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CHAPTER I 

INTRODUCTION 

1.0 Motivation and Basic Problem 

Wireline togs provide an objective continuous record of certain physical properties 

of the formation cut by a borehole. The tog analyst uses this objective record of 

formation properties in conjunction with his knowledge of the local geology to assess the 

subsurface geological environment. This analysis helps answer questions ranging from 

basic geology to economics and constitutes a significant effort on the part of the oil 

industry. The present investigation is motivated by the continuing need for reliable 

automated log-analysis methods which assist the log analyst in his effort by extracting 

meaningful geological information from wireline togs. 

This study approaches the analysis of wireline logs as a pattern recognition 

problem. Each log provides a continuous record versus depth of some geophysical 

property of the formation traversed by the borehole. The problem, simply stated, is to 

combine the information from each log into a composite 'picture' of the subsurface 

geological environment. Figure 1 shows one possible interpretation of the problem. 

Given the four input togs shown in Figures 1 a and 1 b, segment the borehole according to 

the naturally occurring structure of the wireline tog data. One possible segmentation is 

shown in the center track of Figure 1 where each segment identified by a number 

corresponds to a certain wireline tog characteristic. The basic premise of this work is: 

if natural structure is found in the tog data, then it correlates to the geological 

environment represented by the tog data. · Fuzzy clustering algorithms provide the basic 

pattern recognition tool for determining natural structure in the wireline log data. The 

geological significance of the structure found in the logs is determined by comparing the 

clustering results with more conventional core descriptions of the same interval in the 

borehole. An underlying goal of this research is to determine what type of geological 

inferences might be made from the wireline-log data without prior reference to core 

descriptions or other special geological knowledge. 

1 
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The remainder of this chapter deals with introductory information pertinent to a 

better understanding of the objectives of this work. Section 1.1 overviews basic design 

concepts and methodologies associated with pattern recognition systems and specifies the 

approach used in this study. Section 1.2 gives a simplified explanation of the physical 

processes represented by wireline-log data and indicates how the type of data influences 

the development of a particular pattern recognition model. A survey of common log 

analysis methods and borehole segmentation methods is given in Sections 1 .3 and 1 .4 

respectively and finally, Section 1.5 concludes with a topical outline of the material 

covered in subsequent chapters. 

1.1 Pattern Recognition Basics 

A commonly used pattern recognition model is depicted in Figure 2. This 

classification model has three main elements: a sensor, a feature extractor and a 

classifier. The sensor either directly or Indirectly measures certain physical attributes 

of a given physical process and this information is assimilated Into a pattern vector 

suitable for computer processing. The feature extractor gleans presumably relevant 

information from the pattern vector to form a feature vector which is used by the 

classifier to assign the pattern vector to one of several prespecified pattern classes. 

Ideally, it is desired to automatically recognize and categorize incoming patterns into 

mutually disjoint pattern classes. Two reasons this ideal is seldom achieved in practice 

are: 1) the inability to choose features that completely discriminate between the various 

pattern classes and 2) the pattern classes are not always well defined, which results in 

overlapping pattern classes. 

physical ... pattern ... feature feature ... decision .... 
sensor extractor classifier 

process vector vector 

Figure 2. Generic Pattern Recognition System 
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Tou and Gonzalez [58) mention three design concepts for the classification model of 

Figure 2, namely: membership-roster concept, common-property concept and 

clustering concept. Each of these design concepts is motivated by how the pattern classes 

are characterized and defined. The following paragraphs give a brief description of these 

design concepts. 

The membership-roster concept is the simplest design approach and is sometimes 

referred to as automatic pattern recognition by template matching. All possible 

patterns, for each class, are stored in the classifier. The classifier categorizes an 

incoming pattern to a particular pattern class when it matches, in some sense, one of the 

stored patterns belonging to that pattern class. The feature extraction step is bypassed. 

This design strategy is practical only when the pattern classes are very well defined. 

The common-property concept is based on the idea that patterns belonging to a 

particular class possess common invariant attributes or features. Once these features 

are identified they are stored in the classifier for use in classifying unknown input 

patterns. Features are extracted from an incoming pattern vector and compared with the 

features stored in the classifier and then a decision is made categorizing the input 

pattern to the pattern class with similar features. The success of this approach depends 

on one's ability to identify a set of features that completely discriminates between the 

various pattern classes. The selection of f ea tu res is perhaps the least scientific and most 

difficult part of this design approach. Feature selection is often accomplished by using a 

training set of pattern samples. A training set is a collection of samples representative 

of all the pattern classes one wishes to recognize. Each sample in the training set is 

labelled 'a priori' as belonging to a certain class. Once the training set is established the 

proposed features are computed for the samples and then these features are tested to 

determine which ones discriminate between the various classes. There are a number of 

good references that address the feature selection problem [11, 20, 58). 

The third design concept is the clustering concept. The first two design concepts 

assumed the existence of a training set of pattern samples which were labeled to show 

their class membership. Procedures which use labeled training samples are said to be 

supervised. A more general problem involves the analysis of a collection of samples 

without knowledge of their classification. There are numerous unsupervised learning 

procedures that may be applied to unlabeled data sets. Duda and Hart [20) give an 

excellent introduction to unsupervised learning and clustering. In the event the system 

designer is able to assume: 1) the samples come from a known number of classes, 2) the 

a priori probabilities for each class are known and 3) the conditional probability 

densities are known, then the unsupervised learning problem becomes a parametric 
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estimation problem. It is often difficult to satisfy these assumptions; even when these 

assumptions can be met the designer is still often faced with a problem of considerable 

computational complexity and reformulation of the problem may be desirable. 

Clustering procedures, which are of importance in this work, are often used when little 

is known about the number of classes that exist in the data and when little is known about 

the distribution of the data. This design concept seeks to partition the pattern space into 

two or more partitions according to the spatial distribution of the unlabeled data samples 

within the pattern space. Cluster validity measures objectively evaluate clustering 

performance and help determine the number of clusters that best flt the data. The value 

of such a method depends on how it relates back to the physical process represented by 

the data. Such clustering procedures may or may not result in clusters with known 

physical meaning. If the clusters are determined to have physical significance, then they 

may be considered pattern classes that pr6vide a first step toward the design of a 

classifier to recognize similar patterns. The complexity of the pattern recognition 

system depends on the spatial distribution of the pattern classes in the pattern space. 

When the classes are characterized by compact, well separated clusters, then simple 

recognition schemes such as minimum-distance classifiers generally yield good results. 

When the pattern class clusters overlap, then more sophisticated methods for 

partitioning the pattern space must be employed. This design concept is of primary 

importance in this study and is discussed in detail in Chapter II. 

Three basic methodologies exist for the implementation of each of the above 

mentioned design concepts: heuristic, mathematical and syntactic [58). Typically, a 

combination of these methodologies is used for a given pattern recognition system. 

The heuristic approach uses a set of ad hoc procedures, based on human intuition and 

experience, developed for specialized recognition tasks. This approach Is an important 

part of pattern recognition system design, but little can be said about general principles 

in this area, since each problem requires the application of specific design rules. The 

success of a heuristic system is largely dependent upon the experience and expertise of 

the system designer. 

Syntactic systems are designed using primitive elements or subpatterns and the 

relationships between the subpatterns. A pattern can be described by a hierarchial 

structure of subpatterns analogous to the syntactic structure of languages. This permits 

the use of formal language theory to the pattern recognition problem. These systems 

still require a good bit of cleverness on the part of the designer to identify the proper 

primitive elements and the interconnecting structure [58). 
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This study will focus on the mathematical approach, because this approach is better 

suited for analysis. Also, this approach is often a good first step toward more complex 

classification schemes that might involve syntactic grammars. The mathematical 

approach derives classification rules based on certain mathematical properties 

possessed by the pattern vectors, and differs from the heuristic approach which is based 

on a set of ad hoc rules. The mathematical approach may be divided into three categories: 

deterministic, statistical and fuzzy. Bezdek [11], does a good job outlining the 

differences between deterministic, statistical and fuzzy modelling techniques. 

Distinction among the three categories depends upon the source of uncertainty of the 

physical process being observed. A process is deterministic if its outcome can, with 

absolute certainty, be predicted upon replication of the circumstances defining it. Any 

uncertainty associated with a deterministic process arises from an inability to monitor 

the process exactly. Statistical uncertainty arises when the process under consideration 

is believed to be random. In this case, there is an element of chance concerning the 

outcome of the process, which is distinct from any imprecision in monitoring the 

process. The source of uncertainty in a physical process is important because it dictates 

the assumptions supporting the mathematical structure of the model chosen to represent 

the process. The point is that deterministic and statistical models transmit different 

types of information about the processes they represent. Fuzzy models are sometimes 

used when the observed process is judged to be neither deterministic nor random. 

Bezdek [11 ], motivates the plausibility of fuzzy models with the following example. 

Consider the question, "is the person x nearly two meters tall?" The use of the word 

"nearly" introduces a source of nonstatistical uncertainty or fuzziness as to the proper 

response to the question. Obviously, a "yes" or "no" response is expected to the question. 

There are several ways to model this problem in a mathematical framework. Let X be a 

sample of n people and define A to be a subset of X such that, 

A = { x e X I 1.995 ~ h(x) ~ 2.005} ( 1 ) 

where h(x) is the observed height of x. This deterministic approach equates 

membership in A with being nearly two meters tall by defining a tolerance of 0.005 

meters. The characteristic function for set A is given by: 

UA(X) = { ( 2 ) 
1 ; x EA 

o· ' otherwise 
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By observing the height of x one can make a "yes" or "no" decision based on the value of 

the characteristic function in Equation (2). A statistical approach the problem would 

try to determine the probability that x e A, Pr(x e A). Let X be part of a larger 

population S and define the random variable, h: X --> (0, oo) as the height of x. 

Consider the event 1.995 s: h(x) s: 2.005. This event is identical to set A in Equation 

(1) but is stated in a statistical setting. It follows that by a suitable set of experiments 

on population S and by the proper statistical inference a probability can be assigned to 

each x e X, of being in A. This leads to an estimate of the probability of the stated event: 

Pr(1.995 s: h(x) s: 2.005) = Pr(x e A). This type of model tells us the chance of any 

particular element of X being in set A. For example, suppose Pr(x e A) = 0.95. This is 

not satisfactory for responding to the question in a "yes" or "no" manner, because Pr(x 

e A) = 0.95 does not preclude the possibility that h(x) Is far removed from 2. One 

difficulty with this approach is that an element of chance is attached to the phrase 

"nearly two meters" when this is not warrante~. A third approach allows for the natural 

fuzziness in the stated question. Since set membership is key to the decision making 

process let 

B = { x I x is nearly two meters tall}. ( 3) 

Since B is not a conventional set, there is no set theoretic realization for it; however, it 

is possible to visualize a function theoretic representation. Let ue: X --> [O, 1] be a 

function whose values, u9(x), give the grade of membership of x in the fuzzy set B. This 

is a natural extension of the set theoretic relationship given for set A in Equation (2). 

In this example, u9(x) indicates the degree to which h(x) is close to the value 2. There 

are many possible functions which would do this and Bezdek [11] uses the discrete 

function given In Equation (4). This approach gives more quantitative information than 

1.00; 1.995 s: h(x) s: 2.005 

0.95; 1.990 s: h(x) < 1.995 or 2.005 < h(x) s: 2.010 

u9(x) = ( 4 ) 

the first two approaches about how close h(x) is to 2 and lets the user answer the 

question "yes" or "no" based upon the value of u9(x). Bezdek [11] points out that once a 

particular model is developed, its usefulness and capabilities vary and different models 

give different types and amounts of information about the process being investigated. 
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Bezdek [11] cites several good references for a more complete discussion of uncertainty 

and the plausibility of fuzzy models. 

The previous example serves to illustrate how one's perception of the physical 

process being investigated Influences the choice of mathematical model used to describe 

the process. The present investigation Is concerned with the segmentation of a borehole 

based on the corresponding wireline log responses. It is expected that the resulting 

segments will have physical meaning inasmuch as the wireline logs reflect the geological 

environment in the borehole. The approach taken is a very general one. No assumptions 

are made concerning the number of different geological environments which might exist 

in the borehole or the statistical distribution of the wireline log data. The notion of a 

fuzzy model seems to be appropriate for this geological application. The number of 

environments that might be encountered in a particular borehole is seldom well defined 

and many transitions from one environment to the next environment are gradatlonal. 

For example, consider the description of an interval within a borehole which is 

primarily a sandstone-shale sequence. Provided prototypes representing the sandstone 

and shale classes have been identified, the fuzzy model would allow each pattern vector to 

have a membership distributed between the sand and shale classes rather than 

classifying the. pattern vector as belonging entirely to one class or the other, based on 

probability of membership. This approach identifies pattern vectors that possess 

attributes of both the sandstone and shale classes. In general, the fuzzy model is not 

restricted to a fixed number of prespecified pattern classes, but can identify pattern 

vectors that have attributes of several classes. This is a desirable characteristic for the 

application at hand. Since there is a certain amount of nonstatistical uncertainty 

associated with geological classifications, pattern recognition using fuzzy objective 

function clustering algorithms is used for the automatic segmentation of a borehole 

based on wireline log responses. 

1.2 Wlrellne Logs 

To develop a pattern recognition model that identifies meaningful structure in a data 

set it is helpful to understand the physical processes involved in generating the data. 

This section gives a simplified discussion of open-hole logs, with emphasis given to the 

formation properties that have the greatest effect on logging measurements. Several 

good references give the detailed theory of operation for the various logging tools and 

interpretation principles for the curves recorded from these tools [3,5,6,32,51,60]. 
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The Society of Professional Well Log Analysts defines a wireline log as the product 

of a survey operation that provides one or more physical measurements as a function of 

depth in a w.ell bore [25). Ordinarily, the survey operation is conducted shortly after 

the completion of drilling activity. A logging tool or sonde is attached to the end of a 

wireline and lowered into the borehole. As the sonde is pulled out of the borehole, its 

response is sent via the wireline to a logging truck, where the signal is conditioned, 

digitized and recorded for display in a readable log format [6). The digitized log values 

represent samples taken at six-inch intervals. Figure 3 shows the logs: spontaneous 

potential(SP), gamma ray(GR), spherically focused(SFL), deep induction(ILD), 

neutron porosity(NPHI) and interval transit time(DT) in a typical log format. These 

logs are representative of the data used in this work and a brief description of each kind 

follows. 

The first track in Figure 3 displays the SP and GR curves. Notice the similarity 

between the two curves even though the respective logging tools measure entirely 

different properties of the formation. The SP measures the difference in electrical 

potential between an electrode in the borehole and a surface electrode whereas the GR 

measures the naturally occurring gamma [5]. 

The SP readings are given in millivolts and provide a crude Indication of formation 

permeability. Opposite impermeable shales the SP is relatively constant and is 

referred to as "the shale baseline". In permeable zones the direction and magnitude of 

deflection of the SP curve depend primarily on the relative Ion content of the formation 

water and the drilling fluid. The SP works best where the drilling fluid('mud') is 

fresher than the formation water. In such cases the SP curve deflects to the left opposite 

permeable formations and permits easy sand-shale discrimination. These deflections 

give qualitative information concerning permeability, since there is no definite 

correlation between the amplitude of the curve and the degree of permeability of the 

formation [5,51 ]. 

The GR is recorded in American Petroleum lnstitute(API) Gamma Ray units. The 

dete.ctor-measurement systems of all primary service companies are calibrated to this 

standard unit in the regulation API test pit at the University of Houston. The three 

common radioactive elements found in nature are uranium, thorium and potassium 40, 

with potassium being the most abundant in the earth's crust [5]. In clay materials 

potassium is abundant, as compared to potassium in other sedimentary rocks. Clay, 

when compacted, forms shale; therefore the GR log generally reflects the shale content of 

sedimentary formations. Shale-free or 'clean' sandstones and carbonate rocks normally 
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exhibit low GR response. One primary application of the GR log is lithology 

identification [60]. 

The second track in Figure 3 displays two resistivity logs, the SN and ILD measured 

in ohm-meters. Two applications of resistivity logs are to determine hydrocarbon

bearing versus water-bearing zones, and indicate permeable zones [3]. The resistivity 

of any formation is a function of the amount of water in that formation and the 

resistivity of the water. Ion-bearing water is conductive, whereas the rock matrix and 

hydrocarbons act as dielectrics. The various resistivity-logging tools record the 

resistivity at different depths of investigation into the formation. For example, the SN 

measures resistivity about one foot into the formation, but the ILD measures the 

resistivity several feet into the formation [32). In tight Impermeable formations the 

resistivity curves tend to read similar values, but in permeable formations there is 

separation between the SFL and ILD curves due to invasion of drilling mud into the 

formation [3]. In the case of fresh drilling mud the SFL will read a higher resistivity 

than the ILD. By far the most important application of the resistivity logs is the 

detection of hydrocarbon-bearing zones. In formations with 100% water saturation, the 

resistivity is at a minimum for a given porosity and rock structure. Any increase in the 

amount of hydrocarbons within the pore space will increase the respective resistivity 

readings. If two porous, permeable zones exist within a formation, one showing 

appreciably higher resistivity readings than the other, and all else being equal, then the 

higher resistivity is most likely due to the presence of hydrocarbons. 

The last track in Figure 3 shows the neutron porosity(NPHI) and bulk density 

log(RHOB) porosity logs. The interval transit time(DT) is a third porosity log not 

shown in Figure 3. All three porosity logs are primarily responsive to formation 

porosity, yet other formation characteristics also influence these measurements. Each 

of the logging tools responds differently to the effects of lithology as well as to the 

amount and type of fluids in the pores. The differences among the porosity log 

measurements allow them to be used in various combinations to determine specific 

lithologies, porosity and, under certain circumstances, type and amount of fluid in the 

pores [60). It should be noted that unusually large porosity indications may be caused 

by washouts in the borehole,.and should not be attributed to the formation. 

Neutron-porosity logging devices respond to hydrogen atoms in the formation pore 

space. Since the only hydrogen in a clean(shale free) formation is due to the presence of 

water or hydrocarbons in the pore space, there is a relationship between the response of 

the neutron logging device and the formation porosity. Both water and oil contain about 

the same amount of hydrogen per unit volume and the neutron tool does not permit 
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differentiation between them. Gas has a lower hydrogen density and is characterized by a 

low neutron-porosity reading. Neutron readings will indicate a higher porosity than 

actually exists in formations which contain hydrogen in the rock matrix or as dispersed 

solids in the pore space. In formations containing significant amounts of clay or shale 

the NPHI values will be inflated, due to the hydrogen content of the bound water 

contained in the shale. This Is a limitation when using the neutron log alone, but in 

conjunction with the other porosity logs it is sometimes useful to identify mixed 

lithologies [3,5,60). Neutron readings are also affected by lithology, and since the 

lithology is usually not known, the neutron device is run assuming a limestone matrix 

and porosity is recorded in .limestone porosity units(p.u.). Standard procedures exist to 

correct the NPHI values when the matrix is known to be something other than limestone. 

The sonic porosity tool is based on the interval transit time(DT)-- the time 

required for a compressional sound wave to travel one foot through the formation. OT is 

measured in microseconds per foot(µs/ft) and depends on the lithology, porosity and 

fluid type of the formation. In general, dense formations with small amounts of porosity 

have small travel times, and increasing travel times indicate increasing porosity fOr a 

given lithology and fluid type. OT represents the shortest travel time through the 

formation and indicates primary formation porosity, which may be the same as total 

porosity. Comparison of OT with NPHI and RHOB will help clarify whether secondary 

porosity is undetected by the sonic porosity tool [3,5,60). 

In summary, logging tools respond primarily to the chemical nature of the rock 

matrix and the pore fluids. One or more log responses are affected by: lithology, 

porosity, permeability, shale volume and water and hydrocarbon saturations. Logs 

provide formation data not directly accessible by means other than coring and can be 

used as an exploration tool to describe local stratigraphy, structure, and environments 

of deposition [60]. 

1.3 Log Analysls Methods 

Log data constitutes a 'signature' of the formation that provides valuable geological 

information, assuming that there exists well defined relationships between what is 

measured by the logs and formation parameters of interest to the geologist and reservoir 

engineer. Two basic assumptions are implied in log analysis: 1) a significant change in 

any geological characteristic will manifest itself in a physical parameter detectable by 
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one or more logs; and 2) any change in log response indicates a change in at least one 

geological parameter[3,32). Two exceptions to these assumptions are noted below. 

First, a log response may reflect a change in borehole conditions, rather than a 

change in some formation parameter. For example, any contact device, such as a density 

porosity tool, requires good contact between the detector pad and the borehole wall for 

accurate readings; therefore borehole rugosity directly affects the measured values of 

such a device. Certain borehole conditions are correctable with the aid of service 

company chart books; however, the value of such correction charts is limited because of 

the difficulty in satisfying the assumptions for their use [32). When log values unduly 

influenced by the borehole environment are detected, and can not be corrected, then they 

should be eliminated from the log-analysis procedure. 

A second exception occurs in sharp transitions between beds and in thin beds due to 

limitations in vertical resolutions of the various logging tools. Vertical resolution 

refers to the minimum thickness of formation that can be distinguished by a logging tool 

under operating conditions [25). Thin beds influence the values recorded by a logging 

tool, but are not thick enough to yield discrete signatures of beds and representative 

measurements of attributes. In the absence of core information or other special 

knowledge, it is unreasonable to characterize the geological attributes of thin beds based 

solely on wireline log responses. Yet, in spite of their limitations, wireline logs provide 

an objective quantitative measure of the subsurface geological environment. 

Wireline logs have been a valuable geological tool ever since their inception in 

1927 by Conrad Schlumberger. Some often used methods for extracting geological 

information from wireline logs include crossplotting techniques, discriminant analysis, 

cluster analysis and principal component analysis. These methods are discussed briefly 

below. 

1 .3.1 Crossplot Technlgues 

Crossplot techniques plot key log responses against each other and then the analyst 

seeks manually to correlate significant clusters of points or significant trend lines with 

particular geological characteristics. Crossplot techniques have a variety of 

applications but tend to be subjective and applicable in limited situations. 

Since Savre [49) suggested the use of sonic, neutron and density logs for more 

accurate determination of porosity and mineralogy in complex lithologies, the 

crossplotting of porosity logs has become a standard interpretation technique for 
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describing porosity and lithology, particularly in carbonates [60]. This is perhaps the 

most common use of the crossplot technique. The scope and limitations of crossplotting 

porosity logs are outlined in lessons 15, 16 and 17 of the Dresser-Atlas Home Study 

Course [60]. Another application of crossplotting is cited by Almon [2] and involves 

work done by Bedwell [8] and Carloss [13], who used crossplot techniques to identify 

depositional environments. Almon characterizes this work as subjective and lacking 

sufficient detail for good discrimination among the major depositional environments 

[2]. Crossplot techniques are easy to use and are often a first step in trying to extract 

sedimentological information from wireline logs. Priisholm and Michelsen [44) use 

porosity logs and crossplot techniques as part of their method for lithology 

determination, lithostratigraphy and basin analysis in the Norwegian-Danish basin. 

Watney [59] uses gamma ray-neutron crossplots to facilitate the understanding of the 

sedimentological variation in the Missourian sequences of northwestern Kansas. When 

crossplotting yields good results for a particular application, it often leads to the 

development of more objective analytic methods, such as discriminant function analysis. 

For example, Meyer and Nederlof [39) use various porosity/resistivity crossplots for 

the identification of source rocks. Specifically, sonic transit time/resistivity and 

density/resistivity crossplots were used as a basis to discriminate between source rocks 

and non-source rocks. These crossplots were used to develop linear discriminant 

functions to distinguish between the two rock classes; they are discussed in Section 1.3.2 

[39). 

