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PREFACE 

Bayesian networks, encountered in the study of 

artificial intelligence, are directed acyclic graphs in 

which nodes represent real life events. Arcs in these 

graphs signify the existence of direct causal influences 

·between two such events. The strengths of these causal 

influences are quantified by conditional probabilities. 

Pearl (1986) developed two algorithms used to update 

Bayesian networks in the face of subsequent information. 

These algorithms permit the use of Bayesian networks as 

methods of managing uncertainty in expert systems. Pearl 

applied probabilities in his proposed algorithms. The use 

of linguistic probabilities provides users of systems based 

on such probabilities a more meaningful method of system 

interaction than through the use of probabilities. 

Consequently, this study develops two algorithms similar to 

those proposed by Pearl, however, these e~ploy fuzzy set 

theory rather than probability theory. 
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CHAPTER I 

INTRODUCTION 

Expert Systems 

Expert System structure 

Computer-based models and systems for decision support 

are beginning to play an important role in decision making. 

An ES which is one of the popular computer-based systems for 

decision support, is a computer application that solves 

complicated problems that would otherwise require extensive 

human expertise. ESs have been used to do a wide variety of 

things, such as diagnosing and prescribing treatments for 

certain infectious diseases, configuring new computer 

installations, and many more. 

To do so, an ES simulates the human reasoning process 

by applying specific knowledge and inferences. Internally, 

an· ideal ES has the following characteristics: extensive 

specific knowledge from the domain of interest; application 

of search techniques; support for heuristic analysis; 

capacity to infer new knowledge from existing knowledge; 

symbolic processing; and an ability to explain its own 

reasoning [Rolston, 1988]. 

Heuristic rules are rules of thumb that suggest the 

procedures to be followed when invariant procedural rules 
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are not available. The very presence of heuristics 

contributes greatly to the power and flexibility of ESs and 

distinguishes ESs from more traditional software. ESs use a 

symbolic representation for the relationship between stored 

information in a knowledge base. Performance of inference 

and heuristic search in ESs heavily depends on the 

manipulation of symbols, e.g., strings of characters (i.e., 

"names"). Thus symbolic processing becomes an important 

issue in ESs. 

ES 

Poses User Inference Knowledge 
User > - > <---> 

Problem interface engine Base 

Response 

Figure 1. Structure of an ES 

A structure of an ES is shown in Figure 1 [Holsapple 

and Winston, 1987]. When using an ES, a user interacts with 

the system via its user interface. Then the inference 

engine which is the problem-solving software, actually 

carries out the reasoning needed to solve a problem. In 
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doing so, it uses the knowledge stored in the knowledge base 

(KB). The KB contains a collection of rules, each of which 

captures the knowledge about how to reason in a specific 

problem area addressed by an ES. When the problem is 

solved, the inference engine reports the solution to the 

user with the explanation of its line of reasoning in 

reaching that solution. 

A rule is one of the schemes to represent the 

knowledge, and other schemes include formal logic, frame, 

semantic net, and script. Formal logic, an outgrowth of 

early philosophical considerations, was one of the earliest 

forms of (formal) knowledge representation used in AI, while 

the nonf ormal ones are more flexible and widely used schemes 

for representing knowledge. The knowledge representation 

schemes is discussed below in detail. 

Knowledge Representation Schemes 

A number of knowledge representation schemes for ES 

have been developed that range from nonformal representation 

schemes such as semantic net, frame, script, and production 

system to formal schemes such as a (first-order) predicate 

logic. A production system, the most commonly used scheme, 

uses rules for knowledge representation. 
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Formal Logic 

The (first-order) predicate logic consists of four 

major components: the "alphabets," a "formal language," a 

set of basic statements called "axioms," and a set of 

"inference rules." The "alphabets" consist of "constants," 

"variables," "functions," "predicates," "connectives," 

"quantifiers," and "delimiters" such as parentheses and 

commas. 

A "constant" is used to represent a specific element 

from the domain, where BLUE representing a blue color is an 

example. A "variable" is used to represent a member of a 

set of domain elements without specifying a specific 

element, where "animal" can be a "variable" whose elements 

include "lion" and "tiger." A "function" describes an 

element by identifying it as an unique result of the 

application of a specified mapping between other elements in 

the domain. For example, "father(JOHN)" which could 

represent a unique individual who is a father of JOHN, uses 

"father" as a "function." 

The "predicate" is used to represent relation within 

the domain such that its value is true if the elements in 

the domain are related in the specified way and false if 

they are not. BIGGER(TOM,BOB) which could represent the 

fact "Tom is bigger than Bob," is an example of the 

predicate. The "variable" can be used as the argument of 

"predicate." However, the first-order predicate logic does 



not allow a "function" or "predicate" to be used as the 

argument of the "predicate." 
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The connective is used to combine predicates. There 

are two types of quantifiers, that is, universal quantifier 

and existential quantifier, where the universal quantifier 

is used to assert that a formula consisting of predicates is 

true for all values of the associated variable and the 

existential quantifier is used to assert that there exists 

at least one value such that the associated formula is true. 

The "atomic formulas" are individual predicates 

together with arguments. The "literals" are atomic formulas 

and negated atomic formulas. The "well-formed formulas 

(WFFS)" are defined recursively: literals are WFFS; WFFS 

connected together by the connectives are WFFS; and WFFS 

surrounded by quantifiers are also WFFS (p.211, 

Winston,1984]. 

A "formal language" associated with first-order 

predicate logic is the set of all formulas that can be 

legally constructed from the "alphabets." A set of 

statements, e.g., Feathers(Squigs) and (Feathers(x) -> 

Bird(x)] for all x, are "axioms," where Feathers(Squigs) 

could represent the fact that Squigs has feathers and 

(Feathers(x) ->Bird(x)] could represent a rule, i.e., if· a 

creature has the feathers then a creature is a bird. 
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Semantic Network 

The concept of semantic networks was introduced by Ross 

Quillian [1968]. It focuses on the graphical representation 

of relations between elements in a domain, where its basic 

components are nodes and links. Node represents domain 

element, while the link represents a (binary) relation 

between elements. For example, the facts that a horse is a 

type of a mammal and a tail is a part of a horse can be 

represented by a semantic networks shown in Figure 2 

[Rolston, 1988]: 

TAIL 
I partof 

HORSE isa ~-> MAMMAL 

Figure 2. An example of 
a semantic network 

Frames 

Minsky [1975] coined the. term "frames" in an attempt to 

represent knowledge in the context of which many ordinary 

events or objects appear. A frame is a collection of 

semantic net nodes and slots that together describe a 

stereotyped object, act, or event, where each slot 



represents a standard property or attribute of the element 

represented by it [Winston,1984]. A frame that provides a 

partial description of the class of objects called CAR is 

shown in Table 1. 

TABLE 1 

AN EXAMPLE OF A FRAME 

Frame: CAR 
Specialization of: LAND VEHICLE 
Model: 

Range: (sedan, convertible, 2-door, station wagon) 
Default: sedan 

Body: steel 
Windows: glass 
Mobility: self-propelled 

Mobility mechanism: has wheels 
Tires: rubber 
Fuel: 

Range: (gasoline, diesel, propane) 
Default: gasoline 

Number of Seats: 
Range: ( 1-9) 

Default: none 

Inheritance is a very important concept in a frame 

system. Any given class of objects can be included in 

7 

several different frames that represent objects at different 

levels of specification. For example, the class "car" can 



be included in the frames named "land vehicle." The "car" 

frame, for example, inherits the attribute of "mobility 

mechanism: has wheels" from the fact that it is a 

specialization of a "land vehicle" frame. The use of 

inheritance enables the reasoning process to be efficient 

primarily because we can avoid rediscovering old facts in 

new situations. 

Script 

8 

A script, which is a specialization of the general 

concept of a frame, is a structure that is used to store the 

prototypes of expected sequences of events [Schank and 

Abelson, 1977]. Many different components including entry 

conditions, script results, props, roles, and scenes can be 

used to construct a script. 

The entry conditions represent conditions that must 

exist for the script to be applicable and script results 

represent conditions that will be true after the events in 

the script have occurred. Props represent slots that 

represent objects that are involved in a script and roles 

represent slots that represent agents (e.g., people) that 

perform actions in a script. Scenes represent specific 

sequences of events that make up a script [Rolston, 1988]. 

A script that could represent the process of driving to a 

theater is shown in Table 2. 



TABLE 2 

AN EXAMPLE OF A SCRIPT 

Script: TRIP TO THEATER 

Props: 
car 
keys 
car door 
parking space 

Roles: 
owner 
valet 

Entry Conditions: 
owner and car 
at start point 

Results: 
owner and car 
at theater 

Scene 1: START UP 
* owner finds keys 
* owner unlocks car door 
* owner starts car 
* owner places car in gear 
* owner releases parking brake 

Scene 2: DRIVE 
* owner finds opening in traffic 
* owner enters traffic 
* owner drives to theater 

Scene 3: VALET CONTACT 
* owner stops car 
* owner exits car 
* owner gives keys to valet 

Scene 4: VALET PARKING 
* valet enters car 
* valet finds empty parking space 
* valet enters parking space 
* valet stops car 
* valet sets parking brake 
* valet exits car 

Production Systems 

A production system, the most commonly used scheme in 

ESs, uses rules for the knowledge representation, where a 

production system consists of: a knowledge base; a rule 

base; and an inference mechanism [Newell and Simon, 1972]. 

One of the advantages of a production system consists in 

storing the knowledge in a uniform and modular form. 

9 
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This makes each production rule essentially a separate, 

independent entity that makes adding, deleting, or modifying 

productions rules very easy. On the other hand, a 

production system has a disadvantage in that the 

independence of production rules makes it very difficult to 

force the execution of a specific sequence of events, even 

though a specific sequence may be desirable in a certain 

application. 

Inference 

An inference is the process of deriving a conclusion in 

logic by either induction or deduction. The techniques 

which are used for inference in a number of knowledge 

representation schemes, are to be presented. First, 

inference based on a formal logic will be discussed. One 

obvious strategy to prove a theorem is to search forward 

from the axioms using rules of inference such as "modus 

ponens." "Modus ponens" states that "if P1 is true, and P1 

being true implies that P2 is true, then P2 is true." 

One of the greatest advantages of representation using 

a formal logic is that a syntactic inference is possible and 

is guaranteed to be valid. A syntactic inference is the 

inference performed by applying a set of well-defined rules 

of inference to a set of facts mechanically without a 

complete understanding of the meanings of facts. However, 

there is no guarantee that the syntactic inference will 
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always produce valuable results. 

Another strategy is to prove a theorem by showing that 

the negation of a theorem cannot be TRUE. This strategy is 

called "proof by refutation" or "proof by contradiction." 

It adopts a rule of inference called "resolution." 

"Resolution" states that "if there is an axiom of the form 

E1 V E2 , and there is another axiom of the form -E2 V E3 , 

then E1 V E3 logically follows," where 'V' and ' - ' denote 

"union" and "not," respectively. 

Second, even if the reasoning based on semantic nets is 

generally straightforward, the inferences are not guaranteed 

to be always valid, primarily because it is based on the 

closed world assumption (CWA). Under the open world 

assumption (OWA) a theorem is assumed to be false if and 

only if (iff) it can be proven false, whereas under the CWA 

a theorem is assumed to be false if no proof of a theorem 

exists [Gallaire and Minker, 1978]. 

Third, a frame system has the advantage in that it 

allows us to reason, to some extent, under the condition 

where the information available is incomplete, and it allows 

us to infer facts that are not explicitly observed. This is 

made possible by a .collection of default values, where 

default values are the expectations regarding an object if 

none is explicitly provided. 

However, one of the difficulties with a frame 

representation is the problem of establishing the default 



values for a frame accurately. This occurs primarily 

because there is no exact agreement among any group of 

observers as to the typical characteristics of any object. 

12 

Fourth, the reasoning on the basis of a script is 

straightforward with two steps, that is, the selection of an 

appropriate script and use of the scenes to inf er the 

existence of unobserved events. However, its reasoning is 

not reliable for predicting future events on the basis of a 

scene. For example, in Table 2, the fact that the valet has 

found a parking space does not necessarily imply that he/she 

will continue to follow the scene and park the car. 

Finally, there are two types of reasoning used in a 

production system: forward reasoning and backward reasoning. 

Forward reasoning (or forward chaining) examines each rule 

in a forward direction, looking first at its premise. When 

a rule's premise is found to match a theorem to be proved, 

the rule is fired and the actions in its conclusion are 

taken. on the other hand, a backward reasoning (or backward 

chaining) looks first at a rule's conclusion, rather than 

its premise. Because the match process can identify many 

matches in a large production system, the process of 

selecting a specific match to be executed, called conflict 

resolutio~, is necessary. 



Dealing With Uncertainty 

Uncertainty is present in many real life problems and 

human experts need to cope with it in decision making. 
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Thus, the ESs which are developed to solve real life 

problems must also be able to reason under uncertainty. The 

uncertainty might be present in the knowledge or in the 

collected data. 

For example, the reasoning under uncertainty in a rule­

based system should provide answers to the following 

questions [Berenji, 1987]: 

1. How should we combine uncertainties in the premises of a 

rule (e.g., A, Bin the Figure 3)? 

2. How should we propagate this uncertainty to the 

conclusion of the rule (e,g., combine with the strength of 

the conclusion, 0.7 in Figure 3)? 

3. If more than one rule results in the same conclusion 

(e.g., rule 1 and rule 2 in Figure 3), how should we combine 

them to get an aggregate measure for supporting (or 

refuting) the conclusion (e.g., conclusion C in Figure 3)? 

In Figure 3, there are two rules resulting in the same 

conclusion c, where rule 1 states that if premises A and B 

are true then C is true, and rule 2 states that if premise D 

is true then C is true. 



Rule 1: A, B 

I I 
0.7 

0.3 0.4 

c 

0.8 

D 
Rule 2 

Figure 3. An example of an inference 
diagram in a rule-based 
system 
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The presence of uncertainty in reasoning systems is due 

to a variety of sources: the "reliability" of information, 

the inherent "imprecision" of the representation language in 

which the information is conveyed, the "incompleteness" of 

information, and the "aggregation" or "summarization" of 

information from multiple sources [Bonissone and Decker, 

1986]. To address these problems, AI researchers have 

developed a variety of approaches for reasoning under 

uncertainty. 

The existing approaches are divided into two classes: 

numeric and non-numeric approaches. The numeric approaches 

represent uncertainty as a precise quantity (scalar or 

interval) on a given scale. The typical numeric approaches 

that are currently available are the certainty factor (CF) 

approach, the Bayesian approach, Dempster-Shafer theory 

(DST), fuzzy set theory (FST) and support logic programming 



(SLOP). On the other hand, the non-numeric approaches do. 

not use a quantity as the representation of uncertainty. 

Instead, they are based on the idea of dealing with the 

reasons for believing and disbelieving the specific 

hypothesis(or event). The typical non-numeric approach is 

the theory of endorsement [Cohen; 1983a, 1983b]. 

15 

There have been a great deal of debates between some AI 

researchers favoring the Bayesian approach and others 

favoring non-Bayesian numerical approaches such as CF 

approach, DST, FST, and SLOP. Their basic lines of 

arguments are as follows: AI researchers favoring the 

Bayesian approach insist that the Bayesian approach is good 

enough to handle the uncertainty, while others favoring non­

Bayesian approaches insist otherwise. 

The non-Bayesian numeric approaches that have drawn a 

greatest deal of attentions are DST and FST. We shall refer 

to the non-Bayesian (numerical) approaches to uncertainty 

management in ESs as uncertain inference systems (UIS'). 

Objectives of the study 

The objective of this study is to develop two 

algorithms for Bayesian networks based on FST. The first 

algorithm is for a tree structure, and the second algorithm 

is for the network. Bayesian (belief) networks are the 

directed acyclic graphs in which the nodes represent 

propositions (or variables), the arcs signify the existence 
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of direct causal influences between the linked propositions, 

and the strengths of these influences are quantified by 

conditional probabilities [Pearl, 1986a]. 

Pearl [1982; Kim and Pearl, 1983; 1985a; 1986a] showed 

that if a network is singly-connected, the probabilities can 

be updated by a local propagation and the impact of new 

information is imparted to all propositions in time 

proportional to the longest path in the network. A singly­

connected network is a network such that there exists only 

one (undirected) path between any pair of nodes. 

A singly-connected network includes a tree structure in 

which each node has at most one parent node and a network 

structure in which each node is allowed to have multiple 

parent node(s). A local propagation denotes a propagation 

which is performed locally. 

Our proposed algorithms employ the linguistic 

probabilities instead of the probabilities. While Pearl's 

algorithms are such that the belief at the root node is 

quantified by prior probability and the strengths of the 

influences between the linked propositions are quantified by 

conditional probabilities, the proposed algorithms use the 

linguistic probabilities to represent the belief at the root 

node and the strengths of the influences between the linked 

propositions. 

Expressions such as "very likely," "quite unlikely," 

and "maybe" to characterize the degree of likelihood of a 



statement are called the linguistic probabilities. The 

linguistic probabilities are employed in FST. AI 

researchers favoring FST argued that the probabilities 

require an unreasonable level of precision, whereas the 

linguistic values do not. 

17 

Wise [1986; Wise and Henrion, 1986] developed a 

framework for comparing UIS's to the probability theory 

supplemented by the principle of maximum entropy/minimum 

cross-entropy (ME/MXE). Wise's framework is justified 

mainly by the work by Cox [1946] who demonstrated that the 

axioms of probability are the necessary consequences of the 

intuitive properties of measures of belief. 

Based on the argument that the second-order probability 

theory capable of handling any input data is not 

computationally feasible, Wise proposed the use of the 

(first-order) probability theory supplemented by ME/MXE, 

instead of the second-order probability theory. The 

second-order probability distribution deals with the 

probability measures on the space of first-order (i.e., 

ordinary) probability distribution. 

The simulation model is adopted in the development of 

new algorithms, where the simulation model is developed 

based on Wise's framework. The simulation model is used in 

choosing the adequate operations performed on the linguistic 

probabilities. A part of the proposed algorithms, that is, 

a proposed scheme for a linguistic approximation is 
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implemented in C language. 



CHAPTER II 

EXISTING APPROACHES TO UNCERTAINTY MANAGEMENT 

IN EXPERT SYSTEMS 

Theory of Endorsement 

The typical non-numeric approach is the theory of 

endorsement (Cohen and Grinberg, 1983a; Cohen and Grinberg, 

1983b]. The theory of endorsement may be regarded as the 

extension of a truth maintenance system (TMS) developed by 

Doyle (1979]. TMS is a subsystem for performing a problem 

solving by recording and maintaining the reasons for 

beliefs. The basic line of arguments for the non-numeric 

approaches is that the reasoning programs must be able to 

make assumptions and subsequently revise their beliefs when 

discoveries contradict these assumptions. 

The fundamental problems with numerical approaches are 

(Cohen and Grinberg, 1983a]: (1) Numerical approaches are 

not able to treat different kinds of evidence differently. 

For example, numerical approaches are not able to 

discriminate eyewitness evidence from circumstantial 

evidence, because evidence is nothing more than a 

proposition with an associated number; and (2) Numerical 

approaches are not able to treat the same evidence 
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differently in different contexts. 

Suppose that a man was convicted on the basis of 

eyewitness testimony of a crime committed by another man of 

very similar appearance. Eyewitness testimony relies on 

some assumptions, one of them could be that individuals have 

distinctive appearances. If that assumption is violated, 

the evidence loses its reliability. 

TMS stores the justification at each node, where the 

justification is a record of the nodes on which each node 

depends. However, TMS makes little differentiation between 

kinds of justifications, i.e., it is primarily interested in 

whether a node has the support, not in what kind of support 

it has. The theory of endorsement was developed hoping that 

this weakness of TMS can be remedied. 

The crux of the theory of endorsement is to deal with 

the reasons for believing or disbelieving a hypothesis. 

Endorsements are records of reasons for believing or 

disbelieving a hypothesis: the reasons for believing being a 

positive endorsements and the reasons for disbelieving being 

the negative endorsements [Cohen and Grinberg, 1983a]. 

This theory has four components: endorsements, 

heuristics for ranking endorsements, heuristics for 

propagating endorsements over inference, and heuristics for 

discounting uncertainty. Endorsements can be propagated 

over inferences, but in a manner that is sensitive to the 

context of the inference. This theory was implemented in a 

program called SOLOMON which does a decision making for 



portfolio investment. 

Several drawbacks of the theory of endorsement have 

been pointed out by a number of researchers including 

Bhatnagar and Kanal (1986]. The main drawback is.how to 

differentiate between two competing hypotheses with 

different bodies of endorsements and select one over the 

other. This problem can occur due to the fact that we 

cannot assign any strict rank ordering to endorsements. 
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One suggested way to overcome this problem is to weigh 

endorsements against each other individually by a pairwise 

ranking, which increases the computational complexity. 

Cheeseman (1985] who is one of the AI researchers strongly 

defending the probability theory against non-Bayesian 

approaches, showed that all the basic ideas of this model 

can be explained by a deduction in the theory of relative 

probabilities. 

