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CHAPTER I 

INTRODUCTION 

Srikantan (1961) and Ferguson (1961) were probably the 

first to use the mean-shift model to identify outlying 

observations in linear models. Since then, Gentleman and 

Wilks (1975a,1975b), John and Draper (1978), John (1978), 

Rosner (1975), Tietjen, More, and Beckman (1973) and others 

have addressed the problem of outlier testing in linear 

models. Others, such as Jain (1981b) and Balasooriya and 

Tse (1986) have considered comparing the powers of some 

outlier test procedures which have been developed both in 

normal samples and in linear models situations. 

Box and Tiao (1968), introduced a Bayesian approach to 

outlier detection in linear models. Guttman (1973) and 

Guttman, Dutter and Freeman (1978) develop an ad hoc 

Bayesian approach for handling outliers in univariate and 

multivariate samples using the mean-shift model. Guttman 

and Katri (1975) extend the work of Guttman (1973) to 

include scale-change models. Gambino and Guttman (1984) 

provide a Bayesian approach to deriving the predictive 

distribution for future observations in the presence of 

outliers. 

An extensive list of references on outliers can be 

found in a paper by Beckman and Cook (1983). The books by 

1 



Barnett and Lewis (1984) and Hawkins (1980) provide a 

useful survey of the literature. 

2 

All of the outlier detection procedures listed above, 

treat outliers in linear models with independent errors. 

Moser and Marco (1988), extend the literature by providing 

an outlier detection procedure for linear models with 

correlated errors. 

The procedures for identifying outliers are 

subjective in nature (Collett, D. and Lewis, T., 1976). 

According to Bross (1961), it is more difficult to identify 

outliers in a patterned experiment as compared to an 

unpatterned experiment. Bross also stressed the importance 

of having a working definition of an outlier in a patterned 

experiment. Hence, the following definitions are provided 

to clarify the problems of identifying and testing for 

outliers in linear models. 

1) Outlier - Any observation that has not been generated 

by the mechanism that generated the majority of 

observations in the data set. (Freeman,P.R. 1979) 

2) Inlier - Any observation that has been generated by the 

mechanism that generated the majority of the data set. 

3) Suspected Outlier - Any observation that does not fit 

the pattern of the data or hypothesized model and the cause 

of the irregularity is not clear. 

4) Suspected Inlier - Any observation that appears to 

follow the pattern of the data or hypothesized model. 

5) Classification - Partitioning of observations into 
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suspected outlier or suspected inlier groups so that the 

former can be studied in detail. An observation will be 

classified into the suspected outlier group if it satisfies 

Definition 3, otherwise it will be classified into the 

suspected inlier group. 

6) Identification - The process of distinguishing which 

observations are outliers and which are inliers. The goal 

is to find outliers to make them available for further 

study. 

Moser and Marco develop an outlier test procedure for 

a linear model of constant intraclass correlation based on 

the predictive density of suspected outlier observations 

given a set of existing inlier observations. This thesis 

extends their work by investigating the effect of initial 

classification or misclassification of outlier and inlier 

observations on the Probability of Correct Identification 

(PCI). PCI is the probability that the inliers and outliers 

of a data set are correctly identified. 

This thesis consists of five chapters. In Chapter I, 

a historical background of outlier testing in linear models 

was presented. In Chapter II, the mathematical background 

of the problem is developed. A summary of the proposed 

numerical outputs is presented in Chapter III. Discussion 

of the results is presented in Chapter IV and then the 

thesis is briefly summarized in Chapter V. 



CHAPTER II 

MATHEMATICAL BACKGROUND 

The main objective of this thesis is to investigate 

the effect of initial classification or misclassification 

of outliers and inliers on the PCI for a linear model of 

constant intraclass correlation. Since different initial 

classifications of observations produce different PCI 

values, six cases of these initial classifications are 

considered. In addition, the cases are compared so that 

the consequences of misclassifying observations can be 

studied in detail. 

In Section 2.1, the six cases of initial 

classifications are defined. Then in Section 2.2, the 

linear model of constant intraclass correlation is stated. 

In Sections 2.3 and 2.4, the predictive density and the 

outlier test procedure for this model are described, 

respectively. Numerical integrations are used to calculate 

the PCI values. These numerical integration calculations 

are presented in Section 2.5. 

2.1. Definitions of Cases 1-6 

The following six initial classifications are 

considered. In each case, the observations are either 

4 
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classified into the suspected outlier or suspected inlier 

group. 

Case 1. One observation is initially classified into the 

suspected outlier group when all observations are inliers. 

Case 2. One observation is initially classified into the 

suspected outlier group and it is the only outlier. 

case 3. One observation is initially classified into the 

suspected outlier group but actually there are two outliers 

in the data set. 

Case 4. Two observations are initially classified into the 

suspected outlier group when all observations are inliers. 

Case 5. Two observations are initially classified into the 

suspected outlier group, one of which is an outlier. All 

other observations are inliers. 

Case 6. Two observations are initially classified into the 

suspected outlier group and both are outliers. All other 

observations are inliers. 

2.2. The Model 

Moser and Marco (1988) develop a procedure for testing 

suspected outliers when the observations conform to a 

linear model of constant intraclass correlation. A Bayesian 

approach to the problem is developed using the predictive 

distribution of the suspected outliers given the inliers. A 

test procedure based on this predictive distribution is 

then derived for testing the suspected outliers. 

The procedure is performed as follows: first, the 
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observations are initially partitioned or classified into 

two groups; suspected inliers and suspected outliers; next, 

the test procedure is applied to identify which observa-

tions in the suspected outlier group are in fact outliers. 

Thus, as defined in Chapter I, classification is the 

initial partitioning of the observations into suspected 

inlier and suspected outlier groups. Identification, on the 

other hand, is the process by which Moser and Marco's test 

procedure distinguishes which observations in the suspected 

outlier group are outliers. Therefore, the final decision 

on which observations are inliers and which are outliers is 

not based on the initial classification of observations but 

is only made after Moser and Marco's test procedure has 

been performed. The objective of this thesis is to 

investigate the effect of different initial classifications 

of observations on the probability that the test procedure 

ultimately identifies the outliers correctly. This 

Probability of Correct Identification is subsequently 

referred to as PCI. 

The following model form, as discussed by Moser and 

Marco is considered: 

Y·=Z·& + T· s + ~· -1 1- 1~ -1 ( 2 . 1 ) 

for the ith class, i=l, ... ,r. Xi is (ni+m 1 )xl random vector 

of observations, ni~l, mi~O, ~ ni=N, ~ mi=M. There are N+M 

N+M total observations in the data set, N suspected inliers 

and M suspected outlier. Zi is an (ni+mi}xp matrix of 



independent variables taking the form !n-+m-~i with ~i a 
1 1 
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(1xp) vector, and Ti is an (ni+mi)xq matrix of covariates. 

~, £ is (px1) and (qx1) vectors of unknown parameters, 

respectively and !i is (ni+mi)xl vector of random errors. 

Assumotions 

The following assumptions are made concerning 

observations from linear model (2.1). 

1) Observations in different classes are independent, while 

observations in the same class are equicorrelated. 

3) M observations are classified a priori as suspected 

outliers and N observations as suspected inliers. 

2.3. The Predictive Density 

Following Moser and Marco, each vector Xi is 

partitioned into <Xf 1 >', xl2.>'> where Xi<t> is an nix1 

vector of suspected inliers in the ith class and y{2.) is 
-1 

an mix1 vector of suspected outliers. Then assuming that 

the Nxl vector X(t) of suspected inliers contains only 

inlier observations, they have shown that under H0 : all of 

the suspected outliers are inliers, the predictive density 

Of x< 2.) tx< i) 1 With noninformatiVe prior 

( n e ~2. P) [~2.(1-P)]-1 p I!t,;;l'-' , a: v ( 2 • 2) 

is an M-dimensional multivariate t distribution, with N-r-q 
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degrees of freedom, location vector ~ and scale matrix D. 

