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CHAPTER I 

INTRODUCTION 

The research work described in this paper deals with a 

study of the effect of disturbance dynamics on the optimum 

feedback control systems whose transfer function can be 

expressed by a second order plus dead time (SOPDT). The dis­

turbances considered in this research are infrequent distur­

bances where it is expected that the control system will com­

plete its response prior to the entry of another disturbance. 

The effect of disturbance dynamic was considered by using 

separate transfer functions for the response to the distur­

bance variable and the manipulated variable. Only critically 

damped or overdamped SOPDT processes are considered. 

Control systems presented are those that involve a single 

manipulated variable and a single controlled variable (SISO). 

The controller involved in this research is the conventional 

three mode proportional-integral-derivative (PID) controller. 

Digital computer simulation is used to find the optimum 

controller tuning constants, controller gain, integral time 

and derivative time, for the SOPDT systems. The feedback 

control loop includes the process model (SOPDT), sensor, PID 

controller, and valve. A simulated control system is used as 

the object function for an optimization program based on the 
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"Rosenbrock Technique". An integral criteria, the "Integral 

of Absolute value of of Error (IAE)", is introduced to com­

pare the performance and to obtain the optimum tuning const­

ants (giving lowest IAE) from the different set of controller 

tuning constants. 

The optimum tuning constants are dependent upon the par­

ameters of the control loop dynamic model and disturbance 

dynamic model. Previous workers have dealt with this problem 

using disturbance models based on the simple step changes in 

set-point and load variables, and a sequence of random step 

changes in load variable. The unique feature of this research 

is that the disturbance is modeled as first order and enters 

the loop at the process output. As the two time constants of 

the SOPDT process are varied, the time constant of the first 

order disturbance is varied to examined the effect of distur­

bance dynamics to a controller design. 

For a particular set of conditions optimum tuning cons­

tants will be found using the control system model as the 

objective function of an optimization program suitable for a 

multiple variable search involving a nonlinear function. 

Controller actions will be investigated by the closed loop 

response for the PID controller based on the optimum cont­

roller tuning constants obtained by this research. 

In this study the manipulated variable is constrained to 

the limits corresponding to a fully closed or a fully opened 

valve position. Together with these limits, the lowest insta­

neous valve signal, will be used to investigate the range of 
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magnitude of disturbance which the optimum controller tuning 

constants obtained in this research can be applicable to. 

The results of this research will be applicable to prac­

tical control problems such as a heat exchanger control and 

a distillation column control. In these applications it is 

known that the controlled variable responds with different 

dynamics to changes in the disturbance variable and the mani­

pulated variable.Control system performance based on the con­

roller tuning constants obtained by the present study should 

be better than the the performance based on the controller 

tuning constants found by the previous workers who considered 

only the dynamic response of the controlled variable to the 

changes in manipulated variable, when the disturbance comes 

into the control loop after the process and it has different 

dynamics from the process. Also, control system performance 

based on the process approximation by second order plus dead 

time, instead of first order plus dead time, should be 

improved. 



CHAPTER II 

LITERATURE REVIEW 

Controller tuning is still a black art in spite of all 

the technical articles dealing with the subject that have 

been published in the last four decades. Today, computer 

simulation is used to extensively analyze the dynamics of 

chemical processes or aid in the design of controllers and 

study their effectiveness in controlling a given processes. 

Analog and digital computers have been used for this purpose, 

with emphasis having shifted almost entirely in favor of 

digital computers~ 

Selection of tuning constants for a control system may 

be accomplished by a trial-error procedure when a digital 

computer is available for a simulation of process response. 

This research describes a study of the effect of disturbance 

dynamics on the optimum PID control of SOPDT process using 

digital com-puter to evaluate the performance criteria of 

IAE. 

A first step in the application of the feedback control 

technology is to model the system mathematically by investi­

gating the dynamic response of the controlled variable to a 

change in some manipulated variable. Latour [1] showed that 

many processes are effectively represented by a second order 

4 
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with dead time model. Stern [2] developed a fast graphical 

method to evaluate the two time constants and the dead time 

of the damped second order process based on the step resp-

onse curve of the process. 

The process response of a second order or a higher order 

system with delay can be approximated by the following second 

order plus dead time model in the transfer function notation: 

SOPDT G (s) = 
p 

K 
p 

e 
-a 

d 
s 

('ts+ 1) ('ts+ 1) 
1 2 

( 1 ) 

The three mode proportional-integral-derivative controller 

which first obtained acceptance after World War II is still 

the most frequently applied controller up to now. Its mathe-

matical description is given below in the time domain and 

the Laplce domain. 

Time domain: 

dt 
J +Vs ( 2 ) de(t) 

where V = controller's bias signal (i.e., its actuating 
s 

signal when error= 0). 

Laplace domain: 

V(s) G ( s) K [ 1 + 1 + s J ( 3) = = l: 

E(s) c c 't s D 
I 

As we see in equation ( 2) and ( 3) I use of the PIO controller 

involves the specification of the three tuning parameters: 

K -proportional gain, l: -integral time and i:- -derivative time 
C I D 
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constants. If the derivative time tuning constant is set up 

to zero, then the PID controller will be reduced to two mode 

proportional-integral (PI) controller. 

Several PID controller tuning methods to evaluate the three 

tuning constants (K , r and L ) have been developed for the 
C I D 

control of SOPDT process. The Ultimate-cycle method origin-

ally proposed by Ziegler and Nichols [3] is based on the 

frequency response analysis with the feedback loop closed. 

These early methods were semi-empirical in nature and rela-

ted the stability considerations found in the linear control 

theory. More recent correlation have been developed with the 

aid of the digital computer. Lopez [4] developed correlation 

to find the optimum tuning constants for systems responding 

to step changes in load. He used same dynamic model as pro-

cess for a disturbance and developed the graphs by which the 

controller tuning constants can be related to the character-

istics of a popular process model based on three error inte-

gral performance criterion: Integral of the Square Error 

(ISE), Integral of the Absolute value of Error (IAE), and 

Integral of the Time-weighted Absolute Error (ITAE). Rovira 

[5] performed a similar study for FOPDT processes where the 

tuning relationship can also be derived for set point changes 

based on the performance criteria of minimum error integrals. 

The control systems used by Lopez and Rovira can be des-

cribed by the block diagram shown in figure 1 given in the 

next chapter. This diagram shows that they performed their 

study under the assumption that the controlled variable C(s) 



responds with the same dynamics represented as G (s) to a 
p 

change in load L(s) or manipulated variable V(s). The opti-

mization program used for their computer simulation is con-

sidered as a formalized trial and error procedure. These 

workers used an optimization program such as the technique 

derived by Rosenbrock [6] and obtained the tuning constants 

7 

which produced the minimum value of integral performance cri-

terion by means of the computer simulation. 

Smith et al. [7] approached controller tuning from the 

simple algebraic synthesis. They developed a tuning method 

which required only a knowledge of the two dominant poles of 

a process. According to this method, PID controller is 11 syn-

thesized" to give approximately first order plus dead time 

(FOPDT) closed loop response to step change in set point. 

It is possible to approximate a SOPDT process by a FOPDT 

(Cohen & Coon [8]), then the tuning constants can be obtained 

based on the approximate model. Weigand et al. [9] performed 

a study comparing these methods to the tuning methods based 

on the full SOPDT model. These workers found out that the 

tuning techniques based on the full SOPDT model gave much 

superior results compared to the approximated FOPDT model. 

Sood and Huddleston [10,11] performed the digital simul-

ation to obtain the tuning constants for a critically damped 

SOPDT system exposed to a sequence of step load changes of 

the random magnitude based on the IAE performance criteria. 

Disturbances were introduced at random and were filtered by a 

first order lag model, in which a new one occurred before the 



effects of last disturbance subsided. In their study, they 

discovered that different optimum tuning constants existed 

for frequent disturbances and for infrequent disturbances. 

8 

In the latter cases the control system response is substan­

tial 1 y complete and back at a set point prior to the entry of 

another disturbance. 

An another interesting point indicated by these workers 

was the presence of local minima in the IAE for the tuning 

constant values outside of the range predicted by previously 

developed tuning correlations. In some case these unexpected 

local minimums proved to be global minimums. This fact tells 

us that several different starting values of the tuning cons­

tants should be considered when a unimodal optimization tech­

nique is used in digital simulation. 

Hill, Kosinsani, and Basore [18] studied the effect of 

disturbance dynamics on optimum tuning of FOPDT processes. In 

this study we consider the effect of first order disturbances 

on second order plus dead time processes. The disturbance is 

considered to enter the control loop infrequently being ex­

pected that the control system will complete its response 

prior to the entry of a new disturbance. Also, four different 

starting values of tuning constants are used in the digital 

simulation to check the convergence to the global minimum. 



CHAPTER III 

DIGITAL COMPUTER SIMULATION 

Research Objectives 

In Chapter II, Literature Review, several methods were 

introduced to find the optimum PID controller tuning cons­

tants. Previous workers investigated the effect of distur­

bances performing digital computer simulation but they were 

limited to narrowly defined disturbances. The objective of 

this research is to study the effect of disturbance dynamics 

in determining the optimum PID controller tuning constants 

stants for SOPDT processes, where the simulation is designed 

using separate transfer functions for the response to the 

disturbance variable and the manipulated variable. 

The disturbance is modeled as first order and enters the 

control loop at the process output. The control loop which 

includes the process model, PID controller, valve and sensor, 

is simulated with a digital com_puter to calculate the minimum 

IAE values for the different sets of characteristics of the 

process and the disturbance model. 

Previous workers developed correlations which related 

the optimum tuning constants and the process dynamic parame­

ters. As previous workers did, in this work the optimum tuning 

constants will be described as a function of both process and 

g 



disturbance dynamic parameters. Also, such correlations for 

the integral of absolute value of error will be provided to 

illustrate the effect of process dead time and disturbance 

dynamics on the control system performance. 

10 

Another objective of this research will be to investi­

gate the range of disturbance magnitude which obtained cont­

roller tuning constants can be applicable to. If there are 

no constraints in the manipulated variable and the feedback 

control system is modeled as a system of linear equations, 

the magnitude of the disturbance will linearly affect the 

IAE value. Therefore, the values of optimum controller tuning 

constants will be independent of the change of disturbance 

magnitude. However, because the manipulated variable is con­

strained in the limits corresponding to a fully closed or a 

fully open actual valve, disturbances with magnitude large 

enough to saturate the valve will affect the calculation of 

optimum controller tuning constants. In this research optimum 

tuning constants were determined for load magnitudes small 

enough to avoid valve saturation during the response.The 

lowest and highest instaneous valve signal, will be invsti­

gated. Those extremes will be used to calculate the range of 

magnitude of disturbance which the optimum controller tuning 

constants obtained in this research can be applicable to. 

Digital Simulation Approach 

The generalized feedback control loop can be described 

as a block diagram shown in figure 2. It has an output C(s), 
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a potential disturbance L{s), and an available manipulated 

variable V(s). The disturbance, L(s), changes in an unpredic-

table manner and our control objective is to keep the value 

of output at the desired reference value, R(s). A feedback 

control takes the following generalized steps: 

1. measure the value of output using appropriate measuring 

device. 

2. compare the indicated value, C(s), to the desired set 

point value, R(S), then let the deviation variable ,e, be 

error: e = R(s) - C(s) 

3. The value of deviation,e, is supplied to the main contra-

ller. The controller in turn changes the value of the mani-

pulated variable in such a way as to reduce the magnitude of 

error deviation, e. Usually, the controller does not affect 

the manipulated variable directly but through the final con-

trol element like a valve. 

The control system used by previous workers is described 

in figure 1. The figure 2 represents the block diagram of the 

control system used for this research. The main difference 

between the two systems would be in the way the load distur-

bance, L(s), enters the control loop. According to the system 

described by figure 2 the transfer function of disturbance 

may have the different dynamics from the transfer function 

for the response to the manipulated variable. 

In figure 2, G (s) represents the transfer function of load 
p 

2 

variable L(s) on the response of the controlled variable C(s) 

and G (s) represents the transfer function of manipulated 
p 

1 
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L(s)~ 

R(s) '°' E(s) ..------..I + C(s) 

+-r~-----G-c_(_s_) ___ v_(_s_)_®~----_-_~_~_-___ G~-P~_(-_s-_)--~~~~~=~I -----

Figure 1. Block diagram used by Lopez and Rovira 

L(s) G ( s) 
p 

2 

+ 
R(s) E(s) V(s) 

· I 
+ ' C(s) 

+ 0 G ( s) G ( s) )@ 

I 
c p 

-j 1 

I 

Figure 2. Block diagram used in present study 

L ( s) ~ l....___r_:~+___,5 1 1 J 
~©~ K (1+-1-+-r s) ~~ ~ KPe d ~©l 

+ _1 c r 1 s o L::J ( t 1 s+1) ( t 2 s+1 ) 

_ lc(sJ 

.___._ __ -ii Km j+----------1 

Figure 3. Control loop with a SOPDT process and a First 
order disturbance. 

l 
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variable V(s) on the response of the controlled variable. 

In the control system studied by previous workers (figure 1) 

a single process transfer function G (s) is provided to rep­
P 

resent the dynamic effect of not only disturbance but also 

manipulated variable. The system shown in figure 2 describes 

the more general cases. It will become the same as the case 

used by previous workers if the transfer function G (s) and 
p 

G (s) have the same form. 
p2 

1 

The control system which will be used in simulation for 

this research is given in figure 3, giving detailed specif i-

cationto a general control loop described in figure 2. In 

this control system the process model is given by a second 

order plus dead time with a process gain K and the transfer 
p 

fucton of controller represents a conventional three mode 

proportional-integral-derivative (PID) controller. It has the 

three tuning constants: controller gain, K , integral time, 
c 

t ,and derivative time constant, ~ . Also, the measuring 
I D 

element gain K and the gain of valve K is involved in the 
m v 

control loop. 

Physical interpretation of the control system presented 

in this study is detailed in figure 4. The mixing process 

depicted by figure 4 are composed by two tanks in series 

which maintain constant liquid levels and flow rates. Two 

entering streams are being mixed and stirred by an agitator 

in the first tank. This well-mixed liquid with the outlet 

concentration X goes through the second tank, then produce 
2 

the final product, stream 4, with outlet concentration X . 
4 
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Inlet Stream 1 has a nominal concentration of 500 mg/l of 

sulfuric acid (H So ) with volumetric flow rate, 1 liter/min, 
2 4 

and inlet stream 2 has concentrated sulfuric acid with nom-

inal flow rate m equal to lOOOmg/min. 

The flow m is manipulated by a feedback controller in order 

to maintain the desired acid concentration at a 1500 mg/l in 

the exit liquid line where a concentration analyzer is posi-

tioned. Since the mixing tanks are mixed by agitaor, it is 

assumed that the concentration in the tanks are homogeneous, 

therefore, its concentration is the same as the exit concen-

tration. The volume of the first tank is equal to one liter 

providing a tank detention time of one minute . The volume 

of the second tank is variable in the range 0.1 to 1.0. The 

liquid flow model in the exit line is assumed to be ideal. 

The volume of exit liquid line preceding the analyzer is a 

plug flow allowed to vary, giving transportation lags in the 

range of 0.1 to 1 minute for the investigation of the effects 

of dead time on controller tuning. 

In figure 4, we see that three different types of dist-

urbance can intrude into the control loop : a set point dis-

turbance R(s), a load disturbance X , and another load dis­
A 

turbance X . The effect of set point change to the control 
B 

loop was studied by Rovira et al. [5] and the effect of load 

disturbance X , physically interpreted as a step change in 
A 

entering liquid concentration, is the type of disturbance 

studied by Lopez et al. [ 4] . 

Finally, the disturbance X , studied in this research, 
B 
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Process diagram 

stream 1 stream 2 

XA, q 1 m 

v 1 , ... ~-~~~ .... ~..1 x 2 

l 

v 
2 

I ······················· i 
tank 2 · 

x 
3 

ARC 

AX 

x q 
4 I 

not shown x I x I x / x 
1 B 5 6 

Legend 

X = entering cone., mg/l 
A 

x = 
2 

x = 
3 

x = 
4 

cone. of tank 1, mg/l 

cone. of tank 2, mg/1 

cone. of X after 
transporta~ion lag 

m = acid flow 
q = flow rate, 1 l/min 

V V = tank volume 
1 I 2 

V = valve 

ARC = controller 

AX = analyzer 

Control loop block diagram 

X = step change in the disturbance 
B 

X = disturbance after a first order lag 
5 

Figure 4. Physical interpretation of a control system 
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is not so easy to provide a physical interpretation in this 

system. Perhaps it could be considered as the sudden place-

ment of corrodable piece of metal in the second tank that 

eventually consumes a steady supply of H So . This distur-
2 4 

bance would be similar to applying a negative value of X . 
8 

However, in this study a positive value of X8 was always 

applied during the optimization runs. In this research the 

transfer function of load disturbance X is given as a first 
B 

order with a time constant ~ and a unit gain. In the simul-
3 

lation the time constant ~ is varied to investigate the 
3 

effect of disturbance dynamics on the controller tuning cons-

tants. The range of variation for~ extends from 0.05 to 7. 
3 

Because of the low concentration involve in the process 

of figure 5 the mass flow of acid, m, is assumed to be much 

less than the entering liquid. If the entering liquid is to 

be water, the actual ratio of mass flows of the two stream 

is less than 1/1000 at normal operating conditions. With the 

above assumptions the hypothetical concentration X of the 
1 

two entering stream can be expressed by the following appro-

ximated equation: 

x = x + 
t A 

m 
q 

( 4 ) 

where q is the constant volumetric liquid flow rate equal to 

1 liter per minute. In the above equation and all the follo-

wing equations , the variables will be defined to be in the 

deviation (perturbation) form which describes directly the 

magnitude of dislocation of a system from the desired level 

of operation (steady state). Therefore, before the introduc-
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tion of a disturbance, the system is considered to be at a 

steady state and all the variables would have values which 

are equal to zero. 

