2400 93.3 3.88750 37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 2000 60.0 3.52941 40 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 JEAN CLAY CL 1900 73.3 3.85789 43 JEAN CLAY M/SAND CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000	22	2	FAT CLAY		2500	00.7	5.46800
35 3 FAT CLAY CH 2500 86.7 3.4680 36 3 FAT CLAY CH 2400 93.3 3.8875 37 3 LEAN CLAY CL 2200 73.3 3.3318 38 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 2000 60.0 3.5294 40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 43 JEAN CLAY CL 2000 93.3 4.2409 43 JEAN CLAY CL 2000 100.0 5.0000 45 3 LEAN CLAY K/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY CL 1900 93.3 4.9105 46 3 LEAN CLAY CL 1900 93.3 4	35 3 FAT CLAY CH 2500 86.7 3.46800 36 3 FAT CLAY CH 2400 93.3 3.88750 37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2200 93.3 4.66500 39 3 LEAN CLAY CL 2000 93.3 4.66500 40 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY H/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL	24	2	FAT CLAY		2600	95.5	5.58846
36 3 FAT CLAY CH 2400 95.3 3.88751 37 3 LEAN CLAY CL 2200 73.3 3.3318 38 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 43 JEAN CLAY CL 1900 73.3 3.8578 43 JEAN CLAY CL 2000 100.0 5.0000 44 3 LEAN CLAY CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1900 93.3 <td< td=""><td>36 3 PAT CLAY CH 2400 93.3 3.88/50 37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1700 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 100.0 5.00000 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL</td><td>35 7/</td><td>2</td><td>FAT CLAY</td><td>CH</td><td>2500</td><td>86.7</td><td>3.46800</td></td<>	36 3 PAT CLAY CH 2400 93.3 3.88/50 37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 1700 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 100.0 5.00000 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL	35 7/	2	FAT CLAY	CH	2500	86.7	3.46800
37 3 LEAN CLAY CL 2200 73.3 3.3318 38 3 LEAN CLAY CL 2000 93.3 4.6650 39 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 43 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2000 100.0 5.0000 44 3 LEAN CLAY W/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY C	37 3 LEAN CLAY CL 2200 73.3 3.33182 38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 2000 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 43 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY	20	2	FAI LLAY		2400	95.5	3.88/50
38 3 LEAN CLAY CL 2000 95.3 4.6650 39 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 43 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2000 100.0 5.0000 45 3 LEAN CLAY M/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611 <td>38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 2000 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.35500 46 3 LEAN CLAY W/SAND CL 2000 66.7 3.35500 47 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY</td> <td>57</td> <td>2</td> <td>LEAN CLAY</td> <td>L</td> <td>2200</td> <td>/3.3</td> <td>3.33182</td>	38 3 LEAN CLAY CL 2000 93.3 4.66500 39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 2000 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.35500 46 3 LEAN CLAY W/SAND CL 2000 66.7 3.35500 47 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY	57	2	LEAN CLAY	L	2200	/3.3	3.33182
39 3 LEAN CLAY CL 1700 60.0 3.5294 40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2000 93.3 4.2409 44 3 LEAN CLAY CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611	39 3 LEAN CLAY CL 1700 60.0 3.52941 40 3 LEAN CLAY CL 2000 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 43 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 50.3 3.94111 50 3 LEAN CLAY CL	58	5	LEAN CLAY	CL	2000	93.3	4.66500
40 3 LEAN CLAY CL 2000 60.0 3.0000 41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2200 93.3 4.2409 44 3 LEAN CLAY CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611	40 3 LEAN CLAY CL 2000 60.0 3.00000 41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL	39	3	LEAN CLAY	CL	1700	60.0	3.52941
41 3 LEAN CLAY CL 1900 66.7 3.5105 42 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2200 93.3 4.2409 44 3 LEAN CLAY M/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY M/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611	41 3 LEAN CLAY CL 1900 66.7 3.51053 42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY KL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY M/SAND CL 2000 66.7 3.35500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY	40	3	LEAN CLAY	CL	2000	60.0	3.00000
42 3 LEAN CLAY CL 1900 73.3 3.8578 43 3 LEAN CLAY CL 2200 93.3 4.2409 44 3 LEAN CLAY M/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY M/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611	42 3 LEAN CLAY CL 1900 73.3 3.85789 43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY M/SAND CL 2000 100.0 5.00000 45 3 LEAN CLAY M/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY	41	3	LEAN CLAY	CL	1900	66.7	3.51053
43 3 LEAN CLAY CL 2200 93.3 4.2409 44 3 LEAN CLAY W/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 54.3 2.9611	43 3 LEAN CLAY CL 2200 93.3 4.24091 44 3 LEAN CLAY W/SAND CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY W/SAND CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY W/SAND CL 1600 66.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000 <	42	3	LEAN CLAY	CL	1900	73.3	3.85789
44 3 LEAN CLAY W/SAND CL 2000 100.0 5.0000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 66.7 2.59610	44 3 LEAN CLAY W/SAND CL 2000 100.0 5.00000 45 3 LEAN CLAY W/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 66.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	43	3	LEAN CLAY	CL	2200	93. 3	4.24091
45 3 LEAN CLAY W/SAND CL 2000 66.7 3.3350 46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 66.7 3.9611	45 3 LEAN CLAY W/SAND CL 2000 66.7 3.33500 46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 66.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	44	3	LEAN CLAY W/SAND	CL	2000	100.0	5.00000
46 3 LEAN CLAY CL 1900 93.3 4.9105 47 3 LEAN CLAY CL 1800 53.3 2.9611 48 3 LEAN CLAY CL 1800 53.3 2.9611	46 3 LEAN CLAY CL 1900 93.3 4.91053 47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 53.3 2.96111 49 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY L 1600 66.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	45	3	LEAN CLAY W/SAND	CL	2000	66.7	3.33500
47 3 LEAN CLAY CL 1800 53.3 2.9611	47 3 LEAN CLAY CL 1800 53.3 2.96111 48 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 60.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	46	3	LEAN CLAY	CL	1900	93.3	4.91053
48 3 LEAN CLAV CL 1800 66 7 2 E966	48 3 LEAN CLAY CL 1800 46.7 2.59444 49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1600 66.7 4.16875 52 3 LEAN CLAY V/SAND CL 1600 80.0 5.00000	47	3	LEAN CLAY	CL	1800	53.3	2.96111
	49 3 LEAN CLAY CL 1800 53.3 2.96111 50 3 LEAN CLAY CL 1800 60.0 3.33333 51 3 LEAN CLAY CL 1800 66.7 4.16875 52 3 LEAN CLAY V/SAND CL 1600 80.0 5.00000	48	3	LEAN CLAY	CL	1800	46.7	2.59444
49 3 LEAN CLAY CL 1800 53.3 2.9611	50 3 LEAN CLAY CL 1800 60.0 3.333333 51 3 LEAN CLAY V/SAND CL 1600 66.7 4.16875 52 3 LEAN CLAY V/SAND CL 1600 80.0 5.00000	49	3	LEAN CLAY	CL	1800	53.3	2,96111
50 3 LEAN CLAY CL 1800 60.0 3.3333	51 3 LEAN CLAY W/SAND CL 1600 66.7 4.16875 52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	50	3	LEAN CLAY	CL	1800	60.0	3.33333
51 3 LEAN CLAY W/SAND CL 1600 66.7 4.1687	52 3 LEAN CLAY W/SAND CL 1600 80.0 5.00000	51	3	LEAN CLAY W/SAND	ČĹ	1600	66.7	4.16875
52 3 LEAN CLAY W/SAND CL 1600 80 0 5 0000		52	3	LEAN CLAY W/SAND	Cī.	1600	80.0	5 00000
	53 3 LEAN CLAY W/SAND CL 2400 86.7 3.61250	53	3	LEAN CLAY W/SAND	CL.	2400	86.7	3,61250
53 3 LEAN CLAY W/SAND CL 2400 86 7 3 6125		54	3	LEAN CLAY W/SAND	CL	2600	93.3	3,58846
53 3 LEAN CLAY W/SAND CL 2400 86.7 3.6125		54	3	LEAN CLAY W/SAND	CL	2600	93.3	3.58846

۰

TABLE E7, TULSA, BORING T1 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	3	LEAN CLAY W/SAND	CL	2500	73.3	2,93200
56	3	LEAN CLAY W/SAND	CL	2500	73.3	2.93200
57	3	LEAN CLAY W/SAND	CL	2800	73.3	2.61786
58	3	LEAN CLAY W/SAND	ĊĹ	2800	80.0	2 85714
59	3	LEAN CLAY W/SAND	ī.	2800	73 3	2 41794
60	ž	LEAN CLAY W/SAND	CÎ	2800	80 0	2 95714
61	2	LEAN CLAY W/SAND	CL	2800	80.0	2.05714
62	2	LEAN CLAY W/SAND	CL	2600	77 7	2.05/14
43	3			2700	73.3	5.05417
60	z	LEAN CLAY W/SAND		2500	73.3	5.10070
45	7	LEAN CLAY W/SAND		2400	/3.3	5.05417
63	3	LEAN CLAY W/SAND		2500	(3.3	2.93200
60	5	LEAN CLAY M/ SANU		2400	53.3	2.22083
67	2		UL .	2300	53.3	2.31739
60	2	LEAN CLAY	CL	2200	73.3	3.33182
67	5	LEAN CLAY	CL	2200	66.7	3.03182
70	5	LEAN CLAY	CL	2200	73.3	3.33182
/1	5	LEAN CLAY	CL	2500	33.3	1.33200
72	3	LEAN CLAY	CL	2800	80.0	2.85714
73	3	LEAN CLAY	CL	3800	80.0	2.10526
74	3	LEAN CLAY	CL	2800	100.0	3.57143
75	3	LEAN CLAY	CL	2800	93.3	3.33214
76	3	LEAN CLAY	CL	2200	93.3	4.24091
77	3	LEAN CLAY	CL	2000	80.0	4.00000
78	3	LEAN CLAY W/SAND	CL	2000	80.0	4.00000
79	3	LEAN CLAY W/SAND	CL	2200	80.0	3.63636
80	3	LEAN CLAY.	CL	2400	73.3	3.05417
81	3	LEAN CLAY	CL	2400	80.0	3.33333
82	3	LEAN CLAY	CL	2400	80.0	3.33333
83	3	LEAN CLAY	CL	2200	73.3	3.33182
84	3	LEAN CLAY	CL	2200	60.0	2.72727
85	3	LEAN CLAY	ĊL	2200	86.7	3,94091
86	3	LEAN CLAY	ĊĹ	1900	73.3	3.85789
87	3	LEAN CLAY	ČĹ	2100	80.0	3,80952
88	3	LEAN CLAY	ĊĹ	2400	86.7	3,61250
89	ž	LEAN CLAY	cī.	2200	86 7	3 04001
90	ž	LEAN CLAY	ĊĨ.	2200	97 7	4 24091
91	ž	LEAN CLAY	CI.	2200	66 7	7 07192
92	ž	LEAN CLAY	cī.	2000	53 7	2 44500
97	ž		ČL.	1000	26 7	1 40524
94	2			2000	46.7	2 77500
05	7			1000	40.7	2.33500
75	5	LEAN CLAT		1900	40.0	2.10526
70	5	LEAN CLAY W/SAND		1000	40.0	2.22222
97	2	LEAN CLAY M/SAND		1800	46.7	2.59444
70	2	LEAN CLAY M/SAND		1800	/5.5	4.07222
99	5	LEAN CLAY M/SAND	CL.	1800	40.0	2.22222
100	5	LEAN CLAY M/SAND	ÇL	1900	26.7	1.40526
101	5	SANDY LEAN CLAY	CL	1900	53.3	z.80526
102	3	SANDY LEAN CLAY	CL	1800	26.7	1.48333
103	3	SANDY LEAN CLAY	CL	1400	26.7	1.90714
104	3	SANDY LEAN CLAY	CL	1500	26.7	1.78000
105	3	SANDY LEAN CLAY	CL	1800	40.0	2.22222
106	3	SANDY LEAN CLAY	CL	1700	60.0	3.52941
107	3	SANDY LEAN CLAY	CL	1400	46.7	3.33571
108	3	SANDY LEAN CLAY	CL	1000	53.3	5.33000

TABLE E7, TULSA, BORING T7 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
109	3	SANDY LEAN CLAY	CL	1100	53.3	4.8455
110	3	SANDY LEAN CLAY	CL	1000	46.7	4.6700
111	3	SANDY LEAN CLAY	CL	1000	46.7	4.6700
112	3	LEAN CLAY W/SAND	CL	1000	53.3	5.3300
113	3	LEAN CLAY W/SAND	CL	1000	46.7	4.6700
114	3	LEAN CLAY W/SAND	CL	1000	46.7	4.6700
115	3	LEAN CLAY W/SAND	CL	1000	40.0	4.0000
116	3	LEAN CLAY W/SAND	CL	800	33.3	4.1625
117	3	LEAN CLAY W/SAND	CL	700	20.0	2.8571
118	3	LEAN CLAY W/SAND	CL	600	53.3	8.8833
119	3	LEAN CLAY W/SAND	CL	600	13.3	2.2167
120	3	LEAN CLAY W/SAND	CL	1000	13.3	1.3300
121	3	SANDY LEAN CLAY	CL	2400	80.0	3.3333
122	~ 3	SANDY LEAN CLAY	CL	1000	33.3	3.3300
123	3	SANDY LEAN CLAY	CL	1800	26.7	1.4833
124	3	SILTY, CLAYEY SAND	SC-SM	1000	66.7	6.6700
125	3	SILTY, CLAYEY SAND	SC-SM	1400	26.7	1.9071
126	3	SILTY, CLAYEY SAND	SC-SM	1800	20.0	1.1111
127	3	SILTY, CLAYEY SAND	SC-SM	2000	53.3	2.6650
128	3	SILTY, CLAYEY SAND	SC-SM	1900	60.0	3.1579
129	3	SILTY, CLAYEY SAND	SC-SM	1000	53.3	5.3300
130	3	SANDY LEAN CLAY	CL	900	40.0	4.4444
131	3	SANDY LEAN CLAY	CL	1000	40.0	4.0000
132	3	SANDY LEAN CLAY	CL	1200	26.7	2.2250
133	3	SANDY LEAN CLAY	CL	900	66.7	7.4111
134	3	SANDY LEAN CLAY	CL	1400	26.7	1.9071
135	3	SILTY SAND	SM	4800	66.7	1.3896
136	3	SANDY LEAN CLAY	CL	6000	93.3	1.5550
137	3	SANDY LEAN CLAY	CL	5000	13.3	0.2660
138	3	SILTY SAND	SM	8400	106.7	1.2702
139	3	SILTY SAND	SM	7000	120.0	1.7143
140	3	SILTY SAND	SM	6400	240.0	3.7500
141	3	SILTY SAND	SM	8400	106.7	1.2702
142	3	SILTY SAND W/GRAVE	SM	10400	200.0	1.9231
143	3	SILTY SAN W/GRAVEL	SM	4800	533.3	11.1104