The location vector ~ and scale matrix Dare presented in 

the following forms; 

~= i ( 1 ) + ( T ( ~) - T ( 1 ) ) t (2.3) 

where, 

(2.5) 

where, 

(2.6) 

~ is an MxM block matrix whose ith block is (1/nl)Jm , 
i 

(1) (1) 1 (1) 1 ' <~>- (~)' (~)'' T = (T1 , ... ,Tr ) Nxq, T -(T1 , ... ,Tr ) Mxq 1 

W is an NxN block diagonal matrix whose ith block is 

Ini-(1/ni)Jni· Hence, following Berger(1980) the predictive 

density of x<~> IX< 1) can be presented as 

( 2 . 7 ) 
= 

0 otherwise 



where C= r[(v+M)/2) IDI-t/~, v=N-r-q>O, 

r( v/2) ( vn)H/ ~ 

~€RH and D is an MxH positive definite symmetric matrix. 

When M=2, the density function in (2.7) is a bivariate t 

distribution. 

9 

The distribution of x<~> IX(t) under H 1 , assuming all 

elements of x< t) are inliers is derived in a similar 

fashion. Assuming the perturbation in the outlier 

observation is caused by a shift in the mean, then under H1 

the predictive density of x<~> IX( t) with prior (2.2), is an 

M-dimensional multivariate t distribution with N-r-q 

degrees of freedom, location vector 

(2.8) 

parameters for the M suspected outliers, and scale matrix 

D as given in (2.5). 

Below is a summary of the predictive density derived 

in this section. 

1) Outlier Model: The mean-shift model for the outliers can 

be presented in the following way. 

2) Predictive Density, assuming a mean-shift model(All 
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Cases except Case 3): 

Under H0 : all of the suspected outliers are inliers, 

I ( 2.) I I ( 1 ) - MVt ( .f , !)) 

Under H1 : at least one of the suspected outliers is an 

outlier, 

2.4. The Test 

With the knowledge of the distribution of I(2.) II(t), 

Moser and Marco develop a test procedure for detecting 

the presence of outliers in the suspected outlier group. 

The hypotheses of interest are 

H0 : all of the suspected outliers are inliers. 

H1 : at least one of the suspected outliers is an outlier. 

Following Berger (1980), under H0 the random variable 

and N-r-q degrees of freedom. Hence, an a level rejection 

rule for testing H0 is to reject if 

* a F >F M,N-r-q . (2.9) 

When H0 is rejected, a Bonferroni aultiple comparison 

procedure is used to identify which elements of the (Hx1) 

vector of suspected outliers I(2.) are outliers. The 

following test statistic was used (Moser and Marco 1988, 

equation 14). 
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where vij has a univariate t distribution with N-r-q 

degrees of freedoms, ~ij is an Mx1 vector of zeros except 

for a one corresponding to the jth suspected outlier in the 

ith class, and all other terms are defined as before. By 

the Bonferroni procedure, one concludes that the jth 

suspected outlier in the ith class is an outlier if, 

fvij f~ta/2M,N-r-q · (2.10) 

2.5. Numerical Integrations 

In this section, the integrals used to calculate the 

Probability of Correct Identification (PCI) for Cases 1-6 

are defined. In each case (except for Case 3), the 

integrand is the predictive density of the suspected 

outliers given the inlier observations. To reduce the 

number of parameters involved in the numerical integrations 

of the PCI, the random vector X(~) is standardized. 

( Y { ~)- Jl· -a. ) 
1 1 1 

, i=1, ... ,M, 
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where d 11 is the ith diagonal element of D given in (2.5}, 

Y{~> is the ith suspected outlier, ~i is the ith element of 

e, given in (2.3}, and ai is the ith element of ~ given in 

(2.8}. 

In Cases 1-3, M=1; thus ~=X 1 =X, where the subscript is 

dropped for convenience. For Cases 4-6, M=2 so that 

~= (X 1 , X~)'. Hence, under H0 and assuming X( s} is a vector 

of inliers, the random variable X follows a univariate t 

distribution with N-r-q degrees of freedom and the random 

' vector ~ = (X 1 , X~) follows a bivariate t distribution 

with N-r-q degrees of freedom, location vector e={O,O)' and 

scale· matrix 

D= u ~ ] , (2.11) 

where 

&= 1/ ~ 1/ ~ , -1< &<1. 

(d11} (d~~} 

Define 

* - 1 ' F =(1/2} (X 1 , X~)D {X 1 , X~) . (2.12) 

Then, following Berger under H0 , F* has an F distribution 

with 2 and N-r-q degrees of freedom. 

Now, the PCI for the six cases will be calculated 

based on the predictive density derived in this section and 
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test procedures in (2.9)-(2.10). For convenience, denote 

v=N-r-g as the degrees of freedom. 

Case lCM=l) 

One observation is initially classified into the 

suspected outlier group when all observations are inliers. 

In this case the PCI is the probability that the one 

observation in the suspected outlier group is identified as 

as an inlier. Hence, 

PCI= P( accept H0 and identify X as the inlier) 

=P( IX l<ta:;2.,v> 

--I ta:/ 2., v f(x,v)dx =1-a: , for all v>O, 
-ta:; 2., v 

(2.13) 

where f(x,v) denotes the univariate t distribution with v 

degrees of freedom. The limits of integration are obtained 

from the Student's t table with the appropriate a: and v. 

Case 2 (M=l) 

One observation is initially classified into the 

suspected outlier group and it is the only outlier. In this 

case the PCI is the probability the observation in the 

suspected outlier group is identified as an outlier. Hence, 

PCI= P( reject H0 and identify X as the outlier ) 

J-ta:; 2., v * J(D 
= f(x,a ,v)dx + f(x,a*,v)dx, 

-(II ta:/2., v 

(2.14) 

where f(x,a*,v) denotes the univariate t distribution with 
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v degrees of freedom, location parameter a*=a/d 1/~. Thus t 

is a shifted central t distribution with a shifted 

location parameter, a* (not a noncentral t distribution). 

As in Case 1, the limits of integration for this case are 

also obtained from the Student's t table. 

Case 3 CM=1) 

One observation is initially classified into the 

suspected outlier group when there are two outliers in the 

data set. The predictive density of x<~> IX(t), as given by 

equation (2.7) is not applicable here since one of the 

observations in X( t) is an outlier. Hence, a separate 

predictive density is needed for calculating the PC! of 

Case 3. 

In this case, the effect of misclassifying one outlier 

observation into the suspected inlier group on the location 

and scale parameters of the predictive density is 

investigated. Then, a brief discussion on the probability 

of correctly identifying the one observation in the 

suspected outlier group is presented. 

Denote y( t) as the Nx1 vector of observations from the -o 

suspected inlier group where one of the observations is an 

outlier. Without loss of generality, the vector X~t) can be 

presented as 

(2.15) 
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X( l) represents an Nx1 vector of suspected inliers, where 

all of its elements are inliers (this vector is the same as 

that given in (2.4) and (2.6)); a~ is an unknown parameter 

defined such that 

E ( Y ( 1 ) ) -E ( Y ( 1 ) ) =a ¥ -o - ~- , (2.16) 

where ! is an Nx1 vector of Q's with a '1' corresponding to 

the one outlier in the suspected inlier group. 

