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CHAPTER I 

INTRODUCTION 

Man has practiced artificial selection on wheat for convenience of 

cultivation and increased grain yield. He selected for large grain 

size, ears without brittle rachis, free-threshing and many grains per 

ear (Feldman, 1976). As a result, plants which have fewer but larger 

shoots and larger leaves than their progenitors were developed (Austin 

et al., 1982). Harvest index rather than photosynthetic rate per unit 

leaf area has been the major physiological factor in the selection of 

wheat for increased yield (Dunstone, 1973). Once harvest index is 

optimized, further improvements in yield will likely require increased 

rates of photosynthesis (Holbrook et al., 1984). Among the Triticum 

species, average photosynthetic rates are generally highest in diploids, 

intermediate in tetraploids, and lowest in the cultivated hexaploids 

(Austin et al., 1982; Khan and Tsunoda, 1970; Dunstone et al., 1973). 

In several studies, the relatively low photosynthetic rate of hexaploid 

wheat has been attributed to anatomical and physiological differences in 

leaf tissue (Parker and Ford, 1982; Austin et al., 1982; Sharkey, 

1985). Many researchers, using a variety of species, have attempted to 

determine the role of specific anatomical and physiological 

characteristics in the determination of photosynthetic rate. How these 

and other aspects of cell and tissue composition combine to influence 

photosynthetic capacity is not yet completely understood. 

1 
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Net C02 assimilation per unit leaf area is found to be negatively 

correlated with leaf area across genotypes (Austin et al., 1982; Parker 

and Ford, 1982). Thus modern cultivated hexaploids generally have 

larger leaves and lower photosynthetic rates than their wild progenitor 

species with reduced ploidy (Bhagsari and Brown, 1986; Evans and 

Dunstone, 1970). An exception to this trend was noted in two accessions 

of the wild tetraploid species, ~ dicoccoides, which differed by about 

30% in their photosynthetic rate but did not differ in leaf area. These 

two accessions were selected for further study because their difference 

in photosynthesis was not confounded by differences in genomic 

constitution or leaf area. Since these genotypes belong to the same 

species, hybrid populations could be developed to determine the genetic 

basis for increased photosynthesis in ~ dicoccoides. Also, the high 

photosynthesis genotype could be utilized in a back cross program with 

cultivated wheat to introduce genes for high photosynthesis. But first, 

research is needed to study the genetic regulation ~f high 

photosynthetic efficiency and associated physiological, anatomical and 

biochemical characteristics in these two T. dicoccoides. 

The two parts of this dissertation are separate and complete 

manuscripts to be submitted for publication in Crop Science. 



CHAPTER II 

Physiological Variation in Photosynthetic Rate in Two 
Triticum dicoccoides Accessions. 

ABSTRACT 

In the Triticum species, average photosynthetic rates are generally 

highest in diploids, intermediate in tetraploids, and lowest in the 

cultivated hexaploids. Net C02 assimilation per unit leaf area (A) is 

also negatively correlated with leaf area. An exception to this trend 

was noted in two accessions of the wild tetraploid species, ~ 

dicoccoides, which differed by ca. 30% in A but did not differ in leaf 

area. These accessions were selected for further study because their 

difference in A was not confounded by differences in genomic 

constitution or leaf area. The objective was to identify the 

physiological factor(s) which would explain the difference in 

photosynthetic rate between the two ~ dicoccoides accessions and 

between the ~ dicoccoides accessions and a hexaploid wheat used as a 

standard for comparison. Photosynthetic response to C02 (at 2 and 21%), 

light, humidity and temperature, ribulose bisphosphate (RuBP) 

carboxylase activity, and sucrose and starch concentration were 

determined on newly expanded leaves of growth chamber-grown plants of 

two tetraploids, PI 428042 (low A) and PI 428109 (high A), and a 

hexaploid cultivated wheat (TAM W-101). PI 428109 showed higher A than 

PI 428042 at varying levels of C02, light, humidity and temperature. 

3 
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Response to co2 was compared among genotypes using A vs. Ci (internal 

leaf co2 concentration) curve parameters. The slope of the initial 

linear portion of the curve and the co2-saturated A were significantly 

higher in PI 428109 than in PI 428042 which suggest higher RuBP 

carboxylase activity and RuBP regeneration capacity, respectively, in PI 

428109. A higher RuBP carboxylase activity observed in leaves of PI 

428109 supported this result. A higher sucrose concentration was 

observed in the leaves of PI 428042 than in those of PI 428109, but its 

relationship with photosynthetic capacity was uncertain. This study 

indicates that the difference in A between the two T. dicoccoides 

accessions was mainly due to differences in RuBP carboxylase activity. 
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Introduction 

Flag leaves of the primitive Triticum species have higher rates of 

photosynthesis per unit leaf area than the cultivated hexaploids (Austin 

et al ., 1982; Khan and Tsunoda, 1970; Dunstone et al., 1973). Diploid 

species have shown the highest rate of photosynthesis and the cultivated 

hexaploids have the lowest rate, with the tetraploids being intermediate 

(Austin et al ., 1982). However, differences in photosynthesis have also 

been found within a ploidy level. Variation in photosynthesis could be 

caused by several factors. Sharkey (1985) identified three limitations 

to photosynthesis: (1) supply or utilization of C02, (2) supply or 

utilization of light, and (3) supply or utilization of phosphate. 

Single measurements of photosynthesis give very little information about 

the biochemical limitations to photosynthesis in leaves. Models have 

been developed which allow inferences to be made about biochemistry 

based on the response of photosynthesis to light or C02 (Sharkey, 1985, 

Farquhar et al., 1980). Sharkey {1985) stated that the first limitation 

indicated above is most readily measured by determining how C02 

assimilation rate varies with change in partial pressure of C02 inside 

the leaf. The second limitation can be determined by the quantum 

requirement of photosynthesis. The third limitation is most readily 

detected as a loss of 02 sensitivity of photosynthesis. A significant 

difference of ca. 30% has been found in photosynthetic rate between two 

accessions of the wild tetraploid species, ~ dicoccoides. Thus these 

accessions were considered appropriate material for genetic and 

physiological investigations of the cause(s) of variation in 

photosynthetic efficiency. 



In this study we investigated the photosynthetic response of the 

two~ dicoccoides accessions (PI 428109 and PI 428042) to C02, light, 

temperature and humidity. Some biochemical tests were made to verify 

the results. Because the long-term goal is to transfer high 

photosynthetic potential to hexaploid cultivated wheat TAM W-101 was 

included as a standard of comparsion with the tetraploid accessions. 

6 

Our objective was to determine if any of these factors accounted for the 

difference in photosynthetic rate between the two accessions. 
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Materials and Methods 

Plant material 

Unvernalized plants of the~ dicoccoides accessions, PI 428109 and 

PI 428042, and the hard red winter wheat (~ aestivum) cv. TAM W-101, 

were grown in growth chambers at 20/15°C (day/night) and 14 h light (600 

umol m-2s-1 PPFD) for 4 weeks as described by Johnson et al. (1987). A 

series of experiments were conducted to determine photosynthetic 

response of these genotypes to temperature, light and humidity. 

Gas exchange measurements 

For each plant, gas exchange characteristics were measured on the 

last fully emerged leaf using a stirred, temperature and humidity 

controlled reaction chamber (cuvette) (Johnson et al., 1987). Humidity 

was measured inside the chamber with a condensation dew-point hygrometer 

(General Eastern 1100DP, Watertown, MA) and C02 concentration by passing 

chamber exhaust through a differential C02 gas analyzer (Horiba PIR 2000 

R, Irvine, CA). The concentration of C02 inside the measurement chamber 

was varied by mixing gases of known C02 concentration. Photosynthetic 

photon flux density (photons) was measured with a quantum sensor 

(LI-190SB, LI-COR Inc., Lincoln, NE) at leaf level. Leaf temperature 

was determined by appressing a thermocouple to the underside of the 

leaf. Standard measurement conditions were 1800 umol photons m-2 s-1, 

330 ul 1-1 air, 20°C, and a leaf-to-air vapor pressure difference of 

1.0 KPa. 

After gas exchange measurements, leaf area was determined and the 

leaf sample frozen at -20°C for later determinations of chlorophyll by 

the method of Inskeep and Bloom (1985). From another tiller on the same 



plant, a recently fully emerged leaf was excised, leaf lamina area and 

dry weight were determined, and specific leaf weight was calculated. 

