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CHAPTER I 

INTRODUCTION 

Statement of Problem 

In many research studies the response variable has the form of a bino­

mial random variable as a result of summing independent binary observations. 

In such situations an analysis can involve procedures based on the binomial 

distribution. In most of these cases, the observed proportions display 

greater variability than that predicted by the binomial model. In these 

instances, which are described as exhibiting "overdispersion", the additional 

variation makes the binomial maximum likelihood procedure inappropriate. 

There are several causes of overdispersion. In survey situations, sampled 

populations tend to be clustered. In biological experiments utilizing 

families, related individuals will tend to have more similar responses than 

unrelated individuals. In clinical trials, repeated observations on the same 

individual through time tend to be correlated. In general, the 

overdispersion could be attributed to any unmeasured source of experimental 

error that affects a group of binary observations as a whole. 

In this study, we will consider two-way cross-classified data that arise 

in the form of proportions (based on unequal numbers of binary observations 

per cell) that exhibit overdispersion. In particular we are going to study 

the following two cases: both factors are random, and one factor is random 

and the other fixed. The models developed here will be extensions of 

models developed for one-way classifications and nested classifications. 

The literature is reviewed in Chapter ll, beginning with early 
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methodology and parametric models that attempted to account for the extra 

binomial variation, such as the beta-binomial model. The remainder deals 

with heteroscedastic models, random logistic models, quasi-likelihood models 

and empirically weighted least squares. 

2 

Williams (1982) proposed a model to account for extra-binomial 

variation. In Chapter Ill models are considered which include overdispersion 

but extend his approach to incorporate the variation associated with random 

effects. These models will be referred to as Type I models. 

In Chapter IV procedures such as fitting random logistic models are 

studied using the approach taken by Hinde (1982) in which random effects for 

overdispersion enter the model on the same scale of additivity as the fixed 

effects. He used a mixture distribution that he referred to as Poisson-Normal 

for analyzing count data by a log-linear model that exhibited extra-Poisson 

variation. The extensions investigated in this study will accommodate random 

effects in addition to an overdispersion parameter. In all of the above 

models, only those transformations in which additivity is achieved in the 

logit scale are considered. Using generalized linear model terminology, we 

study only the canonical link function for the binomial distribution. These 

models will be referred to as Type II models. 

Finally, in Chapter V an attempt is made to compare the models devel­

oped in Chapters m and IV. This will involve comparisons of the estimates, 

why and how the models differ, properties of the estimates, and the advanta­

ges and disadvantages of each model. 

In addition, the proposed models are applied to real data based on a 

genetic study of survival of Virginia Pine seedlings, given in Appendix A. 

Results based on simulations are reported. The calculations required by both 

types of models will be compared. A listing of the SAS programs for 



fitting the models discussed in Chapters III and IV are provided in Appen­

dices B, C and D. Suggestions will be made concerning further research. 
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CHAPTER II 

LITERATURE REVIEW 

Early Methodology 

Several authors have discussed the analysis of proportions from many 

different viewpoints. See, Cox (1970) and Bishop, Fienberg, and Holland 

(1975) for extensive discussions. The oldest approach probably goes back 

to Fisher's maximum likelihood method based on the binomial distribution. 

Cochran (1954), Anscombe (1954) and Bartlett (1954) suggested (in a 

discussion of a paper by Fisher (1954)) the transformations which have 

become standard for analyzing binomial data. Their approaches use analysis 

of variance methods after a transformation. The validity of these 

approaches relies on the robustness of the ANOV A methodology, particularly 

for "balanced situations". However, transforming the response alone may 

not result in an appropriate model because the transformation simultaneously 

tries to achieve normality, constant variance, and additivity of the effects 

of the explanatory variables. 

As was mentioned previously, data in the form of counts usually dis­

play greater variability than what a binomial or Poisson model would 

predict. Thus, the maximum likelihood method is inappropriate. Cox (1983) 

stated that even if overdispersion is not a component of the parametric 

model, maximum likelihood estimates still retain high efficiency for modest 

amounts of overdispersion. Most of the literature on extra-binomial 

variation investigates the cases of the one way classification (in the form 

of comparisons of treatments) or nested classifications (in the form of 

4 
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two-stage sampling), rather than cross classifications. 

Cochran (1943), was the first to discuss the problem of analyzing 

proportions in an unbalanced case, and noted the possibility that the true 

probabilities of observations may vary. Such variation will increase the 

variance of observed proportions which are independent. He then investiga­

ted the efficiencies of equal, binomial, and partial weighting, the latter 

being a combination of the other two. He concluded that partial weighting 

is more efficient when the extra variation is between .30 and .80. Finney 

(1971) realized that mistakenly treating proportions as being binomially 

distributed would ordinarily lead to unbiased parameter estimates, but the 

associated standard errors would be underestimated, perhaps thereby leading 

an investigator into unwarranted conclusions. Thus, he proposed a simple way 

of correcting the problem by scaling the covariance matrix of the parameter 
2 

estimates by the factor (n ~ k) where n is the sample size, k is the number 

of parameters and X2 is the Pearson Chi-Square statistic. 

Parametric Models 

Skellam (1948), in dealing with genetic data, used the beta-binomial as 

a model and he derived method of moments and maximum likelihood estima-

tes. Several subsequent papers focused on the beta-binomial distribution. 

This is the distribution when one assumes the beta distribution as the sam-

piing distribution of the unknown binomial parameters. There are several 

advantages to using such a model. First, the beta distribution is one of 

the richest distributions on the zero-one interval in terms of different 

possible shapes depending on the choices of the parameters. Second, the 

beta distribution is the conjugate prior for the binomial distribution which 

means that the resulting marginal distribution (beta-binomial) remains in the 

exponential family. Several techniques exist that give rise to 



estimates of parameters via the method of moments or maximum likelihood 

for the exponential family. 

6 

Mosimann (1962), Griffiths (1973), and Brier (1980) investigated some 

of the properties of the above distribution. They showed that under 

beta-binomial sampling, the usual Pearson and likelihood ratio statistics are 

asymptotically multiples of chi-square random variables. Williams (1975) 

analyzed binary response data from a completely randomized experiment in 

which the experimental units were animal litters. He described a parame­

tric approach based on the beta-binomial model in which the parameters of 

the beta distribution were estimated using maximum likelihood and treatment 

differences were tested using asymptotic likelihood ratio tests. Crowder 

(1978) considered a regression of proportions where the beta-binomial 

distribution was used as the error distribution. His linearized 

beta-binomial model generalized logistic regression to account for random 

effects. 

The beta-binomial model has been applied to analyzing a variety of 

data from many disciplines. In teratological studies (Williams 

(1975), Paul (1982), Shirley and Hickling (1981)), found that abnormalities 

of animals in the same litter closely follow beta-binomial distributions 

instead of the simple binomial distribution. The implication is that 

animals from the same litter were found to have closer associations with 

regard to their responses to treatment. Griffiths (1973) applied the beta­

binomial model in studying the incidence of non-infectious diseases in house­

holds. It was also considered by Chatfield and Goodhardt (1970), when 

investigating consumer purchasing behavior. Edwards (1958) applied the 

model to data on the distributions of boys and girls in families in Saxony 

for the period 1876-1885. Otake and Prentice (1984) analyzed data based 



on ·studies of atomic bomb survivors. They generalized previous work by a 

allowing an extra binomial type variation in the aberrant cell counts 

corresponding to within subject correlations in respect to cell aberrations. 

7 

If the distributional assumptions made by these parametric models are correct 

then the resulting estimates are maximum likelihood estimates, and from 

classical theory are known to be consistent, asymptotically normal and 

efficient. 

Smith (1983) documented a FORTRAN subroutine that calculates maxi­

mum likelihood estimates of the parameters of the beta-binomial distribution 

and their standard errors. The procedure is an iterative Newton-Raphson 

technique that uses moment estimates as initial values. 

Paul (1982) compared the beta-binomial model to other competing models 

(parametric and nonparametric). Some of these models were: the correlated 

binomial model of Kupper and Haseman (1978), the multiplicative binomial 

model of Altham (1978), and Gladen's (1979) model. The latter model used 

jackknife estimates of means and standard deviations. Paul applied all these 

models to data from toxicology, and also compared them via simulations 

based on all of the above models. He concluded from his simulation results 

that the beta-binomial model is more sensitive to departures from the 

binomial models than the other models considered and therefore superior for 

his data and data in similar fields. If one were to draw analogies to the 

usual analysis of variance models, the beta binomial model would be analo­

gous to the random effects model with uncorrelated errors. 

Quasi-Likelihood and Generalized Linear Models 

Let R. . be independent binomial random variables, where i = 1, ... ,1, and 
1J 

j = 1, ... ,J, with mean n. . n . . and variance n .. n .. ( 1-n..). The method that 
1 J 1 J 1 J 1 J 1J 

allows estimation of the mean and also accommodates the existence and the 
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estimation of a variance parameter in a simplest form was introduced as a 

quasi-likelihood by Wedderburn (1974). This method formalized Finney's 

(1971) suggestion and extended the original theory of Generalized Linear Mo­

dels by Neider and Wedderburn (1972). The extension to the original theory 

was that knowledge of the full likelihood is no longer necessary; rather 

knowledge of the first two moments is sufficient, if the variance is a known 

function of the mean. In its simplest form this quasi-likelihood methodology 

R .. 
models the variance of Y .. = n lJ as 

1 J ij 

This variance does not correspond to a specific distribution although its 

form looks very similar to the variance function of the beta-binomial 

distribution. Nevertheless, a method very similar to maximum likelihood can 

be applied to obtain estimates of n .. and q,. If t/>= 1 then the estimation 
lJ 

procedure becomes the ordinary maximum likelihood estimation. McCullagh 

(1983) further developed this quasi-likelihood theory and proved some 

asymptotic optimality properties for the so called quasi-likelihood estima­

tors. Fahrmeir and Kaufmann (1985) showed that the general conditions 

required for consistency and asymptotic normality of the maximum likelihood 

estimators in the generalized linear models reduce to weak requirements for 

special exponential families. The quasi-likelihood method for overdispersion 

may also be considered as one of the methods that requires only information 

of the first two moments and the ability to express the variance in terms of 

the mean. These models are fitted by iterative least squares which is re­

viewed in the subsequent sections. These methods provided researchers 
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with alternative methods of dealing with overdispersed data. Cox (1983) re­

ports that the order of efficiency of the quasi -likelihood method was high for 

moderate amounts of overdispersion. Neider (1985) and Neider and Pregibon 

(1987) extended the quasi-likelihood definition to allow the comparisons of 

variance functions as well as those of linear predictors and link functions. 

Jorgensen (1983) extended the class of generalized linear models to allow 

for correlated observations. Firth (1987) suggested that quasi-likelihood 

estimates retain fairly high efficiency under "moderate" departures from the 

corresponding natural exponential family. One class of models that he 

investigated was overdispersion models relative to some exponential family. 

Crowder (1987) gives three examples that highlight particular pitfalls in 

maximum quasi-likelihood estimation. Hill and Tsai (1988) suggested that 

maximum quasi-likelihood estimation is a strong alternative to fully 

efficient maximum likelihood estimation. They showed that in fact 

transformation methods were less efficient than the general quasi-likelihood 

methods when models are mis-specified, and that maximum quasi-likelihood 

estimates and their standard errors were much easier to calculate than those 

for maximum likelihood estimates. 

Heteroscedastic and Other Related Models 

When a logistic regression model fits the data poorly there are several 

alternatives to consider. Using the generalized linear models formulation, 

these alternatives can be divided into either link function modifications or 

frequency distribution modifications. Since our study involves the second 

type, we are not going to review research methodology concerning link 

function modifications. It is worth while to mention the work of Aitkin 

(1987), and Smyth (1986), who in an attempt to model possible variance 

heterogeneity, describe a method of fitting overdispersed data for which the 
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amount of overdispersion depends on the same covariates as the means. 

Their approach considers mean and dispersion structure separately. Mean 

and dispersion submodels are formulated and both are essentially generalized 

linear models themselves. The deviance components of the mean sub-models 

are used as the dependent variable for the dispersion sub-model. Their re­

sults can be extended to discrete models by using quasi-likelihood models 

such as those of Nelder and Pregibon (1987). 

Within the context of the maximum likelihood methods that are avail-

able, Laird (1978) gave an approach to the problem of estimating fixed 

effects in a mixed effects model. An empirical Bayes approach is used to 

combine the log-linear model with normal prior distributions, thereby 

obtaining estimates of the contingency table cell probabilities. The model 

proposed by Laird is given by 

where u1(i) is the main effect of the ith level of the row variable, u2G> 

is the main effect of the jth level of the column variable, and u1 .. is 
2(1J) 

the interaction. The estimate of rl' (the variance of u1 .. ) is obtained 
2(1 J ) 

by integrating out ~ and using the marginal likelihood of a 2 given ! (the 

observed cell frequencies). The derivation of the likelihood equation and 

second derivative is accomplished by viewing ~ as missing data and treating 

the estimation of a 2 as involving incomplete data. An iterative algorithm, 

called the EM algorithm, is used. Each iteration of this algorithm involves 

an expectation step (E) and a maximization step (M). Laird notes that due to 

the rich variety of distributional assumptions one can make concerning the 
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observed data, variance components models for categorical data are more 

complex than their quantitative counterparts. Leonard (1975) employed a two­

stage Bayesian approach for the two-way table where, instead of assuming 

flat priors for the rows, columns, and their interaction in Laird's model, 

he assumed normal priors for those effects. Laird and Ware (1982) used 

two-stage random effects models for the analysis of longitudinal data where 

one must account for the relationship between serial observations on the 

same unit. Stiratelli, Laird and Ware (1984) presented a general mixed 

model for the analysis of serial dichotomous responses provided by a study 

of participants. Each subject's serial responses are assumed to arise from 

a logistic model but with regression coefficients that vary between 

subjects. The logistic regression parameters are assumed to be normally 

distributed in the population. Inference is based upon maximum likelihood 

estimation of flXed effects and variance components, and empirical Bayes 

estimation of random effects. Approximate solutions based on the mode of 

the posterior distribution of the random parameters is proposed and is 

implemented by means of the EM algorithm. 

Moser (1985) considered analysis procedures for the balanced randomi­

zed complete block design with binary observations. He considered the block 

effects as random effects. He discussed a procedure for getting approximate 

maximum likelihood estimates after integrating out the random effects and 

provided an approximate method for obtaining standard errors of these 

estimates using a resampling type methodology. He also studied the 

asymptotic distribution of the linear form of the logit model and provided an 

alternate procedure for approximating and testing the unknown parameters 

using ordinary least squares. 

Haseman and Kupper (1979) reviewed the literature and catalogued the 
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models, estimators, and approximations that had been used up to that time 

to analyze data with extra-binomial variation. They concluded that further 

research is needed. 

Kempthome and Koch (1983), investigated partially structured variations 

of a complete two-way random cross classification design. This methodology 

which is based on infinite sampling arguments, allows the estimation of the 

mean response, among-row correlation coefficient, among-column correlation 

coefficient, and the within all cell correlation coefficient as well as their 

standard errors. 

Harville and Mee (1984) developed a mixed model procedure for predi­

cting the value of an ordered categorical response from knowledge of various 

predictor variables. Their approach is based on the mixed model version of 

the threshold model in which it is assumed that the observed category is 

determined by the value of an underlying unobserved continuous response 

that follows a mixed linear model. 

Beitler and Landis (1985) proposed a mixed model for categorical data 

from unbalanced designs which is directly analogous to a two-way ANOV A 

model for quantitative data. An extension of the fitting constants method is 

developed to estimate variance components based on appropriate reductions 

in sums of squares. The resulting variance component estimators are 

incorporated into Wald statistic to test for treatment differences. The 

weighted least squares methodology of Grizzle, Stamner and Koch (1969) is 

employed to calculate the overall estimates of treatment means and Wald 

statistics. Kempthome (1982), investigated the analysis of clustered 

attribute data from nested and classification designs using random effects 

models. 
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Empirically Iterative Reweighted Least Squares 

(EIRWLS) 

Unlike the parametric methods mentioned above, EIRWLS methods do 

not specify the form of the distribution. All the methods in this category 

involve some kind of approximation and their differences and similarities 

are not very clear. Overdispersion as discussed above can be attributed to 

the existence of two levels of randomness. In the first level, the 

observations conditioned on unknown parameters are regarded as random 

variables. In the second level, these unknown parameters, p,., are regarded 
1J 

as random variables from some distribution. Usually, at the first level, 

these models assume independent Bernoulli random variables conditional on 

the success probability for the specific cell. That is, 

where i=1, ... ,a indexes the rows, j=1, ... ,b indexes the columns, and P .. 
1J 

is itself a random variable with 

E(P .. ) =x .. 
1 J 1 J 

and 

v(P .. ) =~ x .. (1-x .. ) . 
1J 1J 1J 

(2.1) 

where 0 :S ~ :S 1. Then the unconditional mean and variance of R.. are given 
1J 

by 

and 
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v(R .. ) =n .. 11: •• (1-x .. ) [1 + (n .. -1) q,]. 
1 J 1 J 1 J 1 J 1J 

(2.2) 

Thus, the marginal variance of R. . is made up of the two components, the 
1 J 

binomial variance and the extra-binomial component. If q,=O, then the 

variance reduces to the binomial variance. The variance (2.2) could also 

result from a model in which q, is the pair-wise correlation of the binary 

variables whose sum is R... In such a formulation, negative values of q, 
1J 

could be permissible, which would lead to "underdispersion." In the present 

formulation, q, is introduced in the variance of P .. and, therefore, is 
1J 

necessarily non-negative. 