Under H0 and assuming all elements of X( 1 ) are inliers 

the predictive density of x<~> IX( 1 ) for M=l is a univariate 

t distribution with v degrees of freedom, location 

parameter 

(2.17) 

and scale parameter 

Note that the location and scale parameters are derived 

from (2.3) and (2.5) respectively by letting M=l. Following 

Berger (1980), this predictive density can be presented as 

f(y( ~) ,v,Jl,d)= r[ (v+:;~2 1 {1+( 1 /vd) (y( ~>-Jl) ~}-(vtl)/~ 
(dvn) r(v/2) 

(2.19) 

where y<~>~ R, v>O, -oo<Jl<oo and d>O. 

Using (2.15) - (2.19) and the results from Box and 

Tiao (1968), the predictive density of y( ~)IX~ 1 ) under H0 

with prior (2.2) is a univariate t with v degrees of 
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freedom, location and scale parameters, say p 0 and d 0 , 

respectively. In the following paragraph, p 0 and d 0 are 

derived as a function of p and d, respectively for Case 3. 

The location parameter p 0 is given as 

(2.20) 

<f' is defined as 

0 if the outlier in the suspected outlier group 

is in a different class from the outlier in the 
<p = 

suspected inlier group, 

1 if the outlier in the suspected outlier group 

is in the same class as the outlier in the 

suspected inlier group. 

; = ( T ( 1 ) I WT ( 1 ) ) - 1T ( 1 ) I WY ( 1 ) 
~o -o 

= ( T ( 1 ) I WT ( 1 ) ) - 1T ( 1 ) I W ( Y ( 1 ) +a l') 
- 2.-

= ( T ( 1 ) 1 WT < 1 ) ) - 1T ( 1 ) 1 WY ( 1 ) +a ( T ( 1 ) 1 WT < 1 ) ) - 1T < 1 ) 1 W ¥ 
- 2. -

· · · lo =!+a 2. ( T < 1 ) 1 WT < 1 ) ) - 1T < 1 ) 1 w!. 

Subsitute for Y~ 1 ) and !o into (2.20); thus p 0 can be 

written as 

= { Y < 1 ) + ( T < 2.) -T < 1 ) ) ; }+ <f'( a /n · ) +a ( T < 2.) -T < 1 ) ) 
- - /; 2. 1 2. - -
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= J1 + <f( a /n · ) +a ("' ( 2 > -T ( 1 > ) ( T ( 1 ) 'WT ( 1 ) ) - 1T < 1 ) 'W l'. 
2. 1 2. ~ - -

Hence, 

(2.21) 

where J1 is the mean of the predictive density of y(:t.) IX( 1 ) 

defined in (2.17). 

The scale parameter d 0 is given as 

Substitute for X~ 1 ) and f 0 ; then 

{ ( X ( 1 ) -T ( 1 ) e) + (a 2.! -a 2. T ( 1 ) ( T ( 1 ) ' WT ( 1 ) ) - 1T ( 1 ) ' w!) } 
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""2. Substitute for s 0 into (2.22); then 

• • • d 0 =d+K 3 (2.23) 

where 

K = ( K +K ) {1 + 1/n · + ("' ( :t.) -T < 1 ) ) ( T ( 1 ) 'WT ( 1 ) ) - 1 ( T ( :t.) -T ( 1 ) ) ' }> o 
3 1 2. 1 A:. - - -

and d is the scale parameter of the predictive density of 

Y ( 2.) I X ( 1 ) g i ve n i n ( 2 • 18 ) . 

Therefore, under H0 the predictive density of 

y(:t.) IX~ 1 ), using prior (2.2) with M=1, is a univariate t 

distribution with v degrees of freedom, location parameter 

~0 given in (2.21) and scale parameter d 0 given in (2.23). 

From (2.21), (2.23) one can observe that misclassifying one 

outlier into the suspected inlier group ( failure to 

classify the outlier into the suspected outlier group) has 

made the location and scale parameters larger, i.e. ~0 >~ 
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A summary on the derivation of the predictive density 

for Case 3 is presented below: 

1) Outlier Hodel: The mean-shift model for the outliers in 

both groups can be presented in the following way. 

2) Predictive Density(using prior in 2.2). 

Under H0 : the suspected outlier is an inlier, 

Under H1 : the suspected outlier is an outlier, 

y( 2.) IX~ l) - t(J.1.0 +a 11 d 0 ), where a 1 is the shift of the 

outlier observation in the suspected outlier group. 

Nov a brief discussion of the PCI for Case 3 is 

presented (for convenience, the discussion of the PCI is 

based on the predictive density of y(2.) IX~ 1 >, with H=l and 

q=l). Recall that in Chapter I, the PCI was defined as the 

probability that the inliers and outliers of a data set are 

correctly identified. Test procedures (2.9) and (2.10) only 

identify outliers in the suspected outlier group. Therefore 

if one outlier is misclassified into the suspected inlier 

group, as in Case 3, the PCI is zero. 

Although the PCI as defined in Chapter I is zero for 
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Case 3, it is still possible for the test procedures in 

(2.9) and (2.10) to identify correctly the one observation 

in the suspected outlier group. The following definitions 

will be useful in discussing the PCI of the one observation 

in the suspected outlier group for Case 3. 

1) PCI* of Case 3- the probability that the outlier 

observation in the suspected outlier group is correctly 

identified for Case 3=P( reject H0 and identify the 

observation in the suspected outlier group as an outlier). 

2) a 1 is the shift of the outlier observation in the 

suspected outlier group, (a 1 ~0). 

3) a~ is the shift of the outlier observation in the 

suspected inlier group, (a~~O). 

4) Distribution 1 is the predictive distribution of 

y(~) IX~ 1 ) under H0 when M=1, q=1, with one observation in 

X~ 1 ) being an outlier. 

5) Distribution 2 is the predictive distribution of 

y(~) IX~ 1 ) under H1 when M=1, q=1, with one observation in 

X~ 1 ) being an outlier. 

6) Region A is the acceptance region for testing H0 , when 

one of the observations in X~ 1 ) is an outlier. The area of 

this region under Distribution 1 is equal to 1-a. 

In Figure 1.1, the predictive distributions of 
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y(~) IX~ 1 ) with M=l, q=l are presented. No numerical 

integration is done for Case 3. However, the following 

* discussions of the PCI , based on the distributions shown 

in Figure 1.1 are presented. 

I JJo +a, 
Distribution 2 

JJo 
Distribution 1 

0 (2.) -(I) 
t - t 

Region A 

Figure 1.1. Predictive Distributions for Case 3 

In Case 3, a 1 >0 and a~>O; i.e. the observation in the 

suspected outlier group is an outlier and one observation 

in the suspected inlier group is an outlier. Hence, 

PCI*={area under Distribution 2, outside of Region A}. 

=P(reject H0 and identify y{~) as the outlier) 

=P(IY(~)I>t~, ) 
u., ~, v 

* J-t a/~ v 
=C 1 {1+(1/d v)(y(~)-~*>~}-<v+t)/~dy(~) 

1 -(1) 0 0 

(2.24) 
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where C 1= ~r~t~<~v~+=l~)~/=2~1--~ Jl•-Jl +a 
- 1/21 0- 0 t• 

r( v/2) ( vdo n) 

The limits of integrations are determined from the 

complement of Region A under Distribution 1, i.e. the 

univariate t distribution with v degrees of freedom, 

location parameter J10 and scale parameter d 0 • 

Although Case 3 refers to one outlier in the suspected 

outlier group and one outlier in the suspected inlier group 

(i.e. a 1 >0, a 2 >0), Figure 1.1 can also be used to discuss 

the probability of correctly identifying one inlier in the 

suspected outlier group when there is an outlier in the 

suspected inlier group. This situation corresponds to a 1 =0, 

a 2 >0 for Case 3, and the PCI is calculated as follows: 

PCI={area under Distribution 1, in Region A} 

=P(accept H0 and identify y(t.) as an inlier)=l-a. 

