EFFECT OF DISTURBANCE DYNAMICS ON OPTIMUM
 CONTROL OF SECOND ORDER PLUS
 DEAD TIME PROCESS

By
TAE-WON KANG
Bachelor of Science
Han Yang University
Seoul, Korea
1981
Master of Science
Colorado State University
Fort Collins, Colorado
1985

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfilment of
the requirements for
the Degree of DOCTOR OF PHILOSOPHY

July, 1989

$$
\begin{aligned}
& \text { Thesis } \\
& 19890 \\
& \text { k16e } \\
& \text { cop. }
\end{aligned}
$$

Oklahoma State Univ. Library

EFFECT OF DISTURBANCE DYNAMICS ON OPTIMUM CONTROL OF SECOND ORDER PLUS
DEAD TIME PROCESS

Thesis Approved:

ACKNOWLEDGEMENTS

I wish to express sincere appreciation to the chairman of my advisory committee, Dr. Bennett L. Basore, for his encouragement and advice throughout my graduate program. Many thanks also go to Dr. Ronald P. Rhoten and Dr. John E. Wolfe for serving on my graduate committee. Their suggestions and support were very helpful throughout the study.

I am especially indebted to Dr. Archibald G. Hill . Without his encouragements and guidance the study would not have been possible. I would like to express my sincere gratitude to Dr. Hill and his wife, Catherine, for their assistance, kindness, and enthusiasm which have been such a help throughout my study and life here.

I am very grateful to my lovely wife, Sun Mi, and two suns, Woo Hyun and Woo jun, for all their encouragements, understanding, and patience during my study.

Finally, I wish to express my deepest appreciation to my parents and brother who supported all the way and helped me to keep the end goal constantly in sight.
Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 4
III. DIGITAL COMPUTER SIMULATION 9
Research Objectives 9
Digital Simulation Appraoch 10
Objective Function. 20
Main Program and Optimization results 27
IV. CORRELATION OF CONTROLLER TUNING CONSTANTS 34
V. DISCUSSION 45
Optimum Tuning Constants. 45
Application of Optimum Tuning constants 48
Comparison of Tuning methods. 51
Comparison of First Order and Second Order Tuning 55
Load Fraction 57
VI. CONCLUSIONS 65
LITERATURE CITED 68
APPENDIXES 70
Appendix A Digital Simulation Program for Optimum Tuning Constants 70
Appendix B Graphs for Tuning Constants 78
Appendix C Curve Fitting Program 119
Appendix D Tables of Curve Fitting Results 126
Appendix E Sample Application Program 167
Appendix F Graphs of Sample Applications 171
Appendix G Graphs of Max. Load Fraction 182
I. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.1$. 36
II. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.1 . \operatorname{~.~.~.~.~.~.~.~.~.~.~.~.~.~.~} 37$
III. Curve Fitting Results of Derivative Time $\quad . \quad 38$
IV. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.1$. . 39

VI. Curve Fitting Results of Integral Time $\quad . \quad . \quad 132$
$\begin{aligned} & \text { VII. Curve Fitting Results of Derivative Time } \\ & \text { at } \tau_{2} / \tau_{1}=0.2 \cdot \cdot \cdot \cdot \cdot\end{aligned}$
VIII. Curve Fitting Results of IAE $\tau_{2} / \tau_{1}=0.2$. . . . 134
IX. Curve Fitting Results of Proportional Gain
at $\tau_{2} / \tau_{1}=0.3 . \cdot \operatorname{l} \cdot$. 135
X. Curve Fitting Results of Intagral Time at $\tau_{2} / \tau_{1}=0.3$136
XI. Curve Fitting Results of Derivative Time $\quad . \quad 137$
XII. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.3$. . 138
XIII. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.4$.
XVI. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.4$. 140
XV. Curve Fitting Results of Derivative Time at $\tau_{2} / \tau_{1}=0.4$
XVI. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.4$. . 142
XVII. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.5$. 143
XVIII. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.5$. 144
XIX. Curve Fitting Results of Derivative Time at $\tau_{2} / \tau_{1}=0.5$
XX. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.5$. . 146
XXI. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.6$147
XXII. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.6$148
XXIII. Curve Fitting Results of Derivative Time \quad at $\tau_{2} / \tau_{1}=0.6 . \cdot . \quad 149$
XXIV. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.6$. . 150
XXV. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.7$.151
XXVI. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.7$152
XXVII. Curve Fitting Results of Derivative Time at $\tau_{2} / \tau_{1}=0.7$. 153
XXVIII. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.7$. . 154
XXIX. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.8$.
XXX. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.8$. 156

XXXII. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.8$. . 158
XXXIII. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=0.9 . \cdot$. 159
XXXIV. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=0.9$. 160
XXXV. Curve Fitting Results of Derivative Time at $\tau_{2} / \tau_{1}=0.9$.
XXXVI. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=0.9$. . 162
XXXVII. Curve Fitting Results of Proportional Gain at $\tau_{2} / \tau_{1}=1.0$. 163
XXXVIII. Curve Fitting Results of Integral Time at $\tau_{2} / \tau_{1}=1.0$.164
XXXIX. Curve Fitting Results of Derivative Time at $\tau_{2} / \tau_{1}=1.0$.165

XXXX. Curve Fitting Results of IAE at $\tau_{2} / \tau_{1}=1.0$. . 166
Figure Page

1. Block Diagram Used by Lopez and Rovira 12
2. Block Diagram Used for Present Research. 12
3. Control Loop with a SOPDT process and a FirstOrder Distubance12
4. Physical Interpretation of a SOPDT Control System. 15
5. Pascal Program Illustrating Objective Function 22
6. Optimum PID Proportional Gain Constant ($\left.\tau_{2} / \tau_{1}=0.1\right)$ 30
7. Optimum PID Integral Time Constant $\left(\tau_{2} / \tau_{1}=0.1\right)$. 31
8. Optimum PID Derivative Time Constant $\left(\tau_{2} / \tau_{1}=0.1\right)$. 32
9. IAE Based on Optimum PID Tuning Constants$\left(\tau_{2} / \tau_{1}=0.1\right)$33
10. PID Proportioal Gain Based on Curve FittingResults at $\tau_{2} / \tau_{1}=0.1$41
11. PID Integral Time Based on Curve Fitting Results at $\tau_{2} / \tau_{1}=0.1$ 42
12. PID Derivative Time Based on Curve Fitting Results at $\tau_{2} / \tau_{1}=0.1$43
13. IAE Based on Optimum PID Ctroller Tuning Constants at $\tau_{2} / \tau_{1}=0.1$44
14. Response, X_{6}, of a Sample Application at $\theta_{d} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1, \tau_{2} / \tau_{1}=0.1$, and $X_{B}=10.0$.49
15. Valve Signal of a Sample Application at $\theta_{d} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1, \tau_{2} / \tau_{1}=0.1$, and $X_{B}=10.0$. 50
16. Comparison of Tuning Methods, Lopez and New Method, for $\tau_{3} / \tau_{1}=1.0, \tau_{2} / \tau_{1}=0.1$, and $\theta_{d} / \tau_{1}=0.5$. . . . 52
17. Comaprison of Tuning Methods, Lopez nad New Method, for $\tau_{3} / \tau_{1}=3.0, \tau_{2} / \tau_{1}=0.5$, and $\theta_{d} / \tau_{1}=0.5$. . . . 53
18. Comparison of Tuning Methods, Lopez and New Method, for $\tau_{3} / \tau_{1}=5.0, \tau_{2} / \tau_{1}=0.8$, and $\theta_{d} / \tau_{1}=0.5$. . . . 54
19. Comparison of Tuning methods between First Order
and Second Order 58
20. Max. Load Fraction for $\tau_{2} / \tau_{1}=0.1$62
21. Max. Load Fraction for $\tau_{2} / \tau_{1}=0.5$. 63
22. Max. Load Fraction for $\tau_{2} / \tau_{1}=1.0$.
23. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.1$. . . . 79
24. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.2$. . . . 80
25. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.3$. 81
26. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.4$. . . . 82
27. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.5$. . . . 83
28. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.6$. . . . 84
29. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.7$. . . . 85
30. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.8$. . . . 86
31. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.9$. . . . 87
32. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=1.0$. . . . 88
33. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.1$. 89
34. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.2 \cdot . \quad . \quad . \quad 90$
35. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.3 . \operatorname{c} \cdot . \quad 91$
36. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.4$. 92
37. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.5$. 93
38. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.6$. 94
39. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.7$. 95
40. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.8 \cdot . \quad . \quad . \quad 96$
41. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=0.9 . \operatorname{~.~.~.~.~} 97$
42. Optimum PID Integral Time at $\tau_{2} / \tau_{1}=1.0$. 98
43. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.1$. 99
44. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.2$. 100
45. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.3$. 101
46. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.4$. 102
47. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.5 . \operatorname{.~.~} 103$
48. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.6$. 104
49. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.7$. 105
50. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.8$. . . . 106
51. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.9$. 107
52. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=1.0$. 108
53. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.1$
54. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.2$
55. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.3$.
56. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.4$
57. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.5$.
58. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.6$.114
59. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.7$.115
60. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.8$.
61. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.9$.117
62. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=1.0$.
63. Response of X_{5} and X_{6} in Sample Application at $\tau_{2} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=0.1$, and $\theta_{d} / \tau_{1}=0.5$
64. Valve Signal in Sample Application at $\tau_{2} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1, \quad \theta_{d} / \tau_{1}=0.5$ 173

Figure

Page
65. Response of X_{5} and X_{6} in Sample Application at $\tau_{2} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=0.1$, and $\theta_{d} / \tau_{1}=1.0$
66. Valve Signal in Sample Application at $\tau_{2} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1$, and $\theta_{d} / \tau_{1}=1.0$175
67. Response of X_{5} and X_{6} in Sample Application at $\tau_{2} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=2.0$, and $\theta_{d} / \tau_{1}=0.1$
68. Valve Signal in Sample Application at $\tau_{2} / \tau_{1}=0.1$ $\tau_{3} / \tau_{1}=2.0$, and $\theta_{d} / \tau_{1}=0.1$
69. Response of X_{5} and X_{6} in Sample Application at $\tau_{2} / \tau_{1}=0.5, \tau_{3} / \tau_{1}=2.0$, and $\theta_{d} / \tau_{1}=0.1$
70. Valve Signal in Sample Application at $\tau_{2} / \tau_{1}=0.5$ $\tau_{3} / \tau_{1}=2.0$, and $\theta_{d} / \tau_{1}=0.1$179
71. Response of X_{5} and X_{6} in Sample Application at $\tau_{2} / \tau_{1}=0.5, \tau_{3} / \tau_{1}=4.0$, and $\theta_{d} / \tau_{1}=0.5$180
72. Valve Signal in Sample Application at $\tau_{2} / \tau_{1}=0.5$ $\tau_{3} / \tau_{1}=4.0$, and $\theta_{d} / \tau_{1}=0.5$
73. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.1$ 183
74. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.2$ 184
75. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.3$ 185
76. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.4$ 186
77. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.5$ 187
78. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.6$ 188
79. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.7$. 189
Figure Page
80. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.8$ 190
81. Max. Load Fraction at $\tau_{2} / \tau_{1}=0.9$ 191
82 Max. Load Fraction at $\tau_{2} / \tau_{1}=1.0$ 192

INTRODUCTION

The research work described in this paper deals with a study of the effect of disturbance dynamics on the optimum feedback control systems whose transfer function can be expressed by a second order plus dead time (SOPDT). The disturbances considered in this research are infrequent disturbances where it is expected that the control system will complete its response prior to the entry of another disturbance. The effect of disturbance dynamic was considered by using separate transfer functions for the response to the disturbance variable and the manipulated variable. Only critically damped or overdamped SOPDT processes are considered. Control systems presented are those that involve a single manipulated variable and a single controlled variable (SISO). The controller involved in this research is the conventional three mode proportional-integral-derivative (PID) controller. Digital computer simulation is used to find the optimum controller tuning constants, controller gain, integral time and derivative time, for the SOPDT systems. The feedback control loop includes the process model (SOPDT), sensor, PID controller, and valve. A simulated control system is used as the object function for an optimization program based on the

Abstract

"Rosenbrock Technique". An integral criteria, the "Integral of Absolute value of of Error (IAE)", is introduced to compare the performance and to obtain the optimum tuning constants (giving lowest IAE) from the different set of controller tuning constants.

The optimum tuning constants are dependent upon the parameters of the control loop dynamic model and disturbance dynamic model. Previous workers have dealt with this problem using disturbance models based on the simple step changes in set-point and load variables, and a sequence of random step changes in load variable. The unique feature of this research is that the disturbance is modeled as first order and enters the loop at the process output. As the two time constants of the SOPDT process are varied, the time constant of the first order disturbance is varied to examined the effect of disturbance dynamics to a controller design.

For a particular set of conditions optimum tuning constants will be found using the control system model as the objective function of an optimization program suitable for a multiple variable search involving a nonlinear function. Controller actions will be investigated by the closed loop response for the PID controller based on the optimum controller tuning constants obtained by this research.

In this study the manipulated variable is constrained to the limits corresponding to a fully closed or a fully opened valve position. Together with these limits, the lowest instaneous valve signal, will be used to investigate the range of
magnitude of disturbance which the optimum controller tuning constants obtained in this research can be applicable to. The results of this research will be applicable to practical control problems such as a heat exchanger control and a distillation column control. In these applications it is known that the controlled variable responds with different dynamics to changes in the disturbance variable and the manipulated variable.Control system performance based on the conroller tuning constants obtained by the present study should be better than the the performance based on the controller tuning constants found by the previous workers who considered only the dynamic response of the controlled variable to the changes in manipulated variable, when the disturbance comes into the control loop after the process and it has different dynamics from the process. Also, control system performance based on the process approximation by second order plus dead time, instead of first order plus dead time, should be improved.

CHAPTER II

LITERATURE REVIEW

Controller tuning is still a black art in spite of all the technical articles dealing with the subject that have been published in the last four decades. Today, computer simulation is used to extensively analyze the dynamics of chemical processes or aid in the design of controllers and study their effectiveness in controlling a given processes. Analog and digital computers have been used for this purpose, with emphasis having shifted almost entirely in favor of digital computers:

Selection of tuning constants for a control system may be accomplished by a trial-error procedure when a digital computer is available for a simulation of process response. This research describes a study of the effect of disturbance dynamics on the optimum PID control of SOPDT process using digital com-puter to evaluate the performance criteria of IAE.

A first step in the application of the feedback control technology is to model the system mathematically by investigating the dynamic response of the controlled variable to a change in some manipulated variable. Latour [1] showed that many processes are effectively represented by a second order
with dead time model. Stern [2] developed a fast graphical method to evaluate the two time constants and the dead time of the damped second order process based on the step response curve of the process.

The process response of a second order or a higher order system with delay can be approximated by the following second order plus dead time model in the transfer function notation:

$$
\begin{equation*}
\operatorname{SOPDT} \quad G_{p}(s)=\frac{K_{p} e^{-\theta_{d} s}}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \tag{1}
\end{equation*}
$$

The three mode proportional-integral-derivative controller which first obtained acceptance after World War II is still the most frequently applied controller up to now. Its mathematical description is given below in the time domain and the Laplce domain.

Time domain:
$V(t)=K_{C}\left[e(t)+\frac{1}{\tau_{I}} \int_{0}^{t} e(t) d t+\tau_{D} \frac{d e(t)}{d t}\right]+V_{S}$
where $V_{s}=$ controller's bias signal (i.e., its actuating signal when error $=0$).

Laplace domain:

$$
\begin{equation*}
\frac{V(s)}{E(s)}=G_{C}(s)=K_{C}\left[1+\frac{1}{\tau_{I} s}+\tau_{D} s\right] \tag{3}
\end{equation*}
$$

As we see in equation (2) and (3), use of the PID controller involves the specification of the three tuning parameters:
K_{C}-proportional gain, τ_{I}-integral time and τ_{D}-derivative time
constants. If the derivative time tuning constant is set up to zero, then the $P I D$ controller will be reduced to two mode proportional-integral (PI) controller.

Several PID controller tuning methods to evaluate the three tuning constants $\left(K_{C}, \tau_{I}\right.$ and $\left.\tau_{D}\right)$ have been developed for the control of SOPDT process. The Ultimate-cycle method originally proposed by Ziegler and Nichols [3] is based on the frequency response analysis with the feedback loop closed. These early methods were semi-empirical in nature and related the stability considerations found in the linear control theory. More recent correlation have been developed with the aid of the digital computer. Lopez [4] developed correlation to find the optimum tuning constants for systems responding to step changes in load. He used same dynamic model as process for a disturbance and developed the graphs by which the controller tuning constants can be related to the characteristics of a popular process model based on three error integral performance criterion: Integral of the Square Error (ISE), Integral of the Absolute value of Error (IAE), and Integral of the Time-weighted Absolute Error (ITAE). Rovira [5] performed a similar study for FOPDT processes where the tuning relationship can also be derived for set point changes based on the performance criteria of minimum error integrals.

The control systems used by Lopez and Rovira can be described by the block diagram shown in figure 1 given in the next chapter. This diagram shows that they performed their study under the assumption that the controlled variable $C(s)$
responds with the same dynamics represented as $G_{p}(s)$ to a change in load $L(s)$ or manipulated variable $V(s)$. The optimization program used for their computer simulation is considered as a formalized trial and error procedure. These workers used an optimization program such as the technique derived by Rosenbrock [6] and obtained the tuning constants which produced the minimum value of integral performance criterion by means of the computer simulation.

Smith et al. [7] approached controller tuning from the simple algebraic synthesis. They developed a tuning method which required only a knowledge of the two dominant poles of a process. According to this method, PID controller is "synthesized" to give approximately first order plus dead time (FOPDT) closed loop response to step change in set point.

It is possible to approximate a SOPDT process by a FOPDT (Cohen \& Coon [8]), then the tuning constants can be obtained based on the approximate model. Weigand et al. [9] performed a study comparing these methods to the tuning methods based on the full SOPDT model. These workers found out that the tuning techniques based on the full SOPDT model gave much superior results compared to the approximated FOPDT model.

Sood and Huddleston [10,11] performed the digital simulation to obtain the tuning constants for a critically damped SOPDT system exposed to a sequence of step load changes of the random magnitude based on the IAE performance criteria. Disturbances were introduced at random and were filtered by a first order lag model, in which a new one occurred before the
effects of last disturbance subsided. In their study, they discovered that different optimum tuning constants existed for frequent disturbances and for infrequent disturbances. In the latter cases the control system response is substantially complete and back at a set point prior to the entry of another disturbance.

An another interesting point indicated by these workers was the presence of local minima in the IAE for the tuning constant values outside of the range predicted by previously developed tuning correlations. In some case these unexpected local minimums proved to be global minimums. This fact tells us that several different starting values of the tuning constants should be considered when a unimodal optimization technique is used in digital simulation.

Hill, Kosinsani, and Basore [18] studied the effect of disturbance dynamics on optimum tuning of FOPDT processes. In this study we consider the effect of first order disturbances on second order plus dead time processes. The disturbance is considered to enter the control loop infrequently being expected that the control system will complete its response prior to the entry of a new disturbance. Also, four different starting values of tuning constants are used in the digital simulation to check the convergence to the global minimum.

DIGITAL COMPUTER SIMULATION

Research Objectives

In Chapter II, Literature Review, several methods were introduced to find the optimum PID controller tuning constants. Previous workers investigated the effect of disturbances performing digital computer simulation but they were limited to narrowly defined disturbances. The objective of this research is to study the effect of disturbance dynamics in determining the optimum PID controller tuning constants stants for SOPDT processes, where the simulation is designed using separate transfer functions for the response to the disturbance variable and the manipulated variable.