Kleinman (1973) was the first since Cochran (1943), to consider the 

above formulation in the single sample and one-way classification cases using 

empirically weighted least squares. He used method-of-moments estimation 

for obtaining estimates of the extraneous variance and used them as weights 

in a least squares analysis. He also provided results based on Monte Carlo 

simulations in which he studied the performance of the empirical weighting 

scheme in moderate and small samples. He concluded that it performed 

adequately for practical application purposes. Furthermore, he found that 

his empirical weights had high efficiency relative to exact least squares 

estimates (similar to the later findings of Cox (1983)). His method is 

equivalent to Finney's for the equal sample size case. Kleinman (1975) 

extended the model to a two-way classification for the comparison of two 

drugs in a random sample of clinics from an assumed infmite population of 

hospitals. Within hospital i, n. . patients are randomly assigned to drug j. 
1 J 

After a specific period, the number of patients, r .. , in hospital i cured 
1J 

after receiving drug j is observed. Thus, the hospital effects are random 

and the drug effects are fixed. Again, he used the same empirical weighting 
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procedure that he proposed in 1973. Crowder (1979) proposed likelihood 

inference procedures for the cJ> in (2.2) above that he refers to as intraclass 

correlation in a one-way classification setup. 

Pierce and Sands (1975) translated the suggestion by Finney (1971) to 

allow for extra binomial variance in the logit setting in which the 

overdispersion is additive in the logit scale. Also Pierce (1976) discussed 

his random effects model with normal perturbations on the logit scale as it 

applied to matched pairs of binomial data. Williams (1982) further devel­

oped Kleinman's approach for logistic linear models. He gave an algorithm 

in GLIM that produced a method of moments estimate of the overdispersion 

parameter cJ> using iterative reweighted least squares for the one-way 

classification. GLIM is a well known statistical package that allows one to 

interactively fit and test linear models with various error distributions. 

In GLIM a regression type analysis is easily performed on discrete data as 

long as the data is assumed to be free of random effects. Williams also 

discussed how his methods compared with the approach of Pierce and Sands. 

Breslow (1984), following the suggestion of Williams, implemented a similar 

algorithm for log-linear models with extra-Poisson variation. 

Crowder (1985) discussed further the mean/variance structure of 

correlated binomial data and suggested using Whittle's (1961) Gaussian 

estimation as a useful general method. He also compared his method to ma­

ny other existing method-of-moment estimation methods for the same setting. 

Moore (1987) discussed extensions of both the beta-binomial and method-of­

moments methods to allow modeling the extra binomial component of the 

variance as a function of the mean. He also applied these methods to data 

on chromosomal aberrations in survivors of the atomic bombing in Hiroshima. 

Moore (1986) discussed consistency and asymptotic normality of moment 
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estimates of the regression parameters and the overdispersion parameter for 

enumerative data with extra variation. He determined the asymptotic 

variance of the overdispersion parameter. 

Stirling (1984) extended the Neider and Wedderburn (1972) method of 

maximum likelihood estimation of the parameters in an exponential family 

of regression models to models that included cases such as the negative 

binomial and beta-binomial distributions. He showed that Iterative Re­

weighted Least Squares converges considerably faster than the EM algorithm 

of Dempster, Laird and Rubin (1977). Green (1984) has written the most 

extensive paper on EIRWLS. He included many references on the scope of 

applications of iterative reweighted least squares. He also extended beyond 

the exponential-type family of generalized linear models (GLM's) to other 

distributions, to non-linear parameterization& and to dependent 

observations. The algorithms for fitting such models are shown to be 

numerically stable, highly suited for interactive computations, and easily 

programmed. 

Random Logistic Models 

In random logistic models, the extra variation is modeled as an additive 

random effect on the same scale as the fixed effects or covariates. The scale 

most often used with proportions is the logit scale. This scale of 

additivity, or form of the link function as known in the context of GLM's, 

will not be discussed much further. Our studies are going to be centered 

around the logit link since as pointed out by Tornqvist, Vartia, and Vartia 

(1985) it is the only symmetric, additive, normed indicator of relative 

change. Further discussions on the logit link function can be found in 

Berkson (1951). 

Hinde (1982), assuming normally distributed errors on the log scale for 
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independent counts, used GLIM to maximize a compound Poisson likelihood. 

His technique seems powerful and the computations could be used in random 

log-linear and random logistic models if the link function used is the 

canonical link for the distribution considered. Brillinger and Preisler 

(1983) considered a similar model for count data. As in Hinde's model 

latent variates which cannot be measured directly play an essential role in 

the description of the observed quantities. Maximum likelihood estimation of 

the parameters and their properties are discussed and shown to be a viable 

approach to a broad class of latent variable models. They show that GLIM 

provides an effective tool for carrying out the needed computations. The 

methodology is discussed in the context of analyzing radioactive counts from 

a nuclear medicine experiment. 

Gilmour, Anderson and Rae (1985) considered estimating the variance 

of the random effects for a set of independent binomial proportions after 

conditioning on the random effects. Additivity of the random effects in 

their case is achieved on the probit scale. Im and Giannola (1988) discussed 

a derivative free maximization algorithm as an alternative to the EM algo­

rithm in computing maximum likelihood estimates in mixed probit and logit 

models with binomial data. They investigated predicting the random effects 

and estimating the fixed effects and variance components in a two-way nest­

ed layout. The methodology developed is used in analyzing mortality data. 

Anderson and Aitkin (1985) in the context of survey design studied 

interviewer variability in a binary response as another example of variance 

component estimation in a non-normal family. Stokes (1988), showed in the 

same setting that the loss of precision in the estimates of means due to the 

variability among interviewers can be substantial. She also showed how 

parameters from a model of variance components in binary variables are 
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related to the increased variance in the population estimates. 



CHAPTER ill 

TYPE I MODELS 

Introduction 

Consider data from a two-way classification with a and b levels of the 

two factors (Figure 1). Let Y .. k denote the binary observation on the kth 
lJ 

unit, k= 1, ... n .. in row i and column j. The observed frequency for the ijth 
lJ 

ni j 
cell is R.. = L Y .. k. 

lj lj 

k=l 

1 

2 

• • . . 

a 

1 2 .... b 

Ru R12 I Rlb 

K21 K22 R2b 

R R R 
al a2 ab 

Figure 1. Two-Way Setup 
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Our objective is to extend Williams' approach for dealing with 

overdispersion in regression to the two-way classification in which one or 

both factors are random. The variance of R.. using the binomial distribution 
1J 

is given by V(R .. ) = n .. p .. (1-p .. ). To account for the fact that the 
1J 1J 1J 1J 

variance of R .. is very often greater than n .. p .. (1-p..) investigators have 
1J 1J 1J 1J 

considered approaches that fall into two different categories as far as 

generalizing the logistic regression model. 

The first of these two approaches to be considered is that of Williams 

(1982) who regards the logistic probability functions as unobservable random 

variables. The other approach is the "random" logistic regression ftrst 

studied by Pierce and Sands (1975) in which random effects are additive on 

the logit scale. Williams' approach is a generalization of both the 

beta-binomial approach and McCullagh and Nelder's GLM approach to 

modeling discrete data. 

For the remainder of this chapter, we will review Williams' approach. 

We will then extend his model to the case where both factors are random 

and to the case where one factor is fixed and the other is random. For both 

cases, we propose method-of-moments estimators for the unknown parameters. 

We will also provide SAS code that implements the proposed methodology for 

both cases (mixed and random). The variances of the estimates are addressed 

using the results of extensive computer simulations. They seem to suggest 

that the technique could be implemented in any of the standard statistical 

packages such as SAS, GLIM and probably others. 

Review of Williams' Approach 

Williams assumed that the ith response (1 :S i :S N) is a count of R. 
1 

successes and ni -Ri failures. Associated with this response are the values 

x.1,xi2, ... ,x. of p explanatory variables, where the Nxp matrix X is of rank 
1 1p 



p. The ordinary logistic linear model assumes that the R. are independently 
1 

distributed Binomial(n.,8.), where 
1 1 

I X R 
e s irs 

21 

8. - ------~-----
1 

(3.1) 
IxR 

1 + e s irs 

To allow for extra binomial variatiQn he introduced unobserved 

continuous variables P., i= 1, ... ,N, independently distributed on (0,1) with 
1 

E(P.)=8., and V(P.) = cf> 8.(1-8.), (O<f/>s 1) and assumed that R. conditional 
1 1 1 1 1 1 

on P. =p. is distributed Binomial(n ,p.). This means that unconditionally 
1 1 v i 1 

E(R.)=n.8. and V(R.)= wi where v.=n.8.(1-8.), and w1 =1+cf>(n.-1). He 
1 11 1 • 1 11 1 • 1 

1 1 

proceeded by saying that, although maximum likelihood estimation cannot be 

used since the distribution of the R. is not fully specified, the 
1 

relationship between the expectation and the variance of R. allows the 
1 

definition of a quasi-likelihood which is maximized with respect to the 

parameters f! via iterative use of the weighted least squares equations 

• A •• 

X'W V X /}=X'W V y. (3.2) 

• • • • • • Here 8., v. · are the values of 8., v. corresponding to P=P , V =diag(v.), 
11 11 -- 1 

• • • R.- m.8. 
W=diag(w.) andy. =Ix. R + 1 *1 1 • 

1 1 1rs v 
i 

The weights w. needed in (3.2) depend on cf> which is usually unknown. 
1 

If the weights w. are calculated from an initial estimate of cf> and P is 
1 -

estimated iteratively from (3.2) then the goodness of fit statistic 
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N A 2 ., L (R.- m.9.) 
x~- = w1. __ 1 __ 1 _1_ 

A A 

i=l n.9.(1- 9.) 
1 1 1 

(3.3) 

is approximately the weighted sum of squares of residuals 
$ A $ $ A 

(Y -X/}) 'WV (Y -X/j). Williams proposed using a method-of-moments 

estimator for q, based on the following 

(3.4) 

A 

(when W ¢1), where ~ is the ith diagonal element of the variance of XI} 

which is given by X(X'wv*xr1X'. The proof of (3.4) is sketched below 

and depends on the following two results from linear models. 

Let Y be a random vector with E(X') =X/} and Cov(y) =I. Let W be 

a constant symmetric weight matrix not necessarily equal to E 1• Then 
A 

if Y=X(X'WX)-1X'W! the following holds 

Thus if W and I in (3.5) above are diagonal with W=diag(w.) and 
1 

I=diag(u.) then 
1 

E[(Y-i'}'W(Y-TI] = \ w.u.(t - q.w.) -- -- L 11 11 

i 

where q1 is the ith diagonal element of X (X 'WX) -•x'. This result leads to 
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the following. 
• • • • 1 1 

Let Y be a random vector With E(Y ) = X/1 and Cov(Y ) = (D 'V- D)-- - -- -
where D=diag(d.)and V=diag(v.) are diagonal matrices. Then 

1 1 

A A 

E[ <r -y•)'w <r-r*>] = L wi :! [ 1 -~wi). 
i i 

(3.6) 

This completes the sketch of the proof of (3.4). Now, by equating (3.3) and 

(3.4), and solving for f/J we obtain 

X2- L [w. (1-w. v ~q. >] 
A i 1 1 1 1 

f/J - ------------------ (3.7) 

\ [w. (n . -1 ) ( 1-w . v ~ q. >] 
[,. 11 111 
1 

Williams concluded by proposing the following procedure: 
A 

(1) Assume that f/J=O; estimate I} and calculate X2 by using ordinary logistic 

regression. 

(2) Compare X2 with the Chi square distribution with (N-p) d.f. If 1f is 

unacceptably large, conclude that f/J > 0 and calculate the estimate of 

f/J by (3.7). 
1 A 

(3) Using new weights w. 
1 
---- re-estimate fJ iteratively using (3.2), 

A -

1 +f/J(n.-1) 
1 

and re-calculate r. 
(4) If 1f is close to N-p, the estimate of f/J is satisfactory. If not, 

then re-estimate f/J as in (3.7) and return to Step (3). 

He also gave an algorithm in GLIM for the procedure described above and 

applied it to some data given by Crowder (1978). 



Extension of Williams' Methodology for the 

Random Case 

Consider the data layout shown in Figure 2 (a two-way random cross 

classification) assumed to have arisen as a result of a random sample 
i i d 

of a and b levels of the two factors. Let 8. IV (1f,f/>) for i=1, ... ,a, 
.. d h 1 
1 1 

and 82. IV (1f,f/>) for j = 1, ... ,b, by which we mean that 
J 2 

E( 81i) = E( 8 2j) = 1f 

and the variances are given by 

24 

(3.8) 

• If we let 8 .. 
1 J 

8li+ 82. • 
------=-J, then 8. . has expectation and variance given by 

2 1J 

The P .. are independently distributed random variables on (0,1) such that, 
1J 

given 81 i and 8 2j, their conditional expectations and conditional variances 

are given by 

and 

n .. 
1 J 

• 
E(Pij 181 i ,82j)=8 i j' 

• • V(P .. I81. ,82.) =4>38 . . (1-8 .. ). 
1J 1 J 1 J 1 J 

Let R.. = E Y .. k where Y .. k's, k= 1, ... n .. , are conditionally independent 
1J k = 1 1J 1J 1J 

binary observations given P ... Then R .. IP .. =p .. -Binomial(n .. ,p..). 
1J 1J 1J 1J 1J 1J 



( (J 2 represents the column random effect) 

(J 21 (}22 .... (J 2j .... (J 2b 

(Jll Ru R12 R1j R1b 

(J 12 R21 R R. R2b 22 2J 

. . 
• . 

(Jli Ri1 ~ R .. -~5] lJ 

• u • . 
• 

= = 
(Jla R R R. R 

a1 a2 •J ab 

Figure 2. Two-Way Setup With Rows and Columns Random 
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Unconditionally, P.. has mean 11 and variance 
1J 

V(P .. )=E(~.) - [E(P . .)] 2 
lJ 1J 1J 

=E6 6 [Ep I 6 6 (P.~I 61i ,62J.J] - 112 
1 • ' 2" . • 1 . ' 2 . 1J 1 J 1J 1 J 
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(3.10) 

In what follows we see that for a given i level (i.e., if we were to fix the 

row level) the variance of P.. with respect to 6 . given 61. can be 
lJ ~ 1 

expressed as some function of the cf>.'s times its conditional mean times one 
1 

minus its conditional mean. First the conditional mean of P .. , given 61 . with 1J 1 

respect to 6 . , is 
2J 

Ep 16 (P .. 161 .]= E6 [Ep 16 6 (P .. I61 .,62 .]] 
. . 1. 1 J 1 2 . . . 1 . 2 . 1J 1 J 1 J 1 J 1J 1 J 
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(3.11) 

If we let f/li =+(81i + q) then the conditional variance is given by 

[ • • • 2] 2 =Eo 4> 38 . . (t-8 . .> +(8 . . ) - "u' 
2j lJ lJ lJ 



28 

= q, + -(1-c/> )c/> 11 . (1-17 .) [ 
1 170-17) l 

3 4 3 2 171 i ( 1-171 i ) 1 1 11 
(3.12) 

Thus, the average conditional variance is given by (recall that 1711 = 81i + 11 ) 

- q, ~[2n(1-'1) - -
1
- q, 17(1-17)] + - 1

- q, (1-c/> )17(1-17) 
32 2 1 4 2 3 

= q, - - q, q, + - q, - q, q, 17(1-17)-[ 
1 1 1 l 

3 4 31 4 2 4 23 
(3.13) 

Therefore, we have shown that the average conditional expectation of P .. 
lj 

The corresponding result when considering the column is 

1 1 l +-c/> --cf>c/>. 
4 1 4 2 3 

(3.14) 

The three formulas (3.10), (3.13) and (3.14) are the unconditional 



variance of P .. , and the average conditional variances when that we 
lJ 

condition on the rows and columns, respectively. 

We propose the following estimation procedure. 

29 

(1) Fit a grand mean to the whole data set and get an estimate of the left 

hand side of (3.4) using the Williams one sample approach where his X 

matrix is nothing but an (ab x 1) vector of 1 's. The estimate of the extra 

binomial variation given by (3.7) is thus our estimate, say C1, for the 

left hand side of (3.10). 

(2) Consider each row of data values as shown in Figure 2 as a data set on 

its own (remember the discussion above on conditioning on each row ... ). Fit 

a grand row mean to each of these "datasets of b x 1 observations" using the 

same procedure as described in step (1). Note that the algorithm provides 
A 

us with estimates of the means, 17 1~s, and estimates of the extra binomial 
A 

parameter, cf> 1 ~s, for each of the rows. Therefore a natural estimate of the 

average conditional variance given by (3.13) is a method of moments 

estimate, say C 2 , given by 

~~ 
E[v[Pijl62] 

11( 1-77) 

[

A A A A A A A A A l 
</> 11" 11 (1-'1 11) + </> 1:" 12 ~ 1-'1 12) +. 00 + </> "" 1a 0-'1 ") . 

a 11 ( 1-17) 

(3.15) 

(3) Repeat the procedure in (2) for each column. The b independent fits 
A 

will produce estimates for the b column means, 772/s, and the b estimates of 
A 

extra binomial parameters cf>2/s. Again a natural estimate, say C3 of 

the left hand side of (3.14) would be given by 

~ 
E[v[Pijl61] 

, ( 1-17) 

[

A A A A A A A A A l 
</> 21 "21 0-'121) + </> 2:" 22: 1-'1 22) + ... + </> 2•"" ( 1-'1 2b) . 

b , (1-17) 

(3.16) 
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(4) Having the estimates C1, C2 and C3, we solve the following system of 

three equations for the three unknown parameters q, , q, and q, 
1 2 3 

c = {" -1 3 

c3 = {" + _1_ q, + _1_ q, -
3 4 1 4 2 

and obtain the following estimates of q,' s: 

SAS code for implementing the above steps is given in Appendix B. 

The variance of the proposed estimators is addressed next together with 

discussion on the process of generating data from the above model for the 

simulations. For calculating the variance and standard errors of the 

estimates we propose the following resampling procedure where we generate 

a given number, say N, of two way random tables in such a way that each 

table is based on the same values of q,1, q,2, and q,3• For each table we 



use the algorithm outlined above and obtain estimates of the tjJ's and 71's. 

Then we calculate the variances and standard errors from these N 

estimates. 

