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CHAPTER I
INTRODUCTION
Scope of Study

Colloidal suspensions are novel systems for the study of many
physical phenomena related to, amongst others, statistical mechanics,
electrostatics, hydrodynamics, and crystallography. The submicron
size of these particles in suspensions makes them ideal for the study
of microscopic problems on a macroscopic scale. Amongst some of the
studies where these suspensions serve as experimental models are the
nature of phase transitions in two and three dimensional systems (1,
2, 3), layering transitions (4, 5), crystallization processes (7),
elastic properties (8), deformations under the influence of externally
applied fields (9, 10, 11, 12), and the nature of interaction between
particles (13, 14, 15, 16).

The purpose of this thesis is to study the effect of an externally
applied potential on the local order of charged colloidal particle
suspensions comprised of submicron polystyrene spheres suspended in
water that is highly deionized. The externally applied field is in
the form of a periodic potential well produced from the crossing of
two coherent laser beams and controlled through the beam input power
and crossing angle. The real space ordering of the suspensions when
the field is applied is analyzed through pair correlation functions

produced from measurements of the microsphere positions.



The results of a Monte Carlo (MC) simulation for a model two
dimensional system of point particles interacting via a screened
Coulomb potential are also studied here. It is found that, by
changing the salt concentration or the density of excess ions, the
model system goes through a phase transition. Different equilibrium
states ( solid and liquid) of this simulation were chosen and
subjected to an exter- nal sinusoidal potential which corresponds to
experimental radiation pressure field. The ordering transition of the
point particles in this external field is monitored by changing the
amplitude and period of the potential.

The MC simulation results were consistent with the experimental
observations. In both cases, the application of the external radia-
tion field caused the particles to aline along the potential's
minima. The degree of this localization was found to be dependent on
the external field's amplitude. Along with the particle electrostatic
interaction, this localization was found to cause the system to orga-
nize in different structures depending on the period of the externally
applied field.

Particle aligmment in the high intensity regions of the stationary
sinusoidal fringe pattern, produced from the crossing of two mutually
coherent laser beams, form diffraction gratings. The scattering from
these gratings is used to study the growth and decay of these density
modes. In this thesis the dependence of the interacting (charged)
systems main density mode on the lasers input power is investigated
and compared with data obtained from the MC simulation. These were

found to be different from the results reported by Chowdhury (10).



General Background

The existence of monodisperse colloidal particles that can organ-
ize in long crystalline structures has fascinated and captured the
interest of many scientists throughout the years. Iler(8) was the
first to show that opal-like crystallization of silica particles could
be monitored in a laboratory setup.

Since colloids have been recognized as a suspension of solid par-
ticles in a host fluid, a great deal of work has been done on the use
of theories involving the interparticle forces to study the nature of
interaction between the particles. The most famous theory is known as
the DIVO (Derjaguin, Iandau, Verwey and Overbeek) theory (17), which
assumes additivity of the screened Coulomb electrostatic repulsion
(V) and Van der Waals attraction forces (V) which are given by
the following equations for the case of spherical particles (17):

V= A( 4a%/(r%-a?) + 4a%/r? + 2In[ (r%-a?)/r?))

v, = z2e%e ™ cr k2 = 470 ne?/ekyT (1-1)
where A is the Hamaker constant (10"13 for polystyrene in water), r
is the separation of the centers,'a' is the sphere radius, Z is the
charge per sphere, 'e' the dielectric constant of the solvent, k the
inverse screening length, and n the total number of particles and ions
in solution (including negative and positive monovalent ions). Al-
though both forces are important for understanding coagulation, only
long range electrostatic forces are important for this study because
of large particle separations and the Van der Waals forces are short
ranged.

The screened Coulomb potential (V) is also known as the Debye-

Huckel (DH) or Yukawa potential (equation (1-1)) and it is the form



used in this thesis work for the MC simulations of the interacting
colloidal particles. This potential is the solution to the Poisson-
Boltzman (PB) equation in the linear approximation, and it gives a
good qualitative picture of the electrostatic forces (7).

The effective charge on the polystyrene colAloidal particles is
found by considering the charge neutrality of the system, and taking
the Weigner-Seitz cell surrounding each particle as providing for the
charge.netrl:rality around that point. Using this concept, Alexander et
al (7) have shown that solutions to the DH and PB distribution can be
used to calculate the surface potential for the spheres and the value
of their effective charges. Such techniques will be discussed in
detail in Chapter V where the effective charge for the 1.07um
polystyrene spheres is calculated.

The repulsive nature of the Coulombic interaction between
similarly charged microspheres as presented by DIVO theory has been
questioned by Ise and co-workers (14, 13). These workers have argued
the there exists an attractive force between highly charged macroionic
solutions at large distances and repulsions at small separations, thus
leading to the existence of a secondary minimum from only electrosta-
tic considerations. This is believed by Ise to cause for the observed
ordering of the highly charged latex particles having higher than
expected density in the crystalline state. However, we will use only
the DIVO form in analyzing our results or in MC Simulations.

The question concerning long range order (LRO) in two-dimensional
systems has attracted the attention of many scientists (18, 19, 20).
It was believed that the long wavelength phonons prevented the 2-D

solid from fully attaining a crystalline structure. However in 1973



Kosterlitz and Thouless (18) put forth their famous idea of phase
transitions accompanied by a change of "topological order" rather than
the conventional IRO. About five years after KT advanced their theo-
ry, Halperin, Nelson and Young (19, 20) introduced an orientational
order parameter to the problem not considered by KT, thus leading to
the famous KINHY continuous melting theory. This theory predicts that
melting may occur by way of two transitions, the first associated with
loss of long range positional order and resistance to shear, and the
second with loss of orientational ordering, and that these transitions
can be continuous. The hexatic phase (a fluid with no translational
order but with some orientational order) is predicted, through this
theory, to exist between the two transitions. The limitation in scale
of the 2-D studies carried in this thesis does not allow us to say
much our the nature of the observed transitions.

Structural and phase transition simulations for charged colloidal
suspensions are given in a mumber of papers (3, 21, 22, 23, 24).
Amongst these W. Van Megen et al. (3) used a MC method to determine
the struc- ture of a very dilute colloid in 3-D. These workers
calculated the radial distribution functions and converted them to
structure factors; which they subsequently compared with corresponding
quantities determined form laser light scattering experiments and have
found that their model presented a reasonable description for the
systems of colloidal particles. R. Kalia et al. (22), have used a
molecular dynamics (MD) simulation for two-dimensional systems of
point particles interacting with Yukawa potential and have cbserved
first order solid-liquid transitions. Our MC simulation of a similar

system seems to predict a first order phase transition too. M. P.



Allen et al. (21) reported an MC study of the two-dimensional melting
mechanism for 2500 particles interacting by repulsive inverse sixth
power potential. Their thermodynamic results, taken alone, were quite
consistent with a first-order melting mechanism and although some of
their results were consistent with the two stage melting process
(KINHY theory), these were not enough to verify the existence of a
hexatic phase.

The same controversy concerning the nature of transition for two
dimensional colloidal systems was investigated experimentally by Van
Winkle et al (1) and Y. Tang et al (23). Van Winkle and Murray (1),
have observed a two-stage melting transition with the intermediate
phase having the signature of a hexatic. Y. Tang et al. (23), on the
other hand, have observed a first order transition in their analysis
of a freely expanding colloidal monolayer lattice. The work used in
this thesis could be related to the nature of phase transition for two
dimensional systems, but this question will not be considered here.

The structural transition of thin layers of colloidal crystal has
been found to follow triangular to square packing for wedged gap cells
(4, 6). The transition format as the gap confining the layers in-
creased was found to follow the form: 1T, 2S, 2T, 3S, 3T, where T
represents a triangular lattice, S a square lattice and the numbers
represent the layers. Such layering transitions were also cbserved in
the experimental samples used in this work.

When colloidal suspensions are subjected to external fields the
local order can be changed, this concept has been used in various
studies for different fields (10, 12, 25, 26). Since Ashkin reported

on the trapping, levitation and acceleration of dielectric suspensions



with a strongly focused laser beam (27, 28, 29, 30), the application
of radiation pressure as a way to manipulate micrometer sized dielec-
tric particles has led to new discoveries, such as the "laser induced
freezi_ng'.' considered in this work. The radiation pressure forces act
both parallel and perpendicular to the direction of propagation of the
incident beam (10, 31). The transverse force is employed in four-wave
mixing experiments to draw spheres, with an index of refraction
greater than the host fluid, to the high intensity regions thus
creating density modes. The scattering from these modes was studied
experimentally by Chowdhury (10) who has found that the first order
diffracted intensity maximum signal increased as approximately the
cube of the incident beam intensity for the case of noninteracting
colloidal particles in self scattering experiments. The experimental
results for the noninteracting particles studied by Chowdhury et al
(11) were found to be consistent with Rogovin theory (32, 33) on the
aligmment of dielectric spheres in the Four Wave Mixing, FWM, gecme-
tries.

The decay of the main density modes created by the crossing of two
laser beams was investigated by Chowdhury in his thesis work (10) and
has found that the measured self diffusion coefficients were smaller
than free diffusion constant (Theoretical diffusion coefficient value
for an infinitely dilute sample with no boundary). The inconsistency
in this measurements were attributed to either the con- centration or
boundary effects.

This 'Forced Rayleigh scattering' (FRS) has been used by many
workers in measuring the self diffusion constant of charged and

noncharged doped or nondoped particles (34, 35, 36). B. Dozier et al.



(37) have used charged polystyrene colloids and measured the self
diffusion as a function of the strength of interaction between the
particles. They have found that the diffusion constant decreased
monotonically from the Stokes value as the repulsive interaction is
increased, until the interactions are sufficiently strong to form a
colloidal crystal.

The investigation of structure in interacting colloidal fluid
states was investigated by use of cross—correlation intensity fluctu-
ation spectroscopy, CCIFS, (38, 39, 40). B. J. Ackerson et al. (38)
have used the CCIFS to indicate a local hexagonal structure in the
fluid phase, they have also found that their experimental cbservations
were in agreement with a model calculation in which they have treated
the two dimensional fluid phase as a randomly oriented hexagonal solid
with large lattice vibrations.

The Hamiltonian of an array of atoms interacting with a periodic
potential with period 'b' and connected with harmonic springs can be
written as (41):

H = 2 (1/20% (347 -%ym3g) + V[1-C0s(2 %,/b) 1} (1-2)
where x, is the nth atom position, b is the period of the periodic
potential, V is the amplitude of this potential and a, is the
lattice constant. In the absence of the periodic potential, V, or if
the external potential is weak, the observed structure will in general
be in the incommensurate phase (IC). This means that the harmonic
term would favor a lattice constant agy which is incommensurable with
'b!' as shown in Figure 1(a). In such a case the diffracted Bragg
spots would be at positions @=2W N/a,, where N is an integer. None

of these will coincide with the Bragg spots of the periodic potential
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10

at positions G=2PiM/b, where M is an integer. If the external
potential is made strong enough, it may be favourable for the lattice
to relax into the external periodic potential where the average
lattice spacing, a, is a simple rational fraction of the potential's
period, b. This is known as the commensurate structure, and it is
shown in Figure 1(b), where a situation with 2a=3b is taken as an
example. In such case the differaction pattern of the substrate and
absorbed layer has an infinite number of coinciding Bragg spots (41).
If the potential is not strong enough to force the chain into
comensurability, the atoms will move toward the potential's minima
and the average period may approach a simple commensurate value but
remain incommensurate. The C and IC structures do not exhaust the
stable configuration. There are additional choatic structures which
cannot be described as above (Figure 1lc). In this phase the diffrac-

tion pattern is not made up of well-defined Bragy spots.
Thesis Overview

The main goal of this thesis is to carry a real space analysis of
the "laser induced freezing" phenomenon. The general theorétical
background needed in describing this work is considered in Chapter II
of this thesis. In this chapter concepts such as: light forces on
colloidal particles, description of the stationary sinusoidal fringe
pattern, potential for finite size particles, steady state character-
istics and two dimensional pair correlation functions are discussed.
The succeeding chapter (Chapter III) is devoted to the different
experimental procedures and techniques used to force the interacting

colloidal suspensions into ordered states. The viewing, imaging and
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detection of the colloidal particles is also considered in Chapter
III.

Chapter VI is devoted completely to the real space analysis of the
charged colloidals suspensions. The observed structuring in a wedged
cell geometry is discussed at the beginning of this chapter, succeeded
by the real space analysis of the crossed beams experiments, and some
scattered intensity measurements are given at this end of Chapter IV.

A simulation of the laser induced freezing is given in Chapter V.
The theory needed for the Monte Carlo simulation is presented at the
begimning of this chapter. Then, the phase transition results for a
system of particles interacting via a screened Coulomb potential is
analyzed. At the end of Chapter V, the effect of an externally ap-
plied periodic potential on different equilibrium phases is studied as
a function of the potential's amplitude. The comparison between the
results obtained experimentally with those cbserved in the simulation
is carried in Chapter VI.

The conclusions and future suggestions are given in Chapter VII.
Appendices at the end of this work are where the different programs

used in this study are presented.



CHAPTER IT

THEORETICAL BACKGROUND

Introduction

The work that will be presented in the succeeding chapters will
deal with various experimental techniques, computer simulations as
well as the analysis of the results. The understanding of these
topics will require some theoretical background, which will be the
subject of the present chapter.

The areas that will be discussed here will include the effect of
light forces on colloidal particles, the interference pattern produced
form the crossing of two mutually coherent laser beams, the potential
for finite size particles, the steady state characteristics of colloi-
dal suspensions in periodic potential fields, a comparison between
cross correlation intensity fluctuation spectroscopy and laser trap-
ping of colloidal suspensions, and the functional relation between the

scattered intensity an the two-dimensional pair correlation function.

Optical Light Forces on Colloidal Particles

Colloidal particles experience a variety of motions besides the
Brownian motion(27, 40). For example a charged particle will move cdue
to electorphoresis in an electric field and magnetophoresis in a mag-
netic field. Particles will also fall under the influence of the

gravitational field. Movement will also occur when there is a

12
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temperature gradient (thermophoresis). Finally, other colloidal
particle motion may even be caused by light.

The forces of light responsible for the particles movement are of
two types, photophoresis and radiation pressure. In photophoresis
there is a differential absorption between the particle and surround-
ing solvent. As a result temperature differences develop and drive
convection of the solvent which then moves the particles. The direc-
tion of motion may be towards or away from the light source depending
on the absorption coefficients, thermal conductivities, etc. (9).
Radiation pressure is a result of the elastic scattering of the
radiation in the suspension. The change in momentum of the incident
radiation, when it changes direction in the scattering process,
results in a momentum transfer to the particle-solvent system in order
to conserve total momentum. 'Ihus; radiation pressure causes suspended
particles to move in the direction of propagation of the incident beam
because scattering reduces the forward momentum of the radiation.

Such principles have been used to optically accelerate, slow,
stably trap and manipulate micrometer-sized dielectric particles and
atoms. In 1970's, A. Ashkin(27, 30), has reported the first obser-
vation of using radiation pressure from a cw visible laser light to
accelerate transparent latex spheres. Ashkin et al. (29) have reported
that the continuous wave power required to levitate uniform solid or
liquid dielectric spheres in the size range .5um to 100um varies from
microwatts to several watts.

If we consider a dilute medium containing dielectric spheres, then
in the presence of a radiation field, the spheres become polarized.

In the cgs units, this polarization is given by,



14

P

3(e - 1)E/(4 (e + 2) (2-1)
vwhere e is the relative dielectric constant of the sphere to the
medium, and E is the electric field. Here it is assumed the sphere
radius is small compared to any spatial variation in the radiation
pressure field.
The resulting dipole moment of such polarized spheres is given by
p = CEq (2-2)
¢ = n2(n?-1)/ (n%+2) (2-3)
vhere a is the radius of the sphere, r=n,/ng, n, is the
refractive index of the sphere, and ng is the refractive index of
the surrounding. The force exerted on these polarized spheres is
simply the Lorentz force ,
F = (P.Grad)E + 1/c[@P/?t X B] (2-4)
In the above equation B is used for the magnetic field induction and F
is the force on the sphere. Using equation (2-2) and the first term
on the right hand side of equation (2-4), we get:

(B.Grad)E

C(E.Grad)E

C[1/2 Grad(E?) - E Curl(E)] (2-5)
Substituting the above equation in expression (2-5), the force on the
sphere is found to be of the form,
F = C[1/2 Grad(E%) + 1/c D(EXB)/ Ot (2-6)

For dielectric spheres with an index of refraction greater than
that of the surrounding solvent, C becomes positive leading the first
term on the right hand side of the above equation to move particles to
the high intensity regions of the radiation field. Conversely, if
n<l, the particles will move out of the beam. The poynting vector

term in the above equation is responsible for moving the particles in



15

the direction of the beam's propagation.
Crossed Beams Mathematical Description

If we consider two laser beams whose Gaussian profiled electric
fields at point r (Figure 2) are given by,
Ey = Egyexp{i (k) -T-wt+Py) - (kyxx) 2/ (k,R) ) (4=7)
E, = Egpexp{i (Kp-Twyt+Py) = (koxx) %/ (koR) %) (4-8)
where the parameters used in the above equations are defined as:
R is the width of the laser beam,
k,; and k, are the beams wave vectors,
Ep; and Ej, are amplitudes of the beams electric fields,
Wy and w, are the beams oscillation frequencies,
P, and P, are phase angles for the two laser beams,
@ is crossing angle.
The total electric field produced from the crossing of the two laser
beams is,
E=E, + Ey (2-9)
Letting E,,=E,;=Eq, P;=P,=0 (since a phase factor only
shifts the field pattern with respect to the origin) and wy=w,,
then after carrying the cross product the resultant intensity pattern
is found to be:
I E'.E = Ep?(exp[-(2r’sin? (&+P) ) /R?]+[exp(~(2r?sin? (€-P) ) /R 1+
2[exp(-r?[sin? (8+P)+sin? (0-P) 1/R%)x cos(ky~kp) .x]} (2-10)
Ietting k=k,-ky expression (2.10) can be rewritten as,

E*.E = 2E,2exp(-2r’cos? () /R%][1 + cos{2krsin(e/2)}]. (2-11)

The last cosine term in the above equation produces an intensity
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maximm when cos[2krsin(®)]=1, that is
2krsin(@/2) =2n  ,1=0,1,2,.c.... . (2-12)
Choosing 'r=d', where 'd' is the fringe separation and substitu-
ting for k=2T /), where is the wavelength of the incident laser's
beam, the fringe spacing can be fourd as,
d = A/2sin(e/2). (2-13)
Hence the fringe spacing can be determined from knowing the
laser's wavelength and the angle at which the two beams intersect.

The intensity minima occur when cos(2krsin(e))=-1.
The Potential For Finite Size Particles.

The force on a sphere found by equation (2-7) is true for parti-
cles whose spatial dimension is small compared to the variation in the
field gradient. For particles whose diameter is in the same order as
the field gradient variation, the lateral force on the parctiles is
considered as being the negative gradient of the potential U, where
U=—Grad(E2)/2. Thus a sphere of radius 'a' can be taken as a col-
lection of point particles subjected to the potential given above,
where E2 is found from equation (2-11). The total potential for the
particle is then found by integrating this spatially varying potential
over the volume of the particle. Using this argument, Chowdhury (10)
has found that,

U = &/ { cos(q.v)av (4-14)
where, =27 /d and has the direction of the potential's periodicity, r
is the sphere's displacement from the origin, v is the displacement to
a volume element from the origin, r'is the displacement to the volume

element form the sphere's center (Figure 3) V is the sphere's volume,
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and A is a constant. If we let the sphere be at a distance 'r' from
the center of the intensity maxima in such a way that 'r' is parallel
to 'g', as shown in Figure 3, then the following result is found,
Up = 2A/v£;-'2dr' j:rsin(O) [ 1+cos (qriqr cos(0) 1d0
= B[3{cos(ar)/qa}j; (qa)] (2-15)

B = 4n.2Ta3 (n?-1) /[kgTcR? (n%+1) ] (2-16)
vhere ng is the refractive index of the host fluid, n is the ratio
of the refractive index of the sphere to the host fluid, I is the
input intensity of one of the laser beams in Watts/sec, R is a measure
of the radius of the incident beam, ¢ is the velocity of light in free
space, kp is Boltzman constant, T is the absolute temperature,
g=K,-k, is the wave vector and j,(ga) is the first order spher-
ical Bessel function.

In the case where b=0 (the particle placed at the origin) and
assuming a point charge we see that U;=2B, which is a maximm. The
other case of interest is when a/d---->oco , that is when the sphere's
radius is much larger than the fringe spacing, the average potential
decreases to zero. Finally, as a/d increases the average potential
oscillates and decreases to a constant, leading to a zero net force on
the spherical particles(10).

In some of the experiments performed for this thesis work, single
and multiple spheres were captured and held in a single beam. Iocked
in stable rigid array, each particle was trapped at a local intensity
maxima where drastic rearrangements occur only when one of the lower
particles is displaced from its local trap. The radiation pressure
forces were also used in a cross beam experiment to align polystyrene

spheres suspended in water in a series of layers parallel to the



20

intensity fringes and in case of interacting particles in solid like
structures.

Steady State Characteristics

Colloidal suspensions subjected to forces described by Equation
(2-15) are immersed in an electrostrictive potential given by,
U = -1/2Grad (E?)
= U, cos(qz) . (2-17)

These particles will tend to move to those regions where U is smal-
lest. Thus the particle density, n(r), will be modulated by this
potential. Using the Planck-Nerst equation to characterize the micro-
particle density, we write

n(r,t)/ t = D div[Grad(n(r,t))-Fn(r,t) /KgT] (2-18)
where F=-Grad(U(r)), is the force on the sphere and D is the diffusion
coefficient. For dilute suspensions D is given by the Stokes' theorem
for spherical particles, of radius a, |

D = kgl/6Tna (2-19)
where n is the liquid's viscosity. For steady state | n/ t=0, and the
density distribution equation reduces to,
div[Grad(n(r))-n(r)F/kgT]=0 (2-20)
The Boltzman distribution is a solution to the steady state
equation, this distribution is given by,
n(r,0) = A exp[-U(r)/kgT] (2-21)
The normalizing constant, A, can be obtained by the normalization
condition over a fringe period (10),
j n(r,0)dr = 1 (2-22)

The normalized probability for finding a sphere at 'r' is given by,
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n(r,0) =k sin(0)/Iy(p) exp{p cos[2krsin(0)]} (2-23)
p=CE02/kBT, C is given by equation (2-4) and I, is the zeroth
order modified Bessel's function. Plots of n(r) versus r for dif-
ferent value of C are shown in Figure 4. By increasing the applied
electric field n(r,t) becomes sharply peaked and for sufficiently
large incident intensity this function (n(r)) is expected to behave as

periodic distribution of delta functions.
Theoretical Consideration for CCIFS and LT

This section will deal with comparing the similarities and dif-
ferences of two light scattering techniques, the cross correlation
intensity fluctuation spectroscopy (CCIFS) and laser trapping (1LT),
used in the study of colloidal suspensions.

The laser trapping (LT) experiment makes use of light induced
forces to produce density modes of colloidal particles (43). The
scattered intensity distribution from these modes as given by Ackerson
et al. (43) may be represented as:

e(xrj)e(ry)exp(ik. (rj—ry)=(V+U) /kgT)d{xr)
<I(k)> = (2-28)

exp (= (V4U) /kgT) &(x)

where the authors used the first Born approximation to represent the
scattered intensity with e(r) determining the size of the scattering
volume. The particles interact with a potential V and are in an ex-
ternal potential U, which in the case of potential well created by the
radiation pressure is given by:

U(r) = A cos(g.r) = A cos(ax) (2-29)
The expression in equation (2-28) assumes that only the scattering

from a single probe beam from the sample is detected. Substituting
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equation (2-29) into equation (2-28) and expanding the numerator in

terms of A/kgT, the relative strength of the externally applied

field to the thermal energy, the following relation is obtained (43),
<T(K)> = S(k) + (A/kgD)2[8,(K)S5(@) Sy o + S4(k,@)) (2-30)  (2-30)

where S, is an apertured static structure factor and S, function

is an apertured nultiioarticle structure function which depends on one,

two, three and four particle correlation functions.

Cross correlation intensity fluctuation spectroscopy (CCIFS) is a
light scattering technique for studying the interparticle order in
colloidal suspension (10). The technique uses two separate detectors
to collect the scattered light and the resulting signals are cross
correlated. In these experiments the orientation of the local
structure in the scattering volume is determined with one of the
detectors, while the other is used to scan the scattering pattern.

The distribution of the scattered intensity can be expressed in
terms of one, two ,three or four particles correlation functions. The
CCIF is given by (11),

C(a,k,t) = <I(k,t+T)I(q,T)>/ (<I(k,T)><I(g,T)>) (2-31)
where at wave vector k the instantaneous scattered intensity is
I(k,t+T) and at a later time, t, the intensity reading at wave vector
d. The k (or g)-space's position magnitude is given by

k = 4(T)n(sin(e/2))/2 (2-32)
In the above equation n is the refractive index of the solvent, A is
the vacuum wavelength and © is the scattering angle. Using the first
Born approximation to represent the scattered intensity from the
scattering volume defined as e(r), an expression for the CCIFS

(equation (2-31)) over an equilibrium distribution of particles



24

mitually interacting via the potential V is found by Ackerson et al.
(38) to be of the following form:
5{%Ee(zi)e(zj)e(:1)e(xm)
explik. (rj—xy) + ig. (r1-Iy) -V/kgTld{r)/Z)
c(k,g,0) = (2-34)
J %(e (rj)e(ry)explik. (xj-ry)-V/kgT]d{xr}/2
ﬁ e(x;)e(zy,) exp(ig. (X —ry) -V/kgT) A{x}/2}

The partition function is given by,

Z = _{ e.xp(-V/kBT)d{f}. (2-35)
The expression given in equation (2-34) has been found in terms of

multiparticle distribution functions (38) as:
S5 (K) S () [+ k41 +S4 (K, Q)
C(k,g,0) = ' (2-36)

S5 (k)S,(a)

where S, and S, are the same equilibrium functions presented in

equation (2-30). The nongaussian term, S,, includes four particle
correlation functions and it becomes small for large scattering
volumes as compared to the Gaussian contribution (the first term in
equation (2-36)). Thus limitation of the CCIFS to small scattering
volumes increases the relative importance of the nongaussian term
(43).

The similarities between the CCIFS and IT techniques are well
demonstrated in equations (2-30) and (2-36). Both techniques are
sensitive to the presence of correlation in the density modes of fluid
systems (43). In the laser induced freezing one density mode is
stimulated by application of an external field and the other density

modes, coupled to this one, result from the interparticle interaction
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and are they are all monitored by scattering. The parallelism between
the two is given in Figure 5, where the CCIFS data is presented in
Figure 5a (43) and the LT intensity distribution is presented in
Figure 5b. The large autocorrelaltion signal in CCIFS at o=0 degrees
corresponds to the strong scattering form the directly stimulated mode
in IT. Similarly, the weaker signals at o=60 and 120 degrees corres-
ponds to the off axis scattering by the slaved modes. The advantage
of IT is that the calculated scattering is not modulated by the aper-
ture functions. The disadvantage of this IT is that extreme care must

be taken in order to collect the data.

Scattering and Two Dimensional

Pair Correlation Function

The study of the different diffracted intensity maxima produced
from the laser induced freezing of interacting colloidal suspensions
was carried by Chowdhury (10) as part of his thesis work. In this
thesis work the real space analysis of the laser induced freezing is
accomplished with the use of correlation functions, specifically the
two dimensional pair correlation function. Thus the aim in this
section is to find the theoretical connection between the scattering
intensity function, the 2D correlation function, and the conditional
probability function. This latter function, P(rl-r2/r2), is defined
as the probability of finding a particle at position rl given a
particle at r2. The two dimensional pair correlation function (g(xr)),
in the other hand, is a measure of the translational as well as the
orientational correlation between particles.

