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CHAPTER 1

INTRODUCTION

Srikantan (1961) and Ferguson (1961) were probably the
first to use the mean-shift model to identify outlying
observations in linear models. Since then, Gentleman and
Wilks (1975a,1975b), John and Draper (1978), John (1978),
Rosner (1975), Tietjen, More, and Beckman (1973) and others
have addressed the problem of outlier testing in linear
models. Others, such as Jain (1981b) and Balasooriya and
Tse (1986) have considered comparing the powers of some
outlier test procedures which have been developed both in
normal samples and in linear models situations.

Box and Tiao (1968), introduced a Bayesian approach to
outlier detection in linear models. Guttman (1973) and
Guttman, Dutter and Freeman (1978) develop an ad hoc
Bayesian approach for handling outliers in univariate and
multivariate samples using the mean-shift model. Guttman
and Katri (1975) extend the work of Guttman (1973) to
include scale-change models. Gambino and Guttman (1984)
provide a Bayesian approach to deriving the predictive
distribution for future observations in the presence of
outliers.

An extensive list of references on outliers can be

found in a paper by Beckman and Cook (1983). The books by
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Barnett and Lewis (1984) and Hawkins (1980) provide a
useful survey of the literature.

All of the outlier detection procedures listed above,
treat outliers in linear models with independent errors.
Moser and Marco (1988), extend the literature by providing
an outlier detection procedure for linear models with
correlated errors.

The procedures for identifying outliers are
subjective in nature (Collett, D. and Lewis, T., 1976).
According to Bross (1961), it is more difficult to identify
outliers in a patterned experiment as compared to an
unpatterned experiment. Bross also stressed the importance
of having a working definition of an outlier in a patterned
experiment. Hence, the following definitions are provided
to clarify the problems of identifying and testing for
outliers in linear models.

1) Outlier - Any observation that has not been generated

by the mechanism that generated the majority of
observations in the data set. (Freeman,P.R. 1979)

2) Inlier - Any observation that has been generated by the
mechanism that generated the majority of the data set.

3) Suspected Outlier - Any observation that does not fit
the pattern of the data or hypothesized model and the cause
of the irregularity is not clear.

4) Suspected Inlier - Any observation that appears to
follow the pattern of the data or hypothesized model.

5) Classification - Partitioning of observations into



suspected outlier or suspected inlier groups so that the
former can be studied in detail. An observation will be
classified into the suspected outlier group if it satisfies
Definition 3, otherwise it will be classified into the
suspected inlier group.
6) Identification - The process of distinguishing which
observations are outliers and which are inliers. The goal
is to find outliers to make them available for further
study.

Moser and Marco develop an outlier test procedure for
a linear model of constant intraclass correlation based on
the predictive density of suspected outlier observations
given a set of existing inlier observations. This thesis
extends their work by investigating the effect of initial
classification or misclassification of outlier and inlier
observations on the Probability of Correct Identification
(PCI). PCI is the probability that the inliers and outliers
of a data set are correctly identified.

This thesis consists of five chapters. In Chapter 1I,
a historical background of outlier testing in linear models
vas presented. In Chapter II, the mathematical background
of the problem is developed. A summary of the proposed
numerical outputs is presented in Chapter III. Discussion
of the results is presented in Chapter 1V and then the

thesis is briefly summarized in Chapter V.



CHAPTER 11

MATHEMATICAL BACKGROUND

The main objective of this thesis is to investigate
the effect of initial classification or misclassification
of outliers and inliers on the PCI for a linear model of
constant intraclass correlation. Since different initial
classifications of observations produce different PCI
values, six cases of these initial classifications are
considered. In addition, the cases are compared so that
the consequences of misclassifying observations can be
studied in detail.

In Section 2.1, the six cases of initial
classifications are defined. Then in Section 2.2, the
linear model of constant intraclass correlation is stated.
In Sections 2.3 and 2.4, the predictive density and the
outlier test procedure for this model are described,
respectively. Numerical integrations are used to calculate
the PCI values. These numerical integqration calculations

are presented in Section 2.5.

2.1. Definitions of Cases 1-6

The following six initial classifications are

considered. In each case, the observations are either



classified into the suspected outlier or suspected inlier
group.

Case 1. One observation is initially classified into the

suspected outlier group when all observations are inliers.

Case 2. One observation is initially classified into the

suspected outlier group and it is the only outlier.

Case 3. One observation is initially classified into the

suspected outlier group but actually there are two outliers

in the data set.

Case 4. Two observations are initially classified into the

suspected outlier group when all observations are inliers.

Case 5. Two observations are initially classified into the

suspected outlier group, one of which is an outlier. All
other observations are inliers.

Case 6. Two observations are initially classified into the

suspected outlier group and both are outliers. All other

observations are inliers.

2.2. The Model

Moser and Marco (1988) develop a procedure for testing
suspected outliers when the observations conform to a
linear model of constant intraclass correlation. A Bayesian
approach to the problem is developed using the predictive
distribution of the suspected outliers given the inliers. A
test procedure based on this predictive distribution is
then derived for testing the suspected outliers.

The procedure is performed as follows: first, the



observations are initially partitioned or classified into
two groups; suspected inliers and suspected outliers; next,
the test procedure is applied to identify which observa-
tions in the suspected outlier group are in fact outliers.
Thus, as defined in Chapter I, classification is the
initial partitioning of the observations into suspected
inlier and suspected outlier groups. Identification, on the
other hand, is the process by which Moser and Marco's test
procedure distinguishes which observations in the suspected
outlier group are outliers. Therefore, the final decision
on which observations are inliers and which are outliers is
not based on the initial classification of observations but
is only made after Moser and Marco's test procedure has
been performed. The objective of this thesis is to
investigate the effect of different initial classifications
of observations on the probability that the test procedure
ultimately identifies the outliers correctly. This
Probability of Correct Identification is subseqguently
referred to as PCI.

The following model form, as discussed by Moser and

Marco is considered:

for the ith class, i=1,...,r. Y; is (ni+mi)x1 random vector

of observations, n;21, m;20, Z n;j=N, Z m;=M. There are N+M

N+M total observations in the data set, N suspected inliers

and M suspected outlier. Z; is an (n;+m;)xp matrix of



independent variables taking the form L“i+migi with z; a
(1xp) vector, and T; is an (n;+m;)xq matrix of covariates.
8, B is (pxl) and (gxl) vectors of unknown parameters,
respectively and g; is (nj+m;)x1 vector of random errors.
Assumptions

The following assumptions are made concerning
observations from linear model (2.1).
1) Observations in different classes are independent, while

observations in the same class are equicorrelated.
_ 2 _ ;
2) g4~ N(Q,Z), where Z=c“[(1 P)I(ni+mi)+PJ(ni+mi)l with

¢?>0, and -1/(nj+m;)<p<1.

