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PREFACE 

Experimental values of infinite dilution activity 

coefficients were obtained from the literature and through 

an experimental program so that binary interaction 

parameters for the UNIFAC group contribution model could be 

calculated. This group contribution model has thus been 

tuned for aqueous systems containing pollutants such as 

aromatic and halogenated hydrocarbons which are of 

environmental significance because of the health hazards 

they pose to living organisms. 

I would like to express my sincere appreciation to my 

thesis adviser, Dr. Jan Wagner, for his constant support and 

guidance. I also thank Mr. Charles Baker, the store-room 

manager in the Chemical Engineering Department of the 

Oklahoma State University and my friends Tushar Ghosh and 

Dr. Reza Hanteh-Zadeh for their technical assistance during 

the setup and running of the experiments. Most importantly, 

I thank my parents whose encouragement and continuous moral 

and financial support during my stay abroad made the 

achievement of this degree possible. Finally, I acknowledge 

the financial support of Oklahoma Water Resources Center for 

which I am also thankful. 

iii 



TABLE OF CONTENTS 

Chapt.er Page 

I . INTRODUCTION ....................................... 1 

Obj ect.i ves ..................................... 2 

II. LITERATURE REVIEW .................................. 5 

Experiment.al Met.hods ........................... 5 
Gas St.ripping Met.hod ...................... 5 
Mult.iple Phase Equilibrat.ion ............. 20 
Head Space Analysis ...................... 26 
ot.her Met.hods ............................ 28 

Act.ivit.y Coe~~icient. Theory ................... 33 

III. EXPERIMENTAL SETUP AND PROCEDURE .................. 56 

Experiment.al Set.up ............................ 56 
Equilibrium Cell ........................ 57 
Const.ant. Temperat.ure Bat.h ............... 60 
Gas Chromat.ograph ....................... 60 

Procedure ..................................... 62 

IV. DISCUSSION AND RESULTS ............................ 66 

Experiment.al Result.s ......................... 66 

Error Analysis .......................... 67 
Sample Calculat.ion ...................... 68 
Dat.a Obt.ained and Comparison wit.h 

Lit.erat.ure Values ..................... 74 
Limit.at.ions o~ Experiment. ............... 87 

Correlat.ion Framework ........................ 88 
New Paramet.ers .......................... 88 
Comparison wit.h Predict.ions o~ ot.her 

Binary Paramet.ers .................... 122 

V. CONCLUSIONS AND RECOMMENDATIONS .................. 129 

iv 



Conclusions ................................. 129 
Recommenda~ions ............................. 131 

SELECTED BIBLIOGRAPHY .................................. 133 

APPENDIX ............................................... 148 

v 



LIST OF TABLES 

Table Page 

I. Experimen~al Ac~ivi~y Coefficien~s ob~ained 

II. 

III. 

IV. 

v. 

for ~he Wa~er C1)-Benzene (2) Sys~em ........ 75 

Tsonopoulos' Experimen~al Solubili~y. Henry's 
Law Cons~an~ and Ac~ivi~y Coefficien~ Da~a ... 79 

Comparison of Aij wi~h Li~era~ure Values ....... 89 

Percen~age Errors in ~he Correla~ion of 
Ac~ivi~y Coefficien~s Using ~he General 

Binary In~erac~ion Parame~ers 
Ob~ained in This Work ............. . 

In~erac~ion Parame~ers as a Func~ion of 
Tempera~ure ............................ . 

. . 91 

.93 

VI. Coefficien~s for ~he Quadra~ic Fi~ of ~he 
In~erac~ion Parame~ers as a Func~ion 

VII. 

VIII. 

IX. 

X. 

of Tempera~ure ............................. 97 

Group Surface Areas and Volumes Used in 
This Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Binary In~erac~ion Parame~ers Ob~ained in 
This Work... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

Leigh~on's Dis~ribu~ion Coefficien~ Da~a 

as a Func~ion of Tempera~ure........... . .. 108 

Comparison of Experimen~al and Calcula~ed 
Ac~ivi~y Coefficien~s Using Two Se~s of 

Tempera~ure-Independen~ Binary 
In~erac~ion Parame~ers ................. 114 

XI. Coefficien~s for a Quadra~ic Fi~ of Binary 
In~erac~ion Parame~ers as a Func~ion of 

Tempera~ure ............................... 117 

vi 



XII. 

XIII. 

XIV. 

Comparison o~ Experimen~al and Calcula~ed 
Ac~ivi~y Coe~~icien~s Using Two Se~s o~ 

Binary In~erac~ion Parame~ers ............. 119 

Comparison o~ Predic~ed Ac~ivi~y Coe~~icien~s 
wi~h Experimen~al Values Using Three Se~s 

o~ Binary In~erac~ion Parame~ers .......... 123 

Comparison o~ Experimen~al and Calcula~ed 
Ac~ivi~y Coe~~icien~s Using Two Se~s o~ 

Tempera~ure-Dependen~ Binary 
In~erac~ion Parame~ers .................. 128 

vii 



LIST OF FIGURES 

Figure Page 

1. Schema~ic Diagram o~ ~he Experimen~al Se~up. . .. 68 

2. Ac~ual Experimen~al Da~a as Repor~ed by ~he 
Recorder-In~egra~or ............ . . 69 

3. GC Calibra~ion Curve ~or Benzene .. . 71 

4. Experimen~al Values o~ ~he Ac~ivi~y Coe~~icien~ 
o~ Benzene as a Func~ion o~ Liquid Composi~ion ... 76 

6. Ac~ivi~y Coe~~icien~ o~ Benzene as a Func~ion 

o~ Tempera~ure ............................. . . 81 

6. Ac~ivi~y Coe~~icien~ o~ Cyclohexane as a Func~ion 

o~ Tempera~ure ................................... 82 

7. Ac~ivi~y Coe~~icien~ o~ Hexane as a Func~ion 

o~ Tempera~ure ................................... 83 

8. Comparison o~ ~he Experimen~al and Predic~ed 
Values of ~he Ac~ivi~y Coe~~icien~ for Benzene ... 84 

9. In~erac~ion Parame~ers CA12) ~or Benzene, Cycle
hexane and Hexane as a Func~ion o~ Tempera~ure ... 96 

10. In~erac~ion Parame~ers CA21) ~or Benzene, Cycle
hexane and Hexane as a Func~ion o~ Tempera~ure ... 96 

11. Ac~ivi~y Coe~~icien~ as a Func~ion o~ 

Composi~ion ~or 2-me~hyl-2-propanol ............. 100 

12. Ac~ivi~y Coe~~icien~ as a Func~ion o~ 

Composi~ion ~or 1-bu~anol, 2-bu~anol 

and 2-me~hyl-1-propanol ......................... 101 

viii 



Symbol 

c 

f 

H 

k 

m 

n 

p 

R 

t 

T 

v 

v 

X 

y 

Greek symbols 

y 

¢ 

c5 

0' 

LIST OF SYMBOLS 

concentration 

fugacity 

Henry's law constant 

equilibrium constant 

mass 

number of moles 

pressure 

universal gas constant 

time 

temperature 

molar volume 

volume 

liquid composition 

vapor composition 

activity coefficient 

fugacity coefficient 

differential 

standard deviation 

ix 



z 

Subscripts 

1 

2 

i 

Superscript 

E 

L 

v 

s 

00 

0 

summation 

solvent 

solute 

component number 

excess property 

liquid property 

vapor property 

saturation condition 

infinite dilution property 

pure component property 

X 



CHAPTER I 

INTRODUCTION 

Environmental parameters such as Henry's law constants, 

aqueous solubilities, and octanol-water partition 

coefficients are often required to describe the rates and 

directions of organic chemical mass transfer in the 

environment. These parameters can be obtained from 

experimental data. However, a more utilitarian approach is 

based on the calculation of these parameters from activity 

coefficients correlated in terms of molecular structure. 

Using group contribution methods, the physical properties of 

a fluid can be formulated in terms of the functional groups 

of a molecule, and a very large number of aqueous organic 

solutions can be described in terms of a relatively small 

number of groups. In addition, no specific experimental data 

or correlations are required for new chemicals. 

The objective of this work is to determine the extent 

of the available equilibrium data for aqueous systems of 

environmental significance in the literature. These data are 

used to determine missing interaction parameters for the 

UNIFAC group contribution activity coefficient model or to 

obtain new parameters which will improve the performance of 

1 
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the model as compared to the available parameters. An 

experimental facility is also to be developed to measure 

activity coefficients. The performance of the experimental 

setup will be checked by comparing the obtained experimental 

data to the well-established literature values. This setup 

can further be used to obtain new data, as needed, to 

complete the correlation framework of the particular 

activity coefficient model selected for this work. The 

experimental facility will make possible the determination 

of UNIFAC parameters for specific application to dilute 

aqueous solutions of organic chemicals. New parameters are 

required, since existing activity coefficient model 

parameters have been obtained from data at high 

concentrations and are often inaccurate for environmental 

applications. 

Objectives 

The objectives of this work can be achieved by 

performing the following specific tasks. 

Compilation and Evaluation of Published Data 

Data from the literature will be compiled on those 

properties from which activity coefficients can be 

determined, i.e., directly measured activity coefficient 

values, Henry's constants, etc. These data will be evaluated 

to assess their quality in terms of estimated errors in the 



3. 

results and the suitability for use in model testing. 

Evaluation of the performance of the UNIFAC model 

The data from the literature and from this project will 

be used to evaluate the performance of the UNIFAC model with 

current parameters in determination of activity coefficients 

of dilute aqueous solutions. If existing model parameters 

prove inadequate, they will be modified to provide improved 

representation. In particular, parameters from the UNIFAC 

model will be derived from data restricted to low solute 

concentrations to the extent possible. Activity coefficient 

predictions with the new parameters will be compared with 

predictions made with current UNIFAC parameters. This 

comparison will provide a basis for assessing the capability 

of this group contribution method for estimating 

environmental parameters. 

Development of Experimental Facility 

The experimental techniques for measurement of activity 

coefficients in the systems of interest will be reviewed and 

evaluated. The aqueous organic systems present unique 

problems as a result of their very low mutual solubilities, 

and the high level of nonideality in these systems. The 

various potential experimental techniques will be evaluated 

in terms of the accuracy of the method and available 

analytical capabilities. These evaluations will provide the 



framework for an experimental program to measure activity 

coefficients for those systems considered to be of highest 

priority. Extensive data collection will not be the emphasis 

of this work. However, enough data will be collected to 

ensure the validity of the experimental procedure. 

4 



CHAPTER II 

LITERATURE REVIEW 

The literature review will consist of two segments. In 

the first segment, the experimental methods that have been 

used to measure activity coefficients at infinite dilution 

will be reviewed. Attention will be focused on methods that 

have been successful in measuring the infinite dilution 

activity coefficient or related thermodynamic parameters in 

aqueous solutions. In the second segment, the theory behind 

the UNIFAC group contribution model which is the newest, and 

most successful general model for prediction of activity 

coefficients, will be reviewed. 

Experimental Methods 

There are several methods of measuring activity 

coefficients at infinite dilution. Each method has certain 

advantages and drawbacks. The following descriptions of each 

method should help determine which one is the most 

appropriate for the case at hand. 

The Gas Stripping Method 

Leroi et al. (77) who introduced this technique 

5 
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describe the principles of the method in the following way. 

A binary system contained in an equilibrium cell is placed 

in a constant temperature bath. A constant carrier gas flow 

is introduced into the still and strips the solute and 

solvent components into the vapor phase. The outlet gas 

flow, which is in equilibrium with the liquid phase in the 

still, is periodically introduced into a gas chromatograph 

through a gas sampling valve which is maintained at a higher 

temperature in order to avoid any condensation of the vapor. 

The total pressure at equilibrium, the carrier gas flow 

rate, and the total amount of solvent are the quantities 

that are measured. For a nonvolatile solvent and 

concentrations in the linearity range of the GC detector, it 

is shown that the variation with time of the peak area of 

the solute can be simply derived from these measurements 

only. No calibration is necessary, and there is no need for 

the initial concentration of the solute in the liquid phase 

to be known. The method can also be extended to 

multicomponent systems, the only condition required being a 

good chromatographic separation. Using an electronic 

integrator for the determination of peak areas yields 

accurate and reliable values of the infinite dilution 

activity coefficient. 

The equations that are used to calculate the infinite 

00 dilution activity coefficient (r ) are as follows: 

for non-volatile solvents: 



DP 1 so 
ln = - ----- yl)\ 

and for volatile solvents: 

ln --------- = 

where: 

D = carrier gas flow 

N = amount of solvent 

p = pressure 

p~ 
J = vapor pressure 

P. = partial pressure 
J 

R = gas constant 

s = peak area 

t = time 

T = temperature 

and subscripts: 

i,j = component 

sol = solute 

s = solvent 

o = initial value 

--)ln(l -
Po 

s 

rate 

in the still 

P DP 0 t s 
--------) 

(P-P 0 )N RT 
s " 

Duhem et al. (46) have used the above experimental 

( 1) 

(2) 

method to measure large value activity coefficients. They 

7 

call this method the 'exponential diluter method' because of 
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the exponential variation of the solute concentration with 

respect to time. They have modified Eq. (2j above by 

introducing a corrective term consisting of the ratio of the 

total number of moles of solute to the total number of moles 

of the solvent, which was neglected before. They also take 

the volatility of the solvent into account and correct for 

it by using the ratio of the solvent vapor pressure to the 

total system pressure. Their final equation is: 

s 
ln = 

s 
0 

( 3) 

vP;olr 
(X) .... 

(X) Po n r sol 
RTN ( 1 + ) (1 -

(X) 
) 

R T N V P 0 r sol 
N(1 + ) p 

R TN 

where: 

~ 
n = (n-n ) I ln(n/n ) = logarithmic mean of n 

0 0 

n = amount of solute in the still 

n = initial n 
0 

V = volume of the vapor space in the still 

and all the other terms are as defined before. 

Using this equation, Duhem et al. (46j have measured 

the activity coefficient of benzene in water to be 1700. 

They obtained a value of 1910 using Eq. (2j and a value of 



2420 using Eq. (3) without the volatility correction term, 

([1-Po/P]) in a simulated run. They state that the value s 

based on solubility measurements is 2415 at 24°C. 

Richon et al. (123) have determined limiting activity 

coefficients and Henry's law constants by the inert gas 

stripping method proposed by Leroi et al. (77) for a wide 

range of normal and branched alkanes in n-hexadecane. They 

have improved the original apparatus design and have 

determined the limits of validity of the experimental 

method. They suggest the construction of a special cell for 

high values of Henry's constants. The Henry's constants can 

be found from limiting or infinite dilution activity 

coefficients in the following fashion: 

r~ P7 = H~ 
1 1 1 

where: 

( 4 ) 

00 
ri = infinite dilution activity coefficient of the solute 

P~ - solute vapor pressure 
1 

~ = Henry's law constant of the solute 
1 

Richon et al. (123) state that their experiments with the 

series of normal alkanes give lower and lower slopes, a, of 

the elution law, ln[(S. )/(S. )t 0 ]=-at, with increasing 
1 1 = 

carbon number of the solute molecule. For the system 

n-octane - n-hexadecane, the experiment takes several hours 

9 

to produce a sufficient variation of Si. The experiment with 

n-nonane lasts about four times longer than for n-octane in 

order to obtain a significant change in S. which remains 
1 
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very small in magnitude. The dispersion in S. values in time 
~ 

does not allow a precise determination of the slope and the 

activity coefficient. 

The difficulty in measuring the activity coefficient 

of nonane and other high carbon number alkanes is attributed 

by Richon et al. (123) to the very small amount of the 

solute in the vapor phase. Therefore, they have extended the 

original method to measurement of high values of Henry's 

constants by taking into account the influence of the volume 

of the vapor phase in the equilibrium cell. Their 

considerations of some mass transfer models result in the 

following conclusion. The bubbles of the carrier gas must 

have a diameter less than 2 mm and a path length in solution 

higher than 3 em in order to entrain the solute molecules 

from the solution and carry them effectively into the vapor 

phase at equilibrium. Fritted glass discs through which the 

gas enter the equilibrium cell are deemed insufficient for 

this purpose and well spaced capillaries have therefore been 

used instead. 

In another study, Richon et al. (124) have extended the 

use of the inert gas stripping method for measurement of 

infinite dilution activity coefficients to the study of 

viscous and foaming mixtures with viscosities up to 1000 cP. 

They have developed a new device that breaks foams without 

disturbing phase equilibrium inside the equilibrium cell. 

This new apparatus is well suited to investigations of 



aqueous mixtures of polyols, glucides, and proteins. The 

main application of this method is in the measurement of 

aroma retention in food so that the best sensory qualities 

could be provided to the consumer at the lowest prices. 

11 

Mackay et al. (90) have determined Henry's law 

constants for hydrophobic pollutants with a novel system 

capable of providing an accuracy of about 5%. The method 

consists of measuring the compound concentration in only the 

water phase while being stripped isothermally from solution 

at a known gas flow rate. They have determined Henry's law 

constants for benzene, toluene, ethylbenzene, chlorobenzene, 

naphthalene, biphenyl, and phenanthrene and have found good 

agreement with literature values. They state that since the 

three quantities -- Henry's law constant, aqueous 

solubility, and vapor pressure -- are interrelated, if any 

two of these three parameters are known the third can be 

calculated. This method can be used for obtaining accurate 

solubility and vapor pressure data or for verifying existing 

data. Their method can also be used to determine the extent 

of sorption of volatilizing compounds in aqueous 

environments and quantifying the role of sorption in the 

reduction of the volatilization rates. 

A brief description of the experimental procedure 

follows. A concentrated solution of the hydrocarbon in the 

water is formed and then the hydrocarbon is stripped using 

the carrier gas. The initial hydrocarbon solution is 



obtained by equilibrating some hydrocarbon with water in a 

separate vessel, then transferring it to the column. The 

solution could also be obtained by by-passing the nitrogen 

stream after saturation with water through a vessel 

containing the hydrocarbon solution. The hydrocarbon then 

evaporates into the nitrogen stream and desorbs into the 

water. Desorption and dissolution into water cause the 

solute to achieve its equilibrium solubility in water. The 

volume of the water in the stripping vessel is measured and 

the nitrogen flow rate is set at 50 to 500 cc/min. Flow 

rates are measured at 5-min intervals. The pump carrying the 

sample into the spectrophotometer is turned on only for 

sampling and is run at 5 cc/s for about 1 minute. The 

sampling frequency ranges between once every minute to once 

every 20 minutes, depending on the rate of volatilization. 

The absorbance of the hydrocarbon and time are recorded for 

each sample. A semi log plot of absorbance versus time is 

linear and the Henry's law constant can be obtained from the 

slope of this plot. 

Mackay et al. (90) used an ultraviolet 

spectrophotometer containing a 1-cm path length flow cell 

for their analysis and concluded that this analytical method 

is suited only for compounds with solubilities greater than 

-3 5 g m . They have also used fluorescence but they suggest 

radio labeling compounds and measuring concentration by 

liquid scintillation counting. The major advantage of this 

12 
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method is its applicability in the low solubility range. In 

order to obtain an experimental value for the Henry's law 

constant, one needs to measure the concentration of the 

solute in both the liquid and the vapor in equilibrium 

preferably at several concentrations. This kind of 

measurement would be accurate if the concentrations are 

high, but for many pollutants this is not the case, because 

the solutes are only sparingly soluble in water and have low 

vapor pressures. Therefore, one needs concentration 

measurements at very low concentrations. The data of Mackay 

et al. (90) will be used for comparative purposes in this 

work. Of course the accuracy of these data is primarily 

dependent on the degree of approach to equilibrium, i.e., 

the extent to which the vapor and the liquid at the column 

exit are in equilibrium. Mackay et al. (90) have quantified 

this approach to equilibrium by operating the system at 11 

liquid depths ranging from 0.9 to 38.5 em. They then fitted 

the data to a mass transfer equation that they derived. They 

compared the experimental data with data calculated from 

vapor pressure and solubility data and reached the 

conclusion that for benzene each 10-cm depth yielded an 80% 

approach to equilibrium. They then concluded that this 

indicated an approach to.equilibrium of more than 90% in 

their system which had a height of 38.5 em. The 5% accuracy 

that they claim for their method is an average value. 

A sub category of the stripping method is stripping in 
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combination with a purge and trap step. When the 

concentration of the solute in the vapor phase in 

equilibrium with the liquid phase is not large enough to 

allow its analysis by the available analytical methods, as 

is the case with low vapor pressure organic chemicals such 

as polynuclear aromatic hydrocarbons, the vapor sample needs 

to be concentrated before being sent forward to the analysis 

step. Junk et al. (68) mention that the best documented and 

most frequently employed analytical procedure for measuring 

low levels of organic compounds in water involve solvent 

extraction and charcoal adsorption. They also point out that 

recently an increasing number of reports have described an 

additional analytical method which uses porous polymer 

resins as the sorbing agent. The most widely used resins are 

XAD-2 and Tenax. XAD-2 is a low-polarity styrene

divinylbenzene copolymer which possesses the macroreticular 

characteristics essential for high sorptive capacity (68). 

Tenax, poly(p-2, 6-diphenylphenyleneoxide), is another 

porous polymer used for high temperature applications in the 

400-450 oC temperature range (68). 

The analytical procedure involves the extraction of 

organic solutes by passing the contaminated water through a 

column of clean sorbent resin. The contaminants are then 

desorbed by elution with a solvent. The eluate is then 

concentrated by evaporation and the components in an aliquot 

of this concentrate are separated by gas chromatography 
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(68). The GC data provide the information that is necessary 

for quantification. If the solutes need to be identified, a 

separate aliquot is subjected to GC-MS analysis. Junk et al. 

