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CHAPTER I 

INTRODUCTION 

In this chapter, a literature review of the 

Robbins-Monro stochastic approximation procedure is 

presented. A new stochastic approximation procedure is 

also introduced. 

Literature Review 

In 1951, Robbins and Monro introduced a method for 

finding the root of an increasing regression 

function by successive approximations. They considered 

the model 

i=1,2, ... ( 1. 1 ) 

where Y(xi) denotes the response at level xi, M is a 

regression function, and Z(x.) represents the random 
1 

error at level x. with EZ(x. l=O and EZ 2 (x. )=a2 • 
1 1 1 

In the deterministic case (where Z(x.) = 0 for all 
1 

i), the Newton-Raphson method for finding the root L 
p 

of the equation M(x) = p is a sequential scheme defined 

by the recursive formula 

n 
- (Y - p)/M'(X) 

n n 
( 1. 2) X 

n+1 
= X 

where M'(x) is the tangent slope of Mat x. 

1 



2 

In the stochastic model (where Z(x 1 ) are random 

variables), the Robbins-Monro (RM) scheme is defined by 

the recursive formula 

X =X -a(Y -p), 
n+ 1 n n n 

( 1. 3) 

where a are positive constants such that E a = oo and 
n n 

~ az 
L! < 00, 

n 
Robbins and Monro showed that X converges to 

n 

L . Lz 1n . 
p 

Blum (1954), Dvoretzky (1956), and Robbins 

and Siegmund (1971) proved that X converges to L 
n p 

almost surely (a.s.) under certain conditions. 

Chung (1954) and Sacks (1958) defined a = n 

-1 
n A 

where A is a positive constant. Under some assumptions 

on Z and M, they established that n 112 (X - L ) has an 
n P 

asymptotic normal distribution with mean zero and 

variance 
2 2 2 

A a /(2Aa-1), where a 

0 is the tangent slope of M at x = L . A minimum 
p 

. . z1 z . . -1 
asymptot1c var1ance a a 1s obta1ned when A = a . 

In practice, without knowledge of M, a is unknown. 

Thus, for a certain parametric function M with unknown 

parameters, defining an efficient procedure such that 

X having the minimum asymptotic variance is natural. 
n 

This problem was considered first by Sakrison (1965) 

and then by Albert and Gardner (1967). Both Sakrison 

and Albert and Gardner replaced the constant a by a 

stochastic sequence estimating ~. In both cases, the 

estimating sequence depends on the function M. The case 

where M is unknown was considered by Venter (1967). 



Venter's method requires two observations y' 
n 

and Y" at x - c and x + c where x is the nth 
n n n n n n 

approximation and {c } is a sequence of positive 
n 

constants which converges to zero. Although Venter's 

method is asymptotically efficient, Anbar (1978) noted 

that taking two observations at a time may not be 

feasible in situations where the total number of 

experiments allowed is small. Anbar suggested the 

following procedure: 

3 

-1 
X 1 = X - A n (Y - p), 

n+ n mn n 
n > m(n) ( 1. 4) 

where 

( 0 if b ~ 0 

t 
1. mn 1 

-1 
b if 5 b 0 A = < < mn mn 1 mn 2 

0 if 5 ~ b 
2 2 mn 

0 < 0 < 0 < <X>, 
1 2 

and b is the least squares estimator of M'(L) at mn p 

stage n and defined by: 

n n 

bmn= ~(Xi - Xmn)(Yi-p)~(Xt - Xmn) 2 

n 

X • E X./(n-m) 
mn m+1 1 

m = m(n) = o((log n) 112+£) 

1 · o ( x) /x = 0 X~ 

for every £ > 0 

( 1. 5) 

( 1. 6) 

( 1. 7) 

Under some assumptions on M and Z, Anbar proved that X 
n 

in (1.4) converges to L a.s., b converges to M'(L ) 
p mn p 



d 112 ( } . l t l a. s. , an n X - L converges 1n aw o a norma 
n p 

2 2 
random variable with mean zero and variance a fa • 

Since Anbar's procedure attains the optimal asymptotic 

. 2/ 2 var1ance a a , it is an efficient procedure. Lai and 

Robbins (1981} have proven similar results under the 

4 

assumption that Z(x.) are i.i.d. random variables. They 
1 

also demonstrated the convergence speed of x . In both 
n 

Venter's and Anbar's procedure, X is a function of 
n 

x 1 ,y1 , ••• ,yn-l' Because these procedures estimate a at 

each stage, they are called adaptive RM procedures. 

Adaptive RM procedure are often applied in situations 

where Y(x) is a dichotomous random variable. However, 

dichotomous random variables are only one type of 

random variable that applied to the adaptive RM 

procedure. 

In many fields of research, the outcomes of an 

experiment are assumed to be dichotomous (response or 

nonresponse). In testing the strength of materials, the 

stimulus level may be the level of impact energy 

applied to a piece of material, and the response is 

either "fail" or "not fail" (Wetherill [1963]). In 

testing explosives, the stimulus level may be the 

height from which a weight is dropped or the pressure 

directly applied to the explosive, and the response is 

"explode" or "not explode" (Dixon and Mood (1948]). In 

biology, a test animal either lives or dies at a given 

dose level (Finney (1978]), In an educational 



5 

experiment, one may want to study the item 

characteristic curve that relates the difficulty level 

of the test item to the probability of a right or a 

wrong answer (Lord [1971]). 

The main interest of this type of research is to 

estimate the percentiles of the response curve F(x), 

the distribution function of the binary random variable 

Y at a given stimulus level x. The 100pth percentile L 
p 

is defined as: 

F(L ) = p. 
p 

( 1. 8) 

That is, L is the root of the equation F(x) = p. The 
p 

median L of F is the most commonly used measure of 
0.5 

the response curve. In some cases, however, it may be 

more relevant to study the extreme percentiles. For 

example, in finding the impact energy level for which 

the material fails 10% of the times. On the other hand, 

L0 _9 may be more relevant in explosive research. 

Let yn = 1 or 0 when the nth observation is a 

response or nonresponse. For estimating L by a RM 
p 

procedure, the stimulus level X 1 is chosen according 
n+ 

to the formula: 

X 
n+1 = X n 

-1 
- An (Y - p). 

n 
( 1. 9) 

The small-sample behavior of the RM procedure 

depends heavily on a good initial guess x 1 (Wetherill 

[1963]). However, a good guess of L is also hard to 
p 

achieve. Poor choices of A and x 1 will make (1.9) an 
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inefficient procedure for small or moderate samples. 

Wu (1985) proposed another sequential design 

procedure. He wanted to have a good estimate F of the 
n 

whole curve F, from which the next point x 1 is chosen n+ 

to be the 100pth percentile of F , that is F (x 1 ) = n n n+ 

p. He also noted that a smooth nonparametric estimate 

of F(x) was not feasible without a large number of 

observations. Therefore, he adopted the approach of 

assuming a parametric form for the distribution 

function of the random variable Y. Let F(x) = P(Y=l!x) 

be the distribution function of binary random variable 

Y at the level x, and let 

F(x) = H(x!8), H is continuous in x 

where e is a vector of unknown parameters. 

Wu's sequential design procedure for estimating 

L is as follows: 
p 

1. Find an efficient estimate en= 8((x1 ,y1 ), ••• (xn,yn 

)) of e (Wu uses the maximum likelihood estimator 

MLE). 

2. Define the estimated quantal response curve by 
A A 

F (x) = H(xle ) and choose the next design x 
n n n+l 

such that F (x 1 ) = p. n n+ 

He noted that the change from x 
n 

to X 
n+l 

via the MLE 

version of his method may be unduly large when the 

problem is ill posed. This can happen in the first few 

runs after the existence, and uniqueness of the MLE is 
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first satisfied. Thus, he proposed a truncated version 

of his procedure as follows. Define d as the solution 
n 

of 

-1 
X = X - n d (y - p) 

n+1 n n n (1.10) 

"-1 
where x 1 = F (p). For example, consider the 

n+ n 

distribution function of the logit model, F(x) = [1 + 
-1 p A A 

exp(-~-t-fJx)] . Define x 1 = [log-- 1-t ]/ fJ where 
n+ 1-p n n 

1-Ln and fJn are the MLE's of~ and fJ at stage n. Then, 

the (n+1)th design level is chosen to be 

-1 * 
X = X - n d (y- p) 

n+1 n n n 
(1.11) 

where 

* d =max [6 ,min(6 ,d)], 
n 1 2 n 

Wu did show that his procedure was consistent for the 

one parameter logit model. Assuming consistency, he 

also proved that his procedure is asymptotically 

equivalent in first order to the efficient RM procedure 

for the two parameter logit model. However, Wu was 

* unable to prove the asymptotic normality of x and d . 
n n 

Thus, he could not establish the asymptotic normality 

* of L ( the estimator of the root of M(L ) = P for 
P* P* 

* any 0 < p < 1). The most negative aspect of Wu's 

procedure is that the Newton-Raphson method must be 

used repeatedly to estimate the MLE's of the parameters 

for each step in the stochastic procedure and the 

Newton-Raphson method is a time consuming procedure. 



8 

A New Adaptive RM Procedure 

The purpose of this research is to define an 

efficient stochastic procedure for estimating the 

entire curve of an increasing function M(x), the 

expectation of random variable Y(x). All the procedures 

discussed previously are designed to estimate a single 

root. The objective of this new procedure is to 

estimate all the roots of M(x), that is, to estimate 

the entire curve M(x). The idea of this new method is 

very simple. In Chapters 1 to 4, it is assumed that 

M(x) is a two parameter increasing function. The 

general form for M with r parameters will be developed 

in Chapter 5. Let 

Y(X.) = M(X.) + Z(X.) 
1 1 1 

(1.12) 

where 

M(X.) = E Y(X.). 
1 1 

(1.13) 

Let A be the slope of the line through (L , p) and 
p 

a 
(Lp•' p'), and M'(x) =ox M(x) be the tangent slope of 

Mat x. Let a= M'(L) and a' = M'(L ,). By Figure 1.1, 
p p 

it is found that A= (p'-p)/(L - L ), a= cA, and a' = 
p' p 

c'A, where c and c' are positive constants which depend 

on the assumed parametric form of M(x). The 

relationship between c, c' and M(x) for different 

models will be discussed in Chapter 2. 

The new adaptive RM procedure for estimating 

(L , L ) is given by 
p p' 



' p 
I I I 

Mllw) =IX =ci\ v -----------·---l _______ ......................................... .. 

M(x) 

0.8 

0.6 

~; 
--------------------------------------~~ ___ ] _________________ _ 

--------------------------------------~~-----1------------------
h ; 

----------------,------------------ ----------~------------------r-r 1 

~= L.I-L I ________________ ( ____ r ___________ --------------~------------------
, 

0.4-

0.2 

p 

0 
-5 -3 -1 

X 

Figure 1.1 Relationship Between a and c. for 
1 

Two Parameters Case 

9 

5 



where 

The 

procedure 

and 

where 

[
a (Y -

n n 

a' ( y' 
n n 

p) ] 

p, ) 

" -1 a = [ na ] 
n n 

"' -1 = [ncl. ] 
n 

, [ "',]-1 [ ,~ ]-1 
a = not = nc fl. • 

n n n 

bounded versions of and 
, 

a a 
n n 

are defined by 

a = 
-1 

n A 
n n 

I -1 1 

a = n A 
n n 

{ 
0 if a :S 0 

1 n 1 

-1 
if 0 0 A a < a < n n 1 n 2 

l. 5 if 5 :S ot 
2 2 n 

{ 
0 if a :S 0 

1 n 1 

,-1 , 
if 5 < 

, 
< 5 A • ot ot 

n n 1 n 2 

0 if 0 :S a' 
2 2 n 

0 < o 1 < 52 < ro 

10 

(1.14) 

(1.15) 

(1.16) 

of this new 

(1.17) 

(1.18) 

(1.19) 

( 1. 20) 

Since (x, X 1
) is used to estimate (L, L ,), a natural n n p p 

estimator of A- 1 is 

"'-1 
l. = (x' - x )/(p'- p). n n n (1.21) 

-1 Other estimators of A such as the LSE A = (cA ) 
n 111n 



11 

(where A and c are defined in (1.5) and (1.15) 
mn 

respectively) and the MLE l 
n 

~ -1 ~ = (cd ) (where d 
n n 

is 

defined in (1.11)) exist. However, calculations for 

~-l in (1.21) is easier and faster than for the LSE and 
n 

MLE. It will be shown that ~- 1 in (1.21) has desirable 
n 

asymptotic and small sample properties. 

Silvapulle (1981) mentioned that the MLE of M'(L ) 
p 

for binary data exists only when certain conditions are 

satisfied. Frequently, these conditions are not 

satisfied for small samples (Wu [1985]). However, the 
A-1 

estimator l in (1.21) always exists provided initial 
n 

estimates (x 1 ,x~) are available. Moreover, the 

convergence, asymptotic normality for the estimator of 

any root L is easily obtained by the linear 
p~ 

combination of L and L ,· 
p p 

The convergence and asymptotic normality theorems 

for the estimators L, L ,, and their linear 
p p 

combinations generated by the new procedure will be 

derived in Chapter 2. In Chapter 3, some examples of 

binary data models with two parameters are presented. 

The robustness of the root estimators from the new 

procedure is also discussed. In Chapter 4, the root 

estimators from Robbins-Monro procedure, Anbar's 

procedure, Wu's procedure and this new procedure are 

compared in a Monte Carlo simulation study. The general 

form and conclusions of the new procedure are drawn in 

Chapter 5. 



CHAPTER II 

CONVERGENCE AND ASYMPTOTIC NORMALITY 

In this chapter, the convergence and asymptotic 

normality of the estimators of L and L , from the new 
p p 

procedure will be discussed. 

Assumptions 

For the purpose of easy reference, all assumptions 

which will be needed in this procedure are listed 

below. 

(M1) M(x) is a Borel-measurable function satisfying 

(M(x)-P)(x-LP) > 0 for all x ~ LP 

(M2) inf jM(x)-PI > 0 for every 0 < £ < 1 
£<jx-Lpj<1/£ 

(M3) M(x) = p + a(x-LP) + Q(x-LP) 

where ~~W o(x)/x = 0 and 0 < a < ro 

(M4) There exists finite positive number K such that 

( z 1 ) ( i ) s~p EZ 2 (x) < ro 

( ii) inf 
X 

EZ 2 (x) > 0 

(Z2) !~Il EZ 2 (x) 
2 

= (J (p) < ro 
p 

12 



(Z3) suplx-L 1<£ I Z2(x) dM = 0 
P {lz<x>j>R} 

Convergence 

In this section, the convergence theorems of 

(x , x'), A, A' and the linear combinations of (x , n n n n 

x') are derived, where these terms are defined in 
n 

(1.14) to (1.20). 

Let {Y(x), -ro < x < ro} be a family of random 

2 
variables with EY(x)=M(x) and VarY(x)=O (x) < ro, The 

new procedure is designed to find the roots x=L and p 

x=L , of the equations M(L )=p and M(L , )=p'. Starting 
p p p 

13 

with an arbitrary random variable (X 1 ,X~) and defining 

successively (X 2 , x;), (X3 , x;), ... by (1.14) to 

(1.20), an and a~ are non-negative functions of (x 1 , 

x;), (y 1 , y;), ... , (yn-l, y~_ 1 ). Conditional on (x 1 

, x~), (y 1 ,y~), ... , (yn_ 1 ,y:_ 1 ), the random variables 

Y andY' have distributions of Y(x) and Y(x') which 
n n n n 

depend only on the values of x and x', respectively. 
n n 

This implies that random variables Z(x) and Z(x') 
n n 

defined by (1.12) and conditional on (x 1 , x;), (y1 , 

·· •' (y 1 • y' 1 ) are independent. 
n- n-

The following lemma, which is adopted from Robbins 

and Siegmund {1981) Application 2 p.242, will be used 

in Theorem 2.1 to prove the almost surely convergence 

of (X , X')' in (1.14) to (L , L ,)'. 
n n p p 
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Lemma 2.1: If~ and M are measurable and for some 0 < 

a,b < <D 

O(x} + IM(x} I ~ a + b(x}, ( 2. 1 ) 

there exists a real number e such that 

inf IM(x)-pl > 0 for all o < £ < 1 
E.<lx-BI<t/E. 

( 2. 2) 

Define the recursive formula by 

X = X - a ( ·1 -p) • 
n+ 1 n n n 

y 2 , ••. such that 

sup I x I < <D 
n 

( 2. 3 ) 

then lim X = $ with probability one. 
n~ n 

Theorem 2.1: If (M1), (M2), (M4), and (Zl)(i) are 

satisfied, then [:~) defined in (1.14) converges to 
n 

(~·.)almost surely (a.s.). 
p 

Proof: The recursive formula 

(X 1) (X ) (a ( Y - p ) ) 
X~+ = X~ - a~ ( Y~- ' ) 

n+1 n n n p 

implies 

X = X - a ( Y -p) 
n+ 1 n n n 

and 

x' = x' - a' (Y'- '). 
n+1 n n n p 

( 2 . 4 ) 

By assumptions (Ml), (M4) and (Zl)(i), equation (2.1) 

is satisfied. By assumption (M2}, equation (2.2) is 



satisfied. Moreover, by 

(l) = E 

and 

0 

By (1.18) and 

(l) = E 

and 

Since all a , 
n 

-1 ex 1 n ~ E a 

E 
2 

E ~ a = n 

( 1. 20) we 

-1 E ex 1n ~ a 

a~, yn- p, 

(1.17) and (1.19), 

E An 
-1 

E 
-1 = ~ ex2 n = n n 

2 -2 
~ E 

2 -2 
An ex n < ro, 

n 2 

have 
, 

E A'n -1 
E -1 = ~ ex 2 n = n n 

< <D, 

and y'- p' are finite, 
n 

(l) 

(l) 

equation (2.3) is satisfied. By Lemma 2.1, it follows 

that X converges to L and X' converges to L , a.s. 
n p n p 

15 

Q.E.D. 

The following lemma, which is adoptive from 

Serfling (1980) p.25, will be used in Theorem 2.2 to 

prove the convergence of (A 
n 

-1 -1 
to (a ,a' ) , 

A') in (1.19) and (1.20) 
n 

Lemma 2.2: Suppose that the k-vector X converges to 
n 

the k-vector X almost surely, in probability, or in 

distribution. Let B k be a constant matrix. Then BX 
~x n 

converges to BX in the given mode of convergence. 

Theorem 2.2: If (M1), (M2), (M4) and (Z1)(i) are 

-1 , 
satisfied, then A converges to ex a.s. and A 

n n 

,-1 
converges to a a.s., where A and A' are defined by 

n n 

(1.19) and (1.20). 

Proof: Let A be the slope of the line through (L , p) 
p 

and (L, , p'), Thus 
p 
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). = (p'- p)/(L ,- L ) 
p p 

( 2 . 5 ) 

and 
a 

a = -- M(L ) = c). ax p 
( 2. 6) 

a' = aa M(L ,) = c'). 
X p 

( 2. 7) 

where c and c' are positive constants depending on the 

distribution used (see Figure 1.1). 

By Theorem 2.1, X and X' converge to L and L, 
n n p p 

a.s., respectively. From Lemma 2.2, let X =(X X')' 
n n ' n 

1 
and B1 2 = < , > ( -1 , 1) . Thus, A x c p -p n 

<Xn' -Xn) = c(p'-p) 

-1 
converges to a = 

Lp'-Lp 
c(p'-p) 

almost surely. Similarly, A' 
n 

<Xn'-Xn) ,-1 Lp'-Lp 
= converges to o: = almost surely. 

c' (p' -p) c' (p' -p) 

Q.E.D. 

Theorem 2.3: If (M1), (M2), (M4) and (Z1)(i) are 

'It; 

satisfied. For any p , the estimator of the root x = 
"I: 

L of M(x) = p can be presented as 
p"l: 

L = kX + (1-k)X' 
plt n n 

where 0 < k < ro, Then L converges to 
plt 

( 2. 8) 

( 2. 9) 

Proof: Since (::) converges to (::J a. s. , by Lemma 2. 2 

, L converges to L a. s. 
P* p"l: 

Q.E.D. 

Remark: Constant k defined in (2.8) and (2.9) depends 

on the function M(x). The relationship between k and M 
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will be discussed in the last section of this chapter. 

X' ) 
n ' 

Asymptotic Normality 

In this section, the asymptotic normality of (X , 
n 

L 
p~ 

"' 1 "' 1 , a- and a'- are derived. 
n n 

The following lemma, which is adoptive from Sacks 

(1958) p.383, will be used in Theorem 2.4 to prove the 

asymptotic normality of (X , X')'. 
n n 

Lemma 2.3: Suppose (M1), (M3), (M4), (Z1), (Z2) and (Z3) 

are satisfied. Let a 
-1 = An where A is a positive 

n 

constant such that 2Aa > 1. Then n 112 (Xn- LP) is 

asymptotically normally distributed with mean zero and 

2 2 -1 
variance A a ( 2Ao: - 1) . 

Theorem 2.4: Suppose (Ml) to (M4) and (Zl) to (Z3) are 

satisfied. Then 

(
X -

.(lln 
X' -

n 

LP ] "" AN ((0) (a 2 la 2 
, 20 , 2J] 

L , 2 0 , 0 a ta 
p 

Proof: By Theorem 2.2, A 
n 

-1 
and A' converge to o: and 

n 

,-1 1 1 . -1 d ,-1 .. a a most sure y. S1nce a an a are pos1t1ve 

constants and both 2Aa and 2A'a' greater than one, 

converge to zl and z2 in distribution, where z1 and z2 

are normal random variables with mean zero and 

z1 z , z , z . 
variances a a and a /a , respect1vely. In equation 

(2.2), X' and X are correlated through A and A'. Note 
n n n n 

that A 
n 

, -1 ,-1 
and A converges to a and a , and Y , y' 

n n n 



are independent binary random variables. Thus, X' and 
n 

X are asymptotically uncorrelated, and therefore, 
n 
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asymptotically independent. Q.E.D. 

