
DECISION SUPPORT SYSTEMS: AN OBJECT-

ORIENTED CONCEPTUAL ARCHITECTURE 

By 

BRIAN PHILLIP LE CLAIRE 
II 

Bachelor of Arts 
Ripon College 

Ripon, Wisconsin 
1982 

Master of Business Administration 
University of Wisconsin-Oshkosh 

Oshkosh, Wisconsin 
1984 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
December, 1989 



Th.e5i~ 
)qi') D 
L4~d 
c.op~~ 



DECISION SUPPORT SYSTEMS: AN OBJECT-

ORIENTED CONCEPTUAL ARCHITECTURE 

Thesis Approved: 

Thesis Adviser 

lYta.:+ I c. ~ 

Dean of the Graduate College 

ii 



ACKNOWLEDGMENTS 

I would like to express my deepest gratitude to the 

members of my committee: Professor Ramesh Sharda; 

Professor Marilyn G. Kletke; Professor Wayne A. Meinhart; 

and Professor George E. Hedrick. I would like to commend 

them on their endless support during the embryonic stages 

of my dissertation and notably at its completion. I would 

also like to thank Professor Eui-Ho Suh for his help in 

making this dissertation a reality. 

I feel especially indebted to Ramesh Sharda who served 

as a stellar example of a dedicated researcher and 

educator. His guidance and encouragement at times often 

served as the only spark of inspiration leading me down 

what seemed a long and arduous path. I can only hope to 

acquire his uncanny wisdom and intellectual finesse in my 

academic pursuits. 

I would like to thank and apologize to my wife, Beth, 

for frequently and selfishly relying on her unfailing 

patience. I heavily depended on, and received, her support 

in the final stages of this dissertation and will never be 

able to fully thank her. Although my newborn son Nathan is 

too young to remember the time I stole away from him during 

iii 



my dissertation, I hope that someday he will know how much 

joy he provided me during its completion. 

I would like to thank my parents for their unceasing 

support through the years. They have made incredible 

sacrifices in providing me with an education and for this I 

am truly indebted to them. I aspire to be as successful a 

parent as they have been for me. 

I am also grateful for the support of Vinit Verma and 

Dave Davis. Both Dave and Vinit.proved to be very 

supportive friends during my tenure at Oklahoma State 

University. I am deeply saddened in knowing that we must 

part company. Nevertheless, I look forward to the times 

that we will once again wile away the hours discussing such 

topics as computers, programming efficiencies, racquetball, 

or whatever comes to mind. 

Finally, I would like to thank Professor William A. 

Alexander Jr., my Ripon College adviser. He knew exactly 

how to deal with me when as a second semester Freshman I 

walked into his office and told him I wanted a doctorate. 

He taught me to question, to learn, and to understand. I 

shall, perhaps, never forgive him for the suddenness with 

which he left this world. I find solace in knowing that he 

was successful, however, in directing me toward my goal. 

It is in his memory that I dedicate this dissertation. 

iv 



Chapter 

I. 

TABLE OF CONTENTS 

Page 

INTRODUCTION • .••...•....••••••.•.•..••...•••. 1 

Int;roduction. . . . .. . . . . . . . . . . . . . . . . . . . . . . . 1 
Background of the Problem............... 2 
Statement of the Problem Situation...... 3 
Purpose of the Study.................... 4 
Substantive Assumptions of the Study.... 5 
Rationale and Theoretical Framework..... 7 
Statement of Hypotheses................. 9 
Scope and Delimitations of the Study .... 10 
Outline of the Dissertation ...•......... 10 

II. LITERATURE REVIEW. . .• • . . . • • . . . • • • • . . • • • . . . • . . . 12 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Object-oriented System Concepts •.•....•• 12 

Object-oriented System 
Architecture •..•................. 15 

Abstraction Concepts .......... 16 
Historical Perspective 

of Abstraction .•....... 17 
Encapsulation •..•••....•. 19 

Objects. . . . . . . . . . . . . . . . . . . . . . . 21 
Object Roles ........•.•.. 22 
Object Relationships •.... 23 

Object Subsystem ..•.•.•••.•... 24 
Message Subsystem ..••••.. 25 
Methods Subsystem •.•.••.. 27 

Methods Handler ..... 27 
Methods ••.•......... 28 
Instance Stores ..... 28 
Method Types •.•.•... 29 

Inheritance Concepts ...•...... 30 
Decision Support System Concepts ........ 34 

The Evo~utionary Nature of 
Decision Support Systems ........• 41 

Decision Support System Definition. 43 
Decision Support System 

Characteristics •••............... 44 
Decision Support System Categories. 45 

v 



Chapter Page 

Decision Support System 
Architecture .•................... 47 

Advantages of a Decision Support 
System Approach .....•............ 52 

Shortcomings of Decision Support 
System Designs................... 53 

Data Management System Concepts ••....... 54 
Traditional Data Models •••.••...•.. 55 

Distinguishing 
Characteristics •••••..•.••.• 55 

Relational Data Model ....•...• 56 
Limitations of the 

Traditional Data Models ..... 59 
Semantic Data Models ..•.......•.... 61 

Distinguishing 
Characteristics ............. 62 

Semantic Data Model 
Components .•. w~·•··········· 64 

Entity-Relationship Model ..... 69 
Model Management System Concepts ...•.... 71 

Traditional Approaches to Model 
Management. . • . . . • • • • . . • . . . . . . • . . • 7 4 

Model Management system 
Objectives ••••••••.•••.••... 74 

Distinguishing 
Characteristics ••••..•.•.... 76 

Structured Modeling ........... 77 
Elemental Structure ...... 77 
Generic Structure •.•..••• 79 
Modular Structure ..•..... 80 
Structured Model ••••.•..• 82 

III. OBJECT-ORIENTED RELATIONAL DATA MODEL 
MANAGEMENT SYSTEM. . . . . . . • . . . . • . • . . . . . . . . . . . . • 85 

Introduction............................ 85 
Object-oriented Relational Data Model 

Fundamentals .......................... 86 
Object-Oriented Relational Data 

Model Schema Development ......... 87 
Object-Oriented Relational Data . 

Model Schema Abstraction ......... 91 
Attribute Syntax ..••.......... 92 

IV. OBJECT-ORIENTED MODEL MANAGEMENT SYSTEM ....•. 95 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
Object-Oriented structured Modeling 

Fundamentals .......................... 95 
Model Schema Development .......•... 97 

vi 



Chapter Page 

Model Schema Abstraction ...•.•..... 108 
Attribute Syntax ...•.••.•..... 113 
Entity Object Syntax .•........ 115 
Relationship Object Syntax ..•• 117 
Model Object Syntax •.......... 119 
Model Abstraction Benefits •... 121 

Model Acyclicity Verification ...... 123 

V. MESSAGE PROTOCOLS. . . • • • • • • • • • • • • • . • . • . • • • • . • • 12 8 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 
organization of Classes .•.••....••..•... 128 

Object Class Versus Object 
Instance Access Mechanisms ....... 133 

General Characteristics of Instance 
Obj e.cts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 

Object Class Identifiers ........... 135 
Attribute lnformation .••..•........ 136 

Attribute Definitions ..•...... 136 
Attribute Access 

Mechanisms .•••.••.•••••••••. 139 
overriding Derived 

Attributes. • • • • • • • . . • • • • . . . . 139 
Object Instance Identifier List .•.. 140 

Related Issues ....•••.•.••.............. 141 
Productions. . . • • . . . . . .• • • . • . . . . . . . . . 141 
Contexts. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 
Object Dependencies .••.•.......•... 144 

Class Message Protocols •••..•.......•... 145 
Metamodel Class. . . • . . • • • . . • • . . . . . • • 14 7 

Class Message Protoeols •...... 147 
Instance Message Protocols .... 148 

Entity Class •..•••...•••.•••...•..• 162 
Class Message Protocols •••..•. 163 
Instance Message Protocols .•.. 163 

Relationship Class •..•.•..........• 164 
Class Message Protocols ....... 166 
Instance Message Protocols •... 166 

Model Class .••..................... 171 
Class Message Protocols ....... 173 
Instance Message Protocols .... 174 

Relation Class •••...........•...... 182 
Class Message Protocols ....... 184 
Instance Message Protocols ..•. 185 

VI. PROTOTYPE DESCRIPTION .......................• 193 

In·troduction............................ 193 
Implementation Environment .........••... 193 

Software ........................... 194 

vii 



Chapter 

VII. 

VIII. 

Page 

Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 
User Interface .•........................ 195 

Message Level ............•......... 196 
Window Level ....................... 199 

Window Components ............. 203 
Window Label ............. 203 
Edit Pane ................ 204 
Cell Pane ................ 206 

DSS Browser Level ...•..•........... 220 
Window Level Data and Model 

Distinctions .............•............ 223 

FUTURE RESEARCH DIRECTIONS ...•............... 229 

SUMMARY AND CONCLUSIONS..... . . . . . . . . . . . . . . . . . 232 

LITERATURE CITED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 4 

viii 



LIST OF FIGURES 

Figure Page 

1. An Object Subsystem. . . . • . . . . . • • • . . . . . . . . . . . . . . . . 16 

2. Object Subsystems ••..••....••.•...••••••••••••.• 24 

3 • Message Subsystem. • • . . • . . . . . . . . . . . . . • • . • . . . . . . . . 2 7 

4. Methods Subsystem ............................... 29 

5. An Inheritance Hierarchy •.....•.••.•..•..•.•.... 31 

6. A Management Information Systems Framework ..•... 36 

7. A Decision Support System Framework ..•.•••...... 37 

8. A Connotational View ...•..•••...•..••.••.... ~ ... 41 

9. The Learning cycle Model •....•.....•••.......... 43 

10. Decision Support System Orientation ..•••........ 46 

11. Decision Support System Components .••...•....... 48 

12. Decision Support System Architecture ...•••.•••.. 49 

13. Decision Support System Architecture 
Revisited ................................. -.... 50 

14. Decision Support System Levels of Technology •... 51 

15. Decision Support System Roles ................... 52 

16. Source Relation Example ......................... 58 

17. Link Relation Example. . . • . . . . • . . . . . . . . . . . . . . . . . . 58 

18. Attribute Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

19. Aggregation Example ...••................... ·•.... 66 

20. Grouping Example ................................ 67 

ix 



Figure Page 

21. overlapping Generalization Example .............. 68 

22. Covering Generalization Example ................. 69 

23. Derived Schema Components Example ............... 70 

24. Transportation Model Genus Graph ................ 80 

25. Source Point and Link Generic Paragraphs ........ 81 

26. Source Data Module Paragraph .................... 81 

27. Transportation Model Modular Structure .......... 82 

28. Transportation Model Modular Outline.~·········· 83 

29. Transportat~on Model Sbhema ...................... 83 

3 o. Source Relation Class. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

31. Link Relation Class ............................. 89 

32. Data Model Schema Abstraction Syntax Notation ... 91 

33. Attribute Syntax................................ 92 

34. Relational Data Model Abstraction General 
Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 

35. Data Model Schema Abstraction Example ........... 94 

36. Entity-Relationship Diagram ..................... 99 

37. Simplified Class-Instance Diagram ............... 100 

38. Class-Instance Diagram with Identifier 
Aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1O2 

39. Model Class-Instance Diagram with Instance 
Attributes . ........................ c. . . . . . . . . . . 104 

40. Complete Class-Instance Diagram ................. 106 

41. Simplified Class-Instance-Model Diagram ......... 107 

42. Class-Instance-Model Diagram with Instance 
Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

43. Complete Class-Instance-Model Diagram ........... 110 

x 



Figure Page 

44. Model Schema Development Steps .................. 111 

45. General Linear Programming Class-Instance-Model 
Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 

46. Attribute Syntax................................ 113 

47. Attribute Syntax Examples ....................... 114 

48. Entity Syntax................................... 115 

49. Entity Syntax Example-........................... 117 

50. Relationship Syntax .............................. 117 

51. Relationship syntax Example ..................... 119 

52. Model Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 O 

53. Transportation Model Schema Abstraction ......... 122 

54. General Linear Programming Model Schema 
Abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 

55. Calling Sequence Determination Rules ............ 126 

56. Algorithm for Verifying Model Acyclicity ........ 127 

57. Class Object Hierarchy .......................... 130 

58. Creating an Entity Class •....................... 197 

59. Message Level Flowchart ..............•.......... 199 

60. Window Level Flowchart .......................... 201 

61. Source Point Class Window ....................... 202 

62. Transportation Model Class Window ............... 202 

6 3 • Window Label Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 o 5 

64. Edit Pane Menu .................................. 206 

65. Cell Menu ....................................... 208 

66. Column Heading Menu ............................. 209 

67. Row Heading Menus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 

xi 



Figure Page 

68. Solution Process Flowchart ...................... 213 

69. Solution Process Object Interactions ............ 214 

70. New Instance Window Cell Pane Menu .............. 215 

71. Class and Instances Window Cell Pane Menus ...... 217 

72. Window Level Object Interactions ................ 219 

73. DSS Browser Window .............................. 221 

74. !Ji.:st:. 1?Cl.I1E3. r.iE3.I1tl......................... . . . . . . . . . 221. 

75. DSS Browser Level Flowchart ..................... 222 

76. Suppliers_Relation Window .•... ~~················· 224 

77. New Tuple Cell Pane Menu ........................ 226 

78. Relation Cell Pane Menu ......................... 226 

79. Relation Row Heading Menu ....................... 226 

80. Suppliers Class Window .......................... 227 

xii 



CHAPTER I 

INTRODUCTION 

Introduction 

Mason and Mitroff (1973) informally define information 

as knowledge for the purpose of taking effective action. 

Sprague (1987) maintains that-the purpose -of an 

organizational information system is to improve the 

performance of its information workers through the 

application of information technology. Both the formal and 

the informal exchange of ·information, aided by information 

technology, forms the basis of all organizational activity 

(Barret and Konsynski 1982, Rathwell and Burns 1985). 

Decision Support Systems (DSSs) provide one form of 

information technology capable of storing, retrieving, 

presenting, and manipulating data and models in an online, 

real-time manner. DSSs rely on the intellect of the 

information worker at all stages of the problem solving 

process and are different from traditional computer-based 

approaches to problem solving. Traditional approaches 

primarily deal with repetitive and routine problem 

situations which have little need for novelty in the 

decision making process. Accordingly, the information 
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worker in the role of the decision maker commonly uses a 

DSS to solve less well structured, underspecified problems 

which tend to be novel with no apparent, clear way of 

solving them. 

Background of the Problem 

The development of a DSS is iterative, adaptive, and 

evolutionary because of its argued need for flexibility. 

Researchers tend to agree that the most important 

components of a DSS are (Bonczek, Holsapple, and Whinston 

1980a, Sprague 1980): (1) models; (2) data; and (3) the 

user. The hardware and software employed should facilitate 

the integration of data and models. Considerable research 

is directed toward resolving this issue, however, because 

of a lack of sufficiently general conceptual and 

theoretical foundations this goal has not been realized 

(Sprague 1980, Dolk and Konsynski 1984, Ahn and Grudnitski 

1985, Klien, Konsynski, and Beck 1985, Blanning 1986, Delk 

1986, Konsynski and Sprague 1986, Lenard 1986). 

Researchers often attack this deficiency in the 

coordination and integration of disparate DSS components 

from one perspective or another. Holsapple and Whinston 

(1987) assert that an object-oriented (0-0) notion of the 

environment within which the DSS functions allows for the 

coordinated interplay among diverse and related concepts 



and is potentially an important one concerning the 

flexibility, power, and convenience of DSSs. 

Statement of the Problem Situation 

3 

Historically, reseachers have viewed DSSs as either 

data-oriented or model-oriented (Alter 1977, Bonczek, 

Holsapple, and Whinston 1979, Dolk 1986, Elam and Konsynski 

1987). According to Delk (1986) the information systems 

community has traditionally emphasized the data-oriented 

nature of information systems whereas the modeling 

community, characterized by the fields of operations 

research and management science, has focused on the 

algorithms and procedural requirements for solving models. 

Thus, the tendency of these disciplines is to concentrate 

on one component of the DSS with the consequence that the 

DSS user often encounters problems in integrating data and 

models. For example, DSS users must recollect and 

reorganize data for each run of a model (Bonczek, 

Holsapple, and Whinston 1980a) . 

Researchers have moved away from this fragmented view 

of decision support. Current research strives to abstract 

the whole process of data and model management. Such 

abstraction mechanisms hope to achieve the goal of 

integrating data and model management systems such that the 

user is unaware of whether he or she is directing a data 

retrieval operation or modeling process. Suh and Hinomoto 
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(1989) suggest a relational approach which integrates the 

three DSS components under a relational framework. They 

propose the concept of a relational dialogue base using 

ideas analogous to those found in relational database and 

relational model base approaches forwarded by Codd (1970) 

and Blanning (1985), respectively. 

Researchers, however, encounter the problem of. 

orchestrating such ideas into a well designed whole in 

order to_ realize an efficient, workable system. Thus, the 

current study undertakes the problem of developing a 

conceptualized DSS architecture which incorporates such 

ideas as data abstraction, model abstraction, and 

information hiding. This is accomplished by applying o-o 

notions in the development of such an architecture. 

Purpose of the Study 

The primary purpose of this study is the merging and 

integration of previously separate tools into a unified 

whole which repre3ents a conceptual architecture for a DSS. 

Chung (1984) argues that the design architecture for any 

given system should consist of different levels of 

abstraction which may be conceived of as a continuum from 

conceptual constructs, to operational constructs, and then 

to implementation constructs. The proposed architecture 

provides support for all three of these levels of 
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abstraction. We achieve this support through the specific 

application of 0-0 information system ideas. 

As a consequence, we direct this study at solving the 

problem of integrating data and models across various areas 

(e.g., functional areas) such that the solution techniques 

provide a mechanism for the coordination of- data and model 

components. Through the application of techniques from 

different fields, including artificial intelligence, we 

make the modeling process flexible using an o-o approach to 

data management and to model development and design. o-o 

applications follow a modular design where modelers use 

such design techniques to organize a system into a set of 

increasingly complex modules (Fuerst and Martin 1984). 

Thus, this study undertakes the following objectives: 

(1) to develop an o-o relational data model; 

(2) to develop an o-o structured model; 

(3) to develop message protocols which allow the DSS 
user, o-o relational data model, and o-o 
structured model to interact with one another; 
and 

(4) to develop a prototype o-o DSS in a personal 
computing environment which employs the ideas 
developed in (1), (2), and (3). 

Substantive Assumptions of the Study 

Gorry and Scott Morton (1971) argue that the missing 

ingredient in problem formulation is the a~ility of the 

modeler to elicit from the decision maker his or her view 

of the organization and its environment, and the ability to 
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formalize models of this view. As a result, the process of 

model definition must be dominated by the decision maker 

where relevant models are most often the unverbalized 

models used by the decision makers of the organization 

(Garry Scott Morton 1971). This is generally supported by 

the accepted precept of system design which states that 

systems have a higher probability of succeeding if users 

are involved in their development (Fuerst and Martin 1984). 

DSS models usually are not laborious to build and 

users mostly pref er to construct models according to their 

own way of thinking (Wagner 1981). DSS users create, 

modify, and discard DSS models according to their weekly 

needs and whims (Huber 1983). This is reinforced by two 

principles (Mason and Mitroff 1973): (1) decision makers 

need information that is geared to their psychology not to 

that of the system designers; and (2) decision makers need 

a method of generating evidence that is geared to their 

problems and to those of the system designers. Garry and 

Scott Morton (1971) contend that an understanding of 

managerial activity is a prerequisite for effective systems 

design and implementation. Thus, we assume that decision 

makers should play an integral role in the model creation 

process. 

Huber (1983) notes two conclusions from his review of 

cognitive style research in management information system 

(MIS) and DSS design. First, he argues that at present the 
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available literature on cognitive style is an 

unsatisfactory basis for deriving operational design 

guidelines. Second, further cognitive style research is 

unlikely to provide a satisfactory body of knowledge from 

which to derive such guidelines. As Bahl and Hunt (1984) 

discuss, each theory of decision making tends to emphasize 

different aspects or different perspectives of the general 

process of making and of implementing decisions. They 

argue that no single theory of decision making adequately 

deals with the entirety of the phenomenon. Alavi and 

Henderson (1981) support this perspective. Thus, we assume 

that we can ignore theories of cognitiv~ style and decision 

making processes in developing our architecture. 

Rationale and Theoretical Framework 

Ackoff (1967) argues that no information system should 

be carried out unless the users for whom it is intended are 

trained to evaluate and hence control it rather than be 

controlled by it. A solution forwarded by Ackoff (1967) is 

to have the user participate in the design of the system 

thereby assuring the user's ability to evaluate its 

performance by comparing its output with what was 

predicted. As a consequence, the user of a DSS should play 

a much more active and controlling role in the design and 

development of the system. Andriole (1982) believes the 

design of DSSs should be completely user and task driven. 
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The provision of end user control and a simple means 

for model building requires the flexibility of adding, 

deleting, or changing DSS functions at the discretion of 

the user. DSSs should lend themselves to rapid 

modification to meet the needs of a particular decision 

maker in each new situation (Rathwell and Burns 1985). 

This implies the use of a DSS shell which allows users to 

modify existing features or develop new ones. This 

suggests an evolutionary approach to system development 

where the decision maker is the iterative designer of the 

system since no one can anticipate all conceivable design 

possibilities or potentially relevant data and modeling 

needs before design starts. Keen (1980) believes that the 

evolutionary nature of a DSS is of central conceptual and 

practical importance. This flexibility allows the DSS to 

support multiple styles of decision makers solving several 

different·types of tasks (Ahn and Grudnitski 1985). 

Finally, the development of a conceptual architecture 

is helpful in several ways: (1) it organizes a complex 

subject; (2) it fQrther identifies the relationships 

between the parts; and (3) it suggests areas for further 

research. As Blanning (1986) states, an important 

component of any effective approach to decision support is 

a theoretical component. 
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Statement of Hypotheses 

The solution to the problem discussed above, namely 

the development of a conceptualized DSS architecture which 

incorporates such ideas as data abstraction, model 

abstraction, and information hiding, requires the need for 

a flexible design that can easily adapt to current needs. 

There should be a dependence upon a generalized system 

approach where specific systems are built from general 

systems. This has the advantage of relative ease of 

understanding since the specific systems are based on-the 

same principles encountered in the general systems 

(Bonczek, Holsapple, and Whinston 1980b). 

Abstraction allows the construction of such complex 

systems. Abstraction provides a meaningful way of managing 

complexity and guarantees continuity. The conceptual 

development of an application involving complexity is 

perhaps most appropriately handled using a powerful 

abstraction mechanism, such as provided by an 0-0 approach. 

o-o information systems emphasize objects as the unit 

of access and manipulation. o-o information systems 

provide mechanisms to define, create, and relate objects 

and object interactions. Such systems use abstraction and 

information hiding, the hiding of design decisions about 

those abstractions, in order to reduce complexity. o-o 

information systems deal with a complex idea or real world 



system through the construction of a set of independent 

abstractions. 

10 

Thus, given the need for data abstraction, model 

abstraction, and information hiding, an o-o approach to a 

conceptualized DSS architecture is a natural choice. 

Scope and Delimitations of the Study 

We are concerned with the development of a conceptual 

architecture for the support of DSS design and do not 

implement an actual system. We do, however, develop a 

prototype which employs several fundamental 0-0 concepts. 

Furthermore, our prototype provides support for data and 

model representations but does not support the ideas of 

model selection or model sequencing (see Bu-Hulaiga and 

Jain 1988). 

The design of the given conceptual architecture 

suggests a system which does not restrict itself to 

consideration of problems in a given application area. The 

proposed architecture is very general in nature allowing 

for specific incorporation of certain concepts not directly 

discussed. 

outline of the Dissertation 

Chapter II presents an in-depth review of related 

literature. Chapter III discusses an o-o relational data 

model management system which employs fundamental 
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relational data modeling concepts, data model schema 

development, and data model schema abstraction. An o-o 

model management system is discussed in Chapter IV. This 

chapter presents structured modeling ideas from an o-o 

perspective and introduces model schema development and 

model schema abstraction concepts. Chapter V defines 

several class objects and their associated message_ 

protocols necessary for the operationalization of the ideas 

forwarded in Chapters III and IV ... Chapter VI reports on a 

prototype developed in a personal computing environment 

employing the message protocols defined in Chapter V. 

Chapter VII suggests several possible future research 

directions. Finally, Chapter VIII summarizes and concludes 

the present study. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter presents a review of the literature 

related to concepts encountered in the study of object

oriented (0-0) information systems,· decision support 

systems (DSSs), data management systems, and model 

management systems. First, we discuss relevant o-o system 

ideas and present a formalized o-o architecture. Next, we 

review various issues involved in the design of DSSs. In 

the following section we examine assorted data management 

system notions, specifically Codd's (1970) relational data 

model and Chen's (1976) entity-relationship model. 

Finally, we present several model management system issues 

with an emphasis on Geoffrion's (1987) structured modeling 

approach to model management. 

Object-Oriented System Concepts 

o-o information systems are the result of a synthesis 

of many diverse ideas within the computer science field 

(Ahlsen, Bjornerstedt, Britts, Hulten, and Soderlund 1984). 

Specifically, o-o programming is responsible for the 

12 
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development of many o-o ideas. o-o programming differs 

from a procedural style of programming in that the role of 

data is more central. That is, the shape of the data 

determines the way the operation behaves (Jenkins, Glasgow, 

and Mccrosky 1986). An operation in procedural programming 

receives data and is considered the dual of o-o programming 

(Korth 1986) • Data-driven programming moves a problem 

solution away from the machine domain and places it closer 

to the problem domain. 

The programming language Simula, developed in the 

middle 1960's, introduced the class concept which is 

central to o-o notions and was the immediate predecessor to 

o-o programming (Rentsch 1982, Ahlsen, Bjornerstedt, 

Britts, Hulten, and Soderlund 1984, Stefik and Bobrow 

1986). An outcropping of the ideas carried out in Simula 

resulted in a programming system known as Smalltalk. 

The Small taL'{ programming system emerged·· in the early 

1970's delineating several o-o concepts. For instance, 

Smalltalk introduced the term "object-oriented" and perhaps 

serves as the best current example of an o-o programming 

language (Rentsch 1982, Ahlsen, Bjornerstedt, Britts, 

Hulten, and Soderlund 1984). Smalltalk was but one part of 

a broader effort to explore the ways in which people 

manipulate information and communicate with machines (Shoch 

1979). Designers of Smalltalk were influenced from its 
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inception by Alan Kay's vision of the future, the Dynabook 

(Cox 1986). 

Bergin and Greenfield (1988) argue that any 

programming langunge which provides for the notion of an 

abstract data type (a set of well defined actions on a 

collection of data structures) and supports the abiiity to 

enclose and separate such a type from other types, provides 

the basis for consideration as an o-o programming language. 

As a result of this argument o-o programming may be 

considered either revolutionary or evolutionary (Cox 1984). 

According to Jacky and Kalet (1987) new dialects of certain 

languages (e.g., LISP, c, and Pascal) provide support for 

o-o ideas. Furthermore, they state that several o-o 

techniques exist for the languages CLU, Ada, and even 

Fortran. 

Several researchers have applied o-o notions to other 

areas within the information systems literature. The use 

of such ideas in off ice information systems development and 

management appeared as early as 1984 (Ahlsen, Bjornerstedt, 

Britts, Hulten, and Soderlund 1984, Lyngbaek and McLeod 

1984). Borgida (1985) proposes the use of o-o concepts in 

the development of information systems at the conceptual 

level. Borgida, Greenspan, and Mylopoulos (1985) introduce 

the use of o-o ideas as a basis for knowledge 

representation. Recently, much attention has been directed 

at o-o ideas within the area of artificial intelligence 
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because of their similarity to existing techniques for 

knowledge representation, such as frames, and for their use 

in knowledge acquisition (Casais 1988, Wegner 1988). For 

similar reasons, o-o ideas have generated considerable 

interest within the database community during the last few 

years (Bancilhon 1986, Kirn and Lochovsky 1989). 

Certain inf orrnation system areas have successfully 

applied o-o concepts but only on a limited scale because of 

the relative unfamiliarity of these concepts. Much of the 

research within the o-o area is undertaken using an 

implicit o-o system model as a consequence of this 

unfamiliarity. In the next section we present an explicit 

o-o system architecture. 

Object-oriented System Architecture 

Leclaire and Suh (1988) present a common framework for 

o-o systems in an attempt to provide a unified paradigm to 

aid in understanding relevant concepts and bestow 

researchers with an explicitly formalized o-o system 

architecture. According to them an o-o system consists of 

two components: (1) objects; and (2) a message bus. 

Rentsch (1982) stresses that objects "are the sole 

inhabitants of an otherwise empty universe" (p. 53). 

Hence, objects exist alongside other objects and are the 

only observable entities within the object universe. 

Objects are the basic unit of construction-used in building 
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0-0 systems. Figure 1 presents a diagrammatic view of such 

a system. The message bus is a conceptual representation 

which serves the purpose of providing a logical interface 

between objects. Presented below is a discussion of the 

message bus, objects, and their associated ideas. 

Object Object 

Object Object Object 

Figure 1. An Object Subsystem 

Abstraction Concepts 

Large o-o systems use layers of abstraction in· their 

design and, as a result, a review of abstraction concepts 

is pertinent as objects represent abstractions of the 

entities in these systems (Borgida 1985, Booch 1986). 

Abstraction provides the means to manage complexity and 
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involves the specification of a system that emphasizes 

certain system details while suppressing others. This 

specification is nothing more than a mathematical 

description of the underlying thought (Liskov and Zilles 

1975). 

Historical Perspective of Abstraction 

Shoch (1979) notes that Plato's theory of Forms is an 

example of the early use of .abstraction. A study of 

relevant historical concepts in computer science is 

justified since, as shown above, most o-o system ideas 

arose because of work in that discipline. Not 

surprisingly, modern programming•s primary way of 

controlling complexity is through abstraction. 

Abbott (1987) presents an evolutionary perspective of 

abstraction wherein he argues that abstraction has 

progressed through several stages in moving toward o-o 

applicability. A~cording to him this movement is important 

in that "the history of software development has been the 

continuing abstraction of programs away from the computer 

and toward the problem" (p. 664). These evolutionary 

stages are: 

(1) procedural abstraction; 

(2) syntax abstraction; 

(3) data abstraction; and 

(4) process abstraction. 
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Procedural abstraction, the first form of software 

abstraction, is the isolation of certain, possibly 

parameterized sequences of code. This allows for 

functional representation where there is no loss of meaning 

in terms of what the code purports to do. Procedural 

abstraction was perhaps.the first step toward a unified 

structured programming paradigm. It allows for the 

expression of simple mathematical functions using a single 

programming statement. For instance, the statement sqrCxl 

calculates the square root of the given value. 