(68) claim that an accurate quantitative estimation of 

organics in water at parts per million to trillion level is 

possible, if great care is taken in applying the analytical 

technique correctly. The resins, however, are 100% efficient 

only in removing alkanes. For other organic chemicals the 

adsorption efficiency is considerably less, with an average 

efficiency of about 78% with an average deviation of 6.1% 

and a standard deviation of 6.3% for the XAD-2 resin 

obtained for 110 individual determinations (68). VanRossum 

et al. (162) have investigated the recovery efficiencies of 

different kinds of XAD resins. These resins were found to be 

applicable to a broad range of materials found in drinking 

waters and industrial effluents. However, their range of 

application is not as wide as that of carbon. 

Leighton et al. (73) have measured the distribution 

coefficients of 21 chlorinated hydrocarbons plus benzene and 

toluene in dilute air-water systems for groundwater 

contamination applications using the above method which is 

described in more detail below. 

Air-water distribution coefficients are measured by 

comparing the response of a gas chromatograph for a known 

quantity of air to its response for a known quantity of 

water. The experimental procedure follows. A liquid solution 
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is prepared in a 2.3 L equilibration cell by first pouring 

the water in and then injecting about 5 ~L of the compound 

of interest. There is some headspace left for better mixing 

which is achieved by shaking the cell vigorously for about 5 

minutes. The head space is then reduced to 10 cc by filling 

the cell with distilled water before the experimental run. 

Homogeneity of the mixture is achieved by mechanical 

agitation and by the passing of air bubbles through the 

solution. The temperature is maintained at a desired set 

point using a constant temperature bath. 

A known quantity of air is filtered through the 

activated charcoal trap and is then admitted to the 

equilibration cell through a glass frit. The air passes 

through an equilibration height of about 40 em. The effluent 

gases pass through a concentrator trap and a soap film 

flowmeter; 15 to 20 cc of sample is used at a flow rate of 

3-4 cc/min. The chlorinated hydrocarbons extracted from the 

air by the trap are then desorbed into the gas chromatograph 

carrier gas stream at 100°C. 

Relative concentrations in the liquid sample are 

determined by the withdrawal of a 5 cc aliquot and stripping 

the dissolved volatiles into the concentrator trap. Ten 

minutes of purging is deemed sufficient for stripping the 

compounds of interest. The contents of the concentrator trap 

are then sent to the gas chromatograph for analysis. A 

correction factor is applied if all of the compound cannot 



be stripped out. 

Distribution coefficients are calculated using: 

Ki = yi/xi = (Aairvair/Vair)Q/(Awatervwater1Vwater) ( 5 ) 

where A refers to the integrated peak area, v is the 

specific volume, V the total volume and Q is the correction 

factor applied for incomplete purging and can be determined 

from successive purge data using: 

Q = 1 - {1-[1-4R(1-R)J 0 · 5} I 2R 

where 

R = A1/(A1 + A2 ) 

A1 and A2 refer to the first and second 10-min purges, 

respectively. 

Therefore, the distribution coefficients can be 

( 6) 

( 7 ) 

obtained from the GC-integrator data only and no 

calibration is necessary. Thus better accuracy is achieved 

by eliminating the calibration errors. The inclusion of the 

correction term ensures that incomplete stripping of the 

17 

compounds with low distribution coefficients does not affect 

the final value of this coefficient. 

Another technique known as spray volatilization has 

been proposed by Chriswell (31). This technique is a 

variation of the inert gas stripping technique which instead 

of using an adsorbing trap atomizes water into a 

high-velocity gas stream using a nebulizer of the type used 

on perfume bottles and throat sprayers. The very fine water 

mist which is thus produced is then directed to impact on a 
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glass surface; there it condenses and coalesces on impact 

and drains into a reservoir. Gas chromatographable organic 

impurities in the water are carried out of the system in the 

gas stream. The advantage of this technique according to 

Chriswell (31) is that larger volumes of water can be 

handled and that the inconvenient and difficult trap 

desorbing step is eliminated. 

De Bortoli et al. (36) have used a graphitized carbon 

black sorbent in their purge and trap method to adsorb 

perfluorocarbon tracers in air. Because of the low 

concentrations they used a GC equipped with a capillary 

column and an electron capture detector which is especially 

sensitive to halogenated hydrocarbons. 

Avoiding water adsorption in the trap is important. 

Termonia et al. (150) used the following method to avoid 

this problem. Using the common stripping method, nitrogen is 

first passed through a purifying charcoal filter and then 

over the sample contained in a pyrex cylindrical purging 

vessel. An electrically heated oven assures a temperature of 

85 ± 5 OC around the 7 em part of the Pyrex line immediately 

preceding the adsorbing cartridge, thus preventing the water 

aerosol generated in the purging vessel from reaching the 

adsorbing bed. The adsorbing cartridge itself consists of a 

pyrex tube filled with Tenax T.A .. When the sampling is 

completed, the Tenax cartridge is disconnected from the 

sampling system and fixed in the desorber. Overnight 
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conditioning consists of purging with deoxygenated nitrogen. 

A modification of the purge and trap method is the 

purge and cold trap technique suggested by Badings et al. 

(13). Their work resulted in the fabrication of a commercial 

unit in the Netherlands which is now available from 

Chrompack International. Their description of the system 

follows. The purge gas is led through the sample flask via a 

glass tube provided with a glass frit to ensure highly 

dispersed purge flow. The purge flow, containing volatiles 

and water vapor, passes the first cold trap, kept at -15 oC 

by a cryostat. In this trap the bulk of the water vapor is 

frozen out in order to avoid the blockage of the second cold 

trap. The flow is led through the second cold trap of fused 

silica capillary tubing by means of a glass tube in the oven 

compartment of the purge and cold trap injector. This second 

cold trap is cooled by an air stream which is itself cooled 

by liquid nitrogen from a dewar flask. The volatiles from 

the sample, present in the purge flow, are trapped in the 

0 

second cold trap at temperatures of at most -120 C. The 

trapped sample is now heated by resistance heating a 

surrounding metal capillary. The sample is then swept with 

carrier gas and injected into the GC. The condensed water 

collected in the first trap is flushed from the system. All 

of the many steps involved including the closing and opening 

of the valves, heating and cooling are controlled by an 

automatic control unit. 



Multiple Phase Equilibration. 

McAuliffe proposes the use of the multiple phase 

equilbration method for the estimation of distribution 

coefficients, Henry's law constants, vapor pressure, 

solubility, and several related thermodynamic parameters. 

The method is based on the demonstration that analysis of 

only one phase after two successive phase equilibrations 

yields all necessary data. 
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The experimental aspect of the multiple equilibration 

method is described by McAuliffe (97). Typically, a 50 ml 

glass hypodermic syringe with a Luer-Lok fitting is flushed 

several times with the aqueous sample. 25 ml of the sample 

is finally retained. 25 ml of an inert gas such as helium or 

nitrogen is added and the syringe is capped. The syringe is 

shaken vigorously for 3 to 5 minutes in order to establish 

equilibrium between the phases. 20 to 23 ml of the gas phase 

is allowed to flow through a previously evacuated sample 

loop of a gas chromatograph. A measured volume of between 1 

to 10 ml of the gas is introduced into the GC column for 

analysis. The remainder of the gas in the syringe is 

carefully discharged by moving the solution to the syringe 

tip and 25 ml of fresh inert gas is added. The equilibration 

process is repeated as many times as needed for the specific 

application. If water is lost from the syringe, a 

correspondingly smaller volume of inert gas is added. The 

only condition is that the ratio of the volume of the gas 



phase to the aqueous phase must remain constant. The 

temperature must also be kept constant during the analysis. 

The mathematics of the model are given below. 

Let 

X. = quantity of compound x in the system during ith 
l. 

equilibration 

Gi = quantity of x in the gas phase, of volume VG, during 

ith equilibration 
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Li = quantity of x in the liquid phase, of volume v1 , during 

ith equilibration 

Then 

X. ::: G. + L. 
l. l. l. 

and 

Hxi = (GiVG I LiVL) 

where Hx is the Henry's law constant or distribution 

coefficient. 

But if VG = v1 and and Hxi=Hx, a constant, then 

G. - Hx X./(Hx+1) 
l. l. 

Li ::: Xi/(Hx+1) 

and the fraction f, of the total x in each phase is 

fG = Hx/(Hx+l) 

fL = 1/(Hx+1) = 1-fG 

Furthermore, 

G.+l = Hx(X.-G. )/(Hx+1) 
l. l. l. 

and substituting for G. 
l. 

2 
Gi+l = Hx Xi/(Hx+1) 

( 8) 

( 9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



Dividing the equation for Gi by the equation for Gi+ 1 

Hx = (Gi/Gi+ 1 )-1 

Thus Hx can be determined from gas composition of two 

(16) 

adjacent equilibrations only. Upon generalization of the 

equation for Gi+ 1 ' one gets: 

Gn = Hx XA/(Hx+1)n 

or 

log Gn = an+b 

where 

a = -log(Hx+1) 

b = log Hx X 

(17) 

(18) 

(19) 

(20) 

Thus, a semi log plot of Gn versus n is linear with the 

slope only a function of Hx and the intercept a function of 

initial sample composition, X . 
0 

From the straight line obtained by plotting the log of 

the hydrocarbon concentration in the gas phase versus the 

number of equilibrations, one could read any two adjacent 

gas phase concentrations, divide the greater value by the 

lower value and subtract 1 to obtain the Henry's law 

constant. One could average all Henry's constants thus 

obtained and get a mean value. 

McAuliffe (97) has compared the gas equilibration and 

the gas stripping methods. He states that gas stripping and 
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gas equilibration are similar in that both methods depend on 

volatile compounds diffusing from the water into a gas 

phase. Gas Stripping involves bubbling a nonreactive gas 
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through the aqueous phase to remove volatile compounds and 

then adsorbing these compounds on a solid adsorbent or in a 

cold trap. The compounds are subsequently desorbed from the 

adsorbent or evaporated from the cold trap and analyzed. 

Gas equilibration involves mixing a given volume of 

nonreactive gas with the liquid sample, thus establishing 

equilibrium of the organic solute between water and the gas 

phase. The gas is then analyzed in order to determine its 

concentration. 

There are also differences between the two 

methods. Gas stripping is a partial equilibrium method, 

whereas gas equilibration allows for true equilibrium. Each 

method has advantages and disadvantages. The principal 

advantage of the gas equilibration method is that all 

volatile hydrocarbons will be present in the vapor phase. 

Their proportion in the vapor phase depends on their vapor 

pressure and solubility in the aqueous phase. Thus, all 

volatile hydrocarbons can be determined regardless of their 

molecular weight. 

The multiple gas-phase aspect (repeated equilibration 

with a second volume of pure gas) provides for the 

separation of a given class of organic compounds from 

others, e.g., aromatic hydrocarbons from paraffinic and 

naphthenic hydrocarbons. 

Because gas stripping is a partial equilibrium method, 

lower-molecular-weight organic compounds are stripped first. 
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Therefore, the amount removed is proportional to vapor 

pressure and inversely proportional to solubility . This 

results in complete removal of lower-molecular-weight 

organic compounds. Different classes of compounds also strip 

with different speeds, for hydrocarbons, alkanes > 

cycloalkanes > aromatics. As an example, cyclohexane strips 

faster than benzene despite their having similar molecular 

weight. Thus careful calibration of the stripping conditions 

is essential. If the stripping method analyzes a mixture 

containing compounds of different molecular weights in a 

single gas chromatographic run, the analysis lacks 

information obtainable by the gas equilibration method. 

The use of an adsorbent or cold trap introduces another 

step and another potential source of error into the 

gas-stripping method. If stripping is carried out long 

enough to quantitatively remove the most difficult to strip 

organic compounds from the aqueous phase, the easiest to 

strip compounds start to be lost from the solid adsorbent, 

or cold trap. As an example, McAuliffe (97) cites the case 

of removing benzene and trimethylbenzenes from a Tenax solid 

adsorbent. It is difficult to remove the trimethylbenzenes 

from water and still retain benzene. 

A principle advantage of the gas stripping method is 

high sensitivity. Gas stripping is capable of removing 

volatile organic materials from 10 ~L to 2.0 L of aqueous 

samples. Gas equilibration, on the other hand, typically 



introduces the organic compounds from 1- to 50-mL samples. 

However, the higher sensitivity is often balanced by 

presence of contaminants in the stripping gas, air 

contamination, water interference, adsorption losses in 

recovering volatile organics from the solid adsorbent, and 

production of artifacts by heating organic polymer 

adsorbents (97). 

Groups of compounds, such as hydrocarbons and 

chlorinated hydrocarbons have different distribution 

coefficients. Each class of hydrocarbons (alkanes, alkenes, 

cycloalkanes, and aromatics) has different distribution 

coefficients. For instance, McAuliffe (97j found that for 
~ 

his experimental conditions, the alkanes partition 95+% into 

the gas when equal volumes of gas and water are 

equilibrated. For this reason two or three equilibrations 

will transfer all the alkanes present into the gas phase. 

Aromatic hydrocarbons, however, partition less favorably to 

the gas phase, about 20%. Therefore, many equilibrations 

will be needed to obtain an analysis by summing successive 

gas phases. Because different classes of hydrocarbons 

partition differently, successive equilibrations remove 

alkanes, alkenes, and cycloalkanes, leaving only aromatic 

hydrocarbons in solution. This makes identification of 

compounds in a chromatogram easy. 

McAuliffe (97) describes the accuracy and sensitivity 

of the gas equilbration method as follows. The standard 
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deviation of replicates is less than 1% for most compounds. 

The method is capable of detecting alkane, alkene, and 

cycloalkane hydrocarbons down to 1-3 parts in 10 12 parts of 

water by weight (ppt). Aromatic hydrocarbons, because of 

their lower partitioning into the gas phase, can be detected 

at 4-12 ppt. Reasonable accuracy requires concentrations 

20-30 times higher. 

Head Space Analysis 

The head space analysis method is a static equilibrium 

method, as opposed to gas stripping which is a dynamic 

method. The method involves contacting the vapor and the 

liquid phase in an equilibrium cell and then taking a vapor 

sample for analysis. Milanova et al. (102j have determined 

the activity coefficient of several solutes in dilute binary 

solutions of nonelectrolytes at 20oC from vapor-liquid 

equilibria in a novel static equilibrium apparatus by gas 

chromatographic analysis of the equilibrium vapor phase. The 

glass cell was capped with a rotating metal head. This 

rotating head was fitted with three calibrated 

vapor-sampling loops that could be sequentially filled with 

equilibrium vapor over the solution, then switched directly 

into the carrier gas stream of a gas chromatograph. This 

design made possible repetitive measurements of the 

concentrations of components present in a true sample of the 

equilibrium vapor over a multicomponent liquid mixture. 
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Afrashtehfar et al. (2) have modified the apparatus of 

Milanova et al. (102) by constructing an all-glass head 

space sampler. Neither of these two works deals with the 

measurement of the infinite dilution activity coefficient of 

aqueous systems. However, Sagert et al. (133) have measured 

the activity coefficients of some butyl alcohols in water 

and in two organic solvents namely, n-octane and carbon 

tetrachloride using the head space analysis method. 

Sagert et al. (133) describe the procedure as follows. 

The gas chromatograph was calibrated by injecting known 

quantities of solute so that the peak areas were known as a 

function of the number of moles of solute. 50 mL samples 

were then prepared by weight and placed in the cell, after 

retaining a small amount for analysis. The glass cell was 

then attached to the valve and the liquid degassed by a 

technique known as the freeze-pump-thaw. In this technique 

the solution is frozen, all gases are evacuated from the 

cell using a vacuum pump and the frozen solution is then 

allowed to thaw and reach equilibrium with its vapor. A 

thermostat with water at 20.00 ± 0.04aC was then placed 

around the cell and the solution in the cell was stirred 

using a magnetic stirrer. Samples were taken at regular 

intervals until equilibrium was reached. When equilibrium 

was achieved, samples of the retained liquid were injected 

into the gas chromatograph. From the calibration curve, 

solute concentrations in the vapor and liquid phases were 



calculated. The gas chromatography measurements were 

reliable to within ±2%, according to Sagert et al. (133). 

Schoene et al. (135) have used an automated head 

space-gas chromatography technique to determine Henry's law 

constants for the following six organic chemicals, acetone, 

2,6-dichlorobenzonitrile, 2-nitrophenol, pyridine, 

trichloroethene, and toluene. Their study was mainly 

concerned with the proof of the linearity of the dependence 

of the Henry's law constant on temperature in the Arrehenius 

region. They did find that a plot of log H versus 1/T 

yielded a straight line. 

Other Methods 

Among other methods of measuring activity 

coefficients one could mention the non-steady-state gas 

chromatography method proposed by Belfer et al. (16). They 

describe their method as follows. In non-steady-state gas 

chromatography, a relatively volatile solvent at the column 

temperature is injected into a column packed with solid 

support. The solvent condens~s uniformly on the solid and 

reaches equilibrium with the carrier gas. As the solvent 

slowly evaporates out of the column, several injections of a 

solute are made. As the total volume of solvent decreases 

with time, so does the retention time of the injected 

solute. The decrease in retention time with change in time 

of injection at constant temperature and flow rate is 
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related directly to the solute limiting activity coefficient 

in the solvent. Belfer et al. (16) state that their measured 

limiting activity coefficients of a variety of solutes in 

acetonitrile and n-octane solvents agree satisfactorily with 

published data. They claim an accuracy of about 10% with 

their apparatus. 

In non-steady-state gas chromatography, no knowledge of 

the weight of the solvent in the column or the retention 

time of a non-retained substance is necessary. 

The mathematical model presented by Belfer et al. (16) 

for the infinite dilution activity coefficient is as 

follows. 

00 r -2 

where 

¢2 = vapor phase fugacity coefficient of solute at P 

P = total system pressure 

¢~ = fugacity coefficient of the solute vapor under its 

saturation vapor pressure 

Z = mixture compressibility 
m 
00 v 2 = solute-limiting partial molar volume 

R = universal gas constant 

T = column temperature 

n1 = number of moles of solvent in the column 

t = retention time 

(21) 
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Q 

P2 = solute vapor pressure 

VN = net retention volume 

Thomas et al. (153) have measured the infinite dilution 

activity coefficient of dichloromethane, chloroform and 

carbon tetrachloride in water using this method. The 

measured activity coefficients for these three solutes were 

1000, 6300 and 4500, respectively. They state that the 

accuracy of their data is no better than 40% for limiting 

activity coefficient values of greater than 100. Therefore, 

this method does not seem to be appropriate for aqueous 

systems. 

Loblen et al. (84) have used differential ebulliometry 

to measure infinite dilution activity coefficients for four 

systems two of which are aqueous, namely 1-butanol-water and 

2,4-pentanedione-water. However, the author of the present 

work knows from an earlier study that this method fails for 

sparingly soluble solutes because extremely large quantities 

of solvent are needed and the temperature measuring devices 

available are not sensitive enough to detect the boiling 

point temperature elevation produced by the introduction of 

a minute amount of the solute into the pure solvent. It is 

the temperature difference between the boiling pure solvent 

and the boiling solution that is the basis of the infinite 

dilution activity coefficient measurement by differential 

ebulliometry. 

Chian et al. (29) have used a distillation/ headspace/ 
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gas chromatography method of analysis for measurement of 

volatile polar organics at the ppb level. The purpose of 

their study was the monitoring of trace organics in drinking 

and nonconsumptive water. The sensitivity of the available 

methods had to be increased by a factor of 10 to 100. This 

could be accomplished either by improving the sensitivity of 

the final analytical step (GC or GC/MS) or by 

preconcentrating the initial sample. The concentration step 

could be achieved by the traditional trap method or using 

this new method of distillation proposed by Chian et al. 

(29), in which a few milliliters of distillate could be 

obtained by the distillation of a few hundred milliliters of 

the sample solution. Chian et al. (27) found that the 

resulting concentration factor depended on the initial 

sample volume, the final volume of the distillate collected, 

and the volatility of the specific volatile polar organic 

relative to that of water. The desired concentration factor 

of 10-100 could be achieved easily. In this manner, the 

volatile polar organics in the distillate could be 

determined at the sub-ppm and ppb levels by the direct 

aqueous injection/GC method and the head space gas 

injection/GC method, respectively. 

Lincoff et al. (81) have determined Henry's constants 

for volatile organics by a simple technique known as 

equilibrium partitioning in closed systems. The advantages 

of this method are as follows. It requires no special 
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apparatus and obtains results from the measurement of gas 

concentration ratios so that the preparation of standard 

curves for determining exact concentrations is not required. 

This is a total equilibrium method and does not have the 

problems of determining the approach to equilibrium in the 

partial equilibrium dynamic methods such as gas stripping. 

Lincoff et al. (81) have determined Henry's constants for 

five priority pollutants at 10 to 30 OC and have found good 

agreement with other experimental data in the literature. 

Lincoff et al.'s description of the theory behind the method 

follows (81). They have used the dimensionless Henry's 

constant defined as: He = Cg ;c1 , in their derivation. 

