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CHAPI'ER I 

IN.IROIXJCI'ION 

Scope of Study 

Colloidal suspensions are novel systems for the study of many 

physical phename:na related to, amongst others, statistical mechanics, 

electrostatics, hydrodynamics, and ceystallography. The submicron 

size of these particles in suspensions makes them ideal for the study 

of microscopic problems on a macroscopic scale. Amongst some of the 

studies where these suspensions serve as experimental models are the 

nature of phase transitions in two and three dimensional systems (1, 

2, 3), layering transitions (4, 5), ceystallization processes (7), 

elastic properties (8), defonnations under the influence of externally 

applied fields (9, 10, 11, 12), and the nature of interaction between 

particles (13, 14, 15, 16). 

T.he purpose of this thesis is to study the effect of an externally 

applied potential on the local order of charged colloidal particle 

suspensions conprised of submicron polystyrene spheres suspended in 

water that is highly deionized. T.he externally applied field is in 

the f oi:m of a periodic potential well produced from the crossing of 

two coherent laser beams and controlled through the beam input power 

and crossing angle. The real space ordering of the suspensions when 

the field is applied is analyzed through pair correlation :functions 

produced from measurements of the microsphere positions. 

1 



2 

The results of a Monte carlo (MC) simulation for a model two 

dimensional system of point particles interacting via a screened 

Coulomb potential are also studied here. It is found that, by 

changing the salt concentration or the density of excess ions, the 

model system goes through a phase transition. Different equilibrium 

states ( solid and liquid) of this simulation were chosen and 

subjected to an exter- na1 sinusoidal potential which corresponds to 

experimental radiation pressure field. The ordering transition of the 

point particles in this external field is monitored by changing the 

amplitude and period of the potential. 

The MC simulation results were consistent with the experimental 

observations. In both cases, the application of the external radia

tion field caused the particles to aline along the potential's 

minima. The degree of this localization was found to be dependent on 

the external field's amplitude. Along with the particle electrostatic 

interaction, this localization was found to cause the system to orga

nize in different structures depending on the period of the externally 

applied field. 

Particle aligrunent in the high intensity regions of the stationacy 

sinusoidal fringe pattern, produced from the crossing of two mutually 

coherent laser beams, fonn diffraction gratings. The scattering from 

these gratings is used to study the growth and decay of these density 

modes. In this thesis the dependence of the interacting ( chargeq) 

systems main density mode on the lasers input power is investigated 

and compared with data obtained from the MC simulation. These were 

found to be different from the results reported by Chowdhucy (10). 



3 

General Background 

The existence of monodisperse colloidal particles that can organ

ize in long crystalline structures has fascinated and captured the 

interest of many scientists throughout the years. Iler (8) was the 

first to shovv that opal-like crystallization of silica particles could 

be monitored in a laboratory setup. 

Since colloids have been recognized as a suspension of solid par

ticles in a host fluid, a great deal of work has been done on the use 

of theories involving the interparticle forces to study the nature of 

interaction between the particles. 'Ihe most famous theory is known as 

the DLVO (Derjaguin, landau, Verwey and O\Terbeek) theory (17), which 

assumes additivity of the screened Coulomb electrostatic repulsion 

(Vr) and Van der Waals attraction forces CVa> which are given by 

the follovving equations for the case of spherical particles (17): 

Va= A{ 4a2/(r2-a2) + 4a2/r2 + 2ln[ (r2-a2)/r2]} 

(1-1) 

where A is the Hamaker constant (lo-13 for polystyrene in water), r 

is the separation of the centers,'a' is the sphere radius, Z is the 

charge per sphere, 'e' the dielectric constant of the sol vent, k the 

inverse screening length, and n the total mnnber of particles and ions 

in solution (including negative and positive monovalent ions). Al

though both forces are inportant for understanding coagulation, only 

long range electrostatic forces are inportant for this study because 

of large particle separations and the Van der Waals forces are short 

ranged. 

'Ihe screened Coulomb potential (Vr) is also known as the Debye

Huckel (CH) or Yukawa potential (equation (1-1)) and it is the form 



used in this thesis work for the MC simulations of the interacting 

colloidal particles. This potential is the solution to the Poisson

Boltzman (PB) equation in the linear approximation, and it gives a 

good qualitative picture of the electrostatic forces (7). 
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'Ihe effective charge on the polystyrene colloidal particles is 

found by considering the charge neutrality of the system, and taking 

the Weigner-Seitz cell surrounding each particle as providing for the 

charge neutrality around that point. Using this concept, Alexander et 

al (7) have shown that solutions to the 00 and PB distribution can be 

used to calculate the surf ace potential for the spheres and the value 

of their effective charges. SUch techniques will be discussed in 

detail in Chapter V where the effective charge for the 1. 07um 

polystyrene spheres is calculated. 

'Ihe repulsive nature of the Coulombic interaction between 

similarly charged microspheres as presented by DLVO theo:cy has been 

questioned by Ise and co-workers ( 14, 13) • 'Ihese workers have argued 

the there exists an attractive force between highly charged macroionic 

solutions at large distances and repulsions at small separations, thus 

leading to the existence of a secondary minimum from only electrosta

tic considerations. This is believed by Ise to cause for the observed 

ordering of the highly charged latex particles having higher than 

expected density in the c:cystalline state. However, we will use only 

the DLVO fonn in analyzing our results or in MC Simulations. 

'Ihe question concerning long range order (I.RO) in two-dimensional 

systems has attracted the attention of many scientists (18, 19, 20). 

It was believed that the long wavelength phonons prevented the 2-D 

solid from fully attaining a c:cystalline structure. However in 1973 
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Kosterlitz and Thouless (18) put forth their famous idea of phase 

transitions accompanied by a change of "topological order" rather than 

the conventional IRO. About five years after KT advanced their theo

ry, Halperin, Nelson and Young (19, 20) introduced an orientational 

order parameter to the problem not considered by KT, thus leading to 

the famous mNHY continuous melting theory. This theory predicts that 

melting may occur by way of two transitions, the first associated with 

loss of long range positional order and resistance to shear, and the 

second with loss of orientational ordering, and that these transitions 

can be continuous. The hexatic phase (a fluid with no translational 

order but with some orientational order) is predicted, through this 

theory, to exist between the two transitions. The limitation in scale 

of the 2-D studies carried in this thesis does not allow us to say 

much our the nature of the observed transitions. 

Structural and phase transition simulations for charged colloidal 

suspensions are given in a number of papers (3, 21, 22, 23, 24). 

Amongst these W. Van Megen et al. (3) used a MC method to detennine 

the struc- ture of a ver:y dilute colloid in 3-D. These workers 

calculated the radial distribution functions and converted them to 

structure factors; which they subsequently compared with corresponding 

quantities determined fonn laser light scattering experiments and have 

found that their model presented a reasonable description for the 

systems of colloidal particles. R. Kalia et al. ( 22) , have used a 

molecular dynamics (MD) simulation for two-dimensional systems of 

point particles interacting with Yukawa potential and have observed 

first order solid-liquid transitions. OUr MC simulation of a similar 

system seems to predict a first order phase transition too. M. P. 



Allen et al. (21) reported an MC study of the two-dimensional melting 

mechanism for 2500 particles interacting by repulsive inverse sixth 

power potential. 'Iheir thenuodynamic results, taken alone, were quite 

consistent with a first-order melting mechanism and although some of 

their results were consistent with the two stage melting process 

(KTNHY theo:ry) , these were not enough to verify the existence of a 

hexatic phase. 

6 

'Ihe same controversy concerning the nature of transition for two 

dimensional colloidal systems was investigated experimentally by Van 

Winkle et al (1) and Y. Tang et al (23). Van Winkle and Murray (1), 

have observed a two-stage melting transition with the intennediate 

phase having the signature of a hexatic. Y. Tang et al. (23), on the 

other hand, have observed a first order transition in their analysis 

of a freely expanding colloidal monolayer lattice. 'Ihe work used in 

this thesis could be related to the nature of phase transition for two 

dimensional systems, but this question will not be considered here. 

'Ihe structural transition of thin layers of colloidal c:rystal has 

been found to follow triangular to square packing for wedged gap cells 

( 4, 6) . 'Ihe transition fonnat as the gap confining the layers in

creased was found to follov..r the fol'.lll: lT, 28, 2T, 38, 3T, where T 

represents a triangular lattice, S a square lattice and the numbers 

represent the layers. such layering transitions were also observed in 

the experimental samples used in this work. 

When colloidal suspensions are subjected to external fields the 

local order can be changed, this concept has been used in various 

studies for different fields (10, 12, 25, 26). Since Ashkin reported 

on the trapping, levitation and acceleration of dielectric suspensions 
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with a strongly focused laser beam (27, 28, 29, 30), the application 

of radiation pressure as a way to manipulate micrometer sized dielec

tric particles has led to new discoveries, such as the "laser induced 

freezing" considered in this work. The radiation pressure forces act 

both parallel and perpendicular to the direction of propagation of the 

incident beam (10, 31). The transverse force is employed in four-wave 

mixing experiments to draw spheres, with an index of refraction 

greater than the host fluid, to the high intensity regions thus 

creating density modes. The scattering from these modes was studied 

experimentally by Chowdhury (10} who has found that the first order 

diffracted intensity maximum signal increased as approximately the 

cube of the incident beam intensity for the case of noninteracting 

colloidal particles in self scattering experiments. The experimental 

results for the noninteracting particles studied by Chowdhury et al 

(11} were found to be consistent with Rogovin theo:cy (32, 33} on the 

alignment of dielectric spheres in the Four Wave Mixing, FWM, geome

tries. 

The decay of the main density modes created by the crossing of two 

laser beams was investigated by Chowdhury in his thesis work (10) and 

has found that the measured self diffusion coefficients were smaller 

than free diffusion constant (Theoretical diffusion coefficient value 

for an infinitely dilute sall'q?le with no boundary). The inconsistency 

in this measurements were attributed to either the con- centration or 

boundary effects. 

This 'Forced Rayleigh scattering' (FRS) has been used by many 

workers in measuring the self diffusion constant of charged and 

noncharged doped or nondoped particles (34, 35, 36}. B. Dozier et al. 



(37) have use:i charge:i polystyrene colloids and measured the self 

diffusion as a ftmction of the strength of interaction between the 

particles. They have found that the diffusion constant decrease:i 

monotonically from the Stokes value as the repulsive interaction is 

increase:i, until the interactions are sufficiently strong to form a 

colloidal c:i::ystal. 
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The investigation of structure in interacting colloidal fluid 

states was investigated by use of cross-correlation intensity fluctu

ation spectroscopy, CCIFS, (38, 39, 40). B. J. Ackerson et al. (38) 

have used the CCIFS to indicate a local hexagonal structure in the 

fluid phase, they have also found that their experimental observations 

were in agreement with a model calculation in which they have treated 

the two dimensional fluid phase as a randomly oriente:i hexagonal solid 

with large lattice vibrations. 

The Hamiltonian of an array of atoms interacting with a periodic 

potential with period 'b' and connecte:i with hannonic springs can be 

written as ( 41) : 

H = ~ {l/2b2 (X?rri-Xn-ao) + V[l-cos(2 Xy/b)]} (1-2) 

where Xn is the nth atom position, b is the period of the periodic 

potential, V is the arrplitude of this potential and a0 is the 

lattice constant. In the absence of the periodic potential, V, or if 

the extenial potential is weak, the observed structure will in general 

be in the incommensurate phase (IC) • This means that the hannonic 

term would favor a lattice constant a0 which is inconunensurable with 

'b' as shown in Figure l(a). In such a case the diffracted Bragg 

spots would be at positions Q=21T N/a0, where N is an integer. None 

of these will coincide with the Bragg spots of the periodic potential 



a) Incommensurate Structure 

b) Commensurate Structure 

c) Chaotic Sturcture 

Figure 1 • One Dimensional Demonstration 
of Incommensurate (a), Com
mensurate (b) and Chaotic (c) 
Structures. The Springs Rep
resent Interaction Between 
Atoms and the Wavy Line the 
Periodic Potential. 

9 
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at positions G=2Pi1Vb, where M is an integer. If the external 

potential is made strong enough, it may be favourable for the lattice 

to relax into the external periodic potential where the average 

lattice spacing, a, is a sin'ple rational fraction of the potential's 

period, b. 'Ihis is known as the connnensurate structure, and it is 

shown in Figure l(b), where a situation with 2a=3b is taken as an 

example. In such case the differaction pattern of the substrate and 

absorbed layer has an infinite number of coinciding Bragg spots (41). 

If the potential is not strong enough to force the chain into 

commen.surability, the atoms will ltlCN'e toward the potential 1 s minima 

and the average pericd may approach a sin'ple conunensurate value but 

remain incommensurate. The C and IC structures do not exhaust the 

stable configuration. There are additional choatic structures which 

cannot be described as above (Figure le). In this phase the diffrac

tion pattern is not made up of well-defined Bragg spots. 

Thesis overview 

'Ihe main goal of this thesis is to car:cy a real space analysis of 

the "laser induced freezing" phenomenon. The general theoretical 

background needed in describing this work is considered in Chapter II 

of this thesis. In this chapter concepts such as: light forces on 

colloidal particles, description of the stationacy sinusoidal fringe 

pattern, potential for finite size particles, steady state character

istics and two dimensional pair correlation functions are discussed. 

The succeeding ch.apter (Chapter III) is devoted to the different 

experimental procedures and techniques used to force the interacting 

colloidal suspensions into ordered states. '!he viewing, imaging and 



detection of the colloidal particles is also considered in Chapter 

III. 
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Chapter VI is devoted corrpletely to the real space analysis of the 

charged colloidals suspensions. 'Ihe observed structuring in a wedged 

cell geometry is discussed at the beginning of this chapter, succeeded 

by the real space analysis of the crossed beams experiments, and some 

scattered intensity measurements are given at this end of Chapter IV. 

A simulation of the laser induced freezing is given in Chapter v. 

'Ihe theory needed for the Monte carlo sinrulation is presented at the 

beginning of this chapter. 'Ihen, the phase transition results for a 

system of particles interacting via a screened Coulomb potential is 

analyzed. At the end of Chapter V, the effect of an externally ap

plied periodic potential on different equilibrium phases is studied as 

a function of the potential' s amplitude. 'Ihe corrparison between the 

results obtained experimentally with those observed in the simulation 

is carried in Chapter VI. 

'Ihe conclusions and future suggestions are given in Chapter VII. 

Appendices at the end of this work are where the different programs 

used in this study are presented. 



CHAPI'ER II 

THEOREI'ICAL BACKGROUND 

Introduction 

The work that will be presented in the succeeding chapters will 

deal with various experimental techniques, computer simulations as 

well as the analysis of the results. The understanding of these 

topics will require some theoretical background, which will be the 

subject of the present chapter. 

The areas that will be discussed here will include the effect of 

light forces on colloidal particles, the interference patterri produced 

fonn the crossing of two mutually coherent laser beams, the potential 

for finite size particles, the steady state characteristics of colloi

dal suspensions in periodic potential fields, a carrparison between 

cross correlation intensity fluctuation spectroscopy and laser trap

ping of colloidal suspensions, and the functional relation between the 

scattered intensity an the two-dimensional pair correlation function. 

Optical Light Forces on Colloidal Particles 

Colloidal particles experience a variety of motions besides the 

Brownian motion(27, 40). For example a charged particle will move due 

to electorphoresis in an electric field and magnetophoresis in a mag

netic field. Particles will also fall under the influence of the 

gravitational field. Movement will also OCCl.lr when there is a 

12 



temperature gradient (thermophoresis). Finally, other colloidal 

particle motion may even be caused by light. 
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The forces of light responsible for the particles movement are of 

two types, photophoresis and radiation pressure. In photophoresis 

there is a differential abso:rption between the particle and surround

ing solvent. As a result temperature differences develop and drive 

convection of the sol vent which then moves the particles. The direc

tion of motion may be towards or away from the light source depending 

on the abso:rption coefficients, thermal conductivities, etc. (9). 

Radiation pressure is a result of the elastic scattering of the 

radiation in the suspension. The change in momentum of the incident 

radiation, when it changes direction in the scattering process, 

results in a momentum transfer to the particle-solvent system in order 

to consel'.Ve total momentum. Thus, radiation pressure causes suspended 

particles to move in the direction of propagation of the incident beam 

because scattering reduces the fo:i::ward momentum of the radiation. 

Such principles have been used to optically accelerate, slow, 

stably trap and manipulate micrometer-sized dielectric particles and 

atoms. In 1970's, A. Ashkin(27, 30), has reported the first obser

vation of using radiation pressure from a ON visible laser light to 

accelerate transparent latex spheres. Ashkin et al. (29) have reported 

that the continuous wave power required to levitate unifonn solid or 

liquid dielectric spheres in the size range .5um to lOOUm varies from 

microwatts to several watts. 

If we consider a dilute medium containing dielectric spheres, then 

in the presence of a radiation field, the spheres become polarized. 

In the cgs units, this polarization is given by, 
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I>= 3(e - 1)~(4 (e + 2) (2-1) 

where e: is the relative dielectric constant of the sphere to the 

medium, and~ is the electric field. Here it is assumed the sphere 

radius is small compared to any spatial variation in the radiation 

pressure field. 

The resulting dipole moment of such polarized spheres is given by 

p = CEo 

C = l\;2 (n2-l)/(n2+2) 

where a is the radius of the sphere, n=rl.a/11s, Ila is the 

refractive index of the sphere, and I1s is the refractive index of 

the surrounding. The force exerted on these polarized spheres is 

simply the I.Drentz force , 

E = (£.>.Grad)~ + l/c[~ .V~t X ~] 

(2-2) 

(2-3) 

(2-4) 

In the above equation ~ is used for the magnetic field induction and E 

is the force on the sphere. Using equation (2-2) and the first tenn 

on the right hand side of equation (2-4), we get: 

(F.Grad)~ = C(~.Grad)!; 

= C[l/2 Grad(E2) - ~ CUrl rn)] (2-5) 

SUbstituting the above equation in expression (2-5), the force on the 

sphere is found to be of the form, 

E = C[l/2 Gradrn2) + l/c 'O(~)/'OtJ (2-6) 

For dielectric spheres with an index of refraction greater than 

that of the surrounding solvent, C becomes positive leading the first 

tenn on the right hand side of the above equation to move particles to 

the high intensity regions of the radiation field. Conversely, if 

n<l, the particles will move out of the beam. The poynting vector 

tenn in the above equation is responsible for moving the particles in 
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the direction of the beam's propagation. 

Crossed Beams Mathematical Description 

If we consider two laser beams whose Gaussian profiled electric 

fields at point.!." (Figure 2) are given by, 

~l = Eo1exp{i(k.1·J."-W1t+P1)-(k.1XJ;")2/(k2R)2} 

~2 = Eo2exp{i(k.2·.!."-W2t+P2)-(k.2XJ;")2/(k2R)2} 

where the parameters used in the above equations are defined as: 

R is the width of the laser beam, 

k1 and ~ are the beams wave vectors, 

E01 and E02 are amplitudes of the beams electric fields, 

w1 and w2 are the beams oscillation frequencies, 

P1 and P2 are phase angles for the two laser beams, 

e is crossing angle. 

(4-7) 

(4-8) 

The total electric field produced from the crossing of the two laser 

beams is, 

~ ~l + ~2 (2-9) 

letting E10=E20=E0, P1=P2=o (since a phase factor only 

shifts the field pattern with respect to the origin) and w1=w21 

then after carrying the cross product the resultant intensity pattern 

is found to be: 

I ~* -~ = Eo2{exp[-(2r2sin2 (e+P) )/R2J+[exp(-(2r2sin2 (0-P) )/R2J+ 

2[exp(-r2[sin2(e+P)+sin2 (0-P)JJR2)x cos(k.1-k.2).J."]} (2-10) 

letting Js.=k.1-k.2 expression (2.10) can be rewritten as, 

~*.~ = 2E02exp(-2r2cos2 (0)/R2J[l + cos{2krsin(0/2)}]. (2-11) 

The last cosine tenn in the above equation produces an intensity 
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figure~· Graphical Representation of the Crossed 
Beam Geometry 
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:max:imum when cos[2krsin(0) ]=l, that is 

2krsin(0/2) = 2n ,n=o,1,2, .•••••• (2-12) 

Choosing 'r=d', where 'd' is the fringe separation and substitu

ting for k=21'1 /~, where is the wavelength of the incident laser's 

beam, the fringe spacing can be found as, 

d = 'A /2sin(0/2). (2-13) 

Hence the fringe spacing can be determined from knowing the 

laser's wavelength and the angle at which the two beams intersect. 

The intensity minima occur when cos(2krsin(0) )=-1. 

The Potential For Finite Size Particles. 

The force on a sphere found by equation (2-7) is true for parti

cles whose spatial dimension is small corrpared to the variation in the 

field gradient. For particles whose diameter is in the same order as 

the field gradient variation, the lateral force on the parctiles is 

considered as being the negative gradient of the potential U, where 

U=-Grad (E2) /2. Thus a sphere of radius 'a' can be taken as a col

lection of point particles subjected to the potential given above, 

where E2 is found from equation (2-11). The total potential for the 

particle is then found by integrating this spatially va:cying potential 

over the volume of the particle. Using this argument, Chowdhu:cy (10) 

has found that, 

Ut = A/Vfvcos(g.y)dy (4-14) 

where, q=2ll /d and has the direction of the potential' s pericxiicity, r 

is the sphere's displacement from the origin, y is the displacement to 

a volume element from the origin, r'is the displacement to the volume 

element fonn the sphere's center (Figure 3) V is the sphere's volume, 
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Period of Potential 

Figure 3. Dielectric Sphere of Radius a in a 
Periodic Intensity Potential. 
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and A is a constant. If we let the sphere be at a distance '.r' from 

the center of the intensity maxllna. in such a way that '.r' is parallel 

to 'g', as shown in Figure 3, then the following result is found, 

l t' I I (lf' I 

Ut = 2A/V r 2dr J, sin(O) [l+cos(qr+qr cos(O) JdO 
to 0 

= B[3{cos(qr)/qa}j1 (qa)) (2-15) 

(2-16) 

where !\; is the refractive index of the host fluid, n is the ratio 

of the refractive index of the sphere to the host fluid, I is the 

input intensity of one of the laser beams in Watts/sec, R is a measure 

of the radius of the incident beam, c is the velocity of light in free 

space, kB is Boltzroan constant, T is the absolute temperature, 

g=k1-~ is the wave vector and j 1 (qa) is the first order spher

ical Bessel function. 

In the case where b=O (the particle placed at the origin) and 

assuming a point charge we see that Ut=2B, which is a :maxinrum. The 

other case of interest is when a/d---->oo , that is when the sphere's 

radius is much larger than the fringe spacing, the average potential 

decreases to zero. Finally, as a/d increases the average potential 

oscillates and decreases to a constant, leading to a zero net force on 

the spherical particles(lO). 

In some of the experiments perf onned for this thesis work, single 

and multiple spheres were captured and held in a single beam. Locked 

in stable rigid array, each particle was trapped at a local intensity 

maxllna. where drastic rearrangements occur only when one of the lower 

particles is displaced from its local trap. The radiation pressure 

forces were also used in a cross beam experiment to align polystyrene 

spheres suspended in water in a series of layers parallel to the 
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intensity fringes and in case of interacting particles in solid like 

structures. 

Steady state Characteristics 

Colloidal suspensions subjected to forces described by Equation 

(2-15) are immersed in an electrostrictive potential given by, 

U = -l/2Grad(E2 ) 

= u0 cos(gz). (2-17) 

These particles will tend to move to those regions where U is smal

lest. Thus the particle density, n(r), will be modulated by this 

potential. Using the Planck-Nerst equation to characterize the micro

particle density, we write 

n(r,t)/ t = D div[Grad(n(r,t))-Fn(r,t)jkBT] (2-18) 

where F=-Grad(U(r)), is the force on the sphere and Dis the diffusion 

coefficient. For dilute suspensions D is given by the Stokes' theorem 

for spherical particles, of radius a, 

(2-19) 

where l'\ is the liquid's viscosity. For steady state n/ t=O, and the 

density distribution equation reduces to, 

div[Grad(n(r))-n(r)F/kBT]=O 

The Boltzman distribution is a solution to the steady state 

equation, this distribution is given by, 

n(r,O) =A exp[-U(r)jkBT] 

(2-20) 

(2-21) 

The nonnalizing constant, A, can be obtained by the nonnalization 

condition over a fringe period (10), 

J n(r,O)dr = 1 (2-22) 

The normalized probability for finding a sphere at 'r' is given by, 
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(2-23) n(r,O) = k sin(O)/Io(P) exp{p COS[2krsin(O)]} 

p=CE02jkBT, c is given by equation (2-4) and r0 is the zeroth 

order modified Bessel's function. Plots of n(r) versus r for dif-

ferent value of c are shown in Figure 4. By increasing the applied 

electric field n(r,t) becomes sharply peaked and for sufficiently 

large incident intensity this function (n(r)) is expected to behave as 

periodic distribution of delta functions. 

Theoretical Consideration for CCIFS and Ill' 

This section will deal with corrparing the similarities and dif

ferences of two light scattering techniques, the cross correlation 

intensity fluctuation spectroscopy (CCIFS) and laser trapping (Ill') , 

used in the study of colloidal suspensions. 

The laser trapping (Ill') experiment rrakes use of light induced 

forces to produce density modes of colloidal particles (43). The 

scattered intensity distribution from these modes as given by Ackerson 

et al. (43) may be represented as: 

e (.~i) e (!"j) exp (i]s. (!"i-I"j )-(V+U) /kBT) d{!"} 

<I(Js,)> = ------------------------------------------ (2-28) 

exp(-(V+U)/kBT)d{!"} 

where the authors used the first Born approximation to represent the 

scattered intensity with e(!") detem.ining the size of the scattering 

volume. The particles interact with a potential V and are in an ex

ternal potential U, which in the case of potential well created by the 

radiation pressure is given by: 

U(!") = A cos(g.!") = A cos(qx) (2-29) 

The expression in equation (2-28) assumes that only the scattering 

from a single probe beam from the sample is detected. Substituting 
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equation (2-29) into equation (2-28) and expanding the numerator in 

tenns of A/kBT, the relative strength of the externally applied 

field to the thennal energy, the following relation is obtained ( 43) , 

<I(t)> = S(t) + (A/kBT) 2[s2(t)S2(g)[>t,g + s4(t,g]) (2-30) (2-30) 

'Where s2 is an apertured static structure factor and s4 function 

is an apertured multipa.rticle structure function 'Which depends on one, 

two, three and four particle correlation functions. 

Cross correlation intensity fluctuation spectroscopy (CCIFS) is a 

light scattering technique for studying the interparticle order in 

colloidal suspension (10). The technique uses two separate detectors 

to collect the scattered light and the resulting signals are cross 

correlated. In these experilnents the orientation of the local 

structure in the scattering volume is detennined with one of the 

detectors, 'While the other is used to scan the scattering pattern. 

The distribution of the scattered intensity can be expressed in 

terms of one, two , three or four particles correlation functions. The 

CCIF is given by (11) , 

C(g,t,t) = <I(t,t+T)I(g,T)>/(<I(t,T)><I(g,T)>) (2-31) 

'Where at wave vector t the instantaneous scattered intensity is 

I(t,t+T) and at a later time, t, the intensity reading at wave vector 

g. The k (or q) -space's position roagni tude is given by 

k = 4 (if)n(sin(e/2) )/?\ (2-32) 

In the above equation n is the refractive index of the sol vent, A is 

the vacuum wavelength and e is the scattering angle. Using the first 

Born approximation to represent the scattered intensity from the 

scattering volume defined as e(~), an expression for the CCIFS 

(equation (2-31)) over an equilibrium distribution of particles 



nn.itually interactirg via the potential V is fourxi by Ackerson et al. 

(38) to be of the follCMing fonn: 

S{i 2.: e(I'i) e(I'j)e(!"1) e(I'm) 
L.J fii 
exp[~. (I'i-I'j) + ig. (!"1-rm)-V/kBT]d{I'}/Z} 
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C(~1g,O) = ------------------~----------------------- (2-34) 

J ~ { e (!"i) e (I'j) exp[~. (_ri-I'j) -V/kBT] d{!"}/Z 

rm e(!"1)e(I'm) exp(ig. (!"1-rm)-V/kBT)d{_r}/Z} 

'Ihe partition function is given by, 

Z = s exp(-V/kBT)d{~}. (2-35) 

The expression given in equation (2-34) has been found in tenns of 

multiparticle distribution functions (38) as: 

s2 (~)S2 (g)[l+ ~,+gJ+S4 (~,g) 

c (~,g, 0) = ------------------------- (2-36) 

where s2 and s4 are the same equilibrium functions presented in 

equation (2-30). 'Ihe nongaussian term, s4, includes four particle 

correlation functions and it becomes small for large scattering 

volumes as corrpared to the Gaussian contribution (the first tenn in 

equation (2-36)) • Thus limitation of the CCIFS to small scattering 

volumes increases the relative importance of the nongaussian tenn 

(43). 

The similarities between the CCIFS and !JI' techniques are well 

demonstrated in equations (2-30) and (2-36). Both techniques are 

sensitive to the presence of correlation in the density modes of fluid 

systems (43). In the laser induced freezing one density mode is 

stimulated by application of an external field and the other density 

modes, coupled to this one, result from the interparticle interaction 
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and are they are all monitored by scattering. 'Ihe parallelism between 

the two is given in Figure 5, where the CCIFS data is presented in 

Figure Sa (43) and the LT intensity distribution is presented in 

Figure Sb. 'Ihe la:r:ge autocorrelal tion signal in CCIFS at o=O degrees 

corresponds to the strong scattering fem. the directly stimulated mode 

in LT. Similarly, the weaker signals at o=60 and 120 degrees corres

ponds to the off axis scattering by the slaved modes. 'Ihe advantage 

of LT is that the calculated scattering is not modulated by the aper

ture functions. 'Ihe disadvantage of this LT is that extreme care must 

be taken in order to collect the data. 

Scattering and 'IWo Dimensional 

Pair Correlation Function 

'Ihe study of the different diffracted intensity maxima produced 

from the laser induced freezing of interacting colloidal suspensions 

was carried by Chowdhmy {10) as part of his thesis work. In this 

thesis work the real space analysis of the laser induced freezing is 

accomplished with the use of correlation functions, specifically the 

two dimensional pair correlation function. 'Ihus the aim in this 

section is to find the theoretical connection between the scattering 

intensity function, the 2D correlation function, and the conditional 

probability function. 'Ihis latter function, P{J;'l-J;"2/J;'2), is defined 

as the probability of finding a particle at position J;'l given a 

particle at J;"2. 'Ihe two dimensional pair correlation function (g(J;')), 

in the other hand, is a measure of the translational as well as the 

orientational correlation between particles. 

'Ihe scattered intensity of particles positioned at {J;'i, i=l to 
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N} in the first Born approximation is given by: 

I(k) = <tf Jexp{i$. (_ri-X:j) }P(_ri,l:j) (1- ij)CIJ:idJ~'j+f JP(_ri)d!"i> 

= N(N-1) s exp{i$. (_rl-_r2)P(_rl,_r2)dJ;"ldJ;-2 + N (4-29) 

'Ihe two particle probability may be written in tenns of a condi

tional probability as, 

p (_rl I _r2) = p (_rl/_r2) p (_r2) 

= P(_rl-_r2/_r2)P(_r2) (4-30) 

where _rl-.r2=B represent the pattern relative to _r2 depending on the 

position _r2 of the reference particle in the fringes. Using the above 

equation, the scattered intensity can be written as: 

I(k) = N + N(n-1) s CQ:l s CQ:2 exp{ (:i.Js.B)P(R/_r2) )P(_r2) 

= N + N(N-1) s dB h(B) exp(:i.Js.B) (4-31) 

where h (B} = J CQ:2 P (R/.r2} P (_r2) • For normal fluids P (_r2} is equal to 

the average density of the system (d0) and it is constant, thus 

referring to equation (4-30) we get, 

P(R/t:2) = P(B) =g(B)do· (4-32} 

So h (B) = g (B) do 2 in this case is the standard fluid two dimen

sional pair correlation function. However the more general function 

h(_r) is the calculated function in our analysis and is referred to as 

the two dimensional pair correlation function, and as seen above it is 

directly related to a fourier inversion of I (k) • 

'Ihe standard relationships between P(_rl,_r2), g(_rl,_r2} and P(_rl/_r2} 

are given by, 

P(_rl,_r2) = P(_rl/_r2)P(_r2) = P(_rl-_r2/_r2}P(_r2) 

= g(_rl,_r2)P(_rl}P(_r2) 

= g(_rl-_r2)/_r2}P(_rl)P(_r2) 

Considering h(_r} again, we obtain: 

(4-33) 
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h(B) = 5 a,r2 g(E/!'2) P(J;'2) P(!'l) 

= 5 d,r2 g (E/!'2) P(J;'2) P(B+!'2) 

= s d,r2 g (E/!'2) D(J;'2) D(B+J;'2) (4-34) 

where D(!') is the density at !'· At large B we might expect g(E/!'2) to 

approach one, such that, 

%oCB) = Jd.r2 D(!'2) D(B+J;'2) (4-35) 

which is the fonn used to describe solids in mean field theory. A 

nonnalized h(B) is given by H(B) (H(B)=h(B)Jhoo(B)) which approaches 

one at large B values. It appears that we cannot get g (!'l, !'2) or 

P(J;'l,!'2) or P(!'l/!'2) directly without noting where the reference 

particle (!'2) is with respect to the fringes and then constructing 

P(.~1-!'2/!'2). What we have is a reduced or effective g(B) which gives 

the scattered intensity when Fourier transfonned to k-space. Because 

of the translational properties of I (t) , i.e. only depending on 

(ri-rj), there is no ffil:Plicit dependence on absolute particle 

position with respect to the fringes. 

