
DECISION SUPPORT SYSTEMS: AN OBJECT-

ORIENTED CONCEPTUAL ARCHITECTURE

By

BRIAN PHILLIP LE CLAIRE
II

Bachelor of Arts
Ripon College

Ripon, Wisconsin
1982

Master of Business Administration
University of Wisconsin-Oshkosh

Oshkosh, Wisconsin
1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1989

Th.e5i~
)qi') D
L4~d
c.op~~

DECISION SUPPORT SYSTEMS: AN OBJECT-

ORIENTED CONCEPTUAL ARCHITECTURE

Thesis Approved:

Thesis Adviser

lYta.:+ I c. ~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to the

members of my committee: Professor Ramesh Sharda;

Professor Marilyn G. Kletke; Professor Wayne A. Meinhart;

and Professor George E. Hedrick. I would like to commend

them on their endless support during the embryonic stages

of my dissertation and notably at its completion. I would

also like to thank Professor Eui-Ho Suh for his help in

making this dissertation a reality.

I feel especially indebted to Ramesh Sharda who served

as a stellar example of a dedicated researcher and

educator. His guidance and encouragement at times often

served as the only spark of inspiration leading me down

what seemed a long and arduous path. I can only hope to

acquire his uncanny wisdom and intellectual finesse in my

academic pursuits.

I would like to thank and apologize to my wife, Beth,

for frequently and selfishly relying on her unfailing

patience. I heavily depended on, and received, her support

in the final stages of this dissertation and will never be

able to fully thank her. Although my newborn son Nathan is

too young to remember the time I stole away from him during

iii

my dissertation, I hope that someday he will know how much

joy he provided me during its completion.

I would like to thank my parents for their unceasing

support through the years. They have made incredible

sacrifices in providing me with an education and for this I

am truly indebted to them. I aspire to be as successful a

parent as they have been for me.

I am also grateful for the support of Vinit Verma and

Dave Davis. Both Dave and Vinit.proved to be very

supportive friends during my tenure at Oklahoma State

University. I am deeply saddened in knowing that we must

part company. Nevertheless, I look forward to the times

that we will once again wile away the hours discussing such

topics as computers, programming efficiencies, racquetball,

or whatever comes to mind.

Finally, I would like to thank Professor William A.

Alexander Jr., my Ripon College adviser. He knew exactly

how to deal with me when as a second semester Freshman I

walked into his office and told him I wanted a doctorate.

He taught me to question, to learn, and to understand. I

shall, perhaps, never forgive him for the suddenness with

which he left this world. I find solace in knowing that he

was successful, however, in directing me toward my goal.

It is in his memory that I dedicate this dissertation.

iv

Chapter

I.

TABLE OF CONTENTS

Page

INTRODUCTION • .••...•....••••••.•.•..••...•••. 1

Int;roduction. 1
Background of the Problem............... 2
Statement of the Problem Situation...... 3
Purpose of the Study.................... 4
Substantive Assumptions of the Study.... 5
Rationale and Theoretical Framework..... 7
Statement of Hypotheses................. 9
Scope and Delimitations of the Study 10
Outline of the Dissertation ...•......... 10

II. LITERATURE REVIEW. . .• • . . . • • . . . • • • • . . • • • . . . • . . . 12

Introduction. 12
Object-oriented System Concepts •.•....•• 12

Object-oriented System
Architecture •..•................. 15

Abstraction Concepts 16
Historical Perspective

of Abstraction .•....... 17
Encapsulation •..•••....•. 19

Objects. 21
Object Roles•.•.. 22
Object Relationships •.... 23

Object Subsystem ..•.•.•••.•... 24
Message Subsystem ..••••.. 25
Methods Subsystem •.•.••.. 27

Methods Handler 27
Methods ••.•......... 28
Instance Stores 28
Method Types •.•.•... 29

Inheritance Concepts ...•...... 30
Decision Support System Concepts 34

The Evo~utionary Nature of
Decision Support Systems• 41

Decision Support System Definition. 43
Decision Support System

Characteristics •••............... 44
Decision Support System Categories. 45

v

Chapter Page

Decision Support System
Architecture .•................... 47

Advantages of a Decision Support
System Approach•............ 52

Shortcomings of Decision Support
System Designs................... 53

Data Management System Concepts ••....... 54
Traditional Data Models •••.••...•.. 55

Distinguishing
Characteristics •••••..•.••.• 55

Relational Data Model•...• 56
Limitations of the

Traditional Data Models 59
Semantic Data Models ..•.......•.... 61

Distinguishing
Characteristics 62

Semantic Data Model
Components .•. w~·•··········· 64

Entity-Relationship Model 69
Model Management System Concepts ...•.... 71

Traditional Approaches to Model
Management. . • . . . • • • • . . • • . . • 7 4

Model Management system
Objectives ••••••••.•••.••... 74

Distinguishing
Characteristics ••••..•.•.... 76

Structured Modeling 77
Elemental Structure 77
Generic Structure •.•..••• 79
Modular Structure ..•..... 80
Structured Model ••••.•..• 82

III. OBJECT-ORIENTED RELATIONAL DATA MODEL
MANAGEMENT SYSTEM. • • . • • 85

Introduction............................ 85
Object-oriented Relational Data Model

Fundamentals 86
Object-Oriented Relational Data

Model Schema Development 87
Object-Oriented Relational Data .

Model Schema Abstraction 91
Attribute Syntax ..••.......... 92

IV. OBJECT-ORIENTED MODEL MANAGEMENT SYSTEM•. 95

Introduction. 95
Object-Oriented structured Modeling

Fundamentals 95
Model Schema Development•... 97

vi

Chapter Page

Model Schema Abstraction ...•.•..... 108
Attribute Syntax ...•.••.•..... 113
Entity Object Syntax .•........ 115
Relationship Object Syntax ..•• 117
Model Object Syntax •.......... 119
Model Abstraction Benefits •... 121

Model Acyclicity Verification 123

V. MESSAGE PROTOCOLS. . . • • • • • • • • • • • • • . • . • . • • • • . • • 12 8

Introduction. 12 8
organization of Classes .•.••....••..•... 128

Object Class Versus Object
Instance Access Mechanisms 133

General Characteristics of Instance
Obj e.cts . 13 5

Object Class Identifiers 135
Attribute lnformation .••..•........ 136

Attribute Definitions ..•...... 136
Attribute Access

Mechanisms .•••.••.•••••••••. 139
overriding Derived

Attributes. • • • • • • • . . • • • • 139
Object Instance Identifier List .•.. 140

Related Issues•••.•.••.............. 141
Productions. . . • •• • • . • 141
Contexts. 14 3
Object Dependencies .••.•.......•... 144

Class Message Protocols •••..•.......•... 145
Metamodel Class. . . • . . • • • . . • • • • 14 7

Class Message Protoeols •...... 147
Instance Message Protocols 148

Entity Class •..•••...•••.•••...•..• 162
Class Message Protocols •••..•. 163
Instance Message Protocols .•.. 163

Relationship Class •..•.•..........• 164
Class Message Protocols 166
Instance Message Protocols •... 166

Model Class .••..................... 171
Class Message Protocols 173
Instance Message Protocols 174

Relation Class •••...........•...... 182
Class Message Protocols 184
Instance Message Protocols ..•. 185

VI. PROTOTYPE DESCRIPTION• 193

In·troduction............................ 193
Implementation Environment••... 193

Software 194

vii

Chapter

VII.

VIII.

Page

Hardware. 19 5
User Interface .•........................ 195

Message Level•......... 196
Window Level 199

Window Components 203
Window Label 203
Edit Pane 204
Cell Pane 206

DSS Browser Level ...•..•........... 220
Window Level Data and Model

Distinctions•............ 223

FUTURE RESEARCH DIRECTIONS ...•............... 229

SUMMARY AND CONCLUSIONS..... 232

LITERATURE CITED. 2 3 4

viii

LIST OF FIGURES

Figure Page

1. An Object Subsystem. . . . • • • • 16

2. Object Subsystems ••..••....••.•...••••••••••••.• 24

3 • Message Subsystem. • • . . • • • . • 2 7

4. Methods Subsystem 29

5. An Inheritance Hierarchy •.....•.••.•..•..•.•.... 31

6. A Management Information Systems Framework ..•... 36

7. A Decision Support System Framework ..•.•••...... 37

8. A Connotational View ...•..•••...•..••.••.... ~ ... 41

9. The Learning cycle Model •....•.....•••.......... 43

10. Decision Support System Orientation ..•••........ 46

11. Decision Support System Components .••...•....... 48

12. Decision Support System Architecture ...•••.•••.. 49

13. Decision Support System Architecture
Revisited -.... 50

14. Decision Support System Levels of Technology •... 51

15. Decision Support System Roles 52

16. Source Relation Example 58

17. Link Relation Example. . . • • 58

18. Attribute Example. 65

19. Aggregation Example ...••................... ·•.... 66

20. Grouping Example 67

ix

Figure Page

21. overlapping Generalization Example 68

22. Covering Generalization Example 69

23. Derived Schema Components Example 70

24. Transportation Model Genus Graph 80

25. Source Point and Link Generic Paragraphs 81

26. Source Data Module Paragraph 81

27. Transportation Model Modular Structure 82

28. Transportation Model Modular Outline.~·········· 83

29. Transportat~on Model Sbhema 83

3 o. Source Relation Class. 88

31. Link Relation Class 89

32. Data Model Schema Abstraction Syntax Notation ... 91

33. Attribute Syntax................................ 92

34. Relational Data Model Abstraction General
Syntax. 9 3

35. Data Model Schema Abstraction Example 94

36. Entity-Relationship Diagram 99

37. Simplified Class-Instance Diagram 100

38. Class-Instance Diagram with Identifier
Aggregates. 1O2

39. Model Class-Instance Diagram with Instance
Attributes c. 104

40. Complete Class-Instance Diagram 106

41. Simplified Class-Instance-Model Diagram 107

42. Class-Instance-Model Diagram with Instance
Attributes. 109

43. Complete Class-Instance-Model Diagram 110

x

Figure Page

44. Model Schema Development Steps 111

45. General Linear Programming Class-Instance-Model
Diagram. 112

46. Attribute Syntax................................ 113

47. Attribute Syntax Examples 114

48. Entity Syntax................................... 115

49. Entity Syntax Example-........................... 117

50. Relationship Syntax 117

51. Relationship syntax Example 119

52. Model Syntax. 12 O

53. Transportation Model Schema Abstraction 122

54. General Linear Programming Model Schema
Abstraction. 12 4

55. Calling Sequence Determination Rules 126

56. Algorithm for Verifying Model Acyclicity 127

57. Class Object Hierarchy 130

58. Creating an Entity Class •....................... 197

59. Message Level Flowchart•.......... 199

60. Window Level Flowchart 201

61. Source Point Class Window 202

62. Transportation Model Class Window 202

6 3 • Window Label Menu. 2 o 5

64. Edit Pane Menu 206

65. Cell Menu 208

66. Column Heading Menu 209

67. Row Heading Menus. 211

xi

Figure Page

68. Solution Process Flowchart 213

69. Solution Process Object Interactions 214

70. New Instance Window Cell Pane Menu 215

71. Class and Instances Window Cell Pane Menus 217

72. Window Level Object Interactions 219

73. DSS Browser Window 221

74. !Ji.:st:. 1?Cl.I1E3. r.iE3.I1tl......................... 221.

75. DSS Browser Level Flowchart 222

76. Suppliers_Relation Window .•... ~~················· 224

77. New Tuple Cell Pane Menu 226

78. Relation Cell Pane Menu 226

79. Relation Row Heading Menu 226

80. Suppliers Class Window 227

xii

CHAPTER I

INTRODUCTION

Introduction

Mason and Mitroff (1973) informally define information

as knowledge for the purpose of taking effective action.

Sprague (1987) maintains that-the purpose -of an

organizational information system is to improve the

performance of its information workers through the

application of information technology. Both the formal and

the informal exchange of ·information, aided by information

technology, forms the basis of all organizational activity

(Barret and Konsynski 1982, Rathwell and Burns 1985).

Decision Support Systems (DSSs) provide one form of

information technology capable of storing, retrieving,

presenting, and manipulating data and models in an online,

real-time manner. DSSs rely on the intellect of the

information worker at all stages of the problem solving

process and are different from traditional computer-based

approaches to problem solving. Traditional approaches

primarily deal with repetitive and routine problem

situations which have little need for novelty in the

decision making process. Accordingly, the information

1

2

worker in the role of the decision maker commonly uses a

DSS to solve less well structured, underspecified problems

which tend to be novel with no apparent, clear way of

solving them.

Background of the Problem

The development of a DSS is iterative, adaptive, and

evolutionary because of its argued need for flexibility.

Researchers tend to agree that the most important

components of a DSS are (Bonczek, Holsapple, and Whinston

1980a, Sprague 1980): (1) models; (2) data; and (3) the

user. The hardware and software employed should facilitate

the integration of data and models. Considerable research

is directed toward resolving this issue, however, because

of a lack of sufficiently general conceptual and

theoretical foundations this goal has not been realized

(Sprague 1980, Dolk and Konsynski 1984, Ahn and Grudnitski

1985, Klien, Konsynski, and Beck 1985, Blanning 1986, Delk

1986, Konsynski and Sprague 1986, Lenard 1986).

Researchers often attack this deficiency in the

coordination and integration of disparate DSS components

from one perspective or another. Holsapple and Whinston

(1987) assert that an object-oriented (0-0) notion of the

environment within which the DSS functions allows for the

coordinated interplay among diverse and related concepts

and is potentially an important one concerning the

flexibility, power, and convenience of DSSs.

Statement of the Problem Situation

3

Historically, reseachers have viewed DSSs as either

data-oriented or model-oriented (Alter 1977, Bonczek,

Holsapple, and Whinston 1979, Dolk 1986, Elam and Konsynski

1987). According to Delk (1986) the information systems

community has traditionally emphasized the data-oriented

nature of information systems whereas the modeling

community, characterized by the fields of operations

research and management science, has focused on the

algorithms and procedural requirements for solving models.

Thus, the tendency of these disciplines is to concentrate

on one component of the DSS with the consequence that the

DSS user often encounters problems in integrating data and

models. For example, DSS users must recollect and

reorganize data for each run of a model (Bonczek,

Holsapple, and Whinston 1980a) .

Researchers have moved away from this fragmented view

of decision support. Current research strives to abstract

the whole process of data and model management. Such

abstraction mechanisms hope to achieve the goal of

integrating data and model management systems such that the

user is unaware of whether he or she is directing a data

retrieval operation or modeling process. Suh and Hinomoto

4

(1989) suggest a relational approach which integrates the

three DSS components under a relational framework. They

propose the concept of a relational dialogue base using

ideas analogous to those found in relational database and

relational model base approaches forwarded by Codd (1970)

and Blanning (1985), respectively.

Researchers, however, encounter the problem of.

orchestrating such ideas into a well designed whole in

order to_ realize an efficient, workable system. Thus, the

current study undertakes the problem of developing a

conceptualized DSS architecture which incorporates such

ideas as data abstraction, model abstraction, and

information hiding. This is accomplished by applying o-o

notions in the development of such an architecture.

Purpose of the Study

The primary purpose of this study is the merging and

integration of previously separate tools into a unified

whole which repre3ents a conceptual architecture for a DSS.

Chung (1984) argues that the design architecture for any

given system should consist of different levels of

abstraction which may be conceived of as a continuum from

conceptual constructs, to operational constructs, and then

to implementation constructs. The proposed architecture

provides support for all three of these levels of

5

abstraction. We achieve this support through the specific

application of 0-0 information system ideas.

As a consequence, we direct this study at solving the

problem of integrating data and models across various areas

(e.g., functional areas) such that the solution techniques

provide a mechanism for the coordination of- data and model

components. Through the application of techniques from

different fields, including artificial intelligence, we

make the modeling process flexible using an o-o approach to

data management and to model development and design. o-o

applications follow a modular design where modelers use

such design techniques to organize a system into a set of

increasingly complex modules (Fuerst and Martin 1984).

Thus, this study undertakes the following objectives:

(1) to develop an o-o relational data model;

(2) to develop an o-o structured model;

(3) to develop message protocols which allow the DSS
user, o-o relational data model, and o-o
structured model to interact with one another;
and

(4) to develop a prototype o-o DSS in a personal
computing environment which employs the ideas
developed in (1), (2), and (3).

Substantive Assumptions of the Study

Gorry and Scott Morton (1971) argue that the missing

ingredient in problem formulation is the a~ility of the

modeler to elicit from the decision maker his or her view

of the organization and its environment, and the ability to

6

formalize models of this view. As a result, the process of

model definition must be dominated by the decision maker

where relevant models are most often the unverbalized

models used by the decision makers of the organization

(Garry Scott Morton 1971). This is generally supported by

the accepted precept of system design which states that

systems have a higher probability of succeeding if users

are involved in their development (Fuerst and Martin 1984).

DSS models usually are not laborious to build and

users mostly pref er to construct models according to their

own way of thinking (Wagner 1981). DSS users create,

modify, and discard DSS models according to their weekly

needs and whims (Huber 1983). This is reinforced by two

principles (Mason and Mitroff 1973): (1) decision makers

need information that is geared to their psychology not to

that of the system designers; and (2) decision makers need

a method of generating evidence that is geared to their

problems and to those of the system designers. Garry and

Scott Morton (1971) contend that an understanding of

managerial activity is a prerequisite for effective systems

design and implementation. Thus, we assume that decision

makers should play an integral role in the model creation

process.

Huber (1983) notes two conclusions from his review of

cognitive style research in management information system

(MIS) and DSS design. First, he argues that at present the

7

available literature on cognitive style is an

unsatisfactory basis for deriving operational design

guidelines. Second, further cognitive style research is

unlikely to provide a satisfactory body of knowledge from

which to derive such guidelines. As Bahl and Hunt (1984)

discuss, each theory of decision making tends to emphasize

different aspects or different perspectives of the general

process of making and of implementing decisions. They

argue that no single theory of decision making adequately

deals with the entirety of the phenomenon. Alavi and

Henderson (1981) support this perspective. Thus, we assume

that we can ignore theories of cognitiv~ style and decision

making processes in developing our architecture.

Rationale and Theoretical Framework

Ackoff (1967) argues that no information system should

be carried out unless the users for whom it is intended are

trained to evaluate and hence control it rather than be

controlled by it. A solution forwarded by Ackoff (1967) is

to have the user participate in the design of the system

thereby assuring the user's ability to evaluate its

performance by comparing its output with what was

predicted. As a consequence, the user of a DSS should play

a much more active and controlling role in the design and

development of the system. Andriole (1982) believes the

design of DSSs should be completely user and task driven.

8

The provision of end user control and a simple means

for model building requires the flexibility of adding,

deleting, or changing DSS functions at the discretion of

the user. DSSs should lend themselves to rapid

modification to meet the needs of a particular decision

maker in each new situation (Rathwell and Burns 1985).

This implies the use of a DSS shell which allows users to

modify existing features or develop new ones. This

suggests an evolutionary approach to system development

where the decision maker is the iterative designer of the

system since no one can anticipate all conceivable design

possibilities or potentially relevant data and modeling

needs before design starts. Keen (1980) believes that the

evolutionary nature of a DSS is of central conceptual and

practical importance. This flexibility allows the DSS to

support multiple styles of decision makers solving several

different·types of tasks (Ahn and Grudnitski 1985).

Finally, the development of a conceptual architecture

is helpful in several ways: (1) it organizes a complex

subject; (2) it fQrther identifies the relationships

between the parts; and (3) it suggests areas for further

research. As Blanning (1986) states, an important

component of any effective approach to decision support is

a theoretical component.

9

Statement of Hypotheses

The solution to the problem discussed above, namely

the development of a conceptualized DSS architecture which

incorporates such ideas as data abstraction, model

abstraction, and information hiding, requires the need for

a flexible design that can easily adapt to current needs.

There should be a dependence upon a generalized system

approach where specific systems are built from general

systems. This has the advantage of relative ease of

understanding since the specific systems are based on-the

same principles encountered in the general systems

(Bonczek, Holsapple, and Whinston 1980b).

Abstraction allows the construction of such complex

systems. Abstraction provides a meaningful way of managing

complexity and guarantees continuity. The conceptual

development of an application involving complexity is

perhaps most appropriately handled using a powerful

abstraction mechanism, such as provided by an 0-0 approach.

o-o information systems emphasize objects as the unit

of access and manipulation. o-o information systems

provide mechanisms to define, create, and relate objects

and object interactions. Such systems use abstraction and

information hiding, the hiding of design decisions about

those abstractions, in order to reduce complexity. o-o

information systems deal with a complex idea or real world

system through the construction of a set of independent

abstractions.

10

Thus, given the need for data abstraction, model

abstraction, and information hiding, an o-o approach to a

conceptualized DSS architecture is a natural choice.

Scope and Delimitations of the Study

We are concerned with the development of a conceptual

architecture for the support of DSS design and do not

implement an actual system. We do, however, develop a

prototype which employs several fundamental 0-0 concepts.

Furthermore, our prototype provides support for data and

model representations but does not support the ideas of

model selection or model sequencing (see Bu-Hulaiga and

Jain 1988).

The design of the given conceptual architecture

suggests a system which does not restrict itself to

consideration of problems in a given application area. The

proposed architecture is very general in nature allowing

for specific incorporation of certain concepts not directly

discussed.

outline of the Dissertation

Chapter II presents an in-depth review of related

literature. Chapter III discusses an o-o relational data

model management system which employs fundamental

11

relational data modeling concepts, data model schema

development, and data model schema abstraction. An o-o

model management system is discussed in Chapter IV. This

chapter presents structured modeling ideas from an o-o

perspective and introduces model schema development and

model schema abstraction concepts. Chapter V defines

several class objects and their associated message_

protocols necessary for the operationalization of the ideas

forwarded in Chapters III and IV ... Chapter VI reports on a

prototype developed in a personal computing environment

employing the message protocols defined in Chapter V.

Chapter VII suggests several possible future research

directions. Finally, Chapter VIII summarizes and concludes

the present study.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter presents a review of the literature

related to concepts encountered in the study of object

oriented (0-0) information systems,· decision support

systems (DSSs), data management systems, and model

management systems. First, we discuss relevant o-o system

ideas and present a formalized o-o architecture. Next, we

review various issues involved in the design of DSSs. In

the following section we examine assorted data management

system notions, specifically Codd's (1970) relational data

model and Chen's (1976) entity-relationship model.

Finally, we present several model management system issues

with an emphasis on Geoffrion's (1987) structured modeling

approach to model management.

Object-Oriented System Concepts

o-o information systems are the result of a synthesis

of many diverse ideas within the computer science field

(Ahlsen, Bjornerstedt, Britts, Hulten, and Soderlund 1984).

Specifically, o-o programming is responsible for the

12

13

development of many o-o ideas. o-o programming differs

from a procedural style of programming in that the role of

data is more central. That is, the shape of the data

determines the way the operation behaves (Jenkins, Glasgow,

and Mccrosky 1986). An operation in procedural programming

receives data and is considered the dual of o-o programming

(Korth 1986) • Data-driven programming moves a problem

solution away from the machine domain and places it closer

to the problem domain.

The programming language Simula, developed in the

middle 1960's, introduced the class concept which is

central to o-o notions and was the immediate predecessor to

o-o programming (Rentsch 1982, Ahlsen, Bjornerstedt,

Britts, Hulten, and Soderlund 1984, Stefik and Bobrow

1986). An outcropping of the ideas carried out in Simula

resulted in a programming system known as Smalltalk.

The Small taL'{ programming system emerged·· in the early

1970's delineating several o-o concepts. For instance,

Smalltalk introduced the term "object-oriented" and perhaps

serves as the best current example of an o-o programming

language (Rentsch 1982, Ahlsen, Bjornerstedt, Britts,

Hulten, and Soderlund 1984). Smalltalk was but one part of

a broader effort to explore the ways in which people

manipulate information and communicate with machines (Shoch

1979). Designers of Smalltalk were influenced from its

14

inception by Alan Kay's vision of the future, the Dynabook

(Cox 1986).

Bergin and Greenfield (1988) argue that any

programming langunge which provides for the notion of an

abstract data type (a set of well defined actions on a

collection of data structures) and supports the abiiity to

enclose and separate such a type from other types, provides

the basis for consideration as an o-o programming language.

As a result of this argument o-o programming may be

considered either revolutionary or evolutionary (Cox 1984).

According to Jacky and Kalet (1987) new dialects of certain

languages (e.g., LISP, c, and Pascal) provide support for

o-o ideas. Furthermore, they state that several o-o

techniques exist for the languages CLU, Ada, and even

Fortran.

Several researchers have applied o-o notions to other

areas within the information systems literature. The use

of such ideas in off ice information systems development and

management appeared as early as 1984 (Ahlsen, Bjornerstedt,

Britts, Hulten, and Soderlund 1984, Lyngbaek and McLeod

1984). Borgida (1985) proposes the use of o-o concepts in

the development of information systems at the conceptual

level. Borgida, Greenspan, and Mylopoulos (1985) introduce

the use of o-o ideas as a basis for knowledge

representation. Recently, much attention has been directed

at o-o ideas within the area of artificial intelligence

15

because of their similarity to existing techniques for

knowledge representation, such as frames, and for their use

in knowledge acquisition (Casais 1988, Wegner 1988). For

similar reasons, o-o ideas have generated considerable

interest within the database community during the last few

years (Bancilhon 1986, Kirn and Lochovsky 1989).

Certain inf orrnation system areas have successfully

applied o-o concepts but only on a limited scale because of

the relative unfamiliarity of these concepts. Much of the

research within the o-o area is undertaken using an

implicit o-o system model as a consequence of this

unfamiliarity. In the next section we present an explicit

o-o system architecture.

Object-oriented System Architecture

Leclaire and Suh (1988) present a common framework for

o-o systems in an attempt to provide a unified paradigm to

aid in understanding relevant concepts and bestow

researchers with an explicitly formalized o-o system

architecture. According to them an o-o system consists of

two components: (1) objects; and (2) a message bus.

Rentsch (1982) stresses that objects "are the sole

inhabitants of an otherwise empty universe" (p. 53).

Hence, objects exist alongside other objects and are the

only observable entities within the object universe.

Objects are the basic unit of construction-used in building

16

0-0 systems. Figure 1 presents a diagrammatic view of such

a system. The message bus is a conceptual representation

which serves the purpose of providing a logical interface

between objects. Presented below is a discussion of the

message bus, objects, and their associated ideas.

Object Object

Object Object Object

Figure 1. An Object Subsystem

Abstraction Concepts

Large o-o systems use layers of abstraction in· their

design and, as a result, a review of abstraction concepts

is pertinent as objects represent abstractions of the

entities in these systems (Borgida 1985, Booch 1986).

Abstraction provides the means to manage complexity and

17

involves the specification of a system that emphasizes

certain system details while suppressing others. This

specification is nothing more than a mathematical

description of the underlying thought (Liskov and Zilles

1975).

Historical Perspective of Abstraction

Shoch (1979) notes that Plato's theory of Forms is an

example of the early use of .abstraction. A study of

relevant historical concepts in computer science is

justified since, as shown above, most o-o system ideas

arose because of work in that discipline. Not

surprisingly, modern programming•s primary way of

controlling complexity is through abstraction.

Abbott (1987) presents an evolutionary perspective of

abstraction wherein he argues that abstraction has

progressed through several stages in moving toward o-o

applicability. A~cording to him this movement is important

in that "the history of software development has been the

continuing abstraction of programs away from the computer

and toward the problem" (p. 664). These evolutionary

stages are:

(1) procedural abstraction;

(2) syntax abstraction;

(3) data abstraction; and

(4) process abstraction.

18

Procedural abstraction, the first form of software

abstraction, is the isolation of certain, possibly

parameterized sequences of code. This allows for

functional representation where there is no loss of meaning

in terms of what the code purports to do. Procedural

abstraction was perhaps.the first step toward a unified

structured programming paradigm. It allows for the

expression of simple mathematical functions using a single

programming statement. For instance, the statement sqrCxl

calculates the square root of the given value.

Instead of translating the problem into machine terms,

the use of syntax abstraction allows programmers to remain

closer to the problem domain. This is particularly

relevant when evaluating arithmetic expressions. No longer

is it necessary to assemble a sequence of instructions to

add two numbers; simply expressing them in an arithmetic

expression such as x+y is sufficient.

Data abstraction emphasizes data rather than control

and packages each data structure and its associated

operations in a single module. A unit external to the one

which manages an abstract data type owns the data type.

The ability to express concurrent processes is known

as process abstraction. Procedural, syntax, and data

abstractions provide for a fundamental idea known as

modularity. Modularity is the design of reusable and

modifiable pieces of subroutines with the intent to keep

19

together related things, such as data structures and

procedures (Ahlsen, Bjornerstedt, Britts, Hulten, Soderlund

1984, Stefik and Bobrow 1986).

Encapsulation

o-o systems extend certain abstraction ideas,

modularity in particular, to an idea known as

encapsulation. When coupled with process abstraction, the

viewing of objects as independent entities, modularity

provides the basis for encapsulation. Encapsulation

achieves both abstraction and information hiding which are

fundamental to o-o systems (Booch 1986, cox 1986, Bancilhon

1988). The intent of hiding design decisions about

abstractions during the decomposition of a system is known

as information hiding (Parnas 1972). Ahlsen, Bjornerstedt,

Britts, Hulten, and Soderlund (1984) argue that information

hiding is synonymous with encapsulation.

The uniqueness of an object is determined by its

external relations and is independent of its internal

representation. This focus on an external view of objects

achieves encapsulation. Viewing the actions of objects

rather than their intrinsic behavior provides a natural

metaphor for that behavior (MacLennan 1982, Rentsch 1982).

The separation of specification from implementation

ensures that objects contain the operations necessary to

deal with themselves and thus these operations are only

20

accessible through the given object. As a result, the

object which owns the abstract data type also manages it

(Buzzard and Mudge 1985). This encapsulation tends to

enhance the understandability and maintainability of

objects because of the localization of operations (Booch

1986). An object successfully separates external

specification from internal implementation by protecting

properties used only for purposes internal to the object

from outside access (Ahlsen, Bjornerstedt,. Britts, Hulten,

and Soderlund 1984, Blaha, Premerlani, and Rumbaugh 1988).

This forms the basis for the establishment of

protection domains where the effect of an operation within

a closed system, for example an object, remains confined to

that closed system. According to Buzzard and Mudge (1985),

protection domains provide for a secure and error tolerant

execution environment. The dependencies between objects

are thus decoupled thereby restricting intentional and

unintentional modifications from proliferating throughout

the system. The localization of design decisions to the

object level reduces the scope that a change in an object

will have upon the system through the encapsulation of

operations done by objects at a primitive level (Booch

1986). In other words, objects should define "the object,

the whole object, and nothing but the object" (Booch 1986,

p. 216).

21

Objects

Booch (1986) postulates that an object has six

fundamental characteristics. An object is an entity which:

(1) exists through time;

(2) is characterized in behavioral terms, that is, by
the actions that.it displays and those it
requires of other objects;

(3) is an instance of some, possibly anonymous,
class;

(4) is denoted by a name or identifier;

(5) has restricted visibility of and by other
objects; and

(6) may be viewed either by its specification or by
its implementation.

