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CHAPTER I 

THE RESEARCH PROBLEM 

1.1 Introduction 

Surveys of firms indicate two of the most important 

uses of standard costs are cost control and performance 

evaluation ([Caplan, 1971] and [Cress and Pettijohn, 

1985]). Actual results of operations are compared to the 

expected costs which are estimated using standard costs. 

The difference between the actual and expected cost is 

called a cost variance. When an actual cost exceeds (is 

less than) the expected cost, the resulting cost variance 

is unfavorable (favorable). 

A cost variance may be indicative of a correctable 

inefficiency in the underlying production process; the 

process is then considered as "out-of-control." Under a 

management by exception philosophy, attention is flagged to 

this process. However, a cost variance may also arise as a 

mere result of random fluctuation from an "in-control" 

process. If an investigation prompted by an unfavorable 

variance reveals that the process is indeed out-of-control, 

the source of inefficiency can be corrected. But if the 

investigation reveals that the process is actually in

control, the investigation cost is wasted. Therefore, the 
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manager needs a decision rule that enables him to 

distinguish those cost variances that warrant 

investigations from those that do not, developing such a 

rule is what constitutes the "cost variance investigation 

decision" or CVID problem. To formulate this problem 

statistically, an observed cost variance may come from 

either the in-control cost variance distribution or the 

out-of-control cost variance distribution, and the CVID 

involves determining from which distribution the observed 

variance comes. 

1.2 Brief Description of CVID Models 

2 

Kaplan [1982] discusses various models which could be 

used as an aid by managers to determine which cost 

variances to investigate. One such model is based on rules 

of thumb. Two examples of this approach are materiality 

significance and statistical significance. The materiality 

significance rule investigates all variances which exceed 

the standard by an arbitrarily fixed percentage, say 10 

percent. The statistical significance rule considers the 

variability of cost variances and recognizes some random 

fluctuation is expected. This rule investigates all 

variances which exceed the standard by a fixed number of 

standard deviations. A second model is based on control 

charts. The use of this model requires plotting the cost 

variances on a chart. Upper and lower statistical limits 

are placed on the chart. Control charts not only indicate 
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whether variances are statistically 'significant,' but they 

allow managers to see the pattern of variances. A third 

model is based on Bayesian statistics. An advantage of 

this model is that it incorporates the costs and benefits 

of investigation. A disadvantage is the extensive data 

required to implement the model. 

1.3 Distributional Assumptions 

of the Models 

All of the previously mentioned models except for 

materiality significance assume cost variances are normally 

distributed. Kaplan [1982) suggests the use of a nonnormal 

distribution when specific knowledge indicates variances 

are not normally distributed. While there is a lack of 

literature specifically addressing the normality issue, 

some authors ([Boer, 1984); [Kaplan, 1975] and [Luh, 1968]) 

have questioned the assumption of normality. Their 

objections are discussed in the literature review. 

1.4 Objectives of this Study 

Excepting the materiality significance rule, all other 

CVID models described require knowledge of the distribution 

properties of the cost variances. Since most models have 

usually assumed a normal distribution, it would be useful 

to investigate the sensitivity of the decision 

effectiveness of these models to the distribution 

properties assumed. If this investigation reveals that 



different distribution assumptions lead to different 

optimal rules, or if it reveals that a decision rule 

optimal under one distribution assumption can perform very 

poorly under other distribution assumptions, then firms 

should begin to determine the actual distribution forms of 

their variances. If the investigation reveals otherwise, 

it would serve as an useful formal justification for using 

the convenient assumption of normally distributed cost 

variances in CVID problems. 

Thus, the three primary objectives of the study are: 

(1) To examine the distribution properties of actual cost 
variances collected from industry. 

4 

(2) To develop a practical approach for modeling nonnormal 
cost-variance distributions. 

(3) To investigate how optimal decisions under various 
CVID models are affected by the nonnormality of cost 
variances. 

1.5 Organization of the Thesis 

Chapter II reviews the literature on CVID models, cost 

variances and distribution properties of costs. Actual 

cost variances obtained from a manufacturing firm are 

analyzed for normality in Chapter III. Alternative 

approaches for modeling nonnormal variances are discussed 

in the fourth chapter. Chapter V discusses the CVID models 

with which the effects of variances' nonnormality will be 

investigated. The simulation and computational 

methodologies used in this investigation are outlined in 

Chapter VI. Chapter VII presents the results of this 



thesis. Chapter VIII presents the summary and conclusions 

of this thesis. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Reviewed below are literatures on (1) CVID models and 

(2) distribution properties of costs and cost variances. 

2.1 CVID Models 

Kaplan [1975], in a review article, classified cost 

variance investigation models along two dimensions: (1) 

whether the decision was made on the basis of a single 

observation or multiple observations, and (2) whether or 

not both costs and benefits of investigation are 

incorporated in the model. For the first category, the 

single observation models are discussed first. One example 

of these models is the rule of investigating all 

unfavorable variances. Another example of these models is 

a decision rule which investigates all cost variances that 

exceed the standard by a fixed percentage. Statistical 

significance rules consider expected dispersion of the cost 

variances. The standard deviation is used as the measure 

of dispersion. Examples of such rules include models which 

investigate variances by a specified number of standard 

deviations, usually two or three. The advantage of these 

6 



single observation models is that they are simple to use. 

Unfortunately, these models determine the desision rule 

subjectively. 

7 

The cumulative sum procedure is an example of a CVID 

model which uses multiple observations. This approach, 

introduced by Page [1954], attempts to detect a shift in 

the mean of a process. This approach sums the differences 

between the observations and the target mean for a series 

of observations. If the process is in-control, over time 

the sum should follow a random walk with a mean of zero. A 

negative or positive drift indicates the mean of the 

process has shifted. A benefit of the cumulative sum 

procedure is that, ideally, it will detect this ''shift" in 

the mean of the process earlier than a mechanical 

statistical significance rule. However, none of these 

first category models consider the benefits and costs of 

investigation, nor do they include the costs of failing to 

correct an out-of-control process. These omissions are 

weaknesses of these models. 

The second category of CVID models considers costs and 

benefits of investigation. Bierman, Fouraker, and Jaedicke 

[1961], can be considered to be the founder of this model. 

According to their model, the probability, p, that an 

observation came from the in-control distribution is 

computed. This probability can be determined using the 

past history of the firm. The cost of an investigation, C, 

and the benefit from correcting an out-of-control 
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situation, L, must also be determined. An investigation is 

conducted if C < (1 - p) L. However, Dyckman (1969] 

criticized Bierman, Fouraker, and Jaedicke's [1961] model 

for ignoring all prior information. Experienced managers 

will have subjectively estimated the ratio of in-control 

observations to out-of-control observations and this 

information should be included in the decision model. 

Consequently, Dyckman (1969], Kaplan (1969], and Dittman 

and Prakash (1978 and 1979], improved Bierman, Fouraker, 

and Jaedicke's [1961] model by making use of prior 

observations and also including the costs and benefits of 

investigation in their decision model. These three models 

are discussed as follows. 

Dyckman [1969] developed a single-period Bayesian model. 

This model determines the probability (qi) that the process 

is in-control at the end of the period. The probability qi 

is determined as follows [Dyckman, 1969]: 

q. = g 
l. [ (1) 



where: 

g = probability that the process remains in
control at the end of the period given 
that it entered the period in-control 

= density function for observed cost variance x 
given x is from the in-control distribution 

t 2 = density function for observed cost variance x 
given x is from the out-of-control distribution 

qi-1 = probability the process is in-control at 
the end of period i-1 

q. = probability the process is in-control at 
l. the end of period i 

X = cost variance for period i 

If the probability the process is in-control (qi) 

is less than the "trigger" value, q~, an investigation 

should be made. . * . The calculat1.on of qn 1.s as follows: 

* 

9 

c 
qn = 1 - (2) 

where: 

gn n (J..L2 -J..L1) + :r:t~1 
J=l 

gj· 

(1-g) j (J..L2 -J..Ll) 

C = investigation cost 

g = probability that the process remains in-control 
at the end of the period given that it entered 
the period in-control 

n = number of months left in the year 

J..L 1 = mean of the in-control distribution 

J..L 2 = mean of the out-of-control distribution 
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In an extension of the above approach, Kaplan (1969] 

developed a multi-period model. An advantage of Kaplan's 

(1969] model over Dyckman's (1969] model is that the costs 

and benefits of future investigation decisions are 

considered in Kaplan's model. The probability of the 

process being in-control (qi) is determined the same as for 

Dyckman's [1969] model (equation 1 in section 2.1). The 

critical probability which triggers an investigation is 

found using a dynamic programming procedure. If the 

revised probability of the process being in-control (qi) is 

less than the critical probability, the process should be 

investigated. A characteristic of this model is that it 

results in CVIDs which minimize discounted future costs.1 

There are two cost equations developed. One equation is 

the sum of discounted future costs assuming an 

investigation is made in the current period. The second 

cost equation is the sum of discounted future costs 

assuming an investigation is not made in the current 

period. * The critical value, qn, is determined by 

finding the value which makes the two aforementioned cost 

equations equal in the following minimization: 

1 Future costs consist of two parts. The two parts 
are future investigation costs and future operating costs. 



where: 

c + I (x + v 1 (.,. x)) · n- g 
(g t 1 (x) + (1- g)f2 · (x))dx; 

I (x + vn-1 (T qx)) (qf1 (x) 
+ (1- q)f2 (x))dx 

c = investigation cost 

x = observed cost 

11 

( 3) 

g = probability that the process remains in-control 
at the end of the period given that it entered 
the period in-control 

= density function for observed cost x given x is 
from the in-control distribution 

t 2 = density function for observed cost x given x is 
from the out-of-control distribution 

.,. = Bayesian revision operator 

p = prior probability of being in-control 

= the value of having a probability q of being 
in-control next period with n periods left in 
the year 

Two assumptions may limit the applicability of both 

Dyckman's [1969] model and Kaplan's [1969] model. One 

assumption is that the process can be represented as a two 

state system. That is, the process is either in-control or 

out-of-control. A second assumption is that the process 

can always be returned to the in-control state. 

Dittman and Prakash [1978 and 1979] developed a 

Markovian approach to the CVID problem. This approach is 

similar to Kaplan's [1969] except that Dittman and Prakash 

determine a critical cost rather than a critical 
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probability. When the reported cost exceeds the critical 

cost, the process is investigated. One advantage of the 

Markovian approach is that it does not require dynamic 

programming, which is a requirement of Kaplan's [1969) 

approach. Thus, the Markovian approach is much easier and 

less costly to implement than the dynamic programming 

approach.2 A second advantage of the Markovian approach is 

that it does not require Bayesian updating of 

probabilities. Due to the two aforementioned advantages of 

the Markovian approach, it is a simpler model to 

operationalize than both the single-period and multiple-

period Bayesian models. When the actual cost exceeds the 

critical cost, the process is investigated. While the 

Markovian approach was developed using costs rather than 

cost variances, this approach can be applied to cost 

variances since cost variances are a linear transformation 

of actual costs. 

The critical cost is the value which minimizes the 

following expression [Dittman and Prakash, 1979]: 

[ ] 

2 The dynamic programming approach is very complex. 
Computer programming costs to set up and maintain this 
model would severely limit, if not eliminate, the use of 
this model. 

(4) 



where: 

x = observed cost 

g = probability that the process remains in
control at the end of the period given 
that it entered the period in-control 
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= density function for observed cost x given x is 
from the in-control distribution 

t 2 = density function for observed cost x given x is 
from the out-of-control distribution 

A = c + (1 - g) K - g (J.£2 - J.£ 1) 

B = g c 

c = investigation cost 

K = cost to correct the process 

J.£1 = mean of the in-control distribution 

J.£2 = mean of the out-of-control distribution 

* critical v = cost 

The expected cost saving per period equals J.£ 2 less the 

long run expected cost per period. Dittman and Prakash 

[1979] compared the cost savings3 of Kaplan's (1969] 

dynamic programming approach with the cost savings of the 

Markovian approach. The results of Dittman and Prakash 

[1979] indicate the lost cost savings from using the 

Markovian approach rather than the dynamic programming 

3 Cost savings are defined as J.£ 2 less long run 
expected cost per period. For example, assume J.£~ is equal 
to 20, and long-run expected expected costs are ~5.50 and 
$5.75 for the dynamic programming and Markovian control 
approaches, respectively. Expected cost savings per period 
are $14.50 and $14.25 for the dynamic programming and 
Mrkovian control approaches, respectively. The lost cost 
savings from using the Markovian approach would be $0.25. 
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approach are very small. If the costs of implementing4 

and maintaining the models were to be included in the 

analysis, undoubtedly the Markovian approach would prove to 

be more cost efficient than the dynamic programming 

approach. 

2.2 Evaluation of CVID Models 

The performance of various CVID models described above 

has been evaluated by Magee [1976] and Jacobs [1978] to 

determine whether a particular model is superior. 