Now, mathematical modeling of a process can be derived 

by setting up a mass balance on the mixing tanks. The prin-

ciple of conservation of mass states that : 

[ accumulation of massl 
within a system J 

time period 

+ 

= 

rt low of mass l 
Lin the systemJ 

time period 

[
amount of mass l 
generation within 

the system 

time period 

r flows of mass l 
Lout of systemJ 

time period 
( 5 ) 

[
amount of mass] 
consumption in 

system 

time period 

Using above principle provides the mass balances of the two 

tanks 

For a first tank 

q x (t) - q x (t) = v 
1 2 1 

dX (t) 
2 

dt 

For a second tank 

q x (t) - q x (t) = v 
2 3 2 

dX (t) 
3 

dt 

Rearranging equation (6) and (7) produces, 

and 

dX (t) 
2 

dt 

ax (t) 
3 

dt 

= 

= 

x (t) - x (t) 
1 2 

l; 
1 

x (t) - x (t) 
2 3 

r 
2 

( 6) 

( 7) 

( 8) 

( 9) 



where r = V /q and r 2 = V /q. 
1 1 2 

In Laplace domain equations (8) and (9) become, 

and 

x ( s) 
2 

x ( s) 
1 

x ( s) 
3 

X (s) 
2 

= 

= 

1 

! s + 1 
1 

1 

! s + 1 
2 
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( 10) 

( 11 ) . 

The transportation lag of liquid passing from the second tank 

to the analyzer can be obtained by the following calculation: 

where 

e = v /q 
d L 

e = transportation lag (dead time) 
d 

V = liquid volume of the exit liquid line 
L 

preceding the analyzer 

q = liquid flow rate . 

( 12) 

Combining equation (10), (11) and dead time equation (12) 

produces the following SOPDT model for the two mixing tanks 

in series : 

X (s) -e s 
d 

G ( s) 3 e ( 1 3 ) = = p 
X (s) ( T, s 1 ) (! s 1 ) + + 

2 l 2 

where G ( s) means the transfer function of process. p 

Two gain elements were introduced in the control loop of 

figure 4 : K for final control element (valve) and K for 
v m 

the measuring device. The most common final element is the 

pneumatic valve, which receives the output of the controller 

(actuating signal) and accordingly adjusts the value of mani-

pulated variable. In the control system shown in figure 4, 

the signals between the analyzer and controller, also the 

signals between the controller and valve are depicted as 
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pneumatic signals. The pneumatic signal of most devices 

varies with the range from 3 to 15 psig. Considering the 

above fact the gains associated with measuring element and 

vale are calculated as follows 

~m 2000 g/min 
K = = = 166.667 ( g/min-psi) ( 14) 

v t::.V 12 psi 

where t::.m = maximum acid flow at the maximum valve signal, 

and b.V = range of the controller output signal. 

b.C 12 psi 
K = = = 0.004 (psi-mg/l) ( 15) m b.X 3000 mg/l 

where D.C = range of the analyzer output signal, 

and 6X = maximum concentration measured by analyzer. 

The general form of conventional continuous three mode 

proportional-integral-derivative controller is given : 

v ( t) de ( t). J + 
dt v 

0 
( 15) 

where V = controller's bias signal (i.e. its actuating 
0 

signal when e = 0). Its transfer function can be expressed 

as a following equation: 

[ 
l 

G (s) = K 1+ ---c C L S 
I 

( 1 6 ) 

In digital simulation this continuous PID algorithm needs to 

be modified to the digital approximation. Two forms of disc-

rete time approximation are often used for a PID controller. 

The one is a position form and the other is a velocity form 

[12]. The position form is, 



V = V + K [ en+ 
n 0 C 

T 
r 

I 
i = 0 

and the velocity form is, 

!: 
D ( 1 7 ) 

T 

1: 21:" 1:" 

V = V + K [(1+_1_+-0-)e -(1+ 0 )e +--0-e J (18). 
n n-1 C !: T n T n-1 T n-2 

I 

In the above equation n refers to the nth sampling instant 

and T refers to the sampling interval. Both equation used 
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rectangular integration to approximate the integral control 

mode and use first order difference to approximate the deri-

vative mode. The velocity form is derived by subtracting 

V -V In this research the position form is used. 
n n- 1 

In the digital computer simulation the control system 

described in figure 4 is programed to be used as the objec-

tive function for the optimization program which is based on 

the Rosenbrock technique [6]. Then, the optimum tuning con-

stants to step changes in X are calculated for various sets 
B 

of r /t: ,t: /r and e /t: . 
2 1 3 1 d 1 

Objective Function 

In figure 5 the program of the objective function which 

describes the simulated control system is given in a portion 

of pascal code. Function dtx2dot and dtx3dot in the program 

are defined to solve the first order differential equaton 

(8) and (9), modeling of two mixing tanks. Two first order 

differential equations are solved numerically by application 

of a fourth order Runge-Kutta method. The object function 

calculates the integral of absolute value of error (IAE)which 
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accumulates as the system responds to a disturbance. The 

followings are the list of constants and variables assigned 

globally with respect to the function definition: 

K =measuring element gain 
mm 

K = valve gain 
v 

r = step change in set point 

x = step change in entering liquid concentration 
A 

x = step change in measurement error 
B 

delta = time step size for Rnuge-Kutta integration 

ttt = total simulation time 

thetad = dead time 

taul = first time constant of the process 

tau2 = 2nd time constant of the process 

tau3 = first order time constant of load variable, 
x 

3 

taudd = derivative time tuning constant 

tauii = integral time tuning constant 

kcc = proportional gain tuning constant 

er = error of current value 

erint = time integral of error 

epast = error of previous step 

absie = time integral of absolute value of error 

s = integral number of time steps included in the 
dead time, thetad 

DT = dead time array 

kmm,kvv = measurement and valve gain 

vv,va = controller output 

G,Q = pointers of dead time array 

vamax = maximum valve position 



function object(cxl,cx2:real) :real; 
begin 

dtx2dot:=-delta*(cx1-cx2)/taul; 
end; 

function dtx3dot(cx2,cx3:real) :real; 
begin 

dtx3dot:=-delta*(cx2-cx3)/tau2; 
end; 

function object(kcc,tauii,taudd:real) :real; 

var 

DT : array [1 .. 5001] of real {array for dead time} 
i: integer; 
begin 

c:=O.O;epast:=O.O;absie:=O.O; 
vamin:=O.O;vamax:=O.O; 
erint:=O.O;time:=O.O; 
x1:=0.0;x2:=0.0;x3:=0.0;x4:=0.0; 
x5:=0.0;x6:=0.0; 
for i:=l to s do DT[i] :=0.0; G:=s; Q:=l; 

while time < ttt do 
begin 

c:=kmm*x6; 
er:=r-c; 
va:~kcc*{er+erint/tauii+(er-epast)*taudd); 

vv:=va; 
if va<vamin then vamin:=va; 
if va>vamax then vamax:=va; 
if va<= -6.0 then va:=6.0; 
if va>= 6.0 then va:=6.0; 
xl:=xa+va*kvv 
time:=time+delta; 
if (vv<6.1) and (vv>-6.1) then 
erint:=erint+er*delta; 
absie:=absie+abs(er*delta); 
epast:=er; 
rk11:=dtx2dot(x1,x2); 
rk12:=dtx3dot{x2,x3); 
rk21:=dtx2dot(x1,x2+0.5*rk11); 
rk22:=dtx3dot(x2+0.5*rk11,x3+0.5*rk12); 
rk31:=dtx2dot(x1,x2+0.5*rk21); 
rk32:=dtx3dot(x2+0.5*rk21,x3+0.5*rk22}; 
rk41:=dtx2dot(x1,x2+rk31); 
rk42:=dtx3dot(x2+rk31,x3+rk32); 
x2:=x2+(rk11+2.0*rk21+2.0*rk31+rk41)/6.0; 
x3:=x3+(rk12+2.0*rk22+2.0*rk32+rk42)/6.0; 
DT[G] :=x3; 
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Figure 5. Pascal program illustrating the objective functio~ 



end; 

x4: =DT [ Q]; 
G: =G+l; 
Q: =Q+l; 

if Q>s then Q:=l; 
x5:=x5*du31+du32xb; 
x6:=x4+x5; 

end; 
object:=absie; 

Figure 5. (Continued) 

23 
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vamin = minimum valve posion 

x1 = hypothetical inlet concentration 

x2 = concentration in the first tank 

x3 = concentration in the second tank 

x4 = concentration of x3 after the transportation 
lag 

x5 = disturbance after first order lag, tau3 

x6 = measured concentration passing the analyzer 
after imposition of the disturbance 

The first part of the code, function object, shows the 

initialization of several variables setting them to zero cor-

responding to an initial steady state condition prior to a 

disturbance, because they were expressed in a deviation form. 

The next part of code is a computation loop to repeat the 

several calculations for each step in time until the running 

value of time is greater than the total simulation time, ttt. 

The computation steps in the loop are as follows: 

The concentration, X , measured by an analyzer is changed 
6 

into a pneumatic signal with the multiplication of measure-

ment gain kmm,then this pneumatic signal, c, is compared to 

the desired set point value, r, to evaluate the error, er. 

The controller output, va, is calculated based on the three 

tuning constants transferred from the optimization procedure. 

This controller output va is compared to the limits of pneu-

matic signal corresponding to the valve position of a fully 

open or a fully closed state. If a valve limit is exceeded 

more than a small amount integration of the error is stopped 

to prevent windup. Hypothetical inlet concentration is cal-

culated based on the controller output and valve gain, kvv, 
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then the concentrations of x2 and x3 are calculated with the 

fourth order Runge-Kutta method. Time integral of the error, 

erint, used in the controller output and time integral of 

absolute value of the error, absie, are calculated in next 

steps. The concentration of x3 is saved in the dead time 

array. After the time has elapsed corresponding to the dead 

time the values of concentration x3 saved in the dead time 

array ,DT,are taken out and designated as variable x4. The 

disturbance after the first order lag tau3, x5, is computed 

and added to x4 to produce the controlled output x6 which is 

measured by the analyzer. 

The computation steps stated above are repeated in the 

loop until the accumulation of time reaches total time, ttt. 

In the computation loop the function, object, is assigned a 

value equivalent to the last accumulated value of absie, the 

integral of absolute value of error. The PID controller 

equation used in the simulation is written in position form. 

Valve signal (controller output) was constrained to a range 

of +6 to -6 (making use of deviation variables and assuming 

the valve is half open at the start of simulation}. The value 

of erint is allowed to accumulate as long as computed valve 

position does not exceed the valve constraints by more than a 

small margin. This is to prevent the integral wind up caused 

by the integral model of a controller when errors can not be 

eliminated quickly, and therefore, produce larger and larger 

values for the integral term which in turns keeps increasing 

the control action until it is saturated and remains satura-
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ted even if the error returns to zero. 

The dead time is an important element in the mathemat-

ical modeling and has a serious impact on the design of eff­

ective controllers. A major advantage of digital simulation 

is in the fact that the dead time can be handled with ease. 

The dead time array, DT, includes enough elements to hold a 

process variable for an integral number of iterations equal 

to the dead time. The outlet concentration x3 is saved in 

the array DT sequentially, held in array DT for s-1 number 

of time increments which is equal to dead time, then taken 

out to be applied to the computation loop after s number of 

time increments. Dead time array pointers G and Q were used 

to keep track of the positions of concentration x3 until it 

would have entered the pipe line leaving the tank and pass 

through the analyzer. 

The iteration step, delta, was set equal to 0.001. The 

total time of simulation, ttt, varied from 20 to 50 minutes 

as the time constant of disturbance tau3 increases. In all 

the cases, the total time was greater than six times the 

ultimate period, 2n/w (w : cross over frequency rad/min), 
co co 

found according to the frequency response analysis [12]. 

The performance criteria, IAE, is accumulated as a vari-

able, absie, and returned as the result of objective funct-

ion to the main program that successively compares IAE for a 

wide variety of controller tuning constants to choose the 

optimum values of tuning constants. 

Computer computations were performed on an IBM 3090-200 
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main frame computer located at the University of Southwestern 

Louisiana. Floating point calculation was performed in IBM 

double precision format. For a run initial inputs were int-

reduced with the following values: r=O.O, xa=O.O, xb=lO.O, 

delta=0.001, tt=O.O, and a variety of sets of taul, tau2, and 

thetad values. During the run the range of tau3 was extended 

from 0.05 to 7.0 with 19 different data values to check the 

effect of speed of disturbance. Those 19 different values of 

tau3 were kept in the array t3 in the main program and spe-

cified as follows: 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5, 

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. 

In the optimization results tuning constants are normal-

ized to be applicable to other SOPDT processes. Proportional 

gain K is given as the product of K and K , where K is 
C C L L 

equivalent to the product of measuring element gain, K , 

process gain, K I p 

m 

and valve gain K . The integral time is 
v 

reported as t /t and the derivative is reported as t /t . The 
1 I D 1 

integral of absolute value of the error, IAE IAE observed by 

the controller is divided by the measuring element gain K 
m 

to the IAE in terms of the controlled variable's units. This 

value is then expressed as dimensionless form in the figures 

by dividing by the load magnitude X and time constant r. to 
B 1 

get the normalized value, IAE/(X *r. ) . 
B 1 

Main Program and Optimization Results 

The main program intends to find a minimum of a multiva-

riable, unconstrained, non-linear function. The procedure is 
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based on the direct search method which is proposed by H. H. 

Rosenbrock [6]. Since the procedure assumes a unimodal func-

tion several sets of starting values for the independent va-

riable should be used to check if the minimum is global, if 

the slope surface is unknown. The version of this procedure 

employed in this study was adapted from the Fortran source 

code originally developed by A. I. Johnson [13]. The Fortran 

code was converted to Pascal code for the purpose of reada-

bility and structuring. The function object given in figure 

5 was employed as a subroutine to be used to calculate and 

return IAE to the main program. The Pascal code of main pro-

gram and function object is given in Appendix A. 

For the initial input values, three controller tuning 

constants (Kc' rI, r ), desired set point valuer, magnitude 
D 

of disturbance X and X , integration time interval delta, 
A 8 

and total simulation time ttt are provided by a user. Since 

unstable starting value of three controller tuning constants 

may lead to the unstable optimum controller tuning constants 

as a result of simulation, simple algebraic synthesis method 

[7] was employed to get controller tuning constants which can 

be used as starting values. Also, three different additional 

starting values of controller tuning constants are employed 

to check if the minimum value of IAE is global. 

sample results of optimum controller tuning constants 

are graphically described in figure 6 to 9. Complete 

results are given in appendix A. These curves give normalized 

three controller tuning constants, K K , r /r , r /r , and 
C L 1 I D 1 
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IAE values as the function of e Ir and r Ir . The results 
d 1 3 1 

of optimization program were interpolated to draw continuous 

smooth curve using the plotting package, Statgraphics (14]. 

In each of these plots the ratio r Ir is described as the 
3 1 

abscissa. The normalized controller tuning constant or IAE 

value is indicated as the ordinate. A family of curves is 

given for r Ir in the rage, 0.05:::;i; Ii; :::;7.0 and the ratio of 
3 1 3 1 

dead time ed to major time constant i; 1 is in the range, 

o.1:::;e Ii; :::;1.0. A separate line is drawn for each of 10 diff­
d 1 

erent values of the parameter e Ir at interval of 0.1. 
d 1 
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CHAPTER IV. 

CORRELATION OF CONTROLLER TUNING CONSTANTS 

The results of computer simulation were presented in a 

graphical form in the previous chapter and Appendix B. It may 

be difficult and tedious to use those graphs to obtain the 

correct controller tuning constants, because the data points 

are not read accurately with ease. This tedious job can be 

avoided if we can find the mathematical expression to fit the 

data very closely. Fitting the functions to the data is fre-

quent task in science wherever we need to superimpose the 

complex mathematical models on the data. Nedler et al. [15] 

introduced a simplex method of function minimization for 

several variables and the curve fitting program based on a 

simplex procedure was developed by Caceci et al. [16). 

The applied method to fit the candidate functions to 

the available data was based on a least squares criterion. 