Instead of translating the problem into machine terms, 

the use of syntax abstraction allows programmers to remain 

closer to the problem domain. This is particularly 

relevant when evaluating arithmetic expressions. No longer 

is it necessary to assemble a sequence of instructions to 

add two numbers; simply expressing them in an arithmetic 

expression such as x+y is sufficient. 

Data abstraction emphasizes data rather than control 

and packages each data structure and its associated 

operations in a single module. A unit external to the one 

which manages an abstract data type owns the data type. 

The ability to express concurrent processes is known 

as process abstraction. Procedural, syntax, and data 

abstractions provide for a fundamental idea known as 

modularity. Modularity is the design of reusable and 

modifiable pieces of subroutines with the intent to keep 
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together related things, such as data structures and 

procedures (Ahlsen, Bjornerstedt, Britts, Hulten, Soderlund 

1984, Stefik and Bobrow 1986). 

Encapsulation 

o-o systems extend certain abstraction ideas, 

modularity in particular, to an idea known as 

encapsulation. When coupled with process abstraction, the 

viewing of objects as independent entities, modularity 

provides the basis for encapsulation. Encapsulation 

achieves both abstraction and information hiding which are 

fundamental to o-o systems (Booch 1986, cox 1986, Bancilhon 

1988). The intent of hiding design decisions about 

abstractions during the decomposition of a system is known 

as information hiding (Parnas 1972). Ahlsen, Bjornerstedt, 

Britts, Hulten, and Soderlund (1984) argue that information 

hiding is synonymous with encapsulation. 

The uniqueness of an object is determined by its 

external relations and is independent of its internal 

representation. This focus on an external view of objects 

achieves encapsulation. Viewing the actions of objects 

rather than their intrinsic behavior provides a natural 

metaphor for that behavior (MacLennan 1982, Rentsch 1982). 

The separation of specification from implementation 

ensures that objects contain the operations necessary to 

deal with themselves and thus these operations are only 
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accessible through the given object. As a result, the 

object which owns the abstract data type also manages it 

(Buzzard and Mudge 1985). This encapsulation tends to 

enhance the understandability and maintainability of 

objects because of the localization of operations (Booch 

1986). An object successfully separates external 

specification from internal implementation by protecting 

properties used only for purposes internal to the object 

from outside access (Ahlsen, Bjornerstedt,. Britts, Hulten, 

and Soderlund 1984, Blaha, Premerlani, and Rumbaugh 1988). 

This forms the basis for the establishment of 

protection domains where the effect of an operation within 

a closed system, for example an object, remains confined to 

that closed system. According to Buzzard and Mudge (1985), 

protection domains provide for a secure and error tolerant 

execution environment. The dependencies between objects 

are thus decoupled thereby restricting intentional and 

unintentional modifications from proliferating throughout 

the system. The localization of design decisions to the 

object level reduces the scope that a change in an object 

will have upon the system through the encapsulation of 

operations done by objects at a primitive level (Booch 

1986). In other words, objects should define "the object, 

the whole object, and nothing but the object" (Booch 1986, 

p. 216). 
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Objects 

Booch (1986) postulates that an object has six 

fundamental characteristics. An object is an entity which: 

(1) exists through time; 

(2) is characterized in behavioral terms, that is, by 
the actions that.it displays and those it 
requires of other objects; 

(3) is an instance of some, possibly anonymous, 
class; 

(4) is denoted by a name or identifier; 

(5) has restricted visibility of and by other 
objects; and 

(6) may be viewed either by its specification or by 
its implementation. 

Thus, an object is a thing that exists, has identity, 

and is not inert matter. An object "is an active, alive, 

intelligent entity" (Rentsch 1982, p. 53). Objects 

correspond to real world entities and as such exist in 

time, are changeable, have state, and may be created, 

destroyed, and shared (MacLennan 1982). Two objects that 

have different substance maintain their identity even 

though they may have the same form. In other words, two 

objects occupy separate regions of space even though they 

may be uniform in every other possible way. In this sense 

an object may exist without having a unique identifier and 

thus be distinct from other objects. The issue of object 

identity continues to be debated (Bancilhon 1986, Bancilhon 

1988). It is necessary, however, to be able to distinguish 
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between various objects and a unique identifier serves this 

purpose. 

Objects represent the primitive elements within an o-o 

system and are natural metaphors for model building in that 

each is a capsule of state and behavior (Cox 1984, Cox 

1986, Stefik and Bobrow 1986). Such systems, as .depicted 

in Figure 1, use objects to model "some entity, or. 

activity, or, more generally, some concept in the world 

being mod~led" (Borgida, Greenspan, and Mylopoulos 1985, p. 

85) and emphasize objects as the unit of access and 

manipulation. Many of the ideas underlying these 

characteristics are discussed at length below. 

Object Roles 

Objects fulfill certain roles during their existence 

as do the real wor.ld entities which they model. Objects 

may assume any one of these roles at any given time. 

Certain objects, however, may only play one role during 

their existence. Three object roles are (Booch 1986): (1) 

actor; (2) agent; and (3) server. 

An actor is any object which does not serve other 

objects but which requests their service in fulfilling a 

given task. An object is acting as an agent when it serves 

another object. Much like an actor, an agent may request 

an action be undertaken by another object. An object is 

functioning as a server when acting for another object. 
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Unlike an actor, a server is unable to request the service 

of another object. Thus, an actor strictly directs other 

objects, a server suffers at the hands of other objects, 

and an agent may act in either capacity at any point in 

time. 

Object Relationships 

Blaha, Premerlani, and Rumbaugh (1988) define a 

relationship as a logical binding between objects. ..They 

identify three different relationships which may exist 

between objects. These are: (1) generalization 

relationship; (2) aggregation relationship; and (3) 

association relationship. 

Generalization, defined by Smith and Smith (1977b), 

regards a set of similar objects as a generic object. 

Blaha, Premerlani, and Rumbaugh (1988) agree and extend 

this idea to o-o modeling by defining a generalization 

relationship as an is-a relationship which partitions a 

collection of objects into mutually exclusive subclasses. 

Aggregation, as described by smith and Smith (1977a, 

1977b), is an abstraction which allows a relationship 

between objects to be thought of as a higher-level, named 

object. Blaha, Premerlani, and Rumbaugh (1988) define this 

type of relationship as an aggregation relationship such 

that an object is treated as an assembly component or part

of relationship. Thus, object aggregation is the process 
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of combining low-level objects into composite objects 

expressed at a higher-level. 

An association relationship is analogous to the notion 

of an instance of a relationship set as used in Chen's 

(1976) entity-relationship model. Thus, an association 

relationship relates two or more independent objects. 

Object Subsystem 

Two subsystems comprise an object (see Figure 2): (1) 

a message subsystem; and (2) a methods subsystem. Each of 

these subsystems is discussed at length below. 

v-------------Message Bus r----r------------J 

Message 
Subsyste111 

Methods 
Subsyste111 

Object 

Figure 2. Object Subsystems 
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Message Subsystem 

The environment manipulates objects by selecting them 

and communicating to them which requests to fulfill. An 

object may at times be entirely self-sufficient and thus 

able to accomplish the requested task. The capability to 

initiate the fulfillment of a request or propagate this 

request in the event an obj e_ct _is __ incapable _of carrying it 

out on its own requires that objects have -a means of 

communicating with other objects. Objects achieve this 

integration through a message sending/receiving capability. 

The message subsystem of an object provides this ability. 

A message is the specification of a request to be 

fulfilled by an object. Messages serve to initiate 

processing and request information. Objects pass messages 

to other objects across the message bus using a 

preestablished message protocol. A message protocol is a 

collection of messages to which an object will respond. 

The specification of an object name, a method name, and 

possible parameters is an example of the structure of a 

message. Message passing between objects is the dual of a 

functional call of a method name (Jenkins, Glasgow, and 

Mccrosky 1986, Stefik and Bobrow 1986) .. 

The use of protocols allows for a uniform interface 

between objects and leads to polymorphism. The 

communication between objects through a well defined 

interface forms the basis for information hiding as 
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discussed above. Polymorphism is characteristic of o-o 

systems because of the interchangeability of objects. This 

interchangeability is a result of the use of message 

protocols in that different objects are invoked in the same 

manner. As a result, objects in one application may 

effectively be used in another. Booch (1986) states that 

"reusable software components tend to be objects or classes 

of objects" (p. 220) and as such an application may be 

carried out through functional composition rather than 

decomposition. This results in a large reduction in the 

complexity of systems. A consequence of this reduction is 

systems which are easier to build, test, and maintain 

(Bhaskar 1983). 

The message subsystem has two components (see Figure 

3): (1) a message receiver; and (2) a message sender. The 

message receiver responds to messages communicated across 

the message·bus which are directed at the given object. 

The· message receiver retrieves a message from the message 

bus and passes it along to the methods subsystem. A 

message queue may be used to buffer messages. The methods 

subsystem determines whether it is capable of fulfilling 

the communicated request and, consequently, other message 

sending may be necessary. Any object can fulfill a request 

by any message through the direction of message flows to 

other objects. A central thread of control cannot be 

identified in an o-o system because of message forwarding, 
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object independence, and object autonomy. The message 

sender allows the object to propagate a message to other 

objects, request specific tasks to be carried out by other 

objects in fulfilling its task, and to send confirmation 

about task completion. 

Message Bus 

Message 
Receiver 

Message 

SubsysteM 

Message 
Sender 

Methods SubsysteM 

Figure 3. Message Subsystem 

Methods Subsystem 

The methods subsystem is comprised of three components 

(see Figur~ 4): (1) a methods handler; (2) one or more 

methods; and (3) zero or more instance stores. Each of 

these components is elaborated upon below. 

Methods Handler. Whereas the message subsystem serves 

as the interface unit between two objects, the methods 

handler serves as an interface between the message 
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subsystem and specific methods. The methods handler is 

responsible for receiving a message from the message 

subsystem and determining whether a method exists which 

will be able to fulfill the given request. An object uses 

the methods handler in order to complete a request in the 

event no such method exists within the given object or 

should a method be unable to fulfill the request without 

relying on another object. 

delegation (Wegner 1988). 

This process is known as 

Thus, the methods handler; in 

combination with the message subsystem, allows a "call by 

desire" implementation (Rentsch 1982). 

Methods. The behaviors manifested by objects are 

known as methods. A method is simply the function which 

carries out the response to a message. Methods allow for 

the hiding of information by concealing the way in which an 

object satisfies a request. Furthermore, methods achieve 

data abstraction by implementing data manipulation and 

handling outside of the visibility of the object universe. 

As a result, methods have natur·a1 side effects and tend to 

modify the state of an object. Using methods the 

environment determines what is done rather than how it is 

done (Cox 1984). 

Instance Stores. Objects, like the real world 

entities they represent, have the ability to save state by 

using methods and instance stores. Objects manipulate the 

instance· stores which they own. They may be dynamically 
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created or changed during the life of an object. Instance 

stores form the local database upon which methods act and 

exist only within the body of an object (MacLennan 1982, 

Methfessel 1987, Casais 1988). 

Message SubsysteM 

Instance Stores 
Methods Subsyste" 

Figure 4. Methods Subsystem 

Method Types. Booch (1986) identified three types of 

operations which may be carried out by a method: (1) 

constructor; (2)selector; and (3) iterator. A constructor 

is an operation which alters the current state of the 

object. In this sense, a constructor operates upon 

instance stores. An operation that evaluates the current 

state of an object is a selector. A selector causes an 
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object to act or display behavior. All parts of an object 

are visited using an operation known as an iterator. 

Inheritance Concepts 

Fundamentally, objects which are similar in nature may 

be grouped together and in doing so form a class. A class 

is nothing more than a collection of homogeneous objects 

expressed at an appropriate level of abstraction. Classes 

exist in the same sense as objects and are objects at a 

metalevel, called class objects. 

As stated above, an object is an instance of a class. 

The word instance, when used as a noun, refers to objects 

which are not classes and are called instance objects. It 

is possible to have any number of instances of otherwise 

identical objects. Each object, whether a class object or 

instance object, may have several instance stores which are 

private to that object. There are two types of instance 

stores: (1) existence stores; and (2) class stores. 

Existence stores allow objects to save state. Existence 

stores are available within both class objects and instance 

objects. Class stores provide class objects the ability to 

store values describing all instances of the class. 

The phrase instance of generally refers to the 

relationship between an object, either a class object or an 

instance object, and its class. Figure 5 shows an 

inheritance hierarchy where a specific source point in a 



31 

transportation model is an example of an instance object. 

A source point instance object in this example has two 

instance stores: (1) sourceName; and (2) supply. A 

specific source point in the transportation model uses the 

sourceName existence store for identification purposes. 

The supply existence store furnishes the quantity available 

at the specific source point. 

______......---

(//JJJJh (//ill! 11/J 

Source 
Point 
Class 

sourceCount supplyTotal Source 
Point 

Instance 
(, _ _.) 
sourceNatite supply 

Figure 5. An Inheritance Hierarchy 

The collection of individual source points comprises 

the source point class object. As is evident in Figure 5, 

the source point class object has two instance stores: (1) 

sourceCount; and (2) supplyTotal. The instance store 
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sourcecount is an example of an existence store. This 

store describes the class object by giving the number of 

corresponding instance objects. on the other hand, 

supplyTotal is a class store which describes the total 

supply of all source point instance objects. Thus, this 

store describes a characteristic common .. to all instances of 

the class. 

A given source point instance object is an instance of 

the source point class object. The source point class 

object is the superclass of the source point instance 

objects. A superclass is a class that is above a given 

object in the inhHritance hierarchy. An instance object 

can never be a superclass object since no objects in the 

inheritance hierarchy may exist directly below it. The 

source point class object is an instance of the entity 

class object. Here the source point class object is a 

subclass of the entity class object. A subclass is a class 

that is directly below a given class in the inheritance 

hierarchy. 

Perhaps one of the greatest benefits of an o-o system 

is the ability of an object to garner the characteristics 

of the class to wnich it belongs. Newer classes are built 

upon older, less specialized classes using inheritance. 

Inheritance distinguishes o-o systems from other systems 

(Cox 1984, Wegner 1988). Inheritance implies that an 

object shares the characteristics common to its class and 
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permits an incremental sharing of object attributes such as 

behavior, knowledge, or implementation. This sharing of 

attributes appears to be a useful device to abbreviate 

object descriptions and allows a generic object to own a 

common attribute rather than replicating it many times at 

lower levels (Borgida 1985., Bic and Gilbert .1986). 

According to Stefik and Bobrow (1986), addition allows 

for the introduction of new instance stores and methods 

which do not appear in a newly instantiated object's 

superclasses. Substitution, often called overriding in the 

o-o literature, is the respecification of an instance store 

or method which already appears in the inheritance 

hierarchy. In this sense, stepwise refinement by 

specialization is possible wherein an attempt is undertaken 

to define the most general classes first followed by 

incrementally specializing subclasses. This results in 

incremental system development and easier replacement of 

system components and is possible because of the object 

relationships discussed above. 

As previously implied, object instantiation makes 

inheritance possible. Instantiation is the process of 

creating a new object and provides for inheritance by 

attaching the generic attributes of its superclass to that 

object. Generally, the superclass object provides the 

ability to instantiate new objects and is implemented as a 

method. A factory object is such a superclass object in 
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that it produces new objects (Cox 1984, Cox 1986). The 

ability of an object to receive its attributes from more 

than one superclass is known as multiple inheritance. 

Decision Support System Concepts 

Gerry and Scott. Morton (.19-71) introduced the term 

"decision support system" .to the management information 

systems (MIS) community. In their discussion of a MIS 

framework they note the significance of three managerial 

levels introduced by Anthony (1965). These levels are: 

(1) the strategic planning level; (2) the management 

control level; and (3) the operational control level. 

Strategic planning level managers determine the 

organization's objectives, changes in these objectives, the 

resources used to attain them, and the policies that are to 

govern resource acquisition, use, and disposition. The 

effective and efficient obtainment and use of resources in 

achieving organizational goals is the concern of management 

control level managers. Operational control level managers 

ensure that specific tasks are carried out effectively and 

efficiently. Gerry and Scott Morton (1971) argue that 

managerial level determines information use. 

Gerry and Scott Morton (1971) also focus attention on 

problem solving by restating a three phase problem solving 

process originated by Simon (1960). These phases are: (1) 
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the intelligence phase; (2) the design phase; and (3) the 

choice phase. 

The decision maker searches the environment for 

conditions calling for decision in the intelligence phase. 

The decision maker invents, develops, and analyzes possible 

courses of action during the design phase.. During _the 

choice phase the decision maker selects a particular course 

of action from the ones identified in the previous phase. 

Bonczek, Holsappl~~ -and Whinston (1979) argue that the 

problem solving process requires decision makers to have 

power. Power allows the decision maker to exercise some 

authority or directive force. Through power the decision 

maker can successfully complete the choice phase. 

Also, problem structure influences the information 

.system (IS) user. Gorry and Scott Morton (1971) extend 

Simon's (1960) programmed and nonprogrammed problem types 

in delineating three new problem types. These problem 

types are: (1) structured; (2) semi-structured; and (3) 

unstructured. 

Structured problems exist when all three phases of the 

problem solving process are highly structured. There is no 

need for novelty in the decision making process as these 

problems tend to be repetitive and routine. As a result, 

procedures exist so that each time the problem arises there 

is no need to deal with it uniquely. Semi-structured 

problems involve a greater degree of unstructuredness in 
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that only one or two of the problem solving phases is 

highly structured. Unstructured problems are, on the other 

hand, encountered when all three phases of the problem 

solving process are highly unstructured. These problems 

are rather novel with no apparent, clear way of solving 

them. 

Structured decision systems (SDSs) and DSSs should 

handle structured and unstructured problems, respectively, 

according to Garry and Scott Morton (1971). This 

relationship is shown in Figure 6. Figure 6 also 

incorporates the three levels of managerial activity 

identified by Anthony (1965). It is clear that all three 

levels of managerial activity require decision support in 

the form of a DSS. 

Operational 
Control 

Manage111ent 
Control 

Strategic 
Planning 

Structured Accounts Receivable! Budget Analysis - j Tanker Fleet Mix 
Engineering Costs 

Order Entry Short-Ter111 i lfarehouse and Factory 
Forecasting ' Location 

Inventory Control ! l 
Se111i-Structured ·········································+···········································-'.····················································· 
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Scheduling : Overall Budget l 

Cash Manage111ent i Budget Preparation l Hew Product Planning 

Unstructured PERT/COST Syste111s I Sales and Production ! Research and Develop111ent 
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Figure 6. A Management Information 
Systems Framework 
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Sprague (1980) discusses the idea of task 

interdependency, originally described by Thompson (1967), 

in view of DSSs. Hackathorn and Keen (1981) argue that the 

Gorry and Scott Morton (1971) MIS framework should include 

this third dimension (see Figure 7). The three types of 

task interdependency are: (1) independent; (2) sequential 

interdependent; and (3) pooled interdependent. 

Unstructured 

Se~i-Structured 

Structured 
Operation Control 

Manage~ent Control 
Strategic Planning 

Figure 7. A Decision Support System 
Framework 

The decision maker has, in an independent decision 

situation, full responsibility and authority to make a 

complete, implementable decision. In a sequential 

interdependent decision situation, however, the decision 

maker makes part of a decision and then passes the decision 

on to another decision maker. Finally, in a pooled 

interdependent decision situation, the decision must result 



from negotiation and interaction among several decision 

makers. 
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Hackathorn and Keen (1981) describe three levels of 

decision support related to task interdependency. These 

levels of decision support are: (1) personal support; (2) 

organizational support; and (3) group support. 

Personal decision support focuses on a specific user 

or class of users confronted with a distinct task or 

decision. As a result, independent decision situations are 

the target of personal decision support. An organizational 

task or activity involving a sequence of operations and 

actors is the aim of organizational decision support. 

Thus, sequential interdependent decision situations are the 

subject of organizational decision support. Finally, group 

decision support focuses on a group of people. Each person 

in the group engages in separate but highly interrelated 

tasks. As a consequence, pooled interdependent decision 

situations are the focus of group decision support. 

Problem solving often involves both data handling and 

mathematical modeling capabilities (Wang and Courtney 

1984). Each approach in isolation has evolved in the DSS 

literature. Sprague (1987) elaborates on this evolution by 

suggesting that data processing has followed four distinct 

stages. These data processing evolutionary stages are: 

(1) data in programs; 

(2) file management; 



(3) database approach; and 

(4) query languages. 
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In the first stage, the inclusion of data in programs, 

it became possible to create simple reporting mechanisms 

such as transaction summaries. The next stage, file 

management, permitted batch reporting facilities. The 

database approach stage provided decision makers with a 

more flexible reporting facility through the logical 

integration of separate files. Finally, the introduction 

of query languages gave decision makers the opportunity to 

do ad hoc reporting. 

Sprague (1987) also identifies five stages, similar to 

the data processing stages, associated with the modeling 

evolution. These modeling evolutionary stages are: 

(1) symbolic models; 

(2) computational engines; 

(3) computer models; 

(4) modeling systems; and 

(5) interactive models. 

Symbolic modeling involved the use of linear and 

nonlinear equations in an attempt to model the environment. 

In the next stage users employed computers as computational 

engines helpful in solving symbolic models. Computers 

became the model rather than simply solving it during the 

next stage of evolution through such methods as simulation. 

Modelers next developed modeling systems such as 
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statistical or mathematical programming systems in an 

effort to handle classes of models. Finally, shareable 

computer time made interactive modeling a possibility. 

Unfortunately, interactive modeling has led to stand-alone 

programs with different data requirements, different data 

formats, and little linkage between models. 

It is difficult to discern what, if any, significant 

contributions DSS ideas make to the field of MIS. Keen 

(1980) argu_es that DSSs point toward a synthesis of the MIS 

and management science (MS) fields. As is seen in Figure 

8, Sprague (1980) distinguishes between DSSs and MIS where 

DSSs have a decision focus while MIS have an information 

focus. Huber (1981) states that MIS answer "What is" 

questions while DSSs answer "What if" questions. It was 

primarily out of the weaknesses of MIS that DSSs developed. 

Vierck (1981) identifies several weaknesses of MIS: 

(1) they addresses repetitive problems; 

(2) they addresses primarily internal data; 

(3) they are not well oriented to answer the top 
executive's questions; and 

(4) they lack depth, flexibility, and the power to 
analyze unstructured problems. 

As Parker and Al-Utaibi (1986) note, DSSs involve 

decisions where there is sufficient structure for computer 

and analytic aids to be of value, however, the decision 

maker's judgement is essential. Thus, this involves the 

creation of a support tool which does not attempt to 



autom~te the decision process, predefine objectives, or 

impose solutions and which is under the control of the 

decision maker. 

.-----.. Decision 
Decision Focus Support 
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lnf or111ation 

Data 
Focus 

SysteMs 

ManageMent 
I nforMation 

.__,___. SysteMs 

.....--.__, ,.--...___, ,.--....__, Electronic 
Data Q Processing 

Figure 8. A Connotational View 

The Evolutionary Nature of Decision 

Support Systems 

The evolutionary nature of a DSS is of central 
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conceptual and practical importance. Bonczek, Holsapple, 

and Whinston (1980b) stress the need for a flexible system 

that can aaapt to change concerning current needs. They 

argue that a general system should be tailored to specific 

needs thereby achieving ease of understanding. 

A traditional approach often does not rely on user 

input and instead depends on an analyst's expertise to 
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ensure appropriate problem conceptualization, model 

definition, and solution generation (Alavi and Henderson 

1981) . An evolutionary approach maximizes user input by 

beginning with simplistic models and iteratively updating 

these models based on actual use. This direct feedback 

reduces the system's shift from its predefined objectives 

(Ahn and Grudnitski 1985). Alavi and Henderson (1981) 

found that an evolutionary implementation strategy is more 

effective than a traditional one in their study of 

approaches to DSS design and implementation. 

They also argue that a DSS user must participate in 

four types of activities in order for effective DSS 

implementation. These user activities are: 

(1) involvement in new, concrete experiences; 

(2) observation and reflection on those experiences; 

(3) creation of ideas that integrate these 
observations into theories; and 

(4) usage of these theories to make decisions and 
solve problems. 

They call the repetitive way of moving from one 

activity to the next the Learning Cycle (LC) model. Figure 

9 depicts the LC model. Alavi and Henderson (1981) argue 

that such a process-oriented evolutionary implementation 

strategy is more effective when implementing an analytical 

model. Thus, any DSS employing analytical models should 

ensure the user's ability to follow such a process. 

Furthermore, as Wang and Courtney (1984) point out, the 
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changtng nature of the decision environment causes DSSs to 

have a very short life cycle compared to conventional 

computer-based ISs. Thus, a DSS must be easily adapted to 

environmental change which implies a high frequency of 

adaptive redesigns. 

------
Testing 

and 
Internalizing 

Concrete 
Experiences 

Integration 
and 

Generalization 
Uia Theor!J 

Obseruatiorr · · · 
and 

Reflection 

Figure 9. The Learning Cycle Model 

DSSs represent an important extension of many ideas 

found in the study of ISs. Several key ideas relevant to 

the current study are examined below. 

Decision Support System Definition 

Many researchers have forwarded competing DSS 

definitions in the literature. Two of the more descriptive 

definitions given are: 
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(1) Sprague (1980) characterizes DSSs as interactive 
computer-based systems which help decision makers 
use data and models to solve unstructured 
problems; and 

(2) Watson and Hill (1983) define a DSS as an 
interactive system that provides the user with 
easy access to decision models and data in order 
to support semi-structured and unstructured 
decision making tasks initiated and controlled by 
the user. 

We define a DSS as a user initiated and .controlled . 

interactive computer-based system that employs data and 

models to solve semi-structured and unstructured problems. 

Thus, the examination of DSSs should address the three 

topics of data management, computation management, and user 

interface as suggested by Bonczek; Holsapple, and Whinston 

(1980a}. 

Decision Support System Characteristics 

DSSs have several distinguishing characteristics 

according to·sprague (1980). First, semi-structured and 

unstructured problems, addressed more often by managerial 

control and strategic planning level managers, are the 

focus of DSSs. Operational control level managers also 

face such problems but less often. 

Additionally, DSSs combine the use of models or 

analytical techniques with traditional data access and 

retrieval functions. This characteristic is perhaps one of 

the least understood because no strong theoretical 

underpinnings exist which describe this interaction. 
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Sprague (1980) also characterizes DSSs as easy to use 

by noncomputer people in an interactive mode. Thus, there 

is a need to incorporate a data and model transparent user 

interface. There is a move to abstract the whole process 

of data and modeling so that the user is unconcerned 

whether a data or modeling operation is being specified. 

Furthermore, the user interface must allow the user to 

describe the system in terms familiar to the modeled 

operation (Fuerst and Martin 1984). 

Finally, DSSs emphasize flexibility and adaptability. 

This is because of the need to accommodate changes in the 

decision making environment and the decision making 

approach of the user. 

Decision Support System Categories 

Historically, DSS design followed one or the other of 

two orientations: (1) data-oriented design; or (2) model

oriented design. Each design approach emphasizes 

operations related to its orientation. Alter (1977) was 

perhaps the first researcher to distinguish between these 

approaches. Figure 10 shows these orientations on opposite 

ends of a continuum as identified by Alter (1977). 

A data-oriented approach to DSS design supports the 

user-model interface by treating the representation of a 

model and its solution as part of a database (Dolk 1986). 

DSS design approaches which augment existing data models in 



order to include modeling capabilities foster this 

orientation. A data-orientation, however, artificially 

restricts the domain of model management. 

Data Orientation 

Model Orientation 

Retrieving a single iteM oF inForMation 

Providing a MechanisM For ad hoc dat.a analysis 

Providing prespeciFied aggregations oF data in 
the ForM oF reports 

EstiMating the consequences oF proposed 
decisions · 

Proposing d~cisions 

t1aking decisions 

Figure 10. Decision Support System 
Orientation 

A model-oriented DSS design approach focuses on 

modeling situations. Specifically, model-oriented DSS 
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accomplish model formulation, involving the generation of 

potential data analyzing algorithms, by modifying and 

combining various known program modules (Bonczek, 

Holsapple, and Whinston 1979). 

According to Elam and Konsynski (1987), model 

management is a specific body of research within the DSS 

field. The identification of those tasks required to build 

and to use models in an interactive problem solving 
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environment is a concern of this research. The provision 

of software support for doing these tasks is also an 

interest of model management researchers. Unfortunately, 

the model as a stand-alone system, the most recent 

evolutionary stage in model development, tends to hide the 

true relationships between models and data (Dolk 1986). 

Decision Support·System Architecture · 

Researchers tend to agree that the most important 

components of a DSS are (Bonczek, Holsapple, and Whinston 

1980a, Sprague 1980): (1) models; (2) data; and (3) the 

user. Bonczek, Holsapple, and Whinston (1980a) discuss the 

flow of commands and information in a DSS. According to 

them, commands flow from the user to models, from the user 

to data, and from models to data. Furthermore, they stated 

that information, in the form of responses, flows from data 

to the user, from data to models, and from models to data. 

Bonczek, Holsapple, and Whinston (1980a) argue that a 

language for directing computations ensures the flow of 

information from models to the user. In addition, a 

language for directing data retrieval makes possible the 

flow of information from data to the user and from data to 

models. Figure 11 conveys these relationships. 

Bonczek, Holsapple, and Whinston (1980b), in later 

research, claim that the principle components of a generic 

DSS are: (1) language system; (2) knowledge system; and 
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(3) p~oblem processing system. Figure 12 depicts the 

interrelationships of these components. Although these 

components seem to differ somewhat from those identified by 

Sprague (1980) (see Figure 13), they are analogous to one 

another. The dialogue generation and management system, 

called language system by Bonczek., Holsapple,_ and Whinston 

(1980b), is responsible for coordinating the user's 

interactions with the other two systems. An action 

language allows the user to communicate computational and 

retrieval commands to the other two systems. A 

presentation language lets the other two systems respond t6 

the user. 

Model <- • <A> Language For directing 
COMPUtations 

User~= CC> 
<B> Language For directing 

retrieval 
<C> Language For directing 

retrieval 

=~ 
Data 

........... Response 
--+ CoMMand 

CoMputer Based Decision Support SysteM 

Figure 11. Decision Support System 
Components 
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~he model base management system, similar to the 

problem processing system, allows the user to create, 

maintain, and manipulate a wide variety of models. The 

model base management system provides specific support for 

the use of models across all managerial levels and offers 

the user various model building blocks from which new 

models may be constructed. Sprague (1980) argues that 

models "be imbedded in an information system with the 

database as the integration and communication mechanism 

between them" (p. 17) . 

Us 
ProbleM Processing 

er +- -+ +--+ SysteM +-f-+ 

Language 
InrorMation Collection 

l•fodel For111ulation Kno1•1ledge 
Syste111 SysteM 

Proble111 Recognition 
Analysis 

Etc. 