In tenns of H (B) the crux of the argument is what is the differ-

ence between 

H (B) = ! d,r2 g (E/!'2) D (!'2) D (B+!'2) (4-36) 

and 

(4-37) 

that detennines whether g(E/!'2) has significant structure, g(E/!'2)=1. 

In general, 

(4-38) 

which is constant for any homogeneous fluid structure in the absence 

of an external field, but D(!') may have some structure when the fluid 

is in an external field. 



'Ihus a liquid in no external field gives 

H(B) = g(.B) do2 

H' (B) = do2 
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(4-39) 

(4-40) 

In the case of noninteracting particles in an external field, g(B)=l, 

giving: 

H(.B) = dr2 (1) D(J::2) D(Bi-1:2) 
I = g (.B) H (.B) (4-41) 

If we neglect particle position dependence in the external field, then 

g(B/J::2) ----> g(.B) and we have generally that: 
I 

H(.B) = g(.B) H (.B) (4-42) 

But this need not be true generally. 



CHAPrER III 

EXPERIMENTAL PROCEilJRE 

Intro:iuction 

'!his section describes the experimental methods used in preparing 

the colloidal samples el1!ployed in this study. '!he experimental set 

ups for the crossed beam analysis are presented and discussed. '!he 

sample cell designs and their specific use is shovm and explained. 

'!he cleaning procedures for the colloidal particles and the cells are 

also presented in this chapter. 

Cross Beam Expemental Set Up 

'!he cross beam experimental set up is shovm in Figure 6. '!he 

488nm argon-ion laser beam is split into two beanls. '!he beam splitter 

used for this purpose was set so th.at the transmitted to the reflected 

beams were 90 degrees apart. This produced a 2/3 intensity ratio 

between the two beams. This ratio is set to one by attenuating the 

beam with the higher intensity. The power of one of these final beams 

is what is referred to in this work whenever an intensity or laser's 

power is mentioned . 'Ihese beams traverse the same optical path 

length, and upon their reflection by the prism they propagate parallel 

to each with the same polarization . '!he prism is mounted on a unidi

mensional translating plate allowing for controlling the separation 

between the two reflected beams from o to 3. Ocm. This in tums allows 
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for regulating their crossing angle (from five to 15.5 degrees) after 

they traverse the converging lens. T.he translating plate is spring 

loaded to help the beams stay coplanar and thus cross at a single 

spot. T.he monitoring of the crossing regions is accomplished by 

probing the area with a microscope and projecting the intensity pat

tern on a screen. 

T.he He-Ne laser, wavelength of 628nm, saves as a probe (or read) 

beam for the gratings produced by the mixing of the two Argon-Ion 

write beams. T.he aligrnnent of this laser's beam with the crossing 

area of the write beams is accomplished with a couple spring loaded 

reflecting mirrors (M3 and M4) • T.he direction of propagation for the 

probe beam is taken in the same half space as the two write beams. 

T.he scattered light is detected with a pin-diode 'Whose digitized 

output is stored in and or printed by the Apple IIe corrputer. 

T.he electronic shutter shown in Figure 6 is used to block one of 

the write beams, in the self scattering time dependent experiments, or 

the main argon ion beam for the nondegenerate probing experiments. 

T.his shutter is driven by a pulse generator, allowing for controlling 

the time of exposure to the radiation forces. 

Some of the experiments I have carried in the course of this 

thesis work, dealt with having a vibrating sinusoidal intensity fringe 

pattern or just translating a single laser beam back and forth. T.his 

was done by placing a speaker behind one of the reflecting mirrors 

(mirror 1 or 2) and resting its driving ann on the backplane of the 

mirror. Driving the speaker with a frequency generator allows for the 

desired translation of beam, 'Which causes a path difference and thus a 

phase difference leading to vibrating fringes. 



Sample Viewing And Imaging 

The direct viewing of the colloidal systems used for the 

structure analysis is accomplished with an Olyrrpus l?H2 microscope. 
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The lOOx, numerical aperture 1.25, oil .llnmersion objective with depth 

of focus of • 68um, and working distance of • l 7nun is used for direct 

observation of the fonned structures. This microscope uses Koehler 

illumination. The viewing of the reflected images was obse?.ved either 

through the microscope eyepiece or through a side port with an MI'I 67 

series camera system. This camera system consists of camera head, 

cable assembly and control unit. It provides for carrplete auto or 

manual operation of the viewed images from a front panel. 

For the crossed be.am experiments the colloidal system is viewed 

by probing the sample cell with a lOOx oil .llnmersion lens with the 

same specifications as described above (Figure 7). The images 

produced from this are magnified even further by placing a second 

objective at 25cm distance from the first. This 20x objective has a 

• 04 numerical aperature, depth of focus of 7. 6um, and working distance 

of 9 .15nun. This lab made micorscope is illuminated with the 488nm 

laser light. The magnified images are viewed on a transparent screen 

placed at about lm distance from the second objective. The real space 

images are than recorded by placing a camera at lm distance behind the 

transparent screen. In some cases neutral density filters were needed 

to reduce the intensity of the images reaching the camera. 

Sample Cell Design 

The cell used for the time dependent studies of the samples where 

only the scattered intensity data was measured consisted of: three 
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quartz plates, a vi ton rubber O-ring and a housing device. 'Ihe 1. Ocm 

diameter and .3cm thickness flat is glued to the 2.5cmx.4cm flat, the 

combination of these constitutes the lower boudary of the cell. 'Ihis 

lower cell boundary is then housed in an aluminum. holder unit; with 

the vi ton rubber O-ring (. 4cm thickness) placed on the top of the 

larger plate. 'Ihe other 2.5cmx.4cm flat is set on the top of the 

O-ring and is labeled as the top boundary for the cell. 'Ihe whole set 

is kept together by screwing the other aluminum. cell-holder unit to 

the bottom one as demonstrated in Figure 8. Tightening the screws 

seals the cell and controls the gap between bottom and top plates. 

'Ihis design proved to be well sealed against evaporation and unwanted 

ouside contaminents. 

Modifications of the above cell design proved to be a necessity 

for the recognition of the spheres, in the real space analysis of the 

interacting colloidal suspensions. A diagram of such cell is shown in 

Figure 9. 'Ihe top plate for in this case consists of a polystyrene 

ring (outer and inner diameters of 2. 5cm and 1. 2cm and thickness of 

.4cm), covering the top ring is a circular cover slide 18mmx.2mm. 

'Ihis cover is glued to the polystyrene plate with high torr epoxy, 

where all the excess glue is removed very carefully and a wide range 

of cleaning procedures are followed to get any glue residue from the 

inner cover slide 1 s surface. 'Ihis top plate is the one referred to in 

this thesis whenever the front cell wall is mentioned. Added to the 

bottom plate discussed above is a l.Ocmx.3cm saphire flat in order to 

reduce the local heating. 'Ihis plate is glued to the quartz flat of 

the same dimensions. Again all the glued edges excess epoxy is care

fully removed. In these cells the volume between the O-ring and the 
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periphery of the smaller flats is partially filled with the ion ex

change beads mixture. 

Cell Cleaning 
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For the interacting sanples it is very ilnportant to have the cell 

cleaned of all impurities. This is accomplished by extensive cleaning 

of the top and bottom plates, O-rings, sanple loading syringes, resin 

bead mixture and anything that comes in contact with the colloidal 

suspensions or the inner cell's surface. In this study, the first 

cleaning step is the removal of all .excess glue or epoxy from all 

flats. 'Ihe plates that make it through this step are then placed in a 

polyethylene mesh with the O-ring and the syringes and are subjected 

to the following cleaning process: 

1) Stirring in a solution of micro detergent and deionized water at 

moderate temperature, below boiling water temperature. 

2) rinsing each part separately with deionized water, and sonicating 

in a sonic bath for a period of about 5 minutes on the average. 'Ihe 

transmitting fluid in the sonication process is a mixture of micro and 

deionized water. 

3) Rinsing each element in deionized. water at elevated. temperature 

while stirring. 

4) A final rinsing with highly deionized. water (18megaohm resistance) 

is perfonned and each cleaned. part is blown dry with freon. 

'Ihis cleaning procedure gave the best and longest lasting results 

for making the particles interact over large length range via Cou

lornbic repulsion forces. Samples left inside the cell for extended 

periods of time showed. cuagulation problems. 'Ihis is believed. to be 
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caused by the leaching of stray ions from the cell. 

'!he Paricle Cleaning Procedure 

To ilrprove the particle-particle coulombic interaction and reduce 

the rnnnber of particles sticking togother, the water-:-soluble species 

and inorganic salts are removed from the colloidal suspensions through 

the following process: 

1) '!he particles are diluted in a liquid and centrifuged at 200rpm for 

a different time periods depen:ilng on the suspension liquid used. 

2) '!he supematant liquid above the solid is then siphoned. 

3) A small volume of liquid is added to the settled particles, and the 

mixture is sonicated as long as it takes to shake the particles loose 

and have them suspend in the liquid. 

'Ihese 3 steps are repeated for ten times. In the first and last 

two runs, highly deionized water is used as the diluting liquid and 

the centrifuging time was about thirty minutes period. In the other 

runs high grade methanol is used for diluting the suspensions and the 

centrifuging period is cut to ten mintites. '!he time required to shake 

the spheres loose depended on the suspension liquid and it took much 

less time when methanol was used as corrpa.red to water. 

Before injecting the colloidal suspensions the cell gap is ad

justed to 20Um. and then the lSmegaohm deionized water is injected into 

the cell. '!he contents of the cell (water plus resin bead exchanger) 

are tumbled at low rotation rate for a period of 24 hours. '!he reason 

behind this is to reduce the number of stray ions that might be 

present in the cell before the injection of particles takes place. 

After this process, the water is extracted from the cell whith a clean 
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syringe. The microspheres are then injected at the cell with the 

desired concentration. The resin beads and the colloidal suspensions 

are then mixed at low rotation rates for a period of 2-3 hours. After 

this process the gap cell is again adjusted to values between 10-4Dum, 

giving a wedged shaped gap and having single to multi layered regions. 

'Ihis cleaning process proved to give the best results for the interac

tion between the spheres for long periods of time extending from one 

week to three weeks. 

Image Processing 

For the real space experiments all the experimental inf onnation is 

recorded on video tape for future analysis. This data is fed. to the 

an Imaging Technology video deigitizer interfaced to a Scientific 

Micro Systems microcomputer system (Figure 10). The Imaging Technolo

gy system consists of one AP-512 Analog Processor and one FB-512 Frame 

Buffer in a monochrome (black/white) configuration(IP). The two 

modules are connected via the video bus and controlled via the Q-bus. 

'Ihis basic configuration digitizes, stores, and displays a single 

frame of video infonnation. 'Ille SMS microcomputer system perfonns all 

image processing functions. The digitizing process consist of 

transfonning an individual picture into a two dimensional integer 

array of numbers from o to 256 with dimensions of 512x480. This array 

is stored in the FB 256 K-byte RAM allowing for accessing each pixel 

and perfonning image transfonnations through mathematical functions 

designed for special purposes. Amongst these the following subrou

tines were used in the enhancement of the images and the detection of 

the microspheres: 
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a. Iltlage equalization using the a smoothing function between two 

given intensities Il and !2 (Il<I2), the functional fonn used in this 

analysis was of the fonn ( 44) : 

f(I) = 255*(I-Il)/(I2-Il) for I2<I<Il 

=O 

=255 

for I<Il 

for I>I2 

(3-1) 

'Ihis intensity equalization gave sharper images but did not help 

much in the detection subroutines which will be discussed later. 

b. Edge detection using the Sobel operator and the Robert 

gradient techniques. The Robert gradient can be presented by the 2x2 

template (44) 

--------- ----------
f (x,y) f (x,y+l) 

--------- ---------- (3-2) 

f (x,y+l) f (x+l,y+l) 

--------- ----------

where f (x,y) is the intensity function at the given x-y position and 

G(f (x,y)) is the gradient of f at coo:r:dinates (x,y). In tenns of an 

equation a typical approximation is given by the relation 

G(f(x,y)) = {[f(x,y)-f(x+l,y+l)J 2+[f(x+l,y)-f(x,y+l)J 2}1/ 2 (3-3) 

or using absolute values (symbol for absolute value is given by []) , 

G(f(x,y)) = [f(x,y)-f(x+l,y+l)] + [f(x+l,y)-f(x,y+l)J (3-4) 

The Sobel operator on the other hand is a 3x3 template ( 44) ginven 

by the following experssion: 
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a b c 

d e f (3-5) 

g h i 

Ylhere a, b, c, d, e, f, g, h, and i are pixels' intensities values. 

Defining Gx and Gy as 

Gx = (g+2h+i) - (a+2b+c) 

Gy = (c+2f+i) - (a+2d+g) 

The gradient at e is then defined as, 

G =[Gx 2 + Gy2Jl/2 

= [GxJ + [GyJ 

(2-6) 

(3-7) 

In equation (3-4) and (3-7), the [] stands for the absolute value 

of the given quantity, and this approximation is made to save on the 

speed of computation Ylhile analyzing the data. Both the Robert and 

Sobel gradients were found to give relatively large values for promi

nent edges in an image and small values in regions that are fairly 

smooth, being zero in regions that have a constant gray level. The 

Sobel operator being a 3x3 template gave sharper rings around the 

spheres and sphere like high intensity regions than its counter 2x2 

template. 

c. Image restortion oriented toward reconstructing an image that 

has been degraded by using some a priori knowledge of the degradation 

process. In tenns of a mathennatical equation we have, 
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g(x,y) = Hf(x,y) + n(x,y) (3-8) 

where g(x,y) is the degraded image, H is the degradation operator, 

n(x,y) is an additive noise, and f (x,y) is the input image that is 

sought. This image is obtained by using the relation 

f(x,y) = f-1 [F(u,v)] 

= f-1 [G(u,v)jH(u,v)] (3-9) 

for x,y= 0,1,2, •••••••• N-l, G(u,v) is the FFT of g(x,y) and n(xy) is 

assumed to be zero. This procedure is bnplemented by means of an FFT 

algorithm. Different filters were used for the process of restoration 

(Butterworth high pass filter, Wiener filter, point spread function) 

but the time required for the analysis made the process unworthy. 

d. Detection and recognition of the spheres was the main ailn 

behind the analysis of the interacting sa:rrples. This process was 

first tried by generating a J x K template, which corresponds to one 

of the spheres and matching it with the given image, this resulted in 

some spheres being ignored while f ictious regions where picked as 

being a paricle. This process of choosing a template could be thought 

of as a correlation, where by definition the correlation between two 

functions is given by, 

or 

R(m,n) =~ f (x,y)w(x+m,y+n) 

* R(u,v) = F(u,v)W (u,v) 

(3-lO) 

(3-ll) 

where F(u,v) is the 2D transform of the given 5l2x480 digital image 

f(x,y), w*(u,v) ;is the complex conjugate of the 2D transform of the 

JxK (J<512 and K<480) window function w(x, y) • Note that m=O, 1, •• , 511, 

and n=O,l, ••• ,469 and the summation is taken over the region where 
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w(x,y) is defined. 'Ihis correlation :function was tried and the same 

problems observed with the templates were encountered with this 

:function, namely the recognition of fictitious regions as spheres 

while ignoring positions where the particles are located. The time 

required to process a single image with the detection subroutines 

discussed so far was of the order of five minutes when the VAX and 

Contol Imaging system ( property of Electrical & Corrputer Engineering 

Department) were used. The limitations of the SMS RAM memory ( .5M 

bytes) and its slow computation time as compared to the VAX were the 

main detennining factors in replacing the subroutines discussed above 

with the intensity slicing and edge detection subroutines. 

The intensity slicing subroutine used the concept of subdividing 

the image into different windows, in each window the intensities that 

fall between a maximum and mini.mun value are collected and then made 

into clusters. Within a certain radius from each cluster's center an 

edge detection subroutine is suplemented. If the edges are detected 

along the x and y directions then the cluster's center is taken as a 

prospective position for a sphere's center. This detection program 

took from l-2minutes for the recognition of the centers and was the 

most efficient way for detecting the roicrospheres, althought it did 

require input information about the cutoff intensities the :maxi.mun 

radii, the separation between particles and an interactive part 

helping in the accepting the first particle in each fringe. 

The problems encountered in the detection of the spheres were a 

result of the background intensity of the stationary sinusiodal fringe 

pattern which at certain regions creates sphere like structures. 
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Accuracy In Positions 

To estimate the distortion of the experilnental optics and th.at due 

to the video camera, two set of analysis were perfonned. In the first 

of these, the distortion due to the objectives, was found by taking 

images of the standing fringe pattern alone; and of grooved gratings 

with their periodicity along the x and y directions. By fitting a 

linear fit through the low intensity regions of the fringe pattern (or 

gratings), it was found th.at the average separation between these 

lines stayed the same with a maximum deviation of two pixels along the 

x-d.irection and one pixel in they-direction. The distortion due to 

the camera and video system is found by taking photographs of polar 

graph paper and finding the distances to different radii. The meas

ured radii from the center of the polar plot for an average of 6 

frames is given in Table I. The maximum destortion observed from the 

data given in this table is two pixels. For both cases the maximum 

distortion occurs at the edges of the digitized frames and it gives an 

error in locating a particle of 2 pixels. Most of the analized data 

was taken at the center far from this distortion region, thus no 

correction was needed for our analysis. 



Ring# 

1 

2 

3 

4 

5 

6 

7 

Table I 

DATA FOR DIS'IDRI'ION IllTROOOCED BY 
VIDEOI'APING SYSTEM 

rl(pixels) r2(pixels) 

7 7 

30 30 

61 62 

115 116 

155 154 

195 197 

235 234 
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r2-rl 

1 

-1 

-1 

2 
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INTERACTING PARI'ICI.E S'IUDIFS 

Introduction 

In this study the tenn 'Interacting Particles' is used to describe 

colloidal suspensions of polystyrene sulph.onate latex spheres in water 

that is relatively free of electrolytes. Upon i.nnnersion in water the 

cationic counter-ions from the surf ace sulfate groups will diffuse 

away from the particle's surface causing the spheres to be uniformly 

charge.d.. '!he stripped counterions can be exchange.d. with ions supplie.d. 

by ion exchage resin and the resu1 ting mixture of counterions and any 

adde.d. electrolyte serves to screen the charge.d. spheres and modify 

significantly the coulomb repulsion between them. 

When these colloidal suspensions are conf ine.d. between two smooth 

repelling flats the particles order as in a solid in some regions and 

as a liquid in others. '!his makes these sang;:>les ideal for phase 

transition and structural transition studies. 

'!he response of these self-organizing systems to externally 

applie.d. field is studie.d. in this work. Radiation pressure was use.d. as 

one of these external fields to manipulate the interparticle order in 

these suspensions. 

In this chapter, the analyses on the interacting particles samples 

will be divide.d. into three sections. '!he first section will deal with 

the structural transition in a we.d.ge.d. sample cell. '!he second section 
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will be devoted to the real space analysis of the ordering induced by 

the externally applied radiation pressure field. In the third section 

an analysis of the scattering patterns as a function of input power 

and crossing angle is studied. 

Equilibrium Structures Without 

External Fields 

It is already established that a system of colloidal spheres 

submerged in aqueous suspensions can exhibit transitions from an 

ordered (solid) to a disordered state (liquid) . Colloidal crystal, 

liquid and gas like states have been observed in different studies. 

In a colloidal crystal, for example, the suspended particles are 

positioned at regularly spaced intervals. '!he observed order is 

typically that of a body centered cubic crystal or face centered cubic 

crystals in dilute and concentrated charge stabilized suspensions, 

respectively (9). Two dimensional systems have been examined by 

trapping a single layer of particles between optical flats ( 3, 4, 5) or 

the water-air interface (45). Here states having HCP closest packed 

crystalline and liquid like order have been observed despite the 

apparent lack of long range order in two dimensional systems. 

In this study the colloidal suspensions were trapped between two 

smooth repelling plates, as described in the experimental set-up 

chapter. ·'!he distance between the two plates is adjustable, allowing 

for a wedge shaped gap and for the trapping of a single to multi 

colloidal layers. '!he colloidal spheres are repelled from the glass 

surfaces for two reasons: glass plates become highly charged when 

they are brought in contact with water, this leads to a plate surface 
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charge density of 2.5xlo14cm-2 (1&2), which is comparable to that 

on the polystyrene surface. Another reason for this repulsion is 

caused by the dielectric constant contrast between the water-glass 

interface (c=80 of water and 5 for glass), which introduces repulsive 

linage charges of the spheres. 

Although extensive care was used in the cleaning of the samples 

and the cells, it was obseJ:Ved that all the experimental samples used 

in this study had a leaching problem. Ions from the cell's walls and 

foreign substances leak inside the sample and cause coagulation prob

lems with the extended i.nunersion time giving dumbbells and larger 

aggregates, about 5%. 

By direct obseJ:Vation of l.07mn diameter interacting particles 

samples, different 3-D and 2-D phases were seen. Digitized linages, 

512 by 480 pixels, of some of these phases are shown in Figures 11 

through 16. A region near the apex of a wedged cell is shown in 

Figure 11. 'Ihis demonstrates the transition fonn a three dilnensional 

solid structure to a two dimensional liquid phase. In the lower right 

comer a liquid state is obseJ:Ved where the particles appear to have 

no orientational nor translational order. 'Ihis region is at the apex 

of the wedge. Right above this liquid phase a two dimensional (mono

layer) hexagonal closed packed phase starts to fonn. At the center of 

this figure a transition from two dilnensional HCP structure to three 

dimensional square structure is shown. 'Ihis region is considered as 

the 'hopping' region, where hopping corresponds to intense particle 

motion nonnal to plane of gap. Finally, at the upper left comer of 

this figure a three dimensional square phase is established. 

Figures 12 and 13 show two-dimensional HCP crystalline structure. 
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2D.SQUARE LATTICE REGION 

HOPPING 
REGION 

lD 
LIQUID 
REGION 

Figure 11. Transition Region From Monolayer Liquid 
Phase to Multilayer Solid Phase For l.07um 
Interacting Polystyrene Spheres Suspended 
in Highly Deionized Water. 



Figure 12. Crystalline Structure Near the Apex of a 
Cell of l.07um Charged Polystyrene Spheres 
Suspended in Highly Deionized Water. 
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Figure 13. Crystalline Monolayer at 2mm Distance 
From the Region Shown in Figure 12. 
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DOUBLE LAYER SQUARE LATTICE REGION 

MONOLAYER 
"REGION 

Figure 14. Transformation From a Monolayer ~egion 

to a Multilayer Square Lattice Region. 



DEFECT 

Figure 15. Multilayer Square Lattice Packing with 
Different Lattice Constants. 
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SQUARE 
LATTICE 

Figure 16. Transition for a Double Layer Region 
From Square Lattice Packing to 
Triangular Lattice. 
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In Figure 12 the particles shown are just above the apex of wedged 

region in the sanple cell. Below this apex no particles were observed 

since the gap is small enough that the particle-wall interactions 

cause all the microspheres to be expelled to the 3D rese:rvoir or the 

upper region of the sanple. In this triangular lattice the average 

interparticle separation is of the order of twice a particle's 

diameter. Translating the sanple about 2mm distance the same 2D 

crystalline stJ::ucture appeared to persist as shown by Figure 13. 'Ihe 

interparticle separation in this monolayer frame is 2.0Um, of the same 

order as a particle's diameter. To be noticed in this figure is the 

existence of dumbbells and collection of three,four or five particles. 

'Ihese aggregates tend to reorient the axis of the crystalline stJ::uc

tures, produce defects and are isolated primarily at grain boundaries. 

As the cell gap is increased a transition to a double layered 

region starts to be occur (Figures 14 and 15). 'Ihe first of these 

figures (Figure 14) demonstrates the defonnation of the HCP monolayer 

stJ::ucture as the platesi separation is increased, leading to a 

hopping region and eventually a double layer square lattice. 'Ihe 

hopping region occurs in the lower right and to the right of the shown 

area of Figure 14. In this case the plate separation is slightly 

larger than the stable monolayer regime and slightly lower than the 

required gap for a stable two layers regime. For a gap large enough 

to support a stable two layer regime, it is obseJ::Ved that the particle 

density and the lattice constant for the square packing varied from 

one region to the other (Figure 15). 'Ihis change is believed to be a 

result of small variations in the gap width introducing a distortion 

in the lattices. 'Ihe left side of Figure 15, shows a defonned square 
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lattice whose lattice constant is different than that measured for the 

square lattice found on the right side of the same figure. 

The transition from a two layer square to a triangular lattice 

was also observed in these sairples, as shown by Figure 16. The lower 

left corner shows a square lattice, as we move to the right the gap 

increases allowing for a stable two layer triangular lattice. 

The general structure of one to three layers of crystallized 

spheres in these experimental sairples is similar to what has been 

observed by Pansu et al. (5, 41) and in another study by Van Winkle 

and Muray ( 4) • These authors have observed a structural sequence of 

lT - 2S- 2T - 3S - 3T phases, where T stands for the triangular lat

tice and S represents the square lattice and N is the layers' number. 

In this study we were able to reproduce results observed in references 

1 , 4 and 5, despite the dumbbells. 

Correlation Functions 

1-D Pair Correlation Function (g(r)) 

The translational pair correlation function is constructed by 

taking the center particle in each digitized frame, its six nearest 

neighbors and the four particles located at the four corners of each 

digitized frame as separate reference particles. For each of these 

references, the number of particles within a ring of width dr about r 

is counted and divided by the area enclosed by the ring. This 

technique gives an equivalent of averaging over 220 frames with an 

averaging time of 20 to 60 seconds. This allows for the construction 

of the radial distribution function, and provides direct structural 

infonnation which can be compared with theory. 



Mathematically the one dimensional pair correlation function, 

g(r) , is defined as: 
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g(r) = d(r)/do (4-1) 

were do is the bulk density of the liquid expressed as the number of 

particles per unit area and d(r) is the lcx:::al density of spheres at a 

distance r from the reference particle. Using the above description 

for d(r), equation (4-1) can be rewritten as: 

g(r) = n/ rrr do (rj 2_ri 2)] (4-2) 

where rj is the outer diameter of the ring and ri is its inner 

diameter. 'Ille existence of a maximum at a distance r indicates an 

increase in lcx:::al density around r. 'Ille sharper and higher this 

maximum, the more probable the arrangement at that point. 

2-D Pair Correlation function (g(r)) 

'Ille conditional probability of finding a particle at a position 

J;2, given that a particle is located at J;1 is constructed graph

ically by taking the position of the center-most microsphere in each 

frame as the origin, or as the vector J;1, and plotting the x and y 

positions of the rest of the polyballs with respect to this origin, 

that is J;2-J;1 where J;2 represents the remaining sphere posi-

tions in the digitized frames. 'Ille averaging is accomplished by 

repeating this process for several frames. However, we also increase 

the number of frames used in the averaging for this function by taking 

the six nearest spheres to the origin and using each one of these as a 

new origin. Once the position of these new origins is detennined the 

same procedure outlined above is followed, thus allowing for an 

averaging over the equivalent of 140 frames when averaging 20 frames 
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in all. These conditional probability plots or g(!") evidence both 

orientational and translational correlation infomation. The programs 

used for the analysis are given in Appendix A. 

All of the sarnples used for this study had a considerable number 

of multiple particles sticking to each other, these dumbbells created. 

a problem in taking clean data. This same obseJ::Vation is noticed. by 

other workers who examine the nature of layering transitions and the 

2D melting processes in systems composed. of colloidal suspensions (4, 

5, 41). To avoid the complexities introduced. by a large nUlllber of 

dumbbells, we select only the monolayered regions with less than 5% 

doublets for analysis. 

Two Dimensional Systel'tlS With And Without 

External Radiation Field 

This section will describe the details for the data collection 

procedure and results of the static experiments on the interacting 

colloidal particle samples. By crossing two mutually coherent laser 

beams in the sample, a periodic intensity potential well is produced.. 

A force exerted by the potential draws the micron sized polystyrene 

spheres to the most intense regions since their index of refraction is 

larger than that of the solvent. This forces the particles to aline 

in a periodic arrangement. The final structures are controlled by the 

potential 1 s period. and the laser's input power. The radiation 

pressure forces tend to also push the particles in the direction of 

the beam's propagation towards the front cell's plate (top plate in 

Figure 9), and in the case of rnultilayered regions this causes the 

particles to compete for lining up in the layer closest to the cell's 
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confining plate. 

In this study the region used for the analysis were either fluid 

monolayers of constant particle density or partial double layered 

fluid regions were the particles density changed as the radiation 

pressure force was applied. A standard digitized frame of the mono

layer and multilayer amorphous regions used for this work are shown in 

Figures 17 and 18 respectively. 

Equilibrium Without External Field 

Equilibrium is observed with single beam illumination of the 

sample. 'Ihis is just a unifonn field which pushes particles near a 

plate with or without the transverse effects. Illuminating the sample 

cell with a single argon-ion beam ( 488nm wavelength} and probing the 

sample with a microscope the real space images observed for a 

monolayer amo:rphous phase is demonstrated by the snap-shot in Figure 

17a. '!he particles in this region appear to have a random orientation 

with an average separation of 2.27um as found by direct measurement 

from the digitized image (implying a density of l.9xlo12m-2}. 

'!he single beam scattering patterri from this region is presented in 

Figure 17b. The diffuse intensity ring concentric with the incident 

beam is referred to as the Debye-Sherrer ring and is characteristic of 

a liquid-like or amo:rphous structure. '!he k-space radius of this ring 

kos=211/a gives another measure for the average particle separation 

which was detennined to be 2. 18um. 

'!he pair correlation fUnction g(r) for this amo:rphous phase is 

shown in Figure 19a. '!his fUnction shows a sharp maximum at a 

distance r=2.14um, an indication that there is structural arrangement 



a) Real Space Snap-Shot 

b) Self Scattering Pattern 

Figure 17. Monolayer Amorphous Reeion With an 
Avera~e Particle Separation of 2.2um 
as Measured Fron tl,e Real Space Snap
shot (a) and the Radius of the Debye
Sherrer Rine (b). 
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a) Real Space Snap-Shot. 

b) Self Scattering Pattern 

Figure 18. Amorphous Multilayer Region of Interacting 
Polystyrene Spheres (l.07um Diameter) 
Suspended in Highly deionized Water. 
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at this position. The other peaks fluctuate around the value of one, 

where the fluctuation is due to statistical errors. This function 

shows the typical liquid-like behavior. The 2D pair correlation 

function. (Figure 19b) shows that the probability is largest at the 

nearest neighbor distance (r=2.14um), is independent of the direction 

of r and decreases to the average particle density at large r values. 

The obsel:Ved orientation is due to not averaging over a long enough 

time. 