3) M observations are classified a priori as suspected

outliers and N observations as suspected inliers.

2.3. The Predictive Density

Following Moser and Marco, each vector Y; is
partitioned into (X{’)', ng)-) vhere Xi(’) is an n;x1

vector of suspected inliers in the ith class and xgz) is
an m;xl vector of suspected outliers. Then assuming that

the Nx1 vector g(‘) of suspected inliers contains only

inlier observations, they have shown that under H,: all of

the suspected outliers are inliers, the predictive density

of Y(2)1y(t) yith noninformative prior
p(8 g,0%pP) a le?(1-p)171 (2.2)

is an M-dimensional multivariate t distribution, with N-r-q



degrees of freedom, location vector p and scale matrix D.

The location vector p and scale matrix 9 are presented in

the following forms;

p= ¥ (1) 4(rl2) - pla),y3 (2.3)
vhere,

v, D ey, v =ampag 1 v O,

D= S2{Iytayt(T(2)-p(1)) (p(1) gp(e))-1(pl2)_ql1))"y (2.5)
vhere,

s%= (N-r-q) "1y (1)-1(1)g) 'wy()-qal1lg, (2.6)
4y is an MxM block matrix whose ith plock is (1/ni)Jmi'

T(1)= (Tgl)',..-,Téi)')'qu ’ T(2)=(T(12)'l°"'T£2)')'qu ’

BT, LT ) g+ T3 (=(1/np) mglhi1y (1) ana
W is an NxN block diagonal matrix whose ith pilock is

Ini—(llni)Jni. Hence, following Berger(1980) the predictive

density of ¥(2)1¥(1) can be presented as
f(x( 2)’V'£"D)

cliv(1/v)(yt@) g "1yl 2)-p) ]~ (M) /2, y(2) g (2.7)

0 otherwise



vhere c= CL(wM)/21 12172\ ooy,
Mv/2) (vmM/ 2

g:R" and D is an MxM positive definite symmetric matrix.

When M=2, the density function in (2.7) is a bivariate t
distribution.

The distribution of ¥(2)|y(!) under H,, assuming all

elements of x(‘) are inliers is derived in a similar

fashion. Assuming the perturbation in the outlier

observation is caused by a shift in the mean, then under H,
the predictive density of ¥Y{(2)1y(1) vith prior (2.2), is an

M-dimensional multivariate t distribution with N-r-g

degrees of freedom, location vector

#=i(1)+(tr(2)_v;(l))§ +a (2.8)

wvhere g=(al,...,an)', ng" is a vector of unknown shift

parameters for the M suspected outliers, and scale matrix
D as given in (2.5).
Below is a summary of the predictive density derived

in this section.
1) Outlier Model: The mean-shift model for the outliers can

be presented in the following vay.

i) E(X( 1)):2( 1)9 +T( 1)2

i1) E(y(2))=2(2)gep(2)p4q

2) Predictive Density, assuming a mean-shift model(All
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Cases except Case 3):

Under H,: all of the suspected outliers are inliers,
1(2)|¥(1) ~ MVE(p , D)
Under H,: at least one of the suspected outliers is an

outlier,

(213 (1) ~ Myt (p+a, D).
2.4. The Test

With the knowledge of the distribution of y(2)y(1),

Moser and Marco develop a test procedure for detecting
the presence of outliers in the suspected outlier group.
The hypotheses of interest are

H,: all of the suspected outliers are inliers.
H,: at least one of the suspected outliers is an outlier.

1

Following Berger (1980), under H, the random variable
F*=(1/M) (x¢2)-p) 'D71(y(2)-p) has an F distribution with M

and N-r-q degrees of freedom. Hence, an o level rejection

rule for testing H, is to reject if
X pa
F >F M,N-r-q . (2.9)

When H, is rejected, a Bonferroni multiple comparison
procedure is used to identify which elements of the (Mxl)
vector of suspected outliers x(z) are outliers. The

following test statistic was used (Moser and Marco 1988,

egquation 14).
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ij=

§i5(1(2)-p

S{1+1/n;+§15(T(2) (1)) () yp (1)) =21 cpl2)q(1)) g, Sy 2/2

where v

ij has a univariate t distribution with N-r-q

degrees of freedoms, 5ij is an Mxl vector of zeros except

th

for a one corresponding to the j suspected outlier in the

ith class, and all other terms are defined as before. By

the Bonferroni procedure, one concludes that the jth

th

suspected outlier in the i class is an outlier if,

IVij [2ta/2mM,N-r-q - (2.10)

2.5. Numerical Integrations

In this section, the integrals used to calculate the
Probability of Correct Identification (PCI) for Cases 1l-6
are defined. In each case (except for Case 3), the
integrand is the predictive density of the suspected
outliers given the inlier observations. To reduce the

number of parameters involved in the numerical integrations
of the PCI, the random vector X(Z) is standardized.

Let X =(x1,xz,...,xM)' be an Mxl random vector with

2)_,, -
(v§2)-p;-aj)
X-1= i/ Z 7 i’-:l,...,M,

(di;)
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vhere d;; is the ith diagonal element of D given in (2.5),

Y{z) is the ith suspected outlier, p; is the ith element of

B, given in (2.3), and a; is the ith clement of a given in

(2.8).
In Cases 1-3, M=1; thus X=X, =X, where the subscript is
dropped for convenience. For Cases 4-6, M=2 so that

X= (X, Xz)'. Hence, under H, and assuming x(‘) is a vector

of inliers, the random variable X follows a univariate t
distribution with N-r-q degrees of freedom and the random
vector X = (X, , X,)' follows a bivariate t distribution

with N-r-q degrees of freedom, location vector g=(0,0)' and

scale matrix

p= [ ¢ ] , (2.11)
where

d:z
&= VA& 72 ¢ -1<&<1.

Define

*=(1/2)(X,, XD H(X,, X,) . (2.12)
Then, following Berger under H,, F* has an F distribution

with 2 and N-r-q degrees of freedom.

Now, the PCI for the six cases will be calculated

based on the predictive density derived in this section and
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test procedures in (2.9)-(2.10). For convenience, denote
v=N-r-q as the degrees of freedom.

Case M=

One observation is initially classified into the
suspected outlier group when all observations are inliers.
In this case the PCI is the probability that the one
observation in the suspected outlier group is identified as
as an inlier. Hence,

PCI= P( accept H, and identify X as the inlier)

=P( IX l<t0;/2,v)

ta/z,v
=I f(x,v)dx =1-a , for all v>0, (2.13)

"tct/z, v
wvhere f(x,v) denotes the univariate t distribution with v
degrees of freedom. The limits of integration are obtained

from the Student's t table with the appropriate o and v.