Thus, an object is a thing that exists, has identity,

and is not inert matter. An object "is an active, alive,

intelligent entity" (Rentsch 1982, p. 53). Objects

correspond to real world entities and as such exist in

time, are changeable, have state, and may be created,

destroyed, and shared (MacLennan 1982). Two objects that

have different substance maintain their identity even

though they may have the same form. In other words, two

objects occupy separate regions of space even though they

may be uniform in every other possible way. In this sense

an object may exist without having a unique identifier and

thus be distinct from other objects. The issue of object

identity continues to be debated (Bancilhon 1986, Bancilhon

1988). It is necessary, however, to be able to distinguish

22

between various objects and a unique identifier serves this

purpose.

Objects represent the primitive elements within an o-o

system and are natural metaphors for model building in that

each is a capsule of state and behavior (Cox 1984, Cox

1986, Stefik and Bobrow 1986). Such systems, as .depicted

in Figure 1, use objects to model "some entity, or.

activity, or, more generally, some concept in the world

being mod~led" (Borgida, Greenspan, and Mylopoulos 1985, p.

85) and emphasize objects as the unit of access and

manipulation. Many of the ideas underlying these

characteristics are discussed at length below.

Object Roles

Objects fulfill certain roles during their existence

as do the real wor.ld entities which they model. Objects

may assume any one of these roles at any given time.

Certain objects, however, may only play one role during

their existence. Three object roles are (Booch 1986): (1)

actor; (2) agent; and (3) server.

An actor is any object which does not serve other

objects but which requests their service in fulfilling a

given task. An object is acting as an agent when it serves

another object. Much like an actor, an agent may request

an action be undertaken by another object. An object is

functioning as a server when acting for another object.

23

Unlike an actor, a server is unable to request the service

of another object. Thus, an actor strictly directs other

objects, a server suffers at the hands of other objects,

and an agent may act in either capacity at any point in

time.

Object Relationships

Blaha, Premerlani, and Rumbaugh (1988) define a

relationship as a logical binding between objects. ..They

identify three different relationships which may exist

between objects. These are: (1) generalization

relationship; (2) aggregation relationship; and (3)

association relationship.

Generalization, defined by Smith and Smith (1977b),

regards a set of similar objects as a generic object.

Blaha, Premerlani, and Rumbaugh (1988) agree and extend

this idea to o-o modeling by defining a generalization

relationship as an is-a relationship which partitions a

collection of objects into mutually exclusive subclasses.

Aggregation, as described by smith and Smith (1977a,

1977b), is an abstraction which allows a relationship

between objects to be thought of as a higher-level, named

object. Blaha, Premerlani, and Rumbaugh (1988) define this

type of relationship as an aggregation relationship such

that an object is treated as an assembly component or part

of relationship. Thus, object aggregation is the process

24

of combining low-level objects into composite objects

expressed at a higher-level.

An association relationship is analogous to the notion

of an instance of a relationship set as used in Chen's

(1976) entity-relationship model. Thus, an association

relationship relates two or more independent objects.

Object Subsystem

Two subsystems comprise an object (see Figure 2): (1)

a message subsystem; and (2) a methods subsystem. Each of

these subsystems is discussed at length below.

v-------------Message Bus r----r------------J

Message
Subsyste111

Methods
Subsyste111

Object

Figure 2. Object Subsystems

25

Message Subsystem

The environment manipulates objects by selecting them

and communicating to them which requests to fulfill. An

object may at times be entirely self-sufficient and thus

able to accomplish the requested task. The capability to

initiate the fulfillment of a request or propagate this

request in the event an obj e_ct _is __ incapable _of carrying it

out on its own requires that objects have -a means of

communicating with other objects. Objects achieve this

integration through a message sending/receiving capability.

The message subsystem of an object provides this ability.

A message is the specification of a request to be

fulfilled by an object. Messages serve to initiate

processing and request information. Objects pass messages

to other objects across the message bus using a

preestablished message protocol. A message protocol is a

collection of messages to which an object will respond.

The specification of an object name, a method name, and

possible parameters is an example of the structure of a

message. Message passing between objects is the dual of a

functional call of a method name (Jenkins, Glasgow, and

Mccrosky 1986, Stefik and Bobrow 1986) ..

The use of protocols allows for a uniform interface

between objects and leads to polymorphism. The

communication between objects through a well defined

interface forms the basis for information hiding as

26

discussed above. Polymorphism is characteristic of o-o

systems because of the interchangeability of objects. This

interchangeability is a result of the use of message

protocols in that different objects are invoked in the same

manner. As a result, objects in one application may

effectively be used in another. Booch (1986) states that

"reusable software components tend to be objects or classes

of objects" (p. 220) and as such an application may be

carried out through functional composition rather than

decomposition. This results in a large reduction in the

complexity of systems. A consequence of this reduction is

systems which are easier to build, test, and maintain

(Bhaskar 1983).

The message subsystem has two components (see Figure

3): (1) a message receiver; and (2) a message sender. The

message receiver responds to messages communicated across

the message·bus which are directed at the given object.

The· message receiver retrieves a message from the message

bus and passes it along to the methods subsystem. A

message queue may be used to buffer messages. The methods

subsystem determines whether it is capable of fulfilling

the communicated request and, consequently, other message

sending may be necessary. Any object can fulfill a request

by any message through the direction of message flows to

other objects. A central thread of control cannot be

identified in an o-o system because of message forwarding,

27

object independence, and object autonomy. The message

sender allows the object to propagate a message to other

objects, request specific tasks to be carried out by other

objects in fulfilling its task, and to send confirmation

about task completion.

Message Bus

Message
Receiver

Message

SubsysteM

Message
Sender

Methods SubsysteM

Figure 3. Message Subsystem

Methods Subsystem

The methods subsystem is comprised of three components

(see Figur~ 4): (1) a methods handler; (2) one or more

methods; and (3) zero or more instance stores. Each of

these components is elaborated upon below.

Methods Handler. Whereas the message subsystem serves

as the interface unit between two objects, the methods

handler serves as an interface between the message

28

subsystem and specific methods. The methods handler is

responsible for receiving a message from the message

subsystem and determining whether a method exists which

will be able to fulfill the given request. An object uses

the methods handler in order to complete a request in the

event no such method exists within the given object or

should a method be unable to fulfill the request without

relying on another object.

delegation (Wegner 1988).

This process is known as

Thus, the methods handler; in

combination with the message subsystem, allows a "call by

desire" implementation (Rentsch 1982).

Methods. The behaviors manifested by objects are

known as methods. A method is simply the function which

carries out the response to a message. Methods allow for

the hiding of information by concealing the way in which an

object satisfies a request. Furthermore, methods achieve

data abstraction by implementing data manipulation and

handling outside of the visibility of the object universe.

As a result, methods have natur·a1 side effects and tend to

modify the state of an object. Using methods the

environment determines what is done rather than how it is

done (Cox 1984).

Instance Stores. Objects, like the real world

entities they represent, have the ability to save state by

using methods and instance stores. Objects manipulate the

instance· stores which they own. They may be dynamically

29

created or changed during the life of an object. Instance

stores form the local database upon which methods act and

exist only within the body of an object (MacLennan 1982,

Methfessel 1987, Casais 1988).

Message SubsysteM

Instance Stores
Methods Subsyste"

Figure 4. Methods Subsystem

Method Types. Booch (1986) identified three types of

operations which may be carried out by a method: (1)

constructor; (2)selector; and (3) iterator. A constructor

is an operation which alters the current state of the

object. In this sense, a constructor operates upon

instance stores. An operation that evaluates the current

state of an object is a selector. A selector causes an

30

object to act or display behavior. All parts of an object

are visited using an operation known as an iterator.

Inheritance Concepts

Fundamentally, objects which are similar in nature may

be grouped together and in doing so form a class. A class

is nothing more than a collection of homogeneous objects

expressed at an appropriate level of abstraction. Classes

exist in the same sense as objects and are objects at a

metalevel, called class objects.

As stated above, an object is an instance of a class.

The word instance, when used as a noun, refers to objects

which are not classes and are called instance objects. It

is possible to have any number of instances of otherwise

identical objects. Each object, whether a class object or

instance object, may have several instance stores which are

private to that object. There are two types of instance

stores: (1) existence stores; and (2) class stores.

Existence stores allow objects to save state. Existence

stores are available within both class objects and instance

objects. Class stores provide class objects the ability to

store values describing all instances of the class.

The phrase instance of generally refers to the

relationship between an object, either a class object or an

instance object, and its class. Figure 5 shows an

inheritance hierarchy where a specific source point in a

31

transportation model is an example of an instance object.

A source point instance object in this example has two

instance stores: (1) sourceName; and (2) supply. A

specific source point in the transportation model uses the

sourceName existence store for identification purposes.

The supply existence store furnishes the quantity available

at the specific source point.

______......---

(//JJJJh (//ill! 11/J

Source
Point
Class

sourceCount supplyTotal Source
Point

Instance
(, _ _.)
sourceNatite supply

Figure 5. An Inheritance Hierarchy

The collection of individual source points comprises

the source point class object. As is evident in Figure 5,

the source point class object has two instance stores: (1)

sourceCount; and (2) supplyTotal. The instance store

32

sourcecount is an example of an existence store. This

store describes the class object by giving the number of

corresponding instance objects. on the other hand,

supplyTotal is a class store which describes the total

supply of all source point instance objects. Thus, this

store describes a characteristic common .. to all instances of

the class.

A given source point instance object is an instance of

the source point class object. The source point class

object is the superclass of the source point instance

objects. A superclass is a class that is above a given

object in the inhHritance hierarchy. An instance object

can never be a superclass object since no objects in the

inheritance hierarchy may exist directly below it. The

source point class object is an instance of the entity

class object. Here the source point class object is a

subclass of the entity class object. A subclass is a class

that is directly below a given class in the inheritance

hierarchy.

Perhaps one of the greatest benefits of an o-o system

is the ability of an object to garner the characteristics

of the class to wnich it belongs. Newer classes are built

upon older, less specialized classes using inheritance.

Inheritance distinguishes o-o systems from other systems

(Cox 1984, Wegner 1988). Inheritance implies that an

object shares the characteristics common to its class and

33

permits an incremental sharing of object attributes such as

behavior, knowledge, or implementation. This sharing of

attributes appears to be a useful device to abbreviate

object descriptions and allows a generic object to own a

common attribute rather than replicating it many times at

lower levels (Borgida 1985., Bic and Gilbert .1986).

According to Stefik and Bobrow (1986), addition allows

for the introduction of new instance stores and methods

which do not appear in a newly instantiated object's

superclasses. Substitution, often called overriding in the

o-o literature, is the respecification of an instance store

or method which already appears in the inheritance

hierarchy. In this sense, stepwise refinement by

specialization is possible wherein an attempt is undertaken

to define the most general classes first followed by

incrementally specializing subclasses. This results in

incremental system development and easier replacement of

system components and is possible because of the object

relationships discussed above.

As previously implied, object instantiation makes

inheritance possible. Instantiation is the process of

creating a new object and provides for inheritance by

attaching the generic attributes of its superclass to that

object. Generally, the superclass object provides the

ability to instantiate new objects and is implemented as a

method. A factory object is such a superclass object in

34

that it produces new objects (Cox 1984, Cox 1986). The

ability of an object to receive its attributes from more

than one superclass is known as multiple inheritance.

Decision Support System Concepts

Gerry and Scott. Morton (.19-71) introduced the term

"decision support system" .to the management information

systems (MIS) community. In their discussion of a MIS

framework they note the significance of three managerial

levels introduced by Anthony (1965). These levels are:

(1) the strategic planning level; (2) the management

control level; and (3) the operational control level.

Strategic planning level managers determine the

organization's objectives, changes in these objectives, the

resources used to attain them, and the policies that are to

govern resource acquisition, use, and disposition. The

effective and efficient obtainment and use of resources in

achieving organizational goals is the concern of management

control level managers. Operational control level managers

ensure that specific tasks are carried out effectively and

efficiently. Gerry and Scott Morton (1971) argue that

managerial level determines information use.

Gerry and Scott Morton (1971) also focus attention on

problem solving by restating a three phase problem solving

process originated by Simon (1960). These phases are: (1)

35

the intelligence phase; (2) the design phase; and (3) the

choice phase.

The decision maker searches the environment for

conditions calling for decision in the intelligence phase.

The decision maker invents, develops, and analyzes possible

courses of action during the design phase.. During _the

choice phase the decision maker selects a particular course

of action from the ones identified in the previous phase.

Bonczek, Holsappl~~ -and Whinston (1979) argue that the

problem solving process requires decision makers to have

power. Power allows the decision maker to exercise some

authority or directive force. Through power the decision

maker can successfully complete the choice phase.

Also, problem structure influences the information

.system (IS) user. Gorry and Scott Morton (1971) extend

Simon's (1960) programmed and nonprogrammed problem types

in delineating three new problem types. These problem

types are: (1) structured; (2) semi-structured; and (3)

unstructured.

Structured problems exist when all three phases of the

problem solving process are highly structured. There is no

need for novelty in the decision making process as these

problems tend to be repetitive and routine. As a result,

procedures exist so that each time the problem arises there

is no need to deal with it uniquely. Semi-structured

problems involve a greater degree of unstructuredness in

36

that only one or two of the problem solving phases is

highly structured. Unstructured problems are, on the other

hand, encountered when all three phases of the problem

solving process are highly unstructured. These problems

are rather novel with no apparent, clear way of solving

them.

Structured decision systems (SDSs) and DSSs should

handle structured and unstructured problems, respectively,

according to Garry and Scott Morton (1971). This

relationship is shown in Figure 6. Figure 6 also

incorporates the three levels of managerial activity

identified by Anthony (1965). It is clear that all three

levels of managerial activity require decision support in

the form of a DSS.

Operational
Control

Manage111ent
Control

Strategic
Planning

Structured Accounts Receivable! Budget Analysis - j Tanker Fleet Mix
Engineering Costs

Order Entry Short-Ter111 i lfarehouse and Factory
Forecasting ' Location

Inventory Control ! l
Se111i-Structured ···+···-'.···

Productio~ i Uariance Analysis - l Mergers and Acquisitions
Scheduling : Overall Budget l

Cash Manage111ent i Budget Preparation l Hew Product Planning

Unstructured PERT/COST Syste111s I Sales and Production ! Research and Develop111ent
i l Planning

Figure 6. A Management Information
Systems Framework

37

Sprague (1980) discusses the idea of task

interdependency, originally described by Thompson (1967),

in view of DSSs. Hackathorn and Keen (1981) argue that the

Gorry and Scott Morton (1971) MIS framework should include

this third dimension (see Figure 7). The three types of

task interdependency are: (1) independent; (2) sequential

interdependent; and (3) pooled interdependent.

Unstructured

Se~i-Structured

Structured
Operation Control

Manage~ent Control
Strategic Planning

Figure 7. A Decision Support System
Framework

The decision maker has, in an independent decision

situation, full responsibility and authority to make a

complete, implementable decision. In a sequential

interdependent decision situation, however, the decision

maker makes part of a decision and then passes the decision

on to another decision maker. Finally, in a pooled

interdependent decision situation, the decision must result

from negotiation and interaction among several decision

makers.

38

Hackathorn and Keen (1981) describe three levels of

decision support related to task interdependency. These

levels of decision support are: (1) personal support; (2)

organizational support; and (3) group support.

Personal decision support focuses on a specific user

or class of users confronted with a distinct task or

decision. As a result, independent decision situations are

the target of personal decision support. An organizational

task or activity involving a sequence of operations and

actors is the aim of organizational decision support.

Thus, sequential interdependent decision situations are the

subject of organizational decision support. Finally, group

decision support focuses on a group of people. Each person

in the group engages in separate but highly interrelated

tasks. As a consequence, pooled interdependent decision

situations are the focus of group decision support.

Problem solving often involves both data handling and

mathematical modeling capabilities (Wang and Courtney

1984). Each approach in isolation has evolved in the DSS

literature. Sprague (1987) elaborates on this evolution by

suggesting that data processing has followed four distinct

stages. These data processing evolutionary stages are:

(1) data in programs;

(2) file management;

(3) database approach; and

(4) query languages.

39

In the first stage, the inclusion of data in programs,

it became possible to create simple reporting mechanisms

such as transaction summaries. The next stage, file

management, permitted batch reporting facilities. The

database approach stage provided decision makers with a

more flexible reporting facility through the logical

integration of separate files. Finally, the introduction

of query languages gave decision makers the opportunity to

do ad hoc reporting.

Sprague (1987) also identifies five stages, similar to

the data processing stages, associated with the modeling

evolution. These modeling evolutionary stages are:

(1) symbolic models;

(2) computational engines;

(3) computer models;

(4) modeling systems; and

(5) interactive models.

Symbolic modeling involved the use of linear and

nonlinear equations in an attempt to model the environment.

In the next stage users employed computers as computational

engines helpful in solving symbolic models. Computers

became the model rather than simply solving it during the

next stage of evolution through such methods as simulation.

Modelers next developed modeling systems such as

40

statistical or mathematical programming systems in an

effort to handle classes of models. Finally, shareable

computer time made interactive modeling a possibility.

Unfortunately, interactive modeling has led to stand-alone

programs with different data requirements, different data

formats, and little linkage between models.

It is difficult to discern what, if any, significant

contributions DSS ideas make to the field of MIS. Keen

(1980) argu_es that DSSs point toward a synthesis of the MIS

and management science (MS) fields. As is seen in Figure

8, Sprague (1980) distinguishes between DSSs and MIS where

DSSs have a decision focus while MIS have an information

focus. Huber (1981) states that MIS answer "What is"

questions while DSSs answer "What if" questions. It was

primarily out of the weaknesses of MIS that DSSs developed.

Vierck (1981) identifies several weaknesses of MIS:

(1) they addresses repetitive problems;

(2) they addresses primarily internal data;

(3) they are not well oriented to answer the top
executive's questions; and

(4) they lack depth, flexibility, and the power to
analyze unstructured problems.

As Parker and Al-Utaibi (1986) note, DSSs involve

decisions where there is sufficient structure for computer

and analytic aids to be of value, however, the decision

maker's judgement is essential. Thus, this involves the

creation of a support tool which does not attempt to

autom~te the decision process, predefine objectives, or

impose solutions and which is under the control of the

decision maker.

.-----.. Decision
Decision Focus Support

(_) ()

lnf or111ation

Data
Focus

SysteMs

ManageMent
I nforMation

.__,___. SysteMs

.....--.__, ,.--...___, ,.--....__, Electronic
Data Q Processing

Figure 8. A Connotational View

The Evolutionary Nature of Decision

Support Systems

The evolutionary nature of a DSS is of central

41

conceptual and practical importance. Bonczek, Holsapple,

and Whinston (1980b) stress the need for a flexible system

that can aaapt to change concerning current needs. They

argue that a general system should be tailored to specific

needs thereby achieving ease of understanding.

A traditional approach often does not rely on user

input and instead depends on an analyst's expertise to

42

ensure appropriate problem conceptualization, model

definition, and solution generation (Alavi and Henderson

1981) . An evolutionary approach maximizes user input by

beginning with simplistic models and iteratively updating

these models based on actual use. This direct feedback

reduces the system's shift from its predefined objectives

(Ahn and Grudnitski 1985). Alavi and Henderson (1981)

found that an evolutionary implementation strategy is more

effective than a traditional one in their study of

approaches to DSS design and implementation.

They also argue that a DSS user must participate in

four types of activities in order for effective DSS

implementation. These user activities are:

(1) involvement in new, concrete experiences;

(2) observation and reflection on those experiences;

(3) creation of ideas that integrate these
observations into theories; and

(4) usage of these theories to make decisions and
solve problems.

They call the repetitive way of moving from one

activity to the next the Learning Cycle (LC) model. Figure

9 depicts the LC model. Alavi and Henderson (1981) argue

that such a process-oriented evolutionary implementation

strategy is more effective when implementing an analytical

model. Thus, any DSS employing analytical models should

ensure the user's ability to follow such a process.

Furthermore, as Wang and Courtney (1984) point out, the

43

changtng nature of the decision environment causes DSSs to

have a very short life cycle compared to conventional

computer-based ISs. Thus, a DSS must be easily adapted to

environmental change which implies a high frequency of

adaptive redesigns.

Testing

and
Internalizing

Concrete
Experiences

Integration
and

Generalization
Uia Theor!J

Obseruatiorr · · ·
and

Reflection

Figure 9. The Learning Cycle Model

DSSs represent an important extension of many ideas

found in the study of ISs. Several key ideas relevant to

the current study are examined below.

Decision Support System Definition

Many researchers have forwarded competing DSS

definitions in the literature. Two of the more descriptive

definitions given are:

44

(1) Sprague (1980) characterizes DSSs as interactive
computer-based systems which help decision makers
use data and models to solve unstructured
problems; and

(2) Watson and Hill (1983) define a DSS as an
interactive system that provides the user with
easy access to decision models and data in order
to support semi-structured and unstructured
decision making tasks initiated and controlled by
the user.

We define a DSS as a user initiated and .controlled .

interactive computer-based system that employs data and

models to solve semi-structured and unstructured problems.

Thus, the examination of DSSs should address the three

topics of data management, computation management, and user

interface as suggested by Bonczek; Holsapple, and Whinston

(1980a}.

Decision Support System Characteristics

DSSs have several distinguishing characteristics

according to·sprague (1980). First, semi-structured and

unstructured problems, addressed more often by managerial

control and strategic planning level managers, are the

focus of DSSs. Operational control level managers also

face such problems but less often.

Additionally, DSSs combine the use of models or

analytical techniques with traditional data access and

retrieval functions. This characteristic is perhaps one of

the least understood because no strong theoretical

underpinnings exist which describe this interaction.

45

Sprague (1980) also characterizes DSSs as easy to use

by noncomputer people in an interactive mode. Thus, there

is a need to incorporate a data and model transparent user

interface. There is a move to abstract the whole process

of data and modeling so that the user is unconcerned

whether a data or modeling operation is being specified.

Furthermore, the user interface must allow the user to

describe the system in terms familiar to the modeled

operation (Fuerst and Martin 1984).

Finally, DSSs emphasize flexibility and adaptability.

This is because of the need to accommodate changes in the

decision making environment and the decision making

approach of the user.

Decision Support System Categories

Historically, DSS design followed one or the other of

two orientations: (1) data-oriented design; or (2) model

oriented design. Each design approach emphasizes

operations related to its orientation. Alter (1977) was

perhaps the first researcher to distinguish between these

approaches. Figure 10 shows these orientations on opposite

ends of a continuum as identified by Alter (1977).

A data-oriented approach to DSS design supports the

user-model interface by treating the representation of a

model and its solution as part of a database (Dolk 1986).

DSS design approaches which augment existing data models in

order to include modeling capabilities foster this

orientation. A data-orientation, however, artificially

restricts the domain of model management.

Data Orientation

Model Orientation

Retrieving a single iteM oF inForMation

Providing a MechanisM For ad hoc dat.a analysis

Providing prespeciFied aggregations oF data in
the ForM oF reports

EstiMating the consequences oF proposed
decisions ·

Proposing d~cisions

t1aking decisions

Figure 10. Decision Support System
Orientation

A model-oriented DSS design approach focuses on

modeling situations. Specifically, model-oriented DSS

46

accomplish model formulation, involving the generation of

potential data analyzing algorithms, by modifying and

combining various known program modules (Bonczek,

Holsapple, and Whinston 1979).

According to Elam and Konsynski (1987), model

management is a specific body of research within the DSS

field. The identification of those tasks required to build

and to use models in an interactive problem solving

47

environment is a concern of this research. The provision

of software support for doing these tasks is also an

interest of model management researchers. Unfortunately,

the model as a stand-alone system, the most recent

evolutionary stage in model development, tends to hide the

true relationships between models and data (Dolk 1986).

Decision Support·System Architecture ·

Researchers tend to agree that the most important

components of a DSS are (Bonczek, Holsapple, and Whinston

1980a, Sprague 1980): (1) models; (2) data; and (3) the

user. Bonczek, Holsapple, and Whinston (1980a) discuss the

flow of commands and information in a DSS. According to

them, commands flow from the user to models, from the user

to data, and from models to data. Furthermore, they stated

that information, in the form of responses, flows from data

to the user, from data to models, and from models to data.

Bonczek, Holsapple, and Whinston (1980a) argue that a

language for directing computations ensures the flow of

information from models to the user. In addition, a

language for directing data retrieval makes possible the

flow of information from data to the user and from data to

models. Figure 11 conveys these relationships.

Bonczek, Holsapple, and Whinston (1980b), in later

research, claim that the principle components of a generic

DSS are: (1) language system; (2) knowledge system; and

48

(3) p~oblem processing system. Figure 12 depicts the

interrelationships of these components. Although these

components seem to differ somewhat from those identified by

Sprague (1980) (see Figure 13), they are analogous to one

another. The dialogue generation and management system,

called language system by Bonczek., Holsapple,_ and Whinston

(1980b), is responsible for coordinating the user's

interactions with the other two systems. An action

language allows the user to communicate computational and

retrieval commands to the other two systems. A

presentation language lets the other two systems respond t6

the user.

Model <- • <A> Language For directing
COMPUtations

User~= CC>
 Language For directing

retrieval
<C> Language For directing

retrieval

=~
Data

........... Response
--+ CoMMand

CoMputer Based Decision Support SysteM

Figure 11. Decision Support System
Components

49

~he model base management system, similar to the

problem processing system, allows the user to create,

maintain, and manipulate a wide variety of models. The

model base management system provides specific support for

the use of models across all managerial levels and offers

the user various model building blocks from which new

models may be constructed. Sprague (1980) argues that

models "be imbedded in an information system with the

database as the integration and communication mechanism

between them" (p. 17) .

Us
ProbleM Processing

er +- -+ +--+ SysteM +-f-+

Language
InrorMation Collection

l•fodel For111ulation Kno1•1ledge
Syste111 SysteM

Proble111 Recognition
Analysis

Etc.

I
Response

Figure 12. Decision Support System
Architecture

The database management system lets the DSS user

create, update, and perform inquiry and retrieval

operations on the DSS database. This system is akin to the

knowledge system proposed by Bonczek, Holsapple, and

50

Whinst9n (1980b). Successful DSSs require a database which

is logically separate from other operational databases

(Sprague 1980).

Decision Support Systen

i:: "
Data Model ;.-- ~

l_ Database }--+ Base Base
+-+j__ Model Base J- __ Manage111ent Manage111ent

SysteM Syste111

Dialogue
Generation Software and Syste111 Manage111ent

SysteM ..
•

I Us~r I Task EnuironMent

Figure 13. Decision Support System
Architecture Revisited

Besides the components of a DSS, Sprague (1980)

delineates three levels of DSS technology. The three

levels of DSS technology are: (1) specific DSS; (2) DSS

generator; and (3) DSS tools.

The system which genuinely supports the decision

making process, an actual information systems application,

is a specific DSS. On the other hand, a DSS generator is a

package of hardware and software which provides the

capacity to promptly and readily build a specific DSS.

Finally, DSS tools are hardware or software elements which

51

ease the development of a specific DSS or a DSS generator.

Figure 14 shows how these levels of technology are related.

Specific Decision Support
SysteM "Applicationsu

Decision Support SysteM
Generator

Decision Support SysteM
Tools

Figure 14. Decision Support System
Levels of Technology

Sprague (1980) also specifies five evolving roles in

DSS design and use as they relate to DSS technology (see

Figure 15). These roles are:

(1) manager/user;

(2) intermediary;

(3) DSS builder;

(4) technical supporter; and

(5) toolsmith.

The manager/user is the person faced with the problem

for whom decision support is necessary. An intermediary is

anyone who helps the manager/user. The DSS b~ilder uses

52

the resources of a DSS generator to construct a specific

DSS with which the manager/user or intermediary interacts

directly. A technical supporter accumulates additional

resources as needed for a DSS generator. The toolsmith

develops new technology or improves the efficiency of

existing technology for either specific DSS or DSS

generators. Sprague (1980) emphasizes that a single

individual may act in any given role at any given time.

Manager <User)

InterMediary

Decision Support SysteM
Builder

Technical Supporter

ToolsMith

Figure 15.

Speci~ic Decision Support
SysteM "Applications•

Decision Support SysteM
Generator

Decision Support SysteM
Tools

Decision Support System
Roles

Advantages of a Decision Support System

Approach

Users reap several benefits when using a DSS. These

advantages include:

(1) decreased cost and time;

(2) increased structuredness;

(3) improved collaboration; and

(4) changed focus of discussions.

53

Vazsonyi (1978) argues that the use of a DSS leads to

decreased cost and time required to perform the various

phases of decision making. In addition, a DSS increases

the applicability and efficiency of structuring managerial

situations. DSSs also improve.the collaboration between

the manager/user, operations research/MS, and the IS

analyst. Finally, decision-analytic DSSs further improve

discussion by letting decision makers focus on a

quantitative model instead of each other (Adelman 1984).

Shortcomings of Decision Support System

Designs

Existing DSSs have several drawbacks related to their

design. These design shortcomings include:

(1) modeling incompatibilities;

(2) model updating;

(3) data restructuring}

(4) poor documentation; and

(5) intermediary dependency.

Bonczek, Holsapple, and Whinston (1980a) argue that

models are not easily combined. Generally, users do not

develop models using modules that otherwise might be

54

combined to form other modules as the need arises.

Furthermore, there is difficulty in updating models and

modifying their uses. In addition, users must continually

recollect and restructure data for each run of a model.

This interrupts the communication between different models.

Poor documentation characterizes -DSSs according-to Bonczek,

Holsapple, and Whinston (1981).

Perhaps the greatest shortcoming of DSSs is the user's

reliance on an intermediary. Andriole (1982) argues that

this reliance leads to increasing man-computer alienation

by the user. The intermediary becomes a surrogate problem

solver and in doing so consciously or unconsciously

manipulates the problem solving process. This results in a

system which is not user understandable. The user adopts a

machine rather than environmental orientation (Klein 1986).

As a consequence, the user does not understand the modeling

process because of lack of involvement.

Data Management System Concepts

The need to organize data in a well defined, rigorous

manner has led to the development of many data models. A

data model is a collection of mathematically well defined

ideas that helps to consider and express the static and

dynamic properties of data intensive applications. Brodie

(1984) argues that data models and modeling concepts are

central to information systems.

55

Thus, any data model applied within an information

system must construct a representation which captures both

static and dynamic processes. This implies that an

information system must be capable of satisfying

information requirements not only at design time, but also

as these requirements change through time._ The degree of

success for various data models differs in this regard.

Traditional Data Models

Three prevalent data models together form a class of

models called the traditional data models. These models

are: (1) the hie::-archical data model; (2) the network data

model; and (3) the relational data model. Historically,

many practical applications have successfully used the

traditional data models (Abiteboul and Hull 1987). Several

distinguishing characteristics describe these record-based

data models.

Distinguishing Characteristics

According to Kent (1979), a record-based data model

assumes that records provide an excellent tool for

processing information that fits a certain pattern. A

record is a fixed linear sequence of field values which

conform to a static description. Generally speaking, field

names have no semantic meaning and simply serve as

placeholders for the data stored within the field.

56

Records, because of their predetermined length and static

nature, tend to be machine-oriented constructs and provide

a limited, yet desirable degree of flexibility. Of the

three traditional data models, only the relational data

model is discussed below because of its relevance to the

present study.

Relational Data Model

Codd (1970) proposed what is called the relational

data model. The mathematical concept of relations serves

as the basis for the relational data model. A relation is

a set of tuples where this set varies over time. A tuple

is simply the concatenation of a set of attributes. Each

tuple in a given relation has the same set of attributes.

The particular sequence of attributes within a tuple and

tuples within a relation is irrelevant. The number of

attributes defined for a relation is the degree of the

relation. The value set from which attribute values are

drawn is known as the domain of the attribute. Two or more

attributes may have a common underlying domain. Another

interpretation of a relation is that it is a subset of the

Cartesian product of the domains across the various

attributes.

