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CHAPTER I 

INTRODUCI'ION 

The design of a sheetpile retaining wall is usually based on the 

assumption that the soil pressures exerted on the piling are at the 

limiting states of active or passive equilibrium at every point on the 

wall. The limiting soil pressure state is then coupled with an assumed 

displacement configuration to establish the required depth of 

penetration of the piling. Subsequently, the displacements of the wall 

are estimated from other assumed displacement conditions. The classical 

design procedure does not address the compatibility of the wall 

displacements with soil pressures. 

Because the classical design is based on a typical unit strip of 

the wall-soil system, the strip of wall is sometimes analyzed as a beam­

en-foundation where the soil on either side of the wall is replaced by 

springs. This latter approach (subsequently referred to as the soil­

structure interaction (SSI) method) enforces compatibility of wall 

displacements and soil pressures and does not require any prior 

assumptions regarding displacement configurations or wall support 

conditions. While the SSI method is attractive, there is only limited 

information regarding the characteristics of springs which are used to 

represent the soil. 

The most complete analytical model of the wall soil system would be 

obtained by the use of nonlinear finite elements to represent the soil. 

1 



This procedure, subsequently referred to as FEM, has been applied 

successfully to the analysis of a variety of earth retaining systems. 

However, the finite element analysis is much too cumbersome for use in 

an iterative design environment. 

Because so many simplifying assumptions are inherent in the 

classical design theory and the SSI method, the current study was 

needed as a starting point to clarify the behavior. 

Statement of Purpose 

The purpose of this study is to use the finite element method to 

study the behavior of cantilever sheetpile walls embedded in soft, 

saturated clay (¢ = 0), and to use the results to investigate the soil 

spring characteristics which are used with the SSI method. 

Furthermore, the values of the soil modulus, Es, given by Terzaghi 

(Ref. 39) were not supported by any experimental or theoretical 

corroboration. Hence, this study will attempt to investigate their 

validity and to elucidate the overall behavior. 

Scope 

2 

In this study, three types of analyses for cantilever sheetpile 

retaining walls in saturated clay were carried out: (1) analysis based 

on the classical design method; (2) SSI analysis using the programs 

"CSHTSSI" and "CBEAMC" (Refs. 11, 12); and, (3) finite element analysis 

using the program "SIMULATE" (Refs. 20, 21). The results from the three 

methods were compared. The finite element solutions were used to point 

out the pros and cons of the classical and SSI procedures. 



CHAPTER II 

LITERATURE SURVEY 

The solution of soil-structure interaction problems started in 

1776, with the work of Coulomb (Ref. 9) whose theory provided a means of 

evaluating earth pressures for soils against retaining walls. Coulomb's 

theory assumes that the structure can displace by an amount sufficient 

to mobilize full-active and full-passive pressures; thus, the theory is 

basically useful to calculate maximum pressures on rigid retaining 

structures. However, this theory is convenient only for evaluating 

extreme failure cases but provides no valid information about the 

behavior at intermediate working stress levels. 

Winkler (Ref. 43) developed a soil model based on direct 

proportionality between soil pressure and structural deflection at any 

particular point along the structure. This assumption obviously does 

not treat the soil medium as a continuum and hence has some limitations. 

Biot (Ref. 1) extended Winkler's hypothesis to the analysis of 

infinite beams on two or three dimensional elastic foundations subject 

to concentrated loads. 

Vesic (Ref. 41) extended Biot's work to include beams with finite 

length and subject to moments. He also investigated the validity of 

Winkler's hypothesis and drew the conclusion that it is only truly valid 

for infinite beams on a semi-infinite elastic subgrade. Vesic also 

3 



stated that using Winkler's hypothesis gives rise to higher moments and 

leads to underestimation of displacements and pressures. Vesic also 

recommended correction procedures for the analysis of finite length 

beams. 

Reese and Matlock (Ref. 35) used nonlinear elasto-plastic soil 

response curves for the analysis of laterally loaded piles for offshore 

structures. The pile was modelled with beam-column elements. 

4 

Haliburton (Ref. 18) extended the procedure used by Matlock and 

Reese for the analysis of flexible sheetwall retaining structures. He 

discussed methods for calculating soil response curves and compared some 

SSI solutions with the corresponding classical solutions. 

Dawkins (Refs. 11, 12) used a finite element representation for 

the wall and an elasto-plastic nonlinear representation for the soil. 

The programs "CBEAMC" and "CSHTSSI" developed in these references were 

used in this study for comparison. This work automated the application 

of water loads, distributed loads, and distributed linear and nonlinear 

springs. 

Because of the deficiency of the Winkler model in accounting for 

the continuous behavior of the soil, two-parameter models were 

introduced. The two-parameter models added a continuous layer between 

the soil springs and the structure. For example, the 

Filonenko-Borodich model (Ref. 15) uses a membrane under tension between 

the structure and the soil springs. Hetenyi · s model (Ref. 22) adds an 

elastic beam to model the two-dimensional behavior. Pasternak· s model 

(Ref. 31) uses a shear layer between the Winkler springs and the 

structure which, in a way, couples adjacent layers together. Also, 

Vlasov and Leont 'ev (Ref. 42) developed a two-parameter continuous 



foundation model. Two-parameter models are, in general, represented by 

the following differential equation: 

5 

P(x) = K.V(x) - Ds.d<4>V(x)/dx4 (2.1) 

where P(x) = soil pressure 

K = modulus of subgrade reaction 

V(x) = structural displacement 

Ds = second soil parameter 

As can be readily seen, if Ds = 0, the model reduces to Winkler's. 

The shortcoming of two-parameter models lies in the lack of 

extensive field tests for evaluating the two soil parameters. 

Elastic continuum models were used to describe the behavior of 

soils beneath structures as well as the displacements of the soil at a 

distance away from the structure. Bousinesq (Ref. 2) and Cheung (Ref. 

4) evaluated a flexibility matrix for the soil-structure interface. 

This flexibility matrix can be inverted and added to the beam-column 

stiffness matrix. FEM analysis reveals that the above mentioned 

approach produces accurate moments and rotations but erroneous absolute 

displacements. 

The finite element method has been used to study problems 

involving soil-structure interaction, particularly flexible 

earth-retaining walls. The work done in the FE field is extensive. A 

few of the publications pertinent to this study are mentioned below. 

Goodman, Taylor and Brekke (Ref. 17) developed an interface finite 

element between the soil and the wall. R.W. Clough and Woodward (Ref. 

7) analyzed embankment stresses and deformations using the FEM. R.W. 
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Clough also developed three-dimensional finite elements for general soil 

problems (Ref. 8). Chang and Duncan (Ref. 13) developed a nonlinear 

model for soil to be used in the FEM. Girijavallabham and Reese (Ref. 

16) analyzed settlements under circular footings as well as the 

behavior of retaining walls. Ruser and Dawkins (Ref. 37) performed a 

nonlinear three-dimensional analysis of laterally loaded piles in 

saturated clay. Clough and Duncan (Refs. 5, 6) used the FEM for the 

analysis of sheetpile walls and U-frame structures that were a part of 

the Port Allen and Old River locks. The close agreement between the 

results obtained from the FEM analysis and actual measurements helped 

establish the FEM as a valuable analysis tool; however, its high cost 

and relative complexity renders it impractical for design purposes. 



CHAPTER III 

CLASSICAL AND SSI METHODS 

In this Chapter, a brief review of the Classical and the SSI 

methods is given. 

Classical Design Theory 

In the analysis and design of cantilever sheetpile walls ustng the 

classical method, some assumptions are made in order to simplify the 

problem into a determinate one that can be solved with the common tools 

of structural analysis. These assumptions are: 

1. The wall is assumed to rotate counterclockwise about a point 

in the embedded depth. By doing so, the wall will induce active and 

passive soil responses on either side. 

2. The wall is assumed to rotate as a rigid body through a 

displacement sufficient to mobilize full-active as well as full-passive 

pressures on either side of the wall. 

3. The wall derives its support solely from passive pressures on 

either side. 

The active and passive pressures are calculated using Coulomb 

earth pressure coefficients along the wall on either side giving rise to 

net-active and net-passive pressures. These pressures are treated as 

loads acting on the wall and are used for analysis and design. In the 

design phase, the main objective is to find the penetration depth, D', 

7 
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and the transition distance, Z (Fig. 1) that will satisfy moment and 

force equilibrium ( ~ Fx = 0, ~ Mt = 0 ). An example of the design 

procedure by the classical method is shown in Appendix A. With the 

depth of penetration established or already known, the analysis phase is 

carried on by assuming that the wall acts as a cantilever supported at 

the bottom. The net pressures are then applied as loads on the wall and 

the shears, moments, and deflections are calculated. 

It can be observed that limit analysis and ultimate soil resistance 

criteria do not always lead to accurate analyses of flexible sheetpile 

retaining walls. The basic premise under lying this method is that the 

structure displaces sufficiently to develop ultimate soil resistance. 

For example, in Terzaghi's paper (Ref. 39), the soil is assumed to be a 

plastic material where full-active and full-passive pressures develop as 

a result of some wall displacements. In particular, full-active 

pressure is reached for V/H = 0.0014 and 0.0084 for dense and loose sand 

respectively; V is the lateral deflection and H is the height of the 

wall. These theories consider the structure to be extremely rigid 

compared to the soil. This assumption is inaccurate for flexible 

retaining walls and results in very high estimates for the depth of 

penetration. Furthermore, such flexible structures can fail from local 

excessive stresses long before they deform enough to mobilize 

full-active and passive pressures. 

SSI Method 

It is clear from the above discussion that a method is needed to 

permit the soil pressures to assume values intermediate to the ultimate 

cases and to be dependent on the deflection of the structure. Such a 
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method was developed based on a combination of Winkler's hypothesis and 

limit equilibrium and it is commonly referred to as the SSI method. 

The SSI method treats a flexible retaining wall as a linearly 

elastic structure which derives its supports from nonlinear springs that 

represent the soil on each side of the wall. Nonlinear soil 

force-displacement curves are found on either side of the wall and a 

gravity-tum-on solution is carried out. The solution requires 

iterative solutions of the following differential equation: 

E.I.d<4)V/dx4 + K.V = 0 (3.1) 

where E, I, and V are Young's Modulus, the moment of inertia, and the 

deflection of the wall respectively. K is the soil modulus and is a 

function of the displacement V. 

In this study, computer programs "CBEAMC" (Ref. 11) and "CSHTSSI" 

(Ref. 12) were used. Both of these programs use beam-column finite 

elements to model the wall. 

Limit Pressures 

A typical soil response curve which has been used in SSI analyses 

is shown in Fig. 2. The soil pressures are assumed to vary linearly 

between the limit-active and limit-passive pressures. 

Limit-Active Pressure. The active condition arises when the wall 

is moving away from the soil. 

Pa = Ka.av - 2Cu.~ 

In the above equation, 

(3.2) 
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Figure 2. Nonlinear Soil Response Curve. 

11 

V(ft) 



ov = vertical soil pressure 

Cu = soil cohesion 

Ka = active pressure coefficient. 

The above equation for Pa can result in negative values for soil 

pressure. Whenever this happens, the value of Pa is set to zero. 

12 

Limit-Passive Pressure. The passive condition occurs when the wall 

is moving into the soil. 

Pp = Kp.ov + 2Cu.fl{i? (3.3) 

In the above equation, 

Kp = passive pressure coefficient. 

In the present study, the soil under consideration was saturated 

clay under ( ¢ = 0) conditions. Also, the wall was assumed to be 

smooth. Under the above conditions, the following new equalities are 

obtained: 

Ka=Kp=l 

Pa = Ov - 2.Cu 

Pp = Ov + 2.Cu 

The at-rest pressure (wall does not move) is also given by: 

Po = Ko.ov 

where Ko is the at-rest pressure coefficient. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



For saturated undrained clay under plane strain conditions, ¢ = 0 and 

Poisson's ratio, v = 0.5. 
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Ko = v I (1-v) = 1 

Therefore, 

(3.8) 

Po = crv 

Soil Pressure-Disolacement Variation 

The two following assumptions dictate the variation of soil 

pressures with wall displacements: 

(3.9) 

(a) The soil pressure at any point on the wall depends on the 

horizontal movement of the wall at that point and is independent of all 

adjacent points (Winkler's hypothesis). 

(b) As mentioned earlier, the pressure varies linearly between 

the active and passive limits, passing through the at-rest value. 

Soil pressure-displacement curves to the left and to the right are 

obtained at regular intervals along the height/depth of the sheetpile. 

Typical curves are shown in Fig. 3. The following soil behavior is 

observed for the soil on either side of the wall: 

1. At zero wall displacement (V = 0), the soil pressure value for 

the soil on both sides is the at-rest value. These pressures correspond 

to point Po in Figs. 3b, and 3c. 