Case 2 (M=1

One observation is initially classified into the
suspected outlier group and it is the only outlier. In this
case the PCI is the probability the observation in the
suspected outlier group is identified as an outlier. Hence,

PCI= P( reject H, and identify X as the outlier )

=P(IXDtg,, )

t (o1}
2
=f Wz, v £(x,a%,v)dx +I £(x,a%,v)dx, (2.14)
-

ta/z,v

wvhere f(x,a*,v) denotes the univariate t distribution with
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v degrees of freedom, location parameter a*=as/d!/%. Thus t

is a shifted central t distribution with a shifted

location parameter, a* (not a noncentral t distribution).
As in Case 1, the limits of integration for this case are

also obtained from the Student's t table.
Case 3 (M=1)
One observation is initially classified into the

suspected outlier group when there are two outliers in the

data set. The predictive density of g(z)lg(‘), as given by

equation (2.7) is not applicable here since one of the

observations in g(‘) is an outlier. Hence, a separate

predictive density is needed for calculating the PCI of

Case 3.

In this case, the effect of misclassifying one outlier

observation into the suspected inlier group on the location

and scale parameters of the predictive density is
investigated. Then, a brief discussion on the probability
of correctly identifying the one observation in the

suspected outlier group is presented.

Denote xé‘) as the Nx1 vector of observations from the

suspected inlier group where one of the observations is an

outlier. Without loss of generality, the vector xé‘) can be

presented as

{1 =yt 4a, ¥ (2.15)
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g(‘) represents an Nx1 vector of suspected inliers, where

all of its elements are inliers (this vector is the same as
that given in (2.4) and (2.6)); a, is an unknown parameter

defined such that

E(y{t))-e(y(*))=a,¥ , (2.16)
wvhere ¥ is an Nxl1 vector of Q's with a "1' corresponding to

the one outlier in the suspected inlier group.

Under H, and assuming all elements of g(‘) are inliers
the predictive density of x(z)lx(‘) for M=1 is a univariate

t distribution with v degrees of freedom, location

parameter

y=§(l)+(T(2)_E(l))§ (2.17)

and scale parameter
d=52{1+1/n+(T(2) -0 1)) (r () 'yr (1)) =2 (pl2)op(a)y '} (2.18)

Note that the location and scale parameters are derived
from (2.3) and (2.5) respectively by letting M=1. Following

Berger (1980), this predictive density can be presented as

£(y(2),y,u,da)= ML(v1)/2]
i/ 2
(dvm) M(v/2)

{1+(1/vd)(y(2)"}l) 2}_(V+1)/2
(2.19)
where y(2)e R, v>0, -o<p<o and d>0.
Using (2.15) - (2.19) and the results from Box and

Tiao (1968), the predictive density of Y(z)lxé‘) under H,

with prior (2.2) is a univariate t with v degrees of
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freedom, location and scale parameters, say », and d,,
respectively. In the following paragraph, u», and d, are

derived as a function of » and d, respectively for Case 3.

The location parameter p, is given as

ng=t§ (2113, (2.20)

vhere Y =Y +ea,/ny), i=1,...,r

¥ is defined as

0 if the outlier in the suspected outlier group
is in a different class from the outlier in the

suspected inlier group,
1 if the outlier in the suspected outlier group

is in the same class as the outlier in the

suspected inlier group.

~

' — '
£O=(T(1) WT(I)) 1T(1) wxél)
=(T(1)'WT(1))'1T(1)'W(¥(1)+a2§)

=(T(1)'WT(1))—1T(1)'wx(1)+a2(T(1)'WT(l))-lT(l)'wz

. Bo=pra,(T( 1) yr(1))m1p(1) Tyy,

Subsitute for ié‘) and §0 into (2.20); thus g, can be

written as
po=[§(1)+¢(az/ni)]+(z(2)_i(1)){E+a2(T(1)'WT(1))—1T(1)'WI}

={ §(1)+(T(2)_i(1))é }+¢(az/ni)+az(r(2)_i(l))
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(T(‘)'WT(‘))"‘T(‘)'Wj
= » + Play/ny)va, (T(2)-r(a)) (r(2) Tyr (1)) =ap (1) gy,
Hence,
po=p+az{¢yni+(g(2)—i(‘))(T(‘)'WT(‘))“T("'w;} (2.21)

wvhere u is the mean of the predictive density of Y(Z)IX(‘)

defined in (2.17).

The scale parameter 4, is given as

do=s 2{1+1/n;+(T(2)-p (1)) () 'gr (1))~ 1(p(2)g(1))"}  (2.22)

where sZ=(1/v) (x{*)-T( g ) wigl{ ) -1(p).
Substitute for gé‘) and Eo; then

sZ=(1/v) 1YV ra, ¥-101) (pra, (7( 1) 'wr( 1))~ 1p(1) 'yy)} 'y
~ (] - ]
(Y 4a, ¥-1(1) (pra (r( ) 'gr (1))~ 10 (1) "yy)}
=(1/v) Ly -r( gy r(a,¥-a, () () wr(1))~ (1) 'y} 'y
{(x( 1)_T( 1)§)+(az-§—az‘r( 1)(T( ‘)'WT( 1))"1T( 1)'w§)}

=(1/v) (VD -p gy Ty g () _pl) g

+(1/v){a,¥-a, T (r( 1) 'gp(1))-1p (1) 'y 'y
ta,¥-a, 7 ) (r( ) g (2))y=1p () 'yyy 4 (2/0) (x (- (1) 5y

(a,¥-a,T{ ) (pl1) gpl1))-10(1) gy,
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S2_212
Thus, sg=s® + K +K,, where

K,=(1/v){a,¥-a, T (r() 'grl1))=1p (1) 'yyy 'y
ta,¥-a,r( ) (p(1) ygr(1))-1p(1)iyy

Kz=(2/")(¥( 1)_T( 1)‘%)'(323_32'1-( ‘)(T( ‘)'WT( ‘))—‘T( 1) 'Wj),
and K,>0,K,>0 for all a, ,>0 and a,>0.

Substitute for §§ into (2.22); then
do=(52+K #K ) {1+1/n +(T(2)-p (1)) (p (1) "yr(2)) =2 p(2)qg(1))"}
=s2{1+1/n +(T(2) -7 (1)) (o (1) 'yr( )y =2 (p(2)opl)) " Ry k,

. dg=d+K, (2.23)

where

K 5= (K #K ) {141/n;+(T(2) =g (1)) (2 (1) 'y (1)) =2 (p(2) (1)) " 150

and d is the scale parameter of the predictive density of

y(2) 1y(1) given in (2.18).

Therefore, under H, the predictive density of
v(2)y{1), using prior (2.2) with M=1, is a univariate t

distribution with v degrees of freedom, location parameter
1, given in (2.21) and scale parameter d, given in (2.23).