When a volatile chemical is added to a closed system 

containing a liquid and a gas phase, a mass balance shows: 

(22) 

where M is the mass added (mol), c1 is the concentration in 

the liquid (mol;m3 ), vl is the total liquid volume (m3 ), cg 

is the concentration in the gas (mol/m3 ) and Vg is the gas 

volume (m3 ). At equilibrium, the ratio of gas to liquid 

phase concentrations can be expressed as the Henry's law 

constant. The mass balance can be rewritten to include the 

Henry's law constant: 

M = C v1 /H + C V g c g g (23) 

if the same mass of organic is added to two identical 

bottles at the same temperature, but with different liquid 

volumes, the last equation above can be written for both 
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bottles and solved for the Henry's law constant. 

(24) 

The above equation expresses the Henry:s law constant 

as a function of the ratio of concentrations in only the gas 

phase. The ratio cg1;cg2 can be replaced by a ratio of raw 

concentration data, such as gas chromatograph 

areas-under-the curve, if there is a linear relationship 

between raw data and absolute concentrations. It is not 

necessary to know the mass of the volatile chemical added to 

each system. All that is required is that the added masses 

are equal. In the experimental procedure, this is achieved 

by spiking each system with the same volume of organic-

saturated water. 

According to Lincoff et al. (81), plots of Henry's law 

constant versus gas phase concentration ratio (Cg1;cg2 ) for 

various liquid volumes show that the technique has maximum 

sensitivity when one system has a low liquid volume and the 

other has a high liquid volume. Their study shows that the 

technique loses utility when the dimensionless Henry's 

constant is greater than two or three. However, most common 

ground water pollutants have Henry's law constants less than 

one, throughout the temperature range of interest. 

Activity Coefficient Theory 

From the Gibbs-Duhem equation: 
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(25) 

at constant temperature and pressure. This equation relates 

the activity coefficients of all of the components in a 

mixture. There have been many models proposed for the 

relation between activity coefficients and mole fractions. 

Simpler models such as the Margules and van Laar (one and 

two constant) models are easy to use but require constants 

to be determined for each mixture from experimental data. 

The Wilson equation which uses the local concentration 

concept is more complicated but is capable of much better 

predictions. In the Wilson model, the effects of differences 

in molecular size and intermolecular forces are incorporated 

by an extension of the Flory-Huggins relation. Overall 

solution volume fractions are replaced by local volume 

fractions, which are related to local molecule 

concentrations caused by differing energies of interaction 

between pairs of molecules. 

The most significant advantage of the Wilson model over 

the Margules and van Laar models is its enhanced ability to 

predict activity coefficients at very high dilution (less 

than 0.1 mole%). It is quite easy to determine the constant 

2 of the Margules model: log r 1= Ax2 once the infinite 

dilution activity coefficient is known, i.e., when x1=1 and 

x2=0, log r 2 = A. The two constant Margules equation 

requires the solution of two simultaneous equations, which 
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is again quite straightforward. However, the values of 

activity coefficients obtained using these models are not 

nearly as accurate as the values predicted by the more 

complicated Wil.son equation. The constants of the Wilson 

model are based on energy interactions between binary pairs. 

The NRTL and UNIQUAC models are similar to the Wilson 

equation in that they too take local concentration into 

account and do not take the solution concentration to be 

uniform throughout. However, they use a mole fraction and a 

surface fraction, respectively, instead of the volume 

fraction used in the Wilson model. 

The ASOG model is quite different in its approach 

because it considers the solution as a solution of chemical 

groups which comprise the molecules instead of the molecules 

themselves. The major advantage of this model is that once 

the binary interaction parameters are obtained from 

experimental data, they can be used to predict the activity 

coefficients of other molecules in a binary or 

multicomponent solution for which no experimental data exist 

but which are composed of the same functional groups. UNIFAC 

which is the newest and most widely used ·activity 

coefficient model combines the concepts introduced by the 

Wilson and the ASOG models, namely local composition effects 

which include the size and the shape of the molecules and 

the energy interactions between them and the solution of 

functional groups concept which broadens the range of 



applicability of the binary interaction parameters in 

exchange for some loss in accuracy because the model is 

approximate and not exact unless the groups and the 

molecules are identical. 

For broad applications in water resources, methods 

based on a group contribution approach are particularly 

attractive. The basic idea is that although there are 

thousands of chemical compounds of interest in chemical 

technology, the number of functional groups which constitute 

these compounds is small. Thus, if a physical property of a 

fluid can be formulated in terms of the sum of the 

contributions from the functional groups of a molecule, the 

properties of a very large number of fluids can be 

correlated in terms of a relatively small number of 

parameters which characterize the contributions of 

individual groups. This approach is fairly utilitarian since 

activity coefficients can be estimated from chemical 

structure and no specific experimental data or correlation 

coefficients are required. Therefore, the UNIFAC model which 

is the activity coefficient model selected for this study is 

considered in detail below. 

Fredenslund et al. (53) present a group-contribution 

estimation method for determination of activity coefficients 

in non-ideal mixtures. The method combines the solution-of

functional-groups concept with a model for activity 

coefficients based on an extension of the quasi chemical 



theory of mixtures. The resulting model known as UNIFAC 

(UNIQUAC Functional-group Activity Coefficients) contains 

two adjustable parameters per pair of functional groups. 

Activity coefficients in a large number of 
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binary and multicomponent mixtures may be predicted using 

the UNIFAC model, once binary interaction parameters have 

been obtained from experimental data. These mixtures may 

contain any organic chemicals. According to Fredenslund et 

al. (53), the applicable temperature range for this model is 

between 275 K to 400 K. In most cases, predicted activity 

coefficients at infinite dilution deviate less than 20% from 

measured values (53). The constants in this model reflect 

the volume and surface areas of individual functional 

groups. The parameters are an indication of energy 

interactions between groups. 

Fredenslund et al. (53) describe the basis of their 

proposed model (UNIFAC) as follows. UNIFAC is based on the 

group contribution concept which has been successful for 

estimating a variety of pure component properties such as 

liquid densities, heat capacities, and critical constants. 

The basic idea is that although there is a large number of 

chemical compounds, the number of functional groups which 

constitute these compounds is much smaller. Therefore, if we 

assume that a physical property of a fluid is the sum of the 

contributions made by the functional groups constituting 

that molecule, we obtain a method for correlating the 
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properties of a very large number of compounds in terms of a 

much smaller number of parameters which represent the 

contribution of individual groups. 

Any group contribution method can only be approximate 

because the contribution of a given group in one molecule 

will not be the same as its contribution in another 

molecule. The fundamental assumption of a group contribution 

method is additivity, i.e., contributions made by one group 

are assumed to be independent of the contributions made by 

another group in the same molecule. This assumption is valid 

only when the different groups comprising the molecule are 

very similar in nature. 

The accuracy of the estimation method can be improved 

as more and more distinct groups are defined. In the limit, 

the molecule itself is defined as a group. In this case, one 

no longer benefits from the group contribution method. For 

practical purposes a compromise must be reached. A small 

number of distinct groups is selected but not so small that 

significant effects of molecular structure on physical 

properties would be ignored. 

If the group contribution method is extended to 

mixtures, many multicomponent liquid mixtures can be 

constituted from a limited number of functional groups. 

The UNiversal QUAsi-Chemical (UNIQUAC) equation, 

developed by Abrams and Prausnitz in 1975, is a good 

starting point for establishing a group contribution 



correlation. In this model, the important independent 

variables are the concentrations of the functional groups 

rather than those of the molecules themselves. 
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The basic idea of a solution-of-groups model is to use 

existing phase equilibrium data for predicting phase 

equilibria of systems for which no experimental data are 

available. The UNIFAC model conceptually follows the ASOG 

(Analytical SOlution of Groups) model developed by Derr and 

Deal in 1969. In the ASOG model, activity coefficients in 

mixtures are related to interactions between structural 

groups. Derr and Deal (1969) separate the activity 

coefficient of a molecule into two parts: one part 

incorporates the contribution of the differences in 

molecular size and the other part incorporates the 

contributions due to molecular interactions. The 

contributions due to size difference are arbitrarily 

estimated using the athermal Flory-Huggins equation. The 

Wilson equation, applied to functional groups, is selected 

for the estimation of the molecular interaction 

contributions. Much of the arbitrariness is removed by the 

combination of the solution-of-groups concept with the 

UNIQUAC equation. The UNIQUAC model contains a combinatorial 

part which is due to differences in size and shape of the 

molecules in the mixture, and a residual part which is due 

to energy interactions. Functional group sizes and 

interaction surface areas are obtained from pure component 
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data. 

UNIFAC is based on binary vapor-liquid and 

liquid-liquid equilibrium data from more than 200 different 

literature sources. No ternary data have been used. The 

available group interaction parameters have been tabulated 

by Fredenslund et al. (53) and one can quickly discover 

whether group interaction parameters are available in the 

desired temperature range. 

In order to get the interaction parameters, Fredenslund 

et al. (53) have calculated activity coefficients using low 

pressure phase equilibrium data, not taking vapor phase 

non-idealities into account. The interaction parameters have 

been calculated using a non-linear, least squares data 

reduction scheme. 

The UNIQUAC equation which was developed by Abrams and 

Prausnitz (1975) relates the activity coefficient to excess 

molar Gibbs free energy. At low or moderate pressures, the 

excess Gibbs free energy depends only on liquid composition 

and temperature. The UNIQUAC equation consists of two parts: 

gE = gE (combinatorial) + gE (residual) (26) 

where for a binary mixture: 
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gE (combinatorial) 
= 

RT 

(27) 

gE (residual) ' ' ' =-qlxlln(Gl+G2T21) 
RT 

' ' ' 
- q2x2ln(&2 +el Tl2) (28) 

Where R is the universal gas constant, Z is the 

coordination number set equal to 10. The segment fraction 

(¢), and the area fractions (8 and e ) are given by: 

(29) 

(30) 

(31) 

The parameters r, q, and q are pure component 

molecular-structure constants depending on molecular size 

and external surface areas. In the original formulation by 

' Abrams and Prausnitz (1975) q = q , but Anderson and 

Prausnitz (6) have determined q empirically to find an 



optimum fit to a variety of systems containing water and 

alcohols. For alcohols, for instance, the surface of 

' interaction (q ) is smaller than the geometric external 

surface (q) which indicates that for alcohols, 

intermolecular attraction is determined mostly by the OH 

group. These structural parameters have been tabulated for 

many compounds by Anderson and Prausnitz (6). 

For each binary combination in a multicomponent 

mixture, there are two adjustable parameters, r 12 and r 21 . 

These in turn are given in terms.of characteristic energies 

.!lm12 a12 

7"12 = exp (- ) = exp (- -) 
RT T 

(32) 

..6.m21 a21 

1:"21 = exp (- ) = exp (- -) 
RT T 

(33) 

The effect of temperature on T 12 and r 21 can be seen 

in the above equations . .!lm12 and .!lm21 are weakly dependent 

on temperature. Using the relationship between molar excess 

Gibbs free energy and the activity coefficient: 

g = RT ~ x ln y 
i 

) - RT ln ri T,P,n.-
J 

The activity coefficients y1 and r 2 are given by: 

(34) 
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For binary vapor-liquid equilibrium measurements, the 

(35) 

(36) 

(37) 

(38) 

optimum parameters are those that minimize the objective 

function given by: 
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The summation is over all N data points and the equation is 

subject to the equilibrium constraint: 

(40) 

Superscript e indicates an experimentally measured value, 

and superscript o indicates the estimated value 

corresponding to each measured point. a 2 is the estimated 

variance of each measured variable, i.e., pressure, 

temperature, and liquid and vapor-phase mole fractions. 

These variances are estimated from probable experimental 
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uncertainties. Since all data points are used and each point 

has an associated error, the true value of each measured 

variable is also found in the course of the parameter 

estimation. Anderson and Prausnitz (6) have obtained binary 

parameters for 130 distinct binary systems. 

The multicomponent versions of the above equations are 

given below: 
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gE(combinatorial) ¢. z e. 
1 1 

= L:xln L:qxln-- (41) 
RT i i x. 
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gE (residual) 
' = -~q X ln(~e T ) (42) 
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' where segment fraction (¢) and area fractions (e and e ) are 
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For any component i in a multicomponent mixture, the 

activity coefficient is given by: 

ln r = ln 
i x. 

1 

+ (Z/2) q ln 
i 

e. 
1 

+ 1 -
i 

' ' ' 
e j T ij 
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¢. 
1 
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xi j j j 

(43) 

(44) 

(45) 

The above equation requires only pure component and binary 

parameters. 



The equilibrium constraint equation is: 

(46) 

where P~ is the vapor pressure of component i in the liquid 
l. 

mixture, x1 is the mole fraction of component i in the 

liquid mixture, ri is the activity coefficient of component 

i in the mixture, P is the total system pressure, yi is the 

mole fraction of component i in the vapor phase, and ¢i is 

the fugacity coefficient of component i in the vapor phase. 

Extensions and modifications to the UNIFAC model and 

other methods of calculating activity coefficients are 

discussed below. 

46 

Skjold-Jorgensen et al. (143) have revised and extended 

the range of applicability of the ONIFAC model. They have 

added eight different new groups: tertiary amines, formates, 

iodides, methanethiol, furfural, pyridine, and glycols. They 

have also redefined the alcohol group as a group containing 

OH only. They have determined the volume and surface area 

parameters (rk and qk) empirically instead of using van der 

Waals volumes and surface areas. 

Sorensen et al. (147) have retrieved most of the 

available liquid-liquid equilibrium data and have evaluated 

different correlations for prediction of these data. Their 

data base contains 884 binary, 772 ternary, and 23 

quaternary data sets. Liquid-liquid equilibrium is needed to 

determine the distribution of the solute between or among 

the liquid phases present. This solute could be an 
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environmental pollutant. 

The quantity of interest in predicting liquid-liquid 

equilibria is the liquid phase activity coefficient. 

Sorensen et al. ( 146) conclude that UNIQUAC and NRTL 

(Non-Random Two Liquid) are the best predictive models 

available, and that in most instances, UNIQUAC is superior 

to NRTL. One of the main advantages of UNIQUAC is its having 

only two adjustable parameters per binary pair as mentioned 

earlier. It must be noted that UNIQUAC was originally 

developed for prediction of vapor-liquid equilibria and not 

liquid-liquid equilibria, however, its performance seems to 

be satisfactory for the latter case, as well (147). 

Rizzi and Huber (125) use a new approach to obtain 

universal interaction parameters between the groups CH2-H2o 

and ACH-H 20 within the solution of groups model. This 

involves a careful estimation of the combinatorial part of 

the model which is the term not associated with groups. This 

method accounts for association effects in the region of 

infinite dilution which is based on the definition of two 

additional groups which occur only in alkanes and aromatic 

hydrocarbons. This procedure allows one to keep constant the 

value for the most important CH2 -H20 and ACH-H20 interaction 

parameters in all systems and gives results similar to those 

expected by the introduction of an additional correction 

term ln r~orr to the combinatorial and residual parts. This 
~ 

approach is important because it leads to better predictions 



in the infinite dilution range where the group contribution 

model predictions are not very good. The poorer prediction 

in this region is of course a result of the use of 

vapor-liquid equilibrium data pertaining to higher 

concentration regions. The interest in infinite dilution 

predictions stems from the need to determine model 

parameters and also environmental applications where very 

low solubilities of pollutants are quite common. 
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From a practical standpoint liquid-liquid equilibrium 

data could be useful for solvent extraction. King et al. 

(70) discuss the extraction of organic priority pollutants 

from water. Referring to the list of 129 priority pollutants 

published by the Environmental Protection Agency, they 

discuss the need for the development of reliable and precise 

analytical techniques and evaluation of appropriate control 

technology. They state that solvent extraction holds good 

potential for removal of many organic priority pollutants 

from effluent water streams. Solvent extraction can be 

attractive in cases where the solutes are toxic or 

nonbiodegradable, where the solutes are present at high 

enough concentrations to provide economic recovery value, 

and when steam stripping would be complicated or precluded 

by low solute volatility or formation of azeotropes, 

according to King et al. (70). Therefore, the principal 

factors that they considered in choosing the particular 

pollutant for their experiments were solubility in water, 
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nonbiodegradability, difficulty of stripping, and the 

presence of functional groups which might lead to specific 

interactions with certain solvents. The main piece of 

information that they sought was the equilibrium 

distribution coefficient defined as the weight fraction of 

the solute in the solvent phase divided by the weight 

fraction of the solute in the aqueous phase, at equilibrium 

and at high dilution. 

Based on their findings, King et al. (70) concluded 

that equilibrium distribution coefficients for extraction of 

chlorinated hydrocarbons and aromatic hydrocarbons into 

undecane were high enough to make kerosene an attractive 

solvent for removing these compounds from water by solvent 

extraction. Undecane was used as a model for kerosene in 

their investigations. 

Since the three quantities-- Henry's constant, vapor 

pressure and aqueous solubility-- are related and any one 

can be calculated from the other two, it is worthwhile to 

look at the available vapor pressure and solubility data 

that can be used to calculate the Henry's constant. As far 

as aqueous solubility is concerned, there is much published 

data and there are many correlations available, some of 

which will be considered below. 

Mackay and Shiu (89) use the hydrocarbon infinite 

dilution activity coefficient, y 00 , to correlate aqueous w 

solubility and obtain average deviations in log solubility 
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of about 0.26. They base their derivation on the equality of 

the water and hydrocarbon fugacities at equilibrium: 

f = xw rw fr = xh rh fr 

Since the reference fugacities (f ) cancel and the 
r 

(47) 

hydrocarbon mole fraction (xh) and activity coefficient (rh) 

in the hydrocarbon phase can be assumed to be unity, it 

follows that r 00 is simply the reciprocal of the mole w 
fraction solubility: 

(48) 

The procedure that Mackay and Shiu (89) propose for 

00 00 
estimation of rw is the use of a parabolic equation for rw 

as a function of carbon number which approaches the 

Tsonopoulos and Prausnitz correlation at low carbon numbers: 

log r 00 = 3.5055 + 0.3417(N-6) - 0.002640(N-6) 2 
w (49) 

Leinonen et al. (74) have developed a correlation for 

the solubility of c4 to c10 hydrocarbons at 25°C and 

atmospheric pressure. The excess Gibbs free energy is 

correlated in terms of an effective molar volume which is 

related to the actual molar volume adjusted to include the 

effects of the degree of branching, the number of olefinic 

and acetylinic bonds and the number of aromatic and 

cycloalkane rings. They obtained a root mean square 

deviation between 59 correlated and experimental 

solubilities of 20%. The solubilities range from 0.052 to 

5150 grams of hydrocarbon per 10 6 g of water. The 

correlation can be used as a basis for estimation of the 
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solubilities of halogenated hydrocarbons in water. This 

correlation has been developed for estimation of dynamic 

behavior, particularly dissolution, of oil spills in water, 

however, its applicability is not limited to this case only. 

Hydrocarbons exhibit low solubilities in water as a 

result of very high activity coefficients or high excess 

Gibbs free energy of mixing. The excess Gibbs free energy 

and the activity coefficient are related to hydrocarbon 

solubility through a constant K: 

E g - x1 (1- x1 )K 

2 r 1 = exp[(l - x 1 ) K/RTJ 

(50) 

(51) 

The logarithm of the solubility of a homologous series 

is approximately a linear function of the molar volume. 

Since the activity coefficient is inversely related to the 

solubility, a plot of RT ln r 1 versus molar volume will also 

be approximately linear. Leinonen et al. (74) did obtain a 

linear relationship between K and the molar volume. The 

slope obtained by least squares for normal alkane data was 

58.3 cal/cm3 . Branched chain isomers generally deviate from 

this correlation since they usually have a higher solubility 

and a higher molar volume than the corresponding normal 

alkanes. Leinonen et al. (74) obtained similar correlations 

for olefinic, acetylinic and aromatic hydrocarbons, and 

cycloalkanes. The slopes of the K versus molar volume plot 

were very similar for these homologous series and a mean 

value of 56.11 cal/cm3 was used in the final correlation. 
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Branched chain alkanes could be correlated satisfactorily by 

using an effective molar volume defined as the actual molar 

volume reduced by an increment of 3.1425 cal/cm3 for each 

degree of branching. Similar increments were found to apply 

for olefins, acetylenes, aromatics, and cycloalkanes. 

Leinonen et al. (74) observed, however, that for 

hydrocarbons with multiple olefinic or acetylinic bonds, the 

correlation predicted an unusually high solubility (low K). 

They concluded that the second bond is only fractionally as 

effective as the first in increasing the solubility, and 

presumably further bonds would be still less effective. They 

found a best value for this fraction of 0.589. Therefore, 

the effective number of olefinic bonds, D', to be used in 

the correlation, is equal to the actual number D for D=O or 

1, 1.589 for D=2, and 1.936 for D=3. Similarly, the 

effective number of acetylinic bonds E' to be used in the 

correlation is equal to the actual number E for E=O or 1, 

1.589 for E=2. The final correlation is: 

K = 303.158 + 56.116 (v- 11.9132 A- 3.1425 B + 6.6742 C-

9.6734 D' -21.297 E') (52) 

where v, A, B, and C denote the actual molar volume, the 

number of olefinic rings, the degree of branching, and the 

number of cycloalkane rings, respectively. D' and E' are the 

effective number of olefinic and acetylinic bonds calculated 

from the actual numbers, D and E. The objective function 

minimized to obtain the optimum values of the parameters 



was the sum of squares of the fractional error between the 

experimental and correlated solubilities of 44 hydrocarbons 

with no weighting factor. 

McAuliffe (98) has measured the solubilities in water 

at room temperature of 65 hydrocarbons using a gas-liquid 

partition chromatographic technique. He reached the 

following conclusions which are quite similar to the 

conclusions of Leinonen et al. (74). For each homologous 

series of hydrocarbons, the logarithm of the solubility in 

water is a linear function of the hydrocarbon molar volume. 