2. If the wall moves to the left, the pressure due to the right 

side soil decreases until it reaches the limit active value PAR after 

which it remains constant. At the same time, the left side soil 

pressure increases as the wall displaces to the left until it reaches 

the limit passive value PPL after which it remains constant with further 

displacement. 
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3. If the wall displaces to the right, the right side soil 

pressure increases until PPR is reached after which it stays constant. 

At the same time, the left side soil pressure on the wall decreases 

until a minimum value PAL is reached. 

The displacements corresponding to limit values of pressures are 

found as follows (Ref. 12): 

Va = (Po-Pa).D 
Es (3.10) 

Vp = (Po-Pp).D 
Es (3.11) 

where D is an interaction distance (discussed subsequently), and Es is 

the soil modulus. 

The soil modulus value used in the equations above depends on the 

type of soil. For saturated undrained clays, the values of Es can be 

determined by one of two ways: 

1. For stiff clays, the following equation was proposed by 

Terzaghi (Ref. 40): 

Es = 0.67 Es1/D (3.12) 

where Esl is obtained from load bearing tests on 1ft x 1ft square 

plates. 

2. For soft clays, Skempton's method may be used (Ref. 38). 

Skempton observed that the shape of the laboratory soil triaxial test is 

similar to that of the load deformation curve for a loaded soil mass. 

He also noticed that about 50% of the ultimate soil resistance is 



16 

developed at a structural deflection of: 

V = 2.5 Esc. B (3.13) 

where Esc is the strain at 50% of ultimate strength (qu) for the clay 

when tested in unconfined compression, and B is the beam width which 

corresponds to the interaction distance, D, mentioned earlier. 

For most clays Esc is about 0.01 (1%) but is smaller for stiff 

clays (about 0.005) and is larger for softer clays (about 0.02). 

Therefore, if the ultimate soil resistance for a plate bearing test can 

be determined, the following equation may be used to evaluate Es: 

Es = Pult/2 _ Pult 
2.5.E5o.B - 5.E5o.B (3.14) 

The final, and perhaps the most difficult step in the SSI method, 

is the estimation of the interaction distance for the soil on both sides 

of the wall. The interaction distance is approximately the distance 

away from the wall through which the soil is significantly stressed. 

The role of D is obtained by analogy to the "pressure bulb" depth 

beneath a strip footing as shown in Fig. 4. 

Originally, it was thought that D is most critical in passive zones 

and not as critical where active behavior is manifest. The validity of 

this assumption will be discussed later in this study. 
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CHAPTER IV 

COMPUTER PROORAM AND METHOOOLOOY 

The original intent of this study was to perform a gravity-tum-on 

nonlinear finite element analysis of cantilever sheetpiles in undrained 

saturated clay. For that purpose, a computer program was developed 

utilizing the following finite elements: 

1. Isoparametric quadrilateral elements to model the soil 

medium. 

2. Beam-column elements for the wall which is assumed to be linear 

and elastic. 

3. Goodman elements for the soil-wall interface. 

Furthermore, the hyperbolic model was used to model the stress­

strain behavior of the soil. This model was developed by Duncan and 

Chang (Ref. 13) and involves the evaluation of the initial soil modulus, 

E~ , the tangent modulus, Et , and Poisson's ratio, v, in terms of the 

principal stresses and some soil parameters. Specifically, the 

following equations are used: 

i) The initial soil modulus is given by: 

Ei = K Pa (crs/Pa)n (4.1) 

in which E~ is the initial modulus, 'Pa' is the atmospheric pressure 

18 



19 

expressed in the same units as 03 and 'K' and 'n, are dimensionless 

numbers that may be determined by running a series of tests and plotting 

the values of E~ vs. 03 on a log-log scale and then fitting a straight 

line to the data. 

ii) The instantaneous tangent soil modulus is given by (Ref. 13): 

[ 
Rf(1-sin(~))(01~3) ]2 

Et= 1 - ----------
2.Cu.cos(~)+2.o3.sin(~) 

K.Pa.(o3/Pa.)n 

where R~ is a factor representing the failure ratio which is a 

number less than one. 

(4.2) 

This expression for (Et) is very powerful for incremental stress 

analysis. First, elastic modulii are assumed from which FEM values for 

(01) and (03) are calculated at the centroid of each element. From 

Eq.4.2, the value of (Et) can be calculated for each element and that 

value is used for the next load increment.The same process is carried on 

until the full load is applied. 

iii) The instantaneous Poisson's ratio is given by (Ref. 13): 

G-F.Log(o3/Pe.) 
v = ------------------------------------------------ (4.3) 

2 
1 -

Rf(a1~3)(1-sin(~) 
K.Pa(a3/Pe.)n 1- ------------

2.Cu.cos(~) + 2.cr3.sin(~) 

All of the parameters involved in the above expression can be 
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determined from a series of triaxial tests with volume change 

measurements. Furthermore, equations 4.1, 4.2, and 4.3 become much 

simpler when ~ = 0 conditions are implemented. In that case, Poisson's 

ratio, v, reduces to~ 0.5 and 'n' becomes zero. 

Another finite element program "SIMULATE" was developed by Dr. 

Issam Halla! and Dr. Mete Oner for the analysis of floodwalls (Ref.20). 

This program had within its scope the desired capability to perform 

gravity-turn-on analysis in addition to many other features. Using this 

program, the effect of the stress-path can be investigated by 

performing a gradual buildup analysis (i.e. , by adding the retained soil 

·in layers). Also, the program "SIMULATE" uses a modified version of the 

f-model (Ref. 20) to represent the stress-strain behavior of the soil. 

In comparison to the hyperbolic model, the f-model has increased 

capabilities for simulating unloading or stress reversal. Whereas the 

hyperbolic model assumes that the soil unloads and reloads along a 

straight line of higher stiffness than the original loading curve, the 

f-model uses a curve similar to the original loading curve for unloading 

and reloading. This makes the f-model more accurate especially when 

some of the soil elements undergo unloading or reloading. Furthermore, 

a postprocessor was developed for the program "SIMULATE" thus 

facilitating tremendously the analysis of results. For the reasons 

mentioned above, the program "SIMULATE" was used exclusively in the 

current study. 

In this program, isoparametric quadrilateral elements are used for 

the soil and beam-column elements are used for the wall. The wall-soil 

interface is modelled using nonlinear springs which permit the wall to 

separate from the adjacent soil. This interface consists of two nodes, 



occupying the same location (Fig. 5), connected by nonlinear springs, 

which in general, have stiffness in both the tangential and normal 

directions (Fig. 6). In this study, the stiffness in the tangential 

direction was set to zero to reflect a smooth wall-soil interface. 
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When a tension stress is encountered for the interface element, 

separation occurs and the normal stiffness is set to zero. In the case 

of compression, a large value for Kn is used to assure that no intrusion 

occurs from the adjacent soil nodes into the wall. 

Features of the Program "SIMULATE" 

The Incremental Aooroach 

In the incremental approach (Fig. 7), the total load is applied in 

a series of increments. An initial modulus value is chosen for each 

element and a small increment of load is applied. The resulting 

displacements, stresses and strains are then calculated. At the 

beginning of each new increment of load, a new value for modulus, 

usually tangent modulus, is chosen for each element. These new values 

depend on the stresses and strains found from the previous load 

increment. Thus, the nonlinear stress-strain relationship will be 

approximated by a series of straight lines as shown in Fig. 7. This 

procedure is repeated until the total desired load is applied. The 

final state of stress and strain will be obtained by summing up the 

results for all the increments. 

The main advantage of the incremental approach is that no 

iterations are required if small steps are used and that initial 

conditions can be easily included in the model. Another advantage of 

this method is that the load can be applied in very small increments, 
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ttms, improving the accuracy to within any desirable tolerance. At the 

same time, this approach gives an idea about the gradual buildup of 

stresses and strains with the increase in load. This could be utilized 

to simulate the actual construction process and trace the stress paths 

very closely. 

In the program "SIMULATE", the incremental approach is used in 

conjunction with an acceleration scheme to improve convergence as 

discussed in Appendix A (Ref. 20). 

Simulation of Incompressibility Condition 

In the past, flexible retaining walls have been successfully 

modelled assuming plane strain conditions. This is because the wall 

extends a long distance in the lateral direction. For plane strain 

conditions, the constitutive matrix [D] is: 

E(l-v) 
[D] = ----

(1+v)(1-2v) 

1 

v/1-v 

0 

v/1-v 

1 

0 

0 

0 

(1-2v)/2(1-v) 

(4.4) 

Originally, in the case of local failure or in the event of tension 

stresses, the value of E was set to a small number. This caused the 

values of normal stresses to remain constant. However, for saturated 

undrained normally consolidated clay (¢ = 0, v ::::l 0.5) the above behavior 

is inadequate. This is because such soils are almost incompressible, 

i.e., they act as a very viscous liquid, and continue to pick up normal 

stress even after local failure. The inadequacy of Eq. 4.4 was 

demonstrated by Duncan et. al. (Ref. 5). In that study, the mode of 
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post-failure behavior resulting from Eq. 4.4 was found to differ 

considerably from the real behavior. Even after failure, soils continue 

to carry additional normal stresses and subsequently an additional small 

amount of shear stress. 

To remedy the afore-mentioned shortcoming for post-failure 

behavior, the program "SIMULATE" is based on an alternate stress-strain 

formulation obtained by rearranging Eq. 4.4 in the form: 

M 

{cr} = M-2G 

0 

M-2G 

M 

0 

0 

0 {E} 

2G 

where M is the constrained modulus given by: 

E(l-v) 
M = -----

(1-2v)(l+v) 

and G is the shear modulus given by: 

E 
G=-----

2(l+v) 

(4.5) 

(4.6) 

(4.7) 

After failure, G is set to a small value while M is kept at its 

value for the step prior to failure. This approach permits very 

accurate simulation of the soil behavior before and after failure. 

f-Model 

The f-model used by the program "SIMULATE" conforms to the 



following important aspects of behavior of flexible retaining walls in 

normally consolidated undrained clay: 
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(a) The soil stiffness should decrease as the loading progresses. 

(b) The stiffness of the soil should increase with increasing 

confining pressure. 

(c) Under non-monotonic loading, the soil should be allowed to 

unload or reload along a different curve with higher stiffness. 

(d) Active and passive stress paths should be recognized and 

modelled properly. 

In particular, the program "SIMULATE" utilizes a modified version 

of the f-model. For that reason, it was thought convenient to mention 

some of the basics of this method. The original f-model was modified 

(Ref. 20) to account for reversal in loading direction from active to 

passive and vice-versa. The stress-strain relationship used in the 

f-model is derived later in this chapter and is given by Eq . 4. 15. The 

constrained modulus, M, and the shear modulus, G, are related to Young's 

modulus, E, and Poisson's ratio, v, as follows: 

E. ( 1-v) 
M = ----- (4.8) 

(1-2v)(l+v) 

The constrained modulus at geostatic conditions, Mo, is calculated from 

the following relationship : 

(4.9) 

where 01 is the major principal stress, Pa is the atmospheric pressure, 

and m and n are empirical constants to be determined. 



Referring to Fig. 8, The degree of mobilization "f" in the hyperbolic 

model is given by the following relationship: 
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f = Tmax/Cu=(cr~4J3m)/(Olf4J3f) 

where, 

for ¢ = 0 (4.10) 

Tmax is the maximum mobilized shear stress 

a~ and cr3m are the mobilized principal stresses 

cr1r and 03f are the principal stresses at failure 

f=l corresponds to a state of failure according to the Mohr-coulomb 

failure criterion, whereas f=O corresponds to an isotropic state of 

loading with Tmax = 0. 

At any intermediate level of stress, the shear modulus is given by: 

G = Go(l-f)/(1-fo) (4.11) 

where fo and Go is the degree of mobilization and shear modulus at Ko 

condition, respectively. From the definition of f and Go, Eq.4.11 can 

also be written as follows: 

G = G~(l-f) (4.12) 

in which G~ is the initial shear modulus at f=O (isotropic state) which 

corresponds to E~ in the hyperbolic model. 

Eq, 4.12 shows that as f increases to 1 at failure, the value of 

shear modulus, G , decreases to zero. Under drained conditions, M is 

kept constant at its initial value. In an undrained situation, M and G 
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both vary while Poisson's ratio is kept at approximately 0.5. 

In its original form, only the loading branch of the degree of 

mobilization ( f ) vs. axial strain ( e ) curve was formulated. This 

branch starts at f=O and becomes asymptotic to the horizontal line at 

f=1 (Fig. 9). In reference ( 20 ) , the original f-model was modified 

to take into account unloading and reloading as shown in Fig. 10. 