In Case 2, one observation is initially classified 

into the suspected outlier group and it is an outlier. In 

Case 3, one observation is initially classified into the 

suspected outlier group but actually there are two outliers 

in the data set. To see the effect of this misclassifica-

tion, a comparison between Cases 2 and 3 in terms of their 

predictive distributions is made. From Figures 1.2 and 1.3, 

it is observed that for the same shift of the outlier in 

the suspected outlier group, the PCI of Case 2 is greater 

than the PCI of Case 3, for all v>O, a and a 2 >0. However, 

from (2.21) and (2.23) it can be observed that as a 2 gets 
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smaller and ni gets larger, the effect of this 

misclassification on the PCI of Case 3 gets smaller • 

..• 

)J )J+a, 

Figure 1.2. Predictive Distributions for Case 2 

Figure 1.3. Predictive Distributions for Case 3 

Case 4(M=2) 

Two observations are initially classified into the 

suspected outlier group when all observations are inliers. 

In this case the PC! is the probability the two 

observations in the suspected outlier group are identified 

as inliers. Hence, 

PCI=P(accept H0 and identify both X1 , X~ as inliers). 

In this case, X1 and X~ will be identified as inliers when 

the F-test results in accepting H0 : all the suspected 

outliers are inliers ~ when the F-test results in accepting 
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H1 : at least one of them is an outlier, but the two t-tests 

which are done separately on X1 and X~ using the Bonferroni 

procedure, identify them both as inliers. The latter 

situation occurs when the combined effect of X1 and X~ 

* leads to a large value of F , but each Xi (i=l,2) is not 

large enough to reject H0 • Hence, 

=I I f(~ 1 v,~*,D)d~ 1 (2.25) 

* where f(~,v,2 ,D) denotes the bivariate t distribution 

with v degrees of freedom, location vector ~*=<0,0) 1 and 

scale matrix D given in (2.11). The limits of integration 

are determined from the following equations: 

IX 1 1<ta; 4111 •••••••••••••••••••••• (1) 

IX~I<ta; 4,v .•.•••••••••••••..••.• (ii) 

F*< Fa: .............•........ (iii) 
~, v 

where F* is defined in (2.12) and F~ v is the 100(1-a) 
' 

percentile of an F distribution with 2 and v degrees of 

freedom. An example of the region of integration is shown 

in Figure 1, for a=O.Ol, v=l5, and 6=0.50. 

Case 5CM=2) 

Two observations are initially classified into the 

suspected outlier group,one of which is an outlier. All 

other observations are inliers. Without loss of generality, 
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let X1 be the outlier observation and X~ be the inlier 

observation in the suspected outlier group. In this case, 

the PCI is the probability X 1 is identified as an outlier 

and X~ as an inlier. Hence, 

PCI= P( reject H0 and identify X1 as the outlier and 

X~ as the inlier } 

(2.26} 

where f(~ 1 v,~*,o> denotes the bivariate t distribution with 

* * I v degrees of freedom, location vector~ = (a 1 , 0} , where 

a~= a 1 /(d 11 } 1 /~ and scale matrix D as given in (2.11). The 

limits of integration are determined from the following 

equations: 

................. ( i ) 

. . . . . . . . . . . . . . . . . ( i i ) 

. . . . . . . . . . . . . . . . . . . ( i i i ) 

An example of the region of integration is shown in 

Figure 2, for a=O.Ol, v=l5 and 6=0.50. 

Case 6(H=2) 

Two observations are initially classified into the 

suspected outlier group, both are outliers. All other 

observations are inliers. 

For this case, the PCI is the probability that both 
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observations in the suspected outlier group are identified 

as outliers. Hence, 

PCI=P( reject H0 and identify both X1 and X~ as outliers ) 

=I I f(~,v,~*,o)d~ 1 (2.27) 

where f(~ 1 v 1 ~* 1 D) denotes the bivariate t distribution with 

* * * I v degrees of freedom, location vector ~ = (a 1 1 a~) , 

in (2.11). 

The limits of integration are determined from the 

following equations: 

IX 1 1>ta/' 4 ,v ................... (i) 

IX2.1>ta/' 4 ,v ................... (ii) 

F* > F~ v •••••••••••••••••••• (iii) 
I 

An example of the region of integration is shown in 

Figure 3 1 for a=O.Ol 1 v=l5 and 6=0.50. 

In the next chapter, a summary of the plan for the 

numerical integration calculations of the PCI values will 

be presented. 



CHAPTER III 

SUMMARY OF PROPOSED NUMERICAL OUTPUTS 

In Chapter II, the PCI integral formulas were derived 

for the six cases. From equations (2.13), (2.14), (2.24), 

(2.25), (2.26) and (2.27), one can see that the PCI is a 

function of four parameters. It is proposed to calculate 

the PCI for the six cases by using specific combinations of 

these parameters. 

In this chapter, the parameters that affect the PCI 

are listed and defined. Then, the proposed numerical 

integrations for the six cases are summarized and finally, 

the limiting value of the PCI is derived. 

3.1. List of Parameters 

The PCI is a function of four parameters: v, s, a and 

* a • The following levels of these parameters are used in 

calculating the PCI of the six cases: 

1) v=N-r-q is the degrees of freedom. It is a fixed 

constant determined by the size of the experiment and is 

defined for all N, r, q that fits the linear model in 

(2.1). Four levels of v are considered : 5, 10, 15, 20. 

2) S=d 1 ~/{~d 11~d~~} is the correlation between the two 

random variables, X1 and X~(for Cases 4-6). It is a known 

27 
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constant, given X( 1 ). Three levels of 6 are considered: 

0.25, 0.50, 0.90. 

3) a is the significance level of the test. It is a fixed 

constant determined by the researcher. Two levels of a are 

considered : 0.01, 0.05. 

:It 4) 9 is the Mxl vector of unknown shift parameters for the 

outlier observations. In Cases 1-3, a* is a scalar with M=1 
:It 

while in Cases 4-6, ! is a vector with M=2. In Cases 1-5, 

:It 
the effect of 9 is symmetric, hence only positive values 

:It are considered. Both positive and negative values of i are 

considered for Case 6. 

3.2. Summary of Numerical Integrations 

In this section, the numerical integrations using 

those parameters listed above are summarized. Numerical 

outputs of the PC! values are tabulated in Appendix A, 

Tables I-IV. Graphical presentations of these PCI values 

are shown in Appendix B, Figures 4-13. 

Case l(M=l) 

No numerical integration is done for this case because 

the PCI is constant at 1-a , for all v>O. 

Case 2(M=1) 

For this case the PCis were calculated for the eight 

:It combinations of v=5, 10, 15, 20 and a= 0.01, 0.05 with a 

values from 0.1 to 7.8 in increments of 0.1. In Table I, 

the PCI values are reported for all the eight combinations 

of v and a and for a*values from 1.0 to 7.8 in increments 
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of 0.4. The PCI values for v=5,10,15,20, a=0.01 and a* 

values from 0.1 to 7.8 in increments of 0.1 are plotted in 

in Figure 4. In Figures 5 and 6, the PCI values are plotted 

against a*, using a=0.01, 0.05 and for values of v=5, 20, 

respectively. 