External Field Applied 

The crossing of the to laser beams creates an external field which 

causes the system to reorganize in ordered structures. The experi

mentally finite extent of the crossed beams eventually creates a 

nonlinear distribution of the particles in the symmetry breaking 

fringes. This nonlinear effect is avoided by imaging region near the 

center of the crossing area, thus alla.ving for a fairly unifonn dis

tribution of the rnicrospheres. The fonned structures were obsel:Ved to 

have order up to thirty fringe periods. The extent of this order 

depended on the area occupied by the fringes and the amplitude of the 

applied field. This long range order is not considered in this study 

for distance larger than ten fringes on the average. The short range 

order is considered in this analysis due to the unif onn inten-

sity distribution around these regions, and for analysis convenience. 

Corrrrnensurate Structure 

When the fringe spacing causes the interacting spheres to line up 

in their undestorted closest packed structure consistent with the 
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sarrple density (Figure 20a), the system is said to be cormnensurate 

with the externally applied potential. This occurs when d=acos(30), 

where d represents the fringes spacing and a is the average separation 

between the particle in the amorphous phase. The transverse COII\POnent 

of the radiation field causes the spheres to line up along the high 

intensity region of the fringe patterns. The coupling of this aline

ment whith the strong electrostatic interaction between the particles, 

causes a uniform separation between adjacent particles in a rCM and 

successive ordering between adjacent rows. The final result is the 

"freezing" of the amorphous two dilnensional system to a two dimen

sional ordered structure, where the one dilnensional external field 

directly breaks the symmetry of the amorphous (or crystalline state). 

When the amorphous equilibrium region (Figure 17) was exposed to 

the radiation forces produced from the crossing of the two argon ion 

laser beams, at an angle of d=l.96um (14.3 degrees), the particles 

aligned not only along the fringes but also in the other directions 

(Figure 20a) , creating diffraction a two dilnensional grating. The 

self scattering pattern produced from these gratings is given in 

Figure 20b. The horizontal rCM of intensity maxllna. passing through 

the two incident beam positions is produced by particle alignment with 

the intensity fringes. The other intensity maxllna., at about 30, 90 

and 120 degrees from the axis passing through the main beams (x-

axis) , are produced by secondru:y alignment of microspheres due to 

interparticle interactions. If one of the two write beams is blocked 

this pattern relaxes back to that of Figure 17. 

The pair correlation functions for these commensurate monolayer 

structures are shown in Figures 21 through 23, where the laser's input 



a) Real Space Snap-Shot of Particles 
Alinement Along the High lntensit1 
Regions. 

b) Self Scattering Pattern. 

Figure 20. Alinement of the l.07um Interacting 
Polystyrene Spheres in the High 
Intensity Regions of the Stationary 
Fringe Pattern at Commensurate Period 
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power increased from 42mW to llOmW for this particular analysis. At 
• 

all these powers it is observed that the particle density stayed 

within a maximum of 3 percent from the average value of .190/(um) 2. 

At the lowest input power g(r) (Figure 21) shows a maximum at about 

l.86um, an indication that there's local order between the 

microspheres at this separation. A broader and smaller peak is 

observed at about 4.28um radial distance. At higher r values, g(r) 

fluctuates around unity, with not well defined peaks to suggest the 

loss of correlation at these distances. As the input power increased 

the trough after the first maxima approached zero, an indication of 

greater correlation between the spheres. The second and third maxima 

are more pronounced for the input power of 86rnW (Figure 22a) than what 

is observed for the 42mW case. At large r values, even at the higher 

input powers, we see a loss of correlation presented by fluctuations 

in g(r) around the value of one. In all of these figures, the higher 

and sharper the observed maxima are the larger the particles' density 

in the shell centered around that region. 

The 2D correlation functions (Figures 2lb-23b) shows the induced 

translational as well as orientation order as the amplitude of the 

externally applied potential is changed. The degree of correlation 

between the microspheres is measured by analyzing the distribution of 

the 2D function along each fringe period (Figures 24-26). These 

graphs are constructed by taking three rectangular boxes along the 

x-direction of the 2-D correlation functions. The x-coordinates of 

these rectangles were from -d/2 to d/2, d/2 to 3d/2 and 3d/2 to 5d/2 

where d represents a fringe period. The y-coodinates were taken as 

those shown in the g(.!:') graphs. The density distribution along the y-
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axis in each box is found and plotted. 'Ihe bottom plot represents the 

first box (-d/2 to d/2 region), the following plots is for the second 

box (d/2 to 3d/2) and the lost plot for the third box (3d/2 to Sd/2). 

'Ihe solid CUJ:Ves in these plots show the density distribution to the 

same scale and the dashed CUJ:Ves are nonnalized by the max.inn.nn peak in 

that box (these are presented for clarity) • 'Ihese figures (24 to 26) 

show that as the input power is increased the the particles become 

more localized within the fringes and around some well defined mean 

position relative to the reference particle. 'Ihe loss of correlation 

at large distances is demonstrated by the increase in the standard 

deviation of the particles' localization in the fringes (Table II), 

this found by finding the mean x-position of the microspheres in a 

particular fringe period than calculating the deviation around this 

mean. Another measure of the loss of correlation is also achieved by 

analyzing the height and the full width at half max.inn.mt (FWHM) of the 

peaks of the average density distribution plots. 'Ihus at cormnensurate 

crossing angle, the induced order seems to be a function of the ap

plied field's power. 

A demonstration of the particles' distribution in the high inten

sity regions of the periodic potential is given in Figures 27a. By 

counting the number of particles within each well, the density along 

each fringe is obtained (Figures 27b). 'Ihe period used for these 

density plots are measured directly from the digitized images. 'Ihe 

fluctuation in this density is due to uneven counting of particles in 

the rectangular boxes used for the area of analysis (the edges of the 

box detem.ine which particles to be included in the analysis), statis

tical fluctuations and defects. 



TABLE II 

ANALYSIS OF 2-D PAIR a:>RREI.ATION 
FUNCTIONS FOR d=l. 85um 

Input Power Fringe Positions MeaI'lxf a 

(niW) (d/2) 

42 -1 1 0 

1 3 1.8 

3 5 3.5 

86 -1 1 0 

1 3 1.75 

3 5 3.55 

111 -1 1 0 

1 3 1.73 

3 5 3.5 

76 

.29 

.36 

.41 

.165 

.181 

.190 

.139 

.164 

.192 

Mea11x = mean x position of the particles in the given fringe period 

S"tax = standard deviation around the mean x position of each fringe 

a = diameter of a single particle 
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All of the above graphs show that at the connnensurate crossing 

anlge the amorphous monolayers organized in hexagonal closed packed 

structures as the radiation field was applied. 'Ihe growth of these 

structures is observed to be dependent on the radiation field's 

strength. 

Noncommensurate Results 

As the crossing angle was increased to 13. 34 degrees (inside the 

sairq;>le cell) , the fonned fringe pattern had a period, d=2. lum, which 

is inconunensurate with the equilibrium phase (Figure 28). At this 

crossing angle, the radiation fields force the microspheres to align 

in the fashion shown in Figure 29a. 'Ihe produced self scattering 

pattern from this aligrnnent is given in Figure 29b. 'Ihis pattern 

shows that the Bragg spots produced from the main density modes' 

scattering move inside the Debye~sherrer ring, and that the scattering 

from the enslaved density modes is weak COITpared to that observed for 

the conunensurate case, an indication of loss of correlation between 

adjacent rows at this crossing angle. 

'Ihe distribution of the microspheres in the periodic wells is 

plotted in Figures 30a for an input power of 42mW. An increase in the 

input power localizes the spheres to the minima of the applied poten

tial. 'Ihe density distribution along these potential minima is 

demonstrated in Figures 30b. 'Ihese figures are obtained by averaging 

over 20 frames for each input power considered. 

Using the positions files the pair correlation functions are 

constructed (Figures 31 to 33). At the :rniniltlum applied power (42mW, 

Figure 3la) , the pair correlation function, g(r) , exhibits a maximum 
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a) Microspheres Alinement Along the High Intensity · 
Regions of the Fringe Pattern. 

b) Self Scattering Pattern of Structure Shown 
Above. 

Figure 29. Particles Alinement at Fringe Period of 
2.2um (a) and the Produced Self Scat
tering Pattern (b). 
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at a radial distance of 2. 2mn; the existence of other maxima at 3. 8mn 

and about 6mn are not so well defined. The 2D correlation function at 

this power (Figure 32b) displays the existence of some oriental as 

well as translational order. However, at the higher input powers ( 64 

and 165mW) the existence of any induced order, beside the alignment 

along the high intensity regions, is not well defined through the 

correlation functions. An analysis of the distribution of the density 

along the fringes is constructed and given in Figures 34 to 36. The 

existence of some localization around particular positions is best 

seen at input powers of 42mW and 165mW (Figures 34 and 36) . At the 

other powers it is ha.rd to distinguishe the positions where 

the density is maxi.mum. 

The effect of the applied field's power on localizing the spheres 

in the high intensity regions is measured through the deviation around 

a mean position along the direction of the selected fringe periods, 

such data is presented in Table III. In this table it is obse:i:::ved 

that the calculated standard deviation, of the mean x-position in each 

fringe period, decreased as the input power increased. The loss of 

correlation at large distances is indicated by the systematic increase 

in the deviation as the successive fringes are considered in Table 

III. The highest interdependence at this crossing angle occurs for 

particles that are within the same fringe position, as demonstrated by 

the curves shown in the lower boxes of Figures 34 to 36. 

As the crossing angle was made even smaller (8.8 degrees), the 

obtained of fringe period 3. 3mn was larger than the average particle 

separation in the equilibritnn phase (Figure 37) by a factor of about 

1. 5. As the stationary sinusoidal intensity fringe pattenl is applied 



TABIE III 

ANALYSIS OF 2-D PAIR (X)RREIAT!ON 
FUNCTIONS FOR d=2.2um 

Input Power Fringe Positions Meal1xla 
(mW) (d/2) 

---------------~~-

42 -1 1 0 

42 1 3 1.8 

3 5 3.77 

65 -1 1 0 

1 3 1.9 

3 5 3.85 

165 -1 1 0 

1 3 1.81 

3 5 3.77 

S~a 

.266 

.283 

.298 

.223 

.241 

.252 

.226 

.231 

.257 

Mearlx = mean x position of the particles in the given fringe period 

St.d,c = standard deviation around the x position of each fringe. 

a = diameter of a single particle. 
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the response of the interacting spheres to this external field is 

demonstrated in Figure 38a. The self scattering produced from this is 

given in Figure 38b. These two figures show that at this fringe 

separation , the interation between the microspheres causes them to 

line up at high as well as the low intensity regions. This actually 

leads to a loss of correlation between the adjacent rows at low input 

powers. This behavior is demonstrated. by plotting the positions files 

of 20 real space snap-shots, and the distribution of the particles' 

density along the potential's periods (Figures 39 and 40). At the low 

input powers (42mW) the density of the particles along the high 

intensity regions appears to be the same as in the low intensity 

regions (Figure 39b). As the laser's power was increased. to 161mW, 

the density function showed. well defined. peaks (Figure 40b), an 

indication of the localization of the spheres along the applied. 

potential's minima. 

The corresponding pair correlation functions are given in Figures 

41 through 43. In all of these figures is hard to distinguish the 

existence of well defined. order at the applied. powers. Analysis of 

the density distribution (Figures 44 to 46) at 42, 86 and 16lmW input 

powers roanif est the dependence of the local freezing at large fringe 

periods on the applied. external field's strength. The localization of 

the spheres along the intensity maxima is shown by a decrease in the 

standard deviation around the mean of the particles' positions in each 

fringe (Table IV) as the input power increased.. 

The results obtained. from this two-dimensional analysis are 

summarized. in Table V. To be noticed is that the density at all 

crossing angles and at all input powers stayed. constant within 



ANALYSIS OF 2-D PAIR CORRELATION 
FUNCTIONS FOR d=3. 3um 

Input Power Fringe Positions Meal'lx/a 

(IDW) (d/2) 

42 -1 1 0 

42 1 3 2.96 

42 -1 -3 -2.96 

86 -1 1 0 

86 1 3 3.15 

86 3 5 -3.19 

161 -1 1 0 

161 1 3 2.90 

161 3 5 -2.95 

- 92 

S~a 

.925 

.858 

.854 

.979 

.935 

.919 

.851 

.782 

.779 

~ = mean x-position of the particles in the given fringe period 

S~ = standard deviation around the x-position of each fringe. 

a = diameter of single particle. 



d(um) 

a(um) 

PcMer 
(mW) 

22 

42 

65 

86 

111 

135 

161 

182 

TABIE V 

SUMMARY OF 'IBE 'Iw::> Dil1ENSIONAL ANALYSIS 

Commensurate 
Monolayer 

1.85 

2.19 

Non Cormnensurate 
Monolayer 

2.1 

2.08 

Density cxio11;m2) 
Single rouble Single rouble 

Beam Beam Beam Beam 

1.95 1.95 

1.93 1.93 1.95 1.95 

1.91 1.91 1.95 1.95 

1.90 1.90 1.95 1.95 

1.90 1.90 1.96 1.96 

1.91 1.91 1.95 1.95 

1.91 1.91 1.95 1.95 

1.95 1.95 

Non Commensurate 
Mono layer 

3.31 

2.11 

Single 
Beam 

1.96 

1.96 

1.98 

1.96 

1.96 

1.96 

1.97 

1.96 

rouble 
Beam 

1.96 

1.96 

1.98 

1.96 

1.96 

1.97 

1.97 

1.96 

93 



a) Alinement of the l.07um microspheres Along 
the High Intensity Regions of the Fringe 
Pattern at Fringe Period of 3.3um. 

b) Self Scattering Pattern From the Struc
ture Shown Above. 

Figure 38. Particles Alinement at Fringe 
Period of 3.3um (a) and the 
Produced Self Scattering 
Pattern. 
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experimental error of 5%. In all of the above analysis, when one of 

the write beams was blocked the system relaxes back to an amorphous 

phase with the same density as we started with. 

'Ihree-Dbnensional Analysis 

Cell gap regions containing more than a single layer amorphous 

equilibrium phase were subjected to the radiation forces created from 

the crossing of the two mutually coherent laser beams. In all these 

cases it is observed that the longitudinal carrponent of the radiation 

field pushes the suspended polystyrene spheres downstream in the 

direction of the beam propagation. Once these spheres near the cell 

boundazy wall (front glass plate), they are repelled by the similarly 

charged wall. This forces the spheres to fonn a first layer near the 

bounding plate of the sample cell. The particles lining up behind 

this layer start competing with the spheres that present in it, for a 

least energetic state. This process eventually causes the micro

spheres in the first layer to expend outward leaving space for some of 

those in the second layer to end up in the same layer. The fact that 

the beam's intensity profile has a Gaussian distribution means that 

the particles near the beam's center experience a larger force than 

those located at its edges. This in turn causes the regions away from 

the center of the crossed beams to be multilayered when those near the 

center may be forced to line up in a rnonolayer. The transfo:rnation to 

a monolayer and the.area occupied by this single layer depend on the 

laser input power, start up phase and radiation exposure time. 

A pictorial demonstration of the evolution of a forced monolayer 

is given by Figure 4 7. The first snap-shot of this figure was taken 



a) Multilayer at P=22mW · b) Multilayer at P=65mW 

c) Monolayer at P=l6lmW d) Monolayer at P=l82mW 

Figure 47. Transformation From a Multilayer Region (a) to a 
Monolayer region (a) for the Crossed Beams Case 
(d=l.85um) as a Function of the Laser Input Power. 
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when a multilayer region was first exposed to the crossing of two 

laser beams. careful examination of this region reveals the exis

tence of a second layer beside the focused layer. The corrpetition to 

line up near the glass plate is demonstrated in Figure 4 7b and the · 

final molayer is given in parts c and d of the same figure. The same 

results are also obtained by increasing the radiation field strength 

as demonstrated by Figure 48. In this case a multilayer region was 

exposed to a single beam illtnni.nation (Figure 48a)and as the laser's 

power was increased the forced monolayer region was produced (Figure 

48b). In this case (single beam illtnnination) the input pc:Mer re

quired to cause the monolayer transfonnation was about twice as much 

as that observed for the crossed beams case. Even so, particles from 

the bakcstream are observed to hop in the monolayer region. 

The following discussion will be devoted to the effect of the 

externally applied potential on the local order of these multilayer 

equilibrium regions. 

Cormnensurate Structure 

When the equilibrium phase shown in Figure 47a was exposed to the 

potential wells, produced from crossing the laser's beams at an angle 

of 15.l degrees (d=l.85um), the system lined up in a hexagonal closed 

packed structure (HCP) similar to connnensurate monolayer case. At 

this connnensurate crossing angle low input powers ( <60mW) particles 

line up in the high intensity regions as expected. However, the 

strength of their thennal energy at these low powers prevents them 

from being well localized in the intensity wells, such ·that they hop 

from one intensity maxima to another. The particles were also 



a) Multilayer at P= 42mW 

b) Monolayer at P=l35mW. 

Figure 48. Transformation from a Multilayer 
at Single Beam Illumination (a) 
to a Monolayer (b) as the Power 
of the Single Beam is Increased. 

106 



107 

observed to have a random hoping from one layer to the next layer in 

the same or the adjacent intensity wells (Figure 47b). As the laser's 

power increased above 111.mW, the radiation force restricts the par

ticles' movement along the high intensity regions, thus making them 

stabilize within the potential wells as well as in a monolayered 

system. 

The analysis for the regions discussed above is considered for 

powers ranging from 86mW to 16lmW. Lower input powers are not 

considered due to the persistence of the second layer in this sample. 

At 86mW input power the forced monolayer developed at the center of 

the sinusiodal standing wave intensity pattern. The 2D equilibritnn 

phase of this forced amorphous monolayer (Figure 49) had a density of 

18xlo10 /m2 with the average particle separation of about 2. ltnn. A 

plot of the position files when the two beams where crossed at this 

power is given in Figure 50a. It is apparent from this figure that 

the microspheres are well localized within the fringes and that there 

is correlation between adjacent wells. The correlation functions at 

this power (Figure 51) show well defined order. The pair correlation 

function (g(r)) has well defined peaks at radial distances of 2a, 3.Sa 

and 4.la (Figure Sla). The 20 function (Figure 5lb) shCMS that the 

short ranged induced monolayer has a HCP structure with the lattice 

constant of 2.ltnn. The density of the system at this power increased 

by 12% from the equilibritnn phase. This density change makes it hard 

to establish if the freezing is due to the externally applied 

potential or if its a result of the increase in density. The analysis 

of the 20 function is given by the distribution graph shown in Figure 

52 where the induced order seems to extend for distances up to 28a, 
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where a is the diameter of a sphere. This figure does also show a 

decrease in the correlation at large distances as evidenced by the 

increase in the FWHM of the peaks. 

As the input power was increased to 135mW, the particles order 

becomes more pronounced. This is confirmed through the correlation 

functions plots (Figure 53) and the density distribution function 

along the fringes of the 20 correlation function (Figure 54) • 

As the external field's strength is even made higher ( 161.mW) , The 

the 20 correlation function (Figure 55b) shows a string like behavior 

where the probability distribution of the spheres along one of the 

fringes is equally likely. The analysis of the density distribution 

along the fringes of the 20 function reveals the existence of some 

correlation at the nearest neighbors distance, especially along the 

same fringe period. This behavior is not well understood, it is 

possible that at this power we start overheating the radiation region 

leading to a convection. The density distribution along the fringes 

of the 20 correlation function is given in Figure 56. 

In the above analysis it was observed that blocking one of the 

write beams causes the system to relax back to a monolayer amo:rphous 

phase. However, when both of the write beams were blocked the system 

went to the multilayer liquid phase. In the forced monolayer analysis 

the density of the analyzed regions changea by as much as 20% when 

input power is was 86 and 135mW. 

Noncommensurate Results 

When multilayer regions were exposed to the periodic radiation 

fields, with periods were larger than that used for the commensurate 
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case, it is observed that there existed a transfonnation to a mono

layered system. 'Ihis forced transition seems to be dependent on the 

fields strength, the radiation exposure time and position of the par

ticles in the field's Gaussian distribution, as was observed in the 

corrnnensurate case. 

For the crossing angle of 12.13 degrees, or the equivalent fringe 

period of 2.3um, the multilayered am01:phous phase began to compete to 

fom. molayered reg"ions at input powers as lOVl as 22mW (Figure 57). 

The depletion of the forced monolayer for the sample used in this 

analysis (which is different than the previous sample used in the com

mensurate analysis) was reached at 16lmW. The distribution of the 

partictles' positions and their density distribution in the fringes, 

for the given period of 2.3um and input power of 86mW, are given in 

Figure 58. The pair correlation functions for this beam separation at 

input powers of 86, 111 and 182mW are given in Figures 59 to 61. 

At 86mW input power, starting with a three dimensional region of 

the sample cell, it is observed that the radiation pressure forces 

cause the system to fonn a monolayered amo:rphous phase with some of 

the spheres hopping back and forth from this monolayer. As the beams 

are crossed at this power the organization of the system is shown 

through the pair correlation functions given in Figure 59. The 2D 

function demonstrates a distorted HCP Structure, where the average 

separation between neighboring centers of each cluster along the 

fringes (y-direction in Figure 59) is smaller than those between 

adjacent fringes by a factor of . 887. The change of density from the 

amo:rphous phase to the crystalline phase in this case is 23% (Table 

VI). 
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TABLE VI 

ANALYSIS OF 2-D PAIR CORREIATION 
FUNCTIONS FOR MULTIIAYER REGIONS 

-----·--- ·----- ---------------
Fringe Period PcMer Positions Mean standard deviation 

(l0-6m) (mW) (d/2) xja STD/a 
------------------- ---------------------

1.85 86 -1 1 0 .092 
1.85 86 1 3 1.62 .121 
1.85 86 3 5 3.35 .126 

--------- --------- ----
1.85 161 -1 1 0 .099 
1.85 161 1 3 1.72 .111 
1.85 161 3 5 3.85 .119 

2.34 86 -1 1 0 .235 
2.34 86 1 3 1.72 .271 
2.34 86 3 5 2.93 .358 

-----------------------------------------------------
2.34 111 -1 1 0 .222 
2.34 111 1 3 1.95 .269 
2.34 111 3 5 3.05 .290 

2.34 182 -1 1 0 .185 
2.34 182 1 3 2.08 .191 
2.34 182 3 5 4.22 .199 

---------------------------------------------------------------
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a) Multilayer Alinement of Microspheres 
at Noncommensurate Fringe Period of 
2.3um and Laser Power of 22rnW. 

b) Forced Monolayer at Fringe Period of 

Figure 57. Alinernent of l.07urn Microspheres in 
the High Intensity Regions of 
Standing Fringe Pattern with 
Fringe Period of 2.3urn and at 
Input Power of 22mW (a) and 65mW 
(b). 
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For those input powers higher than 86mW, it is noted that the 

equilibrium phase ,single beam illumination, stays as a monolayered 

amorphous phase. Thus at these powers the analysis is considered as 

being carried on an amorphous single layer phase, but with the density 

of the equilibrium phase changing as the beams get crossed. 

The arrangement of the microspheres as the beams are crossed at 

lllmW power is demonstrated by the correlation functions in Figure 

60. The ID function, g (r) , shows a well defined peak at r=l. 83um and 

a broader peak at r=3. 45um. These peaks manifest the correlation 

between the charged spheres at these radii. 'Ihis interdependence is 

more apparent with the 20 function, where it is observed that the 

correlation between the particles in the same fringe is strongest. 

There seems to be some correlation between adjacent fringes but is 

much less than that observed for lower input powers. 'Ihis correlation 

decreases rapidly for distances greater than one fringe separation. 

The fonned structure at this input power seems to be HCP with a 

lattice constant of 1. 83um. As the input power is increased (>lllmW) , 

the particles become more localized in their fringes as is displayed 

by the 2D functions at 182mW (Figure 61) • However, the correlation 

between adjacent rows at these powers is reduced, ma.king the 

interdependence between the polyballs short ranged, as manifested by 

the string like distribution of the particles' positions. The loss of 

orientational correlation at these powers is not well understood. 

The average density distribution of the 20 functions along the 

different fringe periods are given in Figures 62 to 64. These figures 

show how the correlation between adjacent wells starts developing as 

the applied field's strength is increased (Figure 62) and than starts 
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Figure 62. Normalized Average Density Dis
tribution Along the Fringes of 
the 2D Correlation Function 
Shown in Figure 59b. 
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decreasing at input pc:Mers larger than 135mW (Figure 64) • Table VI is 

constructed from the data presented in the density distribution func

tions and is made to demonstrate how the microspheres get localized 

within the wells. 

Increasing the fringe period to 3.34um (crossing angle of 8.38 

degrees) caused the particles to line up in the fringes as shown in 

Figure 65a. In this case the light forces push the particles in the 

high intensity regions, but due to the large period of the fringe 

pattern and the Coularnbic interaction between the microspheres some 

particles are forced to the low intensity regions. T.his kind of 

arrangement leads to loss of correlation between adjacent rows at weak 

radiation field's strength. The diffraction pattern produced from 

such structures is shown in Figure 65b, where the diffraction from the 

fundamental density modes (those directly excited by the crossed 

beams) is obsex:ved inside the Debye-Sherrer ring. lhe diffraction 

from the enslaved modes are not as well defined as in the commensurate 

structure case. The distribution of the microspheres positions for 

this fringe period and at input power of 86mW is shown in Figure 66a 

along with the density along the fringes (Figure 66b). 

lhe real space analysis of a multilayered region of the sample at 

this crossing angle is demonstrated through the pair correlation func

tions shown in Figures 67 through 70. As the power was increased to 

86mW the equilibrium state was transfonned corrpletely to a mono

layered amo:rphous phase as seen by the correlation functions shown in 

Figure 67. lhe crossing of the beams in this case introduced some 

orientational order as can be seen by the 2D function in Figure 69b. 

The orientational order in this case is mainly along the fringes, even 



a) Particles Alinement Along the High Intensity 
Regions. 

b) Self Scattering Pattern. 

Figure 65. The Alinement of the Microspheres at 
Fringe Period of 3.34um (a) and 
the Produced Self Scattering Pat
tern at this Fringe Period and 
Laser Power of lllmW. 
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though it is not well defined due to the masking introduced by the 5% 

number of dtnnbbells present in this region. lhe crossed beam density 

at this input power increased by 10% from the equilibrium case (Table 

VII). lhe orientational order becomes more pronounced for the input 

powers higher than 86mW. At 111.mW the 2D correlation function (Figure 

69b} shows the existence of some interdependence between particles in 

adjacent wells. lhis correlation is made more pronounced for laser's 

power of 182mW demonstrated in Figures 70b. lhe density of the 

analyzed regions varied as a function of the radiation field exposure 

time and the laser's input power (Table VII). lhe density for at 65mW 

was .12 and then it changed to .143 at 182mW, a change of 40%. When 

one of the write beams, at any input power, was blocked it is obseJ::Ved 

that the density of the analyzed regions decreased by as much as 15% 

from the crossed beam situation. 

lhe average density distribution of the 2D functions is shown in 

Figures 71 to 73. lhese Figures demonstrate that the induced order in 

the suspension is dependent on the lasers applied power. An analysis 

of the localization of the spheres along the fringes as a function of 

laser's input power is given in Table VI. 

Scattered Intensity Study 

lhe magnitude of the scattered intensity fonn the main density 

modes (modes directly excited by the crossing of the two laser beams} 

is studied as a function of input power in the static case. lhese 

modes correspond to the horizontal intensity maxima passing through 

the main beam positions shown in Figures 17 and 65. lhese are a 

product of particles' alignment in the high intensity regions of the 
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TABIE VII 

ANALYSIS OF THE MULTIIAYER REGIONS 

Incormnensurate Cormnensurate 
d=l.85um d=2.43um d=3.34um 

a(um) s D M c s D M c s D M C 

3.2 1.0 1.4 N N 

2.9 1.2 1.5 N N 

2.3 1.8 1.9 y N 

2.6 1.5 1.8 y N 

2.8 1.3 1.6 N N 

2.9 1.2 1.3 y N 

2.8 1.3 1.6 N N 

1.9 1.2 1.4 N N 

2.5 1.6 2.0 y N 

2.8 1.3 1.6 N N 

2.8 1.3 1.23 y N 

2.3 1.8 2.0 y y 

2.7 1.4 1.6 y N 

2.8 1.3 1.4 y N 

2.7 1.4 1.5 y y 

S = Single Beam Illumination 

D = Double Beam Illumination 

M = Monolayer in the single beam illumination 

c = string like behavior in the g(r) and density 

d = Fringe period 

a = average particle separation in the amorphous phase 
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Figure 71. Normalized Average Density Dis
tribution Along the Fringes of 
ZD Correlation Function Shown 
in Figure 68b. 
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Figure 72. Normalized Average Density Dis
tribution Along the Fringes 
of the 2D Pair Correlation 
Function Shown-in Figure 69b. 
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Figure 73. Normalized Average Density Dis
tribution Along the Fringes of 
the 2D Correlation Function 
Shown in Figure 70b. 
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fringe pattern. The magnitude of these maxima is detected with a pin 

diode positioned on the diffracted intensities such that the area of 

this diode is totally covered by the light from these spots. The 

reason behind this is to reduce the effect of stray light and 

intensity fluctuations reaching the diode. The average intensity is 

found by using the same procedure described in reference ( 10) . The 

pin diode's analog signal is fed to an A/D converter which digitizes 

the data and feeds it to the Apple IIe computer. The continuous 

reading and display of the data is done by using the weighted average 

VA= Evi1v(n)/Ew11 
n t\ 

= 2 w11(1-W)v(n) 
n 

(4-3) 

(4-4) 

V(n) = the nth data sample measured relative to the present time 

interval 

V(O) = current data measurement 

V(l) = Data measurement before V(O) 

V (n) = Data measurement taken before V (n-1) 

The weight factor Wn controls 'Which data reading has the largest 

contribution in the averaging process. When this factor is unity 

equation (4-3) takes the fonn of the standard average. For this study 

Wn is chosen to be .95 in order to weight the most recent reading 

the most. The fluctuations in the signal are given by the equation 

S={ (1-W) ['2:w11(D(n)) 2-( 2:w11(D(n)) 2 (1-W)]} ( 4-6) n n 

This running averaging gave minimized fluctuations and revealed 

any systematic drift in the signal. The intensity readings are 

displayed on a monitor and printed out after each 10 data points. 

Plots of input powers versus the intensity of the first order 

maxima are displayed in Figures 7 4. These results are obtained by 
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probing the gratings with a He-Ne laser and subtracting the background 

obtained by blocking the main argon ion laser. 'Ihe slopes of the 

least square linear fit line through the data points were found to 

l. 58 for the monolayer commensurate case ( d=l. 85urn) , and l. 59 for the 

multilayer nonconunensurate case (d=3. 34urn) • 'Ihus it seems that there 

is a 1.585 power dependence between the lasers input power and the 

scattered intensity from the fundamental density modes. 'Ihis result 

is in contradiction with Chowdhury's cubic power dependence (10), al

though when similar measurements were carried on noninteracting 

particles gave the same results as obtained by Chowdhury (10) meaning 

that our method was the same. When the error bars in the data were 

included the maximum slope obtained was 2 .1. 
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CHAPI'ER v 

MONTE c.ARI..O Sil1UIATIONS 

Introduction 

corrputer simulation "experiments" provide the opportunity for 

examining and following events at the level of individual particles, 

thus they have been used as a tool in characterizing the melting 

transition for a variety of model systems(21). Of these simulations 

the Monte Carlo (MC) and molecular dynamics (MD) describe accurately 

the liquid and solid phases and can be used to simulate multiple phase 

coexistence. '!he molecular dynamics method probes the microcanonical 

ensemble and furnishes dynamical infol'.:'Illation (21). '!he standard. MD 

method uses a system of N particles in a cell, held at constant 

volume. '!he particles' positions and velocities are identified by a 

set of coordinate {Xi} and {Vi}, which are found from Newton's 

equations of motion. 