Branching increases water solubility for paraffin, olefin, 

and acetylene hydrocarbons. The increased solubilities due 

to branching apparently are not,due to a structural feature 

of the molecules, but to the higher vapor pressure of the 

branched chain hydrocarbons compared with the corresponding 

paraffin or olefin hydrocarbon. The structure of water is 

such that, for the same hydrocarbon vapor pressure, 

approximately the same weight of c2 through c9 paraffin 

hydrocarbons dissolves in water. Increasing unsaturation of 

the hydrocarbon molecule, chain or ring, increases the 

solubility of the hydrocarbon in water. 
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Polak and Lu (118) have experimentally determined 

mutual solubilities of 14 paraffinic and 6 aromatic 

hydrocarbons and water at 0 and 25°C. The solubilities of 

aromatic hydrocarbons in water are smaller at 0 than at 

25°C. The solubilities of paraffins in water are larger at 0 



than at 25°C. The aromatics considered in their work are 

benzene, toluene, ethylbenzene and three isomers of xylene. 
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May and Wasik (94) use a dynamic coupled column liquid 

chromatographic technique to obtain aqueous solubility data 

on 11 aromatic hydrocarbons. The aqueous solubility at 25oC 

was determined for each compound. Their precision of 

replicate solubility measurements was better than 3%. They 

have expressed the variation of solubility of each compound 

with temperature in the form of either a quadratic or cubic 

equation based on a least squares fit of the solubility to 

temperature. They state that these equations can be used to 

interpolate the solubility to within ±2% of the 

experimentally measured values between 5 and 30°C. The 

aromatics considered here are benzene, naphthalene, 

fluorene, anthracene, phenanthrene, 2-methylanthracene, 

1-methylphenanthrene, fluoranthene, pyrene, 

1,2-benzanthracene, and chrysene, which range in molecular 

weight between 78 and 228. These are aromatics of great 

interest for environmental studies because of their toxicity 

and carcinogenic effects and because there is very little 

data available on the solubility and other properties of 

these compounds. 

Yalkowsky and Valvani (164) propose the following 

equation for the estimation of the aqueous solubility of 

nonelectrolytic organic chemicals: 

log Sw =-log PC- (1.11/1364)[~Sf(MP-25)] + 0.54 (53) 
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where S is the aqueous solubility, PC is the octanol-water w 

partition coefficient, ~Sf is the entropy of fusion, and MP 

is the melting point. They have extended tabulations of data 

obtained using the above equation including data for 

halobenzenes, aromatics, and polycyclic hydrocarbons. 

Mackay and Shiu (88) have reviewed the Henry's law 

constants of hydrophobic organic compounds of environmental 

concern. They have tabulated vapor pressure, solubility, and 

Henry's law constant data for a total of 150 compounds 

including monoaromatics, polynuclear aromatics, and 

halogenated alkanes. 



CHAPTER III 

EXPERIMENTAL SETUP AND PROCEDURE 

Experimental Setup 

The head space analysis method was selected over other 

experimental methods for the following reasons. It is a 

total equilibrium method as compared to the partial 

equilibrium gas stripping method. It is a static equilibrium 

method and takes longer to reach equilibrium than the 

dynamic equilibrium methods, however, it requires a smaller 

sample size than the multiple equilibration method. The 

sample size becomes significant for aqueous samples because 

of the possibility of column flooding. Another advantage of 

this method is that three of the four equilibrium terms are 

measured directly in this method. These quantities are 

liquid composition, vapor composition and the total system 

pressure. The fourth quantity, vapor pressure of the pure 

solute, could also be measured experimentally, if desired, 

however, this was not done in the present work because of 

the accurate vapor pressure values available in the 

literature for the compounds of interest in this work. The 

system temperature can also be controlled and measured 

directly for each isothermal run, whereas the multiple 
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equilibration technique which uses a syringe as its 

equilibrium vessel is not amenable to accurate temperature 

control and one is restricted mostly to the room 

temperature. 
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A schematic diagram of the experimental setup is shown 

in Figure 1. The major parts and pieces of equipment used in 

the experimental setup are described below. 

Equilibrium Cell 

The equilibrium cell consists of a stainless steel 

container with a volume of 500 cc. This equilibrium cell is 

equipped with two quarter inch pipe to tube fittings at the 

top and the bottom. 

At the bottom, the cell is connected to a tee. One leg 

of this tee is used for the insertion of a T-type 

thermocouple into the cell whereby the temperature inside 

the cell can be measured directly. The probe head is 

immersed in the liquid phase very near the vapor-liquid 

interface. The thermocouple read-out indicates the 

temperature to the nearest degree Fahrenheit. The other leg 

of the tee is connected to another tee, one leg of which 

serves as the housing for a Teflon septum through which the 

solution to be studied is injected into the cell. The other 

leg is connected through quarter inch stainless steel tubing 

to a Cole-Farmer gear pump which is located 3 ft below the 

cell. This pump is driven by a Cole-Farmer Masterflex drive 
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which has a variable speed controller capable of adjusting 

the flow between 6 and 2800 cc/min. This pump is used for 

circulating the liquid solution. The outlet of the pump is 

connected to a Valco 1 micro-liter 6 port liquid sampling 

valve through one eighth inch Teflon tubing which is 

transparent and allows for the verification of the existence 

of liquid flow through the pump at low pressures (20-50 

mmHg). This Teflon tubing is inserted in a quarter inch 

stainless steel tubing which is connected to the top of the 

cell via a tee. The liquid travels through the inner Teflon 

tubing back into the cell, passes through the vapor space of 

the cell thus ensuring good vapor-liquid contact which is 

essential for equilibrium conditions, and drips back into 

the liquid space at the bottom, hence eliminating the need 

for stirring. 

The vapor travels through the annulus of the quarter 

inch tubing at the top into the other opening of the tee. 

This leg is connected to a stainless steel cross. The other 

three legs are connected as follows. The right leg goes to a 

Texas Instrument Model 141A quartz precision pressure gage -

capable of measuring the pressure to 0.01 mmHg. 

The left leg is connected to a shut-off valve which is 

in turn connected to a vacuum pump. The top leg is connected 

through a three-way ball valve to the vapor sampling valve 

which is a 6 port Valco valve equipped with a sampling loop 

which consists of coiled one eighth inch tubing with a 



volume of 0.35 cc. This valve is also connected to the 

vacuum pump thus ending the loop. 
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The volume of the loop through which liquid circulation 

takes place is about 20 cc. This includes 12 cc for the 

quarter inch tubing, 4 cc for the one eighth inch tubing and 

4 cc for the pump head volume. 

Sampling is done on line and the carrier gas from and 

to the gas chromatograph is distributed to the gas sampling 

valve and the liquid sampling valve through two three way 

ball valves. The lines leading to and coming from the liquid 

sampling valve are wrapped with heating tape and heated to 

200°C. The heating tape is covered by insulating material. 

This ensures that the one micro liter liquid sample is 

vaporized and does not condense as it is carried to the GC. 

Constant Temperature Bath 

In order to maintain the temperature inside the cell at 

a constant value, a cooling/heating jacket was used. This 

jacket consisted of 6 feet of quarter inch copper tubing 

coiled around the equilibrium cell. The jacket was connected 

to a Blue M constant temperature refrigerated bath with a 

temperature range between -15 and 100 °C. The bath is 

equipped with an agitator and a circulating pump. The 

temperature settings used in this work were between 15 and 

35°C in increments of 5 aC. 

Gas Chromatograph 
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The analytical section of the experiment is carried out 

using a series 3700 Varian Gas Chromatograph (GC). This GC 

is equipped with a flame ionization detector (FID) and an 

electron capture detector (ECD). The FID is capable of 

resolution down to the part per million range and analyzes 

any organic compound that can be burned. Water and air are, 

therefore, not detected by this detector. The carrier gas 

used for this detector is GC grade helium. Hydrogen and an 

excess of air are used to ignite and maintain the flame in 

the detector. A battery-run igniter is used for ignition. 

The carrier gas used for the ECD is a mixture of 90% argon 

and 10% methane with less than 1 part per million of each 

oxygen and water. The ECD is most sensitive to halogenated 

hydrocarbons and is capable of detecting them to the part 

per billion range. 

A 6-foot glass column packed with Tenax GC which is a 

hydrophobic resin was selected. The inside diameter of this 

column is 4 mm and the column packing has a mesh size of 

80/100 and a maximum temperature limit of 350°C. This column 

was purchased from Alltech under Catalog # C6192. This 

column is connected to the injection port where liquid 

injections are made by the insertion of a Hamilton 10 ~L 

syringe into a septum which is Teflon on one side and rubber 

on the other and is 10 mm in diameter. Vapor injections are 

made by connecting the sampling valve to the carrier gas 

line, i.e., the carrier gas coming from the carrier gas tank 



passes through the sampling valve and then through the 

column via the injection port. 
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The GC is connected to a Hewlett-Packard model 3390A 

reporting integrator which is capable of directly 

integrating the area-under-the-curve of each GC peak that it 

plots. 

Procedure 

The system is first purged with air at moderate 

pressures (about 5 psig) for about 15 minutes. The system is 

then connected to the vacuum pump by opening the two-way 

ball valve. The system remains connected to the vacuum pump 

over night and then the valve is closed. The cell pressure 

is read and checked periodically for about an hour to make 

sure that the pressure is stable while the system is under 

vacuum but disconnected from the vacuum pump. If the 

pressure increases, one should check for leaks and any 

liquid that might have remained in the cell from the 

previous run which would now be evaporated and cause the 

pressure inside the cell to rise. The heating jacket could 

be used to vaporize any remaining liquid and the system 

would be evacuated once more. 

The carrier gas of the GC is allowed to flow and the GC 

is turned on. The proper settings on the GC are selected. 

For the majority of these experiments the column temperature 

was set at 230 oC using the temperature programming option 
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of the GC which increased the temperature from the initial 

room temperature of about 25oC to the final temperature of 

230°C at a rate of lOOC/min. The injection port temperature 

and the detector temperature are set at 250°C. These 

temperatures were selected because they are above the 

boiling point of all of the solutes used in this work by at 

least 50°C and thus prevent any condensation in the lines or 

the column. 

The hydrogen and air flows are also established and the 

flame ionization detector flame is ignited. The pressure at 

the tank for the carrier gas (chromatographic helium) was 30 

psig and 40 psig for both air and hydrogen . These 

corresponded to flow rates of 210 and 400 cc/min, 

respectively. 

The solution to be studied is prepared in a beaker by 

mixing the solute in 100 cc of distilled water. If the 

saturation limit is desired, solute is added in quantities 

just slightly above its solubility limit. The solution is 

mixed well and allowed to settle. The desired amount of 

solution is drawn into the syringe below the excess solute 

surface and injected into the cell at the septum. The 

solution could then be diluted below its solubility limit by 

injecting known amounts of pure distilled water into the 

cell. For this work three concentrations were usually 

selected between the solubility limit of the solute and the 

detection limit of the GC detector at minimum attenuation 
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After the solution is injected into the cell, the gear 

pump is turned on and the circulation of the liquid phase 

through the vapor phase is initiated. About one hour is 

allowed for achieving equilibrium as indicated by the 

stabilization of the cell pressure at the given system_ 

temperature. Each system is run at five different 

temperatures (15, 20, 25, 30 and 35°C). Thus for a given 

binary system, fifteen samples are obtained, five 

temperature levels and three concentration levels. The 

effect of these two parameters (temperature and 

concentration) on the activity coefficient could thus be 

studied. This effect could also be mapped onto related 

thermodynamic properties such as Henry's law constants or 

equilibrium constants (k-values). 

Four replicate vapor samples are taken at intervals of 

20 to 30 minutes. The first sample data are usually ignored, 

because the sampling loop is not evacuated prior to this 

sampling. The area-under-the-curve of the samples is 

recorded on the Hewlett-Packard recorder-integrator. Several 

sub-micro liter injections of the pure solute are used to 

develop a calibration curve whereby one could determine the 

concentration for a given value of the integrated 

area-under-the-curve as recorded by the integrator reporting 

the GC response. The vapor space is about 420 cc and the 

size of the vapor sampling loop is 0.35 cc. Therefore, 



taking samples of this size in intervals of at least 20 

minutes does not disturb equilibrium. 

Liquid samples are taken in a similar manner through 

the 1 micro liter liquid sampling valve. The sample is 

vaporized through the use of the heating tape before being 

injected into the GC. Knowing the injection volumes of the 

vapor and liquid samples and also the molar volumes of the 

compounds in the solution in both the liquid and the vapor 

phase allows one to convert the area-under-the-curve data 

into concentration and mole fraction data using the 

calibration curve. Since multiple samples are taken, a 

measure of the reproducibility of the data is at hand. 

Usually the mean of the three values of the 

area-under-the-curve was used. These values differed from 

one another by less then five percent always. 
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CHAPTER IV 

DISCU~ON AND RESULTS 

The discussion and presen~a~ion o~ resul~s in ~his 

chap~er are divided in~o ~wo sec~ions. In ~he ~irs~ sec~ion, 

~he da~a ob~ained in ~he experimen~al par~ ox ~his work are 

discussed. A sample calcula~ion is per!ormed, ~he errors are 

analyzed, and ~he resul~s are presen~ed and compared ~o ~he 

li~era~ure values. The second sec~ion deals wi~h ~he 

correla~ion aspec~ o~ ~his work. Li~era~ure da~a are 

presen~ed and are ~hen used ~o ob~ain in~erac~ion parame~ers 

~or aqueous sys~ems in ~he very dilu~e range. The predic~ion 

power ox ~hese parame~ers is ~hen compared ~o ~ha~ ox ~he 

original and o~her parame~ers in ~he li~era~ure ~or ~he 

UNIFAC model. 

Experimen~al Resul~s 

Be~ore presen~ing ~he da~a ~ha~ have been ob~ained in 

~his work using ~he experimen~al procedure ou~lined in ~he 

previous chap~er, a sample calcula~ion is presen~ed ~o 
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illustrate how the measured quantities o~ liquid and vapor 

composition and total system pressure along with the 

calculated vapor pressures are used to obtain the activity 

coe~~icient. The errors due to these measurements are ~irst 

discussed and an error analysis is per~ormed so that t.he 

accuracy o~ the data presented in the ~allowing sections can 

ba known. 

Error Analysis 

The variance o~ a multivariate ~unction is obtained as 

~allows. 

2 
0 

X. 
1 

The objective ~unction in this case is the activity 

coe~~icient which is a ~unction o~ the vapor and liquid 

(64) 

compositions. the solute vapor pressure and the total system 

pressure: 

r 1 =Cy. P)/Cx. P:) 
1 1 1 

C6S) 

The activity coefficient is a ~unction o~ four variables: 

2 2 2 2 2 2 2 o = coy/oy) o + coy/oP) o + coy/ox) o + r y p x 
v 2 2 

Coy/oP ) opv (67) 

where the component index was eliminated for simplicity. 

According to the phase rule there are two degrees of 



freedom in a ~wo-phase binary sys~em a~ equilibrium. 

Therefore, if one fixes ~wo variables, namely ~empera~ure 

and liquid composi~ion. ~he o~her ~hree variables in ~he 

ac~ivi~y coefficien~ expression are au~oma~ically fixed. 

a~ = CP/xPv) 2a~ + Cy/xPv) 2a~ + CyP/x2Pv) 2a~ + 

CyP/xPva)aa:v 

2 
fac~oring ou~ r : 

or 

~herefore, ~he s~andard devia~ion in ~he ac~ivi~y 

(68) 

(69) 

(60) 

coefficien~ can be ob~ained using ~he following equa~ion. 

Sample Calcula~ion 

Several vapor and liquid samples are ~aken ~o measure 

68 

~he vapor and liquid concen~ra~ions. Figure 2 shows ~he da~a 

ob~ained from ~he GC as areas-under-~he-curve for each 

injec~ion. The da~a on ~he lef~ per~ain ~o vapor samples and 

~he da~a on ~he righ~ represen~ liquid samples. A ~o~al of 



~ '"Ij 
Cll ..... 

17 ~I 

n O'Q 

17.48 

17.41 

0 ~ 
11 !'1 
p. Cll 
Cll 
11 t..l 
I . 

H 
::l ;t> 
rt r. 
Cll rt 

STOP 
0\l ~ STOP 

STOP 
11 Ill 
Pi f-' 
rt 
0 tx:l 
11 X 

F.IIH I 9 
~1111 I II 

RUH I 8 

• 'd 
Cll 

AREA% APEA% 
11 

All/HT 
AREA% 

1-'• RT AkEA TYPE i<T AREA TYPE AR/HT RT AREA TYPE AR/HT 
s 7.49 I. J921Ei9? PB 1.299 

7.41 I . J852E +9.7 PB 1.393 7.41 \. 3767Ei97 PB 1.394 

Cll 
::l 
rt 
Pl , .... 
t::::l 
Pl 
rt 
Pl _____.J' 91 ___.J 7.9S ___.17$ 
Pl 
I)) 

~ 
Cll 
'0 
0 
11 
rt 
Cll 
p. 

cr' STOP sror 
STor· 

'-<: 
rt ::r 
Cll 

i' RUN I , 
RUN I 3 

RIJH I 

AR£A% AREA% 
AREA% kT AR~A lYPF Afi,HT RT AREA lYPE AR/Hl !;:T AREA TYPE flRifH 7. 94 tJ4r.2o Pll I .601 7.95 13Qthl PB I .6il2 7. 95 I31J629 I'll I UQ 

0\ 
\.0 



70 

a~ leas~ ~hree samples was ~aken in each phase. The vapor 

peaks have been a~~enua~ed by a ~ac~or o~ 4. The liquid 

peaks have been ampli~ied by a ~ac~or o~ 8. 

Based on ~he areas-under-~he-curve ~or liquid and vapor 

samples. one ob~ains ~he ~allowing s~a~is~ics. where e is 

~he percen~ devia~ion ~rom ~he mean: 

X &(~..) eC%) 

130110 1 1.37671 1 

130620 1 1.38620 0 

134820 1. 39211 1 

X = 131860 1. 33 y = 1.38467 0.67 

These da~a were ~aken a~ 26°C. The ~o~al sys~em 

pressure a~ ~his ~empera~ure was 40 mmHg and ~he vapor 

pressure o~ ~he solu~e a~ ~his ~empera~ure is 94 mmHg. The 

~empera~ure is known ~o wi~hin 1 °C and ~he pressure is known 

~o wi~hin 0.1 mmHg. There~ore. ~he s~andard error in ~he 

value o~ ~he ac~ivity coe~~icient is as ~allows. 

0' r = y{[C0.0067)C1.38467)J~C1.38467) 2+C0.1)~C40) 2 

+[C0.0133)C138160)J~C131860) 4+C1)~C94) 4 J} r 

cr / r = o.oo7 = o.7% r 
where ~he s~andard devia~ion in ~he value o~ ~he vapor 

pressure calcula~ed ~rom ~he An~oine equa~ion was assumed ~o 

be 1 mmHg. Figure 3 shows the calibra~ion curve ~or benzene 

as obtained by injec~ing various amoun~s o~ benzene in 
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solu~ion in~o ~he GC. The solu~ions were prepared by 

injec~ing 100 ~1 of benzene in~o an emp~y 10 ml volume~ric 

flask. The salven~ was ~hen added un~il ~he liquid level 

reached ~he 10 ml mark on ~he flask. Several 1 ~1 injec~ions 

of ~his solu~ion were made in~o ~he GC so ~ha~ ~he accuracy 

could be de~ermined ~hrough replica~ion. Subsequen~ly, 1 ml 

of ~he above solu~ion was injec~ed in~o ano~her emp~y flask 

and enough salven~ was poured in~o ~he flask ~o bring ~he 

liquid level ~o ~he 10 ml mark. Several 1~1 injec~ions of 

~his solu~ion were ~hen made in~o ~he GC. Several 10~1 

injec~ions of ~his solu~ion were also made and ~he resul~s 

compared ~o ~he 1 ~1 injec~ions of ~he previous solu~ion. 

The resul~s were iden~ical wi~hin ~he accuracy of ~he GC. 

This procedure, known as serial dilu~ion. was repea~ed un~il 

calibra~ion da~a were ob~ained for ~he en~ire experimen~al 

da~a range. 

Two solven~s were used: wa~er and ~e~radecane. Since 

~he solubili~y of benzene in wa~er is limi~ed, ~his salven~ 

could no~ be used for ~he en~ire range of in~eres~. Wa~er is 

no~ de~ec~ed by ~he flame ioniza~ion de~ec~or. and ~here are 

no peak separa~ion problems. Te~radecane was selec~ed as ~he 

second salven~ because i~ was ~he ligh~es~ hydrocarbon ~ha~ 

gave a good separa~ion of ~he solu~e and salven~ peaks for 

~he par~icular column and column condi~ions in use. 

Figure 3 is a log-log represen~a~ion of ~he calibra~ion 

da~a. The curve ob~ained is linear and is used ~o calcula~e 
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composi~ions based on area-under-~he-curve da~a. The amoun~ 

o~ ~he solu~e in ~he sample was always less ~han 0.11 ~1 in 

bo~h ~he liquid and ~he vapor phase. The area-under-~he-

curve ~or the liquid samples ~all on the low end o~ ~he 

curve; vapor samples ~all on the upper end o~ the curve. The 

~riangles in Figure 3 represent calibra~ion da~a obtained 

with water as the solvent and the squares represent 

te~radecane as the solvent. 