The basic idea may-be explained as follows: 

If you have n data points, label each value of the indepen-

dent variable as x, x, ...... , x and each value of the de-
1 2 n 

pendent variable as y y, ..... , y. Also, label your n 
1 I 2 fi 

predicted values (as calculated by the equation using certain 

:Jc 
value for unknown parameters) for the dependent variable y 1 , 

:Jc 

y 2' ..... , )r. 

y . The sum of 
n 

)r. 2 "' 2 :Jc 2 ( y -y } + ( y -y ) + .... + ( y -y } is 
1 1 2 2 n n 

called the sum of squared residuals. The lower this sum is, 

34 
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the better the curve fits to the data. The optimization pro-

gram used for curve fitting in this study was a slight modi-

f ication of the original pascal program developed by Caceci 

and Cacheris [16]. a listing of the curve fitting program is 

given in appendix C in pascal code. 

Finding a correlation to fit each of the curves shown 

in figure 6 to 9 was based on the optimization runs for a 

total of ten curves, corresponding to ten different ratios 

of e /~ values, was generated for three normalized centre-
d 1 

ller tuning constants K K ~ Jr r /r and IAE. In the majo-
c L, 1 I, D 1 

rity of cases the form of these curves were suggested by the 

fact that a non-linear function would provide the best fit. 

The functions used to fit the data and the values of its par-

ameters obtained by the curve fitting runs are given in the 

tables I to IV foT the case of ~ /~ =0.1, e /~ =0.1 and 
3 1 d 1 

r /r =0.1. Other cases are given in Appendix D. Each table 
2 1 

corresponds to a graph given in Chapter III. The form of 

equation used as a correlation function is given at the top 

of each table and the parameter values obtained by the curve 

fitting method for each curve of ten different value of e /r 
d 1 

are listed below the correlation function in the table. The 

number of parameter used for the curve fitting was varied 

depending on three controller tuning constants and IAE. From 

three to seven variables were introduced to be used as func-

tion parameters. The standard deviation of experimental data 

points from the fitted function is given in the last column 

of each table along with the function parameter values for 



e IT. 
<l 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

TABLE I 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

AT t" IT. = 0 .1 
2 1 

-B"r /i-

K K = A-e 3 1 [C cos(D t" /t" ) ~ E sin(D t" /t" )] c L 3 1 3 1 

A 

10.541223 

5.890894 

4.484194 

3.446715 

2.622772 

2 .172058 

1.839872 

1.873584 

1.670054 

1.609807 

B 

1.180019 

3.425357 

1.267431 

0.985048 

1.773274 

0.62~983 

0.496145 

0.712189 

0.729667 

0.879666 

c 

4.081162 

2.846238 

1.954393 

1. 384971 

1.016053 

0.718355 

0.550092 

0.696749 

0.591636 

0.606288 

D 

1.272492 

7.24 x 10-6 

9.16 x 10-7 

2.95 x 10-7 

-9.26 x 10-7 

0.003308 

0.005831 

0.022343 

0.427691 

-4.44 x 10 
-7 

E 

-7.398963 

2.403632 

1.268995 

0.649919 

2.696408 

-164.5421 

-84.99422 

-7.329004 

-0.352738 

-2.840634 

36 

Standard 
Deviation 

0.449385 

0.290349 

0.119251 

0.129946 

0.067870 

0.045793 

0.041626 

0.040928 

0.011888 

0.036769 



i; 1 ii; I= A. ~ 

e It A B 
cJ t 

0.1 -3.30267 9.01153 

0.2 5.78255 -0.09001 

0.3 2.77685 0.58238 

0.4 3.67113 -0.39645 

0.5 -1.94808 0.40691 

0.6 1.58023 0.37603 

0.7 2.85940 -0.31889 

0.8 1.35737 1.33223 

0.9 2. 13835 0.02338 

1. 0 0.37534 0.00740 

TABLE II 

CURVE FITTING RESULTS OF 
INTEGRAL TIME 
A.T t h = 0. 1 

2 1 

c 1; /7; E 7; 1-r; 

B ( 1 
3 t ) D 

2 1 - e _,_ e 

c D E 

-0.41464 5.79647 -0.00625 

-12.2736 5 .13833 -0.39375 

-6.76347 2.38840 -0.34719 

-5.85407 4.71432 -0.47918 

0.00948 3.90218 0.03892 

-0.04395 2.92361 -0.08631 

-1.36371 2.22301 -0.21063 

-0.13991 1.96826 -0.66789 

-0.03980 2.51418 -0.41486 

0.71613 0.56146 0.20946 

37 

sin (F /t + G) i; 
3 1 

F G 
Standard 

Deviation 

-0.000027 2.43275 0.2424 

-0.00058 -1.78762 0.18450 

0.46117 -1.79252 0.11018 

-0.04031 -0.63706 0.06248 

0.16394 0.75193 0.05624 

0 .14973 -0.30795 0.06160 

0.15687 -1.24698 0.02911 

0.28259 -2.82426 0.03606 

0.23493 -2.54317 0.01802 

0.20258 0.60896 0.02968 
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TABLE II I 

CURVE FITTING RESULTS OF 
DERIVATIVE TIME 

AT r: /'t = 0. 1 
2 1 

c 't Ir: 
r:D/r: 1 = A + B 3 1 e 

e lr: A B c Standard 
d 1 Deviation 

0.1 -43360.4670 43360.5758 3.193977 x 10- 1 0.0153100 

0.2 -44636.8244 44636.9557 2.434525 x 10- 7 0.0136737 

0.3 -53461.0341 53461.2240 2.401277 x 10- 1 0.0121607 

0.4 -83746.1773 83746.4041 2.044911 x 10- 1 0.0182938 

0.5 -77234.5607 77234.8133 4.055537 x 10- 7 0.0210251 

0.6 -32407.2158 32407.4991 1.176143 x 10- 6 0.0161665 

0.7 -3811.73677 3812.04278 1. 216128 x 10- 5 0.0205976 

0.8 -55195.8537 55196.1993 7.840349 x 10- 1 0.0190948 

0.9 -31467.2744 32467.6501 1.582992 x 10- 6 0.0185181 

1. 0 -134661.5610 134661.9795 3.354662 x 10- 7 0.0374493 
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TABLE 4. 

CURVE FITTING RESULT OF IAE 
AT t" /"C = 0. 1 

2 1 

IAE = A + B/(C + "C3/t" 1) 

8d1t"1 A B c Standard 
Deviation 

0.1 0.004136 0.049875 0.228442 0.005886 

0.2 0.015031 0.138218 0.352544 0.007893 

0.3 0.029530 0.260434 0.483797 0.013004 

0.4 0.043210 0.418941 0.619501 0.017866 

0.5 0.051111 0.638021 0.785571 0.020877 

0.6 0.051936 0.912282 0.956557 0.024283 

0.7 0.058688 1.207813 1.109474 0.031217 

0.8 0.045950 1.638504 1.325902 0.032701 

0.9 0.034825 2.079027 1.501410 0.036342 

1. 0 0.058584 2.415581 1.610953 0.045892 
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each curve. 

Using the parameters obtained by the curve fitting runs 

new graphs similar to those given in the previous chapter 

were generated. Figure 10 to 13 describes those generated 

curves. The graphs prepared using the fitted equation may be 

compared to those based on the optimization runs described in 

Chapter III. Those generated graphs should be well fitted to 

the graphs based on real experimental data. The correlation 

between the controller tuning constants and the parameters of 

process and disturbance dynamics would lead to a simple cal­

culation in obtaining the optimum PID controller tuning con­

stants rather than reading graphs. 
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CHAPTER V 

DISCUSSION 

Optimum Controller Tuning Constants 

The optimum controller tuning constants were obtained by 

computer simulation and illustrated graphically in the figure 

6 to 9 and Appendix B. The controller tuning constants have 

been normalized as follows: 

Proportional gain K is reported as the product K K where K 
C C L L 

is the product of measuring element K , process gain K , and 
m p 

valve gain K . The integral time is reported as r /r . The 
v 1 I 

derivative time is reported as r /r . The integral of absol­
o 1 

lute value of the error observed by controller is divided by 

the measuring element gain K to express IAE in terms of con-
m 

trolled variable's units. Then, this value is expressed in a 

dimensionless form for the figures by dividing by the load 

magnitude X and the time constant r to produce the normal-s 1 

lized value IAE/(X r ) . A total of 40 graphs expressing the 
B 1 

relationship of normalized tuning constants and IAE values 

(K K , r /r r /r ) versus the parameters of the process and 
CL 1 I, D 1 

disturbance dynamics (r /r , e /r ) were made in Chapter III 
3 1 d 1 

and Appendix B. For each family of curves, the ratios of dis-

turbance time constant of the first order lag process to the 

principal time constant of SOPDT process, 

45 

i; /r , is given 
3 1 



l..6 

in the range, 0.05~r /r ~7.0, and the ratios of dead time e 
3 1 d 

to principal process time constant r is given in the range, 
1 

o.1~e /r ~1.0. The ratio of r /r was in the range O.l~r /r 
d 1 2 1 2 1 

~1.0. 

According to the prepared curves the following imper-

tant observations could be made by taking consideration of 

the results of the optimum tuning constants calculation. The 

effect of disturbance dynamics on the proportional gain K is 
c 

most pronounced when the ratios of r /r are less than 5.0. 
3 1 

As expected the proportional gain K is decreased with the 
c 

increase of dead time. The frequency analysis [12] describes 

that the dead time causes phase shift and can lead system to 

the instability, therefore, dead time becomes the principal 

source of destabilizing effects in the control systems. Since 

most of the chemi~al system process exhibit an open loop res-

ponse which can be approximated by a first order or a second 

order with dead time, it becomes clear that the possibility 

of instability for the closed loop will be present almost 

always. Therefore, time delay in the response forces the use 

of lower gain to maintain the stability in the feedback con-

troller design. When the r /r becomes greater than 5.0, K K 
3 1 C L 

values become almost constant, while integral time and deri-

vative time continue to vary. This means that the controller 

gain term does not have much effect on slow disturbance com-

pared to two other terms, integral time and derivative time 

constants, when a slow disturbance enters the control loop. 

The effect of disturbance dynamics on the integral time 
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tuning constant ~ of the optimum PID controller was illus­
r 

trated in figure 7 and Appendix B. Those results show that 

the integral action expressed as the ratio, ~ /~ , should 
1 I 

be increased as the ratio of ~ /~ increases throughout most 
3 1 

of the range of ~ /~ . This fact can be interpreted as indi-
3 1 

eating larger reset rates, l/~ , can be used to control the 
I 

slower disturbances. The smaller reset rates should be used 

to control the system when dead time becomes larger, because 

the system becomes closer to the instability when the dead 

time becomes larger. 

The effects of disturbance dynamics on the derivative 

time constant of the optimum PID controller was illustrated 

in figure 8 and Appendix B. According to those graphs ~ /r 
0 1 

values increase as the ratio of ~ /~ increase. With the 
3 1 

presence of the d~rivative term, r de{t) , of the PID 
0 dt con-

troller equation in the time domain, the PID controller ant-

icipates what the deviation will be in immediate future and 

applies the control action which is proportional to the cur-

rent rate of change in deviation. This anticipatory control 

action can be explained by figure 8. It shows that the larger 

value of derivative time constant ~ can be used to control 
0 

the slower disturbance (large ~ 3 ), while the smaller value of 

derivative time constant, r , is used for the faster distur-o 

bance {small r ) . According to figure 8 derivative time con-
3 

stant r tends to increases with the increase of dead time, 
0 

which is contrary to the case of integral time constant. 

The normalized IAE values of the closed loop with a PID 
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controller were presented in figure 9 and Appendix B. Those 

results show that IAE values increase as the ratio of e /~ 
d 1 

increases and it decreases as the ratio of ~ /~ increases. 

Application of Optimum Tuning Constants 

In Chapter III, the optimum tuning constants for the PID 

feedback controller were obtained using the digital computer 

simulation and optimization procedure. In this chapter we 

will examine the dynamic behavior of a process that is cont-

rolled by a feedback controller with the optimum tuning con-

stants determined in this work. To check the response of the 

control system, the value of disturbance, X , is applied as a 
B 

step input to the control loop. The closed loop response of 

con-trolled variable, X , must be investigated to check the 
6 

control system pe~formance when the desired tuning constants 

are applied to the system disturbed by a step change in load. 

For this purpose, several sample applications are executed. 

A computer program is employed to see the response of cont-

rolled system and the Fortran code of program is given in 

Appendix E. 

The examples of the result from a single sample applic-. 

ation are presented in figure 14 and 15. These examples of 

the sample application uses the optimum tuning constants of 

PID controller which is applied to a control system with the 

following specifications: 

e /r, =O.l, r, /r, =0.1, r, /r, =0.1, and, X =10. Figure 14 plots 
d 1 31 21 B 

the response of X , load disturbance after the first order 
5 
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lag, t , and X which is measured concentration passing the 
3 6 

analyzer after the imposition of the load disturbance. Figure 

15 expresses the time response of the valve signal of sample 

application of the above case. 

More examples of sample application runs are shown in 

Appendix F. Runs were performed for the several sets of com-

bination of e /t (0.1, 0.5, 1.0), t /t (0.1, 2.0,4.0), and 
d 1 3 1 

t /t (0.1, 0.5, 0.8) by applying a step input of disturbance, 
2 1 

X =10. Figures prepared for the sample application show that 
a 

the applied tuning constants lead the disturbed system to a 

desired steady state very effectively. According to thesis of 

Kosinsani [18] instability of the control loop was observed 

in certain cases of sample applications. According to his 

results the points of optimum tuning constants given in the 

graphs were not applicable to the disturbed control system, 

when the value of derivative time constant t is greater than 
D 

the value of integral time constant t . But such instability 
I 

was not observed in any case of sample application using the 

controller tuning constants obtained in this research. 

Comparison of Tuning Methods 

In order to evaluate the relative improvement attainable 

with the optimum tuning constants developed by this research, 

the responses of controlled variable, X , would be investi­
s 

gated after the application of tuning constants based on both 

this new study and previous worker's method. Here, the per-

formance of tuning constants based on the new method of this 
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work and Lopez's (ITAE criterion) method (17] are compared. 

Figure 16, 17, and 18 provide the graphical comparison 

of responses of controlled variable, X , that resulted from 
6 

the computer simulation with the controller tuning constants 

obtained by Lopez and this study. Each of the three graphs 

represents the responses of controlled variable, x6 , for a 

specific set of three tuning constants. Figure 16 describes 

the responses of X resulted from the Lopez method and this 
6 

method, when the parameters of the process and disturbance 

dynamics have the following specifications: L =1.0, L =0.1, 
1 2 

L =1.0, and e =0.5. According to figure 16 Lopez's and the 
3 d 

new method showed very close performance even if new method 

looks slightly better than Lopez's method. This can be reco-

gnized as a special case because in Lopez's and this study, 

two control loops becomes almost identical at that particular 

set of parameters of process and disturbance dynamics. When 

the sets of parameters of process and disturbance dynamics 

are evaluated far away from that particular case (figure 17 

and 18), significant improvements can be observed in the new 

tuning method compared to Lopez's tuning method. According 

figures 17 and 18, the new tuning method gives smaller over-

shoot, faster settling time, and finally much smaller value 

of IAE than that of the Lopez method. 

Comparison of First Order and 

Second Order Tuning 

The relative difficulties involved in obtaining the exp-
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erimental information required to either a first order or a 

second order tuning is generally the same. Both method are 

based on open loop models, and hence, they are classified as 

open loop methods. The popularity of methods based on first 

order approximations (FOPDT models) to the process reaction 

curve is related to the relatively simplicity. This process 

reaction curve was developed by Cohen and Coon [8] and its 

approximation (FOPDT) can be described as a following 

equation: 

G ( s) = 
p 

K e 
-e s 

d 

rs + 1 
( 1 9 ) 

Its equation has three parameters: static gain K, dead time 

e , and time constant ~- However, since the approximation as 
d 

second order model has more parameters than the approximation 

of first order model, it should express the process dynamics 

more accurately. 

Sten [2] developed a method to approximate a process re-

action curve as a second order model (second order lag with 

dead time). Its transfer function can be described with the 

following equation for a overdamped system: 

G ( s) = 
p 

K e 
-e s 

d 

(ts+ 1) ("t" s + 1) 
1 2 

( 20) 

which has the four parameters: two time constants t and "t" , 
1 2 

static gain K, and dead time e . To obtain a quantitative 
d 

measure of improvement in the control action presented by the 

method based on second order tuning, one process was tuned by 

two techniques and responses were compared. The transfer 
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function of process was given by: 

-1 Os G ( s) = e · I { ( s+ 1 ) ( 0 . 5s+1) } 
p 

( 21 ) 

When the above transfer function is approximated as a first 

order model with time delay, its equation becomes: 

G (s) = e-1. 198 /(1.39s+l) 
p 

( 2 2 ) 

Figure 19 is the graph to compare two tuning techniques for 

PID controller based on IAE criteria. Figure 19 describes the 

responses of controlled variable X resulted from the two 
6 

tuning techniques. In a comparison based on the response of 

controlled variable X , second order tuning did give improve-
6 

ment against first order tuning as well as the comparison of 

of Lopez and new method did. As we can see in figure 19, con-

troller tuning based on the second order approximation gave 

faster settling time, smaller overshoot, and smaller IAE 

values. Also, in most cases the valve signals showed big dif-

ferences in the two tuning methods. With second order tuning 

the valve response was relatively gradual and continuous as 

it moved to correct a load disturbance, while the valve res-

ponse by first order tuning showed rapid changes. In order 

to use tuning constants obtained by the first order approx-

imation it may be necessary to install a high performance 

valve capable of quick and accurate responses to the valve 

signal. 