Alternatively, the Monte Carlo method provides thennodynamic 

averages computed in the canonical enseroble(21). '!he conventional 

constant NVT MC method was selected for this study, for its slinplicity 

and its convenience in the computation of the spacial correlation 

functions. '!he aim behind this is to provide a model for the two

dimensional colloidal systems discussed in the previous ch.apter. '!his 

simulation sel:Ves as a means to test the effect of an externally ap

plied sinusoidal field on the local order of 2D systems. 
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Model Potential and Parameters 

'Ihe suspension of polystyrene spheres in water, causes the ion

izable groups to dissociate and the microspheres surf aces to become 

unifonnly charged with total charge Ze (24). 'Ihis results in repul

sion forces between the spheres which completely dominate the 

attractive Van der Waals force over the relevant range of particle 

separation (8) • 'Ihe repulsive interactions between particles in 

colloidal suspensions leads to a solid-liquid phase transition 

depending on the strength of interaction or density of the sample. As 

a result monodisperse suspensions of latex particles are perfect 

candidates for such studies. 

To control the range and strength of the repulsive interaction 

many of the experimental parameter could be varied. For example, the 

charge Z on the spheres increases with surface area and varies with 

surface properties, thus one could use spheres of different diameters 

(29). 'Ihere is also the possibility of varying the surface charge by 

using solvents with different dielectric constant (28). Experimental

ly, the above mentioned parameters are difficult to vary continuously 

over wide ranges. Changing the particle density and the excess ion 

concentration is the most convenient controllable experimental parame

ters. 'Ihe sa1 t concentration is measured in tenns of the number of 

moles per liter of molecular acid HCl or salt added to the solution, 

e.g. 11.Hcl. 'Ihis parameter will be used to control the interaction 

between paraticles. 

To theoretically describe this model, the dynamics of only the 

polystyrene spheres is considered. 'Ihe existence of many (at least Z) 

counterions per macroion and their rapid movement allows for the 



replacement of their discreteness by a continuous density. This 

charge density of counterions ,de, obeys Boltzman's equation, 

145 

dc(r) = q[e]~(-Bq[e]V) (5-1) 

where q= 1, V is the total electrostatic potential, B=l/kBT, 'e' is, 

the electronic charge and I1q is a nonnalization that fixes the 

overall ion density. Combining the above equation with Poisson's 

equation for a Coulomb potential, namely, 

div[E(r)] = 4-rr/c [c:\n + dcJ 
E(r) = -grad[V(r)] 

gives the Poisson-Boltzman's equation 

V(r) = 41'/c {c:\n(r) +~ q[e]~(-bq[e]V)} 

where E(r) is the electric field at point 'r', 'c' is the solvent 

dielectric constant; c:\n is the charge density on the polystyrene 

sphere. 

(5-2) 

(5-3) 

(5-4) 

'Ihis highly non-linear Boltzman-Poisson (BP) equation can be 

approximated by its linearized fonn, the De.bye-Huckel (DH) equation 

when the electrostatic potential differences are much smaller than 

the thennal energy (kBTe>>O). 'Ihe solution of the resulting DH 

approximation for the potential on each sphere of radius R is the 

Yuka.wa potential or screened Coulomb interaction (24), 

V(r) = z[e]e2kR(l+kR)-2e-kr/cr (5-5) 

k2 = 4"Tr e2 /ck.BT~ nef' (5-6) 

where I1q' s are the mean densities of each species, K is the inverse 

Debye screening length associated with the small ions. 'Ihe Bjer:rum 

length (A ) , which is the characteristic distance over which the 

Coulomb interaction for singly charged ions is cong;>arable to the ther

mal energy is defined as: 



~ = e2 /ck.BT ,...., 7A 

In the case of a single point charge the DH solution is, 

V(r) = z[e] e-kr;r 
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(5-7) 

(5-8) 

A comparison between equations ( 5-5) and ( 5-8) shows that the 

finite size of the spheres has the effect of increasing the prefactor 

of the interaction potential u0 by exp(2kR)/(l+kR) 2• 

'Ihis potential has a shape that is continuously vai:ying with the 

screening length (k). For small 'k' (k-->O) this potential is of the 

long range fonn (Coulomb potential) • However, for large 'k' the short 

range effects dominate leading to a nearly hard sphere fonn. '!he 

change in k depends on the salt concentration, adding salt increases 

the screening rate and allows controlling the interparticle strength. 

Wigner Seitz Unit Cell and Effective Charge 

'!he DH treatment of PB equation is valid only for small potential 

gradients, in the more general case it has been shown that the 

interaction can still be described by the Yukawa potential with a 

nomalized charged z* and salt concentration N* ( 17) • 

Following the procedures outlined by Cllaikin et al. (7, 17), the 

colloidal crystal is considered as a collection of cells surrounding 

each macroion. 'Ihese cells are constructed by taking the smallest 

volume enclosed by planes which are the perpendicular bisectors to the 

nearest neighboring polystyrene spheres, or what is known as the 

Weigner Seitz cells (WS) (17). Figure 75 shows a polyhedron ws cell 

for such system. such a unit cell contains all the infonnation needed 

to calculate the effective charge on the spheres. .Approximating the 

ws cell with a sphere of equal volume makes the calculations for the 



Source: S. Alexander, "Char8e TI.enornalization, 
Osnotic Pressure, arid Bulk Modulus Of 
Colloidal Crystals: Theory," Journal 
of Chemical Physics (19e4). 

Figure 75: Wi2ner Seitz Unit Cell For a 
BCC Crystal anc the Spherical 
WiGner Seitz Cell Used In 
Charce Renornalization Calcu~ 
lations. 
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needed parameters easier with no loss of generality. 'Ihe net charge 

inside this WS cell (charged sphere plus surrounding counter ions) is 

zero leading to a null surface electric field. Integrating the elect

ric field from the cells surface inward the potential was found to be 

smaller than the thennal energy for some small distance (17). 'Ihus CH 

is valid in for this region. Near the particles, the potential energy 

becomes dominant and the charge density varies far more rapidly than 

in the linearized approximation. However, since the counter ions are 

bound by more than kBT, they may be considered as part of an 

effective sphere 'Whith a reduced charge. '!his is analogous to 

replacing the nucleus and tightly bound core electrons of an atom by a 

single effective ionic charge. 'Ihrough the above argument, Chaikin et 

al (17) justified the use of the Yukawa potential given in equation 

(5-8) with Z replaced by z* and with the screening length k*-l 

given by the corresponding counterion concentration, 

k*-2 =411 z* e2d/ckBT (5-9) 

Note that in the above equation only zero salt concentration case is 

considered. 

Using the general form for the potential that solves the DH in 

spherical coordinates, 

V(r) = [Ae-kr + Bekr]/r + D (5-10) 

the constants A,B and D are found by using the boundary condition of 

zero potential (equation 5-10) and electric field (equation (5-3), at 

the cell's surface and the PB density equal to the density found from 

equation (5-2) at the particle surface. 'Ihe exact solution to the PB 

equation is calculated numerically by an iterative process where a 

charge density is chosen at the WS surface, this determines the total 
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charge inside a sphere an incremental radius smaller. Knowing the 

total charge Q(r) up to point r, the electric field the potential and 

the charge density are than calculated at the smaller radius ( 4) • 

'Ihis iterative process is repeated until the solution converges. 

In our experiments polystyrene spheres of 1. 07um diameter size are 

used, these particles have a charge packing area of 239A2 per charge 

group or 4 .184xl0-3 charge groups/A2 • Multiplying this surface 

density by the sphere's surface area it is found that the actual char

ge groups per sphere is l.5xlo6 • Using this data in the DH and BP 

algorithms Figures 76 and 77 were constructed. Figure 76 shows the 

effective charge z* versus the actual charge Z for a macroion of 

radius a=764 in a ws cell of radius R=2500 (corresponding to our 

concentration) for a zero salt concentration. At low charge z and 

z* are nearly equal. However, for an actual charge of l.5x106e, 

the effective charge shows saturation toward a value of 7800e. Using 

this effective charge value, the charge distribution of the m 

solution is plotted and compared to the exact PB distribution (Figure 

77) • In this figure it is observed that the nonlinear tenns in the PB 

equation bring considerably more protons in toward the charged sphere 

than would be expected fonn the m treatment, this reduces the 

potential so that DH is appropriate far from the charged sphere, but 

with a reduced or reno:r.malized effective charge. As a result of this 

analysis it is found that at zero salt concentration the effective 

charge is 7800e for the 1. 07um diameter polystyrene spheres. The 

effect of added electrolytes was found to cause an increase in z* 

(17) , but the change is small when s;z* is small, and is less than 

10% for s;z*=s (sis the total salt concentration). 
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Monte carlo Algorithm 

The standard Meropolis Monte carlo method was used for this study. 

In this method a single particle is displaced at random, thus 

producing a new configuration, c, from the old configuration, c. The 

configuration change causes the energy of the system to change by 

Eci-Ec, where Ee is the energy associated with configuration c 

and for particles interacting via the pairwise Yukawa potential this 

energy is given by: 

Ee= B exp(-krij)/rij , rij<rc 

= 0 

= 00 

B = ze2/ca 

' rij>rc 

, rij<a (5-11) 

(5-12) 

re is a critical radius beyond which the pairwise energy has negli

gible effect on the total configuration energy. In this analysis a is 

the particle radius and rc=7a. The energy difference, Ec1-EC1 

governs the relative probability of configurations through the Bolt

Zinan distribution. This probability is built into the MC trajecto:cy 

by a criterion for accepting and rejecting moves to new configurations 

(44). In particular, if Eci-Ec is negative or zero, the move is 

accepted. However, if this energy change is positive, a random number 

x between o and 1 is generated; and the move is accepted only if 

x<exp(-B(Eci-Ec)), B=l/KBT, otherwise the move to a new 

configuration in the next step is rejected. That is if: 

C(t)=C (5-13) 

then we will have, 
I 

C(t+l) = C when (5-14) 

and when Eci-Ec is greater than zero, we get 



C(t+l) = C' I 

= C I 

exp(-B(Eci-Ec))>X, 

exp((-BEci-Ec))<X 
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(5-15) 

'Ihis procedure is repeated at least four million times moving parti

cles at random, from o to a diameter's distance, for our systems to 

ensure equilibrium. 

The systems used in MC analyses consisted of 100 particles con

strained to two-dimensions in a rectangular boxs of fixed area (20.44a 

by 23. 67a and 20ax20a) • The advantage of using this small number of 

particles is in the computation time required for reaching the equi

librium state and other calculations. The MC density used in both 

boxes given above was chosen to be within the range of experimental 

densities discussed in the previous chapter, and similarly the number 

of particles used in the simulation is comparable to the average num

ber of particles used in the experimental analysis. The difference 

between this simulation and the experiments is that the latter repre

sents a grand canonical ensemble while the MC simulation represents a 

canonical ensemble. The disadvantage in the small number of parti

cles used in the simulation is that the transition is not sharp due to 

the boundary problems, but this is the reason behind the use of two 

box dimensions. The different box sizes were observed to cause a 

distortion in the final structures. 

The MC uses periodic boundary conditions, where a particle that is 

randomly moved outside the given box area is wrapped back to the other 

comer of the box. The effective charge used in the potential ampli

tude (equation (5-12)) calculation is taken as soooe, as found from 

the Alexander (17) saturation analyis discussed in the previous sec

tion. The MC algorithm. is shown in Appendix A. 
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Phase Transition Study 

The aim behind this study is to find the phases that are similar 

to the equilibrium phases observed in Chapter r.l for the interacting 

colloidal suspensions to serve as an overall check of our under-

standing. 

The crystal-liquid phase transition is observed by changing the 

unitless inverse screening length, k*a, which is dependent on the 

number of ions present in the solution as described by equation 

(5-6). * The values of k a used ranged from 10 to 1 for the 22ax22a 

box and 4 to 7 for the 20.44a by 23.67a box. Table VIII, shows the 

values of some of the parameters used in the simulation, such as the 

salt concentrations and the amplitudes corresponding to the given 

intensities. 

In all the runs the equilibrium was monitored by observing the 

rejection rate, the specific heat, the 1-D and 2-:D pair correlation 

functions to detect any phase transitions. It was observed that the 

disordered phases (liquid) reached equilibrium after 40000 MC steps. 

The ordered phases (crystalline) were in equilibrium at much lower MC 

steps ranging from 10000 to 30000. 

To estimate the local order, the center particle in the box, 

labeled by o, was chosen as the coordinate origin. The number of 

particles surrounding O was counted within a pre-determined annulus of 

.la width. That is to say the number of particles, n, within a ring 

(.la thick) was found. · The. whole procedure is repeated for other 

annulae for 2000 MC steps, and for the results being averaged. 

The translational (or 1-D) pair correlation function, g(r), is 

then given by: 
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TABLE VIII 

PARAMEI'ERS USED IN THE MC SIMUIATION 

------------------------------~--------------~-------------~--------

Crossed Beams 

Intensity (mW) 

17 
31 
47 
66 
82 

105 
122 

Potential .Amplitude 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Without Correction 

4.6 
8.3 

13.0 
18.0 
22.0 
28.0 
33.0 

k* = inverse screening length (m) 

a = particle's diameter 

n* = salt concentration 

d = fringe period 

corrected .Amplitude With 

d=l. 85um d=2. 2um d=3 . 3um 

3.2 
5.9 
8.9 

12.0 
16.0 
20.0 
23.0 

1.00 
4.00 
8.99 
16.0 
25.0 
36.0 
48.9 
63.9 
80.9 
100. 

3.6 
6.5 

10.0 
14.0 
17.0 
22.0 
26.0 

4.0 
7.5 

11.0 
16.0 
20.0 
25.0 
28.0 
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g(r) = d(r)/da = <n>/[lf d0(rj 2-ri2)) (5-16) 

where <> represents the total averaging over 2000rnc steps. 

The orientational (or 2-D) pair correlation function is found by 

taking the center particle and its nearest neighbors, than using these 

as reference particles for constructing particle correlation function 

as described in Chapter IV. That is the distribution of particles 

that are at distance ± from the reference particle as shown in Figure 

83. 

For both the 20ax20a and 20.44ax23.67a boxes, the high salt con

centration values (k*a>4.5) led to liquid structures as demonstrated 

by the particle positions, and the 1-D and 2-D pair correlation func

tions (Figures 78 to 80). In Figure 78 the (x,y) coordinates of the 

100 particles are plotted for k*a=5 and 7. These are distributed 

over the given area in a random way. It is clearly apparent that this 

system has no orientational nor translational order. The transla

tional pair correlation functions (Figure 79), g(r), shows a roaximum 

at :r=2a and fluctuates around one at large r values indicating that at 

high r values the local density d(r) approachs the bulk density of the 

liquid. The 2-D correlation functions (Figure 80) demonstrate that 

the probability of locating a particle is largest at 2a, is indepen

dent of the direction of r and decreases to the average particle 

density at large ± values. 

As the salt concentration decreased (k*a=4 and 3), the particles 

became localized around lattice points leading to crystalline phases 

(Figures 81 to 83). The observed crystalline structures for the 22a 

by 22a box had a distorted HCP lattice structure (Figures 83a and b), 

this is due to the effect of the box boundaries on the final order of 
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Figure 80. 2D Pair Correlation Functions (g(E)) for MC 
Simulation of 100 Interacting Particles in 
22aX22a and 23.67aX20.44a Box with the 
Inverse Screening Length k*a=S (a and b) 
and k*a=7 (c and d). 
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the particles. 'Ihese distorted structures are also rotated by 90 deg

rees from the undistorted HCP structures observed for the 20.44a by 

23.67a box (Figures 83b and d). 'Ihis shows the effect of the box size 

in the MC simulations on the observed structures. However, the tran

sition was not affected by the box sizes. 

'Ihis analysis shows that the phase transition from a disordered to 

* an ordered phase occurs at values of k a between 5 and 4, as seen by 

the ID pair correlation functions in Figures 79a and b and 82a and b, 

for a system of 100 particles interacting via a screened Coulomb 

potential in a 20ax20a or 20.44ax23.67a box. 

Externally Applied Potential 

'Ihe effect of the externally applied potential is introduced 

through the additional particle potential corresponding to the 

periodic radiation discussed in Chapter DI, 

V(r) =A cos(2 x/d) (5-17) 

where d is the fringe period and A is given by equation (2-16). 'Ihis 

constant (A) allows us to make the simulation ccnrparable to real expe

rimental values. 'Ihe energy of the system when the external potential 

is applied is given as the sum of equations (5-20) and (5-25), which 

is written as, 

Enew = Ee + V(r) (5-18) 

Both the depth (A) and the pried ( d) of the potential wells pre-

sented in equation (5-17) are varied in the simulation. Using these 

parameters (A and d) the effect of the external potential on the equi

librium phases at different salt concentrations was analyzed. 

'Ihe periods used in the 22ax22a box were l.la, 2.oa, 2.2a, and 
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4.4a. 'Ihese specific periods were chosen due to their divisibility by 

the box's length and their closeness to the actual periods used in the 

experiinental analysis. 'Ille particles in the 20ax23. 67a box were expo

sed to the external potential at periods of 1. 7a, 2.04a and 2.92a. 

'Ihese correspond to the periods used experiinentally of 1. 85um, 2. 2um 

and 3.3um. 'Ille unitless potential's amplitude (A) was varied continu

ously for all periods used from a value of 1 to 30, and in some cases 

nn.ich higher amplitudes were considered, up to 100. A comparison of 

these amplitudes to the intensity of the crossed laser beams used in 

Chapter IV was given previously in Table VIII. 

For the 20.44ax22.67a box, when the fluid phase shown in Figure 

80b was exposed to the sinusoidal potential of period 1. 7a ( correspon

ding to canunensurate period, d=b.cos(e) where b is the interparticle 

separation in the amorphous phase) the system started alining along 

the potential' s minima at low amplitudes, A, (Figure 84) • At ampli

tudes as low as 1 the particles themal energy was still large enough 

compared to the external field that the particles are observed not to 

be well localized within the potential wells (Figures 84a). 'Ihis 

effect is better seen through the average density distribution of the 

2D correlation function (Figure 85) at this field amplitude (A=l). 

'Ihis distribution function is constructed in the same manner as 

described in Chapter IV. An analysis of the localization of the 

particles along the potential's minima at this amplitude and others is 

given in Table IX. As the amplitude increased the localization of the 

particles along the minima of the applied potential became more pro

nounced and so did the interdependence between particles in adjacent 

potential wells, as evidenced by the appearance of well defined 



AmplitudejkT 

TABIE IX 

ANALYSIS OF 2-D PAIR CORREIATION 
FOR MC SIMUIATION AT d=l.713 

Fringe Positions Meailxla 

(d/2) 

-------------------------·~~-· 

1 -1 1 .016 

1 3 1.72 

3 5 3.44 

5 -1 1 .006 

1 3 1. 72 

3 5 3.42 

10 -1 1 0 

1 3 1.71 

3 5 3.42 

30 -1 1 0 

1 3 1.70 

3 5 3.41 

.336 

.354 

.382 

.157 

.182 

.173 

.108 

.120 

.120 

.060 

.067 

.068 

MeaDx= mean x position of the particles in the given fringe period. 

S~= standard deviation around the mean x-position of each fringe. 

a = diameter of a single particle. 
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d=l.713a and Amplitude A/kBT= l(a), S(b), lO(c) 
and 30 (d). 
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clusters around lattice points in the 2D correlation functions (Figure 

84b, c and d) • An analyis of these clusters is given through the 

average density distribution plots shown in Figures 86, 87 and 88 for 

the unitless amplitudes of 5, 10, and 30. To be noticed in this 

analysis is the string like behavior as the particles get more local

ized within the potential wells or as the field amplitude increases. 

This is believed to be due to restricting the particles' movement 

along the y-direction as the potential wells become deeper (increasing 

A) together with the effect of defects present in the periodic minima 

of the potential as seen in Figure 89. 

As the potential period was increased to 2.02a the particle aline

ment in the potential wells started to develop at low amplitudes as 

evidenced from the 2D correlation functions given in Figure 90. This 

figure demonstrates the effect of the applied potential amplitude on 

the induced ordering of the amorphous equilibrium phase to a slightly 

distorted HCP lattice. T.he analysis of the 2D correlation function is 

given in Figures 91 to 94. T.hese average density distribution plots 

show the evolution of the correlation between adjacent potential wells 

as the field strength is increased. T.he formation of well defined 

peaks for the different boxes (d/2 to 3d/2 and 3d/2 to 5d/2) show 

induced correlation between the adjacent wells as the field stength is 

increased. T.he analyis of the particles localization in the wells at 

this fringe period (d=2.02a) and the different amplitudes is given in 

Table X. 

T.he effect of the external potential at fringe period of 2.92a on 

the local structure of the equilibrium phase (Figure 80b) is shown 

through the MC position files given in Figure 95. At low field 



TABLE X 

ANALYSIS OF 2-D PAIR <X>RREI.ATION 
FOR MC SlMUI.ATION AT d=2. 02 
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-~---~~--------------~--------------------------------------~-

Amplitude/kl' Fringe Positions Meailxf a Stdxf a 

(d/2) 

1 -1 l .100 .336 

1 3 1.98 .329 

3 5 4.00 .354 

5 -1 1 .070 .185 

1 3 1.97 .195 

3 5 3.97 .190 

10 -1 1 0 .111 

1 3 2.00 .124 

3 5 4.00 .135 

30 -1 1 0 .074 

1 3 2.00 .079 

3 5 4.00 .076 



70 

:>-, 
.µ 
•.-1 

CJ) 

i:: 
Q) 

~ 

H 
Q) 

...0 s 
;::l 
:z 
Q) 
Q) 

bC 
C\j 
H 
Q) 

:> 
<e: 

0 

14 

12 :>-< 
E-< 
H 
Ul 
:z 10 
µ.i 
~ 

p::; 8' 
µ.i 
p::i 
;;;:: 
~ 6 ' :z 
i::r.1 
0 
;;:] 4 
µ.i 

~ 2 

0 
-8 -4 -2 0 2 4 

DELTA Y 

a) -d/2 to d/2 b) d/2 to 3d/2 

14 

o:T---'r-....... ~--~--~y-...... .---.-~ .... 
-8 -6 -4 :2 0 2 -4 6 8 

DELTA Y 

c) 3d/2 to Sd/2 

6 

Figure 86. Average Number Density Distribution along the 
Fringes of the 2D Pair Correlation Function 
Shown in Figure 85a. 

170 

8 



70 15 

.. 
J 

~ . 

' ~ 

. 

~' I } I 
,.., 

~6 ~4 -2 0 2 4 -6 
DELATA Y 

8 - . " 0-s -6 -4 -2- 0 2 4 0 
DELTA Y 

a) ·-d/2 to d/2 · b) d/2 to 3d/2 

1 -.J 

2 

. 

. 

J 

0 ~ \ l ~j " T- _, . .. 
-8 -6 -4 -2 0 2 4 6 8 

c) 3d/2 to Sd/2 

Figure 87. Average Number Density Distribution along 
the Fringes of the 2D Pair Correlation 
Function Shown in Figure 85b.. 

171 

~ 

8 



7 

·><6 
E-1 
H 

~5 
w 
i::i 

rd+ 
w 
P:i 

$3. 
z 
~ 

~ 
w10 ::> .. ·<r: 

20 

';>-< 
E-1 
~15 . 
z 
w ; 
i::i 

~ 

~10 
s z 
w 

~ 5 
w 
~ 

0 ,J ~ 
i 11 J \ I l ' 

8 -6 -'4 .: 2 -o i 
DELTA Y 

a) -d/2 to d/2 b) d/2 to 3d/2 

20 

. ~ 

0 \ J J I \ . _. 
-8 -6 -4 -2 0 2 4 6 8 

DELTA Y 

c) 3d/2 to Sd/2 

4 

Figure 88. Average Number Density Distribution along the 
Fringes of the 2D Piar Correlation Function 
Shown in Figure 85c. 

6A 

172 

.. 

\ 
~-



70 

>-< 
E-< 
~1 
z 
µ.) 
~ 

~ 

~10 ...,.. 
...... p 
z 
µ.) 
c..:: 5 
~ 
µ.) 

~ 
0 

-8 -6 -4 -2 0 2 
DELTA Y 

-8 -6 -2 0 "2 4 
DELTA Y 

a) -d/2 to d/2 b) d/2 to 3d/2 

20 

6 8 

c) 3d/2 to 5d/2 

Figure 89. Average Number Density Distribution along the 
Fringes of the 2D Pair Correlation Function 
Shown in Figure 85J. 

173 



·6 

4 

.2 

-6 

-8 
"t-.Llllll~~~p..-.~-.X:..:.Jlii~oSl!IL.!..11 

~8 -6 -4 -2 0 2 
DELTA-X 

6 

4 

llj 2 

~ 
~ 0 

-2 

-4· 

-6 

a) A=l. 

4 6 8 

-8 ...__.:..-.... -"411<--...:t--~ .......... --..... ~ 

llj 
~ 
s3 
~ 

llj 

~ 
~ 

8 

6 

4 

2 

0 

-2 

-4 

-6 

' 
-8 

-8 

8 
~ 

6 • 
4 . ' 
2 . 
0 . 

-2 

-4 ' 
-6 

-8 

174 

DELTA-X 

b) A=S. 

• j • I ~ 
' • ' I ' 

I 

' • 

j 
~ . 

t 'I l 
' I • I 

l f • 
. 

I l • 

t • 
I 

' I f ' . . 
• 

' 
j 

• I 

l 

I 
I • j 

~ 

-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 e 
DELTA-X DELTA-X 

c) A=lO. d) A=30. 

Figure 90. 2D Pair Correlation Functions for MC Simulation of 
100 Particles in a 20.44aX23.67a Box, Interacting 
via a Screened Coulomb Potential (k*a=S) and in 
the Presence of a Sinusoidal Potential with Period 
d=2.02a and Aplitude A/kBT= l(a), S(b), lO(c) and 
30 (d). 



i:Ll , 

~20 
i:Ll 
~10 

O+;---.r"-_,.~.....,.~~-"-r--'Cw-~T"-"--t -4 ·-2 '0 2 
DELTA Y 

a) -d/2 to d/2 

0 
-'8 

DELTA Y 

c) 3d/2 to 5d/2 

b) d/2 to 3d/2 

Figure 91. ~verage Number Density Distribution along t~e 
· Fringes of the 2D Pair Correlation Function 

Shown in Figure 90a. 

175 

·8 



70 

60 
:>-< 
E-4 
H so 00 
z 
[:cl 
Cl 40 
P:: 
[:cl 
r:Q 30 ::<:: 
:::::> z 
[:cl 20 
(,!) 

~ 10 [:cl 
:> 
<:: 

0 

-8 -6 -4 

a) 

20 

:>-< 
E-4 15 H 
00 
z 
[:cl 

Cl 

P:: 10 [:cl 
r:Q 

$ 
z 
[:cl 

5 (,!) 

~ 
[:cl 
:> 
<:: 

0 

-2 0 2 ·4 6 8 -8 -6 -4 
DELTA Y 

-d/2 to d/2 b) 

0 

-8 -& -4 -2 0 2 4 6 
DELTA Y 

c) 3d/2 to Sd/2 

176 

2 4 6 
DELTA Y 

d/2 to3d/2 

Figure 92. Average Number Density Distribution along the 
Fringes of the 2D Pair Correlation Function 
Shown in Figure 90b. 



70 

>< 60 
E-4 
1-1 
Cf.l 50 z 
w 
A 

~ 40 
w 
i:Q s 30 
z 
w 20 c..? 

~ 
w 10 :> «: 

0 

-8 

177 

20 

>< 
E-4 15 1-1 
Cf.l 
z 
w 
A 

~ 10 w 
i:Q s 
z 
w 5 c..? 

~ 
w 
:> 
<i:: 

0 

-6 -4 -2 0 2 4 6 8 -8 

DELTA Y DELTA y 

a) -d/2 to d/2 b) d/2 to 3d/2 

20 

>< 
E-4 
1-1 
Cf.l 
z 15 w 
Q 

~ 
r.r:i 
i:Q s 10 
z 
µ:: 
c.!:l 

~ 
µ:: 5 
:> 
<i:: 

0 
-8 -6 -4 -2 0 2 4 6 8 

DELTA Y 

c) 3d/2 to 5d/2 

Figure 93. Average Number Density Distribution along the 
Fringe of the 2D Pair Correlation Function 
Shown in Figure 90c. 



60 
>< 
E-1 
H 50 
U) 

z 
~ 

40 0 

P:i 
~ 
i::::i 

30 s z 
~ 20 
(.!) 

~ 
~ 
::> 
< 

-6 -4 -2 0 2 4 
DELTA Y 

a) -d/2 to d/2 

-8 -6 

>< 
E-1 
H 
U) 

z 
~ 
0 

P:i 
~ 
i:t:! s z 
~ 
(.!) 

~ 
~ 
::> 
< 

6 8 

20 

15 . 

J 
. 

~ 
10 

5 . 
\ ; 

0 \1 
. • . . 

-8 -6 -4 -2 0 2 
DELTA Y 

.. 
. 

b) d/2 to 3d/2 

-4 -2 0 2 
DELTA Y 

c) 3d/2 to 5d/2 

4 6 8 

-y 

4 

Figure 94. Average Number Density Distribution along thE 
Fringes of the 2D Pair Correlation Function 
Shown in Figure 90d. 

178 

J \ 
. 

6 8 



221 -
20.. 

• • • • • • • 
18 ,f .. • • • • 
16 .• • • • 

• • 

179 

2"""!'"-------------~--~---------, • • • 
2 

1 
1 

• 

.. • • 
• 

• • 

• 
• • • 

• • 
• • 

• 
z 14. 1 

8 12.' I • 
• 

• 
• • 

• 

• • • • • • • H 
H 
ti) 

0 
i:i.. 

:>-< 

• r 
10 '• • .. • .. 

8 ·' • • • • • • .. 
6 • • 
4 • • .. 
2 ... • • 

• .. 
• • 

• .. 
6 

4 • 
2 

• 

• 

• • 
• 

• 
.. 

• 
• 

• • 

• 
• .. 

• • • .. .. 
• .. 

• 
• .. 

o o z. ~ 6. .~ 10 12 14 1& lg 2U 
X POSITION 

• 
0 2 4· 6· 8 10'12 1 

X POSITION 

• 
18 20' 

a) A=l b) A=5 

22.,_. _________________________ _, 

2z . ...--------------------------~ 
20 
18 

16 
z 14 
0 
H 
H 
H 
ti) 

0 
i:i.. 

:>-< 

12 
10 

8 

6 
4 

2 

• • 
• .. • • • • • • • .. • • .. • • .. • 
• • • .. • • .. 

• • • 

• • • 
• 

• • • • 
• .. .. • 

• 
• • • • 

20. 

18 

16 
z 14 
0 
H 
H 
H 
ti) 

0 
i:i... 

12. 

10 
8 

6 

4 
2 

• 

• 

• 
• 

• 
• 
• 
• 

• • 

• 
• • .. • 
• 
• • 
• • 
• 

• 
• 

• • 
• • • 
• .. 

• • • 
• • • • 
• • • • 

• 
• 

• • • • 
• • • 

• 
• • • • 

OO,+-~-:r4..._r-'.,_~-:-i~~~~~~ 

c) A=20 d) A=30 

Figure 95. Position Files for MC Simulation of 100 Particles in 
a 20.44aX23.67a Box, Interacting via a Screened 
Coulomb Potential (k*a=5) and in the Presence of a 
Sinusoidal Potential (d=2.92um) with Unitless Amp
litude of: a) 1, b) 5, c) 20 and d) 30. 



180 

amplitudes the interaction between the partiles causes them lign up in 

the low, as well as in the high, field regions. The effect of the 

applied potential amplitude on the localization of the particles along 

its minima is better seens through the 20 correlation functions 

(Figure 96) . In Figure 96 we are also able to see the development of 

correlation between adjacent rows leading to a distorted HCP structu

re. The average density distribution for the 20 pair correlation fun

ctions at the given field amplitudes are shown in Figures 97 to 100. 

These show the development of interrow correlation as the external 

field's strength is increased. The localization of the particles 

'Whithin the wells as the amplitude of the applied potential is 

increased is demonstrated in Table XI through the decrease in the 

standard deviation around the mean x-position of the particles within 

a given well. 