The disturbance is modeled as first order and enters the control loop at the process output. The control loop which includes the process model, PID controller, valve and sensor, is simulated with a digital computer to calculate the minimum IAE values for the different sets of characteristics of the process and the disturbance model.

Previous workers developed correlations which related the optimum tuning constants and the process dynamic parameters. As previous workers did, in this work the optimum tuning constants will be described as a function of both process and
disturbance dynamic parameters. Also, such correlations for the integral of absolute value of error will be provided to illustrate the effect of process dead time and disturbance dynamics on the control system performance.

Another objective of this research will be to investigate the range of disturbance magnitude which obtained controller tuning constants can be applicable to. If there are no constraints in the manipulated variable and the feedback control system is modeled as a system of linear equations, the magnitude of the disturbance will linearly affect the IAE value. Therefore, the values of optimum controller tuning constants will be independent of the change of disturbance magnitude. However, because the manipulated variable is constrained in the limits corresponding to a fully closed or a fully open actual valve, disturbances with magnitude large enough to saturate the valve will affect the calculation of optimum controller tuning constants. In this research optimum tuning constants were determined for load magnitudes small enough to avoid valve saturation during the response. The lowest and highest instaneous valve signal, will be invstigated. Those extremes will be used to calculate the range of magnitude of disturbance which the optimum controller tuning constants obtained in this research can be applicable to.

Digital Simulation Approach

The generalized feedback control loop can be described as a block diagram shown in figure 2. It has an output $C(s)$,
a potential disturbance $L(s)$, and an available manipulated variable $V(s)$. The disturbance, $L(s)$, changes in an unpredictable manner and our control objective is to keep the value of output at the desired reference value, $R(s)$. A feedback control takes the following generalized steps:

1. measure the value of output using appropriate measuring device.
2. compare the indicated value, $C(s)$, to the desired set point value, $R(S)$, then let the deviation variable, e, be error: $e=R(s)-C(s)$
3. The value of deviation, e, is supplied to the main controller. The controller in turn changes the value of the manipulated variable in such a way as to reduce the magnitude of error deviation, e. Usually, the controller does not affect the manipulated variable directly but through the final control element like a valve.

The control system used by previous workers is described in figure 1 . The figure 2 represents the block diagram of the control system used for this research. The main difference between the two systems would be in the way the load disturbance, $L(s)$, enters the control loop. According to the system described by figure 2 the transfer function of disturbance may have the different dynamics from the transfer function for the response to the manipulated variable.

In figure $2, G_{P}(s)$ represents the transfer function of load variable $L(s)$ on the response of the controlled variable $C(s)$ and $G_{P}(s)$ represents the transfer function of manipulated

Figure 1. Block diagram used by Lopez and Rovira

Figure 2. Block diagram used in present study

Figure 3. Control loop with a SOPDT process and a First order disturbance.
variable $V(s)$ on the response of the controlled variable. In the control system studied by previous workers (figure 1) a single process transfer function $G_{p}(s)$ is provided to represent the dynamic effect of not only disturbance but also manipulated variable. The system shown in figure 2 describes the more general cases. It will become the same as the case used by previous workers if the transfer function $G_{p}(s)$ and $\mathrm{G}_{\mathrm{P}}(\mathrm{s})$ have the same form.

The control system which will be used in simulation for this research is given in figure 3 , giving detailed specificationto a general control loop described in figure 2. In this control system the process model is given by a second order plus dead time with a process gain K_{p} and the transfer fucton of controller represents a conventional three mode proportional-integral-derivative (PID) controller. It has the three tuning constants: controller gain, K_{C}, integral time, τ_{I}, and derivative time constant, τ_{D}. Also, the measuring element gain K_{m} and the gain of valve K_{v} is involved in the control loop.

Physical interpretation of the control system presented in this study is detailed in figure 4. The mixing process depicted by figure 4 are composed by two tanks in series which maintain constant liquid levels and flow rates. Two entering streams are being mixed and stirred by an agitator in the first tank. This well-mixed liquid with the outlet concentration X_{2} goes through the second tank, then produce the final product, stream 4 , with outlet concentration X_{4}.

Inlet Stream 1 has a nominal concentration of $500 \mathrm{mg} / 1$ of sulfuric acid ($\mathrm{H}_{2} \mathrm{SO}_{4}$) with volumetric flow rate, 1 liter/min, and inlet stream 2 has concentrated sulfuric acid with nominal flow rate m equal to $1000 \mathrm{mg} / \mathrm{min}$.

The flow m is manipulated by a feedback controller in order to maintain the desired acid concentration at a $1500 \mathrm{mg} / \mathrm{l}$ in the exit liquid line where a concentration analyzer is positioned. Since the mixing tanks are mixed by agitaor, it is assumed that the concentration in the tanks are homogeneous, therefore, its concentration is the same as the exit concentration. The volume of the first tank is equal to one liter providing a tank detention time of one minute . The volume of the second tank is variable in the range 0.1 to 1.0 . The liquid flow model in the exit line is assumed to be ideal. The volume of exit liquid line preceding the analyzer is a plug flow allowed to vary, giving transportation lags in the range of 0.1 to 1 minute for the investigation of the effects of dead time on controller tuning.

In figure 4 , we see that three different types of disturbance can intrude into the control loop : a set point disturbance $R(s)$, a load disturbance X_{A}, and another load disturbance X_{B}. The effect of set point change to the control loop was studied by Rovira et al. [5] and the effect of load disturbance X_{A}, physically interpreted as a step change in entering liquid concentration, is the type of disturbance studied by Lopez et al. [4].

Finally, the disturbance X_{B}, studied in this research,

Control loop block diagram

Figure 4. Physical interpretation of a control system
is not so easy to provide a physical interpretation in this system. Perhaps it could be considered as the sudden placement of corrodable piece of metal in the second tank that eventually consumes a steady supply of $\mathrm{H}_{2} \mathrm{SO}_{4}$. This disturbance would be similar to applying a negative value of X_{B}. However, in this study a positive value of X_{B} was always applied during the optimization runs. In this research the transfer function of load disturbance X_{B} is given as a first order with a time constant τ_{3} and a unit gain. In the simullation the time constant τ_{3} is varied to investigate the effect of disturbance dynamics on the controller tuning constants. The range of variation for τ_{3} extends from 0.05 to 7 .

Because of the low concentration involve in the process of figure 5 the mass flow of acid, m, is assumed to be much less than the entering liquid. If the entering liquid is to be water, the actual ratio of mass flows of the two stream is less than $1 / 1000$ at normal operating conditions. With the above assumptions the hypothetical concentration X_{1} of the two entering stream can be expressed by the following approximated equation:

$$
\begin{equation*}
X_{1}=X_{A}+\frac{m}{q} \tag{4}
\end{equation*}
$$

where q is the constant volumetric liquid flow rate equal to 1 liter per minute. In the above equation and all the following equations, the variables will be defined to be in the deviation (perturbation) form which describes directly the magnitude of dislocation of a system from the desired level of operation (steady state). Therefore, before the introduc-
tion of a disturbance, the system is considered to be at a steady state and all the variables would have values which are equal to zero.

Now, mathematical modeling of a process can be derived by setting up a mass balance on the mixing tanks. The principle of conservation of mass states that :

$\frac{\left[\begin{array}{c}\text { accumulation of mass } \\ \text { within a system }\end{array}\right]}{\text { time period }}$	$=\frac{\left[\begin{array}{l}\text { flow of mass } \\ \text { in the system }\end{array}\right]}{\text { time period }}-\frac{\left[\begin{array}{l}\text { flows of mass } \\ \text { out of system }\end{array}\right]}{\text { time period }}$
$+\frac{\left[\begin{array}{l}\text { amount of mass } \\ \text { generation within } \\ \text { the system }\end{array}\right]}{\text { time period }}-\frac{\left[\begin{array}{l}\text { amount of mass } \\ \text { consumption in } \\ \text { system }\end{array}\right]}{\text { time period }}$	

Using above principle provides the mass balances of the two tanks :

For a first tank :

$$
\begin{equation*}
q X_{1}(t)-q X_{2}(t)=v_{1} \frac{d X_{2}(t)}{d t} \tag{6}
\end{equation*}
$$

For a second tank :

$$
\begin{equation*}
q x_{2}(t)-q x_{3}(t)=v_{2} \frac{d x_{3}(t)}{d t} \tag{7}
\end{equation*}
$$

Rearranging equation (6) and (7) produces,

$$
\begin{equation*}
\frac{d x_{2}(t)}{d t}=\frac{x_{1}(t)-x_{2}(t)}{\tau_{1}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d X_{3}(t)}{d t}=\frac{X_{2}(t)-X_{3}(t)}{\tau_{2}} \tag{9}
\end{equation*}
$$

where $\tau_{1}=V_{1} / q$ and $\tau_{2}=V_{2} / q$.
In Laplace domain equations (8) and (9) become,

$$
\begin{equation*}
\frac{X_{2}(s)}{X_{1}(s)}=\frac{1}{\tau_{1} s+1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{X_{3}(s)}{X_{2}(s)}=\frac{1}{\tau_{2} s+1} \tag{11}
\end{equation*}
$$

The transportation lag of liquid passing from the second tank to the analyzer can be obtained by the following calculation:

$$
\begin{equation*}
\theta_{d}=V_{L} / q \tag{12}
\end{equation*}
$$

where $\quad \theta_{d}=$ transportation lag (dead time)
$V_{L}=$ liquid volume of the exit liquid line preceding the analyzer
q = liquid flow rate .
Combining equation (10), (11) and dead time equation (12) produces the following SOPDT model for the two mixing tanks in series :

$$
\begin{equation*}
G_{p}(s)=\frac{X_{3}(s)}{X_{2}(s)}=\frac{e^{-\theta_{d} s}}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \tag{13}
\end{equation*}
$$

where $G_{p}(s)$ means the transfer function of process.
Two gain elements were introduced in the control loop of figure 4 : K_{v} for final control element (valve) and K_{m} for the measuring device. The most common final element is the pneumatic valve, which receives the output of the controller (actuating signal) and accordingly adjusts the value of manipulated variable. In the control system shown in figure 4, the signals between the analyzer and controller, also the signals between the controller and valve are depicted as
pneumatic signals. The pneumatic signal of most devices varies with the range from 3 to 15 psig. Considering the above fact the gains associated with measuring element and vale are calculated as follows :

$$
\begin{equation*}
K_{v}=\frac{\Delta \mathrm{m}}{\Delta V}=\frac{2000 \mathrm{~g} / \mathrm{min}}{12 \mathrm{psi}}=166.667(\mathrm{~g} / \mathrm{min}-\mathrm{psi}) \tag{14}
\end{equation*}
$$

where $\Delta m=$ maximum acid flow at the maximum valve signal, and $\Delta V=$ range of the controller output signal.

$$
\begin{equation*}
\mathrm{K}_{\mathrm{m}}=\frac{\Delta \mathrm{C}}{\Delta \mathrm{X}}=\frac{12 \mathrm{psi}}{3000 \mathrm{mg} / 1}=0.004(\mathrm{psi}-\mathrm{mg} / 1) \tag{15}
\end{equation*}
$$

where $\Delta C=$ range of the analyzer output signal, and $\Delta X=$ maximum concentration measured by analyzer.

The general form of conventional continuous three mode proportional-integral-derivative controller is given :

$$
\begin{equation*}
V(t)=K_{C}\left[e(t)+\tau_{I} \int e(t) d t+\tau_{D} \frac{d e(t)}{d t}\right]+V_{0} \tag{15}
\end{equation*}
$$

where $V_{0}=$ controller's bias signal (i.e. its actuating signal when $e=0$). Its transfer function can be expressed as a following equation:

$$
\begin{equation*}
G_{C}(s)=K_{C}\left[1+\frac{1}{\tau_{I} s}+\tau_{D} s\right] \tag{16}
\end{equation*}
$$

In digital simulation this continuous PID algorithm needs to be modified to the digital approximation. Two forms of discrete time approximation are often used for a PID controller. The one is a position form and the other is a velocity form [12]. The position form is,

$$
\begin{equation*}
V_{n}=V_{0}+K_{c}\left[e_{n}+\frac{T}{\tau_{I}} \sum_{i=0}^{n} e_{i}+\frac{\tau_{D}}{T}\left(e_{n}-e_{n-1}\right)\right] \tag{17}
\end{equation*}
$$

and the velocity form is,

$$
\begin{equation*}
V_{n}=V_{n-1}+K_{C}\left[\left(1+\frac{T}{\tau_{I}}+\frac{\tau_{D}}{T}\right) e_{n}-\left(1+\frac{2 \tau_{D}}{T}\right) e_{n-1}+\frac{\tau_{D}}{T} e_{n-2}\right] \tag{18}
\end{equation*}
$$

In the above equation n refers to the $n t h$ sampling instant and T refers to the sampling interval. Both equation used rectangular integration to approximate the integral control mode and use first order difference to approximate the derivative mode. The velocity form is derived by subtracting $V_{n}-V_{n-1}$. In this research the position form is used.

In the digital computer simulation the control system described in figure 4 is programed to be used as the objective function for the optimization program which is based on the Rosenbrock technique [6]. Then, the optimum tuning constants to step changes in X_{B} are calculated for various sets of $\tau_{2} / \tau_{1}, \tau_{3} / \tau_{1}$ and θ_{d} / τ_{1}.

Objective Function

In figure 5 the program of the objective function which describes the simulated control system is given in a portion of pascal code. Function dtx2dot and dtx3dot in the program are defined to solve the first order differential equaton (8) and (9), modeling of two mixing tanks. Two first order differential equations are solved numerically by application of a fourth order Runge-Kutta method. The object function calculates the integral of absolute value of error (IAE)which
accumulates as the system responds to a disturbance. The followings are the list of constants and variables assigned globally with respect to the function definition:

```
K
K
r = step change in set point
X A}= step change in entering liquid concentration
X 
delta = time step size for Rnuge-Kutta integration
ttt = total simulation time
thetad = dead time
tau1 = first time constant of the process
tau2 = 2nd time constant of the process
tau3 = first order time constant of load variable,
    Xa
taudd = derivative time tuning constant
tauii = integral time tuning constant
kcc = proportional gain tuning constant
er = error of current value
erint = time integral of error
epast = error of previous step
absie = time integral of absolute value of error
s = integral number of time steps included in the
        dead time, thetad
DT = dead time array
kmm,kvv = measurement and valve gain
vv,va = controller output
G,Q = pointers of dead time array
vamax = maximum valve position
```

```
function object(cx1,cx2:real):real;
    begin
        dtx2dot:=-delta*(cx1-cx2)/tau1;
    end;
function dtx3dot(cx2,cx3:real):real;
    begin
        dtx3dot:=-de1ta*(cx2-cx3)/tau2;
    end;
```

function object(kcc,tauii,taudd:real):real;
var
DT : array [1..5001] of real \{array for dead time\}
i: integer;
begin
$c:=0.0$;epast:=0.0;absie:=0.0;
vamin:=0.0; vamax:=0.0;
erint:=0.0; time:=0.0;
$\mathrm{x} 1:=0.0 ; \mathrm{x} 2:=0.0 ; \mathrm{x} 3:=0.0 ; \mathrm{x} 4:=0.0$;
$\mathrm{x} 5:=0.0 ; \mathrm{x} 6:=0.0$;
for $i:=1$ to s do DT[i]:=0.0; G:=s; $Q:=1 ;$
while time < ttt do
begin
$\mathrm{c}:=\mathrm{kmm}{ }^{*} \mathrm{x} 6$;
er:=r-c;
va:-kcc*(er+erint/tauii+(er-epast)*taudd);
vv:=va;
if va<vamin then vamin:=va;
 if va>vamax then vamax:=va;
if va<= -6.0 then va:=6.0;
if va>= 6.0 then va:=6.0;
x1:=xa+va*kvv
time:=time+delta;
if ($\mathrm{vv}<6.1$) and ($v \mathrm{v}>-6.1$) then
erint:=erint+er*delta;
absie:=absie+abs(er*delta);
epast:=er;
rk11:=dtx2dot(x1, x2);
rk12: $=\operatorname{dtx} 3 \operatorname{dot}(\mathrm{x} 2, \mathrm{x} 3)$;
rk21:=dtx2dot(x1,x2+0.5*rk11);
rk22:=dtx3dot(x2+0.5*rk11, x3+0.5*rk12);
rk31: =dtx2dot (x1, x2+0.5*rk21) ;
rk32:=dtx3dot(x2+0.5*rk21, x3+0.5*rk22);
rk41:=dtx2dot(x1,x2+rk31);
rk42: =dtx3dot(x2+rk31, x3+rk32);
$\mathrm{x} 2:=\mathrm{x} 2+(\mathrm{rk} 11+2.0 * r k 21+2.0 * r k 31+r k 41) / 6.0$;
$\mathrm{x} 3:=\mathrm{x} 3+(\mathrm{rk} 12+2.0 * r k 22+2.0 * r k 32+r k 42) / 6.0$;
DT[G]:=x3;

Figure 5. Pascal program illustrating the objective function

```
            x4:=DT[Q];
            G:=G+1;
            Q:=Q+1
                if Q>s then Q:=1;
                x5:=x5*du31+du32xb;
                x6:=x4+x5;
            end;
    object:=absie;
end;
```

Figure 5. (Continued)

```
vamin = minimum valve posion
x1 = hypothetical inlet concentration
x2 = concentration in the first tank
x3 = concentration in the second tank
x4 = concentration of x3 after the transportation
        lag
x5 = disturbance after first order lag, tau3
x6 = measured concentration passing the analyzer
        after imposition of the disturbance
```

The first part of the code, function object, shows the initialization of several variables setting them to zero corresponding to an initial steady state condition prior to a disturbance, because they were expressed in a deviation form. The next part of code is a computation loop to repeat the several calculations for each step in time until the running value of time is greater than the total simulation time, tt. The computation steps in the loop are as follows: The concentration, X_{6}, measured by an analyzer is changed into a pneumatic signal with the multiplication of measurement gain kmm,then this pneumatic signal, $c, i s$ compared to the desired set point value, r, to evaluate the error, er. The controller output, va, is calculated based on the three tuning constants transferred from the optimization procedure. This controller output va is compared to the limits of pneumatic signal corresponding to the valve position of a fully open or a fully closed state. If a valve limit is exceeded more than a small amount integration of the error is stopped to prevent windup. Hypothetical inlet concentration is calculated based on the controller output and valve gain, kvv,
then the concentrations of x 2 and x 3 are calculated with the fourth order Runge-Kutta method. Time integral of the error, erint, used in the controller output and time integral of absolute value of the error, absie, are calculated in next steps. The concentration of $x 3$ is saved in the dead time array. After the time has elapsed corresponding to the dead time the values of concentration $x 3$ saved in the dead time array , DT, are taken out and designated as variable x4. The disturbance after the first order lag tau3, x 5 , is computed and added to x 4 to produce the controlled output x 6 which is measured by the analyzer.

The computation steps stated above are repeated in the loop until the accumulation of time reaches total time, ttt. In the computation loop the function, object, is assigned a value equivalent to the last accumulated value of absie, the integral of absolute value of error. The PID controller equation used in the simulation is written in position form. Valve signal (controller output) was constrained to a range of +6 to -6 (making use of deviation variables and assuming the valve is half open at the start of simulation). The value of erint is allowed to accumulate as long as computed valve position does not exceed the valve constraints by more than a small margin. This is to prevent the integral wind up caused by the integral model of a controller when errors can not be eliminated quickly, and therefore, produce larger and larger values for the integral term which in turns keeps increasing the control action until it is saturated and remains satura-
ted even if the error returns to zero.
The dead time is an important element in the mathematical modeling and has a serious impact on the design of effective controllers. A major advantage of digital simulation is in the fact that the dead time can be handled with ease. The dead time array, DT, includes enough elements to hold a process variable for an integral number of iterations equal to the dead time. The outlet concentration $x 3$ is saved in the array DT sequentially, held in array DT for s-1 number of time increments which is equal to dead time, then taken out to be applied to the computation loop after s number of time increments. Dead time array pointers G and Q were used to keep track of the positions of concentration $x 3$ until it would have entered the pipe line leaving the tank and pass through the analyzer.