The liquid densi~y o~ benzene at room temperature is 

0.879 g/cc. A 1 ~1 injec~ion o~ pure benzene resul~s in an 

area-under-the-curve o~ 1.40x108 . On a mass basis ~his 

volume corresponds ~o 0.00088 g and on a mole basis to 

-5 
1. 13x10 gmol. 

The vapor molar volume o~ benzene a~ ~he low system 

pressure can be ob~ained ~rom ~he ideal gas law cv8 =RT/P) ~o 

be 47076 cc/gmol which is ~he inverse o~ ~he vapor densi~y 

at 25°C. One can calcula~e ~he number o~ moles corresponding 

to the areas-under-the-curve ~or the liquid and the vapor 

sample using the calibration curve. These values are: 

L 
n = 

2 
-10 v -7 3. 23x10 gmol and n 2 = 9. 61x10 gmol 

The size o~ the liquid sampling loop is 1 ~1. 

There~ore. one can ob~ain the mole ~rac~ion o~ benzene 

through a simple mass balance. The area-under-the-curve ~or 

the liquid sample represents the volume o~ benzene in the 

liquid sample. One can sub~ract this volume ~rom ~he total 

sample volume to ob~ain the volume o~ water in ~he sample 
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and ~hus ob~ain ~he mole frac~ion by conver~ing ~he volume 

frac~ions ~o mole frac~ions. 

The volume of ~he vapor sampling loop is 0.36 cc. If 

~his loop were filled wi~h pure benzene vapor a~ ~he sys~em 

~empera~ure, 
-6 

i~ would have 9.13x10 gmol of benzene 

according ~o ~he ideal gas law. The ra~io of ~he number of 

moles of benzene in ~he vapor sample ~o ~his value will give 

~he vapor mole frac~ion. The vapor composi~ion is ~he ra~io 

of ~he par~ial pressure of benzene ~o ~he ~o~al sys~em 

pressure. 

The values ob~ained for x and y according ~o ~he above 

discussion are: 
-6 

x 2 = 8.08x10 and y 2 = 0.164 

Subs~i~u~ing ~hese values along wi~h ~he measured 

sys~em pressure and calcula~ed solu~e vapor pressure, one 

ob~ains ~he following value for r 2 : 

y 2 = C0.164)C40)/C8.08x10-6 )C94.1) = 9100 

Da~a Ob~ained and Comparison wi~h Li~era~ure Values 

The experimen~al values of ~he ac~ivi~y coefficien~ 

ob~ained in ~his work for ~he wa~er-benzene sys~em are shown 

in Table I. These da~a have also been plo~~ed in Figure 4. 

These values have been ob~ained a~ five differen~ 

tempera~ures and a~ leas~ 3 differen~ liquid composi~ions. 

The error lis~ed in ~his Table is defined as ~he ra~io of 

~he s~andard devia~ion ~o ~he mean mul~iplied by 100: 
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TABLE I 

EXPERIMENTAL ACTIVITY COEFFICIENTS OBTAINED 
FOR THE WATER (1)- BENZENE(2) SYSTEM. 

T (C) X y p (mmHg) pv (mmHg) gamma error(%) 

15 7.49E-6 0.141 33 58.42 10679 0.169 
15 6.54E-6 0.108 33 58.42 9354 0.169 
15 5.01E-6 0.090 33 58.42 10194 0.049 
20 7.35E-6 0.107 35 74.45 6904 0.048 
20 3.84E-6 0.091 35 74.45 11247 0.168 
20 3.61E-6 0.064 35 74.45 8317 0.168 
25 8.08E-6 0.154 40 94.10 8084 0.646 
25 5.82E-6 0.129 40 94.10 9451 0.096 
25 4.38E-6 0.105 40 94.10 10242 0.096 
25 5.91E-6 0.158 40 94.10 11385 0.016 
25 3.61E-6 0.999 40 94.10 11767 0.016 
25 1.89E-6 0.089 40 94.10 20145 0.016 
25 8.26E-6 0.155 40 94.10 7966 0.166 
25 1. 42E-6 0.080 40 94.10 24143 0.166 
25 1.06E-6 0.048 40 94.10 19256 0.166 
25 8.37E-7 0.042 40 94.10 21464 0.050 
30 3.30E-6 0.145 46 118.91 16990 0.165 
30 2.85E-6 0.106 46 118.91 14404 0.365 
30 2.04E-6 0.072 46 118.91 13641 0.045 
35 1. 97E-6 0.137 50 146.83 23675 0.014 
35 8.15E-7 0.092 50 146.83 38244 0.014 
35 4.38E-7 0.063 50 146.83 48981 0.094 
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e = 100Ca /y). r 
In each experimen~al run a sa~ura~ed solu~ion was 

prepared and ~hen serial dilu~ion was performed by adding 

pure dis~illed wa~er to ~he sys~em in order ~o ob~ain ~he 

ac~ivi~y coe!!icien~ a~ di!!eren~ liquid composi~ions and 
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s~udy ~he ~rend. In some cases, however, ~he range of liquid 

composition !or which ~he activi~y coe!!icient was 

de~ermined was so limi~ed ~ha~ prescribing a ~rend migh~ no~ 

have been jus~ified !or tha~ par~icular iso~herm. All da~a 

have been plo~~ed in Figure 4 ~o de~ermine ~he e!fec~ of 

composi~ion on ~he activi~y coe!!icient. 

The da~a in Figure 4 seem ~o indica~e ~ha~ ~he activi~y 

coe!!icien~ decreases wi~h increasing liquid composi~ion. 

However, ~he curve becomes asymp~o~ic near ~he sa~ura~ion 

limi~. 

Using ~he ~en 26°C da~a poin~s in ~he composi~ion range 

be~ween 1x10-6 and 1x10-6 and ~he ac~ivi~y coefficient value 

-4 of Tsonopoulos a~ sa~ura~ion C4x10 ), an empirical curve 

!i~ has been ob~ained which rela~es ~he ac~ivity coe!!icien~ 

to ~he liquid composition in the following manner: 

32.278 lnCy/y) = 2.196 [Cx -x)/x )J 
s s s 

where ~he subscrip~ s refers ~o ~he sa~ura~ion proper~y. The 

liquid composi~ion has been normalized and varies between 0 

a~ sa~ura~ion Cx=x ) and 1 at infini~e dilu~ion Cx=O). The 
s 

predicted curve is shown in Figure 4 as ~he solid line. The 

dashed lines on ~he ~wo sides of ~he predicted curve 
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indica~e ~he 99% con~idence envelop which includes mas~ 

experimen~al da~a. The ac~ivi~y coe~~icien~ can be ob~ained 

a~ any composi~ion using ~his approach. 

Tsonopoulos e~ al. C155) have measured ~he aqueous 

solubili~y and ~he Henry's law cons~an~ o~ benzene, 

cyclohexane and hexane. These da~a are presen~ed in Table 

II. One can see ~ha~ ~he aqueous solubili~y decreases by an 

order o~ magni~ude and ~he ac~ivi~y coe~~icien~ increases by 

an order o~ magni~ude as one moves s~ep wise ~rom ~he 

benzene column ~o ~he cyclohexane column and ~he hexane 

column represen~ing aroma~ic, naph~henic and para~~inic 

organic compounds all o~ which have ~he same number o~ 

carbon a~oms Csix). The ~empera~ure seems ~o have a small 

e~~ec~ on ~he value o~ ~he aqueous solubili~y and ~he value 

o~ ~he ac~ivi~y coe~~icien~. al~hough ~hese proper~ies go 

~hrough a minimum and a maximum respec~ively in ~he range o~ 

~empera~ures indica~ed. The Henry's law cons~an~ is a much 

s~ronger ~unc~ion o~ ~empera~ure. In ~he case o~ benzene, 

~he Henry~s law cons~an~ increases dras~ically wi~h 

increasing ~empera~ure so ~ha~ ~he Henry's law cons~an~ a~ 

0 

40 C is almos~ 6 ~imes larger ~han ~he Henry's law cons~an~ 

a~ 0°C. Cyclohexane exhibi~s a similar increase in ~he 

Henry's law cons~an~. Hexane ~empera~ure dependency is even 

higher, and ~he value o~ ~he Henry's law cons~an~ increases 

~en ~old be~ween ~he ~wo ~empera~ures men~ioned above. This 

seems ~o indica~e ~ha~ ~he solu~e vapor pressure increases 
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TABLE II 

TSONOPOULOS' EXPERIMENTAL SOLUBILITY, HENRY'S LAW 
CONSTANT AND ACTIVITY COEFFICIENT DATA ( 15). 

benzene cyclohexane hexane 

T(C) X H GAMMA X H GAMMA X H GAMMA 

0 4.00E-4 1358 2658 1.20E-5 44902 83307 3.34E-6 2.60E5 2.97E5 
5 3.97E-4 1788 2652 1.19E-5 59151 83547 3.01E-6 3.73E5 3.29E5 

10 3.95E-4 2313 2634 1. 20E-5 76322 83049 2.77E-6 5.21E5 3.58E5 
15 3.96E-4 2943 2600 1.21E-5 96579 81916 2.60E-6 7.05E5 3.81E5 
20 4.00E-4 3688 2566 1.24E-5 119995 80104 2.48E-6 9.28E5 3.99E5 
25 4.10E-4 4554 2497 1.27E-5 146543 77700 2.41E-6 1.19E6 4.10E5 
30 4.20E-4 5546 2428 1.32E-5 176086 74867 2.37E-6 1.49E6 4.15E5 
35 4.30E-4 6666 2351 1. 37E-5 208377 71656 2.37E-6 l.82E6 4.14E5 
40 4.40E-4 7913 2266 1. 44E-5 243061 68142 2.41E-6 2.18E6 4.07E5 
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much fas~er with temperature than does the aqueous 

solubility of the solute. 

The activity coefficient has been plotted as a function 

of temperature for benzene, cyclohexane and hexane and the 

plots are shown in Figures 6 through 7. In all of these 

figures, the activity coefficient increases with increasing 

temperature until it reaches a maximum where it starts a 

downward trend. 

Duhem et al C45) and Mackay et al. C90) have obtained 

the activity coefficient of the saturated aqueous solution 

of benzene at 26 °C. Their values at a total system pressure 

of 1 atm are 1700 and 2470, respectively. These two data 

points at a single temperature and the data of Tsonopoulos 

et al. 
0 0 

C1S5) for benzene in the range of 0 C to 40 C have 

been plotted in Figure 8 along with the experimental 

activity coefficients of Leighton et al. C73). The activity 

coefficient has been obtained by Tsonopoulos et al. C1S6) as 

the inverse of the experimental value of the maximum solute 

solubility in water under atmospheric pressure. This is the 

definition of Raoult's law in liquid-liquid equilibrium 

which states that the activity coefficient of the solvent is 

equal to unity as its composition approaches unity and hence 

the activity coefficient of the solute is equal to the 

inverse of its solubility. In this definition, the criterion 

for equilibrium is the equality of fugacities of the solvent 

and solute which are defined as the product of the activity 
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coe~~icien~ and ~he solubili~y ~or each o~ ~he ~wo liquid 

phases in equilibrium (aqueous and hydrocarbon): xhyh = 

xwyw. Leigh~on's da~a have been ob~ained ~rom vapor-liquid 

equilibrium in an experimen~al se~up using ~he s~ripping 

me~hod and subsequen~ concen~ra~ion o~ ~he sample. These 

values have also been ob~ained under a~mospheric pressure. 

There is good agreemen~ be~ween ~he da~a ob~ained ~rom 

liquid-liquid and vapor-liquid equilibrium experimen~s as 

indica~ed by ~he ac~ivi~y coe~~icien~ curves o~ Figure 8 ~or 

~he da~a o~ Tsonopoulos and Leigh~on ~or ~he en~ire 

~empera~ure range. 

The predic~ed values o~ ~he ac~ivi~y coe~~icien~ 

corresponding ~o ~he ~empera~ures ~or which experimen~al 

da~a are available have been ob~ained using ~he in~erac~ion 

parame~ers ob~ained in ~his work based on our experimen~al 

da~a. and ~he original UNIFAC in~erac~ion parame~ers as 

published by Fredenslund e~ al C63). The resul~s o~ ~hese 

predic~ions are also plo~~ed in Figure 8. The predic~ions 

based on ~he original parame~ers s~ar~ a~ a higher value 

~han ~he experimen~al value, in~ersec~ ~he experimen~al 

value curves and end a~ a lower value ~han ~he experimen~al 

value. The predic~ions based on the in~erac~ion parame~ers 

ob~ained ~rom ~he experimen~al da~a o~ ~his work are qui~e 

similar bu~ are in more error ~han ~he predic~ions based on 

Fredenslund's parame~ers. This could be due ~o ~he ~ac~ ~ha~ 

~he in~erac~ion parame~ers o~ ~his work have been ob~ained 
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~rom only one binary sys~em Cbenzene-wa~er) a~ one 

0 

~empera~ure C26 C) ~or which ac~ivi~y coe~~icien~s a~ ~en 

composi~ions were measured, whereas Fredenslund da~a are 

based on several sys~ems and several iso~herms. The 

predic~ion o~ ~he in~erac~ion parame~ers based on ~he 

experimen~al da~a o~ ~his work is good ~or 26°C where da~a 

were ob~ained and coincides wi~h ~he li~era~ure experimen~al 

da~a. 

The predic~ion curve has been ob~ained a~ composi~ions 

equal ~o ~he sa~ura~ion limi~ ~or ~he given ~empera~ure so 

~ha~ ~he predic~ed values could be compared ~o ~he 

experimen~al values ~rom ~he li~era~ure sources which have 

all been measured a~ ~he sa~ura~ion poin~. The experimen~al 

da~a o~ ~his work have been ob~ained a~ various composi~ions 

bu~ no~ a~ ~he sa~ura~ion poin~. ~here~ore, ~hese da~a could 

no~ be compared direc~ly ~o ~he o~her da~a in Figure 8, and 

~ha~ is why ~he in~erac~ion parame~ers ob~ained ~rom ~he 

experimen~al da~a o~ ~his work have been used ~o predic~ 

values a~ ~he sa~ura~ion limi~. 

Since liquid composi~ion is so low, one should be in 

~he linear Henry's law region where ~he Henry's law cons~an~ 

does no~ change wi~h decreasing liquid composi~ion. However, 

~he da~a ob~ained in ~his work seem ~o indica~e ~ha~ ~or 

~hese low solubili~y compounds ~his is no~ ~he case and 

ac~ivi~y coe~~icien~ changes wi~h composi~ion even in ~he 

very dilu~e region. There~ore, ~hese sa~ura~ion limi~ 



ac~ivi~y coefficien~s are no~ ~he same as ~he infini~e 

dilu~ion ac~ivi~y coefficien~s which can be ob~ained by 

e~rapola~ion ~o x=O in ~he dilu~e region. 
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Al~hough ~he experimen~al ac~ivi~y coefficien~s 

collec~ed from ~he li~era~ure were ob~ained a~ a~mospheric 

pressure and ~he experimen~al ac~ivi~y coefficien~s in ~his 

work were measured a~ sys~em pressures ranging be~ween 33 

and 60 mmHg, ~he da~a could be compared because ~he ac~ivi~y 

coefficien~ is a liquid proper~y and a very weak func~ion of 

pressure. Therefore, ~he difference in pressure should have 

a negligible effec~ on ~he measured value of ~he ac~ivi~y 

coefficien~. 

Limi~a~ions of Experimen~ 

The aqueous solubili~y of hexane is abou~ 170 ~imes 

lower ~han ~ha~ of benzene. The aqueous solubili~y of 

benzene has been repor~ed as 1.78 g/L in ~he li~era~ure and 

~he aqueous solubili~y of hexane has been repor~ed in ~he 

range be~ween 0.0096 ~o 0.0183 g/L. This preven~ed ~he 

experimen~al de~ermina~ion of ~he ac~ivi~y coefficien~ for 

hexane in ~his work. The vapor composi~ion could be measured 

for ~his compound bu~ ~he liquid composi~ion was ou~side ~he 

de~ec~ion range of ~he gas chroma~ograph. Bo~h a flame 

ioniza~ion de~ec~or and an elec~ron cap~ure de~ec~or were 

used bu~ nei~her yielded sa~isfac~ory resul~s. 
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There~ore, i~ is sugges~ed ~ha~ ano~her de~ec~ion 

me~hod such as spec~ropho~ome~ry be used ~or ~he measuremen~ 

o~ liquid composi~ions. 

Correla~ion Framework 

The li~era~ure experimen~al da~a are used in ~his 

sec~ion ~o modi~y ~he UNIFAC group con~ribu~ion me~hod so 

~ha~ ~his model can predic~ ~he ac~ivi~y coe~~icien~ o~ 

aqueous sys~ems be~~er. There~ore, some o~ ~he ~lexibili~y 

and generali~y o~ ~he model will be sacri~iced ~or be~~er 

accuracy ~or speci~ic sys~ems in a narrow composi~ion range. 

The modi~ica~ions ~o ~he UNIFAC model include ob~aining new 

in~erac~ion parame~ers and discovering how ~he new 

parame~ers compare wi~h ~he original parame~ers. I~ ~here is 

a ~empera~ure dependency in ~he in~erac~ion parame~ers. ~he 

model will be rendered more rigid ~or ~he sake o~ be~~er 

predic~ion power by developing correla~ions ~or ~he 

~empera~ure dependency o~ ~hese parame~ers. 

New Parame~ers 

The in~erac~ion parame~ers be~ween ~he me~hyl and 

aroma~ic me~hyl groups and wa~er ob~ained in ~his work based 

on ~he experimen~al da~a o~ Tsonopoulos C155) have been 

lis~ed in Table III. These values can be compared wi~h ~he 



TABLE III 

COMPARISON OF Aij WITH LITERATURE VALUES. 

pair Fredenslund Bastes 

CH2-H20 1318 1.44 
H20-CH2 300 354.53 

ACH-H20 903.8 n. a. 
H20-ACH 362.3 n. a. 

This work 

5696 
547 

6441 
312 

89 
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original UNIFAC in~erac~ion parame~ers as repor~ed by 

Fredenslund e~ al. C63) based on vapor-liquid equilibrium 

da~a and ~he in~erac~ion parame~ers repor~ed by Bas~os e~ 

al. C16) based on in~inite dilu~ion ac~ivi~y coe~~icients 

mos~ly. 

The interaction parameters o~ ~his work have been used 

to predict the activity coe~~icients o~ benzene, cyclohexane 

and hexane. These predic~ed values have been compared to ~he 

experimen~al values o~ Tsonopoulos et al. C166). The results 

of ~his comparison are presen~ed in Table IV as percentage 

errors defined as the ratio o~ ~he dif~erence o~ the 

calculated and experimental values o~ the activity 

coe~~icien~ ~o the experimen~al value o~ the activi~y 

coef~icien~: 
c e e 

Cy - y )/y . The predic~ion errors are an 

indica~ion o~ ~he correlation power o~ the UNIFAC model with 

the new interaction parame~ers. These errors range be~ween 1 

and 76% ~or the temperature-independen~ in~eraction 

parame~ers in Table IV. 

The in~erac~ion parame~ers used ~or the above 

predic~ions were overall values obtained ~or ~he range o~ 

~empera~ures be~ween 0°C and 40°C. These parame~ers have 

also been ob~ained for speci~ic ~emperatures and are listed 

in Table V. Here, a distinc~ion has been made between a 

paraf~inic me~hyl group and a naph~henic me~hyl group as 

~hey appear in hexane and cyclohexane, whereas in ~he 

original classi~ica~ion ~hese two are taken to be the same 
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TABLE IV 

PERCENTAGE ERRORS IN THE CORRELATION OF ACTIVITY 
COEFFICIENTS USING THE GENERAL BINARY 

INTERACTION PARAMETERS OBTAINED 
IN THIS WORK 

BENZENE 

T-INDEPENDENT T-DEPENDENT 

EXPERIMENTAL CALCULATED ERRROR(%) CALCULATED ERROR(%) 

2658 3015 13 2644 -0.52 
2652 2855 8 2647 -0.17 
2634 2709 3 2619 -0.56 
2600 2575 -1 2580 -0.74 
2566 2452 -4 2557 -0.33 
2497 2338 -6 2492 -0.18 
2428 2233 -8 2411 -0.67 
2351 2135 -9 2347 -0.13 
2266 2045 -10 2261 -0.21 

CYCLOHEXANE 

T-INDEPENDENT T-DEPENDENT 

EXPERIMENTAL CALCULATED ERRROR(%) CALCULATED 

83307 107567 29 82943 .:.0.44 
83547 96432 15 83317 -0.27 
83049 86782 5 82605 -0.54 
81916 78384 -4 80968 -1.16 
80104 71044 -11 79238 -1.08 
77700 64604 -17 77102 -0.77 
74867 58931 -21 74438 -0.57 
71656 53916 -25 71497 -0.22 
68142 49469 -27 67929 -0.31 

HEXANE 

T-INDEPENDENT T-DEPENDENT 

EXPERIMENTAL CALCULATED ERRROR(%) CALCULATED ERROR(%) 

296959 518639 75 295128 -0.62 
329311 451672 37 325736 -1.09 
357820 395216 11 355505 -0.65 
381108 347382 -9 380060 -0.27 

.91 



TABLE IV (CONTINUED) 

T-INDEPENDENT T-DEPENDENT 

T(C) EXPERIMENTAL CALCULATED ERRROR(%) CALCULATED ERROR(%) 

20 
25 
30 
35 
40 

398812 
410103 
415069 
414081 
406626 

306659 
271824 
241895 
216066 
193683 

-23 
-34 
-41 
-48 
-52 

402022 
405574 
413282 
409610 
401904 

0.81 
-1.10 
-0.43 
-1.08 
-1.16 
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TABLE V 

INTERACTION PARAMETERS AS A FUNCTION OF TEMPERATURE. 

aromatic naphthenic paraffinic 
CH2 CH2 CH2 

T (C) A12 A21 A12 A21 A12 A21 

0 280 429 429 547 433 563 
5 291 435 434 558 458 577 

10 301 440 448 566 481 591 
15 303 447 457 574 503 604 
20 313 452 465 582 534 615 
25 314 458 475 589 538 627 
30 321 461 481 596 547 639 
35 324 466 504 599 555 649 
40 320 472 506 605 564 658 

temperature-
independent 5039 346 4470 512 5697 547 



group. 