Although it was mentioned above that we only need the mean and 

variance of the 61.'s and () .'s in our simulation program, we use the Beta 
1 2J 

distribution for the obvious reason that beta is a very flexible 

distribution on the (0,1) interval. Also it provides us with obvious 

candidates for 71's and tjJ's since if 6-Beta(a,b) then we have that the 

and 

V(())= ab =t~J17(1-17). 
(a+ b) 2 ( 1 +a+ b) 

Adopting the following notation, where a/(17 ,t/J) indicates a Beta 

distribution with mean 11 and variance t/J17(1-11), we proceed as follows. 

Choose 17, tjJ , tjJ and generate a random sample of 61.'s for the rows such 
1 2 1 

that () -Beta(17,t/J) and similarly generate a random sample of () .'s for the 
1 1 ~ 
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columns such that () .-a/(11,t/J ). Using SAS we can generate Gamma random 
2J 2 

variables. A Beta random variable can be constructed from two independent 

Gamma random variables using the following fact. If X1, X2 are 

independent Gamma random variables with shape parameters a, b, respectively 

X 
then 1 -Beta(a,b). Because the means of () 1 and 62 must be equal, 

X1+ x2 
a and b must be chosen so that (alb) is constant. Having generated 

the () 's and () 's, we proceed with generating the P .. in such a way that 
1 2 ~ 



discrete random variables (between 1 and 76) and for a given P .. , we 
lJ 

proceed by generating directly Y .. ~ Binomial(n .. ,p..) random variables. 
lJ lJ lJ 

The algorithm for the generation of N tables is sketched in Figure 3. 

The choices of the a and b shape parameters used were the pairs (2,2) for 

the rows and (3,3) for the columns. Therefore, the "true" overdispersion 

parameters for the rows were 0.2 and for the columns were 0.1429. The 

overall overdispersion was chosen to be 0.25. 

Estimates of the parameters and their standard errors based on 100 

( 4x5) tables are presented in Table I. The frrst two rows in Table I 

• correspond to the overall mean (17 ) and the estimate of the extra variation 

32 

parameter from the overall fit (PE). The following rows represent the 

estimates of the means (M) and extra variations (EV) from the individual row 

or column fittings. They are labeled RIM, and RIEV (or CIM and CIEV) 

and represend the estimated values values from fitting the ith row (column) 

respectively. The last three rows of the table are the resulting estimates 

of the row, column, and overall q,'s. 

These results are compared to the procedures and methodologies devel­

oped in Chapter IV and will be discussed further in Chapter V. If the data 

do not possess significant amounts of overdispersion or if the number of 

levels of the random factor is small such as the case in our example in 

Table I (i.e., five rows and four columns), then the algorithm can lead to 

negative estimates of the q,. 's, especially q,1 and q, . In our simulation, 
1 2 

A A A 

approximately forty percent of the q,~s and q,;s were negative but all q,;s 

were positive. This is similar to the occurrence of negative variance 

component estimates when dealing with continuous responses. The estimated 
A 

variances of the q,'s in Table I drop significantly as the number of levels 

for that random effect increases. 



TITLE 'GENERATION OF &N DATASETS W/ P1=.2, P2-.1429, AND P3=.25'; 
%LET NADS=DS; 
%LET Nz100; 

%LET NR=5; 

%LET NC=4; 

DATA GALL; 

A=2; 

B=2; 

C=3; 
D=3; 

HTA=AI(A+B); 

ARRAY THETAI (5) THETAI1-THETAIS; 
ARRAY THETAJ (4) THETAJ1-THETAJ4; 

DO DSI=1 TO &N; 

DO 1=1 TO 5; 

Xl =RANGAM(SEED1,A); 

X2=RANGAM(SEED1,B); 

THETAI(I) =Xl/(X1 + X2); 

PHil=li(A+B+l); 

END; 
DO J=1 TO 4; 

X3=RANGAM(SEED2,C); 

X4=RANGAM(SEED2,D); 

THETAJ(J)=X3/(X3+X4); 

PHI2=1/(C+D+l); 

END; 

END; 

DO II=l TO &NR; 

DO JI=l TO &NC; 

PHI3-.25; 

ED =(THET Al(ll) +THET AJ (JI) )/2; 

ALPHA=((l-PHI3)/PHI3)*ED; 

BETA=((l-PHI3)/PHI3)*(1-EIJ); 

X5 =RANGAM(SEED3,ALPHA); 

X6=RANGAM(SEED3,BETA); 

PD=X5/(X5+X6); 

ND =INT(RANUNI(SEED)*75)+ 1; 
YD =RANBIN(SEED,ND,PIJ); 

R=YD; 

M=ND; 
Q=M-R; 

OUTPUT; 
END; 

END; 

Figure 3. Algorithm for Generating N Two-Way Tables 
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TABLE I 

SIMULATION RESULTS OF TYPE I MODELS 

SIMULATION OF TYPE I RANDOM MODELS A=5 B=4 

SIMULATION BASED ON 100 DIFFERENT DATA SETS 

THE PARAMETERS WERE:PHI1=0.2 PHI2=0.1429 PHI3=0.25 

NEGATIVE ESTIMATES OF PHI 1, PHI2 AND PHI3 WERE SET TO ZERO 

VARIABLE N 

P E 1 0 0 

11* 100 

R 1 EV 1 0 0 

R1M 100 

R2EV 100 

R2M 100 

R3EV 100 

R3M 100 

R4EV 100 

R4M 100 

R5EV 100 

R5M 100 

C1EV 100 

C1M 100 

C2EV 100 

C2M 100 

C3EV 100 

C3M 100 

C4EV 100 

C4M 100 

f/>1 100 

f/>2 100 

f/>3 100 

MEAN 

0.31657241 

0.50536630 

0.31276634 

0.47761046 

0.29291694 

0.47723260 

0 . 2 9 4 1 1 5 62 

0.52776939 

0.33425280 

0.51081009 

0.30405356 

0.53158340 

0.33289324 

0.53384104 

0.28889868 

0.49703233 

0.33615772 

O.S1172636 

0.31331473 

0.47683573 

0 . 1 8 3 7 4 462 

0.12856119 

0.28305181 

VARIANCE 

0.00685854 

0.00649048 

0.05761472 

0.02807627 

0.04953145 

0. 03469507 

0.04617265 

0.03053893 

0.04567791 

0.02555468 

0.05012191 

0.03217772 

0.03837459 

0.02267104 

0.02693330 

0.02381207 

0.02710309 

0.02005275 

0. 04603604 

0.02436305 

0.07175443 

0.03667621 

0. 00634260 

STD ERROR 
OF MEAN 

0.00828163 

0.00805635 

0.02400307 

0.01675597 

0.02225566 

0.01862661 

0.02148782 

0.01747539 

0.02137239 

0.01598583 

0.02238792 

0.01793815 

0.01958943 

0.01505690 

0.01641137 

0.01S43116 

0.01646302 

0.01416077 

0.02145601 

0.01560867 

0.02678702 

0.0191S103 

0.00796405 
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Comments on Williams' Methodology for the 

Mixed Case 

35 

Consider data as shown in Figure 2 (a two-way mixed cross 

classification) which arose as a result of a random sample of a levels of the 

row factor and J fixed levels of the column factor. Following the approach 
i i d 

used in the previous section, we assume that 81i IV a/(rt,f/>1) for i=1, ... ,a, 

where f/> 1 >0. 

. • 81.+ 112. th 
Now 1f we let 8 . . = 1 J, where 11 . is the mean of the j column then 

1 J 2 2J 

8~. has expectation and variance given by 
1J 

• 11 + 112. • 1 
E(8 .. )= J , and V(8 .. )=---f/>117(1-n). 

1J 2 1J 4 

Thus the P .. are independently distributed random variables on (0,1) such 
1J 

that, given 81 i and rt2 j, the conditional expectation and conditional variance 

are given by 

• • • E(P .. 1 81 . ) = 8 . . , and V (P .. 1 81 . ) = f/>38 . . ( 1-8 . . ) . 
1J 1 . 1 J 1J 1 1 J 1 J 

Thus the unconditional mean and variance of P.. are as follows 
1J 

The variance of P.. is 
1J 

V(P .. ) = E 8 [E p I 811" ( pi~ I 81iJ] - 11~: 
ij 1i ij 
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- E o [v P I o ( P.. I 01.) + o~. 2]- 11*2~ 
1 . . . 1. 1J 1 1 J J 

1 1J 1 

[ • • 2 • 2] 2 
- E 0 <P30 . . -<P 3(0 . . ) +(O . . ) - 11~J· 

i 1J 1J 1J 

(3.18) 

So in the mixed case one is unable to express the unconditional variance of 

the Pij as a constant involving the <P's (in the case <P1 and <P2 ) times (its 

mean)(l- its mean). It seems that the generation of O's as discussed in the 

previous section does not work for the mixed model. 

It is possible that in the mixed model situation one can generate 

different o. 's for a given row by weighting them by c. where c. is some 
1 J J 

sort of weight depending on the ratio of the particular column mean 172j to 

the overall mean t;. . We feel that although the procedure works well as 
J• 

an extension of Williams' algorithm for the two-way random case it fails to 

be of use for the mixed two way model. 



CHAPTER IV 

TYPE II MODELS 

Introduction 

In this chapter we will consider Type II models; that is, models that 

belong to the class of generalized linear models, and more specifically 

logistic models, which include random effects and overdispersion parameters. 

We apply these models to data of the form specified in the introduction of 

Chapter III and we are going to address both the mixed case and random 

case. We are going to expand along the lines of Pierce and Sands (1975). 

They suggested that random perturbations can be justified as effects due to 

unmeasured sources of experimental error which affect the group of the n .. 
lJ 

binary observations as a whole. Our approach follows more closely the 

methodology introduced by Hinde (1982). His model is similar to that of 

Pierce and Sands but is applied to Poisson overdispersed data instead of 

binomial. Also the method of fitting is slightly different. 

Our extensions consider models that not only model the overdispersion 

on the same additive scale as the fixed effects (in this case the logistic 

scale) but also account for two random factors in the two-way random 

classification with no interaction. Our fitting methods are based on Hinde's 

suggestion, that when dealing with single parameter exponential models and 

using the canonical link to fit overdispersed data, one fits a generalized 

linear model on an expanded set of observations. In our case we will have 

to expand the observations more times due to the existence of more than one 

random factor. 
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In its simplest form, a generalized linear model (GLM) is specified by: 

(i) independent observations y 1, ... ,y n distributed according to a member of 

the exponential family of distributions; 

(ii) a set of explanatory variables ! ' available for each observation, 

describing the systematic linear component ?I = X/}, and 

(iii) the link function g(J.li)=1fi, relating the mean of an observation to the 

systematic component. 

Consider ftrst that the row factor and the column factor are fixed 

and the overdispersion enters the model through the linear predictor as an 

unobserved random variable. We know that if all effects entering the linear 

predictor were fixed, then our model would belong to the above class of 

GLM's since R.. given x' and p .. is distributed Binomial(n .. ,p..) which 
lJ - lJ lJ lJ 

belongs to the exponential family. For our setup, the X matrix would 

correspond to the design matrix for the two way structure without 

interaction and the link function would be the logistic function as given 

in (3.1). Estimating the unknown parameters via iterative reweighted least 

squares produces maximum likelihood estimates. For more details see 

McCullagh and Neider (1983). 

If the random effects are on the same scale chosen for transforming 

the P .. , then the form of the generalized linear model is 
lJ 

where X is the design matrix for the fixed effects, 

I} is the vector of fiXed unknown parameters, 

Z is the design matrix for the random effects, 

u is a random unobserved vector and 

(4.1) 



!] is the linear predictor (i.e. !] = g~) where E(!)=~). 

Throughout this chapter we will consider g to be the logit link function 
P .. 

(i.e., log (1~~ .. ) where pij is the binomial parameter). 
1J 

Review of Hinde's Approach 

Let us first consider the case where there is overdispersion and study 

the model above by considering the rows and the columns as fiXed effects 

and the overdispersion u.. as the only random effect. This is the model 
1J 

considered by Pierce and Sands and we are going to develop a methodology 

for getting the estimates directly, following the approaches of Hinde (1982), 

and Brillinger and Preisler (1983) as they were applied to log-linear models 

for overdispersed counts. Thus, given u .. we have 
1J 

f(R1.J.I p,a.,P.,u .. ) ~ Binomial(n .. ,p..) 
1 J 1J 1J 1J 

where i= 1, ... ,1, j = 1, ... ,1 and such that 
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p ij 
log (1-p .. ) - 11.. = J.l + a.+ P. + u .. 

1J 1 J 1J 
(4.2) 

1J 

where u .. ~F. Thus the log-likelihood given u .. is given by 
~ ~ 

r 

IT IT f(R .. I p,a.,P.,u .. ) = IT IT [ 1 P~j l ij(1-p..)nij 
i j 1 J 1 J 1J i j - i j 1J 

(4.3) 

where 

e ( J.1 + a . + P. + u .. ) 
1 J 1 J 
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The simplest situation is the case where u .. -N(O, 1). Then the margi-
1 J 

nal distribution of R.. is given by 
1J 

+00 

I [ p .. lrij n .. 
1 ~J (1-p..) lJ fj>(u .. )du .. 

- . . lJ lJ lJ 
lJ 

-co 

where fj>(u .. ) is the standard normal pdf, and the marginal log-likelihood 
lJ 

is given by 

\' \' log I f[R .. I p,a.,P.,u .. ) fj>(u..)du ... !,. !,. 1 J 1 J lJ lJ 1J 
1 J 

(4.4) 

Consider the case that F is known up to a scale parameter. Going a 

step further and following the usual assumptions of variance component 

methodology, we assume that u .. - N(O,tf1). Similar assumptions were made by 
1J 

Pearce and Sands, in the binomial setup, and by Hinde and later on by 

Brillinger and Preisler for the Poisson setup. The above assumption implies 

that we could replace u .. by fJ1z .. where z .. - N(0,1), and 91 is the unknown 
lJ 1J 1J 

scale parameter. Thus p .. in (4.3) becomes 
lJ 

-(Jl + a. + P. + fJ1z..)] -1 P.. = [1 + e 1 J 1J • 
1J 

One technique for maximizing !l{p,a.,P.,fJ1) in order to find the maxi-
1 J 

mum likelihood estimates of the parameters, is to use the EM algorithm of 

Dempster, Laird, and Rubin (1977). For this we need the so called complete 

data likelihood 



h{Jl,a.,fJ.,81)= n n f(R .. 1 p,a.,fJ.,81,z .. ) f/>(z..). 
1 J . . lJ 1 J lJ lJ 

1 J 
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For the complete data, (log h) would be maximized over p, a., fJ. and 81 (M 
1 J 

step) but since zij is unobservable we replace log h by E[log hlz] and the 

current values of p, a., fJ. and 81 (E step). If we let 'I! = {p,a,{J,O } then 
1 J ~ ~ 1 

the EM algorithm defines the following iterative process for the estimates 

of 'I!· 

E step: Compute Q(IJIIIJI(p)) = E(log hlz) 

M step: Choose 1/f(p+l) to maximize Q(IJIIIJI(p)) 

where 'l!(p) is the estimate of 'I! from the pth iteration. Hinde showed that 

differentiating Q( 'I! I 'l!(p)) results in the same equations as those obtained by 

differentiating the marginal log-likelihood given by (4.4). Thus after some 

simplification we could obtain the maximum likelihood estimates of the 

parameters by differentiating 

+~ p I r .. ( p + a. + . + 8 1 z .. ) 
1 J 1 J lJ 

\ \ log [..-e------------..-Jn f/>(z..)dz .. r T 1 + e (p + ai + pj + Otzij) ij 1J lJ 
-~ 

(4.5) 

Unfortunately, the integral in (4.5) has no closed form solution. 

However, since the integral is over a normal density this allows us to 

approximate it by a K-point Gaussian quadrature. This simply amounts to 
+~ 

K 

replacing the J f(z..)dz.. by r f(z1k) and f/>(z..) by wk, the associated 
1J lJ k~l 1J 

-~ 

quadrature weights. A table of quadrature points and their associated 

weights for different values of K are given in Table IT. More extensive 

and detailed tables on Gaussian quadrature with K's up to 136 can be found 

in Stroud and Secrest (1966) (Table Five). Note that his x~s correspond to 
1 
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TABLE II 
ABSCISSAS AND WEIGHT FACTORS 

FOR GAUSSIAN QUADRATURE* 

K zlt w lk 

3 ±1. 73204 0.16667 
0.00000 0.66666 

4 ±0. 74197 0. 45412 
±2. 33441 0. 04588 

5 ± 1. 35562 0.22208 
±2. 85696 0.01126 

0.00000 0. 53333 

6 ±0.61670 0. 40883 
± 1. 88918 0. 08862 
±3. 32426 0.00256 

7 ± 1. 15441 0. 2 4012 
±2. 36676 0. 03076 
±3. 75048 0.00055 

0.00000 0. 45714 

8 ±0. 53908 0.37301 
±1. 63651 0.11724 
±2. 80249 0.00964 
±4.14455 0. 00011 

9 ± 1. 02325 0.24410 
±2 .07684 0.04992 
±3.20543 0.00279 
±4. 51274 0.00002 

0.00000 0. 40635 

10 ±0.48493 0. 34464 
± 1. 46599 0.13548 
±2. 48432 0.02186 
±3. 58182 0.00076 

4.85946 0. 000004 

from Stroud and Secrest ( 1966) 
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(z,. /2l and his A1 is [ ~ ] . Similar tables are given on page 924 of 

Abramowitz and Stegun (1972). Thus if we denote by z1k the gaussian 

quadrature point associated with the weight w k then ( 4.5) becomes 

K r i j( P + ai + Pj + 8 tztk) L ~ log L _e _________ --=n- wtk" 
i J k ... t [1 + e(p + ai + pj + (Jtztk)] ij 

(4.6) 

Estimates of 'I! are obtained by taking the partial derivatives of (4.6) with 

respect to the parameters. If we denote the partial derivatives (i.e., the 

so called score vector) by ((r .. llfl) then the maximum likelihood equations 
lJ 

for 1f1 are given by 

Brillinger and Preisler (1983) gave various conditions leading to the 
A 

consistency and asymptotic normality of If!. For example, under conditions 
A 

(B-1) to (B-4) given by Huber (1967), If/ can be shown to be consistent. 