Bayesian Approach 

Table 3 (Berenji, 1987] summarizes the advantages, 

disadvantages and applications of the existing numeric 

approaches to uncertainty management in ESs. In AI 

community, there have been a number of debates between 

researchers favoring the Bayesian approach and those 

favoring non-Bayesian approaches. 

Researchers including Zadeh [1986b] and Shafer (1976] 

argued that the point-valued probability is inadequate to 

represent the uncertainty. They also argued that another 
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TABLE 3 

COMPARISON OF EXISTING APPROACHES 

Approach Advantages Disadvantages Applications 

Original * Fast,simple * Ad hoc method *MYCIN,EMYCIN-
CF * Domain experts* is not based based and many 
approach pref er CF on a strong other expert 

more theory systems 
* inconsistent 

Revised * Improves CF * Use a weaker *MYCIN,EMYCIN-
CF approach model's CF theory than based,and many 

calculation the original other expert 
CF method systems 

Heckerman's* consistent * is based on *New, not any 
interpre- with probabi- strong inde- applications 
tation of CF lity axioms pendence reported so 

assumption far 
* Seldom applicable 

Bayesian * A sound and * Not expressive* PROSPECTOR 
probabili- formal theory enough to and many 
stic * not too complex easily handle others 
method to use all forms of 

uncertainty 

Dempster- * capability to * Dempster's rule* GISTER, and 
Shafer explicitly not applicable many other 
theory represent to conflicting 

ignorance evidences 

Possibility* Linguistic * Membership * PRUF, REVEAL 
theory and terms could be functions are SPII, RUM, 
fuzzy logic mathematically context depen- and many 

represented dent others 

Support * provides a * independence * No applica-
logic logic based assumptions tion reported 
programming treatment of required in so far 

value terms most cases 
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problem with the Bayesian approach consists in how to 

estimate the probabilities provided that we do not have 

sufficient information. On the other hand, others including 

Cheeseman, Pearl, Cox, Fox, and Lemmer have strongly 

defended the Bayesian approach by showing the inadequacy of 

non-Bayesian approaches. 

Zadeh [1986b] who introduced FST in 1965 defended FST 

by illustrating five examples which, he claims, do not lend 

themselves to solution by the probability theory. Some of 

the examples are as follows: (1) An urn contains n balls of 

various sizes. Several of the balls are large. What is the 

probability that a ball drawn at random is large; and (2) 

Given the proposition "most swedes are tall," find the 

fraction of Swedes who are very tall. 

Cox [1946] demonstrated that the axioms of probability 

are the necessary consequences of intuitive properties of 

measures of belief. That is, if a set of simple properties 

is assumed, the axioms of the probability theory must be 

accepted. Similarly, Horvitz et al. [1986] showed that the 

non-Bayesian approaches do not satisfy some of the intuitive 

properties of measures of belief. In response to Zadeh 

(1986b], Cheeseman [1986] showed how we can solve these 

problems FST claims the probability cannot_ solve, using the 

second-order probability theory. 

Cheeseman (1985] listed the following misconceptions 

held by researchers claiming the inadequacy of the 

probability theory [Cheeseman, 1985]: 
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(1) Probability is a frequency ratio. 

(2) Bayesian analysis requires a large amount of data. 

(3) Prior probabilities assume more information than given. 

(4) Numbers are not necessary. 

(5) More than one number is needed to represent uncertainty. 

(6) The Bayesian approach doesn't work. 

Fourth misconception is the criticism of non-numeric 

approaches, and fifth misconception is the criticism of DST. 

DST employs interval-valued probability to represent the 

uncertainty. 

In particular, he advocated the probability as a 

measure of belief rather than a frequency ratio, since a 

frequency interpretation of the probability severely 

restricts the domain of its applicability. In fact, even 

among the statisticians, there has been a disagreement on 

the definition of probability for a long time, where some 

statisticians favored the definition of probability as a 

measure of belief while the others favored the definition of 

probability as a frequency ratio. 

The definition of probability as a frequency ratio is 

as follows (Cheeseman, 1985]: 

"The probability of an event(hypothesis) is the ratio of the 

number of occurrences in which the event is true to the 

total number of such occurrences." 

This definition requires a large total number of such 

occurrences which may not be possible to obtain in a number 

of domains, especially medicine. This is one of the 
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arguments against the probability theory used by researchers 

favoring non-Bayesian approaches. 

On the other hand, the definition of probability as a 

measure of belief is as follows [Cheeseman, 1985]: 

"The (conditional) probability of a proposition given a 

particular evidence is a real number between zero and one, 

that is a measure of an entity's belief in that proposition, 

given the evidence." 

Bayes' theorem which is a core of the Bayesian 

approach, provides a method for updating the prior belief in 

a hypothesis H, represented as P(H), in light of a new 

evidence E to obtain the posterior belief P(HIE): 

P(Hj) *P(E I Hj) 

Bayes' theorem requires the probabilities P(Hi) and P(EIH;) 

to be known or estimated in advance. This is one of the 

major problems with the Bayesian approach, in that it 

requires a huge amount of statistical data to determine 

these probabilities. 

The Bayesian approach has been implemented in a number 

of ESs including an ES called PROSPECTOR to determine the 

major types of ore deposits present in a geological site. 

Principle of Maximum Entropy/Minimum Cross Entropy CME/MXE) 

ME was first applied by Jaynes [1979] to the 

statistical mechanics problem of predicting the most likely 



state of a system given the physical constraints (e.g., 

conservation of energy). Jaynes also used this method to 

provide the prior probabilities for the Bayesian analysis. 

This method was applied to the problem of finding the best 

approximation to a given probability distribution based on 

the knowledge of some of the joint probabilities. This 

method was employed by an ES called PROSPECTOR. 
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ME can be used in determining the prior probabilities. 

Suppose we know that a system has a set of possible states 

X; with unknown probabilities p*(X;), and you have the 

information about constraints on the distribution p*. 

Suppose you need to choose a distribution P that is the best 

estimate of p* given the available information. ME states 

that, of all the distributions that satisfy the constraints, 

we should choose the one P with the largest entropy, where 

entropy is represented by - ~;P(X;)* log(P(X;)) [Shore and 

Johnson, 1980]. 

It was argued that ME gives the most unbiased 

probability est~mates given the available evidences 

[Cheeseman, 1983; Jaynes, 1979; shore and Johnson, 1980]. 

Cheeseman (1983] introduced a new method for computing the 

ME probability of an event of interest, given the specific 

evidence about the related events, and subject to any linear 

probability constraints. His method was designed to avoid 

the combinatorial computational time inherent in other 

methods for computing ME values, without imposing strong 
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restrictions on the constraints that can be used. 

MXE is a generalization that applies in cases when a 

prior distribution P that estimates p* is known in addition 

to the constraints. Cross-entropy is defined as a measure 

of how much information one would have to receive to change 

one distribution into another. MXE states that, of the 

distributions that satisfy the constraints, we should choose 

the distribution Q with the least cross-entropy, where 

cross-entropy is defined as ~iP(Xi)*log[Q(Xi)/P(Xi)]. 

Minimizing cross-entropy is equivalent to maximizing entropy 

when the prior probabilities are uniformly distributed. 

Unlike the entropy maximization, cross-entropy minimization 

generalizes correctly for continuous probability 

distribution. 

Shore and Johnson [1980] showed that ME/MXE are 

uniquely correct methods for inductive inference when new 

information is given in the form of expected values. The 

* form of expected values includes ~i P (X;) * fk (X;) =a or a < 

* I:; P (X;) * fk (X;) < b, where a and b are constants, X; denotes 

t * I I the possible state, P (Xi) denotes the unknown probability, 

and fk denotes the mapping (function) from X; to the 

probability. 

However, there have been a number of researchers 

including Grosof [1986b] criticizing ME in that ME minimizes 

"information" in the rather specialized sense of Shannon 

information measure. 
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Bayesian Networks 

Gordon and Shortliffe [1984, 1985] who developed a CF 

approach, argued that the application of DST to the domain 

of MYCIN is more adequate than a CF approach. CF approach 

is the first non-Bayesian approach developed, where MYCIN is 

known to be the first ES developed based on a CF approach. 

They [1984] favored DST because of the drawbacks of Bayesian 

approach and of a CF approach. CF approach and DST is 

presented in detail later. 

Gordon and Shortliffe [1985] studied the application of 

DST to a reasoning in a tree-structured hierarchy of 

hypotheses. Pearl [1986c], who is one of the AI researchers 

favoring the Bayesian approach, showed that the Bayesian 

approach performs as well as DST in a tree-structured 

hierarchy of hypotheses. 

Bayesian networks are the directed acyclic graphs in 

which the nodes represent propositions, the arcs represent 

the existence of direct causal influences between the linked 

propositions, and the strengths of these influences are 

quantified by the conditional probabilities. 

The underlying assumption of Bayesian networks is the 

conditional independence defined below. A and B are 

conditionally independent of C iff P(A and Bl C)= P(A!C)* 

P(B!C). This underlying assumption has been criticized as 

the major weakness restricting its applicability to AI 

problems, primarily because this assumption is not 
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guaranteed to be true in the real world applications. 

Pearl [1986a; Kim and Pearl, 1983; 1985a; 1986a] 

presented the algorithms dealing with propagating the impact 

of new information through a singly-connected network with 

the time complexity of O(M), where M= the length of the 

longest path in the network, in such a way that when 

equilibrium is reached, each proposition will be assigned a 

measure of belief consistent with the axioms of the 

probability theory. A singly-connected network is a network 

in which there exists only one directed path between two 

nodes if there exists the causal relationship between two 

nodes. 

Metaprobability Theory 

Metaprobability theory is a higher order probability 

theory including the second-order probability theory. The 

second-order probability theory deals with probability 

measures on the space of first-order probability 

distribution which is defined over some domain state. A 

number of AI researchers including Zadeh criticized first­

order (ordinary) probability theory mainly in that it does 

not represent ignorance. 

On the other hand, Fung and Chong [1986] showed that 

the metaprobability theory can represent the ignorance. 

They concluded that the metaprobability th~ory is of 

practical use and it may perform better than DST in certain 



applications. These conclusions were based on the 

experiment to compare the performance of metaprobability 

theory with that of DST in updating the beliefs with an 

evidence. For the readers interested in the details of 

their experiment, refer to [Fung and Chung, 1986]. 
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Similarly, Wise, who developed a framework for 

comparing UIS's to the probability theory, argued that the 

second-order probability theory is capable of handling the 

generalized input including "imprecise" information which is 

not adequately dealt with by the first-order probability 

theory. An example of "imprecise" information could be "it 

will probably rain tomorrow." Cheeseman [1986] also made a 

similar argument. 

However, the second-order probability theory may not be 

computationally feasible in certain applications, while it 

offers all the advantages of the Bayesian approach. In 

fact, simply forming the first-order distribution to model 

an expert's belief state may be only marginally feasible, 

let alone forming a second-order distribution over all 

possible first-order distributions. 

certainty Factor (CF) Approach 

The CF approach is the first non-Bayesian approach 

proposed and developed by Buchanan and Shortliffe [1984a, 

1984b, 1984c]. It was implemented in MYCIN which is known 

to be the first ES to diagnose bacterial infections and 
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prescribe treatment for them, and also implemented in EMYCIN 

which is an ES shell developed out of MYCIN. The work on 

MYCIN was the part of Stanford Heuristic Programming Project 

which began in 1960's. The programming language used in 

developing MYCIN is LISP which is a well-known symbolic AI 

language. 

CF represents the measure of the belief update due to 

the new evidence. The value of CF lies between -1 and 1. 

The positive (negative) CF value indicates that the evidence 

confirms (disconfirms) the hypothesis to certain degrees. 

Horvitz and Heckerman [1986] emphasized the difference 

between the measure of absolute belief and measure of belief 

update. Their criticism of CF consists in that many ESs 

employing CF approach described CF as the measure of 

absolute belief at the knowledge acquisition stage, although 

CF in fact represents the measure of change in belief. 

There have been a number of other criticisms of CF 

approach: (1) Unlike the probability theory, CF approach is 

an ad hoc approach which is not based on a strong theory; 

and (2) In its combining schemes of aggregating several 

evidences, the assumption of maximum correlation between two 

evidences is implicitly used, although that assumption may 

not hold in some applications. On the other hand, CF 

approach is intuitively appealing to practitioners because 

of its simplicity, thus has been employed by a large number 

of ESs. 
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There are three variants of CF approach: the original 

CF approach, the revised CF approach, and Heckerman's 

interpretation of the CF approach. After the original CF 

approach was introduced by Buchanan and Shortliffe (1984b], 

they [1984c] revised the original CF approach to remedy its 

weaknesses. Heckerman's interpretation of the CF approach 

is a result of redefining the revised CF approach to remedy 

inconsistencies inherent in the revised CF approach. 

Original CF approach 

CF(H,E), MB(H,E), and MD(H,E) are defined below, where 

CF(H,E) denotes the net change in belief of a hypothesis H 

due to a new evidence E, MB(H,E) is an increased belief of a 

hypothesis H due to a new evidence E, and MD(H,E) is an 

increased disbelief of a hypothesis H due to a new evidence 

E: 

• CF(H,E)=MB(H,E)-MD(H,E) 

• MB(H,E)-[ l 
(max((P(HIE),P(H)]-P(H)]/ (1-P(H)] 

if P(H)=l 

otherwise 

• MD(H,E)-[ l 
[P(H)-min(P(HIE),P(H)]]/P(H) 

if P(H)=O 

otherwise 

Its characteristics are as follows: 

• 0 <= MB(H,E) <= 1, 0 <= MD(H,E) <= 1, and -1 <= CF(H,E) <= 

1; 

• MB(H,E)= 1, MD(H,E)= O, CF(H,E)= 1 if H is shown to be 

certain; 
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• MB(H,E)= O, MD(H,E)= 1, CF(H,E)= -1 if the negation of H 

is shown to be certain; 

• MB(H,E)= o if H is not confirmed by E; 

• MD(H,E)= o if H is not disconfirmed by E; 

• CF(H,E)= o if E neither confirms nor disconfirms H. 

The combining functions of CF approach are shown below, 

where H, H1 , and H2 denote the hypotheses, and E, E1 , and E2 

denote the evidences (Buchanan and Shortliffe, 1984b]. 

r-0 
-1 

if MD(H,E1 and E2)=1 

L. MB(H,E1)+ [MB(H,Ez) * (1-MB(H,E1)]] 

otherwise 

r- 0 
-1 

if MB(H,E, and E2)=1 
• MD(H,E1 and Ez)= 

L MD(H,E1)+ [MD(H,Ez) * [l-MD(H,E1)]] 

otherwise 

• MB(H, and Hz, E)= min(MB[H,,EJ ,MB[Hz,E]) 

• MD(H, and Hz, E)= max(MD[H,,EJ ,MD[Hz,E]) 

• MB(H1 or Hz, E)= max(MB[H1 ,EJ ,MB[Hz,E]) 

• MD(H1 or Hz, E)= min(MD[H11 E] ,MD[H2 ,E]) 

• If the truth or falsity of a piece of evidence E1 is not 

known with certainty, but a CF (based on prior evidence E) 

denoted by CF[E1 ,EJ is known reflecting the degree of belief 

. -. * * in E11 then if MB [H, E1 ] and MD [H, E,J are the degrees of 

belief and disbelief in H when E1 is known to be true with 

certainty then the actual degrees of belief and disbelief 

are given by: 

* MB[H, E,J= MB [H, E1 ] *max (0, CF[E11 E]) 



* MD[H,E1]= MD [H,E,J*max(O,CF[E11 EJ). 

Buchanan and Shortliffe (1984b] admitted the problem 

with the combining scheme to aggregate two evidences 

associated with a hypothesis H, in that it is built around 
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the intuitive grounds rather than the theoretical grounds. 

They concluded that CF approach have not avoided many of the 

problems inherent with the Bayesian approach, but it was an 

approach such that judgmental knowledge can be efficiently 

represented and utilized for the modeling of medical 

decision making, especially in contexts where (a) 

statistical data are lacking and (b) conditional 

independence can be assumed. 

On the other hand, Adams (1984] showed that a 

substantial part of the CF model is equivalent to the 

probability theory with the assumption of independence. His 

work implies that although the CF approach is the result of 

attempts to develop an alternative approach to the 

probability theory, the CF model can be reduced to a special 

case of the probability theory. To a certain extent, this 

result may strengthen the argument for the Bayesian 

approach. 

Revised CF Approach 

The original CF approach suffers from t~e following 

drawbacks (Buchanan and Shortliffe, 1984c]: (1) the 

potential for a single piece of negative (positive) evidence 
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to overwhelm several pieces of positive (negative) evidence; 

and (2) the computational expense of storing both MB's and 

MD's, rather than cumulative CF's. The revised CF approach 

was developed to remedy these drawbacks (Buchanan and 

Shortliffe, 1984c]. 

The first drawback of the original CF approach can be 

illustrated in the following example. Consider eight rules 

all supporting a hypothesis of interest with CF's in the 

range 0.4 to 0.8. Suppose that the combination of CF's of 

these eight rules supporting a hypothesis of interest 

results in a CF of 0.99. Also suppose that there is a 

single disconfirming rule with CF= 0.8. Then the net 

support for a hypothesis of interest would be CF= MB-MD= 

0.999-0.8= 0.1999. This result is counterintuitive and also 

occasionally led MYCIN to reach incorrect inferences, 

especially where the absolute value of final CF less than, 

say, 0.2 is eliminated from further consideration. In 

MYCIN, in order to make inferences efficient, a final belief 

below the established threshold, e.g., 0.2, is eliminated 

from further consideration. 

In the revised CF approach, the definition of CF is 

unchanged for any single piece of evidence and that the 

combining function is unchanged when both CF's are of the 

same sign. The change occurs only when two CF's of opposite 

sign are co.lllbined. The definition of revised CF is: CF= 

(MB-MD)/ (1-min(MB,MD)] 
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The propagation of uncertainty is accomplished by the 

repeated applications of two combination schemes, that is, 

parallel combination and sequential combination (Heckerman, 

1986). The parallel combination scheme is as follows: 

I CF {H, E,) 

IH CF {H, E2) 
E2 ___ _. 

=========> 
CF {H, E1 and E2 ) 

E1 and E2 > H 

Let X= CF{H,E1), Y= CF{H,E2), and Z= CF{H, E1 and E2). 

z = t X+ Y- X*Y X,Y >= 0 

{X+Y)/(1-min{IXI, IYl)J X,Y of opposite sign 

X+ Y+ X*Y X,Y < 0 

The sequential combination scheme is as follows: 

CF(E,E*) CF(H,E) 
E* > E > H =======> ------> H 

* Let W= CF{E,E ), X= CF(H,E), Y= CF(H,not E), and Z= 

* CF {H, E ) • 

-[ 
W*X 

z -W*Y 

w >= 0 

w < 0 

Heckerman's Interpretation of CF Approach 

Heckerman (1986) redefined CF in order to eliminate the 

inconsistency between the definition of the revised CF and 

its combining schemes. The redefined CF is called 

Heckerman's interpretation of the CF approach. Heckerman 

argued that it is inappropriate to regard the combining 

schemes as approximated combination rules for the CF in that 



there are inconsistencies between the definition of CF and 

the combining schemes. 

Consider a hypothesis H and an evidence E. Let P(H) 

and P(HIE) denote the prior, and posterior belief (or 
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probability) in H, respectively. Since CF(H,E) is a measure 

of the change in belief in H given E, it is reasonable to 

expect that there is some function f such that P(HIE)= 

f(CF(H,E), P(H)). After a number of manipulations on Bayes' 

theorem, we can obtain the following equation: 

P(EI H,e) 
O(HI E,e)= O(HI e) (1) 

P(EI -H,e) 

where O(X)= P(X)/ (1-P(X)), H= a hypothesis, e= prior 

evidence, and E= new evidence. 

The ratio in equation (1) is called a "likelihood 

ratio." An· equation (1) can be written as O(HIE,e)= 

L(H,E,e)* O(HI e), where L(H,E,e) denotes a likelihood 

ratio. The L(H,E,e) represent a belief update, thus can be 

considered as a potential probabilistic interpretation for 

CF. The only difficulty with L is that it ranges from o to 

infinity (oo) rather than from -1 to 1. We can resolve this 

problem easily by setting CF(H,E)= F(L(H,E,e)) where Fis 

some function which maps L into [-1,1]. 

One possible choice for the function F is as follows: 

r- (X-1) I x 
F1 (X) = 11-J 

L X-1 

x >= 1 

x < 1 

This function generates the following probabilistic 
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interpretation for CF, after Bayes' theorem is applied: 

I [P(HIE)-P(H)]/[P(HIE)*(l-P(H))] for PCHIE) > P(H) 
_J 

L [P(HIE)-P(H)]/[P(H)*(l-P(HIE)] for P(H) > P(HIE) 

It can be shown that any monotonically increasing 

function F which satisfies F(l/X)= -F(X) and F(~)= 1 

generates a valid probabilistic interpretation for a CF. A 

function F is called a monotonically increasing function if 

and only if for x1 <= x2 , F(x1) <= F(x2). This implies that 

this redefinition accommodates an unlimited number of 

probabilistic interpretations for the CF. Heckerman's work 

consolidated an argument for the probability theory by 

demonstrating a clear relationship between the CF and the 

probability theory. 