The iteration step, delta, was set equal to 0.001 . The total time of simulation, ttt, varied from 20 to 50 minutes as the time constant of disturbance tau3 increases. In all the cases, the total time was greater than six times the ultimate period, $2 \pi / \omega_{c o}$ ($\omega_{c o}$: cross over frequency rad/min), found according to the frequency response analysis [12].

The performance criteria, IAE, is accumulated as a variable, absie, and returned as the result of objective function to the main program that successively compares IAE for a wide variety of controller tuning constants to choose the optimum values of tuning constants.

Computer computations were performed on an IBM 3090-200
main frame computer located at the University of Southwestern Louisiana. Floating point calculation was performed in IBM double precision format. For a run initial inputs were introduced with the following values: $\mathrm{r}=0.0$, $\mathrm{xa}=0.0, \mathrm{xb}=10.0$, delta=0.001, $t=0.0$, and a variety of sets of tau1, tau2, and thetad values. During the run the range of tau 3 was extended from 0.05 to 7.0 with 19 different data values to check the effect of speed of disturbance. Those 19 different values of tau3 were kept in the array $t 3$ in the main program and specified as follows: $0.05,0.1,0.3,0.5,0.7,1.0,1.2,1.5$, $2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0$.

In the optimization results tuning constants are normalized to be applicable to other SOPDT processes. Proportional gain K_{C} is given as the product of K_{C} and K_{L}, where K_{L} is equivalent to the product of measuring element gain, K_{m}, process gain, K_{p}, and valve gain K_{v}. The integral time is reported as τ_{1} / τ_{I} and the derivative is reported as τ_{D} / τ_{1}. The integral of absolute value of the error, IAE IAE observed by the controller is divided by the measuring element gain K_{m} to the IAE in terms of the controlled variable's units. This value is then expressed as dimensionless form in the figures by dividing by the load magnitude X_{B} and time constant τ_{1} to get the normalized value, $\operatorname{IAE} /\left(X_{B}{ }^{*} \tau_{1}\right)$.

Main Program and Optimization Results

The main program intends to find a minimum of a multivariable, unconstrained, non-linear function. The procedure is
based on the direct search method which is proposed by H. H. Rosenbrock [6]. Since the procedure assumes a unimodal function several sets of starting values for the independent variable should be used to check if the minimum is global, if the slope surface is unknown. The version of this procedure employed in this study was adapted from the Fortran source code originally developed by A. I. Johnson [13]. The Fortran code was converted to Pascal code for the purpose of readability and structuring. The function object given in figure 5 was employed as a subroutine to be used to calculate and return IAE to the main program. The Pascal code of main program and function object is given in Appendix A.

For the initial input values, three controller tuning constants $\left(K_{C}, \tau_{I}, \tau_{D}\right)$, desired set point value r, magnitude of disturbance X_{A} and X_{B}, integration time interval delta, and total simulation time ttt are provided by a user. Since unstable starting value of three controller tuning constants may lead to the unstable optimum controller tuning constants as a result of simulation, simple algebraic synthesis method [7] was employed to get controller tuning constants which can be used as starting values. Also, three different additional starting values of controller tuning constants are employed to check if the minimum value of IAE is global.
sample results of optimum controller tuning constants
are graphically described in figure 6 to 9. Complete
results are given in appendix A. These curves give normalized three controller tuning constants, $K_{C} K_{L}, \tau_{1} / \tau_{I}, \tau_{D} / \tau_{1}$, and

IAE values as the function of θ_{d} / τ_{1} and τ_{3} / τ_{1}. The results of optimization program were interpolated to draw continuous smooth curve using the plotting package, Statgraphics [14]. In each of these plots the ratio τ_{3} / τ_{1} is described as the abscissa. The normalized controller tuning constant or IAE value is indicated as the ordinate. A family of curves is given for τ_{3} / τ_{1} in the rage, $0.05 \leq \tau_{3} / \tau_{1} \leq 7.0$ and the ratio of dead time θ_{d} to major time constant τ_{1} is in the range, $0.1 \leq \theta_{d} / \tau_{1} \leq 1.0$. A separate line is drawn for each of 10 different values of the parameter θ_{d} / τ_{1} at interval of 0.1 .

Figure 6. Optimum PID Proportional gain constant ($\left.\tau_{2} / \tau_{1}=0.1\right)$
In甘L/ In

Figur 8. Optimum PID Derivative Time Constant ($\tau_{2} / \tau_{1}=0.1$)

Figure 9. IAE based on Optimum PID Tuning Constants $\left(\tau_{2} / \tau_{1}=0.1\right)$

CHAPTER IV.

CORRELATION OF CONTROLLER TUNING CONSTANTS

The results of computer simulation were presented in a graphical form in the previous chapter and Appendix B. It may be difficult and tedious to use those graphs to obtain the correct controller tuning constants, because the data points are not read accurately with ease. This tedious job can be avoided if we can find the mathematical expression to fit the data very closely. Fitting the functions to the data is frequent task in science wherever we need to superimpose the complex mathematical models on the data. Nedler et al. [15] introduced a simplex method of function minimization for several variables and the curve fitting program based on a simplex procedure was developed by Caceci et al. [16].

The applied method to fit the candidate functions to the available data was based on a least squares criterion. The basic idea may be explained as follows:

If you have n data points, label each value of the independent variable as $x_{1}, x_{2}, \ldots . . x_{n}$ and each value of the dependent variable as $Y_{1}, Y_{2}, \ldots . Y_{n}$. Also, label your n predicted values (as calculated by the equation using certain value for unknown parameters) for the dependent variable Y_{1}^{*}, $Y_{2}^{\star}, \ldots . Y_{n}^{\star}$. The sum of $\left(Y_{1}-Y_{1}^{\star}\right)^{2}+\left(Y_{2}-Y_{2}^{\star}\right)^{2}+\ldots+\left(Y_{n}-Y_{n}^{\star}\right)^{2}$ is called the sum of squared residuals. The lower this sum is,
the better the curve fits to the data. The optimization program used for curve fitting in this study was a slight modification of the original pascal program developed by Caceci and Cacheris [16]. a listing of the curve fitting program is given in appendix C in pascal code.

Finding a correlation to fit each of the curves shown in figure 6 to 9 was based on the optimization runs for a total of ten curves, corresponding to ten different ratios of θ_{d} / τ_{1} values, was generated for three normalized controller tuning constants $K_{C} K_{L}, \tau_{1} / \tau_{I}, \tau_{D} / \tau_{1}$ and IAE. In the majority of cases the form of these curves were suggested by the fact that a non-linear function would provide the best fit. The functions used to fit the data and the values of its parameters obtained by the curve fitting runs are given in the tables I to IV for the case of $\tau_{3} / \tau_{1}=0.1, \theta_{d} / \tau_{1}=0.1$ and $\tau_{2} / \tau_{1}=0.1$. Other cases are given in Appendix D. Each table corresponds to a graph given in Chapter III. The form of equation used as a correlation function is given at the top of each table and the parameter values obtained by the curve fitting method for each curve of ten different value of θ_{d} / τ_{1} are listed below the correlation function in the table. The number of parameter used for the curve fitting was varied depending on three controller tuning constants and IAE. From three to seven variables were introduced to be used as function parameters. The standard deviation of experimental data points from the fitted function is given in the last column of each table along with the function parameter values for

TABLE I

CURVE FITTING RESULTS OF
PROPORTIONAL GAIN
$\operatorname{AT} \tau_{2} / \tau_{1}=0.1$

θ_{d} / τ_{1}	$K_{C} K_{L}=A-e^{-B \tau_{3} / \tau_{1}}\left[C \cos \left(D \tau_{3} / \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]$					
	A	B	C.	D	E	Standard Deviation
0.1	10.541223	1.180019	4.081162	1.272492	-7.398963	0.449385
0.2	5.890894	3.425357	2.846238	7.24×10^{-6}	2.403632	0.290349
0.3	4.484194	1.267431	1.954393	9.16×10^{-7}	1.268995	0.119251
0.4	3.446715	0.985048	1.384971	2.95×10^{-7}	0.649919	0.129946
0.5	2.622772	1.773274	1.016053	-9.26×10^{-7}	2.696408	0.067870
0.6	2.172058	0.525983	0.718355	0.003308	-164.5421	0.045793
0.7	1.839872	0.496145	0.550092	0.005831	-84.99422	0.041626
0.8	1.873584	0.712189	0.696749	0.022343	-7.329004	0.040928
0.9	1.670054	0.729667	0.591636	0.427691	-0.352738	0.011888
1.0	1.609807	0.879666	0.606288	-4.44×10^{-7}	-2.840634	0.036769

TABLE I I
CURVE FITTING RESULTS OF
INTEGRAL TIME
$\mathrm{AT} \tau_{2} / \tau_{1}=0.1$

$\theta_{d}{ }^{\prime} \tau_{1}$	$\tau_{1} \tau_{\mathrm{I}}=\mathrm{A}$ A B			$3^{/ \tau_{1}} 1$D	$e^{\mathrm{E}} \tau_{2}^{\prime \prime \tau_{1}}$ E	$\sin \left(F \tau_{3} / \tau_{1}+G\right)$			
			F			G	Standard Deviation		
0.1	-3.30267	9.01153		-0.41464	5.79647	-0.00625	-0.000027	2.43275	0.2424
0.2	5.78255	-0.09001	-12.2736	5.13833	-0.39375	-0.00058	-1.78762	0.18450	
0.3	2.77685	0.58238	-6.76347	2.38840	-0.34719	0.46117	-1.79252	0.11018	
0.4	3.67113	-0.39645	-5.85407	4.71432	-0.47918	-0.04031	-0.63706	0.06248	
0.5	-1.94808	0.40691	0.00948	3.90218	0.03892	0.16394	0.75193	0.05624	
0.6	1.58023	0.37603	-0.04395	2.92361	-0.08631	0.14973	-0.30795	0.06160	
0.7	2.85940	-0.31889	-1.36371	2.22301	-0.21063	0.15687	-1.24698	0.02911	
0.8	1.35737	1.33223	-0.13991	1.96826	-0.66789	0.28259	-2.82426	0.03606	
0.9	2.13835	0.02338	-0.03980	2.51418	-0.41486	0.23493	-2.54317	0.01802	
1.0	0.37534	0.00740	0.71613	0.56146	0.20946	0.20258	0.60896	0.02968	

TABLE III

CURVE FITTING RESULTS OF DERIVATIVE TIME $\operatorname{AT} \tau_{2} / \tau_{1}=0.1$

θ_{d} / τ_{1}	$\tau_{D} / \tau_{1}=A+B e^{C \tau_{3} / \tau_{1}}$			
	A	B	C	Standard Deviation
0.1	-43360.4670	43360.5758	3.193977×10^{-7}	0.0153100
0.2	-44636.8244	44636.9557	2.434525×10^{-7}	0.0136737
0.3	-53461.0341	53461.2240	2.401277×10^{-7}	0.0121607
0.4	-83746.1773	83746.4041	2.044911×10^{-7}	0.0182938
0.5	-77234.5607	77234.8133	4.055537×10^{-7}	0.0210251
0.6	-32407.2158	32407.4991	1.176143×10^{-6}	0.0161665
0.7	-3811.73677	3812.04278	1.216128×10^{-5}	0.0205976
0.8	-55195.8537	55196.1993	7.840349×10^{-7}	0.0190948
0.9	-31467.2744	32467.6501	1.582992×10^{-6}	0.0185181
1.0	-134661.5610	134661.9795	3.354662×10^{-7}	0.0374493

TABLE 4.

> CURVE FITTING RESULT OF IAE AT $\tau_{2} / \tau_{1}=0.1$

		IAE $=A+B /\left(C+\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.004136	0.049875	0.228442	0.005886
0.2	0.015031	0.138218	0.352544	0.007893
0.3	0.029530	0.260434	0.483797	0.013004
0.4	0.043210	0.418941	0.619501	0.017866
0.5	0.051111	0.638021	0.785571	0.020877
0.6	0.051936	0.912282	0.956557	0.024283
0.7	0.058688	1.207813	1.109474	0.031217
0.8	0.045950	1.638504	1.325902	0.032701
0.9	0.034825	2.079027	1.501410	0.036342
1.0	0.058584	2.415581	1.610953	0.045892

each curve.
Using the parameters obtained by the curve fitting runs new graphs similar to those given in the previous chapter were generated. Figure 10 to 13 describes those generated curves. The graphs prepared using the fitted equation may be compared to those based on the optimization runs described in Chapter III. Those generated graphs should be well fitted to the graphs based on real experimental data. The correlation between the controller tuning constants and the parameters of process and disturbance dynamics would lead to a simple calculation in obtaining the optimum PID controller tuning constants rather than reading graphs.

Figure 10. PID Proportioal Gain Based on Curve Fitting Results at $\tau_{2} / \tau_{1}=0.1$

Figure 11. PID Integral Time Based on Curve Fitting Results at $r_{2} / \tau_{1}=0.1$

Figure 12. PID Derivative Time Based on Curve Fitting Results at $\tau_{2} / \tau_{1}=0.1$

Figure 13. IAE Based on Optimum PID Controller Tuning Constants at $\tau_{2} / \tau_{1}=0.1$

CHAPTER V

DISCUSSION

Optimum Controller Tuning Constants

The optimum controller tuning constants were obtained by computer simulation and illustrated graphically in the figure 6 to 9 and Appendix B. The controller tuning constants have been normalized as follows:

Proportional gain K_{C} is reported as the product $K_{C} K_{L}$ where K_{L} is the product of measuring element K_{m}, process gain K_{P}, and valve gain K_{v}. The integral time is reported as τ_{1} / τ_{I}. The derivative time is reported as τ_{D} / τ_{1}. The integral of absollute value of the error observed by controller is divided by the measuring element gain K_{m} to express IAE in terms of controlled variable's units. Then, this value is expressed in a dimensionless form for the figures by dividing by the load magnitude X_{B} and the time constant τ_{1} to produce the normallized value $\operatorname{IAE} /\left(X_{B} \tau_{1}\right)$. A total of 40 graphs expressing the relationship of normalized tuning constants and IAE values $\left(K_{C} K_{L}, \tau_{1} / \tau_{I}, \tau_{D} / \tau_{1}\right)$ versus the parameters of the process and disturbance dynamics $\left(\tau_{3} / \tau_{1}, \theta_{d} / \tau_{1}\right)$ were made in Chapter III and Appendix B. For each family of curves, the ratios of disturbance time constant of the first order lag process to the principal time constant of SOPDT process, τ_{3} / τ_{1}, is given
in the range, $0.05 \leq \tau_{3} / \tau_{1} \leq 7.0$, and the ratios of dead time θ_{d} to principal process time constant τ_{1} is given in the range, $0.1 \leq \theta_{d} / \tau_{1} \leq 1.0$. The ratio of τ_{2} / τ_{1} was in the range $0.1 \leq \tau_{2} / \tau_{1}$ s1.0.

According to the prepared curves the following important observations could be made by taking consideration of the results of the optimum tuning constants calculation. The effect of disturbance dynamics on the proportional gain K_{c} is most pronounced when the ratios of τ_{3} / τ_{1} are less than 5.0. As expected the proportional gain K_{c} is decreased with the increase of dead time. The frequency analysis [12] describes that the dead time causes phase shift and can lead system to the instability, therefore, dead time becomes the principal source of destabilizing effects in the control systems. Since most of the chemical system process exhibit an open loop response which can be approximated by a first order or a second order with dead time, it becomes clear that the possibility of instability for the closed loop will be present almost always. Therefore, time delay in the response forces the use of lower gain to maintain the stability in the feedback controller design. When the τ_{3} / τ_{1} becomes greater than $5.0, K_{C} K_{L}$ values become almost constant, while integral time and derivative time continue to vary. This means that the controller gain term does not have much effect on slow disturbance compared to two other terms, integral time and derivative time constants, when a slow disturbance enters the control loop. The effect of disturbance dynamics on the integral time
tuning constant τ_{I} of the optimum PID controller was illustrated in figure 7 and Appendix B. Those results show that the integral action expressed as the ratio, τ_{1} / τ_{I}, should be increased as the ratio of τ_{3} / τ_{1} increases throughout most of the range of τ_{3} / τ_{1}. This fact can be interpreted as indicating larger reset rates, $1 / \tau_{I}$, can be used to control the slower disturbances. The smaller reset rates should be used to control the system when dead time becomes larger, because the system becomes closer to the instability when the dead time becomes larger.

The effects of disturbance dynamics on the derivative time constant of the optimum PID controller was illustrated in figure 8 and Appendix B. According to those graphs τ_{D} / τ_{1} values increase as the ratio of τ_{3} / τ_{1} increase. With the presence of the derivative term, $\tau_{D} \frac{d e(t)}{d t}$, of the PID controller equation in the time domain, the PID controller anticipates what the deviation will be in immediate future and applies the control action which is proportional to the current rate of change in deviation. This anticipatory control action can be explained by figure 8 . It shows that the larger value of derivative time constant τ_{D} can be used to control the slower disturbance (large τ_{3}), while the smaller value of derivative time constant, τ_{D}, is used for the faster disturbance (small τ_{3}). According to figure 8 derivative time constant τ_{D} tends to increases with the increase of dead time, which is contrary to the case of integral time constant.

[^0]controller were presented in figure 9 and Appendix B. Those results show that $I A E$ values increase as the ratio of θ_{d} / τ_{1} increases and it decreases as the ratio of τ / τ increases.

Application of Optimum Tuning Constants

In Chapter III, the optimum tuning constants for the PID feedback controller were obtained using the digital computer simulation and optimization procedure. In this chapter we will examine the dynamic behavior of a process that is controlled by a feedback controller with the optimum tuning constants determined in this work. To check the response of the control system, the value of disturbance, X_{B}, is applied as a step input to the control loop. The closed loop response of con-trolled variable, X_{6}, must be investigated to check the control system performance when the desired tuning constants are applied to the system disturbed by a step change in load. For this purpose, several sample applications are executed. A computer program is employed to see the response of controlled system and the Fortran code of program is given in Appendix E.

The examples of the result from a single sample application are presented in figure 14 and 15. These examples of the sample application uses the optimum tuning constants of PID controller which is applied to a control system with the following specifications:
$\theta_{d} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=0.1, \tau_{2} / \tau_{1}=0.1$, and, $X_{B}=10$. Figure 14 plots the response of X_{5}, load disturbance after the first order

Figure 14. Response, X_{6}, of a Sample Application at $\theta_{d} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1, \tau_{2} / \tau_{1}=0.1$, and $X_{B}=10.0$

VALVE SIGNAL VS TIME

Figure 15. Valve Signal of a Sample Application at $\theta_{d} / \tau_{1}=0.1$, $\tau_{3} / \tau_{1}=0.1, \tau_{2} / \tau_{1}=0.1$, and $X_{B}=10.0$
lag, τ_{3}, and X_{6} which is measured concentration passing the analyzer after the imposition of the load disturbance. Figure 15 expresses the time response of the valve signal of sample application of the above case.

More examples of sample application runs are shown in Appendix F. Runs were performed for the several sets of combination of $\theta_{d} / \tau_{1}(0.1,0.5,1.0), \tau_{3} / \tau_{1}(0.1,2.0 .4 .0)$, and $\tau_{2} / \tau_{1}(0.1,0.5,0.8)$ by applying a step input of disturbance, $X_{B}=10$. Figures prepared for the sample application show that the applied tuning constants lead the disturbed system to a desired steady state very effectively. According to thesis of Kosinsani [18] instability of the control loop was observed in certain cases of sample applications. According to his results the points of optimum tuning constants given in the graphs were not applicable to the disturbed control system, when the value of derivative time constant τ_{D} is greater than the value of integral time constant τ_{I}. But such instability was not observed in any case of sample application using the controller tuning constants obtained in this research.