1.3.2 Discriminant Analysis 

Discriminant function analysis is a multivariate statistical means of differentiating 

among members of various groups or classes, based on statistical observations of the 

members within the respective classes. The success of this classification scheme 

depends on the form of the discriminant functions and one's ability to determine the 

coefficients for these functions [20,58]. This method of classification requires a 

training set of sample patterns. Meyer and Nederlof [37] provide a simple two class 

example of discriminant analysis. One hundred sixty-nine rock samples were divided 

into two classes based on geochemical analyses: class 1 were petroleum source rocks(71 

samples), and class 2 were non-source rocks(98 samples). A crossplot of these 

samples, shown in Figure 4, uses sonic transit time and resistivity log values to 

determine a decision boundary separating the two classes by using psuedoregression. 
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The decision boundary is called a discriminant function and has the form: 

D = w1 (sonic log value) + w2(resistivity log value) + w3 , 

where w1 ,w2 and w3 are regression coefficients and D is the discriminant score. The 

discriminant function transforms the sonic transit time and resistivity values into a 

single number, the discriminant score. In this example, positive discriminant scores 

indicate source rocks and negative scores indicate non-source rocks. A discriminant 

score of zero is indeterminate. Meyer and Nederlof [39] followed a similar procedure 

using a density/resistivity crossplot. It is interesting to note that a 91 % correct 

classification rate was attained when the discriminant function was used to classify the 

169 samples in the training set. It is not difficult to visualize situations in which 

the sample patterns are not linearly separable as in the above example. The development 

of generalized decision functions is covered In the literature [58). Once the form of the 

decision function has been specified, then the problem becomes one of determining the 

coefficients for the function. This is typically done using a training set of labeled sample 

patterns. The important point Is that discriminant analysis assumes knowledge of the 

classes in order to construct a discriminator for the classification of future 

observations. Almon [2] applied this method in an attempt to discriminate among six 

sedimentary f acies on the basis of wire line log responses. Almon's [2] study is of 

particular interest because it used data from the Shannon Sandstone, Hartzog Draw Field, 

Wyoming. . Similar wireline log data is used in Chapter IV of this work and certain 

comparisons are made to Almon's [2) results. A training set of 89 core samples and 

corresponding log values was taken from three wells and used to generate three linear 

discriminant functions, which effectively separated the six classes of data. Almon [2] 

used as few as three samples and as many as 34 samples to characterize the respective 

data classes. This seems a rather modest training set for a statistical analysis method. It 

should also be noted that no attempt was made to standardize the wireline log data from 

well to well. The three discriminant functions were applied to the training set data and 

resulted in a 98 percent correct classification of the data. These same discriminant 

functions were then applied to wireline log data from eight other wells in the Shannon 

Sandstone and Almon [2] claims a 94 percent correct classification of the data from 

these wells. A footnote should be added at this point to indicate that two of the six f acies 

types were not present in any of these eight wells, a third facies was nominally present 

in two of the eight wells and this third facies went undetected by the discriminant 

function analysis. The success of Almon's[2] method is tempered by the fact that it was 
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effectively demonstrated on three of the six classes of data. This work at least alludes to 

the potential of a multivariate statistical method such as discriminant analysis. 

Discriminant function analysis has also been applied to other geological problems such 

as uranium exploration and the determination of clays in shale [7,42,43). 

1 .3.3 Cluster Analysis and Prlnclpal Component Analysis 

The analytic methods of cluster analysis and principal component analysis are 

considered In tandem since they are the primary analyses used in this study. These 

methods are not new; they have been applied to geological problems for the past two 

decades (17, 19,38,41,53,56). Cluster analysis has been mentioned briefly in Section 

1.1 as a means to characterize the various data classes by their clustering properties in 

the pattern space. Principal component (PC) analysis can be regarded as a dimension

reducing tool, asking the question: "Are. there a few functions of the many original 

variables which in some sense capture the essential variability in the data?" (1 ]. 

Principal components are nothing more than eigenvectors of a variance-covariance or a 

correlation matrix [18,40). The interpretation of principal components is subjective 

and should be tested properly with an appropriate independent data set. Some geological 

literature uses the term 'factor analysis' in place of 'principal component analysis' and 

what are called 'factors' in one article might be called 'components' in another article 

(19). Chapter II outlines the specific application of cluster analysis and principal 

component analysis to discrete wireline log data. 

There are many software packages used by log analysts to aid them in their analysis 

and interpretation of wireline logs. One of particular interest is Faciolog, a 

Schlumberger product. This software package is introduced because its analytic tools 

include PC analysis and cluster analysis [63). These analysis tools parallel those 

outlined in Chapter II of this thesis, but the present study is an independent effort and 

differs from Faciolog at several significant points. Also of importance is a multiwell 

Faciolog evaluation of wells in the Hartzog-Draw Field, which will provide a basis of 

comparison for some of the analyses performed in Chapter IV of this study [61 ]. ·The 

following paragraphs contrast the Faciolog technique with the methodology used in this 

study. 

Faciolog uses principal component analysis and cluster analysis to zohe a well into 

'electrofacies' [63]. An electrofacies is defined "as a set of log responses characterizing 

a sediment" [63]. A set of input logs is chosen and corrected for environmental effects. 
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The input logs are then weighted by the user. This weighting process is done largely by 

trial and error. The logs are then normalized taking Into account their respective 

standard deviations over the interval of interest. New orthogonal axes, called principal 

component axes, are defined in the space created by the normalized logs. The origin of 

the PC axes Is the center of gravity of the normalized log data and the PC axes are 

oriented such that PC axis 1 is in the direction of maximum variation of the normalized 

log data, PC axis 2 is in the direction of next greatest variation of the data and so on for 

the remaining PC axes. PC logs are then derived by projecting the normalized log data on 

these PC axes. Once the PC logs are computed, a process of finding small clusters or 

local modes takes place. The open literature is not clear on the exact nature of this 

clustering process. These small clusters are then manually grouped into larger 

clusters, which are identified as electrofacies. The Faciolog results are then presented 

in a suitable display [63]. 

The methodology used in this study is outlined at the beginning of Chapter Ill but the 

basic methodology is given here and contrasted to the Faciolog technique. First, each 

input log is scaled using a scale factor equal to the largest excursion from the mean of the 

original log. This differs from the normalization process used in Faciolog. Second, the 

PC logs are derived by applying the Karhunen-Loeve Transformation(KL T) to the scaled 

input logs. This may or may not differ from the Faciolog process described in the 

literature. The exact mathematical process is not given by Schlumberger, but is 

described in general terms. Third, there· is no weighting of the input logs by the user; 

the weighting is done automatically by the KL T. Fourth, the clustering process is done 

using a Fuzzy-C-Means(FCM) clustering algorithm and validity measures are used to 

indicate the number of clusters which best fit the data. There is no manual grouping of 

clusters. 

1.4 Segmentation Methods 

Hawkins and ten Krooden [31] review a variety of segmentation techniques as they 

apply to various univariate and multivariate geological signals. Competitive algorithms 

are evaluated on the basis of statistical optimality and numerical computational 

requirements. The segmentation methods given in order of statistical optimality are: 

maximum-likelihood, hierarchic optimization and split-moving window. This order 

may be reversed when evaluating the methods on the basis of numerical computational 

requirements. The basic notation and models for each of the above mentioned methods is 
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given here for univariate data with the extension to multivariate data given by Hawkins 

and ten Krooden [31 ). All the methods given in this section assume that the number of 

segments is known and that the data within each segment is normally distributed. 

Therefore, the problem is one of estimating the mean and variance of each segment such 

that within segment variance is small and between segment variance is relatively large. 

This is analogous to unsupervised learning using parametric estimation methods. 

Let {X1, X2 •... , XN} denote a set of N discrete scalar values taken from the 

geological signal of interest. The problem is to segment these N data values into k 

distinct homogeneous segments. A segmentation of this data into k homogeneous segments 

consists of determining breakpoints, O = bo < b1 < ... < bk = N, such that the {Xj}, bi-1 

+ 1 ::;; j ::;; bi, are in some sense homogeneous. All of the methods reviewed by Hawkins 

and ten Krooden [31] define homogeneity with respect to a normal statistical model. 

j = bi-1 + 1, . . . • bi ( 5 ) 

It is generally assumed that the means, ~i· differ significantly from one segment to its 

neighbor. In terms of the variances there are two broad classes of problems, the 

homoscedastic problem and the heteroscedastic problem. The former problem assumes 

the variances are the same for all segments and the latter problem allows for the 

possibility that the variances differ from one segment to another. Hawkins and ten 

Krooden [31) show that the numerical computation for the homoscedastic and the 

heteroscedastic models is approximately the same and therefore the heteroscedastic 

model is more appealing on the grounds of greater generality. The drawback of the 

heteroscedatic model is its greater sensitivity in departures from the assumed normal 

distribution of the data. All of the methods use the following quantities. 

m 

x1,m = L 
i =I+ 1 

m 

S1,m = L 
i =I+ 1 

01,m = 

Xi/ ( m-1) (sample mean) 

(Xi- x1,m)2 (sample variance) 

for a homoscedastic model 
{

s1,m 

(m-1) log (S1, m) for a heteroscedastic model 
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The maximum-likelihood segmentation method determines the set of breakpoints, 

{b1, ... , bk-1}, that maximizes the likelihood function given in (5). This is done by 

minimizing 

k 

r Ct> ·b ( s) 
i=1 1-1 i 

for all possible sets bi [31]. It is shown that this minimization process may be 

performed using the optimization method of dynamic programming. From a statistical 

point of view the maximum-likelihood method is recognized .as the best general 

estimation method; therefore this method may be considered statistically optimal 

provided there are adequate computer resources to carry out the minimization. This 

method requires on the order of N(N+k) computations [31]. If the number of sample 

points is large, then a suboptimal method which takes less computational time may be 

desirable. 

The hierarchic optimization methods are considered the next best from a statistical 

perspective and three such methods are considered by Hawkins and ten Krooden (31 ]. 

The hierarchic disaggregative, hierarchic aggregative and the stepwise method are 

discussed with respect to their methodology and relative computational requirements. 

These methods are similar to hierarchic clustering methods. 

For the hierarchic disaggregative method, suppose that at some iteration one has 

identified the changepoints b1 , ... , bi, and wishes to determine whether any additional 

changepoints are present. For each segment j, 1 .s. j .s. i, determine 

max ,b ) - (Ob ,m ) - (Om,b )} • 
j j - 1 j 

( 7) 

m in segment j 

and then determine the maximum of these i maxima. If this maximum is sufficiently 

large, then declare the corresponding m to be a breakpoint and add it to the set of 

breakpoints, {b1, ... , bk-1}· 

The hierarchic aggregative method involves the deletion of breakpoints rather than 

the addition of breakpoints done in the disaggregative method. Suppose the set of 

breakpoints consists of {b1 , ... , bi}, then for each breakpoint determine 

min 

1 .s.j.s.I 
{(Qb 

j-1 
' b ) - (Qb 

j+ 1 j-1 
,b ) - (Qb ,b )} ( 8 ) 

j j j+1 
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and if the minimum is sufficiently small then segments on either side of breakpoint, bj, 

are merged. 

The stepwise method is a combination of the aggregative and disaggregative methods. 

At each iteration, 

1) the most similar pair of adjacent segments are merged if they are not 
sufficiently different according to criterion (8), otherwise 

2) the existing segments are tested for possible subdivision according to 
criterion (7) and the least homogeneous segment is split if (7) exceeds 
a specified threshold. 

In terms of computational requirements the disaggregative method requires 

computations on the order of N log k, while the aggregative and stepwise methods require 

computations on the order of N+k [31]. N is the number of discrete points taken from 

the signal and k is the number of segments to be determined. 

One other method which is the least attractive in a statistical sense is the split

moving window method. This method attempts to locate one change point at a time and 

requires the user to prespecify the window width, 2h. Then for every i, h ~ i ~ N-h, 

compute the value: (Qi-h,i+h - Oi-h,i - Oi,i+h) . If for any i this value exceeds some 

preset threshold, then i is concluded to be a breakpoint. One major disadvantage of this 

method is the specification of the window width, 2h. It is desirable to have the window 

size as large as possible but, if the window size is too large then more than one 

breakpoint may be contained within the window and performance can be inhibited badly. 

The computational requirements for this method are relatively minor and are on the 

order of N (31]. 

Hawkins and ten Krooden [31] conclude that the maximum-likelihood method is best 

provided the number of points, N, is moderate. For large N, the hierarchic methods 

yield, in general, more reliable results than the split moving window method. One 

disadvantage associated with all the above mentioned methods is that the number of 

segments must be at least approximated prior to any analysis. 

1.5 Thesis Overview 

The remainder of this thesis is concerned with the development and testing of a 

segmentation algorithm. Chapter II describes the mathematical tools of cluster analysis 
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and principal component analysis that are used in the development of the segmentation 

algorithm. These analytic tools are demonstrated on a well known botanical data set for 

illustration purposes, and to validate the software being used. Chapter Ill begins with an 

outline of the methodology used in the segmentation algorithm. A series of examples is 

presented in Chapter 111 to evaluate the performance of the borehole segmentation 

procedure. The physical significance of the segments is evaluated by comparing borehole 

segmentation results with a core description of the same interval. Chapter IV extends 

the segmentation process to a multiwell environment using data from the Hartzog-Draw 

Field, Wyoming. The investigation in Chapter IV is motivated in part by this question: 

"Is it possible to automatically find geologically similar segments between wells in the 

same field when such are known to exist?" If so, is it then possible to design a classifier 

to reliably identify similar segments in other wells in the same field? Chapter V 

summarizes the results of this investigation and enumerates possible extensions of the 

work done to date. 



CHAPTER II 

PATTERN RECOGNITION TOOLS 

2.0 Introduction 

This chapter outlines the basic mathematical tools that are used in the development 

of a borehole segmentation algorithm. Section 2.1 gives a brief overview of cluster 

analysis methods and then proceeds to outline the differences between hard and fuzzy 

clustering algorithms. An example using a famous botanical data set demonstrates the 

character of a Fuzzy-c-Means(FCM) clustering algorithm. This same example also 

demonstrates the use of cluster validity measures to objectively evaluate clustering 

results. Section 2.2 outlines how the Karhunen-Loeve Transform( KL T) generates a set 

of principal component logs from a set of scaled wireline logs. For continuity of 

presentation, the data set of Section 2.1 is used again to demonstrate how the KL T can be 

used to represent a discrete data set in terms of its principal component features. Also 

illustrated in Section 2.2 is the effect of two linear scaling procedures on the derivation 

of principal components. The chapter concludes with a summary of the various tools 

which will go into the development of a borehole segmentation algorithm. 

2.1 Cluster Analysis 

The history, general philosophy and many specific techniques of cluster analysis 

may be found in a number of good texts [11,20,58]. The bibliographical and historical 

remarks given by Duda and .Hart [20], along with their listed references, are especially 

helpful for locating specific topics in cluster analysis. This discussion will be limited to 

information pertinent to subsequent sections of this thesis and draws heavily from 

Bezdek (9, 11 ]. 

Clustering methods can be categorized according to: 1) axiomatic bases, 2) 

clustering criterion and 3) similarity measures [11]. The axiomatic basis categorizes 

clustering methods into deterministic, stochastic or fuzzy methods whereas the 

23 
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clustering criterion subdivides the methods into hierarchic, graph-theoretic or 

objective functional methods. The choice of similarity measure further subdivides 

clustering methods. The way in which similarity between two sample points is measured 

directly affects the shapes of the resulting clusters. Fuzzy clustering methods are the 

preferred method for the present application, as stated at the end of Section 1.1. The 

choice of clustering criterion Is dependent on the geometrical structure of the data set 

being investigated. This structure is a function of the physical processes generating the 

data. Some insight into which clustering criterion might be best for wireline log data is 

gained by reviewing past applications for the three criteria mentioned above. A 

discussion of similarity measures is delayed until Section 2.1.1. 

Hierarchic clustering methods had their origin in biological taxonomic studies, 

where much of the early work in clustering was done [20). There are agglomerative and 

divisive techniques. Examples of both techniques are given in Section 1.4. Hierarchic 

methods have the characteristic of nested clusters and for every hierarchic clustering 

there is a corresponding tree, called a dendrogram, that shows how the sample patterns 

are grouped. It is easy to see that these clustering methods are well suited for biological 

taxonomy where individuals are grouped into species, species Into genera and so on. 

Graph-theoretic clustering methods consider the data set under investigation to be a 

set of isolated nodes or points. These methods tend to use some measure of connectivity 

or bonding between groups of nodes in the clustering procedure. Such techniques are 

preferred when the data are believed to have a linear or a psuedolinear structure. At 

present, there is no uniform way of formulating clustering problems as graph theory 

problems and use of these ideas is still very much an art [20). 

Objective function clustering methods allow the most precise mathematical 

formulation of the clustering problem [11 ]. The quality of a particular partitioning of 

the data is measured by an objective or criterion function. The "optimal" clustering of 

the data is achieved when the objective function is extremized. Most clustering methods 

of this type have either explicitly or implicitly accepted some type of minimum

variance objective. All the methods discussed in Section 1.4 use a minimum-variance 

criterion to measure the quality of the resulting segments or clusters of data. Objective 

function algorithms, using some type of minimum-variance criterion, are believed to 

work best when the data form essentially compact clouds that are relatively well 

separated from one another [11,20). One of the pitfalls of minimum-variance methods 

is that the best clusters, as measured by the objective function, do not necessarily have a 

good physical interpretation. Numerous examples In the literature illustrate this 

shortcoming and most often this problem arises when there is a large disparity in the 
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number of samples in different clusters [11,20). Three alternatives for attacking this 

problem are: the ·choice of a different objective function, the addition of heuristics for 

splitting and merging clusters or the reformulation of the clustering problem. 

The geometrical structure of wireline log data lends itself best to the objective 

function clustering criterion. The overview of wirellne logs in Section 1.2 states that 

logging responses are primarlly affected by lithology, porosity, permeability and pore 

fluids of the formation penetrated by the wellbore. Where these characteristics are 

relatively constant over an interval the corresponding digitized log values tend to cluster 

in clouds of points. Changes In these geological characteristics can be either abrupt or 

gradual depending on the forces at work at the time of deposition. When the changes in 

geological environment are gradual the delineation of where one environment stops and 

another environment begins is unclear; therefore the clusters of log values representing 

this changing environment will not be well separated. This complicates the cluster 

analysis problem. However, the initial method of choice for the present application is 

still a fuzzy objective function algorithm. The remainder of Section 2.1 introduces 

necessary notation and theory leading to the Fuzzy-c-Means(FCM) algorithm which will 

be a basic pattern recognition tool used in the analysis of wireline log data. 

2.1.1 General Notation and Hard Algorithms 

Let the data set X = {x.1. X-2• ... , X.N}c9tP, be a finite subset of real p-dimensional 

Euclidean space with cardinality equal to N. Each 2S.k =(Xk1, Xk2• ... , Xkp) e gtP is a 

pattern vector of data set X, with Xkj being the j-th observation of the k-th measured 

characteristic of members of some physical population being investigated. This leads to 

the following definition for a hard c-partition of data set X. 

Definition 1 [11) 

A conventional hard c-partition of data set X = {x.1. X-2• ... , XN}c gtP is represented 

by a matrix U = [Uikl when and only when: 

1. Uik e {0, 1} ; 

c 
2. L Uik = 1; 

i=1 

1s;;is;;c,1s;;ks;;N 



N 

3. 0 < L Uik < N ; 
k=1 
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1 :s;; i :s;; c. 

Matrix U has: elements that are either O or 1, columns that sum to 1 and rows that sum 

to a value strictly between O and N. Condition 3 assures each partition has at least one 

member. The ik-th element of U, Uik• represents the membership of the k-th sample 

point in the i-th partition.. If Uik = 1, then the k-th sample point is a member of the I

th partition or i-th cluster. For example, if X = ~1 • K2• .2S.3}, then there exists only 

three possible hard 2-partitions of X. U1 partitions the data set X such that 2S.1 and 2S.2 

u = [1 0 11 
2 o 1 oJ u = [1 o ol 

3 0 1 1J 

are in one partition and .2S.3 is in a second partition. U 2 partitions 2S. 1 and .2S.3 from 2S.2 

and U3 partitions 2S.2 and .2S.3 from 2S.1 · Notl.ce that permuting the rows of U simply 

reorders the partitions and does not represent a diff~rent partitioning of the data set, X 

In general, the number of possible hard partitons for a given data set is extremely 

large. Recall that the data set X has N elements and let Mc be the set of admissible 

solutions for the conventional(hard) cluster analysis problem. The magnitude of Mc 

given in Equation (9) is the number of ways to partition data set X into c nonempty 

I M I=.!.. c cl 
[ c J c c- j N 

L, . (-1) i 
= 1 J 

(9) 

subsets and is quite large for all but trivial values of c and N. The discreteness of Mc 

endows it with certain analytical and algorithmic intractabilities. An exhaustive search 

of which hard partition best fits the data is impractical[11 ]. 

In the usual context, one has a data set X and hopes to infer, by some clustering 

method, structure in the represented physical population. The selection of the 

clustering criterion is a key step in any clustering algorithm. Specifically, what 

mathematical properties possessed by the members of the data should be used to identify 

clusters in X? No single criterion will be universally applicable and selection of a 

particular criterion is at least partially subjective and subject to question. 
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Objective function methods allow the most precise, but not necessarily the more 

valid, formulation of the clustering criterion. In particular, minimum-variance 

clustering is a popular choice for defining clusters in X. The wlthin-group-sum-of

squared-error(WGSS) objective functional is a classical minimum-variance criterion 

which generates hard clusters in X. Toward this end let the objective function J1(U,V) 

be defined by: 

N c 
J1 (U,V) = L L Ujk(djk)2 

k=1 i=1 

where 

V = {Y 1 , Y2, ... , Ye} , Yi e 9tP for every i 

and 

U = [ Uik ] e Mc Is hard. 

( 1 Oa) 

1 

v . .)2] 2 
I J 

( 1 Ob) 

( 1 Oc) 

( 1 Od) 

The set V contains the c cluster centers, ¥.i is the cluster center for the hard cluster u1 

e U, 1 :s; i :s; c. In general, dik• is some measure of similarity between the k-th sample 

point, Kk· and the i-th cluster center, Yi· Typically djk must satisfy the following 

requirements: 

dik is defined as d(is.k.~) > O 

dik = O if and only if Xk = ~i 
dik = dki 

( 11 a) 

( 11 b) 

( 11 c) 

Functions that satisfy (11) are called measures of dissimilarity because the larger the 

value for dik the less similar Kk. is to 2ti· The dissimilarity function is often some 
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measure of distance in 9tp. Of particular interest for clustering purposes are inner 

product norms induced via matrix A in Equation (12). 

( 1 2) 

Recall that~ and~ e 9tP and A is any p x p positive-definite matrix. In the case of J1 

defined in Equation (10a) the· measure of dissimilarity is the Euclidean norm metric and 

A is the p x p identity matrix. In general, the measure of disslmllarlty need not be a 

metric, merely positive-definite and symmetric on 9t P. The choice for A directly 

influences the shape of the clusters determined by a given clustering algorithm. 
It is desired to find the pair u* ,v* such that J1 ( u*, v* ) Is minimum. Since an 

exhaustive search of Mc is impractical, the following Hard c-Means(HCM) algorithm is 

a popular way to approximate minima of J1. 

Hard c-Means Algorithm [11] 

step 1: fix c, 2 ~ c ~ N, and Initialize u(O)e Mc, then at Iteration r: 
r = 0,1,2, ... 

step 2: calculate the c mean vectors {Yj(r)} using u(r) and 

n 

~. = 
I 

I u x. 
k = 1 i k k 

n 

I u 
k = 1 i k 

step 3: update u(r) for every i and k 

, d1k(r) = min {djk(r)} 
1~j~c 

, otherwise 

where dik is the Euclidean norm between sample point, ~k and 
the i-th cluster center, ~ 

( 13a) 

( 13b) 



step 4: compare u(r) to u(r+1) in a convenient matrix norm 

if II u(r) - u(r+1)11::;; E then, stop 
else r = r + 1, go to step 2 
end if 
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Note the expression for ~ in step 2 is merely the sample mean for the sample points in 

the i-th cluster. This minimizes J1 for the given hard partition. A new partition is 

then calculated in step 3 based on the new cluster centers. This process proceeds 

iteratively until the difference between successive partition matrices, using some 

convenient matrix norm, is less than some predefined tolerance, E . Hard algorithms 

such as HCM have no general proof of convergence but yield acceptable results in certain 

data cases [11]. The success of a clustering algorithm depends upon its ability to 

identify meaningful substructure in data set X. Some of the mathematical difficulties of 

hard algorithms are overcome by allowing the elements of the partition matrix to be 

continuous variables rather than discrete variables. This leads to a fuzzy version of the 

HCM algorithm. 

2.1.2 Fuzzy Algorithms and· Cluster Validity 

Let Ven be the set of real c x n matrices: 2 ::;; c ::;; N, then the fuzzy c-partltion space, 

Mfc for X is defined below. 

Qefinjtion 2 [11] 

Mfc = {U e Ven I u1k e [0,1] for every i and k; 

c 
L uik = 1 for every k; and 

i = 1 

N 

O < L Uik < N for every i } 
k = 1 

Note that each column sum of U is still one, but it is possible for each ~k to have a 

distributed membership among the c fuzzy partitions. One of the primary advantages of 

fuzziness is the differentiability of the Uik's over Mfc· This is not the case for J1 over 

Mc. Differentiability of the Uik's often allows first-order necessary conditions to be 

found on the gradient of the fuzzy objective function. This provides the theoretical basis 
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for approximation of local minima of the fuzzy objective function by the gradient method 

[11,47]. Consider the following fuzzy c-means algorithm(FCM). 