Simulation was used by Magee [1976] to evaluate the 

performance of seven cost variance investigation rules. 

Performance was measured in terms of 'total cost,' which 

was defined as the sum of investigation costs and the 

'operating costs.' The investigation cost is defined as 

the cost necessary to investigate and, if necessary, bring 

the process back into the in-control state. Three 

investigation cost amounts ($10, $30, and $50) were used in 

the study. Operating costs were defined as the costs 

generated by the stochastic process. Six of the seven 

investigation rules ranged in degree of complexity from the 

simplest rule of investigating all unfavorable cost 

4 This assertion is made primarily on the basis of 
personal observation. The are numerous complexities 
involved in the computer programming required to use the 
dynamic programming model. The dynamic programming model 
requires many "calls" to various function routines and the 
use of many IMSL subroutines. The dynamic programming 
model would require much more programming time than the 
Markovian control model. 
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variances to Kaplan's [1969] dynamic programming approach. 

The seventh rule assumed perfect knowledge concerning the 

state of the cost process. This rule was used as a 

benchmark for evaluation of the other rules. The results 

indicated the most effective rule was Kaplan's [1969] 

dynamic programming approach. However, the difference 

between Kaplan's rule and the simple rule of investigating 

all cost variances which exceed the standard cost by more 

than two standard deviations was not large. 

Jacobs [1978] evaluated the performance of six 

decision models in a field experiment. Similar to Magee's 

[1976] study, the six decision models evaluated ranged in 

degree of complexity from a control chart to the dynamic 

programming approach. Effectiveness of the models was 

evaluated using two techniques. One evaluation technique 

was an analysis of the frequencies of type I and type II 

errors.5 A second evaluation technique was an analysis of 

decision costs incurred by the various models~ Included in 

decision costs were error costs (of type I and type II 

errors) and investigation costs. 

The results did not indicate that one particular model 

is consistently superior. As a group, the 

5 A type I error occurs when an in-control process is 
investigated and a type II error occurs when an out-of
control process is not investigated. 
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multi-observation models6 performed somewhat better than 

the single-observation models. Within the group of multi-

observation models, Dyckman's [1969] single-period Bayesian 

model and Kaplan's [1969] dynamic programming approach 

tended to give similar results. 

Jacob's [1978] results may not be comparable to other 

studies since the analysis was based on physical usages 

rather than dollar amounts. The CVID models described in 

Section 2.1 suggested making decisions based on cost dollar 

variances rather than usage quantity variances. It is 

unknown if the results of an analysis based on quantities 

can be generalized to costs. 

2.3 Distribution of Cost Variances 

An important assumption underlying all the CVID models 

described above is that cost variances are normally 

distributed. Luh [1968, p. 124], in discussing the use of 

statistical control techniques in deciding when to 

investigate cost variances, states, "the assumption of 

normal distribution of cost would appear to lack 

sound theoretical basis." Consequently, Luh [1968] 

proposes an alternative procedure called "controlled cost." 

This approach consists of first estimating a probability 

distribution of "controlled" (or in-control) costs. Then, 

6 Multi-observation models make use of prior 
observations. Single-period models do not make use of 
prior observations. Only the current observation is 
considered in making a decision. 
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a probability distribution of actual costs is obtained. To 

determine whether actual peformance is "in-control," the 

probability distribution of actual costs is compared with 

that of the controlled cost. Numerous theorems in 

mathematical statistics (Kendall and Stuart, 1969] may be 

used to test the hypothesis that the two samples are drawn 

from the same universe. 

Boer (1984, p. 54], in the most recent review article 

of CVID models noted that "no studies of the distribution 

of actual costs have been published in the accounting 

literature." The only study which attempted to examine the 

distribution properties of variances is the study of Jacobs 

and Lorek (1980]. They examined actual manufacturing data 

for normality and independence. However, instead of using 

dollar cost variances, they examined the distribution 

properties of usage quantities. The data they used 

consisted of actual daily and weekly usages of materials 

and utilities for several processes in a large grain 

processing firm. Nine processes were analyzed using daily 

data. Both skewness and kurtosis for seven of these daily 

processes were significantly different than what would be 

expected for a normal distribution. For the other two 

processes, either skewness or kurtosis was significantly 

different than what would be expected for a normal 

distribution. However, when weekly data were analyzed, the 

normality hypothesis was accepted for all seven processes. 



The results of this study indicate normality may be 

dependent upon the time between observations. 

18 

Boer [1984] provided two reasons why cost variances 

may not be normally distributed. The first reason is that 

the data are assumed to come from a constant system of 

chance causes. However, there is little likelihood that a 

plant or department remains stable from one period to the 

next. This instability may be due to different worker 

personalities, varying moods of supervisors, pressures from 

plant management and diffe~ences in material qualities. 

The second reason relates to the problems in 

specifying a frequency distribution for making 

probabilistic statements about costs because accountants 

work with sample means of costs, which will be normally 

distributed according to the central limit theorem. 

However, if the underlying population is not normally 

distributed, the estimated parameters may not be an 

accurate estimate of the corresponding population 

parameters. 

2.4 Summary and Conclusion 

The preceding review reveals a void in two aspects. 

First, there is a lack of empirical research on the 

distribution properties of actual dollar cost variances. 

Second, there is a lack of understanding as to whether the 

optimal CVID rule is sensitive to the distribution 

properties of cost variances. In summary, the effect of 



the distribution properties of cost variances on the CVID 

is unknown. The remainder of this thesis will address 

these two issues. 
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CHAPTER III 

ANALYSIS OF ACTUAL MANUFACTURING COST 

VARIANCES AND ESTIMATION 

OF PARAMETERS 

3.1 Introduction 

This chapter discusses methods for measuring and 

testing nonnormality and the use of these methods to 

evaluate the distribution properties of actual cost 

variances collected from a medium size manufacturing plant. 

3.2 Tests of Normality and 

Descriptive Statistics 

There are many statistical tests of normality (see 

[D'Agostino and Stephens, 1986 (ch. 9)] for an extensive 

review) . These tests of normality can be grouped into five 

categories: chi-square test, empirical distribution 

function (EDF) tests, moment tests, regression tests, and 

miscellaneous tests. The first four of these normality 

tests will be discussed and the reasons for using certain 

tests and not considering other tests will be indicated. 

Due to the large number of tests in the fifth category of 
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"miscellaneous" tests these will not be discussed in 

detail. 
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D'Agostino [1986] states the chi-square test should 

not be used in testing departures from normality when the 

full ungrouped sample of data is available because other 

tests are more powerful. In general, the chi-square test 

is not a powerful test of normality. Given the other four 

tests are more powerful than the chi-square, this study 

will not use the chi-square test to test for normality. 

Two of the most prominent tests based on the empirical 

distribution function are the Kolmogorov [1933]-Smirnov 

[1939] test and the Anderson-Darling A2 test [1954]. The 

Kolmogorov-Smirnov test has poor power in comparison to the 

other tests available [D'Agostino, 1986]. The Anderson

Darling A2 test is considered to be the most powerful of 

all the EDF tests but it has not been studied as 

extensively as the moments tests or the regression tests. 

Thus, it is unknown how the power of the Anderson-Darling 

A2 test compares with some of the other tests which have 

been studied and are considered to be the most powerful. 

Due to the reasons indicated above, neither the Kolmogorov

Smirnov test or the Anderson-Darling A2 test will be used 

in the present study. 

The third category of tests for normality is that of 

moment tests. Pearson [1895] observed that deviations from 

normality could be characterized by the standard third and 

fourth moments of a distribution. The third and fourth 
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moments, respectively, of a normal distribution are 

determined as follows: 

j{31 
E (X- H) 3 

0 (5) = = 
a3/2 

and 
IJ.)4 

{32 
E (X - 3 (6) = = 

a4 

The third standardized moment j{3 1 is a measure of the 

skewness of a distribution. If a distribution is symmetric 

about its mean ~' as is the normal distribution, j{3 1 = 0. 

Values of Jp 1 not equal to 0 indicate skewness and 

nonnormality. 

The fourth standardized moment {3 2 is a measure of the 

kurtosis or peakedness of a distribution. If the 

distributioh is normal, {3 2 = 3. Values of P2 not equal to 

3 indicate nonnormality. {3 2 also indicates tail thickness 

of a distribution. Values of {3 2 > 3 indicate distributions 

with "thicker" than normal tails, and values of {3 2 < 3 

indicate distributions with "thinner" than normal tails. 

Pearson (1895] suggested that the standardized third 

and fourth moments of the sample can be used to judge 

nonnormality. The third and fourth moments of the sample 

are determined as follows, respectively: 
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jbl [i~l (X. - X) 3] I [i~l (X. -
- 2]312 

(7) = X) 
1 1 

and 

b2 = [i~1 (Xi - X)4] I [i~1 (Xi - X) 2] 2 (8) 

Among the many moment tests of normality, some attempt 

to detect nonnormality due to skewness while others attempt 

to detect nonnormality due to kurtosis. The more powerful 

"omnibus tests" of normality are those which consider both 

skewness and kurtosis. In a recent review, D'Agostino 

[1986] indicated that the Shapiro-Wilk W test [Shapiro and 

Wilk, 1965] and the K; test [Bowman and Shenton, 1986] are 

two of the best omnibus tests available. The K2 is a s 

moment test of normality and the Shapiro-Wilk W test is a 

regression test normality. The K2 will be discussed first. s 

The K; test consists of calculating the sample 

skewness (Jb1 ) and kurtosis (b2 ). The couplet (jb1,b2) 

is plotted on the 90% or 95% contour chart (Figure 1) . If 

the plotted point is internal to the appropriate contour, 

the null hypothesis of normality is accepted. Using the 

data presented for Department 8 in Table II, an example of 

how to use the contour chart is presented. Department 8 

had 42 observations, skewness (jb1 ) of 0.87, and kurtosis 

(b2 ) of 4.10. When this couplet is plotted on the 95% 

contour chart (Figure 1 (b)), we find the point is outside 

of the contour for n = 42. Thus, the appropriate K; 
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decision is to reject the hypothesis of normality at the 5% 

significance level. The couplets (Jb1 ,b2 ) for the direct 

labor efficiency variance amounts for each department are 

plotted on the 90% and 95% coutour charts (Figures l(a) and 

1(b)). 

D'Agostino [1986] states the Bowman-Shenton K~ test is 

sensitive to a wide range of nonnormal populations. Since 

the K~ test is considered one of the best omnibus tests 

available [D'Agostino, 1986], it is one test which will be 

used in this study to evaluate the actual cost variance 

data for normality. 

The fourth category of tests for normality is that of 

regression tests. The Shapiro-Wilk W test is a regression 

test of normality. It is considered by Bowman and Shenton 

(1986] as one of the two best omnibus tests available. 

The Shapiro-Wilk w test statistic is determined as 

follows: 

[ i ~ J 
2 

1 a.x. 
1 1 

w = 
. £ [ X. - X J 2 
1 = 1 1 

The values (Xi) are ordered from smallest to largest. 

values are then multiplied by the weights ai. The ai 

values for n = 3 to 50 were given by Shapiro and Wilk 

[1965]. TheW value can be treated like an R2 value. 