Comparison of Tuning Methods

In order to evaluate the relative improvement attainable with the optimum tuning constants developed by this research, the responses of controlled variable, X_{6}, would be investigated after the application of tuning constants based on both this new study and previous worker's method. Here, the performance of tuning constants based on the new method of this

Figure 16. Comparison of Tuning Methods, Lopez and New Method,

COMPARISON OF TUNING METHODS

Figure 17. Comaprison of Tuning Methods, Lopez nad New Method, for $\tau_{3} / \tau_{1}=3.0, \tau_{2} / \tau_{1}=0.5$, and $\theta_{d} / \tau_{1}=0.5$

COMPARISON OF TUNING METHODS

Figure 18. Comparison of Tuning Methods, Lopez and New Method, for $\tau_{3} / \tau_{1}=5.0, \tau_{2} / \tau_{1}=0.8$, and $\theta_{d} / \tau_{1}=0.5$
work and Lopez's (ITAE criterion) method [17] are compared. Figure 16, 17, and 18 provide the graphical comparison of responses of controlled variable, X_{6}, that resulted from the computer simulation with the controller tuning constants obtained by Lopez and this study. Each of the three graphs represents the responses of controlled variable, X_{6}, for a specific set of three tuning constants. Figure 16 describes the responses of X_{6} resulted from the Lopez method and this method, when the parameters of the process and disturbance dynamics have the following specifications: $\tau_{1}=1.0, \tau_{2}=0.1$, $\tau_{3}=1.0$, and $\theta_{d}=0.5$. According to figure 16 Lopez's and the new method showed very close performance even if new method looks slightly better than Lopez's method. This can be recognized as a special case because in Lopez's and this study, two control loops becomes almost identical at that particular set of parameters of process and disturbance dynamics. When the sets of parameters of process and disturbance dynamics are evaluated far away from that particular case (figure 17 and 18), significant improvements can be observed in the new tuning method compared to Lopez's tuning method. According figures 17 and 18 , the new tuning method gives smaller overshoot, faster settling time, and finally much smaller value of IAE than that of the Lopez method.

> Comparison of First Order and
> Second Order Tuning

The relative difficulties involved in obtaining the exp-
erimental information required to either a first order or a second order tuning is generally the same. Both method are based on open loop models, and hence, they are classified as open loop methods. The popularity of methods based on first order approximations (FOPDT models) to the process reaction curve is related to the relatively simplicity. This process reaction curve was developed by Cohen and Coon [8] and its approximation (FOPDT) can be described as a following equation:

$$
\begin{equation*}
G_{p}(s)=\frac{K e^{-\theta_{d} s}}{\tau s+1} \tag{19}
\end{equation*}
$$

Its equation has three parameters: static gain K, dead time θ_{d}, and time constant τ. However, since the approximation as second order model has more parameters than the approximation of first order model, it should express the process dynamics more accurately.

Sten [2] developed a method to approximate a process reaction curve as a second order model (second order lag with dead time). Its transfer function can be described with the following equation for a overdamped system:

$$
\begin{equation*}
G_{P}(s)=\frac{K e^{-\theta_{d} s}}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \tag{20}
\end{equation*}
$$

which has the four parameters: two time constants τ_{1} and τ_{2}, static gain K, and dead time θ_{d}. To obtain a quantitative measure of improvement in the control action presented by the method based on second order tuning, one process was tuned by two techniques and responses were compared. The transfer
function of process was given by:

$$
\begin{equation*}
G_{p}(s)=e^{-1.0 s} /\{(s+1)(0.5 s+1)\} \tag{21}
\end{equation*}
$$

When the above transfer function is approximated as a first order model with time delay, its equation becomes:

$$
\begin{equation*}
G_{p}(s)=e^{-1.19 s} /(1.39 s+1) \tag{22}
\end{equation*}
$$

Figure 19 is the graph to compare two tuning techniques for PID controller based on IAE criteria. Figure 19 describes the responses of controlled variable X_{6} resulted from the two tuning techniques. In a comparison based on the response of controlled variable X_{6}, second order tuning did give improvement against first order tuning as well as the comparison of of Lopez and new method did. As we can see in figure 19, controller tuning based on the second order approximation gave faster settling time, smaller overshoot, and smaller IAE values. Also, in most cases the valve signals showed big differences in the two tuning methods. With second order tuning the valve response was relatively gradual and continuous as it moved to correct a load disturbance, while the valve response by first order tuning showed rapid changes. In order to use tuning constants obtained by the first order approximation it may be necessary to install a high performance valve capable of quick and accurate responses to the valve signal.

Load Fraction

In this research the manipulated variable, va, was cons-

Figure 19. Comparison of Tuning methods between First Order and Second Order Approximation
trained to the limits corresponding to a fully closed or a fully open state. The valve was considered to operate using a pneumatic signal in the range 3 to 15 psig . The maximum acid flow available was $2000 \mathrm{mg} / \mathrm{l}$ when the valve was fully open. At normal operating conditions the valve would be half open supplying $1000 \mathrm{mg} / \mathrm{l}$ of acid flow to the mixing tank. In terms of deviation variables valve signal could increase +6 psi before reaching its upper constraints and decrease - 6 psi before reaching its lower constraints. The valve signal of a fully open or a fully closed state is equivalent at the value of 6 and -6 . Use of these limits made it possible to determine the effect of load magnitude. Examination of the objective function in figure 5 will show that the lowest and the highest controller signals (prior to application of constraints) were retained as variables , called vamin and vamax, respectively. During the optimization runs the load magnitude, $X_{B}=10 \mathrm{mg} / 1$, was used. It ended to a final steady state with the valve signal, va= -0.06 psi , when the controlled variable X_{G} returned to zero. The available movement of valve signal in this direction was -6.0 .

The optimum tuning constants determined by this study were based on load magnitudes that are small enough such that the control valve does not saturate to a constraint during a response to a disturbance. We define load fraction to be the steady state change in valve position created by a load disturbance divided by the available movement of the valve in that direction:

Load fraction $=\frac{\text { steady state change in valve signal }}{\text { available change in valve signal }}$

In the case of positive change in X_{B} the control system will respond with a negative change in valve signal and a negative change in X_{B} will cause a positive change in valve signal. Load fraction can be taken as a normalized measure of load magnitude. During the optimization runs the final steady state value signal was -0.06 . Therefore, load magnitude may be expressed as load fraction $=-0.06 /-6.0=0.01$. During each run the lowest instaneous valve signal was recorded in a variable vamin. We will use this value to determine the load fraction that would have caused the valve to reach instaneously lower constraints. We term this load the "Max. Load Fraction".

The maximum allowable load fraction (with a valve signal remaining in the range of $-6.0 \leq$ va 56.0$)$ may be determined by the following equation:

$$
\begin{align*}
& \text { Maximum } \tag{24}\\
& \text { Load } \\
& \text { Fraction }
\end{align*}=\text { applied load fraction } * \frac{6.0}{\text { vamin }}
$$

If a magnitude of disturbance larger than the Maximum load fraction enters into the control loop, the controller tuning constants obtained by this research can not be considered as optimum. In this case looser tuning would be better, such as the controller synthesis described in reference 7. The maximum allowable load fraction (preventing valve saturation) has been calculated for each of the runs with the application of equation (13).

Figures (20), (21), and (22) are presented to describe the relationship of maximum load fraction versus τ_{3} / τ_{1} for the case of $\tau_{2} / \tau_{1}=0.1,0.5$, and 1.0. The rest of the results for the description of maximum load fraction versus τ_{2} / τ_{1} are given in Appendix G. The important observation from the prepared graphs indicates that the obtained optimum controller tuning constants can be applicable only for the small disturbance magnitudes, if the disturbance is very fast (small τ_{3}). This trend becomes more prominent as the value of τ_{2} / τ_{1} increases. But even the large magnitude of disturbance can be controlled with new tuning constants when the disturbance is slow (large τ_{3}). The concept of allowable load fraction will address this practical problem in an effective manner.

Figure 20. Max. Load Fraction for $\tau_{2} / \tau_{1}=0.1$

Figure 21. Max. Load Fraction for $\tau_{2} / \tau_{1}=0.5$

$`$ •כ४У」 $0 \forall 07 \cdot X \forall W$

CHAPTER VI

CONCLUSIONS

Throughout this research work five important tasks were carried out to investigate the effect of disturbance dynamics on a control system:

1. calculation of optimum tuning constants
2. correlation of optimum tuning constants
3. sample application
4. comparison of tuning methods
5. consideration of disturbance magnitude

Taking observation of the results of the above tasks lead to the following conclusions:

The figures provided in this study show that optimum tuning constants are dependent upon the effect of disturbance dynamics. Optimum controller tuning constants ($\mathrm{K}_{\mathrm{C}}, \tau_{\mathrm{I}}$, and τ_{D}) could be described as a function of the parameters of the disturbance and process dynamics $\left(\tau_{3} / \tau_{1}\right.$ and $\left.\theta_{d} / \tau_{1}\right)$. Those optimum tuning constants can be applicable to systems that allow the process to be modeled as a second order plus dead time (with gain K_{p}, two time constants τ_{1} and τ_{2}, and dead time θ_{d}) and disturbance to be modeled as a first order with time constant τ_{3}. Also, the range of ratios of $\theta_{d} / \tau_{1}, \tau_{3} / \tau_{1}$, and τ_{2} / τ_{1} should be in the range of $0.05 \leq \theta_{d} / \tau_{1} \leq 1.0,0.1 \leq \tau_{2} / \tau_{1}$

S1.0, and $0 \leq \tau_{3} / \tau_{1} \leq 7.0$. Examination of the IAE charts indicates that the value of IAE decrease as the disturbance slows down (increase of τ_{3} / τ_{1}) and as the dead time decreases (decrease of $\left.\theta_{d} / \tau_{1}\right)$.

Sample applications show that optimum tuning constants obtained by this research lead the disturbed system to a desired steady state very effectively. Cases of instability of the control loop were observed in some sample applications with Kosinsani's tuning constants. But, no such cases of the instability were found in the sample application of tuning constants obtained from this work.

In the comparison of two tuning methods, the new tuning method provided by this study gives significant improvements when it is compared to Lopez tuning method by producing much smaller overshoot, faster settling time, and smaller IAE value. The controller tuning based on the approximation of secod order with delay showed much improvement against the controller tuning based on first order approximation, when the responses of controlled variable X_{6} were compared. Also, controller tuning based on second order approximation gave much better valve reaction than controller tuning based on first order approximation. With controller tuning based on second order approximation the valve signal showed more gradual and flexible response compared to the valve signal based on first order approximation as it moved to correct a load disturbance.

The disturbance magnitude, for which calculated optimum

Abstract

tuning constants can be applicable, were dependent upon the speed of disturbance dynamics. When the disturbance was fast (small τ_{3}), optimum tuning constants could be available only for small magnitudes of disturbance and this situation became more prominent as τ_{2} / τ_{1} is increased. Even the large magnitude of disturbance can be controlled by calculated tuning constants when disturbance is slow (large τ_{3}). The concept of allowable load fraction will address this practical problem in an effective manner.

1. P. P. Latour, L. B. Koppel, and D. R. Coughanour, Ind. Eng. Chem. Process Des. Develop., 6 (1967), p. 452.
2. J. W. Stern, E. I. du pont de Nemours \& Co., Instru. Tech., Sept. (1970), p. 39.
3. J. G. Ziegler, and N. B. Nichols, Trans. ASME, Vol. 64 (1942), p. 759.
4. A. M. Lopez, J. A. Miller, C. L. Smith, and P. W. Murril, Brit. Chem. Eng., vol. 14 (1967), p. 57.
5. A. A. Rovira, P. W. Murril, and C. L. Smith, Instr. and Control Systems, Dec. (1969), p. 67.
6. H. H. Rosenbrock, Computer J., Vol. 3 (1960), p. 175.
7. C. L. Smith, A. B. Corippio, and J. Martin, Instr. Tech., Dec. (1975), p. 39.
8. G. H. Cohen, and G. A. Coon, Transactions of ASME, July, (1953), p. 827.
9. W. A. Weigand, and J. E. Kegrreis, Ind. Eng. Chem. Process Des. Develop., Vol 11 (1972), No. 1.
10. M. Sood, and H. T. Huddleston, Instr. Tech., March (1973), p. 47.
11. M. Sood, and H. T. Huddleston, Instr. Tech., Feb. (1977), p. 61.
12. G. Stephanopoulas, Chemical Process Control, Prentice Hall, Inc., (1984), p. 634.
13. J. L. Keuster, and J. H. Mize, Optimization Techniques with Fortran, McGraw-Hill Book Co.,(1973), p. 320.
14. Statgraphics, Statistical Graphics Cooperation, Version 2.6 (1987).
15. J. A. Nedler, and R. Mead, Computer J., Vol 7 (1965), p. 308.
16. M. S. Caceci, and W. P. Cacheris, Byte, May (1984), p. 340.
17. A. M. Lopez, C. L. Smith, and P. W. Murril, Brit. Chem. Eng. Vol 14 (1969), p. 1553.
18. S. Kosinsani, Ph. D. Thesis, Effect of Disturbance Dynamic Characteristics on Optimum PID Controller Tuning Constants, (1985).

APPENDIX A

DIGITAL SIMULATION PROGRAM FOR OPTIMUM TUNING CONSTANTS

program rbonce;

LABEL 1, 2,3,4,5,6,7;
CONST

```
KM=3;MAXK=5000;MKAT=800;MCYC=500;NSTEP=1;
EPSY=1.OE-06;ALPHA=3.00;BETA=5.0E-01;
KMM=4.OE-03; KV=1.6666666667EO2;
```

VAR

```
k:array [1..km] of real; (*INITIAL GUESSES*)
v:array [1..km,1..km] of real; (*DIRECTIONAL VECTORS*)
b:array [1..km,1..km] of real;
d:array [1..km] of real; (*SUM OF SUCCCESSFUL STEPS*)
n:array [1..km] of real;
p:array [1..km] of real; (*STEP SIZE*)
j:array [1..km] of real; (*SUCCESS/FAIL INDEX*)
e:array [1..km] of real;
l:array [1..km,1..km] of real;
t3:array [1..40] of real; (*time const. of
                                    disturb.=tau3*);
kkcc:array [1..4] of real;
kat,i,ii,m,kki,iii,kl,z,mm,mmm,kkk,iiii,kkkk:integer;
sumo,sumn,fbest,sumdif,sumavv,sumav:real;
c, (*TRANSMITTED VARIABLE,PSI*)
er, (*ERROR, CURRENT VALUE*)
erint, (*ERROR INTERGRAL*)
epast, (*ERROR, PREVIOUS ITERATION*)
absie:real; (*TIME INTEGRAL OF ABSOLUTE VALUE OF THE
ERROR*)
G,Q,S:integer;(*dead time array pointers,elements*)
thetad, (* deadtime *)
du31,du32,
du32xb, (*CONSTANTS IN DISCRETE EQUIVALENT OF 1ST
                                    ORDER*)
x1, (*xa+v*kv/1*)
x2,x3,x4,(*INTERMEDIATE VALUES*)
x5, (*PROCESS RESPONSE TO xb*)
x6, (*THE CONTROLLED VARIABLE,MG/L*)
rk11,rk21,rk31,rk41,
rk12,rk22,rk32,rk42,
time,
vv, (*CONTROLLER OUTPUT BEFORE CONSTRAINTS,PSI*)
va:real; (*CONTROLLER OUTPUT AFTER CONSTRAINTS,PSI*)
vamin,vamax, (*MINIMUM AND MAXIMUM VALUES OF VA*)
kc,taui,taud, (*TUNING CONSTANTS*)
r, (*STEP CHANGE IN SET POINT,PSI*)
xa, (*STEP CHANGE IN LOAD VARIABLE NO.1,MG/L*)
xb, (*STEP CHANGE IN LOAD VARIABLE NO.2,MG/L
    (FOLLOWED BY 1ST ORDER DELAY TAU5*)
delta, (*ITERATION TIME INTERVAL*)
```

tau1，tau2，（＊PROCESS TIME CONSTANTS＊） tau3，（＊1ST ORDER TIME CONSTANT FOR RESPONSE TO xb ＊） lambda，（＊CMS TUNING CONSTANT＊） tt，ttt：real；（＊TOTAL TIME OF SIMULATION＊）

PROCEDURE DATA；
begin
readln（r，xa，xb）；
readln（delta，tt）；
readln（tau1，tau2，thetad）；
七3［1］：＝0．05；七3［2］：＝0．1；t3［3］：＝0．3；七3［4］：＝0．5；
t 3 ［5］：$=0.7 ; \mathrm{t} 3[6]:=1.0 ; \quad \mathrm{t} 3[7]:=1.2 ; \mathrm{t} 3[8]:=1.5$ ；
七3［9］：＝2．0；七3［10］：＝2．5；七3［11］：＝3．0；七3［12］：＝3．5；
七З［13］：＝4．0；七3［14］：＝4．5；七3［15］：＝5．0；七3［16］：＝5．5；
七3［17］：＝6．0；七3［18］：＝6．5；t3［19］：＝7．0；
end；
procedure answer（a，bb：integer；cc，dd，eee，f：real）；
begin
writeln（kc，taui，taud）；
writeln（r，xa，xb，delta，tt）；
writeln（tau1，tau2，tau3，thetad）；
writeln；
writeln（＇TRIAL NO．＇，klkkk）；
writeln（＇NO．OF STAGES＝＇，a：3）；
writeln（＇NO．OF FUNCTION EVALUATIONS＝＇，bb：3）；
writeln（＇IAE／（xb＊taui＝＇，cc／（kmm＊（xb＋r／kmm）＊taul）：
16：：；；
writeln（＇kckl＝＇，dd＊kmm＊kv：16：8，＇tau1／taui＝＇，
tau1／eee：16：8，＇tau1＊taud＝＇，tau1＊f：16：8）；
writeln（＇vamax $=$＇，vamax：16：8，＇vamin＝＇，vamin：16：8）；
kc：＝kkcc［kkkk］；
k［1］：＝kc；k［2］：＝taui；k［3］：＝taud；
kkkk：＝kkkk＋1；
end；
function dtx2dot（cx1，cx2：real）：real；
begin
dtx2dot：＝delta＊（cx1－cx2）／tau1；
end；
function dtx3dot（cx2，cx3：real）：real；
begin
dtx3dot：＝delta＊（cx2－cx3）／tau2；
end；
function object（kcc，tauii，taudd：real）：real；
var

```
DT: array [1..5001] of real; (*array for the dead time*)
i:integer;
    begin
            c:=0.0;epast :=0.0; absie :=0.0;vamin:=0.0;vamax:=0.0;
```

```
erint:=0.0;time:=0.0;x1:=0.0;
    x2:=0.0; x3:=0.0; x4:=0.0; x5:=0.0; x5 :=0.0; x6:=0.0;
    for i:=1 to s do DT[i]:=0.0; G:=S; Q:=1;
    while time<ttt do
                begin
                c:=kmm*x6;
                er:=r-c;
                va:=kcc*(er+erint/tauii+(er-epast)*
                    taudd/delta);
                vv:=va;
                if va<vamin then vamin:=va;
                if va>vamax then vamax:=va;
                if va <= -6.0 then va:= -6.0;
                if va >= 6.0 then va:= 6.0;
                x1:= xa + va*kv;
                time:= time + delta;
                if (vv < 6.1) and (vv > -6.1) then
                        erint:= erint + er * delta;
                absie:= absie + abs(er*delta);
                epast:= er;
                rk11:=dtx2dot(x1,x2);
                rk12:=dtx3dot(x2,x3);
                    rk21:=dtx2dot(x1,x2+0.5*rk11);
                rk22:=dtx3dot(x2+0.5*rk11,x3+0.5*rk12);
                rk31:=dtx2dot(x1,x2+0.5*rk21);
                rk32:=dtx3dot(x2+0.5*rk21,x3+0.5*rk22);
                rk41:=dtx2dot(x1,x2+rk31);
                rk42:=dtx3dot(x2+rk31,x3+rk32);
                x2:=x2+(rk11+2.0*rk21+2.0*rk31+rk41)/6.0;
                x3:=x3+(rk12+2.0*rk22+2.0*rk32+rk42)/6.0;
                DT[G]:=x3;
                x4:=DT[Q];
                G:=G+1; Q:=Q+1;
                if G>S then G:=1; if Q>S then Q:=1;
                x5:=x5 * du31 + du32xb;
                x6:=x4 + x5;
            end;
        object:=absie;
        writeln(kcc:8:3,tauii:8:3,taudd:8:3, absie);
```