Further, if If/ is the true parameter vector then IJ.i(~-lfl) is 
0 0 

asymptotically normal with mean 0 and covariance matrix i(lf/ r• (the inverse 
0 

of the information matrix), under conditions (N-1) to (N-4) of Huber (1967) 

which are satisfied if E [ ((r llfl)] is differentiable at If/= VI 0 and 

Thus maximizing the marginal likelihood (4.6) corresponds to solving the 

following equations : 



1 

~ f f* 
ij 

a f* 
__ i....:.j - 0 

a 'I! 
where 

+ ll. + pj + * e 1 J 1 K{ r.(/J 
f .. (R .. Ip,ll.,P.,01,z1k)= L 

k=1 1 + e # 1 J 1J 1 J [ ( + ll. + pj + 

o,z,.> } 
n w1k 

01z1k)] ij 1 

is the unconditional distribution of Rif If we use Bijk to denote 

f(R..I#,ll.,P.,01,z1k), then from (4.7) we have 
1J 1 J 

a f* 
ij 

a 'I! 
K 

- L 
k=1 

a B .. k w 1J 

1k a 'I! 

For notational convenience, let I} be the vector associated with the fixed 
, 

effects (i.e., /j=(J.l,ll1, ... ,ll1 ,P1, ... ,p1); then we can show that 

a B .. k 
Bijt x,[ r,i • 

/ i j( # + ll. + P. + 0 1z1k) l 1 J 1J n .. -
a P 1J 

[ 1 + /# + ll. + P. + 0 1z1k)] s 1 J 

where x =0 or 1 and s is indexing the elements of I}, and that 
s 

a B .. k [ 
__ 1-=J- - B .. k z1 r.. -
~ a 1J r 1J 
(} (} 1 

/ i j ( # + lli + Pj + 01 z1k) l 
nij [t + e(p + a, + pj + o,z,.>] 
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(4.7) 

where z1k is the kth gaussian quadrature point. Thus we have shown that the 



system (4.7) has taken the familiar weighted regression normal equations 

form (i.e., X'V1(!- X/})) that corresponds to fitting a binomial regression 

model to an expanded set of observations. In general we could write these 

equations as follows: 

• a f 
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E E r wi.k 
1 J I' J 

- 0 (4.8) 

where 

a 'I! 

wlk f(Rijl.u,ai,pj,01,z1k) 

f i j (Rij l.u 'a i ,pj ' 9 1 'z 1k) 

In other words, we have shown that the normal equations above could be 

used iteratively to produce approximate maximum likelihood estimates if they 

were being applied to the expanded set of observations 

ORIGINAL 
DATA 

K times the or igina1 data 

Thus the original data set is repeated K times and includes as prior weights 

the vector: 

. ( . . . . . . ) Yf = W 111 , ••• ,W 111 ,W 112 , ... ,W 112 , ... ,W l1K, ... ,W IJK 



where 

W * =f(R lz ,,(P> a(p) p(p> (J(P)] W k 
ijk ij lk',... 'i j, 1 f*(p) 

ij 

(for i=l, ... ,l, j=l, ... ,J and k=l, ... ,K) are the weights for the (p+l)th 

iteration and p(p>. a~>. p~> and (J<1P> denote the estimates of the 
1 J 

parameters from the (p) t h iteration. 
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This iterative procedure was programmed using the SAS IML and MA­

CRO language. The sequence of Binomial fits is programmed using the SAS 

NLIN procedure for producing the parameter estimates and for calculating 

and updating the weights w .. k. 
1J 

For addressing questions about the fitted model, we suggest using the 

deviance which is defined as 2*log(saturated model) - 2log(likelihood) as 

given by 

A 

AAAA (. ] D(.u,a. ,p,,81)=-2 r r logf .. - r,.log(r .. )-(n .. -r .. )log(n .. -r..) . 
1 J f.. f.. 1 J 1J 1J 1J 1J 1J 1J 

1 J 

In this procedure the parameters p, a., P., and 81 are estimated 
1 J 

simultaneously. Estimating standard errors for the estimates of the 

parameters will involve obtaining the inverse of the observed information 

matrix 

(4.9) 

(4.10) 

In an attempt to verify the suggestion of Hinde that K as big as 3 or 5 
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could be used to produce reasonably good estimates of p and (} , we used the 
- 1 

above algorithm on a set of data reported by Crowder (1978) and also ana-

lyzed by Williams (1982) by the methodology discussed in Chapter 3. The 

fitted model for a 2x2 factorial experiment with overdispersion is given by 

[ p .. ] log · 1 J = u + a + fJ + ~R + (} z 1 -p. . ,.. i j . "II ij 1 ij 
lJ 

where i,j=1,2 and z .. -N(0,1). In Table m we report the number of Gaussian 
lJ 

quadrature points (GQ) used, the number of iterations needed for obtaining 

convergence of the deviance (D) within .01 of the deviance from 

the previous iteration, and the estimates of the parameters. The last row 

in the table represents the equivalent estimates reported by Williams. The 

listing of the program that was used to compute the entries appearing in 

Table lli is provided in Appendix C. The first important observation is 

that estimates of the parameters change considerably based on the number 

of quadrature points. The second important observations is that the 

estimates of the fixed effects are "closer" than the estimates of the 

overdispersion depending on the number of quadrature points used. 

Comparing the first two rows of Table ill with the last row (i.e., the 

estimates obtained using Williams' algorithm) we conclude again that 

the fixed effects estimates are very close in all cases but, the 

overdispersion parameter estimate is much smaller in Williams's 

approach. In Chapter IV when comparing the models we will see that 

Williams's estimate for the overdispersion parameter can only be as 

large as 0.25(61) which certainly holds true. 



-

TABLE III 

RESULTS FROM ANALYSIS BASED ON CROWDER'S 
DATA SET USING 3 AND 5 

QUADRATURE POINTS 

#of GQ #of iter A A A A 

"' a2 fJ2 aP22 
points (on< .01 D0 ) 

3 7 -0.554 .104 1.35 -.819 

5 6 -0.548 .094 1.34 -.815 

W i 11 iam s 
method 5 -0.535 .070 1.33 -.819 
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A 

(Jl 

.2146 

.2424 

.0249 



Extensions of Hinde's Methodology for the 

Mixed Case 
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Consider the case of having one of the dimensions of the two way table 

(the columns for example) random in addition to the overdispersion. In the 

model given by (4.2), let the column effect be random. The setup is the 

same as the one which appears in Figure 1. Let us denote this random effect 

by b. where j=l, ... ,b and i=l, ... ,a. Thus we can rewrite the model as 
J 

follows 

f(R .. I u .. ,b.,p,a.) ~ Binomial(n .. ,p . .) 
1J 1J J 1 1 J 1 J 

and 

1 pij 
og (1-p . .) -

1J 

where Jl and a. are unknown fixed parameters and b. ~ F1 and u.. ~ F . 
1 J 1J 2 

The situation we are going to consider is b.~N(O,tr1) and u .. ~N(O,lf) 
J ~ 2 

and that the two random variables are independent. Let us replace b. and 
J 

u .. by (} z . and (} z .. and let P=(J.l , ... ,Jl) 1 , where /l. =Jl +a., represent the 
1J 1 1J 2 21J ~ 1 I 1 1 

vector of the row means from the fixed part of the model and ~ = ( (} 1, (} 2) 1 

represent the vector of the two standard deviations for the two unobservable 

random variables z . and z .. , respectively. Let H(z1.,z .. ) represent the 
1j 21J J 21J 

conditional distribution of R.. given z1. and z .. which means that 
1J J 21J 

( ) 
r ij ( /l 

H z1j'z2ij = _e ______________ -=-_ 

[t +ill+ 

+ a.+ 9 1jz1j + (} 2z2ij) 1 

a. + (} 1jz1j + (} 2z2ij)] nij 
1 

(4.11) 
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The marginal likelihood is given by 

and thus the marginal log-likelihood !l{f},~) simplifies to 

(4.12) 

Using a K point Gaussian quadrature for the inside integral and L point for 

the outside we replace the integrals by summations and the normal p.d.f's by 

the equivalent weights and we get from ( 4.12) that 

where now 

In the following steps we are going to outline the derivations for the 

appropriate weights that are needed for the iterations that provide 

solutions to the normal equations. 

(4.13) 

1). The partial derivatives of B .. k1 wrt /J. and fJ where s= 1,2. take the 
lJ 1 B 

form 



a B i jkl 

a J.l. 
1 

where x. =0 or 1 (depending on the row), and 
1 

a Bij kl 

a 8 
s 

- B .. k 1 z { r .. - n .. 
1J 8 1J 1J 

r i / J.l i + 8 1 z 11 + 8 2 z2k) } 

: + i J.l i + 8 1z1 1 + 82z2t) 

where z = z or z2k depending on s being equal to 1 or 2 respectively. 
s 11 

2). Using the rules of differentiation one can show that the partial 

derivative (say for example wrt /l.) of the product of the sum of functions 
1 

takes the following form 

a a fl 1 ~ [ ~ Biikl CtJ,)w.] = ~[.( .. n {([nlikl CtJ,)wk](r, 'ik' CtJ,)wk b, 'J u] }] 
1 

a 
where bi'jkl= a /l. Bijtl(.ui). 

1 

3). The partial of the marginal log-likelihood using the results of 

steps 1 and 2 becomes 

and if we let Bij1= (~ Bijkl(.u)wk) then the above becomes 

51 



52 

(4.14) 

{ 
approrp i ate} { 

=)) L L weights. xi ri' - nij 
I' T 1 J Ia boled W .. kl J 

1J 

r i j ( ll i + () 1 z 11 + () 2 z2k) } 

: + / ll i + () 1 z 1 1 + () 2 z2k) 

(4.15) 

where x. =0 or 1 (depending on the appropriate row indicator variable). We get 
1 

a similar result for the partial wrt () with the only difference being that 
s 

the x. 's in ( 4.15) are replaced by the z 's where s = 1,2 depending on () . 
1 s s 

Therefore we have shown that the normal equations could produce maximum 

likelihood estimates of the parameters by simply employing an iterative 

reweighted least squares algorithm on an expanded data set. In fact the 

original data set is expanded out to N X K X L where N represents the total 

number of cells in the two-way table and K and L are the number of quadra­

ture points chosen for each of the two random factors. The process represen-

ted below 

ORIGINAL 

DATA 

R =(R , ... ,R ,R , ... ,R , .... ,R , ... ,R b)' 
11 a b 11 ab 11 a 

~ ~ 

--------------~-------------
L X K t imes the origina 1 data 
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amounts to augmenting not only the original response variable but also 

augmenting the X's (i.e. the indicator variables that make up the design 

matrix for the fixed part of the model) and the z's and using as prior 

weights the vector 

. ( . . . . . 
Yf = W 1111'''' 'W a bll 'W 1 12 1 ' .. ' 'W a b21'" '' W 11KL 

• ] I 

, ... '~ bKL 

~------------------------~------------------~~ 
K X L time s the ori gina 1 data 

where 

W ;.r _ [ :jl] [B Bjkl] 
J s . "1 J 1J 

(4.16) 

Bijkl=f(Rijlzk,zl,Jl~>.e~P> ,e~P>) wk; Biji= f Bijlk; Bjl=(If Bijl)wl; 

Bj= f Bj1; (i=l, ... ,a, j=1, ... ,b, k=l, ... ,K, and 1=1, ... ,L) and again the 

weights for the (p + 1) t h iteration are calculated based on ~~~>, and 8 ~ ~ > 

For addressing questions about the fitted model we suggest using the 

deviance given by 

A 

oc; 1"~ 1 '~2) = -2 r. \ (log f ~ .-r..log(r..)-(n .. -r .. )log(n .. -r .. >] L t.,. 1 J 1J 1J 1J 1J 1J 1J 
1 J 

(4.17) 

The importance of the random effects can be assessed by constructing some 

form of interval estimate for q, 2 and q, 1• Estimation of both q, 1 and q, 2 is 

accomplished at the same time as Jl and a.. Estimating standard errors 
1 

involves obtaining the inverse of the observed information matrix. 

(4.18) 
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• where f. (R.,P,t/>1,f/>2) is the likelihood for a fixed level j of the random 
J J -

effect which translates to 

where again B .. kl is the likelihood of any given observation on the 
lJ 

expanded data set 

It is important here to mentioned that the SAS code for implementing 

the above steps is given in Appendix D. More about the program and also 

discussions on the results from applying both types of models to the 

Virginia Pine tree data set is given in the following chapter. 

Extensions of Hinde's Methodology for the 

Random Model 

Now let us extend our model to the case of both dimensions in our 

two-way table being random in addition to trying to allow for overdispersion. 

This situations is totally analogous to the situation depicted in Figure 2. 

The truth of the matter is that the algorithm becomes difficult to implement 

from the computing point of view. It is even more of a problem in our case 

since our programs are written in SAS using limited IML workspace. We 

do nothing more than outline the derivations. But in reality one has to go 

through an analogous procedure to get estimates of the parameters in the 

model. Thus in the model given by (4.1) we change the column effect from 

being fixed to being random. The setup is the same as the one appearing 

in Chapter m with the only difference that the random effects enter the 
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model at the same level as the systematic effects. Let us once again denote 

the random effects by ai and bj where j=l, ... ,b and i=l, ... ,a. Thus we can 

rewrite the model as follows 

f(R..I u .. ,IJ ,a. ,b.) ~ Binomial(n .. ,p .. ) 
1J 1J 1 J 1 J 1 J 

and 

where IJ is an unknown fixed parameter and at F 1, bf F 2 and uij - F 3• 

Again we will assume normality and independence of the random effe­

cts and replace the random effects in the model equation by the standard 

deviations times the z's. Now the only ilXed effect is IJ the overall mean 

and the vector ~ = ( 81 8 2 8 3) ' represents the standard deviations for the 

three random variables z1 .• z . and z .. , respectively. Let H[z .. z .,z .. ) 
1 2j 31j h 2j 31J 

represent the conditional distribution of R .. given the z's, similar to 
1J 

(4.11); then the marginal likelihood is given by 

L(Jl,8)= J IT IT H(z1.,z2.,z3 .. ) f/>(~) d~. 
~ • • 1 J 1J 

1 J 

{~} 

The order of integration in terms of i or j is not important. Replacing the 

integrals by summations and the normal p.d.f's by the equivalent weights we 

could get the estimates of the 8' s by fitting an intercept term and the 

appropriate combination of z's on the original data set after expanding it 

K*L*M times. Here again K, L and M are the numbers of quadrature points 

used to approximate the three different integrals in terms of the z's. We 
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do not need to have K=L=M. Our decision on the choices of K, L and M; 

although limited to numbers definitely smaller than 5 for a medium size data 

set, should reflect our suspicions on the size of the (J's. This means that 

if for any reason the size the standard deviation for the any of the random 

effects is large then we must use a higher number of quadrature points to 

approximate the particular integral associated with that effect. Bock and 

Aitkin (1981) suggest that numbers as big three, can be used to obtain good 

estimates of the parameters. What may also happen is that one might fail to 

show significance for some of these variance components. If, for example, 

one of the variance components fails to be significant, then for the 

resulting reduced model one could increase the orders of the individual 

quadratures. This would produce better accuracy for the remaining variance 

components. 



CHAPTER V 

COMPARISONS APPLICATIONS AND DISCUSSIONS 

Comparisons of Type I and Type II Models 

In this chapter we will attempt to compare the models considered in 

Chapters III and IV by means of comparing estimates and their properties. 

We will fit both models to a set of data from a genetic experiment 

considering the survival of different families of Virginia Pine. We will 

also elaborate on the difficulties that we encountered applying the models 

to a large data set. At the end of the chapter we will close with 

suggestions for further research. 

In what follows we will attempt to further explain the meaning of the 

parameters for the two types of models. Consider both models with 

rows and columns fixed and both allowing for an overdispersion parameter. 

That means that Y .. klp .. ~Binomial(1,p..) was a binary observation on the kth 
1J 1J 1J 

unit, k=1, ... n .. in row i and column j. For the Type II model 
1J 

f.J .. + uz .. 
e 1 J 1 J 

pij ' 
fJ .. + uz .. 

1 + e 1 J lJ 

where Z .. ~N(0,1). 
1J 

(5.1) 

For the Type II model the covariance of two binary observations which 

belong to the same cell in the table is given by 

57 
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Cov(Y. 'k' Y. 'k ) = E(Y..kY. 'k ) - [E(Y .. k)E(Y .. k )] 1J 1J , 1J 1J , 1 J 1J , 

=Ep [E Y Y IP [vrkY .. k,)] - {Ep (Pr)}2 
.. ''k ''k .. J 11 •• J 1J 1J 1J , 1J 1J 

Because Y .. k and Y .. k, are independent given Z .. , the covariance of two 
1J 1 J 1J 

binary observations in the same cell is 

Cov(Y .. k,Y .. k )=Varz (P .. ). 
1J 1J , . . 1J 

1J 

The variance of a binary observation is 

=Ez [P .. (l-P .. )] - Varz (P .. ). 
. . 1J 1J . . 1J 
g g 

(5.2) 

(5.3) 

Thus, from (5.2) and (5.3) the correlation between two binary observations 

in the same cell, say ij, is 

Varz (P .. ) 
i j 1 J 

Corr(Yijk' Yijk-) = ---[--]=----[----]­
E Z .. pij- Ez .. (Pij) 2 

1 J 1J 

(5.4) 
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Equation (5.4) in relation to the Williams' assumption that E(P..)=x .. , 
1J 1J 

, i j 

where x .. = e /J , and the Var(P .. )=f/>x .. (1-x .. ) results in the following 
1J . . 1J 1J 1J 

1 +e 1J 

q, x .. (1-x .. ) 
Corr(Yijk'yijk, )= __ 1..:;_J -2----=1J'- - q,. 