Another variable f' was introduced that takes into account both the 

loading direction and the closeness of the state of stress to the 

failure envelope. This model was used successfully in the study of 

floodwalls ( Ref. 20 ). In that regard, the f-model is superior to the 

hyperbolic model that assumes linear unloading behavior. In the case of 

undrained stress-strain behavior Eq. (4.12) remains valid. However, f 

is calculated as the ratio of maximum shear stress to the undrained 

shear strength (Eq. 4.10). Since in triaxial tests the major principal 

stress 01 , is usually increased and then the axial strain , e , in that 

direction is recorded, it is very convenient to determine E~ first and 

then to calculate G~ from the theory of elasticity. Keeping in mind 

that v = 0.5 for undrained conditions, G~ can be found as follows: 

G~ = E:L/2( 1 +v~) = E:L/3 

where E~ is Young's modulus at initial isotropic conditions. 

Eq. 4 .13 can be integrated in the ( ~ = 0) case to obtain the 

following relationship: 

E = A ln (1-T/Cu) = A ln (1-f) 

where A = -2.Cu/E~ 

(4.13) 

(4.14) 
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The experimental stress-strain curve can now be used and any point 

in the range of interest can be substituted into equation (4.14) to find 

the value of E1. A very common procedure is to measure the axial strain 

at mid-height, i.e., for f=l/2. The secant modulus obtained at that 

point is known as " El5o " in the literature. Furthermore, E1 can be 

easily related to E5o. It has been observed that the initial curvature 

of the model affects this inter-dependence. For (¢ = 0) conditions, the 

following equation can be easily verified (Eq. B. 20 in .Appendix B): 

(Ei/E5o) = -21n (1/2) = 1.386 (4.15) 

The parameters needed for the f-model can be easily obtained by a 

simple correlation with the hyperbolic model for which a wide data base 

already exists. .Appendix B establishes the correlation between the 

parameters of the two models for the ¢ = 0 case. 



CHAPTER V 

SOIL TYPE AND PARAMETERS 

The purpose of the study was to establish a benchmark for the 

evaluation of the SSI approach in comparison to the finite element 

method. As discussed previously, the stress-strain characteristics of 

soils are quite complicated. Many parameters may be needed to represent 

their behavior such as, K, N, Rf, m for Et (Eq. 4.2), and F, d, G for 

v, (Eq . 4. 3) . The current state of the SSI method does not have within 

its purview the flexibility to take all of these parameters into 

consideration. However, the selected soil (saturated undrained normally 

consolidated clay) requires very few parameters to describe its 

behavior. This selection simplifies the situation considerably and 

makes it much easier to correlate the SSI and the finite element 

parameters. The advantages of these soils are: 

1. Independence of the initial modulus, E~, of the confining 

stress, as . 

2. Constant Poisson's ratio. 

3. A one to one correspondence between SSI and finite element 

parameters. 

Due to the constant nature of the Mohr-coulomb failure envelope (¢ 

= 0), it is evident that regardless of the value of the confining 

stress, 03, the deviatoric stress at failure, (a1-as)f, is constant and 

is equal to 2Cu. Therefore, the value of E~ is independent of 0'3. 
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This is also apparent from Eq. B.20 in Appendix ( B ), E:t. = 1.386 E5o, 

where E5o is constant for clay soil under ¢ = 0 condition. Furthermore, 

it follows from Eq. B. 1 that n = 0, thus reducing the number of 

parameters needed. 

As discussed in Chapter Five, the Poisson's ratio, v, depends on 

the parameters F,d, G (Eq. 4.3). These parameters were found to affect 

the behavior of the soil. The current SSI approach does not have a 

provision to incorporate the effect of poisson's ratio directly. 

However, for unconsolidated undrained condition such a provision is not 

needed since Poisson's ratio is constant (approximately 0.5). This is 

because the soil is almost incompressible. In the present study, v = 
0.49 was used for numerical stability reasons. 

For ¢ = 0 soil, both the f and the hyperbolic models reduce to a 

one parameter model. This parameter is given in Eqs. 5.1 and 5. 2 

(Appendix B): 

E5o/Cu = l/E5o = m (5.1) 

k = (1.386 Cu/Pa).m (5.2) 

The above equations simplify the correlation of the parameters used 

in the FEM with those used in SSI analyses. Once a value for m or k is 

chosen, an equivalent E5o is calculated to be used in the SSI analysis 

~n one of two ways. 

1. If Skempton's method (Ref. 38) is used to evaluate the soil 

stiffness, E5o fits directly in the following relation: 



36 

Ea = (5.7 Cu)/(5.Eso.D) (5.3) 

2. If Terzaghi's formula (Ref.17) is used, 

Ea = 0.67 Es1 (1 ft)/(D ft) (5.4) 

E5o is accounted for indirectly since it is determined from the clay 

consistency. For stiff clays, E5o is about 0.010 (1%), but is lowered 

to 0.005 for very stiff clays or raised to 0.02 for very soft clays. 

The soil considered in all the case studies reported here is stiff 

according to Terzaghi's criteria (qu = 2.Cu ~ 1 tsf). Therefore, Eso = 
0. 01 was used. From Eq. 5 .1, the corresponding value of m was 100. 

Analyzed Cases 

The section of the wall used in this analysis is a PZ-27 sheet-

pile. Initially, a 30 ft wall with a 30 ft depth of penetration was 

analyzed. The soil density was 110 pcf. The cohesion of the soil, Cu, 

was varied (1000, 1300, 1600 psf) to study its effect on the behavior. 

Also, different values of embedment depths (15', 20') were analyzed to 

study the corresponding behavior. The reasons for these selections are 

as follows: 

1. A value of Cu = 1000 psf corresponds to qu = 2000 psf. This 

coincides exactly with the lower limit for stiff clays in Terzaghi's 

tables (Ref. 40). It was desirable to stay within that range so that 

Terzaghi's method could be used. 

2. Using the classical method (Appendix A), the following height 

for a tension crack is obtained: 
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for Cu = 1000 psf, 

he = 2Cu/1S = 2( 1000)/110 = 18.18 ft 

for Cu = 1300 psf, 

he = 2( 1300 )/110 = 23.63 ft 

for Cu = 1600 psf, 

he = 2(1600)/110 = 29 ft 

From these calculations, a height of retained soil equal to 30 feet was 

chosen. 

3. For Cu = 1000 psf, calculations for embeddment depth based on 

the classical theory are shown in Appendix A. A value of about 27 feet 

was found, and for that reason a starting embeddment of 30 feet was 

used. Subsequently, embeddment depths of 20 feet and 15 feet were 

studied. 

4. Further runs were carried out to determine the cutoff value of 

Cu for which the FEM predicts failure by instability. Similar SSI 

analyses were performed for the same purpose. 

The analysis was done on a cantilever sheetpile in homogeneous 

soil. This was deemed to be a good starting point that provides a 

springboard to more complex situations such as anchored bulk heads, 

layered systems, etc ... 

Since undrained saturated clay was studied, the total stress 

approach was adopted. 

Fig. 11 is a schematic representation of the pile-soil system. 

The top soil surface is chosen as zero elevation. Other elevations are 

measured from that datum positive upward. The elevation at the original 

ground surface is -30' since the height of retained soil is 30 ft for 
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all the analyzed cases. However, the elevation at the bottom of the 

wall varies with the depth of penetration (-45' ,-50' ,-60' for the 15', 

20', and 30' penetration depths respectively). Also, some critical 

locations (A-I) are shown in Fig. 11. These points will be referred to 

in the discussion of results. 

The mesh used for the finite element solution is shown in Fig. 12. 

It consists of a total of 635 nodes and 524 soil elements. The lateral 

and vertical dimensions were varied to ensure that the boundaries do not 

affect the solution in the vicinity of the wall. In the lateral 

direction, a distance of 150 ft on either side was found to be 

sufficient. This can be seen from the stress contours (Figs. 13-16). 

Since these contour lines become horizontal, any additional lateral 

extension will not affect the final solution. On the other hand, an 

increase in the vertical extension, will continue to affect the final 

solution due to the incompressibility of the soil. However, the 

stresses in the soil and the moments in the pile were found to stabilize 

when 200 ft was reached and this value was used for all analyses. 
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DISCUSSION OF RESULTS 

The stress-strain behavior of soils is stress-path dependent. 

Therefore, the construction procedure of the wall is expected to have an 

important influence on stresses and displacements. Hence, it is 

necessary to understand the effect of the construction sequence before 

any meaningful analysis and comparison with the SSI method can be done. 

For that reason, two types of finite element analyses were carried out 

namely: gravity-tum-on and sequential construction (buildup) solutions. 

Gravity-Tum-on Method 

The gravity-tum-on method assumes that the soil-wall system exists 

in its final configuration from the beginning. The weight of the soil 

is applied gradually. At the end of each load increment, the overall 

stiffness matrix is modified based on the state of stress from the 

previous increment. 

Buildup Method 

In this approach, the wall is initially inserted in a level soil 

layer where geostatic conditions prevail (Fig. 17). For this initial 

layer, a gravity-tum-on analysis is carried out to initialize the 

stresses. The displacements obtained from this step are discarded to 

simulate in-situ conditions. In the subsequent steps, the retained soil 
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is added in layers. In this study, four such layers were used. Each 

layer is analyzed in substeps in order to improve the accuracy of the 

solution. The global stiffness matrix is updated for each increment in 

a manner similar to the gravity-turn-on case. 

Comparison between Buildup and Gravity-Turn-on 

The comparison of the behavior of the buildup and gravity-turn-on 

solutions includes soil modulus (Es), moments, displacements, and net 

pressure profiles. 

Soil Modulus <Esl 

Figs. 18-21 show stress vs. displacement curves for a typical 

analyzed case; namely: Cu = 1600 psf, and 30 ft depth of penetration 

(Figs. 18-19 for buildup and Figs. 20-21 for gravity-turn-on). Each 

curve represents the variation of stress (on the leftside and rightside 

of the wall) with the displacement of the particular point on the wall. 

A suitable measure of the soil modulus (Es) values on either side of the 

wall is the secant modulus; i.e., the slope of the line connecting the 

initial and final points on the curves.(e.g., the slope of the line 

joining points P & P'in Fig. 18). For the Cu = 1600 psf and 30 ft 

penetration case, values of Es were calculated for several locations 

along the pile for both the gravity-tum-on and buildup solutions. The 

results are shown in Table I. 

It is clear from Table I that the values of Es are lower in the 

buildup case. This is because the geostatic stresses in the original 

configuration (before the erection of the wall and the filling process) 

do not correspond to any deformation. For example, for Cu = 1600 psf, 
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Figure 19. Soil-Response curve for points E & F (elevation = - 37 ft) 
Buildup analysis; Cu = 1600 psf; 30 ft pile penetration. 
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Figure 20. Soil-Response curve for points A & B (elevation = - 58 ft) 
Gravity-tum-on; Cu=1600 psf; 30 ft pile penetration. 
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Elev. (ft) 

-58.5 

-55.5 

-52.5 

-49.5 

-46.5 

-43.5 

-40.5 

TABLE I 

COMPARISON OF Es FOR GRAVITY-TURN-oN & BUILDUP 
FOR Cu=1600 PSF & 30' PENETRATION 

Soil Modulus (Es), pci 

Lefts ide Rights ide 
Gravity-Turn-on Buildup Gravity-turn-on 

3.10 .82 3.7 

3.12 .91 3.2 

2.97 1.02 2.94 

2.73 1.12 2.73 

2.47 1.10 2.47 

2.22 1.07 2.22 

2.05 0.97 1.98 
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Buildup 

1.41 

1.08 

1.04 

1.01 

0.97 

0.94 

0.90 
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and 30 ft penetration depth, this corresponds to the points located on 

the vertical (stress) axis (e.g., point Pin Fig. 18). For more 

illustration, stress vs. displacement plots are shown at the same 

location from both gravity-tum-on and buildup analyses (Figs. 22,23). 

The final state of the system (e.g., points M & M'in Fig. 22 is 

relatively close for the two cases in terms of both stresses and 

displacements. Howev~r. when the secant modulus was calculated in the 

buildup case (Ea2 in Fig. 23), the value of in-situ geostatic stress <~ 

500 psf) was subtracted from the final stress resulting in smaller 

values of Ea in comparison to the gravity-tum-on case (Ea1 > Es2 in 

Fig. 23). 

Bending Moments 

Table II shows the maximum negative moment values obtained from 

the buildup and gravity-tum-on analyses for different values of Cu. 