Sintllar analysis on the 22a.x22a box were perfo:nned using equilib

rium phases ranging from disordered (amorphous) to very ordered 

(crystalline) states. A general description of the forced ordering of 

these phases under the influence of the externally applied potential 

will be given in terms of the 20 pair correlation functions. 

starting with the fluid phase shown in Figure 80a (k*a=5) and 

applying the external potential, with a pericx:i of l. la, 'Which is less 

than conunensurate, the induced ordering of the system is shown in 

Figure 101. It is obseJ:Ved that at low field value (A=l) the partic

les start moving to the potential's minima but the brownian motion is 

still large enough that considerable hopping from one minima to the 

next is also obseJ:Ved (Figure lOla). As the potential 's cmplitude is 

increased correlation between neighboring particles starts developing 



Ampli tudejkT 

1 

5 

20 

30 

TABIE XI 

ANALYSIS OF 2-D PAIR OORREIATION 
FOR MC SIMUI.ATION AT d=2. 92 

Fringe Positions ~a 

(d/2) 

-1 1 .030 

1 3 2.91 

3 5 5.83 

-1 1 .051 

1 3 2.95 

3 5 5.88 

-1 1 .024 

1 3 2.94 

3 5 5.86 

-1 1 0 

l 3 2.94 

3 5 5.84 
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.810 

.862 

.836 

.646 

.771 

.684 

.275 

.323 

.295 

.245 

.321 

.317 
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and their localization within the minima of the external field becomes 

stronger (Figures lOla and b). 'Ihe observed structure at this fringe 

period is not oriented the same way as the structures observed with 

periods greater than or equal to conrrnensurate. This structure is ro

tated by 90 degrees in order for the system to be in its lowest energy 

state. 

For the nonconrrnensurate period of 2a, the external field breaks 

the fluid's symmetry in a continuous fashion as shown in Figure 102. 

This figure shows that an increase in the field's strength causes a 

localization of the particles in the potential wells. This leads to 

interrow correlation between the point particles, and structural 

arrangement between adjacent rows, as a result of the screened Coulomb 

interaction between the particles. 

As the fringe period is made slightly larger (d=2.2a) the same 

restructering is observed as the A is increased (Figures 103). 'Ihe 

alignment of the particles at the different potential wells gives a 

distorted HCP packing. 

Starting with the crytalline phase shown in Figure 83a (k*a=4), 

and applying the external potential with a period of 2.2a, the forced 

ordering of the particles as the field's arrplitude is increased is 

shown in Figures 104. 'Ihe reorientation of the equilibrium phase to a 

distorted HCP lattice at this fringe period occured at relatively low 

field's amplitude (A=2), Figure 104b. As the field's arrplitude 

increased from a value of 5 to 10 (Figures 104c and d), the 

correlation between the adjacent rows starts get masked by the string 

like effect as observed earlier for the other systems. 

At even lower salt concentration, k*a=3, when the crystalline 
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6 8 

Figure 102. 2D Pair Correlation Function for MC Simulation of 
100 Particles in a .22aX22a Box, Interacting via a 
Screened Coulomb Po,tential (k*a=S) and in the Pre
sence of a Simusoidal Potential (d=2.0um) with 
Unitless Amplitudes of: a) 1, b) 3, c) 5 and 
d) 10. 
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equilibrium phase (Figure 83c) was subjected to the sinusoidally 

varying external potential with period of 2.oa, it is obsenred that at 

low amplitudes (A<8) the crystalline lattice did not change its order 

in the external field (Figures 105) . However, at large enough 

amplitude the start up crystalline order was forced to form a new HCP 

lattice structure, as shown in Figure 105d. 
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CHAPI'ER VI 

C'OMPARISON OF MON'IE-c.ARI.O SIMUI.ATIONS AND 

EXPERIMENTAL RESULTS 

All the experimental samples used in this thesis work have expe

rienced some structural transf onnation when exposed to pericxlic 

radiation field produced from the two wave mixing of 488nm Argon-Ion 

laser beams. The final ordering of the electrostatically interacting 

colloidal suspensions was observed to be time dependent on the 

radiation forces and the initial equilibrium. phase. 

The monolayer amo:i::phous regions were analyzed experimentally at 

three crossing angles (15.1, 12.13 and 8.38 degrees), ranging from 

commensurate to very inconnuensurate fringe periods. The density of 

the equilibrium. phases at these crossing angles and all input powers 

stayed within 3% from the constant value of 1. 8xlo11 ;m2• This 

same density was used in the Monte-Carlo simulation of 100 point par

ticles interacting via a screened coulomb potential and bounded by a 

20.44ax23.67a or a 22ax22a box with periodic boundary condition. The 

effect of the externally applied potential is inco:rpJrated in the 

simulation by adding to the Hamiltonian of the system a sinusoidally 

varying potential tenn. The amplitude of this potential was changed 

continuously from the lowest to the highest values used. In some 

cases the given amplitudes were applied directly to the equilibrium. 

phase, The results obtained with this later procedure had more string 

like behavior at lower amplitudes than what is observed in the fonner 
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case. The pericx:ls used in the sirm.J.1.ations were chosen to fit 

pericxlically within the given box's length, for both larger and 

smaller than conunensurate pericx:ls. All MC sirm.J.1.ations showed some 

kind of transfonnation at some given field amplitude. 
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To compare the experimental observations to MC sirm.J.1.ations, the 

pair correlation functions for the two dimensional experimental equi

librium phases (Figures 19, 28 and 37) are compared with those found 

in the MC phase transition results (Figures 79, 80, 82 and 83). The 

2D correlation functions show no orientational nor translational 

order. The experimental correlation functions are averaged over a 

small time period and fewer files than those used for The MC 

simulations. The observed peaks for the g(r) functions, shown in 

Figures 19a, 28a, 37a and 79b are compared in Table XII in tenns of 

their height, FWHM, and position. The peak heights of g(r) and their 

prospective positions are shown in Figure 106. The sllnilarities 

between the given data is well within the expected experimental 

errors. It is found that the phase obtained at nonnalized inverse 

screening length of k*a=S represents the experimental amorphous 

phases used in the two dimensional analysis. From this analysis we 

infer that an ion concentration of about 2.sxio9m-3 is present in 

the experimental samples. 

'When the extemally applied potential at cormnensurate fringe 

period (da=l. 73 for the experimental case and da=l. 713 for the MC 

simulation) was applied to the amorphous phases (Figure 19a and 79b), 

the induced order for both cases was the same. The amplitudes used in 

the simulation are not exactly equal to the equivalent experimental 

intensities (with and without the final size corrections), but they do 



TABI.E XII 

ANALYSIS OF THE ONE DmENSIONAL PAIR 
OORREIATION FUNCI'IONS OF THE LIQUID 

PHASFS USED IN THE MC SIMUI.ATION 
AND THE 2D EXPERIMENTS. 

Figure # Peak Positions/a Nonnalized Anlplitudes 

#1 

19b 2.13 

28b 1.93 

37b 2.0 

79b 2.0 

#1 = first peak. 

#2 = second peak. 

a = particle diameter 

#2 #1 #2 

4.19 2.45 1.4 

3.91 2.44 1.32 

4.0 2.47 1.66 

4.04 2.47 1.42 
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Peaks ~a 

#1 

.72 

.50 

.56 

.66 
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in general span the same range used experimentally. A comparison 

between the normalized peaks of the density distribution of the 20 

correlation functions (Figures 24, 25, 26, 85, 86, 87 and 88) is 

demonstrated in Figure 107, where the plotted data is given in Table 

XIII. 'Ihis analysis shows that at corrnnensurate period both the 

simulation and the experiment fonned a HCP structure with lattice 

constant of 2.21a and 2.4um (or in tenns of unitless lattice constants 

2.21 and 2.24) respectively. 'Ille fonnation of well defined peaks at 

the given positions, their heights and their FWHM are all within the 

same range although the percent difference in some cases was as high 

as 15% which well within the measurements error of 20%. 'Illus the MC 

simulation for the corrnnensurate periods agrees well with the 

experimental results. 

'Ille experimental fringe period of 2. 2um is compared to the MC sim

ulation with the external potential's period of 2.02a (or da=2.04 and 

2. 02 respectively) . 'Ille distorted HCP structures obseJ:Ved experiment

ally had lattice constants of 2.33um and 2.42um (or in tenns of a 

sphere radius 2 .18a and 2. 26a) , while the MC simulation's lattice 

constants were 2.la and 2.25a. At the low field powers both the 

simulation and the experiment showed well defined peaks as 

demonstrated in the density distribution functions (Figures 34, 35, 

36, and 91 to 94). However as the strength of the external potential 

increased the correlation between adjacent wells gets masked by the 

string like behavior for both cases. 'Ille comparison between the 

average density distribution functions for the simulation and the 

experiment is given in Table XIV. A plot the the peak heights versus 

their positions is given in Figure 108, this shows that the agreement 



TABLE XIII 

COMPARISON BEIWEEN DENSITY DISTRIBUTION PIDTS 
OBTAINED FRCM MC SIMUIATIONS (da=l. 713) 

AND 2D EXPERIMENT ( da=l. 73) 

199 

Box Size A,lkT P Y-average/a Nonnalized Peak Heights Peak's E"Wfil.Va 
(d/2) (mW) #1 #2 #3 #1 #2 #3 #1 #2 #3 

----------------------------------------------------------------------
-1 to 1 1 - 4.1 5.0 - .16 .15 
-1 to 1 5 2.7 5.4 - .18 .16 1.1 1.1 
-1 to 1 10 2.7 5.2 - .22 .19 .79 1.1 
-1 to 1 30 2.6 5.1 - .18 .16 1.0 1.0 
-1 to 1 42 2.9 6.0 - .21 .12 .81 1.0 
-1 to 1 86 3.2 6.3 - .20 .19 .75 .75 
-1 to 1 111 3.1 6.1 - .19 .16 .73 .85 

----------------------------------------------------------------------
1 to 3 1 - 1.4 3.8 - .16 .11 1.3 1.2 
1 to 3 5 - 1.5 4.2 6.6 .21 .17 .17 .75 1.1 1.2 
1 to 3 10 - 1.4 4.0 6.5 .22 .20 .16 .75 .9 1.1 
1 to 3 30 - 1.4 3.9 6.5 .23 .18 .12 .75 1.0 1.2 
1 to 3 42 1.4 4.4 7.4 .22 .16 .12 .60 1.0 .85 
1 to 3 86 1.6 4.8 7.8 .21 .19 .13 .81 1.0 .85 
1 to 3 111 1.6 4.7 7.7 .23 .15 .14 .70 1.1 .90 

----------------------------------------------------------------------
3 to 5 5 .25 2.8 5.4 .22 .17 .16 .63 1.2 1.1 
3 to 5 10 0 2.7 5.3 .20 .19 .18 .88 1.1 1.1 
3 to 5 30 0 2.8 5.1 .22 .18 .18 .75 1.0 1.1 
3 to 5 42 0 3.0 5.9 .14 .15 .12 1.1 1.1 1.0 
3 to 5 86 0 3.2 6.2 .19 .18 .16 .88 .85 .80 

111 0 3.1 6.1 .21 .16 .15 .60 .95 1.0 
----------------------------------------------------------------------
A,lkT = Nonnalized amplitude used in MC simulations 

P = Single beam power used in the crossed beam experiments 

a = particle diameter 

#1 = first peak 

#2 = second peak 

#3 = third peak 



TABIE XIV 

COMPARISON BE'IWEEN DENSITY DISTRIBUTION PI.Ol'S 
OBrAINED FRCM MC SIMUIATIONS (d=2. 02a} 

AND 2D EXPERIMENT (d=2.14mn) 

200 

Box Size AjkT p Y-average/a Nonnalized Peak Heights Peak's FWffiVa 
(d/2} (nM) #1 #2 #3 #1 #2 #3 #1 #2 #3 

--------- ----------------------------
-1 to 1 1 2.2 4.7 6.S .23 .17 .15 .SS 1.1 1.1 
-1 to 1 5 2.4 4.S 7.1 .22 .16 .14 .75 1.1 1.1 
-1 to 1 10 2.3 4.6 6.9 .2S .19 .16 .62 1.1 1.1 
-1 to 1 30 2.2 4.4 6.9 .2S .19 .16 .62 1.0 1.1 
-1 to 1 42 2.1 4.4 6.5 .3S .27 .lS .50 .75 1.0 
-1 to 1 65 2.1 4.4 6.4 .23 .lS .14 .75 1.1 1.2 
-1 to 1 165 2.3 4.4 6.6 .31 .23 .lS .5S .so 1.2 
-------------------------------------------------

1 to 3 1 - 1.2 3.4 5.7 .13 .15 .16 1.2 1.2 1.0 
1 to 3 5 - 1.2 3.5 5.7 .lS .16 .15 1.0 1.1 1.1 
1 to 3 10 - 1.2 3.5 5.S .17 .17 .15 .62 1.1 1.4 
1 to 3 30 - 1.3 3.4 5.5 .19 .16 .15 1.0 1.2 1.4 
1 to 3 42 1.1 3.2 5.3 .11 .11 .11 1.5 1.5 1.5 
1 to 3 165 1.4 4.2 7.0 .19 .16 .14 .51 .SS 1.1 

---------------------------------------------------------------------
3 to 5 5 .25 2.6 4.6 .12 .14 .12 1.4 1.0 1.2 
3 to 5 10 0 2.4 5.5 .15 .15 .15 1.0 1.0 1.1 
3 to 5 30 0 2.4 4.S .15 .15 .15 1.0 .so 1.2 
3 to 5 42 .25 2.1 4.3 .11 .11 .11 1.2 1.2 1.2 
3 to 5 165 0 2.2 4.3 .12 .12 .12 1.0 1.1 1.1 

----------------------------------------------------------------------
AjkT = Nonnalized anplitude used in MC simulations 

P = Single beam power used in the crossed beam experiments 

a = particle diameter 

#1 = first peak 

#2 = second peak 

#3 = third peak 
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between the simulation and the experiment at the given fringe periods 

is very good up to distances of 2d. 

'Ihe experimental fringe period of 3. 3urn is compared to the MC 

simulation with potential's period of 2.92a (da=3.08 and 2.92). 'Ihe 

2D pair correlation functions (Figures 41 to 43 and 96) show that at 

low amplitudes of the externally applied potential the particles don't 

show any correlation, but as the field's amplitude is increased the 

particles are forced in the potential 1 s minima. A comparison of the 

induced order at these fringe periods is given in Table 'XV where the 

amplitudes, positions and FWHM of the average density distribution 

functions (Figures 44 to 46 and 97 to 100) are presented. A plot of 

the nonnalized amplitudes of the observed peaks versus their prospec

tive positions is given in Figure 109. Although the data in this 

figure does not show any systematic trends their appear to be a good 

agreement between the MC simulation results and the experimental 

observations. 

In general we can conclude that the MC simulation gives a good 

theoretical prediction of the laser induced freezing of the charged 

colloidal suspensions. 



cx::MPARISON BEIWEEN DENSITY DISTRIBOTION PI.DI'S 
OBI'AINED FR.CM MC SIMUIATIONS ( d=2. 92a) 

AND 20 EXPERIMENT (d=3.31um) 

204 

___ , __________________________________________________ _ 
Box Size A,lkT p Y-average/a Nonnalized Peak Heights Peak's FWH?Va 

(d/2) {TIM) #1 #2 #3 #1 #2 #3 #1 #2 #3 

----------- -----------------------------------------------
-1 to 1 1 2.0 4.2 .28 .20 .62 .75 
-1 to 1 5 1.9 3.9 5.8 .42 .27 .24 .38 .69 .88 
-1 to 1 20 1.8 3.3 5.1 .82 .56 .50 .38 .5 .75 
-1 to 1 30 1.8 3.3 4.9 .70 .46 .53 .38 .46 .62 
-1 to 1 42 2.1 4.3 .22 .14 1.0 1.3 
-1 to 1 86 2.4 4.7 .19 .14 1.0 1.0 
-1 to 1 165 2.1 4.3 .29 .19 .78 1.4 
-----------------------------------------------------------

1 to 3 5 - .75 1.2 2.8 .19 .19 .19 1.2 1.2 1.3 
1 to 3 20 - .50 1.2 2.0 .22 .22 .14 .85 .88 1.1 
1 to 3 42 .48 1. 7 4.0 .16 .13 .13 1.0 1.5 1.5 
1 to 3 165 .50 1.9 2.9 .17 .17 .17 1.1 1.0 1.2 

----------------------------------------------------------
3 to 5 5 0 1.5 1.9 .19 .19 .19 .75 
3 to 5 20 .75 1.0 2.8 .23 .18 .16 .88 
3 to 5 165 .38 1.9 2.5 .22 .16 .15 .88 

A,lkT = Nonnalized amplitude used in MC simulations 

P = Single beam power used in the crossed beam experilnents 

a = particle diameter 

#1 = first peak 

#2 = second peak 

#3 = third peak 

.75 1.0 
1.0 1.0 
1.1 1.4 
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CHAPI'ER VII 

OONCIDSIONS AND FUIURE SUGGESTIONS 

SUMMERY OF THE RESULTS 

The main body of this thesis work has shown that the radiation 

forces created by the crossing of two mutually coherent laser beams 

can be used to induce order in highly charged colloidal suspensions. 

This forced order has been found to depend on the start up equilibrium 

phase, the radiation intensity, the time of exposure and the periods 

of the sinusoidal standing fringe pattan. 

The monolayer amorphous equilibrium phase, with an average parti

cle separation of the order of twice a sphere's diameter (2.0Um), when 

exposed to the applied external field was obsaved to have the fol

lowing behavior: 

I. At connnensurate crossing angles, the system organized in HCP 

structures where the localization of the system depended on the input 

powers. 

II. As the crossing angle was made larger than connnensurate, or 

as the fringe period was increased, the following observations were 

made: 

1) For d=2.lum the structure obsaved at the lowest input powers 

had lattice constants of 2. 3um and 2. 44um. As the laser's power was 

increased, the localization along the high intensity regions became 

more pronounced and string like behavior of the particles' distribu

tion started to develop. This string like behavior is believed to be 

206 



a result of the 5% number of dumbbells present in the analysis 

regions. 
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At high enough powers a heating of the analysis region resulted in 

convections 'Which eventually led to string like behavior in the 20 

correlation ftmctions, and to density change of the system. Regions 

with such behavior were not analyzed in this work. 

2) For d=3. 3um the aligrnnent of the microspheres in the high 

intensity regions was hindered by their coulombic interaction leading 

to minimal correlation between adjacent columns at moderate input 

powers (<lOOmW). At the higher powers (165mW) the localization along 

the intensity maxima became stronger and correlation between adjacent 

wells started to develop. 

III. The induced order and localization of the particles seemed. 

to be continuously dependent on the applied field's strength. 

IV. Heat convection effects were observed to produce string like 

behavior in the 20 pair correlation ftmctions and to cause a density 

change (drift) in the analyzed regions. 

The amorphous multilayer regions used in this work were observed 

to go through the following transfonnations 'lit.7hen exposed to the radi

ation forces: 

I. As the input power was increased the longitudinal component of 

the radiation field forced the microspheres to end up in a monolayer 

regime. This forced monolayer developed at a faster rate 'When the 

radiation forces were caused by the crossing of two laser beams rather 

than by a single beam. 

II. The system's density increased by as much as 25% 'When the 

beams were crossed. There was also a density drift observed at all 
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crossing angles. 

III. At conunensurate perio::ls ( d=l. 85um) the mulilayer system 

organized in a HCP structure; and this structure persisted even when 

the forced monolayers started developing. 

III. At the noncommensurate crossing angles it was found that: 

1) For d=2.34um the multilyer region fonned. a distorted HCP 

structure where the localization of the spheres increased with input 

power up to lllmW. For input powers larger than lllmW a forced mono

layer over the whole analysis area was observed, and the correlation 

between adjacent wells started to decrease as the power increased. 

'Ihis is believed to be a result of heat convection. 

2) For d=3.34um an increase in the radiation field at the forced 

monolayer (>86mW) forced the spheres to get well localized within the 

intensity minima. At powers larger than 16llnW the correlation between 

adjacent wells became more pronounced showing a distorted HCP lattice. 

The Monte-carlo simulations on the two dimensional Coulomb gas 

showed a phase transition from a fluid to a crystalline phase at nor

malized inverse screening length between 4 and 5. It was found that 

the MC liquid phase at k*a=5 was analogous to the observed experimen

tal amorphous phases. Changing the dimensions of the box used in 

these simulations from 20.44ax23.67a to 22ax22a caused a distortion in 

the observed equilibrium phases. 

When a sinusoidal varying potential was incorporated in the MC 

simulation and run for different equilibrium phases at different 

potential's perio::ls the following were observed: 

I. All the equilibrium phases showed some kind of transformation 

or rearrangement when exposed to the external potential. The final 
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depending on the start up equilibrium phase. 
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II. For the amorphous equilibrium phases (k*a=5) , the external 

potential caused the localization of the spheres along its minima. 

'!his localization is a continuous function of the field's amplitude. 

III. When the amorphous equilibrium phase (k*a=5) in the 20.44a 

by 23.67a box was exposed to the external potential at periods of 

l.713a, 2.02a and 2.92a, the induced ordering results were consistent 

with the experimental findings at corresponding fringe periods of 

l.85um, 2.14um and 3.3um. These results can be summarized as: 

1) At the 1. 713a periods the simulation resulted in an HCP struc

ture with lattice constants that were comparable to those found 

experimentally. The positions, heights, and FWHM of the particles 

along the potential's minilna were also consistent with the 

experimental observations at a fringe period of 1. 85um. 

2) The organization of the particles at a 2.02a MC fringe period 

was consistent with the experimental results at a 2.14um fringe 

period, where a distorted HCP lattice was observed. 

3) The MC potential period of 2. 92a was found to localize the 

interacting particles along the potential's minilna at about the same 

external field's amplitudes as what was seen with the experiment at a 

fringe period of 3. 3um. The final structuring of the MC system showed 

more peaks than observed experimentally. These peaks' positions and 

amplitudes were also slightly different (Table XV). 

rv. The MC 22ax22a box was found to cause a distortion in the 

fonned structures. The ordering of the liquid phase (k*a=5) in this 

box with external potential periods of 2.0a, 2.2a, and 4.4a showed the 
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same general behavior as the 20.44aX23.67a box except for the string 

like behavior that appeared at much less amplitudes than observed in 

the latter case. 

suggestions For Future Work 

The work carried so far on the laser induced freezing of colloidal 

suspensions could be extended to study many interesting physical 

phenomena both experimentally and through an MC sililulation. Among 

these are: 

I. The nature of two-dimensional phase transition. By varying 

the crossing angles continuously and the laser's input powers, 

scattering results and real space analysis should provide enough data 

to construct translational as well as orientational correlation 

lengths which should provide inf onnation about the nature of the phase 

transition. 

II. The response of three dimensional (Multilayered) systems to 

the external field. 

III. The creation of a translating fringe pattern for the study 

of the drag near a plane wall. 
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c 
C************INTS**************** 
C THIS SUBROUTINE IS THE MAIN SUBROUTINE FOR DETECTION 
C OF THE SPHERES. THE EDGE INTENSITY AND THE MAXIMUN 
C INTENSITY AND THE CRITICAL RADIUS ARE VERY CRITICAL IN 
C PICKING UP THE SPHERES. 
c 

SUBROUTINE INTS 
COMMON IXI(20),IYI(20),IXF(20),IYF(20) 
COMMON IR(20),MAX(20),LEA(20) 
COMMON /BLOCKl/ IX(l200),IY(l200) 
COMMON VERBOS 
INTEGER RPIXEL,ICOM 

IFRNG0-0 
NEND-0 

IP-0 
NEw-0 

4 NIT-IGET('NO. FO ITTERATIONS-?') 
DO 999 ITT-1,NIT 
IPICT-IGET('l-IGNORE TAKING A PICTURE') 
IF(IPICT.EQ.l) GOTO 111 

3 CALL ISUB 
CALL VSUB 

2 IANS-IGET('l-TAKE A PICTURE ') 
IF (IANS.NE.l) GOTO 2 

NEW-0 
CALL TSUB 
CALL SSUB 
IANS-IGET('l-TAKE ANOTHER PICTURE ') 
IF (IANS.EQ.l) GOTO 3 

111 IF(ITT.NE.l) GOTO 90 
CALL THRESH 
TYPE*,'LOOK FOR THE FOLLOwING THINGS:' 
TYPE*,'NO. OF REGIONS,MAX INTENSITIES, EDGE INTENS' 
TYPE*,'RADII OF SPHERES,SEPARATION BETwEEN SPHERES' 
TYPE*,'AND FRINGE SEPARATION' 
CALL ISUB 
CALL SSUB 
CALL CURS(50,50) 

C THIS PART "WILL CHOOSE THE INITIAL POSITION OF THE CURSOR 
NSQ-IGET('NO. OF ANALYSIS AREAS-?') 
DO 22 NN-1,NSQ 

30 TYPE*,'THE PARAMETER OF REGION:' ,NN 
WRITE(5,10) 

10 FORMAT('INPUT:IXI,IXF,IYI,IYF,MAX.&MIN. INT., AND R') 
READ(5,25) Il,12,Jl,J2,Ml,M2,IR(NN) 

25 FORMAT(7I4) 
IF(Il.GT.I2.0R.I2.EQ.0.0R.Il.EQ.0) GOTO 30 
IF(Jl.GT.J2.0R.Jl.EQ.0.0R.J2.EQ.0) GOTO 30 
IF(M2.GT.Ml.OR.Ml.EQ.0.0R.M2.EQ.0) GOTO 30 
IF(IR(NN).EQ.O) GOTO 30 
IXI (NN)-Il 
IXF(NN)-12 
IYI (NN)-Jl 
IYF(NN)-J2 
MAX(NN)-Ml 
LEA(NN)-M2 

22 CONTINUE 
JFRNG-IGET('FRINGE SEPARATION-?') 
JFRNGD-JFRNG+JFRNG 
JFRNGl-JFRNG+lO 
JFRNG2-JFRNG+5 
JFRN-INT(FLOAT(JFRNG)/3.) 
TYPE*,'INSERT AV-Y DIST BETWEEN PARTICLES' 
JRA-IGET('Y-DIST-?') 
YRl-JRA 
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c 

YR2-YR1/4. 
IYR1-INT(3*YR2) 
IYR2-IKT ( S*YR2) 
IYR3-IYR2+INT(YR2) 
TYPE*,' INPUT THE LONGEST RADIUS' 
KA-IGET( '?') 

C STARTING THE PROCESS OF FINDING THE PROSTEGTIC GENTER 
c 

TYPE*,'***D-DOUBLE BEAM, S-SINGLE BEAM' 
ICOM-ICGET('D-2-BEAMS,S-l-BEAM:') 

90 IF(ICOM.EQ.'S') GOTO 900 
DO 27 NN-1,NSQ 

c 

RP-IR(NN) 
IRP-IR(NN)+INT(RP/2.) 
IP-NEW 
NEWl-NEW+l 
M2-LEA(NN) 

C INTENSITY SLICING BY COLUMNS. FINDING THE GENTER OF EACH 
C HIGH INTENSITY SLICE. 
G 

DO 21 J-IXI(NN),IXF(NN) 
IRAN-0 

DO 11 I-IYI(NN),IYF(NN) 
IV-RPIXEL(J,I) 
IF (IV.LT.MAX(NN)) GOTO 66 
IRAN-IRA.J>;+l 
IVl-RPIXEL(J,I+l) 
IF (IVl.GE.MAX(NN)) GOTO 11 
IF(IRAN.LT.IR(NN)) GOTO 66 
Il-I-INT((IRAN)/2.) 
IP-IP+l 
IX(IP)-J 
IY(IP)-Il 

66 IRAN-0 
11 CONTINUE 
21 CONTINUE 

·TYPE*, 'NUMBER OF DOTS-' ,IP 
C THIS SECTION WILL FIND THE CENTER OF EACH SPHERE 
G AS COMPARED TO THE MAX. RADIUS OF A SPHERE,RCRT. 

c 

TYPE*,'COMPUTING EACH SPHERE-S CENTER' 
KOMPX-IR(NN)+IR(NN) 
DO 37 L-NEWl,IP-1 
IF(IY(L).EQ.0) GOTO 37 
FLAG-0. 
X-IX(L) 
Y-IY(L) 
COUT-1. 
Kl-L+l 

G FINDING POSITION CLUSTERS THAT ARE WITHIN A DIAMETER SEPARATION 
c 

DO 48 K-Kl,IP 
IXD-IABS(IX(K)-IX(L)) 
IF(IXD.GT.KOMPX) GOTO 48 
IYD-IABS(IY(K)-IY(L)) 
IF(IYD.GT.IR(NN)) GOTO 48 
JUM-1 
IF(IX(L).LT.IX(K)) JUM--1 
DO 42 KI-IX(K),IX(L),JUM 
IVl-RPIXEL(KI,IY(L)) 
IF(IVl.LE.LEA(NN)) FLAG-1. 