Load Fraction 

In this research the manipulated variable, va, was cons-
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trained to the limits corresponding to a fully closed or a 

fully open state. The valve was considered to operate using a 

pneumatic signal in the range 3 to 15 psig. The maximum acid 

flow available was 2000 mg/l when the valve was fully open. 

At normal operating conditions the valve would be half open 

supplying 1000 mg/l of acid flow to the mixing tank. In terms 

of deviation variables valve signal could increase +6 psi 

before reaching its upper constraints and decrease -6 psi 

before reaching its lower constraints. The valve signal of a 

fully open or a fully closed state is equivalent at the value 

of 6 and -6. Use of these limits made it possible to deter-

mine the effect of load magnitude. Examination of the objec-

tive function in figure 5 will show that the lowest and the 

highest controller signals (prior to application of canst-

raints) were retained as variables ,called vamin and vamax, 

respectively. During the optimization runs the load magni-

tude, X =10 mg/l, was used. It ended to a final steady 
B 

state with the valve signal, va= -0.06 psi, when the cont-

rolled variable X returned to zero. The available movement 
6 

of valve signal in this direction was -6.0. 

The optimum tuning constants determined by this study 

were based on load magnitudes that are small enough such that 

the control valve does not saturate to a constraint during a 

response to a disturbance. We define load fraction to be the 

steady state change in valve position created by a load dis-

turbance divided by the available movement of the valve in 

that direction: 
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Load fraction = steady state change in valve signal 

available change in valve signal 
( 23) 

In the case of positive change in X the control system will 
8 

respond with a negative change in valve signal and a negative 

change in X will cause a positive change in valve signal. 
8 

Load fraction can be taken as a normalized measure of load 

magnitude. During the optimization runs the final steady 

state value signal was -0.06. Therefore, load magnitude may 

be expressed as load fraction= -0.06/-6.0 = 0.01. During 

each run the lowest instaneous valve signal was recorded in a 

variable vamin. We will use this value to determine the load 

fraction that would have caused the valve to reach instane-

ously lower constraints. We term this load the "Max. Load 

Fraction". 

The maximum allowable load fraction (with a valve signal 

remaining in the range of -6.0~ va ~6.0) may be determined 

by the following equation: 

Maximum 
Load = applied load fraction * 
Fraction 

6.0 
( 24) vamin 

If a magnitude of disturbance larger than the Maximum load 

fraction enters into the control loop, the controller tuning 

constants obtained by this research can not be considered as 

optimum. In this case looser tuning would be better, such as 

the controller synthesis described in reference 7. The maxi-

mum allowable load fraction (preventing valve saturation) has 

been calculated for each of the runs with the application of 

equation ( 13). 
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Figures (20), (21), and (22) are presented to describe 

the relationship of maximum load fraction versus r /r for 
3 1 

the case of r /r =0.1, 0.5, and 1.0. The rest of the results 
2 1 

for the description of maximum load fraction versus r /r are 
2 1 

given in Appendix G. The important observation from the pre-

pared graphs indicates that the obtained optimum controller 

tuning constants can be applicable only for the small distur-

bance magnitudes, if the disturbance is very fast (small r ) . 
3 

This trend becomes more prominent as the value of r /r in-
2 1 

creases. But even the large magnitude of disturbance can be 

controlled with new tuning constants when the disturbance is 

slow (large r). The concept of allowable load fraction will 
3 

address this practical problem in an effective manner. 
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CHAPTER VI 

CONCLUSIONS 

Throughout this research work five important tasks were 

carried out to investigate the effect of disturbance dynamics 

on a control system: 

1. calculation of optimum tuning constants 

2. correlation of optimum tuning constants 

3. sample application 

4. comparison of tuning methods 

5. consideration of disturbance magnitude 

Taking observation of the results of the above tasks lead to 

the following conclusions: 

The figures provided in this study show that optimum tuning 

constants are dependent upon the effect of disturbance dyna-

mies. Optimum controller tuning constants (K , r , and r ) 
C I D 

could be described as a function of the parameters of the 

disturbance and process dynamics (r /r and e fr ) . Those 
3 1 d 1 

optimum tuning constants can be applicable to systems that 

allow the process to be modeled as a second order plus dead 

time (with gain K , two time constants r and r , and dead 
p 1 2 

time e ) and disturbance to be modeled as a first order with 
d 

time constant T, • Also, the range of ratios of e /r , T, ft , 
3 d 1 3 1 

~nd r /r should be in the range of o.osse /r s1.o, o.1sr /r 
2 1 d 1 2 1 
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~1.0, and O~t /t ~7.0. Examination of the IAE charts indi-
3 1 

66 

cates that the value of IAE decrease as the disturbance slows 

down (increase of r /r ) and as the dead time decreases (de-
3 1 

crease of e /r ) . 
c.l 1 

Sample applications show that optimum tuning constants 

obtained by this research lead the disturbed system to a 

desired steady state very effectively. Cases of instability 

of the control loop were observed in some sample applications 

with Kosinsani's tuning constants. But, no such cases of the 

instability were found in the sample application of tuning 

constants obtained from this work. 

In the comparison of two tuning methods, the new tuning 

method provided by this study gives significant improvements 

when it is compared to Lopez tuning method by producing much 

smaller overshoot, faster settling time, and smaller IAE 

value. The controller tuning based on the approximation of 

secod order with delay showed much improvement against the 

controller tuning based on first order approximation, when 

the responses of controlled variable X6 were compared. Also, 

controller tuning based on second order approximation gave 

much better valve reaction than controller tuning based on 

first order approximation. With controller tuning based on 

second order approximation the valve signal showed more 

gradual and flexible response compared to the valve signal 

based on first order approximation as it moved to correct a 

load disturbance. 

The disturbar.ce magnitude, for which calculated optimum 
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tuning constants can be applicable, were dependent upon the 

speed of disturbance dynamics. When the disturbance was fast 

(small~}, optimum tuning constants could be available only 
3 

for small magnitudes of disturbance and this situation became 

more prominent as ~ /~ is increased. Even the large magni-
2 1 

tude of disturbance can be controlled by calculated tuning 

constants when disturbance is slow (large ~ ) . The concept of 
3 

allowable load fraction will address this practical problem 

in an effective manner. 
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program rbonce; 

LABEL 1,2,3,4,5,6,7; 

CONST 

VAR 

KM=3;MAXK=5000;MKAT=800;MCYC=500;NSTEP=1; 
EPSY=l.OE-06;ALPHA=3.00;BETA=5.0E-01; 
KMM=4.0E-03;KV=l.6666666667E02; 

k:array [1 .. km] of real; {*INITIAL GUESSES*) 
v:array [1 .. km,l .. km] of real; (*DIRECTIONAL VECTORS*) 
b:array [1 .. km,1 .. km] of real; 
d:array [1 .. km] of real; (*SUM OF SUCCCESSFUL STEPS*) 
n:array [1 .. km] of real; 
p: array [ 1 .. km] of real; (*STEP SIZE*) 
j: array [ 1 .. km] of real; (*SUCCESS/FAIL INDEX*) 
e:array [1 .. km] of real; 
l:array [1 .. km,1 .. km] of real; 
t3:array [1 .. 40] of real; (*time const. of 

disturb.=tau3*); 
kkcc:array [1 .. 4] of real; 
kat,i,ii,m,kkl,iii,kl,z,mm,mmm,kkk,iiii,kkkk:integer; 
sumo,sumn,fbest,sumdif ,sumavv,sumav:real; 
c, (*TRANSMITTED VARIABLE,PSI*) 
er, (*ERROR, CURRENT VALUE*) 
erint, (*ER~OR INTERGRAL*) 
epast, (*ERROR, PREVIOUS ITERATION*) 
absie:real; (*TIME INTEGRAL OF ABSOLUTE VALUE OF THE 

ERROR*) 
G,Q,S:integer; (*dead time array pointers,elements*) 
thetad, (* deadtime *) 
du31,du32, 
du32xb, (*CONSTANTS IN DISCRETE EQUIVALENT OF lST 

ORDER*) 
xl, ( *xa+v*kv/1*) 
x2,x3,x4, (*INTERMEDIATE VALUES*) 
x5, (*PROCESS RESPONSE TO xb*) 
x6, (*THE CONTROLLED VARIABLE,MG/L*) 
rk11,rk21,rk31,rk41, 
rk12,rk22,rk32,rk42, 
time, 
vv, (*CONTROLLER OUTPUT BEFORE CONSTRAINTS,PSI*) 
va:real; (*CONTROLLER OUTPUT AFTER CONSTRAINTS,PSI*) 
vamin,vamax, (*MINIMUM AND MAXIMUM VALUES OF VA*) 
kc,taui,taud, (*TUNING CONSTANTS*) 
r, (*STEP CHANGE IN SET POINT,PSI*) 
xa, (*STEP CHANGE IN LOAD VARIABLE N0.1,MG/L*) 
xb, (*STEP CHANGE IN LOAD VARIABLE N0.2,MG/L 

(FOLLOWED BY lST ORDER DELAY TAUS*) 
delta, (•ITERATION TIME INTERVAL*) 



taul,tau2, (*PROCESS TIME CONSTANTS*) 
tau3, (*lST ORDER TIME CONSTANT FOR RESPONSE TO xb*) 
lambda,(* CMS TUNING CONSTANT*) 
tt,ttt:real; (*TOTAL TIME OF SIMULATION*) 

PROCEDURE DATA; 

begin 
readln ( r, xa, xb) ; 
readln(delta,tt); 
readln(taul,tau2,thetad); 
t 3 [ 1] : =O. 0 5 ; t 3 [ 2] : =O . 1 ; t 3 [ 3] : =O . 3; t 3 [ 4] : =O . 5; 
t3[5] :=0.7;t3[6] :=1.0; t3[7] :=l.2;t3[8] :=1.5; 
t3 [ 9]: =2. 0; t3 [ 10] : =2. 5; t3 [ 11]: =3. 0; t3 [ 12] : =3. 5; 
t3[13]:=4.0;t3[14]:=4.5;t3[15]:=5.0;t3[16]:=5.5; 
t3[17]:=6.0;t3[18]:=6.5;t3[19]:=7.0; 

end; 

procedure answer (a,bb:integer;cc,dd,eee,f:real); 
begin 

writeln(kc,taui,taud); 
writeln(r,xa,xb,delta,tt); 
writeln(tau1,tau2,tau3,thetad); 
writeln; 
writeln( 'TRIAL NO.' ,kkkk); 
writeln( 'NO. OF STAGES= ',a:3); 
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writeln('NO. OF FUNCTION EVALUATIONS= ',bb:3); 
writeln('IAE/(xb*taui= ',cc/(kmm*(xb+r/kmm)*taul): 

writeln('kckl= ',dd*kmm*kv:l6:8, 'taul/taui=', 
taul/eee:l6:8, 'taul*taud= ',taul*f:l6:8); 

writeln( 'vamax= ',vamax:l6:8, 'vamin= ',vamin:16:8); 
kc: =kkcc [ kkkk] ; 
k[l]:=kc; k[2]:=taui; k[3]:=taud; 
kkkk:=kkkk+l; 

end; 

function dtx2dot(cxl,cx2:real) :real; 
begin 

dtx2dot:=delta*(cxl-cx2)/taul; 
end; 

function dtx3dot(cx2,cx3:real) :real; 
begin 

dtx3dot:=delta*(cx2-cx3)/tau2; 
end; 

function object(kcc,tauii,taudd:real) :real; 

var 
DT: array [1 .. 5001] of real; (*array for the dead time*) 
i:integer; 
begin 

c:=O.O;epast:=O.O;absie:=O.O;vamin:=O.O;vamax:=O.O; 



erint:=O.O;time:=O.O;xl:=O.O; 
x2:=0.0;x3:=0.0;x4:=0.0;x5:=0.0;x5:=0.0;x6:=0.0; 
for i:=l to s do DT[i] :=O.O; G:=S; Q:=l; 

while time<ttt do 
begin 

c:=kmm*x6; 
er:=r-c; 
va:=kcc*(er+erint/tauii+(er-epast)* 

taudd/ de 1 ta) ; 
vv:=va; 
if va<vamin then vamin:=va; 
if va>vamax then vamax:=va; 
if va <= -6.0 then va:= -6.0; 
if va >= 6.0 then va:= 6.0; 
xl:= xa + va*kv; 
time:= time + delta; 
if (vv < 6.1) and (vv > -6.1) then 

erint:= erint + er * delta; 
absie:= absie + abs(er*delta); 
epast:= er; 
rkll:=dtx2dot(xl,x2); 
rk12:=dtx3dot(x2,x3); 

rk21:=dtx2dot(x1,x2+0.5*rk11); 
rk22:=dtx3dot(x2+0.5*rkll,x3+0.5*rk12); 

rk31:=dtx2dot(xl,x2+0.5*rk21); 
rk32:=dtx3dot(x2+0.5*rk21,x3+0.5*rk22); 

rk4l:=dtx2dot(xl,x2+rk31); 
rk42:=dtx3dot(x2+rk31,x3+rk32); 
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x2:=x2+(rk11+2.0*rk21+2.0*rk31+rk41)/6.0; 
x3:=x3+(rk12+2.0*rk22+2.0*rk32+rk42)/6.0; 

END; 

DT[G]:=x3; 
x4:=DT(Q]; 
G:=G+l; Q:=Q+l; 
if G>S then G:=l; if Q>S then Q:=l; 
x5:=x5 * du31 + du32xb; 
x6:=x4 + x5; 

end; 
object:=absie; 
writeln(kcc:8:3,tauii:8:3,taudd:8:3, absie); 

begin (*MAIN PROGRAM*) 
TERMIN (INPUT) ; 
TERMOUT(OUTPUT}; 
data; 

for mmm:=1 to 10 do 
begin 
thetad: =O. 1 ·•mmm; 



ttt:=tt; 
for iiii:= 1 to 19 do 
begin 
tau3:=t3[iiii]; 
ttt:=ttt+0.20*iiii; 
lambda:=1.0/(taul+tau2); 
kc:=(taul*tau2)*lambda/(kv*kmm*(lambda*thetad+1.0)); 
taui:=taul+tau2; 
taud:=taul*tau2/(taul+tau2); 

kkcc[l]:=kc;kkcc[2]:=kc/l.25;kkcc[3]:=kc*l.10; 

k[l]:=kkcc[l]; 
k[2] :=taui; 
K[3] :=taud; 

kkkk: =1; 
5: if kkkk>4 then goto 6; 

P[l] :=0.10; 
P[2]:=0.02; 
P[3]:=0.005; 
S:=round{thetad/delta)+l; 

DU31:=EXP{-DELTA/TAU3) ;DU32:=1.0-DU31; 
DU32XB:=XB * DU32; 

KAT: =1; (*FUNCTION EVALUATIONS*) 

FOR I:=l TO KM DO (*INITIALIZE DIRECTIONAL VECTORS*) 
BEGIN 

FOR M:=l TO KM DO 
BEGIN 

v[i,m]:=O.O; 

end; 

if (i-m)=O then 
v[i,m] :=1.0; 

end; 

sumn:=object{k[l],k[2],k[3]); 
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writeln{'initial IAE/{xb*taul)=' ,sumn/(kmm*{xb+r/kmm)* 
taul) ) ; 

sumo:=sumn; 
kkl:=l; {*STAGES*) 

if nstep<>l then 
begin 

for i:=l to km do 
e [ i ] : =p [ i] ; 

end; 
1: for i:=l to km do 

begin 
fbest:=sumn; 
j[i]:=2.0; 



end; 

if nstep=l then 
e ( i ] : =p [ i ] ; 
d[i]:=O.O; 

iii:=O; 
2: iii: =iii+l; 
3: i:=l; 
4: for m:=l to km do 

k[m] :=k[m]+e[i]*v[i,m]; 
sumn:=object(k[l],k[2],k[3]); 
kat: =kat+l; 
sumdif :=fbest-sumn; 

if (abs(sumdif)-epsy)<=O.O then 
begin 
answer(kkl,kat,sumo,k[l],k(2],k[3]); 
goto 5; 

end; 

if (kat-maxk)>=O.O then 
begin 

writeln(~maxk exceeded'); 
answer(kkl,kat,sumo,k[l],k(2],k[3]); 
goto 5; 

end; 

if (sumn-sumo)>O.O then 
begin (*FAILURE*) 

for m:=l to km do 

end 

else 

k[:n] :=k[m]-e[i]*v[i,m]; 
e[i] :=-beta*e[i]; 
if abs(e[i])< 1.0E-20. then goto 7; 
if (j[i]-1.5)<0.0 then j[i] :=0.0; 

begin (*SUCCESS*) 
d[i] :=d[i]+e[i]; 
e[i] :=alpha*e[i]; 
if abs(e[i])< 1.0E-20. then goto 7; 
sumo:=sumn; 
if (j[i]-1.5)>0 then j[i]:=l.O; 

end; 

for m:=l to km do (*CHECK END OF STAGE*) 
if (j[m]-0.5)>0 then (*STAGE NOT ENDED*) 

begin 
if (i-km)<>O then (*CHECK END OF CYCLE*) 

begin 
i:=i+l; 
goto 4; 

end 
else 

begin 
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for z:=l to km do 
if (j[z]-2.0)<0 then goto 3; 
if (iii-mcyc)<O then goto 2 
else 

begin 
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writeln('mcyc exceeded'); 
answer(kkl,kat,sumo,k[1],k[2],k[3]); 
goto 5; 

end; 
end; 

end; 
for i:=l to km do 

for m:=l to km do 
1 [ i, m] : =O . 0; 

writeln(output, 'STAGE NO.=' ,kk1:3); 
writeln(output, 'FUNCTION=' ,sumo:16:8); 
for i:=l to km do 

write l n ( OU t put I I x ( I I i , I ) = I I k [ i ] : 1 6 : 8 ) ; 