I 
Response 

Figure 12. Decision Support System 
Architecture 

The database management system lets the DSS user 

create, update, and perform inquiry and retrieval 

operations on the DSS database. This system is akin to the 

knowledge system proposed by Bonczek, Holsapple, and 
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Whinst9n (1980b). Successful DSSs require a database which 

is logically separate from other operational databases 

(Sprague 1980). 

Decision Support Systen 
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• 

I Us~r I Task EnuironMent 

Figure 13. Decision Support System 
Architecture Revisited 

Besides the components of a DSS, Sprague (1980) 

delineates three levels of DSS technology. The three 

levels of DSS technology are: (1) specific DSS; (2) DSS 

generator; and (3) DSS tools. 

The system which genuinely supports the decision 

making process, an actual information systems application, 

is a specific DSS. On the other hand, a DSS generator is a 

package of hardware and software which provides the 

capacity to promptly and readily build a specific DSS. 

Finally, DSS tools are hardware or software elements which 
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ease the development of a specific DSS or a DSS generator. 

Figure 14 shows how these levels of technology are related. 

Specific Decision Support 
SysteM "Applicationsu 

Decision Support SysteM 
Generator 

Decision Support SysteM 
Tools 

Figure 14. Decision Support System 
Levels of Technology 

Sprague (1980) also specifies five evolving roles in 

DSS design and use as they relate to DSS technology (see 

Figure 15). These roles are: 

(1) manager/user; 

(2) intermediary; 

(3) DSS builder; 

(4) technical supporter; and 

(5) toolsmith. 

The manager/user is the person faced with the problem 

for whom decision support is necessary. An intermediary is 

anyone who helps the manager/user. The DSS b~ilder uses 
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the resources of a DSS generator to construct a specific 

DSS with which the manager/user or intermediary interacts 

directly. A technical supporter accumulates additional 

resources as needed for a DSS generator. The toolsmith 

develops new technology or improves the efficiency of 

existing technology for either specific DSS or DSS 

generators. Sprague (1980) emphasizes that a single 

individual may act in any given role at any given time. 

Manager <User) 

InterMediary 

Decision Support SysteM 
Builder 

Technical Supporter 

ToolsMith 

Figure 15. 

Speci~ic Decision Support 
SysteM "Applications• 

Decision Support SysteM 
Generator 

Decision Support SysteM 
Tools 

Decision Support System 
Roles 

Advantages of a Decision Support System 

Approach 

Users reap several benefits when using a DSS. These 

advantages include: 



(1) decreased cost and time; 

(2) increased structuredness; 

(3) improved collaboration; and 

(4) changed focus of discussions. 
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Vazsonyi (1978) argues that the use of a DSS leads to 

decreased cost and time required to perform the various 

phases of decision making. In addition, a DSS increases 

the applicability and efficiency of structuring managerial 

situations. DSSs also improve.the collaboration between 

the manager/user, operations research/MS, and the IS 

analyst. Finally, decision-analytic DSSs further improve 

discussion by letting decision makers focus on a 

quantitative model instead of each other (Adelman 1984). 

Shortcomings of Decision Support System 

Designs 

Existing DSSs have several drawbacks related to their 

design. These design shortcomings include: 

(1) modeling incompatibilities; 

(2) model updating; 

(3) data restructuring} 

(4) poor documentation; and 

(5) intermediary dependency. 

Bonczek, Holsapple, and Whinston (1980a) argue that 

models are not easily combined. Generally, users do not 

develop models using modules that otherwise might be 
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combined to form other modules as the need arises. 

Furthermore, there is difficulty in updating models and 

modifying their uses. In addition, users must continually 

recollect and restructure data for each run of a model. 

This interrupts the communication between different models. 

Poor documentation characterizes -DSSs according-to Bonczek, 

Holsapple, and Whinston (1981). 

Perhaps the greatest shortcoming of DSSs is the user's 

reliance on an intermediary. Andriole (1982) argues that 

this reliance leads to increasing man-computer alienation 

by the user. The intermediary becomes a surrogate problem 

solver and in doing so consciously or unconsciously 

manipulates the problem solving process. This results in a 

system which is not user understandable. The user adopts a 

machine rather than environmental orientation (Klein 1986). 

As a consequence, the user does not understand the modeling 

process because of lack of involvement. 

Data Management System Concepts 

The need to organize data in a well defined, rigorous 

manner has led to the development of many data models. A 

data model is a collection of mathematically well defined 

ideas that helps to consider and express the static and 

dynamic properties of data intensive applications. Brodie 

(1984) argues that data models and modeling concepts are 

central to information systems. 
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Thus, any data model applied within an information 

system must construct a representation which captures both 

static and dynamic processes. This implies that an 

information system must be capable of satisfying 

information requirements not only at design time, but also 

as these requirements change through time._ The degree of 

success for various data models differs in this regard. 

Traditional Data Models 

Three prevalent data models together form a class of 

models called the traditional data models. These models 

are: ( 1) the hie::-archical data model; ( 2) the network data 

model; and (3) the relational data model. Historically, 

many practical applications have successfully used the 

traditional data models (Abiteboul and Hull 1987). Several 

distinguishing characteristics describe these record-based 

data models. 

Distinguishing Characteristics 

According to Kent (1979), a record-based data model 

assumes that records provide an excellent tool for 

processing information that fits a certain pattern. A 

record is a fixed linear sequence of field values which 

conform to a static description. Generally speaking, field 

names have no semantic meaning and simply serve as 

placeholders for the data stored within the field. 
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Records, because of their predetermined length and static 

nature, tend to be machine-oriented constructs and provide 

a limited, yet desirable degree of flexibility. Of the 

three traditional data models, only the relational data 

model is discussed below because of its relevance to the 

present study. 

Relational Data Model 

Codd (1970) proposed what is called the relational 

data model. The mathematical concept of relations serves 

as the basis for the relational data model. A relation is 

a set of tuples where this set varies over time. A tuple 

is simply the concatenation of a set of attributes. Each 

tuple in a given relation has the same set of attributes. 

The particular sequence of attributes within a tuple and 

tuples within a relation is irrelevant. The number of 

attributes defined for a relation is the degree of the 

relation. The value set from which attribute values are 

drawn is known as the domain of the attribute. Two or more 

attributes may have a common underlying domain. Another 

interpretation of a relation is that it is a subset of the 

Cartesian product of the domains across the various 

attributes. 

Relations have two more properties beyond the ordering 

of attributes and tuples discussed above. The first is 

that, assuming all domains are atomic in that they are not 
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themselves relations, all entries in the relation are 

atomic values. Second, there is no duplication of tuples 

in a given relation. 

Date (1986) uses several informal terms when referring 

to various formal relational data model definitions. The 

term table refers to a specific -relation. A tuple is a row 

or record within a table. A column or field of a table is 

an attribute of the relation. A domain is the pool of 

legal values from which column values are drawn. Finally, 

one row is distinguished from another in a table using a 

unique identifier, called a primary key. 

Figure 16 shows a relation called source. The source 

table (relation} has two unique rows (tuples) • 

Furthermore, this table has three columns (attributes) and 

hence is of degree three. The first column name, Source 

Name, is distinct from the other two column names and 

serves as the unique identifier (primary key) for this 

table. Figure 17 shows a second relation called link. 

This table also has three columns, however, the first two 

columns form the unique identifier for this table. The 

concatenation of the unique identifiers of the tables 

participating in a relationship symbolically represents the 

relationship between two or more tables. The column values 

for the Source Name column and Destination Name column come 

from the same pool of legal values (domain). Date (1986) 

calls the list of attribute names for a relation the 



heading of the relation. The body of a relation is the 

collection of tuples which comprise the relation. 

Sourct Na11t Interpretation 
DAL Dallas 
CHI Chicago 

SUDD19 
20,000 
42,00D 

Figure 16. Source Relation Example 

Sourct Na11t 
DAL 
DAL 
DAL 
CHI 
CHI 

~stination Na11t 
PITTS 
ATL 
CLEU 
PITTS 
CLEU 

Link Cost 
23.50 
17.75 
32.45 
17.60 
25.75 

Figure 17. Link Relation Example 

58 

A relational database is a time-varying collection of 

data which may be accessed and updated as if organized as a 

collection of time-varying tabular relations of assorted 

degrees defined on a given set of simple domains (Codd 

1979). As_ a result, the relational data model consists of: 

(1) a collection of time-varying tabular relations with the 

properties discussed above; (2) insert, update, and delete 

rules formally known as entity and referential integrity 

rules; and (3) a relational algebra used both as a data 

definition and 1ata manipulation language. 
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The relational data model emphasizes several 

advantages in its design (Clemons 1985). The relational 

data model is very easy to use because of its mathematical 

rigor in the definition of data representations, operators, 

and simplicity of data structures. Furthermore, there 

tends to be an absence of -performance detail and 

implementation clutter. Binary and higher-order 

relationships between entities are captured with equal 

facility. One-to-one, one-to-many, and many-to-many 

relationships may be directly represented. The user 

perceives the data in a relational data model as tables and 

nothing but tables because of the foregoing advantages 

according to Date (1986). In addition, the relational 

operators available to users allow them to generate new 

tables from old tables. 

Limitations of the Traditional Data 

Models 

The primary purpose of a data model is to ser.ve as a 

mechanism for representing data and relationships. Each of 

the traditional models fails to accomplish this objective 

in one significan~ way or another. 

The hierarchical data model allows only one 

relationship, either directly or indirectly, to exist 

between two entities over time. Furthermore, ho attributes 

for relationships may be represented as there is no need to 
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create names for relationships and, thus, there exist no 

entities to which to attach those attributes. 

The network data model represents relationships as 

named sets where these names allow for the existence of 

several direct and indirect relationships between two 

entities •. As with xhe hierarchical.data model, howeyer, 

there is no practicable support for attributes of 

relationships. 

The relational data model represents entities and 

relationships using relations. This allows for the 

specification of attributes for relationships, however, 

there is limited support for semantics. 

Kent (1979), in a discussion of the weaknesses of 

record-based models, identifies several pitfalls of such 

approaches. Regardless of how well record-based data 

models provide natural constructs for representing 

information which fits a specific pattern, certain 

information does not easily fit into a record structure. A 

.result of this limitation is that record structures assume 

a horizontal and vertical homogeneity in data. Each record 

assumes horizontal homogeneity of a given type in that each 

contains the same fields; vertically in that a given field 

contains the same "kind" of information in each record. 

The solutions developed for the homogeneity problem tend to 

introduce problems in that data integrity is threatened, 

where such integrity is crucial, and the final data 
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structure employed bears little resemblance to the semantic 

structure of the underlying relationships. Furthermore, 

these solutions usually result in the creation of a 

predefined structure for dealing with entities which is 

very stable and thus violates the need for an evolving data 

model. Finally, a _precise data model should .distinguish 

carefully between the structure of entities being modeled 

and the various structures of names which might be 

associated with them._ 

Generally, there is an inability of the three models 

to capture the true meaning of the data organized within 

the model. Semantic modeling provides richer data 

structuring capabilities for database applications. This 

leads to the next evolution in terms of the direct 

representation of entities and relationships between 

entities as captured by the information system; a class of 

data models known as semantic data models. 

Semantic Data Models 

The traditional data models may be classified as 

syntactic data models in that the structures employed fail 

to model the semantics of the information accurately and 

unambiguously as evidenced in the modeling environment. 

Hainaut and Lecharlier (1974) argue that such database 

systems have only a limited power of representation 

compared with the semantic structure of the information 
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describing a real system. A class of data models known as 

semantic data models evolved in order to capture more of 

the meaning of the data within the model itself. Semantic 

data models describe data in a very abstract and 

understandable manner. In other words, moving from 

traditional data modeling concepts to semantic data 

modeling achieves an evolutionary_step away.from the 

machine domain toward the problem do:rnain. The definition 

of the structure of the data and the operational 

environment in which it exists is a concern of semantic 

data models (Hawryszkiewycz 1983). Several features which 

distinguish semantic data models from record-based data 

models are discussed below. 

Distinguishing Characteristics 

The need for conceptual schema design tools led to the 

introduction of early semantic data models. A conceptual 

schema could be designed with a semantic data model and 

then transformed into one of the traditional models for 

implementation. Semantic data models initially emphasized 

the need to model data relationships that arose in typical 

database applications because of this. Traditional data 

models, however, still lacked the power of representation 

afforded by a semantic approach to data modeling and, as a 

progression, semantic data modeling approaches to database 

systems were undertaken. Several distinguishing features 
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of semantic data models are (Hull and King 1987): (1) an 

increased separation of conceptual and physical components; 

(2) a decreased semantic overloading of relationship types; 

and (3) an availability of convenient abstraction 

mechanisms. 

The access paths available.to end users tend to mimic 

the logical structure of the database schema directly in 

record-based data models (Clemons 1985) . In contrast, 

semantic data models allow users to focus their attention 

directly on abstract objects and, in turn, on the 

conceptual relationships modeled in a semantic schema. 

This results in an increased separation of conceptual and 

physical components. 

Record-based data models provide only two or three 

constructs for representing data interrelationships whereas 

semantic data models provide several constructs. Thus, 

record-based data models tend to be semantically overloaded 

in that several types of relationships and entities must be 

represented by the same constructs. For example, entities 

and relationships in the relational data model must be 

represented using relations in both cases. This 

restriction is not apparent in a semantic data modeling 

environment. 

Semantic data models provide a variety of convenient 

mechanisms for viewing and accessing the schema at 

different levels of abstraction. Semantic data models 
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provide a much richer framework for defining. derived schema 

components and applying such constructs as aggregation, 

grouping, and generalization. Record-based data models 

tend to simulate objects and attributes by interrelating 

records of different types with such semantically 

meaningless mechanisms as logical- and physical- pointers. 

Semantic Data Model Components . 

Semantic data model components include (Date 1983, 

Hull and King 1987): 

(1) objects; 

(2) attributes; 

(3) type constructors; 

(4) generalization constructors; and 

(5) derived schema components; 

An object is the actual entity of interest within the 

modeling environment. The idea of what comprises an object 

is usually confusing and "so we blithely define an object 

or entity as anything (concept, event, object, etc.) worth 

recording in the database that meets the information and 

processing requirements" (Brodie 1984, p. 23). The 

definition of what constitutes an object in the semantic 

data modeling literature is virtually identical to the one 

used in the o-o literature. 

An object may have zero or more attributes. An 

attribute in a semantic data model is analogous to an 
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instance store in an o-o system. There are usually two 

dimensions of attributes identified: (1) degree of value; 

and (2) degree of owner. There are two differing degrees 

of value: (1) single valued; or (2) multivalued. A single 

valued attribute is an attribute owned by an object which 

has a single, identifiable value whether null-or- nonnull. 

On the other hand, a multivalued attribute is an attribute 

which may contain more than a single value whether null or 

nonnull. In Figure 18 the attribute hasAddress and 

isResidenceOf are examples of single valued and multivalued 

attributes, respectively. 

Person ~ 
~esidenceOf 

hasAddress ~ 0 address 

Figure 18. Attribute Example 

The d~gree of owner refers to the object which owns 

the attribute and has two forms: (1) entity; or (2) type. 

An object which owns an attribute exclusively describing 

some characteristic of that object is an entity attribute. 

This is comparable to an existence store. By comparison, 

the attribute of an object defined over the class of that 
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objec~ is known as a type attribute. This form of 

attribute is equivalent to a class store. 

Semantic data models usually employ two type 

constructors: (1) aggregation; and (2) grouping, otherwise 

called association. Aggregation, formally presented by 

Smith and Smith (1977a, 1977b), allows a relationship 

between objects to be thought of as a higher-level, named 

object. Thus, aggregation is the process of combining low-

level objects into composite objects expressed at a higher-

level. The aggregate linkName, represented by a circle 

with an "x" through it in Figure 19, is an aggregation of 

sourceName and destinationName. 

~ 
sourceNane destNaMe 

Figure 19. Aggregation Example 

Grouping constructs a set of objects of the same type 

and corresponds to a single valued attribute of an object. 

The single valued attribute body, depicted in Figure 20 as 

a circle with an "*" through it, is a grouping of tuples. 
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Generalization, an idea also introduced by Smith and 

smith (1977b), is an abstraction construct in which a set 

of similar objects is regarded as a generic object and 

forms an is-a relationship between two objects. Thus, 

generalization expresses the relationship between a class 

and instances of that class. Two types of generalization 

are: (1) overlapping generalization; and (2) covering 

generalization. Overlapping generalization results in the 

partitioning of a generic class into various·· subclasses 

which have the potential to overlap. For example, in 

Figure 21 the superclass Vehicle has several subclasses: 

Motorized Vehicle; Land Vehicle; and Air Vehicle. Here an 

automobile belongs to the Motorized Vehicle and the Land 

Vehicle subclasses. Thus, the subclasses defining the 

superclass are not necessarily mutually exclusive. 

@ body 

O···l· 
Figure 20. Grouping Example 
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Covering generalization results in the partitioning of 

classes into mutually exclusive and collectively exhaustive 

categories whereby the subclasses cover the superclass. 

Figure 22 presents an example of this form of 

generalization. In this instance there exists a superclass 

called Convoy. Several subclasses also exist such as 

Pacific Convoy and Atlantic Convoy. A ship, however, 

cannot physically belong to both convoys at once and, thus, 

the combination of both convoys covers the superclass. 

Motorized 
Uehicle 
Class 

Land 
Uehicle 
Class 

Uehicle 
Class 

Air 
Uehicle 
Class 

Fig~ ·e 21. Overlapping Generalization 
Example 

Finally, various semantic data models discuss the idea 

of derived schema components. A derived schema component 

requires the specification of the intension rather than the 

extension of the particular component. Historically, 

database management systems required users to specify the 
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extension of the database. Users simply specify the 

intension of the database and the extension of the database 

follows through this specification using the idea of 

derived schema components. As is seen in Figure 23 there 

are two types of derived schema components: (1) derived 

schema subtypes; and (2) derived schema attributes. Here 

the class object Pet Lover is a derived schema subclass 

defined as a pet owner who owns at least three pets; 

Furthermore, the derived schema attribute number is the 

cardinality of the set own for a specific pet lover. 

Pacific 
Conuoy 
Class 

0 
Atlantic 
Convoy 
Class 

Figure 22. Covering Generalization 
Example 

Entity-Relationship Model 

The entity-relation9hip model (E-R) , proposed by Chen 

(1976), is one of the first truly semantic data models to 
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appear and is oriented toward user needs and expectations 

rather than machine efficiency (Bic and Gilbert 1986). The 

E-R model incorporates some of the important semantic 

information about the application environment and may be 

viewed as a generalization of the three traditional data 

models. 

Pet 
Lover 
Class 

nu111ber 
Cnu~ber(p):=cardinality of own(p)J 

Figure 23. Derived Schema Components 
Example 

The basic co~ponents of the E-R model are entity sets 

and relationship sets where each entity set and 

relationship set represents some generic classification of 

entities and relationships, respectively. The natural view 

that the world consists of entities and relationships 

serves as the basis for these ideas. Both entity sets and 

relationship sets may have properties, called attributes, 
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associated with them. There is a predicate associated with 

each entity set to test whether a particular entity belongs 

to it. A relationship set is a mathematical relation among 

some entities where each is taken from an entity set and 

each tuple of entities is a relationship. 

Some other data-- model - implements the actual database 

after the designer uses the E-R model as a database design 

tool. A pictorial design tool called E-R diagramming 

simplifies this design process. 

E-R modeling in adopting a top-down approach, together 

with its various extensions and derivations, is a 

significant improvement over the traditional data models. 

Unfortunately, it is not always easy to categorize objects 

as either entities or relationships and, as a result, some 

information may not easily be captured as either an entity 

or a relationship. 

Model Management System Concepts 

Klein, Konsynski, and Beck (1985) define a model as 

any abstraction of reality applied to problem solving. 

Klein (1986) suggests that researchers develop procedures 

to make the management of models possible in order for 

future DSSs to fulfill the flexibility characteristic. 

According to Blanning (1983), a principle area of DSS 

research is the development of various frameworks for model 
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management systems. Typically these frameworks are similar 

to those developed for database management systems. 

Keen (1980) notes that the assumption made by managers 

that most models are unrealistic, abstract, and 

intimidating is probably correct. Keen (1980) contends, 

however, that model management research has .the.potential 

to make models practical, concrete, and useful to managers. 

Managers have come to use models as instruments to 

transform data into information for·aiding decision-making. 

Thus, Delk and Konsynski (1984) believe that models are 

another valuable resource, not unlike data, which must be 

managed. 

The regard for models as an important organizational 

resource requiring effective management serves as the basis 

for much research into model management systems (Blanning 

1983, Chung 1984). Model management provides a logical 

view of information that separates the users of the 

information from the physical aspects of information 

storage and processing (Blanning 1986) • 

Dolk (1986) identifies two levels of modeling activity 

in organizations: (1) informal; and (2) formal. Informal 

modeling occurs on an unplanned basis and usually is the 

result of individual resourcefulness. Formal modeling, 

however, is a direct result of organizational policy which 

defines and supports organizational planning, control, and 

operation. The organizational dimension of model 
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management is a consequence of the transition from informal 

to formal modeling. This transition solidifies the need to 

control the modeling resource. 

Fuerst and Martin (1984) observe that an accepted 

precept of systems design is that user involvement in 

systems development leads to a higher probability of system 

success. Furthermore, user involvement ensures theopening 

and continuation of a communications channel which should 

lead to shared understanding. As a consequence; the· 

process of defining the problem must be dominated by the 

managers involved. This allows the manager to address the 

correct problem and hence select the best model 

formulation. Vazsonyi (1978) points out that DSSs leave 

the problem struct:.uring process to the manager. Thus, 

models tend to be individual and result from a modeling 

process as opposed to the application of a model. 

Unfortunately, most modeling languages are written in 

computer languages which only computer programmers can 

understand. As a result, developers of model management 

systems should design systems in a top-down manner allowing 

for differing degrees of user expertise (Wang and Courtney 

1984). Vazsonyi (1978, 1982) argues for the abstraction of 

the modeling process such that modelers may develop 

concrete objects to serve as model representations. 



Traditional Approaches to Model 

Management 
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Bu-Hulaiga and Jain (1988) identify several prevalent 

approaches to model management: 

(1) model abstraction; 

(2) structured modeling; 

(3) logic based approaches; 

(4) semantic networks; 

(5) graph based approach; 

(6) relational data-base approach; and· 

(7) expert system and subroutine approaches. 

Model representation, model selection, and model 

sequencing are the concern of model management systems. 

Most of these model management approaches provide model 

representation facilities but do not provide for model 

selection or sequencing. Various procedures for model 

selection and model sequencing, however, are present in the 

literature (Klein 1986, Bu-Hulaiga and Jain 1988). Several 

distinguishing characteristics of model management systems 

in general are described below. 

Model Management System Objectives 

From the foregoing discussion, it is apparent that 

model management systems have three key objectives. These 

objectives are: (1) presentation of a semantically based 

modeling language; (2) incorporation of a flexible and 
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dynamic modeling component; and (3) centralization of model 

management functions. 

Developing model representations using a semantically 

based modeling language allows the DSS user to model the 

environment in familiar terms. Thus, the modeling process 

is not restricted.to.programmers or technicians. who are the 

only ones capable of .understanding the modeling language 

ell\ployed. This ability to- express models semantically 

leads to increased productivity and improved communications 

between model users (Lenard 1987). 

The incorporation of a flexible and dynamic modeling 

component allows for the creation of modeling classes. The 

model management system permits users to create instances 

of these model classes dynamically for personal use. 

Flexible interfaces between models, data, and users allow 

the DSS to deal with much of the detail work done by the 

system. DSSs historically have provided a shareable data 

organization that is both static and intolerant from a 

model standpoint (Klein, Konsynski, and Beck 1985). 

Finally, the need to centralize model management 

functions and insure the integrity, consistency, currency, 

and security of model bases in a multiuser environment is 

crucial (Applegate, Chen, Konsynski, and Nunamaker 1986). 

This need arises ~ut of the realization that models are 

resources and, like other resources, require organizational 

centralization and control. 
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Distinguishing Characteristics 

Dolk and Konsynski (1984) argue that modelers should 

view model management systems as the counterpart of a 

database management system. As a consequence, the 

characteristics of a model management system are: 

(1) to manage a large number of model 
representations; 

(2) to establish independence between the model 
representation and problem solver invoked to 
solye the model; 

(3) to separate data representations from model 
representations; and -

(4) to provide flexible, easy access to model 
representations by non-modelers. 

Dolk and Konsynski (1984) note that model management 

systems must be general enough to handle many different 

classes of models thereby requiring the system to handle a 

large number of model representations. The separation of 

model representation from problem solver allows for the 

development of a representation which does not a priori 

bias the representation scheme with a specific solution 

technique. The separation of data representations.from 

model representations permits the database management 

system to fuel the model representation. This distinction, 

however, lets database users change data structures without 

requiring corresponding changes to model representations 

and vice versa. Finally, since most DSS users prefer to 

"do their own thing" according to their own way of 
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thinking, model management systems must be flexible enough 

to allow non-modelers easy access to model representations 

presented in natural terms (Wagner 1981) . 

Structured Modeling 

Structured modeling, proposed by Geoffrion (1987), 

aims to provide a formal mathematical framework and 

computer-based environment for conceiving, representing, 

and manipulating a wide variety of models. Structured 

modeling uses a hierarchically organized, partitioned, and 

attributed acyclic graph to represent a model or a model 

class. Structured modeling follows several guidelines in 

model development. These guidelines are: 

(1) incorporate important data development processes 
directly into the model; 

(2) document definitional interdependencies; 

(3) use stepwise refinement; 

(4) compose models from validated submodels; and 

(5) exploit parallel structure. 

Structured modeling focuses on three basic structural 

levels. These levels are: (1) elemental structure; (2) 

generic structure; and (3) modular structure. Each of 

these structural levels is discussed at length below. 

Elemental Structure 

Discrete elements comprise a structured model. 

Elemental structure intends to capture all the definitional 
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detail of a specific model instance. Elements may call one 

another. Each call represents a definitional reference. 

In other words, a call shows the participation of one 

element's definition in the definition of another element. 

For all intents and purposes, a call shows a functional 

dependency between elements. 

Geoffrion (1987) identifies five distinct elements in 

structured modeling. These elements are: 

(1) primitive entity; 

(2) compound entity; 

(3) attribute; 

(4) function; and 

(5) test. 

A primitive entity element has no associated value and 

generally represents things or concepts postulated as 

primitives of the model. A specific source point or 

destination point in a transportation model is an example 

of a primitive entity. 

Compound entity elements also have no associated value 

but represent things or concepts that are defined in terms 

of other things or concepts. In other words, compound 

entity elements represent a relationship between primitive 

entity elements. A link in a transportation model is an 

example of a compound entity. A source point primitive 

element and a destination point primitive element define a 

link compound element. 
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Geoffrion (1987) draws a distinction between two types 

of attribute elements. The first type, called fixed 

attribute element, has a constant value and generally 

represents properties of things or concepts. A variable 

attribute element, however, also generally represents 

properties of things or concepts but determines its value 

through the solution of the model. A source point supply 

amount is an example of a fix~d attribute ~lement. The 

flow across a link is an example of a variable attribute 

element. 

Function elements have a value that is dependent 

according to a definite rule on the values of called 

elements, and generally represents calculable properties 

and more complex aspects of models. The total cost of a 

transportation model is an example of a function element. 

Finally, identical in nature to function elements, 

test elements are boolean valued. The test to determine if 

demand requirements are met at a destination point in a 

transportation model is an example of a test element. 

Generic structure 

Generic structure focuses on capturing the natural 

familial groupings of elements. Geoffrion (1987) argues 

that, mathematically, this is accomplished by partitioning 

all elements of a given type into genera. Each element is 

a cell of the partition. The modeler uses the idea of 



80 

generic similarity, meaning that every element in a genus 

calls elements in the same foreign genera, to organize 

genera. Figure 24 shows a genus graph for a transportation 

model. 

T:SUPPLY..... ,,..,.TOTAL_COST~ ~T:DEMAHD i LINK_COST;____ ___--"FLOW - . l 
SUPPLY ___..LIHK DEMAND 

......._____ ------ ............ / SOURCE DESTINATION 

Figure 24. Transportation Model Genus 
Graph 

The modeler communicates generic structure through a 

specific syntax developed by Geoffrion (1987). Each 

generic structure is encapsulated in a generic paragraph. 

Figure 25 shows two generic paragraphs, one for the source 

point primitive element generic structure and the other for 

the link compound element generic structure. 

Modular Structure 

A modular structure attempts to organize generic 

structure hierarchically to the extent that this seems 

appropriate and useful. The basic notion is to group 

genera into conceptual units called modules. Geoffrion 



(1987) argues that modelers should group modules into 

higher order modules according to some commonality or 

semantic relatedness. The modeler communicates modular 

structure through module paragraphs. Figure 26 is an 

example of a source data module paragraph from the 

transportation model example. Figure 27 is a modular 

structure for the transportation model. 

SOURCEi /pe/ Then is a list oP SOORCES, 

LINK<S~URCEi,DESTINATIONj~ Ice/ Select <SOURCE} * <DESTINATION} 
where 1 ca!ers <SOURCE}, J cavers <DESTINATION} Tbert art SD/ft 
trsnsport~tlD_n llNKS Pron S(JlJRCES to DESTINATJCNS. Then JfUSt be at least 
on1 llNK lncldtnt to Hch SOORCE, and at 118.st on1 LINK incident to each 
DEST I NAT JOH. 

Figure 25. Source Point and Link Generic 
Paragraphs 

ISDATA S(JlJRCE DATA 

SOURCEi /pe/ Th1re is a list or SOl/RCES. 
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SUPPLY<S~URCEi> /<1/ <SOURCE>: R+ £111rp SOl/RCE bas a SUPPLY CAPACJT'I 
Measured ln tons. 

Figure 26. Source Data Module 
Paragraph 

Structured modeling does not permit all forms of 

modular structure, however. Listed modular structures must 

satisfy a monotone ordering, that is, an indented list 
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representation with no forward references. Forward 

references exist when genera higher in the list call those 

lower in the list. Figure 28 is an example of a modular 

outline for the transportation model which satisfies the 

monotone ordering qualification. 

------- SOURCE 
&SORTA 

------- SUPPLY 
~___.-DESTINATION 

/ _____. &DDATA 
&TRANSP~ --------DEMAND 

~ ------- LINK 
~AlDATA FLOll 

'-\\OTAL\;O;---._Lllf(...COST 

T:DEMAND 

T:SUPPLY 

Figure 27. Transportation Model Modular 
Structure 

Structured Model · 

Thus, a structured model is an elemental structure 

:ogether with a generic structure satisfying similarity and 

having a monotone modular structure. Figure 29 presents a 

model schema for the transportation model example. 