Relations have two more properties beyond the ordering

of attributes and tuples discussed above. The first is

that, assuming all domains are atomic in that they are not

57

themselves relations, all entries in the relation are

atomic values. Second, there is no duplication of tuples

in a given relation.

Date (1986) uses several informal terms when referring

to various formal relational data model definitions. The

term table refers to a specific -relation. A tuple is a row

or record within a table. A column or field of a table is

an attribute of the relation. A domain is the pool of

legal values from which column values are drawn. Finally,

one row is distinguished from another in a table using a

unique identifier, called a primary key.

Figure 16 shows a relation called source. The source

table (relation} has two unique rows (tuples) •

Furthermore, this table has three columns (attributes) and

hence is of degree three. The first column name, Source

Name, is distinct from the other two column names and

serves as the unique identifier (primary key) for this

table. Figure 17 shows a second relation called link.

This table also has three columns, however, the first two

columns form the unique identifier for this table. The

concatenation of the unique identifiers of the tables

participating in a relationship symbolically represents the

relationship between two or more tables. The column values

for the Source Name column and Destination Name column come

from the same pool of legal values (domain). Date (1986)

calls the list of attribute names for a relation the

heading of the relation. The body of a relation is the

collection of tuples which comprise the relation.

Sourct Na11t Interpretation
DAL Dallas
CHI Chicago

SUDD19
20,000
42,00D

Figure 16. Source Relation Example

Sourct Na11t
DAL
DAL
DAL
CHI
CHI

~stination Na11t
PITTS
ATL
CLEU
PITTS
CLEU

Link Cost
23.50
17.75
32.45
17.60
25.75

Figure 17. Link Relation Example

58

A relational database is a time-varying collection of

data which may be accessed and updated as if organized as a

collection of time-varying tabular relations of assorted

degrees defined on a given set of simple domains (Codd

1979). As_ a result, the relational data model consists of:

(1) a collection of time-varying tabular relations with the

properties discussed above; (2) insert, update, and delete

rules formally known as entity and referential integrity

rules; and (3) a relational algebra used both as a data

definition and 1ata manipulation language.

59

The relational data model emphasizes several

advantages in its design (Clemons 1985). The relational

data model is very easy to use because of its mathematical

rigor in the definition of data representations, operators,

and simplicity of data structures. Furthermore, there

tends to be an absence of -performance detail and

implementation clutter. Binary and higher-order

relationships between entities are captured with equal

facility. One-to-one, one-to-many, and many-to-many

relationships may be directly represented. The user

perceives the data in a relational data model as tables and

nothing but tables because of the foregoing advantages

according to Date (1986). In addition, the relational

operators available to users allow them to generate new

tables from old tables.

Limitations of the Traditional Data

Models

The primary purpose of a data model is to ser.ve as a

mechanism for representing data and relationships. Each of

the traditional models fails to accomplish this objective

in one significan~ way or another.

The hierarchical data model allows only one

relationship, either directly or indirectly, to exist

between two entities over time. Furthermore, ho attributes

for relationships may be represented as there is no need to

60

create names for relationships and, thus, there exist no

entities to which to attach those attributes.

The network data model represents relationships as

named sets where these names allow for the existence of

several direct and indirect relationships between two

entities •. As with xhe hierarchical.data model, howeyer,

there is no practicable support for attributes of

relationships.

The relational data model represents entities and

relationships using relations. This allows for the

specification of attributes for relationships, however,

there is limited support for semantics.

Kent (1979), in a discussion of the weaknesses of

record-based models, identifies several pitfalls of such

approaches. Regardless of how well record-based data

models provide natural constructs for representing

information which fits a specific pattern, certain

information does not easily fit into a record structure. A

.result of this limitation is that record structures assume

a horizontal and vertical homogeneity in data. Each record

assumes horizontal homogeneity of a given type in that each

contains the same fields; vertically in that a given field

contains the same "kind" of information in each record.

The solutions developed for the homogeneity problem tend to

introduce problems in that data integrity is threatened,

where such integrity is crucial, and the final data

61

structure employed bears little resemblance to the semantic

structure of the underlying relationships. Furthermore,

these solutions usually result in the creation of a

predefined structure for dealing with entities which is

very stable and thus violates the need for an evolving data

model. Finally, a _precise data model should .distinguish

carefully between the structure of entities being modeled

and the various structures of names which might be

associated with them._

Generally, there is an inability of the three models

to capture the true meaning of the data organized within

the model. Semantic modeling provides richer data

structuring capabilities for database applications. This

leads to the next evolution in terms of the direct

representation of entities and relationships between

entities as captured by the information system; a class of

data models known as semantic data models.

Semantic Data Models

The traditional data models may be classified as

syntactic data models in that the structures employed fail

to model the semantics of the information accurately and

unambiguously as evidenced in the modeling environment.

Hainaut and Lecharlier (1974) argue that such database

systems have only a limited power of representation

compared with the semantic structure of the information

62

describing a real system. A class of data models known as

semantic data models evolved in order to capture more of

the meaning of the data within the model itself. Semantic

data models describe data in a very abstract and

understandable manner. In other words, moving from

traditional data modeling concepts to semantic data

modeling achieves an evolutionary_step away.from the

machine domain toward the problem do:rnain. The definition

of the structure of the data and the operational

environment in which it exists is a concern of semantic

data models (Hawryszkiewycz 1983). Several features which

distinguish semantic data models from record-based data

models are discussed below.

Distinguishing Characteristics

The need for conceptual schema design tools led to the

introduction of early semantic data models. A conceptual

schema could be designed with a semantic data model and

then transformed into one of the traditional models for

implementation. Semantic data models initially emphasized

the need to model data relationships that arose in typical

database applications because of this. Traditional data

models, however, still lacked the power of representation

afforded by a semantic approach to data modeling and, as a

progression, semantic data modeling approaches to database

systems were undertaken. Several distinguishing features

63

of semantic data models are (Hull and King 1987): (1) an

increased separation of conceptual and physical components;

(2) a decreased semantic overloading of relationship types;

and (3) an availability of convenient abstraction

mechanisms.

The access paths available.to end users tend to mimic

the logical structure of the database schema directly in

record-based data models (Clemons 1985) . In contrast,

semantic data models allow users to focus their attention

directly on abstract objects and, in turn, on the

conceptual relationships modeled in a semantic schema.

This results in an increased separation of conceptual and

physical components.

Record-based data models provide only two or three

constructs for representing data interrelationships whereas

semantic data models provide several constructs. Thus,

record-based data models tend to be semantically overloaded

in that several types of relationships and entities must be

represented by the same constructs. For example, entities

and relationships in the relational data model must be

represented using relations in both cases. This

restriction is not apparent in a semantic data modeling

environment.

Semantic data models provide a variety of convenient

mechanisms for viewing and accessing the schema at

different levels of abstraction. Semantic data models

64

provide a much richer framework for defining. derived schema

components and applying such constructs as aggregation,

grouping, and generalization. Record-based data models

tend to simulate objects and attributes by interrelating

records of different types with such semantically

meaningless mechanisms as logical- and physical- pointers.

Semantic Data Model Components .

Semantic data model components include (Date 1983,

Hull and King 1987):

(1) objects;

(2) attributes;

(3) type constructors;

(4) generalization constructors; and

(5) derived schema components;

An object is the actual entity of interest within the

modeling environment. The idea of what comprises an object

is usually confusing and "so we blithely define an object

or entity as anything (concept, event, object, etc.) worth

recording in the database that meets the information and

processing requirements" (Brodie 1984, p. 23). The

definition of what constitutes an object in the semantic

data modeling literature is virtually identical to the one

used in the o-o literature.

An object may have zero or more attributes. An

attribute in a semantic data model is analogous to an

65

instance store in an o-o system. There are usually two

dimensions of attributes identified: (1) degree of value;

and (2) degree of owner. There are two differing degrees

of value: (1) single valued; or (2) multivalued. A single

valued attribute is an attribute owned by an object which

has a single, identifiable value whether null-or- nonnull.

On the other hand, a multivalued attribute is an attribute

which may contain more than a single value whether null or

nonnull. In Figure 18 the attribute hasAddress and

isResidenceOf are examples of single valued and multivalued

attributes, respectively.

Person ~
~esidenceOf

hasAddress ~ 0 address

Figure 18. Attribute Example

The d~gree of owner refers to the object which owns

the attribute and has two forms: (1) entity; or (2) type.

An object which owns an attribute exclusively describing

some characteristic of that object is an entity attribute.

This is comparable to an existence store. By comparison,

the attribute of an object defined over the class of that

66

objec~ is known as a type attribute. This form of

attribute is equivalent to a class store.

Semantic data models usually employ two type

constructors: (1) aggregation; and (2) grouping, otherwise

called association. Aggregation, formally presented by

Smith and Smith (1977a, 1977b), allows a relationship

between objects to be thought of as a higher-level, named

object. Thus, aggregation is the process of combining low-

level objects into composite objects expressed at a higher-

level. The aggregate linkName, represented by a circle

with an "x" through it in Figure 19, is an aggregation of

sourceName and destinationName.

~
sourceNane destNaMe

Figure 19. Aggregation Example

Grouping constructs a set of objects of the same type

and corresponds to a single valued attribute of an object.

The single valued attribute body, depicted in Figure 20 as

a circle with an "*" through it, is a grouping of tuples.

67

Generalization, an idea also introduced by Smith and

smith (1977b), is an abstraction construct in which a set

of similar objects is regarded as a generic object and

forms an is-a relationship between two objects. Thus,

generalization expresses the relationship between a class

and instances of that class. Two types of generalization

are: (1) overlapping generalization; and (2) covering

generalization. Overlapping generalization results in the

partitioning of a generic class into various·· subclasses

which have the potential to overlap. For example, in

Figure 21 the superclass Vehicle has several subclasses:

Motorized Vehicle; Land Vehicle; and Air Vehicle. Here an

automobile belongs to the Motorized Vehicle and the Land

Vehicle subclasses. Thus, the subclasses defining the

superclass are not necessarily mutually exclusive.

@ body

O···l·
Figure 20. Grouping Example

68

Covering generalization results in the partitioning of

classes into mutually exclusive and collectively exhaustive

categories whereby the subclasses cover the superclass.

Figure 22 presents an example of this form of

generalization. In this instance there exists a superclass

called Convoy. Several subclasses also exist such as

Pacific Convoy and Atlantic Convoy. A ship, however,

cannot physically belong to both convoys at once and, thus,

the combination of both convoys covers the superclass.

Motorized
Uehicle
Class

Land
Uehicle
Class

Uehicle
Class

Air
Uehicle
Class

Fig~ ·e 21. Overlapping Generalization
Example

Finally, various semantic data models discuss the idea

of derived schema components. A derived schema component

requires the specification of the intension rather than the

extension of the particular component. Historically,

database management systems required users to specify the

69

extension of the database. Users simply specify the

intension of the database and the extension of the database

follows through this specification using the idea of

derived schema components. As is seen in Figure 23 there

are two types of derived schema components: (1) derived

schema subtypes; and (2) derived schema attributes. Here

the class object Pet Lover is a derived schema subclass

defined as a pet owner who owns at least three pets;

Furthermore, the derived schema attribute number is the

cardinality of the set own for a specific pet lover.

Pacific
Conuoy
Class

0
Atlantic
Convoy
Class

Figure 22. Covering Generalization
Example

Entity-Relationship Model

The entity-relation9hip model (E-R) , proposed by Chen

(1976), is one of the first truly semantic data models to

70

appear and is oriented toward user needs and expectations

rather than machine efficiency (Bic and Gilbert 1986). The

E-R model incorporates some of the important semantic

information about the application environment and may be

viewed as a generalization of the three traditional data

models.

Pet
Lover
Class

nu111ber
Cnu~ber(p):=cardinality of own(p)J

Figure 23. Derived Schema Components
Example

The basic co~ponents of the E-R model are entity sets

and relationship sets where each entity set and

relationship set represents some generic classification of

entities and relationships, respectively. The natural view

that the world consists of entities and relationships

serves as the basis for these ideas. Both entity sets and

relationship sets may have properties, called attributes,

71

associated with them. There is a predicate associated with

each entity set to test whether a particular entity belongs

to it. A relationship set is a mathematical relation among

some entities where each is taken from an entity set and

each tuple of entities is a relationship.

Some other data-- model - implements the actual database

after the designer uses the E-R model as a database design

tool. A pictorial design tool called E-R diagramming

simplifies this design process.

E-R modeling in adopting a top-down approach, together

with its various extensions and derivations, is a

significant improvement over the traditional data models.

Unfortunately, it is not always easy to categorize objects

as either entities or relationships and, as a result, some

information may not easily be captured as either an entity

or a relationship.

Model Management System Concepts

Klein, Konsynski, and Beck (1985) define a model as

any abstraction of reality applied to problem solving.

Klein (1986) suggests that researchers develop procedures

to make the management of models possible in order for

future DSSs to fulfill the flexibility characteristic.

According to Blanning (1983), a principle area of DSS

research is the development of various frameworks for model

72

management systems. Typically these frameworks are similar

to those developed for database management systems.

Keen (1980) notes that the assumption made by managers

that most models are unrealistic, abstract, and

intimidating is probably correct. Keen (1980) contends,

however, that model management research has .the.potential

to make models practical, concrete, and useful to managers.

Managers have come to use models as instruments to

transform data into information for·aiding decision-making.

Thus, Delk and Konsynski (1984) believe that models are

another valuable resource, not unlike data, which must be

managed.

The regard for models as an important organizational

resource requiring effective management serves as the basis

for much research into model management systems (Blanning

1983, Chung 1984). Model management provides a logical

view of information that separates the users of the

information from the physical aspects of information

storage and processing (Blanning 1986) •

Dolk (1986) identifies two levels of modeling activity

in organizations: (1) informal; and (2) formal. Informal

modeling occurs on an unplanned basis and usually is the

result of individual resourcefulness. Formal modeling,

however, is a direct result of organizational policy which

defines and supports organizational planning, control, and

operation. The organizational dimension of model

73

management is a consequence of the transition from informal

to formal modeling. This transition solidifies the need to

control the modeling resource.

Fuerst and Martin (1984) observe that an accepted

precept of systems design is that user involvement in

systems development leads to a higher probability of system

success. Furthermore, user involvement ensures theopening

and continuation of a communications channel which should

lead to shared understanding. As a consequence; the·

process of defining the problem must be dominated by the

managers involved. This allows the manager to address the

correct problem and hence select the best model

formulation. Vazsonyi (1978) points out that DSSs leave

the problem struct:.uring process to the manager. Thus,

models tend to be individual and result from a modeling

process as opposed to the application of a model.

Unfortunately, most modeling languages are written in

computer languages which only computer programmers can

understand. As a result, developers of model management

systems should design systems in a top-down manner allowing

for differing degrees of user expertise (Wang and Courtney

1984). Vazsonyi (1978, 1982) argues for the abstraction of

the modeling process such that modelers may develop

concrete objects to serve as model representations.

Traditional Approaches to Model

Management

74

Bu-Hulaiga and Jain (1988) identify several prevalent

approaches to model management:

(1) model abstraction;

(2) structured modeling;

(3) logic based approaches;

(4) semantic networks;

(5) graph based approach;

(6) relational data-base approach; and·

(7) expert system and subroutine approaches.

Model representation, model selection, and model

sequencing are the concern of model management systems.

Most of these model management approaches provide model

representation facilities but do not provide for model

selection or sequencing. Various procedures for model

selection and model sequencing, however, are present in the

literature (Klein 1986, Bu-Hulaiga and Jain 1988). Several

distinguishing characteristics of model management systems

in general are described below.

Model Management System Objectives

From the foregoing discussion, it is apparent that

model management systems have three key objectives. These

objectives are: (1) presentation of a semantically based

modeling language; (2) incorporation of a flexible and

75

dynamic modeling component; and (3) centralization of model

management functions.

Developing model representations using a semantically

based modeling language allows the DSS user to model the

environment in familiar terms. Thus, the modeling process

is not restricted.to.programmers or technicians. who are the

only ones capable of .understanding the modeling language

ell\ployed. This ability to- express models semantically

leads to increased productivity and improved communications

between model users (Lenard 1987).

The incorporation of a flexible and dynamic modeling

component allows for the creation of modeling classes. The

model management system permits users to create instances

of these model classes dynamically for personal use.

Flexible interfaces between models, data, and users allow

the DSS to deal with much of the detail work done by the

system. DSSs historically have provided a shareable data

organization that is both static and intolerant from a

model standpoint (Klein, Konsynski, and Beck 1985).

Finally, the need to centralize model management

functions and insure the integrity, consistency, currency,

and security of model bases in a multiuser environment is

crucial (Applegate, Chen, Konsynski, and Nunamaker 1986).

This need arises ~ut of the realization that models are

resources and, like other resources, require organizational

centralization and control.

76

Distinguishing Characteristics

Dolk and Konsynski (1984) argue that modelers should

view model management systems as the counterpart of a

database management system. As a consequence, the

characteristics of a model management system are:

(1) to manage a large number of model
representations;

(2) to establish independence between the model
representation and problem solver invoked to
solye the model;

(3) to separate data representations from model
representations; and -

(4) to provide flexible, easy access to model
representations by non-modelers.

Dolk and Konsynski (1984) note that model management

systems must be general enough to handle many different

classes of models thereby requiring the system to handle a

large number of model representations. The separation of

model representation from problem solver allows for the

development of a representation which does not a priori

bias the representation scheme with a specific solution

technique. The separation of data representations.from

model representations permits the database management

system to fuel the model representation. This distinction,

however, lets database users change data structures without

requiring corresponding changes to model representations

and vice versa. Finally, since most DSS users prefer to

"do their own thing" according to their own way of

77

thinking, model management systems must be flexible enough

to allow non-modelers easy access to model representations

presented in natural terms (Wagner 1981) .

Structured Modeling

Structured modeling, proposed by Geoffrion (1987),

aims to provide a formal mathematical framework and

computer-based environment for conceiving, representing,

and manipulating a wide variety of models. Structured

modeling uses a hierarchically organized, partitioned, and

attributed acyclic graph to represent a model or a model

class. Structured modeling follows several guidelines in

model development. These guidelines are:

(1) incorporate important data development processes
directly into the model;

(2) document definitional interdependencies;

(3) use stepwise refinement;

(4) compose models from validated submodels; and

(5) exploit parallel structure.

Structured modeling focuses on three basic structural

levels. These levels are: (1) elemental structure; (2)

generic structure; and (3) modular structure. Each of

these structural levels is discussed at length below.

Elemental Structure

Discrete elements comprise a structured model.

Elemental structure intends to capture all the definitional

78

detail of a specific model instance. Elements may call one

another. Each call represents a definitional reference.

In other words, a call shows the participation of one

element's definition in the definition of another element.

For all intents and purposes, a call shows a functional

dependency between elements.

Geoffrion (1987) identifies five distinct elements in

structured modeling. These elements are:

(1) primitive entity;

(2) compound entity;

(3) attribute;

(4) function; and

(5) test.

A primitive entity element has no associated value and

generally represents things or concepts postulated as

primitives of the model. A specific source point or

destination point in a transportation model is an example

of a primitive entity.

Compound entity elements also have no associated value

but represent things or concepts that are defined in terms

of other things or concepts. In other words, compound

entity elements represent a relationship between primitive

entity elements. A link in a transportation model is an

example of a compound entity. A source point primitive

element and a destination point primitive element define a

link compound element.

79

Geoffrion (1987) draws a distinction between two types

of attribute elements. The first type, called fixed

attribute element, has a constant value and generally

represents properties of things or concepts. A variable

attribute element, however, also generally represents

properties of things or concepts but determines its value

through the solution of the model. A source point supply

amount is an example of a fix~d attribute ~lement. The

flow across a link is an example of a variable attribute

element.

Function elements have a value that is dependent

according to a definite rule on the values of called

elements, and generally represents calculable properties

and more complex aspects of models. The total cost of a

transportation model is an example of a function element.

Finally, identical in nature to function elements,

test elements are boolean valued. The test to determine if

demand requirements are met at a destination point in a

transportation model is an example of a test element.

Generic structure

Generic structure focuses on capturing the natural

familial groupings of elements. Geoffrion (1987) argues

that, mathematically, this is accomplished by partitioning

all elements of a given type into genera. Each element is

a cell of the partition. The modeler uses the idea of

80

generic similarity, meaning that every element in a genus

calls elements in the same foreign genera, to organize

genera. Figure 24 shows a genus graph for a transportation

model.

T:SUPPLY..... ,,..,.TOTAL_COST~ ~T:DEMAHD i LINK_COST;____ ___--"FLOW - . l
SUPPLY ___..LIHK DEMAND

......._____ ------ / SOURCE DESTINATION

Figure 24. Transportation Model Genus
Graph

The modeler communicates generic structure through a

specific syntax developed by Geoffrion (1987). Each

generic structure is encapsulated in a generic paragraph.

Figure 25 shows two generic paragraphs, one for the source

point primitive element generic structure and the other for

the link compound element generic structure.

Modular Structure

A modular structure attempts to organize generic

structure hierarchically to the extent that this seems

appropriate and useful. The basic notion is to group

genera into conceptual units called modules. Geoffrion

(1987) argues that modelers should group modules into

higher order modules according to some commonality or

semantic relatedness. The modeler communicates modular

structure through module paragraphs. Figure 26 is an

example of a source data module paragraph from the

transportation model example. Figure 27 is a modular

structure for the transportation model.

SOURCEi /pe/ Then is a list oP SOORCES,

LINK<S~URCEi,DESTINATIONj~ Ice/ Select <SOURCE} * <DESTINATION}
where 1 ca!ers <SOURCE}, J cavers <DESTINATION} Tbert art SD/ft
trsnsport~tlD_n llNKS Pron S(JlJRCES to DESTINATJCNS. Then JfUSt be at least
on1 llNK lncldtnt to Hch SOORCE, and at 118.st on1 LINK incident to each
DEST I NAT JOH.

Figure 25. Source Point and Link Generic
Paragraphs

ISDATA S(JlJRCE DATA

SOURCEi /pe/ Th1re is a list or SOl/RCES.

81

SUPPLY<S~URCEi> /<1/ <SOURCE>: R+ £111rp SOl/RCE bas a SUPPLY CAPACJT'I
Measured ln tons.

Figure 26. Source Data Module
Paragraph

Structured modeling does not permit all forms of

modular structure, however. Listed modular structures must

satisfy a monotone ordering, that is, an indented list

82

representation with no forward references. Forward

references exist when genera higher in the list call those

lower in the list. Figure 28 is an example of a modular

outline for the transportation model which satisfies the

monotone ordering qualification.

------- SOURCE
&SORTA

------- SUPPLY
~___.-DESTINATION

/ _____. &DDATA
&TRANSP~ --------DEMAND

~ ------- LINK
~AlDATA FLOll

'-\\OTAL\;O;---._Lllf(...COST

T:DEMAND

T:SUPPLY

Figure 27. Transportation Model Modular
Structure

Structured Model ·

Thus, a structured model is an elemental structure

:ogether with a generic structure satisfying similarity and

having a monotone modular structure. Figure 29 presents a

model schema for the transportation model example.

&TRAHSP
&SDATA

SOURCE
SUPPLY

&DDATA
DESTIHATIOH
DEMAND

&:LDATA
LINK
FLOW
LI HK_ COST

TOTAL COST
T:DEMAHD
T:SUPPLY

Figure 28. Transportation Model Modular
Outline

URAHSP TRANSPt?RTA1il?N HOOEL

lSDATA SOl/RCE DATA

SOURCEi /pe/ There is a list or S()llRCES.

SUPPLYCSOURCEi> /a/ <SOURCE}: R+ Evezy SOURCE bas a SUPPLY CAPACITY
~asund in tons.

IDDATA DESTINATION DATA

DESTINATIOHj /pe/ There is i list or DESTINATIONS.

DEMANDCDESTINATIONj) la/ <DESTINATION}: R+ Every DESTINATION his
a nonnegative DEllAND ~asund in tons.

ILDATA l.JHK IMTA

83

LINK<SOURCEi,DESTINATIONj) /ce/ Select {SOURCD * <DESTINATION}
where i covers {SOURCE}, j covers <DESTINATION} There in so~
transportation llNKS rroM SOl/RCES to DESTINATIONS. Then MUst bt1 at lnst
one LINK incidiiitto nch SOURCE, ind at least one l.JHK incidMt to tach
DESTINATION.

FLOU<LINKij) /va/ <LINK}: R+ Then can be a nonnegative transportation
FLOY (in tons) over each LINK.

LINK_COST<LINKij) /a/ {LINK>: R Evezy l/NK has a TRANSPORTATION COST
RATE for use in $/ton.

TOTAL_COST<COST,FLOU> /,/; SUMi SUMj <LINK_COSTij * FLOUij) Tht1re
is a TOTAL COST associated with all FLO/IS,

T:SUPPLYCFLOUi.,SUPPLYi> /t/ {SOURCE}; SUHj <FLOUij) <= SUPPLYi ls
the total FLW ltaving a SOURCE less than or eQual to its SUPPLY CAMCJT'I?
This is called tht1 SllPPL'I TEST.

T:DEMAND<FLOU.j,DEMANDj> /t/ <DESTINATION}; SUHi <FLOUij) = DEMANDj
Is the total FLOY arriving at a DESTINATION exactlp equal to its DE~ND?
This is call~d the DEHANO TEST.

Figure 29. Transportation Model Schema

84

Lenard (1987) proposes the use of structured modeling

as a basis for a model management system. Lenard (1987)

borrows ideas from o-o programming to help delineate the

objects constituting a structured model. Lenard (1987)

currently is constructing a prototype system with a

restricted set of function rules and a limited range of

operations to show the feasibility of using structured

model management to manage at least linear programming

models.

This approach applies structured modeling ideas

directly, however, o-o programming is seen as a vehicle

leading to its successful implementation. o-o notions are

not directly applied to the model representations

themselves.

CHAPTER III

OBJECT-ORIENTED RELATIONAL DATA MODEL

MANAGEMENT SYSTEM

Introduction

This chapter presents the ideas of object-oriented (0-

0) relational data modeling. o-o relational data modeling

applies pertinent relational data modeling concepts (Codd

1970) using an o~o approach (Leclaire and Suh 1988). This

allows users to treat relations as objects and exploit

relational operators using messaging.

The o-o relational data model differs from o-o

database models which support form~ of local behavior in a

manner similar to o-o programming languages (Hull and King

1987). The goal of o-o data modeling is to provide

constructs for capturing more of the semantics of an

application environment than is possible with a traditional

data model (King 1984). The o-o relational data model

presented simply provides o-o decision support system (DSS)

users with access to a relational database management

scheme.

85

86

Object-oriented Relational Data

Modeling Fundamentals

The mathematical concept of relations serves as the

basis for the relational data model developed by Codd

(1970). A set of time varying tuples defines a relation.

A tuple is simply the concatenation of a set of attributes.

The same set of attributes comprises each tuple in a given

relation. The particular sequence of attributes within a

tuple and tuples within a relation is irrelevant. The

domain of an attribute is the value set from which·

attributes draw their values. Two or more attributes may

have a common domain.

Relations have two further properties. First, all

entries in the relation represent atomic values. Second,

there is no duplication of tuples. A subset of attributes

in a relation serves to distinguish one tuple from another.

Relational theory calls this subset of attributes the

primary key of the relation. A relational database is a

time-varying collection of data which the user accesses and

updates as if organized as a collection of time-varying

tabular relations of assorted degrees defined on a given

set of simple domains (Codd 1979). Objectives of the

relational data model include (Clemons 1985):

(1) ease of use;

(2) mathematical rigor in the definition of data
representation and operators;

(3) simplicity of data structures;

(4) generality; and

87

(5) absence of performance detail and implementation
clutter.

We present an o-o view of the relational data model.

This representation allows the users of an o-o DSS to

interact with a relational data modeling component using an

o-o approach. As a consequence, we combine the benefits of

an o-o approach with those of the relational data model.

An o-o approach to relational data modeling takes advantage

of the aforementioned objectives by providing the·user·with

an o-o representation of relations. This representation is

achieved through simple data model abstraction which

progresses from data model schema development to data model

schema abstraction. These ideas are discussed below.

Object-Oriented Relational Data Model

Schema Development

Figure 30 presents an o-o relational data model (R-D-

M) diagram. The octagon symbol represents the Source

Relation class. This class object has the ability to

create instance objects which represent tuples of the

relation. Such an instance object is called a tuple

instance object. Figure 31 depicts the Link Relation

class. The collection of all specific relation classes

represents the relational database (a relational database

is a collection of time-varying relations). The collection

88

of instance objects within one of these classes represents

all the tuples of the relation.

Source
Relation

Class

Sou1"\ce
Relation
~nee

interpretation supply

sourceNaMe

Sourcf NaMf Interpretation
DAL Dallas
CHI Chicago

Supply
2 0, 000
42,000

Figure 30. Source Relation Class

The data modeler expresses information concerning the

contents of a specific relation class object (including its
-

instance objects) using instance stores called attributes.

An attribute obtains its valu2 from the user through

observation, measurement, or calculation. In Figures 30

and 31 an empty oval depicts a fixed attribu~e. A fixed

attribute is user-determined and, thus, the user supplies

89

the attribute value. This type of attribute is identical

to that proposed by Chen (1976).

sourceNa111e
()
destNa111e

Link
Relation

Class

Link
Class

Instance
link Cost

S()UI'C~ Ha/rt~

DAL
D~stinati()n Ha/rt~

PITTS
Link Cost
23.SIJ
17.75
32.45
17.60
25.75

DAL ATL
DAL CLEV
CHI PITTS
CHI CLEV

Figure 31. Link Relation Class

Certain restrictions on specific relation class object

attributes are imposed, however. Specifically, no class

attributes may be defined for any specific relation class

object (e.g., Source Relation class or Link Relation

class). Furthermore, all tuple instance object attributes

for a specific relation class object must be fixed.

90

Specific relation class objects enforce uniqueness

among their instance objects. That is, duplicate tuple

instance objects are not allowed. Each tuple instance

object has an aggregate attribute which serves as a unique

identifier for the tuple instance object. This

aggregation, called primaryKey, consists of zero or more

attributes defined for the tuple instance object .. The

circle symbol in Figures 30 and 31 with an "x" through it

refers to this aggregation. Aggregation, presented by

Smith and Smith (1977a, 1977b), allows a relationship

between objects to be thought of as a higher level object.

The value of the primaryKey aggregate is the

aggregation of the values for the attributes defining the

primaryKey aggregate. As a consequence, all tuple

instances are distinguishable from one another based on

this aggregate. ~he R-D-M diagram in Figure 30 shows that

the sourceName identifier differentiates one tuple instance

object from another. The unique instance identifier for

the specific relation class appearing in Figure 31 is the

aggregation of two attributes: (1) sourceName; and (2)

destName. The primaryKey aggregate may be empty, in which

case the specific relation class object takes the aggregate

of all the instance object attributes to determine

uniqueness.

Zero or more attributes may exist outside of the

primaryKey aggregate. Two such attributes are defined for

91

the Squrce Relation class: (1) interpretation; and (2)

supply. Only one non-key attribute is defined for the Link

Relation class, linkCost. ~he aggregate of all instance

attribute names defined for a specific relation class

object is the heading of the relation. The body of a

relation is the grouping of all tuple instance objects.