•

TABLE E8, TULSA, BORING T2

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	17	LEAN CLAY	CL	2600	153.3	5.89615
2	17	LEAN CLAY	CL	2400	133.3	5.55417
3	17 ·	LEAN CLAY	CL	1800	133.3	7.40556
4	17	LEAN CLAY	CL	1800	86.7	4.81667
5	17	FAT CLAY	СН	1800	106.7	5.92778
6	17	FAT CLAY	ĊН	1700	106.7	6.27647
7	17	FAT CLAY	CH	1400	106.7	7.62143
8	17	FAT CLAY	CH	1600	100.0	6.25000
9	17	FAT CLAY	CH	1600	93.3	5.83125
10	17	FAT CLAY	СН	1700	106.7	6.27647
11	17	FAT CLAY	СН	1700	106.7	6.27647
12	17	FAT CLAY	CH	1600	97 7	5 83125
13	17	FAT CLAY	CH	1600	80.0	5.00000
14	17	FAT CLAY	СН	1800	86.7	4 81667
15	17	FAT CLAY	CH	1800	86 7	4.81667
16	17	FAT CLAY	CH	1800	106 7	E 92779
17	17	FAT CLAY	CH	1800	106.7	5 92778
18	17	FAT CLAY		1800	80.0	6 66666
10	17	EAT CLAY		2000	44 7	7 77500
20	17			2200	80.7	7 47474
21	17			2200	60.0	2.02020
22	17			2200	60.7	3.03182
27	17	LEAN CLAT		2200	60.0	2./2/2/
23	17	FAT CLAY		2400	86.7	3.61250
24	17	FAT CLAT	LH	2400	80.0	5.55555
25	17	FAT CLAY	CH	2300	80.0	3.4/826
26	17	FAT CLAY	CH	2400	80.0	3.33333
27	17	FAI CLAY	CH	2600	80.0	3.07692
28	17	FAT CLAY	CH	2600	80.0	3.07692
29	17	FAT CLAY	CH	2500	80.0	3.20000
30	17	FAT CLAY	СН	2400	80.0	3.33333
31	17	FAT CLAY	CH	2600	73.3	2.81923
32	17	FAT CLAY	СН	2800	66.7	2.38214
33	17	FAT CLAY	CH	2800	66.7	2.38214
34	17	FAT CLAY	СН	2600	66.7	2.56538
35	17	LEAN CLAY	CL	2500	80.0	3.20000
36	17	LEAN CLAY	CL	2400	73.3	3.05417
37	17	LEAN CLAY	CL	2500	66.7	2.66800
38	17	LEAN CLAY	CL	3100	126.7	4.08710
39	17	LEAN CLAY	CL	3200	120.0	3.75000
40	17	LEAN CLAY	CL	3100	133.3	4.30000
41	17	LEAN CLAY	CL	2800	86.7	3.09643
42	17	LEAN CLAY	CL	2300	93.3	4.05652
43	17	LEAN CLAY	CL	2900	106.7	3.67931
44	17	LEAN CLAY	CL	2800	106.7	3.81071
45	17	LEAN CLAY	CL	260 0	106.7	4.10385
46	17	LEAN CLAY W/SAND	CL	2600	93.3	3.58846
47	17	LEAN CLAY W/SAND	CL	2300	86.7	3.76957
48	17	LEAN CLAY W/SAND	CL	2400	73.3	3.05417
49	17	LEAN CLAY W/SAND	ĊĹ	2500	93.3	3.73200
50	17	LEAN CLAY W/SAND	ĊĹ	2100	100.0	4.76190
51	17	LEAN CLAY W/SAND	ČĹ	2400	86.7	3.61250
52	17	LEAN CLAY W/SAND	ČĪ	2300	93.3	4,05652
53	17	LEAN CLAY W/SAND	cī	2400	86.7	3.61250
54	17	LEAN CLAY W/SAND	cī	2400	80.0	2 22222
27	± 1	LEAN CEAN IV JAND	UL.	L-100	00.0	2.22222

.

TABLE E8, TULSA, BORING T2 (CONTINUED)

.

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	17	LEAN CLAY W/SAND	CL	2400	106.7	4.44583
56	17	LEAN CLAY W/SAND	CL	2200	106.7	4.85000
57	17	LEAN CLAY	CL	2000	106.7	5.33500
58	17	LEAN CLAY	CL	2000	93.3	4.66500
59	17	LEAN CLAY	ĊĹ	2200	73.3	3.33182
60	17	LEAN CLAY W/SAND	CL	2200	93.3	4.24091
61	17	LEAN CLAY W/SAND	CL	2300	120.0	5.21739
62	17	LEAN CLAY	CL	2200	93.3	4,24091
63	17	LEAN CLAY	ČĹ	2200	106.7	4.85000
64	17	LEAN CLAY	ČĹ	2800	86.7	3.09643
65	17	LEAN CLAY	ĊĹ	3000	106.7	3.55667
66	17	LEAN CLAY	ČĹ	3300	106.7	3.23333
67	17	LEAN CLAY	ČĪ	3100	100.0	3,22581
68	17	LEAN CLAY	čī	3200	100.0	3 12500
69	17	LEAN CLAY	cī .	3200	93.3	2,91562
70	17	LEAN CLAY	ĊĪ.	3300	106 7	3 23333
71	17	LEAN CLAY	CL	3200	106.7	3,33437
72	17	LEAN CLAY	Cī	2400	66.7	2 77917
73	17	LEAN CLAY W/SAND	CI	2200	80.0	3 63636
74	17	LEAN CLAY W/SAND	CI I	2200	66.7	3 03182
75	17	LEAN CLAY W/SAND	CL	2000	53.3	2.66500

,

.

TABLE E9, COLLINSVILLE, BORING C1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	18	FAT CLAY	СН	800	0.0	0.0000
2	18	FAT CLAY	CH	2000	53.3	2.6650
3	18	FAT CLAY	CH	3000	66.7	2.2233
4	18	FAT CLAY	СН	3800	66.7	1.7553
5	18	FAT CLAY	СН	4400	53.3	1.2114
6	18	FAT CLAY	СН	3600	86.7	2.4083
7	18	FAT CLAY	СН	2400	120.0	5.0000
8	18	FAT CLAY	СН	1600	133.3	8.3312
9	18	FAT CLAY	СН	190 0	26.7	1.4053
10	18	FAT CLAY W/SAND	СН	1200	53.3	4.4417
11	18	FAT CLAY W/SAND	СН	1200	53.3	4.4417
12	18	FAT CLAY W/SAND	СН	1500	66.7	4.4467
13	18	FAT CLAY W/SAND	СН	1700	100.0	5.8824
14	18	FAT CLAY W/SAND	СН	2000	133.3	6.6650
15	18	SANDY LEAN CLAY	CL	2200	120.0	5.4545
16	18	SANDY LEAN CLAY	CL	2100	106.7	5.0810
17	18	SANDY LEAN CLAY	CL	2000	106.7	5.3350
18	18	SANDY LEAN CLAY	CL	2000	86.7	4.3350
19	18	SANDY LEAN CLAY	CL	2200	80.0	3.6364
20	18	SANDY LEAN CLAY	CL	2500	86.7	3.4680
21	18	SANDY LEAN CLAY	CL	3200	86.7	2.7094
22	18	CLAYEY SAND	SC	3800	73.3	1.9289
23	18	CLAYEY SAND	SC	4000	106.7	2.6675
24	18	CLAYEY SAND	SC	4400	86.7	1.9705
25	18	CLAYEY SAND	SC	4000	133.3	3.3325
26	18	SILTY, CLAYEY SAND	SC-SM	6200	386.7	6.2371
27	18	CLAYEY SAND	SC	12400	213.3	1.7202
28	18	CLAYEY SAND	SC	13800	413.3	2.9949
29	18	SILTY, CLAYEY SAND	SC-SM	18000	266.7	1.4817
30	18	SILTY, CLAYEY SAND	SC-SM	15600	160.0	1.0256
31	18	SILTY SAND	SM	14000	533.3	3.8093
32	18	SILTY SAND	SM	12400	1306.7	10.5379

•

TABLE E10, COLLINSVILLE, BORING C2

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR	
1	19	LEAN CLAY	CL	2200	160.0	7.27273	
2	19	LEAN CLAY	CL	4800	80.0	1.66667	
3	19	LEAN CLAY	ĊĹ	2400	53.3	2.22083	
4	19	LEAN CLAY	ĊĹ	4800	53.3	1,11042	
5	19	LEAN CLAY	cī	5400	86 7	1 40554	
6	19	LEAN CLAY	ČĪ.	5600	177 7	2 28024	
7	ĩó	LEAN CLAY	CL	5500	120.0	2.30030	
, A	10			5500	177 7	2.10102	
Š.	10	LEAN CLAY		5900	100.0	2.25952	
10	10			5000	155.5	2.64510	
10	17	LEAN CLAY		5600	146.7	2.52931	
11	19	LEAN CLAY		6400	253.3	3.95/81	
12	19	LEAN CLAY	CL	6600	220.0	3.33333	
15	19	LEAN CLAY	CL	7800	186.7	2.39359	
14	19	LEAN CLAY	CL	7400	180.0	2.43243	
15	19	LEAN CLAY	CL	8400	146.7	1.74643	
16	19	LEAN CLAY	CL	8200	206.7	2.52073	
17	19	LEAN CLAY	CL	7400	173.3	2.34189	
18	19	LEAN CLAY	CL	5700	126.7	2.22281	
19	19	LEAN CLAY	CL	5400	120.0	2.22222	
20	19	LEAN CLAY	CL	4800	153.3	3.19375	
21	19	LEAN CLAY	CL	3600	146.7	4.07500	
22	19	LEAN CLAY	CL	3200	173.3	5.41562	
23	19	LEAN CLAY	CL	3000	173.3	5.77667	
24	19	FAT CLAY	СН	2600	173.3	6.66538	
25	19	FAT CLAY	СН	2600	180.0	6.92308	
26	19	FAT CLAY	СН	2000	173.3	8.66500	
27	19	FAT CLAY	СН	2000	133.3	6.66500	
28	19	FAT CLAY	СН	2100	113.3	5.39524	
29	19	FAT CLAY	ĊН	2300	93.3	4.05652	
30	19	FAT CLAY	ĊН	2400	80.0	3.33333	
31	19	FAT CLAY	CH	2400	80.0	3.33333	
32	19	FAT CLAY	CH	2200	80.0	3.63636	
33	19	FAT CLAY	СH	2200	60.0	2.72727	
34	19	FAT CLAY	СН	2400	60.0	2 50000	
35	19	LEAN CLAY	CI.	2500	60.0	2 40000	
36	19	LEAN CLAY	cī.	2200	46 7	2 12273	
37	19	LEAN CLAY	či.	1900	46.7	2 46790	
38	19	LEAN CLAY	CL.	1700	46.7	2 74704	
29	10	LEAN CLAY	CL	1700	40.7	2 75204	
4ń	10			1500	77 7	2,33274	
40	10	LEAN CLAY		1500	22.2	2.22000	
42	10	LEAN CLAY		1600	20.7	1./0000	
42	17	LEAN CLAY		1600	20.7	1.008/5	
45	17	LEAN CLAT		1400	26.7	1.90/14	
44	19	LEAN CLAY	CL	1400	55.5	2.3/85/	
45	19	LEAN CLAY	CL	1400	26.7	1.90714	
46	19	LEAN CLAY	CL	1300	26.7	2.05385	
47	19	LEAN CLAY	CL	1200	26.7	2,22500	
48	19	LEAN CLAY	CL	1200	26.7	2.22500	
49	19	LEAN CLAY	CL	1200	20.0	1.66667	
50	19	LEAN CLAY	CL	1100	26.7	2.42727	
51	19	LEAN CLAY	CL	1200	26.7	2.22500	
52	19	LEAN CLAY	CL	1200	26.7	2.22500	
53	19	LEAN CLAY	CL	1200	26.7	2.22500	
54	19	LEAN CLAY	CL	1200	33.3	2.77500	

•

TABLE E10, COLLINSVILLE, BORING C2 (CONTINUED)