&TRAHSP 
&SDATA 

SOURCE 
SUPPLY 

&DDATA 
DESTIHATIOH 
DEMAND 

&:LDATA 
LINK 
FLOW 
LI HK_ COST 

TOTAL COST 
T:DEMAHD 
T:SUPPLY 

Figure 28. Transportation Model Modular 
Outline 

URAHSP TRANSPt?RTA1il?N HOOEL 

lSDATA SOl/RCE DATA 

SOURCEi /pe/ There is a list or S()llRCES. 

SUPPLYCSOURCEi> /a/ <SOURCE}: R+ Evezy SOURCE bas a SUPPLY CAPACITY 
~asund in tons. 

IDDATA DESTINATION DATA 

DESTINATIOHj /pe/ There is i list or DESTINATIONS. 

DEMANDCDESTINATIONj) la/ <DESTINATION}: R+ Every DESTINATION his 
a nonnegative DEllAND ~asund in tons. 

ILDATA l.JHK IMTA 
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LINK<SOURCEi,DESTINATIONj) /ce/ Select {SOURCD * <DESTINATION} 
where i covers {SOURCE}, j covers <DESTINATION} There in so~ 
transportation llNKS rroM SOl/RCES to DESTINATIONS. Then MUst bt1 at lnst 
one LINK incidiiitto nch SOURCE, ind at least one l.JHK incidMt to tach 
DESTINATION. 

FLOU<LINKij) /va/ <LINK}: R+ Then can be a nonnegative transportation 
FLOY (in tons) over each LINK. 

LINK_COST<LINKij) /a/ {LINK>: R Evezy l/NK has a TRANSPORTATION COST 
RATE for use in $/ton. 

TOTAL_COST<COST,FLOU> /,/; SUMi SUMj <LINK_COSTij * FLOUij) Tht1re 
is a TOTAL COST associated with all FLO/IS, 

T:SUPPLYCFLOUi.,SUPPLYi> /t/ {SOURCE}; SUHj <FLOUij) <= SUPPLYi ls 
the total FLW ltaving a SOURCE less than or eQual to its SUPPLY CAMCJT'I? 
This is called tht1 SllPPL'I TEST. 

T:DEMAND<FLOU.j,DEMANDj> /t/ <DESTINATION}; SUHi <FLOUij) = DEMANDj 
Is the total FLOY arriving at a DESTINATION exactlp equal to its DE~ND? 
This is call~d the DEHANO TEST. 

Figure 29. Transportation Model Schema 
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Lenard (1987) proposes the use of structured modeling 

as a basis for a model management system. Lenard (1987) 

borrows ideas from o-o programming to help delineate the 

objects constituting a structured model. Lenard (1987) 

currently is constructing a prototype system with a 

restricted set of function rules and a limited range of 

operations to show the feasibility of using structured 

model management to manage at least linear programming 

models. 

This approach applies structured modeling ideas 

directly, however, o-o programming is seen as a vehicle 

leading to its successful implementation. o-o notions are 

not directly applied to the model representations 

themselves. 



CHAPTER III 

OBJECT-ORIENTED RELATIONAL DATA MODEL 

MANAGEMENT SYSTEM 

Introduction 

This chapter presents the ideas of object-oriented (0-

0) relational data modeling. o-o relational data modeling 

applies pertinent relational data modeling concepts (Codd 

1970) using an o~o approach (Leclaire and Suh 1988). This 

allows users to treat relations as objects and exploit 

relational operators using messaging. 

The o-o relational data model differs from o-o 

database models which support form~ of local behavior in a 

manner similar to o-o programming languages (Hull and King 

1987). The goal of o-o data modeling is to provide 

constructs for capturing more of the semantics of an 

application environment than is possible with a traditional 

data model (King 1984). The o-o relational data model 

presented simply provides o-o decision support system (DSS) 

users with access to a relational database management 

scheme. 

85 
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Object-oriented Relational Data 

Modeling Fundamentals 

The mathematical concept of relations serves as the 

basis for the relational data model developed by Codd 

(1970). A set of time varying tuples defines a relation. 

A tuple is simply the concatenation of a set of attributes. 

The same set of attributes comprises each tuple in a given 

relation. The particular sequence of attributes within a 

tuple and tuples within a relation is irrelevant. The 

domain of an attribute is the value set from which· 

attributes draw their values. Two or more attributes may 

have a common domain. 

Relations have two further properties. First, all 

entries in the relation represent atomic values. Second, 

there is no duplication of tuples. A subset of attributes 

in a relation serves to distinguish one tuple from another. 

Relational theory calls this subset of attributes the 

primary key of the relation. A relational database is a 

time-varying collection of data which the user accesses and 

updates as if organized as a collection of time-varying 

tabular relations of assorted degrees defined on a given 

set of simple domains (Codd 1979). Objectives of the 

relational data model include (Clemons 1985): 

(1) ease of use; 

(2) mathematical rigor in the definition of data 
representation and operators; 



(3) simplicity of data structures; 

(4) generality; and 
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(5) absence of performance detail and implementation 
clutter. 

We present an o-o view of the relational data model. 

This representation allows the users of an o-o DSS to 

interact with a relational data modeling component using an 

o-o approach. As a consequence, we combine the benefits of 

an o-o approach with those of the relational data model. 

An o-o approach to relational data modeling takes advantage 

of the aforementioned objectives by providing the·user·with 

an o-o representation of relations. This representation is 

achieved through simple data model abstraction which 

progresses from data model schema development to data model 

schema abstraction. These ideas are discussed below. 

Object-Oriented Relational Data Model 

Schema Development 

Figure 30 presents an o-o relational data model (R-D-

M) diagram. The octagon symbol represents the Source 

Relation class. This class object has the ability to 

create instance objects which represent tuples of the 

relation. Such an instance object is called a tuple 

instance object. Figure 31 depicts the Link Relation 

class. The collection of all specific relation classes 

represents the relational database (a relational database 

is a collection of time-varying relations). The collection 
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of instance objects within one of these classes represents 

all the tuples of the relation. 

Source 
Relation 

Class 

Sou1"\ce 
Relation 
~nee 

interpretation supply 

sourceNaMe 

Sourcf NaMf Interpretation 
DAL Dallas 
CHI Chicago 

Supply 
2 0, 000 
42,000 

Figure 30. Source Relation Class 

The data modeler expresses information concerning the 

contents of a specific relation class object (including its 
-

instance objects) using instance stores called attributes. 

An attribute obtains its valu2 from the user through 

observation, measurement, or calculation. In Figures 30 

and 31 an empty oval depicts a fixed attribu~e. A fixed 

attribute is user-determined and, thus, the user supplies 
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the attribute value. This type of attribute is identical 

to that proposed by Chen (1976). 

sourceNa111e 
( ) 
destNa111e 

Link 
Relation 

Class 

Link 
Class 

Instance 
link Cost 

S()UI'C~ Ha/rt~ 

DAL 
D~stinati()n Ha/rt~ 

PITTS 
Link Cost 
23.SIJ 
17.75 
32.45 
17.60 
25.75 

DAL ATL 
DAL CLEV 
CHI PITTS 
CHI CLEV 

Figure 31. Link Relation Class 

Certain restrictions on specific relation class object 

attributes are imposed, however. Specifically, no class 

attributes may be defined for any specific relation class 

object (e.g., Source Relation class or Link Relation 

class). Furthermore, all tuple instance object attributes 

for a specific relation class object must be fixed. 
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Specific relation class objects enforce uniqueness 

among their instance objects. That is, duplicate tuple 

instance objects are not allowed. Each tuple instance 

object has an aggregate attribute which serves as a unique 

identifier for the tuple instance object. This 

aggregation, called primaryKey, consists of zero or more 

attributes defined for the tuple instance object .. The 

circle symbol in Figures 30 and 31 with an "x" through it 

refers to this aggregation. Aggregation, presented by 

Smith and Smith (1977a, 1977b), allows a relationship 

between objects to be thought of as a higher level object. 

The value of the primaryKey aggregate is the 

aggregation of the values for the attributes defining the 

primaryKey aggregate. As a consequence, all tuple 

instances are distinguishable from one another based on 

this aggregate. ~he R-D-M diagram in Figure 30 shows that 

the sourceName identifier differentiates one tuple instance 

object from another. The unique instance identifier for 

the specific relation class appearing in Figure 31 is the 

aggregation of two attributes: (1) sourceName; and (2) 

destName. The primaryKey aggregate may be empty, in which 

case the specific relation class object takes the aggregate 

of all the instance object attributes to determine 

uniqueness. 

Zero or more attributes may exist outside of the 

primaryKey aggregate. Two such attributes are defined for 
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the Squrce Relation class: (1) interpretation; and (2) 

supply. Only one non-key attribute is defined for the Link 

Relation class, linkCost. ~he aggregate of all instance 

attribute names defined for a specific relation class 

object is the heading of the relation. The body of a 

relation is the grouping of all tuple instance objects. 

This approach to data management assumes that the user 

proceeds through the various stages of information 

requirements analysis, relational design, and 

normalization. The o-o relational data model simply 

provides access to a relational database management scheme; 

Object-oriented Data Model Schema 

Abstraction 

The second step in defining a specific relation class 

object is data model schema abstraction. Data model schema 

abstraction permits the user to·specify data model 

particulars. First, however, a brief discussion of syntax 

notation is required. Figure 32 shows the syntax notation 

used in data model schema abstraction. 

is fixed 

~TTRJBUTE-NAllE 

lrangpJ 

Required Notation 

User Specified Required ParaMeter 

User Specified Optional ParaMeter 

Figure 32. Data Model Schema Abstraction 
syntax Notation 



92 

Attribute Syntax 

Relational data model schema abstraction begins at the 

attribute level. Figure 33 shows the abstraction syntax 

for the only allowable kind of attribute, fixed, appearing 

in a R-D-M diagram. The data modeler specifies the name of 

the attribute, such as ATTRIBUTE-NAME, and declares its 

kind as fixed. 

ATTRIBUTE-NAN£ is fixed of-t11pe T'IPE !range}; 

Figure 33. .~ttribute syntax 

Attribute values are drawn from a given value set as 

specified by TYPE. Each attribute may have an optional 

range statement, rrangeJ, which follows the attribute type 

specification. Thus, a range statement may restrict the 

allowable set of attribute values for a given attribute. 

Note that a semicolon (;) terminates a fixed attribute 

statement. All data model schema abstraction statements 

end in this manner. Figure 34 gives the general syntax for 

a R-D-M diagram abstraction. From this figure it is clear 

that the user of an o-o relational data model specifies 



93 

three items. These items are: (1) RELATION-NAME; (2) 

primaryKey aggregate list; and (3) non-key attribute list. 

RElBT!t?H-IW1E is-a relation:
instance attributes:

priMaryKey is aggregate-of:
KEI/ ATTRIBUTE LJST; 

end priMaryKey; 
HON-KE'I BTTRIBIJTE LJST; 

end instance; 
end RELBTIOH-IW1E; 

Figure 34. Relational Data Model Abstraction 
General Syntax 

Figure 35 illustrates the data model schema 

abstraction for the Source Relation class and Link Relation 

class objects. The source data model schema abstraction is 

an example of a single attribute, sourceName, serving as a 

the primaryKey aggregate. The link data model schema 

abstraction uses two attributes, sourceName and destName, 

to define the primaryKey aggregate. 

The source data model schema abstraction in Figure 35 

has a non-key attribute list containing two attributes. 

These attrlbutes are: (1) interpretation; and (2) supply. 

The interpretaticQ attribute has no range qualifier whereas 

the supply attribute must be nonnegative. The link data 

model schema abstraction has a single non-key attribute, 

linkCost. This attribute cannot be negative as is evident 
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by th~ [link cost >= OJ range qualifier. Note that in both 

data model schema abstractions the specific relation class 

object is an instance of the Relation class (e.g., source 

is-a relation). 

source is-a relation:-
instance attributes:

priMaryKey is aggregate-or:-
sourceNaMe is fixed of-type string; 

end priMaryKey; 
interpretation is fixed of-type string; 
su~ply is fixed or-type integer [supply >= Ol; 

end instance; 
end source; 

link is-a relation:-
instance attributes:-

priMaryKey is aggregate-of:
sourceNaMe is fixed of-type string; 
destHaMe is rixed of-type string; 

end prinaryKey; 
li~kCost is fixed of-type float ClinkCost >= Ol; 

end instance; 
end link; 

Figure 35. Data Model Schema Abstraction 
Example 

What will become evident in subsequent chapters is 

that the process of schema development followed by schema 

abstraction is specifically chosen for the purpose of 

integrating data and model perspectives. That is, the user 

will be able to regard a specific relation class object as 

a data object or may treat that object in a manner 

identical to a model object. 



CHAPTER IV 

OBJECT-ORIENTED MODEL MANAGEMENT SYSTEM 

Introduction 

This chapter introduces the ideas of object-oriented 

(0-0) structured modeling. o-o structured modeling applies 

relevant structured ·modeling ·concepts -- tGeoffrion 1987) ·and 

model abstraction ideas for the purpose of model 

representation in a decision support system (DSS) 

environment using an o-o approach (Leclaire and Suh 1988). 

Additionally, we use pertinent semantic data modeling 

notions (Leclaire and Chahande 1988) to enhance the 

transition from a structured modeling approach for model 

representation to an o-o structured modeling one. 

Obj act-Oriented Structur,ed Modeling 

Fundamentals 

o-o structured modeling provides a formal framework 

and computer-based environment for conceiving, 

representing, and manipulating an assortment of models. As 

a result, the objectives of o-o $tructured modeling are 

identical to those of structured modeling (Geoffrion 1987). 

95 
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Dolk (1988) identifies several characteristics which 

should be present in any modeling system. Modeling systems 

should support a conceptual framework which defines a 

general model structure. Such systems should enforce 

independence of model representation from both model 

solution operators and underlying data associated with 

specific model instances. 

Furthermore, modeling systems should be able to 

capture a wide range of operations research/management 

science mathematical models and other conceptual models 

encountered in the database design and software engineering 

fields. This implies the need to support a general 

modeling life cycle. Finally, modeling systems must haye 

full use of data management facilities as contained in 

database management systems. 

o-o structured modeling has each of these 

characteristics. o-o structured modeling ensures this by 

following a three phase process in model development and 

representation. These phases are: (1) model schema 

development; (2) model schema abstraction; and (3) model 

acyclicity verification. 

Each of these development phases is discussed in 

detail below. We use a simple model, the Hitchcock

Koopmans transportation model, as an explicative example of 

this process. The reader is cautioned, however, that o-o 

structured modeling can capture a wide range of models. 
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Model Schema Development 

The entity-relationship (E-R) model, introduced by 

Chen (1976), serves as the basis for model schema 

development. Chen (1976) proposes that database design 

users employ the E-R model for database design and 

description. The E-R model adopts a more natural view that 

the real world cons.is ts of entities and relationships. The 

application of an E-R approach to model development is not 

new (see Blanning 1986). Geoffrion (1987) notes that 

structured modeling· subsumes· ·E-R modeling• 

Chen (1976) argues that an entity is any "thing" in 

the modeling environment which may be distinctly 

identified. For instance, a specific person, automobile, 

or dog is an entity. E-R modelers classify similar 

entities into entity sets. People, cars, and pets may 

serve as entity sets for the foregoing entities. There is 

a predicate associated with each entity set to test whether 

an entity belongs to that set. In the transportation model 

example there are two entity sets: (1) source points, 

perhaps from which finished goods originate; and (2) 

destination point~, to which the finished goods arrive. 

Specific source points and specific destination points 

(e.g., Dallas and Denver) are examples of entities in the 

transportation model example. 

A relationship set, according to Chen (1976), is a 

mathematical relation among n entities taken from an entity 
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set. Each tuple of entities in a relationship set 

represents a specific relationship. Thus, a relationship 

is an association among specific entities. For example, 

the project-worker relationship set relates the two entity 

sets employee and project. In the transportation model 

example a single- relationship set exists, called link. 

Each link relates one source point with a single 

destination point. 

A relationship set may have one of three possible 

mappings between entities in the participating entity sets. 

These mappings are:, (1) 1:1; (2) l:N; or (3) N:M. The 

first mapping (1:1) relates an entity in the first entity 

set with at most one entity in the second entity set. The 

relationship set marriage is an example of such a mapping. 

The second mapping (l:N) relates an entity in the first set 

with any number of entities in the second set but not vice 

versa. A relationship set such as department-employee has 

such a mapping if an employee may not belong to more than a 

single department. Finally, the third mapping (N:M) 

relates any number of entities in the first set with any 

number of entities in the second set. In the 

transportation model example the relationship set link has 

an N:M mapping of source point entities to destination 

point entities. 

0-0 structured modeling fosters a view that models 

consist of entities and relationships. This allows 
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modelers to design and describe models beginning with an E-

R approach. As a consequence, o-o structured modeling 

adopts a top-down approach to model development using 

semantic information to organize the model representation. 

Model schema development begins with the identification of 

key entity sets and relationship sets encountered in the 

modeling environment. 

There are two entity sets in the transportation model 

example (source points and destination points) and one 

relationship set (link) of mapping N:M. Figure 36 applies 

an E-R diagrammatic technique (see Chen 1976) to illustrate-

the transportation model entity sets and relationship set. 

A box denotes an entity set and a diamond symbolizes a 

relationship set. Notice that the diagram includes the 

mapping of the relationship. 

Source 
Point 

N 

Link Destination 
Point 

Figure 36. Entity-Relationship Diagram 
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The next step in model schema development is to draw a 

distinction between an entity/relationship set and members 

of that set. · The o-o ideas of class object and instance 

object are important in showing this contrast. Figure 37 

shows that what once were considered entity/relationship 

sets are now considered entity/relationship class objects. 

In this figure circles represent instance objects of each 

class object. The relationsnip of an instance object to 

its respective class object, known as an instance-of 

relationship, is shown using an arrow. Figure 37 is a 

simple Class-Instance (C-I) diagram. Two specific entity 

class objects, the Source Point class and the Destination 

Point class, appear as boxes in this figure. A single 

specific relationship class object also appears in Figure 

37, called the Link class, and is shown using a diamond. 

Source 
Point 
Class 

N 

Source 
Point 

lnstancf 

M Destination 
Point 
Class 

Destination 
Point 

Instance 
Link 

Instance 
Figure 37. Simplified Class-Instance Diagram 
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The modeler expresses information about an entity or a 

relationship as an entity instance store or a relationship 

instance store called an attribute. An attribute obtains 

its value from the user through observation, measurement, 

or calculation. According to Chen (1976), attributes are 

drawn from a valuH set where different attribute values may 

come from the same value set. 

Each entity instance object must have a unique 

identifier. This identifier is constructed using 

aggregation. Aggregation, formally presented by Smith and 

Smith (1977a, 1977b), allows a relationship between objects 

to be thought of as a higher-level, named object. An 

instance identifier is the aggregate of one or more 

instance level attributes defined for the specific entity 

class object. Thus, all instance objects of a specific 

entity class object are distinguishable from one another 

using this identifier. 

Figure 38 shows a C-I diagram of the transportation 

model example which contains the relevant identifier 

aggregations. Ovals represent attributes in a C-I diagram 

and the circle symbol with an "x" through it refers to 

aggregation. The identifier aggregation for an instance of 

the Source Point class is the single instance attribute 

sourceName. The identifier aggregation of the Destination 

Point class is the single attribute destName. 



Source 
Point 
Class 

sourceNaf!'le 

N 

Source 
Point 

Instance 

( ) 

sourceNaMe destNaMe 
identifier identifier 
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M Desti~ation 
Point I 
Class 1 

Destination 
Point 

Instance 

identifier 

destNaMe 

Link 
Instance 

Figure 38. Class-Instance Diagram with Identifier 
Aggregates 

The identifier aggregation for an instance object of 

the Link class requires some explanation. The relationship 

between a given Source Point class instance object and a 

given Destination Point class instance object may be 

regarded as an aggregate of the corresponding Source Point 

class and Destination Point class instance object 

identifiers. Since these identifiers are sourceName and 
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destName, respectively, they form the instance identifier 

used by the Link class. 

Therefore, the aggregation of the entity instance 

object identifiers participating in a relationship 

represents the instance identifier for the specific 

relationship class object. The mapping of the relationship 

restricts the possible set of aggregate values permissible 

across all relationship instance objects. 

Model schema development continues with the 

identification of the remaining specific entity instance 

and specific relationship instance object attributes. 

Figure 39 illustrates those entity/relationship instance· 

object attributes determined to be relevant at this level 

of model development. Notice that a distinction is drawn 

between three different kinds of attributes. 

An empty oval depicts a fixed attribute. A fixed 

attribute is user-determined and, thus, the user supplies 

the attribute value to the model. This type of attribute 

is identical to that proposed by Chen (1976) and a fixed 

attribute element as defined by Geoffrion (1987). The 

demand attribute of a Destination Point class instance 

object is an example of a fixed attribute. 

An oval filled with diagonal lines represents a 

derived attribute. A derived attribute determines its 

value based on the value of other attributes in the model. 

The idea of derivad schema attributes in a semantic data 
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modeli~g environment (Leclaire and Chahande 1988) serves as 

the basis for including derived attributes. o-o structured 

modeling can represent function and test elements from 

structured modeling (Geoffrion 1987) using derived 

attributes. The supplyTest attribute of a Source Point 

instance object is a derived attribute. 

Source 
Point- N 
Class 

sourceNaMe 

Source 
Point 

Instance 

M Destination 
Point 
Class 

Destination 
Point 

Instance 

identifier 

destNal!le 

Link 
Instance 

link Total 

Figure 39. Model Class-Instance Diagram with Instance 
Attributes 
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Finally, a cross-hatched oval denotes a solver-derived 

attribute. A solver-derived attribute receives its value 

from the problem solver invoked to solve the model and, 

thus, is analogous to a variable attribute element from 

structured modeling (Geoffrion 1987). The flow· attribute 

of a Link instance object is an example of a solver-derived 

attribute. 

A C-I diagram is complete once the modeler adds 

specific entity c~ass and specific relationship _class 

object attributes~ A specific class object attribute 

records information regarding all instances of the 

specified class using class stores. A specific class 

object attribute may also record information specific to 

the object using existence stores. Figure 40 presents 

several entity/relationship class object attributes. The 

derived attribute demandTotal, an attribute of the 

Destination Point class object, records the total demand 

for all Destination Point instance objects. 

The addition of a specific model class object and its 

corresponding instance object representation to a C-I 

diagram transforms it into a c-I-Model (C-I-M) diagram. 

Figure 41 shows a simplified C-I-M diagram of the 

transportation model example. An octagon and a triangle 

represent specific model class objects and specific model 

instance objects, respectively. As with specific entity 

class and specific relationship class objects and instances 
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of those specific class objects, a specific model instance 

object uses an instance-of arrow to indicate its 

relationship to its class object. Furthermore, a C-I-M 

diagram also requires model instance objects to have a 

unique identifier aggregation. The aggregation of a single 

instance attribute, modelName, serves as the instance 

identifier in Figure 41. 

Source 
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M Destination. 
Point . 
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Instance 

sourceNaMe destNaMe linkCost 
identifier identifier 

Figure 40. Complete Class-Instance Diagram 
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A single, named attribute of each specific model 

instance object serves as the aggregation of all 

entity/relationship class objects. Figure 41 shows this as 

the network attribute of a Transportation Model instance 

object. Figure 42 includes the addition of all specific 

model instance object attributes. Figure 42 adds a_ single 

derived attribute, totalCost. 

The final step in model schema development is to 

include specific model class object attributes. This 

completes model schema development. 

final transportation model schema. 

Figure 43 shows the 

Note that this figure 

depicts only one model class object attribute, modelcount. 

Model schema development is not a linear process and, 

as a result, several iterations may be necessary. The 

stepwise nature of this process, however, helps to ensure 

successful schema development. Figure 44 describes each 

step necessary in model schema development. Figure 45 

shows a complete model schema for a general linear 

programming model. The next phase of model development is 

model schema abstraction. This is discussed in the 

following section. 

Model Schema Abstraction 

Dolk and Konsynski (1984) introduced model abstraction 

as one approach ta model management. Dolk and Konsynski 

(1984) argue that model abstraction regards models as data 
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Figure 42. Class-Instance-Model Diagram with Instance 
Attributes 
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1.> IdtntiPy kty tntities and.rtlationships betwetn those tntitits which 
participate in the 11\0del 

111 

a.) DeterMine the Mapping or each relationship (e.g., 1:1, 1:H, or N:M> 

b.) DiagraM each entity and the relationships between the various 
entities using an entity-relationship <E-R> diagraM 

2.) Draw a distinction between entitylrelationship classes and instances of 
those classes 

a.) DiagraM this distinction using a Modified E-R diagra" known as a 
Class-Instance-cc~I)·diagraM· · 

b.) For each entity instance deterMine an aggregation oP attributes 
which are to serve as the unique identifier for each instance and 
add it to the diagra• 

c,) For each relationship add an aggregation, to s1rv1 as the instanct 
identifier, consisting of the entity instance identifiers 
participating in the relationship instance~ tht value of each 
relationship identifier is subject to the Mapping restrictions 

d.) For each entity/relationship instance deterMine the renaining 
attributes and add the" to the diagra" 

1.) For each entity/relationship class deterMine the appropriate 
attributes at this level and add theM to the diagraM 

3.) Move froM the C-I level to the 1110del level 

a.) DiagraM this using a Modified C-1 diagraM known as a C-I-Model 
CC-I-M> diagraM 

b.) Deter"ine an aggregation of attributes which are to serve as the 
unique identifier for each instance and add it to the diagraM 

c.) Regard the aggregate of all entities and relationships between those 
entities in the C-I diagra" as a naMed attribute of the Model 
instance 

d.) DeterMine all other instance attributes and add theM to the diagraM 

e.) DeterMine the MOdel class attributes and add theM to the diagraM 

Figure 44. Model Schema Development Steps 
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and model management as a corollary of data management, 

both conceptually and in implementation terms. 

First, a brief discussion of syntax notation is 

required. Figure 32 shows the syntax notation used in data 

model schema abstraction. This same syntax notation is 

relevant for model schema abstraction. 

Attribute Syntax . 

Model schema abstraction begins at the attribute 

level. Figure 46 shows the model abstraction syntax for 

the various kinds of attributes appearing in a C-I-M 

diagram. These attribute kinds are: (1) fixed; (2) 

derived; and (3) solver-derived. 

The modeler specifies the name of an attribute, such 

as ATTRIBUTE-NAME in Figure 46, and declares its kind. The 

modeler may declare one of three different kinds for each 

attribute. This declaration must be one of the following: 

(1) is fixed of-type; (2) is derived of-type; or (3) is 

solver-derived of-type. 

ATTRIBUTE-NAHE is fixed of-type TYPE lnngfl l 

ATTR/BUTE-NAHE is derived of-type TYPE !rang,}:
ATTR!BllTE-NAHE : = /JERJVATJON1 

fnd ATTRJBUTE-HAH£1 

ATTRJBUTE-NANE is solver-derived of-type TYPE lrangfl; 

Figure 46. Attribute Syntax 
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A~tribute values, regardless of kind, are drawn from a 

given value set as specified by TYPE. Each attribute may 

have an optional range statement, [range], which follows 

the attribute type specification. Thus, the range 

statement may restrict the set of allowable attribute 

values for a given attribute. 

Note that a semicolon (;) terminates each statement 

for fixed attributes and solver-derived attributes. All 

model abstraction statements end in this manner. The 

derived attribute statement is a compound statement and, 

thus, ends with a continuation symbol (:-). This marks ths 

beginning of an attribute derivation. An attribute 

derivation describes how a particular attribute determines 

its value. An end statement terminates a derived attribute 

statement. Figure 47 gives examples of the various kinds 

of attribute syntax that are encountered in the abstraction 

of the transportation model example. 

supply is fixed of-type integer [supply >= Ol; 

linkTotal is derived of-type float ClinkTotal >= 01:
linkTotal := linkCost * flow; 

end linkTotal; 

flow is solver-derived of-~ype integer [flow >= Ol; 

Figure 47. Attribute Syntax Examples 
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Entity Object Syntax 

The modeler uses a specific syntax to develop the 

abstract representation for each entity. Figure 48 depicts 

the formal syntax for an entity in a c-I-M diagram. 

EHTJT'l-NAHE is-a entity:
class attributes:

ATTR/BUTE lIST; 
end class; 
instance attributes:

identifier is aggregate-of:
IDENTIFIER ATTRIBUTE l/ST; 

end id&ntifieP; · · -
HON-IDENTIFIER ATTRIBUTE l/ST; 

end instance; 
end ENTJT'l-NAHE; 

Figure 48. Entity Syntax 

Each specifi~ entity abstraction begins with an entity 

class name. This name serves to identify the specific 

entity class as it is a subc:ass of the more general Entity 

class. This relationship is indicated by the ENTITY-NAME 

is-a entity statement. Thus, both the Source Point class 

and Destination Point class are subclasses of this more 

general class. 

In addition, note that a named entity abstraction is a 

compound statement (there is a continuation symbol). No 

formal definition is given for a named entity class object 

except to say that it is an object which has class level 
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attributes and instance level attributes. This implies 

that an entity class object has the ability to instantiate 

new instances having the instance level attributes. 

A class level attribute definition section appears 

following the class name declaration for the specific 

entity class object. The class attributes statement within 

which a list of attributes appears announces a class level 

attribute definition section. The modeler terminates the 

class level attribute section with an end class statement. 

Instance object attribute definitions begin with the 

instance attributes statement. The instance object 

identifier aggregation definition immediately follows the 

instance attributes statement. Furthermore, any attribute 

defined within this aggregation statement must be a fixed 

attribute. The modeler may restrict the value of any of 

these attributes using a range statement, however. A list 

of additional instance level attributes follows this 

statement. An end instance statement concludes the 

instance level attribute section. 

An end statement completes a specific entity class 

object definition. Figure 49 gives an example entity 

syntax for the Source Point class in the transportation 

model example. 



sourcePoint is-a entity:
class attributes:-

sourceCount is deriued of-type integer CsourceCount >= 81:
sourceCount := cardinality of instances; 

end sourceCount; 
supplyTotal is deriued of-type integer CsupplyTotal >= 01:

supplyTotal := SUM <supply[*]); 
end supplyTotal; 

end class; 
instance attributes:-

identifier is aggregate-of:
sourceHaMe is Fixed of-type string; 

end identif ier1 
supplyTest is deriued of-type boolean:-

supplyTest := <SUM Cflow[sourceHai-ie,•l> <= supply); 
end supplyTest1 
supply is Fixed of-type integer [supply >= Ol; 

end instance1 
end sourcePoint; 

Figure 49. Entity Syntax Example 

Relationship Object Syntax 
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Each relationship in a model also has a specific 

syntax· used to develop its abstract representation. Figure 

50 depicts the formal syntax for a relationship in a C-I-M 

diagram. 