These in~er-ac~ion par-ame~er-s have been plo~~ed as a 

func~ion of ~empera~ure in Figures 9 and 10 for comparison. 

Quadra~ic fi~s of ~he ~ype: 

94 

A12 = a 1 + b1 T + c1~ and A21 = a 2 + b 2 T + c2~ CT in K) 

have been ob~ained for- ~hese groups and ~he coefficien~s are 

lis~ed in Table VI. An analysis of variance s~udy was used 

~o de~ermine ~he significance of adding more ~er-ms ~o ~he 

polynomial expression used for- fi~~ing. I~ was based on ~his 

analysis ~ha~ a quadr-a~ic fi~ was selec~ed. Using ~he 

~empera~ur-e-dependen~ in~erac~ion par-ame~ers r-esul~s in a 

vas~ improvemen~ in ~he corr-ela~ion power of ~he model such 

~ha~ ~he absolu~e percen~age errors are in no case larger 

~han 1.16% as indica~ed in Table IV for ~he ~empera~ure 

-dependen~ in~er-ac~ion par-ame~ers. 

The experimen~al da~a in ~he li~era~ure ~ha~ deal wi~h 

aqueous sys~ems have been ga~hered and are pr-esen~ed in 

Tables A-I ~hrough A-IX in ~he Appendix. These include 

ac~ivi~y coefficien~s. Henry's law cons~an~s and 

dis~r-ibu~ion coefficien~s. Whenever ~he liquid composi~ion 

has been specified, ~his value is included in Tables A-I 

~hrough A-IX. ~herwise, ~he equilibrium value is assumed ~o 

be a~ ~he sa~ura~ion limi~. Since infini~e dilu~ion ac~ivi~y 

coefficien~s are used ~o de~ermine ~he UNIFAC in~erac~ion 

coefficien~s. o~her forms of equilibrium da~a have been 

conver~ed ~o ac~ivi~y coefficien~s. Therefore, in Tables A-I 
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TABLE VI 

COEFFICIENTS FOR THE QUADRATIC FIT OF THE INTERACTION 
PARAMETERS AS A FUNCTION OF TEMPERATURE. 

binary pair 

aromatic CH2 
naphthenic CH2 
paraffinic CH2 

a1 b1 c1 a2 b2 c2 

280.515 2.107 -0.027 428.921 1.230 -0.004 
428.139 1.712 -0.007 547.333 2.043 -0.015 
431.897 5.687 -0.060 5~3.000 2.898 -0.013 
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~hrough A-IX where ~here is a column wi~h values o~her ~han 

ac~ivi~y coe~~icien~s. ~he ac~ivi~y coe~~icien~ values have 

been calcula~ed in ~his work and are no~ by ~he original 

au~hors. 
0 

Mos~ da~a are a~ ei~her ~0 or 26 C, as speci~ied in 

~he headings o~ Tables A-I ~hrough A-IX. ~herwise, ~he 

~empera~ure has been speci~ied in ano~her column. 

Henry's law cons~an~s are presen~ed in ~hree di~~eren~ 

ways: dimensionless, wi~h uni~s o~ pressure, and wi~h uni~s 

o~ pressure over concen~ra~ion. These origina~e ~rom ~he 

de~ini~ion o~ ~he Henry's law cons~an~ as ~he ra~io o~ ~he 

~ugaci~y over ~he liquid composi~ion as liquid composi~ion 

approaches zero. Some~imes ~his parame~er is de~ined as ~he 

ra~io o~ ~he vapor and liquid phase composi~ions, some~imes 

as par~ial pressure over liquid composi~ion and some~imes as 

par~ial pressure over liquid concen~ra~ion. 

The experimen~al error or accuracy has been repor~ed in 

some o~ ~he original sources. In Table A-I ~he error in ~he 

ac~ivi~y coe~~icien~s has been repor~ed as ±2%. Mackay e~ 

al. C87) repor~ an accuracy o~ 6% ~or ~heir da~a in Table 

A-II. Arbuckle C10) repor~s ~ha~ his Henry's law cons~an~s 

have an average absolu~e error o~ 0.112. He de~ines ~he 

absolu~e error as ~he di~~erence be~ween ~he logari~hms o~ 

predic~ed and observed values. His da~a are presen~ed in 

Table A-III. An accuracy or 5% is repor~ed by Mackay e~ al. 

C90) ~or ~he da~a in Table A-V. Finally, ~he da~a in Table 

A-IX are ~he leas~ reliable because ~hey include bo~h 



experimen~al and calcula~ed values based on es~ima~ed 

proper~ies such as ~he vapor pressure. 
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Table A-I presen~s ~he ac~ivi~y coe~~icien~s o~ ~our c4 

alcohols a~ various composi~ions. All ~our o~ ~hese alcohols 

are made up o~ only ~ive dis~inc~ groups, namely, CH3 , CH2 • 

CH, C and OH. There is a di~~erence in ~he group sur~ace 

areas and ~he group volumes among ~he CH3 , CH2 , CH and C 

groups. However, as ~ar as energy in~erac~ions are 

concerned, ~hese ~our groups are ~rea~ed alike; and one pair 

o~ binary in~erac~ion parame~ers represen~s all ~our groups. 

This demons~ra~es ~he approxima~e na~ure o~ ~he group 

con~ribu~ion models such as UNIFAC. For example, 2-bu~anol 

and 2-me~hyl-1-propanol which are composed o~ ~he same 

groups have widely varying values o~ ac~ivi~y coe~~icien~s. 

The values ~or 2-bu~anol range be~ween 19.1 and 22 whereas 

~he values ~or 2-me~hyl-1-propanol range be~ween 11.7 and 

44.2 in ~he same composi~ion range. The ac~ivi~y coe~~icien~ 

o~ ~hese compounds has been plo~~ed as a ~unc~ion o~ liquid 

composi~ion in Figures 11 and 12. Since ~he composi~ion 

range o~ 2-me~hyl-2-propanol is larger ~han ~he o~her ~hree 

compounds, ~hese da~a have no~ been superimposed on Figure 

12. 

The in~erac~ion parame~ers o~ Bas~os e~ al. C16) ~or 

~he H2 0 - OH binary pair were used ~o predic~ ac~ivi~y 

coe~~icien~s ~or ~he ~our alcohols above which have very 

similar s~ruc~ures. The predic~ed ac~ivi~y coe~~icien~s were 
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bes~ for a-me~hyl-a-propanol where ~he predic~ion errors did 

no~ exceed ax and were wars~ for a-bu~anol where ~he 

predic~ion errors ranged be~ween 4a% and 49 % when compared 

~o ~he experimen~al values of Table A-I. This illus~ra~es 

~he inabili~y of group con~ribu~ion me~hods ~o predic~ ~he 

ac~ivi~y coefficien~ of compounds wi~h similar s~ruc~ures 

bu~ widely varying ac~ivi~y coefficien~s accura~ely. 

Once ~he experimen~al ac~ivi~y coefficien~ values are 

known, ~hese values are used ~o de~ermine ~he in~erac~ion 

parame~ers be~ween ~he salven~ Cwa~er) and ~he solu~e. The 

experimen~al ac~ivi~y coefficien~s. ~hose found in ~he 

li~era~ure and ~hose ob~ained in ~his work, are compared 

wi~h ~he values ob~ained using ~he UNIFAC model which was 

presen~ed in Chap~er II. The simplex me~hod C149) is used ~o 

de~ermine ~he in~erac~ion parame~ers based on ~his 

comparison. 

Bas~os e~ al. C16) have proposed using only infini~e 

dilu~ion ac~ivi~y coefficien~ da~a for ob~aining ~he binary 

in~erac~ion parame~ers needed in ~he UNIFAC model. Da~a 

based on infini~e dilu~ion ac~ivi~y coefficien~s are 

preferred because ~hey en~ail no e~rapola~ion from high 

concen~ra~ion ~o low concen~ra~ion regions, ~hereby avoiding 

some inheren~ errors in predic~ion. 

The group volumes and surface areas ~ha~ have been used 

in ~his work are presen~ed in Table VII. 

The experimen~al ac~ivi~y coefficien~s lis~ed in Tables 
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TABLE VII 

GROUP SURFACE AREAS AND VOLUMES USED IN THIS WORK ( 15). 

GROUP R Q 

AC 0.3652 0. 1200 
ACH 0.5313 0.4000 
ACCH3 1.2663 0.9680 
ACCL 1.1562 0.8440 
BR 0.9492 0.8320 
C=C 0.6605 0.4850 
CH=CH 1.1167 0.8670 
CCL 1.0060 0.7240 
CCL2 1. 8016 1.4480 
CCL3 2.8700 2.4100 
CCL4 3.3900 2.9100 
CH2COO 1. 9031 1.7280 
CH 0.4469 0.2280 
CH2 0.6744 0.5400 
CH3 0.9011 0.8480 
CH20 0.9183 0.7800 
CL 0.7910 0.7240 
H20 0.9200 1.4000 
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A-I ~hrough A-IX in ~he Appendix have been used ~o ob~ain 

in~erac~ion parame~ers be~ween ~he binary pairs lis~ed in 

Table VIII. The re~erence column in Table VIII indica~es 

which experimen~al da~a were used ~o ob~ain ~he in~erac~ion 

parame~ers. Vapor pressure da~a were ~aken ~rom Lange's 

Handbook o~ Chemis~ry and Physics where coe~~icien~s ~or ~he 

An~oine equa~ion are lis~ed. Vapor pressures were used when 

i~ was necessary ~o conver~ Henry's cons~an~ da~a ~o 

ac~ivi~y coe~~icien~s. 

The resul~s o~ applying ~he UNIEST program C62) which 

es~ima~es UNIFAC in~erac~ion parame~ers wi~h ~he simplex 

op~imiza~ion me~hod ~o ~he available experimen~al da~a are 

presen~ed in Table VIII as binary in~erac~ion parame~ers. 

The componen~ lis~ed ~irs~ is designa~ed by 1. In ~he 

majori~y o~ cases ~he solven~ which is wa~er is ~his ~irs~ 

componen~. al~hough in~erac~ions be~ween o~her binary pairs 

have also been ob~ained. 

The procedure was as ~allows. The in~erac~ion 

parame~ers were ob~ained sequen~ially. For ins~ance, benzene 

is composed o~ ~he aroma~ic me~hyl group CACH2 J only. 

There~ore. ~his compound was used as ~he ~irs~ building 

block and ~he binary in~erac~ion parame~ers be~ween ~he ACH~ 
~ 

and ~he H2o groups were de~ermined. Toluene which is 

composed o~ ~ive aroma~ic me~hyl groups and an ACCH3 group 

was selec~ed ~or ~he ne~ s~ep. The in~erac~ion parame~ers 

ob~ained in ~he previous s~ep were used ~o ob~ain ~he binary 
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TABLE VIII 

BINARY INTERACTION PARAMETERS OBTAINED 
IN THIS WORK. 

REFERENCES 
BINARY PAIR A12 A21 1 2 3 4 5 6 7 

H20-ACH2 5335 349 10 34 90 
H20-CCL 5091 547 42 73 
H20-C=C -12 178 34 89 90 135 
H20-CCL3 4077 494 10 34 42 89 90 109 135 
H20-ACCL 67 247 10 34 90 
H20-ACCH3 345 473 10 34 90 
H20-CCL4 2031 704 10 34 42 89 90 
H20-CL 1545 1492 34 42 
H20-CCL2 68 868 34 42 81 90 
CCL2-CCL 5271 4597 34 42 
H20-Br 426 544 34 109 
H20-CH20 103 222 34 
CH20-CCL -193 103 34 
H20-CCOO 66 242 34 



in~erac~ion parame~er be~ween ~he ACCH3 and ~he H2 o groups. 

One would ~hen move on ~o a compound like chloro~oluene and 

so on. 
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In all o~ ~hese de~ermina~ions ~he da~a ~rom dif~eren~ 

sources were pooled. For example. ~or benzene da~a were 

~aken from ~hree di~~eren~ sources. namely. ~he da~a in 

Tables A-I. A-II and A-V. All o~ ~hese da~a are a~ as·c and 

~hey range in value be~ween 1910 ~o 6200. However, ~he da~a 

in Tables A-I and A-II are ob~ained a~ ~he maximum 

Csa~ura~ion) solubili~y o~ benzene in waLer which is 1790 

mg/L and range be~ween 1910 and 2470. whereas ~he one da~a 

poin~ for benzene in Table A-V has been ob~ained a~ a 

concen~ra~ion of 700 mg/L and is much larger in magni~ude 

C6200). The da~a ~or ~oluene in Tables A-I. A-II and A-V 

have all been measured a~ maximum solubili~y and range 

be~ween 9090 and 9900. Therefore. i~ seems ~o ma~Ler a grea~ 

deal a~ which concen~ra~ion ~he acLivi~y coe~ficienL has 

been measured. Similarly. ~he ac~ivi~y coef~icien~ o~ 

chlorobenzene varies be~ween 11000 and 13400 in ~he same 

~hree Tables. 

One needs experimen~al da~a ~o evalua~e ~he predic~ion 

capabili~y of ~he in~erac~ion parame~ers ob~ained above as a 

resul~ o~ pooling ~he da~a in Tables A-I ~hrough A-IX. 

Leigh~on e~ al C73) have ob~ained dis~ribu~ion 

coe~~icien~s ~or 21 chlorina~ed hydrocarbons in addi~ion ~o 

benzene and ~oluene in dilu~e air-wa~er sys~ems in ~he 
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~empera~ure range be~ween 0 C and 30 C. They have ob~ained 

~hese da~a ~or ~he purpose o~ ground wa~er con~amina~ion 

applica~ions. Their experimen~al me~hod was discussed in 

Chap~er II. They used a simple equilibra~ion cell, a ~rap 

~or concen~ra~ion purposes, and a gas chroma~ograph ~or 

analysis in ~heir experimen~al measuremen~s. They s~a~e ~ha~ 

~heir ~echnique has a random error o~ less ~han ±1% and a 

sys~ema~ic error due ~o gas chroma~ograph peak separa~ion 

and in~egra~ion error o~ less ~han 5% ~or compounds whose 

dis~ribu~ion coe~~icien~s range be~ween 100 and 1000. Vapor 

pressure da~a were used ~o conver~ dis~ribu~ion coe~~icien~s 

~o ac~ivi~y coe~~icien~s. These ac~ivi~y coe~~icien~s which 

are lis~ed in Table IX a~ various ~empera~ures were used ~o 

evalua~e ~he per~ormance o~ ~he in~erac~ion parame~ers 

lis~ed in Table VIII. ~ course ~hese in~erac~ion parame~ers 

are independen~ o~ ~empera~ure and are no~ expec~ed ~o 

per~orm well, i~ ~he ac~ivi~y coe~~icien~ is a s~rong 

~unc~ion o~ ~empera~ure. 

Table X shows ~he resul~ o~ ~his comparison. The column 

labeled original in ~his Table re~ers ~o ~he in~erac~ion 

parame~ers originally proposed by Fredenslund e~ al.C63). 

Bo~h Fredenslund's in~erac~ion parame~ers and ~he 

in~erac~ion parame~ers ob~ained ~rom ~he experimen~al da~a 

o~ Tables A-I ~hrough A-IX are independen~ o~ ~empera~ure. 

For ~he case o~ chlorobu~ane, ~he in~erac~ion parame~ers o~ 

~his work give be~~er resul~s which are 20 ~o 46 percen~ 
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TABLE IX 

LEIGHTON'S DISTRIBUTION COEFFICIENT DATA AS A 
FUNCTION OF TEMPERATURE (73). 

SOLUTE TEMPERATURE (C) K GAMMA 

DICHLOROMETHANE 1. 90 61.40 294 
13.50 111. 50 317 
15.70 121.50 314 
17.10 141. 60 345 
22.00 157.10 313 
24.90 161. 90 287 

TRICHLOROMETHANE 1. 90 68.90 834 
13.50 128.70 856 
15.70 146.70 878 
17.10 155.00 868 
22.00 194.50 869 
24.90 204.80 804 

CHLOROBUTANE(2) 1. 90 358.20 5096 
13.50 773.60 6232 
15.70 847.20 6165 
17.10 891.00 6084 
22.00 1109.30 6095 
24.90 1243.30 6030 

DICHLOROPROPANE(1,2) 1. 90 45.80 2412 
13.50 90.20 2460 
15.70 101.60 2464 
17.10 108.60 2446 
22.00 131.40 2302 
24.90 153.50 2329 

DICHLOROPROPANE(1,3) 1. 90 17.71 
13.50 31.70 
15.70 36.21 
17.10 37.14 
22.00 44.97 
24.90 53.57 

TRICHLOROPROPANE(1,2,3) 1. 90 11.66 
13.50 11.46 
15.70 13.55 
17.10 14.18 
22.00 15.12 
24.90 19.81 

DICHLOROBUTANE(1,4) 13.50 15.27 
15.70 20.05 
17.10 21.35 
22.00 24.76 
24.90 26.61 

CHLOROBUTANE(1) 1. 00 325.50 8184 
3.00 375.30 8441 

12.40 536.90 7336 
12.50 569.20 7738 
17.90 693.40 7209 
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TABLE IX (CONTINUED) 

SOLUTE TEMPERATURE (C) K GAMMA 

19.10 738.00 7243 
22.70 833.00 6901 
23.00 839.00 6847 

TOLUENE 1. 00 121.80 12919 
3.00 129.20 12078 

12.40 204.60 10880 
12.50 198.10 10473 
17.90 251.50 9814 
19.10 278.70 10185 
22.70 309.80 9335 
23.00 342.70 10165 

CHLOROBENZENE 1.00 68.00 19194 
3.00 68.80 16938 

12.40 104.10 13915 
12.50 112.80 14984 
17.90 133.20 12740 
19.10 153.30 13658 
22.70 148.70 10753 
23.00 175.90 12504 

CHLOROHEXANE(1) 1. 00 399.50 151489 
3.00 365.50 120224 

12.40 668.30 116498 
12.50 728.40 126156 
17.90 873.20 107501 
19.10 969.70 110897 
22.70 1161.40 106943 
23.00 1267.70 114677 

DICHLOROPENTANE(1,5) 1. 00 16.36 
3.00 23.10 

12.40 21.41 
12.50 22.87 
17.90 26.96 
19.10 36.69 
22.70 79.33 

CHLOROTOLUENE 1. 00 87.40 93033 
3.00 66.90 61384 

12.40 97.85 46186 
12.50 118.50 55526 
17.90 133.50 43685 
19.10 175.30 53077 
22.70 176.70 42569 
23.00 202.70 47925 

TRICHLOROETHANE(l,l,l) 1. 00 297.00 5534 
1. 00 297.90 5551 
1. 20 307.00 5660 
2.50 327.80 5641 
7.00 418.50 5699 

10.00 504.00 5893 
12.00 556.80 5892 
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TABLE IX (CONTINUED) 

SOLUTE TEMPERATURE ( C ) K GAMMA 

12.00 569.60 6027 
12.90 586.20 5933 
14.00 652.70 6258 
18.00 766.70 6057 
18.00 793.40 6268 
18.00 802.90 6343 
19.00 828.30 6239 
19.20 836.70 6242 
19.50 788.10 5797 
24.30 1027.60 6042 
25.20 1094.30 6174 
25.30 1110.70 6238 
26.00 1090. 20 5930 
26.00 1131.40 6154 
26.10 1073.80 5814 

TRICHLOROETHENE 1. 00 131.60 5500 
1. 00 139.50 5830 
1. 20 138.80 5729 
2.50 168.40 6413 
7.00 200.90 5836 

10.00 232.70 5681 
12.00 254.80 5556 
12.00 265.80 5796 
12.90 287.00 5952 
14.00 309.90 6048 
18.00 375.00 5900 
18.00 379.60 5973 
18.00 375.00 5900 
19.00 393.50 5874 
19.20 417.30 6165 
19.50 396.50 5766 
24.30 537.10 6117 
25.20 539.90 5880 
25.30 545.70 5914 
26.00 551.10 5771 
26.00 563.80 5904 
26.10 558.10 5815 

TETRACHLOROETHENE 1.00 206.90 36841 
1. 00 226.70 40366 
1. 20 236.10 41482 
2.50 260.40 41970 
7.00 314.10 37848 

10.00 370.20 36980 
12.00 401.00 35445 
12.00 473.30 38654 
12.90 452.90 37915 
14.00 501.50 39309 
18.00 615.10 38144 
18.00 627.20 38895 
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TABLE IX (CONTINUED) 

SOLUTE TEMPERATURE (C) K GAMMA 

18.00 627.50 38913 
19.00 644.90 37764 
19.20 633.90 36699 
19.50 647.90 36875 
24.30 868.10 37814 
25.20 889.80 36907 
25.30 905.40 37351 
26.00 896.80 35624 
26.00 938.80 37292 
26.10 920.70 36377 

DICHLOROETHANE 1.00 30.62 1045 
1. 30 30.89 1036 

11.00 46.56 909 
21.00 68.89 805 
22.00 76.59 852 
27.20 95.46 828 

CARBONTETRACHLORIDE 1. 00 412.10 8835 
1. 30 412.40 8700 

11.00 719.50 9199 
13.00 859.50 9961 
21.00 1280.30 10178 
22.00 1319.40 10024 
27.20 1571.40 9482 

BENZENE 1.00 97.50 2657 
1. 30 95.20 2550 

11.00 153.70 2435 
13.00 181.00 2587 
21.00 257.70 2482 
22.00 264.30 2427 
27.20 327.60 2365 

TETRACHLOROETHANE 11.00 10.94 5264 
13.00 12.52 5166 
21.00 17.03 3920 
22.00 19.40 4165 
27.20 20.94 3162 

DICHLOROETHENE(1,1) 2.50 533.50 5023 
7.00 780.10 5879 

12.90 1161.80 6623 
18.00 1336.40 6049 
19.50 1752.00 7423 
24.30 1714.50 5912 
26.10 2146.80 6866 

DICHLOROETHENE(1,1) 2.50 16.67 2289 
7.00 20.96 2137 

12.90 26.91 1892 
18.00 34.14 1768 
19.50 33.64 1596 
24.30 44.61 1612 
26.10 48.47 1586 



SOLUTE 

CHLOROPENTANE 

TABLE IX (CONTINUED) 

TEMPERATURE (C) 

2.50 
7.00 

12.90 
18.00 
19.50 
24.30 
26.10 

K 

362.40 
464.20 
683.00 
906.60 
955.20 

1302.60 
1318.20 
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TABLE X 

COMPARISON OF EXPERIMENTAL AND CALCULATED ACTIVITY 
COEFFICIENTS USING TWO SETS OF TEMPERATURE

INDEPENDENT BINARY INTERACTON PARAMETERS 

CHLOROBUTANE 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
296. 