-

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	19	LEAN CLAY	CL	1400	20.0	1.42857
56	19	LEAN CLAY	cī.	1600	40 0	2 50000
57	19	LEAN CLAY	cī.	1500	40 0	2 46467
58	19	LEAN CLAY		1000	26 7	2 67000
59	19	LEAN CLAY		900	26.7	2.07000
57	10			900	20.7	2.70007
61	19			800	20.0	2.50000
62	10			800	20.7	3.33/50
62	17	LEAN CLAY		800	26.7	3.33/50
64	17			800	20.7	5.55/50
67 4 E	17	LEAN CLAY		800	20.0	2.50000
65	17	LEAN CLAY		800	20.7	3.33/50
66	17	LEAN CLAY		900	15.5	1.4///8
67	- 10	LEAN CLAY		800	26.7	3.33/50
. 60	19	LEAN CLAT	CL .	800	13.3	1.66250
67	19	LEAN CLAY	CL	800	20.0	2.50000
70	19	LEAN CLAY W/SAND	CL	800	0.0	0.00000
/1	19	LEAN CLAY W/SAND	CL	800	20.0	2.50000
72	19	LEAN CLAY	CL	1000	13.3	1.33000
73	19	LEAN CLAY	CL	900	13.3	1.47778
/4	19	LEAN CLAY W/SAND	CL	1100	33.3	3.02727
75	19	LEAN CLAY W/SAND	CL	1000	33.3	3.33000
76	19	LEAN CLAY W/SAND	CL	1200	33.3	2.77500
77	19	LEAN CLAY W/SANO	CL	1300	40.0	3.07692
78	19	LEAN CLAY W/SAND	CL	1300	40.0	3.07692
79	19	LEAN CLAY W/SAND	CL	1200	40.0	3.33333
80	19	LEAN CLAY W/SAND	CL	1200	26.7	2.22500
81	19	LEAN CLAY W/SAND	CL	1200	40.0	3.33333
82	19	LEAN CLAY	CL	1000	26.7	2.67000
83	19	LEAN CLAY	CL	1000	20.0	2.00000
84	19	LEAN CLAY W/SAND	CL	800	26.7	3.33750
85	19	LEAN CLAY W/SAND	CL	1200	33.3	2.77500
86	19	LEAN CLAY W/SAND	CL	1000	26.7	2.67000
87	19	LEAN CLAY W/SAND	CL	1200	60.0	5.00000
88	19	SANDY LEAN CLAY	CL	1400	13.3	0.95000
89	19	SANDY LEAN CLAY	CL	900	6.7	0.74444
90	19	LEAN CLAY W/SAND	CL	1200	26.7	2,22500
91	19	LEAN CLAY W/SAND	ČĹ	1700	6.7	0.39412
92	19	LEAN CLAY W/SAND	CL	1000	20.0	2.00000
93	19	LEAN CLAY W/SAND	ČĹ	1500	13.3	0.88667
94	19	LEAN CLAY W/SAND	CL	900	20.0	2.22222
95	19	LEAN CLAY W/SAND	ĊĹ	1200	26.7	2,22500
96	19	LEAN CLAY W/SAND	CL	1000	33.3	3.33000
97	19	SANDY LEAN CLAY	ČĹ	800	0.0	0.00000
98	19	SANDY LEAN CLAY	cī.	1600	40.0	2.50000
99	19	LEAN CLAY W/SAND	CI.	1600	40.0	2 50000
100	19	LEAN CLAY W/SAND	CL	1000	20 0	2 00000
101	19			1200	24 7	2 22500
102	10	I FAN CLAY W/SAND		1000	20.7	2 67000
102	10	LEAN CLAT H/ JANU		1000	20.1	2.0/000
105	10	STITY CAND		800	20.7	5.55/50
104	17	SILIT SANU		900	20.7	2.7000/
105	19	SANDY LEAN CLAY	517	1000	26.7	1,668/5
100	12	SANUT LEAN CLAY		4000	40.0	1.00000
107	19	SANUY LEAN CLAY		6000	186.7	5.11167
108	19	SILIY, CLAYEY SAND	SC-SM	7800	0.0	0.00000

TABLE E10, COLLINSVILLE, BORING C2 (CONTINUED)

1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
109	19	SILTY, CLAYEY SAND	SC-SM	3600	60.0	1.66667
110	19	CLAYEY SAND	SC	5200	33.3	0.64038
111	19	CLAYEY SAND	SC	1600	6.7	0.41875
112	19	SANDY LEAN CLAY	CL	1800	0.0	0.00000
113	19	SANDY LEAN CLAY	CL	2000	0.0	0.00000
114	19	SANDY LEAN CLAY	CL	2200	40.0	1.81818
115	19	LEAN CLAY W/SAND	CL	2600	20.0	0.76923
116	19	LEAN CLAY W/SAND	CL	2000	40.0	2.00000
117	19	SANDY LEAN CLAY	CL	2000	40.0	2.00000
118	19	SANDY LEAN CLAY	CL	1800	160.0	8.88889
119	19	SANDY SILTY CLAY	CL-ML	2200	53.3	2.42273
120	19	SANDY SILTY CLAY	CL-ML	3600	0.0	0.00000
121	19	SANDY SILTY CLAY	CL-ML	5200	26.7	0.51346
122	19	SANDY SILTY CLAY	CL-ML	8200	226.7	2.76463
123	19	SANDY SILTY CLAY	CL-ML	440 0	0.0	0.0000

•

.

.

TABLE E11, BIXBY, BORING B1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	16	LEAN CLAY	CL	1800	0.0	0.0000
2	16	LEAN CLAY	CL	6800	40.0	0.5882
3 -	16	LEAN CLAY	CL	7000	66.7	0.9529
4	16	SANDY LEAN CLAY	CL	6600	66.7	1.0106
5	16	SANDY LEAN CLAY	CL	6000	66.7	1.1117
6	16	LEAN CLAY W/SAND	ĊĹ	5200	60.0	1,1538
7	16	LEAN CLAY W/SAND	ČĹ	4800	60.0	1,2500
8	16	SILTY CLAY W/ SAND	CL-ML	4600	66.7	1.4500
9	16	SILTY CLAY W/SAND	CL-ML	3900	40.0	1.0256
10	16	SILTY CLAY W/SAND	CL-ML	3600	60.0	1.6667
11	16	SANDY STLT	MI	3800	46.7	1 2289
12	16	SANDY STLT	MI	2800	46 7	1 6679
13	16	STI TYCI AY W/SAND		2600	46.7	1 7042
14	16	STITY CLAY W/SAND		2000	66 7	3 3360
15	16	STITYCIAY W/SAND		1600	77 7	6 5912
16	16	LEAN CLAY W/SAND		1200	26 7	2 2250
17	16	IFAN CLAY W/SAND	CL CL	1200	4 7	0 5597
18	16			1600	80.7	0.9903 E 7147
19	16	LEAN CLAY W/SAND		1400	94 7	5./143
20	16	SANDY LEAN CLAY		400	66.7	3.410/
21	16	SANDY LEAN CLAY		400	40./	17 7250
22	14	LEAN CLAY W/CAND		1200	53.3	13.3250
27	14			1200	55.5	4.441/
24	16	SANDY LEAN CLAY		1400	40.0	3.3333
25	16	SANDY LEAN CLAY		1800	50.0	5.7500
25	16	CANDY LEAN CLAY		1800	/3.3	4.0722
27	16	SANDY LEAN CLAT		2100	77 7	3.3333
29	16	SANDY LEAN CLAY		2200	. / 3 . 3	3.4905
20	14	SANDY LEAN CLAY		2200	77 7	3.0510
27	16	SANDY LEAN CLAY		2000	13.3	2.0050
21	16	SANDY LEAN CLAY		1000	66.7	3.3390
72	16	SANDY LEAN CLAT		2100	00./ 77 7	3,5105
77	16	SANDI LEAN CLAI		2100	13.3	3.4705
22	10	SANDT LEAN CLAT		2000	00.7	3.3350
24	10	SANDY LEAN CLAY		2000	60.0	3.0000
39	10	SANDY LEAN CLAY		1000	46.7	2.5944
20	10	SANUT LEAN CLAT		1500	40.0	2.6667
5/	16	SANDY LEAN CLAY	CL	1300	40.0	3.0769
38	16	SANDY LEAN CLAY	CL.	1000	33.3	3.3300
39	16	SANDY LEAN CLAY	CL	1000	40.0	4.0000
40	16	SANDY LEAN CLAY	CL	1000	26.7	2.6700
41	16	SANDY LEAN CLAY	CL	1000	33.3	3.3300
42	16	SANDY LEAN CLAY	CL	1200	33.3	2.7750
43	16	LEAN CLAY W/SAND	CL	1200	33.3	2.7750
44	16	LEAN CLAY W/SAND	CL	1300	26.7	2.0538
45	16	LEAN CLAY W/SAND	CL	1200	26.7	2.2250
46	16	LEAN CLAY W/SAND	CL	1200	26.7	2.2250
47	16	LEAN CLAY W/SAND	CL	1000	46.7	4.6700
48	16	LEAN CLAY W/SAND	CL	1000	66.7	6.6700
49	16	LEAN CLAY W/SAND	CL	900	13.3	1.4778
50	16	LEAN CLAY W/SAND	CL	1200	40.0	3.3333
51	16	LEAN CLAY W/SAND	CL	1500	53.3	3.5533
52	16	SANDY LEAN CLAY	CL	1100	33.3	3.0273
53	16	SANDY LEAN CLAY	CL	1500	53.3	3.5533
54	16	SANDY SILTY CLAY	CL-ML	1700	40.0	2.3529
TABLE E11, BIXBY, BORING B1 (CONTINUED)

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	16	SANDY SILTY CLAY	CL-ML	1500	80.0	5.333
56	16	SANDY LEAN CLAY	CL	1400	33.3	2.379
57	16	SANDY LEAN CLAY	CL	1600	46.7	2.919
58	16	SANDY LEAN CLAY	CL	1900	33.3	1.753
59	16	SANDY LEAN CLAY	CL	1700	80.0	4.706
60	16	SANDY LEAN CLAY	CL	1800	213.3	11.850
61	16	SANDY LEAN CLAY	CL	1600	266.7	16.669
62	16	SANDY LEAN CLAY	CL	3200	133.3	4.166
63	16	LEAN CLAY	CL	1400	1733.3	123.807

.

_

_

TABLE E12, ROLAND, BORING R1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
1	2	FAT CLAY	СН	1000	53.3	5.3300
2	2	FAT CLAY	СН	600	20.0	3.3333
3	2	FAT CLAY	CH	800	66.7	8.3375
4	2	FAT CLAY	СН	1100	86.7	7.8818
5	2	FAT CLAY	CH	600	26.7	4.4500
6	2	FAT CLAY	СН	1500	53.3	3.5533
7	2	FAT CLAY	СН	800	40.0	5.0000
8	2	FAT CLAY	СН	200	33.3	16.6500
9	2	FAT CLAY	СН	600	26.7	4.4500
10	2	FAT CLAY	СН	500	46.7	9.3400
11	2	FAT CLAY	CH	800	40.0	5.0000
12	2	FAT CLAY	СН	800	53.3	6.6625
13	2	FAT CLAY	CH	1000	46.7	4.6700
14	2	FAT CLAY	CH	1000	46.7	4.6700
15	2	FAT CLAY	CH	1200	33.3	2.7750
10	2	FAI CLAY	CH	1200	40.0	3.3333
10	2	FAT CLAY		1500	53.3	5.5555
10	· 2	FAT CLAY		1400	55.5	3.80/1
20	2	FAT CLAT		1500	40.0	2.000/
21	2	FAT CLAT		1900	55.5	2.0(1)
22	2	FAT CLAT		1600	55.5	2.9011
23	2	FAT CLAT		1600	<u> </u>	3.3512
24	2	FAT CLAT		1600	60.0 57 7	2 7712
25	2	FAT CLAT	CH	1600	33.3 66 7	2 0197
26	2	FAT CLAY	СН	1600	46.7	2 9197
27	2	FAT CLAY	CH	1800	53 3	2.9107
28	2	FAT CLAY	СН	1700	60 0	3 5294
29	2	FAT CLAY	СН	1800	66.7	3,7056
30	2	FAT CLAY	СН	1700	66.7	3,9235
31	2	FAT CLAY	ĊH	1800	60.0	3.3333
32	2	FAT CLAY	ĊH	1800	53.3	2,9611
33	2 .	FAT CLAY	СН	1600	120.0	7.5000
34	2	FAT CLAY	СН	1800	80.0	4.4444
35	2	FAT CLAY	CH	1000	80.0	8.0000
36	2	FAT CLAY	СН	1800	93.3	5.1833
37	2	FAT CLAY	СН	1800	86.7	4.8167
38	2	FAT CLAY	СН	1800	93.3	5.1833
39	2	FAT CLAY	СН	1900	93.3	4.9105
40	2	FAT CLAY	СН	1800	46.7	2.5944
41	2	FAT CLAY	CH	1900	53.3	2.8053
42	2	FAT CLAY	CH	1800	66.7	3.7056
43	Z	FAT CLAY	CH	1800	73.3	4.0722
44	2	FAT CLAY	CH	1900	46.7	2.4579
45	2	FAI LLAY		1800	55.5	2.9611
40	2	FAT CLAT		1900	40.7	2.45/9
49	2	FAI ULAT		1,200	66.7	5.5105
40	2	FAT CLAT		1900	40.0	2 1570
50	2	FAT CLAT	CH CH	2000	60.0	2 ZZE0
51	2	FAT CLAT	CH CH	2000	60.7	2 5000
52	2	FAT CLAT	СН	2400	106 7	6 4469
53	2	FAT CLAY	CH CH	2400	80.0	7,4420
54	2	FAT CLAY	СН	2200	66.7	3.0318
-						

.

TABLE E12, ROLAND, BORING R1 (CONTINUED)

.