Dempster-Shafer Theory (DST) 

DST was introduced by Shafer [1976] as an extension of 

the work of Arthur Dempster [1967] in the probability 

theory. As discussed earlier, even Gordon and Shortliffe 

[1984] who developed the CF approach defended DST as an 

alternative approach to the Bayesian approach and the CF 

approach. Furthermore, they suggested that DST is more 

appropriate than the Bayesian approach and the CF approach 

in especially medical domain due to its ability to model the 

narrowing of the hypothesis set with the accumulation of 

evidences. 
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Suppose a physician is considering a case of 

cholestatic jaundice for which there is a diagnostic 

hypothesis set of hepatitis(hep), cirrhosis(cirr), 

gallstone(gall) and pancreatic cancer(pan). In DST, this 

set is called "a frame of discernment", denoted FD. Each 

hypothesis in FD corresponds to a one-element subset called 

a "singleton." The hypotheses in FD are assumed mutually 

exclusive and exhaustive. Subsets A1 ,A2 , ••• ,An are defined 

to be mutually exclusive if Ai n Aj= ¢for every i != j. 

Subsets A1 ,A2 , ••• ,An are defined to be mutually exhaustive if 

A1 U A2 U .•• U An= W, where W denotes the whole set. 

DST uses a number in the range [O,l] to indicate the 

belief in a hypothesis given a piece of evidence. The 

impact of each distinct piece of evidence on the subsets of 

FD is represented by a function called a "basic probability 

assignment (bpa)" which is a generalization of the 

traditional probability density function. 

The "bpa," denoted "m," assigns a number in the range 

[O,l] to all subsets of FD such that the numbers sum to 1, 

whereas the traditional probability density function assigns 

a number in the range [O,l] to every "singleton" of FD such 

that the numbers sum to 1. 

A belief function denoted Bel, assigns to the subset A 

of FD the sum of the beliefs committed exactly to every 

subset of A. The quantity 1-Bel(Ac) expresses the 

plausibility of A, i.e., the extent to which the evidence 
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allows one to fail to doubt A, where 'c' denotes the 

complement. Thus, the information contained in Bel 

concerning a given subset A may be expressed by the interval 

(Bel(A), 1-Bel(Ac)J. We can argue that DST allows the 

belief to be expressed as the interval, contrary to the 

probability theory in which a single-valued probability is 

assigned to each event. 

In the Bayesian approach, Bel(A)+ Bel(Ac)= 1, thus the 

width of the interval (Bel(A), 1-Bel(Ac)] becomes o. On the 

other hand, in DST, the width of the interval is usually not 

O and can be regarded as a measure of the belief that is 

committed to neither the hypothesis A nor the negation of 

the hypothesis A, i.e., a measure of ignorance. The fact 

that DST allows the explicit representation of ignorance 

unlike the Bayesian approach is regarded as one of the major 

advantages of DST over the Bayesian approach. 

The scheme to combine multiple evidences is presented 

below [Buchanan and Shortliffe, 1984c]. Given two belief 

functions, based on two observations, but with the same 

frame of discernment, Dempster's (combination) rule computes 

a new belief function, where mass1 , mass2 and mass3 represent 

bpa•s. 

A,B,C e FD, mass3 (C)=(l-K)-1 ~ mass1 (A)*mass2 (B) 
AnB=C 

where K= ~ mass1 (A)*mass2 (B) < 1 
AnB=~ 

After Dempster's combining scheme is applied, it is 
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possible for the empty set to have the positive bpa. 

Dempster•s rule states that this problem can be remedied by 

the normalization of assigned values. The normalization 

procedure reassigns the bpa's which are assigned to null 

sets, to the non-empty sets. However, the normalization 

procedure used in Dempster•s rule has been criticized by 

several AI researchers including Zadeh [1986a] in that it 

causes inconsistency. 

Zadeh (1986a] viewed DST as the application of a 

retrieval technique to the second-order relations in the 

context of a relational database. The second-order relation 

is defined as the relation in which the data entries are 

relations in first normal form. A relation is said to be in 

first normal form iff it satisfies the constraint that it 

contains atomic values only. 

Consider a relation EMP3: (Name, Age(car)), where the 

query is to determine the fraction of employees who have the 

cars whose ages are between 2 and 4. Note that a relation 

EMP3 is the second-order relation. If the normalization is 

performed, then we get the conclusion that all employees 

have cars that are two to four years old. However, if the 

normalization is not performed, the conclusion we get is 

that 2 employees out 5 have a car that is two to four years 

old. Apparently, the conclusion obtained after the 

normalization is misleading due to the fact that the 

normalization eliminates the null values from consideration. 



Hunter [1987] also pointed out the problem with a 

normalization of Dempster's rule by comparing it to a 

probabilistic logic. 

EMP3: Name 
1 
2 
3 
4 
5 

AgeCcarl 
[3,4] 

[2,3] Note: '-' denotes the null value 
indicating the employee has no 
car. 
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Garvey et al. [1981] developed the inference rules for 

DST. His inference rules are as presented below, where the 

statement above the line in each rule allows the statement 

below the line to be inferred. 

(1) 
FD: [ 1, l] 

A € FD 
(2) 

A: [O,l] 

A: [S, (A) IP, (A)] 
(3) A: [S2 (A),P2 (A)] 

(4) 

A: [S(~),P(A)], where S(A)= max[S1 (A),S2 (A)] 

P(A)= min[P1 (A),P2 (A)] 

A: [S(A),P(A)] 

-A: [S(-A),P(-A)], where S(-A)=l-P(A), P(-A)~l-S(A), 

and ,-,=not 



A: [S(A),P(A)] 
(5) B: [S(B),P(B)] 

AU B: [S(A U B),P(A U B)], 

where S(A U B)= max[S(A),S(B)J 

P(A u B)= min[l,P(A)+P(B)] 

(6) AU B: [S(A U B),P(A U B)] 
A: [S(A),P(A)J 

B: [S(B),P(B)], where S(B)= max[O,S(A U B)-P(A)] 

P(B)= P(A U B) 

(7) A: [S(A),P(A)] 
B: [S(B),P(B)] 

An B: [S(AnB),P(AnB)J 

where S(AnB)= max[O,S(A)+S(B)-1] 

P(AnB)= min[P(A),P(B)] 

(8) An B: [S(AnB) ,P(AnB) J 
A: [S(A),P(A)] 

B: [S(B) ,P(B)] 

where S(B)= S(AnB) 

P(B)= min[l,l+P(AnB)-S(A)]. 

43 

The advantages of DST are: (1) DST is able to model the 

narrowing of the hypothesis set with the accumulation of 

evidence; (2) DST allows the explicit representation of 

ignorance which is committed neither to hypothesis nor to 

the negation of hypothesis; (3) DST is based on a relatively 

firm.mathematical foundation, especially compared to an ad 

hoc approach such as the CF approach; and (4) If the arcs of 

semantic nets have the associated confidences which is 

represented as the interval-valued probabilities, then 



Dempster's rule can be used to combine them for non­

monotonic reasoning system [Ginsberg, 1984]. 
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The monotonic and non-monotonic reasoning system are 

presented below. A formal logic leads to a monotonic 

reasoning system. In a monotonic reasoning system, once the 

truth value of any predicate becomes "true", it remains 

"true." However, these characteristics of a monotonic 

reasoning system have the limitation in that it cannot be 

applied in the real world for the reasons including one that 

available information is frequently incomplete, at any given 

decision point. In dealing with these difficulties, human 

problem solvers often use the beliefs that are subject to 

change given further information. 

Contrary to a monotonic reasoning system, a non­

monotonic reasoning system tracks a set of tentative beliefs 

and revises those beliefs when new knowledge is observed. 

TMS [Doyle, 1979] and the theory of endorsement [Cohen and 

Grinberg, 1983a] can be regarded as the non-monotonic 

reasoning systems. 

The disadvantages of DST are summarized as follows: 

(1) Its underlying assumption that a frame of discernment is 

assumed to be mutually exclusive and exhaustive, leads to an 

exponential-time requirements which makes it intractable 

computationally; (2) Dempster's rule requires that the 

bodies of evidence to be combined be independent and from 

the same frame of discernment; (3) Dempster's rule is not 
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applicable to the conflicting evidences; and (4) The 

normalization of Dempster's rule leads to counter-intuitive 

results. 

Suppose that the number of elements comprising a frame 

of discernment is 20, which may not even be of a reasonable 

size in real world applications. The number of subsets 

becomes 1048576 (=2 20 ) to which the bpa's are assigned. If 

we consider the fact that when the evidences are combined, 

bpa's assigned to all subsets need to be updated, we can see 

a huge computational time requirement. 

Thus, there have been a number attempts to reduce this 

exponential time complexity: Barnett's algorithm [1981], and 

Gordon and Shortliffe's algorithm [1985]. First, Barnett 

[1981] showed that an exponential-time requirement of DST 

can be reduced to simply a polynomial time if DST is applied 

to single hypotheses and to their negations, and if 

evidences are combined in a specified order. However, the 

condition that the evidences are applied to single 

hypotheses and to their negations may be too strong to hold 

in the real world applications. 

Second, Gordon and Shortliffe [1985] developed a new 

method, namely, a variant of Barnett's method that achieves 

the computational efficiency while permitting the management 

of evidential reasoning in a tree-structured hierarchical 

hypothesis space. Their algorithm is based on the pruning 

of a tree which reduces the computational complexity. 
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Fuzzy Set Theory (FST) and Its Applications 

FST was introduced by Zadeh (1965] in 1965. It is a 

mathematical generalization of the (ordinary) set theory. 

Unlike the conventional set theory which requires full 

membership or non-membership for the elements of a universe 

of discourse in a set, a fuzzy set allow partial membership. 

Because the ordinary set A={l,2,3,4} does not contain 

the element 6, its membership value is false (or O). 

However, in a fuzzy set "tall"= {l/6'10", 0.9/6'1", 

0.6/5 1 10"}, where the first element of a fuzzy set pair 

denotes the membership value and its second element denotes 

the height, for example, the membership of the height 6'1" 

is 0.9. 

There have been a number of studies to compare FST to 

the Bayesian approach in terms of performance. First, 

Stalling (1977] applied both FST and the Bayesian approach 

to a syntactic pattern recognition of handwritten capitals, 

and concluded that the Bayesian approach offers the 

computational and philosophical advantages over FST. 

Second, Maier and Sherif [1985] demonstrated that FST is 

applicable to a wide range of industrial controller problems 

and a simple fuzzy control algorithm performs nearly as well 

as the probability-based control algorithm. 

Finally, Tribus (1980] applied FST and the probability 

theory to the problem of literature search, and concluded 

that there is no significant difference to favor one over 



the other. We can conclude that the experimental results 

are mixed or inconclusive. 
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AI researchers favoring FST argue that the Bayesian 

approach is not appropriate to handle especially "imprecise" 

information, e.g., "it will probably rain tomorrow." On the 

other hand, AI researchers favoring the Bayesian approach 

argued that FST is context-dependent and since the second­

order probability theory can handle "imprecise" information, 

FST is unnecessary. For instance, the fuzzy set "young"= 

{1/18, 0.9/20, 0.6/30}, could be defined in the context of 

college students, whereas it could be defined differently in 

the context of elementary school students. 

We could argue that the choice between FST and the 

Bayesian approach may be dependent upon the advantages of 

approaches in terms of the psychological accessibility of 

probabilistic information in different formats. This 

implies that FST and the Bayesian approach perform better 

under different sets of conditions. 

A fuzzy variable is defined as follows [Zadeh, 1975a]: 

A fuzzy variable is characterized by a triple (X,U,R(X:u)) 

in which X is the name of the variable; U is the universe of 

discourse (finite or infinite set); u is a generic name for 

the elements of U; and R(X:u) is a fuzzy subset of U which 

represent a fuzzy restriction on the values of u imposed by 

x. Some examples of a fuzzy variable are "young," "old," 

and "not young and not old." Like the conventional (or 
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nonfuzzy) variable, the marginal restriction (analogous to 

the marginal distribution), conditional restriction 

(analogous to the conditional distribution), noninteraction 

(analogous to independence) and intersection (an~logous to 

dependence) are defined for a fuzzy variable. 

A possibility theory was developed by Zadeh [1978a] as 

an extension of FST. It focuses primarily on imprecision 

which is intrinsic in the natural languages. He argued that 

a language is possibilistic rather than probabilistic. A 

possibility distribution function associated with X is 

defined to be numerically equal to the membership function 

of a fuzzy variable. Suppose that a fuzzy set "small 

integer" be defined as {1/1, 1/2, 0.8/3, 0.6/4, 0.4/5}. The 

proposition "X is a small integer" associates with X a 

possibility distribution {1/1, 1/2, 0.8/3, 0.6/4, 0.4/5}. 

There is a distinctive difference between a possibility 

distribution and the probability distribution. If we 

consider the statement "Hans ate X eggs for breakfast," 

[Zadeh, 1978a] then a possibility distribution with X is 

interpreted as the degree of ease with which Hans can eat X 

eggs, whereas the probability distribution with X is the 

probability that Hans ate X eggs. However, there is a weak 

relationship between the probability distribution and a 

possibility distribution. The relationships between the 

probability distribution and a possibility distribution are 

to be discussed in detail in Chapter 3. 
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Because a possibility distribution is analogous to the 

probability distribution to some extent, the concepts 

analogous to a multivariate probability distribution, a 

marginal probability distribution, and the conditional 

probability distribution are defined in a possibility 

theory. They are called n-ary possibility distribution, a 

marginal possibility distribution, and the conditional 

possibility distribution, respectively. 

A linguistic variable is defined as a variable of a 

higher order than a fuzzy variable, in the sense that a 

linguistic variable takes fuzzy variables as its values 

[Zadeh, 1975a]. For example, a linguistic variable "age" 

can take the values such as "young," "very young," and "old" 

which are fuzzy variables. A variable taking the linguistic 

truth values as its values is called a linguistic truth 

variable, where the expressions such as "very true," "quite 

true," and "completely false" to characterize the degree of 

truth of a statement are called linguistic truth values 

[Zadeh, 1975a]. 

A linguistic (truth) value is defined as a fuzzy subset 

of the interval [O,l]. For instance, a linguistic truth 

value "true" could be defined as {0.5/0.7, 0.7/0.8, 0.9/0.9, 

1/1}. A linguistic truth variable is a special case of a 

linguistic variable in that a linguistic truth variable 

takes only linguistic truth values as its values. Zadeh 

[1975a] defined a number of operations on linguistic truth 



values including a negation, a conjunction, a disjunction, 

imply, modus ponens, and a generalized modus ponens. 
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Modus ponens is the basic rule of inference in the 

traditional logic such that we can infer the truth of a 

proposition B from the truth of A and the implication A => 

B. Similarly, given "u is more or less small" and "IF u is 

small THEN v is large," a generalized modus ponens could 

lead to the conclusion "vis more or less large." 

Like the conventional probability theory, a linguistic 

probability (analogous to the conventional probability), a 

linguistic random variable (analogous to a random variable 

in the probability theory), and a linguistic probability 

distribution (analogous to the conventional probability 

distribution) are defined for a linguistic variable. 

Treating truth as a linguistic variable leads to a 

fuzzy (linguistic) logic that provides a basis for 

approximate reasoning. That is, approximate reasoning is a 

mode of reasoning in which the truth-values and the rules of 

inference are fuzzy rather than precise. For example, given 

two facts, "most students are undergraduates" and "most 

undergraduates are young," the answer to the question "how 

many students are young?" can be obtained from a fuzzy 

logic. 

Since FST was introduced by Zadeh in 1965, it has been 

applied to a variety of areas including decision making 

problems in management, engineering, and even in 



mathematics. Mamdani [1976] surveyed the field of 

applications of a fuzzy logic in the synthesis of 

controllers for dynamic plants and concluded that the 

application performs well as expected. Kuang 

[1986a,1986b,1986c] showed the application of FST to 

hydraulic systems diagnostics and troublesho9ting. Adamo 

[1980a] introduced a fuzzy decision tree method that is an 

extension to a decision tree in which the involved data 

(probabilities, costs, profits, losses) are represented as 

linguistic values. 

Zimmermann [1986] and Prade [1980] discussed the 

application of FST to the mathematical programming models. 

In general, the mathematical programming models can be 

written as follows: Maximize f (X) 

s.t. g 1 (X) >= 0 

For example, LP model can be written as follows: 

Maximize Z= CT*X 

s.t. A*X <= b 

x >= 0 
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where c and X are row-vectors of dimension n, b is a column- · 

vector of dimension m, and A is an m x n matrix. 

Unlike the conventional mathematical programming models 

in which the elements of A,b,C are crisp numbers, a fuzzy 

mathematical programming model permits the elements of A,b,c 

to be fuzzy numbers. crisp number is the term to denote the 

ordinary (non-fuzzy) number and used to distinguish it from 
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a fuzzy number. A fuzzy number is defined as a fuzzy subset 

of real numbers, where "small," "approximately 8," "very 

close to 5 11 are its examples. Zimmermann discussed the 

fuzzy linear and nonlinear programming problems and 

algorithms to determine the optimal solution. 

The algorithms for fuzzy mathematical programming 

problems are primarily built around the algorithms for 

(ordinary) mathematical programming problems. 

Prade (1980] argued that the adaption of an ordinary 

algorithm to a fuzzy mathematical programming problem is not 

always straightforward. On the other hand, although the 

direct application of FST can solve the problem, it is not 

generally computationally attractive. Prade also discussed 

PERT, assignment problem, a traveling salesman problem, and 

a transportation problem. 

There have been a number of FST applications to 

mathematics. Trillas and Riera (1978] introduced the 

general types of entropies for fuzzy sets. Kim and Roush 

[1980] developed a fuzzy matrix theory. A fuzzy matrix is 

defined as a matrix whose entries are the values in [0,1], 

where its example is shown below. 

[
o. 8 

A= 
0.2 

Several languages based on FST including L.P.L. 

language (linguistic oriented programming language) and PRUF 
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(Possibilistic Relational Universal Fuzzy), have been 

developed. PRUF is a meaning representation language for 

natural language processing. Some of the characteristics of 

PRUF are (Zadeh, 1978b]: (1) A basic assumption underlying 

PRUF is that the imprecision that is intrinsic in natural 

languages is, possibilistic rather than probabilistic; (2) 

The logic underlying PRUF is a fuzzy logic; and (3) The 

quantifiers in PRUF are allowed to be linguistic such as 

"most, " "many, 11 "few. " 

Fuzzy quantifiers denote the collection of quantifiers 

in natural languages whose representative elements are: 

"most," "many," "quite a few," and "frequently." [Kandel, 

1986]. Zadeh (1983b] introduced the computational approach 

to fuzzy quantifiers, in which quantifiers are treated as 

fuzzy numbers. L.P.L. language developed by Adamo 

(1980b,1980c] has the characteristics similar to those of 

PRUF. 

Support Logic Programming (SLOP) 

FST has a major advantage over the Bayesian approach in 

that it is capable of handling the "imprecise" information, 

while DST has a number of advantages, one of which is that 

it allows the interval-valued belief instead of a single­

valued belief (or probability). Baldwin (1986] developed a 

programming language called SLOP which is similar to Prolog 

except that it employs the main features of FST and DST. 
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Prolog is one of the well-known AI languages based on first 

order logic. 

SLOP generalizes a logic programming to the case where 

uncertainties, either of a probability or fuzzy nature, 

could be modeled. SLOP is a Prolog-like programming system 

in which uncertainties associated with facts and rules are 

represented by a pair of support factors [Sn.Sp], where Sn 

and SP are called the necessary support and the possible 

support, respectively. The necessary support can be viewed 

as a lower bound, whereas a possible support can be viewed 

as an upper bound. 

The following is an example of SLOP: 

design(X,good) :- eng_report(X,satisfactory), 

reliability(X,high): [0.9,1]. 

This rule states that if the engineering report about design 

X is satisfactory and its reliability is high, then the 

design is considered to be good with the necessary support 

of .9 and a possible support of 1. 

Unlike Prolog, fuzzy predicates such as "good" and 

"high" are allowed. Also, in contrast to Prolog in which 

the degree of belief attached to a rule always equals 1, the 

deg~ee of belief associated with a rule is expressed as the 

interval-valued number like DST. 

Furthermore, in contrast to an ordinary logic and 

PROLOG, SLOP does not rely upon a CWA wi~h regard to the 

knowledge representation. In other words, it is not assumed 
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that facts which are not in the data are necessarily false. 

A fact not present in the knowledge base has the necessary 

support of o and a possible support of 1. The general forms 

of .SLOP are as follows: 

A:- B1,B2 , ••• ,Bn: rs1 ,S2], where S1= necessary support and 

s 2= possible support 

A : rs, ,S2 ] • rs,, S2 ] is equivalent to the interval 

rBel(A),1-Bel(-A)] of DST, where s 2-s1 is the measure of the 

ignorance in support of the rule. 

The interpretation of a negation is as follows: 

- * * h * If P :-Q: rs1 ,S2 ], then P :- Q: rs 1 ,S2 ], were S1 = l-S2 

* and s 2 = 1-s,. 