(*ROTATE AXES*) 

for i:=l to km do 
begin 

kl:=i; 
for m:=l to km do 

begin 

end; 

for z:=kl to km do 
l[i,m] :=d[z]*v[z,m]+l[i,m]; 

b[i,m] :=l(i,m]; 
end; 

n [ 1] : =O. 0; 
for z:=l to km do 

n [ 1 ] : =n [ 1] + b [ 1 , z] * b [ 1 , z] ; 
n[l] :=sqrt(n[l]); 
for m:=l to km do 

v[l,m] :=b[l,m]/n[l]; 
for i:=2 to km do 

begin 
ii:=i-1; 
for m:=l to km do 

begin 
sumavv:=O.O; 

end; 

for z:=l to ii do 
begin 

sumav:=O.O; 
for mm:=l to km do 

sumav:=sumav+l[i,mm]*v[z,mm]; 
sumavv:=sumav*v[z,m]+sumavv; 

end; 
b[i,m]:=l[i,m]-sumavv; 

end; 



for i:=2 to km do 
begin 

n [ i] : =O. 0; 
for z:=l to km do 

end; 

n [ i] : =n [ i] + b [ i , z] * b [ i , z] ; 
n[i] :=sqrt{n[i]); 
for m:=l to km do 

v[i,m] :=b[i,m]/n[i]; 

7; kkl:=kkl+l; 
if {kkl-mkat)<O then goto 1; 
writeln{ 'maxk exceeded'); 
answer(kk1,kat,sumo,k[1],k[2],k[3]); 
goto 5; 

6: end; 
end; 
end. 
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program simp (din, dout); 

canst m = 5; (* number of parameters to fit *) 
nvpp = 2; (* total number of vars. per data point *) 
n = 6; (* m+l dimension *) 

= 200; (* max. number of data point *) 
= 1.0; (*reflection coefficient*) 

mnp 
alpha 
beta = O. 5; ( * contract ion coefficient *) 
gamma= 2.0; (* expansion coefficient *) 
lw = 7; ( * width of line in data fields + 1 *) 
root2 = 1.414214; 

type vector = array(.1 .. n.) of real; 
datarow = array(.1 .. nvpp.) of real; 

var 
index 
done 

= 0 .. 255; 
boolean; 
index; 

(* convergence *) 
i I j I k 
h, l array(.1 .. n.) of index; 
np, 
maxiter, 
niter 
next, 
center, 
mean,error, 
maxerr, 

integer; 

(* number of data points *) 
(* max. number of iteration *) 

(* number of iteration *) 
(* new vertex to be tested *) 
(* center of hyperplane *) 

(* max error accepted *) 
(* to compute first simplex *) p,q, 

step 
simp 
data 
odat 

vector; (* input starting step *) 
array ( . 1 .. n. ) of vector; ( * the simplex *) 
array(.1 .. mnp.) of datarow; (*data*) 

array( .1 .. 200,1 .. 10.) of real; 
din,dout: text; 

function f (x : vector; d : datarow) : real; 
begin 

f : = x ( . 1 . ) - exp ( -x ( . 2 . ) * d ( . 1 . ) ) * ( x ( . 3 . ) * cos ( x ( . 4 . ) * d ( . 1 . ) ) 
+x ( . 5. ) *sin { x { . 4. ) * d { . 1. ) ) ) ; 

end; 

procedure sum of residuals (var x 
var ; · index; 
begin 
x{.n.) := O.O; 

for i:=l to 19 do 
begin 

vector) ; 

x{ .n.) :=x( .n. )+sqr{f(x,data(. i.) )-data(. i, 2.)) 
end 

end; 

procedure enter; 
var i,j,np : integer; 

begin 
writeln (dout, 'to find kckl case of PID, thetad=l.O'); 
writeln (dout, 'model is kckl=a-exp{-bx)*(c*cos(dx)+ 

e -~ s i n ( dx ) ) ' ) ; 
read (din, maxiter); 



writeln (dout, 'max. number of iteration is :=' 
:naxiter:5); 

writeln (dout, 'start coord.: '); 
for i:=l tom do 
begin 

read (din, simp(.1,i. )) ; 
if (i mod lw) = 0 then writeln (dout); 

write (dout, simp(.1,i. )) 
end; 

write l n ( dou t ) ; 
write (dout, 'start steps: '); 
for i:=l to m do 
begin 

read (din, step(.i.)); 
if (i mod lw) = O then writeln (dout); 

write (dout, step(.i.)) 
end; 

writeln (dout); 
write (dout, 'max errors: 1 ); 

for i:=l ton do 
begin 

read (din, maxerr(.i. )); 
if (i mod lw) = 0 then writeln (dout); 

write (dout,maxerr( .i.)) 
end; 

writeln (dout); 
writeln (dout, 'data: '); 
writeln (dout, 'x':l4, 'kck1':14); 
for np:=l to 19 do 
begin 
write ( dou t , ' #' , np : 3 ) ; 

for j:=l to nvpp do 
begin 

read (din, data( .np,j.)); 
write (dout, data(.np,j. )) 

end; 
writeln (dout); 

end 
end; 

procedure report 
var kckl, dkckl, 

sigma real; 
i,j integer; 

begin 
writeln (dout, 'program exited after' ,niter:5, 

'iterations'); 
wr i teln ( dout, ' the final simplex is' ) ; 
for j:=l ton do 
begin 

for i:=l to n do 
begin 

if (i mod lw) = o then writeln (dout); 
write (dout,simp( .j,i.):10); 
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end; 
writeln (dout); 

end; 
writeln (dout, ' the mean is'); 
for i:=l to n do 
begin 

if (i mod lw) = O then writeln (dout); 
write (dout, mean(.i.)) 

end; 
writeln (dout); 
writeln (dout,' the estimated fractional error is '); 
for i:=l to n do 
begin 

if (i mod lw) = 0 then writeln (dout); 
write (dout, error(.i.)) 

end; 
writeln (dout); 
writeln (dout,' #' :4, 'x' :10, 'kckl' :15, 'kckl 11 ' :15, 

I dkckl l : 15) ; 
sigma:=O.O; 
for i:=l to 19 do 
begin 
kckl:=f(mean,data(.i.)); 
dkckl:=data(.i,2.)-kckl; 
sigma:=sigma+sqr(dkckl); 
write ln ( dou t , i : 4 , ' ' , data ( . i , 1 . ) : 13 , ' 

data(. i,2.) :13,' ',kckl:13,' ',dkckl:13); 
end; 

sigma:=sqrt(sigma/19); 
writeln (dout,' the standard deviation is' ,sigma); 
sigma:=sigma/sqrt(19-m); 
write(dout,' the estimated error of the'); 
writeln (dout,' function is' ,sigma); 

end; 

procedure first; 
var i,j : integer; 

begin 
writeln (dout,' starting simplex'); 
for j:=l ton do 
begin 
write ( dou t, ' s imp ( ' , j : 1, ' ) ' ) ; 

for i:=l ton do 
begin 
if (i mod lw) = 0 then writeln (dout); 
write (dout,simp(.j,i.)) 

end; 
writeln (dout) 

end; 
writeln (dout) 

end; 
procedure new_vertex; 

var i : integer; 
begin 
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for i:=l to n do 
begin 

s imp ( . h ( . n. ) , i . ) : = next ( . i . ) ; 
end; 

end; 

procedure order; 
var i,j : index; 

begin 
for j:=l ton do 
begin 

for i:=l to n do 
begin 
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if s imp ( . i , j . ) < s imp ( . 1 ( . j . ) , j . ) then 1 ( . j . ) : = i ; 
if simp(.i,j.) > simp(.h(.j.),j.) then h(.j.) :=i; 

end 
end 

end; 

begin 
assign(din, 'mmm.dat'); 
assign(dout, 'func.dat'); 
reset (din); 
rewrite(dout); 
( * enter; *) 
for i:=l to 190 do 
begin 

for j:=l to nvpp do 
begin 

read(din,odat(. i, j.)); 
end; 

end; 
for k:=l to 10 do 
begir. 
maxiter:=10000; 
s imp ( . 1 , 1 . ) : =O . 1 ; s imp ( . 1 , 2 . ) : =O . 2 ; s imp ( . 1 , 3 . ) : =O . 1 ; 
s imp ( . 1, 4. ) : =O. 2; s imp ( . 1, 5. ) : =O. 1 ; 
step (. 1.) : =O. 2; step ( . 2.) : =O. 1; step ( . 3.) : =O. 2; 
step ( . 4. ) : =O. 1; step ( . 5. ) : =O. 2; 
maxerr(.1.) :=lE-5; maxerr(.2.) :=1E-5;maxerr( .3.) :=lE-5; 
maxerr(.4.) :=1E-5;maxerr(.5.) :=1E-5;maxerr(.6.) :=lE-5; 
for np:=l to 19 do 
begin 

for j:=l to nvpp do 
begin 
data ( . np, j . ) : =oda t ( . ( np+ ( k-1 ) * 19) , j . ) ; 

end; 
end; 

sum_of_residuals(simp(.1. )); 
for i:=l to m do 
begin 
p(. i.) := step( . .i. )*(sqrt(n)+m-1)/(m*root2); 
q(.i.) := step(.i.)*(sqrt(n)-l)/(m*root2); 

-:nd; 



for i:=2 to n do 
begin 

for j:=l tom do 
s imp ( . i , j . ) : = s imp ( . 1 , j . ) +q ( . j . ) ; 
simp(.i, (i-1) .) := simp(.1, (i-1) .)+p(. (i-1) .); 
sum_of_residuals(simp(.i.)) 

end; 
for i:=l ton do 
begin 
l(.i.) :=1; h(.i.) :=1 

end; 
order; 
(*first;*) 
niter :=O; 
repeat; 
done := true; 
niter := succ(niter); 
for i:=l to n do 
center(.i.) := 0.0; 
for i:=l to n do 
if i <> h( .n.) then 
for j:=l tom do 
center( .j.) :=center( .j. )+simp(.i,j.); 

for i:=l ton do 
begin 
center ( . i. ) : = center ( . i. ) /m; 
next( .i.) :=(1.0+alpha)*center( .i.) 

-alpha*simp(.h(.n.) ,i.) 
end; 

sum_of_residuals(next); 
if next(.n.) <= simp(.l(.n.),n.) 
begin 

m do 

then 
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new_ vertex; 
for i:=l to 

next ( . i. ) := gamma*simp(.h(.n.) ,i.)+(1.0-gamma)* 
center( .i.); 

sum_of_residuals(next); 
if next(.n.) <= simp( .l(.n.),n.) then new vertex 

end 
else 
begin 
if next( .n.) <= simp(.h(.n. ),n.) then new vertex 
else 
begin 

for i:=l to m do 
next( .i.) := beta*simp( .h( .n.) ,i. )+(1.0-beta) 

*center(.i.); 
sum_of_residuals(next); 

if next( .n.) <= simp(.h(.n.) ,n.) then new vertex 
else 
begin 

fo=- i:=l ton do 
begin 
forj:=ltomdo 
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simp{.i,j.) := (simp(.i,j.)+simp(.1(.n.),j.)) 
*beta; 

sum_of_residuals(simp(.i.)) 
end 

end 
end 

end; 
order; 
for j:=l ton do 
begin 
error ( . j. ) : = ( simp ( . h ( . j.) , j. ) -simp (. 1 ( . j. ) , j. ) ) I 

S imp ( • h ( • j • ) / j • ) ; 
if done then 

if error(.j.) > maxerr(.j.) then 
done := false 

end 
until (done or (niter= maxiter)); 
for i:=l to n do 
begin 

mean ( .. i. ) : = O. O; 
for j:=l ton do 
mean( .i.) :=mean(.i.)+simp(.j,i.); 

mean(.i.) :=mean(.i. )/n 
end; 
report; 

end; 
close(din); 
close(dout); 
end. 



APPENDIX D 

TABLES OF CURVE FITTING 

RESULTS 
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e /i; 
LI 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE I 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

AT t" Ii;- = 0. 1 
2 1 

-Bi:- h 
3 1 K K = A-e [C cos(D i; /i; ) ~ E sin(D i:- /i; )] c L 3 1 3 l 

A. 

10 .. 541223 

5.890894 

4.484194 

3.446715 

2.622772 

2 .172058 

1.839872 

1.873584 

1.670054 

1.609807 

B 

1.180019 

3.425357 

1.267431 

0.985048 

1.773274 

0.625983 

0.496145 

0.712189 

0.729667 

0.879666 

c 

4. 081162 

2.846238 

1.954393 

1.384971 

1.016053 

0.718355 

0.550092 

0.696749 

0.591636 

0.606288 

D 

1.272492 

7.24 x 10-6 

9.16 x 10-7 

2.95 x 10-7 

-9.26 x 10-7 

0.003308 

0.005831 

0.022343 

0.427691 

-4.44 x 10 
-7 

E 

-7.398963 

2.403632 

1.268995 

0.649919 

2.696408 

-164.5421 

-84.99422 

-7.329004 

-0.352738 

-2.840634 
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Standard 
Deviation 

0.449385 

0.290349 

0.119251 

0.129946 

0.067870 

0.045793 

0.041626 

0.040928 

0.011888 

0.036769 



TABLE II 

CURVE FITTING RESULTS OF 
INTEGRAL TIME 
AT r h = 0. 1 

2 1 

c "t /r E "t /r; 
r:/r:r= A • B( 1 

3 1 ) • D e 2 1 - e 

e /"t 
J 1 

A B c D E 

0 .1 -3.30267 9.01153 -0.41464 5.79647 -0.00625 

0.2 5.78255 -0.09001 -12.2736 5.13833 -0.39375 

0.3 2.77685 0.58238 -6.76347 2.38840 -0.34719 

0.4 3. 67113 -0.39645 -5.85407 4.71432 -0.47918 

0.5 -1.94808 0.40691 0.00948 3.90218 0.03892 

0.6 1.58023 0.37603 -0.04395 2.92361 -0.08631 

0.7 2.85940 -0.31889 -1.36371 2.22301 -0.21063 

0.8 1.35737 1.33223 -0.13991 1.96826 -0.66789 

0.9 2. 13835 0.02338 -0.03980 2.51418 -0.41486 

1. 0 0.37534 0.00740 0.71613 0.56146 0.20946 
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sin (F /r; .,. G) "t 
3 1 

F G 
Standard 

Deviation 

-0.000027 2.43275 0.2424 

-0.00058 -1.78762 0.18450 

0.46117 -1.79252 0.11018 

-0.04031 -0.63706 0.06248 

0. 16394 0.75193 0.05624 

0.14973 -0.30795 0.06160 

0.15687 -1.24698 0.02911 

0.28259 -2.82426 0.03606 

0.23493 -2.54317 0.01802 

0.20258 0.60896 0.02968 



e /r A 
d 1 

0.1 -43360.4670 

0.2 -44636.8244 

0.3 -53461.0341 

0.4 -83746.1773 

0.5 -77234.5607 

0.6 -32407.2158 

0.7 -3811.73677 

0.8 -55195.8537 

0.9 -31467.2744 

1. 0 -134661.5610 

'T'f\8LE I I I 

crRVE FITTING RESULTS OF 
QERIVATIVE TI~E 

AT i; Ii; = 0.1 
2 1 

c i; /i; 