1

OBS	LOCATION	SOIL TYPE	USC	CR	LF	FR
55	2	FAT CLAY	СН	2400	93.3	3.8875
56	2	FAT CLAY	ĊH	2500	93.3	3.7320
57	2	FAT CLAY	СН	2200	66.7	3.0318
58	2	FAT CLAY	СН	2200	80.0	3.6364
59	2	FAT CLAY	CH	2300	80.0	3.4783
60	2	FAT CLAY	СН	2400	73.3	3.0542
61	2	FAT CLAY	СН	2400	100.0	4.1667
62	2	FAT CLAY	СН	2200	80.0	3.6364
63	2	FAT CLAY	СН	1900	93.3	4.9105
64	2	FAT CLAY	СН	´2000	66.7	3.3350
65	2	FAT CLAY	СН	1900	66.7	3.5105
66	2	FAT CLAY	СН	1800	40.0	2.2222
67	2	FAT CLAY	СН	1800	40.0	2.2222
68	2	FAT CLAY	СН	1400	53.3	3.8071
69	2	FAT CLAY	СН	1200	40.0	3.3333
70	2	FAT CLAY	СН	1000	40.0	4.0000
71	2	FAT CLAY	СН	1000	46.7	4.6700
72	2	FAT CLAY	СН	1000	53.3	5.3300
73	2	FAT CLAY	CH	800	60.0	7.5000
74	2	FAT CLAY	СН	800	40.0	5.0000
75	2	FAT CLAY	СН	600	53.3	8.8833
76	2	FAT CLAY	CH	600	60.0	10.0000
77	2	FAT CLAY	СН	600	53.3	8.8833
78	2	FAT CLAY	СН	600	66.7	11.1167
79	2	FAT CLAY	СН	800	53.3	6.6625
80	2	FAT CLAY	СН	800	53.3	6.6625
81	2	FAT CLAY	СН	1000	173.3	17.3300
82	2	FAT CLAY	CH	1000	26.7	2.6700
83	2	FAT CLAY	СН	2400	153.3	6.3875
84	2	FAT CLAY	СН	3800	126.7	3.3342
85	2	FAT CLAY	СН	3600	106.7	2.9639
86	2	FAT CLAY	СН	6600	160.0	2.4242
87	2	FAT CLAY	CH	7200	186.7	2.5931
88	2	LEAN CLAY	CL	7000	160.0	2.2857
89	2	LEAN CLAY	CL	8000	293.3	3.6662
90	2	LEAN CLAY	CL	10000	466.7	4.6670
91	2	LEAN CLAY	CL	11400	200.0	1.7544

APPENDIX F

.

COMPARATIVE CPT DATA

•

Table F-l

CPT 11 Wassmar 000 3 ④ 3 3 Depth F.C Ē CR LF Friction ſł. (1) • 1000 (2) • (1) (1) (2) (N/cm +) (N/cm + 1+10=1000 3+150+1000 m. (N·1000) (11-1000) Ratio 3 + @ +100 2.90 230 43 2.3 3.4 6.67 3:45 3:45 7:67 3:96 5:66 5:66 290 300 320 1.5 76 3.6 10.00 1.08 2.1 3.0 4.0 14.00 12.67 18.67 2 1.41 3.2 3.3 4.7 <u>330</u> <u>470</u> <u>380</u> 1.74 <u>5.4</u> 6.6 25.33 2.07 4.7 3,8 .44 2,40 2,76 3.8 3.1 <u>20.67</u> 5 20.67 3.7 <u>350</u> 5.91 3.1 370 5.59 3.59 <u>3,03</u> 3,1 3,38 6.8 340 47 <u>6.5</u> 1.4 3.4 3.71 3.3 مک 3.3 7.62 4.04 3.2 280 4.37 2.8 3.2 6.1 4.69 3.1 تي: 20.67 4. 02 2.8 19.33 6.90 6.0 18.67 7.47 7.53 5.00 35 25 5.6 250 2.3 230 2.6 17.33 30 .D/ 200 2.0 4.8 10.00 4.5 5.26 190 180 6.33 1.5 1.9 10.00 1.2 3.3 1.3 1. ک 6 i 8.67 4.58 3.33 3.78 99 7.33 1,6 3.1 1,1 160 1.3 1.5 8.00 32 2.8 1,2 150 1 <u>7.65</u> 7.97 1,3 1,3 8.67 2.6 150 1.7 160 170 42 2.8 5. 31 8.30 3.0 1.1 7.33 4. 8.00 1.9 1.9 190 21 81 8.63 1.2 -4. 192 8.96 7,33 3. 1.1 180 9 1.8 4.44 29 1.2 8.00 <u>9.61</u> 9.94 1.8 4.44 8,00 8,00 180 180 1.2 4 44 1.2 لىنى 1.2 3.26 10,27 1,5 <u>190</u> 10.00 É 180 10.00 10. <u>,,5</u> 1.8 73 1.5 1,9 1.8 10, 3.3 10.00 37 <u>تھن</u> 25 Ĵ, 26 2,07 , 5. 7/ 5.3**5** 11.58 11.71 3.6 1.8 210 12.00 ş. 2.1 /3,33 /3,33 2.1 4,0 310 2.0 12.24 5.55 5.80 240 2.4 4,2 2.0 2.0 2.0 2.0 2.1 <u>/3,33</u> /3,33 /3,33 /3,33 /3,33 2,3 77.7 4.3 230 5,80 12 5 43 230 25 13.22 4,5 4,3 7,4 250 13.55 24 5.80 230 5.83 13.28 240 1.7 14.00 12.1 2,2 4,3 1.8 515 220 11.33

Table F-1 Cont.'

•

Der	oth	0	٢	3	•	9	
			x .c	~	C.R	LF	Friction
17.	m.	(11-1000)	(1/ •1000)	(1) = 1000) (2) - (1)	(N/cm)	(N/cm 4)	Catio
1454		2.6	4.3	1.5	260	12.00	4.62
14.86		2.5	4.3	1.8	250	10.00	4.00
15,19		2.4	3.4 7	1.5	240	12.00	5.00
13.52		Sil	3.9	1.8	210	10.00	4.76
15.85		2,2	3.7	1.9	220	12.00	5.45
16:18		2.0	3.8	2.0	200	12.67	6.34
16.50		2.4	4.3	1.8	240	13.33	5.55
16.83		2,5	4.5	1.7	250	12.00	4.80
17.16		3.0	4.8	2.2	300	11.33	3.78
17:49		3.2	4.7	2.9	320	14.67	4.58
17.82		30	5.2	2.5	300	19.33	6.44
18.14		2.3	5.7	2.7	280	16191	5.95
18.47		ais	5.1	2.2	260	18.00	6.92
18.80		2.3	5.2	2.0	250	14.67	5,87
19,13		1 2.0	5.2	1.5	300	13.33	4,43
19.46		2.8	4.8	1.8	280	10.00	3.57
19.78		128	4.3	1.7	280	12.00	429
20.11		2.0	3.8	1.3	200	11.33	5,67
20.44		1.7	3.6	0.8	190	8.67	4,56
20.67		1.7	3.0	0.9	170	5.33	3.14
21.10		1.17	25	0.9	170	6.00	3,53
21.43		1.1.4	2.3	1.0	140	6.00	4,29
21.75		1 1.5	2.4	07	150	6.67	4.43
22.08		20	3.0	1.2	200	4.67	2.34
22.41		えぶ	3.2	1.3	250	8.00	3.20
22.74		2.5	3.7	1.0	250	8.67	3.47
23.07		2.0	3.3	0.8	200	6.62	3,34
23.39		2.3	3.3	0.3	230	5.33	2.32
23.72		1.7	25	0.8	170	2.00	1.18
24.05		1.1.7	2.0	1.0	170	5.33	3.14
24.38		1.5	8.1	0.8	100	6.67	6.67
24.71		.8	1.8	0.6	80	5.33	6.60
25.03		2.8	3.6	02	280	4.00	1,43
25.36		1.8	2.4	0.9	180	1,33	.74
25.69		2.1	23	1.9	210	6.00	2,86
26.02		2.4	3.3	2.0	240	12.67	5,28
26.35		2.1	4.0	121	1210	13.33	6.35
26.67		12.2	4.2	6.0	220	27.33	12.42
27.00		1.7	5.8	4.6	120	40.00	2353
27.33		1,2	7.2	5.10	120	30.67	25.56
27.66		2.8	7.4	7.1	280	37.33	13,32
27.99		1.2.3	7.7	5.6	230	47.33	20.58
28.32		2.4	1.5	3.1	240	37,33	15.55

Table F-1 Cont.'

Der	oth	0 U	2. 7	3		3	C.
ſł.	177.	(11.1000)	(11 -1000)	(1)-1000	(N/cm')	(N/cm*	Ratio
78/4		51	in g		200000	20/7	2 2 0
2897		10.1	13.2.7	40	1010	20,67	2.10
29.30		11.9	1211	$\frac{1}{2}$	1190	33.33	2.80
29.63		20.0	25.1)	4.4	2000	40.00	2.00
29.9%		16.0	22.0	6.9	1600	29.33	1,83
30,28		13.1	17.5	19.0	1310	4600	3.51
30.61		73.1	20.0	28.0	1310	126.67	9.67.
30.94		29.0	48.0		2900	186.67	6.44
31.27		34.0	62.0		3400		
					<u> </u>	<u> </u>	
					<u> </u>		i
					<u></u>		
				l		<u> </u>	
				<u> </u>	+		
				<u> </u>			
		1			1		
		1	· · · · ·				
							<u> </u>
		<u> </u>					
		<u> </u>	L		<u></u>		
			Ļ			1	<u> </u>
			ļ	ļ	<u> </u>	<u> </u>	<u> </u>
		<u> </u>	<u> </u>	<u> </u>		. <u>.</u>	
			<u>}</u>	<u> </u>	+	+	
	<u> </u>	<u>├</u>	 	÷	<u></u>	+	<u> </u>
	<u> </u>		<u> </u>	<u> </u>	┼─────		
		<u> </u>	<u> </u>	+		+	<u>+</u>
	<u> </u>		<u> </u>	<u>+</u>	+	+	
	t	+	<u> </u>	+	+	+	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	+	+	+	1
	<u> </u>	+	<u> </u>	+		+	
		†		+	+		
	<u> </u>	†	<u> </u>	<u>† </u>	+	+	
	t		+	+	+	1	
L		1	1		ł	1	-

Table F-2

De	oth	Ðu		3	•	3	
ſł.	m.	(11.1000)	(11-1000)	(1)-1000	(N/cm')	(N/cm ⁴	Ratio
0 10				(2 -(1)	U+10=1000	(3)+150+1000	() ÷ () + (00
0.15		1.0		D.Z	100	1.3.3	1.35
$\mathcal{D}, \mathcal{F}_{\mathcal{O}}$		1.0		1.2		8.00	7.23
1,01		40	2.0	1.6	190	10.61	3.72
$\frac{1.13}{1.41}$		1.6		1.6	160	10.61	7 20
170		1.6	Jid-	17	100	11 22	2.00
312		1.4	2.2	11/	140	1017	712
2.45		14	3.9	<u> </u>	140	2.33	3 2
2.77		1.2.	20	D. 2	120	2.23	2.28
3.10		1.6	2.4	04	160	2.67	1.67
3.43		1.2	7.7	0.6	120	4.00	3,33
3.76		1.2	1.6	06	120	4.00	3,33
4.09		1.2	1.8	0.5	120	3.33	2.78
4.42		1.2	1.8	0.6	120	4.00	3,33
4.74		L 1.3	1.8	0.6	130	4.00	3.08
5.07		1.4	20	0.8	140	5.33	3.81
5.40		1.4	20	0.8	140	5.33	3,81
5.73		1.4	2,2	0.8	140	5.33	3.81
6.06		1.4	2.2	0.8	140	5.33	3.81
6.38		1,4	2.2	5,8	140	3,33	3.81
6.71		1.5	2.3	C.3	150	5.33	3.55
7.04		1.5	2.3	0.8	150	3.33	3,55
7.37		1.5	2.3	0.8	150	3.33	3.55
7.70		1.5	2.3	5.3	150	5.33	3.55
8.02		1.3		0.7	130	4.67	1.57
835		1.5	2.3	0.8	130	5,33	5,55
8.68		1.1.4	2.	0.9	140	1600	1 7. 27
9.01		1.3	21	2.7	1:0	4.67	3,57
<u> 9.34</u>		<u>1.5</u>	2.4	0.7	1190	6.00	7,00
9.66		1.8	25	0.8	170	222	2.76
<u> 7.77</u>	<u> </u>	119	لحيحا	<u> </u>	1402	1 3,33	1 3.33
<u>10,32</u>	<u> </u>	1.6	2.4	<u>C,7</u>	199	00	3.75
10.65		1.6	24	0.8	160	5.33	3,33
10.98		1:12	12.6	<u>1.0</u>	1.0	1001	3.72
11.30		1,7	<u> </u>	0	190	00	3.16
1197	<u> </u>	2.0	2.0	1.2.4	200	12.00	1 3 3/
11 10	<u> </u>	a,c	A.7	+++2	1 aco	1.0.01	<u> </u>
127.2.	<u> </u>	17	<u>a'.8</u>	+ 20-	170	1 / m	222
17 91		 /·§	1-2.2	1 2.7	120	22	1 9 9/
12 27	 	+ 4.2	2.8	10.2	1,30	1 6 00	310
1310	<u> </u>	1 2 0	45		1 200	1 3 3 3	
13,60	<u> </u>	10.0	1 ×. ×	1.5			014
13.45	1	120	12.9	108	1200	1 5.33	1 2.01