Similarly, if P 

* and s 2 = l-S1 • 

The SLOP calculus allows different models for combining 

evidences, that is, a multiplication model and min model: 

(Case 1) X:[S1 (X),S2 (X)], Y:[S1 (Y),S2 (Y)], X and Y:(S1 (X and 

Y),S2 (X and Y)J, and x or Y:(S 1 (X or Y),S2 (X or Y)] 

(1) multiplication model:S1 (X and Y)= s 1 (X)* s 1 (Y) 

S2 (X and Y)= S2 (X)* S2 (Y) 

s, (X or Y)= s, (X)+ s, (Y)- s, (X) * 

S1 (Y) 

S2 (X or Y)= S2 (X)+ S2 (Y)- S2 (X)* 

S2 (Y) 

(2) min model:S1 (X and Y)= s 1 (X) • s 1 (Y) 

s, (X or Y) =s, (X) v s, (Y) 



S1 ((not A) or (not B))=S1 (not A) v S1 (not B) 

s2 (X and Y) = s2 (X) " s2 (Y) 

S2(X or Y)= s2(X) v S2(Y), where ,,.., denotes 

the minimum and 'v' denotes the maximum 

(Case 2) P :-Q :(S1 (P!Q),S2(P!Q)], Q:[S,(Q),S2(Q)] and P: 

[S1 (P) ,S2 (P)] 

(1) multiplication model:S1 (P)= S1 CPIQ)* S1 (Q) 

s2(P)= 1-[1- S2CPIQ)* S1 (Q)] 

(2) min model:no general formulae available 

(Case 3) P:[S1 (P),S2(P)], Q:[S1 (Q),S2(Q)] and P => Q: 

[S1 (P=>Q) ,S2(P=>Q)] 

(1) multiplication model:S1 (P => Q)= S1 (PIQ)* S1 (Q) 

S2(P => Q)= 1- [1- S2(P!Q)* S1 (Q)] 

(2) min model:no general formulae available, where "=>"= 

imply 

(Case 4) P: [S1 ,U,J and P: [S2,U2] and P: [S,U] 

(1) multiplication model:S= (S 1* U2+ S2* u 1- S1* S2)/K 

(2) min model: 

U= [ ( 1-U1) * ( 1-S2) + ( 1-U2) * (U1-

S1) ] I K 

K= 1- S2* (1-u,)- s,* (l-U2) 

(if there is a conflict):S= s 1 v S2 

U= 1-[(1-S1 (not P)) v (1-S2(not 

P))] 

(if there is not conflict):identical to Case 1 

SLOP could be used in conjunction with FRIL (Fuzzy 
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Relational Inference Language) . FRIL, developed by Baldwin 

and Zhou [1984], is a query language similar to ordinary 

query languages such as SQL and INGRESS except that FRIL can 

access fuzzy base relations. A relation "Person_height_l" 

shown below is a fuzzy base relation. 

The typical characteristics of a fuzzy relation are: 

(1) A fuzzy variable such as "tall" or "not tall" or "very 

tall" is allowed as the legal value of attribute, e.g., in 

"Person_height_l" and (2) the additional attribute 

"membership" is needed in "Person_height_l." 

Person_height_l: Name 
Adrian 
Bill 
Lofti 
Laurie 

Height 
$Tall 
not $Tall 
5-10 

membership 
1 
1 
1 

$Very tall 1 



CHAPTER III 

PROPOSED ALGORITHMS FOR BAYESIAN NETWORKS 

Pearl's Algorithms 

As defined earlier, Bayesian networks are directed 

acyclic graphs with each node representing a proposition (or 

variable), each arc signifying the existence of direct 

causal influence between the linked propositions, and the 

strengths of these influences quantified by conditional 

probabilities [Pearl, 1986a]. Pearl[1982; Kim and Pearl, 

1983; 1985a; 1986a] developed the algorithms (for the 

singly-connected network) to impart the impact of new 

information to all nodes by local propagation in time 

proportional to the longest path in the network. 

The singly-connected network in which there exists only 

one (undirected) path between any pair of nodes, includes a 

tree structure in which each node is allowed to have at most 

one parent node and a network structure in which each node 

is allowed to have multiple parent nodes. In this section, 

Pearl's algorithm for a tree structure is described first, 

followed by the description of an algorithm for the network 

structure. 
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Pearl's Algorithm for a Tree Structure 

In a tree structure, each node B stores two parameters, 

~(B) and o(B), where ~(B) is the support attributed to node 

B by its parent node and o(B) is the support node B receives 

from its child node(s). ~(B) shall be referred to as 

"ancestor belief" and o(B) shall be referred to as 

"descendant belief." ~(B) and o(B) are defined as follows: 

~(B)= P(BIDs+> and o(B)=P(Da-IB), where DB"and DB+ denote the 

data contained in a tree rooted at B and the data contained 

in the rest of a tree, respectively. 

The belief of node B is obtained by combining these two 

supports via the product Bel(B)= a* ~(B)* o(B), where a and 

Bel denote a normalizing constant and the belief, 

respectively. A normalizing constant is necessary, when Bel 

becomes a vector, to make the sum of the elements of the 

vector to be 1. 

Several types of nodes which require special treatments 

are identified by Pearl [1986a]: 

(1) Anticipatory node (a leaf node that has not been 

instantiated yet): For such a node x, o(x)= (1 1 1 ... 1). 

(2) Data node (a node with instantiated value): Given that a 

node x has a number of outcomes, if the jth outcome of node 

x is observed to be true, we set ~(x)= o(x)= (O o o 1 

o ••. O) with 1 at the jth position. Suppose a node x 

represents the killer and there are four suspects. If we 
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have a witness evidence to convince that the 4th suspect is 

the killer, then 7r(X)= o(X)= (0 0 0 1). 

(3) Dummy node (a node representing judgmental evidence 

bearing on another node): for a dummy node B, we do not 

specify 7r(B) or o(B) but, instead, define o8 (A) as K* 

PCBIA), where K is constant. We define oE(B) as the message 

sent from a node E (a child node of node B) to a node B, 

whereas 7r8 (A) denotes the message sent from a node A (the 

parent node of node B) to a node B. 

(4) Root node: At the root node x, we set 7r(x)= prior 

probability of the root node. 

Given 7r(X) and o(x) stored with each node x, the major 

problem is to determine how the influence of new information 

will spread through a tree, namely, how the parameters 7r(x) 

and o(x) of a node x can be determined from those of its 

neighbor nodes. The propagation scheme [Pearl, 1986a] 

consists of the following four steps: 

Step 1: When a node B is activated to update its parameters, 

it simultaneously checks the 7r8 (A) message communicated by 

its parent node A and the messages o1 (B), o2(B) •.• 

communicated by each of its child nodes. 

Step 2: o(B) is computed as the product of o1 (B), o2(B), .. ~: 

o(B)= o,(B)* 02(B)*···= 71" ok(B). 
k 

Step 3: 7r(B) is computed using 7r(B)= P* P(BIA)* 7r8 (A), where 

p is a no.rmalizing constant. 
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Step 4: Using the messages received together with the 

updated values of o(B) and ~(B), each node B computes the 

new messages sent to its child node(s) and its parent node. 

Step 5 (Bottom-up propagation): The new message o8 (A) that a 

node B sends to its parent node A is computed by o8 (A)= 

o(B)* P(BIA). 

step 6 (Top-down propagation): The new message ~E(B) that a 

node B sends to its kth child node E is computed by ~E(B)= 

a* ~(B)* ~ om(B), or alternatively, 
m !=k 

Bel (B) 

oE (B) 

where a and a' are normalizing constants, and '!' denotes 

"not." 

Figure 5 shows six successive stages of belief propagation 

through a binary tree [Pearl, 1986a]. 

Pearl's Algorithm for the Network Structure 

Pearl's algorithm for the network structure is 

presented based on Figure 4 [Pearl, 1986a]: 

B c 

" / 
A 

x y 

Figure--4. :EX-ample of 
the network structure 



-·---11> Top-down propagation 

of-----· Bottom-up propagation 

Figure 5. Illustration of Belief Propagation 
in Bayesian Networks 
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At each arc two parameters ~ and o are stored, where ~ 

denotes the "ancestor belief" contributed by its parent 

nodes and o denotes the "descendant belief" contributed by 

its child nodes. Each node contains the conditional 

probability to represent the strength of causal influence 

between the linked nodes. In Figure 4, the arc linking a 

node B to a node A stores ~A(B) and oA(B), where they 

represent the message sent from node B to node A and the 

message sent from node A to node B, respectively. The node 

A stores the conditional probability P(AIB and C). 

As can be seen in Figure 4, the link A ~~> Y 

partitions the graph into two parts: an upper subgraph, GAY+, 

and a lower subgraph GAY-. GAY- is a subtree rooted at node Y, 

while GAY- is the rest of the network. DA/ is defined as the 

data contained in GA/, while DAY- is defined as the data 

contained in GAY-. The overall strength of belief in node A 

is calculated as follows: Bel(A)= a* P(DAx-1 A)* P(DAY-1 A)* 

[E(P(AI B,C)* P(BI DM+)* P(CI D~·))]= a* ox(A)* oy(A)* E(P(AI 

B,C)* ~A(B)* ~A(C)). 

The belief of a node B can be calculated as follows: 

BEL(B)= a* ~A(B)* oA(B), where a= a normalizing constant 

Given the parameters ~ and o stored with each link, the 

influence of new information is spread through the network 

via the messages to its parent nodes and child nodes. The 

schemes of updating the messages are shown below: 

oA(B)= a* E [~A(C)* E(ox(A)* Oy(A)* P(AI Band C))J; and 

~x(A>= a* oy(A)* [EP(AI Band C)* ~A(B)* ~A(C)]. 
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Wise's Framework 

Before Wise's framework is discussed, a number of 

studies attempting to determine the relationship between the 

non-Bayesian approaches and the probability theory, or among 

the non-Bayesian approaches are presented. Two related 

studies are presented below. First, Grosof [1986a] compared 

Heckerman's interpretation of CF approach and DST with the 

Bayesian approach, and Heckerman's interpretation of CF 

approach with DST. 

Let O(H)= P(H)/ [1-P(H)]= P(H)/ P(-H), O(HIE)= P(HIE)/ 

[1-P(HIE)]= P(HIE)/ P(-HIE), L(H,E)= O(HIE)/ O(H), where H 

and E denote the hypothesis and an evidence, respectively. 

As discussed earlier in Chapter 2, L(H,E) is called a 

"likelihood ratio" and represents a belief update, thus is a 

basis of Heckerman's interpretation of CF approach. Grosof 

showed that the mapping between Heckerman's interpretation 

of CF approach and the "likelihood ratio" is: C= [L-1]/[L+l] 

or L= [l+C]/[1-C], where c and L denote CF and L(H,E), 

respectively. 

Because Heckerman's interpretation of CF approach is 

developed based on the "likelihood" concept, this mapping is 

not surprising. Furthermore, the resulting mapping becomes 

obvious from the fact that c is defined as (L(H,E)-1)/ 

(L(H,E)+l)= {P(H!E)-P(H)}/{P(H)* [1-P(H!E)]+ P(H!E)* [1-

P(H)]}. C is one of the valid interpretations of 
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Heckerman's CF approach which can have an infinite number of 

valid interpretations. 

The mapping between point-valued DST (special case of 

DST) and a "likelihood ratio" L is: B= L/(L+l) or L= B/ (1-

B), where B denotes the belief function of DST. This may 

imply that DST is richer and more powerful than the 

probability theory, due to the relationship between a point 

-valued DST and L. However, the conclusion is not definite. 

The mapping between Heckerman's interpretation of CF 

approach and a point-valued DST is: B= [l+C]/2 or C= 2B-1. 

This mapping may indicate that DST is richer and more 

powerful than Heckerman's interpretation of CF approach. 

However, we cannot derive definite conclusion. 

Second, there have been a claim that DST is a 

generalization of the probability theory, because DST 

permits the representation of the interval-valued 

probability, whereas the probability theory allows a point­

valued probability. Black [1987] and Kyburg [1987] showed 

that this claim is not true. 

Kyburg [1987] showed that the belief function models 

allow a subset of closed convex probability distribution, 

i.e., not all closed convex sets of the probability 

distributions are represented in DST, contradicting the 

studies claiming that DST is a generalization of the 

probability theory. The Black's work which is an extension 

of Kyburg's work, showed many convex sets of the probability 
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distributions generates the same belief function, which 

consolidates the claim that DST is not a generalization of 

the probability theory. Black also compared Bayes' rule to 

Dempster's combining rule, and concluded that Bayes's rule 

performs better than Dempster's combining rule. 

These studies trying to determine the relationships 

among non-Bayesian approaches, and the relationships between 

non-Bayesian approaches and the probability theory, do not 

produce the results which are consistent enough to derive 

the definite conclusions. Thus, Several researchers 

including Wise [1986] and Grosof [1986b] attempted to 

develop the frameworks which can be used in comparing among 

UIS' or UIS' to the probability theory. 

Wise's framework is presented below, primarily because 

the proposed simulation model is developed based on Wise's 

framework. The proposed simulation model is adopted in 

determining the type of operations performed on the 

linguistic probability. 

Buchanan and Shortliffe [1984b] who developed the CF 

approach, tried to justify the development of CF approach by 

comparing the results of CF approach to those of the 

probability theory. Of course, the conclusion was that CF 

approach performed as well as the probability theory. 

Consider the facts that the CF approach is the first non­

Bayesian approach, and that Buchanan and Shortliffe compared 

the performance of CF approach to those of the probability 



theory to justify their work. From these facts, we can 

argue that the probability theory could be a normative 

approach. 
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This argument also applied to FST. Zadeh (1986b] 

defended FST by showing five examples which cannot be dealt 

with by the ordinary (first-order) probability theory. DST 

is only non-Bayesian approach such that little attempts have 

been made to compare it to the probability theory. Thus, We 

can make the following conclusion: even though some non­

Bayesian approaches have the advantages over the probability 

theory in terms of the power of expressiveness or the amount 

of information needed, the probability theory is the only 

normative approach. 

This conclusion could lead to an argument that the 

probability theory can be used as the standard in comparing 

UIS' with each other. Wise's framework was developed 

primarily based on this argument. 

As mentioned earlier, the ordinary (first-order) 

probability theory has the limitation in its applicability, 

in that it is not powerful enough to handle the 

"generalized" input, e.g., "it will probably rain tomorrow." 

on the other hand, although the second-order probability 

theory offers all the advantages of the Bayesian approach 

and is shown to be powerful to handle any kind of input by 

the researchers including Cheeseman (1986], it has the 

following major drawbacks. 
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First, the second-order probability distribution may 

not be obtainable in the real world applications given the 

amount of available information. In fact, simply forming a 

first-order.probability distribution to model an expert's 

belief state is only marginally feasible, let alone a 

second-order distribution over all possible first-order 

probability distribution. Second, for the sake of argument, 

suppose that the second-order probability distribution can 

be obtainable, although it is rarely true in the real world. 

However, its exponential time complexity inhibits its use. 

Thus, Wise proposed the (first-order) probability 

theory supplemented by ME/MXE as a substitute for the 

second-order probability theory, based on the argument that 

the probability theory supplemented by ME/MXE produces the 

results that are good approximations to those produced by 

the second-order probability theory. That is, Wise showed 

that ME/MXE can be used to estimate the prior probabilities 

and to update prior probabilities with the generalized data, 

as a good approximation to the second-order probability 

theory. 

The basic goal of Wise's work is to identify the 

conditions producing significant differences in the output 

of UIS' using the experiments. The emphasis is on comparing 

the outputs, not the simplicity, explicability, or ease of 

construction of the UIS itself. The general outline of his 

framework is shown in the Figure 6. The left-hand column is 
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where ME/MXE inference is performed, while the inference of 

UIS being explored is done in the right-hand column. 

In Figure 6, P0 denotes the prior probability, P1 

denotes the posterior probability. R* denotes the converted 

* * rules, D denotes the converted data. P1 denotes the output 

obtained from UIS, and P,' denotes the transformed 

probability from the output obtained from UIS'. The prior 

probabilities are estimated using ME, provided that a 

collection of rules. The posterior probabilities are 

estimated using MXE provided that the prior probabilities 

and a collection of specific facts. 

In Figure 6, the "conversion" denotes the 

transformation of belief measure of the non-Bayesian 

approaches to the probability, or the transformation of the 

probability to belief measure of non-Bayesian approaches. 

In the case of UIS, a rule set is converted into an 

appropriate form for the specific UIS and a fact set is also 

converted into the suitable form. 

Wise (1986] introduced the conversion scheme between 

UIS' and the probability theory. His conversion scheme 

between FST and the probability theory is: probability= 

fuzzy membership function. Suppose that X= {0.1/1, 0.3/3, 

0.5/5, 0.7/7, 0.9/9}. In his conversion scheme, P(X=l)= 

0.1, P(X=3}= 0.3, P(X=5}= 0.5, P(X=7}= 0.7, and P(X=9)= 0.9. 

The proposed conversion scheme between CF and the 

probability theory is: (l} CF= 1 => P(X)= 1, P(X'}= o; (2) 



CF= 0 => P(X)= P(X'); and (3) CF= -1 => P(X)= O, P(X')= 1. 

Values between these three points are computed by a 

piecewise linear interpolation. 
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Figure 6. Basic Experiment Design for Comparisons 
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After the belief measure of non-Bayesian approach is 

transformed into the probability, the measures of error such 

as mean absolute error, mean squared error, normalized mean 

absolute error, and normalized mean squared error, are 

computed for each non-Bayesian approach. Obviously the non­

Bayesian approach with the minimum error is regarded as the 

best non-Bayesian approach. 

A question can arise as to the use of normalized mean 

absolute error and normalized mean squared error. The 

reasons for their use are presented below [Wise and Henrion, 

1986]. A difficulty can arise in comparing performance on 

different cases in that they are likely to allow different 

ranges of error. 

For example, if we randomly guess at the probability of 

0.5, it is impossible to be off by more than 0.5, but if we 

guess the probability of an almost certain event 

(probability O or 1), then it is possible to be off by 

almost 1. Thus, an error near 0.5 is almost the worst 

possible in the former case, but is about average for the 

second. 

The worst possible error of the probability is max(P,1-

P), while the error of random guess probability can be 

defined as the expected error, if the estimates of the 

probabilities are uniformly distributed over the estimated 

domain. For FST, the domain is the close interval [0,1], 

while for CF approach, the domain is the closed interval [-
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-1,1). 

For FST, the expected mean absolute error, µ(!ti), and 

the expected mean squared error, µ(1 2) are: µ(!ti)= 1/2-

P(l-P); and µ(t 2)= 1/3- P(l-P). Similarly, µ(!ti) 'sand 

µ(1 2) 's for the CF approach and DST can also be derived. 

The normalized absolute error is defined as follows: §= 

1, iff I= O; §= o, iff t= µ(!ti); and§= -1, iff t= max(P,1-

P). Similarly, the normalized squared error, ry is defined 

as: ry= 1, iff I= o; ry= o, iff t= µ(t 2); and ry= -1, iff t= 

max(P2 , (l-P) 2). Thus, the normalized measures rescale the 

errors to give 1 for zero error, O when it is as good as 

random guessing, and -1 for the worst possible error, with a 

linear interpolation in between. 

Operations on Fuzzy Set and Fuzzy Number 

The operations performed on fuzzy set and a fuzzy 

number are presented here mainly because one of the problems 

which the proposed approaches deal with is the determination 

of the type of operations performed on the linguistic 

probability. The basic operations performed on fuzzy sets 

are as follows: equal, contained, union, intersection, 

complement, product, bounded sum, bounded difference, left­

square, convex combination, and Cartesian product. 

A fuzzy number is a fuzzy subset of real numbers. Its 

example is "very close to 5 11 that could be defined as 

{0.6/1, 0.7/2, 0.8/3, 0.9/4, 1/5, 0.9/6}. The operations 
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performed on the fuzzy numbers are: inverse, scalar, 

multiplication, exponential, absolute value, extended 

addition, extended multiplication, extended substraction, 

extended division, extended max, extended min, and extended 

power function (Dubois and Prade, 1980a]. 

Dubois and Prade (1980a] introduced a general algorithm 

for the computation of operations on fuzzy numbers. Any 

continuous fuzzy set can be decomposed into the union of 

convex fuzzy sets whose membership functions are either 

strictly increasing or decreasing or constant. In Figure 7, 

the increasing set is {T1 , T4 }, the decreasing set is {T5 }, 

and the constant set is {T2 , T3 , T6 }, where a fuzzy set shown 

in Figure 7 represents a fuzzy number. 

T2 
TS 

T1 T4 
T6 

x 
Figure 7. An Example of 

a Fuzzy Set 

The general algorithm consists of the following four 
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steps: 

Step 1 (Flattening): Then fuzzy sets are changed into fuzzy 

sets all having the same height. The height of a fuzzy set 

is the maximum membership value. 

Step 2 (Decomposition of each fuzzy set into two sets, 

namely, the set of nondecreasing parts and the set of 

nonincreasing parts): The constant parts between two 

nondecreasing (nonincreasing) ones belong to the 

nondecreasing (nonincreasing) set. The constant parts, 

which are between parts of different kinds, belong to both. 