Calculations of C02 assimilation were made per unit leaf area (A) and 

per mole of chlorophyll (A/Chl). Transpiration (E), A, stomatal 

conductance (Gs), internal C02 concentration (Ci) and water use 

efficiency (WUE = A/E) were calculated according to Von Caemmerer and 

Farquhar (1981). 

Photosynthetic response to temperature 

C02 assimilation per unit leaf area was measured at 8, 14, 20, 26, 

32, and 38°C on PI 428109, PI 428042, and TAM W-101. Vapor pressure 

difference was maintained at all temperatures near 1.0 KPa with a 

standard deviation of 0.27. Measurements were made by progressing from 

the lowest to the highest temperature on leaves from six plants of each 

genotype. 

Photosynthetic response to light 

8 

Rates of A were determined at 0, 200, 400, 600, 800, 1000, 1400, 

and 1800 umol photons m-2 s-1 by progressing from low to high light 

levels on one group of plants and from high to low light levels on 

another group of plants. The slope of the initial linear portion of the 

response curve for each genotype was described as the apparent maximum 

quantum yield (the efficiency of light utilization by photosynthesis or 

the number of moles of C02 fixed per mole photon absorbed by a leaf) 

(Long and Hallgren, 1985). 

Photosynthetic response to C02 

Rates of A were determined at ambient C02 concentrations of 5, 40, 

75, 126, 208, 330, 436, 584, and 622 ull-1. Air with no co2 was mixed in 

the cuvette to obtain a desired ambient C02 concentration. Assimilation 



vs. internal C02 concentration (Ci) response curves were developed for 

each genotype. The slopes of the initial linear portion of the curves 

and the C02 compensation points were determined. The stomatal 

limitation to A was calculated as outlined by Farquhar and Sharkey 

(1982): 

%stomatal limitation = (Asaturated- Aambient)Asaturated-1 

On another set of plants A was determined at the same ambient co2 

concentrations but at two oxygen levels (2% and 21%). The level of o2 

inhibition on A was calculated as the difference between the A rates at 

2% and 21%02 (Monson et al., 1982). 

Photosynthetic response to humidity 

9 

Measurements of gas-exchange were made at five levels of vapor 

pressure difference (VPD) (0.6, 1.0, 1.4, 1.8, and 2.2 KPa) to determine 

effect of humidity on A. Leaf water potential (WP) was estimated prior 

to and after measurements by using leaf cutter psychrometers (J. R. D. 

Merill, Logan, UT) as described by Johnson et al. (1986) to measure the 

change in leaf water status. 

RuBP carboxylase activity determination 

Leaf samples were ground at 40c in extraction buffer [50 mM Bicine 

(pH 8.2), 20 mM MgCl, 1 mM EDTA, 10 mM NaHC03, 5 mM OTT and 1% Polycar 

(W/V)]. One ml of the ground tissue was saved for chlorophyll 

determination using 80% acetone (Inskeep and Bloom, 1985). After 

grinding, samples were centrifuged in 20 mM NaHC03 at room temperature 

for 10 min and then placed in a solution containing assay buffer [SO mM 

Hepes (pH 8.2), 20 mM MgCl2, 5 mM OTT, 10 mM KCl, 1 mM EDTA] along with 

enzymes and other factors needed for NADH oxidation (Lilley and Walker, 

1974). Then RuBP carboxylase activity was determined as described by 
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Lilley and Walker (1974) using an NADH linked spectrophotometeric assay. 

About 0.2 ml of the supernatant from centrifugation was saved for 

protein determination using the Bio-Rad protein assay method (Bio-Rad, 

Richmond, CA). 

Sucrose and starch determination 

Leaf samples were frozen in liquid nitrogen immediately after 

carbon exchange determinations and were later freeze-dried for 24 h, 

oven dried at 100c for 24 h to denature enzymes. The dried leaves were 

ground to pass a 1mm screen using a Udy mill (UDY Corp., Ft. Collins, 

CO) and stored in brown bottles at -2oOc. Aliquots of 0.05 g dried 

leaves were extracted with 2 ml 95% (v/v) ethanol at aoOc for 15 min and 

centrifuged at 10,000 g. The supernatant for four successive ethanol 

extractions was evaporated in ~ and resuspended for sucrose, glucose 

and fructose determination using the enzymatic method of Boehringer 

Mannheim (Boehringer Mannheim Biochemicals, Indianiapolis, IN, 46250). 

The residue remaining after ethanol extraction was suspended in 0.5 

ml redistilled water and heated at 9o0c for 1 hr to gelatinize 

amylopectin. Samples were cooled and 15 ml 0.2 M acetate buffer (pH 

4.5) containing 0.5%( w/v) porcine pancreatic alpha amylase and 2% (w/v) 

Rhizopus mold amyloglucosidase was added. Samples were incubated at 

250c for 1 h and at 550c for 24 h, then centrifuged at 10,000g for 15 

min. The residue was then extracted in 5 ml water at 60°C for 10 min. 

The combined supernatants from three water extractions and incubation 

were utilized for glucose determinations as in the ethanol extractions 

and multiplied by a factor of 0.9 (to account for the water gained 

during starch hydrolysis to glucose) to obtain starch determinations. 
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Statistical methods 

Plants in these experiments were grown in a growth chamber in a 

completely randomized design. Data on photosynthetic response to light, 

temperature, co2, and humidity were analyzed in a split-plot with 

genotypes as main plot and treatment levels as subplots. Data on RuBP 

carboxylase activity, soluble protein, sucrose and starch were analyzed 

in a completely randomized design. In the temperature response study 

estimates of optimum temperature were made for each genotype using a 

cubic polynomial regression model (which was found to be the best fit). 
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Results 

At yarying light levels PI 428109 had significantly higher A (Fig. 

1a) and Gs than PI 428042, but they were not different in Ci (data not 

shown). TAM W-101 had intermediate A values but had significantly lower 

Gs than PI 428109 and lower Ci than both accessions averaged over 

photosynthetic photon flux density (PPFD). The A/chlorophyll values and 

chlorophyll a/b ratio of PI 428109 were also higher than those of PI 

428042 and TAM W-101 (Table 1). There were significant differences in A 

values between progressions of PPFD, from low to high PPFD and from high 

to low PPFD. Carbon assimilation (Fig. 1b), Gs and WUE values were 

consistently higher when progressing from low to high than from high to 

low PPFD levels, but Ci values showed the reverse (data not shown). On 

the average, slope was lower on the high-low progression. The initial 

slope of the curve of the A versus PPFD was determined for each genotype 

in both progressions. There were no significant differences in slope 

between genotypes in the low-high progression, but in the high-low 

progression PI 428109 had a higher slope than the other two genotypes 

(Table 1). 

In the temperature range of 14 to 32°C, PI 428109 had significantly 

higher A than PI 428042 and TAM W-101 did not differ from PI 428042 

(Fig. 2a). Values of Ci were lowest when A rates were highest (Fig. 

2b). Even though the higher A of PI 428109 was associated with 

generally higher Gs (Fig. 2c) than the other genotypes, there was no 

significant difference among genotypes in Ci. Optimum temperature for 

photosynthesis for all genotypes was estimated to be about 27°C. There 

were no significant differences in leaf water potential (WP) between 

genotypes during the temperature response measurements (data not shown). 
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Assimil~tion rate vs. Ci response curves were developed and the 

slopes of the initial linear portion of the curves were calculated (Fig. 