The scattered intensity of particles positioned at {rj, i=l to
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N} in the first Born approximation is given by:
I(k) = <§§fexp{ll_< (xi-ry) YP(ri,xy) (1~ ij)dl_fidzj+§ P(xr;)dry>
= N(v-1) [exp(ik. (r1-r2)P(x1,r2)6rldr2 + N (4-29)
The two particle probability may be written in terms of a condi-
tional probability as,

P(rl,r2)

Il

P(xrl/xr2)P(x2)

P(rl-xr2/r2)P(xr2) (4=30)
where rl-r2=R represent the pattern relative to r2 depending on the
position r2 of the reference particle in the fringes. Using the above
equation, the scattered intensity can be written as:
I(k) = N+ Nm-1) [ar [are ewp((ik.R)P®R/22))P(22)
= N+ NO=1) (@R h(R) exp(ik.R) (4-31)
where h(B)=Sd;2 P(R/x2)P(x2). For normal fluids P(x2) is equal to
the average density of the system (d,;) and it is constant, thus
referring to equation (4-30) we get,
P(R/r2) = P(R) =g(R)dy- (4-32)
so h(R) = g(R)dy? in this case is the standard fluid two dimen-
sional pair correlation function. However the more general function
h(r) is the calculated function in our analysis and is referred to as
the two dimensional pair correlation function, and as seen above it is
directly related to a fourier inversion of I(k).
The standard relationships between P(xl,x2), g(xl,xr2) and P(rl/x2)
are given by,

P(xl,x2)

P(rl/x2)P(xr2) = P(xrl-xr2/r2)P(xr2)

Il

g(xrl,r2)P(xrl)P(x2)
= g(rl-x2)/xr2)P(xrl)P(xr2) (4=33)

Considering h(r) again, we obtain:
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h(R)

Il

{ ar2 g®/r2) Px2) P(x1)
{ar2 g(r/r2) P(r2) P(RHr2)

Il

[ ar2 g®/r2) D(x2) DER+r2) (4-34)
where D(r) is the density at r. At large R we might expect g(R/xr2) to
approach one, such that,

hoo(®) = {dr2 D(r2) D(R+r2) (4-35)
which is the form used to describe solids in mean field theory. A
normalized h(R) is given by H(R) (H(R)=h(R)/hgo(R)) which approaches
one at large R values. It appears that we cannot get g(xrl,xr2) or
P(rl,xr2) or P(rl/r2) directly without noting where the reference
particle (r2) is with respect to the fringes and then constructing
P(rl-r2/r2). What we have is a reduced or effective g(R) which gives
the scattered intensity when Fourier transformed to k-space. Because
of the translational properties of I(k), i.e. only depending on
(ri-rj) , there is no explicit dependence on absolute particle
position with respect to the fringes.

In terms of H(R) the crux of the argument is what is the differ-

ence between

H(R) = Xd-‘_CZ g(R/x2) D(r2) D(Rtr2) (4-36)

H (R) = fd;z D(r2) D(Rr2) (4-37)
that determines whether g(R/x2) has significant structure, g(R/xr2)=1.
In general,

D(r) =< & (zry)> (4-38)
which is constant for any homogeneous fluid structure in the absence
of an external field, but D(r) may have some structure when the fluid

is in an external field.
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Thus a liquid in no external field gives
HR) = g(R) d02 (4-39)
' (R) = dy? (4-40)
In the case of noninteracting particles in an external field, g(R)=1,

giving:

H(R) dr2 (1) D(x2) D(R+r2)

9(R) H (R) (4-41)

If we neglect particle position dependence in the external field, then
g(R/x2) -——-> g(R) and we have generally that:
]
HR) = g(R) H (R) (4-42)

But this need not be true generally.



CHAPTER III

EXPERTMENTAL PROCEDURE

Introduction

This section describes the experimental methods used in preparing
the colloidal samples employed in this study. The experimental set
ups for the crossed beam analysis are presented and discussed. The
sample cell designs and their specific use is shown and explained.

The cleaning procedures for the colloidal particles and the cells are

also presented in this chapter.

Cross Beam Expemental Set Up

The cross beam experimental set up is shown in Figure 6. The
488rm argon-ion laser beam is split into two beams. The beam splitter
used for this purpose was set so that the transmitted to the reflected
beams were 90 degrees apart. This produced a 2/3 intensity ratio
between the two beams. This ratio is set to one by attenuating the
beam with the higher intensity. The power of one of these final beams
is what is referred to in this work whenever an intensity or laser's
power is mentioned . These beams traverse the same optical path
length, and upon their reflection by the prism they propagate parallel
to each with the same polarization . The prism is mounted on a unidi-
mensional translating plate allowing for controlling the separation

between the two reflected beams from 0 to 3.0cm. This in turns allows

30



FREQUENCEY
GENERATOR

SPEKER

\m | TRANSLATING
\ TABLE
M1
2 s -
Y

PIN DIODE

/
N . /!

SAMPLE
CELL

PIN DIODE

———-—1-—————___13 M3 APPLE

&Q COMPUTER

M2

FELECTRONIC EAM

SHUTTER
ONIT SPLITTER He-
Ne
E l LASER
ULSE
GENERATOR ARGON
S ION LASER

Figure 6. Crossed Beam Experimental Set-Up.

31



32

for regulating their crossing angle (from five to 15.5 degrees) after
they traverse the converging lens. The translating plate is spring
loaded to help the beams stay coplanar and thus cross at a single
spot.- The monitoring of the crossing regions is accomplished by
probing the area with a microscope and projecting the intensity pat-
tern on a screen.

The He-Ne laser, wavelength of 628mm, serves as a probe (or read)
beam for the gratings produced by the mixing of the two Argon-Ion
write beams. The aligmment of this laser's beam with the crossing
area of the write beams is accomplished with a couple spring loaded
reflecting mirrors (M3 and M4). The direction of propagation for the
probe beam is taken in the same half space as the two write beams.

The scattered light is detected with a pin-diode whose digitized
output is stored in and or printed by the Apple ITe computer.

The electronic shutter shown in Figure 6 is used to block one of
the write beams, in the self scattering time dependent experiments, or
the main argon ion beam for the nondegenerate probing experiments.
This shutter is driven by a pulse generator, allowing for controlling
the time of exposure to the radiation forces.

Some of the experiments I have carried in the course of this
thesis work, dealt with having a vibrating sinusoidal intensity fringe
pattern or just translating a single laser beam back and forth. This
was done by placing a speaker behind one of the reflecting mirrors
(mirror 1 or 2) and resting its driving arm on the backplane of the
mirror. Driving the speaker with a frequency generator allows for the
desired translation of beam, which causes a path difference and thus a

phase difference leading to vibrating fringes.
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Sample Viewing And Imaging

The direct viewing of the colloidal systems used for the
structure analysis is accomplished with an Olympus BH2 microscope.

The 100x, numerical aperture 1.25, oil immersion objective with depth
of focus of .68um, and working distance of .17mm is used for direct
observation of the formed structures. This microscope uses Koehler
illumination. The viewing of the reflected images was observed either
through the microscope eyepiece or through a side port with an MIT 67
series camera system. This camera system consists of camera head,
cable assembly and control unit. It provides for complete auto or
manual operation of the viewed images from a front panel.

For the crossed beam experiments the colloidal system is viewed
by probing the sample cell with a 100x oil immersion lens with the
same specifications as described above (Figure 7). The images
produced from this are magnified even further by placing a second
objective at 25cm distance from the first. This 20x objective has a
.04 numerical aperature, depth of focus of 7.6um, and working distance
of 9.15mu. This lab made micorscope is illuminated with the 488rm
laser light. The magnified images are viewed on a transparent screen
placed at about 1m distance from the second objective. The real space
images are than recorded by placing a camera at lm distance behind the
transparent screen. In some cases neutral density filters were needed

to reduce the intensity of the images reaching the camera.

- Sample Cell Design

The cell used for the time dependent studies of the samples where

only the scattered intensity data was measured consisted of: three
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quartz plates, a viton rubber O-ring and a housing device. The 1.0cm
diameter and .3cm thickness flat is glued to the 2.5am¢.4cm flat, the
combination of these constitutes the lower boudary of the cell. This
lower cell boundary is then housed in an aluminum holder unit; with
the viton rubber O-ring (.4cm thickness) placed on the top of the
larger plate. The other 2.5cmx.4cm flat is set on the top of the
O-ring and is labeled as the top boundary for the cell. The whole set
is kept together by screwing the other aluminum cell-holder unit to
the bottom one as demonstrated in Figure 8. Tightening the screws
seals the cell and controls the gap between bottom and top plates.
This design proved to be well sealed against evaporation and unwanted
ouside contaminents.

Modifications of the above cell design proved to be a necessity
for the recognition of the spheres, in the real space analysis of the
interacting colloidal suspensions. A diagram of such cell is shown in
Figure 9. The top plate for in this case consists of a polystyrene
ring (outer and inner diameters of 2.5cm and 1l.2cm and thickness of
.4cm) , covering the top ring is a circular cover slide 18mmx.2mm.

This cover is glued to the polystyrene plate with high torr epoxy,
where all the excess glue is removed very carefully and a wide range
of cleaning procedures are followed to get any glue residue from the
imner cover slide's surface. This top plate is the one referred to in
this thesis whenever the front cell wall is mentioned. Added to the
bottom plate discussed above is a 1.0cmx.3cm saphire flat in order to
reduce the local heating. This plate is glued to the quartz flat of
the same dimensions. Again all the glued edges excess epoxy is care-

fully removed. In these cells the volume between the O-ring and the
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periphery of the smaller flats is partially filled with the ion ex-

change beads mixture.

Cell Cleaning

For the interacting samples it is very important to have the cell
cleaned of all impurities. This is accomplished by extensive cleaning
of the top and bottom plates, O-rings, sample loading syringes, resin
bead mixture and anything that comes in contact with the colloidal
suspensions or the inner cell's surface. In this study, the first
cleaning step is the removal of all excess glue or epoxy from all
flats. The plates that make it through this step are then placed in a
polyethylene mesh with the O-ring and the syringes and are subjected
to the following cleaning process:

1) Stirring in a solution of micro detergent and deionized water at
moderate temperature, below boiling water temperature.
2) rinsing each part separately with deionized water, and sonicating
in a sonic bath for a period of about 5 minutes on the average. The
transmitting fluid in the sonication process is a mixture of micro and
deionized water.
3) Rinsing each element in deionized water at elevated temperature
while stirring.
4) A final rinsing with highly deionized water (1l8megaohm resistance)
is performed and each cleaned part is blown dry with freon.

This cleaning procedure gave the best and longest lasting results
for making the particles interact over large length range via Cou-
lombic repulsion forces. Samples left inside the cell for extended

periods of time showed cuagulation problems. This is believed to be
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caused by the leaching of stray ions from the cell.
The Paricle Cleaning Procedure

To improve the particle-particle coulombic interaction and reduce
the number of particles sticking togother, the water-soluble species
and inorganic salts are removed from the colloidal suspensions through
the following process:

1) The particles are diluted in a liquid and centrifuged at 200rpm for
a different time periods depending on the suspension liquid used.

2) The supernatant liquid above the solid is then siphoned.

3) A small volume of liquid is added to the settled particles, and the
mixture is sonicated as long as it takes to shake the particles loose
and have them suspend in the liquid.

These 3 steps are repeated for ten times. In the first and last
two runs, highly deionized water is used as the diluting liquid and
the centrifuging time was about thirty minutes period. In the other
runs high grade methanol is used for diluting the suspensions and the
centrifuging period is cut to ten minutes. The time required to shake
the spheres loose depended on the suspension liquid and it took much
less time when methanol was used as compared to water

Before injecting the colloidal suspensions the cell gap is ad-
justed to 20um and then the 18megachm deionized water is injected into
the cell. The contents of the cell (water plus resin bead exchanger)
are tumbled at low rotation rate for a period of 24 hours. The reason
behind this is to reduce the number of stray ions that might be
present in the cell before the injection of particles takes place.

After this process, the water is extracted from the cell whith a clean
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syringe. The microspheres are then injected at the cell with the
desired concentration. The resin beads and the colloidal suspensions
are then mixed at low rotation rates for a period of 2-3 hours. After
this process the gap cell is again adjusted to values between 10-40um,
giving a wedged shaped gap and having single to multi layered regions.
This cleaning process proved to give the best results for the interac-
tion between the spheres for long periods of time extending from one

week to three weeks.
Image Processing

For the real space experiments all the experimental information is
recorded on video tape for future analysis. This data is fed to the
an Imaging Technology video deigitizer interfaced to a Scientific
Micro Systems microcomputer system (Figure 10). The Imaging Technolo-
gy system consists of one AP-512 Analog Processor and one FB-512 Frame
Buffer in a monochrome (black/white) configuration(IP). The two
modules are comnected via the video bus and controlled via the Q-bus.
This basic configuration digitizes, stores, and displays a single
frame of video information. The SMS microcomputer system performs all
image processing functions. The digitizing process consist of
transforming an individual picture into a two dimensional integer
array of numbers from 0 to 256 with dimensions of 512x480. This array
is stored in the FB 256 K-byte RAM allowing for accessing each pixel
and performing image transformations through mathematical functions
designed for special purposes. Amongst these the following subrou-
tines were used in the enhancement of the images and the detection of

the microspheres:



[::CAMERA

Q-BUS

ANALOG PROCESSOR
DIGITIZE

MONITOR

DISPLAY

—— A/D

b

TRAN

SFOR]

TION

TAB

LHS

FRAME BUFFER

IMAGE MEMORY

Figure 10.

Block Diagram of the Imaging Technology Basic

3

VIDEO BUS

Monochrome Imaging System.

HOST COMPUTER

1%



42

a. Image equalization using the a smoothing function between two
given intensities Il and I2 (I1<I2), the functional form used in this

analysis was of the form (44):

£(I) = 255%(I-I1)/(I2-1I1) for I2<I<Il
=0 for I<Il (3-1)

=255 for I>I2

This intensity equalization gave sharper images but did not help
much in the detection subroutines which will be discussed later.

b. Edge detection using the Sobel operator and the Robert
gradient techniques. The Robert gradient can be presented by the 2x2
template (44)

£(x,y) £(x,y+1)

(3-2)
f(x,y+1) f(x+1,y+1)

where f(x,y) is the intensity function at the given x-y position and
G(f(x,y)) is the gradient of f at coordinates (x,y). In terms of an
equation a typical approximation is given by the relation
G(E(x,Y)) = {[£(%,¥)=E£(x+1,y+1) 124 [£(x+1, 1) ~£(x,¥+1) 1%}/2 (3-3)
or using absolute values (symbol for absolute value is given by []),
G(f(x,y)) = [£(x,y)-£(x+1,y+1)] + [£(x+1,y)-£(x,y+1)] (3-4)
The Sobel operator on the other hand is a 3x3 template (44) ginven

by the following experssion:
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dle|f (3-5)

vhere a, b, ¢, 4, e, £, g, h, and 1 are pixels' intensities values.
Defining G, and G, as
Gy = (g+2hti) - (at+2bic)
Gy = (cr2f+i) - (at2dtq) (2-6)
The gradient at e is then defined as,
G =62 + Gy2]1/2
= [Gy] + [Gy] (3-7)
In equation (3-4) and (3-7), the [] stands for the absolute value
of the given quantity, and this approximation is made to save on the
speed of computation while analyzing the data. Both the Robert and
Sobel gradients were found to give relatively large values for promi-
nent edges in an image and small values in regions that are fairly
smooth, being zero in regions that have a constant gray level. The
Sobel operator being a 3x3 template gave sharper rings around the
spheres and sphere like high intensity regions than its counter 2x2
template.
c. Image restortion oriented toward reconstructing an image that
has been degraded by using some a priori knowledge of the degradation

process. In terms of a mathermatical egquation we have,
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g(x,y) = HE(Xx,y) + n(x,y) (3-8)
where g(x,y) is the degraded image, H is the degradation operator,
n(x,y) is an additive noise, and f(x,y) is the input image that is

sought. This image is obtained by using the relation

£(x,y) = £HF(,V)]
= £7G(w,v) /H(u,V) ] (3-9)
for x,v=0,1,2,........N=1, G(u,v) is the FFT of g(x,y) and n(xy) is

assumed to be zero. This procedure is implemented by means of an FFT
algorithm. Different filters were used for the process of restoration
(Buttexrworth high pass filter, Wiener filter, point spread function)
but the time required for the analysis made the process unworthy.

d. Detection and recognition of the spheres was the main aim
behind the analysis of the interacting samples. This process was
first tried by generating a J x K template, which corresponds to one
of the spheres and matching it with the given image, this resulted in
some spheres being ignored while fictious regions where picked as
being a paricle. This process of choosing a template could be thought
of as a correlation, where by definition the correlation between two
functions is given by,

R(m,n) =x,2‘i f(x,y)w(x+tm,y+n) (3-10)
or

R(u,v) = F(u, V)W (1,v) (3-11)
where F(u,v) is the 2D transform of the given 512x480 digital image
f(x,y), W (u,v) is the complex conjugate of the 2D transform of the
JXK (J<512 and K<480) window function w(x,y). Note that m=0,1,..,511,

and n=0,1,...,469 and the sumation is taken over the region where
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w(%,y) is defined. This correlation function was tried and the same
problems observed with the templates were encountered with this
function, namely the recognition of fictitious regions as spheres
vwhile ignoring positions where the particles are located. The time
required to process a single image with the detection subroutines
discussed so far was of the order of five minutes when the VAX and
Contol Imaging system ( property of Electrical & Computer Engineering
Department) were used. The limitations of the SMS RAM memory (.5M
bytes) and its slow computation time as compared to the VAX were the
main determining factors in replacing the subroutines discussed above
with the intensity slicing and edge detection subroutines.

The intensity slicing subroutine used the concept of subdividing
the image into different windows, in each window the intensities that
fall between a maximm and minimun value are collected and then made
into clusters. Within a certain radius from each cluster's center an
edge detection subroutine is suplemented. If the edges are detected
along the x and y directions then the cluster's center is taken as a
prospective position for a sphere's center. This detection program
took from l-2minutes for the recognition of the centers and was the
most efficient way for detecting the microspheres, althought it did
require input information about the cutoff intensities the maximun
radii, the separation between particles and an interactive part
helping in the accepting the first particle in each fringe.

The problems encountered in the detectioq of the spheres were a
result of the background intensity of the stationary sinusiodal fringe

pattern which at certain regions creates sphere like structures.
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Accuracy In Positions

To estimate the distortion of the experimental optics and that due
to the video camera, two set of analysis were performed. In the first
of these, the distortion due to the objectives, was found by taking
images of the standing fringe pattern alone; and of grooved gratings
with their periodicity along the x and y directions. By fitting a
linear fit through the low intensity regions of the fringe pattern (or
gratings), it was found that the average separation between these
lines stayed the same with a maximum deviation of two pixels along the
x-direction and one pixel in the y-direction. The distortion due to
the camera and video system is found by taking photographs of polar
graph paper and finding the distances to different radii. The meas~
ured radii from the center of the polar plot for an average of 6
frames is given in Table I. The maximm destortion observed from the
data given in this table is two pixels. For both cases the maximm
distortion occurs at the edges of the digitized frames and it gives an
error in locating a particle of 2 pixels. Most of the analized data
was taken at the center far from this distortion region, thus no

correction was needed for our analysis.



Table I

DATA FOR DISTORTION INTRODUCED BY
VIDEOTAPING SYSTEM

rl(pixels) r2(pixels) r2-rl
7 7
30 30
61 62 1
115 116 -1
155 154 -1
195 197 _ 2

235 234 2




CHAPTER IV
INTERACTING PARTICLE STUDIES
Introduction

In this study the term 'Interacting Particles' is used to describe
colloidal suspensions of polystyrene sulphonate latex spheres in water
that is relatively free of electrolytes. Upon immersion in water the
cationic counter-ions from the surface sulfate groups will diffuse
away from the particle's surface causing the spheres to be uniformly
charged. The stripped counterions can be exchanged with ions supplied
by ion exchage resin and the resulting mixture of counterions and any
added electrolyte serves to screen the charged spheres and modify
significantly the coulomb repulsion between them.

When these colloidal suspensions are confined between two smooth
repelling flats the particles order as in a solid in some regions and
as a liquid in others. This makes these samples ideal for phase
transition and structural transition studies.

The response of these self-organizing systems to externally
applied field is studied in this work. Radiation pressure was used as
one of these external fields to manipulate the interparticle order in
these suspensions.

In this chapter, the analyses on the interacting particles samples
will be divided into three sections. The first section will deal with

the structural transition in a wedged sample cell. The second section
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will be devoted to the real space analysis of the ordering induced by
the externally applied radiation pressure field. In the third section
an analysis of the scattering patterns as a function of input power

and crossing angle is studied.

Equilibrium Structures Without
External Fields

It is already established that a system of colloidal spheres
submerged in aqueous suspensions can exhibit transitions from an
ordered (solid) to a disordered state (liquid). Colloidal crystal,
liquid and gas like states have been observed in different studies.

In a colloidal crystal, for example, the suspended particles are
positioned at regularly spaced intervals. The observed order is
typically that of a body centered cubic crystal or face centered cubic
crystals in dilute and concentrated charge stabilized suspensions,
respectively (9). Two dimensional systems have been examined by
trapping a single layer of particles between optical flats(3, 4, 5) or
the water-air interface (45). Here states having HCP closest packed
crystalline and liquid like order have been cbserved despite the
apparent lack of long range order in two dimensional systems.

In this study the colloidal suspensions were trapped between two
smooth repelling plates, as described in the experimental set-up
chapter. The distance between the two plates is adjustable, allowing
for a wedge shaped gap and for the trapfn'.ng of a single to multi
colloidal layers. The colloidal spheres are repelled from the glass
surfaces for two reasons: glass plates become highly charged when

they are brought in contact with water, this leads to a plate surface
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charge density of 2.5x10M%cm™2(1&2), which is comparable to that

on the polystyrene surface. Another reason for this repulsion is
caused by the dielectric constant contrast between the water—glass
interface (c=80 of water and 5 for glass), which introduces repulsive
image charges of the spheres.

Although extensive care was used in the cleaning of the samples
and the cells, it was observed that all the experimental samples used
in this study had a leaching problem. Ions from the cell's walls and
foreign substances leak inside the sample and cause coagulation prob-
lems with the extended immersion time giving dumbbells and larger
aggregates, about 5%.

By direct observation of 1.07um diameter interacting particles
samples, different 3-D and 2-D phases were seen. Digitized images,
512 by 480 pixels, of some of these phases are shown in Figures 11
through 16. A region near the apex of a wedged cell is shown in
Figure 11. This demonstrates the transition form a three dimensional
solid structure to a two dimensional liquid phase. In the lower richt
corner a liquid state is observed where the particles appear to have
no orientational nor translational order. This region is at the apex
of the wedge. Right above this liquid phase a two dimensional (mono-
layer) hexagonal closed packed phase starts to form. At the center of
this figure a transition from two dimensional HCP structure to three
dimensional square structure is shown. This region is considered as
the 'hopping' region, where hopping corresponds to intense particle
motion normal to plane of gap. Finally, at the upper left corner of
this figure a three dimensional square phase is established.

Figures 12 and 13 show two-dimensional HCP crystalline structure.
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Figure 12. Crystalline Structure Near the Apex of a
Cell of 1.07um Charged Polystyrene Spheres
Suspended in Highly Deionized Water.
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Crystalline Monolayer at 2mm Distance

Figure 13.

From the Region Shown in Figure 12.
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DOUBLE LAYER SQUARE LATTICE REGION

wilkes & »
LﬁYER P .‘.‘.1 <

ki
)
i o ™
';:!f 'ﬁ'

b *;1.‘
{,",

- . ™
HOPPING lg ”
REGION -

Figure 14. Transformation From a Monolayer Region
to a Multilayer Square Lattice Region.



DEFECT

Id

P -
» ®, .
'3‘5 -"“ -
‘e b O S T s
LI 4 > 2, ‘7 &
Y - ) » - ‘g
!’ RSl BOE
RCIPOPOSCAOSS
P - ’.’ ‘.‘ '.’ o
Ld - ) ?u ’/‘ ) -
Py B Ve &
ROFONL LS P A
4=04;o¢;% AR b
LKA XA W AN W PR
2nd e '.,‘0’ "c,.‘t"‘f’ POIPC -l
LAYER "& NN T SCOPCISe

8

‘e
A ]

LR/
‘s
\

2%ro%, JARL
ok LS LAYER
[ )

’n
L]
oY
L]
0‘.‘
L)

.
2
¥ %

[
D

3)
»
L)

Figure 15. Multilayer Square Lattice Packing with
Different Lattice Constants.



56

MULTILAYER TRIANGULAR LATTICE REGION
- v, "

! ’d"\-'.
Log s et prat
4% l{-\‘.‘r:.‘a'p;-
by -‘.“‘...‘.‘.‘.‘.."
“ ‘_ 4°5e’s’s"s°8°s°s"
- o X r‘. " ® ‘h.“‘;‘...‘.‘.“ L Sl 3
e - ‘. -4 CY \J .....‘0“"‘0‘.‘
DO A XD CAR
& AT S R R E N B A AR T Y S
~ﬂ§::.f‘.\‘.‘r ‘-...o ‘..,.r ‘. s g°e* .. 8° 7 ] . ‘o ‘c s
o S BTSN L ettty v S
H2rveee =*5"0 8°6 t‘c‘u‘rc‘{. LAVER
SR e e ey 578 5 6
AT TNt e . - - 5
Q:E?qu‘:‘y.ruririfﬁlﬁl‘t‘IFIP -
s e s e s st sty- Pl
: .:'i (w3 o 2 3 2P 2nd
R rstr et N;f"‘ R LMD LATER
> ' [ .‘ 0‘.

>

SQUARE
LATTICE §
PACKING §

Figure 16. Transition for a Double Layer Region
From Square Lattice Packing to

Triangular Lattice.



57

In Figure 12 the particles shown are just above the apex of wedged
region in the sample cell. Below this apex no particles were cbserved
since the gap is small enouch that the particle-wall interactions
cause all the microspheres to be expelled to the 3D reservoir or the
upper region of the sample. In this triangular lattice the average
interparticle separation is of the order of twice a particle's
diameter. Translating the sample about 2mm distance the same 2D
crystalline structure appeared to persist as shown by Figure 13. The
interparticle separation in this monolayer frame is 2.0um, of the same
order as a particle's diameter. To be noticed in this figure is the
existence of dumbbells and collection of three,four or five particles.
These aggregates tend to reorient the axis of the crystalline struc-
tures, produce defects and are isolated primarily at grain boundaries.
As the cell gap is increased a transition to a double layered
region starts to be occur (Figures 14 and 15). The first of these
figures (Figure 14) demonstrates the deformation of the HCP monolayer
structure as the plates' separation is increased, leading to a
hopping region and eventually a double layer square lattice. The
hopping region occurs in the lower right and to the right of the shown
area of Figure 14. In this case the plate separation is slightly
larger than the stable monolayer regime and slightly lower than the
required gap for a stable two layers regime. For a gap large enouch
to support a stable two layer regime, it is observed that the particle
density and the lattice constant for the square packing varied from
one region to the other (Figure 15). This change is believed to be a
result of small variations in the gap width introducing a distortion

in the lattices. The left side of Figure 15, shows a deformed square
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lattice whose lattice constant is different than that measured for the
square lattice found on the right side of the same figure.

The transition from a two layer square to a triangular lattice
was also ocbserved in these samples, as shown by Figure 16. The lower
left corner shows a square lattice, as we move to the right the gap
increases allowing for a stable two layer triangular lattice.

The general structure of one to three layers of crystallized
spheres in these experimental samples is similar to what has been
observed by Pansu et al. (5, 41) and in another study by Van Winkle
arnd Muray (4). These authors have observed a structural sequence of
1T - 25~ 2T = 3S - 3T phases, where T stands for the triangular lat-
tice and S represents the square lattice and N is the layers' number.
In this study we were able to reproduce results observed in references

1, 4 and 5, despite the dumbbells.

Correlation Functions

1-D Pair Correlation Function (g(xr))

The translational pair correlation function is constructed by
taking the center particle in each digitized frame, its six nearest
neighbors and the four particles located at the four corners of each
digitized frame as separate reference particles. For each of these
references, the number of particles within a ring of width dr about r
is counted and divided by the area enclosed by the ring. This
technique gives an egquivalent of averaging over 220 frames with an
averaging time of 20 to 60 seconds. This allows for the construction
of the radial distribution function, and provides direct structural

information which can be compared with theory.
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Mathematically the one dimensional pair correlation function,
g(r), is defined as:

g(r) = d(x)/d, (4-1)
were dj is the bulk density of the liquid expressed as the number of
particles per unit area and d(r) is the local density of spheres at a
distance r from the reference particle. Using the above description
for d(r), equation (4-1) can be rewritten as:

g(r) = n/[Wdy(ry?r;2)] (4-2)
where ry is the outer diameter of the ring and r; is its inner
diameter. The existence of a maximum at a distance r indicates an
increase in local density around r. The sharper and higher this

maximm, the more probable the arrangement at that point.

2-D Pair Correlation function (g(r))

The conditional probability of finding a particle at a position
r,, given that a particle is located at r; is constructed graph-
ically by taking the position of the center-most microsphere in each
frame as the origin, or as the vector r;, and plotting the x and y
positions of the rest of the polyballs with respect to this origin,
that is r,-r; where r, represents the remaining sphere posi-
tions in the digitized frames. The averaging is accomplished by
repeating this process for several frames. However, we also increase
the number of frames used in the averaging for this function by taking
the six nearest spheres to the origin and using each one of these as a
new origin. Once the position of these new origins is determined the
same procedure outlined above is followed, thus allowing for an

averaging over the equivalent of 140 frames when averaging 20 frames
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in all. These conditional probability plots or g(r) evidence both
orientational and translational correlation information. The programs
used for the analysis are given in Appendix A.

All of the samples used for this study had a considerable number
of multiple particles sticking to each other, these dumbbells created
a problem in taking clean data. This same observation is noticed by
other workers who examine the nature of layering transitions and the
2D melting processes in systems composed of colloidal suspensions (4,
5, 41). To avoid the complexities introduced by a large number of
dumbbells, we select only the monolayered regions with less than 5%

doublets for analysis.