This approach to data management assumes that the user

proceeds through the various stages of information

requirements analysis, relational design, and

normalization. The o-o relational data model simply

provides access to a relational database management scheme;

Object-oriented Data Model Schema

Abstraction

The second step in defining a specific relation class

object is data model schema abstraction. Data model schema

abstraction permits the user to·specify data model

particulars. First, however, a brief discussion of syntax

notation is required. Figure 32 shows the syntax notation

used in data model schema abstraction.

is fixed

~TTRJBUTE-NAllE

lrangpJ

Required Notation

User Specified Required ParaMeter

User Specified Optional ParaMeter

Figure 32. Data Model Schema Abstraction
syntax Notation

92

Attribute Syntax

Relational data model schema abstraction begins at the

attribute level. Figure 33 shows the abstraction syntax

for the only allowable kind of attribute, fixed, appearing

in a R-D-M diagram. The data modeler specifies the name of

the attribute, such as ATTRIBUTE-NAME, and declares its

kind as fixed.

ATTRIBUTE-NAN£ is fixed of-t11pe T'IPE !range};

Figure 33. .~ttribute syntax

Attribute values are drawn from a given value set as

specified by TYPE. Each attribute may have an optional

range statement, rrangeJ, which follows the attribute type

specification. Thus, a range statement may restrict the

allowable set of attribute values for a given attribute.

Note that a semicolon (;) terminates a fixed attribute

statement. All data model schema abstraction statements

end in this manner. Figure 34 gives the general syntax for

a R-D-M diagram abstraction. From this figure it is clear

that the user of an o-o relational data model specifies

93

three items. These items are: (1) RELATION-NAME; (2)

primaryKey aggregate list; and (3) non-key attribute list.

RElBT!t?H-IW1E is-a relation:
instance attributes:

priMaryKey is aggregate-of:
KEI/ ATTRIBUTE LJST;

end priMaryKey;
HON-KE'I BTTRIBIJTE LJST;

end instance;
end RELBTIOH-IW1E;

Figure 34. Relational Data Model Abstraction
General Syntax

Figure 35 illustrates the data model schema

abstraction for the Source Relation class and Link Relation

class objects. The source data model schema abstraction is

an example of a single attribute, sourceName, serving as a

the primaryKey aggregate. The link data model schema

abstraction uses two attributes, sourceName and destName,

to define the primaryKey aggregate.

The source data model schema abstraction in Figure 35

has a non-key attribute list containing two attributes.

These attrlbutes are: (1) interpretation; and (2) supply.

The interpretaticQ attribute has no range qualifier whereas

the supply attribute must be nonnegative. The link data

model schema abstraction has a single non-key attribute,

linkCost. This attribute cannot be negative as is evident

94

by th~ [link cost >= OJ range qualifier. Note that in both

data model schema abstractions the specific relation class

object is an instance of the Relation class (e.g., source

is-a relation).

source is-a relation:-
instance attributes:

priMaryKey is aggregate-or:-
sourceNaMe is fixed of-type string;

end priMaryKey;
interpretation is fixed of-type string;
su~ply is fixed or-type integer [supply >= Ol;

end instance;
end source;

link is-a relation:-
instance attributes:-

priMaryKey is aggregate-of:
sourceNaMe is fixed of-type string;
destHaMe is rixed of-type string;

end prinaryKey;
li~kCost is fixed of-type float ClinkCost >= Ol;

end instance;
end link;

Figure 35. Data Model Schema Abstraction
Example

What will become evident in subsequent chapters is

that the process of schema development followed by schema

abstraction is specifically chosen for the purpose of

integrating data and model perspectives. That is, the user

will be able to regard a specific relation class object as

a data object or may treat that object in a manner

identical to a model object.

CHAPTER IV

OBJECT-ORIENTED MODEL MANAGEMENT SYSTEM

Introduction

This chapter introduces the ideas of object-oriented

(0-0) structured modeling. o-o structured modeling applies

relevant structured ·modeling ·concepts -- tGeoffrion 1987) ·and

model abstraction ideas for the purpose of model

representation in a decision support system (DSS)

environment using an o-o approach (Leclaire and Suh 1988).

Additionally, we use pertinent semantic data modeling

notions (Leclaire and Chahande 1988) to enhance the

transition from a structured modeling approach for model

representation to an o-o structured modeling one.

Obj act-Oriented Structur,ed Modeling

Fundamentals

o-o structured modeling provides a formal framework

and computer-based environment for conceiving,

representing, and manipulating an assortment of models. As

a result, the objectives of o-o $tructured modeling are

identical to those of structured modeling (Geoffrion 1987).

95

96

Dolk (1988) identifies several characteristics which

should be present in any modeling system. Modeling systems

should support a conceptual framework which defines a

general model structure. Such systems should enforce

independence of model representation from both model

solution operators and underlying data associated with

specific model instances.

Furthermore, modeling systems should be able to

capture a wide range of operations research/management

science mathematical models and other conceptual models

encountered in the database design and software engineering

fields. This implies the need to support a general

modeling life cycle. Finally, modeling systems must haye

full use of data management facilities as contained in

database management systems.

o-o structured modeling has each of these

characteristics. o-o structured modeling ensures this by

following a three phase process in model development and

representation. These phases are: (1) model schema

development; (2) model schema abstraction; and (3) model

acyclicity verification.

Each of these development phases is discussed in

detail below. We use a simple model, the Hitchcock

Koopmans transportation model, as an explicative example of

this process. The reader is cautioned, however, that o-o

structured modeling can capture a wide range of models.

97

Model Schema Development

The entity-relationship (E-R) model, introduced by

Chen (1976), serves as the basis for model schema

development. Chen (1976) proposes that database design

users employ the E-R model for database design and

description. The E-R model adopts a more natural view that

the real world cons.is ts of entities and relationships. The

application of an E-R approach to model development is not

new (see Blanning 1986). Geoffrion (1987) notes that

structured modeling· subsumes· ·E-R modeling•

Chen (1976) argues that an entity is any "thing" in

the modeling environment which may be distinctly

identified. For instance, a specific person, automobile,

or dog is an entity. E-R modelers classify similar

entities into entity sets. People, cars, and pets may

serve as entity sets for the foregoing entities. There is

a predicate associated with each entity set to test whether

an entity belongs to that set. In the transportation model

example there are two entity sets: (1) source points,

perhaps from which finished goods originate; and (2)

destination point~, to which the finished goods arrive.

Specific source points and specific destination points

(e.g., Dallas and Denver) are examples of entities in the

transportation model example.

A relationship set, according to Chen (1976), is a

mathematical relation among n entities taken from an entity

98

set. Each tuple of entities in a relationship set

represents a specific relationship. Thus, a relationship

is an association among specific entities. For example,

the project-worker relationship set relates the two entity

sets employee and project. In the transportation model

example a single- relationship set exists, called link.

Each link relates one source point with a single

destination point.

A relationship set may have one of three possible

mappings between entities in the participating entity sets.

These mappings are:, (1) 1:1; (2) l:N; or (3) N:M. The

first mapping (1:1) relates an entity in the first entity

set with at most one entity in the second entity set. The

relationship set marriage is an example of such a mapping.

The second mapping (l:N) relates an entity in the first set

with any number of entities in the second set but not vice

versa. A relationship set such as department-employee has

such a mapping if an employee may not belong to more than a

single department. Finally, the third mapping (N:M)

relates any number of entities in the first set with any

number of entities in the second set. In the

transportation model example the relationship set link has

an N:M mapping of source point entities to destination

point entities.

0-0 structured modeling fosters a view that models

consist of entities and relationships. This allows

99

modelers to design and describe models beginning with an E-

R approach. As a consequence, o-o structured modeling

adopts a top-down approach to model development using

semantic information to organize the model representation.

Model schema development begins with the identification of

key entity sets and relationship sets encountered in the

modeling environment.

There are two entity sets in the transportation model

example (source points and destination points) and one

relationship set (link) of mapping N:M. Figure 36 applies

an E-R diagrammatic technique (see Chen 1976) to illustrate-

the transportation model entity sets and relationship set.

A box denotes an entity set and a diamond symbolizes a

relationship set. Notice that the diagram includes the

mapping of the relationship.

Source
Point

N

Link Destination
Point

Figure 36. Entity-Relationship Diagram

100

The next step in model schema development is to draw a

distinction between an entity/relationship set and members

of that set. · The o-o ideas of class object and instance

object are important in showing this contrast. Figure 37

shows that what once were considered entity/relationship

sets are now considered entity/relationship class objects.

In this figure circles represent instance objects of each

class object. The relationsnip of an instance object to

its respective class object, known as an instance-of

relationship, is shown using an arrow. Figure 37 is a

simple Class-Instance (C-I) diagram. Two specific entity

class objects, the Source Point class and the Destination

Point class, appear as boxes in this figure. A single

specific relationship class object also appears in Figure

37, called the Link class, and is shown using a diamond.

Source
Point
Class

N

Source
Point

lnstancf

M Destination
Point
Class

Destination
Point

Instance
Link

Instance
Figure 37. Simplified Class-Instance Diagram

101

The modeler expresses information about an entity or a

relationship as an entity instance store or a relationship

instance store called an attribute. An attribute obtains

its value from the user through observation, measurement,

or calculation. According to Chen (1976), attributes are

drawn from a valuH set where different attribute values may

come from the same value set.

Each entity instance object must have a unique

identifier. This identifier is constructed using

aggregation. Aggregation, formally presented by Smith and

Smith (1977a, 1977b), allows a relationship between objects

to be thought of as a higher-level, named object. An

instance identifier is the aggregate of one or more

instance level attributes defined for the specific entity

class object. Thus, all instance objects of a specific

entity class object are distinguishable from one another

using this identifier.

Figure 38 shows a C-I diagram of the transportation

model example which contains the relevant identifier

aggregations. Ovals represent attributes in a C-I diagram

and the circle symbol with an "x" through it refers to

aggregation. The identifier aggregation for an instance of

the Source Point class is the single instance attribute

sourceName. The identifier aggregation of the Destination

Point class is the single attribute destName.

Source
Point
Class

sourceNaf!'le

N

Source
Point

Instance

()

sourceNaMe destNaMe
identifier identifier

102

M Desti~ation
Point I
Class 1

Destination
Point

Instance

identifier

destNaMe

Link
Instance

Figure 38. Class-Instance Diagram with Identifier
Aggregates

The identifier aggregation for an instance object of

the Link class requires some explanation. The relationship

between a given Source Point class instance object and a

given Destination Point class instance object may be

regarded as an aggregate of the corresponding Source Point

class and Destination Point class instance object

identifiers. Since these identifiers are sourceName and

103

destName, respectively, they form the instance identifier

used by the Link class.

Therefore, the aggregation of the entity instance

object identifiers participating in a relationship

represents the instance identifier for the specific

relationship class object. The mapping of the relationship

restricts the possible set of aggregate values permissible

across all relationship instance objects.

Model schema development continues with the

identification of the remaining specific entity instance

and specific relationship instance object attributes.

Figure 39 illustrates those entity/relationship instance·

object attributes determined to be relevant at this level

of model development. Notice that a distinction is drawn

between three different kinds of attributes.

An empty oval depicts a fixed attribute. A fixed

attribute is user-determined and, thus, the user supplies

the attribute value to the model. This type of attribute

is identical to that proposed by Chen (1976) and a fixed

attribute element as defined by Geoffrion (1987). The

demand attribute of a Destination Point class instance

object is an example of a fixed attribute.

An oval filled with diagonal lines represents a

derived attribute. A derived attribute determines its

value based on the value of other attributes in the model.

The idea of derivad schema attributes in a semantic data

104

modeli~g environment (Leclaire and Chahande 1988) serves as

the basis for including derived attributes. o-o structured

modeling can represent function and test elements from

structured modeling (Geoffrion 1987) using derived

attributes. The supplyTest attribute of a Source Point

instance object is a derived attribute.

Source
Point- N
Class

sourceNaMe

Source
Point

Instance

M Destination
Point
Class

Destination
Point

Instance

identifier

destNal!le

Link
Instance

link Total

Figure 39. Model Class-Instance Diagram with Instance
Attributes

105

Finally, a cross-hatched oval denotes a solver-derived

attribute. A solver-derived attribute receives its value

from the problem solver invoked to solve the model and,

thus, is analogous to a variable attribute element from

structured modeling (Geoffrion 1987). The flow· attribute

of a Link instance object is an example of a solver-derived

attribute.

A C-I diagram is complete once the modeler adds

specific entity c~ass and specific relationship _class

object attributes~ A specific class object attribute

records information regarding all instances of the

specified class using class stores. A specific class

object attribute may also record information specific to

the object using existence stores. Figure 40 presents

several entity/relationship class object attributes. The

derived attribute demandTotal, an attribute of the

Destination Point class object, records the total demand

for all Destination Point instance objects.

The addition of a specific model class object and its

corresponding instance object representation to a C-I

diagram transforms it into a c-I-Model (C-I-M) diagram.

Figure 41 shows a simplified C-I-M diagram of the

transportation model example. An octagon and a triangle

represent specific model class objects and specific model

instance objects, respectively. As with specific entity

class and specific relationship class objects and instances

106

of those specific class objects, a specific model instance

object uses an instance-of arrow to indicate its

relationship to its class object. Furthermore, a C-I-M

diagram also requires model instance objects to have a

unique identifier aggregation. The aggregation of a single

instance attribute, modelName, serves as the instance

identifier in Figure 41.

Source
Point
Class

N

sourceCount supplyTotal

sourceNa•

Source
Point

Instance

M Destination.
Point .
Class

destCount deMandTotal

Destination
Point

Instance

identifier

destHaMe

Link
Instance

sourceNaMe destNaMe linkCost
identifier identifier

Figure 40. Complete Class-Instance Diagram

identifier

111ode1Na111e

Source
Point
Class

N

sourceCount supplyTotal

sourceNaMe

Source
Point

Instance

107

Transportation
Model
Class

Tl"' ans po rt at ion
Model

Instance

M Desti~ation
Point
Class

destCount de111andTotal

Destination
Point

Instance

identifier

destNa111e

link
Instance

sourceNa111e destNa111e linkCost
identifier identifier

flow linkTotal

F . 41 si'mpli'fied Class-Instance-Model Diagram i.gure •

108

A single, named attribute of each specific model

instance object serves as the aggregation of all

entity/relationship class objects. Figure 41 shows this as

the network attribute of a Transportation Model instance

object. Figure 42 includes the addition of all specific

model instance object attributes. Figure 42 adds a_ single

derived attribute, totalCost.

The final step in model schema development is to

include specific model class object attributes. This

completes model schema development.

final transportation model schema.

Figure 43 shows the

Note that this figure

depicts only one model class object attribute, modelcount.

Model schema development is not a linear process and,

as a result, several iterations may be necessary. The

stepwise nature of this process, however, helps to ensure

successful schema development. Figure 44 describes each

step necessary in model schema development. Figure 45

shows a complete model schema for a general linear

programming model. The next phase of model development is

model schema abstraction. This is discussed in the

following section.

Model Schema Abstraction

Dolk and Konsynski (1984) introduced model abstraction

as one approach ta model management. Dolk and Konsynski

(1984) argue that model abstraction regards models as data

idontif i~

ModelNaMe

Source
Point
Class

N

sourceCount supplyTotal

sourceNa111e

Source
Point

Instance

109

Transportation
Model
Class

Transportation
Model·

Instance
total Cost

M Desti~ation
Point
Class

destCount denandTotal

Destination
Point

Instance

identHier

destNaMe

Link
Instance

sourceNaMe destHaMe linkCost
identifier identifier

flow linkTotal

Figure 42. Class-Instance-Model Diagram with Instance
Attributes

mdelCount

MOdelNaMe

Transportation
Model
Class

total Cost

110

Source
Point
Class

M Destination
Point
Class

sourceNa1111

sourceCount supplyTatal

Source
Point

Instance

destCount deMandTotal

Destination
Point

Instance

identifier

destNaMe

Link
Instance

sourceNaMe destNaMe linkCost
identiFier id1ntiFi1r

Flow link Total

Fiqure 43. Complete Class-Instance-Model Diagram

1.> IdtntiPy kty tntities and.rtlationships betwetn those tntitits which
participate in the 11\0del

111

a.) DeterMine the Mapping or each relationship (e.g., 1:1, 1:H, or N:M>

b.) DiagraM each entity and the relationships between the various
entities using an entity-relationship <E-R> diagraM

2.) Draw a distinction between entitylrelationship classes and instances of
those classes

a.) DiagraM this distinction using a Modified E-R diagra" known as a
Class-Instance-cc~I)·diagraM· ·

b.) For each entity instance deterMine an aggregation oP attributes
which are to serve as the unique identifier for each instance and
add it to the diagra•

c,) For each relationship add an aggregation, to s1rv1 as the instanct
identifier, consisting of the entity instance identifiers
participating in the relationship instance~ tht value of each
relationship identifier is subject to the Mapping restrictions

d.) For each entity/relationship instance deterMine the renaining
attributes and add the" to the diagra"

1.) For each entity/relationship class deterMine the appropriate
attributes at this level and add theM to the diagraM

3.) Move froM the C-I level to the 1110del level

a.) DiagraM this using a Modified C-1 diagraM known as a C-I-Model
CC-I-M> diagraM

b.) Deter"ine an aggregation of attributes which are to serve as the
unique identifier for each instance and add it to the diagraM

c.) Regard the aggregate of all entities and relationships between those
entities in the C-I diagra" as a naMed attribute of the Model
instance

d.) DeterMine all other instance attributes and add theM to the diagraM

e.) DeterMine the MOdel class attributes and add theM to the diagraM

Figure 44. Model Schema Development Steps

Linear
PrograMMing

Model
Class

Model Count

identHier

Decision
Uariable

Class
N

dvHaMe

objUalue

Decision
Uariable
Instance

kind bound

dvNaMe conHa11tt
identifier identifier

Linear
PrograMMing

Model -
lnstanc_e

conCount

Constraint
Class

Constraint
Instance

'conNaMe t1,1pe

Matrix
Instance

coef!Ualue

112

Figure 45. General Linear Programming Class-Instance-Model
Diagram

113

and model management as a corollary of data management,

both conceptually and in implementation terms.

First, a brief discussion of syntax notation is

required. Figure 32 shows the syntax notation used in data

model schema abstraction. This same syntax notation is

relevant for model schema abstraction.

Attribute Syntax .

Model schema abstraction begins at the attribute

level. Figure 46 shows the model abstraction syntax for

the various kinds of attributes appearing in a C-I-M

diagram. These attribute kinds are: (1) fixed; (2)

derived; and (3) solver-derived.

The modeler specifies the name of an attribute, such

as ATTRIBUTE-NAME in Figure 46, and declares its kind. The

modeler may declare one of three different kinds for each

attribute. This declaration must be one of the following:

(1) is fixed of-type; (2) is derived of-type; or (3) is

solver-derived of-type.

ATTRIBUTE-NAHE is fixed of-type TYPE lnngfl l

ATTR/BUTE-NAHE is derived of-type TYPE !rang,}:
ATTR!BllTE-NAHE : = /JERJVATJON1

fnd ATTRJBUTE-HAH£1

ATTRJBUTE-NANE is solver-derived of-type TYPE lrangfl;

Figure 46. Attribute Syntax

114

A~tribute values, regardless of kind, are drawn from a

given value set as specified by TYPE. Each attribute may

have an optional range statement, [range], which follows

the attribute type specification. Thus, the range

statement may restrict the set of allowable attribute

values for a given attribute.

Note that a semicolon (;) terminates each statement

for fixed attributes and solver-derived attributes. All

model abstraction statements end in this manner. The

derived attribute statement is a compound statement and,

thus, ends with a continuation symbol (:-). This marks ths

beginning of an attribute derivation. An attribute

derivation describes how a particular attribute determines

its value. An end statement terminates a derived attribute

statement. Figure 47 gives examples of the various kinds

of attribute syntax that are encountered in the abstraction

of the transportation model example.

supply is fixed of-type integer [supply >= Ol;

linkTotal is derived of-type float ClinkTotal >= 01:
linkTotal := linkCost * flow;

end linkTotal;

flow is solver-derived of-~ype integer [flow >= Ol;

Figure 47. Attribute Syntax Examples

115

Entity Object Syntax

The modeler uses a specific syntax to develop the

abstract representation for each entity. Figure 48 depicts

the formal syntax for an entity in a c-I-M diagram.

EHTJT'l-NAHE is-a entity:
class attributes:

ATTR/BUTE lIST;
end class;
instance attributes:

identifier is aggregate-of:
IDENTIFIER ATTRIBUTE l/ST;

end id&ntifieP; · · -
HON-IDENTIFIER ATTRIBUTE l/ST;

end instance;
end ENTJT'l-NAHE;

Figure 48. Entity Syntax

Each specifi~ entity abstraction begins with an entity

class name. This name serves to identify the specific

entity class as it is a subc:ass of the more general Entity

class. This relationship is indicated by the ENTITY-NAME

is-a entity statement. Thus, both the Source Point class

and Destination Point class are subclasses of this more

general class.

In addition, note that a named entity abstraction is a

compound statement (there is a continuation symbol). No

formal definition is given for a named entity class object

except to say that it is an object which has class level

116

attributes and instance level attributes. This implies

that an entity class object has the ability to instantiate

new instances having the instance level attributes.

A class level attribute definition section appears

following the class name declaration for the specific

entity class object. The class attributes statement within

which a list of attributes appears announces a class level

attribute definition section. The modeler terminates the

class level attribute section with an end class statement.

Instance object attribute definitions begin with the

instance attributes statement. The instance object

identifier aggregation definition immediately follows the

instance attributes statement. Furthermore, any attribute

defined within this aggregation statement must be a fixed

attribute. The modeler may restrict the value of any of

these attributes using a range statement, however. A list

of additional instance level attributes follows this

statement. An end instance statement concludes the

instance level attribute section.

An end statement completes a specific entity class

object definition. Figure 49 gives an example entity

syntax for the Source Point class in the transportation

model example.

sourcePoint is-a entity:
class attributes:-

sourceCount is deriued of-type integer CsourceCount >= 81:
sourceCount := cardinality of instances;

end sourceCount;
supplyTotal is deriued of-type integer CsupplyTotal >= 01:

supplyTotal := SUM <supply[*]);
end supplyTotal;

end class;
instance attributes:-

identifier is aggregate-of:
sourceHaMe is Fixed of-type string;

end identif ier1
supplyTest is deriued of-type boolean:-

supplyTest := <SUM Cflow[sourceHai-ie,•l> <= supply);
end supplyTest1
supply is Fixed of-type integer [supply >= Ol;

end instance1
end sourcePoint;

Figure 49. Entity Syntax Example

Relationship Object Syntax

117

Each relationship in a model also has a specific

syntax· used to develop its abstract representation. Figure

50 depicts the formal syntax for a relationship in a C-I-M

diagram.

RE1AT/ONfH/P-HAHE is-a relationship CHAHE 1/STl :
class attributes:-

ATTR/BUTE 1/ST;
end class;
instance attributes:-

identifier is aggregate-of:
/DEHT/f/ER ATTRIBUTE 1/STCexistsl1

end identif ier1
HCN-IDEHTIFIER ATTRIBUTE 1/ST1

end instance;
end RE1ATIONfHIP-HAHE1

Figure 50. Relationship Syntax

118

Notice that there is substantial similarity to an

entity abstraction. Each relationship class is named and

is a subclass of the Relationship class (as is evident by

the RELATIONSHIP-NAME is-a relationship statement), has

class level attributes, and instance level attributes.

There are two important differences, however. First, the

specific relationship class object declaration statement

includes (NAME LIST]. Second, each attribute appearing in

the identifier aggregate has the (exists] qualifier

appended to its definition.

The name list for a specific relationship class object

consists of two items for each specific entity class object

participating in the definition of the relationship.

First, the class name of the specific entity class object

is given. Second, the mapping of the specific entity class

object follows its name. Each of these items is separated

with a colon(:). The mapping specification is one of two

options: (1) one; or (2) many.

Each entry of a specific entity class object appearing

in the name list is separated using a comma(,). For

example, in Figure 51 the Link class object has as its name

list: (sourcePoint:many,destPoint:manyJ. This indicates

that two specific entity class objects, sourcePoint and

destPoint, participate in the link relationship with a

mapping of N:M (many to many) .

link is-a relationship CsourcePoint:"any,destPoint:"anyl:
class attributes:-

linkCount is derived of-type integer ClinkCount >= 01:
linkCount := cardinality of instances;

end linkCount;
end class;
instance attributes:

identifier is aggregate-of:-
sourceNa"e is fixed of-type string Cexistsl;
destNa"e is fixed of-type string Cexistsl;

end identifier;
linkCost is fixed of-type float ClinkCost >= OJ;
flow is solver-derived of-type integer [flow >= OJ;
linkTotal is derived of-type float ClinkTotal >= 01:-

linkTotal := linkCost * flow;
end linkTotal;

end instance;
end link;

Figure 51. Relationship Syntax Example

119

The modeler explicitly defines the relationship

instance object identifier as an aggregation using the is

aggregate-of statement. An instance attribute definition

list follows this statement. This list replicates the

identifier attribute definition lists of the specific

entity objects participating in the relationship. The

rexistsl statement qualifies each identifier attribute

listed thereby ensuring that no reference to a nonexistent

specific entity instance object occurs. An end statement

terminates the identifier aggregation. All the ideas

discussed above are shown in Figure 51.

Model Object Syntax

The modeler uses a specific syntax to develop an

·abstract representation for each model. Figure 52 depicts

the formal syntax for a model in a C-I-M diagram.

JIODEL-NAHE is-a 111odel:
class attributes:

ATTRIBIJTE LIST:
end class:
instance attributes:

identifier is aggregate-of:-
IDENTIFIER ATTRIBUTE l/ST:

end identifier:
NOH-IDENTIFIER ATTRIBUTE l/ST:
AGCRECATE-HAHE is aggregate-oF:

ENTJTY-NAHE is-a entity:
class attributes:-

HTTRIB/JTE l/ST;
end class:
instance attributes:

identifier is aggregate-of:
IDENTIFIER ATTRJBIJTE l/ST:

end identifier:
NOH-IDENTIFIER ATTRJBlJTE lJST;

end instance;
end ENTITY-HANE;
RELATIONSHIP-HANE is-a relationship CNAHE LJSn :

class attributes:-
ATTRJB/JTE lJST;

end class:
instance attributes:-

identifier is aggregate-oF:
IDENTIFJER ATTRIBUTE LJSTCexistsl;

end identifier;
NOH-IDENTIFIER ATTRIBUTE llST;

end instance;
endRELATIONSHIP-HAHE:

end A(;(;REGATE-HAHE:
end instance;

end WDEL -HAHE;

Figure 52. Model Syntax

120

As with the entity and relationship syntaxes, each

specific model class object declares a class name. This is

shown in Figure 52 by the MODEL-NAME is-a model statement.

Note that any named model class object is an instance of

the generic Model class object. Every specific model class

121

object has the ability to instantiate new instances which

have the defined instance level attributes.

Each specific model class object has a class level

attribute section and an instance level attribute section.

The specific model class definition is not unlike a

specific entity definition with one .exception. An is

aggregate-of statement defines a named aggregation of all

the specific entity and specific relationship class objects

diagrammed in the C-I diagram. The modeler specifies an

entity/relationship definition list in this aggregation.

This list contains nothing more than the entity

abstractions and relationship abstractions of the objects

found in the C-I diagram. An end statement terminates the

specific entity and specific relationship aggregation.

An end statement also terminates a specific model

abstraction. Figure 53 shows the complete model schema

abstraction for the transportation model example. Figure

54 presents the complete model schema abstraction for the

general linear programming model diagrammed in Figure 45.

Model Abstraction Benefits

Some of the benefits of model abstraction identified

by Delk and Konsynski (1984) are: (1) it enforces the

separation of model description and model solution; (2) it

enforces model and data independence; and (3) it provides

transportationModel is-a MOdtl:
class attributes:-

ModelCount is derived of-type integer [ModelCount >= Ol:
ModelCount := cardinality of instances;

end ModelCount;
end class;
instance attributes:-

identifier .is aggregate~of:
ModelNaMe is fixed of-type string;

end identifier;
totalCost is derived of-type float [totalCost >= Ol:

totalCost.: = SUM ClinkTotalC*l) l - .
end totalCost;
network is aggregate-of:

sourcePoint is-a entity:
class attributes:-

sourceCount is derived of-type integer CsourceCount >= Ol:
sourceCount := cardinality of instances;

end sourceCount;
supplyTotal is derived of-type integer CsupplyTotal >= 01:

supplyTotal := SUM (supply[*]);
end supplyTotal;

end class;
instance attributes:-

identifier is aggregate-of:
sourceHaMe is fixed of-type string;

end identifier;
supplyTest is derived of-type boolean:-

supplyTest := <SUM (flow[sourceNaMe,*l) <= supply);
end supplyTest;
supply is fixed of-type integer [supply >= 01;

end instance;
end sourcePoint;
destPoint is-a entity:-

class attributes:-
destCount is derived of-type integer [destCount >= Ol:

destCount := cardinality of instances;
end destCount;
deMandTotal is deriued of-type integer [deMandTotal >= 01:

deMandTotal := SUM CdeMandC*l>;
end deMandTotal;

end class;
instance attributes:-

identifier is aggregate-of:
destHaMe is fixed of-type string;

end identifier;
deMandTest is deriued of-type boolean:-

deMandTest := (SUM Cflow[*,destHaMel) == deMand>;
end de111andTest;
deMand is fixed of-type integer CdeMand >= Ol;

end instance;
end destPoint;

122

Figure 53. Transportation Model Schema Abstraction

link is-a relationship Csou:rcePoint:Many,destPoint:..anyJ:
class attributes:-

linkCount is derived of-type integer ClinkCount >= Ol:
linkCount := cardinality of instances;

end linkCount;
end class:
instance attributes:

identifier is aggregate-of:-
sourceNaMe is fixed of-type string [exists];
destHatitt is fixed of-type string [exists];

end identifier;
linkCost is fixed of-type float ClinkCost >= Ol;
flow is solver-derived of-type integer [flow >= OJ;
linkTotal is derived of-type float ClinkTotal >= Ol:-

linkTotal := linkCost * flow:
end linkTotal;

end instance;
end link;

end network;
end instance;

end transportationModel;

123

Figure 53 (Continued). Transportation Model Schema
Abstraction

for the development of a model management system as an

analog of a database management system.

The combination of model schema development and model

schema abstraction addresses the required characteristics

of a model management system. Thus, o-o structured

modeling serves as a useful medium for model management.

One last issue addressed by structured modeling is model

cyclicity. o-o structured modeling examines this in the

next section.