3). A significantly higher slope was observed for PI 4Z8109 than PI 

4Z804Z (Table Z). As in the light response study the COz response was 

also measured at two progressions, and at two Oz levels, Z and Z1% Oz. 

No genotype x Oz interaction was observed in this study. A significant 

difference was observed in the slopes of the A versus Ci curves between 

the two progressions at Z% level of Oz averaged over genotypes (Fig. 

3b). The high-low progression showed higher slope than the low-high 

progression. Oz had a highly significant effect on the slope. The Z% 

Oz brought about 50% increase in the slope (Table Z, Fig. 3c). 

The main purpose of the Oz treatments was to test for differences 

in sensitivity to Oz, which is also an indicator for triose phosphate 

utilization limitation between genotypes. The difference between A 

rates determined with Z and Z1% Oz represents the amount of inhibition 

imposed by Z1% Oz. This difference is expressed as percentage oxygen 

inhibition in table Z. These values are similar to the average value 

reported for c3 species which is ca. 30% (Brown et al., 1986). The Oz 

inhibition, however, was larger at lower COz levels than at saturating 

COz. At low COz levels (less than 80 ~1 l-1)the Oz inhibition was as 

high as 63% but at saturating COz level it was about Z7% (data not 

shown). Stomatal conductance was higher at Z% Oz than at Z1% Oz and 

decreased with increased COz level. Stomatal limitation to A was also 

lower in Z% than in Z1% Oz (Table Z). There was no significant 

difference in .COz compensation point among genotypes at either Oz 

levels, but there was a marked reduction of the COz compensation point 

at the Z% Oz level. The mean COz compensation value for all genotypes 



was 9 and 38 at the 2 and 21% o2, respectively (Table 2). At the 2% 

level a significant difference was observed in the co2 compensation 

point between the two progressions of co2 (Table 2). The values were 

higher in the low to high C02 progression than in the high to low co2 

progression. Although stomatal limitation to A was similar in all the 

genotypes, it was lower at 2% than at 21% o2, 26 and 32%, respectively 

(Table 2). 
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The increase in VPD from 0.6 to 2.2 KPa at constant temperature 

(25°C) resulted in significant reduction in A, Gs, and Ci (Fig. 4a, b 

and c) in all genotypes. PI 428109 still had significantly higher A 

than PI 428042 at the different VPD levels whereas TAM W-101 showed 

intermediate values (Fig. 4a). There was no significant decrease in A 

of PI 428109 until the deficit was greater than 1 KPa whereas there was 

a significant reduction in PI 428042 and TAM W-101 above 0.6 KPa. 

Stomatal conductance, Ci and WUE followed the same pattern. Over all 

genotypes, there was about 44% reduction in Gs with increase in VPD from 

0.6 to 2.2 KPa (Fig. 4b). A very high correlation (r = 0.990) was 

observed between A and Gs (Fig. 5). Leaf (WP) showed a slight decrease 

with increased VPD (data not shown). There was also a highly 

significant increase in transpiration with increase in VPD, possibly 

causing slight reduction in leaf WP. PI 428109 had higher transpiration 

rate than both PI 428042 and TAM W-101 (data not shown). 

A significant difference in RuBP carboxylase activity was detected 

between the ~ dicoccoides accessions. PI 428109 had higher RuBP 

carboxylase activity than PI 428042 but was not different from TAM W-101 

(Table 3). PI 428109 also had higher A/RuBP carboxylase activity and 

A/chl ratios than PI 428042. However, PI 428109 was not different from 



PI 428042 in soluble protein content (Table 3). TAM W-101 had a 

significantly higher soluble protein content than the T. dicoccoides 

accessions. 

15 

A significantly higher concentration of sucrose was observed in PI 

428042 leaves than in PI 428109 (Table 4). TAM W-101 had the highest 

concentration of sucrose. No difference was detected among genotypes in 

starch concentration (Table 4). 
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Discussion 

The initial slope of the A vs. PPFD curve measures the 

photochemical efficiency or light utilization efficiency or, otherwise 

is called quantum yield (Sharkey, 1985). There were no differences in 

quantum yield among genotypes in the low-high progression; but a 

significant difference was detected in the high-low progression where 

the quantum yield was smaller. Reduced quantum yield suggests that 

carbohydrate accumulation impairs the production or consumption of 

ATP/NADPH in photosynthesis which reduces regeneration of RuBP and this 

results in the reduction of photosynthesis (Azcon-Bieto, 1983). 

Other studies devoted to the influence of decreasing irradiance on 

A have shown a lag in A after the transition from high to low irradiance 

and this lag is complicated by the presence of a post-lower-illumination 

C02 burst (Stitt et al., 1983; Prinsley et al.,1986). Prinsley et al. 

(1986) indicated that the explanation for the lag lies in metabolic 

rather than physical constraints upon C02 assimilation. They found that 

immediately following a reduction in irradiance, the rate of sucrose 

synthesis considerably exceeds the rate of co2 assimilation. They 

concluded that depletion of Calvin-cycle intermediates by excessive 

sucrose synthesis, thereby causing metabolite build-up in the Calvin 

cycle, is partly responsible for the lag phase following a reduction in 

irradiance. 

The higher chlorophyll a/b ratio of PI 428109 could indicate a 

greater molar ratio of Photosystem II reaction centers to chlorophyll. 

Thus, for a given chlorophyll content PI 428109 may have a greater 

density of PS II reaction centers (Edwards and Walker, 1983). At or 

near light saturation PI 428109 may have a greater capacity for electron 



transfer, which is likely to be manifested as a faster rate of 

regeneration of RuBP and consequently greater A. However, the higher 

chlorophyll a/b ratio of PI 428109 was not always manifested in 

experiments on the two T. dicoccoides accessions. 
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The C02 response study showed that 428109 had a higher capacity for 

mesophyll photosynthesis than PI 428042. Although higher stomatal 

conductance was associated with A this was manifested as a steeper 

initial slope of the curve and higher C02-saturated A. Stomatal 

limitation to A was not significantly different, but co2-saturated A was 

significantly higher in PI 428109 than in PI 428042. Interpretation of 

these results according to the model of Farquhar et al. (1980) suggests 

a higher RuBP carboxylase activity in.association with the steeper 

initial slope of the curve and higher RuBP regeneration capacity 

associated with the higher C02 saturated A of PI 428109. Verification 

of this interpretation, however, requires biochemical measurements of 

those factors. Nevertheless, both carboxylase activity and RuBP 

regeneration are likely affected by a number of factors involving both 

the light and dark reactions of photosynthesis. 

The high RuBP carboxylase activity of PI 428109 supported the 

results of the co2 response study. Leaves of TAM W-101 had even higher 

RuBP carboxylase activity, but A was not higher than that of PI 428109. 

Wittenbach (1979) found that RuBP carboxylase accounts for about 50% of 

the soluble protein. Ku et al. (1979) indicated that there is a very 

close relationship between activity and concentration of RuBP 

carboxylase in leaf extracts. Our results, however, suggest that the 

difference in enzyme activity between the two accessions was due to 

actual activity rather than a difference in amount of the enzyme. But 
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in TAM W-101 the increase in activity might have been accompanied by an 

increase in the amount of the enzyme itself. 

Sharkey (1985) proposed that in addition to the limitation of A by 

RuBP carboxylase activity and RuBP regeneration, A could also be limited 

by triose phosphate utilization (TPU). TPU limitation is detected by 

the lack of stimulation of A by low 02 at saturating light and high 

partial pressure of co2 (Brown et al., 1986; Sharkey, 1985). When A is 

TPU-limited, both RuBP carboxylase activity and the rate of RuBP 

regeneration must be reduced to match the capacity for TPU (Sharkey, 

1985). In this study measurement of A at low 02 pressure with 

saturating light and high partial pressure of C02 (622 ul 1-1) 

stimulated A by about 32% in all genotypes. Higher A values were also 

observed at 2% than at 21% 02 in the A vs. Ci curve due to an increase 

in carboxylase activity rather than oxygenase activity of RuBP 

carboxylase. Therefore, the C02 response with 2% and 21% 02 provided 

evidence that the difference in A between the T. dicoccoides accessions 

was caused neither by difference in sensitivity to 02 nor by TPU 

limitation. 