Step 3 (Operation *"): The operation * 0 is performed for 

parts belonging to the same kind of sets. 

Step 4 (Union): The union of fuzzy sets obtained in step 3 

is the final result. 

The operation *" represents any operation performed on fuzzy 

numbers. 

Suppose that we want to add a fuzzy number A to a fuzzy 

number B shown in Figure 8. A fuzzy number A consists of 

three parts, i.e., A1 , A2 , and A3 , and a fuzzy number B 

consists of three parts, i.e., B1 , B2 , and~· In a fuzzy 

number A, the nondecreasing set is {A1 ,A2 } and the 

nonincreasing set is {A2,A3}, whereas in a fuzzy number B, 

the nondecreasing set is {B1 ,B2 } and the nonincreasing set 

is {B2 ,~}. A2 and B2 can belong to both the nondecreasing 

set and nonincreasing set, because it lies between the parts 

of the different kind of sets. 
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1 2 3 4 5 6 7 8 9 10 14 

Figure a. Fuzzy Number A and B 

Let +• denote the addition of fuzzy numbers. Also let 

cij represent the sum of two parts A; and Bj denoted A; + • Bj. 

The following C;/s are calculated: c11= A1 +· B1 ; c12= A1 +· 

B2 ; C21= A2 +• B1 ; C22= A2 +• B2 ; C23= A2 +• B3 ; C32= A3 +• B2 ; 

and c33= A3 + • B3 • The result of the addition of these fuzzy 

numbers is shown in Figure 9. 

·­' 

5 1 0 1 5 

Figure 9. Sum of Fuzzy Numbers A and B 

20 
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Suppose that two fuzzy numbers M1 and M2 are as 

follows with w, < W2 < W3: M,= w,/p,+ W2/P2+ W3/P3+ W2/P4+ w,/Ps 

and M2= w1/q1+ w2/q2+ w3/q3+ w2/~+ w1/q5• Then the result of 

any operation performed on two fuzzy numbers M1 and ~ is: M1 

where * denotes any arithmetic operation on {ordinary) 

numbers. 

The results of some operations on fuzzy numbers M1 and 

M2 are provided below: 

{ 1) inverse of M1: 

M1-1= w1/{l/p1)+ w2/{l/p2)+ w3/{1/p3)+ w2/{l/p4)+ w1/{1/p5) 

(2) scalar multiplication: 

{ 3) extended addition of M1 and M2: 

M1 + 0 ~= W1/ {p,+q1) + W2/ {p2+q2) + Wy {p3+q3) + W2/ {p4+~) + 

w,/ {p5+q5) 

(4) extended multiplication of M1 and M2: 

M, X0 M2= w,/{p,*q,)+ W2/{P2*q2)+ W3/(P3*q3)+ W2/{P4*~)+ 

w,/ (Ps*qs) 

( 5) extended subs traction of M1 from M2: 

M2 -· M,= w,/ ( q,-p,) + W2/ ( q2-p2) + W3/ ( q3-P3) + W2/ ( ~ -p4) + w,/ ( qs-Ps) 

(6) extended division of M1 by M2: 

M, + 0 M2= w,/(p,/q,)+ W2/CP2/q2)+ Wy(P3/q3)+ 

W2/ (p~~) +w,/ (P5/q5) 
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Existing Approaches to Linguistic Approximation 

Several approaches have been developed for a linguistic 

approximation. A linguistic approximation is the process of 

finding a label whose meaning is the same or the closest to 

the meaning of an unlabelled fuzzy set generated by the 

computational model. For example, a fuzzy set {0.3/0.2, 

0.4/0.4, 0.5/0.6, 0.8/0.9} could be labelled as "more or 

less true" or "very true." 

Note that one of the fundamental problems encountered 

by adopting the linguistic probability instead of ordinary 

probability is a linguistic approximation. Wenstop [1980], 

Eshragh and Mamdani [1979], Bonissone and Decker [1986], and 

Bonissone [1979] have developed the procedures for a 

linguistic approximation. These existing approaches are 

presented first followed by the discussion of a proposed 

approach. 

Wenstop's Approach 

Wenstop's procedure was the first approach introduced 

for a linguistic approximation. Wenstop considered two 

parameters of a fuzzy set, that is, its imprecision and its 

location, where the imprecision of a fuzzy set is defined as 

the sum of membership values and the location is defined as 

the mean. Fifty-six linguistic values (or labels) were 

chosen which lie approximately evenly spread out in a 

location-imprecision coordinate system. Some of the 



linguistic values are shown in Figure 10. 

degree 
of 

impre- *(low) 
sion 

*(unknown) 

*(medium) *(high) 

location 

Figure 10. An illustration of 
Wenstop's approach 

78 

The selection of these two parameters was based not on 

a theoretical consideration but on a intuitive appeal. The 

label which has the shortest distance to X is chosen as the 

best label of a fuzzy set x. His approach requires the 

following condition to be satisfied: fuzzy sets should be 

regular, i.e., normal, unimodal and rather steep sided. 

A fuzzy set X is called normal if its height is 1; 

otherwise it is subnormal. The height of a fuzzy set X is 

the supremum of f(X), where f(X) denotes its membership 

function. For example, a fuzzy set defined as {0.1/1, 

0.5/5, 0.9/10} is subnormal, because its height is 0.9, 

whereas a fuzzy set defined as {0.1/1, 0.5/5, 1/1} is 

normal. If a fuzzy set has a unique value of element at 



which the membership function attains its maximum, a fuzzy 

set is called unimodal. If the fuzzy set input is not 

regular, then the appropriate procedures are applied to it 

before the procedure for a linguistic approximation is 

applied. He implemented this system in APL language. 
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Wenstop's approach has several drawbacks. First, the 

number of the linguistic values and their labels are 

predetermined, thus it lacks in the flexibility from the 

users' point of view. Second, the selection of two 

parameters does not have a strong basis, rather it is based 

on a intuitive appeal. Finally, the required condition that 

a fuzzy set is regular may be too strong to be satisfied in 

real world applications, thus restricts its applicability. 

Furthermore, a procedure developed to convert unregular 

fuzzy set into a regular fuzzy set is not good enough to 

offset its limitations. Although his approach has several 

weaknesses, we should give him a credit for a pioneering 

work in a linguistic approximation. 

Eshragh and Mamdani's Approach 

In their approach, the labels are made up of a 

combination of predetermined linguistic terms and 

appropriate logical connectives "AND" and/or "OR." Thus, 

the linguistic terms are formed by combining the hedges (or 

modifiers) and linguistic terms (or primary subsets) 

provided by the users. The hedges used in their system are: 
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"not," "very," "indeed," "more or less," "above," and 

"below." 

The assignment of a linguistic label to a fuzzy set is 

achieved by labelling its segments comprising a fuzzy set. 

Then the labels obtained for the segments are appropriately 

concatenated to form a linguistic statement using 

connectives "AND" and "OR." Unlike Wenstop's approach, this 

approach does neither require normality nor restrict the 

number of primary subsets and their labels allowed. 

They developed a heuristic search program called "LAM5" 

finding the best label for an unlabelled set. The procedure 

to find the best label consists of three steps: (1) a 

generator; (2) a search procedure; and (3) an evaluation 

method. At step 1, the primary subsets provided by the user 

are arranged so that the first and last primary subsets are 

s-type and the rest are II-Type. s-type includes s··set and 

s+-set, where s-type and II-types are shown in Figure 11. 

-
S - SET II-SET S+-SET 

Figure 11. s-type and 
II-type 
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The hedges are combined with the primary subsets to 

construct a set of labels. The subsets associated with 

these labels are represented using the three parameters: a, 

p, r, where a, p, and T are points in the universe of 

discourse at which the membership function attains o, 0.5, 

and 1, respectively. This three parameter representation 

for each label is then stored permanently in a back up file. 

The second step is a search procedure consisting of two 

phases. The first phase is an exhaustive search. If a 

given subset has the similar parametric representation to 

those of primary or negated primary subsets, then it will be 

tested for a perfect match. If a perfect match occurs, then 

the search is terminated and the second phase is avoided. 

Otherwise, the second phas·e is activated. In the second 

phase, the input is decomposed into a number of segments, 

and parameters of a given segment are found. 

In the third step, i.e., an evaluation phase, first, we 

locate all the labels, among those labels stored in file, 

which have the same a, p, and r values as the unlabelled 

set. When the first of such labels is found, before any 

attempt is made in finding the next one, the distance 

between the relevant section of subset represented by that 

label and the segment under test, is computed using the 

least squares method. If the distance is zero, then that 

label is accepted as the label for that segment, and the 

,evaluation phase is terminated. Otherwise, the distance is 



noted. If this distance is smaller than the previous one, 

the .new label is considered as a more suitable one and 

replaces any one previously found. 

Their approach is more sophisticated than Wenstop's 

approach for the reasons listed below: 
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(1) It allows the users to choose their own primary subsets 

and their labels. This is a significant improvement due to 

its flexibility with regard to the selection of primary 

subsets and their labels. 

(2) This approach employs the hedges which increase the 

level of granularity. 

(3) It employs the three-parameter representation for each 

primary subset, i.e, a, ~' and r. 

On the other hand, the drawbacks of their approach are 

shown below. First, the fact that it allows users to choose 

the primary subsets and their labels can be a weakness as 

well as an advantage. The selection of primary subsets 

affects the output generated by the system significantly. 

For instance, a term (or label) "likely" could be defined 

as {0.1/0.l, 0.5/0.5, 0.9/0.9} or {0.2/0.1, 0.6/0.5, 

1.0/0.9}. 

The output generated by a system can be affected by 

which fuzzy set represents a term "likely." Thus, the 

flexibility regarding the selection of the primary subsets, 

in fact, can pose the problem to some extent. This leads to 

an argument that the selection of the labels and primary 



subsets should has a theoretical basis like a parametric 

representation introduced by Bonissone and Decker [1986]. 

Second, Eshragh and Mamdani used the three-parameter 

representation for each primary subset and its label. 

However, this representation may not be good enough to 

represent the entire distribution, because this 

representation does not contain the information about the 

segment between a and p, or between p and r. The 

representation which employs the parameters including the 

mean, a variance, and the skewness could be better than 

[a,p,r] representation. In fact, Bonissone [1979] adopted 

this approach by using four parameters including the mean 

and skewness. 

Bonissone's Approach 
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Bonissone [1979] introduced an approach based on the 

feature selection and pattern recognition. He identified 

four parameters to represent the linguistic values: the 

power, entropy, first moment, and skewness. These four 

features were selected after several experiments looking for 

an efficient representation. Since an infinite number of 

features including the mean, a variance, and the skewness 

are available, we need to find a limited number of features 

to represent the linguistic values efficiently. 

The power of a fuzzy set is defined as the sum of the 

membership values. For example, the power of a fuzzy set A= 



{0.1/0.2, 0.5/0.6, 0.9/1} is 1.5 (=0.1+ 0.5+ 0.9). The 

fuzzy entropy of a fuzzy set A is defined as: 
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Entropy(A)= Ei S(µA(ui)), where S(X)= -(X*Ln X)- (1-X)*Ln(l­

X). The first moment indicates the center of the 

probability distribution and the skewness is a measure of 

asymmetry of the distribution with respect to its mean. 

The moments are defined as follows (Mood et at., 1963]: 

If X is a random variable, the rth moment of X is defined as 

E(Xr), where E denotes the expectation, if the expectation 

exists. similarly, if X is a random variable, the rth 

(central) moment of X about a is defined as E[(X-a)r]. The 

first moment of X, i.e., E(X) is the mean of X and the third 

moment aboutµ denoted E([X-µ) 3 ] is the skewness of x. 

Figure 12 shows the positive and negative skewness, 

where a curve shaped like f 1 (X) is said to be skewed to the 

left (or a negative skewness), whereas one shaped like f 2 (X) 

is said to be skewed to the right (or a positive skewness). 

Figure 12. Positive and negative skewness 
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Bonissone's search procedure consists of two steps: (1) 

The first step consists in prescreening the term set; and 

(2) The second step determines a modified Bhattacharyya 

distance between the distribution of the unlabelled set and 

the distribution of each of these preselected labels. Then 

the label of a fuzzy set with a minimum modified 

Bhattacharyya distance is selected as the best label. 

The goal of the first step, namely, the prescreening 

process is to reduce a search space. This is achieved by 

evaluating the four parameters (or features) of the 

unlabelled fuzzy set and by using a weighted Euclidean 

distance in the feature space followed by selecting the 

terms in a term set whose weighted Euclidean distance is 

within a desired tolerance level. Thus, the first step 

selects the terms such that the weighted Euclidean distance 

* * d (A, A ) <= E, where A and A denote the term set and 

unlabelled set, respectively and E denotes an acceptable 

tolerance level. 

The weighted Euclidean distance d is defined as: 

d(A,A')= p:::i wi (Pi -Pi) 2 ] 0•5 , where A and A' are fuzzy sets, 

wi's are the weights assigned to four parameters. The w;'s 

can be obtained from the user indirectly by means of 

pairwise comparison tests. The Bhattacharyya distance is 

defined as: d(pA(u),Pe(u))= -Ln R, where R is called the 

Bhattacharyya coefficient. R is defined as: R(pA,Pe)= ~i 

pA (u;) * Pe (u;} ] 112 , where pA (ui) and Pe (u;) denote the 
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membership function of the fuzzy set A and B, respectively. 

For example, if A= {O.l/0.2, 0.5/0.6, 0.8/0.9} and B= 

{0.3/0.2, 0.6/0.6, 0.9/0.9}, then d(A,B)= - Ln ((O.l*0.3+ 

0.5*0.6+ 0.8*0.9) 0•5]. However, Bonissone argued that since 

this measure does not satisfy the triangle inequality, 

therefore it is not a metric. Instead, Bonissone defined a 

modified Bhattacharyya distance satisfying all the axioms of 

a metric: d(p1 ,p2)= (1- R(p,,p2 ) ] 0•5 • 

The procedure to determine W;'s, namely, the weights 

assigned to four parameters is presented next. Yager (1977] 

showed that a method developed by Saaty can be applied to 

the determination of the wi's. Thus, Saaty's procedure is 

described below (Yager, 1977]. Assume we have P objects and 

we want to construct a scale rating of these objects as to 

their importance with respect to a certain criterion. We 

ask the decision-maker to compare the objects in a paired 

comparison. 

When an object i is compared with another object j, the 

following values aij and aji are assigned: ( 1) a;j= 1/aji; and 

(2) if i is more important than j, we assign a number to aij 

from Table 4 (Yager, 1977]. Having obtained a;j's, a P x P 

matrix B is constructed so that (1) bii=l; (2) b;j= aij' i 

!=j; and (3) bj;= 1/bij" Saaty showed that the eigenvector 

corresponding to the maximum eigenvalue of a matrix B 

indicates the importance of P objects. 

In the problem of finding values of a scalar parameter 
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r for which there exist vectors x !=O satisfying AX= rx, 

where A is a given N X N matrix, the values of r are called 

the "eigenvalues" and the vectors X !=O which satisfy AX= rx 

are called "eigenvectors" of the matrix A [Hadley, 1961]. 

Because a computer program to compute the eigenvector 

corresponding to the maximum eigenvalue of a given matrix is 

not straightforward, it is listed in Appendix A. 

TABLE 4 

LISTING OF INDEXES REPRESENTING 
THE IMPORTANCE 

Intensity of importance Definition 

1 Equal importance 
3 Weak importance of one over the other 
5 strong importance of one over the other 
7 Demonstrated importance of one over the other 
9 absolute importance of one over the other 

2,4,6,8 Intermediate values: believe two adjacent judgement 

Suppose three people X, Y, and Z are being rated on a 

scale as to their importance to an organization [Yager, 

1979]: 

Y is weakly more important than X 

z is somewhere between equal and 

A12= 1/3, A21 = 3 

A13= 1/2 I A31= 2 



and weakly more important than X 

Y is weakly more important than Z. ~3= 3, A32= 1/3. 

Then the matrix B becomes: 

x y z 

B- ~ D i/3 ;11~ 
1/3 J 

We then need to solve the eigenvalue problem BX= rmax 

X, where r~x is the maximum eigenvalue of the matrix B and 

compute the eigenvector corresponding to omax· In this 
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example, W= (0.16 0.59 T 0.25) . This result indicates that 

the importance of three people X, Y, and z to an 

organization are 0.16, 0.59, and 0.25, respectively. 

Bonissone's scheme has several strengths and 

weaknesses, especially comparing to Eshragh and Mamdani's 

scheme. The advantages are discussed first, followed by the 

discussion of the disadvantages. First, it adopts four 

features, namely, power, entropy, first moment, and skewness 

to represent each subset. It seem that this representation 

is better than Eshragh and Mamdani's scheme. 

Second, it adopts the prescreening process to reduce a 

search space. As the terms employed increase, the 

prescreening process will play an important role in reducing 

the search time. Third, it developed a modified 

Bhattacharyya distance which is a good metric. on the other 

hand, it has a drawback in that it does not employ the 
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hedges, whereas the hedges are adopted in Eshragh and 

Mamdani's approach. 

Parametric Representation of Linguistic Probability 

Bonissone and Decker [1986] presented a parametric 

representation of the linguistic probability. This 

parametric representation is achieved by the 4-tuple 

(a,b,a,fi), where the first two parameters indicate the 

interval in which the membership value is 1.0, whereas the 

third and fourth parameters indicate the left and right 

width of the distribution, respectively. Its membership 

distribution is shown in Figure 13. 

a-a a b b+fi 

Figure 13. A parametric 
representation 
[a,b,a,fi] 

As discussed earlier, Eshragh and Mamdani introduced 

the parametric representation achieved by 3-tuple [a,fi,r]. 

89 
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Both parametric representations introduced by Bonissone and 

Decker, and Eshragh and Mamdani have the advantage in that 

they are computationally efficient ways to characterize the 

linguistic probability. Now the question as to which 

parametric representation needs to be addressed. The 

parametric representation achieved by 4-tuple (a,b,a,~] is 

better than the parametric representation achieved by 3-

tuple [a,~ 1 r] for the following reasons. 

First of all, 4-tuple representation (a,b,a,~] does 

represent the entire membership function better than 3-tuple 

representation [a,~ 1 T], simply because it has one more 

parameter. on the other hand, it can be argued that 3-tuple 

representation is better than 4-tuple representation in 

terms of the memory requirement. However, as long as the 

number of the linguistic values employed by the system are 

of reasonable size, the issue of memory requirement is of 

little concern. 

Furthermore, the 4-tuple representation is the only 

representation which is based on the results of 

psychological experiments on the use of linguistic 

probabilities (Beyth-Marom, 1966]. Note that the membership 

function of a fuzzy set affects the output significantly. 

Proposed Approaches 

Because Pearl's algorithms use the probability as the 

measure of the belief, the determination of the conditional 
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probability distributions of the links and the prior 

probability distribution of the root node need to be 

determined in advance before Pearl's algorithms are applied. 

The precision inherent in the probabilities affects the 

precision of the belief of a node of interest to a great 

extent. 

The main problem with Pearl's algorithms is how 

accurately users/experts can determine the prior probability 

distribution and conditional probability distributions. 

Several researchers including Szolovits and Pauker argued 

that when users/experts must provide these measures, an 

assumption of "fake precision" must usually be made. 

Szolovits and Pauker [1978] noted that 

11 ••• while people seem quite prepared to give qualitative 

estimates likelihood, they are often notoriously unwilling 

to give precise numerical estimates to outcomes." 

Therefore, they argued that any scheme that relies on 

the user providing consistent and precise numerical 

quantifications of the confidence level of his/her 

conditional or unconditional statements is bound to fail. 

For example, in response to the question "how much does the 

report on u.s. trade deficit in January 1989 affect the 

stock market in March 1989?", the expert may feel more 

comfortable with providing an answer of "very likely" rather 

than 80 percent. 

For the sake of argument, suppose that accurate values 
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of the probabilities are obtainable from the users/experts 

in the actual applications, although it will be rarely true 

primarily due to an assumption of "fake precision." Pearl's 

algorithms can rectify the error inherent in the prior 

probability distribution by updating it, in a time 

proportional to the longest path in the network. Because 

the time it takes to update the prior probability 

distribution is proportional to constant, i.e., the longest 

path in the network, the problem due to an inaccurate 

estimation of the prior probability distribution is not 

significant enough to justify the use of linguistic 

probabilities instead of the probability. 

However, the problem with the estimation of conditional 

probability distributions may be significant enough to 

justify the use of linguistic probabilities. For example, 

suppose that thirty rules need to be applied to compute the 

belief of one proposition of interest. Also suppose that 

the longest path in the network is 50. When there is an 

error in one conditional probability distribution associated 

with one link, its impact can be updated in a time 

proportional to 50. Note that there is the conditional 

probability distribution associated with each link. 

Suppose that there are errors in all thirty conditional 

probability distributions. This is likely to occur 

especially if we adopt the definition of probability as a 

measure of belief. The definition of probability as a 
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measure of belief was favored by a number of researchers 

including Cheeseman who have strongly defended the 

probability theory. In this definition of probability, the 

probability is a (subjective) measure of an entity's belief 

in that proposition given the evidence. 