The convention used in this study is that negative moment produces 

compression on the leftside of the wall. It is clear that for any value 

of Cu, the maximum moment is larger for the buildup case than for the 

corresponding gravity-tum-on case. However, the location of the 

maximum moment is almost the same for the two cases. This is best 

illustrated in Fig. 24 for the Cu = 1600 psf and 30 ft depth of 

penetration and is equally valid for all the other cases. The reason 

for this difference in maximum moment magnitudes is that the system is 

stiffer in the gravity-tum-on case because all the soil is present 

throughout all the load increments. Therefore, each element 

contributes to the global stiffness of the system from the beginning. 

Also, as discussed before, the soil stiffness (Ea) is higher for the 
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TABLE II 

MAXIMUM BENDING MOMENTS & THEIR LOCATIONS 

Description 

grav-turn-on 
cu=1000 psf 
30'penetration 

buildup 
cu=lOOO psf 
30'penetration 

grav-turn-on 
cu=1300 psf 
30'penetration 

buildup 
cu=1300 psf 
30'penetraion 

grav-turn-on 
cu=1600 psf 
30'penetration 

buildup 
cu=1600 psf 
30'penetration 

grav-turn-on 
cu=1300 psf 
20'penetration 

grav-turn-on 
cu=1300 psf 
15'penetration 

maximum -ve moment(k-ft) 

13.2 

18.2 

10.8 

15.9 

9.5 

14.0 

12.8 

13.0 

Elev. (ft) 

-37.5 

-38.0 

-35.2 

-35.2 

-34.9 

-35.0 

-36.0 

-35.0 

* Maximum negative bending moments and their locations for the 
different cases. 
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gravity-tum-on solution. Because of that, the soil matrix, for the 

gravity-tum-on case, carries a larger portion of the total load 

(weight of the soil) thus resulting in smaller moments in the wall. 

Lateral Displacement 

Fig. 25 shows the lateral displacements for the same typical case 

analyzed before (Cu = 1600 psf, 30 ft penetration). It is clear from 

the figure that the displacements are higher for the buildup case. 

Because the effective stiffness of the soil is higher for the gravity­

turn-on case, the resulting displacements are lower. 

Net Soil Pressure 

58 

Fig. 26 shows the net soil pressure on the pile. The net pressure 

above the natural ground surface is larger for the buildup case. 

Furthermore, the figure shows that the tension crack is deeper for the 

gravity-tum-on case thus resulting in a smaller moment arm. These two 

reasons are mainly responsible for the higher moments observed in the 

buildup case. It is also interesting to note that for the lower 20 feet 

of the pile, the net pressure distributions are almost identical for the 

gravity-tum-on and buildup cases. 

The difference between the gravity-tum-on and buildup solutions 

serves to underscore the fundamental significance of the stress-strain 

path due to the nonlinear nature of the soil. It also emphasizes the 

importance of initial stresses and/or strains in determining the 

behavior of the system. However, it is worth noting that the difference 

between the gravity-tum-on and buildup solutions is only quantitative 

in nature i.e., the only difference is in magnitude and not in the 
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general behavior. For that reason, in what follows usually the gravity­

turn-on solution is referred to unless otherwise specified. 

The rest of the discussion focuses on the following points: 

1. Analysis of some aspects of the general behavior obtained 

from the finite element solutions. 

2. Analysis of some aspects of the SSI solutions. 

3. A comparison between the finite element and the SSI results. 

This includes using the FE solutions to investigate some of the 

underlying assumptions of the SSI method. 

The general aspects of behavior obtained from the FEM are: 

1. Stress contours: vertical, horizontal, shear, and f contours. 

2. Stress paths for critical locations along the pile. 

3. The effect of varying the soil cohesion (Cu). 

4. The effect of varying the penetration depth. 

Stress Contours 

Horizontal Stress Contours 

The horizontal stress contours can be used to determine whether 

active or passive behavior is taking place at the wall. Under geostatic 

conditions, these contours are horizontal. The stress contours dip 

downward if the soil is exerting active pressure on the wall. By the 

same token, if these stress contours move upward, the soil is exerting 

passive pressure on the wall. 

Figs. 27-28 show typical horizontal contours in the soil mass. 

These contours are obtained from a gravity-tum-on analysis and 

correspond to Cu = 1000 psf and 1300 psf and 30 ft penetration depth. 



v-oo-------+09 1·0 

-
- --2-1"~ f---' 

-... 1-09 21.00 __,.,.,--- -31GO- -3-HlS 3100-

- ~-
16C 

·~ - - - 6100 

6-H){) 6100 
·10Q- 1190 

--
f-SH){} 9-160 --------- ~ HltQQ_.-- __/ 

l1:t00 l-1-lOG 

~_,..--l210 /,-3100 
1-2-100 1-2100 -14100 14100 

---
Figure 27. Horizontal stress contours from gravity-turn-on analysis. 

Cu = 1000 psf, 30 ft pile penetration. 
OJ 
N 



l--------10 

--------=J-100 I 

I '1'·1-GO ~+00 - .---31-0 3-1-0 

W&---------------------~ 
I bl-Ge 6-l-9~4-Stt 6~00 1 

1-Be 9-+e ~ Sleo 1 
1-D-1~ -----------1-1+0 

1-2-1 on---------1 

1·2--\-GG 2-1-ao 1-21CYO ___.-~·4-1·60 

Figure 28. Horizontal stress contours from gravity-turn-on analysis. 
Cu = 1600 psf, 30 ft pile penetration. 

(]) 
w 



It is apparent that the retained soil is in an active condition where 

the horizontal stress contour drops sharply near the top surface. This 

sharp drop decreases when moving downward (up to 10 ft below the 

original ground surface). At this elevation, soils on both sides of the 

wall have the same stress magnitude. This observation includes all the 

soil between elevation -45 ft to -55 ft in the 30 ft penetration case. 

This resulted in an idle pressure zone in the sense that the net 

pressure exerted on the pile is near zero. 

The soils in front of the wall, from the original ground surface to 

a zone extending 10 ft below, are in a passive state. Also, a region of 

stress concentration exists around the pile tip. 

The above-described behavior was observed for all the cases 

analyzed in this study. 

Vertical Stress Contours 

Typical vertical stress contours are shown in Figs. 29-30 for Cu = 
1600 psf, and 1000 psf and an embeddment depth of 30ft. As expected, 

the vertical stress on the right is higher than that on the left. The 

transition from right to left is most severe near the tip of the pile 

(high stress concentration) and it becomes smoother with increased 

depth. One particular location of interest is at the tip of the tension 

crack in the retained soil where a sharp drop in vertical stress is 

observed. At that location, the soil column above is moving away 

clockwise thus reducing the vertical stress. Close to the bottom of the 

wall, the vertical stress increases (compared to geostatic stresses) on 

the right side and decreases on the left side due to incompressibility. 
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This is best illustrated by buildup analysis for Cu = 1000 psf and 

penetration depth = 30 ft. A plot of horizontal versus vertical stress 

is shown for two elements to the left of the wall (Figs. 31,32). The 

points labelled 1 on both plots represent the original soil layer under 

geostatic conditions. It is clear that while the other soil layers were 

being added, the vertical pressure decreased considerably. A minimum 

value was reached when the third layer was added. At this stage, the 

vertical stress started to recover some of its original value. However, 

the final vertical stress level is smaller than the value under 

geostatic conditions. This decrease in vertical stress is due to the 

upheave resulting from the incompressibility of the soil. On the other 

hand, some soil elements on the right side experience an increase in 

vertical stress. 

The behavior described above is common to all the cases 

investigated in this study. 

Sbear Stress Contours 

Typical shear stress contours are shown in Figs. 33-34 for the 30 

ft penetration case and Cu = 1000 and 1600 psf respectively. As in the 

case of the vertical and horizontal stresses, the tip of the pile is an 

area of high shear stress gradient. In the region extending from the 

tip of the tension crack to the soil surface, negative shear values are 

observed. This is due to the clockwise motion of the retained soil. 

At a sufficient depth, the shear contours become almost vertical 

indicating that the shear becomes constant with depth. The near 

symmetry of the shear stress contours indicates that the pile did not 

affect the general state of stress except at some sensitive locations in 
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its vicinity. 

The same behavior was observed for all the cases analyzed in this 

study. 

Degree of Mobilization Contours 

72 

The degree of mobilization is a very effective way to describe the 

proximity of the soil elements to failure. It is a nice luxury that is 

exclusive to the finite element method. It offers a global picture of 

the overall behavior of the system. Figs. 35-36 are contour plots for 

the degree of mobilization for Cu = 1000 and 1600 psf and 30 ft 

penetration depth for the gravity-tum-on case. From the figures, the 

following observations can be made: 

1. In the retained soil, the degree of mobilization increases 

going downward towards the original ground surface. It starts at about 

10 % at zero elevation and increases to about 70% for the Cu = 1000 psf 

case and to 50 % for the Cu = 1600 psf case in the region around the tip 

of the tension crack. 

2. The soil to the left of the wall at the level of the original 

ground surface is in a passive state. The degree of mobilization in 

that region is about 80% for Cu = 1000 psf and 70% for Cu = 1600 psf. 

In general, the passive area to the left of the wall is at a degree of 

mobilization of about 75% . On the other hand, the soil to the right of 

the wall is in an active state and the degree of mobilization is about 

80% for Cu = 1000 psf and 60% for Cu = 1600 psf. 

3. The area around the tip of the pile is the area with the 

highest degree of mobilization <~ 95 % ) for all cases. This is due to 

the stress concentration in that region. 
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It is clear from Figs. 35-36 that the level of stress and hence 

the f values increase as the value of Cu decreases. However, that the 

behavior is the same qualitatively. The only discernible difference is 

that the f-contours are higher at all the locations for the lower Cu 

case with the exception of the area around the tip of the pile where the 

degree of mobilization is around 1 for both cases. Furthermore, the 

rate of change of the f-contours is much faster for the lower Cu case 

since more soil elements are getting progressively closer to failure. 

The degree of mobilization contours show clearly that for this 

class of problems local failure can occur in some soil elements without 

causing the overall failure of the retaining wall. 

Stress Paths 

Stress-path diagrams shed light on the general behavior of the soil 

particularly at certain locations of interest. The stress path 

represents the locus of the top points on the Mohr circles. It 

represents the states of stress that the element goes through during its 

loading history. A stress path is also known as a p-q diagram where p 

and q are defined as follows: 

As can be easily seen, p represents the abscissa of the center of 

Mohr's circle and q is the radius of the circle and it is also the value 

of the maximum shear stress that is experienced by the particular soil 

element. Stress-path diagrams were made for different soil elements for 

the different cases studied. For convenience, the q values were plotted 
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as negative values when the soil element is experiencing a passive state 

of stress. On the other hand, the q values were left positive for the 

active state. In the classical theory, the active and passive pressures 

were always assumed to be principal stresses which can, at times, cause 

some confusion in interpreting the horizontal stress on the wall as 

being active or passive since it is usually not a principal stress. 

This is especially true in areas of high shear stress and high stress 

concentrations. One important line of interest on any stress-path 

diagram is the Kr line which goes through the highest points on all 

failure Mohr circles, i.e. , circles that are tangent to the Mohr-coulomb 

failure envelope. This Kf line for the p-q diagram is equivalent to the 

envelope in a Mohr-coulomb type formulation. For all the cases studied, 

the Kf line is a horizontal line whose ordinate is ± Cu because of the ¢ 

= 0 condition. The distance between the point representing the state of 

stress and strain and the Kf line is a measure of the proximity of that 

element to failure and is another indication of the degree of 

mobilization. 

Fig. 37 is a stress-path for an element located at 4 ft below the 

original ground surface (location H in Fig. 11) for 30 ft penetration 

depth and Cu = 1300 psf. The element referred to is located to the left 

of the wall and it is in a passive state as expected (negative q 

values). The final point on the graph is still far from failure (Kr 

line). 

Another stress path for an element about 7 ft below the original 

ground surface to the right of the wall (location E in Fig. 11) is shown 

in Fig. 38. This figure indicates that the element is in active (q is 

positive). Furthermore, this element is still far from the 
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failure envelope (q = 1300 psf). An interesting observation is that 

the p-q diagram is almost linear which means that the major principal 

stress, 01, varies linearly with the minor principal stress, 03. The 

linear variation suggests that Ka, for that particular element, is 

constant throughout the loading stages. 
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Figs. 39-40 show the stress paths near the tip of the pile (points 

A & B). It is clear from Fig. 39 that the soil to the left of the pile 

tip is in a passive state and very close to failure (proximity to Kr 

line). Similarly Fig. 40 demonstrates that the soil to the right of 

the pile tip is in an active state and very close to failure as well. 

This proximity to failure on either side of the wall near the tip was 

observed for all the analyzed cases and is probably due to the high 

stress gradient in that vicinity. 