RE1AT/ONfH/P-HAHE is-a relationship CHAHE 1/STl :
class attributes:-

ATTR/BUTE 1/ST; 
end class; 
instance attributes:-

identifier is aggregate-of:
/DEHT/f/ER ATTRIBUTE 1/STCexistsl1 

end identif ier1 
HCN-IDEHTIFIER ATTRIBUTE 1/ST1 

end instance; 
end RE1ATIONfHIP-HAHE1 

Figure 50. Relationship Syntax 
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Notice that there is substantial similarity to an 

entity abstraction. Each relationship class is named and 

is a subclass of the Relationship class (as is evident by 

the RELATIONSHIP-NAME is-a relationship statement), has 

class level attributes, and instance level attributes. 

There are two important differences, however. First, the 

specific relationship class object declaration statement 

includes (NAME LIST]. Second, each attribute appearing in 

the identifier aggregate has the (exists] qualifier 

appended to its definition. 

The name list for a specific relationship class object 

consists of two items for each specific entity class object 

participating in the definition of the relationship. 

First, the class name of the specific entity class object 

is given. Second, the mapping of the specific entity class 

object follows its name. Each of these items is separated 

with a colon(:). The mapping specification is one of two 

options: (1) one; or (2) many. 

Each entry of a specific entity class object appearing 

in the name list is separated using a comma(,). For 

example, in Figure 51 the Link class object has as its name 

list: (sourcePoint:many,destPoint:manyJ. This indicates 

that two specific entity class objects, sourcePoint and 

destPoint, participate in the link relationship with a 

mapping of N:M (many to many) . 



link is-a relationship CsourcePoint:"any,destPoint:"anyl:
class attributes:-

linkCount is derived of-type integer ClinkCount >= 01:
linkCount := cardinality of instances; 

end linkCount; 
end class; 
instance attributes:

identifier is aggregate-of:-
sourceNa"e is fixed of-type string Cexistsl; 
destNa"e is fixed of-type string Cexistsl; 

end identifier; 
linkCost is fixed of-type float ClinkCost >= OJ; 
flow is solver-derived of-type integer [flow >= OJ; 
linkTotal is derived of-type float ClinkTotal >= 01:-

linkTotal := linkCost * flow; 
end linkTotal; 

end instance; 
end link; 

Figure 51. Relationship Syntax Example 
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The modeler explicitly defines the relationship 

instance object identifier as an aggregation using the is 

aggregate-of statement. An instance attribute definition 

list follows this statement. This list replicates the 

identifier attribute definition lists of the specific 

entity objects participating in the relationship. The 

rexistsl statement qualifies each identifier attribute 

listed thereby ensuring that no reference to a nonexistent 

specific entity instance object occurs. An end statement 

terminates the identifier aggregation. All the ideas 

discussed above are shown in Figure 51. 

Model Object Syntax 

The modeler uses a specific syntax to develop an 

·abstract representation for each model. Figure 52 depicts 

the formal syntax for a model in a C-I-M diagram. 



JIODEL-NAHE is-a 111odel:
class attributes:

ATTRIBIJTE LIST: 
end class: 
instance attributes:

identifier is aggregate-of:-
IDENTIFIER ATTRIBUTE l/ST: 

end identifier: 
NOH-IDENTIFIER ATTRIBUTE l/ST: 
AGCRECATE-HAHE is aggregate-oF:

ENTJTY-NAHE is-a entity:
class attributes:-

HTTRIB/JTE l/ST; 
end class: 
instance attributes:

identifier is aggregate-of:
IDENTIFIER ATTRJBIJTE l/ST: 

end identifier: 
NOH-IDENTIFIER ATTRJBlJTE lJST; 

end instance; 
end ENTITY-HANE; 
RELATIONSHIP-HANE is-a relationship CNAHE LJSn :

class attributes:-
ATTRJB/JTE lJST; 

end class: 
instance attributes:-

identifier is aggregate-oF:
IDENTIFJER ATTRIBUTE LJSTCexistsl; 

end identifier; 
NOH-IDENTIFIER ATTRIBUTE llST; 

end instance; 
endRELATIONSHIP-HAHE: 

end A(;(;REGATE-HAHE: 
end instance; 

end WDEL -HAHE; 

Figure 52. Model Syntax 
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As with the entity and relationship syntaxes, each 

specific model class object declares a class name. This is 

shown in Figure 52 by the MODEL-NAME is-a model statement. 

Note that any named model class object is an instance of 

the generic Model class object. Every specific model class 
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object has the ability to instantiate new instances which 

have the defined instance level attributes. 

Each specific model class object has a class level 

attribute section and an instance level attribute section. 

The specific model class definition is not unlike a 

specific entity definition with one .exception. An is 

aggregate-of statement defines a named aggregation of all 

the specific entity and specific relationship class objects 

diagrammed in the C-I diagram. The modeler specifies an 

entity/relationship definition list in this aggregation. 

This list contains nothing more than the entity 

abstractions and relationship abstractions of the objects 

found in the C-I diagram. An end statement terminates the 

specific entity and specific relationship aggregation. 

An end statement also terminates a specific model 

abstraction. Figure 53 shows the complete model schema 

abstraction for the transportation model example. Figure 

54 presents the complete model schema abstraction for the 

general linear programming model diagrammed in Figure 45. 

Model Abstraction Benefits 

Some of the benefits of model abstraction identified 

by Delk and Konsynski (1984) are: (1) it enforces the 

separation of model description and model solution; (2) it 

enforces model and data independence; and (3) it provides 



transportationModel is-a MOdtl:
class attributes:-

ModelCount is derived of-type integer [ModelCount >= Ol:
ModelCount := cardinality of instances; 

end ModelCount; 
end class; 
instance attributes:-

identifier .is aggregate~of:
ModelNaMe is fixed of-type string; 

end identifier; 
totalCost is derived of-type float [totalCost >= Ol:

totalCost.: = SUM ClinkTotalC*l) l - . 
end totalCost; 
network is aggregate-of:

sourcePoint is-a entity:
class attributes:-

sourceCount is derived of-type integer CsourceCount >= Ol:
sourceCount := cardinality of instances; 

end sourceCount; 
supplyTotal is derived of-type integer CsupplyTotal >= 01:

supplyTotal := SUM (supply[*]); 
end supplyTotal; 

end class; 
instance attributes:-

identifier is aggregate-of:
sourceHaMe is fixed of-type string; 

end identifier; 
supplyTest is derived of-type boolean:-

supplyTest := <SUM (flow[sourceNaMe,*l) <= supply); 
end supplyTest; 
supply is fixed of-type integer [supply >= 01; 

end instance; 
end sourcePoint; 
destPoint is-a entity:-

class attributes:-
destCount is derived of-type integer [destCount >= Ol:

destCount := cardinality of instances; 
end destCount; 
deMandTotal is deriued of-type integer [deMandTotal >= 01:

deMandTotal := SUM CdeMandC*l>; 
end deMandTotal; 

end class; 
instance attributes:-

identifier is aggregate-of:
destHaMe is fixed of-type string; 

end identifier; 
deMandTest is deriued of-type boolean:-

deMandTest := (SUM Cflow[*,destHaMel) == deMand>; 
end de111andTest; 
deMand is fixed of-type integer CdeMand >= Ol; 

end instance; 
end destPoint; 
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Figure 53. Transportation Model Schema Abstraction 



link is-a relationship Csou:rcePoint:Many,destPoint:..anyJ:
class attributes:-

linkCount is derived of-type integer ClinkCount >= Ol:
linkCount := cardinality of instances; 

end linkCount; 
end class: 
instance attributes:

identifier is aggregate-of:-
sourceNaMe is fixed of-type string [exists]; 
destHatitt is fixed of-type string [exists]; 

end identifier; 
linkCost is fixed of-type float ClinkCost >= Ol; 
flow is solver-derived of-type integer [flow >= OJ; 
linkTotal is derived of-type float ClinkTotal >= Ol:-

linkTotal := linkCost * flow: 
end linkTotal; 

end instance; 
end link; 

end network; 
end instance; 

end transportationModel; 
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Figure 53 (Continued). Transportation Model Schema 
Abstraction 

for the development of a model management system as an 

analog of a database management system. 

The combination of model schema development and model 

schema abstraction addresses the required characteristics 

of a model management system. Thus, o-o structured 

modeling serves as a useful medium for model management. 

One last issue addressed by structured modeling is model 

cyclicity. o-o structured modeling examines this in the 

next section. 

Model Acyclicity Verification 

Structured modeling uses acyclic directed graphs to 

display the model schema thereby assuring the acyclicity of 



generalLPModel is-a Model:
class attributes:-

ModelCount is derived of-type integer CModelCount >= Bl:
ModelCount := cardinality of instances; 

end ModelCount; 
end class; 
instance attributes:

identifier is aggregate-of:-
lpNaMe is fixed of-type string; 

end identifier; 
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lpType is fixed of-type string [(lpType == 'Max') or ClpType == 'Min')]; 
forMulation is aggregate-of:-

decisionUariable is-a entity:
class attributes:-

dvCount is derived of-type integer [dvCount >= 01:
dvCount := cardinality of instances; 

end dvCount; 
objUalue is derived of-tyDe float:

objUalue := SUM (objCoefC*l * valueC*l>; 
end objUalue; 

end class; 
instance attributes:

identifier is aggregate-of:-
dvNaMe is fixed of-type string; 

end identifier; 
objCoef is fixed of-type float; 
kind is fixed of-type string [(kind== 'continuous') or 

<kind== 1integer') or (kind== 'binary')]; 
bound is fixed of-type float; 
value is solver-derived of-type float; 
reduced is solver-derived of-type float; 

end instance; 
end decisionUariable; 
constraint is-a entity:

class attributes:-
conCount is derived of-type integer CconCount >= Bl:

conCount := cardinality of instances; 
end conCount; 

end class; 
instance attributes:

identifier is aggregate-of:-
conNaMe is fixed of-type string; 

end identifier; 
rhsUalue is fixed of-type float; 
type is fixed of-type string [(type== '>='> or (type== '{='> or 

(type== '==')]; 
slack is solver-derived of-type float; 
dual is solver-derived of-type float; 

end instance; 
end constraint; 

Figure 54. General Linear Programming Model Schema 
Abstraction 



Matrix is-a relationship CdecisionUariable:nany,constraint:nanyJ:
class attributes:-

nzCount is derived of-type integer CnzCount >= Ol:-
nzCount := cardinality of instances where (coefUalue N= 0); 

end nzCount; 
end class; 
instance attributes:

identifier is aggregate-of:-
dvHuie is Fixed of-type string [exists J; 
conNane is fixed of~type string Cexistsl; 

end identHier; 
coefUalue is fixed of-type float; 

end instance; 
end 111atrix; 

end fanulation; 
end instance; 

ind g1111r1lLPModel; 
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Figure 54 (Continued). General Linear Programming 
Model Schema Abstraction 

modeling calls. o-o structured modeling does not enjoy 

this benefit as there may be inherent cyclicity as one 

derived attribute may call another which ultimately calls 

the first attribute. 

Acyclicity verification involves the development of an 

attribute list. This list is represented as a set which 

includes all attributes in the model abstraction. Each 

element of the set (each attribute) has an associated 

calling sequence. This calling sequence also may be 

represented as a set. A calling sequence is nothing more 

than the set of attributes on which the given attribute is 

functionally dependent. Figure 55 depicts various rules 

the modeler may use to determine the calling sequence for a 

.given attribute. 



Fix1d Attributes: 

Class Level 

1.) The calling seQuence is represented by an eMpty set 

Instance Level 

1.) The calling sequence is represented by an eMptv set ror 111odel 
instance and entity instance identifiers 
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2.) The calling sequence is represented by a set consisting of each . 
entity instance identifier attribute participating in the definition 
of the relationship · 

3.) The calling sequence is represented by a set consisting of the 
specific instance identifier attribute 

Derived Attributes: 

Class Level 

1.) The calling sequence is represented by the set of attributes 
referenced in the attribute derivation 

Instance Level 

1.) The calling sequence is represented bv the union of the specific 
instance identifier attribute and the set of attributes referenced 
in the attribute derivation 

Solver-Derived Attributes: 

Class Level 

1.) The calling sequence is represented by an eMptv set. 

Instance Level 

1.) The calling sequence is represented by a set consisting of the 
specific instance identifier attribute 

Figure 55. Calling Sequence Determination Rules 

Figure 56 presents an algorithm which the modeler may 

use to determine whether circular references occur within 

·the model. This algorithm is named Warshall after its 

inventor (Aho, Hopcroft, and Ullman 1983). It begins with 
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an adjacency matrix, called adjacency. This is an n x n 

matrix where each attribute appears along both axes of the 

matrix. If attribute i calls attribute i, a one is placed 

in the ~ entry in adjacency; otherwise enter a zero. 

Once the adjacency matrix is constructed, Warshall's 

algorithm may be used to determine if cyclicity occurs. 

This is indicated by the appearance of a one in the 

diagonal of the transitive closure matrix called closure. 

A one in the diagonal of closure implies that at some point 

an attribute calls itself. 

ror i := 1 to n do 
ror j := 1 to n do 

closureCi,jJ := adjacencyCi,jl; 
ror k := 1 to n do 

for i := 1 to n do 
for j := 1 to n do 

if closureCi,jl = 0 then 
closureCi,jl := (closureCi,kl and closureCk,jl) 

Figure 56. Algorithm for Verifying Model Acyclicity 

The concepts of model schema development and model 

schema abstraction represent the first architectural step 

in proper system design (Chung 1984). The next two steps 

involve operationalization and implementation. Chapters V 

and VI attack these issues. 



CHAPTER V 

MESSAGE PROTOCOLS 

Introduction 

This chapter proposes a minimal s~t of class objects 

required to support an object-oriented (0-0) approach to 

decision support systems (DSSE;) as· discussed in the 

preceding chapters. In addition, we present an associated 

collection of message protocols defined for each class 

object which allow for the creation and manipulation of 

instance objects capable of representing the general 

entity, relationship, model, and relation class concepts 

introduced earlier. These protocols allow the user and 

other objects in the system to access the class attributes 

and instance attributes of these classes. Chapter VI 

describes a prototype implemented in a personal computing 

environment which uses these protocols. 

Organization of Classes 

We define five class objects which are necessary to 

implement the concepts of o-o data model schema abstraction 

and o-o model schema abstraction. These class objects are: 

(1) Metamodel class; 
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(2) Entity class; 

(3) Relationship class; 

(4) Model class; and 

(5) Relation class. 
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Together these classes are placed into the single 

inheritance hierarchy shown in Figure 57. This figure also 

includes an additional abstract class.object, Object, which 

is the superclass of all classes and defines the protocol 

common to all objects in the object universe. This 

hierarchical organization implies that the class methods 

and instance methods of both the Object class and the 

Metamodel class are inherited by the Entity, Relationship, 

Model, and Relation classes. The Metamodel class is also 

an abstract class in the sense that it defines instance 

level methods which are inherited by its subclasses but 

itself does not have any instance objects. 

Each of these subclass objects has the ability to 

create instance objects specific to the subclass. 

Furthermore, although these instance objects are 

instantiated by different classes they have several 

characteristics in common. These general traits are 

inherited from the Metamodel class object. 

Inheritance from the Metamodel class provides 

instances of these subclass objects with the capability to 

model nonspecific class level and instance level object 

interactions. Consequently, a single instance object of 



130 

any of the four subclass objects (Entity, Relationship, 

Model, and Relation) has the ability to represent both 

class level and instance level attributes as well as has 

the ability to perform both class level and instance level 

operations on the class modeled by the instance object. A 

reference to a class or an instance of a class modeled 

within such a singular object uses the prefix object. 

Entity 
Class 

Relationship 
Class 

Object 
Class 

Metall\Odel 
Class 

Model 
Class 

Relation 
Class 

Figure 57. Class Object Hierarchy 

For ~xample, the Entity class object is the specific 

object on which the definition of the Source Point class in 

Figure 49 depends (note the sourcePoint is-a entity 

statement) . The Entity class object creates an entity 

instance object in order to model the Source Point class. 

This instance object is referred to as the source point 
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instance object (since it is an instance object which 

models the Source Point class). The term object class 

refers to the specific class modeled by an instance object. 

Thus, the object class modeled by the source point instance 

object is the Source Point class. Adding a new source 

point to the Source Point class is an example of an object 

class level operation. The_ source point instance object 

provides this capability. 

The source point instance object is also responsible 

for managing the interactions between the instances of the 

Source Point class (e.g., a specific source point) and 

other objects in the object universe. Consequently, an 

instance object of one of the four subclass objects 

performs a dual function. First, such an instance object 

represents the class level attributes of the object class 

which it models. Second, such an instance object is 

responsible for the creation and maintenance of the 

instance objects of this same class. An instance created 

by such an instance object is called an object instance (as 

the object instance is an instance of the object class). 

Access to the value of the instance attribute supply 

(see Figure 49) must be provided for any source point 

created by the Source Point class. This is an example of 

an object instance level operation. Thus, operations on 

specific source points affect object instances whereas 

operations on the Source Point class affect the object 
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class. The Entity class object creates an instance object 

which has the capability to handle both of these kinds of 

operations. 

We present another example of these ideas using the 

Model class object. The Model class object is the specific 

object on which the definition of the Transportation Model 

class in Figure 53 depends (note the transportationModel 

is-a model statement). The Model class object creates an 

instance object (called a transportation model instance 

object) which then serves to represent the Transportation 

Model class defined in this figure. Formulating a new 

transportation model would involve the creation of a new 

object instance. This is an object class level operation. 

On the other hand, solving a transportation model 

formulation is an example of an object instance level 

operation. Again, the source point instance object and the 

transportation model instance object must perform object 

class level and object instance level operations. 

In summary, the four subclass objects discussed above 

create instance objects to model the classes defined in 

either a data model schema abstraction or a model schema 

abstraction. A class appearing in an abstraction and 

modeled by such an instance object is called the object 

class. Instances of a class appearing in an abstraction 

are instances of the object class and are called object 

instances. Thus, an instance object models an object class 



and, consequently, is responsible for creating, 

manipulating, and removing object instances. 

Object Class Versus Object Instance 

Access Mechanisms 
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The user and other objects in the system gain access 

to the values of the general properties of the modeLed 

classes (object class attributes) by passing messages to 

the specific instance object (e.g., the transportation 

model instance object). We develop message protocols which 

allow access to specific properties (object instance 

attributes) indirectly through the instance object since it 

is responsible for maintaining the instances of the object 

class. In this manner the instance object becomes solely 

responsible for managing the class attributes and instance 

attributes of the class that it models. Thus, as stated 

above, the source point instance object manages both the 

Source Point class attributes and its instance attributes. 

We propose two mechanisms, one direct and the other 

indirect, which the user may use to refer to a specific 

object instance appearing in an instance object (that is, 

refer to an instance of the modeled class). The first 

mechanism allows the user to specify an object instance 

index in accessing a specific object instance. An object 

instance index refers to the chronological order in which 

the instance object creates the particular object instance. 
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For example, the user would refer to the first 

transportation model formulation (object instance) of the 

transportation model instance object as object instance 

one, the second by two, and so on. 

The fifth object instance would become the fourth 

object instance should the user remove object instance four 

(dispose of a specific transportation model formulation), 

the sixth object instance would then become the fifth 

object instance, and so forth. This means-of accessing 

object instances has the obvious shortcoming that an object 

instance cannot be uniquely identified by its object 

instance index as the object instance set is not guaranteed 

to remain static through time (various transportation 

models will be formulated, retained, and disposed of as 

needed). 

Alternatively, the user may specify an object instance 

identifier list which the instance object uses to uniquely 

identify each object instance. All object class 

definitions outlined in the previous chapters require that 

object instances have unique object instance identifiers. 

Consequently, we provide messages which allow the user to 

access an object instance either through its object 

instance identifier or its associated object instance 

index. 



General Characteristics of Instance 

Objects 
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Instance objects created by the Entity, Relationship, 

Model, and Relation class objects have certain general 

characteristics which we discuss in this section. 

Individual differences between these objects are discussed 

in the appropriate message protoco.l sections below. _ _ 

Object Class Identifiers 

An object class identifier must be specified-at '\;he 

time that one of the four subclass objects creates an 

instance object. An object class identifier statically 

names the instance object. For example, the class name 

link serves as the object class identifier for the Link 

class definition appearing in Figure 51. 

Entity and relationship instance objects, however, are 

not required to have unique object class identifiers. This 

is a necessary condition as model object instances 

duplicate entity and relationship instance object 

definitions at the time that they are created and thus 

would require the specification of unique object class 

identifiers. Dropping the uniqueness restriction for these 

instance objects allows the model instance object to create 

model object instances without having to alter the entity 

and relationship object class identifiers appearing in the 



136 

object entity definition and object relationship definition 

lists (an explanation of these lists appears below). 

Model and relation instance objects, on the other 

hand, are required to have unique object class identifiers. 

Creation of an. instance object, either for a new model 

object class or n~w relation object class, fails if the 

object class identifier is not unique to .. the other instance 

objects for the given subclass object. For example, an 

attempt to create a new model instance object with an 

object class identifier of transportationModel would fail 

if a preexisting model instance object has the same object 

class identifier. 

Attribute Information 

The message protocols developed below provide the user 

with the power to define, access, and in certain cases 

override attributes and their associated values. Each of 

these issues is further discussed in the sections which 

follow. 

Attribute Definitions 

Object class level and object instance level 

attributes for a new instance object are defined and 

communicated to the subclass responsible for creating the 

new instance object. The subclass object uses this 

-information to organize the object class attributes and 
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object instance attributes for the new instance object. 

Through time the new instance object uses the relevant 

object instance level information to create new object 

instances for the object class which has the specified 

object instance level attribute characteristics. 

For example, the source point instance object has two 

object class attributes (see Figure 49):. (1) sourcecount; 

and ( 2) supplyTotal. In addition, the source point - ·· 

instance object creates three object instance attributes 

for each new object instance (e.g., instance of the Source 

Point class; refer to Figure 49): (1) sourceName; (2) 

supplyTest; and (3) supply. The information concerning 

these attributes, obtained from the previously developed 

abstraction, is passed to the Entity class object at the 

time it creates the source point instance object. 

All class attribute definitions are collected together 

into an object class attribute definition list. The object 

class attribute definition list establishes the object 

class attributes represented within the instance object. 

Likewise, the object instance attribute definition list 

specifies the object instance attributes represented within 

the instance object. Both of these definition lists are 

derived from the corresponding schema abstraction. For 

each attribute in the schema abstraction there is an 

equivalent attribute definition appearing in the list. 



This definition contains the following attribute 

information: 

(1) name; 

(2) kind; 

(3) type; 

(4) range; and 

(5) derivation. 
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An attribute name must be unique to its given list. 

In other words, no two attribute names may be the same in 

either the object class attribute list or the object 

instance attribute list. The object class attribute list 

may, however, contain an attribute name found in the object 

instance attribute list and vice versa. The attribute kind 

specifies whether the attribute is fixed, derived, or 

solver-derived. The attribute type details the data type 

of the attribute. For example, an attribute may be a 

string, float, integer, boolean, or any other valid type as 

determined by the Metamodel class. Attribute ranges are 

optional and when specified restrict the allowable set of 

values that an attribute may possess. Finally, an 

attribute derivation must be provided if an attribute is 

solver-derived. The attribute derivation is used to 

compute the associated value of the attribute at the time 

that it is accessed. 
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Attribute Access Mechanisms 

Attributes, whether at the object class level or 

object instance level, are accessed through either of two 

mechanisms in a manner similar to that provided for object 

instance level access. Attributes may be accessed through 

the specification of the attribute name or by giving the 

index of the attribute as it appears in the corresponding 

object attribute definition list used to define the 

instance object. 

For example, .. the object c.lass. attribute suppl.yTotal 

may be accessed by giving its name, supplyTotal, or by 

specifying the index two since it is the second object 

class attribute appearing in the object class attribute 

definition list. Attribute indexes are unique, unlike 

object instance indexes, since attributes may not be 

removed once the instance object is created. 

Overriding Derived Attributes 

Our message protocols allow the user to override any 

attribute derivation. There are several reasons for 

incorporating this feature into the system. An attribute 

derivation may, for example, compute a value which violates 

either the type or the range specified for the attribute. 

Likewise, other derived attributes may depend on the 

violated derivation and thus may also be affected. 
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Consequently, the user may specify an override value 

for any derived attribute and may also disable or enable 

overrides for an entire object class within the instance 

object. An instance object returns an override value 

without computing the value of a derivation when overrides 

are enabled and an override is defined for the~associated 

derived attribute. As a result, a given instance objsct 

only computes a derivation when overrides are disabled or 

no override is specified for the specific derived 

attribute. 

Object Instance Identifier List 

The Metamodel class object enforces object instance 

uniqueness. That is, no two object instances within an 

instance object may have the same values across all object 

instance attributes. The object instance identifier list, 

if defined for an instance object, specifies the object 

instance attributes with which the instance object 

determines object instance uniqueness. For example, the 

source point instance object uses the single object 

instance attribute sourceName as its object instance 

identifier list. Uniqueness is determined across all 

object instance attributes if no object instance identifier 

list is defined for the instance object. 

Entity and model instance objects are required to have 

non-varying object instance identifier lists. Relationship 
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instance objects, on the other hand, derive their non

varying object instance identifier list by aggregating the 

object instance identifier lists of the entity instance 

objects which participate in defining the relationship 

instance object. Contrarily, relation instance objects may 

have time-varying object instance identifier lists. 

Related Issues 

Three additional concepts require discussion. The 

ideas of object class level and object instance level 

productions, context objects, and object dependencies are 

presented below. All of these issues are relevant to the 

discussion of message protocols for the proposed system. 

Productions 

In his development of graph-based modeling systems, 

Jones (1988) defined the set of allowable editing 

operations on graphs, drawn from the field of graph

grammars, as productions. As used presently, productions 

permit the user to create tailored operations which build 

on the set of message protocols provided for each of the 

five class objects. Productions provide the user with the 

capacity to construct a sequence of operations for model 

instances which may be invoked through a single message. 

Furthermore, productions allow the user to incorporate 



model specific actions not otherwise available through 

model abstraction. 
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A user may define two types of productions: (1) 

object class level productions; and (2) object instance 

level productions. Object class level productions are 

defined for an object class within an instance object and 

may affect all object instances of the object class. For 

example, the transportation model instance object may have 

an object class production named newsource which when 

executed creates, for a specified model object instance, a 

new source point object instance in the object class 

(Source Point class) and subsequently create a new link 

object instance in the link relationship instance object 

for every existing destination point in the destination 

point instance object. Thus, this production allows the 

user to create a new source point instance and link that 

new point to all existing destination points in a specific 

transportation model formulation. This sequence of events 

requires multiple message passing which, using the 

newsource production, may be achieved through a single 

message. 

The user may define productions specific to a given 

object instance thereby restricting the scope of the 

production. For example, suppose that a user would like to 

perform several database operations such as selection and 

projection on several relations and use the results as 
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inputs to a specific object instance of a transportation 

model. By defining an object instance production, perhaps 

named build, the user may literally build inputs to the 

model permitting changes in the database to be incorporated 

into the model. Likewise, object instance productions 

accomplish a sequence of operations through the passage of 

multiple messages .. This process is instigated when_ the 

user passes a single message to the model instance object 

indicating the desire to execute an object instance 

production. 

Contexts 

The concept of contexts is taken directly from 

smalltalk. A context is an object which contains a 

sequence of Smalltalk messages invoked when the context 

object is passed a message to evaluate itself. Frequently, 

the value of a context is used to perform conditional 

branching or testing. Another proposed use of contexts is 

in the creation of productions. Thus, a production is 

simply a valid context defined for an object instance or 

object class. Several messages below utilize contexts, 

referred to as blocks, which are evaluated within the 

corresponding method and are used to perform conditional 

testing or conditional message passing. 
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Object Dependencies 

Object dependencies naturally arise from the proposed 

o-o approach to DSSs. Two specific dependencies are: (1) 

entity-relationship dependencies; and (2) model

entity/relationship dependencies. 

Relationships are naturally dependent on entities. 

Object instances of relationships may not be created 

without the existence of the entity object instance 

participating in the new relationship object instance. 

Consequently, relationship instance objeets must .verify the 

existence of these entity object instances at the time they 

are created. Furthermore, relationships are also dependent 

on entity classes especially when entity object instances 

are removed from an entity object class which participates 

in the relationship instance. 

Models are inherently dependent on the entities and 

relationships which participate in the model. Changes in 

the underlying entity and relationship object classes may 

also affect a model object instance. Specifically, the 

model object instance may require the generation of a new 

solution should any one of the underlying objects change 

state. 

These conditions require that objects have the 

~apability to establish object dependencies. Message 

protocols are provided below to permit the user and objects 

themselves to create these dependencies. In addition, 
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these objects can respond to messages communicating changes 

in superior objects. 

Class Message Protocols 

The message syntax used below borrows heavily from 

Smalltalk. A message in Smalltalk consists of (Smalltalk/V 

1987): 

(1) identifying the object to which the message is 
sent (the receiver of the message) ; 

(2) identifying the additional objects that are 
included in the message (the message arguments) ; 

(3) specifying the desired operation to be performed 
(the message selector) ; and 

(4) accepting the single object that is returned as 
the message answer. 

We use two types of message patterns in describing our 

protocols: (1) unary; and (2) keyword. Unary message 

patterns have no arguments. For example, instancecount is 

a unary message where instancecount is the selector for the 

message. The methods handler uses the selector to 

determine which method to invoke or whether to pass the 

message up the inheritance hierarchy. Keyword message 

patterns, on the other hand, are messages with one or more 

arguments. The keyword selector new: has a single 

argument. This argument follows the colon (:) which 

appears at the end of the selector. The message 

new:aValueList passes the selector new: to the receiver 

using the argument object aValueList. The methods handler 
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passes the message arguments to the selected method which 

then uses these objects in fulfilling the specified 

request. 

The keyword selector for multiple arguments is 

distributed through the message pattern in parts. A part 

of the keyword selector appears_before each argument. For 

instance, the keyword selector forEntity:do: should have 

two accompanying arguments. Note that this selector has 

two colons where an argument follows each colon in the 

message pattern. The message sender of the sending object 

passes the message forEntity:anEntity do:aBlock to the 

receiver whose methods handler uses the selector 

forEntity:do: to identify the appropriate method and passes 

the two arguments anEntity and aBlock to the selected 

method. 

In explaining our proposed message protocols we state 

the name of the applicable class object, its class 

description, which object it inherits from, and which 

objects inherit from it. We also detail each class level 

and instance level message defined for the class. It is 

important to note that inheritance of methods applies and, 

as a result, superclass methods are available to a subclass 

object unless specifically overridden within the subclass. 