Fuzzy c-Means Algorjthm [11] 

N c 
Let Jm( U,V) = L L{Uik)m (dik)2 

k=1 i=1 
( 14a) 

be a fuzzy WGSS objective function where dik is some measure of dissimilarity as in 

(11) and m is a weighting exponent indicating the degree of fuzziness. For m = 1, Jm 

reduces to J1 in Equation (10a), defined for the HCM algorithm. It is desired to 

minimize Jm. 

step 1 : fix c, 2 ::;;; c ::;;; N; 
choose a measure of dissimilarity, d1k; 
fix m, 1 ~ m < oo; 
and initialize u(O)e Mfc• then at iteration r: r = 1,2, ... 

step 2: calculate the c fuzzy cluster centers {yi(r)}, using u(r) and 

~. = 
I 

n 
m 

I. ( u, J x. k 
k = 1 1" 

n 
m 

I. ( u .• ) 
k=1 1" 

step 3: update the fuzzy partition, u(r) , 

if dik(X.k.Y;) = O then 

for every i 

Uik = 1; Ujk = 0 for 1 ::;;; j ::;;; C, j ¢ i 
else 

[
c 

u = I. 
i k j = 1 

end if 

( 14b) 

( 14c) 



step 4: use a matrix norm to check for convergence; 

if 11 u(r) - u(r+1)11 ~ £ then, 
stop 

else 
r = r + 1, go to step 2 

end if 
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Practically, the FCM algorithm is useful since the Steps 1-4 outlined above are 

easily implemented. Given an initial partition matrix, u(O), the algorithm iteratively 

generates a sequence {( u(r), v(r))} by selecting v(r+1) to satisfy Equation (14b) 

using u(r) and by selecting u(r+1) to satisfy Equation (14c) using v(r+1). The 

expression for u1k in Step 3 is derived by ftxing the cluster centers {~} and applying 

Lagrangian multipliers to the variables, {u1kh of the objective function Jm in Equation 

(14a) [11). Theoretically, it has been shown that {( u(r), v(r))} converges, at least 

along a subsequence to a pair ( u*, v*) that satisfies necessary but not sufficient 

derivative conditions for minimizing Jm in Equation ( 14a) [12). The original theory 

concerning descent and convergence properties of FCM stated that ( u*, v*) is a local 

minimizer of Jm, but both Sabin [12) and Tucker [12) have produced counterexamples 

illustrating that (U *, v*) may indeed be a saddle point of Jm . This modified 

convergence theory brings into question the underlying mathematical rationale f<?r using 

FCM for exploratory data analysis and classifier design. The original theory accepted u* 

as a reasonable explanation of the substructure of X based on the belief that the 

clustering criterion Jm would be minimized locally when data points in X pack tightly 
* around their prototypes {~ }. The fact that the modified convergence theory can not 

* * guarantee that Jm ( U , V ) is a local minimum has had little impact on the practical 

significance of the FCM algorithm in applied research. Over the past decade there have 

been applications of FCM in agriculture, engineering, astronomy, chemistry, geology, 

image analysis, medical diagnosis, shape analysis and target recognition [10]. FCM and 

associated algorithms have been used for vector quantization which is an important 

aspect of data compression or coding [37,48). The computational experience of these 

applications has shown that when FCM is applied to real data it almost always terminates 

and the data is partitioned into relatively high density clusters of points.. Even if the 

convergence theory could guarantee that the terminal value of the sequence generated by 

the FCM algorithm was an estimate of a local minimizer of Jm, this does not assure that 

the resulting partition is 'meaningful' when related back to the physical process 

generating the data. The fact that FCM behaves well in practical applications makes it 
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useful, but there is still the need to evaluate clustering results in light of any additional 

information the investigator may have about the data. 

An especially important application of the FCM algorithm is the design of a nearest 

prototype classifier for an unknown distribution function using a training set of 

observations. This application will be explored in Chapter 4. The prototypes for the 

classifier are generated by running the FCM algorithm on the observations in the 

training set. Hopefully, these prototypes can be used to classify observations effectively 

outside the training set. It is important to note that the FCM algorithm. makes no explicit 

assumptions concerning the distribution of the data represented by the training set of 

observations. The algorithm is driven solely by the observations in the training set. 

The intent is to find existing structure in the data rather than impose structure on the 

data by making unwarranted assumptions concerning the distribution of the data being 

investigated. 

Once the data set X has been partitioned using an algorithm such as FCM, then It is 

desirable to have an objective way to evaluate the resulting fuzzy partition U. One such 

measure of cluster validity is given . by: 

F( U,c) = ( 1 5) 
N 

F is called the partition coefficient of U and provides a scalar measure of the amount of 

unshared membership of X in the c fuzzy partitions designated by U [9, 11 ). F is 

bounded by 1 /c ::;; F ::;; 1 , and F maximizes as unshared membership increases, with F 

equal one, if and only if U is a hard partition of X. If X really has distinct substructure, 

then fuzzy partitioning algorithms should produce relatively hard partitions as 

measured by F. Since F maximizes to one for every hard partition it can only be used to 

evaluate fuzzy partitions. 

A second measure of cluster validity is made with respect to a hard c-partltion of X. 

The following definition allows a simple way to determine the nearest maximum 

membership( MM) hard partition. for a given fuzzy partition. 

Definition 3 [11) 

If U is a fuzzy partition of X, then the nearest hard c-partition of X in the 

sense of maximum membership is the partition UMM• whose ik-th element is 
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{
1, 

Ulk = 
0, 

Uik = max {Ujk} 
1 s j s c 

otherwise 

Using Definition 3, the separation coefficient of UMM is the scalar: 

G( U,V,c, X,d) = 1 - max { max ( 1 6) 
i+1 s j s c 1 s i s c-1 

where q represents the radius of the smallest closed ball centered at Y.j, that contains 

hard cluster ui and dij denotes the distance of separation between cluster centers ~j and 

Y.i [ 11 ). Notice that G depends not only on U and c, as did F, but also on the cluster 

centers, V = {Y.j}, 1 s i s c, the data X and the measure of distance, d. G has the 

following properties: 

1. O < G < 1 if and only if no pair of closed balls intersect one another; 

2. G = O if and only If the closest pair of closed balls are exactly tangent; 

3. G < O if and only if at least one pair of closed balls Intersect one another. 

G depends on the compactness(ri) and separation(d1j) of the closed balls containing the 

respective hard clusters. Larger values of G are Indicative of better substructure In X. 

G can not be used directly for fuzzy cluster validity but via Definition 3 an indirect 

evaluation can be made for fuzzy clusters. 

A third measure of cluster validity Is based on the difference in magnitude between 

the hard objective function, J 1 • and the fuzzy objective function, Jm, given in Equations 

(10a) and (14a) respectively. The objective function coefficient is defined by: 

( 1 7) 

~J is a relative measure of how close the fuzzy partition of X is to the corresponding 

maximum membership hard partition of X in terms of within-group-sum-of-square

error. Recall that the underlying rationale of fuzzy clustering is that fuzzy clustering 

works best when the resulting clusters are reasonably "hard", and this condition is 

reflected by relatively small values of ~J. 

The purpose of any validity measure is to point to the value of c which best fits the 

data for a given measure of dissimilarity. Fuzzy clustering and the use of validity 

measures F, G and aJ are better explained via an example using a well known data set. 
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2.1.3 An Example Using Anderson's Iris Data 

Anderson's Iris data was chosen to illustrate a modified form of the FCM algorithm 

and validity measures F, G and ~J because it Is a well defined data set that provides a 

point of reference to other classification schemes. The Iris data has been used as a test 

set by numerous authors, Including Backer [4], Bezdek (9, 11), Duda and Hart [20), 

Fischer [22), Friedman and Rubin [23), Kendall [36), Scott and Symons [50) and Wolfe 

[62). The Iris data consists of 150 four-dimensional vectors, each of which gives the 

sepal length, sepal width, petal length and petal width, all measured In centimeters 

[22). The 150 samples represent 50 samples each from three subspecies of lrlses(l.e., 

setosa, veriscolor and virglnlca). Figure 5 shows the Iris data plotted using the petal 

features which are the two most discriminating features. Bezdek [9) used the Iris data 

to contrast the performance of the FCM algorithm with the performance of several other 

clustering methods [23,36,50,62). If It Is assumed a priori that the Iris data consists 

ANDERSON'S IRIS DATA 
2.50 
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Figure 5. Anderson's Iris Data plotted using Petal Features 
( 1 = setosa, 2 = veriscolor and 3 = vlrglnlca) 
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of three subpopulations, then the FCM algorithm was outperformed by the methods of 

Wolfe [62) and Friedman and Rubin [23) in terms of each method's ability to classify 

the Iris data correctly . The primary advantage of the FCM algorithm, demonstrated by 

Bezdek [9], is Its ability to decompose the Iris data without the a priori knowledge of 

the number of clusters being sought. This advantage, plus the fact that the FCM 

algorithm makes no explicit assumptions about the distribution of the data, make the 

FCM algorithm an excellent tool for exploratory data analysis. 

The initial example uses the original Iris data; no scaling or transforming of the 

data has been done. There are several algorithmic parameters associated with the FCM 

algorithm given in (14), namely: c, m, u(O), d and E. For this example, c = 2,3,4,5,6 

and d is the Euclidean metric that is implemented by letting A in Equation (12) be the 4 

x 4 identity matrix. The matrix norm in Step 4 of the FCM algorithm is a simple 

element-by-element comparison of the two matrices; u(r) and u(r+1), and the 

maximum difference between corresponding elements is compared to E = 0.01. A 

modified version of the FCM algorithm was applied to the Iris data with v(O) being 

specified instead of u(O) and the iterative loop beginning at Step 3 rather than Step 2. 

The initial cluster centers, v(O) = U!,j(O)}, are selected by using c equally spaced 

points along each of the coordinate axes. Finally, the weighting exponent m must be 

specified. There are heuristic guidelines for choosing m, but there exists no theoretical 

basis for the optimal choice of m [11 ]. This Initial example uses m = 1.25, 1.5 and 2.0 

to show how m impacts the cluster validity measures that are used to evaluate the 

clustering results. 

A few observations about the weighting exponent before proceeding ·with the 

example. In general, as m becomes larger, the 'fuzzier' are the cluster membership 

assignments, and as m approaches 1 from the right the FCM solutions become hard. 

Theoretically, as m approaches infinity the Uik in Equation (14c) approach 1/c and all 

the fuzzy cluster centers approach the centroid of the data. Again, according to theory, 

as m approaches one from the right FCM converges to a 'general' hard solution [11). 

Thus, m controls the extent of membership sharing between fuzzy clusters in the data 

set being investigated. One can artificially influence the FCM solution by choosing 

extreme values for m. It is desirable to choose m large enough so that if the resulting 

FCM solution yields relatively 'hard' clusters then this is a good indication of 

substructure in the data. However, choosing m too large essentially eliminates the 

possibility that the resulting clusters will have good structure, as measured by the 

cluster validity measures. 
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Table I shows the partition coefficient, F(U,c), the separation coefficient, 

G(U,V,c,X,d), and the objective function coefficient, dJ for the original Iris data, using 

the Euclidean norm and £ = 0.01. Maximum F and G are attained when c = 2 for all three 

values of m. Recall that larger F values are indicative of better substructure. Also, 

recall that G Is a relative indicator of separation for the maximum membership hard 

clusters derived using Definition 3. G indicates the worst case separation for the pair of 

hard clusters with the least spatial separation. In contrast to F and G, dJ indicates that 

five is a good choice for c for all three values of m. 

Based on the validity measures, one could reason that two is the best value of c with 

five being the next best value. Notice how the various validity indicators In Table I are 

affected by the different values for m and c. Increasing m Increases the amount of shared 

membership in the fuzzy clusters and this is reflected by lower values of the partition 

coefficient F. Falso exhibits a tendency to decrease as c increases. The only exception to 

F's decreasing tendency occurs when m = 1 .25 and c increases from 4 to 5. The 

decreasing tendency in F, as c increases, is explained in part by the changing lower 

bound for F (i.e., 1/c ~ F ~ 1) which results in a larger possible range for F. Also, as c 

increases there are more opportunities for an individual sample point to have Its 

membership divided between two or more clusters, thus lowering F. The fact that all the 

F values are relatively high for m = 1.25 is an indication that m may be too small, 

which forces the resulting clusters to be fairly 'hard' clusters. The fact that F increases 

when c increases from 4 to 5 in the case of m = 1 .25, and F decreases only sightly for 

the same situation in the case of m = 1.5, is another indication that five is a reasonable, 

but perhaps not the best, choice for c. In this example, the overlap of the maximum 

membership hard clusters, as measured by G, is slightly greater between clusters as m 

increases. This is evidenced by comparing the values of G in Table l(c) with the values 

of G in Tables l(a) and l(b). It is worth noting that for c = 2, G is the same for all three 

values of m and for c = 5, G is the same for m = 1.25 and m = 1.5 and slightly worse for 

m = 2.0. The objective function coefficient yields larger values ·as m increases, but for 

all three cases shown in Table I the minimum ~J is achieved when c = 5. 

A value of 1.5 is viewed as a good nominal value for m and Figure 6 shows the FCM 

maximum membership clusters for m = 1.5 when c = 2 and c = 5. It is somewhat 

disappointing that the FCM clusters in Figure 6(a) do not correspond exactly to the two 

visually obvious clusters. A comparison of Figure 5 with Figure 6(a) shows that the 

maximum membership cluster #1 corresponds to the veriscolor and virginica species 



TABLE I. 

FCM VALIDITY MEASURES FOR THE ORIGINAL IRIS DATA: 
USING THE EUCLIDEAN NORM,e ~ 0.01 AND 

m = 1.25, m = 1.5 AND m = 2.0 

c F G ~J 

2 0.987 -0.183 1.716 
3 0.971 -0.775 1.002 
4 0.954 -0.642 0.783 
5 0.960 -0.747 0.569 
6 0.942 -1.234 0.655 

(a) m = 1.25 

c F G ~J 

2 0.968 -0.183 6.049 . 
3 0.919 -0.788 4.473 
4 0.888 -0.602 3.543 
5 0.881 -0.747 2.936 
6 0.638 -1.249 3.396 

(b) m = 1.5 

c F G ~J 

2 0.892 -0.183 23.452 
3 0.783 -0.804 18.518 
4 0.707 -0.652 15.849 
5 0.664 -0.795 13.906 
6 0.594 -1.249 14.347 

(c) m = 2.0 
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and cluster #2 corresponds to the setosa species, with the exception of three veriscolor 

samples that are grouped in cluster #2. A similar comparison of Figure 5 with Figure 

6(b) shows that FCM clusters #1 and #2 correspond to virginica, clusters #3 and #4 

correspond to veriscolor and cluster #5 corresponds to setosa. This correspondence 

between FCM clusters in Figure 6(b) and the Iris data in Figure 5 results in 14 of the 

virginica samples being grouped incorrectly with the veriscolor samples. 

This simple introductory example illustrates how cluster validity measures F, G 

and LlJ can be used to choose an appropriate value of c, based upon the FCM clustering 

results. Each validity measure takes into consideration a different aspect of the FCM 

clustering results. F directly evaluates unshared membership of the fuzzy partition, G 

measures spatial separation of hard clusters derived from the fuzzy partition and aJ 

measures how close the maximum membership hard partition and the fuzzy partition are 

in terms of within-group-sum-of-square-error. The above example illustrates that 

these measures of cluster validity need not agree upon the best value of c, but each 

validity measure has its own merit. Also, the best value or values of c as determined by 

the validity measures do not necessarily agree with another grouping of the data based 

upon an examination of the physical process generating the data. In the above example, 

the biologist chooses three to be the best number of subpopulations for the Iris data, 

whereas interpretation of the validity measures points to either two or five 

subpopulations. It is always prudent to evaluate clustering results in light of any 

additional Information known about the physical process represented by the data. One 

difficulty associated with the FCM algorithm is choosing an appropriate value for the 

weighting exponent m. The weighting exponent directly effects the values and 

interpretation of the cluster validity measures. For the above example, m = 1.5 was 

chosen empirically as a good nominal value for m, but this is certainly subject to 

question. 

2.2 Principal Components and Data Scaling 

The development of the method of principal components is usually credited to 

Hotelling [35). The method of principal components transforms discrete variables that 

are correlated into a set of uncorrelated principal components; this is done by accounting 

for the variance of the original variables. The analogous transformation for continuous 

data was discovered by Karhunen and Loeve and is called the Karhunen-Loeve 

Transformation [26,58). Principal component analysis and factor analysis are related, 
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yet different, statistical procedures. As mentioned, principal component analysis 

transforms the original variables into new variables by accounting for the variance of 

the original variables, whereas factor analysis transforms the original variables into 

new variables by accounting for the correlation among the original variables. The terms 

"components" and .. factors" are sometimes used interchangeably in the literature, when 

in fact there is a distinction between them. Typically, the use of principal components is 

motivated by the need to reduce the dimensionality of the data in a clustering problem 

and still retain the necessary discriminatory information to distinguish between 

different classes of data [20]. Such is not the case for the clustering of wireline log data. 

A standard suite of logs may consist of seven to ten wireline logs and present day 

computational systems can easily handle problems of this dimensionality. The use of 

principal components is motivated on two counts. First, the use of principal components 

gives insight into the structure of the wireline log data by representing the data in terms 

of uncorrelated principal component features that are linear combinations of the 

original data features. Second, if the clustering is being done in a high dimension space, 

then principal components provide a better means for the visual display of clustering 

results in a lower dimension space. 

Miesch [40] reviews a variety of principal component methods which have become 

popular in the geological sciences. These methods range from the A-mode method, based 

on the correlation or covariance matrix, to Q-mode methods, which are based on 

coefficients that express the relations among observations rather than variables. 

Miesch [40] points out that the dominant feature distinguishing one method of principal 

components from another is the manner in which the original data are scaled prior to the 

other computations. A second distinction between principal component methods is 

whether the eigenvectors of the inner product-moment of the scaled data matrix are 

taken directly as the 0-mode scores or normalized and called the A-mode loadings. Most 

often the inner product-moment is a correlation, covariance or a scaled psuedo cos a 
matrix; however, the inner product-moment need not be one of these to form the basis 

for a valid principal component solution [40). Section 2.2.1 outlines how principal 

component logs are generated using the discrete Karhunen-Loeve Transform(KL T), 

which is an R-mode method based on the covariance matrix of the scaled wireline logs. 

Section 2.2.2 explains why data scaling is sometimes necessary and illustrates the 

impact which different types of scaling can have on the resulting principal components. 

For continuity of presentation the effects of scaling are Illustrated using the Iris data 

shown in Figure 5. 
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2.2.1 The Discrete Karhunen·Loeve Transformation(KL T) 

The theory and properties of the KL T are discussed in the literature [16,20,21, 

26,45,58]. This section gives the development of the discrete KL T as applied to a set of 

wireline logs. Let data set X be an M x N matrix of the original digitized wireline logs. 

. . . 
x = ( 1 8) 

~2 

Each row of X corresponds to a different wireline log. Data matrix Z is formed by a 

linear scaling of the rows of X. The linear scaling considered in this discussion will have 

the form: 

( 1 9) 

where Zij and Xij are elements of the i-th row and j-th column of Z and X respectively 

and ai and bi are scaling constants for the i-th row of X. Now an M element column 

vector, ~. may be formed by considering any column of Z. The i-th column of Z is given 

by: 

(20) 

with the T indicating transposition. The elements of a ~ vector represent M scaled log 

readings which correspond to a particular depth in the borehole. The covariance matrix 

of the~ vectors is defined as: 

( 2 1 ) 

where 

mz = E [ ~] ( 2 2) 
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is the mean vector and E is the expectation operator. Equations (21) and (22) may be 

approximated from the scaled log measurements by replacing the expectation operator 

with the sample average. 

1 N 

.ID.z = :E •1 (23) 
N i = 1 

1 N 

Cz = :E 1i 1i T - mzmzT (24) 
N i = 1 

The mean vector, mz, is of dimensionality Mand Cz is an M x M matrix. Since Cz is a 

real symmetric positive semidefinite matrix, it is always possible to find a set of 

orthonormal eigenvectors [26). Let i.i and A.i, i = 1,2, ... , M, be the normalized 

eigenvectors and eigenvalues respectively of Cz. For convenience, assume the 

eigenvalues are arranged in decreasing order such that A.1 ~ A.2 ~ ... ~ A.M. The 

transformation matrix for the discrete KL T is then formed using the normalized 

eigenvectors of Cz to form the rows of the transformation matrix, B. The discrete KLT 

9 11 912 . • • 9 1N 

921 022 92N 
B = • ( 2 3) 

• 
• • 

EM1 EM2 EMN 

then consists of multiplying a centralized vector (~ - mz) by B to obtain a new vector Y. 

y = B(•-mz) . (24) 

It has been shown that the covariance matrix of the Y. vectors is a diagonal matrix with 

elements equal to the eigenvalues of Cz [26). This implies, the elements of Y are 

uncorrelated and each eigenvalue, A.i, is equal to the variance of the i-th element of Y... 
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A.1 0 • • 0 

0 A.2 0 

Cy= ( 2 5) 

• • 0 
0 0 0 A.M 

along eigenvector, fli· In the present application an M-dimensional vector, ~. consisting 

of M scaled log measurements is centralized about the mean vector, mz. which has been 

calculated over some interval of interest. The resulting vector is multiplied by the KL T 

matrix, B, and yields a new vector Y. lri matrix form, let Z' equal the scaled data 

matrix, Z, with the mean vector, mz. subtracted from each column, then the KLT can be 

implemented by the matrix multiplication in Equation (26). The rows of matrix Y 

represent the uncorrelated principal component(PC) logs. Since the eigenvalues are in 

decreasing order the PC logs are ordered such that PC log #1 (i.e., row #1 of matrix Y) 

y 11 y12 • • . y1N 

y 21 y 22 y 2N 

Y = BZ' = • (26) 

• • • 
• 

YM1 YM2 • • • YMN 

has the largest variance and subsequent PC logs have nonincreasing variances, with the 

last PC log having the least variance. The KL T compresses the essential variability of the 

log data into relatively few signals, which is nice for the visual display of clustering 

results in a lower dimensional space and allows the option of reducing the dimensionality 

of the clustering problem. Geometrically, the KLT consists of a translation and rotation 

of the scaled wireline log data such that the first PC axis lies along the line of maximum 

variance of the scaled data. The second PC axis is orthogonal to the first PC axis and in 

the direction of the next greatest variation of the scaled data and so on for the remaining 



44 

PC axes. The KL T is a fixed body transformation of the data and has no effect on the 

clustering performance of an algorithm such as FCM. The use of the KL T and the effects 

of scaling are illustrated with another example using Anderson's Iris data. 

2.2.2 A Second Example Using Anderson's Iris Pata 

Of the unlimited number of ways to derive principal components, only three 

methods are contrasted in this example. For all three methods the raw data matrix, X, is 

a 4 x150 matrix representing the original Iris data. The rows of X contain the 150 

measurements for sepal length, sepal width, petal length and petal width respectively. 

The only difference in the three methods is the manner in which the raw data matrix, X, 

is scaled to obtain the data matrix Z. Method 1 uses ai = o and bi = 1 in Equation (19) 

for scaling the rows of X. In method 1, Z equals X. Method 2 uses ai equal to the row 

mean and bi equal to the row standard deviation while method 3 uses ai equal to the row 

mean and bi equal to the magnitude of the largest excursion from the row mean. Table II 

shows the means and standard deviations of the Iris data after scaling by Equation (19) 

using the scaling constants for the three methods listed above. Method 1 yields the means 

and standard deviations for the original Iris data. Method 2 scale& the original data to 

give zero mean and unit standard deviation signals while method 3 produces zero mean 

signals whose magnitude is bounded by plus and minus one. The discrete KL T transforms 

the scaled Iris data into principal components according to Equation (27). The 

principal components are linear combinations of the scaled Iris features which account 

for the variation in the scaled data. Table Ill lists the KLT matrix and corresponding 

eigenvalues for the three methods of scaling. Notice that without scaling, (method 1 ), 

the variables are effectively weighted according to their standard deviations without 

regard for the relative magnitude of the variables. A comparison of the first row of the 

KLT matrix for method 1 in Table Ill and the standard deviations for method 1 in Table II 

principal component feature #1 sepal length 

KLT 
sepal width 

= 
matrix 

( 2 7) 
principal component feature #2 

principal component feature #3 petal length 

principal component feature #4 petal width 



Method 

1 
2 
3 

TABLE II. 

MEANS AND STANDARD DEVIATIONS OF THE IRIS DATA 
FOR THE THREE METHODS OF SECTION 2.2.2 

Means Standard Deviations 

sepa! length sepal width petal length petal width sepal length sepal width petal length 

5.843 3.057 
0.000 0.000 
0.000 0.000 

Method 

1 

2 

3 

3.758 1.199 0.825 0.434 1.759 
0.000 0.000 1.000 1.000 1.000 
0.000 0.000 0.401 0.324 0.560 

TABLE Ill. 