Theorem 2.5: If all assumptions in theorem 2.4 are 
,.. 

satisfied, then /n(L - L ) is asymptotically normal 
P* P* 

with mean zero and variance o 2 k 2 /a2 + o' 2 (1-k) 2 ja2 . 

Proof: Let B from Lemma 2.2 equal (k, 1-k). Since 

Lemma 2.2 implies 

Q.E.D. 

Theorem 2.6: If all assumptions in theorem 2.4 are 

r "-1 -1 
satisfied. Then yn(a - a ) is asymptotically normal 

n 

with mean zero and variance o 2 j((p'-p)a) 2 . Similarly, 
r "-1 -1 
yn(a - a ) is asymptotically normal with mean zero 

n n 

Proof: Note that 

and 

(
X -rnn 
x' -

n 

r "-1 -1 
y n( a -a ) = {ii((X'-X )-(L ,-L ))(c(p'-p))- 1 

n n n p p 

= ( rn rn ) [xn - pp') 
c(p -p) ' c(p -p) X~ 
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r "-t -t 
Thus, by Lemma 2.2, rn(a - a ) 

n 
is asymptotically 

normally distributed with mean 0 and variance 

( 2-2 ,2 ,-2>!< < , >>2 '-c",-1 ,-1> a a + a a c p -p . Also, y n a - a 
n 

is 

asymptotically normally distributed with mean zero and 

( 2-2 ,2 ,-2)/( '( 1 ))2 variance a a + a a c p -p . Q.E.D. 

Remark: Note that the new procedure defined in (1.14) 

to (1.20) assumes the values of c and c' are known. The 

values of c and c' are derived from the assumed 

parametric model form of M(x). If the assumed model is 

different from the true model, by Lemma 2.1, < x , x' > 
n n 

will still converge to (L , L, ). However, the minimal 
p p 

asymptotic variance defined in Theorem 2.4 will not be 

attained. Similar conclusion can also apply to Theorem 

2.5 and Theorem 2.6. Details will be discussed in the 

Chapter 3. 

Remark: Assumption (Ml) implies that M(x) is an 

increasing function of x. Thus, M'(x) is greater than 

zero. It is natural, in practice, to restrict X' and X 
n n 

such that X'-X > 0 for all n. The truncated version of 
n n 

"'-1 
the random variables a and 

n 

the reminder of the paper. 

... -1 
a' 

n 
are used throughout 

Since X'-X is asymptotically normally distributed 
n n 

. th L L d . 1 ( 2/ 2 I 21 I 2) h Wl mean p'- P an variance ';} a a + a a , t e 

distribution of x'-X will concentrate around L ,-L as 
n n p p 

n increases. Thus, the probability that X'-X ~ 0 
n n 

.... -1 ,.. 
converges to 0. Now, a = (X'-X )/c(p'-p), and a'- 1 = 

n n n n 



(X'-X )/c'(p'-p) are functions of X'-X. Hence, the n n n n 

truncated version of the random variables ~- 1 and ~·- 1 
n n 

will have the same asymptotic normal distributions as 

~- 1 and ~'- 1 , This conclusion also applies to random 
n n 

A-1 
variables l 

A,-1 
and l . 

n n 

Binary Data Distributions 

Binary random variables, Y(x), provide a major 

area of application for the new adaptive RM procedure 

defined in (1.14) to (1.20). In this section, four 

different parametric forms of M(x) are discussed for 

binary data. They are the two parameter logit, skewed 

20 

logit, log-log, and porbit models. The convergence and 

asymptotic normality for the estimators of the roots of 

these models are also discussed. 

-1 
Logit Model: Let M(x) = [1+exp(-~-~x)] where -ro < x, 

~ < ro, and 0 < ~ < ro, Since M is an increasing 

function, there exists an unique percentile LP for any 

0 < p < 1. Let LP and LP, be the roots of M(x)=p and 

M(x)=p', respectively. Then, 

L = (ln-P - 11) /fJ 
P 1-P (2.10) 

and 

(2.11) 

The tangent slopes of M at x=LP and x=LP, are 

a = ~p(1-p) (2.12) 

and 
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a'= f3p'(1-p'), (2.13) 

The slope of the line through (p,LP) and (p' ,LP,) is 

I -1 
A = ( p -p) ( Lp I- Lp) • ( 2 • 14 ) 

In Chapter 1, it was mentioned that c and c are 

constants such that a = cl and a' = c'l. For the logit 

model, substitute (2.10) through (2.14) into a and a'. 

Thus 

( pI {1-p >) 1 -1 
c = p(1-p) ln p<t-p > (p -p) (2.15) 

and 

1 r r (p'(1-P)) 1 -1 
C = p (1-p ) ln P( 1 _p') (p -p} , (2.16) 

In the new procedure, (X, X') are used to estimate 
n n 

(LP , LP, ). Thus, substituting (Xn ' X 1 
) for ( L ' L I } 

n P p 

in (2.10) and (2.11) yields the following estimators of 

the parameters ~ and ~: 

a 1 (P , ( 1 - P ) 1 ( X I -X ) - 1 
~'-" n = n lP ( 1 - P 1 } ) n n (2.17) 

~(x+x'))/2 
n n n 

(2.18) 

ll: 
For any 0 < p < 1, the estimator of the root L can 

pll: 

be presented as 

(2.19) 

Now, replace ~n' Pn by (2.18) and (2.17) to obtain 

where 

L = kX + (1-k}X' 
pll: n n 

k = 
ln (< 1 -p>p') 

p(l-p ) 

(2.20) 

(2.21) 



" 
By theorem 2.5, ~(L - L ) has a asymptotic normal 

P* P* 

distribution with mean zero and variance a 2 (k/a) 2 + 

~' 2 ((1-k)/a') 2 where a, a', k are defined by (2.12), 

(2.13) and (2.21). 

-2 
Skewed Logit Model: Let M(x) = [1+exp(-~-~x)] where 

-ro < x, ~ < ro and 0 < P < ro, Since M is an increasing 

22 

function of x, there exists a unique root LP of M(x)=p 

for any 0 < p < 1. Let LP and LP, are the roots of 

M(x)=p and M(x)=p'. Then 

and 

LP = ( 1 n /P - ~) / ~ 
1-/P 

L , = p (1n {P' - ~)/ ~. 
1-.fP'" 

The tangent slopes of M at x=L and x=L , are 
p p 

a = 2/3p(1-/P) 

and 

(2.22) 

(2.23) 

( 2. 24) 

(3.25) 

The slope of the line through (p,LP) and (p' ,LP,) is 

defined by (2.14). The constants c and c' satisfying a 

= cX and a' = c'X can be obtained by substituting 

(2.22) through (2.25) into a and a', Thus 

2P( 1-IP) ln(R< 1-/P)//P( 1-R) 
c = p,- p 

and 

(2.26) 
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I c = 
2 PI ( 1-/P') 1 n (R ( 1-/P) //P ( 1-/P') 

PI- p (2.27) 

Again, substitute (Xn, X~) for (LP ,L PI) in (2.22) and 

(2.23) to obtain the following estimators of ~and ~: 

{3 = 
ln(IP'(l-/P)//P(l-/P')) 

X 1 
- x (2.28) 

n n 

(2.29) 

~ ~ 
For any 0 < p < 1, the estimator of the root M(x)=p 

can be presented as 

L = (1n(;;; /( 1-;;;->) - ~ )/~ 
p~ n n. 

Now, replace ~n' {3n by (2.29), (2.28) to obtain 

where 

k = 

L :::: kX + (1-k)XI 
p~ n n 

ln(IP'< 1-tp;")/( 1-/P')y';; ) 

ln (IP'"" ( 1-/P )/ ( 1-IP' )/P ) 
A 

(2.30} 

(2.31) 

(2.32) 

By Theorem 2.5, /n(L -L } is asymptotically normally 
P* P* 

distributed with mean zero and variance o2k2 /~2 + 

o 12 (1-k) 2 /a' 2 where a, a', and k are defined by (2.24) 

, (2.25) and (2.32). 

Log-log Model: Let M(x) = 1-exp[-exp(~+~x)] where -ro < 

x, ~ <oo and 0 < {3 < ro. Since M is an increasing 

function of x, there exist a unique root L of M(x)=p 
p 

for any 0 < p < 1. Let LP and LP, are the roots of 

M(x)=p and M(x)=p'. Then 

{2.33) 
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and 

The tangent slopes of M at x=LP and x=LP, are 

1 
a = P(l-p) lnt:; (2.35) 

and 

a' = P(1-p') ln_!__p' 
1- • 

(2.36) 

The slope of the line through (p,LP) and (p' ,Lp') is 

defined by (2.14). The constants c and c' satisfying a 

= cA and a' = c'A can be obtained by substituting 

(2.33) through (2.36) into a and a'. Thus 

(2.37) 

and 

, 1-P' ( 1) (ln(1-P')) 
C : P1 -P ln 1-P ln ln(1-P) , ( 2. 38) 

Now, substitute (Xn, X~) for (LP ,LP,) in (2.33) and 

(2.34) to obtain the following estimators of ~ and P: 

ln (ln( 1-P' >) 
ln( 1-P) 

X' - X 
n n 

(2.39) 

(x'+x)). 
n n 

( 2. 40) 

* * For any 0 < p < 1, the estimator of the root M(x)=p 

can be presented as 

( 2 • 4 1 ) 

Now, replace ~n' Pn by (2.40), (2.39) to obtain 

L = kX + (1-k)X' 
P* n n 

(2.42) 

where 



k = 

A 

l (ln(1-P'>J 
n ln(1-p11t) 

l (ln(t-P'>) 
n ln(1-p) • 

25 

(2.43) 

By Theorem 2.5, ~(L -L ) is asymptotically normally 
pllt pllt 

d . b d . h d . 2k2 I 2 ~stri ute w~t mean zero an var~ance o ,a + 

o' 2 (1-k) 2 /a' 2 where a, a', and k are defined by (2.35), 

(2.36) and (2.43). 

Probit Model: Let M(x) = Fz(x~J.t) where 0 < fJ < ro, -<X>< 

x,J.t < ro and F (t) = -exp(-t /2) dt. Since F be I t 1 2 

z -<X> /Zit z 

-1 
an strictly increasing function of t, F exists for 

z 

all x E R. Thus, 

and 

The tangent slopes 

a = M' ( LP) 

and 

fJ -1 , 
=~+ F (P). 

z 

of M at x=L and x=L , p p 

1 (-1 (Lp-~) 2) = exp- ---
/2i fJ 2 fJ 

(2.44) 

(2.45) 

are 

(2.46) 

(2.47) 

The slope of the line through (p, LP) and (p', LP,) is 

defined by (2.14). The constants c and c' satisfying a 

= c~ and a' = c'~ can be obtained by substituting 

(2.44) through (2.47) into~ and~·. Thus, 

c = 
-1 1 -1 

Fz ( P ) - Fz { P) 

.(2ii. (P'-P) 
(-1 ( -1 ) 2) exp 2 F2 ( P) (2.48) 
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and 

-1 , - 1 

c' = Fz (P ) - Fz (P) (-1 ( -1 , ) 2) exp 2 F z (P ) (2.49) 
{ii (P'-P) 

Now, substitute (Xn, X~) for (LP ,LP,) in (2.44) and 

(2.45) to obtian the following estimators of~ and P: 

fJn = Xn' - Xn (2.50) 

(2.51) 

* * For any 0 < p < 1, the estimator of the root M(x)=p 

can be presented as 

(2.52) 

Now, replace ~n' fJn by (2.51), (2.50) to obtain 

L = kX + (1-k)X' 
P* n n 

(2.53) 

where 

F~ 1 ( P, ) - F; 1 ( P * ) 
1 -1 

Fi (P')- Fz P) 
k = ,2.54) 

By Theorem 2.5, ~(L -L ) is asymptotically normally 
P* P* 

distributed with mean zero and variance q 2k2/«2 + 

,2( k.)2/ ,2 , ( ) a 1- ex where ex, ex, and k are defined by 2.46 , 

(2.47) and (2.54). 



CHAPTER III 

ROBUSTNESS 

The asymptotic normality theorems discussed in 

Chapter 2 are derived under the assumption that the 

assumed model is the true model. It is now of interest 

to examine the asymptotic distribution of the estimator 

of a root if the true model is not the same as the 

assumed model. 

Mean Square Error 

By the results of Robbins and Monro (1951), 

(X X')' from the new procedure will converge to 
n' n 

(L ,L ,)', no matter what the true model is. Since a 
p p n 

and a' in (1.15) and (1.16) are functions of X and X', 
n n n 

it can be proved that na and na' will converge to A 
n n 

and A', the inverse tangent slopes of the assumed 

model at x=L and at x=L ,, 
p p 

By Lemma 2.3, ~(X-L ) is asymptotically normally 
n P 

distributed with mean zero and variance A2a 2 (2Aa-1 )- 1 • 

If the assumed and the true models are identical, A and 

A' are equal to ~ and ~·. Thus, the minimum asymptotic 

. 2/ 2 d ,2/ ,2 . d var1ances a a an a a are atta1ne . However, if 

the assumed model is not equivalent to the true model, 

27 
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~(X-L) and ~(X'-L ,) are still asymptotically 
n p n p 

normal and independent. The minimum asymptotic 

• 2 2 12 1 1 2 var1ances a fa and a a , however, will not be 

2 2 -1 
attained and are replaced by A a (2Aa-1) and 

A' 2a 12 (2A 1a 1 -1)- 1 • 

The objective of the new procedure is to estimate 

* the whole curve M(x). The root x = L of M(x) = p can 
P* 

be expressed as a linear combination of the roots L 
p 

and L 1 where M(L ) = p and M(L 1) = pi. That is, L = 
P p P P* 

kLP + (1-k)LP~ where k is based on the true model. If 

the assumed and true models are the same, by Theorem 

2.3, the estimator L in (2.15) will converge to L 
P* P* 

Hoever, if the assumed and the true models are not the 

same, then the wrong value of k will be used to 

estimate L . In this case, L will be biased and thus 
P* P~ 

not converges to L 
P* 

It is of interest to examine how robust the 

estimators from the new procedure are when the true 

model is not the same as the assumed model. The mean 

square error (MSE) of the estimator L will be used as 
P* 

a measure of the estimation robustness. 

The following notation are introduced for finding 

the MSE of the estimator of the true root. For any 

finite p, let La be the root of the assumed model M 
p a 

such that M (La) = p; Lt be the root of the true model a p p 

Mt ( L~) 
A 

Mt such that = p; La be the estimator of La. For 
p p 

given finite positive constants p and pi, let k be 
a 



the constant that satisfies the equation k 8 L: + 

(1-ka)L:, = L:*; 
t 

equation ktLP + 

kt be the constant satisfying the 
t t -1 ,-1 

(1-k )Lp' = L ; A and A be the 
t P* 

tangent slopes of the assumed model M at x 
a 

t 
= LP and 

t 
x = LP,; a and a' be the tangent slopes of the true 

t t 
model Mt at x=LP and x=Lp' . 

The objective of the new procedure is to use X 
n 

29 

and X' to estimate Lt . However, the estimate of Lt is 
n P* P* 

based on the assumed model. That is, Lt is estimated 
P* 

by 

La = k X + ( 1-k )X' P* a n a n 
( 3 • 1 ) 

If the assumed and the true models are different, the 

value of ka in (3.1) will not be the same as kt. That 

is, the curve being estimated is not the true curve but 

the assumed curve. Therefore, 

A 

Now, E(La ) = k E(X) + (1-k )E(X' ), and (X ,X') 
P* a n a n n n 

t t t t 
converges to (L ,L, ), where (L ,L,) 

p p p p 

""a a t 
Thus, L converges to L , not to L . 

P* P* P* ... 
f L a 

square error o converges to 
P* 

""a 
MSE( L- ) 

P* 

"a 
= Var(L- ) + 

P* 

= Var(k X +(1-k )X') 
a n a n 

a a 
=(L ,L,). 

p p 

Hence, the mean 
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2 2 + (k -k ) (L ,-L ) • 
a t p p 

( 3 0 2 ) 

By Lemma 2.3, the asymptotic variances of /O(Xn-LP) and 

/fi(X~-LP) are o 2A2 (2Aa-l)- 1 and o' 2A' 2 (2A'o'-l)- 1 • By 

Theorem 2.4, X and X' are asymptotically independent. 
n n 

"' 
Thus, MSE(L 3 

) converges to 
p~ 

( 3 0 3) 

Remark: Any root L of the true model can be presented 
p~ 

as the linear combination of the true roots L and L ,, 
p p 

That is, L = ktL +(1-kt)L ,, where kt depends on the 
p~ p p 

true model. However, the true model is usually unknown. 

Thus, kt is unknown. In estimating the true roots LP~' 

the value of k 3 will be used to replace kt and 

calculated according to the assumed model. For example, 

if the assumed model is logit model, k will be 
a 

calculated according to (2.28); if the assumed model is 

.log-log model, then k will be calculated according to 
a 

( 2 0 50) 0 

Remark: Since the random variables Y(x 1 ) are generated 

from the true model, by the results of Robbins and 

Monro's paper, (Xn, X~) converges to (LP,LP,) no matter 

what the assumed model is. In Chapter 2, it was shown 

~ 

that k 3 and kt are functions of p, p', and p ; A and A' 

are functions of p, p', LP , and LP,; also, LP and Lp' 

are functions of p, p' and the parameters of the true 
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TABLE 3.1 

MSE TABLE OF 16 POSSIBLE COMBINATIONS 

jt 

p True Model 
Assumed Skewed 
Modele Log it Log it Log-Log Probit 

Logit V11 V12 V13 V14 

Skewed 

logit. 
V21 V22 V23 V24 

Log-Log V31 V32 VJ3 V34 

Probil V41 V42 V43 V44 
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model. Thus, the asymptotic MSE of L8 is a function of 
pll: 

p, p' ' 
:11: 

p , and the parameters of the true model. 
,.. 

The MSE of the estimator L8 will be derived for 
pll: 

the four binary data distributions which were mentioned in 

Chapter 2. Table 3.1 provides the sixteen possible 

combinations of the assumed and the true models for the 

four given distributions. The value of V .. represents 
1 J 

the mean square error 
,.. 

of La when the distribution is p1r: 

assumed to follow the ith assumed model but the true 

distribution follows the jth true model where i=1, ..• ,4 

and j=l, ... ,4. It is also assumed that~ and~ are the 

two parameters of the true models. 

Case Vll If the true and assumed models are logit, 

then 

V11 = MSE(La ) 
pll: 

where 

k 
a 

L p 

L , 
p 

-1 
A 

= 

= 

2 . 2 
+ ( k - kt) ( L , - L ) , 

a p p 

kt 

ln( p'(1-px)) 
{ 1-P )p1r: 

= 
( p' (1-P) ) 

ln (1-P )P 

( ln-P- -
1-P ~)/P 

= ( p' 
ln1-P, 

= c A. = a 

- ~)/13. 

P(1-P) 

P 1 -P ln( 
P'(1-P) ) 
(1-P )P 



A 
I -1 

= {3p(1-p) =a 

= ell. = 
a 

P 1 (1-P 1
) 

p'-P 

= {3pl ( 1-pl ) = a 
I 

ln( 
pl(1-p) ) 
( 1-p ) p 

Case V12 : If the true model is skewed legit and the 

assumed model is the legit model, then 

V12 = MSE(L 8 
) 

P* 

where 

k = a 

2 2 
+ ( k - kt ) ( L I- L ) ' 

a p p 

( PI (1-p:t:) ) 
ln 1 

{1-P )plt 

( PI (1-P) ) 
ln (1-P )P 

-1 P(1-P) 
A = c "- = - ( P 1 (1-P) ) 

ln (1-PI)P 

= 

= 

a P~-P 

( P 1 (1-P)) 
fJp( 1-p) ln ( 1-P )P 

1 n (P'"" (1-(P) 
(P( 1-{P') 

cl"- = 
a 

P 1 ~1-P') ( 
P -P ln 

p'(l-P)) 
(1-P )P 

/3p 1 
( 1-p~) ln( 

ln (P'"" < 1-{P) 
(1-/P""){P 

p'(1-P)) 
(1-P 1 )P 

PI-P 
L I -L 

p p 

p'-P 

L I -L p p 
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a = 

ln (R< 1-IP>/< 1-R>IP ) 

2~p(1-/P) 

a' = 2~p'(1-/P') 

34 

Case V13: If the true model is log-log and the assumed 

model is the logit model, then 

V13 = MSE(La ) 
pll: 

where 

k = a 

L = p 

L I 
p 

A 
-1 

A' -1 

= 

= 

( p'(1-p*) ln , 
( 1-P ) P* ) 

(p'(1-P) 
ln < 1-P > P ) 

ln ( 
ln(1-P') ) ln{1-p*) 

ln( 
ln(1-P') ) ln(1-P) 

( ln ( ln 1 ~P) - 11)/13 

( ln ( ln1 ~P,) - 11)/13 

J1p( 1-p) ln ( 
p'(1-P) ) 

c ~ 
(t-P')p 

= I 
a p - p 

/1p(1-p) (p'(t-P) 
ln (1-P )P ) 

= 
ln( 

ln(1-P)) 
In( 1-P) 

~p'(1-p') ln( 
p'(1-P) 

(1-P')p 
= c'~ = a p - p 

) I p - p 
L I - L p p 



= 
Q '( ') (p'(1-P)) 
,...p 1-p ln <1 -P'>P 

ln ( 1 n < 1- P' ) ) 
ln(1-P) 

1 
ex= fJ(1-p) ln-

1-p 

ex' =f3(1-p 1
) 

1 
ln--r1 -p 
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Case V14 : If the true model is probit and the assumed 

model is the logit model, then 

V14 = MSE (La ) 
pll: 

1 ( z z 2 - 1 2 2 2 - 1) = ~ kaO' A ( 2Acx-1) + ( 1-ka) o' A' ( 2A 1 <X' -1) 

where 

k = a 

2 2 
+ ( k - kt ) ( L I - L ) 

a p P 

ln( P~(1-p:.~:>) 
(1-P )pll: 

( P (1-P) ) 
ln ( 1-P 1 )P 

-1 -1 * Fz ( P' ) - Fz ( P ) 

Fi 1 (pI ) - Fi 1 ( p ) 

-1 
A = c A. = 

( p'(1-P)) 
p(l-p) ln (1-PI)P 

PI - p a 

= 
( p' (1-P) ) 

p(1-p) ln (1-P )P 

fJ ( F~ 1 ( p I - F~ 1 ( p)) 

A 1
-

1 = c'A. = 
a 

( PI (1-P) ) 
p'(l-p') ln Ct-P')p 

p - p 
PI - p 
L I- L p p 



, , ( p'(t-P)) 
p ( 1-p ) ln < t-P, > P 

= 

Case V21 : If the true model is logit and the assumed 

model is the skewed logit model, then 

V21 = MSE( La ) 
P* 

where 

k = a 

L 
p 

L , 
p 

-1 
A 

= 

2 2 + (k -k ) (L ,-L ) , 
a t p p 

= 

ln (IP' (1-~ )/ (1-/P' )y"p"; ) 

1 n (R < 1-/P >I< 1-/P' > IP ) 

ln( p'<t-p*>) 
( 1-P )pJI:: 

( p (1-P) ) 

ln ( 1-P' )P 

(1n--L -
1-p 11)/~ 

(1n_L_, 
1-p - 11) /f3. 