Two Dimensional Systems With And Without

External Radiation Field

This section will describe the details for the data collection
procedure and results of the static experiments on the interacting
colloidal particle samples. By crossing two mutually ccherent laser
beams in the sample, a periodic intensity potential well is produced.
A force exerted by the potential draws the micron sized polystyrene
spheres to the most intense regions since their index of refraction is
larger than that of the solvent. This forces the particles to aline
in a periodic arrangement. The final structures are controlled by the
potential's period and the laser's input power. The radiation
pressure forces tend to also push the particles in the direction of
the beam's propagation towards the front cell's plate (top plate in
Figure 9), and in the case of multilayered regions this causes the

particles to compete for lining up in the layer closest to the cell's
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confining plate.

In this study the region used for the analysis were either fluid
monolayers of constant particle density or partial double layered
fluid regions were the particles density changed as the radiation
pressure force was applied. A standard digitized frame of the mono-
layer and multilayer amorphous regions used for this work are shown in

Figures 17 and 18 respectively.

Equilibrium Without External Field

Equilibrium is observed with single beam illumination of the
sample. This is just a uniform field which pushes particles near a
plate with or without the transverse effects. Illuminating the sample
cell with a single argon-ion beam (488mm wavelength) and probing the
sample with a microscope the real space images cbserved for a
monolayer amorphous phase is demonstrated by the snap-shot in Figure
17a. The particles in this region appear to have a random orientation
with an average separation of 2.27um as found by direct measurement
from the digitized image (implying a density of 1.9x101%m™2),

The single beam scattering pattern from this region is presented in
Figure 17b. The diffuse intensity ring concentric with the incident
beam is referred to as the Debye-Sherrer ring and is characteristic of
a liquid-like or amorphous structure. The k-space radius of this ring
kpg=2 T/a gives another measure for the average particle separation
which was determined to be 2.18um.

The pair correlation function g(r) for this amorphous phase is
shown in Figure 1%a. This function shows a sharp maximum at a

distance r=2.14um, an indication that there is structural arrangement
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a) Real Space Snap-Shot

b) Self Scattering Pattern

Figure 17. Monolayer Amorphous Region With an
Average Particle Separation of 2.2um
as Measured T'ron the Real Space Snap-
Shot {a) and the Radius of the Debye-
Sherrer Ring (b).
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Real Space Snap-Shot.

a)

Self Scattering Pattern

b)

Amorphous Multilayer Region of Interacting
Polystyrene Spheres (1.07um Diameter)

Figure 18.

Suspended in Highly deionized Water.
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at this position. The other peaks fluctuate around the value of one,
where the fluctuation is due to statistical errors. This function
shows the typical liquid-like behavior. The 2D pair correlation
function (Figure 19b) shows that the probability is largest at the
nearest neighbor distance (r=2.l4um), is independent of the direction
of r and décreases to the average particle density at large r values.
The observed orientation is due to not averaging over a long enough

time.

External Field Applied

The crossing of the to laser beams creates an external field which
causes the system to reorganize in ordered structures. The experi-
mentally finite extent of the crossed beams eventually creates a
nonlinear distribution of the particles in the symmetry breaking
fringes. This nonlinear effect is avoided by imaging region near the
center of the crossing area, thus allowing for a fairly uniform dis-
tribution of the microspheres. The formed structures were observed to
have order up to thirty fringe periods. The extent of this order
depended on the area occupied by the fringes and the amplitude of the
applied field. This long range order is not considered in this study
for distance larger than ten fringes on the average. The short range
order is considered in this analysis due to the uniform inten-

sity distribution around these regions, and for analysis convenience.

Cammensurate Structure

When the fringe spacing causes the interacting spheres to line up

in their undestorted closest packed structure consistent with the
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sample density (Figure 20a), the system is said to be commensurate
with the externally applied potential. This occurs when d=acos(30),
where d represents the fringes spacing and a is the average separation
between the particle in the amorphous phase. The transverse component
of the radiation field causes the spheres to line up along the high
intensity region of the fringe patterns. The coupling of this aline-
ment whith the strong electrostatic interaction between the particles,
causes a uniform separation between adjacent particles in a row and
successive ordering between adjacent rows. The final result is the
"freezing" of the amorphous two dimensional system to a two dimen-
sional ordered structure, where the one dimensional external field
directly breaks the symmetry of the amorphous (or crystalline state).

When the amorphous equilibrium region (Figure 17) was exposed to
the radiation forces produced from the crossing of the two argon ion
laser beams, at an angle of d=1.96um (14.3 degrees), the particles
aligned not only along the fringes but also in the other directions
(Figure 20a), creating diffraction a two dimensional grating. The
self scattering pattern produced from these gratings is given in
Figure 20b. The horizontal row of intensity maxima passing through
the two incident beam positions is produced by particle aligmment with
the intensity fringes. The other intensity maxima, at about 30, 90
and 120 degrees from the axis passing through the main beams (x-
axis), are produced by secondary aligmment of microspheres due to
interparticle interactions. If one of the two write beams is blocked
this pattern relaxes back to that of Figure 17.

The pair correlation functions for these commensurate monolayer

structures are shown in Figures 21 through 23, where the laser's input
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a) Real Space Snap-Shot of Particles
Alinement Along the High Intensity
Regions.

b) Self Scattering Pattern.

Figure 20. Alinement of the 1.07um Interacting
Polystyrene Spheres in the High
Intensity Regions of the Stationary
Fringe Pattern at Commensurate Period
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power increased frdm 42mW to 110mW for th:i.s particular analysis. At
all these powers it is opbserved that the particle density stayed
within a maximm of 3 percent from the average value of .190/ (um)z.
At the lowest input power g(r) (Figure 21) shows a maximum at about
1.86um, an indication that there's local order between the
microspheres at this separation. A broader and smaller peak is
observed at about 4.28um radial distance. At higher r values, g(r)
fluctuates around unity, with not well defined peaks to suggest the
loss of correlation at these distances. Aas the input power increased
the trough after the first maxima approached zero, an indication of
greater correlation between the spheres. The second and third maxima
are more pronounced for the input power of 86mW (Figure 22a) than what
is observed for the 42mW case. At large r values, even at the hicher
input powers, we see a loss of correlation presented by fluctuations
in g(r) around the value of one. In all of these figures, the higher
and sharper the observed maxima are the larger the particles' density
in the shell centered around that region.

The 2D correlation functions (Figures 21b-23b) shows the induced
translational as well as orientation order as the amplitude of the
externally applied potential is changed. The degree of correlation
between the microspheres is measured by analyzing the distribution of
the 2D function along each fringe period (Figures 24-26). These
graphs are constructed by taking three rectangular boxes along the
x-direction of the 2-D correlation functions. The x-coordinates of
these rectangles were from -d/2 to d/2, d/2 to 3d/2 and 3d/2 to 5d/2
vhere d represents a fringe period. The y-coodinates were taken as

those shown in the g(r) graphs. The density distribution along the y-
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axis in each box is found and plotted. The bottom plot represents the
first box (-d/2 to d/2 region), the following plots is for the second
box (d/2 to 3d/2) and the lost plot for the third box (3d/2 to 5d/2).
The solid curves in these plots show the density distribution to the
same scale and the dashed curves are normalized by the maximm peak in
that box (these are presented for clarity). These figures (24 to 26)
show that as the input power is increased the the particles become
more localized within the fringes and around some well defined mean
position relative to the reference particle. The loss of correlation
at large distances is demonstrated by the increase in the standard
deviation of the particles' localization in the fringes (Table II),
this found by finding the mean x-position of the microspheres in a
particular fringe period than calculating the deviation around this
mean. Another measure of the loss of correlation is also achieved by
analyzing the height and the full width at half maximum (FWHM) of the
peaks of the average density distribution plots. Thus at commensurate
crossing angle, the induced order seems to be a function of the ap-
plied field's power.

A demonstration of the particles' distribution in the high inten-
sity regions of the periodic potential is given in Figures 27a. By
counting the number of particles within each well, the density along
each fringe is obtained (Figures 27b). The period used for these
density plots are measured directly from the digitized images. The
fluctuation in this density is due to uneven counting of particles in
the rectangular boxes used for the area of analysis (the edges of the
box determine which particles to be included in the analysis), statis-

tical fluctuations and defects.
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TABLE IT

ANATYSIS OF 2-D PATR CORRELATION
FUNCTIONS FOR d=1.85um

Input Power Fringe Positions Mean,/a Std,/a
(1) (d/2)
42 -1 1 0 .29
1 3 1.8 .36
3 5 3.5 41
86 -1 1 0 .165
1 3 1.75 .181
3 5 3.55 .190
111 -1 1 0 .13%
1 3 1.73 .164
3 5 3.5 .192

Mean, = mean x position of the particles in the given fringe period
Std,, = standard deviation around the mean x position of each fringe

a = diameter of a single particle
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All of the above graphs show that at the commensurate crossing
anlge the amorphous monolayers organized in hexagonal closed packed
structures as the radiation field was applied. The growth of these
structures is observed to be dependent on the radiation field's

strength.

Noncommensurate Results

As the crossing angle was increased to 13.34 degrees (inside the
sample cell), the formed fringe pattern had a period, d=2.lum, which
is incommensurate with the equilibrium phase (Figure 28). At this
crossing angle, the radiation fields force the microspheres to align
in the fashion shown in Figure 29a. The produced self scattering
pattern from this aligrmment is given in Figure 29b. This pattern
shows that the Bragg spots produced from the main density modes'
scattering move inside the Debye-Sherrer ring, and that the scattering
from the enslaved density modes is weak compared to that observed for
the commensurate case, an indication of loss of correlation between
adjacent rows at this crossing angle.

The distribution of the microspheres in the periodic wells is
plotted in Figures 30a for an input power of 42mW. An increase in the
input power localizes the spheres to the minima of the applied poten-
tial. The density distribution along these potential minima is
demonstrated in Figures 30b. These figures are cbtained by averaging
over 20 frames for each input power considered.

Using the positions files the pair correlation functions are
constructed (Figures 31 to 33). At the minimm applied power (42nW,

Figure 3la), the pair correlation function, g(r), exhibits a maximm
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a) Microspheres Alinement Along the High Intensity
Regions of the Fringe Pattern.

b) Self Scattering Pattern of Structure Shown
Above.

Figure 29. Particles Alinement at Fringe Period of
2.2um (a) and the Produced Self Scate
tering Pattern (b).
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at a radial distance of 2.2um; the existence of other maxima at 3.8um
and about éum are not so well defined. The 2D correlation function at
this power (Figure 32b) displays the existence of some oriental as
well as translational order. However, at the higher input powers (64
and 165nW) the existence of any induced order, beside the alignment
along the high intensity regions, is not well defined through the
correlation functions. An analysis of the distribution of the density
along the fringes is constructed and given in Figures 34 to 36. The
existence of some localization around particular positions is best
seen at input powers of 42mW and 165mW (Figures 34 and 36). At the
other powers it is hard to distinguishe the positions where

the density is maximm.

The effect of the applied field's power on localizing the spheres
in the high intensity regions is measured through the deviation around
a mean position along the direction of the selected fringe pericds,
such data is presented in Table III. In this table it is observed
that the calculated standard deviation, of the mean x-position in each
fringe period, decreaséd as the input power increased. The loss of
correlation at large distances is indicated by the systematic increase
in the deviation as the successive fringes are considered in Table
ITI. The highest interdependence at this crossing angle occurs for
particles that are within the same fringe position, as demonstrated by
the curves shown in the lower boxes of Figures 34 to 36.

As the crossing angle was made even smaller (8.8 degrees), the
obtained of fringe period 3.3um was larger than the average particle
separation in the equilibrium phase (Figure 37) by a factor of about

1.5. As the stationary sinusoidal intensity fringe pattern is applied



TABLE ITI

ANATYSIS OF 2-D PATR CORREIATION
FUNCTIONS FOR d=2.2um

86

Input Power Fringe Positions Mean,/a Std,/a
() (4/2)

42 -1 1 0 . 266

42 1 3 1.8 .283

3 5 3.77 .298

65 -1 1 0 .223

1 3 1.9 241

3 5 3.85 .252

165 -1 1 0 226

1 3 1.81 .231

3 5 3.77 257

Mean,, = mean X position of the particles in the given fringe period

Std,, = standard deviation around the x position of each fringe.

a = diameter of a single particle.
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the response of the interacting spheres to this external field is
demonstrated in Figure 38a. The self scattering produced from this is
given in Figure 38b. These two figures show that at this fringe
separation , the interation between the microspheres causes them to
line up at high as well as the low intensity regions. This actually
leads to a loss of correlation between the adjacent rows at low input
powers. This behavior is demonstrated by plotting the positions files
of 20 real space snap-shots, and the distribution of the particles!
density along the potential's periods (Figures 39 and 40). At the low
input powers (42mW) the density of the particles along the high
intensity regions appears to be the same as in the low intensity
regions (Figure 39b). As the laser's power was increased to 161nW,
the density function showed well defined peaks (Figure 40b), an
indication of the localization of the spheres along the applied
potential's minima.

The corresponding pair correlation functions are given in Figures
41 through 43. In all of these figures is hard to distinguish the
existence of well defined order at the applied powers. Analirsis of
the density distribution (Figures 44 to 46) at 42, 86 and 161mW input
powers manifest the dependence of the local freezing at large fringe
periods on the applied external field's strength. The localization of
the spheres along the intensity maxima is shown by a decrease in the
standard deviation around the mean of the particles' positions in each
fringe (Table IV) as the input power increased.

The results obtained from this two-dimensional analysis are
summarized in Table V. To be noticed is that the density at all

crossing angles and at all input powers stayed constant within



TABIE IV

ANATYSIS OF 2~D PATR CORRETATION
FUNCTIONS FOR d=3.3um

92

Input Power Fringe Positions Mean,/a std,./a
() (&/2)
42 -1 1 0 .925
42 1 3 2.96 .858
42 -1 =3 -2.96 .854
86 =1 1 0 .979
86 1 3 3.15 .935
86 3 5 =3.19 .919
161 -1 1 0 .851
161 1 3 2.90 .782
161 3 5 =2.95 .779

Mean, = mean x-position of the particles in the given fringe period

Std,, = standard deviation around the x-position of each fringe.

a = diameter of single particle.



TABLE V

SUMMARY OF THE TWO DIMENSIONAL ANALYSIS
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Conmensurate Non Commensurate Non Commensurate
Monolayer Monolayer Monolayer
d (um) 1.85 2.1 3.31
a(um) 2.19 2.08 2.11
: 11, 2.
Power Density (x10-/m*)
(W)  Single Double Single Double Single Double
Beam Beam Beam Beam Beam Beam
22 1.95 1.95 1.96 1.96
42 l1.93 1.93 1.95 1.95 1.96 1.96
65 1.91 1.91 1.95 1.95 1.98 1.98
86 1.90 1.90 1.95 1.95 1.96 1.96
111 1.90 1.90 1.96 1.96 1.96 1.96
135 1.91 1.91 1.95 1.95 1.96 1.97
161 1.91 1.91 1.95 1.95 1.97 1.97
182 1.95 1.95 1.96 1.96
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a) Alinement of the 1.07um microspheres Along
the High Intensity Regions of the Fringe
Pattern at Fringe Period of 3.3um.

b) Self Scattering Pattern From the Struc-
ture Shown Above.

Figure 38. Particles Alinement at Fringe
Period of 3.3um (a) and the
Produced Self Scattering
Pattern.
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experimental error of 5%. In all of the above analysis, when one of
the write beams was blocked the system relaxes back to an amorphous

phase with the same density as we started with.
Three-Dimensional Analysis

Cell gap regions containing more than a single layer amorphous
equilibrium phase were subjected to the radiation forces created from
the crossing of the two mutually cocherent laser beams. In all these
cases it is cbserved that the longitudinal component of the radiation
field pushes the suspended polystyrene spheres downstream in the
direction of the beam propagation. Once these spheres near the cell
boundary wall (front glass plate), they are repelled by the similarly
charged wall. This forces the spheres to form a first layer near the
bounding plate of the sample cell. The particles lining up behind
this layer start competing with the spheres that present in it, for a
least energetic state. This process eventually causes the micro-
spheres in the first layer to expend outward leaving space for some of
those in the second layer to end up in the same layer. The fact that
the beam's intensity profile has a Gaussian distribution means that
the particles near the beam's center experience a larger force than
those located at its edges. This in turn causes the regions away from
the center of the crossed beams to be multilayered when those near the
center may be forced to line up in a monolayer. The transformation to
a monolayer and the area occupied by this single layer depend on the
laser input power, start up phase and radiation exposure time.

A pictorial demonstration of the evolution of a forced monolayer

is given by Figure 47. The first snap-shot of this figure was taken
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when a multilayer region was first exposed to the crossing of two
laser beams. Careful examination of this region reveals the exis-
tence of a second layer beside the focused layer. The competition to
line up near the glass plate is demonstrated in Figure 47b and the-
final molayer is given in parts c and d of the same figure. The same
results are also obtained by increasing the radiation field strength
as demonstrated by Figure 48. 1In this case a multilayer region was
exposed to a single beam illumination (Figure 48a)and as the laser's
power was increased the forced monolayer region was produced (Figure
48b). In this case (single beam illumination) the input power re-
quired to cause the monolayer transformation was about twice as much
as that observed for the crossed beams case. Even so, particles from
the bakcstream are observed to hop in the monolayer region.

The following discussion will be devoted to the effect of the
externally applied potential on the local order of these multilayer

equilibrium regions.
Commensurate Structure

When the equilibrium phase shown in Figure 47a was exposed to the
potential wells, produced from crossing the laser's beams at an angle
of 15.1 degrees (d=1.85um), the system lined up in a hexagonal closed
packed structure (HCP) similar to commensurate monolayer case. At
this commensurate crossing angle low input powers (<60nW) particles
line up in the high intensity regions as expected. However, the
strength of their thermal energy at these low powers prevents them
from being well localized in the intensity wells, such that they hop

from one intensity maxima to another. The particles were also
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observed to have a random hoping from one layer to the next layer in
the same or the adjacent intensity wells (Figure 47b). As the laser's
power increased above 111lmW, the radiation force restricts the par-
ticles' movement along the high intensity regions, thus making them
stabilize within the potential wells as well as in a monolayered
system.

The analysis for the regions discussed above is considered for
powers ranging from 8émW to 161mW. ILower input powers are not
considered due to the persistence of the second layer in this sample.
At 86nW input power the forced monolayer developed at the center of
the sinusiodal standing wave intensity pattern. The 2D equilibrium
phase of this forced amorphous monolayer (Figure 49) had a density of
18xl010/m2 with the average particle separation of about 2.1lum. A
plot of the position files when the two beams where crossed at this
power is given in Figure 50a. It is apparent from this figure that
the microspheres are well localized within the fringes and that there
is correlation between adjacent wells. The correlation functions at
this power (Figure 51) show well defined order. The pair correlation
function (g(r)) has well defined peaks at radial distances of 2a, 3.5a
and 4.la (Figure 5la). The 2D function (Figure 51b) shows that the
short ranged induced monolayer has a HCP structure with the lattice
constant of 2.1um. The density of the system at this power increased
by 12% from the equilibrium phase. This density change makes it hard
to establish if the freezing is due to the externally applied
potential or if its a result of the increase in density. The analysis
of the 2D function is given by the distribution graph shown in Figure

52 where the induced order seems to extend for distances up to 28a,
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where a is the diameter of a sphere. This figure does also show a
decrease in the correlation at large distances as evidenced by the
increase in the FWHM of the peaks.

As the input power was increased to 135mW, the particles order
becomes more pronounced. This is confirmed through the correlation
functions plots (Figure 53) and the density distribution function
along the fringes of the 2D correlation function (Figure 54).

As the external field's strength is even made higher (161mW), The
the 2D correlation function (Figure 55b) shows a string like behavior
where the probability distribution of the spheres along one of the
fringes is equally likely. The analysis of the density distribution
along the fringes of the 2D function reveals the existence of some
correlation at the nearest neighbors distance, especially along the
same fringe period. This behavior is not well understood, it is
possible that at this power we start overheating the radiation region
leading to a convection. The density distribution along the fringes
of the 2D correlation function is given in Figure 56.

In the above analysis it was observed that blocking one of the
write beams causes the system to relax back to a monolayer amorphous
phase. However, when both of the write beams were blocked the system
went to the multilayer liquid phase. In the forced monolayer analysis
the density of the analyzed regions changed by as much as 20% when

input power is was 86 and 135mW.

Noncommensurate Results

When multilayer regions were exposed to the periodic radiation

fields, with periods were larger than that used for the commensurate
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case, it is cbserved that there existed a transformation to a mono-
layered system. This forced transition seems to be dependent on the
fields strength, the radiation exposure time and position of the par-
ticles in the field's Gaussian distribution, as was cbserved in the
comensurate case.

For the crossing angle of 12.13 degrees, or the equivalent fringe
period of 2.3um, the multilayered amorphous phase began to compete to
form molayered regions at input powers as low as 22mW (Figure 57).
The depletion of the forced monolayer for the sample used in this
analysis (which is different than the previous sample used in the com-
mensurate analysis) was reached at 161mW. The distribution of the
partictles' positions and their density distribution in the fringes,
for the given period of 2.3um and input power of 8émW, are given in
Figure 58. The pair correlation functions for this beam separation at
input powers of 86, 111 and 182nW are given in Figures 59 to 61.

At 86mW input power, starting with a three dimensional region of
the sample cell, it is observed that the radiation pressure forces
cause the system to form a monolayered amorphous phase with some of
the spheres hopping back and forth from this monolayer. As the beams
are crossed at this power the organization of the system is shown
through the pair correlation functions given in Figure 59. The 2D
function demonstrates a distorted HCP Structure, where the average
separation between neighboring centers of each cluster along the
fringes (y-direction in Figure 59) is smaller than those between
adjacent fringes by a factor of .887. The change of density from the
amorphous phase to the crystalline phase in this case is 23% (Table

VI).
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ANALYSIS OF 2-D PATR CORREIATION
FUNCTIONS FOR MULTIIAYER REGIONS

standard deviation

Fringe Period Power Positions Mean

(10°°m)  (uw) (&/2) x/a STD/a

1.85 86 i 1 0 .092
1.85 86 1 3 1.62 121
1.85 86 3 5 3.35 .126
1.85 161 -1 1 0 .099
1.85 161 1 3 1.72 111
1.85 161 3 5 3.85 .119
2.34 86 -1 1 0 .235
2.34 86 1 3 1.72 271
2.34 86 3 5 2.93 .358
2.34 111 -1 1 0 .222
2.34 111 1 3 1.95 .269
2.34 111 3 5 3.05 .290
2.34 182 -1 1 0 .185
2.34 182 1 3 2.08 .191
2.34 182 3 5 4,22 .199
3.34 86 -1 1 0 .728
3.34 86 1 3 3.23 .782
3.34 86 3 5 6.30 .761
3.34 111 -1 1 0 .696
3.34 111 1 3 3.1 .682
3.34 111 3 5 6.4 777
3.34 182 e 1 0 ~ .439
3.34 182 1 3 3.10 .511
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Multilayer Alinement of Microspheres

a)

at Noncommensurate Fringe Period of

2.3um and Laser Power of 22mW.

Forced Monolayer at Fringe Period of

b)

Alinement of 1.07um Microspheres in

Figure 57.

the High Intensity Regions of

Standing Fringe Pattern with

Fringe Period of 2.3um and at

Input Power of 22mW (a) and 65mW

(b).
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For those input powers higher than 8émW, it is noted that the
equilibrium phase ,single beam illumination, stays as a monolayered
amorphous phase. Thus at these powers the analysis is considered as
being carried on an amorphous single layer phase, but with the density
of the equilibrium phase changing as the beams get crossed.

The arrangement of the microspheres as the beams are crossed at
111mW power is demonstrated by the correlation functions in Figure
60. The 1D function, g(r), shows a well defined peak at r=1.83um and
a broader peak at r=3.45um. These peaks manifest the correlation
between the charged spheres at these radii. This interdependence is
more apparent with the 2D function, where it is cbserved that the
correlation between the particles in the same fringe is strongest.
There seems to be some correlation between adjacent fringes but is
much less than that cbserved for lower input powers. This correlation
decreases rapidly for distances greater than one fringe separation.
The formed structure at this input power seems to be HCP with a
lattice constant of 1.83um. As the input power is increased (>111nW),
the particles become more localized in their fringes as is displayed
by the 2D functions at 182mW (Figure 61). However, the correlation
between adjacent rows at these powers is reduced, making the
interdependence between the polyballs short ranged, as manifested by
the string like distribution of the particles' positions. The loss of
orientational correlation at these powers is not well understood.

The average density distribution of the 2D functions along the
different fringe periods are given in Figures 62 to 64. These figures
show how the correlation between adjacent wells starts developing as

the applied field's strength is increased (Figure 62) and than starts
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decreasing at input powers larger than 135mW (Figure 64). Table VI is
constructed from the data presented in the density distribution func-
tions and is made to demonstrate how the microspheres get localized
within the wells.

Increasing the fringe period to 3.34um (crossing angle of 8.38
degrees) caused the particles to line up in the fringes as shown in
Figure 65a. In this case the light forces push the particles in the
high intensity regions, but due to the large period of the fringe
pattern and the Coulambic interaction between the microspheres some
particles are forced to the low intensity regions. This kind of
arrangement leads to loss of correlation between adjacent rows at weak
radiation field's strength. The diffraction pattern produced from
such structures is shown in Figure 65b, where the diffraction from the
fundamental density modes (those directly excited by the crossed
beams) is observed inside the Debye-Sherrer ring. The diffraction
from the enslaved modes are not as well defined as in the commensurate
structure case. The distribution of the microspheres positions for
this fringe period and at input power of 86mW is shown in Figure 66a
along with the density along the fringes (Figure 66b).

The real space analysis of a multilayered region of the sample at
this crossing angle is demonstrated through the pair correlation func-
tions shown in Figures 67 through 70. As the power was increased to
86mW the equilibrium state was transformed completely to a mono-
layered amorphous phase as seen by the correlation functions shown in
Figure 67. The crossing of the beams in this case introduced some
orientational order as can be seen by the 2D function in Figure 69b.

The orientational order in this case is mainly along the fringes, even
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a) Particles Alinement Along the High Intensity
Regions.

b) Self Scattering Pattern.

Figure 65. The Alinement of the Microspheres at
Fringe Period of 3.34um (a) and
the Produced Self Scattering Pat-
tern at this Fringe Period and
Laser Power of 1llmW.
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though it is not well defined due to the masking introduced by the 5%
mmber of dumbbells present in this region. The crossed beam density
at this input power increased by 10% from the equilibrium case (Table
VII). The orientational order becomes more pronounced for the input
powers higher than 86nW. At 11InW the 2D correlation function (Figure
69b) shows the existence of some interdependence between particles in
adjacent wells. This correlation is made more pronounced for laser's
power of 182mW demonstrated in Figures 70b. The density of the
analyzed regions varied as a function of the radiation field exposure
time and the laser's input power (Table VII). The density for at 65mW
was .12 and then it changed to .143 at 182mW, a change of 40%. When
one of the write beams, at any input power, was blocked it is cbserved
that the density of the analyzed regions decreased by as much as 15%
from the crossed beam situation.

The average density distribution of the 2D functions is shown in
Figures 71 to 73. These Figures demonstrate that the induced order in
the suspension is dependent on the lasers applied power. An analysis
of the localization of the spheres along the fringes as a function of

laser's input power is given in Table VI.
Scattered Intensity Study

The magnitude of the scattered intensity form the main density
modes (modes directly excited by the crossing of the two laser beams)
is studied as a function of input power in the static case. These
modes correspond to the horizontal intensity maxima passing through
the main beam positions shown in Figures 17 and 65. These are a

product of particles' aligmment in the high intensity regions of the



TABLE VII

ANALYSIS OF THE MULTIIAYER REGIONS
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Commensurate Incommensurate
d=1.85um d=2.43um d=3.34um
P (W) am) S D M C S D M S D M C

22 3.2 1.0 1.4 N
42 2.9 1.2 1.5 N
74 2.3 1.8 1.9 ¥ N
86 2.6 1.5 1.8 ¥ N
86 2.8 1.3 1.6 N
86 2.9 l1.2 1.3 ¥ N
111 2.8 1.3 1.6 N
111 1.9 1.2 1.4 N
135 2.5 1.6 2.0 ¥ N
135 2.8 1.3 1.6 N
135 2.8 1.3 1.23 Y N
161 2.3 1.8 2.0 ¥ Y
161 2.7 l.4 1.6 Y
161 2.8 1.3 1.4 ¥ N
182 2.7 l.4 1.5 Y

S = Single Beam Illumination

D = Double Beam Illumination

M = Monolayer in the single beam illumination

C = String like behavior in the g(r) and density

d = Fringe period

a = average particle separation in the amorphous phase
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fringe pattern. The magnitude of these maxima is detected with a pin
diode positioned on the diffracted intensities such that the area of
this diode is totally covered by the light from these spots. The
reason behind this is to reduce the effect of stray light and
intensity fluctuations reaching the diode. The average intensity is
found by using the same procedure described in reference (10). The
pin diode's analog signal is fed to an A/D converter which digitizes
the data and feeds it to the Apple IIe computer. The continuous

reading and display of the data is done by using the weighted average

Vy = SWW(n)/Zw! (4-3)
n 0N
= zn‘f W (1-W)v(n) (4-4)
V(n) = the nth data sample measured relative to the present time
interval
V(0) = current data measurement
V(1) = Data measurement before V(0)

V(n) = Data measurement taken before V(n-1)
The weight factor W, controls which data reading has the largest
contribution in the averaging process. When this factor is unity
equation (4-3) takes the form of the standard average. For this study
W, is chosen to be .95 in order to weight the most recent reading
the most. The fluctuations in the signal are given by the equation
s=( (1) [ZWH (D))= (ZWDm) 2 (-1} (4-6)

This running averaging gave minimized fluctuations and revealed
any systematic drift in the signal. The intensity readings are
displayed on a monitor and printed out after each 10 data points.