42 CONTINUE 
IF(FLAG.EQ.l.) GOTO 95 
COUT-GOUT+l. 
x-x+FLOAT(IX(K)) 
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Y-Y+FLOAT( IY(K)) 
IX(K)-0 
IY(K)-0 

95 FLAG-0. 
48 CONTINUE 

IF(COUT.LT.IR(NN)) GOTO 37 
c 
C FINDING EACH CLUSTERS CENTER 
c 

c 

mx-INT(X/COUT) 
INY-INT(Y/COUT) 

C DETECTION OF AN EDGE IN THE X&Y DIRECTIONS FROM EACH CENTER 
c 

IRl-INY-INT(RP/3.) 
IR2-INY-KOMPX 
IR3-INY+INT(RP/3.) 
IR4-INY+KOMPX 
zz-o. 
CALL EDGEY(IR2,IR1,INX,ZZ,M2) 
IF(ZZ.NE.l.) GOTO 37 
zz-o. 
CALL EDGEY(IR3,IR4,INX,ZZ,M2) 
IF(ZZ.NE.l.) GOTO 37 
zz-o. 
INXV-INX+KOMPX 
INX\.1-INX-KOMPX 
CALL EDGEX(INX.INXV,INY,ZZ,M2) 
IF(ZZ.NE.l.) GOTO 37 
zz-o. 
CALL EDGEX(INXW,INX,INY,ZZ,M2) 
IF(ZZ.NE.l.) GOTO 37 
zz-o. 
IF(INX.LE.0 .OR. INX.GT.512) GOTO 37 
IF(INY.LE.O .OR. INY.GT.512) GOTO 37 

C ACCEPTING THE POSITIONS AS PROCPECTIVE CENTERS 
c 

NEW-NEW+l 
IX(NEW)-INX 
IY(NEW)-INY 

37 CONTINUE 
TYPE*, 'NEW-' , NEW 

27 CONTINUE 
CALL ORDER(l,NEW,JFRNG) 
JN-NEW+ BO 
JYMA-IYF(NSQ)+SO 
CALL lJP(IX(l) ,IY(l),O) 

TYPE *,'l-CENTER NOT NOT OK' 
JANW-IGET('?') 
IF(JANW.EQ.0) GOTO 91 
IXO-IX(l) 
IYO-IY(l) 
CALL lJP(IXO,IY0,255) 
CALL INSERT(O,NElJ,IXO,IYO) 

C INTERACTIVE PART TO HELP THE COMPUTER IN ACCEPTING OR REJECTING 
C THE PROSPECTIVE POSITIONS AS PARTICLES' CENTERS. 
c 
91 DO 70 I-1,JN 

IF(I.GE.NEW) GOTO 70 
IF(I.NE.NEW) GOTO 72 
JYMA-IY(I)+IYR2 
IF(JYMA.LE.IYF(NSQ)) GOTO 97 
GOTO 70 

72 CALL WP(IX(I+l),IY(I+l),0) 
IXO-IX(I) 
IXD-(IX(l+l)-IX(I)) 
IABSX-IABS(IXD) 
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IYD-IY(l+l)-IY(I) 
C CHECK IF PARTICLE IS WITHIN THE PRESENT FRINGE 
c 

IF(IYD.GT.0.AND.IABSX.LT.JFRNG) GOTO 74 
C GET RIDE OF POSITIONS THAT MIGHT EXIST 

IF(IYD.LE.O .AND. IABSX.LT.JFRNG) GOTO 81 
C MOVE TO A NEW FRINGE POSITION 

IF(IXD.LT.0) GOTO 81 

C61 
c 
c 
c 

79 

97 

51 

87 

IF(IYD.LT.0 .AND. IXD.LT.JFRNGD) GOTO 79 
IXO-IX(I+l) 
IYO-IY(I+l) 
CALL INSERT(I,NEl.',IXO,IYO) 

IXO-IX(I)+JFRNG 
IF(IXO.GT.IXF(NSQ)) GOTO 70 
IYO-IYI(l)+lO 
CALL INSERT(I,NEW,IXO,IYO) 

GOTO 70 
JYMA-IY(I)+IYR2 
JYMI-IY(I+l)-IYR3 
IXO-IX(I+l) 
IF(JYMA.GT.IYF(NSQ)) GOTO 51 
CALL WP(IX(I+l),IY(I+l),255) 
IYO-IY(I)+JRA 
IXO-IX(I) 
GOTO 83 
IF(JYMI.GE.IYI(l)) GOTO 82 
JCEN-IGET('l-CENTER IS NOT O.K.') 
IF(JCEN.NE.l) _GOTO 70 
TYPE*,'l-DELETE,2-INSERT,3-CONTINUE' 
JA\.1-IGET('?') 
GOT0(81,82,70),JA\.I 

C CALL SUBROUTINE TO DELETE A PIXEL 
81 CALL WIPE(I,NE\.I) 

IF(I.GT.NE\.I) GOTO 70 
GOTO 72 

C SETTING PARAMETERS TO INSERT A POSITION 
82 IYD-IY(I+l)-IYI(l) 

. GOTO 60 
C CHECKING WITHIN A COLUMN TO INSERT OR DELETE A 
c 
74 

60 

84 
83 

12 
70 

IF(IYD.LT.IYRl) GOTO 81 
IF(IYD.LT.IYR3) GOTO 12 
LFL-0 
YD-I YD 
FRA-YD/YRl 
IF(FRA.LT.2.0) GOTO 84 
YR7-(FRA-l.)*YR1 
IY0-IY(I+l)-INT(YR7) 
CALL \.IP(IX(I+l),IY(I+l),255) 
GOTO 83 
IYO-IY(I+l)-JRA 
CALL \.IP(IX(I+l),IY(I+l),255) 
CALL INSERT(I,NE\.l,IXO,IYO) 
GOTO 70 
CALL WP(IX(I+l),IY(I+l),0) 
CONTINUE 
GOTO 310 
CALL SINGLE(NSQ,NEW,KA) 

POSITION 

900 
310 TYPE*,'TYPE 1 TO DELETE A SPECIFIC POSITION' 

IDE-IGET(' ') 

77 
IF (IDE.NE.l) qOTO 320 
TYPE*,"IJHAT IS "THE PARTICLES NUMBER' 
I-IGET('COUNT BY COLUMNS?') 
IF(I.GT.NEW .OR. I.LT.0) GOTO 77 
CALL WP(IX(I),IY(I),255) 
NANS-IGET('O-YES THAT WAS IT') 
IF(NANS.NE.0) GOTO 76 
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76 

320 

C THIS 
c 
190 

360 

361 
363 
777 
999 
385 

C THIS 
c 
c 
c 
c 

I-1-1 
CALL W!PE(I,NEW) 
GOTO 310 
CALL WP(IX(I),IY(I),0) 
GOTO 77 
TYPE*,'IF YOU WANT TO INSERT A SPHERE-S POSITION' 
TYPE*,'TYPE 1 TO GET TO CURSOR MODE' 
INEW-IGET(' ') 
IF(INEW.EQ.O) GOTO 190 
IXO-IGET ( 'X-?') 
IYO-IGET( 'Y-?') 
CALL CURS(IXO,IYO) 
NEW-NEW+l 
IX(NEW)-IXO 
IY(NEW)-IYO 
TYPE*, ' IXO &IYO' , !XO, IYO 
TYPE*, 'NEW-' , NEW 
CALL WP(IXO,IY0,0) 
GOTO 320 
SECTIO~ SAVES A FILE OF THE X&Y POSITIONS 

TYPE*,'DO YOU WANT TO SAVE X&Y POSITIONS' 
IANS-IGET('l-YES') 
IF(IANS.NE.l) GOTO 777 
CALL ORDER(l,NEW,KOMPX) 
TYPE*,'ENTER FILE/S NAME' 
TYPE*,' ' 
CALL ASSIGN(2, ,-2) 
WRITE(2,END-360,ERR-361) NEW 
WRITE(2,END-360,ERR-36l)(IX(I),I-l,NEW) 
WRITE(2,END-360,ERR-36l)(IY(I),I-l,NEW) 
CALL CLOSE(2) 
TYPE*,'END OF FILE' 
GOTO 363 
TYPE*,'ERROR IN WRITING THE FILE' 
TYPE*,NEW,'IS THE NO. OF PTS. IN ABOVE FILE' 
CONTINUE 
CONTINUE 
TYPE*,'DO YOU WANT TO CONTINUE:l-Y,0-N' 
IANS-IGET(' ') 
IF (IANS.EQ.l) GOTO 111 
RETURN 
END 
PROGRAM IS 'LOUDIY.FOR' DESIGNATED FOR LOUDIYI'S PROJECT 

c 
c 
c 
c 

LINK with IPBASD to provide a runnable source. 

**************** MAIN PROGRAM **************** 

PROGRAM DETECT 
LOGICAL VERBOS 
COMMON VERBOS 
INTEGER ICOM 
VERBOS - . TRUE. 
TYPE *,'' 
TYPE*,'' 
TYPE*,' WELCOME TO B.J. ACKERSONS COLLOIDAL PHYSICS LAB' 
TYPE*,' PROGRAM EDITED AND WRITTEN BY KHALID LOUDIYI.' 
TYPE*,' PHYSICS DEPARTMENT, OKLAHOMA STATE UNIVERSITY.' 
TYPE*,' ' 
CALL HELP 
CALL SELGRP(l) 

100 !COM - ICGET('COMMAND: ') 
CALL DISPAT(ICOM) 
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c 

GOTO 100 
END 

C ************ LOOK ********* 
C TO VIEW THE PARTICLES POSITIONS 
c 

SUBROUTINE LOOK 
COMMON /BLOCKl/ IX(l200),IY(l200) 
COMMON VERBOS 
INTEGER RPIXEL 
CALL ISUB 
CALL VSUB 
CALL TSUB 
CALL SSUB 

.DO 10 I-1,510,50 
DO 20 J-1,480 
CALL WPIXEL(I,J,128) 

20 CONTINUE 
10 CONTINUE 

DO 30 I-1,480,50 
DO 40 J-1,510 
CALL WPIXEL(J,I,128) 

40 CONTINUE 
30 CONTINUE 
90 TYPE*,' TYPE NAME OF FILE ' 

TYPE*,' ' 
CALL ASSIGN(2,,-2). 
READ(2,END-200,ERR-200) N 
READ(2,END-200,ERR-200) (IX(I),I-1,N) 
READ(2,END-200,ERR-200) (IY(I),I-1,N) 

200 CALL CLOSE(2) 
DO 60 I-1,N 
CALL WP(IX(I),IY(I),O) 

60 CONTINUE 
TYPE*,'0-ANOTHER FILE' 
IANS-IGET('?') 
IF(IANS.EQ.O) GOTO 90 
RETURN 
END 

C *********SINGLE**************** 
C THIS SUBROUTINE IS THE MAIN SUBROUTINE FOR DETECTION 
C OF A PARTICLES IN THE SINGLE BEAM EXPERIMENT 

SUBROUTINE SINGLE(NSQ,NEW,KA) 
COMMON IXI(20),IYI(20),IXF(20),IYF(20) 
COMMON IR(20),MAX(20),LEA(20) 
COMMON /BLOCK!/ IX(1200),IY(l200) 
COMMON VERBOS 
INTEGER RPIXEL 
NEW-0 

90 DO 27 NN-1,NSQ !STARTING A NEW ANALYSIS REGION 
IRP-IR(NN)+INT(RP/2.) 
IP-NEW 
NEWl-NEW+l 
DO 21 J-IYI(NN),IYF(NN) !LOOKING AT DIFFERENT ROWS 
K3-IXI(NN) 

DO 11 I-IXI(NN),IXF(NN) !SLICING THE INTENSITIES IN THE ROW 
IF(I.LT.K3) GOTO 11 
IV-RPIXEL(l,J) 
IF (IV.GT.LEA(NN)) GOTO 11 

C CHECKING FOR THE FIRST EDGE OF A SPHERE 
c 

IFLAG-0 
Kl-I+3 
IF(Kl.GT.IXF(NN)) GOTO 11 
DO 30 K-I+l,Kl 
IV-RPIXEL(K,J) 
IF(IV.LE.LEA(NN)) GOTO 30 
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IFlAG-1 
K3-K+l 

30 CONTINUE 
IF(IFlAG.EQ.l) GOTO 11 

C CHECK FOR AN EGDE IN THE Y-DIRECTION 
c 

KY1-J+4 
DO 35 K-J+l,KYl 
IV-RPIXEL(I+l,K) 
IF(IV.LE.LEA(NN)) GOTO 35 
IFlAG-1 
KY3-K 

35 CONTINUE 
IF(IFLAG.EQ.l) GOTO 11 
K2-Kl+KA ! STARTING TO CHECK FOR HIGH INTENSITIES 
IF(K2.GT.IXF(NN)) K2-IXF(NN) 
NEDG-0 
IFL-0 
IRAN-0 
DO 40 K-Kl+l,K2 
IF(IFL.EQ.l .OR.NEDG.GT.2) GOTO 40 
IV-RPIXEL(K,J) 
IF(IV.GT.LEA(NN)) GOTO 45 
lF(IRAN.LT.IR(NN)) GOTO 50 
DO 60 MC-K+l,K+3 ! CHECKING FOR SECOND EDGE 
IV2-RPIXEL(MC,J) 
IF(IV2.GT.LEA(NN)) IFL-1 

60 CONTINUE 

c 
c 

,IF(IFL.NE.l) NEDG-3 
K3-K ! SETTING THE STARTING POSITION 
GOTO 40 

C COUNTING THE RANGE OF THOSE PIXELS WITH HIGH INTENSITIES 
c 
45 

50 

40 

c 
c 

IF(IV.GE.MAX(NN)) IRAN-IRAN+l 
GOTO 40 
IF(IRAN.EQ.0) GOTO 40 
IFL-1 
IRAN-0 
K3-K 
CONTINUE 
IF(NEDG,NE.3) GOTO 80 

C COUTING THOSE POSITION THAT WILL BE CONSIDERED FOR THE DETECTION 
c 

IP-IP+l 
RAN-FLOAT(IRAN) 
IX(IP)-K3-3-INT(RAN/2.) 
IY(IP)-J 

80 RAN-0. 
11 CONTINUE 
21 CONTINUE 

TYPE *,'NUMBER OF DOTS-' ,IP 
C THIS SECTION WILL FIND THE CENTER OF EACH SPHERE 
C AS COMPARED TO THE MAX. RADIUS OF A SPHERE,RCRT. 

TYPE*,'COMPUTING EACH SPHERE-S CENTER' 
CALL ORDER(NEWl,IP,lR(NN)) 
KOMPX-IR(NN)+IR(NN) 
KOMPY-KOMPX+KOMPX 
DO 37 L-NEWl,IP-1 
IF(IX(L).EQ.0) GOTO 37 
X-FLOAT(IX(L)) 
Y-FLOAT(IY(L)) 
COUT-1. 
Kl-L+l 
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DO 48 K-Kl, IP 
IF(IY(K).EQ.0) GOTO 48 
IXD-IABS(IX(K)-IX(L)) 
IF(IXD.GT.IR(NN)) GOTO 48 
IYD-IABS(IY(K)-IY(L)) 
lf(IYD.GT.KOMPY) GOTO 48 
FLAG-0. 
X3-FLOAT(IX(K)) 
Y3-FLOAT(IY(K)) 
IYA-INT((Y+Y3)/2.) 
IXA-INT((X+X3)/2.) 
JUM-1 
IF(IX(L).LT.IX(K)) JUM--1 
DO 42 KI-IX(K),IX(L) ,JUM 
IVl-RPIXEL(KI,IYA) 
IF(IVl.LE.LEA(NN)) FLAG-1. 

42 CONTINUE 
lf(FLAG.EQ.l.) GOTO 48 
JUM-1 
IF(IY(L).LT.IY(K)) JUM--1 
DO 93 KI-IY(K),IY(L),JUM 
IF(FLAG.EQ.l.) GOTO 93 
IV-RPIXEL(IXA,Kl) 
IF(IV.LE.LEA(NN)) FL~G-1. 

9 3 CO?<"TINUE 
IF(FLAG.EQ.l.) GOTO 48 
COUT-COUT+l. 
X-X+X3 
Y-Y+Y3 
lX(K)-0 
IY(K)-0 

48 CONTINUE 
NEW-Nfill+l 
IX(NEW)-INT(X/COUT) 
IY(NEW)-INT(Y/COUT) 

37 CONTINUE 
TYPE* , 'NE\./-' , NEW 

27 CONTINUE 
. NP-0 

CALL ORDER(l,NEW,KOMPX) 
NN-NEW 
DO 70 1-1,NN-l 
IF(I.EQ.NEW) GOTO 100 
IF(l.GT.NEW .OR. IX(I).EQ.0) GOTO 70 
DO 73 JI-1+1,NN 
IF(JI.GT.NEW .OR. IX(JI).EQ.O) GOTO 73 
ID-IABS(IX(JI)-IX(I)) 
JD-IABS(IY(JI)-IY(I)) 
IF(JD.GT.KOMPY .OR. ID.GT.KOMPX) GOTO 73 
YD-FLOAT(IY(JI)+IY(I)) 
XD-FLOAT(IX(JI)+IX(l)) 
IX(I)-INT(XD/2.) 
IY(l)-INT(YD/2.) 
IX(JI)-0 
IY(JI)-0 

73 CONTINUE 
100 TYPE*,IX(I),IY(I) 

CALL WP(IX(I),IY(I),0) 
TYPE*,'0-THIS POSITION IS O.K.' 
IANS-IGET('?') 
IF(IANS.NE.0) GOTO 170 
NP-NP+l 
IX(NP)-IX(l) 
IY(NP)-IY(I) 
GOTO 70 

170 CALL WP(IX(I),IY(I),255) 
IX (I )-0 
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IY(I)-0 
70 CONTINUE 

c 

NEW-NP 
TYPE*, 'NEW-' , NE\.1 
RETURN 
END 

C****************WIPE***************** 
C THIS SUBROUTINE IS TO DELETE THE SEPECIFIC X-Y POSITIONS FROM 
C AN X&Y ARRAYS. 
c 

SUBROUTINE WIPE(I,NEW) 
COMMON VERBOS 
COMMON/BLOCKI/IX{l200),IY(l200) 
TYPE*,'DELETING PIXELS:' ,IX(I+l),IY(l+l) 
CALL WP(IX(I+l),IY{l+l),255) 
NEW .. NE\.1-1 
DO 76 J-1+1,NEW 
IX(J)-IX(J+l) 
IY(J)-IY(J+l) 

76 CONTINUE 

c 

TYPE*, 'NEW-' , NEW 
IX(NE\.1+1)-0 
IY(NEW+l)-0 
RETURN 
END 

C *******************INSERT*********************** 
c 
C THIS SUBROUTINE IS FOR INSERTING A POSITION IN THE X&Y POSITION 
C ARRAYS. THAT IS A NEW CENTER. 
c 

SUBROUTINE INSERT(l ,NE\.1, !XO, IYO) 
COMMON VERBOS 
COMMONN/BLOCK1/IX(l200),IY(l200) 
TYPE *,'INSERT A NEW POSITION AT:' 
CALL CURS(IXO,IYO) 

. NEW-NEW+l 
DO 77 J-NE\.1,I+2,-l 
IX(J)-IX(J-1) 
IY(J)-IY(J-1) 

77 CONTINUE 

c 

IX(I+l)-IXO 
IY(l+l)-IYO 
CALL WP(IXO,IY0,0) 
TYPE*,'YOU HAVE ADDED PIXEL:' ,IXO,IYO 
TYPE* , 'NEW- ' , NEW 
RETURN 
END 

C *************EDGEX************************* 
c 
C DETECTING AN EDGE IN THE X-DIRECTION FROM THE PARTICLE'S CENTER 
c 

SUBROUTINE EDGEX(INX,INXV,INY,ZZ,LEA) 
COMMON VERBOS 

INTEGER RPIXEL 
DO 642 JX-INX,INXV 
IF(ZZ.EQ.l.) GO TO 642 
NOOR-RPIXEL(JX,INY) 
IF(NOOR.LE.LEA) zz-1. 

642 CONTINUE 

c 

RETURN 
END 

C **************EDGEY**************************** 
c 
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c 
C DETECTING AN EDGE IN THE Y-DIRECTION FROM THE CENTER 
c 

SUBROUTINE EDGEY(IR2,IR1,INX,ZZ,LE:A) 
COMMON VERBOS 
INTEGER RPIXEL 
DO 641 JE-IR2,IR1 
IF(ZZ.EQ.l.) GO TO 641 
NOOR-RPIXEL(INX,JE) 
IF(NOOR.LE.LEA) zz-1. 

641 CONTINUE 

c 

RETURN 
END 

C*********DISPLAY A CROSS*********** 
c 

c 
c 

SUBROUTINE WP(IXO,IYO,IN) 
COMMON VERBOS 
CALL WPIXEL(IXO,IYO,IN) 
CALL WPIXEL(IXO+l,IYO,IN) 
CALL WPIXEL(IX0-1,IYO,IN) 
CALL WPIXEL(IXO,IYO+l,IN) 
CALL WPIXEL(IXO,IY0-1,IN) 
RETURN 
END 

C **************** DISPATCH **************** 
c 

c 

SUBROUTINE DISPAT(ICHAR) 
INTEGER !CHAR 

C "Case" statment to select function: 
c 

lF(ICHAR. LT. "40) GOTO 1000 
lF(ICHAR.LT. "77) CALL VOID 
IF(ICHAR. EQ. 'A') CALL LOOK 

·IF(ICHAR.EQ.'B') CALL VOID 
IF(ICHAR.EQ. 'C') CALL CSUB 
IF(ICHAR.EQ. 'D') CALL CURS(X,Y) 
IF(ICHAR.EQ.'E') CALL GRID 

!Ignore characters below 
!Unrecognized character 

!VIEW POSITIONS 
!Blank and unblank 
!Clear screen 

!MOVE TARGET 
!Exit 

octal 40 

IF(ICHAR. EQ. 'F') CALL VOID !Frame Buffer Group select 
IF(ICHAR. EQ. 'G') CALL VOID 
IF(ICHAR. EQ. 'H') CALL HELP 
IF(ICHAR. EQ. 'I') CALL ISUB 
IF(ICHAR. EQ. 'J') CALL TVVIEW 
IF(ICHAR.EQ. 'L') CALL VOID 
IF(ICHAR.EQ. 'M') CALL VOID 
IF(ICHAR. EQ. 'P') CALL VOID 
IF(ICHAR.EQ. 'R') CALL RSUB 
IF(ICHAR. EQ. 'S') CALL SSUB 
IF(ICHAR. EQ. 'T') CALL TSUB 
IF(ICHAR. EQ. 'U') CALL INTS 
IF(ICHAR. EQ. 'V') CALL VSUB 
IF(ICHAR. EQ. 'W') CALL VOID 
IF(ICHAR.EQ. 'X') CALL THRESH 
IF(ICHAR.EQ. 'Y') CALL TRAF 
IF(ICHAR.EQ.'Z') CALL ZSUB 
IF(ICHAR. EQ. '?') CALL HELP 

1000 RETURN 
END 

c 
C **************** HELP **************** 
c 

SUBROUTINE HELP 

!Guard pixel planes or values 
!Help routine 
!lnitilization 
!LOAD PICTURE FORM DISKETTE 
!Look Up tables 
!Mode select 
!Pixel Read & Write 

!Sync select 
!Take a picture 

!View Image 
!Draw wedges 
!THRESHOLD VALUE 
!TANSFER FUNCTION 
!Zoom 

TYPE *,'Commands are a single capital letter as follows:' 
TYPE*,'A:CALCULATE AVERAGE OF ALREADY SAVED FILES' 
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TYPE*, 'C:CLEAR SCREEN TO A VALUE OF 255 INTENSITY' 
TYPE*, 'E:GRID' 
TYPE*,'K:DESTORTION CORRECTION' 
TYPE*,'S:SYNC. SOURCE SELECT' 
TYPE*,'I:INITIALIZE HARDWARE' 
TYPE*,'R:ROAM (PAN AND SCREEN ROLL)' 
TYPE*,'T:TAKE A PICTURE' 
TYPE*,'V:VI~ INPUT' 
TYPE*,'Z:ZOOM' 
TYPE*,'D:MOVE TARGET' 
TYPE*,'J:LOAD PICTURE FROM DISKETTE' 
TYPE*,'K:READ OR ~ITE DATA (RECTANGULAR FORMAT)' 
TYPE*,'N:READ OR ~ITE DATA (POLAR FORMAT)' 
TYPE*,'?:HELP' 
TYPE*,'O:FIND THE CENTER OF THE PARTICLES IN SINGLE BEAM' 
TYPE*,'Q:PLOT INTENSITY' 
TYPE*,'Y:SELECT TRANSFER FUNCTION' 
TYPE*,'X:SELECT THRESHOLD VALUE FOR THE INTENSITIES' 
TYPE*,'U:SELECTS WINDOW AND PLOTS INTENSITY INSIDE IT' 
RETURN 
END 

C***************GRID****************** 
c 
C THIS SUBROUTINE IS TO DRAW A GRID 
c 

SUBROUTINE GRID 
COMMON VERBOS 
DO 10 I-50,510,50 
DO 20 J-20,510 

20 CALL WPIXEL(J,I,255) 
DO 25 K-20,510 

25 CALL WPIXEL(I,K,255) 
10 CONTINUE 

c 

RETURN 
END 

C **************** VOID: Unrecognized command **************** 
c 

SUBROUTINE VOID 
COMMON VERBOS 
IF (VERBOS) TYPE*, 'Unrecognized Command. Use ? for Help' 
RETURN 
END 

C*****************THRESHOLD***************** 
c 
c 
c 
c 
c 
c 

THIS SUBROUTINE WILL ASK FOR A THRESHOLD VALUE FOR THE INTENSITIES. 
ALL PIXELS WITH A GREY LEVEL GREATER THAN THE THRESHOLD VALUE ARE 
SET TO 255 

WHILE THE REST OF THE PIXELS ARE SET TO ZEROGREY LEVEL. 

SUBROUTINE THRESH 
COMMON VERBOS 

30 CALL SELLUT(2,0) 
TYPE*,'THE THRESHOLD INTENSITY-?' 
MAX-IGET(' ') 
DO 10 I-1,MAX 

10 CALL SETLUT(I,O) 
DO 20 J-MAX,255 

20 CALL SETLUT(J,255) 
TYPE*,'0-CONTINUE THREHOLDING' 
IT-IGET('O-CONTINUE') 
IF(IT.EQ.0) GOTO 30 
RETURN 
END 

C **************ORDERING************* 
C THIS SUBROUTINE WILL ORDER THE PARTICLES IN COLUMNS 
c 
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SUBROUTINE ORDER(IPI,IPF,JFRNG) 
COMMON VERBOS 
COMMON/BLOCK1/IX(l200),IY(l200) 

C THIS PART WILL ORDER THE PARTICLES IN COLUMNS. 
DO 33 I-IPI,IPF-1 
Jl-I+l 
DO 39 J-Jl, IPF 
IF(IX(J).GT.IX(I)) GOTO 39 
IA-IX(J) 
IB-IX(l) 
IC-IY(I) 
ID-IY(J) 
IX(I)-IA 
IX(J)-IB 
IY(I)-ID 
IY(J)-IC 

39 CONTINUE 
Ml-IX( I )+JFRNG 
DO 62 J-Jl, IPF 
IF(IX(J).GT.Ml .OR. IY(J).GT.IY(I))GOTO 62 
IA-IX(J) 
IB-IX(I) 
IC-IY(l) 
ID-IY(J) 
IX(l)-IA 
IX(J)-IB 
IY(I)-ID 
IY(J)-IC 

62 CONTINUE 
33 CONTINUE 

c 

RETUR." 
END 

c 
C*********TRAF**************** 
C THIS IS A SUBROUTINE FOR INTENSITY EQUALIZATION 
c 

SUBROUTINE TRAF 
COMMON VERBOS 
INTEGER RPIXEL 
TYPE*, 'TRANSFER FUNCTION' 
TYPE*, 'SELECT IA2>IA1' 
IAl-IGET('ENTER IAl') 
IA2-IGET('ENTER IA2') 
DO 10 I-20,500 
DO 20 J-20,500 
IA-RPIXEL(I,J) 
IF (IA.LT.IAl) GO TO 30 
IF (IA.GT.IA2) GO TO 40 
FAl-IAl 
FA2-IA2 
FV-(255./(FA2-FAl))*(IA-FA1) 
IV-INT(FV) 
CALL ~PIXEL(I,J,IV) 
GOTO 20 

30 CALL WPIXEL(I,J,0) 
GO TO 20 

40 CALL WPIXEL(I,J,255) 
20 CONTINUE 
10 CONTINUE 

c 

RETURN 
END 

C ********** TVVIEW ********** 
SUBROUTINE TVVIEW 
DIMENSION IZ(512) 
COM.'ION VERBOS 
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c 

INTEGER RPIXEL 
INTEGER X,Y,XI,XF,YI,YF 
XI-IGET( 'XI-?') 
XF-IGET ( 'XF-?') 
YI-IGET( 'YI-?') 
YF-lGET( 'YF-?') 
CALL ASSIGN (2, ,-2) 
DO 25 Y-YI,YF 
READ (2,END-500,ERR-500)(IZ(X),X-Xl,XF) 
DO 10 X-XI ,XF 
IZ(X)-INT(ABS(FLOAT(RPIXEL(X,Y)-IZ(X)))) 
CALL WPIXEL(X,Y,IZ(X)) 

10 CONTINUE 
25 CONTINUE 
500 TYPE *,'END OF FILE' 

CALL CLOSE(2) 
RETURN 
END 

C **************** CSUB: CLEAR SCREEN **************** 
c 

c 

SUBROUTINE CSUB 
COMMON VERBOS 
INTEGER INTENS 
IF (VERBOS) TYPE*,'**** Clear Screen****' 
INTENS -130 
CALL CLEAR(INTENS) 
RETURJl 
END 

C************CURSOR MOVEMENT************ 
c 
C THIS SUBROUTINE MOVES THE CURSOR TO A DESIRED POSITION 
c 

SUBROUTINE CURS(IXO,IYO) 
COMMON VERBOS 
INTEGER Xl,Yl,RPIXEL 

. INC-1 
Xl-IXO 
Yl-IYO 
lKEY-3 

50 IV-RPlXEL(Xl,Yl) 
lVl-RPIXEL(Xl,Yl-1) 
IV2-RPIXEL(Xl+l,Yl) 
IV3-RPIXEL(Xl-l,Yl) 
IV4-RPIXEL(Xl,Yl+l) 
!REM-IKEY 
IZ-0 
IF (IV .LE. 128 ) IZ-255 
CALL WP(Xl,Yl,IZ) 
IKEY-IGET('?') 
IF(IKEY .EQ.0) IKEY-IREM 
TYPE *,Xl,Yl,IV 
CALL WPIXEL(Xl,Yl,IV) 
CALL WPIXEL(Xl,Yl-1,IVl) 
CALL \;Tl'IXEL(Xl+l,Yl,IV2) 
CALL WPIXEL(Xl-l,Yl,IV3) 
CALL WPIXEL(Xl,Yl+l,1V4) 
lF(IKEY .EQ. 1 ) Xl-Xl+INC 
IF(IKEY .EQ. 2 ) Xl-Xl-INC 
IF(IKEY .EQ. 3 ) Yl-Yl+INC 
IF(IKEY .EQ. 4 ) Yl-Yl-INC 
IF(IKEY .EQ. 5) GOTO 260 
IF(IKEY.EQ.6) GOTO 10 
IF(IKEY.EQ.12) INC-10 
IF(IKEY .EQ. 11) INC-1 
IF(IKEY .EQ. 9 ) GO TO 250 
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GO TO SO 
260 Xl-IGET('X-?') 