_

Der	oth	\bigcirc	2.	3	•	9	
<u>f</u> t		(Nunner)	(Neppo)	(Name			Friction
//.		(// -/000/		()-()	1-10-1000	3+150=1000	() ÷ () + 100
1-1-10		2,1	1,3	11.0	210	5.127	3.18
14.59		2./	<u></u>	1.1	210	7,33	3.49
	_		-	11	2/0	7.33	. 3,49
		1,0	3.1	1.1	200	7,33	3.67
15.57		2.0	3,1	1.1	200	7.33	3.67
13.20		2.0	3.1	1.1	200	7.33	3,67
16.23		2,1	3.2	1.3	210	8.67	4.13
16.56		2.1	3.2	1.6	210	10.67	5.08
16.88		1.8	3.1	1.3	180	8.67	4.82
17.21		2.2	3.8	1.3	220	8.67	3,94
17.54		2.3	3.6	1.0	230	6,67	2.90
17.87		2.4	3.7	1.8	240	12.00	5.00
18.20		2.2	3,2	1.3	220	8.67	3.94
18.32		2.0	3.8	1.9	200	12.67	6.34
18.83		2.0	3.3	1.3	200	8.61	<u> 4.34</u>
19.18		2.0	3.7	<u> </u>	200	7.33	3.67
19.51		<u></u>	<u> </u>		310	1.33	2.36
19.84		di/	3.8	1.0	270	6.61	2.47
20.16		2.6	5.7		260	4.61	1.80
20.49		2.4	3.9	- <u> ·/</u>	345	7.55	3.05
20.82		<u>a.4</u>	5/	1.2	240	2.00	3.33
21.15		<u>سے کے ا</u>	3.3		220	5.33	2.90
21.48		La.a.	2.7	<u> </u>	220	1 7 2 2 -	3,35
dieco		1.7	2.1	<u> </u>	190	0.01	2 2 1
		2.0	3.1	1.0	200	6.6/	3.37
22.76			5.1	1.0	270	6.61	2.71
02 11		- a.d.	3.2	·	220	1.35	2.01
		1 ~ 7	3.4	1.0	100	6.61	211
<u></u>		1.7	- 3.1	7	140	600	3.10
23. (7		$\frac{\alpha.0}{1.9}$	3.0	- 5	200	3.33	2.01
24.10		1.2	2.0	- 2	170	2.22	170
24.75			<u> </u>		150	2.67	057
24.16		1.7	a. a.	1.8	140	12.00	
23.03		-liat	1.6	<u> </u>	100	1 2:33	7.99
25.41		2.0	3.0		200	2,23	257
2107		20	112	<u> </u>	300	6.61	010
2/ 20			17:22		200	12/2	3.17
26 73		7.0	135	1.7	1320	1200	229
27 64		+ 2:2-	3.6	10-	- JEA	32.00	2.11
22.38		+ 313-	4.4	7.8	320	400	125
27 71		2 1		13	310	1 7.22	2.92
00 11		3104	12.0	1 1 7		1/2/2	
28.04]	17.0	7.6	11.9	1 700	10.61	1.1.81

,

	oth		2	9	•	3	
ſł.	m.	(N·1000)	(11-1000)	(1)-1000	(N/cm')	(N/cm*	Friction
20.20				0-0		3)+150+1000	() ÷ () • 100
10/3		2.2	6.6	<u> </u>	520	24.50	4.62
22.01		6./	0.0	<u>_16.0</u>	610	106.67	12.87
27.02		3.8	7.7	11.0	580	3.35	12.64
27.59		18.0	34.0	5.0	1800	33.33	1.85
30.05		34.0	75.0		3400		
30.01		40.0	75.0		7000		
							i
	<u> </u>						
						<u> </u> _	
		1					
						1	
						Ļ	
				L			
			<u> </u>			<u></u>	L
						L	
			ļ	ļ	ļ	L	<u> </u>
		ļ			Į	L	ļ
		ļ	ļ		L	<u> </u>	L
			ļ			<u> </u>	
							ļ
		ļ		L	L	L	<u> </u>
<u> </u>	L	ļ	ļ			<u> </u>	ļ
		<u> </u>	<u> </u>	ļ		Ļ	
				L	ļ	<u> </u>	
	<u> </u>		ļ		<u> </u>	<u> </u>	ļ
	ļ	<u> </u>	ļ	<u> </u>	Į	<u> </u>	
	 .	ļ	ļ	<u> </u>	<u> </u>	ļ	+
L		1					

Table F-3

De	oth	0	<u>ی</u>	3	0	3	
ft.	m.	(11.1000)	(11-1000)	(N=1000	(N/cm)	(N/cm ⁴	Presion
				2 -1	0-10=1000	3+150=1000	() ÷ () • 100
, న 5		.6		.4	60	2.67	4.45
.88		1,8		1.1	180	7.33	4.07
1.21		1.8	2.2 /	1.5	180	10.00	5.56
1.53		1.7	28	1.6	170	10.67	2.28
1.86	-	1.8	3.3	1.6	180	10.67	5.93
2.19		1.8	3.4	.1.4	180	9,33	5.12
2.52		1.8	3.4	1.2	180	8.00	4.44
2.85		1.7	3.1	1.1	170	7.33	4.31
3.17		1.6	2.8	.9	160	6.00	3.75
3,50		ملغ. [23	1.2	120	200	0.61
3.23		1.2	2.	<u>, , , , , , , , , , , , , , , , , , , </u>	20	<u></u>	2,76
4.16		1.4	2.6		140	1.01	3.57
7.47	<u> </u>	<u></u>				7.61	3.07
7.82		1.1	1.8	- 0	$\frac{n0}{100}$	5,33	
5.19		1.2	1.7	. <u>, o</u>	120	5.55	412
3.4/		1.5	22		150	222	7.00
<u> 3.80</u>		1.3	2,5	- 0	130	3.33	
- 6.15		1.5	2.7		130	12,33	6,66
6.76	· · · · · · · · · · · · · · · · · · ·	1.5	2.5	. 7	130	1117	
711		14	2.0		1110	2.0/	221
744		1/2	20	12	140	300	
777		, / 2	21	1.0-	130	233	~110
\$10		1.3	24	- 3	130	3.27	410
8.42.		1.6	24	.7	1/20	1.7 20	2.72
8 75		7.6	2.4	8	1 60	1.33	3.33
9.08		1.8	25	1.2		200	4.44
9.41		18	26	1. 7.	120	500	4.44
9.74		18	3.0	12	1:3	2.00	44
10.06		1.9	3.1	1.1	193	7.33	3,84
10.39		1.8	3.0	1.6	1.2	10,57	
10.72		2.0	3,	1,6	200	10.67	5:34
11,05		2.0	3.6	1.6	200	10.67	2.34
11.38		210	3.6	1.7	1.00	123	5.67
11.71		2.0	3.6	2.1	1:00	14.00	7,00
12,03		1.7	3.6	2.0	1	13,33	<u> </u>
12.36		1.9	4.0	1,0	1)	15,33	02
12.69		2.1	4.1	2.0	1.1	/3.33	6.35
13.02		2.1	41	1.9	210	12:02	6.03
13.35		2.0	4.0	2.0	200	13.33	6.67
13.67		2.0	3.9	1.7	200	11.33	5.67
14.00		2.0	4.0	1.8	200	12.00	0.30
14.33		.2.3	4.0	1.6	230	10.27	4:64

CPT 113 Wagoner

1 - -

,

De	oth		2	0	•	3	
14	<i>(</i> 1)	(Nerono)	(Manana)				Frietian
16		(1)-10001	(17-1000)	(<i>n</i> 1000) ()-()	()-10≤1000	()+150+1000	() ÷ () + 100
14.66		2,3 -	4.1	1.6	230	10.67	4.64
14, 77		2.2 /	3.8	1.6	220	10.67	4.64
75.31		2.1	3.7	1.7	210	11.33	5,40
5.24		20	3.6	1.8	200	1200	.00
15.97		1.9	3.6	1.7	190	//, 33	5.96
16.30		2.3	4.1	1.7	230	//.33	4.93
16.63		2.6	4.3	1.9	260	12:67	4.87
16.96		2.8	4,5	2.1	280	14.00	5.00
17,28	· · · · ·	2.8	4.7	1.4	280	9.33	<u> </u>
7.5		2.7	4.8	1.2	275	8.30	2.96
1.00		3.0	5.4	1.3	1300	X:67	- 3:07-
18.4		3.0	5,	-3.1	300	14.00	-7:0
10.00		2.7	5.2		200	14.00	227
18.72		<u> </u>	4.7	1.2	280	10.00	
19.20	<u> </u>	2.7	4.8	1.2	270	8.00	$\frac{\alpha_1}{2}$
17.58		2.	7.2	1,5	200	017	3117
20 21		a.5	21	1.3	120	2.07	
20,29		10	3.7	-1.3-	180	3.00	र्द्या
20,36	<u> </u>	127					- 29
2/11		15	23	11	100	1113	4.89
21 55		18	2.2	.5	120		2,22
2188		1.1.	27	5			2.08
22.20		23	28	+ · 3	1.5		2.61
22.53		1.9	2.4	1.7	1	1 1 . L. 1	2.46
22.8%		1.9	28	.7	1:12	~ 27	2.46
23.19		1.6	23	1,0	1.50	- a'a	4.17
23.52		1.3	2.0	.3	130	2,00	1.54
23.85		1.8	2.8	1.7	180	2.67	1.48
24.17	İ	1.6	1.9	1.5	160	3,33	2.08
24.50		1.1	1.5	1.5	110	3.33	3.03
24.83		1.4	1.8	.7	140	4.67	3.34
25.16		49	2.4	.7	190	4.67	2.46
25.49		2.0	2.7	2.4	200	16.00	3.00
25.81		1.7	2.4	.4	170	2.67	1,57
26.14		2.4	4.8	1.0	240	10.07	3.78
26.47		3.8	4,2	1.5	380	10.00	2.63
26.80		3.4	4.4	1.4	340	9.33	2.74
27.13		3,8	5,3	3.7	380	24.27	6.49
27.45		3.8	5.2	2.2	380	14.67	3.86
لأب ندك		7.3	8.0	6.6	430	00.44	10.23
28.11		10,2	12.4	4.0	1020	26.67	2.6/
28.44		12.4	19.0	2.0	1240	1:3,33	1.08 -

Table F-3 Cont.

Der	oth	0	2	3	•	3	
<u>ít</u>	m	(N=1000)	A .C		C.C.C.	LF	Frietian
,,,			(11 1000)	$(2 \cdot 1)$	0001×01÷	3+150=1000	() ÷ (4) = 100
28.77		28.0	32.0	2.0	2800	13.33	0.48
29.09		29.0	31.0	6.0	2900	40.00	1,38
29.42		31.0	33.0	1.0	3100	6.67	0.22
29.75		16.0	22.0	4.8	1600	45.33	2.83
30.08		12.0	13.0	3.8	1200	38.67	3.22
30.41		6.0	12,8	9.8	600	65.33	10.89
30.74		5.0	10.8	2.2	500	14.67	2.93
31.06		10.2	20.0	3.8	1020	25.33	2.48
31.39		12.4	12.6	3.4	1240	22.67	1.83
31.72		3.4	12.2	2,4	840	16.00	1.90
32.05		10.8	14.2	6.6	1080	44.00	4.07
32.38		10.4	12.8	13.0	1040	36.67	8.33
32.70		12.4	19.0	13.0	1240	86.67	6.97
33.03		28.0	41.0		2800	· · · · · · · · · · · · · · · · · · ·	ļ
33.36		28.0	41.0		2800		
					ļ		
				ļ			
	· · · · · · · · ·			ļ	 		
			· · · · · · · · · · · · · · · · · · ·	ļ. <u> </u>			
		+ <u> </u>		ļ	<u> </u>		
	<u> </u>	· +				ļ	
			 			<u>}</u>	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		ļ		·	
			<u> </u>		<u> </u>		
		+	ļ				
			<u></u> -	<u> </u>	<u> </u>		
		+	<u> </u>		+	+	
		+	<u> </u>				
		+	<u> </u>	<u> </u>			
						•	
				<u> </u>	<u> </u>		
	<u> </u>						
		+	<u> </u>	╄			
			+	<u> </u>			
		+	+				+
				+	+		
		+		+		+	
		+		+	+	+	
	<u> </u>	+	<u> </u>	<u> </u>	<u> </u>	+	+
<u> </u>	<u> </u>	- <u>+</u>	+			+	
 	<u> </u>	+	+	+		+	
<u> </u>	<u> </u>	+	+	+	+		
L		1			1	ł	-

Table F-4

•

Der	oth	Ðç		3	•	3	
ft.	177.	(11.1000)	(1) = 1000)	(1)-1000	(N/cm*)	(N/cm ⁺	Ratio
63		2.0	2.0	40 2	200	122	0-0-
.93		1.8	1.8	09	180	6.00	3 23
1.28		1.6	1.8	09	160	6.00	3 72
1.61		1.0	1.9	0.8	100	5.33	5 23
1.94		1.0	1.9	0.8	100	5,33	5.33
2.27		1.0	1.8	0.7	100	4.67	4.67
2.60		1.0	1.8	0.7	100	4.67	4.67
2.92		1.2	1.9	1.0	120	6,67	5,56
3,25		1.1	1.8	1,2	110	8.00	7.27
3.58		1.2	2.2	1,3	120	8.67	7.23
3.91		1.2	2.4	1.1	120	233	6.11
4.24		14	27	1.0	140	10:67	4.84
4.57		1.2	2.3	0.8	120	5.33	4.44
4.89		1.2	2.2	1.0	120	6.67	5.56
5.22		1.3	2.1	0.9	130	6.00	4.62
5.55		1.4	2.4	1.2	140	8.00	<u>- 2.7/</u>
SXX		1.4	2.5	1.0	140	6.61	17.76
6.21		1.6	2.8	1,4	160	7.55	
6.53		1.7	2.7	14	170	7.55	5.47
6.86		+/,5	2.7	/.3	130	2.67	
1.19		4.5	3.7	1.4	1.50_	7,33	Condada -
7.50		1.7	3.0	1.2	1.10	1 X.00	1101
182		+ 4.2	3.1	1.2	170	8.00	7.11
<u>X.//</u>		<u></u>	3.0	1.2	180	X. 97	7.82
8.50		110	3,0	1.6	120	11.22	7.01
8,83			$\frac{1}{2}$	17	190	11 33	596
9.16		13/	2.6 29	17	210		540
<u>A</u> 91		12/	30	1.6	210	1,200	571
7.81	· · · ·	+3.4	130	1.7	20	17:53	1220
1047		20		18	200	1000	1,00
10.47		2.0	27	12	1200	1000	500
11/3		20	22	17	1200	10.00	2 24
11.43	<u> </u>	1 2 2	37	17	200	1,7 23	5
11.78		12	20	12	200	12.00	345
12.11		22.	3.9	1.9	1350	12,67	3.76
12.44		12.2	120	1/9	220	12.67	3.76
12.77		13.7	40	13.1	210	14.00	13.71
13,10		2.1	40	20	210	13.33	Jan 34
13.42		12.2	4,3	2.0	1720	13.33	6.06
13.75		23	4/3	1.8	230	12.00	5.22
14.08		2.4	4,4	2.0	1240	13,33	5,52
14.41	1	25	4.3	1.6	250	10.67.	4.27

OPT 12 Wassner

Table F-4 Cont.'