Plots of input powers versus the intensity of the first order

maxima are displayed in Figures 74. These results are cbtained by
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probing the gratings with a He-Ne laser and subtracting the background
obtained by blocking the main argon ion laser. The slopes of the
least square linear fit line through the data points were found to
1.58 for the monolayer commensurate case (d=1.85um), and 1.59 for the
multilayer noncommensurate case (d=3.34um). Thus it seems that there
is a 1.585 power dependence between the lasers input power and the
scattered intensity from the fundamental density modes. This result
is in contradiction with Chowdhury's cubic power dependence (10), al-
though when similar measurements were carried on noninteracting
particles gave the same results as obtained by Chowdhury (10) meaning
that our method was the same. When the error bars in the data were

included the maximm slope cbtained was 2.1.
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CHAPIER V
MONTE CARIO SIMULATIONS
Introduction

Computer simulation "experiments" provide the opportunity for
examining and following events at the level of individual particles,
thus they have been used as a tool in characterizing the melting
transition for a variety of model systems(2l). Of these simulations
the Monte Carlo (MC) and molecular dynamics (MD) describe accurately
the liquid and solid phases and can be used to simulate multiple phase
coexistence. The molecular dynamics method probes the microcanonical
ensemble and furnishes dynamical information (21). The standard MD
method uses a system of N particles in a cell, held at constant
volume. The particles' positions and velocities are identified by a
set of coordinate (X;} and (Vj}, which are found from Newton's
equations of motion.

Alternatively, the Monte Carlo method provides thermodynamic
averages computed in the canonical ensemble(21l). The conventional
constant NVT MC method was selected for this study, for its simplicity
and its convenience in the computation of the spacial correlation
functions. The aim behind this is to provide a model for the two-
dimensional colloidal systems discussed in the previous chapter. This
similation serves as a means to test the effect of an externally ap-

plied sinusoidal field on the local order of 2D systems.
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Model Potential and Parameters

The suspension of polystyrene spheres in water, causes the ion-
izable groups to dissociate and the microspheres surfaces to become
uniformly charged with total charge Ze (24). This results in repul-
sion forces between the spheres which completely dominate the
attractive Van der Waals force over the relevant range of particle
separation (8). The repulsive interactions between particles in
colloidal suspensions leads to a solid-liquid phase transition
depending on the strength of interaction or density of the sample. As
a result monodisperse suspensions of latex particles are perfect
candidates for such studies.

To control the range and strength of the repulsive interaction
many of the experimental parameter could be varied. For example, the
charge Z on the spheres increases with surface area and varies with
surface properties, thus one could use spheres of different diameters
(29). There is also the possibility of varying the surface charge by
using solvents with different dielectric constant (28). Experimental-
ly, the above mentioned parameters are difficult to vary continucusly
over wide ranges. Changing the particle density and the excess ion
concentration is the most convenient controllable experimental parame-
ters. The salt concentration is measured in terms of the mumber of
moles per liter of molecular acid HCl or salt added to the solution,
e.g. Nyop. This parameter will be used to control the interaction
between paraticles.

To theoretically describe this model, the dynamics of only the
polystyrene spheres is considered. The existence of many (at least Z)

counterions per macroion and their rapid movement allows for the
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replacement of their discreteness by a continuous density. This
charge density of counterions ,d,, obeys Boltzman's equation,
do(r) = afelnyexp(-Ba[e]V) (5-1)
where g= 1, V is the total electrostatic potential, B=1/kgT, 'e' is,
the electronic charge and ny is a normalization that fixes the
overall ion density. Combining the above equation with Poisson's
equation for a Coulomb potential, namely,
div(E(r)] = 4TV/e [d, + &) (5-2)
E(r) = —grad[V(r)] (5-3)
gives the Poisson-Boltzman's equation
V(r) = 4Tl/c (dy(x) +% alelngexp(-bale]V)) (5-4)
where E(r) is the electric field at point 'r', 'c' is the solvent
dielectric constant; d is the charge density on the polystyrene
sphere.

This highly non-linear Boltzman-Poisson (BP) equation can be
‘approximated by its linearized form, the Debye-Huckel (DH) equation
when the electrostatic potential differences are much smaller than
the thermal energy (kgTe>>0). The solution of the resulting DH
approximation for the potential on each sphere of radius R is the
Yukawa potential or screened Coulomb interaction (24),

V(r) = z[e]e?kR(1+kR) 2™ /cr (5-5)
K2 = 4T e?/ckgT % nqq2 (5-6)
where nq's are the mean densities of each species, K is the inverse
Debye screening length associated with the small ions. The Bjerrum
length (A ), which is the characteristic distance over which the
Coulomb interaction for singly charged ions is comparable to the ther-

mal energy is defined as:
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A = e2/ckgl ~7A (5=7)
In the case of a single point charge the DH solution is,
V(r) = z[e] e"'kr/r (5-8)

A comparison between equations (5-5) and (5-8) shows that the
finite size of the spheres has the effect of increasing the prefactor
of the interaction potential Uy by exp(2kR)/( l+kR)2.

This potential has a shape that is continuously varying with the
screening length (k). For small 'k' (k-->0) this potential is of the
long range form (Coulomb potential). However, for large 'k' the short
range effects dominate leading to a nearly hard sphere form. The
change in k depends on the salt concentration, adding salt increases

the screening rate and allows controlling the interparticle strength.
Wigner Seitz Unit Cell and Effective Charge

The DH treatment of PB equation is valid only for small potential
gradients, in the more general case it has been shown that the
interaction can still be described by the Yukawa potential with a
normalized charged z* and salt concentration N* (17).

Following the procedures outlined by Chaikin et al. (7, 17), the
colloidal crystal is considered as a collection of cells surrounding
each macroion. These cells are constructed by taking the smallest
volume enclosed by planes which are the perpendicular bisectors to the
nearest neighboring polystyrene spheres, or what is known as the
Weigner Seitz cells (WS) (17). Figure 75 shows a polyhedron WS cell
for such system. Such a unit cell contains all the information needed
to calculate the effective charge on the spheres. Approximating the
WS cell with a sphere of equal volume makes the calculations for the



Source: S. Alexander, 'Charge Renormalization,
Osmotic Pressure, and Bulk Modulus Cf
Colloidal Crystals: Theory," Journal
of Chemical Physics (1984).

Figure 75: Wigner Seitz Unit Cell Fecr a
BCC Crystal ancd the Opherical
Wigner Seitz Cell Used In
Chearge Renormalization Calcu-
lations.
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needed parameters easier with no loss of generality. The net charge
inside this WS cell (charged sphere plus surrounding counter ions) is
zero leading to a null surface electric field. Integrating the elect-
ric field from the cells surface inward the potential was found to be
smaller than the thermal energy for some small distance (17). Thus DH
is valid in for this region. Near the particles, the potential energy
becomes dominant and the charge density varies far more rapidly than
in the linearized approximation. However, since the counter ions are
bound by more than kgT, they may be considered as part of an

effective sphere whith a reduced charge. This is analogous to
replacing the nucleus and tightly bound core electrons of an atom by a
single effective ionic charge. Through the above argument, Chaikin et
al (17) justified the use of the Yukawa potential given in equation
(5-8) with Z replaced by z* and with the screening length x*1

given by the corresponding counterion concentration,

k*

"2 =470 2% e?q/ckgT (5-9)
Note that in the above equation only zero salt concentration case is
considered.

Using the general form for the potential that solves the DH in
spherical coordinates,

V(r) = (27X + BKT)/r + D (5-10)
the constants A,B and D are found by using the boundary condition of
zero potential (equation 5-10) and electric field (equation (5-3), at
the cell's surface and the PB density equal to the density found from
equation (5-2) at the particle surface. The exact solution to the PB
equation is calculated numerically by an iterative process where a

charge density is chosen at the WS surface, this determines the total
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charge inside a sphere an incremental radius smaller. Knowing the
total charge Q(r) up to point r, the electric field the potential and
the charge density are than calculated at the smaller radius (4).
This iterative process is repeated until the solution converges.

In our experiments polystyrene spheres of 1.07um diameter size are
used, these particles have a charge packing area of 23922 per charge
group or 4.184x1073 charge groups/A?. Multiplying this surface
density by the sphere's surface area it is found that the actual char-
ge groups per sphere is 1.5x10° . Using this data in the DH and BP
algorithms Figures 76 and 77 were constructed. Figure 76 shows the
effective charge z* versus the actual charge Z for a macroion of
radius a=764 in a WS cell of radius R=2500 (corresponding to our
concentration) for a zero salt concentration. At low charge Z and
z* are nearly equal. However, for an actual charge of l.5x106e,
the effective charge shows saturation toward a value of 7800e. Using
this effective charge value, the charge distribution of the DH
solution is plotted and compared to the exact PB distribution (Figure
77). In this figure it is observed that the nonlinear terms in the PB
equation bring considerably more protons in toward the charged sphere
than would be expected form the DH treatment, this reduces the
potential so that DH is appropriate far from the charged sphere, but
with a reduced or renormalized effective charge. As a result of this
analysis it is found that at zero salt concentration the effective
charge is 7800e for the 1.07um diameter polystyrene spheres. The
effect of added electrolytes was found to cause an increase in z*
(17), but the change is small when s/z* is small, and is less than

10% for s/Z*=5 (s is the total salt concentration).
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Figure 76. Effective Charge Vesus Actual Charge for
the case of Zero Salt Concentration.
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Monte Carlo Algorithm

The standard Meropolis Monte Carlo method was used for this study.
In this method a single particle is displaced at random, thus
producing a new configuration, C, from the old configuration, C. The
configuration change causes the energy of the system to change by
Eci-Eq, where Eq is the energy associated with configuration C
and for particles interacting via the pairwise Yukawa potential this
energy is given by:

E~ B exp(-krij) /rij ’ rij<rc

=0 ; Tia>T,

ij7*c
= 00 ’ rij<a (5-11)
B = zez/ca (5-12)
re is a critical radius beyond which the pairwise energy has negli-

gible effect on the total configuration energy. In this analysis a is
the particle radius and r=7a. The energy difference, Eni-Eg,
governs the relative probability of configurations through the Bolt-
zman distribution. This probability is built into the MC trajectory
by a criterion for accepting and rejecting moves to new configurations
(44). In particular, if Eq.-Eq is negative or zero, the move is
accepted. However, if this energy change is positive, a random number
x between 0 and 1 is generated; and the move is accepted only if
x<exp(-B(Epc1=Eg) ), B=1/KgT, otherwise the move to a new
configuration in the next step is rejected. That is if:
c(t)=C (5-13)

then we will have,

C(t+l) = C' when  Eg,-Eg<0 (5-14)

and when Eqi-En is greater than zero, we get
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C(t+1)

C', exp(-B(Eq1-Ep))>X,

=C , exp((-BEqi—Ep))<X (5-15)
This procedure is repeated at least four million times moving parti-
cles at random, from O to a diameter's distance, for our systems to
ensure equilibrium.

The systems used in MC analyses consisted of 100 particles con-
strained to two-dimensions in a rectangular boxs of fixed area (20.44a
by 23.67a and 20aX20a). The advantage of using this small number of
particles is in the computation time required for reaching the equi-
librium state and other calculations. The MC density used in both
boxes given above was chosen to be within the range of experimental
densities discussed in the previous chapter, and similarly the number
of particles used in the simulation is comparable to the average num-
ber of particles used in the experimental analysis. The difference
between this simulation and the experiments is that the latter repre-
sents a grand canonical ensemble while the MC simulation represents a
canonical ensemble. The disadvantage in the small number of parti-
cles used in the simulation is that the transition is not sharp due to
the boundary problems, but this is the reason behind the use of two
box dimensions. The different box sizes were cbserved to cause a
distortion in the final structures.

The MC uses periodic boundary conditions, where a particle that is
randomly moved outside the given box area is wrapped back to the other
corner of the box. The effective charge used in the potential ampli-
tude (equation (5-12)) calculation is taken as 8000e, as found from
the Alexander (17) saturation analyis discussed in the previous sec-

tion. The MC algorithm is shown in Appendix A.
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Phase Transition Study

The aim behind this study is to find the phases that are similar
to the equilibrium phases cbserved in Chapter IV for the interacting
colloidal suspensions to serve as an overall check of our under-
standing.

The crystal-liquid phase transition is observed by changing the
unitless inverse screening length, k*a, which is dependent on the
nunber of ions present in the solution as described by equation
(5-6). The values of k*a used ranged from 10 to 1 for the 22aX22a
box and 4 to 7 for the 20.44a by 23.67a box. Table VIII, shows the
values of some of the parameters used in the simulation, such as the
salt concentrations and the amplitudes corresponding to the given
intensities.

In all the runs the equilibrium was monitored by cbserving the
rejection rate, the specific heat, the 1-D and 2-D pair correlation
functions to detect any phase transitions. It was observed that the
disordered phases (liquid) reached equilibrium after 40000 MC steps.
The ordered phases (crystalline) were in equilibrium at much lower MC
steps ranging from 10000 to 30000.

To estimate the local order, the center particle in the box,
labeled by 0, was chosen as the coordinate origin. The number of
particles surrounding O was counted within a pre-determined anmulus of
.la width. That is to say the number of particles, n, within a ring
(.1a thick) was found.  The-whole procedure is repeated for other
annulae for 2000 MC steps, and for the results being averaged.

The translational (or 1-D) pair correlation function, g(r), is

then given by:
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TABLE VIIT

PARAMETERS USED IN THE MC SIMULATION

Crossed Beams Potential Amplitude Corrected Amplitude With

Intensity (W) Without Correction d=1l.85um d=2.2um d=3.3um
17 4.6 3.2 3.6 4.0
31 8.3 5.9 6.5 7.5
47 13.0 8.9 10.0 11.0
66 18.0 12.0 14.0 16.0
82 22.0 16.0 17.0 20.0

105 28.0 20.0 22.0 25.0
122 33.0 23.0 26.0 28.0
kK*a n* (108/m3)

1 1.00

2 4,00

3 8.99

4 16.0

5 25.0

6 36.0

7 48.9

8 63.9

9 80.9

10 100.

k* = inverse screening length (m)

a = particle's diameter
n* = salt concentration

d = fringe period
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g(r) = d(x)/dy = <>/ dg(r5%-13%)) (5-16)
where <> represents the total averaging over 2000mc steps.

The orientational (or 2-D) pair correlation function is found by
taking the center particle and its nearest neighbors, than using these
as reference particles for constructing particle correlation function
as described in Chapter IV. That is the distribution of particles
that are at distance r from the reference particle as shown in Figure
83.

For both the 20aX20a and 20.44aX23.67a boxes, the high salt con-
centration values (k*a>4.5) led to liquid structures as demonstrated
by the particle positions, and the 1-D and 2-D pair correlation func-
tions (Figures 78 to 80). In Figure 78 the (x,y) coordinates of the
100 particles are plotted for k*a=5 and 7. These are distributed
over the given area in a random way. It is clearly apparent that this
system has no orientational nor translational order. The transla-
tional pair correlation functions (Figure 79), g(r), shows a maximmm
at r=2a and fluctuates around one at large r values indicating that at
high r values the local density d(r) approachs the bulk density of the
liquid. The 2-D correlation functions (Figure 80) demonstrate that
the probability of locating a particle is largest at 2a, is indepen-
dent of the direction of r and decreases to the average particle
density at large r values.

As the salt concentration decreased (k*a4 and 3), the particles
became localized around lattice points leading to crystalline phases
(Figures 81 to 83). The observed crystalline structures for the 22a
by 22a box had a distorted HCP lattice structure (Figures 83a and b),

this is due to the effect of the box boundaries on the final order of
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the particles. These distorted structures are also rotated by 90 deg-
" rees from the undistorted HCP structures observed for the 20.44a by
23.67a box (Figures 83b and d). This shows the effect of the box size
in the MC simulations on the cbserved structures. However, the tran-
sition was not affected by the box sizes.

This analysis shows that the phase transition from a disordered to
an ordered phase occurs at values of k*a between 5 and 4, as seen by
the 1D pair correlation functions in Figures 79a and b and 82a ard b,
for a system of 100 particles interacting via a screened Coulomb

potential in a 20aX20a or 20.44aX23.67a box.
Externally Applied Potential

The effect of the externally applied potential is introduced
through the additional particle potential corresponding to the
periodic radiation discussed in Chapter IV,

V(r) = A cos(2 x/d) (5-17)
where d is the fringe period and A is given by equation (2-16). This
constant (A) allows us to make the simulation comparable to real expe-
rimental values. The energy of the system when the external potential
is applied is given as the sum of equations (5-20) and (5-25), which
is written as,

Enpey = Eo + V(T) (5-18)

Both the depth (A) and the priod (d) of the potential wells pre-
sented in equation (5-17) are varied in the simulation. Using these
parameters (A and d) the effect of the external potential on the equi-
librium phases at different salt concentrations was analyzed.

The periods used in the 22aX22a box were l.la, 2.0a, 2.2a, and
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4.4a. These specific periods were chosen due to their divisibility by
the box's length and their closeness to the actual periods used in the
experimental analysis. The particles in the 20aX23.67a box were expo-
sed to the external potential at periods of 1.7a, 2.04a and 2.92a.
These correspond to the periods used experimentally of 1.85um, 2.2um
and 3.3um. The unitless potential's amplitude (A) was varied continu-
ously for all periods used from a value of 1 to 30, and in some cases
much higher amplitudes were considered, up to 100. A comparison of
these amplitudes to the intensity of the crossed laser beams used in
Chapter IV was given previously in Table VIII.

For the 20.44aX22.67a box, when the fluid phase shown in Figure
80b was exposed to the sinusoidal potential of period 1.7a (correspon-
ding to commensurate period, d=b.cos(e) where b is the interparticle
separation in the amorphous phase) the system started alining along
the potential's minima at low amplitudes, A, (Figure 84). At ampli-
tudes as low as 1 the particles thermal energy was still large enocuch
compared to the external field that the particles are observed not to
be well localized within the potential wells (Figures 84a). This
effect is better seen through the average density distribution of the
2D correlation function (Figure 85) at this field amplitude (A=1).
This distribution function is constructed in the same manner as
described in Chapter IV. 2An analysis of the localization of the
particles along the potential's minima at this amplitude and others is
given in Table IX. As the amplitude increased the localization of the
particles along the minima of the applied potential became more pro-
nounced and so did the interdependence between particles in adjacent

potential wells, as evidenced by the appearance of well defined
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TABLE IX

ANALYSIS OF 2-D PATR CORRELIATION
FOR MC SIMUIATION AT d&=1.713

Amplitude/kT Fringe Positions Mean,/a std,/a
(d/2)
1 -1 1 .016 .336
1 3 1.72 .354
3 5 3.44 .382
5 -1 1 .006 157
1 3 1.72 .182
3 5 3.42 .173
10 -1 1 0 .108
1 3 1.71 .120
3 5 3.42 .120
30 i 1 0 .060
1 3 1.70 . 067
3 5 3.41 .068

Mean = mean x position of the particles in the given fringe period.
Std,~= standard deviation around the mean x-position of each fringe.

a = diameter of a single particle.
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clusters around lattice points in the 2D correlation functions (Figure
84b, ¢ and d). An analyis of these clusters is given through the
average density distribution plots shown in Figures 86, 87 and 88 for
the unitless amplitudes of 5, 10, and 30. To be noticed in this
analysis is the string like behavior as the particles get more local-
ized within the potential wells or as the field amplitude increases.
This is believed to be due to restricting the particles' movement
along the y-direction as the potential wells become deeper (increasing
A) together with the effect of defects present in the periodic minima
of the potential as seen in Figure 89.

As the potential period was increased to 2.02a the particle aline-
ment in the potential wells started to develop at low amplitudes as
evidenced from the 2D correlation functions given in Figure 90. This
figure demonstrates the effect of the applied potential amplitude on
the induced ordering of the amorphous equilibrium phase to a slightly
distorted HCP lattice. The analysis of the 2D correlation function is
given in Figures 91 to 94. These average density distribution plots
show the evolution of the correlation between adjacent potential wells
as the field strength is increased. The formation of well defined
peaks for the different boxes (d/2 to 3d/2 and 3d/2 to 5d/2) show
induced correlation between the adjacent wells as the field stength is
increased. The analyis of the particles localization in the wells at
this fringe period (d=2.02a) and the different amplitudes is given in
Table X.

The effect of the external potential at fringe period of 2.92a on
the local structure of the equilibrium phase (Figure 80b) is shown

through the MC position files given in Figure 95. At low field



ANATYSTIS OF 2-D PATR CORREIATION

TABIE X

FOR MC SIMUIATION AT d=2.02
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Amplitude/KT Fringe Positions Mean, /a std,/a
(d/2)

1 -1 .100 .336
1 1.98 «329

3 4.00 .354

5 =1 .070 .185
1 1.97 .195

3 3.97 .190

10 =1 0 111
1 2.00 .124

3 4,00 .135

30 -1 0 .074
1 2.00 .079

3 4.00 .076
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amplitudes the interaction between the partiles causes them lign up in
the low, as well as in the high, field regions. The effect of the
applied potential amplitude on the localization of the particles along
its minima is better seens through the 2D correlation functions
(Figure 96). In Figure 96 we are also able to see the development of
correlation between adjacent rows leading to a distorted HCP structu-
re. The average density distribution for the 2D pair correlation fun-
ctions at the given field amplitudes are shown in Figures 97 to 100.
These show the development of interrow correlation as the external
field's strength is increased. The localization of the particles
whithin the wells as the amplitude of the applied potential is
increased is demonstrated in Table XI through the decrease in the
standard deviation around the mean x-position of the particles within
a given ’well.

Similar analysis on the 22aX22a box were performed using equilib-
rium phases ranging from disordered (amorphous) to very ordered
(crystalline) states. A general description of the forced ordering of
these phases under the influence of the externally applied potential
will be given in terms of the 2D pair correlation functions.

Starting with the fluid phase shown in Figure 80a (k*a=5) and
applying the external potential, with a period of 1l.la, which is less
than commensurate, the induced ordering of the system is shown in
Figure 101. It is observed that at low field value (A=1) the partic~
les start moving to the potential's minima but the brownian motion is
still large enough that considerable hopping from one minima to the
next is also cbserved (Figure 10la). As the potential's amplitude is

increased correlation between neighboring particles starts developing
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TABLE XI

FOR MC SIMULATION AT d=2.92
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Amplitude/KT Fringe Positions Mean,/a Std,/a
(d/2)

1 -1 1 .030 .810
1 3 2.91 .862

3 5 5.83 .836

5 -1 1 .051 .646
1 3 2.95 771

3 5 5.88 .684

20 -1 1 .024 .275
1 3 2.94 .323

3 5 5.86 .295

30 -1 1 0 .245
1 3 2.94 .321

3 5 5.84 .317
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and their localization within the minima of the external field becomes
stronger (Figures 10la and b). The cbserved structure at this fringe
period is not oriented the same way as the structures observed with
periods greater than or equal to commensurate. This structure is ro-
tated by 90 degrees in order for the system to be in its lowest energy
state.

For the noncommensurate period of 2a, the external field breaks
the fluid's symmetry in a continuous fashion as shown in Figure 102.
This figure shows that an increase in the field's strength causes a
localization of the particles in the potential wells. This leads to
interrow correlation between the point particles, and structural
arrangement between adjacent rows, as a result of the screened Coulomb
interaction between the particles.

As the fringe period is made slightly larger (d=2.2a) the same
restructering is observed as the A is increased (Figures 103). The
aligmment of the particles at the different potential wells gives a
distorted HCP packing.

Starting with the crytalline phase shown in Figure 83a (k*a=4) ,
and applying the external potential with a period of 2.2a, the forced
ordering of the particles as the field's amplitude is increased is
shown in Figures 104. The reorientation of the equilibrium phase to a
distorted HCP lattice at this fringe period occured at relatively low
field's amplitude (A=2), Figure 104b. As the field's amplitude
increased from a value of 5 to 10 (Figures 104c and d), the
correlation between the adjacent rows starts get masked by the string
like effect as cbserved earlier for the other systems.

At even lower salt concentration, k*a=3, when the crystalline
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equilibrium phase (Figure 83c) was subjected to the sinusoidally
varying external potential with period of 2.0a, it is cbserved that at
low amplitudes (A<8) the crystalline lattice did not change its order
in the external field (Figures 105). However, at large enough
amplitude the start up crystalline order was forced to form a new HCP

lattice structure, as shown in Figure 105d.
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CHAPTER VI

OOMPARTISON OF MONTE~CARLO SIMUIATIONS AND

EXPERTMENTAL RESULTS

All the experimental samples used in this thesis work have expe-
rienced some structural transformation when exposed to periodic
radiation field produced from the two wave mixing of 488rm Argon-Ion
laser beams. The final ordering of the electrostatically interacting
colloidal suspensions was observed to be time dependent on the
radiation forces and the initial equilibrium phase.

The monolayer amorphous regions were analyzed experimentally at
three crossing angles (15.1, 12.13 and 8.38 degrees), ranging from
commensurate to very incommensurate fringe periods. The density of
the equilibrium phases at these crossing angles and all input powers
stayed within 3% from the constant value of l.8x1011/m2. This
same density was used in the Monte-Carlo simulation of 100 point par-
ticles interacting via a screened coulomb potential and bounded by a
20.44aX23.67a or a 22ax22a box with periodic boundary condition. The
effect of the externally applied potential is incorporated in the
similation by adding to the Hamiltonian of the system a sinusoidally
varying potential term. The amplitude of this potential was changed
continuously from the lowest to the highest values used. In some
cases the given amplitudes were applied directly to the equilibrium
phase, The results obtained with this later procedure had more string

like behavior at lower amplitudes than what is observed in the former
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case. The periods used in the simulations were chosen to fit
periodically within the given box's length, for both larger and
smaller than commensurate periods. All MC simulations showed some
kind of transformation at some given field amplitude.

To compare the experimental observations to MC simulations, the
pair correlation functions for the two dimensional experimental equi-
librium phases (Figures 19, 28 and 37) are compared with those found
in the MC phase transition results (Figures 79, 80, 82 and 83). The
2D correlation functions show no orientational nor translational
order. The experimental correlation functions are averaged over a
small time period and fewer files than those used for The MC
simulations. The observed peaks for the g(r) functions, shown in
Figures 19a, 28a, 37a and 79 are compared in Table XITI in terms of
their height, FWHM, and position. The peak heights of g(r) and their
prospective positions are shown in Figure 106. The similarities
between the given data is well within the expected experimental
errors. It is found that the phase obtained at normalized inverse
screening length of kK*a=5 represents the experimental amorphous
phases used in the two dimensional analysis. From this analysis we
infer that an ion concentration of about 2.5%10°m™> is present in
the experimental samples.

When the externally applied potential at commensurate fringe
period (da=l.73 for the experimental case and da=1.713 for the MC
simulation) was applied to the amorphous phases (Figure 19a and 79b),
the induced order for both cases was the same. The amplitudes used in
the simulation are not exactly equal to the equivalent experimental

intensities (with and without the final size corrections), but they do



ANATYSIS OF THE ONE DIMENSIONAL PATR
OORREILATION FUNCTIONS OF THE LIQUID
PHASES USED IN THE MC SIMULATTON

TABLE XII

AND THE 2D EXPERTMENTS.
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Figure # Peak Positions/a Normalized Amplitudes Peaks FWHM/a
#1 #2 #1 #2 #1
1%b 2.13 4,19 2.45 1.4 .72
28b 1.93 3.91 2.44 1.32 .50
37b 2.0 4.0 2.47 1.66 .56
7%b 2.0 4.04 2.47 1.42 .66
#1 = first peak.
#2 = second peak.

a = particle diameter
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in general span the same range used experimentally. A comparison
between the normalized peaks of the density distribution of the 2D
correlation functions (Figures 24, 25, 26, 85, 86, 87 ard 88) is
demonstrated in Figure 107, where the plotted data is given in Table
XIII. This analysis shows that at commensurate period both the
similation and the experiment formed a HCP structure with lattice
constant of 2.2l1a and 2.4um (or in terms of unitless lattice constants
2.21 and 2.24)‘respectively. The formation 6f well defined peaks at
the given positions, their heights and their FWHM are all within the
same range although the percent difference in some cases was as high
as 15% which well within the measurements error of 20%. Thus the MC
simulation for the commensurate periods agrees well with the
experimental results.