From (2.21), (2.23) one can observe that misclassifying one
outlier into the suspected inlier group ( failure to
classify the outlier into the suspected outlier group) has

made the location and scale parameters larger, i.e. p >n
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and d°>d.

A summary on the derivation of the predictive density
for Case 3 is presented below:
1) Outlier Model: The mean-shift model for the outliers in

both groups can be presented in the following way.

E(g{t))= z(Vg+r(pra ¥

E(Y(z))= Z(Z)Q‘FT(Z)E‘H—!‘

2) Predictive Density(using prior in 2.2).

Under H,: the suspected outlier is an inlier,
(2 (1)

v(2) 1) L oe(n,,d,).

Under H,: the suspected outlier is an outlier,

y¢2)1x{1) . t(u +a,,d,), vhere a, is the shift of the

outlier observation in the suspected outlier group.
Now a brief discussion of the PCI for Case 3 is

presented (for convenience, the discussion of the PCI is

based on the predictive density of ¥(2)|yx{*), with M=1 and

g=1l). Recall that in Chapter I, the PCI was defined as the
probability that the inliers and outliers of a data set are
correctly identified. Test procedures (2.9) and (2.10) only
identify outliers in the suspected outlier group. Therefore
if one outlier is misclassified into the suspected inlier
group, as in Case 3, the PCI is zero.

Although the PCI as defined in Chapter I is zero for



20

Case 3, it is still possible for the test procedures in
(2.9) and (2.10) to identify correctly the one observation
in the suspected outlier group. The following definitions
will be useful in discussing the PCI of the one observation

in the suspected outlier group for Case 3.
1) PcI* of Case 3- the probability that the outlier

observation in the suspected outlier group is correctly

identified for Case 3=P( reject H, and identify the
observation in the suspected outlier group as an outlier).
2) a, is the shift of the outlier observation in the

suspected outlier group, (a,20).

3) a, is the shift of the outlier observation in the
suspected inlier group, (a,20).

4) Distribution 1 is the predictive distribution of

Y(z)IY(’) under H, when M=1, g=1, with one observation in
&0 o

gé" being an outlier.

5) Distribution 2 is the predictive distribution of
Y(Z)IXé’) under H, when M=1, g=1, with one observation in
gé‘) being an outlier.

6) Region A is the acceptance region for testing H,, when
one of the observations in gé" is an outlier. The area of

this region under Distribution 1 is equal to l-a.

In Figure 1.1, the predictive distributions of
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Y(Z)Igé‘) wvith M=1, g=1 are presented. No numerical

integration is done for Case 3. However, the following

discussions of the PCI*, based on the distributions shown

in Figure 1.1 are presented.

Distribution 2
Ug +&, L

U Distribution 1 Region A
(=]

(]
tw- t()

Figure 1.1. Predictive Distributions for Case 3

In Case 3, a,>0 and a,>0; i.e. the observation in the

suspected outlier group is an outlier and one observation

in the suspected inlier group is an outlier. Hence,
PCI*={area under Distribution 2, outside of Region A}.

=P(reject H, and identify Y(2) as the outlier)

(12 ey, )

*x
-t of 2, v
=C I

sy {1+(17d,v) (y'2)-pg) 2} Cvt12/2qy(2)

00
+C, f* {1+(1/7d5v) (y(2)-pl) 2}~ (vi1)/2qy(2), (2.24)
ta/z,v
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Cl(v+1)/2]
Mv/2) (vdgm)

x
wvhere C = 720 Po=Hota,-

The limits of integrations are determined from the
complement of Region A under Distribution 1, i.e. the
univariate t distribution with v degrees of freedom,

location parameter p, and scale parameter d,.

Although Case 3 refers to one outlier in the suspected
outlier group and one outlier in the suspected inlier group

(i.e. a >0, a,>0), Figure 1.1 can also be used to discuss

the probability of correctly identifying one inlier in the
suspected outlier group when there is an outlier in the

suspected inlier group. This situation corresponds to a, =0,

a,>0 for Case 3, and the PCI is calculated as follows:

PCI={area under Distribution 1, in Region A}
=P(accept H, and identify ¥'2) as an inlier)=1l-a.

In Case 2, one observation is initially classified
into the suspected outlier group and it is an outlier. In
Case 3, one observation is initially classified into the
suspected outlier group but actually there are two outliers
in the data set. To see the effect of this misclassifica-
tion, a comparison between Cases 2 and 3 in terms of their
predictive distributions is made. From Figures 1.2 and 1.3,
it is observed that for the same shift of the outlier in
the suspected outlier group, the PCI of Case 2 is greater

than the PCI of Case 3, for all v>0, a« and a,>0. However,

from (2.21) and (2.23) it can be observed that as a, gets
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smaller and n; gets larger, the effect of this

1

misclassification on the PCI of Case 3 gets smaller.

Figure 1.2. Predictive Distributions for Case 2

-

Uo Ue ta,

Figure 1.3. Predictive Distributions for Case 3

Case 4(M=2)

Two observations are initially classified into the
suspected outlier group when all observations are inliers.
In this case the PCI is the probability the two
observations in the suspected outlier group are identified

as inliers. Hence,

PCI=P(accept H, and identify both X,, X, as inliers).
In this case, X, and X, will be identified as inliers when

the F-test results in accepting H,: all the suspected

outliers are inliers or when the F-test results in accepting
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H,: at least one of them is an outlier, but the two t-tests
which are done separately on X, and X, using the Bonferroni

procedure, identify them both as inliers. The latter

situation occurs when the combined effect of X, and X,
leads to a large value of F*, but each X; (i=1,2) is not

large enough to reject H,. Hence,

* *
PCI= P(F' < Fg ) + P(F > FJ IX 1<t gyq, ur 1X,1<Eg/ 4, )

2,v/

=I j £(x,v,a",D)dx , §=(x‘,xz)'€Rz (2.25)
wvhere f(g,v,g*,D) denotes the bivariate t distribution
with v degrees of freedom , location vector g*=(0,0)' and
scale matrix D given in (2.11). The limits of integration

are determined from the following equations:

IXH<QV4U e e e e ecr s s e eaen (i)
Ile<ta/4  teeesesesesietseetana (ii)
* o

F < Fz’v ...................... (iii)

vhere F*¥ is defined in (2.12) and F® _ is the 100(1l-a)

2, v
percentile of an F distribution with 2 and v degrees of
freedom. An example of the region of integration is shown
in Fiqure 1, for o=0.01, v=15, and &6=0.50.