Effect of Soil Cohesion 

Increasing Cu in both the gravity-tum-on and the sequential 

construction analyses resulted in a reduction in the moments and 

displacements (Figs. 41-46). This is because as Cu increases, the soil 

stiffness increases. Therefore, the soil elements carry a bigger share 

of the total load (weight of the soil) and the moments and displacements 

of the pile decrease. 

As Cu increases, the active pressure on the wall from the retained 

soil does not change, but the passive pressure on the wall from the left 

side soil increases (about five feet below the original ground surface). 

This has the net effect of decreasing the maximum moment developed in 

the sheetpile. The above mentioned behavior is best depicted by the net 

pressure diagrams for different values of Cu (Figs. 45,46). For 
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example, for Cu = 1000 psf and Cu = 1300 psf in the gravity-tum-on case 

(Figs. 45,46), little change is noticeable in the retained soil, but a 

definite increase is seen for the soil to the left of the wall under the 

original ground surface. Figs. 45-46 show a zone of zero net pressure 

in the middle third of the embedded depth. 

Also, varying Cu did not have any effect on the depth of the 

tension crack (Figs. 45,46). 

Effect of Depth of Penetration 

Three different embeddment depths of penetration were studied (30, 

20, 15) at the same Cu (1300 psf). The results are rather surprising in 

a way because the effect of embeddment depth was not as prominent as 

initially expected. As the results in Table II show, the moment 

location for the three cases from gravity-tum-on analysis is almost 

the same ( @ about 5 ft below the original ground surface). Also, the 

magnitudes were not very far apart, especially for the 20 ft and 15 ft 

penetration cases. Furthermore, the soil pressures in the retained soil 

are almost the same in the three cases. 

It is also interesting to note that the net force on the wall 

crosses from left to right at 5 ft above the pile tip in the three cases 

(Fig. 49). The displacement of the wall for the 15 ft embeddment depth 

is slightly lower than that for the 20 ft case. However, the net 

displacement, that is the difference between top and bottom 

displacement, for all practical purposes is the same for the two cases. 

This suggests that the only difference between these two cases is in the 

amount of rigid-body displacement. 

For the 30 ft case, the displacements are slightly higher than for 
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the 20 ft and 30 ft penetration cases. In general, the moments 

increased and the total displacements decreased as the embeddment depth 

decreased. The increase of displacement with embeddment depth seems to 

be caused by the increase in contact area between the wall and the soil. 

In short, the following conclusions can be reached about the effect of 

embeddment depth. 

1. In general, total displacements vary very slightly with the 

depth of penetration (Fig. 47). This suggests that the pile floats in 

the soil matrix (soil displacements prevail). 

2. The increase in embeddment depth reduces the stiffness of the 

wall and the corresponding bending moments (Fig. 48). The reason is 

that the stiffness of the wall is inversely proportional to its length. 

3. The soil pressures decreased slightly a:a; the embeddment depth 

increased. An interesting observation is that· for all cases, the 

transition of net pressure from left to right occurred at 5 ft above the 

pile tip (Fig. 49). Furthermore, for the 30 ft embeddment depth and for 

all Cu values, the portion of the wall between elevations -45 ft and -55 

ft was almost stress-free, which suggests that sometimes increasing the 

penetration depth will be ineffective and does not increase the factor 

of safety. 

4. The embeddment depth seems to have little effect on the general 

behavior. This is evident from the f-contours for the different values 

of embeddment depth which show no appreciable difference in the degree 

of mobilization at the same critical locations. An interesting point 

that can be made here is that the finite element solution in some cases 

predicts a small positive moment near the bottom of the pile. The 

above behavior was noticed only for the 30 ft embeddment depth but not 
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for the 15 ft and 20 ft embeddment depth cases. A possible explanation 

is that the longer pile has a lower relative stiffness and also 

displaces more soil. This results in a high drag force at the tip of 

the pile (from left to right) causing contra-flexure and positive 

moment. ( Similar findings were made in Reference (20) for a levy in ~ = 

0 clay for the high penetration case into a weak soil layer). Whether 

this behavior happens in nature or is the result of the finite element 

modelling of the continuum is unclear and is open to debate. 

SSI Method 

The concept of interaction distance, D, is of paramount importance 

in the SSI method. The soil modulus value (Ea) at each point along the 

pile depends in its determination on the value of D at that particular 

location. Furthermore, a systematic approach must be developed to 

ensure that the assumed values of D are compatible with the resulting 

solution, i.e., to establish the convergence of the SSI solution. With 

that in mind the following points were investigated: 

1. The concept of interaction distance, D, and its influence on 

the behavior. 

2. An iteration procedure to ensure convergence of the SSI 

solution. 

Interaction Distance 

A very vague point in SSI theory is the concept of interaction 

distance (D). It is supposed to reflect the extent of the effectively­

stressed soil and it resembles the concept of a pressure bulb under a 

footing. The only suggestions found in the literature (Refs.11,12,19) 
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for a cantilever sheetpile wall are (1) to take the height of the 

retained soil as the interaction distance above the original ground 

surface, and (2) to take the embedded depth as the interaction distance 

for the soil beneath the original ground surface (Fig. 50). Also, the 

concept of interaction distance is based on the idea of a rigid 

structural member pressing against the soil. Therefore, the interaction 

distance qualitatively is more consistent with a passive-type situation 

rather than an active-type one when the wall is moving away from the 

soil. Furthermore, since the interaction distance depends on the 

stressed area, it is expected to vary along the pile. 

The most difficult aspect of comparing the SSI results with the 

finite element solution is that the researcher or designer is completely 

in the dark when it comes to determining the interaction distance for 

various locations along the wall. Since the interaction distance 

affects the values of Ea no matter which formulation is used (Terzaghi's 

or Skempton's), it becomes extremely important to find a way to choose 

values of D in order to obtain a reliable solution. 

Using the suggested values for the initial interaction distance 

(Fig. 50), analyses were made for different Cu values, and some of the 

results are shown in Figs. 51-56 for Cu = 1300 psf and 30 ft 

penetration depth. The maximum moment values are shown in Table 3. 

These values are two to three times larger than those obtained from the 

finite element analysis. Rowe (Ref.40) observed that moments which are 

too high are also obtained when the classical methcx:l is used. 

Table III reveals a serious inconsistency. The maximum moment 

obtained (26.4 K-ft) when Cu = 1300 psf was found to be less than the 

maximum moment (35.2 k-ft) obtained when Cu = 1600 psf. This 
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TABLE III 

CX)MPARISON OF SUGGESTED AND MODIFIED SSI SOLUTIONS 

*SSI Suggested *SSI Modified 
Description Maximum -ve Elev. Maximum -ve Elev. 

Moment (K-ft) (ft) Moment (K-ft) (ft) 

Cu = 1000 psf ~ 73 -41.0 ~ 73 -41.0 
30'penetration 

Cu = 1300 psf 26.5 -36.9 9.4 -34.4 
30'penetration 

Cu = 1300 psf 26.7 -34.0 8.4 -34.0 
20'penetration 

Cu = 1300 psf 28.9 -33.5 7.7 -33.0 
15'penetration 

Cu = 1600 psf 35.2 -36.0 6.2 -35.5 
30'penetration 

*SSI analysis was done using Skempton's method. 
N.B: For Cu = 1000 psf, the recommended and modified SSI 
solutions are almost the same due to proximity to failure. 
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contradicts with the FEM results where higher moments develop in the 

wall as Cu decreases. 
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Another inconsistency in the SSI method is that in the active zone, 

the concept of interaction distance becomes unjustifiable. This is 

because the SSI theory, as stated earlier, interprets the interaction 

distance to be of the same nature as the " pressure bulb" under a 

footing. When the soil is in an active state, the above concept becomes 

invalid. 

Furthermore, in most SSI references it is mentioned that the value 

chosen for interaction distance, for the active soil in general and the 

retained soil above the original ground surface in particular, does not 

affect the solution. This premise was investigated in this study and 

the results found contradict the above-mentioned belief. For example, 

two separate SSI runs were made for the 30 ft wall with 20 ft 

embeddment depth. In the first run, the suggested values for 

interaction distance were used, as in Reference ( 12 ), i.e., 30ft for 

the retained soil and 20 ft for the soil under the original ground 

level. In the second run, all the parameters were kept constant except 

the interaction distance for the retained soil which was lowered to 8 

ft. From the results (Figs. 57-59), the interaction distance of the 

retained soil did affect the results considerably. In the first case, 

the maximum negative moment obtained was 26.7 K-ft whereas in the second 

case it was only 8.55 K-ft. The reason for the decrease in moment is 

that reducing the interaction distance made the soil much stiffer. This 

in turn, resulted in smaller bending moments and deflections in the 

pile. This point was tested further using different values of 

penetration distances and soil properties.( For example, for cu = 1300 



~--------------------------------r-------.-------~0 

c int.D = 30' for retained soil 
o int.D = 8' for retained soil 

et..o 

' 

}~to 
£1..·-30 

{o.ao' }D"2~ 
£L.-so' 

-20 

-30 

L---~--~--~---L--~--~----~--~--~--~--~--~-50 
-30000 -25000 -20000 -15000 -10000 -5000 0 

MOMENT (LS-FT) 

104 

/'""""' 

:-
'-.._ 

a:, 
......J 
w 

Figure 57. Bending moments from SSI analysis using Skempton's method. 
Cu = 1300 psf, D =20ft below zero elevation. 



105 

r---------T-~------~----~--~--------.---------.0 

w 

~----------------~--------4---------~~----_,-40 

o int.D = 30' for retained soil 
o int.D = 8' for retained soil 

~------------------------~--~--~~--~~-50 
i 5 12 9 6 3 0 

LATERAL (IN) 

Figure 58. Pile deflections from SSI analysis using Skempton·s method. 
Cu = 1300 psf, D =20ft below zero elevation. 



0 int.D = 30 ft 
0 int.D = 8 ft 

~ 

~ 
~ ' ~ 

~ 

I 

-2 000 - 1500 -1 000 -500 

0 

I ·a.o 

l}'nt 
EL.-JD O 

{~ } X· 
-10 

EL.-5'Q ' 

-20 

~ ~ -

~~ "' -.30 

-40 

~ 

l\ -

t ) 
0 500 

-so 
1 000 1500 2000 

PRESSURE (PSF) 

106 

E -
~ 
_J 

1.&.1 

Figure 59. Net stress on the pile from SSI analysis using Skempton's 
method. Cu = 1300 psf, D = 20 ft below zero elevation. 



107 

psf and 15 ft penetration depth). One SSI run was made with an 

interaction distance of 30 ft for the retained soil above the original 

ground surface and 7 ft for the soil to the right of the wall beneath 

the original ground level, while an interaction distance of 8 ft was 

assigned for the soil to the left of the wall beneath the original 

ground level. In the second run, the interaction distance for the 

retained soil was changed to 6 ft and everything else was kept the 

same. As shown in Figs. 60-62, the maximum moment with D = 30 ft was 

found to be equal to 45 K-ft whereas it was only 7.69 K-ft forD= 6ft. 

These results confirm beyond doubt that the value of interaction 

distance is as important for active zones as it is for passive zones. 

SSI Iteration Procedure 

In the preceding section, many discrepancies and uncertainties were 

encountered when deciding on the values of interaction distance to be 

used. If the SSI approach is to have any real reliability for the types 

of problems discussed here, a consistent scheme has to be devised. The 

original idea was to base the trial values of interaction distance on 

the passive zone on either side. However, a quick inspection shows that 

in most cases, the wall will deflect in such a way that the displacement 

at every point will be to the left. Hence, almost invariably, the left 

side under the original ground surface will be in a passive state while 

the right side will be in an active state. Therefore, if the 

determination of interaction distance was to be based on the depth of 

the passive zone on either side, the same initially suggested values 

will have to be used. This assumption, as illustrated before, yields 

excessively high moments. 
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It was found that even if the soil is in an active state, the 

interaction distance is still important. This suggested an alternate 

way of evaluating the interaction distance. The average depth that is 

responsible for the net pressure on either side is taken as the 

interaction distance on that side. For the retained soil above the 

original ground surface, the interaction distance is chosen as the 

distance through which the wall and soil are still in contact. This 

assumption, in spirit, is analogous to the "pressure bulb'' assumption. 

This leads to a more reliable scheme that ensures convergence as 

follows: 

1. An SSI run is made using the suggested values for interaction 

distance: Height of the retained soil for the soil above the original 

ground surface and the embeddment depth of the pile for the soil below 

that surface. 

2. The values of the interaction distance are modified using the 

output from step 1. The easiest way to do that is to plot the net 

pressure versus elevation. From this generated graph, the net height of 

the retained soil that is still in contact with the wall is readily 

found and subsequently used as the interaction distance in that zone. 

