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PREFACE 

This work was undertaken to provide a tool for the analysis and 

design of solar tracking drive trains. It is specifically designed to 

allow the study of impact loads within drive trains due to intermittent 

input motion and loading torque. 

A FORTRAN program (TRAIN) was deve.l oped which takes as input a 

block diagram-like description of a drive train and, after specification 

of loading and initial conditions, uses a fourth-order Runge-Kutta 

numerical integration technique to solve the nonlinear state equations. 

Aside from the coding of the simulation shell, the bulk of the 

work consisted in developing realistic, nonlinear models of system 

elements. The two elements receiving the most attention were the 

spur/helical gear pair and the keyed joint. 

Various models have been used to validate the code. These show 

good agreement with theory and, to some extent, with experimental 

results. Use of TRAIN has shown it to be flexible and that it does 

offer a simple, expeditious means to analyze mechanical systems such as 

those found in solar trackers. 

I wish to express my sincere gratitude to all the people who 

assisted me in this work and during my stay at Oklahoma State 

University. In particular, I am especially indebted to my major 

advisor, Dr. Richard L. Lowery, for his willingness to take me as his 

advisee and for agreeing to this project. 

I am also thankful to the other committee members, Dr. James K. 
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Good, Dr. Lawrence L. Hoberock, Dr. Allen E. Kelly, and Dr. Gary Young, 

for their advisement in the course of this work. 

The financial support of Sandia National Laboratories (Contract 

95-4188) is acknowledged. Special thanks are due to Mr. Alexander Maish 

of Sandia for his encouragement and support of the project. 

Finally, my deepest appreciation to my wife, Ruth, without whose 

support and encouragement I could not have completed this work. 
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CHAPTER I 

INTRODUCTION 

When geared systems with clearances are driven continuously they 

experience a dynamic load that is generated by manufacturing errors in 

the gear teeth and by the continuous change in number of pairs of teeth 

in contact. The magnitude of this dynamic load is a function of speed, 

average load, and amount of backlash. This type of dynamic loading has 

been studied extensively and is accounted for in gear rating methods. 

Many, if not most, geared systems are driven continuously and are, 

therefore, subject to this dynamic loading. However, some geared 

systems are used to position large inertial loads in systems that are 

operated in a repeated start-stop mode. In this situation the gears and 

other components (with clear~ce) in the drive-train are subjected to 

repeated impact loading in two directions. The magnitude of the dynamic 

load in this case is a function of the initial conditions, external load 

history, the system physical properties, and the amount of backlash. 

This transient, vibro-impact mode of operation for geared systems has 

not previously been investigated. As a result, we find unexpected 

failures in systems that were thought to have been designed with 

adequate safety margins. 

The purpose of this investigation is to develop a method for 

determining the dynamic loads present in geared systems with multiple 

clearances that are driven in a repeated start-stop mode. 

1 
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This investigation is different from other investigations of geared 

systems with backlash in the following ways: 

1. It considers the transient response to arbitrary initial 

conditions as opposed to the steady-state response of a 

continuously rotating system. 

2. It considers multiple clearances as opposed to a single gear-pair 

with a single clearance (backlash). 

3. It considers the loads in other system elements such as 

shaft-couplings, and key/keyway interfaces. 

4. It considers the effects of external loading. 

5. A rotational model is used rather than an equivalent rectilinear 

model. 



CHAPTER II 

SUMMARY OF PAST AND PRESENT WORK 

2.1. Systems Studies 

Geared systems have been the subject of several doctoral disser

tations since the late 1950's. All of the early work, such as Richard

son's (1958} and Kasuba's (1962}, is based on a one-dimensional, recti

linear model that rotates continuously. The interest was in a steady

state solution for the lightly loaded and/or the heavily loaded cases 

when manufacturing errors and clearances are present. Hahn (1969} was 

the first to consider the effects of other drive train elements on the 

tooth engagement phenomenon. He also expanded the model to include more 

than one dimension. In a more recent study, Azar (1974) investigated 

the impact phenomenon in geared sytems that consisted of a motor, a spur 

gear pair and an inertial load. He was interested in the lightly 

loaded, continuously rotating system and its behavior under a variety of 

parameter changes. 

One of the earliest studies of a large, nonlinear mechanical system 

was done by Kashay, et al. (1972). They studied the dynamic response of 

a steel rolling mill station both experimentally and through a computer 

model. Their experimental work, in which backlash was a parameter, 

showed that transient torque variations of up to 3.5 times the steady

state torque occurred when the station was subjected to sudden load 

changes. They used a rather simple mathematical model with a fourth 

3 



order Runge-Kutta integration method. To avoid instabilities in the 

solution they combined high natural frequency elements with lower 

frequency elements. 

4 

Wang and Morse (1972) defined a method of decomposing a gear train 

system into what they called spans and joints. The spans are any cont

inuous member of the system that can be described by a lumped mass 

system. The joints are the ends of the spans. Transfer matrix tech

niques were used to solve for the static and dynamic tor.sional response. 

They validated their model by comparing it with the results from an 

experimental set-up. Although the model included nonlinearities due to 

gear backlash and gear-tooth loading, the experimental work was not 

specifically set up to measure the effects of backlash, but rather the 

dependence of tooth compliance on frequency. 

Allen (1979) reported on a technique using bond graph multipart 

models to represent gear power transmissions. Although the bond graph is 

basically a kinematic tool he has added dissipative, compliance and 

inertial effects to it to model the dynamic effects of the system. 

Although nonlinearities are permitted, he does not seem to address the 

question of clearances in the system. His results focus on steady-state 

frequency response. 

The most recent study to include system dynamics with gear-pair 

element dynamics was done by Bahgat, et al. (1983). Although they 

apparently did not consider backlash in the gear mesh and they 

considered only steady, unidirectional motion, their study is 

interesting because of the solution method employed. A harmonic series 

expansion was used as the assumed solution to the (linear) dynamic 

equations. 



2.2. Element Studies 

The seminal work in the area of impact models was done by Dubowsky 

and Freudenstein (1971). Until this time most impact models were based 

on a coefficient of restitution which was first developed by Newton. 

But Dubowsky and Freudenstien pointed out that such models omitted 

dynamic coupling, stresses, and time duration of ~ontact. This, in 

turn, affects the frequency of oscillations and the nature of the 

5 

impacts, whether bilateral or unilateral. Their basic model is shown in 

Figure 2.1(a) and a qualitative model of the contact force is shown in 

Figure 2.1(b). Although the model was conceived for use in revolute and 

spherical joints, it can be applied to gear pairs as well. They found 

that for ball and pin joints the nonlinearity of the Hertzian contact 

can be replaced with a linear spring rate without significantly 

I 
r ---t t-e--

Contact 
Force 

(a) Dynamic Model (b) Force-Displacement Model 

Figure 2.1. Impact-Pair 



affecting dynamic response. Dubowsky and Gardner (1975) extended the 

impact model to an impact beam model for use in studying the 

interactions of link elasticity and clearance in planar mechanisms. 

6 

They showed that, while clearances increase the bearing forces, 

increasingly flexible links can reduce the bearing forces at the expense 

of increased stress in the links. 

Azar and Crossley (1977) extended the impact model to incorporate a 

gear-pair model that includes the inertia of the gears, loss of contact 

(backlash), stiffness variation, frictional effects, and profile errors 

of gear teeth. The dynamic equations were solved using a fourth order 

Runge-Kutta method and a set of logical functions to determine the 

various contact regimes which occur in vibroimpact systems. They 

obtained good correlation between the experimental and simulated 

results. 

Benton and Seireg (1978) did experimental and simulation work on 

resonances and instability conditions in pinion-gear systems. They used 

phase-plane methods and digital filtering to predict amplitude ratio vs. 

frequency. Unfortunately, they only worked with steady loads and did not 

simulate conditions where loss of contact between the teeth occurs. 

Yang and Sun (1985) combined and extended the work of Oubowsky and 

Freudenstein (1971) and of Azar and Crossley (1977) by devising an 

impact model for gearing that was based on a rotary, rather than 

rectilinear, model. The model includes backlash, material compliance, 

and energy dissipation. They demonstrated the behavior of the model by 

giving the results of a digital simulation of a gear pair. This model 

forms the basis of the spur gear pair element used in this study and is 

further described in Chapter 3. Later, Yang and Lin {1986) added tooth 



friction and bending elasticity to the model. 

Models of other system elements are not as numerous in the litera

ture. Orthwein (1979) reviews the literature concerning stresses in 

shafts with keyways and analyzes some existing data along with some new 

data that he has generated. He is able to predict where the points of 

greatest stress are in the shaft and gives design guides for reducing 

the stress. The stiffness of keyed joints is mentioned briefly by 

Mancuso (1986) and by Wang and Morse (1972). In both cases the 

treatment is superficial. 

2.3. Impact 

7 

Impact occurs in drive trains, when clearances are present, under a 

variety of circumstances. For lightly loaded systems, impact can occur 

whenever there are sudden disturbances in the input or load. For 

heavily loaded systems impact is less likely to occur, even with sudden 

changes in input or load, unless the system is operating near a dynamic 

resonance point. In this case severe damage can be done to the system 

elements that absorb the resulting impacts. In this project we are 

interested in the former class of problems, that is, those in which the 

loading is either light or non-steady and for which there are sudden 

changes in input. 

Classical impact theory, as developed by Newton, treated the 

impacting bodies as rigid and developed the relationship between the 

relative velocities of the approaching and.receding bodies. 

Unfortunately, this method gives us no information about local 

deformations, stresses, or duration of contact. Hertz and others have 

attempted to develop a theory that does account for these other factors 
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that are so important from the machine design standpoint. There has been 

a substantial amount of work done in the last 15 years to develop useful 

models of impact in machine elements. 

Dubowsky and Freudenstein (1971), who first proposed the impact 

model now widely used in mechanism simulation, found that clearances in 

the model did not affect the amplitudes of free vibrations of the model. 

However, under forced vibration significant stress amplification due to 

clearance was found. Their analysis assumed that the frequency of the 

elastic waves in the bodies are much higher than the free or forced 

vibration frequencies. One result of clearance coupling in a system is 

that it will not have a single characteristic or natural frequency, but 

a continuum of oscillating frequencies, which depend on time and initial 

conditions. Under constant load operation they found that not only did 

bilateral impact occur, but also multiple impacts on one side of the 

clearance. The results of the constant load operation can be divided 

intb three forms. The first mode has successive impacts on alternate 

sides of the clearance and looks much like the free vibration motion. 

This will decay into the second mode where the pair exhibits impacts on 

only one side of the clearance. In the lowest-energy mode the relative 

velocity of the elements is not sufficient to cause separation and there 

is continuous, oscillating contact on one side of the clearance similar 

to a linear system. This type of multiple-mode behavior is what lightly 

loaded systems will exhibit on startup or on sudden change of load . 

. Azar and Crossley (1975) performed an experimental study of impact 

phenomenon in lightly loaded and heavily loaded spur gear systems. They 

found that the magnitude of backlash is significant in lightly loaded 

systems but, as the load is increased, the effect of backlash becomes 



less significant. One important finding was that there is significant 

amplification at the tooth mesh frequency and that, even for heavily 

loaded systems, if this frequency approaches as much as half the 

system's lowest resonant frequency, oscillations could occur that would 

be of the same magnitude as those that would occur at resonance. 

9 

Seireg, et al. (1975) also investigated impacts in lightly loaded 

gear systems. They tested a pair of lightly loaded gears by driving the 

pinion with a shaker while coupling the gear to ground with a soft 

spring. They found that maximum gear shaft torque increased linearly 

with shaker amplitude until tooth separation occurred, after which it 

increased linearly at a much higher rate until impact occurred on the 

back side of the tooth at which point the rate dropped off nonlinearly. 

This experimental work proved that the presence of backlash caused 

stress amplification in system elements and that the magnitude of the 

amplification depended on the amount of backlash, although no 

qualitative information was given relating the amplification to the 

backlash. 

A force approach law was used by Azar and Crossley (1977) for use 

with the impact model of Dubowsky and Freudentein. In previous 

experimental work they found that surface compliance and damping were 

highly nonlinear. The Hertzian "spring constant" is represented by a 

1/2-power function of penetration but, only by including a viscous 

damping coefficient which included a 3/2-power of the penetration was it 

possible to corroborate the one-sided multiple impacts obtained 

experimentally. A qualitative plot of the impact pair force-approach 

law is shown in Figure 2.2. 

In a study of impact forces in elastic, mechanical systems Dubowsky 



Contact 
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Figure 2.2 Gear Impact-Pair Force-Approach Curve 
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and Moening (1978) found that, for the scotch-yoke analyzed and tested, 

flexibility in the linkage (as opposed to a rigid link) reduced the 

maximum impact force by as much as a factor of two. This is only 

significant in a geared system to the extent that the designer has the 

ability to reduce the stiffness of the connecting elements in the train. 

Despite the work that had been done up to this point using Hertzian 

contact models, C.C. Wang (1981) did an extensive experimental and 

analytical investigation of rotational vibration with backlash (of 

lightly loaded gears running at high speed) using a Newtonian impact 

model with an assumed coefficient of restitution of 0.5. He considered 

a two- and a three-mass model in which the inertia of the driving gear 

was very much larger than that of the driven gear. One result of the 
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comparison of the simulation results with the experimental results was 

the realization by the author that the zero-time-of-impact assumption (a 

result of using Newton's approach) was not realistic. In any event, his 

experimental work showed clearly the nature of the motion of the impact 

driven gear. 

Haines (1980), in a critical survey of the literature on 2-

dimensional motion and impact in revolute joints, says that the most 

consistent finding (relative to impact and the motion across the 

clearance) is that the level of impact, by a variety of measures, 

increases at an increasing rate with the magnitude of the clearance. 

2.4. Compliance in Elements 

Early work by Dubowsky and Freudenstein (1971) in modeling pin and 

ball joints showed that linearizing the force-deflection relationship 

over the elastic range of deflection was satisfactory. They concluded 

that Hertzian-type contact could be linearized so that the error in the 

transient deflection amplitude is less than two percent. 

Wang and Morse (1972) found that an exact mathematical model of key 

deflection was not available, but they have supplied an approximation. 

Using two-dimensional elasticity theory, they also give the compliance 

of a constant thickness gear web. The authors summarize the work of 

Weber (1949) in defining a gear-tooth compliance that includes local, 

Hertzian deflection, tooth beam-like deflection, and the number of teeth 

in contact. The final result is piece-wise linear over the range of 

each constant number of teeth in contact. 

Cornell (1981) has done an extensive evaluation of spur gear tooth

pair compliance. He compared four different methods of characterizing 



the local contact compliance and concluded that the closed-form 

expression of Weber was the most accurate. He then combined this 

compliance with detailed predictions of beam and foundation bending to 

come up with over-all tooth-pair compliance for several tooth forms. 

12 

Working at the same time as Cornell, Kasuba and Evans (1981) also 

report on gear tooth compliance models and the numerical techniques that 

they used to evaluate them for given gear geometry and materials. 

2.5. Damping and Friction 

Some viscous damping can be expected to be present in the class of 

drive-trains under investigation. However, the amount will be small and 

will be associated largely with structural losses. It can also be 

expected that friction is present, particularly near the load end of the 

train. Predicting values of damping coefficients and friction 

coefficients will be difficult. However, sensitivity studies can be 

undertaken to determine the degree to which the certain knowledge of the 

values is necessary. 

Dubowsky and Freudenstein (1971) used a value for damping ratio in 

their impact-pair of less than ten percent. They state that values of 

between one and five percent can be expected. Azar and Crossley (1977) 

found from experiment that the damping ratio in the gear-pair that they 

were testing was about 1.5 percent which is consistent with structural 

damping rates. 



3.1.1. Model Description 

CHAPTER III 

SPUR GEAR MODEL 

3.1 Physical System 

The physical system, based on the Yang and Sun (1985) model, is 

shown in Fig. 3.1. It consists of two gears with one or two pairs of 

teeth in mesh, the number depending on the contact ratio and the 

position of the gears with respect to an arbitrary datum. In the 

figure, the clearance is greatly magnified with respect to the dimen

sions of the gear teeth. Typically, the clearance will vary from about 

O.Ol times the tooth thickness to almost nothing. The initial position 

of the system is, as shown in the figure, taken such that the clearance 

(2b) is equally divided on each side of the driving gear tooth when its 

centerline is coincident with the line of centers of the gear pair. In 

this model, clearance (backlash) is measured along the line of action 

rather than along the pitch circle, as is more commonly done. 

3.1.2. Meshing Action 

Fig. 3.2 shows a pair of gears in mesh, with the upper gear (the 

driver) turning counter-clockwise. The left tooth on the driver has 

just made contact with a tooth on the driven gear at point "A". It will 

remain in contact with that tooth until the point "B" is reached. The 

13 
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.angle through which the driver travels during this contact is defined as 

the angle of contact. To measure the contact angle a polar coordinate 

system is established with center coincident with the center of the 

driving gear and with the zero angle reference line from that center 

through the pitch point of the gear tooth as it just makes contact at 

point "A". If we imagine a line on the gear through it's center and 

pitch point, we can determine the rotation of the gear by measuring the 

angle between this line and the zero reference line. The angle of 

contact is the sum of two angles, the angle of approach and the angle of 

recess. The angle of approach is the angle made by the tooth as it 

moves from the initial point of contact to contact at the line of 

centers of the meshing pair. The contact angle is given by the ratio of 

the length AB to the base circle radius of the gear. Similarly, the 

angle of approach is given by the ratio of AP to the base circle radius. 

These angles are used in determining the transition from two-to-one pair 

contact and the transition from one-to-two pair contact. 