8184 
7738 
7209 
6847 

12072 
9993 
9187 
8512 

47 
29 
27 
24 

CHLOROHEXANE 

2694 -67 
2325 -70 
2176 -70 
2048 -70 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
296 

151489 
126156 
107501 
114677 

169524 
132989 
119445 
108335 

11 
14 
11 
-5 

CHLOROTOLUENE 

30804 -80 
25341 -80 
23228 -78 
21451 -81 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
296 

93033 
55526 
43685 
47925 

236957 
168340 
144803 
126335 

154 1628771 
203 1116618 
231 945140 
163 812733 

1650 
1910 
2063 
1595 
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TABLE X (CONTINUED) 

TETRACHLOROETHYLENE 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
299 

36841 
37915 
38913 
36377 

67394 
49884 
44197 
36779 

82 
31 
13 

1 

DICHLOROETHANE 

19 100 
18 100 
18 100 
17 100 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
284 
294 
300 

1045 
909 
805 
828 

7746 641 
6895 658 
5447 576 
4966 499 

BENZENE 

860 -18 
782 -14 
670 -17 
627 -24 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
284 
294 
300 

2657 
2435 
2482 
2365 

3044 
2734 
2473 
2331 

14 
12 
-1 
-1 

DICHLOROETHYLENE 

3156 
2726 
2458 
2321 

18 
5 

-1 
-2 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

275 
286 
291 
299 

5023 
6623 
6049 
6866 

28569 468 
21529 225 
18732 209 
15281 122 

83 -98 
76 -99 
73 -99 
69 -99 
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closer ~o experimen~al values. Fredenslund's parame~ers 

underes~ima~e and ~he parame~ers o~ ~his work overes~ima~e 

~he ac~ivi~y coe~~icien~s. The errors in predic~ion are 

almos~ cons~an~ ~or Fredenslund's parame~ers bu~ ~hey 

decrease wi~h increasing ~empera~ure ~or ~he parame~ers o~ 

~his work. For chlorohexane, ~he in~erac~ion parame~ers o~ 

~his work give be~~ar resul~s which are closer ~o 

experimen~al values by 67 ~o 76 percen~. Fredenslund's 

in~erac~ion parame~ers grossly overes~ima~e ~he ac~ivi~y 

coe~~icien~s o~ chloro~oluene in wa~er as do ~he in~erac~ion 

parame~ers o~ ~his work. However. ~he es~ima~es o~ ~he 

parame~ers o~ ~his work are closer ~o ~he experimen~al 

values by a ~ac~or o~ 10. The errors in Fredenslund's 

predic~ions range be~ween 1595 and 2063 percen~ and are 

random as are ~he predic~ion errors ob~ained ~rom ~he 

parame~ers o~ ~his work, i.e., ~here is no decreasing or 

increasing pa~~ern wi~h ~empera~ure. In ~he case o~ 

~e~rachloroe~hylene, Fredenslund's parame~ers grossly 

underes~ima~e ~he experimen~al da~a and ~he parame~ers o~ 

~his work give much be~~er resul~s. However, a pa~~ern o~ 

decreasing error wi~h increasing ~empera~ure ~or ~he 

parame~ers o~ ~his work is eviden~. Fredenslund's parame~ers 

do a much be~~er job in ~he case o~ dichloroe~hane. However 

~he same pa~~ern o~ decreasing error wi~h increasing 

~empera~ure occurs ~or ~he parame~ers o~ ~his work. For 

benzene. ~he predic~ion resul~s are qui~e similar and ~here 
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does not seem to be a distinct advantage in either set o~ 

parameters. The predic~ions are qui~e good in bo~h cases. 

Finally, bo~h sets o~ parame~ers ~ail qui~e badly in ~he 

case o~ dichloroe~hylene. Fredenslund's parame~ers grossly 

underestima~e and ~he parameters o~ this work grossly 

overes~ima~e ~he experimental da~a. The decreasing pa~~ern 

o~ errors wi~h increasing ~empera~ure continues ~o hold ~or 

~he parame~ers o~ ~his work. 
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In view o~ the ~empera~ure-dependen~ pa~~ern o~ ~he 

errors ~or ~ive o~ ~he seven compounds in Table X. i~ was 

decided ~o use Leigh~on•s experimental activi~y coe~~icien~s 

which have been ob~ained at various temperatures, to obtain 

temperature-dependent interaction parameters. Thus, ~hat 

por~ion o~ Leigh~on's da~a ~hat had not been used ~or 

comparison with predic~ed values was used ~o obtain 

temperature-dependent in~eraction parameters. 

A polynomial ~it was considered ~or the sake o~ 

simplicity and an analysis o~ variance showed ~ha~ a 

quadratic ~it was sufficient and adding extra ~erms in the 

polynomial did no~ improve the·correla~ion power 

significantly. Interac~ion parameters for nine binary pairs 

were obtained as a function of ~empera~ure. These were used 

~o fi~ polynomials of ~he form: 

A12 = A1 + B1 T + c1i2 and A21 = A2 + B2 T + c2 y2 CT in K) 

Coefficients for each binary pair are presented in Table XI. 

The above coefficien~s have been used ~o ob~ain 



TABLE XI 

COEFFICIENTS FOR A QUADRATIC FIT OF BINARY INTERACTION 
PARAMETERS AS A FUNCTION OF TEMPERATURE 

A12 

BINARY PAIR A1 B1 C1 

H20-CCL -4575.01 32.336 -0.0566 
H20-CCL2 -3177.60 23.831 -0.0410 
H20-CCL3 -4370.86 32.575 -0.0525 
H20-CCL4 -338.93 3.175 -0.0020 
H20-ACCH3 12967.47 -89.273 0.1564 
H20-ACCL 7311.68 -50.578 0.0864 
H20-C=C 1724.67 -12.406 0.0208 
H20-CL 23829.35 -161.692 0.2791 
CCL-CCL2 4963.53 -35.399 0.0632 

A21 

BINARY PAIR A2 B2 C2 

H20-CCL -4944.27 36.463 -0.0642 
H20-CCL2 -5022.25 37.722 -0.0652 
H20-CCL3 -6238.21 47.300 -0.0800 
H20-CCL4 -4543.89 33.429 -0.0547 
H20-ACCH3 13296.44 -90.032 0.1570 
H20-ACCL 3929.96 -25.402 0.0422 
H20-C=C -4753.01 33.640 -0.0547 
H20-CL -5371.79 39.165 -0.0647 
CCL-CCL2 120553.55 -854.702 1. 5166 
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temperature-dependent interaction parameters which have in 

turn been used to predict activity coe~~icients ~or the same 

compounds as in Table X. The results o~ the comparison o~ 

these predicted values with the experimental values and the 

predicted values using the original parameters o~ 

Fredenslund et al. C53) are shown in Table XII. 

The temperature-dependent parameters o~ this work 

predict the activity coe~~icients o~ chlorobutane better 

than Fredenslund's original parameters by 1 to 17 percent. 

In the case o~ chlorohexane, the temperature-dependent 

parameters give lower prediction errors which are 29 to 63 

percent closer to the actual experimental values. There is a 

signi~icant change in the prediction ability o~ UNIFAC with 

the new temperature-dependent interaction parameters in the 

case o~ chlorotoluene where the errors ranging between 1595 

and 2063 percent have been cut down to between -10 and -19 

percent. There is also a notable improvement in the case o~ 

tetrachloroethylene especially when the actual values o~ the 

activity coe~~icients are considered which is a better 

indication o~ the prediction power when predicted values o~ 

the activity coe~~icient are lower than the experimental 

values because the maximum possible error in these cases is 

100% due to the de~inition o~ error as: c e e cr -r )/y . 

case o~ dichloroethane, however, the original UNIFAC 

In the 

parameters due to Fredenslund et al. C53) give better 

results. This is the only case where the temperature-



TABLE XII 

COMPARISON OF EXPERIMENTAL AND CALCULATED ACTIVITY 
COEFFICIENTS USING TWO SETS OF BINARY 

INTERACTION PARAMETERS 

CHLOROBUTANE 

CALCULATED 
T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
296 

8184 
7738 
7209 
6847 

2787 -66 
3349 -56 
3098 -57 
3162 -53 

CHLOROHEXANE 

CALCULATED 

2694 -67 
2325 -70 
2176 -70 
2048 -70 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
296 

151489 
126156 
107501 
1148-77 

73151 -52 
95540 -24 
88107 -18 
93631 -18 

CHLOROTOLUENE 

30804 -80 
25341 -80 
23228 -78 
21451 -81 

CALCULATED 
T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 93033 75826 -18 1628771 1650 
286 55526 48716 -12 1116618 1910 
291 43685 39105 -10 945140 2063 
296 47925 40700 -15 812733 1595 
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TABLE XII (CONTINUED) 

TETRACHLOROETHYLENE 

CALCULATED 
T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
291 
299 

36841 
37915 
38895 
37292 

19988 -46 
22589 -40 
22837 -41 
22998 -38 

DICHLOROETHANE 

CALCULATED 

19 -100 
18 -100 
18 -100 
17 -100 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
284 
294 
300 

1045 
909 
805 
828 

46 -96 
51 -94 
41 -95 
37 -96 

BENZENE 

CALCULATED 

860 -18 
782 -14 
670 -17 
627 -24 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

274 
286 
295 
300 

2657 
2587 
2427 
2365 

2600 
2570 
2565 
2472 

-2 
-1 

6 
5 

DICHLOROETHYLENE 

CALCULATED 

3156 
2726 
2458 
2321 

18 
5 
1 

-2 

T(K) EXPERIMENTAL THIS WORK E(%) ORIGINAL E(%) 

276 
286 
291 
299 

5023 
6623 
6049 
6866 

1606 -68 
1543 -77 
1573 -74 
1446 -79 

83 -98 
76 -99 
73 -99 
69 -99 
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dependent interaction parameters of this work do a worse job 

than the original parameters. For benzene. the prediction 

results are quite similar. Finally. for the case of 

dichloroethylene. the parameters of this work result in 

better predictions which are closer to experimental values 

by 20 to 30 percent. 

Therefore. the temperature-dependant interaction 

parameters obtained in this work using the experimental data 

of Leighton et al. C73) result in a marked improvement in 

the predictive power of the UNIFAC group contribution model 

as demonstrated by the above comparisons with experimental 

data and the predicted values obtained using the original 

interaction parameters as suggested by Fredenslund et al. 

C63). It is also noteworthy that the temperature-dependent 

parameters obtained in this work underestimate the 

experimental values in all cases for all but two data 

points. However. the errors are no longer dependent on the 

temperature and the pattern of decreasing error with 

increasing temperature which was observed in five of the 

seven cases for the temperature-independent parameters has 

been eliminated. It must also be noted that the improvements 

have been achieved for aqueous systems in the very dilute 

composition range and in the limited temperature range 

between 0 and 40 
0 c. However. these are the ranges of 

temperature and composition which are of interest in 

environmental applications. 
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Comparison wi~h Predic~ions or o~her Binary Parame~ers 

The ~empera~ure-dependen~ in~erac~ion parame~ers 

ob~ained in ~his work ror pararrinic, naph~henic and 

aroma~ic me~hyl groups wi~h wa~er were used ~o predic~ 

ac~ivi~y coerricien~s ror cyclopen~ane, pen~ane, hep~ane and 

~oluene. These predic~ed values were compared wi~h ~he 

experimen~al values or Sorensen e~ al. C146) based on 

liquid-liquid equilibrium Csolubili~y da~a). The in~erac~ion 

parame~ers or Fredenslund e~ al. C53) and Bas~os e~ al. C15) 

have also been used ror ~he same predic~ion. The resul~s or 

~hese comparisons are shown in Table XIII. 

The in~erac~ion parame~ers ob~ained in ~his work resul~ 

in a modera~e improvemen~ in predic~ed values of ac~ivi~y 

coefficien~s using ~he UNIFAC me~hod. The errors lis~ed in 

Table XIII are defined as ~he absolu~e value of ~he ra~io of 

~he difference of ~he predic~ed and experimen~al values of 

~he ac~ivi~y coefficien~ ~o ~he experimen~al value. 

The bes~ resul~s are ob~ained for pen~ane for all ~hree 

se~s of in~erac~ion parame~ers. The parame~ers or ~his work 

give ~he bes~ resul~s and ~he parame~ers of Bas~os e~ al. 

C15) give ~he wors~ resul~s. in all cases. Some values 

predic~ed by ~he parame~ers of Bas~os are off by as much as 

~wo orders of magni~ude from ~he experimen~al values as in 

~he case of ~he wa~er-hep~ane sys~em. The maximum error 



TABLE XIII 

COMPARISON OF PREDICTED ACTIVITY COEFFICIENTS WITH 
EXPERIMENTAL VALUES USING THREE SETS OF 

BINARY INTERACTION PARAMETERS 

CYCLOPENTANE 

T(C) EXP ORIG E(%) BASTOS E(%) THIS WORK E(%) 

25 25000 1819 -93 209 -99 6303 -74 

PENTANE 

T(C) EXP ORIG E(%) BASTOS E(%) THIS WORK E(%) 

0 70400 4427 -93 326 -100 14994 -79 
10 93400 3874 -95 280 -100 22092 -76 
20 99000 3417 -97 243 -100 33348 -66 
25 99000 3219 -97 227 -100 31569 -68 

HEPTANE 

T(C) EXP ORIG E(%) BASTOS E(%) THIS WORK E(%) 

0 1636700 52706 -97 1657 -100 265737 -84 
10 1792100 44145 -98 1353 -100 444133 -75 
20 1901100 37384 -98 1120 -100 766670 -60 
25 2000000 34532 -98 1024 -100 712915 -64 
30 2114200 31972 -99 940 -100 714503 -66 
40 2314800 27587 -99 797 -100 701511 -70 

TOLUENE 

T(C) EXP ORIG E(%) BASTOS E(%) THIS WORK E(%) 

0 7000 14972 114 154 -98 5828 -17 
10 7800 12457 60 142 -98 5754 -26 
20 8800 10493 19 132 -99 5360 -39 
25 9400 9670 3 127 -99 5012 -47 
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ob~ained using ~he parame~ers of ~his work is 84%. Excep~ 

for ~he original parame~ers in ~he case of ~oluene, all 

~hree se~s of in~erac~ion parame~ers underes~ima~e ~he 

experimen~al values. 

In a case by case s~udy, one can see ~ha~ for 

cyclohexane, ~he parame~ers of ~his work resul~ in 

predic~ions which are 19% be~~er ~han ~he predic~ions of 

Fredenslund's parame~ers C63). In ~he case of pen~ane, ~he 

predic~ions using ~he parame~ers ob~ained in ~his work are 

in less error ~han ~he original parame~ers by 14 ~o 31 

percen~. The predic~ions for hep~ane are be~ween 13 and 38 

percen~ be~~er when using ~he ~empera~ure-dependen~ 

in~erac~ion parame~ers ob~ained in ~his work ins~ead of ~he 

original parame~ers. Finally, in ~he case of ~oluene, ~he 

original parame~er~ resul~ in errors which decrease from 

0 
114% ~o 3% wi~h ~he ~empera~ure increasing from 0 ~o 26 C. 

The errors using ~he ~empera~ure-dependen~ in~erac~ion 

parame~ers range be~ween 17 ~o 39 percen~ which is be~~er 

~han ~he original parame~er predic~ions for ~wo poin~s and 

worse for ~he o~her ~wo. However, ~he range of errors using 

~he parame~ers of ~his work is much smaller. 

Comparing ~he magni~ude of ~he predic~ed ac~ivi~y 

coefficien~ is a be~~er means of comparison as far as ~he 

predic~ions using ~he parame~ers of Bas~os are concerned. 

The values ob~ained using ~he parame~ers of Bas~os are 

smaller ~han ~he ac~ual experimen~al values by an order of 
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magni~ude bu~ because o~ ~he de~ini~ion o~ ~he error ~erm, 

~he error canna~ surpass 100% in such cases. The same is 

~rue ~or all ~our compounds in Table XIII as ~ar as 

predic~ions using ~he parame~ers o~ Bas~os are concerned and 

~he parame~ers o~ ~his work yield be~~er resul~s in all 

cases. 

There is no ~empera~ure dependency in ~he predic~ion 

errors using ~he ~empera~ure-dependen~ in~erac~ion 

parame~ers ob~ained in ~his work excep~ ~or ~he case o~ 

~oluene where ~he predic~ion errors are no~ cons~an~ or 

random bu~ increase wi~h increasing ~empera~ure and ~allow a 

~rend opposi~e ~o ~ha~ o~ ~he original parame~er predic~ion 

errors al~hough ~he ra~e o~ change is no~ as rapid. 

Hooper, Michel and Prausni~z C63) have recen~ly 

ob~ained ~empera~ure-dependen~ in~erac~ion parame~ers ~or 

several wa~er-organic binary groups in ~he range o~ 20-250 

0 

C ~or ~he purpose o~ engineering design in ~he processing 

o~ ~ossil ~uels. They have ob~ained ~empera~ure-dependen~ 

in~erac~ion parame~ers ~or seven wa~er-organic groups, ~hree 

o~ which are binary groups ~or which ~empera~ure-dependen~ 

in~erac~ion parame~ers have also been ob~ained in ~his work. 

They have also used a polynomial ~i~ ~or ~heir ~empera~ure

dependen~ in~erac~ion parame~ers, however, ~hey have used a 

quadra~ic ~i~ ~or ~he A12 ~erm and a linear ~i~ ~or ~he A21 

~erm. Moreover, ~he coe~~icien~s o~ ~he polynomial 

expressions canna~ be compared direc~ly because Hooper e~ 
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al. C63) have used a di~~eren~ expression ~or ~he 

combina~orial par~ o~ ~he ac~ivi~y coe~~icien~ expression in 

~he UNIFAC model. 

The combina~orial expression ~ha~ ~hey have used is a 

modi~ica~ion o~ ~he Flory-Huggins expression in which ~he 

volume ~rac~ions have been replaced by sur~ace ~rac~ions. 

Thus, ~he expression used in ~hair work ~or ~he 

combina~orial par~ o~ ~he ac~ivi~y coe~~icien~ expression 

is: 

c ln y = ln C¢,/x,) + 1 - C¢i/x,) C62) 
~ ~ l. 

where 

2/3 2/3 
¢. = x.ri / ~x.r. C63) 
~ ~ J J J 

The molecular volume parame~er. r. • 
~ 

is calcula~ed by sumndng 

over Bondi group volumes as in ~he original UNIFAC model. 

In order ~o compare ~he parame~ers ob~ained in ~his 

work wi~h ~he parame~ers o~ Hooper e~ al. C63) in ~erms o~ 

predic~ive capabili~y. ~he UNIEST program was modi~ied so 

~ha~ ~he combina~orial par~ o~ ~he ac~ivi~y coe~~icien~ 

would be calcula~ed according ~o ~he above expression. This 

was ~he only modi~ica~ion. since ~he residual par~ had no~ 

been changed by Hooper e~ al. C63) as poin~ed ou~ in ~heir 

work. This modi~ied UNIEST program was ~hen used ~o predic~ 

ac~ivi~y coe~~icien~s using Hooper's ~empera~ure-dependen~ 

in~erac~ion parame~ers ~or ~hree compounds. namely. ~oluene. 

chloro~oluene and hep~ane ~or which ac~ivi~y coe~~icien~s 

have also been ob~ained using ~he original UNIEST program 
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and ~he ~empera~ure-dependen~ in~erac~ion parame~ers 

ob~ained in ~his work. These predic~ed values are compared 

~o ~he experimen~al values o~ Sorensen e~ al. C146) in Table 

XIV. 