1t .. -1t .. 
(5.5) 

1 J 1 J 

Therefore (5.5) means that Williams' model corresponds to a constant 

intraclass correlation model. For the Type II overdispersion model we 

obtain the following by expanding (5.1) around z .. =O. If we denote p .. as 
~ ~ 

g(z .. ) then 
1J 

Lg(z)l 
dz z=O 

-------
[ 

, .. ] 2 
1 + e 1J 

e /J i j 
and for x .. = ---- a flrst order Taylor's expansion of g(z .. ) gives that 

1J , . . 1J 
1 + e 1J 

P .. :: x .. [1 +uz .. (1-x .. )]. 
1J 1J 1J 1J 

From the fact that Zij- N(0,1) and (5.6) we obtain that 

Ez (P .. )::x .. and the Varz (P .. )=~x:.(1-x.l. 
. . 1J 1J . . 1J 1J 1J 
~ ~ 

Thus the above relations result in the following expression for the 

correlation among two binary observations of the Type II model (i.e. 

Pierce's overdispersion model) is given by 

(5.6) 



60 

2 2 2 a n: . . (1-n .. ) 
Corr(Y .. k,Y .. k ) 

lJ lJ , 
1 J 1J 

2 n: .. -n: .. 
~n1.(1-n .. ). J 1J 

(5.7) 
1J 1 J 

That means that the intraclass correlation depends on the probability of 

success for that class. Thus the only way that there is direct 

correspondence among the parameters q, and the a2 ( ~ in Chapter N was 
A 

denote by ff) is constant over cells. Generally speaking, one cannot use q, 

fitting Williams' overdispersion model to obtain an estimate of ~ for 

Pierce's overdispersion model. One could certainly place an upper bound on 

q, such as q,s0.25a2 since n .. (1-n .. )s0.25. 
1J lJ 

Using a second order approximation for g(z) we fmd 

P .. = n: .. [1 +a(1-n .. )z .. +~(l-n .. )(1-2n..)z~.J 
1J lJ 1J lJ lJ 1J lJ 

with 

E(P .. )::: n .. [1 +~(1-n .. )(1-2n..)J 
lJ lJ 1J 1J 

and 

Varz (P..) :::a2n:~.(1-n:.l[1 +2~(1-2n.i]. 
.. 1J lJ 1J lJ 
lJ 

Thus the the correlation between Y .. k and Y .. k is given by 
lJ lJ , 

{ 
[ (1-n .. )+2a2(1-n .. )(1-2n .. ) 2 ] } 

lJ 1 J lJ 
~n: .. (1-n:..) . 

lJ 
11 (1 +a2(1-n: .. ) (1- 2 n: . . )) (1 +n .. [ 1 +a2(1-n .. )(1-2n .. )]) 

1 J 1 J 1J 1J lJ 

Type IT models can easily accommodate covariates at the binomial level 

(i.e., all the binary observations for the same cell ij share the same values 

of the given covariates). As we have seen in Chapters m and N, Type ll 

models can be extended more easily to cases where there are several levels 
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of overdispersion. 

The methodology used for fitting both types of models is iterative 

weighted least squares and both fittings methodologies resemble the 

quasi-likelihood methodology. The estimates have good asymptotic properties 

such as: being asymptotically unbiased, consistent and asymptotically normal 

as shown for a variety of settings by several authors mentioned in Chapter 

II. Further comparisons of sorts will be discussed below based on the 

results from applying both models to a genetic study. 

Application of Models to a Genetic Study 

A genetic experiment carried out by Oklahoma State Agricultural 

Experiment Station and in particular by Dr. Charles Tauer involved studies 

attempting to identify tree families and seed sources that best adapt to our 

state's conditions. Selling Christmas trees presents a very good 

opportunity as an alternative crop for the state's growers. 

Before we discuss the experiment further we would like to mention here 

that discussions along the lines of Mandel (1983) may be appropriate with 

respect to the application of our models on these data. By this we mean 

that the data could be analyzed directly and more appropriately by other 

models. We believe, as Mandel and his discussants pointed out, that in an 

attempt to illustrate a methodology using real data in appropriate 

format albeit with an inappropriate context, it is still reasonable. 

This particular experiment involved is a survival study of many fami­

lies of Virginia Pine trees. The trees have been grown in five different 

locations from which the first three were private growers in different 

locations within the state. We are also given the different states (11 to be 

specific) and different stands within a state (ranging from 1-6). The seed 

was planted in a nursery for a one year period, after which the seedlings 



were transplanted in the different locations. The response variable 

considered here is survival after a year's time in the different locations. 

It is worth mentioning that the data is being pooled over families (i.e. 
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trees) and reps in the different locations. In our context we think of our 

two-way table as consisting of location and "source" where "source" is a 

specific state by stand combination. The total number of sources for each 

location is 39. A complete listing of the data is given in Appendix A. One 

could apply both the models of Chapter ill and IV by considering both the 

locations and the sources as random, or locations as fixed and sources as 

random. The fact that the data is pooled over two other potential sources 

of variation (reps and families) justifies expecting overdispersion. 

An overdispersion model such as the one discussed in Chapter III is 

fitted to the entire data set and the results of the analysis when treating 

both effects as random and is summarized in Table IV. 

In Figure 4, the column EXVR and MEAN represent the estimates of 

extra-binomial variations ( overdispersions) and means respectively from the 

individual fits and the overall fit along the lines of Chapter ill. 

Attempting to answer some of the investigators questions, we 

highlighted in Table IV what we think is probably the "best state sources" 

(as far as high average survival rate and low variability). These happen to 

be sources from Tennessee and North Carolina (i.e., Sources: 19-23, and 24-

28 respectively). Sources 18 and 23 (which are in Kentucky and Tennessee, 

respectively), seem to be the "best sources" using the same criteria as above. 

It is clear that the first three locations, (which were carried out by 

private owners whereas the last two locations were carried out by the 

investigator), seem to have lower average survival and higher variability. 



EXVR MEAN 

OVER .177 .742 

LOCI . 10 1 .437 

LOC2 . 081 . 8 1 4 

LOC3 .064 .780 

LOCS .039 .846 

LOC6 . 02 8 . 7 9 2 

EXVR MEAN EXVR MEAN 

SRCl .276 . 64 9 SRC 14 .879 .294 SRC27 

SRC2 .532 .70S SRC 1 S .027 .732 SRC28 

SRC3 .300 .703 SRC 16 .090 .765 SRC29 

SRC4 .400 .700 SRC 17 .223 .677 SRC30 

SRCS . 52 4 . s 8 9 SRC 1 8 .048 . 8 61 SRC31 

SRC6 .209 . 4 6 1 SRC 19 0 .806 SRC32 

SRC7 .092 . 8 1 4 SRC2 0 .049 .665 SRC33 

SRC8 • 411 . 72 2 SRC2 1 .045 . 812 SRC34 

SRC9 . 17 4 .706 SRC2 2 .096 .652 SRC3S 

SRClO . 11 1 .806 SRC2 3 . 056 .862 SRC36 

SRCl 1 .089 .762 SRC2 4 .084 .804 SRC37 

SRC12 .082 . 6 81 SRC2 S .195 . 75 7 SRC38 

SRCl 3 . s 71 . 82 4 SRC2 6 .021 .787 SRC39 

!1 - 0.467925 
<£ 2 - 0 (ACTUALLY IT WAS NEGATIVE -0.07) 

t/>3 - 0.0876216 

EXVR 

.601 

.274 

.128 

.384 

.189 

.092 

.294 

.031 

.211 

.373 

.244 

0 

.075 

Figure 4. Results from Analysis Based on the Tree 
Data Using Type I Models (Both Effects 

Are Considered Random). 
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MEAN 

.80S 

.656 

.735 

.740 

.768 

.846 

.852 

.753 

.790 

.807 

.694 

.787 

.685 
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The overall estimate of q, 2 turns out to be zero and the estimate of 

q,3 , that is, the overdispersion, turns out to be 0.0876. In the context of 

this study both these estimates are interpreted as variance components. Thus, 

q, 2 measures variability between families within sources (i.e., tree to tree 

variability) as opposed to q,3 which measures variability within families and 

among reps within locations. The SAS code that produced the above results 

is given in Appendix B. Estimates of the variances and standard errors of 

the overall q,'s were not obtained since simulating 100 data sets and refitting 

the model can be very costly and CPU intensive for such a large data set 

(remember that one of the effects has 39 levels). 

We will discuss the results provided in Table I concerning the 

variability of the q,'s in a simulated small two-way table situation. We 

simulated 100 (5x4) data sets for a given set of q,'s and observed the mean 

estimate of the q,'s and their variances (bottom part of the table). We see 

that, on the average, the estimates of the q,'s are "good". Keep in mind 

that we are dealing with a variance component problem and that negative 

estimates of q,'s were truncated to zero. The variances could be considered 

relatively large (that is, in comparison with the estimated variances of the 
A 

f)'s that we calculated when we fitted Type II models to the data). We 

probably have bias in the estimates and their variances since these 

estimates are based on a small number of levels for the random effects. 

Notice that the estimates of the variances goes down as the number of levels 

increases. 

Before discussing the results of applying models Type II to the tree 

data, we will mention some of the difficulties encountered in the 

computations due to the nature of the data. First, it was impossible for us 

to consider analyzing the data by considering both effects as random and 
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accommodate an overdispersion parameter. The reason is that when we expand­

ed the data set three times (once for each of the variance components) we 

exceeded the maximum memory that a user can allocate at our installation. 

Even when we considered the mixed case (that is considering the location 

fixed and the sources as random) we were only able to analyze three 

locations. 

Another complication arose from the fact that the binomial denominators 

become too large when we included the last two locations in the analysis and 

in addition the observed proportions ranged from [0,1]. The ni+ (i.e., the 

total number of trials for a given location) in several instances turned out 

to be a "very large" number. As a consequence, in calculating the weights 

for the iterations and the corresponding log likelihood in several instances, 

we had to evaluate expressions such as 

These calculations for very small or large values of p.. resulted in weights 
lJ 

being far too small (zero as far as the machine was concerned). As a result 

of that, in subsequent iterations, observations that had zero weights were 

excluded. 

We were able to analyze portions of the data. In particular, the first 

three locations were analyzed by considering location fixed, sources random 

and allowing overdispersion. Because of our inability to use Type IT models 

when considering the whole data set, even for the mixed model with two 

variance components, the results that we found cannot really be compared to 

the results of fitting Type I models. 

For the two random effects (the source effect and the overdispersion 

effect) we expanded the data set 3x5 times using three point (K=3) 



quadrature for the overdispersion random effect and (L = 5) for the source 

random effect. The estimates of the variances and the three /l.'s (for the 
1 

three "fixed" locations) are given below: 

A 

Ill= -0.0356 A 

81= 0.5591 
A 

"'2 = -0.0356 + 1.9032 and 
A 

A 

82 =0.4551 "'3 = -0.0356 + 1.7369 
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The first thing that strikes us from the above estimates is the estimate 
A A 

of 81• Therefore the estimates of the variance components are: ~=0.3125 
A 

and ~=0.2071. Both estimates (i.e., the source and overdispersion variance 

components ) seem small, when compared using the upper bound rule to the 

equivalent estimates in Figure 4. Let us not forget though that the results 

on Figure 4 are based on analysis using Type I models in the random case 

for the entire data as opposed to a mixed model on the first three locations. 

One also has to keep in mind that the upper bound rule was verified only 

for the overdispersion models when all other effects were considered fixed. 

The variances and covariances of the parameter estimates given above obtain­

ed by inverting the observed information matrix and are given below: 

I IM LOC1 LOC2 LOC3 OVER SRVC 

LOC1 0.02 8 794 -0.00 6 639 -0.01 8 459 0.007976 -0.014127 

LOC2 -0.006639 0.05 6 793 0.008982 0.000254 -0.010140 

LOC3 -0.01 8 459 0.00 8 9 82 0.066445 0.00 2 690 0.006 1 67 

OVER 0.00 7 976 0.00 0 254 0.002 690 0.0 1 54 97 -0.000 7 97 

SRVC -0.014127 -0.010140 0.00 6 167 -0.00 0 7 97 0.022 3 15 
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Suggestions for Further Research 

The effect of using different number of quadrature points on the 

estimates still needs to be addressed. Also an extensive simulation study 

with smaller binomial denominators on a smaller size data set is needed. An 

alternative weighting technique needs to be proposed for data sets with very 

large denominators. These methods should be compared with more direct 

methods for maximizing the likelihood. 

Also for the models in Chapters ill, one needs to investigate the 

possibility of using the deviance instead of the Pearson's Chi square 

statistic for calculating the estimates of the the f/>'s from the individual 

fits. 
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VIRGINIA PINE TREE DATA 

L s s T I 
0 T T 0 

c A A T s 
A T N A u 
T E D L R 

I v 
0 c I 

N 0 v 
u E 

N 

T 

1 2 1 24 6 

1 2 2 40 s 
1 2 3 24 7 

1 2 4 24 s 
4 2 16 0 

1 4 3 6 2 

1 4 4 6 3 

1 4 s 20 4 

1 8 1 22 8 
1 8 2 8 4 

8 3 72 38 

9 1 24 10 

9 2 8 3 

1 10 1 32 1S 

1 10 2 28 16 

1 10 3 32 17 

1 10 4 40 11 

10 s 16 12 

1 11 1 8 6 

11 2 24 10 

11 3 32 27 

1 11 s 24 11 

1 11 7 24 17 

12 1 16 9 

1 12 2 14 6 

1 12 4 40 27 

1 12 s 16 4 

1 12 6 14 3 

1 13 1 40 18 

1 13 2 24 6 

1 13 3 16 7 

13 4 44 31 

1 13 s 24 12 

1 13 6 8 4 

1 14 1 32 14 

1 14 2 8 3 
1 14 3 16 4 
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1 15 1 16 11 
1 15 2 40 17 
2 2 1 2.4 21 
2 2 2 32 26 
2 2 3 24 15 
2 2 4 20 19 
2 4 2 16 11 
2 4 3 6 0 
2 4 4 6 5 

2 4 5 20 17 
2 8 1 22 16 
2 8 2 8 6 
2 8 3 72 55 

2 9 1 2.4 20 
2 9 2 8 8 
2 10 1 32 28 
2 10 2 40 28 
2 10 3 32 26 
2 10 4 40 33 
2 10 5 16 15 
2 11 1 8 5 

2 11 2 16 12 
2 11 3 24 23 
2 11 5 22 18 
2 11 7 24 24 

2 12 1 16 15 
2 12 2 14 12 
2 12 4 40 32 
2 12 5 16 16 
2 12 6 14 12 
2 13 40 29 
2 13 2 24 19 
2 13 3 16 11 
2 13 4 40 37 
2 13 5 20 20 
2 13 6 8 7 
2 14 1 32 27 
2 14 2 7 5 

2 14 3 16 13 
2 15 1 16 13 
2 15 2 40 30 
3 2 1 24 12 
3 2 2 36 26 
3 2 3 24 18 
3 2 4 2.4 15 
3 4 2 16 8 
3 4 3 6 3 
3 4 4 6 6 
3 4 5 24 18 
3 8 1 22 15 
3 8 2 8 7 
3 8 3 72 58 
3 9 1 24 18 
3 9 2 8 8 
3 10 1 32 22 
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3 10 2 40 29 
3 10 3 32 27 
3 10 4 40 33 
3 10 5 16 15 

3 11 1 8 8 
3 11 2 16 11 
3 11 3 32 27 
3 11 5 22 18 
3 11 7 23 21 
3 12 1 16 12 
3 12 2 14 14 
3 12 4 40 35 

3 12 5 16 15 

3 12 6 14 8 
3 13 1 40 34 
3 13 2 24 22 

3 13 3 16 15 
3 13 4 44 41 
3 13 5 24 23 
3 13 6 8 5 

3 14 1 32 28 
3 14 2 8 8 
3 14 3 16 13 
3 15 1 16 13 
3 15 2 40 29 
5 2 1 111 90 
5 2 2 124 118 
5 2 3 92 88 
5 2 4 114 102 

5 4 2 48 45 

5 4 3 24 16 
5 4 4 24 19 
5 4 5 48 43 
5 8 1 71 64 

5 8 2 24 23 
5 8 3 216 187 
5 9 1 67 50 

5 9 2 24 22 

5 10 1 110 85 

5 10 2 120 101 
5 10 3 96 86 
5 lO 4 119 90 
5 10 5 48 45 

5 11 28 23 
5 11 2 48 34 
5 11 3 96 77 
5 11 5 72 50 

5 11 7 72 61 
5 12 1 48 41 
5 12 2 43 35 

5 12 4 120 88 
5 12 5 48 46 
5 12 6 48 36 
5 13 1 120 105 
5 13 2 72 67 
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.5 13 3 48 43 
.5 13 4 120 113 

.5 13 .5 72 67 

.5 13 6 24 20 

.5 14 1 96 87 

.5 14 2 24 23 

.5 14 3 48 36 

.5 1.5 1 48 36 
5 15 2 120 88 
6 2 1 97 76 
6 2 2 100 91 
6 2 3 60 .52 
6 2 4 9.5 76 
6 4 2 40 32 
6 4 3 20 13 
6 4 4 20 18 
6 4 .5 40 36 
6 8 1 60 49 
6 8 2 20 17 
6 8 3 180 1.50 
6 9 1 60 39 
6 10 1 95 73 
6 10 2 100 74 
6 10 3 80 .58 
6 10 4 100 70 
6 10 5 40 30 
6 11 1 20 16 
6 11 2 40 30 
6 11 3 80 .54 
6 11 .5 60 30 
6 11 7 60 51 
6 12 1 40 3.5 
6 12 2 35 24 

6 12 4 100 8.5 
6 12 .5 40 3.5 
6 12 6 40 34 
6 13 1 100 76 
6 13 2 60 48 
6 13 3 40 34 
6 13 4 100 73 
6 13 .5 60 .52 
6 13 6 20 16 
6 14 1 80 70 
6 14 2 20 19 
6 14 3 40 33 
6 1.5 1 40 34 
6 1.5 2 100 77 
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//Ul2SS8AA JOB (12SS8,AND-RO-NIKO), 'BISIM' ,CLASS=4, TIME=(30,00), 

II MSGCLASS=X,NOTIFY =* ,MSGLEVEL=(l,l) 

/*PASSWORD ? 