Similarly, on either side below the original ground surface, the average 

distance through which the soil is predominant, as far as net pressure 

is concerned, is determined and used as interaction distance in the next 

run. 

3. With the interaction distances found from step 2, a new SSI 

solution is carried out and another pressure versus elevation plot is 

obtained. The same process as in step 2 is repeated until the values 

of interaction distance used in a specific run and the values obtained 
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from the corresponding pressure versus elevation plot are the same or 

within a very small tolerance. When that happens, this is taken as the 

final SSI solution for that particular problem. 

The above scheme was used in this study and it was found to 

converge in all the cases studied. It yielded very good and consistent 

results as far as moments are concerned. Of course, the SSI approach 

will always yield smaller displacement values than the finite element 

solution. This is due to the fact that the rigid body displacements 

obtained, if any, from the SSI method are always less than those found 

from the finite element method especially in the ¢ = 0 case. 

One example of putting this technique to work is for the Cu = 1600 

psf case where Height = Depth = 30'. The solution was achieved as 

follows: 

A value of Ee/ft of interaction distance is found from Skempton's 

formula using Terzaghi's value for Pult (5.7 Cu) 

Ee = 5.7Cu/(5.Eso.D) = 5.7x1600/5x0.01x1/(12)S = 105.55 pci/ft of D 

1. An SSI run was made using 30 ft as the interaction distance 

for soil above and below the original ground surface. Figs. 63-65 show 

the results of this run. From the pressure versus elevation plot shown 

in Fig. 65, the depth of the tension crack is about 18 ft, and so an 

interaction distance of 12 ft will be used for the retained soil in the 

next run. For the soil below the original ground surface, the net 

pressure diagram crosses the elevation axis (y-axis) almost at mid-depth 

and therefore, in the next run, a value of 15 ft will be used as the 

interaction distance for the soil on both sides below the original 
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ground surface. 

2. A new SSI run using the values determined in step 1 was made. 

The results were plotted in Figs. 66-68. From the pressure versus 

elevation graph (Fig. 68), the depth of the tension crack is about 21 

ft and the net pressure crosses the vertical-axis at 14 ft below the 

original ground surface. Therefore, an interaction distance of 9 ft 

will be used for the retained soil, 14 ft and 16 ft for the left and 

the right side below the original ground surface respectively. 

3. A new SSI solution is performed with the values calculated 

(Figs. 69-71) shows very little change from the previous one. Therefore, 

·this final run is deemed satisfactory since convergence has been 

achieved. The value of maximum negative moment obtained is 6.22 K-ft 

located at -35.50 ft elevation. 

If Terzaghi's method was used to estimate Ea/ft of interaction 

distance, the solution can be improved even further. This is because 

the average value of Ea, as obtained from Terzaghi's method, is smaller 

than its counterpart from Skempton's methoci. For the above case, 

Terzaghi's method gives the following value for Ea: 

from Reference (19), average Es1 = 87 pci, and minimum Es1 = 58 poi 

thus: 

Es(average) = 0.67 x 87 x (1 ft/D ft) ~ 58 pci/ft of int.distance 

and, 

Es(minimum) = 0.67 x 58 x (1 ft/D ft) ~ 39 pci/ft of int.distance 

A very interesting and convenient observation is that in most 

cases, the above iteration procedure does not need to be repeated when 

using Terzaghi's value, but the final values of interaction distance can 

be used directly with the new value of Ea. Such an analysis was done 
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for the same case ( 30 ft penetration, Cu = 1600 psf). The results 

were plotted in Figs. 72-74. The maximum negative moment is 8.15 K-ft 

at -36 ft elevation using the average Terzaghi value, and 9.57 k-ft at 

-36.5 ft elevation based on the lower bound of Terzaghi's table. 

All the remaining cases were analyzed in the same way and 

convergence was obtained in every case. It is also interesting to note 

that for 30 ft penetration depth with Cu = 1300 psf, contra-flexure was 

obtained and convergence was achieved by taking the average value of the 

two segments for which the left-side soil was the predominant factor in 

determining the net soil pressure. 

Comparison between SSI and FE Solutions 

From the results of the SSI and finite element solutions, the 

following assumptions and aspects of behavior can be compared: 

1. Comparison between the moments and displacements in the SSI and 

FE approaches. 

2. The variation of soil stiffness, Ee, with depth for homogeneous 

clay under ¢ = 0 conditions. 

3. The stiffness variation between the active and passive 

limits (i.e., the shape of the force vs. displacement curves). 

4. A comparison of the FE plateau values (i.e., at or near 

failure) with the full-active and full-passive limit 

equilibrium values from the classical theory (crv ± 2Cu). 

5. The depth of propagation of the tension crack. 

6. The lower bound of Cu for which failure or instability ensues. 

7. Soil stress profile on the retaining wall. 
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Moments and Displacements from FE and SSI Methods 

Figs. 75-76 show the moment and displacement diagrams for a 

typical case (Cu=1600 psf, 30 ft penetration). The maximum negative 

moment is higher when Terzaghi's values for soil stiffness are used. 

This is because the Ea values obtained from Terzaghi's table are smaller 

than those calculated using Skempton's equation. Furthermore, the lower 

Terzaghi values for Ea result in moments that are in excellent agreement 

with those obtained from the FE gravity-turn-on analysis. For example, 

for the above analyzed case (Cu=1600 psf, 30 ft penetration), the 

maximum negative moment based on the minimum Terzaghi values was 9.57 k­

ft at -36.50 ft elevation compared to 9.5 k-ft at an elevation of -34.9 

ft obtained in the gravity-turn-on case. However, as Fig. 75 shows, 

the FEM predicts a small positive moment near the tip of the pile which 

is not obtained in the SSI case. The reason is that the FEM can 

account for a high tip reaction which is absent in the SSI case. As for 

displacements (Fig. 76), Terzaghi's values lead to higher displacements 

especially when the lower limit is used. However, these displacements 

are lower than those predicted by the FEM. This is due to the relatively 

large rigtd-body displacements especially for the ¢ = 0 case. 

Soil Stiffness Variation 

It is frequently assumed in SSI analyses that for homogeneous clay 

the value of soil modulus Ea (per ft of interaction distance) does not 

vary with depth for a certain layer. The assumption is implicit in the 

way Ea is calculated. If Skempton 's method is used, Es depends on Cu 

and Esa. On the other hand, if Terzaghi 's method is used, Es depends 

only on the consistency of soil. 
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To investigate whether or not Ea varies with depth, some selected 

values of Ea are calculated at different stations along the pile for 

different finite element runs. Since the force-displacement curves 

found from the finite element analysis have the effect of D embedded in 

them, the variation of Ea was studied for stations expected to have 

roughly the same interaction distance according to SSI theory. In all 

of these calculations the secant modulus at the endpoint is calculated, 

i.e. , the slope of the line joining the first and last points on the 

force-displacement plot. This secant modulus was chosen because the 

final state of the system was found to be very close for the gravity­

turn-on and buildup cases. It is also independent of the number of 

substeps needed to ensure convergence in either method. This secant 

modulus will make it easier to compare various results. 

Typical force vs. displacement curves were shown in Figs. 18-23. 

Some values of the soil modulus, Ea, were tabulated for Cu = 1600 psf 

and 30 ft penetration depth (Table I). The corresponding values of D 

were found by dividing Skempton's values of soil modulus (per ft of 

interaction distance) by the secant modulii obtained from the FEH 

solution. The resulting D values were tabulated along with the 

corresponding Ea values (Table IV) for the gravity-tum-on case. The 

values of Ea and D vary with depth, as easily seen from Table IV for 

Cu = 1600 psf and 30 ft penetration. In particular, the interaction 

distance, D, was found to decrease with depth while the soil modulus, 

Ea, was found to increase with depth (Figs. 77-80). At the same 

location along the pile, it is evident that the soil element in passive 

has a higher value of Ea, and therefore a lower value of D. 

Furthermore, the value of D around the pile tip is almost equal to the 



0 

-10 

-20 

> -30 
Q) 

Cl) 

-40 

-50 

1-

1-

1-

1-

f-

-

-60 
0 

131 

\ 
~ 
~ 

• I . . 
1 2 3 4 5 

Es pci 

Figure 77. Soil Modulus (Es) vs. Elevation (leftside); Cu = 1600 psf 
Gravity-turn-on analysis; 30 ft penetration depth. 



0 

-10 

-20 

> -30 
Q) 

Q.) 

-

r-

-40 

-50 

-60 
0 

132 

~ . 

£ 

\ 

.~ 
1 2 4 5 

Es pci 

Figure 78. Soil Modulus (Ee) vs. Elev·ation (rights ide); Cu = 1600 psf 
Gravity-turn-on analysis; 30 ft penetration depth. 



0 

-10 

-20 

> -30 
Ql 

(I) 

-40 

-50 

-

-

i-

-60 
0 

I 

10 20 

133 

v 
/ v 

/ 
[7 

( 
d 

• 
.30 40 50 60 

int.D ft 

Figure 79. Interaction Dist.(D) vs. Eievation (leftside); Cu = 1600 psf 
Gravity-tum-on analysis; 30 ft penetration depth. 



0 

I-

-10 

~ 

-20 

I-

1-

-40 

~ 

·-50 

1- 1 

-60 
0 

d 

~ 

134 

-
.....,... ~ 

I I 

100 200 .300 400 500 

Figure 80. Interaction Dist.(D) vs. Elevation (rightside);Cu = 1600 psf Gravity-tum-on analysis; 30 ft penetration depth. 



TABLE IV 

SOIL MODULUS AND INTERACTION DISTANCE 
GRAVITY-TURN-DN; Cu=1600 PSF; 30 FI' PENEI'RATION 

Left Right 
Elev. (ft) Ea(pci) D(ft) Ea(pci) D(ft) 

-58.5 3.10 28 3.7 23 

-55.5 3.12 27.5 3.2 27 

-52.5 2.97 29 2.94 29 

-49.5 2.73 32 2.73 32 

-46.5 2.47 35 2.47 35 

-43.5 2.22 39 2.22 39 

-40.5 2.05 42 1.98 43 

-30.75 1.56 55 1.04 83 

-29.25 0.83 103 

-28.5 0.70 124 

-26.25 0.23 374 

*Gravity-turn-on; Cu = 1600 psf, 30ft penetration depth. 
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N.B: The actual values of Es are higher than the tabulated values 
and by the same token the actual values of D are lower; this 
is due to the rigid body displacement that should be 
subtracted from the total displacement when the effective 
values of Ea and D are calculated. 
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value of the embeddment depth ( 30' ) . It starts to increase when moving 

upward and reaches a very high value in the active zone, above the 

original ground surface. 

For clay under undrained conditions, a relatively large portion of 

the total displacement is a rigid-body displacement that accounts for no 

stresses whatsoever. Therefore, when the value of Ee were calculated 

from the finite element method, the values used for displacement had 

embodied in them a rigid-body displacement. Consequently, smaller 

values of Ee were obtained. For the undrained case, depending on the 

relative stiffness of the wall to the soil, the soil can be the 

predominant factor. In this case, the wall would be merely 'floating' 

in the soil matrix. This observation was also found to govern the 

behavior of floodwalls, as the study in Reference ( 20 ) demonstrated. 

Therefore, the SSI assumption that the wall moves and by doing so 

triggers a soil response, is a very simplistic one and can be erroneous 

at times. 

Although the values of Ee, as shown in Tables I and IV, are on the 

low side as explained above, yet it is logical to assume that the 

rigid-body portion of the displacement is uniform. Therefore, the 

variation of Ee with depth is still valid, at least in a qualitative 

sense. The amount of this rigid-body displacement is roughly the 

displacement of the tip of the pile. 

Variation between Active and Passive 

From the force displacement curves obtained from the finite element 

analysis, it is clear that, in general, the stress-displacement curves 

are not linear (e.g., Figs. 18-23). However, when the stress level is 
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relatively low, the resulting curves are linear. This is almost 

analogous to moving along the initial tangent to the stress displacement 

curves. Therefore, it seems likely that more accurate SSI results would 

be obtained if the general shape is taken into consideration. The 

characteristic shape of these stress-displacement curves is of the same 

nature as the stress-strain curves used in the soil model. 

Stress Limits 

An important assumption in the SSI method is that the maximum 

passive and the minimum active pressures are the limiting equilibrium 

values (av ± 2Cu for Ke. = Kp = 1). To investigate this crucial 

assumption, the closest that could be done for regular runs would be to 

choose soil elements that are close to local active and passive failure, 

and then check the validity of this assumption. 

However, that problem was tackled from a different angle. Unlike 

an SSI run that can only provide information about the final state of 

stress and strain, the finite element solution (gravity-tum-on or 

buildup) can be used to shed some light on the whole process from 

beginning to end. It also shows at what level of load the system 

becomes unstable. 