Model Acyclicity Verification

Structured modeling uses acyclic directed graphs to

display the model schema thereby assuring the acyclicity of

generalLPModel is-a Model:
class attributes:-

ModelCount is derived of-type integer CModelCount >= Bl:
ModelCount := cardinality of instances;

end ModelCount;
end class;
instance attributes:

identifier is aggregate-of:-
lpNaMe is fixed of-type string;

end identifier;

124

lpType is fixed of-type string [(lpType == 'Max') or ClpType == 'Min')];
forMulation is aggregate-of:-

decisionUariable is-a entity:
class attributes:-

dvCount is derived of-type integer [dvCount >= 01:
dvCount := cardinality of instances;

end dvCount;
objUalue is derived of-tyDe float:

objUalue := SUM (objCoefC*l * valueC*l>;
end objUalue;

end class;
instance attributes:

identifier is aggregate-of:-
dvNaMe is fixed of-type string;

end identifier;
objCoef is fixed of-type float;
kind is fixed of-type string [(kind== 'continuous') or

<kind== 1integer') or (kind== 'binary')];
bound is fixed of-type float;
value is solver-derived of-type float;
reduced is solver-derived of-type float;

end instance;
end decisionUariable;
constraint is-a entity:

class attributes:-
conCount is derived of-type integer CconCount >= Bl:

conCount := cardinality of instances;
end conCount;

end class;
instance attributes:

identifier is aggregate-of:-
conNaMe is fixed of-type string;

end identifier;
rhsUalue is fixed of-type float;
type is fixed of-type string [(type== '>='> or (type== '{='> or

(type== '==')];
slack is solver-derived of-type float;
dual is solver-derived of-type float;

end instance;
end constraint;

Figure 54. General Linear Programming Model Schema
Abstraction

Matrix is-a relationship CdecisionUariable:nany,constraint:nanyJ:
class attributes:-

nzCount is derived of-type integer CnzCount >= Ol:-
nzCount := cardinality of instances where (coefUalue N= 0);

end nzCount;
end class;
instance attributes:

identifier is aggregate-of:-
dvHuie is Fixed of-type string [exists J;
conNane is fixed of~type string Cexistsl;

end identHier;
coefUalue is fixed of-type float;

end instance;
end 111atrix;

end fanulation;
end instance;

ind g1111r1lLPModel;

125

Figure 54 (Continued). General Linear Programming
Model Schema Abstraction

modeling calls. o-o structured modeling does not enjoy

this benefit as there may be inherent cyclicity as one

derived attribute may call another which ultimately calls

the first attribute.

Acyclicity verification involves the development of an

attribute list. This list is represented as a set which

includes all attributes in the model abstraction. Each

element of the set (each attribute) has an associated

calling sequence. This calling sequence also may be

represented as a set. A calling sequence is nothing more

than the set of attributes on which the given attribute is

functionally dependent. Figure 55 depicts various rules

the modeler may use to determine the calling sequence for a

.given attribute.

Fix1d Attributes:

Class Level

1.) The calling seQuence is represented by an eMpty set

Instance Level

1.) The calling sequence is represented by an eMptv set ror 111odel
instance and entity instance identifiers

126

2.) The calling sequence is represented by a set consisting of each .
entity instance identifier attribute participating in the definition
of the relationship ·

3.) The calling sequence is represented by a set consisting of the
specific instance identifier attribute

Derived Attributes:

Class Level

1.) The calling sequence is represented by the set of attributes
referenced in the attribute derivation

Instance Level

1.) The calling sequence is represented bv the union of the specific
instance identifier attribute and the set of attributes referenced
in the attribute derivation

Solver-Derived Attributes:

Class Level

1.) The calling sequence is represented by an eMptv set.

Instance Level

1.) The calling sequence is represented by a set consisting of the
specific instance identifier attribute

Figure 55. Calling Sequence Determination Rules

Figure 56 presents an algorithm which the modeler may

use to determine whether circular references occur within

·the model. This algorithm is named Warshall after its

inventor (Aho, Hopcroft, and Ullman 1983). It begins with

127

an adjacency matrix, called adjacency. This is an n x n

matrix where each attribute appears along both axes of the

matrix. If attribute i calls attribute i, a one is placed

in the ~ entry in adjacency; otherwise enter a zero.

Once the adjacency matrix is constructed, Warshall's

algorithm may be used to determine if cyclicity occurs.

This is indicated by the appearance of a one in the

diagonal of the transitive closure matrix called closure.

A one in the diagonal of closure implies that at some point

an attribute calls itself.

ror i := 1 to n do
ror j := 1 to n do

closureCi,jJ := adjacencyCi,jl;
ror k := 1 to n do

for i := 1 to n do
for j := 1 to n do

if closureCi,jl = 0 then
closureCi,jl := (closureCi,kl and closureCk,jl)

Figure 56. Algorithm for Verifying Model Acyclicity

The concepts of model schema development and model

schema abstraction represent the first architectural step

in proper system design (Chung 1984). The next two steps

involve operationalization and implementation. Chapters V

and VI attack these issues.

CHAPTER V

MESSAGE PROTOCOLS

Introduction

This chapter proposes a minimal s~t of class objects

required to support an object-oriented (0-0) approach to

decision support systems (DSSE;) as· discussed in the

preceding chapters. In addition, we present an associated

collection of message protocols defined for each class

object which allow for the creation and manipulation of

instance objects capable of representing the general

entity, relationship, model, and relation class concepts

introduced earlier. These protocols allow the user and

other objects in the system to access the class attributes

and instance attributes of these classes. Chapter VI

describes a prototype implemented in a personal computing

environment which uses these protocols.

Organization of Classes

We define five class objects which are necessary to

implement the concepts of o-o data model schema abstraction

and o-o model schema abstraction. These class objects are:

(1) Metamodel class;

128

(2) Entity class;

(3) Relationship class;

(4) Model class; and

(5) Relation class.

129

Together these classes are placed into the single

inheritance hierarchy shown in Figure 57. This figure also

includes an additional abstract class.object, Object, which

is the superclass of all classes and defines the protocol

common to all objects in the object universe. This

hierarchical organization implies that the class methods

and instance methods of both the Object class and the

Metamodel class are inherited by the Entity, Relationship,

Model, and Relation classes. The Metamodel class is also

an abstract class in the sense that it defines instance

level methods which are inherited by its subclasses but

itself does not have any instance objects.

Each of these subclass objects has the ability to

create instance objects specific to the subclass.

Furthermore, although these instance objects are

instantiated by different classes they have several

characteristics in common. These general traits are

inherited from the Metamodel class object.

Inheritance from the Metamodel class provides

instances of these subclass objects with the capability to

model nonspecific class level and instance level object

interactions. Consequently, a single instance object of

130

any of the four subclass objects (Entity, Relationship,

Model, and Relation) has the ability to represent both

class level and instance level attributes as well as has

the ability to perform both class level and instance level

operations on the class modeled by the instance object. A

reference to a class or an instance of a class modeled

within such a singular object uses the prefix object.

Entity
Class

Relationship
Class

Object
Class

Metall\Odel
Class

Model
Class

Relation
Class

Figure 57. Class Object Hierarchy

For ~xample, the Entity class object is the specific

object on which the definition of the Source Point class in

Figure 49 depends (note the sourcePoint is-a entity

statement) . The Entity class object creates an entity

instance object in order to model the Source Point class.

This instance object is referred to as the source point

131

instance object (since it is an instance object which

models the Source Point class). The term object class

refers to the specific class modeled by an instance object.

Thus, the object class modeled by the source point instance

object is the Source Point class. Adding a new source

point to the Source Point class is an example of an object

class level operation. The_ source point instance object

provides this capability.

The source point instance object is also responsible

for managing the interactions between the instances of the

Source Point class (e.g., a specific source point) and

other objects in the object universe. Consequently, an

instance object of one of the four subclass objects

performs a dual function. First, such an instance object

represents the class level attributes of the object class

which it models. Second, such an instance object is

responsible for the creation and maintenance of the

instance objects of this same class. An instance created

by such an instance object is called an object instance (as

the object instance is an instance of the object class).

Access to the value of the instance attribute supply

(see Figure 49) must be provided for any source point

created by the Source Point class. This is an example of

an object instance level operation. Thus, operations on

specific source points affect object instances whereas

operations on the Source Point class affect the object

132

class. The Entity class object creates an instance object

which has the capability to handle both of these kinds of

operations.

We present another example of these ideas using the

Model class object. The Model class object is the specific

object on which the definition of the Transportation Model

class in Figure 53 depends (note the transportationModel

is-a model statement). The Model class object creates an

instance object (called a transportation model instance

object) which then serves to represent the Transportation

Model class defined in this figure. Formulating a new

transportation model would involve the creation of a new

object instance. This is an object class level operation.

On the other hand, solving a transportation model

formulation is an example of an object instance level

operation. Again, the source point instance object and the

transportation model instance object must perform object

class level and object instance level operations.

In summary, the four subclass objects discussed above

create instance objects to model the classes defined in

either a data model schema abstraction or a model schema

abstraction. A class appearing in an abstraction and

modeled by such an instance object is called the object

class. Instances of a class appearing in an abstraction

are instances of the object class and are called object

instances. Thus, an instance object models an object class

and, consequently, is responsible for creating,

manipulating, and removing object instances.

Object Class Versus Object Instance

Access Mechanisms

133

The user and other objects in the system gain access

to the values of the general properties of the modeLed

classes (object class attributes) by passing messages to

the specific instance object (e.g., the transportation

model instance object). We develop message protocols which

allow access to specific properties (object instance

attributes) indirectly through the instance object since it

is responsible for maintaining the instances of the object

class. In this manner the instance object becomes solely

responsible for managing the class attributes and instance

attributes of the class that it models. Thus, as stated

above, the source point instance object manages both the

Source Point class attributes and its instance attributes.

We propose two mechanisms, one direct and the other

indirect, which the user may use to refer to a specific

object instance appearing in an instance object (that is,

refer to an instance of the modeled class). The first

mechanism allows the user to specify an object instance

index in accessing a specific object instance. An object

instance index refers to the chronological order in which

the instance object creates the particular object instance.

134

For example, the user would refer to the first

transportation model formulation (object instance) of the

transportation model instance object as object instance

one, the second by two, and so on.

The fifth object instance would become the fourth

object instance should the user remove object instance four

(dispose of a specific transportation model formulation),

the sixth object instance would then become the fifth

object instance, and so forth. This means-of accessing

object instances has the obvious shortcoming that an object

instance cannot be uniquely identified by its object

instance index as the object instance set is not guaranteed

to remain static through time (various transportation

models will be formulated, retained, and disposed of as

needed).

Alternatively, the user may specify an object instance

identifier list which the instance object uses to uniquely

identify each object instance. All object class

definitions outlined in the previous chapters require that

object instances have unique object instance identifiers.

Consequently, we provide messages which allow the user to

access an object instance either through its object

instance identifier or its associated object instance

index.

General Characteristics of Instance

Objects

135

Instance objects created by the Entity, Relationship,

Model, and Relation class objects have certain general

characteristics which we discuss in this section.

Individual differences between these objects are discussed

in the appropriate message protoco.l sections below. _ _

Object Class Identifiers

An object class identifier must be specified-at '\;he

time that one of the four subclass objects creates an

instance object. An object class identifier statically

names the instance object. For example, the class name

link serves as the object class identifier for the Link

class definition appearing in Figure 51.

Entity and relationship instance objects, however, are

not required to have unique object class identifiers. This

is a necessary condition as model object instances

duplicate entity and relationship instance object

definitions at the time that they are created and thus

would require the specification of unique object class

identifiers. Dropping the uniqueness restriction for these

instance objects allows the model instance object to create

model object instances without having to alter the entity

and relationship object class identifiers appearing in the

136

object entity definition and object relationship definition

lists (an explanation of these lists appears below).

Model and relation instance objects, on the other

hand, are required to have unique object class identifiers.

Creation of an. instance object, either for a new model

object class or n~w relation object class, fails if the

object class identifier is not unique to .. the other instance

objects for the given subclass object. For example, an

attempt to create a new model instance object with an

object class identifier of transportationModel would fail

if a preexisting model instance object has the same object

class identifier.

Attribute Information

The message protocols developed below provide the user

with the power to define, access, and in certain cases

override attributes and their associated values. Each of

these issues is further discussed in the sections which

follow.

Attribute Definitions

Object class level and object instance level

attributes for a new instance object are defined and

communicated to the subclass responsible for creating the

new instance object. The subclass object uses this

-information to organize the object class attributes and

137

object instance attributes for the new instance object.

Through time the new instance object uses the relevant

object instance level information to create new object

instances for the object class which has the specified

object instance level attribute characteristics.

For example, the source point instance object has two

object class attributes (see Figure 49):. (1) sourcecount;

and (2) supplyTotal. In addition, the source point - ··

instance object creates three object instance attributes

for each new object instance (e.g., instance of the Source

Point class; refer to Figure 49): (1) sourceName; (2)

supplyTest; and (3) supply. The information concerning

these attributes, obtained from the previously developed

abstraction, is passed to the Entity class object at the

time it creates the source point instance object.

All class attribute definitions are collected together

into an object class attribute definition list. The object

class attribute definition list establishes the object

class attributes represented within the instance object.

Likewise, the object instance attribute definition list

specifies the object instance attributes represented within

the instance object. Both of these definition lists are

derived from the corresponding schema abstraction. For

each attribute in the schema abstraction there is an

equivalent attribute definition appearing in the list.

This definition contains the following attribute

information:

(1) name;

(2) kind;

(3) type;

(4) range; and

(5) derivation.

138

An attribute name must be unique to its given list.

In other words, no two attribute names may be the same in

either the object class attribute list or the object

instance attribute list. The object class attribute list

may, however, contain an attribute name found in the object

instance attribute list and vice versa. The attribute kind

specifies whether the attribute is fixed, derived, or

solver-derived. The attribute type details the data type

of the attribute. For example, an attribute may be a

string, float, integer, boolean, or any other valid type as

determined by the Metamodel class. Attribute ranges are

optional and when specified restrict the allowable set of

values that an attribute may possess. Finally, an

attribute derivation must be provided if an attribute is

solver-derived. The attribute derivation is used to

compute the associated value of the attribute at the time

that it is accessed.

139

Attribute Access Mechanisms

Attributes, whether at the object class level or

object instance level, are accessed through either of two

mechanisms in a manner similar to that provided for object

instance level access. Attributes may be accessed through

the specification of the attribute name or by giving the

index of the attribute as it appears in the corresponding

object attribute definition list used to define the

instance object.

For example, .. the object c.lass. attribute suppl.yTotal

may be accessed by giving its name, supplyTotal, or by

specifying the index two since it is the second object

class attribute appearing in the object class attribute

definition list. Attribute indexes are unique, unlike

object instance indexes, since attributes may not be

removed once the instance object is created.

Overriding Derived Attributes

Our message protocols allow the user to override any

attribute derivation. There are several reasons for

incorporating this feature into the system. An attribute

derivation may, for example, compute a value which violates

either the type or the range specified for the attribute.

Likewise, other derived attributes may depend on the

violated derivation and thus may also be affected.

140

Consequently, the user may specify an override value

for any derived attribute and may also disable or enable

overrides for an entire object class within the instance

object. An instance object returns an override value

without computing the value of a derivation when overrides

are enabled and an override is defined for the~associated

derived attribute. As a result, a given instance objsct

only computes a derivation when overrides are disabled or

no override is specified for the specific derived

attribute.

Object Instance Identifier List

The Metamodel class object enforces object instance

uniqueness. That is, no two object instances within an

instance object may have the same values across all object

instance attributes. The object instance identifier list,

if defined for an instance object, specifies the object

instance attributes with which the instance object

determines object instance uniqueness. For example, the

source point instance object uses the single object

instance attribute sourceName as its object instance

identifier list. Uniqueness is determined across all

object instance attributes if no object instance identifier

list is defined for the instance object.

Entity and model instance objects are required to have

non-varying object instance identifier lists. Relationship

141

instance objects, on the other hand, derive their non

varying object instance identifier list by aggregating the

object instance identifier lists of the entity instance

objects which participate in defining the relationship

instance object. Contrarily, relation instance objects may

have time-varying object instance identifier lists.

Related Issues

Three additional concepts require discussion. The

ideas of object class level and object instance level

productions, context objects, and object dependencies are

presented below. All of these issues are relevant to the

discussion of message protocols for the proposed system.

Productions

In his development of graph-based modeling systems,

Jones (1988) defined the set of allowable editing

operations on graphs, drawn from the field of graph

grammars, as productions. As used presently, productions

permit the user to create tailored operations which build

on the set of message protocols provided for each of the

five class objects. Productions provide the user with the

capacity to construct a sequence of operations for model

instances which may be invoked through a single message.

Furthermore, productions allow the user to incorporate

model specific actions not otherwise available through

model abstraction.

142

A user may define two types of productions: (1)

object class level productions; and (2) object instance

level productions. Object class level productions are

defined for an object class within an instance object and

may affect all object instances of the object class. For

example, the transportation model instance object may have

an object class production named newsource which when

executed creates, for a specified model object instance, a

new source point object instance in the object class

(Source Point class) and subsequently create a new link

object instance in the link relationship instance object

for every existing destination point in the destination

point instance object. Thus, this production allows the

user to create a new source point instance and link that

new point to all existing destination points in a specific

transportation model formulation. This sequence of events

requires multiple message passing which, using the

newsource production, may be achieved through a single

message.

The user may define productions specific to a given

object instance thereby restricting the scope of the

production. For example, suppose that a user would like to

perform several database operations such as selection and

projection on several relations and use the results as

143

inputs to a specific object instance of a transportation

model. By defining an object instance production, perhaps

named build, the user may literally build inputs to the

model permitting changes in the database to be incorporated

into the model. Likewise, object instance productions

accomplish a sequence of operations through the passage of

multiple messages .. This process is instigated when_ the

user passes a single message to the model instance object

indicating the desire to execute an object instance

production.

Contexts

The concept of contexts is taken directly from

smalltalk. A context is an object which contains a

sequence of Smalltalk messages invoked when the context

object is passed a message to evaluate itself. Frequently,

the value of a context is used to perform conditional

branching or testing. Another proposed use of contexts is

in the creation of productions. Thus, a production is

simply a valid context defined for an object instance or

object class. Several messages below utilize contexts,

referred to as blocks, which are evaluated within the

corresponding method and are used to perform conditional

testing or conditional message passing.

144

Object Dependencies

Object dependencies naturally arise from the proposed

o-o approach to DSSs. Two specific dependencies are: (1)

entity-relationship dependencies; and (2) model

entity/relationship dependencies.

Relationships are naturally dependent on entities.

Object instances of relationships may not be created

without the existence of the entity object instance

participating in the new relationship object instance.

Consequently, relationship instance objeets must .verify the

existence of these entity object instances at the time they

are created. Furthermore, relationships are also dependent

on entity classes especially when entity object instances

are removed from an entity object class which participates

in the relationship instance.

Models are inherently dependent on the entities and

relationships which participate in the model. Changes in

the underlying entity and relationship object classes may

also affect a model object instance. Specifically, the

model object instance may require the generation of a new

solution should any one of the underlying objects change

state.

These conditions require that objects have the

~apability to establish object dependencies. Message

protocols are provided below to permit the user and objects

themselves to create these dependencies. In addition,

145

these objects can respond to messages communicating changes

in superior objects.

Class Message Protocols

The message syntax used below borrows heavily from

Smalltalk. A message in Smalltalk consists of (Smalltalk/V

1987):

(1) identifying the object to which the message is
sent (the receiver of the message) ;

(2) identifying the additional objects that are
included in the message (the message arguments) ;

(3) specifying the desired operation to be performed
(the message selector) ; and

(4) accepting the single object that is returned as
the message answer.

We use two types of message patterns in describing our

protocols: (1) unary; and (2) keyword. Unary message

patterns have no arguments. For example, instancecount is

a unary message where instancecount is the selector for the

message. The methods handler uses the selector to

determine which method to invoke or whether to pass the

message up the inheritance hierarchy. Keyword message

patterns, on the other hand, are messages with one or more

arguments. The keyword selector new: has a single

argument. This argument follows the colon (:) which

appears at the end of the selector. The message

new:aValueList passes the selector new: to the receiver

using the argument object aValueList. The methods handler

146

passes the message arguments to the selected method which

then uses these objects in fulfilling the specified

request.

The keyword selector for multiple arguments is

distributed through the message pattern in parts. A part

of the keyword selector appears_before each argument. For

instance, the keyword selector forEntity:do: should have

two accompanying arguments. Note that this selector has

two colons where an argument follows each colon in the

message pattern. The message sender of the sending object

passes the message forEntity:anEntity do:aBlock to the

receiver whose methods handler uses the selector

forEntity:do: to identify the appropriate method and passes

the two arguments anEntity and aBlock to the selected

method.

In explaining our proposed message protocols we state

the name of the applicable class object, its class

description, which object it inherits from, and which

objects inherit from it. We also detail each class level

and instance level message defined for the class. It is

important to note that inheritance of methods applies and,

as a result, superclass methods are available to a subclass

object unless specifically overridden within the subclass.

Finally, certain objects return a single object as an

answer to the message sent to the receiver. Where

appropriate this object is discussed.

147

Metamodel Class

The Metamodel class object is an abstract class and is

perhaps the most important object of the five class objects

discussed. It provides a common protocol for defining and

accessing object class attributes and object instance

attributes necessary for the implementation of the Entity,

Relationship, Model, and Relation instance objects so

critical to the proposed 0-0 DSS. No Eessages are ever

passed directly to this objec~. Rather, all messages

received by this object are passed.along the inheritance

hierarchy.

Inherits From: Object

Inherited By: Model Entity Relationship Relation

Class Message Protocols

classHavingidentifier:aClassidentifier

Answer the instance object for the receiver which has
aClassidentifier as its object class identifier.

newClass:aClassidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

Create a new instance object having the object class
identifier aClassidentifier, object class attributes
defined in classAttributeList, object instance
attributes defined in instanceAttributeList, and where
object instance identifiers are represented by the
concatenation of the object instance attributes which
appear in identifierAttributeList. Answer the new
instance object initialized.

148

Instance Message Protocols

classAttributecount

Answer the number of object class attributes defined
for the receiver.

classAttributeForindex:anindex

Answer the attribute name appearing at position
anindex in the object class attribute definition list
for the receiver.

classAttributeHasOverride:anAttribute

Answer true if the object class attribute named
anAttribute in the receiver has a defined override
value and overrides are enabled, else answer false.
This message is only valid for derived attributes.

classAttributes

Answer the object class attribute names for the
receiver.

classAttributesForindexes:anindexList

Answer the receiver attribute names for attributes
appearing at the positions specified in anindexList
within the object class attribute definition list.

classDerivations

Answer the object class attribute derivations for the
receiver's derived attributes.

classindexHasOverride:anindex

Answer true if the attribute at position anindex in
the object class attribute definition list for the
receiver has a defined override value and overrides
are enabled, else answer false. This message is only
valid for derived attributes.

classKinds

Answer the object class attribute kinds for the
receiver.

classRanges

Answer the object class attribute ranges for the
receiver.

classTypes

Answer the object class attribute types for the
receiver.

dependentEntityHavingClass:aClassidentifier

149

Answer the dependent entity instance object having
aClassidentifier _as its object class identifier.
Answer nil if no such object is found.

dependentModelHavingClass:aClassidentifier

Answer the dependent model instance object having
aClassidentif ier as its obj ec.t class- identifier.
Answer nil if no such object is found.

dependentRelationshipHavingClass:aClassidentifier

Answer the dependent relationship instance object
having aClassidentifier as its object class
identifier. Answer nil if no such object is found.

do:aBlock

For each set of object instance values occurring for
the receiver, evaluate the context aBlock using that
set as the argument to the context.

forAttributes:anAttributeList do:aBlock

For each set of object instance values defined by the
object instance attribute names appearing in
anAttributeList occurring for the receiver, evaluate
the context aBlock using that set as the argument to
the context.

forDependentEntitiesDo:aBlock

For each dependent entity instance object occurring in
the receiver, evaluate the context aBlock using that
object as the argument to the context.

150

forDependentModelsDo:aBlock

For each dependent model instance object occurring in
the receiver, evaluate the context aBlock using that
object as the argument to the context.

forDependentRelationshipsDo:aBlock

For each dependent relationship instance object
occurring in the receiver, evaluate the context aBlock
u~ing that object as the argument to the context.

foridentifierDo:aBlock

For each object instance identifier for the object
instances of the receiver, evaluate the context aBlock
using that object instance identifier as the argument
to the context. This is a valid message only if an
object instance identifier list is defined for the
receiver.

forindexes:anindexList do:aBlock

For each set of object instance values defined for the
object instance attributes appearing at the positions
specified in anindexList within the object instance
attribute definition list occurring for the receiver,
evaluate the context aBlock using that set as the ·
argument to the context.

hasDependencyWith:anObject

Answer true if anObject is a direct or indirect
dependent of the receiver, else answer false.
Indirect dependency occurs when a dependent of the
receiver has anObject as a dependent, and so on.

identif ierForClass

Answer the object class identifier for the receiver.

indexesOfClassAttributes:anAttributeList

Answer the index positions in the object class
attribute definition list of the attribute names
appearing in anAttributeList for the receiver.

indexesOfinstanceAttributes:anAttributeList

Answer the index positions in the object instance
attribute definition list of the attribute names
appearing in anAttributeList for the receiver.

indexOfClassAttribute:anAttribute

Answer the index position in the object class
attribute definition list of the attribute name
anAttribute in the receiver.

indexOfinstanceAttribute:anAttribute

Answer the index position in the object instance
attribute definition list of the attribute name
anAttribute _in the receiver.

initialize:aClassidentifier _
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

151

Initialize the object class identifier using
aClassidentifier, initialize the object class
attribute definition list. using clas.sAttributeList,
initialize the object instance attribute definition
list using instanceAttributeList, and construct the
object instance identifier list using
identifierAttributeList. Answer the receiver
initialized. The corresponding method for this
message may only be invoked once, at the time that the
new instance object is created.

instanceAttributecount

Answer the number of object instance attributes
defined for the receiver.

instanceAttributeForindex:anindex

Answer the attribute name appearing at position
anindex in the object instance attribute definition
list for the receiver.

instanceAttributeHasoverride:anAttribute

Answer true if the object instance attribute named
anAttribute in the receiver has a defined override
value and overrides are enabled, else answer false.
This message is only valid for derived attributes.

instanceAttributes

Answer the object instance attribute names for the
receiver.

152

instanceAttributesForindexes:anindexList

Answer the receiver attribute names for attributes
appearing at the positions specified in anindexList
within the object instance attribute definition list.

instance Count

Answer the number of object instances in the receiver.

instanceDerivations

Answer the object instance attribute derivations £or
the receiver's derived attributes.

instanceHasidentifier:anidentifier

Answer true if an object instance occurring in the
receiver has an object instance identifier value of
anidentifier, else answer false.- -Thi&~is-avalid
message only if an object instance identifier list is
defined for the receiver.

instanceHasValues:aValueList forAttributes:anAttributeList

Answer true if an object instance occurring in the
receiver has the values of aValueList for the
attributes names in anAttributeList, else answer
false.

instanceHasValues:aValueList forindexes:anindexList

·Answer true if an object instance occurring in the
receiver has the values of aValueList for the
attributes appearing at the positions specified in
anindexList within the object instance attribute
definition list, else answer false.

instanceHavingidentifier:anidentifier

Answer the object instance index for the receiver of
the object instance having an object instance
identifier value of anidentifier. Answer zero if no
such object instance is found. This is a valid
message only if an object instance identifier list is
defined for the receiver.

instanceHavingValues:aValueList
forAttributes:anAttributeList

Answer the object instance index for the receiver of
the object instance having the values of aValueList

153

for the attribute names in anAttributeList. Answer
zero if no such object instance is found.

instanceHavingValues:aValueList forindexes:anindexList

Answer the object instance index for the receiver of
the object instance having the values of aValueList
for the attributes appearing at the positions
specified in anindexList within the object instance
attribute definition list. Answer zero if no such
object instance is found.

instanceidentif ier

Answer the object instance attributes used to define
the object instance identifier list for the receiver.
Answer nil if no object instance _identifier list is
defined for the receiver.

instanceidentifierFor:aninstance

Answer the object instance identifier for the object
instance index aninstance in the receiver. This
message is valid only if an object instance identifier
list is defined for the receiver.

instanceindexHasOverride:anindex for:aninstance

Answer true if the attribute at position anindex in
the object instance attribute definition list for
object instance index aninstance in the receiver has a
defined override value.and overrides are enabled, else
answer false. This message is only valid for derived
attributes.

instanceKinds

Answer the object instance attribute kinds for the
receiver.

instanceRanges

Answer the object instance attribute ranges for the
receiver.

instanceTypes

Answer the object instance attribute types for the
receiver.

154

makeClassDerivation:aDerivation forAttribute:anAttribute

Answer a new derivation using the context aDerivation
for the object class attribute named anAttribute in
the receiver. Any existing override for the attribute
is removed. This message is valid only for derived
attributes.

makeClassDerivation:aDerivation forindex:anindex

Answer a new derivation using the context aDerivation
for the attribute name appearing at position anindex
in the object class attribute definition list of the
receiver. Any.existing override for the attribute is
removed. This message is valid only for derived
attributes.

makeClassRange:aRange forAttribute:anAttribute

Answer a new range using the context aRang& for the
object class attribute named anAttribute in the
receiver. This message is invalid if the current
value of the attribute violates the new range.

makeClassRange:aRange forindex:anindex

Answer a new range using the context aRange for the
attribute name appearing at position anindex in the
object class attribute definition list of the
receiver. This message is invalid if the current
value of the attribute violates the new range.

makeinstanceDerivation:aDerivation forAttribute:anAttribute

Answer a new derivation using the context aDerivation
for the object instance attribute named anAttribute in
the receiver. Any existing override for the attribute
is removed for all object instances of the receiver.
This message is valid only for derived attributes.

makeinstanceDerivation:aDerivation forindex:anindex

Answer a new derivation using the context aDerivation
for the attribute name appearing at position anindex
in the object instance attribute definition list of
the receiver. Any existing override for the attribute
is removed for all object instances of the receiver.
This message is valid only for derived attributes.

155

makeinstanceidentifier:identifierAttributeList

Answer a new object instance identifier list comprised
of the object instance attributes appearing in
identifierAttributeList. Attribute names may be in
any order, occur only once in the list, and the
corresponding attribute kinds must be fixed. The new
object instance identifier list is accepted only if
uniqueness of object instances holds true.

makeinstanceRange:aRange forAttribute:anAttribute

Answer a new range using the context aRange for. the
object instance attribute named anAttribute in the
receiver. This message is invalid if the current
value of the attribute for any object instance
violates the new range.

makeinstanceRange:aRange forindex:anindex

Answer a new range using the context aRange for the
attribute name appearing at position anindex in the
object instance attribute definition list of the
receiver. This message is invalid if the current
value of the attribute for any object instance
violates the new range.

makeObjectADependent:anObject

Answer the object anObject after making it a dependent
of the receiver.

new:aValueList

Create a new object instance of the receiver after
initializing its fixed and solver-derived attribute
values with the values of aValueList. A new object
instance is created if all values are acceptable for
type and range. A new object instance must be unique.
Uniqueness is determined by the object instance
identifier list if one is defined for the receiver,
otherwise it is determined by. the combination of all
the values in the object instance attribute definition
list. Answer true if the new object instance is
created, else answer false.

notifyDependentsOfChange:aChange

For dependents of the receiver which respond to
anObject:changedWith:, notify the dependent of a
change in the receiver by sending the dependent the

156

message anObject:receiver changedWith:aChange. Answer
the receiver.

overrideClassAttribute:anAttribute usingValue:aValue

Override the value of the object class attribute named
anAttribute with the value aValue in the receiver.
This message is valid only for derived attributes and
when overrides are enabled for the receiver. The data
type of aValue must agree with the type specified for
the attribute. Answer the override value.

overrideClassindex:anindex usingValue:aValue

Override the value of the attribute name-appearing at
position anindex in the object class attribute
definition list of the receiver with the value aValue.
This message is valid only for derived attributes and
when overrides are enabled for the receiver. The data
type of aValue must agree .with.the.typa specified for_
the attribute. Answer the override value.

overrideDisable

Disable override operations for the receiver. No
override values are removed from the receiver. Answer
the receiver.

overrideEnable

Enable override operations for the receiver.
Previously defined overrides are reinstated. Answer
the receiver.

overrideinstanceAttribute:anAttribute usingValue:aValue
for:aninstance

Override the value of the object instance attribute
named anAttribute with the value aValue for the object
instance index aninstance in the receiver. This
message is valid only for derived attributes and when
overrides are enabled for the receiver. The data type
of aValue must agree with the type specified for the
attribute. Answer the override value.

overrideinstanceindex:anindex usingValue:aValue
for:aninstance

Override the value of the attribute name appearing at
position anindex in the object instance attribute
definition list of the receiver with the value aValue
for the object instance index aninstance. This

157

message is valid only for derived attributes and when
overrides are enabled for the receiver. The data type
of aValue must agree with the type specified for the
attribute. Answer the override value.

remove:aninstance

Remove the object instance whose object instance index
is aninstance from the receiver. All relevant
overrides are also removed. Answer the object
instance identifier of the removed object instance.
Answer nil if no object instance identifier list is
defined for the receiver.

removeAllClassoverrides

Remove all object class overrides from the receiver.
This message is valid only if overrides are enabled.
Answer the receiver.

removeAllinstanceoverrides

Remove all object instance overrides from the
receiver. This message is valid only if overrides are
enabled. Answer the receiver.

removeAllinstances

Remove all object instances of the receiver. All
object instance overrides are also removed. Answer
the object instance identifiers of the removed object
instances. Answer nil if no object instance
identifier list is defined for the ·receiver.

removeinstances:aninstanceList

Remove any object instance from the receiver whose
object instance index appears in the object instance
index list aninstanceList. All relevant overrides are
also removed. Answer the object instance identifiers
of the removed object instances. Answer nil if no
object instance identifier list is defined for the
receiver.

removeObjectAsDependent:anObject

Remove the object anObject as a dependent of the
receiver. Answer the object.