EIGENVALUES AND KLT MATRICES FOR THE 
THREE METHODS OF SECTION 2.2.2 

Eigenvalues 

4.200 
0.241 
0.077 
0.024 

2.918 
0.914 
0.147 
0.021 

0.782 
0.102 
0.031 
0.006 

KLT Matrix 

0.361 -0.085 0.857 0.358 
0.657 0.730 -0.173 -0.075 
0.582 -0.598 -0.076 -0.546 
0.315 -0.3 20 -0. 480 0.754 

0.521 -0.269 0.580 0.565 
0.377 0.923 0.024 0.067 
0. 720 -0.244 -0.142 -0.634 
0.261 -0.124 -0.801 0.524 

0.403 -0.148 0.629 0.648 
0.417 0.907 -0.056 0.002 
0.716 -0.322 0.096 -0.611 
0.389 -0.227 -0. 769 0.454 

petal width 

0.760 
1.000 
0.584 

... 
UI 
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reveal that the Iris features with the larger standard deviations are more closely 

accounted for in the determination of principal component features. Specifically, the 

first principal component is dominated by the petal length. The purpose of the scaling 

used in methods 2 and 3 is to weight the respective Iris features more evenly by taking 

into account their standard deviations in method 2 and their largest excursion from the 

mean in method 3. The effects of the scaling procedures are reflected by the 

transformation matrices for methods 2 and 3 listed in Table Ill. The petal length no 

longer dominates the determination of the first principal component for method 2 or 

method 3. The first principal component for both methods 2 and 3 is most dependent on 

the petal features with method 3 giving slightly more weight to the petal features than 

method 2. This emphasis on the petal features is desirable since it is well known that 

the petal features are the most discriminating of the original Iris features. Typically, 

the eigenvalues of Table Ill are used as a measure of the amount of variance accounted for 

by a particular principal component. The sum of the k largest eigenvalues divided by the 

sum of all the eigenvalues gives an eigenvalue ratio that is commonly interpreted as the 

proportion of total variance in the original data that can be accounted for by the first k 

principal components. Such an interpretation is correct only when the scaling 

procedure of method 2 is used ( 40). When the scaling is done in any other manner the 

eigenvalue ratio can only be used to determine the degree to which the first k principal 

components account for the variance of the scaled data, not the original data. In fact, 

regardless of the type of principal component analysis that is performed, the eigenvalues 

of method 2 give a better measure of the manner in which the principal components 

account for the variance of the original data [40). · This does not imply that the principal 

components derived using scaling procedures other than method 2 are less valid, just 

that one should not misinterpret the associated eigenvalues. For example, the 

eigenvalues of method 2 in Table Ill indicate that the first principal component accounts 

for approximately 73% of the variance in the original data. This percentage would also 

accurately reflect the proportion of total variance in the original data accounted for by 

the first principal components of methods 1 and 3 respectively. 

Figure 7 shows a comparison of the Iris data plotted using the first two principal 

component features for the three different scaling methods. The separation coefficients, 

which measure the compactness and separation of the different Iris species, are given in 

Table IV for each scaling method. The calculation of the separation coefficients is 

presented as part of the discussion regarding cluster validity at the end of Section 2.1.2. 

In the present context, the separation coefficients give an indication of the effects of 

scaling on the compactness and separation of the labelled Iris data. A comparison of the 
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TABLE IV. 

SEPARATION COEFFICIENTS FOR THE LABEU.ED 
IRIS DATA OF FIGURE 7 

cluster # 1 

1 0.000 
2 
3 

2 

0.127 
0.000 

(a) Method 1 

cluster # 1 2 

1 0.000 --0.707 
0.000 2 

3 

(b) Method 2 

cluster # 1 2 

1 0.000 --0.216 
0.000 2 

3 

(c) Method 3 

3 

0.302 
-1.236 
0.000 

3 

--0.313 
-2.156 

0.000 

3 

0.098 
-1.355 
0.000 
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separation coefficients in Table IV indicates the best structure exists for method 1, the 

next best structure for method 3 and the poorest structure exists for method 2. One ill 

effect of the scaling procedures used in methods 2 and 3 is a loss of compactness of the 

labelled Iris subgroups, with method 2 being considerably worse than method 3 in this 

respect. The more important question is, how do the scaling procedures effect the ability 

of the FCM algorithm to detect the respective Iris subgroups? 

Table V shows the FCM validity measures for the scaled Iris data shown in Figure 7. 

Notice the validity measures for method 1 are exactly the same as those recorded in 

Table 1 (b). This is expected since the KLT Is a fixed body transformation consisting of a 

rotation and translation of the original Iris data and does not effect the clustering 

performance of the FCM algorithm. The validity measures F and G of method 1 point to 

two as a good choice for c while AJ points to five as a good choice for c. Figure 6 shows 

the FCM clusters for c equals two and five in the domain of the original Iris data.. For 

method 2, all three validity indicators point to two as the best choice for c. Figure S(a) 

shows the FCM maximum membership clusters for method 2 and c = 2. Notice that the 

clusters in Figure S(a) correspond exactly to the two visually obvious clusters with 

cluster #1 corresponding to the veriscolor and virginica species and cluster #2 

corresponding the setosa species. This is an improvement over the performance of 

method 1 when c = 2. The validity measures for method 3 Indicate either two or three as 

appropriate choices for c. For c = 2, method 3 clusters the Iris data in precisely the 

same manner as method 2 displayed in Figure S(a). Method 3 is the only method that 

indicates that three is a reasonable choice for c and the resulting FCM maximum 

membership clusters are shown in Figure S(b). The original setosa samples correspond 

exactly to cluster #3 in Figure S(b), veriscolor corresponds to cluster #2 and 

virginlca corresponds to cluster #1 with a total of 17 misclassifications in the latter 

two groupings. By comparison, when c = 3, method 1 yields 17 misclassifications and 

method 2 yields 25 misclassifications of the labelled Iris data. Method 3 is at least as 

good as the other methods in grouping the Iris data· for c = 3 and has the advantage of 

having a validity measure, aJ, which indicates that three is a reasonable choice for c. 

Table VI compares the fuzzy and hard prototypes generated by the FCM algorithm for 

method 3 and c = 3 with the sample means of the original labelled Iris data. The fuzzy · 

prototypes are derived via Equation (14b) and are the fuzzy cluster centers. The hard 

prototypes are the cluster centers for the maximum membership hard clusters derived 

from the fuzzy partition of the Iris data using Definition 3. Even though there are a 

significant number of misclassifications of the Iris data, the FCM algorithm does 



TABLEV. 

FCM VALIDITY MEASURES FOR SCALED IRIS DATA: 

c 
2 
3 
4 
5 
6 

c 
2 
3 
4 
5 
6 

c 
2 
3 
4 
5 
6 

USING METHODS 1,2 AND 3 OF SECTION 
2.2.2 WITH EUCLIDEAN NORM, 

E =0.01 ANDM=1.5 

F G 4J 
0.968 -0.183 6.049 
0.919 -0.788 4.473 
0.888 -0.602 3.543 
0.881 -0.747 2.936 
0.838 -1.249 3.396 

(a) Method 1 

F G .&J 
0.953 -0.705 8.803 
0.888 -1.277 9.584 
0.837 -1.370 9.705 . 
0.802 -1.548 9.785 
0.783 -1.641 . 11.181 

(b) Method 2 

F G 4J 
0.960 -0.345 1.742 
0.899 -0.889 1.290 
0.866 -1.117 1.317 
0.825 -1.493 1.392 
0.807 -1.493 1.441 

(c) Method 3 
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TABLE VI. 

COMPARISON OF FCM FUZZY AND HARD PROTOTYPES WITH lHE 
SAMPLE MEANS OF lHE LABELLED IRIS DATA 

Iris Feature Fuzzy Hard Sample 
Species Prototypes Prototypes Means 

Setosa sepal length 5.01 5.01 5.01 
sepal width 3.43 3.43 3.43 
petal length 1.47 1.46 1.46 
petal width 0.248 0.246 0.246 

Veriscolor sepal length 5.87 5.89 5.94 
sepal width 2.72 2.74 2.77 
petal length 4.36 4.40 4.26 
petal width 1.38 1.42 1.33 

Virginlca sepal length 6.79 6.85 6.59 
sepal width 3.07 3.08 2.97 
petal length 5.65 5.70 5.55 
petal width 2.07 2.08 2.03 
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generate a set of prototypes which are good representatives of the respective labelled 

Iris groupings with the fuzzy protoypes being slightly closer to the sample means than 

the hard prototypes. This example illustrates how a given scaling procedure impacts not 

only the determination of principal components but also impacts the FCM clustering 

performance. The intended purpose of scaling is to weight the respective data features 

more evenly so that all features of the original data with significant variation are 

accounted for in the derivation of principal component features. The KL T determines the 

principal components by forming linear combinations of the scaled data features and 

inspection of the KLT matrix gives some insight into which features are mainly 

responsible for the variability in the original data. Perhaps a more important aspect of 

scaling is Its impact on the geometrical structure of the data, for it is precisely this type 

of structure that influences FCM clustering performance. In this example, for c = 2, the 

scaling procedures of methods 2 and 3 account for the fact that the FCM algorithm 

grouped the data from these methods into the two visually obvious clusters and the 

algorithm failed to do so for the unscaled data of method 1. In addition, a comparison of 

the scaling procedures of methods 2 and 3 shows that the scaling procedure of method 3 

has the desirable property of maintaining better structural integrity of the labelled Iris 

subgroups as measured by the separation coefficients listed in Table IV. 

One final tool which may be easily utilized is a different inner product norm for 

measuring dissimilarity between the sample points. Up to this point, the Euclidean 

norm has been used exclusively. The Euclidean norm 'seeks' spherically or 

hyperspherically shaped clusters. Changing A In Equation (12) to a positive definite, 

symmetric matrix other than the identity matrix will cause the clusters determined by 

the FCM algorithm to have a different shape. For example, consider the principal 

components data of method 3 above and let A equal the covariance matrix of the data. 

According to the discussion of Section 2.2.1 A is a diagonal matrix with the diagonal 

elements equal to the eigenvalues of the covariance matrix of the scaled Iris data. These 

eigenvalues are displayed in Table Ill. The FCM algorithm is run with the 'covariance' 

norm, E = 0.01 and m = 1.5. The cluster validity measures F, G and aJ indicated that 

two and five were good choices for c and Figure 9 shows the resulting FCM clusters for 

c = 5. The clusters displayed in the two dimensional principal component space of 

Figure 9 tend to be elliptically shaped with the major axis of each ellipse lying 

perpendicular to the first principal component axis. Part of the motivation for trying 

the 'covariance' norm is the assumption that the first principal component has more 

physical significance than the other principal components. Any significant movement 

along the first principal component axis is assumed to correspond to a significant 
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physical change. Use of the 'covariance' norm results in six misclassifications of the 

Iris data when the following correspondence is made between the clusters of Figure 9 and 

the original Iris samples. 

Qlustar #'s Iris Sga~ias 

1,2 virginica 

3,4 veriscolor 

5 setosa 

There are many other candidates for the matrix A in Equation (12). For example, 

setting A equal to the inverse covariance matrix of the scaled data induces the 

Mahalonobis norm and the resulting clusters are again elliptically shaped, but oriented 

with the major axis parallel to the first principal component axis. The Mahalonobis 

norm is popular in many pattern recognition applications, but is not appropriate for the 

Iris data example. The point to be made Is that if the shape of the clusters being sought is 

known then an appropriate norm can easily be added to the FCM clustering algorithm. 

2.3 Chapter Summary 

This chapter has introduced and illustrated the major tools which will be used in a 

borehole segmentation algorithm in Chapter Ill. The discussion and examples of this 

chapter help illustrate how the FCM algorithm, cluster validity measures and principal 

component analysis can be used to objectively evaluate the structure of a given data set. 

The use of cluster validity measures in conjunction with the FCM algorithm makes an 

excellent tool for exploratory data analysis because the FCM algorithm makes no explicit 

assumptions concerning the distribution of the data and the cluster validity measures 

eliminate the need to know a priori the number of subgroups in the data. This is very 

important since the intent of the analysis is to discover naturally occurring structure in 

a given data set rather than impose structure on the data set by making unwarranted or 

unnecessary assumptions. As was evidenced in the example of Section 2.1.3, the number 

of subgroups determined algorithmically do not necessarily agree with the number of 

subgroups determined physically. It was observed in the example of Section 2.2.2 that 

data scaling improved the correspondence between the FCM clusters and the labelled Iris 

subgroups. The choice of a particular scaling process is important because the 

clustering results of the FCM algorithm are Influenced by the effect the scaling process 

has on the spatial distribution of the data. Additional insight is gained into the structure 
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of the data by expressing the original data in terms of uncorrelated principal component 

data. Principal component analysis indicates which of the original data features account 

for the majority of the variation in the original data. Additionally, the use of principal 

components provides a better means to display FCM clustering results in two dimensions 

even though the clustering is being done in a higher dimension. 



CHAPTER Ill 

SEGMENTATION ALGORITHM 

3.0 Introduction and Basic Methodology 

The general segmentation problem involves dividing one or more time-varying 

signals into segments that are in some sense homogeneous. In the present study, the 

wireline logs are a function of depth rather than a function of time but similar analysis 

methods still apply. In the multivariate case, the segmentation process is performed on 

multiple signals that correspond to the same physical process over a given time interval. 

In problems of high dimesionallty the KL T is often an effective transformation to reduce 

the dimensionality of the problem while still retaining the majority of the statistical 

information contained in the original signals. The segmentation problem is easily 

formulated as a pattern recognition problem and can be approached in a number of ways 

as outlined in Section 1.1. The following paragraphs give an overview of some possible 

approaches to the segmentation problem. 

The signature recognition problem is· a relatively narrow approach to the 

segmentation problem. In the signature recognition problem, it is desired to locate a 

particular segment of a signal rather than perform a general segmentation of the signal. 

A 'signature' signal corresponding to something of physical interest is known and the 

problem is to search other signals for the signature of interest. This approach is 

similar to pattern recognition by template matching but is complicated by the warping 

phenomena that the signature signal undergoes due to variations in the physical process. 

Cartinhour [14] addresses the signature recognition problem and makes specific 

application to the well log .signature recognition problem. 

A more general approach to the segmentation problem invloves the segmentation of a 

signal into k homogeneous segments where k is known a priori. Section 1.4 reviews a 

variety of segmentation techniques that operate under the assumptions that k is known 

and that homogenity is defined with respect to a normal distribution of the data. These 

assumptions reduce the segmentation problem to a parametric estimation problem. 

56 
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Perhaps the most general approach, and the approach taken in this study, is when 

the segmentation problem is interpreted as an unsupervised pattern recognition problem 

and no assumptions are made with regard to the distribution of the data or the number of 

segments to be determined. The intent is to search for naturally occuring data structure 

rather than impose structure on the data with unnecessary assumptions. 

The segmentation of a borehole into relatively distinct intervals based upon wireline 

log responses is accomplished by successive application . of the Karhunen-Loeve 

Transform(KL T) and the Fuzzy-c-Means(FCM) clustering algorithm. The KLT gives 

insight into the structure of the data by expressing the original logs in terms of 

uncorrelated princip,al component logs. The FCM clustering algorithm clusters the 

principal component data into a specified number of clusters and then the cluster 

validity measures are used to objectively evaluate the clustering results. The basic 

segmentation algorithm methodology is outlined by the following steps. 

1 . Make sure that all wireline logs are on depth relative to each other and that any 
obviously errant or missing data has been corrected. 

2. Pick an appropriate set of input logs to be analyzed. 

3. Choose an appropriate scaling procedure for the analysis being performed. 

4. Transform the scaled wireline logs into principal components(PC) logs using the 
discrete Karhunen-Loeve Transform( KL T). 

5. Inspect the KL T matrix to help determine which logs account for the majority of 
the variance in the log data. 

6. Cluster the PC log data using an FCM algorithm. 

7. Use the cluster validity measures: F, G and .llJ, to determine the number of 
clusters which best fits the data. 

8. Plot the maximum membership cluster information as a function of depth, thus 
segmenting the borehole into distinct intervals. 

9. If geological analyses of the same interval exist, then they can be used to evaluate 
the geological meaning of the intervals determined by the segmentation algorithm. 

Certain variations from this basic methodology are taken in Chapter Ill as different 

segmentation strategies are evaluated, but steps 1-9 outline the key steps used in 

segmenting a borehole into distinct intervals based upon wireline log responses. 
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3.1 Data Base 

The data base for the analysis presented in this chapter was supplied by AMOCO of 

Tulsa, Oklahoma and consists of over 1600 feet of log and core information [33]. A test 

interval of approximately 360 feet was chosen from this data base for detailed analysis. 

Figure 1 O shows the gamma ray(GR), spontaneous potential(SP), short normal(SN), 

deep induction(ILD), neutron porosity(NPHI) and bulk density(RHOB) logs for the test 

interval. A simplified core description for the test interval is given in track #1 of 

Figure 1 O and the same description is repeated in track #2. The numbers in tracks #1 

and #2 represent different lithology types: 0-undefined, 1-shale, 2-sandstone, 3-

limestone and 4-coal. Although there exists significant variation within each lithology, 

the description given in Figure 1 O is consistent with the detailed core description given 

in the Appendix. The major points of the detailed core description given in the Appendix 

are summarized in the following paragraph. 

The 360 ft. test interval consists of 113 cumulative feet of sandstone, 47.5 feet of 

limestone, 181.5 feet of shale, 3 feet of coal and 15 feet of unknown lithology. Three 

sandstones with apparently good reservoir potential occur at depths of 143-157.5 ft., 

227-241 ft., and 267-311 ft. respectively. The sandstone units at 143-157 .5 ft. and 

267-311 ft. are the better developed of the three sandstones. There are essentially 

three limestone units within the interval. These occur at 6-42 ft., 101.5-111.5 ft., 

and 322-327 ft. respectively. The first limestone unit is interrupted by a shale bed 

approximately 6 ft. thick. All three limestone units exhibit apparently good reservoir 

potential. The shales in the interval are considered relatively poor quality reservoir 

rocks. Three thin coals occur at 46 ft., 142 ft. and 224 ft. and a very thin coal marks 

the end of the test section. Finally, there are three oil shows which occur in the test 

interval. The first two oil shows occur in the first limestone unit at 6-42 ft. and the 

third oil show is in the sandstone unit at 143-157.5 ft. More specifically, the first oil 

show has 1.5 net feet of oil in the interval from 17.3-24.3 ft., the second oil show has 

4.0 net feet of oil in the interval from 34.3-38.3 ft. and the third oil show has 5.4 net 

feet of oil showing in the interval from 146.4-155.7. Of these oil shows, the latter two 

may be of slight economic importance. This core description information will be used to 

evaluate the geological nature of the borehole segments determined by the segmentation 

algorithm. This test interval was chosen from the original data base because it possesses 

a fairly comprehensive set of geological conditions. First, the test interval has a 
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relatively diverse lithology with four main lithological units: shale, sandstone, 

limestone and coal. Second, these lithological units occur as both thick well developed 

units and thin bed units. The thin beds encountered in the interval range from some 

relatively obscure sand/shale sequences to the very distinctive thin coal beds. Third, 

the test interval has both water bearing and hydrocarbon bearing zones. The most 

prominent water bearing zone occurs in the sandstone unit from 267-311 ft. and the 

hydrocarbon bearing zones are enumerated in the previous paragraph. 

3.2 Segmentation Algorithm Examples 

This section uses a series of four examples to demonstrate the performance of the 

borehole segmentation procedure on the test interval described in Section 3.1. In each 

example the physical significance of the segments is determined by comparing the 

borehole segmentation results with the core description information of the same 

interval. 

The examples presented in this section are taken from a multitude of examples 

which were run on the test interval. Steps 3 and 6 of the basic methodology listed in 

Section 3.0 were given special consideration in the development of a specific 

segmentation algorithm. 

Step 3 deals with the procedure used to scale the input logs. Data scaling is 

necessary on two counts. First, it is desired to account for the essential variability in 

the original log data and without some type of scaling process, those logs with the largest 

original variance would dominate the subsequent analysis. Without scaling, a log such as 

the bulk density log, which has a relatively small variance but is still very useful in 

porosity estimation and lithology determination, would not be properly accounted for in 

the determination of principal components. Second, if any type of metric is used as a 

measure of dissimilarity between log samples in the multidimensional data space, then it 

is necessary to have the respective axes, which form the data space, measured in similar 

units. The choice of a particular scaling method is important because data scaling affects 

the spatial distribution of the log data which in turn impacts the clustering performance 

of an FCM algorithm. Three different scaling methods were used on the wireline log data 

of the test interval. Two of these scaling methods are discussed in Section 2.2.2 and are 

referred to as scaling methods 2 and 3. The third scaling method consists of mapping the 

maximum log value within a given interval to plus one and the minimum log value to 

minus one and all other log values are scaled proportionately between the extreme values 
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of plus and minus one. Of these three scaling methods, the one described as method 3 in 

Section 2.2.2 is used exclusively in the first three examples of this section and a slight 

variation of this scaling method is used in the fourth example. This chosen scaling 

method changes the original input logs to zero mean signals and then scales the logs using 

the maximum excursion from the mean. The resulting signals are zero mean and bounded 

by plus and minus one. The decision was made to use this scaling method over the other 

two methods because the resulting borehole segments had a more consistent physical 

interpretation. It should be noted that this physical interpretation was made using core 

description information which is primarily mineralogical and litholo.gical in nature. In 

addition to the chosen scaling process, the analyst may choose to assign weights to the 

respective input logs depending upon the object of the analysis. However, this type of 

secondary weighting is not performed for the examples in this section. 

Step · 6 of the segmentation algorithm deals with the use of a particular FCM 

algorithm. The basic algorithm is outlined in Section 2.1.2 and requires a number of 

parameters to be set prior to application of the algorithm. Two FCM parameters of 

particular interest are the measure of dissimilarity, d, and the weighting exponent, m. 

The measure of dissimilarity directly affects the shape of the FCM clusters and the 

weighting exponent affects the amount of shared membership between fuzzy clusters. 

The Euclidean metric norm is used exclusively as a measure of dissimilarity in the four 

examples of this section. Another inner product norm, which sets the matrix A in 

Equation (12} equal to the covariance matrix of the principal components data, was 

investigated but this proved to be a very poor choice for the given application. Choosing 

an appropriate value for the weighting exponent was done empirically and a nominal 

value of m=1.5 is preferred for the log data in the test interval. Before proceeding with 

the segmentation examples, a brief overview of each example is given. 

Example 1 uses all six logs shown in Figure 1 O as inputs to the segmentation 

algorithm, varies c from 2 to 10 and uses the validity measures, F, G, and ~J to 

determine the value(s} of c which best ·fits the data. Example 2 removes the resistivity 

logs as inputs to the segmentation algorithm and uses the same clustering strategy as 

Example 1. Example 1 and Example 2 results are compared. Example 2 also 

demonstrates the impact of varying the weighing exponent, m, within the FCM algorithm. 

Example 3 uses a sequential clustering strategy. This strategy uses validity measures F 

and G to determine the number of clusters which best fits the data and then the FCM 

algorithm is applied to each of these clusters to further subdivide them. This sequential 

process is continued as long as there is evidence to warrant its continuation. Example 3 

results are contrasted with previous results. Finally, Example 4 is similar to Example 
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1 but modifies the scaling process to take the common logarithm of the resistivity logs 

prior to applying the linear scaling method used in the first three examples. This 

modification lessens the influence of the exceedingly large values that are sometimes 

encountered in the resistivity logs. 

3.2.1 Example #1 

The first example uses the six logs shown in Figure 1 O as inputs to the segmentation 

algorithm. These logs have been depth shifted and the log depths have been adjusted to 

match the core depths given in the Appendix. Each input log is scaled using the linear 

scaling procedure of Method 3 outlined in Section 2.2.2. The resulting scaled logs are 

zero mean with magnitude between plus and minus one. Principal components(PC) logs 

are calculated from the scaled wireline logs using Equation (28) and are displayed in 

Figure 11 along with the simplified core description in tracks #1 and #2. The KL T 

matrix in Equation (28) is derived from the covariance matrix of the scaled wireline 

logs as described in Section 2.2.1. First consider PC logs #1 and #2 since they account 

for the majority of variation in the original data and they provide a useful way to display 

clustering results. Inspection of the KL T matrix shows that PC log #1 is dominated by 

pc#1 
0.199 pc#2 
0.113 

pc#3 = 0.054 
pc#4 0.527 
pc#S 0.816 

pc#6 0.001 

0.851 

KLT 
Matrix 

-0.321 -0.057 
-0.419 -0.295 -0.310 
0.158 0.745 0.388 

-0.192 0.265 -0.121 
-0.036 -0.102 0.110 

0.360 0.007 
0.628 -0.484 
0.332 -0.396 
0.367 0.682 

-0.433 -0.349 
0.191 0.418 -0.850 -0.210 -0.148 

gr 
Sp 
sn ( 2 8) 
ild 
nphi 
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the SP log and PC log #2 is mainly dependent on the NPHI, RHOB and SP logs. At this 

point the analyst may wish to go back and reweight the original input logs if it seems the 

first few PC logs are unduly influenced by particular input logs. Adjusting the weights 

of the input logs is a subjective modification and is not performed in this or any 

subsequent examples in this chapter. 
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Before applying the segmentation algorithm to the PC log data it will be beneficial to 

view the core description information in the two dimensional PC space created by PC logs 

#1 and #2 as shown in Figure 12. Notice a general clustering of the respective 

lithology types regardless of where they occur in the borehole. The coal samples tend to 

cluster in the upper right hand corner of Figure 12 while the shale samples are 

concentrated in the right center portion of the display. The sandstone samples have 

significant variation along the first PC axis ranging from middle center to the upper left 

hand portion of Figure 12 and finally, there are two visually distinct groupings of 

limestone samples at the left center and lower center portions of the figure. Those 

samples where oil shows are present are circled in Figure 12. It is informative to 

consider each lithology type in more detail. 