Large values of W indicate normality and small values 

(9) 

The 

indicate nonnormality. The computed W test statistic is 



TABLE I 

CRITICAL VALUES FOR THE SHAPIRO-WILK 
TEST OF NORMALITY 

Significance level a 

Lower tail Upper tall 

n 0.01 0.02 o.o5 0.10 0.50 0.10 o.o5 0.02 0.01 

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000 
4 .687 .707 .748 .792 .935 .987 .992 .996 .997 
5 .686 .n5 .762 .8o6 .927 .979 .986 .991 .993 

6 0.713 
7 .730 
8 .749 
9 .764 

10 • 781 

11 0.792 
12 .805 
13 . 814 
14 .825 
15 • 835 

0.743 
.760 
.778 
.791 
.806 

0.817 
.828 
.837 
.846 
• 855 

0.788 
.803 
. 818 
.829 
.842 

0.850 
.859 
.866 
.874 
.881 

0.826 
.838 
.851 
.859 
. 869 

0.876 
.883 
.889 
.895 
.901 

0.927 
.928 
.932 
.935 
.938 

0.974 
.972 
.972 
.972 
.972 

0.981 
.979 
.978 
.978 
. 978 

0.986 0.989 
.985 • 988 
.984 . 987 
.984 .986 
.983 .986 

0.940 0.973 0.979 0.984 0.986 
.943 .973 .979 .984 .986 
. 945 . 974 • 979 .984 . 986 
.947 .975 .980 .984 .986 
.950 .975 .980 .984 .987 

16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 
.981 
.982 
.982 
.983 

0.985 
.985 
.986 
.986 
.986 

0.987 
.987 
.988 
.988 
.988 

17 .851 .869 .892 .910 .954 .977 
18 .858 .874 .897 .914 .956 .978 
19 .863 .879 .901 .917 .957 .978 
20 . 868 . 884 • 905 . 920 . 959 . 979 

21 o. 873 
22 • 878 
23 . 881 
24 . 884 
25 . 888 

0.888 
.892 
.895 
.898 
.901 

o. 908 o. 923 o. 960 o. 980 
.911 .926 .961 .980 
.914 .928 .962 .981 
.916 .930 .963 .981 
.918 .931 .964 .981 

0.983 
.984 
.984 
.984 
.985 

0.987 0.989 
.987 .989 
.987 .989 
. 987 . 989 
.988 .989 

26 o. 891 
27 . 894 
28 • 896 
29 • 898 
30 .900 

0.904 0.920 0.933 0.965 0.982 0.985 
.906 .923 .935 .965 .982 .985 
.908 .924 .936 .966 .982 .985 
• 910 . 926 . 937 . 966 . 982 • 985 
.912 .927 .939 .967 .983 .985 

o. 988 o. 989 
.988 .990 
.988 .990 
• 988 .990 
.988 .900 

31 0.902 0.914 0.929 0.940 0.967 0.983 
32 .904 .915 .930 .941 .968 .983 
33 .906 .917 .931 .942 .968 .983 
34 .908 .919 .933 .943 .969 .983 
35 • 910 • 920 . 934 • 944 • 969 • 984 

36 0.912 0.922 0.935 0.945 0.970 0.984 
37 .914 .924 .936 .946 .970 .984 
38 .916 .925 .938 .947 .971 .984 
39 .917 .927 .939 .948 .971 .984 
40 .919 .928 .940 .949 .972 .985 

0.986 
.986 
.986 
.986 
.986 

0.986 
.987 
.987 
.987 
.987 

o. 988 o. 990 
.988 .990 
.989 .990 
.989 .990 
.989 .990 

o. 989 o. 990 
.989 . 990 
. 989 .990 
.989 .991 
.989 .991 

41 0.920 
42 • 922 
43 • 923 
44 • 924 
45 .926 

0.929 
.930 
.932 
.933 
.934 

0.941 0.950 0.972 0.985 0.987 0.989 0.991 
.942 .951 .972 .985 .987 .989 .991 
.943 .951 .973 .985 .987 .990 .991 
.944 .952 .973 .985 .987 .990 .991 
.945 .953 .973 .985 .988 .990 .991 

46 o. 927 
47 • 928 
48 • 929 
49 • 929 
50 • 930 

0.935 
.936 
.937 
.937 
.938 

Source: 

0.945 0.953 0.974 
. 946 . 954 . 97 4 
.947 .954 .974 
.947 .955 .974 
.947 .955 .974 

0.985 
.985 
.985 
.985 
.985 

0.988 0.990 0.991 
.988 .990 .991 
. 988 . 990 • 991 
. 988 . 990 . 991 
.988 .990 .991 

(Shapiro-Wilk, 1965). 
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compared with the critical values of W (Table I), which 

were also given by Shapiro and Wilk [1965]. If theW test 

statistic (equation 9) is greater than or equal to the 

critical value from Table I, the null hypothesis of 

normality would be accepted. If the W test statistic is 

less than the critical value, we would conclude the data 

are not normally distributed. 

Many studies have investigated the sensitivity of the 

various tests of normality to determine if there is a 

single test that is optimal for all possible deviations 

from normality. These studies have investigated a wide 

range of nonnormal populations for a variety of sample 

sizes. The results of these studies indicate no one test 

is optimal for all possible deviations from normality. 

However, D'Agostino [1986] states that the Shapiro-Wilk w 

test is a very sensitive omnibus test and for many skewed 

populations clearly the most powerful test. For these 

reasons, the Shapiro-Wilk W test and the Bowman-Shenton K2 
s 

will be used to test the actual cost variance data for 

normality. 

3.3 Actual Cost Variances: 

Test for Normality 

Actual cost variances of a medium size manufacturing 

plant of a Fortune 500 company were collected from its 

fourteen production departments. The data consist of 

weekly standard direct labor costs and direct labor 
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efficiency variances. To investigate the distribution 

properties of these variance data, the two tests of 

normality are applied on the two sets of data, namely, the 

departmental direct labor efficiency variance amounts and 

the departmental direct labor efficiency variance expressed 

as a percentage of the departmental standard direct labor 

cost. 

Tables II and III present measures of skewness and 

kurtosis for each department's variances and the test 

statistics for testing the following hypotheses: 

The population from which the sample of 
direct labor efficiency variances was 
drawn is normally distributed. 

The population from which the sample of 
direct labor efficiency variances was 
drawn is not normally distributed. 



TABLE II 

SUMMARY STATISTICS AND RESULTS OF HYPOTHESES 
(based on direct labor efficiency variance amounts) 

Dept. n K2 Decision s 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

42 
42 
42 
42 
42 
42 
42 
42 
42 
42 
41 
42 
33 
34 

0.17 
- 0.38 

0.23 
- 0.24 

3.45 
- 0.68 
- 0.86 

0.87 
0.79 

- 0.16 
- 0.09 
- 0.89 
- 0.93 
- 0.90 

3.93 
3.00 
2.68 
2.18 

15.64 
3.92 
3.20 
4.10 
3.62 
2.15 
3.10 
5.17 
3.66 
3.85 

0.058 
0.448 
0.350 
0.340 
0.010 
0.404 
0.016 
0.084 
0.038 
0.367 
0.731 
0.096 
0.019 
0.049 

Accept 
Accept 
Accept 
Accept 
Reject 
Accept 
Accept 
Reject 
Reject 
Accept 
Accept 
Reject 
Reject 
Reject 

n = number of direct labor efficiency variance 
observations for the department 

X. = direct labor efficiency variance observation 
1 

NOTE: 

X = .f1 x. I n 
1= 1 

test of normality based on the Shapiro-Wilk W 
test (refer to Table I for critical values) 

decision based on a = 0.05 (refer to Figure 1 
for the contour charts) 

jb1 is the sample estimate of skewness, it 
equals o for a normal distribution. 

b 2 denotes kurtosis, it equals 3 for a 
normal distribution. 

29 
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TABLE Ili 

SUMMARY STATISTICS AND RESULTS OF HYPOTHESES 
(based on direct labor efficiency variance percentages) 

Dept. n jb1 b2 WOSL 
K2 

s Decision 

1 42 4.22 23.63 0.010 Reject H 
2 42 0.73 2.84 0.039 Accept Ho 
3 42 4.40 25.58 0.010 Reject Ho 
4 42 1.09 4.97 0.013 Reject Ho 
5 42 2.05 6.31 0.010 Reject Ho 
6 42 0.27 3.22 0.224 Accept Ho 
7 42 1.42 6.06 0.010 Reject Ho 
8 42 1.06 3.93 0.010 Reject Ho 
9 42 1.16 3.87 0.010 Reject Ho 

10 42 0.99 3.38 0.010 Reject Ho 
11 41 4.33 24.82 0.010 Reject Ho 
12 42 2.63 9.66 0.010 Reject Ho 
13 33 3.52 15.69 0.010 Reject Ho 
14 34 2.26 7.21 0.010 Reject Ho 

0 

n = number of direct labor efficiency variance 
observations for the department 

WOSL test of normality based on the Shapiro-Wilk w 
test (refer to Table I for critical values) 

K2 decision based on a = 0.05 (refer to Figure 1 s for the contour charts) 

While Tables II and III show that the skewness of all 

variance distributions deviates from o and their kurtosis 

deviates from 3, the purpose of the statistical normality 

tests is to find out whether these deviations are 

sufficiently large enough to imply that they are not due to 
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random sampling errors from a normal distribution, but that 

the underlying population is indeed nonnormal. 

Instead of providing the W test statistics, the WOSL 

(i.e., the observed significance level of theW test 

statistic) values are given in Tables II and III. WOSL can 

be determined by interpolating between the significance 

levels (a) given in Table I. 

The cost variance amounts (Table II) for Department 13 

are used to illustrate how the WOSL values are determined. 

The W test statistic, calculated using equation 9, for the 

cost variance amounts of Department 13 is 0.916. The 

number of observations (n) for Department 13 is 33. In 

Table I, for n = 33, the significance level (OSL) for a W 

test statistic of 0.916 is between 0.01 and 0.02 (W test 

statistic values of 0.906 and 0.917, respectively). The 

test is made in the lower tail because studies by Shapiro 

and Wilk [1968] suggested that when the sample is not from 

a normal distribution, low values o£ W will usually result. 

Interpolating between the WOSL values of 0.01 and 0.02 

results in a w08 L value of 0.019 for the W test statistic 

of 0.916. 

For the direct labor efficiency variance amounts, the 

test statistics in Table II show that, at the 0.05 

significance level, the W test rejects the normality 

hypothesis for variances for five departments (#5, 7, 9, 

13, 14), and the K2 test rejects this hypothesis for six s 

departments (#5, 8, 9, 12, 13, 14). At the 0.1 
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significance level, the w test will reject the normality 

hypothesis for 8 of the 14 departments. For the labor 

efficiency variances expressed as a percentage of the 

standard direct labor cost, the test statistics in Table 

III indicate that, at the 0.05 significance level, both 

tests reject the normality hypothesis for all but two 

departments (#2 and 6). While nobody should doubt that 

some variance distributions are normally distributed, it is 

evident from Tables II and III that there is little 

justification to assume that all variance distributions are 

normally distributed. 



CHAPTER IV 

APPROACHES FOR MODELING NONNORMAL 

COST VARIANCE DISTRIBUTIONS 

4.1 Introduction 

CVID models and analyses require the representation of 

variances by statistical distribution functions. This 

section briefly reviews the selection of versatile 

distribution functions capable of representing the kind of 

general nonnormal variance distributions observed in the 

preceding section. 

4.2 Systems of Distributions 

Ideally, a distribution function should be chosen by 

the following three-step iterative process: 

(1) Identify a family of distribution functions 
which appears appropriate. 

(2) Determine the parameters of the distribution 
function that best fits the empirical 
distribution on hand. 

(3) Decide whether an adequate fit has been 
provided by the chosen family of distribution 
functions. 

It is well recognized in the statistics literature 

that, in order to fit nonnormal empirical distributions of 

33 



general shapes, a family of four-parameter distribution 

functions has to be used. This fitting process will be 

illustrated in Section 4.4 with an example. Many four

parameter families of distributions have been developed, 

one may refer to Kendall and Stuart [1969] for the theory 

of four-parameter distribution functions and to Schmeiser 

[1977] for a convenient compendium of available four

parameter families. 
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Among the many four-parameter families available, this 

study will use primarily the Pearson family to represent 

the nonnormal variance distributions. For some 

simulations, the Johnson family may also be used. The 

choice of these two distributions is justified in the 

following section and Section 4.4. 

4.3 Merits of the Pearson 

and Johnson Systems 

The Pearson and Johnson Systems are used in this study 

based on the following four criteria. First, these two 

systems can cover the entire possible area of skewness

kurtosis combinations. The skewness-kurtosis diagram in 

Figure 2 shows that, except for skewness-kurtosis 

combinations in the shaded "impossible area," an empirical 

distribution can have any skewness-kurtosis combination. 

The limited set of skewness-kurtosis combinations that can 

be represented by two and three-parameter distribution 

functions such as the normal, uniform, gamma and lognormal 
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Source: (Pearson and Hartley, 1970). 

Figure 2. Skewness-Kurtosis Diagram 
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are depicted as points or lines in Figure 2. Only four

parameter distributions can possibly cover "areas" of 

skewness-kurtosis combinations, but not all four-parameter 

distributions can cover the entire possible area of 

skewness-kurtosis combinations depicted in Figure 2. The 

Pearson family consists of three "main" types (Types I, VI 

and IV) of distribution functions, and as shown in Figure 

2, together these three functions cover the entire possible 

area of skewness-kurtosis combinations. Figure 3 shows 

that, between the s8 and Su members of the Johnson family, 

the entire area of possible skewness-kurtosis combinations 

is also covered. 

The second criterion used to select a distribution 

family is the ease of fitting. This criterion means it 

should be reasonably easy to determine the parameters of 

the distribution function that provides the best fit to the 

empirical distribution under consideration. Given the 

mean, variance, skewness and kurtosis of an empirical 

distribution, convenient closed-form formulas are available 

for determining the parameters of the fitting Pearson 

function [Elderton and Johnson, 1969]. Although similar 

closed-form formulas are unavailable for the Johnson 

family, tables [Pearson and Hartley, 1972] and subroutines 

are available to perform the same task. These tables and 

subroutines are not as convenient as the formulas available 

for the Pearson family. 