The experimental fringe period of 2.2um is compared to the MC sim-
ulation with the external potential's period of 2.02a (or da=2.04 and
2.02 respectively). The distorted HCP structures observed experiment-
ally had lattice constants of 2.33um and 2.42um (or in terms of a
sphere radius 2.18a and 2.26a), while the MC simulation's lattice
constants were 2.la and 2.25a. At the low field powers both the
similation and the experiment showed well defined peaks as
demonstrated in the density distribution functions (Figures 34, 35,
36, and 91 to 94). However as the strength of the external potential
increased the correlation between adjacent wells gets masked by the
string like behavior for both cases. The comparison between the
average density distribution functions for the simulation and the
experiment is given in Table XIV. A plot the the peak heights versus

their positions is given in Figure 108, this shows that the agreement



TABLE XIII

COMPARISON BETWEEN DENSITY DISTRIBUTION PLOTS

OBTAINED FROM MC SIMULATIONS (da=1.713)

AND 2D EXPERIMENT (da=1.73)
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Box Size A/KT P

Y-average/a Normalized Peak Heights Peak's FWHM/a

(&/2) W) #1  #2 #3 #1 42 43 #1 #2 43
-1tol 1 - 4.1 5.0 - .16 .15 - - - -
-1tol 5 2.7 5.4 - .18 .16 - 1.1 1.1 -
-1tol 10 2.7 5.2 - .22 .19 - .79 1.1 -
-1to1l 30 2.6 5.1 - .18 .16 - 1.0 1.0 -
-1tol 42 2.9 6.0 - .21 .12 - .81 1.0 -
-1to1l 86 3.2 6.3 - .20 .19 - .75 .75 -
-1 to 1 111 3.1 6.1 - .19 .16 - .73 .85 -

1to3 1 =- 1.4 3.8 - .16 .11 - 1.3 1.2 -

1to3 5 = 1.5 4.2 6.6 .21 .17 .17 .75 1.1 1.2

l1to3 10 - 1.4 4.0 6.5 .22 .20 .16 .75 .9 1.1

l1to3 30 - 1.4 3.9 6.5 .23 .18 .12 .75 1.0 1.2

1to 3 42 1.4 4.4 7.4 .22 .16 .12 .60 1.0 .85

1to3 86 1.6 4.8 7.8 .21 .19 .13 .81 1.0 .85

1to3 111 1.6 4.7 7.7 .23 .15 .l4 .70 1.1 .90

3to5 5 .25 2.8 5.4 .22 .17 .16 .63 1.2 1.1

3to5 10 0 2.7 5.3 .20 .19 .18 .88 1.1 1.1

3to5 30 0 2.8 5.1 .22 .18 .18 .75 1.0 1.1

3to5 42 0 3.0 5.9 .14 .15 .12 1.1 1.1 1.0

3to5 86 0 3.2 6.2 .19 .18 .16 .88 .85 .80

11 0 3.1 6.1 .21 .16 .15 .60 .95 1.0

A/KT = Normalized amplitude used in MC simulations

P

a

]

= particle diameter

#1 =

#2
#3

first peak
second peak
third peak

Single beam power used in the crossed beam experiments
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TABLE XTIV

OBTAINED FROM MC SIMUIATIONS (d=2.02a)
AND 2D EXPERIMENT (d=2.14um)

COMPARTISON BETWEEN DENSITY DISTRIBUTION PLOTS

Normalized Peak Heights Peak's FWHM/a

Box Size A/KT P Y-average/a

#2  #3

#1

#2 #3

#1

#2 #3

(mW) #1
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A/KT = Normalized amplitude used in MC simulations

P = Single beam power used in the crossed beam experiments

a = particle diameter

#1 = first peak
#2 = second peak

third peak

#3
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between the simulation and the experiment at the given fringe periods
is very good up to distances of 2d.

The experimental fringe period of 3.3um is compared to the MC
similation with potential's period of 2.92a (da=3.08 and 2.92). The
2D pair correlation functions (Figures 41 to 43 and 96) show that at
low amplitudes of the externally applied potential the particles don't
show any correlation, but as the field's amplitude is increased the
particles are forced in the potential's minima. A comparison of the
induced order at these fringe periods is given in Table XV where the
amplitudes, positions and FWHM of the average density distribution
functions (Figures 44 to 46 and 97 to 100) are presented. A plot of
the normalized amplitudes of the observed peaks versus their prospec-
tive positions is given in Figure 109. Although the data in this
figure does not show any systematic trends their appear to be a good
agreement between the MC simulation results and the experimental
observations.

In general we can conclude that the MC simulation gives a good
theoretical prediction of the laser induced freezing of the charged

colloidal suspensions.
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TABLE XV

COMPARTSON BETWEEN DENSITY DISTRTBUTION PLOTS
OBTAINED FROM MC SIMULATIONS (d=2.92a)
AND 2D EXPERTIMENT (d=3.31um)

Box Size A/KT P Y-average/a Normalized Peak Heights Peak's FWHM/a

(d/2) (W) #1  #2 #3  #1 #2  #3 #1  #2 43
-l1tol 1 2.0 4.2 - .28 .20 - .62 .75 -
-1tol 5 1.9 3.9 5.8 .42 .27 .24 .38 .69 .88
-l1tol 20 1.8 3.3 5.1 .82 .56 .50 .38 .5 .75
-l1tol 30 1.8 3.3 4.9 .70 .46 .53 .38 .46 .62
-l1tol 42 2.1 4.3 - .22 .14 - 1.0 1.3 -
-l1tol 86 2.4 4.7 - .19 .14 - 1.0 1.0 -
-1 tol 165 2.1 4.3 - .29 .19 - .78 1.4 -

lto3 5 - .75 1.2 2.8 .19 .19 .19 1.2 1.2 1.3

l1to3 20 - .50 1.2 2.0 .22 .22 .14 .85 .88 1.1

1lto3 42 .48 1.7 4.0 .16 .13 .13 1.0 1.5 1.5

1 to3 165 .50 1.9 2.9 .17 .17 .17 1.1 1.0 1.2

3to5 5 0 1.5 1.9 .19 .19 .19 .75 .75 1.0

3tos5 20 .75 1.0 2.8 .23 .18 .16 .88 1.0 1.0

3to5s l65 .38 1.9 2.5 .22 .16 .15 .88 1.1 1.4

A/KT = Normalized amplitude used in MC simulations
P = Single beam power used in the crossed beam experiments

a = particle diameter

#1 = first peak
#2 = second peak
#3 = third peak
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CHAPTER VII

CONCIIUSIONS AND FUTURE SUGGESTIONS

SUMMERY OF THE RESULTS

The main body of this thesis work has shown that the radiation
forces created by the crossing of two mutually coherent laser beams
can be used to induce order in highly charged colloidal suspensions.
This forced order has been found to depend on the start up equilibrium
phase, the radiation intensity, the time of exposure and the periods
of the sinusoidal standing fringe pattern.

The monolayer amorphous equilibrium phase, with an average parti-
cle separation of the order of twice a sphere's diameter (2.0um), when
exposed to the applied external field was observed to have the fol-
lowing behavior:

I. At comensurate crossing angles, the system organized in HCP
structures where the localization of the system depended on the input
powers.

II. As the crossing angle was made larger than commensurate, or
as the fringe period was increased, the following observations were
made:

1) For d=2.1lum the structure observed at the lowest input powers
had lattice constants of 2.3um and 2.44um. As the laser's power was
increased, the localization along the high intensity regions became
more pronounced and string like behavior of the particles' distribu-

tion started to develop. This string like behavior is believed to be
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a result of the 5% number of dumbbells present in the analysis
regions.

At high enough powers a heating of the analysis region resulted in
convections which eventually led to string like behavior in the 2D
correlation functions, and to density change of the system. Regions
with such behavior were not analyzed in this work.

2) For d=3.3um the aligmment of the microspheres in the high
intensity regions was hindered by their coulombic interaction leading
to minimal correlation between adjacent columns at moderate input
powers (<100mW). At the higher powers (165mW) the localization along
the intensity maxima became stronger and correlation between adjacent
wells started to develop.

III. The induced order and localization of the particles seemed
to be continuously dependent on the applied field's strength.

IV. Heat convection effects were observed to produce string like
behavior in the 2D pair correlation functions and to cause a density
change (drift) in the analyzed regions.

The amorphous multilayer regions used in this work were observed
to go throuch the following transformations when exposed to the radi-
ation forces:

I. As the input power was increased the longitudinal component of
the radiation field forced the microspheres to end up in a monolayer
regime. This forced monolayer developed at a faster rate when the
radiation forces were caused by the crossing of two laser beams rather
than by a single beam.

II. The system's density increased by as much as 25% when the

beams were crossed. There was also a density drift observed at all
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crossing angles.

ITII. At commensurate periods (d=1.85um) the mulilayer system
organized in a HCP structure; and this structure persisted even when
the forced monolayers started developing.

IITI. At the noncommensurate crossing angles it was found that:

1) For d=2.34um the multilyer region formed a distorted HCP
structure where the localization of the spheres increased with input
power up to 1lllnW. For input powers larger than 11lmW a forced mono-
layer over the whole analysis area was observed, and the correlation
between adjacent wells started to decrease as the power increased.
This is believed to be a result of heat convection.

2) For d=3.34um an increase in the radiation field at the forced
monolayer (>86mW) forced the spheres to get well localized within the
intensity minima. At powers larger than 161mW the correlation between
adjacent wells became more pronounced showing a distorted HCP lattice.

The Monte-Carlo simulations on the two dimensional Coulomb gas
showed a phase transition from a fluid to a crystalline phase at nor-
malized inverse screening length 'between 4 and 5. It was found that
the MC liquid phase at k*a=5 was analogous to the observed experimen-
tal amorphous phases. Changing the dimensions of the box used in
these simulations from 20.44aX23.67a to 22aX22a caused a distortion in
the observed equilibrium phases.

When a sinusoidal varying potential was incorporated in the MC
similation and run for different equilibrium phases at different
potential's periods the following were observed:

I. All the equilibrium phases showed some kind of transformation

or rearrangement when exposed to the external potential. The final
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ordering occurred at different amplitudes of the applied potential,
depending on the start up equilibrium phase.

II. For the amorphous equilibrium phases (k*a=5), the external
potential caused the localization of the spheres along its minima.
This localization is a continuous function of the field's amplitude.

IIT. When the amorphous equilibrium phase (k*a=5) in the 20.44a
by 23.67a box was exposed to the external potential at periods of
1.713a, 2.02a and 2.92a, the induced ordering results were consistent
with the experimental findings at corresponding fringe periods of
1.85um, 2.14um and 3.3um. These results can be summarized as:

1) At the 1.713a periods the simulation resulted in an HCP struc-
ture with lattice constants that were comparable to those found
experimentally. The positions, heights, and FWHM of the particles
along the potential's minima were also consistent with the
experimental observations at a fringe period of 1.85um.

2) The organization of the particles at a 2.02a MC fringe period
was consistent with the experimental results at a 2.14um fringe
period, where a distorted HCP lattice was observed.

3) The MC potential period of 2.92a was found to localize the
interacting particles along the potential's minima at about the same
external field's amplitudes as what was seen with the experiment at a
fringe period of 3.3um. The final structuring of the MC system showed
more peaks than observed experimentally. These peaks' positions and
amplitudes were also slightly different (Table XV).

IV. The MC 22aX22a box was found to cause a distortion in the
formed structures. The ordering of the liquid phase (k*a=5) in this

box with external potential periods of 2.0a, 2.2a, and 4.4a showed the
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same general behavior as the 20.44aX23.67a box except for the string
like behavior that appeared at much less amplitudes than observed in

the latter case.
Suggestions For Future Work

The work carried so far on the laser induced freezing of colloidal
suspensions could be extended to study many interesting physical
phenomena both experimentally and through an MC simulation. Among
these are:

I. The nature of two-dimensional phase transition. By varying
the crossing angles continuously and the laser's input powers,
scattering results and real space analysis should provide enough data
to construct translational as weil as orientational correlation
lengths which should provide information about the nature of the phase
transition.

II. The response of three dimensional (Multilayered) systems to
the external field.

ITI. The creation of a translating fringe pattern for the study

of the drag near a plane wall.
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C

Cohstdkaaskkkkkkk INTShRhdkdrk ks skk sk sk ke ke kot

THIS SUBROUTINE IS THE MAIN SUBROUTINE FOR DETECTION
OF THE SPHERES. THE EDGE INTENSITY AND THE MAXIMUN
INTENSITY AND THE CRITICAL RADIUS ARE VERY CRITICAL IN
PICKING UP THE SPHERES.

[sNeNoReNe]

SUBROUTINE INTS
COMMON IXI(20),1YI(20),IXF(20),IYF(20)
COMMON IR(20),MAX(20),LEA(20)
COMMON /BLOCK1/ IX(1200),IY(1200)
COMMON VERBOS
INTEGER RPIXEL,ICOM
IFRNGO=0
NEND=~0
IP=0
NEW=0
4 NIT=IGET('NO. FO ITTERATIONS=?')
DO 999 ITT=-1,NIT
IPICT=IGET('1=IGNORE TAKING A PICTURE’)
IF(IPICT.EQ.1) GOTO 111
3 CALL ISUB
CALL VSUB
2 IANS=IGET('1=-TAKE A PICTURE ')
IF (IANS.NE.1l) GOTO 2
NEW=0
CALL TSUB
CALL SSUB
IANS=IGET('1=-TAKE ANOTHER PICTURE ')
IF (IANS.EQ.1) GOTO 3
111 IF(ITT.NE.1) GOTO 90
CALL THRESH
TYPE*, 'LOOK FOR THE FOLLOWING THINGS:'
TYPE*, 'NO. OF REGIONS,MAX INTENSITIES, EDGE INTENS'
TYPE*, 'RADIT OF SPHERES,SEPARATION BETWEEN SPHERES'
TYPE*, 'AND FRINGE SEPARATION'
CALL ISUB
CALL SSUB
CALL CURS(50,50)
C THIS PART WILL CHOOSE THE INITIAL POSITION OF THE CURSOR
NSQ=IGET('NO. OF ANALYSIS AREAS=?')
DO 22 NN=1,NS5Q

30 TYPE*, 'THE PARAMETER OF REGION:' NN
WRITE(S5,10)

10 FORMAT (' INPUT: IXI, IXF,IYI,IYF ,MAX.&MIN. INT., AND R')
READ(5,25) I1,12,31,J2,M1,M2,IR(NN)

25 FORMAT(714)

IF(I1.GT.I2.0R.I2.EQ.0.0R.I1.EQ.0) GOTO 30
IF(J1.GT.J2.0R.J1.EQ.0.0R.J2.EQ.0) GOTO 30
IF(M2.GT.M1.0R.M1.EQ.0.0R.M2.EQ.0) GOTO 30
IF(IR(NN).EQ.0) GOTO 30
IXI(NN)=I1
IXF(NN)=I12
IYI(NN)=J1
IYF(NN)=J2
MAX (NN) =M1
LEA(NN)=M2
22 CONTINUE
JFRNG=IGET('FRINGE SEPARATION=?')
JFRNGD=JFRNG+JFRNG
JFRNG1~-JFRNG+10
JFRNG2=JFRNG+5
JFRN=INT(FLOAT (JFRNG)/3.)
TYPE*, ' INSERT AV-Y DIST BETWEEN PARTICLES'’
JRA=-IGET('Y-DIST=?")
YR1~JRA
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YR2=-YR1l/4.
IYR1=~INT(3*YR2)
IYR2=INT(5*YR2)
IYR3=IYR2+INT(YR2)
TYPE*, ' INPUT THE LONGEST RADIUS'’
Ka=1GET('?")
C
C STARTING THE PROCESS OF FINDING THE PROSTECTIC CENTER
C
TYPE*, ' ***D=DOUBLE BEAM, S=SINGLE BEAM'
ICOM=ICGET('D=2-BEAMS,S=1-BEAM: ')
90 IF(ICOM.EQ.'S’') GOTO 900
DO 27 NN=1,NSQ
RP=IR(NN)
IRP=IR(NN)+INT(RP/2.)
IP=NEW
NEW1=NEW+1
M2=LEA(NN)
c
C INTENSITY SLICING BY COLUMNS. FINDING THE CENTER OF EACH
C HIGH INTENSITY SLICE.

DO 21 J=IXI(NN),IXF(NN)
IRAN=Q
DO 11 I=IYI(NN),IYF(NN)
IV=RPIXEL(J,I)
IF (IV.LT.MAX(NN)) GOTO 66
IRAN=IRAN+1
IV1=RPIXEL(J,I+1)
IF (IV1.GE.MAX(NN)) GOTO 11
IF(IRAN.LT.IR(NN)) GOTO 66
I1=I-INT((IRAN)/2.)
IP=IP+1
IX(IP)=J
IY(IP)=I1
66 IRAN=0O
11 CONTINUE
21 CONTINUE
- TYPE *,'NUMBER OF DOTS=', 1P
C THIS SECTION WILL FIND THE CENTER OF EACH SPHERE
C AS COMPARED TO THE MAX. RADIUS OF A SPHERE,RCRT.
TYPE*, ' COMPUTING EACH SPHERE-S CENTER'
KOMPX=IR(NN)+IR(NN)
DO 37 L=NEW1,IP-1
IF(IY(L).EQ.0) GOTO 37
FLAG=0.
X=IX(L)
Y=IY(L)
COUT=1.
Kl=L+1

FINDING POSITION CLUSTERS THAT ARE WITHIN A DIAMETER SEPARATION

[eNeNe]

DO 48 K=K1,IP
IXD=IABS (IX(K)-IX(L))
IF(IXD.GT.KOMPX) GOTO 48
IYD=IABS(IY(K)-IY(L))
IF(IYD.GT.IR(NN)) GOTO 48
JUM=1 .
IF(IX(L).LT.IX(K)) JUM=-1
DO 42 KI=-IX(K),IX(L),JUM
IV1=RPIXEL(KI,IY(L))
IF(IV1.LE.LEA(NN)) FLAG=1.
42 CONTINUE
IF(FLAG.EQ.1.) GOTO 95
COUT=COUT+1.
X=X+FLOAT (IX(K))
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Y=Y+FLOAT(IY(K))
IX(K)=0
IY(K)=0
95 FLAG=0.
48 CONTINUE
IF(COUT.LT.IR(NN)) GOTO 37

FINDING EACH CLUSTERS CENTER

[eNeNe]

INX=INT(X/COUT)
INY=-INT(Y/COUT)

DETECTION OF AN EDGE IN THE X&Y DIRECTIONS FROM EACH CENTER

aooo

IR1-INY-INT(RP/3.)
IR2~INY-KOMPX
IR3=INY+INT(RP/3.)
IR4=INY+KOMPX
22=0.
CALL EDGEY(IR2,IR1,INX,ZZ,M2)
IF(ZZ.NE.1.) GOTO 37
22-0.
CALL EDGEY(IR3,IR&4,INX,ZZ,M2)
IF(ZZ.NE.1.) GOTO 37
27-0.
INXV=INX+KOMPX
INXW=INX-KOMPX
CALL EDGEX(INX,INXV,INY,ZZ,M2)
IF(ZZ.NE.1.) GOTO 37
27=0.
CALL EDGEX(INXW,INX,INY,ZZ,M2)
IF(ZZ.NE.1.) GOTO 37
2Z=0.
IF(INX.LE.O .OR. INX.GT.512) GOTO 37
IF(INY.LE.O .OR. INY.GT.512) GOTO 37
C ACCEPTING THE POSITIONS AS PROCPECTIVE CENTERS
c
_ NEW=NEW+1
IX(NEW)=INX
1Y (NEW)=INY
37 CONTINUE
TYPE*, 'NEW='  NEW
27 CONTINUE
CALL ORDER(1,NEW,JFRNG)
JN-NEW+80
JYMA=IYF(NSQ)+50
CALL WP(IX(1),IY¥(1),0)
TYPE *,'1~CENTER NOT NOT OK’
JANW=IGET('?")
IF(JANW.EQ.0) GOTO 91
IX0=IX(1)
IY0-IY(1)
CALL WP(IX0,IYO0,255)
CALL INSERT(O,NEW,IX0,1Y0)
C  INTERACTIVE PART TO HELP THE COMPUTER IN ACCEPTING OR REJECTING
C THE PROSPECTIVE POSITIONS AS PARTICLES' CENTERS.

C

91 DO 70 I=1,JN
IF(I.GE.NEW) GOTO 70
IF(I.NE.NEW) GOTO 72
JYMA=-IY(1)+IYR2
IF(JYMA.LE.IYF(NSQ)) GOTO 97
GOTO 70

72 CALL WP(IX(I+1),IY(I+1),0)
IX0=-IX(I)
IXD=(IX(I+1)-IX(I))
IABSX~-IABS (IXD)



o o oo

Ccé6l

79

97

51

87

84
83

12
70
900
310

77

IYD=IY(I+1)-IY(I)

CHECK 1F PARTICLE IS WITHIN THE PRESENT FRINGE

IF(IYD.GT.0.AND.IABSX.LT.JFRNG) GOTO 74

GET RIDE OF POSITIONS THAT MIGHT EXIST

CALL

SETT

CHECKING WITHIN A COLUMN TO INSERT OR DELETE A POSITION

IF(IYD.LE.O .AND. IABSX.LT.JFRNG) GOTO 81

MOVE TO A NEW FRINGE POSITION

IF(IXD.LT.0) GOTO 81

IF(IYD.LT.0 .AND. IXD.LT.JFRNGD) GOTO 79

IX0=IX(I+1)

IYO=IY(I+1)

CALL INSERT(I,NEW,IX0,IYO)
IX0=-IX(I)+JFRNG
IF(IX0.GT.IXF(NSQ)) GOTO 70
IYO-IYI(1)+10
CALL INSERT(I,NEW,IXO0,IYO)

GOTO 70

JYMA=IY(I)+IYR2

JYMI=IY(I+1)-IYR3

IX0=IX(I+1)

IF(JYMA.GT.IYF(NSQ)) GOTO 51

CALL WP(IX(I+1),IY(I+1),255)

IYO=-IY(I)+JRA

IX0=IX(I)

GOTO 83

IF(JYMI.GE.IYI(1)) GOTO 82

JCEN=IGET('1=CENTER IS NOT 0.K.’)

IF(JCEN.NE.1) GOTO 70

TYPE*, ' 1=DELETE, 2=INSERT, 3=CONTINUE'

JAW=IGET('?")

GOTO(81,82,70),JAW

SUBROUTINE TO DELETE A PIXEL

CALL WIPE(I,NEW)

IF(I.GT.NEW) GOTO 70

GOTO 72

ING PARAMETERS TO INSERT A POSITION

IYD=IY(I+1)-IYI(1)

. GOTO 60

IF(IYD.LT.IYR1) GOTO 81
IF(IYD.LT.IYR3) GOTO 12

LFL~0

YD=IYD

FRA=YD/YR1

IF(FRA.LT.2.0) GOTO 84
YR7=(FRA-1.)*YR1
IYO=IY(I+1)-INT(YR7)

CALL WP(IX(I+1),IY(I+1),255)

GOTO 83

IYO=TY(I+1)-JRA

CALL WP(IX(I+1),IY(I+1),255)

CALL INSERT(I,NEW,IX0,IYO0)

GOTO 70

CALL WP(IX(I+1),IY(I+1),0)

CONTINUE

GOTO 310

CALL SINGLE(NSQ,NEW,KA)

TYPE*, 'TYPE 1 TO DELETE A SPECIFIC POSITION'
IDE-IGET(' ')

IF (IDE.NE.1) GOTO 320

TYPE*, 'WHAT IS ‘THE PARTICLES NUMBER'
I~IGET('COUNT BY COLUMNS?’)
IF(I.GT.NEW .OR. I.LT.0) GOTO 77
CALL WP(IX(I),IY(I),255)
NANS=IGET('0-YES THAT WAS IT')
IF(NANS .NE.0) GOTO 76
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76
320

c
C
190

360

361
363
777
999
385

C
C
c
C
C
C
C
c *
C

100

I-1-1
CALL WIPE(I,NEW)
GOTO 310
CALL WP(IX(1),IY¥(I),0)
GOTO 77
TYPE*,'IF YOU WANT TO INSERT A SPHERE-S POSITION’
TYPE*,'TYPE 1 TO GET TO CURSOR MODE'’
INEW=IGET(' ')
IF(INEW.EQ.0) GOTO 190
IX0=IGET('X=?")
IYO=IGET('Y=?")
CALL CURS(IX0,IYO0)
NEW=NEW+1
IX(NEW)=IX0
IY(NEW)=IYO
TYPE*, 'IX0 &IYO',IX0,IYO
TYPE*, 'NEW=' ,NEW
CALL WP(IX0,IY0,0)
GOTO 320
THIS SECTION SAVES A FILE OF THE X&Y POSITIONS

TYPE*, DO YOU WANT TO SAVE X&Y POSITIONS'
IANS=IGET('1=YES')

IF(IANS.NE.1) GOTO 777

CALL ORDER(1,NEW,KOMPX)

TYPE*, 'ENTER FILE/S NAME'

TYPE*, '

CALL ASSIGN(2,,-2)
WRITE(2,END=360,ERR=361) NEW
WRITE(2,END=360,ERR=361) (IX(1),I=1,NEW)
WRITE(2,END=360,ERR=361) (IY(I),I=1,NEW)
CALL CLOSE(2)

TYPE*, 'END OF FILE'

GOTO 363

TYPE*, 'ERROR IN WRITING THE FILE’

TYPE* ,NEW,'1S THE NO. OF PTS. IN ABOVE FILE'
CONTINUE

E€ONTINUE

TYPE*, DO YOU WANT TO CONTINUE:1l=Y,O0=N'
IANS=IGET(' ')
IF (IANS.EQ.1) GOTO 111
RETURN
END
THIS PROGRAM IS 'LOUDIY.FOR' DESIGNATED FOR LOUDIYI'S PROJECT

LINK with IPBASD to provide a runnable source.

FEAEKKEXFHAXEA*KI, MAIN PROGRAM sesskokobsksesesehtarssotst

PROGRAM DETECT

LOGICAL VERBOS

COMMON VERBOS

INTEGER ICOM

VERBOS = .TRUE.