TPU utilization is involved in sucrose and starch synthesis. To 

verify our finding of no TPU limitation, we measured leaf sucrose and 

starch concentrations. A higher sucrose concentration was observed in 

PI 428042, but its relationship with photosynthetic capacity is 

uncertain. Many investigations have been made in search of a 

relationship between sucrose content of leaves and A (Stitt et al., 

1984; Azco-Bieto, 1983; Stitt et al., 1987). In some studies 

accumulating sucrose has been correlated with an inhibition of A (Stitt 

et al., 1984), but this effect may not always be present (Stumpf and 
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Conn, 1987). Limitation of A by sucrose synthesis could be caused by 

suboptimal metabolic levels or suboptimal phosphate (Stumpf and Conn, 

1987; Stitt et al., 1987). Most of the triose phosphates (TP) are 

retained in the Calvin cycle to generate RuBP, which is the acceptor for 

further C02 fixation (Sharkey, 1985). During sucrose synthesis, 

phosphate is released from TP and reenters the chloroplast in exchange 

for further TP. If this occurs faster than the rate at which TP can be 

produced, then the stromal metabolite will decrease and A will be 

inhibited (Stitt et al., 1984; Sharkey, 1985; Azcon-Bieto, 1983). This 

could be one reason for the higher sucrose content and the lower A in PI 

428042 than in PI 428109. But this is not in agreement with the 

interpretation of the results obtained in the co2 response study. 

Gas exchange was depressed by about 13% in PI 428109 whereas in the 

other two genotypes the depression was as high as 27% as VPD increased 

from 0.6 to 2.2 kPa. This might have a contribution to the lower A of 

PI 428042. However, it couldn•t be the major reason for the difference 

in A between the two ~ dicoccoides, as PI 428019 had consistently 

higher A than PI 428042 at all levels of humidity. The relatively small 

reductions in WP and the observed rapid response of Gs to changes in VPD 

suggest a feed-forward mechanism (Cowan, 1977; Farquhar, 1978) for 

stomatal aperture regulation based on humidity rather than internal leaf 

water status. A very high positive correlation was observed between Gs 

and A (r = 0.990) (Fig. 5). Reduced Gs was probably the prime cause of 

reduction in A. The decrease in Ci (Fig. 4C) is an indication for this 

relationship. 

This study indicates that the difference in A between the two T. 

dicoccoides accessions was mainly due to differences in RuBP carboxylase 
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activity. A more thorough examination of the properties of the RuBP 

carboxylase and determination of metabolites in the accessions will be 

helpful in explaining the molecular basis of variation in photosynthetic 

rate. However, this should be supported by anatomical investigations 

since some anatomical features have been found to influence rate of gas 

exchange. 
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Table 1. Several photosynthetic parameters measured on plants of two 
T. dicoccoides accessions (PI 428042 and PI 428109) and a hexaploid 
wheat (TAM W-101). 

Accession A A/Ch Ch a/b Slope+ Slope:f 

(pmo 1 m-2s-1) . (mmo 1 mo r1) Low-high High-low 

PI 428042 

PI 428109 

TAM W-101 

LSDo.05 

16.7 

25.1 

19.7 

3.4 

31.9 

39.3 

30.4 

7.7 

3.29 

3.78 

3.39 

0.20 

0.028 

0.036 

0.034 

NS 

0.020 

0.032 

0.024 

0.004 

+slope low-high indicates the slope for the A vs. PPFD curve measured by 
progressing PPFD from low to high level. 

tSlope high-low indicated the slope for the A vs. PPFD curve measured by 
progressing PPFD from high to low level. 

N 
+::-



Table 2. Several parameters of the photosynthetic response to C02 at 2 and 21% 
02 for two I· dicoddoides accessions (PI 428042 and PI 428109) and a 
hexaploid wheat (TAM W-101). 

Accession 02 level A* Initial C02 comp. Stomatal 02 
inhib. 

pmol m-2s-1 
slope 

pl r1 
1 im. 

% A/C; % % 

PI 428042 21 24 0.096 39 33 36 

2 37 0.282 10 28 

PI 428109 21 33 0.163 34 30 33 

2 48 0.334 9 23 

TAM W-101 21 25 0.121 40 33 38 

2 41 0.272 7 27 

LSD0. 05 (genotype) 5 0.089 8 10 9 

(02 level) 4 0.054 6 4 

* measured at ambient co2 of 330 pl 1-1, 1800 pmol photon m-2s-1, 200c and 50% 
RH. 

N 
U"1 



Table 3. Several photosynthetic parameters, RuBP carboxylase activity and 
soluble leaf protein for two T. dicoccoides accessions (PI 428042 and PI 
428109) and a hexaploid wheat-(TAM W-101). 

Accession A RuBP carb. A/RuBP act. Soluble A/Chl 

\lmol m-2s-1 
activi~y 

\lmol m- s-1 
protein 

gm m-2 mmol mor1 

PI 428042 19.8 55.8 0.360 3.44 28.85 

PI 428109 26.9 68.1 0.401 3.22 33.7 

TAM W-101 25.8 71.7 0.362 5.14 31.1 

LSDo.o5 2.5 6.3 0.037 0.79 2.7 

N 
0"1 



Table 4. Sucrose and starch concentration per unit leaf 
dry weight (LOW) of two T. dicoccoides accessions 
(PI 428042 and PI 428109--) and a hexaploid wheat 
(TAM W-101). 

Accession Sucrose Starch 

ll9 mg-1 LOW ll9 mg-1 LOW 

PI 428042 50.6 53.9 

PI 428109 34.0 47.1 

TAM W-101 66.8 43.8 

Lsoo.o5 9.9 NS 
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PI 428109) and a hexaploid wheat (TAM W-101) at 
varying photosynthetic photon flux ~ensity (PPFD), 
(b) A averaged over genotypes at two light 
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CHAPTER III 

Comparison of anatomical characters between two 
Triticum dicoccoides accessions differing 

in photosynthetic rate 

ABSTRACT 

Variation in photosynthetic rate can be attributed to anatomical, 

physiological, and/or biochemical differences in leaf tissue. Leaf 

area, leaf width, mesophyll cell size, and interveinal distance are 

often associated with photosynthetic rate. The objective of this study 

was to determine whether any of these anatomical features were 

associated with the reported difference in photosynthetic rate between 

two Triticum dicoccoides accessions (PI 428042 and PI 428109). Light 

and electron microscopic investigations were made on sections of newly 

expanded leaves of the two accessions and a hexaploid wheat, TAM W-101 

(included as a standard check). Plants were grown in a growth chamber 

for four weeks under 14 h light and 20/15°C (day/night). Volume 

fractions of leaf cross-sectional components (mesophyll, intercellular 

air space, vascular bundle and bundle sheath, and epidermis), mesophyll 

cell volume, surface area. and total mesophyll surface area to leaf 

volume ratio, interveinal distance and volume fraction of mesophyll 

chloroplasts were determined stereologically. Stomatal density and pore 

length, leaf thickness and leaf width were also determined. No leaf 

anatomical differences were detected between the two T. dicoccoides 
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accessions. Therefore, anatomical differences are not contributing 

toward differences in photosynthetic rate in these accessions. TAM 

W-101 had larger leaf area, width and mesophyll cell size than the two 

accessions. This study supports previous results indicating 

photosynthetic differences between the two ~ dicoccoides accessions 

were mainly due to physiological and/or biochemical factors. 