= c A 
2 

2p( 1-IP> ln(rP'< 1-IP>/IP< 1-R) 
= , 

p - p 
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= 2,9p(1-/P) 

,-1 c'>.. A = a 

2p'(1-/P') 
= 

~ = {Jp(1-p) 

~I = ,9p I ( 1-pI ) 

ln(IP'<1-/P)/(1-/P'){P) 

p 

(p'(1-P)) 
ln (1-P )P 

ln(/P'(1-/P)/(1-/P')/P) 
- p 

( P 1 (1-P) ) 
ln (1-P )P 

I p - p 
L ,- L p 

Case V22: If the assumed and true models are skewed 

logit, then 

VZZ = MSE (La ) 
P* 

where 

2 2 
+ ( k - kt ) ( L I- L ) ' 

a p p 

k = k = 
a t 

L I 
p 

ln(IP'< 1-/P)/( 1-/P')/P ) 

ln(Ro-IP>/O-IP'>IP) 

A- 1 =a = c >.. = 2,9p(1-/P) 
a 

A'- 1 = ~~ = c'X = 2/Jp'(1-/P') 
a 
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Case V23 If the true model is log-log and the assumed 



model is the skewed logit model, then 

V23 = MSE (La } 
p~ 

where 

L = p 

L , = p 

-1 
A = 

A 
, -1 

l (ln(1-P'>) 
n ln(l-plt) 

ln(ln(t-P'>) 
ln(1-P) 

( ln ( ln 1 ~P) - ~-t)/13 

( ln ( ln 1 ~P,) - ~-t)/13 

c A. 
a 

2p(l-/P) ln(IP'<1-/P)/(1-If')/P) 
= p - p 

2~p(1-/P) 
ln(IP'<1-/P)/(1-fP')/P J 

= ln ( 1 n ( 1- P' ) ) 
ln(l-P) 

= c'A. 
a 

2p'(l-/P') ln(IP'< 1-/P)/( 1-/P'")/P) 
= p - p 

, p - p 
L P,- L p 

, p - p 
Lp,- L 

2/3p'(l-/P'"} 
ln (IP' ( 1-/P )/ (1-/P' )/P J 

= ln ( 1 n C 1- P, > ) 
ln(l-P) 
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1 
c:x = /3(1-p) ln-

1-P 

a' =fl(1-p') 
1 

lnt:P" 
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Case V24 : If the true model is probit and the assumed 

model is the skewed logit model, then 

V24 = MSE (La ) 
P"* 

where 

k = a 

kt = 

LP = 

2 2 
+ ( k - kt ) ( L , - L ) , 

a p p 

tl 

ln (R(l-;;;)/( 1-;;');;; ) 

ln(R< 1-/P)/( 1-/P')/P) 

F;1(p') -1 * - Fz ( P ) 

F~ 1 ( P, ) -1 - Fz ( P) 

+ {:JF- 1 (P) 
z 

-1 
A = c ). 

= 

a 

2p(1-/P) ln(~(1-/P)//P(1-/P') 
p - p 

= 2p(1-/P) 
ln(/P'(1-/P)/(1-{;')/P) 

{3 ( F~ 1 ( P, ) - F~ t ( P ) ) 



2p'(l-/P') ln(/P'(l-fP)/fP(l-IP') 
= p - p 

= 2p' (1-/P') 
1 n (IP' o-IP >I o-R> IP ) 

~ (F; 1 ( P, ) - F; 1 ( P)) 

<X = 

p' - p 
L , - L p p 

Case V31 : If the true model is logit and the assumed 

model is the log-log model, then 

V31 = MSE (La ) 
P* 

where 

k = 
a 

L = p 

L , 
p 

A 
-1 

2 2 
+ ( k - kt ) ( L , - L ) , 

a p p 

= 

= 

ln (in( 1-p' )'J 
\.ln(l-p:~t) 

ln(ln(1-p >) 
ln(1-p) 

ln( 

ln( 

p' ( 1-pll:) ) 
(1-P )pll: 

P (1-P)) 
(1-P )P 

(1n_£_ -
1-p ~A)/~ 

(ln 1 ~:. - ~A)/~. 

c ). 
a 

1-P 
ln (1~P) = p -P ln( 

ln(1-P') 
ln(1-P) ) P'-P 

L ,-L p p 
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fJ(l-p) ln( 
ln(1-P 1

) 

= ln(1-P) 

I -1 ciA. A = a 

= fJ(l-pl) ln( ln(1-P
1

) 

ln(1-P} 

<X= fJp(l-p) 

(X 1 = fJp I ( 1 _ pI ) 

~ 
) 

ln(,~P) 
( P 1 (1-P) 

ln (1-P )P 

I 

p -p 
L I -L 

p p 

) 

) 
ln(~) 

ln( P~C1-P>) 
(1-p }P 

Case V32 : If the true model is skewed legit and the 

assumed model is the log-log model, then 

V32 = MSE (La ) 
P* 

where 

k = a 

L = 
p 

L I 

p 

A 
-1 

2 2 
+ ( k - kt ) ( L I- L ) I 

a P p 

= 

= 

l (ln(1-p 1
}) 

n ln(1-p*} 

ln(ln(1-p 1 >) 
ln(1-p} 

ln(/P'(l-tp;)/(1-~)~) 

ln(/P'(l-fP)/(1-{P')/P) 

(1n( .(P ) - 11)/tJ 
1-/P 

(1n( IP' ) - ~)/fJ 
l-IP' 

c 'A 
a 
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1-P ( 1) ( In<t-P')) 
ln t:'P ln ln(1-P) = pI-P 

= ~ ( 1-p ) 1 n L ~ P) 
ln( ln(1-P' > ) 

ln(1-P) 

ln (/P' ( 1-{P)/( 1-/P'>fP) 

,-1 
c''A A = a 

1-P' 
ln L~p') ln( 

ln(1-P') ) p'-P 
= p'-P ln(1-P) L ,-L p p 

= ~(1-p') lnL~P) 
ln( ln(1-P' > ) 

ln(1-P) 

1 n (IP'" < 1 -IP >I< 1 -R > 1P) 
c.x = 2~p(1-{P) 
a' = 2~p'(l-/P'") 

Case V33 If the true and assumed models are log-log, 

then 

V33 = MSE (La ) 
p~ 

where 

= *(k:o2A 2 (2Ao:-1)- 1+ (1-ka) 2o' 2A' 2 (2A'o:'-l)- 1) 

+ ( k - kt ) 2 ( L I- L ) 2 , 
a p p 

k = k = a t 

l (ln(1-P'>) 
n In{ 1-p*) 

ln(ln(1-P' >) 
ln(1-P) 

LP = (1n(ln 1 ~P) - J!)/~ 

Lp' = (1n(ln 1 ~p') - Jl)/~ 

-1 
A = c 'A 

a 

1 = o: = ~(1-p) ln1 _p 

,-1 c''\ , A = A = <X = a 
~( 1-p') 

1 
ln1-P' 
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Case V34 : If the true model is probit and the assumed 

model is the log-log model, then 

V34 = MSE ( L 8 ) 
px 

where 

= ~(k=a2A2 (2Ac:x-1)- 1 + (1-ka) 2a' 2 A' 2 (2A'a'-1)- 1) 

+ (k -kt) 2 (L ,-L ) 2 , 
a p P 

k = a 

-1 
A 

l (ln(1-P'>) 
n ln( 1-px) 

ln(ln(1-P >) 
ln(1-P} 

-1 -1 x 
Fz ( P' ) - Fz ( P ) 

p;1(p') _ p;1(P) 

= c A 
a 

-1 /3F ( !" ) 
z 

1-P (1) (ln(1-P'>) 
= p -P ln w ln In{1-P> 

= (1-p) ln L~P) 
ln( In( 1-P' > ) 

ln(1-P) 

1-P' ( 1 ) ( ln(1-P')) 
= p' -P ln 1-P' ln In( 1-P > 

p'-P 

L I -L 
p p 



Case V41 : If the true model is logit and the assumed 

model is the probit model, then 

V 41 = MSE (La ) 
pll: 

where 

1 ( z z z -1 z z z 1) = ~ kaO' A (2A<X-1) + (1-ka) o' A' (2A'a'-1)-

k = a 

LP = 

LP, 

A 
-1 

= 

= 

-1 -1 11: 
Fz ( P' ) - Fz ( P ) 

F; 1 (P') F; 1 (P) 

ln( p'(1;plt)) 
(1-P )pll: 

( (1-P)P' ) 
ln (1-P 1 )P 

(ln-P- -
1-P 11) /tJ 

(1n~ - 11)/~. 1-p 

c A. 
a 

= 
-1 -1 

Fz ( P' ) - Fz ( P ) 

/2i (P' -P) 

= 
-1 1 -1 

Fz ( P ) - Fz ( P ) 

/2n (P'-P) 

= 

( -1 ( - 1 ) z) exp 2 F z ( P) 
I 

p -p 

L ,-L p p 

(-1 ( -1 ) 2) exp 2 Fz (P) 

(-1 ( -1 1 ) 2) exp 2 F z ( P ) 
p'_p 

L ,-L 
p 

(-1 ( -1 1 ) 2) exp 2 F z ( P ) 
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~ = /Jp(l-p) 

a'= fJp'(l-p') 

Case V42 : If the true model is skewed logit and the 

assumed model is the probit model. Then 

V42 = MSE(L 8 
} 

P"* 

where 

F~ 1 (pI ! -1 1C 

k = - Fz ~ P ! 
a Fz 1 <pI > -1 Fz ( P) 

kt 
ln (R< 1-fp; >/< 1-/P' >/;; ) 

= 
1n(/P'<1-IP>/< 1-/P'>IP) 

LP = ( 1 n (IP < 1 -IP > - 1) - 11)/13 

LP, = (ln(IP'< 1-/P')- 1) - 11)/13 
-1 

c 'A A = a 

= 
-1 -1 

Fz ( P' ) - Fz ( P) 

y'2i ( p' -p) 
(-1( -1 )2) exp 2 Fz (P) 

p'-p 

L I -L p p 

13(Fz 1 (P')- Fi 1 (P)) 
= (-1 ( -1 ) 2) exp z Fz (P) 

,-1 c''l. A = A 
a 

= 
-1 , - 1 

Fz ( P ) - Fz ( P ) 

/2i (P' -P) 

= 

( -1. ( - 1 1 ) 2) exp z F z (P ) 
p'-P 

L , -L 
p p 
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a = 2/3p(l-/P) 

a' = 2/3p'(l-~) 

Case V43 : If the true model is log-log and the assumed 

model is the probit model, then 

V43 = MSE(La ) 
p:JIIt 

where 

k = a 

L = p 

-1 
A 

-1 -1 1t. 
Fz ( P 1 

) - Fz ( P ) 

Fi 1 (pI ) - Fi 1 ( p ) 

l (ln(1-P 1
)) 

n ln(l-p*) 

ln(ln(t-P'>) 
ln(1-P) 

( ln ( ln 1 ~P) - 11) /13 

= (1n(ln 1 ~p') - ~)//J 

= c A. a 

= 

= 

= 

= 

-1 1 - 1 
Fz ( P ) - Fz ( P ) 

ciA. 
a 

/27t (P' -P) 

-1 , - 1 
Fz ( P ) - Fz ( P) 

l2i (p' -p) 

.(21( ln (1 n < 1-P' >) 
ln(1-P) 

(-1 ( -1 ) 2) exp z Fz (P) 

( -1 ( - 1 , ) z) exp 2 F z ( P ) 

P~-P 

L ,-L p p 

p'_p 

L , -L 
p p 



1 <X= /3(1-p) ln-
1-P 

a' = /3( 1-p') 
1 

lnt-PI 

Case V44 : If the true and the assumed models are the 

probit models, then 

VH = MSE( La ) 
pllt 

where 

F; 1 (pI ) -1 * - Fz ( P ) 
k = kt. = a F~ 1 (pI ) -1 

Fz (P) 

LP = #1 + /3F- 1 (P) 
z 

LP~ = #1 + /3F-1(p') 
z 

-1 c ). 1 (-1( -1 )2) A = = <X = {2i f3 exp -z Fz (P) a 

I -1 c'X a' 1 (-1( -1 1 )2) A ::: = ::: exp 2 Fz (P ) . 
a y'2i f3 

Minimax and Bayes Rules for Selecting 

Optimal p and p' 

47 

Since the asymptotic variance of the estimator L 
pllt 

is a function of p, p', p* and the parameters of the 

true model, it is of interest to find the optimal 

values of p and pi such that the asymptotic variance of 

* * L is minimized for a given p , where r s p s 1-r and 
P* 



0 < r < i . That is, for a given percentile range, it 

is of interest to find the pair (p, p') such that the 

minimum asymptotic variance of L is attained. 
plt 
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Two criteria, a minimax and a Bayes criterion, are 

considered. Under the minimax criterion, the maximum 

asymptotic variance of L is chosen in the range (r, 
P* 

1-r) for each fixed pair (p, p'). The minimax rule is 

the pair (p, p') that has the smallest maximum 

asymptotic variance. Because the minimax criterion is a 

conservative criteria, the asymptotic variance of L 
P* 

under this criterion may be unduly large for some 

ranges (r, 1-r). 

The Bayes criterion is another option. It is of 

interest to estimate all the roots of M in the range 

(r, 1-r). Let n(p*) be the prior distribution of p*, 

which represents the level of interest in a specific 

lt lt 
root p . If all roots are of equal interest, then n(p ) 

is the continuous uniform distribution U(r, 1-r). Let 
,.. 

, * ~ W(p,p ,p) be the asymptotic variance of rn(L -L ). 
P* P* 

The optimal value of (p, p') is chosen such that 

I1-r , * ( * * . 
r W(p,p ,p )n p ) dp 1s minimized. 

For different values of r, the optimal values of p 

of legit model for minimax and Bayes criteria are 

listed in Table 3.2. Since the legit model is symmetric 

around p = 0.5, optimal (p, p') are calculated under 

the restriction p' = 1-p. From Table 3.2, the minimum 
,.. 

asymptotic variances of /n(L -L ) under minimax 
P* P* 
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criterion are much larger than that of Bayes criterion. 

From Figure 3.1, for a given r, the range (p,p') for 

minimax criterion is wider than that for Bayes 

~ 

criterion. That is, for the same range of p , the 

minimax criterion selects a wider range (p,p') to 

estimate the whole curve M than the Bayes criterion 

does. 

For the Bayes criterion, if r = 0.1 and the model 

is logit, the optimal (p,p') is about (0.2, 0.8). For 

the other three binary data models, the optimal values 

of (p,p') can be found in a similar way. If r = 0.1, 

for the skewed logit model, the optimal (p,p') is about 

(0.07, 0.66); for the log-log model, it is about (0.14, 

0.70); for the probit model, it is about (0.174, 

0.826). 

The MSE's of Case V11 to Case V11 in Table 3.1 are 

the functions of p, p', p~, and the parameters of the 

true model. Thus, the idea of optimal p and p' values 

is now merged with the concept of robustness. For r = 
~ 

0.1 and p = 0.3, 0.5, 0.75, the numerical values of 

MSE of L in Case Vtt to Case V44 are listed in Table 
p~ 

3.3. In Table 3.3, the optimal (p,p') of each model are 

used in the corresponding assumed models. For 

simplification, the two parameters (~,p) of the true 

models are assumed to be (0,1) in both tables. The 

cases where the parameters (~,P) are not equal to (0,1) 

~ 

or the range of p is not (0.1,0.9) can be calculated 



in a similar way. 

For the diagonal elements in Table 3.3, the 

assumed and the true moddels are the same. Thus, the 

MSE does not contain the bias term and, therefore, is 

the variance of L . However, for the off-diagonal 
P* 

elements, the MSE is the sum of variance and bias of 

-1 
LP*' where the variance is a multiple of n 

In table 3.3, it is also noted that, for a true 

50 

model, the MSE from the correct assumed model (i.e. the 

diagonal elements) is not always less than the MSE's 

from the wrong assumed models (i.e. the off-diagonal 

elements in the same column). However, for large n, the 

MSE from the correct assumed model will smaller than 

the MSE's from the wrong assumed models due to smaller 

variances. For example, if p*=0.3 and the true model is 

logit, the MSE from the logit assumed model is 

4.2924/n; the MSE from the log-log assumed model is 

3.8491/n + 0.0182. The former is larger than the latter 

for small n (e.g. n=10). However, for large n (e.g. 

n=100}, the former is less than the latter. 



r 

0.02 

0.05 

0.08 
0. 10 
0. 15 
0. 20 
0.25 

0.30 
0.35 
0. 40 
0.45 
0. 48 

TABLE 3.2 

THE OPTIMAL (P,P') AND MINIMUM ASYMPTOTIC VARIANCE 
FOR MINIMAX AND BAYES CRITERIA IN THE RANGE 

(r,l-r) OF P* FOR THE LOGIT MODEL 

Minimax Criterion Bayesian Criterion 

p Minimum p Minimum 
Variance Variance 

0.115 22.82 0.176 6.62 
0. 131 15.05 0.188 5.41 
0.142 11.67 0.200 4.55 
0.149 10.23 0.206 4.07 
0. 165 7.77 0.222 3. 10 
0.182 6.21 0.239 2.35 
0. 206 5.09 0.258 1. 7 4 
0.235 4.20 0.282 1.25 
0.253 3.53 0.304 0.95 
0.292 2.95 0.340 0.5 
0.349 2.41 0.383 0.25 
0.403 2. 19 0.421 0.08 

~ 



52 

p 
0.5,...------------------------, 

0.3 ·-·····-··-··--·---

0.1~--------------------------------------------~ 

QL---------~--------~--------~--------~--------~ 

0 0.1 0.2 0.3 0.4 0.5 

r 

- Minimax -+-Bayesian 

Figure 3.1 Optimal Values of P for Minimax and 
Bayesian Criteria Based on Logit 
Model 



P* • 0.3 

As sUJned 
Model 

Logit 

Skewed 
Logit 

Log-Log 

Problt 

TABLE 3.3 

THE ASYMPTOTIC MSE OF L WITH OPTIMAL (p, p') FOR EACH MODEL 
p A 

True Hodel ( J-1, ~) = ( 01 1 ) 

Log i t Skew<:>d Log-Log Probit 
Log i t 

4.2924 2.2108 3.5553 1.4071 
+ 0.0028 + 0.0072 + 0.0001 

n n n n 

5.3026 Z.4616 6.5602 1.3494 
+ 0.0236 + 0.0395 + 0.0009 

n n n n 

3.8491 1.3310 2.7312 1.2251 
+ 0.0182 + 0.0521 + 0.0333 

n n n n 

4.5986 2.4702 4.1823 1.4297 
+ 0.0006 t 0.0030 t 0.0187 

n n n n 

V1 
LV 



P* • 0.5 

Assumed Logit 
Model 

3. 1250 
Loglt 

n 

Skewed 3.5600 
+ 0.0100 

Log it n 

3.5087 
Log-Log + 0.0195 

n 

3.5050 
Problt 

n 

TABLE 3.3 (Continued) 

True Model ( ~' fJ ) = ( 0 ' 1 ) 

Sk<:!we<J Log-Log 
Log i l 

2.3852 1 . 7 6 97 
+ 0.0066 + 0.0221 

n n 

2.4810 2.0829 
+ 0. 0367 

n n 

3.0756 1. 3 7 33 
+ 0.0505 

n n 

2.5489 1.1102 
+ 0.0103 + 0. 0331 

n n 

---- ------------ -------

Probit 

1.0244 

n 

1. 1897 
+ 0.0574 

n 

1.2721 
+ 0.0266 

n 

1. 0908 

n 
----------- ----------- --------

V1 
~ 



p:ll: • 0.75 

A88UIIled Loglt 
Model 

5.0972 
Logit 

n 

Skewed 5.5717 
+ 0.0079 

Log it n 

6. 1532 
Log-Log + 0.0050 

n 

5. 1627 
Probit + 0.0005 

n 
-- L_ -

TABLE 3.3 (Continued) 

True Model ( p I {3 ) = ( Q 1 1 ) 

Skewed Log-Log 
l 0 g i l 

4.6047 1.4231 
+ 0.0007 + 0. 0031 

n n 

5.0919 2.6700 
+ 0.1513 

n n 

6.3478 1 . 8 6 97 
+ 0.0116 

n n 

4.9062 1.3610 
+ 0.0041 + 0. 0063 

n n 

Probit 

1.6677 
+ 0.0001 

n 

2.2942 
+ 0.0018 

n 

2.2615 
+ 0.0046 

n 

1.6532 

n 

l/1 
l/1 



CHAPTER IV 

A SIMULATION STUDY 

In this chapter, the Monte Carlo mean square 

errors from Robbins-Monro's procedure, Anbar's 

procedure, Wu's procedure, and this new procedure are 

compared. 