0	epth	Ū	٢	3	•	3	
	1		2.4	~	C.P	LF	Frietian
17.	m.	(1/•/000)	(1/ •1000)	(// <i>•/200</i>	(<i>N /c≈')</i> []÷ 0≤1000	(<i>N/cm</i> ² 3+150=1000	() + (1) + (0)
14.74		2.4	44 -	1.9	240	12.67	5,28
15.06		2.3	3.9 /	2.0	230	13.33	5,80
15,39	-	2.5	4,41	1.8	250	12.00	4,80
15,72	-	135	7.5	2.1	250	14.00	5.60
14.05		2.5	4.3	2.2	250	14.67	5.87
1638	>	0.5	4.6	2.3	250	15.33	6.13
16.70	,	2.4	4.6	2.5	240	16.67	6.95
177 03	2	125	4.8	32	250	14,67	5.87
17 3/2		19	50	28	250	12.67	7.47
17.69	, <u> </u>		30	27	280	18.00	6,42
12 22		1	5.6	21	280	-4,00	5.00
18.74	· + · · · ·	12 5	32	3.1	200	2017	7.89
	, ,	1	5.2	19	210	12.47	4.09
19 00	, ,	22	1.4	2.0	220	12,22	404
19. 77		175	4.8	1.4	1290	9,33	3.22
19 21		32	50	1.7	300	11.33	3.78
19.98		139	43	1/7	12.90	11,33	3.91
20 31		74	41	1.5	1240	10.00	217
10 4	7	12	41	1/2	510	200	232
10.0°	÷	<u> </u>	29	1.2	1542	200	1 7 27
2720	, 	100	13%	11	240	722	3.05
21/2			3.0	+++	200	1 122	305
2144			29	100	500		190
and the	÷+	12.	3/	10	320	1/2	2.67
25.77		1.	13.7	100	1930	~ >>	3.42
100 30		+++	120	100	100	1100	17 32
Ad the	7	tia	20	0.5	160	120	246
12 20	<u></u>	++-7	12/1	0.7	170	1110	19:49
43.07		<u>+!:<</u>	12:4 -	10.7	180	17.0/	1 22
a.J. Ze	<u>-</u>	4.6	42.	102	1/60	12.00	1.00
24.25	}	11.6	12.3	145	160	17400	200
24,32		12.6	13.3	0.9	1300	1 6.00	13.70
24.4	<u>_</u>	11.X	3.4	1.7	170	12.61	6:61
25.2	5	1-2.5	3,2	1.6	1250	10.67	7.67
23.5	2	132	A./	2.4	220	16.00	17.27
25.67		12.4	4.0	0,8	240	5.33	
26.2.	~	12.0	4.4	10,6	1200	4.00	12.00
- Elérica		40	4.8	12.0	400	1:3:3:2	3.33
المرغ شا	· · · · · · · · · · · · · · · · · · ·	140	41.6	2.9	400		-1,63
27.5		2.4	2.4	4.4	240	129.23	12.22
27.5.	5	2,4	5,3	4.3	240	12.67	11.95
27.86	2	â. 7	6.2	2.4	240	16.00	6.07
المرجد	,	2.4	6.7	1.8	240	12.00	00.0
22 -	≎1	2.4	48	290	240	193.33	12055
	<u> </u>	C+1 +	11.0	10 nu	1070	111000	10000

Der	oth	0	2	9	•	3	
ſł.	M .	(11-1000)	(11 -1000)	(N. 1000)	(<i>N/cm')</i>	(N/cm ² 3)†15011000	Frietion Ratio
28.24		5.2	7.0	26.0	520	173.33	22 22
29.17		80	37.0	290	200	193.33	24.17
29.50		38.0	64.0	61.0	3800		@ 14 (
29.83		40.0	69.0		4000		
27.0-		/0/0	<i>a</i> 1.0		7000		
1							
	<u> </u>						
							•
		i					
				<u> </u>			
					<u></u>		
	<u> </u>	<u> </u>		<u> </u>			
		1			<u> </u>		
					<u></u>		
		·					
		<u> </u>		<u> </u>			
	· · · · · · · · · · · · · · · · · · ·					+	1
			<u> </u>			+	
		<u> </u>		<u></u>	+		<u>† </u>
		·	<u> </u>	<u> </u>	+		
			<u> </u>		· · · · · · · · · · · · · · · · · · ·	+	
		<u> </u>	<u> </u>	ļ	<u> </u>		<u></u>
			<u> </u>	<u> </u>		+	
		<u> </u>		ł	<u> </u>		
			<u> </u>	<u> </u>		<u> </u>	
·				ļ	<u> </u>		····
		ļ	_	·	<u> </u>	ļ	
		ļ	l	l			<u> </u>
			ļ	<u> </u>	<u> </u>	+	ļ
·····	<u> </u>	<u> </u>	<u> </u>			┿	Į
	L	<u> </u>		1		<u> </u>	<u> </u>
		<u> </u>	<u> </u>		<u> </u>	+	
		<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>
	ļ	L	<u> </u>				
							-
		1	1	1	1	1	1

Table F-5

Der	oth	Θ	2	3	•	3	
ft.	<i>m</i> .	(11-1000)	(11-1000)	(N-1000		LF (N/cm ²	Friction
				0-0	10-10-1000	3+150+1000	() ÷ () + 00
.53		1.9	2.0	0.8	190	5.33	2.81
.86		2.3	2.4 1	2.0	230	13.33	5.80
1.18		2.0	2.8	2.1	200	14.00	7.00
1.31		1.7	3.7	2,4	170	16.00	9.41
1,84		<u>17</u>	3.8	2.5	122	15.33	9,02
2.17	· · · · · · · · · · · · · · · · · · ·	1,5	3.9	2.5	150	15,33	10,22
2.30		1.4	3.7	a.	140	14.00	10,00
2.82		1.2	3.5	1.7	120	1133	9.44
3.5		1/2-	3.5			1 33	9.99
3 31		1,3	3.0		1.5	2.07	8.41
5.81		1,3	5.0	10		1 23	7.20
4117		1/3	21	10		1000	923
4 79		1/3	-3.1 2 1	1.0	150	1200	2010
\$ 12.		11.	21	19-	110	10.07	1.67
245		15	23	14	1:00	7,33	1.22
5 78		1.5	21	14	1 1 1 1	9,33	5.22
		11.0	3.0	12	160	200	5,00
6.43		1.1	3.0	11	11/20	7.33	4.52
			â	1.0	120	1 2 0 1	
7.57	<u> </u>	1.2	2.3	0.6	120	41.20	2 33
7.42		1.1.21	2.4	0.7	140	4.67	12,34
2.75		147	2.3	0.7	170	4.17	2,75
2.27		11.7	1≈.4	0.8	122	5.33	3,14
2.40		4.8	2.5	1.2	1.10	12.00	21.44
8,73	_	1.8	2.6	1.1		1.33	~ 27
9.06		1.8	3.0		T : 20	1 2 3 3	-1.07
7.39		119	3.0	1.0	130	6.67	3.51
9.71		1,8	2.9	0.8	120	1.1.1	2,96
10.04		2.0	3.0	0.7	125	11. 27	1.34
19.37		121	13.9	0.8	210	5.33	2,34
19.70		2,1	2.8	0.7	1210	4.67	2.22
11.03		2.0	2.8	0.9	2.20	600	3.30
11.35		122	3.9	0.7		4.61	<u> </u>
11.68		2.0	2.9	0.7	Tác.	4.67	2,34
12.01		12.2	2.9	0.6		12.00	1.82
12.34		121	2.3	0.7	· ·	14.01	1.22
12.01	L	13.	2.7	0.6		4.00	+
13,22		131	2.8	0.5		3,53	1.57
13.32	 	122	2.8	0.7	1.2	4.67	212
13.65	<u> </u>	12.1	2.6	106		4.00	1.70
13.78	<u> </u>	12.0	13.7	108	1300	5.35	1
14.31		12.3	12.9	0.8	230	5.33	12,32

OPT 14 Wagerer

De	oth		2)		9	
<i>ft</i>	m	(N-1000)	(N=nnn)	(Margan	(N/ame)		Friction
,			(()-() ()-()	1-10-1000	3-150-1000	() ÷ (4) + 100
14,64		2.2	3.0	0.7	220	4.67	2.12
14.76		2,2	3.0 /	0.6	220	4.00	1.82
15,29	_	22	2.9 1	0.7	220	4.5	2.12
15.52		2.4	3.0	0.6	240	4:20	1.67
15,75		2.3	3.0	0.7	230	4.67	2.03
1:28		25	3.1	0.6	250	4.00	1.60
16,60		2.3	3.0	11	230	7.33	3.19
16.93		2.4	3.0	0.9	240	;.00 J	2.50
10.26		17	3,8	0.9	200	1.00	2.22
12:57		2.8	3.7	0.8	220	- 33	1.90
		2.9	3.8	1.2	290	100	2.76
18.24		3.0	3.8	10	200.		2.22
18,57		3.1	4.3	1.2			2.58
18,70		3.0	4.0	.2	ل 🗠		2.22
19.23		2.6	3.8	1.2	13:0	20	3.08
19.56		2.5	3,5	0.6	<u>()</u>	21:2	1.60
17.00		12.3	3,5	1.4		9.33	4.06
20.21		2.2	2.8	0.7	1220	4.67	2.12
20,54		1.6	3.0	1.5		3.33	2.08
20.27		1.3	2.0		-	1.2.22	2.05
21.20		1.2	1.7	1.0		-7.00	3.33
21.55		1.0	1.4			2,22	3.33
21.85		11.0	1.6	03		2,00	2.00
A2.12		1.9	2.4	. 2		10.67	3.5
32.3/		1.5	1.8	2	131 L	5.33	3.55
22.84		1.3	2.3		·	2.00	1.54
23,17		1.5	2.3	1.2	-	1.53	5.89
2355		1.7	2.0	2,0	14.0	13.33	7.84
23.82		115	1.7	5.5		3.00	0.00
24.15		1.3	4.1	1.22	1	2.67	2.05
24.412		1.1.8	1.8	1	1	14.00	2.22
44,81		2.1	2,5		121	5.33	2.54
25.73		3.1	3.2		4.7.7	-4.20	1.29
25.11		3.2	7		1	1-122	1.25
25.79		12.9	3.5		1	20	2.07
26.12		12.0	2.10		+	3,32	1.67
26.45		11.6	2.3	1.2	<u> </u>	1.33	3.33
26.77		13.4	2.9		· · · · ·	13.33	1.39
27.0		122	$\overline{222}$		1	13:22	Z.13
27.45	<u> </u>	17.7	$\frac{1}{2.1}$	1-3-2-	+	137.33	15.83
20.00		2.8	3./-	2.5	+	10.00	2.00
28.09	1	12.4	61	137	+	120.67	5.61
28.42	İ	6.8	6.8	7	1	3,67	1.Z8

De	oth))	0	9	
ft.	m.	(11.1000)	(1/ •1000)	(1)-1000	(N/cm*)	(N/cm ⁴	Ratio
28.74		6.0	9.1	37	120	2133	2 54
29.07		4.7	6.0	30	470	21.00	5.58
25,40		2.4	.5.10	24		24.67	10.29
19.72		71	110	07	7 7	267	0.66
300/2		179	11.7	15 A	~	1/2/2	21.10
30.38		79	81	2/0		173.33	2194
30.21		180	2120		1200	1.1.0.0	
31.04		22	HR.D		10000		
			1010				
		<u> </u>					
						<u> </u>	
						+	
							[
				<u> </u>	<u> </u>		
		! 	<u> </u>	<u> </u>		+	
		·				+	
		••••••••••••••••••••••••••••••••••••••		<u> </u>			
		1					<u> </u>
		<u> </u>				+	1
		<u> </u>		+·····		+	-
				<u> </u>	<u> </u>		+
						+	<u>† </u>
		<u> </u>	l	<u> </u>		+	
		<u> </u>	<u> </u>			+	<u> </u>
····				+			
			<u> </u>	+			
		<u> </u>	1	<u> </u>	+	+	+
		<u> </u>		<u> </u>	<u> </u>	+	┼────
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	+	<u> </u>	┾	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	+
		<u> </u>	<u> </u>	+	<u> </u>	+	
	<u></u>	<u> </u>		<u> </u>		+	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	+	<u> </u>	
		<u> </u>		<u> </u>	<u> </u>	┿────	
	 	<u> </u>	 	ļ		<u> </u>	+
			+	<u> </u>	<u> </u>	<u> </u>	+
	 	<u> </u>	<u> </u>	+	<u> </u>	+	<u> </u>
	<u> </u>		L	ļ	ļ	+	+
					í		
	•	·		1			-L