Introduction 

Various hypotheses based on leaf anatomy have been developed to 

explain photosynthetic differences reported among Triticum species. 
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With increasing ploidy level a decrease in photosynthetic rate per unit 

leaf area is often accompanied by an increase in leaf area (Dunstone et 

al., 1973; Parker and Ford, 1982). Surface area per unit volume of 

mesophyll tissue, along with cell size, degree of cell lobing, 

interveinal distance, and other gross morphometric measurements, have 

also been used to explain interspecific differences (Austin et al., 

1982; Jellings and Leech, 1984). Dunstone and Evans (1974) found that 

the area of macerated mesophyll cells was larger in cultivated 

tetraploids and hexaploids than in diploids, and was negatively 

correlated with photosynthetic rate. The mesophyll surface area per 

unit leaf area was also larger in diploids than in polyploids (Sasahara, 

1982). Jellings and Leech (1984) indicated that cell size rather than 

cell number is the major component of interveinal distance. 

This study was mainly conducted within a single species to reduce 

the confounding effects of ploidy level and leaf area. We have 

identified two accessions of the wild tetraploid species Triticum 

dicoccoides, differing in photosynthetic rate but having the same leaf 

area (Johnson et al., 1987). Our goal was to determine whether any of 

the anatomical features believed to be associated with photosynthesis 

were correlated with photosynthetic differences between these two 

accessions. This anatomical information will be combined with 

physiological and genetic information to more fully understand the basis 

for variation in photosynthetic rate in Triticum dicoccoides. 



36 

Materials and methods 

Plants of the two, accessions, PI 428042 and PI 428109, and the 

hexaploid wheat, TAM W-101 (included for comparison) were grown in pots 

in a growth chamber for five weeks at 20/15°C (day/night), 14-h 

photoperiod with photosynthetic photon flux density of 600 mol m-2s-1 

at pot level. The plants were watered every day with 25% strength 

Hoaglands•s nutrient solution. 

Simultaneous measurements of co2 assimilation and transpiration 

rates were made on the most recently fully emerged leaf of the main 

vegetative tiller using a LI-COR 6200 portable photosynthetic system 

[LI-COR Inc. Lincoln, NE]. 

Leaf samples were collected from the mid-lamina section following 

carbon exchange measurements. The leaf segments were fixed in cold 0.1 

M potassium phosphate-buffered 4% glutaraldehyde, post-fixed with 1% 

osmium tetraoxide (Os04) for 4 h in the dark, dehydrated in graded 

series of ethanol and embedded in a firm-formulation epoxy resin of 

Spurr (Spurr, 1969). 

For light microscopic investigations sections of 0.5 m were made 

with ultramicrotome using glass knife and stained with 1% toluidine blue 

in 1% borax. Photomicrographs of the transverse sections were taken at 

a magnification 200X. Slide pictures of these sections were projected 

on a viewing screen and stereological measurements were made by randomly 

superimposing a transp~rent (1 pseudo-random test grid for volume 

density determinations by the point-counting method (spacing 1.0 em) or 

(2) isotropic Merz grid test system for surface densities by the line 

intersection method (spacing 1.2 em) (Weibel, 1979). Measurements were 
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made on leaf thickness, distance between vascular bundles, and length of 

mesophyll cell wall exposed to intercellular air space. Volume 

fractions of mesophyll, epidermis, vascular tissue, and intercellular 

air space were calculated. Surface area to volume ratio was also 

determined for mesophyll tissue (Weibel, 1979). 

Thin leaf sections (0.01fm) were cut with ultramicrotome using a 

diamond knife for analysis by electron microscope. Sections were 

stained in 5% uranyl acetate and lead citrate. Photomicrographs of the 

mesophyll cells were taken at magnifications of 3500X, 7000X, and 14000X 

to determine volume fractions of chloroplasts and other organelles. 

Additional leaf samples were taken from the mid-laminal section of 

the same leaves above and preserved in formalin-propionic acid. 

Sections of 10 mm2 were cut and incubated in 6% NaOH at room temperature 

for 16 h. Cells were teased out in 3 ml of 1% Fast Green FCF in 

water/glycerate (50:50 mixture). Twenty ~1 of the cell suspension were 

withdrawn and placed on a slide. Camera lucida outline drawings were 

made on a random sample of 25 mesophyll cells from each of six leaves 

per genotype (recorded on a Zeis MOP 3 Digitizing Tablet) and on these 

drawings number of lobes on the cells were counted. Surface area, 

volume and surface area to volume ratio of the mesophyll cells were also 

calculated. 

Leaves at approximately the same developmental stage were excised 

for stomatal counts and stomatal pore length determination. Impressions 

of the upper and the lower surface of the leaves were made by applying 

clear finger-nail polish to the mid-portions of fully emerged leaves. 

The number of stomata in a 6.5 mm2 grid were counted and stomatal pore 
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length of 6 adaxial and 6 abaxial stomata per plant were measured under 

a microscope. 

The plants were grown in a completely randomized design inside a 

growth chamber. Frequency distribution was made on the number of lobes 

on the mesophyll cells and Chi-square test was used to see if there were 

differences in lobe number between genotypes. 
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Results 

No significant differences were detected by the light microscopic 

analysis of volume fractions between the two T. dicoccoides accessions 

or between the two accessions and TAM W-101 (Table 1). The mesophyll 

tissue and the intercellular air space occupied about 38 and 30% of the 

leaf volume in all genotypes, respectively. Because photosynthetic 

cells are primarily located in mesophyll tissue, we made a closer 

investigation of the components of individual mesophyll cells. no 

genotypic differences were observed either in the total surface area of 

the mesophyll tissue per unit volume of leaf (Stot/V) or the total 

surface area exposed to the intercellular air space per unit leaf volume 

(Sair/V) (Table 2). Surface area (SA) and volume (V) of individual 

mesopyll cells were similar for the~ dicoccoides accessions, but 

mesophyll cells of TAM W-101 had larger surface are and volume than T. 

dicoccoides. When expressed per unit volume (SA/V), however, TAM W-101 

did not differ from PI 428109 (Table 2). The mesophyll cells of the low 

photosynthetic accession, PI 428042, did show significantly larger 

surface area per unit volume than those of PI 428109 or TAM W-101 

(Table 2). 

Camera lucida outline drawings of a random sample of mesophyll 

cells from macerated young and fully emerged leaves are illustrated in 

Fig. 1. The number of lobes per mesophyll cell were counted in 150 

random cells from each of the three genotypes. According to the 

frequency distribution in Fig. 2, the majority of mesophyll cells in PI 

428109 and PI 428042 had two or three lobes. Although PI 428042 had a 

higher percentage of mesophyll cells with four or more lobes (60%) than 



40 

PI 428109 (51%) the Chi-square test did not show that the difference was 

significant. Seventy one percent of the mesophyll cells from TAM W-101 

had four or more lobes. 

No significant differences were detected among the three genotypes 

in various cell volume fractions based on electronmicrographs (Table 3). 

About 36% of the mesophyll cell volume was composed of chloroplasts in 

these genotypes. 

An examination of the external leaf structures showed that the T. 

dicoccoides accessions had the same leaf size but smaller than that of 

TAM W-101 (Table 4). However, in leaf thickness and interveinal 

distance no significant differences were detected among these genotypes. 

Stomatal counts on the adaxial and abaxial surface of the leaves 

showed no differences between the two ~ dicoccoides, but TAM W-10 had a 

higher number of stomata on the adaxial surface of its leaves (Table 5). 

Stomatal pore lengths were not different among genotypes. 
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Discussion 

In the Triticum species, higher photosynthesis per unit leaf area 

is associated with small mesophyll cell size (Austin et al., 1982). The 

diploid species have the smallest mesophyll cells while hexaploids have 

the largest mesophyll cells (Jellings and Leech, 1984; Austin et al., 

1982; Parker and Ford, 1982). Smaller mesophyll cell size in the lower 

ploidy level has resulted in smaller and narrower leaves with closely 

spaced veins. In this study also, the hexaploid wheat had larger 

mesophyll cell size as well as larger and wider leaves than the 

tetraploid wild wheat accessions. However, in contrast to earlier 

reports (Austin et al ., 1982; Evans and Dunstone, 1970; Parker and Ford, 

1982) the two T. dicoccoides accessions having same mesophyll cell size, 

leaf area and leaf width were significantly different in photosynthetic 

rate. 