Simulation Outline 

Under comparison are Robbins-Monro's two root 

independent estimation procedure with n observations 

each (called RM procedure), Anbar's one root estimation 

procedure with 2n observations (called Anbar's one root 

procedure), Anbar's two root independent estimation 

procedure with n observations each (called Anbar's 

2-root procedure), Wu's one root estimation procedure 

with 2n observations (called Wu's one root procedure), 

Wu's two root independent estimation procedure with n 

observations each (called Wu's 2-root procedure), and 

this new procedure with n observations each. 

For the RM procedure, (xn+ 1 , x~+ 1 ) are calculated 

by 

= (:d - :. ] (4. 1) 

56 
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where n = 1, 2, ••.. 

Wetherill (1963) showed that the RM procedure in 

(1.9) with large A is less susceptible to a poor choice 

of x 1 , especially for small samples. Thus, three levels 

of A-- 1, 6, and 36, were used in the simulations. 

For Anbar's one root procedure, x 1 is calculated 
n+ 

by 

-1 
X = X - n A ( y -p) 

n+1 n ~n n 

where A is defined by (1.5) to (1.7). 
Jlln 

For Anbar's 2-root procedure, x 1 and 
n+ 

calculated independently by 

[
A. ( y -p) ~ 

mn n j 
A'(y'-p') 

mn n 

( 4. 2) 

are 

( 4. 3) 

where both A and A' are defined by (1.5) to (1.7). 
111n 111n 

For Wu's one root procedure, x is calculated 
n+1 

by 

-1 * 
X 1 : X - n d ( y -p) 

n+ n n n 
( 4. 4) 

where d* is defined by (1.10) and (1.11). 
n 

For Wu's 2-root procedure, x 1 and x' 1 are 
n+ n+ 

calculated independently by 

( 4. 5) 

* ,Jilt where both d and d are defined by (1.10) and (1.11). n n 

For the new procedure, (x 1 , x' 1 ) is calculated 
ni" n+ 

by 
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(::::) = (::) - [ :: 
( y n -p) ) 

(y~-p') 
( 4. 6) 

where a and a' are defined by (1.17) to (1.20). 
n n 

In Wu's and Anbar's papers, the estimators of the 

tangent slopes of M are constrained by finite positive 

constants. Thus, four pairs of bounded values (o1 ,o2 ), 

(0.005, 36), (0.005, 50), (0.005, 100), and (0.005, 

200), for the estimators of the inverse tangent slopes 

of M were used in Anbar's, Wu's, and the new 

procedures. 

The convergence speed is an important criterion to 

evaluate a stochastic approximation procedure. Thus, 

four sample sizes, n = 15, 30, 50, and 100, were used 

in the simulations. 

Four different 2-parameter models, the legit 

model, the skewed legit model, the log-log model, and 

the probit model, are used to generate the binary 

observations. In each case, the model used to generate 

the observations represents the true model. The two 

parameters (~, ~) of the true model are derived such 
a 

that M(O) = 0.5 and ax M(O) = 0.25. Thus, for legit 

model, (~, ~) is (0, 1); for skewed legit model, (~, ~) 

is about (0.8814, 0.8536); for log-log model, (~, ~) is 

about (-0.3665, 0.7213); for probit model, (~, ~) is 

about (0, 1.5958). 

For any true model, the legit model is used as the 

assumed model. Therefore, the MLE's for Wu's procedure 
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are calculated from a logit model. Also, for the new 

procedure, all estimators of roots and parameters are 

calculated using the logit model equations (2.10) to 

(2.21). 

Since the assumed model is the logit model, if the 

range of p~ is (0.1, 0.9), the optimal {p, p') = (0.2, 

0.8) under the Bayes criterion will be used to obatin 

the minimum asymptotic variance. Thus, {L0 _2 , L0 _9 ) are 

estimated in the 2-root finding procedures { i.e. the 

RM procedure, Anbar's 2-root procedure, Wu's 2-root 

procedure, and the new procedure). The two roots L0 _5 

and L 0 _75 are estimated by 

L = kL + ( 1-k ) L I 
p~ p p 

( 4 . 7 ) 

where p = 0.2, 
~ 

p' = 0.8, p = 0.5 or 0.75, and k is 

defined by (2.21). 

For Anbar's and Wu's one root procedures, L 0 _5 

was estimated by (4.2) and (4.4), respectively. For the 

1 . d 1 h th . 1 . L ( 1 P )/{3 og1 t mo e , t e p percent1 e 1s = og--t~ .. 
p 1-p 

Thus, for Wu's one root procedure, L0 _75 is estimated 

by 

( 4. 8) 

where (~ 2n, ~ 2n) are the MLE's of {~, ~) with 2n 

observations. 

For Anbar's one root proc~dure, b in (1.5) is 
mn 

a 
used to estlmate the tangent slope ax M(LP) = Pp(1-p). 

Thus, for p = 0.5, {3 is estimated by 
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fJ 2 n = bm( 2 n 1/[0.5(1-0.5)]. ( 4. 9) 

Also, ~ is estimated by 

0.5 Q 

~2n = logt-0.5 - P2nL0.5' (4.10) 

Thus, L0 _75 is estimated by 

A A 

( 1 0. 75 )/Q 
L0.75 = ogl-0.75 - ~2n ,., ..;n 

where ~ 2n and fJ 20 are defined by (4.10) and (4.9). 

The MLE's of the parameters (~,fJ) of a logit model 

are used in Wu's procedure. However, the MLE's do 

not always exist. Silvapulle (1981) showed that the 

MLE's of the parameters of any distribution function 

exist if and only if 

+ + -(x i , X n (x . , X ) is nonempty, 
m n max m1n max 

(4.12) 

where 

+ x . = min(max){x. :y.=1} 
lllln(max) 1 1 

and 

-
xmin(max) 

= min (max) { x. : y. =0} . 
l 1 

Once (4.12) is satisfied, it is always satisfied with 

the addition of more observations. 

Wu's procedure can not be carried out until the 

MLE's of the parameters exist. Thus, it is necessary to 

initiate Wu's procedure by some predetermined initial 

design procedures. Once enough observations are 

generated so that the MLE's exist, then the future 

observations can be generated from the Wu's procedure. 

Although Anbar's, RM's, and the new procedures do not 
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require the existence of the MLE's, the same initial 

designs were used to initiate all procedures. In this 

way, all the procedures begin in an equivalent and 

comparable manner. Two different initial designs were 

used in the simulation study. They are discussed in the 

following two sections. 

Initial Design I 

For the first initial design, the first ten x's 

are chosen at two different sets of starting points, 

and the corresponding y's are generated according to 

the true model. Starting points I are chosen at (L_ 1 , 

L_ 3 , L_ 5 , L_ 7 , L_ 9 ) with (1, 2, 4, 2, 1) observations 

each. Starting points II are chosen at (L_ 3 , L_ 46 , 

L_ 56 , L_ 66 , L_ 8 ) with (1, 2, 4, 2, 1) observations 

each. If the MLE's of (~, ~) based on the ten pairs of 

(x,y) exist, then the four 2-root finding procedures 

are initiated at the common starting points (x 11 ,x~ 1 ) 

where both x 11 and x~ 1 are calculated by (4.4); and the 

two 1-root finding procedures (Anbar's 1-root procedure 

and Wu's 1-root procedure) are initiated at the common 

starting point x~ which is also calculated by (4.4). If 

the MLE's of (~, ~) based on the initial data set do 

not exist, then the sample is discarded. This is 

repeated 500 times for each procedure including those 

samples discarded due to the nonexistence of MLE's. 

For sample size n, the Monte Carlo mean squares 
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error (MSE) of a sequential design is calculated as the 
A z 

average of (Lp-LP) over all the non-discarded 

simulation samples. 

The {MSE's from the six different procedures are 

listed in Tables 4.1 - 4.8. Four sample sizes, n = 15, 

30, 50, and 100, are used in each table. In these 

tables, Robbins-Monro's procedure is referred as "RM"; 

Anbar's 1-root procedure is referred as "Anb2n"; 

Anbar's 2-root procedure is referred as "Anb"; Wu's 

1-root procedure is referred as "Wu2n"; Wu's 2-root 

procedure is referred as "Wu"; the new procedure is 

refered as "Fei". The first column of these tables 

represents the six procedures with different bounded 

values on the inverse tangent slopes of M(x). The 

subsequent columns are the {MSE's of the estimators of 

percentiles L , L , L , and L under the 
0.2 O.B 0.5 0.75 

different sample sizes. 

From Table 4.1 to 4.8, the {MSE's of L0 _5 from 

Anbar's and Wu's one root procedures are always less 

than that from Anbar's and Wu's 2-root procedures. 

However, the /MSE's of L0 _75 from Anbar's and Wu's one 

root procedures are greater than that from Anbar's and 

Wu's 2-root procedures for large n. This implies that a 

single root is more accurately estimated by a 1-root 

procedure than by a 2-root procedure. However, for 

estimating other roots, one root procedures perform 

worse than 2-root procedures. 
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Among the 2-root finding procedures (i.e. RM 

procedure, Anbar's 2-root procedure, Wu's 2-root 

procedure, and this new procedure), Wu's and the new 

procedures perform substantially better than RM and 

Anbar's procedures. Although RM and Anbar's procedures 

do not assume that the parametric form of M is known, 

Wu's and the new procedures do. Tables 4.1 to 4.8 show 

that the {MSE's from Wu's and the new procedures are 

always smaller than that from RM and Anbar's procedures 

no matter what the true model is. Thus, for initial 

design I, Wu's 2-root procedure and the new procedure 

outperform the others. 

From Tables 4.1 (the true model is logit ) and 

Tables 4.5 (the true model is probit), for starting 

points I, Wu's 2-root procedure has smaller {MSE's when 

n = 30 and 50. However, from Tables 4.2 and 4.6, for 

starting points II, the new procedure has smaller 

{MSE's when n = 15, 30, and 50. Note that both 

procedures have similar /MSE's as n = 100. 

From Tables 4.3 and 4.4 (the true model is 

log-log), it can be found that the performances of Wu's 

2-root procedure and the new procedure depend on the 

bounded values of the inverse tangent slopes of M and 

the percentiles to be estimated. For example, in Table 
,.. 

4.3, the /MSE of L0 from the new procedure are 
• B 

smaller than that from Wu's 2-root procedure for all 

bounded values as n = 15, 30, 100. However, the {MSE of 



L0 _2 from Wu's 2-root procedure are smaller than that 

from the new procedure for all bounded values as n = 

64 

30, 50, and 100. Also, when n = 15 and bounded value is 
A 

36, the {MSE of L0 _2 from the Wu's 2-root procedure is 

1.71, which is larger than 1.66 - the {MSE from the new 

procedure. However, for n = 15 and a bounded value of 
A 

100, the {MSE of L from Wu's 2-root procedure is 
0.2 

1.43, which is smaller than 1.66 - the {MSE from the 

new procedure. 

From Tables 4.7 and 4.8 (the true model is skewed 

legit model with different starting points), Wu's 

procedure has smaller /MSE's than the new procedure for 

n = 30, 50 and 100. 

It is worthy to note that, for a given sample 

size, the /MSE of an estimator from the new procedure 

varies for different bounded values only when the true 

models are log-log and skewed legit models and the 

bounded values are 36 and 50. This indicates that 

bounding the estimators of inverse tangent slopes of M 

does not affect the performance of the new procedure. 

However, for Wu's 2-root procedure, the optimal bounded 

values such that the /MSE is minimized varies for the 

different true models. For example, for Wu's 2-root 

procedure, the optimal bounded value is 36 for the 

legit model. However, it is 100 for the log-log model, 

and 200 for the skewed legit model. 



TABLE 4.1 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS I 

(BASED ON LOGIT MODEL) 

De1ign n • •s n • 36 
L20 LBO LSO L75 L20 LBO L50 

RMl 1. 58 1. 45 .97 1. 28 1.39 1. 51 .87 
RM6 1.48 1. 36 .89 1. 20 1.09 1.19 .70 
RM36 1.62 1.43 1.02 1.28 .92 .92 .58 

Anb36 1. 46 1. 33 .85 1.16 .96 1.04 .58 
Anb50 1. 48 1. 34 .85 1.17 .99 1.04 .58 
AnblOO 1.52 1. 41 .86 1. 22 1.01 1. 07 .58 
Anb200 1. 62 1. 63 .94 1. 41 1.09 1. 08 .60 

Wu36 1. 29 1. 20 .80 1.06 .57 .68 .43 
Wu50 1. 21 1.20 .78 1.06 .56 .68 .43 
Wu100 .99 1.20 .72 1. 06 .57 .68 .43 
Wu200 .99 1. 20 .73 1.07 .57 • 68 .43 

Fei36 1. 28 1.19 .78 1.05 .70 . 75 .47 
Fei50 1. 28 1.19 .78 1.05 • 70 .75 .47 
Fei100 1. 28 1.19 . 78 1.05 .70 .75 .47 
Fei200 1. 28 1.19 .78 1.05 .70 .75 .47 

Wu2n36 .43 .77 • 28 
Wu2n50 .43 .77 .28 
Wu2n100 .42 .77 .28 
Wu2n200 .42 .77 .28 

Anb2n36 .72 1.53 .38 
Anb2n50 .75 1.84 .38 
Anb2n100 .73 2.11 .38 
Anb2n200 .84 2.04 .38 

65 

L75 

1.32 
1.04 

.81 

• 90 
.90 
.93 
.93 

.61 

.61 

.61 

.61 

.67 

.67 

.67 

.67 

.72 

.72 

.72 

.72 

.70 

.71 

.72 

.76 
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TABLE 4.1 (Continued) 

n • 50 n • 100 
Design 

L20 L80 LSO t75 L20 tao l50 t75 

RMl 1. 22 1. 21 .77 1.08 1. 25 .99 .68 .86 
RM6 .85 .84 .55 .74 . 95 1. 29 .71 1.14 
RM36 .66 .65 .45 .58 .46 .47 .33 .42 

Anb36 .71 .67 . 44 .59 .48 .38 .28 .33 
Anb50 .73 .68 .44 . 59 .47 .38 .28 .33 
Anb100 .77 .70 .43 .61 .48 .38 .28 .33 
Anb200 .82 .78 .44 .67 .48 .38 .28 .33 

Wu36 .43 .39 .28 .35 .29 .29 .20 .26 
Wu50 .43 .39 .28 .35 .29 .29 .21 .27 
Wu100 .43 .39 .28 .35 .29 .29 . 21 .26 
Wu200 .43 .39 .28 .35 .29 .29 . 21 .27 

Fei36 .47 .46 . 32 . 41 . 31 .29 . 21 .26 
Fei50 . 4 7 .46 .32 . 41 .31 .29 .21 .26 
FeilOO .47 .46 .32 .41 .31 .29 . 21 .26 
Fei200 .47 .46 . 32 .41 .31 .29 .21 .26 

Wu2n36 .22 .66 .16 .64 
Wu2n50 .22 .66 .16 .64 
Wu2n100 .22 .66 .16 .64 
Wu2n200 .22 .66 .16 .64 

Anb2n36 .27 .52 .18 .41 
Anb2n50 .27 .52 . 18 . 41 
Anb2n100 .27 .52 . 18 .42 
Anb2n200 .27 .53 . 18 .45 



TABLE 4.2 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS II 

(BASED ON LOGIT MODEL) 

n • 15 n • 30 
Deaign 

L20 LSO LSO L75 L20 LSO LSO L75 

RMl 1. 08 1. 37 .75 1. 20 .91 1. 34 .76 1.19 
RM6 .95 1. 29 .71 1.14 .58 1.07 .61 .96 
RM36 1. 31 1.51 .98 1.36 .92 .92 .61 .82 

Anb36 1.16 1.34 .69 1.16 .78 1.05 .53 .91 
Anb50 1. 28 1. 40 • 72 1. 20 .86 1. 09 .55 .95 
AnblOO 1. 83 1. 68 .96 1.44 1. 29 1. 33 .69 1.14 
Anb200 2.97 2.45 1. 62 2.12 2.14 1. 99 1.12 1. 70 

Wu36 1. 02 1.16 . 73 1.03 .66 .72 .49 .65 
Wu50 1.10 1.17 . 74 1.04 .68 . 72 .50 .66 
Wu100 1. 31 1.17 .81 1. 03 .70 .73 .50 .65 
Wu200 1.81 1.17 1.01 1.04 .77 .73 .53 .66 

Fei36 .92 1.13 .63 .99 .56 .73 .42 .65 
Fei50 . 92 1.13 .63 .99 .56 .73 .42 .65 
FeilOO . 92 1.13 .63 .99 .56 .73 .42 .65 
Fei200 .92 1.13 .63 .99 .56 .73 .42 .65 

Wu2n36 .40 .73 .28 1. 32 
Wu2n50 .40 .69 .26 .67 
Wu2n100 .41 .69 .26 .67 
Wu2n200 .43 .69 .31 .80 

Anb2n36 • 94 1. 70 .51 .85 
Anb2n50 1.14 2.06 .56 .89 
Anb2n100 1.68 2.34 .75 1.02 
Anb2n200 3.07 3.91 1.18 1.41 
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TABLE 4.2 (Continued) 

n • 50 n • 100 
Q,.,.,an 

L20 LBO L50 L75 L20 LBO L50 L75 

RM1 1.00 1.08 .60 • 94 • 94 1. 42 .73 1. 25 
RM6 .54 .70 .39 . 62 .36 .89 .45 .80 
RM36 .71 .67 .47 .60 .44 .49 . 34 .45 

Anb36 .61 .66 .37 .57 .43 .59 .32 .52 
Anb50 .65 .68 .39 .59 .45 .60 .33 .53 
Anb100 .88 .83 .52 .73 .45 .66 .37 .58 
Anb200 1. 50 1.28 .90 1.13 .82 .82 .52 .72 

Wu36 .50 .42 .30 .37 .30 .31 .21 .28 
Wu50 .51 .42 .30 .37 • 30 .31 .21 .28 
Wu100 .51 .42 .30 .37 .30 .31 .21 .28 
Wu200 .51 .42 .30 .37 .30 .31 .21 .28 

Fei36 .42 .42 .26 .37 .29 . 34 .20 .30 
Fei50 .42 .42 .26 .37 .29 .34 .20 .30 
FeilOO .42 .42 .26 .37 .29 . 34 .20 • 30 
Fei200 .42 .42 .26 .37 .29 .34 .20 .30 

Wu2n36 .22 .69 .18 .68 
Wu2n50 .22 .70 .18 .68 
Wu2n100 .22 . 70 .18 .67 
Wu2n200 .22 . 69 .18 .67 

Anb2n36 .36 .75 .23 .63 
Anb2n50 .38 . 7 4 .23 .73 
Anb2n100 .44 .78 .24 .66 
Anb2n200 .50 1.09 .23 1.16 



TABLE 4.3 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS I 

(BASED ON LOG-LOG MODEL) 

n • 15 n • 30 
Design 

l20 LSO LSO l7S l20 LBO LSO 

RM1 2.01 1.05 1.07 .92 1. 79 1.05 .99 
RM6 1. 90 .94 .99 .81 1. 52 .70 .82 
RM36 1. 96 1.09 1.09 .95 1.09 .71 .71 

Anb36 1. 87 .92 .96 .78 1. 31 .65 .70 
Anb50 1. 88 .92 .96 .78 1.32 . 65 .70 
Anb100 1. 93 .92 . 98 .77 1.38 .65 .72 
Anb200 2.09 .92 1.04 .77 1.62 .65 .81 

Wu36 1. 71 .88 .86 .75 .81 .45 .46 
Wu50 1. 62 .88 .83 .75 .70 .45 .40 
WulOO 1. 43 .88 .75 .76 .70 .45 .40 
Wu200 1. 61 .88 .84 . 77 • 7 4 .45 .42 

Fei36 1. 66 .78 .87 .68 .98 .43 .56 
FeiSO 1. 66 .78 .87 .68 .98 .43 .56 
FeilOO 1. 66 .78 .87 .68 .98 .43 .56 
Fei200 1. 66 .78 .87 .68 .98 .43 .56 

Wu2n36 .44 .66 .29 
Wu2n50 .45 .66 .29 
Wu2n100 .44 .66 .29 
Wu2n200 .44 .66 .29 

Anb2n36 .86 1.27 .53 
Anb2n50 .86 1. 27 .53 
Anb2n100 .86 1. 27 .53 
Anb2n200 .86 1.27 .54 
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l7S 

.92 

. 60 

.64 

.55 

.55 

.54 

.53 

.41 

.40 

.40 

.40 

.39 

.40 

.40 

.40 

.59 
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.59 

.59 

.79 

.80 

.81 

.84 
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TABLE 4.3 (Continued) 

n • 50 n • 100 
Design 

LZO LBO LSO L75 L20 LBO LSO L75 

RM1 1. 93 2.17 1. 50 1. 96 1. 77 .89 • 90 • 75 
RM6 1. 50 1. 85 1. 22 1.66 1.17 .29 .65 .27 
RM36 .78 1.12 .71 1.00 .52 .37 .40 .34 

Anb36 1.14 1.37 .91 1. 22 .70 .27 .44 .24 
Anb50 1.15 1.37 .92 1. 22 • 70 .27 .44 .24 
AnblOO 1. 22 1. 38 .93 1. 22 .72 .27 .44 .24 
Anb200 1. 41 1. 39 .99 1. 24 .77 .27 .46 .24 