For gear pairs with a contact ratio of less than two (which covers 

most cases), at any given instant there will be either two pair of teeth 

in contact or one pair. Fig. 3.3 shows a schematic representation of 

the number of teeth in contact vs. the rotation angle of one of the two 

gears in mesh. The arbitrary reference condition for this figure is 

taken when the centerline of a tooth on the driver is coincident with 

the line of centers. As we saw from the discussion of contact angle, 

this differs from the reference line for the contact angle which is a 

line through the pitch point of the tooth. The difference between these 

two reference lines is one half the tooth thickness which is (nominally) 

~/2N. The relationships shown in the figure are referred also to the 
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point where a tooth on the driver has just come into contact with the 

driven gear. At this instant two pair of teeth are in contact. As the 

driving gear continues its motion the tooth ahead of the reference tooth 

comes out of contact, reducing the number of pairs in contact to one. 

This condition continues until the tooth just behind the reference tooth 

comes into contact, thereby increasing the number of teeth in contact to 

two again. The angles of two-tooth and single-tooth contact are shown 

in the figure as functions of the contact ratio mp and the number of 

teeth N. The approach angle, alpha, is also shown in the figure such 

that if the gear-pair were in the initial position used in the model, 

the number of teeth in contact would be one pair. This is arbitrary. 

Whether or not one or two pair would be in contact at the initial 



position depends on the attributes of the particular gears being 

modeled. The zones of one-pair and two-pair contact are derived in 

Appendix A. 

3.1.3. Tooth Stiffness 

Dudley (1984) reports that "the stiffness constants for mesh 

18 

deflection of teeth have never been known with certainty." However, he, 

and others, take the force-deflection relationship to be constant over 

the range of tooth contact. The accepted value of elastic stiffness for 

steel gears is 2.9E06 lb/in per inch of face width. Various attempts 

have been made to predict tooth pair stiffness, some for contact at a 

single point along the path of contact while others have developed 

equations covering the entire range of contact. 

Yang and Sun (1985), in their paper describing the basic impact 

model for spur gears, have developed a model of the contact deflection 

which does not include bending or shear. Starting with the Hertzian 

formulation of two cylindrical bodies in contact, they develop the 

following close approximation to the deflection due to a normal contact 

force, W 

(3.1) 

where ~' E and F are Poisson's ratio, Young's modulus, and the face 

width of the two gears, respectively. The total deflection of a pair of 

gear teeth in contact will include bending and shear components as well. 

Kozesnick (as given by Shigley and Mitchell, .1983) has developed 

equations for these two components. 

Wtb3 
3EI 

They are, for bending 

(3.2) 
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and for shear 

(3.3) 

where 

and ~' b, t, and G are the tangential component of the load on the 

tooth, dedendum, tooth thickness at the pitch circle, and modulus of 

rigidity, respectively. Adding these two components and substituting 

for I and A gives 

S = Wtb [4b2 + ~.2] 
bs Ft Et2 G 

To get an estimate of the total deflection we need to add equations 

(3.1) and (3.4). But before this can be done we must convert the 

(3.4) 

tangential force, ~' to an equivalent normal force, W. The relation

ship is 

Wt = Wcos cJl (3.5) 

where ~ is the gear pressure angle. Substituting equation (3.5) into 

(3.4) and adding the result to (3.1) gives 

4b SWccs q:, 1 . 2bWccs q:, 
+ + 

EFt 3 GFt (3.6) 

if G = E/[2(1+~)] is substituted into equation (3.6) the result is 

S = 4W [ l-!J 2 + b 3 ccs ct + 0. 6b (1 +pkos .p ] 
EF n ts t {3.7) 

The first term in the brackets in this equation is independent of tooth 
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size while the remaining two are apparently not. However, for standard 

tooth dimensions, we can take b = 1.25/P and t = w/2P, where P is the 

diametral pitch, so that b/t = 2.5/~. Making this substitution, 

equation (3.7) can be rewritten as 

s - i~ [ l-l . [ 2~5 r= ~ . o.477U·~kcs ~ ] 
(3.8) 

For steel gears this reduces to 

8 = W CO. 39 + 1. 49cas ~) (10)'"'7 /F (3.9) 

If the pressure angle is 20° (a common value) this becomes 

s ;;; 1. 78W om-7 tF 

or 

K = W = 5. 60 Cl 0)6 l h 
SF i n2 

which is about twice the value given above by Dudley. 

An experimental evaluation of tooth deflection was done by Furrow 

and Mabie (1970). Using an acrylic plastic material cut into the shape 

of 20°, full-depth involute teeth, they were able to carefully measure 

the deflection of a single tooth at points along the path of action for 

various combinations of numbers of pinion and gear teeth. They found 

that the data fit the Timoshenko and Baud (1926) deflection equation 

well, provided certain terms in the equation were interpreted in a way 

that they defined. Referring to figure 3.4 for a definition of the 

geometric terms, the Timoshenko and Baud equation for the bending and 

shear deflection of a single tooth is 
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(3.10) 

where the independent variable, a, is determined by the position of the 

normal load, W, along the tooth profile. In addition to the bending and 

shear deflection, they also added a contact deflection which they cite 

as having come from Timoshenko and Baud as modified by Caldwell. It is 

8 = 2(1-fJ 2 )w [_g_ 1 [ 1. 731EbCsin .p J l 
c Tl'E b 3 + n W 

(3.11) 

where C is the center distance between the gears and the other terms are 

as defined above. The total deflection of a pair of gears in mesh would 

be the sum of the deflections found by applying equation (3.10) to each 

tooth of the mesh and by adding the result to the contact deflection 

found from equation (3.11). The exact method for doing this is given in 



22 

Appendix B. 

3.1.4. Damoinq 

An interesting damping model for impacting gear teeth has been 

developed by Yang and Sun (1985) based on earlier work by Lee and Wang 

(1982). Starting with the hypothesis that the damping force is propor

tional to the product of the penetration and the penetration velocity 

(where penetration is the amount by which remote points on each of the 

gears approach each other during contact), they develop the requirements 

for the constant of proportionality, D. They give this as 

D = 6(1-e)K 
[(2e-U 2 + 3 ]vi (3.12) 

where e, K, and V1 are the coefficient of restitution, tooth pair 

stiffness, and relative approach velocity, respectively. For the 

coefficient of restitution Yang and Sun used a curve fit to Goldsmith's 

(1960) data which gives values that range from about 0.9 to 0.99 for 

steel. However, Smith (1984) has reported considerably lower values for 

the coefficient of restitution, based on experimental evidence. He 

found that, in fact, the coefficient of restitution for impacting steel 

gear teeth ranged from about 0.22 to 0.33, depending on velocity at 

impact. Through a simple model he shows that the limiting value should 

be 1/3, provided that the time between impacts is much longer than the 

time of contact. When this is not the case, values of about 0.9 are 

more reasonable. 

Friction forces that are developed as a result of sliding between 

gear teeth in contact also contribute to system damping. The magnitude 

of the friction force depends upon the transmitted normal force and the 
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coefficient of friction (which usually is quite low) while its sense 

depends upon the sign of the relative velocity. The sign of the 

relative velocity changes abruptly as each pair of teeth pass through 

the pitch point. Figure 3.5 shows the contact and friction forces on a 

gear tooth during single pair contact, while Figure 3.6 shows the forces 

on two teeth during two pair contact. Two pair contact will, in 

general, occur when the contact points are on either side of the pitch 

point. Single pair contact occurs as the contact point is moving 

through the pitch point. The friction torque (opposing the rotation) on 

the gear during single pair contact is 

T 1 = fWr [sign [v!S) J (3.13) 

where f, r, and Vs are the coefficient of friction, radius of curvature, 

and sliding velocity, respectively. Interestingly, during approach 

action the friction torque reduces the torque due to the load (WRb) 

while during recess action it increases the load torque. The friction 

torque during two pair contact is constant and is 

(3.14) 

where pb is the base pitch. Figure 3.7 shows the normalized friction 

torque through the meshing cycle of one pair of teeth. The highest 

torques occur during single pair contact, but the net energy lost during 

this period is approximately zero due to the sign change of the sliding 

velocity. The actual friction model will be developed in section 3.2.3, 

below. 
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(a) Approach Action 

(b) Recess Action 

Fig. 3.5. Friction Forces During Single Pair Contact 
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Fig. 3.7. Normalized Friction Torque 

3.2 Analytic Approaches 

The system will always be in one of three distinct states. They 

are defined as (i) contact on the front faces of the contacting teeth, 

(ii) no contact between the gears, and (iii) contact on the rear faces 

of the contacting teeth. In addition, when the gears are in contact, 



there may be either two or one pair of teeth contacting. These condi

tions are all accounted for in the model. 

3.2.1. Mathematical Model 
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Contact is determined by comparing the relative position of the two 

gears with the initial clearance. The system equations are given below 

for each 

(i) 

( i i ) 

(iii) 

where 

of the three contact states described above: 

Rb1e1 - Rb2e2 > b. 

J1e1 = T 1 ( t) [f(t) + G(t) JRb 1 

J2e2 = T2(t) + [F(t) + G(t) JRb2 (3.15) 

1Rb1e 1 - Rb~zl < b. .. 
J1e1 = T1Ct) 

Jaea = TaCt) (3.16) 

Rb1e1 - Rb2e2 ~ b. 

J1e1 = Ti(t) + [F ( t) + G(t) JRb1 

Jaea = T2C t) [f(t) + GCt) JRba (3.17) 

T,(t) and T2(t) are external torques applied to gears 1 and 

2, respectively; 

F(t) is the elastic component of the contact force; and, 

G(t) is the damping component of the contact force. 

Note that F(t) is defined in such a way that it is always positive, 

i.e., it is always compressive. G(t), on the other hand, may be 

positive or negative, depending on the sign of the relative velocity 

between the teeth in contact. 
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3.2.2. Elastic Contact Force 

As explained in section 3.1.2, the stiffness of a meshing tooth 

pair varies along the path of contact. A representative plot of tooth

pair stiffness is shown in Figure 3.8. Notice that the stiffness is a 

maximum near the pitch point and is lowest at the beginning and end of 

contact. Figure 3.9 shows the superposition of stiffness profiles for 

two teeth to give the over all stiffness when two pair of teeth are in 

contact. Although there is some variation over the length of contact, 

the stiffness function is modeled quite well by a square wave as shown. 

Note however, that the magnitude during two pair contact is not twice 

the single pair stiffness. This is because the two pair contact takes 

place near the ends of the contact path while single pair contact takes 

place near the pitch point. 

In this model the elastic coefficient is a constant for each pair 

of teeth in contact but, because the number of tooth pairs in contact 

varies, the elastic contact force becomes a nonlinear term in the system 

equations. The elastic contact force equation used is: 

F(t) = cKC8 - b) (3.18) 

where 

c = 0, ±1, or ±1.8 as given in table 3.1 

and 

3.2.3. Damping Contact Force 

Following Yang and Sun (1985) a nonlinear damping force is assumed. 

It is proportional to the relative penetration of the contacting gear 

teeth times the relative velocity of the gears. The coefficient of the 
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damping term is constant throughout the impact event, but is a function 

of the impact velocity. The damping contact force equation is: 

G(t) = cDIS - hiS (3.19) 

where c, K and o are defined as above and D is defined in equation 

(3.12). Using a curve fit to the data of Smith {1984) the coefficient 

of restitution, as used in equation (3.12) is {see Figure 3.10) 

e = 1 - exp(-0.0263V 1 ] 

3 

TABLE 3.1 

THE NUMBER OF TEETH IN CONTACT 
AND THE TOOTH FACE GIVEN BY 

COEFFICIENT C 

Condition on 91 0 > b -b < 0 < b 

27r ( n- 2+mp) /N1-et 

< 91 < 1 0 

21rn/N1-et 

Otherwise 1.8 0 

{3.20) 

0 < -b 

-1 

-1.8 
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3.2.4. Perturbation Solution 

A perturbation solution for the impact phase of the motion is 

possible, under certain conditions, since this phase can be described 

with just one state variable. During contact on the front faces of the 

teeth, 1 et 

(3.21) 



and 

but, from the system equations we have 

and 

Substituting, we have the system equations in terms of delta: 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where F(t), G(t}, c, K, and 0 are defined above. Rearranging equation 
(3.26), we have 

(3.27) 

If we let 

= E 

then we can rewrite equation (3.27) as .. . 
6 + ce CD6 + k)8 = 0 : T 1 = T 2 = 0 (3.28) 

The perturbation solution for this equation is derived in Appendix C, 

and is: 

X (T) 
y2 

= Vsin T + E-(-2sin T + sin 2T) + 
6 

2 V2 . 
E 288 C37sm T - 32sin 2T + 9sin 3T) + ••• 



where 

T = w-r. 

but 
v = 

s ( Q) 

so that 

and 

= S(Q) 
bww 0 o 
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= 

In addition to the perturbation solution, equation (3.28) has been 

solved using a graphical technique known as the Delta Method (see 

Appendix D). The Delta Method solution and the one-term and two-term 

perturbation solutions have been plotted in Figure 3.11. The Delta 

solution and two-term perturbation solution appear to fall on the same 

curve. 

3.3 Simulation 

A simulation program, using a fourth-order Runge-Kutta numerical 

integration technique, was developed to investigate the behavior of the 

following subsystem: 

Number of teeth (both gears) = 28 

Diametral Pitch = 8 

Pressure angle = 20 degrees 

Face width= 0.700 in. 

Mass added to gear 2 to bring its natural frequency down to 

350 hertz. 

The derived gear dimensions are given in Appendix E, and the 

simulation program is described and listed in Appendix F. 
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The state equations used in the simulation are: 

Three cases were run with the simulation program. They were: 

I - Free vibration, induced by an initial velocity of 

gear I of 10 rad/sec. 
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II - Both gears loaded with equal and opposite torques of 

1000 lb.-in. 

III - An external load on gear 1 only of 1000 lb.-in. 

Figures 3.12 through 3.15 give the results for Case I. The non

linear frequency is obvious in figure 3.12 which shows displacement of 

gear 1 (and, because gear 2 is not moving, relative gear displacement) 

as a function of time. The dashed lines in figure 3.12 represent the 

clearance, b. Any excursion above or below these lines represents 

deflection in the gear teeth. The phase-plane plot of figure 3.14 

clearly shows that the system will reach a stable equilibrium somewhere 

on the zero-velocity axis. 

Figures 3.16 and 3.17 show the results from Case II. Notice, in 

figure 3.16, that there is no impact on the rear face of the teeth in 

this case. After impact on the front faces the teeth separate but 

return to impact again on the same faces. After nine impacts the system 
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continues to oscillate, but without further separation of the teeth. 

Figure 3.11 shows the stable equilibrium point to be the teeth in 

contact.· 
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Figures 3.18 through 3.21 show the results from Case III. The 

results here are similar to Case II except that gear 2 now has some 

detectable motion. In the phase-plane (figure 3.12) we see that there 

is no equilibrium position because the system will continue in motion 

indefinitely under the influence of the driving torque on gear 1. 
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CHAPTER IV 

KEYED JOINT MODEL 

4.1 Physical System 

The keyed joint consists of three parts: a shaft, key, and a hub. 

There are many different key shapes in use but this study is restricted 

to square (cross-section) keys in either sled-runner or milled keyseats. 

It is further assumed that the cross-section dimension of the key is 

equal to one-fourth of the shaft diameter. The key may be of any 

length. 

4.1.1 Conventional Model 

The analysis of key and keyway stresses is usually done by assuming 

a very simple model (see Figure 4.1). Shigley and Mitchell (1983) and 

others give the (average) shear stress in the key as F/A, where F is the 

force on the face of the key and A is the area found by multiplying the 

width by the length of the key. In this model, the force is found by 

dividing the torque applied to the joint by the radius of the shaft/hub 

interface (one-half the shaft diameter). 

Keyed joints are usually ignored in deflection analysis. For this 

reason there is very little published information on the elastic behav

ior of a keyed joint. Wang and Morse (1972) developed a very simplistic 

model for use in dynamic modeling of gear train systems. They assumed 

that the key was a short cantilever beam subjected to a distributed load 

47 
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Fig. 4.1. Simplified Model for Key Stress 

- Linearly Distributed 
Load, q (x) _.,-----.._ 

Hub 

F--

Shaft 
--F 

Fig. 4.2. Cantilever Beam Model for Key Stiffness 
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along its length (see Figure 4.2). Further assumptions were that (I) 

the key is force fit in the shaft and is a ~lide fit in the hub, (2) 

deflection in the key is due solely to shear, (3) the concave corner of 

the hub keyway is not deformed, and (4) the convex corner of the hub 

keyway is locally flexible. This leads to the conclusion that (for a 

square key of width d/4) the lateral stiffness is independent of 

diameter and is given by 

k = 2Gb lb/in 

where G is the Modulus of Rupture (shear Modulus) and b is the length of 

the key. This can be converted to an angular stiffness by multiplying 

by the square of half of the shaft diameter, or 

k' = d2Gb/2 lb-in/rad 

For a steel key, this model predicts a linear stiffness of 23xl08 

lb/in/in of length. This compares with a value of 2.9xl08 for steel 

spur gear teeth in contact. 

4.1.2 Rigid Body Model With Clearances 

There will be clearance between the hub and shaft diameters, and 

between the hub keyway and the key. The key will be either a snug fit 

in the shaft or an interference fit. 

Assume that a force F acts on the hub (Figure 4.3) at the point P 

and that this point is stationary in space while the hub/shaft rotate at 

constant velocity. A stationary Cartesian coordinate frame, fixed in 

space, has it's origin at the center of the hub and it's y-axis thrdugh 

the point P. The centerline of the hub keyway will be at an arbitrary 

angle a with respect to the x-axis. The hub and shaft will contact at 

two points, A and B, at which there will be hub reaction forces Rk and 
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Rs, respectively. The angle from the x-axis to the point B is p. The 

shaft and hub centers will be offset an amount c which is equal to the 

radial clearance between the hub and shaft. The distance along the hub 

keyway centerline to the extension of the reaction force at A is rk and 

the angle between the key centerline and the hub keyway centerline is a. 