TYPE *, '’

TYPE*, '’

TYPE*,’ WELCOME TO B.J. ACKERSONS COLLOIDAL PHYSICS LAB'
TYPE*,’ PROGRAM EDITED AND WRITTEN BY KHALID LOUDIYI.’
TYPE*,’ PHYSICS DEPARTMENT, OKLAHOMA STATE UNIVERSITY.'
TYPE*,' '

CALL HELP

CALL SELGRP(1)

ICOM = ICGET('COMMAND:')

CALL DISPAT(ICOM)
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GOTO 100
END

Fkkkdkkskkkkk LOOK kokskskskssshsk
TO VIEW THE PARTICLES POSITIONS

[eNeNoNe]

SUBROUTINE LOOK
COMMON /BLOCK1/ IX(1200),IY(1200)
COMMON VERBOS
INTEGER RPIXEL
CALL ISUB
CALL VSUB
CALL TSUB
CALL SSUB
.DO 10 I=-1,510,50
DO 20 J=1,480
CALL WPIXEL(I,J,128)
20 CONTINUE
10 CONTINUE
DO 30 I-1,480,50
DO 40 J=1,510
CALL WPIXEL(J,I,128)
40 CONTINUE
30 CONTINUE
90 TYPE*,' TYPE NAME OF FILE '
TYPE*,' '
CALL ASSIGN(2,,-2)
READ(2, END=200, ERR=200) N
READ(2, END=200, ERR=200) (IX(I),I=1,N)
READ(2, END=200,ERR=200) (IY(I),I=1,N)
200 CALL CLOSE(2)
DO 60 I~1,N
CALL WP(IX(I),IY(I),0)
60 CONTINUE
TYPE*, ' 0=ANOTHER FILE'
IANS=IGET('?’)
IF(IANS.EQ.0) GOTO 90
RETURN
END
FXFXFF XXX XS TNGLE K FHhkkksbsksbsksskdkdkt
THIS SUBROUTINE IS THE MAIN SUBROUTINE FOR DETECTION
OF A PARTICLES IN THE SINGLE BEAM EXPERIMENT
SUBROUTINE SINGLE(NSQ,NEW,KA)
COMMON IXI(20),IYI(20),IXF(20),IYF(20)
COMMON IR(20),MAX(20),LEA(20)
COMMON /BLOCK1/ IX(1200),1Y(1200)
COMMON VERBOS
INTEGER RPIXEL
NEW=0
90 DO 27 NN=1,NSQ  !STARTING A NEW ANALYSIS REGION
IRP=IR(NN)+INT(RP/2.)
IP=NEW
NEW1=NEW+1
DO 21 J=IYI(NN),IYF(NN) !LOOKING AT DIFFERENT ROWS
K3=IXI(NN)
DO 11 I=-IXI(NN),IXF(NN) !SLICING THE INTENSITIES IN THE ROW
IF(I.LT.K3) GOTO 11
IV-RPIXEL(I,J)
IF (IV.GT.LEA(NN)) GOTO 11
C CHECKING FOR THE FIRST EDGE OF A SPHERE
c

[eXeKel

IFLAG=0

K1=I+3

IF(K1.GT.IXF(NN)) GOTO 11
DO 30 K=I+1,K1
IV=RPIXEL(K,J)
IF(IV.LE.LEA(NN)) GOTO 30



IFLAG=1
K3~K+1
30 CONTINUE
IF(IFLAG.EQ.1) GOTO 11
C CHECK FOR AN EGDE IN THE Y-DIRECTION
c
KYl=J+4
DO 35 K=J+1,KY1
IV=RPIXEL(I+1,K)
IF(IV.LE.LEA(NN)) GOTO 35
IFLAG=1
KY3=K
35 CONTINUE
IF(IFLAG.EQ.1) GOTO 11
K2=K1+KA ! STARTING TO CHECK FOR HIGH INTENSITIES
IF(K2.GT.IXF(NN)) K2=IXF(NN)
NEDG=0
IFL=0
IRAN=0O
DO 40 K=K1+1,K2
IF(IFL.EQ.1 .OR.NEDG.GT.2) GOTO 40
IV=RPIXEL(K,J)
IF(IV.GT.LEA(NN)) GOTO 45
IF(IRAN.LT.IR(NN)) GOTO 50
DO 60 MC=K+1,K+3 ! CHECKING FOR SECOND EDGE
IV2=RPIXEL(MC,J)
IF(IV2.GT.LEA(NN)) IFL-1
60 CONTINUE
IF(IFL.NE.1) NEDG=3
K3=K ! SETTING THE STARTING POSITION
GOTO 40

COUNTING THE RANGE OF THOSE PIXELS WITH HIGH INTENSITIES

S0000

5 IF(IV.GE.MAX(NN)) IRAN=IRAN+1
GOTO 40

50 _IF(IRAN.EQ.0) GOTO 40

IFL~1

IRAN=0O

K3=K

CONTINUE

IF(NEDG.NE.3) GOTO 80

£~
o

COUTING THOSE POSITION THAT WILL BE CONSIDERED FOR THE DETECTION

[sNeReNe]

IP=IP+1
RAN=FLOAT (IRAN)
IX(IP)=K3-3-INT(RAN/2.)
IY(IP)=J
80 RAN=O .
11 CONTINUE
21 CONTINUE
TYPE *,'NUMBER OF DOTS=',IP
C THIS SECTION WILL FIND THE CENTER OF EACH SPHERE
C AS COMPARED TO THE MAX. RADIUS OF A SPHERE,RCRT.
TYPE*, ' COMPUTING EACH SPHERE-S CENTER’
CALL ORDER(NEW1,IP,IR(NN))
KOMPX=IR(NN)+IR(NN)
KOMPY=-KOMPX+KOMPX
DO 37 L=NEW1l,6IP-1
IF(IX(L).EQ.0) GOTO 37
X=FLOAT(IX(L))
Y=FLOAT(IY(L))
COUT=1.
Kl=L+1
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42

93

48

37
27

73
100

170

DO 48 K=K1,IP
IF(IY(K).EQ.0) GOTO 48
IXD=-IABS (IX(K)-IX(L))
IF(IXD.GT.IR(NN)) GOTO 48
IYD=IABS(IY(K)-IY(L))
IF(IYD.GT.KOMPY) GOTO 48
FLAG=0.

X3=FLOAT(IX(K))
Y3=-FLOAT(IY(K))
IYA=INT((Y+Y3)/2.)
IXA=INT((X+X3)/2.)

JUM=1

IF(IX(L).LT.IX(K)) JUM=-1
DO 42 KI=-IX(K),IX(L),JUM
IV1=-RPIXEL(KI,IYA)

IF(IV1.LE.LEA(NN)) FLAG-1.

CONTINUE

IF(FLAG.EQ.1.) GOTO 48
JUM=1

IF(IY(L).LT.IY(K)) JUM=-1
DO 93 KI=~IY(K),IY(L),JUM
IF(FLAG.EQ.1.) GOTO 93
IV=RPIXEL(IXA,KI)
IF(IV.LE.LEA(NN)) FLAG=1.
CONTINUE

IF(FLAG.EQ.1.) GOTO 48
COUT=COUT+1.

X=X+X3

Y=Y+Y3

IX(K)=0

IY(K)=0

CONTINUE

NEW=NEW+1
IX(NEW)=INT(X/COUT)
IY(NEW)=INT(Y/COUT)
CONTINUE

TYPE*, 'NEW=',NEW
CONTINUE

" NP=0

CALL ORDER(1l,NEW,KOMPX)
NN=NEW

DO 70 I=-1,NN-1
IF(I.EQ.NEW) GOTO 100

IF(1.GT.NEW .OR. IX(I).EQ.0) GOTO 70

DO 73 JI=I+1,NN

IF(JI.GT.NEW .OR. IX(JI).EQ.0) GOTO 73

ID=IABS(IX(JI)-IX(I))
JD=IABS (IY(JI)-IY(I))

IF(JD.GT.KOMPY .OR. ID.GT.KOMPX) GOTO 73

YD=FLOAT (IY(JI)+IY(I))
XD=FLOAT (IX(JI)+IX(1))
IX(1)=INT(XD/2.)
IY(I)=INT(YD/2.)
IX(J1)-0

IY(J1)=0

CONTINUE

TYPE*, IN(1),IY(I)

CALL WP(IX(I),IY(I),0)

TYPE*, '0~THIS POSITION IS O.K.’

IANS=IGET('?")
IF(IANS.NE.O) GOTO 170
NP=NP+1

IX(NP)=IX(I)
IY(NP)=IY(I)

GOTO 70

CALL WP(IX(I),IY(I),255)
IX(I)=0
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1Y(1)=0
70 CONTINUE
NEW=NP
TYPE*, 'NEW-',NEW
RETURN
END
c
Cokkdkok ko sk sk sk kL T P E sk sk sk sk sk sk sk sk ok sk ok ok ok ok
C THIS SUBROUTINE IS TO DELETE THE SEPECIFIC X-Y POSITIONS FROM
C AN X&Y ARRAYS.
c
SUBROUTINE WIPE(I,NEW)
COMMON VERBOS .
COMMON/BLOCK1/IX(1200),IY(1200)
TYPE*, 'DELETING PIXELS:’,IX(I+1),IY(I+1)
CALL WP(IX(I+1),IY(I+1),255)
NEW=NEW-1
DO 76 J=I+1,NEW
IX(J)=IX(J+1)
IY(J)=IY(J+1)
76 CONTINUE
TYPE*, ' NEW=' ,NEW
IX(NEW+1)=0
1Y (NEW+1)=0
RETURN
END
c
C *******************INSERT***********************
c
C THIS SUBROUTINE IS FOR INSERTING A POSITION IN THE X&Y POSITION
C ARRAYS. - THAT IS A NEW CENTER.

c ‘
SUBROUTINE INSERT(I,NEW,IX0,IYO0)
COMMON VERBOS
COMMONN/BLOCK1/IX(1200),1Y(1200)
TYPE *,'INSERT A NEW POSITION AT:'
CALL CURS(IXO,IY0)
" NEW=NEW+1
DO 77 J=NEW,I+2,-1
IX(J)=IX(J-1)
IY(J)=IY(J-1)
77 CONTINUE
IX(I+1)=IX0
IY(I1+1)=IY0
CALL WP(IXO,IYO,0)
TYPE*, ‘YOU HAVE ADDED PIXEL:'’,IX0,IYO
TYPE*, 'NEW=',NEW
RETURN
END
c
C KKK KRR X R XX EDG EX K obok sk kbbb sk sk sk ok ook s sk bk bk se kb
C .
C DETECTING AN EDGE IN THE X-DIRECTION FROM THE PARTICLE'S CENTER
c
SUBROUTINE EDGEX(INX,INXV,INY,ZZ, LEA)
COMMON VERBOS
INTEGER RPIXEL
DO 642 JX=INX,INXV
IF(ZZ.EQ.1.) GO TO 642
NOOR=RPIXEL(JX, INY)
:  IF(NOOR.LE.LEA) ZZ~1.
642 CONTINUE
RETURN
END
c

C okttt bk EDG EYHF ko sb kst sk sk sk ok ook st sk sk sk sk ook ok sk bk sk ok
C



C
C DETECTING AN EDGE IN THE Y-DIRECTION FROM THE CENTER
C
SUBROUTINE EDGEY(IR2,IR1,INX,ZZ,LEA)
COMMON VERBOS
INTEGER RPIXEL
DO 641 JE=-IR2,IR1
IF(ZZ.EQ.1.) GO TO 641
NOOR=RPIXEL(INX,JE)
IF(NOOR.LE.LEA) ZZ=-1.
641 CONTINUE
RETURN
END
c

C*********DISPI_AY A CROSS***********
c
SUBROUTINE WP(IX0,IYO,IN)
COMMON VERBOS
CALL WPIXEL(IXO,IYO,IN)
CALL WPIXEL(IXO+1,1IYO,IN)
CALL WPIXEL(IXO0-1,IYO,IN)
CALL WPIXEL(IXO,IYO+1,IN)
CALL WPIXEL(IXO,IYO-1,IKN)

RETURN
END
C
c
C FFkEkkkkkkkkddkkx DISPATCH *kdskrrddkkrrrrrss
C
SUBROUTINE DISPAT(ICHAR)
INTEGER ICHAR
C

C "Case” statment to select function:
C

IF(ICHAR.LT."40) GOTO 1000 !Ignore characters below octal 40

IF(ICHAR.LT."77) CALL VOID !Unrecognized character
IF(ICHAR.EQ.'A') CALL LOOK 'VIEW POSITIONS
-IF(ICHAR.EQ.'B’') CALL VOID 'Blank and unblank
IF(ICHAR.EQ.'C') CALL CSUB !Clear screen
IF(ICHAR.EQ.'D’) CALL CURS(X,Y)

IF(ICHAR.EQ.'E’) CALL GRID 'Exit

IF(ICHAR.EQ.'F') CALL VOID !Frame Buffer Group select
IF(ICHAR.EQ.’G’) CALL VOID !Guard pixel planes or values
IF(ICHAR.EQ.'H') CALL HELP 'Help routine
IF(ICHAR.EQ.'I') CALL ISUB tInitilization
IF(ICHAR.EQ.'J') CALL TVVIEW 'LOAD PICTURE FORM DISKETTE
IF(ICHAR.EQ.'L’) CALL VOID !Look Up tables
IF(ICHAR.EQ.'M’) CALL VOID {Mode select
IF(ICHAR.EQ.'P’) CALL VOID 'Pixel Read & Write
IF(ICHAR.EQ.'R’) CALL RSUB

IF(ICHAR.EQ.'S’) CALL SSUB tSync select
IF(ICHAR.EQ.'T’) CALL TSUB !Take a picture
IF(ICHAR.EQ.'U’) CALL INTS

IF(ICHAR.EQ.'V') CALL VSUB !View Image
IF(ICHAR.EQ.'W’) CALL VOID !Draw wedges
IF(ICHAR.EQ.'X') CALL THRESH !THRESHOLD VALUE
IF(ICHAR.EQ.'Y’) CALL TRAF t TANSFER

IF(ICHAR.EQ.'Z') CALL ZSUB * !Zoom
IF(ICHAR.EQ.'?') CALL HELP
1000 RETURN
END
c
C Fxdkddkhkkhkkkkkdkx HELP dkkkkkkhdkksrsksoksksk
c
SUBROUTINE HELP

TYPE *,’Commands are a single capital letter as follows:
TYPE*, 'A:CALCULATE AVERAGE OF ALREADY SAVED FILES'’

'MOVE TARGET
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TYPE#*,'C:CLEAR SCREEN TO A VALUE OF 255 INTENSITY'
TYPE*,'E:GRID'

TYPE*,'K:DESTORTION CORRECTION'

TYPE*,’'S:SYNC. SOURCE SELECT’

TYPE*, 'I:INITIALIZE HARDWARE'

TYPE*,'R:ROAM (PAN AND SCREEN ROLL)'

TYPE*, 'T:TAKE A PICTURE’

TYPE*, 'V:VIEW INPUT'

TYPE*, 'Z:ZOOM'

TYPE*, 'D:MOVE TARGET'

TYPE*, 'J:LOAD PICTURE FROM DISKETTE'

TYPE*, 'K:READ OR WRITE DATA (RECTANGULAR FORMAT)'’
TYPE*,‘N:READ OR WRITE DATA (POLAR FORMAT)'
TYPE*,'?:HELP’

TYPE*,'O:FIND THE CENTER OF THE PARTICLES IN SINGLE BEAM'
TYPE*, 'Q:PLOT INTENSITY'

TYPE*, 'Y:SELECT TRANSFER FUNCTION’

TYPE*,'X:SELECT THRESHOLD VALUE FOR THE INTENSITIES'
TYPE#*, 'U:SELECTS WINDOW AND PLOTS INTENSITY INSIDE IT'

RETURN

END
Ch¥ekkkddkkkkkEhkxxGRID**FHxKF Rk kkhkkkk
C
C THIS SUBROUTINE IS TO DRAW A GRID
C

SUBROUTINE GRID

COMMON VERBOS

DO 10 I=50,510,50

DO 20 J=20,510
20 CALL WPIXEL(J,I,255)

DO 25 K=20,510
25 CALL WPIXEL(I,K,255)
10 CONTINUE

RETURN

END
C

C Fdkkkxrdddkrkirx VOID: Unrecognized command ¥ksrsskkstsexsotkx
C
SUBROUTINE VOID
COMMON VERBOS
IF (VERBOS) TYPE *,'Unrecognized Command. Use ? for Help’
RETURN
- END
Corseddddkkdkddhk stk ik *THR ESHOLD® %k kkkk ks kkskkkk
C
C THIS SUBROUTINE WILL ASK FOR A THRESHOLD VALUE FOR THE INTENSITIES.
¢ ALL PIXELS WITH A GREY LEVEL GREATER THAN THE THRESHOLD VALUE ARE
c SET TO 255
C WHILE THE REST OF THE PIXELS ARE SET TO ZEROGREY LEVEL.
C
SUBROUTINE THRESH
COMMON VERBOS
30 CALL SELLUT(2,0)
TYPE*, 'THE THRESHOLD INTENSITY=?'
MAX=IGET(' ')
DO 10 I=1,MAX

10 CALL SETLUT(I,O0)
DO 20 J=MAX,255
20 CALL SETLUT(J,255)

TYPE*, ' 0=CONTINUE THREHOLDING'’
IT=IGET(’'O0~CONTINUE') ,
IF(IT.EQ.0) GOTO 30
RETURN
END
C *xFkFFkk*xkxkk**ORDER I NGHhkd sk ks kkoksk
C THIS SUBROUTINE WILL ORDER THE PARTICLES IN COLUMNS
C
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SUBROUTINE ORDER(IPI,IPF,JFRNG)
COMMON VERBOS
COMMON/BLOCK1/IX(1200),1Y(1200)
C THIS PART WILL ORDER THE PARTICLES IN COLUMNS.
DO 33 I=-IPI,IPF-1
J1l=I+1
DO 39 J=J1,IPF
IF(IX(J).GT.IX(I)) GOTO 39
IA=IX(J)
IB=IX(I)
IC=IY(I)
ID=IY(J)
IX(I)=IA
IX(J)=1B
IY(I)=ID
IY(J)=IC
39 CONTINUE
M1=IX(I)+JFRNG
DO 62 J=J1,1IPF
IF(IX(J).GT.M1 .OR. IY(J).GT.IY(I))GOTO 62
IA=IX(J)
IB=IX(I)
IC=IY(I)
ID=IY(J)
IX(I)=IA
IX(J)=IB
IY(I)=ID
IY(J)=IC
62 CONTINUE
33 CONTINUE
RETURN
END
@
C
CHhxdrk bk k TRAF *HFkkhkdsrstkdktsksk
C THIS IS A SUBROUTINE FOR INTENSITY EQUALIZATION
C
" SUBROUTINE TRAF
COMMON VERBOS
INTEGER RPIXEL
TYPE*, ' TRANSFER FUNCTION'
TYPE*, ' SELECT IA2>IAl’
IA1=IGET('ENTER IAl')
IA2=-IGET('ENTER IA2')
DO 10 I=20,500
DO 20 J=20,500
IA=RPIXEL(I,J)
IF (IA.LT.IAl) GO TO 30
IF (IA.GT.IA2) GO TO 40
FAl=IAl
FA2=IA2
FV=(255./(FA2-FAl))*(IA-FAl)
IV=INT(FV)
CALL WPIXEL(I,J,1IV)
GOTO 20
30 CALL WPIXEL(I,J,0)
GO TO 20
40 CALL WPIXEL(I,J,255)
20 CONTINUE
10 CONTINUE
RETURN
END
c
C ddxdkkddsrkkdk TUVIEW dsrdkkkskkdkst
SUBROUTINE TVVIEW
DIMENSION I1Z(512)
COMMON VERBOS



C

C *kkEr*hhkkkkkw*x CSUB: CLEAR SCREEN #skkskstsksrdsksksksksksksk

C

C

Gk kkkskkkkk*CURSOR MOVEMENT* % kokstotsrskssr

c
C
c

10
25
500

50

INTEGER
INTEGER

RPIXEL
X,Y,XI,XF,YI,YF

XI=IGET('XI=?")
XF=IGET('XF=2')
YI=IGET('YI=?')
YF=IGET('YF=?')
CALL ASSIGN (2,,-2)
DO 25 Y=YI,YF

READ (2,END=500,ERR=500) (1Z(X),X=XI,XF)

DO 10 X=XI,XF

IZ(X)=INT(ABS(FLOAT(RPIXEL(X,Y)-IZ(X))))

CALL WPIXEL(X,Y,IZ(X))
CONTINUE

CONTINUE

TYPE *,'END OF FILE'
CALL CLOSE(2)

RETURN
END

SUBROUTINE CSUB
COMMON VERBOS

INTEGER

IF (VERBOS) TYPE *, '*%%%x Clear Screen ¥k’

INTENS

INTENS =130
CALL CLEAR(INTENS)

RETURN
END

THIS SUBROUTINE MOVES THE CURSOR TO A DESIRED POSITION

SUBROUTINE CURS(IX0,IYO)
COMMON VERBOS

_ INTEGER
INC=1
X1=IX0
Y1-IY0
IKEY=3

X1,Y1,RPIXEL

IV=RPIXEL(X1,Y1)

IV1=RPIXEL(X1,Y1-1)
IV2=-RPIXEL(X1+1,Y1)
IV3=RPIXEL(X1-1,Y1)
IV4=RPIXEL(X1,Y1+1)

IREM=IKEY

1Z=0
IF (IV

.LE. 128 ) IZ=255

CALL WP(X1,Y1,1Z)
IKEY=IGET('?’)

IF(IKEY

.EQ.0) IKEY=IREM

TYPE *,X1,Y1,IV

CALL WPIXEL(X1,Y1,IV)
CALL WPIXEL(X1,Y1-1,1IV1)
CALL WPIXEL(X1+1,Y1,1IV2)
CALL WPIXEL(X1-1,Y1,IV3)
CALL WPIXEL(X1,Y1+1,1IV&4)

IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY
IF(IKEY

.EQ. 1 ) X1=X1+INC
.EQ. 2 ) X1=X1-INC
.EQ. 3 ) Y1=Y1+INC
.EQ. 4 ) Y1=Y1-INC
.EQ. 5) GOTO 260
.EQ.6) GOTO 10
.EQ.12) INC=-10
.EQ. 11) INC~1
.EQ. 9 ) GO TO 250
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260

10

14
12

250

C

GO TO 50
X1=IGET('X=?")
Y1=-IGET('Y=")
IKEY=3 -
GOTO 50

IXF=X1+30
IYF=Y1+30

DO 12 I=X1,IXF

DO 14 J=Y1,IYF
IV=RPIXEL(I,J)

1Z=-0

IF(IV.LE.128) 1Z=~-255
CALL WPIXEL(I,J,I1Z)
TYPE*,I,J,IV

CALL WPIXEL(I,J,IV)
CONTINUE

CONTINUE

X1=IXF

Y1=-IYF

GOTO 50

IX0~X1

IY0~Y1

RETURN

END

C Fsesksosrkdkkhkdkdkkrks TSUB: INITILIZE *okkokskseskhsrstsbstkkssk

C

100

[

SUBROUTINE ISUB
COMMON VERBOS
INTEGER WHICH

IF (VERBOS) TYPE *,'*%¥%* Initilize Hardware Registers **x%’

WHICH='E’

IF (WHICH.EQ.'A') CALL APINIT
IF (WHICH.EQ.'F') CALL FBINIT
IF (WHICH.EQ.'L') CALL LUINIT
IF (WHICH.EQ.'E') GOTO 100
RETURN

- CALL APINIT

CALL FBINIT
CALL LUINIT
RETURN

END

C *kbskkkkkdkkkdk RSUB: ROAM *obskskskskobsbhskdkkorsosk

C

c

SUBROUTINE RSUB
COMMON VERBOS
INTEGER X,Y

IF (VERBOS) TYPE *,'%%%% Roam (Pan and Scroll) xx*x’

X = IGET('Pan Value=')

Y = IGET(’Scroll Value=')
CALL PAN(X)

CALL SCROLL(Y)

RETURN

END

C sskkskkkkkhkkkkkdcx GSUB: SYNC Fhskskststsrssrdstskskstskt

C

SUBROUTINE SSUB

COMMON VERBOS

INTEGER SOURCE

IF (VERBOS) TYPE *,'**** Select Sync Source ¥¥%x’
SOURCE=~'C’

IF (SOURCE.EQ.'P’') SOURCE = O

IF (SOURCE.EQ.’'C') SOURCE = 1

CALL SYNC(SOURCE)

RETURN
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END

Sk Rk kkktkkkkx TSUB: TAKE A PICTURE *aksdskskssskskskdkdkdkrs

[aNeNe]

SUBROUTINE TSUB

COMMON VERBOS

IF (VERBOS) TYPE *,'**** Take A Picture *¥%*’'
CALL SNAP

RETURN

END

Kkdkkdkkkkkkkkkkd VSUB: VIEW dkkdkddkkrdkkdkkskk

[eEeoNe]

SUBROUTINE VSUB

COMMON VERBOS

IF (VERBOS) TYPE *, '*%**% View Input Image *¥¥*'
CALL VIEW

RETURN

END
C dkdrkkkkkhdkkokdkkk ZSUB: ZOOM dkkakdkdkkakskdkdkkkksk

SUBROUTINE ZSUB

COMMON VERBOS

INTEGER X,Y

IF (VERBOS) TYPE *,'*%** Zoom in X and Y’
X = ICGET('Zoom X -- Y(es or N(o:")
IF (X.EQ.'Y') X=1

IF (X.EQ.'N') X=0

Y = ICGET('Zoom Y -- Y(es or N(o:')
IF (Y.EQ.'Y') Y=1

IF (Y.EQ.'N') Y=0

CALL ZOOM(X,Y)

RETURN

END

FrEFFFKkK***Fk*k*% USEFUL ROUTINES Hkdkskokoksestssrsossesrssk

FUNCTION ICGET('String’) = Prints string and waits for a single
character. No line feed at the end of the string. Character is
automatically capitalized if proper bit is set in JSW

(normal condition).

OO0 O0O0O0O0

FUNCTION ICGET(STR)
LOGICAL*1 STR(1)
INTEGER ANS
WRITE (7,10,END~2,ERR=3) (STR(I),I=1,LEN(STR))
READ(5,1) ANS
1 FORMAT (A1)
ICGET =~ ANS
RETURN

2 TYPE *,'? ICGET: END OF FILE ERROR’
GOTO 5

TYPE *,'? ICGET: HARDWARE ERROR'’
ICGET -~ 0

RETURN

wvw

10 "FORMAT ('$’,2004a1)
END

C FUNCTION IGET('String’) = Prints string and waits for a single
C integer. No line feed at the end of the string.
C

FUNCTION IGET(STR)

LOGICAL*1 STR(1)

INTEGER ANS

WRITE (7,10,END=2,ERR=3) (STR(I),I=1,LEN(STR))

230



231

READ(5,1) ANS

1 FORMAT(I5)
IGET = ARS
RETURN
2 TYPE *,'? IGET: END OF FILE ERROR’
GOTO 5
3 TYPE *,'? IGET:. HARDWARE ERROR’
5 IGET = 0
RETURN
10 FORMAT ('$',2004l)
END
o
C FUNCTION IOGET('String’) = Prints string and waits for a single
C Octal integer. No line feed at the end of the string.
c

FUNCTION IOGET(STR)

LOGICAL*1 STR(1)

INTEGER ANS

WRITE (7,10,END=2,ERR=3) (STR(I),I=1,LEN(STR))
READ(5,1) ANS

1 FORMAT (07)
IOGET = ANS
RETURN
2 TYPE *,'? IOGET: END OF FILE ERROR'’
GOTO 5
3 TYPE *,'? IOGET: HARDWARE ERROR'’
5 IOGET = 0
RETURN
10 FORMAT ('$',200a1)

END
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TYPE ANAL3.FOR

c

C bbbk dobsaddk bk ik kddh ko XDENS SUBROUT INER*hkokskok sk skskok sk sk drokob ok

C THIS

SUBROUTINE IS FOR FINDING THE DENSITY OF THE PARTICLES

C ALONG THE FRINGES DIRECTION

c

33

190

50

52

C READ

20
200

C

SUBROUTINE XDENS(MX1,MXX1,MY1l,MYY1l,IFRNS,DIA)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
DIMENSION AVX(100),STDF(100),AREA(50),DENS(50)
FRNS=IFRNS

TYPE*, '1=PLOT SIN(2*PI*X/PERIOD + TETA)'
READ(5,33) IANS

FORMAT(14)

TYPE*,' 1=PRINT STATISTICAL ANALYSIS, CHANGE OUTPUT DEVICE'
READ(5,190) JANS

FORMAT(I4)

ARS=1.07/5.

DX=FLOAT (MXX1-MX1) /FRNS
DY=FLOAT(MYY1-MY1)/FRNS

ABOX=DX*DY

FAREA=FRNS*DY/FRNS

JUMPX1=INT(DIA/5.)

PI=4 *ATAN(1.)

DO 50 I-1,520

RP(I)=0.

PHI(I)=0.

CONTINUE

DO 52 I=1,100

AVX(I)=0.

STDF(I)=0.

CONTINUE

DATA AND FIND THE NUMBER OF PARTICLES AT EACH X-POSITION.

NUMF=0
DO 200 KK=2,NUMB+1
CALL RDATA

-DO 20 J-1,N

NUM=IX(J)
IF(NUM.LE.MXX1 .AND. NUM.GE.MX1) THEN
IF(IY(J).LE.MYY1.AND.IY(J).GE.MY1l) THEN
RP(NUM)=RP(NUM)+1.
NUMF=NUMF+1

ENDIF

ENDIF
CONTINUE
CONTINUE
TBD=(FLOAT (NUMF) ) / (ABOX* (FLOAT (NUMB) ))

C FINDING THE FOURIER COEFFICIENTS

300

XD=FLOAT (MXX1-Mx1)
DIV=XD/FRNS
MULT=INT(DIV)
ARG=2 . *PI/FRNS
IFINAL-INT (FRNS*FLOAT (MULT))
Al~0.
B1-0.
DO 300 I=MX1,IFINAL
W=FLOAT(I)
A=COS (ARG*W)
B~SIN(ARG*W)
Al=Al+A*RP (1)
B1~B1+B*RP(I)
CONTINUE
IF(A1.EQ.0.) THEN
TETA~PI/2.