T. iT. = A B 
3 1 

~ e -o -1 

B c 

43360.5758 3.193977 

-14636.9557 2.434525 

53461.2240 2.401277 

83746.4041 2.044911 

77234.8133 4.055537 

32407.4991 1.176143 

3812.04278 1.216128 

.55196. 1993 7.840349 

32467.6501 1.582992 

134661.9795 3.354662 
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Standard 
Deviation 

x 10- 7 0.0153100 

x 10- 7 0.0136737 

x 10- 7 0.0121607 

x 10- 7 0.0182938 

x 10- 7 0.0210251 

x 10- 6 0.0161665 

x 10- 5 0.0205976 

x 10- 7 0.0190948 

x 10- 6 0.0185181 

x 10- 7 0.0374493 



TABLE V 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAi~ 

AT t It = 0.2 
2 1 

K K = A - e 
C' L 

-B r it 
3 1 [C cos (D t /t ) + E 

3 1 

8 Ii; A B c D 
<l 1 

0.1 12.399046 1.627010 5.681818 3.7080941194 

0.2 7.803883 0.797572 3.929099 0.0000000032 

0.3 4.676351 1.007973 2.111299 -0.0000000052 

0.4 3.608588 0.907358 1.606882 0.0000000072 

0.5 2.784449 0.922551 1.098633 0.0000000057 
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sin (D t It ) ] 
3 1 

E 

-1.9898339 

-5.5804481 

0. 1850836 

1.0609761 

1.7570548 

Standrad 
Deviation 

0.4224554545 

0.3650978605 

0.1419999611 

0.0882600788 

0.0857822829 

0.6 2.233905 0.713294. 0.812053 0.0072544976 -59.2209331 0.0343512919 

0.7 1.999058 0 610323 0.718012 0.0054062788 -56.2213620 0.0248629267 

0.8 1.831384 0.730353 0.668455 -0.3595292639 0.3607367 0.0332465735 

0.9 1 754170 0.748779 0.674030 0.0000000085 -1.7062681 0.0558489975 

1.0 1.4136881 0.367970 0.4056009 0.0041167373 -67.2205867 0.0255370225 



TABLE IV 

crRVE FITTING RESULT OF IAE 
AT-ch=0.1 

0.1 0.004136 

0.2 0.015031 

0.3 0.029530 

0.4 0.043210 

0.5 0.051111 

0.6 0.051936 

0.7 0.058688 

0.8 0.045950 

0.9 0.034825 

1.0 0.058584 

2 l 

IAE = A + B/(C + r Ir ) 
3 1 

B 

0.049875 

0.138218 

0.260434 

0. -!18941 

0.638021 

0.912282 

l.207813 

1.638504 

2.079027 

2.415581 

c 

0.228442 

0.352544 

0.483797 

0.619501 

0.785571 

0.956557 

1.109474 

1.325902 

1.501410 

1.610953 

Standard 
Deviation 

0.005886 

0.007893 

0.013004 

0.017866 

0.020877 

0.024283 

0.031217 

0.032701 

0.036342 

0.045892 
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TABLE VI 

crRVE FITTI'.'iG RESULTS OF 
I'.'iTEGRAL TI'.'-fE 
AT r /-,; = 0.2 

2 1 

C ! Ii; 
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! /i:; 
1 I 

A - B(l - e 3 1 ) + 

E-,;3/i:;l 
D e sin (F i:: Ii:: 

3 1 
... G) 

A B D 

0. 1 1.46941 -0.92782 o.:rno91 0.50210 

E F 

0.46893 0.26288 

G 

1.34227 

Standard 
Deviation 

0.77867 

0.2 -3.53221 0.99416 -1.19698 4.43834 0.08304 0.11933 1.19243 0.17850 

0.3 4.20245 -0.35109 
-7 

-9.20077 10.11599 -0.32324 -2.0xlO -2.8052 0.08696 

0.4 4.32900 -0.72499 -0. 19990 4.78175 -0.19990 -0.00000 -0.8526 0.16347 

o.s 2.42577 -o.onos8 0.83076 5.58883 -0.82066 0.23450 -2.8328 0.07965 

0.6 1.35715 0.72435 -0 04618 1.51784 -0.04764 0.22003 -0.44845 0.04102 

0.7 0.57396 0.20299 -0.00311 1.56583 0.01040 0.19324 0.07189 0.03552 

0.8 0.26774 0.54056 0.01712 1.26326 0.05622 0.19165 0.33249 0.05483 

0.9 4.32036 2.41582 0. 14200 5.92115 0.01260 0.12715 -0.66533 0.09485 

1.0 -1.35707 0.17442 -0.02570 3.11022 0.01128 0.07160 0.70241 0.04796 



e h 
J t 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

A 

-12340.39508 

-8253.00838 

-24521.82030 

-9326.23961 

-65910.78431 

-18164.86311 

-32116.07804 

-1-1644.24234 

-104185.86456 

-0.68734 

TABLE VII 

CVRVE FITTING RESULTS OF 
DERIVATIVE TntE 

AT r h = 0. 2 
2 1 

B 

12340.56067 

·~·253. 22817 

24522.06750 

9326.52523 

1'5911.10552 

18165.19897 

32116.44446 

14644.63868 

104186.29961 

1.14425 

C r It; 
3 1 

c 

0.000001165 

0.000000321 

0.000000598 

0.000001714 

0.000000416 

0.000002201 

0.000001345 

0.000003178 

0.000000404 

0.041199001 

Standard 
Deviation 

0.019849436 

0.010916347 

0.013354271 

0.012946171 

0.023743855 

0.011322792 

0.012369514 

0.019443755 

0.040395520 

0.021419328 

133 



e h; 
d 1 

0 .1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE VII I 

CCRVE FITTING RESULTS OF IAE 
AT! Ii; = 0.2 

'~ 1 

IAE A ... B/(C - ! /r ) 
3 1 

A 8 c 

0.824358 -25.971456 39.306470 

0.288611 -1.346790 19.356491 

0.558740 -4.686823 14.802296 

0.842183 -15.854805 28.336644 

0.661527 -2.219593 6.150730 

2.612603 -114.962580 50.399479 

2.045952 -34.1320496 32.384603 

4.379741 -315.149436 79.051963 

1.014596 -4.526766 7.465166 

40.280229 -29052.053 729. 40595 
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Standard 
Deviation 

0.0197789 

0.0108858 

0.0127967 

0.0128158 

0.0202570 

0.0108605 

0.0112515 

0.0192967 

0.0365062 

0.0219471 



TABLE IX 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

AT t" .It" =O. 3 
2 1 

K K = A - e 
C L 

-B i: /t" 
3 1 

E ~taodatrd 
C D vev1a ion 

0.1 31.05310 0.19782 19.56376 0.000000004 50.84995 1.88491 

0.2 8.89738 0.75203 4.81710 0.000000002 10.05059 0.38503 

0.3 5.22663 0.80957 2.50109 -0.000000019 0.91970 0.26836 

0.4 3.72221 0.94057 1.66788 0.000000017 1.50663 0.11305 

0.5 2.94594 0.85623 1.22571 0.000000001 1.96095 0.08496 

0.6 2.36947 1.15698 0.93260 0.000000008 1.76138 0.05174 

0.7 2.13794 0.89757 0.84751 0.000000005 -0.54728 0.04122 

0.8 1.89036 1.26391 0.70382 0.005179852 61.74040 0.02345 

0.9 1.65255 0.44314 0.55708 0.002812078 -81.86672 0.02972 

1.0 1.38061 0.31864 0.35699 0.009400342 -30.63374 0.02745 
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t" /'r. = 
1 I 

eclhl A 

0.1 -5.1642 

0.2 10.6290 

0.3 3.2314 

0.4 -6.2692 

0.5 -7.0245 

0.6 1.1447 

0.7 -1.1754 

0.8 1.9433 

0.9 1.0655 

1. 0 0.6310 

A + B(l-e 

B 

TABLE X 

CURVE FITTING RESULTS OF 
INTEGRAL TIME AT 

t" /i:- l =O. 3 

-C t" h; E t" /?; 
3 1) + D e 3 1 sin 

c D E 

-7.8589 -59.7046 17.5459 0.01126 

3.9623 -0.2532 28.8933 -3.14079 

0.1559 -0.0595 2.6706 -0.26734 

2.8106 0.2276 7.1376 0.15085 

3.0109 -0.1622 8.0350 -0.00574 

2.1274 -0.0896 0.9688 -0.61380 

-0.0923 -1.5271 1.8399 0.15697 

0.1943 -0.0972 2.3422 -0.35892 

1.1216 -0.0728 0.5016 -0.27034 

-0.3735 0.2301 0.0093 0.58052 

136 

(F /t" G) t" + 
3 1 

F G 
Stanard 
Deviation 

0.1232 0.8587 0.1876 

0.1020 -3.1486 0.1098 

0.0029 -1.5791 0.1201 

-0.00079 1.3085 0.0670 

0.0000039 1.9000 0.0898 

0.45525 -2.6079 0.0424 

0.12023 1.6856 0.0286 

0 .19242 -2.5540 0.0112 

0.54268 -2.1566 0.0261 

0.68567 -0.0951 0.0304 



e /1:' A B 
cJ 1 

0.1 0.177104453 

0.2 0.269897596 

0.3 -348123.0021 

0.4 -3858.253878 

0.5 -.567873. 5989 

0.6 -259458.9424 

0.7 -129648.4667 

0.8 -186693.1187 

0. 9. -9423.673701 

1. 0 -0.007643597 

TABLE XI 

CURVE FITTING RESULTS OF 
DERIVATIVE TI~E 

AT t" /t" =0.3 
2 1 

c t" It" 
i"t" A .... B e 3 1 

t" 
D 1 

c 

0.109699478 -4.297265244 

0.000000172 1.631470727 

348123.3156 0.000000025 

3858.591291 0.000005015 

567873.9715 0.000000048 

259459.3331 0.000000150 

129648.8903 0.000000303 

186693.5675 0.000000244 

9424.148398 0.000005448 

0.515286580 0.080544207 
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0.020561542 

0.013501095 

0.021621470 

0.017036656 

0.019590287 

0.015666708 

0.015564386 

0.019806701 

0.019937965 

0.024677633 



e /'T; A 
tJ 1 

0. 1 0. 011098297 

0.2 0.022284462 

0.3 0.031262811 

0.4 0.036351793 

0.5 0.039090780 

0.6 0.030801374 

0.7 0.032954641 

0.8 0.021547219 

0.9 0.002971299 

1. 0 -0.010395189 

TABLE XII 

CURVE FITTING RESULT OF IAE 
AT -i; Ir =O .3 

2 1 

IAE = A ... 8/ ( c ... 'T; /'T; 
3 1 

B c 

0.039852765 0.159983862 

0.155769205 0.359096495 

0.333140279 0.549406093 

0.582699668 0.756589117 

0. 863105465 0.924645422 

1.267542201 1. 158723119 

1.642926223 1.320254546 

2.154040924 1.537903348 

2.761776087 1.769306412 

3.416304568 1.992986833 
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Standard 
Deviation 

0.004071687 

0.008687723 

0.014580333 

0.019120960 

0.024678190 

0.027224668 

0.033354320 

0.036632620 

0.040343378 

0.044437867 



e 1-c; 
d 1 

0 .1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9 

TABLE XIII 

CURVE FITTING RESULTS OF · 
PROPORTIONAL GAIN 

AT -c; 1-c; =0.4 
2 1 

K K = A - e 
C L 

-B -c; h 
3 1 [ C cos ( 0 -c; 1-c; ) E sin (D t"3/-c;1)] 

A B c 

24.07574 1.19830 14.85883 

9.81443 0.68014 5.36092 

5.66194 0.83228 2.81486 

3.92689 1.02022 1.82713 

3.10710 0.85978 1.34758 

2.50924 0.99475 1.01303 

2.19370 1.26302 0.86206 

1.77722 0.40619 0.55816 

1.80703 0.73340 0.68875 

1.61055 0.90646 0.54870 

3 1 

D 

0.000000001 

-0.000000000 

-0.000000007 

0.000000008 

-0.000001985 

0.000000003 

0.003496145 

0.018986802 

-0.000000000 

0. 715797'497 

E 

45.63781 

57.39144 

0.06172 

1.09482 

0.74023 

2. 34726 

96.44209 

-18 '09822 

1.74749 

0.31955 

Standrad 
Deviation 

1.09814 

0.43386 

0.19475 

0 .10374 

0.06016 

0.03568 

0.02763 

0.02183 

0.02049 

0.01497 
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TABLE XIV 

CURVE FITTING RESULTS OF 
DlTEGRAL TIME AT 

r 2 1r 1=0.4 
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-C !:" /i; 
J 1 

r Ir = A - B ( 1-e ) 
1 I 

... D e 
E r /r 

3 1 
sin (F r /r 

3 1 
+ G) 

8 uh::l A B 

0.1 -5. 1642 -7.8589 

0.2 10.6290 3.9623 

0.3 3.2314 0. 1559 

0.4 -6.2692 2.8106 

0.5 -7.0245 3.0109 

0.6 1.1447 2.1274 

0.7 -1.1754 -0.0923 

0.8 1.9433 0.1943 

() 9 1.06.'55 1.1216 

1.0 0.6310 -0.3735 

c D E 

-59.7046 17.5459 0.01126 

F G 

0.1232 0.8587 

Stanard 
Deviation 

0.1876 

-0.2532 28.8933 -3.14079 0.1020 -3.1486 0.1098 

-0.0595 2.6706 -0.26734 0.0029 -1.5791 0.1201 

0.2276 7.1376 0.15085 -0.00079 1.3085 0.0670 

-0.1622 8.0350 -0.00574 0.0000039 1.9000 0.0898 

-0.0896 0.9688 -0.61380 0.45525 -2.6079 0.0424 

-1.5271 1.8399 0.15697 0.12023 1.6856 0.0286 

-0.0972 2.3422 -0.35892 0.19242 -2.5540 0.0112 

-0.0728 0.5016 -0.27034 0.54268 -2.1566 0.0261 

0.2301 0.0093 0.58052 0.68567 -0.0951 0.0304 



e d Ir 1 A 

0 .1 0.203951502 

0.2 0.305494815 

0.3 0.352407234 

0.4 -0.893109110 

0.5 -1.104583444 

0.6 -142415.6809 

0.7 -130671.1526 

0.8 -0. 914422981 

0.9 -276263.3034 

1.0 -0.013144635 

TABLE XV 

CCRVE FITTING RESULTS OF 
DERIVATIVE TI~E 

AT r /-r; =0.4 
2 1 

-c T; Ir 
ii:; = A + B e 3 1 

i:; 
D 1 

B c 

0.143325232 -4.523662773 

0.061180854 -6.043138525 

0.008231174 0. 298011046 

1 277234464 0.015614548 

1.519742181 0.017479511 

142416.1219 0.000000267 

130671.6194 0.000000333 

1.410955608 0.032167417 

'276263.8291 0.000000177 

0.564361466 0. 077458722 

141 

Standard 
Deviation 

0.008137682 

0.013870909 

0.013364184 

0.019103968 

0.015388633 

0.013857436 

0.017136710 

0.011268156 

0.017907724 

0.025319861 



e<I1-rl 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XVI 

CCRVE FITTING RESULTS OF IAE 
AT i; Ii; =O. 4 

2 1 

IAE A .._ B/(C t" h 1 ) 3 

A B c 

0.005782802 0.045065168 0.179496464 

0.018056607 0. 167232310 0.375805020 

0.025735342 0.364772915 0.583748522 

0.028893103 0.632073323 0.791338632 

0.035312179 0.939957544 0.974898306 

0.022067090 1.366699285 1.201006359 

0.013504055 1.840951373 1.414650333 

-0.002212593 2.412063964 1.644878052 

-0.017475754 3.066857857 1.884221320 

-0.054314429 3.908748928 2.165438948 

142 

Standard 
Deviation 

0.001653484 

0.007691563 

0.013838110 

0.018100325 

0.025382438 

0.029144753 

0.033536074 

0.036983885 

0.041987247 

0.042671194 



e 1-i; 
u 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XVII 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

AT r 1-i; =0.5 
2 1 

143 

K K = A - e 
C L 

-B T, /1: 
3 1 [C cos (0 r, Ir, ) • E 

3 1 
sin ( 0 T, Ii; ) ) 

3 1 

B 

25.17440 1.49331 

10.79241 0.82521 

6.278828 0.72285 

4.166211 0.95431 

2.820382 0.35227 

2.741136 0.76753 

2.291224 0.59669 

2 032331 1.40030 

1.804311 0.40025 

1.698388 1.31130 

c 

1.s. 76741 

6.319318 

3.233786 

1.944290 

0.960844 

1.156651 

0.908106 

0.760692 

0.643524 

0.608902 

D E 
Standard 
Deviation 

-0.000009944 17.16323 0.903045 

-0.000000032 27.54787 0.371841 

-0.000000002 0.86228 0.201368 

0.000000010 1.25545 0.098547 

0.031869143 -23.11652 0.071758 

-0.000000015 1.02499 0.039524 

0.236511173 -0.81194 0.037319 

0.005506539 109.76785 0.021349 

0.009895981 -22.87312 0.032148 

0.004621596 111.80662 0.027326 



TABLE XVII 

CURVE FITTING RESULTS OF 
f))TEGRAL TIYl:E AT 

r /-;:; =0.5 
2 1 

-c r · r 

144 

r It= A+ B(l-e J 1 ) ... 
1 I 

D e 
-E t /T, 

3 1 
sin (F r /T, 

3 1 
... G) 