Taking the hub as a free body, we can write the following three equi

librium equations: 

LHo = 0: (fees q.)r 0 - Rl<.rl<. = 0 ( 4. 1) 

llx = 0: F cos 4l Rksi n o: + Rsccs 13 = 0 (4.2) 

lly = 0: -Fsin 4l + Rkcoo o: [- R !:sin f3 J = 0 (4.3) 

In these equations ~' ~' ~' and P are the dependent variables and F, 

~' a, and ro are independent. Since there are four unknowns we need one 

more equation for solution. The additional equation is provided by the 

geometric constraints associated with the points A and B. That is, the 

point A lies on both the key (assumed fixed to the shaft) and the hub, 

and the center of the shaft lies on the line OB at a distance c from 0. 

Assuming for the moment that ra (distance O'B) and o are known (from 

shaft/key dimensions), then the point A is at the intersection of the 

line (Figure 4.4) 

y = x tan o: + 
2cos o: (4.4) 

and the circle 

(4.5) 
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Fig. 4.4. Geometry for Contact Point A 



where 

then 

x 0 • = ecce ~ 

Yo· = csin ~ 

c = rh - rs 

rk = ~x~ + y~ 
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(4.6) 

where xA and yA are the coordinates of the point A and are found by 

solving equations (4.4) and (4.5) simultaneously. Unfortunately, to 

solve these two equations the angle p must be known. An iterative 

solution can be employed by first guessing a value for p then solving 

equations (4.4), (4.5), and (4.6) for rk. Using the calculated value of 

rk and the guessed value of p, equations (4.1), (4.2) and (4.3) can be 

solved for Rk, R., and p. If the calculated p does not agree with the 

guessed value it is substituted for it and the process is repeated until 

the two agree. 

The quantities ra and o are found as follows (see Figure 4.5): 

ra = [[wk/2] 2 
+ h; r- 5 

( 4. 7) 

S = arctan [ ;hks] 
(4.8) 

where 

wk = key width, in. 

h. = distance from top of key to center of shaft 

It is interesting to look at the relative position and relative 

magnitude of the shaft/hub contact force R.. The above equations were 

solved for the following case: 
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w 

M 

Fig. 4.5. Key/Shaft Geometry 

Shaft radius, Rs = 0. 995 in. 

Hub radius, Rh = 1.000 in. 

Hub keyway width, wh = 0. 510 in. 

Key width, w. = 0. 500 in. 

Pressure angle, q, = 20° 

Pitch radius, ro= 2,5 and 10 in. 
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Fig. 4.6. Relative Shaft/Hub Reaction Position 

Figure 4.6 shows the relative position of Rs with respect to the 

centerline of the keyway as the shaft and hub turn through the angle a. 

Notice that, as the pitch radius (distance from the center of rotation 

to the application of the driving load F) decreases, there is consider

able relative motion between the shaft and hub. On the other hand, as 

the pitch point gets further from the center of rotation the position 
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ofthe shaft/hub reaction with respect to the shaft rotation angle tends 

to stabilize at goo behind the rotation angle. 

The relative magnitude of the shaft/hub reaction is shown in Figure 

4.7. As in the case of the position, the magnitude fluctuation is 

greater as the ratio of pitch radius to hub radius decreases. As the 

pitch radius tends to infinity the magnitude of the shaft/hub reaction 

will tend toward equality with the force between the key and the hub. 

It is clear from this analysis that the shaft/hub contact force 

must be taken into account when estimating the joint stiffness. One way 

to do this is to analyze a finite element model of the entire shaft, key 

and hub. 

4.2 Stiffness Models 

4.2.1 Analytic Model 

In the preceding section it was assumed that the key is held firmly 

by the keyseat with half of its depth protruding from the shaft and 

deflections on the bearing surfaces were not considered. In fact, the 

keyseat only partially supports the key and, because of clearance 

between the shaft and the hub, contact deflections allow some relative 

motion between the shaft and hub. A more generalized approach to 

modeling the keyed joint is shown in Figure 4.8. 

The total deflection of the system has the following components: 

1) shear deflection of the key, 2) contact between key and hub, 3) 

contact between key and shaft, 4) contact between shaft and hub, and 5) 

shear deflection of shaft support (lip). A model will be developed 

below that considers components 1), 4), and 5) with concentrated 

loading. 
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Fig. 4.7. Relative Shaft/Hub Reaction Magnitude 

4.2.1.1 Shear deflection of Key. By Castigliano's first theorem, 

the deflection at x=O (Fig. 4.9} is 

(4.9} 

where U, is the shear strain energy for a rectangular cross-section and 

is given by (Budynas, 1977) 
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d/4 

X - I-

~ d/12 

y 

3P 

Figure 4.9. Key Loading in Shear 

d/4 
U = 12(1 + !J) J V2dx 

s 5EbCd/8) 0 

0 < X < d/6 

d/6 < X < d/4 

Combining equations (4.10) and (4.11) and integrating yields 
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(4.10) 

(4.11) 
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u ;;; 48 (1 + JJ)P 2 

s 5Eb (4.12) 

Substituting equation (4.12) into (4.9) and differentiating gives the 

displacement 

8 - 96 ( 1 + fJ) p 
0 - 5Eb (4.13) 

which is independent of diameter, d. The stiffness per unit length of 

key is 

for steel. 

k 
b = 

p 
Sob 

= 5E = 1. 20 (10) 6 
96 (1 + IJ) (4.14) 

4.2.1.2. Contact Between Key and Shaft. Assuming that the shaft 

and hub have slightly different diameters and that the force Pacts on a 

line through the center of the shaft and parallel to the force system on 

the key, Roark and Young (1975) give the surface contact deflection as 

(4.15) 

where 
(4.16) 

and 

(4.17) 

The constant c is the half-width of the contact zone (a rectangle in the 

case of two cylinders in contact). Thus, this formulation will only be 

accurate for values of c that are reasonably small compared with the 

diameter, d. Letting 

and 
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then 

(4.18) 

and 

c = 2.15d..JP/EbD , c 2 = 4. 52d 2P/EbD (4.19) 

also, the term in the square brackets in equation (4.15) becomes 

[ 4d 2 ] [ EbD ] In ~ = In l.l 5P 
(4.20) 

Substituting equations (4.18), (4.19) and (4.20) into (4.15) gives, for 

the stiffness per unit length of key P 1 ob, 

k = nE 

2(1 - ~2J [ ~ + ln [1~~~J] (4.21) 

Note that this result is also independent of diameter, d, but that it 

does depend on the load, P. Some values of stiffness are listed in 

Table 4.1 for a relatively tight fit between shaft and hub (D = 0.0025 

in.). 

4.2.1.3. Shear deflection of Shaft Support. The keyseat can be 

modeled as a cantilever beam with variable depth (Fig. 4.10). The area 

moment of inertia will be a function of distance along the beam, or 

where 

I(x) = b[h(x)] 3/12 

h(x) = Cx2 

(4.22) 

(4.23) 

The constant, C, can be evaluated by inserting the boundary conditions 

at x = d/8 in equation (4.23). Thus, 

c = ..J7 d/8 
(d/8)2 

(4.24) 



TABLE 4.1 

CONTACT STIFFNESS AS A FUNCTION 
OF APPLIED LOAD 

load per Unit Stiffness per Unit 
length, lb./in. length, lb./in./in. 

100 7 250 000 

300 8 570 000 

500 9 370 000 

1000 10 700 000 

1500 11 690 000 

2000 12 500 000 

Substituting equation (4.24) into (4.22) gives 

I(x) = 1.543bx6/(d/8) 3 

The shear energy is given by 

where 

V/I = 3P(d/8)3/(1.543bx6 ) 

over the interval (d/6) <= x <= (d/4). 

Substituting equation (4.27) into (4.26) and integrating yields 

Us = 1.85{l+J.L)P2/Eb 

deflection under the 3P load is 

8 =aUjaP = 3.70(l+J.L)P/Eb 

The stiffness per unit length of key is 
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(4.25) 

(4.26) 

( 4. 27) 

(4.28) 

(4.29) 
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.JP 

d/12 

h(x) 

d/8 

y 

Figure 4.10. Shaft Support for Key 

k/b = P/cSb = E/[3.70{1+JL)] 

which, for steel, is 6.22{10) 6 • 

{4.30) 

4. 2 .I. 4. Ana 1 yt i c Mode 1 St ifftiess. Two of the st i ffnesses 

derived above are independent of load while one depends on the load. 

They are combined by adding the reciprocals of the individual 

stiffnesses. Thus, 

1/~ = 1/K, + 1/~ + 1/K3 {4.31) 

As an example of the total stiffness, assume a load of 500 lb, then 

{10) 6/k' = 1/1.2 + 1/9.37 + 1/6.22 

and 
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~ = 0.908(10) 6 lb/in/in 

This is approximately twenty times smaller than the stiffness predicted 

by the model of Section 4.1.1. 

4.2.2 Finite Element Model 

A two-dimensional finite element model of the shaft, key and hub 

has been developed. The element mesh is shown in Figure 4.11. Two 

kinds of elements were used; 2-dimensional isoparametric and 

2-dimensional interface or gap elements. The hub, key and shaft are 

modeled with the isoparametric elements and are connected only by the 

interface elements. Although the gap elements are capable of modeling a 

transverse friction force, the analysis would not converge when a 

non-zero coefficient of friction was used. The initial condition for 

the model has all clearances equal. Thus, when first loaded, some rigid 

body motion takes place until the clearances are taken up. This is 

possible because the gap elements, which normally transmit only 

compressive forces, can be set to have a very small stiffness in the 

tensile direction. 

Four shaft diameters were modeled: 0.750, 1.000, 1.500, and 2.000 

inch. For each diameter there was a tight fit model and a loose fit 

model for a total of eight different models. Each of the eight models 

was loaded with thirteen different load steps. The loads applied to 

each model were the same regardless of size or fit. They were: 10, 100, 

300, 500, 1000, 1500, 2000, 3000, 5000, 10000, 15000, 20000, and 30000 

lb. The rigid body motion takes place during the first load step of 10 

lb. 

There are 62 interface elements between the shaft and hub. The 
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Fig. 4.11. Finite Element Mesh 

keyshaft interface has eight interface elements on each side and 14 

elements along the bottom. The key-hub interface has nine elements on 

each side, and 14 elements along the top. Figures 4.12 and 4.13 show an 

enlargement of the mesh in the key area. Figure 4.12 shows the tight 
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Fit and Figure 4.13 shows the loose fit. 

The fits represent the extremes that resulted from analysis of the 

American Gear Manufacturers Association Standard 9002-A86 (1986). The 

standard covers fits between shaft and hub and between key and hub for 

keyed flexible couplings. Dimensional data from the standard is sum

marized in Table 4.2. Although the standard does give tolerances for 

the key and the keyway in the hub, it does not cover fits between the 

key and keyseat in the shaft. It was assumed that for the tight fit 

there would be a total interference between key and keyseat of 0.002 in. 

and a snug fit for the loose case. The various fit dimensions used are 

given in Table 4.3. 

Torques were applied to the model by putting equal and opposite 

forces on the two nodes on the hub outside diameter that are on the plus 

and minus x-axis. The shaft was prevented from rotating by fixing all 

of the nodes on the smallest inside circle on the shaft (which is, in 

fact, hollow at that point). The first load-step of 10 lb. was intro

duced to take up the gaps and bring the assembly to a position of static 

equilibrium. 

4.2.2.1 Hub Rotation. Hub rotation for each run and load step was 

determined from the deflections of the seven nodes on the hub that are 

just above the key on the positive y-axis. The nodes were on a straight 

line before loading and, essentially, stayed on a straight but rotated 

line after loading. The calculated angle of rotation is the angle 

between the rotated line made by these seven nodes and they-axis (see 

Fig. 4.14). The rigid body rotation angle was calculated for each run 

from the results of load step number one. This value was then 

subtracted from the angle calculated for each load step (2 through 13) 
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TABLE 4.2 

AGMA 9002-A86 (1986) 
SHAFT/HUB FITS 

Nomina 1 Shaft Bore Tolerance 
Shaft Tolerance {Plus} 

Diameter (Minus) Class I Class II 

0.750 0.0005 0.0010 0.0020 

1.000 0.0005 0.0010 0.0020 

1.500 0.0005 0.0010 0.0020 

2.000 0.0010 0.0010 0.0020 

KEY/KEYWAY FITS 

Nomina 1 Square Key Tolerance Keyway 
Shaft Key {Width and Height} Width 
Diameter Size Commercial Precision Tolerance 

0.750 0.1875 +0.000/-0.002 +0.001/-0.000 +0.0030 

1.000 0.2500 +0.000/-0.002 +0.001/-0.000 +0.0030 

1.500 0.3750 +0.000/-0.002 +0.001/-0.000 +0.0035 

2.000 0.5000 +0.000/-0.002 +0.001/-0.000 +0.0040 



Run 
No. 

0751 

0752 

1001 

1002 

1501 

1502 

2001 

2002 

TABLE 4.3 

CLEARANCE/INTERFERENCE FOR KEYED JOINT ANALYSIS 

Shaft/Hub Hub/Key Key Top Shaft/Key 
Shaft Clearance Clearance Clearance Interference 
Dia. ( Radi all (per side) (Total) (Total) 

0.750 0.00075 0.0010 0.001 0.002 

0.750 0.00125 0.0025 0.023 0.000 

1.000 0.00075 0.0010 0.001 0.002 

1.000 0.00125 0.0025 0.023 0.000 

1.500 0.00075 0.0010 0.001 0.002 

1.500 0.00125 0.0028 0.023 0.000 

2.000 0.00100 0.0010 0.001 0.002 

2.000 0.00150 0.0030 0.023 0.000 
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y 

Original Position 

Fig. 4.14. Location of Nodes Used for Hub Rotation Calculation 

for that run (diameter and fit condition). The average value of the 

calculated angles was used to calculate the stiffness for the load step. 

Using the symbols in Fig. 4.14, the procedure for calculating the rigid 

body angle is: 

1. Read the deflections for the seven nodes from load 

step 1. 

2. Add the original y components to the y deflections 

to determine the new position coordinates for the 

seven points. 



3. Starting with the second point, calculate the angle 

that the line through the ith point and the first 

point makes with the y-axis. 

4. The average of these six angles is the rigid body 

rotation angle. 

Mathematically, 

e1 = arctan [
X 1 

y l 

- X3222] 
- Ys222 

and 
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(4.32) 

(4.33) 

The procedure for finding the rotation due to loading is similar except 

that, in step three above, the rigid body angle for that run is subtrac-

.ted from the calculated angle before the angles are averaged. Table 4.4 

gives the x,y coordinates for the seven nodes of run 1001 for the fol

lowing three conditions: 1) initial (before any loading), 2) after 

rigid body rotation (load step one), and 3) after a load of 3000 lb 

(4500 lb-in, load step 8). Table 4.5 shows the calculated angles of 

step three above for the same run. Similar data was analyzed for each 

of the 96 different load runs. 

4.2.2.2 Joint Stiffness. The angular stiffness for each run was 

calculated by dividing the applied torque by the average rotation angle. 

A lineal stiffness was then calculated by dividing the angular stiffness 

by the square of the nominal shaft radius. Lineal stiffness has been 

plotted as a function of nominal shear load (torque divided by shaft 

radius) on the key in Figures 4.15, 4.16 and 4.17. Figure 4.15 shows 

the results of the tight fits for all diameters, while Figure 4.16 shows 

the results for all of the loose fits. Figure 4.17 gives a comparison 



TABLE 4.4 

POSITION DATA FOR 1.000 IN DIAMETER, TIGHT FIT RUN 
USED TO CALCULATE ROTATION OF HUB 
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Initial After Rigid Bod~ Rot.* Loaded** 
Node _x_ y X y X 

3222 0.0 0.62600 1.02343E-03 0.626015 0.03674 
3243 0.0 0. 65713 1.09483E-03 0.657145 0.03885 
3264 0.0 0.67570 1.13741E-03 0. 675715 0.04009 
3285 0.0 0.69428 1.17999E-03 0.694295 0.04134 
3306 0.0 0. 71285 1.22251E-03 0. 712865 0.04259 
3327 0.0 0.73143 1.26514E-03 0.731445 0.04384 
3348 0.0 0.75000 1.30773E-03 0.750015 0.04509 

All dimensions are inches 
* 

** 
15 lb-in load 
4500 lb-in load 

TABLE 4.5 

CALCULATED HUB ROTATION ANGLES 1.000 IN DIAMETER 
TIGHT FIT LOAD STEPS 1 AND 8 (RADIANS) 

Node Rigid Body 4500 lb-in 

3243 0.0022936 0.06536 
3264 0.0022934 0.06517 
3285 0.0022928 0.06506 
3306 0.0022928 0.06500 
3327 0.0022926 0.06499 
3348 0.0022927 0.06503 
Average 0.0022930 0.06510 

y 

0.62724 
0.65834 
0.67690 
0.69546 
0.71402 
0.73259 
0. 75116 
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of the tight and loose fit for a 1.000 in diameter shaft. 

The stiffnesses predicted by this model are about one third of 

those predicted in Section 4.2.1 above. On the one hand, you might 

expect a finite element model to give a stiffer response than the actual 

structure modeled. On the other hand, the analytic model was obviously 

lacking in detail and did not account for all of the deflection compo

nents. The analytic model did predict a load dependent component as 

well as a constant term. The finite element results clearly show this. 

The difference between the tight and loose fit results seems to be that 

in the loose case some motion of the key takes place that doesn't occur 

in the tight case. Both cases appear to converge on the same value at 

high load. The results are based on a completely elastic response of 

the components to the applied loads. There will, however, be local 

plastic deformation under the high loads, especially at the lower end of 

the diameter range. An attempt was made to allow for a nonlinear 

stress-strain relationship but the analysis would not converge when this 

complexity was added. 