158

removeoverrideOfClassAttribute:anAttribute

Remove the override of the object class attribute
named anAttribute. This message is valid only for
derived attributes, when an override is defined for
the attribute, and when overrides are enabled for the
receiver. Answer the override value.

removeOverrideOfClassindex:anindex

Remove the override of the attribute appearing at
position anindex in the object class attribute
definition list of the receiver. This message is
valid only for derived attributes, when an override is
defined for the attribute, and when overrides are
enabled for the receiver. Answer the override value.

removeOverrideOfinstanceAttribute:anAttributa
for:aninstance

Remove the override of the object instance attribute
named anAttribute for the object instance index
aninstance in the receiver. This message is valid
only for derived attributes, when an override is
defined for the attribute, and when overrides are
enabled for the receiver. Answer the override value.

removeoverrideOfinstanceindex:anindex for:aninstance

Remove the override of the attribute appearing at
position anindex in the object instance attribute
definition list of the receiver for the object
instance index aninstance. This message is valid only
for derived attributes, when an override is defined
for the attribute, and when overrides are enabled for
the receiver. Answer the override value.

updateClassAttribute:anAttribute usingValue:aValue

Update the value of the object class attribute named
anAttribute with the value aValue in the receiver.
This message is valid only for fixed or solver-derived
attributes. The data type and value of aValue must
agree with the type and range specified for the
attribute. Answer the new value.

updateClassAttributes:anAttributeList
usingValues:aValueList

Update the values of the object class attributes named
in anAttributeList with the values in aValueList in
the receiver. This message is valid only for fixed or

159

solver-derived attributes. The data types and values
of aValueList must agree with the corresponding types
and ranges of the attributes specified in
anAttributeList. Answer the new values.

updateClassindex:anindex usingValue:aValue

Update the value of the attribute name appearing at
position anindex in the object class attribute.
definition list of the receiver with the value aValue.
This message is valid only for fixed and solver
derived attributes. The data type and value of aValue
must agree with-the type and range specified for the
attribute. Answer the new value.

updateClassindexes:anindexList usingValues:avalueList

Update the values of the attribute names appearing at
the positions specified in anindexList in the object
class attribute- definition l.ist. of the receiver. with
the values in aValueList. This message is valid only
for fixed or solver-derived attributes. The data
types and values of aValueList must agree with the
corresponding types and ranges of the attributes
specified in anAttributeList. Answer the new values.

updateinstanceAttribute:anAttribute usingValue:aValue
for:aninstance

Update the value of the object instance attribute
named anAttribute with the value aValue for the object
instance index aninstance in the receiver. This
message is valid only for fixed or solver-derived
attributes. If an object instance identifier list is
defined for the receiver, an update on an identifier
attribute is disallowed. Uniqueness of object
instances is enforced. The data type and value of
aValue must agree with th,e type and range- specified
for the attribute. Answer the new value.

updateinstanceAttributes:anAttributeList
usingValues:aValueList for:aninstance

Update the values of the object instance attributes
named in anAttributeList with the values in aValueList
for the object instance index aninstance in the
receiver. This message is valid only for fixed or
solver-derived attributes. If an object instance
identifier list is defined for the receiver, an update
on an identifier attribute is disallowed.. Uniqueness
of object instances is enforced. The data types and
values of aValueList must agree with the corresponding

types and ranges of the attributes specified in
anAttributeList. Answer the new values.

updateinstanceindex:anindex usingValue:aValue
for:aninstance

160

Update the value of the attribute name appearing at
position anindex in the object instance attribute
definition list of the receiver with the value aValue
for the object instance index aninstance. This
message is valid only for fixed and solver-derived
attributes. If an object instance identifier list is
defined for the receiver, an update on an identifier
attribute is disallowed. Uniqueness of object
instances is enforced. The data type and value of
aValue must agree with the type and range specified
for the attribute. Answer the new value.

updateinstanceindexes:anindexList usingValues:aValueList
for:aninstance-

Update the values of the attribute names appearing at
the positions specified in anindexList in the object
instance attribute definition list of the receiver
with the values in aValueList for the object instance
index aninstance. This message is valid only for
fixed or solver-derived attributes. If an object
instance identifier list is defined for the receiver,
an update on an identifier attribute is disallowed.
Uniqueness of object instances is enforced. The data
types and values of aValueList must agree with the
corresponding types and ranges of the attributes
specified in anAttributeList. Answer the new values.

updateinstanceUsingValues:aValueList for:aninstance

Update the values of the fixed and solver-derived
attributes in the order specified in the object
instance attribute definition list of the receiver
with the values in aValueList for the object instance
index aninstance. If an object instance identifier
list is defined for the receiver, an update on an
identifier attribute is disallowed. Uniqueness of
object instances is enforced. The data types and
values of aValueList must agree with the corresponding
types and ranges of the fixed and solver-derived
attributes of the receiver. Answer the new values.

valueOfClassAttribute:anAttribute

Answer the value of the object class attribute named
anAttribute in the receiver.

161

valueOfClassindex:anindex

Answer the value of the attribute name appearing at
position anindex in the object class attribute
definition list of the receiver.

valueOfinstanceAttribute:anAttribute for:aninstance

Answer the value of the object instance attribute
named anAttribute for the object instance index
aninstance in the receiver.

valueOfinstanceindex:anindex_ for:aninstance

Answer the value of the attribute name appearing- at
position anindex in the object instance attribute
definition list of the receiver for the object
instance index antnstance.

valuesFor: aninstance

Answer the values of all the object instance
attributes for the object instance index aninstance in
the receiver.

valuesOfClassAttributes:anAttributeList

Answer the values of the object class attributes named
in anAttributeList in the receiver.

valuesOfClassindexes:anindexList

Answer the values of the attribute names appearing at
the positions specified in anindexList in the object
class attribute definition list of the receiver.

valuesOfinstanceAttributes:anAttributeList for:aninstance

Answer the values of the object instance attributes
named in anAttributeList for the object instance index
aninstance in the receiver.

valuesOfinstanceindexes:anindexList for:aninstance

Answer the values of the attribute names appearing at
the positions specified in anindexList in the object
instance attribute definition list of the receiver for
the object instance index aninstance.

162

Entity Class

The Entity class object has the capability of

producing entity instance objects possessing

characteristics specific to the entity classes encountered

in model schema development and model schema abstraction.

For example, each model object instance of the

transportation model instance object requires two entity

object classes: (1) the Source Point class; and (2) the

Destination Point class. Each of these classes is

represented as an instance of the Entity class.

This class provides the protocols necessary to create

and access entity instance objects. Furthermore, certain

methods are overridden at this level in order to account

for the special needs of its objects. Specifically, an

instance object must, when an object instance is removed

from the object class, notify all dependent relationship

instance objects that the removed object instance is no

longer a member of the entity object class. This allows

the relationship object to remove its object instances

which are dependent on the removed entity object instance.

For example, all links in a transportation model

formulation which are defined in terms of a removed source

point must also be removed from the model formulation.

Inherits From: Metamodel Object

Inherited By: (None)

Class Message Protocols

classHavingidentifier:aClassidentifier

Entity instance objects are not required to have
unique object class identifiers and as such the
receiver answers nil.

newEntity:entityidentifier
classAttributea:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

163

Create a new entity instance object having the object
class identifier entityidentifier, object class
attributes defined in classAttributeList, object
instance attributes defined in instanceAttributeList,
and where object instance identifiers are represented
by the concatenation of the object instance attributes
which appear in identifierAttributeList. The object
instance identifier list must be nonempty. Answer the
new instance object initialized.

newClass:aClassidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

This message is disallowed because a method specific
to the Entity class object exists for creating new
entity instance objects.

Instance Message Protocols

makeinstanceidentifier:identifierAttributeList

Entity instance objects are required to have
unchanging object instance identifier lists and as
such the sender is not allowed to change the
receiver's object instance identifier list.

notifyDependentsOfChange:aChange

For dependents of the receiver which respond to
entity:changedWith:, notify the dependent of a change
in the receiver by sending the dependent the message
entity:receiver changedWith:aChange. Answer the
receiver.

164

remove:aninstance

Remove the object instance whose object instance index
is aninstance from the receiver. All relevant
overrides are also removed. For all dependent
relationship instance objects remove object instances
in which the removed entity object instance identifier
appears. Answer the object instance identifier of the
removed object instance.

removeAllinstances

Remove all object instances of the receiver. All
object instance _overrides are _also removed. For all
dependent relationship instance objects remove object
instances in which the removed entity object instance
identifiers appear. Answer the object instance
identifiers of the removed object instances.

removeinstances:aninstanceList

Remove any object instance from the receiver whose
object instance index appears in the object instance
index list aninstanceList. All relevant overrides are
also removed. For all dependent relationship instance
objects remove object instances in which the removed
entity object instance identifiers appear. Answer the
object instance identifiers of the removed object
instances.

Relationship Class

The Relationship class object has the ability to

produce relationship instance objects possessing

characteristics specific to the relationships encountered

in model schema development and model schema abstraction.

For example, each model object instance of the

transportation model instance object requires a single

relationship object class, the Link class. The Link class

is represented as an instance of the Relationship class (it

creates a link instance object). The Relationship class

165

provides the protocols necessary to create and access

relationship instance objects. Furthermore, certain

methods are overridden at this level in order to account

for the special needs of its objects.

The Relationship class object requires an object

entity mapping definition list in addition to an object

class identifier, object class attribute definition list,

and object instance attribute definitidn list in order to

create a new relationship instance object~ An object

entity mapping definition list.contains a two element entry

for each entity which participates in the relationship.

This entry consists of: (1) an entity instance object; and

(2) the mapping of the entity into the relationship. The

entity.instance object must be a valid object instantiated

by the Entity class object and the mapping must be either:

(1) one; or (2) many. No fewer than two entities may be

specified in an object entity mapping definition list and

each entity instance object class identifier must be unique

to the list. Finally, the new relationship instance object

makes itself a dependent of all the entity instance objects

participating in its creation.

Inherits From: Metamodel Object

Inherited By: (None)

166

Class Message Protocols

classHavingidentifier:aclassidentifier

Relationship instance objects are not required to have
unique object class identifiers and as such the
receiver answers nil.

newClass:aClassidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

This message is disallowed because a method specific
to the Relationship class object exists for creating
new relationship instance objects.

newRelationship:relationshipidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
entities:en~ityList

Create a new relationship instance object having the
object class identifier relationshipidentifier, object
class attributes defined in classAttributeList, and
object instance attributes defined in
instanceAttributeList. Each entity instance object
participating in the relationship and its
corresponding mapping are defined as a matched entry
in entityList. Relationship object instance
identifiers are represented by the concatenation of
the object instance identifier lists of the entity
instance objects participating in the relationship.
At least two entities must participate in the
definition of a relationship instance object and must
have unique entity instance object class identifiers.
The new relationship instance object makes itself a
dependent of all the entity instance objects
participating in its creation. Answer the new
instance object initialized.

Instance Message Protocols

entityAttributesForClass:aClassidentifier

Answer the object instance identifier list for the
entity instance object participating in the receiver
and having aClassidentifier as its object class
identifier.

167

entityAttributesForindex:anindex

Answer the object instance identifier list for the
entity instance object participating in the receiver
and appearing at position anindex in the object entity
mapping definition list.

entityClasses

Answer the object class identifiers of the entity
instance objects participating in the receiver.

entityClassForindex:anindex

Answer the object class identifier for the entity
instance object participating in the receiver and
appearing at position anindex in the object entity
mapping definition list.

entitycount

Answer the number of entity instance objects
participating in the receiver.

entityindexForClass:aClassidentifier

Answer the index position of the entity instance
object having the object class identifier
aClassidentifier in the object entity mapping
definition list for the receiver.

entityinstanceidentifierFor:aninstance
forEntityClass:aClassidentifier

Answer the object instance identifier for the entity
instance object participating in the receiver and
having aClassidentifier as its object class identifier
at instance index position aninstance.

entityinstanceidentifierFor:aninstance
forEntityindex:anindex

Answer the object instance identifier for the entity
instance object participating in the receiver and
appearing at position anindex in the object entity
mapping definition list at instance index position
aninstance.

entityMappings

Answer the mappings of the entity instance objects
participating in the receiver.

168

forEntityClass:aClassidentifier do:aBlock

For each object instance identifier for the entity
instance object participating in the receiver and
having aClassidentifier as its object class
identifier, evaluate the context aBlock using that
identifier as the argument to the context.

forEntityindex:anindex do:aBlock

For each object i~stance identifier for the entity
instance object participating in the receiver and
appearing at position anindex in the object entity
mapping definition list, evaluate the context aBlock
using that ·identifier·as the argument to the context.

initialize:relationshipName
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifie:r::..identifierAttributeList _ .

Initialize the object class identifier using
relationshipName, initialize the object class
attribute definition list using classAttributeList,
and initialize the object instance attribute
definition list using instanceAttributeList.
Construct the receiver object instance identifier list
from entity information provided in
identifierAttributeList. Answer the receiver
initialized. The corresponding method for this
message may only be invoked once, at the time that the
new object instance is created.

instanceHasidentifier:anidentifier
forEntityClass:aClassidentifier

Answer true if an object instance occurring in the
receiver for _the entity instance object having
aClassidentifier as its object class identifier has an
object instance identifier value of anidentifier, else
answer false.

instanceHasidentifier:anidentifier forEntityindex:anindex

Answer true if an object instance occurring in the
receiver for the entity instance object appearing at
position anindex in the object entity mapping
definition list has an object instance identifier
value of anidentifier, else answer false.

instanceHavingidentifier:anidentifier
forEntityClass:aClassidentifier

169

Answer the object instance index of the receiver for
the object instance having an object instance
identifier value of anidentifier for the entity
instance object having aClassidentifier as its object
class identifier. Answer zero if no such object
instance is found.

instanceHavingidentifier:anidentifier
forEntityindex:anindex

Answer the object instance index of the receiver for
the object instance having an object instance
identifier value of anidentif ier for the entity
instance object appearing at pos.i ti on an Index in . the
object entity mapping definition list. Answer zero if
no such object instance is found.

instancesHavingidentifier:anidentifier
forEntityClass:aClassidentifier

Answer the object instance indexes of the receiver for
the object instances having an object instance
identifier value of anidentifier for the entity
instance object having aClassidentifier as its object
class identifier. Answer nil if no such object
instances are found.

instancesHavingidentifier:anidentifier
forEntityindex:anindex

Answer the object instance indexes of the receiver for
the object instances having an object instance
identifier value of anidentifier for the entity
instance object appearing at position anindex in the
object entity mapping ·definition list. Answer nil if
no such object instances are found.

makeinstanceidentifier:identifierAttributeList

Relationship instance objects are required to have
unchanging object instance identifier lists and as
such the sender is not allowed to change the
receiver's object instance identifier list.

new:aValueList

Create a new object instance of the receiver after
initializing its fixed and solver-derived attribute
values with the values of aValueList. A new object

170

instance is created if all values are acceptable for
type and range. Each entity object instance
identifier is verified to exist in the participating
entity instance objects and mapping restrictions are
enforced before the new values are accepted. A new
object instance must be unique. Answer true if the
new object instance is created, else answer false.

notifyDependentsOfChange:aChange

For dependents of the receiver which respond to
relationship:changedWith:, notify the dependent of a
change in the receiver by sending the dependent the
message relationship: receiver changedWi th: a Change. __
Answer the receiver.

removeinstancesHavingidentifier:anidentifier
forEntityClass:aClassidentifier

Remove from.-the receiver -all .object .instances .having
an object instance identifier value of anidentifier
for the entity instance object having aClassidentifier
as its object class identifier. Answer the object
instance identifiers of the removed object instances.
Answer nil if no such object instances are found.

removeinstancesHavingidentifier:anidentifier
forEntityindex:anindex

Remove from the receiver all object instances having
an object instance identifier value of anidentifier
for the entity instance object appearing at position
anindex in the object entity mapping definition list.
Answer the object instance identifiers of the removed
object instances. Answer nil if no such object
instances are found.

removeinstancesHavingidentifiers:anidentifierList
forEntityClass:aclassidentifier

Remove from the receiver all object instances having
an object instance identifier value appearing in
anidentifierList for the entity instance object having
aClassidentifier as its object class identifier.
Answer the object instance identifiers of the removed
object instances. Answer nil if no such object
instances are found.

removeinstancesHavingidentifiers:anidentifierList
forEntityindex:anindex

171

Remove from the receiver all object instances having
an object instance identifier value appearing in
anidentifierList for the entity instance object
appearing at position anindex in the object entity
mapping definition list. Answer the object instance
identifiers of the removed object instances. Answer
nil if no such object instances are found.

Model Class

The Model class object provides a set of message

protocols for creating, manipulating, and accessing models.

Model instance objects.describe the. inherent str.ucturs. of

the model in the form of entities and relationships. The

creation of model object instances permits the user or

system to formulate specific instances of models which vary

according to model inputs.

Model instance objects require two pieces of

information in addition to object class identifier, object

class attribute definition list, object instance attribute

definition list, and object instance identifier list.

These are: (1) an object entity definition list; and (2)

an object relationship definition list.

An object entity definition list consists of an object

class identifier, object class attribute definition list,

object instance attribute definition list, and an object

instance identifier list. Entities appearing in the entity

definition list must have unique object class identifiers.

172

An object relationship definition list consists of an

object class identifier, object class attribute definition

list, object instance attribute definition list, and a

mapping list where each entity object class identifier

participating in the relationship and its corresponding

mapping are defined as a matched entry. in this list ..

Relationships appearing in the object relationship

definition list must have unique object class identifiers.

A model instance object creates new entity instance

and relationship instance objects according to the object

entity definition and object relationship definition lists

each time it creates a new model object instance. When

this happens the model instance object also makes itself a

dependent of each of these new entity instance and

relationship instance objects. Several messages are

provided which allow access to these superior instance

objects.

The support of object level production capabilities

within the Model class provides the user the potential to

tailor his or her model representation to incorporate model

specific behavior. Furthermore, object instance level

productions allow the user to include instance specific

behavior.

Models are solved by invoking a solver object. This

object has the ability to interpret the model structure and

retrieve its desired input from the model object instance

173

through message passing. Furthermore, the solver object

can return the specific model outputs to the appropriate

solver-derived attributes of the model object instance.

A model instance object uses a user specified solver

object when a model object instance (model formulation)

requires a new solution. The user may specify a default

solver object which becomes the object class solver and

which is used when no solver object is defined fer a

specific object instance. The user may also provide an

object instance solver unique to a given model object

instance. This allows the user to solve one model

formulation with a given solver object, to solve another

formulation with a different solver object, and to solve a

model object instance having no object instance solver

using the default solver object (the object class solver).

Several messages are provided which allow access to these

solver objects.

Inherits From: Metamodel Object

Inherited By: (None)

Class Message Protocols

newClass:aClassidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

This message is disallowed because a method specific
to the Model class object exists for creating new
model instance objects.

174

newModel:modelidentifier classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList
entities:entityList relationships:relationshipList

Create a new model instance object having the object
class identifier modelidentifier, object class
attributes defined in classAttributeList, object
instance attributes defined in instanceAttributeList,
and where object instance identifiers are represented
by the concatenation of the object instance attributes
which appear in identifierAttributeList. The object
instance identifier list must be non-empty. · A
complete object entity definition for each entity
defined in the model appears in entityList. An object
entity definition list consists of an object class
identifier, object class attribute definition list,
object instance attribute definition list, and an
object instance identifier list. Entities appearing
in the object entity definition list must have unique
object class identifiers. A complete relationship
definition for each relationship defined in the model
appears in relationshipList. An object relationship
definition list consists of an object class
identifier, object class attribute definition list,
object instance attribute definition list, and a
mapping list where each entity object class identifier
participating in the relationship and its
corresponding mapping are defined as a matched entry
in this list. Relationships appearing in the object
relationship definition list must have unique object
class identifiers. Answer the new instance object
initialized.

Instance Message Protocols

classHasProductionNamed:name

Answer true if an object class production named name
is defined for the receiver.

classHasProductions

· Answer true if any object class productions are
defined for the receiver.

classProductionHavingName:name

Answer the object class production named name defined
for the receiver.

175

classProductionNames

Answer the object class production names of the object
class productions defined for the receiver.

classProductionNamesDo:aBlock

For each object class production name of an object
class production defined for the receiver, evaluate
the context aBlock using that name as the argument to
the context.

entitiesFor:aninstance do:aBlock

For each entity instance object in the receiver
participating in the object instance having object
instance index aninstance, evaluate the context aBlock
using that instance object as the argument to the
context.

entity:anEntity changedWith:aChange

An entity instance object has changed. Determine
which object instance is affected and change state to
show that this object instance requires solving.
Answer the receiver.

entityClasses

Answer the object class identifiers for the entity
definitions appearing in the object entity definition
list in the receiver.

entityClassForindex:anindex

Answer the entity object class identifier for the
entity participating in the receiver and appearing at
position anindex in the object entity definition list.

entityCount

Answer the number of entity definitions appearing in
the object entity definition list.

entityHavingClass:aClassidentifier for:aninstance

Answer the entity instance object having
aClassidentifier as its object class identifier at
object instance index position aninstance in the
receiver.

176

entityHavingindex:anindex for:aninstance

Answer the entity instance object appearing at
position anindex in the object entity definition list
at object instance index position aninstance in the
receiver.

entityindexForClass.:aClassidentifier

Answer the index position of the entity having the
entity object class identifier aClassidentifier in the
object entity definition list of the receiver.

executeClassProductionNamed:name usingValue:aValue

Execute the object class production named name in the
receiver passing it the object having value aValue.
Answer the result of executing the production.

executeinstanceProductionNamed:name usingValue:aValue
for:aninstance

Execute the object instance production named name at
object instance index position aninstance in the
receiver passing it the object having value aValue.
Answer the result of executing the production.

initialize:modelName classAttributes:classAttributeList
instanceAttributes: instanceAttributeLis.t
instanceidentifier:identifierAttributeList

Initialize the object class identifier using
aClassidentifier, initialize the object class
attribute definition list using classAttributeList,
and initialize the object instance attribute
definition list using instanceAttributeList.
Construct the receiver object entity definition list,
object relationship definition list, and object
instance identifier list from information provided in
identifierAttributeList. The object class solver is
initialized to nil. Answer the receiver initialized.
The corresponding method for this message may only be
invoked once, at the time that the new instance object
is created.

instanceHasProductionNamed:name for:aninstance

Answer true if an object instance production named
name at object instance index position aninstance is
defined for the receiver.

177

instanceHasProductionsFor:aninstance

Answer true if any object instance productions at
object instance index position aninstance are defined
for the receiver.

instanceHasSolverFor:aninstance

Answer true if an object instance solver at object
instance index position aninstance is defined for the
receiver.

instanceHavingEntity:anEntity forClass:aClassidentifier

Answer the object instance index of the receiver for
the object instance having the entity instance object
anEntity which has aClassidentifier as its object
class identifier. Answer zero if no such object
instance is found.

instanceHavingEntity:anEntity forindex:anindex

Answer the object instance index of the receiver for
the object instance having the entity instance object
anEntity appearing at position anindex in the object
entity definition list. Answer zero if no such object
instance is found.

instanceHavingRelationship:aRelationship
forClass:aClassidentifier

Answer the object instance index of the receiver for
the object instance having the relationship instance
object aRelationship which has aClassidentifier as its
object class identifier. Answer zero if no such
object instance is found.

instanceHavingRelationship:aRelationship forindex:anindex

Answer the object instance index of the receiver for
the object instance having the relationship instance
object aRelationship appearing at position anindex in
the object relationship definition list. Answer zero
if no such object instance is found.

instanceProductionHavingName:name for:aninstance

Answer the object instance production named name at
object instance index position aninstance defined for
the receiver.

178

instanceProductionNamesFor:aninstance

Answer the object instance production names of the
object instance productions at object instance index
position aninstance defined for the receiver.

instanceProductionNamesDo:aBlock for:aninstance

For each object instance production name of an object
instance production at object instance index position
aninstance defined for the receiver, evaluate the
context aBlock using that name as the argument to the
context.

instancesHavingProductions

Answer the object instance indexes in the receiver for
object instances which have.object instance production
defined. Answer nil if no such object instances are
found.

instancesHavingSolvers

Answer the object instance indexes in the receiver for
object instances which have object instance solvers
defined. Answer nil if no such object instances are
found.

makeClassProduction:aProduction named:name

Answer a new production using the context aProduction
for the object class production named name in the
receiver. Any existing object class production using
this name is removed.

makeClassSolver:aSolver

Make the solver object aSolver the default object
instance solver. Answer the new object class solver
for the receiver.

makeinstanceidentifier:identifierAttributeList

Model instance objects are required to have unchanging
object instance identifier lists and as such the
sender is not allowed to change the receiver's object
instance identifier list.

makeinstanceProduction:aProduction named:name
for:aninstance

179

Answer a new production using the context aProduction
for the object instance production named name at the
object instance index position aninstance in the
receiver. Any existing object instance production
using this name in that object instance is removed.

makeinstanceSolver:aSolver for:aninstance

Make the solver object aSolver the default object
instance solver at the object instance index position
aninstance. Any existing object instance solver
already specified is removed. Answer the new object
instance solver for the receiver.

model:aModel changedWith:aChange

A model· instance -object has chang·ed. ·· Determine which
object instance is affected and change state to show
that this object instance requires solving. Answer
the receiver.

new:aValueList

Create a new object instance of the receiver after
initializing its fixed and solver-derived attribute
values with the values of aValueList. A new object
instance is created if all values are acceptable for
type and range. Each model instance object creates
new entity instance objects and relationship instance
objects for the new object instance in accordance with
the object entity definition and object relationship
definition lists. A new object instance must be
unique. Answer true if the new object instance is
created, else answer false.

notifyDependentsOfChange:aChange

For dependents of the receiver which respond to
model:changedWith:, notify the dependent of a change
in the receiver by sending the dependent the message
model:receiver changedWith:aChange. Answer the
receiver.

relationship:aRelationship changedWith:aChange

A relationship instance object has changed. Determine
which object instance is affected and change state to
show that this object instance requires solving.
Answer the receiver.

relationshipClasses

Answer the object class identifiers for the
relationship definitions appearing in the object
relationship definition list in the receiver.

relationshipClassForindex:anindex

Answer the object class identifier for the
relationship participating in the receiver and
appearing at position anindex in the object
relationship definition list.

relationshipCount

180

Answer the number of relationship definitions
appearing in the object relationship definition list.

relationshipHavingClass:aClassidentifier for:aninstance

Answer the relationship instance object having
aClassidentifier as its object class identifier at
object instance index position aninstance in the
receiver.

relationshipHavingindex:anindex for:aninstance

Answer the relationship instance object appearing at
position anindex in the object relationship definition
list at object instance index position aninstance in
the receiver.

relationshipindexForClass:aClassidentifier

Answer the index position of the relationship having
the relationship object class identifier
aClassidentifier in the object relationship definition
list of the receiver.

relationshipsFor:aninstance do:aBlock

For each relationship instance object in the receiver
participating in the object instance having object
instance index aninstance, evaluate the context aBlock
using that instance object as the argument to the
context.

remove:aninstance

Remove the object instance whose object instance index
is aninstance from the receiver. All relevant
overrides and object instance productions are also

181

removed. Answer the object instance identifier of the
removed object instance.

removeAllClassProductions

Remove all object class productions defined for the
receiver. Answer the receiver.

removeAllinstanceProductions

Remove all object instance productions defined for the
receiver. Answer the receiver.

removeAllinstanceProductionsFor:aninstance

Remove all object instance productions defined for the
receiver at object instance position aninstance.
Answer the receiver.

removeAll Instances-

Remove all object instances of the receiver. All
object instance overrides and object instance
productions are also removed. Answer the object
instance identifiers of the removed object instances.

removeAllinstanceSolvers

Remove all object instance solvers defined for the
receiver. Answer the receiver.

removeClassProductionNamed:name

Remove the object class production having name name
from the receiver. This message is valid only if such
a production exists. Answer the removed production.

removeinstanceProductionNamed:name for:aninstance

Remove the object instance production having name name
from the receiver at object instance index position
aninstance. This message is valid only if such a
production exists. Answer the removed production.

removeinstances:aninstanceList

Remove any object instance from the receiver whose
object instance index appears in the object instance
index list aninstanceList. All relevant overrides and
object instance productions are also removed. Answer
the object instance identifiers of the removed object
instances.

182

removeinstanceSolverFor:aninstance

Remove the object instance solver from the receiver at
object instance index position aninstance. Answer the
solver.

resolve:aninstance

Answer true if the object instance at object instance
index position aninstance for the receiver requires
solving, else answer false.

solve:aninstance

Solve the object instance at object instance index
position aninstance in the receiver. Answer the
receiver.

solveAll

Solve all object instances in the receiver. Answer
the receiver.

solverFor:aninstance

Answer the object instance solver object for the
object instance at object instance index position
aninstance in the receiver. Answer the object class
solver if no object instance solver is defined for the
object instance.

Relation Class

The Relation class object provides the user with the

capability to access and manipulate relations using two

distinct approaches. First, the user may approach this

class from the perspective of a relational database user.

The user may access the information stored in the object

using familiar terms such as insert, delete, update, tuple,

column, attribute, degree, key, and so on. Thus, from this

perspective the Relation class provides the typical

database functions of insert, delete, and update.

183

The user may, quite to the contrary, access this

information in terms identical to those used for accessing

entity, relationship, and model instance level and class

level attributes. From this perspective the relation is a

class which defines no class attributes and where all

instance attributes are fixed. Thus, the Relation class

object manages instance objects using the same general

concepts applied to entity, relationship, and model

instance objects.

More specifically, the Relation class object permits

its object instance identifier list to vary through time,

has no defined class attributes, and implements additional

instance level messages to perform relational algebra.