With this in mind, a finite element solution was obtained for a 30 

ft x 30 ft wall with Cu = 700 psf, thus making sure the soil elements 

are stressed to failure (it was established earlier that progressive 

failure was observed at Cu = 725 psf). 

Fig. 81 shows the progress of net displacement (top less bottom 

displacement) with the loading increments. It is clear that failure by 

instability (excessive wall displacements) starts at about 70% of the 
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total load. 

Figs. 82-83 show typical stress-displacement curves. From these 

curves, two modes of soil behavior at the ultimate level are observed: 

1. The response curve at failure is not exactly horizontal but has 

a slightly upward slope (residual strength) as shown in Fig. 82. 

2. The force-displacement diagram reaches a maximum value and then 

decreases with the commencement of failure for the gravity-tum-on case 

and levels off for the buildup case as shown in Fig. 83. 

The first type was observed for all elements below the original 

ground surface whether they are in active or in passive. The reason why 

the soil elements continue to pick up stress is inherent in the soil 

model. This is because the constrained modulus is not set to zero at 

failure. The second type occurs exclusively in the retained soil. 

This type of behavior was also noticed for other Cu values. This 

clarifies the mechanism of propagation of the tension crack. In the 

early loading stages, the poisson effect is more dominant than the 

tendency of the retained soil to move away from the wall. When the 

latter effect prevails (at higher loads), the confining stress starts 

decreasing as shown in Fig. 84. Eventually, the confining stress will 

diminish for those elements along the tension crack. 

An interesting observation can be made about the limit values of 

active and passive pressures. The limit value reached in active 

condition is invariably smaller than (crv-2Cu), as predicted in the 

classical theory, and the limit value for passive state is always 

larger than (crv+2Cu). This is illustrated in Table V. The reason for 

this apparent discrepancy is that the effective value of at-rest 
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TABLE V 

COMPARISON OF ae. & ap BETWEEN FEM & CLASSICAL THEORY 

Finite Element Classical Theory 

Elev. O"ult(right) Oult(left) crv-2.Cu crv+2.Cu 
ft psf psf psf psf 

-46.5 3300 3450 3715 3215 

-43.5 2900 2900 3385 2885 

-40.5 2700 2800 3055 2555 

-37.5 2300 2500 2725 2225 

-34.5 1850 2150 2395 1895 

-29.25 1150 1817 

-28.5 1050 1735 

-27.75 675 1653 

* Comparison of cra. and O"p near failure (FEM) with limit equilibrium 
values from the classical theory. Gravity-tum-on case; Cu = 700 psf; 
depth of penetration = 30 ft. 
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pressure coefficient (Ko) is around 0.96 rather than one. This is 

because a value of Ko = 1 necessitates a Poisson's ratio of 0.5 

resulting in numerical problems and instability of the FE solution. By 

the same token, the effective values of Ka and Kp are 0.91 and 1.08 

respectively. When these values are used to determine the limit values 

from the classical theory, the results are skewed favorably in the 

direction of the FE solution. 

Deoth Of Tension Crack 

Another finite element aspect of behavior that is in contradiction 

with the classical and SSI theories, is the depth of the tension crack 

in the soil. According to the classical theory of soil mechanics, a 

tension crack will be formed in clay because the tension that clay can 

carry allows the soil to stand on its own without the need of any 

supporting structural element. Once again, relying on the 

Coulomb-Rankine equation for active stress, the depth of the crack, he = 

2 .Cu/'lS 

For Cu = 1000 psf, he= 18.18 ft 

for Cu = 1300 psf, he = 23.64 ft 

for Cu = 1600 psf, he = 29.10 ft 

The depth of the tension crack predicted by SSI analyses does not 

only depend on Cu and ~, but is also affected by other factors, e.g., 

displacements, height, interaction distance, etc ... However, the 

maximum depth of the tension crack is that predicted by the classical 

theory, i.e., hc=2Cu/~. To illustrate why for the SSI method, the 

depth of the crack can be less than the value predicted by the classical 

theory, a hypothetical case with ~ = 100 pcf, Cu = 400 psf will be used 



for demonstration purposes. In this case, the classical theory 

estimates the depth of the tension crack to be 8 ft. 
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Referring to Fig. 85, the force-displacement curve (1), is the 

curve at a depth of 8 ft. All the curves below it (2 and 3) correspond 

to points whose depth is less than 8 ft. The curves above (4 and 5) 

correspond to points along the pile whose depths are more than 8 ft and 

this is why active pressure developed there. The distance, x, to the 

left and right corresponding to full-active and full-passive pressures 

can be easily found as follows: 

X = 2Cu/Ee = 800/Ee 

The range of behavior for points whose depths are less than 8 ft 

lies in the triangular sector ABC (Fig. 85). If the displacement in 

that region happens to be larger than the "v-intercept" for a particular 

location, then the force on the wall will be zero at that point. Unless 

this is the case for every point between the surface and a depth of 8 

ft, some pressures will be exerted on the wall and so the depth of the 

crack will be less than 8 ft. 

On the other hand, in the finite element analysis, the depth of the 

tension crack is almost the same for all values of Cu (h ~ 23 ft), 

regardless of whether a gravity-tum-on or buildup analysis was 

performed. This is readily apparent in Figs. 45-46 for soil pressures 

on the wall obtained from FE analysis. The reason for this discrepancy 

is that while the wall-soil system displaced to the left, the retained 

soil moved clockwise away from the wall (Figs. 86-88), thus aggravating 

the formation of the crack. The net pressure distribution 
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above the tension crack is zero because of the complete separation 

between the interface and the wall. However, the little irregularities 

in the pressure distribution in this region are the result of the method 

by which these pressures were calculated. The net pressures were found 

at the centroids of the soil elements just adjacent to the wall. These 

stresses are obtained from the average of the stresses at the four 

Gaussian integration points within the element and are not exactly zero. 

Lower Bound of Soil Strength at Failure 

The lower bound of Cu for which the 30 ft by 30 ft wall became 

unstable was investigated. For Cu = 1000 psf, the classical method 

predicted that the wall is almost in a state of limit equilibrium with 

full-active and passive pressures mobilized (Appendix A). Similarly, 

the SSI analysis predicted failure at Cu = 975 psf. At Cu = 1000 psf, 

the solution became stable. However, the moments and displacements 

became insensitive to any changes in the soil stiffness or interaction 

distance. This is because the forces in the nonlinear springs were 

always at the plateau level due to the large displacements triggered by 

the proximity to failure. The SSI results (Figs. 89-91) correspond 

almost exactly to the results obtained using the classical design method 

(Appendix A). The value of maximm moment <~ 72.4 K-ft) and its 

location <~ 9 ft below the original ground surface) were almost the same 

in both methods. 

The finite element results for the same problem (Cu=lOOO psf) are 

shown in Figs. 92-94. The maximm negative moment was found to be 13.3 

K-ft from the gravity-tum-on analysis and 18.3 K-ft from the build-up 

case. These values are considerably lower than those obtained 
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Figure 89. Bending moments from SSI analysis using Terzaghi's method. 
Cu = 1000 psf; 30 ft penetration depth. 
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Figure 90. Pile deflections from SSI analysis using Terzaghi's method. 
Cu = 1000 psf; 30 ft penetration depth. 
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from the classical and SSI methods. The pressure values (Fig. 94) 

obtained from the finite element analysis were lower than those 

predicted by the classical and SSI methods. Furthermore, the finite 

element method predicted failure at a much lower Cu value (Cu = 725 

psf). This is because the solution obtained from the finite element 

method is slightly stiffer. Also, the finite element method allows 
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some stress redistribution to take place. Once local failure of some 

soil elements occurs, subsequent additional stresses will be carried by 

neighboring non-failing elements and the structure remains relatively 

stable. Local stress failure is apparent from Fig. 35 where the degree 

of mobilization is close to 1. Furthermore, the soil model used in the 

finite element program accounts for some post-failure strength for ¢ = 0 

condition. This is because, as stated earlier, the bulk modulus is not 

set to zero at failure. 

Another point worth mentioning is that the classical design method 

predicts that for a certain cantilever wall height, there is a value of 

Cu below which the wall cannot be built in clay regardless of the 

embeddment depth. This conclusion is implicit in Eq. 6.1 from 

reference (3): 

Z = (D'(4Cu-q)-R)/4Cu (6.1) 

where R is the resultant of the active soil pressure above the original 

ground surface, D' is the embeddment depth, q is the pressure at the 

original ground surface, and Z is the transition distance. From Eq. 

6.1, it is clear that for Z to be determinate the quantity (4Cu-q) has 

to be positive. This leads to the following equation: 
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~> ~.H (6.2) 

where H is the height of the retained soil, and ~ is the soil density. 

Therefore, if Eq. 6.2 is not satisfied a stable wall cannot be 

constructed in such clay regardless of the value of depth of 

penetration. In the problem at hand, the critical value of Cu = 825 

psf was found from Eq. 6.2. 

Quantitatively, the above hypothesis is obviously questionable 

since the finite element method predicts that failure will occur at Cu ~ 

725 psf. However, as will be seen later, it is true that for the~= 0 

case, the embeddment depth does not affect the stability of the problem 

to a large degree. This is because the wall is not the most dominant 

stiffness element in the system as the classical theory assumes; In 

most cases, the wall floats in the soil mass. 

Soil Stress Profile on tbe Pile 

For all the analyzed cases, Figs. 95-100 show the stress profile 

on the right and left of the wall. It can be seen that the stress 

profiles in the vicinity of the pile tip ( ~ 5 ft above the pile tip) 

undergo a sharp change in curvature. The soil pressure on the leftside 

decreases and the corresponding pressure on the rightside increases. 

The above behavior is more pronounced for the stiffer cases and for 

embeddment depths of 20 ft and 15 ft. This behavior, at first glance, 

seems consistent with the classical theory which assumes a transition 

from net active on the left side to net passive on the right side; the 

sharp change on the right can be interpreted as going towards a passive 

type failure while the left side is going in the active 



c Cu=1000 psf 
0 Cu= 1.300 psf 
A Cu=1600 psf 

I 
, 

J 
I 

rr 

t 
. --~ i'o. 

-6000 -5000 -4000 -3000 

r 

I . 
-2000 

I 

-1000 

-

-

-

159 

0 

-10 

-20 

c _'ll:o o 
'II,} :.:= 

-40 

-50 

Cl 
> 
(!) 

(!) 

-60 
0 

sigxL (psf) 

Figure 95. Pressure profile on the pile from leftside soil. 
Gravity-turn-on analysis; 30 ft penetration. 



160 

0 

[J Cu== 1 000 psf 
0 Cu:;1300 psf 
t:. Cu=16JO psT· 

-10 
~ 
~ 

~ .. 
~ 
~ 

-20 
~ 

~ 

c ~ 
0 -30 :zj 

h 

" 
g 
> 
Ql 

Q) 
1-

-40 

1-

-50 

:-

-60 
0 

I 

1000 

" ~ 

I 

2000 3000 

1 

~ ~ I 

4000 5000 6000 

sigxR (psf) 

Figure 96. pressure profile on the pile from rightside soil. 
Gravity-turn-on analysis; 30 ft penetration. 



0 C:J=lOOO psf 
0 Cu=1300 psf 
t:. Cu=1600 psf 

i' 

I 
P'" 

I .\ 
-6000 -5000 -4000 

v I; 

I 

-.3000 -2000 -1000 

0 

-10 

-20 

-30 

-
-40 

-

-50 

~ 

-so 
0 

sigxl (psf) 

Figure 97. Pressure profile on the pile from leftside soil. 
Buildup analysis; 30 ft penetration. 

161 

,........_ -4--
"-" 

c 
0 -0 
> 
(!) 

(!) 



162 

0 

c Cu=lOOO psf 
0 Cu=1300 psf 

~ 4 Cu=1600 psf 
p 

-10 

~ 

-20 

c ~ 
0 -30 ~. 

' 
-0 
> 
<U 
Q) 

t-

-40 

1-

-50 

-

-60 
0 

I 

~ 
\; 

1000 2000 3000 

) 

~ 
~ 

4000 5000 6000 

sigxR (psf) 

Figure 88. Pressure profile .on the pile from rightside soil. 
Buildup analysis; 30 ft penetration. 



0 Dep::h=:3o ft 
0 Depth=20 ft 
6 Depth=15 ft 

lf/ 
(f 

i 'to 

/~', ... 
/' 

I 
4 

' -6000 -5000 -4000 -3000 -2000 
I 

-1000 

0 

-5 

-10 

-15 

-20 

-25 

-30 

-35 

-40 

-50 

-55 

-60 
0 

sigxL (psf) 

Figure 99. Pressure profile on the pile from leftside soil. 
Cu = 1300 psf; Gravity-tum-on analysis. 