ELSE
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TETA=ATAN(B1/Al)

ENDIF
TYPE*, 'Al,Bl1,TETA=-',Al,B1,TETA
IF(IANS.EQ.1) THEN

C PLOT SIN(2*PI*X/L + TETA)
C

LENGTH =700
1X0=300
1Y0=-350
IXI=-0
1YI=0
WRITE(6,350) IXO,IYO
350 FORMAT(' HAU ',I4,',’',I14,' 0O')
XS=700. /XD
DO 310 I=-MX1,MXX1
X=FLOAT(I)
Y=SIN( (ARG*X)+TETA)
IF(Y.LT.0.) Y=0.
SX=XS* (FLOAT(I-MX1))
NX=INT(SX)
NY=INT(700.%*Y)
WRITE(6,320) NX,NY
320 FORMAT(' D ',I14,',’',14)
310 CONTINUE
WRITE(6,330)
330 FORMAT(' UH ')
ENDIF

C
C TFINDING THE DENSITY AND THE STATISTICS OF EACH FRINGE
C
KC=0
RPTM=0.
DO 80 J=MX1,MXX1,IFRNS
AX=0.
AREAT=0.
RPTT=0.
JRPF=J+IFRNS-1
-IF(JRPF.GT.MXX1) JRPF=MXX1
DO 85 K=J,JRPF,JUMPX1
RPT=0.
KF=K+JUMPX1-1
IF(KF.GT.JRPF) KF=JRPF
DO 210 I=K,KF
RPT=RPT+RP(I)
AX=(FLOAT(I))*RP(I)+AX
210 CONTINUE
PHI(KF)=RPT
RPTT=RPTT+RPT
IF(RPT.GT.RPTM) THEN
RPTM=RPT
ENDIF
85 CONTINUE
IF(RPTT.NE.O.) THEN
STD=0.
KC=KC+1
AVX(KC)=AX/RPTT
AREA (KC)=RPTT*ARS
DENS (KC)=RPTT/FAREA
DO 120 K=J,JRPF
STD=STD+( (K-AVX(KC) )**2 . )*RP(K)
120 CONTINUE .
STD=-STD/RPTT
STDF(KC)=SQRT(STD)
ENDIF
80 CONTINUE
IF(JANS.EQ.1) THEN
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WRITE(6,730) TBD
FORMAT(' DENSITY OF PARTICLES IN GIVEN AREA:',Fl2.6)
WRITE(6,733)
FORMAT (' MX1, MXX1, MY1l, MYY1, IFRNS, IDIA')
WRITE(6,737) MX1,MXX1,MY1,MYY1l,6 IFRNS,DIA
FORMAT(5(3X,14),3X,F12.6)
WRITE(6,720)
FORMAT(' FRINGE NO.,MEAN POS., STDV, AREA AND DENSITY')
DO 70 I=1,KC
WRITE(6,77) I,AVX(I),STDF(I),AREA(I),DENS(I)
FORMAT(3X,14,4(3X,E12.6))
CONTINUE

ELSE

SETTING THE PARAMETERS FOR THE PLOTTING AREA

LENGTH=700

JUMP=4

1X0=~1200

IY0=350

IX1=-0

IYI=0

CALL BOX(IXO,IYO,LENGTH,IXI,IYI)

SETTING THE PARAMETERS FOR SCALING AND LABELING THE
X-AXIS.

11-0

12-INT (XD/FRNS)

XS=FRNS*700. /XD

CALL XAXIS(IXI,IYI,I1,I2,JUMP,XS)
WRITE(6,65)

FORMAT(’ 122,-100 U S12 X-DISTANCE/PERIOD_')

SETTING THE PARAMETERS FOR LABELING AND SCALING THE
Y-AXIS

YS=70
- JUMP=1
12=10
CALL YAXIS(IXI,IVYI,I1,12,JUMP,YS)
WRITE(6,60)
FORMAT(' -80,260 U S42 DENS/MAXD ')
SCX=700. /XD
WRITE(6,68)
FORMAT(' U 0,0 )

PLOTTING THE DENSITY OF THE PARTICLES PER FRINGE PERIOD

WRITE(6,170)

FORMAT(* U 0,0 D ')
XS=700. /XD

YS=700. /RPTM

DO 140 J=MX1,MXX1,IFRNS
JRPF~J+IFRNS-1
IF(JRPF.GT.MXX1) JRPF=MXX1
DO 130 K=J,JRPF,JUMPX1
KF=K+JUMPX1-1
IF(KF.GT.JRPF) KF=JRPF
NY=INT (YS*PHI (KF))

NX=INT (XS* (FLOAT (KF-MX1)))
WRITE(6,160) NX,NY

FORMAT (X,14,°," ,14)
CONTINUE

CONTINUE

WRITE(6,180)

FORMAT(' U H ')
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ENDIF
RETURN
END

Fok ok 3k ok ok ok ok ok sk ok ok ok ko ok sk ok b sk ek sk st s ko ok sk sk ok ok sk sk sk sk kb sk sk sk ok
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THIS PROGRAM IS FOR PLOTING THE PAIR CORRELATION FUNCTION G(R)
USING THE HOUSTON INSTRUMENT DIGITAL PLOTTER. NOTE THAT THE
PLOTER BAUD RATE IS 9600.

PROGRAM ANAL3

COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
COMMON/BLOCK2 /MAXR1 ,NNEIG(2,6),DIV(520),COR(5,2),PN(520)
DO 10 I=1,520

RP(I)=0.

DENSITY=0.

CONTINUE

KK=0

CALL RDATA

TYPE *,' DIAMETER,MINX,MAXX,MINY,MAXY'’

READ(5,50) IDIA,MX1,MXX1,MY1l,MYYl

FORMAT (5(I4))

DIA=FLOAT(IDIA)

XM= (FLOAT (MXX1-MX1))/2.

YM=(FLOAT(MYY1-MY1))/2.

IXM=INT(XM)+MX1

IYM=INT(YM)+MY1

MIN1=~INT(XM/2.)

MINY=6

INPUT THE ANALYSIS TO BE PERFORMED

TYPE*,' 0=G(R) VRS. R PLOT’

TYPE*,' 1= DELTA-X VRS. DELTA-Y PLOT'

TYPE*,' 2=-CCIFS PLOTS'

TYPE*,' 3~PARTICLE DENSITY IN Y-DIRECTION’
TYPE*, ' 5=X-Y POSITIONS RELATIVE TO FRINGE POS.’

.TYPE*,’ 6=PARTICLE DENSITY IN X-DIRECTION'

READ(5,15) JAWAB
FORMAT(13)
WRITE(6,11)
FORMAT(' ;:1 OD 100 HAU')
IF(JAWAB.EQ.0) THEN
TYPE*, ' INPUT THE ANULUS WIDTH:'
READ(5,83) JR
FORMAT(I3)
ENDIF
IF(JAWAB.EQ.1) THEN
IYM=INT(.8%*(FLOAT(IYM)))
CALL ONE(MIN1,DIA,IXM,IYM)
ENDIF
IF(JAWAB.EQ.2) THEN
CALL TWO
ENDIF
IF(JAWAB.EQ.3 .OR. JAWAB.EQ.4) THEN
CALL JAW34 (JAWAB,DIA,MIN3,MAX3,MIN4 ,MAR4G)
ENDIF
IF(JAWAB.EQ.5) THEN
CALL FIVE(MX1,MXX1,MY1,MYY1l,KDIA)
ENDIF
IF(JAWAB.EQ.6) THEN
TYPE*, 'INPUT FRINGE PERIOD'
READ(5,20) IFR
FORMAT(14)
FRNS~FLOAT(IFR)
CALL XDENS(MX1,MXX1,MY1,MYY1l,IFR,DIA)
GOTO 900
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ENDIF

C PROCESSING THE DATA FILES

C

81

130

92
900

[sEelsEeNoNeNe]

90

DO 130 KK=2,NUMB+1
CALL RDATA
DO 81 I-1,N
YPOS=IY(I)
IY(I)=INT(O.8*YPOS)
CONTINUE
IF(JAWAB.EQ.0) THEN
CALL PAIRC(DENSITY,DIA,JR,IXM,IYM)
IF(KK.EQ.NUMB+1)THEN
DENSITY=DENSITY/(FLOAT (NUMB+1))
CALL ZERO(JR,DIA,DENSITY)
ENDIF
ENDIF
IF(JAWAB.EQ.1) CALL ORIENT(MIN1,IXM,IYM,DIA)
IF(JAWAB.EQ.2) THEN
CALL CCIFS
ENDIF
IF(JAWAB.EQ.3) THEN
CALL XDENS(MX1,MXX1,MY1,MYY1,DIA)
IF(KK.EQ.NUMB+1) THEN
CALL DENSC(MIN3,MAX3,DIA)
ENDIF
ENDIF
IF(JAWAB.EQ.4) THEN
CALL YDENS(MIN4 ,MAX4,DIA)
IF(KK.EQ.NUMB+1) THEN
CALL DENSC(MIN4 ,MAX4 ,DIA)
ENDIF
ENDIF
IF(JAWAB.EQ.5) THEN
CALL POSP(MX1,MXX1,MY1l,MYY1,DIA)
ENDIF
CONTINUE

" WRITE(6,92)

FORMAT (3H UH)
CONTINUE
GOTO 901

END

Kk kkFkkkkkkkkkkkx MIDPOS SUBROUTINE sskskkkorskdkdkhkkkik

FIND THE CLOSEST PARTICLE IN A FILE THAT IS CLOSEST TO
A GIVEN POSITION

SUBROUTINE MIDPOS (IXM,IYM,MX,MY)

COMMON KK,NUMB,N,1IX(300),IY(300),RP(520),PHI(520)
X1=FLOAT (IXM)
Y1=(FLOAT(IYM))
C=25000

DO 90 I-1,N
X=FLOAT(IX(I))
Y=FLOAT(IY(I))
R=(X-X1)%*2 +(Y-Y1)**2.
IF(R.LT.C) THEN

C=R

MX=-IX(I)

MY=TIY(I)

ENDIF

CONTINUE

RETURN

END

C *kkkkkkkkkkkkhkkkkx MAMI SUBROUTINE **kskikaskdskskkhk

C



C TFINDING THE MINIMUM AND MAXIMUM X&Y POSITIONS FOR ALL
C THE DATA FILES CONTAINED IN A CONPLETE FILE
o
SUBROUTINE MAMI (MX1,6MXX1, MYl ,MYY1)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
DO 100 KK=2,NUMB+1
CALL RDATA
CALL LIMM(MINX,MAXX,MINY,MAXY)
IF(MINX.LT.0 .OR. MAXX.GT.512) GOTO 100
IF(MINY.LT.O0 .OR. MAXY.GT.480) GOTO 100
IF(MINX.LT.MX1) MX1=-MINX
IF(MAXX.GT.MXX1) MXX1=-MAXX
IF(MINY.LT.MY1) MY1=MINY
IF(MAXY.GT.MYY1l) MYY1=-MAXY
100 CONTINUE
RETURN
END
END
C
C  Fdkkdkdkkkkkkkkkkx DENSC SUBROUTINE ssssksksrstssrskssdsskshskdsdsksksk
C THIS SUBROUTINE IS FOR PLOTING THE THE DENSITY OF THE PARTICLES
C ALONG AND PERPENDICULAR TO THE POTENTIAL'S PERIODICITY DIRECTION
C
SUBROUTINE DENSC(MIN3,MAX3,DIA)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
RM=0.
SX=700.*DIA/FLOAT (MAX3-MIN3)
DO 12 I=-MIN3,MAX3,4
IF(RP(I).GT.RM) RM=RP(I)

12 CONTINUE
SY=700. /RM
WRITE(6,33)

33 FORMAT(' U 0,0 D')

DO 25 I=-MIN3,MAX3,4
IS=INT(SX*(FLOAT(I-MIN3))/DIA)
JY=INT(RP(I)*SY)
WRITE(6,30) IS,JY
30 . FORMAT(X,I4,',',I4)
25 CONTINUE
RETURN
END

FkkFkEAAKKFAFAF* ZERO SUBROUTINE Hsksokoksoksookskorotdoksksob koo ok
THIS SUBROUTINE IS FOR SETTING AND PLOTTING THE DATA FOR\
THE TRANSLATIONAL PAIR CORRELATION FUNCTION

[esXoNeNeNe]

SUBROUTINE ZERO(JR,DIA,DENSITY)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
COMMON/BLOCK2 /MAXR1,NNEIG(2,6),DIV(520),COR(5,2),PN(520)
IX0~-1200
I1Y0=-350
LENGTH=700
LH=0
DRAWING A BOX AROUND THE PLOTTING AREA
CALL BOX(IXO,IYO,LENGTH,LH,LH)
THIS PART WILL PLOT G(R) VRS. R, SCALING BOTH AXIS FOR
MAXIMUM POSITION. G(R) IS DEFINED AS THE NUMBER OF PARTICLES
WITHIN AN ANULUS OF WIDTH DR AT A DISTANCE R FROM THE CENTER
PARTICLE DEVIDED BY THE CIRCUMFERENCE TIMES DELTA R (DR).

O

[sEeNeNeNe}

MAXR=-MAXR1

PMAX=0.
JS=INT(FLOAT(JR)/2.)
IXI=0

IYI=0
XS=DIA*700./FLOAT (MAXR)
I1=-0
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12-FLOAT(MAXR) /DIA
JUMP=2
¥5-70.
C LABELING THE X-AXIS
CALL XAXIS(IXI,IYI,I1,I2,JUMP,XS)
WRITE(6,23)
23 FORMAT(' 62,-100 U S12 RADIAL DISTANCE/DIAMETER_ ')
C LABELING THE Y-AXIS
JUMP-1
12=10
CALL YAXIS(IXI,IYI,I1,I2,JUMP,YS)
WRITE(6,27)
27 FORMAT(' -80,260 U S42 G(R)/GMAX_')
DO 70 I~JR,MAXR,JR
IF(DIV(I).EQ.0.) GOTO 70
PN(1)=PN(1)/(DIV(I)*DENSITY)
IF(PN(I).GT.PMAX) PMAX-PN(I)
70 CONTINUE
SCY~700. /PMAX
TYPE*, 'DENS, PMAX,SCY: ', DENSITY, PMAX, SCY
XNU=FLOAT (MAXR)
SCX=700. /XNU
X=FLOAT (JR)
11=INT(SCX*(X-1.))
WRITE(6,66) I1

66 FORMAT('U 0,0 D *,I4,’,0')
DO 40 I=-JR,MAXR,JR
X=1
I1=-INT(SCX*X)
NY=INT(PN(I)*SCY)
WRITE(6,90) I1,NY

90 FORMAT(' ',I4,',',14)

40 CONTINUE
RETURN
END

C

C *kddsrrkdrdrrxrrkxt RDATA SUBROUTINE sksrsststatstsrsesrsbstsbststsosrsksesrsrskk
C THIS SUBROUTINE IS FOR OPENING FILES AND READING DATA
C
SUBROUTINE RDATA
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
CHARACTER*7 D(100),FICH
IF(KK.EQ.0) THEN
TYPE*, ' INPUT NUMBER OF FILE’
TYPE*,', IF NUMB=-0 FILE NAMES ARE SAVED’
READ(5,100) NUMB
100 FORMAT(13)
IF(NUMB.NE.O) THEN
DO 110 I=2,NUMB+1
WRITE(5,120) I

120 FORMAT(' FILE NAME’ ,1I3)
READ(5,125) D(I)
125 FORMAT (A7)
WRITE(5,122) D(I)
122 FORMAT (3X,A7)
110 CONTINUE
FICH=D(2)
ELSE

TYPE*, 'INPUT THE NAME OF THE FILENAMES’
READ(5,101) FICH

101 FORMAT (A7)
WRITE(6,10) FICH :
10 FORMAT (5X, 'DATA ANALYSIS FOR FILE: ',A7)

CALL ASSIGN(2,FICH,0)
READ(2,END=510,ERR=510) D(1)
DECODE(6,160,D(1)) NUMB

160 FORMAT(13)
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READ(2,END-510,ERR=510) (D(I),I=2,NUMB+1)
510 CLOSE(2)

END IF

ELSE

CALL ASSIGN(2,D(KK),0)

READ(2,END=500,ERR=500) N

TYPE*, '***PROCESSING FILE: ',D(KK),N

READ(2,END=500,ERR=500) (IX(I),I=1,N)

READ(2,END=500,ERR=500) (IY(I),I=1,N)
500 CALL CLOSE(2)

ENDIF
RETURN
END

Fokkkkkkkdkkkkkkkkkx ONE SUBROUTINEHFskokkokskskskskstskskorskskokskskskskokobobotbsbskskskskskokk

THIS SUBROUINE IS FOR PLOTTING THE AXIS FOR THE ORIENTATIONAL
CORRELATION FUNCTION

[sNeNeNeRoNe]

SUBROUTINE ONE(MIN1,DIA,IXM,IYM)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
IX0=300
IY0=-350
LENGTH=700
LH=-INT (FLOAT (LENGTH) /2.)
IXI=-1LH
IYI=--1H
C DRAWING A BOX AROUND THE PLOTTING AREA
* CALL BOX(IXO,IYO,LENGTH,LH,LH)

C LABELING THE X-AXIS
XS=(DIA*FLOAT (LH) ) /FLOAT (MIN1)
12=INT(FLOAT(MIN1)/DIA)

I1=-12

YS=XS

JUMP=-1

CALL XAXIS(IXI,IYI,I1,I2,JUMP,XS)
JH=192-1H

JD=IYI-100

WRITE(6,203) JH,JD

203 FORMAT(X,14,',’,I4," U S12 DELTA-X/DIAMETER_')

C LABELING THE Y-AXIS
CALL YAXIS(IXI,IYI,I1,I2,JUMP,YS)

JH=IXI-130
JD=192-1H
WRITE(6,109) JH,JD

109 FORMAT(XI4,',',I14,' U S42 DELTA-Y/DIAMETER_ ')
RETURN
END

c

C FdhdkkFkkrrddrckxks TWO SUBROUTINE H**kkkkkdrsrskidhstdkkik

C THIS SUBROUTINE IS FOR SETTING THE PLOTTING PARAMETERS

C WHEN JAWAB=2.

C

SUBROUTINE TWO

C

C DRAW EDGES AROUND THE PLOTTING AREA
IX0=400
I1Y0=-800
LENGTH=700
LR=INT(FLOAT(LENGTH)/2.)

IXI=-1H
IYI=-1H
JUMP=-100

C DRAWING A BOX AROUND THE PLOTTING AREA
CALL BOX(IXO,IYO,LENGTH,LH,LH)

WRITE(6,10)

10 FORMAT(' -100,-400 D S12 DELTA-X_')



C LABELING THE X-AXIS
CALL XAXIS(IXI,IYI,I1,I2,JUMP,XS)
C LABELING THE Y-AXIS
CALL YAXIS(IXI,IYI,I1,I12,JUMP,YS)
WRITE(6,20)
20 FORMAT(' -200,-400 U S12 R*COS(ANN)_')
WRITE(6,30)
30 FORMAT(' -420,200 U S42 R*SIN(ANN)_U')
RETURN
END

Fkdkkkkkkkkkkkkkk JAW3L SUBROUTINE rskdeskokdokskskboksksksk s

THIS SUBROUTINE IS FOR THE DENSITY MODES ANALYSIS
WHEN JAWAB=3 OR 4.

aAaOO0O0O0

SUBROUTINE JAW34(JAWAB,DIA,MIN3,6MAX3 MINL MAX4)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
MIN3=~400
MAX3=0
MIN4=400
MAX4=0
DO 70 KK=2,NUMB+1
CALL RDATA
CALL LIMM(MINX, MAXX, MINY,MAXY)
IF(MINX.LT.MIN3) MIN3=-MINX
IF(MINY.LT.MIN4) MIN4=MINY
IF(MAXX.GT.MAX3) MAX3=MAXX
IF(MAXY.GT.MAX4) MAX4=MAXY
70 CONTINUE
IXI~-0
IYI=0
LENGTH=700
IF(JAWAB.EQ.3) THEN
JUMP=5
IX0=300
1Y0=350
P1=(FLOAT (MAX3-MIN3))/DIA
I1~-0
ELSE
IX0=1200
IY0=350
JUMP=5
I1=-0
Pl=(FLOAT (MAX4-MIN4))/DIA
ENDIF
LH=0
C DRAWING A BOX AROUND THE PLOTTING AREA
CALL BOX(IXO,IYO,LENGTH,LH,LH)
X8=700./(P1)
12=-INT(P1)
C DRAWING THE XAXIS
CALL XAXIS(IXI,IY¥I,I1,I2,JUMP,XS)
JUMP=2
12-10
¥s=70.
C DRAWING AND LABELING THE YAXIS
CALL YAXIS(IXI,IYI,I1,I2,JUMP,YS)

WRITE(6,10)
10 FORMAT(' -80,134 U S42 NORMALIZED DENSITY_')
RETURN
END

[

C *dkkrkkkkdkkdihkxr FIVE SUBROUTINE wadkskkabskdkobdskhdhoskkhkkddsdk
C

C THIS SUBROUTINE IS FOR SETTING THE PLOTTING AREA AND

C PARAMETERS TO BE USED IN THE X-Y POSITION PLOT OF THE

240



C DATA FILE
c

SUBROUTINE FIVE(MX1,MXX1,MY1,MYY1l,DIA)

COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
IX0-300

IY0=350

LENGTH=700

LH=-INT(FLOAT(LENGTH)/2.)

DO 100 KK=~2,NUMB+1

CALL RDATA

CALL LIMM(MINX,MAXX, 6 MINY MAXY)
IF(MINX.LT.0 .OR. MAXX.GT.512) GOTO 100
IF(MINY.LT.0 .OR. MAXY.GT.480) GOTO 100
IF(MINX.LT.MX1) MX1=MINX
IF(MAXX.CGT.MXX1) MXX1=-MAXX
IF(MINY.LT.MY1) MY1=MINY
IF(MAXY.GT.MYY1l) MYY1l=MAXY

100 CONTINUE

IX1=0

IYI=0

MY1-INT(.8*(FLOAT(MY1)))

MYY1=INT(.8%(FLOAT(MYY1)))

CALL BOX(IXO,IYO,LENGTH,IXI,IYI)

XS=2.*DIA*700./(FLOAT (MXX1-MX1))

JUMP=2

I1=0

I2=INT((FLOAT(MXX1-MX1))/(2.*DIA))

CALL XAXIS(IXI,IYI,I1,I12,JUMP,XS)

WRITE(6,30)

30 FORMAT(' 120,-100 U S12 X-POSITION/2*DIAMETER_')
I2=INT((FLOAT(MYY1-MY1))/(DIA*2.))
YS=2.*DIA*700./(FLOAT (MYY1-MY1))

CALL YAXIS(IXI,IYI,I1,12,JUMP,YS)
WRITE(6,50)

50 FORMAT(' -80,120 U S42 Y-POSITION/2*DIAMETER_')
RETURN
END

[sXeNeNsNeRoNoNe R Ne]

c
G FksekdkdokkkkkhkFkkdrx BOX SUBROUTINE #ssskatsssatbsshsssbdir
c
C THIS SUBROUTINE PLOTS A BOX AROUND THE PLOTTING AREA
C
SUBROUTINE BOX(IXO,IYO,LENGTH,IXI,IYI)
WRITE(6,10) 1XO,IYO

10 FORMAT(' HAU ',I4,',',1I4," OD')
WRITE(6,20) LENGTH,LENGTH,LENGTH,LENGTH
20 FORMAT(' 0,',14,X,14,',',14,X,14,",0 0,0 U")
WRITE(6,40) IXI,IYI
40 FORMAT(X,I14,',',14,' 0")
RETURN
END

C  *kkkkkkkkkkrracrs XAXIS SUBROUTINE sorsbssbskorobsbsssbbskobststkhokostdhkthhhskshst
C
C THIS SUBROUTINE IS FOR LABELING THE XAXIS
C

SUBROUTINE XAXIS(IXI,IYI,I1,I2,JUMP,XS)
L1=-IYI-10

L2=IYI-50

DO 202 I=-11,1I2,JUMP
ISX=INT((FLOAT(I))*XS)

WRITE(6,200) ISX,IYI,ISX,Ll

200 FORMAT(' U ',14,',',I4," D ' 14, " 14,' U")
IS~I1SX-40
WRITE(6,30) IS,L2,I

30 FORMAT(X,I4,','I4," S11 ' ,14,'_")

202 CONTINUE

RETURN
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CONTINUE
RETURN
END

FRAFEIFE*KA*FA**kk*CCIFS PLOTING SUBROUT INE* sk sksksk sk sk drskkobdesrsk ks kb
THIS SUBROUTINE IS FOR THE CCIFS PLOTS.
THE CENTER PARTICLE, FINDING ITS NEAREST NEIGHBORS, FINDING THE
ANGLE BETWEEN THE NNEIG. AND CENTER PARTICLE, THEN TRANSLATE AND
ROTATE THE REST OF THE PARTICLE WITH THE GIVEN ANGLE.

SUBROUTINE CCIFS(ICOUNT)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
DIMENSION NNEIG(2,7)
PI=4 . 0%ATAN(1.0)
PIH=PI/2.
X=FLOAT(IX(1))
Y=-FLOAT(IY(1))
C=(X-256.)%*2 +(Y-192.)**2,
X1=256.
Yi=192.
DO 90 I-1,N
X=FLOAT(IX(I))
Y=FLOAT(IY(I))
Re=(X-X1)**2 +(Y-Y1)**2.
IF(R.LT.C) THEN

C=R
MX=IX(I)
MY=IY(I)

END IF

CONTINUE

DO 25 I=1,N
X=FLOAT(IX(1)-MX)
Y=FLOAT(IY(I)-MY)
RP(I)=SQRT (X*X+Y*Y)
IF(X.EQ.0.) THEN
PHI(1)=PIH

ELSE

“PHI(I)=ATAN2(Y,X)

ENDIF

CONTINUE

CALL ORDER(N)

SX~300./256.

SY=300./192.

DTETA-PIH-PHI(2)

DO 30 J-1,N
X~RP (J)*COS (PHI (J)+DTETA)
Y=RP (J)*SIN(PHI (J)+DTETA)
IX(J)-INT (X*SX)

IY(J)=INT(Y*SY)

CONTINUE

CALL ORDER2(N)

DO 60 I-1,N

IF(IX(I).LT.-300 .OR. IX(I).GT.300) GOTO 60
IF(IY(I).LT.-300 .OR. IY(I).GT.300) GOTO 60
WRITE(6,50) IX(I),IY(I)

FORMAT(® ‘,14,°,".14,' S11 +_U’)
CONTINUE
RETURN

END

C Fdkkkkkkkhkkdhkk PATRC *dkdkkbsrsksrksbdhshkkidkxtk
C ANALYSIS FOR THE TRANSLATIONAL PAIR CORRELATION FUNCTION

[

SUBROUTINE PAIRC(DENSITY,DIA,JR,IXM,IYM)

COMMON KK,NUMB,N,IX(300),1Y(300),RP(300),PHI(300)
COMMON/BLOCK2 /MAXR1 ,NNEIG(2,6),DIV(520),COR(5,2),PN(520)
CALL LIMM(MINX,6MAXX 6 MINY, MAXY)

XMIN=-FLOAT (MINX)

THIS IS DONE BY TAKING
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END
c
C Fddakkobsbkkdbk kb kkkkkkd*k YAXIS SUBROUTINE skcorskskobskskobskskok
c
C THIS SUBROUTINE LABELS THE Y-AXIS

C
SUBROUTINE YAXIS(IXI,IYI,I1,I2,JUMP,YS)
L1=IXI-15
L2=-IXI-80
DO 106 I=-I1,12,JUMP
IYS=YS*(FLOAT(I))
WRITE(6,107) L1,IYS,IXI,IYS
107 FORMAT(' U ',I14,',’,14,' D *,14,',',14," U')
WRITE(6,108) L2,IYS,I
108 FORMAT(X,I4,',’',I4,' S11 *,14,' ")
106 CONTINUE
RETURN
END
C

C Fbdkkskkdkdkdddkskkkkkkkxx YDENS SUBROUTINE skoksbskskskokabsrssskkkorskskkkssksk
C THIS SUBROUTINE IS FOR FINDING THE DENSITY
C IN THE DIRECTION OF THE FRINGE PATTERN PERIODICITY
C
SUBROUTINE YDENS(MIN4,MAX4,DIA)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
JUMP=4
DO 10 I=MIN4,MAX4,JUMP
INCX=I+JUMP
NUM=0
DO 20 J=1,N
IF(IY(J).LT.I.0R.IY(J).GT.INCX) GOTO 20
NUM=~NUM+1
20 CONTINUE
RP(I)=FLOAT(NUM)+RP(I)
10 CONTINUE
RETURN
END
C .
C *ddkdkskdkkkdddkdkkkkx LIMM SUBROUTINE obaksbskskoksbsbsskokobaksesesk dedkadkkok
C THIS SUBROUTINE IS FOR FINDING THE MINIMUM X&Y VALUES AND THE

C MAXIMUM X&Y VALUES IS EACH DATA FILNDING THE PARTICLES' DENSITYE

SUBROUTINE LIMM(MINX,MA¥X,MINY,MAXY)
COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
MINX=-IX(1)
MINY=IY(1)
MAXX=-IX(N)
MAXY=TIY(N)
IF(MINX.LT.0.0R.MINY.LT.0) THEN
TYPE *,’#%% PROBLEMS IX1,IY1l: **' MINX,MINY
ELSE
IF(MAXX.GT.512.0R.MAXY.GT.512) THEN
TYPE *,'%**PROBLEMSIX(N),IY(N) ***’ MAXX,KMAXY
ENDIF
ENDIF
DO 10 I-1,N-1
IF(IX(I+1).GT.512 .OR. IX(I+1).LT.0) THEN
TYPE*, "***POSITION PROBLEMS:***' T+1,IX(I+1),IY(I+1)
ELSE
IF(IY(I+1).GT.480. .OR.IY(I+1l).LT.0) THEN
TYPE*, ' ***POSITION PROBLEMS:**%' T+1,IX(I+1),IY(I+1)
ELSE
IF(IX(I+1).GT.MAXX) MAXX=IX(I+1)
IF(IY(I+1).GT.MAXY) MAXY=-IY(I+1)
IF(IX(I+1).LT.MINY) MINX=IX(I+1)
IF(IY(I+1).LT.MINY) MINY=IY(I+1)
ENDIF
ENDIF

.