B Ir, 
c..I 1 

A B c D E F G 
Standard 
Deviation 

0.1 6.3876 -0.85602 -4.72198 5.5783 -0.28236 0.18526 -1.60655 0.08551 

0.2 3.4175 -0.00102 -8.97281 9.1401 -0.67431 0.16805 -2.82084 0.21438 

0.3 -1.9108 0.94591 -0.28356 2.8334 0.05311 0.14335 1.03930 0.10599 

0.4 2.2159 -0.35525 -1.52783 3.1687 -0. 15305 0.15706 -0.53215 0.04187 

0.5 0.0392 0.78840 -0.32169 1.1374 0.28811 0.04156 2.66150 0.04644 

0.6 -0.6232 -0.16651 -3.63481 3.3930 -0.02129 0.12380 0.38373 0.03751 

0.7 0.6530 0.05971 -0.08695 0.6226 0.09346 0.27191 -0.06911 0.03021 

0.8 1.8876 0.43637 0.00880 2.57028 -0.40365 0.20558 -2.62029 0.01472 

0.9 1.3828 0.60787 -0.08742 2.56107 -0.45037 0.14807 -2.83373 0.04585 

1.0 1.5831 -0.00933 0.22935 2.04456 -0.38331 0.20054 -2.64220 0.03871 



e It A 
d 1 

0. 1 0.235371025 

0.2 0.325336057 

0.3 0.385598433 

0.4 0. 04 7299085 

0.5 0.357329082 

0.6 -173470.5323 

0.7 -n.023953949 

0.8 -3.893494066 

f) 9 - 1) . 11 0 8 0 7 511 

1. 0 -0.286222108 

TABLE XIX 

CURVE FITTI~G RESULTS OF 
DERIVATIVE TI:'<1E 

AT t h =O. 5 
2 1 

c t /!;" 
Ir = A _,_ B e 3 1 

(;" 
D 1 

B c 

0.162361151 -4.855050578 

0.090122590 -3.534032330 

0.016493207 0.110234093 

0.383584461 0.044678559 

o. 104878133 0.161842406 

173471.0184 0.000000197 

0.537069378 I). 063285998 

4.426451734 0.010599263 

0.674499373 !l.059193034 

0.874817830 0.052556535 

145 

Standard 
Deviation 

0.012972427 

0.014815305 

0.017235546 

0.013902512 

0.012424313 

0.013089320 

0.018456049 

0.015348172 

0.023345046 

0.023026721 



e h 
J 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XX 

CCRVE FITTING RESULTS OF IAE 
AT r Ii; =O. 5 

2 1 

IAE A .._ Bl ( C + -r h 1 ) 3 

A B c 

0.005723501 0.044636203 0.175905496 

0.018421233 0.170275133 0.378533305 

0.024982446 0.376934291 0.593279038 

0.023885942 0.667527763 0.814519833 

0.025313246 1.021796746 1.030279770 

0.019418472 1.438737015 1.233900160 

0.006473725 1. 972655198 1.476180938 

-0.016637006 2.607974929 1.720485654 

-0.026450639 3.277881598 1. 959725166 

-0.064234566 4.149732510 2.232595244 

146 

Standard 
Deviation 

0.001548603 

0.007698625 

0.013576250 

0.018727666 

0.023433154 

0.030232949 

0.033398483 

0.038292199 

0.042601618 

0.049525759 



e ii:­
<l 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXI 

CURVE FITTI~G RESULTS OF 
PROPORTIONAL GAIN 

K K = A - e 
C L 

-B t" h 
3 l 

A B 

26.01722 2.29125 

9.30203 0.91006 

6.39028 0.90794 

4.42277 1.00460 

3.45279 0.89220 

2.84460 0.87737 

2.43683 0.82642 

2.12771 1.40966 

1.75061 0.31927 

1.74287 0.67492 

AT r ir =n.6 
2 1 

[C cos (D r Ir ) - E 
3 1 

sin (Di;- h; )] 
3 1 

c E F 

17.64455 -0.000000004 87.22845 

4.90682 0.956787623 -2.80380 

3.25597 0.000000005 11.65437 

2.10465 0.000000003 2.59171 

1.53625 -0.000000005 1.548603 

1.21646 0.000000007 2.847037 

1.00447 -0.000000002 3.487253 

0. 80738 0.002412956 281.778372 

0.55093 0.001532237 -202.951608 

0.61150 0.605624953 0.171433 

147 

Standard 
Deviation 

0.963223 

0.517259 

0.181501 

0.105597 

0.051564 

0.049199 

0.061928 

0.017395 

0.034652 

0.017289 



TABLE XXII 

CVRVE FITTING RESULTS OF 
INTEGRAL TIME AT 

r h =O. 6 
2 t 

-B r 1r E r /r 

148 

r ;i; =A-'- B(l-e 3 1 ) - De 3 1 sin 
1 I 

(F r h - G) 
J 1 

e h 
t.I 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

A 

4.0331 

2.6040 

o.no12 

0.7043 

0.9996 

0.3608 

0.7 -0.0240 

0.8 1.4091 

0.9 1.0035 

1.0 0.7807 

B c D 

-0.27636 -9.5196 3.3238 

0.31545 0.0497 2.2010 

0.34348 -0.3461 0.9782 

0.21007 0.2621 2.1962 

1.80525 -0.1337 1.9469 

0.79708 -0.2263 0.1901 

1.23100 -0.0137 1.2420 

E F 

-0.17124 0.47005 

-0. 12636 0.34418 

0. 16556 0.23971 

0.02892 0.19264 

-0.72558 0 .19734 

0.37855 0.16296 

0.04262 0.15688 

G 

-1.66247 

-1.24938 

0.57321 

-0.08434 

-2.90700 

1.66256 

Standard 
Deviation 

0.16281 

0.08070 

0.08229 

0.06073 

0.04186 

0.04203 

0.47906 0.05537 

0.96715 -0.0684 1.7939 -0.38885 0.19820 -2.66156 0.01989 

3.81389 n.0564 3.1341 0.02826 0.11100 -D.14357 0.04391 

0.21010 -0.2489 0.2479 0.10057 0.38764 -1.05633 0.02685 



e 1-c A 
d 1 

0.1 0.264326516 

0.2 0.280211339 

0.3 0.427081197 

0.4 0.031352681 

0.5 0.077840398 

0.6 0.290453325 

0.7 -0.199801389 

0.8 0.098796511 

0.9 0.336517516 

1.0 0.414683946 

TABLE XXI II 

CCRVE FITTING RESULTS OF 
DERIVATIVE TIME 

AT i:; 1--c =0.6 
2 1 

c T: 1--c 
,'i:; = A ,.. B e 3 1 

i:; 
D 1 

B c 

0.'183215578 -5.125286637 

0.089596905 0.109112121 

0.004957846 0.393595557 

0.436013860 0.033684509 

0.422322973 0.053440390 

0.236682115 0.104258247 

0.756245496 0. 044111733 

0.476531864 0.078594691 

0.275309050 0 .118747755 

0.220446061 0.150580955 
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Standard 
Deviation 

0.023506568 

0.040979224 

0.016116829 

0.018470226 

0.010352637 

0.014116076 

0.027029529 

0.017859875 

0.023278755 

0.025698944 



e h; 
d 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXIV 

CURVE FITTI~G RESULTS OF IAE 
AT t /r =0.6 

2 1 

IAE A B/(C ... r /r ) 
3 1 

A B c 

0.005555820 0.044564179 0.174624427 

0.015771988 0.176596147 0.388040761 

0.018094853 0.402301547 0.621958356 

0.024188710 0.686589086 0.828206710 

0.016343437 1.076817140 1.060067331 

0.009153153 1.542303908 1.293436572 

-0.001269079 2.075340753 1.516690928 

-0.033097292 2.793936890 1.796307874 

-0.052505463 3.547737517 2.054861139 

-0.093276028 4.519497875 2.358059142 

150 

Standard 
Deviation 

0.001450922 

0.006596532 

0.012048839 

0.019298545 

0.024344899 

0.029062106 

0.036023204 

0.038048556 

0.042081739 

0.042202062 



TABLE XXV 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

K K = A - e 
C L 

-B 1:" /-r 
3 1 

B h A B 
d 1 

0.1 27.69377 2.567600 

0.2 9.62531 1.172778 

0.3 7.28867 0.583158 

0.4 4.76541 0.920671 

0.5 3.70815 0.850482 

0.6 3.01409 0.821919 

0.7 2.65485 0.688195 

0.8 2.27549 0.764863 

0. 9 . 2. 00670 1.354058 

1.0 1.89259 0.632914 

AT r Ir =0.7 
2 1 

[C cos (D -r /-r ) 4 E 
3 1 

sin 

c D E 

19.30382 -0.000000371 55.54893 

4.89178 1.782716326 -0.41195 

3.72150 0.000000004 -1.29708 

2.31443 -0.000000001 -0.40174 

1.69000 -0.000000075 1.60395 

1.30946 0.000000005 2.03925 

1.14687 -0.000000010 -0.41448 

0.92822 -0.000000023 0.37670 

0.74655 0.008271015 80.68862 

0.74549 -0.000000006 0.58780 

151 

Standard 
Deviation 

0.740850 

0.567129 

0.383679 

0.122889 

0.082126 

0.031818 

0.053259 

0.024944 

0.012694 

0.033810 



TABLE XXVI 

CURVE FITTING RESULTS OF 
INTEGRAL TIME AT 

i; h =O. 7 
2 1 

-c T, /i; -E t" /i; 

152 

T, /r, =A• B(l-e 3 1 ) •De 3 1 sin 
1 I 

( F r, /r; 
3 1 

+G) 

e h 
d 1 

A 

0.1 0.3422 

0.2 0.5405 

B c 0 E F G 
Standard 
Deviation 

8.1236 -0.12236 0.33079 -0.00467 1.24529 -3.56925 0.06339 

2.6857 -0.49521 3.16727 -0.74571 0.47416 -3.15364 0.08000 

0.3 3.9802 18.4645 0.00680 53.14755 -0.40354 0.01803 -3.07597 0.04594 

0. 4 1. 6645 2.0395 -0.02386 1.15781 -0.19637 0.36312 -1.59532 0.04070 

0.5 0.3818 0.0661 -0.12358 1.30656 0.02759 0.20352 0.07950 0.08192 

0.6 1.1853 0.2012 -0.43661 0.67629 -0.05883 0.36676 -1.32293 0.01682 

0.7 2.1021 -0.4987 -0.76848 1.55725 -0.31115 0.21950 -1.70526 0.06031 

0.8 1.5993 0.3686 0.18203 1.13695 -0.00869 0.29869 -1.17113 0.01562 

0.9 2.4492 -0.5913 -0.70767 3.27271 -0.22700 -0.00037 -0.61624 0.01358 

1.0 0.4056 0.000010 1.47230 0.24969 0.23577 0.22791 0.55064 0.03035 



e I[ A 
J 1 

0.1 0.280322198 

0.2 -3739.472446 

() 3 -24821.433674 

0.4 0.255335620 

0.5 0.420797567 

0.6 0.020783587 

0.7 -8805.370351 

0.8 -0.335221379 

0.9 0.293609472 

l. 0 -12949.157933 

TABLE XXVII 

CURVE PITTING RESULTS OP 
DERIVATIVE TI~E 

AT r /r =0.7 
2 1 

c r Ir 
r /r = A B 

3 1 - e 
D 1 

B c 

0.209153818 -4.847470366 

3739.867383 0.000004448 

24821.904083 0.000000059 

0.245344088 0.053786376 

0.112202746 0.138804267 

0.537510957 0.052035615 

8805.960187 0.000003808 

0.944753310 0.041538190 

0.348623639 0.102367245 

12949.820202 0.000003718 

153 

Standard 
Deviation 

0.026383444 

0.049294172 

0.027317077 

0.016589548 

0.017982601 

0.009990302 

0.024534212 

0.020990415 

0.014-134986 

0.030028359 



e /-c 
d 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXVIII 

CuRVE FITTI~G RESULTS OF IAE 
AT -i; 'r -=0.7 

;:: 1 

IAE A B/(C -'- r Ir ) 
3 1 

A B c 

0.005458164 0' 044722977 0 .174688724 

0.015306185 0.178202497 0.388704766 

0.019881743 0.402947058 0.618803619 

0.017175085 0.722428287 0' 857270011 

0.012731650 1.131855938 1.100017894 

-0.000279755 1.611543034 1.323993878 

0.006147035 2.096322459 1.520547321 

-0.042351118 2.930744175 1.847527993 

-0.077001407 3.781385706 2.130552622 

-0.089333920 4.543064601 2.338592491 

154 

Standard 
Deviation 

0.001286274 

0.005902130 

0.012844453 

0.018593623 

0.025234654 

0.029720495 

0.039123653 

0.039744570 

0.042785581 

0.049491427 



e lr 
u 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXIX 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

K K = A - e 
C L 

-B t" /i-
3 1 

A 8 

27.32212 8.48587 

10.556903 2.03212 

7.742700 0.70565 

5.252423 0.79585 

4.069885 0.68822 

3.208561 0.77745 

2.740232 0.74861 

2.406327 0.71258 

1.909436 0.31803 

1.931674 1.15231 

AT t h =O. 8 
2 1 

[C cos (Dr /i- ) • E sin (D ~ Ii- )] 
3 1 3 1 

c D E 

15.81669 0.063323817 2598.9216 

5.63889 -2.073522846 -2.557892 

4.15667 -0.000000000 59.153361 

2.64103 -0.000000101 3.626108 

1.91817 0.000000006 0.427682 

1.40624 -0.000000000 1.998330 

1. 17557 -0.000000323 3.209259 

1.00408 0.000000014 3.562319 

0.61037 0.031267403 -10.644044 

0. 72571 0.005389270 90.643926 

155 

Standard 
Deviation 

1.268503 

0.726696 

0.271635 

0.160436 

0.101287 

0.041696 

0.029565 

0.036050 

0.025920 

0.008946 



t .It = 
1 J 

A + 

e /r A B 
J 1 

0.1 2.0670 -0.81998 

0.2 1.8649 8.29391 

0.3 -0.3455 1.95396 

0.4 -9.4900 1.92823 

0.5 0.2705 0.39736 

0.6 1.5124 -0.07469 

0.7 0.6105 0.38731 

0.8 1.3185 -0 .00781 

0.9 1.4696 -3 .67146 

1.0 0.8890 11.58321 

TABLE XXX 

CCRVE FITTING RESVLTS OF 
INTEGRAL TI~E AT 

i; h =0.8 
2 1 

-B t Ii; -E i; h 
B(l-e 

J 1 ) -'"D e J 1 sin (F i; 
3 

c D E F 

-1.30625 3.7987 -0.00825 0.25857 

-0.02365 16.3023 -0.99412 0.12919 

-0.10623 1.6928 0.34148 0.05778 

-0. 07725 10.3935 0.00510 0.05074 

-0.52047 0.2580 0.27548 0.22134 

0.23510 1.6833 -0.43241 0.25697 

C.06515 0.7676 0.06315 0.24581 

-1.53201 0.7948 -0.12478 0.29997 

-0.00108 1.0013 -0.16409 0.25501 

-0.00531 0.5443 -0.31748 0.36220 

156 

It + G) 
1 

G 
Standard 
Deviation 

-0.40637 0.12138 

-3.06409 0.05949 

2.65552 0.05833 

1.27365 0.10184 

0.84474 0.10977 

-2.50386 0.02183 

-0.14247 0.02448 

-1.58384 0.03685 

-1.89497 0.02287 

-2.39940 0.00951 



e /t' A 
<l 1 

0.1 0.313054829 

0.2 0.336894921 

0.3 0.485684608 

0.4 0.538059462 

0.5 0.511458711 

I). 6 0.444115226 

0.7 0.294458410 

0.8 0.449393430 

0.9 0. ")15912270 

1. 0 0.435895049 

TABLE XXXI 

CURVE FITTING RESULTS OF 
DERIVATIVE TIME 

AT t' it' =O. 8 
2 1 

C 'L /t' 
it' = A B e 

3 1 
t' + 

D l 

B c 

0.001651750 0.543880163 

0.090623337 0.098747130 

0.053440674 -3.697428326 

0.001916993 0.549796524 

0.054447330 0.182649419 

(). 118721839 0.133209349 

0.327252663 0.084555799 

0.204161976 0.128899226 

0.164062946 0.164331718 

0.267779382 0.125931586 
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Standard 
Deviation 