Sasahara (1982) reported that the surface area to volume ratio of 

mesophyll cells increases with increasing number of lobes per cell 

within a genome. Mesophyll cells of the two T. dicoccoides accessions 

had significantly different surface area to volume ratio on an 

individual cell basis. The low photosynthetic rate accession, PI 

428042, actually had mesophyll cells with a larger surface area to 

volume ratio and with greater lobe number than cells of PI 428109, 

although the difference in lobe number was not statistically 

significant. Therefore, mesophyll surface area per unit volume was not 

responsible for the photosynthetic difference between the two T. 

dicoccoides accessions. This was contrary to what has been reported in 



other studies (Sasahara, 1982; Parker and Fordi 1982), i.e., the larger 

the surface area per unit volume the higher the photosynthetic rate. 
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High rates of photosynthesis in diploids were also found to be 

associated with an increase in leaf intercellular air space and 

mesophyll surface area exposed to the intercellular air space per unit 

leaf area (De Greef et al ., 1979; Parker and Ford, 1982; Jellings and 

Leech, 1984). These factors may contribute to higher rates of 

photosynthesis by reducing the residual diffusion resistance of carbon 

dioxide into the mesophyll (Austin et al., 1982; Parker and Ford, 1982). 

However, in this study, the difference in photosynthetic rate among 

genotypes could not be accounted for by differences in the amount of 

intercellular air space and mesophyll surface area exposed to the 

intercellular air space since the T. dicoccoides accessions did not 

differ in these measurements. 

Veins of hexaploid wheat were found to be more widely spaced and 

the cells were less compact than diploid wild species (Parker and Ford, 

1982; Austin et al., 1982). Parker and Ford (1982) suggested that 

greater interveinal distance could impede the movement of photosynthate 

and water between veins and chloroplasts and thus accounts in part for 

the lower rate of photosynthesis in hexaploids. This difference was not 

apparent in this study either between the two T. dicoccoides accessions 

or between T. dicoccoides and the hexaploid. 

Several reports have shown that photosynthetic variation is 

strongly associated with various anatomical differences among leaves of 

Triticum species also differing in ploidy (Jellings and Leech, 1984; 

Nobel et al., 1975). However, our results indicated that the variation 

in photosynthetic rate between the two T. dicoccoides accessions was not 



associated with any of their anatomical features. We have made other 

physiological and biochemical investigations on these accessions and 

found differences related to their photosynthesis. Therefore, this 

study supports that the difference in photosynthetic rate between the 

two accessions was due to biochemical and/or physiological factors in 

the leaves rather than anatomical differences. 
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Table 1. Photosynthesis and relative volume of leaf cross-sectional components 
of two T. dicoccoides accessions (PI 428042 and PI 428109} and a hexaploid 
(TAM W-l01). 

Accession 

PI 428042 

PI 428109 

TAM W-101 

LSD.os 

Photosynthesisa 

(pmol m-2s-1) 

12.9 

19.8 

17.0 

2.7 

Epidermis Mesophyll Vascular Intercellular 
& airspace 

bundle sheath 

------------------ % ------------------

23.6 36.1 8.6 29.4 

22.8 39.5 7.6 30.1 

23.8 38.7 8.0 29.5 

NS NS NS NS 

aat 600 pmol photon m-2s-1, 330 pl 1-1 ambient co2, 20°C and 50% RH. 

+:> 
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Table 2. Surface area, volume, and surface area per unit volume of the 
mesophyll component in the leaves of two T. dicoccoides accessions 
(PI 428042 and PI 428109) and a hexaploid-(TAM W-101). 

Mesophyll tissue Mesophyll cell 

Accession StotiV a Sair/V b SA (pm2) c V (pm2) d SA/V e 

(cm2 cm-3) (cm2 cm-3) (pm2 pm-3) 

PI 428042 954 682 1.17x1o4 6.87x1o4 1.82x1o-1 

PI 428109 913 661 1.19x1o4 7.52x1o4 1. 72x1o-1 

TAM W-101 946 679 1.31x1o4 8.40x1o4 1.69x1o-1 

Lsoo.os NS NS 8.02x1o2 7.83x1o3 7.32x1o-3 

a total surface area per unit volume 
b surface area exposed to intercellular air space per unit volume of leaf 

tissue 
c surface area 
d volume 
e surface area per unit volume 

~ 
0'1 



Table 3. Relative volume of mesophyll cell cross-sectional 
components of two T. dicoccoides accesions and a hexaploid 
wheat (TAM W-101). 

Accession Chloroplast Cell Wall Mitochondria 

% 

PI 428042 37.0 8.3 3.9 

PI 428109 35.9 7.6 3.1 

TAM W-101 35.8 7.2 3.3 

LSDo.o5 NS NS NS 

a the rest of the organelles in the mesophyll ce 11 . 
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Others a 

50.8 

53.4 

53.7 

NS 



Table 4. Some leaf characteristics ofT. dicoccoides accessions 
(PI 428042 and PI 428109) and a hexaploid (TAM W-101). 

Accession Leaf area Leaf width Leaf Interveinal 
thickness distance 

(cm2) (mm) (mm) (mm) 

PI 428042 10.5 5.3 0.22 0.42 

PI 428109 10.0 5.2 0.23 0.41 

TAM W-101 14.4 9.7 0.22 0.43 

LSDo.05 1.4 0.5 NS NS 
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Table 5. Leaf stomatal number and pore length of two 
T. dicoccoides accessions and a hexaploid wheat 
(TAM W-101). 

Accession No. of stomata Stomatal pore 

(per mm2) (ll m) 

length 

abaxial adaxial abaxial adaxial 

PI 428042 36 42 35.1 39.0 

PI 428109 38 41 37.6 41.0 

TAM W-101 35 49 34.2 38.0 

LSDo.o5 NS 6 NS NS 
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Fig. 1. Camera lucida outline drawings of a random sample of mesophyll cells from 
macerated young and fully emerged leaves of four weeks old plants. 
(a) I· dicoccoides (PI 428042), (b) I· dicoccoides (PI 428109), (c) I· aestivum (TAM W-101). 
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56 (b) 

42 

28 

14 

0 I 

70 --
56 (c) 
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14 

0 I 
1 2 3 4 5 6 7 

Number of lobes 
Fig. 2. Frequency distribution of the number of lobes 
per cell in.a random sample of mesophyll cells from 
young and fully emerged leaves of four weeks old plants 
of two I· dicoccoides accessions [(a) PI 428042 and (b) 
PI 428109] and (c) a hexaploid wheat (TAM W-101). 
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TABLE 1 

MEAN VALUES OF ASSIMILATION RATE PER UNIT LEAF AREA FOR LEAVES OF 
TWO ACCESSIONS OF T. DICOCCOIDES SPECIES (PI 428042 AND PI 428109) 
AND A CULTIVATED HEXAPLOID (TAM W-101) AT VARYING PHOTOSYNTHETIC 
PHOTON FLUX DENSITY (PPFD) WITH PPFD PROGRESSING FROM LOW TO HIGH 
AND FROM HIGH TO LOW LEVELS. 