Wu36 .55 1.12 .64 1.00 .37 .22 .28 .21 
Wu50 .53 .83 .50 . 74 .36 . 22 .28 .21 
Wu100 .53 .77 .48 .69 .36 .22 .28 .21 
Wu200 .54 .77 .48 .69 .37 .22 . 28 .21 

Fei36 .79 1. 03 .67 .92 .45 .20 .33 . 20 
Fei50 .79 .90 .61 .80 .45 .20 .33 .20 
Fei100 .79 .89 .61 .79 .45 .20 .33 .20 
Fei200 .79 .89 .61 .79 .45 .20 .33 .20 

Wu2n36 .23 .57 .16 .53 
Wu2n50 .23 .57 .17 .53 
Wu2n100 .23 .57 .17 .53 
Wu2n200 .23 .57 .17 .53 

Anb2n36 .40 .69 .23 .42 
Anb2n50 .40 . 68 .23 .42 
Anb2n100 .40 .69 .23 .42 
Anb2n200 .40 .70 .23 .42 



TABLE 4.4 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS II 

(BASED ON LOG-LOG MODEL) 

n • 15 n • 30 
Deaign 

L20 LBO LSO L75 L20 LBO LSO 

RM1 1. 74 1.33 .79 1.10 1.61 1.42 .89 
RM6 1. 62 1. 27 .76 1.06 1. 28 1. 20 .79 
RM36 1. 67 1. 35 . 95 1.16 1.16 1.02 .82 

Anb36 1. 72 1. 24 .76 1.02 1.26 1.03 .74 
Anb50 1. 79 1.27 .80 1.04 1. 33 1.06 .76 
Anb100 2.34 1. 39 1.07 1.14 1. 78 1. 21 .97 
Anb200 3.46 1.62 1. 64 1. 35 2.82 1. 63 1. 52 

Wu36 1. 43 1.11 . 73 . 95 .95 .82 .63 
Wu50 1. 37 1.08 .73 .94 .87 .73 .57 
Wu100 1. 50 1.08 .83 .96 .86 . 73 .58 
Wu200 1. 88 1.09 1.01 .96 .89 .73 .59 

Fei36 1. 49 1.06 .69 .89 .93 .78 .60 
Fei50 1. 46 1.02 .69 .86 .90 .73 .58 
FeilOO 1. 45 1.01 .69 .85 .89 .73 .58 
Fei200 1. 45 1.01 .69 .85 .89 .73 .58 

Wu2n36 .40 .83 .27 
Wu2n50 .41 .71 .28 
Wu2n100 .46 .71 .29 
Wu2n200 .54 .71 .38 

Anb2n36 1.04 1.41 .55 
Anb2n50 1.17 1.57 .61 
Anb2n100 1.77 2.08 .78 
Anb2n200 3.04 3.49 1.19 
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L75 

1. 22 
1.05 

.92 

.89 

.91 
1.04 
1. 42 

. 7 4 

.66 

.67 

.67 

.70 
• 66 
.66 
.66 

.85 

.86 
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.63 

.83 

.85 

.95 
1. 32 
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TABLE 4.4 (Continued) 

n • 50 n • 100 
Design 

L20 L80 LSO L75 L20 L80 LSO L75 

RM1 1.83 1.68 .99 1.44 1. 25 1.19 .79 1. 05 
RM6 1. 39 1. 37 .82 1.18 .62 .95 .60 .85 
RM36 .86 .74 .61 .66 .52 .41 .41 .37 

Anb36 1.06 .95 .67 .82 .56 .56 .42 .49 
Anb50 1.12 .96 .68 .82 .57 .57 .43 .50 
Anb100 1. 34 1.01 .79 .87 .65 .61 .47 . 54 
Anb200 1. 95 1.14 1.07 .98 .82 .76 .58 .67 

Wu36 .75 .65 .51 .59 .36 .31 .29 .29 
Wu50 .60 .47 .40 .43 .37 .20 .28 .21 
WulOO .57 .44 .38 .41 .37 .20 .27 .21 
Wu200 .56 .44 .38 .41 .36 .20 .27 . 21 

Fei36 .74 .65 .so .59 .39 .38 .30 .35 
Fei50 .70 .59 .47 .53 .39 .35 .29 .33 
FeilOO . 70 .59 .47 .53 .39 .35 .29 .33 
Fei200 .70 .59 .47 .53 .39 . 35 .29 .33 

Wu2n36 .21 .56 .17 .57 
Wu2n50 .21 .56 .17 .57 
Wu2n100 .21 .56 .17 .57 
Wu2n200 .21 .56 .17 .57 

Anb2n36 .43 . 70 .25 .55 
Anb2n50 .45 .70 .26 .57 
Anb2n100 .53 .74 .26 .67 
Anb2n200 .62 1.12 .25 1. 27 



TABLE 4.5 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS I 

(BASED ON PROBIT MODEL) 

n • 1S n • 30 
Deaign 

L20 LBO LSD L7S L20 LBO LSD 

RM1 1.44 1. 32 .88 1.16 1. 25 1. 35 .79 
RM6 1. 33 1. 23 .81 1.08 .96 1.04 .62 
RM36 1.45 1. 30 .92 1.15 .85 .82 .53 

Anb36 1. 29 1. 21 .77 1.06 .87 .91 .53 
Anb50 1. 29 1. 22 .77 1.07 .88 .91 .53 
Anb100 1. 29 1. 29 .77 1.13 .91 .91 .53 
Anb200 1. 29 1. 52 .82 1.33 1.00 .91 .55 

Wu36 1.16 1.09 .73 .96 .53 .60 .38 
Wu50 1. 09 1.09 .70 .96 .53 .60 .39 
Wu100 .91 1.09 .65 .96 .53 .60 .39 
Wu200 1. 00 1.09 .64 • 95 .53 .61 .39 

Fei36 1.15 1.07 .71 0 94 .62 .67 .42 
Fei50 1.15 1.07 .71 .94 .62 .67 .42 
FeilOO 1.15 1. 07 .71 0 94 .62 .67 .42 
Fei200 1.15 1. 07 .71 • 94 .62 .67 .42 

Wu2n36 .41 .75 .28 
Wu2n50 .41 . 75 .28 
Wu2n100 .41 .75 .28 
Wu2n200 .41 • 75 .28 

Anb2n36 .66 1.45 .37 
Anb2n50 .70 1.82 .37 
Anb2n100 .68 1.46 .37 
Anb2n200 .73 1. 53 .37 

73 

L7S 

1.18 
.91 
. 72 

.79 

.79 

.79 

.79 

.54 

.54 
0 54 
.54 

.59 

.59 

.59 
0 59 

.70 

.70 

.70 
0 70 

0 70 
.70 
.71 
.72 
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TABLE 4.5 (Continued) 

n • 50 n • 100 
Design 

L20 L80 L50 L75 L20 LBO L50 L75 

RM1 1.08 1.08 .69 • 95 1.16 .87 .62 .76 
RM6 .73 .72 .47 .64 .63 .42 .35 .37 
RM36 . 63 .62 .43 .55 .45 .44 .31 .40 

Anb36 .62 .59 .39 .52 .41 .32 .24 .28 
Anb50 .63 .59 .38 . 52 .42 .32 .24 .28 
Anb100 .64 .59 .38 .51 .42 .32 .24 .28 
Anb200 .70 .59 .40 .51 .42 .32 .24 .28 

Wu36 .40 .36 .25 .32 .26 .27 .18 .24 
Wu50 .40 .36 .25 .32 .26 .27 .18 .24 
Wu100 .40 .36 .25 .32 .26 .27 .18 .24 
Wu200 .40 .36 .25 .32 .27 .27 .19 . 24 

Fei36 .42 . 41 .29 .37 .28 .26 .19 .24 
Fei50 .42 .41 .29 .37 .28 .26 .19 .24 
Fei100 .42 .41 .29 .37 .28 .26 .19 .24 
Fei200 .42 .41 .29 .37 .28 .26 .19 .24 

Wu2n36 .21 .65 .16 .63 
Wu2n50 · .22 .65 .16 .63 
Wu2n100 .21 .65 .16 .63 
Wu2n200 .21 .65 .16 .63 

Anb2n36 .26 .52 .18 .42 
Anb2n50 .26 .52 .18 .42 
Anb2n100 .26 .52 .18 .43 
Anb2n200 .26 .54 .18 .47 



TABLE 4.6 

MONTE CARLO /MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS II 

(BASED ON PROBIT MODEL) 

n • 15 n • 30 
Design 

L20 L80 LSO L75 L20 L80 LSO 

RM1 1.04 1. 28 .71 1.12 .88 1.18 .69 
RM6 .90 1. 20 .67 1. 06 .54 .90 .52 
RM36 1. 23 1.41 .92 1. 27 .86 .85 .58 

Anb36 1.03 1. 26 .64 1.09 .70 .92 .47 
Anb50 1.13 1. 32 .66 1.14 .78 .97 .49 
Anb100 1. 57 1. 59 .87 1. 37 1.13 1. 20 .65 
Anb200 2.57 2.38 1. 50 2.07 1. 97 1.89 1.17 

Wu36 1.01 1. 09 .70 .97 .63 .64 .44 
Wu50 1. 05 1. 08 .70 .96 .63 . 64 .44 
Wu100 1. 22 1. 08 .76 .96 .69 .64 .46 
Wu200 1.65 1. 08 . 94 .97 .70 .64 .47 

Fei36 .86 1. OS .61 .93 .52 .64 .38 
Fei50 .86 1. 05 .61 .93 .52 .64 .38 
FeilOO .86 1. OS .61 .93 .52 .64 .38 
Fei200 .86 1.05 .61 .93 .52 .64 .38 

Wu2n36 .41 .67 .28 
Wu2n50 .42 .67 .26 
Wu2n100 .44 .67 .30 
Wu2n200 .41 .67 .31 

Anb2n36 .91 1.63 .51 
Anb2n50 1.10 1.85 .56 
Anb2n100 1. 65 2.24 .73 

L75 

1. OS 
.81 
.76 

.80 

.84 
1.04 
1. 65 

.57 

.57 

.58 

.58 

.57 

.57 

.57 

.57 

1. 33 
.65 
• 78 
.79 

.84 

.87 

.99 
Anb2n200 3.03 3.92 1.18 1.37 

75 
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TABLE 4.6 (Continued) 

n • so n • 100 
Design 

L20 LBO LSO L75 L20 LBO L50 L75 

RM1 1.00 1.00 .56 .86 .95 1.39 .71 1. 22 
RM6 • 52 .61 .34 .53 .35 .90 .45 .79 
RM36 .67 .64 .44 .57 .43 .46 .32 .41 

Anb36 .57 .58 .33 • 50 .39 .55 • 30 .48 
Anb50 .60 .60 .35 .52 .40 .55 .31 .49 
AnblOO .81 .73 .47 .63 .48 .59 .34 .51 
Anb200 1.38 1. 09 .so .96 .81 .73 .50 .64 

Wu36 .45 .38 .27 .34 .27 .29 .19 .26 
Wu50 .45 .38 .26 .34 .28 .29 .19 .26 
Wu1QO .45 . 38 .27 • 34 .27 .29 .19 .26 
Wu200 .45 .38 .26 .34 .27 .29 .19 .26 

Fei36 .39 .37 .24 .33 .27 .33 .20 .29 
Fei50 .39 .37 .24 .33 .27 .33 .20 .29 
FeilOO .39 .37 .24 .33 .27 .33 .20 .29 
Fei200 .39 .37 .24 .33 .27 .33 .20 .29 

Wu2n36 .22 .67 .17 .66 
Wu2n50 .22 .68 .18 .66 
Wu2n100 .22 .68 .17 .66 
Wu2n200 .22 .68 .17 .65 

Anb2n36 .36 .73 .23 .62 
Anb2n50 .38 .73 .24 .62 
Anb2nl00 .44 .75 .24 .66 
Anb2n200 .50 1.08 .23 1.16 



TABLE 4.7 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS I 

(BASED ON SKEWED LOGIT MODEL) 

n • 15 n • 30 
Deaign 

L20 LSO LSO L75 L20 LSO LSO 

RM1 2.13 3.51 1. 78 3.09 1. 61 2.82 1. 52 
RM6 2.02 3.39 1.66 2.98 1.28 2.51 1.24 
RM36 1.88 3.01 1.45 2.64 .92 1. 65 .93 

Anb36 1.90 3.15 1. 61 2.78 1.04 1.98 1.07 
Anb50 1. 90 3.15 1.61 2.78 1.04 1. 98 1.07 
AnblOO 1. 90 3.15 1. 61 2.78 1.04 1. 99 1.07 
Anb200 1. 90 3.15 1. 61 2.78 1.04 2.01 1.08 

Wu36 1. 68 2.88 1. 42 2.54 .58 1. 66 .90 
Wu50 1. 54 2.72 1. 39 2.40 .51 1. 38 .75 
WulOO 1.16 2.39 1. 30 2.14 .47 1. 26 .71 
Wu200 .91 2.37 1. 32 2.14 .48 1. 25 • 70 

Fei36 1. 62 2.96 1. 37 2.59 .65 1. 61 .86 
Fei50 1. 53 2.85 1. 36 2.51 .63 1. 50 .82 
FeilOO 1. 51 2.84 1. 36 2.50 .63 1. 50 .82 
Fei200 1. 51 2.84 1. 36 2.50 .63 1. 50 .82 

Wu2n36 .53 .87 .27 
Wu2n50 .47 .81 .27 
Wu2n100 .46 .80 .27 
Wu2n200 .45 .79 .27 

Anb2n36 .83 2.08 .33 
Anb2n50 .86 2.25 .33 
Anb2n100 .91 2.59 • 33 
Anb2n200 1.06 3.82 .33 

77 

L75 

2.51 
2.22 
1. 49 

1. 77 
1. 77 
1. 78 
1. 80 

1. 49 
1. 22 
1.14 
1.13 

1.45 
1. 35 
1. 35 
1. 35 

.75 

.75 

.75 
• 7 4 

.75 

.75 

.76 

.77 
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TABLE 4.7 (Continued) 

n • 50 n • 100 
Design 

L20 LBO LSO L75 L20 LBO LSO L75 

RM1 1. 70 2.81 1. 55 2.51 2.04 3.01 1. 45 2.63 
RM6 1. 27 2.39 1.19 2.12 1.44 2.33 1.03 2.02 
RM36 .64 1.21 .70 1.09 .41 .62 .37 .56 

Anb36 .86 1.63 .90 1.46 .55 1.09 .62 .99 
Anb50 .87 1. 63 .90 1. 46 • 55 1.09 .62 .99 
Anb100 .87 1. 64 .90 1. 47 .55 1.09 .62 .99 
Anb200 .87 1. 67 .90 1.49 .55 1.10 .62 .99 

Wu36 .42 1. 07 .61 .97 .25 .51 .29 .45 
Wu50 .39 .90 .42 .63 .25 .36 .22 .32 
Wu100 .38 .65 .40 .59 .25 .36 .22 .32 
Wu200 .38 .65 .40 .58 .25 .36 .23 .32 

Fei36 .52 1. 21 .67 1.09 .35 .74 .42 .67 
Fei50 .50 1.13 .62 1.02 .33 .68 .39 .62 
FeilOO .49 1.13 .62 1.02 .33 .68 .39 . 62 
Fei200 .49 1.13 .62 1.02 .33 .68 .39 .62 

Wu2n36 . 22 .76 .16 .65 
Wu2n50 .22 .76 .16 .65 
Wu2n100 .22 .76 .16 .65 
Wu2n200 .22 .76 .16 .65 

Anb2n36 .26 .68 .17 .52 
Anb2n50 .26 .68 .17 .53 
Anb2n100 .26 .70 .17 .53 
Anb2n200 .27 .76 .17 .58 



TABLE 4.8 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN I WITH STARTING POINTS II 

(BASED ON SKEWED LOGIT MODEL} 

n • tS n • 30 
Deaign 

L20 LBO LSO L75 L20 LBO LSO 

RM1 3.25 1. 70 1. 76 1. 53 2.20 1. 56 1. 36 
RM6 3.14 1. 60 1.67 1.44 1. 95 1.26 1.16 
RM36 2.88 1. 69 1. 54 1. 50 1. 38 • 99 .85 

Anb36 2.99 1.60 1. 54 1.40 1. 63 1.17 .95 
Anb50 3.01 1. 67 1. 52 1.45 1.66 1.23 .97 
Anb100 3.15 2.01 1. 49 1. 71 1. 80 1. 44 1. 01 
Anb200 3.62 2.89 1. 87 2.44 2.16 2.07 1. 28 

Wu36 2.80 1. 31 1. 45 1.16 1. 24 • 71 • 72 
Wu50 2.66 1. 27 1. 36 1.13 1. 00 • 70 .60 
Wu100 2.20 1. 20 1.17 1.06 .57 .69 .43 
Wu200 1. 63 1. 20 .95 1.06 .56 .69 .42 

Fei36 2.78 1. 39 1. 40 1. 21 1. 32 .84 .77 
Fei50 2.69 1. 38 1. 37 1. 21 1.26 .83 .74 
FeilOO 2.68 1. 38 1. 37 1. 21 1. 26 .83 • 7 4 
Fei200 2.68 1. 38 1. 37 1. 21 1. 26 .83 .74 

Wu2n36 .42 .76 .25 
Wu2n50 .41 .75 .25 
Wu2n100 .40 .75 .25 
Wu2n200 • 40 .75 .25 

Anb2n36 1. 50 2.24 • 65 
Anb2n50 1. 61 2.65 .68 
Anb2n100 2.00 3.43 .85 
Anb2n200 3.05 5.29 1. 29 

79 

L75 

1.42 
1.15 

.91 

1.05 
1.10 
1. 27 
1.81 

. 64 

.62 

.61 

.61 

.75 

.75 

.75 

.75 

.72 
• 72 
.72 
.72 

• 98 
1.01 
1.12 
1. 50 
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TABLE 4.8 (Continued) 

n • 50 n • 100 
Design 

L20 L90 L50 L75 L20 L90 L50 L75 

RM1 2.48 1. 50 1. 35 1.33 2.47 1. 67 1. 36 1. 47 
RM6 2.07 1.05 1.08 .93 1. 99 1.01 1.07 .92 
RM36 .98 .69 • 60 .63 .54 .49 .36 .45 

Anb36 1.51 .82 .80 .73 1.08 .59 .60 .54 
Anb50 1.53 .84 .80 .75 1.09 .60 .60 .55 
Anb100 1.62 .93 .83 .82 1.13 .66 .63 .60 
Anb200 1. 97 1. 26 1.00 1.10 1. 33 .so . 72 .72 

Wu36 .87 .so .48 .44 .43 .37 .25 .31 
WuSO .54 .50 .35 .44 .26 .37 .19 .32 
Wu100 .41 .so .30 .43 .26 .37 .20 . 32 
Wu200 . 41 .50 .30 .43 .26 .37 .19 .31 

Fei36 1. 02 .56 .57 .51 .69 .39 .40 . 35 
FeiSO .96 .56 .55 .51 .62 .39 .37 .35 
FeilOO .96 .56 .55 .51 .62 .39 .37 .35 
Fei200 .96 .56 .55 .51 .62 .39 .37 .35 

Wu2n36 .23 .73 .17 2.25 
Wu2n50 .23 .73 .17 3.09 
Wu2n100 .23 .73 .17 .73 
Wu2n200 .23 .73 .17 .73 

Anb2n36 .42 .77 .21 .71 
Anb2n50 .43 .76 . 22 .69 
Anb2n100 .48 .78 .22 . 74 
Anb2n200 .53 1.03 .21 1.09 
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Initial Design II 

In the second initial design, the 2-parameter 

logit and log-log models are used as the true models. 

The assumed model is again the 2-parameter logit model. 

As in the initial design I, the roots L0 _ 2 and L0 _8 are 

estimated first in the 2-root finding procedures. The 

root L0 _5 is estimated first in the one root finding 

procedures. However, the x's in the initial data set 

are no longer fixed. 

For the 2-root finding procedures, two independent 

RM procedures (4.1), one with p = 0.2 and the other 

with p = 0.8, generate five initial observations each. 

Three pairs of starting points, (L_ 3 , L_ 9 ), (L_ 3 , L_ 4 ), 

and (L_ 45 , L_ 55 ), and three different values of A- 1, 

6, and 36, are used to generate the initial data sets. 

Then, Silvapulle's condition (4.12) is checked. If 

MLE's of (~, ~) based on the logit model do not exist 

for both of the two initial data sets, an additional 

pair of observations is independently generated by the 

RM procedure. This process is continued until the MLE's 

exist or the number of observations is greater than or 

equal to the sample size. If the MLE's exist, then the 

subsequent (x., x~) are generated by the corresponding 
1 1 

procedures, ( 4. 1), ( 4. 3), ( 4. 5), and ( 4. 6). The roots 

L0 _5 and L0 _75 are estimated by (4.7). If the MLE's do 

not exist, the sample is discarded. 
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For the Anbar's and Wu's one root procedures, the 

first 10 observations are generated by the RM procedure 

(4.1) with p = 0.5. Three starting points, L_ 5 , L_ 7 , 

and L_ 9 , and three levels of A - 1, 6, and 36, are used 

to generate the initial data sets. If the MLE's of (~, 

~) based on the logit model do not exist, then an 

additional observation is generated by RM procedure. 

This process is continued until the MLE's exist or the 

number of observations is greater or equal to the 

predetermined sample size. If the MLE's exist, then the 

subsequent x. are generated by Anbar's (4.2) and Wu's 
1 

(4.4) one root procedures. If the MLE's do not exist, 

then the sample is discarded. 