The shale samples from Figure 12 are shown separately in Figures 13(a) and 

13(b). The display in Figure 13(a) helps establish the exact boundary of the shale 

samples since there is considerable overlap between the shale and sandstone samples in 

Figure 12. The display scale is expanded and the shale samples are shown in more detail 

in Figure 13(b ). The numbers in Figure 13(b) correspond the the identifying numbers 

given to each shale segment described in the Appendix. Most of the numbers are 

obscured due to the high concentration of samples in the center of Figure 13(b) but it is 

interesting to note the character of some of the outlying shale samples. For example, the 

samples from the top portion of shale segment #11 and the samples from the top portion 

of shale segment #16 separate out just to the left of the main concentration of points in 

the center of Figure 13(b). Shale segment #11 is part of a sandstone to shale transition 

and is described as dark gray and interlaminated with a very minor amount of ripple 

laminated light gray, micaceous sandstone. Shale segment #16 is also part of a 

sandstone to shale transition and is described as approximately 50% sandstone at the top 

grading downward to 100% shale at the bottom. In contrast to the sand/shale transitions 

are the black, organic rich shale segments which also tend to separate out from the main 

cluster of shale samples. Included in this group are shale segments: #1, #2, #7, #21 

and #28. Other outlying shale segments include segments #18 and #19 which are dark . 

gray to black carbonaceous shales. It is also of interest to note the character of the shale 

samples which adjoin the coal samples shown in Figure 12. These shale samples are 

shown at the very top of Figure 13(b) and come from shale segments #1, #23, #24 and 

#25. The attribute common to these shale samples is that one or both of the porosity 

logs(NPHI and RHOS) in Figure 10 indicate a very high porosity. Shale segment #1 is 

described as a black, organic rich shale, shale segments #23 and #25 are black 
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fossiliferous shales and segment #24 is a gray to green, calcareous shale with high clay 

content. 

At the other extreme are the shale samples from segment #4 and the first part of 

segment #5 shown in the lower left hand corner of Figure 13(b). The distinguishing 

characteristics for these shale samples are a relatively low porosity as indicated by the 

NPHI and RHOB logs as well as an uncharacteristicly high resistivity reading. It is 

possible that the information on the core and log is slightly off depth at this point since 

the log signature at 51.5-53.5 ft. is characteristic of a thin limestone and this interval 

is adjacent to a segment where the core was missing. Shale segment #4 is described as a 

gray, very calcareous, fossiliferous, arenaceous, pyritic shale and segment # 5 is a 

gray, pyritic shale that is arenaceous in the top one ft. In general, the distribution of 

the shale samples as viewed in the two dimensional PC space of Figure 13 is a function of 

permeability and porosity. Recall that the first PC log is dominated by the SP log which 

gives a relative indication of permeability and the second PC log in most heavily 

dependent on the porosity logs as well as the SP log. 

In a mariner similar to the shale samples, the sandstone samples of Figure 12 are 

separated out and displayed in Figures 14(a) and 14(b). As in Figure 12 all circled 

samples indicate the presence of hydrocarbons. There are two main groupings of 

sandstone samples. The first grouping is in the upper left hand corner of Figure 14(b) 

and corresponds to sandstone segment #18 which is a well developed water-bearing 

sandstone unit between 267-311 ft. The second grouping is in the right center portion 

of Figure 14(b) and represents several sandstone segments all of which contain varying 

amounts of shale or clay and are not as well developed as sandstone unit #18. For 

example, sandstone segment #14 is described as a light gray, coarse grained sandstone 

interbedded with dark gray shale and the sandstone content is estimated at over 75% at 

the top and grading gradually downward to approximately 50% at the bottom. Sandstone 

segments #8-#12 represent a hydrocarbon bearing sandstone unit between 146-157 

ft. and these samples are sparsely distributed to the left of the second main grouping of 

sandstone samples. The samples from segments #8-#12 are described as having 

abundant shale partings or interlaminated with dark gray shale but generally speaking 

the sandstone content exceeds 70% through this interval. The samples from sandstone 

segment #19 separate out from the rest of the samples due to their particularly low SP 

values. This is seen in Figure 1 O between 334-340 ft. Finally the two stray samples 

in the upper right portion of Figure 14(b) tend to separate out due to the influence of 

nearby coal beds. 
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Figure 15 shows both the limestone and coal samples from Figure 12. The coal 

samples from three thin coal beds all cluster in the upper right hand corner of Figure 

1 S(b). The thin coals are characterized by a very distinctive spike on the porosity logs 

as seen in Figure 10. The limestone samples cluster in two, rather sparse, clusters in 

the lower left hand portion of Figure 15(a). The limestone samples are described as five 

separate segments in the detailed description in the Appendix and are shown in Figure 

15(b). Limestone segments #1 and #2 come from what was described in Section 3.1 as 

a single limestone unit between 6-42 ft. which is interrupted by a shale bed. Limestone 

segment #2 is interbedded with dark gray shale and clusters just to the right of the 

majority of segment #1 samples. Limestone segments #3 and #4 comprise the 

limestone unit between 101.5-111.5 ft. and limestone segment # 5 is the limestone 

unit between 322-327 ft. All five limestone segments are described as argillaceous and 

segments #3 and #4 are described as very argillaceous. The circled samples from 

segments #1 and #2 indicate oil shows and denote one obvious difference between the 

samples in segments #1 and #2 and the samples in segments #3, #4 and #5. Another 

difference between the two limestone groupings is that segments #3, #4 and #5 contain 

fossils. As with the other lithology types, most of the variation for the limestone 

samples along the first PC axis can be accounted for by observing the relative magnitude 

of the SP log opposite the respective limestone segments in Figure 1 o. 
The somewhat detailed description of the test interval given in the preceding 

paragraphs and in Figures 13, 14 and 15 will prove to be a valuable tool in a visual 

evaluation of the clusters determined by the segmentation algorithm. The remainder of 

Example #1 will apply the basic segmentation algorithm described in Section 3.0 to the 

log data and relate the resulting segments back to the available core information. 

Example #1 continues with step 6 of the the methodology listed in Section 3.0. The 

PC log data is clustered using an FCM algorithm. The Euclidean norm is used exclusively 

in this and subsequent examples since there is no apparent reason for using a different 

inner product norm. Other algorithmic parameters for the FCM algorithm are set as 

follows: c is allowed to vary from 2 to 10, m is set to a nominal value of 1 .5 and £ = 
0.01. The FCM algorithm is initiated by selecting c equally spaced points along each of 

the PC axes for the initial cluster centers and proceeding iteratively starting at step 3 of 

the FCM algorithm described in Section 2.1.2. The dimensionality of the clustering 

problem is varied from six to three to two in an effort to determine the differences in 

clustering performance using all six PC logs, the first three PC logs and the first two PC 

logs. 
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Table VII shows the FCM cluster validity measures for the six dimensional, three 

dimensional and two dimensional clustering cases. These validity measures are discussed 

at the end of Section 2.1.2 and interpretation of the validity measures is not always clear 

cut as was illustrated in the examples of Chapter II. Recall that cluster validity 

measure, F, indicates the amount of unshared membership between fuzzy clusters and 

larger F values indicate better structure in the data. The separation coefficient, G, is an 

indication of the spatial separation of the maximum membership hard clusters derived 

using Definition 3 and a fuzzy partition of the data. The values of G in Table VII indicate 

the worst case separation between a pair of hard clusters and large values of G indicate 

better spatial separation. The objective function coefficient, L\J, is a measure of how 

close the fuzzy partition is to the maximum membership hard partition in terms of 

within-group-sum-of-square-error and small values of ~J indicate better structure in 

the data. For this example, the 'best' value of c is determined by looking for some type of 

consensus among the three validity indicators. 

In Table VII, maximum F and maximum Gare achieved when c=2 for all three cases. 

However, minimum ~J is achieved when c = 10 in the six and three dimensional cases 

and when c=9 in the two dimensional case. It should be pointed out that 1 O was judged to 

be an appropriate terminal value for c based upon the difference between successive 
values of the objective function, Jm. The FCM algorithm attempts to minimize Jm and 

when the objective function is not reduced significantly by incrementing c, then there is 

little reason to continue the process. Clearly, 2 is a reasonable choice for c based upon 

the validity measures F and G and Example #3 in this section pursues a sequential 

clustering procedure which applies the FCM clustering algorithm to each of the two 

clusters separately. The present example is concerned with trying to pick an 

appropriate value of c based upon the validity measures shown in Table VII and for the 

moment c=2 is excluded. 

Now consider the validity measures of Table VII. One guideline used in the 

interpretation of the validity measures is to look for values of c where the partition 

coefficient, F, goes contrary to its decreasing tendency and increases or decreases only 

slightly from the F value for the previous value of c. The F values for C=3, 4 and 5 in 

Table Vll(a) are all of comparable magnitude but c=5 is judged to be the better choice 

for c based upon the values of G and L\J. In a similar fashion, 7 and 10 are possible 

choices for c, but G indicates there is poorer spatial separation among the maximum 

membership clusters for these values of c and this fact detracts from choosing C= 7 or 

c=10. Interpretation of the validity measures in Table Vll(b) indicates that 4, 7 and 10 

are reasonable choices for c but, here again, spatial separation among the clusters 
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TABLE VII. 

FCM VALIDITY MEASURES FOR TEST WELL 
DATA: WITH EUCLIDEAN NORM,. 

e = 0.01 AND m =1.5 

c F G AJ 
2 0.942 -1.652 7.751 
3 0.858 -4.285 9.998 
4 0.849 -2.697 7.946 
5 0.842 -2.581 7.214 
6 0.816 -3.255 8.118 
7 0.822 -3.802 6.812 
8 0.771 -5.231 7.339 
9 0.759 -6.399 6.246 
10 0.772 -5.870 5.223 

(a) Six Dimensional PC Space 

c F G AJ 
2 0.947 -1.533 6.640 
3 0.873 -3.934 7.507 
4 0.883 -2.189 5.385 
5 0.865 -2.553 4.930 
6 0.824 -2.506 4.804 
7 0.850 -3.008 4.327 
8 0.840 -3.391 3.780 
9 0.798 -4.586 3.369 
10 0.817 -4.114 3.159 

(b) Three Dimensional PC Space 

c F G AJ 
2 0.953 -1.045 4.975 
3 0.902 -1.915 4.467 
4 0.868 -2.548 4.571 
5 0.870 -1.721 3.729 
6 0.865 -2.626 2.886 
7 0.862 -2.609 2.528 
8 0.871 -2.100 1.664 
9 0.870 -1.611 1.422 
10 0.824 -3.325 1.529 

(c) Two Dimensional PC Space 
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deteriorates for the higher values of c. Unlike the six and three dimensional clustering 

cases, there is better agreement among the validity measures for the two dimensional 

case. The validity measures for the two dimensional case are shown in Table Vll(c) and 

9 is judged to be the best value for c. When C=9, llJ is minimum, G is 

maximum( excluding C=2) and F indicates relatively good structure exists in the fuzzy 

partition of the log data. In the present example the best data structure seems to exist 

for the two dimensional case and C=9. 

Figure 16 compares the FCM maximum membership clusters for the two 

dimensional case and C=9 with the simplified core description information from Figure 

12. The information in Figure 16 is displayed in the two dimensional space formed by 

PC logs #1 and #2. Figures 13, 14 and 15 aid in making the following general 

correspondence between the FCM clusters and the core description information. The 

FQM Qlyst1r # !211~ri121i2n 

1 coal/shale 

2,3 shale 

4 shaley sandstone 

5,9 limestone 

6 limestone/sandstone/oil shows 

7,8 sandstone 

same FCM cluster information and core information is shown in Figure 17 along with the 

original wireline logs. The core information is shown in track #1 of Figure 17 and the 

FCM cluster information is shown in track #2. There are 22 samples in FCM cluster 

#1, 8 coal samples, 12 shale samples and 2 samples which were undefined by the core 

description information. It is disappointing that the coal samples are not more distinct 

in the clustering process since they have such a distinctive signature on the porosity 

logs but, as will be seen, this result occurs consistently in subsequent examples. It is 

observed in Figure 17 at 5-7 ft. and again at 328-332 ft. that the shale samples 

included in cluster #1 also have a relatively high porosity indicated on the porosity logs. 

FCM clusters #2 and #3 do a reasonable job of encompassing the remainder of the shale 

samples. One notable exception occurs at 334-340 ft. where a sandstone segment is 

included with the samples in cluster #3. FCM cluster #4 corresponds mainly to the 

sandstone segments which are argillaceous or interbedded with shale. There are also 

several very thin segments labelled 4 in track #2 of Figure 17 that occur in transition 
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regions between limestone and shale segments. FCM cluster #5 includes the limestone 

units at 101.5-111.5 ft. and 322-327 ft. as well as a small segment at 51.5-53.5 ft. 

which is described as a shale in the core information but has an uncharacteristic log 

signature for a shale. FCM cluster #6 has both limestone and sandstone samples. The 

majority of the samples from the limestone unit at 8-28 ft. are included In FCM cluster 

#9 but cluster #6 has those samples which correspond to the . transition between the 

overlying and underlying shales. FCM cluster #6 includes all the samples from the 

limestone unit at 33-42 ft. as well as the majority of the samples from the hydrocarbon 

bearing sandstone at 146-156 ft. This particular cluster is not as distinctive In terms 

of lltholc?gy as the other FCM clusters and illustrates how different lithologic units can 

have similar log signatures. The common characteristics of the limestone at 33-42 ft. 

and the sandstone at 146-156 ft. are shaliness and significant hydrocarbon content. 

Finally, FCM clusters #7 and #8 correspond to the water bearing sandstone unit at 

267-311 ft. To facilitate the comparison between the FCM clusters and the core 

information, certain FCM clusters are consolidated using the same general 

correspondence noted earlier on page 75. Figure 18 displays this simplified description 

of the FCM clustering results in track #2 along with the core information in Track #1. 

Nll!'l Qlu111c # FQM Qlu111c t P11cclpllon 

1 1 coal/shale 

2 2,3 shale 

3 4 shaley sandstone 

4 5,9 limestone 

5 6 limestone/sandstone/oil shows 

6 7,8 sandstone 

Displays similar to Figure 18 will be used in subsequent examples to provide a basis of 

comparison for different clustering results. 

The physical interpretation of the FCM clustering results is most consistent for the 

two dimensional case displayed in Figures 16 and 17 but, to complete this example, let's 

consider the six and three dimensional clustering results. There is no clearly best 

choice for c in either the six or three dimensional case but, c=7 and C=10 are viewed as 

reasonable choices for both cases and are considered here. Figures 19 and 20 show the 

FCM clusters, when C=7 and c=10, for the six and three dimensional cases respectively. 

The FCM clusters in Figure 19(a) may be evaluated visually using the core information 

which is displayed in Figures 12, 13, 14 and 15. Cluster #1 contains all the coal 
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samples plus a significant number of shale samples and cluster #1 does little, if any, 

better at isolating the coal samples than the two dimensional clustering results shown in 

Figure 16. Clusters #2 and #3 correspond primarily to some type of shale 

environment. Cluster #4 is very diverse and includes limestone, shaley sandstone and 

some relatively clean sandstone samples. Cluster #5 is also very diverse and contains 

limestone samples from three different limestone units as well as the majority of 

samples from a hydrocarbon bearing sandstone unit. Cluster #6 corresponds mainly to 

a relatively clean water bearing sandstone at 267-311 ft. and cluster #7 contains the 

majority of samples from the limestone unit at 8-28 ft. The physical meaning of the 

clusters in Figure 19(a) is not as straightforward as that of the clusters in Figure 

16(a) due mainly to the diverse nature of clusters #4 and #5 in Figure 19(a). The 

FCM clustering results for the six dimensional case and C=1 O are displayed in Figure 

19(b). A visual inspection of Figures 19( a) and 19(b) indicates that the three 

additional clusters in Figure 19(b) are essentially the result of the FCM algorithm 

splitting clusters #2, #4 and #5 in Figure 19(a). The evaluation of the clusters in 

Figure 19(b) suffers from the same problem as the clusters in Figure 19(a) due to the 

diverse nature of clusters #6 and #8 in Figure 19(b). 

It suffices to say that an explanation similar to the one for Figure 19 may also be 

given for the FCM clusters displayed for the three dimensional case in Figure 20. The 

clustering results for the three dimensional case have an obvious similarity to the six 

dimensional clustering results. The most notable difference is the grouping of the coal 

and shale samples located in the upper right and right center portions of Figure 20. 

In summary, it should be pointed out that merely because good structure was not 

found in the six and three dimensional cases does not imply that none exists but, merely 

that none was found by the chosen algorithm. The fact that the best correspondence 

between core information and segmentation results occurs for the two dimensional case 

is not that surprising since PC logs #1 and #2 are primarily dependent on the SP, NPHI 

and RHOB logs, all of which are good lithology indicators. However, it is interesting that 

the ability of the FCM algorithm to find good structure in the data, as measured by the 

cluster validity measures, deteriorates with the inclusion of additional PC logs. 

Inspection of the KL T matrix in Equation (28) shows that PC log #3 is primarily a 

function of the resistivity and porosity logs with the largest dependence being on the SN 

log. Is it possible that the inclusion of PC log #3 tends to degrade the structure of the 

data set due to the influence of the resistivity logs? · Example #2 tests this idea by 

excluding the resistivity logs as inputs to the segmentation algorithm. 
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3.2.2 Example #2 

The procedure for Example #2 is identical to the procedure of Example #1 using 

the GR, SP, NPHI and RHOB logs shown in Figure 10 as inputs to the segmentation 

algorithm. The scaled input logs are transformed into PC logs according to Equation 

(29). Examination of the KLT matrix shows that the SP and NPHI logs are the main 

contributors to the first two PC logs. In this example, the FCM algorithm is applied to 

KLT Matrix 

pc #1 0.206 0.909 0.361 0.018 gr 
pc#2 0.149 -0.319 0.745 -0.567 sp 
pc#3 0.521 -0.268 0.341 0.735 nphi ( 2 9) 

= 
pc#4 0.815 -.0002 -0.445 -0.371 rhob 

two different cases. The first case applies the clustering algorithm to the four 

dimensional PC log data formed using all four PC logs and the second case applies the FCM 

algorithm to the two dimensional PC log data formed from PC logs #1 and #2. The 

dimensionality of the clustering problem is varied from four to two in an effort to 

determine how the detected data structure is altered by the higher numbered PC logs. 

Table VIII shows the FCM validity measures for the four and two dimensional clustering 

cases. As with Example #1, consideration of 2 as a reasonable choice for c is deferred 

until Example #3. The interpretation of the validity measures in Table VIII is fairly 

straightforward with C=4 and 8, and C=4, 7 and 9 being the best choices for the four and 

two dimensional cases respectively. The ensuing discussion will consider C=8 for the 

four dimensional case and c=7 and c=9 for the two dimensional case. 

Figure 21 displays the FCM clusters for the four dimensional case and C=8 along 

side the core description information. Even though the clustering is done in four 

dimensions, it is beneficial to display the clusters in the two dimensional space formed 

by PC logs #1 and #2. Notice how the spatial distribution of the log data in the two 

dimensional PC space has been altered by the elimination of the resistivity logs from the 

inputs to the segmentation algorithm. A comparison of Figure 21 (b) with Figure 12 

indicates the most notable change is with respect to the limestone samples (denoted by 

#3), which have a more distinctive resistivity log signature than the other lithologic 

groups. The circled samples in Figure 21 (b) indicate the oil shows. The cluster 



TABLE VIII. 

FCM VALIDITY MEASURES FOR EXAMPLE #2: WITH 
EUCLIDEAN NORM,E = 0.01 AND m =1.5 

c F G .1J 

2 0.947 -1.021 4.766 
3 0.854 -2.700 5.850 
4 0.858 -1.701 4.771 
5 0.835 -3.594 5.114 
6 0.827 -3.509 4.758 
7 0.830 -3.484 4.072 
8 0.830 -3.013 3.260 
9 0.802 -4.705 3.365 
10 0.786 -4.956 3.192 

(a) Four Dimensional PC Space 

c F G .1J 

2 0.952 -0.918 3.841 
3 0.893 -2.141 3.749 
4 0.880 -1.325 3.058 
5 0.853 -1.926 3.137 
6 0.854 -1.673 2.443 
7 0.859 -1.947 1.946 
8 0.817 -2.683 2.018 
9 0.845 -1.961 1.480 
10 0.816 -3.109 1.601 

(b) Two Dimensional PC Space 
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information of Figure 21 is displayed along with the original input logs in Figure 22. 

Certain general observations can be made by examining the cluster information in 

Figure 21 and more detailed observations are possible by using the information in 

Figure 22. If even more detailed information is desired, then the core description 

information in the Appendix may be consulted. For example, Figure 21 shows that FCM 

cluster #1 includes all the coal samples as well as a significant number of shale 

samples. The segments labeled '1' in track #2 of Figure 22 (which correspond to FCM 

cluster #1) have a definite correspondence with the coal segments shown in track #1. 

The only exception to this relationship occurs between 328-332 ft. where a shale 

segment with very low bulk density(RHOB) is included in FCM cluster #1. From an 

algorithmic point of view, inclusion of these shale samples in FCM cluster #1 is 

reasonable. The detailed core description given in the Appendix indicates that two thin 

marine shales separated by a nonmarine shale occur in the interval 328-332 ft. This 

result for FCM cluster #1 is a slight improvement over a similar result from Example 

1, displayed in Figure 17, where part of another shale segment at 5-7 ft. is also 

included in the FCM cluster containing all the coal samples. 

In a similar fashion, the other FCM clusters for the four dimensional case may be 

evaluated with respect to the core description information. This evaluation process is 

summarized by the following description. 

EQM Qh.Uil!U 

1 

2,3,4 

5 

6,7 

8 

i#: PescrlpUon 

coal 

shale 

shaley sandstone 

limestone 

sandstone 

A few observations before considering the borehole segmentation for the two dimensional 

case. FCM cluster #2 shown in Figure 21 (a) corresponds to segments labeled '2' at 5 

ft., 32 ft., and 113 ft. in Figure 22, track #2. Cluster #2 is of interest since a similar 

cluster does not exist for the two dimensional segmentation results. According to the 

core description, the segments labeled '2' correspond to shale intervals and these 

segments are characterized by relatively low indicated porosity on the NPHI and RHOB 

logs and relatively high GR readings. The point of this observation is that physically 

discriminating information is sometimes carried by the higher numbered PC logs. 

Clusters #3 and #4 correspond principally to shale environments with the members of 
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cluster #4 generally being more sandy than the members of Cluster #3. There is a 

general correspondence between cluster #5 and a shaley sandstone environment. 

Clusters #6 and #7 do a good job of encompassing the respective limestone samples but 

also includes part of the hydrocarbon bearing sandstone unit at approximately 150 ft. 

Finally, cluster #8 corresponds to the well developed sandstone unit between 267-311 

ft. The borehole segments determined for the four dimensional case have a reasonable 

physical interpretation 

Example 2 continues by considering the borehole segmentation for the two 

dimensional case using PC logs #1 and #2. Figures 23(a) and 23(b) show the FCM 

clusters for the two dimensional case when C=7 and C=9 respectively. Visual inspection 

of the FCM clusters in Figure 23(a) and Figure 21 (a) reveals an obvious simllarity 

between the respective clusters. The most obvious difference involves the structure of 

the clusters in the upper right hand portion of the two figures. ·If in Figure 21(a), the 

members of cluster #2 are divided between clusters #1 and #3 then the resulting data 

structure would be nearly identical to the data structure shown in Figure 23(a). To 

facilitate the comparison between the respective FCM clusters the following definitions 

are made. 

Figure 21(a) Figure 23(a) 

filW ~!u111r I. Cluster ,_ Cluster tl. DescriRtlQn 

1 1 1 coal 

2 2,3,4 2,3 shale 

3 5 4 shaley sandstone 

4 6,7 5,6 limestone 

5 8 7 sandstone 

The new cluster numbers shown above are used in Figure 24 to compare similar 

borehole segments for the four dimensional case with C=8 (track #1) and the two 

dimensional case with C=7 (track #2). The borehole segmentation shown in Figure 24 

is nearly identical for the two cases with the exception of segment #1. Segment #1 in 

track #1 of Figure 24 includes fewer shale samples than segment #1 in track #2 and 

this difference gives the four dimensional segmentation results a slightly more 

consistent physical interpretation than the two dimensional results. The largest single 

inconsistency in the physical interpretation of the segmentation results shown in Figure 

24 occurs for the hydrocarbon bearing sandstone unit at approximately 150 ft. In both 

cases, this sandstone unit is grouped with the limestone samples. From an algorithmic 
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point of view, there is an element of consistency in the Figure 24 segmentation results 

which was lacking in Example 1. 

Example 2 continues by considering the segmentation algorithm output for the two 

dimensional case and c=9 (Figure 23(b)). In a manner similar to that used for the 

comparison shown in Figure 24, the borehole segments derived for the two dimensional 

case and C=9 are contrasted to the segmentation results of Example 1 shown in track #2 

of Figure 18. The following descriptions are consistent with those used in Example 1 . 