The third criterion used is the ease of generating 

random variates from the distribution function. This 

criterion is important since simulation will be used in 

this study and values of cost variances have to be 

generated randomly by a computer. Random variates from 

Johnson distributions can be very easily and economically 

generated, so can variates from the type I Pearson 

distribution. Variates from types IV and VI Pearson 

distributions cannot be easily generated, therefore a 

Johnson function will be used for a variance distribution 

whose skewness-kurtosis combination falls in the types IV 

or VI area (see Figure 2). 

The final selection criterion used is "popularity." 
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The Pearson and Johnson families are the two oldest four

parameter systems of distribution functions, and have been 

widely used. In the accounting literature, applications of 

the Pearson distributions have been illustrated by Liao 

[1975] and Kottas, Lau and Lau (1978]. 

4.4 Selecting a Distribution 

The direct labor efficiency variance amounts of 

Department 14 (see Table II) will be used to select a 

distribution for the study. A histogram of the cost 

variance data is presented in Figure 4. The skewness and 

kurtosis of the sample data were calculated using equations 

7 and 8 of Section 3.2, respectively. Skewness was - 0.90 

and kurtosis was 3.85. The sample mean was $439 and the 
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standard deviation was $751. Both tests of normality 

(discussed in Section 3.2) indicate the cost variance 

amounts of Department 14 are not normally distributed. 
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The following three steps will be used to identify the 

appropriate distribution for this study. The first step is 

to identify a family of distribution functions which 

appears appropriate. Based on the histogram presented in 

Figure 4 and the discussion of Section 4.3, the Pearson 

family of distributions appears appropriate. The histogram 

shows the data are negatively skewed. We find this 

particular skewness-kurtosis combination (-0.90, 3.85) 

falls within the beta area of Figure 2. Thus, of all the 

distributions, the beta distribution is selected as the 

initial candidate. 

The second step is to determine the parameters of the 

distribution function that best fits the empirical 

distribution on hand. There are two methods to use for 

determining the parameters of the distribution function. 

One method is called maximum likelihood. This procedure 

dictates one should examine the likelihood function of the 

sample values and take as estimates of the unknown 

parameters those values that maximize this likelihood 

function [Larson, 1982]. The maximum likelihood method is 

generally recognized as the better method for fitting a 

distribution but it is much more difficult to 

operationalize than the second method, the method of 

moments. Thus, for this study, the method of moments will 
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be used to determine the parameters of the distribution 

function that best fits the empirical distribution on hand. 

The method of moments uses the first four sample 

moments of the data set to estimate the parameters of the 

assumed population. The first four moments are determined 

as follows: 

J.l. = 1 

"'2 = 

J.J,3 = 

J.l.4 = 

where: 

X = .~ 1=1 x. 1 I n 

[i~1 (X. -1 
x) 2] 

[i~1 (X. -1 x> 3] 

[i~1 (Xi - X) 4] 

X = .~1 x. I n 1= 1 

I n 

I n 

I n 

n = number of direct labor efficiency variance 
observations for the department 

(10) 

(11) 

(12) 

(13) 

x. = direct labor efficiency variance observation 
1 

Relative measures of skewness (Jfi1 ) and kurtosis (fi2 ) 

can be determined using the first four moments. The 

measures are as follows: 

Jp1 
J.l.3 

= 
(JJ. )312 

2 

(14) 

p2 
J.l.4 

= 2 
(JJ.2) 

(15) 
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The parameters of the beta distribution function, a, 

b, p, and q are determined as follows [Elderton and 

Johnson, 1969]: 

Compute r = 6(P2-P1-1)/(6+3P1-2P2) 

w = j(r+2)2p1+16(r+1) 

(16) 

p,q = r/2[1±(r+2)JP1/w] 

(q>p if P1>0, p~q otherwise) 

a= ~ 1-pJ~2w/[2(p+q)] 

b = a+J~2w;2 

(17) 

(18) 

(19) 

Using the sample data of Department 14 in the above 

equations results in the following values for a, b, p, and 

q: 

a = - 7212.40 
b = 1748.06 
p = 14.32 
q = 2.45 

The "a" and "b" values represent the lower and upper 

bounds of the beta distribution which have been fit to the 

sample data. The "p" and "q" values represent shape 

parameters of the beta distribution. Figure 5 includes a 

histogram of the sample data (from Figure 4) and the beta 

probability function which has been fit to the data. 

The third step in choosing a distribution function is 

to decide whether an adequate fit has been provided by the 

chosen distribution family. The chi-square test will be 

used to determine whether the selected beta distribution 

adequately fits the sample data. The chi-square test is 

used to test the following hypotheses: 
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The beta distribution adequately fits 
the empirical data. 

The beta distribution does not 
adequately fit the empirical data. 
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The chi-square test consists of dividing the range of 

the observed values into a number of intervals. The cost 

variance amounts ranged from $-7200 to $2000. Seven 

intervals were used. The actual frequency and expected 

frequency for each interval is determined. The actual 

frequency is determined by simply counting the number of 

observations in each interval. The expected frequency is 

determined by taking the probability of an observation 

being in the interval times the total number of 

observations. The value of the chi-square test statistic 

is computed as follows: 

(Actual Frequency - Expected Frequency)2 
( 20) 

Expected Frequency 

[ Actual Expected ]2 I"" • 

Frequency Frequency 
Actual Expected 

Interval Freq. Freq. Expected Frequency 

1501 to 2000 1 0.97 0.0009 
1001 to 1500 7 7.64 0.0536 

501 to 1000 11 9.56 0.2169 
1 to 500 7 7.37 0.0186 

-499 to 0 4 4.49 0.0535 
-999 to -500 1 2.32 0.7510 

-7200 to -1000 2 1.65 1.1045 
34 34.00 2.1990 
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The chi-square test statistic for this illustration is 

2.1990. The degrees of freedom for this test is the number 

of intervals minus the number of restrictions placed upon 

the data. Seven intervals were used in computing the chi

square test statistic and there were four restrictions as 

the first four moments were specified. Thus, the degrees 

of freedom for the chi-square test are three. The critical 

value for the chi-square test with a equal to 0.05 and 

three degrees of freedom is 7.815. Since the computed test 

statistic is less than the critical value, the chi-square 

test suggests the beta distribution adequately fits the 

sample data of Department 14. 

The fitting procedure for the empirical data examined 

above indicates, of all the nonnormal distributions, the 

beta distribution seems to be the appropriate distribution 

to use for modeling the Department 14 direct labor 

efficiency variance amounts. If a similar fitting 

procedure is applied to other departments' direct labor 

efficiency variance data, other distribution functions may 

be selected. 

One of the major questions of interest in this study 

is how distribution assumptions affect cost variance 

investigation decisions. The normal distribution is 

symmetrical around its mean. The density function for the 

normal distribution is as follows: 
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1 2 2 
-(x-J..£) 1 2a 

f(x) = e ( 21) 
a j211' 

where: 

x = observation 

J.1. = mean of the distribution 

a = standard deviation of the distribution 

The nonnormal distribuion used in this study is the 

beta distribution. The density function for the beta 

distribution is as follows: 

f (X) = [ K · (X-A) a-1 (B-x) .B-1 J (22) 

where: 

K = [ r(a+.B)/r(a)/r(.B)/(B-A) (a+.B-1 ) J 

X = observation 

a = parameter of the beta distribution 

.B = parameter of the beta distribution 

A = lower bound of the beta distribution 

B = upper bound of the beta distribution 

As indicated above, the density functions for the two 

distributions are different. Thus, if a decision rule 

requires a density function calculation the distribution 

assumption becomes critical. Since the density functions 

are different the decision resulting from the use of a 

decision rule is dependent upon the distribution 
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assumption. An example of different distribution 

assumptions affecting decisions is presented in Chapter 6. 

4. 5 Summary 

This chapter discussed an approach which could be used 

to model nonnormal cost variance distributions. The three

step process for choosing a distribution function was 

illustrated using the sample data of Department 14. The 

initial data analysis indicated a Pearson family 

distribution function, the beta distribution, was an 

initial candidate which could be used to model the 

nonnormal cost variance data of Department 14. The 

required parameters for using the beta distribution were 

calculated. A chi-square test indicated the beta 

distribution adequately fit the empirical data of 

Deepartment 14. Since the modeling in the remaining 

sections of the thesis uses the parameters of the 

Department 14 data, the beta distribution appears to be the 

appropriate distribution to use in this study. Thus, 

Chapter V discusses the CVID models which will be modeled 

using the beta distribution. 



CHAPTER V 

CVID RULES AND MODELS TO BE INVESTIGATED 

5.1 Introduction 

Various CVID models to aid managers in this decision 

have been proposed in the literature (see Chapter II for a 

review of these models). This study will investigate the 

effect of cost variances' nonnormality on the performance 

of the seven CVID rules considered by Magee [1976]. In 

addition, the Markovian control model proposed by Dittman 

and Prakash [1978] will also be evaluated. 

5.2 Rules Included in Magee's Study 

Magee (1976] investigated the performance of the 

following seven CVID decision rules using simulation: 
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(1) Investigate all unfavorable cost variances. 
(2) Investigate all cost variances that exceed the 

standard by 10 percent. 
(3) Investigate all cost variances that exceed the 

standard by at least one standard deviation. 
(4) Investigate all cost variances that exceed the 

standard by at least two standard deviations. 
(5) Using the cost variance observation and 

Bayesian revision, find the probability the 
process is in control at the end of the 
period. If this probability is less than a 
predetermined critical value, an 
investigation is signalled. This is the 
model developed by Dyckman [1969]. 

(6) This rule is similar to rule 5 except the 
critical value is found using a dynamic 
programming procedure. This is the model 
developed by Kaplan [1969]. 

(7) This rule assumes perfect knowledge of the true 
state. It is used as a benchmark for 
evaluating the performance of the other 
rules. 
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In the simulation analyses, Magee [1976] used normally 

distributed cost variances. The criterion is to minimize 

'total costs,' defined as the sum of investigation costs 

and 'operating costs' (the cost generated by the random 

process). Magee's [1976] results indicate that, of all the 

rules considered, the investigation rule based on perfect 

knowledge (number 7) had the lowest average total cost. Of 

the first six decision rules under uncertainty Kaplan's 

[1969] dynamic programming approach (number 6) resulted in 

the least total costs. However, the difference between 

this and the much simpler rule of investigating all cost 

variances exceeding the standard by two standard deviations 

is not large. 

The results of Magee's [1976] study also indicate, for 

all decision rules, average total costs decrease as the 



50 

transition probability increases. This result seems 

reasonable. When the transition probability increases, 

there is a larger probability the process will be in the 

in-control state at the end of the period. Thus, with more 

cost variances from the in-control distribution, we would 

expect lower decision costs. 

Magee (1976] used three different investigation cost 

amounts in his study. The effect of the amount of the 

investigation cost on average total costs appears to depend 

upon the decision rule. For the first three decision rules 

(all unfavorable, 10%, and 1a), average total costs always 

increase as the investigation cost increases. For decision 

rules four, five, and six, average total costs usually 

decrease as the investigation cost increases.? 

5.3 Dittman-Prakash's Model 

Subsequent to Magee's (1976] study, Dittman and 

Prakash [1978 and 1979] developed a Markovian approach to 

the CVID problem. This approach is similar to Kaplan's 

[1969] except that Dittman and Prakash determine a critical 

cost rather than a critical probability. When the reported 

cost exceeds the critical cost, the process is 

investigated. One advantage of the Markovian approach is 

that it does not require dynamic programming, which is a 

requirement of Kaplan's (1969] approach. A second 

7 Magee [1976] did not provide an explanation for the 
cost relationships mentioned. 
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advantage of the Markovian approach is that it does not 

require Bayesian updating of probabilities. Due to the two 

aforementioned advantages of the Markovian approach, it is 

a simpler model to operationalize than both the single-

period and multiple-period Bayesian models. When the 

actual cost exceeds the critical cost, the process is 

investigated. While the Markovian approach was developed 

using costs rather than cost variances, this approach can 

be applied to cost variances since cost variances are a 

linear transformation of actual costs. 

The critical cost variance is the value which 

minimizes the following expression [Dittman and Prakash, 

1979]: 

1 - f (X) 
2 ] (23) 



where: 

x = observed cost variance 

g = probability that the process remains in
control at the end of the period given 
that it entered the period in-control 

= density function for observed cost variance x 
given x is from the in-control distribution 

= density function for observed cost variance x 
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f2 
given x is from the out-of-control distribution 

A = c + (1 - g) K - g (J..I.2 - J..l.1) 

B = g c 

c = investigation cost 

K = cost to correct the process 

J..l.1 = mean of the in-control distribution 

J..l.2 = mean of the out-of-control distribution 

* critical v = cost 

When the reported cost variance exceeds this critical cost 

variance, the process is investigated. 

Since the Dittman and Prakash [1978 and 1979] 

Markovian approach has never been compared with the other 

CVID models, it would be worthwhile to examine its 

performance as compared to those CVID models used by Magee 

[1976]. Thus, in this study, eight CVID models will be 

first compared using normally distributed cost variances. 