Case 5(M=2)
Two observations are initially classified into the
suspected outlier group,one of which is an outlier. All

other observations are inliers. Without loss of generality,
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let X, be the outlier observation and X, be the inlier

observation in the suspected outlier group. In this case,

the PCI is the probability X, is identified as an outlier
and X, as an inlier. Hence,
PCI= P( reject H, and identify X, as the outlier and

X, as the inlier )

— X pa
=P(F >Fz,u'|x1|>tq/4,ur|xz|<tq/4,v)

=I I f(g,v,g*,D)dg ’ 5=(x!,x2)'€Rz (2.26)

where f(g,v,g*,D) denotes the bivariate t distribution with
v degrees of freedom, location vector g*= (a:, 0)', where
at= a!/(d“)‘/2 and scale matrix D as given in (2.11). The

limits of integration are determined from the following

equations:

(D O gy P PR R ceseaaeanas (1)
Ile<ta/4 v ceseceense ce e (ii)
F* > FE e, oo (iii)

An example of the region of integration is shown in

Figure 2, for ao=0.01, v=15 and &=0.50.
Case 6(M=2)

Two observations are initially classified into the
suspected outlier group, both are outliers. All other

observations are inliers.

For this case, the PCI is the probability that both
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observations in the suspected outlier group are identified
as outliers. Hence,

PCI=P( reject H, and identify both X, and X, as outliers )

- LR o
=P(F >Fz'u,|x1|>t“/4,u ,Ile>ta74'v)

=J‘ I £(x,v,a~,D)dx , x=(x,,X,) €RZ (2.27)

where f(;,v,g*,D) denotes the bivariate t distribution with
v degrees of freedom, location vector g* = (a: ’ az)',

x_ 1/ 2 *_ 1/ 2 . .
a,=a,/(d,,) s @ay=a,/(d,,) and scale matrix D as given
in (2.11).

The limits of integration are determined from the

following equations:

|X1|>ta/4 B (i)
lxz|>ta,/4 w o treceessseessiteaan (ii)
* o e . s

F > lev .................... (iii)

An example of the region of integration is shown in
Figure 3, for o=0.01, v=15 and &§=0.50.

In the next chapter, a summary of the plan for the

numerical integration calculations of the PCI values will

be presented.



CHAPTER 111
SUMMARY OF PROPOSED NUMERICAL OUTPUTS

In Chapter 11, the PCI integral formulas were derived
for the six cases. From equations (2.13), (2.14), (2.24),
(2.25), (2.26) and (2.27), one can see that the PCI is a
function of four parameters. It is proposed to calculate
the PCI for the six cases by using specific combinations of
these parameters.

In this chapter, the parameters that affect the PCI
are listed and defined. Then, the proposed numerical
integrations for the six cases are summarized and finally,

the limiting value of the PCI is derived.

3.1. List of Parameters

The PCI is a function of four parameters: v, 5, ao and

a*. The following levels of these parameters are used in

calculating the PCI of the six cases:

1) v=N-r-q is the degrees of freedom. It is a fixed
constant determined by the size of the experiment and is
defined for all N, r, q that fits the linear model in
(2.1). Four levels of v are considered : 5, 10, 15, 20.

2) 6=d12/{ﬁ//aiiA//azz} is the correlation between the two

random variables, X, and X,(for Cases 4-6). It is a known

27
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constant, given x(‘). Three levels of & are considered:

0.25, 0.50, 0.90.
3) o is the significance level of the test. It is a fixed
constant determined by the researcher. Two levels of o are

considered : 0.01, 0.05.

4) Q* is the Mx1l vector of unknown shift parameters for the

outlier observations. In Cases 1-3, a* is a scalar with M=1

vhile in Cases 4-6, g* is a vector with M=2, In Cases 1-5,
the effect of g* is symmetric, hence only positive values
are considered. Both positive and negative values of Q* are

considered for Case 6.

3.2. Summary of Numerical Integrations

In this section, the numerical integrations using
those parameters listed above are summarized. Numerical
outputs of the PCI values are tabulated in Appendix A,
Tables I-IV. Graphical presentations of these PCI values

are shown in Appendix B, Figures 4-13.
Case 1(M=1)

No numerical integration is done for this case because

the PCI is constant at l-a , for all v>0.
Case 2(M=1)
For this case the PCIs were calculated for the eight

combinations of v=5, 10, 15, 20 and o= 0.01, 0.05 with a*

values from 0.1 to 7.8 in increments of 0.1. In Table I,

the PCI values are reported for all the eight combinations

of v and o and for a*values from 1.0 to 7.8 in increments
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of 0.4. The PCI values for v=5,10,15,20, «=0.01 and a*

values from 0.1 to 7.8 in increments of 0.1 are plotted in

in Figure 4. In Figures 5 and 6, the PCI values are plotted

against a*, using ao=0.01, 0.05 and for values of v=5, 20,
respectively.

Case 3(M=1)

As mentioned in Chapter II, no numerical integrations
are performed for this case.
=2
For this case the PCIs were calculated for the twenty-
four combinations of v= 5, 10, 15, 20, o=0.01, 0.05 and
&=0.25, 0.50, 0.90. The results are not reported in any

tables because the PCI is constant at 1-a, for all v>0
and &.
Case 5(M=2)

For this case the PCIs were calculated for the twenty-

four combinations of v= 5, 10, 15, 20, o= 0.01, 0.05 and
6= 0.25, 0.50, 0.90 with a: values from 0.1 to 8.2 in
increments of 0.1. In Table II, the PCI values for a=0.01
are reported for all levels of v and & and for at values

from 1.0 to 8.2 in increments of 0.4. In Table III, the

PCI values for o=0.05 are reported for all levels of v and
& and for at values from 1.0 to 8.2 in increments of 0.4.
The PCI values for this case are plotted in Figures 7-10.

In Figure 7, the plot of PCI against a: values from 0.1 to
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8.2 in increments of 0.1 for v=5, 10, 15, 20, o«=0.01 and
§=0.90 is presented. The plot of PCI against at for

é=0.25, 0.50, 0.90, at v=20 and a=0.01 is shown in Figure

8. In Figure 9 and 10, the PCI values are plotted against
a: for o=0.01, 0.05, 6=0.90 and for values of v=5 and 20,

respectively.

Case =2

In this case the PCIs were calculated for the twenty-
four combinations of v= 5, 10, 15, 20, o= 0.01, 0.05 and
&= 0.25, 0.50, 0.90 with
i) at and az values from 0.1 to 8.0 in increments of 0.1.
ii) at values from -0.1 to -8.0 in increments of -0.1 and az
values from 0.1 to 8.0 in increments of 0.1. In Table IV,
the PCI values are reported for o=0.01, v=20, &=0.90 and

for:

i) a and a values from 1.0 to 8.0 in increments of 1.0.

ii) at values from -1.0 to -8.0 in increments of -1.0 and

a: values from 1.0 to 8.0 in increments of 1.0. For this

case, the PCI values are plotted against a: values from

1.0 to 7.1 in increments of 0.1, az values from 1.0 to 4.2

in increments of 0.1 and for v=20, o=0.01 and &=0.90. This
3-dimensional plot is presented in Figure 11.