That the key does rotate under load can be seen by inspection of 

Figures 4.18 through 4.41. These figures show, graphically, the force 

distribution on the key and on the inside surface of the hub. Note that 

the drawing scale for the key and hub are the same for all 24 figures, 

but the force scale is not. These figures summarize the force data, 

taken from the interface elements, from each of the load cases for the 

1.000 in diameter, tight and loose cases. Recall, from Table 4.3, that 

the clearance above the key was 0.001 in for the tight case and 0.023 in 

for the loose case. Now, looking at Figures 4.18 through 4.29 (the 

tight case loading), you can see that a substantial reaction develops 
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! ................. ·····-· . ___ , ........ -------. -------·· -------·------ ... ---------·· -~------"- ........ -------~· . -·-----~--"· ----····-· 
, RUN 10012 0=1.0000 TIGHT FIT T== 150.LB-IN l 
l ANGULAR STIFFNESS= 48081. LB-IN/RAD/IN I 
I LINEAL STIFFNESS ~ 192323. LB/IN/IN 
! SCALES: DRAWING - KEY. 4.000=1: HUB. 2.000=1 , 
Li FORCES - KEY. 1000.~1: HUB, 250.=1 i 

·--·-·---··--·-·--. ~--...................... --·----· --- ............. , ... _, _________ '""""'· ............ ----· ...... ··--·-··· ............. --- ... J 

Fig. 4. 18. Key and Hub Force Distribution, Tight Fit, 150 lb-in 
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r-········------ ·····-. ,-···---···, ....... _ .. --.. ·-··--· .... ----·--·-. --- ·------·-- ----....... ·-·· ....... - ... ·-- -··· ··---- -------- ...... ------.... _, 
: RUN 10013 0=1.0000 TIGHT FIT T= 450.LB-IN i 
i ANGULAR STIFFNESS - 54509. LB-IN/RAD/IN ; 
i LINEAL STIFFNESS = 218035. LB/IN/IN : 
i SCALE~ DRAWING - KEY, 4.000=1: HUa 2.000=1 
: FORCES - KEY, 1500.=1: HUB, 250.=1 , 
L ................... _____ .......... - ...... - .... -.......... ______ .......................... ------·-·· ------ ........... - ............................................ - ...... J 

Fig. 4. 19. Key and Hub Force Distribution, Tight Fit, 450 lb-in 
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r· ·-·-·--··· ...... -· ..................... - .............. ·····------~········· .. "--- ................ ,. ........ -, ... - ........ ------·---·-··----·-·· -······--··l 
! RUN 10014 0=1.0000 TIGHT FIT T= 750.LB-IN ; 
I ANGULAR STIFFNESS = 58412. LB-IN/RAD/IN i 
1 LINEAL STIFFNESS - 233650. LB/IN/IN ; 
! SCALE~ DRAWING - KEY. 4.000=1: HUa 2.000=1 ! 
L, FORCES -- KEY, 1500. =1; HUB, 250. ==1 1 

-- .. -.~·--- ·-----· ·-·- .......... ---.--- ... -----· ____ ........... ·-·-·· ........ - ..... - ............... -·· .... . ... .. ..... ,.._ ... J 
Fig. 4.20. Key and Hub Force Distribution, Tight Fit, 750 lb-in 
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l .... ·= ~t. -:=t~-:=~~-- ... 
3 2 1 0 

FORCE, KIP 

--------~-
('·'. ~---------··-···""- .......... -. . --~- ... ·--- --- ·---- ,., .. _______ ...... - ~- .. -------- ---· ·- ......... -----~----- ----<·•--· .. --- ·- ... ----··. --·--·1 
l RUN 10015 0=1. 0000 TIGHT FIT T= 1500 .l.B-··IN 1 

! ANGULAR STIFFNESS= 64377. LB-IN/RAD/IN ) 
i LINEAL STIFFNESS - 257509. LB/IN/IN 
i SCALES: ORA\~ING - KEY. 4. 000=1; HUB, 2. 000::~1 
I FORCES - KEY. 1500.=1; HUB. 250.=1 ' 
'------ ... -... -.-- ......... ____ ...... ·-- -- ....... ------------------. ----------- ......................... -... --------- ........... ,._, ..... , ...... J 

Fig. 4.21. Key and Hub Force Distribution, Tight Fit, 1500 lb-in 
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Fig. 4.23. Key and Hub Force Distribution, Tight Fit, 3000 lb-in 
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; RUN 10018 D=i.OOOO TIGHT FIT T= 4500.LB-IN ' 
I ANGULAR STIFFNESS = 69125. LB-IN/RAD/IN I 
: LINEAL STIFFNESS = 276498. LB/IN/IN I 
; SCALES: DRA~HNG - KEY, 4. 000= 1; HUB, 2. 000= :1 l 
i FORCES - KEY, 2000.=1; HUB, 1000.=1 j 
~ ...................... ,. .. - ~ ··-- ................ ,.. --~ ...... ,,..,. ...... ··-·· ., .. ,"'--~~- ._ .. ~~ ... - -·~- ......... ·- -··-----~-. --- . ··~···· - ............ ---~- ........ _ ... , ~-- ----~-·-- .•... -~- .... _,,..,. _____ -............ . . .. · ...... --~-- ...... ... 

Fig. 4.24. Key and Hub Force Distribution, Tight Fit, 4500 lb-in 
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r· .... ---· .. --- ·.----· .............. ---·· ··--· ............ ~·-· ..... - .. ------ --·-·· ... __ ·---··-·· ·--··-----·-··. ·---------·--- .. ----·-·-· -· ... ., 
! RUN 10019 0=1.0000 TIGHT FIT T= 7500.LB-IN ! 
: ANGULAR STIFFNESS = 70226. LB-IN/RAD/IN ' 
; LINEAL STIFFNESS - 280903. LB/IN/IN 
! SCALE~ DRAWING - KEY, 4.000=1: HUa 2.000=1 
l_ ___________ --- .. ----~~9~~E~--=--~~-~·------ --~~~? _ _. __ .,_~_: ___ ~~~-·----~-~?~ ~-~~--...J 

Fig. 4.25. Key and Hub Force Distribution, Tight Fit, 7500 lb-in 
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-~-/ -------------r·· --······-- ..... ··-· ... -- ....... ------ ·---- ---------- ·-· ........... --·--. ---·-··· .. ---~--·- ·----··· .. - ------·~-- ....... _. ·-----------· -·---1 

! RUN 100110 0=1.0000 TIGHT FIT T=11250.LB-IN: 
i ANGULAR STIFFNESS= 71041. LB-IN/RAD/IN . 
i LINEAL STIFFNESS - 284163. LB/IN/IN 
: SCALES: DRAWING - KEY. 4.000=1.; HUB. 2.000=1 
\ FORCES - KEY, 4000. =:1: HUB. 2500. =1 
L--------- ----·--------·---------·. ----··-- ..... --------.-----. ···--·--·· -- --·- ____ ., .. ···-·------- ............. - .. --.. -· .. .....~ 

Fig. 4.26. Key and Hub Force Distribution, Tight Fit, 11250 lb-in 
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1 RUN 100111 0=1.0000 TIGHT FIT T=15000.LB-IN i 
l ANGULAR STIFFNESS :-.: 71719. LB·-IN/RAD/IN ! 
! LINEAL STIFFNESS = 286876. LB/IN/IN ! 
l SCALES: DRAWING - KEY. 4.000=1; HUB. 2.000=1 i 
! FORCES - KEY. 5000. =:1; HUB. 3500. =1 Ji 
L- ........ .__,..__,_~-···-···- .. ·-·---, . ....., ... ,....., ... _ .. , . .,_ .. , .. __ ~~·~,....--.-. ... - ............. __ .. --- ... ·····--~.-·----·-~-·---~--.. ............. _. .. _________________ ,_ ___ ... ,_, __ 

Fig. 4.27. Key and Hub Force Distribution, Tight Fit, 15000 lb-in 
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; RUi\! 10011.2 0=1. 0000 TIGHT FIT T=22500. LB-IN i 
l ANGULAR STIFFNESS = 73182. LB-IN/RAD/IN ~ 
! LINEAL STIFFNESS = 292727. LB/IN/IN . 
~ SCALES: DRAWING - KEY. 4.000=1; HUB, 2.000=1 
j FORCES - KEY. 7000.=1; HUB. 5500.=1 i 
-------· ------·--------~---.-.---- .. -- ····-··-------·--·---· ,, ---· --· .-----·--·-·---.. -·----··--·---·--·------- .. ----------- .. _____ J 

Fig. 4.28. Key and Hub Force Distribution, Tight Fit, 22500 lb-in 
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r ,_ ... --.-------.. .. ... . ....... ·-··-· ... --· . ""··· .... - -....... -~ ... --"- .. ··---~--- --~----, --~- ---·· .. ... .. ... . ...... . ----...., 
; RUN 100113 0=1.0000 TIGHT FIT T=30000.LB-IN I 
. ANGULAR STIFFNESS = 74944. LB-IN/RAD/IN 
; LINEAL STIFFNESS - 299778. LB/IN/IN 
1 SCALES: DRAltJING - KEY, 4. 000=1; HUB, 2. 000=1 . 
! FORCES - KEY. 9500.=1: HUa 7000.~1 i 
L ... _. _________ ......... ---·-- . .:. ____ ................ ·-· ------. ·--. -·-···------ --.... _., ·· ................... --------- ...... ···-· ......... ·--- ... J 

Fig. 4.29. Key and Hub Force Distribution, Tight Fit, 30000 lb-in 
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! RUN 10022 0=1.0000 LOOSE FIT T= 150.LB-IN i 
i ANGULAR STIFFNESS - 21448. LB-IN/RAO/IN i 
i LINEAL STIFFNESS = 85792. LB/IN/IN 
i SCALE~ DRAWING - KEY, 4.000=1; HUB, 2.000=1 I 
: FORCES - KEY, 250.=1; HUB, 250.~1 ! 
L. ·····-·--· ... -...... --·-"-·---·-" ..... - .... ----··--·-. ·~---·-·--·-··--------.- ... . .. ... .. .............................. ·- ....... _ ... .J 

Fig. 4.30. Key and Hub Force Distribution, Loose Fit, 150 lb-in 
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.----- ···-- .... ------'"--" ................ ·------·----------· ------- ............... -- ... ------------· ... - ·- ·------- --.. ·--- .. -------·- ---· -----, 
! RUN 10023 0=1.0000 LOOSE FIT T= 450.LB-IN 
~ ANGULAR STIFFNESS = 32943. LB-IN/RAD/IN 
; LINEAL STIFFNESS ·=- :131774. LB/IN/IN 
I SCALE~ DRAWING - KEY, 4.000=1; HUa 2.000=1 . 
l FORCES- KEY, 500.=1: HUB. 250.=1 I 
L------------------- ....... ----- --·-------- ----------------- ... ---·------- ---- -- ....... ------- ----~---- -------- __ ........... --.---~ . ... --1 

Fig. 4.31. Key and Hub Force Distribution, Loose Fit, 450 lb-in 
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r-··-·---···-- -----·<0·-----·------ -----·- ·----·----- - --------------------··--··· ---------------, 
RUN 10024 0=1.0000 LOOS~ FIT T= 750.LB-IN ~ 

J ANGULAR STIFFNESS == 39515. LB-IN/RAD/IN ~ 
! LINE1\L STIFFl"·JESS - 158062. LB/IN/IN 
I SCALES: DRAWING - KEY, 4.000=1: HUB, 2.000=1 , 
L--------------------·-·---~~~~~-?._:-___ ~~~~---··· ·--~-?..?.? __ : __ ~~-~~----~-~-~~------~~~-~ -~ .J 

Fig. 4.32. Key and Hub Force Distribution, Loose Fit, 750 lb-in 
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r·· ..... ---·-·------···· ... -----· ____ ... -· .. ·--------------·---------· ..... _ - ----·------------ .... --· -- .. ----····------ ----, 
\ RUN 10025 0=1.0000 LOOSE FIT T= 1500.LB-IN i 
i ANGULAR STIFFNESS - 49640. LB-IN/RAD/IN . 
: LINEAL STIFFNESS - 198560. LB/IN/IN 
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Fig. 4.33. Key and Hub Force Distribution, Loose Fit, 1500 lb-in 
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Fig. 4.34. Key and Hub Force Distribution, Loose Fit, 2250 lb-in 
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Fig. 4.35. Key and Hub Force Distribution, Loose Fit, 3000 lb-in 
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Fig. 4.36. Key and Hub Force Distribution, Loose Fit, 4500 lb-in 
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Fig. 4.37. Key and Hub Force Distribution, Loose Fit, 7500 lb-in 
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Fig. 4.38. Key and Hub Force Distribution, Loose Fit, 11250 lb-in 
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Fig. 4.39. Key and Hub Force Distribution, Loose Fit, 15000 lb-in 
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Fig. 4.40. Key and Hub Force Distribution, Loose Fit, 22500 lb-in 
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Fig. 4.41. Key and Hub Force Distribution, Loose Fit, 30000 lb-in 



101 

along the top surface of the key as the load is increased. No such load 

is present in Figures 4.30 through 4.41 (the loose case loading). This 

top surface loading, in fact, accounts for different stiffness models 

for the tight and loose case over a portion of the loading range as will 

be explained below. 

4.2.2.3 Static Stiffness Model. The analytic model suggested that 

a mathematical fit to the stiffness data represented in Figures 4.15, 16 

and 17 should be of the form 

k = a/[1+b ln(1/P)] + cP (4.34) 

There are three coefficients to be ~etermined in this equation, thus, a 

curve drawn using it can be made to pass through three data points. A 

procedure was developed to solve for the coefficients a, b, and c given 

three sets of k and P from the reduced finite element data. The results 

are 
98800 - 17.1P. 

{ 
1 + 0. 08461 n (1/P) 

k = 
0.46P + 272400. 9000::5P::560000 

for the tight fit cases, and 

k = 85800 4 52p 
1 + 0. 0771ln C1/P) - . 

100::5P::59000 

(4.35) 

(4.36) 

for the loose fit cases. It is interesting to note that the general 

equation given in (4.35) would not fit the tight data over the entire 

range while it did fit over the full range for the loose case. The 

difference can be explained by the difference in clearance on the top of 

the key between the two cases. For loads up to about 4500 lb-in in the 

tight case there is no appreciable reaction on top of the key. For the 

loose case there is no reaction except at the 30,000 lb-in load step. 
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To get a model for a general case (neither tight nor loose) the 

data from the 1.000 in diameter model was averaged for each load step. 

The resulting curve fit to this average is 

k J • 0. 6~~~~ (1/Pl 

lo. 46P + 272400, 

- 4.05P. 100~P~22500 

(4.37) 
22500~P~60000 

The curves defined by equations (4.35), (4.36) and (4.37) are drawn in 

Figure 4.42 superimposed over the data from the 1.000 in diameter load 

steps. In the fi9ure the upper curve is for the tight case, the lower 

curve is for the loose case, and the center curve fits the average data. 

The stiffness predicted from the finite element analysis seem 

reasonable, however, at best it is a two dimensional model that neglects 

end effects. Depending on the shape of the keyseat (milled or sled

runner, for instance) there will be some additional stiffening at the 

ends of the key if the key length is approximately the same as the 

keyseat length. 

4.2.3 Dynamic Model 

The derivation of the equations of motion for the keyed joint is 

similar to the derivation for the spur gear pair given in Chapter III 

with the exception of the condition when the key is not in contact with 

the hub. In fact, with a few changes in terms equations (3.15) and 

(3.17) apply directly to the keyed joint for the cases of contact on 

each side of the key (the keyed joint can be thought of as a gear pair 

with one external tooth and one internal tooth). During the period when 

the key is not in contact there will be relative motion between the hub 

and shaft that will produce a friction torque that opposes the motion. 
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With respect to Figure 4.43, summing the horizontal and vertical forces 

and the moments to zero gives 

-FT + F nsi n o: + !JF nCOS o: = 0 

-FR - iJF nsin oc + Fnccs o: = 0 

FTR - J..lFnr = 0 

Eliminating F" from equations {4.38) and {4.39) yields 

sin o: + l-'Ca:> o: 

ccs o: - IJSin o: 

which, in turn, can be solved for a, 

tan o: = 
1 - fJ [FR/FTJ 

[FR/FTJ - 1-J 

If we define tan~ = FR/F\ 

tan o: = 1 - fJ tan cjJ 
tan q. - v 

(4.38) 

{4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

With this definition of the angle a we can write the equations of 

motion for the hub and shaft during the period when the key is not in 

contact as 

= [r _ fJf'T 1 J 
2 R (sin o: + fJCGe o:) (4.44) 

The equations for the contact cases, as adapted from the spur gear pair 

are 

and 

I1e1 + [F(t) + G(t)Jr 

I ;ae 2 - [F ( t ) + G ( t ) Jr (4.45) 
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R 

Fig. 4.43. Friction Force on Hub, No Contact at Key 
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(4.46) 

Equations (4.44) along with equations (4.45) and (4.46) describe the 

motion of the keyed joint. As in the case of the spur gear pair, the 

forces F(t) and G(t) are defined as 

F(t) = k(x)·8 

and 

G(t) = DI81S 

( 4. 47) 

(4.48) 

The stiffness k(x) is derived from the finite element model described in 

the section above in the following manner. The stiffnesses for the 

tight and loose cases were averaged and then divided into the nominal 

shear force yielding a deflection, x. The results were then plotted as 

stiffness vs deflection and are shown in Figure 4.44. A curve fit to 

.~ the average data is shown in the figure and is 

[ 3. 184 ] 6 - 2. 584x (1 Q) ~ x ~ 0. 1 2. 981 n ( 1/ x) 

k(x) = (4.49) 
(1.~9X + 2.70). (10) 6 ~ 0.1 (X 

The damping coefficient, D, is defined exactly as it was for the spur 

gear pair. 



c 
.......... 
c 

.......... 
...0 

. 
>. 
Q) 

~ 

'+-
0 

..c 
0 
c 
L.. 
Q) 
0. 