Figure 23(b) 

~llt!l ~h.11t1c # ~l!.1111[ ti. DuualRU~Ul 

1 1 coal/shale 

2 2,3,4 shale 

3 5 shaley sandstone 

4 6,8 limestone 

5 7 limestone/sandstone/oil 

6 9 sandstone 

Tracks #1 and #2 of Figure 25 display the borehole segmentation results from Example 

1 and Example 2 respectively. Both results were obtained from the two dimensional case 

and C=9. In both cases, the detected data structure is very similar and lends itself to a 

reasonably consistent interpretation. The main inconsistencies for the segmentation 

results shown in Figure 25 involve segments labeled '1' and '5'. Segments labeled '1' 

include both coal and shale intervals and segments labeled '5' include hydrocarbon 

bearing limestone and sandstone intervals. Even though the segmentation results shown 

in tracks #1 and #2 of Figure 25 are very similar, the results from Example 1 are 

preferred over the borehole segmentation shown in track #2 due to the 'cleaner' 

transitions from one segment to the next segment. A good example of this 'cleaner' 

transition is the shale-sandstone-shale transition that occurs between 250-320 ft. in 

Figure 25. 

All the results displayed in Examples 1 and 2 have used a value of m=1.5 for the 

weighting exponent in the FCM clustering algorithm. Example #2 concludes with a brief 

illustration of why m=1.5 is preferred over values such as m=1.25 or m=2.0 for the 

given test data. 

For illustration purposes, let's consider the four dimensional clustering results 

shown in Figure 21 (a). The FCM clusters shown in Figures 26(a) and 26(b) were 
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obtained using exactly the same FCM parameters as the FCM clusters shown in Figure 

21 (a) except m=1.25 for Figure 26(a) and m=2.00 for Figure 26(b). The guideline 

used for choosing an appropriate value for the weighting exponent, m, was stated in 

Section 2.1.3. It is desirable to pick m large enough so that if the resulting FCM solution 

is relatively 'hard' then this is a good indication of substructure in the data. Choosing m 

too small results in solutions which are artificially hard, while choosing m too large 

essentially insures that the FCM solution will not have good structure as measured by 

the cluster validity measures. With this thought in mind, let's examine the the FCM 

clusters in Figures 26(a), 21 (a) and 26(b) which represent weighting exponent values 

of 1.25, 1.50 and 2.00 respectively. A visual inspection of _Figures 26(a) and 21 (a) 

indicates that the maximum membership clusters for m=1.25 and m=1.5 appear to be 

identical. However, a similar comparison between Figures 21(a) and 26(a) shows a 

significant difference between the maximum membership clusters for m=1.5 and 

m=2.0. The samples comprising FCM cluster #2 in Figure 21 (a) do not form a separate 

and distinct group for the case of m=2.00 in Figure 26(b). For larger m values there is 

a tendency for clusters with small populations to be grouped with other samples to form 

larger clusters. This is viewed as an undesirable tendency since important geological 

information might be obscured by this 'lumping' of clusters. Therefore, m=1.5 is 

preferred over m=1.25 or m=2.0 since a value of 1.5 seems to strike a balance between 

solutions which might appear artificially 'hard' in nature and solutions which can 

obscure potentially valuable information contained in relatively small populations. 

In summary of Example 2, there exists a reasonable physical interpretation for the 

segmentation results in both the four and two dimensional cases. This type of consistent 

physical interpretation was lacking in Example 1 where only the two dimensional 

results yielded a reasonable physical interpretation. This fact supports the idea that 

undue emphasis on the resistivity logs tends to degrade the ability of the segmentation 

algorithm to detect data structure with a reasonable physical interpretation. There is a 

definite relationship between the four dimensional segmentation results for C=8 and the 

two dimensional segmentation results for C=7 with the four dimensional results yielding 

a slightly more consistent physical interpretation. Additionally, there is a good 

correspondence between the two dimensional results for C=9 in Example 1 and the two 

dimensional results for c=9 in Example 2. In this comparison, the Example 1 

segmentation results are preferred because of the 'cleaner' transitions from one segment 

to the next segment. Example 2 concluded with an illustration motivating the use of 

m=1.5 as a nominal value for the weighting exponent in the FCM clustering algorithm. 
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3.2.3 Example #3 

This example applies a sequential clustering strategy to the two dimensional 

principal components data of Example 1. The sequential clustering strategy takes 

advantage of the fact that the validity indicators, F and G, in Table VII indicated 2 as a 

good choice for c in all three cases and specifically for the two dimensional case in Table 

Vll(c). A similar statement can be made for Example 2 but only the data from Example 1 

will be used to illustrate the sequential clustering strategy. 

Figure 27 shows the maximum membership clusters for the two dimensional PC log 

data of Example 1 and C=2. The sequential approach applies the FCM algorithm to each of 

the two clusters shown in Figure 27. All FCM parameters are identical to those used in 

Example 1. Table IX(a) shows the FCM validity measures when the FCM algorithm is 

applied to cluster #1 in Figure 27. When C=5, F and G are maximum and ~J is near its 

minimum value. Clearly, 5 seems to be the best choice for c and the corresponding FCM 

maximum membership clusters are shown in Figure 28(b). Similarly, the FCM 

algorithm is applied to cluster #2 in Figure 27. Table IX(b) displays the validity 

measures as c is varied from 2 to 8. A value of 5 is judged to be the best choice for c. At 

c=5, Fis near its maximum, G is maximum and ~J is near its minimum. Figure 28(a) 

displays the FCM clusters for c=5. 

At this point a decision is made not to further subdivide any of the clusters shown in 

Figures 28(a) or 28(b). This decision is based on the relatively good agreement among 

the validity measures and the fact that the performance of the FCM algorithm 

deteriorates for small populations. The FCM algorithm does continue to converge 

properly for small populations but, the performance deteriorates in the sense that there 

tends to be no clear interpretation for the cluster validity measures. 

The Figure 28 clusters are renumbered and merged into a single display shown in 

Figure 29. Although it is not necessary, cluster #1 in Figure 28(a) is lumped with 

cluster #5 in Figure 28(b) to form cluster #5 in Figure 29. Such manual lumping of 

clusters is undesirable but this is done, in part, to. allow an equitable comparison of the 

sequential clustering results with the results of Example 1 . There is an obvious 

similarity between the Figure 29 clusters and the Example 1 clusters shown in Figure 

16. A more detailed comparison of results is possible in Figure 30 where the Example 1 

segments are displayed in track #1 and the Example 3 segments are shown in track #2. 

The description used for the clusters in Example 1 is duplicated here. In this specific 

case, the segmentation results using different clustering strategies are essentially the 
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TABLE IX. 

FCM VALIDITY MEASURES FOR EXAMPLE #3, 
SEQUENTIAL CWSTERING STRATEGY FOR 

CLUSTER #1 AND CLUSTER #2 
IN FIGURE 27 

c F G .6.J 
2 0.869 -3.233 1.905 
3 0.868 .... 2.260 1.786 
4 0.855 -2.210 1.497 
5 0.871 -2.137 0.912 
6 0.816 -2.927 0.994 
7 0.812 -2.984 0.919 
8 0.790 -2.816 9.811 

(a) Cluster #1 

c F G .6.J 
2 0.912 -0.883 0.891 
3 0.932 -0.692 0.596 
4 0.934 -0.301 0.330 
5 0.927 -0.213 0.225 
6 0.916 -0.710 0.249 
7 0.917 -0.765 0.220 
8 0.895 -1.069 0.229 

(b) Cluster #2 
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ECM Clu1l1c # De1crlpUon 

1 coal/shale 

2,3 shale 

4 shaley sandstone 

5,9 limestone 

6 limestone/sandstone/oil shows 

7,8 sandstone 

same. This observation supports the contention that the discovered data structure occurs 

naturally, and the structure is not imposed by a particular process. Similar results 

were obtained when the sequential clustering strategy was used on the four dimensional 

PC log data of Example 2. 

It should be noted that a variation of the sequential clustering strategy was applied 

to the log data of the test interval. The sequential clustering strategy as it has been 

applied consists essentially of looping back to step 6 from step 7 of the basic 

methodology given in Section 3.0. The variation consists of looping back to step 3 from 

step 7. For example, the original log values for cluster #1 in Figure 27 were scaled and 

transformed using the KL T to generate a new set of PC log values specific to cluster #1. 

This new PC log data was clustered and evaluated using the cluster validity measures. Of 

course this same process was applied to cluster #2. This variation of the sequential 

strategy yielded a much poorer physical interpretation for the resulting borehole 

segments. 

3.2.4 Example #4 

The last example of this section uses the six logs in Figure 1 O as inputs to the 

segmentation algorithm. These same inputs were used in Example 1. Step 3 of the basic 

methodology used in Example 1 is modified to take the common logarithm of the 

resistivity logs prior to the linear scaling process. Taking the common logarithm of the 

resistivity logs lessens the influence that very large resistivity values have on the 

linear scaling process. After taking the logarithm of the resistivity logs, all six logs are 

scaled using the same linear scaling process of Example 1 and PC logs are calculated 

according to Equation (30). One result of this modified scaling process is to increase the 
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KLT 
Matrix 

pc#1 
0.174 0.718 -0.578 -0.120 0.325 0.003 

gr 
pc#2 

0.036 -0.522 -0.303 -0.646 0.362 -0.294 
sp 

pc#3 = 0.142 0.115 0.468 0.284 0.611 -0.541 sn ( 3 0) 
pc#4 0.585 -0.141 0.218 -0.067 0.354 0.678 ild 
pc#5 0.772 -0.103 -0.173 0.140 -0.438 -0.390 nphi 
pc#6 0.096 0.409 0.527 -0.681 -0.270 -0.094 rhob 

weight which the resistivity logs have in the calculation of the principal components 

logs. This is evidenced by a comparison of the coefficients in the KL T matrices of 

Equations (28) and (30) for the resistivity values. For the first principal component, 

this comparison shows an increase in magnitude from 0.321 to 0.578 for the SN 

coefficient and an increase in magnitude from 0.057 to 0.120 for the ILD coefficient. 

The remaining coefficients for the first principal component show a decrease in 

magnitude. A similar comparison for the second principal component shows a significant 

increase in the magnitude of the ILD coefficient and a significant decrease for the NPHI 

coefficient. The PC logs for Example 4 are shown in Figure 31 along with the simplified 

core description information in trac~s #1 and #2. One very noticeable difference 

between the PC logs for Example 4 and those of Example 1 (Figure 11) is the prominent 

peaks in PC log #3 in Figure 31 which correspond to the coal intervals within the 

borehole. Similar peaks occur in PC log #2 in Example 1. A result of the increased 

weighting of the resistivity logs is poorer spatial separation of the coal samples from 

neighboring samples as displayed in Figure 32. Figures 32( a) and 32(b) display a 

crossplot of the core information using PC logs #1 and #2 in Figure 3( a) and PC logs 

#1 and #3 in Figure 32(b). Recall the definitions used in Figure 32 are: 0-undefined, 

1-shale, 2-sandstone, 3-limestone and 4-coal. Notice that the coal samples are 

completely obscured in Figure 32(a) but do separate out in Figure 32(b). In Example 

1, the separation of the respective lithologic groups was evident using only PC logs #1 

and #2. 

Even though there is little evidence to suggest that the segmentation results using 

the PC log data of Example 4 would have a better physical interpretation than results of 

previous examples, the segmentation algorithm is applied to the six and three 

dimensional PC log data of Example 4. All FCM parameters are set identically to those in 
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Example 1. The two dimensional case was not considered since Figure 32(a) suggests 

that the coal samples would be indistinguishable from the surrounding shale samples. 

Tables X(a) and X(b) show the cluster validity measures for the six and three 

dimensional clustering results respectively. There is a basic problem interpreting the 

validity measures in Table X in the fact that there is no clear consensus among F, G and 

AJ. Fis maximum for c=2 in both cases, G is maximum for c=3 and AJ is minimum for 

C=6 in the six dimensional case and for C=8 in the three dimensional case. A few general 

observations can be made to help in the interpretation process. First, let's restrict the 

interpretation of the validity measures to the three dimensional case in Table X(b). The 

gross structure of the data is carried by the first . few principal components and if the 

detected data structure for the three dimensional case does not have a reasonable physical 

interpretation then it is doubtful that increasing the dimension of the clustering 

problem will improve the segmentation results. Second, F can be used to reduce the 

possible candidates for best c. In Table X(b), the F values for c=2 and 3 are of 

comparable magnitude, the F values for C=4, 5 and 6 are also of comparable magnitude 

as are the F values for C=7,8 and 9. Validity measures G and AJ can be used to pick a 

'best' c from each of these three groups determined by F. Thus, C=3,6 and 8 are judged 

to be the candidates for 'best' c. Figure 33 shows the FCM maximum membership 

clusters for the three dimensional case and c=3. It is obvious by comparing Figures 32 

and 33 that further subdivision of the clusters in Figure 33 is necessary if a reasonable 

physical interpretation is to be obtained. Rather than pursuing the sequential clustering 

strategy, it was decided to implement a strategy similar to the one used in Example 1 and 

then contrast the results with the segmentation results shown in Figure 18. 

Figures 34 and 35 show the FCM maximum membership clusters for the three 

dimensional case and C=6 and C=8 respectively. The result for C=8 in Figure 35 is 

judged to have a better physical interpretation when compared to the core information in 

Figure 32. The following description is identical to the one used in Example 1 and is 

used to merge the clusters in Figure 35 so that the segmentation results for this example 

can be compared with those of Example 1 shown in Figure 18. 



TABLEX. 

FCM VALIDITY MEASURES FOR EXAMPLE #4: WITH 
EUCLIDEAN NORM,£ = 0.01 AND M =1.5 

c F G L1J 

2 0.939 -1.270 9.146 
3 0.899 -1.125 8.958 
4 0.800 -4.540 13.37 
5 0.780 -3.971 13.36 
6 0.797 -2.918 8.760 
7 0.773 -3.731 9.709 
8 0.742 -4.505 10.95 
9 0.746 -4.329 10.76 
10 0.698 -7.945 12.16 

(a) Six Dimensional PC Space 

c F G L1J 

2 0.944 -1.210 8.010 
3 0.929 -0.814 6.100 
4 0.821 -3.892 9.670 
5 0.825 -2.500 7.077 
6 0.827 -2.927 5.751 
7 0.806 -3.061 5.941 
8 0:805 -3.464 5.471 
9 0.793 -3.657 5.677 
10 0.758 -5.635 6.328 

(b) Three Dimensional PC Space 
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1 1 7 

FCM Cluster # 
N1w ~lu111r # frQm Flgur1 a5 Dtl~CIRllQD 

1 1 coal/shale 

2 2,3 shale 

3 4 shaley sandstone 

4 6,8 limestone 

5 5 limestone/sandstone/oil shows 

6 7,8 sandstone 

Figure 36 displays the original input logs along with the segmentation results from 

Example 1 in track #1 and the segmentation results from Example 4 in track #2. The 

numbers in both tracks comply with the. description given in the previous paragraph. In 

general, there is good agreement between the segments 2,3 and 6 which represent shale, 

shaley sandstone and sandstone respectively. However, there are several notable 

differences between the segmentation results involving segments #1, #4 and #5. 

Consider the segments labeled '1' in track #2 at approximately 33 ft., 113 ft., 244 ft. 

and 321 ft. All four of these segments correspond to shale environments according the 

core description. The Example 1 segmentation results(track #1) label the same 

intervals '2' which are described as shale environments. In other words, the Example 4 

segmentation results include more shale intervals in the segments labeled '1' and does a 

poorer job of isolating the thin coal intervals. Next, consider the segments labeled '4' in 

track #2 at approximately 37 ft. and 150 ft. Corresponding segments in track #1 are 

labeled '5'. The segments labeled '4' are described as limestone intervals. The segment 

in track #2 at 37 ft. agrees with the core information and might be considered an 

improvement over the Example 1 result. However, the segment at 150 ft. is a 

hydrocarbon bearing sandstone interval not a limestone interval. Perhaps more 

interesting is the fact that both the track #2 segments labeled '4' at· 37 ft. and 150 ft. 

have significant hydrocarbon content. The final comparison between the segmentation 

results of Example 1 and Example 4 involves segments labeled '5'. In both examples 

these segments have the poorest correspondence to a particular lithology. There is a 

greater frequency of occurrence of segments labeled '5' in track #2 than in track #1. 

The thin segments labeled '5' in track #2 at approximately 52 ft., 53 ft., 101 ft., 105 

ft., 111 ft., 268 ft. and 325 ft. have no similarly labeled counterparts in track #1. 

Except for the segment at 268 ft., these thin segments are associated with limestone 

intervals, which have distinctive resistivity log signatures, and the occurrence of these 
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segments may be attributed to the increased weighting of the resistivity logs in Example 

4. 

In conclusion, the increased weighting of the resistivity logs in Example 4 detracts 

from the ability of the cluster validity measures, F, G and ~J, to detect good data 

structure. A similar observation was made for the six and three dimensional cases in 

Example 1. Also, the scaling procedure of Example 4 tends to make the isolation of the 

coal samples by the FCM clustering algorithm even more difficult. In general, the 

overall physical interpretation of the segmentation results for Example 4 is less 

consistent than the physical interpretation for the Example 1 segmentation results. 

3.3 Chapter Summary 

The examples in this chapter have illustrated the ability of a specific segmentation 

algorithm to segment a borehole based upon wireline log ·responses. The essential steps 

of the segmentation algorithm are: 1) a linear scaling process which scales the input 

logs to zero mean signals bounded by plus ~nd minus one, 2) the calculation of PC logs 

based upon the scaled input logs, 3) the clustering of the PC log data using an FCM 

clustering algorithm with Euclidean norm and m=1.5 and 4) the interpretation of the 

FCM algorithm output using cluster validity measures F, G and ~J. 

This segmentation algorithm was applied to a test interval which consists of four 

main lithology types; shale, sandstone, limestone and coal. The test interval also 

included hydrocarbon bearing and water bearing zones. Three general observations 

about the segmentation algorithm examples are given below. 

1. Except for Example 4, the basic structure of the log data is carried 
by the first two PC logs. 

2. The basic data structure indicated by the cluster validity measures 
has a reasonable physical interpretation. 

3. The ability of the cluster validity measures to detect good sub
structure in the data and the physical interpretation of the 
borehole segments is best when the influence of the resistivity 
logs is limited. 

In addition, Example 2 illustrated how physically important information is sometimes 

carried by the higher numbered PC logs. 
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The physical interpretation of the segmentation algorithm output has two recurring 

inconsistencies. One is the fact that the algorithm labels certain shale segments the same 

as the coal intervals. The segmentation results for the four dimensional case in Example 

2 are the best in this respect, labelling only two shale segments the same as the coal 

segments. The second inconsistency is the grouping which includes both limestone 

samples and sandstone samples from the hydrocarbon bearing sandstone unit. The other 

inconsistencies in the physical interpretation of the segmentation algorithm's output 

occur in transition zones from one lithology to the next lithology and it does not seem to 

matter whether the transitions occur abruptly or gradually. For example, the 

transition may be an abrupt shale-coal-sandstone transition or a gradual transition 

from sandstone to shale. In either event, it is likely that certain discrepancies will exist 

between the core description information and the output of the segmentation algorithm. 



CHAPTER IV 

MUL TIWELL APPLICATION OF THE 

SEGMENTATION ALGORITHM 

4.0 Introduction 

Chapter IV extends the segmentation algorithm to a multiwell environment using 

data from eight wells in the Hartzog-Draw Field, Wyoming. The application of the 

segmentation algorithm to multiple wells is motivated, in part, by the question, " Is it 

possible to identify segments between wells in the same field which have similar 

wireline log characteristics?" The next question is, "Do these segments have geological 

significance?" and if so, is it possible to design a classifier to reliably identify similar 

segments in other wells in the same field? 

The eight wells are arbitrarily labeled as Wells #1-#8 and Section 4.1 describes 

the data base from the Shannon Sandstone of the Hartzog-Draw Field which is used for 

this part of the study. Section 4.2 uses log data from Wells #6, #7 and #8 in a 

multiwell example which investigates the ability of the segmentation algorithm to 

identify segments with similar wireline log characteristics between the three wells . . , 
Section 4.3 compares the segmentation algorithm output for Well #8 to a well accepted 

geological facies description of the Shannon Sandstone interval. Finally, Section 4.4 

investigates the possibility of designing a nearest prototype classifier to identify 

segments with particular wireline log characteristics in the other five wells within the 

available Hartzog-Draw data base. 

4.1 Data Base 

The Hartzog-Draw Field is located in the Powder River Basin of northeastern 

Wyoming. Since its discovery in 1975, a wealth of information has been accumulated in 

the form of digitized wireline logs, cores and core descriptions and various types of 

reservoir analyses. Most of this information has been collected with respect to the 
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Shannon Sandstone because of its good reservoir properties and It is the Shannon 

Sandstone which is considered here. 

Digital wireline log data for eight wells In the Shannon Sandstone, Hartzog-Draw 

Field was provided by OXY Inc., of Tulsa OK. These wells are referred to generically as 

Wells #1-#8. This wireline log data includes: gamma ray(gr), spontaneous 

potential(SP), spherically focused(SFL), medium lnduction(ILM), deep lnduction(ILD), 

neutron porosity (NPHI), bulk density(RHOB) and interval transit time(DT) 

information for six of the eight wells. Well #4 is lacking the SFL information and Well 

#5 is lacking the SFL and SP information. This log data provides the necessary inputs to 

the segmentation algorithm for the multiwell example in Section 4.2. 

In addition to the wireline log data, geological documentation was also provided to 

describe the major geological facles within the Shannon Sandstone. There are six facles 

observed in cores: 1) interbar, 2) bar margin I, 3) bar margin II, 4) bioturbated 

siltstone, 5) central bar and 6) shelf silty shale. This geological information is 

contrasted, in Section 4.3, to the segmentation algorithm results for Well #8 from 

Section 4.2. The Shannon Sandstone contains up to the first 5 facies types with the shelf 

silty shale facles overlying and underlying the Shannon Sandstone interval. The 

geological environment associated with the Shannon Sandstone is basically a shale-sand

shale sequence and is much simpler than the geological environment for the test well data 

used in Chapter Ill. 

Similar log and core data was used by Almon(2] in an appllcation of discriminant 

function analysis to discriminate between the six facies types(see Section 1.3.2). Also 

of importance is a multiwell Faciolog evaluation of wells within the Hartzog-Draw Field 

which will provide another basis of comparison for some of the results in Section 4.2. 

4.2 Multlwell Example 

Wells #6, #7, and #8 were chosen from the data base for use in the multiwell 

example. These three wells were chosen for three reasons: 1) each well has a full 

complement of logs, 2) the wells lie on an east to west line across the Hartzog-Draw 

Field with Well #6 lying approximately halfway between Well #7 and Well #8 and 3) 

two of the three wells were used in the multiwell Faciolog evaluation reported by 

Widdicombe, et.· al.[61). 

Initially, a 250 ft. interval, which includes the Shannon Sandstone and the 

overlying _and underlying shale units, was selected for analysis. The basic methodology 
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of· Section 3.0 is applied, in turn, to Wells #6, #7 and #8. Let's consider Well #6. All 

eight logs are used as inputs to the segmentation algorithm. The input logs are scaled 

using the linear scaling procedure described as method 3 in Section 2.2.2. The Input 

logs are transformed into PC logs according to Equation (31) and then the FCM algorithm 

is applied to the two dimensional PC log data. The choice to use only the first two PC logs 

pc#1 
pc#2 
pc#3 = 
pc#4 
pc#S 
pc#6 
pc#7 

c#8 

0.502 
0.285 
0.352 
0.733 
0.007 
0.004 
0.050 
0.030 

KLT Matrix 

0.462 -0.367 -0.424 -0.417 0.071 0.189 0.069 
-0.234 0.047 0.016 0.022 0.633 -0.424 0.528 
-0.241 0.229 0.188 0.180 0.151 0.810 0.136 
-0.126 0.167 0.149 0.170 -0.326 -0.352 -0.370 
-0.722 -0.271 -0.314 -0.253 -0.426 0.026 0.247 
0.354 0.351 0.108 0.018 -0.521 -0.058 0.681 
0.098 -0.705 0.158 0.648 -0.106 0.0147 0.188 

-0.020 -0.299 0.792 -0.530 -0.026 -0.001 0.030 

gr 
sp 
sfl 
ilm (31) 
ild 
nphi 
rhob 
dt 

is based on the results in Chapter Ill which indicate that the general structure of the data 

is captured by the first two PC logs. Notice that the scaled GR, SP, ILM and ILD values 

have the largest weights in the calculation of the first principal component and the three 

porosity logs have the greatest weights in the calculation of the second principal 

component. Equation (31) is specific to Well #6 but the same observations hold for the 

computation of the PC logs for Wells #7 and #8. 