Yl-IGET( 'Y-') 
IKEY-3 
GOTO SO 

10 IXF-Xl+30 
IYF-Yl+30 
DO 12 I-Xl, IXF 
DO 14 J-Yl, IYF 
IV-RPIXEL(I ,J) 
rz-o 
IF(IV.LE.128) IZ-2SS 
CALL WPIXEL(I,J,IZ) 
TYPE*,I,J,IV 
CALL ~PIXEL(I,J,IV) 

14 CONTINUE 
12 CONTINUE 

Xl-IXF 
Yl-IYF 
GOTO SO 

250 IXO-Xl 

c 

IYO-Yl 
RETURN 
END 

C **************** !SUB: INITILIZE **************** 
c 

SUBROUTINE ISUB 
COMMON VERBOS 
INTEGER WHICH 
IF (VERBOS) TYPE*,'**** Initilize Hardware Registers****' 
IJHICH-'E' 
IF (YHICH.EQ.'A') CALL APINIT 
IF (YHICH.EQ.'F') CALL FBINIT 
IF (IJHICH.EQ. 'L') CALL LUINIT 
IF (YHICH.EQ.'E') GOTO 100 
RETURN 

100 ·CALL APINIT 

c 

CALL FBINIT 
CALL LUINIT 
RETURN 
END 

C **************** RSUB: ROAM **************** 
c 

c 

SUBROUTINE RSUB 
COMMON VERBOS 
INTEGER X,Y 
IF (VERBOS) TYPE *·'****Roam (Pan and Scroll) ****' 
X - IGET('Pan Value-') 
Y - IGET('Scroll Value-') 
CALL PAN(X) 
CALL SCROLL(Y) 
RETURN 
END 

C **************** SSUB: SYNC **************** 
c 

SUBROUTINE SSUB 
COMMON VERBOS 
INTEGER SOURCE 
IF (VERBOS) TYPE*,'**** Select Sync Source****' 
SOURCE-'C' 
IF (SOURCE.EQ.'P') SOURCE - 0 
IF (SOURCE.EQ.'C') SOURCE - 1 
CALL SYNC (SOURCE) 
RETURN 

229 



c 
C **************** TSUB: TAKE A PICTURE **************** 
c 

c 

SUBROUTINE TSUB 
COMMON VERBOS 
IF (VERBOS) TYPE*,'**** Take A Picture****' 
CALL SNAP 
RETURN 
END 

C **************** VSUB: VIEW **************** 
c 

SUBROUTINE VSUB 
COMMON VERBOS 
IF (VERBOS) TYPE*·'**** View Input Image****' 
CALL VIEw 
RETURN 
END 

C **************** ZSUB: ZOOM **************** 
c 

c 

SUBROUTINE ZSUB 
COt-U10N VERBOS 
INTEGER X,Y 
IF (VERBOS) TYPE*,'**** Zoom in X and Y' 
X - ICGET('Zoom X Y(es or N(o:') 
IF (X.EQ. 'Y') X-1 
IF (X.EQ. 'N') X-0 
Y - ICGET('Zoom Y -- Y(es or N(o:') 
IF (Y.EQ. 'Y') Y-1 
IF (Y. EQ. 'N') Y-0 
CALL ZOOM(X,Y) 
RETURN 
END 

C **************** USEFUL ROUTINES **************** 
c 
C FUNCTION ICGET('String') - Prints string and waits for a single 
C character. No line feed at the end of the string. Character is 
C automatically capitalized if proper bit is set in JSW 
C (normal condition). 
c 

FUNCTION ICGET(STR) 
LOGICAL*l STR(l) 
INTEGER ANS 
WRITE (7,10,END-2,ERR-3) (STR(I),I-1,LEN(STR)) 
READ(S,l) ANS 

l FORMAT(Al) 
ICGET - ANS 
RETURN 

2 TYPE*,'? ICGET: END OF FILE ERROR' 
GOTO 5 

3 TYPE*,'? ICGET: HARDWARE ERROR' 
5 ICGET - 0 

RETURN 

10 •FORMAT ('$' ,200Al) 
END 

C FUNCTION IGET('String') - Prints string and waits for a single 
C integer. No line feed at the end of the string. 
c 

FUNCTION IGET(STR) 
LOGICAL*l STR(l) 
INTEGER ANS 
WRITE (7,10,END-2,ERR-3) (STR(I) ,I-1,LEN(STR)) 
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READ (5 , 1) ANS 
1 FORMAT(I5) 

IGET - ANS 
RETURN 

2 TYPE*,'? IGET: END OF FILE ERROR' 
GOTO 5 

3 TYPE*,'? IGET: HARDWARE ERROR' 
5 IGET - 0 

RETURN 

10 FORMAT ('$' ,200Al) 
END 

c 
C FUNCTION IOGET('String') - Prints string and waits for a single 
C Octal integer. No line feed at the end of the string. 
c 

FUNCTION IOGET(STR) 
LOGICAL*l STR(l) 
INTEGER ANS 
w"'RITE (7,10,END-2,ERR-3) (STR(l),I-1,LEN(STR)) 
READ(5,l) ANS 

l FORMAT(07) 
IOGET - ANS 
RETURN 

2 TYPE*,'? IOGET: END OF FILE ERROR' 
GOTO 5 

3 TYPE*,'? IOGET: HARDWARE ERROR' 
5 IOGET - 0 

RETURN 

10 FORMAT ('$' ,200Al) 
END 
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TYPE ANAL3.FOR 
c 
C ************************XDENS SUBROUTINE******************* 
C THIS SUBROUTINE IS FOR FINDING THE DENSITY OF THE PARTICLES 
C ALONG THE FRINGES DIRECTION 
c 

33 

190 

so 

52 
c 

SUBROUTINE XDENS(MXl,MXXl,MYl,MYYl,IFRNS,DIA) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
DIMENSION AVX(l00),STDF(l00),AREA(50),DENS(50) 
FRNS-IFRNS 
TYPE*,'l-PLOT SlN(2*PI*X/PERIOD + TETA)' 
READ(S,33) IANS 
FORMAT(I4) 
TYPE*,' 1-PRINT STATISTICAL ANALYSIS, CHANGE OUTPUT DEVICE' 
READ(5,190) JANS 
FORMAT(I4) 
ARS-1. 07 /5. 
DX-FLOAT(MXXl-MXl)/FRNS 
DY-FLOAT(MYYl-MYl)/FRNS 
ABOX-DX*DY 
FAREA-FRNS*DY/FRNS 
JUMPXl-INT(DIA/5.) 
PI-4.*ATAN(l.) 
DO 50 I-1,520 
RP(I)-0. 
PHI (I )-0. 
CONTINUE 
DO 52 I-1,100 
AVX(I)-0. 
STDF(I)-0. 
CONTINUE 

C READ DATA AND FIND THE NUMBER OF PARTICLES AT EACH X-POSITION. c 
NUMF-0 
DO 200 KK-2,NUMB+l 
CALL RDATA 

·DO 20 J-1,N 
!\'UM-IX (J) 
IF(NUM.LE.MXXl .AND. NUM.GE.MXl) THEN 
IF(IY(J).LE.MYYl.AND.IY(J).GE.MYl) THEN 
RP(NUM)-RP(NUM)+l. 
NUMF-NUMF + 1 

END IF 
END IF 

20 CONTINUE 
200 CONTINUE 

TBD-(FLOAT(NUMF))/(ABOX*(FLOAT(NUMB))) 
c 
C FINDING THE FOURIER COEFFICIENTS 

XD-FLOAT(MXXl-MXl) 
DIV-XD/FRNS 
MULT-INT(DIV) 
ARG-2.*PI/FRNS 
IFINAL-INT(FRNS*FLOAT(MULT)) 
Al-0. 
Bl-0. 
DO 300 I-MXl,IFINAL 
IJ-FLOAT(I) 
A-COS (ARG*\J") 
B-SIN(ARG*\J) 
Al-Al+A*RP(l) 
Bl-Bl+B*RP(I) 

300 CONTINUE 
IF(Al.EQ.0.) THEN 
TETA-PI/2. 

ELSE 
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c 

TETA-ATAN(Bl/Al) 
END IF 

TYPE*,' Al, Bl, TETA-' ,Al, Bl, TETA 
IF(IANS.EQ.l) THEN 

C PLOT SIN(2*PI*X/L + TETA) 
c 

LENGTH -700 
IX0-300 
IY0-350 
IXI-0 
IYI-0 
WRITE(6,350) IXO,IYO 

350 FORMAT(' HAU' ,14,' ,' ,14,' 0') 
XS-700./XD 
DO 310 I-MXl,MXXl 
X-FLOAT(I) 
Y-SIN((ARG*X)+TETA) 
IF(Y. LT. 0.) Y-0. 
SX-XS*(FLOAT(l·MXl)) 
NX-INT(SX) 
NY-INT(700.*Y) 
~'RITE(6,320) NX,NY 

320 FORMAT(' D ',I4,' ,' ,14) 
310 CONTINUE 

WRITE(6,330) 
330 FORMAT(' UH ') 

END IF 
c 
C FINDING THE DENSITY AND THE STATISTICS OF EACH FRINGE 
c 

KC-0 
RPTM-0. 
DO 80 J-MXl,MXXl,IFRNS 
AX-0. 
AREAT-0. 
RPTT-0. 
JRPF-J+IFRNS-1 

·IF(JRPF.GT.MXXl) JRPF-MXXl 
DO 85 K-J,JRPF,JUMPXl 
RPT-0. 
KF-K+JUMPXl·l 
IF(KF.GT.JRPF) KF-JRPF 
DO 210 I-K,KF 
RPT-RPT+RP(I) 
AX-(FLOAT(I))*RP(I)+AX 

210 CONTINUE 
PHI(KF)-RPT 
RPTT-RPTT+RPT 
IF(RPT.GT.RPTM) THEN 
RPTM-RPT 

END IF 
85 CONTINUE 

IF(RPTT.NE.0.) THEN 
STD-0. 
KC-KC+l 
AVX(KC)-AX/RPTT 
AREA(KC)-RPTT*ARS 
DENS(KC)-RPTT/FAREA 
DO 120 K-J,JRPF 
STD-STD+((K·AVX(KC))**2.)*RP(K) 

120 CONTINUE 
STD-STD/RPTT 
STDF(KC)-SQRT(STD) 
END IF 

80 CONTINUE 
IF(JANS.EQ.l) THEN 
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w"RITE(6,730) TBD 
730 FORMAT(' DENSITY OF PARTICLES IN GIVEN AREA:' ,Fl2.6) 

W'RITE(6,733) 
733 FORMAT(' MXl, MXXl, MYl, MYYl, IFRNS, IDIA') 

W'RITE(6,737) MXl,MXXl,MYl,MYYl,IFRNS,DIA 
737 FORMAT(5(3X,I4),3X,Fl2.6) 

IJRITE(6, 720) 
720 FORMAT(' FRINGE NO.,MEAN POS., STDV, AREA AND DENSITY') 

DO 70 I-1,KC 
WRITE(6,77) I,AVX(I),STDF(I),AREA(I),DENS(I) 

77 FORMAT(3X,I4,4(3X,El2.6)) 
70 CONTINUE 

ELSE 
c 
C SETTING THE PARAMETERS FOR THE PLOTTING AREA 
c 

c 

LENGTH-700 
JUMP-4 
IX0-1200 
IY0-350 
IXI-0 
IYI-0 
CALL BOX(IXO,IYO,LENGTH,IXI,IYI) 

C SETTING THE PARAMETERS FOR SCALING AND LABELING THE 
C X-AXIS. 
c 

n-o 
I2-INT(XD/FRNS) 
XS-FRNS*700./XD 
CALL XAXIS(IXI,IYl,11,12,JUMP,XS) 
lJRlTE(6,65) 

65 FORMAT(' 122,-100 U S12 X-DISTANCE/PERIOD_') 
c 
C SETTING THE PARAMETERS FOR LABELING AND SCALING THE 
C Y-AXIS 
c 

60 

68 
c 

YS-70 
. JUMP-1 

I2-10 
CALL YAXIS(IXI,IYI,Il,I2,JUMP,YS) 
WRITE(6,60) 
FORMAT(' -80,260 U S42 DENS/MAXD_') 
SCX-700./XD 
WRITE(6,68) 
FORMAT(' U 0,0 ') 

C PLOTTING THE DENSITY OF THE PARTICLES PER FRINGE PERIOD 
c 

WRITE(6,170) 
170 FORMAT(' U 0,0 D ') 

XS-700./XD 
YS-700./RPTM 
DO 140 J-MXl,MXXl,IFRNS 
JRPF-J +I FRNS -1 
IF(JRPF.GT.MXXl) JRPF•MXXl 
DO 130 K-J,JRPF,JUMPXl 
KF-K+JUMPXl-1 
IF(KF.GT.JRPF) KF-JRPF 
NY-INT(YS*PHI(KF)) 
NX-INT(XS*(FLOAT(KF-MXl))) 
WRITE(6,160) NX,NY 

160 FORMAT(X,14,' ,' ,I4) 
130 CONTINUE 
140 CONTit<uE 

WRITE(6,180) 
180 FORMAT(' UH') 
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c 

END IF 
RETURN 
END 

c ******************************************************** 
c ******************************************************** 
C THIS PROGRAM IS FOR PLOTING THE PAIR CORRELATION FUNCTION G(R) 
C USING THE HOUSTON INSTRUMENT DIGITAL PLOTTER. NOTE THAT THE 
C PLOTER BAUD RATE IS 9600. 
c 

PROGRAM ANAL3 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
COMMON/BLOCK2jMAXRl,NNEIG(2,6),DIV(520),COR(5,2),PN(520) 

901 DO 10 I•l,520 
RP(I)-0. 
DENSITY-0. 

10 CONTINUE 
999 KK·O 

CALL RDATA 
TYPE*·' DIAMETER,MINX,MAXX,MINY,MAXY' 
READ(S,50) IDIA,MXl,MXXl,MYl,MYYl 

50 FORMAT(5(I4)) 

c 

DIA-FLOAT(IDIA) 
XM-(FLOAT(MXXl-MXl))/2. 
YM-(FLOAT(MlI'l-MYl))/2. 
IXM-INT(XM)+MXl 
IYM-INT(YM)+MYl 
MINl-INT(XM/2.) 
MINY-6 

C INPUT THE ANALYSIS TO BE PERFORMED 
c 

TYPE*,' 0-G(R) VRS. R PLOT' 
TYPE*,' 1- DELTA-X VRS. DELTA-Y PLOT' 
TYPE*,' 2-CCIFS PLOTS' 
TYPE*,' 3-PARTICLE DENSITY IN Y-DIRECTION' 
TYPE*,' 5-X-Y POSITIONS RELATIVE TO FRINGE POS.' 

.TYPE*,' 6-PARTICLE DENSITY IN X-DIRECTION' 
READ(5,15) JAWAB 

15 FORMAT(I3) 
\./RITE ( 6, 11) 

11 FORMAT(' ;:I OD 100 HAU') 
IF(JAWAB.EQ.0) THEN 
TYPE*,' INPUT THE ANULUS WIDTH:' 
READ(5. 83) JR 

83 FORMAT(I3) 
END IF 
IF(JAWAB.EQ.l) THEN 
IYM-INT(.8*(FLOAT(IYM))) 
CALL ONE(MINl,DIA,IXM,IYM) 

END IF 
IF(JAWAB.EQ.2) THEN 
CALL TWO 

END IF 
IF(JAWAB.EQ.3 .OR. JAWAB.EQ.4) THEN 
CALL JAW34(JAWAB,DIA,MIN3,MAX3,MIN4,MAX4) 

END IF 
IF(JAWAB.EQ.5) THEN 
CALL FIVE(MXl,MXXl,MYl,Ml'Yl,DIA) 

END IF 
IF(JAWAB.EQ.6) THEN 
TYPE*,'INPUT FRINGE PERIOD' 
READ(5,20) IFR 

20 FORMAT(I4) 
FRNS-FLOAT(IFR) 
CALL XDENS(MXl ,MXXl ,MYl ,MYYl. IFR. DIA) 
GOTO 900 
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END IF 
C PROCESSING THE DATA FILES 
c 

DO 130 KK-2,NUMB+l 
GAU. RDATA 
DO Bl I-1,N 
YPOS-IY(I) 
IY(I)-INT(O.B*YPOS) 

81 CONTINUE 
IF(JAYAB.EQ.0) THEN 

GAU. PAIRC(DENSITY,DIA,JR,IXM,IYM) 
IF(KK.EQ.NUMB+l)THEN 
DENSITY-DENSITY/(FLOAT(NUMB+l)) 
CAll ZERO(JR,DIA,DENSlTY) 

ENDlF 
ENDIF 

IF(JAYAB.EQ.l) CALL ORIENT(MlNl,IXM,IYM,DIA) 
lF(JAWAB.EQ.2) THEN 
CALL CCIFS 

END IF 
IF(JA~AB.EQ.3) THEN 

CALL XDENS(MXl,MXXl,MYl,MYYl,DIA) 
IF(KK.EQ.NUMB+l) THEN 
CALL DENSC(MIN3,MAX3,DIA) 

END IF 
END IF 
IF(JAWAB.EQ.4) THEN 

CALL YDENS(MIN4,MAX4,DIA) 
IF(KK.EQ.NUMB+l) THEN 
CALL DENSC(MIN4,MA.X4,DIA) 

END IF 
END IF 
IF(JAWAB. EQ. 5) THEN 
CALL POSP(MXl,MXXl,MYl,MYYl,DIA) 

END IF 
130 CONTINUE 

\..'RITE( 6, 92) 
92 FORMAT(3H UH) 
900 CONTINUE 

c 
c 

GOTO 901 
END 

C ***************** MIDPOS SUBROUTINE *************** 
c 
C FIND THE CLOSEST PARTICLE IN A FILE THAT IS CLOSEST TO 
C A GIVEN POSITION 
c 

SUBROUTINE MIDPOS(IXM,IYM,MX,MY) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
Xl-FLOAT (IXM) 
Yl-(FLOAT(IYM)) 
c-2sooo 
DO 90 I-1,N 
X-FLOAT(IX(I)) 
Y-FLOAT(IY(I)) 
R-(X-Xl)**2.+(Y-Yl)**2. 
IF(R.LT.C) THEN 
C-R 
MX-IX(I) 
MY-IY(I) 

END IF 
90 CONTINUE 

RETURN 
END 

C ****************** MAMI SUBROUTINE **************** 
c 
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C FINDING THE MINIMUM AND MAXIMUM X&Y POSITIONS FOR ALL 
C THE DATA FILES CONTAINED IN A CONPLETE FILE 
c 

SUBROUTINE MAMI(MXl,MXXl,MYl,M'r"Yl) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520) ,PHI(520) 
DO 100 KK-2,NUMB+l 
CALL RDATA 
CALL LLMM(MINX,MAXX,MINY,MAXY) 
IF(MINX.LT.O .OR. MAXX.GT.512) GOTO 100 
IF(MINY.LT.O .OR. MAXY.GT.480) GOTO 100 
IF(MINX.LT.MXl) MXl-MINX 
IF(MAXX.GT.MXXl) MXXl-MAXX 
IF(MINY.LT.MYl) MYl-MINY 
IF(MAXY.GT.MYYl) MYYl-MAXY 

100 CONTINUE 

c 

RETURN 
END 
END 

C **************** DENSC SUBROUTINE ********************** 
C THIS SUBROUTINE IS FOR PLOTING THE THE DENSITY OF THE PARTICLES 
C ALONG AND PERPENDICULAR TO THE POTENTIAL'S PERIODICITY DIRECTION 
c 

SUBROUTINE DENSC(MIN3,MAX3,DIA) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 

RM-0. 
SX-700.*DIA/FLOAT(MAX3-MIN3) 
DO 12 I-MIN3,MAX3,4 
IF(RP(I).GT.RM) RM-RP(I) 

12 CONTINUE 
SY-700./RM 
'WRITE(6,33) 

33 FORMAT(' U 0,0 D') 
DO 25 I-MIN3,MAX3,4 
IS-INT(SX*(FLOAT(I-MIN3))/DIA) 
JY-INT(RP(I )*SY) 
'WRITE(6,30) IS,JY 

30 FORMAT(X,14,' ,' ,I4) 
25 CONTINUE 

c 

RETURN 
END 

C **************** ZERO SUBROUTINE ************************* 
C THIS SUBROUTINE IS FOR SETTING AND PLOTTING THE DATA FOR\ 
C THE TRANSLATIONAL PAIR CORRELATION FUNCTION 
c 

SUBROUTINE ZERO(JR,DIA,DENSITY) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
COMMON/BLOCK2jMAXRl,NNEIG(2,6),DIV(520),COR(5,2),PN(520) 
IX0-1200 
IY0-350 
LENGTH-700 
LH-0 

C DRA\.IING A BOX AROUND THE PLOTTING AREA 
CALL BOX(IXO,IYO,LENGTH,LH,LH) 

C THIS PART \./ILL PLOT G(R) VRS. R, SCALING BOTH AXIS FOR 
C MAXIMUM POSITION. G(R) IS DEFINED AS THE NUMBER OF PARTICLES 
C \.IITHIN AN ANULUS OF \.IIDTH DR AT A DISTANCE R FROM THE CENTER 
C PARTICLE DEVIDED BY THE CIRCUMFERENCE TIMES DELTA R (DR). 
c 

MAXR-MAXRl 
PMAX-0. 
JS-INT(FLOAT(JR)/2.) 
IXI-0 
IYI-0 
XS-DIA*700./FLOAT(MAXR) 
n-o 
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I2-FLOAT(MAXR)/DIA 
JUMP-2 
YS-70. 

C LABELING THE X-AXIS 
CALL XAXIS ( IXI, IYI, Il, 12 ,JUMP ,XS) 

WRITE(6,23) 
23 FORMAT(' 62,-100 U Sl2 RADIAL DISTANCE/DIAMETER_') 
C LABELING THE Y-AXIS 

JUMP-1 
12-10 
CALL YAXIS(IXI,IYI,Il,I2,JUMP,YS) 
WRITE(6, 27) 

27 FORMAT(' -80,260 U 542 G(R)/GMAX ') 
DO 70 I-JR,MAXR,JR -
IF(DIV(I).EQ.O.) GOTO 70 
PN(I)-PN(I)/(DIV(I)*DENSITY) 
IF(PN(I).GT.PMAX) PMAX-PN(I) 

70 CONTINUE 
SCY-700./PMAX 
TYPE*,'DENS,PMAX,SCY:' ,DENSITY,PMAX,SCY 
XNU-FLOAT(MAXR) 
SCX-700./XNU 
X-FLOAT(JR) 
Il-INT(SGX*(X-1.)) 
WRITE( 6, 66) Il 

66 FORMAT('U 0,0 D ',I4,' ,O') 
DO 40 I-JR,MAXR,JR 
x-I 
Il-INT(SCX*X) 
NY-INT(PN(I)*SCY) 
WRITE(6,90) Il,NY 

90 FORMAT(' ',I4,',',I4) 
40 CONTINUE 

c 

RETURN 
END 

C ****************** RDATA SUBROUTINE ************************* 
C THIS .SUBROUTINE IS FOR OPENING FILES AND READING DATA 
c 

SUBROUTINE RDATA 
COMMON KK,NUMB,N,IX(300),IY(300) ,RP(520),PHI(520) 
CHARACTER*7 D(lOO) ,FICH 
IF(KK.EQ.0) THEN 
TYPE*,'INPUT NUMBER OF FILE' 
TYPE*,', IF NUMB-0 FILE NAMES ARE SAVED' 
READ(S,100) NUMB 

100 FORMAT(I3) 
IF(NUMB.NE.0) THEN 
DO 110 I-2,NUMB+l 
WRITE(S,120) I 

120 FOR.liAT(' FILE NAME' ,I3) 
READ(S,125) D(I) 

125 FORMAT(A7) 
WRITE(S,122) D(I) 

122 FORMAT(3X,A7) 
llO CONTINUE 

FICH-D( 2) 
ELSE 

TYPE*,'INPUT THE NAME OF THE FILENAMES' 
READ(S,101) FICH 

101 FORMAT(A7) 
WRITE(6,10) FICH 

10 FORMAT(SX,'DATA ANALYSIS FOR FILE: ',A7) 
CALL ASSIGN(2,FICH,O) 
READ(2,END-510,ERR-510) D(l) 
DECODE(6,160,D(l)) NUMB 

160 FORMAT(I3) 
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READ(2,END-510,ERR-510) (D(I),I-2,NUMB+l) 
510 CLOSE(2) 

END IF 
ELSE 

CALL ASSIGN(2,D(KK),0) 
READ(2,END-500,ERR-500) N 
TYPE*,'***PROCESSING FILE: ',D(KK),N 
READ(2,END-500,ERR-500) (IX(I),I-1,N) 
READ(2,END-500,ERR-500) (IY(I),I-1,N) 

500 CALL CLOSE(2) 

c 

END IF 
RETURN 
END 

C ****************** ONE SUBROUTINE********************************* 
c 
C THIS SUBROUINE IS FOR PLOTTING THE AXIS FOR THE ORIENTATIONAL 
C CORRELATION FUNCTION 
c 

SUBROUTINE ONE(MINl,DIA,IXM,IYM) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
IX0-300 
IY0-350 
LENGTH-700 
LH-INT(FLOAT(LENGTH)/2.) 
IXI--LH 
IYI--LH 

C DRA\.iING A BOX AROUND THE PLOTTING AREA 
CALL BOX(IXO,IYO,LENGTH,LH,LH) 

C LABELING THE X-AXIS 
XS-(DIA*FLOAT(LH))/FLOAT(MINl) 
I2-INT(FLOAT(MIN1)/DIA) 
n-- I2 
YS-XS 
JUMP-1 
CALL XAXIS(IXI,IYI,Il,12,JUMP,XS) 
JH-192-LH . 

· JD-IYI -100 
WRITE(6,203) JH,JD 

203 FORMAT(X,I4,' ,' ,14,' U Sl2 DELTA-X/DIA.~ETER ') 
C LABELING THE Y-AXIS -

CALL YAXIS(IXI,IYI,Il,12,JUMP,YS) 
JH-IXI-130 
JD-192-LH 
WRITE(6,109) JH,JD 

109 FORMAT(XI4,' ,' ,14,' U S42 DELTA-Y/DIA.~ETER_') 
RETURN 
END 

c 
C ****************** TWO SUBROUTINE ******************* 
C THIS SUBROUTINE IS FOR SETTING THE PLOTTING PARAMETERS 
C 'WHEN JAIJAB-2. 
c 

SUBROUTINE TWO 
c 
C DRAIJ EDGES AROUND THE PLOTTING AREA 

IX0-400 
IY0-800 
LENGTH-700 
LH-INT(FLOAT(LENGTH)/2.) 
IXI--LH 
IYl--LH 
JUMP-100 

C DRAIJING A BOX AROUND THE PLOTTING AREA 
CALL BOX(IXO,IYO,LENGTH,LH,LH) 
WRITE(6,10) 

10 FORMAT(' -100,-400 D 512 DELTA-X ') 
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C LABELING THE X-AXIS 
CALL XAXIS(IXI,IYI,Il,12,JUMP,XS) 

C LABELING THE Y-AXIS 
CALL YAXIS(IXI,IYI,Il,I2,JUMP,YS) 
WRITE(6,20) 

20 FORMAT(' -200,-400 U 512 R*COS(ANN) ') 
WRITE(6,30) 

30 FORMAT(' -420,200 U 542 R*SIN(ANN) U') 
RETURN -
END 

c 
C ****************JAW34 SUBROUTINE **************** 
c 
C THIS SUBROUTINE IS FOR THE DENSITY MODES ANALYSIS 
C WHEN JAWAB•3 OR 4. 
c 

SUBROUTINE JAW34(JAWAB,DIA,MIN3,MAX3,MIN4,MAX4) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(S20),PHI(520) 
MIN3-400 
MAX3•0 
MIN4-400 
MAX4-0 
DO 70 KK-2,NUMB+l 
CALL RDATA 
CALL LL.'1M(MINX,MAXX,MINY,MA1."Y) 
IF(MINX.LT.MIN3) MIN3-MINX 
IF(MINY.LT.MIN4) MIN4-MINY 
IF(MAXX.GT.MAX3) MAX3-MAXX 
IF(MAXY.GT.MA.X4) MAX4-MAXY 

70 CONTINUE 
IXI-0 
IYI-0 
LENGTH-700 
IF(JAWAB.EQ.3) THEN 
JUMP-5 
IX0-300 
IY0-350 
-Pl-(FLOAT(MAX3-MIN3))/DIA 
n-o 

ELSE 
IX0-1200 
IY0-350 
JUMP-5 
n-o 
Pl-(FLOAT(MAX4-MIN4))/DIA 

END IF 
LH-0 

C DRAWING A BOX AROUND THE PLOTTING AREA 
CALL BOX(IXO,IYO,LENGTH,Ui,LH) 
XS-700./(Pl) 

I2-INT(Pl) 
C DRAWING THE XAXIS 

CALL XAXIS(IXI,IYI,Il,I2,JUMP,XS) 
JUMP-2 
12-10 
YS-70. 

C DRAWING AND LABELING THE YA.XIS 
CALL YAXIS(IXI,IYI,Il,!2,JUMP,YS) 
WRITE(6,10) 

10 FORMAT(' -80,134 U S42 NORMALIZED DENSITY ') 
RETURN -

END 
c 
C **************** FIVE SUBROUTINE *************************** 
c 
C THIS SUBROUTINE IS FOR SETTING THE PLOTTING AREA AND 
C PARAMETERS TO BE USED IN THE X-Y POSITION PLOT OF THE 

240 



C DATA FILE 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 100 

30 

50 

c 

SUBROUTINE FIVE(MXl,MXXl,MYl,MYYl,DIA) 
COMMON KK,NUHB,N,1X(300),IY(300),RP(520),PHI(520) 
IX0-300 
lY0-350 
LENGTH-700 
LH-INT(FLOAT(LENGTH)/2.) 

DO 100 KK-2,NUHB+l 
CALL RDATA 
CALL LLMM(MINX,MAXX,MINY,MAXY) 
IF(MINX.LT.0 .OR. MAXX.GT.512) GOTO 100 
IF(MlNY.LT.O .OR. MAXY.GT.480) GOTO 100 
IF(MINX.LT.HXl) HXl-HINX 
lF(MAXX.GT.HXXl) HXXl-HA.XX 
lF(MINY.LT.MYl) MYl-MINY 
IF(MAXY.GT.MYYl) MYYl-MAXY 

CONTINUE 
IXI-0 
IYI-0 
MY1-INT(.8*(FLOAT(MY1))) 
MYY1-1NT(.8*(FLOAT(MYY1))) 
CALL BOX(lXO,IYO,LENGTH,IXI,IYI) 
xs-2.*D1A*700./(FLOAT(MXX1-MX1)) 
JUMP-2 
Il-0 
12-INT((FLOAT(MXXl-MXl))/(2.*DIA)) 
CALL XAXIS(IXI,IYI,Il,12,JUMP,XS) 
\./RITE ( 6, 30) 
FORMAT(' 120,-100 U Sl2 X-POSITION/2*DIAMETER ') 
I2-INT((FLOAT(MYY1-MY1))/(DIA*2.)) -
YS-2.*DIA*700./(FLOAT(MYY1-MY1)) 
CALL YAXIS(IXI,IYI,Il,I2,JUMP,YS) 
\..'RITE(6, 50) 
FORMAT(' -80,120 U S42 Y-POSITION/2*DIA.~ETER_') 
RETURN 
END 

C ******************** BOX SUBROUTINE ******************************* 
c 
C THIS SUBROUTINE PLOTS A BOX AROUND THE PLOTTING AR.EA 
c 

SUBROUTINE BOX(IXO,IYO,LENGTH,IXI,IYI) 
\.IRITE(G,10) IXO,IYO 

10 FORMAT(' HAU ',I4,',',I4,' OD') 
\.IRITE(G,20) LENGTH,LENGTH,LENGTH,LENGTH 

20 FORMAT(' O,' ,I4,X,I4,' ,' ,I4,X,I4,' ,0 0,0 U') 
\.IRITE(6,40) IXI,IYI 

40 FORMAT(X,I4,' ,' ,14,' O') 
RETURN 
END 

C ***************** XAXIS SUBROUTINE ******************************* 
c 
C THIS SUBROUTINE IS FOR LABELING THE XAXIS 
c 

SUBROUTINE XAXIS(IXI,IYI,Il,I2,JUMP,XS) 
Ll-IYI-10 
L2-IYI-50 
DO 202 I-Il,I2,JUMP 
ISX-INT((FLOAT(I))*XS) 
\.IRITE(6,200) ISX,IYI,ISX,Ll 

200 FORMAT(' U ',I4,',',I4,' D ',I4,',',I4,' U') 
IS-ISX-40 
\.IRITE(6,30) IS,L2,I 

30 FORMAT(X,I4,','I4,' Sll ',I4,'_') 
202 CONTINUE 

RETURN 
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10 CONTINUE 

c 

RETURN 
END 

C *******************CCIFS PLOTING SUBROUTINE************************* 
C THIS SUBROUTINE IS FOR THE CCIFS PLOTS. THIS IS DONE BY TAKING 
C THE CENTER PARTICLE, FINDING ITS NEAREST NEIGHBORS, FINDING THE 
C ANGLE BETWEEN THE NNEIG. AND CENTER PARTICLE, THEN TRANSLA.TE AND 
C ROTATE THE REST OF THE PARTICLE YITH THE GIVEN ANGLE. 
c 

SUBROUTINE CCIFS(ICOUNT) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
DIMENSION NNEIG(2,7) 
PI-4. O*ATAN(l. 0) 
PIH-PI/2. 
X-FLOAT(IX(l)) 
Y-FLOAT(IY(l)) 
C-(X-256.)**2.+(Y-192.)**2. 
Xl-256. 
Yl-192. 
DO 90 I-1,N 
X-FLOAT( IX(I)) 
Y-FLOAT(IY(I)) 
R-(X-Xl)**2.+(Y-Yl)**2. 
IF(R.LT.C) THEN 
c-R 
MX-IX(I) 
MY-IY(I) 

END IF 
90 CONTINUE 

DO 25 I-1,N 
X-FLOAT(IX(I)-MX) 
Y-FLOAT(IY(I)-MY) 
RP(I)-SQRT(X*X+Y*Y) 
IF(X. EQ. 0.) THEN 
PHI(I)-PIH 

ELSE 
·PHI(I)-ATAN2(Y,X) 

END IF 
25 CONTINUE 

CALL ORDER(N) 
SX-300./256. 
SY-300./192. 
DTETA-PIH-PHI(2) 
DO 30 J-1,N 
X-RP(J)*COS(PHI(J)+DTETA) 
Y-RP(J)*SIN(PHI(J)+DTETA) 
IX(J)-INT(X*SX) 
IY(J)-INT(Y*SY) 

30 CONTINUE 
CALL ORDER2(N) 

DO 60 1-1,N 
IF(IX(I).LT.-300 .OR. IX(I).GT.300) GOTO 60 
IF(IY(I).LT.-300 .OR. IY(l).GT.300) GOTO 60 
WRITE(6,50) IX(I),IY(I) 

50 FORMAT(' ',14,',',I4,' Sll + U') 
60 CONTINUE -

RETURN 
END 

C *************** PAIRC *********************** 
C ANALYSIS FOR THE TRANSLA.TIONAL PAIR CORRELATION FUNCTION 
c 

SUBROUTINE PAIRC(DENSITY,DIA,JR,IXM,IYM) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(300),PHI(300) 
COM.~ON/BLOCK2/MAXR1,NNEIG(2,6),DIV(520),COR(5,2),PN(520) 
CALL LL'iM(MINX,MAXX,MINY,MAXY) 
XMIN-FLOAT(MINX) 
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END 
c 
C ********************** YAXIS SUBROUTINE ************ c 
C THIS SUBROUTINE LABELS THE Y·AXIS 
c 

107 

108 
106 

c 

SUBROUTINE YAXIS(IXI,IYI,Il,I2,JUMP,YS) 
Ll-IXI-15 
L2-IXI·80 
DO 106 l-11,12,JUMP 
lYS-YS*(FLOAT(I)) 
'WRITE(6,107) Ll,lYS,lXl,IYS 
FORMAT(' U' I4 ' ' I4' D ',l4,',',I4,' U') 
'WRITE(6,l08) 0 L2:IYs:I ' 
FORMAT(X,I4,',' ,I4,' Sll ',I4,'_') 
CONTINUE 
RETURN 
END 

C ******************** YDENS SUBROUTINE ************************ 
C THIS SUBROUTINE IS FOR FINDING THE DENSITY 
C IN THE DIRECTION OF THE FRINGE PATTERN PERIODICITY 
c 

SUBROUTINE YDENS(MIN4,MAX4,DIA) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
JUMP-4 
DO 10 I-MIN4,MAX4,JUMP 
INCX-I+JUMP 
NUM-0 
DO 20 J-1,N 
IF(IY(J).LT.I.OR.IY(J).GT.INCX) GOTO 20 
NUM-NUM+l 

20 CONTINUE 
RP(I)-FLOAT(NUM)+RP(I) 

10 CONTINUE 

c 

RETURN 
END 

C **************** LI.MM SUBROUTINE ************************** 
C THIS SUBROUTINE IS FOR FINDING THE MINIMUM X&Y VALUES_ AND THE 
C MAXIMUM X&Y VALUES IS EACH DATA FILNDING THE PARTICLES' DENSITYE 

SUBROUTINE LLMM(MINX,MAY.X,MINY,MAXY) 
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520) 
MINX-IX(l) 
MINY-IY(l) 
MAXX-IX(N) 
MAXY-IY(N) 
IF(MINX.LT.0.0R.MINY.LT.0) THEN 
TYPE*,'*** PROBLEMS IXl,IYl: **',MINX,MINY 

ELSE 
IF(MAXX.GT.512.0R.MAXY.GT.512) THEN 
TYPE *,.'***PROBLEMSIX(N) ,IY(N) ***' ,MAXX,MAXY 

ENDIF 
END IF 

DO 10 I-1,N·l 
IF(IX{I+l).GT.512 .OR. IX{I+l).LT.0) THEN 
TYPE*,'***POSITION PROBLEMS:***' ,I+l,IX(I+l),IY(I+l) 

ELSE 
IF(IY(I+l).GT.480 .. OR.IY(I+l).LT.0) THEN 
TYPE*,'***POSITION PROBLEMS:***',I+l,IX(I+l),IY(l+l) 

ELSE 
IF(IX(I+l).GT.MAXX) MAXX-IX(I+l) 
IF(IY(I+l).GT.MA>."Y) MA>.-Y-IY(I+l) 
IF(IX(I+l).LT.MINY) MINX-IX(I+l) 
IF(IY(I+l).LT.MINY) MINY-IY(I+l) 

ENDIF 
ENDIF 
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XMAX-FLOAT(MAXX) 
YMIN-FLOAT(MINY) 
YMAX-FLOAT(MAXY) 
AREAB-(XMAX-XMIN)*(YMAX-YMIN) 
DENSITY-DENSITY+N/AREAB 
X-FLOAT(IX(l)) 
Y-FLOAT(IY(l)) 
XMIDL-FLOAT(!XM) 
YMIDL-FLOAT(IYM) 
C-(X-XMIDL)**2.+(Y-YMIDL)**2. 
LN-1 
IF(KK.EQ.2) THEN 
IRC-520 
MAXRl-512 
DR-JR 
JS-INT(DR/2.) 
DO 80 I-1,IRC 
DIV(I)-0. 
PN(I)-0. 
RP(I)-0. 
PHI(I)-0. 