{/] 
{/] 
Q) 

c 
'+-
'+-
-+"" 
(/) 

360000 

300000 

240000 

180000 

120000 

60000 
0.000 0.040 0.080 0.120 0.160 

Deflection per l~ch of Key, in/in 

Fig. 4.44. Key Stiffness vs. Deflection 

LEGEND 

+ TIGHT 

* LOOSE 

0.200 

........ 
0 
~ 



CHAPTER V 

SYSTEM MODEL 

5.1. Digital Simulation Program 

A general-purpose, dynamic simulation program for drive trains has 

been developed to assist in this study.·. The program is named TRAIN and 

consists of three main modules: A preprocessor, a processor, and a 

postprocessor (see Fig. 5.1). The particular drive-train to be studied 

is defined while in the preprocessor. Once this phase is complete, the 

program automatically moves into the solution phase in the processor. 

The output of the processor is written to a file that is read by the 

postprocessor. The user can get both printed and plotted data on the 

response of the drive-train while in the postprocessor. 

The user starts by building a system block diagram, interactively 

at the terminal, from a menu of predefined nodes and elements in any 

order that is desired. The user is then prompted to input the numerical 

constants that are used in the state equations for the elements that are 

to be used in the simulation. Next, the user is prompted to choose the 

type of external load conditions that are to be applied to the model. 

Finally, the user is prompted to define the start and run times and the 

solution time step for the simulation. The program then goes into the 

processing module. 

The simulation is accomplished by numerically integrating the state 

equations using a fourth-order Runge-Kutta procedure. For each time 
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step the relevant state equations are chosen from a subprogram in the 

order that was specified by the user when the model was created. As the 

solution proceeds, the values of the state variables are written to a 

file which will be read later by the postprocessor. 

The user may choose printed output, plotted output or both. After 

making a menu choice of one of these two, additional menus are presented 

to the user to further define the output desired. A small graphics 

library is included with the program for the plot output. Drivers are 

included for Tektronix 4014 and 4115 terminals. 

5.1.1. Preprocessor 

An action diagram of the preprocessor is shown in Fig. 5.2. 

Options are presented on the first menu in the preprocessor to define a 

completely new model, modify an existing model, or processes an existing 

model. 

5.1.1.1. Nodes and Elements. The real physical system is modeled 

by a lumped mass system. The user may choose to subdivide the physical 

system in any way. The lumped masses are concentrated at nodes that are 

connected by visco-elastic elements. Elements consist of shafts, 
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Fig. 5.2. Action Diagram of the Preprocessor 

couplings, gear pairs, etc. The nodes and elements are defined in 
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libraries (Appendix G and H, respectively). The procedure for adding a 

new element to the source code is given in Appendix I. 

Equations of state are written for each node type in terms of its 

state variables and the external torques on the node. A method similar 

to that used in the development of transfer matrices is used to dervive 

the external torques. Except at the beginning and ends of the train, 

each node is connected to two elements, one on the left and one on the 

right. The element to the right has the same sequence number as the 
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Fig. 5.3. Linear Shaft Element Definition 

node, while the one on the left has a sequence number that is one less. 

Thus, two torque equations are written for each element, one for use 

when considering the node on the left and one when considering the node 

on the right. An example, the linear shaft element, is shown and 

described in Fig. 5.3. The state variables are displacement and speed 

for the passive nodes. 

5.1.1.2. Physical Constants. The physical system constants are 

called R-constants in this program. Each node has some number of RN-

constants, while those associated with elements are RE-constants. The 

number and definition are given in the node or element definition in the 

libraries (Appendix G or H). Referring to Fig. 5.3, there are two RE

constants for the linear shaft, they are: (1) the shaft stiffness, ~' 

and (2) the internal damping coefficient, dp for the shaft (RE11 and 

RE~, respectively). 

5.1.1.3. External Loads. External loads can be applied to the 

drive-train at the two ends only. Generally speaking, the user has a 
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choice of no load, a steady load, or a time-varying load. Once one of 

these choices is made, the user is prompted to input further 

specifications as to magnitude and time parameters. 

5.1.1.4. Initial Conditions. Each state variable must be given an 

initial value to start the numerical integration. The user is prompted 

to give each state variable for each element an initial value. A 

default value of zero is used for all state variables. 

5.1.1.5. Run Conditions. The user is prompted to enter the start 

time and the stop time for the simulation as well as the integration 

step interval. Some trial and error may be necessary to find a step 

interval that results in a stable solution. 

5.1.2. Solution Processor 

The processor calls the subroutine RK4 (see Fig. 5.4(a)) which, in 

turn, invokes the function F. This function contains the state 

equations for the complete element library. RK4 is a fourth-order 

PROCESSOR 

Initialize 

REPEAT 

RK4 

Write to File20 

UNTIL Last Time Step 

(a) 

POSTPROCESSOR 

REPEAT 

Print Functions 

Plot Functions 

Quit 

UNTIL Done 

(b) 

Fig. 5.4. Action Diagram of (a) Processor, and (b) Postprocessor 
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Runge-Kutta numerical integration procedure. 

5.1.3. Postprocessor 

In the postprocessor (see Fig. 5.4(b)) it is possible to extract 

information about each state variable as a function of time or as a 

function of another state variable. In addition, information on one 

state variable relative to another or on the torque on any given element 

is available. This can either be printed out to a file or plotted to 

the terminal screen (if the user is logged on to a graphics terminal 

supported by TRAIN). 

5.2. Verification Models 

A series of verification problems have been devised and executed to 

provide assurance that the simulation provides correct answers to known 

problems. Generally speaking, only one feature of the program is 

verified at a time. 

J3 = 22.0 

Figure 5.5. Integration Method Verification Problem 
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5. 2 .1. Integration 

This problem utilizes passive node and linear elastic elements to 

solve a simple torsional problem. The problem is solved in Thomson 

(1981) and is defined in Figure 5.5. Using the Holzer method, the 

fundamental frequency for the system is found to be 19.68 hz, with a 

corresponding mode shape giving relative angular deflections of 1.0, 

0.2353, and -0.3449 radians, respectively, at each of the three disks. 

The input to TRAIN for this problem is given in Table 5.1, and the 

output is shown in Figure 5.6. As seen from Table 5.1, the system is 

given an initial displacement equivalent to the mode shape of the 

fundamental frequency. The expected response is a cosine function with 

amplitude equal to the initial displacement and period equal to 1/19.68 

s. 

5.2.2. Ideal Gear Pair 

This is a test of the ideal gear pair. It consists of a pair of 

gears only with no external torques and demonstrates the kinematic 

property of velocity ratio. The input is given in Table 5.2 and the 

output is shown in Figure 5.7. The expected result is that both initial 

speeds remain constant. 

5.2.3. Spur Gear Pair With Backlash 

This is a test of the gear model developed in Chapter III. It 

consists of the same pair of gears for which the perturbation and delta 

method solutions (see 3.2.4.) were developed. The input is given in 

Table 5.3 and the output is shown in Figure 5.8. The expected result is 

the response predicted by the perturbation and delta method solutions. 
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5.2.4. Keyed Joint 

This is a test of the keyed joint developed in Chapter IV. It 

consists of two nodes connected by a keyed joint element. 

given in Table 5.4 and the output is shown in Figure 5.9. 

result is a response similar to a spur gear with backlash. 

5.2.5. Comparison With Experimental Results 

The input is 

The expected 

A series of 27 runs of TRAIN have been made using the gear 

dimensions given in Gregory, et al. (1962). The experimental 

observations were made on a back-to-back gear test rig in order to show 

that large vibrations can occur in a pair of spur gears without any 

manufacturing errors and without any external excitation. The test 

gears (Figure 5.10) were 4-pitch, 20° pressure angle, 32 teeth, and had 

a 0.5 in face width. No information was given as to the gear materials, 

but from force and deflection information given it was deduced that they 

had a single pair mesh stiffness of 234500 lb/in. The tooth profile was 

modified to eliminate tooth interference under a load of 1700 lb/in of 

face width. This resulted in tip relief of 0.001 in. Since there is no 

way of modeling tip relief in TRAIN, only the results of loading at 425 

lb/in was simulated. 

Using a linear model, calculations of natural frequency for the 

gear pair can be made. When there are one pair of teeth in contact the 

natural frequency (in the TRAIN model) is 412Hz. During two-pair 

contact it is 553 Hz. The weighted average natural frequency is 510 Hz. 

We expect the nonlinear system to have a critical response somewhere in 

this range of frequencies and also at their harmonics and subharmonics. 
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The TRAIN input is given in Table 5.5. The results of the 27 runs 

of TRAIN are compared with the experimental results in Figure 5.11. The 

experimental results are the average peak-to-peak errors over a seven 

tooth interval. The TRAIN results are the average peak-to-peak errors 

over the time· period from the first peak to the last full peak on the 

response plots. The TRAIN results are indicated by a continuous curve 

through points marked with "+". The experimental results are shown in 

two curves. The curve through the points marked "X 11 are for increasing 

velocity and the curve through the points marked "o" are for decreasing 

velocity. A jump, which is characteristic of a nonlinear system, is 

exhibited at 447 teeth/s on increasing speed and at 380 teeth/s on 

decreasing speed. In the TRAIN simulation it is not possible to get the 

response while the speed is changing. Each response is determined at a 

constant speed and it will be the same regardless of the speed of a 

previous run. In the experiment, tooth separation occurred at all 

speeds above 447 teeth/s for decreasing speed and at 380 teeth/s for 

increasing speed. In the TRAIN results tooth separation first occurred 

at 460 teeth/s and continued for increasing speed up to about 500 

teeth/s. 

Examples of response curves are shown in Figures 5.12, 5.13, and 

5.14. The difference between the angular displacements of the gears 

(transmission error) is plotted as a function of time for a given mesh 

frequency. The square wave shown at the top of each plot is the number 

of pairs of teeth in contact, either two or one (number of pair of teeth 

in contact scale is on the right at the top). The horizontal line at 

the ordinate value of 0.00133 rad is the threshold of contact. When the 

relative displacement drops below this line there is a loss of contact 



TABLE 5.1 

INPUT FOR VERIFICATION OF 
INTEGRATION METHOD 

Number of nodes: 3 

Node and element description: 
Node 1 - NOl, Passive 
Elem 1 Ell, Shaft 
Node 2 NOl, Passive 
Elem 2 Ell, Shaft 
Node 3 NOl, Passive 

R-constants: 
Node 1 RN11 = 5. 0 

RN12 = 0. 0 
El em 1 RE11 = 100000 

RE12 = 0.0 
Node 2 RN21 = 11.0 

RN22 = 0. 0 
Elem 2 RE~ = 200000 

RE22 = 0.0 
Node 3 RN31 = 22.0 

RN32 = 0. 0 

Initial Conditions: 
Node 1 X11 = 0.1000 

X12 = 0. 0 
Node 2 X21 = 0. 02353 

x22 = 0. 0 
Node 3 X31 = -0.03449 

X32 = 0. 0 

No external torques 

Run Conditions: 
Time step = 0.0002 
Start time = 0.0 
Run length = 0.0508 

117 



0.100 

~· 

1 - - ~ ~I 1:)_, 0 

f 
0 0.000 
1 

~ 
i:l. 
c: 
E 
m 
E ·c:--t' -,1:)_;.~ 

I 

r 
~ 

-.100 
0.000 

.............. 

'· \. 
\ 

\ 

'\ 
\ 

' 
.. / 

I 

\\ 
I 

I .. 
\ 
\ ., 

I 
i 

/ 
I 

\ 
/ 

\ 
/ 

'• 

l \ 
I 
I 

1/ 

'I 

) 

~. 

'• ., -
/ \ 

/ '\ ,Jl 
I 

·' \ 
) 

/ 
/ 

./ 

..... · 
0.0127 0.020 .0254 • 0381 

TIME., :3EC. 

UERF01***RUN 1***28-JAN-88 

Fig. 5c6. Integration Verification Output 

( 

·' l 

) 
I 
( 
i 

..... 

•' ·' 
i 

...... 
/ 

... ....... -. ~-

i 

I 

-
'. 0508 0.060 

1-' 
1-' 
CD 



TABLE 5.2 

INPUT FOR VERIFICATION OF 
IDEAL GEAR PAIR 

Number of nodes: 2 

Node and element description: 
Node 1 - N01, Passive 
Elem 1 - EL3, Ideal Gear Pair 
Node 2 - N01, Passive 

R-constants: 
Node 1 RN 11 = 7. 5E-03 

RN 12 = 0. 0 
El em 1 RE 11 = 18E06 

RE 12 = 1. 6445 
RE 13 = 3. 2890 

Node 2 RN~ = 15E-03 
RN22 = 0. 0 

Initial Conditions: 
Node 1 X11 = 0.0 

X12 = 10.0 
Node 2 X21 = 0.0 

x22 = 10.0 

No external torques 

Run Conditions: 
Time step = 0.0002 
Start time = 0.0 
Run length = 0.1 
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TABLE 5.3 

INPUT FOR VERIFICATION OF SPUR 
GEAR PAIR WITH BACKLASH 

Number of nodes: 2 

Node and element description: 
Node 1 - N01, Passive 
Elem 1 - EL3, Spur Gear Pair with Backlash 
Node 2 - N01, Passive 

R-constants: 
Node 1 RN 11 = 7. 537E-03 

RN 12 = 0. 0 
Elem 1 RE 11 = 2.93E06 . 

RE 12 = 1. 6445 
RE13 = 1. 6445 
RE 14 = 28 
RE 15 = 1 . 6380 
RE16 = 0. 1838 
RE 17 = 0.001 

Node 2 RN21 = 10.082 
RN22 = 0. 0 

Initial Conditions: 
Node 1 X11 = 0.0 

X12 = 10.0 
Node 2 X21 = 0.0 

x22 = 0.0 

No external torques 

Run Conditions: 
Time step = S.OE-07 
Start time = 0.0 
Run length = 2.0E-04 
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TABLE 5.4 

INPUT FOR VERIFICATION OF 
KEYED JOINT 

Number of nodes: 2 

Node and element description: 
Node 1 - N01, Passive 
Elem 1 - EL2, Keyed Joint 
Node 2 - N01, Passive 

R-constants: 
Node 1 RN 11 = 7.537E-03 

RN 12 = 0. 0 
Elem 1 RE 11 = 2.6312 

RE 12 = 0. 001 
RE 13 = 0. 50 
RE 14 = 0.3491 
RE 15 = 4. 000 
RE 16 = -1 . 4562 
RE 17 = 2. 03E06 

Node 2 RN21 = 10.082 
RN22 = 0.0 

Initial Conditions: 
Node 1 X11 = 0.0 

X12 = 10.0 
Node 2 X21 = 0.0 

X22 = 0.0 

No external torques 

Run Conditions: 
Time step = S.OE-07 
Start time = 0.0 
Run length = 3.0E-04 
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TABLE 5.5 

INPUT FOR VERIFICATION OF GREGORY, 
HARRIS AND MUNRO TEST 

Number of nodes: 4 

Node and element description: 
Node 1 - N01, Passive 
Elem 1 - Ell, Shaft 
Node 2 - N01, Passive 
Elem 2 - EL3, Spur Gear 
Node 3 - N01, Passive 
Elem 3 - Ell, Shaft 
Node 4 - N01, Passive 

R-constants: 
Node 1 RN,, = 100.0 

RN,2 = 0.0 
El em 1 RE,, = 32000 

RE,2 = 0. 0 
Node 2 RN2, = 0. 987 

RN22 = 0.0 
El em 2 RE2, = 234500 

RE22 = 3.7588 
RE23 = 3.7588 
RE24 = 32 
RE25 = 1. 6676 
RE26 = 0.1637 
RE27 = 0. 005 

Node 3 RN3, = 0. 987 
RN32 = 0. 0 

El em 3 RE3, = 32000 
RE32 = 0. 0 

Node 4 RN4 , = 100.0 
RN42 = 0. 0 

Initial Conditions: 
Node 1 X11 = -0.187847 

X12 = varies 
Node 2 x~ = -0.212810 

X22 = varies 
Node 3 x3 , = -0.214283 

X32 = varies 
Node 4 X4, = -0.239246 

X42 = varies 

External torques: 

Pair with Backlash 

Node 1 Constant velocity 
Node 4 798.8 
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TABLE 5.5 (Continued) 

Run Conditions: 
Time step = 8.0E-06 
Start time = 0.0 
Run length = 0.0200 

between the teeth. 
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The typical response for speeds below the speed where tooth contact 

is first lost is shown in Figure 5.12. The tooth-mesh frequency for 

this plot is 285 teeth/s. The predominate response is once per tooth, 

but there is also a twice per tooth (570Hz) response as well. This 

form of once- and twice per tooth response continues as speed increases 

until the critical speed of 460 teeth/s is reached. The response at a 

speed of 485 teeth/s is shown in Figure 5.13. Here there is a once per 

tooth response with growing amplitude. When the amplitude reaches the 

point where tooth separation occurs the response frequency changes and 

the amplitude grows more rapidly until the effect of the damping due to 

impact begins to return the amplitude to lower levels. Figure 5.14 

shows a typical response at speeds above the critical range of 460 to 

500 teeth/s. Here the rsponse is uniformly once per tooth with a 

constant amplitude. 