The predic~ions using ~he ~empera~ure-dependen~ binary 

in~erac~ion parame~ers o~ ~his work are 10 ~o 12 percen~ 

better in the case of" toluene. The prediction results of" ~he 

paramet.ers of" t.his work are also be~t.er f"or chloro~oluene 

where ~hey are closer ~o ~he experimen~al values by 38 t.o 51 

percen~. In ~he case o~ hep~ane, however, Hooper's 

in~eract.ion paramet.ers give be~~er result.s which are closer 

t.o t.he experimen~al values by 17 to 72 percen~. 

In conclusion, one can say that the t-emperature

dependent binary in~eract.ion paramet.ers obtained in t.his 

work result. in much be~~er predict.ions as compared wit.h the 

original UNIFAC paramet.ers and the paramet.ers o~ Bas~os C15) 

which are independent of" ~he temperature. and are comparable 

in their predic~ion power t.o ~he temperature-dependent. 

in~eraction paramet.ers of" Hooper et al. C63). 



T(K) 

273 
283 
293 
298 

TABLE XIV 

COMPARISON OF EXPERIMENTAL AND CALCULATED ACTIVITY 
COEFFICIENTS USING TWO SETS OF TEMPERATURE

DEPENDENT BINARY INTERACTION PARAMETERS 

TOLUENE 

CALCULATED 
EXPEIMENTAL THIS WORK E(%) HOOPER E(%) 

7000 5827 -16 5831 -16 
7800 5754 -26 4979 -36 
8800 5359 -39 4232 -51 
9400 5012 -46 3887 -58 

CHLOROTOLUENE 

CALCULATED 
T(K) EXPERIMENTAL THIS WORK E(%) HOOPER E(%) 

274 
285 
291 
296 

93033 
55526 
43685 
47925 

T(K) EXPERIMENTAL 

273 1636700 
283 1792100 
293 1901100 
298 2000000 
303 2114200 
313 2314800 

75827 -18 
48716 -12 
39103 -10 
40700 -15 

HEPTANE 

31143 -66 
21469 -61 
17001 -61 
16014 -66 

CALCULATED 
THIS WORK E(%) HOOPER E(%) 

265736 -83 2153795 31 
444133 -75 1845975 3 
766670 -59 1547350 -18 
712915 -64 1421212 -28 
714503 -66 1307760 -38 
701511 -69 1097173 -52 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

An experimen~al se~up based on ~he headspace analysis 

me~hod was developed ~o measure the ac~ivi~y coefficien~ of. 

aqueous sys~ems a~ low liquid composi~ions. Measuremen~ of 

~he ac~ivi~y coefficien~ a~ low liquid composi~ions allows 

one to avoid extrapolation from the high concentration 

region. Activity coefficients were measured for ~he 

waterC1)-benzeneC2) system a~ at least three compositions 

levels for five isotherms. An error analysis showed that ~he 

accuracy of ~he activity coefficients was better ~han 1 

percent. The experimental resul~s were compared to 

li~erature values obtained from both liquid-liquid and 

vapor-liquid equilibrium measurements. The experimen~al 

resul~s were not direc~ly comparable because unlike the 

literature values. our values were not measured a~ ~he 

sa~ura~ion composition. Therefore. interaction parameters 

were backed out from our experimental data and these 

parameters were used ~o predict the activity coefficients at 
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sa~ura~ion. There was poor agreemen~ wi~h li~era~ure values 

at temperatures other than the temperature at which our 

0 
experimen~al da~a had been obtained C25 ). 

The second par~ of this work consisted of modifying the 

UNIFAC group con~ribution method so that it could predic~ 

the ac~ivi~y coefficien~ of aqueous-organic sys~ems be~~er. 

In order ~o achieve ~his. i~ was necessary ~o sacrifice some 

of ~he generali~y of ~he model by ob~aining binary 

in~erac~ion parame~ers which are specific ~o aqueous-organic 

solu~ions in ~he very dilu~e region and near ambien~ 

~empera~ures. Based on ~he experimen~al vapor-liquid 

equilibrium da~a in ~he li~era~ure such as Henry•s law 

cons~an~s. dis~ribu~ion coefficien~s and ac~ivi~y 

coefficien~s. binary in~erac~ion parame~ers were developed 

for ~he UNIFAC group con~ribu~ion ac~ivi~y coefficien~ 

model. Mos~ of ~hese in~erac~ion parame~ers consis~ of ~he 

in~erac~ion be~ween wa~er and groups in aroma~ic and 

halogena~ed hydrocarbons which are classified as 

environmen~ally hazardous ma~erials. These in~erac~ion 

parame~ers resul~ed in be~~er predic~ions when compared ~o 

~he original UNIFAC parame~ers of Fredenslund e~ al. C53). 

However. a ~empera~ure dependence was observed in ~he 

predic~ion errors. Therefore, binary in~eraction parameters 

were ob~ained for specific ~empera~ures based on ~he 

available experimen~al da~a in the li~era~ure. Correla~ions 

were developed for in~eraction parameters as a func~ion of 



temperature. The temperature-dependent interaction 

parameters resulted in much better predictions using the 

UNIFAC model as compared with the original parameters and 

the general parameters o~ this work. 
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The prediction capability o~ the temperature-dependent 

parameters o~ this work was similar to the prediction power 

o~ the one set o~ temperature-dependent interaction 

parameters available in the literature ~or aqueous systems. 

Recommendations 

Since extensive data collection was not the objective 

o~ this work, it is recommended that the new experimental 

setup whose per~ormance as ~ar as reproducibility has been 

proven satis~actory, be used to develop binary interaction 

parameters between water and other environmentally 

signi~icant groups such as chlorine, and para~~inic and 

naphthenic groups. 

Since success~ul measurement o~ the liquid composition 

was not possible ~or compounds with low aqueous solubility 

due to the detection limitation o~ the gas chromatograph, it 

is recommended that a more power~ul means o~ detection such 

as an ultraviolet spectrophotometer be used ~or this 

purpose. Gas chromatography should continue to be used ~or 

vapor phase analysis. Another possible alternative is the 

use o~ a concentration step where the liquid sample is 
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trapped and concentrated through the removal of the bulk of 

the water. and the concentrated solution is subsequently 

sent to the GC for analysis. Because of the inherent 

inaccuracies of this method such as the loss o! sample in 

the cold trap or on the surface of the adsorbent. the fdrmer 

improvement is pre!erable. 

The multiple equilibration method should also be 

seriously considered as an alternative and perhaps a better 

method than the head space analysis method. The simplicity 

of this procedure makes it attractive and the present 

experimental setup could be modified easily to test the 

multiple equilibration method as well. 

It can also further be recommended that the activity 

coefficients be measured at the saturation limit in 

solubility so that the obtained data could be compared 

directly with the available experimental data in the 

literature. The effects o! temperature and composition 

should also be s~udied in more detail by studying the same 

binary system at several temperatures and compositions. This 

procedure could be carried out for a few systems and once 

the effect of temperature and composition and their 

interdependence is well-established, data could be obtained 

only at selected temperatures and compositions. 
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APPENDIX 

EXPERIMENTAL DATA FROM LITERATURE 

Table A-I con~ains ac~ivi~y coefficien~ da~a on c4 

alcohols. Table A-II con~ains Henry's cons~an~s and 

calcula~ed ac~ivi~y coefficien~s for aroma~ic and 

chlorina~ed hydrocarbons. Table A-III deals wi~h aroma~ic 

compounds only. Table A-IV has da~a on a ke~one and on a 

chlorina~ed hydrocarbon. Table A-V deals with heavy 

polynuclear aromatic hydrocarbons. Table A-VI contains data 

on aromatic and halogenated compounds. Table A-VII deals 

with data on three halogena~ed methanes only. Table A-VIII 

has data on chlorinated c1 and c2 hydrocarbons. Table A-IX 

contains da~a on chlorinated compounds, especially 

multi-chlorinated light hydrocarbons. 
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TABLE A-I 

ACTIVITY COEFFICIENTS FOR BUTYL ALCOHOLS 
IN WATER AT 20 C. (133) 

SOLUTE 

BUTANOL(!) 
BUTANOL(!) 
BUTANOL(!) 
BUTANOL(l) 
BUTANOL(!) 
BUTANOL(!) 
BUTANOL(!) 
BUTANOL(l) 
BUTANOL(l) 
BUTANOL(l) 
BUTANOL(1) 
BUTANOL(1) 
BUTANOL(1) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
BUTANOL(2) 
METHYL(2)PROPANOL(l) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(l) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(l) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(1) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 

COMPOSITION ACTIVITY COEFF 

0.00137 
0.00308 
0.00487 
0.00603 
0.00697 
0.00861 
0.01150 
0.01240 
0.01340 
0.01430 
0.01650 
0.01790 
0.01920 
0.00407 
0.00510 
0.00614 
0.00775 
0.00901 
0.01110 
0.01380 
0.01650 
0.01810 
0.01890 
0.02120 
0.00278 
0.00321 
0.00345 
0.00404 
0.00534 
0.00662 
0.00771 
0.00948 
0.01153 
0.00028 
0.00175 
0.00520 
0.00717 
0.00877 
0.01200 
0.01490 
0.01670 
0.01860 
0.02170 
0.02780 
0.03190 
0.05600 

42.30 
41.10 
43.00 
42.00 
40.60 
39.10 
38.60 
38.40 
38.10 
41.50 
41.00 
41.60 
40.70 
22.00 
20.90 
20.20 
19.30 
19.20 
20.00 
19.80 
19.10 
18.80 
20.30 
20.40 
41.20 
39.40 
44.20 
40.90 
38.50 
35.40 
37.90 
33.40 
34.00 
11.70 
11.60 
10.80 
11.30 
10.80 
11.40 
11.60 
11.30 
11.20 
11.60 
11.70 
12.00 
10.67 
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TABLE A-I (CONTINUED) 

SOLUTE 

METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 
METHYL(2)PROPANOL(2) 

COMPOSITION ACTIVITY COEFF 

0.07900 
0.10860 
0.11580 
0.16050 
0.19040 
0.28000 
0.37200 

8.47 
6.26 
5.99 
4.24 
3.70 
2.56 
2.04 
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TABLE A-II 

MACKAY'S HENRY'S CONSTANT DATA IN 
M3ATM/GMOL AT 25 C. (90) 

SOLUTE 

ACENAPHTHENE 
ACENAPHTHENE 
ANTHRACENE 
ANTHRACENE 
BENZENE 
BIPHENYL 
BIPHENYL 
BROMOBENZENE 
CARBON TETRACHLORIDE 
CARBON TETRACHLORIDE 
CHLOR0(1)NAPHTHALENE 
CHLOR0(2)NAPHTHALENE 
CHLOROBENZENE 
CHLOROBENZENE 
CHLOROMETHANE 
DICHLOROBENZENE(O) 
DICHLOROBENZENE(P) 
DICHLOROETHANE(1,2) 
DICHLOROETHENE(1,1) 
DICHLOROMETHANE 
DICHLOROMETHANE 
DIFLUORODICHLOROMETHANE 
ETHYLBENZENE 
FLUORENE 
FLUOROTRICHLOROMETHANE 
LEPTOPHOS 
METHYL(1)NAPHTHALENE 
NAPHTHALENE 
PHENANTHRENE 
PHENANTHRENE 
PYRENE 
RONNEL 
TETRACHLOROBENZENE(1,2,3, 
TETRACHLOROETHENE 
TETRACHLOROETHENE 
TOLUENE 
TRICHLOROBENZENE(1,2,3) 
TRICHLOROETHANE(1,1,1) 
TRICHLOROETHENE(1,1,2) 
TRICHLOROMETHANE 
TRICHLOROMETHANE 
VINYLCHLORIDE 

H 

0.0157 
0.0148 
0.0676 
0.0730 
0.5620 
0.0413 
0.0304 
0.2470 
2.1600 
2.2100 
0.3550 
0.0319 
0.3140 
0.3820 
0.7310 
0.1930 
0.2400 
0.0990 

15.6100 
0.2720 
0.3010 

40.6000 
0.8540 
0.0101 

81.2000 
0.0003 
0.0263 
0.0489 
0.0037 
0.0040 
0.0011 
0.0021 
0.1590 
2.0300 
1.2390 
0.6730 
0.1270 
3.4700 
0.9040 
0.2830 
0.3220 

117.6000 

ACTIVITY COEFF 

2.84E5 
2.68E5 
2.61E9 
2.82E9 
2.46E3 
1. 76E6 
1.30E6 
2.49E4 
7.97E3 
1. 02E4 

1.10E4 
1.34E4 
8.46El 
5.47E4 
1.48E5 
5.03E2 
1. 09E4 
2.59E2 
3.59E2 
3.94E3 
3.74E4 
6.33E6 
5.10E4 
4.87E9 
1.65E5 
2.49E5 
7.59E6 
8.28E6 
6.90E7 
1. 67E7 
4.75E5 
5.94E4 
2.78E4 
9.84E3 
1. 33E5 
2.60E3 
6.39E3 
7.84E2 
6.99E2 
2.12E4 

151 



TABLE A-III 

ARBUCKLE'S HENRY'S CONSTANT DATA IN 
M3ATM/GMOL AT 25 C (10). 

SOLUTE 

ACENAPHTHALENE 
BENZENE 
BENZENE 
BIPHENYL 
CARBON TETRACHLORIDE 
CHLOROBENZENE 
CHLOROFORM 
DICHLOROBENZENE(1,4) 
ETHYLBENZENE 
NAPHTHALENE 
PHENANTHRENE 
TOLUENE 
TOLUENE 
TRICHLOROETHANE(l,l,l) 
TRICHLOROETHANE(1,1,2) 
TRIMETHYLBENZENE(l,2,4) 

H 

1.46E-4 
5.55E-3 
4.30E-3 
4.08E-4 
2.32E-2 
3.77E-3 
3.10E-3 
3.40E-3 
8.43E-3 
4.83E-4 
3.93E-5 
6.64E-3 
6.10E-3 
7.19E-3 
7.69E-4 
6.35E-3 

ACTIVITY COi!.~~ 

2.17E6 
2.47E3 
1. 91E3 
1.22E6 
1.10E4 
1.34E4 
6.70E3 
1.43E5 
3.75E4 
2.31E5 
7.65E6 
9.86E3 
9.05E3 
3.03E3 
1. 71E3 
1.34E5 
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TABLE A-IV 

SHOENE'S DIMENSIONLESS HENRY'S CONSTANT DATA. (135) 

SOLUTE 

ACETONE 
ACETONE 
ACETONE 
ACETONE 
ACETONE 
ACETONE 
TRICHLOROETHENE 
TRICHLOROETHENE 
TRICHLOROETHENE 
TRICHLOROETHENE 

ACTIVITY COEFF 

15.42 
10.13 
8.57 
7.20 
5.77 
5.16 

8670.00 
7900.00 
7750.00 
6300.00 

H 

0.02550 
0.00750 
0.00460 
0.00280 
0.00130 
0.00095 
1.41000 
1. 08000 
0.88000 
0.34000 

T (K) 

361 
332 
322 
313 
298 
293 
319 
315 
310 
293 

153 



154 

TABLE A-V 

MACKAY'S ACTIVITY COEFFICIENT DATA AT 25 C (91). 

SOLUTE 

ACENAPHTHALENE 
ANTHRACENE 
BENZANTHRACENE(1,2) 
BENZOFLUORENE(1,2) 
BENZOFLUORENE(2,3) 
BENZOPERYLENE 
BENZOPYRENE(3,4) 
BIPHENYL 
CHRYSENE 
CORONENE 
DIMETHYLANTHRACENE(9,10) 
DIMETHYLBENZANTHRACENE(1,2) 
DIMETHYLNAPHTHALENE(1,3) 
DIMETHYLNAPHTHALENE(1,4) 
DIMETHYLNAPHTHALENE(1,5) 
DIMETHYLNAPHTHALENE(2,3) 
DIMETHYLNAPHTHALENE(2,6) 
ETHYLNAPHTHALENE(1) 
FLUORANTHENE 
FLUORENE 
INDAN 
METHYLANTHRACENE(2) 
METHYLANTHRACENE(9) 
METHYLCOLANTHRENE(3) 
METHYLNAPHTHALENE(1) 
METHYLNAPHTHALENE(2) 
NAPHTHACENE 
NAPHTHALENE 
PERYLENE 
PHENANTHRENE 
PYRENE 
TRIPHENYLENE 

COMPOSITION X10E9 ACTIVITY COEFF 

459.00000 
7.57000 
1.10000 
3.75000 
0.95600 
0.01730 
0.27300 

815.00000 
0.15800 
0.00856 
4.90000 
4.26000 

920.00000 
1310.00000 
377.00000 
347.00000 
233.00000 

1240.00000 
22.80000 

214.00000 
16650.00000 

3.67000 
24.40000 
0.19200 

3550.00000 
3220.00000 

0.03700 
4460.00000 

0.02830 
130.00000 

12.00000 
3.39000 

433000 
1720000 

42400000 
6730000 

16000000 
189000000 
121000000 

433000 
34100000 

9820000 
5770000 

26000000 
1090000 

763000 
745000 
502000 
653000 
806000 

6020000 
593000 

60000 
4170000 

11400000 
161000000 

282000 
265000 

14300000 
64200 

115000000 
1500000 
3870000 
5650000 



TABLE A-VI 

COWEN'S ACTIVITY COEFFICIENT DATA AT 25 C (34). 

SOLUTE 

BENZENE 
BIS(2-CHLOROETHYL) ETHER 
BROMOFORM 
CARBON TETRACHLORIDE 
CHLOROBENZENE 
CHLOROFORM 
DICHLOROBENZENE(1,2) 
DICHLOROBENZENE(1,3) 
DICHLOROBENZENE(1,4) 
DICHLOROETHANE(1,1) 
~ICHLOROETHANE(1,2) 
DICHLOROETHYLENE(1,1) 
DICHLOROETHYLENE(1,2) 
DICHLOROPROPANE(1,2) 
DIMETHYL PHTHALATE 
ETHYLBENZENE 
HEXACHLOROETHANE 
METHYLENECHLORIDE 
NAPHTHALENE 
NITROBENZENE 
TETRACHLOROETHANE(1,1,2,2) 
TETRACHLOROETHYLENE 
TOLUENE 
TRICHLOROETHANE(1,1,1) 
TRICHLOROETHANE(l,1,2) 
TRICHLOROETHYLENE 

SOLUBILITY (MG/L) ACTIVITY COEFF 

700 
10200 

3190 
1160 

500 
9300 

145 
123 

79 
5500 
8690 

400 
600 

2700 
5000 

152 
50 

16700 
30 

1900 
2900 

150 
515 

4400 
4500 
1100 

6200 
780 

4400 
7400 

12000 
710 

56000 
66000 

100000 
1000 

630 
13000 

9000 
2300 
2200 

39000 
260000 

280 
240000 

3600 
3200 

61000 
9900 
1700 
1600 
6600 
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TABLE A-VII 

NICHOLSON'S HENRY'S CONSTANT DATA IN 
M3ATM/GMOL AT 20 C (109). 

SOLUTE H ACTIVITY COEFF 

BROMODICHLOROMETHANE 0.00160 
TRIBROMOMETHANE 0.00046 
TRICHLOROMETHANE 0.00300 

16 
3200 
660 
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TABLE A-VIII 

LINCOFF'S HENRY'S CONSTANT DATA IN 
M3ATM/GMOL AT 20 C (89). 

SOLUTE H ACTIVITY COEFF 

CHLOROFORM 
METHYLENE CHLORIDE 
TETRACHLOROETHYLENE 
TRICHLOROETHANE(l,l,l) 
TRICHLOROETHYLENE 

0.00333 
0.00225 
0.01300 
0.01320 
0.00764 

720 
220 

29100 
5550 
4300 
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TABLE A-IX 

DILLING'S DIMENSIONLESS HENRY'S CONSTANT 
DATA AT 25 C ( 42). 

SOLUTE H ACTIVITY COEF.t! 

CHLOROETHANE 0.460 2200 
CHLOROETHENE 50.000 228000 
CHLOROMETHANE 0.300 1100 
CHLOROPROPENE(3) 0.440 5200 
CIS-DICHLOROETHENE(1,2) 0.310 8100 
CIS-DICHLOROPROPENE(1,3) 0.095 13600 
DICHLOROETHANE(1,1) 0.240 5800 
DICHLOROETHANE(1,2) 0.040 2700 
DICHLOROETHENE(1,1) 6.300 72000 
DICHLOROMETHANE 0.110 1200 
DICHLOROPROPENE(2,3) 0.150 17500 
HEXACHLOROETHANE 0.050 2000000 
PENTACHLOROETHANE(1,1,1,2,2) 0.100 250000 
TETRACHLOROETHANE(1,1,1,2) 0.110 74000 
TETRACHLOROETHANE(1,1,2,2) 0.019 27000 
TETRACHLOROETHENE 0.820 532000 
TETRACHLOROMETHANE 0.870 65800 
TRANS-DICHLOROETHENE(1,2) 0.270 4500 
TRANS-DICHLOROPROPENE(1,3) 0.072 13000 
TRICHLOROETHANE(1,1,1) 1. 400 105000 
TRICHLOROETHANE(1,1,2) 0.038 12200 
TRICHLOROETHENE(1,1,2) 0.490 48000 
TRICHLOROMETHANE 0.130 4500 
TRICHLOROPROPANE(1,2,3) 0.013 34000 
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