 END;
 begin (*MAIN PROGRAM*)
TERMIN (INPUT);
TERMOUT (OUTPUT);
data;
for $\mathrm{mmm}:=1$ to 10 do
begin
thetad: $=0.1 * \mathrm{mmm}$;

```
t七t:=t七;
for iiii:= 1 to 19 do
begin
tau3:=七3[iiii];
ttt:=ttt+0.20*iiii;
lambda:=1.0/(tau1+tau2);
kc:=(tau1*tau2)*lambda/(kv*kmm*(lambda*thetad+1.0));
taui:=tau1+tau2;
taud:=tau1*tau2/(tau1+tau2);
kkcc[1]:=kc;kkcc[2]:=kc/1.25;kkcc[3]:=kc*1.10;
k[1]:=kkcc[1];
k[2]:=taui;
K[3]:=taud;
kkkk:=1;
5: if kkkk>4 then goto 6;
P[1]:=0.10;
P[2]:=0.02;
P[3]:=0.005;
S:=round(thetad/delta)+1;
DU31:=EXP(-DELTA/TAU3) ; DU32:=1.0-DU31;
DU32XB:=XB * DU32;
KAT:=1; (*FUNCTION EVALUATIONS*)
FOR I:=1 TO KM DO (*INITIALIZE DIRECTIONAL VECTORS*)
    BEGIN
        FOR M:=1 TO KM DO
                BEGIN
                    v[i,m]:=0.0;
                    if (i-m)=0 then
                    v[i,m]:=1.0;
                end;
    end;
sumn:=object(k[1],k[2],k[3]);
writeln('initial IAE/(xb*taul)=', sumn/(kmm*(xb+r/kmm)*
            tau1));
sumo:=sumn;
kk1:=1; (*STAGES*)
if nstep<>1 then
    begin
        for i:=1 to km do
                e[i]:=p[i];
    end;
1: for i:=1 to km do
    begin
        fbest:=sumn;
        j[i]:=2.0;
```

```
            if nstep=1 then
            e[i]:=p[i];
            d[i]:=0.0;
    end;
    iii:=0;
2: iii:=iii+1;
3: i:=1;
4: for m:=1 to km do
    k[m]:=k[m]+e[i]*v[i,m];
    sumn:=object(k[1],k[2],k[3]);
    kat:=kat+1;
    sumdif:=fbest-sumn;
if (abs(sumdif)-epsy)<=0.0 then
        begin
            answer(kk1,kat,sumo,k[1],k[2],k[3]);
            goto 5;
        end;
    if (kat-maxk)>=0.0 then
        begin
            writeln('maxk exceeded');
            answer(kk1,kat,sumo,k[1],k[2],k[3]);
            goto 5;
        end;
    if (sumn-sumo)>0.0 then
        begin (*FAILURE*)
            for m:=1 to km do
                        k[m]:=k[m]-e[i]*v[i,m];
            e[i]:=-beta*e[i];
            if abs(e[i])< 1.OE-20. then goto 7;
            if (j[i]-1.5)<0.0 then j[i]:=0.0;
            end
    else
        begin (*SUCCESS*)
            d[i]:=d[i]+e[i];
            e[i]:=alpha*e[i];
            if abs(e[i])< 1.OE-20. then goto 7;
            sumo:=sumn;
            if (j[i]-1.5)>0 then j[i]:=1.0;
        end;
    for m:=1 to km do (*CHECK END OF STAGE*)
        if (j[m]-0.5)>0 then (*STAGE NOT ENDED*)
            begin
                if (i-km)<>O then (*CHECK END OF CYCLE*)
                    begin
                        i:=i+1;
                        goto 4;
                    end
                else
                        begin
```

```
    for z:=1 to km do
    if (j[z]-2.0)<0 then goto 3;
    if (iii-mcyc)<0 then goto 2
        else
        begin
            writeln('mcyc exceeded');
            answer(kk1,kat,sumo,k[1],k[2],k[3]);
            goto 5;
        end;
            end;
    end;
for i:=1 to km do
    for m:=1 to km do
        l[i,m]:=0.0;
writeln(output,'STAGE NO.=',kk1:3);
writeln(output,'FUNCTION=',sumo:16:8);
for i:=1 to km do
    writeln(output,'x(',i,')=',k[i]:16:8);
(*ROTATE AXES*)
for i:=1 to km do
    begin
        kl:=i;
        for m:=1 to km do
            begin
            for z:=kl to km do
                                    l[i,m]:=d[z]*v[z,m]+l[i,m];
            b[i,m]:=1[i,m];
        end;
    end;
n[1]:=0.0;
for z:=1 to km do
    n[1]:=n[1]+b[1,z]*b[1,z];
n[1]:=sqrt(n[1]);
for m:=1 to km do
    v[1,m]:=b[1,m]/n[1];
for i:=2 to km do
    begin
        ii:=i-1;
        for m:=1 to km do
            begin
            sumavv:=0.0;
            for z:=1 to ii do
                                    begin
                                    sumav:=0.0;
                                    for mm:=1 to km do
                                    sumav:=sumav+l[i,mm]*v[z,mm];
                                    sumavv:=sumav*v[z,m]+sumavv;
                                    end;
            b[i,m]:=l[i,m]-sumavv;
        end;
    end;
```

```
for i:=2 to km do
        begin
            n[i]:=0.0;
            for z:=1 to km do
                n[i]:=n[i]+b[i,z]*b[i,z];
                n[i]:=sqrt(n[i]);
                        for m:=1 to km do
                        v[i,m]:=b[i,m]/n[i];
            end;
```

7; $\quad k k 1:=k k 1+1$;
if (kk1-mkat)<0 then goto 1 ;
writeln('maxk exceeded');
answer(kk1,kat, sumo,k[1],k[2],k[3]);
goto 5;
6: end;
end;
end.

APPENDIX B

GRAPHS FOR PID CONTROLLER
TUNING CONSTANTS

Figure 23. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.1$

KCKL VS TAU3/TAU1

Figure.24. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.2$

Figure.25. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.3$

KCKL VS TAU3/TAU1

Figure 26. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.4$

KCKL VS TAU3/TAU1

Figure 27. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.5$

KCKL VS TAU3/TAU1

Figure 28 Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.6$

KCKL VS TAU3/TAU1

Figure 29. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.7$

KCKL VS TAU3/TAU1

Figure 30. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.8$

KCKL VS TAU3/TAU1

Figure 31. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=0.9$

KCKL VS TAU3/TAU1

Figure 32. Optimu PID Proportional Gain at $\tau_{2} / \tau_{1}=1.0$

In

TAU1/TAUI VS TAU3/TAU1

Figure 34. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.2$

TAU1/TAUI VS TAU3/TAU1

Figure 35. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.3$

TAU1/TAUI VS TAU3/TAU1

Figure 36. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.4$

TAU1/TAUI VS TAU3/TAU1

Figure 37. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.5$

TAU1/TAUI VS TAU3/TAU1

Figure 38. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.6$

TAU1/TAUI VS TAU3/TAU1

Figure 39. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.7$

TAU1/TAUI VS TAU3/TAU1

Figure 40. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.8$

TAU1/TAUI VS TAU3/TAU1

Figure 41. Optimum PID integral Time at $\tau_{2} / \tau_{1}=0.9$

TAU1/TAUI VS TAU3/TAU1

Figure 42. Optimum PID integral Time at $\tau_{2} / \tau_{1}=1.0$

Figure 43. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.1$

TAUD/TAU1 VS TAU3/TAU1

Figure 44. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.2$

TAUD/TAU1 VS TAU3/TAU1

Figure 45. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.3$

TAUD/TAU1 VS TAU3/TAU1

Figure 46. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.4$

TAUD/TAU1 VS TAU3/TAU1

Figure 47. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.5$

TAUD/TAU1 VS TAU3/TAU1

Figure 48. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.6$

TAUD/TAU1 VS TAU3/TAU1

Figure 49. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.7$

TAUD/TAU1 VS TAU3/TAU1

Figure 50. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.8$

TAUD/TAU1 VS TAU3/TAU1

Figure 51. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=0.9$

TAUD/TAU1 VS TAU3/TAU1

Figure 52. Optimum PID Derivative Time at $\tau_{2} / \tau_{1}=1.0$

Figure 53. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.1$

IAE VS TAU3/TAU1

Figure 54. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.2$

Figure 55. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.3$

IAE VS TAU3/TAU1

Figure 56. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.4$

IAE VS TAU3/TAU1

Figure 57. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.5$

IAE VS TAU3/TAU1

Figure 58. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.6$

IAE CS TAU3/TAU1

Figure 59. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.7$

IAE VS TAU3/TAU1

Figure 60. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.8$

IAE VS TAU3/TAU1

Figure 61. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=0.9$

Figure 62. IAE Based on Optimum Tuning Constants at $\tau_{2} / \tau_{1}=1.0$

APPENDIX C

CURVE FITTING PROGRAM

```
program simp (din, dout);
    const m = 5; (* number of parameters to fit *)
        nvpp = 2; (* total number of vars. per data point *)
        n = 6; (* m+1 dimension *)
        mnp = 200; (* max. number of data point *)
        alpha = 1.0; (* reflection coefficient *)
        beta = 0.5; (* contraction coefficient *)
        gamma = 2.0; (* expansion coefficient *)
        lw = 7; (* width of line in data fields + 1 *)
        root2 = 1.414214;
type vector = array(.1..n.) of real;
        datarow = array(.1..nvpp.) of real;
        index = 0..255;
var done : boolean; (* convergence *)
        i,j,k : index;
        h,1 : array(.1..n.) of index;
        np, (* number of data points *)
        maxiter, (* max. number of iteration *)
        niter : integer; (* number of iteration *)
        next, (* new vertex to be tested *)
        center, (* center of hyperplane *)
        mean,error,
        maxerr, (* max error accepted *)
        p,q, (* to compute first simplex *)
        step : vector; (* input starting step *)
        simp : array(.1..n.) of vector; (* the simplex *)
        data : array(.1..mnp.) of datarow; (* data *)
        odat : array(.1..200,1..10.) of real;
        din,dout: text;
function f (x : vector; d : datarow) : real;
    begin
        f:=x(.1.)-exp(-x(.2.)*d(.1.))*(x(.3.)*\operatorname{cos(x(.4.)*d(.1.))}
            +x(.5.)*sin(x(.4.)*d(.1.)));
    end;
procedure sum_of_residuals (var x : vector);
    var i : index;
        begin
            x(.n.) := 0.0;
                for i:=1 to 19 do
                begin
                        x(.n.):=x(.n.)+sqr(f(x,data(.i.))-data(.i,2.))
                end
        end;
procedure enter;
    var i,j,np : integer;
        begin
        writeln (dout, 'to find kckl case of PID, thetad=1.0');
        writeln (dout, 'model is kckl=a-exp(-bx)*(c*cos(dx)+
                        e*sin(dx))');
        read (din, maxiter);
```

```
    writeln (dout, 'max. number of iteration is :=' ,
                        maxiter:5);
    writeln (dout, 'start coord.:');
    for i:=1 to m do
        begin
        read (din, simp(.1,i.));
            if (i mod lw) = O then writeln (dout);
        write (dout, simp(.1,i.))
    end;
    writeln (dout);
    write (dout, 'start steps: ');
    for i:=1 to m do
        begin
        read (din, step(.i.));
            if (i mod lw) = 0 then writeln (dout);
        write (dout, step(.i.))
    end;
    writeln (dout);
    write (dout, 'max errors: ');
    for i:=1 to n do
        begin
            read (din, maxerr(.i.));
                            if (i mod lw) = O then writeln (dout);
            write (dout,maxerr(.i.))
        end;
    writeln (dout);
    writeln (dout, 'data: ');
    writeln (dout, 'x':14, 'kckl':14);
    for np:=1 to 19 do
        begin
            write (dout, ' #',np:3);
                for j:=1 to nvpp do
                    begin
                                    read (din, data(.np,j.));
                                    write (dout, data(.np,j.))
                    end;
                writeln (dout);
            end
        end;
procedure report ;
    var kckl,dkckl,
        sigma : real;
        i,j : integer;
    begin
    writeln (dout, 'program exited after',niter:5,
                                    'iterations');
    writeln (dout, ' the final simplex is');
    for j:=1 to n do
        begin
                for i:=1 to n do
                begin
                    if (i mod lw) = O then writeln (dout);
                    write (dout,simp(.j,i.):10);
```

```
            end;
            writeln (dout);
        end;
    writeln (dout, ' the mean is');
    for i:=1 to n do
        begin
            if (i mod lw) = O then writeln (dout);
            write (dout, mean(.i.))
        end;
    writeln (dout);
    writeln (dout,' the estimated fractional error is ');
    for i:=1 to n do
        begin
                if (i mod lw) = O then writeln (dout);
                write (dout, error(.i.))
    end;
    writeln (dout);
    writeln (dout,' #':4,'x':10,'kckl':15,'kckl'':15,
                        'dkckl':15);
    sigma:=0.0;
    for i:=1 to 19 do
        begin
            kckl:=f(mean,data(.i.));
            dkckl:=data(.i,2.)-kckl;
            sigma:=sigma+sqr(dkckl);
            writeln(dout,i:4,' ',data(.i,1.):13,' ',
    data(.i,2.):13,' ',kckl:13,' ',dkckl:13);
    end;
    sigma:=sqrt(sigma/19);
    writeln (dout,' the standard deviation is',sigma);
    sigma:=sigma/sqrt(19-m);
    write(dout,' the estimated error of the');
    writeln (dout,' function is',sigma);
    end;
procedure first;
- var i,j : integer;
        begin
            writeln (dout,' starting simplex');
            for j:=1 to n do
                begin
                    write (dout,' simp(',j:1,')');
                for i:=1 to n do
                        begin
                        if (i mod lw) = O then writeln (dout);
                        write (dout,simp(.j,i.))
                        end;
                    writeln (dout)
                end;
                writeln (dout)
            end;
procedure new_vertex;
    var i : integer;
        begin
```

```
        for i:=1 to n do
        begin
            simp(.h(.n.),i.) := next(.i.);
        end;
        end;
procedure order;
    var i,j : index;
        begin
            for j:=1 to n do
                begin
                for i:=1 to n do
                        begin
                        if simp(.i,j.) < simp(.l(.j.),j.) then l(.j.) :=i;
                        if simp(.i,j.) > simp(.h(.j.),j.) then h(.j.) :=i;
                    end
                end
        end;
begin
    assign(din,'mmm.dat');
    assign(dout,'func.dat');
    reset (din);
    rewrite(dout);
    (* enter; *)
    for i:=1 to 190 do
        begin
            for j:=1 to nvpp do
                begin
                    read(din,odat(.i,j.));
            end;
        end;
    for k:=1 to 10 do
    begin
    maxiter:=10000;
    simp(.1,1.):=0.1;simp(.1,2.):=0.2;simp(.1,3.):=0.1;
    simp(.1,4.):=0.2;simp(.1,5.):=0.1;
    step(.1.):=0.2;step(.2.):=0.1;step(.3.):=0.2;
    step(.4.):=0.1;step(.5.):=0.2;
    maxerr(.1.):=1E-5; maxerr(.2.):=1E-5; maxerr(.3.):=1E-5;
    maxerr(.4.):=1\textrm{E}-5;\operatorname{maxerr(.5.):=1\textrm{E}-5;\operatorname{maxerr(.6.):=1E-5;}}\mathbf{=}\mathrm{ ; }
    for np:=1 to 19 do
        begin
            for j:=1 to nvpp do
                begin
                    data(.np,j.):=odat(.(np+(k-1)*19),j.);
            end;
            end;
    sum_of_residuals(simp(.1.));
    for i:=1 to m do
        begin
            p(.i.) := step(.i.)*(sqrt(n)+m-1)/(m*root2);
            q(.i.) := step(.i.)*(sqrt(n)-1)/(m*root2);
        end;
```

```
for i:=2 to n do
    begin
        for j:=1 to m do
        simp(.i,j.) := simp(.1,j.) +q(.j.);
        simp(.i,(i-1).) := simp(.1,(i-1).)+p(.(i-1).);
        sum_of_residuals(simp(.i.))
    end;
    for i:=1 to n do
        begin
            l(.i.) :=1; h(.i.) :=1
    end;
    order;
    (* first; *)
    niter :=0;
    repeat;
    done := true;
    niter := succ(niter);
    for i:=1 to n do
        center(.i.) := 0.0;
        for i:=1 to n do
            if i <> h(.n.) then
                for j:=1 to m do
                center(.j.):=center(.j.)+simp(.i,j.);
    for i:=1 to n do
        begin
            center(.i.) := center(.i.)/m;
            next(.i.):=(1.0+alpha)*center(.i.)
                        -alpha*simp(.h(.n.),i.)
        end;
    sum_of_residuals(next);
    if next(.n.) <= simp(.l(.n.),n.) then
        begin
            new_vertex;
                for i:=1 to m do
                    next(.i.) := gamma*simp(.h(.n.),i.)+(1.O-gamma)*
                        center(.i.);
                        sum_of_residuals(next);
                if next(.n.) <= simp(.l(.n.),n.) then new_vertex
                end
                else
                begin
                    if next(.n.) <= simp(.h(.n.),n.) then new_vertex
                    else
                        begin
                        for i:=1 to m do
                        next(.i.) := beta*simp(.h(.n.),i.)+(1.0-beta)
                        *center(.i.);
                                sum_of_residuals(next);
                                if next(.n.) <= simp(.h(.n.),n.) then new_vertex
                        else
                        begin
                                for i:=1 to n do
                        begin
                        for j:=1 to m do
```

```
                simp(.i,j.) := (simp(.i,j.)+simp(.l(.n.),j.))
                                    *beta;
            sum_of_residuals(simp(.i.))
            end
        end
        end
    end;
order;
for j:=1 to n do
    begin
        error(.j.):=(simp(.h(.j.),j.)-simp(.l(.j.),j.))/
                        simp(.h(.j.),j.);
            if done then
            if error(.j.) > maxerr(.j.) then
        done := False
        end
        until (done or (niter = maxiter));
        for i:=1 to n do
        begin
            mean(..i.) := 0.0;
                for j:=1 to n do
                mean(.i.):=mean(.i.)+simp(.j,i.);
            mean(.i.):=mean(.i.)/n
            end;
            report;
end;
close(din);
close(dout);
end.
```