The time required to impart the impacts to all nodes 

becomes proportional to 1,500 (=50*30). We can imagine how 

much time is required in the propagation scheme, if one 

hundred rules need to be applied. Although the time 

required is proportional to constant, i.e., the longest path 

of the network, the updating time gets huge as the number of 

rules employed by the system increases. Furthermore, note 

that this argument is based on the unrealistic assumption 

that the accurate values of probabilities are obtainable. 

The major advantages of using the linguistic 

probabilities is presented below. Phillips and Edwards 

(1966] observed the conservatism which is consistently 

present among the suppliers of subjective assessments, when 

dealing with subjective assessment of the probability. The 

behavior in which people tend to stick to the original (a 

priori) assessment regardless df new amount of evidence that 

should cause a revision of their belief, is called observed 

conservatism. 

Zinimer (,1985] performed an experiment to compare the 

linguistic probabilities with numerical probabilities to 

determine if the observed conservatism in the belief 
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revision was a phenomenon intrinsic in the perception of the 

events or due to the type of representation (i.e., numerical 

rather than verbal expressions). The results indicated that 

people are much closer to the optimal Bayesian revision when 

they are allowed to use linguistic probabilities. 

The proposed algorithms adopt the linguistic 

probability instead of the (ordinary) probability, where 

"likely," "unlikely," "probable," and "very probable" are 

the examples of linguistic probability. The linguistic 

probability is defined as a fuzzy subset of [0,1]. For 

instance, linguistic probability "likely" could be defined 

as {0.3/0.6, 0.5/0.7, 0.7/0.8, 0.9/0.9, 1/1}. 

For illustrative purposes, the following example is 

used throughout this section to contrast Pearl's algorithm 

for a tree structure to the proposed algorithm for a tree 

structure: 

(example) Assume that in a certain trial there are three 

suspects, one of whom has definitely committed a murder, and 

that the murder weapon showing some fingerprints, was later 

found by the police. Let A stand for the identity of the 

last user of the weapon, namely, the killer. Let B stand 

for the identity of the last holder of the weapon, i.e., the 

person whose finger prints were left on the weapon. Let C 

represent the possible readings that may be obtained in a 

fingerprint-testing laboratory. 



A 

I 
.i. 
B 
I 
I 

I 
.i. 
c 

Figure 14. Example of the Network Diagram 
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A tree diagram of this example is shown in Figure 14. 

The arc from node A to node B contains the conditional 

probability distribution P(BIA). The node c is a dummy node 

and is indicated by a dotted link. Suppose that P(BIA) is: 

-0.8 if A; =Bj I i, j= 1,2,3 
P(Bj IA;)= I 

Lo.l if A; 1-B i, j= 1,2,3 • - j I 

or stated another way 

B, Bz ~ 
r- -, 

A1 0.8 0.1 0.1 

\ 
P(BIA)= Az 0.1 0.8 0.1 

A3 0.1 0.1 0.8 
L _J 

In the matrix P(BIA), three rows represent A1 , Az, and 

A3 , respectively, where A; denotes an event that the 

identify of the murderer is the ith suspect. Similarly, 

three columns represent B1 , B2 , and ~' respectively, where 

B; denotes an event that the last holder of weapon is the 

ith suspect. 
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Also suppose that P(BIC) is (1 1 1), because the 

laboratory report is not available at this moment. P(BIC)= 

(1 1 1) means that if the laboratory report indicates that 

the fingerprint of the ith suspect is found on the weapon, 

then the ith suspect is the last holder of the weapon with 

certainty. Let us assume that the prior probability 

distribution of node A is (0.8 0.1 0.1). This implies 

that the probability the first suspect is a murderer is 0.8, 

while the probability the second or third suspect is a 

murderer is 0.1. 

Pearl's algorithm and a proposed algorithm are 

presented below, where Pearl's algorithm is shown in the 

left-hand side and a proposed algorithm is shown in the 

right-hand side. Note that the linguistic probabilities are 

chosen arbitrarily for illustrative purposes. Also note 

denote the resulting vectors obtained from the relevant 

operations. 

P(BIA)= ~-8 0.1 
0.1 0.8 
0.1 0.1 

o.~ 0.1 
0.8 

~(A)= (0.8 0.1 0.1) 

P(BIA)= ~ikely unlikely unlikely] 
unlikely likely unlikely 
unlikely unlikely likely 

~(A)=(likely unlikely unlikely) 

(B: an anticipatory node before obtaining any fingerprint 

information) 

o(B)= (1 1 1) o(B)=(certain certain certain) 

(o8 (A): message sent from a node B to a node A) 

o8 (A)= o(B)* P(BIA)= o8 (A)=(certain certain certain) 
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(1 1 1) [0.8 0.1 o] ~ikely unlikely unlikel~ 
0.1 0.8 0.1 nlikely likely unlikely 
0.1 0.1 0.8 nlikely unlikely likely 

= (1 1 1) =(Al A2 A3) 

(B: only child node of node A) 

o (A)= 08 (A)= ( 1 1 1) o(A)= o8 (A)= (Al A2 A3) 

(Computation of the belief of node A) 

BEL(A)= a* o(A)* ~(A)= BEL(A)= a* o(A)*~(A)= (Al A2 A3)* 

(1 1 l)* (0.8 0.1 0.1) (likely unlikely unlikely) 

= (0.8 0.1 0.1) 

(~8 (A): message sent from node A to node B): top-down 

propagation 

~8 (A)= a'* BEL(A)/o8 (A) ~8 (A)= a'* BEL(A)/ o8 (A) 

= a'* (0.8 0.1 0.1)/ 

(1 1 l)= (0.8 0.1 0.1) 

(~(B): support attributed to B by its parent node) 

~(B)= /3* ~8 (A)* P(B!A) 

= /3* (0.8 0.1 0 .1) 

~-8 0.1 o.~ .1 0.8 0.1 
.1 0.1 0.8 

= (0.66 0.17 0.17) 

~ikely unlikely unlikely] 
nlikely likely unlikely 
nlikely unlikely likely 

(Computation of the belief of node B) 

BEL(B)= a* o(B)* ~(B) BEL(B)= a* (certain certain certain) 

=a* (1 1 l)* 

(0.66 0.17 0.17)= (0.66 0.17 0.17) 

(Now a laboratory report arrives and summarizes the test 
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results): 

(oc(B): message from the dummy node c to node B) 

oc (B) = o (B) oc(B)= o(B)=(very likely likely likely) 

= (0.8 0.6 0.5) 

(Updated belief of node B) 

BEL(B)= a*o(B)*~(B) BEL(B)= a*o(B)* ~(B)= a* 

= a*(0.8 0.6 0.5)* (very likely likely likely)* (D1 D2 D3> 

(0.66 0.17 0.17) 

= (0.738 0.142 0.119) 

(o8 (A): message from node B to node A): bottom-up 

propagation 

o8 (A)= o(B)* P(BIA) o8 (A)= o(B)* P(BIA)= (very likely 

= co.8 o.6 o.5) ~-8 0.1 o.~ 
0.1 0.1 0.8 
0.1 0.1 0.8 

= (0.75 0.61 0.54) 

[ 

likely likely) ] 
likely unlikely unlikely 
unlikely likely unlikely 
unlikely unlikely likely 

(B: only child node of node A) 

o (A)= 08 (A) 

(Updated belief of node A) 

BEL(A)= a*(G; G2 G3 ) (likely unlikely 
unlikely) 

BEL(A)= a* o(A)* ~(A) 

=a* (0.75 0.61 0.54)* = (H1 H2 H3 ) 

(0.8 0.1 0.1) 

= (0.839 0.085 0.076) 

(suspect Ai produces a very strong alibi in his/her favor, 

suggesting that there are only 1:10 odds that he could have 



99 

committed the crime. We link a dummy node E directly to A. 

E is an event producing a alibi) 

A 

' I ',, 
B E 
I 
I 
I 
c 

(oe(A): message from node E to node A) 

oe(A)= (0.1 1 1) oe(A)= (very unlikely certain 
certain) 

(o(A): support attributed to A by its child nodes) 

o (A)= oE (A)* 08 (A) o(A)= (very unlikely certain 

certain)* (G1 G2 G3)= 

= (0.1 1 1)* (0.75 0.61 0.54) (I1 I 2 I 3) 

= (0.075 0.61 0.54) 

(Updated belief of node A) 

BEL (A)= a* 0 (A) * 71' (A) BEL (A)= a* ( r, Iz I3) 

=a* (0.075 0.61 0.54)* (likely unlikely unlikely) 

(0.8 0.1 0.1) 

= (0.343 0.349 0.309) 
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(~8 (A): message from node A to node B): top-down propagation 

=a* (0.1 1 1)* 

(0.8 0.1 0.1) 

= a*(0.08 0.1 0.1) 

~8 (A)= a* (very unlikely certain 
certain)* 

(likely unlikely unlikely) 

(~(B): support attributed to B by its parent node) 

~ ( B) = /3 * ~ B (A) * p ( B I A) ~ ( B) = /3 * ( K, K2 K3) 

= 13* (0.08 0.1 0.1) 

~.8 0.1 o.~ 
.1 0.8 0.1 
.1 0.1 0.8 

= (0.3 0.35 0.35) 

[
likely unlikely unlikel~ 
unlikely likely unlikely 
unlikely unlikely likely 

= (L, ~ ~) 

(Updated belief of node B) 

BEL(B)= a* o(B)* ~(B)= BEL(B)= a* (very likely likely) 

a* (0.8 0.6 0.5)* likely) 

( 0 • 3 0 • 3 5 0 . 3 5) = ( L1 ~ ~) = ( M1 M2 M3 ) 

= (0.384 0.336 0.28) 

After updating the belief of node B, the propagation scheme 

is terminated. 

There are two fundamental problems with the proposed 

approach. The first problem is to determine the types of 

operations performed on the linguistic probabilities. The 

second problem is to find a label of an unlabelled set 

generated by the computational model. 

Regarding the operations performed on the linguistic 

probabilities, we need to resolve several problems presented 

below. First, we need to determine whether or not the sum 
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of the linguistic probabilities equals 1. In the example 

given above, for instance, the question is whether the sum 

of elements in the first row of matrix P(BIA), i.e., likely+ 

unlikely+ unlikely equals 1, whereas the sum of the 

probabilities of all possible events should be 1 in the 

probability theory. 

Second, we need to determine how to handle the 

multiplication of matrices whose elements are linguistic 

probabilities. This is reflected in the computation of the 

row vector (A1 A2 A3 ) in the example given above. Third, 

we need to determine how to handle the product of two 

linguistic probabilities. This is reflected in the 

computation of the row vector (B1 B2 ~) in the example 

given above. Finally, we need to determine how to handle 

the division of one linguistic probability by another 

linguistic probability. This is shown in the computation of 

the vector (C1 c2 C3) in the example given above. 

The second fundamental question is to find a label of 

an unlabelled set. For example, we could label B1 as 

"likely." The process of finding a label of an unlabelled 

set is called a linguistic approximation. In the proposed 

algorithms employing the linguistic probabilities, we do not 

attempt to modify Pearl's algorithms, but attempt to resolve 

the problems associated with using the linguistic 

probabilities. 

These two fundamental problems also occur in a propose 
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algorithm for the network structure. The next two sections 

deal with these two problems, where the first problem is 

discussed first followed by the discussion of the second 

problem, namely, a linguistic approximation. 

Interpretations of Linguistic Probabilities 

The issue of determining the types of operations 

performed on the linguistic probabilities is the kernel of 

the proposed algorithms, because research is scarce in the 

literature regarding this problem. On the other hand, 

several approaches [Bonissone, 1979; Bonissone and Decker, 

1986; Eshragh and Mamdani, 1979; Wenstop, 1980] have been 

developed. in regard to a linguistic approximation. 

When these algorithms were initiated, the development 

of a collection of theorems was expected to resolve this 

issue. However, after several attempts, it was concluded 

that such a theorem base was not forthcoming. It was 

decided to employ a heuristic approach. Several researchers 

including Bonissone and Decker [1986] indicated that the 

linguistic probability can be regarded as a fuzzy number. A 

fuzzy number is a fuzzy subset of real numbers, e.g., 

"approximately 0.9." Dubois and Prade [1980a] defined a 

number of operations performed on fuzzy numbers. It seems 

that an alternative approach is to treat the linguistic 

probability as the ordinary fuzzy set. A number of 

operations on fuzzy sets including union and intersection 
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have been defined by a number of researchers including Zadeh 

(1965]. 

Depending on which interpretation of the linguistic 

probability we follow, the result becomes totally different 

due to the fact that the operations defined on fuzzy numbers 

are completely different from those defined on fuzzy sets. 

In the absence of a set of theorems to determine the best 

interpretation, it seems feasible to use a simulation 

approach. The complete description of a simulation model 

will be done later in this section. 

Fuzzy Set Interpretation 

Under this interpretation, we treat the linguistic 

probability as the ordinary fuzzy set. The basic operations 

performed on fuzzy sets are as follows: equal, contained, 

union, intersection, complement, product, bounded sum, 

bounded difference, left-square, convex combination, and 

Cartesian product. In this interpretation, the sum of the 

fuzzy sets obviously needs not to be 1. For example, the 

sum of two fuzzy sets "young" and "middle-aged" needs not to 

be 1. 

As far as the multiplication of matrices consisting of 

the linguistic probabilities is concerned, It seems that a 

fuzzy matrix theory (Kim, 1982; Kim and Roush, 1980] is 

applicable. A fuzzy matrix is a matrix whose entries lie in 

[0,1]. The example of a fuzzy matrix is: 



A= [
0.6 

0.5 

o.~ 
o.~ 
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The multiplication of fuzzy matrices is defined as follows: 

A* B= [sup {inf ( aik, bkj) } ] , where a;k= element of matrix A 
k 

bkj= element of matrix B 

The other operations defined on fuzzy matrices are as 

follows: 

addition of matrices: A + B= [sup {a; i, b; j} ] 

product of scalar and matrix: cA= [inf {c,aii}], where c= a 

scalar. 

The "sup" and "inf" denote the supremum and infimum 

defined below, respectively [Pinter, 1971]. The supremum of 

a set B in a set A is defined as the least upper bound of a 

set B in a set A. The infimum of a set B in a set A is 

defined as the greatest lower bound of a set B in a set A. 

A greatest element in the class of lower bounds of a set B 

in a set A is called the greatest lower bound of a set B in 

a set A. A least element in the class of upper bounds of a 

set B in a set A is called the least upper bound of a set B 

in a set A. 

A scheme to handle the multiplication of matrices 

consisting of the linguistic probabilities is presented 

below. Because the basic operations performed on fuzzy sets 

include intersection and union, our intention is to propose 

a scheme built around these basic operations. 
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Kim and Roush [1980] showed that many results of a 

fuzzy matrix theory are valid for matrices over any 

commutative semiring. A semiring is a set R provided with 

two binary operations '+' and '*' from R X R to R, which 

satisfy the following five properties: (1) a+b= b+a; (2) a+ 

(b+c)= (a+b)+ c; (3) a* (b*c)= (a*b)* c; (4) a* (b+c)= a*b+ 

a*c; and (5) (b+c)*a=b*a+c*a. A semiring is said to be 

commutative if the law a*b= b*a holds. 

If we define '+' as union operation, i.e., F(A+B)= 

max[F(A) ,F(B)] and '*' as intersection operation, i.e., 

F(A*B)= min[F(A),F(B)], it can be easily shown that a set of 

linguistic probabilities is a commutative semiring. F 

denotes the membership function. Thus, the membership 

function of the union of A and B consists of the maximum 

values of the membership functions of A and B. On the other 

hand, the membership function of the intersection of A and B 

consists of the minimum values of the membership functions 

of A and B. 

Kim and Roush [1980] also showed the fuzzy algebra 

[0,1] under the operations a+b= sup{a,b},a*b= inf{a,b} is a 

commutative semiring. If we perform three operation on 

fuzzy matrices A1 and A2 using the operations a+b= sup{a,b} 

and a*b= inf{a,b} defined in the fuzzy algebra [0,1], we can 

obtain the following results. 



r- -, r;. 5 
-, 

A,= lo.1 o. 2 I and A2= 0.61 

~-3 0.4J ~-1 o.~ 
(1) multiplication of A1 and A2 : 

lo .1 0. ;i lo. 5 0. ;i =lo. 1 *O. 5+0. 2 *O. 7 
~-3 o.~ ~-7 o.sj l0.3*0.5+0.4*0.7 

(2) addition of A1 and ~: 

~-1 o.~ ~-5 o.~= ~-1+ 0.5 
+ 

.3 0.4 .7 0.8 .3+ 0.7 

(3) product of a scalar and A1 : 

~-1 o.~= ~-5•0.1 0.5•0.~ 
(0.5) 

.3 0.4 0.5*0.3 0.5*0.4 
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0 .1*0. 6+0. 2*0. ;i 
· o.3*0.6+0.4*0.sj 

0.2+ o.~ 
0.4+ 0.8 

If we define '*' as the infimum and '+' as the supremum, it 

can be easily shown that the results of these three 

operations are consistent with those obtained from the 

operations performed on fuzzy matrices. 

As shown earlier, a set of the linguistic probabilities 

is a commutative semiring provided that '+' is an union 

operation and '*' is an intersection operation. The fuzzy 

algebra [0,1] under the operations a+b= sup{a,b} and a*b= 

inf{a,b} is also a commutative semiring. Since the latter 

commutative semiring produces the results which are 

identical to those obtained from the operations on fuzzy 
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matrices, it seems reasonable to define '+' as an union 

operation and '*' as an intersection operation for fuzzy 

matrices consisting of the linguistic probabilities. 

Thus, the multiplication of ~atrices A1 and B1 

consisting of the linguistic probabilities can be defined as 

where ai and bi denote the linguistic probabilities, and 'n' 

and 'U' denote an intersection and union operation, 

respectively. Although this argument does not fully justify 

a proposed scheme, it seems acceptable provided that no 

scheme has been developed. 

In the process of developing a proposed scheme, it is 

shown that if we define '+' as an union and '*' as an 

intersection, a set of linguistic probabilities is a 

commutative semiring. Similarly, if we define '+' as an 

intersection and '*' as an union, we can also easily show 

that a set of linguistic probabilities is also a commutative 

semiring. If we follow these latter definitions of '+' and 

'*,' the multiplication of matrices consisting of linguistic 

probabilities can be defined as follows: 
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Given the fuzzy sets A= {0.2/0.1, 0.4/0.5, 0.8/0.9} and 

B= {0.3/0.1, 0.6/0.5, 1.0/0.9}, AU B= {max(0.2,0.3)/0.1, 

max(0.4,0.6)/0.5, max(0.8,1.0)/0.9} and An B= 

{min(0.2,0.3)/0.1, min(0.4,0.6)/0.5, min(0.8,1.0)/0.9}. 

This shows that the union operation tends to increase the 

resulting membership values, while the intersection 

operation tends to decrease the resulting membership values. 

The fact that the membership values increase as a result of 

the union operation indicates that the union is a 

nondecreasing operator, whereas the intersection is a 

nonincreasing operator. 

Because Pearl's algorithms use the probability as a 

measure of belief, the numbers dealt with by his algorithms 

lie between O and 1. Thus, the addition of the 

probabilities is a nondecreasing operator, whereas the 

multiplication of the probabilities is a nonincreasing 

operator. If we simply consider how the multiplication of 

the (ordinary) matrices is performed, treating '+' and '*' 

as the union and the intersection seems to make more sense 

than the other way. The belief of node A is computed via 

the product of o(A) by ~(A). In this computation, two 

linguistic probabilities need to be multiplied. Because the 

multiplication of the probabilities and the intersection 
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operation are both nonincreasing operators, it seems 

reasonable to use the intersection operation for the product 

of two linguistic probabilities. 

The division operation on fuzzy sets needs to be 

defined in order to divide one row vector consisting of the 

linguistic probabilities by another row vector. The 

proposed scheme for this division operation is provided 

below. The division operation on matrices A and B 

consisting of the linguistic probabilities is denoted A/B 

and is defined by F(A/B)= F(A)/F(B), where F(A)= membership 

function of A and F(B)= membership function of B. 

For example, if A= {0.1/0.2, 0.3/0.4, 0.5/0.6} and B= 

(0.7/0.2, 0.8/0.4, 0.9/0.6}, A/B= {(0.1/0.7)/0.2, 

(0.3/0.8)/0.4, (0.5/0.9)/0.6}. If any of the resulting 

membership values exceeds one, a normalization is necessary. 

For instance, given A= {0.1/0.2, 0.3/0.4, 0.5/0.6} and B= 

{0.2/0.2, 0.2/0.4, 0.5/0.6}, A/B= {0.5/0.2, 1.5/0.4, 

1.0/0.6}= {(0.5/1.5)/0.2, 1.0/0.4, (1.0/1.5)/0.6}. 