80 CONTINUE 
MAXRl-0 

C THIS PART WILL INPUT THE CORNERS 
COR(l,1)-XMIN 

c 

COR( 1, 2)-YMIN 
COR(2, 1)-XMA.X 
COR(2,2)-YMIN 
COR ( 3, 1 )-X.'1IN 
COR(3,2)-YMAX 
COR(4,l)-XMAX 
COR(4,2)-YMAX 
COR(S, l)-X.'1IDL 
COR(S, 2)-YMIDL 
PI-4. *ATAN( 1. 0) 

. ENDIF 
C THIS PART WILL FIND THE CLESEST PARTICLE WITH TO THE POSITION 
C MX, MY. 
c 
170 DO 175 IC-1,5 

IF(LN.GT.7) GOTO 175 
Xl-COR(IC, 1) 
Yl-COR(IC, 2) 
DO 10 I-1,N 
X-FLOAT (IX( I)) 
Y-FLOAT(IY(I)) 
R-(X-Xl)**2.+(Y-Yl)**2. 
IF(R.LT.C) THEN 
C-R 
MX-IX(I) 
MY-IY(I) 

END IF 
10 CONTINUE 
C THIS PART WILL FIND THE IARGEST CIRCLE WITH CENTER AT THE 
C MX,MY THAT WILL BE ENCLOSED IN THE RECTANGULAR AREA 
c 

c 

IF(IC.NE.5) THEN 
X-MX 
Y-MY 
C-XMAX**2.+YMAX**2. 

C FINDING EACH CORNERS' MAXIMUM ANALYSIS RADIUS AND ENCLOSED ANGLE 
c 

GOTO (191,192,192,191),IC 
191 R4-SQRT((XMAX-X)**2.+(Y-YMIN)**2.) 

RS-SQRT((XMIN-X)**2.+(YMAX-Y)**2.) 
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GOTO 195 
192 R4-SQRT((XMIN-X)**2.+(YMIN-Y)**2.) 

RS-SQRT((XMAX-X)**2.+(YMAX-Y)**2.) 
195 MAXR-INT(R4) 

c 

IF(R5.LT.R4) MAXR-INT(R5) 
A-(R4*R4+RS*RS-C)/(R4*RS*2.) 
TETA-ACOS(A) 

ELSE 

C MAXIMUM CIRLE ENCLOSED BY THE CENTER PARTICLE 
c 

LN-LN+l 
MIX-MX 
MIY-MY 
TETA-2.*PI 
IF(MX.GT.IXM) MIX-MAXX-MX 
IF(MY. GT. IYM) MIY..,MA>..'Y-MY 
MAXR-MIX 
IF(MIX.GT.MIY) MAXR-MIY 

END IF 
190 RPMAX-0. 

PMAX-0. 
C THIS PART \JILL FIND THE CHANGE IN X&Y-POSITIONS BETWEEN THE 
C EACH PARTICLE AND THE CENTER ONE. 

DO 20 I-1,N 
X-FLOAT(IX(I)-MX) 
Y-FLOAT(IY(I)-MY) 
RP(I)-SQRT(X*X+Y*Y) 

20 CONTINUE 

c 

CALL ORDER(N) 
IF(LN.EQ.2) THEN 

C NEAREST NEIGHBORS TO THE CENTER PARTICLE(NNEIG(I,J)) 
c 

DO 240 I-2,7 
NNEIG(l,I-1)-IX(I) 

. NNEIG(2,I-1)-IY(I) 
240 CONTINUE 

END IF 
C THIS PART \JILL COUNT THE NUMBER OF PARTICLE THAT ARE AT A DISTANCE 
C R-DR/2. AND R+DR/2. R IS THE DISTANCE FROM THE CENTER PARTICLE. 
c 

XO-MX 
YO-MY 
DO 30 J-JR,MAXR,JR 
AB-0. 
RADI-J 
Rl-RADI-DR/2. 
R2-RADI+DR/2. 
DRAD-R2*R2-Rl*Rl 
DIV(J)-DIV(J)+l. 
DO 70 I-2,N 
IF(IC.GT.4) GOTO 260 
X-IX(I) 
Y-IY(I) 
GO TO (310,320,330,340),!C 

310 IF(X.GE.XO.AND.Y.GE.YO) GOTO 260 
IF(Y.LT.YO) THEN 
C-((X-XMIN)**2.+(YMAX-Y)**2.) 
R7-RS 

ELSE IF(X.LT.XO) THEN 
C-((XMAX-X)**2.+(Y-YMIN)**2.) 
R7-R4 
END IF 
GOTO 420 

320 IF(X.LE.XO.AND.Y.GE.YO) GOTO 260 
IF(Y.LT.YO) THEN 
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R7-RS 
C-(XMAX-X)**2.+(YMAX-Y)**2. 
ELSE 
R7-R4 
C-(X-XMIN)**2.+(Y-YMIN)**2. 
END IF 
GOTO 420 

330 IF(X.GE.XO.AND.Y.LE.YO) GOTO 260 
IF(Y.GT.YO) THEN 
R7-R4 
C-(X-XMIN)**2.+(Y-YMIN)**2. 
ELSE 
R7-RS 
C-(XMAX·X)**2.+(YMAX-Y)**2. 
END IF 
GOTO 420 

340 IF(X.LE.XO.AND.Y.LE.YO) GOTO 260 
IF(Y.GT.YO) THEN 
R7-R4 
C-(XMAX-X)**2.+(Y-YMIN)**2. 
ELSE 
R7-R5 
C-(X-XMIN)**2.+(YMAX-Y)**2. 
END IF 

420 A-(R7*R7+RP(I)*RP(I)-C)/(R7*RP(I)*2.) 
IF(A.GT.l .. OR. A.LT.-1.) THEN 
TYPE*, 'ARGUMENT-' , A 

END IF 
TETAl-ACOS(A) 
IF(TETAl.GT.TETA) GOTO 70 

260 IF(RP(I).LE.R2 .AND. RP(I).GE.Rl) A8-A8+1. 
70 CONTINUE 
C CALCULATING THE AREA OF EACH RING 
c 

ARCL-DRAD*TETA/2. 
PN(J)-PN(J)+A8/ARCL 

30 CONTINUE 
IF(MAXR.GT.MAXRl) MAXRl-MAXR 
IF(LN.LE.7 .AND. LN.GT.l) THEN 
MX-NNEIG(l,LN-1) 
MY-NNEIG(2,LN-l) 
MIX-MX 
MIY-MY 
TETA-2.*PI 
IF(MX.GT.IXM) MIX-MAXX-MX 
IF(MY.GT.IYM) MIY-MAXY-MY 
MAXR-MIX 
IF(MIX.GT.MIY) MA.XR-MIY 
LN-LN+l 
GOTO 190 

END IF 
175 CONTINUE 

c 

RETURN 
END 

C *************************SUBROUTINE ORDER2***************** C THIS SUBROUTINE WILL ORDER THE PARTICLES ACCORDING TO THEIR 
C X AND Y POSITIONS IN ORDER TO MAKE THE PLOTTING LESS TIME CONSUMING c 

SUBROUTINE ORDER2 
COMMON KK,NUMB,N,IX(300),IY(300) ,RP(520),PHI(520) 
DO 210 I-1,N 
DO 220 J-I+l,N 
IF(IX(J).LT.IX(I)) THEN 
JXl-IX(I) 
JX2-IX(J) 
JYl-IY(I) 
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//U12604A JOB (12604,499-82-3198),'KHALID', 
II TIME•(600.00).CLASS•4,MSGCLASS•X,NOTIFY•U12604A,MSGLEVEL•(1,1) 
/•PASSWORD ???? 
/•JOBPARM FORMS•9001,ROOM•K 

247 

// EXEC FORTVCLG,PARM.FORT•'LANGLVL(77),0PT(3),MAP,XREF' ,FVREGN=2500K, 
/I REGION.G0•8&40K 
//FORT.SYSIN DD• 
c 
c ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
c 
c 
c 

THIS PROGRAM IS A MONTE CARLO SIMULATION OF THE LASER FREEZING 
OF COLLOIDAL PARTICLES IT FINDS THE 2D PAIR CORRELATION FUNCTION 

WRITTEN BY KHALID LDUDIYI 

c ···········································•********* c 
C ••• REMEMBER TO CHECK THE FOLLOWINGS BEFORE SUBMITTING ANY JOB 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MAKE SURE THE DATA FILE NAME IS RIGHT 
FOR INITIAL RUN SET IBIT•1 AND KSTART•1 
FOR THE SECOND RUN IBIT•1 AND KSTART•O 
FOR THE THIRD RUN IBIT•O AND KSTART•O 

IF IBIT=1 SET NMAX=20,IREP•50 
IF IBIT•O SET NMAXc20,IREP•20 
IF KSTART = 1 THEN START FROM 
IF KSTART = 0 THEN START FROM 
MUST ALREADY HAVE THE LATTICE 

LATTICE (NEW DATA FILE) 
PREVIOUS CONFIGURATION (DATA FILE 
POSITIONS STORED) 

REMEMBER TO CHANGE THE VALUE OF IRAN, IN ORDER TO START AT 
DIFFERENT POINTS OF THE RANDOM NUMBER GENERATOR. 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

SETTING THE PARAMETERS FOR THE POTENTIAL CALCULATION 

ZEFF=EFFECTIVE CHARGE, SIZEX=LENGTH OF THE BOX 
SIZEY=WIOTH OF THE BOX, DEPTH=SEPARATION BETWEEN GLASS PLATES 
AREA=AREA OF THE BOX, BOLTZ=BOLTZMAN CONSTANT, TEMPER=TEMPERATURE 
ROicMACROIONS' DENSITY, DIELCcBACKGROUND DIELECTRIC CONSTANT 
CHARGE=ELEMENTARY CHARGE IN CGS., AMP=STRENGTH OF THE INTERACTION 
ALPHA•SCREENING LENGTH MULTIPLIED BY INTERPARTICLE SPACING 
PARTS•CHARACTERISTIC INTERPARTICLE SPACING 
NLOOP•NUMBER OF WELLS IN THE BOX WITH THE CROSS BEAMS ON 
NPART=NUMBER OF PARTICLES IN THE MONTE CARLO SIMULATION 
PNSQRT•SQUARE-ROOT OF NUMBER OF PARTICLES. 

IMPLICIT REAL*S(A-H,0-Z) 
COMMON CP(2,100),ENERG(101,100) 
COMMON SIZEX,SIZEY,ENEW,SY.SX,ALFA 
COMMON INUM, I FLAG, IFLAG1 ,NPART ,NPARTH 
DIMENSION DEVI(100),AI1(300) 
DIMENSION DN(2,300),AMSQ(2),DD(9),ANR(3,300) 
PARAMETER(NMAX•10,PERIOD=2.200) 
PARAMETER(IREP=1,IRAN=7,DPOTEN=2. ,CBOUN=7.) 
PARAMETER(IBIT=1,KSTART=O) 

NPARTc100 
SIZEXc22. 



SIZEZ,.22. 
ZEFFs8000. 
DELTAR ... 1 
DELRHrDELTAR/2. 
NPARTH,.NPART+1 
PARTNrFLDAT(NPART)/10. 
PNSQRT•SQRT(FLDAT(NPART)) 
NPCrINT(PNSQRT) 
JPOS,.INT(PARTN) 
NPARTSrNPART*NPART 
JUMPr1 
PI•4.0*ATAN(1.0) 
PRD•SIZEX/PNSQRT 
HPRD,.PRD/2. 
APD•PERIDD/2. 
AREArSIZEX*SIZEY 
NLDDP=INT(SIZEX/PERIDD)+1 
DI AMET• 1. 07 
RADIUS,.DIAMET /2. 
ROirFLOAT(NPART)/(AREA*SIZEZ) 
BOLTZ"1.381E-16 
DIELC:SO.O 
CHARGEr4.8029E-10 
TEMPER=300.0 
PARTS=2.0 
AMP .. (ZEFF*CHARGE)**2./(DIELC*DIAMET*1.E-4) 
AMP=AMP/(BOLTZ*TEMPER) 
ALFA=7.0 

C AMP=20000. 
C ALFA=3. 
c 
C CHANGE IRAN TO START WITH DIFFERENT RANDOM NUMBERS 
C EACH RUN 
c 

DO 10 I = 1,IRAN 
XYZ = RANF(O) 

10 CONTINUE 

c 

SX=SIZEX-CBOUN 
SY=SIZEY-CBOUN 
IF (KSTART .EO. 1) THEN 
ICOR=O 

C SETTING THE STARTING LATTICE CONFIGURATION 
c 

DO 12 I = 1 , NPC 
Y=PRD*FLDAT(I-1) 
X1=.5*FLOAT(I) 
IX1=2*INT(X1) 
IF(IX1 .EQ. I) THEN 
HPRDX=HPRD/2. 
ELSE 
HPRDX=PRD*HPRD/2. 
ENDIF 
DO 14 J = 1,NPC 
X " PRD*FLOAT(J-1) 
ICOR :JCOR+ 1 
XPOSI=.5 - 1.*RANF(O) 
YPOSI=.5 - 1.*RANF(O) 
CP(1,ICOR)=HPRDX+X+XPOSI 
CP(2,ICOR)=HPRD+Y+YPOSI 

14 CONTINUE 
12 CONTINUE 

ELSE 
c 
C READ DATA FROM THE DISK 

248 



C STARTING FROM PREVIOUS CONFIGURATION 

c 
REWIND 15 
DO 18 I •1,NPART 
READ(15,102) CP(1,l),CP(2,I),DEVI(I) 

102 FORMAT(10X,F12.7,10X,F12.7,10X,F12.7) 

18 CONTINUE 

c 

REWIND 15 
ENDIF 

C PRINT THE INITIAL STATE DATA 
c 

PRINT 100 
100 FORMAT(10X,'INITIAL STATE') 

DO 16 I• 1, NP ART 
PRINT 101, CP(1,I),CP(2,I),DEVI(I) 

101 FORMAT(3(5X,F12.6)) 
16 CONTINUE 
c 
C INITILIZE 
c 

ICOUNTsO 
STOTA•O. 
ATOTS•O. 
DD 105 1=1,NPART 
DD 107 J=1,NPART 
ENERG(I,J)"O.O 

107 CONTINUE 
105 CONTINUE 

IF(IBIT.EQ.1) GOTO 63 
C DO 62 I .. 1,300 
C AI0•.1*FLDAT(l) 
C AI1(I)•AIO-DELRH 
C DN(1,I)=O.O 
C DN(2,I)=O.O 
C62 CONTINUE 
C AMS0(1) = 0.0 
C AMS0(2) = 0.0 
63 CONTINUE 
c 
C MAIN MONTE CARLO'S LOOPS 
c 

c 

00 30 LMON=1,NMAX 
ICOUNT•ICDUNT+1 
DD 25 KMON=1,100 
IREJT=O 
STOTAL=O. 
00 40 I • 1,NPART 
INUM ,. I 

C SAVE THE COORDINATE AND ENERGY 

c 

c 

CPS1=CP(1,I) 
CPS2=CP(2,I) 

C CALCULATE THE ENERGY BEFORE MOVE 

c 
IFLAG1" 1 
ENEW,.O. 
CALL ENERGY 
ENEWcAMP*ENEW 

C ENERG(I,I)•ENEW 
ENERG(l,I)=ENEW+(DPOTEN*(1.0+DCDS(2.*PI*CP(1,l)/PERIDD))) 

c 
C RANDOM MOVEMENT OF THE PARTICLE, WITH EQUAL PROBABILITY 
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c 

CPTX"CP(1,I) 
CPTY.,CP(2,I) 
FLIP•RANF(O) 
CP(1,I) "CP(1,I)+APD•(1.o-2.o•RANF(O)) 
CP(2,I) ., CP(2,I)+APD*(1.0-2.0*RANF(O)) 
IF (FLIP .LE. 0.33) THEN 
CP(2,I)"'CPTY 
ELSE 
IF (FLIP .GT. 0.33 .AND. FLIP .LE. 0.66) THEN 
CP(1,I).,CPTX 
END IF 
END IF 

C CHECK YOUR PERIODIC BOUNDARY CONDITION 
c 

c 

IF(CP(1,I).GT.SIZEX)CP(1,I)cCP(1,l)-SIZEX 
IF(CP(1.I).LT.O.)CP(1,I)=CP(1,I)+SIZEX 
IF(CP(2.I).GT.SIZEY)CP(2,I)=CP(2,I)-SIZEY 
IF(CP(2,I).LT.O.)CP(2,I)=CP(2,I)+SIZEY 

C CALCULATE THE ENERGY AND ACCEPT OR REJECT 
c 

IFLAG•O 
IFLAG1-=0 
ENEW=O. 
CALL ENERGY 
ENEW-=AMP•ENEW 
IF (IFLAG .EQ. 1) GO TO 1010 

C ESAV=ENEW 

c 

ESAV=ENEW+(DPOTEN*(1.0+DCOS(2.*PI*CP(1,I)/PERIOD))) 
DEL=ENERG(I.I)-ES4V 
IF(DEL .GE. 0.) GO TO 1000 
IF(DEL .LE. -10.0) GO TO 1010 
DELTA=DEXP(DEL) 
TEST=RANF(O) 
IF (DELTA .GT. TEST) GO TO 1000 

C REJECT THIS STEP 
c 
1010 1REJT=IREJT+1 

CP(1,I)=CPS1 
CP(2,I)=CPS2 

C DO 70 IREE=1,NPART 
C ENERG(I.IREE)=ENERG(NPARTH,IREE) 
C70 CONTINUE 

GO TO 40 
c 
C ACCEPT THE MOVE 
c 
1000 
40 

c 

ENERG(I,l)•ESAV 
CONTINUE 
IF (IBIT .EQ. 1) GO TO 25 

C INITIALIZE THE MATIX COUNTING THE NUMBER OF PARTICLES 
C WITHIN AN ANULLUS 
c 

DO 78 I ,. 1,250 
DN(1,I)zO.O 

78 CONTINUE 

c 

ES = 0.0 
EC = 0.0 

502 CONTINUE 
c 
C FIND THE SUM OF ALL PAIRS' POTENTIALS AFTER ONE MC STEP 
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c 

c 

DO 50 J • 1,NPART 
STOTAL•STOTAL+ENERG(J,J) 

IF (IBIT .EO. 1) GO TO 50 
C CALCULATING THE COMPONENTS FOR MEASUREMENTS OF THE SCATTERED 
C INTENSITY (EXP(I(K.R))), WHERE K IS IN THE X DIRECTION. 
c 

c 

EC•EC+DCOS(2.*PI•CP(1,J)/PERIOD) 
ES•ES+DSIN(2.•PJ•CP(1,J)/PERIOD) 

C SETTING PERIODIC BDUDARIES FOR THE PAIR CORRELATION FUNCTION 
c 

c 

XP•CP(1,J)+SIZEX 
XN•CP(1,J)-SIZEX 
YP•CP(2,J)+SIZEY 
YN•CP(2,J)-SIZEY 

C SETTING PARAMETERS FOR FINDING IF PARTICLES ARE WITHIN 
C A CERTAIN ANULLUS. 
c 

c 

IFIXT•1 
RX1•CP(1,IFIXT)-CP(1,J) 
RX1:oDABS(RX1) 
RY1sCP(2,IFIXT)-CP(2,J) 
RY1 .. 0ABS(RY1) 
RXP1•CP(1,IFIXT)-XP 
RXP1sDABS(RXP1) 
RXN1•CP(1,IFIXT)-XN 
RXN1•DABS(RXN1) 
RYP1•CP(2,IFIXT)-YP 
RYP1s0ABS(RYP1) 
RYN1•CP(2,IFIXT)-YN 
RYN1•0ABS(RYN1) 
00(1)•DSQRT((RX1**2)+(RY1**2)) 
DD(2)•DSORT((RX1**2)+(RYP1**2)) 
00(3)=DSORT((RX1*•2)+(RYN1**2)) 
00(4)=DSORT((RXP1**2)+(RY1**2)) 
DD(S)sOSORT((RXP1**2)+(RYP1**2)) 
DD(6)•DSQRT((RXP1**2)+(RYN1**2)) 
DD(7)•DSORT((RXN1**2)+(RY1**2)) 
DD(8)•DSORT((RXN1**2)+(RYP1**2)) 
DD(9)=DSORT((RXN1**2)+(RYN1**2)) 

C COUTING THE NUMBER OF PARTICLES THAT ARE WITHIN 
C AN ANNULUS OF RADIUS DELTAR FOR THE FIRST PARTICLE 
C IN THE BOX. 
c 

DO 65 Is1,250,JUMP 
IF (I .GT. 15) THEN 
DO 66 Ka1,9 
IF (DD(K).LE.AI1(1+1).AND.DD(K).GE.AI1(I)) THEN 
DN(1,I)•DN(1,I)+1.0 
END IF 

66 CONTINUE 
END IF 

65 CONTINUE 
50 CONTINUE 
c 
C SUN OF THE TOTAL ENERGY CALCULATED FROM ALL THE MC STEPS 
C AND OF THE SQUARE ENERGY. 
c 

STOTA•STDTA+STDTAL 
ATOTS=ATDTS+(STOTAL**2) 
IF (IBIT . EQ. 1) GO TO 25 
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C SCATTERED INTENSITY AND INTENSITY FLUCTUATIONS CALCULATIONS. 
c 

AMSQ( 1)cAMSQ(1)+(EC••2+ES**2)/NPARTS 
AMSQ(2)•AMSQ(2)+(((EC••2+ES••2)/NPARTS)**2) 

c 
C TOTAL NUMBER OF PARTICLES WITHIN A CERTAIN REGION 
c 

DO 72 I = 1 , 250 
DN(2,l)•DN(2,I)+DN(1,I) 

72 CONTINUE 
c 
25 CONTINUE 

IF (!COUNT .EQ. IREP) THEN 
c 
C OUTPUT THE RESULTS 
c 
C PRINT 104, LMON,IREJT,OPOTEN 
C104 FORMAT(SX,'AFTER 100 X',14,' MC STEPS, REJECT 
C /'U "' ',F6.3) 
C TN=100.*FLOAT(LMDN) 
c 
C SPECIFIC HEAT CALCULATIONS 
c 

',I3,5X, 

c SHEAT-=((ATOTS/TN) -
PRINT 106, SHEAT 

FORMAT(SX,'SP.HEAT 
CONTINUE 

((STOTA/TN)**2))/(FLOAT(NPART)) 
c 
C106 
C501 

c 

• ',E16.6) 

ICOUNT,.O 

C THIS PART FINDS THE MIDDLE PARTICLE WITHIN THE BOX 
c 

COMPAR=2000. 
DO 52 I = 1,NPART 
DX=CP(1,I)-11. 
DY-=CP(2,I)-11. 
IF(DX.GT.COMPAR .OR. DY.GT.COMPAR) GOTO 52 
RDM=DX*DX + DY*DY 
IF(RDM.LE.COMPAR) THEN 
COMPAR=RDM 
ICOMP=l 
END IF 

52 CONTINUE 
C FINDING THE DISTANCE BETWEEN THE MIDDLE PARTICLE AND THE 
C REST OF THE PATICLES 
c 

DO 58 1=1,NPART 
DX=CP( 1,I)-CP(1,ICOMP) 
DY=CP(2,I)-CP(2,ICOMP) 
AI1(l):DX*DX + DY*OY 

58 CONTINUE 
DO 54 1•1 ,NPART 
DO 57 ll•I+1,NPART 
IF(AI1(II).GT.AI1(1)) GOTO 57 
C1:CP(1,I) 
C2=CP(1,Il) 
C3=CP(2,I) 
C4=CP( 2, I I) 
C5sAI 1 (I) 
CG=AI1(11) 
CP(1,l)=C2 
CP( 1, I I)cC1 
CP(2, I )zC4 
CP ( 2, II ) =C3 
AI1(I)=C6 
AI 1 (I I ) =CS 

57 CONTINUE 
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54 CONTINUE 
C FINDING DX AND DY AND THE ANGLE BETWEEN EVERY PARTICLE 
C ANO THE CENTER PARTICLE AND ITS ITS SIX NEAREST NEIGHBORS c 

108 
59 
53 
c 
c 
C109 
C81 

c 

DO 53 IIz1,7 
DO 59 I" 1. NPART 
DELX•CP(1,I)-CP(1,II) 
DELY•CP(2,I)-CP(2,II) 
IF(ABS(DELX).GT.8 .. OR. ABS(DELY).GT.8.) GOTO 59 
IF(DELX.EQ.O.) THEN 
IF(DELY.EQ.O.) THEN 
ANGsO. 

ELSE 
ANG=PI/2. 

END IF 
ELSE 

ANGzATAN2(DELY.DELX) 
END IF 

WRITE(15,108) DELX,DELY,ANG 
FORMAT(3(10X,F12.7)) 
CONTINUE 
CONTINUE 
DO 81 1"1,NPART 
PRINT 109, CP(1,l),CP(2,l) 

FORMAT(2(5X,F12.7)) 
CONTINUE 

IF (lBIT .EQ. 1) GO TO 503 

C SCATTERED INTENSITY ANO INTENSITY FLUCTIONS 
c 

SQINTN=AMSQ{1)/TN 
FINTENz(AMSQ(2)/TN)-(SQINTN**2) 
PRINT 112, SQINTN,FINTEN 

112 FORMAT(SX,'SCAT. INT . ., ',E16.6,' FLUC. INT.= ',E16.6) c 
c 
C PAIR CORRELATION CALCULATIONS, USING THREE DIFFERENT WAYS. c 

DO 76 I • 1,250 
IF ( I . GT . 15) THEN 
AI4•AI1(1+1)*AI1(I+1)-AI1(I)*AI1(I) 
ANR(1,I)zDN(2,I)/(TN*PI*2.*AI1(l)*DELTAR) 
ANR(2,I)zDN(2,I)*AREA/(TN*Pl*Al4*FLOAT(NPART)) 
ANR(3,I)•Al1(l)*DELTAR*DN(2,I)*2./(TN•AI4) 

C PRINT 114, AI1(I),ANR(1,I),ANR(2,I),ANR(3,I) 
C114 FORMAT(' R=',2X,E12.6,3(5X,E12.6)) 

WRITE(15,230) AI1(I),ANR(1,I),ANR(2,I),ANR(3,I) 
230 FORMAT(2X,F6.2,3(2X,E10.4)) 

ENDIF 
76 CONTINUE 
503 CONTINUE 

ENDIF 
30 CONTINUE 

c 

STOP 
ENO 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C SUBROUTINE TO CALCULATE ENERGY=AMPLITUDE*(EXP(-ALFA*DIS))/DIS c 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

SUBROUTINE ENERGY 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON CP(2,100),ENERG(101,100) 
COMMON SIZEX,SIZEY,ENEW,SY,SX,ALFA 
COMMON 1NUM,1FLAG,IFLAG1,NPARt,NPARTH 
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C IGNORE THE SAME PARTICLE 

c 

IF (J .EQ. INUM) GO TO 60 
DX•DABS(CP(1,INUM)-CP(1,J)) 
DY=DABS(CP(2,INUM)-CP(2,J)) 

C FINDING DISTANCES WITH PARTICLES AT THE EDGE OF THE BOX 
c 

c 

IF (DX .GE. SX) THEN 
DX•DABS(DX-SIZEX) 
ENDIF 
IF (DY .GE. SY) THEN 
DY•DABS(DY-SIZEY) 
END IF 

C INTRODUCING A CUTOFF FOR ENERGY CALCULATION AFTER 
C A CERTAIN DISTANCE (RANGE OF INTERACTION) 
c 

IF(DX.GT.7 .. OR. DY.GT.7.) GOTO 60 
C CALCULATING ENERGY BEFORE A MOVE 
c 

DIS•(DX*DX)+(DY*DY) 
IF(IFLAG1.EQ.1) GOTO 75 

C IF(IC.NE.1) THEN 
C ENEW=ENEW+ENERG(J,INUM) 
C ENERG(INUM,J)=ENERG(J,INUN) 
C ENERG(NPARTH,J)=ENERG(INUM,J) 
C ELSE 
C DIS=(DX*DX)+(DY*DY) 
C IF (DIS .LE. 49.0) THEN 
C DIS=DSQRT(DIS) 
C ENG1=ALFA*DIS 
C ENG=(DEXP(-ENG1))1DIS 
C ENEW=ENEW+ENG 
C ENERG(NPARTH,J)=ENERG(INUM,J) 
C ENERG(INUM,J)=ENG 
C ELSE 
C ENERG(INUM,J)=O. 
C ENERG(NPARTH,J)=O. 
C ENDI F 
C ENDIF 
C ELSE 
C CALCULATING ENERGIES AFTER A MOVE 

IF(DIS.LE.1.) THEN 
IFLAG=1 
RETURN 

ENDIF 
75 IF (DIS .LE. 49.0) THEN 

DIS:DSQRT(DIS) 
ENG1=ALFA*DIS 
ENG=(DEXP(-ENG1))1DIS 
ENEW•ENEW+ENG 

C ENERG(INUM,J)=ENG 
C ELSE 
C ENERG(INUM;J)=O. 
C ENDI F 

ENDIF 
60 CONTINUE 

RETURN 
END 

llGO.FT15F001 DD DSNAME=U12604A.SPT52E.DATA,UNIT=STORAGE, 
II DISP=(MOD,KEEP),SPACE=(TRK,(50,20)), 
II DCB=(LRECL=255,BLKSIZE=6080,RECFM=VB) 
llGO.SYSIN DD • 
II 
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