APPENDIX D

TABLES OF CURVE FITTING RESULTS

TABLE I
CURVE FITTING RESULTS OF PROPORTIONAL GAIN

AT $\tau_{2} / \tau_{1}=0.1$

$\theta_{d}{ }^{\prime} \tau_{1}$	$K_{C} K_{L}=A-e^{-B \tau_{3} i \tau_{1}}\left[C \cos \left(D \tau_{3} i \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]$					
	A	B	C	D	E	Standard Deviation
0.1	10.541223	1.180019	4.081162	1.272492	-7.398963	0.449385
0.2	5.890894	3.425357	2.846238	7.24×10^{-6}	2.403632	0.290349
0.3	4.484194	1. 267431	1.954393	9.16×10^{-7}	1.268995	0.119251
0.4	3.446715	0.985048	1.384971	2.95×10^{-7}	0.649919	0.129946
0.5	2.622772	1.773274	1.016053	-9.26×10^{-7}	2.696408	0.067870
0.6	2.172058	0.625983	0.718355	0.003308	-164.5421	0.045793
0.7	1.839872	0.496145	0.550092	0.005831	-84.99422	0.041626
0.8	1.873584	0.712189	0.696749	0.022343	-7.329004	0.040928
0.9	1.670054	0.729667	0.591636	0.427691	-0.352738	0.011888
1.0	1.609807	0.879666	0.606288	-4.44×10^{-7}	-2.840634	0.036769

TABLE II

> CURVE FITTING RESULTS OF INTEGRAL TIME
> AT $\tau_{2} i \tau_{1}=0.1$

$\theta_{d} / \tau_{1} \quad \mathrm{~A}$	$\left.C \tau_{3} / \tau_{1}\right)+D e^{E \tau_{2} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)$						
	B	C	D	E	F	G	Standard Deviation
0.1-3.30267	9.01153	-0.41464	5.79647	-0.00625	-0.000027	2.43275	0.2424
$0.2 \quad 5.78255$	-0.09001	-12.2736	5.13833	-0.39375	-0.00058	-1.78762	0.18450
$0.3 \quad 2.77685$	0.58238	-6.76347	2.38840	-0.34719	0.46117	-1.79252	0.11018
0.436 .67113	-0.39645	-5.85407	4.71432	-0.47918	-0.04031	-0.63706	0.06248
0.5-1.94808	0.40691	0.00948	3.90218	0.03892	0.16394	0.75193	0.05624
$0.6 \quad 1.58023$	0.37603	-0.04395	2.92361	-0.08631	0.14973	-0.30795	-0.06160
0.72 .85940	-0.31889	-1.36371	2.22301	-0.21063	0.15687	-1.24698	0.02911
$0.8 \quad 1.35737$	1.33223	-0.13991	1.96826	-0.66789	0.28259	-2.82426	0.03606
$0.9 \quad 2.13835$	0.02338	-0.03980	2.51418	-0.41486	0.23493	-2.54317	0.01802
$1.0 \quad 0.37534$	0.00740	0.71613	0.56146	0.20946	0.20258	0.60896	0.02968

TABLE III

> CIRVE FITTING RESULTS OF DERIVATIVE TIME AT $\tau_{2} / \tau_{1}=0.1$

θ_{d} / τ_{1}	A	$\tau_{D} \tau_{1}=A-B e^{C \tau_{3} / \tau_{1}}$		Standard Deviation
		B	c	
0.1	-43360.4670	43360.5758	3.193977×10^{-7}	0.0153100
0.2	-44636.8244	44636.9557	2.434525×10^{-7}	0.0136737
0.3	-53461.0341	53461.2240	2.401277×10^{-7}	0.0121607
0.4	-83746.1773	8.3746 .4041	2.044911×10^{-7}	0.0182938
0.5	-77234.5607	77234.8133	4.055537×10^{-7}	0.0210251
0.6	-32407. 2158	32407.4991	1.176143×10^{-6}	0.0161665
0.7	-3811.73677	3812.04278	1.216128×10^{-5}	0.0205976
0.8	-55195.8537	55196.1993	7.840349×10^{-7}	0.0190948
0.9	-31467.2744	32467.6501	1.582992×10^{-6}	0.0185181
1.0	-134661.5610	134661.9795	3.354662×10^{-7}	0.0374493

TABLE V

CURVE FITTING RESULTS OF PROPORTIONAL GAIN

AT $\tau_{2} / \tau_{1}=0.2$

θ_{d} / τ_{1}	A	B	C	D	E	Standrad Deviation
0.1	12.399046	1.627010	5.681818	3.7080941194	-1.9898339	0.4224554545
0.2	7.803883	0.797572	3.929099	0.0000000032	-5.5804481	0.3650978605
0.3	4.676351	1.007973	2.111299	-0.0000000052	0.1850836	0.1419999611
0.4	3.608588	0.907358	1.606882	0.0000000072	1.0609761	0.0882600788
0.5	2.784449	0.922551	1.098633	0.0000000057	1.7570548	0.0857822829
0.6	2.233905	0.715294	0.812053	0.0072544976	-59. 2209331	0.0343512919
0.7	1.999058	0.610323	0.718012	0.0054062788	-56.2213620	0.0248629267
0.8	1.831384	0.730353	0.668455	-0.3595292639	0.3607367	0.0332465735
0.9	1.754170	0.748779	0.674030	0.0000000085	-1.7062681	0.0558489975
1.0	1.4136881	0.367970	0.4056009	0.0041167373	-67.2205867	0.0255370225

TABLE IV

CURVE FITTING RESULT OF IAE AT $\tau_{2} / \tau_{1}=0.1$

	$\mathrm{IAE}=\mathrm{A}+\mathrm{B} /\left(\mathrm{C}+\tau_{3} / \tau_{1}\right)$			
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C	Standard Deviation
0.1	0.004136	0.049875	0.228442	0.005886
0.2	0.015031	0.138218	0.352544	0.007893
0.3	0.029530	0.260434	0.483797	0.013004
0.4	0.043210	0.118941	0.619501	0.017866
0.5	0.051111	0.638021	0.785571	0.020877
0.6	0.051936	0.912282	0.956557	0.024283
0.7	0.058688	1.207813	1.109474	0.031217
0.8	0.045950	1.638504	1.325902	0.032701
0.9	0.034825	2.079027	1.501410	0.036342
1.0	0.058584	2.415581	1.610953	0.045892

TABLE VI

> CURVE EITTING RESULTS OF INTEGRAL TIME AT $\tau_{2} i \tau_{1}=0.2$

$$
\tau_{1} i \tau_{I}=A-B\left(1-e^{C \tau_{3} / \tau_{1}}\right)+D e^{E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

| $\theta_{\mathrm{d}} / \tau_{1}$ | A | B | C | D | E | F | Standard
 Deviation | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 1.46941 | -0.92782 | 0.30091 | 0.50210 | 0.46893 | 0.26288 | 1.34227 | 0.77867 |
| 0.2 | -3.53221 | 0.99416 | -1.19698 | 4.43834 | 0.08304 | 0.11933 | 1.19243 | 0.17850 |
| 0.3 | 4.20245 | -0.35109 | -9.20077 | 10.11599 | -0.32324 | -2.0×10^{-7} | -2.8052 | 0.08696 |
| 0.4 | 4.32900 | -0.72499 | -0.19990 | 4.78175 | -0.19990 | -0.00000 | -0.8526 | 0.16347 |
| 0.5 | 2.42577 | -0.00088 | 0.83076 | 5.58883 | -0.82066 | 0.23450 | -2.8328 | 0.07965 |
| 0.6 | 1.35715 | 0.72435 | -0.04618 | 1.51784 | -0.04764 | 0.22003 | -0.44845 | 0.04102 |
| 0.7 | 0.57396 | 0.20299 | -0.00311 | 1.56583 | 0.01040 | 0.19324 | 0.07189 | 0.03552 |
| 0.8 | 0.26774 | 0.54056 | 0.01712 | 1.26326 | 0.05622 | 0.19165 | 0.33249 | 0.05483 |
| 0.9 | 4.32036 | 2.41582 | 0.14200 | 5.92115 | 0.01260 | 0.12715 | -0.66533 | 0.09485 |
| 1.0 | -1.35707 | 0.17442 | -0.02570 | 3.11022 | 0.01128 | 0.07160 | 0.70241 | 0.04796 |

TABLE VII
CURVE FITTING RESULTS OF DERIVATIVE TIME
AT $\tau_{2} / \tau_{1}=0.2$

θ_{d} / τ_{1}	A	$\tau_{D} / \tau_{1}=A-B e^{C \tau_{3} / \tau_{1}}$		Standard Deviation
		B	C	
0.1	-12340.39508	12340.56067	0.000001165	0.019849436
0.2	-8253.00838	8253.22817	0.000000321	0.010916347
0.3	-24521.82030	24522.06750	0.000000598	0.013354271
0.4	-9326.23961	9326.52523	0.000001714	0.012946171
0.5	-65910.78431	55911.10552	0.000000416	0.023743855
0.6	-18164.86311	18165.19897	0.000002201	0.011322792
0.7	-32116.07804	32116.44446	0.000001345	0.012369514
0.8	-14644.24234	14644.63868	0.000003178	0.019443755
0.9	-104185.86456	104186. 29961	0.000000404	0.040395520
1.0	-0.68734	1.14425	0.041199001	0.021419328

table vili
CURVE FITTING RESULTS OF IAE AT $\tau_{2} / \tau_{1}=0.2$

θ_{d} / τ_{1}	$I A E=A+B /\left(C-\tau_{3} / \tau_{1}\right)$			
	A	B	C	Standard Deviation
0.1	0.824358	-25.971456	39.306470	0.0197789
0.2	0.288611	-1.346790	19.356491	0.0108858
0.3	0.558740	-4.686823	14.802296	0.0127967
0.4	0.842183	-15.854805	28.336644	0.0128158
0.5	0.661527	-2. 219593	6.150730	0.0202570
0.6	2.612603	-114.962580	50.399479	0.0108605
0.7	2.045952	-54.520496	32.384603	0.0112515
0.8	4.379741	-315.149436	79.051963	0.0192967
0.9	1.014596	-4.526766	7.465166	0.0365062
1.0	40.280229	-29052.053	729.40595	0.0219471

TABLE IX

CURVE FITTING RESULTS OF PROPORTIONAL GAIN $\mathrm{AT} \tau_{2}!\tau_{1}=0.3$

$$
K_{C} K_{L}=A-e^{-B \tau_{3} / \tau_{1}}\left[C \cos \left(D \tau_{3} / \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]
$$

$\theta_{d} i \tau_{1}$	A	B	C	D	E	Standard Deviation
0.1	31.05310	0.19782	19.56376	0.000000004	50.84995	1.88491
0.2	9.89738	0.75203	4.81710	0.000000002	10.05059	0.38503
0.3	5.22663	0.80957	2.50109	-0.000000019	0.91970	0.26836
0.4	3.72221	0.94057	1.66788	0.000000017	1.50663	0.11305
0.5	2.94594	0.85623	1.22571	0.000000001	1.96095	0.08496
0.6	2.36947	1.15698	0.93260	0.000000008	1.76138	0.05174
0.7	2.13794	0.89757	0.84751	0.000000005	-0.54728	0.04122
0.8	1.89036	1.26391	0.70382	0.005179852	61.74040	0.02345
0.9	1.65255	0.44314	0.55708	0.002812078	-81.86672	0.02972
1.0	1.38061	0.31864	0.35699	0.009400342	-30.63374	0.02745

TABLE X

$$
\begin{aligned}
& \text { CURVE FITTING RESULTS OF } \\
& \text { INTEGRAL TIME AT } \\
& \tau_{2} / \tau_{1}=0.3
\end{aligned}
$$

$$
\tau_{1} / \tau_{I}=A+B\left(1-e^{-C \tau_{3} / \tau_{1}}\right)+D e^{E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

| θ_{d} / τ_{1} | A | B | C | D | E | F | Stanard
 Deviation | |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | -5.1642 | -7.8589 | -59.7046 | 17.5459 | 0.01126 | 0.1232 | 0.8587 | 0.1876 |
| 0.2 | 10.6290 | 3.9623 | -0.2532 | 28.8933 | -3.14079 | 0.1020 | -3.1486 | 0.1098 |
| 0.3 | 3.2314 | 0.1559 | -0.0595 | 2.6706 | -0.26734 | 0.0029 | -1.5791 | 0.1201 |
| 0.4 | -6.2692 | 2.8106 | 0.2276 | 7.1376 | 0.15085 | -0.00079 | 1.3085 | 0.0670 |
| 0.5 | -7.0245 | 3.0109 | -0.1622 | 8.0350 | -0.00574 | 0.0000039 | 1.9000 | 0.0898 |
| 0.6 | 1.1447 | 2.1274 | -0.0896 | 0.9688 | -0.61380 | 0.45525 | -2.6079 | 0.0424 |
| 0.7 | -1.1754 | -0.0923 | -1.5271 | 1.8399 | 0.15697 | 0.12023 | 1.6856 | 0.0286 |
| 0.8 | 1.9433 | 0.1943 | -0.0972 | 2.3422 | -0.35892 | 0.19242 | -2.5540 | 0.0112 |
| 0.9 | 1.0655 | 1.1216 | -0.0728 | 0.5016 | -0.27034 | 0.54268 | -2.1566 | 0.0261 |
| 1.0 | 0.6310 | -0.3735 | 0.2301 | 0.0093 | 0.58052 | 0.68567 | -0.0951 | 0.0304 |

TABLE XI
CURVE FITTING RESULTS OF DERIVATIVE TIME

AT $\tau_{2} \tau_{1}=0.3$

		$\tau_{\mathrm{D}}^{i \tau_{1}}=\mathrm{A}+\mathrm{B} \mathrm{e}^{\mathrm{C} \tau_{3} / \tau_{1}}$		
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C	
0.1	0.177104453	0.109699478	-4.297265244	0.020561542
0.2	0.269897596	0.000000172	1.631470727	0.013501095
0.3	-348123.0021	348123.3156	0.000000025	0.021621470
0.4	-3858.253878	3858.591291	0.000005015	0.017036656
0.5	-567873.5989	567873.9715	0.000000048	0.019590287
0.6	-259458.9424	259459.3331	0.000000150	0.015666708
0.7	-129648.4667	129648.8903	0.000000303	0.015564386
0.8	-186693.1187	186693.5675	0.000000244	0.019806701
0.9	-9423.673701	9424.148398	0.000005448	0.019937965
1.0	-0.007643597	0.515286580	0.080544207	0.024677633

TABLE XII
CURVE FITTING RESULT OF IAE AT $\tau_{2} / \tau_{1}=0.3$

		IAE $=A+B /\left(C+\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.011098297	0.039852765	0.159983862	0.004071687
0.2	0.022284462	0.155769205	0.359096495	0.008687723
0.3	0.031262811	0.333140279	0.549406093	0.014580333
0.4	0.036351793	0.582699668	0.756589117	0.019120960
0.5	0.039090780	0.863105465	0.924645422	0.024678190
0.6	0.030801374	1.267542201	1.158723119	0.027224668
0.7	0.032954641	1.642926223	1.320254546	0.033354320
0.8	0.021547219	2.154040924	1.537903348	0.036632620
0.9	0.002971299	2.761776087	1.769306412	0.040343378
1.0	-0.010395189	3.416304568	1.992986833	0.044437867

TABLE XIII

> CURVE FITTING RESULTS OF PROPORTIONAL GAIN AT $\tau_{2} / \tau_{1}=0.4$

θ_{d} / τ_{1}	$K_{C} K$A	$-e^{-B}$ B	[cC	$\left.\left(\mathrm{D} \tau_{3} / \tau_{1}\right)+E \sin \left(\mathrm{D} \tau_{3} / \tau_{1}\right)\right]$		
				D	E	Standrad Deviation
0.1	24.07574	1.19830	14.85883	0.000000001	45.63781	1.09814
0.2	9.81443	0.68014	5.36092	-0.000000000	57.39144	0.43386
0.3	5.66194	0.83228	2.81486	-0.000000007	0.06172	0.19475
0.4	3.92689	1.02022	1.82713	0.000000008	1.09482	0.10374
0.5	3.10710	0.85978	1.34758	-0.000001985	0.74023	0.06016
0.6	2.50924	0.99475	1.01303	0.000000003	2.34726	0.03568
0.7	2.19370	1.26302	0.86206	0.003496145	96.44209	0.02763
0.8	1.77722	0.40619	0.55816	0.018986802	-18.09822	0.02183
0.9	1.80703	0.73340	0.68875	-0.000000000	1.74749	0.02049
0.9	1.61055	0.90646	0.54870	0.715797497	0.31955	0.01497

TABLE XIV

$$
\begin{gathered}
\text { CURVE FITTING RESULTS OF } \\
\text { INTEGRAL TIME AT } \\
\tau_{2}^{\prime / \tau_{1}=0.4}
\end{gathered}
$$

θ_{d} / τ_{1}	$\tau_{1} / \tau_{I}=A-B(1-e$			$+D e^{E}$	τ_{3} / τ_{1}	$\left(\begin{array}{l}\text { F } \\ \tau_{3} / \tau_{1}\end{array}\right.$	+ G)	
	A	B	C	D	E	F	G	Stanard Deviation
0.1	-5.1642	-7.8589	-59.7046	17.5459	0.01126	0.1232	0.8587	0.1876
0.2	10.6290	3.9623	-0.2532	28.8933	-3.14079	0.1020	-3.1486	0.1098
0.3	3.2314	0.1559	-0.0595	2.6706	-0. 26734	0.0029	-1.5791	0.1201
0.4	-6. 2692	2.8106	0.2276	7.1376	0.15085	-0.00079	1.3085	0.0670
0.5	-7.0245	3.0109	-0.1622	8.0350	-0.00574	0.0000039	1.9000	0.0898
0.6	1.1447	2.1274	-0.0896	0.9688	-0.61380	0.45525	-2.6079	0.0424
0.7	-1.1754	-0.0923	-1.5271	1.8399	0.15697	0.12023	1.6856	0.0286
0.8	1.9433	0.1943	-0.0972	2.3422	-0.35892	0.19242	-2.5540	0.0112
0.9	1.0655	1.1216	-0.0728	0.5016	-0.27034	0.54268	-2.1566	0.0261
1.0	0.6310	-0.3735	0.2301	0.0093	0.58052	0.68567	-0.0951	0.0304

table XV
CURVE FITTING RESULTS OF DERIVATIVE TIME
AT $\tau_{2} / \tau_{1}=0.4$

θ_{d} / τ_{1}	A	$\tau_{D} \tau_{1}=A+B e^{-C \tau_{3} / \tau_{1}}$		Standard Deviation
		B	C	
0.1	0.203951502	0.143325232	-4.523662773	0.008137682
0.2	0.305494815	0.061180854	-6.043138525	0.013870909
0.3	0.352407234	0.008231174	0.298011046	0.013364184
0.4	-0.893109110	1277234464	0.015614548	0.019103968
0.5	-1.104583444	1.519742181	0.017479511	0.015388633
0.6	-142415.6809	142416.1219	0.000000267	0.013857436
0.7	-130671.1526	130671.6194	0.000000333	0.017136710
0.8	-0.914422981	1.410955608	0.032167417	0.011268156
0.9	-276263.3034	276263.8291	0.000000177	0.017907724
1.0	-0.013144635	0.564361466	0.077458722	0.025319861

TABLE XVI
CURVE FITTING RESULTS OF IAE AT $\tau_{2} / \tau_{1}=0.4$

		IAE $=A+B /\left(C-\tau_{3} / \tau_{1}\right)$	C	Standard θ_{d} / τ_{1}
0.1	0.005782802	0.045065168	0.179496464	0.001653484
0.2	0.018056607	0.167232310	0.375805020	0.007691563
0.3	0.025735342	0.364772915	0.583748522	0.013838110
0.4	0.028893103	0.632073323	0.791338632	0.018100325
0.5	0.035312179	0.939957544	0.974898306	0.025382438
0.6	0.022067090	1.366699285	1.201006359	0.029144753
0.7	0.013504055	1.840951373	1.414650333	0.033536074
0.8	-0.002212593	2.412063964	1.644878052	0.036983885
0.9	-0.017475754	3.066857857	1.884221320	0.041987247
1.0	-0.054314429	3.908748928	2.165438948	0.042671194