/*ROUTE PRINT LOCAL 

/*JOBPARM ROOM=V,FORMS=9001 

II EXEC SASN,REGION=8SOOK,OPTIONS='MACRO' 

/IFT20F001 DD DUMMY 

//LIB DD DSN=&&TEMP,SPACE=(CYL,(60,l)),UNIT=VIO 

//AM DD DSN=U12SS8A.T1SLOC.SAS.DATA,DISP=OLD 

1/CT DD DSN=Ul2SS8A.BINl.CNTL(CTREESL),DISP=OLD 

//SYSIN DD * 

OPTIONS DQUOTE NOMPRINT NOMACROGEN NOSYMBOLGEN; 

~LET NADS=DS; 

%LET N• 1 ; I* sos *I 
%LET NR=S; 

%LET NC=39; 

TITLE 'ANALYSIS OF CHRISTMAS TREE DATA (ALL S LOCATIONS)'; 

DATA L3;INFILE CT; 

INPUT LOC STATE STAND FAM R M 

KEEP DSI LOC FAM R M Q; 

Q=M-R; 

DSI=l; 

PROC PRINT; 

DATA AM.GALL3DS;SET L3; 

KEEP DSI II JI R M Q; 

II=LOC; 

JI=FAM; 

DATA LIB.GALL;SET AM.GALL3DS; 

PROC PRINT; 

%MACRO GEN; 

%DO KI=l %TO &N; 

DATA LIB.&NADs&KI;SET Lm.GALL; 

XX=SYMGET('KI'); IF XX=DSI; 

DROP XX; 

INT=l;RHO=O;ESTPAR=.S; 

PROC PRINT; 

%DO LI=l %TO &NR; 

DATA LIB.&NADs&KI.R&LI;SET LIB.&NADs&KI; 

VV=II; 

YY=SYMGET('LI'); IF YY=VV; 

DROP YY VV; 

INT=l;RHO=O;ESTPAR=.S; 

PROC PRINT; 

%END; 

%DO MI=l ~TO &NC; 

DATA LIB.&NADs&KI.C&MI;SET Lm.&NADs&KI; 

WW=JI; 

ZZ=SYMGET('MI'); IF ZZ=WW; 

DROP ZZ WW; 
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INT-1;RHO=O;ESTPAR=.S; 

PROC PRINT; 
\lEND; 

,;END; 

%MEND GEN; 

%GEN 

%LET N=1 

PROC PRINTTO UNIT=20; 

,. sos 

%MACRO BINOMIAL(DATA=,RESPONSE=,NUMBER=,VARS=); 

., 

,._ - - - - - - - - - -- - - - - - - - - - -- - ----- - - - - ---- - - - -- - - - ---- - - - - - - - -__ ., 
t• VARIABLE ,. - - - - - - - -,. 
t• DATA 
t• RESPONSE 
t• NUMBER 

t• VARS 
,. p 

t• PH I ,. 

FUNCTION ., ., ., 
INPUT DATA SET •t 
VARIABLE CONTAINING THE NUMBER OF RESPONDANTS*/ 
VARIABLE CONTAINING THE NUMBER IN GROUP */ 
Ll ST OF INDEPENDENT VARIABLES */ 
RESPONSE PROB AS FUNCTION OF Z ( =XB) */ 
DERIVATIVE OF P AS A FUNCTION OF Z AND/OR P •t ., 

,._ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --•! 
t• RESPONSEovBIN(NUMBER,P) */ 
t• E(RESPONSE)=NUMBER*P */ 
t• Z=XB •t 
t• LOGIT LINK FUNCTION P=1/(1+EXP(-Z)) •t 
t• PROBIT LINK FUNCTION P=PROBNORM(Z) •t 
/*PHI=DERIVATIVE P/WRT(Z) •t 
/*FOR LOGIT LINK PHI=NUMBER*P*(1-P) */ 
/*FOR PROBIT LINK PHI=NUMBER*EXP(-Z*Z/2)/SQRT(8*ATAN(1)) •t 
/*VAR(RESPONSE)=NUMBER*P*(l-P) */ 
/*MODEL RESPONSE=NUMBER*P •t 
t• WI = ( 1 + (RHO • (NUMBER - 1 ) ) ) */ 
t• _WE I GHT _ = ( V AR ( RESPONSE) ) • ( 1/W I ) = ( (NUMBER *P • ( 1 - P) ) • ( 1/WI) */ 
t• _LOSS_= ( -RESPONSE*LOG(P)-(NUMBER-RESPONSE)*L00(1-P)) •t 
t• I _WE I G H T _ •t 
t• DER. B=PHI *DER( Z) /WRT(B) */ 
~ ~ 

,._ - - - - - - - - - -- - - - - - - - - --- - - ---- - - - - ---- - - - -- - - - - - - -- - - - - - - -__ ., 
%LET N=O; t• SPLIT OUT INDIVIDUAL NAMES */ 
%LET OLD=; 

,;Do %WHILE(%SCAN(&VARS,&N + !)'"'=); 
%LET N-,;EVAL(&N+l); 
%LET V AR&N =,;scAN(& V ARS,&N); 
,;LET OLD=&OLD _OLD&N; 

%END; 

t• DO MLE WITH NONLINEAR LEAST SQUARES •t 

PROC PRINTTO UNIT=20 NEW; 
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PROC NLIN NOHALVE SIGSQ=l DATA=&DATA(RENAME=( 
liDO lsl "TO &N; 

&&VAR&I=_OLD&I 
"END; )) OUTEST ... W20UT; 
RETAIN LOOLIKE 0; 

I* START INITIAL VALUES AT ZERO *I 
PARMS 

INTERCPT•O 
liDO 1=1 "TO &N; &&VAR&I=O liEND; ; 

I* COMPUTE INNER PRODUCT */ 
Z=INTERCPT "DO 1=1 III>TO &N; + &&VAR&I*_OLD&I III>END; ; 
I* MODEL RESPONSE PROBABILITY: CHANGE THIS FOR DIFFERENT MODEL */ 
*P=PROBNORM(Z); /*PROBIT REGRESSION*/ 
P=ll(l+EXP(-Z)); /*LOOIT REGRESSION*/ 
IF _MODEL-l THEN DO; 

IF _OBS_-=1 THEN DO; PUT LOOLIKE=; LOOLIKE=O; END; 
LOOLIKE= LOOLIKE + 

&RESPONSE*LOO(P)+(&NUMBER-&RESPONSE)*LOO(l-P); 
END; 
MODEL &RESPONSE=&NUMBER*P; 
WI=(l +(RHO*(&NUMBER-1))); 
V=(&NUMBER*P*(l-P)); 
_WEIGHT_=(l/WI)*(l!V); 
J..OSL=( -&RESPONSE*LOO(P)-(&NUMBER-&RESPONSE)*LOO(l-P))/_ WEIGHT_; 
I* CHANGE THIS FOR DIFFERENT PROBABILITY MODEL */ 
*PHI=&NUMBER*EXP(-Z*Z/2)/SQRT(S*ATAN(l)); /* PROBIT REGRESSION */ 
PHI=&NUMBER * P * (1-P); /* LOOIT REGRESSION */ 
DER.INTERCPT=PHI; 

"DO 1,..1 "TO &N; 
DER.&&V AR&I=PHI* _OLD&I; 

"END; 
"MEND BINOMIAL; 

liMACRO DOIT(DSN); 

"DO K =1 "TO S ; 
"PUT ITERATION &K; 
liBINOMIAL(DATA=&DSN,RESPONSE=R,NUMBER=M,VARS=IiSTR( )) 
DATA X;SET &DSN; 

KEEP R M INT RHO ESTP AR; 
DATA OUT;SET W20UT; 

DROP _TYPE_ _NAME_ JTEIL; 

IF JTEIL=.; 
PROC MATRIX ; 

FETCH XALL DATA=X; 
R=XALL(,l); 
N=NROW(R); 

NC=NCOL(XALL); 
RHOV=XALL(,NC-1); 
RHO=RHOV(l,); 

OP=J(N,l,l); 
M-XALL(,2); 
X=XALL(,3:NC-2); 
FETCH OUTMAT DATA=OUT; 
NP AR=NCOL(OUTMAT); 
DFM=NPAR-1; 
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EST=OUTMAT(l,); 

DFE=N-DFM; 
Xl•EST(,l); 

MSE=EST(,l)IIDFE; 
PAR,.,EST(1,2:NPAR); 

BBT,..PAR "STR("'); 
Z•X*BET; 

PV =OPI/(OP+ EXP( -Z)); 
P•PV(1,); 
COVMAT•OUTMAT(2:NPAR, 2:NPAR); 
VARP..,COVMATI/MSE; 

VL=-=X*VARP*X "STR("'); 
VL=DIAO(VL); 

VL=VL(,+); 

PW= 11/(0P +(RHOI(M-OP))); 

WT=(MIPI(OP-P)); 

WVQ=PW#WT#VL; 
NBX2•PW#(OP-WVQ); 
SNEX2,..NBX2( + ,); 
DEX2-((M-OP)#PW#(OP-WVQ)); 

SDEX2-DEX2( +,); 

RH=(X2-8NBX2)1/SDEX2; 
RHV-OP#RH; 

WDAT-=RIIMIIOPIIRHOVIIRHVIIPV; 
OUTPUT WDAT OUT=&DSN(RENAMB=(COLl=R COL2=M COL3..,INT 

COL4=RHO COLS-RH COL6=ESTPAR)); 

PRINT RHO RH P ; 

DATA &DSN;SET &DSN; 
DROP RHO DIF DIFF 

RENAME RH=RHO; 
DIF•ABS(RH-RHO); 

DIFF-INT(DIF*10000); 
IF RH<O THEN RH=O; 
CALL SYMPUT('RHM' ,RH); 

CALL SYMPUT('DIFFM' ,DIFF); 

PROC PRINT; 

DATA &DSN.F;SET &DSN; 
KEEP RHO ESTP AR; 
IF _N_-1; 

"IF &RHM<O OR &DIFFM<l "THEN ~LET K=lO; 

"ELSE K-&K; 
"PUT FLAOl K IS &K RH IS &RHM DIFFM IS &DIFFM; 

%END; 

%OUT: "PUT FLA02 THE VALUES OF K IS &K 
%MEND DOlT; 

%MACRO ALLDS; 
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,;oo L=l "TO &N ; 
,;DOIT(Lm.Ds&L) 
,;DOIT(Lm.Ds&L.Rl) 
,;DOIT(Lm.Ds&L.R2) 

"DOIT(Lm.Ds&L.R3) 
,;DOIT(Lm.Ds&L.R4) 
,;DOIT(Lm.Ds&L.RS) 
,;DOIT(Lm.Ds&L.Cl) 
"DOIT(Lm.Ds&L.C2) 
,;DOIT(Lm.Ds&L.C3) 
,;DOIT(Lm.Ds&L.C4) 
,;DOIT(Lm.Ds&L.CS) 
,;DOIT(Lm.Ds&L.C6) 

"DOIT(Lm.Ds&L.C7) 
"DOIT(Lm.Ds&L.CS) 
,;DOIT(Lm.Ds&L.C9) 
"DOIT(Lm.Ds&L.ClO) 
"DOIT(Lm.Ds&L.Cll) 
,;DOIT(Lm.Ds&L.C12) 
,;DOIT(LIB.Ds&L.C13) 
,;DOIT(LIB.Ds&L.C14) 
,;DOIT(Lm.Ds&L.ClS) 
,;DOIT(LIB.Ds&L.C16) 
,;DOIT(Lm.Ds&L.C17) 
,;DOIT(Lm.Ds&L.C18) 
,;DOIT(Lm.Ds&L.C19) 
,;DOIT(Lm.Ds&L.C20) 

"DOIT(Lm.Ds&L.C21) 
,;DOIT(Lm.Ds&L.C22) 

"DOIT(Lm.Ds&L.C23) 
,;DOIT(Lm.Ds&L.C24) 

"DOIT(LIB.Ds&L.C25) 
,;DOIT(LIB.Ds&L.C26) 
,;ooiT(LIB.Ds&L.C27) 
,;ooiT(LIB.Ds&L.C28) 
,;DOIT(Lm.Ds&L.C29) 
,;DOIT(LIB.Ds&L.C30) 
,;DOIT(Lm.Ds&L.C31) 
,;DOIT(Lm.Ds&L.C32) 
,;DOIT(LIB.Ds&L.C33) 
,;DOIT(Lm.Ds&L.C34) 
,;DOIT(LIB.Ds&L.C35) 
,;DOIT(Lm.Ds&L.C36) 
,;DOIT(Lm.Ds&L.C37) 
,;DOIT(Lm.Ds&L.C38) 
,;ooiT(LIB.Ds&L.C39) 

DATA AM.FI&L.Nl;SET Lm.&NADs&L.F; 
PB=RHO; 
HB=BSTPAR; 
KBBP PB HB; 

,;Do LI=l "TO &NR; 
DATA AM.FI&L.N2&LI;SBT Lm.&NADs&L.R&LI.F; 

QB&LI•RHO; 
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AE&LI-BSTP AR.; 
KEEP QB&LI AB&LI; 
liEND; 

liDO MI""1 liTO &NC; 
DATA AM.FI&L.N1&MI;SET Lm.&NADs&L.C&MI.F; 

MB&MI=RHO; 
BB&MI=BSTP AR.; 
KEEP MB&MI BB&MI; 

11JBND; 

PROC PRINTTO; 

DATA AM.FIN&L;MBRGE AM.FI&L.N1 
AM.FI&L.N21 AM.FI&L.N22 AM.FI&L.N23 
AM.FI&L.N24 AM.FI&L.N2S 
AM.FI&L.Nll AM.FI&L.N12 AM.FI&L.N13 
AM.FI&L.N14 AM.FI&L.N1S AM.FI&L.N16 
AM.FI&L.N17 AM.FI&L.N18 AM.FI&L.N19 
AM.FI&L.NllO AM.FI&L.N111 AM.FI&L.N112 
AM.FI&L.N113 AM.FI&L.N114 AM.FI&L.NllS 
AM.FI&L.N116 AM.FI&L.N117 AM.FI&L.N118 
AM.FI&L.Nl19 AM.FI&L.N120 AM.FI&L.N121 
AM.FI&L.N122 AM.FI&L.N123 AM.FI&L.N124 
AM.FI&L.N12S AM.FI&L.N126 AM.FI&L.N127 
AM.FI&L.N128 AM.FI&L.N129 AM.FI&L.N130 
AM.FI&L.N131 AM.FI&L.N132 AM.FI&L.N133 
AM.FI&L.N134 AM.FI&L.N13S AM.FI&L.N136 
AM.FI&L.N137 AM.FI&L.N138 AM.FI&L.N139 ; 

ZE=((QE1*(AB1*(1-AB1))) 
+(QB2*(AB2*(1-AB2))) 

+(QB3*(AB3*(1-AB3))) 
+(QB4*(AB4*(1-AB4))) 
+(QBS*(ABS*(1-ABS)))) I (S*(HB*(1-BB))); 

VB= ((MB1*(BE1 *(1-BE1))) 
+ (MB2*(BB2 *(1-BB2))) 
+ (MB3*(BB3 *(1-BB3))) 
+ (MB4*(BB4 *(1-BB4))) 
+ (MBS*(BBS *(1-BBS))) 
+ (MB6*(BE6 *(1-BE6))) 
+ (MB7*(BE7 *(1-BE7))) 
+ (MB8*(BE8 *(1-BES))) 
+ (MB9*(BE9 *(1-BE9))) 
+(MB10*(BE10*(1-BE10))) 
+(MB1l*(BE11*(1-BE11))) 
+(MB12*(BE12*(1-BE12))) 
+(MB13*(BE13*(1-BE13))) 
+(MB14*(BE14*(1-BE14))) 
+(MB1S*(BE1S*(1-BE1S))) 
+(MB16*(BE16*(1-BE16))) 
+(MB17*(BE17*(1-BE17))) 
+(MB18*(BE18*(1-BE18))) 
+(MB19*(BE19*(1-BE19))) 
+(MB20*(BB20*(1-BB20))) 
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+(MB21•(BE21•(1-BE21))) 

+(ME22•(BE22•(1-BE22))) 
+(MB23•(BE23•(1-BE23))) 
+(MB24•(BE24•(1-BE24))) 
+(MB25•(BE25•(1-BE2S))) 

+(MB26•(BE26•(1-BE26))) 
+(MB27•(BE27•(1-BE27))) 
+(MB28•(BE28•(1-BE28))) 

+(MB29•(BE29•(1-BE29))) 
+(ME30•(BB30•(1-BB30))) 

+(MB31•(BB31•(1-BB31))) 
+(MB32•(BB32•(1-BB32))) 
+(MB33•(BB33•(1-BB33))) 
+(MB34•(BB34*(1-BB34))) 
+(MB3S•(BB3S•(1-BB3S))) 
+(MB36•(BB36•(1-BB36))) 
+(MB37•(BB37•(1-BB37))) 
+(MB38•(BB38•(1-BB38))) 
+(MB39•(BB39•(1-BB39)))) 

GB=(PB-ZB)•4; 

m=(PB-VB)•4; 

JB=(ZB-PB+VB) I (1-(PB-ZB)-(PB-VB)) 

PROC PRINT; 
tiBND; 

tiMBND ALLDS; 

tiALLDS 

tiMACRO FINALS; 

liDO 00=1 liTO &N 
AM.FIN&OO 

tiBND; 

tiMBND FINALS; 

DATA AM.FINAL ;SET liFINALS 
RENAME GB=Pm1; 

RENAME m=PHI2; 

RENAME JB=Pm3; 
PROC PRINT DATA=AM.FINAL 

II 
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//Ul2SS8AA JOB (12SS8,AND-RO-NIKO), 'BIOSIM' ,CLASS=4, TIME=(2,S9), 

II MSOCLASS=X,NOTIFY=*,MSGLEVEL=(l,l) 
/*PASSWORD ? 