The TRAIN simulation agrees well with the experimental results 

except in the prediction of the magnitude of the jump on decreasing 

speed. The experiment showed a maximum peak-to-peak transmission error 

of about 0.00325 inch at a mesh frequency of about 385 teeth/s, while 

the simulation predicts a maximum of 0.0022 inch at 460 teeth/s. On the 
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other hand, a system such as the one modeled would be designed to avoid 

speeds in the critical range. Outside of this range TRAIN will do a 

good job of predicting the dynamic loads on the system elements. 



CHAPT VI 

OTHER ELEMENT MODELS 

6.1. Shaft Model 

Shafts are modeled as massless visco-elastic elements. The stiff

ness is assumed to be constant over the span and internal damping is 

provided for. If a shaft has significant mass, it is accounted for in 

the nodes to which the shaft is attached. The shaft element is Ell and 

is further described in Appendix H. 

6.2. Helical Gear Pair 

Helical gears are modeled in the same way as spur gears (see 

Chapter III) except for the way in which tooth mesh stiffness is 

determined. The tooth pair stiffness for spur gears is very nearly a 

binary function, i.e., the length of contact is either one or two times 

the face width (for gears with a contact ratio of two or less), the 

number being determined by the position of the contact point along the 

line of action. Because of the helical shape of the teeth, there is not 

an abrupt change in the length of contact on helical gears. 

The contact ratio for a helical gear pair is the sum of two compo

nents: profile contact ratio, which is defined in the same way as it is 

for spur gears and is determined for transverse sections; and face, or 

axial, contact ratio. The face contact ratio is the number of base 
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pitches in the product of face width and the tangent of the base helix 

angle. The length of contact for a pair of helical gears is a function 

of the contact ratios, the base pitch and the base helix angle and does 

not vary as dramatically with tooth contact position as it does with 

spur gears. In fact, it can be shown that it is-theoretically possible 

for the length of contact to be a constant if the face contact ratio is 

an integer. 

The length of contact (the total length of the theoretical lines of 

contact between teeth in mesh) is given by Colbourne (1987) as 

Lc = P1b[(nc€ + 1)(mc- f - 0.5nc€) 

- ( nF€ + 1 )(mF - E - 0. 5nF€) 

-(np€ + 1)(mp- E- 0.5np€)]/sin~b (6.1) 

where pfu, me, mF, mP, and ~b are the transverse base pitch, total contact 

ratio, face contact ratio, profile contact ratio, and base helix angle 

respectively; and 

nc€ = int(mc - f) 



nF~: = int(mF- E) 

np~: in t ( mP E) 
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and the operator int(f) is the largest integer which is less than or 

equal to f. The value of Lc is always a minimum when the parameter E is 

zero and a contact line passes through the upper corner T, 0 of the 

region of contact (see Figure 6.1.). And the value of Lc is a maximum 

when E is equal to [mF- int(mF)], and a contact line passes through the 

upper corner T,F. 

The mesh stiffness of the gear pair is the product of the length of 

contact and the stiffness per unit length which is generally taken to be 

E/17.6, where E is Young's modulus for the gear material (Quandt, 1986). 

The helical gear-pair element is described in Appendix H. 



CHAPTER VII 

SIMULATION OF A MULTI

CLEARANCE TRAIN 

7.1. Description of System 

A system similar to the experimental set-up of Gregory, Harris and 

Munro (1962) was chosen for simulational analysis. In fact, it is the 

same system that is described and simulated in section 5.2.5 with an. 

additional gear pair added so that there are two elements with clear

ances. The second gear pair is identical to the first pair and is 

connected to the output of the first pair with a moderately stiff shaft. 

798.8 lb.-in. ~ 

N03 N04 

Fig. 7.1. Multi-Clearance System Diagram 
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TABLE 7.I 

INPUT FOR MUTI-CLEARANCE 
SIMULATION MODEL 

Number of nodes: 6 

Node and element description: 
Node I - NOI, Passive 
Elem I - ELI, Shaft 
Node 2 - NOI, Passive 
Elem 2 - EL2, Spur Gear Pair w/Backlash 
Node 3 - NOI, Passive 
Elem 3 - ELI, Shaft 
Node 4 - NOI, Passive 
Elem 4 - EL2, Spur Gear Pair w/Backlash 
Node 5 - NOI, Passive· 
Elem 5 - ELI, Shaft 
Node 6 - NOI, Passive 

R-constants: 
Node 1 

Elem 1 

Node 2 

Elem 2 

Node 3 

Elem 3 

Node 4 

Elem 4 

Node 5 

Elem 5 

Node 6 

RN,, = 100.0 
RN, 2 = 0.0 
RE 1, = 50000 
RE,2 = 0. 0 
RN2, = 0.931 
RN22 = 0. 0 
RE21 = 500000 
RE22 = 3.7588 
RE23 = 3. 7588 
RE24 = 32 
RE25 = 1. 6676 
RE26 = 0 .I637 
RE27 = 0. 005 
RN3 , = 0. 931 
RN32 = 0.0 
RE3, = 500000 
RE32 = 0. 0 
RN4 , = 0. 931 
RN42 = 0. 0 
RE 4, = 500000 
RE42 = 3.7588 
RE43 = 3. 7588 
RE44 = 32 
RE45 = 1. 6676 
RE 46 = 0.1637 
RE47 = 0. 005 
RN5, = 0. 931 
RN52 = 0. 0 
RE5, = 50000 
RE52 = 0. 0 
RN6 , = 100.0 

136 



TABLE 7.1 (Continued) 

RN62 = 0.0 

Initial Conditions: 
Node 1 X11 = -0.196834 

X12 = varies 
Node 2 X21 = -0.212810 

X22 = varies 
Node 3 X31 = -0.214203 

X32 = varies 
Node 4 X41 = -0.215801 

X42 = varies 
Node 5 X51 = -0.217194 

X52 = varies 
Node 6 X61 = -0.233170 

X62 = varies 

External torques: 
Node 1 Constant velocity 
Node 4 798.8 

Run Conditions: 
Time step = 2.5E-05 
Start time = 0.0 
Run length = 0.0200 

A diagram of the system is shown in Figure 7.1 and the TRAIN input is 

given in Table 7.1. 
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The two gear pairs are connected, through very compliant shafts, to 

large inertias that form the two end nodes of the system. The input 

node rotates at constant velocity, regardless of the torque applied to 

it. The other end node has a load torque of 798.8 lb.-in. applied to it 

which causes an initial wind-up of the system that accounts for the 

nominal, or static, transmission error at each gear mesh. Thus, 

although the initial angular position of each node is different, the 

initial angular velocity of each node is the same for each run of the 
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simulation. 

Separate analysis of the system as linear elements without backlash 

indicates that the system natural frequencies are 2.67, 26.2, 118, 621, 

and 632 Hz when both sets of gears are in single-pair contact. 

7.2. Simulation Conditions 

A series of 23 runs were made, varying the initial velocity for 

each one. The velocity is stated in terms of tooth mesh frequency which 

is directly related to the angular velocity and the number of teeth on a 

given gear. In this simulation all gears have the same number of teeth 

(32). The mesh frequency was varied from 260 to 640 teeth/sec (51.051 

to 125.664 rad/sec). For each run, the relative displacement of each 

gear pair and the torque on the connecting shaft was plotted. 

The relative displacement between a pair of kinematically perfect, 

rigid gears should remain zero as the gears turn. However, even gears 

that have no profile error will, because they are not rigid and because 

they have a variable length of contact, have a non-zero relative 

displacement. The relative displacement between a pair of gears has 

been defined as transmission error. Thus, any deviation of the position 

of a gear in mesh with another gear from the kinematically correct 

position is a measure of transmission error. In addition to error due 

to deformation and changes in length of cohtact, profile and other 

manufacturing errors are the cause of transmission error in gears. If 

there were no relative motion between the gears the torque on the 

connecting shaft would remain constant and be equal in magnitude to the 

load torque on the system of 798.8 lb.-in. 
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7.3. Simulation Results 

The transmission error for each pair and the connecting shaft 

torque for a mesh frequency of 260 teeth/sec. are shown in Figures 7.2, 

7.3 and 7.4, respectively. The plots of transmission error also contain 

plots of the number of pairs of teeth in contact that runs along the top 

of the transmission error plot. Notice that the scale (which is 

arbitrary) for the number of pairs in contact increases toward the 

bottom of the figure. The line which indicates the limit of contact 

between the gears is also shown on the transmission error plots and is 

labeled on the right-hand side as eb. When the transmission error 

(relative displacement) falls below this line the gears lose contact. 

When the curve recrosses the line there is an impact between the gears. 

As can be seen, at a mesh frequency of 260 teeth/sec. there is no loss 

of contact for either gear pair. 

The response for both sets of gears is virtually identical, the 

only difference is a result of the fact that the first pair (Fig. 7.2) 

is initially in two-pair contact while the second pair (Fig. 7.3) is 

initially in single-pair contact. However, the change from one- to two

pair contact occurs very soon after the start of the simulation. 

As the mesh frequency is increased (by speeding up the system) the 

gears remain in contact until the 330-340 teeth/sec. range. From this 

speed until about 480 teeth/sec. there is some loss of contact between 

mating gears. Figure 7.5 shows the response of the first pair at a mesh 

frequency of 400 teeth/sec. Notice that there is loss of contact on 

almost every cycle of transmission error. This has a damping effect on 

the motion which prevents even larger swings in relative displacement. 
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A comparison between the response of the first gear pair in this 

simulation (labeled as TWO CLEAR) with the only gear pair in the simu

lation of Section 5.2.5 (labeled as G, H & M) is shown in Figure 7.6. 

Here the peak-to-peak change in transmission error is plotted as a 

function of mesh frequency. There is no appreciable change in the peak

to-peak transmission error when a second gear pair (and a second 

clearance) is added to the system. However, it must be pointed out 

that, in this case,the second set had identical characteristics to the 

first and, its one-pair to two-pair change function was almost in phase 

with the first gear pair. Also shown in Figure 7.6 are the regions of 

continuous contact and intermittent contact. 

The transmission error in the gears leads to torsional variations 

in the other elements of the drive system. The maximum, minimum and 

range torques on the shaft connecting the two gears is shown as a 

function of mesh frequency in Figure 7.7. Note that the nominal torque 

is the load torque of 798.8 lb.-in. 

Finally, from the analysis of the linearized system without back

lash, we would expect to find the greatest transmission error in the 

600-640 teeth/sec. range. This is the case, but the response in the 

340-380 teeth/sec. range was not predicted. This happens to be about 

three times the 118 Hz. frequency and might be explained as a response 

to that system frequency. It is also nearly one-half the frequency of 

the predominant response frequency and might be related to it. 
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CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS 

8.1. Summary 

The work described herein concerns a) the development of a general

purpose, interactive simulation program with graphical interface, b) the 

development of realistic, nonlinear mechanical elements (particularly 

the keyed joint), and c) the use of the program to simulate various 

mechanical systems. 

Although not described in detail, the simulation program TRAIN 

(which is described in Chapter V) is a central part of the work. The 

design of the preprocessor, with its ability to accept any sequential 

arrangement of elements, and the graphic postprocessor utilize 

distinctive programming techniques that were developed by the author. 

The two major mechanical elements developed are the spur/helical 

gear pair with backlash and the keyed joint. They are described in 

Chapters III and IV, respectively. The gear pair is based on the 

earlier work of Yang and Sun (1985) with additions in the area of change 

of tooth stiffness with position. The development of the keyed joint 

model is entirely new. The use of finite element modeling was very 

helpful in the development. 

The use and results from TRAIN are found in Chapters V and VII. In 

Chapter V the various verification models are described and results are 
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given. Chapter VII is a description of a multi-clearance model and the 

results obtained when the system was simulated using TRAIN. 

8.2. Conclusions 

When the work was started, it was not at all clear that the user 

interface that was desired for the simulation program could be realized. 

Now that the goal is met, we can conclude that a simulation preprocessor 

that allows the user to build a model interactively in block diagram 

fashion without explicitly writing any system equations is feasible and 

desireable. 

Repeated use of TRAIN by the author has shown it to be a versatile 

program useful for both transient and steady-state analysis of nonlinear 

systems. 

A rotary, as opposed to an equivalent rectilinear, model is 

feasible and makes the interpretation of results easier. 

A keyed joint can, and should, be modeled as a combination of hub, 

key and shaft components separated by clearances. 

A method has been developed for the study of systems with multiple 

clearances although that has not been done to any extent in this work. 

8.3. Recommendations 

The recommendations made all relate to further work, and they are: 

1. Add the ability to specify nonstandard tooth profiles to the spur 

and helical gear models. This will allow a more thorough 

comparison with the published work of Gregory, et al. (1962). 

2. Conduct physical experiments to verify the keyed joint model 

predictions. 
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3. Develop models of other drive train elements such as worm gears. 

4. Port the program to a microcomputer environment, making 

improvements in the user interface and the graphic output in the 

process. 

5. Develop off-line programs that take as interactive input the 

user's description of system elements and produce as output the 

required constants for running TRAIN. 
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APPENDIX A 

TOOTH MESH CONTACT ZONES 

When a tooth first comes into contact with a tooth on the mating 

gear it will be in a zone of two-pair contact. Between that instant and 

the time when it ceases to make contact with the mating gear it will go 

through a zone of single-pair contact. The angle from the point of 

initial contact to the beginning of single-pair contact is 

2n(mp-1)/N, while the angle from the point of initial contact to the 

end of single-pair contact is 2n/N; where mp is the contact ratio and N 

is the nunber of teeth on the gear. The width of the single-pair 

contact zone is 2n(2-mp)/N, 1 ~ mp ~ 2. 

These angles and other basic gear relationships are shown on Figure 

A.l. In this figure, the line marked "A" represents the beginning of 

" contact for a pair of teeth. "P" is the point at which the teeth pass 

through the pitch point, and "B" is the end of contact for the pair. 

The angle, a., is the angle of approach. The nl.l11ber of teeth in contact 

is a periodic function with period 2n/N, but the angular displacement of 

a gear ranges between 0 and 2n. 

The value of c in equations 3.18 and 3.19 is found by the following 

procedure. 

Let n = INT[ Z~N] (A. 1) 

where e is the rotational displacement of the gear, and N is the nll11ber 

of teeth. Then, let 8' = e- n(2n/N). Now, several boundaries can be 
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defined. They are 

8' 1 lT( 4mp - 9) 

8' -a.- rr/2N 2 

8' 8 1 + 2rr/N 3 1 

84 =. 82 + 2rr/N 

8 1 8' + 2 rr /N 5 3 
8 I 8 I + 2 TT /N 
6 4 

- a. 

The following algorithm is used to define c. 

~ 

0 
0 -1: 
0 

<.) 

.~ 2 

.t:::. 
~ 
4,) 

~1 
...... 
0 
I... 0 
<ll 

.!:1 
E 
::J 
z 

-

-

If 81 < 8' then 1 

c = 2 

Else if 8' ~ 8' < 81 then 1 2 

c = 1 

A p 
I 

I p 

I (m - 1)p p 
a. 

I 
p/4 

~p p 

a + P 

--o--+ 

B 

mpP 

(m -p 1)p 

p 

lp .. ,. 
3p/4 - a 

(4m 
p - 1)p/4 

Gear Rotation Angle 

Fig. A.l. Number of Teeth in Contact 

153 

(A. 2) 
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Else if 8' 2 ~ 8' < 83 then 

c == 2 

Else if 8' 3 ~ 8' < 84 then 

c = 1 

Else if 8' 4 ~ 8' < 85 then 

c = 2 

Else if 8, 
5 ~ 8' < 86 then 

c == 1 

Else 

c = 2 



APPENDIX B 

GEAR TOOTH DE FLECTION ANALYSIS 

The following method was used to predict tooth deflection using the 

Timoshenko and Baud tapered beam. 

First, determine L, h0 and 8 for the tooth (see Figure 3.4 and 

equation (3.10)) as follows: 

1. Establish a cartesian coordinate system with origin at the gear 

center and the x-axis coincident with the centerline of a 

tooth. 

2. Define the fall owing points on the tooth profile: P, at the 

pitch circle; Q, at the addendt.m circle (tip). 

3. Pass a 1 ine through the points P and Q. 

4. Define the intersection of this line with the x-axis as point 

R, and with the dedendum circle as point S. 

5. Then 

L = XR - XS 

h0 = 2Y S 

8 = tan- 1[(Yp- YQ)/(XQ- Xp)] 

( B. 1) 

( B. 2) 

( B. 3) 

Next, determine the distance fran the vertex (R) to the point of 

application of the load, a. 

1. With respect to the coordinate system defined above, let the 

point on the tooth profile where the load is applied be C. 

Then , if 
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R c = d i s t an ce f rom 0 to C 

tc = arc tooth thickness at C 

o.c =angle subtended by half tooth thickness at C 

¢c = involute pressure angle at C 

2. The distance, a, is 

a = XR - Rccoso.c 

where 

tc 1T 
ZR(= ZN + inv¢ - inv¢c 

¢ = gear pressure angle 

N = n unber of teeth on gear 

R8 = base circle radius 
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(B. 4) 

(B. 5) 

(B. 6) 

(B. 7) 

Finally, derive the rotation angle, e, and contact point radius, 

Rc, as a function of normalized distance along the line of action. 

1. The independent variable is dn. It is zero at the first point 

of contact, A, and is one at the end of contact, B. Thus, 

0 ~ d ~ 1. 
n 

2. The absolute distance along the 1 ine of action is d. It is 

related to dn by 

d = dnZ - u 1 (B. 8) 



thus , 

- u1 ~ d ~ u 2 

where 

z = u1 + u2 

and is the 1 ength of action. 