TABLE XVII

> CURVE FITTING RESULTS OF PROPRTIONAL GAIN $A T \tau_{2} / \tau_{1}=0.5$

	$K_{C} K_{L}=A-e^{-B \tau_{3} / \tau_{1}}\left[\mathrm{C} \cos \left(D \tau_{3} / \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]$	C	D	E	Standard Deviation	
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C			
0.1	25.17440	1.49331	15.76741	-0.000009944	17.16323	0.903045
0.2	10.79241	0.82521	6.319318	-0.000000032	27.54787	0.371841
0.3	6.278828	0.72285	3.233786	-0.000000002	0.86228	0.201368
0.4	4.166211	0.95431	1.944290	0.000000010	1.25545	0.098547
0.5	2.820382	0.35227	0.960844	0.031869143	-23.11652	0.071758
0.6	2.741136	0.76753	1.156651	-0.000000015	1.02499	0.039524
0.7	2.291224	0.59669	0.908106	0.236511173	-0.81194	0.037319
0.8	2.032331	1.40030	0.760692	0.005506539	109.76785	0.021349
0.9	1.804311	0.40025	0.643524	0.009895981	-22.87312	0.032148
1.0	1.698388	1.31130	0.608902	0.004621596	111.80662	0.027326

TABLE XVII

> CURVE FITTING RESULTS OF INTEGRAL TIME AT $\tau_{2} / \tau_{1}=0.5$

$$
\tau_{1} / \tau_{1}=A+B\left(1-e^{-C \tau_{3} \tau_{1}}\right)+D e^{-E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

| θ_{d} / τ_{1} | A | B | C | D | E | F | G | Standard
 Deviation |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 6.3876 | -0.85602 | -4.72198 | 5.5783 | -0.28236 | 0.18526 | -1.60655 | 0.08551 |
| 0.2 | 3.4175 | -0.00102 | -8.97281 | 9.1401 | -0.67431 | 0.16805 | -2.82084 | 0.21438 |
| 0.3 | -1.9108 | 0.94591 | -0.28356 | 2.8334 | 0.05311 | 0.14335 | 1.03930 | 0.10599 |
| 0.4 | 2.2159 | -0.35525 | -1.52783 | 3.1687 | -0.15305 | 0.15706 | -0.53215 | 0.04187 |
| 0.5 | 0.0392 | 0.78840 | -0.32169 | 1.1374 | 0.28811 | 0.04156 | 2.66150 | 0.04644 |
| 0.6 | -0.6232 | -0.16651 | -3.63481 | 3.3930 | -0.02129 | 0.12380 | 0.38373 | 0.03751 |
| 0.7 | 0.6530 | 0.05971 | -0.08695 | 0.6226 | 0.09346 | 0.27191 | -0.06911 | 0.03021 |
| 0.8 | 1.8876 | 0.43637 | 0.00880 | 2.57028 | -0.40365 | 0.20558 | -2.62029 | 0.01472 |
| 0.9 | 1.3828 | 0.60787 | -0.08742 | 2.56107 | -0.45037 | 0.14807 | -2.83373 | 0.04585 |
| 1.0 | 1.5831 | -0.00933 | 0.22935 | 2.04456 | -0.38331 | 0.20054 | -2.64220 | 0.03871 |

TABLE XIX
CURVE FITTING RESULTS OF DERIVATIVE TIME AT $\tau_{2} / \tau_{1}=0.5$

θ_{d} / τ_{1}	A	$\tau_{D} / \tau_{1}=A+B e^{C \tau_{3} / \tau_{1}}$		Standard Deviation
		B	C	
0.1	0.235371025	0.162361151	-4.855050578	0.012972427
0.2	0.325336057	0.090122590	-3.534032330	0.014815305
0.3	0.385598433	0.016493207	0.110234093	0.017235546
0.4	0.047299085	0.383584461	0.044678559	0.013902512
0.5	0.357329082	0.104878133	0.161842406	0.012424313
0.6	-173470.5323	173471.0184	0.000000197	0.013089320
0.7	-0.02396.3949	0.537069378	10. 063285998	0.018456049
0.8	-3.893494066	4.426451734	0.010599263	0.015348172
0.9	-0.110807511	0.674499373	0.059193034	0.023345046
1.0	-0.286222108	0.874817830	0.052556535	0.023026721

TABLE XX
CURVE FITting RESULTS OF IAE AT $\tau_{2}{ }^{\prime} \tau_{1}=0.5$
$I A E=A+B /\left(C+\tau_{3} / \tau_{1}\right)$

θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.005723501	0.044636203	0.175905496	0.001548603
0.2	0.018421233	0.170275133	0.378533305	0.007698625
0.3	0.024982446	0.376934291	0.593279038	0.013576250
0.4	0.023885942	0.667527763	0.814519833	0.018727666
0.5	0.025313246	1.021796746	1.030279770	0.023433154
0.6	0.019418472	1.438737015	1.233900160	0.030232949
0.7	0.006473725	1.972655198	1.476180938	0.033398483
0.8	-0.016637006	2.607974929	1.720485654	0.038292199
0.9	-0.026450639	3.277881598	1.959725166	0.042601618
1.0	-0.064234566	4.149732510	2.232595244	0.049525759

TABLE XXI

> CURVE FITTING RESULTS OF PROPORTIONAL GAIN
> AT $\tau_{2} / \tau_{1}=0.6$

$$
K_{C} K_{L}=A-e^{-B \tau_{3} / \tau_{1}}\left[C \cos \left(D \tau_{3} / \tau_{1}\right)-E \sin \left(D \tau_{3} / \tau_{1}\right)\right]
$$

θ_{d} / τ_{1}	A	B	C	E	F	Standard Deviation
0.1	26.01722	2.29125	17.64455	-0.000000004	87.22845	0.963223
0.2	9.30203	0.91006	4.90682	0.956787623	-2.80380	0.517259
0.3	6.39028	0.90794	3.25597	0.000000005	11.65437	0.181501
0.4	4.42277	1.00460	2.10465	0.000000003	2.59171	0.105597
0.5	3.45279	0.89220	1.53625	-0.000000005	1.548603	0.051564
0.6	2.84460	0.87737	1.21646	0.000000007	2.847037	0.049199
0.7	2.43683	0.82642	1.00447	-0.000000002	3.487253	0.061928
0.8	2.12771	1.40966	0.80738	0.002412956	281.778372	0.017395
0.9	1.75061	0.31927	0.55093	0.001532237	-202.951608	0.034652
1.0	1.74287	0.67492	0.61150	0.605624953	0.171433	0.017289

TABLE XXII
CURVE FITTING RESULTS OF integral time at
$\tau_{2} / \tau_{1}=0.6$
$\tau_{1} \tau_{I}=A+B\left(1-e^{-B \tau_{3} / \tau_{1}}\right)-D e^{E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)$

θ_{d} / τ_{1}	A	B	C	D	E	F	G Standard Deviation 0.1 4.0331	-0.27636
-9.5196	3.3238	-0.17124	0.47005	-1.66247	0.16281			
0.2	2.6040	0.31545	0.0497	2.2010	-0.12636	0.34418	-1.24938	0.08070
0.3	0.0012	0.34348	-0.3461	0.9782	0.16556	0.23971	0.57321	0.08229
0.4	0.7043	0.21007	0.2621	2.1962	0.02892	0.19264	-0.08434	0.06073
0.5	0.9996	1.80525	-0.1337	1.9469	-0.72558	0.19734	-2.90700	0.04186
0.6	0.3608	0.79708	-0.2263	0.1901	0.37855	0.16296	1.66256	0.04203
0.7	-0.0240	1.23100	-0.0137	1.2420	0.04262	0.15688	0.47906	0.05537
0.8	1.4091	0.96715	-0.0684	1.7939	-0.38885	0.19820	-2.66156	0.01989
0.9	1.0035	3.81389	0.0564	3.1341	0.02826	0.11700	-0.14357	0.04391
1.0	0.7807	0.21010	-0.2489	0.2479	0.10057	0.38764	-1.05633	0.02685

TABLE XXIII
CURVE FItTING RESULTS OF DERIVATIVE TIME

AT $\tau_{2} / \tau_{1}=0.6$

		$\tau_{\mathrm{D}} \tau_{1}=\mathrm{A}+\mathrm{B} \mathrm{e}^{\mathrm{C} \tau_{3} / \tau_{1}}$		
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C	Standard Deviation
0.1	0.264326516	0.183215578	-5.125286637	0.023506568
0.2	0.280211339	0.089596905	0.109112121	0.040979224
0.3	0.427081197	0.004957846	0.393595557	0.016116829
0.4	0.031352681	0.436013860	0.033684509	0.018470226
0.5	0.077840398	0.422322973	0.053440390	0.010352637
0.6	0.290453325	0.236682115	0.104258247	0.014116076
0.7	-0.199801389	0.756245496	0.044111733	0.027029529
0.8	0.098796511	0.476531864	0.078594691	0.017859875
0.9	0.336517516	0.275309050	0.118747755	0.023278755
1.0	0.414683946	0.220446061	0.150580955	0.025698944

TABLE XXIV

CURVE FITTING RESULTS OF IAE AT $\tau_{2} / \tau_{1}=0.6$

		IAE $=\mathrm{A}-\mathrm{B} /\left(\mathrm{C}+\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.005555820	0.044564179	0.174624427	0.001450922
0.2	0.015771988	0.176596147	0.388040761	0.006596532
0.3	0.018094853	0.402301547	0.621958356	0.012048839
0.4	0.024188710	0.686589086	0.828206710	0.019298545
0.5	0.016343437	1.076817140	1.060067331	0.024344899
0.6	0.009153153	1.542303908	1.293436572	0.029062106
0.7	-0.001269079	2.075340753	1.516690928	0.036023204
0.8	-0.033097292	2.793936890	1.796307874	0.038048556
0.9	-0.052505463	3.547737517	2.054861139	0.042081739
1.0	-0.093276028	4.519497875	2.358059142	0.042202062

TABLE XXV
CURVE FITTING RESULTS OF PROPORTIONAL GAIN

AT $\tau_{2} / \tau_{1}=0.7$

$$
K_{C} K_{L}=A-e^{-B \tau_{3}^{/ \tau} 1}\left[C \cos \left(D \tau_{3} / \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]
$$

θ_{d} / τ_{1}	A	B	C	D	E	Standard Deviation
0.1	27.69377	2.567600	19.30382	-0.000000371	55.54893	0.740850
0.2	9.62531	1.172778	4.89178	1.782716326	-0.41195	0.567129
0.3	7.28867	0.583158	3.72150	0.000000004	-1.29708	0.383679
0.4	4.76541	0.920671	2.31443	-0.000000001	-0.40174	0.122889
0.5	3.70815	0.850482	1.69000	-0.000000075	1.50395	0.082126
0.6	3.01409	0.821919	1.30946	0.000000005	2.03925	0.031818
0.7	2.65485	0.688195	1.14687	-0.000000010	-0.41448	0.053259
0.8	2.27549	0.764863	0.92822	-0.000000023	0.37670	0.024944
0.9	2.00670	1.354058	0.74655	0.008271015	80.68862	0.012694
1.0	1.89259	0.632914	0.74549	-0.000000006	0.58780	0.033810

TABLE XXVI

$$
\begin{gathered}
\text { CURVE FITTING RESULTS OF } \\
\text { INTEGRAL TIME AT } \\
\tau_{2} / \tau_{1}=0.7
\end{gathered}
$$

$$
\tau_{1} / \tau_{r}=A+B\left(1-e^{-C \tau_{3} / \tau_{1}}\right)+D e^{-E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

θ_{d} / τ_{1}	A	B	C	D	E	F	G	Standard Deviation
0.1	0.3422	8.1236	-0.12236	0.33079	-0.00467	1.24529	-3.56925	0.06339
0.2	0.5405	2.6857	-0.49521	3.16727	-0.74571	0.47416	-3.15364	0.08000
0.3	3.9802	18.4645	0.00680	53.14755	-0.40354	0.01803	-3.07597	0.04594
0.4	1.6645	2.0395	-0.02386	1.15781	-0.19637	0.36312	-1.59532	0.04070
0.5	0.3818	0.0661	-0.12358	1.30656	0.02759	0.20352	0.07950	0.08192
0.6	1.1853	0.2012	-0.43661	0.67629	-0.05883	0.36676	-1.32293	0.01682
0.7	2.1021	-0.4987	-0.76848	1.55725	-0.31115	0.21950	-1.70526	0.06031
0.8	1.5993	0.3686	0.18203	1.13695	-0.00869	0.29869	-1.17113	0.01562
0.9	2.4492	-0.5913	-0.70767	3.27271	-0.22700	-0.00037	-0.61624	0.01358
1.0	0.4056	0.000010	1.47230	0.24969	0.23577	0.22791	0.55064	0.03035

TABLE XXVII
CURVE FITting RESULTS OF
DERIVATIVE TIME
AT $\tau_{2} / \tau_{1}=0.7$

		$\tau_{\mathrm{D}} / \tau_{1}=\mathrm{A}+\mathrm{B} \mathrm{e}^{\mathrm{C} \tau_{3} / \tau_{1}}$		
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C	Standard Deviation
0.1	0.280322198	0.209153818	-4.847470366	0.026383444
0.2	-3739.472446	3739.867383	0.000004448	0.049294172
0.3	-24821.433674	24821.904083	0.000000059	0.027317077
0.4	0.255335620	0.245344088	0.053786376	0.016589548
0.5	0.420797567	0.112202746	0.138804267	0.017982601
0.6	0.020783587	0.537510957	0.052035615	0.009990302
0.7	-8805.370351	8805.960187	0.000003808	0.024534212
0.8	-0.335221379	0.944753310	0.041538190	0.020990415
0.9	0.293609472	0.348623639	0.102367245	0.014434986
1.0	-12949.157933	12949.820202	0.000003718	0.030028359

TABLE XXVIII
CURVE fitting Results of iae

$$
\mathrm{AT} \tau_{2} \tau_{1}=0.7
$$

		IAE $=A-B /\left(C-\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.005458164	0.044722977	0.174688724	0.001286274
0.2	0.015306185	0.178202497	0.388704766	0.005902130
0.3	0.019881743	0.402947058	0.618803619	0.012844453
0.4	0.017175085	0.722428287	0.857270011	0.018593623
0.5	0.012731650	1.131855938	1.100017894	0.025234654
0.6	-0.000279755	1.611543034	1.323993878	0.029720495
0.7	0.006147035	2.096322459	1.520547321	0.039123653
0.8	-0.042351118	2.930744175	1.847527993	0.039744570
0.9	-0.077001407	3.781385706	2.130552622	0.042785581
1.0	-0.089333920	4.543064601	2.338592491	0.049491427

TABLE XXIX
CURVE FITTING RESULTS OF PROPORTIONAL GAIN

AT $\tau_{2} / \tau_{1}=0.8$

θ_{d} / τ_{1}	$K_{C} K_{L}=$ A	$-\mathrm{B} \quad \tau_{3}$	$\left[\begin{array}{cc}\mathrm{C} & \mathrm{co} \\ \hline\end{array}\right.$ C	$\left.\left.\tau_{3} / \tau_{1}\right)+E \sin \left(\mathrm{D} \tau_{3} / \tau_{1}\right)\right]$		
		B		D	E	Standard Deviation
0.1	27.32212	8.48587	15.81669	0.063323817	2598.9216	1.268503
0.2	10.556903	2.03212	5.63889	-2.073522846	-2. 557892	0.726696
0.3	7.742700	0.70565	4.15667	-0.000000000	59.153361	0.271635
0.4	5.252423	0.79585	2.64103	-0.000000101	3.626108	0.160436
0.5	4.069885	0.68822	1.91817	0.000000006	0.427682	0.101287
0.6	3.208561	0.77745	1.40624	-0.000000000	1.998330	0.041696
0.7	2.740232	0.74861	1.17557	-0.000000323	3.209259	0.029565
0.8	2.406327	0.71258	1.00408	0.000000014	3.562319	0.036050
0.9	1.909436	0.31803	0.61037	0.031267403	-10.644044	0.025920
1.0	1.931674	1.15231	0.72571	0.005389270	90.643926	0.008946

TABLE XXX

$$
\begin{gathered}
\text { CURVE FITTING RESULTS OF } \\
\text { INTEGRAL TIME AT } \\
\tau_{2} / \tau_{1}=0.8
\end{gathered}
$$

$$
\tau_{1} / \tau_{3}=A+B\left(1-e^{-B \tau_{3} / \tau_{1}}\right)+D e^{-E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

θ_{d} / τ_{1}	A	B	C	D	E	F	G	Standard Deviation
0.1	2.0670	-0.81998	-1.30625	3.7987	-0.00825	0.25857	-0.40637	0.12138
0.2	1.8649	8.29391	-0.02365	16.3023	-0.99412	0.12919	-3.06409	0.05949
0.3	-0.3455	1.95396	-0.10623	1.6928	0.34148	0.05778	2.65552	0.05833
0.4	-9.4900	1.92823	-0.07725	10.3935	0.00510	0.05074	1.27365	0.10184
0.5	0.2705	0.39736	-0.52047	0.2580	0.27548	0.22134	0.84474	0.10977
0.6	1.5124	-0.07469	0.23510	1.6833	-0.43241	0.25697	-2.50386	0.02183
0.7	0.6105	0.38731	0.06515	0.7676	0.06315	0.24581	-0.14247	0.02448
0.8	1.3185	-0.00781	-1.53201	0.7948	-0.12478	0.29997	-1.58384	0.03685
0.9	1.4696	-3.67146	-0.00108	1.0013	-0.16409	0.25501	-1.89497	0.02287
1.0	0.8890	11.58321	-0.00531	0.5443	-0.31748	0.36220	-2.39940	0.00951

TABLE XXXI
CURVE FITTING RESULTS OF DERIVATIVE TIME

AT $\tau_{2} / \tau_{1}=0.8$

$$
\tau_{D} / \tau_{1}=A+B e^{C \tau_{3} / \tau_{1}}
$$

θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.313054829	0.001651750	0.543880163	0.055739571
0.2	0.336894921	0.090623337	0.098747130	0.046853081
0.3	0.485684608	0.053440674	-3.697428326	0.020059867
0.4	0.538059462	0.001916993	0.549796524	0.024401043
0.5	0.511458711	0.054447330	0.182649419	0.025350400
0.6	0.444115226	0.148721839	0.133209349	0.008802239
0.7	0.294458410	0.327252663	0.084555799	0.011106046
0.8	0.449393430	0.204161976	0.128899226	0.021250243
0.9	0.515912270	0.164062946	0.164331718	0.022915223
1.0	0.435895049	0.267779382	0.125931586	0.015916512

TABLE XXXII

CIRVE FITTING RESULTS OF IAE $\mathrm{AT} \tau_{2} \tau_{1}=0.8$

		IAE $=A+B /\left(C+\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.006348029	0.044831013	0.176182026	0.001717612
0.2	0.015369666	0.179195159	0.389618512	0.005693040
0.3	0.018257812	0.411217156	0.626693384	0.012311945
0.4	0.017727088	0.733634934	0.865200204	0.018796204
0.5	0.016334054	1.139001693	1.101646717	0.025642044
0.6	-0.008270732	1.688002244	1.365935558	0.029815431
0.7	-0.025066494	2.294059752	1.613125810	0.034853071
0.8	-0.046120274	3.004847736	1.870020153	0.039979835
0.9	-0.082888729	3.912008646	2.174028711	0.041552235
1.0	-0.124862455	4.895824272	2.451653088	0.046649100