Case 3CM=1l 

As mentioned in Chapter II, no numerical integrations 

are performed for this case. 

Case 4CM=2l 

For this case the PCis were calculated for the twenty-

four combinations of v= 5, 10, 15, 20, a=0.01, 0.05 and 

5=0.25, 0.50, 0.90. The results are not reported in any 

tables because the PCI is constant at 1-a, for all v>O 

and S. 

Case 5(M=2) 

For this case the PCis were calculated for the twenty-

four combinations of v= 5, 10, 15, 20, a= 0.01, 0.05 and 

S= 0.25, 0.50, 0.90 with a~ values from 0.1 to 8.2 in 

increments of 0.1. In Table II, the PCI values for a=0.01 

* are reported for all levels of v and Sand for a 1 values 

from 1.0 to 8.2 in increments of 0.4. In Table III, the 

PCI values for a=0.05 are reported for all levels of v and 

* Sand for a 1 values from 1.0 to 8.2 in increments of 0.4. 

The PCI values for this case are plotted in Figures 7-10. 

In Figure 7, the plot of PCI against a~ values from 0.1 to 
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8.2 in increments of 0.1 for v=5, 10, 15, 20, cr=O.Ol and 

5=0.90 is presented. The plot of PCI against a~ for 

5=0.25, 0.50, 0.90, at v=20 and ~0.01 is shown in Figure 

8. In Figure 9 and 10, the PCI values are plotted against 

* a 1 for cr=O.Ol, 0.05, 5=0.90 and for values of v=5 and 20, 

respectively. 

Case 6CM=2> 

In this case the PCis were calculated for the twenty-

four combinations of v= 5, 10, 15, 20, a= 0.01, 0.05 and 

5= 0.25, 0.50, 0.90 with 

1.) * d * 1 f 0 1 t 8 0. . t f 0 1 a 1 an a~ va ues rom . o . 1n 1ncremen s o .. 

ii) a~ values from -0.1 to -8.0 in increments of -0.1 and a: 

values from 0.1 to 8.0 in increments of 0.1. In Table IV, 

the PCI values are reported for ~0.01, v=20, 5=0.90 and 

for: 

i ) * * a 1 and a~ values from 1.0 to 8.0 in increments of 1.0. 

ii) a~ values from -1.0 to -8.0 in increments of -1.0 and 

* a~ values from 1.0 to 8.0 in increments of 1.0. For this 

case, the PCI values are plotted against a~ values from 

* 1.0 to 7.1 in increments of 0.1, a~ values from 1.0 to 4.2 

in increments of 0.1 and for v=20, cr=0.01 and 5=0.90. This 

3-dimensional plot is presented in Figure 11. 

To study the effects of misclassification of 

observations, the PCis for Cases 2 and 5 are compared. In 

Figures 12, the plots of the PCis for comparing Cases 2 
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~ and 5, using v=5, ~0.01, 6=0.90 (Case 5) and a values 

from 0.1 to 8.2 in increments of 0.1 are presented. In 

Figure 13, the same comparison as above is made using v=20. 

The numerical integrations for Cases 4-6 were done 

using the IMSL (1987) subroutine PT~OPQ on IBM and the 

single integral in Case 2 was evaluated using SAS (1987) 

Function P~OBT. 

3.2. Limiting Values of PCI 

In this section the limiting values of the PCI for the 

six cases are calculated. In order to determine the 

precisions of the IMSL and SAS subroutines, the PCI values 

from the numerical integrations are compared to the 

limiting values of the PCI as a~--7m, i=1,2. 

For purpose of discussion, let v>O, 6 >O , ~ 
ai >O, and 

C= r{(v+M}/2}(vn}-M/ 1 1DI- 1 / 1 where M=1,2. Then the limiting 
r(v/2) 

value of the PCI is calculated as follows: 

Case l(M=1) 

No limiting PCI values are appropriate here since a*=o 

and the PCI is constant at 1-cr. 

Case 2CM=l) 

The limiting value of the PCI as a*--7m is calculated 

using (2.14) in the following way: 



I-ta/ 2., l1 

lim PCI= lim C {1+(1lv) (x-a*) }-(v+1)l2.dx 
-m 

* a ~m 

Q) 

+lim cf {1+(11v)(x-a*>}-(v+i)l2.dx, 
tcr/2., l1 

Let x* * =x-a , * then for -m<x <m, 

* 
lim PCI = lim C J-t a/ 2., 11 -a 

-m 
* a ~m 

Q) 

-m<x<m. 
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+ 1 i m C I * { 1 + ( 1 I v) x * 2.}- ( v+ 1 ) I 2. d x * ( 3 . 1 ) 
tal 2., "'-a 

= 1 , for a 11 v > 0 and ex:. 

. . . lim PCI = 1 , for all v>O and ex: • 

a*~m 

Hence, if one outlier exists in the data set and it 

is initially classified into the suspected outlier group, 

then it will be correctly identified as an outlier wp 1 as 

* a ~oo, for all ex: and v>O. From Table I, one can see that 

this result is consistent with the result from the 

numerical integration. 

* The limiting value of the PCI as a ~0, can be 

calculated for Case 2 using (3.1). Hence, from {3.1), 
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I-ta; 2. v 
limPCI =C-oo ' {l+(l/v)x*2.}-(v+t)/2.dx* 

a*~o 

00 

+cJ {l+(l/v)x*2.}-(v+t)/2.dx* 

ta/2.,v 

00 

=2CJ {l+(l/v)x*2.}-(v+t)/2.dx* 

ta; 2., v 

=2(a/2)=a, for all v>O. 

* Therefore in this case, as a approaches 0, the PCI 

approaches a. 

Case 3(M=1) 

Refer to the discussion of this case in Chapter II.For 

this case, the limiting value of the Per* as a 1~oo, a2.>0 

fixed, will be calculated. Let C 1 = r[ ( v+ 1) /2] be the 

r( v/2) (d 0 vn) t/ 2. 

constant in the p.d.f in (2.19). Thus, from (2.24) the 

limiting value is calculated as follows: 

00 

+lim c 1J * {1H1/d0 v)(y(2.)_p.~)2.}-(v+t)/2.dy(2.), 
t «/ 2., v 
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* J-t a/ 2., v 
1 i mPC I * = 1 i m C 1 

-CD 

a 1---7CD 

CD 
+lim C J {1+(1/d v)(v-a >2.}-(v+t)/2.dv 

1 * 0 1 
t a./ 2., v 

* Let v =v-a 1 then, 

* I-t a/2. v-a 1 
lim PCI= lim cl I 

-CD 
a 1---7CD 

CD 
+limc 1J * {1+(1/d0 v)v*z.}-(v+t)/z.dv* 

t a/ 2., v-a 1 

( 3. 2) 

=0+1=1, for all v>O, a and any az.. 

Therefore, if the one outlier is initially classified 

into the suspected outlier group, then it will be correctly 

identified as an outlier vp 1, as the shift of the outlier 

in the suspected outlier group approaches m. This is true 

for all v>O, and regardless of the shift of the outlier in 

* the suspected inlier group. The limiting value of PCI as 

a 1---70, a2.>0 can be calculated using (3.2). Hence, 

* * - I-t a./ 2., 11 lim PCI -C 1 . 

-m 
a 1---70 
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=2C 1100* {1+ ( lld0 v) w* 2'. }- ( v+ 1 ) I 2'.dw* 

t a: I 2'., v 

=2(a/2)= a:, for all v>O and a2'.>0. 

Therefore, the PCI* approaches a: as the shift of the 

outlier in the suspected outlier group approaches 0, 

regardless of the shift of the outlier in the suspected 

inlier group. 