163 

r-...... 
'>--

"---" 

c 
0 -0 
> 
QJ 

G) 



,........ ......, --c 
0 

......, 
CJ 
> 
IV 
dJ 

0 

-5 

-10 

-15 

-20 

-25 

-.30 

-35 

-40 

-45 

-50 

-55 

-60 
0 

Cl Depth=30 ft 
0 Dep-ch=20 ft 

~ D. Depth=15 ft 

~ 
~ 

I~ ~ 

"' " 
"" '\ K· -....... 

-~ 

~- .... -o... :.n_ 

\ 

~ 

' 's 
1000 2000 3000 4000 5000 6000 

sigxR (psf) 

Figure 100. Pressure profile on the pile from rightside soil. 
Cu = 1300 psf; "gravity-turn-on analysis. 

164 



165 

direction. However, the finite element solutions predict that the 

rightside soil is in an active state while the leftside soil is in a 

passive state. This was seen earlier from the soil stress paths. Also, 

SSI analyses confirmed the same conclusion since all the pile nodes 

displaced to the left. Furthermore, it was shown earlier that the soil 

on either side of the wall in the vicinity of the tip is near failure. 

Also, the magnitude of the active soil pressure is larger than that of 

the passive pressure (Figs. 95-100). At first glance, one might jump to 

the erroneous conclusion that the above observation is in contradiction 

with limit equilibrium theory according to which the limit passive 

pressure from the left should be greater than the limit active pressure 

from the right. For example, for Cu = 1000 psf and 30' ft penetration 

depth, the classical theory gives: 

at the bottom of the wall on the right side: 

aa(ult) = 60 x 110 - 2(1000) = 4600 psf 

at the bottom of the wall on the left side: 

ap(ult) = 30 x 110 + 2(1000) = 5300 psf 

As contradictory as these values seem with the finite element 

results, a possible explanation is found from the facts that the 

vertical stress in the soil mass to the right of the wall is greater 

than geostatic and is less than geostatic to the left due to 

incompressibility. This phenomenon is exacerbated near the tip of the 
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pile by the stress concentration on one hand, and the sudden abrupt 

change in vertical stress from the right side to the left side. Fig. 

101 shows that many different vertical stress contours converge at the 

tip of the pile due to the high stress concentration there. From this 

figure, it can also be seen that just to the right of the tip, the 

vertical stress is ~ 7000 psf which is larger than the geostatic stress 

(6600 psf) whereas it is ~ 2000 psf to the left of the tip which is 

smaller than the geostatic stress (3300 psf). This increase in vertical 

stress on the rightside and decrease on the leftside tends to offset the 

discrepancy described earlier between limit active and limit passive 

pressures on the rightside and leftside respectively. 
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CHAPI'ER VI I 

CONCLUSION AND RECOMMENDATIONS 

Finite element analyses using a gravity-turn-on and a sequential 

construction approach were carried out for a cantilever sheetpile 

retaining wall in saturated clay. The results were compared with the 

classical design theory as well as with the SSI approach. Some of the 

interesting findings in this work are: 

1. The buildup procedure gives rise to higher deflections and 

moments in the pile as compared with the gravity-tum-on solution. This 

demonstrates the importance of the stress path on the final 

configuration of the system due mainly to the nonlinear behavior of the 

soil. 

2. If the values of interaction distance suggested in various SSI 

references were used, the SSI moments are about two to three times 

higher than the actual values from the finite element solutions. 

3. An iteration procedure can be used to ensure convergence of the 

SSI solution. The results obtained using this technique predict moments 

that are lower than those obtained from the finite element method, 

egpecially in the buildup case. Furthermore, best results are obtained 

when the lower limit of Terzaghi's values for soil stiffness is used. 

4. The soil modulus for clay was not found to be constant as 

commonly assumed in the SSI theory, egpecially in the region close to 

the original ground surface and in the retained soil. Furthermore, the 
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value of interaction distance in the retained soil is extremely high 

resulting in lower soil stiffness in that area. 
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5. For the ¢ = 0 case, the estimates for the interaction distance 

are as important in the active regions as in the passive ones, contrary 

to previous beliefs. 

6. The finite element analysis predicts a large rigid-body 

displacement due to the incompressibility of the soil. This is because 

for normally consolidated saturated clay under undrained loading 

conditions, v = 0.5. This rigid body displacement is much higher than 

the one obtained from the SSI solution. 

7. The soil on the right side of the wall rotates clockwise and 

displaces downward while the soil on the left side heaves upward. This 

gives rise to an increase in vertical stress on the right side and a 

decrease on the left side. This phenomenon is more pronounced around 

the pile tip due to the sudden change in vertical stress and the large 

stress-gradient in that vicinity. 

8. The depth of the tension crack varies with Cu in the classical 

and SSI methods. However, the finite element method predicts the same 

value for all the cases analyzed. 

9. The area with the highest stresses and degree of mobilization 

is near the original ground surface and the tip of the pile. 

Furthermore, the stresses obtained from the buildup solution are bigger 

than those from the gravity-tum-on case. This is especially pronounced 

in the region between the original ground surface and mid-depth of the 

pile. However, in the retained soil, the stresses are almost the same. 

10. The moment values obtained from the finite element analysis 

were found to increase slightly with any decrease in embeddment depth. 
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However, the values of degree of mobilization were relatively 

insensitive to the embeddment depth. All this suggests that the pile is 

not predominant when compared to the soil and that in many cases, the 

pile acts as if it is floating in the soil. 

11. The ultimate pressures obtained from the finite element method 

are higher in the passive case and lower in active than those from 

classical methods. 

12. For the stress-displacement curves obtained in the finite 

element analysis, the variation is not linear but of the same general 

shape as the soil stress-strain curves. 

13. For the large penetration depth (30 ft), a relatively large tip 

reaction is obtained which results in contra-flexure and a positive 

moment near the tip of the pile. Further research must be done to 

determine whether that effect is real or just a result of the finite 

element model used. 

14. The finite element solution predicts failure for a lower value 

of Cu than the one obtained from either the classical method or the SSI 

solution. 

15. The moments obtained from the SSI method were closer to the 

finite element solution when Terzaghi's values for Ea were used rather 

than when Skempton's values were used. 

16. The values of Ea in the buildup case are much smaller than in 

the gravity-tum-on analysis. This is because the in-situ (initial) 

stresses are associated with zero displacements. 

These are some of the points discussed in this study and they give 

rise to the following recommendations: 

1. The finite element method is a powerful tool for research, but 
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it is too expensive and time consumtng to be practical. Therefore, the 

SSI method has to be refined whenever necessary since it remains the 

more practical alternative. 

2. When the SSI method is used for analysis or design, the moments 

obtained must be multiplied by a factor of safety ( > 1 ) in order to 

stay on the safe side. 

3. The comparison of the SSI method with the finite element 

solution has to be extended to include other situations; e.g., anchored 

bulkheads, different loading conditions, layered systems consisting of 

different soil types, and water loads. 

4. The concept of interaction distance, specifically in the active 

regions, must be put on more solid grounds for different cases. 

5. The SSI method cannot account for the soil layer that underlies 

the pile. Hence, a way must be found to incorporate the geometry into 

the global picture. 

6. The variation from net active to net passive should take into 

account the general stress-strain behavior in a way similar to the 

curves developed by Matlock for offshore piles (Ref. 29). 

To conclude, it is hoped that this work has helped clarify some 

aspects of the behavior of the class of problems discussed in this 

study. Only with thorough understanding of all the facets of this 

behavior can better modelling be achieved, resulting in more reliable 

use of the soil-structure interaction method for analysis and design. 
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APPENDIX A 

CLASSICAL DESIGN METHOD 

Definitions 

Net active pressure is the active pressure on the right side of the 

wall less the passive pressure on the left side. 

Net passive pressure is passive pressure on the right side of the 

wall less the active pressure on the left side. 

In general, 

Pa. = Pv - 2.f Ka..Cu (active pressure) 

Pp = Pv + 2.f Kp.Cu (passive pressure) 

For ¢ = 0 case, Ka. = Kp = 1. 

Referring to Fig. 102, 

On the Right Side: 

Pa. = ~.x- 2.Cu = 110.X-2000 psf 

Pp = ~.x + 2.Cu = 110.X+2000 psf 

Pa. = 110.X-2000 = 0 ==> he = x = 18.18 ft (Depth of tension crack) 

Therefore, the actual active pressure starts from a depth of 18.18' 

because the soil is not assumed to have any tensile strength. 

Pa (at the original ground surface) = (30- 18.18)110 ~ 1300 psf 

Pp (at the bottom of the wall) = (30 + D')110 + 2(1000) psf 
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Figure 102. Pressure distribution from the classical theory. 



On the Left Side: 

Pp (at the original ground surface) = Pv + 2.Cu = 2000 psf 

Pa (at bottom of wall) = Pv-2.Cu = 110.0'-2000 psf 

Net Active = 110.X-2000-(110.Y+2000) = 110(X-Y)-4000 psf 

At the original ground surface: 

Net active = 110(30)-4000 = -700 psf 

Net passive = 110(30+Y) + 2000-[110(Y)-2000] psf 

At the bottom of the wall: 

Net passive = 110(30)+4000 = 7700 psf 

Pressure 
Area 

TABLE VI 

NET FORCE AND BENDING MOMENTS 
FHDM CLASSICAL METHOD 

Net Resultant Moment Arm 
(about bottom) 

(lb) (ft) 

Moment 

(lb-ft) 

ABC 7683 3.94 + D' 30271 + 7683 D' 

BNRP -700 D' D'/2 -350 0'2 

QMR 4200 z Z/3 1400 z2 

~ F = 0 7683-700.D'+1400.Z = 0 ==> Z = (700.0'-7683)/4200 

~ Mt = 0 30271+7683.D'-350.D'2+1400.Z2 = 0 

By trial and error, D'= 26.3 ft and Z = 2.55 ft 
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The max~ moment = 72.43 K-ft at 10.97 ft below the original ground 

surface . 
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APPENDIX B 

CORRELATION BETWEEN THE F -MODEL 

AND THE HYPERBOLIC MODEL 

The hyperbolic model is based on isotropic consolidation (a1 = 02 

= 03), whereas the f-model is based on geostatic consolidation ( 02 = 

03 = Ko.a1). 

Hyperbolic Model 

E~ = KPa(03/Pa)n 

(01~3)f=(2Cu.cos(¢)+2.o3.sin(¢))/(l-sin(¢)) 

Mo = m.Pa(a1/Pa)n 

G = Go(l-f/1-fo) 

Go = Mo(l-Ko/2) 

G~=Go/(1-fo) 

fo = (1-Ko)/2tan(¢).~ 

f = tan(9)/tan(¢) 

f-Model 
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Under plane-strain conditions, 

Vo= Ko/(1+Ko) (8.10) 

fa is the degree of mobilization at Ko conditions. Go is the shear 

modulus at Ko conditions. Mo is the constrained modulus at Ka 

conditions. 

For the ¢ = 0 case, a simple correlation can be obtained as follows: 

Because v = 1/2, the volumetric strain equals 0. 

dv/V = 0 => E1+Ez+E3 = 0 

Referring to Fig. 103, 

And, 

(B.ll) 

At failure, 

TmBX =(o1 - as)/2 = Cu 

Gt = dTmax/d~max = 2dTmax/3dE (8.12) 

Hence, 

dE = 2.dTmaX/3.Gt 

From the f-model, 
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Gt = G1.(1-f) 

Therefore, 

dE = 2dTmax/3Gi(1-f) (8.13) 

dE = 2Cu(df)/3Gi.(1-f) (8.14) 

E f 

~ dE = 2Cu/3G<
0
J df/(1-f) (8.15) 

E = (-2.Cu/3G1.).ln(1-f) (8.16) 

Therefore, 

E = -2 .Cu .ln( 1-Tmax/Cu)/Ei. (8.17) 

At f=0.5, 

Eso = -2Cu.ln(1/2)/E1. = 2Cu.ln(2)/E1 (8.18) 

Also, 

Eso = (01 - 03)/2 = Cu/Eso 

Therefore, 

Eso = Cu/Eso=l/m (B.19) 

Substituting into equation ( 8.18 ), 

2Cu.ln(2)/Ei = Cu/Eso 

E1./ESO = 2ln(2) = 1.386 (8.20) 



Also, from ( 8.19 ), 

2Cu.ln(2)/E~ = 1/m 

E1./m = 2Cu.ln(2) 

For¢ = 0, n = 0, substituting into Eq. B.l, 

K = 2.ln(2).Cu.m/Pa 
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