I --------------------~~¥P ______________________________ _ 
o I 200 I 4oo I 6oo I 8oo I 1ooo I 14oo I 1soo ----------------+------+------+------+------+------+------+------+------

1 CCESS-1 PROGRE-
IONS SSION 
-------+-------~ 

I42804f~-~J1ignJ ___ ~: ~ L--~: ~L-~ ~: ~L -~~: ~L- ~ ~ ~ ~ l-- ~ ~ ~ ~L _ ~ ~: ~l-_ ~ ~ ~ ~ 
-------+~:J:~;-~l--=~:~l---~:~l---~:~l---~:~l--~~:~l--~~~~1--~:~:l __ ~~~~ 
I42810~~-~gh_1 ___ ~:~l---~:~l--~~:~l--~~:~l--~~:~1--~~~~l--~~:~l--~~~~ r111fo; I 0.21 7.81 13.01 15.41 18.41 19.31 22.11 23.9 -------+--------+------+------+------+------+------+------+------+------
W-1011~~Jtlgb_l __ :~:~l---~~~1--~~:~1--~~:~l--~~:~l--~~~~1--~~:~1--~~~~ 

--------~!J:~; __ l ___ ~:~l---~:~l---~:~l--~~:~1--~::~l--~~::l __ ~~:~l--~~:~ 
Accession I I I I I I I I 
PI 428042 0.2 6.3 9.8 11.8 12.9 13.7 15.2 16.7 ----------------+------+------+------+------+------+------+------+------
PI 428109 I o.q 8.31 13.71 16.81 19.71 20.91 23.61 25.1 
----------------+------+------+------+------+------+------+------+~-----
TAM w-101 · I o.ol . 6.91 11.61 14.51 15.71 16.31 18.ol 19.7 ----------------+------+------+------+------+------+------+------+------

ALL 1 o.q 1.21 11.11 14.41 16.11 11.01 18.91 20.5 

c..n 
w 



TABLE 2 

MEAN VALUES OF ASSIMILATION RATE PER UNIT LEAF AREA (a), 
INTERNAL C02 CONCENTRATIN (b), AND LEAF STOMATAL CONDUC
TANCE (c) OF TWO ACCESSIONS OF T. DICOCCOIDES SPECIES AND 
A CULTIVATED HEXAPLOID (TAM W-101) AT VARYING TEMPERATURE. 

------------------------------------------------------
1--;---~--~~~~r~s;;~~~~-;~~)~--;;--,--;;--

----------+------+------+------+------+------+------
~c:;:~:~l 11.71 14.01 18.21 20.81 17.31 7.8 
----------+------+------+------+------+------+------

(a) 
I 42810 9 1 12.61 17.81 23.51 27.71 25.61 12.1 
----------+------+------+------+------+------+------
AM w-1011 12.01 15.61 18.11 20.51 19.31 11.0 
----------+------+------+------+------+------+------
ALL I 12.11 15.81 19.91 23.01 20.71 10.5 

------------------------------------------------------

1--;---~--~~~~r=!;~~~i:-~;~)~--;;--;--;;--
----------+------+------+------+------+------·------
ccession I I I I I I 
I 428042 246.33 212.00 194.17 191.00 207.00 260.67 
----------+------+------+------+------+------+------

(b) I 428109 j261.43j220.33j200.50j204.67j210.83j266.33 
----------+------+------+------+------+------+------
AM W-101 I234.0oi219.50j199.00I206.67I224.50j266. 17 
----------+------+------+------+------+------+------
ALL l248.78j217.28l197.89l200.78l214.11j264.39 

1--;---~--~~~~r~F~t~~~-;~~)~--;;--;--;;--
----------+------+------+------+------+------+------
ccession I I I I I I 
I 428042 o. 163 o. 133 o. 132 o. 162 o. 153 o. 142 
----------+------+------+------+------+------+------

(c) 
I 428109 I 0.1811 0.1751 0.1971 0.2371 0.2351 0.233 
----------+------+------+------+------+------+------
AM W-1011 0.1301 0.1531 0.1451 0.1821 0.2001 0.198 
----------+------+------+------+------+------+------
All I 0.16110.15410.15810.19310.19610.191 
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TABLE 3 

MEAN VALUES OF ASSIMILATION RATE PER UNIT LEAF AREA FOR LEAVES OF TWO T. DICOCCOIDES 
ACCESSIONS (PI 428042 AND PI 428109) AND A CULTIVATED HEXAPLOID (TAM w=101) AT TWO 
PROGRESSIONS OF C02 (FROM LOW TO HIGH AND FROM HIGH TO LOW C02 LEVELS) AND TWO OXYGEN 
LEVELS (2 AND 21%). 

--------------------------------j:::::::::::~~~~;;:~~;:~~;~~~~~~~!~;::~~:!=~i:::::::::::::-
-------------------------------·--~---l--~9 __ l __ Z? __ l--~~~-l_]9_~_1_~39_ I 436 I 584 I 622 

Oxy_g_en IAccessioJ. p~~~~~- + - -•------•------•------

--- ---·;~~;~~~~-·,:~~~~:~~~;:l __ :~:~l ___ ~:~l ___ ~:~l--~~:~l--~~:~1--~~:~l--~~:~l--·~::l __ ~~:~ 
---------+-!.!1-.&..h_-_l,_q,~ I -o.8l 3.-tl 7.31 13.21 2t.71 39.ol 42.11 5o.41 47.2 

-+------+------·------·------·------·------·------·------·------
2% IPI428109 ~-~~~:PJ.&.~-1--:~:~l---~:~l---~:~l--~~:~l--~~:~l--~~:~l--~~:~l--~~:~l--~~:~ 

___ High-low I -0.91 4.41 9.81 17.81 28.11 49.31 52.41 62.61 64.1 
------·--- -------·------·------·------·------·------·------·------·------·------

'TAM W-10 1 ~-~Q~~~Jll~-l--=~:~l-~-~:~l---~:~l--~~:~l--~~:~l--~=:~l--~~:~l--~~:~l--~~:~ 
---------+---------1_ijigb=J9J¥ I -o.21 4.11 8.41 14.81 23.61 42.71 39.61 55.61 58.o 

+ --·------·------·------+------·------·------·------·------·------
1428042 1-~~~=~}$_~-l--=~:~l--=~:~l---~:~l---~:~l--~~:~l--~~:~l--~~:~l--~~::! __ ~~:~ 

High-low I -2.51 -0.71 2.41 6.71 13.31 26.ol 27.81 34.31 38.2 
---------·--- -------+------·------·------·------·------·------+------·------·------

21% WI428109 ~-~q,~~h.i-.&..h __ l __ :~:~l--=~:~l---~:~l---~:~l--~~:~1--~~:~t--=~:~l--~~::l __ ~::: 
---------+-l!:hKh~1.9~_1 __ ::·~1- -0.71 4.01 1o.o1 18.81 35.31 39.51 47.31 so.1 

+ - + -----·------·------·------·------·------·------·------

·,AM W-1011-L_q.\t-::big_h_J __ :~:~l--=~:~L--~:~L--~:~L-~~:~L-~~:~L-~~:~1--=~:~L-=::: 
_____________________ f!.lgh-low I -2.21 -o.5l 2.01 6.31 12.91 2-1.31 3o.ol 36.81 38.7 

-------+------·------·------·------·------·------·------·------·------

(.]1 
(.]1 



TABLE 3 (CONTINUED) 

------------------------------------------------------------------------------------------------
oxygen Accession 1---o--i- -;/t;~_n_t_j~;;~ ~-o~n_~~:~!'i~~-~'!- i- ~;~-- i-;;~-- i -6-;;--
---- --------------------------·------·------·------·------·------·------·------r------r------

PI 428Q42 I -o.91 2.11 6.21 tt.61 19.71 36.91 4t.o 49.3 48.8 -------- ----+------+------+------+------+------+------+------+------+------
2% PI 428109 I -0.91 3.41 8.21 15.31 25.81 48.21 52.21 60.81 62.3 ---------------+------+------+------+------+------+------+------+------+------