243



XMAX=-FLOAT (MAXX)
YMIN=-FLOAT (MINY)
YMAX=-FLOAT (MAXY)
AREAB=- (XMAX -XMIN)* (YMAX-YMIN)
DENSITY=DENSITY+N/AREAB
X=FLOAT(IX(1))
Y=FLOAT(IY(1))
XMIDL=-FLOAT (IXM)
YMIDL=-FLOAT (IYM)
C=(X-XMIDL)**2 .+ (Y-YMIDL)**2.
LN=1
IF(KK.EQ.2) THEN
IRC=520
MAXR1=512
DR=-JR
JS=INT(DR/2.)
DO 80 I=-1,IRC
DIV(I)=0.
PN(I)=0.
RP(I)=0.
PHI(I)=0.

80 CONTINUE
MAXR1=0

C THIS PART WILL INPUT THE CORNERS
COR(1,1)=XMIN
COR(1,2)=YMIN
COR(2,1)=XMAX
COR(2,2)=YMIN
COR(3,1)=XMIN
COR(3,2)=YMAX
COR(4,1)=XMAX
COR(4,2)=YMAX
COR(5,1)=XMIDL
COR(5,2)=YMIDL
PI=4 .*ATAN(1.0)

ENDIF

THIS PART WILL FIND THE CLESEST PARTICLE WITH TO THE POSITION

C

C MX, My.

C

170 DO 175 IC=1,5
IF(LN.GT.7) GOTO 175
X1=COR(IC,1)
Y1=-COR(IC,2)
DO 10 I-1,N
X=FLOAT(IX(I))
Y=-FLOAT(IY(I))
R=(X-X1)**2 +(Y-Y1)**2.
IF(R.LT.C) THEN
C=R
MX=IX(I)
MY=IY(I)
END IF

0 CONTINUE

aoax

IF(IC.NE.5) THEN

X=MX

Y=MY

C=XMAX**2 . +YMAX**2 .
C

C FINDING EACH CORNERS’' MAXIMUM ANALYSIS RADIUS AND ENCLOSED ANGLE

[o
GOTO (191,192,192,191),IC

191 R4=SQRT( (XMAX-X)**2 . +(Y-YMIN)**2.)
R5=SQRT ( (XMIN-X)**2 . +(YMAX-Y)**2 . )

THIS PART WILL FIND THE LARGEST CIRCLE WITH CENTER AT THE
MX,MY THAT WILL BE ENCLOSED IN THE RECTANGULAR AREA
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GOTO 195
192 R4=SQRT ((XMIN-X)**2 +(YMIN-Y)**2.)
R5=SQRT ( (XMAX-X)**2 . +(YMAX-Y)**2.)
195 MAXR=INT(R4)

IF(R5.LT.R4) MAXR=INT(RS)
A=(R4*R4+R5%R5-C) / (R4*R5%2 )
TETA=ACOS (A)
ELSE
(o}
C MAXIMUM CIRLE ENCLOSED BY THE CENTER PARTICLE
C
IN=IN+1
MIX=-MX
MIY=MY
TETA=2.*P1
IF(MX.GT.IXM) MIX=MAXX-MX
IF(MY.GT.IYM) MIY=MAXY-MY
MAXR=MIX
IF(MIX.GT.MIY) MAXR=MIY
END IF
190 RPMAX~=0.
PMAX=0.
C THIS PART WILL FIND THE CHANGE IN X&Y-POSITIONS BETWEEN THE
C EACH PARTICLE AND THE CENTER ONE.
DO 20 I=1,N
X=FLOAT(IX(I)-MX)
Y=FLOAT(IY(I)-MY)
RP(I)=SQRT (X*X+Y*Y)
20 CONTINUE
CALL ORDER(N)
IF(LN.EQ.2) THEN

C
C NEAREST NEIGHBORS TO THE CENTER PARTICLE(NNEIG(I,J))
c
DO 240 I=2,7
NNEIG(1,I-1)=IX(I)
. NNEIG(2,I-1)=IY(I)
240 CONTINUE

END IF
C THIS PART WILL COUNT THE NUMBER OF PARTICLE THAT ARE AT A DISTANCE
C R-DR/2. AND R+DR/2. R IS THE DISTANCE FROM THE CENTER PARTICLE.
c

X0=MX
YO=MY
DO 30 J=JR,MAXR,JR
A8=0.
RADI=J
R1=-RADI-DR/2.
R2=~RADI+DR/2.
DRAD=R2*R2-R1*R1
DIV(J)=DIV(J)+1.
DO 70 I=2,N
IF(IC.GT.4) GOTO 260
X=IX(I)
Y=-IY(I)
GO TO (310,320,330,340),1IC
310 IF(X.GE.X0.AND.Y.GE.Y0) GOTO 260
IF(Y.LT.YO) THEN
C=( (X-XMIN)**2 +(YMAX-Y)**2.)
R7=R5
ELSE IF(X.LT.X0) THEN
C=( (XMAX-X)**2 .+ (Y-YMIN)**2.)
R7=R4
END IF
GOTO 420
320 IF(X.LE.X0O.AND.Y.GE.Y0) GOTO 260
IF(Y.LT.YO) THEN



330

340

420

260
70

R7=R5
C=(XMAX-X)**2 .+ (YMAX-Y)*%2 .
ELSE
R7=R&
Cm (X-XMIN)*%2 4 (Y-YMIN)*%2 .
END IF
GOTO 420
IF(X.GE.X0.AND.Y.LE.Y0) GOTO 260
IF(Y.GT.Y0) THEN
R7=R4
Cm= (X-XMIN)**2 +(Y-YMIN)**2
ELSE
R7=R5
Cm (XMAX-X)#**2  +(YMAX-Y) *%2
END IF
GOTO 420
IF(X.LE.X0.AND.Y.LE.Y0) GOTO 260
IF(Y.GT.Y0) THEN
R7=-R4
Com (XMAX -X)**2 .+ (Y-YMIN)**2
ELSE
R7=R5
C= (X-XMIN)*%*2 +(YMAX-Y)**2,
END IF
A=(R7*R7+RP(I)*RP(I)-C)/(R7*RP(I)*2.)
IF(A.GT.1. .OR. A.LT.-1.) THEN
TYPE*, ' ARGUMENT=' , A
END IF
TETA1~ACOS (A)
IF(TETA1.GT.TETA) GOTO 70
IF(RP(I1).LE.R2 .AND. RP(I).GE.R1) A8=A8+1.
CONTINUE

C CALCULATING THE AREA OF EACH RING

C

30

175

[eNeNeNeNe]

ARCL~DRAD*TETA/2.
PN(J)=PN(J)+A8/ARCL
CONTINUE

- IF(MAXR.GT.MAXR1) MAXR1-MAXR

IF(LN.LE.7 .AND. LN.GT.1l) THEN
MX=NNEIG(1l,LN-1)
MY=-NNEIG(2,LN-1)
MIX=MX
MIY=MY
TETA=2 %P1

IF(MX.GT.IXM) MIX=MAXX-MX
IF(MY.GT.IYM) MIY=MAXY-MY
MAXR=MIX

IF(MIX.GT.MIY) MAXR=MIY
LN=LN+1
GOTO 190

END IF
CONTINUE
RETURN

END

FHKEXIE*FARAF*F* KX H KX H* %% X SUBROUTINE ORDER 2% 5%k ok ok skok ks ek
THIS SUBROUTINE WILL ORDER THE PARTICLES ACCORDING TO THEIR
X AND Y POSITIONS IN ORDER TO MAKE THE PLOTTING LESS TIME CONSUMING

SUBROUTINE ORDER2 :

COMMON KK,NUMB,N,IX(300),IY(300),RP(520),PHI(520)
DO 210 I~-1,N

DO 220 J=I+1,N

IF(IX(J).LT.IX(I)) THEN

JX1=1IX(1)

JX2=1X(J)

JY1=IY(I)
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//U12604A JUOB (12604,499-82-3198), ‘KHALID',

// TIME=(600,00),CLASS=4 ,MSGCLASS=X,NOTIFY=U12604A MSGLEVEL=(1,1)
/*PASSWORD 7777

/*JOBPARM FORMS=8001, ROOM=K

// EXEC FORTVCLG,PARM.FORT='LANGLVL(77),0PT(3),MAP, XREF’, FVREGN=2500K,

// REGION.GO=8840K
//FORT.SYSIN DD *

[eXeXeNeNeNeKeNe Ko s NeNeNeReNe e Xs e NeNe NeNeNeNeNeNoNoNoNeNeNeNo NoNoNeNoNoNoNo NoNo NN o]

EENERX XX SRR XSRS R R R RN R R Kk kK kK kK ok kK ok Kk Ok R kR R kX

THIS PROGRAM IS A MONTE CARLO SIMULATION OF THE LASER FREEZING
OF COLLOIDAL PARTICLES IT FINDS THE 2D PAIR CORRELATION FUNCTION

WRITTEN BY KHALID LOUDIYI

[ XS SRS RS RS RS RS S RS RS R R 2R 2R R R R R R RERE SRR EE]

*** REMEMBER TO CHECK THE FOLLOWINGS BEFORE SUBMITTING ANY JOB

MAKE SURE THE DATA FILE NAME IS RIGHT
FOR INITIAL RUN SET IBIT=1 AND KSTART=1
FOR THE SECOND RUN IBIT=1 AND KSTART=0
FOR THE THIRD RUN IBIT=0 AND KSTART=0

IF IBIT=1 SET NMAX=20,IREP=50

IF IBIT=0 SET NMAX=20,IREP=20

IF KSTART = 1 THEN START FROM LATTICE (NEW DATA FILE)

IF KSTART = O THEN START FROM PREVIOUS CONFIGURATION (DATA FILE
MUST ALREADY HAVE THE LATTICE POSITIONS STORED)

REMEMBER TO CHANGE THE VALUE OF IRAN, IN ORDER TO START AT
DIFFERENT POINTS OF THE RANDOM NUMBER GENERATOR.

LR 2 R RS E RS R RS SRR RSS2 R RS R R 2222 SR SRR RS R E RS S

SETTING THE PARAMETERS FOR THE POTENTIAL CALCULATION

ZEFF=EFFECTIVE CHARGE, SIZEX=LENGTH OF THE BOX

SIZEY=WIDTH OF THE BOX, DEPTH=SEPARATION BETWEEN GLASS PLATES
AREA=AREA OF THE BOX, BOLTZ=BOLTZMAN CONSTANT, TEMPER=TEMPERATURE
ROI=MACROIONS’ DENSITY, DIELC=BACKGROUND DIELECTRIC CONSTANT
CHARGE=ELEMENTARY CHARGE IN CGS., AMP=STRENGTH OF THE INTERACTION
ALPHA=SCREENING LENGTH MULTIPLIED BY INTERPARTICLE SPACING
PARTS=CHARACTERISTIC INTERPARTICLE SPACING

NLOOP=NUMBER OF WELLS IN THE BOX WITH THE CROSS BEAMS ON
NPART=NUMBER OF PARTICLES IN THE MONTE CARLO SIMULATION
PNSQRT=SQUARE-ROOT OF NUMBER OF PARTICLES.

IMPLICIT REAL*8(A-H,D-2)

COMMON CP(2, 100),ENERG( 101, 100)

COMMON SIZEX,SIZEY,ENEW,SY,SX,ALFA

COMMON INUM,IFLAG,IFLAG1,NPART ,NPARTH
DIMENSION DEVI(100),AI1(300)

DIMENSION DN(2,300),AMSQ(2),DD(8),ANR(3,300)
PARAMETER(NMAX=10,PERIOD=2.200)
PARAMETER(IREP=1,IRAN=7 ,DPOTEN=2.,CBOUN=7.)
PARAMETER(IBIT=1,KSTART=0)

NPART=100
SIZEX=22.
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SIZEZ=22.

ZEFF=8000.

DELTAR=. {

DELRH=DELTAR/2.
NPARTH=NPART+ 1
PARTN=FLOAT(NPART)/10.
PNSQRT=SQRT(FLOAT(NPART))
NPC=INT(PNSQRT)
JPOS=INT(PARTN)
NPARTS=NPART*NPART

JUMP= 4

PI=4 .0*ATAN(1.0)
PRD=SIZEX/PNSQRT
HPRD=PRD/2.

APD=PERIOD/2.
AREA=SIZEX*SIZEY
NLOOP=INT(SIZEX/PERIOD)+1
DIAMET=1,07
RADIUS=DIAMET/2.
ROI=FLOAT(NPART)/(AREA*SIZEZ)
BOLTZ=1.381E-16
DIELC=B0O.0

CHARGE=4 .8029E-10
TEMPER=300.0

PARTS=2.0
AMP=(ZEFF*CHARGE )**2./(DIELC*DIAMET*1 E-4)
AMP=AMP/ (BOLTZ*TEMPER)
ALFA=7.0

AMP=20000.

ALFA=3.

CHANGE IRAN TO START WITH DIFFERENT RANDOM NUMBERS
EACH RUN

[eXeXeNsXeKe!

DO 10 I = 1,IRAN

XYZ = RANF(0)

CONTINUE

SX=SIZEX-CBOUN
SY=SIZEY-CBOUN

IF (KSTART .EQ. 1) THEN
ICOR=0

o

C
C SETTING THE STARTING LATTICE CONFIGURATION
o}
DO 12 I = 1,NPC
Y=PRD*FLOAT(I-1)
X1=_.5*FLOAT(1)
IX1=2*INT(X1)
IF(IXY .EQ. I) THEN
HPRDX=HPRD/2.
ELSE
HPRDX=PRD*HPRD/2.
ENDIF
DO 14 J = 1,NPC
X = PRD*FLOAT(J-1)
ICOR =ICOR+ |
XP0OSI=.5 - 1.*RANF(0O)
YPOSI=.5 - 1.*RANF(0O)
CP(1,ICOR)=HPRDX+X+XP0OSI
CP(2,ICOR)=HPRD+Y+YPOSI
14 CONTINUE
12 CONTINUE
ELSE

c READ DATA FROM THE DISK



C STARTING FROM PREVIOUS CONFIGURATION
Cc

REWIND 15

DO 18 I =1,NPART

READ(15,102) cP(1,1),cP(2,1),DEVI(])
102 FORMAT(1OX.F12.7.10X,F12.7;1OX.F12.7)
18 CONTINUE

REWIND 15

ENDIF

Cc
(o PRINT THE INITIAL STATE DATA
C

PRINT 100
100 FORMAT({ 10X. ‘INITIAL STATE’)
DO 16 I=1,NPART
PRINT 101, CP(1,1).CP(2,1),DEVI(I)

101 FORMAT(3(5X,F12.6))
16 CONTINUE
c
C INITILIZE
c
ICOUNT=0
STOTA=0.
ATOTS=0.

DO 105 I=1,NPART
DO 107 J=1,NPART
ENERG(I,J)=0.0
107 CONTINUE
CONTINUE
IF(IBIT.EQ.1) GOTO 63
Do 62 I = 1,300
AIO=. 1*FLOAT(I)
A11(1)=A10-DELRH
DN(1,1)=0.0
DN(2,1)=0.0
62 CONT INUE
AMSQ(1) = O.
AMSQ(2) = O.
3 CONTINUE

o
o

(0]
(o]

MAIN MONTE CARLO’S LOOPS

0000000000

DO 30 LMON=1,NMAX
ICOUNT=ICOUNT+1
DO 25 KMON=1, 100
IREJUT=0

STOTAL=O0.

DO 40 I = 1,NPART
INUM = 1

SAVE THE COORDINATE AND ENERGY

000

cPs1=CP(1,1)
cpPs2=CP(2,1)

CALCULATE THE ENERGY BEFORE MOVE

OO0

IFLAG1=1
ENEW=0.
CALL ENERGY
ENEW=AMP*ENEW
c ENERG(I,I)=ENEW

ENERG(I.1)*ENEH+(DPOTEN'(1.0+DCOS(2.*PI'CP(1.1)/PERIOD)))

(e N el

RANDOM MOVEMENT OF THE PARTICLE, WITH EQUAL PROBABILITY
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0O00

(e NeNe)

010

c70

C

CPTX=CP(1,1)

CPTY=CP(2,1)

FLIP=RANF(O)

CP(1,1) = CP(1,I)+APD*(1.0-2.0*RANF(0))
cP(2,1) = CP(2,1)+APD*(1.0-2.0*RANF(0))
IF (FLIP .LE. 0.33) THEN

CP(2,1)=CPTY

ELSE

IF (FLIP .GT. 0.33 .AND. FLIP .LE. 0.66) THEN
CP(1,1)=CPTX

ENDIF

ENDIF

CHECK YOUR PERIODIC BOUNDARY CONDITION

IF(CP(1,1).GT.SIZEX)CP(1,1)=CP(1,1)-SIZEX
IF(CP(1,1).LT.0.)CP(1,1)=CP(14,1)+SIZEX
IF(CP(2,1).GT.SIZEY)CP(2,1)=CP(2,1)-SIZEY
IF(CP(2,1).LT.0.)CP(2,1)=CP(2,I)+SIZEY

CALCULATE THE ENERGY AND ACCEPT OR REJECT

IFLAG=0

IFLAG1=0

ENEW=0.

CALL ENERGY

ENEW=AMP*ENEW

IF (IFLAG .EQ. 1) GO TO 1010
ESAV=ENEW
ESAV=ENEW+(DPOTEN*(1.0+DCOS(2.*PI*CP(1,1)/PERIOD)))
DEL=ENERG(I,I)-ESAV

IF(DEL .GE. 0.) GO TO 1000
IF(DEL .LE. -10.0) GO TO 1010
DELTA=DEXP(DEL)

TEST=RANF(0)

IF (DELTA .GT. TEST) GO TO 1000

c
C REJECT THIS STEP
C
1

IREJT=IREJT+1

CP(1,1I)=CPSt

CcP(2,1)=CPS2

DO 70 IREE=1,NPART
ENERG(1I,IREE)=ENERG(NPARTH, IREE)
CONTINUE

GO TO 40

C ACCEPT THE MOVE

c
1000
40

[sNeXe X2l

~
o

Cc
502
C

C FIND THE SUM OF ALL PAIRS’

ENERG(I,I)=ESAV
CONT INUE
IF (IBIT .EQ. 1) GO TO 25

INITIALIZE THE MATIX COUNTING THE NUMBER OF PARTICLES
WITHIN AN ANULLUS

DO 78 I = 1,250
DN(1,1)=0.0
CONTINUE

ES = 0.0

EC = 0.0

CONTINUE

POTENTIALS AFTER ONE MC STEP
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DO 50 JU = 1,NPART
STOTAL=STOTAL+ENERG(J,J)

IF (IBIT .EQ. 1) GO TO 50
CALCULATING THE COMPONENTS FOR MEASUREMENTS OF THE SCATTERED
INTENSITY (EXP(I(K.R))), WHERE K IS IN THE X DIRECTION.

o000 O

EC=EC+DCOS(2.*PI*CP(1,J)/PERIOD)
ES=ES+DSIN(2.*PI*CP(1,J)/PERIOD)

OoO00n

SETTING PERIODIC BOUDARIES FOR THE PAIR CORRELATION FUNCTION

XP=CP(1,J)+SIZEX
XN=CP(1,J)-SIZEX
YP=CP(2,J)+SIZEY
YN=CP(2,J)-SIZEY

SETTING PARAMETERS FOR FINDING IF PARTICLES ARE WITHIN
A CERTAIN ANULLUS.

(s XeNeNe]

IFIXT=1
RX1=CP(1,IFIXT)-CP(1,J)
RX1=DABS{RX 1)
RY1=CP(2,IFIXT)-CP(2,J)
RY1=DABS(RY1)
RXP1=CP(1,IFIXT)-XP

RXP 1=DABS(RXP1)
RXN1=CP(1,IFIXT)-XN
RXN1=DABS(RXN1)
RYP1=CP(2,IFIXT)-YP
RYP1=DABS(RYP1)
RYN1=CP(2,IFIXT)-YN
RYN1=DABS(RYN1)
DD(1)=DSQRT((RX1**2)+(RY1%*2))
DD(2)=DSQRT((RX1**2)+(RYP1**2))
DD(3)=DSQRT((RX1*¥*2)+(RYN1**2))
DD(4)=DSQRT((RXP1**2)+(RY 1**2))
DD(5)=DSQRT((RXP1**2)+(RYP1%*2))
DD(6)=DSQRT((RXP1**2)+(RYN1**2))
DD(7)=DSQRT((RXN1**2)+(RY1*%2))
DD(8)=DSQRT((RXN1**2)+(RYP1**2))
DD(9)=DSQRT((RXN1**2)+(RYN1*¥*2))

Cc
C COUTING THE NUMBER OF PARTICLES THAT ARE WITHIN

C AN ANNULUS OF RADIUS DELTAR FOR THE FIRST PARTICLE
C IN THE BOX.

C

DO 65 I=1,250,JUMP

IF (I .GT. 15) THEN

DO 66 K=1,9

IF (DD(K).LE.AI1(I+1).AND.DD(K).GE.AI1(I)) THEN
DN(1,I)=DN(1,1)+1.0

ENDIF
66 CONTINUE
ENDIF
65 CONTINUE
50 CONT INUE

C SUN OF THE TOTAL ENERGY CALCULATED FROM ALL THE MC STEPS
C AND OF THE SQUARE ENERGY.
C

STOTA=STOTA+STOTAL
ATOTS=ATOTS+(STOTAL**2)
IF (IBIT .EQ. 1) GO TO 25



C SCATTERED INTENSITY AND INTENSITY FLUCTUATIONS CALCULATIONS.
(o
AMSQ( 1)=AMSQ(1)+(EC**2+ES**2)/NPARTS
AMSQ(2)=AMSQ(2)+(((EC**2+ES**2)/NPARTS)**2)
(o
C TOTAL NUMBER OF PARTICLES WITHIN A CERTAIN REGION
c

DO 72 I = 1,250
DN(2,1)=DN(2,1)+DN(1,1)
72 CONT INUE

25 CONTINUE
IF (ICOUNT .EQ. IREP) THEN

c

C OUTPUT THE RESULTS

c

c PRINT 104, LMON,IREJT,DPOTEN

c104 FORMAT(S5X. ‘AFTER 100 X‘,14,’ MC STEPS, REJECT = ’/,13,5X,
c /U = ‘ F6.3)

(o TN=100.*FLOAT(LMON)

C

C SPECIFIC HEAT CALCULATIONS

C

c SHEAT=((ATOTS/TN) - ({(STOTA/TN)**2))/(FLOAT(NPART))
c PRINT 106, SHEAT

c106 FORMAT(5X, ‘SP.HEAT = ‘,E16.6)
C501 CONTINUE
ICOUNT=0
[
C THIS PART FINDS THE MIDDLE PARTICLE WITHIN THE BOX
C
COMPAR=2000.
DO 52 I = 1,NPART
DX=CP(1,1)-11.
DY=CP(2,1)-11.
IF(DX.GT.COMPAR .OR. DY.GT.COMPAR) GOTO 52
RDM=DX*DX + DY*DY
IF(RDM.LE.COMPAR) THEN
COMPAR=RDM
I1COMP=1
ENDIF
52 CONTINUE
C FINDING THE DISTANCE BETWEEN THE MIDDLE PARTICLE AND THE
C REST OF THE PATICLES
c
DO S8 I=1,NPART
DX=CP(1,1)-CP(1,I1COMP)
DY=CP(2,1)-CP(2,ICOMP)
AI1(1)=DX*DX + DY=DY
58 CONTINUE
DO 54 I=1,NPART
DO 57 I1I=1+1,NPART
IF(ATY(II).GT.AI1(I)) GOTO 57
C1=CP(1,1)
c2=CcP(1,11)
C3=CP(2,1)
C4=CP(2,11)
Cc5=AI1(I)
C6=AI1(1I)
cP(1,1)=C2
cP(1,11)=C1
cP(2,1)=C4a
CcP(2,1I)=C3
AI1(1)=C6
AI1(II)=C5
57 CONTINUE
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54 CONT INUE
C FINDING DX AND DY AND THE ANGLE BETWEEN EVERY PARTICLE
C AND THE CENTER PARTICLE AND ITS ITS SIX NEAREST NEIGHBORS
c
DO 53 I1=1,7
DO 59 I=1,NPART
DELX=CP(1,1)-CP(1,11)
DELY=CP(2,1)-CP(2,11)
IF(ABS(DELX).GT.8. .OR. ABS(DELY).GT.8.) GOTO 59
IF(DELX.EQ.0.) THEN
IF(DELY.EQ.O.) THEN
ANG=0.
ELSE
ANG=PI/2.
ENDIF
ELSE
ANG=ATAN2(DELY,DELX)
ENDIF
WRITE(15,108) DELX,DELY,ANG
108 FORMAT(3(10X,F12.7))
59 CONT INUE
53 CONTINUE

c DO 81 I=1,NPART
C PRINT 108, CP(1,I),CP(2.1)
€109 FORMAT(2(5X,F12.7))
c81 CONTINUE
IF (IBIT .EQ. 1) GO TO 503
c
C SCATTERED INTENSITY AND INTENSITY FLUCTIONS
c
SQINTN=AMSQ(1)/TN
FINTEN=(AMSQ(2)/TN)-(SQINTN**2)
PRINT 112, SQINTN,FINTEN
112 FORMAT(5X, 'SCAT. INT. = ' ,E16.6,’ FLUC. INT. = ’,E16.6)
c
c
C PAIR CORRELATION CALCULATIONS, USING THREE DIFFERENT WAYS.
c

DO 76 I = 1,250
IF (I .GT. 15) THEN
AI4=AT1(I+1)*AT1(I+1)-ATI1(I)*AT1(1I)
ANR(1,1)=DN(2,1)/(TN*PI*2.*A11(I)*DELTAR)
ANR(2,I)=DN(2,1)*AREA/(TN*PI*AI4*FLOAT(NPART))
ANR(3,I)=AI1(I)*DELTAR*DN(2,1)*2./(TN*AI4)
C PRINT 114, AI1(I),ANR(1,I),ANR(2,I),ANR(3,1I)
c114 FORMAT(’ R=',2X,E12.6,3(5X,E12.6))
WRITE(15,230) AI1(I),ANR(1,I),ANR(2,1),ANR(3,1)
230 FORMAT(2X,F6.2,3(2X,E10.4))
ENDIF
76 CONTINUE
503 CONTINUE
ENDIF
30 CONT INUE
STOP
END
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SUBROUTINE TO CALCULATE ENERGY=AMPLITUDE*(EXP(-ALFA*DIS))/DIS

“".-..t..‘...“““““t“"‘.“-“t‘Ut#‘l‘tl#ll"**

[sEeNeXeNeXe]

SUBROUTINE ENERGY
IMPLICIT REAL*B(A-H,0-2)

COMMON CP(2,100),ENERG( 101, 100)
COMMON SIZEX,SIZEY,ENEW,SY,SX,ALFA
COMMON INUM,1FLAG, IFLAGY ,NPART NPARTH

153
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C IGNORE THE SAME PARTICLE
IF (J .EQ. INUM) GO TO 60
DX=DABS(CP(1,INUM)-CP(1,4))
DY=DABS(CP(2,INUM)-CP(2,4))

FINDING DISTANCES WITH PARTICLES AT THE EDGE OF THE BOX

a0n

IF (DX .GE. SX) THEN
DX=DABS(DX-SIZEX)
ENDIF

IF (DY .GE. SY) THEN
DY=DABS(DY-SIZEY)
ENDIF

INTRODUCING A CUTOFF FOR ENERGY CALCULATION AFTER
A CERTAIN DISTANCE (RANGE OF INTERACTION)

IF(DX.GT.7. .OR. DY.GT.7.) GOTO 60
CALCULATING ENERGY BEFORE A MOVE

ano o000

DIS=(DX*DX)+(DY*DY)
IF(IFLAG1.EQ.1) GOTO 75
IF(IC.NE.1) THEN
ENEW=ENEW+ENERG(J, INUM)
ENERG( INUM, U)=ENERG(J, INUN)
ENERG(NPARTH, J)=ENERG( INUM, J)
ELSE
DIS=(DX*DX)+(DY*DY)
IF (DIS .LE. 48.0) THEN
DIS=DSQRT(DIS)
ENG1=ALFA*DIS
ENG=(DEXP(-ENG1))/DIS
ENEW=ENEW+ENG
ENERG(NPARTH, U)=ENERG( INUM, J)
ENERG( INUM, J)=ENG
ELSE
ENERG(INUM,J)=0.
ENERG(NPARTH,J)=0.
ENDIF
ENDIF
ELSE
CALCULATING ENERGIES AFTER A MOVE
IF{DIS.LE.1.) THEN
IFLAG=1
RETURN
ENDIF
75 IF (DIS .LE. 49.0) THEN
DIS=DSQRT(DIS)
ENG1=ALFA*DIS
ENG=(DEXP(-ENG1))/DIS
ENEW=ENEW+ENG
ENERG(INUM,J)=ENG
ELSE
ENERG(INUM, J)=0.
ENDIF
ENDIF
60 CONTINUE
RETURN
END
//GO.FT15F001 DD DSNAME=U12604A.SPT52E.DATA,UNIT=STORAGE,
// DISP=(MOD,KEEP),SPACE=(TRK, (50,20)),
// DCB=(LRECL=255,BLKSIZE=6080,RECFM=VB)
//GO.SYSIN DD *
//
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