Case 4(M=2) 

No limiting PCI values are appropriate here since 

* * a 1=a2'.=0 and the PCI is constant at 1-a:. 

Case 5(M=2) 

Using (2.25), the limiting value of the PCI as 

* * a 1~m, when a2'.=0 is calculated as follows 

CJ 
ta/2'., v 

lim PCI =lim 
-ta; 2'., v 

* a1~m 

CJ
ta/4,v 

+lim 
-ta:l41 v 

I-ta; 4 v 
-m ' {l+ll[v(l-o2'.)J 

{(x -a*)2'.-2o(x -a*>x +x2'.l}-(vt2'.)12'. dx dx 
11 11 2'. 2'. 1 2'. 



lim PCI CI ta/4 1 v 
=lim 

-tal 4, v 

{x *2.-26x*x +x2.} }-(v+2.)/2. dx*d 
1 1 2. 2. 1 x2. 
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{1+1/[v(1-.52.) 1 

( 3. 3) 

. . . 

{1+(1/v)x~}-(v+i)/2.dx2.= 1-a/2 , for all v>O. 

lim PCI = 1-a/2, for all v>O . 
* a1~m 

In this case the limiting value is independent of v 

and 6 but is dependent on a. Thus for all 6 and v>O, the 

limiting PCI at a=0.01 is greater than at a=O.OS, 

(see Figure 10). 

The limiting value of the PCI, as a~~m is less than 

1 as a consequence of misclassifying one inlier observation 

into the suspected outlier group. From Tables II and III, 

one can see that the limiting values of the PCis for both 

a=O.Ol and a=O.OS are consistent with the results from the 

numerical integrations. 
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* * The limiting value of the PCI as a 1~0 when a~=O, can 

be calculated for Case 5 using (3.3) . An upper bound on 

the limiting PCI is obtained for Case 5, since the exact 

limiting value is difficult to calculate. Thus, 

I tal 4 v JCD lim PCI=2C 1 {1+1/(v(1-5~)) 
-to:/ 4, v ta:/ 4, v 

* a 1---70 

CD CD 

<2cJ J {1+1/(v(1-5~) ](x*~-25x*x +x~) }-(v+~)/~dx*dx 
t t ~ ~ 1 ~· 

-CD tcr/4,v 

Reverse the order of integration to obtain 

CD 

=2cJ {1+(1/v)x~~}-(v+t)/~dx~= 2(a/4)= a/2. 

ta:/ 4, v 

* Therefore, lim PCI < a/2, for all v>O, 5 and a~=O. 

* a 1~o 

Hence, as a~---70, a~=O, the limiting PCI for Case 5 

approaches an upper bound of a/2. 

Case 6CM=2) 

* * For both a 1 >0 and a~>O, the limiting value of the PCI 
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* * was calculated as both a 1 and a~ approach m. Denote the 

p.d.f. of a bivariate t distribution with location vector 

i*=(a~, a~) 1 and scale matrix D=[l ~],as 

c{l+{l/v(l-5~)}(x -a*>~-25(x -a*><x -a*)+(x -a*>~}-(v+~)/~ 11 t t ~ ~ ~ ~ 

the limiting value for this case is calculated as follows: 

lim PCI J(D 

= lim 
to:/4 1 v 

Jm 
1 im 

* ai~m * a~~m 
to:/ 4, v 

* a1~m 
{i=l,2} 

Jm 
+ lim 

tal 4, v 

* a~~m 

+ 1 im 

I-ta/ 4, v 
+ lim 

-m 

* a~~m 

* a 1~m 

lim 

* at~m 



CD 

+lim J * 
ta; 4 , "-a~ 

* a~~m 

+lim 

* a~~m 

* I-ta; 4 , "-a~ 
+lim 

-m 

* a~~m 

* a 1~m 

* a 1~m 

* a 1~c:o 

CD 

lim J * 
ta; 4, "-at 

* a 1~m 

. . . lim PCI =1+0+0+0=1, for all 6, a and v>O . 

* ai~m 
{i=1,2} 

Hence, as a~~m and a~~m, both outliers will be 

correctly identified wp 1, regardless of v, 6 and a. 
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( 3. 4) 

* * The limiting value of the PCI as a 1~0 and a~~O can 

be calculated for Case 6 using (3.4). An upper bound on the 

limiting PCI value is obtained for this case since an exact 

limiting PCI value is difficult to calculate. Thus, 



JCD 

lim PCI= 

ta:/ 4, v 

* ai~o 
{i=1,2} 

+ J-ta/41 v J-ta/41 v 

-CD -CD 

+ J-tcr/41 v 

-co 

I_: 

* * * * f(x 1 ,x2., v,D)dx 1dx2. 

=2 Jm f(x~1 v)dx~ = 2(a/4)= a:/2, for all v>O and 5. 

tcr/41 v 

Therefore, lim PCI < a:/2, for all v>O and 5. 

* ai~o 

{i=l,2} 
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* Hence, as ai~O the PCI approaches an upper bound of a:/2. 

{i=l,2} 



CHAPTER IV 

DISCUSSION OF RESULTS 

In this chapter, calculated PCI values are presented. 

These PCI values were generated using the IHSL subroutine 

DTUODQ and SAS Function PROBT. The outputs from these 

subroutines are provided in Tables I-IV and Figures 4-13, 

in Appendix A and B, respectively. These Tables and Figures 

are interpreted for each case below in Section 4.1. Then in 

Section 4.2, the PCis for Cases 2 and 5 are compared. 

4.1. Results for cases 1-6 

In this section, the results on the PCI for the six 

cases of initial classifications are reported. A brief 

discussion on the PCI for each case is also presented. 

Case 1CH=l) 

The PCI is constant at 1-a , for all v>O. However, the 

larger the significance level of the test used the lower 

will be the PCI. 

Case 2CH=l) 

From Table I, it is observed that the PCI increases as 

a* increases. For fixed a and a*, increasing v increases 

the PCI (see Figure 4}. From Figures 5 and 6, it can be 

seen that as v increases the influence of a on the PCI 

41 
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decreases. For all v and a, the PCI equals to its limiting 

* value at a =7.4 (see Table I). 

Case 3CM=1) 

No numerical integration calculations were done for 

Case 3. The main result for this case is the derivation of 

the predictive density of y(~) IX~ 1 >. From (2.21) and (2.23) 

the following conclusions are made. 

i) The predictive density has a different location and 

scale parameter. As a consequence of this misclassification 

the location parameter p0>~ and the scale parameter d 0 >d. 

ii) The PCI depends on v, cr and both the shifts of the 

outlier observations in the suspected outlier and suspected 

inlier groups. 

iii) The PCI also depends on whether the outlier in the 

suspected inlier group is in the same or different class as 

the outlier in the suspected outlier group. 

Case 4CM=2) 

The results from the numerical integration of this 

case are not presented because the PCI is constant at 1-cr, 

for all v>O and 6. In the following paragraph, the effect 

of using a Bonferroni procedure(test procedure 2.10) on 

the PCI of Cases 1 and 4 is briefly discussed. 

Recall that in Case 1, one inlier is misclassified 

into the suspected outlier group. In Case 4,two inliers are 

misclassified into the suspected outlier group. However, 

for both cases the PCI is 1-cr. This is due to the fact 



43 

that the Bonferroni procedure uses a ta; 2M,v rejection 

rule. The a/2M alpha level produces a constant PCI value 

of 1-a, for Cases 1 and 4. 