The user specifies three items when creating a new

instance of this class: (1) a relation name; (2) an

attribute definition list; and (3) a key attribute list.

The relation name and key attribute items are nothing other

than an object class identifier and object instance

identifier list as discussed above. The attribute

definition list requires some explanation.

An attribute definition list contains a list of the

attributes defined for the new relation instance object.

An attribute definition contains the following attribute

information: (1) name; (2) type; and (3) range. These are

identical in meaning to those previously presented. As

stated above; all attributes for a relation instance object

184

are fixed and, consequently, it is not necessary to specify

this information.

Attributes of a relation instance object, from the

perspective of a relational database user, may be accessed

by specifying the attribute name or by specifying the

column within the relation that the attribute appears ..

Stating the column of an attribute is equivalent to

specifying an attribute index. Moreover, a tuple may be

accessed using either a tuple index or by designat~ng a

primary key value associated with the desired tuple. This

is comparable to giving an object instance index or

declaring an object instance identifier for the object

instance.

Inherits From: Metamodel Object

Inherited By: (None)

Class Message Protocols

newClass:aClassidentifier
classAttributes:classAttributeList
instanceAttributes:instanceAttributeList
instanceidentifier:identifierAttributeList

This message is disallowed because a method specific
to the Relation class object exists for creating new
relation instance objects.

newRelation:relationName attributes:attributeList

Create a new relation instance object having the
object class identifier relationName, no object class
attributes, object instance attributes defined in
attributeList, and defining an empty object instance
identifier list. Answer the new instance object
initialized.

newRelation:relationName attributes:attributeList
primaryKey:keyAttributeList

185

Create a new relation instance object having the
object class identifier relationName, no object class
attributes, object instance attributes defined in
attributeList, and where object instance identifiers
are represented by the concatenation of the object
instance attributes which appear in keyAttributeList.
Answer the new instance object initialized.

Instance Message Protocols

attribute:anAttribute for:aTuple

Answer the value of the object instance attribute
named anAttribute for the object instance index aTuple
in the receiver.--

attributeForColumn:aColumn

Answer the attribute name appearing at position
aColumn in the object instance attribute definition
list for the receiver.

attributes:anAttributeList for:aTuple

Answer the values of the object instance attributes
named in anAttributeList for the object instance index
aTuple in the receiver.

attributesForColumns:aColumnList

Answer the receiver attribute names for attributes
appearing at the positions specified in aColumnList
within the' object instance attribute definition list.

column:aColumn for:aTuple

Answer the value of the attribute name appearing at
position aColumn in the object instance attribute
definition list of the receiver for the object
instance index aTuple.

columnForAttribute:anAttribute

Answer the index position in the object instance
attribute definition list of the attribute name
anAttribute in the receiver.

186

columns:aColumnList for:aTuple

Answer the values of the attribute names appearing at
the positions specified in aColumnList in the object
instance attribute definition list of the receiver for
the object instance index aTuple.

columnsForAttributes:anAttributeList

Answer the index positions in the object instance
attribute definition list of the attribute names
appearing in anAttributeList for the receiver.

degree

Answer the number of object instance attributes
defined for the receiver.

delete:aTuple

Remove the object instance whose object instance index
is aTuple from the receiver. Answer the object
instance identifier of the removed object instance.
Answer nil if no object instance identifier list is
defined for the receiver.

difference:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of all object instances in the
receiver and not in aRelation. The object aRelation
must be a valid relation instance object which is
union compatible with the receiver.

divideby:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier. The object instance
attribute definition list for the new instance object
consists of the object instance attributes not in
aRelation but which appear in the receiver. If for
all object instances in aRelation, there exist object
instances in the receiver where the set of object
instances from aRelation are present with fixed values
for the object instance attributes not in aRelation,
these fixed values become object instances in the new
relation instance object. The object instance
attribute types for aRelation must match an equal
number of object instance attribute types appearing
lastly in the object instance attribute definition
list for the receiver. Furthermore, aRelation must be

187

a valid relation instance object and there must be at
least one object instance in aRelation.

equijoin:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of all possible concatenated pairs of
object instances, one from the receiver and the other
from aRelation, such that each pair of the object
instances has equal values for the object instance
attributes which have the same object instance
attribute definitions for both relation_instance
objects. Duplicate object instance attributes are
eliminated from the new relation instance object. The
object aRelation must be a valid relation instance
object.

forColumns:aColumnList do:aBlock

For each set of object instance values defined for the
object instance attributes appearing at the positions
specified in aColumnList within the object instance
attribute definition list occurring for the receiver,
evaluate the context aBlock using that set as the
argument to the context.

heading

Answer the object instance attribute names for the
receiver.

includes:aValueList

Answer true if an object instance occurring in the
receiver has the values of aValueList for all object
instance attributes, else answer false.

includes:aValueList forAttributes:anAttributeList

Answer true if an object instance occurring in the
receiver has the values of aValueList for the
attributes names in anAttributeList, else answer
false.

includes:aValueList forColumns:aColumnList

Answer true if an object instance occurring in the
receiver has the values of aValueList for the
attributes appearing at the positions specified in
aColumnList within the object instance attribute
definition list, else answer false.

188

includesKey:aKey

Answer true if an object instance occurring in the
receiver has an object instance identifier value of
aKey, else answer false. This is a valid message only
if an object instance identifier list is defined for
the receiver.

indexOf:aValueList

Answer the object instanc.e index for the receiver of
the object instance having the values of aValueList
for all object instance attributes. Answ.er zero if no
such object instance is found.

indexOf:aValueList forAttributes:anAttributeList

Answer the object instance index for the receiver of
the object instance having the values of aValueList
for the attribute names in anAttributeList. Answer
zero if no such object instance is found.

indexOf:aValueList forColumns:aColumnList

Answer the object instance index for the receiver of
the object instance having the values of aValueList
for the attributes appearing at the positions
specified in aColumnList within the object instance
attribute definition list. Answer zero if no such
object instance is found.

indexOfKey:aKey

Answer the object instance
the object instance having
identifier value of aKey.
object instance is found.
only if an object instance
for the receiver.

insert:aValueList

index for the receiver of
an object instance
Answer zero if no such
This is a valid message
identifier list is defined

Create a new object instance of the receiver after
initializing its attribute values with the values of
aValueList. A new object instance is created if all
values are acceptable for type and range. A new
object instance must be unique. Uniqueness is
determined by the object instance identifier list if
one is defined for the receiver, otherwise it is
determined by the combination of all the values in the
object instance attribute definition list. Answer

true if the new object instance is created, else
answer false.

189

intersection:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of all object instances in the
receiver which also appear in aRelation. The object
aRelation must be a valid relation instance object
which is union compatible with the receiver.

join:aRelation where:aBlock relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of all possible concatenated pairs of
object instances, one from the receiver and the other
from aRelation, such that the context aBlock evaluates
to true for .each _pairin_g .of. the object instances. The
object aRelation must be a valid relation instance
object.

key:aTuple

Answer the object instance identifier for the object
instance index aTuple in the receiver. This message
is valid only if an object instance identifier list is
defined for the receiver.

makeRange:aRange forAttribute:anAttribute

Answer a new range using the context aRanqe for the
object instance attribute named anAttribute in the
receiver. This message is invalid if the current
value of the attribute for any object instance
violates the new range.

makeRange:aRange forindex:anindex

name

Answer a new range using the context aRange for the
attribute name appearing at position anindex in the
object instance attribute definition list of the
receiver. This message is invalid if the current
value of the attribute for any object instance
violates the new range.

Answer the object class identifier for the receiver.

190

primaryKey

Answer the object instance attributes used to define
the object instance identifier list for the receiver.
Answer nil if no object instance identifier list is
defined for the receiver.

primaryKey:keyAttributeList

Answer a new object instance identifier list comprised
of the object instance attributes appearing in
keyAttributeList. Attribute names may be in any order
and occur only once in the list. The new object
instance identifier list is accepted only if
uniqueness of object instances holds true.

product:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier_. The_ new: __ relation instance
object consists of all possible. concatenated pairs of
object instances in the receiver and in aRelation.
The object aRelation must be a valid relation instance
object.

projectAttributes:anAttributeList relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of the object instance values for the
object instance attributes specified in
anAttributeList across all object instances.
Uniqueness of object instances in the new relation
instance object is enforced.

projectColumns:aColumnList relationName:name

-Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of the object instance values for the
attributes appearing at the positions specified in
aColumnList within the object instance attribute
definition across all object instances. Uniqueness of
object instances in the new relation instance object
is enforced.

ranges

Answer the object instance attribute ranges for the
receiver.

191

select:aBlock relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of object instances in the receiver
such that the context aBlock evaluates to true for the
object instance.

tuple:aTuple

Answer the values of all the object instance
attributes for the object instance index aTuple in the
receiver.

tupleCount

type

Answer the number of object instances in the receiver.

Answer the object instance attribute types for the
receiver.

union:aRelation relationName:name

Answer a new relation instance object having name as
an object class identifier. The new relation instance
object consists of all object instances which appear
in either the receiver or aRelation. The object
aRelation must be a valid relation instance object
which is union compatible with the receiver.

update:aValueList for:aTuple

Update the values of the attributes in the order
specified in the object instance attribute definition
list of the receiver with the values in aValueList for
the object instance index aTuple. If an object
instance identifier list is defined for the receiver,
an update on an identifier attribute is disallowed.
Uniqueness of object instances is enforced. The data
types and values of aValueList must agree with the
corresponding types and ranges of the attributes
specified in anAttributeList. Answer the new values.

updateAttribute:anAttribute value:aValue for:aTuple

Update the value of the object instance
named anAttribute with the value aValue
instance index aTuple in the receiver.
instance identifier list is defined for
an update on an identifier attribute is

attribute
for the object
If an object
the receiver,
disallowed.

192

Uniqueness of object instances is enforced. The data
type and value of aValue must agree with the type and
range specified for the attribute. Answer the new
value.

updateAttributes:anAttributeList values:aValueList
for:aTuple

Update the values of the object instance attributes
named in anAttributeList with the values in aValueList
for the object instance index aTuple in the receiver.
If an object instance identifier list is defined for
the receiver, an update on an identifier attribute is
disallowed. Uniqueness of object instances is
enforced. The data types and values of aValueList
must agree with the corresponding types and ranges of
the attributes specified in anAttributeList. Answer
the new values.

updateColumn:aColumn value:aValue for:aTuple

Update the value of the attribute name appearing at
position aColumn in the object instance attribute
definition list of the receiver with the value aValue
for the object instance index aTuple. If an object
instance identifier list is defined for the receiver,
an update on an identifier attribute is disallowed.
Uniqueness of object instances is enforced. The data
type and value of aValue must agree with the type and
range specified for the attribute. Answer the new
value.

updateColumns:aColumnList values:aValueList for:aTuple

Update the values of the attribute names appearing at
the positions specified in aColumnList in the object
instance attribute definition list of the receiver
with the values in aValueList for the object instance
index aTuple. If an object instance identifier list
is defined for the receiver, an update on an
identifier attribute is disallowed. Uniqueness of
object instances is enforced. The data types and
values of aValueList must agree with the corresponding
types and ranges of the attributes specified in
anAttributeList. Answer the new values.

CHAPTER VI

PROTOTYPE DESCRIPTION

Introduction

This chapter describes a prototype we developed using

the object-oriented (0-0) principles and message protocols

presented in previous chapters ... we discuss the .

implementation environment detailing the software and

hardware employed. This is followed by a description of

the three levels of user support provided by the prototype.

Finally, we compare two differing approaches the user may

adopt in managing data within the prototype.

Implementation Environment

We chose to develop our prototype in a personal

computing environment. Advances in personal computer

hardware and software make their use as tools for the

support of personal decision making a realistic

possibility. Cons~quently, the successful implementation

of our proposed concepts using such a popular tool as a

personal computer may enhance the viability of o-o decision

support systems (DSSs) .

193

194

Software

Several o-o programming languages exist for personal

computers (e.g., Actor, Objective-c, c++, and Smalltalk

among others). We selected the Smalltalk/V Object-Oriented

Programming System (copyright Digitalk Inc., 1986) to

develop our prototype.

Smalltalk/V is both a system for creating Smalltalk

programs and an environment for using a personal computer.

It describes itself as a mode-less environment which uses

windows, pop-up menus, and an optional mouse in.order to

simplify computer use. Smalltalk/V also provides its own

components, including the Smalltalk/V source code, as

building blocks for the user to create his or her own

applications.

Smalltalk/V offers such desirable features as late

binding, operator overloading, garbage collection,

inheritance, and class add-on support. The Float class in

Smalltalk/V serves as an example of the benefits afforded

by class add-on support. The Float class requires a

floating point coprocessor in order to perform floating

point operations. The personal computer that we used to

develop the prototype does not have a floating point

coprocessor yet we required floating point support. A

Float class add-on package was purchased thereby providing

the needed supporting routines in software.

195

The five class objects discussed in Chapter V were

added to Smalltalk/V as were the various class level and

instance level methods also needed to implement the

proposed message protocols. We added additional methods

where necessary; specifically to implement the window level

user interface discussed below.

Hardware

We used an_ IBM AT compatible personal .computer in

developing our prototype. This machine had one megabyte of

main memory, a twenty megabyte hard disk drive, and a clock

speed of eight megahertz. There was no floating point

coprocessor support as stated above. A mouse was used to

enhance the capabilities of Smalltalk/V although this was

not a requirement.

User Interface

Our prototype provides three levels of support for

user interaction. Each level permits varying degrees of

assistance in creating, manipulating, and removing

instances of the four subclass objects (Entity,

Relationship, Model, and Relation). Each of these levels

is discussed at length below.

196

Message Level

Smalltalk/V requires that all instance objects exist

independently of the class objects responsible for creating

them. The space occupied by an object which is created but

not referenced from anywhere in the system is collected by

what is called a garbage collector and is returned to the

system.

Therefore, the owner of an instance object, typically

the user, becomes responsible for .maintaining the existence

of this object. This is frequently accomplished in

Smalltalk/V by saving the instance object in a global

variable. All global variables contain a single object

which other objects in the system may pass messages to

simply by using the glo.bal variable name as the receiver of

the message.

Figure 58 presents a message which creates a new

instance of the Entity class object. The global variable

AnEntity (global variable names in Smalltalk/V begin with

an uppercase letter) saves the new entity instance object

from being collected by the garbage collector. In this

example, the Entity class creates a new instance object (to

model the Source Point class) having an object class

identifier of sourcePoint and two object class attributes:

(1) sourcecount; and (2) supplyTotal. Both of these

attributes are derived, integers, and are restricted to

having nonnegative values.

AnEntity :=Entity newEntity: 1sourcePoint 1

classAttributes:~(
(1 sourceCount 1 'Derived' 'Integer' 'CsourceCount >= Ol'

'[sourceCount :=class instanceCount]')
(1 supplyTotal 1 'Derived' 'Integer• 1 CsupplyTotal >= 01 1

1 CsupplyTotal := o.

197

1 to:(class instanceCount) do:[:anlnstance I
supplyTotal := supplyTotal +<class valueOfinstanceAttribute:''supply''

for:anlnstance)]]'))
instanceAttributes:~(

< 1 sourceNaMe 1 1 Fixed 1 •String• 1 1 >
(1 supply• 1 Fixed 1 1 Integer• 1 [supply >= 01 1))

instanceidentifier:~(1 sourceNa111e 1)

Figure 58. Creating an Entity Class

Their derivation statements differ, however. The

sourcecount attribute uses the derivation: (sourcecount :=

class instanceCountJ. The object reference class may be

used in any derivation statement and assumes the value of

the instance object in which the derivation statement is

defined. The object reference instance is meaningful in

object instance attribute derivation statements and takes

on the value of the object instance index associated with

the specific object instance.

The sourceCount derivation states that the value

returned when the message instancecount is sent to the new

entity instance object (represented in the derivation by

the class reference) becomes the value of the sourceCount

object class attribute. Chapter V defines the return value

of this message as the number of object instances in the

receiver. In other words, sourcecount is the number of

source points defined in the Source Point class. The

198

supplyTotal derived object class attribute iterates over

each instance totaling the values of the object instance

supply attributes.

There are two object instance attributes defined for

this new entity instance object: (1) sourceName; and (2)

supply. Both of these attributes are fixed, one a string

and the other an integer, and the supply attribute must be

nonnegative. The single object instance attribute

sourceName is used as the object instance identifier list

for the instance object.

The user may, following instantiation of the new

object, create new object instances, remove them, access

them, and update them by simply passing messages using the

AnEntity global variable. Furthermore, any other object in

the system has access to this object and thus may access

the object class through message passing. For example, the

user or any other object in the system might pass the

message instanceAttributes (e.g., AnEntity

instanceAttributes) to obtain a list of object instance

attributes defined for the new instance object. In this

case the instance object AnEntity would answer the two

attribute names sourceName and supply. This process of

user interaction is depicted by the flowchart shown in

Figure 59.

A major disadvantage of this level of object access is

that the user must deal with class objects and instance

199

object~ at a very low level. It does, however, provide the

user with complete access to all available methods in order

to manipulate these objects. This is not the case with the

next two levels of user interaction.

Window Level

User Creates an
Instance Object

User Passes Messages
to the Instance Object

Figure 59. Message Level Flowchart

WindowC"'. provide the major interface between the user

and Smalltalk/V. Windows allow for the programming of

menus which permit the user to select from a variety of

operations or tasks to perform. This reduces the level of

message sending that the user becomes involved in as the

selection of a menu option may in turn lead to a sequence

of message passing unbeknownst to the user.

200

Our prototype uses a single window implementation

which presents information in the window using an

electronic spreadsheet approach. We developed this window

implementation specifically for the purposes of this study.

In order to access a window, the user must first create the

instance object (as in Figure 58) used to model the

specific object class and then may open a window in order

to create, remove, and update object instances. The user

may open three different windows corresponding to a single

instance object using the following messages: (1)

openClass; (2) openinstances; and (3) openNew.

The openClass message opens a class window which shows

the object class attributes for the associated instance

object. The openinstances message opens an instances

window which shows the object instance attributes for all

the object instances defined for the receiver. The openNew

message opens a new instance window which permits the user

to organize a new object instance and subsequently attempt

to create that new object instance in the object class.

Figure 60 shows a flowchart detailing this level of user

interaction. In Smalltalk/V the term scheduling refers to

the process used by a special object, called the Scheduler,

to determine a precedence ordering of windows defined

within the system. Scheduling a window causes the system

to display the window and show it as the topmost window in

the display screen.

201

User Creates an
Instance Object

,I.

User Opens One
of Three Windows

<Class, Instances,
New Instance)

or

+

Instance Object
Creates the

Window

+ --

.,;.stance Object - -

Schedules the
Window

Figure 60. Window Level Flowchart

Figure 61 presents all three windows which may be

opened for a single instance object. Only one window may

be active at a time in Smalltalk/V. The sourcePoint

Instances window is the active window and appears to the

middle right of this figure. This window was opened using

the message AnEntity openinstances. The other windows were

accessed and corresponding new object instances created

through window level mechanisms. Several window oriented

concepts are discussed at length below using the windows

shown in Figures 61 and 62.

202

i B~·!'.~~.~~ :E fi..'"ff'~ .

Figure 61. Source Point Class Window

(Untitled) - transportat i on d

e~·Cl1?.:1.~: ... ---·-·-L~iw._· _·· _ ·_· · ..
;u ilt!1ats :1613650

;"

Figure 62. Transportation Model Class Window

203

Window Components

Each of the three windows discussed above has three

components. These components are: (1) window label; (2)

edit pane; and (3) cell pane. Each of these components has

a corresponding menu. This menu is accessed by placing the

cursor (represented by an arrow in Smalltalk/V but which is

absent for all figures depicting Smalltalk/V display

screens) anywhere within the component area of the window

·and pressing the right mouse button. Where appropriate

these menus are discussed at length below.

Window Label

A window label appears at the top of a window and

serves two purposes. First, a window label identifies the

window to the user. For example, the window shown in the

upper left-hand corner of Figure 61 reflects the values of

the object class attributes defined for the Source Point

class.

A window label also shows an optional title. Three

windows in Figure 61 show the title (Untitled). The use of

a title allows one object to indicate possession of the

instance object displayed within the window. Figure 62,

for example, shows a window with the label

transportationModel - Widgets - link Instances. This

window shows the object instances of the relationship

object class link which is defined for the model object

204

instance Widgets, a member of the model object class

transportationModel.

Second, the window label indicates which window is the

active window. An inactive window displays its label in

white whereas the active window displays its label in

black. Thus, the sourcePoint Instances window is the

active window in Figure 61.

Figure 63 shows the menu associated with a window

label. The cycle option causes the active window to become

inactive and another window, determined by the system
- .. " -

scheduler, becomes active. This allows the user to move

through windows which may be completely overlapped by other

windows. The frame option lets the user change the

location and size of a window. The move option, on the

other hand, lets the user change the location of a window

but not its size.

Edit Pane

The edit pane appears directly below the label of a

window. The contents of a selected cell are displayed

within the edit pane. The sourcePoint New Instance window,

shown in the lower left-hand corner of Figure 61, shows the

value 17500 in the edit pane associated with this window.

This represents the value of the object instance attribute

supply for the proposed new object instance. The

corresponding value cell is displayed in black to indicate

205

that ~t has been selected for editing purposes. The edit

pane permits the user to edit text using several system

features such as copy, cut, paste, save, search, and

replace.

cycle
f rane
Moue

Figure 63. Window Label Menu

These features are made available to the user through

the edit pane menu. Figure 64 shows two edit pane menus.

The first menu, on the left of Figure 64, has the option

next menu which causes the second menu, on the right, to be

displayed. Selecting save notifies the cell ~--ne that the

user wishes to save the edited text. It becomes the

responsibility of the cell pane to act appropriately in

saving this text. The cell pane saves the edited text as

an object attribute value within the instance object (or a

pending ob]ect instance attribute value when organizing a

new object instance).

Changes made to either a derived attribute or an

object instance attribute which participates in the object

instance identifier list ·are disallowed by the

206

corre~ponding cell panes. This is consistent with the

Metamodel class definition of these attributes (e.g., a

derived attribute may only change when the attributes on

which it depends change whereas updates of attributes

comprising an object instance identifier are not valid).

The values of these attributes may, however, be shown

within the edit pane but may not be changed.

Cell Pane

restore
copy
cut
paste
show it
do it
save
next Menu

print
search
search back
replace all
again

Figure 64. Edit Pane Menu

The remaining portion of a window displays the cell

pane. The cell pane consists of a collection of same-sized

cells much like those encountered in an electronic

spreadsheet. The user interacts with a cell pane by

selecting various cells. The user selects a cell by

placing the cursor anywhere within the cell and pressing

the left mouse button. A cell pane has four kinds of

cells:

(1) menu cell;

(2) column heading cells;

(3) row heading cells; and

(4) value cells.

207

The menu cell, labeled Menu in a cell pane, permits

the user to perform various tasks directly related to the

characteristics of the cell pane. Figure 65 shows the menu

which pops-up when the user selects the menu cell. The

goto option allows the user to specify the row and column

coordinates of a cell which is then displayed in the upper

left-hand corner of the cell pane. The home option

displays row one and column one in the upper left-hand

corner of the cell pane. The corner option displays the

last row and last column defined in the upper left-hand

corner of the cell pane. The !ll2, down, left, and right

options allow the user to move through the cell pane either

one row or column, page, or to the end of the cell pane in

the specified direction. The width option allows the user

to change the width of the cells in the cell pane and the

reverse option exchanges the foreground and background

colors of the cell pane.

Column heading cells serve two purposes. First, they

display the attribute names associated with the values

appearing in the columns of the cell pane. For example, in

208

Figure 61 the supply object instance attribute values for

the first four object instances of the Source Point class

are 10,000, 23,000, 7,500, and 17,500 respectively.

Second, selecting a column heading cell causes a menu to

pop-up permitting the user to view information concerning

the selected attribute.

goto
ho Me
corner
up
down
le~t
right
width
reverse

Figure 65. Cell Menu

Figure 66 shows one such menu. The show attribute

option presents the user with a Smalltalk/V menu message.

A menu-message is simply a one line menu which the user may

select by placing the cursor in the menu area and pressing

the left mouse button or may cancel by pressing the left

mouse button outside of the menu area. This menu message

displays the full attribute name, an optional <Identifier}

flag indicating that the attribute participates in the

object instance identifier list, the attribute kind, and

the attribute type. The structure of the menu message is

209

very s_imilar to the attribute definition appearing in a

schema abstraction.

show attribute
show range
show derivation

Figure 66. Column Heading Menu

Selecting the show range option causes a Smalltalk/V -

window to open which contains the range statement

associated with the selected attribute. The window labeled

supply Range Statement in Figure 62 is such a window.

Similarly, selecting show derivation displays the

attribute's derivation statement within a window, as is the

case for the window labeled sourcecount Derivation

Statement in Figure 61. Note that the show derivation

option will only appear for derived attributes.

Selecting a column heading cell for each of the three

windows described (class, instances, and new instance)

invokes the same actions. Selecting a row heading cell

varies significantly according to which window the user is

viewing. Furthermore, the class and new instance windows

only show a sirigle row· in the cell pane. For the class

window the values of this row are the various values of the

210

object class attributes and selecting the corresponding row

heading cell, labeled Values, has no effect. The values

shown in the first row of the new instance window are those

which the user edits prior to creating the new object

instance. In addition, only fixed and solver-derived

attributes appear in the new instance window since these

are the only attributes used to define a new object

instance (see the new:aValueList message in Chapter V). As

with the class window, selecting the corresponding row

heading cell, labeled New for this window, has no effect.

Selecting a row heading cell for an instances window

causes one of the two menus in Figure 67 to appear. The

two item menu on the left of this figure appears for

instance objects created by the Entity, Relationship, and

Relation class objects. The remove option permits the user

to remove the selected object instance from the object

class. If the user decides to remove an object instance a

menu message appears requiring him or her to confirm the

removal of the object instance. The user confirms the

removal by selecting the menu message or may avoid removing

the object instance by pressing the left mouse button

outside of the menu message. This has the same effect as

selecting the cancel menu option.

The right-hand menu in Figure 67 appears in a model

instances window when the user selects a row heading cell.

This menu has four options in addition to remove and

211

cancel. First, the open entity and open relationship

options have similar effects. If the user selects the open

entity (open relationship) option a menu appears listing

object class identifiers for the entities (relationships)

defined in the object entity (relationship) definition list

of the model instance object. _ Selecting one of these

object class identifiers causes the instances window of the

entity (relationship) instance object created for the

selected model object instance to open. This allows the

user access to a model object instance's associated entity

instance and relationship instance objects.

re~ove open entity
cancel open relationship

execute production
solve
re Move
cancel

Figure 67. Row Heading Menus

The execute production option appears only if

productions are defined for the selected model object

instance. Selecting this option causes another menu to

appear listing the names of the various productions defined

for the this model object instance. The user is able to

execute a production by selecting one of the names

212

appearing in this list. This causes a prompter to appear

allowing the user to specify an optional input value for

the production. A prompter is a labeled, one line window

which will not relinquish control to the system without the

user specifically accepting its input or canceling the

prompter.

Finally, the solve option appears only if the selected

model object instance requires a new solution. A new

solution for this model object instance is necessary when

any of the underlying entity instance or relationship

instance objects changes in some manner (see the discussion

of the Model class in Chapter V). Figure 68 shows a

flowchart representing the process undertaken by a model

instance object when one of its object instances requires a

new solution. Figure 69 shows the various interactions

which occur between the objects involved in generating a

new solution for a model object instance. The tail of an

arrow in this figure indicates which of the two objects is

in the role of an actor (see the discussion concerning

object roles in Chapter II). The head of an arrow

indicates that an object is in the role of a server when

the object interaction occurs. For example, the model

instance object (in the actor role) requests that the

solver object (in the server role) generate a new solution

for a specific model object instance (this is shown by the

Requests solution of object instance arrow in Figure 69).

213

The User Invokes
the Solver Object for

a Model Object
Instance

J.

The Model Instance Object
Notifies the Solver Object
and Identifies the Model

Object Instance

.L

The Solver Object
AsseMbles the Hecessar~

Input froM the Model
Instance Object

J.

The Solver .Obje.ct. Creates -
a Batch File.and Invokes

the External Solver

J.

The External Solver Processes
the Batch File, Creates a
Results File, and Returns

to SMalltalk/U

J.

The Solver Object Interprets
the Results File and

Updates the Solver-Derived
Attributes of the Model

Object Instance

Figure 68. Solution Process Flowchart

The value cells of the cell pane show the attribute

values corresponding to the object class, object instances,

and new instance for the class, instances, and new instance

·windows respectively. T~e user may select any of these

cells which, as discussed above, causes the corresponding

214

value ~o be displayed in the edit pane. Figure 62 shows

the value 1069800 in the edit pane of the transportation -

Widgets - link Instances inactive window. This is the

value of the object instance attribute linkTotal for the

second object instance. Selecting a value cell causes the

selected cell to be displayed in inverse (foreground and

background colors reversed).

Requests solution of object instance

Requests necessary input

Saves results to solver-derived attributes
Saves external solver input

Requests solution

Requests input Saves results

Requests results

Figure 69. Solution Process Object Interactions

The user may select the save option in the edit pane

menu (see Figure 64) thereby invoking an update operation

on the selected attribute. Selecting any other cell in the

cell pa?e causes a forced save operation. Saving the value

of the edit pane is disallowed for derived attributes and

215

objec~ instance attributes which participate in the object

instance identifier list. Saving a value in the edit pane

of a new instance window has no immediate effect on the

object class. The object class is only affected when the

user specifically accepts the collection of values in this

window by selecting the accept instance option appearing in

its cell pane menu.

The particular cell pane menu displayed when the user

presses the right mouse button within a cell pane varies

according to the type of window viewed (e.g., class,

instances, or new instance window). For the new instance -

window the corresponding cell pane menu appears in Figure

70. The open class and open instances options permit the

user to open these windows for the given instance object.

Each of these options is absent from the menu if the

corresponding window is already open.

open class
open instances
accept instance
clear
close

Figure 70. New Instance Window Cell Pane Menu

The accept instance option takes the values appearing

in the New row for the various fixed and solver-derived

216

attributes of the object class and attempts to create a new

object instance using these values. A menu message appears

indicating whether the instance object was able to create

the new object instance. Failure to create the new object

instance may be due to a type violation, range violation,

or duplicate object instance.

The clear option simply erases the edit pane and any

values saved in the value cells appearing-in the New-row. -

The close option closes the window. Any values appearing_

in the New row or edit pane are discarded.

Figure 71 shows the cell pane menus for the class and

instances windows. The left two menus appear when

overrides are enabled for the given instance object. The

disable overrides option permits the user to disable

overrides for the specific instance object. This has the

same effect as sending the instance object the

overrideDisable message (refer to the explanation of the

Metamodel class in Chapter V). The remove class overrides

option is present if at least one override has been defined

for a class attribute. Likewise, the remove instance

overrides option is present if at least one override has

been defined for an object instance attribute of any object

instance. Selecting the remove class overrides (remove

instance overrides) option causes the message

removeAllClassOverrides (removeAllinstanceOverrides) to be

sent to the instance object.