Finally, certain objects return a single object as an 

answer to the message sent to the receiver. Where 

appropriate this object is discussed. 
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Metamodel Class 

The Metamodel class object is an abstract class and is 

perhaps the most important object of the five class objects 

discussed. It provides a common protocol for defining and 

accessing object class attributes and object instance 

attributes necessary for the implementation of the Entity, 

Relationship, Model, and Relation instance objects so 

critical to the proposed 0-0 DSS. No Eessages are ever 

passed directly to this objec~. Rather, all messages 

received by this object are passed.along the inheritance 

hierarchy. 

Inherits From: Object 

Inherited By: Model Entity Relationship Relation 

Class Message Protocols 

classHavingidentifier:aClassidentifier 

Answer the instance object for the receiver which has 
aClassidentifier as its object class identifier. 

newClass:aClassidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 

Create a new instance object having the object class 
identifier aClassidentifier, object class attributes 
defined in classAttributeList, object instance 
attributes defined in instanceAttributeList, and where 
object instance identifiers are represented by the 
concatenation of the object instance attributes which 
appear in identifierAttributeList. Answer the new 
instance object initialized. 
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Instance Message Protocols 

classAttributecount 

Answer the number of object class attributes defined 
for the receiver. 

classAttributeForindex:anindex 

Answer the attribute name appearing at position 
anindex in the object class attribute definition list 
for the receiver. 

classAttributeHasOverride:anAttribute 

Answer true if the object class attribute named 
anAttribute in the receiver has a defined override 
value and overrides are enabled, else answer false. 
This message is only valid for derived attributes. 

classAttributes 

Answer the object class attribute names for the 
receiver. 

classAttributesForindexes:anindexList 

Answer the receiver attribute names for attributes 
appearing at the positions specified in anindexList 
within the object class attribute definition list. 

classDerivations 

Answer the object class attribute derivations for the 
receiver's derived attributes. 

classindexHasOverride:anindex 

Answer true if the attribute at position anindex in 
the object class attribute definition list for the 
receiver has a defined override value and overrides 
are enabled, else answer false. This message is only 
valid for derived attributes. 

classKinds 

Answer the object class attribute kinds for the 
receiver. 



classRanges 

Answer the object class attribute ranges for the 
receiver. 

classTypes 

Answer the object class attribute types for the 
receiver. 

dependentEntityHavingClass:aClassidentifier 
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Answer the dependent entity instance object having 
aClassidentifier _as its object class identifier. 
Answer nil if no such object is found. 

dependentModelHavingClass:aClassidentifier 

Answer the dependent model instance object having 
aClassidentif ier as its obj ec.t class- identifier. 
Answer nil if no such object is found. 

dependentRelationshipHavingClass:aClassidentifier 

Answer the dependent relationship instance object 
having aClassidentifier as its object class 
identifier. Answer nil if no such object is found. 

do:aBlock 

For each set of object instance values occurring for 
the receiver, evaluate the context aBlock using that 
set as the argument to the context. 

forAttributes:anAttributeList do:aBlock 

For each set of object instance values defined by the 
object instance attribute names appearing in 
anAttributeList occurring for the receiver, evaluate 
the context aBlock using that set as the argument to 
the context. 

forDependentEntitiesDo:aBlock 

For each dependent entity instance object occurring in 
the receiver, evaluate the context aBlock using that 
object as the argument to the context. 
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forDependentModelsDo:aBlock 

For each dependent model instance object occurring in 
the receiver, evaluate the context aBlock using that 
object as the argument to the context. 

forDependentRelationshipsDo:aBlock 

For each dependent relationship instance object 
occurring in the receiver, evaluate the context aBlock 
u~ing that object as the argument to the context. 

foridentifierDo:aBlock 

For each object instance identifier for the object 
instances of the receiver, evaluate the context aBlock 
using that object instance identifier as the argument 
to the context. This is a valid message only if an 
object instance identifier list is defined for the 
receiver. 

forindexes:anindexList do:aBlock 

For each set of object instance values defined for the 
object instance attributes appearing at the positions 
specified in anindexList within the object instance 
attribute definition list occurring for the receiver, 
evaluate the context aBlock using that set as the · 
argument to the context. 

hasDependencyWith:anObject 

Answer true if anObject is a direct or indirect 
dependent of the receiver, else answer false. 
Indirect dependency occurs when a dependent of the 
receiver has anObject as a dependent, and so on. 

identif ierForClass 

Answer the object class identifier for the receiver. 

indexesOfClassAttributes:anAttributeList 

Answer the index positions in the object class 
attribute definition list of the attribute names 
appearing in anAttributeList for the receiver. 

indexesOfinstanceAttributes:anAttributeList 

Answer the index positions in the object instance 
attribute definition list of the attribute names 
appearing in anAttributeList for the receiver. 



indexOfClassAttribute:anAttribute 

Answer the index position in the object class 
attribute definition list of the attribute name 
anAttribute in the receiver. 

indexOfinstanceAttribute:anAttribute 

Answer the index position in the object instance 
attribute definition list of the attribute name 
anAttribute _in the receiver. 

initialize:aClassidentifier _ 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 
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Initialize the object class identifier using 
aClassidentifier, initialize the object class 
attribute definition list. using clas.sAttributeList, 
initialize the object instance attribute definition 
list using instanceAttributeList, and construct the 
object instance identifier list using 
identifierAttributeList. Answer the receiver 
initialized. The corresponding method for this 
message may only be invoked once, at the time that the 
new instance object is created. 

instanceAttributecount 

Answer the number of object instance attributes 
defined for the receiver. 

instanceAttributeForindex:anindex 

Answer the attribute name appearing at position 
anindex in the object instance attribute definition 
list for the receiver. 

instanceAttributeHasoverride:anAttribute 

Answer true if the object instance attribute named 
anAttribute in the receiver has a defined override 
value and overrides are enabled, else answer false. 
This message is only valid for derived attributes. 

instanceAttributes 

Answer the object instance attribute names for the 
receiver. 
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instanceAttributesForindexes:anindexList 

Answer the receiver attribute names for attributes 
appearing at the positions specified in anindexList 
within the object instance attribute definition list. 

instance Count 

Answer the number of object instances in the receiver. 

instanceDerivations 

Answer the object instance attribute derivations £or 
the receiver's derived attributes. 

instanceHasidentifier:anidentifier 

Answer true if an object instance occurring in the 
receiver has an object instance identifier value of 
anidentifier, else answer false.- -Thi&~is-avalid
message only if an object instance identifier list is 
defined for the receiver. 

instanceHasValues:aValueList forAttributes:anAttributeList 

Answer true if an object instance occurring in the 
receiver has the values of aValueList for the 
attributes names in anAttributeList, else answer 
false. 

instanceHasValues:aValueList forindexes:anindexList 

·Answer true if an object instance occurring in the 
receiver has the values of aValueList for the 
attributes appearing at the positions specified in 
anindexList within the object instance attribute 
definition list, else answer false. 

instanceHavingidentifier:anidentifier 

Answer the object instance index for the receiver of 
the object instance having an object instance 
identifier value of anidentifier. Answer zero if no 
such object instance is found. This is a valid 
message only if an object instance identifier list is 
defined for the receiver. 

instanceHavingValues:aValueList 
forAttributes:anAttributeList 

Answer the object instance index for the receiver of 
the object instance having the values of aValueList 
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for the attribute names in anAttributeList. Answer 
zero if no such object instance is found. 

instanceHavingValues:aValueList forindexes:anindexList 

Answer the object instance index for the receiver of 
the object instance having the values of aValueList 
for the attributes appearing at the positions 
specified in anindexList within the object instance 
attribute definition list. Answer zero if no such 
object instance is found. 

instanceidentif ier 

Answer the object instance attributes used to define 
the object instance identifier list for the receiver. 
Answer nil if no object instance _identifier list is 
defined for the receiver. 

instanceidentifierFor:aninstance 

Answer the object instance identifier for the object 
instance index aninstance in the receiver. This 
message is valid only if an object instance identifier 
list is defined for the receiver. 

instanceindexHasOverride:anindex for:aninstance 

Answer true if the attribute at position anindex in 
the object instance attribute definition list for 
object instance index aninstance in the receiver has a 
defined override value.and overrides are enabled, else 
answer false. This message is only valid for derived 
attributes. 

instanceKinds 

Answer the object instance attribute kinds for the 
receiver. 

instanceRanges 

Answer the object instance attribute ranges for the 
receiver. 

instanceTypes 

Answer the object instance attribute types for the 
receiver. 
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makeClassDerivation:aDerivation forAttribute:anAttribute 

Answer a new derivation using the context aDerivation 
for the object class attribute named anAttribute in 
the receiver. Any existing override for the attribute 
is removed. This message is valid only for derived 
attributes. 

makeClassDerivation:aDerivation forindex:anindex 

Answer a new derivation using the context aDerivation 
for the attribute name appearing at position anindex 
in the object class attribute definition list of the 
receiver. Any.existing override for the attribute is 
removed. This message is valid only for derived 
attributes. 

makeClassRange:aRange forAttribute:anAttribute 

Answer a new range using the context aRang& for the 
object class attribute named anAttribute in the 
receiver. This message is invalid if the current 
value of the attribute violates the new range. 

makeClassRange:aRange forindex:anindex 

Answer a new range using the context aRange for the 
attribute name appearing at position anindex in the 
object class attribute definition list of the 
receiver. This message is invalid if the current 
value of the attribute violates the new range. 

makeinstanceDerivation:aDerivation forAttribute:anAttribute 

Answer a new derivation using the context aDerivation 
for the object instance attribute named anAttribute in 
the receiver. Any existing override for the attribute 
is removed for all object instances of the receiver. 
This message is valid only for derived attributes. 

makeinstanceDerivation:aDerivation forindex:anindex 

Answer a new derivation using the context aDerivation 
for the attribute name appearing at position anindex 
in the object instance attribute definition list of 
the receiver. Any existing override for the attribute 
is removed for all object instances of the receiver. 
This message is valid only for derived attributes. 
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makeinstanceidentifier:identifierAttributeList 

Answer a new object instance identifier list comprised 
of the object instance attributes appearing in 
identifierAttributeList. Attribute names may be in 
any order, occur only once in the list, and the 
corresponding attribute kinds must be fixed. The new 
object instance identifier list is accepted only if 
uniqueness of object instances holds true. 

makeinstanceRange:aRange forAttribute:anAttribute 

Answer a new range using the context aRange for. the 
object instance attribute named anAttribute in the 
receiver. This message is invalid if the current 
value of the attribute for any object instance 
violates the new range. 

makeinstanceRange:aRange forindex:anindex 

Answer a new range using the context aRange for the 
attribute name appearing at position anindex in the 
object instance attribute definition list of the 
receiver. This message is invalid if the current 
value of the attribute for any object instance 
violates the new range. 

makeObjectADependent:anObject 

Answer the object anObject after making it a dependent 
of the receiver. 

new:aValueList 

Create a new object instance of the receiver after 
initializing its fixed and solver-derived attribute 
values with the values of aValueList. A new object 
instance is created if all values are acceptable for 
type and range. A new object instance must be unique. 
Uniqueness is determined by the object instance 
identifier list if one is defined for the receiver, 
otherwise it is determined by. the combination of all 
the values in the object instance attribute definition 
list. Answer true if the new object instance is 
created, else answer false. 

notifyDependentsOfChange:aChange 

For dependents of the receiver which respond to 
anObject:changedWith:, notify the dependent of a 
change in the receiver by sending the dependent the 
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message anObject:receiver changedWith:aChange. Answer 
the receiver. 

overrideClassAttribute:anAttribute usingValue:aValue 

Override the value of the object class attribute named 
anAttribute with the value aValue in the receiver. 
This message is valid only for derived attributes and 
when overrides are enabled for the receiver. The data 
type of aValue must agree with the type specified for 
the attribute. Answer the override value. 

overrideClassindex:anindex usingValue:aValue 

Override the value of the attribute name-appearing at 
position anindex in the object class attribute 
definition list of the receiver with the value aValue. 
This message is valid only for derived attributes and 
when overrides are enabled for the receiver. The data 
type of aValue must agree .with.the.typa specified for_ 
the attribute. Answer the override value. 

overrideDisable 

Disable override operations for the receiver. No 
override values are removed from the receiver. Answer 
the receiver. 

overrideEnable 

Enable override operations for the receiver. 
Previously defined overrides are reinstated. Answer 
the receiver. 

overrideinstanceAttribute:anAttribute usingValue:aValue 
for:aninstance 

Override the value of the object instance attribute 
named anAttribute with the value aValue for the object 
instance index aninstance in the receiver. This 
message is valid only for derived attributes and when 
overrides are enabled for the receiver. The data type 
of aValue must agree with the type specified for the 
attribute. Answer the override value. 

overrideinstanceindex:anindex usingValue:aValue 
for:aninstance 

Override the value of the attribute name appearing at 
position anindex in the object instance attribute 
definition list of the receiver with the value aValue 
for the object instance index aninstance. This 
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message is valid only for derived attributes and when 
overrides are enabled for the receiver. The data type 
of aValue must agree with the type specified for the 
attribute. Answer the override value. 

remove:aninstance 

Remove the object instance whose object instance index 
is aninstance from the receiver. All relevant 
overrides are also removed. Answer the object 
instance identifier of the removed object instance. 
Answer nil if no object instance identifier list is 
defined for the receiver. 

removeAllClassoverrides 

Remove all object class overrides from the receiver. 
This message is valid only if overrides are enabled. 
Answer the receiver. 

removeAllinstanceoverrides 

Remove all object instance overrides from the 
receiver. This message is valid only if overrides are 
enabled. Answer the receiver. 

removeAllinstances 

Remove all object instances of the receiver. All 
object instance overrides are also removed. Answer 
the object instance identifiers of the removed object 
instances. Answer nil if no object instance 
identifier list is defined for the ·receiver. 

removeinstances:aninstanceList 

Remove any object instance from the receiver whose 
object instance index appears in the object instance 
index list aninstanceList. All relevant overrides are 
also removed. Answer the object instance identifiers 
of the removed object instances. Answer nil if no 
object instance identifier list is defined for the 
receiver. 

removeObjectAsDependent:anObject 

Remove the object anObject as a dependent of the 
receiver. Answer the object. 
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removeoverrideOfClassAttribute:anAttribute 

Remove the override of the object class attribute 
named anAttribute. This message is valid only for 
derived attributes, when an override is defined for 
the attribute, and when overrides are enabled for the 
receiver. Answer the override value. 

removeOverrideOfClassindex:anindex 

Remove the override of the attribute appearing at 
position anindex in the object class attribute 
definition list of the receiver. This message is 
valid only for derived attributes, when an override is 
defined for the attribute, and when overrides are 
enabled for the receiver. Answer the override value. 

removeOverrideOfinstanceAttribute:anAttributa 
for:aninstance 

Remove the override of the object instance attribute 
named anAttribute for the object instance index 
aninstance in the receiver. This message is valid 
only for derived attributes, when an override is 
defined for the attribute, and when overrides are 
enabled for the receiver. Answer the override value. 

removeoverrideOfinstanceindex:anindex for:aninstance 

Remove the override of the attribute appearing at 
position anindex in the object instance attribute 
definition list of the receiver for the object 
instance index aninstance. This message is valid only 
for derived attributes, when an override is defined 
for the attribute, and when overrides are enabled for 
the receiver. Answer the override value. 

updateClassAttribute:anAttribute usingValue:aValue 

Update the value of the object class attribute named 
anAttribute with the value aValue in the receiver. 
This message is valid only for fixed or solver-derived 
attributes. The data type and value of aValue must 
agree with the type and range specified for the 
attribute. Answer the new value. 

updateClassAttributes:anAttributeList 
usingValues:aValueList 

Update the values of the object class attributes named 
in anAttributeList with the values in aValueList in 
the receiver. This message is valid only for fixed or 
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solver-derived attributes. The data types and values 
of aValueList must agree with the corresponding types 
and ranges of the attributes specified in 
anAttributeList. Answer the new values. 

updateClassindex:anindex usingValue:aValue 

Update the value of the attribute name appearing at 
position anindex in the object class attribute. 
definition list of the receiver with the value aValue. 
This message is valid only for fixed and solver
derived attributes. The data type and value of aValue 
must agree with-the type and range specified for the 
attribute. Answer the new value. 

updateClassindexes:anindexList usingValues:avalueList 

Update the values of the attribute names appearing at 
the positions specified in anindexList in the object 
class attribute- definition l.ist. of the receiver. with 
the values in aValueList. This message is valid only 
for fixed or solver-derived attributes. The data 
types and values of aValueList must agree with the 
corresponding types and ranges of the attributes 
specified in anAttributeList. Answer the new values. 

updateinstanceAttribute:anAttribute usingValue:aValue 
for:aninstance 

Update the value of the object instance attribute 
named anAttribute with the value aValue for the object 
instance index aninstance in the receiver. This 
message is valid only for fixed or solver-derived 
attributes. If an object instance identifier list is 
defined for the receiver, an update on an identifier 
attribute is disallowed. Uniqueness of object 
instances is enforced. The data type and value of 
aValue must agree with th,e type and range- specified 
for the attribute. Answer the new value. 

updateinstanceAttributes:anAttributeList 
usingValues:aValueList for:aninstance 

Update the values of the object instance attributes 
named in anAttributeList with the values in aValueList 
for the object instance index aninstance in the 
receiver. This message is valid only for fixed or 
solver-derived attributes. If an object instance 
identifier list is defined for the receiver, an update 
on an identifier attribute is disallowed.. Uniqueness 
of object instances is enforced. The data types and 
values of aValueList must agree with the corresponding 
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anAttributeList. Answer the new values. 

updateinstanceindex:anindex usingValue:aValue 
for:aninstance 
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Update the value of the attribute name appearing at 
position anindex in the object instance attribute 
definition list of the receiver with the value aValue 
for the object instance index aninstance. This 
message is valid only for fixed and solver-derived 
attributes. If an object instance identifier list is 
defined for the receiver, an update on an identifier 
attribute is disallowed. Uniqueness of object 
instances is enforced. The data type and value of 
aValue must agree with the type and range specified 
for the attribute. Answer the new value. 

updateinstanceindexes:anindexList usingValues:aValueList 
for:aninstance-

Update the values of the attribute names appearing at 
the positions specified in anindexList in the object 
instance attribute definition list of the receiver 
with the values in aValueList for the object instance 
index aninstance. This message is valid only for 
fixed or solver-derived attributes. If an object 
instance identifier list is defined for the receiver, 
an update on an identifier attribute is disallowed. 
Uniqueness of object instances is enforced. The data 
types and values of aValueList must agree with the 
corresponding types and ranges of the attributes 
specified in anAttributeList. Answer the new values. 

updateinstanceUsingValues:aValueList for:aninstance 

Update the values of the fixed and solver-derived 
attributes in the order specified in the object 
instance attribute definition list of the receiver 
with the values in aValueList for the object instance 
index aninstance. If an object instance identifier 
list is defined for the receiver, an update on an 
identifier attribute is disallowed. Uniqueness of 
object instances is enforced. The data types and 
values of aValueList must agree with the corresponding 
types and ranges of the fixed and solver-derived 
attributes of the receiver. Answer the new values. 

valueOfClassAttribute:anAttribute 

Answer the value of the object class attribute named 
anAttribute in the receiver. 
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valueOfClassindex:anindex 

Answer the value of the attribute name appearing at 
position anindex in the object class attribute 
definition list of the receiver. 

valueOfinstanceAttribute:anAttribute for:aninstance 

Answer the value of the object instance attribute 
named anAttribute for the object instance index 
aninstance in the receiver. 

valueOfinstanceindex:anindex_ for:aninstance 

Answer the value of the attribute name appearing- at 
position anindex in the object instance attribute 
definition list of the receiver for the object 
instance index antnstance. 

valuesFor: aninstance ..... 

Answer the values of all the object instance 
attributes for the object instance index aninstance in 
the receiver. 

valuesOfClassAttributes:anAttributeList 

Answer the values of the object class attributes named 
in anAttributeList in the receiver. 

valuesOfClassindexes:anindexList 

Answer the values of the attribute names appearing at 
the positions specified in anindexList in the object 
class attribute definition list of the receiver. 

valuesOfinstanceAttributes:anAttributeList for:aninstance 

Answer the values of the object instance attributes 
named in anAttributeList for the object instance index 
aninstance in the receiver. 

valuesOfinstanceindexes:anindexList for:aninstance 

Answer the values of the attribute names appearing at 
the positions specified in anindexList in the object 
instance attribute definition list of the receiver for 
the object instance index aninstance. 
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Entity Class 

The Entity class object has the capability of 

producing entity instance objects possessing 

characteristics specific to the entity classes encountered 

in model schema development and model schema abstraction. 

For example, each model object instance of the 

transportation model instance object requires two entity 

object classes: (1) the Source Point class; and (2) the 

Destination Point class. Each of these classes is 

represented as an instance of the Entity class. 

This class provides the protocols necessary to create 

and access entity instance objects. Furthermore, certain 

methods are overridden at this level in order to account 

for the special needs of its objects. Specifically, an 

instance object must, when an object instance is removed 

from the object class, notify all dependent relationship 

instance objects that the removed object instance is no 

longer a member of the entity object class. This allows 

the relationship object to remove its object instances 

which are dependent on the removed entity object instance. 

For example, all links in a transportation model 

formulation which are defined in terms of a removed source 

point must also be removed from the model formulation. 

Inherits From: Metamodel Object 

Inherited By: (None) 



Class Message Protocols 

classHavingidentifier:aClassidentifier 

Entity instance objects are not required to have 
unique object class identifiers and as such the 
receiver answers nil. 

newEntity:entityidentifier 
classAttributea:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 
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Create a new entity instance object having the object 
class identifier entityidentifier, object class 
attributes defined in classAttributeList, object 
instance attributes defined in instanceAttributeList, 
and where object instance identifiers are represented 
by the concatenation of the object instance attributes 
which appear in identifierAttributeList. The object 
instance identifier list must be nonempty. Answer the 
new instance object initialized. 

newClass:aClassidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 

This message is disallowed because a method specific 
to the Entity class object exists for creating new 
entity instance objects. 

Instance Message Protocols 

makeinstanceidentifier:identifierAttributeList 

Entity instance objects are required to have 
unchanging object instance identifier lists and as 
such the sender is not allowed to change the 
receiver's object instance identifier list. 

notifyDependentsOfChange:aChange 

For dependents of the receiver which respond to 
entity:changedWith:, notify the dependent of a change 
in the receiver by sending the dependent the message 
entity:receiver changedWith:aChange. Answer the 
receiver. 
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remove:aninstance 

Remove the object instance whose object instance index 
is aninstance from the receiver. All relevant 
overrides are also removed. For all dependent 
relationship instance objects remove object instances 
in which the removed entity object instance identifier 
appears. Answer the object instance identifier of the 
removed object instance. 

removeAllinstances 

Remove all object instances of the receiver. All 
object instance _overrides are _also removed. For all 
dependent relationship instance objects remove object 
instances in which the removed entity object instance 
identifiers appear. Answer the object instance 
identifiers of the removed object instances. 

removeinstances:aninstanceList 

Remove any object instance from the receiver whose 
object instance index appears in the object instance 
index list aninstanceList. All relevant overrides are 
also removed. For all dependent relationship instance 
objects remove object instances in which the removed 
entity object instance identifiers appear. Answer the 
object instance identifiers of the removed object 
instances. 

Relationship Class 

The Relationship class object has the ability to 

produce relationship instance objects possessing 

characteristics specific to the relationships encountered 

in model schema development and model schema abstraction. 

For example, each model object instance of the 

transportation model instance object requires a single 

relationship object class, the Link class. The Link class 

is represented as an instance of the Relationship class (it 

creates a link instance object). The Relationship class 
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provides the protocols necessary to create and access 

relationship instance objects. Furthermore, certain 

methods are overridden at this level in order to account 

for the special needs of its objects. 

The Relationship class object requires an object 

entity mapping definition list in addition to an object 

class identifier, object class attribute definition list, 

and object instance attribute definitidn list in order to 

create a new relationship instance object~ An object 

entity mapping definition list.contains a two element entry 

for each entity which participates in the relationship. 

This entry consists of: (1) an entity instance object; and 

(2) the mapping of the entity into the relationship. The 

entity.instance object must be a valid object instantiated 

by the Entity class object and the mapping must be either: 

(1) one; or (2) many. No fewer than two entities may be 

specified in an object entity mapping definition list and 

each entity instance object class identifier must be unique 

to the list. Finally, the new relationship instance object 

makes itself a dependent of all the entity instance objects 

participating in its creation. 

Inherits From: Metamodel Object 

Inherited By: (None) 
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Class Message Protocols 

classHavingidentifier:aclassidentifier 

Relationship instance objects are not required to have 
unique object class identifiers and as such the 
receiver answers nil. 

newClass:aClassidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 

This message is disallowed because a method specific 
to the Relationship class object exists for creating 
new relationship instance objects. 

newRelationship:relationshipidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
entities:en~ityList 

Create a new relationship instance object having the 
object class identifier relationshipidentifier, object 
class attributes defined in classAttributeList, and 
object instance attributes defined in 
instanceAttributeList. Each entity instance object 
participating in the relationship and its 
corresponding mapping are defined as a matched entry 
in entityList. Relationship object instance 
identifiers are represented by the concatenation of 
the object instance identifier lists of the entity 
instance objects participating in the relationship. 
At least two entities must participate in the 
definition of a relationship instance object and must 
have unique entity instance object class identifiers. 
The new relationship instance object makes itself a 
dependent of all the entity instance objects 
participating in its creation. Answer the new 
instance object initialized. 

Instance Message Protocols 

entityAttributesForClass:aClassidentifier 

Answer the object instance identifier list for the 
entity instance object participating in the receiver 
and having aClassidentifier as its object class 
identifier. 



167 

entityAttributesForindex:anindex 

Answer the object instance identifier list for the 
entity instance object participating in the receiver 
and appearing at position anindex in the object entity 
mapping definition list. 

entityClasses 

Answer the object class identifiers of the entity 
instance objects participating in the receiver. 

entityClassForindex:anindex 

Answer the object class identifier for the entity 
instance object participating in the receiver and 
appearing at position anindex in the object entity 
mapping definition list. 

entitycount 

Answer the number of entity instance objects 
participating in the receiver. 

entityindexForClass:aClassidentifier 

Answer the index position of the entity instance 
object having the object class identifier 
aClassidentifier in the object entity mapping 
definition list for the receiver. 

entityinstanceidentifierFor:aninstance 
forEntityClass:aClassidentifier 

Answer the object instance identifier for the entity 
instance object participating in the receiver and 
having aClassidentifier as its object class identifier 
at instance index position aninstance. 

entityinstanceidentifierFor:aninstance 
forEntityindex:anindex 

Answer the object instance identifier for the entity 
instance object participating in the receiver and 
appearing at position anindex in the object entity 
mapping definition list at instance index position 
aninstance. 

entityMappings 

Answer the mappings of the entity instance objects 
participating in the receiver. 
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forEntityClass:aClassidentifier do:aBlock 

For each object instance identifier for the entity 
instance object participating in the receiver and 
having aClassidentifier as its object class 
identifier, evaluate the context aBlock using that 
identifier as the argument to the context. 

forEntityindex:anindex do:aBlock 

For each object i~stance identifier for the entity 
instance object participating in the receiver and 
appearing at position anindex in the object entity 
mapping definition list, evaluate the context aBlock 
using that ·identifier·as the argument to the context. 

initialize:relationshipName 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifie:r::..identifierAttributeList _ . 

Initialize the object class identifier using 
relationshipName, initialize the object class 
attribute definition list using classAttributeList, 
and initialize the object instance attribute 
definition list using instanceAttributeList. 
Construct the receiver object instance identifier list 
from entity information provided in 
identifierAttributeList. Answer the receiver 
initialized. The corresponding method for this 
message may only be invoked once, at the time that the 
new object instance is created. 

instanceHasidentifier:anidentifier 
forEntityClass:aClassidentifier 

Answer true if an object instance occurring in the 
receiver for _the entity instance object having 
aClassidentifier as its object class identifier has an 
object instance identifier value of anidentifier, else 
answer false. 

instanceHasidentifier:anidentifier forEntityindex:anindex 

Answer true if an object instance occurring in the 
receiver for the entity instance object appearing at 
position anindex in the object entity mapping 
definition list has an object instance identifier 
value of anidentifier, else answer false. 



instanceHavingidentifier:anidentifier 
forEntityClass:aClassidentifier 
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Answer the object instance index of the receiver for 
the object instance having an object instance 
identifier value of anidentifier for the entity 
instance object having aClassidentifier as its object 
class identifier. Answer zero if no such object 
instance is found. 

instanceHavingidentifier:anidentifier 
forEntityindex:anindex 

Answer the object instance index of the receiver for 
the object instance having an object instance 
identifier value of anidentif ier for the entity 
instance object appearing at pos.i ti on an Index in . the 
object entity mapping definition list. Answer zero if 
no such object instance is found. 

instancesHavingidentifier:anidentifier 
forEntityClass:aClassidentifier 

Answer the object instance indexes of the receiver for 
the object instances having an object instance 
identifier value of anidentifier for the entity 
instance object having aClassidentifier as its object 
class identifier. Answer nil if no such object 
instances are found. 

instancesHavingidentifier:anidentifier 
forEntityindex:anindex 

Answer the object instance indexes of the receiver for 
the object instances having an object instance 
identifier value of anidentifier for the entity 
instance object appearing at position anindex in the 
object entity mapping ·definition list. Answer nil if 
no such object instances are found. 

makeinstanceidentifier:identifierAttributeList 

Relationship instance objects are required to have 
unchanging object instance identifier lists and as 
such the sender is not allowed to change the 
receiver's object instance identifier list. 

new:aValueList 

Create a new object instance of the receiver after 
initializing its fixed and solver-derived attribute 
values with the values of aValueList. A new object 
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instance is created if all values are acceptable for 
type and range. Each entity object instance 
identifier is verified to exist in the participating 
entity instance objects and mapping restrictions are 
enforced before the new values are accepted. A new 
object instance must be unique. Answer true if the 
new object instance is created, else answer false. 

notifyDependentsOfChange:aChange 

For dependents of the receiver which respond to 
relationship:changedWith:, notify the dependent of a 
change in the receiver by sending the dependent the 
message relationship: receiver changedWi th: a Change. __ 
Answer the receiver. 

removeinstancesHavingidentifier:anidentifier 
forEntityClass:aClassidentifier 

Remove from.-the receiver -all .object .instances .having 
an object instance identifier value of anidentifier 
for the entity instance object having aClassidentifier 
as its object class identifier. Answer the object 
instance identifiers of the removed object instances. 
Answer nil if no such object instances are found. 

removeinstancesHavingidentifier:anidentifier 
forEntityindex:anindex 

Remove from the receiver all object instances having 
an object instance identifier value of anidentifier 
for the entity instance object appearing at position 
anindex in the object entity mapping definition list. 
Answer the object instance identifiers of the removed 
object instances. Answer nil if no such object 
instances are found. 

removeinstancesHavingidentifiers:anidentifierList 
forEntityClass:aclassidentifier 

Remove from the receiver all object instances having 
an object instance identifier value appearing in 
anidentifierList for the entity instance object having 
aClassidentifier as its object class identifier. 
Answer the object instance identifiers of the removed 
object instances. Answer nil if no such object 
instances are found. 
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Remove from the receiver all object instances having 
an object instance identifier value appearing in 
anidentifierList for the entity instance object 
appearing at position anindex in the object entity 
mapping definition list. Answer the object instance 
identifiers of the removed object instances. Answer 
nil if no such object instances are found. 