To study the effects of misclassification of
observations, the PCIs for Cases 2 and 5 are compared. In

Figures 12, the plots of the PCIs for comparing Cases 2
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and 5, using v=5, a=0.01, &=0.90 (Case 5) and a" values

from 0.1 to 8.2 in increments of 0.1 are presented. In
Figure 13, the same comparison as above is made using v=20.
The numerical integrations for Cases 4-6 were done
using the IMSL (1987) subroutine 27#02@ on IBM and the
single integral in Case 2 was evaluated using SAS (1987)

Function PROEBT.
3.2. Limiting Values of PCI

In this section the limiting values of the PCI for the
Six cases are calculated. In order to determine the
precisions of the IMSL and SAS subroutines, the PCI values

from the numerical integrations are compared to the

limiting values of the PCI as a?——%m, i=1,2.

For purpose of discussion, let v>0, & >0 , a; >0, and

c= Cl(viM)/2} (vn) M/ 2p|71/2 yhere M=1,2. Then the limiting
F(v/2)

value of the PCI is calculated as follows:
Case 1{(M=1)
No limiting PCI values are appropriate here since a*=0
and the PCI is constant at 1l-a.
Case 2(M=1)

The limiting value of the PCI as a*—® is calculated

using (2.14) in the following way:
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-t
. I
lim PCI= lim Cf 'Y {1+(1/v)(x-a*)}—(v+‘)/zdx
bl 1]
a*——ém
(11}
+lim cj {1+(1/v) (x-a™) J(vH1)/2qy - < x< .
to:/z, v

Let x* =x-a*, then for —m<x*<m,

*

-t -a
lim PCI = 1lim C 2y {1+(l/v)x*2}‘(V+1)/z dx*
-
*
a —o
(1]
+ lim cf . arzux®zymlvia)/z gux (3.1)
t(I/Z, v_a

(4]
0 +C I {1+(1/v)x*2}“"“)/z dx*
- Q@

1, for all v>0 and «.

.*« lim PCI =1, for all v>0 and o.

X
a —w

Hence, if one outlier exists in the data set and it
is initially classified into the suspected outlier group,
then it will be correctly identified as an outlier wp 1 as
a*——ém, for all o« and v>0. From Table I, one can see that
this result is consistent with the result from the
numerical integration.

The limiting value of the PCI as a*——éo, can be

calculated for Case 2 using (3.1). Hence, from (3.1),
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limPCI _ CI o/ 2, v {1+(1/v)x*2}-(v+1)/zdx*
-

a*—0
(11
+cj {1+(1/v)x*2}—(”+‘)/zdx*
t(I/z,v
© x
=2cf {l+(1/v)x*z}—(”+‘)/zdx
t(x/z,v

=2(a/2)=a, for all v>0.

Therefore in this case, as a* approaches 0, the PCI

approaches a.
Case 3(M=1)

Refer to the discussion of this case in Chapter II.For

this case, the limiting value of the pc1* as a,—w, a,>0

fixed, will be calculated. Let c,= F((vt1)/2] be the
F(v/2) (d vm) Y/ 2

constant in the p.d.f in (2.19). Thus, from (2.24) the

limiting value is calculated as follows:

*

. . -t o/ z,v (2)_,*y2\-(v+1)/25,(2)
lim PCI=lim c,f {1+(1/d,v) (y(2)-p*) 2} dy
-0

a,—w

® (2)_, %) 23 (vt1)/2q,(2)

N - b 2 2
+ lim C;f;* {1+(1/7dyv) (y ) -pgy 2} (v dy* *7,
a2z, v

wvhere p;=po+a1. Let w=y(z)-po then,
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*
-t
1imPCI*=1lim c,f 2y {1+(1/d,v) (wv-a ) 2}~ (v+1)/2qy
-0
a,—/o
0
+ 1lim Cif . {1+(l/dou)(w-a‘)z}'(V+‘)/2dw
t o/2,v

Let w*=w—a1 then,
_.t* -a
a/z 1
lim PCI= lim th /2y {1+(1/dou)w*2}‘(v+1)/zdv*
-0
a,—/ao
0D

+limc, [ {1+(1/d v)w* 2} (V1) /2" (3.2)

t a

a/z,v 1

=0+1=1, for all v>0, o and any a,.

Therefore, if the one outlier is initially classified
into the suspected outlier group, then it will be correctly

identified as an outlier wp 1, as the shift of the outlier
in the suspected outlier group approaches . This is true
for all v>0, and regardless of the shift of the outlier in

the suspected inlier group. The limiting value of pcI” as

a,—>0, a,>0 can be calculated using (3.2). Hence,

1

x
-t
2
lim pCI® =C,I 2, v {1+(1/d0v)w*2}“‘”+1)/2dw*
o 1.1}
a,—0
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00

+ c‘f . {1+(17d vyw* 2} (vH1)/2qy*
t o/ 2,v
a0

=2c‘I . {1+(17dvw*2}(vH1)/2qy*
t o /2,v

=2(a/2)= a, for all v>0 and a,>0.

Therefore, the pcr’* approaches a as the shift of the
outlier in the suspected outlier group approaches 0,

regardless of the shift of the outlier in the suspected
inlier group.
Case 4(M=2)

No limiting PCI values are appropriate here since
a§=a;=0 and the PCI is constant at l-a.
Case 5(M=2)

Using (2.25), the limiting value of the PCI as

at——%m, when a2=0 is calculated as follows

t -t
e f Y 41/0u(1-52) ]

lim PCI =lim CI
—tO;/z,v -
at——%m

{(x‘—a’:)"—26(x‘—a:)xz+x§}}_("+z)/2dx‘dx2

tC(/4,v (e 1]

+lim CI {1+1/(v(1-62)1

"ta/a,u ta/a,u

{(x,-a%) 2-28(x,-a%)x,+x2} )7 (vF2)/2 ax ax,



36

* *
Let x,=x ,-a, , then

t -t - a*
lim PCI =lim cj «/ 4, v I /4y T {1+1/1v(1-82)]
—t¢/4,u -

X
al——ém

{xtz—26x:xz+x§}}—("*z)/z dx:dx2

t ®
+lim CI e {1+1/(v(1-6%)]
“tasa,v “tasa,v 2
{x2-268xyx +x 2} )~ (v+2)/ 2qxlax,. (3.3)

t
=o+cf UV Qe(1/nx2) (V) 2ax = 1-aq/2 , For all wo.
'ton/a, v

*. 1lim PCI = 1-a/2, for all v>0.
at——%m

In this case the limiting value is independent of v
and & but is dependent on a. Thus for all & and v>0, the
limiting PCI at a=0.01 is greater than at o=0.05,