Subsequently, the performance of these CVID models will be 

investigated under situations where the cost variances are 

nonnormal and have various skewness-kurtosis combinations. 



The reason for examining this second aspect will be 

discussed in the next chapter. 
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CHAPTER VI 

ANALYSES OF ALTERNATIVE COST VARIANCE 

INVESTIGATION MODELS WITH 

NONNORMALITY: AN 

ILLUSTRATION 

6.1 Introduction 

The purpose of this section is to illustrate the 

effects of assuming improper distribution properties on the 

cost variance investigation decision. 

6.2 Single-Period Bayesian Model 

The single-period Bayesian model [Dyckman, 1969] is a 

two state (in-control, out-of-control), two action 

(investigate, do not investigate), single-period model. 

There is Bayesian updating of the probability of being in 

either state. Given a cost variance observation, x, at the 

end of period i, the posterior state probability of x 

representing an out of control variance can be determined 

by applying Bayes' theorem. 

The probability density functions for normal and 

nonnormal distributions are different. This difference 
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could result in different posterior state probabilities 

(qis) leading to different decisions and different decision 

costs. This is illustrated using normal and nonnormal 

distributions in the following example. 

The formulas of Chapter II will be used in this 

example. Assume the following parameters: 

~1 = 0 
~2 = 20 

c = 30 
g = .9 
K = 0 

Assume at the end of period one (n=11) a cost variance 

of $3.21 is observed. Chapter IV indicated the cost 

variances were nonnormally distributed and could be fit to 

a beta distribution. To compute a posterior probability of 

the cost variance being from the in-control distribution, 

the following beta density functions would be used: 

[ a-1 fi-1 l K· (x-A) (B-x) 
f1(x) 

= (24) 

f2(x) 
[ L . 

a-1 fi-1 l (x-C) (D-x) 

where: 
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K = [ 
a+P-1) 

r(a+P)/r(a)jr(P)/(B-A) ] 

L = [ 
a+P-1) 

r(a+P)/r(a)jr(P)/(C-D) ] 
x = observed cost variance 

a = parameter of the beta distribution 

p = parameter of the beta distribution 

A = lower bound of the in-control beta distribution 

B = upper bound of the in-control beta distribution 

c = lower bound of the out-of-control beta 
distribution 

D = upper bound of the out-of-control beta 
distribution 

Solving equation 24 results in a likelihood ratio of 0.454. 

Using this likelihood ratio (f1 (x)/f2 (x)) in the Bayesian 

model (equation 25) results in a posterior probability 

which is determined as follows: 

q. = g 
~ [ ] ( 25) 



where: 

g = probability that the process remains in
control at the end of the period given 
that it entered the period in-control 

= density function for observed cost variance x 
given x is from the in-control distribution 
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t 2 = density function for observed cost variance x 
given x is from the out-of-control distribution 

q. 
l. 

= probability the process is in-control at 
the end of period i-1 

= probability the process is in-control at 
the end of period i 

x = cost variance for period i 

(qi) of 0.857. With n being equal to eleven, the following 

* equation (24) results in a probability of 0.757 for qn: 

where: 

* c 
qn = 1 -

gn n (f..£2-f..£1) + r:~1 gj· 

l J=1 

(1-g) j (f..£2-f..£1) 

( 26) 

c = investigation cost 

g = probability that the process remains in-control 
at the end of the period given that it entered 
the period in-control 

n = number of months left in the year 

f..£1 = mean of the in-control distribution 

f..£ 2 = mean of the out-of-control distribution 

Since q~ is less than qi the cost variance would not be 

investigated. 
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Alternatively, instead of using the beta 

distribution, a normal distribution is used. The density 

functions t 1 (x) and t 2 (x) are determined using the 

following formulas: 

1 2 2 
t 1 (x) -(x-~ ) I 2a 

a j2~ e IN 

= 
1 2 2 

f 2 (x) a j2~ e -(x-~OUT) I 2a 

where: 

x = observed cost variance 

a = standard deviation of the distribution 

~IN = mean of the in-control distribution 

~OUT = mean of the out-of-control distribution 

Solving the preceding equation results in a likelihood 

ratio of 0.712. Using this likelihood ratio in the 

Bayesian model results in a posterior probability (q.) 
1 

value of 0.834. * . qn 1s the same as for the beta 

distribution, 0.757. * As with the beta distribution, qn 

is less than qi and the cost variance would not be 

investigated. For the first period, the distributional 

assumptions did not have an effect on the decision. 

Assume the cost variance at the end of the second 

period (n = 10) is $14.00. If the beta distribution is 

assumed, the likelihood ratio equals 0.709, q. equals 
1 

* . * . 0.805, and qn equals 0.744. S1nce qn 1s less than qi 

the cost variance would not be investigated. If it is 

assumed the cost variances are normally distributed the 

(27) 



likelihood ratio equals 0.122 and qi equals 0.724. 

* Since qn (0.744) is greater than qi the cost variance 

would be investigated and investigation costs of $30 

would be incurred. This example indicates distribution 

assumptions do affect decisions and decision costs. The 
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reason is because the density functions are dependent upon 

the type of distribution assumed. The result was that the 

different distribution assumptions resulted in different 

decisions for the second period. The next section 

discusses the simulation analyses which will be used to 

investigate how the various CVID models are affected when 

an incorrect assumption of normality is made. 

6.3 Simulation Analyses 

To perform the simulation analyses, IMSL8 will be used 

to generate random numbers from two (in-control and out-of-

control) nonnormal distributions. The decisions and 

decision costs for each decision rule will be evaluated 

twice. For each decision rule the cost variances are first 

assumed to be normally distributed. Subsequently the 

correct nonnormal distributions of the cost variances are 

then used. 

A distribution which can be fitted to the desired 

parameters must be selected. Using the criteria discussed 

8 IMSL refers to International Mathematical and 
Statistical Library. This software consists of fortran 
subroutines for mathematical and statistical analysis. 
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in Chapter IV resulted in the beta distribution being used 

to generate random numbers for the nonnormal distributions. 

Table IV presents one set of parameters used in the 

simulations. Since the present study is investigating the 

effect of distributional properties of cost variances, the 

parameters are for the in and out-of-control cost variance 

distributions, not the cost distributions. The mean and 

standard deviation of both (beta and normal) in-control 

distributions are zero and 20, respectively. The mean and 

standard deviation of both out-of-control distributions are 

20. The set of nonnormal distributions has skewness of 

negative 0.90 and kurtosis of 4.00. The skewness and 

kurtosis of the normal distributions are zero and 3.00, 

respectively. In the studies of Magee [1976] and Dittman 

and Prakash [1979] the investigation costs used were equal 

to a fixed amount for each decision. This study will also 

assume investigation costs to be constant. As in Magee's 

[1976] study, three different levels of investigation costs 

will be examined. Magee (1976] used two means for the out-

of-control distribution and three transition probabilities. 

Similarly, this study will also investigate two different 

means for the out-of-control distribution and three 

different transition probabilities. 
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TABLE IV 

PARAMETERS USED IN SIMULATIONS 

Beta Distributions 

In Control Out of Control 

J1. = 0.00 J1. = 20.00 
a = 20.00 a = 20.00 

jb1 = 0.90 jb1 = 0.90 
b2 = 4.00 b2 = 4.00 

Normal Distributions 

In Control out of control 

J1. = 0.00 J1. = 20.00 
a = 20.00 a = 20.00 

jb1 = 0.00 jb1 = 0.00 
b2 = 3.00 b2 = 3.00 

As illustrated in the numerical example, the 

distribution properties of cost variances affect the cost 

variance investigation decisions and the amount of decision 

costs incurred. This study intends to use simulation to 

examine how the seven9 CVID models are affected by using 

incorrect distribution assumptions. Furthermore, this study 

will also examine the sensitivity of the CVID models to 

9 Preliminary analysis indicated there was not 
significant differences in decision costs between Kaplan's 
[1969] dynamic programming approach and the Markovian 
control model [Dittman and Prakash, 1979]. Thus, the 
dynamic programming approach will not be considered in any 
further analysis. 
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different measures of skewness and standard deviations of 

the distributions. 

6.4 Simulation Results 

Table V indicates the eight CVID rules and cost 

variance distribution assumptions which were examined for 

sensitivity to distribution properties. Tables VI and VII 

present the amount of the decision costs and the rank 

(based on decision costs) of each decision rule. The 

decision costs are defined as the sum of the cost variance 

amounts generated by the random process and costs of 

investigations. Similar to Magee's [1976] study, for each 

decision model, twelve monthly decision costs are 

accumulated. To consider the inherent variability of the 

simulation process, the 12-months' accumulated costs were 

then simulated 200 times. An average of these decision 

costs was then obtained. Thus, the results presented in 

Tables VI and VII are the average decision costs over 200 

12-month years. 

The parameters for Tables VI and VII are the same as 

those used in Magee's [1976] study for cases 17 and 18, 

respectively. The parameters are as follows: 

Parameters for Case 17 Parameters for Case 18 

~1 = 0.00 ~1 = 0.00 
~2 = 50.00 ~2 = 50.00 
c = 60.00 c = 60.00 
g = 0.70 g = 0.90 
K = 0.00 K = 0.00 
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Tables VI and VII present the decision costs for each 

decision rule under three different sets of assumptions. 

Included is the rank of each decision rule. The rank is 

based on average total cost, with the least costly decision 

rule being assigned a rank of one. Three conclusions are 

drawn from the results presented in Tables VI and VII. 

First, the more complex CVID models result in lower 

decision costs than the simpler models. The single-period 

Bayesian model and the Markovian control model consistently 

outperformed the other models. A second conclusion is that 

the assumption of distribution properties does affect 

decision costs. This result is easily seen by comparing 

the decision costs for the three different sets of 

assumptions for each decision rule. More specifically, 

when we compare the decision costs of the single-period 

Bayesian model and the Markovian control model, we find an 

incorrect assumption of normality results in slightly 

greater decision costs than the correct assumption of 

nonnormality. A third conclusion reached from this 

analysis is that the rank of the decision rule can be 

affected by the distribution properties. 

Since the results of Tables VI and VII indicate 

distribution properties can affect decision costs of the 

various CVID models, a more extensive analysis is presented 

in Chapter VII. 



TABLE V 

DECISION RULES AND ASSUMPTIONS REGARDING DISTRIBUTIONS 

Assumed Distribution 

Actual Distribution 

Decision Rule 

1. Investigate all unfavorable 
variances. 

2. Investigate all cost 
variances that exceed 
the standard by 10 
percent. 

3. Investigate all cost 
variances that exceed the 
standard by at least one 
standard deviation. 

4. Investigate all cost 
variances that exceed the 
standard by at least two 
standard deviations. 

5. Single-period Bayesian model. 

6. Markovian control model. 

7. Perfect knowledge 
(This rule will serve as a 
benchmark for the evaluation 
of the other decision 
rules). 

Magee 
study 

Normal 

Normal 

Nonnormal 

Nonnormal 

Gribbin 
study 

Normal 

Nonnormal 
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TABLE VI 

AVERAGE TOTAL COST* AND RANK** FOR CASE 
17 OVER 200 12-MONTH PERIODS 

(Using simulation) 

Assumed Distribution 

Actual Distribution 

Decision Rule 

1. Investigate all unfavorable 
variances. 

2. Investigate all cost 
variances that exceed 
the standard by 10 
percent. 

3. Investigate all cost 
variances that exceed the 
standard by at least one 
standard deviation. 

Magee 
Study 

Normal 

Normal 

644 (7) 

551 ( 6) 

475 (5) 

4. Investigate all cost 434 (4) 
variances that exceed the 
standard by at least two 
standard deviations. 

5. Single-period Bayesian model. 415 (2) 

6. Markovian control model. 

7. Perfect knowledge 

430 (3) 

4 07 ( 1) 

Nonnormal 

Nonnormal 

668 (7) 

562 (6) 

461 (5) 

4 03 ( 4) 

378 (1) 

397 ( 3) 

388 (2) 

Gribbin 
Study 

Normal 

Nonnormal 

668 (7) 

562 (6) 

461 (5) 

403 (4) 

383 (1) 

4 00 ( 3) 

3 88 ( 2) 

* Total cost includes cost variances plus costs of investigations. Figures 
are rounded to nearest dollar. 