These processes are repeated 500 times for each 

procedure including those samples discarded due to the 

nonexistence of MLE's. For Anbar's, Wu's, and the new 

procedures, the bounded value for the estimators of 

inverse tangent slopes of M is (0.005, 200). For all 

the six procedures, the MSE of L is calculated as the 
p 

A 2 
average of (L -L ) over all non-discarded samples. 

p p 

Tables 4.9 to 4.11 (the true model is logit) shows 

that the {MSE's from Anbar's and Wu's 2-root procedures 

depend on the value of A. For A=1, Anbar's 2-root 

procedure has the largest {MSE's among all 2-root 

finding procedures. However, for A=36, Wu's 2-root 

procedure has the largest {MSE's among the 2-root 

finding procedures. Also, the new procedure has 
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smallest {MSE's among all 2-root finding procedures 

except when A = 36. For A = 36, the new procedure still 

has the second smallest {MSE for n = 15, 30, and 50. 

Similar results are also found in Table 4.13 to Table 

4.15 (the true model is log-log model). 

Table 4.12 and Table 4.16 (Anbar's and Wu's one 

root procedures) shown that, in estimating L0 . 5 , Wu's 

one root procedure has smaller {MSE's than Wu's 2-root 

procedure. However, in estimating L0 _75 , Wu's one root 

procedure has larger {MSE's than Wu's 2-root procedure 

except when A = 36 and n = 15. Also, in estimating 

L , Anbar's one root procedure has smaller {MSE's 
0.5 

than Anbar's 2-root procedure except when n = 15. 

However, in estimating L0 _75 , Anbar's 2-root procedure 

has smaller {MSE's than Anbar's one root procedure 

except when A = 1. 

Time Consumption 

In practical applications, simplicity and fast 

response are important criteria for a good stochastic 

approximation procedure. On an IBM 10 MHz AT compatible 

computer with math co-processor, the time consumption 

of these six procedures for initial design I with 500 

samples are listed in Table 4.17. Since Wu's procedure 

requires using the Newton-Raphson method repeatedly for 

each additional observation and the Newton-Raphson 

method is a time consuming procedure, the time 
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consumption for Wu's procedure is significantly greater 

than that for the other procedures. The differences of 

time consumption between Wu's procedure and other 

procedures increases quickly as n is increased. 

General Conclusions 

In the simulation comparisons, it is difficult to 

compare Wu's procedure with the other procedures. The 

existence of MLE's is required for Wu's procedure. 

However, this is not required for the others 

procedures. In both initial designs, all procedures 

will start their sequential designs independently after 

the MLE's of the parameters exist. This means that all 

procedures will start under conditions which favor Wu's 

procedure. 

By Wu's paper (1985) and this research, it is 

shown that Wu's procedure performs well when some prior 

information about the function M is known or the sample 

size is large. For example, in initial design I, Wu's 

procedure performs well when the locations of the first 

ten x's is such that the probability of the sample to 

be discarded is small; or in design II, the {MSE's from 

Wu's procedure with bounded value 36 are small only 

when n = 100. 

If the objective is to find a non-extreme root 

only, the Wu's procedure performs well. However, if the 

objective is to estimate the whole function M, the new 
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procedure has the benefits of accuracy, simplicity, and 

ease of calculation. 



TABLE 4.9 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (L3o,L9o) 

(BASED ON LOGIT MODEL) 

Bounded n .. 1 5 n "' 30 
va I uea 

Design 
L20 LBO L50 L75 L20 LBO L50 

1 RM .47 .60 .46 .56 .46 . 51 . 41 
An bar .90 .93 .69 .85 2.00 .90 1. 06 
Wu .50 .65 .49 . 6 1 .54 .57 . 4 3 
Fei .49 .59 . 4 5 .55 .43 .43 .33 

6 RM .90 . 8 5 .59 .76 .70 .75 .48 
An bar 1.11 .87 .66 .77 1.10 . 81 .63 
Wu 1. 31 1.10 .78 .97 .72 .88 .54 
Fei . 9 1 .85 .59 .75 .63 .73 .45 

36 RM 1. 20 1. 12 .84 1. 01 1. 11 . 91 .68 
An bar 1.18 1. 07 .82 .98 1. 03 .80 .62 
Wu 6.72 4.70 3.57'4.09 4.30 3.06 2.32 
Fei 1.19 1. 06 .82 .97 1. 05 .85 .66 

1.75 

.48 

.82 

. 52 

.39 

.67 

. 7 1 

.79 

. 6 5 

.81 

.71 
2.67 

. 7 6 

<Xl 
Cj\ 



A Dealgn 
l20 

1 RM .41 
An bar 1.12 
Wu .43 
Fei .34 

6 RM .53 
An bar .73 
Wu .53 
Fei .46 

36 RM .90 
An bar .86 
Wu 1.89 
Fei .87 

TABLE 4.9 (Continued) 

n • 50 
LBO LSO L75 

.45 . 3 7 .43 

.95 .66 .83 

.48 .36 .44 

. 31 .24 .28 

.64 .39 .57 

.66 .48 .59 

.68 . 4 2 .61 

. 61 .36 .54 

.80 .57 . 71 

.75 .54 .66 
1. 68 1.12 1.48 

• 7 7 .55 .68 

n • 100 
L20 LBO LSO 

.35 .40 .32 

.89 .53 .53 

.37 .36 .28 

.25 .23 .18 

.34 .42 .24 

.38 .40 .27 

.35 .38 .25 

.29 .33 .20 

.48 .46 .33 
• 4 2 .41 .29 
.47 .45 .33 
.55 . 51 .38 

L75 

.38 

.49 

.33 

. 21 

.37 

.36 

.34 

.29 

.41 

.37 
• 41 
.46 

CXl 
-...j 



TABLE 4.10 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (L30,L40) 

(BASED ON LOGIT MODEL) 

Bounded n • 15 n • 30 
v a 1 ua a 

Design 
L20 LBO L50 L 7 5. L20 LBO L50 

1 RM .47 .95 .40 .82 . 4 4 .82 .35 
An bar 1. 74 3.44 1. 96 3.10 2.37 3.35 1. 94 
Wu .53 1. 31 .65 1.17 .59 .69 .41 
Fei .47 .89 .39 .78 . 41 .64 .29 

6 RM .89 .78 .50 .68 .69 .60 .40 
An bar .99 .96 . 61 .84 1. 00 .86 .62 
Wu 1. 23 .96 .67 .84 . 7 5 . 61 .43 
Fei .90 .77 .50 .67 .65 .57 .38 

36 RM 1.02 1. 08 . 6 5 .95 .95 1. 04 .67 
An bar .96 1. 03 .63 .90 .90 1. 00 .64 
Wu 7.05 8.80 4.03 7.54 3.95 4.67 2.24 
Fei .95 1. 03 . 6 3 0 9 1 .91 1. 02 .65 

L75 

.71 
2.98 

. 6 1 

.56 

.53 

.76 

.54 

.50 

.93 

.90 
4.00 

. 91 

CXl 
CXl 



TABLE 4.10 (Continued) 

n • 50 
A Deeign 

L20 LBO L50 L75 

1 RM . 41 .75 . 3 1 .65 
An bar 1. 61 2.51 1. 37 2.22 
Wu .47 .47 .29 .42 
Fei .35 .50 .23 .43 

6 RM .54 .45 .30 .40 
An bar .87 .52 .46 .46 
Wu .54 . 4 7 .34 .42 
Fei .47 .39 .28 .35 

36 RM .88 .92 .56 . 81 
An bar .85 .89 .53 .78 
Wu 1. 93 1. 68 .92 1. 42 
Fei .86 .90 .54 .79 

n • tOO 
L20 LBO LSO 

.36 .64 .26 
1.05 1. 50 .85 

.40 .34 .23 

.26 .34 . 1 7 

.32 .33 .21 

.43 .38 .27 

.33 .34 .23 

.27 . 2 7 .19 

.47 .44 . 31 

.54 .55 .38 

.43 .43 .30 

.58 .57 .36 

L75 

.55 
1. 33 

.30 

.30 

.29 

.34 

. 31 

.24 

.39 

.50 

.38 

.51 

00 
..0 



TABLE 4.11 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (L4s,Lss) 

(BASED ON LOGIT MODEL) 

Bo u nd"'d n = 15 n • 30 

v a I ue a 
Dealgn 

L20 LBO l50 l75 l20 LBO l50 

1 RM . 7 1 . 7 1 .29 .59 .64 .62 .24 
An bar 3.21 2.80 2.20 2.55 2.99 3.09 2.01 
Wu .99 1. 11 . 71 .99 .63 .62 .36 
Fei .68 . 6 9 .29 .57 .52 .53 .23 

6 RM .86 .86 .48 .74 .62 .63 .36 
An bar 1. 21 1.10 .75 .97 .65 1. 02 .54 
Wu 1.10 1. 08 .63 .93 .61 .64 .39 
Fei .86 .86 .48 .74 .57 .58 .35 

36 RN 1.18 1. 08 071 .95 .99 .95 . 59 
Anbar 1.09 1. 01 .67 .89 .94 .89 .55 
Wu 8.30 7.78 3.93 6.56 4.50 4.22 2.21 
Fei 1.10 1. 02 .68 .90 .95 .93 .57 

l75 

. 5 1 
2.75 

.53 

.45 

.55 

.90 

.56 

. 51 

.83 

.78 
3.58 

. 81 

\0 
0 



TABLE 4.11 

A n • 50 
Daalgn 

L20 LBO LSO 

1 RM .55 .61 . 23 
An bar 2.31 2.49 1. 52 
Wu .49 . 52 .33 
Fei .42 .45 .20 

6 RM .48 .46 .28 
An bar .80 . 81 .49 
Wu .54 .50 .34 
Fei .42 .42 .27 

36 RM 1. 00 .95 .60 
An bar .96 .92 .58 
Wu 1. 97 1.88 .99 
Fei .97 .93 .58 

(Continued) 

L75 L20 

. 5 1 .50 
2.20 1. 28 

.46 .32 

.38 .29 

.40 .34 

. 7 1 .42 

.44 . 35 

. 37 .29 

.86 .49 

.81 .52 
1. 60 .43 

. 81 .59 

n • 100 
LBO L50 

.51 . 21 
1.12 . 79 

.33 .22 

.30 . 1 6 

.33 .20 

.42 .28 

.35 .23 

.27 .19 

.46 .32 

.56 .38 

.50 . 31 

.60 .35 

L75 

.43 
1. 00 

.29 

.26 

.29 

.37 

.31 

.24 

.41 

.51 

.45 

.52 

"' ,_. 



TABLE 4.12 

MONTE CARLO {MSE OF SEQUENTIAL DESIGN FOR INITIAL DESIGN II 
WITH 2N OBSERVATIONS TO ESTIMATE L50 AND L75 

(BASED ON LOGIT MODEL) 

Starling Bounded n = 1 5 n = 30 n "' 50 n "' 100 
Deaign 

L50 L75 L50 L75 L50 L75 L50 L75 pointe valttee 

0.5 1 Wu .42 1. 05 .35 1. 02 . 3 3 1. 01 . 2 4 .91 
An bar .85 1. 22 .49 .99 . 4 1 .95 .29 2.74 

6 Wu .57 1. 00 .38 .84 .28 .75 .19 0 7 1 
An bar .68 .86 .37 .54 .25 .46 .16 .38 

36 Wu .62 .87 .37 .66 .25 .59 .18 .55 
An bar .79 4.44 .46 4.01 . 3 5 3.86 .22 3.64 

0.7 1 Wu .69 .74 .43 .70 .32 . 7 3 .21 .86 
An bar 1. 64 3.55 .82 2.50 0 55 2.60 .29 .74 

6 Wu . 56 .87 .36 .74 .27 .69 0 19 .63 
An bar .64 .84 .36 0 5 1 .23 .53 . 16 .42 

36 Wu .68 1. 01 .37 .73 . 2 7 .67 . 18 .59 
An bar .81 4.35 .48 4.04 . 3 5 3.80 .22 3.55 

0.9 1 Wu 1. 00 .58 .49 0 ,13 .44 3.93 .19 .42 
An bar 2.66 6.90 1. 19 .92 .56 . 5 1 .23 . 59 

6 Wu .60 .94 .39 .82 .29 . 7 6 0 1 9 .67 
An bar .57 .65 0 3 5 .50 .24 .48 . 16 .41 

36 Wu .59 1. 01 .37 .84 .29 .74 .20 .67 
An bar .73 3.76 .44 3.49 . 3 2 3.36 .22 3.05 

'-,..., 
N 



TABLE 4.13 

MONTE CARLO /MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (LJO,L9o) 

(BASED ON LOG-LOG MODEL) 

Bounded n • 1 5 n • 30 
values 

Design 
l20 LBO l50 l75 l20 LBO L50 

1 RM . 55 .37 .26 .32 .50 .39 .26 
An bar 1. 67 .79 .89 .70 1. 68 .79 .92 
Wu .57 .39 .28 .33 .52 .44 .28 
Fei .55 .41 .28 .35 .49 .43 .29 

6 RM .95 .56 .60 .49 .68 . 53 . 4 7 
An bar 1. 32 1. 05 .87 .93 .88 .90 .64 
Wu 1. 21 .92 .74 .80 . 7 3 .75 . 5 1 
Fei .95 . 57 .60 .50 .65 .53 .43 

36 RM 1. 35 .94 .96 .88 1. 11 .80 .72 
An bar 1. 30 .85 .92 . 81 1. 02 .58 .66 
Wu 6.72 , •. 53 3.60 3.92 3.90 3.15 2.20 
Fei 1. 30 .84 .92 .80 1. 03 .63 .70 

l75 

.33 

.72 

.38 

.37 

.45 

.79 

.65 

.45 

.70 

. 52 
2.72 

. 57 

\0 
w 



TABLE 4.13 (Continued) 

n • 50 
A Dealgn 

L20 LBO LSO L75 

1 RM .49 .32 .23 .27 
An bar 1. 40 .57 .80 .53 
Wu .50 .33 .26 .29 
Fei .42 .34 .23 .29 

6 RM .53 .50 .35 .40 
An bar .66 .74 .46 .63 
Wu .56 .56 .37 .48 
Fei .48 .49 .32 . 4 1 

36 RM 1. 04 .68 .65 . 59 
An bar .99 .52 .61 .45 
Wu 1. 90 1. 56 1.11 1. 34 
Fei 1. 02 .53 .64 .47 

n • 100 
l20 LBO L50 

.44 .30 . 19 

.80 .41 .45 

.43 .28 .21 

.38 .29 .17 

.36 .39 .22 

.40 . 51 .30 

.38 .37 .24 

.33 .36 .20 

.47 .50 .32 

.47 .49 .30 

.47 .32 .32 

.56 .34 .37 

L75 

.24 

.35 

.23 

.24 

.30 

.43 

.30 

.28 

.42 

.41 

.29 

.29 

\() 

~ 



TABLE 4.14 

MONTE CARLO (MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (L3o,L4o) 

(BASED ON LOG-LOG MODEL) 

Bounded n = 1 5 n • 30 

v a 1 ue e 
Deetgn 

L20 LBO L50 L75 L20 LBO L50 

1 RM .57 .76 .43 . 7 1 .54 . 6 3 . 3 7 
An bar 1. 93 3.37 1. 96 3.03 2.33 3.02 1. 93 
Wu .62 1. 45 .75 1. 31 .60 .59 .38 
Fei .58 .73 .41 .68 .49 .48 .29 

6 RM .90 .50 .52 . 41 .74 . 4 4 .46 
An bar 1. 29 . 8 1 .76 .69 1. 18 .57 .68 
Wu 1. 11 .68 .57 .54 .75 .46 .48 
Fei . 9 1 .51 .52 . 41 .70 .44 .44 

36 RM 1. 11 .76 .67 .62 1. 07 .62 .63 
An bar 1. 04 .69 .64 .59 1. 02 .57 .60 
Wu 6.70 9.11 4.09 7.80 4.01 4.83 2.20 
Fei 1. 04 .69 .64 .59 1.03 .59 .60 

L75 

.60 
2.71 

.55 

.45 

.36 

.49 

.40 

. 3 7 

.52 

.48 
4.08 

.50 

IJ:) 

V1 



TABLE 4.14 (Continued) 

A n 2 50 
Deaign 

L20 LBO LSO L75 

1 RM .50 .57 .35 .54 
An bar 1. 71 2.59 1. 47 2.29 
Wu .58 .48 .34 .43 
Fei .44 .39 .24 .36 

6 RM .56 .40 .36 .32 
An bar .63 .67 .46 .58 
Wu .55 .39 .36 .33 
Fei .48 . 4 1 . 3 3 .34 

36 RM .99 .59 .59 • 4 9 
An bar .95 .54 .57 .45 
Wu 1.83 1. 72 .93 1. 42 
Fei .97 . 56 .58 .47 

n • 100 
L20 LBO LSD 

.42 .48 .32 

.79 1. 56 .77 

.41 .32 .23 

.33 .27 • 17 

.34 .33 .23 

.41 .42 .27 

.37 .34 .24 

.30 .32 .20 

.44 .48 .32 

.53 .61 .38 

.48 .35 .32 

.62 .41 .40 

L75 

.47 
1. 36 

.28 

.24 

.25 

.34 

.28 

.25 

.40 

.52 

.30 

.33 

\0 

"' 



TABLE 4.15 

MONTE CARLO (MSE OF SEQUENTIAL DESIGN FOR INITIAL 
DESIGN II WITH RM STARTING POINT (L45,L55) 

(BASED ON LOG-LOG MODEL) 

Bounded n " 15 n • 30 

v a 1 ue e 
Design 

LZO L80 L50 L75 LZO L80 L50 L75 

1 RM .86 .55 .29 .49 .81 .44 .26 .40 
An bar 3.09 2.72 2.02 2.44 2.98 3.32 2.07 2.92 
Wu 1. 28 1. 01 .79 .93 .76 .57 . 4 1 .52 
Fei .83 .54 .30 .48 .67 .39 . 2 5 .35 

6 RM .84 .61 .50 .50 . 6 7 .49 .40 .39 
An bar .88 .95 .62 .81 .87 .67 .55 .56 
Wu 1. 07 1. 11 . 6 5 . 9 3 . 7 2 . 5 1 . 4 2 . 41 
Fei .84 .62 .49 .51 .63 .48 .38 .38 

36 RM 1.12 .77 .72 .67 .96 .65 . 6 1 .55 
An bar 1. 05 .67 .68 .59 .94 .58 .61 .50 
Wu 7.68 8.70 3.79 7 . 3 1 4.20 4. 6 3' 2.29 3.91 
Fei 1. 04 .68 .67 .59 .95 .58 .61 .50 

-D 
-...J 



TABLE 4.15 (Continued) 

A De•ign 
L20 

n • 50 
LBO L50 L75 

1 RM .72 .42 .23 .39 
An bar 2.31 2.32 1. 43 2.00 
Wu .61 .45 .32 . 4 0 
Fei .56 .36 .22 . 3 2 

6 RM .49 .43 .31 .34 
An bar .70 .66 .44 .55 
Wu .55 .44 .36 . 3 7 
Fei .45 .42 .29 .34 

36 RM .96 .56 .59 . 4 7 
An bar .93 .51 .57 .42 
Wu 1. 81 2.05 .95 1. 70 
Fei .95 . 5 1 . 57 .42 

n • tOO 
L20 LBO LSD 

.67 .36 .21 
1.16 1.45 .84 

.43 .29 .22 

.43 .26 .16 

.33 .35 . 21 

.39 .42 .28 

.39 .33 .24 

.30 .32 .20 

.44 .51 .32 

.55 .58 .37 

.44 .34 .31 

.60 .40 .40 

L75 

.34 
1. 25 

.26 

.22 

.26 

.35 

.27 

.25 

.43 

.50 

.30 

.33 

\() 

00 



TABLE 4.16 

MONTE CARLO {MSE OF SEQUENTIAL DESGN FOR INITIAL DESIGN II 
WITH 2N OBSERVATIONS TO ESTIMATE L50 AND L75 

(BASED ON LOG-LOG MODEL) 

Starting ·I n • 15 n • 30 n • 50 n • 100 
pointe A Design 

LSD L75 L50 L75 L50 L75 LSD L75 

0.5 1 Wu .40 .94 .35 . 91 .33 .88 .24 .83 
An bar .58 2.51 .50 .87 .37 .97 .30 .72 

6 Wu .52 .91 .37 .76 .27 .67 .19 .63 
An bar .74 . 97 .36 .63 .24 .42 .16 .40 

36 Wu .63 .83 .35 .59 .25 .52 • 17 .46 
An bar .83 4.57 ,50 4.22 .34 4.02 .23 3.78 

0.7 1 Wu .66 .69 . 41 .67 .30 .65 .22 .72 
An bar 1. 53 2.23 .79 2.63 .52 2.62 .29 .65 

6 Wu .57 .84 .36 .68 .29 .64 .19 .53 
An bar .56 .68 .36 . 61 .28 .50 .16 .46 

36 Wu • 61 .95 .38 .72 .29 .62 • 19 .53 
An bar .so 4.41 .47 4.16 .34 3.91 .24 3.65 

0.9 1 Wu .89 .91 .45 .44 .34 .45 .24 .42 
An bar 2.26 5.27 1.12 1. 98 .55 .55 .30 2.61 

6 Wu .59 .87 .38 . 73 .28 .64 .19 .55 
An bar .65 .78 .33 .52 .25 • 51 .16 .43 

36 Wu .61 .96 .39 .83 .29 .74 • 19 .65 
An bar .77 4.04 .44 3.78 .32 3.55 .24 3.36 \0 

\0 
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TABLE 4.17 

TIME CONSUMING OF SEQUENTIAL DESIGNS FOR INITIAL DESIGN I 
(unit: second} 

Model 
Starting 

Design n•t5 n•30 n•SO n•tOO 
point 

Logit I RM 8 26 55 118 
An bar 17 72 148 320 
Wu 170 1157 3507 13570 
Fei 9 40 82 176 
Anbar2n 17 72 147 318 
Wu2n 184 1603 5470 23402 

II RM 5 24 48 112 
An bar 15 64 134 306 
Wu 151 1027 3151 12941 
Fei 9 35 74 167 
Anbar2n 15 63 133 302 
Wu2n 167 1429 4936 22309 

Log-log I RM 10 43 90 202 
An bar 22 97 202 450 
Wu 184 1255 3821 15116 
Fei 15 62 130 291 
Anbar2n 22 96 200 444 
Wu2n 201 1725 5909 25918 

II RM 9 36 78 167 
An bar 19 79 174 372 
Wu 155 1038 3267 12313 
Fei 12 51 112 240 
Anbar2n 18 80 172 368 
Wu2n 172 1434 5086 21473 
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TABLE 4.17 (Continued) 

Model 
Starting 

De•ign n•tS n•30 n•SO n•tOO 
point 

Probit I RM 11 51 107 232 
An bar 23 106 218 473 
Wu 177 1193 3578 13761 
Fei 18 74 152 328 
Anbar2n 24 105 219 473 
Wu2n 193 1628 5541 23616 

II RM 11 47 97 221 
An bar 22 94 197 452 
Wu 157 1059 3233 13124 
Fei 15 65 137 314 
Anbar2n 22 94 199 452 
Wu2n 175 1459 5014 22516 

Skewed I RM 7 32 63 144 
Logit An bar 18 79 160 367 

Wu 167 1185 3538 14557 
Fei 11 46 93 213 
Anbar2n 17 78 159 364 
Wu2n 183 1648 5509 24972 

II RM 6 26 55 117 
An bar 15 67 138 296 
Wu 144 1029 3083 11798 
Fei 9 39 81 171 
Anbar2n 15 67 138 292 
Wu2n 160 1405 4781 22080 



CHAPTER V 

GENERAL FORM AND SUMMARY 

In this chapter, a general form of this new 

procedure for an increasing function with r parameters 

is given. Conclusions about the new procedure are also 

made. 