/*ROUTE PRINT LOCAL 

/*JOBPARM ROOM=V,FORMS=9001 

II EXEC SAS,REGION =2SOOK,OPTIONS= 'MACRO' 

IISYSIN DD • 

OPTIONS DQUOTE MPRINT SYMBOLGEN; 

~MACRO BINOMIAL(DATA=,RESPONSE=,NUMBER=,WEIGHT'"',VARS=); 

,. - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -- - - -- - -., 
I* VARIABLE FUNCTION *I ,. -- - - - - -- -- - - - - - - ., ,. ,. DATA ,. RESPONSE ,. NUMBER ,. VARS 
,. p ,. PHI ,. 

., 
INPUT DATA SET */ 

VARIABLE CONTAINING THE NUMBER OF RESPONDANTS */ 

VARIABLE CONTAINING THE NUMBER IN GROUP */ 

LIST OF INDEPENDENT VARIABLES */ 

RESPONSE PROB AS FUNCTION OF Z (=XB) */ 

DERIVATIVE OF P AS A FUNCTION OF Z AND/OR P */ ., 
,. - - - - -- - - - - -- - - - ---- - - -- - -- - - - - - - - - - - - -- - - - - - - --- - - - - - --- - --., 

~LET N=O; I* SPLIT OUT INDIVIDUAL NAMES */ 
~LET OLD=; 

~DO ~WHILE(~SCAN(&VARS,&N+l)'"·=); 

~LET N=~EVAL(&N+l); 

,;LET VAR&N=~SCAN(&VARS,&N); 
~LET OLD..,&OLD _OLD&N; 

~END; 

!• DO MLE WITH NONLINEAR LEAST SQUARES */ 

*PROC PRINTTO UNIT=20 NEW; 

PROC NLIN NOHALVE SIGSQ=1 DATA=&DATA(RENAME=( 

~DO 1=1 ~TO &N; 

&&VAR&I=_OLD&I 

~END; )) OUTEST=BOIOUT; 

RETAIN LOGLIKE TERM2 DEVIANCE 0; 

!• START INITIAL VALUES AT ZERO */ 

PARMS 

INTERCPT=O 
,;Do 1=1 %TO &N; &&VAR&I=O ~END; ; 

I* COMPUTE INNER PRODUCT */ 

Z=INTERCPT ~DO 1=1 %TO &N; + &&VAR&I*_OLD&I %END; 

I* MODEL RESPONSE PROBABILITY */ 
P=ll(l+EXP(-Z)); 

IF _MODEL_=1 THEN DO; 

IF _OBS_=1 THEN DO; 

PUT LOGLIKE=; 

LOGLIKE=O; 
TERM2=0; 
PUT DEVIANCE; 
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DEVIANCE=O; 
END; 
IF P < =0 THEN P-=.001; 
IF P>=1 THEN P=.999; 
LOGLIKE= LOGLIKE + &RESPONSE*LOG(P)+ 

(&NUMBER-&RESPONSE)*LOG(1-P); 
IF 
&RESPONSE NE 0 THEN DO; 
TERM2=TERM2+&RESPONSE*LOG(&RESPONSE/&NUMBER)+ 

(&NUMBER-&RESPONSE)*LOG(1-&RESPONSE/&NUMBER); 
END; 

DEVIANCE=2*TERM2-2*LOGLIKE; 
END; 

IF P < =0 THEN P=.001; 
IF P> =1 THEN P-.999; 

MODEL &RESPONSE=&NUMBER *P; 
V-(&NUMBER*P*(1-P)); 
_WEIGHT_=(1/V)*&WEIGHT; 
_LOSS_=(-&RESPONSE*LOG(P)-(&NUMBER-&RESPONSE)* 

LOG(1-P))I_WEIGHT_; 
PHI=&NUMBER • P *(1-P); 
DER.INTERCPT=PHI; 

%DO I=1 "TO &N; 
DER.&&VAR&I=PHI*_OLD&I; 

%END; 

OUTPUT OUT=NLINBOI P=PR PARMS=BO B1 B2 B3 SSE=X2; 
ID _WEIGHT_ LOGLIKE TERM2 DEVIANCE; 

PROC PRINT; 
%MEND 

DATA WEX; 
KEEP 82 R2 SR R M W; 

INPUT SEED ROOT R M Q; 

82=0; R2=0; SR=O; 

IF SEED=2 THEN DO; 82=1; END; 
IF ROOT=2 THEN DO; R2=1; END; 
IF SEED=2 AND ROOT=2 THEN DO; SR=1; END; 
W=1; 

CARDS; 

1 1 10 39 29 
1 1 23 62 39 

1 1 23 81 58 

26 51 25 
17 39 22 

1 2 5 6 1 
2 53 74 21 
2 55 72 17 

1 2 32 51 19 
2 46 79 33 
2 10 13 3 

2 1 8 16 8 
2 1 10 30 20 

2 1 8 28 20 
2 1 23 45 22 
2 1 0 4 4 
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22 312 9 

2 2 22 41 19 

2 2 15 30 15 

2 2 32 51 19 

2 2 3 7 4 

PROC PRINT; 

,;BINOMIAL (DATA=WEX, RESPONSE=R, NUMBER=M, WEIGHT=W, 

VARS=,;STR(S2 R2 SR )); 

PROC IML; 

RESET FW=6; 

USE NLINBOI; 

READ ALL INTO XALL; 

DR=XALL(I,ll); 
N=NROW(DR); 
JV=J(N,l,l); 
DM=XALL(I ,21); 

DS2=XALL(I,31); 

DR2=XALL(I ,41); 

DSR=XALL(I ,51); 

W=XALL(I,61); 

LOGL=XALL(IN,SI); 

DE=XALL(IN,lOI); 

FV=XALL(I,lll); 
LP=LOG((FVIDM)/(JV-(FVIDM))); 

BOS=XALL(IN, 121); 

B 15 = XALL( IN, 131 ); 
B2S,.XALL(IN,14I); 

B3S=XALL(IN,UI); 
PI=DRIDM; 

PI=PI +((PI=O)* .001); 

PI=PI-((PI"" 1)* .001); 

FN=(DR#LOG(PI))+((DM-DR)#LOG(JV-PI)); 

F= 2*FN(I +.I); 
PRINT BOS BlS B2S B3S; 

PRINT LOGL DE F ; 

K=5; 
NK=N*K; 

OP=J(NK,l,l); 

F=OP#F; 

DE=OP#DE; 
BOS=OP#BOS; 

BlS=OP#BlS; 
B2S=OPNB2S; 

B3S=OP#B3S; 
Jl=J(N,l,l); 
J2=J(N, 1,2); 

J3•J(N,1,3); 

J4=J(N,1,4); 
J5=J(N,l,S); 

J -Jl//J2//J3//J4//J5; 
I=DO(l,N,l); 
B={l,l,l,l,l}; 
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J ... BOI'; 
• DZ•{1.732,0,-1.732}; 
• DP"'{.l667,.6667,.1667}; 

DZ-{2.8S6966,1.3SS62,0,-1.3SS62,-2.8S6966}; 
DP ... {0.0112S7,0.222076,0.S333,0.222076,0.0112S7}; 
S2=-BODS2; 
R2-BODR2; 
SR•BODSR; 
R:z:B@DR; 
M=BODM; 
FV-BOFV; 
JV:a:BOJV; 
z,..DZOJl; 
P•DPOJl; 
TLPzB@LP; 

n""t; 
LP-TLP+Z#II; 
PH=JV/(JV +EXP(-LP)); 
PH=PH +((PH=O)* .001); 
PH,.,PH-((PH=l)*.OOl); 
RH-PH#M; 
W'"'LOG(P)+((R#LOO(PH))+((M-R)#LOO(JV-PH))); 
W=EXP(W); 
PRINT R M FV PI Z LP PH RH W; 
HW:o:SHAPE(W,K); 
HWzHW(I+,I); 
H=BOHW'; 
w ... wm; 
PRINT W; 

WDATzRIIMIIS2IIR2IISRIIZIIWIIPIIFIIDEIIBOSIIBlSIIB2SIIB3S; 
CREATE BOIOUT FROM WDAT; 
APPEND FROM WDAT; 
QUIT; 

DATA BOIOUT; 
SET BOIOUT; 

CALL SYMPUT('BOSM' ,COLll); 
CALL SYMPUT('BlSM' ,COL12); 
CALL SYMPUT('B2SM' ,COL13); 
CALL SYMPUT('B3SM' ,COL14); 

~LET B4SM-O; 

DATA BOIOUT; 
SET BOIOUT; 

~PUT BOS &BOSM; 
,;pUT BlS &BlSM; 
,;pUT B2S &B2SM; 
,;PUT B3S &B3SM; 
~PUT B4S &B4SM; 
DROP COLll COL12 COL13 COL14; 
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,;MACRO BINOMIA2(DATA:o:__LAST_,RESPONSE•,NUMBER-,WEIGHT-,VARS-); 

,._- - - - - - ---- - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -__ ., 
I* V AR I ABLE FUNCTION */ ,. - - - - - ---,. ., ., 
I* DATA 
I* RESPONSE 

I* NUMBER 

INPUT DATA SET */ 

VARIABLE CONTAINING THE NUMBER OF RESPONDANTS*/ 
VARIABLE CONTAINING THE NUMBER IN GROUP */ 

I* VARS LIST OF INDEPENDENT VARIABLES */ 
,. p RESPONSE PROB AS FUNCTION OF Z (=XB) */ 

I* PHI DERIVATIVE OF P AS A FUNCTION OF Z AND/OR P */ ,. ., 
,._- - - - - ----- -- - - - --- - - --- - - - -- -- - - - - - - ----- - -- - - -- - - - -- __ ., 

,;LET N:o:O; /* SPLIT OUT INDIVIDUAL NAMES */ 

,;LET OLD=; 

,;DO ,;wHILE(,;SCAN(&VARS,&N + 1) ... =); 
,;LET N-,;EVAL(&N+1); 
,;LET V AR&:.N .. ,;scAN(&V ARS,&:.N); 
,;LET OLD-&:.OLD _OLD&N; 

,;END; 

I* DO MLE WITH NONLINEAR LEAST SQUARES */ 

*PROC PRINTTO UNIT-20 NEW; 

PROC NLIN NOHALVE SIGSQ=1 DATA=&DATA(RENAME=( 
,;DO I-1 ,;To &:.N; 

&&VAR&I-_OLD&I 
,;END; )) OUTEST•BOIOUT; 
RETAIN LOOLIKE TERM2 DEVIANCE 0; 

I* START INITIAL VALUES AT ZERO */ 
PARMS 

INTERCPT=O 
,;DO I-1 ,;To &N; &&VAR&I-0 ,;END; ; 

I* COMPUTE INNER PRODUCT */ 
Z==INTERCPT ,;DO I-1 ,;To &:.N; + &&VAR&I*_OLD&I ,;END; 

I* MODEL RESPONSE PROBABILITY */ 
P=l/(l+EXP(-Z)); 

IF JTER._ ... O THEN IF JL=1 THEN DO; 

INTERCPT=&BOSM; 

,;DO I-1 "TO &:.N; 
&&V AR&I=&&B&I.SM; 

,;END; 

END; 
IF _MODEL_ ... 1 THEN DO; 

IF _OBS_-1 THEN DO; 
PUT LOOLIKE-; 
LOOLIKE-0; 
TERM2-0; 
PUT DEVIANCE; 

DEVIANCE=O; 
END; 
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IF P< sO THEN p ... 001; 
IF P> s1 THEN Pa:.999; 
LOGLIKE• LOGLIKE + &RESPONSE*LOG(P)+ 

(&NUMBER-&RESPONSE)*LOG(1-P); 
IF 

&RESPONSE NE 0 THEN DO; 
TERM2=TERM2+&RESPONSE*LOG(&RESPONSE/&NUMBER)+ 

(&NUMBER-&RESPONSE)*LOG(1-&RESPONSE/&NUMBER); 
END; 
DEVIANCE .. 2*TERM2-2*LOGLIKE; 

END; 
IF P <sO THEN P==.001; 
IF P > =1 THEN P-.999; 

MODEL &RESPONSEz&NUMBER*P; 
V-(&NUMBER*P*(1-P)); 
_WEIGHT_•(l/V)*&WEIOHT; 

• J..OSS_-( -&RESPONSE*LOG(P)-(&NUMBER-&RESPONSE)* 
LOG(1-P))/_WEIGHT_; 

PHI:o:&NUMBER • P *(1-P); 
DER.INTERCPT ... PHI; 

"DO I ... 1 "TO &N; 
DER.&&VAR&I=PHI* _OLD&I; 

"END; 
OUTPUT OUT-NLINBOI P-PR PARMS=BO B1 B2 B3 B4; 
• ID _WEIGHT_ LOGLIK.E TERM2 DEVIANCE; 
PROC PRINT; 

"MEND ; 

"MACRO DOIT(DSN); 

"DO R ... 1 "TO 10; 
"PUT ITERATION &R; 

"BINOMIAl (DATAa&DSN, RESPONSE-COLI, NUMBER-COL2, WEIOHT=COL7, 
VARS"""STR(COL3 COL4 COLS COL6)); 

PROC IML; 

RESET 
C=.01; 
N-21; 
KsS; 

NK:o:N*K; 

USE NLINBOI; 
READ ALL INTO XALL; 
R=XALL(I,11); 
M-XALL(I ,21); 
S2zXALL(I,31); 
R2=XALL(I,41); 
SR,..XALL(I,SI); 
Z=XALL(I,61); 
W-XALL(I,71); 
P'""XALL(I,81); 
F:z:XALL(I1,9I); 
DE:o:XALL(I1,10I); 
RH•XALL(I,lll);. 
BOS=XALL(I1,12I); 
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B1S-XALL(I1,13I); 

B2S .. XALL(I1,14I); 

B3S=XALL(I1,1SI); 

B4S-XALL(I1,16I); 
OP=J(NK,l,l); 

LP=LOG((RHIM)/(OP-(RH/M))); 

W =LOG(P) +((RILOG((RH/M))) +((M-R)ILOO(OP-(RHIM)))); 

W=EXP(W); 

PRINT W; 

HW =SHAPE(W ,K); 

PRINT HW; 

HW=HW(I +,1); 
LHW=LOO(HW); 
PRINT HW LHW; 

CHW-LHW(I,+I); 
E..,-2*CHW; 

D=E+F(Il,l); 
CONY-INT(ABS(D-DE)*lOO); 

PRINT BOS BlS B2S B3S B4S; 

PRINT CHW DE E F D CONY; 

D=OPND; 

BOS=OPNBOS; 

BlS=OP#BlS; 

B2S=OPNB2S; 

B3S=OPNB3S; 
B4S=OPNB4S; 

CONY=OP#CONY; 

F=OP#F; 
B={l,l,l,l,l}; 

H=B@HW'; 
Wz:W/H; 

W=W#(W> .0000001); 

WDAT=RIIMIIS2IIR2IISRIIZIIWIIPIIFIIDIICONYII 

BOSIIB1SIIB2SIIB3SIIB4S; 
CREATE &DSN FROM WDAT; 

APPEND FROM WDAT; 

QUIT; 

DATA &DSN;SET &DSN; 

CALL SYMPUT('CONVM' ,COLll); 

CALL SYMPUT('BOSM' ,COLI2); 

CALL SYMPUT('BlSM' ,COLI3); 
CALL SYMPUT('B2SM' ,COLI4); 

CALL SYMPUT('B3SM' ,COLIS); 

CALL SYMPUT('B4SM' ,COLI6); 

DATA &DSN;SET &DSN; 

%PUT CONY &CONVM; 
%PUT BOS &BOSM; 

%PUT BlS &BlSM; 

%PUT B2S &B2SM; 

%PUT B3S &B3SM; 

%PUT B4S &B4SM; 
DROP COLll COL12 COLI3 COL14 COLIS COLI6; 

%IF &CONVM=O %THEN %LET R=lO; 
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,;pUT R. &R.; 

,;noiT(BOIOUT) 

II 



APPENDIX D 

PROGRAM LISTING FOR TYPE IT MODELS (2) 
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IIU12SS8AA JOB (12SS8,AND-RO-NIKO),'BIN3SL3',CLASS=4,TIME=(10,SO), 

II MSGCLASS=X,NOTIFYz* ,MSGLEVEL=(1,1) 

/*PASSWORD ? 