** Rank is based on average total cost with the decision rule having the 
minimum average total cost being assigned a rank of 1. 
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TABLE VII 

AVERAGE TOTAL COST* AND RANK** FOR 
18 OVER 200 12-MONTH PERIODS 

(Using Simulation) 

Assumed Distribution 

Actual Distribution 

Decision Rule 

1. Investigate all unfavorable 
variances. 

2. Investigate all cost 
variances that exceed 
the standard by 10 
percent. 

3. Investigate all cost 
variances that exceed the 
standard by at least one 
standard deviation. 

Magee 
Study 

Normal 

Normal 

446 (7) 

323 (6) 

229 (5) 

4. Investigate all cost 151 (2) 
variances that exceed the 
standard by at least two 
standard deviations. 

5. Single-period Bayesian model. 161 (3) 

6. Markovian control model. 166 (4) 

7. Perfect knowledge 127 (1) 

Nonnormal 

Nonnormal 

487 (7) 

345 (6) 

219 (5) 

138 (4) 

13 2 ( 2) 

13 6 ( 3) 

125 (1) 

CASE 

Gribbin 
study 

Normal 

Nonnormal 

487 (7) 

345 (6) 

219 ( 5) 

138 (3) 

141 ( 4) 

137 (2) 

125 (1) 

* Total cost includes cost variances plus costs of investigations. Figures 
are rounded to nearest dollar. 

** Rank is based on average total cost with the decision rule having the 
minimum average total cost being assigned a rank of 1. 
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CHAPTER VII 

RESULTS OF STUDY 

7.1 Introduction 

The simulation analysis was performed using IMSL. The 

parameters presented in Table IV of Section 6.3 were used 

for the simulation analysis. Tables VIII through IX 

present the results for each decision rule. Estimated for 

each of the eighteen cases were total costs (includes cost 

variances plus costs of investigations) and the standard 

deviation of total costs. This study used the same time 

interval and period as Magee (1976], two hundred twelve

month years. 

One objective of this study is to investigate how 

decision costs of CVID models are affected by an incorrect 

assumption of distribution properties. Section 7.2 

presents the decision costs of each assumption for each 

CVID rule investigated in this study. The decision costs 

resulting from making an incorrect assumption of the 

standard deviation of the cost variance distributions are 

presented in Section 7.3. Section 7.4 presents the 

decision costs resulting from making an incorrect 
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assumption of the skewness of the cost variance 

distributions. 

7.2 Sensitivity of CVID Models to 

Distribution Properites 

68 

One purpose of this study is to investigate how 

optimal decisions are affected by the nonnormality of cost 

variances. This objective is fulfilled by using the CVID 

models used in Magee's [1976] study and the Markovian 

control model [Dittman and Prakash (1978 and 1979)]. 

First, for each decision rule, nonnormal cost variance 

distributions are assumed in making the CVID. Secondly, an 

assumption of normal cost variance distributions are used 

in making the CVID. The results of this analysis are 

discussed in this section. 

Of the seven CVID models examined, decision rules one 

through four are not dependent upon distributional 

properties since these decision rules make an investigation 

decision based on whether the observed cost variance is 

greater than a predetermined cutoff value. The decision 

costs for these four decision rules are presented in Tables 

VIII to XI. 

Tables XII and XIII present the costs of the single

period Bayesian model and the Markovian control models, 

respectively. These models are sensitive to distributional 

properties. The Bayesian model requires the calculation of 

a critical probability. Using a Bayesian revision process, 
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the probability that an observed cost variance is from the 

"out-of-control" cost variance distribution is determined. 

If this probability is less than the critical probability 

the cost variance is investigated. This revision process 

is repeated for each of the twelve months of the year. The 

revised probability is dependent upon the density functions 

of the distributions. The actual density functions of the 

distributions are nonnormally distributed. To examine the 

effect of distribution properties on decision costs, this 

study first treats each of the eighteen cases in Table XII 

as obtained from a nonnormal distribution. Thus, the 

revised probabilities were determined using the density 

function of a beta distribution. In the second situation, 

an assumption assumption of normality was used for all 

eighteen cases. Thus, the revised probabilities were 

determined using the density function of a normal 

distribution. 

In comparing the decision costs of the two different 

assumptions, the following results are observed. As can be 

seen from Table XII, the beta assumption resulted in lower 

decision costs in seven cases out of eighteen, whereas the 

assumption of normality resulted in lower decision costs in 
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TABLE VIII 

DECISION RULE 1: ALL UNFAVORABLE 

AVERAGE TOTAL COST* AND STANDARD DEVIATION 
OVER 200 12-MONTH PERIODS 

(Using Simulation) 

J1.1 = o, 0"1 = 0"2 = 20 

Standard 
Case J1.2 c g Cost Deviation 

1 20 10 0.5 213 82 
2 20 10 0.7 153 85 
3 20 10 0.9 94 81 
4 20 30 0.5 385 104 
5 20 30 0.7 311 112 
6 20 30 0.9 237 109 
7 20 60 0.5 643 140 
8 20 60 0.7 547 154 
9 20 60 0.9 451 116 

10 50 10 0.5 398 116 
11 50 10 0.7 259 111 
12 50 10 0.9 127 93 
13 50 30 0.5 582 139 
14 50 30 0.7 423 135 
15 50 30 0.9 271 121 
16 50 60 0.5 859 176 
17 50 60 0.7 668 176 
18 50 60 0.9 487 165 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 



71 

TABLE IX 

DECISION RULE 2: 10% RULE 

AVERAGE TOTAL COST* AND STANDARD DEVIATION 
OVER 200 12-MONTH PERIODS 

(Using Simulation) 

f..l.1 = o, a1 = a2 = 20 

Standard 
Case f..l.2 c g Cost Deviation 

1 20 10 0.5 203 83 
2 20 10 0.7 139 79 
3 20 10 0.9 72 84 
4 20 30 0.5 341 107 
5 20 30 0.7 256 104 
6 20 30 0.9 168 111 
7 20 60 0.5 549 146 
8 20 60 0.7 430 145 
9 20 60 0.9 310 154 

10 50 10 0.5 391 118 
11 50 10 0.7 244 115 
12 50 10 0.9 104 93 
13 50 30 0.5 547 144 
14 50 30 0.7 371 142 
15 50 30 0.9 200 119 
16 50 60 0.5 786 186 
17 50 60 0.7 562 184 
18 50 60 0.9 345 161 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 
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TABLE X 

DECISION RULE 3: 1 a RULE 

AVERAGE TOTAL COST* AND STANDARD DEVIATION 
OVER 200 12-MONTH PERIODS 

(Using Simulation) 

J.l.1 = 0, a1 a2 = 20 

Standard 
Case J.l.2 c g Cost Deviation 

1 20 10 0.5 197 83 
2 20 10 0.7 133 77 
3 20 10 0.9 57 79 
4 20 30 0.5 294 108 
5 20 30 0.7 208 100 
6 20 30 0.9 107 100 
7 20 60 0.5 439 149 
8 20 60 0.7 321 137 
9 20 60 0.9 180 135 

10 50 10 0.5 383 125 
11 50 10 0.7 232 112 
12 50 10 0.9 86 93 
13 50 30 0.5 516 156 
14 50 30 0.7 323 139 
15 50 30 0.9 139 117 
16 50 60 0.5 714 205 
17 50 60 0.7 461 183 
18 50 60 0.9 219 155 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 



TABLE XI 

DECISION RULE 4: 2 a RULE 

AVERAGE TOTAL COST* AND STANDARD DEVIATION 
OVER 200 12-MONTH PERIODS 

(Using Simulation) 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

20 
20 
20 
20 
20 
20 
20 
20 
20 
50 
50 
50 
50 
50 
50 
50 
50 
50 

c g 

10 0.5 
10 0.7 
10 0.9 
30 0.5 
30 0.7 
30 0.9 
60 0.5 
60 0.7 
60 0.9 
10 0.5 
10 0.7 
10 0.9 
30 0.5 
30 0.7 
30 0.9 
60 0.5 
60 0.7 
60 0.9 

Standard 
Cost Deviation 

206 71 
165 89 

80 89 
233 82 
187 98 

92 96 
274 104 
220 115 
110 109 
394 128 
243 121 

81 105 
496 154 
307 146 
103 120 
649 195 
403 187 
138 144 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 
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TABLE XII 

DECISION RULE 5: SINGLE-PERIOD BAYESIAN 

AVERAGE TOTAL COST* OVER 200 12-MONTH PERIODS 
(Using Simulation) 

J1.1 = o, a 1 = a2 20 

AVERAGE TOTAL COST STANDARD DEVIATION 

Assumed Distribution 

Case J1.2 c g Beta Normal Beta Normal 

1 20 10 0.5 221 221 70 69 
2 20 10 0.7 168 168 73 73 
3 20 10 0.9 100 99 72 72 
4 20 30 0.5 ** ** ** ** 
5 20 30 0.7 176 182 96 99 
6 20 30 0.9 82 95 91 97 
7 20 60 0.5 ** ** ** ** 
8 20 60 0.7 ** ** ** ** 
9 20 60 0.9 93 101 95 102 

10 50 10 0.5 414 414 110 110 
11 50 10 0.7 284 284 105 105 
12 50 10 0.9 150 152 83 79 
13 50 30 0.5 491 497 154 143 
14 50 30 0.7 431 430 115 119 
15 50 30 0.9 170 168 107 108 
16 50 60 0.5 ** ** ** ** 
17 50 60 0.7 378 383 184 177 
18 50 60 0.9 132 141 139 140 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 
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TABLE XIII 

DECISION RULE 6: MARKOVIAN CONTROL 

AVERAGE TOTAL COST* OVER 200 12-MONTH PERIODS 
(Using Simulation) 

I-Ll = o, al = a2 = 20 

AVERAGE TOTAL COST STANDARD DEVIATION 

Assumed Distribution 

Case 1-'2 c g Beta Normal Beta Normal 

1 20 10 0.5 196 198 82 78 
2 20 10 0.7 132 135 82 85 
3 20 10 0.9 57 58 77 77 
4 20 30 0.5 ** ** ** ** 
5 20 30 0.7 186 184 104 98 
6 20 30 0.9 79 80 90 94 
7 20 60 0.5 ** ** ** ** 
8 20 60 0.7 ** ** ** ** 
9 20 60 0.9 108 106 112 109 

10 50 10 0.5 380 382 125 123 
11 50 10 0.7 228 229 125 112 
12 50 10 0.9 76 74 94 89 
13 50 30 0.5 493 492 146 142 
14 50 30 0.7 298 299 148 148 
15 50 30 0.9 101 102 118 117 
16 50 60 0.5 ** ** ** ** 
17 50 60 0.7 397 400 197 194 
18 50 60 0.9 136 137 146 144 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 
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TABLE XIV 

DEICISION RULE 7: PERFECT KNOWLEDGE 

AVERAGE TOTAL COST* AND STANDARD DEVIATION 
OVER 200 12-MONTH PERIODS 

(Using Simulation} 

1-'1 = 0 I a1 a2 = 20 

Standard 
Case 1-'2 c g Cost Deviation 

1 20 10 0.5 180 84 
2 20 10 0.7 102 81 
3 20 10 0.9 30 70 
4 20 30 0.5 304 110 
5 20 30 0.7 174 105 
6 20 30 0.9 54 80 
7 20 60 0.5 489 154 
8 20 60 0.7 281 •149 
9 20 60 0.9 89 103 

10 50 10 0.5 365 124 
11 50 10 0.7 209 119 
12 50 10 0.9 66 87 
13 50 30 0.5 489 154 
14 50 30 0.7 281 149 
15 50 30 0.9 89 103 
16 50 60 0.5 674 202 
17 50 60 0.7 388 196 
18 50 60 0.9 125 129 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 
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** 

TABLE XV 

DECISION RULE 6: MARKOVIAN CONTROL 

TOTAL COST* OVER A 12-MONTH PERIOD 
(Using Numerical Methods) 

1-'1 o, a1 = a2 = 20 

Assumed Distribution 

Case 1-'2 c g Beta Normal 

1 20 10 0.5 203 204 
2 20 10 0.7 143 145 
3 20 10 0.9 64 66 
4 20 30 0.5 ** ** 
5 20 30 0.7 204 205 
6 20 30 0.9 93 93 
7 20 60 0.5 ** ** 
8 20 60 0.7 ** ** 
9 20 60 0.9 127 131 

10 50 10 0.5 378 379 
11 50 10 0.7 236 237 
12 50 10 0.9 84 84 
13 50 30 0.5 493 493 
14 50 30 0.7 309 309 
15 50 30 0.9 109 110 
16 50 60 0.5 ** ** 
17 50 60 0.7 411 414 
18 50 60 0.9 145 149 

Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 

In these cases, the values of the parameters were such that 
investigation never was considered desirable. 
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only three cases.lO For those seven cases the magnitude of 

difference in decision costs is slightly greater than for 

the three cases. This analysis seems to show that making a 

wrong assumption of distribution properties results in 

slightly higher decision costs than the right assumption. 

Tables XIII and XV present the decision costs of the 

Markovian control model. The Markovian control determines 

an optimal cutoff value by minimizing a cost function 

(equation 4 of Section 2.1). The results of Table XIII are 

the results of simulation and the results of Table XV were 

determined using numerical methods. It is important to 

consider the nature of a Markovian proces in evaluating the 

results of these two methodologies. A Markovian process 

goes through a transition phase before the steady-state 

phase is attained. The simulation results are for a twelve 

month period. This twelve month period is the beginning of 

the transition phase. The numerical methodology considers 

long-term costs, those costs which will be incurred after 

the process reaches the steady-state phase. An advantage 

of the numerical methods approach is the elimination of 

sampling error associated with simulation. Thus, the 

numerical methodology approach produces results which are 

mathematically ·exact.' 