General Form 

All theorems in chapter II have been proved under 

the 2-parameter case. In this section, the three 

parameter case will be given first. Then, the general 

form r parameter case will be proposed. 

Let M(x) = F(x;81 ,82 ,83 ) be an increasing function 

where e , e , e are the unknown parameters of M. 
1 2 3 

In 

orde~ to estimate the whole curve, the roots L , L , 
Pt Pz 

a 
L are chosen to satisfy M(L )=p. and a- M(L )=a .. 

p3 pi 1 X pi 1 

In the sequential procedure, a random vector (xt<n>' 

x 2<n>' x 3Cn>) at stage n is used as the estimator of 

(L , L , L ). Similar to the 2-parameter case, a 
P 1 Pz P3 

can be presented as 

pj - pi 
a = c 

i j L L 
i=1,2,3 and j:;i!i ( 50 1 ) 

P. PI J 

102 
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where c 1 J depends on the true model and is a 

-1 
function of p 1 , p 2 , and p 3 . A natural estimator of «1 

is (x c ,-x.c ,)/[c (pJ-p. )], where i=1,2,3 and j;fi. 
j n ' n ij ' 

-1 
By Figure 5.1, two estimators of a 1 can be found. 

Let 

-1 
<X 1(n) 

3 

= + L (xj(n)-x1(n))/[c1j(pj-p1)] 
j=2 

3 

= L d1 .X. 
j:1 J J • 

( 5. 2) 

That is, use the average of all possible estimators as 

-1 
the estimator of o: 1 Cn>' Let 6 1 , 6 2 be two constants 

such that 0 < 5 < 5 < ro, Define 
1 2 

r-1 if <X s 5 
1 i ( n ) 1 

"-1 ... 
ai(n) = <Xi(n) if 5 < a < 8 

1 i ( n} 2 

6-1 if <X ~ 5 
2 i ( n ) 2 

( 5 • 3 ) 

and the sequential procedure is defined by 

X x1(n) a1(n) (Y1Cn)-p1) 1( n+ 1) 
1 

X = X --- aZ(n) (YZ(n)-p2) 2(n+1) Z(n) n 
( 5. 4) 

X 3(n+1) x3(n) a3(n) (Y3(n) -p3) 

By Theorem 2.1 and 2.2, (x 1<n>'x 2 <n>'x3 <n>)' converges 

to (L ,L ,L )' almost surely and ai(n) converges to 
p 1 p2 p3 

-1 
o: almost surely. By Lemma 2.3, 

i 

X -L 0 1(n+1) p 

rn X -L 1 - AN 0 2(n+1} p 3 
X -L 2 0 3(n+1) p 

3 

2/ 2 (} <X 
1 1 0 0 

0 2/ 2 (} <X 
1 1 

0 

0 0 2f 2 (} <X 
1 1 
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0.8 

0.6 

M(x) 
r:l 

0.4 

0.2 

P, 
0 

-1 Lp, -0.5 Lr~ 0 0.5 Lr~ 

X 

Figure 5. 1 Relationship Between <X 
j 

and c .. 
1 J 

for 

Three Parameters Case 
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It is straightforward to generalize the three 

parameter case to r-parameter case where r ~ 3. Let 

M(x) = F(x;e , ... ,e) be an increasing function with r 
1 r 

parameters. In order to estimate the whole curve, 

(L , ... ,L ) is chosen to satisfy M(L ) =pi and 
p1 pr pi 

a ax M(LP.) = ai where i=l, ... ,r. Similar to the three 
1 

-1 
parameter case, a. can be estimated by 

1 

-1 
There are r-1 possible estimators for a . Let 

A-1 
a 

i ( n) 

r 

= l:;d .. x.< > 
j;ti lJ J n • 

The sequential procedure is given by 

[> n+1ll = [> n)]-
r(n+l) r(n} 

+[a 1( n > ( ~ 1( n > -p 1 )] 

a (Y -p ) r(n) r(n) r 

( 5. 5) 

( 5. 6) 

( 5 . 7 ) 

where ai<n> is defined by equations (5.3) and (5.6). As 

in the three parameter case, it can be proved that 

(xl(n)' ... , xr(n))' converges to (L , ... ,L )' a.s., 
p1 pr 

-1 
and a.(> converges to a. a.s. where i=l, ... ,r. Let 

1 n 1 

X be the r-dimension random vector at stage n which 
( n) 

is defined in (5.7) and L be the r-dimension root 
p 

vector of M such that M(L )=p. for each element L 
p. 1 p. 

1 1 
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By Theorem 2.4, the following result holds 

{ll(X -L ) - AN ((1), V) 
(n) p r 

( 5 • 8 ) 

where (I) be rX1 null vector, V be a r-dimension diagonal 

matrix with nonzero diagonal elements o~/a~ for i = 1, 

2, ••• , r. 

Although all the theorems of the new procedure in 

chapter II are based on the 2-parameter case, they can 

be generalized through (5.3), (5.6), (5.7), and 

(5.8) for the r-parameter case. 

Summary 

The objective of this thesis is to estimate all 

roots of an increasing function M(x), that is, to 

estimate the whole curve M(x). Wetherill (1963) showed 

that, for a non-adaptive RM procedure, a good estimate 

of the root of M depends on a good initial guess and 

the constant A. By the simulation results, if the 

objective is to estimate a single root of M(x), Wu's 

1-root procedure performs best. However, it performs 

poor when estimating other roots. If the objective is 

to estimate two or more roots, the new procedure and 

Wu's 2-root procedure perform substantially better than 

RM procedure and Anbar's 2-root procedure in initial 

design I. However, Wu's 2-root procedure performs poor 

in the initial design II. By the simulation outputs of 

initial design II, it shows that Anbar's procedure and 
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Wu's procedure do not performs very well for small 

sample sizes especially when prior information about 

the locations of percentiles of M(x) is not available. 

However, for the four 2-root finding procedure, only 

the new procedure perform well in both initial design I 

and initial design II. It is also noted that the 

estimate of the inverse of the tangent slope for 

Anbar's and Wu's procedures must be re-calculated when 

additional observations are obtained. However, in 

estimating (x 1 ,x' 1 ), (x ,x') is the unique 
n+ n+ n n 

observation which is needed for the new procedure. The 

previous observations (x.,x:), i=l, ... ,n-1, are not 
l l 

needed for the future iterations. This means that the 

new procedure has the benefit of being easy to 

calculate. It is helpful for the applications which 

require fast response. If the objective of an 

experiment is to estimate one root only, this new 

procedure is not recommended. 
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SIMULATION PROGRAM OF INITIAL DESIGN I WITH STARTING 
POINTS I FOR THE LOGIT TRUE MODEL 

REAL msw20, msw80, msw50, msw75, mswc50, mswc75 
REAL msa20, msa80, msa50, msa75, msac50, msac75 
REAL msf20, msf80, msf50, msf75 
REAL msr20, msr80, msr50, msr75 
REAL 120, 180, 150, 175, mum1e, mum1e1, mum1er, mum1ec, mu, 1b 
REAL t,t1,tr,tc,tm,ts,thd 
INTEGER*2 ih,im,is,ihd,1h,1m,ls,1hd 
DIMENSION ub(4), brm(3), u1(110), ur(110), uc(210), n(4) 
DIMENSION x(10), y(10), x1wu1(110, 4), xrwu1(110, 4), x1anb(4) 
DIMENSION x1fei(4), xrfei(4), xlrm(3), xrrm(3), xranb(4) 
DIMENSION xcwu1(200, 4), sywc(4), sxywc(4) 
DIMENSION xcanb(4), sxac(4), syac(4), sxxac(4), sxyac(4) 
DIMENSION sywl(4), sywr(4), sxywl(4), sxywr(4) 
DIMENSION syal(4), syar(4), sxya1(4), sxyar(4) 
DIMENSION sxa1(4), sxar(4), sxxa1(4), sxxar(4) 
DIMENSION ssw20(4), ssw80(4), ssw50(4), ssw75(4), sswc50(4) 
DIMENSION sswc75(4), ssac75(4) 
DIMENSION ssa20(4), ssa80(4), ssa50(4), ssa75(4), ssac50(4) 
DIMENSION ssf20(4), ssf80(4), ssf50(4), ssf75(4) 
DIMENSION ssr20(3), ssr80(3), ssr50(3), ssr75(3), mswc75(4) 
DIMENSION msw20(4), msw80(4), msw50(4), msw75(4), mswc50(4) 
DIMENSION msa20(4), msa80(4), msa50(4), msa75(4), msac50(4) 
DIMENSION msf20(4), msf80(4), msf50(4), msf75(4), msac75(4) 
DIMENSION msr20(3), msr80(3), msr50(3), msr75(3) 
DATA 1b,ub(1),ub(2),ub(3),ub(4)/.005,36.,50.,100. ,200./ 
DATA brm(1),brm(2),brm(3)/1.,6.,36./ 
DATA p1,p2,p3,p4,p5/.1,.3,.5,.7,.9/ 
DATA n(1),n(2),n(3),n(4)/15,30,50,100/ 
a=1./3. 
b=3./5. 
c=5./7. 
d=7./13. 
OPEN(UNIT=5,FILE='h:\prog\for\f1ogit5.out') 
DO 99999 ndata = 1 , 4 

nouse = 0 
nsimu = 0 
timew = 0. 
timew2 = 0. 
timea = 0. 
timea2 = 0. 
timer = o. 
timerm = 0. 

DO 100 j = 1 , 4 
ssw20(j) = 0. 
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ssw80(j) = 0. 
ssw50(j) = 0. 
ssw75(j) = 0. 
ssa20(j) = 0. 
ssa80(j) = 0. 
ssa50(j) = 0. 
ssa75(j) = 0. 
ssf20(j) = 0. 
ssf80(j) = 0. 
ssf50(j) = 0. 
ssf75(j) = 0. 
sswc50(j) = 0. 
sswc75(j) = 0. 
ssac50(j) = 0. 
ssac75(j) = 0. 

100 CONTINUE 
DO 200 j = 1 , 3 

ssr20(j) = 0. 
ssr80(j) = 0. 
ssr50(j) = 0. 
ssr75(j) = 0. 

200 CONTINUE 

c 
c 
c 
98 

c 
c 
c 
99 

120 = -LOG(4.) 
180 = LOG(4.) 
150 = o. 
175 = LOG(3.) 
x1 = LOG(p1 I (1. - p1)) 
x2 = LOG(p2 I (1. - p2)) 
x3 = LOG(p3 I (1. - p3)) 
x4 = LOG(p4 I (1. - p4)) 
x5 = LOG(p5 I (1. - p5)) 
--------------------------------------------------

Simulations 500 times 
========================= 

sx = o. 
sy = 0. 
sxy = 0. 
syy = 0. 
sp = 0. 
spp = 0. 
sxp = 0. 
sxpp = 0. 
sxxpp = 0. 
bmle = 0. 
------------------------------------------------
Generate y(1) to y(lO) 

------------------------------------------------
CALL ~ND(a,b,c,d,unirnd) 
IF (unirnd .LT. p1) THEN 

y(l) = 1. 
ELSE 

y(l) = o. 
ENDIF 
x(l) = x1 
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300 

400 

500 

c 
c 
c 

DO 300 i = 2 , 3 
CALL RND(a,b,c,d,unirnd) 
IF (unirnd .LT. p2) THEN 

y{i) = 1. 
ELSE 

y(i) = o. 
ENDIF 
x(i) = x2 

CONTINUE 
DO 400 i = 4 , 7 

CALL RND(a,b,c,d,unirnd) 
IF (unirnd .LT. p3) THEN 

y(i) = 1. 
ELSE 

y(i) = 0. 
ENDIF 
x(i) = x3 

CONTINUE 
DO 500 i = 8 , 9 

CALL RND(a,b,c,d,unirnd) 
IF (unirnd .LT. p4) THEN 

y(i) = 1. 
ELSE 

y(i) = o. 
END IF 
x(i) = x4 

CONTINUE 
CALL RND(a,b,c,d,unirnd) 
IF (unirnd .LT. p5) THEN 

y{lO) = 1. 
ELSE 

y(lO) = 0. 
ENDIF 
x(lO) = x5 
--------------------------------------------------------------
Test silvapulle's conditions 

--------------------------------------------------------------
minO = 10 
maxO = 1 
minl = 10 
max1 = 1 
DO 600 k = 1 ' 10 

IF {(y(k) . EQ. 0. ) • AND. (k .GT • 
maxO = k 

END IF 
IF ({y(k) .EQ. 0. ) .AND. (k .LT. 

minO = k 
ENDIF 
IF ((y(k) . EQ. 1.) • AND . (k .GT • 

maxl = k 
ENDIF 
IF ((y(k) • EQ. 1.) .AND. (k .LT • 

min1 = k 
ENDIF 
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maxO)) THEN 

minO)) THEN 

max1)) THEN 

minl)) THEN 



600 CONTINUE 

c 
c 
c 

IF((x(min1) .GT. x(maxO)) .OR. (x(minO) .GT. x(max1))) THEN 
index = 0 

ELSE 
index = 1 

ENDIF 
nsimu=nsimu+1 

IF (index .EQ. 0) THEN 
nouse = nouse + 1 
GO TO 99 

ENDIF 
--------------------------------------------------------------------------------------
Estimate mu and beta by the first 10 obs. 

--------------------------------------------------------------------------------------
mu = 0. 
beta = 1. 
nt = 1 
grad = 100. 
IF ((grad .GT .. 0001) .AND. (nt .LE. 10)) THEN 

sx = o. 
sy = 0. 
sxy = 0. 
sxx = o. 
sp = 0. 
spp = 0. 
sxp = 0. 
sxpp = 0. 
sxxpp = 0. 
DO 700 i = 1 , 10 

t = mu + beta * x(i) 
if(t .GE. 20.) then 

pt = 1. 
else 

pt = exp(t) I (1. + exp(t)) 
endif 
sx = sx + x(i) 
sxx = sxx + x(i) * x(i) 
sy = sy + y(i) 
sxy = sxy + x(i) * y(i) 
sp = sp + pt 
spp = spp + pt * (1. - pt) 
sxp = sxp + x(i) * pt 
sxpp = sxpp + x(i) * pt * (1. - pt) 
sxxpp = sxxpp + x(i) * x(i) * pt * (1. - pt) 

700 CONTINUE 
det = sxxpp * spp - sxpp * sxpp 
if(det .LT •. 001) then 

nouse = nouse + 1 
go to 99 

endif 
debeta = (sxpp * (sy- sp) - spp * (sxy- sxp)) I det 
demu = (sxpp * (sxy- sxp) - sxxpp * (sy- sp)) I det 
mu = mu - demu 
beta = beta - debeta 
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c 
c 
c 
c 

800 

900 
c 
c 
c 
c 
c 

grad = (sy - sp) ** 2 + (sxy - sxp) ** 2 
nt = nt + 1 

ENDIF 
bmle = beta 
mumle = mu 
IF (bmle .LE. 0.1) THEN 

nouse = nouse + 1 
GO TO 99 

ENDIF 
xl = (-mumle- LOG(4.)) I bmle 
xr = (-mumle + LOG(4.)) I bmle 
xc = -mumle I bmle 
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--------------------------------------------------------------------------------------------------------------------------------
Generate n - 11 uniform random numbers each for estimating 120, 
LBO. Also using these r.n. 's to estimate L50 with 2(n-11) obs. 

--------------------------------------------------------------------------------------------------------------------------------
DO 800 i = 11 , n(ndata) - 1 

CALL RND(a,b,c,d,ul(i)) 
CALL RND(a,b,c,d,ur(i)) 

CONTINUE 
DO 900 i = 11 , n(ndata) 1 

uc(2 * i - 11) = ul(i) 
uc(2 * i - 10) = ur(i) 

CONTINUE 

--------------------------------------------------
Simulate Wu's procedure 

========================= 
CALL GETTIM(ih,im,is,ihd) 
DO 1500 j = 1 , 4 

sywl(j) = sy 
sywr(j) = sy 
sxywl(j) = sxy 
sxywr(j) = sxy 
DO 1000 i = 1 I 10 

xlwu1(i, j) = x(i) 
xrwu1(i, j) = x(i) 

1000 CONTINUE 

c 
c 
c 

xlwu1(11, j) = xl 
xrwu1(11, j) = xr 
bmlel = bmle 
bmler = bmle 
mumlel = mumle 
mumler = mumle 
------------------------------------------------------------------------
Bounded 1lslope = 36, 50, 100, 200 

------------------------------------------------------------------------
DO 1400 i = 11 , n(ndata) - 1 

tl = EXP(xlwu1(i, j)) 
tr = EXP(xrwu1(i, j)) 
pl = tl I (1. + tl) 
pr = tr I (1. + tr) 
IF (ul(i) .LT. pl) THEN 



c 
c 
c 

1100 

yl = 1. 
ELSE 

yl = o. 
END IF 
IF (ur(i) .LT. pr) THEN 

yr = 1. 
ELSE 

yr = 0. 
END IF 
sywl(j) = sywl(j) + yl 
sywr(j) = sywr(j) + yr 
sxywl(j) = sxywl(j) + xlwul(i, j) * yl 
sxywr(j) = sxywr(j) + xrwul(i, j) * yr 
----------------------------------------

Estimate Mu & Beta 
----------------------------------------
ntl = 1 
gradl = 100. 

IF ((gradl .GT •. 0001) .AND. (ntl .LE. 10)) THEN 
sxpl = 0. 
spl = 0. 
sppl = 0. 
sxppl = 0. 
sxxppl = 0. 
DO 1100 ki = 1 , i 

tl = mumlel + bmlel * xlwul(ki, j) 
if(tl .GE. 20.) then 

pl = 1. 
else 

pl = exp(tl) I (1. + exp(tl)) 
endif 
sxpl = sxpl + xlwul(ki, j) * pl 
spl = spl + pl 
sppl = sppl + pl * (1. - pl) 
sxppl = sxppl + xlwul(ki, j) * pl * (1. - pl) 
sxxppl = sxxppl + xlwul(ki, j) ** 2 * pl * (1. - pl) 

CONTINUE 
detl = sxxppl * sppl - sxppl * sxppl 
if(detl .LT .. 001) then 

nouse = nouse + 1 
go to 99 

end if 
bel = sxppl * (sywl(j) - spl) 
be2 = sppl * (sxywl(j) - sxpl) 
rml = sxppl * (sxywl(j) - sxpl) 
rm2 = sxxppl * (sywl(j) - spl) 
bmlel = bmlel - (bel - be2) I detl 
mumlel = mumlel - (rml - rm2) I detl 
gradl = (sywl(j) - spl) ** 2 + (sxywl(j) - sxpl) ** 2 
ntl = ntl + 1 

END IF 
ntr = 1 
gradr = 100. 