Model Class 

The Model class object provides a set of message 

protocols for creating, manipulating, and accessing models. 

Model instance objects.describe the. inherent str.ucturs. of 

the model in the form of entities and relationships. The 

creation of model object instances permits the user or 

system to formulate specific instances of models which vary 

according to model inputs. 

Model instance objects require two pieces of 

information in addition to object class identifier, object 

class attribute definition list, object instance attribute 

definition list, and object instance identifier list. 

These are: (1) an object entity definition list; and (2) 

an object relationship definition list. 

An object entity definition list consists of an object 

class identifier, object class attribute definition list, 

object instance attribute definition list, and an object 

instance identifier list. Entities appearing in the entity 

definition list must have unique object class identifiers. 
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An object relationship definition list consists of an 

object class identifier, object class attribute definition 

list, object instance attribute definition list, and a 

mapping list where each entity object class identifier 

participating in the relationship and its corresponding 

mapping are defined as a matched entry. in this list .. 

Relationships appearing in the object relationship 

definition list must have unique object class identifiers. 

A model instance object creates new entity instance 

and relationship instance objects according to the object 

entity definition and object relationship definition lists 

each time it creates a new model object instance. When 

this happens the model instance object also makes itself a 

dependent of each of these new entity instance and 

relationship instance objects. Several messages are 

provided which allow access to these superior instance 

objects. 

The support of object level production capabilities 

within the Model class provides the user the potential to 

tailor his or her model representation to incorporate model 

specific behavior. Furthermore, object instance level 

productions allow the user to include instance specific 

behavior. 

Models are solved by invoking a solver object. This 

object has the ability to interpret the model structure and 

retrieve its desired input from the model object instance 
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through message passing. Furthermore, the solver object 

can return the specific model outputs to the appropriate 

solver-derived attributes of the model object instance. 

A model instance object uses a user specified solver 

object when a model object instance (model formulation) 

requires a new solution. The user may specify a default 

solver object which becomes the object class solver and 

which is used when no solver object is defined fer a 

specific object instance. The user may also provide an 

object instance solver unique to a given model object 

instance. This allows the user to solve one model 

formulation with a given solver object, to solve another 

formulation with a different solver object, and to solve a 

model object instance having no object instance solver 

using the default solver object (the object class solver). 

Several messages are provided which allow access to these 

solver objects. 

Inherits From: Metamodel Object 

Inherited By: (None) 

Class Message Protocols 

newClass:aClassidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 

This message is disallowed because a method specific 
to the Model class object exists for creating new 
model instance objects. 
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newModel:modelidentifier classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 
entities:entityList relationships:relationshipList 

Create a new model instance object having the object 
class identifier modelidentifier, object class 
attributes defined in classAttributeList, object 
instance attributes defined in instanceAttributeList, 
and where object instance identifiers are represented 
by the concatenation of the object instance attributes 
which appear in identifierAttributeList. The object 
instance identifier list must be non-empty. · A 
complete object entity definition for each entity 
defined in the model appears in entityList. An object 
entity definition list consists of an object class 
identifier, object class attribute definition list, 
object instance attribute definition list, and an 
object instance identifier list. Entities appearing 
in the object entity definition list must have unique 
object class identifiers. A complete relationship 
definition for each relationship defined in the model 
appears in relationshipList. An object relationship 
definition list consists of an object class 
identifier, object class attribute definition list, 
object instance attribute definition list, and a 
mapping list where each entity object class identifier 
participating in the relationship and its 
corresponding mapping are defined as a matched entry 
in this list. Relationships appearing in the object 
relationship definition list must have unique object 
class identifiers. Answer the new instance object 
initialized. 

Instance Message Protocols 

classHasProductionNamed:name 

Answer true if an object class production named name 
is defined for the receiver. 

classHasProductions 

· Answer true if any object class productions are 
defined for the receiver. 

classProductionHavingName:name 

Answer the object class production named name defined 
for the receiver. 
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classProductionNames 

Answer the object class production names of the object 
class productions defined for the receiver. 

classProductionNamesDo:aBlock 

For each object class production name of an object 
class production defined for the receiver, evaluate 
the context aBlock using that name as the argument to 
the context. 

entitiesFor:aninstance do:aBlock 

For each entity instance object in the receiver 
participating in the object instance having object 
instance index aninstance, evaluate the context aBlock 
using that instance object as the argument to the 
context. 

entity:anEntity changedWith:aChange 

An entity instance object has changed. Determine 
which object instance is affected and change state to 
show that this object instance requires solving. 
Answer the receiver. 

entityClasses 

Answer the object class identifiers for the entity 
definitions appearing in the object entity definition 
list in the receiver. 

entityClassForindex:anindex 

Answer the entity object class identifier for the 
entity participating in the receiver and appearing at 
position anindex in the object entity definition list. 

entityCount 

Answer the number of entity definitions appearing in 
the object entity definition list. 

entityHavingClass:aClassidentifier for:aninstance 

Answer the entity instance object having 
aClassidentifier as its object class identifier at 
object instance index position aninstance in the 
receiver. 
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entityHavingindex:anindex for:aninstance 

Answer the entity instance object appearing at 
position anindex in the object entity definition list 
at object instance index position aninstance in the 
receiver. 

entityindexForClass.:aClassidentifier 

Answer the index position of the entity having the 
entity object class identifier aClassidentifier in the 
object entity definition list of the receiver. 

executeClassProductionNamed:name usingValue:aValue 

Execute the object class production named name in the 
receiver passing it the object having value aValue. 
Answer the result of executing the production. 

executeinstanceProductionNamed:name usingValue:aValue 
for:aninstance 

Execute the object instance production named name at 
object instance index position aninstance in the 
receiver passing it the object having value aValue. 
Answer the result of executing the production. 

initialize:modelName classAttributes:classAttributeList 
instanceAttributes: instanceAttributeLis.t 
instanceidentifier:identifierAttributeList 

Initialize the object class identifier using 
aClassidentifier, initialize the object class 
attribute definition list using classAttributeList, 
and initialize the object instance attribute 
definition list using instanceAttributeList. 
Construct the receiver object entity definition list, 
object relationship definition list, and object 
instance identifier list from information provided in 
identifierAttributeList. The object class solver is 
initialized to nil. Answer the receiver initialized. 
The corresponding method for this message may only be 
invoked once, at the time that the new instance object 
is created. 

instanceHasProductionNamed:name for:aninstance 

Answer true if an object instance production named 
name at object instance index position aninstance is 
defined for the receiver. 
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instanceHasProductionsFor:aninstance 

Answer true if any object instance productions at 
object instance index position aninstance are defined 
for the receiver. 

instanceHasSolverFor:aninstance 

Answer true if an object instance solver at object 
instance index position aninstance is defined for the 
receiver. 

instanceHavingEntity:anEntity forClass:aClassidentifier 

Answer the object instance index of the receiver for 
the object instance having the entity instance object 
anEntity which has aClassidentifier as its object 
class identifier. Answer zero if no such object 
instance is found. 

instanceHavingEntity:anEntity forindex:anindex 

Answer the object instance index of the receiver for 
the object instance having the entity instance object 
anEntity appearing at position anindex in the object 
entity definition list. Answer zero if no such object 
instance is found. 

instanceHavingRelationship:aRelationship 
forClass:aClassidentifier 

Answer the object instance index of the receiver for 
the object instance having the relationship instance 
object aRelationship which has aClassidentifier as its 
object class identifier. Answer zero if no such 
object instance is found. 

instanceHavingRelationship:aRelationship forindex:anindex 

Answer the object instance index of the receiver for 
the object instance having the relationship instance 
object aRelationship appearing at position anindex in 
the object relationship definition list. Answer zero 
if no such object instance is found. 

instanceProductionHavingName:name for:aninstance 

Answer the object instance production named name at 
object instance index position aninstance defined for 
the receiver. 
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instanceProductionNamesFor:aninstance 

Answer the object instance production names of the 
object instance productions at object instance index 
position aninstance defined for the receiver. 

instanceProductionNamesDo:aBlock for:aninstance 

For each object instance production name of an object 
instance production at object instance index position 
aninstance defined for the receiver, evaluate the 
context aBlock using that name as the argument to the 
context. 

instancesHavingProductions 

Answer the object instance indexes in the receiver for 
object instances which have.object instance production 
defined. Answer nil if no such object instances are 
found. 

instancesHavingSolvers 

Answer the object instance indexes in the receiver for 
object instances which have object instance solvers 
defined. Answer nil if no such object instances are 
found. 

makeClassProduction:aProduction named:name 

Answer a new production using the context aProduction 
for the object class production named name in the 
receiver. Any existing object class production using 
this name is removed. 

makeClassSolver:aSolver 

Make the solver object aSolver the default object 
instance solver. Answer the new object class solver 
for the receiver. 

makeinstanceidentifier:identifierAttributeList 

Model instance objects are required to have unchanging 
object instance identifier lists and as such the 
sender is not allowed to change the receiver's object 
instance identifier list. 



makeinstanceProduction:aProduction named:name 
for:aninstance 
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Answer a new production using the context aProduction 
for the object instance production named name at the 
object instance index position aninstance in the 
receiver. Any existing object instance production 
using this name in that object instance is removed. 

makeinstanceSolver:aSolver for:aninstance 

Make the solver object aSolver the default object 
instance solver at the object instance index position 
aninstance. Any existing object instance solver 
already specified is removed. Answer the new object 
instance solver for the receiver. 

model:aModel changedWith:aChange 

A model· instance -object has chang·ed. ·· Determine which 
object instance is affected and change state to show 
that this object instance requires solving. Answer 
the receiver. 

new:aValueList 

Create a new object instance of the receiver after 
initializing its fixed and solver-derived attribute 
values with the values of aValueList. A new object 
instance is created if all values are acceptable for 
type and range. Each model instance object creates 
new entity instance objects and relationship instance 
objects for the new object instance in accordance with 
the object entity definition and object relationship 
definition lists. A new object instance must be 
unique. Answer true if the new object instance is 
created, else answer false. 

notifyDependentsOfChange:aChange 

For dependents of the receiver which respond to 
model:changedWith:, notify the dependent of a change 
in the receiver by sending the dependent the message 
model:receiver changedWith:aChange. Answer the 
receiver. 

relationship:aRelationship changedWith:aChange 

A relationship instance object has changed. Determine 
which object instance is affected and change state to 
show that this object instance requires solving. 
Answer the receiver. 



relationshipClasses 

Answer the object class identifiers for the 
relationship definitions appearing in the object 
relationship definition list in the receiver. 

relationshipClassForindex:anindex 

Answer the object class identifier for the 
relationship participating in the receiver and 
appearing at position anindex in the object 
relationship definition list. 

relationshipCount 
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Answer the number of relationship definitions 
appearing in the object relationship definition list. 

relationshipHavingClass:aClassidentifier for:aninstance 

Answer the relationship instance object having 
aClassidentifier as its object class identifier at 
object instance index position aninstance in the 
receiver. 

relationshipHavingindex:anindex for:aninstance 

Answer the relationship instance object appearing at 
position anindex in the object relationship definition 
list at object instance index position aninstance in 
the receiver. 

relationshipindexForClass:aClassidentifier 

Answer the index position of the relationship having 
the relationship object class identifier 
aClassidentifier in the object relationship definition 
list of the receiver. 

relationshipsFor:aninstance do:aBlock 

For each relationship instance object in the receiver 
participating in the object instance having object 
instance index aninstance, evaluate the context aBlock 
using that instance object as the argument to the 
context. 

remove:aninstance 

Remove the object instance whose object instance index 
is aninstance from the receiver. All relevant 
overrides and object instance productions are also 
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removed. Answer the object instance identifier of the 
removed object instance. 

removeAllClassProductions 

Remove all object class productions defined for the 
receiver. Answer the receiver. 

removeAllinstanceProductions 

Remove all object instance productions defined for the 
receiver. Answer the receiver. 

removeAllinstanceProductionsFor:aninstance 

Remove all object instance productions defined for the 
receiver at object instance position aninstance. 
Answer the receiver. 

removeAll Instances-

Remove all object instances of the receiver. All 
object instance overrides and object instance 
productions are also removed. Answer the object 
instance identifiers of the removed object instances. 

removeAllinstanceSolvers 

Remove all object instance solvers defined for the 
receiver. Answer the receiver. 

removeClassProductionNamed:name 

Remove the object class production having name name 
from the receiver. This message is valid only if such 
a production exists. Answer the removed production. 

removeinstanceProductionNamed:name for:aninstance 

Remove the object instance production having name name 
from the receiver at object instance index position 
aninstance. This message is valid only if such a 
production exists. Answer the removed production. 

removeinstances:aninstanceList 

Remove any object instance from the receiver whose 
object instance index appears in the object instance 
index list aninstanceList. All relevant overrides and 
object instance productions are also removed. Answer 
the object instance identifiers of the removed object 
instances. 
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removeinstanceSolverFor:aninstance 

Remove the object instance solver from the receiver at 
object instance index position aninstance. Answer the 
solver. 

resolve:aninstance 

Answer true if the object instance at object instance 
index position aninstance for the receiver requires 
solving, else answer false. 

solve:aninstance 

Solve the object instance at object instance index 
position aninstance in the receiver. Answer the 
receiver. 

solveAll 

Solve all object instances in the receiver. Answer 
the receiver. 

solverFor:aninstance 

Answer the object instance solver object for the 
object instance at object instance index position 
aninstance in the receiver. Answer the object class 
solver if no object instance solver is defined for the 
object instance. 

Relation Class 

The Relation class object provides the user with the 

capability to access and manipulate relations using two 

distinct approaches. First, the user may approach this 

class from the perspective of a relational database user. 

The user may access the information stored in the object 

using familiar terms such as insert, delete, update, tuple, 

column, attribute, degree, key, and so on. Thus, from this 

perspective the Relation class provides the typical 

database functions of insert, delete, and update. 
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The user may, quite to the contrary, access this 

information in terms identical to those used for accessing 

entity, relationship, and model instance level and class 

level attributes. From this perspective the relation is a 

class which defines no class attributes and where all 

instance attributes are fixed. Thus, the Relation class 

object manages instance objects using the same general 

concepts applied to entity, relationship, and model 

instance objects. 

More specifically, the Relation class object permits 

its object instance identifier list to vary through time, 

has no defined class attributes, and implements additional 

instance level messages to perform relational algebra. 

The user specifies three items when creating a new 

instance of this class: (1) a relation name; (2) an 

attribute definition list; and (3) a key attribute list. 

The relation name and key attribute items are nothing other 

than an object class identifier and object instance 

identifier list as discussed above. The attribute 

definition list requires some explanation. 

An attribute definition list contains a list of the 

attributes defined for the new relation instance object. 

An attribute definition contains the following attribute 

information: (1) name; (2) type; and (3) range. These are 

identical in meaning to those previously presented. As 

stated above; all attributes for a relation instance object 
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are fixed and, consequently, it is not necessary to specify 

this information. 

Attributes of a relation instance object, from the 

perspective of a relational database user, may be accessed 

by specifying the attribute name or by specifying the 

column within the relation that the attribute appears .. 

Stating the column of an attribute is equivalent to 

specifying an attribute index. Moreover, a tuple may be 

accessed using either a tuple index or by designat~ng a 

primary key value associated with the desired tuple. This 

is comparable to giving an object instance index or 

declaring an object instance identifier for the object 

instance. 

Inherits From: Metamodel Object 

Inherited By: (None) 

Class Message Protocols 

newClass:aClassidentifier 
classAttributes:classAttributeList 
instanceAttributes:instanceAttributeList 
instanceidentifier:identifierAttributeList 

This message is disallowed because a method specific 
to the Relation class object exists for creating new 
relation instance objects. 

newRelation:relationName attributes:attributeList 

Create a new relation instance object having the 
object class identifier relationName, no object class 
attributes, object instance attributes defined in 
attributeList, and defining an empty object instance 
identifier list. Answer the new instance object 
initialized. 



newRelation:relationName attributes:attributeList 
primaryKey:keyAttributeList 
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Create a new relation instance object having the 
object class identifier relationName, no object class 
attributes, object instance attributes defined in 
attributeList, and where object instance identifiers 
are represented by the concatenation of the object 
instance attributes which appear in keyAttributeList. 
Answer the new instance object initialized. 

Instance Message Protocols 

attribute:anAttribute for:aTuple 

Answer the value of the object instance attribute 
named anAttribute for the object instance index aTuple 
in the receiver.--

attributeForColumn:aColumn 

Answer the attribute name appearing at position 
aColumn in the object instance attribute definition 
list for the receiver. 

attributes:anAttributeList for:aTuple 

Answer the values of the object instance attributes 
named in anAttributeList for the object instance index 
aTuple in the receiver. 

attributesForColumns:aColumnList 

Answer the receiver attribute names for attributes 
appearing at the positions specified in aColumnList 
within the' object instance attribute definition list. 

column:aColumn for:aTuple 

Answer the value of the attribute name appearing at 
position aColumn in the object instance attribute 
definition list of the receiver for the object 
instance index aTuple. 

columnForAttribute:anAttribute 

Answer the index position in the object instance 
attribute definition list of the attribute name 
anAttribute in the receiver. 
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columns:aColumnList for:aTuple 

Answer the values of the attribute names appearing at 
the positions specified in aColumnList in the object 
instance attribute definition list of the receiver for 
the object instance index aTuple. 

columnsForAttributes:anAttributeList 

Answer the index positions in the object instance 
attribute definition list of the attribute names 
appearing in anAttributeList for the receiver. 

degree 

Answer the number of object instance attributes 
defined for the receiver. 

delete:aTuple 

Remove the object instance whose object instance index 
is aTuple from the receiver. Answer the object 
instance identifier of the removed object instance. 
Answer nil if no object instance identifier list is 
defined for the receiver. 

difference:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of all object instances in the 
receiver and not in aRelation. The object aRelation 
must be a valid relation instance object which is 
union compatible with the receiver. 

divideby:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The object instance 
attribute definition list for the new instance object 
consists of the object instance attributes not in 
aRelation but which appear in the receiver. If for 
all object instances in aRelation, there exist object 
instances in the receiver where the set of object 
instances from aRelation are present with fixed values 
for the object instance attributes not in aRelation, 
these fixed values become object instances in the new 
relation instance object. The object instance 
attribute types for aRelation must match an equal 
number of object instance attribute types appearing 
lastly in the object instance attribute definition 
list for the receiver. Furthermore, aRelation must be 
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a valid relation instance object and there must be at 
least one object instance in aRelation. 

equijoin:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of all possible concatenated pairs of 
object instances, one from the receiver and the other 
from aRelation, such that each pair of the object 
instances has equal values for the object instance 
attributes which have the same object instance 
attribute definitions for both relation_instance 
objects. Duplicate object instance attributes are 
eliminated from the new relation instance object. The 
object aRelation must be a valid relation instance 
object. 

forColumns:aColumnList do:aBlock 

For each set of object instance values defined for the 
object instance attributes appearing at the positions 
specified in aColumnList within the object instance 
attribute definition list occurring for the receiver, 
evaluate the context aBlock using that set as the 
argument to the context. 

heading 

Answer the object instance attribute names for the 
receiver. 

includes:aValueList 

Answer true if an object instance occurring in the 
receiver has the values of aValueList for all object 
instance attributes, else answer false. 

includes:aValueList forAttributes:anAttributeList 

Answer true if an object instance occurring in the 
receiver has the values of aValueList for the 
attributes names in anAttributeList, else answer 
false. 

includes:aValueList forColumns:aColumnList 

Answer true if an object instance occurring in the 
receiver has the values of aValueList for the 
attributes appearing at the positions specified in 
aColumnList within the object instance attribute 
definition list, else answer false. 
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includesKey:aKey 

Answer true if an object instance occurring in the 
receiver has an object instance identifier value of 
aKey, else answer false. This is a valid message only 
if an object instance identifier list is defined for 
the receiver. 

indexOf:aValueList 

Answer the object instanc.e index for the receiver of 
the object instance having the values of aValueList 
for all object instance attributes. Answ.er zero if no 
such object instance is found. 

indexOf:aValueList forAttributes:anAttributeList 

Answer the object instance index for the receiver of 
the object instance having the values of aValueList 
for the attribute names in anAttributeList. Answer 
zero if no such object instance is found. 

indexOf:aValueList forColumns:aColumnList 

Answer the object instance index for the receiver of 
the object instance having the values of aValueList 
for the attributes appearing at the positions 
specified in aColumnList within the object instance 
attribute definition list. Answer zero if no such 
object instance is found. 

indexOfKey:aKey 

Answer the object instance 
the object instance having 
identifier value of aKey. 
object instance is found. 
only if an object instance 
for the receiver. 

insert:aValueList 

index for the receiver of 
an object instance 
Answer zero if no such 
This is a valid message 
identifier list is defined 

Create a new object instance of the receiver after 
initializing its attribute values with the values of 
aValueList. A new object instance is created if all 
values are acceptable for type and range. A new 
object instance must be unique. Uniqueness is 
determined by the object instance identifier list if 
one is defined for the receiver, otherwise it is 
determined by the combination of all the values in the 
object instance attribute definition list. Answer 
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intersection:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of all object instances in the 
receiver which also appear in aRelation. The object 
aRelation must be a valid relation instance object 
which is union compatible with the receiver. 

join:aRelation where:aBlock relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of all possible concatenated pairs of 
object instances, one from the receiver and the other 
from aRelation, such that the context aBlock evaluates 
to true for .each _pairin_g .of. the object instances. The 
object aRelation must be a valid relation instance 
object. 

key:aTuple 

Answer the object instance identifier for the object 
instance index aTuple in the receiver. This message 
is valid only if an object instance identifier list is 
defined for the receiver. 

makeRange:aRange forAttribute:anAttribute 

Answer a new range using the context aRanqe for the 
object instance attribute named anAttribute in the 
receiver. This message is invalid if the current 
value of the attribute for any object instance 
violates the new range. 

makeRange:aRange forindex:anindex 

name 

Answer a new range using the context aRange for the 
attribute name appearing at position anindex in the 
object instance attribute definition list of the 
receiver. This message is invalid if the current 
value of the attribute for any object instance 
violates the new range. 

Answer the object class identifier for the receiver. 
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primaryKey 

Answer the object instance attributes used to define 
the object instance identifier list for the receiver. 
Answer nil if no object instance identifier list is 
defined for the receiver. 

primaryKey:keyAttributeList 

Answer a new object instance identifier list comprised 
of the object instance attributes appearing in 
keyAttributeList. Attribute names may be in any order 
and occur only once in the list. The new object 
instance identifier list is accepted only if 
uniqueness of object instances holds true. 

product:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier_. The_ new: __ relation instance 
object consists of all possible. concatenated pairs of 
object instances in the receiver and in aRelation. 
The object aRelation must be a valid relation instance 
object. 

projectAttributes:anAttributeList relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of the object instance values for the 
object instance attributes specified in 
anAttributeList across all object instances. 
Uniqueness of object instances in the new relation 
instance object is enforced. 

projectColumns:aColumnList relationName:name 

-Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of the object instance values for the 
attributes appearing at the positions specified in 
aColumnList within the object instance attribute 
definition across all object instances. Uniqueness of 
object instances in the new relation instance object 
is enforced. 

ranges 

Answer the object instance attribute ranges for the 
receiver. 
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select:aBlock relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of object instances in the receiver 
such that the context aBlock evaluates to true for the 
object instance. 

tuple:aTuple 

Answer the values of all the object instance 
attributes for the object instance index aTuple in the 
receiver. 

tupleCount 

type 

Answer the number of object instances in the receiver. 

Answer the object instance attribute types for the 
receiver. 

union:aRelation relationName:name 

Answer a new relation instance object having name as 
an object class identifier. The new relation instance 
object consists of all object instances which appear 
in either the receiver or aRelation. The object 
aRelation must be a valid relation instance object 
which is union compatible with the receiver. 

update:aValueList for:aTuple 

Update the values of the attributes in the order 
specified in the object instance attribute definition 
list of the receiver with the values in aValueList for 
the object instance index aTuple. If an object 
instance identifier list is defined for the receiver, 
an update on an identifier attribute is disallowed. 
Uniqueness of object instances is enforced. The data 
types and values of aValueList must agree with the 
corresponding types and ranges of the attributes 
specified in anAttributeList. Answer the new values. 

updateAttribute:anAttribute value:aValue for:aTuple 

Update the value of the object instance 
named anAttribute with the value aValue 
instance index aTuple in the receiver. 
instance identifier list is defined for 
an update on an identifier attribute is 

attribute 
for the object 
If an object 
the receiver, 
disallowed. 
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Uniqueness of object instances is enforced. The data 
type and value of aValue must agree with the type and 
range specified for the attribute. Answer the new 
value. 

updateAttributes:anAttributeList values:aValueList 
for:aTuple 

Update the values of the object instance attributes 
named in anAttributeList with the values in aValueList 
for the object instance index aTuple in the receiver. 
If an object instance identifier list is defined for 
the receiver, an update on an identifier attribute is 
disallowed. Uniqueness of object instances is 
enforced. The data types and values of aValueList 
must agree with the corresponding types and ranges of 
the attributes specified in anAttributeList. Answer 
the new values. 

updateColumn:aColumn value:aValue for:aTuple 

Update the value of the attribute name appearing at 
position aColumn in the object instance attribute 
definition list of the receiver with the value aValue 
for the object instance index aTuple. If an object 
instance identifier list is defined for the receiver, 
an update on an identifier attribute is disallowed. 
Uniqueness of object instances is enforced. The data 
type and value of aValue must agree with the type and 
range specified for the attribute. Answer the new 
value. 

updateColumns:aColumnList values:aValueList for:aTuple 

Update the values of the attribute names appearing at 
the positions specified in aColumnList in the object 
instance attribute definition list of the receiver 
with the values in aValueList for the object instance 
index aTuple. If an object instance identifier list 
is defined for the receiver, an update on an 
identifier attribute is disallowed. Uniqueness of 
object instances is enforced. The data types and 
values of aValueList must agree with the corresponding 
types and ranges of the attributes specified in 
anAttributeList. Answer the new values. 



CHAPTER VI 

PROTOTYPE DESCRIPTION 

Introduction 

This chapter describes a prototype we developed using 

the object-oriented (0-0) principles and message protocols 

presented in previous chapters ... we discuss the . 

implementation environment detailing the software and 

hardware employed. This is followed by a description of 

the three levels of user support provided by the prototype. 

Finally, we compare two differing approaches the user may 

adopt in managing data within the prototype. 

Implementation Environment 

We chose to develop our prototype in a personal 

computing environment. Advances in personal computer 

hardware and software make their use as tools for the 

support of personal decision making a realistic 

possibility. Cons~quently, the successful implementation 

of our proposed concepts using such a popular tool as a 

personal computer may enhance the viability of o-o decision 

support systems (DSSs) . 
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Software 

Several o-o programming languages exist for personal 

computers (e.g., Actor, Objective-c, c++, and Smalltalk 

among others). We selected the Smalltalk/V Object-Oriented 

Programming System (copyright Digitalk Inc., 1986) to 

develop our prototype. 

Smalltalk/V is both a system for creating Smalltalk 

programs and an environment for using a personal computer. 

It describes itself as a mode-less environment which uses 

windows, pop-up menus, and an optional mouse in.order to 

simplify computer use. Smalltalk/V also provides its own 

components, including the Smalltalk/V source code, as 

building blocks for the user to create his or her own 

applications. 

Smalltalk/V offers such desirable features as late 

binding, operator overloading, garbage collection, 

inheritance, and class add-on support. The Float class in 

Smalltalk/V serves as an example of the benefits afforded 

by class add-on support. The Float class requires a 

floating point coprocessor in order to perform floating 

point operations. The personal computer that we used to 

develop the prototype does not have a floating point 

coprocessor yet we required floating point support. A 

Float class add-on package was purchased thereby providing 

the needed supporting routines in software. 
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The five class objects discussed in Chapter V were 

added to Smalltalk/V as were the various class level and 

instance level methods also needed to implement the 

proposed message protocols. We added additional methods 

where necessary; specifically to implement the window level 

user interface discussed below. 

Hardware 

We used an_ IBM AT compatible personal .computer in 

developing our prototype. This machine had one megabyte of 

main memory, a twenty megabyte hard disk drive, and a clock 

speed of eight megahertz. There was no floating point 

coprocessor support as stated above. A mouse was used to 

enhance the capabilities of Smalltalk/V although this was 

not a requirement. 

User Interface 

Our prototype provides three levels of support for 

user interaction. Each level permits varying degrees of 

assistance in creating, manipulating, and removing 

instances of the four subclass objects (Entity, 

Relationship, Model, and Relation). Each of these levels 

is discussed at length below. 
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Message Level 

Smalltalk/V requires that all instance objects exist 

independently of the class objects responsible for creating 

them. The space occupied by an object which is created but 

not referenced from anywhere in the system is collected by 

what is called a garbage collector and is returned to the 

system. 

Therefore, the owner of an instance object, typically 

the user, becomes responsible for .maintaining the existence 

of this object. This is frequently accomplished in 

Smalltalk/V by saving the instance object in a global 

variable. All global variables contain a single object 

which other objects in the system may pass messages to 

simply by using the glo.bal variable name as the receiver of 

the message. 

Figure 58 presents a message which creates a new 

instance of the Entity class object. The global variable 

AnEntity (global variable names in Smalltalk/V begin with 

an uppercase letter) saves the new entity instance object 

from being collected by the garbage collector. In this 

example, the Entity class creates a new instance object (to 

model the Source Point class) having an object class 

identifier of sourcePoint and two object class attributes: 

(1) sourcecount; and (2) supplyTotal. Both of these 

attributes are derived, integers, and are restricted to 

having nonnegative values. 



AnEntity :=Entity newEntity: 1sourcePoint 1 

classAttributes:~( 
( 1 sourceCount 1 'Derived' 'Integer' 'CsourceCount >= Ol' 

'[sourceCount :=class instanceCount]') 
( 1 supplyTotal 1 'Derived' 'Integer• 1 CsupplyTotal >= 01 1 

1 CsupplyTotal := o. 
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1 to:(class instanceCount) do:[:anlnstance I 
supplyTotal := supplyTotal +<class valueOfinstanceAttribute:''supply'' 

for:anlnstance)]]')) 
instanceAttributes:~( 

< 1 sourceNaMe 1 1 Fixed 1 •String• 1 1 > 
( 1 supply• 1 Fixed 1 1 Integer• 1 [supply >= 01 1 )) 

instanceidentifier:~( 1 sourceNa111e 1 ) 

Figure 58. Creating an Entity Class 

Their derivation statements differ, however. The 

sourcecount attribute uses the derivation: (sourcecount := 

class instanceCountJ. The object reference class may be 

used in any derivation statement and assumes the value of 

the instance object in which the derivation statement is 

defined. The object reference instance is meaningful in 

object instance attribute derivation statements and takes 

on the value of the object instance index associated with 

the specific object instance. 