Case 5(M=2) 

From Tables II, III and Figures 7-10, the following 

conclusions are made. 

i) For all v>O, o and a, the PCI * increases as a 1 increases. 

ii) For fixed o, a: and a, the PCI increases with 

increasing v. From Figure 7 for fixed * a 1' a and o, the 

influence of von the PCI decreases as v increases. 

iii) In general, for fixed v and a, the PCI increases ~ith 

increasing value of o. From Figure 8, it is apparent 

ho~ever that the effect of o on the PCI is small. 

* iv) For fixed v,o, and O< a 1 < 5, the PCI at a=0.05 is 

* larger than the PCI at cr=O.Ol, but for a 1 >5 the reverse is 

* true (see Figure 9). This effect occurs because for a 1 >5, 

the PCI for both values of a approach its limiting value. 

Since the limiting value of the PC! for Case 5 is equal to 

1-a/2, the result follows. 

v) From Figure 9 and 10 for fixed o, decreasing the value 

of v ~ill make the difference bet~een the PC! at cr=O.Ol 

and a=0.05 larger. 

Case 6(M=2) 

From Table IV and the 3-d plot of Figure 11, it can be 

observed that: 

* * i) the PC! increases as a 1 >0 and a 2 >0 increases, for all v, 
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o and a:. 

* * ii) The PCI increases faster when both a 1 and a~ increase 

as opposed to just 

held fixed. 

* a 1 * or a 2 increasing and the other one 

i i i ) At v= 2 0 , * * 5=0.90 and a:=O.Ol, the PCI for a 1 >0, a~>O is 

* * always larger than the PCI for a 1 <0, a 2 >0 (see Table IV). 

For fixed v and a, the PCI increases as o increases 

* * when a 1 >0, a 2 >0, while the PCI decreases as o increases 

when a:<o, a:>o. No 3-dimensional plot for different values 

of o is presented since it requires a lot of computer time. 

4.2. Comparisons of Cases 

It is of interest to examine the consequences of 

misclassifying one extra inlier into the suspected outlier 

group. In Case 2, the observation in the suspected outlier 

group is an outlier, hence there is no initial misclassifi-

cation. In Case 5, one of the two observations in the 

suspected outlier group is an inlier, hence there is an 

initial misclassification. Comparing Cases 2 and 5 will 

address this problem of interest. 

From Figures 12 and 13, misclassifying one inlier into 

the suspected outlier group reduces the PCI. However, this 

initial misclassification has little effect on the PCI 

when v is large. For instance, at o=0.90, a=O.Ol, a:=5.0 

and v=5, the difference between the PCI of Cases 2 and 5 

is 0.227, while this difference at v=20 is 0.021. Hence, 



given the choice of classifying an observation into the 

suspected outlier or suspected inlier group, it is safer 
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to classify the observation into the suspected outlier 

group. This is due the fact that when v is large (v>20), 

misclassifying an extra inlier into the suspected outlier 

group has little effect on the PCI. This choice is further 

supported by the fact that, if an outlier is not initially 

classified into the suspected outlier group, then one loses 

the chance of identifying it. It is also noted that o and cr 

have little effect on this comparison. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This study is devoted to the investigation of the 

effect of initial classification or misclassification of 

outliers and inliers on the PCI for a linear model of 

constant intraclass correlation. The following six cases 

of initial classifications are considered: 

Case l(M=l) 

One observation is initially classified into the 

suspected outlier group when all observations are inliers. 

Case 2(M=l) 

One observation is initially classified into the 

suspected outlier group and it is the only outlier. 

Case 3(M=l) 

One observation is initially classified into the 

suspected outlier group but actually there are two outliers 

in the data set. 

Case 4(M=2) 

Two observations are initially classified into the 

suspected outlier group when all observations are inliers. 

Case 5(M=2) 

Two observations are initially classified into the 

suspected outlier group, one of which is an outlier. All 
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other observations are inliers. 

Case 6(M=2) 

Two observations are initially classified into the 

suspected outlier group and both are outliers. All other 

observations are inliers. 
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For all the cases except Case 3, the PCI is calculated 

based on the predictive density of the suspected outlier 

given a set of inliers. For Case 3, this calculation is 

based on the predictive density of the suspected outlier 

given a set inliers with one outlier in it. 

From this study, it can be concluded that 

misclassifying an extra inlier into the suspected outlier 

group has the effect of decreasing the PCI. However, this 

initial misclassification has little effect on the PCI if 

u is large (u>20). Hence for large enough u (u>20), given 

the choice of classifying an observation into the suspected 

outlier or suspected inlier group, it is safer to initially 

classify the observation into the suspected outlier group. 

This is due to the fact that misclassifying an extra inlier 

observation into the suspected outlier group has little 

effect on the PCI, when u is large. Thus, the test 

procedures in (2.9) and (2.10) are not affected very much 

by initial misclassification, when u is large. 

The effect of misclassifying an extra outlier into the 

suspected inlier group is studied through the examination 

of Case 3. As a consequence of this misclassification, the 

location and scale parameters of the predictive density 
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have increased. Furthermore, the probability of correctly 

identify the outlier in the suspected outlier group is 

smaller than the probability when there is no outlier in 

the suspected inlier group (Case 2). Further investigation 

of this case is recommended, so that the effect of 

misclassifying one outlier observation into the suspected 

inlier group on the PCI can be studied in detail. 

The Bonferroni procedure offers protection against 

declaring too many observations to be outliers. When there 

is no outlier in the data set, the Bonferroni procedure in 

(2.10) ensures that the PCI is constant at 1-cr, even if the 

number of misclassifications increases. From the numerical 

integrations, it is noticed that the four parameters play 

an important role in determining the PCI values. However, 

the PCI for Case 5 is insensitive to changes in o (the 

correlation between the two observations in the suspected 

outlier group). 

Lastly, we recommend the investigations of the 

following topics for future studies: 

1) Extend this study to include the investigations of PCis 

when there are more than two outliers in the data set. 

2) Use a different prior for the derivation of the 

predictive density of the suspected outliers given a 

set of inliers, perhaps an informative one. 

3) The use of scale-change model for the M suspected 

outliers. 
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TABLE I 

PCI FOR CASE 2: PCI=PCI*0.001 

v=N-r-q 
--------------+-------+-------+-------

5 I 10 I 15 I 20 
--------------+-------+-------+-------

Alpha I Alpha I Alpha I Alpha 
----------+---+---+---+---+---+---+---

.011.051.011.051.011.051.011.05 
------+---+---+---+---+---+---+---+---

* I I I I I I I I 
a I I I I I I I I 

------+---+---+---+---+---+---+---+---
1.0 I 171 971 2911281 3611411 401148 

------+---+---+---+---+---+---+---+---
1.4 I 2511521 5412161 7212401 821251 

------+---+---+---+---+---+---+---+---
1.8 I 391241110113401135137311541389 
------+-~-+---+---+---+---+---+---+---

2.2 I 641365117814901233152712631545 
------+---+---+---+---+---+---+---+---

2.6 11061513129116421367167714041694 
------+---+---+---+---+---+---+---+---
3.0 11751658143517711521180115611814 

------+---+---+---+---+---+---+---+---
3.4 12781779158918661671188817071898 

------+---+---+---+---+---+---+---+---
3.8 14131864172919271796194218251949 

------+---+---+---+---+---+---+---+---
4.2 15641918183719621885197219051976 

------+---+---+---+---+---+---+---+---
4.6 17031951190919801940198719531990 

------+---+---+---+---+---+---+---+---
5.0 18111971195119901971199419781996 

------+---+---+---+---+---+---+---+---
5.4 18851982197519951987199719911998 

------+---+---+---+---+---+---+---+---
5.8 19311989198719971994199919961999 

------+---+---+---+---+---+---+---+---
6.2 19591993199419991997199919981999 

------+---+---+---+---+---+---+---+---
6.6 19751995199719991999199919991999 

------+---+---+---+---+---+---+---+---
7.0 19841997199819991999199919991999 

------+---+---+---+---+---+---+---+---
7.4 19901998199919991999199919991999 

------+---+---+---+---+---+---+---+---
7.8 19941998199919991999199919991999 

------+---+---+---+---+---+---+---+---
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TABLE II 