The FCM algorithm, with m=1.5 and E = 0.01, is applied to the two dimensional PC 

log data using the Euclidean norm and C=2,3,4,5,6,7 and 8. Table XI lists the cluster 

validity measures for the various alternatives for Well #6. The best indication of good 

substructure is judged to be when c=4. The F values for C=2,3 and 4 are all of 

comparable magnitude and c=4 is preferred over 2 and 3 because AJ is minimum and G 

indicates good spatial separation of the maximum membership clusters shown in Figure 

37 .. The segmentation results corresponding to Figure 37 are shown in Figure 38 along 

with six of the eight input logs. (The plotting routine is limited to two signals per grid.) 

An identical process is applied to the log data of Wells #7 and #8. Figures 39(a) 

and 39(b) show the FCM clusters determined for Wells #7 and #8 respectively and 

Figures 40 and 41 show the corresponding segmentation results. For this relatively 

large 250 ft. interval there is good agreement among the segmentation results for Wells 

#6, #7 and #8. The following observations are generally true for the segmentation 
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results displayed in Figures 38, 40 and 41. Segment #1 corresponds to the very 

distinctive bentonitic shale marker beds which occur near the top of each interval. 

Segment #2 corresponds to the shelf silty shale facies which flanks the Shannon 

Sandstone both above and below. Segments #3 and #4 encompass the Shannon Sandstone 

with segment #4 relating to the central bar facies and segment #3 incorporates the 

remainder of the Shannon Sandstone interval. The only exceptions to this description of 

the segmentation results occur in Well #8. There are two segments labeled '1' at the 

bottom of the interval for Well #8 which are part of the shelf silty shale facies and 

there is a segment labeled '2' within the Shannon Sandstone interval which is not part of 

the shelf silty shale facies. A more detailed look at the Shannon Sandstone is forthcoming 

in Section 4.3 but first the segmentation procedure is repeated for the smaller intervals 

bounded by segments #3 and #4 within each of the three wells. 

More specifically, the intervals of interest for this second application of the 

segmentation algorithm are 310-392 ft., 352-431 ft. and 359-441 ft. for Wells #6, 

#7 and #8 respectively. This time the inputs to the segmentation algorithm include the 

GR, SP, NPHI, RHOB and_ DT logs. The resistivity logs are eliminated from the inputs to 

the segmentation algorithm based on the observation in Chapter Ill that their influence 

tends to detract from the ability of the segmentation algorithm to detect good data 

structure and due to the resistivity logs sensitivity to hydrocarbons. The inputs are 

scaled and transformed using the KL T. All FCM parameters remain unchanged from the 

first application of the segmentation algorithm and c is varied from 2 to 10. Table XII 

shows the cluster validity measures for all three wells. The initial indication of good 

data substructure in Well #6 is for C=5, with secondary substructure indicated for c=8. 

Recall the guideline for interpretation of the validity measures is to use F to divide the c 

values into groups then use G and ~J to pick a 'best' value of c from each group. In Table 

Xll(a) C=2 is alone in one group, C=3, 4, 5 and 6 form a second group, C=7 and 8 form a 

third group and C=9 and 1 O form a final group. The large ~J value detracts from 

choosing C=2 as the primary indication of substructure in the data. From the second 

group, C=5 is chosen as the primary indication of good data substructure and c=8 is 

chosen from the third group as an indication of secondary substructure in the Well #6 

data. Figure 42 shows the maximum membership clusters for Well #6, c=5. For Well 

#7, c=6 is the primary indication of data substructure and there is no obvious 

indication of secondary substructure in the data. Figure 43 shows the maximum 

membership clusters for Well #7, C=6. In Well #8, it seems reasonable to pick C=3 as 
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TABLE XII. 

FCM VALIDITY MEASURES FOR SHANNON SANDSTONE, 
WELLS #6 ,#7 AND #8 WITH EUCLIDEAN NORM, 

£ = 0.01 AND m = 1.5 

c F G AJ 
2 0.948 -0.511 4.831 
3 0.893 -1.266 4.139 
4 0.889 -1.057 2.945 
5 0.908 -0.840 1.533 
6 0.893 -0.921 1.226 
7 0.874 -0.954 1.368 
8 0.879 -0.837 0.981 
9 0.841 -1.916 1.269 
10 0.859 -:-1.504 0.759 

(a) Well #6 

c F G AJ 
2 0.927 -1.124 4.986 
3 0.925 -0.984 2.363 
4 0.904 -1.240 2.442 
5 0.919 -0.901 0.923 
6 0.915 -0.652 0.623 
7 0.877 -1.309 0.960 
8 0.873 -1.309 0.569 
9 0.868 -1.309 0.527 
10 0.854 -0.650 0.496 

(b) Well #7 

c F G AJ 
2 0.931 -0.823 4.034 
3 0.928 -0.196 1.726 
4 0.921 -1.244 1.600 
5 0.884 -1.471 1.681 
6 0.877 -1.873 1.400 
7 0.876 -1.832 1.172 
8 0.878 -1.832 1.008 
9 0.870 -1.232 0.710 
10 0.852 -1.232 0.742 

(c) Well #8 
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the primary indication of data substructure. Following the stated guideline for 

interpretation of the validity measures, C=2, 3, 4 are grouped together based upon the 

comparable F values. The value, C=3, is preferred over 2 and 4 because G indicates 

'much better' spatial separation between the worst case pair of maximum membership 

clusters for C=3. However, validity measure G has the problem of being very sensitive 

to 'outliers' within the clusters. Observe the maximum membership clusters for Well 

#8, C=4 in Figure 44 and note the sample labeled '2' in the upper right hand corner of 

the figure. It is the judgement of this observer that this 'outlier' in cluster #2 distorts 

G and that C=4 is the primary indication of substructure for Well #8. This points to the 

need to visually verify the indications of the validity measures. Secondary substructure 

for Well #8 is indicated for C=9. 

For the initial comparison C=5, C=6 and c=4 are used for Wells #6, #7 and #8 

respectively, and the corresponding segmentation results are shown in track #1 of 

Figures 46, 47 and 48. The secondary substructure for Well #6, (c=8) and Well #8, 

(c=9) is shown in track #2 of Figures 46 and 48 respectively. The primary and 

secondary data structures shown for Well #7 in Figure 47 are identical. Two main 

factors are used to make the comparison between the segments in the three wells. First, 

the vertical position of the segments within the respective boreholes is taken into 

account and second, the .spatial distribution of the clusters in Figures 42, 43 and 44 

help establish the correspondence shown in Figure 45. The cluster centers for the 

clusters in Figures 42, 43 and 44 are expressed in the domain of the original wireline 

logs in Table XIII. The initial segmentation results in Figures 38, 40 and 41 have 

already established a correspondence between certain intervals between wells. Working 

from the premise that segment #4 in Figure 38 relates to segments #4 in Figures 40 

and 41 leads to the conclusion that segments #3, #4 and #5 in Figure 46(track #1) 

correspond in some fashion to segments #4, #5 and #6 in Figure 47(track #1) which 

in turn correspond to segments #3 and #4 in Figure 48(track #1 ). The cluster center 

information in Table XIII helps characterize the attributes of the segments in each well 

with respect to the original wireline log data. Notice that center #1 for all three cases 

in Table XIII corresponds to relatively high GR reading, a suppressed SP value and a 

moderate porosity indication on the porosity logs. Also, the vertical position of segment 

#1 within each well indicates that these segments correspond to each other. Segment #2 

in Well #7 has a significantly lower porosity indication than the other segments in Well 

#7 and is judged to be a separate segment without counterpart in the adjacent wells. 

Segment #2 in Well #6 has a slightly lower GR value and a slightly more developed SP 

than segment #1 in the same well. Similar characteristics exist for segment #3 in 
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Well #7 and segment #2 in Well #8. Again, the vertical position of these segments 

within the borehole helps establish this correspondence. In a similar fashion, a 

correspondence among the remaining segments in the three wells is established and 

shown in Figure 45. 

This example provides evidence that it is feasible to detect segments with similar 

wireline log characteristics among wells in the same field. The next question is, "How do 

these segments relate to the geological facies known to exist in the Shannon Sandstone?" 

Well #8 Well #6 Well #7 

1 • • 1 • • 1 

2 • • 2 ~2 
3 • • 3 ~3 
4 ~4 ~4 

5 

~ 
5 

6 

Figure 45. Manual Correlation of Segments Between Wells 
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TABLE XIII. 

CLUSTER CENTERS FOR WELL #6, WELL #7 AND WELL #8 
IN THE DOMAIN OF THE ORIGINAL WIRELINE LOGS 

Cluster #of 
Center Samples GR SP NPHI RHOB 

1 52 89.3 -24.6 20.9 2.54 
2 18 78.4 -35.1 22.4 2.50 
3 9 58.8 -47.6 19.5 2.52 
4 38 61.8 -49.3 23.1 2.46 
5 47 51.7 -58.9 24.2 2.42 

(a) Well #6 

Cluster # of 
Center Samples GR SP NPHI RHOB 

1 45 74.0 -16.0 19.5 2.56 
2 5 41.9 -29.9 13.6 2.62 
3 21 60.0 -32.9 20.1 2.51 
4 7 48.7 -38.1 18.1 2.53 
5 39 49.1 --47.8 21.0 2.48 
6 41 39.9 -57.3 20.8 2.44 

(b) Well #7 

Cluster #of 
Center Samples GR SP NPHI RHOB 

1 75 77.8 -18.4 18.0 2.58 
2 34 72.5 -26.4 19.7 2.53 
3 16 44.8 -42.5 16.9 2.54 
4 39 54.5 -42.9 20.6 2.47 

(c) Well #8 

140 

OT 

69.1 
70.5 
67.8 
71.3 
72.5 

OT 

70.8 
63.8 
72.0 
69.7 
73.7 
73.8 

OT 

69.2 
70.6 
67.8 
71.2 
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4.3 Geological Description of The Shannon Sandstone 

The comparison of segmentation results for the Shannon Sandstone with geological 

descriptions of the same interval is restricted to Well #8 but is judged to be 

representative of similar comparisons for Well #6 and Well #7. Figure 49 shows the 

geological facies in track #1 and the rock types in track #2 for the Shannon Sandstone 

in Well #8. The GR, SP, SFL, ILD, NPHI and OT logs are included in Figure 49 for 

reference purposes. The facies and rock types were determined by a qualified geologist 

with reference to the proper documentation[27,34,45,54,57,61). The respective 

facies and rock descriptions are given in Table XIV. The borehole segmentation results 

will be compared primarily to the facies descriptions given in Table XIV and shown in 

track #1 of Figure 49. These facies descriptions are well documented geological 

descriptions of the Shannon Sandstone taken from core analyses. The rock type 

definitions in Table XIV correspond to track #2 of Figure 49 and are taken from the 

"electrofacies" determined by Widdicombe et., al.[61) in th~ir multiwell Faciolog 

evaluation of four wells in the Hartzog-Draw Field. These "electrofacies" were 

determined from the GR, NPHI, and OT wireline logs and the volume of clay(VCL) 

computed log. The rock type definitions in Table XIV are determined by relating the 

Faciolog "electrofacies" in track #2 of Figure 49 back to core descriptions of the same 

interval. Since the origin of the rock type information is from log information rather 

then core information, it is presented here merely as an example of the Faciolog 

procedure applied to the Shannon Sandstone interval. Figure 50 duplicates the facies of 

Figure 49, track #1 and contrasts these facies to the segmentation results for the same 

interval. It is interesting to note that the segmentation of the borehole based on the 

wireline logs does not compare as favorably to the geological facies as one might hope. A 

similar statement could be made with reference to the rock types shown in track #2 of 

Figure 49. Figure 51 shows the Well #8 facies and rock types crossplotted using the 

first two PC logs determined for Well #8. The zeros appearing in these crossplots 

correspond to sample points in the interval without either a facies or rock type assigned 

to them. Facies #5, the central bar facies, in Figure 51 (a) tend to cluster and relates to 

clusters #3 and #4 in Figure 44. This is the best comparison between facies type and 

FCM clusters for Well #8. Other attempts to relate facies or rock types to the FCM 

clusters in Figure 44 are tenuous at best. However, facies #5 is the central bar facies 

and has the best reservoir potential, so it is beneficial that this is the one geological 
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TABLE XIV. 

FACIES AND ROCK TYPES FOR THE SHANNON SANSTONE 

Geologic Description 
Facies # 

O Undefined 

1 lnterbar facies - burrowed, ripple bedded, very shale laminated, 
fine grained sandstone 

2 Bar margin facies I - cross bedded and rippled, coarse to medium 
grain sandstone with clasts of shale and sideritic mudstone 

3 Bar margin facies II - moderately burrowed, horizontally 
laminated and ripple bedded, shaly sandstone 

4 Bioturbated siltstone - thin, intensely burrowed, shaly siltstone 

5 Central bar facies - cross bedded, medium to fine grain sandstone 
with scattered gravel size clasts of sideritic mudstone and minor 
laminae of shale 

Rock Type # Description 

O Undefined 

1 Fine grain sandstone; shale volume < 3% 

2 Fine to medium grain sandstone, shale volume < 5%; 3-12 % 
glauconite 

3 Fine to medium grain sandstone; shale volume 2-5%; 5-10% 
glauconite 

4 Fine grained sandstone; shale volume 8-20%; 2-8% glauconite 

5 Fine grained sandstone; shale volume < 5%; less than 5% 
glauconite 

6 Medium to coarse grain sandstone, 10-25% shale volume; 
up to 10% glauconite 

7 Very shaly and silty, very fine grained sandstone, shale volume 
40-60%; 10% glauconite 
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facies which is captured by the wireline log information and detected by the segmentation 

algorithm. 

Several reasons might be given to help explain why the other facies are not detected 

by the segmentation process. One reason is that the discrimination between facies types 

is often made on visual evidence like color or the presence of fossils and this type of 

information does not necessarily relate directly to any geological parameter captured by 

the wireline log data. A second reason could be the small sample size of many of the 

facies. For example, facies #2 in Figure 51 (a) has only a few log values associated with 

it and the FCM algorithm is known to have difficulty isolating small populations even 

when they have very distinctive log characteristics. A third reason could be the 

gradational changes from one facies type to the next facies type make it difficult to detect 

the individual facies types. Whatever the reason, the given f acies and rock types tend not 

to group into clusters detectable by the segmentation algorithm. Figure 51 would 

suggest that, with the exception of facies #5(central bar facies), the given facies and 

rock type information is not readily extracted from the wireline log data. It is rather 

interesting that the Faciolog "electrofacies" (Figure 49, track #2) were. gen~rated using 

similar tools as the segmentation algorithm in this work,(PC analysis and cluster 

analysis), and yet the resulting borehole segments are significantly different from the 

borehole segments for Well #8 in Figure 48. Also, the Faciolog results do not seem to 

relate very well to the geological facies for the same interval. 

4.4 Nearest Prototype Classifiers 

The problem of classification is basically one of partioning the feature space into 

regions, one for each class of data. There exist a variety of approaches to the 

classification problem that can be broadly categorized as either Bayesian or non

Bayesian. At this point either approach is viable. The Bayesian approach is attractive in 

the sense that it is statistically optimum with respect to the mean square error provided 

the distribution of the data is known. In practice, the distribution of the data is seldom 

known and in this case no assumptions have been made with regard to the distrubution of 

the data. The best that can be done in this case is an approximate Bayesian classifier 

using statistical estimates taken from a training set of data. However, there is no 

theoretical basis that assures that an approximate Bayesian classifier will out perform a 

classifier of non-Bayesian design. This fact coupled with the fact that the segmentation 

algorithm lends itself very nicely to the design of a non-Bayesian nearest prototype 
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classifier leads to the following discussion on the design and testing of a nearest 

prototype classifier. 

This section discusses the application of the segmentation algorithm in the design 

and testing of a nearest prototype classifier. The digitized logs for the Shannon Sandstone 

interval in Wells #6, #7 and #8 comprise the training set from which the classifier is 

designed. The 'prototypes' for the classifier are generated by running the segmentation 

algorithm on the log data in the training set. This was done in Section 4.2. See Figure 

45 for the correspondence between segments for the three wells in the training set. The 

classifier design is tested in two steps. The first step applies the classifier to the 

training set data and the second step applies the classifier to log data outside the training 

set. The segmentation algorithm results will be used to evaluate the relative 

performance of the classifier in both steps of testing. 

The results of Section 4.2 suggest that there are six different classes of log 

information for the Shannon Sandstone interval. Not all six classes are present in each 

well, in fact, only Well #7 has all six classes, Well #6 has five classes and Well #8 has 

four of the six classes of log information. Principal component prototypes for these six 

classes of data are listed in Table XV and plotted in Figure 52. These prototypes are 

simply the respective cluster centers determined by the segmentation algorithm. Notice 

in Figure 52 that class #2 has a single prototype, class #5 has two prototypes and the 

remaining classes have three prototypes. Figure 52 also relates position in the two 

dimensional PC space to the physical parameters of permeability(SP), porosity (NPHI, 

RHOB and OT), and radioactivity(GR). A relative indication of permeability, porosity 

and radioactivity can be obtained. by doing a perpendicular projection of a given point in 

the two dimensional PC space to each of the three lines representing permeability, 

porosity and radioactivity. Figure 52 is very helpful in translating position In the PC 

space into physical meaning. For example, if one compares the protypes of class #3 to 

those of class #5 , it is easily observed that class #3 is less permeable, more 

radioactive and, in general, less porous than class #5. It should be noted that porosity is 

the least discriminating of the three physical variables. 

Nearest protoype classifiers are conceptually very simple. The classifier computes 

the distance from a pattern X of unknown classification to the protoypes of each class and 

assigns X to the class 'to which it is closest. In this application, the nearest prototype 

classifier uses the protypes listed in Table XV and the Euclidean metric to measure 

distance in the two dimensional principal component space. Inputs to the classifier are 

PC logs #1 and #2 and the classifier outputs the class to which each sample point 

belongs based on a minimum distance criteria. 



TABLE XV. 

SHANNON SANDSTONE PRINCIPAL COMPOl\IENT PROTOTYPES 
FOR: WELL #6, WELL #7 AND WELL #8 

Prototype pc #1 pc#2 

1 1.330 0.053 
3 0.472 0.180 
4 0.133 -0.975 
5 -0.510 -0.002 
6 -1.260 0.061 

(a) Well #6 

Prototype pc #1 pc#2 

1 1.28 0.079 
2 0.330 -1.420 
3 0.307 0.054 
4 -0.041 -0.455 
5 -0.535 0.130 
6 -1.08 0.012 

(b) Well #7 

Prototype pc #1 pc#2 

1 0.755 -0.013 
3 0.001 0.326 
4 -0.641 -1.050 
6 -1.190 0.171 

(c) Well #8 
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The classifier performance is first tested by applying the classifier to the training 

set data. Performance is evaluated by comparing the classifier output to the 

segmentation algorithm results for the same data. Figure 53 displays the segmentation 

results(track #1 ) and the classifier results(track #2) for Shannon Well #6. There is 

generally good agreement between the two results with the classifier differing on 14 of 

the 164 or 8.54% of the points classified. In a similar fashion, Figures 54 and 55 

display the classifier results for Wells #7 and #8.respectively. The classifier differs 

from the segmentation algorithm results on 5.06% of the points in Well #7 and 15.8% 

of the points in Well #8. Overall there is 90% agreement between the two results and 

where there are differences they are minor differences. It should be noted that the 

majority of the differences involve classes #3 and #5. 

In some instances the classifier yields a more probable result than the segmentation 

algorithm. For example, consider the classifier result for Well #6 at 345-349 ft. in 

Figure 53. The segmentation algorlthm(track #1) shows this interval to be class #4 

while the classifier result shows class #2 for part of this interval that coincides with a 

noticeable decrease in the porosity logs. A quick reference to Figure 52 indicates. this is 

a very reasonable classification since porosity is one of the main discriminating factors 

between class #2 and class #4. 

Now consider" classifier performance on log data outside the training set. Log data 

from Shannon Well #3 is used to illustrate the performance of the classifier on log data 

outside the training set. In order to maintain a similar method for evaluating classifier 

performance, the segmentation algorithm is also applied to the log data from Well #3. A 

procedure exactly analogous to the one used is Section 4.2 is used for Shannon Well #3. 

All algorithm parameters are identical to those used for Wells #6, #7 and #8. Figure 

56 shows the segmentation results for a relatively large 250 ft. interval of Well #3. 

The Shannon Sandstone interval is the actual interval of interest and is marked by 

segments #2, #3 and #4 and lies between 291-344 ft. Following the procedure of 

Section 4.2, the segmentation algorithm is applied to the smaller interval of interest and 

Table XVI lists the cluster validity measures for this interval. Primary data structure 

is judged to exist for c = 5 with secondary data structure for c = 8. Figure 57 compares 

the segmentation algorithm results for c = 5 to the classifier results for the same 

interval. Notice that both results indicate the presence of five of the six classes of log 

information in the Shannon Sandstone interval for Well #3. Class #2 is not detected by 

either the classifier or the segmentation algorithm. The classifier results differ from 

the segmentation algorithm results on 22 of the 106 or 20. 75% of the data points in the 

interval. The majority of the differences exist in the interval 310-325 ft. and 



3()0. 

325· 

35(). 

375. 

-too. 

sp gr 
track 

•1 

SHANNON 

sfl . . . . . . 
: : : 
: : : 

HELL 

ild 

-.;.-·': -1__ : : _,..... ....... ~------··-······· '"'i."3······-:···-·---····:·· 
I ~ I I 

: - : : . . . 
: : : 

I I t t 

. . .. . . 

•6 

track 
•2 nphi . . . . . . . . 

I 1 ~%------1---------· . . . . 

d t 

. ...... L ... J .............. . . .,. . . "' . 
! ! . . .............. .; ....... . -- ................... ,,. ...................... -- .. ~------ ..... ... .... . ... .. ........... ---..:~ .................... ···--· 

io~,J~ : 6 : : 
'••··•···- ·····-~·-·········· 

: 6 : : 
.. ,, .. ~---········· 

. . . . . . . . . . . . . . . . . . ..... .. --- .......... ~ .... --- .... -......... -.... .. ...... -- .. --- -:· ................ -·: ... ......... .. 
: : : 
:·· 5 : : 
: 1 : : .. ...................... --- .... .. .. .. . .. .. .. .. .. -.......................... -...................... .. . . . . . . . . . 
: 5 : : . . . . . . . . . :; .. · 1-......................... .... .. .................. ~- .................. ··t .... .. 
: 3 : : . . . 

~: : : 
'~ : : : : ,.. : : : .......................................... ~ ............................. .. .............. ~---··········· 

I • I I I 

o {· I I I 

: .). : 1 : : . I . . . : : : : 
I "°'" I t I 
I ,.,. I I I ...................... r .............. _"' ... :···-···--······· ---------·-:············:· 
: I : : : . . . . 
: : : : 

: I I 

. . . . . . 
~ ~ I ~ -·1··---···-··· .............................. .. ......... , ......................... . 
: ..L : : "' : 
: - : : ~ : 
I 5 .. I I .... t : : ;:,,-... : 
: ,-i2 : I •"' : .......................... ............................. ········~---····-·········· 
: : : {' : 
: 5 : ! : : : : i : : .. _ : : : 

-----~----·-······ 3 .. !t. ......... -=······· ............. -·---~------·-···· 
t t I I 

: _. f. : : : 

! ' 3 1 ! t' ! ............................. ................................. . ............................... .. 
r r r I 
I I I I 

: 1 : : : . . . ' 
I I I I 
t I I I , ............. .:................. .. ................... ~ ............... -~----··r···.: ................. . . . . . . . . . . 
t I I I 
t I I I 
t I I I . . . . . . . . . . 

Sp(l'IV) -100 
gr(api) () 

-60 
50 

-20 
100 

20 
150 

0.100 1.00 10. () 
(ohl'l-"M) 

100. (). lOOE+O-t nphi (pu) 
dt(u<;,"ft) 

30 
10() 

20 
so 

10 
60 

() 

iO 

Figure 53. Comparison of Segmentation Results(track #1) and the Classlfier 
Results(track #2) for the Shannon Sandstone, Well #6 

..... 
U'I ..... 



350. 

375. 

'JOO. 

i25. 

i50. 

SHANNON WELL •7 

sp gr 
t't'.ack 

•1 sfl i 1 d 
t'l'ack 

•2 nphi 

---~-------- _-i -1 ... , : L. : -2 J:-: : -i I 
• I I t 

.................... :~.;...:-.... .. ................... ~---·······--·-·· 6 ....................... J ..................................... .. 
_) ' . . . 

I I I I 
I • I I 

~~t : : : .,, : : : 
___________ \ ___ ---------------~---------------- 6 ----·------~------------·---------. . . 

I I I I 
.S I t I I 

'•• I t I t 
'- I t I I 

i: : : : 
............................. "!.~-- ................. ~-·-············- .................. ~ .................. i ....... .. 

~ : 5 : : 
'' t I I 1'~ I I I 

t .. ~ I I I 

----------------~;..::.:..::;;:t ----~---------------- 3 ·········-·j ___________ J ___ _ 
f ·:.~ : 1(--+ : : 
I "'\ I I 

: (. 

L '· 
. ~.1 

: ' ,J_,.2 

---~------------ 5 : : ' -----------~--------. . . . . . . . . . 
~------------: 6 : .. .................... ~ .............. . . . . 
: : . . 