Fuzzy Number Interpretation 

The second approach advocated by researchers including 

Dubois and Prade [1980a], and Bonissone and Decker [1986] is 

to treat the linguistic probability as a fuzzy number. A 

fuzzy number is a fuzzy subset of real numbers. As 

discussed earlier, the operations performed on the fuzzy 

numbers are: inverse, scalar, multiplication, exponential, 
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absolute value, extended addition, extended multiplication, 

extended substraction, extended division, extended max, 

extended min, and extended power function [Dubois and Prade, 

1980a]. 

The extended addition, extended multiplication, and 

extended division can be performed on the linguistic 

probabilities in the proposed algorithms in the same manner 

that the probabilities are manipulated in Pearl's algorithms 

via the addition, multiplication, and division. One issue 

that has not been resolved yet is how to deal with a 

normalizing constant. 

Suppose that the linguistic probabilities "unlikely," 

"maybe," and "likely" are defined as follows: 

"unlikely"= {l/0.2, 0.8/0.4, 0.6/0.6, 0.4/0.8, 0.2/1} 

"maybe"= {0.6/0/1, 0.8/0.3, 1/0.5, 0.8/0.7, 0.6/0.9} 

"likely"= {0.6/0.5, 0.8/0.6, 1/0.7, 0.8/0.8, 0.6/0.9} 

If we treat the linguistic probability as a fuzzy 

number, "unlikely," "maybe," and "likely" could be regarded 

as "approximately 0.2, 11 "approximately 0.5," and 

"approximately 0.7, 11 respectively. Thus, the sum of these 

linguistic probabilities is "approximately 0.2 11+ 

"approximately 0.5 11+ "approximately 0.7" which results in 

"approximately 1.4." This indicates that a normalizing 

constant is necessary if the linguistic probability is 

treated as a fuzzy number. 

Once we have the conclusion that a normalizing constant 



is necessary, the next question occurs as to how we 

determine a normalizing constant and how we normalize the 

linguistic probabilities. An approach to resolve this 

problem is proposed below. 

111 

Zadeh (1978a] argued that we can derive the probability 

distribution from a possibility distribution and Moral 

(1986] proposed the use of principle of ME in deriving the 

probability distribution from a possibility distribution. 

Zadeh's approach and Moral's approach are discussed in 

detail in Chapter 3 later. A proposed approach is primarily 

built around these two approaches. 

Suppose we add two linguistic probabilities L1 and L2 

that are represented by { a 1/p1 , a 2/p2 , a 3/p3 , a 4/p4 } and { b 1/p1 , 

b2/p2 , b3/p3 , b4/p4 } , respectively. And suppose the result 

obtained from adding L1 to ~ is {w1/p1 , w2/p2 , w3/p3 , w4/P4 }. 

The first step is to determine the (second-order) 

probability distribution from this possibility distribution 

{w1/p1 , w2/p2 , w3/p3 , w4/p4 }. The resulting probability 

distribution is denoted { z 1/p1 , z 2/p2 , zyp3 , z4/p4 }, where L: 

zi= 1. The second step is to compute the mean of this 

(second-order) probability distribution, i.e., z 1*p1+ z 2*p2+ 

z3 *p3+ z4 *p4 , where the mean is denoted M. 

If M is 1, the procedure is terminated. Otherwise, we 

go to the third step performing a normalization. The third 

step performs a normalization and produces a normalized L1 

and ~ which are expressed as { a 1/ (p1/M) , a 2/ (p2/M) , 
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ay' (p3/M), a 4/ (p4/M)} and {b1/ (p1/M), b 2/ (p2/M) , b3/ (p3/M) , 

b4/ (p~M) } . In other words, in the third step, we multiply 

each second element of a fuzzy pair by (1/M). Its line of 

reasoning is provided below. 

Suppose that a fuzzy number "approximately 3 11 is 

defined as {m1/e1 , m2/e2 , m3/e3 , m4/e4 }. Another fuzzy number 

defined as {m1/ (2e1), m2/ (2e2), m3/ (2e3), m~ (2e4)} denotes a 

fuzzy number "approximately 6. 11 This can be easily shown by 

simply applying Moral's approach. 

Proposed Simulation model 

Because it has been concluded that it will not be 

possible to prove mathematically which interpretation 

performs better, the use of a simulation model seems 

acceptable to this kind of situation, even though this 

technique does not offer conclusive proof. As discussed 

earlier, Wise's framework compares the results obtained from 

the non-Bayesian approaches to that obtained from the 

probability theory supplemented by ME/MXE. 

Wise also developed the following conversion scheme 

between FST and the probability theory: probability= fuzzy 

membership value. Suppose that a fuzzy set "young" is 

defined as {1/10, 0.9/20, 0.8/30, 0.5/40}. In Wise's 

scheme, for example, the probability of "age of 20" is 0.9. 

Assuming that his scheme is correct, the. sum of the 

membership values should equal 1, because the sum of the 



113 

probabilities equals 1. However, in FST, the sum of the 

membership values is not necessarily equal to one. In fact, 

in this example, the sum of the membership values is 3.2 

(=l+0.9+0.8+0.5). 

It seems that Wise expected this kind of criticism on 

his conversion scheme between FST and the probability 

theory. He [p.44, Wise, 1986] noted 11 ••• the objection is 

often made that fuzzy memberships need not add to one, as 

must probabilities over an exclusive and exhaustive set of 

events. The natural reply is that they do not represent 

probabilities over an exclusive and exhaustive set-it may be 

incomplete if they add to less than 1, it is not exclusive 

if they add to more than l.O." 

FST is a generalization of the (ordinary) set theory in 

that FST allows a partial membership. In the ordinary set 

theory, for example, given a set S= {l,2,4,6}, the 

membership values of the elements {1,4,6,7} are 1 (true), 1 

(true), 1 (trtie), and o (false), respectively. Thus, the 

sum of the membership values is 3. The sum of the 

membership values in the ordinary set theory needs not to be 

one, rather can be any integer. Since FST is a 

generalization of the (ordinary) set theory, we can argue 

that the sum of the membership values needs not to be one in 

FST. In essence, it has nothing to do with "exclusive and 

exhaustive set of events." 

The probability/possibility consistency principle 
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introduced by Zadeh [1978a] is discussed first, followed by 

the presentation of a proposed mapping scheme. Zadeh 

[1978a] concluded that "Thus, a high degree of possibility 

does not imply a high degree of probability, nor does a low 

degree of probability imply a low degree of possibility. 

However, if an event is impossible, it is bound to be 

improbable." From "if an event is impossible, it is bound 

to be improbable," a possibility was interpreted as an upper 

bound of the probability, leading to the conclusion that the 

probability distribution can be derived from a possibility 

distribution, but not vice versa. 

This connection between the possibilities and the 

probabilities is called the probability/possibility 

consistency principle. After Zadeh introduced the 

probability/possibility consistency principle, researchers 

in FST have taken his conclusion regarding the 

probability/possibility consistency principle for granted. 

The possibility/probability consistency measure represents 

the degree of consistency of the probability distribution 

with a possibility distribution. 

Three measures of the probability/possibility 

consistency developed by Zadeh, Dubois and Prade, and Sugeno 

are as follows [Moral, 1986]: 

(1) Zadeh's concept: Cz(Pos,P)= ~ P(a)*pos(a), where pos= 
a€U 

possibility. 
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(2) Dubois and Prade's concept: 

c0P (pos, p) = 
r-1 
I 

if POS(A) >= P(A), A€ U 

.._o otherwise 

where POS(A)= Sup pos(a), P(A)= ~ p(a), and p= probability 
a EA a EA 

(3) Sugeno's measure: 

C5 (pos,p)= f. 
JU 

f(pos) g(p), 
0 

where f and g are non-decreasing mapping.s f,g: [0,1] -> 

[O,l] with f(O)= g(O)= o, f(l)= g(l)= 1 and Ju stands for 

Sugeno's fuzzy integral. 

In Zadeh's measure and Sugeno's measure, a higher value of 

consistency measure implies a high degree of consistency of 

the probability distribution with a possibility 

distribution, where the consistency measure does exceed 1. 

It seems that the statement "if an event is impossible, 

it is bound to be improbable" is an overstatement, in the 

sense that the rather more accurate statement could be "a 

low degree of possibility implies a low degree of 

probability." The former is a special case of the latter. 

From the statements "a high degree of possibility does not 

imply a high degree of probability." and "a low degree of 

possibility implies a low degree of probability.", we can 

conclude that there exists a weak relationship between a 

possibility distribution and the probability distribution. 

Thus, the probability distribution can be derived from 

a possibility distribution, which is in accordance with 
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Zadeh's probability/possibility consistency principle. 

Although it was not discussed by Zadeh [1978a], it makes 

sense intuitively to say that a high probability implies a 

high possibility. Two statements, namely, "a high degree of 

probability implies a high of possibility" and "a low 

probability does not imply a low possibility" indicate that 

there exists a weak relationship between the probability 

distribution and a possibility distribution. Thus, we can 

conclude that a possibility distribution can be derived from 

the probability distribution, although it is not in 

accordance with the commonly accepted statement "a 

possibility distribution cannot be derived from the 

probability distribution." 

The analytical solution in deriving the probability 

distribution from a possibility distribution from a 

possibility distribution are presented first, followed by 

the discussion of the analytical solutions in deriving a 

possibility distribution from the probability distribution. 

Moral [1986] discussed how to construct the probability 

distribution from a possibility distribution. His scheme is 

based on ME. 

The resulting probability distribution is the solution 

of the following non-LP problem: 

Maximize H= -K ~ P(a)* ln(P(a)) 
aeu 

s.t. 
~ P(a)= 1 

aeu 
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"P is consistent with possibility," where K= constant and 

P= probability. Any of three probability/possibility 

consistency measures can be substituted into the constraint 

"P is consistent with possibility." 

The above non-LP problem is a fuzzy non-LP problem, 

because the constraint "P is consistent with possibility" is 

fuzzy. Especially if Zadeh's measure or Sugeno's measure is 

used, the constraint "P is consistent with possibility" is 

fuzzy, because the higher a, the more "P is more consistent 

with possibility." a represents the measure of 

probability/possibility consistency. On the other hand, the 

use of Dubois and Prade's measure results in a crisp (or 

non-fuzzy) non-LP problem. The fuzzy non-LP problem has the 

limitation in that its computational time is prohibitive. 

Thus, Verdegay proposed an approach to solve the a-cut 

of the original problem shown below: 

Max: H= -KL P(a)*ln(P(a)) 
a€U 

s.t. L P(a)= 1 
a€U 

C (7r, P) >= a 

(1) 

where a € [O,l], C(7r,P)= consistency measure, 7r= 

possibility, and P= probability. Thus, in order to obtain 

the only probability distribution, we can use a single value 

of a, e.g., 0.9. The analytical solution of a-cut of the 

original problem given in (1) is presented below for three 

measures of consistency. 
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First, if Zadeh's measure is used, (1) becomes as 

follows: 

Max: H= -KE P(a)*ln(P(a)) 
afU 

s.t. E P(a)= 1 
afU (2) 

E P(a)7r(a) >= a 
afU 

The analytical solution of (2) is provided below [Moral, 

1986]. 

If a f [0,1] and u is the root of f(u)= a provided that 

f(u)= p::: 7T(a)* u7 <a>]/ p::: u7 <a>], then the solution can be 

expressed as P(a)= u7 <a>; [E u7 <b>], only if a >= [L 7T<a) J/IUI. 

(3) 

IUI denotes the cardinality of universe of discourse u, 

namely, the number of elements belonging to u. However, if a 

< [E 7r(a)/IUIJ, 

then P(a)= 1/IUI. (4) 

Second, if Dubois and Prade's measure is used, (1) 

becomes the following: 

Max: H= -KL P(a)* ln(P(a) 

s.t. 

afU 

L P(a)= 1 
afU 

II(A) >= P(A) 

(5) 

Moral [1986] showed that II(A) >= P(A) is equivalent to: 

7T (bi) >= P (b1) + • • • + P (bi) I i= 1, • • • In 

where U= {b1, ••• , bn} with 7T(b1) <= ••• <= 7T(bn) (6) 
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He also showed that the following distribution 

satisfies the Kuhn-Tucker conditions for the problem (5): 

i=l, •.• ,n 

p(bk)= Min{ [7r(bi)-p(b1)- ••• -p(bk_1) ]/(i-k+l) }, k=2, ... ,n (7) 

i=k, ••• ,n 

In other words, (7) is an optimal solution of the problem 

(5). Kuhn-Tucker conditions produce an optimal solution of 

non-LP problems. For readers interested in Kuhn-Tucker 

conditions, refer to any advanced book in Operations 

Research. 

Finally, if Sugeno's measure is used, (1) becomes the 

following: 

Max; H= -KI: P(a)* ln(P(a)) 
a€U 

s.t. I: P(a)= 1 
a€U 

Ju f(7r) og(P) >= a 

(6) 

Moral showed that denoting U= {a1 , ••• , an} with 7r(a1) >= 

7r ( a2) >= • . . >= 7r ( an) ' 

the condition Ju f (7r) 0 g(p) >= a is equivalent 

to f(p(a 1)+ ••• + p(aicr» >=a, where i(a)= Min {ii g(7r(ai)) >= 

a} (9) 

And if we define h(a)= Inf {t €[0,1] I f(t) >= a}, an 

optimal solution of the problem (8) is as follows: 

if i(a)/IUI >= h(a), then Pcr(a)= l/IUI 



rh (a) / i (a) if k <= i (a) 

L[l-h(a) ]/[ IUI- i(a)] if k > i(a) 
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Some numerical results of the above procedures are shown in 

Table 5, Table 6, and Table 7 [Moral, 1986]. 

'ff 

p 

'ff 

Pei a 
0.70 
0.76 
0.85 
1.00 

TABLE 5 

PROBABILITY DISTRIBUTION USING C2 
(=ZADEH'S MEASURE) 

Xl X2 X3 X4 

1 0.9 0.7 0.2 

0.27 0.27 0.27 0.2 

TABLE 6 

PROBABILITY DISTRIBUTION USING C0p 

(=DUBOIS AND PRADE'S MEASURE) 

x, X2 X3 X4 

1 0.9 0.7 0.2 

0.25 0.25 0.25 0.25 
0.30 0.28 0.24 0.17 
0.41 0.32 0.20 0.07 

1 0 0 0 
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TABLE 7 

PROBABILITY DISTRIBUTION USING Cs 
{=SUGENO'S MEASURE) 

x, X2 X3 X4 

1f 1 0.9 0.7 0.2 

Pa a 
0.76 0.38 0.38 0.12 0.12 
0.85 0.43 0.43 0.07 0.07 
0.95 0.95 0.02 0.02 0.02 
1. 00 1 0 0 0 

These three tables showed that the derived probability 

distribution varies depending on which measure is used 

and/or which value of a is used. 

Similarly, we can derive a possibility distribution 

from the probability distribution using ME. Thus, a 

possibility distribution is the solution of the following 

non-LP problem: 

Maximize H= -K ~ Pos(a)*ln(pos(a)) (10) 
a€U 

s.t. "Pas is consistent with P," where pas= possibility and 

P= probability. 

Any of three probability/possibility consistency 

measures can be substituted into the constraint "Possibility 

is consistent with probability." Since the use of different 

consistency measure leads to the different probability 

distribution. Furthermore, if Zadeh's measure or Sugeno's 
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measure is used, the same value of a should be used to 

maintain the consistency. 

The analytical solutions of problem (10) are to be 

discussed below for three consistency measures. First, 

suppose that Dubois and Prade's measure is used. Equation 

(7) indicates that the use of their consistency measure 

makes it extremely difficult to derive an analytical 

solution of problem (10). This is because the determination 

of ~(bi) 's given p(bi) 's is extremely difficult due to the 

fact that we cannot guarantee that ~(b1 ) <= ... <= ~(bn) is 

satisfied before ~(b;) 's are obtained. This eliminates 

Dubois and Prade's measure from further consideration for 

problem (10). 

Second, suppose Sugeno's measure is used for problem 

(10). Equation (9) holds if ~(a 1 ) >= ~(a2 )>= ... >=~(an). 

This condition of equation (9) cannot be guaranteed to be 

true before ~(a;) •s are determined. Thus, we can also 

conclude that Sugeno's measure is inappropriate for problem 

(10) in the same manner that Dubois and Prade's measure is 

not considered as a potential candidate of consistency 

measure. 

Finally, consider Zadeh's measure. The problem (10) 

becomes the following: Max: H= -KL Pos(a)*ln(Pos(a)) 
a€U 

s.t L Pos(a)*p(a) >=a, a € [0,1] (11) 
a€U 

The application of extension of the Lagrangian method 
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to problem (11), provides the following analytical solution. 

For the readers interested in the extension of Lagrangian 

method, refer to Taha (1982]. If xi= 0.368, i=l, ... ,n 

satisfies the constraint of problem (9), then it is an 

optimum. solution. However, if xi= 0.368, i=l, ... ,n does not 

satisfy the constraint of problem (11), then optimal 

solution is: xi= e**(9pi-1], i=l, ... ,n such that p1* 

(e**(9p1-1) ]+ ••• + Pn* (e**(9pn-1) ]= a. (12) 

A proposed scheme to convert the probability into a 

possibility distribution is presented below, followed by the 

description of a proposed scheme to convert a possibility 

distribution into the probability. Suppose that the given 

probability is P1 • The first step is to express the 

(single-valued) probability as the second-order probability 

distribution. P1 can be expressed as the following second­

order probability distribution: {1/P1 ,0/P2 , ••• ,0/pn}, where 

first and second element of a pair denote the second-order 

probability and first-order probability, respectively. 

The second and final step is to derive a possibility 

distribution from the (second-order) probability 

distribution using a proposed scheme. For instance, we can 

derive the equivalent possibility distribution, {u1/P1 , 

u2/P2 , ••• , unfPn} from the probability distribution 

{l/P1,0/P2 , ••• ,0/Pn}, where ui denotes the membership value. 

The scheme to convert a possibility distribution into 

the probability is discussed below. This conversion scheme 
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is used when the final result obtained from the probability 

theory is compared to that obtained from FST. Suppose the 

final result obtained from FST is {u1/p1+u2/p2+ ... +Ur/Pn}. 

Using a proposed conversion scheme based on ME, the 

(second-order) probability distribution {q1/p1+ 

q2/p2+ ••. qr/Pn} can be derived from { u 1/p1 , u2/p2 , ••• , Ur/Pn} . 

This second-order probability distribution can be converted 

into a single-valued probability, by computing the mean of 

the distribution { q1/p1+ ... +qr/Pn}. Then the mean can be 

used as the probability-equivalent measure. 

The proposed simulation model uses the probability as a 

measure of belief. The scheme to convert the probability 

into a possibility distribution derives a (probability­

equivalent) possibility distribution (or linguistic 

probability). Then we can perform the relevant operations 

on the probabilities and the linguistic probabilities (or 

possibility distributions) . 

Different types of operations are performed on the 

linguistic probabilities depending on whether the linguistic 

probability is treated as a fuzzy set or a fuzzy number. As 

the final results, we have the final output expressed as the 

probability, two possibility distributions for two 

interpretations. Now we can convert two possibility 

distributions into a single-valued probability using the 

proposed scheme. Finally, we can compute mean squared 

error, mean absolute error, normalized mean squared error, 
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and normalized mean absolute error of two interpretations. 

The interpretation with the smaller error is concluded as 

the best interpretation. The flow chart of proposed 

simulation model is shown in Appendix. 

It can be argued that because the proposed schemes 

between a possibility distribution and the probability 

distribution are based on the weak relationships between two 

distributions, the conclusion obtained from this simulation 

model may not be convincing. However, since the same 

conversion schemes are applied to both interpretations, it 

does not seem to affect the results unfairly. 

It is also possible to criticize the use of a proposed 

simulation model, in that the proposition of fuzzy-set-based 

algorithms is not consistent with the use of Wise's 

framework as a basis of a simulation model. The argument 

may be that the fuzzy-set-based algorithms fundamentally 

favors FST over the probability theory, whereas Wise's line 

of reasoning is that the probability theory is all we need 

in uncertainty management in ESs, nothing else. 

Our position in regard to the Bayesian approach and 

non-Bayesian approaches is to accept the probability theory 

as a normative approach, but at the same time, admit that 

the problems with the probability theory, especially the 

second-order probability theory. This can lead to the 

adoption of the non-Bayesian approaches in some 

applications. 
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Analysis of Results 

An example of Bayesian network discussed earlier in 

this chapter is adopted in a simulation model. Its Bayesian 

network is shown below. A node A stands for the identity of 

the last user of the weapon and a node B represents the 

identity of the last holder of the weapon. 

A 
' ' ' ' 8 E 

I 
I 
I 
c 

A node c denotes the possible readings that may be 

obtained from a fingerprint laboratory and a node E stands 

for an event producing an alibi. We assume that the alibis 

are obtained after the information about a fingerprint is 

obtained. In this experiment, we assume that there are 

three suspects. 

In this experiment, the prior probability distribution 

of a node A can take either (0.8 0.1 0.1) or (0.6 0.2 0.2). 