15 7 

(B. 9) 

3. The 1 ine fran the center of the gear to the point P on the 

tooth profile is the reference line for measurtng rotation 

angles. The rotation angle, 8 ,is zero when the pair of teeth 

first contact. Thus, 0 ~ 8 ~ a 1 + a1 

4. Let a be the angle from the line of centers to the gear tooth 

reference 1 ine, then 

a = a1 - 8 

and 

a = -d/RB 

(B. 1 0) 

(B. 11) 

then, substituting (8.11) into (B.10) and solving for 8, gives 

8 = a1 + d/RB ( B. 12) 

5. Let the pressure angle of the contact point be ~C' then 
'-1 

~C tan (tan~ - a) (B.13) 

(B. 14) 



APPENDIX C 

PERTURBATION SOLUTION TO 
IMPACT EQUATION 

With reference to equations (3.15), let 

then 

and 

X = Rb 1e1/b- Rb 2e2/b 

Substituting equations (3.15) into (C.3), 

Forth~ conditions 

F(t) = kxb 

G(t) = oxxb 2 

where k and Dare constant, and 

we have 

Now, 1 et 

and 

- R 2 R 2 
X + Db(~ + ~ 2 )XX 

1 2 

R 2 R 2 
w 2 = k(~ + ~) 

0 Jl J2 

t = w t 
0 
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0 

(C .1) 

(c. 2) 

(C. 3) 

(C. 5) 

(c. 6) 

(C. 7) 
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Then we can rewrite equation (C.5) as 
.. 2· 2 
X + Dbw XX/k + w X ~ 0 

0 0 ( c . 8) 

or, changing independent variables from t to T, 

2X" + Dbw 3X'X/k + w 2x = 0 wo 0 0 ( c . 9) 

which, in turn, can be rewritten as 

Ow 
X" + X = - T X'X (C .10) 

If we 1 et -Ow /k = e: we have 
0 ' 

X" + X = e:X'X (C.ll) 

Using the Lindstedt-Poincare• method, we seek a periodic solution of 

equation (C.ll). Let 

T = WT 

then we have 

w2X" + e:wX'X +X 0 

where 

X ( T) X 0 ( T) + EX 1 ( T) 2 + E X2(T) + ••• 

and 
2 W = w0 + EW1 + E w2 + ••• 

For initial conditions, take 

Then 

and 

X0 (0) = 0, X~(O) = V 

X.(T + 21T) = X.(T) 
1 1 

X.(O) = 0, X~(O) = 0; 
1 1 

x• x· 
0 

+ EX' 1 
+ 2x, 

E 2 

X" X" 
0 

+ EX II 

1 
+ 2X" E 2 

1,2,3, ..• 

+ ... 

+ ... 

(c. 12) 

(C .13) 

(C .14) 

(C.15) 
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Substituting these into equation (C.13) gives 

2 
+ e: x2 + ••• = 0 ( c . 16) 

Substituting for the w terms 

+ 2 2X" 
E: wo 2 + 

2 
+ e: x2 + ••• 0 (C.l7) 

Setting the sum of the terms with like powers of e: equal to zero yields, 

0 
E : w 2X" 

0 0 
+ X 

0 
0 (C.18) 

1 . 2 X" + Xl= -2wowl x; - w0X 0X~ (C.19) E: (1}0 1 

2 2X" + Xz= ~(i+ 2w w )X" - 2w w X" E 00o 2 1 0 2 0 0 1 1 

( c . 20) 

We will find solutions, in turn, for equations (C.18), (C.19) and 

(C.20). Starting with (C.18) 



Let X0 = V sinT, X~ V cosT, if w~ 1 

then X" = -V sinT 
0 
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Using the results from the solution of (C.l8), we proceed to (C.l9), 

where we have 

Xl + X1= 2w1 V sinT - v2sinTcosT 

= 2w1 VsinT - 0.5V 2sin2T 

To remove the secular terms from (C.21), let w1- 0, then 

Xl + X1= -0.5V ~in2T 

which has the solution 

X1 = -(V2/3)sinT + (V2/6)sin2T 

Differentiating twice gives 
2 2 . 

Xi -(V /3)cosT + (V /3)cos2T 

Xl (V2/3)sinT - (2V2/3)sin2T 

Substituting the above into (C.20) we have 

X2 + x2 = 2w2VsinT- (V3/6)[-0.5 sinT- 2 sin2T + 1.5 sin 3T] 

To remove the secular terms, let 

2w2V + v3112 = 0 

solving for w2, w2 = -v 2/24 

Now, equation (C.26) becomes 

Xz + X2= (V3/12) (4 sin2T - 3 sin3T) 

The solution for this equation is 

x2 = (V2/288) (37 sinT - 32 sin2T + 9 sin3T) 

Substituting into equation (C.14}, we have the total solution, 

X(T) = V sinT + E(V2/6)(-2 sinT + sin2T) 

where 

+ E2(V2/288) (37 sinT - 32 sin2T + 9 sin3T) 

+ ••• 

T = WT and T = W t 
00 

(C.21) 

(C.22) 

(C. 23) 

(C.24) 

(C.25) 

(C. 26) 

(C. 27) 

(C • 28) 

(C .29) 

( c . 30) 



and 

but, 

Thus, 

or 

w 

V = ___ 6 (._a_._) __ _ 

£ 2 
Rb1 

bw k{-J- + 
1 

c11w 

2 
Rb2 
J ) 

2 

w3 - w2 + c2 = 0 

This equation can have one of three possible sets of roots, 1) 2 
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(C.31) 

positive, real; 1 negative, real, 2) 1 positive; 2 imaginary, or 3) 1 

negative; 2 imaginary. The equation is of the form 

x\ bX 2+ ex + d = o 
where b = -1, c = 0, and d = c2• 

Let x = y + 1/3, then \ve have 

y3 + py + q = 0 

where p = -1/3, and q = c2 -2127. 

Now let y = z + li(9Z), then we have 

z6 + qz 3 - p3127 = o 

Let 

then 

3 z = -ql2 + !R 

The roots of equation (C.31) are 

w1 Z 1 - 1 I ( 9 Z 1) + 1/3 

w2 z 2 - 1 1 ( 9 z 2) + 1 13 

w3 z3 - 11(9Z3) + 113 
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Now, using the nuneric values of Appendix E, we can evaluate c1, c2 and 

the other parameters to find the wi and the solution X(T). 

F irs t , we have 

and 

The numerical values are 

~(o) = 16.445 in/s 

b 0.001 in 

k 18.03 x 106 lb/in 

R 2 R 2 
(-£l + b2) 359.082 in/lb/s 2 

J1 J2 

Substituting into (C.32) and (C.33), we have c1 = 0.2044 and c2 

0.0017405. 

The va1ue for c2 is quite small compared with the 2/27 term in the 

definition of q, above. However, solving for q, we have 

q = 0.0017405 - 0.07407 = -0.072334 

R = -(1/27) 2 + (-0.072334)/4 

= -0.0000637 

and 1R = ±0. 0079816i 

z3 = o.o36167 + o.0079816i 

= 0.0079816(4.5313 + ; ) 

= 0.0370373(cosl2.445° + i sinl2.445°) 

The roots of Z are 

(C.32) 

(C.33) 



z1 = o.33246 + 0.02411; 

z2 = -0.18711 + o.27586i 

z3 = -0.14535 - o.29997i 

Substituting into the equations for w. gives 
1 

w1 = (0.33246)2 + 0.33333 = 0.99825 

w2 = -(0.18711)2 + 0.33333 = -0.04089 

w3 = -(0.14535)2 + 0.33333 = 0.04263 

Taking the positive values, we have 

v c ; {0.2044/0.99825 = 0.2048 
= 1 w = 0.2044/0~04263 = 4.7947 
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We choose the value of w closest to 1 since, if c2 = 0, that would be 

the solution. Since c2 is very small, we expect a solution for w n-ear 

unity. Then w = 0.99825 and V = 0.2048. Substituting into equation 

(C.30) we have 

X(t) = 0.2048 sin 80322t 

+ 0.004009(-2 sin 80322t + sin 160644t) 

but o(t) = bx(t), so the final solution to equation (3.28) is 

o(t) = 0.0001968 sin 80322t + 4.0009(10)-6 sin 160644t 

This equation is plotted in Figure 3.11. 



APPENOI X 0 

DE LT A SOL liT I ON 

The Delta i~ethod (Thomson, 1981) is a graphical method for solving 

the equation 

x + f (x ,x , t ) = o 

For the case of impacting gear teeth, the equation to be solved is 

x + ce:Oxx + ce:Kx = o 

If we 1 et 

and 

t = m 

y = dx/dt = x/rl 

o = ce:O xx/r2 2 

then s"ubstitution of equations (0.3) and (0.5) into (0.6) yields 

o = onxy/K 

(0. 1) 

(D. 2) 

(0. 3) 

(D. 4) 

(0. 5) 

(0. 6) 

(D. 7) 

Now, substituting equations (0.3), (0.4), (0.5) and (0.7) into (0.2), we 

have 

which can be further simplified to 

dy/dx = - (x +o )/y (0. 8) 

Although o is a function of y, x, and t, for small changes in the 

variables it can be assuned constant. In this case, equation (0.8) can 

integrated to give 
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y P(x,y) 

P'{x,y) 

Fig. D.l. Graphical Interpretation of Equation (0.9) 

2 
r (0. 9) 

Equation (0.9) describes a circle of radius r (the constant of 

integration) with center at x = -6 and y = 0. Thus, for small 

incrsnents ofT, the solution corresp:Jnds to a small arc of a circle as 

shown in Figure 0.1. 

Although originally described as a graphical procedure, the 

successive determination of x and y for changes in T can be calculated 

numerically. It can be shown (Thomson, 1981) that d8 = dx/y = dT, 
II 

where d8 is the angular rotation of the line CP in figure 0.1. 
\ 

Furthermore, for small angles, we can represent the arc PP' by a 

straight line of length rd8. The rde is the hypotenus of the right 

triangle whose vertical and horizontal sides are dy and dx, 

respectively. As seen in figure 0.1, the angle between dy 

and rd8 is 8- d8/2, where 8 is the angle that the line CP makes with 

the x-axis. Thus, we have the relationships 

cos ( 8-d8/2) = dy/ (rd8) 

sin(8-d8/2) = dx/ (rd8) 

(0. 1 0) 

(0. 11) 

By expanding the left-hand side of equations (0.10) and (0.11), and 



solving for dy and dx, we have 

dy = rd8[cos8 + dS(sinS)/2] 

dx = rd8[sin8- d8(cos8)/2] 

&Jt, case= (x+6)/r and si n8 = y!r, so 

and 

dy = -dS(x + 6 + dS/2) 

dx = dS[y- d8(X+6)/2] 

Using the dimensions given in Appendix E, we have 

X (0) = 0 

x (0) = 16. 445 in/ s 

0 = 1. 2 85 E +0 5 l b s 2 I i n 2 

K = 18. 03 E+O 6 1 b/ in 

s = 359.082 in/lb s 2 

Q = 80463 r ad/ s 

y(O) = 2.044E-04 in 

16 7 

(0. 12) 

(0. 13) 

(0. 14) 

(0. 15) 

A small Pascal program was written to solve for x andy as a function of 

time, t. The results are plotted in figure 3.11. 



APPENDIX E 

GEAR DIMENSIONS FOR PERTURBATION 
A N 0 DE LT A E XA MP LE S 

E. 1 Manent of Inertia 

Consider the gear to be equivalent to a cylinder with radius, rp, 

and 1 en gth, F. Then , 

V = nr p ~ in 3 

2 
W = pV = npr p F lb 

m = W/g = nprp 2F/g lb-sec 2/in 

J = mr p 2 I 2 1 b s e c 2; n 

J = 
npr p 4F 

2g 

n(0.282) 
2( 386) 

I. 14 8 ( 1 0)-3 r 4F 1 b s e c2 i n for steel 
. p 

E. 2 Oanpi ng Coefficient 

Fran equation (3.12) 

D= 6(1-e) 

[(2e-1) 2+3] 

k 
v. 

1 

The relationship used for the perturbation solution for the coefficient 

168 



of restitution (see Goldsmith, 1960, Figure 166, p 258) is 

e = 1-0. 019 V. 0· 4 8 
1 

and the initial velocity is 

when 

E. 3 Gear Dimensions 

The following gear dimensions were used in the perturbation and 

delta example solutions: 

fran these 

N l = N2 = 2 8, P = 8, $ = 2 0 ° , F = 0. 700 i n 

rp = N1/2P = 28/16 = 1.750 in 

a = 1 /P = 0 • 12 5 i n • 

r + a 
p 1.8750 in 

-3 2 
= 7 . 53 7 x 1 0 l b s e c i n 

k = 2.58(10) 7 ( 0. 700) = 18.03 x 106 1 b/in 
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Mass is added to the output shaft to make its t.rtdamped natural frequency 

3 50 hz. 

350 = .L /kfb 22 
2n J2 



2 
J = KRb2 = (18.03 x 106)( 1,6445) 2 

2 (700n) 2 (700rr) 2 

= 10.082 lb sec 2in 

The 1 en gt h of act i on i s 

= 0. 6043 in 

pb = TIC OS 20 °/8 = 0. 36902 in 

mp = z/ ~ = 1. 63 76 

a = nmp/N 

=. n(l.6376)/28 = 0.18374 rad 
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APPENDIX F 

PROGRAM DESCRIPTION FOR NUMERICAL SOLUTION 

TO SPUR GEAR MODEL 

PROGRAM GearSim; 

CONST 
pi = 3.141592654; 

TYPE 
StateVar = ARRAY[1 .. 4] OF REAL; 

VAR 
XK,XKl,X 

{ 

TimeStep,RunTime,Time,Vi ,Baclash,Delta, 
Tl,T2,TS,Jl,J2,Ft,Gt,D,P,Nl,N2,Face, 
rl,r2,Alpha,mc,k,rbl,rb2,phi 
I,J,C 
Contact,Impact,WriteFlag 
Out, Inp 
FileName 

StateVar; 

REAL; 
INTEGER; 
BOOLEAN; 
TEXT; 
STRING[14]; 

************************************************************************ " ********************* FUNCTIONS & PROCEDURES ************************* 
************************************************************************ 
} 

FUNCTION ArcCos(x:REAL):REAL; 
{Returns the angle which is the inverse cosine of x.} 

BEGIN 
ArcCos:=-ArcTan(x/SQRT(l.O-X*X))+pi/2.0; 

END; {ArcCos} 

FUNCTION Inertia(r,f:REAL) :REAL; 
{Returns the moment of inertia of a steel gear} 

BEGIN 
Inertia:=1.148E-03*r*r*r*r*f; 

END; {Inertia} 
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FUNCTION PitchRad(P,N:REAL) :REAL; 
{Returns the pitch radius of a gear} 

BEGIN 
PitchRad:=N/(2.0*P); 

END; {PitchRad} 

FUNCTION Inv(phi:REAL):REAL; 
{Returns the involute of an angle} 

BEGIN 
Inv:=SIN(phi )/COS(phi )-phi 

END; {Inv} 

FUNCTION ContAng(phi,rl,r2,P:REAL):REAL; 
{Returns the contact angle for a pair of teeth} 

VAR 
a,b,d,ra,beta,ta,phia: REAL; 

BEGIN 
a:=l.O/P 
b:=r2*COS(pi/2.0+phi); 
d:=b+SQRT(b*b+a*(2.0*r2+a)); 
ra:=SQRT(d*d+rl*rl-2.0*d*rl*COS(pi/2.0-phi)); 
beta:=ArcCos((ra*ra+rl*rl-d*d)/(2.0*ra*rl)); 
phia:=ArcCos(rl*COS(phi)/ra); 
ta:=pi/(4.0*P*rl)+Inv(phi )-Inv(phia); 
ContAng:=beta+ta; 

END; fContAng} 

FUNCTION ContRati.o(phi ,rl,r2,P:REAL) :REAL; 
{Returns the contact ratio for a pair of gears} 

VAR 
a,rol,ro2,rbl,rb2,lab: REAL; 

BEGIN 
a:=l.O/P; 
rol:=rl+a; 
ro2: =r2+a; 
rbl:=rl*COS(phi); 
rb2:=r2*COS(phi); 
lab:=SQRT(rol*rol-rbl*rbl)+SQRT(ro2*ro2-rb2*rb2)-(rl+r2)*SIN(phi); 
ContRatio:=lab*P/(pi*COS(phi)); 

END; {ContRatio} 
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FUNCTION Mode(x:StateVar):INTEGER; 
{Returns the number of teeth in contact and the contacting face. 
Positive values indicate contact on the forward face,negative 
values on the rear face.} 

VAR 
N,I INTEGER; 
Delta,LoLimit,HiLimit REAL; 

BEGIN 
N:=TRUNC(Nl*(X[l]+alpha)/(2.0*PI))+l; 
LoLimit:=2.0*pi*(N-2.0+mc)/Nl-alpha; 
HiLimit:=2.0*pi*N/Nl-alpha; 
Delta:=rbl*X[l]-rb2*X[3]; 
IF Delta >= Baclash THEN 

BEGIN 
IF (X[l] > LoLimit) AND (X[l] < HiLimit) THEN 

Mode: =1 
ELSE 

MODE:=2; 
END; 

IF (Delta > -Baclash) AND (Delta< Baclash) THEN Mode:=O; 
IF Delta <= -Baclash THEN 

IF (X[l] > LoLimit) AND (X[l] < HiLimit) THEN 
Mode:=-2; 

END; {Mode} 

FUNCTION Damping:REAL; 
{Evaluates the damping coefficient for the current impact event.} 

VAR 
e : REAL; 

BEGIN 
IF Vi> 0.0 THEN e:=l.0-0.019*EXP(0.48*LN(Vi)) ELSE e:=l.O; 
IF e < 1.0 THEN 

Damping:=6.0*k*(l.O-e)/((SQR(2.0*e-1.0)+3.0)*Vi) 
ELSE 

Damping:=O.O; 
END; {Damping} 

FUNCTION SGN(X:REAL):REAL; 
{Returns +1.0 if X is positive or zero, else -1} 

BEGIN 
IF X >=0.0 THEN 

SGN:=l.O 
ELSE 

SGN:=-1.0 
END; {SGN} 
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FUNCTION F{I,C:INTEGER;X:StateVar;D:REAL):REAL; 
{Evaluates the state equations that are being integrated by RK4} 