0.055739571 

0.046853081 

0.020059867 

0.024401043 

0.025350400 

0.008802239 

0. 011106046 

0.021250243 

0.022915223 

0.015916512 



e /r; 
J 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXXII 

CCRVE FITTING RESULTS OF IAE 
AT r 1r =0. 8 

.2 1 

IAE A ... BI ( c ... r Ir ) 
3 1 

A B c 

0.006348029 0.044831013 0.176182026 

0.015369666 0.179195159 0.389618512 

0.018257812 0.411217156 0.626693384 

0.017727088 0.733634934 0.865200204 

0.016334054 1.139001693 1.101646717 

-0.008270732 1.688002244 1.365935558 

-0.025066494 2.294059752 1.613125810 

-0.046120274 3.004847736 1.870020153 

-0.082888729 3.912008646 2.174028711 

-0.124862455 4.895824272 2.451653088 

158 

Standard 
Deviation 

0.001717612 

0.005693040 

0. 012311945 

0.018796204 

0.025642044 

0.029815431 

0.034853071 

0.039979835 

0.041552235 

0.046649100 



eh 
<.I 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

TABLE XXXIII 

CURVE FITTING RESULTS OF 
PROPORTIONAL GAIN 

K K = A - e 
C L 

-8 i; Ii; 
3 1 

A B 

29.29959 4.787268 

11.54144 4.506433 

8.55324 0.544232 

5.20808 1.066881 

4. 10794 0.890244 

3.46153 0.690204 

2.93523 0.646403 

2.50438 1.044097 

2.21726 1.166595 

2.06582 0.830563 

AT i; /i; =0.9 
2 1 

[C cos (D ~ /i; ) + E sin (Dr /~ )] 
J 1 3 1 

c D E 

21.13594 -2.332855213 -14.99868 

5.54898 0.062077275 526.60280 

4.59922 -0.000001698 1.87016 

2.57344 -0.000000035 0.03550 

1.93688 0.000000002 0.77670 

1.56889 -0.000000005 3.55701 

1.27028 -0.000000008 2.52906 

1.03577 0.008242687 47.93714 

0.85345 0.003252753 165.66986 

0.81193 0.001656572 141.09397 

159 

Standard 
Deviation 

1.943485 

0.552682 

0.419526 

0.172926 

0.072607 

0.076357 

0.054451 

0.020662 

0.016029 

0.036460 



e /-i; 
ti 1 

0.1 

TABLE XXXIV 

CCRVE FITTING RESULTS OF 
DlTEGRAL TnfE AT 

T: /-i; =0 . 9 
2 1 

t /-i; -E t" h -c 
~ !~ = A ~ B(l-e 3 1 ) ~De 3 1 sin (F -i; It" 

3 1 
~ G) 

1 I 

A B c D E F G 

-1.4364 -0.04905 0.82025 1.7629 0.40462 0.24180 1.75113 

160 

Standard 
Deviation 

0.22755 

0.2 2.6754 -0.01963 0.38434 4.1196 -0.52773 0.37965 -2.59431 0.04312 

0.3 3.1788 -0.36885 -2.73077 5.2538 -0.24340 -0.00476 -0.52761 0.05737 

0.4 0.6056 -0.22020 -6.18932 3.1404 -0.05451 0.12315 -0.01671 0.03476 

0.5 0.2693 0.94777 -0.21846 0.4210 0.39568 0.04207 2.72585 0.03799 

0.6 1.5418 0.13500 -0.22997 1.9908 -0.42469 0.23771 -2.57909 0.06498 

0.7 0.2143 0.11339 -0.14577 0.3023 0.41054 0.14080 1.96123 0.03174 

0.8 0.7409 1.65364 0.00917 0.5187 0.06537 0.28069 -0.49938 0.01995 

0.9 0.5230 1.14280 -0.26755 1.5530 -0.33628 0.16877 -3.11774 0.01120 

1. 0 0.2821 0.38740 0.07375 0.4362 0.15546 0.22257 0.46422 0.03250 



e Ir A 
d 1 

0.1 0.332379419 

0.2 0.428541000 

0.3 0.501425120 

0.4 0.522229788 

0.5 0.561668230 

0.6 0.287761997 

0.7 -743.1650429 

0.8 0.545647517 

0.9 0. 501469121 

1.0 0.229916733 

TABLE XXXV 

CURVE FITTING RESULTS OF 
DERIVATIVE THiE 

AT r Ir =0.9 
2 1 

c r /i; 
/r = A _.. B e 3 1 

r 
D 1 

B c 

0.006979067 0.309974587 

0.005660188 0.474990923 

0.068635982 -3.105743341 

0.035209341 0.214729064 

0. 033603011 0.252106363 

0.332298163 0.061364028 

743.8105325 0.000042029 

0.135033859 0.169548694 

0.202292747 0.141093396 

0.499982175 0.070327518 

161 

Standard 
Deviation 

0.064630189 

0.045914960 

0.025433727 

0.028571062 

0.015708873 

0.021800547 

0.023254251 

0.016526330 

0.012866524 

0.028121240 



e IT, 
d 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXXVI 

CURVE FITTING RESULTS OF IAE 
AT r, /T, =0.9 

2 1 

IAE A _.. Bl ( C ... T, /T, 1 ) 3 

A B c 

0.006812337 0.044324756 0.173071687 

0.013380539 0.183683955 0.396325379 

0.017561009 0.416255734 0.630916309 

0.013005267 0.760306616 0.888018731 

0.005894452 1.190563353 1.133643675 

-0.000092676 1.676314699 1.353200757 

-0.018017842 2.296107912 1.606413832 

-0.063656572 3. 174869806 1.940334269 

-0.100018841 4.074139373 2.216964190 

-0.107443107 4.854608499 2.425098081 
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Standard 
Deviation 

0.001680627 

0.004856191 

0.012253302 

0.018483715 

0.024088249 

0.032476558 

0.037688033 

0. 038511269 

0.042882621 

0.049352346 



e h 
d 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXXVII 

CURVE FITTI~G RESULTS OF 
PROPORTIONAL GAIN 

K K = A - e 
C L 

-B t: /t; 
3 1 

A B 

27.97665 1.277220 

11.03440 0.831614 

9.11317 0.527492 

5.35217 1.329382 

4.36313 0.881278 

3.73176 0.585626 

3.03594 0.703950 

2.64029 0.674629 

2.42488 0.538789 

2.11698 1.093662 

AT i; /i; =1.0 
2 1 

[C cos (D i; Ii; ) _.. E 
3 1 

sin (Di; /-i; )] 
3 1 

C D E 

18.71138 -0.013734497 2691.38532 

5.76175 0.017341021 -426.24851 

4.94877 0.000000001 7.61301 

2.69544 -0.000000054 -0.35813 

2.07582 -0.000000001 11:85649 

1.71378 0.000000002 1.64459 

1.32162 0.000000001 2.86447 

1.11481 -0.000000002 2.94392 

1.01055 -0.000000001 1.64608 

0.80927 0.002258698 231.14457 
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Standard 
Deviation 

1.243995 

0.325783 

0.433618 

0.123758 

0.081050 

0.134795 

0.034941 

0.022607 

0.042295 

0.023096 



K K = A ... 
c L 

e h A B 
ti 1 

0.1 4.9788 -317.313 

0.2 -0.4640 -0.02649 

0.3 -0.3964 0.00359 

0.4 1.7666 0.25587 

0.5 0.7659 2.35067 

0.6 0.9567 0.87363 

0.7 0.3342 -0.37382 

0.8 0.3319 0.30451 

0.9 0.2471 1.33289 

1.0 1.1162 -0.01643 

TABLE XXXVIII 

CURVE FITTING RESULTS OF 
I~TEGRAL TIME AT 

r 11:: =l.O 
2 1 

-c r; /r; -E r ,Ii; 

B(l-e J 1 ) .._ D e 3 1 sin (F 1; 
3 

c D E F 

-0.000313 68.4228 -0.66537 0.05120 

0.770540 0.83656 0.40341 0.23307 

0.820710 1.55175 0.11662 0.13840 

-0.050763 1.56676 -0.31861 0.32394 

-0.070482 3.33389 -1.06694 0.20502 

-0.031840 0.92797 -0.08163 0.19296 

0.227059 0.13029 0.23911 0.36880 

0.069559 0.54881 0.11885 0.21494 

0.042734 0.43116 0.20230 0.24918 

0.302313 0. 72669 -0.20858 0.27543 
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ll; -'- G) 
1 

G 
Standard 
Deviation 

-3.07697 0.23203 

1.68286 0.06642 

0.55684 0.06111 

-2.12808 0.02756 

-3.05806 0.05312 

-0.62152 0.07621 

1.01465 0.02007 

0.23286 0.01732 

0.51822 0.01906 

-2.03399 0.01076 



e h A 
<l 1 

0.1 0.346807412 

0.2 0.438213388 

0.3 0.513235098 

0.4 0.416640880 

0.5 0.591686804 

0.6 0.508411250 

0.7 0.552430972 

0.8 0.568489066 

0.9 -2.139914097 

1.0 0.614959678 

TABLE XXXIX 

CURVE FITTING RESULTS OF 
DERIVATIVE TD1E 

AT T, /r, =1.0 
2 1 

Ii; A .._ B e 
c i; 3 /i; 1 

r = 
D 1 

B c 

0.009318093 0.375526558 

0.012208334 0.396096441 

0.089222744 -2.783175980 

0.159690346 0. 081117548 

0.026180365 0.255673066 

0.144039475 0.094638039 

0.122364404 0.156130305 

0.130165347 0.170849612 

2. 867235334 0.012439425 

0.145996564 0.174546359 

165 

Standard 
Deviation 

0.068368258 

0.052524993 

0.029998423 

0. 029461411 

0.021314050 

0.033397436 

0.008693198 

0.021920842 

0.020982080 

0.019681037 



e It" 
ti 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1. 0 

TABLE XXXX 

crRVE FITTING RESULTS OF IAE 
AT t" /t" =1. 0 

2 1 

IAE A + B/(C + t" 
3 

/t" 1 ) 

A B c 

0.007523122 0.043729788 0.168409667 

0.013544995 0.181414679 0.390095215 

0.015455970 0.424391413 0.639752301 

0.010440535 0.773800926 0.897400310 

0.002680748 1.221853387 1.154808658 

0.006550486 1.668701284 1.345038548 

-0.041439356 2.457885708 1.683735847 

-0.078739700 3.330473942 2.003304313 

-0.094706881 4.116087418 2.231189877 

-0.152692543 5.287633800 2.567201538 

166 

Standard 
Deviation 

0.001592648 

0.005703725 

0.012028255 

0.018183932 

0.024398188 

0.034143199 

0.035092382 

0. 038672251 

0.045464691 

0.045625728 



APPENDIX E 

SAMPLE APPLICATION 

PROGRAM 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
c c 
C THIS IS THE PROGRAM TO SEE THE RESPONSE TO A C 
C STEP CHANGE IN LOAD. C 
c c 
C DEFINITON OF VARIABLES; C 
C D : DEAD TIME ARRAY C 
C TAU1,TAU2 : TIME CONSTANTS C 
C RKC : CONTROLLER GAIN c 
C TAUI : INTEGRAL TIME c 
C TAUD : DERIVATIVE TIME c 
C R : SET POINT CHANGE c 
C XA,XB,X2,X3,X4 : CONCENTRATIONS c 
C THETAD : DEAD TIME c 
C RKM : MEASUREMENT GAIN c 
C RKV : VALVE GAIN c 
C E ERROR c 
C V : VALVE SIGNAL c 
C C : MEASUREMENT OUTPUT c 
C EPAST : ONE STEP PREVIOUS ERROR c 
C ERINT : INTEGRAL OF ERROR c 
C ABSIE : INTEGRAL OF ABSOLUTE VALUE OF ERROR c 
C IDT : MAX. LENGTH OF DEAD TIME ARRAY c 
C TT : TOTAL SIMULATION TIME C 
C TPRINT : PRINT INTERVAL C 
C K,I : LOOP COUNTER C 
C TFLAG : PRINT COUNTER C 
c c 
c c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

EXTERNAL DTX2DOT,DTX3DOT 
DIMENSION 0(2000) 

C DATA INPUT 
c 

c 

DATA TAU1,TAU2,TAU3/l.O, 0.5,1.0/ 
DATA RKC,TAUI,TAUD/2.206,1.213,0.6562/ 
DATA R,XA,XB/O. ,0.,1.0/ 
DATA DELTA,THETAD/0.001,1.0/ 

C DEFINE GAIN OF MEASUREMENT AND VALVE 
c 

RKM=0.004 
RKV=166.6667 
OPEN(UNIT=6,FILE='C:\COMPILER\FOR77\RESP2.DAT' I 

STATUS='NEW') 
WRITE(6,3) 

3 FORMAT(3X, 'TIME' ,7X, 'X4' ,ax, 'X6' ,ax, 'V' ,9X, 'ABSIE') 
c 
C INITIALIZE VARIABLES 
c 

E=O. 



V=O. 
C=O. 
EPAST=O. 
ERINT=O. 
ABSIE=O. 
IDT=INT{THETAD/DELTA+l.) 
DU31=EXP(-DELTA/TAU3) 
DU32=1.0-DU31 
DU32XB=XB*DU32 
DO 25 I=l,IDT 

D(I)=O. 
25 CONTINUE 

c 

TT=25.0*TAU1 
TPRINT=0.1 
K=IDT 
1=1 
TIME=O. 
TFLAG=O. 
X2=0. 
X3=0. 
X4=0. 
x5=0. 
x6=0. 

C CONTROL LOOP 
c 
28 C=RKM*X6 

c 

c 

c 

c 

c 

E=R-C 
V=RKC*(E+ERINT/TAUI+{E-EPAST)*TAUD/DELTA) 
VV=V 
IF (V .GE. 6.) V=6. 
IF (V .LE.-6.) V=-6. 
Xl=XA+V*RKV/1. 
RK11=DTX2DOT(Xl,X2,TAU1) 
RK12=DTX3DOT(X2,X3,TAU2) 

RK21=DTX2DOT(Xl,X2+0.5*RK11,TAU1) 
RK22=DTX3DOT(X2+0.5*RK11,X3+0.5*RK12,TAU2) 

RK31=DTX2DOT{Xl,X2+0.5*RK21,TAU1) 
RK32=DTX3DOT(X2+0.5*RK21,X3+0.5*RK22,TAU2) 

RK41=DTX2DOT(Xl,X2+RK31,TAU1) 
RK42=DTX3DOT(X2+RK31,X2+RK32,TAU2) 

X2=X2+(RK11+2.0*RK21+2.0*RK31+RK41)/6.0 
X3=X3+(RK12+2.0*RK22+2.0*RK32+RK42)/6.0 

IF (TIME .LT. (TFLAG-DELTA/2. )) GO TO 30 
WRITE(6,40) TIME,X5,X6,V, ABSIE 

40 FORMAT(5F10.5) 
TFLAG=TFLAG+TPRINT 
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30 

50 

60 
100 

c 
c 

c 
c 

IF (TIME .GT. TT) GO TO 100 
TIME=TIME+DELTA 
ERINT=ERINT+E*DELTA 
ABSIE=ABSIE+ABS(E*DELTA) 
EPAST=E 
D(K)=X3 
X4=D(L) 
X5=X5*DU31+DU32XB 
X6=X4+X5 
K=K+l 
L=L+l 
IF (K .LE. {IDT+l)) GO TO 50 
K=l 
IF (L .LE. (IDT+l)) GO TO 60 
L=l 
GO TO 28 
STOP 
END 

REAL FUNCTION DTX2DOT(CX1,CX2,TAU1) 
DELTA=0.001 
DTX2DOT=DELTA*(CX1-CX2)/TAU1 
RETURN 
END 

REAL FUNCTION DTX3DOT(CX2,CX3,TAU2) 
DELTA=0.001 
DTX3DOT=DELTA*(CX2-CX3)/TAU2 
RETURN 
END 
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APPENDIX F 

GRAPHS OF SAMPLE 

APPLICATION 
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Figure 63. Response of X5 and X6 in Sample Application at 

L2/L1=0.1, L3/L1=0.1, and 8d/L1=0.5 
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Figure 64. Valve Signal in Sample Application at ~ 2 ;~ 1 =0.1, 
~ 3 /L 1 =0.1, 8d/L1=0.5 
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Figure 65. Response of x5 and x6 in Sample Application at 

L2/L1=0.1, L3/L1=0.l, and 8d/L1=l.O 
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Figure 66. Valve Signal in Sample Application at L2 /L1=0.1 

L3/Ll=0.1, and 8d/L1=l.O 
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Figure 67. Response of x5 and x6 in Sample Application at 

1 2/11=0.l, 1 3111=2.0, and ~d/~ 1 zO.l 
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Figure 68. Valve Signal in Sample Application at T2/T1=0.1 

T3 /T1=2.0, and 8d/T1=0.1 
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Figure 69. Response of x5 and x6 in Sample Application at 

T2/Tl=0.5, T3/T1=2.0, and 8d/Tl=0.1 
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Figure 70. Valve Signal in Sample Application at L2;L1=0.5, 

L3 /L 1=2.o, and ed;L1=0.1 
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Figure 71. Response of x5 and x6 in Sample Application at 

L2/Ll~0.5, L3/T1=4.0, and ed/Tl=0.5 
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Figure 76. Max. Load Fraction at ~2 1~ 1 =0.4 
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Figure 78. Max. Load Fraction at L 2 /~ 1=0.6 
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Figure 80. Max. Load Fraction at ~ 2 1~ 1=0.8 
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Figure 81. Max. Load Fraction at L 2 /L 1=0.9 
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