(see Figure 10).
The limiting value of the PCI, as at——%m is less than

1 as a consequence of misclassifying one inlier observation
into the suspected outlier group. From Tables II and III,
one can see that the limiting values of the PCIs for both
a=0.01 and o=0.05 are consistent with the results from the

numerical integrations.
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The limiting value of the PCI as a:—éo vhen a:=0, can
be calculated for Case 5 using (3.3) . An upper bound on
the limiting PCI is obtained for Case 5, since the exact
limiting value is difficult to calculate. Thus,

tq/4,v 00

lim pc1=2cI {1+1/1v(1-8%)]

"toz/a,u toc/a, v
a}—>0

* * (vt *
(xlz~26xxxz+xzz)} (v 2)/2dx1dxz

w (1]
<2CJ‘ j {l+l/[v(l-62')l(x:2_28x:x2+x§)}-(v+z)/zdx:dxz
-® ta/"l v
'4

Reverse the order of integration to obtain

00 @
=2cf I {1+(1/0v(1-8%)1(x}2-28x"x,+x2) }7(v¥2)/ 24y ax]
tO.'/4,v =0
a0
=2C {1+(1/7v)x2) (vH1)/ 2axT= 2(a/ )= ov2.
tm/a,u

Therefore, lim PCI < «/2, for all v>0, & and az=0.
a:—éo
Hence, as at——éo, a;=0, the limiting PCI for Case 5

approaches an upper bound of a/2.

Case 6(M=2)

For both a:>0 and aZ)O, the limiting value of the PCI
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wvas calculated as both a: and a; approach . Denote the

p.d.f. of a bivariate t distribution with location vector

a®-(a} . al)'and scale matrix 0=[} §], as

E(EIVIQ*ID)=
C{1+{1/v(1-62)}(x1-—a:)z—26(x1—a’:)(xz—a;)ﬂxz—a:)z}_(‘”’z)/2

(xl,xz)eRZ, a:>0 and az*>0 and -1<&<1. Then, using (2.26)

the limiting value for this case is calculated as follows:

0 )
lim PCI = lim lim f f(xl,xz,u,g*,D)dxldx2
toc/a,v t¢/4,v
a;——%m a;——ém a:——ém
{i=1,2}
00 _t(I/4 v
+ lim J lim I "7 E(x,,X,,v,a ,D)dx dx,
tO.'/d,'U - @
a:——ém a:——ém
-t -t
o/ a oa/a,v
+ lim f /%Y lin f 'Y f(x,,x,,v,a%,D)dx dx,
- -
* *
a,—w a,—w
-t v
q
+ lim I Ay lim I f(xi,xz,v,g*,D)dx‘dx2
-0 tCC/4,v
ai——%m at——ém

X x x *
Let x,=x,-a and x,=x,-a , then
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('] (]
=lim I * lim f . f(x:,x:,v,D)dxtdx:
tasa,v 32 tasa,v 3,
a:——ém a:——éw
@ —t“/4rv_a: x % X, %
+lim I " lim I f(x,,x,,v,D)dx dx,
tm/4, v—az =@
a;——ém a:——ém

x
~tasae,v 32 . ~tasa, v
J lim f

+lim £(x},x3,v,D)dx dx}
- - a0

* *

a,—/™o a,—/oao
t at o
" toa/a,v Y2

+lim I 'V lim J , E(x},x3,v,D)dxdx}; (3.4)
- ta/alu_a!

a;——ém at——ém

.*. lim PCI =1+0+0+0=1, for all &, o and v>0.
a?——%w
{i=1, 2}
Hence, as a:——ém and a;——ém, both outliers will be
correctly identified wp 1, regardless of v, § and a.

The limiting value of the PCI as a}—>0 and a,—0 can

be calculated for Case 6 using (3.4). An upper bound on the
limiting PCI value is obtained for this case since an exact

limiting PCI value is difficult to calculate. Thus,
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o ©
lim PCI= I E(x:,x:,v,D)dxtdx:
tcr./a,u to:/4,v
aj—>0
{i=1,2}
i) -t
a/a
+ I I 'y E(x:,xz,v,D)dx:dx:
tO.'./d,V -0

N Jtala,v J“ttx/tl,v

@® -

£(x},x3,v,D)dxdx}

f(x:,xt,v,D)dx:dxz

@ et x % x. %
<2 I I E(x,,x,,v)dx dx,
t -

0
=2 j f£(x3,v)dxs = 2(a/4)= a/2, for all v>0 and &.
tu:/a,u

Therefore, lim PCI < a/2, for all v>0 and &.
a;——éo
{i=1, 2}

Hence, as a;——éo the PCI approaches an upper bound of a/2.
{i=1, 2}



CHAPTER 1V
DISCUSSION OF RESULTS

In this chapter, calculated PCI values are presented.
These PCI values were generated using the IMSL subroutine
DTWOP@ and SAS Function FPROBT. The outputs from these
subroutines are provided in Tables I-IV and Figures 4-13,
in Appendix A and B, respectively. These Tables and Figures
are interpreted for each case below in Section 4.1. Then in

Section 4.2, the PCIs for Cases 2 and 5 are compared.

4.1. Results for Cases 1-6

In this section, the results on the PCI for the six
cases of initial classifications are reported. A brief
discussion on the PCI for each case is also presented.

Case 1(M=1)

The PCI is constant at 1-a , for all +>0. However, the
larger the significance level of the test used the lower
will be the PCI.

Case 2(M=1)
From Table I, it is observed that the PCI increases as

a* increases. For fixed o« and a*, increasing v increases
the PCI (see Figure 4). From Figures 5 and 6, it can be

seen that as v increases the influence of a on the PCI
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decreases. For all v and o, the PCI equals to its limiting

value at a*=7.4 (see Table 1).
Case 3(M=1)
No numerical integration calculations were done for

Case 3. The main result for this case is the derivation of

the predictive density of Y(z)lxé‘). From (2.21) and (2.23)

the following conclusions are made.
i) The predictive density has a different location and
scale parameter. As a consequence of this misclassification

the location parameter u,>y and the scale parameter d,>4d.
ii) The PCI depends on v, o and both the shifts of the

outlier observations in the suspected outlier and suspected
inlier groups.

iii) The PCI also depends on whether the outlier in the
suspected inlier group is in the same or different class as
the outlier in the suspected outlier group.

e =

The results from the numerical integration of this
case are not presented because the PCI is constant at 1l-gq,
for all v>0 and &. In the following paragraph, the effect
of using a Bonferroni procedure(test procedure 2.10) on
the PCI of Cases 1 and 4 is briefly discussed.