PCI FOR CASE 5: ALPHA=0.01, PCI=PCI*0.001 

v=N-r-q 
-----------------+-----------+-----------+-----------

5 I 10 I 15 I 20 
-----------------+-----------+-----------+-----------

Delta I Delta I Delta I Delta 
---------+-------+---+---+---+---+---+---+---+---+--­

.251.501.901.251.501.901.251.501.901.251.501.90 
-----+---+---+---+---+---+---+---+---+---+---+---+---

* I I I I I I I I I I I I 
a1 I I I I I I I I I I I I 

-----+---+---+---+---+---+---+---+---+---+---+---+---
1.0 I 5 I 5 I 5 I 101 101 101 141 141 151 161 161 18 
-----+---+---+---+---+---+---+---+---+---+---+---+---
1.4 I 81 81 81 201 201 241 301 301 371 361 371 44 
-----+---+---+---+---+---+---+---+---+---+---+---+---
1.8 I 121 121 131 401 421 501 611 651 771 751 791 92 
-----+---+---+---+---+---+---+---+---+---+---+---+---
2.2 I 191 201 221 761 821 96111811271146114311531172 
-----+---+---+---+---+---+---+---+---+---+---+---+---
2.6 I 311 331 38113811531173120912281251124812671288 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.0 I 511 571 66123612631285133713671389138814151435 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.4 I 861 991112137014071428149115261544154515761591 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.8 114411691186152515671582164616801692169517231733 
-----+---+---+---+---+---+---+---+---+---+---+---+---
4.2 123512771294167617131723177718041811181618371842 
-----+---+---+---+---+---+---+---+---+---+---+---+---
4.6 136214181433179818261832187218901894189819121915 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.0 151315721584188419011904193219421944194819551957 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.4 166217121719193619461948196519701972197419771979 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.8 178318181822196519701972198119841985198619881989 
-----+---+---+---+---+---+---+---+---+---+---+---+---
6.2 186718881891198019831984198919901992198919911993 
-----+---+---+---+---+---+---+---+---+---+---+---+---
6.6 191919321934198819891991199219931994199319941995 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.0 195119581959199019921993199419951995199519951995 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.4 196919731974199319941995199519951995199519951995 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.8 197919811983199419951995199519951995199519951995 
-----+---+---+---+---+---+---+---+---+---+---+---+---
8.2 198519871988199519951995199519951995199519951995 
-----+---+---+---+---+---+---+---+---+---+---+---+---
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TABLE III 

PCI FOR CASE 5: ALPHA=0.05, PCI=PCI*0.001 

v=N-r-q 
-----------------+-----------+-----------+-----------

5 I 10 I 15 I 20 
-----------------+-----------+-----------+-----------

De 1 ta I De 1 ta I De 1 ta I De 1 ta 
---------+---+---+---+---+---+---+---+---+---+---+--­

.251.501.901.251.501.901.251.501.901.251.501.90 
-----+---+---+---+---+---+---+---+---+---+---+---+---

* I I I I I I I I I I I I 
a1 I I I I I I I I I I I I 
-----+---+---+---+---+---+---+---+---+---+---+---+---
1.0 150 150 150 150 150 150 160 160 160 170 170 I 70 
-----+---+---+---+---+---+---+---+---+---+---+---+---
1.4 I 561 561 56110011011110112111221133113211331145 
-----+---+---+---+---+---+---+---+---+---+---+---+---
1.8 I 951 971103117811841200121312201238123112381257 
-----+---+---+---+---+---+---+---+---+---+---+---+---
2.2 115911661178129213051325134113551375136513791400 
-----+---+---+---+---+---+---+---+---+---+---+---+---
2.6 125612721287143614571476149215121531151915391556 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.0 138814121427158916131628164316651679166816881702 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.4 153815651577172617471758177017881799179018071817 
-----+---+---+---+---+---+---+---+---+---+---+---+---
3.8 167917031712182818441853186118741882187418871895 
-----+---+---+---+---+---+---+---+---+---+---+---+---
4.2 179018071814189519051913191619251933192519331941 
-----+---+---+---+---+---+---+---+---+---+---+---+---
4.6 186518761882193419401947194719521959195319571963 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.0 191119181924194219581964196219651970196619681972 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.4 193819431949195519671972197019711974197119721975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
5.8 195319561962196619711974197319731975197419741975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
6.2 196219641969197019731975197419751975197419751975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
6.6 196719681972197319741975197519751975197519751975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.0 197019711973197419751975197519751975197519751975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.4 197219721974197519751975197519751975197519751975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
7.8 197319741975197519751975197519751975197519751975 
-----+---+---+---+---+---+---+---+---+---+---+---+---
8.2 197419751975197519751975197519751975197519751975 
-----+---+---+-------+---+---+---+---+---+---+---+---
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TABLE IV 

PC! FOR CASE 6: v=20, DELTA=0.90, AND ALPHA=0.01 

----+------+------+------+------+------+------+------+------
a2*1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 

I I I I I I I I 
a1* I I I I I I I I 
----+------+------+------+------+------+------+------+------
-1 10.000010.000010.000010.093810.099110.099210.099210.0992 
----+------+------+------+------+------+------+------+------
-2 I 10.000010.000210.107310.115310.115410.115410.1154 
----+------+------+------+------+------+------+------+------
-3 I I 10.025910.120110.127510.127610.127610.1276 
----+------+------+------+------+------+------+------+------
-4 I I I 10.138310.140910.140910.140910.1409 
----+------+------+------+------+------+------+------+------
-5 I I I I 10.143510.143610.143610.1436 
----+------+------+------+------+------+------+------+------
-6 I I I I I 10.143610.143610.1436 
----+------+------+------+------+------+------+------+------
-7 I I I I I I 10.143610.1436 
----+------+------+------+------+------+------+------+------
-8 I I I I I I I 10.1436 
----+------+------+------+------+------+------+------+------

1 10.013010.021110.021510.083510.092110.117510.125210.1253 
----+------+------+------+------+------+------+------+------

2 I 10.092810.128810.132510.136810.143510.144210.1442 
----+------+------+------+------+------+------+------+------

3 I I 10.366410.435810.436310.436310.436410.4364 
----+------+------+----~-+------+------+------+------+------

4 I I I 10.605810.652910.653610.653610.6536 
----+------+------+------+------+------+------+------+------

5 I I I I 10.801510.815910.816110.8161 
----+------+------+------+------+------+------+------+------

6 I I I I I 10.849110.851310.8514 
----+------+------+------+------+------+------+------+------

7 I I I I I I 10.855610.8563 
----+------+------+------+------+------+------+------+------

8 I I I I I I I I 0. 8 56 3 
----+------+------+------+------+------+------+------+------
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* * Figure 11. The Effect of a 1 >0 and a~>O on the PCI of Case 6, 

when v=20, 6=0.90 and a:=O.Ol 
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Figure 12. Comparison of Cases 2 and 5, vhen v=5, 6=0.90 and a=O.Ol 
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Figure 13. Comparison of cases 2 and 5, when v=20, 6=0.90 and or-0.01 
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