10 The results of the cases in which the normality 
assumption resulted in lower decision costs than the beta 
assumption may be exaplained by sampling error which is a 
disadvantage of simulation. 
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In comparing the decision costs of the two different 

assumptions, the following results are observed. Using 

simulation, Table XIII shows the two distributions do not 

have the same decision costs. Out of a total of eighteen 

cases, ten cases show the beta distribution assumption 

resulting in slightly lower decision costs than the normal 

distribution assumption, whereas only four cases show 

otherwise. The parameters of the remaining four cases were 

such that an investigation never was considered desirable. 

Using numerical methods, Table XV shows that the two 

distributional assumptions do have equal decision costs for 

four cases. The beta distribution assumption again 

resulted in lower decision costs than the normal 

distribution assumption for nine cases. None of the cases 

under the assumption of normality has decision costs lower 

than that of the beta distribution.ll 

The results presented in Tables XII, XIII and XV 

indicate that an incorrect assumption of normality does 

affect decision costs when the single-period Bayesian and 

Markovian control models are used. In addition, the effect 

of the incorrect assumption of normality does not seem to 

be dependent upon the mean of the out of control 

distribution, ~2 . Differences between decision costs are 

observed when ~2 = 20 (cases one through nine) and when 

11 This result supports the aforementioned proposition that the inca 
distribution assumption of normality resulted in lower decision costs than 
correct distribution assumption due to sampling error associated with sirnu 



~2 =50 {cases ten through eighteen). The above analysis 

is only applicable when using the measures of 20 for the 

standard deviation, -0.90 for skewness, and 4.00 for 
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kurtosis. However, these three parameters of a probability 

distribution may have various measures {see Pearson [1895] 

for a more detailed discussion). 

In order to appropriately model a cost variance 

process, these three parameters must be estimated. 

However, managers may not have accumulated the necessary 

data necessary to make an accurate estimate of the 

aforementioned parameters. Also, to accumulate the data 

necessary for these estimates is a costly undertaking. 

Thus, knowing which of the three parameters should be 

accurately estimated and which of the parameters one needs 

not be concerned with is useful information for managers. 

Thus, the following two sections examine the sensitivity of 

decision costs to incorrect assumptions of the standard 

deviation and skewness.12 

7.3 Incorrect Assumption of the 

Standard Deviation 

This section investigates the effect of an incorrect 

assumption of the standard deviation and the results are 

presented in Tables XVI and XVII. The only difference in 

12 Two of the three parameters are examined in this 
study. Future research will examine the sensitivity of 
decision costs to an incorrect assumption of kurtosis. 
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the parameters of these two tables is the mean of the out 

of control cost variance distribution, ~2 . Table XVI uses 

a value of 20 for ~2 and Table XVII uses 50 for ~2 . 

Magee's (1976] results indicated the dynamic 

programming model of Kaplan (1969] was the optimum model in 

terms of minimizing average total costs (sum of 

investigation costs and operating costs). Dittman and 

Prakash [1979] compared the cost savings of the dynamic 

programming model with the cost savings of the Markovian 

control model. The results of Dittman and Prakash indicate 

the difference in cost savings of the dynamic programming 

approach and the Markovian control model are very small. 

If the labor costs of programming and implementing the two 

models were to be included in the analysis, undoubtedly the 

Markovian control model would prove to be more cost 

efficient than the dynamic programming approachis. Thus, 

the Markovian control model is used for the sensitivity 

analysis in this section and the Section 7.4. 

Three standard deviations were used in the analysis. 

The standard deviations of the cost variance distributions 

were assumed to be either 10, 20, or 30. Also, the actual 

standard deviations were either 10, 20, or 30. Tables XVI 

and XVII indicate an incorrect assumption regarding the 

standard deviation of the cost variance distributions 

affects the decision costs. As would be expected, the 

minimum decision costs are incurred when the assumed and 

actual standard deviations are the same. Thus, for each 
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scenario presented in Tables XVI and XVII the diagonal 

represents the minimum decision costs. 

Decision costs not on the diagonal represent costs 

incurred when an incorrect assumption regarding the 

standard deviation is made. The off-diagonal decision 

costs are always equal to or more than the costs on the 

diagonal. Thus, it is costly to make an incorrect 

assumption regarding the standard deviation. 

The various scenarios presented in Tables XVI and XVII 

suggest the standard deviation becomes more important as 

the investigation cost (C) and the transition probability 

(g)13 increase. Referring to Table XVI, when investigation 

costs (C) are $10 and the transition probability is 0.5, 

and the actual standard deviation is 20, an incorrect 

assumption does not affect total costs. Total cost whether 

the standard deviation is assumed to be 10, 20, or 30. 

However, when investigation costs are $60 and the 

transition probability is 0.9, the assumption regarding the 

standard deviation becomes very important. If the actual 

standard deviation is 20 and the correct assumption is 

made, total cost is $152. But if an incorrect assumption 

of 10 is made, total cost is $192. Tables XVI and XVII 

indicate the assumption regarding the standard deviation 

13 The transition probability (g) is the probability 
that the process remains in-control at the end of the 
period given that it entered the period in-control. 
Managers could estimate g using historical data. 
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TABLE XVI 

DECISION RULE 6: MARKOVIAN CONTROL 

TOTAL COST* OVER A 12-MONTH PERIOD 
INCORRECT ASSUMPTION OF a 

(Using Numerical Methods) 

g = 0.5 

Assumed 
10 20 30 

193 194 196 
205 205 205 
210 210 210 

g = 0.5 

Assumed 
10 20 30 

** 
** 
** 

** 
** 
** 

g = 0.5 

Assumed 

** 
** 
** 

10 20 30 

** 
** 
** 

** 
** 
** 

** 
** 
** 

a 

10 
20 
30 

a 

10 
20 
30 

a 

10 
20 
30 

J.l.1 = o, J.l.2 20 

c = 10 

g = o. 7 

Assumed 
10 20 30 

127 127 127 
146 146 146 
154 154 154 

c = 30 

g = 0.7 

Assumed 
10 20 30 

198 219 238 
227 214 222 
245 226 220 

c = 60 

g = 0.7 

Assumed 
10 20 30 

** 
** 
** 

** 
** 
** 

** 
** 
** 

a 

10 
20 
30 

a 

10 
20 
30 

a 

10 
20 
30 
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g = 0.9 

Assumed 
10 20 30 

52 
72 
81 

56 
70 
79 

g = 0.9 

Assumed 

68 
71 
79 

10 20 30 

83 117 200 
126 111 125 
154 131 124 

g = 0.9 

Assumed 
10 20 30 

121 183 238 
192 152 179 
248 185 166 

* Total cost includes cost variances plus costs of investigations. 
Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 
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TABLE XVII 

DECISION RULE 6: MARKOVIAN CONTROL 

TOTAL COST* OVER A 12-MONTH PERIOD 
INCORRECT ASSUMPTION OF (] 

(Using Numerical Methods) 

i-Ll = o, i-L2 50 

c = 10 

g = o. 5 g = 0.7 g = 0.9 

A Assumed Assumed Assumed 
c (] 10 20 30 (] 10 20 30 (] 10 20 30 
t 
u 10 361 362 368 10 217 218 220 10 73 73 73 
a 20 379 377 380 20 237 237 239 20 89 89 89 
1 30 397 394 393 30 259 257 256 30 106 106 106 

c = 30 

g = 0.5 g = 0.7 g = 0.9 

A Assumed Assumed Assumed 
c (] 10 20 30 (] 10 20 30 (] 10 20 30 
t 
u 10 481 482 486 10 290 291 294 10 98 100 110 
a 20 503 501 503 20 322 321 322 20 128 123 127 
1 30 524 521 520 30 355 353 352 30 165 154 151 

c = 60 

g = 0.5 g = 0.7 g = 0.9 

A Assumed Assumed Assumed 
c (] 10 20 30 (] 10 20 30 (] 10 20 30 
t 
u 10 ** ** ** 10 398 404 430 10 134 142 176 
a 20 ** ** ** 20 441 430 440 20 182 166 179 
1 30 ** ** ** 30 490 468 461 30 246 213 203 

* Total cost includes cost variances plus costs of investigations. 
Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 



becomes more important as the investigation cost (C) and 

the transition probability (g) increase. 
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This result may have implications for managers. If 

the transition probability is small (0.5) and the 

investigation cost is small, it may not be cost effective 

estimate. However, if the transition probability is large 

(0.7 or 0.9) and the investigation cost is large, it may be 

cost effective to collect enough data to accurately 

estimate the standard deviations of the cost variance 

distributions. 

7.4 Incorrect Assumption of Skewness 

This section investigates the effects of an incorrect 

assumption of skewness and the results are presented in 

Tables XVIII and XIX. Three measures of skewness were used 

to investigate the sensitivity of decision costs to an 

incorrect assumption. The measures of skewness used were 

0.3, 0.6, and 0.9. The decision costs of the "Correct" 

columns of Tables XVIII and XIX were determined based on 

the correct assumption that the cost variances were beta 

distributed. As for the "Naive" columns, the decision 

costs were determined based on the incorrect assumption 

that the cost variances were normally distributed. 

The results presented in Tables XVIII and XIX indicate 

an incorrect assumption of skewness may affect decision 

costs. The results suggest the more skewed the cost 

variance distributions, the more costly it would be when an 



J/31 

0.3 
0.6 
0.9 

J/31 

0.3 
0.6 
0.9 

J/31 

0.3 
0.6 
0.9 

TABLE XVIII 

DECISION RULE 6: MARKOVIAN CONTROL 

TOTAL COST* OVER A 12-MONTH PERIOD 
INCORRECT ASSUMPTION OF j~l 

(Using Numerical Methods) 

J.l.1 = o, J.l.2 = 20 

(j1 = (j2 = 20 

c = 10 

g = 0.5 g = 0.7 g = 

Correct Naive J/31 Correct Naive J/31 Correct 

206 206 0.3 146 147 0.3 71 
206 206 0.6 147 148 0.6 73 
207 207 0.9 147 152 0.9 77 

c 30 

g = 0.5 g = 0.7 g = 

Correct Naive J/31 Correct Naive J/31 Correct 

** ** 0.3 216 216 0.3 114 
** ** 0.6 218 218 0.6 118 
** ** 0.9 220 221 0.9 123 

c 60 

g = 0.5 g 0.7 g = 

Correct Naive J/31 Correct Naive J/31 Correct 

** ** 0.3 ** ** 0.3 156 
** ** 0.6 ** ** 0.6 160 
** ** 0.9 ** ** 0.9 164 

0.9 

Naive 

72 
74 
78 

0.9 

Naive 

114 
118 
124· 

0.9 

Naive 

156 
161 
168 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 
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J/31 

0.3 
0.6 
0.9 

J/31 

0.3 
0.6 
0.9 

J/31 

0.3 
0.6 
0.9 

TABLE XIX 

DECISION RULE 6: MARKOVIAN CONTROL 

TOTAL COST* OVER A 12-MONTH PERIOD 
INCORRECT ASSUMPTION OF J~1 

(Using Numerical Methods) 

~1 = 0, ~2 = 50 

a1 = a2 = 20 

c = 10 

g = 0.5 g = o. 7 g = 0.9 

Correct Naive J/31 Correct Naive J/31 Correct Naive 

376 376 0.3 236 236 0.3 89 90 
373 374 0.6 234 234 0.6 90 91 
367 371 0.9 226 230 0.9 85 90 

c = 30 

g = 0.5 g = 0.7 g = 0.9 

Correct Naive J/31 Correct Naive J/31 Correct Naive 

503 503 0.3 323 323 0.3 126 126 
503 505 0.6 325 326 0.6 131 131 
502 509 0.9 319 330 0.9 136 140 

c = 60 

g = 0.5 g = 0.7 g = 0.9 

Correct Naive J/31 Correct Naive J/31 correct Naive 

** ** 0.3 435 435 0.3 172 172 
** ** 0.6 441 441 0.6 180 180 
** ** 0.9 452 452 0.9 193 193 

* Total cost includes cost variances plus costs of 
investigations. Figures are rounded to nearest dollar. 

** In these cases, the values of the parameters were such that an 
investigation never was considered desirable. 
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incorrect assumption of normality is used. This conclusion 

i~ supported by observing that the magnitude of the 

differences between the "Correct" and "Naive" columns 

increases as the skewness of the distributions increases. 

For example, in examining the results of Table XIX, with a 

transition probability (g) is 0.5, we find the assumption 

of Jp1 does not affect decision costs when Jp1 is 0.3. 