IF ((gradr .GT .• 0001) .AND. (ntr .LE. 10)) THEN 
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sxpr = 0. 
spr = 0. 
sppr = 0. 
sxppr = 0. 
sxxppr = 0. 
DO 1200 ki = 1 , i 

tr = mumler + bmler * xrwul(ki, j) 
if(tr .GE. 20.) then 

pr = 1. 
else 

pr = exp(tr) I (1. + exp(tr)) 
endif 
sxpr = sxpr + xrwul(ki, j) * pr 
spr = spr + pr 
sppr = sppr + pr * (1. - pr) 
sxppr = sxppr + xrwul(ki, j) * pr * (1. - pr) 
sxxppr = sxxppr + xrwul(ki, j) ** 2 * pr * (1. - pr) 

1200 CONTINUE 

c 
c 
c 

1400 

detr = sxxppr * sppr - sxppr * sxppr 
if(detr .LT .. 001) then 

nouse = nouse + 1 
go to 99 

end if 
bel = sxppr * (sywr(j) - spr) 
be2 = sppr * (sxywr(j) - sxpr) 
rml = sxppr * _(sxywr(j) - sxpr) 
rm2 = sxxppr * (sywr(j) - spr) 
bmler = bmler - (bel - be2) I detr 
mumler = mumler - (rml - rm2) I detr 
gradr = (sywr(j) - spr) ** 2 + (sxywr(j) - sxpr) ** 2 
ntr = ntr + 1 

ENDIF 
xlwu2 = (-mumlel- LOG(4)) I bmlel 
xrwu2 = (-mumler + LOG(4)) I bmler 

------------------------------------------------------------------------------
Bound the inverse of tangent slopes 

------------------------------------------------------------------------------
cnmlel = (xlwul(i, j) - xlwu2) * i I (yl .2) 
cnmler = (xrwul(i, j} - xrwu2) * i I (yr - .8) 
IF (cnmlel .LE. lb) THEN 

cnmlel = lb 
ELSEIF (cnmlel .GE. ub(j)) THEN 

cnmlel = ub(j) 
END IF 
IF (cnmler .LE. lb) THEN 

cnmler = lb 
ELSEIF (cnmler .GE. ub(j)) THEN 

cnmler = ub(j) 
ENDIF 
xlwu2 = xlwul(i, j) - (yl . 2) 
xrwu2 = xrwul(i, j) - (yr .8) 
xlwul(i + 1, j) = xlwu2 
xrwul(i + 1, j) = xrwu2 

CONTINUE 

* cnmlel I i 
* cnmler I i 
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c50 = .5 
c75 = LOG(4. I 3.) I LOG(16.) 
nndata=n(ndata) 
wu150 = c50 * (x1wu1(nndata, j) + xrwu1(nndata, j)) 
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wul75 = c75 * xlwu1(nndata, j) + (1. - c75) * xrwu1(nndata, j) 
ssw20(j) = ssw20(j) + (x1wu1(nndata, j) - 120) ** 2 
ssw80(j) = ssw80(j) + (xrwu1(nndata, j) - 180) ** 2 
ssw50(j) = ssw50(j) + (wu150 - 150) ** 2 
ssw75(j) = ssw75(j) + (wul75 - 175) ** 2 

1500 CONTINUE 

c 
c 
c 

1550 

c 
c 
c 

CALL GETTIM(lh,1m,1s,lhd) 
IF(1m .LT. im) THEN 

tm = 59. - im + lm 
ts = 59. - is + 1s 
thd = 100. - ihd + lhd 
timew = timew + 60. * tm + ts + thd I 100. 

ELSE 
tm = lm - im - 1. 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timew = timew + 60. * tm + ts + thd I 100. 

ENDIF 
--------------------------------------------------------------------------
Estimate L(0.5) for 2n observations 

--------------------------------------------------------------------------
CALL GETTIM(ih,im,is,ihd) 
DO 2000 j = 1 , 4 

sywc(j) = sy 
sxywc(j) = sxy 
DO 1550 i = 1 I 10 

xcwu1(i, j) = x(i) 
CONTINUE 
xcwu1(11, j} = xc 
bm1ec = bmle 
mum1ec = mum1e 
iter2n = 2 * n(ndata) - 12 

DO 1900 i = 11 , iter2n 
tc = EXP(xcwu1(i, j)) 
pc = tc I (1. + tc) 
IF (uc(i) .LT. pc) THEN 

yc = 1. 
ELSE 

yc = 0. 
ENDIF 
sywc(j) = sywc(j) + yc 
sxywc(j) = sxywc(j) + xcwul(i, j) * yc 

----------------------------------------
Estimate Mu & Beta 

----------------------------------------
ntc = 1 
grade = 100. 

IF ((grade .GT .. 0001) .AND. (ntc .LE. 10)) THEN 
sxpc = 0. 
spc = 0. 



sppc = 0. 
sxppc = 0. 
sxxppc = 0. 
DO 1600 ki = 1 , i 

tc = mumlec + bmlec * xcwul(ki, j) 
if(tc .GE. 20.) then 

pc = 1. 
else 

pc = exp(tc) I (1. + exp(tc)) 
end if 
sxpc = sxpc + xcwul(ki, j) * pc 
spc = spc + pc 
sppc = sppc + pc * (1. - pc) 
sxppc = sxppc + xcwul(ki, j) * pc * (1. - pc) 
sxxppc = sxxppc + xcwul(ki, j) ** 2 * pc * (1. - pc) 

1600 CONTINUE 

c 
c 
c 

detc = sxxppc * sppc - sxppc * sxppc 
if(detc .LT •• 001) then 

nouse = nouse + 1 
go to 99 

endif 
bel = sxppc * (sywc(j) - spc) 
be2 = sppc * (sxywc(j) - sxpc) 
rml = sxppc * (sxywc(j) - sxpc) 
rm2 = sxxppc * (sywc(j) - spc) 
bmlec = bmlec - (bel - be2) I detc 
mumlec = mumlec - (rml - rm2) I detc 
grade = (sywc(j) - spc) ** 2 + (sxywc(j) + sxpc) ** 2 
ntc = ntc + 1 

ENDIF 
xcwu2 = -mumlec I bmlec 

------------------------------------------------------------------------------
Bound the inverse of tangent slopes 

------------------------------------------------------------------------------
cnmlec = (xcwul(i, j) - xcwu2) * i I (yc- .5) 
IF (cnmlec .LE. lb) THEN 

cnmlec = lb 
ELSEIF (cnmlec .GE. ub(j)) THEN 

cnmlec = ub(j) 
END IF 
xcwu2 = xcwul(i, j) - (yc - .5) * cnmlec I i 
xcwul(i + 1, j) = xcwu2 

1900 CONTINUE 
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sswc50(j) = sswc50(j) + {xcwul(iter2n + 1, j) - 150) ** 2 
sswc75(j) = sswc75(j) + ((LOG(3) - mumlec) I bmlec - 175) ** 2 

2000 CONTINUE 
CALL GETTIM(lh,lm,ls,lhd) 
IF(lm .LT. im) THEN 

tm = 59. - im + lm 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timew2 = timew2 + 60. * tm + ts + thd I 100. 

ELSE 
tm = lm - im - 1. 



c 
c 
c 
c 
c 

c 
c 
c 

ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timew2 = timew2 + 60. * tm + ts + thd I 100. 

END IF 

----------------------------------------------------------
Simulate Anbar's procedure 

----------------------------------------------------------
CALL GETTIM(ih,im,is,ihd) 
DO 2500 j = 1 , 4 

sxal(j) = sx 
sxar(j) = sx 
sxxal(j) = sxx 
sxxar(j) = sxx 
syal(j) = sy- 2. 
syar(j) = sy- 8. 
sxyal(j) = sxy - .2 * sx 
sxyar(j) = sxy- .8 * sx 
xlanb(j) = xl 
xranb(j) = xr 

------------------------------------------------------------------------
Bounded 1lslpoe = 36, 50, 100, 200 

------------------------------------------------------------------------
DO 2400 i = 11 , n(ndata) - 1 

tl = EXP(xlanb(j)) 
tr = EXP(xranb(j)) 
pl = tl I (1. + tl) 
pr = tr I (1. + tr) 
IF (ul(i) .LT. pl) THEN 

ylanb = 1. 
ELSE 

ylanb = 0. 
END IF 
IF (ur(i) .LT. pr) THEN 

yranb = 1. 
ELSE 

yranb = 0. 
ENDIF 
sxal(j) = sxal(j) + xlanb(j) 
sxar(j) = sxar(j) + xranb(j) 
sxxal(j) = sxxal(j) + xlanb(j) * xlanb(j) 
sxxar(j) = sxxar(j) + xranb(j) * xranb(j) 
syal(j) = syal(j) + ylanb - .2 
syar(j) = syar(j) + yranb - .8 
sxyal(j) = sxyal(j) + xlanb(j) * (ylanb - .2) 
sxyar(j) = sxyar(j) + xranb(j) * (yranb - .8) 
rnumbl = i * sxyal(j) - sxal(j) * syal(j) 
banbl = rnumbl I (i * sxxal(j) - sxal(j) * sxal(j)) 
rnumbr = i * sxyar(j) - sxar(j) * syar(j) 
banbr = rnumbr I (i * sxxar(j) - sxar(j) * sxar(j)) 
IF (banbl .LE. (1. I ub(j))) THEN 

cnanbl = ub(j) 
ELSEIF (banbl .GE. (1. I lb)) THEN 
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cnanbl = lb 
ELSE 

cnanbl = 1. I banbl 
END IF 
IF (banbr .LE. (1. I ub(j))) THEN 

cnanbr = ub(j) 
ELSEIF (banbr .GE. (1. I lb)) THEN 

cnanbr = lb 
ELSE 

cnanbr = 1. I banbr 
END IF 
xlanb(j) = xlanb(j) - (ylanb- .2) * cnanbl I i 
xranb(j) = xranb(j) - (yranb - .8) * cnanbr I i 

2400 CONTINUE 
anbl50 = c50 * (x1anb(j) + xranb(j)) 
anbl75 = c75 * xlanb(j) + (1. - c75) * xranb(j) 
ssa20(j) = ssa20(j) + (xlanb(j) - 120) ** 2 
ssaSO(j) = ssa80(j) + (xranb(j) - 180) ** 2 
ssa50(j) = ssa50(j) + (anb150- 150) ** 2 
ssa75(j) = ssa75(j) + (anb175 - 175) ** 2 

2500 CONTINUE 

c 
c 
c 

CALL GETTIM(1h,1m,1s,1hd) 
IF(1m .LT. im) THEN 

tm = 59. - im + 1m 
ts = 59. - is + 1s 
thd = 100. - ihd + 1hd 
timea = timea + 60. * tm + ts + thd I 100. 

ELSE 
tm = 1m - im - 1. 
ts = 59. - is + 1s 
thd = 100. - ihd + 1hd 
timea = timea + 60. * tm + ts + thd I 100. 

END IF 
--------------------------------------------------------------------------
Estimate L(0.5) for 2n observations 

--------------------------------------------------------------------------
CALL GETTIM(ih,im,is,ihd) 
DO 3000 j = 1 , 4 

xcanb(j) = xc 
sxac(j) = sx 
syac(j) = sy- .5 * sx 
sxxac(j) = sxx 
sxyac(j) = sxy - .5 * sx 

DO 2900 i = 11 , iter2n 
tc = EXP(xcanb(j)) 
pc = tc I (1. + tc) 
IF (uc(i) .LT. pc) THEN 

ycanb = 1. 
ELSE 

ycanb = 0. 
ENDIF 
sxac(j) = sxac(j) + xcanb(j) 
sxxac(j) = sxxac(j) + xcanb(j) * xcanb(j) 
syac(j) = syac(j) + ycanb- .5 
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sxyac(j) = sxyac(j) + xcanb(j) * (ycanb - .5) 
rnumbc = i * sxyac(j) - sxac(j) * syac(j) 
banbc = rnumbc I (i * sxxac(j) - sxac(j) * sxac(j)) 
IF (banbc .LE. (1. I ub(j))) THEN 

cnanbc = ub(j) 
ELSEIF (banbc .GE. (1. I lb)) THEN 

cnanbc = lb 
ELSE 

cnanbc = 1. I banbc 
ENDIF 
xcanb(j) = xcanb(j) - (ycanb - .5) * cnanbc I i 

2900 CONTINUE 
ssac50(j) = ssac50(j) + (xcanb(j) - 150) ** 2 
tterm = xcanb(j) + LOG(3) * cnanbc I 4. 
ssac75(j) = ssac75(j) + (tterm- 175) ** 2 

3000 CONTINUE 

c 
c 
c 
c 
c 

c 
c 
c 

CALL GETTIM(lh,lm,ls,lhd) 
IF(lm .LT. im) THEN 

tm = 59. - im + lm 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timea2 = timea2 + 60. * tm + ts + thd I 100. 

ELSE 
tm = lm - im - 1. 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timea2 = timea2 + 60. * tm + ts + thd I 100. 

ENDIF 

------------------------------------------------------
Simulate Fei's procedure 

------------------------------------------------------
CALL GETTIM(ih,im,is,ihd) 
DO 3500 j = 1 , 4 

rk = 1. I (2 * .16 * LOG(4)) 
xlfei(j) = xl 
xrfei(j) = xr 
------------------------------------------------------------------------

Bounded 1lslope = 36, 50, 100, 200 
------------------------------------------------------------------------

DO 3400 i = 11 , n(ndata) - 1 
cnfei = rk * (xrfei(j) - xlfei(j)) 
IF (cnfei .LE. lb) THEN 

cnfei = lb 
ELSEIF (cnfei .GE. ub(j)) THEN 

cnfei = ub(j) 
END IF 
tl = EXP(xlfei(j)) 
tr = EXP(xrfei(j)) 
pl = tl I (1. + tl) 
pr = tr I (1. + tr) 
IF (ul(i) .LT. pl) THEN 

ylfei = 1. 
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ELSE 
ylfei = 0. 

END IF 
IF (ur( i) .LT. pr) THEN 

yrfei = 1. 
ELSE 

yrfei = 0. 
END IF 
xlfei2 = x1fei(j) - cnfei * (y1fei .2) I i 
xrfei2 = xrfei(j) - cnfei * (yrfei .8) I i 
IF (xrfei2 .LE. x1fei2) THEN 

x1fei2 = x1fei(j) 
xrfei2 = xrfei(j) 

END IF 
x1fei(j) = x1fei2 
xrfei(j) = xrfei2 

3400 CONTINUE 
feil50 = c50 * (x1fei(j) + xrfei(j)) 
fei175 = c75 * x1fei(j) + (1. - c75) * xrfei(j) 
ssf20(j) = ssf20(j) + (x1fei(j) - 120) ** 2 
ssf80(j) = ssf80(j) + (xrfei(j) - 180) ** 2 
ssf50(j) = ssf50(j) + (fei150 - 150) ** 2 
ssf75(j) = ssf75(j) + (fei175 - 175) ** 2 

3500 CONTINUE 

c 
c 
c 
c 
c 

c 
c 
c 

CALL GETTIM(1h,1m,1s,1hd) 
IF(1m .LT. im) THEN 

tm = 59. - im + 1m 
ts = 59. - is + 1s 
thd = 100. - ihd + 1hd 
timef = timef + 60. * tm + ts + thd I 100. 

ELSE 
tm = 1m - im - 1. 
ts = 59. - is + 1s 
thd = 100. - ihd + 1hd 
timef = timef + 60. * tm + ts + thd I 100. 

END IF 

------------------------------------------------
Simulate RM procedure 

------------------------------------------------
CALL GETTIM(ih,im,is,ihd) 
DO 4000 j = 1 , 3 

xlrm(j) = x1 
xrrm(j) = xr 
--------------------------------------------------------
Bounded C value = 1, 6, 36 

--------------------------------------------------------
DO 3900 i = 11 , n(ndata) - 1 

tl = EXP(x1rm(j)) 
tr = EXP(xrrm(j)) 
pl = tl I (1. + tl) 
pr = tr I (1. + tr) 
IF (ul(i) .LT. pl) THEN 
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ylrm = 1. 
ELSE 

ylrm = 0. 
ENDIF 
IF(ur(i) .LT. pr) THEN 

yrrm = 1. 
ELSE 

yrrm = 0. 
END IF 
xlrm(j) = xlrm(j) - brm(j) * (ylrm - .2) I i 
xrrm(j) = xrrm(j) - brm(j) * (yrrm- .8) I i 

3900 CONTINUE 
rml50 = c50 * (xlrm(j) + xrrm(j)) 
rml75 = c75 * xlrm(j) + (1 - c75) * xrrm(j) 
ssr20(j) = ssr20(j) + (xlrm(j) - 120) ** 2 
ssr80(j) = ssr80(j) + (xrrm(j) - 180) ** 2 
ssr50(j) = ssr50(j) + (rml50 - 150) ** 2 
ssr75(j) = ssr75(j) + (rml75 - 175) ** 2 

4000 CONTINUE 

59 

c 
c 
c 

CALL GETTIM(lh,lm,ls,lhd) 
IF(lm .LT. im) THEN 

tm = 59. - im + lm 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timerm = timerm + 60. * tm + ts + thd I 100. 

ELSE 
tm = lm - im - 1. 
ts = 59. - is + ls 
thd = 100. - ihd + lhd 
timerm = timerm + 60. * tm + ts + thd I 100. 

ENDIF 
write(0,59) nsimu,ndata 
FORMAT(1x,i4,'th of simulations for ',i1,'th data set') 

IF(nsimu .LE. 500) GO TO 98 
------------------------------------------------------
Calculate the SQRT(MSE)'s 

------------------------------------------------------
ntrue = nsimu - nouse 

DO 4500 j = 1 , 4 
mswc50(j) = SQRT(sswc50(j) I ntrue) 
mswc75(j) = SQRT(sswc75(j) I ntrue) 
msw20(j) = SQRT(ssw20(j) I ntrue) 
msw80(j) = SQRT(ssw80(j) I ntrue) 
msw50(j) = SQRT(ssw50(j) I ntrue) 
msw75(j) = SQRT(ssw75(j) I ntrue) 
msac50(j) = SQRT(ssac50(j) I ntrue) 
msac75(j) = SQRT(ssac75(j) I ntrue) 
msa20(j) = SQRT(ssa20(j) I ntrue) 
msa80(j) = SQRT(ssa80(j) I ntrue) 
msa50(j) = SQRT(ssa50(j) I ntrue) 
msa75(j) = SQRT(ssa75(j) I ntrue) 
msf20(j) = SQRT(ssf20(j) I ntrue) 
msf80(j) = SQRT(ssf80(j) I ntrue) 
msf50(j) = SQRT(ssf50(j) I ntrue) 
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msf75(j) = SQRT(ssf75(j) I ntrue) 
4500 continue 

DO 5000 j = 1 , 3 
msr20(j) = SQRT(ssr20(j) I ntrue) 
msr80(j) = SQRT(ssr80(j) I ntrue) 
msr50(j) = SQRT(ssr50(j) I ntrue) 
asr75(j) = SQRT(ssr75(j) I ntrue) 

5000 CONTINUE 
WRITE(5,1) n(ndata) 

1 FORMAT(lx,' #of iterations is ',15) 
WRITE(5,2) nouse 

2 FORMAT(1x,' #of discard samples ',15) 
WRITE(5,3) nsimu 

3 FORMAT(1x,' #of simulations ',15) 
WRITE(5,4) timew,timew2 

4 FORMAT(1x,' Time needed for Wu proc. ',2f10.3) 
WRITE(5,5) timea,timea2 

5 FORMAT(lx,' Time needed for Anbar proc.',2f10.3) 
WRITE(5,6) timef 

6 FORMAT(1x,' Time needed for Fei proc. ',f10.3) 
WRITE(5,7) timerm 

7 FORMAT(1x,' Time needed for RM proc. ',f10.3) 
WRITE(5,8) 

8 FORMAT(1x,70('=')) 
WRITE(5,9) 
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9 FORMAT(1x,' The horizontal output sequence of SQRT(MSE) is L20,') 
WRITE(5,10) 

10 FORMAT(1x,' L80,L50,L75,and L50(2(n-11)), L75(2(n-11)).') 
WRITE( 5, 8) 
WRITE(5,11) msw20(1),msw80(1),msw50(1),msw75(1),mswc50(1), 

* mswc75(1) 
11 FORMAT(1x,' Wu36: ',6F10.5) 

WRITE(5,12) msw20(2),msw80(2),msw50(2),msw75(2),mswc50(2), 
* mswc75(2) 

12 FORMAT(lx,' Wu50: ',6Fl0.5) 
WRITE(5,13) msw20(3),msw80(3),msw50(3),msw75(3),mswc50(3), 

* mswc75(3) 
13 FORMAT(lx,' WulOO: ',6F10.5} 

WRITE(5,14) msw20(4),msw80(4),msw50(4},msw75(4),mswc50(4), 
* mswc75(4) 

14 FORMAT (lx, ' Wu200: ' , 6F10. 5) 
write(5,15) 

15 FORMAT(1x,70('-')) 
WRITE(5,16) msa20(1),msa80(1),msa50(1),msa75(1),msac50(1), 

* msac75(1) 
16 FORMAT(lx,' Anb36: ',6F10.5) 

WRITE(5,17) msa20(2),msa80(2),msa50(2),msa75(2),msac50(2), 
* msac75(2) 

17 FORMAT(lx,' Anb50: ',6F10.5) 
WRITE(5,18) msa20(3),msa80(3),msa50(3),msa75(3),msac50(3), 

* msac75(3) 
18 FORMAT(lx,' Anb100: ',6F10.5) 

WRITE(5,19) msa20(4),msa80(4),msa50(4),msa75(4),msac50(4), 
* msac75(4) 



19 FORMAT(lx,' Anb200: ',6F10.5) 
WRITE(5,15) 
WRITE(5,20) asf20(1),msf80(1),msf50(1),asf75(1) 

20 FORMAT(lx,' Fei36: ',4F10.5) 
WRITE(5,21) msf20(2),msf80(2),asf50(2),msf75(2) 

21 FORMAT(1x,' Fei50: ',4F10.5) 
WRITE(5,22) asf20(3),msf80(3),msf50(3),msf75(3) 

22 FORMAT(lx,' FeilOO: ',4F10.5) 
WRITE(5,23) asf20(4),msf80(4),asf50(4),msf75(4) 

23 FORMAT(1x,' Fei200: ',4F10.5) 
WRITE(5,15) 
WRITE(5,24) asr20(1),msr80(1),msr50(1),msr75(1) 

24 FORMAT(lx,' RMl: ',4F10.5) 
WRITE(5,25) msr20(2),msr80(2),msr50(2),asr75(2) 

25 FORMAT(lx,' RM6: ',4F10.5) 
WRITE(5,26) msr20(3),msr80(3),msr50(3),msr75(3) 

26 FORMAT(lx,' RM36: ',4F10.5) 
WRITE(5,27) 

27 FORMAT(lx,////) 
99999 CONTINUE 

CLOSE(5) 

c 
c 
c 

STOP 
END 
----------------------------------------------------------------------------------------
Uniform random number generator subroutine 

----------------------------------------------------------------------------------------
SUBROUTINE RND(a,b,c,d,r) 
r=a+b+c+d 
r=r-INT(r) 
a=b 
b=c 
c=d 
d=(l.-r)*ll.llllllll 
RETURN 
END 
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