Recall that in Case 1, one inlier is misclassified
into the suspected outlier group. In Case 4,two inliers are
misclassified into the suspected outlier group. However,

for both cases the PCI is l-a. This is due to the fact
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that the Bonferroni procedure uses a ta/ZM,v rejection

rule. The o/2M alpha level produces a constant PCI value

of 1-ao, for Cases 1 and 4.
Case 5(M=2)
From Tables 1I, III and Figures 7-10, the following

conclusions are made.

i) For all v>0, & and o, the PCI increases as at increases.

ii) For fixed &, a

, and o, the PCI increases with

increasing v. From Figure 7 for fixed a:, a and §, the

influence of v on the PCI decreases as v increases.
iii) In general, for fixed v and o, the PCI increases with
increasing value of &. From Figure 8, it is apparent
however that the effect of & on the PCI is small.
iv) For fixed v, $, and 0< at( 5, the PCI at o=0.05 is
larger than the PCI at «=0.01, but for a:>5 the reverse is
true (see Figqure 9). This effect occurs because for at>5,
the PCI for both values of o approach its limiting value.
Since the limiting value of the PCI for Case 5 is equal to
l1-a/2, the result follows.
v) From Figure 9 and 10 for fixed §, decreasing the value
of v will make the difference between the PCI at «=0.01
and o=0.05 larger.
Case 6(M=2)

From Table IV and the 3-d plot of Figure 11, it can be

observed that:

i) the PCI increases as at)O and ai)O increases, for all v,
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& and a.

ii) The PCI increases faster when both at and a: increase

as opposed to just a: or a; increasing and the other one
held fixed.

iii) At v=20, 8=0.90 and «=0.01, the PCI for a;>0, a,>0 is

always larger than the PCI for at(O, a§>0 (see Table 1V).
For fixed v and o, the PCI increases as & increases

when at)O, a2>0, while the PCI decreases as & increases

when at(O, a;>0. No 3-dimensional plot for different values

of & is presented since it requires a lot of computer time.
4.2. Comparisons of Cases

It is of interest to examine the consequences of
misclassifying one extra inlier into the suspected outlier
group. In Case 2, the observation in the suspected outlier
group is an outlier, hence there is no initial misclassifi-
cation. In Case 5, one of the two observations in the
suspected outlier group is an inlier, hence there is an
initial misclassification. Comparing Cases 2 and 5 will
address this problem of interest.

From Fiqures 12 and 13, misclassifying one inlier into
the suspected outlier group reduces the PCI. However, this
initial misclassification has little effect on the PCI

when v is large. For instance, at &=0.90, a=0.01, a:=5.0

and v=5, the difference between the PCI of Cases 2 and 5

is 0.227, while this difference at v=20 is 0.021. Hence,
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given the choice of classifying an observation into the
suspected outlier or suspected inlier group, it is safer

to classify the observation into the suspected outlier
group. This is due the fact that when v is large (v>20),
misclassifying an extra inlier into the suspected outlier
group has little effect on the PCI. This choice is further
supported by the fact that, if an outlier is not initially
classified into the suspected outlier group, then one loses
the chance of identifying it. It is also noted that § and «

have little effect on this comparison.



CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This study is devoted to the investigation of the
effect of initial classification or misclassification of
outliers and inliers on the PCI for a linear model of
constant intraclass correlation. The following six cases
of initial classifications are considered:

Case 1(M=1)

One observation is initially classified into the
suspected outlier group when all observations are inliers.

Case 2(M=1)

One observation is initially classified into the
suspected outlier group and it is the only outlier.

Case 3(M=1)

One observation is initially classified into the
suspected outlier group but actually there are two outliers
in the data set.

Case 4(M=2)

Two observations are initially classified into the
suspected outlier group when all observations are inliers.
Case 5(M=2)

Two observations are initially classified into the

suspected outlier group, one of which is an outlier. All
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other observations are inliers.

6 (M=

Two observations are initially classified into the
suspected outlier group and both are outliers. All other
observations are inliers.

For all the cases except Case 3, the PCI is calculated
based on the predictive density of the suspected outlier

given a set of inliers. For Case 3, this calculation is

based on the predictive density of the suspected outlier
given a set inliers with one outlier in it.

From this study, it can be concluded that
misclassifying an extra inlier into the suspected outlier
group has the effect of decreasing the PCI. However, this
initial misclassification has little effect on the PCI if
v is large (v>20). Hence for large enough 1 (v>20), given
the choice of classifying an observation into the suspected
outlier or suspected inlier group, it is safer to initially
classify the observation into the suspected outlier group.
This is due to the fact that misclassifying an extra inlier
observation into the suspected outlier group has little
effect on the PCI, when v is large. Thus, the test
procedures in (2.9) and (2.10) are not affected very much
by initial misclassification, when v is large.

The effect of misclassifying an extra outlier into the
suspected inlier group is studied through the examination
of Case 3. As a consequence of this misclassification, the

location and scale parameters of the predictive density
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have increased. Furthermore, the probability of correctly
identify the outlier in the suspected outlier group is
smaller than the probability when there is no outlier in
the suspected inlier group (Case 2). Further investigation
of this case is recommended, so that the effect of
misclassifying one outlier observation into the suspected
inlier group on the PCI can bhe studied in detail.

The Bonferroni procedure offers protection against
declaring too many observations to be outliers. When there
is no outlier in the data set, the Bonferroni procedure in
(2.10) ensures that the PCI is constant at 1l-o, even if the
number of misclassifications increases. From the numerical
integrations, it is noticed that the four parameters play
an important role in determining the PCI values. However,
the PCI for Case 5 is insensitive to changes in § (the
correlation between the two observations in the suspected
outlier group).

Lastly, we recommend the investigations of the
following topics for future studies:

1) BExtend this study to include the investigations of PCIs
when there are more than two outliers in the data set.

2) Use a different prior for the derivation of the
predictive density of the suspected outliers given a
set of inliers, perhaps an informative one.

3) The use of scale-change model for the M suspected

outliers.
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TABLE I

PCI FOR CASE 2: PCI=PCI*0.001
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TABLE I1I

PCI FOR CASE 5: ALPHA=0.01, PCI=PCI*0.001
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TABLE III

PCI FOR CASE 5: ALPHA=0.05, PCI=PCI*0.001
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TABLE IV

PCI FOR CASE 6: v=20, DELTA=0.90, AND ALPHA=0.01
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Figure 9. The Effect of a=0.01, 0.05 on the PCI of Case 5, when &=0.90 and v=5
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Fiqgure 10. The Effect of o=0.01, 0.05 on the PCI of Case 5, when §=0.09 and v=20
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