TABLE XXXIII
CURVE FITTING RESULTS OF
PROPORTIONAL GAIN
AT $\tau_{2} / \tau_{1}=0.9$

$$
K_{C} K_{L}=A-e^{-B \tau_{3} / \tau_{1}}\left[C \cos \left(D \tau_{3} / \tau_{1}\right)+E \sin \left(D \tau_{3} / \tau_{1}\right)\right]
$$

θ_{d} / τ_{1}	A	B	C	D	E	Standard Deviation
0.1	29.29959	4.787268	21.13594	-2.332855213	-14.99868	1.943485
0.2	11.54144	4.506433	5.54898	0.062077275	526.60280	0.552682
0.3	8.55324	0.544232	4.59922	-0.000001698	1.87016	0.419526
0.4	5.20808	1.066881	2.57344	-0.000000035	0.03550	0.172926
0.5	4.10794	0.890244	1.93688	0.000000002	0.77670	0.072607
0.6	3.46153	0.690204	1.56889	-0.000000005	3.55701	0.076357
0.7	2.93523	0.646403	1.27028	-0.000000008	2.52906	0.054451
0.8	2.50438	1.044097	1.03577	0.008242687	47.93714	0.020662
0.9	2.21726	1.166595	0.85345	0.003252753	165.66986	0.016029
1.0	2.06582	0.830563	0.81193	0.001656572	141.09397	0.036460

TABLE XXXIV
CURVE EITting RESULTS OF INTEGRAL TIME AT

$$
\tau_{2} / \tau_{1}=0.9
$$

| | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\tau_{1} / \tau_{\mathrm{I}}=\mathrm{A}+\mathrm{B}\left(1-\mathrm{e}^{-\mathrm{C} \tau_{3} / \tau_{1}}\right)+\mathrm{D} \mathrm{e}^{-\mathrm{E} \tau_{3} / \tau_{1}} \sin \left(\mathrm{~F} \tau_{3} / \tau_{1}+G\right)$ | | | | | | | |
| $\theta_{\mathrm{d}} / \tau_{1}$ | A | B | C | D | E | F | G | Standard
 Deviation |
| 0.1 | -1.4364 | -0.04905 | 0.82025 | 1.7629 | 0.40462 | 0.24180 | 1.75113 | 0.22755 |
| 0.2 | 2.6754 | -0.01963 | 0.38434 | 4.1196 | -0.52773 | 0.37965 | -2.59431 | 0.04312 |
| 0.3 | 3.1788 | -0.36885 | -2.73077 | 5.2538 | -0.24340 | -0.00476 | -0.52761 | 0.05737 |
| 0.4 | 0.6056 | -0.22020 | -6.18932 | 3.1404 | -0.05451 | 0.12315 | -0.01671 | 0.03476 |
| 0.5 | 0.2693 | 0.94777 | -0.21846 | 0.4210 | 0.39568 | 0.04207 | 2.72585 | 0.03799 |
| 0.6 | 1.5418 | 0.13500 | -0.22997 | 1.9908 | -0.42469 | 0.23771 | -2.57909 | 0.06498 |
| 0.7 | 0.2143 | 0.11339 | -0.14577 | 0.3023 | 0.41054 | 0.14080 | 1.96123 | 0.03174 |
| 0.8 | 0.7409 | 1.65364 | 0.00917 | 0.5187 | 0.06537 | 0.28069 | -0.49938 | 0.01995 |
| 0.9 | 0.5230 | 1.14280 | -0.26755 | 1.5530 | -0.33628 | 0.16877 | -3.11774 | 0.01120 |
| 1.0 | 0.2821 | 0.38740 | 0.07375 | 0.4362 | 0.15546 | 0.22257 | 0.46422 | 0.03250 |

TABLE XXXV
CURVE FITTING RESULTS OF DERIVATIVE TIME AT $\tau_{2} / \tau_{1}=0.9$

θ_{d} / τ_{1}	$\tau_{D} i \tau_{1}=A+B e^{C \tau_{3} / \tau_{1}}$			
	A	B	C	Standard Deviation
0.1	0.332379419	0.006979067	0.309974587	0.064630189
0.2	0.428541000	0.005660188	0.474990923	0.045914960
0.3	0.501425120	0.068635982	-3.105743341	0.025433727
0.4	0.522229788	0.035209341	0.214729064	0.028571062
0.5	0.561668230	0.033603011	0.252106363	0.015708873
0.6	0.287761997	0.332298163	0.061364028	0.021800547
0.7	-743.1650429	743.8105325	0.000042029	0.023254251
0.8	0.545647517	0.135033859	0.169548694	0.016526330
0.9	0.501469121	0.202292747	0.141093396	0.012866524
1.0	0.229916733	0.499982175	0.070327518	0.028121240

TABLE XXXVI
CURVE FITting RESULTS OF IAE
AT $\tau_{2} / \tau_{1}=0.9$

		IAE $=A+B /\left(C+\tau_{3} / \tau_{1}\right)$		
θ_{d} / τ_{1}	A	B	C	Standard Deviation
0.1	0.006812337	0.044324756	0.173071687	0.001680627
0.2	0.013380539	0.183683955	0.396325379	0.004856191
0.3	0.017561009	0.416255734	0.630916309	0.012253302
0.4	0.013005267	0.760306616	0.888018731	0.018483715
0.5	0.005894452	1.190563353	1.133643675	0.024088249
0.6	-0.000092676	1.676314699	1.353200757	0.032476558
0.7	-0.018017842	2.296107912	1.606413832	0.037688033
0.8	-0.063656572	3.174869806	1.940334269	0.038511269
0.9	-0.100018841	4.074139373	2.216964190	0.042882621
1.0	-0.107443107	4.854608499	2.425098081	0.049352346

TABLE XXXVII
CURVE FITTING RESULTS OF
PROPORTIONAL GAIN
AT $\tau_{2} / \tau_{1}=1.0$

θ_{d} / τ_{1}	$\mathrm{K}_{\mathrm{c}} \mathrm{~K}_{1}$ A	$-8 \tau_{3}$	$\left[C \cos \left(D \tau_{3} / \tau_{1}\right)-E \sin \left(D \tau_{3} / \tau_{1}\right)\right]$			
		B	C	D	E	Standard Deviation
0.1	27.97665	1.277220	18.71138	-0.013734497	2691.38532	1.243995
0.2	11.03440	0.831614	5.76175	0.017341021	-426.24851	0.325783
0.3	9.11317	0.527492	4.94877	0.000000001	7.61301	0.433618
0.4	5.35217	1.329382	2.69544	-0.000000054	-0.35813	0.123758
0.5	4.36313	0.881278	2.07582	-0.000000001	11:85649	0.081050
0.6	3.73176	0.585626	1.71378	0.000000002	1.64459	0.134795
0.7	3.03594	0.703950	1.32162	0.000000001	2.86447	0.034941
0.8	2.64029	0.674629	1.11481	-0.000000002	2.94392	0.022607
0.9	2.42488	0.538789	1.01055	-0.000000001	1.64608	0.042295
1.0	2.11698	1.093662	0.80927	0.002258698	231.14457	0.023096

TABLE XXXVIII

> CURVE FITTING RESULTS OF INTEGRAL TIME AT $\tau_{2} / \tau_{1}=1.0$

$$
K_{C} K_{L}=A+B\left(1-e^{-C \tau_{3} / \tau_{1}}\right)+D e^{-E \tau_{3} / \tau_{1}} \sin \left(F \tau_{3} / \tau_{1}+G\right)
$$

θ_{d} / τ_{1}	A	B	C	D	E	F	G	Standard Deviation
0.1	4.9788	-317.313	-0.000313	68.4228	-0.66537	0.05120	-3.07697	0.23203
0.2	-0.4640	-0.02649	0.770540	0.83656	0.40341	0.23307	1.68286	0.06642
0.3	-0.3964	0.00359	0.820710	1.55175	0.11662	0.13840	0.55684	0.06111
0.4	1.7666	0.25587	-0.050763	1.56676	-0.31861	0.32394	-2.12808	0.02756
0.5	0.7659	2.35067	-0.070482	3.33389	-1.06694	0.20502	-3.05806	0.05312
0.6	0.9567	0.87363	-0.031840	0.92797	-0.08163	0.19296	-0.62152	0.07621
0.7	0.3342	-0.37382	0.227059	0.13029	0.23911	0.36880	1.01465	0.02007
0.8	0.3319	0.30451	0.069559	0.54881	0.11885	0.21494	0.23286	0.01732
0.9	0.2471	1.33289	0.042734	0.43116	0.20230	0.24918	0.51822	0.01906
1.0	1.1162	-0.01643	0.302313	0.72669	-0.20858	0.27543	-2.03399	0.01076

TABLE XXXIX

CURVE FITTING RESULTS OF

DERIVATIVE TIME
AT $\tau_{2} / \tau_{1}=1.0$

		$\tau_{\mathrm{D}} / \tau_{1}=\mathrm{A}+\mathrm{B} \mathrm{e}^{\mathrm{C} \tau_{3} / \tau_{1}}$		
$\theta_{\mathrm{d}} / \tau_{1}$	A	B	C	Standard Deviation
0.1	0.346807412	0.009318093	0.375526558	0.068368258
0.2	0.438213388	0.012208334	0.396096441	0.052524993
0.3	0.513235098	0.089222744	-2.783175980	0.029998423
0.4	0.416640880	0.159690346	0.081117548	0.029461411
0.5	0.591686804	0.026180365	0.255673066	0.021314050
0.6	0.508411250	0.144039475	0.094638039	0.033397436
0.7	0.552430972	0.122364404	0.156130305	0.008693198
0.8	0.568489066	0.130165347	0.170849612	0.021920842
0.9	-2.139914097	2.867235334	0.012439425	0.020982080
1.0	0.614959678	0.145996564	0.174546359	0.019681037

TABLE XXXX
CURVE FITTING RESULTS OF IAE AT $\tau_{2} / \tau_{1}=1.0$

θ_{d} / τ_{1}	$I A E=A+B /\left(C+\tau_{3} / \tau_{1}\right)$			
	A	B	C	Standard Deviation
0.1	0.007523122	0.043729788	0.168409667	0.001592648
0.2	0.013544995	0.181414679	0.390095215	0.005703725
0.3	0.015455970	0.424391413	0.639752301	0.012028255
0.4	0.010440535	0.773800926	0.897400310	0.018183932
0.5	0.002680748	1.221853387	1.154808658	0.024398188
0.6	0.006550486	1.668701284	1.345038548	0.034143199
0.7	-0.041439356	2.457885708	1.683735847	0.035092382
0.8	-0.078739700	3.330473942	2.003304313	0.038672251
0.9	-0.094706881	4.116087418	2.231189877	0.045464691
1.0	-0.152692543	5.287633800	2.567201538	0.045625728

APPENDIX E

SAMPLE APPLICATION
PROGRAM

```
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C ..... C
THIS IS THE PROGRAM TO SEE THE RESPONSE TO A ..... C
STEP CHANGE IN LOAD. ..... C
DEFINITON OF VARIABLES; ..... C
```C
```

D : DEAD TIME ARRAY ..... C
TAU1,TAU2 : TIME CONSTANTS ..... C
RKC : CONTROLLER GAIN ..... C
TAUI : INTEGRAL TIME ..... C
TAUD : DERIVATIVE TIME ..... C
R : SET POINT CHANGE ..... C
$\mathrm{XA}, \mathrm{XB}, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ : CONCENTRATIONS ..... C
THETAD : DEAD TIME ..... C
RKM : MEASUREMENT GAIN ..... C
RKV : VALVE GAIN ..... C
E : ERROR ..... C
V : VALVE SIGNAL ..... C
C : MEASUREMENT OUTPUT ..... C
EPAST : ONE STEP PREVIOUS ERROR ..... C
ERINT : INTEGRAL OF ERROR ..... C
ABSIE : INTEGRAL OF ABSOLUTE VALUE OF ERROR ..... C
IDT : MAX. LENGTH OF DEAD TIME ARRAY ..... C
TT : TOTAL SIMULATION TIME ..... C
TPRINT : PRINT INTERVAL ..... C
K,I : LOOP COUNTER ..... C
TFLAG : PRINT COUNTER ..... C
C ..... C
$\operatorname{ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc~}$
EXTERNAL DTX2DOT,DTX3DOT
DIMENSION D(2000)
DATA TAU1,TAU2,TAU3/1.0, 0.5,1.0/
DATA RKC,TAUI,TAUD/2.206,1.213,0.6562/
DATA R,XA,XB/O.,0.,1.0/
DATA DELTA,THETAD/0.001,1.0/DEFINE GAIN OF MEASUREMENT AND VALVEC
$\mathrm{RKM}=0.004$
$\mathrm{RKV}=166.6667$
OPEN(UNIT=6,FILE='C:\COMPILER\FOR77\RESP2.DAT', STATUS='NEW')
$\operatorname{WRITE}(6,3)$
FORMAT(3X,'TIME',7X,'X4',8X,'X6',8X,'V',9X,'ABSIE')
INITIALIZE VARIABLES
$\Sigma=0$.

```
 V=0.
 C=0.
 EPAST=0.
 ERINT=0.
 ABSIE=0.
 IDT=INT(THETAD/DELTA+1.)
 DU31=EXP(-DELTA/TAU3)
 DU32=1.0-DU31
 DU3 2XB=XB*DU32
 DO 25 I=1,IDT
 D(I)=0.
 CONTINUE
 TT=25.0*TAU1
 TPRINT=0.1
 K=IDT
 L=1
 TIME=0.
 TFLAG=0.
 X2=0.
 X3=0.
 X4=0.
 x5=0.
 x6=0.
C
C CONTROL LOOP
C
28 C=RKM*X6
 E=R-C
 V=RKC*(E+ERINT/TAUI + (E-EPAST)*TAUD/DELTA)
 VV=V
 IF (V .GE. 6.) V=6.
 IF (V . LE.-6.) V=-6.
 X1=XA+V*RKV/1.
 RK11=DTX2DOT(X1,X2,TAU1)
 RK12=DTX3DOT(X2,X3,TAU2)
C
 RK21=DTX2DOT(X1,X2+0.5*RK11,TAU1)
 RK22=DTX3DOT (X2+0.5*RK11,X3+0.5*RK12,TAU2)
C
RK31=DTX2DOT(X1,X2+0.5*RK21,TAU1)
RK32 =DTX3DOT (X2+0.5*RK21,X3+0.5*RK22,TAU2)
C
RK41=DTX2DOT(X1,X2+RK31,TAU1)
RK42=DTX3DOT(X2+RK31,X2+RK32,TAU2)
C
X2=X2+(RK11+2.0*RK21+2.0*RK31+RK41)/6.0
X3=X3+(RK12+2.0*RK22+2.0*RK32+RK42)/6.0
C
IF (TIME .LT. (TELAG-DELTA/2.)) GO TO 30
WRITE \((6,40)\) TIME, X5, X6, V, ABSIE
```

30
IF (TIME .GT. TT) GO TO 100
TIME=TIME+DELTA
ERINT=ERINT+E*DELTA
ABSIE=ABSIE+ABS(E*DELTA)
EPAST=E
D(K) = X3
X4=D(L)
X5=X5*DU31+DU32XB
X6=X4+X5
K=K+1
L=L+1
IF (K .LE. (IDT+1)) GO TO 50
K=1
50 IF (L .LE. (IDT+1)) GO TO 60
L=1
60 GO TO 28
100 STOP
END
C
C
REAL FUNCTION DTX2DOT(CX1,CX2,TAU1)
DELTA=0.001
DTX2DOT=DELTA*(CX1-CX2)/TAU1
RETURN
END
C
C
REAL FUNCTION DTX3DOT(CX2,CX3,TAU2)
DELTA=0.001
DTX3DOT=DELTA*(CX2-CX3)/TAU2
RETURN
END

```

\section*{APPENDIX F}

GRAPHS OF SAMPLE APPLICATION

X5 AND X6 VS TIME

Figure 63. Response of \(X_{5}\) and \(X_{6}\) in Sample Application at \(\tau_{2} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=0.1\), and \(\theta_{d} / \tau_{1}=0.5\)

VALVE SIGNAL VS TIME

Figure 64. Valve Signal in Sample Application at \(\tau_{2} / \tau_{1}=0.1\), \(\tau_{3} / \tau_{1}=0.1, \quad \theta_{d} / \tau_{1}=0.5\)

X5 AND X6 VS TIME

Figure 65. Response of \(X_{5}\) and \(X_{6}\) in Sample Application at \(\tau_{2} / \tau_{1}=0.1, \quad \tau_{3} / \tau_{1}=0.1\), and \(\theta_{d} / \tau_{1}=1.0\)

VALVE SIGNAL VS TIME

Figure 66. Valve Signal in Sample Application at \(\tau_{2} / \tau_{1}=0.1\)
\(\tau_{3} / \tau_{1}=0.1\), and \(\theta_{d} / \tau_{1}=1.0\)

X5 AND X6 VS TIME

Figure 67. Response of \(X_{5}\) and \(X_{6}\) in Sample Application at
\(\tau_{2} / \tau_{1}=0.1, \tau_{3} / \tau_{1}=2.0\), and \(\Theta_{d} / \tau_{1}=0.1\)

VALVE SIGNAL VS TIME

Figure 68. Valve Signal in Sample Application at \(\tau_{2} / \tau_{1}=0.1\)
\(\tau_{3} / \tau_{1}=2.0\), and \(\theta_{d} / \tau_{1}=0.1\)

X5 AND X6 VS TIME

Figure 69. Response of \(X_{5}\) and \(X_{6}\) in Sample Application at \(\tau_{2} / \tau_{1}=0.5, \quad \tau_{3} / \tau_{1}=2.0\), and \(\theta_{d} / \tau_{1}=0.1\)

VALVE SIGNAL VS TIME

Figure 70. Valve Signal in Sample Application at \(\tau_{2} / \tau_{1}=0.5\), \(\tau_{3} / \tau_{1}=2.0\), and \(\theta_{d} / \tau_{1}=0.1\)

X5 AND X6 VS TIME

Figure 71. Response of \(X_{5}\) and \(X_{6}\) in Sample Application at
\(\tau_{2} / \tau_{1}=0.5, \tau_{3} / \tau_{1}=4.0\), and \(\theta_{d} / \tau_{1}=0.5\)

VALVE SIGNAL VS TIME

Figure 72. Valve Signal in Sample Application at \(\tau_{2} / \tau_{1}=0.5\)

APPENDIX G

GRAPHS OF MAXIMUM
LOAD FRACTION

Figure 73. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.1\)

－Oマは」 \(\mathrm{QVO7} \times \mathrm{XVW}\)

Figure 75. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.3\)

Figure 76. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.4\)

Figure 78. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.6\)

TAU3/TAU1
Figure 79. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.7\)

Figure 80. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.8\)

Figure 81. Max. Load Fraction at \(\tau_{2} / \tau_{1}=0.9\)

Figure 82. Max. Load Fraction at \(\tau_{2} / \tau_{1}=1.0\)
```

        VITA
    Tae-Won Kang
    Candidate for the degree of
Doctor of Philosophy

```

Thesis: EFFECT OF DISTURBANCE DYNAMICS ON OPTIMUM CONTROL OF SECOND ORDER PLUS DEAD TIME PROCESSES

Major Field: General Engineering
Biographical:
Personal Data: Born in Mok-Po, Korea, february 5, 1956, the sun of Ok-Sim Choi and Hee-Sin Kang.

Education: Graduated from Kyung-Bok high school, Seoul, Korea, in february 1985; received Bachelor of Science Degree in Textile Engineering from University of Han-Yang, Seoul, Korea, in February 1981; received Master of Science degree in Chemical Engineering at Ft. Collins, Colorado, in May 1985; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1989.```

[^0]: The normalized IAE values of the closed loop with a PID