/*ROUTE PRINT LOCAL 

/*JOBPARM ROOM=V,FORMS=9001 

II EXEC SAS,REGION-8SOOK,OPTIONS .. 'MACRO' 

//IN DD DSN = U10063B.BSIM.SAS.DATA,DISP =OLD 

IICT DD DSN=U12SS8A.BIN1.CNTL(CTREE3L),DISP=OLD 
IISYSIN DD * 

OPTIONS DQUOTE NOMPRINT NOSYMBOLGEN NOMACROGEN; 

"MACRO BINOMIAL(DATA=,RESPONSE=,NUMBER-,WEIGHT-,VARS-); 

"LET N=O; 
\ll'iLET OLD•; 

I* SPLIT OUT INDIVIDUAL NAMES */ 

"DO "WHILE("SCAN(&V ARS,&N + !)'"'=); 

"LET N="EVAL(&N+1); 
"LET VAR&N-\II'iSCAN(&VARS,&N); 

\ll'iLET OLD-&OLD _OLD&N; 

"END; 
I* DO MLE WITH NONLINEAR LEAST SQUARES */ 

*PROC PRINTTO UNIT=20 NEW; 

PROC NLIN NOHALVE SIGSQz1 DATA•&DATA(RENAME=( 

"DO 1=1 \ll'iTO &N; 
&&VAR&I=_OLD&I 

"END; )) OUTEST=BOIOUT; 
RETAIN LOGLIKE TERM2 DEVIANCE 0; 

I* START INITIAL VALUES AT ZERO *I 
PARMS 

INTERCPT=O 

"DO 1=1 "TO &N; &&VAR&I-0 "END; ; 
I* COMPUTE INNER PRODUCT */ 

Z=INTERCPT "DO 1-1 "TO &N; + &&VAR&I*_OLD&I "END; 

I* MODEL RESPONSE PROBABILITY */ 
P=1/(1+EXP(-Z)); 

IF _MODEL_=1 THEN DO; 

IF _OBS_z1 THEN DO; 

PUT LOGLIKEz; 

LOGLIKE-0; 
TERM2-0; 

PUT DEVIANCE; 

DEVIANCE=O; 

END; 

IF P< =0 THEN P=.000001; 

IF P > =1 THEN P=.999999; 

LOGLIKE• LOGLIKE + &RESPONSE*LOG(P)+ 

(&NUMBER-&RESPONSE)*LOG(1-P); 

IF O.S <&RESPONSE AND &RESPONSE< &NUMBER-O.S THEN DO; 
TERM2-TERM2+&RESPONSE*LOG(&RESPONSE/&NUMBER) + 

(&NUMBER-&RESPONSE)*LOG(1-&RESPONSE/&NUMBER); 
END; 
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DEVIANCE=2*TERM2-2*LOGLIKE; 

END; 

IF P < •0 THEN P•.()()()()()1; 
IF P> •1 THEN P•.999999; 

MODEL &RESPONSE-&NUMBER*P; 
V-(&NUMBER*P*(1-P)); 
_WEIGHT_•(1N)*&WEIOHT; 

* _LOSS_=( -&RESPONSE*LOG(P)-(&NUMBER-&RESPONSE)* 
LOG(1-P))/_ WEIGHT_; 

PHI=&NUMBER * P *(1-P); 

DER.INTERCPT=PHI; 

~DO 1=1 "TO &N; 
DER.&&V AR&I-PHI* _OLD&I; 

"END; 
OUTPUT OUT=NLINBOI P•PR PARMS=BO B1 B2 SSE=X2; 

ID _WEIGHT_ LOGLIKE TERM2 DEVIANCE; 

PROC PRINT DATA=NLINBOI(OBS=1S); 

"MEND ; 

DATA L3;INFILE CT; 

INPUT LOC STATE STAND FAM R M 
KEEP LOC FAM R M T2 T3 W; 
T2=0; T3=0; 
IF LOCal THEN DO; T2-1; END; 

IF LOC=3 THEN DO; T3 ... 1; END; 

W=1; 

PROC PRINT; 

~BINOMIAL (DATA==L3, RESPONSE=R, NUMBER=M, WEIGHT=W, 

V ARS= "STR(T2 T3)); 

DATA LOCEX;MERGE L3 NLINBOI;BY LOC FAM; 

DROP LOC FAM; 

I=LOC;J=FAM; 
DO K=1 TO 3; 

DO L=1 TO S· . 
IF K=1 AND L=1 THEN DO;ZK ... -1. 732;ZL ... -2.8S7;PK• .1667;PL"" .01126;END; 

IF K=1 AND L=2 THEN DO;ZK"'-1.732;ZL .. -1.3S6;PK"'.1667;PL .... 22208;END; 
IF K'"'1 AND L=3 THEN DO;ZK=-1. 732;ZL,.. 0 ;PK= .1667;PL .... S3330;END; 

IF K""1 AND L"'4 THEN DO;ZKs-1. 732;ZL"" 1.3S6;PK'"' .1667;PL .... 22208;END; 
IF K .. 1 AND L ... s THEN DO;ZK--1. 732;ZL• 2.8S7;PK• .1667;PL= .01126;END; 

IF K=2 AND L=l THEN DO;ZK= 0 ;ZLz-2.8S7;PK= .6667;PL= .01126;END; 
IF K=2 AND L=2 THEN DO;ZK= 0 ;ZL=-1.3S6;PK=.6667;PL-.22208;END; 
IF K""2 AND L•3 THEN DO;ZK- 0 ;ZL= 0 ;PK= .6667;PL= .S3330;END; 

IF K=2 AND L=4 THEN DO;ZK= 0 ;ZL= 1.3S6;PK=.6667;PL=.22208;END; 

IF K=2 AND L=S THEN DO;ZK= 0 ;ZL"" 2.8S7;PK"" .6667;PL= .01126;END; 

IF Kz3 AND L-1 THEN DO;ZK•-1.732;ZL--2.8S7;PK..,.1667;PL=.Oll26;END; 

IF K=3 AND L-2 THEN DO;ZK--1. 732;ZL=-1.3S6;PK- .1667;PL= .22208;END; 

IF K=-3 AND L=3 THEN DO;ZK=--1. 732;ZL"" 0 ;PK• .1667;PL"" .S3330;END; 

IF K•3 AND L=4 THEN DO;ZK•-1.732;ZL=- 1.3S6;PK-.1667;PL=.22208;END; 

IF K•3 AND L=S THEN DO;ZK=-1.732;ZL= 2.8S7;PK-.1667;PL=.01126;END; 

OUTPUT; 
END; 
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END; 

PROC SORT DATA•LOCBX;BY K I L J; 

PROC PRINT DATA=LOCBX(OBSz40); 

PROC IML; 

RESET FW=lO; 

USB LOCBX; 

READ ALL INTO XALL; 

R=XALL(I,ll); 
M=XALL(I,21); 

T2=XALL(I,31); 

T3•XALL(I,41); 
UK.L•NROW(R); 

N=UKL; 
LOOL•XALL(IN,91); 

FzXALL(IN,lOI); 

DB=XALL(IN, 111); 

FV=XALL(I,l2l); 

BOS-=XALL(IN,13I); 

BlS=XALL(IN,l4l); 

B2S=XALL(IN,1SI); 

ZK•XALL(I,2ll); 

ZLz:XALL(I,22I); 

PK=XALL(I,23I); 

PL ... XALL(I ,241); 

PRINT BOS BlS B2S; 

PRINT LOGL DB F 

FREE XALL; 

SHOW ALL; 

K=3; 
L=S; 

BK=J(K,l,l); 

BL-J(L,l,l); 

B""J(K*L,l,l); 

1=3;J•39;N•I*J; 

NK=N*K; NL•N*L; KL=K*L; 

NKL-N*K*L; 

OP=J(NKL,l,l); 

LP•LOG((FV/M)/(OP-(FVIM))); 

LP•LP+ZL+ZK; 
PH•OP/(OP+ BXP( -LP)); 

FREE LP; 

LBUKL-LOG(PK)+((RILOG((PH)))+((M-R)ILOG(OP-(PH)))); 

BUKL=BXP(LBUK.L); 

BULl =SHAPB(BUKL,K); 

BUL2=BULl(l +'I>; 
BUL•BK@BUL2'; 

WPl =BUKLIBUL; 

SHOW ALL; 
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FREE LBDKL BUKL BULl BUL; 
BJLl =SHAPE(BUL2,1); 
PBJLl=-BJLl(l#,l); 
PBJL=J(K*l,l,l)@PBJLl '; 
BJL=PBJL#PL; 
PBJL2 = BJL( ll :J*L I); 

FREE BJLl PBJLl PBJL BULl; 
BJl =SHAPE(PBJL2,L); 

BJ3=BJ1(1 +,1); 
BJ4=LOG(BJ3); 

FREE BJl PBJL2; 

LL=BJ4(1. +I>; 
BJ=J(K*I*L,l,l)@BJ3'; 
WP2=BJLIBJ; 

FREE BJ BJ3 BJ4 BJL; 
W =WP 1/IWP2; 
FREE WPl WP2; 

WDAT= RIIMIITIIITIIIZKIIZLII 
WIIPKIIPLII(OP/IF)II(OP#LL)II(OP/IBOS)II<OP#B1S)II<OP#B2S); 

CREATE BOIOUT FROM WDAT; 
APPEND FROM WDAT; 

SHOW ALL; 
QUIT; 

~MACRO BINOMIA2(DATA=_LAST_,RBSPONSE=,NUMBER=,WBIGHT=,VARS=); 

~LET N=O; t• SPLIT OUT INDIVIDUAL NAMES •t 
,;LET OLD=; 
~DO ~WHILE(,;SCAN(&VARS,&N+l)"=); 

,;LET N=,;EVAL(&N+l); 

,;LET VAR&N=,;SCAN(&VARS,&N); 
~LET OLD=&OLD _OLD&N; 

~END; 

I* DO MLE WITH NONLINEAR LEAST SQUARES */ 

*PROC PRINTTO UNIT=20 NEW; 

PROC NLIN NOHALVB SIGSQ=l DATA=&DATA(RENAMB=( 
~DO 1=1 ~TO &N; 

&&V AR&I=_OLD&I 
,;END; )) OUTEST=BOIOUT; 
RETAIN LOGLIKB TBRM2 DEVIANCE 0; 
I* START INITIAL VALUES AT ZERO *I 
PARMS 

INTERCPT=O 
liDO 1=1 ,;To &N; &&VAR&I=O ~END; ; 

I* COMPUTE INNER PRODUCT */ 
Z=INTBRCPT ,;Do 1=1 liTO &N; + &&VAR&I*_OLD&I liEND; 
I* MODEL RESPONSE PROBABILITY */ 
P=l/(l+EXP(-Z)); 
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IF JTEIL-0 THEN IF _N_ .. 1 THEN DO; 

INTERCPT=-=&BOSM; 

"DO I=-=1 "TO &N; 
&&VAR&I=&&B&I.SM; 

lEND; 
END; 

IF _MODEL_•1 THEN DO; 
IF _OBS_=1 THEN DO; 

PUT LOOLIKE""; 
LOOLIKE..,O; 

TERM2=-0; 

PUT DEVIANCE; 

DEVIANCE=O; 

END; 
IF P < -0 THEN P=-=.000001; 

IF P> •1 THEN P-.999999; 
LOOLIKE,.. LOOLIKE + &RESPONSE*LOO(P)+ 

(&NUMBER-&RESPONSE)*L00(1-P); 

IF O.S <&RESPONSE AND &RESPONSE< &NUMBER-O.S THEN DO; 
TERM2=TERM2+&RESPONSE*LOO(&RESPONSE/&NUMBER)+ 

(&NUMBER-&RESPONSE)*L00(1-&RESPONSE/&NUMBER); 
END; 

DEVIANCE=2*TERM2-2*LOOLIKE; 
END; 

IF P < =0 THEN P=.000001; 

IF P> '"'1 THEN P=.999999; 
MODEL &RESPONSE=&NUMBER *P; 
Vz(&NUMBER*P*(1-P)); 
_WEIGHT_•(1/V)*&WEIGHT; 

* _LOSS_=( -&RESPONSE*LOO(P)-(&NUMBER-&RESPONSE)* 
L00(1-P))/_WEIGHT_; 

PHI=&NUMBER * P *(1-P); 

DER.INTERCPT-PHI; 

IDO I•1 ITO &N; 
DER.&&VAR&I=PHI* _OLD&I; 

lEND; 
OUTPUT OUT=NLINBOI p ... pR PARMS=BO B1 B2 B3 B4; 
* ID _WEIGHT_ LOOLIKE TERM2 DEVIANCE; 

PROC PRINT DATA-NLINBOI(OBS=20); 
IMEND ; 

IMACRO DOIT(DSN); 

IDO R -1 "TO 20 
IPUT ITERATION &R; 

IBINOMIA2 (DATA-&DSN, RESPONSE=COL1, NUMBER=COL2, WEIGHT=COL7, 
VARS-ISTR(COL3 COL4 COLS COL6)); 

PROC IML; 

RESET 
c-.01; 

I•3;J=39;N-I*J; 
K:o:3; L=S; 

IKL ... I*K*L;UKL=I*J*K*L; 
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OP-=J(DKL,l,l); 
NTR=3;NBL=39; 

NK'""N*K; 
NL=N*L; 
KL=K*L; 
NKL=N*K*L; 
BK=J(K,l,l); 
BL=J(L,l,l); 
B=J(K*L,l,l); 

USB NLINBOI; 
READ ALL INTO XALL; 
R.=XALL(I,ll); 
M•XALL(I,21); 
T2=XALL(I,31); 
T3=XALL(I,41); 
ZK=XALL(I,SI); 
ZL=XALL(I,61); 
PK=XALL(I,SI); 
PL=XALL(I,91); 
F=XALL(Il,lOI); 
LL•XALL(Il,lll); 
RH=XALL(I,12I); 
BOS=XALL(I1,13I); 
B1S=XALL(Il,l4l); 
B2S=XALL(Il,lSI>; 
B3S=XALL(I1,16I); 
B4S=XALL(I1,17I); 

FREE XALL; 
SHOW ALL; 
LBUKL=LOG(PK)+((R.ILOG((R.H/M)))+((M-R.)#LOG(OP-(R.H/M)))); 

BUKL=BXP(LBUKL); 
BULl =SHAPB(BUKL,K); 

BUL2=BULl(l +,1); 
BUL=BK@BUL2'; 
WPl =BUKL/BUL; 

FREE LBUKL BUKL BULl BUL; 
BILl =SHAPB(BUL2,1); 

PBJLl =BJLl(l#,l); 
PBJL=J(K*I,l,l)@PBILl'; 
BJL=PBIL#PL; 

PBJL2=BJL(Il:J*LI); 

FREE BILl PBJLl PBJL BUL2; 
BJl =SHAPB(PBJL2,L); 

BJ3=B11(1 +,1); 
BJ4=LOG(BJ3); 

FREE BJl PBJL2; 
L=BJ4(1,+1); 
D=2*(L-F); 
BJ=J(IKL,l,l)@B13'; 
WP2=BJLIBJ; 

FREE BJ BJ3 BJ4 BJL; 
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w-WP11WP2; 

FREE WPl WP2; 

CONY=INT(ABS(L-LL)•lOO); 

PRINT BOS BlS B2S B3S B4S; 

PRINT LL <IFORMAT=12.4I) L <IFORMAT=12.4I) 
F (IFORMAT-12.41) 

D (IFORMAT-12.41) CONY; 

WDAT- RIIMIIT2IIT3IIZKIIZLIIWIIPKIIPLII 
(OPIF)II<OPIL)II<OPICONV>II 
(OPIBOS)II (OPIB lS) II (OPIB2S) II (OPIB3S) II (OPIB4S); 
CREATE &DSN FROM WDAT; 
APPEND FROM WDAT; 
QUIT; 

PROC PRINT DATAmBOIOUT(OBS=SO); 

DATA &DSN; 
SET &DSN; 
CALL SYMPUT('SMM' ,COL10); 
CALL SYMPUT('LLM' ,COL11); 

CALL SYMPUT('CONVM' ,COL12); 
CALL SYMPUT('BOSM' ,COL13); 
CALL SYMPUT('BlSM' ,COL14); 
CALL SYMPUT('B2SM' ,COLtS); 
CALL SYMPUT('B3SM' ,COL16); 
CALL SYMPUT('B4SM' ,COL17); 

DATA &DSN; 
SET &DSN; 

DROP COL12 COL13 COL14 COLIS COL16 COL17; 
t;PUT CONY &CONVM; 
t;PUT SM &SMM; 

t;PUT LL &LLM; 

t;PUT BOS &BOSM; 

~PUT BlS &BlSM; 
t;PUT B2S &B2SM; 
t;PUT B3S &B3SM; 
t;PUT B4S &B4SM; 
~IF &R•l t;THEN t;LET CONVM-1; 

tiiF &CONVM=O tiTHEN fiLET R-20; 
t;PUT R &R; 

PROC PRINT DATA=BOIOUT(OBS-S ); 

t;END; 

tiMEND DOlT; 

t;OOIT(BOIOUT) 

DATA IN.II3L3SBI;SET NLINBOI; 

tiMACRO GENY; 

t;OO N-1 "TO &NP; 
V&N.ULl,.,SHAPE(V&N.UKL,K); 

V&N.UL-V&N.ULl(l+,l); 
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V&N.JLl..,SHAPE(V&N.UL' ,1); 

V&N.JL=V&N.JLl(l+.l); 

V&N .Jl =SHAPE(V &N .JL' ,L); 

V&N.J=V&N.Jl(l+.l); 
SHOW ALL; 

,;END; 

,.;MEND GENV; 

,;MACRO GENCH; 

,;Do N=l ,;To &NC; 

CH&N=V(I,&NI)*(V(I.&NI))'; 
,;END; 

SHOW ALL; 

,.;MEND GENCH; 

PROC PRINT DATA=IN.II3LBINL(OBS=l0); 
PROC IML; 

RESET FW=lO; 
USE IN .113LBINL; 

READ ALL INTO XALL; 

I=3;J=39; 

K=3;L=3; 

R-XALL(I,ll); 

M=XALL(I,21); 

L2=XALL(I,31); 
L3z:XALL(I,41); 

ZK-XALL(I,SI); 

ZL=XALL(I,61); 

W=XALL(I,71); 
PK .. XALL(I,SI); 

PL=XALL(I,91); 
UKL=NROW(R); 

N=UKL; 

F=XALL(IN,lOI); 

LOGL=XALL(IN,lll); 

RH=XALL(I,l2l); 

BO=XALL(IN,l3l); 

Bl=XALL(IN,l4l); 

B2-XALL(IN,lSI); 

Sl=XALL(IN,16I); 

S2=XALL(IN,l7l); 
PRINT BO Bl B2 Sl 82; 

PRINT LOGL F 
OP=J(N,l,l); 

VlUKL=W#(R-RH); 

V2UKL=W#L2#(R-RH); 
V3UKL=W#L3#(R-RH); 

V4UKL-=W#ZKI(R-RH); 
VSUKL=W#ZL#(R-RH); 

SHOW ALL; 

,.;LET NV=V; 
,;LET NR=3; 

,.;LET NC=39; 
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II 

RESET PRINT; 

V=V1J//V2J/N3J/N4J/NSJ; 

"OENCH 
IM=CHl + CH2 + CH3 + CH4 + CHS + CH6 + CH7 + CH8 + CH9 + CHlO 

+CHll+ CH12 + CH13 + CH14 + CHlS + CH16 + CH17 + CH18 + CH19 + CH20 

+CH21 + CH22 + CH23 + CH24 + CH2S + CH26 + CH27 + CH28 + CH29 + CH30 

+CH31+ CH32 + CH33 + CH34 + CH3S + CH36 + CH37 + CH38 + CH39 
SHOW ALL; 

ITM,..INV(IM); 

AITM•ABS(IIM); 

SITM=SQRT(ITM); 

CHECK=-=IM*IIM; 

SHOW ALL; 

QUIT; 
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