ı

Table F-6

Dec	oth	0	٢	3	•	3	1
			2 - 2	~	C.P	LF	Friction
11.	m.	(11-1000)	(1/ •1000)	(1) = 1000 (2-1)	(<i>N/c≈*)</i>])÷j0≤i000	(N/cm 4)	() + () + 100
,63		2.4	2.4	1.2	240	8.00	3.33
.96		3,0	3.5 /	1.6	300	10.67	3.56
1.28		27	3.9 7	1.6	270	10.67	3.95
1.61		2.4	4.0	1.5	240	10.00	4.17
1.94		2.2	3,8	1.5	220	10.00	4,55
2.27		2.1	3,6	1.3	210	10.00	4.76
2.60		2.1	3.4	1.8	210	12.00	5,71
2.92		2.0	3.5	2.1	200	14.00	7,00
3,25		2.2	3,8	18	200	12.00	600
3.58		1-21	4.2	21	210	14,00	6.67
3.9/			3.9	2.0	210	12.22	6,35
4.24			3,9	2.0	180	13.33	7.41
4.5%		1.7	3,7	1.	175	11.33	6,66
4.29		1.6	3:6	0.2	1:0	1/22	2,85
5,22		1.7	3.4	1.4	170	7.33	5.47
5.55			5,1	1,4	1270	7.33	3.22
5.88	i	<u> </u>	2.7	1.7	150	9.33	ed de
6.21		1,5	2.7	1.3	150	8.67	5.78
6.53		1.4	2.8	1.2	140	800	5.7
6.86		1,5	2.8	1.4	150	-733	6.22
7.19		1.6	2.8	1.1	160	7.33	4,58
2.52		1,16	3.0	1.4	160	-33	5,83
2.82		1,8	2.9	1.3	180	X.67	4,82
8.17		1,5	2.7	1.3	150	1 2007	5.78
8.50		1.8	3,/	1.3	180	8.67	1/22
8.83		1.9	3,2	1.5	193	10.00	13:26
9.16		1.9	3.2	1.3	190	8.67	4.56
9.49		2.0	3,5	1.5	200	10,00	5.00
9.81		1.8	3.1	1.5	180	12.00	5,56
10.14		1.9	3.4	7.5	1.10	10.00	120
10.42	_	118	3,3	1.5	185	10.00	: 56
10,80		1.7	3,2	1.5	172	10.00	5.88
11.13		1.6	3.1	1.6	130	10,67	1207
11.45		1.4	2.9	1.3	140	3.67	-117
11.78		1,8	3.4	1,2	150	8.00	4,44
12.11		2.2	3,5	0.6	220	4.00	1.12
12.44		2./	3,3	1,5	1:12	10.00	4.50
12.77		1.6	2.2	0.8	122	533	<u> </u>
<u>'3,/2</u>		2.4	3.9	1.7	240	11.33	14.72
13.42		1,5	2,3	11.9	190	12.67	8.45
13.75		2.2	3.9	1.5	220	10.00	41.55
14.08		2.0	3.9	1.5	200	10.00	5.00
14.41		2.3	2.8	1.4	6:0	9.33	40%

CPT15 Wagoner

Table F-6 Cont.'

De	oth	Θ	2	3	•	3	
ft.	m.	(1-1000)	(11-1000)	(11-1000)	(N/cm [*])	LF (N/cm ⁴	Priction
				0.0	0-10-1000	3+150-10001	() ÷ () = 100
14,74		2.3	3.8	1,5	230	10.00	4,35
15.06		2.4	3.8 /	1.5	240	10.00	4,17
15.39		23	3.8 /	1,3	230	8,67	3,27
15.72		2.4	3.9	1,5	240	10,00	417
16.05		2,3	3.6	1.4	230	9,33	4.06
16.38	-	2,3	3.8],3	230	8,67	3,77
16.70		2.4	3,8	1.5	240	10.00	4.17
17.03		2,4	3.7	1.7	240	//.33	4,72
17.36		25	4.0	1.7	750	//,33	4,53
17.69		2.5	12	1.5	250	15,00	4.00
18.02		217	4.4	1.8	270	12.00	4,44
18.34		3.0		2.0	300 .	3.73	4,44
18.67		3.2	4.8	1.4	300	9.33	3,11
19.00	, 	3,0	5.0	1.3	300	8.67	2,89
19.33		2.9	4.3	1.0	1.29.)	6.67	2,30
19.66		2.4	3.7	1.0	20)	10.67	2,28
19.78		2.0	3.0	0.8	1200	5.33	2.61
20.3/		1.6	2.6	1.6	20	10.67	6.67
20.64		1.7	2.5	0.8	170	<u> </u>	3,14
20.5%		1.3	29	1.3	130	5.67	jeie7
21.30		1.9	2.7	04	148	267	1,21
21.63		1.8	3.1	1.1.0	180	101	3,7/
21.55		13,8	14.2	1.5	380	10.00	2.63
22.28		1.9	2	0.9	190	00.0	31.0
22.61		12,4	24	103	240	<u>33 زخ</u>	2.22
22.94		2.0	12.7	2.4	200	1/2.00	2.50
23.27		<u>'3</u>	21	0.9	130	6.00	7.62
23.59		1.9	4.3	1.1	190	733	3.26
23.92		3,5	44	1.7	350	11.33	3,20
24.23		3,2	4,3	0.8	320	5,33	1,67
24.58		3.5	5.2	0.5	350	.3,33	0.75
24.91		3.7	4,5	1.6	370	10.67	2.08
25.23		2.8	3.3	2.0	280	13,33	4.75
25.56		1.9	3.5	0.4	190	2.67	1.41
25.89		2.0	4.0	0.8	200	5.33	2.67
26.22		2.8	3.2	C.4	280	2.67	2.75
26.55		4,2	5.0	26	420	200	0.75
26.87		4.4	4.8	1.0	449	10.67	2.03
27.20		3.2	3.8	0.9	520	600	in the
2753		3,5	5.1	0.3	350	2,00	0.57
27.86		3.6	4.5	1.3	360	16.00	2.78
28.19		4.4	4.7	3.5	1-44)	23.33	5,30
28.52	1	6.4	7.9	8.0	5	53,33	233

Table F-6 Cont.'

Der	oth	U C	<u>ی</u> ۲۰ سر	() ()		3	e • • •
ft.	m.	(11-1000)	(11-1000)	(1) - 1000	(N/cm)	(N/cm ²	Frierier Ratio
28.84		8,5	12.0	20.0	850	133.33	15.69
29,17		17.0	25.0		1700		
29.50		34.0	54.0		3400		
		1					
		1					
		1					
		1				ļ	
		<u></u>				L	
P		1	L	L	ļ	<u></u>	L
		· · · · · · · ·			L		
			ļ	L		Ļ	
			Ļ		ļ	L	
	·				<u> </u>	<u> </u>	
						<u></u>	
		1		ļ	Ļ	<u></u>	ļ
		1 		ļ	Ļ		L
		ł					
		1			ļ		·
							ļ
			<u> </u>				
			L	ļ	ļ	<u></u>	
			ļ		L		
			ļ	<u> </u>		1	1
			1	ļ			<u> </u>
			<u> </u>	Ļ	L		
					L	<u> </u>	
				ļ	L	1	<u> </u>
			ļ	L	L		L
			L	<u> </u>			
			L	<u> </u>	<u> </u>		
				<u> </u>	ļ	+	ļ
		<u> </u>	ļ	ļ		<u> </u>	1
		+	<u> </u>	_	<u></u>		
			ļ	1	<u></u>		ļ
			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
			<u> </u>	<u> </u>			<u> </u>
			ļ	L		<u></u>	
		1		1	1	1	-

Table F-7

Dept	h	Ð) ()	0	•	3	
ft.	m	(N=1000)			CR (N (amit)	2 F	Friction
				(0 - (1))	0-10=1000	3+150=1000	() ÷ () + ()
0.53		2.8	2.8	1.6	280	10.67	3.81
0.86		3.9	4.0	2.3	390	15.33	3.93
1.18		3.0_	4.6	1.7	300	11.33	3.78
1.51		Z.7	5.0	1.7	270	11.33	4.20
1.84		Z.8	4.5	1.9	280	12.67	4.52
2.17	·····	2.5	4.2	2.0	250	13.33	5.33
2.50		2.4	4.3	2.0	240	13.33	5.56
<u>2.82</u>	<u> </u>	2.5	4.5	1.5	250	10.00	4.00
3.15		3.0	5.0	1.5	300	10.00	3.33
3.48		3.2	4.7		320	12.67	3.96
2.81		2.4		<u> </u>	290	14.67	5.06
		2.5	7.2	1.7	230	11.33	4.93
		2.1	4.3		210	13.35	6.35
		2.1	3.8	2.2	210	17.6/	6.78
<u> </u>			4.0	2.0	200	13.33	9.67
5.75			20	2.1	180		7.70
		1.8	3.0	1.1	100	12.07	7.04
6.11		1.1	3.8	1.0	170	12.00	7.06
		1.0	3./	1. 1.	180	12.01	292
7.0		10	3.6	1.0		10.01	5.13
	<u> </u>	1 19	1 32	1.6	190	9.57	56
			3.0		180	9 22	5 19
3 27		1.3	70			6.00	
340		10	37		180	2 22	5.19
<u> </u>			3.0		710	10.00	4.76
3.06		18	3.7		180	10.67	5.93
9.39	· · · · · · · · · · · · · · · · · · ·	19	3.4	1.6	190	10.67	5.61
971			36	17	700	11.33	5.67
10.04			34	1.1	200	10.67	5.33
10.37		1.9	3.6	1.0	190	11.33	5.96
10.70		7.0	3.6	1.6	700	10.67	5.33
11.03		1.9	3.6	1.7	190	11.33	5.96
1.35		1 7.0	3.6	1.4	200	1 2 2 2	4.67
11.63		2.0	2.7			10.67	2.33
12.01		2.2	3.6	1.6	220	10.67	-1.85
12.34		2.2	3.8	1 . =	220	0.00	7.55
12.37		1 2.3	3.9	1.8	730	12.00	5.22
13.00		2.3	3.8	2.2	230	1-1.67	6.38
13.32		2.1	3.9	1.5	210	10,00	4.76
12.65		2.2	1	1.7	220	11.33	5.15
13.78		2.3	3.8	1.3	230	12.00	3.22
14.31		2.2	3.9	1,8	220	12.00	5.45

CPT 17 Wayseen

Table F-7 Cont.'

De	oth	Ŭ		৩	•	3	
			F .C	7	C.R	LF	Frietian
75	m .	(11.1000)	(1/ •1000)	(1/ •1000) (2) - (1)	(<i>N/cm*</i>) ()+10=1000	(N/cm*	G - Augo
14.64		2.5	4.3	2.2	Z50	14.67	5.87
14.96		2.5	4.3	2.2	250	14.67	5.87
15.29		2.4	4.6	2.4	240	16.00	6.67
15.62		2.4	4.6	2.3	240	15.33	6.39
15.95		2.4	4.8	2.1	240	14.00	5.83
16.28		2.5	4.8	1.9	250	12.67	5.07
16.60		Z.6	4.7	2.0	260	13.33	5.13
16.93		2.6	4.5	1.8	Z60	12.00	4.62
17.26		2.4	4.4	1.4	240	9.33	3.89
17.59		2.8	4.6	1.9	280	12.67	4.52
17.92		2.8	4.2	1.8	Z80	12.00	4.29
18.24		2.6	4.5	1.6	260	10.67	4.10
18.57		2.7	L 4.5	1.4	270	9.33	
18.90	, 	2.5	4.1	1.6	250	10.67	4.27
9.23		2.5	3.9	1.2	250	8.00	3.20
19.56		2.3	3.9	1.1	230	7.33	3.19
14.88		2.3	3.5	1.0	230	6.6/	2.90
20.21		2.1	3.2	0.9	210	6.00	2.86
20.54		2.0	3.0	0.9	200	6.00	3.00
20.87		1.9	2.8	0.8	140	5.33	<u></u>
21.20		1.6	2.5	0.6	160	7.00	2.50
21.55		<u> </u>	2.3	1.1	150	1.33	7.01
21.05		1.0	2.2	0.5	160	3.35	2.00
22:15	······································	1.3	4.7	0.2	130	- 22	2 67
77 011		2.0	2.5		200	7 67	1 UA
22.07		1.0	2.0		100	14.7	317
72 49		1.0	2.7	2.2	100	932	5.83
72 07		1.0	2.0	1.9	100	7.00	2 50
20.02			3.0	0.5	60	2.00	2.50
2448		10	12	12	100	8.67	367
24.91	<u> </u>	1 0 9		1.5	,000	332	417
2513		1.6	79		160	3.33	7.08
75 44	·		2.1	0.5	770	6 67	2.03
75.79		19	- 4.1	1.0	120	7.00	1.11
26.17		1.0	25		1 150	2.67	5.78
76.45			27		+ 240	7.67	0.78
26.77		7.3	3.6		230	12.00	5.22
27.10		1 2 1	21	17	300	11.32	3.78
27.43		5.7	7.0	- ': (+ ===	6.00	1.15
27.76		6.5	1 97	27	650	21.33	3.2.8
28.09		7.6		35	1 760	21.33	2.81
28 42		1 10 0			1000	1017	1.07
L = U. 7 L	1	10.0	115.4	1.6	1,000	1 10.6/	1.07

¢

.

Table F-7 Cont.'