P(BIA) takes the following three distributions: 



[
o. 8 
0.1 
0.1 

0.1 
0.8 
0.1 

0.1] 0.1 or 
0.8 

[
o. 6 
0.2 
0.2 

0.2 
0.6 
0.2 

o. 2] 
0.2 or 
0.6 

[
o. 4 
0.3 
0.3 

0.3 
0.4 
0.3 

0. 3] 
0.3 
0.4 
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The initial "descendant belief" of node B is {l 1 1), 

but later changed to either {0.8 0.6 0.5) or {0.6 0.8 0.5). 

This "descendant belief" is changed due to the result 

obtained from a fingerprint laboratory. After the alibis 

for three suspects are obtained, a node E is connected to a 

node A. The message sent from a node E to a node A takes 

either {O.l 1.0 1.0) or {0.1 0.1 1.0). 

The valu.es employed in this experiment are determined 

arbitrarily, because our goal is simply to test which 

interpretation of the linguistic probability generates the 

better results between a fuzzy number interpretation and the 

fuzzy set interpretation. Thus, there are thirty-six 

different cases in this experiment. 

As discussed earlier, four measures of error are 

adopted, namely, the average absolute error, average squared 

error, average normalized absolute error, and average 

normalized squared error. In each of thirty-six cases, 

these four measures are computed. Then the averages of 

these four measures are used in determining which 

interpretation performs better. 

The averages of these four measures are computed at a 

node A and node B. That is, we compute the errors between 

the probability obtained from Pearl's algorithm and ·the 
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linguistic probability obtained from the proposed algorithm. 

The results are given below. 

Node A: fuzzy number fuzzy set 
interpretation interpretation 

average absolute 
error 0.1382 0.2366 

average squared 
error 0.0473 0.1162 

normalized average 
absolute error 0.5298 0.2959 

normalized average 
squared error 0.8098 0.5948 

Node B: fuzzy number fuzzy set 
interpretation interpretation 

average absolute 
error 0.0531 0.2176 

average squared 
error 0.0066 0.1031 

normalized average 
absolute error 0.8117 0.2585 

normalized average 
·squared error 0.9590 0.5858 

Note that the normalized error takes 1 for zero error, 
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o for the random guessing, and -1 for the worst outcome. 

These results indicate that a fuzzy number interpretation 

performs better than the fuzzy set interpretation. That is, 

-we can conclude that the operations defined on fuzzy numbers 

perform better for the linguistic probability than the 

operations defined on the fuzzy sets. 

In fact, these results support Bonissone and Decker's 

position [1986] that the linguistic probability is treated 

as a fuzzy number. However, it seems that Bonissone and 

Decker's assertion that the linguistic probability is 

treated as a fuzzy number, is not based on any kind of 

theory or experiment. Thus, this experiment provides the 

experimental support for Bonissone and Decker's argument, 

although this experiment does not prove it. Several 

questions can be raised with regard to this experiment. 

The first question is as to whether the result obtained 

from this simple binary tree is strong (or valid) enough to 

conclude that a fuzzy number interpretation performs better 

than the fuzzy set interpretation. Even if the adopted 

Bayesian network looks like a simple binary tree, lots of 

computations are performed until the beliefs at node A and 

node B are determined. Therefore, it can be argued that 

this simple binary tree can generate the valid result. 

The second question is as to whether the result 

obtained from a simple binary tree can be applied to Pearl's 

algorithm for the network structure. As shown earlier, the 
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algorithm performed in the network structure is basically of 

the same nature to that of an algorithm for a tree 

structure. Note that we do not attempt to develop the new 

algorithms for the Bayesian networks, but attempt to resolve 

the problems associated with the adoption of the linguistic 

probability. 

The third question is as to whether just one experiment 

can generate the valid results. That is, it can be argued 

that the additional experiments need to be done by changing 

the size of the vector. For instance, it could be argued 

that if the size of the vector is changed to the even 

number, e.g., 4, we might have the different conclusion. 

Although it is not shown here, some experiment is 

performed for the vector of size 2. Because its results are 

basically identical to that of the vector of size 3, we do 

not test thirty-six cases. Based on the experiments 

performed, we could conclude that the result will be 

identical regardless of the size of the vector. 

The final question can occur as to why we need to use 

the Bayesian network. That is, ·we can employ an experiment 

in which a combination of the addition, multiplication, and 

division is performed on the linguistic probabilities. It 

seems that this simple experiment may also produce the 

meaningful results. 

However, the number of operations performed in the 

binary tree until the final beliefs at node A and node B are 
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determined, is relatively large. Furthermore, we propose 

the procedure to perform a normalization. Thus, the use of 

this simple binary tree enables us to test how well this 

proposed normalization procedure performs. In this regard, 

we can argue that the experiment based on the binary tree is 

more appropriate than the simple experiment in which a 

collection of addition, multiplication, and division are 

performed. 

Linguistic Approximation 

A linguistic approximation is the process of finding a 

label whose meaning is the same or the closest to the 

meaning of an unlabelled fuzzy set generated by the 

computational model. For example, a fuzzy set {0.3/0.2, 

0.4/0.4, 0.5/0.6, 0.8/0.9} could be labelled as "more or 

less true" or "very true." 

Wenstop[1980], Eshragh and Mamdani [1979], Bonissone 

and Decker [1986], and Bonissone [1979] have developed the 

procedures for a linguistic approximation. A proposed 
-

approach is not meant to be an alternative scheme to all 

existing approaches, but is a practical scheme which employs 

the strengths of the existing approaches to a large extent. 

In fact, a proposed approach is primarily built around 

Eshragh and Mamdani's approach and Bonissone's approach. 

The primary characteristics of a proposed approach are 

as follows: 
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(1) It adopts the hedges like Eshragh and Mamdani's approach 

to increase its granularity. 

(2) Like Eshragh and Mamdani's approach, it employs the 

search step performing a perfect match between an unlabelled 

set and each primary subset. If a perfect match exists, 

this step will reduce a search time to a great extent. 

(3) After the primary subsets are combined with the hedges, 

the proposed search procedure consists of two phases, that 

is, prescreening procedure and a procedure to find the best 

label using a modified Bhattacharyya distance. The 

prescreening procedure can cope with the increasing 

complexity of an exhaustive search. This search procedure 

will reduce a search time as the number of primary subsets 

and the hedges increase. 

(4) The parametric representation of primary subset [Beyth­

Marom, 1966] and three term sets [Bonissone and Decker, 

1986], are employed in a proposed approach, where each term 

set consists of a number of the linguistic probabilities. 

(5) As Bonissone [1979] suggested, four features, that is, 

the power, fuzzy entropy, first moment, and skewness are 

employed to represent each term. 

Bonissone and Decker developed three term sets, i.e., 

five element term set, nine element term set and thirteen 

element term set, where each term in a term set is 

represented by the 4-tuple [a,b,a,p]. For the elements in a 

term set, the two measures of dispersion, namely, the 
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interquartile range (c25 - c75 ) and the 80 percent range (C10 -

C90) , were used to define respectively the interval [a, b] 

and [(a-a), (b-#)] of each linguistic probability. The five 

element term set L1 , the nine element term set ~' and the 

thirteen element term set ~ are shown in Table 8, Table 9, 

and Table 10, respectively. 

TABLE 8 

FIVE ELEMENT TERM SET: L1 

impossible (0 0 0 0) 

unlikely (. 01 .25 .01 • 1) 

maybe ( . 4 .6 . 1 . 1) 

likely (. 7 5 .99 . 1 . 01) 

certain (1 1 0 0) 

The characteristics of a proposed approach are discussed 

in detail below. The 4-tuple representation is adopted 

primarily because it is the only representation based on the 

experiment. The three term sets are employed, mainly 

because it is likely to increase the chances that we can get 

the consistent answers from several experts. That 



is , from the users' perspective, it facilitates them to 

choose the appropriate .answer from the terms provided. 
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A proposed approach allows the users to select the term 

set among three term sets in the actual application. The 

main advantage obtained from allowing the users to select a 

term set is given below. These term sets provide the 

different levels of granularity, i.e., the finest level of 

distinction among different quantifications of uncertainty. 

TABLE 9 

NINE ELEMENT TERM SET: Li 

impossible (0 0 0 0) 

extremely_unlikely (. 01 .02 .01 • 05) 

very_low_chance (. 1 .18 .06 . 05) 

small chance (. 22 .36 .05 .06) 

it_may (. 41 .58 .09 .07) 

meaningful_chance (. 63 .80 .05 . 06) 

most_likely (. 78 .92 .06 . 05) 

extremely_likely (. 98 . . 99 .05 • 01) 

certain (1 1 0 0) 

This enables the users to choose a colection of the 
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linguistic probabilities which has an appropriate level of 

granularity for the specific application. 

TABLE 10 

THIRTEEN TERM SET: L:3 

impossible (0 0 0 0) 

extremely_unlikely (. 01 .02 .01 .05) 

not_likely (. 05 .15 .03 .03) 

very_low_chance ( . 1 .18 .06 .05) 

small chance (.22 .36 .05 .06) 

it_may (. 41 .58 .09 .07) 

likely (. 53 .69 .09 .12) 

meaningful_chance (. 63 .80 .05 .06) 

high_chance (. 7 5 .87 .04 .04) 

most_likely (. 78 .92 .06 .05) 

very_high_chance (. 87 .96 .04 .03) 

extremely_likely (. 98 .99 .05 . 01) 

certain (1 1 0 0) 

As Eshragh and Mamdani's approach employs the hedges, 

a proposed approach employs the following hedges: "highly," 

"very," "more or less," and "slightly." The hedges which 

are combined with some of the terms in each term set are 



shown in Table 11, Table 12, and Table 13. 

TABLE 11 

COMBINATION OF THE HEDGES WITH A TERM SET L1 

impossible 

unlikely 

maybe 

likely 

certain 

highly 

* 

* 

very 

* 

* 

more or less slightly 

* * 

* * 
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The selection of hedges is restricted by a number of hedges 

which are well-defined and/or whose definitions are 

consistent among FST researchers. Note that '*' in these 

tables indicates that the corresponding hedge is combined 

with the corresponding term. 

First of all, there are not lots of hedges which are 

well defined. Furthermore, in some cases, the hedges have 

the different definitions among researchers. As the number 

of hedges which are well defined increases, we can employ 

more hedges in this proposed scheme. 



TABLE 12 

COMBINATION OF THE HEDGES WITH A TERM SET L2 

impossible 

extremely_unlikely 

very_low_chance 

small chance 

it_may 

meaningful_chance 

most_likely 

extremely_likely 

certain 

highly 

* 

* 

very more or less slightly 

* 

* 

* 
* 
* 

* 

* 

* 

* 

* 

* 

* 

* 

* 
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The sole purpose of employing the hedges in a proposed 

approach is to increase the level of granularity. When the 

users use the linguistic probability as the input to the 

system, the users will be asked whether they want the 

hedges. Users have the option of choosing some of the 

available hedges or all the available hedges or no hedges at 

all. The default option is not to adopt any hedges. 

Similarly, when the system generates the output, the users 

have the option regarding the use of hedges in the final 

output. The default option is not to use any hedges. 
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TABLE 13 

COMBINATION OF THE HEDGES WITH A TERM SET ~ 

highly very more or less slightly 

impossible 

extremely_unlikely 

not_likely 

very_low_chance 

small chance 

it_may 

likely 

meaningful_chance 

high_chance 

most_likely 

very_high_chance 

extremely_likely 

certain 

* * 

* * 

* * 

* * 

* 

* 

* 

* 

* 
* 
* 
* 
* 

* 

* 
* 

* 
* 

* 

* 

* 
* 

* 
* 

Bonissone and Decker [1986] presented a simplified 

approach which adopts only two parameters, the power and 

first moment when these three term sets are used. They did 

not provide clear reasons why only two features are adopted 

in a simplified approach. However, since a term set has the 

small cardinality, i.e., number of terms in a term set is 

small, the use of four parameters does not seem to pose any 
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problem in terms of computational time and storage 

requirements. Thus, the use of four features is adopted in 

a proposed approach. 

Bonissone [1979] who proposed the use of four 

parameters, did not discuss specifically how to compute 

these four parameters. The power and entropy can be 

computed easily from the distribution of the linguistic 

value. However, the computation of the first moment and 

skewness is not straightforward due to the fact that these 

are defined for a random variable which has an associated 

probability distribution. The schemes to compute the first 

moment and skewness are presented below. 

As discussed earlier, we can derive the probability 

distribution from a possibility distribution using ME. The 

proposed approach first derives the probability distribution 

from a possibility distribution and the first moment and 

skewness of the derived probability distribution can be the 

first moment and skewness of the linguistic probability. 

As Eshragh and Mamdani•s approach adopts an exhaustive 

search in the first phase of the search procedure by testing 

a perfect match between the unlabelled set and primary 

subsets and adopts an heuristic search in the second phase 

of search procedure to find the best label, a proposed 

approach adopts the similar strategy. 

In a search procedure, the first step checks a perfect 

match between the unlabelled set and (primary) terms in the 
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term set. If a perfect match is found, a search procedure 

is terminated. Otherwise, the second step is activated. 

This first step can reduce the search time if a perfect 

match exists. The second step consists of two phases, 

namely, prescreening and a search of the best label. 

The prescreening procedure is performed based on the 

weighted Euclidean distance. This phase produces a number 

of terms whose weighted Euclidean distance is within a 

predetermined tolerance level. The main goal of this 

prescreening procedure is to reduce the search space in an 

exhaustive search. The second phase, namely, a search of 

the best label selects the best label by computing a 

modified Bhattacharyya distance of each term selected at the 

first phase. Thus, the main search routine is built around 

a combination of Eshragh and Mamdani's approach, and 

Bonissone's approach. 

Unless specified otherwise by the users, a single­

valued probability corresponding to a term in the term set 

is provided to the users for reference. This can be 

achieved by converting the membership function of a term to 

the probability distribution, followed by the computation of 

the mean of the second-order probability distribution. 

A proposed approach to a linguistic approximation can 

be summarized as follows: 

Step 1 (input): 

Users are asked to choose one term set among three term 
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sets. Also users are asked to indicate whether they want 

the hedges in the input and output. If the users do not 

respond with regard to the input, a default option, namely, 

no use of the hedges is adopted. Similarly, if the users do 

not respond in regard to the output, also a default option, 

that is, no use of the hedges is adopted. Furthermore, the 

users are allowed to choose the hedges they want. 

Unless otherwise specified, a single-valued probability 

corresponding to each term is provided to the users. The 

users also can assign the weights to four features. If not 

specified, the default option, namely, equal weights to four 

features are used. 

Step 2 (search and evaluation procedure): 

Phase 1: If the unlabelled set shows the characteristics 

similar to those of terms in the term set, then it will be 

tested against the appropriate terms in a term set for a 

perfect match. If a perfect match occurs, then the search 

is terminated. Otherwise, proceed to phase 2. 

Phase 2: First, prescreen all the (linguistic) terms using a 

weighted Euclidean distance. Users can input the desired 

tolerance level, if they choose to. Otherwise, the default 

value is. used. Finally, select the best label for the 

unlabelled set using a modified Bhattacharyya distance. 

Step 3 (output): 

Generate the output including the best label ~nd its 

corresponding single-valued probability if needed. 
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The flow chart of a proposed approach to a linguistic 

approximation is shown in Appendix. 

Implementation 

Two main computer programs are written for this 

dissertation. The first program is the program performing a 

simulation used for selecting the best one from a fuzzy set 

interpretation of the linguistic probability and a fuzzy 

number interpretation of the linguistic probability. 

The second program is the implementation of a proposed 

linguistic approximation scheme. This program can be added 

to any system based on FST as a module performing a 

linguistic approximation. These programs are coded in the 

programming language c. Specifically, the programming is 

done in the Turbo C system that is one of the popular c 

system for personal computer users. 

Turbo C system can be used to develop both MS-DOS and 

UNIX compatible software. The fact it can be used to 

develop both MS-DOS and UNIX compatible software implies 

that when we upload c programs developed in Turbo c system 

into VAX system of the mainframe, the programs can be run 

correctly under VAX system with little modifications, i.e., 

·c is highly portable. This is in contrast with other 

programming languages, e.g., PL/I which is different 

depending on whether IBM system or VAX system is used. 

Thus, PL/I is said to have less compatibility than c. The 
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flow charts of these two programs are shown in Appendix. A 

computer program determining a eigenvector corresponding to 

the maximum eigenvalue of a given matrix is listed in 

Appendix. 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

There are two major objectives of this study. The 

first objective is to determine the operations appropriate 

for the linguistic probabilities. It is achieved using a 

proposed simulation model. The second objective is to 

develop an approach to a linguistic approximation. This 

proposed approach is implemented in C language. 

The conclusion obtained from the simulation model is 

that the operations defined on the fuzzy numbers perform 

better for the linguistic probabilities than the operations 

defined on the fuzzy sets. This conclusion is consistent 

with the position taken by Bonissone and Decker [1986]. The 

contribution made by this simulation model is to provide the 

experimental results to support the argument that the 

linguistic probability is treated as a fuzzy number. 

A proposed scheme to a linguistic approximation employs 

the four-feature representation, namely, first-moment, 

entropy, skewness, and power. It also employs the four 

parameter representation for each term, namely, [a,b,a,fi]. 

It seems that under this four-parameter representation, the 

skewness is not a good feature, because its variance is very 

small. On the other hand, first-moment, entropy, and power 

seem to be good features representing a term. 
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The contributions made by this dissertation can be 

summarized as follows: 
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(1) It provides a basis to consolidate the argument that the 

linguistic probability is treated as a fuzzy number through 

the experiment. 

(2) The proposed simulation model can be employed in other 

problems of FST, especially if it is not possible to develop 

a set of theorems to prove that one approach performs better 

than the other. Although the results obtained from this 

simulation model do not prove anything, it at least provides 

some justifications to favor one approach over the other. 

(3) Although a proposed approach to a linguistic 

approximation is not a totally new approach, it could be a 

very comprehensive approach in the sense that it attempts to 

adopt the strengths of Eshragh and Mamdani's approach and 

Bonissone's approach. 

Several problems associated with this research are 

identified. 

(1) In the proposed scheme to a linguistic approximation, we 

need to derive a possibility distribution from the 

probability distribution, and vice versa. In these 

conversions, we need to solve the nonlinear equations. The 

determination of the analytical solutions is very time 

consuming, thus can become the bottleneck in terms of 

computational time. 

(2) The proposed scheme to a linguistic approximation 

employs the hedges. As discussed earlier, the sole reason 
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to employ the hedges is to increase the granularity of a 

term set. It is ideal to select the hedges so that the 

terms are evenly spread out in the closed interval [O,l]. 

However, the lack of the hedges in which the definitions are 

consistent or they are well-defined, restricts the selection 

of the hedges. 

In the future, further research needs to be done on the 

following problems: 

(1) In a fuzzy number, more research needs to be done in 

regard to the flattening. Note that the flattening needs to 

be applied before the operations on fuzzy numbers are 

performed. 

(2) More research needs to be done in the hedges. That is, 

more hedges need to be defined and also their definitions 

need to be consistent among the researchers. 

(3) The development of the analytical solutions in deriving 

a possibility distribution from the probability 

distribution, and vice versa, is necessary to make a 

proposed scheme to a linguistic approximation more 

practical. This is due to the long computational time in 

determining the analytical solutions. 
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APPENDIX 

FLOW CHARTS OF THE PROGRAMS 

Two programs are to be implemented, namely, simulation 

program and a program performing a linguistic approximation, 

in this dissertation. A simulation program is used to 

select a set of operations appropriate for the linguistic 

probabilities. The flow chart of a simulation program is 

presented first, followed by the description of the flow 

chart of a program plrforming a linguistic approximation. 

Because the actual coding is generally straightforward, 

the listings of the entire programs are not shown here. 

However, a program to determine the weights of four 

parameters is listed here, because it seems worth being 

listed. A program to determine the weights of four 

parameters is adopted in a program performing a linguistic 

approximation. 

The flow Chart of the simulation model is shown in 

Figure 15 and the flow chart for a program performing a 

linguistic approxima~ion is shown in Figure 16. 
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information. 
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no 

Perform the algo­
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pretation. 
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distribution to proba­
bility distribution. 

yes 

Convert probability 
distribution to possibility 
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Perform the algorithms 
using fuzzy set inter­
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Figure 15. Flow Charts of a Simulation Model 
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Figure 15. (Continued) 
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Figure 16. Flow Chart of Proposed Scheme of a 
Linguistic Approximatio~ 
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Figure 16. (Continued) 
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/********************************************************* 
* This routine determine the eigenvector corresponding to* 
* a maximum eigenvalue of a given (square) matrix. * 
*********************************************************/ 
{ 

} 

float b[4],r[4],e[4]; /* e: elements of eigenvector*/ 
float a[4][4]; /*a given matrix*/ 
float sum,eigenvalue; 
int i,j,cnt=O, found=O; 
int n=4; /* size of matrix */ 

for (i=O; i < n; i++) 
b[i]= 1.0/ ((float) n); 

for (i=O; i < n; i++) { 
sum=O.O; 

} 

for (j=O; j < n; j++) 
sum+= b[j]* a[i][j]; 

r[i]= sum; 

sum=O.O; 
for (i=O; i < n; i++) 

sum+= r[i]; 
for (i=O; i < n; i++) 

e[i]= r[i]/ sum; 
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