VAR 
Deltab,RelDel ,RelVel : REAL; 

BEGIN 
{ WR IT E L N ( I F : X [ 1 J = I ) X [1 J : 8 : 6 ,' X [ 3 J = I ' X [ 3 J : 8 : 4 ) ; } 
Re1Del:=rbl*~[l]-rbl*X[3]; 
Re1Vel:=rb1*X[2]-rb2*X[4]; 
Deltab:=ABS(RelDel)-Baclash; 
Ft: =k *Deltab; 

{ Gt:=D*RelVel*Deltab*SGN(RelDel);} 
IF Deltab < 0.0 THEN 

BEGIN 
Ft:=O.O; 
Gt:=O.O; 

END; 
CASE I OF 

1 : F:=X[2]; 
2 : F:={Tl-C*rb1*{Ft+Gt))/Jl; 
3 : F: =X [ 4]; 
4 : F:={T2+C*rb2*{Ft+Gt))/J2; 

END; 
END; {F} 

PROCEDURE RK4; 
{Fourth-order Runge Kutta integration routine.} 

VAR 
Dummy 
RC • . 
I 

BEGIN 

REAL; 
ARRAY[1 .. 4,1 .. 4] OF REAL; 
INTEGER; 

FOR I:=1 TO 4 DO RC[I,1]:=F(I,C,XK,D)*TS; 
FOR I :=1 TO 4 DO X[I]:=XK[I]+0,5*RC[I,1]; 
FOR I:=1 TO 4 DO RC[I,2]:=F{I,C,X,D)*TS; 
FOR I:=l TO 4 DO X[I]:=XK[I]+0.5*RC[I,2]; 
FOR I:=l TO 4 DO RC[I,3]:=F(I,C,X,D)*TS; 
FOR 1:=1 TO 4 DO X[I]:=XK[I]+RC[I,3]; 
FOR !:=1 TO 4 DO RC[I,4]:=F(I,C,X,D)*TS; 
FOR I:=l TO 4 DO XKl[I]:=XK[I]+ 

{RC[I,1]+2.0*RC[I,2]+2.0*RC[I,3]+RC[I,4])/6.0; 
Dummy:=F(1,C,XK1,0); 

END; { RK4} 
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PROCEDURE GetOata; 
{Sets up I/0 files and reads the input data} 

BEGIN 
ClrScr; 
WRITELN( 'Enter out,Put file name'); 
READLN(FileName); 
ASSIGN (Out, Fil eN am e); 
REWRITE(Out) ;, 
ASSIGN ( In p , 'gears i m. i n p' ) ; 
RESET(Inp); 
ClrScr; 
FOR 1:=1 TO 4 DO READLN(Inp,XK[I]; 
READLN(Inp,Baclash); 
READLN(Inp,TimeStep); 
READLN(Inp,RunTime); 
READLN(Inp,Tl); 
READLN( Inp, T2); 
READLN( Inp, P); 
READLN(Inp,N1); 
READLN( Inp,N2); 
READLN(Inp,face); 
READLN(Inp,phi); 
CLOSE( Inp); 

END; {GetData} 

PROCEDURE Constants; 
{Calculates gear constants from input data} 

BEGIN 
phi:~pi*phi/180.0; 
r1:=PitchRad(P,N1); 
r2:=PitchRad(P,N2); 
rb1:=r1*COS(phi); 
rb2:=r2*COS(phi); 
al pha:=ContRatio (phi ,r1 ,r2, P); 

{ a 1 ph a: =0. 183 7 4;} 
mc:=ContRatio(phi ,rl,r2,P); 
Jl:=Inertia(rl,face); 
J2:=Inertia(r2,face); 

{ J2:=10.082;} 
k:=25.76E06*face; 

WRITELN('phi=',phi:5:4,' rl=',r1:8:6,' r2=',r2:8:6,' rb1=',rbl:8:6); 
WRITELN('rb2=',rb2:8:6,' alpha=',alpha:5:4,' mc=',mc:8:6); 
WRITELN('J1=',Jl:8:7,' J2=',J2:8:6,' k=',k:8:0); 
END; {Constants} 
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PROCEDURE Initialize; 

BEGIN 
Cant act:= FALSE; 
Impact: =FALSE; 
WriteFlag:=TRUE 
Oelta:=rbl*XK[l]-rb2*XK[3]; 
Vi:=ABS(rbl*XK[2]-rb2*XK[4]); 
D:=Damping; 
Ft:=O.O; 
Gt:=O.O; 
Time:=O.O; 
TS: = TimeStep; 

E NO ; { I n i t i a 1 i ze } 
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{********************************************************************** 
************************* MAIN PROGRAM ***************************** 
**********************************************************************} 

BEGIN {GearSim} 
Get Oat a; 
Constants; 
Initialize; 
REPEAT 

IF WriteFlag THEN 
BEGIN 

WRITE(Out,Time:8:6, • ',SGN(Delta)*(ABS(Delta)-Baclash):8:6, • • 
XK[2]:8:5); 

WRITE(Out,• ',XK[3]:8:6,' ',XK[4]:8:5); 
WRITELN(Out,• ',Ft:8:5,' ',Gt:8:5); 

• WriteFlag:=FALSE; 
END; 

C: ='Mode (XK); 
RK4; 
Delta:=rbl*XK[l]-rb2*XK[3]; 
IF ((ABS(Delta) >= Baclash) AND (NOT Contact) AND (NOT Impact)) THEN 

BEGIN 
Impact: ==TRUE ; 
TS:=TimeStep/10.0; 

END 
ELSE 

BEGIN 
\~rit eF 1 a g: =TRUE 
Time : =Time+ TS ; 
FOR J:=l TO 4 DO XK[J] ;=XKl[J]; 
WRITE{'t=',Time:8:6,' Delta=' ,Delta:8:6); 
WRITE(' Impact is ',Impact,' Contact is ',Contact); 
WRITELN(' C=',C:2,' VI=',VI:8:6); 
IF Contact AND (ABS(Oelta) < Baclash) THEN 

BEGIN 
Impact:=FALSE; 



TS := TimeStep; 
Contact:=FALSE; 

END; 
IF (ABS(Delta) >= Baclash) AND Impact AND NOT Contact THEN 

BEGIN 
Cant act:= TRUE ; 
Vi:=ABS(rbl*XK[2]-rb2*XK[4]); 
D::oDamping; 

END; . 
END; 

UNTIL (Time > RunTime); 
CLOSE(Out); 
WRITELN( 'Simulation Complete'); 

END. 
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.APP ENOl X G 

N 0 DE L I B RA R Y 

The available node types are defined bel rM. 

N01 - Passive Inertia 

This node type is used for all nodes except motors, which, when 

used,must belocated at position 1only. Thus, for nodes 2andup, 

only NOl may be used. NOl may also be used in position 1. The terms 

used i n t he s t ate e qua ti o ns are d ef i ned i n F i g ur e G • 1. The s t at e 

equations are: 

X; 1 = X; 2 (G • 1) 

X 1. 2 = (-d. X . 2 + ~ - T~) I J . 
1 1 1 1 1 

(G • 2) 

where ~; 1 , X; 2, T;L, T;R are the angular displacement, angular velocity, 

ext ern al tor que on the 1 eft and right , respectively. The ~-constants 

(refer to 5. 1. 1. 2.) are: 

RN. 1 = J., inertia, in lb s 2/rad 
1 1 

RN; 2 =d;, external damping, in lbs/rad 

N 02 - DC M ot or 

This node-type represents a constant field, variable armature, DC 

motor. It may only be used in position 1. The terms used in the state 

equations are defined in Figure G.2. The state equations are: 
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F i g • G . 1. Pas s i ve I n er t i a 

x 11 x12 (G • 3) 

• R 
X 1 2 = (- d X 1 2 + a X 13 - Tl ) I J ( G • 4) 

X13 = (-R x13 - a' x12 + e)/L ( G • 5) 

where,x 11 , x12 , x13, e, and r1R are the angular displacement, angular 

velocity, armature current, armature voltage, and load torque, 

respect; vely. The RN-constants (refer to 5.1.1. 2.) are: 

RNll = J, armature inertia, in lbs2/rad 

RN12 = d, exter-nal damping, in 1 b s/rad 

RN1 3 = a, mot or par at1 et er , i n 1 b/ at1 p 

RN14 = L, armature inductance, henry 

RN1 5 = R , arm at ur e r es i s t an ce , o hn 

RN16 = a', electrical eq.Ji valent of a, volt sec 
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T R 

/ 
1 

R L 

J ( i=X13 

e 
em 

d 

Te Te = aX13 

em = a'x12 

Fig. G .2. DC Motor 



APP ENOl X H 

E LE ME NT L I B RA R Y 

The available el anent types are defined bel OYI. 

Ell - Shaft 

This elsnent is used to connect nodes directly with a linear, 

visco-elastic coupling. It provides for internal danping. The terms 

used in the torque equations are defined in Figure H.l. The torque 

equations are: 

R 
T; = b; (X; 1- X(i+1) 1) + d; (X; 2- X(i+1) 2) (H. 1) 

L 
Ti = bi-1 (X (i-1) 1- X;) + di-1 (X (i-1) 2- X; 2) (H. 2) 

Where} is the position nunber of the node for which the torque is being 

evaluated, and x11 and x12 are the angular displacsnent and angular 

velocity of the ith node, respectively. TheRE-constants (refer to 

5 • 1. 1. 2 • ) ar e: 

RE 11 = b1, stiffness, lb in/rad 

RE 12 = d 1, i nt er nal damping, 1 b i n s I rad 

EL2 - Keyed Joint 

This elsnent is used to model a standard keyed joint. It includes 

nonlinear stiffness, clearance (backlash), and dcrnping. The terms in 

the torque equation are defined in Figure H.2. The torque equations are 
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x(i-1) ,x(i-1)2 

Figure H. 1. Shaft E 1 anent 

given separately for the right and left torque, and for the three 

JXlSsible conditions of contact, i.e., contact on the forward face, no 

contact, and contact on the rear face of the key. For the right torque, 

for 

( i ) 

( i i ) 

( i i i ) 

Q .. ~ 0 
1J 

T~ = (k.o .. + o.o .. 6 .. )d./2 
1 1 1J 1 1J 1J 1 

-2b. < 6. . < 0 
1 1 J 

R T. = 0 , 
6 .. ~ - 2b. 

1 J 1 

(H. 3) 

(H. 4) 

T~ = (k. (6 .. + 2b.) +D. (6 .. + 2b.)6 .. ]d./2 (H.5) 
1 1 1J 1 1 lJ 1 lJ 1 

where i is the position nli!1ber of the node for which the torque is being 

evaluated , and 

j = i + 1 (H. 6) 



6 . . = (X . 1 - X . l ) d. /2 b . 
1J 1 J 1 1 

6. . = (X . 2 - X. 2 )d ./2 
1 J 1 J 1 

F or t he l ef t tor que , f or 

(i ) 

( i i ) 

( i i i ) 

.· 6 .. ~ 0 
1J 

T~ = (K .6 .. + D .6 .. 6 .. )d ./2 
1 . J 1J J 1J 1J J 

-2b.<6 .. <0 
J 1J 

L T. = 0 
1 

6 .. .$-2b. 
1 J J 

L . 
T. = (K.(6 .. + 2b.) + 0.(6 .. + 2b.)6 .. ]d./2 

1 J 1J J J 1J J 1J J 
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( H~ 7) 

(H. 8) 

(H. 9) 

(H. 10) 

(H. 11) 

where i is the JX>Sition nunber of the node for which the torque is being 

evaluated, and 

.,... 
xi+1, 1' xi+1,2 

(a ) R i gh t T or que 

. Figure H. 2. Keyed Joint El611ent 



Ko 1 1-

/ 

( b ) L ef t T or que 

Figure H. 2~ Keyed Joint El anent 

j ; - 1 

6 0 0 

1J 
(X 0 1 - X o 1 ) d 0 /2 - b 0 

J 1 J J 
60 0 ( X 0 2 - X o 2 )d 0 I 2 
1J J 1 J 

and x1'1 and x12 are the angular displacement and angular velocity, 

respectively. TheRE-constants (refer to 5.1.1. 2.) are: 

RE ll = d 1 ~ shaft di an et er , i n 

RE 12 = b 1, half-clearance between hub and key, in 
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(H. 12) 

(H. 13) 

(H. 14) 

See Chapter IV for a discussion of the nonlinear stiffness coefficient, 

k, and the dan ping coefficient, D .• 

EL3 - I deal Gear Pair 

This el snent is used to model a gear pair (spur or helical) for 

which there is no danping or backlash. Constant tooth stiffness is 
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incltxled. The terms used in the torque equations are defined in Figure 

H. 3. The torque equations are: 

R T. = k. (r. 1x. 1 - r. 2x. 2)r. 1 1 111 111 ( H. 15) 

(H. 16) 

where i is the p::>s i ti on nun ber of the node for which the tor que is being 

evaluated, and xu and x12 are the angular displacenent and angular 

velocity, respectively. The RE-ronstants (refer to 5.Ll.2.) are: 

RE11 = k1 , tooth pair stiffness, 1 b/i n 

RE 12 = r 11 , base circle radius (driver), in 

R£ 13 = r 12 , base cirr.le radius (driven), in 

EL4 - Spur Gear Pair With 83. ckl ash 

This elenent is used to model a spur gear pair with backlash and 

impact damping. Mesh stiffness is a fLnction of mesh angle and also 

depends on the number of teeth in contact. As in the case of EL3, this 

elenenj: is a torque amplifier. The terms used in the torq..te equations 

f 

~Xit 

Figure H. 3. Ideal Gear Pair El anent 
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are defined in Figure H.4. The torque equations are given separately 

for the right and 1 eft tor que , and for the three pas si bl e con di ti o ns of 

contact, i.e., contact on the forward face, no contact, and contact on 

the rear face of the tooth. For the right torque, for 

(i ) 

( i i ) 

(i i i ) 

6 .. ~ 0 
1J 

T~ = C. (k.6 .. + 0.6 .. 6 .. )r. 1 1 1 1 1J 1 1J 1J 1 

-2b. < 6. . < 0 
1 1 J 

R T. = 0 
1 

6 .. .$ -2b. 
1 J . 1 

T ~ = c . (k . 6 . . + D . 6 . . 6 . . ) r . 1 1 1 1 lJ 1 1J 1J 1 

Figure H. 4. ~ur Gear Pair With B:lckl ash El811ent 

(H. 17) 

(H. 18) 

(H. 19) 
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where i is the p:Jsition nunber of the node for which the torque is being 

evaluated , and 

j = i + 1 

6 .. 
1J (r i 1 xi 1 - r. 2x. 1)- b. 

1 J 1 

6 .. 
1 J ;,. ( r i 1 X; 2 - ri2xj2) 

For the left torque, for 

( i ) 

( i i ) 

(i i i ) 

where 

6 .. ~ 0 
1J 

T ~ = c . (k . 6. . + D. 6 .. 6 .. ) r . 2 1 J J1J J1J1J J 

-2b.<6 .. <0 
J 1 J 

L T. = 0 
1 

6 .. ~ -2b. 
1J J 

T ~ = c . (k . 6. . + D. 6 .. 6 .. ) r . 2 1 J JlJ J1J1J J 

j i - 1 

(H. 20) 

(H. 21) 

(H.22) 

(H. 23) 

(H. 24) 

(H. 25) 

(H. 2 6) 

(H. 27) 

(H. 28) 

and xll and x12 are the angular displacement and angular velocity, 

respectively. The paraneter c 1 takes the values 0, ±1, or ±2, depending 

on the contact condition. See Chapter III for a discussion of the 

s tiff n es s co ef f i ci e nt , k 1 , an d t he dan pi n g co eff i ci e nt , D 1. T he RE

co ns t ants ar e: 
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REn= N, the nunber of teeth on the driver 

RE12 = r 11 , base circle radius (driver), i n 

RE13 = r 12 , base ci rcl e r adi us (driven), i n 

RE 14 = mp, contact ratio 

RE15. = a., angle of app- oach, radians 

RE 16 = b 1, half-clearance between teeth, in 



APPENDIX I 

ADDING AN ELEMENT TYPE 

When a new element type is to be added to TRAIN the data file 

TFILEOl.DAT and the FORTRAN code for the functions LTRQ and RTRQ must be 

modified. 

The data file TFILEOl.DAT consists of a header, two node-type 

records and five element-type records. The header consists of the first 

four lines in the file. Line 2 contains the total number of nodes and 

elements currently defined (7) and line four contains the current number 

of elements defined (5). ~th of these numbers must be incremented by 

one for each new element type added. The first line (field) in a node

type record contains the string NODE RECORD, and the first line in an 

element record contains the string ELEMENT RECORD. The number of lines 

(fields) in an element-type record is n + 4, where n is the number of 

RE-constants defined for the element. When adding a new element type to 

the end of TFILEOl.DAT, use the same format as for the current elements, 

paying particular attention tot he columns in which the data starts. 

The functions LTRQ and RTRQ are evaluated for each integration step 

in the solution processor. There must be a torque equation defined in 

each of these subprograms for each element type that might be chosen by 

the user of TRAIN. In adding a new element to TRAIN, follow the format 

found in Appendix H and in the functions LTRQ and RTRQ. Then, add an 

additional case to the block IF statement and the appropriate FORTRAN 
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code to LTRQ and RTRQ. For example, the next element type nunber will 

be 6 and the following would be added at the end of block 0500: 

ELSE IF(TYPE .EQ. 6) THEN 

ENOl~ 

The FORTRAN code for the torque equation would be placed between the 

ELSE IF line and the ENDIF line. 
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