Der	oth	0	2	3	•	3	1
<u>a</u>			F • C	~	CR	LF	Friction
18	M.	(11-1000)	(1 •1000)	(1/ • <i>1000</i>) (2-()	(<i>N /c≈*)</i> D÷¦0×i0eo	(<i>N/cm</i> * 3+150+1000	(3 ÷ (4) = 100
28.74		9.2	12.4	3.7	920	24.67	Z.68
29.07		10.8	12.4	2.0	1080	13.33	1.23
29.40		8.4	12.1	5.0	840	33.33	3.97
29.73		8.4	10.4	3.0	840	Z0.00	2.38
30.06		6.2	11.2	1.0	620	6.67	1.08
30.38		18.0	Z1.0	6.2	1800	41.33	2.30
30.71		15.0	16.0	5.0	1500	33.33	2.22
31.04		9.0	15.2	2.7	900	18.00	2.00
31.37		3.0	18.0	4.5	1300	30.00	Z.31
31.70		15.3	18.0	3.2	1530	21.33	1.39
32.02		12.5	17.0	5.9	1250	39.33	3.15
32.35	<u> </u>	10.8	14.0	2.4	1080	16.00	148
32.68		3.1	14.0	2.0	810	13.33	1.65
33.01	, 	8,4	10.8	2.4	840	16.00	1.90
33.34		7.6	9.6	1.8	760	12.00	1.58
33.66		5.0	7.4	4.0	500	26.67	5.33
33.99		6.8	8.6	4.0	680	26.67	3.92
34.32		8.0	12.0	0.8	800	5.33	0.67
34.65		11.0	15.0	1.9	1100	12.67	1.15
34.98		6.8	7.6	7.9	680	52.67	7.75
35.30		6.4	8.3	4.9	640	32.67	5.10
35.63		6.1	14.0	7.6	610	50.67	8.31
35.96		6.7	11.6	6.0	670	40.00	5.97
36.29	_	2.8	0.4	0	280	26.67	9.52
36.62		20	28		2000		
36.95		34	38		3400		
			ł		T		
		T		T	1		
				1	1		
		1		1	1	1	T
			}	1	1	1	
			1	1	+	1	1
		1	1	1	1	1	
		1		†	+	1	
		1	1	1	1		
				1	1		T
		1	<u> </u>	1	+	1	
			1	1	1	1	
		1	1	1	+	1	
	i		+	<u>†</u>	<u>+</u>	+	1
L	L		1		1	1	

.

APPENDIX G

-

CONE RESISTANCE COMPARISON BETWEEN DUTCH MANTLE AND FRICTION SLEEVE

MECHANICAL CONES

Table G-1

.

Comparison of Mantle Cone to Friction Cone

.

Wagoner County- Mantle Cone No. 106 Friction Cone No. 107 Boring No. 2

Depth	Unified	qc Mantle	qc Friction	qc (M)/
(ft)	Classification	(N/cm2)	(N/cm2)	/qc (F)
0.05	сч ^с	100	120	0 0000
1.03		700	120	0.8333
1.03		230	240	1.0417
2.02		DEI	130	1.0000
3.00		170	100	1.7000
3.99		150	110	1,3636
4.97		130	100	1.3000
5.96	· . "	110	120	0.9167
6.94		110	120	0.9167
7.92		150	130	1.1538
8.91		160	150	1.0667
8.87		200	170	1.1765
10.88	•	200	200	1.0000
11.86	••	210	220	0.9545
12.84		240	230	1.0435
13.83		260	200	1.3000
14.81	н	230	200	1.1500
15.80		180	210	0.8571
16.78		270	190	1.4211
17.77		310	180	1.7222
18.75	CL	350	240	1.4583
19.74		280	300	0,7333
20 72	**	220	260	0.8462
21 70	11	140	160	1 0000
22.0		180	200	1,2000
	16	240	200	1,2000
23.67		260	200	1.3000
24.66		120	140	0.8571

.

Table G-2

.

.

Comparison of Mantle Cone to Friction Cone

Wagoner County- Mantle Cone No. 108 Friction Cone No. 109 Boring No. 4

Depth	Unified	qc Mantle	qc Friction	qc (M)/
(ft)	Classification	(N/cm2)	(N/cm2)	/qc (F)
	-			
0.10	CH	140	100	1.4000
1.08	CH	230	220	1.0455
2.07	MH	240	180	1.3333
3.05	CH,	220	220	1.0000
4.04		260	240	1.0833
5.02	24	220	240	0.9167
6.00	**	140	160	0.8750
6.99	**	160	140	1.1429
7,97	· 11	150	160	0.9375
8.96	"	180	160	1.1250
9.94		180	180	1.0000
10.93	"	220	190	1.1579
11.91		230	170	1.3529
12.90	11	240	210	1.1429
13.88	84	240	200	1.2000
14.86	82	210	210	1.0000
15.85	14	240	200	1,2000
16.83	88	290	220	1.3182
17.82	18	270	260	1.0385
18.80	CI	250	260	0.9615
19.79	"	200	200	1,0000
20.77	**	160	180	0.8889
21 75		190	190	1.0000
22 74		140	160	0.8750
22.72		120	80	1 5000
24.71	14	180	100	1,8000
C4./1		170	100	0.9000
23.67		170	190	0.7444
26.68		350	320	1.0000

Table G-3

•

•

-

٠

Comparison of Mantle Cone to Friction Cone

Tulsa County- US75 & Harvard Mantle Cone US75 & Harvard Friction Cone US75 & Harvard Boring No. 16

Deptn	Unified	qc Mantle	ge Friction	qc (M)/
(ft)	Classification	(N/cm2)	(N/cm2)	/qc (F)
0.05	CL	190	550	0.8636
1.03	12	780	260	3.7692
2. 02	**	320	180	1.7778
3.00	СН	180	240	0.7500
3.99	3 8	180	180	1.0000
4.97		180	160	1.1250
5.96		210	170	1.2353
6.94	\$1	210	180	1.1667
7,92		180	180	1.0000
8.91	19	250	220	1,1364
8.89		260	. 240	1.0833
10.88	**	270	240	1.1250
11.86		310	250	1.2400
12.84	. CL	260	280	0,9286
13.83	61	210	250	0,8400
14.81	**	580	310	0.9032
15.80	**	330	280	1.1786
16.78		300	280	1.0714
17.77		290	230	1.2609
18.75	11	280	210	1.3333
19.74	52	250	240	1.0417
20.72	**	210	220	0.9545
21.70		290	220	1.3182
22.69		310	220	1.4091
23.67	**	OEE	300E	1.1000
24.66	**	360	320	1.1250
25.64	18	340	320	1.0625
26.63	17	240	550	1.0909
27.61		260	280	0.9286
28.59	**	350	200	1.6000
29.58	**	310	210	1.4762
30.56	88	280	240	1.1667
31.55		260	220	1.1818
32.53	19	580	230	1.2174
33.52	**	250	230	1.0870
34.50		240	260	0.9231
35.48	. a	180	160	1.1250
36.47	**	200	150	1.3333
37.45	**	140	100	1.4000
38.44		140	110	1.2727
39.42	•• .	140	110	1.2727
40.41		90	100	0.9000

.

APPENDIX H

CONE RESISTANCE COMPARISON BETWEEN FRIC-TION SLEEVE MECHANICAL CONE AND ELECTRICAL CONE

269

Table H-1

.

Comparison of Friction Cone to Electric Cone

Wagoner County- Friction Cone No. 10 Electric Cone No. 207 Boring No. 1

Depth	Unified	qc Friction	qc Electric	qc (F)/	
(ft)	Classification	(N/cm2)	(N/cm2)	∕q⊂	(E)
	C 1.1				
0.33	LH	580	170	1.64	21
1.31		400	140	2.85	171
2.30		340	90	3.77	78
3.28		380	140	2.71	43
4.27	18	00E	170	1.76	47
5.25	*1	230	160	1.43	375
6.23	11	240	120	2.00	000
7.22	**	240	120	2.00	000
8.20	*1	400	120	3.33	EE6
9.19	••	180	130	1.38	346
10.17		190	110	1.72	273
11.15	14	190	100	1.90	000
12.14	н.	210	80	2.68	250
13.12	*1	190	110	1.78	273
14.11	"	210	100	2.10	000
15.09	16 .	210	130	1.61	154
16.08	**	210	120	1.75	500
17.06	• •	210	170	1.23	353
18.04	**	240	210	1.14	429
19.03	11	230	210	1.00	752
20.01	CL	240	160	1.50	000
21.00		210	130	1.6	154
21 98	18	1.30	100	1.30	000
22 07		130	90	1_44	444
22.05		150	90	1.6	667
23.73	14	230	100	יבי ב	000
64.73		230	100		~~~

270

Table *H-2*

Comparison of Friction Cone to Electric Cone

Wagoner County- Friction Cone No. 13 Electric Come No. 201 Boring No. 2

Depth	Unified	qc Friction	qc Electric	qc (F)/
(ft)	Classification	(N/cm2)	(N/cm2)	/qc (Ĕ)
0.33	СН	160	130	1.2308
1.31		120	100	1.2000
2.30	*1	110	100	1.1000
3.28	U	130	110	1.1818
4.27		110	80	1.3750
5.25		140	80	1.7500
6.23	**	140	90	1.5556
7.22		160	90	1.7778
8.20	••	180	90	2.0000
9.19		190	110	1.7273
10.17	**	180	110	1.6364
11.15	, н	200	130	1.5385
12.14	••	220	90	2.4444
13.12	•	530	130	1.7692
14.11	12	190	120	1.5833
15.09	16	200	120	1.6667
16.08	**	200	140	1.4286
17.06	"	220	160	1.3750
18.04	11	58 0	140	2,0000
19.03	CL	230	270	0.8519
20.01		240	240	1.0000
21.00		130	160	0,8125
21.98	••	200	120	1.6667
22.97		160	270	0.5926
23.95		220	170	1,2941
24.93	11	180	80	2.2500
25.92		280	240	1.1667

.

Table H-3

.•

Comparison of Friction Cone to Electric Cone

Wagoner County- Friction Cone No. 16 Electric Cone No. 202 Boring No. 3

Depth	Unified	qc Friction	qc Electric	qc (F)/
(ft)	Classification	(N/cm2)	(N/cm2)	/qc (E)
0.33	сн	200	130	1.5385
1.31		220	110	2.0000
2.30		250	150	1.6667
3.28	CL	290	180	1.6111
4.27	СН	200	170	1.1765
5.25	*1	380	120	3.1667
6.23	**	160	120	1.3333
7.22	**	170	140	1.2143
8.20	14	170	150	1.1333
9.19	**	170	140	1.2143
10.17	**	190	140	1.3571
11.15	*1	. 230	160	1.4375
12.14		250	180	1.3889
13.12	ч	550	160	1.3750
14.11	11	200	170	1.1765
15.09	с н	250	170	1.4706
16.08	н	230	180	1.2778
17.06	84	200	180	1.1111
18.04	14	300E	220	1.3636
19.03	CL	350	230	1.5217
20.01	*1	230	190	1.2105
21.00		160	140	1.1429
21.98	••	200	140	1.4286
22.97		180	160	1.1250
23.95	.,	240	160	1.5000

272

_

⊺able H-4

Comparison of Friction Cone to Electric Cone

Tulsa County- US75 & Harvard Friction Cone US75 & Harvard Electric Cone US75 & Harvard Boring No. 16

Depth (ft)	Unified Classification	qc Friction (N/cm2)	qc Electric (N/cm2)	ac (F)/ /gc (E)
0.05	CL	220	220	1.0000
1.03	**	260	850	0.3057
5.05	**	180	550	0.3273
з.00	CH	240	190	1.2632
3.99	**	180	130	1.3846
4.97		160	130	1.2308
5.96	••	170	150	1.1333
6.94		180	160	1.1250
7.92		180	160	1,1250
0.91		550	170	1.2941
8.87		240	160	1.5000
10.88		240	170	1.4118
11.86		250	140	1.7857
12.84	LL.	280	130	2.1538
13.83		250	110	2.2727
14.81		310	130	2.3846
15.80		580	200	1.4000
10,70		280	220	1.2727
10.75		055	200	1.1500
18.73	*1	210	200	1.0500
19.74		240	200	1.2000
20.72		220	180	1.2222
21.70	**	220	180	1.2222
	11	220	170	1.2941
		. 300	180	1.6667
24,00	11	320	200	1.6000
23.04		320	220	1.4545
27.41		220	190	1.15/9
20 50		280	180	1.0006
20.37		200	190	1.0526
27.30		210	190	1.1053
30.30		240	190	1.2632
31.33		220	190	1.15/9
32.33		230	170	1.3529
33.32		230	170	1.3529
34.30	н	260	180	1,4444
33,48	0	160	180	0.8884
30.4/		100	170	0.8824
3/.43	**	100	120	0.8333
30.44		110	100	1,1000
37.42		110	100	1.1000
40.41		100	110	0.7071

ş

_

VITA

James B. Nevels, Jr.

Candidate for the Degree of

Doctor of Philosophy

Thesis: INTERPRETATION OF THE DISCONTINUOUS MECHANICAL CONE PENE-TRATION TEST IN NORTHEASTERN OKLAHOMA ALLUVIAL SOILS

Major Field: Civil Engineering

Biographical:

- Personal Data: Born in Norman, Oklahoma, September 25, 1942, the son of James B. and Agatha E. Nevels.
- Education: Graduated from Norman High School, Norman, Oklahoma, in 1961; received the Bachelor of Science degree from the University of Oklahoma, Norman, Oklahoma, in 1967; received the Master of Science degree from the University of Oklahoma in 1977; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1989.
- Professional Experience: Civil Engineer with the Oklahoma Department of Transportation since 1967, with the last fifteen years in the field of geotechnical engineering.