The sourceCount derivation states that the value 

returned when the message instancecount is sent to the new 

entity instance object (represented in the derivation by 

the class reference) becomes the value of the sourceCount 

object class attribute. Chapter V defines the return value 

of this message as the number of object instances in the 

receiver. In other words, sourcecount is the number of 

source points defined in the Source Point class. The 
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supplyTotal derived object class attribute iterates over 

each instance totaling the values of the object instance 

supply attributes. 

There are two object instance attributes defined for 

this new entity instance object: (1) sourceName; and (2) 

supply. Both of these attributes are fixed, one a string 

and the other an integer, and the supply attribute must be 

nonnegative. The single object instance attribute 

sourceName is used as the object instance identifier list 

for the instance object. 

The user may, following instantiation of the new 

object, create new object instances, remove them, access 

them, and update them by simply passing messages using the 

AnEntity global variable. Furthermore, any other object in 

the system has access to this object and thus may access 

the object class through message passing. For example, the 

user or any other object in the system might pass the 

message instanceAttributes (e.g., AnEntity 

instanceAttributes) to obtain a list of object instance 

attributes defined for the new instance object. In this 

case the instance object AnEntity would answer the two 

attribute names sourceName and supply. This process of 

user interaction is depicted by the flowchart shown in 

Figure 59. 

A major disadvantage of this level of object access is 

that the user must deal with class objects and instance 
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object~ at a very low level. It does, however, provide the 

user with complete access to all available methods in order 

to manipulate these objects. This is not the case with the 

next two levels of user interaction. 

Window Level 

User Creates an 
Instance Object 

User Passes Messages 
to the Instance Object 

Figure 59. Message Level Flowchart 

WindowC"'. provide the major interface between the user 

and Smalltalk/V. Windows allow for the programming of 

menus which permit the user to select from a variety of 

operations or tasks to perform. This reduces the level of 

message sending that the user becomes involved in as the 

selection of a menu option may in turn lead to a sequence 

of message passing unbeknownst to the user. 
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Our prototype uses a single window implementation 

which presents information in the window using an 

electronic spreadsheet approach. We developed this window 

implementation specifically for the purposes of this study. 

In order to access a window, the user must first create the 

instance object (as in Figure 58) used to model the 

specific object class and then may open a window in order 

to create, remove, and update object instances. The user 

may open three different windows corresponding to a single 

instance object using the following messages: (1) 

openClass; (2) openinstances; and (3) openNew. 

The openClass message opens a class window which shows 

the object class attributes for the associated instance 

object. The openinstances message opens an instances 

window which shows the object instance attributes for all 

the object instances defined for the receiver. The openNew 

message opens a new instance window which permits the user 

to organize a new object instance and subsequently attempt 

to create that new object instance in the object class. 

Figure 60 shows a flowchart detailing this level of user 

interaction. In Smalltalk/V the term scheduling refers to 

the process used by a special object, called the Scheduler, 

to determine a precedence ordering of windows defined 

within the system. Scheduling a window causes the system 

to display the window and show it as the topmost window in 

the display screen. 
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User Creates an 
Instance Object 

,I. 

User Opens One 
of Three Windows 

<Class, Instances, 
New Instance) 

or 

+ 

Instance Object 
Creates the 

Window 

+ --

.,;.stance Object - -

Schedules the 
Window 

Figure 60. Window Level Flowchart 

Figure 61 presents all three windows which may be 

opened for a single instance object. Only one window may 

be active at a time in Smalltalk/V. The sourcePoint 

Instances window is the active window and appears to the 

middle right of this figure. This window was opened using 

the message AnEntity openinstances. The other windows were 

accessed and corresponding new object instances created 

through window level mechanisms. Several window oriented 

concepts are discussed at length below using the windows 

shown in Figures 61 and 62. 
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i B~·!'.~~.~~ ............................ ..... :E fi..'"ff'~ . 

Figure 61. Source Point Class Window 

(Untitled) - transportat i on d 

e~·Cl1?.:1.~: ... ---·-·-L~iw._· _·· _ ·_· · .. 
;u ilt!1ats :1613650 

;" 

Figure 62. Transportation Model Class Window 
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Window Components 

Each of the three windows discussed above has three 

components. These components are: (1) window label; (2) 

edit pane; and (3) cell pane. Each of these components has 

a corresponding menu. This menu is accessed by placing the 

cursor (represented by an arrow in Smalltalk/V but which is 

absent for all figures depicting Smalltalk/V display 

screens) anywhere within the component area of the window 

·and pressing the right mouse button. Where appropriate 

these menus are discussed at length below. 

Window Label 

A window label appears at the top of a window and 

serves two purposes. First, a window label identifies the 

window to the user. For example, the window shown in the 

upper left-hand corner of Figure 61 reflects the values of 

the object class attributes defined for the Source Point 

class. 

A window label also shows an optional title. Three 

windows in Figure 61 show the title (Untitled). The use of 

a title allows one object to indicate possession of the 

instance object displayed within the window. Figure 62, 

for example, shows a window with the label 

transportationModel - Widgets - link Instances. This 

window shows the object instances of the relationship 

object class link which is defined for the model object 
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instance Widgets, a member of the model object class 

transportationModel. 

Second, the window label indicates which window is the 

active window. An inactive window displays its label in 

white whereas the active window displays its label in 

black. Thus, the sourcePoint Instances window is the 

active window in Figure 61. 

Figure 63 shows the menu associated with a window 

label. The cycle option causes the active window to become 

inactive and another window, determined by the system 
- .. " - .. . . 

scheduler, becomes active. This allows the user to move 

through windows which may be completely overlapped by other 

windows. The frame option lets the user change the 

location and size of a window. The move option, on the 

other hand, lets the user change the location of a window 

but not its size. 

Edit Pane 

The edit pane appears directly below the label of a 

window. The contents of a selected cell are displayed 

within the edit pane. The sourcePoint New Instance window, 

shown in the lower left-hand corner of Figure 61, shows the 

value 17500 in the edit pane associated with this window. 

This represents the value of the object instance attribute 

supply for the proposed new object instance. The 

corresponding value cell is displayed in black to indicate 
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that ~t has been selected for editing purposes. The edit 

pane permits the user to edit text using several system 

features such as copy, cut, paste, save, search, and 

replace. 

cycle 
f rane 
Moue 

Figure 63. Window Label Menu 

These features are made available to the user through 

the edit pane menu. Figure 64 shows two edit pane menus. 

The first menu, on the left of Figure 64, has the option 

next menu which causes the second menu, on the right, to be 

displayed. Selecting save notifies the cell ~--ne that the 

user wishes to save the edited text. It becomes the 

responsibility of the cell pane to act appropriately in 

saving this text. The cell pane saves the edited text as 

an object attribute value within the instance object (or a 

pending ob]ect instance attribute value when organizing a 

new object instance). 

Changes made to either a derived attribute or an 

object instance attribute which participates in the object 

instance identifier list ·are disallowed by the 
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corre~ponding cell panes. This is consistent with the 

Metamodel class definition of these attributes (e.g., a 

derived attribute may only change when the attributes on 

which it depends change whereas updates of attributes 

comprising an object instance identifier are not valid). 

The values of these attributes may, however, be shown 

within the edit pane but may not be changed. 

Cell Pane 

restore 
copy 
cut 
paste 
show it 
do it 
save 
next Menu 

print 
search 
search back 
replace all 
again 

Figure 64. Edit Pane Menu 

The remaining portion of a window displays the cell 

pane. The cell pane consists of a collection of same-sized 

cells much like those encountered in an electronic 

spreadsheet. The user interacts with a cell pane by 

selecting various cells. The user selects a cell by 

placing the cursor anywhere within the cell and pressing 



the left mouse button. A cell pane has four kinds of 

cells: 

(1) menu cell; 

(2) column heading cells; 

(3) row heading cells; and 

(4) value cells. 
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The menu cell, labeled Menu in a cell pane, permits 

the user to perform various tasks directly related to the 

characteristics of the cell pane. Figure 65 shows the menu 

which pops-up when the user selects the menu cell. The 

goto option allows the user to specify the row and column 

coordinates of a cell which is then displayed in the upper 

left-hand corner of the cell pane. The home option 

displays row one and column one in the upper left-hand 

corner of the cell pane. The corner option displays the 

last row and last column defined in the upper left-hand 

corner of the cell pane. The !ll2, down, left, and right 

options allow the user to move through the cell pane either 

one row or column, page, or to the end of the cell pane in 

the specified direction. The width option allows the user 

to change the width of the cells in the cell pane and the 

reverse option exchanges the foreground and background 

colors of the cell pane. 

Column heading cells serve two purposes. First, they 

display the attribute names associated with the values 

appearing in the columns of the cell pane. For example, in 
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Figure 61 the supply object instance attribute values for 

the first four object instances of the Source Point class 

are 10,000, 23,000, 7,500, and 17,500 respectively. 

Second, selecting a column heading cell causes a menu to 

pop-up permitting the user to view information concerning 

the selected attribute. 

goto 
ho Me 
corner 
up 
down 
le~t 
right 
width 
reverse 

Figure 65. Cell Menu 

Figure 66 shows one such menu. The show attribute 

option presents the user with a Smalltalk/V menu message. 

A menu-message is simply a one line menu which the user may 

select by placing the cursor in the menu area and pressing 

the left mouse button or may cancel by pressing the left 

mouse button outside of the menu area. This menu message 

displays the full attribute name, an optional <Identifier} 

flag indicating that the attribute participates in the 

object instance identifier list, the attribute kind, and 

the attribute type. The structure of the menu message is 
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very s_imilar to the attribute definition appearing in a 

schema abstraction. 

show attribute 
show range 
show derivation 

Figure 66. Column Heading Menu 

Selecting the show range option causes a Smalltalk/V -

window to open which contains the range statement 

associated with the selected attribute. The window labeled 

supply Range Statement in Figure 62 is such a window. 

Similarly, selecting show derivation displays the 

attribute's derivation statement within a window, as is the 

case for the window labeled sourcecount Derivation 

Statement in Figure 61. Note that the show derivation 

option will only appear for derived attributes. 

Selecting a column heading cell for each of the three 

windows described (class, instances, and new instance) 

invokes the same actions. Selecting a row heading cell 

varies significantly according to which window the user is 

viewing. Furthermore, the class and new instance windows 

only show a sirigle row· in the cell pane. For the class 

window the values of this row are the various values of the 
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object class attributes and selecting the corresponding row 

heading cell, labeled Values, has no effect. The values 

shown in the first row of the new instance window are those 

which the user edits prior to creating the new object 

instance. In addition, only fixed and solver-derived 

attributes appear in the new instance window since these 

are the only attributes used to define a new object 

instance (see the new:aValueList message in Chapter V). As 

with the class window, selecting the corresponding row 

heading cell, labeled New for this window, has no effect. 

Selecting a row heading cell for an instances window 

causes one of the two menus in Figure 67 to appear. The 

two item menu on the left of this figure appears for 

instance objects created by the Entity, Relationship, and 

Relation class objects. The remove option permits the user 

to remove the selected object instance from the object 

class. If the user decides to remove an object instance a 

menu message appears requiring him or her to confirm the 

removal of the object instance. The user confirms the 

removal by selecting the menu message or may avoid removing 

the object instance by pressing the left mouse button 

outside of the menu message. This has the same effect as 

selecting the cancel menu option. 

The right-hand menu in Figure 67 appears in a model 

instances window when the user selects a row heading cell. 

This menu has four options in addition to remove and 
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cancel. First, the open entity and open relationship 

options have similar effects. If the user selects the open 

entity (open relationship) option a menu appears listing 

object class identifiers for the entities (relationships) 

defined in the object entity (relationship) definition list 

of the model instance object. _ Selecting one of these 

object class identifiers causes the instances window of the 

entity (relationship) instance object created for the 

selected model object instance to open. This allows the 

user access to a model object instance's associated entity 

instance and relationship instance objects. 

re~ove open entity 
cancel open relationship 

execute production 
solve 
re Move 
cancel 

Figure 67. Row Heading Menus 

The execute production option appears only if 

productions are defined for the selected model object 

instance. Selecting this option causes another menu to 

appear listing the names of the various productions defined 

for the this model object instance. The user is able to 

execute a production by selecting one of the names 
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appearing in this list. This causes a prompter to appear 

allowing the user to specify an optional input value for 

the production. A prompter is a labeled, one line window 

which will not relinquish control to the system without the 

user specifically accepting its input or canceling the 

prompter. 

Finally, the solve option appears only if the selected 

model object instance requires a new solution. A new 

solution for this model object instance is necessary when 

any of the underlying entity instance or relationship 

instance objects changes in some manner (see the discussion 

of the Model class in Chapter V). Figure 68 shows a 

flowchart representing the process undertaken by a model 

instance object when one of its object instances requires a 

new solution. Figure 69 shows the various interactions 

which occur between the objects involved in generating a 

new solution for a model object instance. The tail of an 

arrow in this figure indicates which of the two objects is 

in the role of an actor (see the discussion concerning 

object roles in Chapter II). The head of an arrow 

indicates that an object is in the role of a server when 

the object interaction occurs. For example, the model 

instance object (in the actor role) requests that the 

solver object (in the server role) generate a new solution 

for a specific model object instance (this is shown by the 

Requests solution of object instance arrow in Figure 69). 
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The User Invokes 
the Solver Object for 

a Model Object 
Instance 

J. 

The Model Instance Object 
Notifies the Solver Object 
and Identifies the Model 

Object Instance 

.L 

The Solver Object 
AsseMbles the Hecessar~ 

Input froM the Model 
Instance Object 

J. 

The Solver .Obje.ct. Creates -
a Batch File.and Invokes 

the External Solver 

J. 

The External Solver Processes 
the Batch File, Creates a 
Results File, and Returns 

to SMalltalk/U 

J. 

The Solver Object Interprets 
the Results File and 

Updates the Solver-Derived 
Attributes of the Model 

Object Instance 

Figure 68. Solution Process Flowchart 

The value cells of the cell pane show the attribute 

values corresponding to the object class, object instances, 

and new instance for the class, instances, and new instance 

·windows respectively. T~e user may select any of these 

cells which, as discussed above, causes the corresponding 
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value ~o be displayed in the edit pane. Figure 62 shows 

the value 1069800 in the edit pane of the transportation -

Widgets - link Instances inactive window. This is the 

value of the object instance attribute linkTotal for the 

second object instance. Selecting a value cell causes the 

selected cell to be displayed in inverse (foreground and 

background colors reversed). 

Requests solution of object instance 

Requests necessary input 

Saves results to solver-derived attributes 
Saves external solver input 

Requests solution 

Requests input Saves results 

Requests results 

Figure 69. Solution Process Object Interactions 

The user may select the save option in the edit pane 

menu (see Figure 64) thereby invoking an update operation 

on the selected attribute. Selecting any other cell in the 

cell pa?e causes a forced save operation. Saving the value 

of the edit pane is disallowed for derived attributes and 
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objec~ instance attributes which participate in the object 

instance identifier list. Saving a value in the edit pane 

of a new instance window has no immediate effect on the 

object class. The object class is only affected when the 

user specifically accepts the collection of values in this 

window by selecting the accept instance option appearing in 

its cell pane menu. 

The particular cell pane menu displayed when the user 

presses the right mouse button within a cell pane varies 

according to the type of window viewed (e.g., class, 

instances, or new instance window). For the new instance -

window the corresponding cell pane menu appears in Figure 

70. The open class and open instances options permit the 

user to open these windows for the given instance object. 

Each of these options is absent from the menu if the 

corresponding window is already open. 

open class 
open instances 
accept instance 
clear 
close 

Figure 70. New Instance Window Cell Pane Menu 

The accept instance option takes the values appearing 

in the New row for the various fixed and solver-derived 
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attributes of the object class and attempts to create a new 

object instance using these values. A menu message appears 

indicating whether the instance object was able to create 

the new object instance. Failure to create the new object 

instance may be due to a type violation, range violation, 

or duplicate object instance. 

The clear option simply erases the edit pane and any 

values saved in the value cells appearing-in the New-row. -

The close option closes the window. Any values appearing_ 

in the New row or edit pane are discarded. 

Figure 71 shows the cell pane menus for the class and 

instances windows. The left two menus appear when 

overrides are enabled for the given instance object. The 

disable overrides option permits the user to disable 

overrides for the specific instance object. This has the 

same effect as sending the instance object the 

overrideDisable message (refer to the explanation of the 

Metamodel class in Chapter V). The remove class overrides 

option is present if at least one override has been defined 

for a class attribute. Likewise, the remove instance 

overrides option is present if at least one override has 

been defined for an object instance attribute of any object 

instance. Selecting the remove class overrides (remove 

instance overrides) option causes the message 

removeAllClassOverrides (removeAllinstanceOverrides) to be 

sent to the instance object. 
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disable overrides disable overrides enable overrides 
reMove class overrides reMove class overrides execute production 
reMove instance overrides reMove instance overrides open entity 
reMove override Make override open class 
execute production execute production open instances 
open entity open entity new instance 
open class open class close 
open instances open instances 
new instance new instance 
close close 

Figure 71. Class and Instances Window Cell Pane Menus 

The remove override option appearing in the left-hand 

menu in Figure 71_ is present_ when the selected value cell 

is a derived attribute and an override value for the 

attribute is in effect. This option permits the user to 

remove the previously set override value. The menu in the 

middle of Figure 71 shows the option make override. This 

option, like the remove override option, is present when 

the selected value cell is a derived attribute and, 

contrarily, when no override value for the attribute is in 

effect. This option allows the user to define an override 

for a derived attribute. These options are present in the 

cell pane menus for both the class and instances windows. 

The execute production option, however, is present 

only for the class window. Like its object instance 

counterpart, this option appears only if productions are 

defined for the object class. Selecting this option causes 

another menu to appear listing the names of the various 

productions defined for the object class. The user is able 
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to execute a production by selecting one of the names 

appearing in this list. This causes a prompter to appear 

allowing the user to specify an optional input value for 

the production. 

The open entity option is present only for the 

instances window of a relationship instance object. If the 

user selects the open entity option a menu appears listing 

object class identifiers for the entities defined in the 

object entity mapping definition list of the relationship 

instance object. Selecting one of these object class 

identifiers causes the instances window of the 

corresponding entity instance object to open. This allows 

the user to access a relationship instance object's 

associated entity instance objects. 

The open class, open instances, and new instance 

options will appear only if the corresponding windows 

(e.g., class, instances, and new instance) are not already 

open. Selecting one of these options will open the 

associated window for the given instance object. The close 

option closes the window. 

The right-hand menu of Figure 71 shows the menu 

options available when overrides are disabled. The only 

new option is the enable overrides option. This option, 

present only if overrides have been disabled, allows the 

user to enable overrides. This has the effect of sending 

the overrideEnable message to the specific instance object. 
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~igure 72 shows the various interactions which occur 

between the user, window label, edit pane, and cell pane. 

The tail of an arrow in this figure, as in Figure 69, 

indicates which of the two objects is in the role of an 

actor whereas the head of an arrow indicates that an object 

is in the role of a server. For example, the cell pane (in 

the actor role) requests that the instance object (in the 

server role) return the value of an attribute displayed-by 

the cell pane (shown by the Requests text for cell values 

arrow in Figure 72). The final user interaction level 

builds on the first two levels and is discussed below. 

Requests text For cell values 

Replies text For cell values 

Requests cell oane Menu 

Act on selected Menu iteM 

DeterMine if selected cell is protected 

Save changed cell value 

Request selected cell coordinates 

Request- cell pane reFresh 

Requests window label Menu 
Act on selected Menu iteM 

Selects cells 

Selects Menu 

Requests text For selected cell 
I 

Replies text For selected cell 
HotiFication of save 

Edits text 

Selects Menu 

Figure 72. Window Level Object Interactions 
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DSS Browser Level 

The final user interaction level is the DSS Browser 

level. The DSS Browser presents the user with a 

Smalltalk/V window which contains a single pane, called a 

list pane. A list pane presents the user with a list of 

items from which he or she may select a single item. The 

selected item is shown in inverse. The user may scroll 

through the list and act on a selected item through the 

list pane menu. A list pane differs from a menu in that a 

menu immediately acts on the selected item whereas a list 

pane waits for the user to specify some action, through the 

list pane menu, to be taken for the selected item. 

A DSS Browser window has two window components: (1) 

window label; and (2) list pane. Each of these components 

has an associated menu which is activated as discussed 

above. The menu for the window label is identical to the 

menu shown in Figure 63. 

Figure 73 shows a DSS Browser window which contains a 

series of object class identifiers. In this figure the DSS 

Browser window is the active window and the 

transportationModel list item is selected. Each object 

class identifier shown in the list pane of a DSS Browser 

window comes from either a model instance or a relation 

instance object. The user may select any object class 

identifier appearing in the list pane. The list pane menu, 

which appears in Figure 74, permits the user to perform one 
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of two actions. First, the open option allows the user to 

open the instances window of the instance object having the 

selected object class identifier. Thus, the user may open 

a model or a relation in an equivalent manner. The close 

option closes the DSS Browser window. 

canneries 
generalLPModel 
link 
networkModel 
t.rttns port.d.t.ionnodel 
w.rehouses 

i I ) - transportationt1odel Instances 

!23606 

Figure 73. DSS Browser Window 

Figure 74. List Pane Menu 
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The DSS Browser window is a special window created by 

the DSS class object. The message open is sent to the DSS 

class object which collects all model instance and relation 

instance objects, determines their object class 

identifiers, and constructs the list used by the list pane. 

Thus, a single message is required by the user to gain 

access to all the models and data defined in the system. 

Figure 75 presents a flowchart which describes the process 

undertaken by the user for this level of interaction. 

User Opens 
DSS Browser 

J. 

.User Selects an 
Object Class Identifier 

Appearing in the 
List Pane 

J. 

User Selects Open 
Option Appearing in th~ 

List Pane Menu 

~ 

DSS Browser Opens 
the Instances Window 

of the Selected 
Object Class 

Figure 75. DSS Browser Level Flowchart 
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The previous sections draw no distinction between the 

way in which the user accesses relation instance objects 

and other subclass (Entity, Relationship, and Model) 

instance objects. Recall from Chapter V that the user may 

pass general messages to_access object class and object 

instance attributes regardless of the superclass object. 

The user may, however, treat relation instance objects in a 

more specific manner ... That.. is.,_ the_. user. may act. as. though 

he or she is dealing specifically with a relation rather 

than an instance of the Metamodel class. The Relation 

class accomplishes this by providing a message level view 

·which corresponds to a relational database approach. 

Concurrently, the Relation class also provides a 

similar window level view. From this perspective the user 

may open two different windows corresponding to a single 

relation using the following messages: (1) open; and (2) 

openNew. 

The open message opens a relation window which shows 

the relation attributes for all the tuples defined for the 

receiver. The openNew message opens a new tuple window 

which permits the user to organize a new tuple and 

subsequently attempt to insert the ·new tuple into the 

relation. 
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~igure 76 shows both these windows for the suppliers 

relation. The active window in this figure is labeled 

suppliers Relation. Note that the window labeled suppliers 

New Tuple is a new tuple window and that the row heading 

cell for this window is labeled Insert. Thus, these 

windows employ terms consistent with relational database 

concepts. The window label menu for both these windows is 

identical to that shown in Figure 63. 

Figure 76. Suppliers Relation Window 

Selecting the row heading cell in a new tuple window 

has no effect. Selecting a column heading cell in this 

window and in a relation window displays the menu in Figure 
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66. The show derivation option is always absent as the 

definition for a relation instance object given in Chapters 

III and V states that all its associated object instance 

attributes must be fixed. The show attribute option 

presents the user with a menu message showing the attribute 

name, an optional {Keyl flag indicating that the attribute 

participates in the primary key, and the attribute type. 

The structure of the menu message is very similar to the 

attribute definition appearing in a data schema 

abstracti6n. 

The cell pane menu for a new tuple window is shown in 

Figure 77. The open relation option is present if the 

corresponding relation window is not already open. 

Selecting this option causes the relation window to open. 

The insert values option performs the same function as the 

accept values option shown in Figure 70. This is also the 

case for the clear and close options. 

The cell pane menu for a relation window appears in 

Figure 78. The new tuple option is present if the 

corresponding new tuple window is not already open. 

Selecting this option permits the user to add new tuples to 

the relation. The close option closes the relation window. 

Selecting a row heading cell in a relation window 

pops-up the menu appearing in Figure 79. Notice that the 

delete option is analogous to the remove option in the menu 

shown in Figure 67. Thus, the user may, if desired, 
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interact with the data component of the o-o DSS using 

either the object class approach defined by the Metamodel 

class object or may use the relational database approach 

defined by the Relation class. Support for either of these 

two approaches is provided at both the message level and 

window level of user interaction. 

open relation 
insert values 
clear 
close 

Figure 77. New Tuple Cell Pane Menu 

new tuple 
close 

Figure 78. Relation Cell Pane Menu 

delete 
cancel 

Figure 79. Relation Row Heading Menu 
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Figure 80. Suppliers Class Window 

Figure 80 shows the same instance object displayed in 

Figure 76, the suppliers instance object, using the 

Metamodel approach . . Note that the active window in Figure 

76 is labeled suppliers Relation and that all menuing 

within this window uses relational database definitions. 

The activ~ window in Figure 80, on the other hand, is 

labeled suppliers Instances and all user interactions with 

this window use terms defined by an o-o approach to DSS. 

Consequently, the user may interact with the same object 

using two different approaches. 
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In conclusion, the three levels of user interaction 

(message level, window level, and DSS Browser level) permit 

varying degrees of access to the objects which exist in an 

o-o DSS. Furthermore, our prototype shows that an o-o DSS 

is a realistic possibility. 



CHAPTER VII 

FUTURE RE.SEARCH DIRECTIONS 

The present study shows that an. object-oriented (O~O) 

decision support system (DSS) is a- viable possibility. 

Regardless, there are several directions_ which future 

research endeavors might pursue. 

First, the data component of the current o-o DSS 

relies heavily on relational data modeling concepts. While 

a relational data modeling approach has significant 

benefits, it also.has obvious limitations as discussed in 

Chapter II. An o-o data modeling environment would more 

naturally permit an o-o DSS user to incorporate semantic 

information present in the task environment. This would 

also extend the capabilities of the data component by 

including object level behaviors. The inclusion of an o-o 

data modeling component rather than an o-o relational data 

modeling component would perhaps improve the current 

architectural design. 

The current study ignores the issues of model 

selection and model sequencing. Additional research might 

suggest possible ways of addressing the problems of model 

selection and model sequencing or possibly integrate an o-o 
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DSS model representation scheme into a system currently 

automating these processes. 

Also, an automatic problem solver selection mechanism 

should be addressed. Currently the user must specify which 

object is to serve as the problem solver object. In an 

automated process the o-o DSS would scan the model 

representation and automatically select the problem solver. 

object best able to handle the requirements of the given 

model. 

The proposed o-o DSS suggests a better design than 

existing systems because of its ability to integrate data 

and models as well as presenting DSS components in a more 

natural light as objects. One of the strongest arguments 

associated with an.o-o approach is that it more naturally 

models the environment than traditional approaches. 

Empirical support must be provided for this argument. 

Thus, the direction of an empirical investigation into the 

effectiveness of an o-o approach to DSS design as compared 

to existing systems is another area of possible future 

research. 

The current implementation provides the underpinnings 

for a DSS driver. A DSS driver exists in a two layer DSS. 

A specific DSS relies on the DSS driver to support the data 

and the modeling functions of the DSS through a standard 

set of predefined operations. The message protocols 

defined for the current implementation provide this 
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standard set of operations necessary to implement a 

specific DSS using the o-o DSS as the DSS driver. Thus, 

the fundamental set of objects described in Chapter V along 

with their related set of message protocols could be used 

to quickly develop specific DSSs. This permits the DSS 

builder to focus on the user interface rather than the 

basal functions of the DSS. Other research efforts might 

address the viability of the current design architecture in 

providing this level of support. 

Finally, a considerable amount of ongoing research 

addresses the topic of object sharing (Kim and Lochovsky 

1989). Object sharing issues are addressed in several o-o 

research areas such as data modeling and off ice information 

systems. This raises the broader question of whether an o-

0 DSS design may be extended to include group decision 

making support in the form of an o-o group DSS (GOSS) . 

GDSSs are the focus of extensive research (for example, 

Desanctis and Gallupe 1987, Burns, Rathwell, and Thomas 

1987, Gray 1987, Kraemer and King 1988). Extending o-o DSS 

concepts to GDSS architectural design should also be 

addressed by future research. 

An o-o approach to DSS design is obviously replete 

with future research directions. This suggests that o-o 

DSS design issues provide a strong basis for developing a 

future research agenda. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

Chung (1984) states that the design for any system 

should consist of different levels of abstraction which may 

be conceived as a continuum- from conceptual constructs, to 

operational constructs, and then to implementational 

constructs. We introduced an object-oriented (0-0) 

decision support system (DSS) architecture which permits 

the o-o DSS user to progress through these three levels of 

abstraction in designing data and models for the DSS. We 

made this possible in part through the introduction of an 

o-o relational data model capable of handling the data 

component of a DSS. In addition, we delineated an o-o 

structured model representation scheme to manage the model 

component of the DSS. 

Aided by a proposed diagrammatic technique the user 

creates either a data model schema or model schema. The 

user then abstracts from the schema using either data model 

schema or model schema abstraction. This process of data 

model schema and model schema development followed by data 

model schema and model schema abstraction permits the user 
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to develop conceptual constructs representative of the task 

environment. 

We also proposed a set of class objects arranged in an 

inheritance hierarchy and having corresponding message 

protocols. These protocols provide the o-o DSS user, o-o 

relational data model, and o-o structured model with the 

power to interact with one another. Essentially this 

endows the user and the o--o DSS with the ability to 

operationalize these. representations. 

Finally, we constructed a prototype o-o DSS in a 

personal computing environment. This prototype was capable 

of implementing our proposedclass objects and message 

protocols. The prototype attests to the feasibility of an 

o-o DSS and shows that the third level of abstraction, 

implementation, proposed by Chung (1984) is a realistic 

possibility. Thus, the prototype shows that DSS users can 

effectively implement their data model schema and model 

schema abstractions. At this level we see that data and 

models may be treated in a likewise manner. Furthermore, 

data may be differentially viewed in a traditional sense or 

in a manner not unlike models. 
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