217

disable overrides disable overrides enable overrides
reMove class overrides reMove class overrides execute production
reMove instance overrides reMove instance overrides open entity
reMove override Make override open class
execute production execute production open instances
open entity open entity new instance
open class open class close
open instances open instances
new instance new instance
close close

Figure 71. Class and Instances Window Cell Pane Menus

The remove override option appearing in the left-hand

menu in Figure 71_ is present_ when the selected value cell

is a derived attribute and an override value for the

attribute is in effect. This option permits the user to

remove the previously set override value. The menu in the

middle of Figure 71 shows the option make override. This

option, like the remove override option, is present when

the selected value cell is a derived attribute and,

contrarily, when no override value for the attribute is in

effect. This option allows the user to define an override

for a derived attribute. These options are present in the

cell pane menus for both the class and instances windows.

The execute production option, however, is present

only for the class window. Like its object instance

counterpart, this option appears only if productions are

defined for the object class. Selecting this option causes

another menu to appear listing the names of the various

productions defined for the object class. The user is able

218

to execute a production by selecting one of the names

appearing in this list. This causes a prompter to appear

allowing the user to specify an optional input value for

the production.

The open entity option is present only for the

instances window of a relationship instance object. If the

user selects the open entity option a menu appears listing

object class identifiers for the entities defined in the

object entity mapping definition list of the relationship

instance object. Selecting one of these object class

identifiers causes the instances window of the

corresponding entity instance object to open. This allows

the user to access a relationship instance object's

associated entity instance objects.

The open class, open instances, and new instance

options will appear only if the corresponding windows

(e.g., class, instances, and new instance) are not already

open. Selecting one of these options will open the

associated window for the given instance object. The close

option closes the window.

The right-hand menu of Figure 71 shows the menu

options available when overrides are disabled. The only

new option is the enable overrides option. This option,

present only if overrides have been disabled, allows the

user to enable overrides. This has the effect of sending

the overrideEnable message to the specific instance object.

219

~igure 72 shows the various interactions which occur

between the user, window label, edit pane, and cell pane.

The tail of an arrow in this figure, as in Figure 69,

indicates which of the two objects is in the role of an

actor whereas the head of an arrow indicates that an object

is in the role of a server. For example, the cell pane (in

the actor role) requests that the instance object (in the

server role) return the value of an attribute displayed-by

the cell pane (shown by the Requests text for cell values

arrow in Figure 72). The final user interaction level

builds on the first two levels and is discussed below.

Requests text For cell values

Replies text For cell values

Requests cell oane Menu

Act on selected Menu iteM

DeterMine if selected cell is protected

Save changed cell value

Request selected cell coordinates

Request- cell pane reFresh

Requests window label Menu
Act on selected Menu iteM

Selects cells

Selects Menu

Requests text For selected cell
I

Replies text For selected cell
HotiFication of save

Edits text

Selects Menu

Figure 72. Window Level Object Interactions

220

DSS Browser Level

The final user interaction level is the DSS Browser

level. The DSS Browser presents the user with a

Smalltalk/V window which contains a single pane, called a

list pane. A list pane presents the user with a list of

items from which he or she may select a single item. The

selected item is shown in inverse. The user may scroll

through the list and act on a selected item through the

list pane menu. A list pane differs from a menu in that a

menu immediately acts on the selected item whereas a list

pane waits for the user to specify some action, through the

list pane menu, to be taken for the selected item.

A DSS Browser window has two window components: (1)

window label; and (2) list pane. Each of these components

has an associated menu which is activated as discussed

above. The menu for the window label is identical to the

menu shown in Figure 63.

Figure 73 shows a DSS Browser window which contains a

series of object class identifiers. In this figure the DSS

Browser window is the active window and the

transportationModel list item is selected. Each object

class identifier shown in the list pane of a DSS Browser

window comes from either a model instance or a relation

instance object. The user may select any object class

identifier appearing in the list pane. The list pane menu,

which appears in Figure 74, permits the user to perform one

221

of two actions. First, the open option allows the user to

open the instances window of the instance object having the

selected object class identifier. Thus, the user may open

a model or a relation in an equivalent manner. The close

option closes the DSS Browser window.

canneries
generalLPModel
link
networkModel
t.rttns port.d.t.ionnodel
w.rehouses

i I) - transportationt1odel Instances

!23606

Figure 73. DSS Browser Window

Figure 74. List Pane Menu

222

The DSS Browser window is a special window created by

the DSS class object. The message open is sent to the DSS

class object which collects all model instance and relation

instance objects, determines their object class

identifiers, and constructs the list used by the list pane.

Thus, a single message is required by the user to gain

access to all the models and data defined in the system.

Figure 75 presents a flowchart which describes the process

undertaken by the user for this level of interaction.

User Opens
DSS Browser

J.

.User Selects an
Object Class Identifier

Appearing in the
List Pane

J.

User Selects Open
Option Appearing in th~

List Pane Menu

~

DSS Browser Opens
the Instances Window

of the Selected
Object Class

Figure 75. DSS Browser Level Flowchart

Window Level Data and Model

Distinctions

223

The previous sections draw no distinction between the

way in which the user accesses relation instance objects

and other subclass (Entity, Relationship, and Model)

instance objects. Recall from Chapter V that the user may

pass general messages to_access object class and object

instance attributes regardless of the superclass object.

The user may, however, treat relation instance objects in a

more specific manner ... That.. is.,_ the_. user. may act. as. though

he or she is dealing specifically with a relation rather

than an instance of the Metamodel class. The Relation

class accomplishes this by providing a message level view

·which corresponds to a relational database approach.

Concurrently, the Relation class also provides a

similar window level view. From this perspective the user

may open two different windows corresponding to a single

relation using the following messages: (1) open; and (2)

openNew.

The open message opens a relation window which shows

the relation attributes for all the tuples defined for the

receiver. The openNew message opens a new tuple window

which permits the user to organize a new tuple and

subsequently attempt to insert the ·new tuple into the

relation.

224

~igure 76 shows both these windows for the suppliers

relation. The active window in this figure is labeled

suppliers Relation. Note that the window labeled suppliers

New Tuple is a new tuple window and that the row heading

cell for this window is labeled Insert. Thus, these

windows employ terms consistent with relational database

concepts. The window label menu for both these windows is

identical to that shown in Figure 63.

Figure 76. Suppliers Relation Window

Selecting the row heading cell in a new tuple window

has no effect. Selecting a column heading cell in this

window and in a relation window displays the menu in Figure

225

66. The show derivation option is always absent as the

definition for a relation instance object given in Chapters

III and V states that all its associated object instance

attributes must be fixed. The show attribute option

presents the user with a menu message showing the attribute

name, an optional {Keyl flag indicating that the attribute

participates in the primary key, and the attribute type.

The structure of the menu message is very similar to the

attribute definition appearing in a data schema

abstracti6n.

The cell pane menu for a new tuple window is shown in

Figure 77. The open relation option is present if the

corresponding relation window is not already open.

Selecting this option causes the relation window to open.

The insert values option performs the same function as the

accept values option shown in Figure 70. This is also the

case for the clear and close options.

The cell pane menu for a relation window appears in

Figure 78. The new tuple option is present if the

corresponding new tuple window is not already open.

Selecting this option permits the user to add new tuples to

the relation. The close option closes the relation window.

Selecting a row heading cell in a relation window

pops-up the menu appearing in Figure 79. Notice that the

delete option is analogous to the remove option in the menu

shown in Figure 67. Thus, the user may, if desired,

226

interact with the data component of the o-o DSS using

either the object class approach defined by the Metamodel

class object or may use the relational database approach

defined by the Relation class. Support for either of these

two approaches is provided at both the message level and

window level of user interaction.

open relation
insert values
clear
close

Figure 77. New Tuple Cell Pane Menu

new tuple
close

Figure 78. Relation Cell Pane Menu

delete
cancel

Figure 79. Relation Row Heading Menu

227

Figure 80. Suppliers Class Window

Figure 80 shows the same instance object displayed in

Figure 76, the suppliers instance object, using the

Metamodel approach . . Note that the active window in Figure

76 is labeled suppliers Relation and that all menuing

within this window uses relational database definitions.

The activ~ window in Figure 80, on the other hand, is

labeled suppliers Instances and all user interactions with

this window use terms defined by an o-o approach to DSS.

Consequently, the user may interact with the same object

using two different approaches.

228

In conclusion, the three levels of user interaction

(message level, window level, and DSS Browser level) permit

varying degrees of access to the objects which exist in an

o-o DSS. Furthermore, our prototype shows that an o-o DSS

is a realistic possibility.

CHAPTER VII

FUTURE RE.SEARCH DIRECTIONS

The present study shows that an. object-oriented (O~O)

decision support system (DSS) is a- viable possibility.

Regardless, there are several directions_ which future

research endeavors might pursue.

First, the data component of the current o-o DSS

relies heavily on relational data modeling concepts. While

a relational data modeling approach has significant

benefits, it also.has obvious limitations as discussed in

Chapter II. An o-o data modeling environment would more

naturally permit an o-o DSS user to incorporate semantic

information present in the task environment. This would

also extend the capabilities of the data component by

including object level behaviors. The inclusion of an o-o

data modeling component rather than an o-o relational data

modeling component would perhaps improve the current

architectural design.

The current study ignores the issues of model

selection and model sequencing. Additional research might

suggest possible ways of addressing the problems of model

selection and model sequencing or possibly integrate an o-o

229

230

DSS model representation scheme into a system currently

automating these processes.

Also, an automatic problem solver selection mechanism

should be addressed. Currently the user must specify which

object is to serve as the problem solver object. In an

automated process the o-o DSS would scan the model

representation and automatically select the problem solver.

object best able to handle the requirements of the given

model.

The proposed o-o DSS suggests a better design than

existing systems because of its ability to integrate data

and models as well as presenting DSS components in a more

natural light as objects. One of the strongest arguments

associated with an.o-o approach is that it more naturally

models the environment than traditional approaches.

Empirical support must be provided for this argument.

Thus, the direction of an empirical investigation into the

effectiveness of an o-o approach to DSS design as compared

to existing systems is another area of possible future

research.

The current implementation provides the underpinnings

for a DSS driver. A DSS driver exists in a two layer DSS.

A specific DSS relies on the DSS driver to support the data

and the modeling functions of the DSS through a standard

set of predefined operations. The message protocols

defined for the current implementation provide this

231

standard set of operations necessary to implement a

specific DSS using the o-o DSS as the DSS driver. Thus,

the fundamental set of objects described in Chapter V along

with their related set of message protocols could be used

to quickly develop specific DSSs. This permits the DSS

builder to focus on the user interface rather than the

basal functions of the DSS. Other research efforts might

address the viability of the current design architecture in

providing this level of support.

Finally, a considerable amount of ongoing research

addresses the topic of object sharing (Kim and Lochovsky

1989). Object sharing issues are addressed in several o-o

research areas such as data modeling and off ice information

systems. This raises the broader question of whether an o-

0 DSS design may be extended to include group decision

making support in the form of an o-o group DSS (GOSS) .

GDSSs are the focus of extensive research (for example,

Desanctis and Gallupe 1987, Burns, Rathwell, and Thomas

1987, Gray 1987, Kraemer and King 1988). Extending o-o DSS

concepts to GDSS architectural design should also be

addressed by future research.

An o-o approach to DSS design is obviously replete

with future research directions. This suggests that o-o

DSS design issues provide a strong basis for developing a

future research agenda.

CHAPTER VIII

SUMMARY AND CONCLUSIONS

Chung (1984) states that the design for any system

should consist of different levels of abstraction which may

be conceived as a continuum- from conceptual constructs, to

operational constructs, and then to implementational

constructs. We introduced an object-oriented (0-0)

decision support system (DSS) architecture which permits

the o-o DSS user to progress through these three levels of

abstraction in designing data and models for the DSS. We

made this possible in part through the introduction of an

o-o relational data model capable of handling the data

component of a DSS. In addition, we delineated an o-o

structured model representation scheme to manage the model

component of the DSS.

Aided by a proposed diagrammatic technique the user

creates either a data model schema or model schema. The

user then abstracts from the schema using either data model

schema or model schema abstraction. This process of data

model schema and model schema development followed by data

model schema and model schema abstraction permits the user

232

233

to develop conceptual constructs representative of the task

environment.

We also proposed a set of class objects arranged in an

inheritance hierarchy and having corresponding message

protocols. These protocols provide the o-o DSS user, o-o

relational data model, and o-o structured model with the

power to interact with one another. Essentially this

endows the user and the o--o DSS with the ability to

operationalize these. representations.

Finally, we constructed a prototype o-o DSS in a

personal computing environment. This prototype was capable

of implementing our proposedclass objects and message

protocols. The prototype attests to the feasibility of an

o-o DSS and shows that the third level of abstraction,

implementation, proposed by Chung (1984) is a realistic

possibility. Thus, the prototype shows that DSS users can

effectively implement their data model schema and model

schema abstractions. At this level we see that data and

models may be treated in a likewise manner. Furthermore,

data may be differentially viewed in a traditional sense or

in a manner not unlike models.

LITERATURE CITED

Abbott, R. J. Knowledge Abstraction. Communications of
the ACM, Volume 30, Number 8 (August 1987), 664-671.

Abiteboul, s., and Hull, R. IFO: A Formal Semantic
Database Model. ACM Transactions on Database Systems,
Volume 12, Number 4 (December 1987), 525-565.

Ackoff, R. L. Management Misinformation Systems.
Management Science, Volume 14, Number 4 (December
1967), B 147-B 156.

Adelman, L. Real-Time Computer Support for Decision
Analysis in a Group Setting: Another Class of
Decision Support Systems. Interfaces, Volume 14,
Number 2 (March-April 1984), 75-83.

/Ahlsen, M., Bjornerstedt, A., Britts, s., Hulten, c., and
Soderlund, L. An Architecture for Object Management
in OIS. ACM Transactions on Office Information
Systems, Volume 2, Number 3 (July 1984), 173-196.

Ahn, T., and Grudnitski, G. Conceptual Perspectives on Key
Factors in DSS Development: A Systems Approach.
Journal of Management Information Systems, Volume 2,
Number 1 (Summer 1985), 18-32.

Aho, A., Hopcroft, J., and Ullman, J. Data Structures and
Algorithms. Addison-Wesley Publishing Company,
Reading, MA, 1983.

Alavi, M., and Henderson, J. c. An Evolutionary Strategy
for Implementing a Decision Support System.
Management Science, Volume 27, Number 11 (November
1981), 1309-1323.

Alter, s. A Taxonomy of Decision Support Systems. Sloan
Management Review, Volume 19, Number 1 (Fall 1977),
39-56.

· Andriole, s. J. The Design of Microcomputer-Based Personal
Decision-Aiding Systems. IEEE Transactions on
Systems. Man, and Cybernetics, Volume SMC-12, Number 4
(July/August 1982), 463-469.

234

235

Anthony, R. N. Planning and Control Systems: A Framework
for Analysis. Harvard University Graduate School of
Business Administration, Boston, MA, 1965.

Applegate, L. M., Chen, T. T., Konsynski, B. R., and
Nunamaker, Jr., J. F. Knowledge Management in
Organizational Planning. Journal of Management
Information Systems, Volume 3, Number 4 (Spring 1987),
20-38.

Bahl, H. c., and Hunt, R. G. Decision~Making Theory and
DSS Design. Data Base, Volume 15, Number 4 (Summer
1984), 10-14.

Bancilhon, F. A Logic-Programming/Object-Oriented
Cocktail. SIGMOD Record (ACM), Volume 15, Number 3
(September 1986), 11-21.

Bancilhon, F. Object-Oriented Database Systems. In
Proceedings·of the·Seventh AG:M SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (Austin,
TX, March 21-23). ACM, New York, 1988, pp. 152-162.

Barrett, s., and Konsynski, B. Inter-Organization
Information Sharing Systems. MIS Quarterly, (Special
Issue 1982), 93-105.

Bergin, J., and Greenfield, s. What Does Modula-2 Need to
Fully Support Object Oriented Programming? SIGPLAN
Notices (ACM), Volume 23, Number 3 (March 1988), 73-
82.

Bhaskar, K. s. How·object-Oriented is Your System?
SIGPLAN Notices (ACM), Volume 18, Number 10 (October
1983) , 8-11.

Bic, L., and Gilbert, J. P.
in Database Technology.
(March 1986), 44-54.

Learning From AI: New Trends
Computer, Volume 19, Number 3

Blaha, M. R., Premerlani, w. J., and Rumbaugh, J. E.
Relational Database Design Using an Object-Oriented
Methodology. Communications of the ACM, Volume 31,
Number 4 (April 1988), 414-427.

Blanning, R. W. What is Happening in DSS? Interfaces,
Volume 13, Number 5 (October 1983), 71-80.

Blanning, R. W.
Management.
Perspective.

A Relational Framework for Information
In Decision Support Systems: A Decade in

McLean, E. R., and Sol, H. G. (Eds).

236

Elsevier Science Publishers B. v., Amsterdam, 1986,
25-40.

Blanning, R. w. An Entity-Relationship Approach to Model
Management. Decision Support Systems, Volume 2,
Number 1 (March 1986), 65-72.

Bonczek, R., Holsapple, c. w., and Whinston, A. B.
Computer-Based Support of Organizational Decision
Making. Decision Sciences, Volume 10, Number 2 (April
1979), 268-291.

Bonczek, R. H., Holsapple, c. W., and Whinston, A. B. The
Evolving Roles of Models in Decision Support Systems.
Decision Sciences, Volume 11, Number 2 (April 1980),
337-356.

Bonczek, R. H., Holsapple, C. W., and Whinston, A. B.
Future Directions for Developing Decision Support
Systems. Decision Sciences, Volume-11, Number 4
(November 1980), 616-631.

Bonczek, R. H., Holsapple, c. W., and Whinston, A. B. A
Generalized Decision Support system Using Predicate
Calculus and Network Data Base Management. Operations
Research, Volume 29, Number 2 (March-April 1981), 263-
281 .

. ; Booch, G. Object-Oriented Development. IEEE Transactions
on Software Engineering, Volume SE-12, Number 2
(February 1986), 211-221.

Borgida, A. Features of Languages for the Development of
Information Systems at the Conceptual Level. IEEE
Software, Volume 2, Number 1 (January 1985), 63-72.

Borgida, A., Greenspan, s., and Mylopoulos, J. Knowledge
Representation as the Basis for Requirements
Specifications. Computer, Volume 18, Number 4 (April
1985)' 82-91.

Brodie, M. L. On the Development of Data Models. In on
Conceptual Modelling. Brodie, M. L, Mylopoulos, J.,
and Schmidt, J. w. (Eds). Springer-Verlag, NY, 1984,
19-48.

Bu-Hulaiga, M. I., and Jain, H. K. An Interactive Plan
Based Procedure for Model Integration in DSS. In
Proceedings of the Twenty-First Hawaii International
Conference on System Sciences, 1988.

237

Burns, A., Rathwell, M.A., and Thomas, R. c. A
Distributed Decision-Making System. Decision Support
Systems, Volume 3, Number 2 (June 1987), 121-131.

Buzzard, G. D., and Mudge, T. N. Object-Based Computing
and the Ada Programming Language. Computer, Volume
18, Number 3 (March 1985), 11-19.

Casais, E. An Object Oriented System Implementing KNOs.
In Proceedings Conference on Off ice Information
Systems (Palo Alto,. CA, March 23-25) .. ACM, .New York,
1988, pp. 284-290.

Chen, P. P. The Entity~Relationship Model: Toward a
Unified View of Data. ACM Transactions on Database
Systems, Volume 1, Number 1 (March 1976), 9-36.

Chung, C.-H. A Network of Management Support Systems.
OMEGA International Journal of Management Science,
Volume 13, Number-4 (1984),-26J-276 ...

Clemons, E. K. Data Models and the ANSI/SPARC
Architecture. In Principles of Database Design Volume
I: Logical Organizations. Yao, s. B. (Ed).
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985, 66-
114.

Codd, E. F~ A Relational Model of Data for Large Shared
Data Banks. Communications of the ACM, Volume 13,
Number 6 (June 1970), 377-387.

Codd, E. F. Extending the Database Relational Model to
Capture More Meaning. ACM Transactions on Database
Systems, Volume 4, Number 4 (December 1979), 397-434.

Cox, B. J. Message/Object Programming: An Evolutionary
Change in Programming Technology. IEEE Software,
Volume 1, Number 1 (January 1984), 50-61.

cox, B. J. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley Publishing Company, Reading,
MA, 1986.

Date, c. J. An Introduction to Database Systems: Volume
II. Addison-Wesley Publishing Company, Reading, MA,
1983.

Date, c. J. An Introduction to Database Systems: Volume
I. (4th Ed). Addison-Wesley Publishing Company,
Reading, MA, 1986.

238

Desanctis, G., and Gallupe, R. B. A Foundation for the
Study of Group Decision Support Systems. Manaqement
Science, Volume 33, Number 5 (May 1987), 589-609.

Dolk, D. R. Data as Models: An Approach to Implementing
Model Management. Decision Support Systems, Volume 2,
Number 1 (March 1986), 73-80.

Dolk, D. R. Model Management and Structured Modeling: The
Role of an Information Resource Dictionary System.
Communications of the ACM,. Volume 31, Number.6 (June
1988), 704-718.

Dolk, D. R., and Konsynski, B. R. _Knowledge Representation
for Model Management Systems. IEEE Transactions on
Software Engineering, Volume SE-10, Number 6 (November
1984), 619-628.

Elam, J. J., and Konsynski, B. Using Artificial
Intelligence Techniques to Enhance the-Capabilities of
Model Management Systems. Decision Sciences, Volume
18, Number 3 (Summer 1987), 487-502.

Fuerst, W. L., and Martin, M. P.
of Computer Decision Models.
Number 1 (March 1984), 17-26.

Effective Design and Use
MIS Quarterly, Volume 8,

Geoffrion, A. M. An Introduction to Structured Modeling.
Management Science, Volume 33, Number 5 (May 1987),
547-588.

Gray, P. Group Decision Support Systems. Decision Support
Systems, Volume 3, Number 3 (September 1987), 233-242.

Gerry, G. A., and Scott Morton, M. s. A Framework for
Management Information Systems. Sloan Manaqement
Review, Volume 12, Number 1 (Fall 1971), 55-70.

Hackathorn, R. D., and Keen, P. G. W. Organizational
Strategies for Personal Computing in Decision Support
systems. MIS Quarterly, Volume 5, Number 3 (September
1981), 21-27.

Hainaut, J.-L., and Lecharlier, B. An Extensible Semantic
Model of Data Base and its Data Language. In
Proceeding of the IFIP Congress. North-Holland
Publishing Company, Amsterdam, 1974, 1026-1030.

Hawryszkiewycz, I. T. A Semantic Design Method. IEEE
Transactions on Software Engineering, Volume SE-9,
Number 4 (July 1983), 373-384.

238

Desanctis, G., and Gallupe, R. B. A Foundation for the
Study of Group Decision Support Systems. Manaqement
Science, Volume 33, Number 5 (May 1987), 589-609.

Dolk, D. R. Data as Models: An Approach to Implementing
Model Management. Decision Support Systems, Volume 2,
Number 1 (March 1986), 73-80.

Dolk, D. R. Model Management and Structured Modeling: The
Role of an Information Resource Dictionary System.
Communications of the ACM,. Volume 31, Number.6 (June
1988), 704-718.

Dolk, D. R., and Konsynski, B. R. _Knowledge Representation
for Model Management Systems. IEEE Transactions on
Software Engineering, Volume SE-10, Number 6 (November
1984), 619-628.

Elam, J. J., and Konsynski, B. Using Artificial
Intelligence Techniques to Enhance the-Capabilities of
Model Management Systems. Decision Sciences, Volume
18, Number 3 (Summer 1987), 487-502.

Fuerst, W. L., and Martin, M. P.
of Computer Decision Models.
Number 1 (March 1984), 17-26.

Effective Design and Use
MIS Quarterly, Volume 8,

Geoffrion, A. M. An Introduction to Structured Modeling.
Management Science, Volume 33, Number 5 (May 1987),
547-588.

Gray, P. Group Decision Support Systems. Decision Support
Systems, Volume 3, Number 3 (September 1987), 233-242.

Gerry, G. A., and Scott Morton, M. s. A Framework for
Management Information Systems. Sloan Manaqement
Review, Volume 12, Number 1 (Fall 1971), 55-70.

Hackathorn, R. D., and Keen, P. G. W. Organizational
Strategies for Personal Computing in Decision Support
systems. MIS Quarterly, Volume 5, Number 3 (September
1981), 21-27.

Hainaut, J.-L., and Lecharlier, B. An Extensible Semantic
Model of Data Base and its Data Language. In
Proceeding of the IFIP Congress. North-Holland
Publishing Company, Amsterdam, 1974, 1026-1030.

Hawryszkiewycz, I. T. A Semantic Design Method. IEEE
Transactions on Software Engineering, Volume SE-9,
Number 4 (July 1983), 373-384.

240

Klein, G. Developing Model Strings for Model Managers.
Journal of Management Information Systems, Volume 3,
Number 2 (Fall 1986), 94-110.

Klein, G., Konsynski, B., and Beck, P. o. A Linear
Representation for Model Management in a DSS. Journal
of Management Information Systems, Volume 2, Number 2
(Fall 1985), 42-54.

Konsynski, B., and Sprague, Jr., R. H. Future Research
Directions in Model Management. Decision Support
Systems, Volume 2, Number 1 (March 1986), 103-109.

Korth, H. F. Extending the Scope of Relational Languages.
IEEE Software, Volume 3, Number 1 (January 1986), 19-
28.

Kraemer, K. L., and King, J. L. Computer-Based Systems for
Cooperative Work and Group Decision Making. Computing
Surveys, Volume 20, .Number 2 (June .1988) ,. 115-146.

Leclaire, B., and Chahande, A. A Framework for the study
of Semantic Data Models. Working Paper Series #88-15,
Oklahoma State University (November 1988).

Leclaire, B., and Suh, E.-H. Object-oriented Concepts in
Information Systems. Working Paper Series #88-8,
Oklahoma State University (August 1988). ·

Lenard, M. L. Representing Models as Data. Journal of
Management Information Systems, Volume 2, Number 4,
(Spring 1986), 36-48.

Lenard, M. L. Fundamentals of Structured Modeling. In
NATO Advanced Study Institute Mathematical Models for
Decision Support (Val d'Isere, Haute Savoie, France,
July 26-August 6, 1987), Wed 3-Wed 23.

Liskov, B. H., and Zilles, s. N. Specification Techniques
for Data Abstractions. IEEE Transactions on Software
Engineering, Volume SE-1, Number 1 (March 1975), 7-19.

Lyngbaek, P., and McLeod, D. Object Management in
Distributed Information Systems. ACM Transactions on
Office Information Systems, Volume 2, Number 2 (April
1984), 96-122.

MacLennan, B. J. Values and Objects in Programming
Languages. SIGPLAN Notices (ACM), Volume 17, Number
12 (December 1982), 70-79.

241

Mason, R. o., and Mitroff, I. I. A Program for Research on
Management Information Systems. Management Science,
Volume 19, Number 5 (January 1973), 475-487.

Methfessel, R. Implementing an Access and Object Oriented
Paradigm in a Language that Supports Neither. SIGPLAN
Notices (ACM), Volume 22, Number 4 (April 1987), 83-
93.

Parker, B. J., and Al-Utaibi, G. A. Decision Support
Systems: The Reality That Seems Hard to Accept?
OMEGA International Journal of Management Science,
Volume 14, Number 2 (1986), 135-143.

Parnas, D. L. On the Criteria to be Used in Decomposing.
Systems into Modules. Communications of the ACM,
Volume 15, Number 12 (December 1972), 1053-1058.

Rathwell, M. A., and Burns, A. Information Systems Support
for Group Planning. and .Decis_ion-Making Activities ...
MIS Quarterly, Volume 9, Number 3 (September 1985),
255-271.

Rentsch, T. Object Oriented Programming. SIGPLAN Notices
(ACM), Volume 17, Number 9 (September 1982), 51-57.

Shoch, J. F. An Overview of the Programming Language
. Smalltalk-72. SIGPLAN Notices (ACM}, Volume 14,

Number 9 (September 1979}, 64-73.

Simon, H. A. The New Science of Management Decision.
Harper and Row, New York, NY, 1960.

Smalltalk/V Tutorial and Programming Handbook. Digitalk
Inc., Los Angeles, CA, 1987.

Smith, J. M., and Smith, D. c. P. Database Abstractions:
Aggregation. Communications of the ACM, Volume 20,
Number 6 (June 1977}, 405-413.

Smith, J.M., and Smith D. c. P. Database Abstractions:
Aggregation and Generalization. ACM Transactions on
Database Systems, Volume 2, Number 2 (June 1977}, 105-
133.

Sprague, Jr., R. H. A Framework for the Development of
Decision support Systems. MIS Quarterly, Volume 4,
Number 4 (December 1980}, 1-26.

Sprague, Jr., R. H. DSS in Context. Decision Suooort
Systems, Volume 3, Number 3 (September 1987), 197-202.

242

Stefik, M., and Bobrow, D. G. Object-Oriented Programming:
Themes and Variations. The AI Magazine, Volume 6,
Number 4 (Winter 1986), 40-62.

Suh, E.-H., and Hinomoto, P. Use of a Dialogbase for
Integrated Relational Decision Support Systems.
Decision Support Systems (forthcoming 1989).

Thompson, J. D. Organizations in Action. Mc Graw-Hill,
New York, NY, 1967.

Vazsonyi, A. Decision Support Systems: The New Technology
of Decision Making? Interfaces, Volume 9, Number 1
(November 1978), 72-77.

Vazsonyi, A. Decision support Systems, Computer Literacy,
and Electronic Models. Interfaces, Volume 12, Number
1 (February 1982), 74-78.

Vierck, R. K. Decision Support Systems: An MIS Manager's
Perspective. MIS Quarterly, Volume 5, Number 4
(December 1981), 35-48.

Wagner, G. R. Decision Support Systems: The Real
Substance. Interfaces, Volume 11, Number 2 (April
1981), 77-86.

Wang, M. s.-Y., and Courtney, Jr., J. F. A Conceptual
Architecture for Generalized Decision Support System
Software. IEEE Transactions on Systems. Man. and
Cybernetics, Volume SMC-14, Number 5
(September/October 1984), 701-711.

Watson, H.J., and Hill, M. M. Decision Support Systems or
What Didn't Happen with MIS. Interfaces, Volume 13,
Number 5 (October 1983), 81-88.

Wegner, P., (Editor). Workshop on Object-oriented
Programming: ECOOP 1987, Paris, June 18, 1987.
SIGPLAN Notices (ACM), Volume 23, Number 1 (January
1988), 16-37.

Thesis:

VITA

Brian P. Leclaire

Candidate for the Degree of

Doctor of Philosophy

DECISION SUPPORT SYSTEMS: AN OBJECT-ORIENTED
CONCEPTUAL ARCHITECTURE

Major Field: Business Administration

Biographical:

Personal Data: Born in Buffalo, New York, September
22, 1960, the son of Leo w. and Barbara H.
Leclaire.

Education: Graduated from Medfield Senior High
School,.Medfield, Massachusetts, in June 1978;
received Bachelor of Arts in Psychology from
Ripon College, Ripon, Wisconsin, in May 1982;
received Master of Busines·s Administration from
the University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin, in August 1984; completed requirements
for Doctor of Philosophy degree at Oklahoma State
University in December 1989.

Professional Experience: Graduate Assistant, Graduate
College, University of Wisconsin-Oshkosh,
September 1982 to August 1984; Graduate Teaching
Assistant, Department of Management, Oklahoma
State University, August 1984 to August 1989;
Assistant Professor of Management Information
Systems, School of Business Administration,
University of Wisconsin-Milwaukee, Milwaukee,
Wisconsin, August 1989 to Present.