TAM w-101 I -o.5l 3.31 7.31 13.11 21.81 41.ol 41.31 54.41 56.3 ---------------+---------------+------+------+------+------+------+------+------+------+------
PI 42804~ I -1.81 -0.41 2.11 6.tj 12.11 23.81 26.91 32.81 34.9 ---------- ----+------+------+------+------+------+------+------+------+------
PI 428109 I -2.01 -0.41 3.71 9.41 17.81 32.61 37.51 44.81 46.5 ---------------+------+------+------+------+------+------+------+------+------

21% 

TAMW-101 I -1.91-0.31 2.11 6.21 13.0125.2132.2137.6139.0 -------------------------------+------+------+------+------+------+------+------+------+------
__________ Q~Y~I!--------------1 -0.11 3.11 7.21 13.41 22.41 42.01 44.61 54.81 55.3 

1::::::::::::~~~:::::::::::::::]--::::J--::-:J---:::J---:::J--::::i--::::i--::-:i--::::i--::::J 
--------------- ~-------------------------------------------------------------------------------

c..n 
0) 



TABLE 4 

MEAN VALUES OF INTERNAL CO CONCENTRATION FOR THE LEAVES OF TWO T. DICOCCOIDES 
ACCESSIONS (PI 428042 AND ~I 428109) AND A CULTIVATED HEXAPLOID (TAM W-101) AT TWO 
PROGRESSIONS OF C02 (FROM LOW TO HIGH AND FROM HIGH TO LOW C02 LEVELS) AND TWO OXYGEN 
LEVELS (2 AND 21%). 

------------------------------------------------------------------------------------------------
l---o--l-4~---~-~~-~1q~;~9-1-~~:f~r-;~~fif~;~!l~~-~--~-6;-;-

---------~------~--i-Pro~-ie~--+1 ---~--+,------+1 -
-----+1 ------+,---

---+1 ------+1 ----
--+1 ------+,---

---

9](~g~p __ ~s~~~~~2~~--~~-2-~--- . 
I Low-biPb 8.50 23.50 37.00 58.00 93.00 142.50 t54.50 196.50 206.50 

1428042 -~~~~-:;:~-i--;~~j-;;~~r-;;~;~j-~;~~j-;;~;~j;;~~~i;~;~;~j;;;~~j;;;~;; 
---------+-----------+------+------+------+------+------+------+------+------+------

2% ~1428109 l-b9~~]l~gh_l_-~:~~1-~~:~1-~~:~l-~~:~l-~~:~l~~~:~l~~~:~!~~~:~~l~~~:~ 
Hi b-low I 5.ooJ 17.001 29.501 49.501 79.50J149.00J160.ooi213.50J231.50 

---------+---EU------+------+------+------+------+------+------+------+------+------
'AM W-10ll_b9~~p-~gh_l_-~:~l-~~:~~l-~~:~~l-~~:~~l-~~:~~l~~~:~~l~~~:~l~~:~l~~~:~~ 

1 Hi b-low I 3.ool 14.501 29.ool 52.ool at.oolt5t.oolt92.67l2t8.50I228.oo 
---------+---------+---EU------+------+------+------+------+------+------+------+-----·-+------

I428042 ,_1Q~:Jlt&b_l_-~:~~l-~~:~l-~~:~l-~~:~~l~~~:~~l~~~:~~l~~~:~~l:~~:~l~~~:~ 
---------+-~!&r::l~~-l-~~:~~1-~~:~l-~~:~l-~~:~l~~~:~~l~~~:~l~~~:~l~~~:~~l~~~:~ 

21% ~1428109 I-1Q~:-~tgh_!_~~:~l-~~:~l-~~:~~l-~~:~l~~~:~l~~~:~~J~~~:~~l~~~:~l~~~:~ 
Hi b-low I 9.ool 42.501 61.ool 92.ooJ133.50I2t7.ooJ255.50I329.ool352.oo 

---------+---EU------+------+---·--+------+------+------+------+------+------+------
'AM W-10ll_b9~~-~~gh_!-~~:~l-~~:~l-~~:~l-~~:~!~~~:~l~~~:~l~~~:~!~~~:~~!~~~:~~ 

1 Hi b-low I 20.501 42.501 63.501 93.oolt34.50I21t.ool25t.ooJ324.50I343.oo 
-----------------------iU------+------+------+------+------+------+------+------+------+------

U1 
"'-J 



TABLE 4 (CONTINUED) 

---~~~:~~---------~~-::~::~~----~::~:::;::;~::;~i~~i~~~~::;~~~~:~r:~~!~~r:~:i:t~~!~::;:~~~::-
---- -----------~~--z;~~~;----r--6~;~r-;~~;5r-;;~;5i-53~50i-82~75i138~2si149~ooi19o~75i219~2o 

---------------~------~------+------~------~------~------+------+------~------
2% 1 PI 428109 I 5.75J 2o.oot 33.751 56.251 ee.25J15s.soJ16s.ooj22s.soJ245.25 

0 ---------------~------~------~------~------+------+------+------+------+------
TAM w- 1o1 I 4.oot 18.501 33.251 56.251 86.251141.751 175.Goi209.25I2ta.5o 

---------------+---------------+------+------+------+------~------~------+------+------+------
PI 428042 I 14.001 42.501 63.001 89.751126.001 191.25l221.75l278.25l305.00 
---------------~------+------~------~------~------+------+------~------~------

21% I PI 428109 I 10.501 40.751 60.251 90.501 132.25I210.75J252.50J328.50J350.00 
---------------+------+------·------+------+------+------+------·------·------

TAM W-101 I 15.751 41.751 63.751 94.00J135.25J?.08.50I248.33J317.00J332.25 
-------------------------------~------·------+------~------+------~------~------+------~------

-----------9~~-~~~-------------l 5.501 19.581 33.421 55.331 85.751145.501165.38,209.83,227.00 

!::::::::::::~~~:::::::::::::::r;~:~;r;;:;I;;:~~!:~;:~;[~;:;;!;~~:~~r;;~:;~~~~;:~;!~~~:;;! 
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TABLE 5 

MEAN VALUES OF ASSIMILATION RATE PER UNIT LEAF AREA (a), 
INTERNAL CO CONCENTRATION (b), AND LEAF STOMATAL CONDUC
TANCE (c) OP TWO ACCESSIONS OF T. DICOCCOIDES SPECIES AND 
A CULTIVATED HEXAPLOID (TAM W-101) AT VARYING VAPOR PRE
SSURE DIFFERENCE (VPD) FROM LEAF TO AIR. 

~-~~~--~--~--YrP~~~--~-~~;--j-;~;--
----------+------+------+------+------+------

(a) 

~~c:::~:;l 21.5,18.8,17.0,16.3,15.7 
----------+------+------+------+------+------
PI 4281091 27.51 26.91 26.41 25.11 24.0 
----------+------+------+------+------+------

TAM W-1011 25.11 23.21 21.21 19.11 18.5 
----------+------+------+------+------+------
ALL I 24.71 23.01 21.61 20.21 19.4 

1 ------------~!-~------------------0.6 I 1 I 1.4 I 1.8 I 2.2 
----------+------+------+------+------+------

~~c:::~:~ 1230.331214.00,195. 171182. 17,178.00 
----------+------+------+------+------+------
PI 4281091243.00I230.50f216.50I208.50I203.17 
----------+------+------+------+------+------(b) 
TAM W-101 I236.83I224.00I200.67I188.50j183.67 
----------+------+------+------+------+------
ALL I236.72I222.83I204.11J193.06J188.28 

1 ------------~~~-------------------0.6 I 1 I 1.4 I 1.a I 2.2 
----------+------+------+------+------+------

~c::;~:; I 0.3881 0.2831 0.2221 0.1951 0.183 
----------+------+------+------+------+------

(c) I 428109 I 0.5481 0.4801 0.4171 0.3701 0.342 
----------+------+------+------·------+------

TAM w-101 I 0.4681 0.3921 0.2881 0.2401 0.225 
----------+------+------+------+------+------
ALL I 0.4681 0.3851 0.3091 0.2681 0.250 
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