However, when Jp1 is 0.9, the "Naive" assumption results in 

decision costs $4 ($371 - $367) more than the "Correct" 

assumption when investigation costs are $10. When 

investigation costs are $30 and Jp1 is 0.9, the "Naive" 

assumption results in decision costs $7 ($509 - $502) more 

than the "Correct" assumption. This aforementioned result 

does not appear to depend upon the the transition 

probability (g) as the differences between the columns 

usually increase with skewness, regardless of the 

transition probability. However, this result is only 

observed when investigation costs are either $10 or $30. 

The assumption of Jp1 does not usually affect decision 

costs when investigation costs are $60. The results of 

this analysis indicate as the actual cost variance 

distribution becomes more skewed, the more serious the 

consequences of making an incorrect assumption normality. 
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7.5 Summary 

Simulation and numerical methods were used to 

investigate the effects of distributional properties on 

decision costs of various CVID models. First, eight CVID 

models were used to investigate the sensitivity of decision 

costs to an incorrect assumption regarding distribution 

properties. Each of the eight CVID rules was used to 

determine decision costs. The following measures of the 

second, third, and fourth moments of the cost variance 

distributions were used in the analysis. The standard 

deviation was 20, skewness was -0.90, and kurtosis was 

4.00. 

First, an incorrect assumption of normality was used 

to estimating decision costs. Second, a correct assumption 

of nonnormality was used to estimate decision costs. The 

results indicate in some cases more decision costs are 

incurred when an incorrect assumption regarding 

distribution properties is made. 

The Markovian control model was used to investigate 

the sensitivity of decision costs to an incorrect 

assumption regarding the standard deviation and skewness. 

The results indicate decision costs are sensitive to the 

standard deviation and skewness. The assumption regarding 

the standard deviation became important when investigation 

costs (C) and the transition probability (g) were large. 

The assumption regarding skewness became more important as 

the skewness of the actual distribution increased. Thus, 
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when using a CVID model to aid in the decision making 

process, it may be cost effective for managers to collect 

enough data to accurately estimate the standard deviations 

and skewness of the cost variance distributions. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

8.1 Introduction 

The CVID has been one of the most widely researched 

topics in managerial accounting. The rules examined for 

aiding managers in making the cost variance investigation 

decision range from a simple rule of investigating all 

unfavorable cost variances to the Markovian control 

approach. Most of the models require knowledge of the 

distribution properties of the cost variances. The models 

have assumed the cost variance distributions are normally 

distributed. The literature indicates this may not be a 

realistic assumption. Thus, the results and implications 

of this thesis described in the following sections may be 

of interest to managers who use a CVID rule in making the 

cost variance investigation. 

8.2 Summary of Results 

This thesis set out to fulfill three objectives: 
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(1) To examine the distributional properties of 
actual cost variances collected from industry. 

(2) To develop a practical approach for modeling 
nonnormal cost-variance distributions. 

(3) To investigate how optimal decisions under 
various CVID models are affected by the 
nonnormality of cost variances. 

Actual cost variances of a medium size manufacturing 

plant of a Fortune 500 company were collected from its 

fourteen production departments. The data consisted of 

weekly direct labor efficiency cost variance amounts and 

direct labor efficiency variance percentages. Two tests of 

normality, the Shapiro-Wilk W test [Shapiro and Wilk, 1965] 

and the K~ test [Bowman and Shenton, 1986], indicated that 

for some departments the actual cost variance amounts and 

direct labor efficiency variance percentages are not 

normally distributed. 

The second objective was to develop a practical 

approach for modeling nonnormal actual cost variance 

distributions. To model nonnormal cost variance 

distributions, a family of four-parameter distribution 

functions has to be used. Ideally, a distribution function 

should be chosen by the following three-step iterative 

process: 



(1) Identify a family of distribution functions 
which appear appropriate. 

(2) Determine the parameters of the distribution 
function that best fits the empirical 
distribution on hand. 

(3) Decide whether an adequate fit has been 
provided by the chosen family of distribution 
functions. 

These three steps were illustrated with an example in 

Section 4.4. A histogram of cost variance data suggested 
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the Pearson distribution family could be used and the beta 

distribution was selected as an initial choice. The· 

parameters which best fit the distribution were determined 

using equations sixteen through nineteen in Section 4.4. A 

chi-square test indicated the beta distribution adequately 

fit the empirical data. 

Simulation and numerical methods were used to 

investigate the effects of distributional properties on 

decision costs of various CVID models. First, seven CVID 

models were used to investigate the sensitivity of decision 

costs to an incorrect assumption regarding distribution 

properties. Each of the seven CVID rules was used to 

determine decision costs. 

Given the actual cost variance distribution is a beta 

distribution, two sets of decision costs were estimated. 

First, an incorrect assumption of normality was used to 

estimate decision costs. Second, a correct assumption of 

nonnormality was used to estimate decision costs. The 

results {Tables VI and VII) support two conclusions. The 



94 

first conclusion is the more sophisticated CVID models 

resulted in lower decision costs than the less 

sophisticated models. This result appears reasonable 

because the more sophisticated CVID models consider the 

costs and benefits of an investigation. The second 

conclusion is, for the more sophisticated CVID models, more 

decision costs are incurred when an incorrect assumption 

regarding distribution properties is made than when the 

correct assumption is made. For example, in examining the 

results of Table VI, when the cost variances were correctly 

assumed to be nonnormally distributed, the average total 

cost was $397. However, when the cost variances were 

incorrectly assumed to be normally distributed, the average 

total cost was $400. This same relationship of costs also 

occurred for the single-period Bayesian model. When the 

cost variances were correctly assumed to be nonnormally 

distributed, the average total cost was $378. When the 

cost variances were incorrectly assumed to be normally 

distributed, the average total cost was $383. These 

results illustrate an incorrect assumption of distribution 

properties results in greater decision costs than the 

correct assumption. 

The implementation of a CVID model requires that 

managers estimate various parameters. Such parameters 

include the mean of the out-of-control cost variance 

distribution, investigation costs, and the transition 

probability. This estimation process is a costly activity 
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(in terms of time and effort for acquiring the necessary 

information) for managers to undertake. Thus, in order to 

investigate which of the required parameters should be 

reasonably estimated and which parameters are not critical 

for the successful implementation of a CVID model, two CVID 

models were used to investigate the sensitivity of decision 

costs to different means (~2 ) of the out-of-control cost 

variance distribution, investigation costs (C), and 

transition probabilities (g) . The results for the single

period Bayesian model and the Markovian control model are 

presented in Tables XII, XIII, and XV. The effect of each 

of these variables on decision costs is discussed next. 

The results presented indicate that decision costs 

increase as the mean of the out-of-control cost variance 

distribution (~ 2 ) increases. For example, in examining the 

decision costs incurred by the Markovian control model 

using simulation (Table XIII), case 1 assuming the beta 

distribution resulted in average total cost of $196. This 

cost was for ~2 equal to $20. With ~2 equal to $50 (case 

10), average total cost is $380. These results seem 

reasonable. One would expect decision costs to increase if 

the mean of the out of control cost variance distribution 

increases. 

The effect of the investigation cost (C) is discussed 

next. When the Markovian control model is used (Table 

XIII), an increase in investigation cost always results in 

an increase in average total cost. For example, when the 
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beta distribution is assumed case 11 (with c equal to 

$10) resulted in average total cost of $228. With a change 

of c to $30 (case 14), average total cost increases to 

$298. Likewise, with investigation cost equal to $60 (case 

17), average total cost increases to $397. The 

aforementioned relationship holds for all of the cases when 

the Markovian control model is used. 

When the single-period Bayesian model {Table XII) is 

used, changes in investigation costs result in both average 

total cost increases and decreases. For example, when the 

beta distribution is assumed, case 12 (with C equal to $10) 

resulted in average total cost of $150. With an increase 

of C to $30 (case 15), average total cost cost increases to 

$170. However, with an increase of C to $60 (case 18), 

average total cost decreases to $132. Thus, a change in 

investigation cost results in mixed effects on average 

total cost when a single-period Bayesian model is used. 

~he results presented in these tables indicate average 

total cost decreases as the transition probability 

increases. This result seems reasonable since a larger 

transition probability means there is a greater probability 

the process will be in control at the end of the period. 

Thus, with a larger transition probability, more cost 

variance observations are from the in control distribution 

than with a smaller transition probability. 

The Markovian control model was used to investigate 

the sensitivity of decision costs to an incorrect 
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assumption regarding the standard deviation and skewness. 

The results indicate decision costs are sensitive to the 

standard deviation and skewness. An example from Table XVI 

is used to illustrate the sensitivity of decision costs to 

an incorrect assumption of the standard deviation. For 

Table XVI ~1 = 0 and ~2 = 20. For C = 60 and g = 0.9, 

total costs were $121 when the actual standard deviation 

and the assumed standard deviation were both 10. However, 

when the actual standard deviation was 10 but was assumed 

to be 30, total costs were $238. This incorrect assumption 

of the standard deviation resulted in total costs being 

almost twice the amount of total costs incurred when the 

the correct assumption was made. 

An example from Table XIX is used to illustrate the 

sensitivity of decision costs to an incorrect assumption of 

skewness. For Table XVI ~ 1 = o and ~ 2 = 50. For c = 30 

and g = 0.7, total costs were $319 when the actual skewness 

and the assumed skewness were both 0.9. However, when the 

actual skewness was 0.9 but was assumed to be o, total 

costs were $330. The two above examples indicate an 

incorrect assumption of the standard deviation aand 

skewness may result in greater total costs than the correct 

assumption. Thus, when using a Markovian control model to 

aid in the decision making process, it may be cost 

effective for managers to collect enough data to accurately 

estimate the standard deviations and skewness of the cost 

variance distributions. 



From the results just discussed, it appears that the 

more sophisticated CVID models incurred lower decision 

costs and should be used. However, when using one of the 

sophisticated CVID models, managers should not ignore 

distributional properties. The results suggest it is 

beneficial for managers to compile enough cost data in 

order to accurately estimate the standard deviations and 

skewness of the cost variance distributions. 

8.3 Implications and Suggestions 
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This study provides some evidence regarding the 

distribution properties of direct labor cost efficiency 

variances for a manufacturing firm. The results indicate 

one should not make unrealistic assumptions regarding 

distribution properties when using a CVID model. Whether 

the results of this study apply to other types of cost 

variances and other types of industries is an empirical 

question which can only be answered by further research. 

While there is a preponderance of recent literature (Howell 

and Soucy, 1988] which indicates labor costs as a 

percentage of total manufacturing costs have been 

decreasing, labor costs are still the major cost for many 

organizations. For example, labor is the most costly input 

in education, health care, and many other service type 

organizations such as law and acccounting [Dietemann, 

1988]. Thus, for these industries, labor is a scarce 

resource which must be used in the most economically 
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efficient manner. One tool which can be used to determine 

whether labor is being used in the most efficient manner 

are cost variances. The evidence presented in this study 

indicates that, when a cost variance investigation decision 

model is used as an aid to determine whether a cost 

variance is from the in or out-of-control distribution, 

distribution properties should not be ignored. 

In conclusion, even though direct labor costs may be 

decreasing as a percentage of total manufacturing costs, 

service industries are becoming increasingly important to 

our economy. Labor is the most important cost to such 

industries. One performance evaluation measure within 

these industries is how well the managers control labor 

costs. Managers may use CVID rules as an aid in this 

control process. The results of this study suggest 

managers should not ignore distribution properties when 

such rules are used. 

criticisms of some of the more sophisticated CVID 

models include lack of knowledge regarding required 

information ([Magee, 1976] and [Boer, 1984]). In other 

words, how can a manager assess a distribution's mean and 

standard deviation to successfully implement a CVID model? 

The professional literature suggests the recent advances in 

computer technology has placed this data at the fingertips 

of accountants. Walker and Surdick [1988, p. 25] recently 

stated, "PC software packages priced under $1,000 place 

graphics portrayal of variances and comparative data at the 
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fingertips of controllers." With such information readily 

available, data required to implement a CVID model as 

complex as the Markovian control model can easily be 

estimated. 

The recent advances in computer technology also allow 

the cost variance investigation decision to be made more 

frequently than weekly. With the profilieration of 

computers, managers have the ability to monitor cost 

variances on a daily, or even hourly basis. An advantage 

of more frequent monitoring is that the process could be 

corrected more quickly. 

When the Markovian control model is used for the CVID, 

there are many variables which must be estimated. As 

discussed in this study, the four moments of the cost 

variance distributions must be estimated. This study 

investigated the sensitivity of decision costs to an 

incorrect assumption of the second and third moments, the 

standard deviation and skewness, respectively. Future 

research could investigate the sensitivity of decision 

costs to an incorrect assumption of kurtosis. There are 

three other variables which must also be estimated for the 

Markovian control model. These variables are the 

investigation cost, the transition probability, and the 

mean of the out-of-control cost variance distribution. 

Future research could investigate the sensitivity of 

decision costs to an incorrect assumption regarding these 

three variables. 
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