---~------------ : ! 5 -----------1-----------. . . . . . 
-----~------------ 3 : r----_r,,~i-· -. ···i· -· · -··· ·· . 

3 3 . . . . ..................... ~- .................... ·t 

d t 

\ . 
················:···::;,~---···i1··------------ 1 1 1 

-~ (.~ ----~-------····· . . 
: 1 . : 

--------1------------w------- l t: l 

. . 
I • I I I ............................ ···r· ...... ·f""""·· ..... ··:... . ... . ..... .. ... .... .. ... . ................... -~- .................. ":~ .. ... 
I I I t 
I I I I 

: : t------1 : : 
I I I I 
I t I I 
I t I I ........... -..................... ·r · ................... -......... : -.................. --.. .. ... .. ... ............... -.... ~- ............. -... ~ ...................... -: ...................... -
I I I I I 
I t I I t 
I I I I t 
I I I I t 
I I I I I 
I I I I . . . 

1 ··-·r···------·-· ---- -----~----------·-. . . . . . . . 
: : : 

-- --· ----- -1------· -- -· -r -- ---- --- -- i-- ---. ------
. . . . . . . . . 

Sp (l"IV) -100 
g'l'(.ap i) 0 

-60 
5() 

-20 
100 

2() 

150 
0.100 1.00 10. 0 

(OtTf'r-'1'1) 
1 ()0. o.100E+Oi nphi(pu) 

dt(uvro 
30 

100 
,20 
80 

10 
60 

0 
i() 

Figure 54. Comparison of Segmentation Results(track #1) and the Classifier 
Results(track #2) for the Shannon Sandstone, Well #7 

..... 
U1 

"' 



350. 

375. 

.ofOO. 

.of25-

'f50· 

sp gr 
t,rack 

•1 

SHANNON 

sfl . . . . . . . . . 
: : : . . . 
: _,_ ...... ---. -3 : ............. ........ --~ ...... ':., ...... -- ·--··· ...... ......... .. ............... ~--· ......... . 
: '···~ : 1 : . . . . . 
;..- : -3 : 

HELL 

i l d . . . . . . . 

•8 

'•···········-··········· . . . . . . . . . 

track 
•2 

1 

nphi 

'I • • ............... \;..... ········~················ "' ···········~············~···· 
I : 0 : : 

: : -i : : 
,.} : -8 : : 

·····1······-····· . . 6 

: 6 
f I I ..ti I I 

............... ~~,:"' .................... :...................... -y ................. .: .............. ~ ...... . 

,. : 6 : : 
"='~ : 4 : : 

:'"' : : : : ......... : 6 : : 
················:·····-r..'-· ····:················ ................. 1-···········:····1 

: "~ : : : 
: ,S : 3 : : 
I ,• I I I 

.. J ................. ~ --- ............. i ................ · 
: 6 : 
: ... : . . 
: 6 : ·····:···--·-····· s .............. 1 .. ·····-····· . . . . 
: 3 : . 

: <' : : : ............................ -:· ......... , :: ·...... .. .. .. .. . .. .. .. . . .. . .. .. .. .. .. ................. :· .................... r .... . . _,. . . . ') . . . . . 
: .,.• ! : : 

I I ~ t I 

....... ~.................. . .... -:f ........ ~ ............... i 
: 3 : I . . . . . . 

: \. : : : .................................... ~......... ......................... . ............................... . 
: .; : 1 : : 

.............. ~ ................. . 1 
. . . . . .............. 1•··············· 

: ?. : : : 
~ i ! ! ................................. ............... .......................... ... ............................... . 
: "- : : ~ : . : : ': 
I I I I . . ' . 
I I I I . . . . . 

. . . . . . . . . ............................... . . . . . . 

: : 
: : 3 . . 
: : . . . . 1 

.. ................................... 1 . . . . 
i i 
: : 

~p('l'IV) -100 
gr(api) 0 

-60 
50 

-20 
100 

20 
150 

0.100 1.00 10.0 
(ohl'l'"'M) 

100. o. tOOE+O.of nphi (pu) 
d t(u9,l'ft) 

30 
100 

20 
80 

Figure 55. Comparison of Segmentation Resutts(track #1) and the Classmer 
Results(track #2) for the Shannon Sandstone, Well #8 

d t 

10 
60 

0 
.oft) 

.... 
(II 

c:.> 



150-
sp 9r 

213· 

275. 

339. 

'fOO. 

I •~JS, . ... ........... : ~.--__ 
.. L ... -.. --------: . :t .. .. .. .. -.. .. .. ' •.;-_ _ _ _ __ : ... ~!i.. 

: ii,· .............. . -------- . -------r-- ------------- [~ 
I 1S 
' ".t., -----·-: --------------!-~ f.--···------------·-·-·-r : 

. -. _ _t. -----------. - ;;---•. -----. ---
••••••••••• : ~~..,. r 

' J 

: ' .:.---~----------: -----------:~ ---------·----·-:-··· ~. 
' 

~--~-·-----··· --
""(..... . ........ .,q ... ~ •••••••••• ...... !!!I. I 

~--~ I '\./:: . 
: - ... ·::t ............ ~ ...... .. . --.. ·-----. ---r ·--~~-- -· -·. l~ 
. . ....... -----. ----+- -· --·----. -. ·· 1 ----- : : ) 

: : -5:; -: ----······r-~.------·-·--------:--··· :,;."::i 
: : , .... 
' ' ' ' 

~p(l'IV) -100 
9r(api) 0 

-60 
60 

-20 
100 

20 
150 

track 
•1 

1 

.of 

3 

2 

1 

0.100 

SHANNON 

sfl 

.... -................................ .. 
' ' ' . 
' ' . ................... :--------. 
' ' ' ' ...................... ~--------
' ' 
' ' ' .. .. .... .. .. .. .... .... ...... .... .. ... .. . 
' ' ' ' ' ....................................... 
' 

' ............................... 
' . 
' . ..................................... 
' 
' ' ' ' 

NELL •3 

i 1 d 

.................................................... 
' ' 
' ' ' . . 
' ' .... : ............... -...... :--................. .. 
' ' ' ' ' ' ' . 
' ' -~ ...................... ~· .................. .. 
' ' ' ' ' . 
' ' ' ' ' ' ' . ............................................... 
' . 
' ' ' ' ' ' . .. ...................................... -...... . 
' . 

' ' 

' ' ' ' ' -·······~ ....................... . 
' ' ' 
' 

' . .. .......................................... .. 
' ' ' ' . 
' ' 

track. 
•2 

.., 
3 

2 

1 

nphi ~ d t 

' ~--·-i·------·--:-----------------------:---·--- : '). : 
: .:.? : -·-----: .. ~z.~·1··•••••-:••••• -----······(··--· ··-r! L. ........ . 
: ---~- .... ·----~ ·-----·----~------ - : : . . 

.. L ... : ... 1-·········--
: { : ' . 

·--~-- .............. : . . : i . .:. .......... . . . . . 
..-- =~:::.... : --------

"' ·-'···· .. '!'.,..... : 

............................... 
' ' ' ' ' ' ' 

. . . . 

1.00 10.0 
(ohrl"""l'I) 

100. o.100E+O'fnphi(pu) 
dt(u~ft) 

30 
100 

20 
80 

10 
60 

0 
'fO 
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TABLE XVI. 

FCM VALIDllY MEASURES FOR SHANNON SANDSTONE, 
WELL #3 WITH EUCLIDEAN NORM, 

c 
2 
3 
4 
5 
6 
7 
8 
9 
10 

E = 0.01 AND m = 1.5 

F 
0.911 
0.869 
0.915 
0.912 
0.904 
0.896 
0.898 
0.855 
0.848 

G 
-0.278 
-0.820 
-0.667 
-0.423 
-0.778 
-0.569 
-0.569 
-1.194 
-1.276 

2.561 
3.558 
1.159 
0.845 
0.718 
0.598 
0.527 
0.590 
0.544 

155 
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Figure 57. Comparison of Segmentation Results(track #1) and the Classifier 
Results(track #2) for the Shannon Sandstone, Well #3 -°' 0) 
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involve the boundaries between classes #3'"'Bnd #5. It is not possible to state absolutely 

which segmentation of the Shannon Sandstone in Figure 57 is best, but it is the opinion 

of this observer that the segmentation algorithm(track #1) is the better result. This is 

based on the following observations. Recall the observation made earlier in this section 

that class #3 is more radioactive and less permeable than class #5. It is not readily 

apparent from the GR and SP signal traces in Figure 57 that any such change occurs at a 

depth of 310 ft., therefore the classifier result is suspect at this point. Also, the 

segmentation algorithm(track #1 ) boundary between class #5 and class #3 at 320 ft. 

coincides with an obvious transition in both the GR and SP signals and no similar 

boundary exists for the classifier result in track #.2. 

The classifier result for Well #3 indicates that the classifier can operate reliably 

on data outside the training set, but may not provide as consistent a classification of the 

log data as the segmentation algorithm itself. However, in the case of Well #3 the 

classifier result is certainly good enough to warrant Its use over the segmentation 

algorithm simply because it is simple and easy to use. The classifier uses an automated 

one pass process to classify the log data, whereas the segmentation algorithm uses an 

iterative approach, requires the interpretation of cluster validity measures and 

requires the manual correlation of segments between wells. More extensive testing of 

the classifier is needed to better understand its reliability in identifying different 

classes of data in wells outside the training set. 

4.5 Chapter Summary 

The multiwell example in Section 4.2 establishes the feasibility of determining 

segments between wells with similar wlreline log characteristics and correlating the 

segments manually by using the vertical position of the segments within the borehole and 

the spatial distribution of the maximum membership clusters. The segments determined 

by the segmentation algorithm have a marginal relationship to the geological facies 

within the Shannon Sandstone interval but certainly no worse than the relationship 

between the geological facles and the Faciolog "electrofacies". The shelf silty shale facies 

and central bar facies are the only two facies which exhibit a consistent relationship to 

the borehole segmentation results. The fact that the output of the segmentation algorithm 

exhibits only a marginal relationship to the geological facies should not discount the 

utility of the algorithm. The geological basis for discrimination between facies types is 

often dependent upon visual evidence found in the core and this visual evidence may or 
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may not relate to the geological parameters effecting the logs. Conversely, the wireline 

logs may be responsive to geological parameters that may be bypassed or overlooked in 

conventional core analyses. If one accepts the premise that neither the log information 

or the core information incorporates all of the geological information for a given 

interval, then it may be prudent to merge the two descriptions looking for a more 

comprehensive description of the given interval. For this reason, design of a classifier 

to reliably indentify segments between wells with similar wireline log characteristics 

is still potentially useful. 

The segmentation algorithm results of Section 4.2 indicated six classes of log 

information exist for the Shannon Sandstone interval. Figure 52 shows a relative 

comparison of these six classes in terms of porosity, permeability and radioactivity. 

The classes range from class #1 which has relatively high .. radioactivity, low 

permeability and moderate porosity, to class #6 which has relatively high porosity, 

high permeabiltiy and ·1ow radioactivity. The respective principal component cluster 

centers are used as prototypes in the design of a nearest prototype classifier. When 

tested on the training set data the classifier performed reliably agreeing with the 

segmentation algorithm results on 90% of the points classified. There were no major 

differences between the two results. The classifier was tested on a well outside the 

training set with 79% agreement between the classifier results and the segmentation 

algorithm results. Further testing of the classifier is necessary to determine its ability 

to correctly classify log data outside the training set. One obvious application for the 

nearest prototype classifier is the automatic correlation of segments from well to well. 



CHAPTER V 

SUMMARY AND EXTENSIONS 

This study provides evidence that principal components analysis and fuzzy objective 

function clustering algorithms can be applied in the analysis of wlreline log data. These 

pattern recognition tools are used to develop a segmentation algorithm that relates 

segments with similar wireline log characteristics within a single well or among 

multiple wells. In a multiple well setting, a training set of log Information may be used 

to design a nearest prototype classifier for the automatic recognition of similar segments 

in nearby wells not necessarily In the training set. 
' 

The interpretation of the output of the borehole segmentation model has been 

primarily lithological in nature. This interpretation approach is used because of the 

availability of lithology/facies Information corresponding to the wirellne log data used 

in this study. Output of the segmentation model generally has a good physical 

interpretation except in the cases of thin beds and transition zones. The evidence In this 

study supports the premise that the basic llthologlc information in the original wireline 

logs is carried by the first two PC logs formed from linear combinations of the original 

logs. The best interpretation results were obtained when the Influence of the resistivity 

logs, on the calculation of the PC logs, was limited. Although it was not done in the 

present model, the input logs could be weighted, so that the user has some control over 

the linear combination of the inputs that form the PC logs. In the model's present form, 

weighting of the inputs is done automatically by a linear scaling of the original wireline 

logs. There has been no attempt to use the existing model to perform any type of 

reservoir analysis. In the event such a goal is pursued, the model is general enough to 

allow derived logs, such as percentage shale volume, effective porosity and water 

saturation to be used as inputs. 

Any further investigation in the area of borehole segmentation models should 

· concentrate in two areas. The first is to deconvolve the logging tool response from the 

wireline log data to obtain log values more representative of the geologic formation cut 

by the borehole. This would help reduce the problem that the existing model has with 
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thin beds and transition zones, assuming that the deconvolution problem can be solved. 

The second area involves the development of another model which would use the Bayesian 

approach to unsupervised classification. This approach Involves a computer 

implementation calle~ Autoclass[15); which determines the most probable number of 

classes present in real-valued or discrete data, the most probable description of those 

classes and each sample's probability of membership In each class. This approach has 

yielded good results on some standard test data sets, Including Anderson's iris data. The 

Bayesian approach would provide an Interesting comparative study to this study. 

One other problem of general interest that merits further. investigation is the 

problem of cluster validity. · The concept of cluster validity is fundamental to the 

clustering problem. The present model uses three measures of validity that require an 

interpretation on the part of the user to determine which clustering is 'best'. Although 

guidelines have been established for the interpretation of the validity measures, a more 

objective means of determining validity is desired. 
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This detailed core description is supplied by AMOCO of Tulsa, Oklahoma and is 

compiled from an unpublished AMOCO report prepared by H. H. Hinch [33). This 

information is used in Chapter Ill to evaluate the physical significance of the 

segmentation algorithm output. 

Depth lnterval(ft.l 

2.0-6.0 

6.0-29.0 

29.0-32.9 

32.9-42.6 

42.6-44.8 

Lithology 

Shale(#1) 

Limestone(#1) 

Description 

Black, organic rich, contains high 
angle mineralized fractures. 

Gray to tan, stylolitic, dense to finely 
crystalline, arglflaceous, grading into 
very calcareous fossiliferous shale in 
both the top two feet and the bottom 1 ft 

Petroliferous(#1) (1.5 net ft. of oil showing in 6.5 ft.of 
core.) Oil occurs discontinuously in 
apparently isolated limestone vugs 
from17.3-17.7 ft. and from 22.4-
23.1 ft. Also, oil occurs in a high 
angle fracture from 24.1-24.3 ft. 
(Oil is indicated by both a light tan 
stain and yellow fluorescence.) 

Shafe(#2) 

Limestone(#2) 

Black, organic rich, vertical fractures 
from 31.0-33.0 ft. 

Gray to tan, argiflaceous, finely 
crystalline, lnterbedded with 
calcareous, dark gray shale(38.8-
39.8 ft.), grading into calcareous 
fossiliferous shale in both the top 
2.5 ft. and the bottom 1 ft. 

Petrofiferous(#2) (4.0 net ft of oil showing in 4.0 ft. of 
core.) 011 occurs discontinuously in 
limestone pores adjacent to a high 
anglefracture from 34.3-38.3 ft. 
(Oil indicated by both tan stain and 
light yellowfluorescence.) Orange 
mineral fluorescence occurs in the 
more argillaceous beds from 37.2-
42.6 ft. 

Sandstone(#1) Light gray, very argillaceous, 
carbonaceous micaceous, contains 
pyritized plant fragments. 



Depth lnterval(ft,) 

44.8-45.6 

45.6-46. 7 

46. 7-49.4 

49.4-51. 7 

51. 7-52.3 

52.3-59.2 

59.2-66.3 

66.3-68.0 

68.0-75.3 

75.3-77 .5 

77.5-79.2 

79.2-99.9 

99.9-101.5 

101.5-107.3 

Lithology 

Shale(#3) 

Coal(#1) 

Sandstone( #2} 

Missing core 

Shale(#4) 

Shale(#5) 

Sandstone(#3) 

Missing core 

Sandstone( #4) 

Sandstone(#5) 

Missing core 

Shale(#6) 

Missing core 

Limestone(#3) 
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oescrlptlon 

Black, carbonaceous, grading into thin 
argillaceous sandstone at 45.4-45.6 
ft. 

Light gray, very arglllaceous, 
micaceous, grading downward into 
gray shale. 

Gray, very calcareous, fossiliferous, 
arenaceous, pyritic, bioturbated. 

Gray, pyritic, arenaceous in top 1 ft. 

Light gray, ripple laminated, 
mlcaceoussandstone, interlamlnated 
with dark gray shale. Sandstone is 
best developed (>70%)between 63.0 
ft. and 64.9 ft. 

Dark gray, very argillaceous, 
micaceous carbonaceous, interbedded 
with dark gray arenaceous shale. 

Dark gray, very argillaceous, 
carbonaceous, micaceous, 
interlaminated with(1-10 mm. thick) 
light gray, less argillaceous 
bioturbated sandstone containing 
pyritized plant fragments. 

Dark gray. 

Dark gray to black, very argillaceous, 
very fossiliferous grading into very 
calcareous shale at bottom. A high 
angle mineralized fracture occurs 
from 377 .0-379.5 ft. 



Depth lntervalW.) 

107.3-111.5 

111.5-114.7 

114.7-141.5 

141.5-143.0 
143.0-144.0 

144.0-144.5 

144.5-145.5 

145.5-146.4 

146.4-151.6 

151.6-153.7 

Lit ho logy 

Limestone(#4) 

Shale(#7) 

Shale(#8) 

Coal(#2) 
Sandstone(#6) 

Shale(#9) 

Sandstone(#7l 

Shale(#1 O) 

Sandstone(#8) 
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Description 

Dark gray to tan, very fossiliferous, 
very argillaceous. 

Black, organic rich, contains small 
phosphatic nodules. 

Gray, slightly pyritic, containes 
siderite nodules from 129.5-141.5 
ft. 

Tan, very argillaceous, carbonaceous 
at top, calcareous and fossiliferous 
toward bottom, grading downward into 
green slickensided bioturbated shale 
which contains small limestone 
nodules. 

Green, abundant slickensides. 

Tan, very argillaceous, calcareous, 
fossiliferous, containing small 
limestone nodules. 

Green to gray, arenaceous at top and 
bottom. 

Light gray, coarse grained, mlcaceous, 
cross bedded (200 to 300 dips), 
abundant shale partings. 

Petroliferous(#3) (5.4 net feet of oil showing in 9.3 ft. 
of core from 146.4-155.7 ft.) Oil 
occurs continuously in (coarse 
grained) sandstone pores from 146.4-
146.8 ft., from 146.9-148.3 ft., 
from 148.5-149.3 ft. and from 
149.4-151.6 ft. (Oil indicated 
throughout the total interval by both 
light tan stain andyellow 
fluorescence.) 

Sandstone(#9) Light gray, fine grained, ripple 
laminated, micaceous, interlaminated 
with 1-10 mm. thick dark gray shale 
(>70% sandstone). 



Depth lnterval(tt,) 

153.7-154.1 

154.1-154.7 

154. 7-155. 7 

155. 7-157.5 

157.5-164.5 

164.5-182.0 

182.0-183.2 

183.2-187.6 

187.6-197.9 
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Lithology Description 

Petroliferous(#4) Oil occurs continously from 151.8-
151.9 ft. in the pores of a thin coarse 
grained sandstone that has the same 
characteristic as the sand from 
146.4-151.6 ft. 

Sandstone(#1 O) Light gray, coarse grained, micaceous, 
cross bedded, abundant shale partings. 

Petroliferous(#5) Oil occurs in sandstone pores from 
153.9-154.1 ft. 

Sandstone(#11) Light gray, fine grained, ripple 
laminated, micaceous, interlaminated 
with 1-10 mm. thick dark gray shale 
(>70% sandstone). 

Sandstone(#12) Light gray, coarse grained, micaceous 
cross bedded, shale partings. 

Petroliferous(#6) Oil in sandstone pores from 154.7-
154.8 ft. and from 155.5-155.7 ft. 

Sandstone(#13) 

Shale(#11) 

Shale(#12) 

Shale(#13) 

Shale(#14) 

Shale(#15) 

Light gray ripple laminated, 
micaceous,interlaminated with 1-1 O 
mm. thick dark gray shate. 

Dark gray, (interlaminated with a 
very minor amount ( <10%) of 1-
5mm. thick ripple laminated light 
gray, micaceous sandstone. 

Light gray, micaceous, locally 
arenaceous. Tan siderite nodules occur 
from 176.7- 178.5 ft. 

Black, calcareous, fossiliferous 
(pyritized brachiopods). 

Light gray, micaceous, silty, contains 
tan siderite nodules. 

Dark gray, interlaminated with <20% 
light gray, 1-5 mm. thick micaceous, 
ripple laminated, slightly bioturbated 
sandstone which contains tan siderite 
nodules. 
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Depth lnterval(ft.) Lithology oescrlption 

197.9-212.0 Sandstone(#14) Light gray, 0.1-0.7 ft. thick beds of 
medium to coarse grained, 
argillaceous, micaceous, 
carbonaceous, nodular(sideritic) 
sandstone,interbedded with dark gray 
shale that is interlaminated with light 
gray 1-5 mm. thick micaceous, ripple 
laminated, slightly bioturbated 
sandstone (> 75% sandstone at top 
grading downward gradually to =50% 
sandstone at bottom). 

212.0-224.0 Shale(#16) Dark gray, interlaminated with light 
gray, 1-5 mm. thick micaceous, 
ripple laminated, slightly bioturbated 
sandstone (=50% sandstone at top 
grading downward gradually to 
<10% sandstone at 219.5 ft., grading 
downward further to 100% shale at 
224.0 ft. 

224.0-224. 7 Coal(#3) 

224.7-227.1 Missing core 

227.1-227.9 Sandstone(#15) Light gray, silty, slightly 
carbonaceous,argillaceous. 

227 .9-232.3 Sandstone(#16) Light gray, micaceous, argillaceous, 
cross bedded with ripple laminations 
at bottom. 

232.3-233.3 Shale(#17) Light gray, high clay content, 
numerous slickensides. Shale grades 
downward gradually in underlying 
sandstone. 

233.3-241.0 Sandstone(#17) Light gray, argillaceous, micaceous, 
very carbonaceous, interlaminated 
with dark gray shale. Shale 
percentage increases gradually 
downward to 100% at bottom. 

241.0-244.5 Shale(#18) Dark gray, grading downward 
gradually into black shale. 



Depth lnterval(ft.) 

244.5-255.5 

255.5-267.1 

267.1-310.8 

310.8-320.9 

320.9-322.1 

322.1-327.0 

327.0-328. 7 

328.7-331.4 

331.4-332.3 

332.3-333.6 

333.6-340.1 

340.1-349.5 

Lithology 

Shale(#19) 

Shale(#20) 

Sandstone(#18) 

Shale(#21) 

Shale(#22) 

Limestone(#5) 

Shale(#23) 

Shale(#24) 

Shale(#25) 

Shale(#26) 

Sandston.e(#19) 

Shale(#27) 
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Description 

Black, carbonaceous, numerous 
slickensides. Partially mineralized 
high angle fractures occur from 
245.5-246.0 ft. and from 247.5-
248.2 ft. 

Gray. Contact with underlying 
sandstone Is abrupt. 

Light gray to tan, micaceous, 
carbonaceous cross bedded (low angle 
at top, high angle in middle), ripple 
laminated at the bottom. 

Dark gray at top, grading gradually 
downward to black, organic rich, 
pyritic shale at bottom. A high angle 
fracture occurs at 317 .5 ft. 

Black, fossiliferous, very calcareous, 
grading gradually downward into 
u_nderlying limestone. 

Gray, dense, argillaceous, 
fossiliferous,grading in shale at 
bottom. 

Black, fossiliferous, very calcareous. 

Gray to green, high clay content, 
calcareous, numerous slickensides. 
Shale contains small limestone 
nodules. 

Black, fossiliferous, bioturbated. 
Shale contains small limestone nodules 
and green shale clasts. 

Green, high clay content, numerous 
slickensides, bioturbated. 

Gray, argillaceous, fine grained, 
· massive. Sandstone grades gradually 
downward into underlying shale. 

Dark gray, silty. Shale grades 
gradually downward into underlying 
black shale(The shale next to a 
vertical fracture from340.5-342.4 
ft. exhibits an unusual green 
zonation.) 



Pepth lntervalW.) Lithology 

349.5-356.1 Shale(#28) 
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oescrlptlon 

Black, organic rich, slightly 
fossiliferous(pyritized brachiopods). 
Shale contains both phosphate and 
pyrite nodules. Bottom 0.1 ft. is coal 
which is in abrupt contact with the 
underlying sandstone. 
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